From 3a23f710f37d35efc6bb57ca30033abbcb45ca49 Mon Sep 17 00:00:00 2001 From: Qiaolin Lu Date: Fri, 19 Jan 2024 02:10:12 +0800 Subject: [PATCH] update pseduo spot generation on CosMx liver dataset-v1 --- pseudo_spot_generation/.DS_Store => .DS_Store | Bin 6148 -> 6148 bytes pseudo_spot_generation/liver/cancer.ipynb | 50447 ++-------------- pseudo_spot_generation/liver/health.ipynb | 41347 ++----------- 3 files changed, 10052 insertions(+), 81742 deletions(-) rename pseudo_spot_generation/.DS_Store => .DS_Store (85%) diff --git a/pseudo_spot_generation/.DS_Store b/.DS_Store similarity index 85% rename from pseudo_spot_generation/.DS_Store rename to .DS_Store index 64d86d87e0ee7d4417588fbbefc82a80bd1898e1..d25cea52b86e0a7e68d12390d15ff3919e058f56 100644 GIT binary patch delta 533 zcmZoMXfc@JFUrBdz`)4BAi%(o$B@X7!%)dk%#gWRkYhP>JxGe1!G*zQ9VEgNiIt%PR>cn&riz%nMjh(vf!e;ocz3WpgxdZA%5gg5S?|DSZWA3kU|bQEc9xqofK*a0mXHXy;P+=w8ga|Yfw=cg=%Q?|Mb4KUI_k6`EU=tE7aE9fLi`z@VZ4~ELewZY) zH2A1XEAWS+SlCq=Mp-VWvK%aHimDC5c{b8Z{~nH#IGZ#YzgcC&+1#pDz3O)Lb#N}` z!K62tX6@eiB|SaEJu+O4d*SoAKkwG|9*K0)i_`vC65^FVe6@w`{ z`nk^YHRcKx9hkm+F#TqxZzxQ@9p~pV9hk4s_ErI_fT_TSdaTj;{}{jFzuf;#l6|rY zSOspC0?g?Ioi;8>pRJ|E(OJu}y}?FCdAUMK!A>8?azID%J~n9><1|3@HRcM@gJypO NqztyR3j9|E{s3YBvG@Q0 diff --git a/pseudo_spot_generation/liver/cancer.ipynb b/pseudo_spot_generation/liver/cancer.ipynb index 2750cca..7a8b23e 100644 --- a/pseudo_spot_generation/liver/cancer.ipynb +++ b/pseudo_spot_generation/liver/cancer.ipynb @@ -6,54 +6,33 @@ "metadata": { "id": "dhyUyNf2chI2" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/luqiaolin/anaconda3/envs/baseline_code/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import numpy as np\n", "import torch\n", "import sys\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.optim as optim\n", "import os\n", "import pandas as pd\n", - "\n", - "from torch.utils.data import DataLoader, Dataset, TensorDataset\n", - "\n", + "from tqdm import tqdm\n", "import time\n", "import matplotlib.pyplot as plt\n", - "from scipy.stats import pearsonr" + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "os.chdir(\"/home/luqiaolin/projects/Benchmarking_paper_code/cosmx_spot_data/pretrain/liver\")\n" ] }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "executionInfo": { - "elapsed": 309, - "status": "ok", - "timestamp": 1613202649015, - "user": { - "displayName": "jiayuan ding", - "photoUrl": "", - "userId": "00368278201421210170" - }, - "user_tz": 480 - }, - "id": "FTLDiSDmdu8K", - "outputId": "1a0d775a-27c1-41c8-eb82-0ceaaa06e42b" - }, - "outputs": [], - "source": [ - "# from google.colab import drive\n", - "# drive.mount('/content/gdrive')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -77,73 +56,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "cancer.ipynb health.ipynb slide_1.png\n", - "/mnt/ufs18/home-144/dingjia5/projects/CosMx_liver/benchmark_generation_scripts\n" + "cancer\t\t liver_cell_positions_file.csv NormalLiver_cellType.txt\n", + "cosmx_Liver.h5ad liver_cellType.csv\t\t processed\n", + "health\t\t liver_metadata.csv\t\t pseudo_spot\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/luqiaolin/projects/Benchmarking_paper_code/cosmx_spot_data/pretrain/liver\n" ] } ], "source": [ "!ls\n", - "\n", "!pwd" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "04C_9R1Ucjsp" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ALj58_AZdKGJ" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'\\nGeoMx: spot region area\\n1. mean: 37456.28 μm2\\n2. median: 24168.74 μm2\\n'" + "'\\nGeoMx: spot region area\\n1. mean: 37456.28 μm2\\n2. median: 24168.74 μm2\\n\\nCosMx lung, kidney: \\n1. All FOVs are the same dimension, 5472 x 3648 pixels\\n2. multiply the pixel value by 0.18 um per pixel\\n3. FOV area: 5472 x 3648 pixels -> 984.96um x 656.64um = 646,764.134 um2 \\n\\nNew Benchamrk from CosMx\\n1. length: 5472 pixels, width: 3648 pixels\\n2. simulated spot: \\n length: 5472 pixels / 5 = 1094.4 pixel = 196.992 um\\n width: 3648 pixels / 4 = 912 pixel = 164.16 um\\n one spot area: 196.992 um * 164.16 um = 32338.2067 um2\\n3. In total: 20 spots / FOV\\n\\n\\nCosMx liver:\\n1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\\n2. simulated spot: \\n 4236 / 3.0 = 1412 pixels = 169.44 um\\n 169.44 um * 169.44 um = 28709.9136 um2\\n\\n'" ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -153,27 +95,7 @@ "GeoMx: spot region area\n", "1. mean: 37456.28 μm2\n", "2. median: 24168.74 μm2\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nCosMx lung, kidney: \\n1. All FOVs are the same dimension, 5472 x 3648 pixels\\n2. multiply the pixel value by 0.18 um per pixel\\n3. FOV area: 5472 x 3648 pixels -> 984.96um x 656.64um = 646,764.134 um2 \\n\\nNew Benchamrk from CosMx\\n1. length: 5472 pixels, width: 3648 pixels\\n2. simulated spot: \\n length: 5472 pixels / 5 = 1094.4 pixel = 196.992 um\\n width: 3648 pixels / 4 = 912 pixel = 164.16 um\\n one spot area: 196.992 um * 164.16 um = 32338.2067 um2\\n3. In total: 20 spots / FOV\\n\\n'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", + "\n", "CosMx lung, kidney: \n", "1. All FOVs are the same dimension, 5472 x 3648 pixels\n", "2. multiply the pixel value by 0.18 um per pixel\n", @@ -187,91 +109,19 @@ " one spot area: 196.992 um * 164.16 um = 32338.2067 um2\n", "3. In total: 20 spots / FOV\n", "\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nCosMx liver:\\n1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\\n2. simulated spot: \\n 4236 / 3.0 = 1412 pixels = 169.44 um\\n 169.44 um * 169.44 um = 28709.9136 um2\\n'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", + "\n", "CosMx liver:\n", "1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\n", "2. simulated spot: \n", " 4236 / 3.0 = 1412 pixels = 169.44 um\n", " 169.44 um * 169.44 um = 28709.9136 um2\n", + "\n", "\"\"\"" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Transcript Data" - ] - }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "id": "_xOAWdcpojDI" - }, - "outputs": [], - "source": [ - "\n", - "import numpy as np\n", - "import torch\n", - "import sys\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.optim as optim\n", - "import os\n", - "import pandas as pd\n", - "\n", - "from torch.utils.data import DataLoader, Dataset, TensorDataset\n", - "\n", - "import time\n", - "import matplotlib.pyplot as plt\n", - "from scipy.stats import pearsonr\n", - "import pandas as pd\n", - "from collections import Counter" - ] - }, - { - "cell_type": "code", - "execution_count": 5, "metadata": {}, "outputs": [ { @@ -389,19 +239,19 @@ "[793318 rows x 3 columns]" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "CosMx_cell_type = pd.read_csv('../liver_cellType.csv')\n", + "CosMx_cell_type = pd.read_csv('./liver_cellType.csv')\n", "CosMx_cell_type" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -425,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -466,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -489,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -498,7 +348,7 @@ "(301, 383)" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -509,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -627,7 +477,7 @@ "[460441 rows x 3 columns]" ] }, - "execution_count": 10, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -640,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -665,7 +515,7 @@ " 'NotDet': 5}" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -684,14 +534,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -870,16 +713,36 @@ "[793318 rows x 7 columns]" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary = pd.read_csv('../liver_cell_positions_file.csv')\n", + "cell_boundary = pd.read_csv('./liver_cell_positions_file.csv')\n", "cell_boundary" ] }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "383" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(cell_boundary['fov'].unique())" + ] + }, { "cell_type": "code", "execution_count": 13, @@ -1295,41 +1158,6 @@ "cell_boundary_health" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": 16, @@ -2302,13 +2130,7 @@ "4237 17\n", "fov_id: 59 (1146, 8)\n", "4247 14\n", - "4228 22\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "4228 22\n", "fov_id: 60 (1101, 8)\n", "4243 16\n", "4239 12\n", @@ -2553,8 +2375,6 @@ "for fov_id in fov_ids_lst_health:\n", " print(\"fov_id:\", fov_id, cell_boundary_health[(cell_boundary_health['fov']==fov_id)].shape)\n", " fov_whole = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", - "# print(fov_whole)\n", - "# print(fov_whole[\"x_FOV_px\"].max() - fov_whole[\"x_FOV_px\"].min(), fov_whole[\"y_FOV_px\"].max() - fov_whole[\"y_FOV_px\"].min())\n", " print(fov_whole[\"x_FOV_px\"].max(), fov_whole[\"x_FOV_px\"].min())\n", " print(fov_whole[\"y_FOV_px\"].max(), fov_whole[\"y_FOV_px\"].min())\n", " " @@ -2562,1222 +2382,237 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAPLCAYAAABVY3rJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOydd3wc1b23nzOzs33VbBVbxd3GuGCKC8aCJGBMzU31TS7pgCGUBEhoNgRIsAE7QCB0COnN5OYSMAZTEoJludFBAXdbvVjSarV92vvHmV0ZUm5uyJt6Hn/2Mzsz55yZHe1Zz3d+Tbiui0KhUCgUCoVCoVAoFIq/HO3vfQIKhUKhUCgUCoVCoVD8s6PEtUKhUCgUCoVCoVAoFO8RJa4VCoVCoVAoFAqFQqF4jyhxrVAoFAqFQqFQKBQKxXtEiWuFQqFQKBQKhUKhUCjeI0pcKxQKhUKhUCgUCoVC8R5R4lqhUCgUCoVCoVAoFIr3iBLXCoVCofi3RQjxPiGEK4TweevLhRBP/4n2Pq/9+/5W5/ivghDieiFE01/Yt0EIkRRCTPxrn5dCoVAoFH8tlLhWKBQKxb8sQogJQoifCiE6PXHWKYRYL4QY84fau667ynXdk/8/n9MnhBAbhRCJQ4X9/3GM672+t75r+zlCiP1/tZP9G/KnxLfruq2u60Zd1937tz4vhUKhUCj+XJS4VigUCsW/MuuBYWCm67pR4Ejg54D7dzynQeAe4JL3OE4/cJEQYup7PiMPIYQuhPi3uzf4d/3cCoVCofjrov4jUSgUCsW/JEKIUcBhwH2u6w4AuK7b47ru913X7f4jfd5hPRVCVAkhfimEiAsh9gL/+Qf6zBdCPC+E6BdCHBBCfONPWaNd193guu5PgfdqhX0beAS47Y818ETj5UKInUKIISHEi0KIUw/ZX3CL/4QQYieQBqqEEPu9a7HBs/jvEkJ8wGv/uhBiWAjxrBCi5pCxLhRCvOlZ5LuFED8UQox+j5+xMPZ47zwnCyFKhRBpIUTju9rcKYR47JD1zwghXvM+d4sQ4hP/2+f+a5yrQqFQKP59UeJaoVAoFP+SuK7bD7wB3C+E+LwQYvZfYJ38ERAGJgLHAJ88dKcQYhrwHHAfUA0cD3wQuPK9nLsnYK/6M5peCbxPCLHkj+y/BPgy8AlgFPBN4FdCiKPe1e4/gWOBEqDP2/Z54AqgFHgM+DHwJeBEYCzyutxwyBjdwEeAMmA+MBX49p/xGf5PuK47BPwCOLuwTQgRBD4FPOStfw640WtTDpwHPCCEWPSu4f7Q51YoFAqF4i9CiWuFQqFQ/CvzfuBJ4IvANuCgEOKbQojA/9ZRCFELLAYud113wLN+X/2uZhcCj7uu+zPXdS3XdQ8Aq5HC9C/Gdd3Zruve/Ge06wBuAW7/I9byZcAa13Vf9s7vZ8jrsexd7a5yXbffdd2c67q2t+0h13Vf89Z/ANR4Y/W5rjsM/Dcw75Bz+W/XdXe6rut41+Fm4P9X/PpDwMeFECXe+keBLPCEt34ZsNJ13Re982lChgN87l3j/KHPrVAoFArFX4QS1wqFQqH4l8UTTl9zXXce0gL7BeBcfl8k/yHqvOW+Q7bte1ebKcCHPbfxuBAiDtyLFKJ/K9YgrcgX/oF99cCed23bDTS8a9u7PxdA1yHvU39kW6ywIoT4iBCiWQjRK4RIAD8EKoQQ+v/+Ef5vuK77AtDOiCfBOcD3DhHIU4Bb3/V3+STS4n4of+hzKxQKhULxF6HEtUKhUCj+LfCsk48CzwLvdov+Q7R7y/GHbBv/rjbdwE9c1y075FXiJU/7m+C6bha4HLgOeHeMcxsw6V3bJgGt79rmvJdzEELUIeO/vw00uK5bAny6sPu9jP0n+A5wjhBiMtId/zuH7OsGLnjX3yXquu5p7xrjPX1uhUKhUCgORYlrhUKhUPxLIoQoF0Lc7MVaB7zkXiciXcVf+N/6ey7XzwGrvbHKgVXvanYP8DEhxMeFEH7vGJOFEKf8ifPSvRhhv7cpIIQIvpds1a7rPoKML//Ku3Y9BHxVCDFHyBrdS4HTvO1/TaLIe4qDrutmhRBT+PO8A96N8K7Foa8/lhzu+8ARwO3Ab13XPdRC/y3gWiHEXCGE5v395wohjv4LzkmhUCgUij8LJa4VCoVC8a9KHmnJfQQ4iCxddQcyRvnWP9HvUD7ljbMfeBkZt1vEdd3tyLjsc4EO7xi/AMb9iTE/DWSADd560ls/vtDAy269/M88xwJfBirete024G7vnAaQCdA+4rrui//Hsf8kruu+jRTTPxBCDCOF74/+gqEWIq/Foa/r/8gxe4B1wBm862GB67p3eP3uQ37uDqT7fOQvOCeFQqFQKP4shOv+PUt9KhQKhUKhUCgUCoVC8c+PslwrFAqFQqFQKBQKhULxHlHiWqFQKBQKhUKhUCgUiveIEtcKhUKhUCgUCoVCoVC8R5S4VigUCoVCoVAoFAqF4j2ixLVCoVAoFAqFQqFQKBTvkT9WO/IfmkAg4FZWVv69T0OhUCgUCoVCoVAoFP8mdHR05F3XDfyx/f+U4rqyspL29va/92koFAqFQqFQKBQKheLfBCFE35/ar9zCFQqFQqFQKBQKhUKheI8oca1QKBQKhUKhUCgUCsV75J/SLVyhUCgUCoVCoVAoFIr3guM4uK5bXBdCoGl/uf1ZiWuFQqFQKBQKhUKhUPzb4DgOBw4cIJvN/t4+XdeprKykvLz8/zyuEtcKhUKhUCgUCoVCofi3obe3F03TmDJlCkKI4nbXdclms3R0dAD8nwW2irlWKBQKhUKhUCgUCsW/Ba7rEo/Hqa6uxufzoet68eXz+YhGo9TW1tLX9ycTg/9BlLhWKBQKhUKhUCgUCsW/Ba7r4rouhmH80TbBYBDbtnEc5/80thLXCoVCoVAoFAqFQqH4t+DQBGZ/jIKr+J/T9lCUuFYoFAqFQqFQKBQKheI9osS1QqFQKBQKhUKhUCgU7xElrhUKhUKhUCgUCoVC8W/Bn+PyXdh3aCbxPwdVikuhUCgUCoVCoVAoFP8WaJqGYRj09/czatSo3xPQpmnS09NDMBhE0/5vtmglrhUKhUKhUCgUCoVC8W9DQ0MDra2tDAwM/N4+IQRlZWVUVVX9n8dV4lqhUCgUCoVCoVAoFP82+P1+Jk+ejOM473APF0IUX38JSlwrFAqFQqFQKBQKheLfjv+r2/f/Ot5fdTSFQqFQKBQKhUKhUCj+DVHiWqFQKBQKhUKhUCgUiveIEtcKhUKhUCgUCoVCoVC8R5S4VigUCoVCoVAoFAqF4j2ixLVCoVAoFAqFQqFQKBTvESWuFQqFQqFQKBQKhUKheI/8TcS1EOJOIcR+IYQrhJjjbQsKIR4VQuwUQrwmhHhGCDH5b3E+CoVCoVAoFAqFQqFQ/DX5W1mufwEsAg68a/sDwDTXdY8AfgU89Dc6H4VCoVAoFAqFQqFQKP5q/E3Eteu6L7iu2/6ubVnXdde7rut6m7YA4/8W56NQKBQKhUKhUCgUCsVfk3+kmOsvI63XCoVCoVAoFAqFQqFQ/FPh+3ufAIAQYjkwGTjxj+y/DLissF5aWvo3OjOFQqFQKBQKhUKhUCj+d/7ulmshxFeBjwCnuq6b/kNtXNe9zXXdusIrGo3+bU9SoVAoFAqFQqFQKBSKP8Hf1XLtWaQ/CZzkum7873kuCoVCoVAoFAqFQqFQ/KX8rUpx3S+EaAfqgA1CiN1CiDrgVqAM+I0Q4lUhxNa/xfkoFAqFQqFQKBQKhULx1+RvYrl2Xfe8P7JL/C2Or1AoFAqFQqFQKBQKxf9P/u4x1wqFQqFQKBQKhUKhUPyzo8S1QqFQKBQKhUKhUCgU7xElrhUKhUKhUCgUCoVCoXiPKHGtUCgU/2bkcjkuuugiJk6cSCgUoqKigjlz5jB16lR8Ph8DAwN/71NUKBQKhUKh+Kfj71qKS6FQ/G05+eST6e7uRtM0YrEYd955J0ceeeTf+7QUf2OuuuoqhBDs2bMHIQTd3d3U1NTwzW9+k9/+9rdUVFT8vU9RoVAoFAqF4p8O4bru3/sc/s/U1dW57e3tf+/TUCj+6YjH45SVlQHwP//zP1x//fW89tprf9+TUvxNSaVSjBkzhvb2dkpKSt6xb/r06dx000186EMf+vucnEKhUCgUCsU/MEKIDtd16/7YfmW5Vij+jSgIa4ChoSGEUNXw/t3Ys2cPFRUVrFq1imeffZZQKMT1119PKBRicHCQM8444+99igqFQqFQKBT/lChxrfiXxMpb2Hkb3a/j8/v+4D5N13BMB3TQDR3gD/YxbQvTtjB0X3HddV38PgND95Gz8tiOjeO6BHz+d7QzbQshBK7r4LgumtBwXOcdbXRNx3ZsNKGhaxqWbSOEQNc0bEe2LbQvkLPyxXPShEbeMotC2XEdNCHTKfyhMT716U/x/PPPgwu/evwxUrkMQgivn/DO0S32PXRM13Xx6Tq24+DDwXFMhNDRdT+ua2PbeTTNwHUddN2Pz+eX19zKY9tZQAdsNM3AcWw0TT9kaXr7XcABdDRNw3Gcd/T5w+NqgEDXDXyaDxwXNO/BQeG9dkiKCcf5w9v/3P1/rL3wTv8P9Mt7L3kF5NLxmuO9N7zthStVuBJBwP+uQ+YB09svildMXgnzkPeHHssCkpbFgQMHmDr1cK699mZeffUVPvjBxZx00sl88pOfIZ32oWkgBFgW+P2g65DPy/cg3+u6/Ni2DcHgO/cV9pumXGqabOf3j7T7c8lbefJ2Hr/ux+/78zpnzAymbaIJDb8u+xTG+GPv/T4/eSuPaZvY2AT1ILorcEwTXBfh8+HaNq7jIDQNoeu4lgVCoBkGruPgmCaaruPYNprXXvM+cGEcze9HN4x3nK9tmjj5PAhRHPcPtXvHb5ftvHPpOCNfGDkdAHAtF6GLYlvd7/3WZW3QKc4x13YR3pw5tK3P78PMmNimjdDESP8/9PtamAfw+/PPdUe+7AXePV8O7f/uNn+IQ49RWNc0sPPg5EHzg/6u74ydB8eUg7oOCG9GCgNcW/aBkf7gtbdBC8rxCuMLfaTPodsPPa6dB8uWn033gT8wci75HNgWaLq8Pj4f+A75m1umfAkhL4TjjPyuOLZ8rx/SxzLlpNU073o7I2MX+up6sX0+b2GaNo4DruvK/3d0geNdT8dx0XWBpmnYtoOujywdxykOaxhyu9/7buTz9u+9t223+D4Ueuf3+n/Dsixs20bXdXw+3++tKxQKxT8SKqGZ4l8OK2/R/3Y/j5/9OP1v92PlreL2XDKHnbdxbRfHdjDTJrl4jkx/hkx/RvbZ0U8unyeZS5POZ8hZeV7r3EHGzGHaFo7rkLdN2ga6SeezmLZFa7yHrz/9IPsGOkjnM2TNHAcGurBdB9O2SOYy3Pb8j7AcG4Egb1vYjoNA0DbYzdeffpD2eA+JbIobnn6A9ngPtuMwkBpkKDPsnUuWrJkjmUuTyKZY9ezDHBjoxrTl57Ndh1Q+w6pnH2b/QCfJfIZENsXNz32XjNcvnc9y+73f5untLzD7Yydw2eVfIWvnsRybrJknmcswnEuD65LIprBsi5yVZyA9RHu8lxuefoADg13orsXAwG5aW5uwrAy2naO/fxfr1i1jYGAX4GDbWfL5NLlcikymH9PM4jh5QJDNxmlt3Uh//04OHPgt/f07efzxcxkc3E0uN8Tjj59LPL4bx7GJx/dw4MBGr83Z9Pe/TS6XJJ9PY1kZQJDLDSFw0dFwHQfy5sgN7Z42MK2RdduW74eGIZ2V20AuLXuk3bv3F/od2qbQz7QA17vJd8H2juORARJAF7AL+C0Q915D3qsLyHlte7xtO4ALgH4g6W1Le+/T3nrCa3euN3bc65/w1s/2ljZwEBhb2YCmaXzoQ2dhmhCJHEl1dQOPPfYon/rUF+julvfimQw0NcGuXdDfDxdfDOm03J5OQzwOb78N554rl5kMpFLy/dlnw86dsHEjDA3JMc4+W+5LpSCRkMuhoZH1TD5PMpckb+WL1y1v5Xm7/23OfvxsdvTvIJVLkcwlSeQSxXZ5S/bLmBkSuQSpXIqd/Ts5d9257OjfQX+mn6ydpTvZTcpMkbNzpM00OTtXHPvt/rdJ59OkzTR7BvewuW0z5C3sXA4A17ZxLAszlSLT14djWTj5PNn+flzLwjFN8kNDHHzlFYYPHGDbddcxfOAACIGdy+GYJq5l0ffyyyT27cPK5TDTacxUCiubJbF3L1u/9jWSbW3kEwm2fu1rJPbu5YnHHuPoo45i1syZzJ87l1dffpG2TW307+rnwG8P0L+zn2RPEsdyyCfyDO4e5IkLnsAxHVzLJZ/Is/7C9fTv6Ccbz+JYDnbelr+P5z7O4O5BHMshvifOunPXEd8TByAbz5LsTmKlLfLpPI7lFAWulbWwczZm2sTJ2/IBQ2FO2N7jItuWc8K05Fx0HMjkYOd+yOak6Bsalu0dR86zQn/bgl0HZDtc+WW0bSkms+8aozBnh4Yhk/XmeQ5y/ZDpBDsH5jDkE2BlvGUazAQk98C2cyG5C3o3wvBO6P0tJN4GJwfZHrl0TEjulW3MBJgpSOyArWfLPpkusLxx7ZRc5vrBTMq2lgm9XfCDO6CnA3JZyGbksqdDbu/tlJ8vOSwFd2G/ZY08cOjthB98C/o6Rx5U5PPyCVYm7Y2bhp2vQzop23//WyPvf/At6G4vtsuk8+RyNvm8g2U5pNMmruti2653yaXYdhywLIdNm9rYubOfs89+nJ07+8nnHXbs6GfjxgPs3NnP+ec/QX9/hlTKZOPGVtJpk2zWJpmUxzFNeYxcziKRyJLJmH/6/3HLIpfLYZom/f39JJNJbNsmm82SyWR44okn6O/vx7KsPzmOQqFQ/K1R4lrxL4dt2pQ2lHLaPacx3DWMlZWiOtOfwTEdBvcM0tbcxuCeQZ768lNk+jP4o36ELmg4voHw2DDD+RRZM4/rgkAwe8xUdKFhOTZ528SvG9SUjsJxpcBKZIe5/P2fYWxJJSCwHJuxpZXyJgiIBsJc9r5P4dN0OoZ6ebVjB23xHnqTAzy09VE27NjMQ1sfRQDP73mRh7Y+Ss7KUxEpx+/zk7PypPIZ8rbFqmcfpi85yMwxk+hJ9pPKZzgw2MVNzz6MC1zc+AmigRAB3UfECHLlBz5H9/BBvv70g+Qs+dDge9sfp6POpnnjJg72HaQn0U/azGDoPoI+P7Znxe4eHuDN7j3EAhGChsHm/a/RlxzEdW0MI0Rt7Tyy2Ti2nSMWG8PixWuIRsdgmllA4Lo2rmvh90dJJDp44onzicf34/dHqa9fSCLRTiRSRVPTKlpa1tLUtIpcLkFLy1o2blyF61ps3LiSSKSy2GbjxpW4rs3AgBTzg4N7CYdGY5gaYucBRDYPuga7WyGbh0l10vJz6E3+7lYwDMjl5Y1rQQy47sgrEhrZX7jxz5sjN/gF4V2wzDlu8e+NoCiw88BuYCtQDoSAKqQwHkZaq7u9NvuBZUAK6VZ0O3AZEEaK42avnSfh0bz+EeA44JveuFVIa/dKYK237AAqMlAWG80JJ5zIM89swOcDXd9Ha+tODj98JpMnH0Z5OezfD1u3QmUltLVJIX3RRXL7smXQ1SUt0KtXw9q1sHIlZLOy7cqVctuqVTBzJgQCcvtjj8l9+Txs2gS7d8uxdu+GrJlnZ//bXPzkxaTNNEPZITJmhqyVZeXGlTy24zFCvhCWa+HikjWz9Gf6SeVS9Gf6Gc4PE8/G6U32YrkW7Yl2HtvxGKubVzOUHUJDoyxUxpb2LSTzSQI+aT1cvWk1a1vWsnLjSkzHxHRM2hJtLKyZT6qtjWx/P8nWVrbdcAOptjZ0v59kezt2Nkumrw89GCQbj2Nns+iBAKWTJ9Py4IO0PvUULQ88gOs4uK6LmUrR99prBEeNIt3VhZPLkThwgEx/P45lseMHP2D6F75AuLoaPRiku7mZLXfeyWc+9zkeuvdeXmxuZtUNN/DZL3yB+uPGMtwxTKQyQtOqJqJVUVzXxQgZRMdGWXDZAoY6hkj1pjBCBifdchLb7tpGNp7FtV2srMVQ2xDHfvVYjLCB67hsXLmRlrUtbFy1EddyMcIG4dFhEGDn5EMix3JwLIf2ze307+onGPNjGAIhzZ7yG1mYX4UHWrpnjXaB1i4YHKLoFlEalUtNQNAPts2XPn8246dORRw+iVdffKn4m/6lL3+Z8VOmIGIRXm3eIsdCyPldmMuFB2quKQVvweQ97Ino4V1gZ8HOgB6AllXQuhZ23AGjj4VwnVzuuB2sJOhhcCzZPt0KwUp48UIpytOtsm/LKvCXwsGtMLwb+prlZ9KDUvzjgO3C+p/Bq1sgfnDEouy6sOEXcvtgX8EELIX40IAU5Qe7YHeLbL/+Z7D9BXjiZ7J9fw/sexsOdkNiUAroH98NpaOktXqwD07+qDyfQt+hfhg8SGZgCNtxyeVsDh5M094+xCuvdHuWaJdkMs/llz+NZTk4joumwYIFdYTDBk8/vYdVq5qwbZeDB9Mcf/w4xo8v4557TsdxXLZsaWfu3LH4fBq5nMUrr3Rj2w75vEUqlSeTsejsTBKP/77AfregfuKJJ8hms5SWlhIOh+nv72fdunWk02kWLFjApk2bsA95iKlQKBT/CKiEZop/GYqui7rAyUvRa2UtfCEfqb4U0aooAKneFL6gj2e++gwta1uYsXQGZzwg40yFJjB1OYaLi+a549muQ9bMcftvf8xn5p7B2JJK2uM9/OyVDXz1/Z/Bp+k4roMLZM0ce/vbmDVm6iEu2i6OK183PvMQnznmdH7w4hPMqZ3KnLHT+N72xzl3wYepK63CcmzSZpa8lSdnWfh9PspDJUVX73W/e4HXOnfxlfd9Cr9ukLdNbn3+R8wcM4k5Y6cxmEkwtXIcQZ9fGjcsk9t++yMmRKs5tnYm1TU19CUHWfHtlWz+7npeffsNTNskaAQRCIKGH01o2K5DPD1EwBdAExpBw0/eNrEdhxLDj21naG/fSklJHYYRwe+PkMsN4ffHCARKvb+Ki22b2HaefD7F7t1PcPjhH8fvj+K6DkLouK5NPN5KU9ONNDauIBQaxdNPX8aiRcspL59If/9OksluSkrqaGpaRWPjCsrKJnLgwG955JGPMW3aB/nIf/wQbVcb9A1CZTmMGwsvtsDMyRDwS5Ec8Msb+f2dI+0mN8ib3MJNfuHn8NBQ9LxnPcrlIRYZEdKWDX7PvfHQ31FzpL0bi+BqGgmfThJ4A5iL9Ny1vWUYuBIpjF3v0FuBY5DW6UGkWA4g3bszSBdxn9d/H9AGzEMK6kO9gvcihfWVQBPwuWFIJaGnZy8XX3w2AwMHEUIjHs9y7rlX8bvffZ7lyyEchoEBuO02uPtuaRzz++GCC6RwXroUHnpIWqdXr4ZrroFx46RQ1jS46Sa5raEBcjnZN5+Hnh4YNUoK7r4+ePpp2LYN7nogyeaOjSyoW0DWyrL8ueWsOnEVESNC0kzS0tvC3LFzsV0ZPpE20wCUBkoZyg0xnB+m1PvOXbLhEpYvWk57op0xsTFMLJvIgcQBVm1cxa2Lb0XTNBK5BKWBUlzX5Ypnr2DN4jVEjAguLnk7T6kTpO/ll6k88kgOvvEGwfJyImPHovn9uLaN0DR633yTyhkzpHWv4B6u6yTb22l54AFmLFtGtM7LdyKE9KgQ0j1aaDLEwkqn0f1+hKZhZTK8fscdzP7yl9H9frZv387nv/hFfvf66yRbW2l58EFOvf9+ntuwgdkzjybVm8LKWJRNKMPO2XRs76B6djVG2EBogvj+OE2rmli0fBGlDaVYWQsjYoAL8f1xkt1JaufXomka8f1xNq7cSOOKRkrHl5LqTXHtmmt54qknaG1tpenpJo444gh0Q2fv/r18+qxPkzSHKS0t5XsPPcSM+vFyfvl9sLtNiugjD5fr4HlxiN93aXbx5pFs98LGjUxsGMeiEz/Aoz/5KXOmTYfSKC/85BEmTj+MRR/7EI/edhdzFn8AgoY81qFzGQvISpEbrgUtJK3O5bM8929dim9fVFqY37gOjrpNunYLH7iWnD1uHrJ9EKqGg1ug4hh48SIpqBuWwjHfhhcvhpnXQKqVL93wAx578nkOtPfyysOLmfOhNWR9Y/nEWZ/jd7/7HSF/kKrSGPfefTeTK8pgwyNw+lkwuspzTS88hPB+i3Dltt1vQrQUhuNQXilF8ikfh92/k6J78UfgmV/CJy+An94jBfTc4/nSa2089vjjHGjv4JXmTcyZPg1+8R1O/slTdLW3IQJhfEaQ0aM/xurVnyYSMQiFfPT2pujqSjJ/fi26rtHWNkQoZFBeHmTr1g4aGkqoro6haYJgUC+KcZ9PYFkumjbyw2lZ0iIuBAQCPjo7h6mqitDaOsSqVU1cccVCpk4dRSwW8Npb9Pf3s3HjRk477TTWr19PfX099fX1JJNJamtryWazPPTQQ3z4wx+moaFBhmf5/ei6jkKhUPyt+N8SmilxrfinphCDKDRBbiiH0AW6oZMeTBOuCCOEQOgCBAzuGaRpZROLViyifFI58d1xNq6SN5ThyjAbLtnAouWLKJleRnu8h4e2Psrn5p5JZbQcn6bj030I4I2uXUyvnsiqZx/mc3PPpK6smp7EAAFDimBd8/6jd11s15Hrrovp2Bi6j/Z4Dz3JAaqiFXx/++NcdsJZBI0AutAwbYuslUcIQdgIkrPzCARvdu+hOjqKurIqMmYWv27gAj6h4SBjuTNmljte+Clfed+nEUKQNXPsOtjKrDFTANi1Zw/nfvbz5LI5NE2jYlQF1914A0cddRR+3SCVz5DMpYn4Q8X+ZeGS4meeNKqBkD+AX0B8cA/Dw53U1y8siuT+/l00N9/MokVXU14+iXx+mOHhLpqbV3tCeRL9/TsIBEowzTRNTatYtOhqSkvHe3HaFprmw3EsTE885fMZwuFyNM3nHUdDCI1cLgFAd/erlJSMZVTFYeg5G5HLS4sYwFBSvs+b8kZ+fyfUVsmb19YuaBgjLWauC6Z3g5/Nj+zTNPDpUqWatnwPcryi0PbEQjb3TvFtezfK+zpw62uwQwGGdZ0M0lpdjRTAhbhqlxGRPB8pkgVSKmhAK1JQV3p9voS0aE88pE2Wkdhrw1t/FSnmdeBi4J6EPK20vLxEIiPx0LkcPPIIbN4Md90lrcsNDTBxojfXLNnv8svla8oUSCalcM5kRraPGyfXQyHZT9OkVdvvl4a5dFr+CbZuhTFj5CtansZB5g2wHZv9g/txcLhr213ctuQ2NKF53/EMhhdX35HooLaklp39O1ndvJorFl5BXUkdNbfWcNass7j39HtxXAchBBc8cQE/fuPH9HylB9MxGc4PE/PHKAmU4LgOB4YOsHLjSq5ceCXTRk3Db0sxbGcyaIEA6e5u0l1dhKuraXnwQWacey5R7+YeRz5UszMZNMNA9/tl/GpBQCeTIAS+UEjGVGsajm0XRTauS9+rrxIcPZpQRQW+cBg7myWeSDBz3jx++fOfoz/5JP/zyCPc1tbGz3/0I8445cNoPk0K7LTFxlUbOe6q44hURXj6sqdpXNHIUNsQPz3jp8WHh/nhPL++9tecesepDHcOExsbI5/Kk0vkiFRF5IPFtEn3q93EamM89+RzzD1lLovPXMwjP3uE2YfPxs7bnPbR0/jUWZ/i7C98nl+u/Tm33HwL25s3yycwJVE5F0JeXHEhFlp48cLJ9Mj8tB3Y1wETaj0Ld8Hv3Gb84Yfx6COPMGfWbPmlzlvQ3sP4Uz7Ao7/4BXMmToZoWD7Iese8S0G+DwKjpRiecwv4wl4sehZ8MSmus/3gL5MW5uReeGs1zFkj46SFIWeSlQQjRjE220rDq5fD9CsgVCPjqjUDhvfywq/XM/GIU1nUeCyPXpxmzvFLyc64mV//ZhOnnnwiwlfGXffcwy8e/RXPr/0JtLwE807wJl4WSr3SdwWhPTQAZh4qquCHd0jr9gXXwuTD5bntflOK7YE+KB8NgaAcZ/3P4PRP8sLbe5hYN4ZFJy3h0dtuYs6pHwSfQXxoCF8gxnDW5WMf+zrNzT9k6dK7uP/+M+juTrJnzwBVVRF6e1PMn1+HYWhomsC2XRzHIR7PEAr5GRrKUVoq/8avvtrNnDk1CCGIRg1sW4rsVEp6fl1++TNceeVCqqtj+P06+bzNEUfcx0MPncmiRQ2EQj7vv0sb0zQxDAPXdXFdl1QqxcDAAJFIhM2bN9PY2EhZWZnnvm6TTCYZNWqUirtWKBR/U/43ca3cwhX/tFh5i0x/hnwyj+tIV0bHdHjy4icJV4QZapOuka4l49OSXUla1raQaEsQ3xfHF/Fxxv1nUD65HCNscPJtJ/PiAy/iuA49yQE+e8wZxAJhQkYAQ/fR0rUbx3U5Yuw0/LqPr518Lg3lNTiuQ8DwkTFzfOOZh2iP92A5Nm2DvZiOVbRo3/HCT+iI9xI0/MysmUR9WTVXnfj5otu3C/h0nbA/SMQIAnAwGeem575LeShGT7Ifx3UIGUG6hg/yWudO2oZ6ivHahm7w1fd/hp7hfm585iEGMgmmjG7gxmceImfliVaWctJ1n+GRZx/j182/5ckNTzLriNms/vX3aY/34AIPbvkfACL+IKWhGK917KBtsIfDqycxmEnwjacfJG9lSSa7qa8/rvi3cF2H0tJa9ux5mkSiwxPCPrZsub3o7u26Ns3NqwkGy2huXkN9/XH4fEEvoVKeeHwfBw68gGmmMYwwPl+IcLgCy8oyOLjXi+/OYtt5urtfJZXqoaFhEeXlk3n6mStxAj55w23bUgCXRuUNeyYnb+4n18ubfk2TVi5Nk/scV97cAxg+2S+Xl2Jgd+vIftcdcWGNRWA4NRIXqmlym2VLgZ5My2111Yi2bnRXimMD6dZ9ANiEjIv2IrcJA7XAhUjBXIjRTgINSJfygni+09tWaJPw+hQs4r1IgT4DaQUfBq5FXgafD6LREfFrWXDJJVIb/dd/wb33ynbHHw8TJsjtiQRceCH09kpLdjgstweDsu3LL8MTT0BnpxyzpARaW+G882DfPnmsnh45jmHIsaqqIBaDaGkehI2Li0CQsTJMGTWF1c2ruWjeRbQOtdKb6sVyLEzH5OInL2ZffB810RoEgvFl47nt5NuI+WOEjTBnzTqLNYvXsGdwD8vWLWN/fD+rF69m3SfXFd3Bb3zhRrqT3cXv78qNK1nbspauZBep7DBmKsXwgQO8dPPNpLu70QMBRs2aNeLy/eCDuI5Dqr2dvpdfxrUsjGiUTG8vW7/2NVIdHTi2LS3TwSBGNIqVzWJnszKpma4jgOzAAI5pMnr2bAzvScdwayuvfPOblMZi/OxHP+La66/nS889x/D73sf0adMw/P7iA8NIdYREZ4Jjv3os/pgff8TP4lsXk+hIUDuvlhlLZ9C4vBGhC57+ytOMOXIMg3sHef6658mn8qR6Ujz/tecZ3DuI0AQbLtlAeHQYI2Rw4pITeX3V6zI3RcqkdVMr+1r28dJLL/GfH/pPhAYfPXI+bZ0d7N60RX7/BXKOZfOw88CIq3YuL+dDJOTFXnv7aqvk8tC2hRwGpiXn294O+aCsYYwcXyBFvK5BwJAW80IIiOaT7twuMPdeGfu87Xzpxm0mpZDua5bCGle6iesh6Q6e7YHtF0j3cSsJRlS6hQ/vgW3LINcHx9wthXWmC7adJ13B9SDHn/B+6urGgFEGYxbDjOUE+9Zz2tjnEEY59HWx4OAe9u/bKyfMvPeBPwhDg/Do96GvCzIpGX/d1wXREhjolZ/1tE/AnAVQNwEO9sjY6bLRUDkGxk2GUVVSnFdUwn9dCAN9HD9tInXjJsjkZdW18PP74WA3ZeXl+LPDCOCUU+ooKwtyzTWN0ku/NMC8ebX09qaorIzw0kudaJooWqZ1XaO6Okow6KOiIui5iwvmz6/FMDSGh3NksxZ9fSmSyXzRqn3ssXUEgwZdXcOcd946urqGee2186mrK2HZsnW8/XY/2azJ4OAgTz/9NPl8HseRD8VisRi1tbVs3ryZlpYWNm7ciGVZrFu3juHhYaLRqHILVygU/3Aoca34p8U2bTRDIz+cx8papPpSCCH4wMoPoGkaRsjATJk8delTOJZD3YI6roxfybjGcQx3DGOEpUtvbijH+gvXk+5Pc9Kti9GExgOr7uSkuY00VIxh7TOPYdoWs8dO9dzEAUTxvV/3MTpcxve3ryvGTjuuw9jySgSCVzp20DHUx/kLP0Z3sp9oIMKb3XuwXbvofRwygliOjWXbHEzFSZlZhBDFeOwfvPgEM2smoQvpfv7QlkcpD8X4ztZfFY8pM32P9Hl4669I5TNs2LGZZC7Nd7zt39v+OMlcmryX9fyIsVN4aOujpHNpPn306UT8ISzH4fXOnYyOlHMwHcfFLfZ/rWsvdXULAZd4fC/r1i0jHt+Hpvk555ztrF//MqFQGevXP8Ppp9/PlVfGOfPMhwFYsuRbZLNDLF4sxfXzz19HPL4fAJ8vSFXVTJ555nJsO49ppij4acvY7EqefPIihoZaqaqaVRTxruvy/vdfL93mC1au/Z3yZns4JW/oTQt2tUrhbfi8BExesiVdk69sXsaKlsY8gW3CxLqR/bbjWaSR4xZitmEkcZquyZv9koiXatuQYzCS9fsIIAosRArqzUgBXYmMi34a6fIdBkqRMdoOUpwLZNz1LqTLuAtch4zZ1ry2ncDXkAL+DaAOmSitBKlvEgnYu3dE+Oq6dP+ORmXisr17ZSx0Minfb9okBfmll8KaNVJADw/LsfbulUL5qKOkmF60aORyFOKxV62Sl+Ib35Cx2j6fFPBTpkBNDWi6iTjkX8wfw3ZtVixawZRRU6iKVBHxR7j4yYvpTfZyy0m3UBurxdAM9g7uZUv7FgJ6gDGxMbi43H/6/YSNMJPLJ3PVwqu4ffPtxPwx6kvruXD9hQCs/MBKupPdxLNxmlqbWNG4gqUzljK/bj7pTAJzeJi3Hn6Y1qeeIt3Tgy8cxnVdZixbRsMppzBj2TKEppHu7iZYUcGLN96Ia1m0PPBAMd5aeBdCMwxwXXIDA7x0000k29txLIsXV67EzmTof+MN0l1dhEaNwkylMKJRjl6+HF84zNENDfx05Uqe+9nP+ER5OZ1dXRx22GEIIUj1pjDTJrGxMfk+ZbLuvHWkelLUzKnBiBic8cAZ+CI++nf1s2j5IiadPIktd2xh4RULMUIGTTc10bK2hebVzbiOy8IrFhIsCxIsDxb35eI5csM5IpURdr6+k+rKap7+8tPSc3lyAw0TJ9AqLC+vgZdcqrVLumu3dsn5lst7T4YcaOuW+9q6IRgYWS+0be2S86zroPyS1ddAIjmS8TpvevkRkMtDj4UrxbJryURkLSvfGRudbhuJnc50wcB2sNNQ/3H43U2y7VurwYxDuh2EO7K9ZaVsm9o/Eq/dsgr85fD2rZDpluJ+5rUQqIKDm2H2N6QL/GAfd7zVwX+csgTyWfjJ3TJGeqhfunKv/5lMRlaIvxYaTJ4pP3MgKEWzpo3ETq//mRw3EPTcyR0Zo/2Tu+HOr8n9Xj4QQhFY8jEZ323bnHPxRRwzdzr337+GdeseoaGhFCEEPp9GKOTjuOMaqKgIsmBBXdExR3qrC0xTxmCbpkNpaYBg0Iffr2NZDpGIn1de6aayMkI06kfXNfx+nbPOmk1lZYRVq5pYu7aFVauaCAT04vrKlRsRwqW5uZkFCxagaRrt7e0MDAyQz8vf18bGRmbMmEFjYyOdnZ20tLTQ1NRUdAdXSc0UCsU/EkpcK/4pMTMmjumg+3SiY6J0vdSF6WU7ffaKZ4nvjxOtjtJ0UxPzLprH0IEh1i1bR3xfHATUL6wn3Ztm/UXrcR2XD6z8AEbYwHIsMmYWbWo5z/3mNzQ0NDC9egIBn4HjOpi2Sc7LUtwe7/Wsxr04uFx14ue596NXc83ic/DrPlzXxXEdjhg7hbDfTzQQpjpawc3PfZeqaAW60MlaefKW6WURB6FpxIIRAro83uXv/wynT1/EuQs+TNAX8OLANc6Z/yEGM8OcPf8/WDLtWM5Z8CFAJl/73NwzWTLtWM5d8GGigTBLph1LNBDmnPkfYsm0Y/n8vDOJBsK80bWbg6k4J02dzzkLPkxFpIzR0TIODHZx4zMPMSpSRl9q0BP1GucskP2rYlWAi+NYbNw4kohMCDh4MMdPfvI/HH30bF588V4GB3eTSvUyOLibdeuWkU73EY1WYxhhmptXFxOUATQ13YKm6Zx66rfJZuMIMVJPqLZ2Pps331o8lmGEKCmp8xKa7cHQA1I4a9rv36w7jnwfi3hfHlNuDwelpXuXZ51+x0060iq2t12K7oIoNy15ox+LSDfxWGSklFBdtbzxTySlMPcs5q6ukTwknLsUmbBsGdIVfC5yXxdwJDLzt4kU3G96fSzvSmhIUT4FiCHdvZ9GiutCvPXtwPHAWK9tJ1K4R5EiVwgpeAvCN5eTmcCTSZnArLBvaEgmIquslMnMfD4prseOlRZtkGJ55UppwU4kYM+eEdG+Zo2Mzb7mGtl35UppqbYsKcQvukgeE2DP4B4uXH8hw/lhWe5N+BhXNo798f1csuESuoa7mFc7j1gghiY0+tJ95J08bYk2KiOVXPjkhewd3ItAsHtwN8vWLWPP4B6mjJrCnafeie3arNy4knm18+hOdnPFs9KFPGflaChtYFL5JO47/T4CeoBwKIYRizH9C1+g4ZRTqDzySDK9vbyyejWBsjLmXX89sfp6XNdl1OzZvPW979H61FO4QjDj3HPfIb594bDMMN7b+3vCe/ScObQ88ACB8nJpCXddQpWV2JkM27/+dRzT5IU77yRYUUHLgw9y509+wpyqKiZNmICVs/BH/BhBg6ZVTcXkZgWhnBvK4eSdoqv3llu3EBoVIlITYcntS4iNiYGAU+8+lU+u+ySN1zai+TRiY2OEKkJ0bO3g2K8cy4ylMwiUBQjEAqT6UlTNrCIzmKFlbQu27Xpu2eZIQkDHkQK7YYyMgy5YmwN+uV3XpVg+dN+hbU2vr67BmNFSZGsaTBk3EsKRt2QIh0A+vJrcIHMr1Nd4MQ+tUjzbOZixQsZIz1ghM32Pmg9v3ToilksPlwJZD4y0PfxKMEqh+xmwTekG3rAUDr9KxmqH6+Go22H8WbKtHoSjvwWRBino31oj3cmPuh20GGg6q378CLtfe4WbbrwR1v98RCBPOAzmHg+nfxJKyqXrd3mldAXv75GJyUrKZUxFIASnf0K2P+0TUoD3dsHP7vN+nwJw6n+OjJfPg5WX7uWVY2RctiZ46Ac/4cknX+Lii6/mqquuYtmydeza1Y9haOzdG+e889Z5Wb1tMhmLpqZWdu3qJ5kcyeJfUhLAshxyOQvTlMI6FvMzf34trusyPJzD75cu5ZmMiWEIli9fxNKlM1i+vBHD0Irr11zTiOsKTjppMZqm0dHRQW1tLYFAgGw2i67rhEIhTjjhBMLhMDU1NUWhrWkaTz75pMoarlAo/qFQMdeKfzqsvIWVkVZXO2+jGzqartG2uY2aOTUMHRgi1ZeiYVED8QNxyseXY2ZNrIxF3+/6GHvMWDL9GZ6/7nkajm/gsA8dRj6ZJ1IdAb/A9Y3UdT5syjR+/ou1zJo96xCrNeQti1XPPcyGHZtZMu1YvnbyuTiuK5NEuw6G5pN1gj0LcE1sNGNKRpO1cuRti339HcypnUrOMhnOpQgZQfrTQzy89VfFOO+3e/dTHa1gbGklr3TsoCY6itqySlxXJk3z6TqGJ8IFglc7d1AVGYXpmFRFywn4ZAIyQ5f1oWW8skAXGoOZIT7yvct536Rj+NrJ5zKYSVAajNGfinNv8y+Kn+vqEz9frKVdiMkeFSklIFzy+SSpVA9NTTfR2HgN8Xgr5577DW65ZQ1XXHEV55//WebPH0dt7TyeeOJ8WlrWMmPGUk499S6E0EkkWr2+KygpqWdwcB8AqVQPdXULvDhrl/XrL+DYYy9DCN1LaHYNZWUTePzxs2lpWcsRR3yOD57+AFoiDaUReUMun1SMZCw2vRvynCkFcMD/zrhreGe8ddAvXVULyZKmjBuxivt0abkO+GW7TE6OWXALt2wp4CMhr7atjq3rJHw6FlIoX4LM4r0UeAjYCawGrgCmAl8ELkWK6H1AO1IoZ4HLvX1jkYLZRbqCb0MmNSuwD7gFWA6MQQrwCSkp0HfvliJ6xQoYP16uV1dL6/WBA1IIf+tbIy7chSRm998v969aJff39sr3y5dLN+9LLhlpW+gfDss4661bob5eHu/cc+G446CxESZOH6KptYlZ1bOI+WP0pnopCZQQ88c4+/GzWduylqUzlnL9CddTV1LHw2sf5vrrrqc+Vo9pmpR8oIRtldtYOmMpD5zxAMvWLSv2uf+M+2kfamdc2Tj2Du4l4Atw3fPXFfc/cMYD2I6NX/fLbOG2SdgI47cFdiaLputohoGVTtP27LMcfPVVjlmxAoSg7/XXqTrySJJtbbQ88ADzrruOg6+9RumkSfhLS3Ftm4OvvUZg1CjpCu7z0fLAAxx+9tkER49GD4VwLYt8IoGdzxOurkYA2264gdannuKEe+7h6rvvpnnLFhwhmBKJcP8PfkDt9MNxHC/+X0B8b5yhtiFK6kpoWtVE44pGShpKaNvURmlDKWUTymQNayHIZ/L4w35yiRzJ7iTNq5tpXNFI+aRy7Lwtc47pGoN7B0m0e67lx8zge3d9jwXHL6BvoI/DZx3OQ6c+xNKffBR27mdM43yafryWySedIN2zYxGoGVX4oRzx/ChYng9NbHZo4sChJLy9Fw6byPij58jY6lmzvVrW0g1+/OTJ70h0VuwX8MuXm4a+jRCsgsg4WZfaTslJ4ovIpGbJ3VJQz1gOkfFSjIfqpQt5sEIey8pA/FUYvQBcAdluCNbIti0rpRAP1shEaPHX5Zj1H2f89GN49KffYc4RM6XAtgTfvP0Ofnb/3Tx7/GGUXb5qJDHZ6Z+E0dUw2A+hMBh+eV1+cEcxMRmfOF+KZtdLCKf7ZJkuXLns7YDaCXJ7+x6YeLjcp+kwNMD4o+fLmOtjj5PHPO0TJEtq6OrNUFkZYcyYcl59dQeaFqGiIsQFF6znscd28Prr51NeHsJxXPx+HdO0MQwdn0/+wWzbLb4vJDKzLIfe3hSxWIBw2IeuaySTeRzHpbQ0UCzt1deXxLYdIpFAcew33ujlhBPqaG9vZ+zYsfKrIWR9bdd1aW1t5ZFHHmHatGmcccYZxa+MbdskEgmSyST19fXF2GtVA1uhUPz/RMVcK/4lsPIWuUSOXDKHlbFIH0zjWA66ofPkxU8S3x+n/rh6kt1JNt+6mdL6UjSfRvnEcvKpPIm2BM9e8SyxsTGy8Sx7nt7DwisXMvtTs9H9OgO7BxhqHcLFJZXPkDXzXjIk6XKWt01sV+ZydlwXF7doCS5YjX2aTlein9W//j5pMwvITN1TK8cT8PlIm1lsx8Gv+5g5ZjKW47DmNz8gY+YQCB72XLwLbtsyznpAxm/Hu/nu9sdwvCRpfsNPzjJJm1k0oeHiMmfsNAYyg4SMAAEjQFu8h1uf/5EnxH3krDzf/M0PSOUzlIVK+MVnV7P8xC8wmE7wXz9cTjyTYFSkjK++79Pc89GrWH7iFwBI57PYjs2a3/yAzQdepyPeh+s65PMpysomcNpp91BaOo4f//gZZs+exMyZk5F1rvNUV88GYOHCK5gxYymNjdd4f1GX8vKJnHrqXSQSHZhmmoqKSZSW1jF27DGk0/04joUQGscddzlbt36b0tJxnHHGA5SVTQAEixZdyyc/uY5TTvkWCHADXuZuXZM3qY4jrc26JkWwpkF7j1R8h1qpC88Xg36YVC9v0m3n9y1sLnK84ZR0+y6Icl2XY+5ulcf06fLG37SK1msN6epdKJt1N7AOWIG0Nq8GHkMKYAeZrOygd8jxyFjs85Gx1PciRXeUkWRn/cACb/xtyMRoPcjyXAGku/hqZJkuy4L2dum2XV8vY6GnTJHCWtdlQrL775f1p30+KcALFmjDkNbne++VojkSkRm/V62S64W2V14pk6Nt3SqF+4UXjpT1cl24+mo4+WR5TJ8wOGrMUfg1P4ZmUB2tJmyEAbhq4VWs++Q67j7tbhpKGrAdmysuuIJlX1/GC1tf4JH/eYRXH3qVD0/8MNc0XoNP87F80XKWzljK8sblGJpBfWk9WSvLuLJxjImOKe5f0bgCTWh86akvsWdwD81tzewf2k/aTGM7sn6zncuR2L+fl26+mdFHHsmcr34VF+h79VV+u2wZvS+9RKCiglkXXogLlB12GEZJSbEudsXMmRiRCL5olGh9PXOvvRbXdRnctYt0Zycv3ngjdjZLdOxYXrvjDlzX5ZhrruGEe+4hPHYs3/ne93jztdd49YUX+NWmTdROnw4C8klZe9rO2ZRNKKN+YT1l48s444EzKJ9UjpWxiO+PE6mOEN8bZ92ydfTv6pdfLgG+oI9kd5Idj+1g48qNOJYjQ2u6U+STeUobSimfWI5jybCL9uZ2XMclZIaYPWM28cY4rgv//cpW6saOZXLjsXKOTKyT3/2dB+R3v5D/YOcB+WArmYFtb0jvjoKwLsy/kgjn3bGGutkzaG9vZ8lppzF5+mHguJx3/nnUjR8vt3/4Q0yee7QU1Y4r56LmhYRoPllS661vSrfvvk1eJnC8TO22dPc+7DK5BAg3wCuXgi8AmR7Y/2MpyEO1Ml47tV8KcydziJv5SmntNqJSgNd9WLqc5/rBHJTjptu57ebL+Okjj/DMps2U3f8rmDobqsbCZ74sY6RtG/wBaN0tBbHjSqt0wfrsD8q633vegsGDYOZk+0xauoRXVML/fE9exAmHyazi+bxsG/DKgVXXymRmNePo/PnD6D6ddNripz99hPLyClw3RGVlGJ9P41vfWsIvf7mUdNpicDBzSJx00ssI7rB79yAXXrieRCKPZblFy/ZXv3opxx8/h9raErZvf5nh4RyBgF4U1t/4xh2UlgbZsuU5xowpIRLxEwr5eOutgxx11BiEENTV1aHrOp2dnQwNDZHP51m3bh0lJSV8/OMfZ5EXd5JKpbBtm46ODoQQ1NTU0NraSj6fxzTNYg3sXC6nLNoKheJvjrJcK/7hsfIW/Tv7iVZH0f06wiv3YWUshnuHcXIO/oif6Jgo65ato2VtC7POmsXp956O67hYOYtfX/NrjjnvGMrGl6EHdeyctHjnk3m6X+1m7DFj0f06TsjFcmSNZxeYOXU6P/r5Tzls5nRu/+2P+ezcM+lNDnBY1fh3nOPtv/0xn5t7Jj3JATqHejn1sOOwXYfhXIpYIELA5ydjZjE0H7br8Gb3Hmqio9je3sKrHTv52snn0jHUx3e2Psrn553J6Eg5GTNHzjSLWchlxmTBmt/8gEtOOAtNCLJmHr/PIG+Z+H2GF3cts46vfPY7xVJfP3ppPZcc/18Yug/TtvjWCz8pfpbqaAVhw09JqKRosc9ZefYcbGX22GnFbZZj47gOiWyS6nAJjmPiutIi/pvfrOVrX7uH3/zmOYRwOPnkU1m0KMQll9xJRcVEcrkkmqbj90eJx/exceNKGhtXMDTUxuDgHurrjytmFTeMcDGb+MKFVzJq1BRc18E008WM4YYRQQidfD5BLpegonSCjLm2HcBzHW3rlsI4l5fuo4WyWcn0Oy3Xhk/GSzeMka7grgvDaXnTLrzM38n0SLI0w7OAt3WPxGTnLXipBUaV/UErtxvw0xcOYmgarcAqpEV5EtIFvBVpna7z9q1AJizbihTNyxixdN+HtH4XbDIHkfHXq4CrvX6bgUXI5GmrvfEqkVm8q+wRI6LjyBrW5eXyowUCI5nDW1vl9qoquU0I6cZdUiJjrQsW63BYtp8wYWTMVAquuEJarwv1svv6YP58KdAPrZzjGkn2DO7mpqabWL5oOZ3Dncyunl0U2O1D7bQPt3Nc/XG4rsuEugk8+KMH+Z/M//D5MZ/nUx/9FE9tf4qqkipCvhCGZmC5Fj7Nx5b2LRxeeTghI4QhvO3Ch+VaaEIjmU/yy7d+yQutL3DZgsu4bctt3Hf6fUQcAxyXzMGDJFtbCVZUkB0YoGzKFF674w6OWbGCvtdeo3z6dHyBgMwMbtsIn69YNmvGueeS7ukhXFNDtL6+aOGe/oUvEBs3jhe/8Q1GzZpFzcKFhKurcYHUIWW8Yg0NmKkUL910E61PPUXDKacw77rrELoPx9Fl9YObmlh09SLKJ5czuNtbX76IiskVsoqCELRtbqNqVhWa7uWhyJjkhnIESgJ0v9ZNSW0JZRPK6N/ZT/PqZhZesZBRU0dx4Zcv5MmnnqSnt4eK8gqi4Shv/e4ttj+3nYuvuJiknaS0pITvPvggs2bPlvNE137f42PXgXeWyxpOyblUIJnx5hpeVm8vVnhPm5xfpjeX62vkHC7Mt0L2/kIJvT1tMLEC+ppkXHW2D8qOkInK3lotLdXhcdL6/NZqOHINaAFZx9oX9qzVr8myW3oQtn9RCu2GpTDrBs9SbUF+UCZEE4YU87ic98WLeeKJdXT39jOqNECsrJrnf3Uf9bNPY+KECcSiEcjnCITCbG1uhp4OSAyMWLFP+4QU3Zm0tGIfWqos3i8Fdcc+mDRDuosX+gz2QX8vzFkor4M/CLkM5/3HaTyx8wDdfQcZVV5GTLg898v/5uNfvoxUNk9HR5I5cyaybNlVlJaOp7a2hG9+s5k1axYTDhs0N7excGE9mYyJ369jGDqO46Lrgk2b2pg+fTSxWEDWVzd0hICmpo00NIzn1FNP5Ec/WssRRxzBpk1tjB0b46WXfsc991yNadqceeYX+NjHPsJNNzWxYkUjlZVhSkoMHMckl8vh9/sJBALFpGZ33HEHkyZN4owzzsBxHHRdx7ZtMpkMkUgEx3HQNI3+/n62bt3K4sWLMQyDVCqF3+8nnU6rjOIKheKviirFpfinJ5fIeaVtBK7jyhrUtrduu5gZk+eWP8epd56KlbPo2NpBzZwaWZ4rkSNSHUEI2TfVmyJQEqDn9R5ZEzZiyMy7DsT3xYkdVkoqn5Exz7gccdhMvn7vauYeNZdXO3fwasdOPn3M6cT8IToSfcweOxXHuxk0bYuwP4DlOOQtE00TGJoP3auBXRCoA6k4IX+QvGUSC0awbIuwPyit0o6NrunonjXatOUN8kB6iIg/RMQfIplLS/e65KCsjz3/w4yOlqJrPkzHwtB8aEKQMXOkcmnuaf7F74ls23XY19/OjJrJuLjFUlyaEIfEdgv5WWyTsBHAcV1e7dhBdXQUDaUVRWEbCJTwve+tZeXKmwgEgoBLV1cHhuFw+eUX8MUvnsemTatZvHg1fn+MfD7JW2/9kvb2zSxZcjuZTD8vvHAjtbXzmDTpZGKxWoaHu8jnh/H7o8RiY7wbKB3XdbCsHI5jYhgRhoZaMYww5aXjZDqsvCm/NIfWsq6rlhbrcWPlDXnByiUdEaQFzDC8UkKeoD70Z7HgUg4jLqiaJm9mBTKbcX2NFPGFcUqjI27mdTVgmuRKY2R8OucxIpTvR8ZNe06f7xDRd3n7BLxDkFchS2zNQVqvbXjHmHd7H83/rvHuAQIpmffINGV96fp6mDRJxleHw1J0b9kCtbXSKl0jT52+PimYx42TH72pCT72MfjgB6WV2zCkRRykC3hJiVz3+UZc0Jcvl2W9vvhFuOUWOX5bGzRMGaIv1UdlpBLLsRAI9sf3c9uW21izeA0BPYBf92O5Fnk7zwu/eYHzPnceoVCIoaEh5l06j19rv2bpjKU8eOaDpPIphnJDlPhLKAmUYLkWB1MHifhlzH3UHy3OM8uRIjxn5RjMDpKzckSMCHXBaoBibWrXlOXcckND2JkM6a4uyqdPJzc4yFsPP8ycr34VXyiE0DS233AD+9eto+GUUzjss59l549/zDHXXkumt5fu5mb633iDY669FiudJtPXx1sPP8yMZcuI1Nay7brrRoT09dcjNA0zncYcHsaISjdoIxLBtvTig8RCqa31F66ndl4tk06eRKw2xhNffIJTv30qVtZiuHOY5tXNLPnWElI9KZpuaiqK6FRvilBFiCcvfnKkf11Miu1bPLF92CjyiTyaT6PzxU6qZlXhDxsE/SD8xkjt90LJrb3tck4E/b8fblEgb4EuZJm71q53imeQ/QyffLBVnJ9ROSGyeTnfCiJd9+rJaSYk94y4fYfHwfbzRupTz7oBQmO9J0X7PBfvqyHdAeVzINsLv7tZ9g2MhlevlCJcD8tSXIOvwqi5sgQXrhTYiV2Q7ZDx3PlBGesdrpOiXY/J2In1P4OTPyoty5NnwA/vlOtP//eIC/hnL5UTEO86Dg3KzzzQAyUV0gLtOrLv9hdgwQdkojNcyOegbQ+MnyYn6LbnYecb0kK+602IlcljT5lJ3vXx9q5BautK2LKlnXnzatm2rYP9++MsWFDH7bdv4a67TqW1NcHKlRtZvryRqqowl1yygRUrGpkwoawotG1bLl1X1rU2TZsjj5zOjBlfYs2aT1NfX8LBgynOOWcp3/jGSq644nIuuuhLzJ9/IsPDeaJRP7W1MQwD+vv7aW5u5vTTTyeRSLBp0yYWL15cFNMAXV1dlJSUYBgGkYj8f314eJhAIEB3dzcDAwPU19fT3NxcLNvV2tpadBlXAluhUPw1UG7hin9+dBC6IL5PujfG98ax8zb5VB4za+IL+lhy2xLyyTwbLtlASV0JgViA4c5hnv/a8wwdGMLO2Ti2w8DuAYa7hhk7dyzDncOsO1eOh0Barh1H1nnWtKLAnTp6HCEjIJOEzf8wyVyKqtgoZo+diuu63Pr8D+kePkjazNAW7+XGZx6iPz2E7Tj8rmfPOz6KJgS6psuSQ2aOVc8+TH86QSqf5etPP0hbvIdXOnaQNrO0x3t5vWsXXYk+7tn0CH3JQcAlGpAC+3vbH2fDjs0cTA+iaz50oRHQDXSh8UbXLgbTCSqjFVz+/s9w2vRF9KeHOGLsFA6m4tz+2x8zpXKcdHd3bCzHJuIPYTsOrYPdvNKxg5wlheqO3v20xWXJr1GRMrqT/YDL8HAXTU234PeXcO65n2PPnjd5++1X2bmzhfnz53PRRcdzxRU3sHHjSmpr5+G6brE+9ezZn+b00+9F1/3EYnWceupdzJz5SQYG9hCP7ycUKkPTdJ5//mvFbOKFclxCCAwjjKZpxGI1RCJVuI4jvUwL8Z2HunSbllz36dJFNeuVAipk+o6GwafJZSGuvliGyzPFFtxcIyEpEAoCIm/JGNPWLnnjb3rx3DDiet7ejRuL0K1J9/AVSLF7DdJqvR9ZlisJXOXtW4F04fYjrdRjkUJ8MvA6MAvp4duJtGAv9/ot99bjQAZpyV4KXOmtu44UtImEzOxdSEzmujIZ2fnny4RlNTXSYm1ZMoN4ebls294Ozc2wcKFMZlaIqzZN2dZxZHIz15X7HUcmNiskT0sm4cc/lktNk2LdJ3xUR6txcRnIDNA53ElPqodLF1yKT/PRn+ln7+Bezlt3Hu2D7ay5aQ3f/fF3+c2rv+H+tffz5v1v8tNTfsp9p9+HQOC4DvsG90lB7lhctP4iwv4wfak+dE0nZ+U4mD5IMp+kJ9VDMp9ke+d20laaCeUTqA6OxkylSOzbx7brriPV1sbBN97AzmYJlpcTGTOG4OjRMlt4b6/M7B0IYOfkQ8Bjrr2Wj27ZwtzrriMyZgxHr1hBqrOTN+6+u+hajmeVK2Qkb3ngAVzLYsayZbzvvvs8C7WO6zjogQBvfec75AYGiO/Yges4aD6NRcsXFUttaT6NxWsWU39cPS/c+AL5ZJ4lty/BNm1yiRzNq5tl5u+h3O9lCI9URYjvjxf7N93ShGM5lE8oZ+EVC9l21zZcy0X362TjWeoX1pPqSWEmcyPCWv64yTlhWjClQc6vbH6k9F1BWNuOl0RQ5iMozpO2bpmvAOQ8DfrlXI6GoaNHzquCR0hr10gVgGRaCntNH3H7nv4VL9u3eGeismAN8nEU0rp91K2Q7oJAJZjDUlgXsoC7Fhx5K2QPSmu4ZsDo+fDyJZA6IC3jdgZiE2SM94sXjqxrOmQ6peBf/zOZBbwgrHVdJh4LR+GsC2HVw/CpL3m/Pa7MFeG6I+W1SsphwyMUnwYW3MY/ds5IXWx/ECZMlyW3Bvrg6EXSrdyypHX86f+WS8fFrzkcNqWMYFDnhBPG4fNpHHdcPR//+OH09qa4445TEEKwevUmjjuunmBQJxr1c+WVxxEO+4oluBKJPFu2tOM4Lo7jks1a+P3yceCcOTWsWdOMrms88sh3OOKIYxg1aqL3W+NSVhZC1zW+9rXn2bNnENd12bJlC/X19QghGBoaoq6ujuHhYdavX08qlaKnp4fq6mrKy8sJh8O0tbUxODhIKBTCdV3q6+s54ogjiMViLF68GJ9P5uyoq6tj/fr1v5f0zLIs5TauUCj+v6DEteIfGjNjggOu7bJx5UZa1rawceVGfEEfqZ4UG768gaG2IdIH02g+jQWXLqB5TTOO7RRvKBPtCZJdSZ688EkilRGSXUmEEMX9Q61DxPfGef6654uJu85btozDJk2ls6OT/zjzPzhp3vEYukFtWRVHjJ1Ge7yXVzt24DgOV534eWpLqxgdKaMqWs7njjmTg6lBgj4/M2omYzm2TL7mlUaJBSKEjAC9yQE+O/cMIv4AEX+QFYvPpiQYYWbNJAzdx0Nb31lu63vbH8dxXRzXJRoI8/m5H+S+j13NEWOnFZOtvd65k86hPg6vniRLguHSnx5i1bMPUxWt4KSp8/ne9sd5fs+LBH1+Aj4/tuNw83PfpT3eg65pHEzHqQiVyHJhjs3MmsnFMmPf3fYYM2sm4bou27bdxZIlt+G6FqlUH8PD3aTTB+nv34UQGkcfvQxdD7Bw4ZVMmnQymmaQTvfxzDOXY5pJHMcilerFsmR8+oYNlxKJVDI01IquB2hquok9e57G5wshhKC8fCINDYvQdb/XR0fXAzJRk5WWxmZNlzevoYAXP21I0RsKjNTFbe+B/viIuMaF1u7iW4aS8s2UBtmnUE4rYEiBfmhm8faeEXdXgbRYF0SEl8XYbRhDUtfo0zS2I13BH/CWIWAccCwyg/hkpNt3DVCNTGBWMLBvQmYSn43MON7LiNV7MiPi20BatyPABKTFegyyLJfjysRlpaXS+rxrlxTaJSVSVN96K4wZIzXBzp0jJbm2bvWszA1SWPt88v4/GpVtdR0GB2Ubv18K9euuk+7ja9bAWWdJIR4Ow/r18lgFV3MXtyieU2aKgC/AcfXHYWgG2zq2UR4sJ2yEOb7heHr39HKw5yDGRIPyYDknNZ5EbV0t/j4/W9q3sKt/F2EjTE20hgufvJADQweYVzuPRC5BW6KNrmQXFz55IWF/mJ5UD9c9fx2dw53MrJrJqo2rSJtphO0US3F1/OY3pHt6GD17NnogQKavDyuTITswgB4KUT5tGunubrbdcAOubZPq6KDvpZdwLQuh6wzs3Em6q4t0VxetTz3FWw8/jC8QwEqn0fz+kezi552H0HX0YJBQVRXZwUGSbW2yhrZtM/tLX+Kt736XipkzEZqPg7sPUj6xnDMfOpPS8aW4josRNthy+xYWXLoAzafRsa2DVE+KSHWEhVcu5JPrPkmkOsKZD53J5Qcv5/T7T6djWwfx/XGCpUGMsEGyO8m8i+cxtH+IJ85/Ak3XWHL7Esy0yfoL1mOm5QO35tXNZBM53ILFeigphfT4MVIk285IqTrL8mrC50fqWRceSMFItvCC5dr2RLftyHGFl4m/zZujhYdnQox4i+xu9WppG1B+FITHQ9XxcuZExsPceyA2RQpRfNJq/dIlMsa6fI4sp2WUSot1w1K5jP9OuocHR0P5EbJsl+vAtEulpdtOSUGdOiAt3oVYbMeSIv+t1eCkpBj+4gqoqILdLTImurpWZvH+8d3S6iyEXO56Ew52QyIO3e2ybNeoKim+XeSDitE10iId8qz2lgm734T4QZgwTYp5wy8zhGv6O8t3aZqso73rTRwHslmLLVvayWQswmGDhQvr8ft1dF2wZs1ijjuunt27B9i7d5DbbttMJOInnTZJJHLEYn4WLqxn3744y5atA+DAgQTxeJY5c6pZs2YxLS1v8qtf/Q/XXnstVVUxbNtl584B/H6djo4Ejz22g1Wr5APTxYsXM378eNavX8+YMWOYPXs2gUCAY489lkQiQX19fdH9+4knniAajZJIJPD5fKTTadra2jDNEdfycDhcTIp24oknMjQ0VLSAW5ZFf38/jz/+uMo0rlAo/uooca34h8XMmDi2U3QFb1zRKC011zTiOi5Nq5rY8dgOjJBBsDxINp6ldFwpp997OkIXLPnWEmadNYu6+XUMtQ9x7FeOJdWXonZ+LZp/xPJTN7+OjSs3suOxHYCL67rcefddvLVnJ7t7W3lz91u88uZr6ELD8QTymNLRHF03Hb9PxtzZjkMql8WvG9RX1HBkraxFm7Xy+ApZur1kaPHsMC5QEx3NQDpBxB/GchxaunZTES4l4DMQCL528rmUBiOcM//DxdJautDREAymhhlXUcMRY6dhuw4aAtt1mFkzmd7UAEIIzl3wYXBd+pKDfOaY0+lLDhD0Bbj6xM/z359dQ9bK05+KA3BU7TR6kgP4fX6OrjuM6tgoplY2sOY3P6BnuJ9LTzjLS972YXyaDkJw6ql34jg2bW2b8fujlJXVE43WEAiUsHbtvcyZU4ZlZSkvn0A0OgZdNzCMCKeeeid+f4xUqg+/P0I2G8dxLBYsuJStW+/0rNwOCxdewTnnbMM007S1NZPPJzHNNCDw+0twXQshpKt4Jhv//S+Q5rmcOo60Og8lASFF7+GTpSVs5wHZprbKq4V9QG4vBAXbjheg7HolhxxpXavzLOOFmNDdrV7JLs/Knc3LdrEIBAPkdJ0e4ChkjeplyHho8O6ZGcn6XfhRTgLbkSW6tiJjpruQVmkH6RJeKOm1y+uTQgpwAeSRNbF/4e1bhBTF3d0yq/cRR0iRG43KmOmXX5YerAWxvHq1TFYWDsvM3vX1Mg77kktGhDFIN3DLglGjpHXbsmSfQqKzYFCK9t5eKdZra2X/bFYKd9u1WdW0irUta7mp6SYqI5W4uO8os5W20nzosA9x76576e7uJjgY5MInL2T3rt3s2bOHh9sepiZaQ1eyC8d1uHnTzaxtWcuqplUsnriY0kApjeMaqQpXce9p9xI2wnQNd/HYjsdY3bwan+bjqkVX8WLni7i6VizFtej22wlXV7P9618n3dVFsrWVTF8f5VOmgG1jJpO89fDDVB1zDL5wmHBVFeWHHcbLN99Mqr2d0TNn0vLAA4yaNYuGU07h8LPPRvh82Pk8qa4uMn19zPMs3K7j4C8poeWBB/DHYqR7eymfNg3XcfCFQhy9YoW0ZrsO6e40+WSe/p39rFu2jsHWQYRPcNrdpzFq2ih+c/1viFRGGGodQgjBqKmjKK0vJT2YllND19B0jXB1GF/QR6AkQGtTKyX1JYyaPKpo3W66SQqfZy5/Rq6vakJogkVXL6K0oQxhO/IPHglJcavrxbruRW8Qn08+dNKEfNDV3gPlJVJUg5xvU8fJB2DCmxGeCCISknNLCDmu68pxCg/LYhHo7JViO+D3ajs74Jqy9JadlX2FT04waxic7EhiskJN62CVrI8dGgPz7pOCvGoRpFph4GWZ0KzsCGm11nxQeRy0HFL/etQ8WZrr6G/J8xY+mHu/7Fc1VtasNvzSCv2Tu6GvG0rL4b8ukMt8FpIJqJ8k28VKZUx2Ji2t0oN9UkCb+ZGJBzJx2U/ulm7fA71w+JFSzOeysm/BSj73eDjl416ShYPkJ85i374427d3snBhPdGon6GhHFu2tGPbDqbpEA4brF7dXKxRPW9eLZ2dw1xyyQa6u2UNPctyivWqh4ZyrFq1kXQ6z/e+9xrBoI9LLnmAvXv3c/TRs5g793Bef/0l7rnna5x44sXU1ZXwi198nOXLG3FdMAyDjRs3Ultby/DwMK2trZimyebNmykpKQEgl8vR3NxMS0sLmzZtorZWlv5qbm6mtra2eFksy6K9vZ3BwUHy+TzBYJAxY8YU99m2zcaNG2lpaWHjxo1F0a1QKBR/DVTMteIfllwqJ5P0rGri5NtORmgC3a+jGRqpvhT+8Ej8Xver3cTGxIoJfRLtiZEyNI6LmTJl4rK5YzFCBq7j4jryu6/5NAZ3DzLUPkTd4nr2D3TRnx6iKlrOd7b+ii/M/w/GllTSHu+hPz1EdXQUPcl+ZtZMIuDz0zbQQzjgZ1SkDNt1eaNzF6Mj5dTEKohnh4kFIrzZvYfDqsYTTw/T7fV1cekaOsj3X1zH5e//DIW5OJBJ8IPt67jk+P8iaATwaTq2a6Mhxb0sqywTl3XE+3hw6y85e/6H6E0OFMt1Oa6MmcYFy3XwCQ3Hi6POWSYCgSYEN//6e3zq6NOoL6umM3GQ72x9lHPmf5igYRALROhKHORHL61n+Ukyc7iMG7cICMjnh8nlhgiHq0gk2mlqWsnChVcQi40ln0+SzQ6yefOtNDauwOcLE4lUYpppenpep7Z2nldqSyYqe+aZy1m48HIikSr8/hhPPnkxY8YcyRFHfIZ1685j8eJbyWT6SSa7qa9fiOvKbOTSNX0lp51yFyGjVN6ba5q8ydYOeXaYt6TYbfeSnAUDsHP/SFz21HG/n4gp965YUcdzwSy4phbisHe1Qu+A7DduLLzY8o5kTm7DGPLhIKamYSEt0B9Dit56ZGbvWuAmpFt3J9I6HUZaoXPesgtp0U4ja1zbQJM31geRsdYBigmh2QzMR4p10xvDSkJ/lxTCQsis3jfcID+GbcMbb0iBXFsrxa/rSjG+erW0QAcCXo43G7ZvhzlzpKU6l5MiO5V6Z6KzbFYK8spKKbDXrpWW6zlzZJx3LAaakYFQnEQuQXWk2kvcp5G1s1y4/sJ3lOI6/J7DWTC4gP6n+9k1sIspFVOoWFzB1oqtLJ2xlLtOvQtDM2hNtLJy40pWNK5gQplMdrd3cC/V0Wr8up++VB9ZM0tropW6kjrGRMfgIuvS6w6UG7KUltB1Xlq5kr2PPlqMoX77+99n7rXXFr9fAunqmuzo4K3vfIfDzz2XvhdfpO+VV5h33XWku7sJ1dSQPXgQIxbDymYJlpaCruPkcjiWxau33sr0L3yBUGUlmb4+9GCQ4KhRWKkUvkjEE5UaB998k9GHz8DFwLVd2ja38cv/+iWXtF6C67o4poNmaAhNMNwxTLQmitAEjuXwxPlPcOZ3zpSJ0FbJ38nyyeXEd8fZuGpj8eFjw6IG4vvjsqzX8kaiY6MMdwzT/M1mFq9ZjO7X0f06/pCOyORGko2FAiPz7d3bCzHSMS+nQUEfFuKxD+3vFnw1vIdaW14fmaN57wFXMCBFd121fF+Yq5MrZZbwYA0IRwrq5D5465aR8lkD22Xc9e9u9lzFx0iLd6bTi8FeDpGJgAV9zdJ9fMedMOcWaZG2c1KMW2l49XI5RnSi/M1J7pOCfc4amSTNDUhL8eBBmDhdfmcyKWlttx35vlCG60fflkK4pEy6d5/2n1BRLa/Xbi9uOjkE9ZPl5TEC0tW85WWYPke6kVumFOL+EJSWyRJdji2vw/bnYfqR5H0hckaYfN7GMDRyOVlmqxA7nc9bDA5mqaqKcODAEG1tQ9TWlhAM+rjuuudZu7aFpUtn8MADZ5BM5unuTrJ6dTPf+tYS+vrSHHvsLL773Z8SidRzxhk/ZenSGdxwwwnU1ZVwyimLgQVs2hRh6dIZ3Hff6Z6lXIZJDA4O4vP5eP755zn22GPZvHkzLS0tzJgxgzPOOAPTNBkeHi7GVJeXl+O6Lvl8HsMwGBgYoLm5mYULFxKJRHjmmWd43/veRywWY3BwkKamJhobG6moqGBgYICNGzfS2NjI6NGj0Q/NsqhQKBR/AhVzrfinxbVcmtc003B8A/6IH1/Ih52zWX/BenxBH+m+NBsu2cBw5zBVs6pGrC2rmgiPDhfdvdedu45UT4qqWVU8eeGTDO4exLGdYtZx13EpHV9Kw6IGbNvhe9sfpyJUwsFUnK+871OMDpehCcGPXlpPeShGX2qAqZUNxDPDpPIZKkvKCBpBkrkM/ak4M8dMpq60Ek3TKAuVcPtvf0x5KIYmBN3JfspDMW567rscTMYZyCTYsGMzyVyaVD5DOp+hLznIxY2fAKSbd87KM5hO0DrYje7d0BfczGvLRvOV932KUeFSplY20JsaoD3ey9effpBUPkv7UC+vde6kbaiXVc8+TDKXQdd0ErkkPcODfOro0wgZAXRN4/teDHdPsp+MmWPNb35AZbScq078PI7jkDVz2I7NN3/zQwA0zcfAwB4SiXYSiTZaWtbS3LyabDZOJFLJ5s230tKylqGhNiwrxbp1y3Bdh2i0miefvJh8ftizRLvU1R1LU9MqdN2P69oce+yltLVtwnVdFi1ajqbpDA93Uls7D8exsKwcmmZQUlJHff1x+P0xmcwsKS1zCM27EfcsEn6fFMiDQ547qjvijlqwoB26LpA37HU18oa4YMH2PBfw6SOusBPrRvr59BEXV8eBvkFEaxfCcYtW6ROQQrmwnIe0Qq9Bum83eus+ZLz1i8ia1d9ACusoUiw3I8X5L4FvIcWz623fB8xFxlkXbDI2ENCkCP7KV+S2NWuk5Xp4WN7DL1ok3cJdF158UZbp6uqSCciiUWmE9PnkJZkzR1ql+/pk+8pKGZP9la/IZVWVrGldVyfbrFgB69ZJt3LHgRtvlMI9FNIJ+ULURGvwaT7SVprh/DBBPciKxhUsnbGUqxddTUmghLNmncUvv/FLXnrlJTp3dbLtpW3cf/X9LJ2xlGsar8Gv+8laWSaUTeD+M+5nUvkkmtuayZgZgr4gXcNdRffzoBHkuIbj6BzuxHEdgr4gEX+EUiNGsrWVbddfT7K1lSOvvFK6bi9bRm5wkJnnn4/u98ua9tksL65cSbqri2xfH61PPcXvHnyQmoULmbFsGQiBv7wcoeuEKiux0mmsZJK+V14h1dbGiytXkh0YYNSsWbQ88AAIQaa3l2BZmfyaRaPFxGdWKkXlrFkITZMW6/PWERsb45xt55BP5skP50n3pTFTJvnhfDHfBIBmaCxasQhciI6JctLqkxjuHMa1XDaukuE2m2/dTO3cWjq2dVA+uZwzHjiDsgllJLoSRGoinH7f6aT702QGMziWNw/aukfipcHL1v8Htr/bfbtQRuvQeOvCc/6cKT1Icqa0Thfmlu3IRIUF6mukFVwwMg6aFM6uKYVxul3Wm57+FVkqSzekG3hkAsx7AGLTZEktPSiF95GrpcjGAisrk5Rl++CIlfKYry0HOy1jsHN9MPde8FfAtvOk6C5YsTOdsG2Z/P2JH4SJh8nfDsdz+dB0KYz7OqUA1n0yLvvJn0vBvf0FWP9zaaXXdVlm6+n/ljWtE4Pws/ugtxOiJTD5cHjshzLxmeEHBPR1yEnZ1yldzW0LjjoOQhFMNPbti3PBBesZHs7T2SnLbe3dO0gqlWf79k6iUT+27TBxYhmLFjUwaVI5tbUxVqxoZOnSGVxzTSOaJshkTKZMGcX995/BOecs45RTjiKXG+Cii/6LL35xCUuXzuDKK4+jpibK3r1xhoZyfPSj01m6dAYrVjSSyVh84QuPEY/LEJ3y8nJisRiLFi0ilUqxaNEiZsyYQWNjI67romkaFRUVnHHGGYTDYdatW8fg4CCGYWCaZtGq3dzcjKZpHHfcccWM4k1NTUWLt+M4lJWVceaZZ1JRUYFlWco1XKFQ/NVQlmvFPyz5dB47b6PpGq4t3bXNtMlb//0Wsz41i/VfXF/MlrvkW0tI9aaK1pah9iHq5tex/sKRNidcfwL3HH5PMbtufH+cLd/awpLbliA0gdAFFjZpckT8IRzXwXEcvvn8D/nU0adRFoqxo+8AR9ZOo3Wwm5+9soGvvu/TaJq0tLmui+VYGLqB5diYtonjuvQnhxjIxJlTOw3HdWVd6R8t59jxR3D1iZ/n9t/+mKs+8DkQFGOqB1JxKsKldCYO8vC2X3H2/P+gNznInLFTi3WtZZy18DKRy/cAlmPTlehjbEklLuDTNF7r3EnrYDezxkwpZhgfUzoaF9BF4RmbS8bMyXjw4QHSZg4Njb70YNFKbzs2unAZju9l06bVnHjizWiaD78/yvBwB35/1CuVFWZo6AAbN67ktNPu5qmnLqG2dh6zZp1FR8c2IpFqSkvr6ejYRjQ6hpKSWpLJbsrLJ1KwWplmBp8vgBAySY7rWodYub9KJFLFhg2XsnDhFYypOgJxaNbvQtksXXtH3afxkycT8PsJhULgOFx92Vf5zw/+h3RbtTwXcsMYySae8LKDB/0jQt20R6xwlncMIUZKAhWipB0H9rTheJbrhKZhIAV2nhExrCGtzf1Ia/VBYCVwBTKRWQDpFn4MEEQK7l6k9fo1pLv3vkP6VHvbF3pjp4AEUAJEhqR7dmWl/Cj9/SNW7AMH5PZLLpFltKqrpSW7sVFeUpDCvGDJXr5cCuhLLoGrroKpU2U7n09eKp9vJJ7bNEeO0dYG8+ZJi/btt8N930kxnE9430CXK565gq8u/CoTyibgEz4yVobtnduZUzOHqD9KMp+kc7iT1c2rWd64nPpYPTk7R8gXkl4VvgA7+3dy+5bbWbN4DUFfkIHMAKPCozhv3Xk8tuMxfvHxX7CoYRE+zUcyn6Q71c2qjau4etHVHB6dxLbrrn9H1m7HsjATCYySEnzBIMOtrcWyWgdfeYW+V17hmBUreHHlSmacdx7RujqyfX0889nPMv+GG6g86iiyAwP4S0rIJxIEy8vZdsMNxWPMvfZahCHLwAlNIzMwQKC0FE3TMJNJzFQKIxKRGcOFxv7ftrP2I2uZ9sFpnPHAGVg5i0RbolhKq6SuhFtrbmXG0hmcetep+IK+Yi3rQubwQsmugd0D8ndzRSO+kA9/1E+6N83GVRtZeMVCYmNidL3SRWl9KdGaKHpQx0yZRCtDkM0jDi1pJ8TIPHp3hvC8CQMJGX9dWyW/IH+o3aHzuDQ6knTgUA+RqePe+Z9FNi8F+uQqmZjMHJI1qDW/nAX9W2U96+hEcPOy7JaVlvHUTl6K3mwvZNqloNZD0NsElcdCap9McDb9Cji4SdbOPuwyePs2Gct9cIu0bhvlUnhrAXjjOuky/qGDoIUhm5Z18EpKvWoFGgwNSCG94Rcy+Zjhh4j8+/LTe6Ubd7QE/uf78InzZSx2SZkU1oUM42ddBPvehrqJsr/PJ7OMZ1IyNnvf21KQ57LSQh6KkMjCxqZWKisjjB9fymWXPc2Pf/wGS5fO4PrrTyAW8zM4mCEYNKisjGAYAsuSScyyWQshIBw2cF2X3bsHWbWqiauvXoTrOpSUBKiqiuI4Lj6f8PJByr5NTa2MHh2mvDzIqFFhdF1j06ZWPvKRtfzqV0s54ogSNm7cyMknn4xhGGia/D9VeG7wruti2zYf//jHaWlpobW1lfPOO4+TTz6Z008/nalTp2IYBpZlEY1Gueqqq/j4xz8OSHfyZDJJc3MzS5YsIZVKFa3Y4XCYDRs2FC3ahXJfKrO4QqH4Y6hSXIp/WnKpHK7lInxCLr3SW1bOwggbDO6V7o2N1zRSNq4MNLCyFtnBLMEymaBnYNcATTfJNuHRYTZcsoHG5Y2UTy4n0Z4gNjYGgJ23sU0bX7kfV3jJx1xXxiUnh+hLDzKndhq2Y+PTdF7t2MHssVPJW3n2DrQzs2bKO8ptJTIJErkMoyNlRAMy8YztOsTTCUJGgJARBPBEsnT3Fghuff6HfOLIJfQkB6iKVtCbHOCiX97CkmnHcvWJn8en63Qn+ukeHnFLz9smhubDwSVr5oo1t8vDJaz5zQ84e/5/MKakEtM2ueXX32fDjs08fvbtZMw839n6KOfO/zC1ZVXYrsNgeoi8adGVPEhVtIKQ4SeRTfGTl5/i0hPOIuDz48Pi6acu4QMfuLEoph3HIpMZwDDCGEbEc/dOoWkGPp+shzo4uJfm5ltYtGg5kUgVXV0vU1s7z7N0V2GaafL5FJHIaITwefWwbyy6mnd1vUw0WkNb2yba2jZxwgnfIBCI4PdH8OkhdFdDDKdkXKdjyxJZddXS3dRxwbIZf/hhPPqLXzBnzpwR8RyLSGG8u03e9BfcU4eSXmkgfcQFvNDHMEZczA0v+ZLfeFfZoQAukBVwga5zI1JAtyHdtX1I1+0xjLiEj0HGWVd6bY9CCm4L2IJ0H68HepDiOubNlRTSMp0Fyr2xde90dyJrXV8BHJaWYZu2Ld25CyWFHWckM/j06TIB2W23STdwTRtJmq5pUkwfcwx85COynNYPfwhLlkjt0NAg2+Tz8lUoybVlixz3jTdGXMQL4jxaMczO/p2sbl7NlQuvBKCupI6A973JWBnCRhif5sN0TLqT3Vz3/HVFd/EbTriBWCCG5Vj8ru93RWt0Kp9CILil+RauabyG8WXj2Tu4l/ZEO3UldaxqWsWKxhWMLxvPuY+fWxzvu6c+SK6tU9aqXrYMXziMHgig+/1ofj+ubdP38ss0XXopte9/P7MuvBDHsojV1eHYNnY+j2YYpHt60P1+/CUl9L/++jvqXae7uwlXVxePEaqslAI+mcSIRtGD8vdBaBpWKsWrt93GtM98hpLx43Edh1zSoevlHkrqSigbX4bQBPlkHsd26H2jl7oFdTxx/hMsWr4II2wQqZJlyJJdSZ6/7vniA8f3f+P9GBEDI2zg4mJnbYyw8Y4yXydcfwLhUWGyQ1n8Ub/MgaEJoqNDiEPL1DmuFM6Gl/jP75PbHC9PwaHltgTyizKUlHHVQsiHVI4rRXh7j0xIWAjB0DWZ20DT3jluoQ59cX5mIbFDumYffjUEq2Wc9PSveOI3Iy3Yo+aD0OGli2H65TIB2kGvPvZbt3qu4RMg2wWvf+2QUl7XSzGebvfE+niv9NdN0u08KjNiY2eloB81H4jI5GTJuLRAu16pLTMPrbvhzuvgSzfIhGcDvbKN4U3On9wNW34NX/66jMfWdCnK1/9Miu/qWshmZAK0J38OSz4OZRVSTEdLwGdIq/XwkDxe5RgytmDX7kE6OoZZsKAOn0+jqamVuroSRo8OEwr5sG3XcxfXMAydvr4UyWSO6uoYqVSesrIgmia44IL1vPDCAV577XwCAR2fT5BOW7z4Yidz5tQQDPrYsqW9+L65uY2jjhpDb2+KNWtkXW2AkhIfTz75BDt27OArnltNPB4vCuDh4WGqq6uLcdkTJkzgxBNP5Etf+hLLli0DYObMmTzyyCPMnj0bTdOwbZlIVNd12traqKyU3mQ+n48nnniClpYWZs2axcknn8zQ0BBlZWUkk8miq7iqja1QKP4Yyi1c8U+JmTGlWnAhn8jz1CVPkU/mQQMjbACMuC6OL8M2ZVyZYzrsfnI3Gy7dgGM6JDoSLLhsAZHqCD2v93DS6pMoGVdCLpFjcO8gVs7CsRye/urT4IIrXFL5DDkzjxCCsBGkoaKGmTWTGUwPSdc0oTGzZjKvde6kP51gZs0U2uO9XvmqPD5NpyJSRjQQIuyXN8kFYR00AgSMALZjF0tetcV7WPXsw6TNLJe971MEDT8VoVK+s/VRZtZMKiYz8+sGutDpTQ5QHorxZvce2uI9vNG1m/ahXr7x9IP0JQc5YuwUepIDGLqPObVT+f72dTiuQ8Dn55wFH2LJtGMpD5Xwna2PsmHHZgKGQVu8h288/SAZM4ff8FEWivH97Y8zOlxGxB/iU0efRn9yiNc6d4LQWbLkdgKBkuLfy3EsIpFKDCNMW9smhoba0HUprE0zjWVlSKV6aGlZS1PTKoTQiEQq2bDhUvz+KDJJWQy/P4K0UtuUlY1n3Lj3s2XL7WSzccLh0TQ3r2bixMUsWrSCkpJadD1AKtVHLj8MmsAN+KVLaaFEVsHddDglb9BdFw50yZhQx/EsY668QZ9UL296CwnJIiEprA2f3F+ooR2LSGHdNygt2KYt3VWzeWl9mzpOioBsDrFzP/5Mjm87DlGgATgCuAQ4gCypdROyFvUqRrKHj0danqPAMFJMH+GtC6RFu/BeIC3TEaTb+AXe2AnkFLodOM5r7zrSerxtmxfairRGX3aZFMFjxkjX7VtukQI8lxuZk5YljYl33indx5cvl20+9SnZr7ZWjrlrF1xwgeyzZ49MYjZmjIyvnj9/JPZ61Srvu+O6rG5ezdqWtXQluxgTG0Nboo1l65ZxYOgAb/a+iS50MmaGg6mD1ERquOvUu1j3yXVc03gN9SX1aELDr/s5ruE4NDT2De7D0Ax6Uj0y87gufzMmlk9kUcOiYgK1lRtX4rouKxatYN0n13H3aXdj+wRibCXzrr+eaH09gZISNJ8P4fPhWBaZgwcpnz6dRd/+NkdfdRWhqip8wSD5VIpUZycvrVpFqrOTyNix+MJhcoODMqt4by92Lke6u5umSy8l3dNTjMnWDINMXx9v3H03mb4+NJ+PdFcX2667jszBg4yaNYu3Hn5YxoFrGprm0HBcA5GaCMInyxRuuGRDMWZaaIIzv3MmRtTAzJoITZA+mCZQGmDhFQtlYsgVjex5Zg9PX/Y0AB1bOvBH/QhdcPp9p3Nl/ErOeOAMSupKyCayWFkLf9Qv814UalEXytRl8/IBVWkUwoERsat5Hh2HuolrGuxpl31KPO+PPW1yXSDn2+R6rxxe20h5vaB/JBwjb46U1tvfIecz3hf8rdVSDP/uJpmsrHWtFMzBSmmRHjVPCt90m3zfsgqEK4XwjjtllvFglfwtCFTD9CulsJ55DYRqZSz1qHkQrpfHOzSxGa60nLsOVC6Ux3MdWUpr/GFS4BaErj8ghfTc46Xb+ECvjKv+yd0yTlsIWQt77vGyfvXP74crPyPF9WcukdnAQT7VevLn0pq94RFptS4pk8K6txN+/oAU2qOqwHWxTYeamhjHHluPaTpksxbHHltHTU2Unp4kmYxFX1+aWMxPV5d0GU+lTKLRAENDWSorI7z4YifZrMXy5Yt47bXzsW2Hrq4kiUQe14VZs6ro7U3R3NzGMceMJRj0cfHFT1JZGUHXBd/61hZuueUkQiGDZDJPKmXR2NjIF7/4xeLvTcGNe+PGjYwdO5bh4WHWrVvHrFmzKC8vB6CxsRHDMIrWbdu2EULgui6JRIL169cTj8eprq7mmWeeIZVK4ThO0d188eLFpFIpNm/eTDKZJJFIqCRnCoXiPaMs14p/OKy8RaY/M+K+ePUiHNtB0zWav9nMSbechBE20HxaMQlY26Y2YrUxjJBBLpEjNjaGP+qnf2c/zaubWfKtJfhCPhzTIZfIEamKyKRmrouVsUh2JWX9zZnltA718PDWX/H5uR+ktqwKkLHP06rGEzaCUihnEkQDEVK5FKMiZTIc18s0nrXyRPwhLMdGEwKB4I2unUwePY6wP4DlmQtbundTEogymEkwwyu/9UbXLiaPbiDo85O18oSNIC4uWTOP4zpEAyHpNp4eoiwUQyBwcXm9cxeXPXYb75t0DFd+4LM4rksyl5Y1u4Ug6JMul5rQcHDQhV5Mhnbt4nP4xjMPsWHHZpZMO5ZrF5/Dq507OaxqPIOZBA9teZSz53/oHVbs6076PPl8glxuCL8/hmFEGBo6QFPTKo477ir8/qjnKt5ZLNklhOaV3spTUjKWJ544n4aG4znssA8hhOYJa43BwX0kEq3U1s7H5wuQyyUQQqOr62VKSuooKalD03xevDaAi98XwW9EEIcmJRs3Vqq9QrxnwGD8xImUBEO4usa8Yxdw86qbqBzK/OEkZ1PGjSReejcFC/XkBhlHWugzuUEeU9dGkqiZJlZpjJRPuqf7kCLYRdaxPoAU1tcihbWNjJX2eft14DLgPOAwpEt5G++0gF+EtExHkJZrgXxymvGO0wl0A4uGZJ3q+fOlMN62TWYBHzVKWrK3bZPW54kTpeUZ5L27EFIcF4yFMGLJvuoquOaakUvz+uuwY4e0fm/ZIsX3j34kY611Hfbvh5UrpTj/7W/hE59J0Z3bw+pNq7nn9HswbZMt7Vv42CMf44PTPshDZz7E3vheVm1cxVXHXUV1tJpUPkVlpBJDGDg47Bncw01NN3HlwiuZWD4RFxfTMQn5QsV9Vy+6mspwJSFfiH3xfdKtfNFyJpZPJGtl6RzuLFqzp5VORtguTj5PPpHAzmZpeeABZixbRnD0aFzLwojFSLa1Sffwz32O8NixvLRqVdHVe/7Xv07iwAGyfX2MmjULPRCg9+WXGTVzJi/eeKO0igeDWJkM4Zoatn/jG+9wRe97+WWCFRVkBwaINjTgmiahmho0XcdFx3WlJ4/QZfKyPRv2MPm0yZgpUyYsu3oRpeNKsU0bIyjdeO2cjR7QMdOmzGGRtdGDurRYRwxwYXD/YLECQ8fWDkoaSigfX160WDu2TD4VCPsQu1uloK6q8L4UrvfUxh0pqeXNUZKZkVAK25bzTSDF8tt74cjDD7FAe5bpvBcHm/fqx7d2yTwIBcv4UBJ+twdGl8vSeW4WhndLYT1jhaxf/fIlMOMaiE2UVmd8gCPf5wZk9vDYZHlMcxiyPbL/9Ctk/LYRlYnMhGdZF3iTQMiyW8m9UtDPvEZmGTcTkOmW22asgPAUKZZH10B3hxTApyyFmjrpYYOQ4zmOjMNe+WWYcZR0+da866frUiiv/xn853nSsl2wgAP090qBfcrHZWKzQEhe8+G4zDbuD4KZA9cl7Y+ye/cgbW0J5s+vZXAwSyZjMm5cGbmchWk6JJN5qqult8PQUI7f/a6PY4+tJ5MxKS0NkMvZZDImhqETDPrYtaufrq4k8+bVEgr56OgYZvfuASorI9x662aWL1/Eb397gE2b2rjvvtPlT2jWYmgoR0lJgEwmT11dlHg8ztDQEA0NDQwNDRWtyKWlpaxbt66Y3OzUU09lwoQJ/PSnP2XhwoVomsbUqVOJxWK4rsvcuXNpbGykvb29mAytv7+fVCpFfX09pmni8/nQNO0d455++uk88cQTKsmZQqH4kyjLteKfDjtvkxvKFetQb7tnG6MOG0XZhDJOv/d0jLCBlbNwXZdUb4qB3QNUzaoi0ZYgWBqkeXUzRthAaIJRU0Zx6l2nYmZNrIxFZiBDaFRI3ih62bT9UT/lk8oZNXUUDi4/2L6OObVTqYyWk7Py3Pzcd6mMVBTjsC3HIm/atHTvoTRUguU4tA328ErHDizHJuy5fIOMfwaYPXYqgf/H3p9HSVXfW//464w1V0/0AD0wKV5FFI0ydquJQWQwMYMkuWYyIqBoglFRgYgxAgbilGhUHOL1JrkJMYlDAyKaEGkQcNa0ikIDPU/VNY9n+v7xqaqmk/t8v7/ffZ617n3W6vdavarO9KnpnNNnn73fe2s6pmWTswxkSeLscacRdHup8pez6dVf0R7u5YzqyYRSUX6y+wkGkxFsxyaVyxDPJotjOkDGMLh795N0xwb4oOcIp1VNYMfSX7D6s9/Go7nxaC7G+EoB8OluFFlBkRVylsG7XZ/QGemntrSSH81biiIrXD1TMNpLZ16OIivUl1ThUnWeOCDY7QKLXRMYww8u+AZg4zg2LlcJuu5HllX2799Ca+s29u27B5+vkmw2yv79m5kx4wZMM00i0ZOP7BqPLKssWvQYZ5/9HVyuIJrmBSRs2yAQqMbnq2LnzpVEIm24XEFyuRT19XPw+ap46aUfIEkS8Xg3u3atIh7vFcDa+QeTMpcm2C5XnvECXnvlVd5/8SXePnCQMZWVfOd73xtpvPSPJmfp7DAzVzBrAjHuqeMFK3fyNrI07FKuyKDKOH6vUL0iQLWBeG4gwO9kRLa1G9E7vTz/Et2ImK2jwHpEz7SJgAY9iCzrg/l5N540z86vA0I27kbIwisRKUJz54q3KMswe7aQdodCIorrggsEuHYckVsty8LILJUSrLVlCQb76NHh2K6f/lT0Yd9yi8AHs2bBd74jgPr48QJMX3CBWJZIiO3vvFOYnR06BJoiU+mt5N5L7iWZSzKQGuCcsefwpyV/Ym3TWmzHZuNewTTfs+8evJoXn+6jN9FLLBdDQmJTyyZeOPxCUR4+mBosuuv/bP/PijFfcj4Wb0rFFLYu3kqVr4rv7/w+qqzSGevkptk30RXrQrYh2dVF6P330YNBFI+HqvPOQ9YEA54OhcBxaN26VeRXP/00iqYxddmyYuSW4zhkQiHKTjuNbCSCkUpR9i//gup2M2P9esGKl5fjq61FUlWmLl/Ohb/8JeevW4ekKHjHjUMvKaHy3HPxVlfjHTcOJy91dRwJx3awTZtcPEfLPS2c/pXT8Vf78VX5aLiggf0/2y+8KiyH8LEw7S3tIMOOlTuId8eJnojy0g9eInoiSvdb3YTbwgDEOmIYKYOug13UzqiltKGU8LGwiPxqC2MkDXas3IGRtXAm1Yk2jIJBWUHenTOFmqOg9lAUAazjyeHebCMPnEv8AlgXWPB0VowlK+I46+gVN8cKpmWGMbyuS4czJgtTwUxOnB3dlTDjcfCNF8zxzCeEXDuXj+YyEzC4H5DAWycAcfQjeGMFqG4BrIsxXdHhs+7APki1Czk5kgDnb90g+rCn3Slk5I4tAHqBPW/dIE7YFTXioNr1B2Fc5vbkXbydgt08tH0EXj9seAIW/atgno9+KAB8JiVcwC/5Cri9guX+zUPiUdUEcP/WD6BynADW4m6vANWaLoD57x6FeBTDcOjoiFFZ6WPlyp0kkwYdHTEcBzwejb6+BEeODGGaNo4Dn3wSorGxAVWV8Pt1DMPm0KEuQqEUbreKbTucemoFZ59dzY037qKtLUJ1tY+ZM+u4997X2batlY0bW5g3bxLr1jURCqVQFJmenjhHjw6haTLV1X4cxyEajeLz+dixYwder5dFixbh8/mQJImmpqaiuVkmk8EwDN59911kWca2bXbs2MFdd93FSy+9REVFBb/97W+L60uSRDKZJBgMIssyqVSKHTt2IEkSc+bMYerUqcydOxdZllm0aBEVFRWjwHq0Rmu0/ss1Cq5H639cKbpSlC9Ou3Ia8++bj2OJC0nHcZBVmd0372bo0yF0r44r4ELzaDQ0NoAECx9eiKzKZGNZQkdCdL/ZjbfcKwC3Ju70S/k4GEmWho8CGRQUbrzwSqaPO43Nf/03BhJhzhw7GY+uC+n07icYSEQo9wco8wS4e/cT9MQG8bpcRRfwrmg/AD2xgaLcuz3Sx7tdh+mJD7L5L/9Ge7iXZC5Nha+UJ/Ly7KffeBEHh6cOPs+uw6/zq0MvoMgyg8kIj+x/lsF8JrUiSXg0jT1H3+TJg88zeUw9A4kwm//6b+iqTmekj7tefpyOSF+R2Ujm0nRG+tj06q8o8wToS4RE7JCsYNoW9SVV3Dl/GXWlVaSMDAfa/04sHeeWz36b5666l9suvoru2CAf9R9DVzRAIpUaYNeuVQwNHSGXi7NgwUPcemuExYu3IssaLlcJc+aspqLiFOLxHvbsWU8yOQCA41jYdv7CO08P27bFrl0/JJHoJZnsp7V1G3v3bsS2TVRVp7PzALruZ968LYBMefkpLFr0COXlp4hhDEtcuE+uFxflDvnYHl2wXG2dNARLYXI9WtDPqmtXsnf/PjjzlPzFeVaw3Kc0DJsrKYpgyrK5vKycYVdj6aTxT2kQvaS2I3qyCxf6SEiKjOwIeXcSAahzQAmin1oCbgXCQBdwL0Ie3g28gHARL0Uw0ofyLz0LmIKI5lqJANNzgTYgimC/JYbB+JNABeItybKQhr/9tsAsY8aI+K1Zs/IfSxL4pbwcWlqEzLu8XBiQrVghHseNE4B73z4RtzVpEtxzz3CPtW3DtGmipzqVgk8+gR/8QIw9ebKQkMtynvGWLVbtWoVhGXTHu1m/Zz098R4aGxqZWDoRgDVNa4qO4Iqk0BfvQ5EUPJoHCYkfNf2IPy35E37dj+mY1PhrivLQn37+pyyZuoQ1jWsAWLF9BcfDx5ElGbfq5sEFD6LKKrXBWu59/V6m10wHwF1WRtlpp/H2PfdgpdPUfe5zQrbd34/m8+HYNufedhsTFi9m6vLlSIqCv66OGevXE5gwASSJynPOGUH1Ky4XVjbLwHvvYcRiwgU8k0FWFLw1NSJT++67SXR04KmowEyliq7lmVCIdH+/6MPOmDiWU2xnmbd5HppXI/RpiF2rdtHQ2MCChxYgazKKS2H/lv14x3jpOtjFvC3zKGkooWXjyHSFlo0t5JI5amfWEuuM4av0sfP6nURPRIl1xIrrZmNZ6mbXCYJakf/ZCRxGysALx40kCRm4hDhWTnbc19WRzuGmNcwQN4wVO2ThJlbAN7xue48A94osnjuAGgQzKdhjHHBMAXrTPfDWKsAWzuBvrhT90pIMH22B478RDuNT1wgZ+Bm3ivXiR+HQCvE81S76to2EYL3PfQACp4JeStGeUCsRrHdBSp7/7TEM+OYNcO9v87FZJhxphb5uyKaF8dhvH4bIkPg+B3vh1DOFk7iqQVklvPq8GGvH74cdxR0bQn1iW8cWcVxH/j7sHi4rAtS3vg2l5eiaxMyZtZSVuXnooQX4fBozZtSSyRjYtkNPT6IIvNvbo5x33jhM0y5KyFta2qmp8VNdHaCtLcyyZc0cPRrG59OZMaOWDRv2CmzvOKxd28SVV07jwQfnM25cgIkTS/H79eLr1NQIdtyyxM3uhoYGKioqqK+v59VXX0WWZRRFES1aXi8XXnghHo8HXdfx+XzMmjWLSCTCzp07qa+v5+KLL8br9XL99ddz6NAhLrroIkpLS7Ftm7q6OhKJBLZto6oqc+bMIZfLUVZWxkUXXYTP56O9vb3Ylz1aozVao/VfrVFwPVr/40rVVTwVHiqmVLDokUXk4jkibRF2XLeDoSND2JbN5zZ8jkRvQjh8p0x2XLcDI2WQ6EmwY+UOwm1hXEEX5aeUF3sQJUXCX+0XwFoWEVxWzsJMCwbFztk4koNbc/F0Ppbq6TdeZPb4s0b0KD958Dl0ReOZN7cXp8s8weL0Ewefw3ZsnsyD5EQ2xVMHn6fMEyiO8fQbL5LIprAdp9gHfdWMy1AkmaV5FvmaWV/CdpwR78V2HJK5DG7Nzb1f+CFLZ16OKinFdWxHRIlNr50iIrYkCTvvuFoA8c+8uZ0zayajSAq2Y/Ne9yfEcikSuQzHh3rY/Jd/Y3rtaZT7SgmnYjyy/1l6Y4Poqlq8geA4FrFYF7Nn30Qi0YuUdxyPRI7R3LyMoaEj6LqfioopOI7D/v2baW3dhqZ5yeXiJBK92Lb43sPho7S3t2DbJvPn34eiuGhoaOLss7/L/Pn34zgObncZdXWzsKwsmuYr7iuyLPrtLNvA0fO90XK+t7pgcZ2vZHmASGdPcfo//vQs55w5TbBfiiIuzj88Ki7sIQ8CVGFwdrJrMQz3aRcqnhQs3ZF2cWGczYmL2mJPapZKy6IaGADeQpiPZRFg+35En/UshLS7D5iOiNnagmCvVyJk4McQ+dYGcArwMtCJANSdCPa6cA+gALBj+fnkycUJEwRrHYsJ8AviWh+GTdFVVQDv++8XX4/LJVjvBx4Aj0cA57PPFgZnx48LWXlbm+i3PnFCMN4ul8iz3rxZ9Gm73eJ1LEvEf5WVgSrprG1aiyIrxd7rzfs3Y9om126/lpSRYmLJRJ687EkaShoACLgCJI0ky5uXcyR8hGp/NY0NjdiOTSQTIZFLcKjrEMejxylxlbB18VYml09mzatr2Na6Dbfmpi3cxortK2gLtwGwqWUT21q3EVB8JDo6eOdnPwNJ4uwf/IBUby9GKkXv/v14q6uLcu1sJMJn1q5FDwZ54667SPX1kewWcVFmIiGcvwcHBSgfHERWFJBlKqdPJx0KFcG6Y9tkBgdpffxxwYQ/9RSKy4Ws61Secw6H//3fcZeXC+bccUiH08iqzKX3X4rqUdm9ejfR9iiJngSt21qJdcaItcdoXtZMrD3GvC3zSA2mCIwLoHk1ug510bimkalLptK4ppHUYIqmtU0kehNkIhnqZtbx+r2vc/iFw0Q7ojTMbeAbzd+gaV0TrqCLM644A1WXhVrkZA+C9vzx9Y8KkGxuOF4L/vlYOXmb+pqi0gQQN69K/MNqEdP6h/EdwZQ3jB1mgtPdkDgCqRMCGCfbhDlZ+zbBLH94z0nMsjkMhr31QgL+mQcgMEVIxlUfnPcQqH7Rl+044rkREQDdUw9KQTouieiv4BQR9eWbeNK5xCV6raNhYUKWTsDkM6AyH/eXSQlWOzwAHp8AxoO98MyDMDQg2Olv3iBef+HXRS/2wq+LG3o7fgcTTxPr/fZh0bs9NDAcH7hkOdzzNCganuN/x+tRKStzc+hQF+m0garKvPdeH7IsMXduAwMDSV544TAbN7Zg2w6KIpPJCLXYBReMp74+iMejsmXLfrZta2XTphYsy+FrX5vKww8vZHAwRV9fnMmTy3j44YU4DqxcuYPDh0N5rweHmTNrqa8vpbs7TjicJJfLYZomkiQxbdo0FixYQCQSYfv27YTDYXp6evjlL3/Jyy+/TCaTKTp67927l/Lycrq6unj11VfRdZ3f/e53nHXWWfh8PtH6lR+3rq4OWRbqFUVR2LVrF7FYDL/fT29vL8FgcBRYj9Zojdb/do32XI/W/9gquIUXHG4Pv3CYFX9fgb/KX4zmklWZF5e+SOu2VlZ+tLLohPuN5m9Q0lBCtD1K7YxaZFVG1mQc08EyrOFpSwBs27LR3Bq218FxoCvazxMHn+OaWV+itkQYwXRE+3ny4HMsnXk59aU1dER6i+vUlVRzpPc4X17yVcyBJAGfn0BZCWf864VsvPImQqkoA4kwVf5ynjz4HFfNuIxKXzkuVchMJUkSklUkLMcibWSRkPDqbjojfTxxUPQ915dU0R7to9JXKhhkCWTk4vtdN28pWTPHQCLM02+8yNKZlzO2pBJFkovjXDPrS4wNjqE3GmJsyRiOD3UXjdce2f9ssff6jkuu4a6XHx/Ri13ozT50wxOEw0dpadlIY+PtlJVNxrJyvPTSD6itncHkyZcQCNRi2yayrBGJtLF37wYuu+wJQqFPRvRhS5KK4wxnjEqSRC6XRNf95HKJ4nwRwXULmubFMJK0tGyisXENZWWTyOUS+D2VYNlIliUu2m0bcAQyjCZoG+znK19bUnSRnTRhIg/edx8T6uoFiE5nhw3MbEv0iPq9eQYtD9hzxrAbuJYPfC4AbtuG/rAA2pPrcWRpRA+4NWUCraqCB4gwzEYfRBidjQHeRQBsCcFyl1D09SORn25BsND3AmsRLHeSYcfxyQgGuxDNNRYhD08AwSQcOSLyrQsZ13a+Nba/X4DmWEzEcEmSmOf1Ctn4hg0iomvyZMFeF6b37RN/jz0Gy5cLs7IlS8S0qgoQbdvitZJJsc3NNwuAbxjg9uWwpBSKrGDZgrFUJIWB5AA7j+xkdt1sAq4AZe4yDnYdpKGkgQmlE1j64tKiw/djix9DkRRi2RjxXJyALnovb9p9E48tfozlzcu5be5tVPmq+OHLP+SxxY+Rs3Loik7OyqHJGhkzQzQbZaK7ljfW30nVeedR97nPoXi9YhdQFNKhEFYyKVy+r7kGxePBXVbGwDvv4KmsZODttxl45x1m3HUXZiqF6nIVI7cmLF7MeT/6kdjHZZk3fvxjjjc3M2HxYs6/4w4cy8JMp3n3vvuYftNNIEkY8Tiaz4fi8ZDq6Sn2fbsqxhHrShZ7q23LZv/m/Sx4aAE7r9/JwocX8tKql6idUcvkSyYTqA0Q647RtqtN9GWnDEoaSkj2Jsklc2g+DU+5RygbFBnVoxI+EibWHaNmeg3ZaBZXiQvNJ25mObaDjIOuQTF2rnBcyHJe+n3SyfxkL4Qp40dOn9IgAHbOhJLhG2dFE8GO3uHjTZEFuFYVcVAY5rDhmYOI2ZLsfB69A6EDsO/rMPvXUDlXSLvLz4XMoGChK2YKkNyzC6o/JwzL3rxOsNb+SeJzJduE6dnUNeCfLOTj5z4ggHX7Nlj8yUgXcmxo/wOMmQupHnBOE+B30dfBF4Q/PgVfvRo0l5B8K2q+n9uCRExIw499POwe/vP1Akj/60qx7u8fg89dBhXV+VxrhOxb1UTe9bsH4Nq1cMpUcWDbtnAPf/ZJ+PyXyJWPJZQU131C5m2haQqSBJmMxcGDndTXB+noiNHQUEJ9fRBFkYnFsnjzZqKGYWFZYoy33+5h5sxa3G6VY8ci3H33Xm66aTYTJpRiWTbRaJZAQOe55z7mtdfaufPOC6mp8ZNKGfj9OsuWNfP004sxDHGTpRCZ1dTURDQa5T/+4z+KfdY7d+7k+eef5y9/+Qt9fX1UVFTg9Xr5wx/+wLe//e2isZnP5+PJJ5/klFNOKf5PKShZCo+pVIqjR48yceJEAgGRu1CQmI9GcY3WaI3W/1uNRnGN1v81ZeZMrJyFogvWwspYoAhG2cyY5FI5/FV+bNOm80AngfoAZRPLijFdALlEjt237ObSBy4lHUnjq/QN/1OVJToPdFJ1ZhWaRxOsd8YsZsB2Hepi3Gfr6Iz005cYjrqyHZvNf/k3rm/8Gm7NRSQdxzBMxpaOwXbs4j/s7qE+3nn9TcaePZnaQBXP//YP/PlPf+LlV17BcWxsHBRJxnJsZCQsx6YvNkRPYpAzayajKxrd0QF+9cYL/OCCb+DV3EiSRDgVw+/youb7pu/c9Rjr5i0lko5z5a/XcM/i73P2uCnEskls26LUExwBiq+d81UMy8KtafhdPlRZJmVkuW/Pr1k3bynRdIwybwlpIzsMymd9ifqSatojvf/pDYW75n2X5uZltLZuY+rUJSxc+EskScE0UziOQy4Xx+UqIZdL4fONAUDKZ4E3N1/DnDmrkWU1D87XEAiMxbatokGaJEnoepBQ6DD7929mzpxbAQdd9+H3j2XHjpV88MFvmDp1CZdd9gTZbAy/pxLZPolebuscjuKCYVbbPolxbusUTJlbHzZjOnk7h+FYr/o8w1S4uNdPuvg62gnjKvNyctFy4ORBhxRP4rh0LI+LY4pCJSKC62wEo+wHPkDEbhXk3F6ErKgdAZ4r8tMSoqf6GuA1RJ61C8GAnw1cAGxF9GpvA5YAdwJ1iEiuU6LCqEzPk/WOI6YL7YXJpDAwq6oSzz35lKSWFvjqV+ELX4BHHoFrr4UXXoBnnxVy8sL26bQwKtu4UbDU4bAwS0ulxHhjxojHdesEAw6AniBrpXCpLo5HjrOxZSOr56xmXGAcAT1APBfHwWHtq2v5yWd/giIr+HU/x8LH2NCygTVNaxjnH4dH9eDgFCPxAI5FjuFVvZz60KksmbqERxc9iizJqJKK4RjkrBwyMh7VQ1ukjbv33s0v5j2I1hvFPWYMsqpiZbPFiCzN78exbexcjvCHH1Jx1llIqgqOg2NZDH7wAaVTpqC63ThA6P33cZeV8eGTT/KZ224jMzRE69atnHHNNbgrKnj7nns499Zbh4F0IIDmy0tlMxlCH3yAu7KS4PjxHLzjjuFc7PV38uI1u4pxWQsfXki8J07pxFJy8Ry6X8c2bYyUwSu3vsLc1XPxVnrpebuHhrkNJAeSaB6N9FCavRv2MvfWuZROKiV6IlqMN/RX+1G9wgTSMixsQ5zrdt+0m8WPL0ZRJFRVQsoZAgQXIu1OvqQoAOwREXX6P09Hk0IybtvDx6SuCrfwkw0KXVreKE0ezpS3bXH8NYwFl5M3FOseNhRTPCJ/ugCQfZPETp1oE8z11Nsh1QW+BsFC21lQdJA0wUa/uVK4g9dcIgzO/lwNjc8Klrt1A8x4TID2YozXWhHT9cZymHI7/HnHcC71F74JH78H02cLYCxJEIsO518XQfDlgr0OlAjpeFklhAdhypnQ3zPSvEzTBegGYZwWDQ1Hfilq/kaDJM5jxz4mOeFsovEckgRut0p/f5JgUJwjV63axU03zWZgIMncuQ0oioSVN7DLZk36+hLF/GtFkZAkiMcFKPb5dAYGErz00lEuvngSdXUBotFsMc5LkiSOHQtTU+PH7RbvV9dljhwJM2VKKZZlFgFtJpNhYGCAcePGsXPnTubOnUtFRUXeb0D8v921axfnnXceZWVlyLJMOBympaWFOXPm0NXVxVlnnQUwIiu7q6uL2traEfO2b9/OnDlzKCkpIRaLjUZxjdZojdb/Z42C69H6v6LMnEno4xB7N+xl/gPzSQ2kiHZECdYFxcXe2iaCDUHCR8Ps37yfubfNJVgbRPWowpxMFRd1uXgOPSDu5jtW3t3WFBeHiq4MA20kkZ9tnZSjrUoYqkU4FaXcW5rPoJbyTHAETVFHMLvXzvkqOcukvqQK07GxbItNr/6quLzRcyo3XH0t7330d2xsNEUjY2T5ZOAEZ1RPEnnZ3Z9Q5gnwzJvbWTrzcvoSQ3REepk+7jR+/dYObrzwStyaCxwBzDNmjlAqilvTSedyuDWtmFf93fMvo6Gshne6DhfHvGrGZbzTdZh3uz7hW+ct4t/f3M61c76K3+UllIxSX1otjGrzEWNpI0POMjFtkzJPEFmSsWwLRVbImjlcqkbOMlFxSMaOs3fvhjx7PBFJUnAcm1DoUxKJHmprZ6CqXmw7h+PYKIqO49h5kC0u1D/88FmCwVrq6+fgODbJZH/RIE1V3TQ3L+Pw4RdYseKDfBZ2wdjNYffu1cybdy+aJhzRdcUjWOvCxfdAZFjSTXEzcZF5NH8BD8K1GESvtK6JPlCPS7DWljUcxVUwKjOtkdm++f59MbYtjJwm1wlZds7EsW1wu4ipCgWxq43owY4znFct5+cn848ywvisDwGyZwBa/u8oot+6B+E0vgbBUPchmOujJ23jzo/XAlyYgqOfCvB7++2CPd63T/RAn3KKAL6WBT09wqSsrk6su3atANplZULqfewYdHSI5Z2dI9ebPFmA7EhEgHTDEGD+2LFhl/Dx48X3cP318MjjaRJmBL/ux7ItHBxCqRABV4DeRG8RbBdq8/7N3N54O6eWnYrpmOSsHM8ffp5Fpy7CwSGWjRHQA8iSTNAVJG2kiWQiVHgr0GUd0zFJGSnW/3U9m+dtxkGcDw52HeTS31zKd8/+LlsveRjHtpFkGdswyA4N4a6sxEylUFwupPydCSl/V8FIJjHicdxjxoxkmMvLiyBc1jQOrV8/7Aiej9lyl5eT6Orio6ee4vTvfY/gxIkjXMgzQ0OMOftsUn19tG7dypnLl6NXjMXKgaRIKJqCrAvVS/PyZupm19Ewt4GWTS3MWT2Hjn0ddOzrYPHWxURPRNm7YS+NaxqJd8epmlaFy+9CUkVO9q4fCMA+7cppLHp0EVbGIh1O4y5zIysysiIz+Okg7hI3ZQ0lyPGEAMVIAszJkjhWTr5pdbQTJtcNH3/HumBSbTF7Hl0VYDubEwA9mxM516c0iGP1ZNdxOZ93fTJT7tKhLwTlQVBzore69W4YMxvqvyIk3GYcOv4Eg6/DZx4UpmSHlg/nV8/Ympdq7AN3hQDJ5z4Ailuw0umeYbCe6shnXE8STLmsg5keZrIblsCMRyHZAa5aCEVh17PDbLUkiR5rRRV/tinitbb/TuRUH/1QSMXLKgXjvfDrIkZraBAqq8V3aBqiz/ovL4pxf/uwcBEHYXg20A2REEw6XXxXxz4W4wVKSKh+DMNGliVkWeLAgU7OOKMSn0/nmWfe49ChLu6/fz5ut8i7VlUJy3KQZYn+/gQej46qSmiaUgTHW7bs56c//XyR2b7hhp1s2TIPx4GenjibN+9n7domJk4spaWlnbPOqkaWJeLxHLW1flQVbNsu5lLn8lEFuq4LhVqeUXYch2QyicvlwnEcXn75ZS688EICgUDR9XvatGksWrQI27aRZXkEkAbI5XJks1l0XUeSJD788EM6OjpYuHAhO3bsKDqHX3bZZbhcLkZrtEZrtP6xRt3CR+v/irJyFns37KV1WysA0Q4h5451xjj68lGiHVEkJFxBF7Nvnk28O47qU4suuIW+aT2gFx1yO/Z3ED4WputQF0r+zjkI2aOkSEVGhgKRaYuoKrfmpiPcx1AqimXbuFQXdaXVVAfKi/3QS2d9ibSR5d/eeBHLsTEsA13RRiz/9yee5sJLLuaD3iNISIRTUcKpOGeNm8Lfe4+SNXOcWTN5RK/2mTWTmT3+LJ5+40XOHJt3Ds+bkyWNDG7NRV98iK88fQtPv/ECY3yl6Pk861+/tQOAGn8F4XScdfOWMsZXxsd9x7nls99mbGAM6z5/NRW+Unyam3HBMViOjWlZDCbCJHNpbMehLdSJW3UxkAiTyKbImDne6vwIy7bpjPaz8ZWn6IwOUVo6iUWLHsXrHcP27dcRDrfhOA6JRA8+XyU7d15PLhcjGm2nq+sQuVyCk2/mybLCGWd8lZqa6bS3txCNnmDPnjtIJHrRNC+SpLJw4cOsWPE+uu4jl4uTzcZQVTea5mPRokcBm0Sim2w2JgYtuhSbgu0q8YsL92heXi4hLtQn1wkA7XENs2slfrGsLJh/Lgt5OXkH8EKfqG0PNzXLkmCGLFuAc8OECWNFb7MDaCpSHpRnEUy1iQDN+j88xoFPERnYA4iTswsBkisRcVsnxG5KQ37ZRoYzsl3ARIRZ2kREf3ac4Y93AWAZAgRv2wabNon+5zFjxHPLEiA4FhM90pWVw+t2dAjAvHKlcApvaBA91Bs3/vN6R46I9ZJJIQm/7rphMF7It5YkIQ//4Q9Bkm38uh/bsUkaSW7YeQNJI4lP8xXzqDfv38yE0gnFnuxNLZtImSmWNS+jO97NolMXoUgKPfEe1u9ZT2+iF4/mIZaNMZgexKf7CKVCHAkfKW6z/qL1nIieYH/HfkzbpLG+kSunXclPP7uRRGcng++9VwTQrjFjMNNpVJ8PK5sl3t7OwNtvY+WDwNODgyS6upAkqegg3rp1KxLgKisj9Pe/4zgO561bx0WPPirYalnGPWYMtmny0VNPFXutHcuidetWuv76VzJDQ1Seey5WLoertJRpK1eil5WhulRUj0qsM8b2FdsJfxrGsR3mrp7L6V8+nZZNwqxs/+b9TLpkEpfcd0nxvHr4hcO0bGyhfna9uOGoinOh6lJZ9OgiVn68kgUPLSByLELnwU6MpMHOlTuJtkdBgtL6UoykwbG/HsfWNIglcSTE8fHJiWEWu2Aw5vOc5LqfhfH5m1qyJIC1w0hTNEkS4FtiOEO+IP82jJHmZ+09Yr0Sv8ivl1RhPHbeL6DuS/DOzaL3euhtIdM+ZwtYOcE0T10DE64U/dVSXmZe1QiZEHS9IJzC3/khyNpI9+/KuSLWK90rYr/6WgQ7PnWtANan3wyDBwQAl1yi1/pfV4p866OtAky7vWCZEAuLAy88OJxTfcY5Ivd6x++Ge7CRBOC2bdGb/btHxfv90nfg2GGxbTolWG/bEkZntRNH9mCHByCdzMu/TbJZE9t2mDWrjpISF/39Cb7yldPZsmUeXq+GZTkMDCRpawvT0tLO8eMRamr8eDwqhmFzww07aWuL4PNp3H//fPx+nQMHOunoiDJjRi3RaJZYLMv99x9g7tx6dF0hnTb48pe3oWkyfX1J7rrrb8RiAkibpkkqlcI+SVlk23YRVBuGgWmaRCIRHMfB5XKxePFigsFg0U38+uuvZ+HChdi2TSqVwjRN2tvbCYVCRcAej8fZs2cPiUQCSZKYNGkSc+fO/SdH8lHWerRGa7T+qzXKXI/W/4gy0gZG0qDzYCfjLxxP+EiYlk0tNK5pRPNqGGmDWEeM2pm1ZMIZjLRB2cQyTrx2Al+Vj2R/krqZdUiqxM7rdzLrxln4qn30vddH3ew6Yh0xYp1ie9WlEjoSItmbpGFuQzH/VfWqGJrFQCKMKguQLSHh0VwjADSAKitC3n1Sn7SMRCKXIZlL8auHH+elHTvZ8OT9jC2vKjLTHs1FmTcIQCQVo9xXQmdkZH+34zh0Rfv/U6a80l9Gd3SAJw4+xy2f/XYxh/q7519Gpb9MSLKtHKWeoJCe56XoWTNHPJska5j0JgY5e9wUsmaO+//2G75z/mL6E2EqvCVMKBsLEhwf6uHXb+1g1QX/ilsTLIGDwwc9R7jphfv4/KkzWf/5qwCbeLyLo0dfpqvrEAsWPITjmOzYsZLW1m2sXPkRe/asZ968e/M51qKSyX58vipA9MOFQp/y+us/K8rML7vsSWzbxHGsIuMN0NGxn0BgHLFYJ2PHnksy2UdLyybmzFlNTeVZyLGkuEg3jJGMNYiL0VgS/J6RvdInV4H1tmxx8V9gPBwEeP77EeEu7veKC/4C21aQw8YSw69bMDxTZBwk3lYVahB90/H8y/kYxukqwiH8JYQr+C8QLHUGYWa2DbgSeAQhHy8w2BsQzHXeM51eRH91J8JBvJ3hTGxPvud648ZhBnnfPsE8n3qqIB9jMejuHslcP/ywAMyFfuoHHhA91G1tI5nrhx4SbHRhvTvvhDPOEM8Ly9asEa8VjYI3kCPlhOiOdxcZ6ddOvMa+jn1sXby1KBO/rfE2JpZO5ETkBBtbNvKjph/hUl2EM2FCqRBNDU0YtsGK7SuKfdhPXPbEiB7sgCvANS9eM6JPe1/7Pip9ldz7+r2sbVrL+JLxuEyZ0FtvU3b66aQHBjj8zDNMv/lmVLcbSVFI9fcLpUQgQOiDD/COHYu3Jh+1BIK5fvxxpi5bhnfsWAbfeYfKc84RGDIUQvX7Ub1CFSGpqlA2SBKZgQFUnw/d5yPe0UGqtxdvdXVxrFRvL3+77joaLr2U05fdjJGV0DwamXCG5ECSseeOJdGboPzUcnLxXLFPWg/oDH06xOv3vs68LfOKu7oe0Gnf207N9BqSfcni+TbWGaOkvoRoRxRfpY/X7329KD+f/8B8NK9G87Jmjr58lFXHf4DulpEUWdzAKhx7bqG2waWL6ePdI3uuLVuASkURx5vt/HNevCQJE7ST5x1pF6Zm2X+QlX/aLlo5XBKYUcFWF/QfmV5wVeT7m11gG6LHWdLyAD4xLCM/43ZwV0P4bSg7V3xRBVXKu7fA6beCp0aw1djCXdxdKQD5mNngGKKHWysTQB8dBvqEvLv9iAC82UzesEyDWETEcrk88O8PigiuyurhPumOo1A6ZpjBDg9AsFyw20da4ds/ECD92CdCCm7mhEw8PAjllWL8bBp0D5SUgWMTt/XiPmDbgpG2LJvBwRQlJW68XgGeHQc0TSaVMjl+PMzAQIqGhhLa2wV4bm+P0t+fpK4uSGdnjDlz6gHI5SxkWUJRJNJps+gOrihS0XVc15UiYJ81q44zz6wgFApx6NAh5s+fD4j+50gkQiwWo76+Htu2sSwLRVGwLAtVVUew0rZtE4/HaWlpobGxEZ/PR09PD7W1tWQyGWzbHsFwF3KtTzY4cxynOPZoFNdojdZo/a9qVBY+Wv/jqyAJ37d5H/O2iEiZ9pZ2/vDVP3DaF05j8dbFdOzvoGpaFUbCwBV00fteL/Vz6rEMi66DXcWLwMY1jZz42wk69nVw4Z0X4h3jRVZl0Wtd2L7ERS6ZQ3WryLJMNp4lMC6AmTWR/AqO5BSlogAODoZloioqiiQBEt2RQXoSAyNA6nfP/wKV/hIefvBh/vTsH2ne2YzH7ytKxR/68q1U+8t54uAwGPbpHvEd2BYSEEpG8Ooe3KqOqih0Rvt54oAwQKvwluLXPViOTXukl7qSaja88iS7Dr/OotMbWfv5qxlIhqn0lZEyMiSyKar85XRHB3j84J+5euYX8WguYpkkz7y5ne+efxnvdo+UjP9o3lIkSeKulx9neu0Upo87jaffeJGrZ17OYDLMlMrxSEi4VQXHSJBM9hf7psvKJudl3xK2bZFM9uHzVRONtlNS0kA0eoJYrJNgsB5N8+LzVSJJCrZtYNsm8XgPLS0bimOFw0eJxTqprZ1JJhMmm43j81XR1/ceXm8VY8ZMwbZNIpHjHDr0EF9c/LgwNJMYlnCfLD0tyLZl8RuO6O/M5gRgVv4TMU/OEBfChYvsAkuXzgpWruAIlkgJMFGI8SqcWvP91ztUhclALcLx24tgpBUEWC70VBeeKwgWWkGA5VsQzuH9DEvBJzGca70auBbhOp5l+O1aCHY8B/jyqnrDGPY6AmE89uabcO65Jx2X5rCDeCQi+qY3boRbb4WxY4XRWUFGXloqxlJVwWxv2CAk4hUVgp1et07IxXM58dqSJGTmppygJ9nJ+j3refnoyxxaeohKXyU4YNgGLtWF7dgMJAdI5VKMLx1fNP9L5BIksgnGBsaKm1uSTHuknbv23sW6pnVMKJ3AJ6FP2Lx/M6vnrGZKxRTaIm1s3LuRdU3rmFQ6ibSZZtWuVcyoncElky+hzF2GT3ajZm2y4TAfPPwwleecw5hzzuGjp55i6rJl+OrqSHZ2Ctn2VVehBYO4y8vBtnEkicF338VVUkI2GqXqM5/BymbJxWJYmQytW7eO7LH2+zEzGaxUitbHH+eMa67BU1mJY9uobjeH7ryzKCM/b9063rz7bk7/3jUc+UuYskkVlNSVsHejkHmXn1JejCuMHo/Sskm005ROLOXFpS9SP7ee+rn17N+8vygLD4wNUDqhlOblzUUAPeuHszhw3wEWPLyAroNdI1pzvFVedL9OpC1CoifOpIsnIKWzYr8v3GA6+aZV4WbVP/ZYp7PCqKy+ZtgT4eR1XIIRx6WPNEozreEbZ07+xQzzpHz5TP64z0IuDHqZOEJsS0i8pfx7fOdGOO0H4D8FUp3wwfphSfe0H4OrPP9BJAgdFCy0bzwM7M1Lwifke5mBQ8sE0934J6hqOqmXe63YxtaHbyQYuRESbX7/mJCC19RCT4cwM8tlh8F05Vj49S+EE/gZ54LLLQC0vzT/+R0hEddcwzFczf8BX75qeLmT/8sf8En0IngumJkV6oYbdvLQQwtob4/S0RFj5sxaXC6VdNpE1xVCoSRlZZ78cBKyLLN37wnOPrua/v4kPT0JZs6sJRzOkMkYTJpURjptcvBgF3V1QcaPLyGdNlm1ahdr1jQydqyfG254iV/9ahGdnR3U1tZi2za7d+9mzpw5lJaWFlnrV155hTlz5lBWVjai9/pko7J4PE4ul0PXdfx+P6FQiIMHDzJv3jw0TcubZebYvXs3c+fORdM0DMMY7a8erdEarf+/alQWPlr/48vKCEl47Yxa4r1xkgNJGhobuLnvZuY/OB9JlmhoakB1qQwdHSLeG6d+bj2pcArVo9LQ2IC7zM3Rl4/SsrGFSfMmMffWubhL3Wg+DVmTqZ9bT3IgiaQItsc/1o+7RCz3j/Xj2A6qW0WSJDqj/bT2HhH/tHFwgIFEmJ+8/DjHh3pI5tKMLang3Np/wXZsXIrGt89bRLkvyKO/eIRnt/2B57e/QFc2hEvVi1LxaTWnjMi0TmRTmLaJ7diosrjACXr8aIqaj5eyGRusZN28pVT5K/IXEjKKJDO+bCyaonLNzC8x/7TZ3HjhlXTF+vnlvj+QMsQFZtDtw3JsxvhL+O75l+HRXJR7Swin4+w5+mYxZmzpzMuJpONcM+tLKLKCnI8DK8jTC3FjhTzt+/72azQJFEUnFuvk8OEXiMe78xFbPfmILYehoSNEoycoK5uMLKsEg3XU1c1G03wYRopkcgDHsZFlFUXRKSubzEUX/YQTJ/6GbZsEAmNpaJhLJhPGMNIkk30oikZDw1zGjJlCJHKCHTuuQ5YV5s+/H0AwaLI8nJ9bkJ4WSpHzQc7msPxUU/NssyMYMAex7ScnxKOqDmdaH2nP5/JqYhtZFkAhZwignc0N52s7w/JGAwGqaxBDjUf0SBcAcKHiiD7qBCKvejnCiAwEY+1hpBQ8jTAv+xg4A6hHwIsDiMxsd/7Pyj/atgDKx4/Da6+Jx2XLBCA+91wBpr//fchmRab1sWOCbT7rLMFQP/ywMDe75RYBlJNJCAQEg71smWDFJ0+GrVvFo88nntfXC0y0b594zXBYyMwH+3RqfDU8tOAhDl9/mLSRZnnzck5ET+BW3Xwa+pTlzctJm2kmlU9CkzVkScbBoTveTYmnhKPhoyxrXkZbuI26kjoeW/wYE0snCiPCk6K9bMfGq3r5xYJf4Fbd2IiWjy3ztjC3fm5RTu4oMlnVRgsEOP1736Nm7lwyg4Oc/t3vkurtBccpSr8zoRCqx0P8xAkO/fjHpLq7KTvtNLLhMJXnnEOio4M3774bK5NB8Xg456abhPu3riPJMorLhbusjFRfH11//SsfPv44djbL2/fcA5LE1GXLaLj0UqYuW4ai68xYvx5fbR1dB3uom1nH3o17OfzCYeLdcRxb7EmyIrP/Z/uLMVqO7TD/gflMvnQyid4Es2+aTawzhqfCQ8umFsysWYzlalrTJGK51jWheTQaGhsom1zG4q2LKZ1Uiu7XycVzlDSUMPGzE0TrQy5/tySTj9vK5J2/MzlxHBT6qU9pyMfkMTIHu1BuXbDach6Mp7Pi+ZTxAmzbtoj8cuXNBwsoPs/8E0/mbfbbIPQWuMbk/RB0EY/lWEIOnjoBp14PrZsE01zIpZ5wpeiz9uSPzHSP6KN2V+bzrZPiueLJs929gAznPQxNf4Ky6eI1WjcMS8hBHOFGTpiNjZBop4Sjt8stvpNXnwefXwDrN14Tj5m06KmefAZs/w+xrr8UjKwY08gJifhgr4j+01zwle9BaEBkXVuWmH/8sMjTzn9dHR1RBgdT6LqKqsocOtRFR0eUG28UWQU+n8bs2XXi/5BlY1k211+/g6oqEWWpqnIRr8+cWUsiYYzIx04mDdxujaNHI6xcuZPKSh+dnTFM0yESybBtWysbN7bgcqmsXdsESIwdO5Z0Oo2u6yxcuJCysrLirqFpGhdffDGxWKwIpKPRKCeTLLZtE4lEkGWZPXv2EI1GSSaT1NbWkkwmaW5uJhQKAbBo0SJisRiPPPIIe/fuxbIsTNMkm81iFu4ojtZojdZo/RdrlLkerf/WKjiEh4+GUV0qkiJhpAxaNgoznsC4gOijNkVkFhJkIhl8lT4cHMy0iZY3USkak8nCYMo2bZJ9SVxBF5pXI9mfxEgaRfmjr9JHLpnDXeam+41u6mbVYXkdhlJRyr0l2I5DNB2nzPvP7tsBlxdd1YvgqDc+yP3NT/Po9+5kwsQJxWgPl8vF31r2Yjs2iqSQyKVIZFP4dGHC5dXc2AV45ThkzBwZI0PayDGupJKcZeJWdSzbQpVVHGzaI308dfD5YsyW4wjjtcJ7/Mu1j2LZNoPJSDGOqy8xRJW/fAT77OAUmXPLFvFfD7X8nhuavo4vH83VGe3n6UMvcuOFV+JSdd7r/oT+2ACNY2vYt28z8+ZtAUDXA9i2AUjIsgo4OI6NZeVQVc9JsV2ClU4kevB6xyDLmnBSt418ZrXMzp03sGDBL0ZEfWmaL29oliKbjeJyldDb+y6//e1Cpk5dwpcv/zVSxhD9zSeDaeskpprhh5GZ1SfNyGSFpPXTExCKwGemDrPeIJZ39sGpDQIAdPTCxFpxEV/I15YlcVGbM4sxQrbbRZ+qEETEZHkQrHXBxGwAEc3lQrDPP0Sw0p/kl52SX55lmKW+FSH9XohwBf85wtBsA3ATIubLj5Cab0Yw3RNjAuDOmSM+zrJlI6OzCh8jm4Wurn82K2toEHJxvx9aW8U4ti0A9ze/KYCzJI10GpflYYfybBYOHhQGaj/7Gfz84RydmY/ZvG8zW+ZtwaN6iGajfDjwIXPq57CseRnbWrdx5bQrufeSe1EkBZfqwnIsljcv57HFjzGQHKDUXUokE6HKV5Vv39CRJZljkWPcvfdu1jatpSvWRYW3glAqxNz6uViOxYHOA0ytnMotr9xSlItvXbwVj6lgGwaKy4Vj25jpNO8/8ABnrVqF6hYM6MB771F59tlg21iGQeerr+IbO5Yx55yDmU5jJBJ88NBDtL/0Ehf+8pd4a2r46Kmn+MyaNaRTKb5+xRUc6exEV1Wqqqq4e+VKzjz/fFwVFWDb/O3AARZdfjk/vftull95JXpJCaH332fM2efgSJowcpSlogon3BZm/08FK+2r8tHzdk+RdW5c00jZKWXC8dtykBSJVCiFkTBob2mndEIpDXMbhAfFyXd8HIqmkY4jzsGO6RDvieMb4yVY4xWy3P+VhPs/i90yrZGGZFlDRHAVmOu6GnEnptB6UVwvBx+3wTlnDB/jOXP4eSYHugmHroHzHxGAuHUTnHs/ZAcF2D39ZtBKBUg20wIoy4pgtiXATMH7a+GsjWKZGYXoh1B+vpCTv71KAPBMH6S7wFs37ELuqoLIu8JRvHUjTF0Hvglg56P9jrTCIxtg+izRgy3LMNg37O5dsO8fGhAGaF/5nviePF747S/h9LPhvAuHg+iHQlBeLkBzdW1eHp6P8CopE99hQYLucguDs9IKYjmZvv4kyaTBpk0t/OhHjUycWIZpOkWDsxkzakmlDG65ZTc33zyHCRNKaWsb4pRTKvL/qgTAHRqKccMNV/PRRx/hdnsIhSR6ey/kyisvYunSan74wxvp7w/jcqncf//9fPaznyWRyLFq1S7Wrm3C51OpqvKj6xAKhSgpKQGEq3cwGCQej1NTU4OqqnR0dBAMBiktLQWgo6ODuro6bNsurh8MBtmxYweHDx/miiuuoKGhAdM0efnll/noo4+44oorqKurK5qm7dq1i6amJsrLyxkaGhp1Ch+t0Rqt/59qlLkerf+xZeZM0qE02ViWYF2QQF0Af40f1a0yZ/UcdL+OHtAxMybt+9qJ98bpfrMb3a8jaVK+71En0h6hvaWd8JEwzcuaCX0SIhfPYSQNJFkw1ZIq4av0FY1+Wja2CCCfNNi1ahfVZ1cjq4IV9mhuBhNhFEmmzCscs5fOEuzzVTMuw+/yoqsa97z6K9JGFlmSeOLAc7wVPcJrR9/mg49aeXXf31i8cRm/bn4WoAhmCyVJEj7dQ9rIkjGybHrlKbpjg7gUjTJvCX2JIU4M9XDPq7/CtC1e/PA1frL7cWzH4amDzxcN0EzLRJFkUrkM3z3/MuafNhtN0Ujm0vz6rR1Mr52CpqicWtnAb97awZk1p6DKCh/1HyOSipPMpblz12P0xoZQFYWbPvstXIrGPa8+TVdkgJrAGG666JuEUzHu3v0E1f4KFvzLTPbu3UBt7Qzi8W527VpFJNKGaabp6NhHLhcnFPqE5uZlJBI9ALS0bKS1dRstLRsBB9NMsX37CnK5OJHIMXbsuI6hoU/J5eIsWPALHMc6aZtNRQl5PN7Nnj3rice7qa+fw9SpS2hqWiPc3/8RWMMwU13A14UG55PjuCTEBf6nJ4bXbRgrgLUmYpbIZAVY0DUBEECA6LpqAQASqWFgDQLUF9i59h5shKw7hjAbq0awyXEES+1F5F23AbMR7uEmAljXI1hvBRHZFQLuQ+RiT0cA63UIZnoDgtX+OYIl1xE92C8ggLitCbA8OCiu7deuFcB63TpB0A8MiJ7rnh4h/Z47Vzw+/DBMnCjyrdevF9vPnCmY7WXLxJjHjg0D80KkV08PJBJw6JBgt91uaGoSjzfeCBY5OqIdbPjcBtyqm6SRxKN6mFU3C1VS2bp4K/Hb4jy88GF0ReeW3bdwLHIMTdK4vfF2FEkhZaS4fuf1pIwUmqzRnejmuh3XEc1GaShp4InLnqAr1sW//ulfGUgO0NjQyPHocVZsX0FdoI4yTxlbF2+l7+Y+1jetJ2Wkii7hRjxOur8fHIdTr7ySTCjEoTvvJH7iBGOmTcNMp8mEQsiqyoRFixgzfTqO46D5fHjGjGHmT37CV/bto+r88zn8zDNUTJtGqq+PXCzGtatW8cFbb/Hac89xjtvN2kcfxVNTw3v33UckFmPdHXcw76KLsE0TV3k5g+++i6eqCmSZ0KchYeSYNcnFc0TboyR6EsVzG0BDYwMHHjjA3DVzKZtUBjZIsiQiCNMm/mo/viofZZPKhF+FIhHrjGGbNrImkx5Ki7zrtjA7Vu7ATJniBqgqceD+AxiJLFJbpwC95I+ZyjLxaFowWfTgcmoDnD9VTMuSOE7c+nC+dSFeq2BS1tmb9zGQRxqXBXwCWGvq8HF88vHu0kUv9bkPCIOyVFfemCw2zCZn+kUs16HlkB0AWRUngNQJMS/dI1htbEgchXdWC7CseiD87rDR2Yeb8tFbW6DqAnCPBdULpWcLxnzanSKqK5cUjPW//xzKxsDKH8E3vy/6omVZAOe6SSLfOpeF459C1Vj45g2QjMGzT0CoX7DXBWBtZMW6YyrFd1k9TgBzVYUpZwkDNc0l+q1f+HdhmpZNi+eDvSiqRGWlj02bWti2rZWqqgCxWI6engSJRI7zzhvHsmXNdHfHmT27jp6eOJIEU6ZU5HuSbVateokjR0K43Srf/vb32LfvbXbv3sf113+LyspX2bz583zta1cQDF5Kc/Ne/u3ffsM3vvFNPvqoB69XY+vWxYwd66e83EssliWVMkgmk0Xzsvr6ejRNo6qqing8zvbt2/H5fMRiMSzLIpVKUV9fTzQaZffu3dTV1VFSUoKiKCxYsIAVK1YQDAZpbm4mkUgwb948VqxYQW1tLZ2dnYTDYXRdZ/HixZSVlWHbNnv37qW1tbXIZI/WaI3WaP1XaxRcj9Z/W1k5SzAogym6DnVhGwLwSIqErMrsuWMP4aPhYk91rCNG1bQq9GCeyc5ahI+H0Twa1WdXjwDlkiLhKnWJnGtFKnrbLHpsETf13MRlT1yG5tWI98Spm10HDmRjWRwcBhJhOqL9dEX7eafrMF2RfgYTEX40bynjS8eiygrhZJQzx07GrepISFwz80s8+53NnFkzmXe6DjOYiHDm2Mn82xsvguNg5SXCoUSUzmh/XgbucHjgOAOJMGePOxWPpmM5Nu90HabaX0HA7eWaWV8iY2R5t+sTrprxBQCuLjiSz7wcXRF9ZMeGOnm/51OunfNVNFnB7/Ky6oJ/Zfq403hk/7NE0nFu/uy36YuH2PTqryjzBOhNhJCAPUffxKWpDCQibNj9JL3xED+86JuEUmFUScal6vQlhvj2eYvy0V8mjU1rmDz5Evbv30xr6zb27t1AJhPF56skm42OmO84Fo2Na4pA2LIM9u4VwDmbjRZB9P79m8lkIjiORTLZP2IbEfNlFcfdv38zAIsXP0Yw2EA80YOj5yOz/lGNYzt5GSnDILuQk1tY1a0Lxiybl7K6dQHAPz0hgHfOEEC60JPtIGSruiZ6RoN+IUvN5IGGpgnWbu50nCnj6ZMEaHYjAPYnCIZ6AMFERxFgeSPwVSCFMDGrRLDcbSdNtyPk4KsQoHwros86hGCnlyB6s48B1yGA+bMIQ7OMIYBtMgn798OkSfDEE4KRtizhHF5aKhzATVNIwk+cEF+FZYle6oLTuCQNT2/cKD52W5vYJpkU26xfL8zRzjxTrOM4gt1ev15gAWyF+mA9f+//O7Ik49W8dMY6OdB5gFhOSEAtxxItEUh8f8b32bB3A2kzzallp2I7Np2xTl44/AIbWzZi2AYb9m5gRu0MehO9Rbn49Jrp/PpLv6YuWEdXvIsNezewrXUb1YFqLNvCtE10WWd86Xhi2RiOZSEpCunBQT54+GHSoRDBCRPwjxvH+XfcQSYSQZJl0v39vP/QQ6T6+rAti/TAAFY6jW2aWJkMRiLBW5s2kWhv55xbb6VmzhwUlwvNcah4/XUyAwP4x43jspUrOX7iBFY6TfmZZ3LT7bez6uqrkXp7MZJJJEmiYto0FLcbx7ZI9CTwVfnofqMbX7WPYG2QhsYGpl05jaa1TaLP33aYf998/FV+srEsoU9CNF/TTPREtLjv636dYG2QHSt3EG4LUzqxVLTxpk0ixyM4tkNgbICFDy9ED+h0HepCkiUW/GIBWsCFU18DnX3FuDkh4dZFDrxhivaMrDHs+H0yaJEl0Vrh1sVxVV8jzAJPacibCSKen3nKMGDXVXGMxhL/fJzHkxTlKFYWKufAgg+E7HvqOriwWTh9pzoFSG7dICK6HEswze3bhKmZfzwY8ZMcwjeClYGys0VftVYiALy3Hs57BCb8q5CXv7lSAHYrDb27AQty8ZNk3r+HU84U4DidhMiQAMIud/6c4sDkfxE51uFBEc1VkIe7vWKb/m7409Pi/FJoO2n7SMx/5kHo7RRjSpIwNPvqUmGYpmoiF1vTsSxhLvbwwwtobv4GHo9Kd3ecu+9+rWhwNnduPffff4CvfvUMamsDtLS0k8mY9Pcn6eiIcv31M+jrS+I4KtOmNWKaDm63yty5s3G7EySTUYaGBjl40MWmTS1UVNSTSincdtsjxZ9L04QcXdcVVFWhoaEBVRUtUR0dHZimia7rJBIJZs+eTSqVKq7j8Qjl14EDB/jc5z43wtSsIC2Px+O0trZy4MCBYg+2oiiMHz+eYFCYihqGQSwWw7btUafw0Rqt0fo/VqPgerT+20rRFVSXSqInQd2sumLPoL/aT7AuyPjPjifZL/qvx0wdU+ytxgYckHWZ0vpSfJU+3KVuXCUuAuMChNvCOJaDbdhIiiQkjbaDlbGwTZtsPIuZMbFNm5rpNZxxxRnImkyiN4FtO/z6rR1MqWyg3FvC9NrTcGsap1dPRJEVkEBTVMb4y7n0tNmoioKDQ21pFVnDYMtfn2FKZQOV/rJiL3RnrJ+7dz9BZ6QPr8tFmSfApld/RWekn+njTqM6UM5lZ1xA0OXn771HKfcE6UuEKPUEqQ1W4tXdrPn89xhIhLEdmyp/KXdccg21JVV80PMJyVyaM2pOYc6Es7Bt0SXu1dx4dXexZ/qpg88jSTCQDHPTRd+kJjCGc2pPw6u52bH0F4zxlvKbk5huTVaYOvZUzHwedZW/nGfe3E7GyPHxYAdlpZNwu8uYO/e2PABeh9tdSjI5gMtVwpw5q4vzZVmlrGwSixc/RlnZKUiSVATOLldJ8fncubfidpciyypPP30BZWWTWLjwYSzLZOfO72Oa2RGvJ8vCLXb79hU88thZ+Z1KHunwDXmzo5Nclgo90Z+eEIx00a5bEexYYUNZEhf8RRDgGu4rzeaG+7StvMlS0DdsZnaS5FxyYJxpcbVlYSPA9WaG+6Z1hOR7kGEGutBXfS8CUG84aXpmfv0fIdjsFAKou/Pr3slIFnsT0IhwF/fJAjj7fDBrlniLBfa5vR2GhgSo9vvFOrfcIrKtZRlCIeH0feWVwi3cccTjNdfAo4+Kr93rhZdfFkBaluGFF0Ssl6qKbR1nJCDX3RZd8S7Orj6bnkQPGTNDX7KPaVXTsB2btJmmN9FbzL+eUjGFW2bfgo3N0Yjota4L1vHsFc+ypmkNsiSztmkt8yfPpzfRy02zb6I73o1f9zO3YS6dsU72HNvDfZfcx0crP8Kn+jgRPcF1O67jRPQEsVyMO/bcQU6yUDStGJGl+XwYiQTpwUGsbJYx06YhyTKqx0PVeeeheL3IqopnzBg0vx/Hshj68EPSg4NUTJtG6+OPI0kSnqoqPGPG4K6s5JybbiI9MICsaTz+u9/x+ZkzUb1e3jZNFE1jUkcHya4u+g4exLEs3tywASudRlYVGhobSA2mqJpWxdCnQ7z0g5cwUgYLH15I6cRSdJ+OrMlFplrWZHSfLgzNtuwnExO+DI7lFOO5Yp0xoiei7Fq1i2R/kvo59SKmy7JJ9CSwLRtftY+dK3cS64gRqPELtcipDcLrAEccH7GEOGayOeFDoKkwqU5MS5K4IXXycZgzxKPHJYD5kfbhXu0j7WKersE7H4rtCuMWVSKW8ErQtfygtsiifvMGUH3izz8RKpsE8C07V4DkM24FxSvY7Km3CzOzqetAdoOnGs69T/Rhn/kjcpZOwiwhV3GRYKgLZSZg4IBwDz/tRsFku8aIfG0UcAWEMdn5F4hHxwbdLcCuogpgrahQPkY4hiNBSbkA4POvENst+lfxWqoGsSG4+Asw1A+/eVj0XE86Q/Rwt74tlusuYWxmmaCqmMEyspKCWTkOBntQZIljx0QvdH29kGFv3ryfGTNq6e1NsGxZM3Pn1rNlyzzcbpWOjtiIXuqOjhjjx5cyZ0493d1x1q/fw8BAikzG5K67NtPYOI8f//gNasaO5cGHa3nwF5dw/HgrsjzE5z5XzvHjEZYta+bEiSjnnz+O66/fiaoOn58VRaG+vh5VFYajDQ0NBINBampqcByHbDZbZLkvvfRS4ZNyUpug2+1G1xXq66u5+eYbmT9//og4r4LreC6XK4JowzAoLS3lsssuY8yYMaNO4aM1WqP1v1WjPdej9d9a2YQAN+Gjw9FbJQ0lbF+xnfn3zyc1mCLaER3RO1hY3rS2CW+lV/QW1gbF9rc34qnw4Aq6MJIG8Z540R3XV+Vj16pdNN7eSKwrRrAuWJShO7bD9hXbufgXn8f0OgylYjx58Dm+N/OLVHhLSBsZPJqbgUSYp994kVs++22A4nShr7kj0lt02F4683JqS6r48ctbi/3aP5q3lJ/sfmJE/3bWMqjwlrDlr8/w7fMWEU7HObNGsOLtkT6ePMldHMCl6nRG+nj6jRe5+aJvMZSOFXuwx/jLGEyGeeLAc9x80bcIpaL86tALLJ11OaXuAJIkjfgM4VSMJw4+x9JZl1MTGFMcd+nMy3FrOmkjS4WvlM1/+bfie7794qvwKvIIN29ZFq7fiqIjSRpg4zgWqVQoz2bHSSR62b9/M42Na9E0D253GeCgKCLWJpdL0tf3AfX1c2hvb8lHbQk38qamtXi9lfT0vE1t7Uyy2She7xiSyX4MI0lLyya+fPlvkDI5pGxupMuwSxcgOt//jKYK5Lf/XcGKufS8PPWkbTR12P37ZJfjk/tHp4zPR+YYI8c+2iEksCf3i7p0kQV80u3MJBJuHGQkDEliSJIZ4wjm3QDCgFuSCAJKnqU62YiZfKvByfMcIIqED9D4X5/bMxmJ61YqbNkyHLHV3CyMxzo6RE/0pk1CNl5ZCatWDUd3ZbOi77rQhz1xomCsC/FeXq/Itx47Ft5+W4w5cSJkMoI1P3pUjH3rrXDqv+Rw5AyfDn1adPU+pfwUUkYKRVLoiHUUI7q6Yl3Ul9RT469BRmblzpUjYrUcxyGcCuPRPXg0TzG26/759zOYGmTD3g2saVyDT/ORMlNs2LuBtU1r6Yh2sPg/FrNk6hLuvPBOzvjlGbRfe5RqX3XRFXzmXXcRO36cj556itO/9z2CEyeS6OgQ7t+rV6N4PKS6u0Vs1jXXkOrrw11eTmZoCH99PbZh4K+rw0ilAEj39xfdxx/+3e/487Zt7HrxRfo7OvjiFVewe/t2qiZM4CsXXcQFX/wi31mwgD0rVtBw6aXMuPNONJedj3oCxzaRZBUcU8ih8zuCaTg4Rg7Vo2MZkA7F8VQEkBUbWdEAA8sSAFyWLJAUbNNGkmUkKX/HSVLEsWwDjo2RAUW1UXRVSLAdRZiaFdyw7byBVmGa/DI5bzRoFZy7lbxztyMAZ6Hv2cybkymSGN+287F5krjro6pifUn+520dCSQbnDTpdApTrxamW04GSXVh2TKObaMoIobPNB0UWUImhy0JRldXbXAscqaEpimYloiUsiyHZNIAoKRERzUjZGwfsipuFNhGErdqguImZ+kokoGNjmk5uFxS/qMOx0bB/3r65Ee58Ghb2JYl5OSSBNmMmOcWzt2SLI9slf+HsS1LqD9kWcZxHF57rYMvfnEbX/nK6Ty2daH4mSUH23YwTQdVlUFykCVx08S0HGzTQddlbPLzHUilDBRVQtcVNv90My/t2MHzzdsJBvy8+/67rF/7I/r7+zn99NPp7e1j0WWLWHn9SkDCzkdZHjkS4pRTKlAcG8cxkCSRm+A4FpKk4jgmyWQWw7ApKysjm00hSTa67sZxTCRJwbIcbDuHprkBh1xOhB3qejC/jhjHskT8GFioqitvYpZC1z24XF5cLtf/8pw5WqM1WqNVqNGe69H6H12KruDYzoheaMdyaN3WSjaWZe+GvaJXeuM/L9+7YW/R3Ky4/aYWZFXs1tlYlv2b9xe3y0QyxXW8Y7y0bGxB0RVkRUZWZRrXNJJN5XCrOk/mXb2fOvg8iWwKv8tHIpsqMsGJbGrE9BMHn2NqzeQRDttPHHyOaDZR7IVeOutLKJJclHVfNeMLvH7i/eJr7Dr8Os+8uZ0zaybjUoVE/MmT3MVN2+L+v/0G27GLr5HMpUf0YGuywhMHxDYPvPZbqvxl3H7xVYwNjCnGc538GQru5U8ceA5Zkka8d7/Ly5MHn8e0reJnuGbWl4hnU9iOlQfW59Pd/QYffPDb/EVODscxiUTaaG5eTjYbFdnbuXhR0t3SsoF0eoidO1cSDrfR3LwMyzJ5+eWbCAbrSKUGqa09n927byEYrGPhwoeJxbr46KM/UVY2CVV14/GU4zg2bncZsVgXixc/hmmkkNp7hGTy5F5NnBH9z5h586LKMsFU/2fbmNZ/Mg4j+0pBXOT/49gDYQEoTt427/kk2TaS4yBZOXy2ierYyLaJbhnU2CaqZaBZWTyOTW02SrlloNo2MsNRXVKeDcdxkB3EePk/ORuj1MygO45Yz7aQsrH8NuJ1JdvCrZvccrPFwYMCEC9ZAjNmCFa5slKA323bxHQkMsw09/QImfjGjcPLbXt4euNGsX3BUbyxUQDylhZhjmbbMGmSw513inn79+o4MMLVG8CredEUrTh/U8smxnjHsGHvBlyKi4NdB7lp9k0smbqEW+feyjPvPcOK7Sso95WzatcqPg19ysaWjWxr3UYsGyvKwDe2bKTSV1mcLkjIl0xdwtqmtZS6S1kydQlVnjG8eddd9L/xBtNWrsRxnCKL/dFTT+FYVtEx3Mhr4Fsff5z2l16i9fHHcZWV8dHTT1Nx1ll4q6qwTZPUwABGPI4RjxfHWrdsGX9+7jm2b9+OBjQ/8AD9Q0PM/vznOeO889h7/DhbHn2Ue3/zm6JruKzYSIeWISWOIBkx5Gy/eP7mSiQjhuRYSBKomo3utpAlUI1jBDtuRDXaUKQcJD9FOrQMNXMMWXKQrBSSY4l4JSuOFP8E6dA1YlzbRE58ghxqQXeOo767Ail5DMmRkCxb9P/GI4JtjUeEfNnICvZ0oEfkN/d2CpY11AO//rmQMTuO2CGOfCjW+/TvEBkAMyueF9y1MylxPCVjYl40LF6jt1NIofu7RX/xUD/EoqQIklOrMU2H229/BcNxYZgiY/n1A10Yps2RI2FuueVlHMCwBUBes+YVsoZEMqPQsq+bI0djZDIWsViOTz8d4pZbdufjqxxCSS/XXf8ysViOI0fCXLPiL3x8zCEUldjb0oHp6OQMwZA6jk0uJ9pFTiYzbFvMt227yKzats1LL71EOBymvb2doXCYRDJJxrLJOmDlvSJMRSWjaESiMbq68y7g+bHtk/0k8q/pOA7RaBSARCJBY1MtPYM/YOtTC5FUsLERZpQSqiYJ7wQzh2lbdEYGuPuVx+lLD5I0Mtz18uMkc2mSRhpbNdB1hXvvvZc///lP/PH5P+MPeLGxcca4eeTXT/H6oYM88fRT9PT0cOppU4rvM2PmwHGYNLkMBZtw+Ajt7S2YZjb/OUxs26Cz8wCG0UMg4AEM0ukOcrkhwuEjvPzyLYCDLNtomo4w0rTQdT+67se2DVKpELadwzSz2HYKXVfYtes6TDOOaLCJ5R9Hfm+jNVqjNVr/1RptLBmt/9ZS1Ry2ptC4phGApjVNSIrE1CVTcZW4aFrbRLQj+p8ub1rXhLvUTbgtTOPt+eXrmtD9OsjgKnExZ7WwRW5aK9YtxM1EO6M0rWtC0RVyiRyKS8FX5cPRxEXF1TMvB0R/s9/lJZFN4nd5+e75lwEQcHlxoDh99czL0WSFKn85S/PbLp15OW2DXZxWNZ5185aiySq2Y1PuDRaZ77/3HC2+hgDgl6PKCqZtgsOIsY4MdvDdGZehSPKI97F0Vn6dPHgvTF814wu4VL14QVflKyNpZP7zbWcOA//C6yWyaZbOvJyjgx1MqRz+DJ2RPt6L9DChpJ6urjcIBut4772nOf30L5NM9rF//8+YN28LCxf+Mu8ALuFyBZkzZ7X4LZrWEo120Ni4hlisk6amdSiKzqJFjxbzrgcHP2bOnFvo6jpETc10fL4q3nvvacaPvwDbNjHNDH/963rmz7+XkpJ6kskBPK5S1Ppq5JwxDH4b8rE69TXD02qeUSsYLBWciE/eRlUE2z1iHGc4LqhQBfOzk7erLANFwWkYK1jlhrF5MzVbOA7LGijCaR4HkPNg2cqJZZIilunBkUy1g+gPBTCSSIoLEt1QMkEgdysH+R58rCwkuqBkIugByMVAyfdiSjISEqed5mBaot/6zjvFvYS1ax06OiRuv128zLp1UFrqsGSJVHze1iaxZk1huYOmDU8XpN/79olliiIRjztMmCBRVuaQscUFu2F42LdPoqkJZNvF2qa1YrymdSRzSVa/spqHFjxUnL+maQ2d0U7WNq1DljUaShpoj7bz6KJHyZgZDnUdYl3TOjRZL7LRaxrFmypxlRSfr2lcgyqrxelb596KW3Xz2OLHUCQFkHls8WNYlsTpV11F6+OPU3X++ciKwtRlywA4c/lypJOmtUAAZJmp11wDwNRly0j19nLm8uWobjfx9nY+euopzr3tNvEl2Tanf+97/O6tt9g3OMhvN2+mrLwcK5vl6rvvZs6kSZy5fDmemhqWLlvG2dOnc8PKlUiArKmoTgTOvRfCH4DsAlcFvLlO9BOne0Sv8NQ1SKlOcNdA4FSkvKGXBDDjMbHs9JtA8SAlj+WdtPPmXZIy3G8McP4vxfTpNyMVepMBzntaGGW53ELKjCNiporu27KwiG99G2ZfDFXjhvuIAb71feGgXTpGAGN/iegv/toKCJaL56dMFb3Ju/4gZNW6S2RB25aYVxjrG9cBSdKeUqLRHLFYlqoqHxs3fh7bdujrSxAIuDj//HFYlsPGjS3cd98lHDsWLuY533PPPI4dC7NhQws33TSbrq4YEyeWkstZ9PYmaGysz8uSTdxulR/+cDbxeJZNm1p44YXDfPe7ZzNxopBLx+NZMhmDceN8wnhTHz4PF1jldDqNYRiUlZWRy+XIZrMEAgEuvfRSkskkXq+XlpYWFixYUNw2lUqh6zqSJKFpGtFolLFjxxIKhUgkEtTX12OaZjHHORgMkkwmcblclJaWYlkWLo+brvggA8khpteedvIZBstxiKRi+F1eNFkla+boS4TYdfh1VFnhpou+yZrPfw9VVnAcB0WSefCBB/nzs3+keecOysvKMSwDTdGolgKMK62kJzLIDT+5BY/Xw2c/9zmGUlECLh8uVcfGIWPkUFUJTfMxfvwF+fQIk+7uNxk79jPU189m+/brWLjwIXK5OPv2bWbhwodJJHqZP/9eTDNLV9dBgsF6Skoa2L59OXPm3EpZ2UQkSUbTPOzceQOzZt2I3y/+D7S2buPSS39BLNbB/v2bmTNnNS5XkNEardEarf8TNSoLH63/vrJzYIVA9mHkXFg5B0WTRd+w5QgG2rGF0lCVsU0bRXOwLRvHVlA0Cdsmv66EYwmXW9uw83FcEkJlK0xaRDyXU1xH1SWQDKx0P7KrEtvWhPxRA1t2huVvkI/SEpI6GwcZGUWSsBx7xHrCFdzGzl94WHnpGw6oeWmvKQl2QVaUvIGMjIyE6VjFcQpmPbIkY9oWpgGy6qDKCrmcjWlauDwKsiSBLbaVHIlU0iIY0DEcM98PbiMjgyNhGWA5FppLyInjUYMP3u9n9txaLANUVUZWRSyXIqlksjkiQ1kqqjyoikwmbaG7ZRRZwXYsNMBxTGRZLUZpOY6V/75Pnpfvg6TwWyjYdmE7IdmzLANV1YlGwwSDZcTjEXI5k0DAh6rqWJaJoshFYzPRb23lJegAOSRJRZYUFEn9B/n0P5SUl5MiIzy5C5ywLKS1JEAKMCzClkCyAAMcHdHpLKSFkAR8J43xn72yLfb1PHD+p1UsQ7wfxZUHz3lJ7Ii8MJsi/V0A2bET4B8r+j0dKy/hlfKW3THQfHmJriFckQsy0WwcFB1HcZNMy0Jxa+W92mQH0wBNlbDy+MhyTCxTRldlZEW0lyuKAObC6FkSMeB5st/KJy2pmkMsbRDwqKSzNl63RNrOEslkqPaUYBsKsgyKBjnVwLGyaLKGY5vY2CiyLp7nc+BNx8JR3fQrOmVmDtXKIEkyKhKWbTKgumhS3bxn5rCsLG5Zpd82qZY1lPw4hWPNccTncmQFJBXZNkiqLtYoOj8xcwTMLB5bzfet6mQMF241C1YOR1axHBXLhKGBHBVVKpoibno4loWiayRiFt6AnjeQN8CykBQVGxlsi+6eLiZNmcLEiRPx+/z5G1A6e//6N2zLpn/IRWWFzfJrv8f06dO5YcW1KKqF4qREn7CE2OckKf/byyJa6p0fQvd2uOSQcLPOhsBdLfbrzOBwD7JjizgpTxUcWiEAc8MS4XLtqYF4Wx6krxXGXYlj4KsX4L11g+hN9pwiWGXHyZtonbTPxiMis1nRhFt1Liv6gssqBWhe+HUxf/yUvCeCku8Xdguna0mCUB8Z0+LrX/oiHx47gScQpGrKv/DIgw9ySn0tTjjEj2+4lt9+2IbL5WJMVTUvNL/MJ5+E6O1NUFsb5Gc/28/mzfOQJCEHDgZdWJbNiRNRxo8vZWAgSWmpm0OHumhoKKG9Pcrixf/BkiVT2bp1MamUQTSaJRh04fNpJBI5ensTbN68nzVrGhk/voTjx6N0dcU499yxdHfH2bx5P2vXNjJpUhmaJs71kiRhGAaqqmKaZrHX17ZtVFUlFArhcrkwDIOWlhYaGxsJBAIkEglUVcXv92OaJl1dXfj9foLBYNH8S7Dj4v9FYXlHRwfl5eXU1NSQzWbx+XzF13NUiXe6DnNaZf4moSShSBJu1YWEiF984uBzLJ15OXWl1diOzbtdhzmtagLAiLaij44c5sJzZlM/voFAwI8iK/n4ydf4yV13s+13vwdg8pRT+Om9W/jz8RZuaPp60YgTR/z/04rnuMINCBtJUti58wZmz74Rr7cSWVZQFBeSJBMOH2f+/HkYhpB9B4NB7rnnx8yefSHNzfezefOLhMMxSkqCPPbYQ9j2+5w48VcuvPBOAoFxNDcvY/HirTQ3L6O1dRtTpy5h8eLHcbtHAfZojdZo/X/XqCx8tP4HlwGyMIXS9Bxuv4HmSuNyp3H7MujuFLoni9vdje7O4fZn0JROXD11uBPfQXOZuNSPcSe+g64P4fJE0NQhXD4D3ZND18O4vAZuX1ZMqydwe8Po1qu4Xa2oeg5V6sfliaO5HFzqx7i0JFpHG+5MFm84jOt4Gx7DxGtauLJZPLaDzwZX+3G0oRCuE8fwRiJ4HAmPI+EaCuE6cRxvzsCdzeFzJNwOeBzQJBnNAf3FP+LavB79hWfxIeOxbPRsBvf253APDuK2bDyWjccBlwNaPI2CgpNTsHISubTN73/7EdcufYn2tgRmDlRHwzFlAj4d04BU1CYayrHi6pf46O9DRMM50broyDiGjJWRCfrczDy/HsVRUSSFo59GuOpbzXz0foRE1OD71+2m+YWj9HaksXMyuqJhZ2UwIRmJ097eBeg4joJhyGSzFqBjGBLZrIUkuXEcBcdRePHFXWQyNpFIihde2EkolMC2FUSys4osi3W93lJM08GyFBKJDJrmo6Ojhwcf/CU7d746Yl3DkNi1aze2Dboqo8sGqpxDcgZBSoOUFI/EQUqA8X5+OgVEwekXPZrEIf0qOAMgZ8U8KQNSNj9OFlKvi11WyuT/kkBG9L1K2fxfRqzvDOTHAmJtkAkJ4CyfZJLjINi3bEwAX8WVx+Z5gGJlINomGGjy8yVJAGMrI4B06SSRxSvJ4n3IingeOSaAtW1C5Gj+RoIEZkZMKzpYwhnf0XKYSpasnCRqxzGkLLIrh6Vk2dd3hOOJPlBNcmoKR8tiKzkycgJbzaG4DRJOGkvNgpZDdudwlBxZJU1L36ccjvSCngPFRPNYHIkOsnLnTpKGwWudbZxI9+HoOSzVQlM0VFcAR3NjuPw4riBobmyXH9xBorqPrCuIouhUAR5Vx3AFsXQ/Cd2H7C4hqbq5ALBUHVwBMpoH2xUgqblJuPzY7iCf6n7itsLXvnYl0886n8bz5/KlhZfR1tGHR9HJXnUVnz/nPGZOb6Km7gL+vOMQH33i4rrrIBR1kbYDZC0PK2/Q+OSoRvPLPv7W4iJjefnLXi+RdIBUzo3m8zEU1Wj9WONbV3n58GiAZM7DUNTFiW4vY2pOJRJxOHCgjZd2vc+///o9Jk56g/c+9PKXFj++gMYTT7vImb9h8Rdu4cOjfmRVAdUvnKkHWiB5TLhaD7SIfULWYfoWAaytFLx5vQDijgUD+wSozg7AwN58f7Yscp2nrhXA+oxbQS8TbHjgFPjMA+BtEPtncIrYn1wVAoC7xoj9N50ShlxGTsiz//3neRY6KO6ySBIES4WUOzwoGO5v/0BkLgdKINwvthnogUAZJKJwtFXc1KgcCyXlLFtzB4c/+oj3/t7KFxcvZunKlfDsk/z8Z5t539b4+3vv8sHbb/Mf92/BsW02b95fjJqaMaOWnp44q1btorc3AYCiyHngK5FKmVx//U4qK320t0eZObOWJUum8qMfNaGqEh6PhqJI9PXFkWWJeDzH5s372batlY0bW5AkicmTy5gzp55oNFtc1tOTwDTzN1NNk6GhIXp7ewHQdWF62NnZSSIh3tP+/ftxu920tLTQ2tpKS0sLiqJQVlaG3+/Hsiy6urrw+XwkEgkURTDHkUiEzs5O4vE4O3fuLC6fNGkSDQ0NOI6D2+0u9lurqopkw5k1k/FoLry6G7/uwa26yFkGKSM73Cp08DmyZo67Xn6cqkA5Pt2NLEl4NBfTa6eQzKZo7jjIWVu+xtd/8UPeeOtNXt33N7a/uovjQz1YM6vYsf9VDrz7BrNu+CKTJ0zkls9+G5eice+ef6cvFkKRFQzLRHhuxMlmY4RCn+bl4RkWLPg5JSUN6HoQWdbo7DxALpcgGBzHvfeu4u67Z7B793/w7W8v4vrrV9PcvJyf//wVrrzyS2za9BmWLfsa11xzHdOmfT1vmFmGori47LInkCSFxsbbmTp1CY2Na5BPPj+P1miN1mj9b9Qocz1a/31lJcWFIhZILorsHDagQO8PoWI5KONA8kDfcqhYC2qNWE9yQ+9NUL4C9FPFdqkDoNWAUgWZ98EzMz9+gd1zBNOSfgO8c/KvpQIm9K7CGbMJKAXLwkmnIJPBfn0PctPF4iLRyIGsICkKTkqE+doH/oY86wJwe7D37EKed1k+SkZGUgVjaHecQKoei6S7cCIh7L2vIjd+Dqm0XNyrHwrhdByDsgqkYClOPIZc1wCyQsaCTz4Ns3FjC6tXz2Hs2ECRqZBliUBA5+hRsXzNmkaqqnysWrWL1avnsG9fB/v2dfDkk5cV17n99kb8fg2fTycazVJS4iIQ0Ln66hfZtq2VJUum8uiji5AkMAybQ4e6OPfcsTgOxGJZ6ut9dHd3Ul1dXZQ8nmyYk8vlkCSpyKwARCIRvF4v/f391NXV/ZN5T0dHB4FAgFgsRk1NDZqmYRgGu3fvZs6cOcTjcWpra4sM0CuvvMKcOXMoKSnBtm28bhvJToDVA0YfeOfm9y05D1jzzLJxHIyO/G8P2Cmxn3hnABo4OXCyYKdBKR/ed3DATop1tRoIbRT7ojYRnLTYVkKYKqUPgmcGSP78jv4PVPVJTuICKMsCGBX3f0nIuIcOQ/VnhJQ80QXB8cPMt21BrB2CDWKelRV/ekCAaccSYFrzDQNzx4Z0CHJxnJKJWEikTYuBRIIyrxddljEdJ6/IEI/xXA6PqmI7IqVdkUS+vGHbRNJpfHmgENB1bMchaRjcsns3P5g5k1K3m3KPB8sWjPHKHTt44fBhnvva15hTX4+dN2ySNQ0jPy6IeLJKxC2QW4DViGxwO//Xj8gJTwPdCOf1tcBkhnUIhfUuAJ4AZolfiG4gkcnQ/pe/MGnBAjZJEuMfeoiWZ5/lpT172B2J8Hm1lGVXw7Zt71BScjGXXDLIhRfKXH65yOyurhbsfTQqntt5Dy5JEv3oP/kJ3H47jBsHP/whzJ4NX/6ycGCPxQS7L8tw8KCQ5E+YAF1dwmX90CHhwK6qItLs1ltFPNoH7+eY97ksUuKYcMKumCFinjxV4re2s5DuFzFSjg0D+2HMDHHTxc7mbwLJkBkAIwIf/Uw4ZKd7YMxcsTNKsnDOdlWBmSAT7+PrS2/jw48/wePxUlVZwSMPbuaUiTVcNO8yTnTHKAkEQJL4zle+xI21Pph8Osz8rNi32z4S2c6aLqTcsgzHDsOk08mfvASjbeSg+4TYNhEFX3DYsEySBKhPJsDr58133+Or3/wWx999i7qp0/jLC88xZeq0/HlZJifrfHwkSkdHlIaGIA0NpZimzfHjER566BAbN16Mx6OhqhKGYbNixXa2bWvlyiun8ctfLiwCYlmWSacN3n23l/PPH4dtg8ulkEoZdHfHuf/+A2zZMg+vV8u3PuSEv5rjEI/nqK8PcORImClTSkkmE0iShNvtJpPJFFlkEEZjBaAsMqStoqS7EB1lGAbZbBZN0zBNE5/PVzQmi8fjxfmF8d1u9whm3DRN/vrXvzJv3jxxjMkSqUyaJV9bwtvvv8vY8iqqqqpYsW4Vl876HLv/9irf/8EPKNV9JNMpcqcFueb6Fdx28VXY+fSItJHFo7noiQ0WWe6xJZUMJsIAPLL/2RGmnWkjiyLLPHnwea6e+UUs2yacjjGlcjyJbIqxPj+JRD+BQE2etZYwzVwe8EqYZordu1czZ84tlJQ0kEz2oesBJEmmt/dd9uw5zoMP/pwtW77JkiWbeOKJBXz88bOcccYVrFz5F/76191MnjwZVdVRVRF9Zpo50ukQmUwEt7sMr7c8b645WqM1WqP1/16jzPVo/Q8uB8wTkH4TIbGVBKOSOgBOBmruFQBFyst3y1eDVg/o0LdaAKWa+0CfjADW+wXwMXpB9ggAJUlifDsBZqcAXJIC3kawY2D28P0ffJ8Jk89Cqnuad98/JjJbFYWcqnHD+js5fcX3Oev8mXz7e1eDpiNpmhjX6wOPB7npYgG0dRdy48VIui4uDBMxrB1/xslmkGvrQddxQgM40QjKoq+Az4+1488QDeMkYkiTpiDXNoCmIdePF0yk45AzRI/gtm2tbN68n1gsg6rK+P06qioXewi3bWvl4YcP4ffrPPbYYurrS7j00knceutcLMthy5b9zJ1bj9utUl3tp6dHxKh0d8dxHFizppElS6Zyxx1N6LoAo5FIhupqH16vVlzfNKGhoQFFUZBlmXA4zI4dO4qGOaqqoigKpmmSy+XI5XKUlpai6zq1tbXYtk0qlSpe+GWzWaqqqohGozQ0NADCdMdxHGbPno3f76ehoaEYuZJIJKitrSUejxOLxdi5cyeOY4MdBaMH3NPAjot9yuyA3mVgtIldTqsXN1yMNki1iNgd9zSxzxltYA2B7AW1SoDmvpvFvuOY4maOd6YA1vFtENoglkkukDQEwJbEviUxDGjtnNjX/9HWG0B1CyZZQoAIKwfRo4LJLj9NAJBEJ+h5oG7l2WfbyANrOe+eLIEepAiSFF0AbdsQDLiZhVwC3OVQMgnJcehNxGkLhyn3ejFsuwiorZOchj2ahibLyLJMJJMpvv1wOk3aMHCAt3t6OBoOs7e9HU2WuXHWLAZTKVKmyXU7dtCbTOJWFNY0NvLsFVdwVnU1n4ZCtLS3YzsOtiSRliR6Ef+QChnfNiKSrAbIAi1AJ1AGdOTfRy9wU346ld++DViWn34PkfN9HXA8P9a/uN18buFCuiSJF4B3Zs3ixPHjJIFTS0uxdOGC/vnPR5EkeOgh+M53RBTZHXeIyDK3G6qqhPP5smXCLd2yhEP66tXg8Yi/Rx6Bpibhtn70KAQCYn4oBGefLZ4fOyZyv+fOhS1bBPiWJBFvlic7ufiiHJKZFEx02TmQGwJX+TCLne4Tsm3HEkB6zOz8voFQN6Q64dBywWhrpaLfOtUDY+aI40TOu3D3viIAd/htMOIs+85XOPz3t3nvrYN8cdElLF1+HbyzGmQX9/9sE+++eYB33zjEjTffAt+4FqbPFjnNv/45BMuGWezfPyYAcO3EPMP9oGCrVQ26jgkQrqjCiv7ohxDqFWOE+qDtYwHCFZUHf/kIX1y8mFgsQd/AIM/v2MnMCy9k5oUX8fsbl6EPdHLqpBIuuGA8DQ2lSBKEw2nGjy/hF79YgMejFk3KUymD1avnsGTJVLZsmcfx41GuvXYH7e0xXn+9A7db5bzzxnHwYBd9fQkURUJRZE49tZxHHlmEz6flATUEgzrBoM7gYIq7736NWCxHdbUPx5Hw+XxFSbeu60QiEZqbm4lEIti2TXt7O9FolB07dpBKpVi0aBElJSXFYy0ej7Nnz5484DRpbm4mm80SiUR47bXXkGUZr9dLd3c3uq4XY6TC4TAdHR3Issy8efPEacdxMB0L07a49IrLOPrpEQ69+QbzF17KQ+t/hu3YrL9lLfdv3MKbb73FvpZ9GIe6+MLYmaRyaQaTEcGGay4RTenA+kuWMa6kEkWS8bu8VHhLuP3iq3jkK7fzo3lLqQ6U01BWQygZZc/RN3ny4POMK6nk7HFTGEiEeWT/s0iSQiAwllwuQSLRkzd5M0gm+wEHXQ8wf/796Lof08wAEprmZcWKG/nsZ6/hzjt/zFVXNSBJ4xk7diwXXrguz0jfRn19PZ2d3Wiauwisxf8pHY+ngmCwbhRYj9Zojdb/0RoF16P131iWAM/us8DsHZYquqdB3yoBdnJHwOwTwEYdJ547KSj/Pkg+hhGLAt5ZYjxvI0UG0LEEyJb9oI0X072rBLCW/ZA7ylcvn0vLnh2MbxibN5gSrMltt96G5Dh8tK+F9984xJZ77gHTxAkN4iQTSJKM5A8ilVYgj5+MpLugrEIw27oLJ5FAqhsPiTjW9j9CZAgnEcP+jydxkgnsXS/gfPCWYLFrxyMFS8XFpu7CMXI4oX6s5j+gqlIR+N5661xqavzFPNLu7gS5nMW6dU00N3+DLVsuwbJs+voSWJZNbW2QyZPLUFWZLVvmMXduPevX76GtLUJPT6II2G3bobMzxg9/OIvKSj9HjoRZvryZVMqgoaEUgN7eBC+/fBRZlohEImQyGRRFIRAIMH78+CJbEo1G2b59O7FYDGBEJAwIVsjj8dDZ2Ylt22iahsvlKgLreDxeZMTLy8txHIdQKMT27dvx+/1F2WNdXR179+6ltbWV4yd6cOSSPGOsg+QVj6ENeSC8UexvjinAh1orAHTvCrB6BeBWa0H2CaCNJUB2zS/EozUkgLo5CBVrILAEKtaBHEAoHyxGoueTTq2ylt8X8z2FDoJljh4VoBcEqHacYfZZksAVFOv66wRDWZB9pyNifdsUwNk28sx3/nULfdmSBIpbMN5WLj+uDLkYjm0wxuvFnzdH8qoqsiSRMU36k0mypolh24SSSWK5HH2JBBUeDw7Qn0xS5nZTHQgQy2So9PnojMWo9PlYuXMnqiwzt6GBjXv3sq21lQ1795K1LDpjMWbX1xPNZulJJKj0+VjW3AwIRvkIAkRvAGYggPMH+ceD+Xnu/LfsBvxAHSL7uxaI5H+FQkb4RkTTwSbgBQQAlxDge3l+22cB/cEHWfDFL+IHKoAL77iNL14+mTff/DLPPPNHXC7xW/b1wQUXwMlpPQVX9U2bxM+XywmA/ZOfCNBsmsJR/YUXBDvtOIL9/slPxHjV1cO535s3C/CdSok/24YzzhCu6zlLx5Hdoh86OwDv3wGp44KhdleK3zl5QgDoxFGR53xoBaSOiSzmvKEZrRtBL4WP7oWy6ZA8LtaLHxWsdf1XwDMWys7FXXEaCy+egfTGcrDSzDr3NI63fSzGSZ4QN40GWoRzdywsvt1Metho7KVtMPFfBGi+5MuQTgsDtMLyHb+D6JCQipeUCTVGRRXUTYQdvx9eJ290tvGnP+XIwX1sWnUdpmVgmibpSJiDe/fy+8d+yY1/fpn3nnoI24Fjx0SW8vHjUaqqfBw82EVbW5h9+zo4cmQIgHXr/gLAL3+5EL9fp6srVjQymzatikzGJBRKc/bZ1fT2JrAsB49HRVHEcX74cB9Tp17AmWeewaxZ5/OFLywkmezlwQcvZeHCz3LGGWdx7rmf4bzzzqOmpoZwOIwkSezfv78o/S4w2clkksWLFxdBtWEYRXVSMpnk8OHD5HI59u7dy+HDh5EkCUVR+PznP08ymWTnzp1FxU8ymSQSiaBpGj6fj66urrzXhUwymUSWJPxeH8uvvFoYXuLQOGcO7SdOCG8RRSESifB250cMRkK4dBclpaXDXtqSRM40MG2L6mAFaSPDBz2fYjs2Hk3Iy7f89RmqfOUosoJl2wylolT7Kvjjd7awbt5SdEVDliTqS6u5/eKrMB0HcIjHu9mzZz3RaHseCIvvIBxuY+fO6zGMNLrux+sdA8CPf3wVb721ne9//1959NGXee+9f8t/Z/0sXryV8vJTkSQZWVb/CTybZg7LMhAO48PzstkY2WwS08wxWqM1WqP1X6lRWfho/feVnTfDMY4KEFSxBoxOwT6n9kF6H9Q8CnZGAGHjEwhthorVoE3JDyIhLqkVwTQ6JlgDgsHUxubHXQ1KDQJ4uAXjrVYJdlP2Q+YD8MxgwsQG/vzHv3J2Qy2J3h7qLvgc7Uc+pSRYQtEMqpCxCmCZOKYJLhdSIY+VPC0igZPLCUn4S8/hHP478hXfQW6YiJNMIvl8ecmj2M5BgmwayeUpyiGdRAzriQdIL19L1nDQdaWYubpsWfMICbemybS1Rdi8eR+bN89DlsHn07Fth/7+JOXlHjRN5pprmkfIILu7E5SUuAgGXRw9GmbDhr089thi1q59hbvvvhhZFvEstu2QShl5xlwhlRJutiDAsm3b7Ny5k0svvZQdO3bQ2trK1KlTufDCCwkEAkXWpbu7u3gRaNs2sViMWCxGMBgcYeQj59lSx3FIJBLs2bOnOOaCBQuKQD4cDtPS0kJTUxMVFUEUSRhLScYRMLpAqxuWcCuV0H8LVP1UAGbHAKMdtAaxb6QPgnu6+A2tXpCCeQbbFu0EBcGxg5COywV5pw1mSMjIJYlim4Hky+fvWsMAuygJz5uqObZYZmXFtrKed/ruFKBaySO5k+fJeV1x5CikB8EzBkon503w8q9ROK0XnhdcxmPHwT8OLAPHFaQ3mSaWzVLl8yFLElnLwrJtotksJS4XAV0nbZoc6uqiLhjEq2kkDYNNLS2sa2piQmkpiVwOn6axr6ODCq+XgWSSxoYGjkUibGppYW1TE/XBIO2xGGN9PkzHQZNlDnV1Uenzcdq4cfRLEpX5t3scAYrXI1jpgkz8XmANwj6uWnzrLEMA6SXAw/nt2hDAeg1wCvAxAqDXnTRuYZvTNm5k14sv8sKrr+L1eokAAUDJwd9efoU77ridF17YhyzrBINCDm4YIsvbtgVQVlXBNgMcOADnnSfY7fvvh3vvFVLxgQGoqxNRZatXCzf1fftg61YBpKNRKCkR0vFCDvjq1UJabtsQDIJXT6A4GXhz5bAB2b/8ED6+D2ZshUPLhud/5gHofAHqviD6tONH4cNNcOY6SLbD3xbDoo/gg/VimwubwVsnwPfUteCbKPaZTC/0vgyBU/nWzU9THlB48FsWF912lN7+MJrm4owpU9h05x1MOu10YXBWcPde9A0BmsMh0VKjucTOONQvwPPCr4vjw+0VzPSO38H8K6CyBoYGho3PwoP8bNuf+d2fn+OVc8dR2ngxfOGbBMZP4r3ntjFp2nTY8TuueH4v8+dfwpKrri2e5wrGZJZl88Yb3ZSWurnvvgM88MB8APr64tTWlhTPrbmcRTZr4ffrfPJJiM2b97N69RxOO60C07TzrS/iHLx06Z/44x+3c8UVl/PjH1/EM888zl/+sp0//WknXq9GW1uY++8/wKJFWe666y5+8pOf0NjYiM/nY9euXcXnuVwOXdeJx+Ps37+fxsZGysrKCIVCxWlN0/B6vZimSX9/P36/n71799LU1ITf7+fw4cOMGzeueA4tAOv29nZ8Ph/pdJr6euF2bsuQzKVxqzpy3nRz+dXX4PV72fSzzbz+xgG+/f+w997RcZV3/v/rlulNXbJVXERMEcaQBBcVnECM40IqmJbNpoBxKAmE0Gw2sBtsgk0L4AAOZNlk2SSGJARkG1MSB8uyTYsDcYjBclHvmt7vvb8/PndG9u7vd/a7f2XP76vnHJ+RZu48Y808urrv590u+wpep5vw2AT3PPBDvvrVr2JZFul8hlJPEBSF/sgIT+9/gW8u+AL1JVV0h4f46f7f8Y0Fn2d6oAJd0zAti/cHDlPuDVHhL2E0EeapfSIjrwmU0xsZ5pm3XuLqBV+kPliCYaTRNCeKogMWhpHFMLIMDh5g69YvceONxwG1mA5eWjqTXC6NrrsoKani4MG3OOecVgYGjuNwuDDNPDNnzqGjo4NTTjmleOmRy6XI59Pkcklee+02WlpupazsY4yPHyYS6aa2dj6q6sDh8KLrU4z21JgaU+PkMSULnxr/e4dlAdmT2UW9QgC0b4kwgzhF4o0l98e2ym3RgQmyjA1hK1WbsfTOP2HejcJUm2G5enfOBjVoM5UB8J4nz1FLwDKxYlGOJNKUlZZy78aNnHvuJznv/PN5/dVXsRJxrGxaWOXtvxHWJpvF2PZrrLAwIlYihjUxBrqO4nCirbwY7cY7UYIhzO6jkMtgvPyiyM8VBQsFxTTA4Syy1dbEKDidaFfdiKZr9PfHWL26ncOHJ1BVhXXr2li1qonbb28llcqRz5u4XBqPProMn8+B1+skHs9y3XXbSSZzuFwamYzB2rVtJ8kg77prF8PDCQYH48yaVcJTT12EolBM2M3nTfJ5k2Qyh9/vxOFQMQzw+/1EIhF6enrI5/OoqkpdXR2pVIq2tjaamppoaWnB7XaLpDgcZufOndTW1hYZFMuyiheB/znIpyAXz2azuFwumpubaWpqoq2tjXQ6XZSbe71eli5ditfrpfv4cQwjb6+VH9mbKNOgZgs4ZopnumqDLJnBGyA/AGpIboeuA71S5N1mVHzbWrnMpWiTwNXK2R5pj7327NRxvfqEDZiUSM4tS1hl5YSkbtOcBL4gCc8AumtSHh7vFdAc75X5C8DbP93ekMlJEJq/ToB1oG7y/2dkJNCsIEM3bbZcsTd+UqNS3+UMgAVehwNNUeiNRBhJJPDqOiPJJHft2oUFxLJZxlMpFtXVMSMUosrnY7rfz23NzVR6vcSzWQ4MDpI1TVobGphTXk5rQwO6ojC7pISnL7qIukCAdD5PfzSKS5ckd6+us3jGDE4tL0cHKu1NXh2YDUxHwPEIsAAB1gU2uhyI2/9uRUDynYAXkYI3AlsQQJ6wv2+xn/vKCc+pvf9+fvGb33D/jh2oXi95BHynAMWAhQs/w8hIjD/+8X08HpF+r1kzKdUGYZoVBUZHRRa+YMEkKH70UWG5y8qk77vQBb5xIyxZIjVnug7DwyILHxmRuQps+MaN0jHu9YKmZFHJwdh+kXQ3rIKmtZAZFTCsaPJ94X7dDxUL4Z0bIfoR+GYKAPfPhtKPwxcHwFsLC56Wryvb4INN0PeieLoxRSkRPwoVrWz4yR85fOQo997yZTjtu/z8oev52/sHeO/tt2lbtIiVl14hb4DbK5Vbl64ROXguB+FROU8WNiYnRmHJl+TW6REArjukduu130pndeU0CT4rr+LBl17hF9te5tVf/LsA6xWXg8fH5QvO4eVDR2H7LxnveI039+9jzjnnkkhMyr3vvLNNQGHaoLm5ntHRJGvXtop7w+tg+vQQAwMxOjt7pKXihN/NQjjZxo2dWBYcPx5h9ep2PvpoDE1T+P73L2DVqi+ybl0bv//9UQ4c0Bkc7MXrdaDrKqeeWs7mzct55plnWLhwYfH85nA4WLlyJX6/H13X8fl8ZDIZ4vE4ixYtwuGQhoUTGW632822bdtIJBLU1tYWFTu7d+9GVVXOOOOMk86hPp9UgM2YMYNgMFgE1qIisoo1WhYW69ffw0cffcSGH/4Ql+7k9rvvJLTkVP7h8dvY9+6b/PNdd7P3nTfxOz2kchl+8OpT5I08T9vBZ0/vf4Gskeen+3/HzkN7+en+36GqKoZpEk5FObOmkZpgBU7NwVP7JsPSTCyeeesldh7ay0/2/xZF0YjFBmhvv4ZsNsbExBG2b7+WRGKY+vpm1qx5326fMHG5ZhKPK5imgWnmuOuuz1FWVkJlZQX19W6eeuoxFEWhvf0V6urqTgLW+XyW8fGP2LZtDfH4ILW189m9ez2GkSUS6cbnq2THjuuJRI5jGFPs9dSYGlPjfz6mmOup8fcbRkw8q8YQjN17AnPdYAdF5cFKAJqA4CLDvU7AUn4YtAq5sCyw17luAVXeNrkdWw/lt9nMtR2CZozaKeWmzV6HQNGZecon+O1zz3H2WWfz7rvv8snmZv514w/56jVr+NP+/Sz98pd5f89uambOxtj5O6yDB1CazkZdfCHGjzfK159aCvkcBIIomgMrl8F8dRtq82IJ9kmnMPf+EbX503JlnsnIFXg2i+L2YOz4bXFebfmXQNOJZSxGRhJUVfnt6i5hkgEymTyxWAavdzKc7L33hjjzzKqT2JPHHltOKpXj3XcHaGmRFNnbbnuVu+76FD6fE11X2Lu3t5iy++STK+jujtDXF6OlpR7LAk1TOH58gqqqAIGARiKRKIbo+P3+4sVbJpMp+q4VRcE0Tdrb26mvr2fGjBknMdVtbW3oul6soGlra6OkpIRcLkc6nWZiYoKqqqpit6uiKPzlL39hzpw5ZDIZ3njjDS644AJ8XgeacRhl7CGs6ofsi0ibQUaTz1nxiJdfcYEVF0WEXikqif6Lwf85UUqgUwTNlp14bGUApwBljMnHjCGxK+SOwdh9ULXJZrQNJiu6mJxPQYBw5JiAZc1m87Ix+VpzncBS1wpLnUvI/QXm2siI99pT4Honb8hEpf4I9YSAMxvkay6RogfqABVTdRDN5dFPCDAzLIuO7m4ufu45jn/nO/REo2zs7OShpUsZTiS4t6ODta2tVPp83LRzJ3e0tjK7tBQVAeL9sRgbOztZ19aGV9dJ5HL0RqPUBoNUeDwcHBmhtb4eEzgaDrN+926e/vKXOaIoeBA/9X6gAWGnnQhAHkXA8Z3ADERGfh/woP2jjwBpoBthqHvt21MQuXnh+032v58++CC/ePZZel57jc+WlvIYcG0ux1eOH+eChlM4egheffVNfvCDz/Lqq12cckop11wjoHfVKnjySdDsPZdEQt76AwcEVOfz8v3GjRJONjICPT2TzPW6dTB7tp3nleWkeZ94Qo5dv17CzKZNE1+2zxXHMbEb3NPAO10+31xY0rsVzV4jHshHZONHc8Pb18KxZycrtlwVMP42eOog1Wv7rRVJEvfWC3NtpmTz58AtcOpN4Knm/nvv4pfb3uK1Z/+Jkpo5wm6feSe4T6GARt2lZfT96W3KA34YH4JH7oJzz4PPfUVk3Yb9pnh8MNgLkTGRjDtd4r3e9gthrUOlAsCdLshm6B0ZoX7OacyeNYtAQNayy+1i/+43GBse5uvfupYjXUfAMrn2qqu48uobuPHGl7n++vnMnl2KosBNN+3khhvmM2dOOZmMgaYpOBxSg2iaFqOjSVwujaGhRLFGq7GxlFxOzrvZbJ7a2hDXXCNseHv75Xz849MwTYtoNENJiZsDBwZ5+ul/wu0OcNddP6SqyodlWaxe/Szt7d/mrbfe4oMPPqC1tRWv14umaei6fgLgldDHAhsdCoWKAWeWZTE4OMjWrVu58cYbi7LtwvkyFAqhKEqR6W5ra6O0tFRYajtMMJvNFsMhg2Uh4tk0WBaPP7qZF379W3637SVUl4qZMvjYrEZGoxNSTqiofGbFUkpOm87zD/wUwzSxsDBMk5H4BE/tf4Gvz/8c5d4Q4VSMp/a/wNULv0hNoJyskcOpO9EUhQN9h/hY5QzGk1Ge3v8CVy38IjX+siJz/c0FX2BGsITt26+jtnY+c+deSW/vPp577mJOPfVzXHTRU4TDx4hGe6mrW0hPzwCXX34lqVQCTdPxeEwuuaSBr33tR/zLv5zBzp3lWFYJoVAJ//qv/8rcuXOLlx2ZTJSXXrq6WMH1qU/9M4aRo6zsFEzTwDAyhMPHePPNx1i27EdT/ddTY2pMjf8y/jvmegpcT42/3zCiUnFUTO1WhUXUqk4GMcU+Yk1AjuIQYG0lQW+A/BGRgXsW2MApLSFm7rPteex+4WKP5glgHIqvPXNmLb/9zavMO+10xsbGqGk8hXQkLK3G/T0sXHU599z4bS687AqsyIR4pdsuAK8fc+fvUFsvANOUcLJQiTze/CmsnmNYPcfQVl6M2XMMpWY6isMlIVyGgaJpoGryWCBQnFcpKQfLJGWoZHMmx45FuPdeSQT3eh0kkzlOOaUU0+QkCeOsWSWkUnlisSyhkMiK/X6RtuXzJk6nSj5vFVNu/98Sw0dHb2Hfvl7mzatmeDjB0FCiCMoty8LjETY6EolQX1/P9773Pdrb2+nu7mbfvn2ceeaZpNNpdu/ezQ9+8ANSqRRer5fLLruMyy+/nL1793Lo0CEuueSSYliZaYoSIZFI4HK50HUd0zTp6+ujurqaRCJxkmwym80WL069bhMt3SGeaxzymSouIGevm6z8Sx8Az7l2AJlCUfVQXAuW/c/27GPImrNyIvO2UrKWFIckgxvjoJfbr5GbtAwkO8G7GCx73kLKd+F0a9lycc15soQbilYBud/+vYgckaTvslPFi23aLGBB7l1IFC9IybM2yI4PnJwybsnPaFkmpqIxkkxhAn8eHGR6IMCGjg7uaG2lLxqlub6eNdu2sfXgQT647jru2rWLrQcPsqqpibsXL+aMH/+YVU1NbFm5EoCBePykY7asXFkE7FnDkGRwRaE3GsWhacVjw9//Ph2KQi3ijy5IwVvst2Ov/bWFbHvkEIbaY39qSYS1Vux3awxht5PI9kbafsxjP7ert5dz6+uZOXs27kAAC/C6XFzxhz/w0yVLYCJCOq0TCPgoLf0BP/rR+TQ2wuHDwirfdhuceqqAaNOURPDvfAfKy+F734PNm+G66wQwf/CBsNIvvgjPPy8MdgFUa5rs2xw7Ngm6Gxrk/mxW9twsS47XlCwuxlAKHdcjHcIw114Emm0xUXQJLMtGwF0l79hoJ7hrxEet2Gtx7E3wTIe//hBOvxU81aKgMJICnE+/FUb3wMgeHuw8k2d/+Wte+/laSmvPAG89+XyOsfEo1WXloDn59fO/4bt33M7xD/5q/4c1+I/NsOSLECqX3YHO16DrA7jyOvk08jk4+jcoqxKZeAGMf/U7MsfokLy5O5+D5ZdK/3VBOr7sUiivlrCzyDiUlMv9l15DUvcTiWUZGIgxMBBn/vxaursjjI4mOeus6uK5zuPR6eqasMF0GzU1Pr773VeYP7+WK6+cSzZrcMstr3LLLc00NpYSj2cZGkqyYcNuHntsGWNjKe66a1dRen7qqX9lx45tPP3085img3vvlVaGJ598gIGBLn7+838rdlwXbDSFNoVCa0J7pAXqTQABAABJREFUe3vR+rJy5UoMwyASiRAIBIoAOxQKsWfPHi644AIcDsdJ6eIlJSX/r2C9ubkZv18CER0OB4Yq5/DNjzzGr375K17c/hLlZeUAZLJZGhtm8u+/+A9aF7cxNjrKeYta2fLMU3xywXxG42FGk2Hm1pyCU3cU08MHomMMxcdoqmnEpTlI5NKEkzHcDgel3hCaojKemCDkDTEan6AmUI5ln/hMy0LFRMPCNA37b0EeVXUUT5iKopJIDJPJRNmz54csXfowicQQHR330tx8K8FgHYnEMF5vBa++egtLlmzC6fShae6TZN3ZbNJmqI/R0XEvbW1rKS09BU1zYJoGY2Mf0tGxgdbWtZSWzgas/zLH1JgaU2NqTMnCp8b/3qE4xF89eBXkDtvS7bgtw02LtNaMymODq+XWyshjeoUElCmAEhBv7NCNk8nOngXCICpOG0gVwPuIABIzLccCxQokrbQIPsr9Ps5fvJidr7+Oojs4Zqoc7emlqXUxlqqilJSjrbwYfAHQdbSVF2NFw5L0XTcDc/frWAcPYHbukhTw1guwFBW1YRYkE5g9R1FUFUXTMHu7scJjKLX14PWjLf08BEuwxkYwXn6RXN7CMCzuvbej2K8aCrnp7Y2Sy1koCjz00L6ihNHh0BgcjBeTwINBkYh/+OEY+/b1Eo1mGRyUHlav10FNjaSBA6xbJ8FpmqbwqU/NIBRy09hYRltbgx2KI4m5AIFAoAiML7roIl577bVit+rAwAAjIyN8/etf58EHH+Sdd97h3nvv5amnniKRSNDa2soll1xCMBgsJueqqlq82IzFYsVe1rq6OnK5XFE2GY1GsSyr6FV0OByg6FiOOtlUsVL2pkpWAsgsu4pIdYNnoYDgArC2cvYasCbXQqEXugis85PrVfUCDqmJs1JgxWDwOpsZV+V4My5VYEUAj81y26+lMCk1P1HCbVkSPKYowkAbdsK3kRGAXHaqAOdCWrhiT6ZokjrurxXJt4Ikhysa+KfJaxppCB+xwbhV3DpI2BsUC+vq6I1GefHQIX60bx+LZ8xAV1XWtbWxqqmJkMvFHa2trGpq4s62Nkrc7uLXhQ3akMvFrc3NxftHEgmOTEyQMQz6YzGu3b6dnkgEt67jdziKc6umyQLL4l5E+v0AEl5WePfOZjLtux84ji3dRgLQ/mx/nbe/9yCS8XdlBeAE3kZAtgOYU1dH2LJ4tauL5w8c4K0DB/jF/v1c7vWyd88e9r31F/bvP8Bpp+3hj388nw0bRGDS2CjAedYskYivXi1+6htukLAyv1+Yardbbj/4AGpqYO1a+NznJoHzkSPizc7nRRbu80mqeH093HSTeK6dTlFUDw5OVn0BED8snuvSj8OMy0EPyho27Q0gzQ26F2IfiQfbUyud1fm4pICPvQnlCwRYd2+FDzZKV7a7UoB14b6aJfSWXMXNt32fcDjMp6+4h7MXX8GCRa1k9lzDis9/mbnzW5h3zsf58fq7efG55yS4TLfN51deD4ES6D0i6/q0s+HibwqozqQgHoW62TAxIgz2ueeJv1pR5PeosuaE4LNfCeO9/Zfy/Y5fyWvs+JVIzwv3p5KY4bEiCz1vXjVjYymmTw/Q0lJPf/9kO4KqqkXZ9/r1u3E4NO677zO0tNRz7bXbGRiIcdNNC3G7JdvB7XYwe3YJW7asxOPRCYVcRel5Xd37vPTSC3zve5tpaKjk/vullcHl0tix43n+8R+/VgTSDocDTdNwOBxEIhHa29uLQWetra1F60t3dzexWAyXy1UMjmxoaCASibBgwQKGh4fRNI1MJkNtbS179+496U9rAbwfPHiQzs5OnE4nyWSSbdu2oSoqvb193HHb7UTCYVYsXcbCc+ezuLUNTdfY/PTjrL39dprPXcDyJZ/l2huuY3HbYjwOFzPKpjGnsoGNf/g3esND5Iw8FjAUH6PUE+DgYBc5M08yk6TCHyLg8nGg7xC94SGCniA5I086nyVvSgBk3jQFXFsmhpEpdk1rmsi/c7kk27dfRyYTxeutIB4fpKHhPDTNSTTax6FDL9LZuRFdd1Ne/jE8nnJWrHiCZHKEl166mrGxvxWDyXK5FKaZQ1VVAoHpLFv2KLruxbIMDCOPYWQJBKbR1/cmDocPsMhmE6RSY1PhZlNjakyN/9GYYq6nxt9vmHEYWAOeVghdbt+pC6BWNJt51IA8ZI/A+KNQ8xDkjsPYw1D90CQbl9oPuaMQvNS+EnUAORtMp+3gqjphH1WvvIZeC7mjXHPVF9n2hziDQ2OUl5cT8Hr426YfcOyMj3P11Vcz0tuDFgzxT2vX8aULPwO5LFY0glrbgJVOQSaDUl6BFZ5AKSkT33YuK3Lwlk+jlJRijY1ivrkH7bOfxzJyKJpIAs2dL6EuaJFe6/qZGNt+jbpoMbjc0pnd/CnSwSoMCyzLIpEQgOb1OsjlDPbv76OhIUh9fYjBwQShkAuv13FS4NmWLSsZGBCw/cADS4qhPAC33PIqN920kJoa/0nA2efTiUaz9PfHiuzO7NklRKNZfD4dVc0XE2uBovSwqamJX/ziF5xzzjk8+uijPPnkk2zcuJHFixcD0NjYyM6dOznrrLPQNI329nYOHTrEjTfeCFDsaS3Mm8vlit7qSCRyUugZUOyB9bgM9JHrofqRSYYu2QmOWlsOnoSxTbZs27YEoMkaSb5pM94GGBOyyYIOQzdB1T02oHbKOgTxbmOJxSC1T/zZoUtOmBNZi46PyTxFxtgG7WZuMuAMJr3RZk6Y7MjRSbYZhIV2Bm28n50E6q7gJCA/MQCtGGJWQGWKzGGkZZ54H/hrMTU3sVyeZC7HgcFBzp0+nXA6TbXfj2kzYAqQMwwc9udhWhbJbJYDQ0N8cvp0fA4HE+k0Q/E4QZeLar+fvGmyr7eXaX4/fbEYzQ0N7Ovp4cyqKsrcbvL23KYpAVGWw4FD04gCESBk//sIkYLfCuyx/xVY7fMQAB1B5OO9wD32sTUIY/0h8AjwmP0WJwunHeC7iKd7GjBwwuvMQQQOZlKA84YN4o2ur5/8fu1a6O2FlStFyv2Tnwj73NMD8+fLWz4wAPfcMykBNwzxZVdUSJf1ggXykWuaPHb99QKs9+2T41tbRW7udssxPmcUNd0vAWSVLdJN/cFG8Vd7pglwPrhBvvfOhLfscLOZV8I5D4qKwVIhHxUAbuYhFwFHAFBlXcQO23PcCX470GykE9zV4tW28pNhaiv+Bs46+NmP4LOXSOK3ZUFkwg4zuwyCZfKfnxgV2feyS6GsUljpnc+JDLxq+uR6LbwZiiKp4xE7GG35ZUWZONt/CZ9dBTV1kMtMZg0k4xAsJWVqhKNZvF4Hhw+PF9U8c+aUc9VVL510Tiw8vm5dGw0NQRRFKZ43t2+/grPPrkFRwO3WGRpKEAy6iufMTZuW4PHoPPDAg/zyl7/gtddexe8P4XZrxfPmzTc/yaFDT3P48Ifs3PkydXV1zJs3ryjVjsVixQ3CwvnMsiy6u7t57rnnOPXUU1m5ciW5XK4oIS8w1c3Nzfh8PgYGBqitrS0GPBqGYZ/fVfvvRYJsNktpaWmRGb/5tlswsTBMg1gmQcDlQ1M13h/4iApfKdOCFURSUUKeIKrNqiuKwkQyQsDlx6k7OD4+wM/f2cYNbZfh1h1oqk7OyGFaFj6Hm7xlMmh3YH/1kyuYSMWYO018z/2RERQUZpTVkLfVSi4FstkoicQwHR0baG6+lUBgGk5ngFRqHFXVGRp6j+nTz0VVNXbsuIHm5luIRnsJhWZQVjbbfl81crkE27dfV5R9X3TRU2iai1RqjEwmis9XJX8ekmM4nT4cDh+5XIJXX72F5uZbKCmZaUvqc/T1vUkwWEdpaSMul12HODWmxtT4v35MMddT43/xcArYCV4qYKTATituAUQnSnadjVDziHw9tgnKbhDAlB+UW2+LAPT8cRi8aZKd1Gvsf5V2YFolGAMwepdUfeV6ePLOI/S++Sny6UEGu4/x4dtvo634Mo2Np/D7l1/mvff/woG33uLLn/8cij+AUlqOMmO2HTIVQAkE5bVKyoRt3v5bQEFb8WWUUKkElwVDaEsvwlIUFFWTlHFAW7JCgHVtA5aqojZ/GisRB5cbtflTKCVlmDnZNVcUBZ/PWZSE33jjTiorfbjdDo4fjxbDyTRtMvDszjvbUFWFYNDJrbc24/c7GRyMc+ONO+nvjzF/fq3dnZ1BVRUGBuLccMMOurrCaJpyErtjGBY+nwO3Wy7cCj3XBRmi0+nENE0SiQSapvGlL32JiYkJnE4nbrebN954g1gsxvHjx4nFYiQSCdra2rjkkkuIx+P09fUVvdaFTT9d1/H7/UU2e8aMGYRCIVR18tTldDrJ5VWsqk3CHOcHJtljxwz5/HPDUPZde2MlLnVbZlSq3dxzbSvBW6J2MEaFlS67QVLDB9fIukx2yDpVA2CMwdB3wP3xE4C1HXiGJRs36LZKwrTZarsmS3Xa7Dh2AFnXpCdaUSA0exJYgw2iDWGzFU3+OXyTjysKhGZNpo4X2PDCe5SNivfaUyXMdmoU4n2Ylsnq9naGEwkW1NYymkpR4fXavspJlbrLTv0djsdJ5nKgKHw0Ps5NO3eSM01i2Sz3dXYynk7TF4uxZts2lv/Hf3Dvnj0sqK1FBaYHAvxleJhoNstAPE4skyGVz6Mpiki9LYthJMl7BGGmC5VaG4ElwDrEk73A/n/128d32/9eRFLB3XKW4BGEAU8hvusbgSH5VE6q6upFQPug/SkaTsF5s2dLmndNjWC4QiDZhg0ColetEqANAqwrKwUkDwwIKL75ZrnfMISBdrmEjW5uliUxMiKg3OEQaflDD8HFF8PZZ8OHH4rU/Phxeb5paeAIimS75kI49JCAbNUlXusPNk1WbSmWHNewCs7ZJInfhVqu8HsCrDWPXeHls9PEj0qH9vwnwT8T4seE+XZXCABXbNF9050yr8MvC2TF5VBVCy63sMvllfDhX2DbLyERldTv8eFJxllVJxnpnc9NbiwpymT/9egg6JokjH/1RpGAe3wCzC9bI6z2yID0X4fHRV7ucsNQH8bEKImEnC8L1YGDg3FM0+LJJ1fwt79dx8MPL0VVFebMKWfLlpXMnl2CwyG/bw8/vJQrr5xbtMA4HBqaplJa6mFwMIaqKixaVIemKfT393HPPXeSzye56KLP8qlPLWLx4ja8XgcbN3byxz/+hrKyRViW9EyfddZZxUqscDiMoiiEQiHGx8eL3yuKQm1tLWvWrGH58uWoqorT6WRiYoLe3l5UVWXhwoV0dnbafw98vP766wAnnZOz2SzxeByv10tpaelJzLiqKgxGxzg42EWJJ4iuamTyWc6sOQWnJpV8Jd4QmXyWnokhDvR/SM4wKPOWEE5FSWRTVPhLuGnxlYTcfkDhz/0fMhybENsQkDVyPGUHnv3s7W2cWdOIpqhoisr0UCU+lxvTssjks+TNPJZlkMlE6OjYwMGDW+ns3IiiaITDR3nttVtJJkeoqprLzp03ks+nOf/89USjvTQ0tFJaOpvx8cO89NI3GR//CMuyWLToZpqaVtHWdie67sIwcnbN1/eJRI7T09OJ0+klkRiivf1qYrF+amvn09GxAUVRiUSOs2PH9fh8lUSjdrDk1JgaU2Nq/B+OKeZ6avz9hpkVEINiJzcHbZbwRE+0YQMWUyTeaAKOVB/kPvqv1Vz5vknwU6zhmi5UlFZuy4XzkD0uwNy7QKTDejmgYxkOrPExcDhRfH4sRQUsFLseC8sSgGxZWIqKYgkQITyOUlqO8dJzKA2zUeaeg2KamH3dKKESCJag5PNYWMJof2Y5JJOYHa+LVzsQRNEEdCv5PJbHW3zNZA6isSymaTE4GGfjxk7Wrm0lnzfx+ZzU1gbo6OimosJLSYmbqiofmqb8l+oYTZMgtBNZ7bvvXkw6nWfmzBJUVaGjo5uLL36Oz33uVJ54YgVHjogv8a672pgxo9ROJZe32rKsYqp3IXDszDPP5JFHHmHp0qWoqsof/vAH7rnnHhKJBAsWLGDXrl38y7/8C+eff34x0dayLHp6eqiqqipKwQ3DQNM0TNPENE0ymUzx+Gw2W2S2+/r6CAaDOBwOykqcKGYUUIWdLgSOqX6K+4jDN8qa0GfJ2jNjsl5UkQEKIM7aaw1Za7HfQGqvgO3xB6HmSRi8BjyfhtCV9hrNymsoLnmOGQVHo1QNgaxxey2dVOeWjQmrqLps37QdZFao4Co4iS3rv/imi/D3xJouRZGfW3XaYWw2SI8eO6HaSy6A/9jdy6d/9jPaL7+c+mCQnmiUVlvWn87n8Tiki/boxAQbOzt5bNky8qbJ/r4+pvn9TAsECLpcRDMZkXYqCh5d58jEBA/u28emJUvw2XP0xWJMs72jyZzNcDmdpHI5/D4faVXleiYrsh62f/oCkx2wf9rDSCDZ4/YZwkI81iVIEFotcL99jBvxWE8A3z9h7ieANcA/AbPsYwqBaH6gAlCTEI1MVmQFAiLnXr9eAHVjowBlXReG2euFa6+FZ5+F9vbJ8LK1a2HGDAHdmzbJPF1d8tgdd4gkvKpK6rg8nknydnQUJibktrkZ3nk7y6fPy6IU1AimfV4ce1PCyFyV8O6Nwlz7Z0PxfGWKP7vjYqj9nFR3BU4ToH3wXmi6A/ynwPAfBWx/8ICkj7trINkrcymKrDHLECBuZeU8bKhgmKDqkxYFy5T/W3gcPnwfDh+EK66DXz0psnC3R1jpVAqCoclsgVwGfvmEgO6F54us3MiLjPz5p+GCz0MsLInipglHPoBZp8J//Bgu/LKklL/4c1JLLiXsqSIazVBd7TtJpZPPm4yNJYnHswwMxDnjjEpuvfU1Hn30s/T3x+08C1HoWBYcPTrBhg0d3HprM9OnB4jHs9TU+IlGMwwOxhkcjFNXF2TDBnme16uTyci5NBbLFoPTvF75XS/UBhaUN7FYjI6ODhYtWkQikSjKviORSDHwsbm5mfLyco4fP47P52Pv3r20trYWNxhPPE8mEoniebjg0Q4Gg0Sj0SK7bVkWecXkz/0f8rGKBpK5NJW+Uvm7ZFk8/Mdn+VbLJXgcLjL5LH8bPkbI7ednb2/jmwu+wHB8nHJviOpAGW7dRV9k+CR2ui5URaW/lFQuw1gywk/3/441C7/MtFAlhmWgojCeiuJzevjLYBdV/jLKvEGCDgemmUdRVMkiwUJRVNrbVxcZ6MWL7+bIkVepr2+hs3Mjra13UFp6CpaVp739muJxIgsfxe0utdlmlXw+RXd3Bzt2XM9VV+1H01woisrOnTfzpz/9pDi/aWYJhWae9LrLlm3G6fTjcLiZGlNjakwNmGKup8b/6pGTi8DcMRj9oc1W26FjZuoEr6tb5NwFp6hqf62EoOx7kBvlJJbbmJC5ym6G3CCYEbsqyfZy50fB2SDMpmXKfIM3SI+2aUmqt9OJFY+JFDGbxWh/HmtsRBjV8Dhm73G5iDRt4BMIClnYegHKGWdBPo+VSqJUTxcfYiSMsfN3EIuKtzqbxeywfdkdr6OgYBkGxKNYbjdMjBYrufKGRSSSIRbLFpnk3t4oDodKV9c4mYzBokV1jI4mSSZzrF7dTjSa5dprb2D69AaCQTdvvfUO6XQey7I477wMJSX/xp//fDdf/vKneOutbXR3S81MXV2Q55+/hDvvbMPp1Jgzp5ynnrqIuroQuZzB4GCcbFY25FRVxeFwoCgK8Xi8eFFXVVVFNpvlxRdfZN68ebzwwgt0dnbygx/8gP7+fpqamsjn83R3dzMxMUF3dzfTp0/H6XQyNDQkH7mi0NPTU/QOFjq1DcPA6XSi6zoDAwP4fD5KSkrw+XyyBtSgpCVbeVE0oAm4Vr3y+XvOA8UvIFhxQrZL1piZsjdx8hRZaJDnBa8QhUV+VBLt0eQ2dLkA6fxg0css69Mrndfyk9jzZyWp28hO3meZdgp4vwBrI1NklYtAxUiLTNzMy2uEu+S+AvOtcHJ1l+YUVtLMQaxHbgsVXAWQFDkCRpYFtdNZ1dTEgro6fE4nrQ0NqLYK4Y7XX+fw+Hixw3rz8uVoqoqqKMyrrmYkmSTgdJI3TQJOJ0GXC799YX9qeTmbly8n4HRiWBZ500S3ZaqqohDLZFAUBV1RGE4kyFkWbyLscaFW68R83sL2bx6RcZ/PJLDOIRJwD9CKBKLNR1jtNQgbXc3JlV1OBGDPArqQwLRqoJ7Jmi/TEAa6q0sAtKKI13rLFpg5U/zSmiaPf+c7cPSogOdVq0TyfSLLPTwskm9dF0BeeOzee4XtzmYFY6ZSwlhfc40A9uFhYbEtC+bNBeJH4M2r5fNMdsPb1wsgTvaIz3r+kxD4mHioR/fYx6+WFPDW5wU0O8tsjXyf1G4dvFfWVWWLAOtCFZfmFGm4kRDJuVX4vbA/DVWTNyA8Dv/+CAwPiJca5HxXUQPVtbDiCvnBr7gOYhGITsjtSJ+w2j/7kQSTOd0iGz/3PPjyN2FsEJ59TOafdSq88mvxZquanJ8bTpH/yvLLBHR7vLD0EsySSkzTKkq4BwfjxGJZYrEsa9ZsI5HI0dcX45OfnI7brbNuXRuKopyQZ7GbeDyLooDLpdPSUs9DD+0jHE5TWenDNK3iebiy0seGDfK8hx/ey7RpfurrQ8U6r56eKGvWbJM1bFdr1dfXo+s6uq4Xq7b27t1LbW0tlmWxe/dufD5f8VinUzb56urq2Lt3LwcPHiQajRY3NZPJJNlslnw+TzgcxuFw4HA4cDqd+Hw+HA4HtbW19PX1Fb3dqgnzps9hLBGhNzyEYZkoKOiqxnc/9RW8Djdj8QlMy2Le9Dn87O1txcqtUk+QsWQEp+7EtMxilVaBnQ64fKiKqJkaSmr4pyVXUROqoDs8yL+88hMSuTTJXJpNf/gZcyobKPeG7HOORT6fsiu4uujp6SSXS9LaurbIQLvdJTQ2Xkhn50YOHtxKR8e9tl86d8Jx61AUFZ+vCrc7CKiMjf2N9vbVBIN1XHPNAbvuazUTE0dYuvQB5s69kqVLHyYQmE5p6SnkcilaW+8ozpdOhzHNQjbH1JgaU2Nq/PdjClxPjb/fKDCLY+uh7HqRdCc77QAqbVL2DTbDDSddamsVoJZKp7UZhcHrwUpIuJnqF6DlPseu4ULmTe235x0Vqe/Qt+T/4JkvLLhioPiDEIti7topF4KKMhlOZlmYu19Hmd4AkQnpuo5MoOhOW55bguJwQiwiz0/EUPzBSSBtB5zhdAkQbzobte0z4t0OTwiDDZgdv7eB9+/RNKWY5l0I0VmwoA6Px8H8+bXs399Ld3eEuXOrihd7wq40kEx+Ba+3klgsg9Opcd1127n11mt5/vlneeutd/j61zfy7W9fz4YNr9shPDrnnTeDWbNKyOUMUqkcR4+Gufrqdo4di3D48DhdXXKRVgDIuVwOl8tVrN7SdZ3f//731NfXMzo6is/no7e3l/vvv59PfepTzJ49m71791JdXY3P5yv2Y+fzeaZPn04kEmHHjh34fL6i1Ly3t5d8Pk88Hi+GANXX11NeXo5lWeiaaYfffWivg7RsmmjlIv9PdgCqAGU0WU9GRJLq1aCsl4LHX/EIo537UKwK+R67D71VKuAiv7Q3e1Qw+sVigGlvDuVtn3/extp2one8bxIAKyeA6xOBsTMgvdX+Wpuh/k/Ps4xJ8G0Zk7rtk/qusQF33+SxiiKPa87i6ynxXty6xpaVK3FpGuUeD4PxONFMhmQ+z/Xz57OxsxNVUaj2T3oNb3/tNcZSKVrq64lls+RtCXneNPlobIzhRILDExPc8sorWICqKOiqSjqXo6O7m0w+T7XfXwTejaWluFSVj1sWM4GnkBoukATwMoS17gJWI/7oS5FQszWIpNst7zoWAp4vRKTkW4H19ttRZ9/XC0SBHvs5A0gSuYmEn2UR9tq0BFwXpN7R6GSI2eHDAoRP7KTetEkCzZ54QhjodesmZePTpon0+803BWeuXTv5mNMp97ndwpI/9BC0tIiEfN48wa9Hj4Lfl0XRPPDJx+TNOfSQAOH0iABjyxKwHflA3olQkzDPp98st5UtwkIbyRMA92/g4w/LfOkRAd+tz0v/9bs3icpH98m5ODVEscFBcUL0Q0gOTIaJ7XxO/rPjI/DsZkgnBQxXVE+y6OHRyWCyQMnkc7f/UhjqqunCWLvcIit/6w3pvT73PEkZdzgmfdbhcdi6BQIhaPiYAO6aOiyni8HBOO++O8CxYxF+8IM3sCyxszzwwBL6+2MsWFCL262j6yoDAzEcDo2HH17KBx+IZNzj0YnHRVr+5S+fzn33fYaSEjeJRJbOzp5imNnISIK1ayUA8qGHltLVNcHq1e0cPTqB3+/E53Ny3nmF1QwrVqxg3rx5eDweLMtixYoV3HrrrSxduhSHw4FpmixbtoySkhKWLVvG6aefzhtvvEE4HEbTNNra2mhqaqKurq4Yjub1enE6nTidTurq6sjn82zfvp1wOEx5eTn5fJ6dO3dSXV1drOdSbdVMdbCMedPniNQ7lyaRTTESnyCZSxP0+NFVDVVRWb3gSzz2pdu444KvMz1UQbW/nB+88hP6o6PceN4VLD11EVcv/CJu3YnX6aY7PMjG3/8bPeEh/tz/IaZlFjux45kkT+17gTOnNTKWiLDxD//GWCJi+7o1nE4fwWA91dXzcDi8lJbOZvnyH+P1VuJ0+nG7S08C3KrqQNNceL0VLF58N15vJYqioqoO8vkshpFm9+71HDy4lX37HkZRNILBOpqbb2XfvoexLJPlyzcDFvH4AJlMlGw2QWlpIytXbsHnq8Hp9KHrLqbG1JgaU+P/dEzJwqfG32+YKTDCAlD0mRIOpVfC+APSZa2VS3WSo0780lUPA5Z4psc22sdUwPBNIvVN7oHUHqh5SoDRiZLx3FEbxN8s4MdzLgzdALGtEFgFFXeDlcJSTwHTKaxxoW96xZclaKzl01BSBtEwSrCEG778Bdo793M8EuXdfXuZ23eEiTlnsuSKr2BFI5BOkVJVjgyPMvj+nyk5+C5q22cmQ88ScRS3B3Qda3QEPB4Unx1sMzGK2fF71LYLyATKyRtgmpP1WX6/kyNHwmzYsJubb17EyEiCj398GsPDCTZs6ODhh5cyMpJk/frd7N59E88880uamz9JJJJh7tyZ/Md/bGXRolb+8pf3ueSSL7B373uMjmaKkvPe3ih1dUFmzy6lry/GK6908eabfdxww3wmJpKcc06ISCRCbW0t6XSa2267jR07djA0NER5eTl+v5+DBw9y9dVXs3//fgzDYP78+dx8883U19cXa2MSiQS5XI5oNIrf76e8vJwdO3Ywf/58SktLT5I+AsRiMbq6uigrKyMYDLJ7925WrFiBy5FDNQYRn305WAoMfRfKbwTFC+aEva7WglYJ6T9Jn7rilc0YTDtZPA6O2fb3I5DcBf4VtrRckTA9xWk/R5MqOffpAr5Ri5LZdCbHZVdcxV8/+ACP201VZQWP33c7p8xrYXg0wle/9nW6jhzB5XTw4/vWct6FX5CgKeXE3w9jsmIrUCfgJnpssv+66Ms+4RxumcLu5W2puN1pjZU/SXpuBepAdXHZb1/g1uZmpgUC/GlggBq/n7pgEE1VyeTzBJxOErkca19/nQ0XXIDf6SSezRJwOjkyMUFPNMr82locqsre3l4+OX06N+3cyaPLlmGYJu8MDLCgthZFUTBMk7f6+1lQW0vKzhywgIDfT9zuuVaR4LJaBADXIV3V3wDeQJLBXfZxafv5Q0jn9X0IMD6h3ZwcwnL3I+B6EwLaM/Y8OgLcC6+1AQk6mx2HTPq/Vmpt3Qpf+5qAYEURxnlgQAD0iZ3XXq8w0uGwhJh1dgpQf/zxk597+DD88IeSLg4ihBkclI7sQhhaNgsl/iRK4iOUgxsEBPvswLFCYJ1lQuIYpAegfL6s0cSRyZAzzQvO0slAsoZVsOApiB+Fg+sFhDtKpcLrzdVw+m0SlJaLiNc7nwR3ucjQK5qFzVYDkHdCKilyb6dbWOw5c+HsRSL/9nihpwtKKsQ73fVXCJZKz3VppQDrCy+GeAQ+dibksgKiB/sEsF96jTy27ZfCUldNF7n4zx8R8H3uebDkS/Dqb+AfvkM0pzI6liqyzKZp0dsb4Z57Orjttma7+1pB0xSyWaPYd21ZVjG0zO93nlRtOGdOOaqq0NcXJRBwFWsNTdNC1xWyWbHf7NnTTVWVjxkzxGIzMZFi2jQfiUSkyCgXgsd6e3vx+XzFPAmHw0EulztJCZTJZOjt7aW0tLTYwlDIt4BJmfnSpUtJJBJFybnX68XhcKCqanHOwnP7+vqomT4NVAXTZqxNy0RTNfKmQc7I4dZd5Iw87w8eZpq/gqpAKYZl8pfBLmr85QzGx7j+N/ex9NRF3LnkKhQgnc/y0B+f5ZZPf5V7X/9Xdh7ay9JTFxV92T3hIZ7e/wK3fPqrTKSiOFWdnsgwpZ4AE6kY82vnACaWZaAoun2rYhhZFEUlmRzH5ysnFhsmGJyOZRmoaiHkLcv27d86QT7+z7jdIUDB6fQxMXGUzs6NrFjxOPl8hr6+/QSD9ZSWzsKyTBRFI5OJkM3GcDoDuFxBVFVnfPwjdu9eT1vbOsrLT5uq45oaU2NqFMeULHxq/C8epoAWxxxhDT0LBADFtgoQNqOTQWSxrSLvNqMCmovHROyvN4JviS3bNU84ZiOQk2NjW2V+z3xhLcvvEGBdfifo9ZLubEn/tNp2AqusKGgrL0Epq0RRNemfVjUuvvoadt33L8yoq8PKpFHqZlA+cxZ/eust/rR/L+889gBXX72az37605TVN8gcpWVg5DG7j2I8cT/Gjt+CaWLu3SUp5NkMZu8xlNIKqfoKlaJm0xw9Gmb16nYOHRrjd7/7G6ZpUVcX4PbbWygvd9Pa2kAw6OSUU8rYsmUlwaCLWbNKeOKJFcUE8OHhOD6fg8cff4bLLlvF9On1LF16Po888iRlZX6mTw9w3nkNbNrUSUWFl/7+GMeOhenqGufyy8/ksceWMT6eorm5jkgkgs/nY8eOHTidTtavX88f/vAHIpEIx48fZ8+ePfT29vLUU0/x3nvv8Ze//IVLL72UadOmEQqFTmK9CwxMPB7HsiyWLVuGqqr09PQQDofZvn07ExMTZLNZdu3aRX19PfX19ezdu5eWlhZJnsaBpU8TVcLgt0QFUXb9ZIhdfsS2CfROrivFIxs4mOLJV70CrK2M9Kjr5QKsh2+xLQMx2ehR/XIMOfAuBDVEEeAaEQqp4quv/iaH/nqQPx94l89/4fNc9b31oLq4fe1aFs7/BB/t38a/PvUTrlhzO7nEmASP5e2As3xGWG/NLWFlBQ92aLbUbimqyMWNjPi2B9+WW8X2sKo6BOoFUCuqDcQtmaekEUWVVPG1ra089uabRNJpKrxeNnZ24tQ0PLrOWCrF1e3t9MdiXD9/PqZl8eHYGDfu3MmRcBiPw0Glz8dNO3eSyudprq/HAjYtWUJvNMr+vj7m20C6s6cH07JYVF+Prqroqsq7AwMMxmJgv3tZBAgvQOTfLQgQziNhZn9D/mB1ItLtghHEi6R/F/j1KHAdAppHEWA9G0kNH2GSAe8AjiCS8vkIq/2KfYsiRGyBZQ6F5Osrr4RHHhFZ+MgIxOMUZcDZLBw4ICx0LidMdTIpWHHBAnjgAXjmGWHCC13X/f3wyitynNcLwaCA761bJQytqwu+9S1QyAmw7t4qkm7LkA2T9LDUcGGJJLxioe3zt04OOctNQHZCgHbDKrm1TAHW3VtFEu4skXXTtE7qu1L9kk6eGpAu7MwYhM4UQB77SIB9LAIv/lyqtXRdAPAn2iQ1/MWfC8NcOwt2Pi/Hzz5d2OzKWgko+8q3weuT+9NJ8WaPDouk/MrrweWBl58/geHOy+bR8ssEWK+4XOoQr7gONA1dV/F4HHz44RirV7fT3R2hujrA1q0HGRiIc/x4hM7OHmKxLNmsgWGYZDJ5LAvKyjzouvpfqg1N0yIazRAIuPD5BGBFoxkOHx7nG994iePHI2iaQl1dkPvv38vAQIyJiRSJRI7h4Th79uzB5/NhWRa5XI5EIkF1dTUul6vIOhcAdoHs8Pl8hEIhzjjjjCIjXbDRgMjMOzo6OHjwIJlMpvi1w+EgmUzS29uLaZpFRty0U7lra2tBVegND7HhtZ+SyNoSDCwiqRgOzYFhmYRTUZFt+4OgCACfU9nAcGKcpppGHvvSbay94BvodnXWQ398lm0fdPCXwS6+ueALLD11EVct+AJ+l4dENkV9STXfv/BqfE43daFqKvylzJs+h60HXqXKXwrAxMQR2tuvKcrCs9k4muZEUVT8/hoMI4fPV0E2GyMeHyCdDpPNxlAUtchmt7TcRi6XIBbrZ+fO7zAx0YXD4WH58s2Ew0fZseM6fL5KHA4P4fBR2ttXEw4fxeHwnnxlYppompP6+hb27NmIYWT+vy5ipsbUmBpT47+MKXA9Nf5+wzJtryqAJWCnfN0k4FVLBBSVr5X71JBIeMtvPfmYIkCuA3064oktzLMO8uOTc5SvlZfTqwRM12wRQJU7In3bIOyJL4C28mKUkjLbS2xixSJY2Yy0HE2Mct555zHjH1eDpoKmo5zWBNEwZvcR8PpQF1/IT3+1lW9842uQTskcmQyWaaLWz0Rb8z3Uts+AqqLMOAUrGkVxOFAqasAyMdqfh7ERssks69fvLl7sXXbZXJLJHCMjSWpq/Hi9Tq67bjvRaJZ83qSzs4doNINhWOi6iqqCx6NTWenHMAwee+x+/umfNvOHPxzg3/7tN1x33VUcO9aP1+vgK185i8cfX0E4nGbhwjq6uyNUVvq4/voddHdHaW6ux7Ik0TaRSLBo0SIURSEajRbBdiQSIRAIyIUcFFNwly5dSiqVOkn27XA48Pv9VFRUMG3atKKkMRaLUV1djdfrZcmSJcRiMdLpNA0NDQSD4shdtmwZiqLQ3d1NJmMCpoDnspsh1ydJ4eX/BDhk4yY/Ao56sQnkR8SHb6Ug1wXpd5FeagBdEsbNjPj9qx8CvdFmp5H78n2SOF7woSb324FPlaDouN0eli9fXmSaFn7y4xw7chiMDFufe541VyyH1AjnnlrB9GnT+OMffi+y8Hif3BYYSSxhmwsS8wK1HTkCqeFJOXmhAztyZDJ8qvC7ZeZt/7WdYWBZFDYDZpaU8MiyZUzz+wmn0zy8dCmaopDI5di4Zw9bDx5kY2cnM0tKiGWzbOzs5MVDh+iJRKjy+RhJJFhUV0d/LMbq9nYG43ECTifdkQiVPh9rtm3DtCxq/H5uefVVTNPEsCwcqsq86mqGbKrXY/9knQir3A9cg9RnOYBGRAp+HTAXYauvtY+rRsD4YQQ4DyFgeQMShraRSbV8D5MA+lxEUp4BwgiYP4bI0jsdNha0E8P9fvn68cdFpn3ddQKGh4ZELh6PTyaBKwrceKMw1f398nbrurDTX/saPPqo9Gbv2yfBZ2++KYz36tUCpjduFEA/f/6kPztn6BI+1rBKJN7J48JCGwlhk4005KIi37Zycm795KOwuN32Wpfa6eDeSam4osLHH4QvDsH8J+QxyxT/NpZUfRV6ry1L1o/qFEDuroRM7GRpdzopcm/dcXIiuKrBxVeJj/rfH5FqLo9HpOCaJky2okgo2RXXQajErqYzxcd98Tfh2/8sj2HJ/VXT4R9vgvIqkZEfOwQjA+RyJpFIhscee5Nbb22mri6I16tz7bWf4LzzZlBXF6StrQGv14FlQSqVJ5czWbNmG/39Md5+u59YLMujjy6jvf1y7ryzDV1XsSzQNAXDEJDq8zkZHU1y++0tzJxZgqJAdbWvuDkZCrm5//5OotEsS5YsKaaEF7IpnE4nfttuUQDUJ6oIC8cX+rAL58toNFpkoVtbW5k7dy4+n49ly5Zx+eWX4/P5iufOQg0XQDKZxDRNJiYmMCyTp/aLNHs8FeUHr/yEeCaF2+FiLBEmk8/SF5W6rLxpkjdyeBwufE4P59Seikd3Ms1fwYbXf8qx8X7S+Sw3Lb6SpacuosZfToMNpOtLatAUFY/DRSKbYsNrPyWeSZE3DbvnGq44ZxlP7/8dlpUvJoV3dGygqupMdN3NxESX7Y8+jK670TSHnfp9F/H4IIqiFj3WS5c+jN8/DafTf5IvO5UaJx4fLMrD9+59AJ+vkkikh0WLbiEUarD/RumA/K3PZqNMTBzlzDMvZ9myx6Zk4VNjakyN/9GYAtdT4+841BO81IawhY5GqN4sIAlsn+tsSWhWQwJwHHOg5glQAvJ9zRaR+IKwObkPIdcj8zgaBfA4PgbVj8m8+V5EEGoDMjMmx5fdbP9fFBRVlYtPG0wrloU1MS6PWhb4g1hHDmP2dsu+gMMJqoa5bzeK14e580U6br+RiYkJVrY0i/86bztDTUPqtpwulJIymf/MeSiBoADqVAJLUVBbL8BKxNEDfp566iLC4dt4+umLiqnf993XgWlaeDwObrppIQMDMVavbqemxo9lwTXXtNPVJUxHOp3nww/HuOyyzXR393HFFSt54IG9fOxjZ1FbW0dX11/RNIVkMkc8nqWlpR5dV5k/v5YHHtjLiy8eoq8vCkAmI5K8hoYGKioq0HX5+p133qGrqwu/31+shCkkfff09GBZFvX19ezZs4eDBw8W023HxsbYvn07AJ/97Gfxer00NDQUa2hcLlcRVJ911lk4HA5eeeWVYoBPXV2dLbfUpRpLDcqt4hGPNHlhlN3zRBKuOGRdoYp8VgkI0E69JccW5NaqHXqm2BLsQl1cvlfWpOeTk/Vc3kUUk+gtZE1ZCNAFfvTQ/Xx+STNj3e+Ty+WoaTyn6JOeOXMm3eN5ARjBGXbncI88V1Hk9S2DySA0TvZZm3mp6/rPwWaq84TAs3F7PiAbt4PVoLOnhyMTE0XmeSSZ5Or2dvqiUTYuWcKqpibubGvDrWlU+3w8eOGFvHjZZbTU15M3TVrq67nkjDMYjMe5edEieiIRDMtiQV0dD+zdy9aDB4lls/xwzx6unz+f45EIq9vb6ZqYQFVVWurrZX0iqd/zEDn3BibrsrLyrrLevi+OBJcVqrcK7LUfAcj3I9Vda5G08U3AUQR41wFv2rc32K87A6hEWO1uBHAfBpIp+Ogj6OgQMJxOy9tfWSkstK7Dj34krLTDAe++K+A4lRJg/MADAra7uiSkbHhYgHVvL+zfL8d4vZIWvn79ZMiZogigdzjgwQdFkp7LO7B8jRJaVmClK1tAdUPJWbYv2maaQcD3m2vEW+1vBM0vnmwjKf5qX4Ow3oX6OCMnlgYL6bUG8WPPvBKa/kkC+TzVoqQ49wnwNoC3cpJBXn6ZgNzuj+DNXZPhZMsvEyrf5QbdKZ3YgZB4pFNJAeSmIZ3WqQRk0xKX/u+PiH/bssSnXVoJ/7EZRgYptDYwMiCBaAV2vKwKh1MlFHLx6KPLaGwsY3w8xdGjE2zcuIQjRya49trtxGJZVFXB43Hg9zvRddUOM+vgzDOr6O+PsWbNNurqQlRX+4uy8VzOJJ3OE49n2bu3h4UL65g1q4ShoTi5nIllwZe+dDqPPbYMr1dn8+blNDaW43A4MAwDXdcpLy/H6/Xy8ssvMzEh1VWFDIlCvaBpmkVwLXVgDrq6uk4KPnv11VcpLS1lxYoVRKNRduzYQSgUQlEU6u3fqcLI5/Ps2rWLSCRCNBpFQ+GqBV9g0Yyz+On+37Hz0F40VWUkPsFP9v0Wy7KYO+0UPA4XLs2BU5fgQtOyJH/UNHA5dHYe2sszb71EPJPEqencuPgKynwh8qYhYYNmnuPjEmQ2kYxx43lX4HVK4vaDu/6dgegIDWXVXLXwiyiKdoKXeq0t+TaJRvtYtOhmotFeO7wsWwTOnZ0b0TQnqqqyc+eNPPLIbAYHDxAI1LJ8+Wa+970hVq58koqK0/D7a1i69GGuuGI7y5dvRlUdBIP1uN0l5HJJ8vmszWh7iccHAYuqqrns2HE90Wg3J+x7TI2pMTWmxn87psD11Pg7jvykxDa5R8CMlYKhG6VmC+w08cPibSUz+TzLZlFyHwrAsew0T9UH2jRJIB+60ZYJr7b7s50SYOWYLcfnPpIOY8Ulct/xB2QOhzCYFpZ8baeDq9Pr7BTxKJiGDYgDkEpihcfBslA/sxwrmUBd+nmeSSv8w1euRH17L9ahv4CiCAgHzDdeE0mlzcQoioIVDWMd+oukh5smeL2o0+owVZWjRyfo7OzBMMRH6PU6uOGG+QwOxrnmmnY7nCfO1q0H+eEP9xCJpNm69SD33tuBZUE8Lgm3r702Sn9/P++88x5btx5k//736OrqYmLCV7xwHB5OYFkwNBTH4VBZu7aV3/xmFWefXcPAQByXSyOfzxZrseLxONlslqVLl3LVVVcRi8WKF4w9PT0A+P1+Xn75ZbLZbJFlqaurI5PJEI/HOf/883E6nUVALR+Dg2w2W5SFm6ZJPB4H4MILLyx2YBuGgbhrLRvgOmyPdF4+58EbxUut+OyqNztp28pJp7Xql2A89zxbYlsYqrDag9cIgM51i7Ug1y3e66HrZeMm12uvp6MSyJc/Iuy2AmguNmz4IYe7B7n3n9eBf7o9tcP2Tp/AiFgIy3dSiJklGmIzZ6eNpwVoa04oaRT5+PB7ApZPBNyAACdL7q+aJwx3JirPtRn1lvp6ZpeWEnQ6MS2LGaEQn54xgwf27sXncPDIZz9Ljd9PJJtlX28vLl2nua6OvGkynkqRN018Dgf1wSAP7N1LfTCIqig4VJWnL7qI8G23UR8I8PDSpcwsKWFTZyct9fX4nE40RSm6xfuRzuohhMVeB7QDmxFwrSJgeRXCRq8DnkdAcgfCOP8A+DLwKJL8/TGgyp6vEHC2wb6vAN59J3zaNfb3lcAFWaniKoSaXXedsNDxuLDSQ0OCAR96SD4eXYfzzhP5eCQCS5aIZ9qyTg49syzxYM+bJ2C8okKe//DDIjlft05IXbtOHJ8P7rtP7MskjsKb14j/+exNUNEiYDozBrpHGOa+F2UzRnVL17XmhnxC1vy89SeHm7kqhaXWvHL/m2vkNXIx8V2nh+CTPwafDdZGOkUSjgLZsGRmVE2Hr35HJN6/eAJKK6CiSvzV//AdqJom63psSH7Qyuki9c5lYdROCVc1kXaDHZuemGS9CzsapRUCzP/wkjDX2YwA9M+ugtJy8PrBMjEzeQIBJ+l0nv37e6mo8FJfX4JlSXL4zTcvIhBwcuzYBHv3yoafx6OzffsVrFsnLHWhkWHDht04HHKJVJCD33LLqwwPJ1iwoJZkMkcymecHP3iD48cjvPvuAMPDCXRdxTSFXS7cxuNxuru7ydtZA+effz66rqOqKocOHaKjo6MIqAutCxMTE7S3t5PL5bjqqqtoa2vDYf9t+sQnPlFkpQublbt37y6y2vF4nF27dhGLxVAUhYMHD9LR0UFtbS1508DrdFEdKOOqhSLhdmgOnnnrJc6c1shoIsw9rz7NQHSUjJGTWq/oKPe8+hTHJwbI5LOUeUtYeuoivj7/c5T7Qmiqhq5ofDB0hP7oKD945ScMREcZTYbZeWgvboeDiVSMf3nlJwxER7jsnKU8vf93mJaFW3eSB0pLZ7Ny5RZKShpxOv2oqs60aR9n//5HCAbrAYVcLsnSpQ8zd+6VtLXdSSo1jmVBW9s6Tj31c9TUnE04fITt268jFhsgkRghHD5Ge/tq+R2vORvDyGFZBoHANPz+ahwOLw6HB4B8PsXExBFisQGcTj+HDr3I7t3rp2ThU2NqTI3/0ZgC11Pj7zcUh1QZWTlhEtWAAN2qTRD4snhjAfQGAT7JfTbYWSMp4mpQGGlvswSjmXEB0el3IXipMNWptyf92ajirS0kkGvToexWxKNt+7qxRK5oGMJax2NYkTCKz4+x80XIZlBcbunBVlS5KNR1zPffhXQKxelCbZhNPB7nud+9yNevuAJ1yUrUVV8Dy5J6L0CpnynsNYqkg/ccRwmGUC/5x6LPm2wWyzTJ5y16eqLMnVvF4cPjRS/hKaeUFy8Ye3ujLFhQy6pVTdx5ZxslJW5mz+5g165v09/fx+rVl9LZeQurVi3gnnse4pZbVhMK/SsPPXQjd931Q1auPJf9+/tIJnP09kYxTYu2tmdQFIXZs0tpaWmgvz/GPfe8ga5DJiMXG4WarEJQj9/vR9d1mpub8fv91NfXo6pqkXWJxWL09PRQV1eHpmn4/X6mTZvGyMgI4XCY9vZ2xsbGyGazdHd3k0gkqK2tJRqNEolE8Hg85PN5EokEbrewIA6HA6cOihmzpdlVCLA0hNGrugfGNsnmipmUTZVkB5I4XyrrUK+RjRnFBtSFtVfw6o+tF2l5YJXc/mcPP5qw5N5Wu3Ndgfwg9z/4IL954bfs2LYN7/QzKa+cjq7rDA4Pi3caOHbsGA31NiD+z6x0YZyY/q1qk4njmguq5spGk+YST7YN2NOZLF/40sXMOfMc5n1iAUsu+BSHjw+C5mDDfQ9y2ulNhLxetjz7LNFslo7ubo6Gw1x65plsWrIETVHQFIU3+/qwbGn3/t5eDk9McN2OHSRyOfb39dEVDtMTjbL14EF6olGOTEwwnEjQNTHB6vZ2Dk9M4Hc6cWsam5YsoaW+nrt27WIwHkdXFEwmwe9G+W2kEfFe70fYaQWRct+MgOU+RNa9CWG7XcBNCDhfg8i8P0TY6qNI2NkqBKCD9Gh/gEjK4/ZrxO3vc4DPKTXMra3ig25pEXAcDgtQfuwxAcGFj2H/fsGB5eVQUyNsdE2NqJ4ffFCet3mzHOvxQGkpLFwoWDJqL7XNm8VnDdDXJyDessTjHQpmUQr+6AO3TILp7q3w13tFzt20VtK+0wMQPyz+6dhhWdOOkGzElH5cwLhlSQDa29fLho13ml3HtVFCzArzGikB85lRKJ0nQFxRBISbwEi/sMfjI3D+52Dnr6WLemwIfv6jSaa5pBycLpt97heAHSqRY4b6JKQMwOESpvrc82CZDZyzGem11jRYtRoSUTk/WxaESiUwLZUAVUN16Rw5EubGG3cyd64w8Hv2dHPkyAQLFogK5+jRMNXVARYurCMWy3LttduprQ0ya1YJHo/Uc61a1cQdd7QCEItlGRyUTb1Fi+ro7Y3S1xclHs/i9Tq4777P8KMf7aOiwktvb5RYLEs8nuOjj8a47rrtWJZ1UkZFPp8v5kyYpsmll15KW1sbqqoWAXUsFsPhcBRBsc/nw+v10t7eTj6ft9nanUxMTLBkyRKamppobW0tbngWar46OzvRNI2mpqYiOLfyJslshh++/gx1wSq+f+HV6KrKVQuFzS7Uaz21/wXimSQmFk/Zad8FptrC4vsXXs3M0mkMRceFnU7FaKppLCaDP73/BZpqGll66iJKPcET7v8d00OVXLXgC2iKikt3MBGfIB4fwrIsLMsgk4kWAfLChTfh81WSyyV5/fU7SCSGWbbsMXy+KnK5FLrupKRkNp/97CPourso/+7o2IDbHSrKzRVFI5EYYufOG8lkYphmvujfzmSi5HJJdN1NVdWZdHZuRFEUVq36jc2kFyxDU2NqTI2p8d+PKXA9Nf6Ow5IarOEbbWB8FPJDNutoP24lIfWmJIS754qXtuxmYQaLdUlrwErY0t0BYROHroN8N7jPPtlrbQxB9pgcqwbAeYrMVfBoo4hn0OlEcbpRAiHU2hmY+ztQF7ahqBqWKoDYyudE0uhwoLZ8GsUfwLJrTn71618zr6mJ0z52ShFwK6qKNT4K8TjqmWej1NRijQ1jbPs1it+PFY2gNsySNPFcTtjtVAKHrrBgQS3xeO4EVqUDRYG6uiAPPLCXurogHo/Oli0rqa8PEgg4effdl/jLXz7iz3/uZf/+v/GXv3zAli0ruf76b7Bv3zt0dx/izTff5fLLr8CyLFpbG5gxI0RbWwOpVI6nnrqIZDKHYYhMcXAwzqJFdcRiUr0FFGuyIpEIAOFwmF27dhEIBIjH4+zYsaMYUtbU1EQikShWcxVAciwWo7a2Fk3TqK+vZ9++faTT6WLq7bx585gxYwbxeJx4PE46nS4C6wJTY1mFtfQdGxzHYOjbcqv6oeZxJEDPDi3zLhaWW/GJCsLK2ZVBDnDMsv3XJ3r318rGT80We72snfT6wyTKKswFPPjQQ/zil7/k1R3bKAl67fnhkou/zBOP/xjCXby1v5O+/n4Wn10/yUrrNkjmBI/1fwbcBdu07hIWvBBuVujLDneBkWH1166QULV39vP5L3yRq665BiJH+cynW9ne/hI0NPDbv/2NsB1odm9HB4Zl4XM6ORIOc92OHVT6fDhUlR/u2UOlz8eGjg62HjzIvR0dVHi9rN+9mwW1tcXO7A0dHZS43cXjNthz9sZiqIbB577wBbZecw2LFy5k5fLlHD98mLXAzK9/nX1z5tA6bx4XtLTw3ltv0YYA5hjCRj8ApJA08bcQcD2KsN66fWwLkwD8ReCHiGx8i31bMKIoCJB2I+FnA7JCGAL+6hQW+vhxSQkvgOuSEvFDP/ggdHeLZNyyYO5c6bI+flww4PHjcMMNwnT7fPJ9Z6eQrooizHRnJxw7JtJwVRVwXlUlz9+0SZ5fGHnTidW0TjzXp98qL3r6beKp/uRmYaf9s6GyFdKjUNkmcvDKVvu8lwZXiYSTOUvk+2SPsNmY8KdboKIVPvEYeGpg8csi/9bc4PCDuwY0nySGj3SAe5r8Lm37JRzYBxMjUFkDl18rQHnHr4R9nhgR6XcsIv/nxtNh+69kM2D7r05gqG2JOJYce9kaqKoV6fd/bBYv9/gIqAoES0RGXghMm3ma/IzpJLmcyfr1u5k/v5bBwRidnT3Mn1+Lx+Mgn7fYuvUg3d0RBgfjrFmzjcHBOPPn17J+vfRbf/TROD09ER57bFmxjlDyKrx4vQ4uvvgMFiyow+12kEjkuOaadsbGkjz66DLmzCln8eIZxGIZolFpXjj//BnS+dzQQCKR4NChQ0Uf9fbt24lEItTX11NaWoppmsVgsgKgLoDiApj+4IMP7LRzOVd2dnai6zoXXXQRJSUlgGx4tra28r3vfY+VK1eiqiqf+tSnKCkpwTRN3E4X9SXV3Hr+P2Ji8ef+D4llkpR7Q1T5J9nsby74An6Xl0gqxlV2SNnX519EwOXDtEz+3P8hedPgJ/t/y85DexmOj2OYBt9Y8PmT6rlu+fRXSeUyJwWduTQH00OV5Iw8fqeXSn8ZPl8V+XySeHwYlyvEihWPU1bWSHn5aWiaE113U1/fSkfHBkwzj667KStrtCXbCrrutsPN7ix2VyuKVmS6Nc1BR8e9HDy41Q5C04jFBk7ybxdSyFtb15LNJqivbyYS6Z3quZ4aU2Nq/I/GVBXX1Pj7DSMKyd22J3omGHFJaEaH3CEYu0/Cy7QqGP4eVD8pKdBjGwTc6NNOrtOqeULAzdBNwib6LgS91n4xu5gn2SHd12pAQszGNgiAcswCDKy8p+ixLqSogoJlGiimhYWJgorZd5xv/csGtv/hDwwODVFeWkpAU/nwz39CKSmnpaWFbyw4h2+s+z5KeRVWeAxz9+uoiz4NJSHpxbZMzL4eGBtBmf0xFH8QK5fB3PkiavOn5bWdLnK+EHkTotEs/f0xNm7sZN26NmbMCLF6dTtbtx5k1aomtmxZiaqKFPHYsTAbNnRwxx2t+HwOSkvdXHfdDh588EJGR1Ns2LCbW29tprGxlGRSpJRA0V/41lv9nHtuLWBx/HiUzZv388ADSzFNi0zGIBjUbevjpAzR5/PR3t7OoUOH+M53vgNImJlhGLz22mu0tLRQUlLC8ePH8fl87N27l9bW1mINTWdnJ5/5zGeK0kfTNInFYnR2drJkyRIcDkfRp104pre3l+rqavxeC2XwO1B2AzhnAU5EUKyJl18LAQ6xHZgJYbfNpC3ftvt70RDIlefkQif7MTNmA3KHXbmlyPMLNW/ld4p3W3HS2ztM/cxTmT17NoGAbBa5nC727+1kaHiIf/iHr3C06zBOl5vHNj/Op08LQtWZItkGO+zPglwSXIHJRC7TgOhxkZRrLvHCKprcxvslWTxyVFhuTwWEGgVsx3t5+9AwF192Jcc6fwGeCqySRqrnzuO2m2/miksu4d2BAeqCQWbY3s3V7e1sPXiQVU1NPLFiBd2RCL3RKHXBIBs6Oljb1kZvJMK0QIBTy8vJmya6qtI1MYFH10nmcsXjZpeU8K8HDlDv9dL/3nv80elkXVsb2599lm0vvcQ/7drF6IsvcuHy5Xh1nV+3t3PH9dfz9rFjBOxPwpBPEBXYDZQjDPe1COt9JfA44qN+EwHjPfZtAwLC7bMLHyJsdR3CiM9H2O5qxHySz4I3JSFjW7cKoN6yRULI5s8XMNzRMem/vvVW2LNH/m3ZIs978UUJO3M65Xnz5omcfONGSR4vK4PvfU8Ya5dLjt2wQaThFRUSomaaAsDvvx+eeTqJpuRQRjshcRwaLhNmueCvz0XhwG0iGdc84q9WdGG5LQPyKZg4AJULBYAbCTh4r4D10T0Cxr0NkOwWUJ5Pwntr4ax7RD5uKTC6VwB2egTKPy3J3qES2ZBUFDBMeXMyKXj+aQkhG+4XAL30EiirkCTxyhphtbf/UuTeoTJZ4E6n1Gwtv0xSxX/2o8nKrSuus1UbyBx/OwAVNdB4hqiNEnGS7iBdvSmqq30YhoVhmNx+++vccksLs2eXcNVVL7F58zL27++jstLHyEiCxsZScjmThoaTz6dPPLECp1Mll7PIZo1iMKRpgmFYXHONHNvefjl1dSE2bNjN2rWtzJ5dSj4v1hO3WyUaDaPrOj6fr1gr2N7ezsGDB2lqamLlypXyK29Z5PN5MpkMLpcLl8uFaZpF73U2my0C68J9pmmSSqXI5/Ps3r2b5uZmSktLiyGShmGgKErx+EQige50kFUMLMtCU1VcupPuiUGeeeslvnHu52koq7EDxyyiqThBTwBNUYuVXQowlowQ8gTQFIXe8DBP7X+BtRd8g4NDXZxSUU8ym8bv8uJzuukOD/Ef7+zg9vO/hmGZaKpK3pAaOU1RMUyDaHKCSn+ITCaO0+lDUVRMM8/AwLvU1s6XMFBL7FORSA+lpbNRVa1YxZXLJXj11Vtpbr6F0tJTAJNsNl5MAZd6rzy5XJJXX72Fz3zmPhwOL9u2rSlWeK1Y8QSgYBhZ/vrX5ygtnU1d3ULy+TRudykOh/u/u6KZGlNjavxfMv67Kq4pcD01/n7DTEH2Q5HsVj8G5CG1X8LJct3QtxICV04+prikZin27CSYzh2x+6zvtEPNbBBk9Nv3rwV9BhhjoFcgl+am3JpxyA+IHFivBRSsvI41MSZea39AgsyMPMRjoDtQ3B7Mvm4UXwArEUMpLS8GkVmH/iKy7oZZmN1HMZ/7N5RTz0RbebE8fvAA2vW3ywVkLIYVj6LWzcBSFMwdL6C2fAorGsX8j5+gXv5NlGAJZsfrpD7zJSxVJ53O4fE4igB4YiJFNJpl06ZONm1aYifgWmiaylVXvVS8SHzyyZU4HCrZrCS0rlmzrfjYj3+8HJdLI5eTi8Hh4cmuV5CLyD17umluriedzpNIZJk+3Y+mcdKFX4E9zmQyDA8PU1NTQywWIx6PU1tbi2EYZLNZAoEAhmGwffv2ky4u29vbixVbnZ2dtLW1UVJSwksvvVS83+Vy4fP5bC+jWbyABDCNDG6niZI/Lh5oR72E1HnmA7qoH9xnCdtmmaKIMGPyueeOylqp2iSP54fBSkNuWKq2iiAbuT+1Xzz6ihe0MnvuM8S3bSakuqv8FnCcJsA3nxGA6wwWgS7+Ovlad9lZA2axgxp/nQCVghQxG7MBlANyCRj/AMpOF3CtKCcAchuBF17D7rLGzEImzD9841uU1TTwo7uvB38dlu7ivE+dz7U33MDnPv95cqaJAiRzOYJOJ13hMOt37+bOtjZmlpTQ2dPDJ6ZNw+NwFIF0zjRJ5nKMJhKs7+jgtuZmZtsX97qqkjdNHKpK1jAYSiQIulwEXS6yhsG+3l7cQ0N89coref/YMY4pCvci0m1tdJSzpk1jbyrFGbpOHKnYqrJ/g2PA7QhzPYKEnT0AjCOAugCWK5Etlu8Cv0aAdA5454RjwkgI2loErKeRjzFve64LndMeD8yZI0D76aeFaS70YK9aBXffLZmFs2aJ7/q99+DssyXPyzBgdHSyK3vVKvFZDw/DjBmCR6++evKxJ5+Ujzafh2uvlftj4QR+R1TOX4pDPv98UmTip34X/LMgHwXVA7qtyEAVafgHP4Qz7oBAo8jE86nJzuuZV8I5D8h86VGxK+Ti4AhI+nghObxpLTjL4E/fE7Zc8cl6y2bg6N8gVC4ybacLxobFJ61qIv0uAOSvfkd+WBTZOSjsGhWuQ478FbwBqfYqyMu3/1IqtyqnSfl4ZFzuW7Vajttud2CXVZIwHORMi+7uKOvXywbinj097NnTwxNPrGBwME5dXZAjRybYsKGDtWtbOeWUUjo6eqis9KJpKhs2dLBunYDkdDrPxESaVCrH+vUdrFvXRkWFh2DQRVeXzLF583Kuu2578Zz61FMXcfRomPXrd7NlyzLy+TS5XK7YQ11aWlrsqC6c5wzDYGBggKqqqiKAtiyLl19+mZaWFoLBINFotMg+53K5kzYsY7EYXV1dlJWVEQgEiMVi1NTUkMlk8Pl89ulBztM5DHJmHsM0i+D6T32HKPUECLp9ZPI5frLvt3z93M9RW1Ilv+eGQSafJZPPUOIJoioq9/3+GS4/57PUllShAKqikjVyJ/Vcf6v5YvYef48lcxYCcGj4GB+vO51ENkU8k8Tn9Mh53MoTcLqZmDhCR8cGmptvpbR0NqBgmjn6+t60u6lnoyjgdPrJ5VLFLurm5lvp6dlDT88eVq58EsUOpTyx1zoa7SEUqqOkZDa5XBKHw0s4fNTusr6T0tJGLMvANPOYZh5Nc5HLSZuB9F8XFHVTY2pMjf/bx1TP9dT4XzwMAdZlNyGJzhMChhwN4l39WFiAdb5HwsnMGNQ8CrXtdsWSy04O3yI1XIU5Ve8JPdcb7EajhB1s9hGSUp4R4ONogOxhmRtLLvKcThR/EMUCy8iLFDwShlwWY8dvUXx+rEQMtbYB3B4sRUVtuwD1kn9ECYYw2p8/yT+NoqK2no/SdDaKzy/Rwy4Xam0DZu9xiIRR6mZgRcKo9TNQr7gatW4GZuculPqZ6LrK8eNhIpEMR45I33VX1wSxWJbGxlIef3wFo6NJOjq6yedNVBXWrWtl1aom1q5tI583yOdNbrhhB0eOTLB2rTx2220tOJ0aR46E2bevl1RK+l5NUy50P/xwjJGRBPX1QTo7e/B6Hfh8ToaGxDeez+eLHaoFeXgqlaKhoaHIvtTX1xcv6jwejw3+Ndra2oqSR0VRaG5uprGxkX379lFfX4+mycVRa2sr8+bNo6ysDL/fTyKRKHoOT3z9vv5hQSOFXutcj20PuF7sAZ5zxVqQ7JD1oHgp+rL1BqnbwoTB62yLgRu888XDP7haPNi5I2I30Kvk+XqVHYZXC8O32mvLlDU8tulkX7QraL+uIqFmiiL3FQLNVFVAsX+63KpOCSmLHLEDyOz0emcQPJWTdV2WBeEjk+AkGxWvbUnj5M8HbHj4KQ53D3HvhvVQ0oilObEsgTZ/HRkhlctxTXs7Jffdx407d2JYFhVeL3cvXkyZx0M8m6W5vh63rhPNZDg8Ps417e2kcjl8Dgc90SgvHjrEfZ2dDNihc5IubJE1TVL5PD944w2GEwkJblIUWhsa2PLjH7N8xQo0RJ59HhJu9syPfkTT8uU8oeuoCNt8BJF0J5GtjieQALJGJPhMQ4B1JXC9fZyOSME3AX+SMwY+hM1+EyhF0sJvse8vCARcxiQbfffdUsOVTgvwve02ebsdDrjzTmhvF/a5vl6qtW64QUBzSwvccgv86lfCTIdCMueqVfK8QABOOcW2Pydk3sJco6PY9U9wxx3yHK/bEDCNaofxJQVEn30feKeL1PvP6yA9KCz2m6shcURk3Sd6sy2E0f74w7DiA5GCW6YAaVeFzBnvku8Dp5xQybUJ9ACcu1nk4hbCGDscMOcsAb8uj6zl8CjEojLviYnie38PzzwE46N2HzcCmONh+XrWafDH7QLMY2EJRrvyepk7lZC5C/Vf6dTk1zufB03DAAYHE8Xqwoce2sdllwkLresqPp+DVCrHpk2T9ppoNEtNjZ8HH9xHVZWPn/zkImbMKCEWy3LjjTtJJHL09ETZuvUg69fvRlEUYrEMdXVBnnrqIjwevXhOXbu2DcuyWL9+Ny++eIjx8TR+vx+fz1esFLQsq5j0HQwGi2C6kAQejUbZtm0b0WiU2tpadu/ejWma6LpONpslYdfX1dXVEYlEmJiYYNeuXdTX19PQ0ICu68W5CufpfD7Pyy+/LH5vVcdtV0sNxybIGXmq/GX87O1tpHNZBmNj7Dy0l9Gk1HIdGx9g/WtPE07FcDvc/ODVp+iLjHDb+V/D43SRM3JoqoqFhUtzcPWCL/LYl27jjgu+TpW/jKWnLsLjcHFo+BjfffFBLMtiJD7B453PM5oIoyoKbk0nm00U/dGdnRtRVY1I5Dg7dlyPz1dJNNqDZRlompN8Pks+ny76qzs7NzJ79oUsXfqw/RusYlkm6XQYn6+aaLQHr7eC3bs3EI328sADNWzb9i1KSmaxYsUTlJbOJp2eYGzsQ7ZtW4Np5snl4mQydujo1JgaU2Nq/A/GFLieGn/HoQlbqOgCnlWfHXKWFJCTOyqH5boFsBiDksbsWSAdxmaEIgut6HLBmeyUq9KTeq1VUDwQf1E82QWQlB8ALDtMzc4NVhTweCGfw+w5CqYl4HjGbMzOP2IdPIC594+otTOEyXY4ZI6SMtQZjSi+AOqSi7BiUdT6meD1YsWjKCVlaCsvFoDk80M+NwnUo2GUM846AZgHQdPRln8R5fSzyOUtursjlJS42bBhsu96xowSurom6O+P4XbrzJ9fy/79fRw5EmbWrFK2bFnJzJkhcjkTVVXYuHEJ9fVBZs+Wx2bPLiGfF4/i3LlVDAzEuOuuXcXwno0bOwmH0/T1xZg3r5qBgTimaRGN5ooVMSd6B6dPn05nZycgwWZ+v5/e3l6i0WgxGbdwwVdSUsLKlSuLXsMC47Js2TJOP/103njjDSYmJigtLSWXyxWBtN/vJ51Ok81mMU2zCLYrKyuJxjJYVQ8LWPYuFqtB1UbI9dtG1yEJxrMUuf7KHpGNm4KBWQ3K5o0+XQLOQMCzp0U2XwohZvnhE1LouwTIx7bKho4ZkzC9mkfldSwELGeiwmDn07IeYz3yPTC5qRMU0OIMMFmhZYeYaU5hsC0DSmZPMtbxPnD6TwDiNrttWQLQzRz333s3v/ntC+zY3o7XqUG4C8Wu4lKA0yoqcOk6a9vaWNXUxNq2Nkzgpp07OePHP+a7r7xCOJ3GtCwM+/Pb2NnJ/NraYr91XTDI85dcwm0tLUzzTzI8xyMRbnr5Zdy6ziPLluF1OMhbFp09PWzYsIGuri5+8MMfcgwJHvsHoOff/51fbt3Kg1u28BACqt9EAswCCIPtto+/GvjI/t6PhKA9wGQyuL1lxjBwj/29ifix5yEstoGw3yX2/3kMSf9+9FG47DLxWe/fDzNniuR7zhzBeJoGDQ3w8Y9L+NihQ5BMwjnnwA9/KGz1LbfAH/4g0u5EQp67ZYsEn61ZI1VfuZwcBzKXrovcXNPgnXegsVGYbBQN3GVymx6Bd26EfEwCysbfkU2VU78LKXu9VLYIIHZXile76U4bJ5iTGz8H7xEZOKaEoCWPSyp4+XxhrrGkJ7thFZyzSXzao28JaFYUSf1OJSWUrOugrDvTgtmniwQcBHD/w3dECn76OcI4Z9MiC//Zj+Q1slk4/Bdhsy9bA+ExSQCPhaUX2zLFX33kg0mw7vHBCvvrL38DRgbR8hlqanzFULJNm5YwOJhgzZptdHVN8P77wwwOJti0aQmrVjWxbl0bg4Nx+vtjbN68nGDQRSKRLZ7rFi2q4957O5g/fzIsMhBw0t8f59prt/Phh2OYpsXMmSVs3rycigoPlgWbNy/nvffW4PM5CYfD7Ny5k0QiQU1NDYqiFMFzQbpdGCeGkXV0dDB79mwWLVpEX18ffr+fWCzGrl27iMfjnHHGGdTV1RV92vF4vJh5EYvJBuiJieGFQMkd27ZjYZHMpvC53OiqxnB8nK9+cgVD8XHOtEPIzqxpJJFJMpaMFB9LZJLsPLSXofgYfZFhfrznOcYSESwLktk0w4kJpocqqfGXc+/r/0oyl2YkEeZfXvkJVf4yHvjcdzGxiqFp//7Odty6C4fuQtfdXHTRT/jud/u58MKHsCyrCLb37n2A2toFaJoTTXNiGOKBvvDCB4vJ4cFgHcnkOIaRxbLyKIqK0+nD7S6htnY+Hk8Zy5dvxu+vYd68r/GZz9yHZZmoqoZp5shmY3R2buTQoRdxOLyoqoPx8S5isUGmxtSYGlPjfzKmwPXU+DsOw5ZkT7OZQwsGrxdJt2eRhJcpCPgNXiYVW+55dlWXXXcEiMQwLrVKngUyj2OWdGM7ZtvSbz80dstchWTwsQ0Cys2EACYmL3LQdNSG2ZCMY7Q/hxUeR12yEqXpbGGjHSIfN9qfl4s+25eNpgnzXVOLpWoomg5eH+RykgBumSiqhrln10lAXdEdmJ1/RKmfCZoOlomx/beggKZrLFhQy5tv9nHzzYuKF3maptDfH6Oqykd1tZ+33+6nqspHd3ekKAHPZPJ4POKPVhTo749z1VUvcfRoGFVV6Ozs4XvfW4SmTVbQbNzYiWFY3HprM8PDCVpa6hkaShSBd01NoCjHjkajdHV1EY1GUVWVZcuWnZT6XVVVRTweR1VVIpEI27ZtK9Zq5XIC0nt7e1EUhYmJCbZt20Y8Hqeuro5oNIplWei6XmRzwuEwPp8Ph8OBpmlFP6Hb7cbj8YIxIqFmZgzy/cIoO6YDOnhbZK3k7cR5R42sISttV2kVkuh7BMTmjsLoXfI8rXoy3Myz4OQ1VEgRL78NtBoJ5RtcMwlg4r0Cek+8LVRtKfb6BXnNyJFiBzWh2SL/9tcKy+e064ryaQksy2ekF9tVcsKcAwLSbbblwY3r+cXzv+PV556QwKMTXluxsb9qS/pnl5Tw2LJlTPf70RSFdTbYvq2lhRK3m329veiKgkfXWdvayoWNjWzs7CyGlrU2NHBqeTk90Sir29vJmya9dl92Kp/n2zt2kMzlcKgq7zz/PNtfeomZ11+Pw++nW1GYC2z+1a+4+Z//mS2vvkq2uhoF6Z6uQpLDM8gfrR77/q3Aj+xfWRMJMruTyWRwj/2YG0kM1xGg3YIEl91o385FpOIGUJOFrsMCfgvp3fPn2ypmBECb5mQo2cCAPL5xoyR/L1kizLTTKb7pzZtFGn7uuQKwBwYk/OzXv5avPR4B8o2Ngk27usSzffQonHaaJIdL65IhfdSaQ1jo7q1Sm5XsEQD99vXgmQae6fDWtVLVdfYm2WSZ/yT4ZwrbHf3QrtoahlNvsvvQdXBXSSVXYS7DZsld5TD3btn4SXZD6VyIfSTBZamkMMiRMemaHhmYBMmWbEwSCApIzuUkkCwRg5Iy8WG/9YbMMTECdbPtc58lknBNA39I/NiWJcc/vl6OvfJ6WeNON3zl2+D2wPZfokbHAaivD/LII5/F73fidGq0tNRz//2dVFR4Wb9+N16vgyefXInHowMWZ59dU8yr6O+f3GS8+OIzuPPONjwenSefXMnMmSVkswYPPbSP885roL4+WLTpuFwawaAwwu+8008mk8fr1di9e3cxuTudTmNZFgsXLiQajRIOh9m2bRtjY2MoioLL5aK5ubmo6gkGgySTSUKhEJZlnZQCrus6iqLQ2tpKU1NTkeUu1HJlMpmTEsMbGxvp7Ozk/fffJ5VIUuYrIZ3LEk5FOa1qJj6nh9OqZuLWXXz/wqtx6U7KfCVU+8uIpOOcU3sqFf5Stl31MJ+oPY0yb4iP153GM2+9hKJAOBXjx3ueozcyzGBc2O94Jlns0n5q/wucU3uq9GzboWnfXXwlyVyaWCYpp7Z8hoGBd0mlxgBO6L6+E4fDi6Jo5HIpDCNFT08nicQIy5Y9htdbQSzWTyhUByh0d3cwNvYRgF235cPnq8SyTEzTYNmyR0ilwiQSw7aXW8flCtHcfCuXXvrCSYx5PD6AZZlMjakxNabG/+mY8lxPjb/fMFNSoYVppzoHIfZbSL0B1Y9IZdbYBjsoql6YazUAsRfkmJot2FpbmSM/cgIDrQnrWAyk0uUYTGHGh2+RsDS9HhQnhRArK69jZTOQSaP4A0WvtNJ0NtrKSwALS1FRLPNkX/VFq7AmRjE7fo/aer7IGsNjmHt2CSh3OGUPoPsoSiAkjPbQAGrDLKnosqu3iEUwO3ehtl0AhoFSUkYsp5HOGAwOxunpiTB/fi2RSJqaGj9HjoSL3sLqah9//vMQ8+fX4nJpXHvtdjZtWoLP50BRFBKJLO+8M1AM8lm4sI7+/hjd3RHa2ho4dizC+vW7WbeuDZ/PQUWFhMFYFsXwnlWrmnjmmYuIRsNEIpFiyrdhGPT19REKhYhEIvziF7+gqamJxYsX4/V60TSN7du3U1tbS2NjI4FAgGg0SiAQYHx8nEAgwOuvv878+fMpKSlB07T/4ulOpVKMjIzQ0NBAOBwmGo1SU1NTDDdz6lnUoasF9M76QIBxIeyu+jH5nPMDJ99f8+RkNdtJx/8Yhq494bgtsoaslNgXrOQJwXrT7TVkB+ANrpbnzckJyDCzApg1l7DYDt9kTZiq2cS5/X1qGDxVJ3uzVV1CzEKzxJedT8scisgfJYPNPj44U34Wy6C3b4D6Wacwe2Y9gWAJoOByOdn/8r9zz6PP8sRPfsrwyAiBQAC3282zO3fy1KFDbFqyBK/DwXgySYXPh2lZaIrCodFRGsvLi7JuVVE4eoIvuz4YJG9ZXLd9O1sPHiR8220cC4fZ0NHBrc3N7OnpYU9PD2d1dfHcr37FC+3tvNzXxxWf+ARZVeXnW7dy17p1fPe117hsxgymI0A4hDDXlQgrfQfCPM+3729FJOC3ALciMu8MEEFA+TGExV6HgO0SBGx/C3gWAeJ3I2FmacAVh2u/Oel/fuSRySCyTZtEzl0gG7u7obdXGGdNw66pEzCtqpMYU1VFKm7bX+nvh8FBeV5//6Svu6ZGZOVbt8LLL8OCBUWnCl5nAsXM2V3oR+Hgevj4g2ItKPinV/xNGGh3pbDbla0CnONHJYgsG5Fu7O6tkjTurYODG8RPrXnBWTo5V8MqmL9F0sE7Lpaar/IFUst18B74xE/EFI69cxeZgJE+SfZ+/Xdw8TflftP+AfJ2In8mLeA6mxWvdsPHxKdtmTA+LCniKy6Hsio53sjLm1tgyd0eeG+/nGNnnQpHD4ksfaSfeGgax7qjVFcHcDo1VFWRKQyTdDrPu+8O0NAQoqLCyy23vFrMqlBVRfLYDOu/hERqmkI6bbB/fy8NDSFmziwhHs9imtKgsHFjJw8/vBSPRyeXM3nzzT7q6oL4fA5qa/1EIuKvbmlpwe/3MzAwQDAYpLS0lJdeeomDBw9y+eWXEwqFiMViRStNQZVTUlJCT09PMW+i4NWOx+NMmzYNTdPIZrPouk4kEik+7vV62blzZ9HnDdLmsHv3btra2giUBhmKjVPqDdIfGeGZt17ia+dexIzSadz3+2e4vvVSvE43f+o7xJzKBsYSEZ556yWuWvAFSjwB7t/1c76x4POUe0N4HC42vPZTzpzWyKIZZ1HpL2XDaz/lpsVXMp6M8vT+F7h64RepC1WTtwxUFFL5DG7dSSafxadr5LIiw3Y4/AwPv099fTOa5rRZ5QSvvnoLS5ZsIpkcQ9fd+HyV9iavhmXlUBSNbDbB0NCfqatbiGkaqGohpBJ6evYQCNTa3usGQqEGDCPHwMA71NYusDM8NCzLoL19dTHobNmyzTgcHpxO3//Zdc3UmBpT4//3YyrQbGr87x1m3O6d7rHDx24V73R+WLzQBZBS2y4BUmMb/tMxs+yJDJkHhKE2oxK2o2iTSc5VD0tV09i9dvjZLCb7jIDkHnCfjWWWYWVScuEXCEJ4XFK+2z6DUlqGlctCLFoE0VY0ghIqRQmVCsN9YqhZzzEUfwAlWIKVTqHY/mxSCZGDK4qkkudyYoN0OjG2/Qalth71jHlYgPlqO5kLv8zRYxNUVQVwuTSGhxP88Y/HuOSSppMuBO++ezGVlV7cbp3BwTjbtx/mvPNmcP/9ndx332fw+50kkzluueVVvve9ZmbODOFwqCSTed5+u5+zzqrG73dimhZDQ3FKStwEAk6i0SzDwwk2bOjg9ttbmTMnRF+fXOwlEgmCwSAdHR0sWrSo2Eu9Y8eO4sWk0+nEMAwMwyimf58Y5BMOhykrKwMmE3NBJJKFFPElS5YUmWpFUeju7qa6uhq3200+n0fTNFwOE3KHUf7L571OFAzJ3aJ8MAZOCMGbbXdam8J6j90rDLQ+W7zaY+vt58+QY/LjkHwDghdT3NAxJ2D8fgHajpmQOyZrteZZJl289vjPwWVGRkC35jrpMMJdJyR+z7bBufM/zdEnc2iuyXWMIt7beJ+dKO6WxyzTToxOC/Np5LBcQd4bHqU/FmNhXR1rtm2jpb6elvp6NnZ28vDSpQwnEmzo6GCdHWqmAkcmJqgJBBiMxeiJRplfW4vP4WA0lSLkcpHM5YhmMkwPBPjWtm08+/77rGpq4u7Fi+np6WHpJz5B/cyZBAMBVEXB6Xaza/9+Sh0OKmtqCJSXMwJMA156/XUC5eUoCMvcClxGwVUp7PUxBGh3I4ngZyHAOmj/+ybCcG9HpOA6kjquIN7sWxHg7sdOEc9C/d9g/XrxQc+aJSx2SwtccokA5kQCpk2Tr3Vdkr4ffBAeekjwpG4TsLGY4EKHHab91lvQ1CTd2YYhoPvb34ZnnhEg/8QTMtfGjRKa1tUl4Pvss6G6PI6aOCrp365KOb/JL414qw9ugHOfnDwnoolk3IgLcNY98lOnBuHQQ/DJH8taMVMQ+StUNMu7WpiraZ2w4t5aSPaBb4aEphk2wDd0GB2QOq4Vl0FppTDVuYz0VZ84VBW2/gTOWwY1dcJwF4PIqoTRNgx49jFhs7/9zzLf9l9KynhljTDW2+znuNwSpDY+LD5tpwssi2hWgPDQUAy320FlpQ9NU4jFsoRCTvJ5C11X6Ozs5dixCS6+uAldVzFNC1WVX8BC2Nm6dW2cckopXV0TdHfLpqZsdGioqqiA7rprF1u3HmRo6GYGBuJs2NDBzTcvYmQkwXnnzUBVTfr7e6mrq0NVVbq7u9m6dSunnnoqK1euJBKJsHv3bpYvX87LL7/MwoULKSsrI5fLYZomw8PDTJ8+vdiBXQh1NAyDxx57jI997GOsWLGCfD5Pf39/cbMxl8sxODjI9OnTiUQi7Nu3j6VLl+JwODBNE0uB3sgww4lx5k2fw7+88pNiCNmdS75Jf3iU6SWVaHZIWTgV4/HO508KKrv057fzwOe+yzm1p6KgiAQ8PiEAfOEXqA1KOFsymyaeTVLtLydv5plIRcnm8oS8flK5NOlclrpgCeHxw3R2bqS5+VbKyj6Gw+FG05xkMlFeeulqDh16kZtu6iWVGieXS9LRsYHW1jvw+aqLqeKq6rDzODL0979NTc3ZgILT6SumjafTUYaH3ycYrGX37vW0tq4lFGogkRjC5QrhdAbJZMJkszFcrpDNmCu4XEGmxtSYGlMDpgLNpsb/6qGJx7oYPrZRZLqORk7qGPYskIAoT4sNmr0CYsTQOpnQbAzLtGoQFBtsFOY2IwKcYlvFw13syL5aJObus4UVB3A4BRQDhErRln0RKzKBNT6KojkwO34vku6O39u91KVYioLaej7qqq+hTKvFisdQ6maAomLs+C3kspj9PULyeLyYPccFwFsW5kCvSCVRhOWun4mx83cQi6IuOg/DsKiqCjAwEGf16naSyRwXX3wGyWTupHCy0lI3Ho8Dw7AIhdxceGFj0S84NBSno6MbXVe56aaF3H9/J4qi0NcX46abdvLRR+PEYllUVSGbNaitDeJ0algW+P1OGhtLeeyxZfT3RzEMCdPZv38/1dXV6LpOfX09+/fvp7a2FlVVWbp0KaWlpTidTrZt28bBgwdxOBxFWWMkEiEcDrN9+3YCgQCRSIRXXnkFVVVxOBw4nU58Ph+dnZ0sXLgQVVVRVdVm4AXQu93uomxc10zIHUFRvMJGq0EBzjVP2v5pRTZo0n8Gx8eEiXbMEhtC7Hfy2TsabStBo6TLO2baYXn1k5Jx1QueT8DgVZA7LqFm4/dPSsSxJJ2+4m5Bb0ZWqrGwbESoniwLdwYmgbUFxZSxE3utFUVSxRVbpWEZAp5PlJYbGVtSnpHXLHi1C4Bd0QScay6I92PpLlJ5gw0dHcytqgJgbWsrSxsbGYzHuXnRIjRF4eF9+2ipr8dpKwni2Sy1wSAeXacvFuMrv/0tkXSaZD7P+0NDdNt959/ftYuj4TAblyxhVVNTkdle1NTEa11d7HvvPZ7//e/Z2dHBH/ftIw+M5nIc6unh3AMHuPvAAX524AB3lJcziDDNjyJ1WzmgA/FcVzIZYKYjcu8B4DjizzaAp5Ee62b7vhxwA5Ic/iQwCwk9A3gMOOaEmY3w1FMi1dZ1qc668EIByoODIudWVTuHzhA/9ne+I97q664TebhpCoPd2yvg/PhxWLhQZOCHD4v0uwDKV60S5trlmvRlG4Ykire0SBe2gikVW5pPJNuFuraRTvDNFJZZ1SF5TGThyWPgKhWg7K6EA7dD7wvCVp/7uHRjJ3vgT7eKlFxR4e1vwfAfRQburhbG+uC94t9ODtlS78I6NCd7rsdH5M3IpqG7S9hm2waDqsrtqqvlBzEMCSA7pUkqvEDuUxRYfql4qGeddkJY2XPyei8/Dx+bKz3XoTIoKYf6RvjVkwLWcxk7OFFn+vQgFRVe0mmxnoRCTrq6Jli9up2PPprg3HOnc9llc0mn83z00RgdHd1kMnlUFfx+Bw88sISGhiCGYVFbG2DevGpuumknAwMx9uzpJpHIEQq5uPXWZlatasLh0NiwoYOtWw/yyCP7aWtrwDQtTFMhGAySSCSIx+MEAgFOP/3/Ye+/w+Sq7qxf/LNPqNw5qFvdCkhCBCGCAEkgiWAjMjb2GMYYD46IILDBREuMwRiELYHBGEwOxglrsM2AQCQZDFKjQDIgQEKt1Dl35aoT7x/fU9XSnXt/9/71u++80/t5uiucWKeqdu211/qudQinnXYaIN4TJ554IkopFi9eTEVFBZZlUSwW0TStbO5Y6vcMw8C2bQzD4Ic//CFnnXUWo6OjrF27lueff57Kykqee+45Xn75Zf74xz+ydu1aNm7cyHnnnccDDzxQjubylU9TZR2HT5yJ7/vlHOuL538FQ+lMrm2iNzXEhz3bCekmiXCMbx97TnmdeCjKXV/6EY2JWm595RE6k/1EjFC5lvrRjc9iew5ZK8+2gd3krAJ7R3v52auPkreLhE0DTSkS4TiPbnqWbDFPW9tKtm5dzcaNd6OUhuNYWFYOUCxcuJxLL/0QpTQSiSba2laxdetq1q+/A6U04vEG1q69gmRyD5aVZe3aK2hsnE0220dPz7uMjOxkzZolDA19jqbpTJq0oGyGlkp1kkzu5Y03biad7gZ8crkhhofb0TQTpTQMYzyGa7yNt/H2/76NM9fj7f+75mWC2tY9+zCEByBzPjYi6fb4r/Fay8W0qhS7FJ0rplJOH8SO31/2rTdA/1UBkzkgx5lwv9Rn7ysDrr8FjIn4TkQyrZWSwea+zfdEvr0vm11dO7bY91BKwx8akJitlinCghcKAsB1HUaG8VOjaC2T8TVNIrjmLcTPZcsS8ZLcXNzHqyloYbxYAs+TGupUqkh9fYy2tg5mz25E1zUqKkJ4HmzYsJeWlgqmT6/BcSTvOhw2aG8fpqEhzl13vc2yZQupr48Ri8nA1jQ1CgWHLVu6OfLIJuJxk2xWGO7rrltAY2OMdLqIpikaGuL4PkSjCksKQSkWi4RCoXLNYDqdJhaLoWly/UZGRkgkEvuB44qKCl544QU++ugjli5dyhtvvMGpp55KLpfbL9fa9/2y1HHhwoXliJl92ZmKigpiEY/KaF7ALh5jOdWaSLn3LRFwhiRCq6RssDv2j+5yR0GvDmr6fandLn1WpvdI5vq+Oer2HvmLzhPjPHz5vOoNYmQWqhwDz/gCfjNdUi+t6ft/xlxbgMi+THaJ/C5tvy9zXdEqNbPJnZAfhtqDxIW8mBqL+WKs/tVHofDxgbzr0T48Qn08jq4Uju8TM032BFLuZQsXMqWqivaREe7euLEsF2/r6GBCPE5zRQUZy6LgOOxNJpnb0sJooYDreRzym99w/qxZPBxk+ALsHh6msaKCilCIZLGIphQx00QLh9mhFJXAvmF51wGHAecF238AtLB/1FYjsAR4DngGYbb7EefvaLCv0rf4BwgIb0Jiuc5A2Opu4G7EUTxR+vTkRIG8aZMw1CCO4fvKvkVuHCRLMYY7HUfqstNpcQj/4AM488yxrOx947VKz3kBBrUs2XfJCL708+y5FlWxXCCDVVAcgHCtTE7iSz/qIxu+s1QMyZpOFdbZLQhz7dsiFfcsAdj5njGJ+NQLhcn2LBjaJGA92iLO46EqkZZrITmh96+WWu3ojLEJIaVE4n3AwfJidn4qsu26CSIDj0REHq5pYxdp3wuXSYl0PBoXfwGl7cOKBzFc+RykRuCVv4xJzn0f3m8TZvuAg8kSor19lI6OJK2tlaxYsZ7rrz+eiRMreO+9Hs4++0+cf/4s7r//TExTo6cns1/fuHz5IiZNqgySE8Zk36U+M5OxiMVMfvKT17n33jMAcByPkZE86bTNihVvcc89pzEwkAtKbBZy0EEiyXZdl3w+TzweJ5lMsmHDBhYvXoxhGLiui6ZpeJ5HKpVi48aNnHLKKYTD4XJZTKkvLfWPpdbb28v999/P2rVrqa6u5tprr+Wss84qe1l84xvfoLGxkXnz5rF06VJiiTi272JoOuDj+dIr9GeGiYeioBQRI4Tl2kSNMJZrkylmqYlVARK5he/j4e/HeP/k1IvpTPbz+Kb/5OJ5XyFihqiKVmBoGp7vs+K1x3nh0/WcdtBx3HLqErJ2odwbtQ/sZmpUY+PGezjjjHsBhe+7KKXjuha6Hgpis25j4cJlxOONvPzyVWXWee3aK2ltPY5DDz0PwwgxMrKTqqopdHZuJB5v5O237yzLvE888RYqKpoZGtpBLjfA5MkL8X3J/dY0E993yeUGyeeHefvtO1m0aHnApEcZb+NtvI03GJeFj7f/U7McB8t1Cek6IcP4v1wnb9u4nofr+xjBj7oZrF/aXg8GAi5galo5M9P2PHRA2+e+UkruB3Waju8H6yiU56BEAA2+h6YUni8shkLH871yHZTc2mhKExPvQBYpzqBiTFP6UdaUgefbIhPDxvV9dBzQQrgegIaGg+fbQLgMpDV0xs5IaktB4fkeGuIy7fk+htIQixP5/nh+aV1QKFzfC85TbrV0Ci0UwjZNdB88zw1YG19qi/WSxBM5hudhaDpuahRVWUNIqbI/Fr6AI8v2Wbr0Ja750TwOPqg2GIRpshNNkcs4hMMS4eR6PoP9aV56eRfTptVwwgmtOI6P47jEomaAvQIE54+NW13XRzdUuXZU14PhUPA+Op7Uz3mej6npuL5H0S5ihkLlayfXx0PJxcNybcKhMJ7v0bW3k6bGCeTzeapqqvF8Dw8f5Stee/kVjjvuuP1quBcvXoyvoGAViYTChMIhXN9D13RM38coT4yoMflqySncnBDM1Wjgp8AzRAVRYtcIpKl6IDouDfI1C7xd4FWBapR9eg74g6DVA3rgnuyByiH8qJL313f3kXC3SFZ1Sc5brqsOnk/tDmqsA8C0r/TbLY4xzyUnsjLbHRyjVNddkpzr4f0l4kZEZOHBY1+P4LkWOV/HxGUoM0pTRRWea5G2PXJWkabKagp2EUOBoZso30HTTDxP3HhRis50joGCTWPUpCUWBs0kZxeJm2ZwXUogKrjve6ACh15fxwrHGdA04pYDBZeYDr6po4cMtiPA9xeWQ8xysXWNmOfhOj6artAUOI6PZmrg+lg+6KaGcj18XaPP9UiEdLSQUQbRd1kOUdtF+YFJmS5vtamPnWbI9LBth3BYR9dclPLxfZ2RUZN33g0xfz5UJHIobPbzc8AA38XDxLFdbCeE64V4712LE0+wUKo08WNjOyaa8oPMeAfLDmEYYOiWnJTYzVHyg7A9Dcv10DUD1y0SGn4Hp34BbtD/mEr664LnoysN17PRNVP6PiV9kq40XN/HVNK/h9w0odF/YjUsouApdK+IqWuElI/lK6z8MHq0GdcrEhrajNswD8s3MJWGC0RdF922UXrwPfM8Ac568B0xQmORW6mksM4EF17XwfWC5T5074IDDhEQXlquAMsOCtp1yUMDmeVwHDFAK0kIPA/f88gQw/UNbNtC13U0Tcc0ZfXBwTS1tQkMQ6FpLqlUnlgsQrHoEYuFcF3ZtW37aJqsX10dR9f18vO+71IoFEgkYriuhmVZdHSkqKoymTAhgedptLXtZufOEb74xQOZMiVGMjlILpNl6uTJKE1JAoLrEQ3/n8pBoOw18f/ULNtBUwqlKU49/XRW3nEH115/PT/8wQ/40jnnoGkaF33rW5xwwom89vd1HH300Vx00UVEK+IoXaPoWCjXo1jIEY3GGcyMEtdNaipq6MwM8+SW57hm0TcwPB8Ln53Jbo6ccCC+4zBYzBAORxjKJXlqyxquXfQNDA/CoQh4HgUcHNelUMgRjsTwdY1KLYzn2OiGKe+vUrzf+zk1FbVMqWxAOS66qaP5Pr7nYnsWpi6zWErX8V2X4eQuKuNNmKG4lFV5QZ+ikPdfKXzXRmk6KE3KroLfRNvKYuPgKQjrMUwtUE2UVBha0BEEt5ZbZOu2vzLtgC8QTzShafv2Z/5YX4YvfXpgVip9iLvf8+VjlH5YS2MFTQ/qwsfbeBtv/53auCx8vJWb5Th8NjTE955/ns+GhrCC2tbSskyxSM6yGC0USBaL9GQypCwLy/MYyufJFot8NjTElWvX4nge7aOjXPz882wfGiJn24wWCmzYu5dUsA/P83B8H8t1ueqll9g2NESyWOStPXv4bGgI27HwPQvLSjE0tJ2Ozo04nofryQDUx8e2c1hWmmx2CM8TJtJHTK4sK41lpXnxxSuwrPR+jp4+wiJ7novr67zwwpXkLQfb8XFdMeFxPChaDtncUHlbR2lk7AJZu0DRsXA8D8dz+Wf3drqSAziuzHA7+xyrc7SfW195hI7RfiEmA0ANPgXHImfl8Soq2V1Icvu6J0i7VrkI0wWGC2l6kkNyTr5Hpphn5etPkbby+BWVGAphzT0P1y7S/fE67HwKU3N45OEzOeSQOnED1zWUhHNj50aJxTSKqW40LJSTguGN/NsFUzlxUROF0R5M3SWsW4BkY/uuRW64G7uQJDvcBb6LrkPPx+twC0l0Q2HnR+n66FVs1yFdzDGYHcXxXDzl4ykfV/mEQuHytXN9uX6DmRFcz8VVfmBAJmxJ86QWzGiYRE2lJFcp0JVGwbX44mmLGUmN0tLSwgXf/AZnfuls9IiJFjLYme5BCxmB27WG4fsYA32odEowjq9g1+dQsMDxwa8VjbDnynKqgH0owtLgx3MhXxDzpR2fCNh2TVAHg1Upjsf5LIyOgFUBrg/93RIp1NcHTkzAQTARs7+EW65pWSK+b9SW747JvOXN2F/6rZsCnl1L6rHdgrDTeFAYFlYxXLm/5Bx//2PDfo+Vk0VL7iChXMJYtERNNCuF6dvUhDRaK6vQfZuEBhG/iI6H7lmoZDv6a0vQRrejWWkmxUMcVJOg1elB+/tSlJUkYRooz0bl+uXWc1C+J/fdIsqz0T2LiJuh0s4wMVek/7Mhrrr4eXZ8NkR+KA+ZIoOWw3GWQ//2IeycQ9QRYF0sOji2V5b6ZpJF0mmLkAJluWg+aLaL3puhb9sQ0bzN9EyRB3IW4ZyNa3mkkkXaNuzFzjsM9mVwbI90yiKfz6HsbSR4E0PLoSlQTg+an6S2aogvnpwjEc+ivCTK91F4wZ+GwkVRQKNIOOQSj1lUJrKcdGIWzU+inEHwLRQapmFj6KDsnej9S4hoOzC0IsrLodh3v2B5iqGCQ2cmz2jR4q3OPnK1x5EM1CMALhpFXzGYzeEBSjOxPE9UCo7DW3s72Dk6StF12T6S4ntr1vJZRpGpP4mcq+jJZBl1NIYsRc6P8Nlonkv//h6jloXlG9gNiyh4BrrSKHoeYcdB37ED1dYm3xPPEz38xo1CwZthAcN9/QKQq2tFG3/xEvmO7doNl1wCu/cIoJk8E2xH9tHTI9S/HTDcpXKJUBiKlnzHOjpFW9/eTiDroVDUyOQMLEsRCoUwTQNQpFIKy1JUVVXQ1qbx+eeKVEqnoiJOLmcQjYZpb1csWaLYsQM2bND4/HON2tpKOjqM4HnF229rFAoG8XiCdFrjiisUPT0hKisbyOercF2dnh6N4447gBNOmMPNN1fS3q7TWF/PAVOnyISy6xHKFYmiUKmMWHL6oCwH5fnomla26dzvL+BBSo9DpoGp69x9zz0sOn4Bxxx9dHm5rmn85Zln0FyP711wIY5to5Sira2NkG4Q10NUaCH87j52rbwHv3eQqVUTqA9XoDsek2O1/OSEi4gWXbbesRK9d5CjGmeQ3bOXd26+hfhgigoMpiYa+OnJ3yWBQcj1wXFQnkdMmUSLLmr7bhKeRrUWJtfZyfD7H5Ddu5fNN99MevduZldMJKGZuOmM/LI7Lsp10XyfkB5F8zy01Cgqn0NLJ6lz4oRWP4Eq5FGOi9qxdex+ahRtsA/99/ejFYuogV7UH+5H5bNyzY0YMbOShFmNqUyUKxNsynVRaTmGGh2W9XdsxfQUh8z4EpoNmtLxPTcQD3mBYENmnH0ffNfGKWRxrTy+65QjJwm28Zzi2HPI5IFrF3GtvEy0j7fxNt7+t2rj4Pp/ULNcl9vfeovVW7dy+1tvUQwsby3HYSifpzOdLrMcpeb58mM/Wijg+D4dySQrFy/G8bzyvlasX89QPk93Os1hjY3oSpEIhcqzsyjFL087jepwmKhpclxrK4O5HIaSjMlQKEFt7QwmTVoYRCsZeJ5NsZjm1VevI5vtJ5GYgOc5ZLMDeJ4TbFeBacY45ZRfoGkG2Ww/IyM7efHFpRSLKUrUnue5zJ9/PaFQJUopdD3EyMheOjra0PUQ0WhteRvX94gYIeKhKGEjhKHpGJrGUS0H01xVj6Eb5B2LlX//LVkrLwY3hsm3jz2HhkQ1nSkB2p2jfXJ8HyKBuc/T773MVSd8g3goIpnBnstQZoSoGaEmXkHXaD8f9XxOLBThui98i6gZ5p/d29GVwi6k6P74NZxijroD5qA0HWWE5IfedWSm3PfxXBvf9zDDCVCKWHUTKI3B9i0ke7YxsGMTStOJVTdhF7L0bW/DLqTJDndhF7JEKusxwwnitRNLnwAmHLwIpRsoYLD9HZI92/CR+KaKcEwmCYL6ui+deTbzjjmWk48/gS+cdDJXPHAzvalBTpxzPMccMYfj587n+GPn8x+rn6Er2c9trz5K52gfmtJwPZePej6n6NrEQhGUppg0eTK+oWidNAnLsbFcGSQe1jyDT3rbheVWYHieZI5bRcnb9TzJ2sWH1UEBq+/Dru2UHYhTozDQF5gzuTJg3/WZSFQNE6YfCo4VAHIXIjExUgqFZcCfGpVt1/0nnH6+SFc1HdIpocn8gLlItEj9dKI1YK3V/nXVpedLNdY++29X0SosfKhif0AeqpBjWCmR/Lr2/rXasP8+fH//x3oEVTEZrBSq+21Ri5gJSHehutvAyaPcomRyv/5D1Ojnch3SHbBtNWxZCcVRlGcT10GZMfjCvSgzwamnnsrhh0zjyBO/zKIvnsn7H24FpfPi2leYs+AUjjz2eA479kSe+vNz2J6B4/iEg8iku+/eyOhogUza4vChPN/MO7Q0JnBdj3RaMohtW9yfOzpSrF69FV2XWtvdu0cYGMiWDaomTEgwbVIVuuNh5RxwffbsSXLppS8wMJBj9uxGli5dSzZro2ka6XSR6kpFiB6IHIEiUPfoDaDFUVoUXcuhKw+lIoJ4vJQY2+Ei7u1RlLMHepeg7HaUb6N6LxWDPWOCTIB5KVSuTUoWzKnQ9AjKnCwkZuHDoMZ/iZQXeDlsTw/kuxAxDI6fNAld06gIhdg9OsqSNWvYPjRExrJoTCSEyPN9HM+jY3SUTV1dzG1pIWIYhHSdFevXl38H0pZMhNVGo8RMk4pQiGLQv5eyzN/u7GTHyAgbOztJWxb92Sym46BiMSkkLxYFFMdiYnm+aZMUli9dKu5vW7YIWK6vlyLyVEoc41avFiC9twM2tBEUPUsOWX+/MNa7d8P69ZDPj/2YKQUrVsj2d9wRuPJ7ONEEFRWKcBiKRUV7uxw+EpHDXHWV4ogjROqvaQrHUei6KHO6u+Hkk6GxUbFwoRzedVX5MCtWiHu75ykuv1zR06OYOxdWrFDU1cGECYo9exQ33wx79yoiEcU118CUSR6qYKG275HJPnyIR1FFCypL6RZAyBBjt/+7lsqgXA/yRdi+B1Ww+Hjrx/z1r3/lpit+EOwb8Dx6u7q57ZZb+dXKO9Fsm4pEAkPTOPfsc4goDb29E93z+fzJ39Jw1FEkGhtxslneveMOcj09ePk8Q++9j6brHHTRRXz2xBPgenzy8MPsfekltj78MMX+AbxMlkxXF4WRETTTROk6Ax99RKazEzORINrQwDu33Uamq4tofT0Nc+YQa2lhwrx5bHvqKexMhoZoJcr30UeHUJ4jjLBuCCsNsOaPEndZUY168WlxiE+OoNq3Sh9vmoAHVTXyt/U9yOdRo0Pwr5dIqUEAhFXwHVL40scX8vCn30ikW2oEnvudHKvlAHyrEPwmNuAFiijften+eB2+Y2HnZBLazifp/nidqHl0cx8Ly7H/ygjhuw6uXcQu5vA9F80wcZ1iwHKPt/E23v53auOy8P9BrcRcl6JzDqqvJ6TrZUZ6ZVsbyxYuZHpNjViF7QO0fUSo2D4yQlc6zcLJk/eL4bniggvo6+vDNAwqEgluW7WKo+fM4YZrruHFNWvo2LuXDZs2Me3QQ0UuCoRwARffd3FdC9DQdfHxte0svu+xbdvzTJv2RaLRGnzfQ9cj2HYOwxDAmssNYtt51q8X10/TjKHrIcLhSkZGdtHW9gsWLVpOdfV0LCuFYUTLkRuFwijr1t3I8cdfj+c51NUdiKfMYFbax99HFu56LprSgueElZbro+H6LrrScTyX2159dL8atH92b6c2WkV9opqYGSFnFxjMjDKYG+WwpulkilnCRphYKMJILkVlJIHne3zc205jopbqaIL6SIKuj14l1dfOgYsuQg+FyY30Eq1qxLHyDLZvoXnWF8AXZls3wyjdwMolGdixiYYZ8zBCUXo+eYOGGfPQdAMjHMdzLJJ9OwhHK4lWNZEb7SVW24Lv2niOhR6OiwTch9xIH9GqOjTdIDvcjVHTTKYog92slaciHCNkhNjVvYfmhiYiZpiLbv0BLz/5F6586Kf8+Ypf8qf/eJojjzwKy7FxPJeVr/92P4daECdwhbDRJRlrSVpvuzYqAOGGpqMpjV/8/Un+7eizmFxZT8jzUOkkJCoFZD/7FHzlWyIdNUwB1GZQN1qS6jmWRAiVXIdVwBprQZmBOybfp1gQYL1vpFBFlWzjeWORQSjIJKEmIYxySX5Y6mrdrNTAqv+bgXRpPcVY0W1p3VLkVkXJJTxYxy0EzuAlxpz9b60kOHmINsmTviMS8ZJkWwXS5pJk0bWh711onieS88+ehp63Yd5yiNXD61fDol9IPbln4+thlO+CnQVgNJWhuqYWNIO//e1v3LLiTj7Y8DJ1k2fxxtpnOPywWezuGuLgI45h965OwpF4GRDncjKBEono7No1ysqVbSxfvogpU6pobx+mpyfD3LktmKaObbtcccVaHnzwLHRdw7ZdLMslm7XKTtGuKw7RjiP7X79+L1/96mq+9KWDuOWWEzn00N/sF7sUizgo5aK89Nh74mVAbwyuU0np4AaAeaJcO4LSAjxJM/BG5DY6D3bNhmmf7fMmB9fdywb786D/R4GD/RSp88++ApVfB6eDjDqMbUND9GYytFZWluPNJlZU8F5PD2f/6U+cP2sW955+OmFdZ3cyyR1B3XxzRQWGUuiahhGUc/i+z3A+T10shq4Ub3d2clhgbBc1RBHieB6+7/OjV17hB/Pmcdfbb3PX4sX0ZbOsbGvj6TPOQKVSkExKPhlAdbWw1UrBNdeM2aDfeaeg1ZUr4frrxYK9o0MQ6333yT4mTJBJqaEhKVYfHYWGBtiwQW7vukuc5UrZZ/39sv3y5eISl8uRnXE4O3YoVq2S2LRoVHC/rgvOX7BA/lauhGXLfKZOVezeLbtZtkwOc/XVcorNzfKydu2SeYCbbhIA3tAgX5N4HGpq5LciHle4Lrz9Nnz1q/DMMzBpkrjHP/6Ii7IsGE5BJgfTJ+0vBfd8cFyRvTuulK3YDuztgcnNwtSHQxA25fnd3TAwAg01PPD3tdx6++2Ew9IX9Pb2UllRwc3//u/cevvtRKNSJzw4OEgoFOKyJUu4/bbbcF0XK5XCD+TZeiiEZprYmQwf3nsvR/zoR+S6u/n0ySeZtWQJseZmlKbh5PN8eM89HH7VVWiGUZZ3a6EQvuPIrTfWjwy+/z5t11/P2S+8AEphp9OEq6tRuo7nurjFIkY0ijM0SCxiBpOX+5iHlfrqoJ7fHxlEGSYMdENljQDnWAJyGbnVgnIew5S+rZgf66vDwX5Hh8Uk78yvQ20DDPaKN8DOTyVH/cj58K+X4kYi+LqO51g4xRyDO7fQMH0u2eFOEg1T6d/eRv20YxjcKRPOVc0H0TJ7McJMi8xcfj+FqVZGCCszwuDOLdRPO5ZwokZ+Z0PRcWn4eBtv/83auCx8vJVbyDCYUVPDw2efzfSaGkJBna8LrGxr47lt2+hMpfB8n4xl8XZHB0XHEYMhX8DktJoajp80iYFslkmVldx3xhl0plI89NvfsuW993hr40Yuu/JKrrzkEjzf55xzz+V3zz9P6+TJ+EBY1yWW15NaJcvKkMn0oWkhdN1AKY3R0d28/PJV5HIDzJ79dUKhBK5ro2liatLb+37wiiRiI53uKrt+Ok6e/v6P8TyXcLiCbdueY8OGlYBfjtTo7NwYxGxUcMYZv6aqapIAa88JBpVuOVYkZ0mNn64JsLYDyVcp+9cPALbnS410yXX1+/PPRUNx5MSDGC2kyBRzeL5HpphjMDdKTbSCO9Y9QcSMMJxPcesrj1CwLZRSJPNpDm8+kLp4FYam4ytF86EncdDJ30MzTHIjfcSqm1C6yWD7FqLVTdiFFLnRXvSQDLJ8z0XTDFJ97Qzs2ISmmzTOPA4zkkAPSZ2xUho1Ew8hVtsKmk6sZqLUxxeyFLOj2PkkXR+9hl1IEatrRimN7HA3ZrSirGgAUEoRMiQmKkWRoWwSQ2nMazqEikic7887F8u1KdgWnaN9rFj3OK7vlq/Vd+aeA0BvapA7Xnscz/fHatyRGu2slWcklwpMeBSj+TSu73H9F75FfaKaIj7oBn5FtQymonFhLUIRGXgN9cPubWODtVJ9aCgiA6yZh8tzpikSbCOo5QyXoqwQ5npkEJ5+UAZoVTUC3Id6hf3wXEAJc25bAsScLNgpyHVC+8Ow6duQ+gwy7VAchpGPILNLmN4jjuTIgxtZtPBY3t+0jqGubRx5+EEcedgBHHnUUcycOR0jVsmwWyFg2hoGNy/O0U42kIoPwMg/4e0LYfRjeezmBeSHKuS+UxirJ1e6XBPPpmyYhiYTAhPnC4Ds2QwtCwVMh2vErfqUB2T70e2w7jKUlRJTtTeuglw/1bUNgXN5kWQ6K3Xwvo9y84z27gKlkcpkqaupJBwOk887DAzkyOcdqqrCSOy7y8qVbaxevZW7734bXVcceGAdCxdOJpUq4jgesZjJo4+eg65LjvsPf/gSvg8TJiTQNAHWYgJoMTiYJZUqMn9+Kx9+eCn//u+LqK6OcP75s1i+fBGW5bJz5yiua6F8W1hjZYLbC4M/A78AOBLp5qXA6Qqc6GHMhs0HvyiM9PCd4lCvwnDAhxLR1rtE0gpKTYtKfKAWh8xzsszuEMO9qm/xxG//iooew3/+539y98aNtGgaV33zm2y58UYuPOUUNm3YwKLJk/l06VJ+eeqphHQd1/e5I2CmV6xfTyxwdi+6LnnHoRg4RtdGo2zs7KTgOMxvbcXzfZatW4ceeGhs7uqiN5Nh1eLFDGSzLFu4EF3TWNnWxuqtWwVAdHfDbbfJa0kkhJH+4Q8FOJds0Jctk+/TypVCAa9cKYh3wgR46CFBwHV1su2VV4obXDIpLLdhwAknQG0tXHutAOvGRnGJmzZNssu6ugSId3biOAKqr75aNt2wQao1wmHB4KeeOnYaK1YIwt2XmU4mx04xmZQuYfJkuP9+AcuNjcKAGwbcfHPJEV5RKMixWloEWM+bJ4D86qs8KBRhTw80VMOMfYC1F0ycaQpMA9LZAKwiwHpgRG5NQ25RMkswuRkaamBSE5ddcik9n7ez+8V17P74E+bPncvDDzzI0ksvo++Tbez+aCu7t23na1/9Kj9Zvpzbb7sNXA/Ptnn/zjvRw2GKIyNs+dnPSO3eDUpx1A03oJsmnz75JHtfeolcby+5nh4233wzxeFhjl62DHyf4sgInuehDINMVxfFVArfcXCLIoF2CwWqDz6YU//8Z/IDAwx9+CFOLsfmn/6U1O7duMUiZjyO0jS0eBy/qgbCUcrB8PLjIk70k6ZLikdDkxjlzZglfbxdFOBduvU9qfP3GXMJzKQkez0fuBS+/B/Cbocj0n83TpTfiNoJcNlyMdALXAWVAk030I0QEw/7IqFYJdWth6IbIRpmzEM3wjTMmEtV80E0zJiH7/vYxZxsWwLZSkPTTRQQjldRP+1Yhne/D76PZkbGgfV4G2//G7Zx5vp/UMtZFp8PD5edgA+srSUWCpUZ7Y5kkkmVlXSkUswLJIS252FoGrtHRtgbPG/qOj5gKMWVa9dyVHMz/3LIIVSHwzi+z59+9zt+c999rN+0qexCfPhBB/HoH//Ib/v6WLl4MUO5HDOrYwwNfU4228ekSQvwPBvXtbCsLPfddyCzZp3POec8ytDQdjZuvJuzznoAy8oEYNtCKQ3bzhEOV5dNzVy3iG3nWLfuRhYsuI5kspPm5jnkcoMkk3tpaZmLYYQZGdlLdfWk8rVxXRvDCONi4OGTswpoSiMWipTNuBzPxdR1HM/j454dHDphGiHDpOhYbO1t56DGqcSDWXfP9/mw+3Pq4zW0Vjfgel7Ayoo5mtRw93Pawcfzcc8OupL9fPHAefj4bB/YQ328msc2/Sffn3cu02qasfNJ7Hw6kHkrej/5BxMOXoimGzLA0WTSwlcKPIfcSC9mtAI7n8aMxDEiCba/8QQHfXEJvjNWp+k5NkY4KjJv10YzQnR9+Ar1045mcOe7JHu2MeWYrxKtasB1LDTdpJAaJFTTjOv77BnpkVzTeecSNUNUx6pY8t3v89abb+J5Pqv/9gx+fYRTjlnEAc2TGMomcRsjXHTVxaz4l6vI2gVCuompG1iujeWIYV3YMKVEIJi4AEQSjiJTzBExw2SKOeIhUSJUGCHCridSwj2fi3RQaWPuxPsY1Qi7q8YGXyX5YWld1w3MlpzAzbtksGTIsoEe+Ptz8PVLZID8+3th5mw48jgZHJaa4YBXBBUS2fbQZohNhtxeqJ0jTHNhENwso5tXUL3oV8L0/v4ebrnnL/zz3Y2UzctwuPOaxfxjq8XzL/1DgHuZZc7JOmZC8oi33iZu0c2nQbSVklkgxUEITwjY8ABQa6XEZ8DOyK0ZZMSPtkOmA5rmQjEJ8QmBSZwhZlX5fmi7WSTi3/l07P5B58PiR7jo29/l9TfXg5XixWeeYvYxi3jthb/w9cv/nXg8zsjIKH/97b3MO+UCtm8fYuXKNq6//nhmzqxD0xS27bFnzygrVqznoYfOIp936O5Oc/fdG1m1aswt2fN8Pvigl3nzWtizJ8nMmXXBd9pnYCBLPm9TVxejsjJMKlUMMo/D5HIWdXUxQLFhw14mTIjT15fl5JOaiYYyIh3VohLBFj0BKs4VwK0l5D1VYUkm0Eoe4yXm2gXfgvbJkPgSND0i17t3iTjOt6yByByJDiylHWBCfhPEjpN9eXl279zGN759Pb4PP7zmOk48/XSuvvxy6pub+fFNN/HBu++y5Jvf5LlNm1i5cSPLFy1iRk0NluuOMdeLFjG1qor+bJaaaFT8IgJzyahp4gWeGEopDE1j5/Awhq7TEbi/lyZEtUBR4gO7R0fpTKU4fcIE1OWXC5KdPBk2bxa6d/16QZoPPyy116OjAqT37BFwPH++oFOlZL0JE4TZ/sUv5PsVich3sWTV3iR9HlddJUC9uVlA/R13CMW8YYP83XcfuWgtybRGf7/Iua+5BgYG4PjjhRQPBcKVq68WHD9zpqjVk0khywGuu05OpbKy9PmSuQDbHiPoe3vlfiw2tr8f/ECenz9f1tm1Cw6f5WK074bKhIBrEBM3MzD1cgOmGiUg+/O9cOAUYauLFlTEhc32PIiExvqWog0jKaitHGOyG2s56dLvcNWVP+DcL50TGMP5YBp8+7vf5cjWKVy1/MegabiaIrVnN5G6Ot694w72vvQSk08/ndlLlxJtaBDlWqGAnU6Xpd2716xh8umnM/enPyW9Zw+fPv44h3zve1ROnYqTzeIDH9x5Jwd/97vEm5spDA5ixuOYFRU42Sx6JEJhZAQ7laIwNERi8mRCiQRK19EjEQxdQ1lF+ZS5nnhbRGPCOns+1NaPRbYlhyEShc6d0HKAKJI0Xfon3ZC+/+kH4ZRzRW0Ur6AcIWcVRNmUqJTruuszyVo3Q8KGB+H1rlJYhRQDOzbRfOhJOFaOgR2baZgxl1CsWgxEgexwF0YoSihRi+dYZWf3QmqAWM3E4DfZRWkafjChokrxdEpDN/Z5X8fbeBtv/y3auFv4eCu3ZKHAkjVrWL11azkmpyoiYNByHPKOQ382S9a2uWP9epYvWsTU6moZLgZu2ArKcvDlixZxwD7LL/3e93jzH/8A4D+efZbDZ8/GDWJEDps5k9//+c98oBSnTp9O+/AwX5w8gWx2oFxP3dm5kYqKidTUTGPv3vVMnrwA3/fLcRrV1VPRNMnblXgOE00LleXemqYHDLfByEg7mUwvkyYdD/h0dLxNLFZPNttPa+s8dD0SgHlb3MU1A6UUnh5DC4zFdKWRswtsH9hDY7yW3swQhzVNJ6SbuAHg05XGSC5JyAgTMUMk8+n9gF/RKVITqyJvF/l8YA8HNkwhU8yRCEuy7mf9uzmsaTq60vh5IHGeWNXASC5Jzi4SC0VoragjN9xNpLI+cBcVQzd8n9yogGgzUkFupAczGmdgx2bqpx2NU8wTq2ku13R5jo0RiVPMjOBasoyAfVcl91PAyo1i57NEqxoA0IwQrl2kf9sGGg9agG6EKAbsctG1cV2XaCiCHsjlc7YwF0//4U/89Zm/8OAfHufeF37LHV//EbbjcNstt/LJ1q387blncTwPy7UJ6SYjuRQN8Wq8IB4mlU9TG6vC9UWeilI4noNCQ1eKn//9Sb559JlMqp5A1FcYg72Sn3vBZYGDsD4mqy67EztjcsF8TtyLbVswkRk4cdvWmHx8X3AeRNCAPxah5bllaSSaLpLx0jIjAFrZ3cJcNyyQbcsSbHHNxs0FLuLCdD/51NPc85vH+eCN30O+C+rngzI4ZPYx3HHrMs5dUC8gPTZJGPBPV8KhP4aK6QJ6lQaZ3ZDvhLp5EseV7wazEowEWBnI9kIoAdEGOQelYHQHbL4Djr0e4hMFbBdG4N274KR7BExvWgHH3gDVB4q03M7BWzfACaskB3nzHTDvJqicLMcY3cFvn9/Mn//2As+9+BqnnHYmt95wBSec+iW2bNnCl752AW0b3uHGH29k9eqtnH/+LB566GyUglzOJpezaGxM4AWD0mLRQSnJYr/hhte4+ur5TJ9ey/btQzz66LvcdddpeJ6Prit6e9PU1cWFTbKF5d4XxDc2xvnxj9fx4INn0d4+SixmkMvZ3HPPRh556JTArNoVAK10mSBR8WCQXop6QxjpoRVQ92ORjhf+CbEFsr5fBBWT7e3Pwe4JllmQfx8is0RyrlVJ1rq9E4Zux6u/i1PP/Ca/uONmrrnuJ1x6xQ84+0tfoqmujs0ffkjLxIn4wBcWLqTyzDP5h65z4ezZPHDWWWRtm5hp4nqeqJN8nx2jo6wISngOqK7G9X1yts11r77KdccfT9w0aUwkRF2gFLbr8m5PD4c1NpIsFqkKh4kaBlesXcuP5s9nWk0NYc8jYtsoxxEg3NgoUu1p0wRUz5gBb7wh4HjGDLlWmiaI95JLBCTH4wKab7tN7tu2AM8SiNqyRYA7wKGHwoUXwgMPQCYj63z0kUjMbRumTcNSIfK2wfr1ar/Dlkq39+wRVjkSGTM1L8m+ly+XXYHsft85t3hcDhcKjXm3gSjgYzEB6DfcAL/+9T6imBCYhkfILqB0JbLvog2dfTCtNfBtyEDIlD9dE1Cpl9z19/nxliJ6uV+SjrvuGEhXwYnuW1Ly/6M5RUsmjTUNO5vFTqcxEwn0SASlaShNI9PZydaHHmLWkiWEa2r44K67OPLaazGiUQpDQ9jZLBWTZILas22RhwclX0rT8AIXec9xwPPKNdkl2XjJAbwwOkq0uhpjdEBqqv/1EvGzWPtnOO08aGqRF+S6Y6U3ji2vOxof+6wEn3WSw9KH+4EyqaJalg30wkurJcYtHJEZk44dMHUm5LKiRHJL11LH1TVyI12EE/VoZhi3mMN1ijjFHPHaiYEISvqAvs/W03zYF0QC7tooI4TyJVVDBeke4o/iosxgmediF7OEE7Xj7PV4G2//zdq4LHy8lZupaSxbuJDzZ81i2aJFZVl4qelK0RiPc2dbGwsmTSKk6/i+z66RES5Zs4bdo6N4vs/KDRt4bts2OpJJPN8nbVksffFFrl21inc+/ZTrb7qJH1xzDTtGRliyZg27RkYAMDSNf501iwnxOCdOmYJSBrFYPY5TIJcbYfLkRVRXTwW0ABSLhHvChMNJJJoDR28xPPN9l2x2APAwzRiaZuA4BTo732Z0dDfV1QfQ2jqfvXvXMzKym0mTFpDN9hOPN/Daa8sAia0yzRihUAJNM8nlhtCURndykNF8Cs/3iIeiHD5xJnWJKuqiVdyx7gm6Uv0UHYsPu7fj+h618SoiZggF1MQqiYci9KQGGMomqYlVcesrjzCYGeXwiTMxNB1T04mHIkTNMEe3Hky2mKMvPcJhzdMZzI3Slx6iI9mPrmn8ZsN/4AOx2ologWzeR4HSyI32YYSj2PkMKEWsphlNM6mfdgy6ESFe2yJgXDfJJwcxIkKzhGJVRCrr6f54Ha5dxHdt7GJO7ntihharnYhj5en55A2KmREUitqpRwEi6e9M9nHrK4/QlxpCKcUHXdvIWnmR0fsQNcN8+1vfYuP6NiKOxqoLr8Nybe568/d85aJ/pW1D236fO6lpV7iBizhAZbSCjJVnMDuK5ToYmkZINwkHrNecloN4csvzIsHzPSiZ3YwMy+CrNOjyPILMpgBcKxlcVdUKEDVN6NgpyyAA1sHoWSEAujxoFXkz+bwc46lfwYg4vZfZ8XLzhbnO7YWa2ZD+HAbagtisgtyiIN8LA21c9G8XMGnqNP791p/zuyceFmAdbYbNl9K27m+MjI5y9lmnQ80RkOsVBjkxFQ65Hrb/Sg6Z2yv5xflOiDRI5nF2J2R2CMD2g4mByslibJbrG2OsM11wzLVSR62HIN4M4SqYuACsNGS64cS7JJ/bzkD3RsnSPuVByUKuni73M8FxYhMg0cK3pn/G65s+5t333qe7p5cTTjkTrDTHJh+jtamerVv/yT33nManny7lnntOI5u1WLr0RSIRg9raGKlUkaVLXySXs+nuznDFFWsZHMxx9dXzicdD6LpiaCjHL36xmEzG4qqrXiKdtmhqqkDTFLqu4XlifFeSma9c2YZhaFx//QI2bOhg2rRqGhvjrFixnief/KeYh/mOTCCoqADk/YrYJR5LDMzCwmzbPaDFAvBchPxGcAeCz2AajGmSp57bINvFFsq2Vju4PbJvuwsaV/HLX/2WBcfP5+hDCuAX8IH+gQFs22aX47B7dJS8bTN16lROrqnhwtmz+fUZZ+B4HhqQLhbL31Xb91kRmE/uTSZpD/rl7nSauS0trFi/nrpYjB1DQ7y1dy9Fx8HUdea3ttKXzXLzG2/QnU6LJHzxYqbV1pJ3HEayWdi7V4qZGxoEWM+bJ9roKVPkM7BggSDcXE7W27lT9NQl3bXjSGHy4KAA7p4e+W5t3Cjf2wULpI67ulok5qtWCRq+6irRex95pOi1p06FdBqrKEZmra3CIu/ZI0R6oSCnNGECvPvumOjDtsd81W6/XUD17t0CmCsq5LSuugo+/1z2Ydtyf8MG2fcPfyiPNU1OLRSS599+WwD31k80Xm2L4OghfKVBR6+w0ZYNn+8JylD0MUBtO8JegzDXn++RWxjrw0xdDhgyCazBg9KOABjuC6wLFpSM1DwPXA/XdXFdB99x8BwHIxYjUluLmUiglKIwNESmuxs9HOaQb3+bXG8vRjTKMT/5CUYwGR+uqcGsqCDb1cXAe++R7+/nndtuI9vVBb5PpqODwUAGbo2MoAxDQDWQ7e5m8y23kOnoQGka0dpadF0TYP3BRumfzJBIv1/7m7ygwR5RCLmOyMSfflC8MpQSv4zf/UpSG3wfquugfgI0TBRgDfLaa+th8Vdlu6d+JQZmk6bDH38jTHYQLUj7J1KHrRSRykYpF3NsNMOUCevaFlAaSkEh1Y9TzNF02BfwHEuYa90MJqspA2sF8ltsyDIfULpOKFo55hzuWEGSyXgbb+Ptv3sbB9f/g1osFOLA2loePvtsZtbWEg1mmUtu4duGhli/dy+rFi9mwaRJ3PzGG+xJJulIpcrOsgCrFi/mmfPOo7Wycr9B2sq2NkYLBU79l3/h402buGXt2nLdH8gPTF82y6UvvED7yAg+HsnkHrq6NhOL1WJZKRynGEi8FZaVYdKkBQEAjuP7Ho4jNdCmGaOiYiJ+wGpK7q7OlCknUF09BcfJk832MWHCEYRCCcBnypRFVFcfwKmnripfE98Xh1+JRtZwPYeQaZC3i/zs1UfpHO0XIy0UTVV1vNH+Dk9ufp6IEWJW03S29u4IBmrCAH/cswPP95k9cSaJcJS8XeTlbW8zmBulOznAHeueIGyGyxFfjusSNsOETYPjphzOYU0zeHLL88xsmExINzmyZSZFp1iWmuVGurGyo3iORaSyHqdYIFbXIi9GKTzPYXDnO+X6cXzJ/oxW1WPlUnR99CpWLonv+0Srm1CaTKDoRgjNDMtxNJ0zzjyLOUfP5dSvXcJJJ3+Bd9/bQjhRjWsXKBQz/Oj25az60lWsf/X18rUoZHJ8snM7K1//LXtHenn+ueepqqnm7g1/4sNd2/CAbx59Jv9Y+xqHH3E4e4Z7ue3VRxnIjAI+UTPINFUyEaMpRSIcoyFRQywUBhQFx8JxXXSlcfohC7jh5G+hKw1H1/HP+gYcdwrU1QsLral9KKa8DKbcwHjMtgNWGjG/mTErMCNjLJe3lMNbysouNaWkTlTT4FtXQ0OTgPGd22TfmdEAnDuAJ4y1XiGscf08yHXA0DtSB+07sPV2iDTw1BVxOu7Oc9u3p3DDsp8IY731Dti7msee/D0XnX8Gxvs/ECl54/HCWm+5XED20fcK7vt0FfS+IrLwT++Cvath6woB2sV+GUB6QS42QKRG8q9R0DhH6rLNwIjNCyTgs74F8SaYuBCMuNRhmwlINMO6pVJr7TvQ1QYoRmMH0907KNfpnTt5dlsFdTXVTJ0yhZ6+fj59fwP4HjucmbTv7mTmzAP366c+/rifuXNb6OhI0tbWQSik86MfzUfXFZGIwYIFk+juTmMYGjff/Aa7do1y5JFNDA7miEZNfvnL06ioCElGuy7vW0VFCMfxuOmmRaxZcwH3338mlZUh+voyNDTE2blzhLa2Du655zQ++2wppqHAzwk49nNyYlrg7OwXIbde6q69jFy7ym9AbL64htu7oe8KMBoDUB5sqxCgbjSKBNzeCe6ogHGjFfDBnMjHby7hL3/5Mzct+5HsU4mPQkcqheN5NMTjdKfTaEGf0xCL8cBZZ+H6Pm0dHXSmUsRMk45UiiVr1pC37fKk6rzW1rJT+Mq2Ni6cPZuHzj4bQ9MYyOVoiMdZunYtO0dGyFhWuXZ7ZVsbnu8zlMvxdkcHEcOgORxGlZDpAw/AiScKWPR9QakgSHPJEpFxi7W21GbfeKO4gQW1reXC59tvl+0aGkSf7ThjSPfBB4VCvvtukYNPnSrfQ9+X9TQN3fDRNJ8VK2QXXV1wxBECkjMZweizZwsg3rhRTnf5csHtN9wg83GdnTIX4Hljp7VypajbXVfuNzT812WxmJxG6djJpMjLTztd4+JLgz5kcjM01ggwntYqbLbnQTIjzLSmCfj2fAHVrU2BRNwWgJwvUkbP+wJnXR+rU963dfSO1W7bLlg2nuuS6+5my89+Rq63V9hUwyDT0cE7t92GEY0SnzCBaH09sYkTqT8qmFTN5Xjv5z/HyWZRQLS2lu1/+hP1RxyBFgrRcNRRfPr44wB8+vjj1B9+OJphkN67l1xPD4MffECmo4NcT0/Zcdx3XexslvzwMP5ZX5ea5+SwuHZPPxS+9n3pS194Gra8Kf34i8H9l/9D+tvS4xeflsf5rKiSejsFdA/3iVLpd/fKNUoOyfpr/yzr7rut74nMfGQAALuQRaHQDANlhIjVNIHvB5GYf8cIx6We2vdResm40sP3fFzboueTf5TVU6X/flCW5HslszNvLEbUc3Ed+7++j+NtvI23/1bN+P/6BMbb/39bLPRf63ss1yVZLJZNzXb+4Adl0xqA+884g/NnzWL5okX4vk8iFGLB5MlcEkjMrWyWq+bMYeGCBVRHIqxds4ZEdTW3nH464Q0buGHBAr4M2PvEdwE8efZiUqlOWlrmomkGoVBF2TlcHicAcJw8uh5G04wya62UHtyqwASti6oqYbdV4Oj7xhs3c+qpv8RxcqxZs4RFi5YTizWwdu0VHH/89VRUTKSn5z0qK1tJpTqprGwhCtTHqrE9l1tOu6Rcb11wLaJGmHWXPYSOoic5RHdmgCNbDiJnF7j7H3/g6hMvZHr9JPaO9PLklue5eN5XqItV8Z/fuYvGilr6MyPMaT2YuBmh6Np83NtOU6KOpso6IkYITWkUXZurT7yQoVySxzf9J98+9hwiZgQrN1Zz7dpFPFfYjFjtxDEACQzs2ESyZxtA4FwqAFMzQgx88kZ5WePM40g0TCnL7Evr2VYOIxzn6T/9gVhIY2DHJto+GWDJZT/g/XffYWDHJvqyir63tzN33lwqIgl0TWrws+kMl130fXzbY63+GPX19fz26ae4ad3DPH3jr6mPVeH7PpOnTuHeh37DcD7Jy9veBuDfF3+fsKEH9dWKjuE+/vD+i1x78kUYmh44hitiZgTHc8laee558498e+451ODz67ee5pYvfBssC1VyjjWCwY6miTzQsoJ8cU1ib0qMdonG2pfyKUnKFWPLS/LvEkvt+yLDRkmdX3UN/PkhkR2iROad3y3gdtbyMYfw+BSItYCTFnOwWcsFcM/6MQDfOvMmLm0+hqHhNHWzlpPJ2ax+4RW2PLgI9r4k5zf3Ych1wyHXiORcCwtLfuQq+OA6mHqR7Bdg1jIwYsE6wQCy5GCuTPj7lfDF30C2W+K15i6D6grIDYkzOBr0tEnttWYEg9Agh/voaySaSwtBrBGcHMkXlnLer3eRt0FTPg01Faz58RwmNNTy8H33cP73r0XTFJ4P991xA80TJ5NKyefZ83zmz29lypRqdu0a4YgjJjAykmfmzDp27hzl9tvfYvnyRUybVs2ll77A6tVbicUMfv3rM0gkQliWi66r8rrLli0kHjfJ5WymT69hypQq6utjbNnSxbHHTmT+/FYKBYcrrljLCSdMZuLECjo7U8yc0cyYXGEffa5fgP7roPYHwlLbO2BopUjC7R6IHAmqDiY8INv5FuTawGyGoTugbpk4iBsNArS1GDi9IgtXGgyt4K03X2b3nhoOPPhI8JL0Djhs/XQpF1xxBZFQiFrH4ZDJk3E9j/Uffsjp//qvuJ7HUC7Hca2tWK4rLPOGDazeuhVT07jr1FP50fz5jOTzLFu0CICbAvWSGwz+F0yaRF8mwwNnnYWuFLpS+63r+z57k0kmVlRw6Qsv8KfTTkP9WD6z3H235E2XbLebmwWJlhAowC23wMKFglwPPFAY6nweRkZkG5Dbykq4915BpnoQk+c4sl59vRilyYdFlmcygm4rKnBNxaZNqlxrvWiRAOmSSfnMmQK4e3qEYL/sMjnMgw9KGfj69VKfXfqql07rhhtkLiAUgh//WPbxf15WMs++7z7pGlxXln3vux5fOKlUTqKBFTiBT2oSkA3SL+3YK+C7STwDqEoEn7mw9De7umHqxDEBRcn0DMbqtEv7jYSkDzpwMsyYPNa1+eAXC+T6+jjk299Gj0Rwi0UxMHv8cQ666CI0w2DgvfeINTeTaG3FzuVQvo8RiXDU9deT6+3lvZUrmbVkCXNuuAE7KwkBkxYvZtJpp6F0nSOvvZZcby9bH364zH6Ha2rY+vDDHHPTTUw+/XQOu+QSlGFgxuPoiThK18VULD0qhmMQgOswnPV1eRyJiss3iPGY68CZ/zr22DDFwMz3BXxveVOWfembY/e/sRSOPUHWj8bH7ruB8igWhwNni8orWgFKJrUjlY1ouilS8YoGJhwknidK0ySr2pffWTufZGjnezQdeiLNh54oPgfFHJ5nM7Bjc1C/nZckj+lzMcIx8sl+zGgiqOmeNy4VH2/j7b95G6+5Hm9l5ro7nea+zZu594wz9ovZmlZTI3LDoOa6VH9dWue7U6ey/LLLyOfzaJpGfX09y372M46dM4err7ySvz33HKmhIerq6ojEYhx/553ctGgRM6sTeJ7UPOt6GMcp0N29haamIwHK4Nr33TI7rJQWAGgxMzPNWBlQj4zsYP36FSxcuIyamul8+OHvmT37AtasWcLWrauZNet8TjrpVh57bD7f//5m4vEGPM8Ljh9CKYWrTLqSA4QNk4pwnI9722lO1DOxugHHc7Fdu+yUbbsOebtIbbQyMOYyyvXYvalBJlTUYmhG2VVbcmoVru/xYfd2DmyYjK70Miv7Yfd2Dm2ajqYUt77ySDmm6o7TLyUb1Fx7ro1uhIRx9lw0IzRW56Xp2PkUA+1baJgxj1C0kuxwF2a0glCsaiyaa/qx5Rl3lKIYxIM0zJiLGU5gFzMMtr9D0yEnoOkmTz75JPfedz/vvfsO+dQQZ537NVasXMWN19/I5Vcu5ctf/jJ5u0DUjGA5NqlihupoJUbwuguOhet6jBbS9KWHOHziTPRAVjeUHaU6Winss+8FKkcNz/fJWUXioQidyX5+u+V5bvzid+hNDfLopmf59rHn8EH3Nj7o2s5lx3+NLbs+5LymQ1BV1YHxmCNAUA8MyXx/TPbnWOIIXgLImj4WpRUqxVuJ2Qyp4bFomHweqmvHlvu+1Pb9+SEZnJkhGdxpupjm1CREBl4zG/QooINXCO5rkNkF+R5GQ7PIZTNMbJkEvsOzz6/lih9eQ8fOT1G+w2NP/oEnnvoj69c8JCz3rOVj9dWDbWJaFguMy1QI0tshPkmO47uU46Ny3RCZGJy/C/kBcQ7veB1mnidO3yVDsi/eJ+ZAb1wtYLtiErz+A6mtNqICzkd3wOYVwfLJcnwtBCPbRG7eOEcYbt8NBve6uJqb8THZ/atLyJz4JMmUTSZj0dgYD6Tckj2cTheJRg10XWPJkjXluuyHHz6bXM7mqqteLpudeZ5POm0xYUK8DLzPP38WDzxwFm+/3cGkSVXcfvtb/PKXp9Lfn+XnP9/A8uWLiEYNRkYKVFaGaW8fpqEhzrFHV6Ls7QFwXgbmdJF240H6Wci/CU0Pj5mUVZwvj/etv7a7wGwBvR76rxlbb8J9wlgbjcJ8998AdT8Cc6a4jOc3i8lZ3xWQXs1J32ngsh/dz6EnnMCPLruMYw49lBtvuon3332X87/2NR557TWm1tXRmUrRUllZ9stoiMV4r6eHea2tGEpxxdq13LBgAVODmmtT00gViySLRSpCIeKmxBC2dXQwp7mZgWyWjlSKuS0thHSddLFIxDBYGiiSOi67jJZQCFUqRr7sMvjDH2DNGqmTjkQESJcAd6kWe/NmidIKheR7Fw6PodGhIQHQpdKL7u5SbhZMnz5mNrhjB/zqVwLCS5OLmQxWZT3D2RCmqQiFgq+7I7sbGhJGOZcTIHz11UKmn366zAXs62+Yy8khf/YzIctN6SqxLNlPXd0YUawH3Ud/v2Rql9LBYjGY1OoRUk4wJxcoZbbvKUdpMWWiRGzt+9yBU4Lac0MY61IkV8nQzA0mBQuWMNOlZfvuY8bk/9vMbMe2cW2Ju1Oahue6WKOj6NEoxaEhtj7yCId8+9sUhodpmDMHJzA2M+NxjGiUzT/9adkAbd6tt5LavVvMzb77XSqnTuW9lSs56ppr9lvvmJtuYujDD4k2NFAxZUrQBbkM/vOfRBobqZk6BTXQMxaJiA/JUUlyGO6Xz0q8qlwPXZ4YLRRkGUr6q+Qo1DUKU12K3DrrAjEv+/NDAswbJ459jkqfu52figv5cD9U1kJDE64ZwgsUPqUaaqeYQw/HpDCkmMPznDGj0cBUtAS+NV0PjEUTmLFquj98hWTPNg488TsMfL6RaHUTiYap6GYYO58qG4hWNR9Ey+Gnjhudjbfx9r9wG6+5Hm//jy1kGNRFoxxUV8evTj8d3/eZUlVVjuxyPY+cbdOXyVBwxmqCDqiu5uGzz2bB7Nm8sX49r7S18duXXuLaBx/kyCOPxPI87rnvPv6wfj3/7O7mw/Z2HnzlFR486ywmBVasyeQe8vlhHKdAoTDCxInHYhgRLCuL5zl4nkMm0weAbYs8UwC2RGt5nivg0ndYv34FW7euZv36Ffi+y2GH/Su+7/PrX+9l9eqD+NnPPuHLX/4OJ530HJ5ncMIJs5k9+yiOO+5kzjzzHHbsaMfzffozw0TNCKP5NDMbJhM2DTqTffx83RO4nkfYCBExwgxnUzz89l8pujamZhAxwvSmhtna205r9QTCRggvcOfdM9zLra88Qmeyn392b6cuXo1CsfL139KZ7Mf3fWpjVdz26qPkrAIXz/8K9331Bn78xe9IPXVdC5oZxgzHxBlc00WGFkRL9X22XpzB49W0zF6MGamgZ+vrQU12GnwPM5Jg4mGnYMaq0XST0sTa0C75UR/YsRmlaQzs2Mxo96d8/WtfYuq06dxy62389oknAPjNw09y/KITOGrOHIquxeoPXqFjtI+oGSnHbOVti392b2f3cA9Zq0DECBMNhelND1EXr+a2Vx9lz4gsq4vX8FHP53QnhzA0XWKAfJ+PenYIqYxPfbyKfzv6LFzP5dFNz/Lytrd5csvzHDflcC6e/xUS4RgnTj0cVdsgwDqdlEGW50AhJ1LCktQbxljpTGoM5GWTYyPoErAGGdBF47JfTcmgrb8bdmwNHHyjwrKYIWHLezvkuYpqAbX1x4FRIaBTKTG28iwBnEYMamaR7PqAc89cwOwjjuSIo4/nvvsfZM1f/4TyiqB0Hnvy93zvOxdB4gBhrCumg5USYF17DMQnC/O95XLI7oLKmYAG/W9Cdi+gIN0udddKiYz7tUvEjCw+AQ65UEDwvOUCrI+5Fvo+ALMCTnlI5N94wlxnuwNQnhdgvW213GoK8oNSi50fgESr1G7bGUi2w6uXQGqn1G6PtsOrS+T485aD79Pbm2HHjmH27EmyZMkadu0aRdchFNJ5++1ONE2xfPmicmyW7/tUVoa4//4zUErAeGVlmKamBKGQtt+6pqkxb14rt9/+FqtXbyWdtvj5zzewevVWbr/9LWpqIgwMZGlpqWDevFbuuuttkWkOrRRAPLRCQG//VSITr/ya5FGjQ91yAcx1y8HLy7rp1cJSG/UwdCeoBEy4H1pehMZ7ReZtNAVmZyGovRrsPpGJ910hddkqNrZvcwoeHp2pFA/ccw+bNm5kzmGHcdnFF/Pkk0+y4IADWLF+PQ3xeFnGfftbb5EIhWitqmLpiy+yN5XigbPOoimRwPE8jMA7IGqa6EoxlMuRdxwufeEFGuJxdKW4ff16zv7Tn7hi7Vo8oOA4RAyD5YsWcf6sWTRFo6hsVhCnpkleVX+/1ElHIqKL7uwUKre+Xijkyy8XyjiRCAyqXAFIb74pYDqXE/q4JAfv7xcDtM5OWbdkZHbHHXDFFVLDvWSJFEpXVYGm0d8vtdDptKyazYozeDYroDoSkb/77oMLLihlVcuhXVdOw/PgmGPgn/+UsvLvfU8O5ThjAH3pUsH4ngcXXyyHX7VKXn44LOlhulYyi9wH6O4TpYWh7//c5H0VE2r/SC4IgGCngO5oGGZOEWDt+/vvQ1MiLU9mBIQnMyIpdz32I1SUSJ7DtbUYkQhbH3mEvS+9xKdPPknd4YeLk3c4zKePPUZ+cBB0nVlLlpSZZ9/3+fTxx2Wbxx/H9zxmX345nuPst55mmtTNni0sbqGAncuRHxyk+qCDMKJReV0jA9A6DbJp6aPrxFATw5R4rZ2fQF8X/P7XUiPt+9LXlszLNEP6cE2T2MQJLfBvP5D660hM7peAtabJZGpJojD9UBgdkn77tb8FpUACoPPJfuzcqLiCh6P4jk33x+vwPDFPjVQ24NgFfNcmO9yNEalAKRXIxsUTRfleObJLN0I0HXIClU1BOYzvoxuR/SK91DhrPd7G23/rNs5cjzdgjL0usRiaUrzX00NrZSWdqRSTKis5IGCwQ5qG7fsMZLMUbJu9qRStlZVMra5mIJulLhbDDECS5boYmoahaRQcBwVEDEOSg/wC2ewgiURjmY1Op3uIxxtJJveyfv3tLFy4DNOME4vVoWkm4JfX9UqS3MAyJJXay1tvyTa1tTPwPBvHsUgmk1RWCgv+4ot/5/bbf85rrz3LH/6wkrPO+jLNzUfx8MNP8p//+QIvvfoqHj6dI/3EwxFqYpVoSmM4O0pNrAofH01puJ7Lx7072DXczZETD+L3777I1SdeSCiouyoGcVdZK08iHGP7wB4u/8vPOeuQhfzghAuoDMXKkV8Ptj3D1SdeyM9efZQ32t/h7i9fw1EtB9M52kdfZpjjJs8CQPkeTjGPZphouonn2niujRGSiJ3cSB9mNI6mGxghkSA7hSx6SGqZfc9FM8NYuSSD7VuYcPAidF3Yqp6tf6d++rGY4fh/Ya5/+9Tv+I//+A/uuOMOLr3scl77+2ugaxx6zOFoRzdx/r+cx09OvXg/tv3fjjmLP733Etec9E1CRoiRXJKKcJw71j1RXuey479Gfbw6kMNbuJ7HQGakHO1VHaukYBeoiVaiB5FYnaP9PLrpWS6e/xWaKuvQlUjGY2io/m7Uy8+ILNswx+o/fYRJLvV1JQajtkFcaSur5XNUYkUcW7b3g3prxxGgrgcDt9SwuMu+/IzsJxSWwd6LT8M3r5TBXj4H9dWBWZgnpmWfrhSJdq5TmObEtP2js5pOhVCtgG63ANao1DjbKYhOlM+5mwUtIuDfycKHy+HwFcJSO0kZOIZrg/peXRy+I/WweYlIyBMHQdd6cQmP1AiLb4QC1/CA/SmOQKxJQHiJma6eIbFcbTfDF+6D3ncEdJfdwacKW22lINYAb/1YsrDL0nnGzN662uD5r8KB/wKnPECqYNLXl6WhIc7gYJbXXtvJueceQjxuytvn+xiGRHPZtsfmzV1MmlTJAQfU8OabezjxxCkoBTt2jLBixXqWL19IU1MFSsHmzV1MmVLFAQdUk887bNrUxZw5zQwM5MoS8xkzarBtD8MQtnznzlFmHxZHs9sDFnq5gN1dB44x1H5RZN1eBrxRkXUDuIMwdLuAb7sbIofL8yoaACxNgLoKAzrgBN2XBr0X789uq0jgJF5J3vGwCUlSQqAcAjED1JTC9jyGczlioRDJYpHqcJh4KERXOs26nTuZVlPD/NZWspbFjevWcf2CBTTEYlz18sv8eOFC4oG7+Cs7d3Lq9Om0VFSQsayyU7ihaXRnMqzasIFVixeTCIVI2DYqnZa655JrtecJ2O7tFVT6ta/Bs88K4rRtMSMbGICJEwXh1tTItiBM4ttvC0q9915BvyUn8smT5c+yBCF3dAhIv/xykZ2vWQMnnEDKiXLxpQYLFogCvadH2OnOTlGbNzbKoUosdW+vgGXfl7rsfF7Kvq+/Hlpb5ZSSSdkuMLkux3j5vrDaTU3CfD/zjBDyPT3yN28e1Fa5aMoPvB6ELX3id0/x3Ysv5m+rV3Pu6WfynaWX8+7776FpGqZp8vObb+GL0w+B6a1SJ11irrXAITyZEWAdDo3FdSklzuMV8f/KWHu+ZG139cO0VmzXIdPRwdaHH2bO9deDpmGn00QaGsh1d7P14Yc57JJLSLS2kh8eJlxVhe95vL9yJUcvX46dyeBks0QbG0Gp8r4Ou+QS9EgEp1AgWl+PHolIPXeQuND/7rskWlqITZiwH9tdMWUKpikxh6qYl8mWyqqglt6GZx6DU/8F6pukhvrgI+CYEygnNJQUSNmMMNS6PqYsKhbhmUfhtK9BQzMMdMOLfxY2u6pG+vmSHNz3ZMI1JKkRbjxBdrirXIqlm2Fyo70Y4Ti5kS7yo71MnH0KvuuUnzfCMXo//QfNh57EttcfY/Kcc4jXtkiNdfAbjtICP5QxxZkqqap8H6Ub45Lw8Tbe/hdv41Fc4+3/VcsWi2wbGqInk2FukGW9fXCQuzZu5Efz51MbjZKzbbrTaY5sakJXCjPIP/V8H9t1iZsmTgCobc8jrOuEdB3LdQkF+dAhTcNDpOVR5WJZKdLpHjKZHlpa5lHKiy0URnjwwcM577xnqKychGnGiMcbgnpqmX0vmXxZVobe3g9oajqCQiFJJFINwKuvXsfixaswzThKKTKZPp566g888cRq2tr+DigMI4JSii1btvAv/3Iuuzv6Ay/PoPng+B6GpnPWGWfS39eHrutUVFSw6pd30jx9Mief8kW8TJFYOErGL/Lre+/llAUn0THax5Nbnufbx57DpJomfvbKI1x38kXEzDGp89UnXkjUDAvAdCzSxSxF26YmXsnKv/+Wi445i0MaJu/jQhrwGp4r0nAgP9JLrGaC/GiXzFNcu3yNlBHCziUxoxWAwi1mUbopknI3kL3pJm4xhxGOSXSXbpTBqAISldX8+IbreOChhwmHwvgKent7MSIhrlt2I9dfdQ05Ky8suxnGdl0U0J8eoSczyGFN0zF0g97kII9s+hvfmXsODfFaNE3heuLKXsqz7hjp428f/Z2rTrwQ13OxPYehTIrB3DCzmmaU6691pdOZ7OcP777IT0+6CPWH+2HxVySzdPd2mDRNJN2+J2x2JCoDp0JeqKVS/bAZGmM/ULBnOxxwyFi9teeKQVqJ5ShFcw30wN+fl+iY3/1KnG7v/vMY860FruB6SNjqbKeAZSMGH/0kMCELwFVmF3z6C5F8hxvgvatgzt1Q6BfX8Jo54vZd6BVgvnUFHHIDRJtkn0oDNy+scbhW6q6P/IUcS4VkmTUisvBSfnXzPJF32zmwkuL4bWeDOmsl7HI5t/ohQIfULpGFmwn5w5Xns70Cqt2C5Hc7+eD744Gdln0bEQHgoSoY+EDY7YpJZN0oti3XXtcVjuOxcWMn8+e3ks87LF++jhUrvkg0arJhw16++c2/8fvff4WFCyejaar8Ob/sshf4wx8+4vzzZ/HrX5/BlVeuZfXqraxZc0FZEr58+SIOOKCavr4MlZURlIKenjS3376eZcsWMnVqNQMDWaYfEEb5diBnDyEgOADUlDwOPMnATq+GlpfEmKxUZ+3bYwZoXlrcwIdWQuM94PYFkvHWALwHsvMghovaa6UuOzo3+PZpZIpJMCayY2SEO9av5+7TTmMwl2NlAHZDQV+bsaxyvFZjPM51r77KysWLiRoGbR0dNCcSrO/oYENHB7eceCKH/uY3nD9rFg+dfTb4Pu0jIzz0zjv88rTTyiA+Y1nEQyEufv55Vm/dypoLLmBSVRWzYjH09nZhke+5Z8yczDAEFMvsBhx33Jj8VtPk7623BGA3N49lWk+eLNLxjg6hmU1TkO411wgIz2blWCWJuVJCJ3d0CHg3DLLESKU1QiEYHhZgPDQki8vx9UEJd4nkdN2xemnPk9LxBx+Eu+6iHHuvaUKiV1UJXvvwQzn9kuK9t1fAtFKyfO9eYbF/c59HbY2HyhfBstk9Msg3/u3f8H2fG669jnNPP4PRrdupPvIQ0HXef/99vnjqqQx++AlaU8Dc2nZgWKYglYVETBzCLUdiuToDabjvC+jet1nBtiVFjq5jFQpsvvlm9r70El95801yvb1se+opjrz2WsxYDN9xKCaThKurcYpFPrjzTg757neJt7aC7+MViyhTfotc20aPRPAsi+GPP6b6wAMlziuIU3PyeT745S9l+5YWyXp2XQY++ICaAw9E6TpaOEzI0FGakklJLXA/72iHqQeJVPvVv8E3LoehPqhrgqFeAclnfl0Y78kz5LtSqgVASe12LA5Dpe2XSj+99T24/dGxyVLHphzBGInJdXMd3HAYKzeKppl4nsPAjk1BxGWBaHWj+JW4Dr2fvkndAUfhFPNEqxpxrDyhWBVOMSuAfGQsLtP3HJRm4HsOvu+jaTp2MSvlWuO11uNtvP23aeOy8PG2X7Mch0yxiLWPvBtkiNyXzXLEhAkM5fPkbZvaaJRlixYxGLjIrmprY15LC4lQCFPXGc7nydl2WS5oex5XvfQSjucJExLEeG3s7GTnyAiXvvACKcti18gIb3d04PsOxWKKcLiClpa5lIB1V9cmHKfApZd+yOTJCzDNKLad48UXlwZsdJG9e99idHQXnucSCiWIxep49dXr2bnzVYrFJEppTJq0EIBMppfvfncJRxxxEnfd9Qi//vUdmGaMbLaXNWsuZmhoO/fddz/nnXchPj5Zq0CmmJc/K89wdhTXc/ndH3/P5nffYePmTVz5wyu55PtLqI1V8czq/+AfG9fzpTsuwTimmUu+vwSU4un3X+bbx57DxKoGdKXxk1MvJh6K4uMzkBlmTstB+L7PQGaErJXnk76dFGyLsGliagbfm3cuyYK47u4nE1OqXHON7xGtbRYH0gAMe44FShMH8KBWTGK8FHY+Rd/2Nly7gOdY9HzyBk4xB76PFhiAjSZTdO3dg+dYWNlRHr/3Vmpra7jh+mvZu7udz7a+xyeffcLcufN49JFHufyyyxjOjTKcS7Hy77+lY7SPD3s+pzc9RMg0qIlWcMe6J+hJDtBS3chNi79Pa9UEfHzufP13+L5PV7Kf97u2YbsOU2qb+cEJF+B4Lqtef4qBzChh02BaXSudo3388o3fgy+BJpOqG7n2pH/D1XT8Cy4TYJ3LSHapGUgJbUuujRkShjmdhF3b2C8b1TAEQBsGzDgMmVUJlBGhSCAhdOWvkBOGY0IrfP0SGaD966Vw+U0S4fL5x3JMdJF/u5aA2MqDBAyb1TDnXnCLUpOd64RCn7iKayEByl3PCWP9yR3i9G0nhfmONMr6h1wjsu3ikMRt2Sk5RmKygPmDfxR8sQuy7L2r5L7vQLYLGo4QlhpNQG+oGsyYuIJ3vy3Pz10mwHrecpG4KySGKz5RJN++C7kBSO6SZand8PoPxeAsVCE52qGEsOB6ROq70QSUTzweqg4AzSgLClxXQKumKY44YgJXXrmWnp40V1wxl56eNBs27GXevBb27r2KBQsm09+fZffuEd56ay+7do2yatVizj9/FsuWLSKZLLBs2ULOP38Wc+e2lCXht9/+Fp7nU10d5cor16LrGrffvp7Vq7eyYsV6NE2RzYqvAn5OMq7tz6W22rcFAPcuAXsXYAhD3bJGXL29NPReBk5HUJ/tSp/mpcYk5l4ykIw37CMhXwHYYEyGpgfBnAKROQG77YEyCBkxfET1s2DSJNLFIre/9RZzW1roy2a5/MUX2T40hOf75Xit0UKB41pb8X2/3Lf3ZbMsnjaNZQsXUh2JlGMZc0FO8cq2Nm4+6STSlkVPJkPGskiEQmiwn+N4RzKJ8jwBu6tXi4S7o0NY6UJhLKvq+ONFn93eLlFbn38ujxctEjrYdSXrqqFBwHl7u0R1GYa4hi1YIJRzUxPceacca8UK+W5u2SJ12CVWPJ0OlA5yGomEuIMfe6zIt5cskd1nMkJ4Z7NyKj09kErJZ9DzxPTsl7+U9drbx1TqdXUC1DVNDlnyaluxQh7v3SvraprMEzz3HPzwak36EMvGS0T5/pIl/PoXqwh7CNg1DaoPPVAY6u17SA4ELvtVFWJw5rljGdhKicmZ7Uh9tefJ6x4alYOGQ5DMjil0QK4jvgDzIA1BaRpzb72Vr23ahBGNUjFlCkcvW4YeCvHuihUi285mGdi6FTMe55ibbiI+cSLZnh4233wz2d5e3EKBgfffJ9fbi5PNMvThh6T37CE/NMTgRx/hZLO4to0RjXLwt74lknHHwbdtiqOjZYfx4c8+wy0WA2NJZPIzFJG/Aw4RlZFuwAWXB8sD/4uRQWGzRwclTisSkwlTpUH7p9JHFwvwh/uFlf7a9+T1f2OpAOvkCLRvlfVKMoZIbGwSImDEB3ZsxnWKZaPQwZ3vSkxlMUd2uBulNOoOmMPQrvclCtMIlZVkuhkhN9JbLs1SqvQ7Lv4fYoaml/c9sGMT/ngU13gbb/9btHFw/T+olaTfnek0Q/n8fgA7oussmDyZ/myW9uFhDE2jKZHgwJoaFk6ejKEUqxYvpui6pIpF+rNZ6qJREqEQ0QBIA9xz+unETJOi4+B6Hl3pNA3xeDn+JVks0pFKMbuxEU8ZxOMTcJwcXV2bSad7WLt2KfF4A4YRwXHyrFlzCY6TI5XqoKVlLsnknvI6yWRH2XAkmx1g8eKVTJq0gDfeuJlMppfZsy8gne5GKcVdd93IPfcs4PrrL+GOO+7D9z3eeut2tm5dzbXXfpsdO9r52c9uwfN9IkaIaChCIiyz2IYuDHFVlcjCfWBkZBRQKKU4dPIMJiRq+f68czm0ZjJ18Sp0pXHtyRcxpaY5kDSLsVfWyvPP7u3MaprOmYcuwtQNetODhHWTwyfOpD5RTW2sCk0pWqsaOarloLLpluRRZ/Edi+xwN3YxQznf1HPJDndh51NoutAwfiAz8z0Xz7UBtd8Puedacr99M0pTOMUs2eEukskkX/vXbzDnmHkcM3c+j/3uP3j0zhvxPRtN09EC87cS03znG78jFoqV66Ef2/SfVEcreHTTs9REK3nqnRd4edvbPLrpWTzf4+frniBnF1AofnjCBeiaxnBulMObD8TUJcDACz5P3zjqDB4L9qMrnSe3PM/XjzqNnvSg1LCP9mPoBi6+5J/u+kwk4H+8Xx5PPXhssGnbMoBqbBYA7brCWkDArDkwOiIDLpAavN/fKww1CKAGyciOVwqQfupXEvmCLw6zw/1St/fMY8hkkSf10AMbBeS6xYANdcAeFTm4HoXGhXDAv0GkWYDoV/ol43rOPVAYArNKmOr4VGhYCBUHQ6RJXMeP/pWc18BmkaEXBmQ/AO9eJYx33VzJwFY6tCySYwx8KOsoDUKByZjnQHIP/OMakYIvfhSqpgmQRkHvZqmh9r2gbjsLZlTysM24SMbjE6S2upiCbA84ORm05vpg9HORm7+6RBj0wMZ4X4C9cWMnPT0Z5s5tYeXKNqZOraanRyKzNm3qYufOES65ZA3ZrE0kYlJfH+P2298iGjV5+OGzmT69mpqaCLGYyX33nUE0anD//WeyZs0FLF++iLa2DsJhnWXLFqHriuXLF7J9+xU89NDZKAX3378ZTXkCkL20gOH06uD+PjXVfhHMAwQIOz3yXkePGwPPXg6cQZGM110vcm+tSszOnAGRm7eskXpsLx/Ec3VA35UiL8cHZSJZ2lF2jY5y8xtvsHDSJCZWVHD/mWfy9VmzuDNIdljZ1ka6WOTrs2bx4Fln0VpZyTcPP5z+TIb24WHChsGiyZOZWFFBRShEzDR59JxzmFZdzS2vvw6+z7KFC6kMh+lOp8v51iBKo+50mjsXL0YBi6ZMwVVKGOvubgEnsdhYMXJjo8jFHUdATQkYr1wp6+7cKaC6u1uY7YEB2aarC044QYD2CSdIUXR7u9RU/+IXkpm1fLl8nkqouZSPnZDSn54ewefd3ZJr7fsyB/Dcc8IwV1bCo4/K6fo+3HabHL5U/l2Sf+u67OOII+T5XE4Mzrq75bO6bNnY6biuzC00NMjL7+2Fv/5V2GvXB78izi9/9SsWHL+Ao2cdJmDZcaG9A5TixuXLmL74RL56wQX8ZfVqNEOHaS3B5F+pf3IDMzNNYrxMQ8D2odPlpNNZqAwk4iV8rZWk0z77CrKcXA63IKUySikGP/yQXG8vB154IcowiNbX03jEEWQ6Oth8yy1ku7qI1taWa6vtTIZwTQ3bnnoKpes0zJnD5DPOYNtTT1Fz4IHg++T6+hj85z9JtLZy7E9+ghYKga4Tqasj19PDO7ffTs2BB1IYGiI3OIxfUjUIJS59zKlfFTbadyGThHhCrskBB0t/PO0Q6dNdF3Z8In4YLQcIIH/tWTj9PDEqi8ZhoE9+H5QSSfiMwwSsm6GxDsix4emHoJhHuT4NM+bhWjkaZswr10Pje9j5NEY4SvfWv6M0jaZDTkBpOq5dpJAawHdtHCsv9djFArGaZlAauZFerJz8RtuFNNnhrn1qrefuX5s/3sbbePtv28bB9f+gZrvufoMmyx0zeQoZBjowraaGRVOmMJLPl9kLzxdAGTNNYqZJZThMUyKBHrjN9mcyGJqGCur/LNclZBgkQiGOnzSJg+rqePjss0ndeCOTKipYOHky1ZEImaKFUoq33lpBPN5QNiR7++27iMcbyuD3rbdW0NIyj+nTT91vnZaWY+nq2izxTpMXYppx2tpWlk3NANraVhKJVJe3mzjxY/7xj7cYHh5h0aLltLcfztatLn/729NEo1G0IEt5MGCT46EoOavIba8+SsdoH9/99nc4aPqB3PrTW7nmFzfhei4oxUXfuogvzFnAh8+8yXd+8gN+vu4JDE1kyz975RE6RvvIWXmGcklm1E/i4952Okf7+aRvJ0dMPAjX9/igaxuDmSTDuSTdqUHe6/pMrn3g0m4XsvRvb8MuZIlU1osBma5jF1J0b/37mHmZ0lAlgB1IlM1wAnx/v0GCpof2GTDI/o1wFDP9OW+ue5EP3n+XdzZvZPXjv+Sks76OboiruW6K9G7tqy/z5S9/WUzX8Pn+vHM57aDj+P68cxnNp/n+/K9gaEb5+e/M/RIaiqtPvBBNaaSLkiHq+T6zm2diuXaZxd/au4OiY9Fa08j1J1+EoRlEzBDXnXwRE6saeCwA8o9uepaiY6EcB/Xi0wJsX/zzWHaprgtL8dzvAF+AcgkQ20WpN+7tlOeGB2CgS1xmNR1e+YvkX1cE9bSlwalVlG1HBsbyVvNZGQxOO1i2+8I5MiC008I418wWQKubArIHNgroHNosrLHnynO53VIfnW0XwzKAhuNl28qZEqflu4HhmgdDW4SRNmLQcJzUdmfaA6f0ODSeILLxyf8qGdt+UD+ulMjCfReyfWN1v5ouBmdH/VByrn1HXMFfXQKjO6H5OKnPBmh/Tmquow2gh0Ve/ub1wr6bMQhXQiSoIddMeO9Xsu6+RmiBxHrPniSXX/4iu3cnOfbYidx332YuuugIHn74bMJhnUWLJnPvvZtoaIizalUbCxZMIhIxaGpKMDycZ/nyRViWg6YpHMdn6dK1zJx5H5s3d7Fz5yhLl77IpElVNDcnmD27EcfxiMcNXNdjypRqEokQV1zxIu3tI/z63lOCCa0q0CpEtt2yBowJIuuuuFCeI2AF3W4YvBnc3sDsbBlgSp22FoPCx+IE3vSwKADMAyC2UKTg5iToWyqy8dhxIgtPrwZ7rziP914K9k4KXoiOZJJrjzuOSVVVOJ6HqWmYus59Z5zBhbNnc8OCBTQlEvRms1z6wgtsHxoiZ9skwmEa4nGuWLuWnaOjaEqRtm2WrFnD9qEhMpbFL087DdvzmF5Tg+/75SjGUr71n373O86cOZNn/vpXrn3lFVb9/OccdswxaC0tPLtunXyeGhqkCPm550RDncsJXdzbC7/+NXz6qVDCoZDIvUtg+2tfkwLnJUvgyCOFBv7JTwQ4b94s+927V4D6T38qbHWJol61SvbT0QE7d+Jl89x9t+wiHqjydV3is555Bg4/PBCkIDguHhfVeU+P1FunUmOy8VhMCPZ4XPYRjYpB+cSJ8nLjcfFwmzJFli9YICD9uefk5S1cKHXcngNbP9nKX/76V2664gfCMIdMMTOb1gpFi5/fdSftu3ayevWfuf7GG7FKcm4Qprpoj3kW6Jo8194hZmVVibF8bNsJgHQApl1PGHDL3p/R9n2sVAo7k8HOZKg58EByvb1UTJ6MHzC5vuOgR6N0vf46Wx95BM00mXbuuRx7881EGxpItLZy5DXXUBgaYuC991CaxtHLl8tvUjZLYWCASF0dm3/6U+xMBs9xyjMXeixG1+uvY+dyfPbEE4SrKlD5rPS9+VxgKKagboLU2f/HY1JPXTKj1A048DB53N8tk6CVNZJhXcjKtTv/Yrkuf7gPBnp4Ys1a1BHzefaFF8EI4Q/2ccvN/87Mww9n9rFzOXnx4jGW2/dh12eYkQqiNS2Y0UpaZi8mFKsCTSdW01x29x7YsRlNN7EDlVm0uqn8W+0Uc8RqJ6I0HaeQIVbXQjguvydDO99j73vPY+czsu9o1X8xMvM8F9exJOrr/+LxeBtv4+1/zTYOrv8HNRf2HzTtsyxv2+wYGeGKtWvJWhZ1sRgRwyBv27R1dFB0HAylyNk2nw8NsX7vXoquS8w0qYlGcfbJWg7pOoPZLHtGRsSVFjElylgWKctiY2cnru9TGdJRSmfhwmVkswMsXLiMWbPOZ+HCZSilc/zx1zNr1vksWHADSukkEk0sWrScWbPOZ9Gi5RQKSaqqpmDbeZTScF2rvI9Fi25C0wwOP/xKdu3aVn4+k5lPXV0ttbU1/Pa3L/Dxx4qXX36Z2to6hCmCgcwID7Q9w0BmBKXYz6H6F/f9kk93bOM7V13KY3f+hjvWPUHnaB8PPPowf3rzea684Wr+9pvfc+Wir+P5XhkEPrbpWRLhGI9v+k9yVoGaaAV9mSFm1E+iY7SPO9Y9UX4uEY7x2KZnqY5WUChJmn2f4d3vUz/tGEKxSjQjFIBiHzufCWrB8sRqmoUL1DTsQoqera8HdV4yWAnFqmiZvRhNN9E0g4mHnSJMNz6x2haGdr1fZraV0srrG+E4yd7P6f54XTCIUOiBsVu6mGUkk6a1egI/OfVimqvqmdU0neaKOjJWjv7MMDd+8Tu0VDXwUe8O4qEoUTNMRVhGv2LO5BMzI9QnqomZEQ5vnomh6YzkUoTNsCgGfJ+oGSakm2XA/q1jzyZdzJH1bOzTz4P0KP6ZXx/LLsUfyzvN5wRw7weI91n+4tOQqJLHvieDrOmHwtMPCiOtKbl9+kEZBE6fJcc5/TyIJoQ5UYbUAdZNgFRaGOdjHxTHcBS89yMBwDWzxcys5ggoDkpNdM1sqaXueg5yPVC/QCTbg20CoD1HsqwH34bMThhYD9WzhdkuDAIeVM4QQK2FBGDXnyRstR4GLSrn5+TludIAVtMhtUeMzpyCAO6qqZTdzbN9EsFVdUAwQFfCkJ/7nLiJl9Z77x448grZ17qlwl7rYak3d/Jw8r1yrvvKzVH4PkydWs2jj57DxInitHv33aexZ88oS5asYdu2IbJZm1WrFjMwkGXVqsUsWDCJm29+g127RjnuuFYmT65kZKRAOm2RzVplSfi8ea10dCS55prj6OhIYhgafX1ZrrxyLfX1sQCMe1RUhPjNb86itbUSQ3dQWIAGWjWYU4Wd7r1S3MKbHhAJd36T9KplV/GVYkJmTIbcegHbbg8YteB0y3X1g1IDLwPe0BiYHlop+6r7sTDc0Xn7sOS3oyvFnOZmKsJhnCDTetfoKD96+WUA7j/zTA6qrUVTitvfeqvcx48WCjTE49REItx3xhlEDQPX91kRrHPf5s1l5VHUMNg9MsJQPs89p53Gp0uXcs9pp/HRtm088PDDHDN3Ln/59FOumDuXg+bO5cW//IUT5s8X8OMHZRT19WJgNm/emG66o0P+br5Z0KZhiGPY+ecL/RuJjK2bTI5JzVesEGA9MCDINRoVZNveDpdeKrerVsl+guOZPXtZtcrnX/5FfosyGcFXM2YI2NX1sfpqkProqVPHzM927BA1+6WXimR8506539Eh63d0COG+a5ew4lu2yDrptMwhzJkjjPXy5XJJ9u6V2u633vgHu9t3cuC8Y5g66xA2btrEkqVLeeDRR/bJs/Y55Zh5pFNpPnr3PQHOn+8VMB0OBeX3QZG4ZY+x1yDr4I89BgHalh2YnGljBeRAfmCAj+6/n/zQEHoshllRQcPRR6M0DSMcxnccBv/5T0IVFZzx7LPMufFGUIqjly8n19vLwHvvgVKYiQS5vj4itbW8c9tt5Hp6MOJxzIoK6mbP5pPHHmPvSy+hx2K4xSL5wUHsbJZIbS1f+cc/iE2YwNHLl6MbpkyCDnQLm2xbQb87IH3uF84RKbjryOv0XPHOAIlHnDELXv2rMNqVtfJ6dQNe/gtseZPdH33AI48/zvxjjilf63tX/4UPt+/g43ff4aN33+VPTz1VXgbgt04F3xPfEigrwcR7Q9tvotr3fQY+34hTzKGUxuDOLYGMfIts67kUs6OB63g3Vm6UpkNPonLCdMxohXilaPp+9dau6+A5lggXXAfXsXGtPHYhg2vlxwH2eBtv/wu3cUOz/0Etb9vYnkfWslBAbSxGKJgdTxYKLFmzhgWTJrFw0iT6slnmt7aiaxqO6wpTousYmkbGsggHZmalTOKNnZ1MrKigNhrlhtdeY9XixVSEQmW5eMn4TA9cM/OOQ5Xh43kOmqbj+x6aZmDbebq6NtHcPAeAQmGUSKSa3t4PqKycRHX1VFy3iOMUsKwMphln3bobOf30X6HrIQA8z6GzcyOVlZMYHfW44IJvYlkumqaor2/gjjtupb6+kRkzDmbq1CnE41E0TSMcDvP6+vX7uV7/5NSL6U4O8OimZ/nO3HOoi1WTCEUpujaNNfXMXHYWZ805iWWnfJeCY3Hvm3/i7q9dxweffcykpol0JPt5bNOzfH/euUTMMEXHojpawWf9uzmsaTqj+TQPtD1TPt6Pv/gd0sUcBbtIX2aYgxqmUBuJkR/pI1rTBL5bzs4MxaoDczNnLE8zWiXgWgVGT8igoPeTN6mbejiaZop7OOBYeaxscr/8bICeT96gYcY8zHA8cHrVsLKj2IVMOc/T8n06Rvt4bNOzfG/el4maYVzPY0JFHVkrX3b93jeP+rqTLyJihMRt3fcYzaeoCMeDyDIPhSJvF4mYso4YlwmA94FkPk3RdmiuqiuD7WQhQzwU5ZO+ncyZMJ0IGkoPHGRLLMdgD7zwtBiPZZJy//TzoKpWTM56uwRQn/l1GcDVNoizrOcKo73lTQHRF1wOf/rN2ON/+6Gw2OEI4MNNF8P1q+RxKAIUZSSf3S2mZPXzAU3Aph4YrfkevP8jOPAKSEwX6bYeFYdvHwHTelTAqx/IzJUuYNy1xFzMdyHfIznW9cdJbfDQZohNkviuTDt8eiccfZ9sW3LvtnMw9LGw0aVaw9J8a2ovpHcLu60M6Hlb6rSzPfDu3XDCSqmdtrPw5nVwzHVSj+27sO5ymLgAWhYE664a64TMhDDkvg3KwMrn+GyPz+23v8X11x/PxIkVVFaGcBx/v1zrW245kYkTK4K8e/5L5nUmY/Hhh30cc8xEQiGdXM4mGjX3cRl3Oe+8LzE4OEBPT4YpUxr51a9+xezZR/CXvzzH/ff/gmy2wNCQw4svPMncIxOoodv3yatugtwGyG+QuujeH0HjbaAlRP5d+ACixwKGxGnVXSvXwund37jMmAypP0pO9oR7ZfnQCqndNg8Q0K1ClI3R+q+DuhtIq5m0Dw0xsaqKsK5jKMXydeu4+eSTMTRNTCRdl4pQiLzjsKmri4kVFTQnElSEQuwYGWHF+vUsW7iQA2tr2TkyQtgwaIzH8X2fq19+mavmz2dGTQ0+Eru1qauLlkSCr597Lgecdx6Z55/nX777Xf7t/PO5/MUXefq00zj5pJO46vvf59xzz5X3t0Tzbt8ub9Qddwi9u3SpAObzzxe3sEIBRkelKLqqSlDt3Xfvn1udy0lhdDYrIHrVKgHYGzYI2/2lL8HDD8v6+TwMDJCdcgi+ESKfF5xeVydfwUxGVpkwQapDLEswfclQ2nXFpGzWLFl33To47zwxRXvlFSHQf/WrMXPy88+Hhx6S0yy93JUrZc5g5kxJFjv6aDl2XZWLSqUFZds2VCU46eQvcNUVV3DWl85hz549zDhgGmiKzVu2cPpZZ9H+wUfUZItQmRDwXcqzDpkCsj1fgHMZPAdScN+T20xuzE08EROgrWkQMvYzNDvxN7+h5tBDyff38+njjzPrkkuI1tejGQboOr5tl83LnFwOH3Dyeexkkk+ffJJZS5YQb2lh88030/X66yy8++4ySPd9n2xnJ1sffljysPfuxYzFiNQK+PUKBbQgW900NLR0UuIMcxm5dWypm66skb44m5a+NTkiDPX0WaIgeuYxOOUrUF0H0ZgA9Beelv68ogrvTw9w6urX+MUtt3DN8uVcddGFnPvlL9M651j+/uenmXn0MZTqoIFgAsLHDYfxHAu7kGV49/s0HXpSoLhX+7l8O8UcrmORS/ZQUTcFIxLHyiXLJmWhWCVOIYfrFHCKeYxQlMFd79Iye7EcL/BQ2RdYe55LMTOMphlohlnO2UYpcsM96KEI4UTNeBb2eBtv/x+1cUOz8QZIvfVoocDnQ0Nc9fLL9OfExKpkcGZqGssWLuS06dOpCIeZWFHBpS+8wOdDQxQD9+8fvfwyrucRM03Cul526y46DrMnTKAzlUJTirktLUQMg1QgK8/Ztvw4ex6255G2JHYJwHFy+L6LUjqe52AYUVpb5xMKJTDNGJWVLYRCCRoaZpFINGJZaXK5AQDC4Ur6+v7J8cdfRz4/gmVlyjFdkyYdTyIxgSlTJvPGG2t57bWnef31v/HHP95DR8d9xON5CoUUGzb8hVtuOZyXXnqK9ev/gaa0Mit68fyv4Ps+g9lRrjj2a4TykAjHcH2PF55fQ11dHV+cOZdzphzHxz3taErjsGw9tXW1uCHFnW/8jtaqRn5y6sVMqm7C1A0GMiNEzTBHtRxE2AiRCMf49rHnlI8XNkJkCjmioTBzWg4mFooAimh1UDyoGcRrW0TmjY/vWPieR6y2BTNaVa7L9hwL37Xp+uhV7NwoTQcvYGDHZnQzXGafjXCsbM5SkptrhinMtmZg5ZN0ffQaVi6JGa/GjFbQvfXv2PkUnu/RnxnmomPOoj8zQk20kvp4NZ7vETXDPLnleV7e9ja/f/dFTjvoOJZ98bvEQ1FhAYLPTV2sGkPTyVp5Vrz2OF3JATRNJmGyVp6Vf/8tjueilMJybKqjFTRV1ZKzC6x47XF6U0PUxqowdYPZzQdiBDXw5TpqkIF3fTN86Zvi5h2KwEU/lAzUUEQGqU2t8lzdBHGdTVTB9g9lkHpWwIKf+XVhus/c5zF+YKKjZD/XrxIJ+Z8fgi1vgBGWdfSYsNBlF/GIMNED66Ue+8ArYNvdMhkQnwJGQuqn3cAATGkB6+nBe1dDarsAMGtIsq3zvWJyVjNbwPnQ5rFabt+DrXcENdd75JqkOqC7TVjl5uMCEFiEXH9geuZCvEEk3OuWChNdP1titt69G+b8SOqr7UAK33ycSLyVkn3OXQZTT4UtK8eysd+4Sm4Vsp9sL1hpLFdn5coNLFgwiXg8JO9/YMp+zz2nceGFs7nhhgXU1ETI5WwuuWQN6XSRH/9YmOmbblqEZbkkEiEWLpyMacoAtbIyVC5f9Dwf09R54IEn2bjxHdrbP+Giiy7hy1/+Oj09A1x//WU89NBjbN78LitX/oLvfPd7qKGVEF0gTHTkCLD7ofJCaPwleAVo+rW8N06POIibrQGTbUtu9dCd4ha+HwO9Ql6/OUPAtIqJNLzpYTAng90O/T8EZy/kNwYs+f1g78X3fQ6orUUD1u/dS/vICLd/8YsUHIftQ0Nc/uKL9OVypCyLpWvXMrmqipm1tUQD8HLPxo2s3rqVVW1tuL5Pa1UVDbEYedtGU4rbvvAFVgVqpvaREf4P9v47Wqr63v/HH7tNP72fw6EXFRFQAWmWKHYTc02IiYnRqFgwscRoFBVNBCPE4E009pJiCvEmxiDGQiRSpChiIYpwKIfT2/S62++P1545cD/ftX7fz/p9yv2ty5vFmjMze/aeuvd+vp/t5tdfZ2pDA395/nm+vGABq7/3PVygLhQioGk8ccEFlIIAy8uhrEyAtevy/K9/jXLiiby8axf86EdcefPNTHz/faYedxxz9+1j+z//KTRxMcSss1P+/+IXw73V+/cLkG5oEAZ79uzhtP5586C3V/zeusfUfvopjBuHqxm0tcGOHUKiO44Q6sGgXDe9XYPfC/+/+WZhox1HstcGBoRgv/hiYaKXLhXS/KGHhuXlRZ+1YQxbZFetGla5FwpiES9uR+oWQhAwhllqVQFdwzRNvv2d73D89OlMO+kkbrnlFl767YtU1dXCuFZorBnus1ZVeZyiCFMd9Av4tmyP5T4o8nFcCAelwqssLMv6DPDJe6UZBpOvvZbTfvlL6k48ES0QwAiFqJs+nczgIIqu4zoOrm0z8OmnAqqLoV+uS7Cmhk9feIH2v/+dXU89BcDkRYuYt2oVoYYGti1dSurQIZGVh0LMvO8+XNelbMQIAtXVOKYJto0WCND/4YdkenvFxhQpl9cWKYdMiuefew6lqZWXf/cbMHyc/tWvM2baiUy74EtMu/QKVl3xNVEQTZgsoNrvJaXrPmGy33oZ/EF+FlXF6z5zhuxjs2kSrkpvXz9/ffMNZp16GrNOPZ0//vGPkrdxeAimoqLpBo2Tz5DdvOPg2iaOZVLIJHAVBd0fRNN9VDYfg6obOFYBw1N8+ULlOLaNqhtoeoBQVRNWISuqM0VFM/wSPOoBa5F953Edm4G27Wj+EIpmgGORHuokn4oSKK/Byv+n4Lqj4+g4Ov5LjaPg+r/JKNg28Xy+JAtftmEDOcvis8FBrvrb39gXjTKhupoRZWXUhcM0lZXx6Hnn0VpRgc9jrL87cyYH43EWrVlDWzRKXzpNzrIIGgZBLywnZBhcOnmy+AFVFV1RiHgMtu04ZC2LkGEQy+UAl2SymzVrriUa3Y9t5wEHTfMRi+1n7drFFAopHMciEChH14Mkk11eYFkvPl8ZI0fOo6pqDJFIAz5fGYriJaIqOqmUrDuTGcAwgiXv9e7dr5BIdOK6TsmjvXnzCq/GyqWxrIZ7FlxNc7mkfE9pGk82meLLX/43Rk0cy8knncxDP1vJ8qdWcd1JX2bRt77DN875MmfMns9jjz3Gb1b/nmguwX98/A92dH5GV7yfpa8/QTSTYGLdSAC644PkrDxBw8+IygbuXnAVAcNH3irwwnt/I6D7SwnaYoeVn6prFTDzaQ9wgaLqOFZBEsJd9wigjKKUPGGKJ2OzzTy1Y08Sb7brouAeIWHDhUy0E83nZ2Df+yT7DwiDDRiBCOGaVsxsCk1ROKZ+NGFfkGPqR6OrGj3JQX70xtNkzHxpguKW0y5jMB3HwSkx2ulCFtuxcVwHy6sk+e78S2mqqCWgScd62Ahw2+nfQvdOOkI+P5Zj80HnboYyCaY2T6AmUkHeKvBR1+doinzX8Jh2iiC7CLRtC3Z/KEzInl1y+95PoLcDfrUKBnrl7Nnnh/Y9ArB/95hcfut7cns2LQD8i9+SdbT9SwC4WfBCcqpFinjBN2DiCVDIACr4a4WBzg+JLNj1elnr5gjwjoyCaSuljmvbIgkgq50BOLJ84nO5PXNQgPieR0XyHRoBM54UQF5/qqSQZ3olXfy9G8HOyHInPgKjL5NtuY7UcAXrBPCaaXl/8rFhVlnRxKcdqJGAMiMkt/nKYf5DUCWBRSVf9XHf9OThhkjBy1qlZuv0R8S/7asQ9rqsFVCE/d68FNJd+ILBksz7gQfewe/XyOdtNmxoZ2Agw+OPX8CECdUEgwaJRJ7bb59DJmMyfnwVTz11IaNHV2IYKo4jJ5r79w+xePFaEokCluWQTBbYtq0T23ZobW3AsmRS7/e/f59w2McHH+yiurqG4447DlBYuPB8Ojo6eb/zGij/OhTawB6CwDTovUmevxfCht0j92OJH1tvgOw2SftueBT0ZgHnNXeJ1LvmDmG5Q3NAb5W6LbNtOIn88LA0vVYk41YXdF6IruQ4GI+z+LXXqAuH6U6lcIGgl4HxRlsbyzdsIJbLsXrXLgK6Tls0ysb2dnKWxc89X/bKBQvYF42yqb2d9nicD3p6xKLj9/PoeedRsG2Wb9zIzJYWNr3/Po/96ldcct11JPJ5Evm8kKbIhKr8Xg5jzlIpDuzezdPPPssptbWCTlMpvnzyyfxr+nQ+/PWvufO73+WrN90k4LqrCzZvliCyER4BMGoU/PKXAp4tS/4/8gh885sC4jMZeUw+L48rPo9Zs2D/fhzTpKMDTjlFFn3vveEmqnxevrbpNGzZIn8/8ojYw9Oyu2TUKHj6aZkn6OwU//SKFbKpoSGxe//yl3JZTCDft29YnX7XXbK9+fPh/fe9bcqeW/ZN3li/bh0Xf+lLhPwBNr3zDp989CE7d+xg0z/f4QvjjhUgXKyk8lL0S5LvIqbyHBr4dGGpKyLCZKuaPImRTcOd164L2Tx8fhDNtImMGEHdSSeVAs2SHR3Unngi9VOnYudy5IaGsHM56qZMITc4yLb77iPT00NROjJ50SJGnnsuk6+9FtdxCI8YQd306ex6+ulS6JmiqgSqqlA0DUVVsbJZsv39OJZF/4cfkjhwgKoJE9CK3yGzIE0OZoEDsRRP/341pxw7CT54V/bbjs2qe+9h58YN7Fz/Frc88byojGadIbMmiZiwzsEQnDgPFl7DJzt28B9//g/uvuP24fetcSSWbWFZFlnTYuuffscfLz6dW26/gw8/+1wC0WJDJUZZ9+xLVj4nv35VQwuE8YcrPcm3g+4PSle1Cz2fvkMhFcWxTdKDnZjZJK7rogdCKKpGuLoZX6hCpPCHjaIMPD3YhWMVaD7+C6JAs83SBLqm+7CtvASkHa3sOjqOjv+y4yi4/m8yfJpGhd/P7XPmSP3KvHlH+PN+smkTruvSFotx7Zo19CSTxHI5VCQp1q9pjKuuJmQYvNHWxqFEgrRpsq2zs1S3ZTrSP+3TtJKHryESwXFdBjIZVEWhzOdDVxQqAwFM22bz5hXs3v0KZWWNaJof13Ww7QIbNiyjpWUmyWQ3r756HfF4O0AJDKdS3cRi+1izZhGDg3soFJI4judnBFzXKgWibdy43EsgD3LRRc9y2219jBp1KuBy4YVP841vrGX+/HtKjGpHvI+dXZ/TGe/j/c7PsByb5pGtnPujK2m+8VS+9JPreGXtGubPmsPo0aP561uv8sHOD/jTm68w97av0Dh2BFObJ/Lov93BtOaJ9KaGWN/2Hi9s/xt+XcBjT2qArng/P3rjaXoSA8SySXKFAql8hnvOvoawL0B1qIKJdSPJWwUAFE/qXUgncB0LxzZxHYs+z+uFKkFmoeoWrHwGVdUZdfKXvVly8VtrPj9WPosRFAbFRTkyCVVR0HxhcKFu/Cwmnf4dFFXFNvN073qbUFUz4ZoWqbs5zJvuui5Pb/kLr+9+l0f++SI14Qq+dfIFKCg8s/VlApqv1Ecc9gXFT51NMJhKgKJgFStIFElVTxWy5G0Ty7E9QJ7DrxtMa55IXaSSsybOwnYcHNfhhOaJ8tmp2nBaER7QNnwQHYSqOgHJ9U0w/jgJFhvjhY8V/da2J50s3r7lHyI5VFWRKSaikkRum1BbD5W10psaG4RUDHo7BbTX1MlJnz/kJd9mBbQGm7y0cE2u5wYkzEwNSuhXrlsSwSOjxTNtpiX87NMV0L5a/NiRUTD9ZyL1HnhPXmoxpMyxoG4WGFVw7G3CZjs25Pvg/ZuEEVdUGHEaVI4ToOw6ElwWrBGJeU+RMXdl+/+4UeTjvnIByf4KSfvu2iS3R/cIC66o3sSBC29/T0A2SO+2EYbBXVLRVUgKuN69GravwKeahMMGq1Zt4dZbT0FVFUzTZurUBjo6Eti2S29vikzGxHWhqamMtrYoyWSB9vZ4CX+Ypk0qVWDs2Gp+/vPzCAR0brvtDRzHpbExws03v04qVeC6665iypQJdHb+lZde+j2nnXYSQ0NDbNnyLtu3d/LXv/6VZDLJwX3vi7xbrxdmWvFB9a3yvjgxSQ5XKiQdXBAOqFWSEt57M7hZz1/tCDtde7/4sPvuoFivhV4PWj3UPwx27DAQfhdYMWh4UgD6hAQO/tK++uF332VOaytt0SjXrllDxjTZdvXV3D1/fqleqy4c5lAiQV04zOLXXmN/LMbjF1xAyDBYvnFj6f7GSITvvvYaiXxemo40jSXz5nH2uHGs+P3vGezu5vSTTmL2lCl8/uGH3HTjjSz/2c+4yfN6Y9sQjUIyiRMIcPVtt/GLlSvxjxolyHTcOL44YQL6D38I48dzyrx5dHZ1YU2dKkj2tNOE9R47driu68ABSR7z+6X7qr9fUOznnwvT3dQkkvJ8Xrqv2trkd9/aiu7XOfVUF9cVLD5nznBjlc8nRHdlpUi2N28WYHzKKUKQW5ZsqlhlP2+evIS775Zli/7tzk5RtR9exRUKCVDfskW2d3hyuGMjYLfooS6CZduGfR1yuy1VXFg2jBshtyVSwkTv6yh5pYFh2TwImLYdWba+Rphs15FlAj65v7itQz3QH8XOZDDTaUkMN01wHGpPOIHc4CC4Ltn+fj599lk0jwnWg0F6Nm+WlPB0GteyCDU1MfPee8l0d5Pq6EAB+j/4gMnXXMPIc89l2q23Cpju68NMpYYD6OTgTOWECbK+XI5gXZ3cl4iJXFw3uPr66/jFRWfgr66BU88fLiVPRqW/2heAl54RT3YuCxWVMhGaz8KfnpFldIMNW97lQEcnE6acwOhjj2XLtm0suvFG/vjb3xIJh/nm1y6F1//E6P0fM3dEPdt37JDP6q2/yFP1lGC4Lro/QCbWg+vYmJk4nR+/ST4VxXUd0kNyu6obNBwzn6EDH2BbeZGA79uOYxdkP+E63tvgHuGZdhwbx8xhFbKEqhqx8hk6P34LMxMHV6xahXQMVTfQfWHv/Tw8NefoODqOjv9K46jn+r/RyJomluNgOQ4K4Nd19gwNsWzDBh455xwMTSOazVIZ8Dy5jkM8n6elrAzbcbA9z/RgJkNFMMjWjg5mtrQQz+UIGQZhbwb6cA9fbShExLtdUxRMb9uGpoFrkYrtJR4/REVFKxs2LGPOnNupqZlELLYPTfOxfv1Sdu1azZQpl3HBBY9j23k6OrYyYsQs1q5dzK5dq5k8eSGnnXYfZWXNxGIH2LhxOeec8wiZTD8bNixj3ry7MIwwkUg9oFAopEgmu9i8eQXz5t1JONyAz1eO45jYqo8POnczuXEc6Xwan+5DVzV8uoBD0zYxNANd1XA833BVUCq6hjJxrvz9fdx37nVMb5lE1syz6p8v8u0ZF9GXGqKhrIaW8joURSFvmTy47rmS1/qeBVcTzSbwaQZl/jBd8X6e3voXrphxERNrWnBtOUlSNENANqC4MpkR696NL1BBsKIO2yqI91wZ9k77QhW4ris+MU38cy5yAlnIJDCzKUk09XxnruNgFdLogTJwbDLRbnR/mEy0k0y0i+bjzyLnOnzY9TkTakcSNPzizXccHt3wB26cfymqNxHgAgWrQMCQEzXTttA1HQ05gy36qi3HRlNUXFw+7PqcunA1IyrqyNsmn/S0Mal+NLFMghe2/41bTruMoOHH8WSimqJiAEZ/N0rRa1ddJydrwZCwHoW83GbbwkLjvQF9XQKsL/g61DWKvFtVh2//2nXi0x7qE9Bt+LxeVAV++6gA8KL/GgSg7/9M+rbrqwVEuSYSYmUCjgBnFEgfFFl4aIQA58lLhOXecYv8HRkrj7UysPMOAd5lYwVE928Uf3XmkIDomlmSJN6/GapO8ALMPGakfzOk9kLNKcJu51Ii4555l9RsxT4XCfesJZLu3f+heK1zUfj1CTDui7DgSZFyhxrgrevgpO8Lax1rEy92plfWMfNO6HgHjrlUwPT7qwTE+yuEsUcV8P6PG2V7FeNI5XUSyQKKAoGAjuO4qKqCrotvU1UV4vE8yWSBsjL5HaZSJvv3R2lpKS/5tSdOrGHfvigrV25m5coFBAI6mqayaVM7Bw/GuOiiSagek3fJJXehaf/ilVfW8Morr/PEEz8lnU6TzTbg8x3kwdtq+OLsTdCyVlhrJw5aI1gHPY/0HWBMEhCd3SqycGMc9FwlcvLQqcJA19wOWrN8DrmdEJrrgW5V+rAHHxheRg2Dkwa1XL4n5n5hr2tuJ6sex55ogmUbNnDv/PmMqqwkb9sciMV4dNs2Hjn3XC8YUGrsdEUha1ksfu01Vu/axcLJk3nywgvRFIVUoYBP0/BpGhvb29kXjXLKiBGs2LyZJfPnM7aykrRp0pVM8pNNm3jknHMI6joXnHMONyxeTO1JJ3Huiy/i3HorZ5xxBjefey4X33wzP33ySZLxOPffdhun/9u/cfPixVx8/vnyO8vlQFW558Yb+ai3l7/+5S/CbFdUlCq0KBQk0nvDBtFdV1ZCR8dwjdfCheLf3roVWlrEz/3970NVldDUy5eTfu4P7N2rsHz5MCvd1SUh5PG4AG5FEdn4zJmC1W3bixxwh1lu2/ZU2Ko8zcpKAee2LYz0zJmyGyh4uNgw5H8uJ9dDISHn33gDLvmyTXOTixJPDfuj4ymRaoPItg1DmGXPk01x2WRabq+IQEevhJgVZ5SKrHRxuEiCeEu9sNnFGq/iDj+Xh0M9mCMbsPJ5VF3HtW1UT99eVEdtv/9+Jl1+Oaqmsevpp5l8zTVowSBWJkO4pQWnUMC1bRRd5y+nnsroCy9kxtKl0lftMduqYZBsbyfX30/NlClogQCuZUliuKKgeaFpiq5jplIEQgHUdBLMPD9d9QhJX5D7713K6eecy803XM/FF5zH6RdcRE9vH4Zjc9yxx/JgIM7YM8+Fr18vPuy1f4BzviqKor274Nu3yH78tT/K7ZXVnH7hF7l56nguXvYzFt18K9OmTeeGa65iaHCQ6fNO5U+/e5GZJ58MuQx2pAzXsVEUFVdRsHNpNMMPqkb3J+uI9+xh5IkXlWq2zGycgbb3aDz2VFRNvPFucVJE1TAzccktqWrCLuRwHQtfpFo+OsfGLYFthUy0h4Pv/QeVzcfSeNxpHnD3e3kq4FgmqhFA03SOjqPj6Pg/P456ro+O0tAUhf2xGNe9+irtiYRIe2tqeOaiiwj7fAQ0jfpwGJ+moQABXeeBd95hfyxGxrK4Ye1aDsTjNEQihHSdE5ua8GkadeEwFX4/GdOkO5Uia1ncNHMmIcMg4hOmNmtZJAsF7njzTUCAuw6Ul49k5Mh5JZZZ5NkWZWXNlJW1lNLBFyxYWZKKV1S0ommB0n1z595BIFCJoqilyq033/wBlZVjOP/8X1JW1kwoVCN+JrtAPh8/rLLrQXK5GI5TIJFoRwXqI9X8ZN3zBIwAqqLSn47x4zeeJm8V6E/HSrVcH3TupjxQRke8jx+98TRZs8CfrlhBfaSaH73xNP2pKMc3jePZrS8zrXkiI8rrGMrE6Ir149eNI7zduqqTMwv87J8v0hnvoyc1WEooVxQFK5+h+1/rMTNxAfmZmMxs55JUNh9DqLp5uKorf7gkfGuJNVBUDTMrM+6FdEwO0KpOqKrRm6HPYJt5XMfCCJRhZuJ0fbIO3R/EyqeJ1I0SdhtQFZVpzZMIeuFoqbwkt37v1K+T94LdVEVFVRRCviC2I4FlPs3go67PsVyRiQ+koliOTcE2SReyZAo5xte2EjAMOuJ9PLjueWqCFUSMAI3ltdy94CpCRgAFBVVVJbHcddAcR4B1kYVWFBgaAMMvQTc1DcJs25b8dxzx19U1CTCua/JAsyoUVn2z3O73D3dX7/9Mqrx+8+/Q3yNp4sVU8mRMlsukZNlovwDr1F7o3yShZu8tluCx4nUtKBLuXcs9ZnoZmHH5O3NIEsG3XQf5QZjxuIDt5F6RiIdGCHjOdHgy8MWQ3idy8nwfbL9e5ORmAipPgNavCgNulMN7KyVwTPcmGd5fVWKSMSLQMk8mAIJ18KWXYdZdgAIH3pCT9NMfEYl3uAVGnAq+MmG1D7wh1VyjFshz275C/Ni+cmFZzIykjOsBkZuXjQQziWJnKC/3EQoJ2LjttjfIZi32749xzTVrSCYL9PdnWLp0PT09KcrLA5SVicfa59OYO7eVVau2YNsuy5dvZObMFnp701x33avs2TPItGmNXHbZCfh8Gjt2dNPdneTSS7/Jtm2b6OrqZdasebz00lrefHMDe/fOoKurm+Nm3iYscmjucNWWdRDMDq8qq1sk3b2Lha02O5C077sgfPZwN/bgCmG61Yiw3G4esu+Kr9rs8HzdYS9MqXhybUmY2WFJ4o4rfuf7TzuN0ZWV5CyLLR0d6KrKqnPOQfVAcyKfpzuVIlEoENT1I1K/DS+Msi+d5oa1a/l8cJBpjY189bjjjrAL5W0bx3VpKSuTY4NhkLEs9g4N0ZfJMKe1lRN276b1mGN498MPufrRR2kYMYI//O533H3bbYJmEwlJEOvuFsrX5+O3zz/P6vfe46nHH5f7HnhA9k2plLDSN9wgNPJDDwmaBUHHxULpO+4Q6nnWrOFE8YcfForYo5EtS/585RXBln6/LN7TIwS3YQiWr6+HW26RTdu2YPMbb5SnkUgIIb5/vzyF2loB1rkcvFh4pbUAAQAASURBVPuuAOsiad7dLS/hhhtgz57hde3fP+zXrq/z9FR+3zAgrogMI/kDXRI8ZpqyTHHZZFoAdmONAOuyMKKccI4E1i7DKdYt9cJQW8U4dI8td5ySd1s1DPRgENdxUA0DK5cjNzAgk6GOw4ylSykfM4ZsPM5xV11FqLGRYF0dZaNGke7q4v0HHyQ7MIAeCDD6wgs5ackS7HweM5lE1XWRebsuucFBqo45RsC76+J44DofjWKmUiIN379f7gPcsgo+2baV/3hnM3dff62w0I4t+2kUfnPP7Xy29V0++nAn8087jQs/7PEsOwHxV+/cAokhkYl/83uyz4kPwoQpEoSmqvI+NDRDbIgHTxrP3998g+NnnsKp557PHbfcIsB6z8dy3ADMXLKUW6LqRilzpPHYUxl54kUYwYhkmGRlkjpYWWSd36SQjuO6TukxqmZIN/Yn63AcC0XVcR0bu5AtfZCZaDdmLkGoppmKpkk0HnsqVj5Dz6fvYGbjpIc6vfUeZa6PjqPjv/I4Cq7/G42CbbNi0ybmtrbi0zTy3qxqmd+Prijs8zx6pm0TzeU4FI8zs6WFZRs2EPe8fA9u3IjtuliuS0DXcTzlgwNEfD5+5vWijq2uJuLz0Z9Ok7cskvk8uqry0IIFtMfjbGxvB2xU1UBR1MMqtu4GlJJEvLJyLBde+BSGETqs93oZrmsTDNZwzjmPUFU1Dr+/HFA477zH+PrX15Tqu1RVx3EsXnvtu8TjB8lmh/D7y0s1X/Pm3VUC5oYRxoFSUJeqKAR0H37NYFrLRNL5DM9t/WupWqsyWFaq21rf9h59qSF8mkHfYTLw2aNOYNEp/4auapiOTWWwnLqyKsBlRGUD9yy4Gr8uXutnDutuPr5xXAl447r0t20TsNy2TSR4e7cN+6mRqpDDvdOqqnlS75keSy0nY8XHDezbLrI1f0hm3Q/r5URRcB2b/r1bvWXfJ1TVhBGIoPvD2IUMALbrUPCqQkK+AHmrwPK3nqM/FeXGeV8jY+ZwXRfHdTA03UtadZneMgld1dBVDU3VyFsFkjnx/mqq6lWVldPrfQ6NFTV0xPv5ybrnsRwH2wPmH3fvGf5yK+qRFVyaDmMnCSvkusKa5nMQFP8ctiVywoEe2P+p17+KXKbi4q+OD4HjcPYtd3LC/NOYdukVzP/CF/jgtTWw9g/kbYcbdxxkwmlnMeULZ/PN798uwHrdXyXJ1rUEOB8BoJcLO128PdcPk++CkQvh+LuFWR65UJjoXcuGQXcxaOzw9biOLPfpw8O3KcrwMp+uEHBtxoTJnrxEXvupK+HYbwl4dm1hlictlNuT7V6n9R5hzJvnQfloAX/HXCoe7uwA9O0QoJxPiMzbCMNl22HW3SIxRxEQftw3vZ1PEvp2emy6CppP1pPqRjFCtLVFWbx4LdmsxYoVC9B1hRUrNrF69S7i8TwPPriR1at3sWrVFsk8ivhIpQo88MA7zJ3bykMPnYWmKdx11zzOPntcafkVKzajqgoffniQq656kbq6MN3dKRTlM2pra8nlDLZv/wyfTyMcNpg8+VPmzT2VcRNnSSo4CPgNngpml4DtljVeUJkHfocehuBMQBf2Wm8+0metyu8d66AnNa8D85CsKzTXA+498r4UCxIVP9QsKa3DduHm11/njX372BuLsfi112jwsjGKVUGaotCTSrF0/Xq6kklcoD+TYen69fRnMqW2Br+uM7e1lVVbthDL5fDpOnfNm8fCyZO5Y+5cfJqGoaok8nlShQJdqRSu67Jj82Yu/9rXUICNzz9P++7d5Lu7GTjnHO7L5+nct48JJ5/M6Llz2fL55yy67TYev+wycF3++NRT3L9qFW/+4hc0LF0qAHzmTEGy8bgYm4sa60hEqN90WrTZo0ZJKvi4cdJ95fcLs11MFtM0oam7utB1weJ//rMA3aYmuXvCBJg6VQD1/v2C2WfOlKdxww3DT2fFCnk6tbUi/04kBEg7jgDzqVMFkC9eLJj+0CFRqBfDzGIxeWwR+z/66HBpAQGfyL0/PyiXPl1Cx/qjcml4110EFBuGAGzHhfEjob4KTHtYVn646FBRRFIe8EFro3Row3CoWcEc3i6QOnSI9x54ACuXA9fFX10Nts3ABx+QOHgQx7KonTyZstGjUX2+EgOrBwLUTZ/O7l//Gsc0Ofmee8h0dzP40UdYmQzb7r+fxIEDuK5L3fTpoKrkBgZwLAtV19FDIT599llwXWpPOAFfWRl6KISmaSiazoZDvRzo6GDC/DMYfcJ0trz3Pot+8EMef+wxWmefDskYym9+zo1XXcm+gwcZfPwnMuG58Bq4fonYf/Z9KhOdv/53aB0HJ86BcBlohnjdr1kMr/+Jmi9eyisv/oZPXn2ZT276Jjd85UvyPo6eJJM4h9VcmtkUtpUvTVirmkG4uuWw4/BWQlWNROpGH3GsPvwxuj/I4P4PCFVJ77UeCMlHpxkUMnG6PvkHuj+ImU2huK6XJq6UjsP9e7eh+4L0t20Tmfn/H6pOj46j47/LOCoL/280sqZJLJfDcV2ShQIVfj9BXcev6wJaHAcXSrVaHYkEY6uqsByH2lCIm19/nSXz5zOmshLbdTE8mbft+ayLXdcZ08RQVfy6XqrecjyJMK6L7bpkTZO6gE6hkAAUfL4IrmuDl/hc9F7bdgHDCKOqKrHYATZsWMbcuXdQXT2ev/3tGnbvfoWvfvUlRo6ch2lmePPNHzB37u1UVo5hYGA36XQvLS0zse2CB6BDpNMDRCL12HYB08zS1/cxI0fOp1BIovkqOBTv59mtL/ODMy4nmk3wzJaXuWLGRYyobKAr0c9zW//K1bMupjc1xNTmiXQnBuhLDVEfqfaqqS72ZODVjCivF0+xY6MgfuJV/3yRK2d8keaKOmzXQVdVQKEj1sszW1/mmlO+zIiKeizHRld1DFXBLFV7zMQIVmBm4/Tv3XaE7NvMJobrP4LluK4DKDhWQbqsFem+7t+7jbpxM9D94ZJMvPPjN4l376aiaRItU87CRTlyfaGKksLQsm0OJvp4ZsvL3Hb6t4hnU/SkBjm+cRzdiQF++/5a7l5wFalCjlgmSX9a3icX+LjrcybWjcZv+ChYBfleuC6PvPM7bj71G4R8AQl/0XQORXvp9dabzKd598BHTGs5hl9t/xs3e9Jw13EwXZtq1YeSy0iXdZUH7rzXT3+3SAMvuFSSw3NZOLRXTqIyKQkiK2pDQc7GbVv807ZFrGBRWchAtJ+/bN3Bfff/iA83vcMtKx/BSib4+a2LUarr6Pn9MzR+41qoqfcCvxDmOtNxmPT7ruHrkXECmgtR8FWJ79qxRQquGsJc71ou/unCENTOE6/1rmUClHPdUHG8MNu7lsm6I+O8xy2D4+6AQKMAYz0s74VjC6PuFESmrhqeX1rknLy5SFjsSQullzrTJ4C7caY8zs4JsA42QM0kb0KiIGnj/jKvAk0HXIjvh63LYMbtUD5Wuq7NhLDcAx9B7QlghIjn/Gzc2M7xx9ej6yp33PEWP/jBHOrrw9x88+s88sg5ACQSeZqby8jnbeLxXKmnuigjz+UsuroSjBtXTS5ns3VrB83NZYweXcm3vvUCr776ABUVGiNGVFBbW8ePf/wgiUQVTz99H//4xz+prPQxZ85sFi++lzGja2lpDqCYbZ4M/E7QGqDvZgG9xjgwPxNmuni950aouVUqtfAk8LiABhQgs1mAtTUooBpXfNhdX4HIFyUEzToEShloVRIQ5wHurO0nljfxaRqxbJaqYBDNqzu65fXXueWUUxhXVcWhZJI32trY1tnJY+efz0A6Tb2Xe6F7yqUfb9jA7XPm0BiJoCoKO3t6mNbYCMgEqQKYjoOhqsTzecKGWFE0RRHFkaqiALpt43MclP37pdC5qLPet4/Tr7+em1WVizdtYvWqVSx55BHeeuUVRoVC8NZbcPrpIucu+oe7ugSd3n23oNOdO4X2BbyYZqGKDxyQ5PDubqGkdV2SxqqqwDTJBiuxMBjO3hCMDvLUfvMbafJ67DFJBn/gAXna55wzXNNlGMJQz50r/dUDA6JOnzlTNlcoQGPjsErdNCV1/I47pIa7rEzCzpYvl7qu8rCN6njBa58fFDBdVyUJ4LmCAOCRTQKo/cL6lphrw4AOr4Yr4BO5eLFaq71bgLTPkElE2/H6roGCJeA9VxCW+0BXabvmyAa2elVcX37nHVzLIjswwO5f/5pp3/8+ms+HbZrEPvuM6uOPR9E08rEYvrIyBj/6iEBdHaG6OoxwuFTNpek6+XicQiJBbnCQyOjRhOrqcC0L2zRRDUPk5K5LdmCAYHU1ZiZDoKZGbGJ+H0pfF7z+ElzyHa/K0OX08y7g5m9eyoVGnsEzLqahvh5ch/94+WVu/cHtHPzSDJh2imfLceE3P4ezLxnO0viZl6URjw7XLdY1yTGhyouTTyfhXztg/274xmLJ1IhHsRtbKGRi3nF2JkagnK5P3qJu/Cx0f5hsrPeIGktV9wEuhUxi+FgdKMcqZEr3F6u9BvZtl7rLQBng0vXJutLxt/n4M6WiVPOVvNWZWA9GsAwzm8QIRtB9ITRf8Ij6rqPj6Dg6/s+N/2+y8KPg+r/RSOXzWI5DWzTKis2buX3OHMZXV6MqCrZXkxXL5agKBIh6l47r4rhuKfFbV1U+GxhgxebNPHnBBRyMx0v9qR2JBK0VFbSWl7MvGqXC76c2FMJyHBK5HPWRiKdgk2ArHwWRRykKiqJ7lVwqlpWjq+s9GhunYRhhTDPFunVLOPPMZd71LD5fGMuS4KVUqpsNG5YzZ87tHDq0iUOHNnHhhU/R2bmN2tpj8fvLALy6L5FCu66LaaY9MH4HlZWjGRz8nFD5aJa//Vte3/0uL1/58BEd1PeefQ0KCpZjoXj9y5qqoisaKNCbHOLdgx/xSXcbd555Jbqq47oOHR4QvWLGRdSGKxlIx6iPVOPisuqfL3L5jAupCVWUuq9dQEVB0zRc1yWs6WSinfjLalE1X8kbVwREjm2hqJqkhtuF0jKqqlHIJunfu5Xm488kE+0lVNUgqaaeybDo8zLz6RKQVlUDxzExQhUorotjm/R8+g6142bgC1WQsy3u97rAX77yYTrifVQFy/j1e69y1ayLqQmVEzD89KeidMT7mFg3kqF0goFMjKnNE8lbBfb0t3N803g0RUVRFEzHQnHh0Y1/HPZsIx7tXT1tNEVqaSivZjAdI+QLYmg6qXyaimC5pIs7LsqeTyTpNRCU9O+/r5aTpd89NtxNfdmN8tpVTcLJdB9E+yQYp6pO5NxVdSItL56IKZ5p0bZ54cXf8cgvHmXTa2toOnYyHX//K+VTThKQnk0LsI7HZD3HHCePcz3AaaZEdu2YkO+X4LH3FgvLPHIhzHxSuqs1QwK0cIYDxzQ/pA5I1VbNTAHiib3w2Uo4+ZfSo93zJkQ/gKkPCTOsaJSSrZ28gGM0CSR7fxWc9jORStp5SPWI1Dt1yAPEd0DFGAkrC9ZDtg8aZ8nrUIud2yrE9sL2nwz7t+2cyL4dS7zZRaC+4GlZNtMLzXPkORVSsOEO0qc9y/79Uerry/D7NRzHZceObk4+ubmkuNi/P0pXV5Jp0wQEBoM6vb1pIhEfiqIQCulksxY7d/bQ3FzGI49sYdWqc1AUBV1X2LNnkM7OFLNmjSAY1MnnLQxDQ1GgszPJ66+3sW1bJ488cg6LF7/Go784i9oaBcXqA61SAsdwYP8xwiY3PiXJ305MmOncB9B5Poz5HNzMcK+1MR7ctISimfvk9vpHpGZrcJksY3aA0Qp6I2S3g9EisvL6R7zPLk6a0eyNxuhIJJjb2krGskjk81T4/XQnk/Sm00xrbCSez1PmWXHK/X4Ktk3GNPmot5cZzc04wKhHHuGLkybxxAUXoHtZCbqq4rhuSV5+17p1LD/zTEKGIccHD5wXbJu8bQsIN03C+/ejFFnmZcuESR47ltPPO4+bL7mEiydNwvjiF2lsaKCmstLzCqusGzeOmh/9SJBoZaV8D3V9OP3btoUi/ugjQazLlwsl3dQE3/3usAf7mWfg4EFhs+vqSClldPdp1Nd7lmPv9MZx5Ho6LTh+zJjhzRTDzlRVruv6sOe6q0uAcn29sN2zZglIv+46AdPjxglbHQrJbmLzZrGDjx0r6wj4HXy6g7KnHSaMPBJMB3zCNhdbDooTXImUyMYdF/a2D4Pxca0eQ20dAZYZ1Qx+z79tO/JfVQSAFzwPd3G7rY3Yukai/SC7nnqKmUuXkh0YYNeTTzLp29+mrLUVO5dD9flId3Xx2QsvMO222zBCIVzblmrKTz6hbupUVMOgkEiQHRwkXF8v8m/AyuXQg0GsbJaPHnmEE266CT0QoP+DDwjU1VE+ejSJ/fvJDQwQampC8/spq6tF+c2/S4XWuONKQPj0y67g5skjWbBkGadd9CXyuRyqplNbW8PPli9j6rgx4A/K55+IyT44ERXgvPaPIg9PROGV3wwfA751k9h4yqtEep7NyDFDUYerFfM57FCY9FCnZ4vKEq5uGT5uesdFBQXbLpTAs+u6ZKNdBCsaUDRp8gBhp/H2xp0fv0mit41RJ11EqKpFzon+0zHWzKXQAxHcwx6veIoyxevjVjT9KLg+Oo6O/0vjKLg+OkqjYFnkbZuU1zP9cV8f0xobifh8pDyPXrGH2PGYi4xlsaO7mzmtrSVQfP2rr/Lixx8z8IMf8F5XFzOam0tJ1tu7upg1YgQD6TQNkQiW47Clo4PZI0aQtSy6kkkJzpk3j0lVZRQKCfL5OH5/OYVChkCgklwuRjBYjes65HJRAoFK4vF23nvvSc4552e4ri1epq73aGmZRSrVRVvbG3R2bmP+/LsJBCowjLAHpgvE44dIJA7R0jILcEgmu9m4cTnz5t1JVdU4HK9Lub19I00j5nEoMcgL2//GD864nFg2SU9ykCmN41FVlZ++/WsWz1uIpmiEfH4ODvUwkInREKnmma0CoOsiVQQMCa1yXZcH3nymBNDv+MK3GUjHedZbdmfXbnZ2fs5dZ32HtZ9uZGRlI3WRKp712PGm8lpCukE+FZXZ7nEz8IWrsM08jm1KTYjnvTp89rtlylmgKHR+JIz0qJO/XJr5DlU2omj6EbPyqip+sPRQF4d2rmXk9PMJVcnJhJVLY1t5rHyGUFUzpm3SkYwykIkytXkSjuswlIlz2W+XMHv0VO5ZcDWqdwLgIici/+ptY3R1i/ilFemy/unbv+a2079F3jZJ5TNE/CH8mkHe819Xhyq8ABcFFQk/c1zXC8MDBwEDH3fv5aSGcWj9PSivvwRfudqjmPJgFUTXWQTL0QEYOU4qX6L9cjLX9i8YMVYYbX8A/vz8kUFlqsrlV1zB22+8DoEgax/7d9yWUXzxqwu59MsX89bbbxMMhbnvqm9x5le+LmffA93QUCcs8qcrYdpDktZtpSH2IVSfjDCXnfCvn8DkuyEyRk6w+zdDqEnuq583zMC/dwMceNED4k95jLMjIDrVJiz3cT+E8BhwssN92rkBCDWCFhCU8eYiOPl2AcnbHhRgbIQloEzzU0pAsgtyMtn7PjTMkNtUzxNqprzLNDw3QQD0WU/AP74r8nIjJB7rd34AJ90q6eSdG/8fw88SY6/yApMd4vE8FRXid7z55te5/fY5NDeXsWNHN1OnNqAoCqqq4Lpw++1vcsstpzBiRDmapmKaNoGAznXXvcodd8yhsbGMRELWV17uo60txrJlG7jrrnl0dCRoaSmnoSF8xHbKy/20t8cZPcpH0K+Jr7oElMdCz9Ui9daaQC0Dq0MYbeuQgOXGJ6HnWpGLF0G4a4I9CAP3yu1jPhUp+OHLoCOTKXnxcadegXHdYLXB4CoSNU/zbkcnp4wYgerJwDOmiaFpqB6r/PngIA9t3sydc+YwoaYGy3XJ2zb9ySStVVWYto2mKGzt7KQxEqEuHKbS75eaRNelP50mlc9TH4nQk5LPtyeVorW8nKBhUBUIsLWzkxHl5YyrqiKQy6Fv3ChM8rvvwle+Al/8oki4CwUpl963Txjphx4SBAqCaisqhsHxvn1yX5HJ9vnk8T09UF0NP/yh0MZnny3I9cABoZyXLBHJeD4vvznHIWOUs2evwvLlShHnk83Ctm3Q2gojR8omYjGoqRF/9M6dEnjW1SUy7lWrhnFuEYAPDMgmUil56sGgvJTe3uGa744OWLdOtjlzpjy2PGKjuo6kfnf1w9iW4QNyzyBUlw8HmxXZZpAQM79PwHERjBv6MEP9n5lrkDCz1kbxVhdMOOhJwovbcF0B2V39mK31pS5rFAU7my0FjRUnQAZ27SJQXk5ZaytWLkd0925qjj8eze+Xfbhlke3vx19ZiaLrpcwKO59nx09+wrHf+U7ppX763HMce8UV5IaGqDvpJLYtXcqxV15JuLkZFAVfwI8y2ItSXiVM8u6P4LhpUF49PDNSyA+HRVbVCpgur5TZkWx6OLwyUiH7KteVSU+f95pyWbEFaaow2dV10NctQP6cr0LjCGG5owNQUYUdCFI4PKRM9wmLHO0mUFaHaviOmKBG01FcRyxKxb2obZGJ9R05qe04PPvsM1x7w3d58fnHWfj1y5kz/zTy+QKubWI7Dv/6dDc73t/O8cceg6LJeVnRrpWJ9hCsqEPVfWi673/6PPDoODqOjv/fx9FAs6OjNGzXZX8sxs2vv15iOooyQMd1Sx3WewYHJXg0FuPG116jqayMVKHANWvWsC8aZeWCBSycPBmfpjGrpYX2RILrXn2VvG3TVFbGtWvWkDZNEvk81736qsgPPYlhMTjnUCIBOJ50GXQ9iGlmeO21xZhmutR5HQ7Xkc8nqKoaxznnPIzrOiiKhqKojBgxm1hsP+vXL6W1dS4LFqykvLyFdLqPNWuuIRZrQ1V1KitHEQ438tpri4Hh0LONGx8EIBptY82aRZSXj0DVDEZU1HPnmVeyd6CdlvI6GiLVLF/3HF2Jfi476TyCuh/dk8En8kkm1o3E0HROHHEM0WyCoOEnVygQy8TRFbUUXHblzIswNINnPW910ZN99ayL+aS7jbMmzGJqyySe9Xzdz2x9GRBhqS9UQfPxZ2IEKwCw8hkK6RhmVkLHHNuibvwsRp38ZZqPPxMXhfRgN3XjZ1LRNAkjEMYIlROsqMfyvNADbe+VvFy2lZe+0upmJp1xNYHyero+WUchHRP5me4jWCES94HPNtBSWc/kxvEcivWUwtxe/OYyrj7ly0SzSRRFoTPez06vp3tK00TK/CFcIObd/8Mzr0RVVfyaj7JAmKDhR9d0dFWjPBAupaKv/Mev6Ij3SUCaJ6HP2yambeK4LlOaxqO4LsraP8CkYniNJidS4fLDwskC8KtH5L7aRjm5+s3PxZeXSsCrvxcG6es3wPful75qz9j46+ef41B7Ow/csIg7fvmkSOPb2zmutYX3briUn9/9Q772w3vpjUUF8L76B7n8dCVMukVAaf9GyPYI4B7cJrdFxsPMJ8BfDf0bhGGumy3AumqKF2q2SALQpq0c9maruqzfdURqrYVlPWUThd1+/2YJRTPKIDJSgHURiM+8EypGC7DevVqSw0MN4p1+c5HIubs2C/us+sR3neyA7i3CcoOA5kyvPO7La+DMxyA7KAFm6S5ZT6YPznwcKifIY5pmCaNeMQ7Ofla83JMuRTP0EmP9wAPv0NWVRFWVkmc6Fssxc2YLlZUBwmEf6bTIS5ct+wI9PSl8Pg1dF4bbNG1uv30O48fX0NOTpK1tyEsdp+ThXr58I7W1IR58cCOxWK60nVDIwLIcAel+DbAO655eDjhQe59XqfUDqeNy89B7K+gjPZBsiIS8WKmFlxavN0HDY+LXVis8T/ZlHjvtgpOAzBbxWjc+AaM/BsUFswfql2OoKk1lZSxas4bPBwdJFAqEDAPbcdjY3s6BWIwyv5/vz57NmOpq2qJRFq1ZQ3cyyciqKvZHo6VAyrmtrdR7IZSu65K3LDa1t5M1TVoqKgjoOhNqali1ZQv14fARwLo+HKYjkcB2XRxVlX7q668X0PvSS8IuFwoi285kRD+9apV8/t/9rsjHFUWA9d13C3Dq6BBKeetWedy118plMCigauVK0WgvXSrAevRoeOIJuXQcQb/JJLS1YZouy5crvPKK4PWiV/rUU+WpWJZg96oqeUplZVLXVeyxfuABWWbzZnmqti1PJxwelpF7JQWk0/DjH8v1ffvk6V18sbwVQ0NCqGfSeBYRTcLGXFd2KbYjjPKBrpIPupQiDgKO8wX5P36kAO2i5FtTBYSPHymMtaZKXVd/VMLMwDOaj5QwNF0frgEDGN0MQLqzk/eXL8fO59HDYYxIBFXXS8qo+qlTUTWNbfffT25oiKoJE3jvgQdIHTqEbZpYuRxGWZkkgds2Ax9+SKa7G83zZevBIGWjRrH717+m/e9/Z/dvfyvd2sDM++8n3NxMdmCA9x54AMV1UCqqJZDsld+I1NsXgJ4OCZDs6xJgXVYpjQ1D/bKcWRhmpmNDUFElrxckd6OQl/WkErJMIirvveGTD/H1Pwmj/fqfBHy7rtwXG4L4EP17txGsbJTfSSpKJtpNqKoZ1RCW2ipkUbwKTMUD3o5ZQPHYbdvMEapuKgWjFTIx/vXhNp574VfMmnEy/nAVKAqbN27g/fe2sWXjP7jnnnuYPHkyJ5xwguzTsgm6PlmHbeZFpVPVhKr7UI6y1kfH0fFfdhwF1/+Nhmnbpa7UFZs3l/zXpuOQLBRYvnFj6T7HdUvLLtuwgZgXaLZ840YAHjvvPByP8XjQe1w8ny89ZvnGjSTy+SM6tA/v2Z41ojjhoxAK1aGqOmVlTYwefRaRSBOGEcJxbN5443aCwZqSPNSyckSjbaxdu5hCIUk4XE9r61y2bFmFYYSwbbMEnovBZ4qiU1MznosuegZd9x8Rnua6zmHJ4cuFuVdVPukRptXBLQWNPbf1r7R4APNn639Ld6KfKU0TiWaTPL75Jaa1TGJi3Sh+9MbTDGUTVATL6UsN0Vhey71nX8OoyiZ0dRhsf2fWl6iLVNGbGqIz3stAOsbOzt1cdViKuOal4bheh3cRcA4d+KAUflI79iRcWxK+jWCETLQbHNu7P03z8WdKcJnjDCeKZ+I0Hntqqd/aFyzHzKfp/PgtCl4iebCyETOXwswl5DE56fusHTfDY5Ednt3611KYW3WogoBukDdNHNehNzVIXbiaWDaB7di4Ljy64Q+UB6R6x3JsdvXsJW9LoFnGzJMuZPlX7z5sx2EwHUNTVH5wxuW0VjZI/yzIunCxvF51OdHXvECz08X3W/yv6cJexIeEwXjgGbkNVwDw9ndEFrj2DzBmkpxU/fbnIg2vaxQmY6AX9nwCrsu3b7mNtzdupiWgo6oql4UKsP0dpnfsYsyoUXy8daswyudfKkD2pEehbLzUZNWfBmXjYMy3oW4e4oHOg6tC/BPxR7+3WIB0/TzQQkcmieshOPkxWc7KQq5PJOd6mfi2+zd7IWqHBaHhSjBZ4nMB6a4lgFj1CWM9aaGXBu7C1uXDYLtlnnRUv3kNxNvACEoA2vqbhbWetwxSnXKCWn+ihJMZYZj0VZGcF9PIFXmZJDrE353ukY7s2F5461oKFrS1xVi8eC0Aq1adw/jx1QQCOmvXfoM775xLU1MEn08jmSxw441rSadNQiGD229/ixEjyvH7NQxDIxQyCIcNJk6swXVdurtT1NeH2batk1zO5tFHz+ONN77Js89exHHH1fHUUxfS1BThiiumlnzdmqYwcUI5YEpid+PTMD7qhZvp8v5lN0l9lhIAfRQ0PiKVXE4asEQK3viUMN3Y4KSkVqt3sci/1YiA7cbHRR7ecy3YAxCaLbtE15FlUCFwIijlmIftj1ds3oymKOzzgs3qwmH8uk7Gsnj43Xc5GI9zKJEo7Ycd1y3t2x/cuJGC43Dz66/jui5th60jaBj0pFICwmMxVi5YQGUgQMar9KoLh+lLp5nV0oKmKKhFYPz970v619y5ch0EGNu2JH7dcot8T5Ytk/tzObjvPmGdVVX812PGCAJuapLLlSslMSwYFJRcDDxrbxeAvXmzgHhdl9SxZBJWrUJXXZ58UljohgZhmguFYVBdJNOvu05WZVmC4xMJOP54eTqHh5VZlmw2kZCXWOy07vEw7OzZsullyySh3DDksbW1suyBgwquooLtCvNc9I9rqgDoyrLhhPB0dvjvsrAA5c/2edJx73BZ7LVWVJGMFyy5vbVRJOIjmzybvzocnlYw5YUVwbcmdYuZvj5OuvNO9EAAJ5/HsSySHR1su/9+Mt3dAGR6ezn2iivI9vZiZrN0vv02mZ4e8eAHAhjhMHY+L17smhoyfX2omsao888n1dmJlc1y8pIlnPbEE5y0ZIm0VnjqOEXX0YJBpt92G2g6rqYfuU/OZobB79o/CCP9xn9AWYVcLy732h+HAbLjeMXmBdmX1zTIe1dc/rU/yncmFBFpeDEE8/xLvdMRZXj9uSxNx51OZcuxKKqGpvsIVjaQHuokn5JJVMc2sfJZcB1cFEKVTQBegnicYvaHqhoketvo/XwL3/vBEu753mX4gyEsMyvHa2TGxheu4rnnnuOSc2dTyMRBlbDRpslnoOk+XJRSNMhRSfjRcXT81x1HwfV/o6EoCkvmzy+lwlYEAmiKwpaODsr9/iMSY7XDlr17/nwqAwEWTp7MXfPm0ZVMsvi110pyxDu9x1X4/aXHLJk/n3K/v/R4XVUp8/mYWFPDUxdeSEDTSs/J8WRVmuZjypRvlCTa6XQfp5++FHBLIWeqqrNx43JaWmaSTHbx+us3l1hrVdWx7XwpCXz+/CXYdoFodC9r1iwiGt2HZeWprBzDhRc+RWXlaDKZQebNu6u0vIqLpqjUR6r4xYY/4LjuEZVZOzs/pzvRz9enn0tfKorjOqUE8ee2/pVUPlNKE1cVhZpwZcn4lzZz/GTdC1SFyrn37GvoT0XJmnnqw9WcNXEW9ZFqJtaNpD5SyZ1nXklfakiC0BQFxWMqM1HpfmmafAa+SA1GMMLAvvdxHAtcBzObQvcHGTNmDNNmzGX+2V/i5BmnsPpPfyaXy7Hw69/kzIU3MXPOaZx34ZdIaY24joOiaoelg2/HsQtE6kYRqmo8ImFcUYRFl5otlatmfYmHv3hrqX4skUvTkxpARWF6yyQay2sIGgF29exFUaSqS1NUhtIx8laBKU0T0VWNjngfg6kYqqIwvraV/lSUp979MxkzBwgQt2wby7FxgYDuJ2QE5DzS68cu+aMVVdhps3DkD6BogTHzIh8856tyYhUMS9jZcSceeTJnWcSSaboyWfHn/e4xXv79i9RUV1OvOpx56qm8HmyCGaeyf8o89h84wLGTJggDUlMPKAKwFS/YyrFEom3nBBg7ptyuIB3Unz0MdXMF+FoZQBUwfdoaCTBTdRjcLo9TdAjUSnUXFlQcC3VzxMtdTB+ffJfHbMclObx9tVfb40CqS6TaZz0pYWNd70p39aSF0j/tOuK93r1aLoN18P7DEmyW7oJ3boeIN0GW7oLNS+VSD4osvGWu3BbfJ9sM18vzLq7LY80LmRTLlm1g5swW+vszbNvWyf79MRYtWkNLSzljx1Zz8GCcjRvb0XWVW245hZUrN2PbbomFzudtPvtsgG3bOj0i00XTFGbNGkFVVYA5c1pxHIds1uKUU0aQSBT4/PNBFi1aw6FDCX7xi/MwDJWNG9vZvz+GYVgoqJR6uRUF0IVdNsYIKFZC3udaEBCuRryguDSYu6FnkQDqzLug1x7GgC8DNwe935VLsxPqV4IxmiPin5UAEoTmgNWGCtx12L7bp2klsP3wu+9SFw6z/LDJ0JktLbK/nj8fQ1VL+/a75s9nKJPh7vnzOW7iROZNn87qG2/knLlz2bB2razz5Zc5fc4czpozh6+fdx63/+Y3pe3Mamkhlsvx2cAA6DruiBFShzVihCDLlhb5nVVVDaeAz5wpCPb222W5REJQb2+vvNZEQljuoiT84osFXJumIGDXhTvvFLa7aHqeOVOY7gMHxBBdVgaPP46iaWiaSzGWorxc8Px11wmT7DgChIs4/eBBYZx7egR/FpO/H35YNuH3w6efiu27tVX+BgHPoRB89asC4p95Rtbh84lNXFXlKRt+FQcF13FEtu0iku497VAegdoq8Vhn8xAOClMNwmJPHAUzpsiTLiZ9Z/MClhXk/oBP1hnwwYgGeXwRiP/nJPIi+LYdFFWldupUFE1D0TRUvx9F08gODND+97+z66mnwHUJNTTw6QsvEGpoIFBTw7xVqwg1NLDtvvuwMxnMdJp8NErVMcdglJdTN306ZjrNjoceomrCBHKDg2y7/36qjjkGO5/HzuVwHQfHtlE0DT0QwMpmwXFEUl0Eu8GwyLyL++jzLxX2udgEccGlR+67iy0R4H2QQ9DfKfacZPxIEG2ZksORScuE6+U3QX3TcJG5pstyVbWiLndsAde+ID3/eodAeR3+cAWKquELlaMFvLBIRaH7s42Y+bRMTGdTOI5Zqt6aMP9yVq/7F/PmzefsS64GXFRFJ1TZSCbag5mJc6i9nQ0bNnLmia1eKrlGsKKOQiZBeqgTXBsrn6WQiWPb1v+r876j4+g4Ov7Pj6Oe6/9GI1MoYHnBZbqXNBvQdfYMDdFQ7Lf2ZpWT+TwKEM/nqQoESBUKDGazDGQyjKuqImNZjK2s9JKuRXKuKQp96TRVwSCGF8ZVsG0MTUP3fLZJr4u1LhQirAmoFqm3imlm0XWRKhbTwn2+MhxHgs9yuTiRSCO2ncNxHN566w6amqYzbtzZhMONKIrCoUObqa+fjM9Xjuq9xjVrFrFr12omT17IBRc8QTrdi99fjq4HcV3XmwF2JVk2GycUqSdTyKNrGoaq4+KSNfMoKKzbs5UPu/Zw94KryFsmyXyanFkopXxXBstY+favS2nik+pGEcsmeWbry3xnxpeoDpfj0w18mkG6kMWvS/iQ47qYtomhGeiqhuXYXrK6Q7kvUApGKSaOZuMDhGuaMHNpUv0HyMZ6RA7uOnR9so7Z513OM4/cx9lfuZZCNoHhD5MzLd5e9xanzpqKL1TGU8+9yJ///Gf+9qdfiZc6J+FnxSRxVffJ6b5jk4l2YwTLMILlKLgUXEgVsgR0CZT6kRdw9qXJp/HDM68ohSMVdy+KopC3CnzS00ZDpIbe1CCT6kZJ4jdIVZltoasaWTPPird/xczW4zh70mwcXAxVJ2vm8HvbUxWVgmXi4OA4LjW6H8V1h1kh1/XADyItPNxX5zqwbze0jCql0pYSswd6vGTxr0OknIO//AlfXf0G2XQadaiXuvoGfvrcr5l2/GT2Pbqcq175JwOJJKpV4N5bbuKSK66SXlZFgZDf80t7nmnFA2y5frAz0nPtq4LBrVA1DVAh2wW7V8FJv5BlB7dKsrgWgoAH2K2kvC4tIInSuT7wVQp7bWWE4fZVCKgONArTnO0SgD3jKZFsH3gDrjngsaTGsMQchBXv2wmRZmGxZ90N5SMhcUA82ZuXHhZU9tSRCeNnPQFWThjuw5dxXWGsy1oheQgiLbDtQQrzf8FnBx18Pp2lS9fz/e/P5uGH32X16l0sXDiZX/7yfGzbxefT6O9Pk8uZ1NaGCQZ1brzxNVauXEAoZLBxYzvz548inS6gaQp+v46qCsvT25sikchTXx+hosKPbctk3d69gwwOZjn++HoSiTx1dSEKBZvqKh1Dz6GgD4eQFT3XKOKzVisEUDtxcHISYqZ4rOPAUvFMN//ZY6M1+SzdHKghD1S3g2+SyMqzW8FoBn20F8c/CGrYWzYP2fdJ+b5AslAgaBjo3j66LRpl2YYNLJk/n6ZIhM5kkgc3buS22bOZWFMj+wtF4Z5167jvjDPEU6sodCeTNJWVcfzEiax49ln+HItx9/z5jK2qYse+fZw1YwZ/WLOGc2bP5o233+b7N93EyQ88wN3z5xPQdU544gm+OGkSf1iwAGXRouFwsaeeElba5xNmeepUAdDhsCDYw5fL5wWM67oUUP/0p8O+7GLAVzot6LiYKF5cdyYjsmfDgMFBoYo1DZJJ0uWN7NunEAwK6HUcWeS11+CsswT753KCy2fNkpTvw+3cqZQo21etKmVXccstslxXl5DzxRA0y5Knl0zKdpJJ8WOHQvLyp00TzB8O2CiFguyXNE2k3+GgbGBfB7R4MeUBv8i8Dwsfw2cIU215GzV06byeOMp7TwpHpo0Xk8RV1fNn27JNTZWANFUB28G0LZlUVRQc2+aDhx5i0uWXE2ltZfv99zPtttvQg0H633+fjbfcQuuCBcxYuhTXtskNDWEmk0RGjcLOZISB9kmIZm5oCH9FBYp3/M8NDfHG177GBWvWkO3v519PP82x3/kOwbo6jEgEM5nETKcpb2xAsUxRG+mGJzXwwsVcZxj0KniTpN4MguaFK5qmpH1XVENDC/z2F/BvV8okalmlZG+gyMTMbx+F9zdKddf4ybI9xxHpuT8gzLWmY2sqhXSM/rZt1I6VoDFcsbL1fraR+klzxfPs5c0UR/cn66ibMAvdFyIT7Ub3B9H0AP/avYfrb7iRN//+NwLBMGedcwE3fXcxF110Ia5jk0sMsOrxF/jow52suueaIxRlhXT8iGTybLyfcHUzmtfHfXQcHUfH/9lx1HN9dAASZrbX891lTZOMaaKrKgHDYHx1NUHDQFVVMqbJ3sFB6TktFHhz3z5ue/NNKgIBfrZlC60VFTRGIriuS8ay2D04yD8PHuRALEZPKkV1MEjOsuhIJEgVCmRNkxtefZV4Po/tuoQNg33RKB2JBKBQKKSwLPFxappBOj2Aqmokkx28/vpNnm/a4O237yMUqilJwtPpHs45ZxWtrXNZv34piUQ7iqJRVtbMm2/+gETioJcmrhzGTN9dej+KoFrTDGKxA6xZcy3x+EFC4Xo6Y/182re/dMAcSMdwXIfd/QeYOfJ4bjntMjpifTy47nlyBbPUV91cXkfeyvPDM68kaPiZWDeSgOEv9V6H/H6i2STL33qOQ7FeCfcCCraJqigMpOM88OYzdMb60BWVnuQgD657HhCPdfe/1ntyNAhVN1HIiFw7VNVC47GnegybIgFlmkFV6/GgKBiBCIqmozl5prb6MAIhzGyKk088gYPt7YSqmuj59B2MQISWKQvwhSoByAx1YGZidH2yToC1P4yZjdP58VvYrsPn/QdLzPLSsxfxz8VP88MzryzJtYvVbIoCjusALjXBCnpTg1QGywgafroTg3zY9Tl5q4Dt2pi2RcgX4JpTvsw5x8yhOznA8reeozPeh0/3kTXz5MwCjuuQzKe8+jj5x0APtO0Sc2TxXMd1jvTVuY6cnI2eIN46V0J4Sprz+mZJFK9pgJeeZdS+j9l2/df4eMf7fPj2W7y1fQfTTpwOms7Y62/n7df/zsebN/Dhu+/y/WUPMemEqUybO59px0/mj6tfkgAzJB3p+V/9FsVfycuvb4VQi9Rj7bhZ+q6jHwnr++kKSQPPtItEPFAn1V2BumEWXC+D/ABsv0Ek5MEmYbX9teLp9lVCIS4geWCLJJSXT/RC0DQBy9cckPfBsSjWvQgjroLmY/RpVzFp3leYtuRfTDvrMv64ejWEm8jrNdz4F4UJD0eYcvsOvvmty0VWPmmhrDc3CHv+LPVbRRbczAqAb5olfuuWeeLDPutJfJrDhPFVtLSUcddd8+nvT3PnnfNYuHAyd989n0BAp7s7yY03riUc9tHcXE4k4sOyHB599HyCQZ2enhQnntiEqoLjiBx848Z2cjkL03Sorg7R0lJBOOwjmSywefMh8nmLMWOqmDNnBF1dSfbuHaK9PcFNN73O7s8TuK4BOJ58+0nprkYRYFxoEzk3NthDoDcII51+Q0LO6n8mYWShU8AaACyRjffdBuYeAdpqhQD33pshMFXk5Shg9YFWA3afsN+uDYFpOK7Lju5uaTlwHD4fGCCo6zx54YUciseZ+OijdCYSPHnhhfSl0xyMxciYJlf/7W/8+/btXPvqqxRsm+tffZVkoUDesnCBkeXlPHXhhYyurKQnmSTd20trYyNnzJyJ7bosOP10+ru6uKGlhTGVlVQFg7z01a9yz/z5lEqli/5pw5Df3ubNwlB//LEUTLe0DDPPd90lv7ft2wXlOo4A61tuGQblhw4Np4llMgLECwV47z28D1mWue46ub8Y7x2PY1mCn0Ih+PxzWLRIAPPFF8tDi8B61CiRiD/2GHz729J9feCAgOVHHxVst3GjMNs33ihE+rx58jQ2bxY23PUys8rK5Km3tQlBn89LWFo6DQoO5PLyHD21FpEQ7O8UBnpEA+iq+K+L3dT5AoxoHPZZG7qAx4oIhAKSGl4cqiIM+KEeub/4+OK6snmGdcQK5ApY+TxmOk22rw8zlcLO5ZjwjW+w66mncG2bGffeS35oiG1LlxJqaGDeqlVMu+02UocO0b9zJ3owiB4KYedyaIEA2f5+tt13H4kDB9D8fnLRKKmODvrffx9fWRkXvvoqmmHwr6efpv3vf+fT557DTKXAq+X6+LHHyKXTuEUftGHIvjifE+b5Nz+H2KAHpJHfiW3B3k+gv0uW+91j8PN7pSHCMuErVx25X1cUeH8D7NkF53xluBP7Nz+HXs/e4g9ApLx4ggCui5nL0Hz8mfjDleKtVlUUzaB+0lxsM0vnx2+ST0WlqcOSQLLGY0+Vii1VI1TVjC9UieYLsundrRxsb2fK9JlMOGYyW7du5bobFvPEE08CEKxq4oVf/ZpvXvplWqacVaq/1HQfoepmrHymZM8KVTeLOuvoODqOjv+S4yi4/m8yCrZNdzLJLy+4gDK/n3ShwIFYjIJlETQM/JqGBvg0jQk1NfSk0yxdv565ra2sXLCAeC7HraecQmcigaoojKuuptzno7msjKkNDfSkUjREIiiKQlcyydL16+lKJjE0jZktLfSm0xKWNjTElPp6L9DMRdcDGIZEr1pWnlCoBtd12LBh2RG+6QULHkJR1CP81IqisHnzCnbvfoV4/BCua5NIdLB79yts2LAcVTWwrBxVVWM9GfgYz9vdjGGEKKZ5F9eZSHTg4OA3DCY3jsPFRVGgOlRBUPcztXkiDZFqwr4gjeW1LDnrKmrLKuiI9fHjN5+hI95LdaiCVD5NwPCjoDCYjjGpfjR/X/QoVcHyUpjZs1tfpmCbfNS9B59m4AJ9qSEuP/kC/IYkZj+z9WXWt70HrsvAvvcIVbdgBMKohoTQHS7jBoTpLmQxghVovgCLrr+JqVOncdnCL9HZLuFutWNPwspnCVU18csnnub8cxfg2Bb1E2fj2FYpYC4b7yNYIdK2RG8b/Xu3etJxkYirjsPEulEMpuNEM3EyZg7LtkkXsvxk3fN0JfqJZRNkzBypfJb+VBTbcWiqqGF6yyTGVbegKAp1kUqmtUzCr/swNINEPkV3bIARlZIM3ZeK8u6BDxnKxNFVlZAvgKYqdEb7CRgBVEUhk8/IydDaP4h8u7ZOTpZsG5KelLAoG1RV+Muv5GRVVT02xDthVzVhnS3vvkuvhWXPwmWLvRSkOnjxUejvkS5Uwz8MADy27Y+//hU7v/dNdp4zla8t/DdEV6hwYP9+nn72eU45vg7yfZAfEsB50i+km7p+vgDfyXdB49kShFY3F/Ry8Wf3vwuJ3WAmwU4Pe7EzhyQpfNu18nf9PAHtgXq5HqiDrVeL59pKC1gLN0L8ALx1rYBrMyVd1aou9/dsAwX+eOMYdr71Ijs3/Z2vVb0F6R5+ePMilHQXn3+0lY+3b+Sn09YLU/6FR6UPu5CByrEQbhbGumykB4hMYeqLsx5vfAceq4L1N2FaLrmcxejRFZx22ijGjKnk2Wcvoq4uhGk6rFy5me9/fzbhsIFhaNi2g2k6bNrUzoEDce69dz1dXUnJIjJU6uvDTJ3awI4d3WiagqYp2LbDjTeuxXFcGhsj3Hjja7S3x3EcWLFiM3V1YR58cCOrV+/igQc2eHtNHZQgojooxkPfLF3V5iHxX+uNgCPBZMYkTx4eBjctjLYa9oLKdKh/CPRWUIOg18PgSgjOlvXb/fLeqOUes90lMnJFA7sXw+llRHk51736Ku3xOF2pFNFcjncPHaK5rIyzx42jtaKCgXSamS0ttFZU/A/WHr+msXLBAnRVZfFrr2E5DtdcdRUnT5/OJZddhplMMn7CBIaGhnhn0yYc12XNmjUkk0k62tvZF42ytaODWR7QdhQFd/x4QajBoCDS1laYP18is2fPls8+lRJ2+ZFHRMJ9/fVyPS0ZDqxcKeDzxhvl9qIZGuR3t3Wr/L7mzpXbk8lhD/ayZRIH3tcHFRXouqwikThyEV2XzRX91H6/gOFFi6Rqa8oU2azjyO3F5To6BIivXCkAvHh70acNsnzxqXd3Czb8+c+FOVdxJSBMUY70QJeFPXm3IgDYcYcDyyIh8qkUN373u0wYN54p06byze/eQC4a5+IvfomJx09m6oknsuDss9m761Oor5bwMpB1RELCiIMHuF1hvwEO9eBqKtm+Pj5+7DGyAwMomkakpYXJ114rk6KZDLueekrk4U8/Td2JJ6IHg+x66imqJkwg298vj+3rQ9G0/wE0+8rKyPT0EKiu5r0HHiDb34+i60xetIiR557LcVddha+sDNd1+fS552j/+9+J7d4Ngz1wcI90UB/cIx/S2j8O23QKeQHUtiWvqbxKgs1s+0j5uGVDICSJ4H2d8qHmssJSt46TMMtxk+Gtl+Hcr3ryb9dLHi/A734pxwFkEhtcCRDNxCSTJB3zWgsM73iaxrGlBtO28lKLaZsAmDkJIzNzCa6/7lo62g+w+5OdfPrRdmacOI1frFrJtYuuRlFV3n77bQq5NHNnTMG2TMxcCscqoKgaCjCwb/uwPQtKOTRHx9FxdPzXG0dl4f8bh2tZJVmWUkyw/H+xLHDE4/7zekrXhx8twMCrwhAZnesFN8m6bEW6SnFd0qaJBSQKBRoiEcr8frKmiWlZKK6Lpmks8uq2Fk6ezBMXXEDGNLnjrbf45XnnoQOaJwd3XRfH28lrSOp4bzpNIpejLBCgMRzGQipdynw+yn0+NG/5YrWX6zq4uk4eB0NRcVUdG9BcB1dRcFFQccE2cVWtJEHXHRe3EMdSdFx/BMfModg5+ju3U17eQnl5K64RxNJ8aCiIg9JFsy0UK4ui6DiOiaX7sTUfhqKi2DadQ108v/0V7jnjalRHwbEcVEPFtV0UQ8GybLBc0BVUTSWfK2ApNhE9KCSlroAj1UI7+z6npqyS0RWNuKaLpTmseOdXfOvkC/DrPvy6QUgJYDgaaTfHvqFOTqgfj2u5KLpCNp8nHAoABax8BlUzcH1+Co6J7sLQ7nepnjQbSwFN0bFdG59q0N7eTsOIRpyCydK772H37jb+9Nc/oSgqGvCzlY/wtzVrePnVv1AWKUdTVCzHQnMcNMfFNXxYnpzZcW101cB2LTTHJRvvR6+sx6coJDJRqsK1tA318vz2V7hixkV83L2HkRU1zBwxgYKrciA6wPPbX+HqWV9mbGU1GjYuKv2ZBDWhMjQgXjBZ8c/fc8WMLzKyogoDGwfV+644gEosn+eRjX/i1vkLKffpoGil6hPxxqooxW5n1wu1sWzx7pXkhAzLxUFkiMphDIf3c5L7vBNSidOHfZ9K6JluyEKFgpxJezLF0RMm8vJ/vMS0ycfJY3SRWztWnrPP/yIPLf8R379jCTffeB0Xf+lLAmQVsSSUZOyuF0WMKuBN8UK0XFsutaAnk8zAR3fB9H/32HFb5NiBWnkM3uvq3wzp/TDi3zxwq5C1DCwbXMdB01QMcmBlKWQz+EIRMMJMmDSJl37yLWZUHRL2+YXjSI/6N5q+8wYdz51PYMEvKBBGKwxgBxtxbAfdTuIaESxHxWcoaNiYjobtuATMHnzhSkgcFL93WQuFeA9mw3xsV8FxXPr60tQ3hkTubyl8+EEfxx9fL/JuzSWRyhEJ+cFRCYUMPv98kIcffpdXXtnNX/76VU49rVWCmG0XRZUmsQP7YpRX+qhrDIGjkE3Z3HrrG7z44scsXDiZp566kIMH43R3J5k1txkXB8VVqQgB4pYtff+8L4WA5eBJYMfFT211g9bo1XE9MJwArugi28cATEAHcy8MPiw+azUkt+EBSScNuY8hcLyAdKtPQHhmMwXfNFJ2mLTpkLdsasNh+tNp8qaJ3zCoD4fJ2zbtsRi96TSzRoxAVxSyloWqKGL5AXRV5aq//Y3Vu3ZxQX09L155Je/s28drTz3F3s8+408vv8ymf/6T5Q88QCqdZtasWbzzz39y349/zFnnnScn+ZkM9eEwqqIQdF30QgGlWCptmgKKLE+avG0bTJ8uxzVVhe99T66fc44w2pnMMIDeuxfOPFMMzooyLAMvHtOKdU/F41x3t9DGH30kmu2vfhXXtnF0HxknWPoJF7Ht1q2y6SI5+u67cOyxnmpaE8bbdYWxvvpqeOcdmQso1m9v2SIAetQoeVrptHxsH3wAxx0n8wt+v7wkkOvbtjosONNBKXZWR+Mw/bjhyq1i/VZxn2OaoKncctsPsHI5fv7zn6MYOj09PVRWVvKPt9/mvHPORVEVHn3sMV76859Z/9a64X3Xfx6HKaiL123HZuu993JgzRpGX3ghJ99zH66jgOqyc+VPmLJ4MaBRSGYI1lbLeYQLruP9rnJ57HyB5P491E6fjpW3GNr1EVWTJqH5Q7h2AdXnI9s7QM+7Gxn65ENOvvtu7EIBVffjugr5eJRQXTWpQ4fY9dRTzF56D9rvfwlnX1LqoLar6uWXd3APtI7FMfyohRxa5z4YPUmCKkMRuSyvpLSz3vcpjDsO25IjmGpZoOs4hQJKMIRbKKAaOprrYCkqju2gaiq6qshEzSfbsKfPw1EUVE1DcbxzL28C1rUtFE0Hx6Zg5XBcG7+/XGxJroPrgWtNUTHNnEceyDma6zqynKpx+tln893FN3Dxly9GUVS++c1vMX7CBO679x5sq0DvZxuoGXMSRjCCqhkUMnGsdJJQbcuwZ0HV0DQdx7FL3vBi0FnxttJxpXhcVJQjljs6jo6j439+HO25/r80XMvCzWZEsuQPoASCKIbx/7gcto0bG8TZtB71vIulYsELbpKdePGEu/ggB1dRZSdd3MkqCm46CYYPxesJLSljuztQW0djqxqmJ9lVFAVXVdF1HZ+mkc3nMQsFCvk84XAYF3jn0CHqw2HGVFYS9PzYhUIBwzBKvdZQlFgPg23lfwDPR14CRKNRtmzZwpkXXICj62SAHygKt7suNYrCTuBEIICc2mqA7gH5tHdbhetiI+cPtygKtwJjXFcym7zHFABTEWC9E2gGxrkuNi6a4+CqKvtQWK4oLAHGui5GzgLbwbWlTsN1XDSfRiFZwFfuE+CreqBbV0n1pwhVh3BMAWOaT0NRFdL9aYJVwRIwt/IWru3KOmwXR3dRXRW34GCbNkbQ8D5eWb/r1bY4poMe0jCVPK6qYjpSQ2W7NhX+CvZG93IofoiW8hZ+uvmnPH7B4+StPFs7t9Ja3kpyMMnZs87mwhcu5M55d7Lm+TX8+aU/8/Pf/5xffPQLHjnnEfoz/SzbsIwl85YwvmoceaeAruo4roPlWBTsAnetu4vlZy4nZIQwFAjaGRQzjmtUgFGG69r0Z1KEfCEi+XaUT1fiTltJFp2C41Lh9Y0qO2+HKffjGhE573NMXFRcRRMZpaLLZck37Z20lIBzAcUxxePqsa2uGpDbtADFmmYKCfEIa74jPdgwvEzx7PNwYG3nIdUhgV2qLl7j8tGeLPuw5Y5YD4weN57ycmFkZs6YwU8euI+6ujp++tOfkkwmuH/pUk5fcC43L76Giy+6UL7FqiF90BvugJN/IKFgTbOHt+U6kBnwOqgDwjIX4uKp9pVLbZbul5AwRYOeLVBzvJfUbQx7Fj2/d9YOkC8I87ttWycjRpRTXx8G12HHB73MmdNKLmcxYcI4mptrMQyVk08+maVLltA3GOdrl17CJZcsZN26ddi2xr333suCBWfhOOKLtm2n5JFOpQp0dSVZsWIzS5bMZ/z4Spx4D2qkGtMx0DSFXM4iFsvR0BRC08FmeJ+iq1LPheIekUmArUi9lvdPRcHBJWPmReWRjvHC9r9x9ayLGVHZIPkFSPBdcf9jOw6aquK4jtfJ7noWAwGgAc1FcQsoeCyZ4qPURV1CLKrnyX4AapaIhNw8AL6JApTtfjA7IDgLCSgrAnVF7ld0+Tu7VVLEjTHgmmAdAKUMtKrSfXltPLuHEizbsJEl8+cT0nVylsVYL//ig+5uTvEaGBzXlYwLIGdZGJpWAuKjq6pkkhW8TASZqOzo6uLkE07gzzt3MqulBde7v5DPM27UKNZv2sTYsWNRFIWcZWE5DuWKQmjfPpRly0TuXVsryLKqSpBsU5P8LxqX77pLkGk6PWxQdhy49VZhtUFC0IrG5eLxrYiMZ8yQv/v6BHi3twtTPnasoF+vlDpjlFMwpQ89kxHAq3p2Z8cZBsWRyHCTVzHLKp+Xy0hENl9cVveCvv1+qd1etkyu655iu79fHjtq1LBopkjaN9bZHjDzdh5Fn3RR3l0w5cl5gDudTtPU2krHgQOUl5dTCkErMtsKoKi89/57fOXSSzmwd68w07Y9LKkeDrsY3l8V/3TBNk3eW/YA02+/C1RdJo51RS41BVwwsyZG2JD6dcctHZsA0n1p/OV+fGFf6TxAURRSAykidRFcxyXdn8bMm1SNripNFruWi12wUXUV1VCHQbviolk59K692GOOxVFUXC/0TAI31dJl8UW4rouqabiFPEomhRuKoGZTaJ9+gD1tDonefj59/nlOWrIEVdf/h/W4joOVzfLxo48y7fvfL8m+AVKHDpHr66Vx9AiU2CDu2GNLxIaSTuCWV6F4CeGo4m1XVBUsU1LPB/tQYv244ybLBJ2i4ioKODZKIS8fTyA4/BmVJnnByqZQfH5ifW1ko920TP4Cii33O5rqHbZs2S1purwXikJmsIdgRTWqJvt9F0qVYEVQnYn2ECivRdMNUHW0IgFzdBwdR8f/1Djquf6/NWwbknGc9a9LWqVtCZA+bLiWhTvYh5uM42xYhzJilDdLb+Pa9jAbfRiwdmODOO37ITqAveZPuNEBnPZ9uLFBCJdJgutgP/brf4V0EsXnR20ZievY2P/pKRZl4CBfhFRS+octyyKTTjO3qYnJtbWEdL0Ejn0+n5fw7WBZVikADeSE2LZtnMMAvOM4mKZZus+yLBzHobKykrO/+EVSuo6mKIQUhSeAekWhDJgKhIAsMFB8SxWFJPAD776kotDjhfSsAhoBS1HIKQobFIV9isKQohD0lp8LPAJkFUUOdqqGo6j0KQqvAMsAI2fh5C2snHxWCgrZwSzRA1F8EZ80ZqgKruPKyQEQrg2jqAq5eI5kd5I1i9aQT+QxUyavffc1CokCZsbEtQSo44Cdt1EKYCYKvPbd13BMh0KqwOCeQdo3tmPlrdJ7bps2pmZh4pCzcmw+tJmORAeO62C7Nss2LKMuXMeDGx9kZstM/tX5Lw72HmTuyLmMqRrD+jXrmTptKmeMOoOrfngVv//D7/nLq39hYvNEVpy1Ak3RWLFpBat3reZQ4hB7Y21c9+p1pAop0maagcwAEV+EVeeuIuKL0JvuJaAKpMFXjaIHUFwXNddLfTBMRFdR9Aic/BiKHiJkBKgwfCjZHhQ7A1OWAi6KmRC58vbrUTLtqFYSJdeP4npS5R03iWzZ63pWUvtKzU4ocnKAmYRsN4oCoycez6TjJjPtxJOYdtJJ/PEva0FROPvc8znhxJOYduKJzD/tND74YMf/ePJ5OEut+SE7JADbteVvxZvlPxxUA8T2e93PLu+8/Q8+2vkBO97bTm1NLd++ahGfvPt3/uNPv+PuO74v64q1eaFrPtkOCvgiMP8h0ANSYVVMFo+2SVd0sEaWVwAjJJLr4glTuAGCtZSeXNNsr9Pae6LxA1KnFdsLnRuxbGhvj/Pee13MmzeSESPK0TSFSFmAefNGks9bBAI6b765jlWrXuaf/3wXVY0w97Sv0bZvkPb2dkaNGs/69Zv45S9/wfXXX8mOHXu54Ya17NsXJZu1uOGGtezfHyUS8REO+5g7t5UVKzaRTltktFoyeZV83iaXs3AcaGwO42pOqbu8WNdjOTaTJx3DCZOnMG/WbM6Ycyovv/RnovFBTpk5i9kzZzFn5ilMmTyFynA5hWSGkC9Aa1UjV874Iv3pqOw3HJtYNkHBNrEcsS78+M2n6Yj1UbBN8l7YUVGNoykOCo4Aa8WQzyizUdLCnSRYXXLpJCSYrJgCDjD0U7lNDQuw1utESu5a4OYhs1mAtRqS2w6XmWPL9sxeebw9IH5ss5O8o7Jsw8ZSGnhdOExrRQUF28ZyHOaMGHEEQVnk2ovAOmeatFZWkixIR3g6nWZoaIjb3niDRKHA7//wByafcAKzRoxg6+7dLFqzhv2xGD/+8Y+ZNW8eI0aNot9Dmj5NI+LzEU8mUTo7JVq7oUEMy0VgXV8vzHIsJoB59WrpptI0idVeulTYZl2X+7TDjnURzzus6+LhzueljPrgQdFxp9NCM9fVST+WbZe6jQuqH8tWyGYV2toEwyuKAOCiR7q4+uLPvhQS7WWkFYG14hGZgYD8HYsJhv/JT+T+3l5Zby4nmW0NDcOV25s3y+1lZSJ6cRUBrLiIJ7q10Qs4U8VbbXi+8b2HaNvbRnVVFcvv/xEnz5rF/NNPY90/1nng2i39tv/9F7/gSxddJC9EU4eBdcGCvHnYTorhScC9h1AcBxeNabffg+OqcszZ1E50X1SOPd6xzwgbOAWHfCLP2sVriR+M45gOVs4iVBuS46EKsfYYaxatIbo/SqQugpWzaN/Yjpk1qRpZNTwZbTp0bOkg2ZXk1eteJbYvhmM5rF28lui+ONm8jjn2BGwXHMsiNzCAmU4z8OGHpNrb6X//fRL795cqwwY+/FBS2A0fTqSCgY8/IZHIYM06E1szCNbXc7IHrO18nv4PPsD0vsOu4+B4X4oTb79dFBkffEDq0CEc22bXU08Rqq1F8flh9ESUtl3Q3yWXPj9KLgOxqLzDrrw+HAmFVAb7hEgZfQzKQA/86VlZxrFRFE9h5Q+gOI4cz/p7UfZ8gmIWwAVD96MpOjUNExlx7BkomTTKi4+hZL3nbptYhRyu6+BYBTo/fhMzEyNU04iiqGSiXTKB4BbJAQsUle5dbxOqakRVNdJDXRTS0VJTy9FxdBwd/2vHUXD9v224uKkk6uzTcFNJOQrb/2lHZts4G9bh7tuDevZFqCecCIUC9ut/A8MQyatZwC3kvNlKR0B4OIKz8R+4u3bibPwHSigst7suiqLibF5fug/LFO+wN0NpWRaZTAbrPwN91yWVSglr7R28de+ExfV20h0dHeTz+RJTbXhM/OGstK5L/29XVxf5fB5VVdE81lvTNHK5XInlthWFMkWhDVgEtCFfyL1AuPQuyiSABWwEeoGZ3m3d3rJ5BIBbyDnEewg4bwbqgX3AYiCNgOsgcvJpKQo9wPHAy959WB77rGsomoJdsPFFfFSNqirN2g+2DXJo86ES0HIsSV0N14UpayrjrJ+ehb/CT+XoSs5/9Hz0oM66u9aR7E6i6t7MeHeKV699lWRXkpaZLRSSBfLxPOneNA1TG3AdAeJW1iKbz+LgcDB+kMWvLaY+XE+Zv4yAHkBB4bHzHmN05WgeO+8xLp18Kelomsu+dBnTp01n5okz2fDOBh5/5nHmVc5jx692EI/HOf/s8zlr7llcsuASgkaQFWetYOHkhcwaMYtlG5axetdqNEWjO9nNvevv5UD0AIp3slYfri/9TaZDpMdOHlBQMu0ouX4J11I8ps/1/GHBZgntMioEPCsGGGVw4s8k4Msoh0CNrEsLwLQVoLhHdj27Bcj2Sp1VkQnc9YAAV1z++LsX2bnjfXa+/z5f+9qloPlY/fvf8tHWd9i5Ywe33nILV1x1NRSSAorzCU+efdjJL0D9VEm0VjT5+z+PovWifKQHrmHkSPE9GobBzTd9jw0bN7Phn//gQFeUCSfMZPSkqWz5PMaim+7g8Sefls5nMy3fet0PgSpKwWLJTqgcI53UxUooKydg2y4IyFYUAeGZXllPISnXk+2w7gZhtcP1cPJtEmrWMk/6y4MGp5wyAsdxMU2HUMjAcVxSqQK33fYm7e1xhob8tLSUo+s6g4NT6enZhaJUoKoql1/+LXI5i2OOOZ5Ro0axdev7vPLKbpYv30gslmP16l10diZJpSTh/pJLjmXlygXEYjm6u1MsXvwa3d1JDEMT0geH7sRAqd98IB0jZ+Ypdrrf/cgyXnpzDWvWv84pZ5+KGtTZvO1d/rHpHd7auJ4rr7qSs885m/KqSnZ27qY3PkRDeTUnNE/0etAdgkagtP6wL8gPz7ySukgFjuN6zDUUwYhPdVHMNumlNg9AdruAXDUifunCfrB7hGkKzoKyhZImnt0mQNvsEgAUmgtWv/iqrYNez7Xn0e5ZBHYXBGfC0MNy6RbkvtB8Wf/AUrB7ITQHDZfb58wp1RymCgU2trdzKB4nmc9jeYqdg9EoA5kMjusKwFYUIj6fBFZ6E0lt0SjX/OEPnHP22WxasoSzZs9m26ZNPPPcc7iuy7Xf/z6rr7uOuVOn0nHoEI/88peYjkN9JMK+aJTFa9eSKhRoLC/HnT1b6Nz33xdT8tatAnr7+iSGu6kJGhthzRoJPXNdkYM//rjIv0MhuOwy0VD39MC998p6+j0vbV2dPMayBJyvXg0PPii3V1dLJHd3tyDaVIpC1yDptEI87iV1h8W94fcPz59Zltx34AAMDcn1IvAuhpf39cnyDQ3ymFhMSPnrrpOgtGxWfn4HDsBtt8nTVxTYtEkeO2WK5K9ZlhDWSr4Aew4KsK6ISDK4bUMi7S2AoPsxzVi2xcH2do47bjLv/WY1P1+xkq9d8W16e3tL8vrlDz7I3rY2HlzmTeo4w6Abny7VXArCaMdTcj/AmGZMGwb3DPH3m/8OQNWYKkbNH0X5iHJGzhtJLpbDsRwK3sRvqidFy8wWtj66FT2sY4QMNJ9GPpHHsRzKm8tpndtKsitJbH+Mzm2dtMxsEcbaESbcdVxUTaXpxCY2Lt/IrtW72LBsA47l0DKzhY0PbiQXy2FlC+QGBz1yQUXVNGqnTuXT55/HX1XFp889B45DtqeHygkTMFMpEgcPkhsaombqVIK1tVheZ3e2v59t999Pqr2dwX/9i7rp0zE8RUQuKhNvRiRC4uBBtt1/P4HaWrSAhIyeeMcdREaOwi3kJSytrFL83ZEKIT1iQzDYLRJrKMoBIJ6E6jpZ3tDF933Jd4SZjkchm5bPcKAH/vKCfCY1tTBpKmi6nPMZPhRclH2fo/R2ikJxzCTxjcMRikEUhXj3bsxsCjMTJxPrIVTZhOtYdH2yTrqyXUBRpB4sl/SWaURVdZGNHx1Hx9Hxv3wcBdf/u4aqoZRX4Lz7T5TyClxdH07wLC2jos4/E2XcJMhmsNe8BMk46sw5IuseGhAGGgUKeVzLQp1/Jm46hTrvCyiTp6HOPwtq69EuuET8yZkU6rwzh+/TDdANAfhAMplk/fr1JJPJI56KoiiMHDkSRVHw+XyUlZWVGOlUKkWhUKC+vh5FUVizZg2FQgGneLbCMAAvjpaWFvx+fwmIW5ZFOp0mFAoBIn1zARtYDqz2Lg2gzLt9IwKaQwg4rkMA9QLkePHF0aO5edIkzpg2jS9Pm8bLf/wji4DCnj1cPGcOoydO5JQZM9i0axezEUDdDSSRL76OsN1lwGwggtwRb4/Tvklm8PWQTDAM7hFA7bou1WOqGTlvJI7lMLhnkLXXry3N+ie7ktg5m0JSWOg1164h3h5n5o0zmXbaNE6cdyIz58xkwTcW0D+9H1/ExwsfvcBJ55xE3bF1RCui+MKiDkj3pVENFX+DH9u1Wb5xOa/sfoXKQCVVwSqGskPsi+7j5tdvxnZsTEek4jOOn8HD//EwOz7YwbYd2/jN6t8QqgvR2NxIMpdkxyc72LxtM69vfJ1j7jyGfdF9lPvLeey8xwhoAe6cdycLJy/E0AxWbF7BK7tfoaGsAcd1SOQT3PL3WwTwaREoGwO1s2HnDyRoSwvKZf9GSO31PL/CPJNug/7NuKn9EGqWIKxAg4BtxxQWun8LpD3Lh2vJp1TsbT7+bgHk/mqPnfVODOrmDUtswWMQvPtch8qqGvCXgWMSj8fle+0rE1BshIdZ6SKyVpCuaS0gJ1Kqb/j24mKKKmAWwF9OOpMhFo+V7v/9H/7A9GkncP0dP6H74F4O7P6YA59/wiknTeGpH13L9Vd/GwLVHkhGtqX5JVjMsSFSL3Lx2F7IDZXYcfxV0LtdksBdW0BzsE7eS9XzZ29bLjVYqUMC4N/7qRdm5qCrLtmsxeCgGEODQR3TdCgUbPx+jVtuOYUHH/wHfr/Jgw9uxHVh4sQuJk8+gdNPn8wpp5zKq6+upazMR29vBwcPHuTii+fx8stfY8mS+VRWBli4cDJz546kuztJW9sQPp9GWZmPqqoAy5dvKPVTm6bN4sWvAS7Pbn251G/++OaXpMbHzOO4DqOqGulPDxHxhwgZPmrCVfK26wYBw8+vX/gVC7/5dQbTMSbWjaI6UkZ/KsZHXZ+X0uzDvgAnNE8klU/TEevjp2//Gttx8BtShWe7DrZjU7BM2fuYHVD9fbkMTJF0b1wJKQtMBbMfFAlFpPEpSRM3WgVoh+aItLvnRgicCBWXyXpSr8DgT4TxTr8BSgVUXCmPV4Jg9Xj92PvA7PYY8RXgWhiqzbiqKp688EJGVVTwSV8fM1taaCgrI2OaJcDbWllJyDBYvHYtnw8OkszncYGGSATHdYnn86zYvJm1AwM8/B//waZt23jxrbdY/LOf4VZUkLdtXn7xRRY+8QSbP/yQF371K7Kaxo7ubvK2TcgwmD1iBF1e/5SSzUrX1dSpwiLX1gqTPWuWAOf2dkGkra0werRcTyaHddrt7fDkk/KbLS8fRqqZjLDU+/YJtZxKSU/2woWwZImwtPX18rjqaqGXg0F8DZUEgy4tLYK/y8pkXjuRGMaeliWguL1dVlFMBE8k5L4xY+RlFO3drisgu6lJKrrGjZP1VlQIzp85U8LLt26Vv0MhebpTpoBlepNwxc7pfEFk4XsOypMJBzliqBojW1tRVZXL5pwG/VGmVzUwZvRoPt4qwZU/XbWKP//1ZV779ycIqfpwVVfBHO7Dtm3p0gZJE0+mZduahm06bF65mS888AVUTRXWVYFsNItdsAnVhEoMc8vMFjav2MzYs8dyzs/OwcoKKx3dH8Vf4cexhI1uPa2VkaeOpGJUBaNOG0U+lS9NOruOSMGtvBxPz3/sfL6+5uvM/sFsund0M/XyqVz0zEWUNZehBXwEqqowUykCVVUouo6VzTLtttvIR6Mcd5WkgNeccAJmOo2i65S1tBCsq8PO5XBsG83nQ/P7UQ2DuunT+fz3v6d++vTSW+xYFoGqKlSPHChrbeW4q64iOzSEncux7b77yEejMucRH4TLvgtNrTDheAHXhk8k3eOPl/c5m4YXHxPwXFcngWvJmHwm446V/btZgNdWe5+xCtF+uPhyAdl7d3mycIY9Ba4LYybKdnJZOG66/F3Mt9F9qIYfVdUZPePLhKqaUDUdI1hG5ydvYRUy1Iw7GV+oAlUXG1+kbjSq6iNc3SJebV/wSKvU0XF0HB3/y8ZRz/X/puHm89h/W427ayfK5GloF30VxR8Yvt+ThKMbKMEQ9t//itLSijJuEkpZOa5pSkgM4KoaDPbjbHkHdcGFKIYhQDadhrKyYe81h6lWXRdUVeRtnt8m78KaNWvYtWsXkydP5sILLyQQCFAoFBgaGsIwDAKBAJ2dnZSXl5NIJKioqCAejxOJRKiurkZRFLLZLIFAoCT3Lnqwi2C8CLoTiQQbNmxg3rx5VFZW/g++a8sQb1BWUXgfmIUA3uJcahLYBUxH5OFFeXdR8njc6NE89PLLvDxtGkuAMUAcuPQLX+Abl1/OjCuu4M8vvcTfH3qI9du34yCxQra3rgNAJ9ACPAgsASbGc6QH0kTqIyVPtWuLf0wP6gJ8VUVOSIBDmw/x4rkvMnnhZE659RS2/GwL5/3iPLJDWdYvXc+u1buYvHAy5z92PsdOP5bnfvoc8b/FOeuhszBCBpmBDNs/2U59uJ5zv3wuv3vud8w6dRY9O3tonNqIoiuoFSrxQpzedC+diU5aK1rpTnYzt3UuLi6O66ArOjk7h0/z4bgOGTODruoYmoGCgmmbRHNRakO1KCgU7AKGZpAxMxiqgV+XdHPVCzZzcfGpPrJ2lmg2Ss7K8cCGB7h9zu0oKEyrm4TimKWYOGyPytHLwEoJyIvtgtqZ4KpgJQQ4+qoBxQOCJqJBAPo3CbPtr4bYJ9L7bMYFeKuG/C+Ge6HKNhRNAKmigRpg9LhxlJeV4YJ4nn+8lLpgAcpHcfmVV/H2+n8CLmv//AemnDiLklaykBwG2a7tPT/vpMOxIXEIKkYdJiG3JZirfJT3Y1PZt28/lyxciG3ZuK7D2LFj+feHVzC6qVLYaM0Azc/pCy7k5uu/zcVVm2DecmHyFcV7baZc2qaECKW65DmF6ot7De/CEXBtZoSx3rYcZt4JleM95vogbF0OZz4G6xYP902f+RjxQoiNGzsYMaKcjo4ELS3lPPjgRpYsmUcwaFBVFaCj4yCXXPIVTyarMmrUaFaseJh8vowHH3yFvr7fMzg4iKqq3HTT7VxwwZcoK/Ohqgqm6Xjp3C79/WkCAZ1UyqSiwk95uY+9e2MsX76Bu+6aTyikM3Hio7z2+tcZO81PdaiCFW//itd3v8s/rn+CvmSUL5w8l+rKagCmnzSdB5Yto6K6kk962qgLVXHo0za++fVv8MGnH/Po5tVcftKFjKxulMk+xKv907d/zWUnnUdfKkp9pJq+1BCHYj2cOOJY+lNR6iNVPLv1r1w162L6UkPMHjkBzWpDKfVbjxMZuN0lYLfmTjDGg9nmdWDfzuhj/g2/TyMY0EH1c+e1Eb72ta+z9h2Xu++5D0etxzJz/ODWa/j2t68CJyVMuN0DSrkEl5XSJWy5zGwCowWM0RQcnc+G4qVe69pQCF1V8XvHiP3RKC3l5cRyOSoDAdrjcR7dto2fnHXWEcslCwW6kklWbN7MY+efT0DTyNs2yv+Hvf8Ot6uu8z3w12q7n15yTk5JpYYUWuo59BCBoMwoGZHRwYsEJEGjSEtwwNEECSJIUYiCfdTIXBUOCQEpmkMavUQmkHp6372u9vvjs/beiXfuned3f8/j3Pu7+ebJs/de5bvW2Xu19/ddPkA0myVlmgylUixuayvVqh9JpZjI5fjOzp2s7eykORzmpuee49fLlqF89JEwx/PnCyjevl3KcM2YIah21SpJDb/ySqGPFaUMlG+5Rdjrol/aMOS94klse3oEwTY0CICvqaFUA7sYhJbLiT57cBA6OsiqIWIpnUBAKVXzKsaSFOtTF6tieVZZRkYEm0ci8n7yZAHfoZCAalOCn9F1wfobNgi+nzFDGGzHEeK+rk7GFYrW8mwW7IJNa4NXnxrvknOwH5rrIfg/qVFsO1y8/DLW3PBFLj1lLoecPGefdw7v7N7DbzZv5pe/+AV/fG4bNdXVx3i1KVjw1l+gpgqmTIZoQljyYjq5V4rLRJPkAM9fnRpJYaZNwvVhtq3ZRsfaDoK1QV742guce/e5OJZD9bTqkrrKiBjofrGKZaNZAtUB9IBO9HCURE+ClgUt6H6dvl19tC5sxXVczIzJC7e8wOJbF2OEDCKNkRKrXUgVSA4k2bFxB53rOqmeGgYcnHxeZN+AUVFR8mAXa3OjKKT7+9n7+OPMuu46MsPDBCdNoqK9nVRvLx88+STzvvpVWfcoIgDHkYBZ1yXV18feTZuYdd11RNrb2f31rzO0YwfLfvMbIpMapfZ2MffGNmUgwx8QAK1qAqJzWQHIDU1SUSI6Kgnk0TGobYTYmABxTzbO5h/CRVdAQzN8+C60TpeDVNPlHFBVT0VVzMpwS7cq29AppGOYuRRGMMLo/j1SDztUBa5L/3svEB/cR1XzSbTMXorr2GRiQ1JKM1Qlf7sCrlchQ1FVqdV9vB1vx9v/V+14oNl/USuCZ2f7i6idF6HUN5Sk2QBuPof9zG9RF50H1dUougGOg9PXg9I0WRby+cQ3oyhgmSiW5YVgKLiphMiHNE1k37qvFGyh2BZO3xHpJ5vBjcdQW9qxdIOJWIzt27fT2dlJXV0dUJaKh0IhFEXBtm0GBgYIBALs2rWLhQsXkslkaG5uJplMkkqlaG1tRdO0Eli2LKsk/3YcB1VVOXLkCJFIhLq6utJytm2jKAqmaaJEIqQ8EBNB7h85YDfQ5v03KGXp4sVZkfeWWzh1Krf+/vd8ad48upAAtPdHRrh05kx2TUwwpOu0uC7Lmpt5orubn8+cya2U2errgJuB+xHm/GrgiUwBvPCxwTcGaVnQUgqDUTUJHCmGvxSDXtIjElxWCiJzXBzbOeaBoWpKFSfNPonVJ6/mnOXn0NbZhj/iJ9wQRtEUtn5pK9f85BrWLV3HNd+7Bl+FsNeZ0QxGu8GXX/ky81vmc/Xsq9nTv4cl7UuwHZuMmcGn+QjoAQp2gYJd4P2R91nYurAU1mQ5FpZjoaDg4GCoBpZjsad/D2c0n8FIeoS+RB8LWhcQ1IKYromu6JiOWZLMaopGwSlgOzaVRgCfoqCkDogsvGExuIqweq4Db98Kp9wKoXZwsp6sMyP1lydeg7qFAhptYVO9MwKi70DtGaCFPPCsyntFl/mpAyIRn7UOQm2Q7vHKTtWBFqHn8EHa21oxo4e4874neW/vXrb89scS/JUagMop/PTnv+Q3m3/Llqf/TfYr1QeRycK4F32Jri3A1VdR3jfXoRwy9h+e8d5/tcxwmxmRr3tlWVBU6bPIqqPK/KE9EJkKVd51uvj3Ot6Rryhl4F8KdfOSxAd3SZ/ZUakfjReN7HoBOdEP4bWNkvhdOY2MqZPJOaxatZWbb17E/ffvZPPmvXR1XXUU0O5k2rRqcjkL13VJJvPU1oa44YZnufXWxei6yoYN3dxxRwf9/QLQZ86s4dChGIGATk1NgDfeGGTBghY0TcVxyqqWQsHGMDTGxzNUVQVYvXor//zPnUw7oQrHdciaeR7e/mtuu+AasmaeoYFBIvVV+BSd76y/l/fff5/Nv3sKBYVkLsltX76FSFUF39ywnpf3v8aiqXMIGgFGU1F+8cYWvnLu1eiqxvtDB6gJVvKz17u448LP47oOmqpjqBrjmRif+cU6Fk2dy2fPuoxJYT+NyvvCWCsR7/vMw/BXIflLYaebNgnLnNwMFSuYumQnv//Nd5jX+m/Q9CMwP8QlRF3TPF75aYE5Z63gcG4dJ8+az+jAe1RUNUrKOJoHskfK4Wd2TDzZqqfhcV0SdpDrnuni6X37+O8rVtDhWRDSXnBlUNcp2DaGpjGeyZAxTdqqquiJx9nQLSFodcEg7w4Ps6StrRRYZjtOufqCqnLDs89y70UXUeHzkfYGT0OGQday+O1f/sKe/n4evfRSDsdizAmFULZvF/B7//2COKdNo5T0HY2WU8NGR+F734Pvfpe8aXLzrbey7YUXCFRXM3fWLH7xwAN8NDTEP914I2Pj41RFIvxk6lRm/eAHou12Xelnzx4480xBw6mU6LUPHCjtQ3zTrwEJMksmhW0uJobv2gWnnVbG8cWg/6LVW1FkvDocLtu4Ewn5X1UlxHpvLzz/vJTvbm0V/L9ggezODTfAL38pKvcf/ED6DfgdfLqDkivIYLdP/58Gex/dDu4/wLU3XM/Y2BiqqvLP69ax4IwzaDvxRKa3T6GiugoAPwq7X3/9GHs1tlMOP4OygdxrhYLNxEdRdty3g6Ubl+KrkIBNq2Dxl9/+hekXTifcFCbRl6B6anXJohQ9EGXHxh1c/N2LyY5n2b5+Ox13dJDoT1DVVoUe1MlFc+y8fyfLHlyGHtBlIFpRcGyHv/zuL5y8/GT0oF5ivCvbKqlqqyI1mOLA8wfo39PPsvsvoBAdIjM8TKC+nlBTE5rfj+aXwYjEoUNkBgepmzOHQiLB1r/7O1rOP5+T/+mf+Pef/pT5d9/NnrvvpuH002lbuhQUReTeXmz8mxs2cNJnP0ugoYG3Nm6k4cwzab/kEo9lF7YdRcHQJFWbQh4O/bsA5bpJUqYrl5UqFACFnJQFc10B29kMPPfbcvL59FMhOiJlxS79tAzOPvdb+NyXKYVquq5sR1XBF/DAvCXLGj6ZV8hj19bT/94L1E8/k7GDb5SAdOOJi1A1H7aZ9QD3fHRfiMG/vOKVC8sRrms5KtxM9W4tynFwfbwdb/8b7Ti4/i9spZJZunYssC4miePKhdM0IZkQuXdru4yIui6uAoptS/pkbFyA+uLzoaa2/IyfSaNEKnCjEzjdL4psPB5DCUegqgZ3oFc82jv/hNpxIXZNHbbrous6uq6Tz+exLItUKsX27dtZvHgxFRUV+Hw+jhw5UmKuW1tbyWQyxGIxJk+ejKpK8m4ymSQcDhOPx0kkErS0tKDr+jEy8SJTHYvF6O7upqOjg5qaGgo+HwcVhRFEll2EHPuBIYTJDgAp71VDGOsk4AfmTp1KZWUlBddlwfz53Pjtb/PPPT388TOfYcW+fXwVeBj4YP58bvr2t0lccAFvAd/2+ksD7yDe7AGgA/Al8zi23GCLqam9O3qJNEeomVGDU3BKrLWZMXlx7YtcuOFC9KCUK8mMZ7CyFtXTqikmoaZH01h5i/mXzifsFzf5GXPP4PYbb8ef89O2pA1cOGn2SfzrE//KnNPmoAclwbVvVx+1Z9VyxD7Cxh0beXDZg4R9YQ7FDrFh+wYeu+wxclZO/NeKgqZoqKgkCgni+ThV/irShTTVgWqiuSgRX4TR9Ci9iV7mt8zHp/nY0buDulAd45lxJldMpi/RR2tlKxu6N7C2cy2TI5Pxa35Q4FD0EHWGn9aKZpF+BxogNyqe6b33CKge3yW1mn01ML5bWOj8WBkYR6aXGeLiKzaofo4BsnZWJNmK5smdrxfvdfsKmL9JptkFkaSf/l1hvb2BkMGBQU485VSSsagw5qqXnG0XCFbW0ddzWAaXig+eLl66uBc0ZhdEiu2rkA4VKJbcKp188cMQafbYNN+xsnEoS7mLnmk7J32b6fJFYuRNaJovDLaVg6HdEGmD6hmyrp2DXEzk44WEpITrQalRPX+tsOcDr0LTApn+l59D+3mSdF5IyndppiQEDYd01sEkwJEj8WOY60cfvZRVq7aUgHZbWxXr129n3bpOpk6tYmQkTXV1gEBAx7ZdbNslGs3i92ukUiYtLRV0d/fQ3FzB9763i4cfvgTbdlFVhYGBJJWVfoJBneuvF4B+wgm1XvUBm2BEpS8xzI92/Z4vLLiC5sp6BpNjDCcnSqzy58/+OL48zDttDocGeyUnvGAzrX0qn77vS9z8d19gUkUtPs1gLB3jBzueYl7LicybfBI/ee0Zrl1wBUHDR94yaa2aRG98iB/t+j3XnH05DZEacmaOgCHnULXfQMNEUVxwMjByG9TdClod5N6F0ELAEHn3yK1QdxtTT76M3//br5k371SZh4Pr2tRPms7vfvMw55z/cd59910uWX4lh7ovwtf2ILg5AdHWsBwfbubYdHE3C9nXITCPlFNLPJ8n6FV3KB5iRQAc8fnIWRZ7+vtpq6ykN5Ggo72dlV1dbN67lxWzZnH3uedyxqZNPHXllXS0t6MrCvujUTZ0d7O2o4MZNTWlfiWd3cZ0HAK6zq6+PuZMmkTIMFCANwYHuaCxUVKwBwYEce7ZI6iyqLmeP19Q58CAeKlvvRU0ja+sWIHV0cFDa9ag9PYyNHUqTe3tXLB8OZ+76CKuef99njr7bO79xS94bfv2sjYb7xzcsQPa2yUlPJEo18h++mlSoxlcV+GjjwQQ19eXiXBVFcA9NCQ1sNetE7X68LAw1D09sqvz5pVDyysryyrdYohZJCKy8L8eV2hogDfflOy1XE6I+a9+FU6f81dp4S6S/l1knG1H6lK3NYlX+qMemN4qy/QMQnsz+LyRAFxhqHuHZHrARykkrXcIpreUy3nGU1LzWlPLCeVtTeQcjZ7uHhpnNxKsCWLlLHKxHMGaIIqm0Lerj5azW9CCGlbGYuD1Ado72kkOJDEzJrUn1OKYDmbGpJAqYIQMXrzjRS595FK2rN5Cy/wW5n5uLi4u6eE0vogMFPuqpNIGePfUyREqmytRVIW+3X1EmiNUNFfgixi8dve6Mli+6y60YBDNMDDTabJjY/gqKpjYu5fqk08WV00oJFVX5IGDdH8/mt9PoL6+FOyVm5jAiETIjo7y0S9/yRl33AGuW0okt7NZVL8fO59HUVUCkTBKNiPXdcMPqRhU1YqJ/9C/Q1WdsNXFEZoiAK+qEYm44YOKKgGyv34Mpp4AZ3bKqI7jyvGQz8FTT8CyT0GkEnoPQO0kWaa4Lsh1XNWwdY1CJoaZPYq5nnE26Yl+srEhmk49V0psKSqOVSA+9BG52DBNp10g6eaui1XIonkBmaruK5Xl+o/KeR1vx9vx9h+342nh/4VN0XUUv/8YYA3ITWBoQIbJLUskSn4/SiSCve0ZCZkoMnqqhoKL8+oruHvflnJbloWbTsm6kUoB4skESvt00HTUKdNxsxkUTUNtnYKz809ewNmL6LgEAoFSWJmmaaiqyvbt29m7dy979uzB8GTnU6ZMoaqqiilTpqCqKuFwmLa2NhKJBF1dXUSjUaLRKJZlUVlZyZQpU9C8G/vzzz9PPB7HNE26urqIxWIYhsHevXvp7u7GdUWyGUICykwEUGcQxroDAdBFwD1e/OoQllsFtvz5z/zq3XeZ++ab6PX1/PM//RP/hLDSdwL1wGMI0/0T4FzgISQUbRVyz1wMzPReXSh7roupqQq0zG+hoqmC2IEYz97wLPEjcey8jWqoXPCtC9ADOqqmouoq4YYwRsiQhwhFZIHhhjDVbdX8cesfefO1N9mzew9NrU187Z6v0d7RfpSWH/SAjq/SR7wnzpYbt1DZWomTdZhRM4PHLnuMoB7Esi3ue/U+lrQtES+VL0JvvJfru67no/GPcHAYSY9w1yt3MZIZYVJkEvFcnIZQAyEjxPSa6SxuW0w8F8d0TDrbO3lo90Oc2nAqG7o30BBuYEP3Bjbv3cyG7RvwaT5URUVFpbWyFZ+vQmRldQtg30NQMxfUADQsgX0PQNunQI8IoK6ZKz7pTB+ccrMwxKlD4sFOfuQxu1nIT4gs2qXM0mpefVDHkv+z1pW916ougFYPwrx7SSfjxLyQmrLneS6xWJSBobESgP79M1upq6ujtqaaYtALdkG2568sP8woiqR4O6aAZLsAf805VbbJPNXwtut6yx21aDE4DUfSwFGge60Ek3khYzi29zea0DAXMoOU2AzVkERwowL23CuluhRVpN57Nsj74GQJRMOBUz4D6WFP6h4Cf5UAbQBFxVaDrF69le7uHs44o5mZM2t44onLMQyVH/3ocvbvX82SJe2sXy/e6PXrt2OaDqmUyapVW0kmC2QyJiMjaUIhg0jER29vHMdx6ehop6LCYP36C8jlLEZH06RSBe/Z00XXVW6+eREjI2lUVSGft9mzpx8Hhx/t+j3b9u3kR7t/j6Io/PrNbfhdjcdf3swZrSczuaqB3/5mM6fNmc13//QLxjNx/u23v6WmvZHX0wf5yWvPYGgGmqIS8Ye45uzLWTJlDhG/hJcFDR+1oSpaqhqxXJvh5ASvHHidn7z2DKl8hrpwNdFMgo0v/RSwUdysqDHUCDTeC+OPiO861On91l4ac9NjoNWDPcHnrrmG2fOWcO11NzA6OoZCgd/88gf8/T/cyJTps+g49xJ++uRjAqztqCSCY4DeBPokCULTG7wgtQMSkBaYDfYwCjZhwyhdKizHwXIcErkcEZ8Py6vQMHfSJPqTSea3tJAqFNi0fDkDX/0qDy5bRqXfz1NXXklrZSUru7rI2jYbuiWBfEN3N7brkioU+HB8nJVdXQykUlT4fJiOw+K2NsayWW549ll6EgkWtLSUqV6AT34S7rtPBop7egRprl4tQHvyZHj0UTjhBNKHDvFEfz/r162TpPGGBpr+5V8Yef11Xn/rLf7x3Xdh82Y+uWcPvYOD7H/5ZfFeHz4sOusdOwS0F/XaxeTwBx+Egwel7BGyycZGUZnbtqjIXVfI7qEhuPlmYaEtS4LLi3lps2cLwC6GmbsufPSRbDbriXCKdbPPOUfGEjZvzvPJT66mo+ME1qyZzbx5/8jAAPT2fonOzqmohs7b77xzzHUen+eV/qinLNvuGZT5J7R7Eq2CgGxDFyCmeT71ggnjsfLyCvK+IizA+8MjkM1DZbh0PSx5vnuHUHSF5jOa0QyNQqrAtq9sw0yb9L/WDwq0LmxF82vEDsbYunorkSaxSAVqAlRPrS4NGvsqfCiagh7UueSRS1ANlaX3LeWUT55CaiiFlbUI1AQwQgZG2KCQKLBl1RYm9k/QOLsRX8hHaijFllVbCDeESQ2mZHctl1krV5KPRjnt+utR/X60YniqpmHncry+fj2BujpwHMxsFiudFtWeIrWpK9rbCTY2khkYYM83vkFmcJBUXx84DhXt7Zyxdq1IxYsEgKpiplKl67jqycZlxDwtIDhcKT7qTEpk3nWNIuU2TUglRN4dHZWcm4Zm8WdbFuSzsOI6mH+eHDjJGGVvNeLL3vJrYcQrqgVY+wMC0PNZOeDGR+S962LlUgQq6jGCVbTMXoovVE1FwzSaTz0PRdWlPJjr4Fgm4ZoWmk49ryTPUBQVPRBB0XQUTcexCriOjePYFFIT9L/7PPnUBLZVOJ4kfrwdb/8/tOPg+r+iaRpqS5vIvlUVp/cwWCb4/GhLLwPLxOk7AtFxKbcVmxCv9ax5qO3TyiW+0kncQh676ymUykqUk0/DeWUbbmwCpaXdM5ZpqMs+gTL7TC/g7FigX0z37uzsZNasWSxbtkyAr+PgOA7pdJpCoXBMungqlWLp0qWEw2FaWlpIJpP09fURjUZ57rnncByHiy++GMMwUFWVRYsWkUgkCIfDXHXVVVx66aWoqoquKESQkLEs4rcOIayyCiQQEDyCpH7nge1Iqng34LS3EwC6DIOL1qxh1/btLG5rg8FBJlsWdUDGdTnQ08Of2tvZgEjM+xFAP+z1sx9JKz+E3NiNoEHL/BZy0RzRQ1H6dvWhB3VCDSHaz2kn0Z8gNZhi66qtZMezpQTw6MEoXSu7MNNmqba1aqgU0gVQoNKqpGtlF+meNKu+uIpXd76K64ofzXVdHNPhz9/8M7EDMRK9CfZu3kv3hm4ijRGyVpbh9DBpM03WyvLIJY9w1WlX8WrPqxyOHaY30cvmvZsZTA2St/LHgGPbtZkUmcSR+BFWdq3kQPQAlmNRH6pH88K8HrnkEYJ6kDs67mA0PcrajrWsmLWCOzvvRFM0FBQORA9w45YbGUyP4aLiagE462H5tfZ+C+qXwOn3SbgWRbm3ItLthsUQngqBJgi3CsO9/3EBh3oQ/A0CQhVVgIuT94CtJKTimBCeJox1eFrZk5Ybh/wEwwmX8y+8iDnz5jJ73jz+9Oft/OwnPyYeT3DF33+S2XPnMfeMM3jk+9+n6w+/R3FtAdR2gVKgWezAUey0JoBXNYTNVg2ESc7LcnZeFCa+Slm3kCgD62IKOZ7HLjUAL6wUibaZgnmrBSQXt296Kd9mSkD35MWlr07+dru83msbZT9OWgEL1sr7upnl78N1oOZEeX1hJcQPyHdXSED0Q4zcELfcspg//7mHkZE0igKW5ZT+h0I+RkfTrF3bwYoVs7jzzk4MQ+Oee7rZvHkvmiZM9F13vcLAQBJNUznttEZUVcFxXJqaIvh8Ort395PJmDiOy7e+9WdUVXzYU6dWsWhRK8lkgfHxDEuWtKMqCl9YcAXLTlrEFxZegeu63HzeZznUe4QXNvyCf/nsV1lw5tls//OfeeLJJ7nl/M8xloryk5/8lFU3fFHWW3AFlm1h4xDQfUypaaahoo6gESCeTRI0AmiKSrqQZTwVZe7kE9ly3cN87bzPEvGHcFyXH+0WgO8WH6rdtDDXahU03SfTnKQcn4ohrDMKqEH+/Oc9vPv267y55xXq66r5p89fj2X7+NY9D/Pfn9rMkQNv8uLT3+Cz11zL2HhSWGk3D5hgjYB5BEIdsq3aW4W5DsyRsl3j3wE0Dsfj7Orr40A0yle3bQOgMRLBdhzufPFFDE2jwu/nnPZ2grqOqijsn5hgzbZtjGQyVPn9dLS3lwD17r4+1nZ0sGLWLG5bsgRNUUqBZ8WSX1nLwvaA/Ibt20vT7SJbNzgosmyfT+hcwxCd9P33S7J3X58gWu/h/oBtUwtsWL+es9ato/Oyy3hx82Z6N2ygedIk9DvvhBUrUO68k/bJk+l5/31Bwv39AjLmzhW5edALAqutlb4NA958E8V1OHTI5Y03BI/HYrJaRYXc+iZNkrDy++8XWbfrym7u2SPss6YJq715s7xalrz+NejOZMR//cADcMIJt3PWWQpvvPEhZ5zxHj0932HjRvjCFz7F73/fzZQpU2RDRfO24wqrjAvTWgQs11SW616D7HRVRMDcgV4vpMwR4Oz3wakzhLkG+fvbm6G2UthrD0SXryEunDAFFs2RbbiQHEwy+OYgqq5y0b0XoYd12jvbUVDIjGWIHYkR74mzd/Nedt6/E9WQ4LPeHb3EDsfQfFJNw8pYbFuzDStrYWUtfBU+UsMpXrnrFZIDSYygQfxInK6VXccEpBWSBcINYbav317aRsv8FvnTfSp6MEjdnDlEpkxB9/uxTRMzk8GxLELNzUxasIB//+lPMdNpAjU1aH4/mf5+9tx9N6meHhzbJnnoEHs3baL/5ZfJjI7ScPrp6KGQnN9e5ZbX168nNTAAQKC+HlXX0UOhsow+NgFP/xxScflsFYRhzme9Uqm2WPVq6iEQghPneMuZcPhDAd/+oADuYj24imr5fVXPQrTgfLh6lUjLQxFhxw0/RCoEZIPI0T2VVaCyEauQZeC9Fyhk46Qn+nEck0xsuHz8oKAHwhjh6pIc/ujBYdexcW2rbCd0bMYOvUV8cB+j+3fj2hZ2IXscYB9vx9v/ZjsOrv8LmqLr3sW2gNN3BLWlXS6klom97WkZOW2dgpuI4+57X8psGT605Z+SZ75UUqZ3vwS5rLDS219E8flQL/44SiiComq4Hjgnk0K77JModfX/I4sOqKpKZWUly5cvLyV7ZzIZVFUlEolgGAaO49DX14dt27S1teH3+9G9+tcVFRVMmjSJHTt2MH/+fOLxOH19fUQiEXRdp76+nvb2dlRVpbm5GVVVpRY28Ksf/5hTFIU//f731AHPvPYaC5csYdHcuVwybx4dL73EMMJYK0AnMAmYk07ji8VoAt4HPvrVrzj59NNpbGxkzhln8Jtf/AIN2PZv/8Ypra0MzpzJ4wiAXwx8GhhFal9voJxWrugKVtaif08/gZoAFU0VtCxowcpZqLrKnH+cQ9viNrZv2F4qJ2IXbBzLOabEiJkx6VrZhZW1MEIGqWSK5+56TuZv2M7mzZuZM2sOEx9NsG3NNhzLIR/Pc+CFA2xfv532Je1c1XUVnXd2YrkWg8lBDkUPETJCVPoryVpZvrLtKzSEG+iJ9zC/ZT4rZq1gfst8dvfv5uZFN7Ni1grWda6jYBVKaeOb925mQ7ew0UfiR7jh2Rs4GD2Irur4dT8zamZwQu0JTKmawqblm5hWPY28ncdyrWPWBwfFMQXEaUFoPBdyQ+KRRhXmOtAkrzgCRjQPdOfHRQJ+xgOSkq14x+R73xQgiOqx1sDE+/Kqew886SOw+1pJIs+NyvTQZKZPn85bO1/m3Td28d6eP/OHp37F1BqXKe2t7Nm9k/fefpt33nqTPz6/jXnz5gnr7ZiQ7PW2qUB2TDzYCjLNygn4jR8sM9epvvJyIEC6kBSWW/GC2opyctcV4Pz6d6R+tRGWwYOaE4SxTvbAS6tFJj60W17Tg/L3F5KQ90C3qgsLXXMCLPhn+b6WboKqE8oe7MTBMpjGlXX2bZZgM9eSvv3V2IFJhMMGmzYtZ8qUagCOHIlz441bOHIkTjBoEI3mGBpK8cQTl9PeXoWmwZ13drJixSwMQ+OBB3axZEkb4bB49Sorfdi2Sz5v47oSgnbOOVMIhw3S6Tz33nsRFRU+NE3B79dLPuz9+yc4dCgKrkJr9SRuv/DzjCSjZM08igKXLbqQ3a/t4ZWd29m6/Y/86qnNGDVh0vkMZ7SezIuvvMSXb7iJOy78PMOpCUZSE2z5SzdRr6Y1gK5q9MVHGE/Fcb3PqqoylBhj40s/JZZNEvYFyBRyXOsBfFVx5Tu2RyH3tsi/rUHPxx4AJSjM8tBKeUWjvb0N0DB8Omtu+jzbt7/M22/tYmBwkHM65sDwGs5esITW5hreeustUPySDp55FbQaMKaBeQjGvN9XqwE00CZB431Yrkt/IsH8lhb6Eglumj+fI/E4q7dsIWtZbPCCy/KWRaJQEHJU0xhKpXh63z42bN9ObyKB67rc2dnJls98hs72dqZWV/Pwxz7G9OpqLNelKRwuAe61HR0AhH0+fJrGus7OUikwt6iTrqgQJnnPHimhpaqCYtetgy1boKNDksFMEwYGsDZt4kgmw6l79/L6yy/z0COP8A8+H9Y118j5M3Uq/OhH4t1W1bLuurVVzNDDwzI9lRJ57tGJZR0dmI5Gf79CR4coxxsbpUy2ZcniqioJ38Wy2z6fBJBPmSIBZaGQBJKtWCGVwwxDPv816FZV8XNnMmmGhp7gO99ZTzareOs2ceedcMUV57BokacaMS05T3MF2N8jKeGmLXJwvw/8hixTTPsu3ZwVSfvuHRKgPRoVFroqUpaEp7Ly3mcIyG6okddi+FvehETKS2hXwXGpaq2ifUk7ekAnO55FQSF6IErX9TI4rPt1Wua3MGvFLJbet1RY7FVbCTeIFxtkIDreG6d1USvJgSRbVm0hdjBGajDF3s172bFxB67jkuhPsOjmRaSGUky/eDpLbl9CpDkCKix7cBmzr55N57pO9KBOoDqAqoO/pgY9FCoB63wsRuLwYUbfeAPXtply2WWctW4dQa9WmqJpfPDjH9Pz3HPs/eEPJb8lGuWM227j49u2UT93LsmeHvbcfTeZgQFG33kHO5+XklvNzZipFKPvvouZSpEdGcHOefkhwRB89ssCbhVVZNumCUEvB2D/XyQtPJcRQD0yAD/7noSZTT0BElHxZ3v1uDF8ZZ+BogogV1QZOFE1Ad62BZs3CXNd7PPn34OkAHxV9+EPVzP5tAtRVZ1AZQPjB98kVNMkdjbK4LlYf07xzhErnwXH9hh+o7RsIROj6dRzqWo+ifrpZ5GJDWFb+eOluo634+1/sx0H1/9VzXVK3mh76+8glZTPLW2QSmI/+28olVWoV/4TaueFoCq48Sh212+Pmn4R+ANe2a0LcXqPeP4gAxyvhrYHvKV+rouVz5PP5zFNk7z3vlifupjmres6wWAQx3GIRqN0dXWRzWZpb29H07QSo11MBX/hhRfIZrMsXbqU6upqkskkbW1txGIxtmzZQqFQKG3P5/MRj8fp6uri8OHD/OsPf8jchQuxEZ/fbX/3d3z7G9+g+513eGLzZr55zTWcns2iIwerg/ik3xse5u/PP58Fc+bw8dmz+dOf/sQXf/YzDgFff/xxfvL445x+4ol859vfZuOPf4zEwEnLI5Lz04CdwFpgBZIW7louekinbXGb1OY0VO/GBMnhJOmRNIqq0Lmuk1krZslDQUBHNdTytDs7GXxzkL2b92KEZOT+7a1v850PvsOTVU/y9Te/TvfObjY9soldD+zi25u/zQmnncBEfoJf+3/NLTtvIT2apqq9Cj2gk0vlGE4PM3fSXAklcx0ivgg3L7qZH7z2AzraO9BVnR9d/iNCeogFrQuoCdSwafkm6oJ1vDP8Dqqisq5zXYmNVhWV+3bcxznt59Be3U6ykGTtH9cCMCkyCcOTOsfzcfb078F13VKJrrWda1FQBQSoPnk4mPJpqDkdXl8lwWPFYC07I6P7Re+xokr5rcgUkYfnRmWeosDp9woQzI1SCl1pXCjzs0MCVMNT4KxHhAUPTvJAt/jd8VUIS6wZkBqEqmlefkHxnHOFUbbzcjBoPqicKn+DqopvuXKqLJvql34UBapmeKnkiMQ6WA8V3kOzaoicHFX6QxU22y7I/oea4MIfwKx/knX1gPe9mLB7vSfvvkfY6vQgNC+Q70DVJKRscI8w5S+shMRhqJoqAPrFVVCIe2y1LSB632ZhtgsJ+V4+/wGc96B8P5HJ4K9CUx3q60M4jkuhYJFIFBgYSLJ5817uuacbgPHxDIsXt2GaDvm8RaHg0N5exY9+dDmqqnDffUtZsqSNu+56hQMHop4l1iUU0jl8OMoOr2RdfX2YlpZKwmED03TYvz/KypVdHDwYJRz20dAQltrY8RyO6/DtF39Mf3yYgOH3kqpVOdb9ITQgbxVoqqqjMlghGXmOLdUKNJ0zWk6mNlTF3qGDhIwgfs3Acmz2Dh2gNlhJyO+nLzbMPS/+mKyZZzg1UZKhW47DgfFeWqsa+eeLr2MkncFVggKkgwvKNaetI+KTtvolJTy5GcbXk06OEIuOeMe4w69+s4XT582mrVllcKCHD/a+CsH57H/jbg4cHuWkk04QKbgxTcp6ZV+TfsfXe31u8K52rgyeqCF0ReGM5mbGs1nOaG7mxLo62isreeyyywgZBmOZDDnLwtA0ArrOgViMG7dsoaWykqeuvJK1HR1UBwL8+v33aa+qYl5TE/snJtjR20vAMNDU8qPAzJoaHrnkEvoSCYaSSWzvOj+tuppNy5fTGAqxeutWXFUVA3KxFFdfnwCP1avldd48KQq9cqUEmqVStN9xB6qicPVjj4HjcPqyZUw79VSO2DaDQ0NYN98MqRSu49DT10d7V1cZCdu2UMWTJgkK9vul30JBpOH5PLoumz1wALq7BVgbRllRnk6XwfO6dQKuH3xQkr7zeVizRoD4978vlu5sVkB3JCLLF0F3MCib//3vD1BRUcv992/g4ovPYuXKTpYte5H6evF379zpfamqKlLwojzbccrvi/Luv/6cK4i8u7EWZrZLKc8icC42hWPl3wEfnDhFAHuxGbosk82LbFyTgDFFl/DN7eu3E6gOlAaHu+/pJtwQRjVUlj++HCNklBjm3Q/tpr2zHStv0bujl+Yzmplz9RxSQyn2Pb2P7eu307JAQHnH2g4UVaGytZKd9++ksrWSypZKamfUCpt9XReZ0QyXPXYZNTNq5OauuKR6exl7+22cfB4zk8HO59FDISqnTKHhzDMBcAoFRt96i3RfH6Nvvkl6YIAz163j7/78Z+befjtrbrmFc6+5hvnnn881112HncuRGx+n57nn2PilL9F6zjk88+yzkg1j22h+Pw1z56IHAviqqjz9vybMcRHcjg/DjFlyQI0MwIG9MPVEAdqJmPdd++BjV4pf2ixIqS3dSxs/+BcBy5lk+X7kunJ/9PnL90FFlTJd0VH5gbf8Gl77s7wChUyM9MSAAGhAQRFPdSmrR0FRVWwrX8qHwXWxChkcxyz5zEuHkKbjC1WjKAqTZy/FymcxAmF0Xxhwj7PXx9vx9r/RjoPr/4LmWjKKfYwfevuLqC3tKDNOwtnxiueRfgm1dQpUVoPjlsFy90siD/ceMLTln4JwBcqkZhTdkMA0QF1yfgl4u5aFbVuMR6M888wz5HK5Eji2LAvHcSgUCvT29uI4TsmT3d3dzd69e9m+fXsppKzIaCuKgqqqXHrppdTU1GAYBpqm0dbWhuM4vPrqqyxcuBBVVRkcHCSZTOK6Lq+++iotLS3cdN11fPPhh4n4/ShAYnycsdFRzr/oIr4C+E48kZrqarZu3UoC8WW7SPiZMn06//rWW8x+913+9b33+Nof/sDcqVOZCiw86SRe2rmTNz78kB2vv86C2bMxEQn4ISRuaCUiCz+ISNEfAZoR5toX9pEeTuOYDrhg5S1Un0p1a3XJf1Y9rZrz/uU8gnVBbNOmkCgQrAty7t3nEqoPlR4wALo3dPP+t97ntd2vse/IPt555x1+87PfMH3mdC669yJuX3E7+9/fz/AHw/T39rPtB9vIxXLEe+IEagKQhSVtS0CBA9EDJWl3U6SJB5Y9QE+8hx29O8jbeUzHZM1za8hYGVRF5e2ht5nfMh/bsWkKN/HYZY/RVtmGisojlzzC5+Z+DoCAHmDj0o2lhHHTMclbeUJGiAUtC3ht4DXaK9t5fPnjTCmVoDoqwcuxRf591vcFAOOBY9UrN5M8KD7rxIdgJmT5cCv46+RzdlDA8/gbMk2etGRd1fCCvDy3vRYoz7Pz3kOKV8In0irbrJ4q8/MJyugaAcKav8wcKJrMt0W6XwwTLPXjusJcu54/TvdL2JhWLKPj/e12DmLecgrlhyQ54Y/aT1f60QxJ8D5pBZx9mySLN8zz5OeKMPev3wf1p5brVu9eL33tXi8haOkBePFG6fPovkJNss877hKAXvSso+Cgc+RInBtueJbe3gSO47J4cRsrVsxi7dpODEPlzDObsW0Hx3ExDI1s1mLlyi4+/HAc23YIBHQ2btxRAuSW5XDTTVs5cCBKY2MFs2c38tFHE6xc2cWBAzFPqeIyOJhk48aLaG6OoGkKU6dW8/jjywmFdN4b3M8XFlzBRScuIG8VcFyXdCHLaCpKupClJlKDX/eVrkEZM8fGl35KX3yEiUycI9FBxtIxvnzOVfh0g7xt8s7Ah9SHa4jlktSHqvHpBp8/++PUh6s5veUkHv3721i58O8xVJ25zSeSMXPkrQJBwy+lsrRa73esguA5wjYrKqRflICzihVQt5bh4SHOP+8s5sw7g9lzz+RPf/4jP/vpT5ikP8Gmb1is+PQXmHve9/m7Gz7ikQe/RXv9YQHTrgVKROTg6FB3e6lPkZ17x7uTxQUGk0kOTEwQ0HWShQI3P/88iUIBy3EIGQZf2baNnngcTVVZ70m47+nupqO9nWk1NQR1nRm1taiKgk/TaK2qYmFrK7bj8NH4ONd3ddETF3ZsPJvlQDTKQCqF4THifz5yhCMx+T1/+d57AroHBuDee4VVXrxYgMfDD0tSWCJRpnvvuQfCYerPPpsLzzmHbV1dABzq7eVQTw9L5s3jjDlz+MVZZ8HQEP92+eW0NjUx8yc/ga4uQbSHDomv+8gRqZlVLECdSAjwNgxsSz4WCfVoVGaFQkKC33ILzJwpFvDeXti3T0AyCNDesEHe33gj7N9/bJba1Knw2GNCot9wg+zOtGkWAwNHOPHEU9m+/XWqqh7i2mv/gRtuGEbTYPFCzx6je2CmyCxr2rEs89Hzip/zBfk+9/d4NapVAc6Bo4CziwBm8HaWch3tIgPusdX4fV7xbsn2KCRkfue6TnKxHB1rO2RweG0nLm6pOoailQeTl963lNihGP27+2ld2AoubFkt2SBXPnUlnes6MYIGyzctp3ZmLamhVBm0b+jGsRysvHWMygsgeiDKM9c9w8SHUfw19dSedhq5aLQULmal0ySOHGH0jTcAKCQSBBoaCDY00HD66QTr67HzeVzbZt1dd6EoCnvfeou3XnuN++6/HyMcpvGMM/B3dvLi6CgLzj4bgMzQEHu+8Q3sQoF0fz97vvENcmNjGBUVXu1pBbb9tgxuY+MwMSqgu6Ia/vVRGB2Uz9Ex+MPPZCDlyEdy4FTWyDITI+LJ/tdHJQ18bEgA+5gn389nRYKey8h7RREgf+jf4WMr4Oxz4LKr5FDyhQjXtaBoBoV0AkU3UFwH28yTnhgUgO26aEYQxzSxzTxmPo2qGRj+MK7r4JimF2DmCEj33uO6hOtaBGyrKi4Krm1i22Vb4PF2vB1v/3k7Dq7/hs21LNx8TgLNHBtXVVE7LxQAvOR8XF1HiVSgdlxwFCg2IR7F6T1cXrbzIinPVSigIIy2O9gHiiJBZ44to6Y1dQK8gyGc55/BdlySqRSXXnopPp+vlOLd19fH+LhEhjU2NrJ161Zi3kNUR0cHs2bNorOzE0VRSHsBNq7rlkpx2baNZVnYtk0sFiuB7qVLl6KqKlu3biUcDpNKpVAUhQsvvJCtW7eyYPFiFp55poSnApH6eqqbm3ls82ZWA7e/9hof7dtHz+HDBL1lhpGU7yWId/pmoA/xUM9EksUHkUTxHYif2ka82w1Ar/f5aW/9TyMy86+UfiRIDiR55a5XAIj3xhl8YxDHckiPpokeitK7o5fowaikoKoKqqai6Ap/vO2PfP/U77NtzTZwYfmm5SiqwrIHl3H9W9djZkx6d/Qy8dEEW27cQvxIHH+1n+WblqMFNcINYfr39PPbT/2Wnd8RD5qqqwQaA5iOSSKfYOOOjWzeu5l7uu8hlpPveiA5wKLWReiKjqEa/OCyHzClcgoqKlMrpzKSHpGHJEUhY0r6qYtL1sry4fiHXN91PTkrx4HYAVZtWUUin5Dyaq7FTVtvoi/Zx2mNp7GzbyeWYzGaGZXvyrHKzKmiSip3kW1zPQ/xG1+CzBHI9kH/0yId1z2mJTcirKpeIaFcRgQaFso0xfM4o5b7t1Ly3kwImHU9T7Sdgde/6IFWv0i68yJdxFdRDhWLH/IemAAU72HUlv1VPP+cXfCk7n5PfjogidyqJn+flZflYgfkPZ6XTVG95HDVYz180reVlW3rYcCB7Lh8L2YaqqaLvLvmJGG0jQiYWS9N3IULHhE/+tm3wilXCwsNcNHjcPKnRWZ+xlcktVwPyvSak2QZ3S9S9HceL9fS1vzYjsuGDeKf3rhxB4lEHoBNm5YzY0YNruvi9+tkMhZf/vJzHDkSJxQySssrisKuXX3ccYd4stetk4CvRYta2bChu5QeXgTf69dvx3FcfD6NyZMrWLfuJUxT/N0+n8rq1VtQUJlZ30ZduAq/7iOVz6AqCqOpKD/Y8RTjmTg5M887Ax8ymBjl3pd+guu63NT5aUZSE0T8IX7y2jM0RGoIGn4GE2Pc8+KPqQlWMJoWf3VfYoTvv/pb6iPVjKZj/MvzP6QxUkttuIqclQdFQVc19o0codLvQ8EBDO9YqIPKz3jXBweME0GfIeW4jBlMj/yIt/4tx7s7vsd7777DH/77r5g6dTrUreOqT6/gvbe3886bf+K9t17mM3833QstW+0B7KzIzu1h0Kd6fU4VD3ZRdq4GcVyXwVSKxnCYHb296KrKty64gKFkki8/9xyO67L+ggsYSqVQgceXL+ej1at5cNkyHNfl1Z4e0qbJwtZWDsdixLJZQt4AqgKMZjJs3ruX/mSyJCv/7Jw5LGxt9XL/FBa1thI2DPyaRtdVV6G5LjzyCHz3u3J8jYyIEXnHDpFvT54s87u64OtfF1Rq2zwWDnPfH/7A7MWLueKTn+Txb3yDFuDxz36Wx594ghM/9Sm+3dPDj7//fTlHzzlHNN6jo0Iht7VBUxOMjYmxurFRKGbTRNMEb0cicho2NgpxmM2KPfvWW6XLsTFht4eGBGSvWSO7HomUxwM2bBBQnkoJAX/ddZLVVihIya177oGqKrE7/cM/XI2qwne+czonnDCNa655j1AIgkFvQK13qMwsnzBFAG+RZS7WNS7OK4LnijD0DR3LZh/dCp6Hu5g67oHhYxjwvCkgW1VFYu6TsFJVU3Fdl4kDE8R746WwsuWPL6dmZk3p2cCxHRzLoWpKFcs3LccIG8R74oQbwjx7w7MkB8VH3b2hm7ZFbYQaQnRd38XE/gnyiTyRpsgxoF0zNPr39LPo5kUy7ety/dB8Gm1L2nh146somo/x99/HzmZ5/VvfItXbi6JpGOEwdbNnU0gk8FVWUtHWRnZ0lNfXr8exLPRgkHQ6zRNPPMGt115LPhol1dND36ZNmKkUtmny/X37ePjhh/H7/aBp6MEgDaefjplKsXfTJpGVb9qEa9vlgdZlV5bBbWW1SMQrqyFcAXvfFNBdUQXPbfZA+G8kzCyXPWrar8V7femn5bWyGk6aKzWwVe+e8eyvRAquaSI1V4D2E2DSZPjsl3Eamilk4gz/e7ekegPhusm4tonjOGi6QbhuMgDZ2BCuY6EaBnYhy9iht1G8ZHBF96EYPlRVwzazmDkpeznw/h+9S5xDsTqGgksmOkghHcXxgs+Oh50db8fbf96Og+u/USuW33KTCdx8VuRB6RRKVQ3a8k/h9h6GZAJ7y+9wjxxEPfdiYaP9AZRwBWr7NJTqOrTlV4o/OzpRSgp3dm5HaZ+GYngy1lTKSxmXB3/n+Wdw33sDBZeWlpYSKC621tZWqqqqyOVyFAqFY5jqiooKLrnkEpLJJI7jEA6Hj/m7FEUpJYSnUil0XadQKJBMJjEMo8R879y5k5aWFgqFAh9++CG//vWvuXXdOnqRkDEfAp5//oc/8Jsnn+Sa008n9L3vMa+jgx5dxwaqgBaEadaQUl3jSH1rnzdtELgLKa11GpRCzDYj9azne8s9BbQCNwKHgfuAGOA6Lnse2cPiWxfjC/uoaKogPCnM1lVbMdMmid4EofoQib4E2fEs29ZsY/yjcTSfxiUPX8JntnyGZQ8uQ9FEYm9mTTKjGbas3oLruLQubCXRl2Df0/tI9CWIHYjR091DdL/43Y5mAOI9cbau3ormaBTsAlX+Km5dfKtIuzvupLVSpMkdbR0YmlECzYejh1m9dTWJQoLW6lbCvjA7e3eioFDpr2T1ltUcjB1EUzQ27tjI8weeJ2SEaKlo4d6L7mUkNcLKrpUMJgeZ3zKf9dvXoyoqcyfNZSwzRsTn+ajtLFhpyI0JkNQCxaMd8l4AzNz1khReNx86fg/1i8uA1t8o/RRZXteRIDMrJSx2fpRSPWctKFJnVRPvtuYJ/RVd+jr5Fu+AxAOShoBp1/Fk2nnxRUM5HbzIaJfA9tEebG+5qqkyiFAMOyvWkC75s9XyelrA82gfolRiLDMML38ZYvuhv1u803pQBgXc4uCB56s2U5Adhj/fIgMCuALKw5NFWm6EBXwrmvQRbobaE6F6GuTiUp4rfkAA/Y67oKUTztlY/nscC0NXuPPODj78cDWPP76c1tZKdF3BNG2GhpIkkwXyeYtgUOfhhy+hrU3mX3fd6Tz44DJUVWHRolYmTQpz993nUlcXJJMx+dSnTi0x31VVfm69dXEJfGuahJ1t2NBNR0cboZCB48h3f+657Wi6wkQmwb0v/ZSsmSfiD+ECv3hjC2e0nkx9qJqwL8DcyScwmooyd/IJjKVjPPCnX9IYqQUUvrDwCgAyhTxPeMFkP3v9WU5rmgFQSiNP5TM8ufsPJUk4wN6hAyXJeF24Sr53NXLURU73VAg+mR6aL9PQABuaHoIZvRCYB+Z+GFkj/mljugeWp0u5rdw7EDwbJu6H1NOe5NvLFhj7JliHvD4Bs1eWMXvBPIKu5FjQ0sJIOk1jOMye/n78uk6l38/XFi2i0u+nNhhkYWsryUKBrzz3HGGfr1RGa96kSUR8AtomRSLUhkLsj0a54dlnORKPs7itjRWzZrGkvR3Hdan06NysV+orms3Sl0gQ8vlY2dVFW1WVgICHHhJquFAQarhodO7pEWr3K1+BM84op4cVCkxfv56Xt23jvd/9jndOP51P/sM/QG8vJ51+OjunT+fD3/2O1997j9nhsHi5UykJTjv7bAHTq1YJPV1XJ0gaRBZuGLiu7FYgIJilu1tAs+MIHp8yRbo7dAiuukos4ffdJ2B6/XpZrigbX7tW/jRNk3GC++8Xot7ng2uugccfh1mz6jnvvAt5/vltWBYoyiHGxg4xffop8tlFvNKtjd45WAx6PKr59DLrrBw1XVX+RzYbhIUGz/7lSDhariB+bds5dh3H8cLN3FKfmq6KeyXio+7EOiItEQbfGJRxUS9zJD2appAqoBma+Hh1hf49/RSSBVoWtLDz/p0lX/X0pdPpXNeJbdlsW7ON9375Hjs27iAXy+E6LkbYYNHNi4j3xXFxqWqvIj2a5pJHL6F2ei2FpDDop3zyFJbetxTV0Gg4/XRUv5+G00/ngyefRA8ESinhdjaLmUyC6xJqbuaka66RY3VkhIOHD1NTWcm6G2/k/E98gvMuuogPVZXs2Bg3f+ITnHnqqZw+d64M6CcSvPfoozScdRaBujrOuP12Luvq4uy77qKU5v3UE/KbfGaVlNhSVKlr/ctHJUF83ffgH66X+9KlnxYQfumnJT08GIbLPl0G5qm49JvLSGmumafC9FOEsQZJDd/2W7l3Bb18Dr9ffAqAq8Do/t3UTp3nHSjlZzgzm6T/vT9SyMg2QjWTUXUfrgvjh9+m6ZQOL0nfLR2DruugGUGMYCWKotAy52IUr8Sq60J6YoB8KkawugndFxRvdmqC9HgfjlU4zmYfb8fb/6Idr3P9N2puPi8p4AO9KJMmoxRTIF0PXDgOrqqiOI6MmhYTUBMx0A2pW+0V63Rd16tvXQkeA050HGdXN+qyy2XUWRHPnlsoQCaF8+or2Jd9Etd1S97q4m//7LPPlmtPFwoUCgXC4TCqt62j61UfvX7x1fRSUIeGhmhvb8dxvDrRikIsFmP79u10dnYSDAZ56aWX6O3t5Vvf+hb+YJA8EB8aIlJZyR3f+AZf+OIX8SKasIAzTjmFrz7yCB+78EIaEdZZo5xFfQSoA76KeKZ7geWIh/pBJGl8CnA9Up5rureuBdyAgO7isiEgkMrL/cdyJAVcAdd2UXSFQqKAr8JXmpcaThGoDJT82N3f6qZzXSehhhDb1myjY20H1VOrSQ2mSonhu767i6X3LQXAF/ax9ctbOf+b52OmTA48f4D+Pf1c8vAlWDmLF255gQVrFlAxrQIlIl5rXdGxXAtd0TkYPUhfso9FrYswHZM9/XuYUjmFtmpJndUVnbydx9AMclaOWC5GTbCGI7EjPLDrAR6+5GEORQ/RWtVKSA9hOiYKCuOZcWY+MpMVs1Zw97l3YzkWU6un8uH4h2zcsZFbF9/KGfUneIM3tjC6ji3S7tywlOSSA8ZL+/YCylxLwPi76+D0B+TJU/F5ANqTZ5fOCU082VoAAvVgZeDt2wREV8yQI6S0HlIKzM4L4I20euWzcgKsU/0yTfPLtFQ/RFo8dtkSr7SLANPsmHiqq6bB0FvQfKYA6+L06hnytyYOSx96oDy/ab7IsX0Vsl3XhswYhOq8o9Z7uDEzAqY1z69uScgMRki81Gd8BSrbYeh1aJwngwJFD7rjDUwUErJesF4+Z0bgyZkiDV90N/zkVPhvH8q2Xr8PzrkPNB8pM4TtKqXSWPKq0NcntagrKnxYloumKagqpfeOI6/Fz6mUyebNe9mzp5916zqZPLnCy2tQS/WtAWzbYffufmbPnsTISJpp06o5dCjGPfd0c8cdHcyYUYPis/mX53/Itn07ueyUDu5cei0A6UKO8Uyc0VSUxkgNP32ti6+cezV+3cc7Ax9y89Pf5bwZZ7H2ov+GoeqMZ2JUBStQUPjOyz/js2ddRmvVJCzXZig+xlBqnLmTTwTAtE0MzcB2bHJWgQf+9Eu27dvJspMW8c2PXYtPVaQclx2TkllOXJK8laB4sLUmsHph/FteDezJkh4+tFJ80xUroOlxxIRieb+/5Z0DAwKajVbxV9fdKsFmxgww2sR7Xbe2XPN6eBWJuh8ykjZpDIdJmya243D7iy9y65IltFdWkjZNhlIpHti1i/uWLkVXVUzbJmOaNITDuK7L7v5+zmhuxlBVdFXl2meeKdXA3rR8OY7roqsqH42PU+H3UxMI8NrAQKm+9Vgmg+04nPL977Ni1ix+dcklKAcOoASDEp+9YYMg0uZmQbarVsGSJfJ/40aRdk+fLmbkigoByAMDUky6pkaWf/ppeOopQb27dsGiRXLfGx0VU7TfL+hW1+G22wQZQ6kwdTzU5JV5g927BeePjMBZZwmZvn69EO0jI/Dtb8vu1tdLPerbb4cTT5RxAtMUX7WqCsO9fr2w3pMny+5alowVZLMwNnaQVauuZXx8DFVV+drX/pkrrvgkq1dfz0svPcvw8BB1tbVUVFSwf98+7xpXfDDwzut8oVzT2tDl2qkejbT/g1aslQxwoE9C0hpqyjLwZFqk4IZeTqZ2wTQdxg9OUNFYgebXUHQFO2uTjWYJ1ATIRXP4wj58FT6svEX/7n4q2yqpmVpDz6s9tC1qI94TZ/v67XSu66R6enXpWSB2MMb29dtZcpuElhkhA8d0yEazBGuCGGEDRVOw8za6X8cyLcb/fZwdG3ew+NbF1J1Y5906THkO8gK6UFX23HUXPc89R/vHPsZZ69bx+vr1nPLf/huRtjbSAwN8+POfw8UXs+i883hi0yY+88lPsvtPf+Lvr72Wuy+6iIe6uvjhypUsvOsuln384yyrrWXq/v20f+xjzL/7bqxcziNsXd6+/34WfeNulNFBCZ8dHZBE8C2/ESb7wF9g/174pzUwNiwM9MzT5PdUVQHmliUebMuEQ/uguk6Wa2iGr6+EL30DahqE1V52JdTWy/NebWPpmZBCDv7tSbj4kzgNTeTNDEaoCjMTY3T/HiafdgFWIcfIhzuID+6jqvkkWmbL84VjmyiqXrZvuTaZ6BBGsAJfqMrzm5soxWAzRcFMxxg9sIeGmfMxAhWgapiZOKP7d9MwcwFGsBIzG5f62jMX4I/UHq+Jfbz9P9n+szrXfxNwrSjKQ8DHEZxzuuu6b3vTTwB+ipQkjgPXuK679z/r7/82cF1krRXDi+VSZAxRcZ3SYLWrCEB2EzHUlnYB2qqKm0qihMK4lonzwrOoC8+BmloURcU1C7hDA6gtbbjZjDx8qIp4sjsuQKmt9x7IHWxg3AO6HR0dJBIJKisrqamp4dvf/jazZs1i+fLlAMRiMbq7u1m2bFkp6OxoAF1RUUFFRQWaJqPafX19NDY2YhiGyIkti1wuV6qn7TgOtm2XGO5iWrgVCOAqCpeedx43rFnD+VdcwYHBQU5ollH6y3/4Q7KPP869r73GuYrCQYRhvu+o71ZD2OtTEZD8KCIBvxOYhjzD7ALmAT2It/rbCEs+BtwD3AZMRupjq1kT8pIM7touiirhL1bWwlfpw8pa5GI5wo1hcCE9miZQHQAHHpzyICd9/CTOvftcvn/q97mq6yoq2ypJ9CZoWSClvQ48f4DWxa34I37CDWEUXSF6MEr3+m4W37qYiskV+Cv9pQTyXCyHv93P4ehhptRMwXEdCnYBy7HwaT4UFAzNwHGdUlkt27VRFRXLsRjPjJMxM4SMECFfSKTjmoSVqYqKrug4ODheXfWMmaHCV8G1z1zLnZ13Mq16WilYynIsXFzGM+NMr2xGSe1H+eA+mHefsMq5MQg0AI6UyPLXeay0Dm4BxvdA1WleCJrhsTSazFMDsl7RC+16srN0j0jJ6xdSqv2OCulDkOmVEl9WTrZ7NAiuml5mlI8Gxn+9TPHh1nVl+VSfhJWpfgGwvgpho4+eDmWGyaUM6qume95tRbYbaRHAvnsDzL8DQpOElb7gYVnXMT1vrVr2Zzs2JHpgz3o4+3YJWLMywuT7qkqp3+gBj93GSyHXhLk+6xYI1sH22+GiHwgAVw2ZP/Aq2foOPjqUYf367dxxRwfhsEEmY7JhQzePPXYZvb1x+vuTLFnS5rGAUkKrULCxLIdEIs+kSWFyOQvbdr3zWaGy0o9p2hw+HOd739vFd78rLHdx/R07ejlyJMZVV81m5couNm/ey4oVs9i0aTl6wKU/PsJwaoLTmmbg130U0cdwcoKwL0jeylMZrEBx4Tuv/Jyrz7yUkdQETRV1NFfWoyoqvbFhntj9e65dcAVt1ZNIF7I8vP3X3NT5aQK6z8sSsFAVlZyZ5zuv/JwvLLiC5sp6smaedCFLxB+i0u/DZx9AKYJcrR5Gvgp1d0h698iaMvgd+BRMfgqCC2WgyPwIxu+FunXlBHCzV0CyEpRSXoohy2a6YeDvIfJxqL8btAapcV0C55sAA8z9pJUTMB3oSSRYv307ty5ezKu9vbza28ujl17KWCbDXa+8wpK2Npa0tbFxxw7WdnTQEA7z1uAgC1paCOg6GdPE75XpShYK3PrCC9yyZAkn1NTw0cQEk8Jh3hgcpKWyknu6u7l9yRIaw2G++vzzrOvsZFp1Nf3JJBU+H5NdF2XlSpF+79kjzPXoqIDp8XFJD/P5pH7V5s0iD29rE6S6dq0g1UCAEt1sWQKaLUvOCRCa+ZZb4Gtfk+UHBwXE33orvPoqfPrTUqYrEoGGBtJGFQcOKKxfLxW8RkfFe20YcP31shsffFDepRUrxEedywmY7umR3bvlFjjpJME3+bxMHx0VrF+sqmVZYjXPZGSMYONGCUcLei6M4p8VCdooRcY6mZb077/GzY4LY1Gory7LxE1TEsBtb13tr4SGuYKA8oqwgGzblmU1DVIZeH+/gO0Tp5RZ8VyBnF3uR1GU0mC467jYpi3lKMMGZsYkH89jRAzsgk2oLlQOyALsgo1dsHnhlhdYfMtiqqdW8/6v3+fUT52K5tNwHZd4T5x4T5zK1kq6N8jgc93JdeielD2fyPPMdc+wd/NeZq2YxbIHl2GEDBTyvLVxIyd99rNkhoepOeUU8tEoezdtYtb115MZHORPN95I+8c+xtlf/zqvffObnHLttaRVlWmzZpEcG0M3DBRVZVFnJ1decgkbH3yQcLUMBAyPjlIRDvO5009n3UMPUTltGlY2y/h77xFoaGD8nXeYcflyqa/tulKC65ePisT77HPg45+DyqrytdsjPohPSDktn98bCFUlMfyuG2DeQmHALQs2Py7v//WoPj/3ZenHtqWEVzEDZGwQouMw7SQcnx9Xgf73XiAxfIATOj+H5gti5hKY2RShmmYJNsPFdURppSgKBQ8g108/EyufJVjVWALVFMkSpN+/Bul/Pc11ipJ5B0XV0PSjMgCOt+Pt/5H2n4Hrv5Us/CmgAyEaj26PA5tc1z0RuBf4yd9of/62zbZRDANXUcUr7V3IUFQwC9hbfidhGBUVKK1TyyONKFKe69l/g2QCpaUNN5WAeAyn5yCKrqO0tuNm0uDzo9TV43S/VAo9w3FwLRPXsbFdl+3bt7N37166u7sJhUIkvNIsV111VclTDVBRUcHixYvxeTLCQqHAyy+/jK7rtLW1UV1djeM4pFIpCoUCra2tpNNpurq6iEaj5HI5TNMsebeLSeGO45DJZLC9GpPYNoddlw+BAlIa68ZNm1h44oksOeEE3njmGab/7ncsVBRsROI9H5F8r/Feg0A1Aqzv9D5vQkZrbgA+BD4AViPM9AZgCLgd8VpvQthsF2G0VccRP5rj4liO3KC88adCokD/7n58IR+FZAEzY5ZAtqIq3PDeDSx7cBmRpghXdV1F64JWqqdU097RDo4Eo5165an4I37MtEnX9V1ED0QxgkZJYgfCmpsZEz2gE6wNYrs2jRWNHIweZGXXSgaSAwT0ANFstASsQUB1spBk1ZZVHIoeYiI7QUO4gWk102iONBPUgxiawUh6hJyVQ1M0LLcs7cqYGQJ6ABeXx5ZL8JnpmFKKy7FIm2lM26Qh3IDiWiiZPpF948CbawRMOwVJ+w7US6fZIfFI58Yh0Ax6pbC2uDC6G9IHIR8tS5dLmgTPqxicBLVnecBaoZRCHmqBmrkwusvrDwGzxSTvou+5mO4dmSwJ3cekfSvykFBIwvBb0m/VdBkMiB8s+7c1nwDzIrDGkQenYvK45oWcoXg1sb3tuha8dp94n/WAnO/NiwR4D+zw/OI5eW/lpASLlYVUr5f8/W3Zv8yQyLwzw8Juv7SqDKwLcXlfSAiYDjXC2Htw4aNQSMm2/niD/D31szFthfXrt5fCyKqqAmzY0M3TT+9D01QaGsIsWNBCMlnAshxSqQL5vE0goBMOGx5DDXfc8SJDQykqK/1UVvpxHJfh4TT33NPN6tXzOXIk7gWaRenu7mHy5AqmTKnGdd1SDe21a0Uy7rouDZFqzmg5Gb9ePJ4VBmJj/HjP0wQNPzWhKnRFA0XhM6dfwhO7f8/cySfi1304Xl3qX76xhTNbT6Y+XIXjOuwbOcyspumMpqLc9/LPsL2wPoCg4S9Jw1VFJZZN8oMdTxHLJNEVW4B1MbnbSXjv7wEnVp4eXABT35XX7C4wD4sfu2kTmINynJi9nsd6DVIfWwd7QvzWwUUw+ffQ+CDokwV0T3oEWrok3MzJSB/6ZBksc91SUNnGHTtYOn066zo70RWFCp+P2xcv5p/mzmVqdTW3Ll7Mg7t2oSkKDeEwq7ZuJVkoYHve7UQ+jwL84LLLOKGmhrV//CON4TBhn4/OKVMI6DpL2tq4f+dOEvk8m/fupTce51Asxl2vvMJYJiNAeO1aOdeWLJFY7XPOkeOyrk7Adk1NWWe9YIEYnG++WdBoPi+vmiZAsujZ3rVLAIbjCMN9772CWIPBsoZ740ZYulRQcyQiQP7667Ett7SJ0VHZZChULqm1YgVUVYmke2wMnnxSMFEkIqf/+vXSfVWVSMe7u2V+e7sEovf2yu75/cJgy/1S+nr6ac8um5V1V68Wcl7OU7Ncgqt4ey9YkuBtOwKOG2vLgwquK99vkfuwHUr1sYvr+Az5ww70lks5ZfOyraqI9FesnV3cpt+HaiiYGZPUUArHLt/vMuMZqRwS1FE0pZQ9oigKwdogjiX+60Kq4F061ZIMvHtDN7hw+KXDJPuTcv80HbZ/azvhhvAxAWZ2Xu7/VkGCVIthaR1rOwCkQoemcebatWTHx/HX1vL2/fcTaW1lzurV+KurqT/9dD756qsi4VZVZq1cSUV7O2HbpuOMM+javJnc+Dh7d+7k4IEDrPjc5xgcGODf33yT/f/+7yw4+2we+e53+davfkXFlCkUUinG9+6lbvZsjHCYtosvFp3RyAD84mGpO33pp2HhBfAPN0B1jeTa/PpxkXmbeXmtrJHfzbYhGZNlKqrh/n+Ff/ySDDYFggKkVU1k4wsvEGm540I6IWz3xAj8/CFhzOuahPX+5SOoI/2gKDTMXMAJnZ9D9wdxbQtVNTCCFQy8/yKFTLwUwlcswTW6fzfxwX2MHXyDUE0zqu4rleFyzAIKkjLeMGM+Vc0n0TBzgYjDFIXJp13IlLP+zpumiG9bUUoA+7g8/Hg73v7H9jeVhSuKchi4wnXdtxVFaUTypmpd17UUQXaDQIfruvv/V/3838RcuwVPMmuauMVR+XxOLrKGD8WTejqDfaitU72AKBfXMlF8AexnNuPufVuCzM69WFjsXBYlFC4FYbjpFEogCLqBGx3zmOsLUWrrBKNEx7ATCSaqakvMdUVFBQD9/f1UVVWVAHMxqMxxHFRVpVAoHCMLz+fzx0jGi4B827ZtvPfee1x55ZW0t7eTTqfRdR1VVTEMo8R8g7DfkydPxgqFWKkobEYA8F2UZdqPIeB4LRAGmoADSAmto5f7IfLc4CA1rE3v88qjlrkbEWZO9ZYrzrsa+IE3r+j7DiQl4Ml1PNbaknAPOy+yOV/EJ+A4azL09hCtC1tLEu4lty4pScI713VSM6OGiYMTGAFDWGpN8TCjWwpFm37hdCpaKtj6pa1cuOFCkc0pCmbWxAga5BN51HoV27VZ2bWSzXs3s2LWCp64/AkShQSDyUGGUkO0VbbRn+xnYetCHNchlo0R8oWI5+NU+CoIG2GyVhYXl3eG3mHOpDlMZCdKNbJ1D6BqqobjOmTNLBFfhIPRg2zo3sC6jnVMq5kmUjJcKjUdJbUfPrgP5t3rlcQyKIWP2Xnv5quAnZak79yIhI/t3QCz1kJ4moBLzS/Mqmt7LLcFeAFmRqWU9tq7Hmatg1C7gGknD2hgp+DNm2HRL8vbLiSFzYWy3LyQlJAv9ahR9lIYmyaMsK/iP2a780kBteCxzapXdgvv4dejhYo2uCLr7triPU8PSImsBWvFJz30GgQb4I37hdEO1sOfbob5ayHcJN/bi6tgwZ0iD39hpYDtoyXfXxyW/XxtowSeRVrLATzFfUsPCig/at20fzr7D0TZsKGbtWs7CIUMslmTUMigsTFSZrFcAcuVlX6CQZ102iSZLFBV5ScQ0LEshz17+r2SXTZDQ2XJd0tLBV/+8nMsWtTKlVeeit+vez5uUUyMjKSpqQni86lYloOiuxTIEzICOK4j7DIqDg7DiQl0VWMoNc5pTTPQVA1dVemPj+LXDdKFHD/e8zTXegx0zswzlo7xk9ee4QsLrqClqpFvPL+Ja86+HE1VeWL3H7h2wSdoq27ijb4POK1pJrqqcs+LP+bZD7p55O9vY3ZTO1Vqv8dc3+kx12v+x/fGdAkcG18PtTeDNQq+6aLE0BpFJu6awkYHl0DoXGG7jRYB6nVrRQruJAXAa5MEdBeH+pyUgG5sUgWHP/WO0RAO89Du3dy3dCkRnwwsaIrEr2lAolAgns9T6fcT0nVc4IZnn2Xz3r0M33wzvYkEG3fs4NbFi2mtrMRxXQaSyRIL/uTll2M6DrbrohZr5gI7entZ0NLCqq1bS1LyXy9dilKUaqfTAvR8vrJe+t13y+ZmENBx4IAA40cekftXMY67yHSHQgLMe3vLMvPGRnjzTUHKui71rc4+W8A2CDD3aOl0wuLAIY3eXlncMCRcfPp0YZh9PgHRR46UN2WagoUqKkRdbhjlKl/RKHznO1KGa8oU6cPvlz56emQX77hD5u3YIYHpw8PCjBcV8WfMsVH2HxGGualOgPDhAZjeeqwCpphOrZQl3MdYa/f3QMsk2eGAX2pjf3hEmPBJteWFE2kB13CsPNwLSsvnbMb3jZMaStF8ejPJwSS7HijblfSgqNV6unv47ad+y81DNxM7FKP7nm467hCrk2M7aAGN6P6oMNJrO6mZWYNjO/S+2kvL2S30v9ZP4+xGSR0HuUfevoTaGbU4ttxXrYxFLp4jVBcqWa3CDWEK8RGsfJ7wpEmivCsU0MPhkl84PTjIB088wbybb8YIh3EdB0XTeO0b38B/3nmsvOEG8pEIqqqy7rbbuPScczAqKiRlvLaWiz72Mb50001cePrp7N20iVOvu45AdTVv3ncfs1auJNLWBvksxu9/ChdcLlLu4vV1fAhe+D2suK4sUdj8Q1j6dxJ2ZlvCPI+PSKDZp66VELNCTn7L3v0iMa9tLLPeEyMiD7/007Ktnz5QZrQ/+yUB2t5n+7/dLBLuTJyxA68x6eROVM1g4P0/lhjmxhMX4zq2SLsBM5csSbtVzcCxC5jZFMGqRqxCFjObJFQjf6PiOtiWST45hh6IHCMJd22Twb+8QtMp52KbudI8X6gKRdWOS8SPt/9n2v8pzPV/1NqAQdcV6swVBNcDtP/1goqifFVRlL7i/1Qq9Tfe1f+9VkwHdwt5SQm3LHAd3OgEis+Poqo4vYdwY1GU1imyXCqJaxZKfagXfxxt1W2oyz6BUlkt/utQuMSAo6go4QqcgV7c6DhKTT3apX8PNXW40XEB7t0vwW9/QnU4xPLly6mtrSWVSpVSvONe+RVVVVG9kfPiq2EYGIaB3+8/JgQtFovR1dXF+Pg4hUKBZcuWceWVV1JZWUlPTw8+n490Os22bduIx+O4rsvg4CCqqtLS0gIIGL4DAcBViGe6yEDrCMDuA7YBHyHMc8tfLVf0XxeABALAuynXrl6LSL7bgC95yz4KdCHy8gNIqviA94oK0YNRulYKq9y7o5f4kThGyCDSFCE7lqXr+i7Sw2kaZzdKYuqAJKZuX7+dXCxXGqF3LAcjYJRY6kKqQOxQjK6VXVRMruDkK07mlbteIXYwxiUPXUJ6JE3XdV2MfziOawtz7q/0C3ml6KztWMuKWStY17kOF5eQEWJm7UwWty2muaKZsyafxY7eHfTEeqgL1REyQtQGaqn0V2I5Fm8PvY3ruixsXYihGvQl+mgIN7B662p64j1oqgTd6arOQHKA/mQ/G7o3sHnvZvqT/diOTcEuMJIewXUtCSqbuwG0sJfe7Yg03LEExNp5JJQrJKA50CjsdeM5wsa6joS3oELqoJTqSh2A/JgA62LC9gcboWcz7HtAgLVbdN4jSeONHlvmeg+nPvGKlX3cipTgUr1aoiDTjg4w81d6D7basey2iwDrIvhXffK+GEBU7N/Oi+S8OKiQOCwstBESALxvs8jDNb/Usn7j/nKN60LSe79BgLEWkhTxqulyji9YK+B4wZ0iCT9phbDexX5f2+j5xh0JOjMzsp6vSoD3SSsEuPurMTSXadOq+eEPL2fatGqamyNMmVJNfX2IZDLPgQNSpzqbtUQp77ilkLLm5ggVFT50XcXn0zjnnCkYhophaPT3C0U3ZUoVfr/Gffct5YorTsYwNCzLwTA0UqkCjuMSi+X44hefJZsVabmrOIQNyaBwAV3V+WDkIGOpGG01kxhKjVMbrGTfyGF0VcVxXVqqGqnwh/nxnqfZtm8nT+z+PQqQLmT5xRtbmNdyIj5NBozuuPDztNc08dPXurxl/wC4TIrUcs+LTzKYHOMr517NspMWcVrTTPYO9wrobXpMpN04nmy7TgLNJj0K+iSpd232loF1cD6kXxBWWw2BmxcpeN06CF8s0/UGAdaletaO/Fer5LhSDFACck6M/TOYByGzE5+m015VxXgmw2OXXUbE58NyHPb092N5g6IAQ8kk3/rzn0sDnz5V5c7OTlbMmoWhaWzcsYOn9+1jJJ0moOtEfD5G0mmWzZjBnZ2duMDheJwvP/ccOa+k447eXtoqKzE0jUcvvZSuq67izs5OAbpDQ4Iqw+FSrWnSaTn+Fi+Gq68ua6sTCZFwL1rkna8iW2XXrrK2uqlJ6N++PqGCH3xQaOUlSwT5gvQbjUqEt2keQ0tbjkpvr5Dmq1ZJ/tnUqbKZ4WFhk0GweyYju64osoliya6+PinNnckImb55s6jRXVfwvOERxgMDwpD398u6HR0iL580ScpxL1sm4wh5EwHSVREBwwUTprccNRgHpVDFvCngmOI04FC/yL9bJwmgrorIKwgz3VQn6310RF6LwLr4HYeDwnIXmW/HJVAdoL2jHV+Fj0BNgEU3L0LVVQrpAlbWwsyYtHe2c8N7NwDQfU+5BjaAoinohk7diXUs37ScyimV/HHdH1EUhbbFbWgBjdZFraXQz8xohst+cBk102vIxXIk+5IUEgUGXh9AD+jEj8R55gvPYKZNFE3BX11NxAurc0wTIyKZM2Nvv016cJBgfT1zv/xlNL+fRE8Po2++iZ3Pc+a6dTRVVrLzL3/hrT17eP3VV+mcMkUk3+++i53P45gmf9y6lU9cfjkfPPkkPc89x19++EPMTKacFu446MEQfPoGAcEHPhBmGldKcV34cVEbJr2QshXXCeM8NgS/fEReDUNCygxvwMkfkP/TThGZd9Eq4NjH1rK2zGPD0VS1/Nkrx2XlUqiqTvNpF6LpPmwzS8PMMuusagZGQOQYmegQui9I86nnofuCJMePoGoG4brWUnku3R9kcO/LuFYBUFB1H6Ga5hLjPbp/twSiKQrxwX04tsnYgdcI1bag+8PgujiWeTxF/Hg73rz2X8lcnwn8q+u6Jx01fw9wu+u6L/2v+vm/hbl28zlc05SLZ6Egw+Y+v4SPvfoy6uLzIFyBOzyAOmUG7vgobiohnmtNE1bbsiQErakZxfDhmibOy8+jLr0Upchceyms7vCA1L8G8DzZiqZJOa+CiR2pYCIWQ9M0XnnlFfbt28eKFStoa2sTX06hwAsvvMDSpUtLXmmg5K0uHiumaTIyMkIwGKSuru4YBruYEm6aJq+88gp79+5l9uzZXHrppaWyXYYh5UAKfj/DikIV8BaS/g3CPuve/4Mcy1ZfDXwXiQnyAVlgNzIiMxV5VN3sfZ6PlO16D5F+p7w+NyCgewZwLVLO637geWAwnqNrZVfJA7bwqwvZ9d1dLN+0HBTouq48r+itLr53LIdQfZm5rp5WjWu7dF0v66z6YBWv3PXKf7j+8k3Lj9lusV62qqtEk1EijRGpPaqoqKhYrsVoepSsmSVgBKgJ1BDNRYnn4kypnoKu6qiKiqZo2G75hue64pmuC9dhKAart67mJ+/8hBWzVrBp+SYmMiIlz9t5VEVlIDHA4fhhOto7UBVh0DVFI6wqKHYOZXw3hNrE/xxogsh0AdrFOtdaGPD8zGbM82F72QNuQZhtVYdsPwxuE1/2WQ9D6gj85R6PrW6TPlQPiBeDzMykSM4DjQKyS2W1KHuh7byAbRTZL9VXll4e47+e5knJjxp5P/rSKEk38uZoZlrRZJ1iArmiCdC18pTk48keqU29YB1UTpOHsaIXe8Gdsv1X1sj7qukirc+Og78KXvmKBKVNWQoV7SL/zsfEv53qLfdRXK+YQp4ektJguJ6k3vMGxg6TCc/E9ILJTNNh164+WloqaGqKcNNNz3H//UsZHk7zwAO7ePjhS0rBZyLhlmNIPpcD0QoFh0zG5Lbb/sgttyxm2jQp65VOm+i6gmFo6Low1ZmMSSKR9+pdq2h+qWnt1wwc7xh3XZf1f3yCf774OgByZgGfbpA7yhsd9gXoi43wk9ee4SvnXk3Q8ItE3HWxXYdkPk3ONPnR7t/xhYVXUBOs5L6Xf8YXFlzB5KqGUojaspMWlbbjOA6261DlV1Cx5Yph9UN6G2T3wKQH5Hd1HQHB1pGjWOjp4qMOng2KH4a+KPLuIkAv+q9LQWZfl7JbFJPrVS/YrEXWKXwgoD20CJwsaadeDmuPrb7thRf41oUX0huP05tIsKClBUPTiOdyaKrKbX/8I7cuWcKM6mos18VQVfZHo/QnEsxraiKRz9PoVX/wqarAfNdlZVcX57S3c8XJJ5MsFIgYBnnLIuTzEc/nqfL7ifh8RHI5lO5u8UJ/+9vig25qknND1wWpHjwoUu5775XPxbpYR3unJ02Cd94RdHrkSNmT3dcnoDqbFWDd1FQ2Rd9xhwD66mphtZcsAcsiY1Ri2QqZjIJhyOYkmM+zum6Gz31OsH40KqvHYqJej0ZlU729sHy5SMgffVRA+hNPCOle3OXJkwVoDw2JhDzi4dlEQnZLUco28sqIjeK6KB8dgXgCzp5dvq44TpmpPrq5gGlJfWxVEVDs90no2YxWMO1yAFrAJ6B9PAZnzirX1C76o0vgXVo+b+OYTilTxMqJrHfo7SHaO9pxLIe+XX2EJ4WpaK7AF/FJLkiRoT6hBk3X0HwaVsHCylo8t+Y5LnnoElF8aaL4UjWVI38+wq+W/4pZK2Zx3r+cR0VLBa7tYmZMXEeeXcyUecx9cfmm5Tj5BG/ffz+nfP7zaKEQeiCAlckQaGgQu5vrMv7ee9Seeiqaz4dr21IXu1Ag0tKCmU6THRnhgyef5NRrryU7Ooq/thZfVRWB6mps05SSU47Dmxs3MmvlSvy1tbz57W8z67rr8NfVEQiHUceHYNtT8Mlr5dktnYRIpee1VuQHTicgFBbp+M8fgl0vlRlnFBlsTqfEi12890yMSr+fulYC0wp56D8M006Sz45DKdQuNiGg3Jtuh4JyK/Kex1xXrkeK7kPxBqwcq4CiqCiqJrcxx0bRdHleLIaluQ6ZmAScqapOcvQQ4dpWzFwKIxhBVQ0cxyyFlxmBChRVYeC9F2medX7pmbCQSTB28LUSg33cg328/b/Q/o8INDtqZw7z/5As3M3nj/rg3UQBNxnHPbAPd3AA9aJLUQxfaRlXUQQ8n3+xlPFQEMkT4GYyKKGQJIY7DkQncHa8jNp5oZTtUhRhy4cHUJpbIRnH2fEK6mWfhHgUU/fxzCt/oq2tjba2Nvx+P+FwuCQBd12XaDRKbW0tpmmWUsP/OsyspqbmGEB99PsiIAeIRqPs2rWLSy65BNd16evro6mpiWw2y/bt21n2yU/iKgoDQAbxQHtQjHEkBVxHHj2zwC3efwdoRALJNiDgeBQx9Wve8ipwCFiPAOnpQA7xXhfl4pu8ZfoRRrwfuCidL0ndOtZ2kOhLUNVeRc30GlzHZfxDSTbtvLOzDKTv7KR6ajW9O3qZNGeSBLKoCoVUAV+lr9TfsgeXkRnNSMrq0euv6yTSFCE5mKR7Q7ckrU6OMPTWEJFJESpOqeBA/AAbujfw3Yu/i6qoxPNxqvxVaKrGQHKAe7rv4Y6OO4gYEcK+MEE9iKZqWI7Fnv49zJk0h6ARREUthZ3pqo6Lyxef/SK3LbmNiBGhIdyA5VqMpccI+8JEfJFjgtHWd6/nkWXfpd6aQMn0SImtQgwKUfjwITjr+5SCyXIjAnztnJeMbcD4bvFQF0PE7KwcLG+ugVNuh4qZsn5uFIZfhNZPSNiZkxWg7jrw1lckbdy1ZLt2BipOosRG2wVhovMJYcZTA+W08JLM0i0HlUVay8wveJkH/xNpZknG6Up96Uhz2ZutGuVz3czItosycjMjdaydPAy/Ac2LBYznxsSf7lqQi8pyezYIEK+aLl7p3euFva5oF//0vs1S9/qiH0j5LqNSgPXALvGdV7YLOA81lgcCPO94Jufw0eE8AwNJ5s5tIpHIU1np4513hlm4sJVMxiQSketRoWBjGCqHD0dpaanC59NQVYWRkTRVVQF0XWHnzj4mT65gw4Zubr11Ma++2surr/ayadNyVFUhkcgzNJRi48YdrFvXydSpVSiKhJzpukIuZxOokHA927GJZhPkTZOW6kZS+QxBX4CcmecHr/6WNedejaIoRDNxMvk87TWTcLwfZiA+RsAwqAlWoioq97/yc7645EoUFJ7/cCfvDx7gjgs/j+06aIpKPJciU8jxIy8ArS5URcjn51svPMFdF3/+2EAzsw+MJkkEz70t4FcJCQt9TDr4YwKex9dL+JlrS9K43irSb7USMaCo3oHkXanMQ946t4o03MmKPNzsET83DlknQixvE9D1khRcU1Vs12XMY6FTpkmV38/bQ0NMCodxgbDPR3MkQsY0qfD5SkTpR+PjDKVSpeCydZ2dTK+uxnZdDsdiNEcix0jIT6qr48PxcYbTaRa2tqKrKmHTRM3ljk35XrhQAIfPJwj2y18+NjF83TqYNg2+9CWhkadOlWWLNa+++EUpIr1ihRijNU0Y6scfl1pYjiMhZxs2CKAvFAQR3347bNxIqqKZZEohHheZdygkeLyvrywTHxmRQPODBwUg19RIsnhrq7DRixcL9q+qEl91T48sXwxEW7FCKpA5DqXtFP3XRRC/Z49IxadM8QLNXPd/BNBHt79O905lIBLyYiY8QFaw4K2/wOmniLfaMIS5r4qUr0+OAwf7oK1J2O5ISILQbG/6zPYSuC7Wui6GlBWzPobfHWbyWZPJxXI4tkOoLiQhng1hNL+G4dk7rIIkfcd747QtkQTxYnin7te9cVAXK2/h2i56QMfKWSQHkuzYuIOOOzqomlqFlbVK98Ulty2h9oRaFDePlc3y7kMPccbtt5Ps6SE3NkaoqYnM0BB1c+ag+nzY2Syqz0dufBwjEkHVNK+2c4G3Nm7kcFeXpIvfeSeFRAI7l+ODJ59k3le/ih4Moug6VjaLHgjI4H8+j+b38/o3v8mCdXegHfkIpp4oMu8De6FmkhwYml6+h4F4rov3ld88Lkxz42QYGfDk3v8AsXFomyFA+aP3RTY+7WQpv/UP1wsLvuXXcNlnoH6SF25mChCPT8DMWTi6ge2YqLrcrxzHwXVsVMOPaxWwrQK6PyweatfFKmTRfSEJrrNMhv79z9TPOBsjUIHrWCiaDMYqqoKZSzPy4Q7qp5/J+KG3mHRyp4Bz2yKfGscIVWL4hQ0vlBLE52NmUxx5/XelwDPN8HO8HW///97+j5WFu647ArwJ/KM36ZNA338GrP9vaa4nqcOVi5/9/LO4hTw4Nu7EGErbNNRLPiHMsvev2NTzlwlw7jl4VI1DBSVSISOPHmhXKipR2qbivPoKiqaJ53p0GLV1CuRzODteEb+26+Ls+BOKmefyyy9n7ty51NXVsXnzZoLBIHfffTexWIxdu3bxiU98glNOOYWzzjqL73//+0xMTLBt2zbS6TSNjY0kEomSJLxQKBCNRunq6iIWi1EoFHj22WeJx+OoqkpNTQ2XXXYZiUSCLVu2lLzaxWA1xXU5gkizpwGVCGu9CwHZGgJ+r0dKat2PgOrpQAAB1pu96QsQsL0f8VQfQspybfaWc4A9SJDZCkRariIM90ygAVgC4ELNjBqWb1pO7cxa2jvaqZ5WjV2wQYW6k+pY/vhyKtsqGXl/hMseu0w8aJZD42mN5JN5qXFtywh+Ppanqr2Kyx67DD2okxxMcskjl1A9rRo9oHPJI5cQ740T64lhhA3Z7om1+Cv9tHe0UzuzFluxS/JsQ5XApyp/lSSA6yEGk4PcvOhm+hP9TIpMKoWSJfIJbtp6E5Mik3BxWb1ltdxkXYeslSVZSGI7No9c8ghTq6fSEG7gQPQA13ddT9pME9ADJPIJRtIj1IfqaQw3sqRtCUFVE2AdaIDXV+PaGfDViPc6fQRGXy37n+0c5EfgtRshud8D1sBot0jBJQ1OpN0VM7xfSoFgE0y5SubbWZh4W9YHmLdRpr25RvzcmT5KdaU1n/it80lhrFMDR9WkxkvzRpYtBphpPi9Qreh39IC1bXrsd5GVlt2RILMCRJq8v7Eg8nK7UH7YKnq0rZx4nzW/+LpRYPJimZcZ8Wpj58RjnYtK2azJSzz2OyOAeukmqJop8897ED7/AXTeK4FlekSWG9ghoW2RJgH5Ia9SQDEcUQ8CKiZB+voSLFzY6pXOUgiFfHR2tuPzqYyPZ1m1agvptIllOWSzFpMnVzEwkGTNmucAqKsLEY1m6e2NM3t2Ixs2dLN58142btzB0qXTWbeus8RuJ5MFNm7c4c1/1cttsJiYSOO6YBjFwR4bF6gPV9NUVY/jOgR0P3mzQNDws+aczzCUGOObz/+QrJkn7PeXwIoEolVRHaykYJtkzBw3LP4Uo6koG1/+KfMmn8RXz72atwc+5NxHr+ObL/wIXdOpCVXyxcWfojoYYd/oYSzH4Zr5l6Mr1rGBZno9jG8ENSi1rI1pIgt30gK+K1ZA3W1yxSqtdw8Y7TD2LS8h3LMkmEfAGhKv9tAqz1fdIp7s8QdkWb1B5OShxd75YFBwFCI+H7bjsKuvjyPxOApwfVcXjeEww+k0d73yCgPJJKc1NjKcTjPZy9VImyaqopC1LCzHwXYcNu7YQUM4zD3d3Wzeu5f127djeT7r6TU1+HWdjTt2lMLTbNdlPJulo70d1TumFEUph5o99RS0tMCNNwqdq3n+1MceE6q4shKef15Y51RK6mHpukjC83nxXNu2UMUjI7Je0fpUBNa2LfMmJoQJP3RItjc+LvW0PY/50aWkDUMA7nnnyXtVFaBs2/IaiUgY2dy5AqyXLBHy/K67ZFOWJRJzRSkHot12m4D2wUFhs4s+blWV/z6f9BcMgt/nQC5fvi78dSvWqE56nvV8QTqpiggoPno1nw4L5ojEuzICQb8slyuIJDzn2XAqwsJqh4MiQS9K0SvCpXPGylqMfzRO18ouCskC0YNRnr3hWTKjGRpnN7J19VasjEWkKUIuluOxOY/RdX2XZJB4zTZtNL9GRYsM7Fc0VdAyv4X+3f1igTogFqhEXwI9oKOoCoqmkBnLsPT+pYQnhUt+7ER/Qu6L06u9vk30YJAz1q5F0TQiLS00nHkmgbo6ak4+mUIyiVMoMPHBB9j5PL5IRKTJts2eu+8mNzbGvK9+lfaPfYzTrr8e3e8nUFtLZmhI5OSBALnxcRzLwnUczFSK7MiIkBauyymf/7wA6Oo6SfQeG5JSW7X1olR66knIewPD+Zyw1j6/1Ke+ejXUNUqY2R9/Dx+7UkpuzTxNSm397HsiNV9wgQDtE2ZLn7oPPrZCtuE4AubjUWiYLOv//CFc2ySXGMWxCji2JT5nTUcBzFwa3QgclYerohsBzFyC/vdewMynCVY3YWZTuI6FbRW8fkwcy0T3h2mYuQArn6N51gVomoGiqKiGn2B1E5ruhQ24zlFy8T2EqpuOCkH7X40gHW/H2/877W8CrhVFeVxRlD6gFdimKEoRQF8PXK8oyocI7vn832J//ibNtqGQw01Jqq928XIUn19A8qTJkooSm8DpO4ICXs1goMhSJ2Io4Qj2tqcBUFwX17GFxfb7BSQND6KcMhvtkitwVU1GMFuneIksAdTF56HMmicyoKWXkY9U4Tgy2nn48GF+/OMfc8IJJ9DT00N3dzc33XQTX/rSl7jmmmvo6urioYce4je/+U0pYbzoly6C43w+T3d3N3v37mX79u3kcrnSskcHIxWX37lzJ5qm0dnZyaxZs7AVhT5gLvII6QKvA56YlUGEeS4CZB8i8+4BJij7qu9EpON1CPv8tLfeAsRb/QgC1JcAJyIR9UEEgBsIqB8Cdno/XTEV1XVcHNuhkCjQt6uPQqLA+L5xuq7vIn44TrA2iJkxGf9wnGdveJbseJaJjyYoJCUEzgga6AGd3h29TOyf4Nnrn+WXH/slW1dvxc7bKIrCtq9sI3ogKqW5Gr2HDRcc0yGfyGPmTHRF5/HLHmfsljHCRpjxzDhrtq1h/8R+koUk85rmcf/O+2mtbEVBIWflGE4PA7CodRH3dN9DPBdnUesibEe2GzSCBPQAqiostoKC7dr0Jfq4edHNDCQHMFQDn+ajKdKEoigE9ACfnfNZDCOMW7cAPrgfejaj7N3gSbMjUALdqwT4KpoEmPVshtygzN9zgyyTGwQzLp7s1iukvNaelZD8SCTfrg1vrJHa2dWneesfgddXQ3ZAWPO998ir4iFfxxJQWZSCH+2fdhyRhR8dZOaYnobTV1KWYOUhdtCTtfs98G2VPdW+Ci8lPCjzUn1lAO9aHovtSTNLbLgq+5cdFXDu2lIyy1chjPaCdZKofsHDcPJVsq3UkLePlgD3QK2sv+MuAeZmGhIH4aXVEpCW6hOwHtsvIWix/bJcskf2YaAbQ1doba3kppu2eiFmYbJZ00sHd3nggZ3ce+9FhMMGwaCO47gEgzobNnRz003zSaUKFAoWTU0R2tqqiUR8rFsn6d/r1nXS1lZJf3+i5K9uaang8ceXMzz8NR5++BJSqQJr1myjoSHCwYNRVq7sAmAoMc57gx95yd/wdv8+RpJRVFWuIZqqMZ6JlTzTdaFqemMj/MvzPyRnFdBUKS/l132EfUFCvgDNlfXcfuHnifiDBAw/TRV1LDtpESsX/D2VvhCGppM18zzavZlTJk3n3YGPaK1sBMXAbXwQpn0gSd7WhAeeDbDHRPqNI6y0MVMYaxfI7DwKbN8pMvLgfLCHYfiLAqjNXtCqwRyCpkfFm634oPKz0HgvqDVytXIzMHSD1NJ2cxiqiu1dUzunTGFSJIILPL1vH2nTPAYI66rKkvZ2Ij4fTZEIFT4fIUPYxoJt41NVHly2jPbKSh6/7DL+fdUqHly2jJ29vaQKBVKFAlnT5MFly7h69mzu7OxEVRQWt7aSKhRKaeOuZQn73N0tdO899wi1u2GDMMqRiNC+118vBuY9e4S5Bjnn+vrK5ujaWll2xw4B3YoiIDydFmB98KD0k06Lt9u2j00enzkT/P4SOawogudzOck/SyRkFyxLymxns9JNJCIYfWREgLXrlhPDN2yQS8aaNbKrM2bApk1wwgnSz+CgZK29/rpXBcuW3T98WKThkybJfVvxgsQoWJ5dxSl5n6mKQO+QsNX9wx4L7ZZBt6bK64dH5LXYHKecEu73CdjuGwbLgZpKkYsrivQ9GpXXhhqwRQ6eT+TZsXEHezfvlff37aBtSRt6QEczNPY9vY/tG7aL/zprcuVTV9J5Z6cw0ghrHTsQY2L/RCn8LDmYZOvqraXwznhvnEVfW0RVa5VIxW0HI2jQtlhsaC/c8gKxQzEK6QKNsxtLUnK57PoF6OIp93Qd13GY2LePXDSKHgjw+re+Rc0JJ5CbmGDiL39B1XW0QID+l19m76ZN6KEQ87/xDSJtbTheebdQc3NJEp7s6SEzOIgWCICi4KusxAiFBMy3t6OqigDmz9wI9U0wPir1rVHgyi/I7/TUEyIJx5XBWDMvHmtNl3vAiuugqlZY6XxWwPRrf5YAs/FhePrncMIsGYyqqpbtHPgARgehZZr0BRAdhb1voqQSBGtbUBQVxzY91lnuW/5wtSf9BquQpZCO4boOZjbFaM9evnj9tSxc+ikWX3g5n/3cNYx8uIN0Isqar36NU06bw+mnn8m1198kwWaKUvrvFH3YmoHrPT9OPu0iTll6I5NPuwhF02mZfZEnGz8eaHa8HW/wNwLXrute77puq+u6uuu6k1zXnelN3+e67iLXdU90Xfcs13Xf+1vsz9+sJZMUSxfgOri4Ig8LBFHCFRJO1thcYrhLD/eAOmUGSk0d6kWXlaYpquZJyD3moKUNxR+UO30hj9vfK+Sb4UPx+aGyGm35p1A0DdvwYxgG8Xicnp4evvjFL/Kd73yH+vp62tvb6ejoQNM0MpkMs2bNwrIsfD4f559/PrNmzaKzsxOfz4eu6yVw7Pf76ejoKM0PBAKl90WZeTqdPmYZTdOoqalh+fLlGMAS12UMuBHxV3ciLHYFwlIXw8vWItLwMAKuYwgIfxCRdB9AJN9neP08iLDbZyAF1IvzE14/QQSIO16fG731AOJH4mSj2TLIdl0aZzWSj5cfSLrv6aZ6ajWFZKE0bfv67YTqQ5IKDsQOxdhy4xYqWyoJVAfoWNvB7Ktnc/F3L0ZRFeyCzdL7ltK2pI1X7nqF+OE4tmkz/uE4W1ZtwQgbpIck3CZrZRnNjJIoJAgZITbv3czGHRuJ5WLEc3EumHoBbZVtkuTtq6Q50kylv5Kr51zN1zu/TnWgmn+c848lRnv1FgkxU1HRVb1UJ7u1spX7d97PvKZ5HI4dJpaL4eKSt/NkzAwAvclhXNUvid/tK8QXragCKo8C3ey9R6TRs9bJcnXzy0D7g/vls69GHlLM5FHzNoo/G1s+/+Ue8WUfs/5GaFoKp93pBaYV2Wfk/FC806RYJkv1H3V+qWWv9NGp3yX22xAPdtG/DccCaEUBn6cDdd1jS4Ap2lHbcctltJJHvHNcY+ppizhpztnMO3M+885ewm82PwWVU5h63g2cdNrpzDvtJOZdcSu/2brDY8ttYeoVRSTiB56WBPJQAyT75PMb90tQWnFfz7xZXv1Vso5jQf1sHMvivvt28NWvLvKAK7z99hAjI2lUVeGBB5YxPp6hu7sH03QIhQyPtetg5sw6D2wb2LbL6Giavr4E06fX8C//ch61tUGGhlJMnlzJe++NoOsqBw9GefXVHgYHk9xww7MMDCSZP78F23a5774dLFnShuM6jKYnOK1pJqZt8fb/h73/jpOrvLN94e8OtSt2KKmTOilhkhAwGBRa3WCTZAnw2GMbD8bjQBAYsE0wwkjYYBsJWyJ5TDY4Ho/HgrExCIEQ2Bi1WokMAkuoFTrnytVVtdP7x29XVcs+7z33nvvOO/ecq+fzkbpqh2dX7dq161nP+q21+vdSE44yLVKB7TiMZeJkzRynNB7L0uMWc8XCT+Hg8sTOp9m8dzsB3SBvFeiNDfNm/17yloAQQ/NhaDo14WpURaU6WME1bZ+lsbqWvG2SzKWZUVnDLWd/hUw+S0PFdLJmHgUbxR4W1hmEQfYdB+6klIgHF4pfgDXiMdBXy2ceOFl01/UPgN4AvhbPyOxuCJ4pDuKhM0Wr7ZV74+bFKRxFzNLUCum7xIALY+64YjS2o6+Pg7EY33zhBQ7G4zz1uc/hAqs907LbOjqkZBw4EItx1caNHIjFUICBVIqIz4cDjGazfHPzZg4nEuyfmGA4k+FALIamKAxnMnxz82ZGslkeWr6cnkSCg7EYjtfH7a+8wlA6TU7XcVeuhFdfFfZ59Wqhdm+7rezk7fcLal2/XpDozJnw3HMCJhYuhIcfFhFzkVI+5RQpdXZdoYeDQQGSfX3CfPf3Sz8+H5x2miDoxYsFaI+MlH4rXVew+euvl8vB33hDwPbIiFSr79snoHv+fAHKti0O4cW3ccst0teaNcJGF6O5cjnB/x0dUkp+yikyP/Dhh9JXX5/05bpg2eAWQbGhl+8n4aC4f+cKYnZmWnBMqye9VwRkl0C5KeDZb8j6RFruLXNbBHyblsRuHdMiemu/T/bVVMm4XnKq/NVUKJhoOPir/LStbGPexfPwV/nld6i9hYnuCRRN4ep3rmbJt5fw/pPv07mmk9b2VmqOq0EzBDzZBZtt67ZRf0o9ul+n/pR6utbL7+D2e7bjC/qobK5k+93bcWwHM2Ni5+1SxCXA4hsXE6oNEamPlMD28N5hvnnj9Zx48smcctppfPGSSxh9/XWWnn8+H120iOVXX83Hzz2X13bupOeFFzC9ku7p8+cz/u67ZAcHab/vPuZddRX5eBzXdUn19jL69tvguoQbGtBDId66+26ixx9PqL4eVZP39Ob69aR6e3Fdl3RPDy6KgOF0Spy+q6okauu3D4m5mRGAz3wVJjOQiAvzrGpiSOZVHKLpopl+5tfytyoqeuzZx0sJ+J43oHpaucR8w2NyjMS4XGSFPPz6x8Jcr/4x+IOY2QTZ+BCObTLw3ks4Rf04Lq7jYOUzaL4gRqgSFIVQtIGHn+wiVN3AXz/4gLffeoO7715P48nnc8fau1FVjQ/27OGtt95g3bofleK7zHwG1zZRff4y+51LehFeFlZhEtexcB2bgff+hKIoR93Cj7ajzWv/f9Vc//+q/a+guXZzOZy+Qygts+X31BWDCtd1IT6Bm0ygVFVL2VEhJ4OTcMQD4qLPck0TNK20zFUUFK98kkwaKiqF8XYdT/esyvY+H24+j+vYpVlN23GxFIVMJsNjjz1GOp3mu9/9Lueddx7XXXcd//iP/8ibb77JxRdfjOu6jI2N8cADD/CFL3zBu2kKWLYsC13XSzprRVGO0Gy7rouqqsRiMbZu3cqSJUswDINQKIRlWWzZsoW2tjaqqqoo+P24qkoBAbsOAnzfBE5HwDGUY7aGEVfwacDriMY6j7DPQ4hhmYIEpq9CHMDrkLLvEYTZVhCm+05kZkkHUlOOFUjkyIxkCEQD9O/sJzIjQqQ+ghE2MCfNkl6sY3UH1XOrKSQLRyxL9idpbW89wsisaNJSjOKKH4izde3WkubsuaueK223/MHl9O3so35+PYFogOe+9hznPXEeH45/yGB6kAVNCwjpIQpOoRSf5Xiff8Eu4Nf9KChs691GY0UjM6tm4vO0wMlCshTN9fRfn+bVnld59MJHuW7Tdaw/bz2GZnDNpmvYsGcDH1z7AZqikTEz3N11Nw8sewDLsdg9sJtTG06l0hckpPlQXBPyo+KMHZkjADfbU47b0sMQqC8BS9IHJFbrpNsgPAsO/QbCM6H6VCkf37MWTrxFXMW1AOy+2tt2pnx6qW7P6GyVdzwbxt6EGR3CCBcZ66k6aTsH6f6ytrqYoV0yP3PLr69kglZJSXCtIGx2us/Lx1ZlezsvJejFfrwBjsR6VYKVkXLtmvlSlq0ZUEgxa+6xPP2HP3DqyfNkYgAXBnYw62NX8PRD3+bURhealogL+IJVAvQdW0B/olsAdaRZtNkLVnmvqxWq5kpfhaTkXxtVMtjLDENgOuCS1WooFBwsy2Hnzn4aG8UtPJ+3iUQMHMels7OH2tow99yznVWr2pk5sxoo+yocOhRn7dpObr21nXDYR02NlMB3dfXS1FTBrFnVmKaDYWisWLGRm25azD33bGfDhj1cfPE87rjjLJqbK0mnCwwMpDhh/jTAJW+ZpPIZIv4w6XyGmlA1h2KD/GL3s3zljIuYNW0GluNgOTa6qpG3Cvxk67/z7XO+QsG2SObSpHOTVASCTAtVY7sOyVyK6qBMhLiuS198pBTtVReJ8sTOP3LFwk/RXF0v56eQJxoAbfgqLz5riQDc6atBnyHAuGhMFlwIdgwOnQyRT0q+NVDSVDtpAcxOStjr8buEAfd9RFzAx9eKzlqfIxprEDa8qMNWAlIijk7C1FmxcSM3LV7MPdu3l+KwHr3wQgqWRTKfpyYcZjST4cxf/IK/XnstKzZuLG332IUXMprJUBsOYzsOX9u0qbTuxkWLuHfHDh654AJURTliv/uXLuXJ99/n/LlzaYxEuHLKukcuuIBK20Y1TRRdL//4OY6A5XQabr5ZSraLDmCTk0IF33qrsM2uK799O3dKmPTs2QKuTVO2L65raZHn2axQyvffL/smkwJ6QiEwTdL+aezdp7JunWD22bOli0RCWGrDkMdFIzPP0wrPJ4vhYdknk5G3oOvll1LcdmSkrLG++WapUC8mkLmu7OcVChAJ2ui2KTsWDcj8nnP3rnfhxLlQJeX75PLCMM9pLuusi27oRVBesEBTxNAsXxDQ7Tii0a4Il03MbEcQvuETAF88tqrCm+9jzjsOR5PfcdeR73ZvVy918+sw0yb+Kj9GxOD5bzzP4hsXHwGsAcxJk1w8R2Y4U4roCteHGXxjkOaFzWiGxnPXPMcH//EBNw3dhG3apd/TokmalbfIxXIEqgOousq7//Yu3//x92n5WAt33vhNAtXVvHTHHSy55hp2P/oobTfdRLCmhg2//jU/eughHv7EJzjj9tvJDg6y57HHOOErXyE3MUHNKadgFwpogQAKkIvFCFRXY+XzqD4fqs+HoqqYmQxv3X03x33pSwRraujdsoXRN99kwR13MPrGGzQuXIAy1Cea6KWfg4Zmicg6dj6c2ibn2vDLd70Yv4X3e6Jpcv4VoPuvkld9/KkSweXYR1Y2qap8zpYFyQl4fgN84VoxMIuPw1/fEkZ77onYrkX/3q3UzPkoVj5HoLIGTTektNs20Y2QN09sMpkYxReMYLo6zS0zOdi9l6qqapEpWgVyeZPW2R9h+8bHmXPqx/EFK8GxycZHCEWlWq1Y5j343p+ID+6l9bSLCE9rkv2TY4Sq61E0HccqoPoCaNqU+8DRdrT9b9z+H6u5/t++KQpqizcotkzcTNqL4nIl3zoUxtn6sge8yxMcbmwce+OTuONj4POVWe9MCmLjuKo4dysVVWVgnUmLlkdRcCdGBZTjaeJQwHFQsxkUReHgwYM8/fTT3HrrrcRiMcbHx8lkhB295557+OY3v8lrr73Grl27uP3229m9ezcbN25kYmICEMOy8fHxks46lUoR92aIi/rrWCyGrussXryYVCpV0lobhsGyZcuorq4GQFMUfAiwtpAorDGknHscsftJI+XhcW+7BnlHdCDAOgYcBr6LgOwKxOCsD1iEOIKr3n67Edb7Tu/vCKLR/qbXxyig+FSsrMXm6zdTf0o9FTMqUHXR4BqVBtOOmcbS+5dS2VpJ/GCckfdGSnEk1XOqaT2zFTtvkxnN0L66nXkXz6NjdQeZkQzxg3Ecy2Hr2q0l9ltRFDpWd8h2t3WgBTQqmytLJXPnrTsPx3UYTA9SF65jV/8uJq1JxrJjHIodwnZsBtODTFqTmI7Jio0rOBA/wPy6+fQl+7Bci55kDzY2TrFEGfjsiZ9ldcdqxjJj3Nx2MwoKhmaU4r6q/FXUhmu5u+tublh0A5ZjsbN/J/Pr5jOcGWZH33aJzdp1lZiKZfsBV0zM/DVw+gOihbYmOcJUKzIXFjwmwDh9CIb/LG7gvgpZtuAxMTXzRYStXvCI9JM+BJPDAtTn3yF/i5riutPle2ZUepowu6ytLrLXkSb5W3RvncpKO6a3DK/c2ycAtdhX/KC8lmrvalK9slVfWPYtJOX4rsdWGJXesXWYsVie2wWvHNydkuvtClh+6WrJt3YsmD4PZp1fjtnatVbOq+aT11J1DDS1y/K9G0Sj3XwmVM70vjGOaLzj3fI69RBUtMjATw9h23D4cJLrr9/MKafU09oqwPrmm7dw8GAcTVNYuLCJhx/ezcqVbTQ3V6KqCitXbimB676+JDfdtJjBwRQNDRF0XUXTFDo6ZuI4LjfcsBm/Xwbuq1a1MzqaYdWqcul4RYXBjh19hMM+1q3rwrEF9L431M2kmeeHL/+cnCmf3y92P8vmvdv5xe5ncVyXdwc/xLRNTNvErxt8+5yv0p8YZe1LPyNvmjRUTWd6OIqLi66qTAsJa+16t9maSDVD6XGiwQqe2PlHNu/dzuM7n8ZxHfKWyQcjBynYGm4pPmudxyCvKd/bfbMh1A52XEBx41NSBu5kxeDM9LwE1KCsV4LCXqc2gDkod7vxtWVmWtHAHhUwXhTI+OZ4uu5JcC00RWFVezujmQyr2tu5eN48VnV04FNVQj4fGdPkuk2biBgG733ta6Xti9sVbJusaTKSyaBrWonpXtXRwVg2K9FaSOxWcb9bliyh0u/nkpNOQvMG2lMZcp+qyjSCrpeFzrYtmutkUpYtWCBGZqGQUL6uC48/LghWUYQOvvZaQbfBoFR7jYwIoLQssfCuqxNmuq5OgPUzz0h/Pp+Uk4dC0u/NN+M4crhnnhEttWGUTcpHR6VcOxKRruvrRSYejQrBHgoJvp8a29XTI4dJJoXdnpyUCvWBAcFECxZIvzfcIPgoFCrnYPt8YLsKrqF7UVqeyRjIzifOFTZ63yEB1vmCAGRczy0aeeHFLHAXKR/XNNm/IuzdTzyNtqJM0Wh7D2xH+h2NCcD26RCtwqcrqHpZH6uoSqlc+9U7XyU1kMJ1XJb9ZNnfAWtAcq4N7YiILiNsUNVaRd/OPuyCzQUPX8A3DnwDM2uy+frNhGvDpAfTJbNPRVEI14cZeG2ARG+Cmctm8peBv/CD7/+AiMcwn3njjeRjMRZeey2+igoUXSev66iaxoI77kDV9VKc1ge/+AXT58/n0MaNvHXPPcJIKwp6KMRra9eiBQJMDg+z6/bbSff0oPn9TJ8/nw9+9jPMTIaGtjbmXXkliqYRPeEEAb6bn5Qy7s1PyvPPXwULPy6fzZOPw+iQ93l652dsiPz7b3Dd17/BR04+mfkfOYYvfvcHcOpiZp10MsfNn8+pCxdz6sKF/G7DBvnMLFvAOUBdE1x6rYD2oqZ7wccElP/6x6D5mHHixzBC1YSiM7DyWfrf3YJVmPSyrl8WtlnzEYo2MNa9m30fvEe0uoofrbuHhYvb+djHz+X3/+1h9n7wPtOiUe79ySO0dZzNWWedxYaf30coWl9iqgtZGdvNmPdxjj/7SsLTGnEBzet/8P1XKGQTJYO1o+1oO9qkHWWu/5Oaa1lg27ixcdxkXOK1cpNg+KW02zOGQFFxx0dxXtuBuvRCzyG8vA7HxunrQamoFFvSdMoD5/Jj6oKw2Y6Nomqi4W6eKWC7mIlt2zg+Axt4+OGHueuuuwgEhKsdGBigurqayy67jHvvvZdDhw6RyWRobW3lC1/4AnV1dcyYMYN58+Zx4YUXArBp0yaam5s54YQTMAyjFNG1ceNG9uzZwyWXXEJVVRVbt26lvb2daDSK4zgkEgk6Oztpa2ujoqICwmFsVS1lVaveXxMB0/UI6N7hPW7y1oMA4TVITnY/cCGir25G8qvXI7nYrtevB+9wEO32MJKtfR1l9/BHASOdp+8vh6k7qQ5VV8U59YxG9KAuOmlVBjCKqrBxxUbabmkjOjtaAuB2zqZvZx+VLZVUz6zGNm0Gdg9QN78OVVPxBX2MfzjO9ru303FbB9E5UWzTxrVcFF3BdVw2fW1Tmcl+eDl2wCZPnp19O6kN13LP9nu4tf1Wwr4wWTPL2s61rGxbSXNlMw33NHDxvIu546w7qAnV4FN9/Obd33Dp/EvpjnWzrmsdK9tWcuz0Y1EVtQS4iw7inT2d1IRqmJicoKO1g1QhxUhmhLWda7lp8U3MqprF11/4Ot9vW8lx01rLuc9C3ZavW9c724o2JSLKEfOt+Fsw7Qwp1bbTsu1bN8MJKz2GGo/RGoZ3vitl4K0Xw4JHAQ1yA6BXSv9v3FhmsV1VGOrKmTLYmXprKzLZxddiF8pa6+JyzaOfCikBs7bp6atz8thfWaaniqXfiQNyPMf0jj1LQLLml1LuQloYeIp6b5tZx82nsrIS1zZZ0Ozww1suo/Yf/olZ/7CUysoIrgsLTjmWHy53qD3/BxCeAelB2LXGY7LnQHyfAPCP3S867J3euuo50PeqaLBfv8dzHZ8t596xSBbCXHPtJm68cTGzZ1djmjam6fD0039l+/Y+HnxwOaqq4DguqqpQKNhomuLFaLn4fAqTkxY7d/bT0lJJa2sV3d0x1q3r4tZb26mvDxMM6uRyFt/97p+5556lOI58EKZpo+sq1133PCtXLqGlpZIDB2LMPb6StX96gi+dfgH/9sYLnDRjLotnnkxdZBoDiVF+uvMPXLno0zRV1uLgki3kGM8kGMvGOalhbukjNjRfybBP9T6f8mMXxzPsArAdcQ2fyMYJ+IIEfN59TFFQUTBUC10tOmEU8wc8kGP1CGDWaynP0KhgDZQjuxoeBPMQjK+HOintJtslGuzJ18DX6DHXt0imtjUiOuti2bnil8kaRQE0spaPgiOvr2DbHE4kGEmnS87dKzZuZElLC0taWrhvxw5+dO65VPn9pdiu3777Lq3V1cyvryeVz1MfDqMoCrqqUrBtTNvGdBye3buXlqoqFjY3owF9qRR9ySSnNDSU9rNdl4Jt89eBAT5WWYkyOiq10/feK4i2mFfV3CzmY5YlYNqyBBh2d4s+u5hzVbTgfvxxqdVet06Y7f5+Qb/9/YJifT5Bu729wmRPjexqagLbJtNyHPsHI6UUr8OHj3QKB2GlJyehpqacqGTb8ti2Zd1bb8Hy5fKyfvpTKfkusuF1dfCtb4nn2sgI7N8PJ50kbHY2K4R9U5PMJSQSMGemjVJkMYtmiUUgvO8QxBLwDydK2TiUmeaWBgh4xn1Ft++WBin5zhXkBTseeC7GdBWjuSY9FrylQYzP9h0ur3PBNB3GP5wg2Zdkxj/MIDVYdvA+/Opherf1svT+pRhhA3/l37s/WwWLyYlJssNZtq7dypJvLyE6J4qZNXFsh5e//TJtN7eR7EsSmREBF4yIQUVjhURwOS6ZkQxGRL53w28Pk6hO8NkvfJaLP3Mxf3rlZQxN4/bbb+fss85C0TS+esUV/OXVV3GB3z30ELOqqph+8slofj/FSFJFVXnznns46aqryMdiwmhfdhnj77zDrIsuYnJkhKGuLsbffZeP3noruYkJ7FyOQG0tPi+WDtcl2dPDtNmzUHJZmMyKUVkwKI8nsxAIwlvb4cTTpHR7079LBvW0Om64+Was2Bj/+uDDKIafoZERGurrmNVQz9P/8R+c2nGWGKTFxmDOCfI57n8PonVihFaMylIUsAryWwTwnSuxf/AoBSv333Xqrjt2MemxHirrjxGjM1XFdeGNN99k4aI2fv7E41z6hc/z0h9+zhev/Q5/+I8NnHX2Uu79/o18/ZY7efGpx7j0a6t477091ESrSq7fZj7DWPduGk4409NUK1iFLJpukBj6kOxEP40nnYOZS+OPTDtaGn60/b+iHWWu/4uaoutyw59qTGb4UXwCMtxCDnvTH3Bj4+D3o37sXIhNCGsdGysx3W42g+LVsymaD6V6GgRDst4VlsPe/CykU7iOg9o6R7TZFVVg+LGffxqScWwgHo9z5ZVXcvjwYfbt28fevXtZvHgxDz74IF/5ylcIh8O89NJLNDU1MTg4yO7du7nooouO0FFblsWyZcuYN28eg4ODjI+Pl6K6itrq5ubmkolZZ2en5xzslMzPurq6yOVy4GkDvTnbok80ryM66OKwdRECpg3gSURDXTQ6uwvJs74YYbzXes8HENfwA14/KhLF9U1gH1CDMN1T3cNNQNNUZpw2A2vSwhfy0byoWQbspoOqq6g++cooikL7qnamHzMdFMRxtTvGpms3Ea4Nk+xN4jouA7sHCNeF0f06Q28NYU6a1BxfwwWPXECyL8lE9wRWVnJCzYyJqqssvX8p8y+dT8fqDjSfhqqo6IrOwuaF3LP9Hjbs2cBdnXdRG64tuYiv61qHoRlcPO9iVrWvIhqIEtRF9/hPJ/wTiqKwrmtdaVvHdciaWbrHu0nmkziug67otFS1cO+Oe8UcTVEI+8KlY9yz/R58mo/VHauZPf0Y3MkBMSBLdwOusL6jXZI9XYwcSu6D3V+T3GoQJrW2HRSfbKOFwUqLA3hktnchFIStDjaV9drzVokLeWofDL0EsTcEtNadCdkBAerpPjAi0kfRtMx1ysC6yKDbhbJRWbEVQTaKgGhFE2badcW4zKj02DlFgHTCMzermuOVuw+IJtu1j4zkMiIC9FUfJA/CS1fx6tNP8M7ru3hjZyc18y/gy2s3QdftvPr0Y7zz+k5ZPmMWX/51VkB1ekAyrYtMtpOH/m1w7iOgBwRYl9ZZor1+/R5ZtnNNecJDMwjoBdavPw+fT2FsLIth6FRW+vnsZ09k/frzyGRM9u0bZ2Qkw4EDMa65ZhOHDyewLIdt23ro7o6xe/cA7e2tNDVVousqkYjBmWe2MjiYKsV1DQ6muf32j7Fv3zgrVmzk0KEEPp8M+B58cDlz5lRz442b2batF0PXuXzhp4hNprjhrEs59yOiHc+aOZqq6/ju+VdSE64u3RDCRpDm6jqOrW3l/eEDjKRj3PXyzzkcGyRTmCSWTcg9x3XImQUsx6Y/Lux2ppDDchzeGtjH4dgQlcFKYpNJJrIJLMfmrf699MaGPWDtCvOc7QTzQ2GmFV2AtZuBoasEQKOJ9nrsu1JGXrdelvlmQv1PwB4RXbavGZSQ/DUHpIxcbxLXcX2GZF6HzipXQFi93jH2YbkuVz33HL96+20GUinu7upiRkUFBdtGVxRWdXRw/ty53LdjBzcsWoShaQym0/TE4/zl8GE+dcIJtLe0SNb1xAQHYjHUokxpSvv0CSfQWlWFX9NwgDu3bmV+XR2DqRTffeUVumMxdFXl+s2bOTUaRUkkyg5gqZQA6w0bBIkahgDshgZBrEXQUDQ+27lTQHRRp+26st+GDbJNTY38XbhQKGHDEJC+aNGRrmPF7WbORDU0Zs50WbJESN/6etFGF43Hd+2SOeqqKmGci8Vkple5rWnCbLe1yctaterIl3XffbL/gw8KJmpulm2DQTlGKCRg+8ABeXs1NcUz60Le9Fy9C+UT3jpDgLXjlE3LVFWY5oIpwHmq23fPoOzXMyj66p5Bb9JhsMxOw5FGZgAfmSkAvGBBvoBdcOhc20m4NnyEuVnnXZ3MOW8O7avaZRJZK7PbU5tu6ASqAoTqQiy9fynVs6uJH44z9NYQRtjgEz/+BKmBFKHaEOnBNKquMrF/gtiBGBtXbCTRk0BRFTRDwx/xi8v4G/309PRw/LHHs/XFF/nxfffxxS9/mZGxMQB+9uijHNi3jztuvZXvrF1LYNo0CskkZiZTcvs2Mxn+4aab0INBskND9P/5z+z91a+YeeGFOKaJomnMXL6cj65ejaKqBGtq8E+bRuyvf8W1LCZHR3Ftm3B9vbzRdFKAcNHrxghAuEKY5YUfFw315qeE3Y6PkUmneOLX/4019/2r+N5076FBdQSAR6dDpEr69RkiCezeIxrtohM5iJ47MSHVUImYMNYTI/CDn4LPYKx7N6FoI4qqE5rezLFnfZUZJ34M3QgTbToBVdMxJ1MMvPcnXMdiZmsrqqpyyaVfAODcT32V2XOOYWhkAlVVuWblnSiqxscv/AKtzY289/4HOI5JNj4ECvj8YYLTGkuyP0UBBYnuqppxLLXHLMSxLczJFK5jc7QdbUfbUXD9n9tUFbV1DkyvRV10JmRS2BufEkDtuijNM0vgW/EHUSIR1Is+JwA6FMZ++XkB1VVR8BlSGl4UdRk+7I1PQWwcdelFKJXVKLpPHMXHR4XBVlXUc5fLD4Hrous6qqqWyjuLLZ/PE41G+eY3v8n999/P4sWLWb58OV//+tc5++yzWb58OZWVleTzefL5PMlkkueff55wOIzf70fzDEGKRmWu67J06VKuvfZali5dWhrALVmyhHnz5rFkyZISc55GQG2RXU4B84EIYkLW5S1vR/TRbyIs9oMIU30bosP+CQK+7weWIgZlGxCGulha7nj9eMMNtiOa7McQc7QBwLIdUsMpgtODKKqC6lMZfGOQxOGEZOzul8iS8Q/HqZpZJT84nvtq59rOkqFL04ImFFUpxWnpfp3mRc24jsuzVzxL7ECMiQ8n6FzTSS6Ro2lBE+mhNBuv3Eh2NMvyB5ejB3ViB2MkhhJc9/x1qKis7ljNxfMu5raO2zBUo/R8dcdqDM3gsQsfY3Z0Nm8Ovckv3/4l3bFurt98PVkze8S+rutiORazp80W13BUCk6BOdVzePTCR5kTnYPjOmTMDLe231o6xqH4IfqT/fgUUPbefyTbrCgCdvPj4gieOSjxWqc/AJGZXvnrpIBYOytl3lYGjGrJana9+gXVD+EWAc3FUnE9DJODEGqE2V+CmiWQH4Pmf4KaxQLQI82SGe2YkkENAirzSQHCiirscRH8AqVs0qKDd6mk3DMmcwplIF383kw1N3MKHsieDXX/IH2rwpSi6DJASh4UAzIPBLdWmZDYj+8vX+f6r36SrTvfkOX9PwPXxqfaXP/Z09ja2SVGabvWQsMCybb+2P1yjHlfltc3OQ4LboXjLobTvwW5CTl/C1fLsoWrhdm2cl4Zh04kYtDSUk19fZjt23s5eDBGOOwjFPKRTOZZt66L6upAyXDM75f7Rl1dmN7eJPPn19HdPcHExCS5nEU0GuSLXzyZxYub+da3XuTQoQRz504jEjFKMVxr127FNG1c1yWft0mlClx33QK2bevFdh2CPoOTGz9C2AgwlonzcNdTjKZjOK7D91/8KZZj0+e5gx+ODTJp5lFQOKampWRs9ovdz5LOZ6kOVZE1c/TEhlj3518ylBxjKD3OSTPmMpqOceeWx4kGKxjLxnFch6HUOJNmnrte/jnRYAVVAUPuFuYhKf0OtYtOWvHuUnqt6KdTG4SZxpV86rp7wByRPGuzW4Cx1SMAOrUBxu+Xfn3N0ie6p7mskLugNSr7jXxLSsS12lJEl6bAt9vaWH7MMcyNRnlo+XIaIhEMDwTPrKykIRxm/Xnn0VhRgeU41IfD1FdUUBcOc93zz7M/FmNXfz+14TCD6TQAB+Jxrn7uOXqTSQBCPh8tlZWoioKhaaxsa0NTVe7bsYMlLS2EDQNFUbh/6VKqw2FBqcWMqoqK8uPbbpP6aNsWUFxEn6oqDPell0oNdiQiFPDs2fLbVtx/1SphwVevFpQ8NCSo1bJERL1y5ZHbrVoFhoGtBejuVti2TQjyb35TKs937BAX74ULy8A3k4Grr5aS74EBWLFCiPN0WkD2T34iYFlVyyZn69cLeX7ttcKKJ5PSx8CAsNZXXy0V7r29AqyzWe8+YztlwNszKM8/PCyA19CPBMc+XZy9i2C6CJK2jbiMAAEAAElEQVSLLuAgjLRly3PTlL+10fL6qc8Taeh6S47nk2NpdoH2Ve1kRjNHmJt1rO6gsrmSqplVoILm+//OQjqmw5abt4jPiqYSnR2lZUkLqk9F1VWaFzcTnBakeWFzCcgXfyPTQ2lCNSH0gJi86UGd084/TUDgFy5BMwxOPuEEZs2cyTvvvIOZybDrjjtI9/Zy8YUXsv3tt9nx8MMYFRUoqsrk2Bh7Hn0UzTCw83lG33iDUFMTn/7LXzj9tttQVJXxffvQg0Hy8Th2Po/rTS5Z2SzR44/HsSyCtbUybvP7ZcLDZ8DcE8v3fig7gYNc35+9XEzKjjmJ7n37mFZVxdq77uL0BWfQcdU3efntd2UM5jh86XOfZv6pp3L5ylsZtYDmOXB4f1lW4djiLP7MryXfemJEgHtsVLx5XJeGE84kFG2ikIljZuMM7+sqmYv1v/sSZi6Flc8QjM7AdV2qK4Kc/fGP8+KLL6JqPg739XPo0EFOm388S844mU3PPo3ruvQODNM/NMEJxx2HOZkhUFkLqCiaTrTxBGGyXYfMxCCa4UfTDVRVx+ePiP46OuOoW/jRdrR57WhZ+H9Sc00TN5cVXbTPJzfy3kMwMY5y4skSLQFibpZKojQ0oui+UtmYW/CyMdMpnK5XUNvPgXAYZ/MzqO1nQ/U07B/dhnbdtyEU9swnRFuIVYB4DGf7X2S/SEWpLBwomZH19fXR0NCAqqo899xztLS00NLSQldXF21tbUSjUQB6e3uJRCJUVlaiKArPP/88e/bs4Qtf+AINDWJ8oWnFMiTpOx6Pl8rCQ6EQfr+/FM9lWZZsF4mQ8H60hhBAvAqYSZm1Poiw06uBWd7ygwhzXdx2JwKOi8vmeNusAx5BwHmWsjP4YYThvglhxJcgUV39wMxkDidnkxpM0blWjFqqZlbRt6OPlrYWNq6YYlL26IXid6UqOJZD4nCCzrs6xexsdjWOLW7jRdMWPaDjOi5v//Jt+nf107G6A8d0CNWGUBSFF775wt/1bedtPnjhA5o+3QRAhVGB6ZhMmpO8O/Iui5oXATBpTvKtLd/ihkU3AKCpGgE9wO2v3M6GPRu4dP6lPHzBw6Uy2ZyVQ1d1fKpPorgUBU3RsF2b0cwoeTNPU3UT23u3M79uPqlCiupANW8NvUVjRSMnRGfhw0XJHhJX8Hm3QWSWgIVdK8ql3Kc/INFZ827zSrcLAjqT+8Tx+4SVUHksmGkBtJq/JIfAzkBuVAzMTru/bHh22v1iorZnDZx4q+iv4+9D/VmUsqzzcSmNLpZf/vcJGHAcxicmOOf8pSWgnc2kOHCol5GhAW761s28/sYbqIqCzzD44Zq1nHPOx6V0XPcLWHfMcml8sezTcYRhdh0ws/K+Uj1kXv0BZtuPqH5jNezdwL1/PY2nP/Dz/G8fwFSCVNfMgOwQ9z76bzz9h9/z6l9eEfa6ag4e/V6ehBjaAaF60WtrftG3+yrkbz4G/mph911LJgP8UTJOBclUgUQiT0WFlGS+/fYwS5a04rouuZzFwECKyko/kYjBwECKdeu6WL26g2BQJxoNMDYmGdeLFjXjOC6apjA6msHv9+HzqcTjOerqwmiawoEDMdas6WTVqg6OOSbK4GCKqqoAr702wPz5dUQiBkZIIVOYJOSTfPbvv/hTNu/dztLjFnPzx7/EuY98jT9edi8PbXuytPxrbZ8FIOIPMZFN8sTOp/nqgouoCUcxNB8T2QQPdz1V2v7Wc75KfDL1d8t0VcNybO56+eel5Xct+wqaW2Spp9oqekZlKGDuF7Dc8K9yh7FGwU2D1iAmZkNXQPoZ0WOH2oX9Di4B67BXDr5KYrxkpgmsMYnlKh5LDYFrAmJmVXACFBwVx3XJmCYKENB1hjIZqvx+IoZBzrLw6zoHYjHu6uxkZVsbjRUVvDE4yIW//e0R5mUPLluGoWlHGJTdcdZZNFZUoCkKppenPb+uDkPTMDQN03HY1d/PaTNmMJLNcnIggDI2BtOnexILz0fAssr/BgYEGDc3C8t8661lIK3rAk56eijVcRfZbdeV/aqqBAWn0yJ6Pu00AZNerjGGIcdRVejuJjn7FK5coXDTTZLgVaw4v/FGwfSPPiqJXlPXf/CB5FoXt73jDjEu37ZNwHggIIfq6xOwvXLlkdueeOLfP37gAWHJP/pRqKuRsnClYApInmIsxhknyeOppmOGD48ePHJ5wGOeHafsJC4/6JTKcxQFDg9Ba0P5nlcsEW+dISXik3noG8ZsacS2XFSfKskYpoPqU9F0Dcd20P3632mti80qWJhZE0VVMDMmelDHMZ3S9oqqUMgUMMLyOmMHYqQGUjSc2kA+kaeipQLHdEoVYsW29BNLufFbN3LemW389Y03OPtTn2Lb5s0Epk1j5+c/z6wLL6T/1FO54Vvf4p0//YlQbS2qz8foG2+QGRig9rTTyA4NMX3+fDS/n3R/P9nBwVL5ePLQIT544glOuOwyIi0tJTO0eStWEG5uJtPby56f/pR5V15JRUsLmplDiU9AKgYtx8g59QeLJ96753tlEa7DGzt38NGPn8sv7/4RX7rqa7z5lz9x3ue/wJ5X/0x+dJDWJx/G/Np3uO3xX/Hu1lfYtHUbpBOw6XdimlY9DXr2w8Nr4Gur4Zh5sH+PMNsjA9iRCFRNo//dLdTM+ShjB14nMbi3VBb+4V9+QdWM42icdzYuYE6mGDuwm8ngTFZcdTXDA/0YwTC33XYbiz5SwZ43u/j+wxtJ5xzsQoYrPnsm1666H80fwrVMXFzswiSj3buomXMGvkAY13UZ+uAv1B6zEF+wksH3XqZm7hkYoSo0fcp1ebQdbf8bt/9RWfhRcP2f1Nx8Xsq7kwnRW6sqipdFrTgObm4SJeI5G4OUkJt53KFB1MZmXF1HcZEb3Pvv4PYdRu04B/uhdSjzTkW78LPYG59Cu+hi3Pg4bsLTdXv7OT0HcJ78Jcq809CWfQpch4IiLt5dXV2cd955Jb10EQxrmsYrr7zCnj17ShrrTCZDLpcjm83S2tqKbdvYts3LL7/MsmXLcBwH0zR56aWXWLJkCdXV1biuS09PD08++STHHXccy5cvJ5VKkUgkaGpqIpFIsGPHDs759KcZVETXeABhrCuBQ5SBch/wWeAphHV2EZ30b5By7ocQRnsFZe30/Yj5mYaw1gMI0L4VMTi7Ysq2D3if16B3zMcnTQzLITWQwsyYRBojoguz3ZIRSz6Rx18leqQtN2/h3B+diy/kQzVU0U57ruCxQzF8AR/h2rCMxydN8SoK+VA0pdRnUc4ZOxCjc20nHbd1UNlSyfPXPU/bzW1UzKngQPYAPYkeFjYvJKgFcXA4GD/Imq1rWN2xmpAeYv4j8/nMCZ/hnvPvIewL4+KWtrmt4zbmROdwYOIAAV+ArJVl7da1UuJdPZuu3i5mRGbQn+rn1IZTCflCJXb72uevZcOeDVw872Ieu/AxdFXHdmwqVBclNypO1IpeZoEzh8qO4KFWeXOKjrhsW3LN77pyipb6MVlnpeXroIUonRQ7D71PQstn4PVvQv8z8MnDgMcyx96F2kVTgIlS1kPbnsN3pNkD7XhM8uEpBmeUy8YBEoe4+/Gn+MurnTz7+98R73+f6qYTQfPz5ltvcs55Sxnbtw21slX2d4os939nEGrnPP224WnTFQ7s38tnvnAZtmXhmhnmHHMcP/7+N3HefJDP/Lgb21Vx0wPMOf4UfvzjnzBr9hzo3woNC+X9ZIZEBx6q9c65JX8T3Z7uejX4ggKs9SAkDsLOO4Xd9kVI+1pwXUqaagDbdj0TpxQzZogNsuPIsiuv3MiLL3aze/cV1NYKYPZuVziOy9hYlqoqP36/TjKZ5513hlmypAXTdDy9tsrBgzHGxrK0t7dy6FCcUMhHNmvS15ekpaWSY46vwnIcbMcmU8iSLeR5fOfTXLno01QHK7nvL/+N2869nL7ECI97IHq6Z1QW8BlMFvIYuo5P1VEUFReHTCHHaDrGL3Y/y5WLPk1zVT0uDn3xkVLfzVX1jGdiTAtVlfq+ctGnmRmtwafYKEVA7SRh5BZx9vbNFu10qM27nidhcjcEThGdNJYAcvOQ6Kd9zZ7uer1co9lOGPgsND4tJeRYHjDPgeZ9jxRDlqkhydUeX0+h9iGyto/DiQRrOztZ1dFBXSjE9Zs3s7KtjWOnT2conaYmFOLq557jmb17eepzn2NRczN+TaM/laLS7+etoSGaKisJ6To1oRC9ySQ9iQQLmprwqSpb3nuP73z1qxiaRsG2SWUyDPf28uf33uN7f/gDQ08+iWLbHB4fZ/VVV3HLN74hYM+yBE3OnCmiZMOQrOsbb4RvfONIpHv//VKTPXu2bLNjh+RZDQ9L/fXq1UL9XnihbL9unSDXn/xEhMyxWNmFTFHKsUeFAplQLfu7Ffr6yni+KMtubhaD8v37OWL9vffC+LhUmt9yiwDrTEYcxXVdjM1+9CMhyKfu9+1vS8X79dfLMerq5PHq1fLWHEf2mdVio6VSYjoGRwLkXEHyqee2ePcnV5aZXhk4lIH2hz0wMiGM9LEzhf1WVSkdnwrAXbfc75xmMTxDEXfrok7bccvPEbBs5+3/Q0A9teUzeaysVapKSw+mSfYlqWyupHNtJ20r26horEAP6kIweHNSiYMJtq7dWp6AthysnHx+vrCP/X/dz7U3XcvYyBD5iQkuDARo/8Qn+NEbbzBx+DCh+nqmV1XxlWOP5ZJ//dcyOL7ySgK1tUy89x6BadP44Be/YN6KFWiBAGYyWXqeHRriL9dcQ+snPsGC732P137wAw5t3CjP77iDXXfcQc8LL9D6iU+w5AffR0lMCIv8uSulRPx5DwRXRcufjT8opeOb/p2xM86h/ow2Cg98D+1L18N/+1fOuO1H3HXpZzj3B/fBvz0IX7iWwYfv4tjb7iZ1+KD0v/tVYb8/+UUpHT/4V4nf2vTvsPyfoXYG/PI+7K/ehKuAOZnEnEzhC0YY3b+L2mMWoPmCJdBrhKrAdel/dwuJwb185KyvMrKvqwTEm+afRz4TZ+zA7tL2jlVg6INXqZnzUYxQNWZejG6n7ld37GKAI0B8fOCvZGMDNM0/r6TTPtqOtv/d21Fw/V/U3FwON5MqGYrhuiiGHzc2jtP5sjDK0WngOFPAtlca67oCqocHUeoaUHyGx0ibwlx3nANVUTFJ0TTcTBolJD/ErmVCwUQJh3FtS0zNvM+4oKikUikKhQIVFRWl2Cxd10ul4rFYjM7OTjo6Okqu3sX4rUKhQD6fx+8vZ2Zv3bqVtrY2ent7iUajVFZW0tnZSXt7O8lkkqqqKqLRKPl8HsdxePnll2lraxMH8UgE0wPXDsIuB5DM66ngdxdiVLYWYbBrgeuBWxDGOoLoqNd56+d6/fV7n8XtU/p7DGGu1yAl5a0IrrrK2+bPBYuPjk+i+bXSICN+IM7WNVtZev9SsqNZtq7ZWordmvhwgpYlLRLFdVsHVa1VxLpjTPvINKycJWy1LYA7fijO1jvLA4v0aJpQNISiKii6gpW10Hwaiq54BKWLlbdwKh2GM8NkzAx3dd7FqvZVzInO4YpnrzgC9BbsApYjA5XhzDA/3vFj7l16L4qiYNomw+lh/Lqf6kA11z1/XWnfh5Y/RH+yn95kLyfXn8xYZowKfwW14Vp0Rac73l0C6LOrRRdt6AaGa0nkk5WEQKMwteO7IXqqlz2tUdJiqz55PjksJd75YWGhT7oNwrMFKCsaWKkyM2tlIFArH6KiQ3Iv5AbFXXzPGjjhFmHDcbyycu9eVkgJAE0cEMZ22gkChNN9AqoLSdmmem7ZeK1kLQ4nnDSfu9bcyac+dpLsH6yB6rm88spf+KfPfIaxd55FDdcJm1xIlWO7ipKN4i3VzonTuC8gLLqqy3aJgwKEF64WA7QtV4o++riL4ZyHxOl7chSaOmBoJ0SPlWNkRyAQlXOD64F7S0oUt6yQPj69Ud7jrruk/1Qv/OFCKSk/9xEypo/9+2OsXdvJypVtNDZWkE4XiEYDBAJiqNTXl6KiwiAc9tHbmyw5gpumjW27BIN6ycRs1ap2+vqSNDdXMXNmFel0nuHhTMngbO7cKK++epiFC5sJBDS2betl0aLm0qSe67oYIeiNj/DEzqf58ukXUhEIMS1URbaQ48OxHk5pPJZJM4+qKPh1AwUxLctZBe77y2/44keXUxOuZiwTpyZczXgmQWwywSmNx+HiEptMMj1UjeXYxCeTRPwh0vlJpoUqyVsFHE9LmClMEvGHiPh0Au4hFLNHDMiUADgxyO3xyrltqcCwhsRFfPq3JcN65EaPkZ5LyUJxaIVkXFd8yiv1rhdArlZKRJfiEzBddAk3i8z2rQLkh1ZAcAmZ8AoKjsvVzz1XYpofWr6cA7EY1YEAteEw6XyeD8bGqAuHGUilOKWhAQUI6jrDmQyVfj9hw2BbTw/14TAtVaL/HEynWbN1K7e2t7Otp4dXe3r4VlsbI+k0b/7Hf9C5dStVl13GhuuuY8mXv8yzd9zBe4cP85mODl7ZtIkTDUPQ5k03CeidnCybjdXUiDtYEZHecoug0MlJ+ZvPy3dmbKxMH196KTz0kLDeVVVCHeu6bBuPC31cjOB67z1xExsZAb+fZN1cRiZ81NTILum0VKtblmySTAohPn++GJBNTkp3xeSkIvZ0XZEy33CDGJpdeqnMDwQCsm0uB7t3w6mnyv75fJnZbmqS49x2m5yGhjob1bYlj7pnUFzDAzLZxoeHpey7CJj/lqkGAcKKIiC66CiuKgKuNbW8TSojZeYBQ3TalREB9EXWOhQoR3z932jmpMnEhxNsW7eNc9edixE26OnsIVwXZuePd9K0oIm5588lEA2gGRr9u/ppPKMRVVXJjGU4+PJBZp01i4qmCs/CwsE2bRzTQVEV/FV+rEyCyZERPvjZzzjpqqsINzfjWhaKprH7+9/n0MaNXPDss7z74IMlMLzgjjtwLIvX7ryzvOz229n1ve+Vnp9+2228duedzLvySvw1NWiGQW5sDF9FBb5wmHRPjzDXK1ZQPbNVDM3iE6KX/vdHjgTBxVY1XXTR3rrz/+0Frr/8Kyz//CUcfG0XZyxdztt/3kK4ZRbVlZWgady75k6e/u2/8eru1yEdh+f+HT7xOekrEJDPc0qffPEbMD6M3diCYxVQFCFriqy56KElEhUUBvf8mYYTP4aZSzG6fyczTvwYViHrAXEPfINnzlnuQ1FVHFtys4v35yJzXTv3DHS/jDMH33+FmjmnY+WzGOEqXNvCCEePMtdH2/9r2lFDs/+qpihg+MV4zPGMlQBnVxfq+Z9EqZ4mM7qWJcA6HPH8lFT5Z/hRGltF81MEDUYA7cLPokSnQyKG09+DmGz4cbNZ75gBMPOix06lAHDjMayeQ8TjcV555RVUVcXnWaem0+lSrJbjOCXddDQapa+vj/Hxce+GDalUildffbU0W51IJNi7dy9dXV3MmTOH5ubmkmlZZ2cnra2tRKNRYrEYmzdvJpPJ0NTURGdnJz6fDxfJtbYR9rkS0U2vRoDwKsTxux0B1hsQUBxCQPKxCLB+DTgOcfsOAUkE3zQg0Vwrvf6+g0R8zQQeB2Yj7LbuHetiYHHBJjOc4YVvvEAhVcC1XbaukeisfCJferx1zVZaFrdw8pdOxogYtK1sI1QTwsyabL93O/GDcVSfyviH4/Ru7wUXKhorWHLLEjS/gPZIXYRET4KNKzYS2x+TWX6vxNzKWfR09pAeSqMqKjWhGu7qvIsNezawtnMtjuuUtNC3ddwGgK7qVBqVhHwhWipbuPPsOzkUO8R1m67DdEymh6bTEGkglU8dodXWFI2wL0x7azuV/kqOmX4MOSvHSGYE0zWZWTWTRy54hNpQLVkri+3aWLbl6UV1OYOKIo9rFkqMlqIK2HYsKZu2s7J9oE62C8+ChU9AaKYYoL12rRijTbwl17QvIpFeTgFGOyUfOzIHahYJsO7ZIEA7e1gM01ykf8csR2RFmgUYGxXi5G1UyOsK1Hh51UwxO3PAKdDV1UUsFuPCC5bL/tNO4Ns/fJy5HzmOf/rs5/iP3/2bAOuKZtlZM4Q1Lh473i2guqjf9gUk9/qlq2SdY5cNyHaukYMvWFXWR6sG5Mah7jRZV38GdK6W0vJwo7z+4d1yXl1bNNauCwu9PmYsFGC9d4O4iTe1w1c/gLMfgMQBLMtl7dpONmzYw7p1XaiqQiZjcu21z3PgQJxUqsDtt7/C6GgWXVeZPbuawcE0V1/9HL29SY/xVqdoqTupqQmxdu1W735ict99O1iypIVAQEdRoLW1imuv3UQqVeDkk+txHBfTdOjs7OHw4QSO65Z00798bSMV3gDu7ld+zTX/8UPyVgG/5kNTNRzX5Z3BfRyODbL+z7/iuQ86+cXuZwn4/IR8fjKFSX6++xkOxQY5HBvk+y/+lGwhD7gkJlNMmgV++PIvPLCu4tcN0vksd7/yaz7185tY/+df4dddAdZ6rTh/mwdg5GYInCr500NXgTUoWdepDTD+Q2G3UxsEGFv9YlKGImC78nNgD4nhmXUIcm/I9vYwDF8D5j4xS0OfEtF1l3z+01dB+HxsxOm8GJN1W0cHhqYxJxqlNhRid38/qqqyoKmJ1qoq2ltbGUyleGNwkEOJBN995RUGUikUoK2lhWOnT0fz3MLXbN3Khj17uKuzk7Nnz+a2jg5mVVVx2owZ/PqXv+STl1zCrUuWMHfaNP7l2GNRFYVaXccwDKIVFWUTs3vuEcHxVLOxSATa22HOHGGft28XZBqNQmensNWOI0i3qKNev14Ezd3dgnB1XQTT114rlHJFheRmh0JSd51MyrFefBFNU6itld0vv1yAdKEgX/VcTg5TLPW+7jp5WZ2dZYyvqqKTLqaJ3Xcf7N1bThMrtkBAfNWK1emDg8Jum6b0EQ7L6XBd8atCUwX4zm0GXRVwrPD3Wum/NSZLpMXMTEE69hsConMF6O6VEm/bkWXv7S/v1zoDplUeqfN2/u8TKVbBwrEcwg1hlj+4HH+FX6KaTptBIBrgvPXn0dLewkT3BIomhmUtbS3Yebuks25e3Mwrt79CIV0gfjDOwGsD6H4df5UfX8iHa7sY4TCVs2ax4I47CDc1ke7rY9f3vke6r49Tv/UtWj/xCXwVFcxbsYLWT3yCE6+4AmtykkIyWVp2wle/iqLrpefzrroKze/no9/+Nv5oFCubJTs0xLsPPkh+Qu6jWjDI6atXE25q8nTWCtQ3CTt9wT8L0P3E5zz3cO+fqgi7fMaZcMElPPLII6x/4pfM/+jpfOprX+fRRx8jH6zg4+eex8nHHsP8U07lL2++za/+uBEKkxCphn++Wo4TDFGKV5vSJ7oOdY3yk+WBahcoZOJkYwO4joVt5nBsC8exCFTVUZhMYE6maDzpHFTdwAhV0zT/XI/Vdrw5YJeNzz7D6Wcs4PQzFnLKqf/Ar3/z72i6j3OXXsBxJ85n8Znn8cmvruahn/4KVfOhaD4aTzobK5/FF6zAF6jACFXjOg7OUUOzo+1oA44y1/9pzc3nccdHRC/d9jGorJYILtfFNQs4WzaiLuqQGdFEvMxmV1VDJg3+gMd0j+F0/gm1/WyUaI3kIWrCMLnxcZytL6Ne8BkB2952+Azc/X9FPfEU8BnYm36PvbCDw5lJwuEwgUCAsBc7UYzPmhq1VWSxXdfFtm10XTJrN27ceIQueyo7XWS5i1rrxYsXlyK9Nm7cyN69e/n85z9Pc3NzqX/TMLA85lr1/nlFw5Kl6D12kLLxInN9DGUAHZ6yn4s4gB9AQPhUFttBMrSD3r5VCDBXKIP7AhBM5njhmy9w9p1ni15MATNrkk/kCTeIC/i2H23jvPXn4Qv6MCdNtty8hbZvtZEaTFF/cj2uLYxzuDZMZjSDHtTJDGdID6VLZXPtq9qJzo7y3DXPlWb6K5oqgHJ5+OKbFpMZzdB4buPflXjPjc7FdiW7Wld1LMfCciwMzcB2bAp2AZ8meuqCXUBVVBL5BFX+KiqNShwcHNdBUzRcXFTUEkO9qn0VjRWNDKYGCfqCJQY7a2UZTA2ytnMtDy69n+nWKMoH6+CjD0h58sRumL5YwLOdk/zrQL2UiX+wDk5dL6y1lSkbmY3vlNLxyCwvY1pMU8SBu1vY7RNuEu11bZsw2OmDArCLeu6eDXDx5N+UZivlP47HChbjsopl4kDRcV+2Vbn8isuZXmGw7t4HvTgvt6SpfulPr3Dr6tVs2/oqhs+boU90C7td9w/CEheZ7ooWWe8UYMtVZWb6vMeEud51lxiQTTvBK/teIMB5YAfUzpfHhSQYVaK5jjTK6xx7DxoXldnvBasgVCea9WCtVAgk9sPOteWYrt3r4Mz1AGSUaSXm+pZbljB7djVXX/0cGzbs4eKL53HHHWdx4okPcfHF83jsMbkfrFix8Yj1jY0V7N8/UdJi9/YmaGmpYu7cKMlkHsdxGRpKl9aHwz6i0QCappLPWwwOplm7tpObblrM6GiGj5/bSsacJJ3PUuEPEzICZM0cruty319+w23nXUGmIOsj/hBhI8DrfX+lLjKNJ0ol3nXYroOqKFi2TSyb4MEp+urvnHcFKAo/mKLnXn3uZfhUnbSZY2xKCfkx06ajuJMwfC1Muwkm7hHAO/sDGLtdHldcDPUPyjbTbwOtBkauFzDsOqDXeUx1nXyWQyvK+027EdSqI/uquQP0Ri++q6jJ/oh3bToUHI2Co2G7LllPc+0AN2zezK3t7cyJRknl86QKBSoMg4hhMJhOE/H5eHdkhOmhEKOZDO2trXT19tJYUcFAKkV7ayuW4zCezVIdDBLUdUzHwacodG3fzhc//3n2HjiAomm889ZbfP6znyWRy2FnMjxy//185Z//WZDsmjVC1c6dK65gd90l9dFz5pQrOlKp8kTxW2/B6aeXddOmKX+L+tWuLqGX02lhqKdmYz32mNR2F0vIm5uljHz9eiYf/jkFR6erS2H+fPFRKxSEFL/nHjE3W7NGdquthTfeEKb57rsF04dCcshbbhHW+thjPayjCctdrEgPBr3qakfw/ttvC9hWlLJEvK6uGEdto+TyKFM11a4rVLlPF3DseICqyG63zhBQXcy1NjzZzYeHhfnuGyoz3jMbpc9kusxqF9tUJvx/krm2ChZ2zgYNkT2pCo7tlGRNqq7iOl6UpOUKi10bZvs92+lY1UH13GrG946z64FdLL1vqaRvWJK+UTRDs00bO2+z5eYtLFm5hOjcKnDE3du1bV67806mz59PQ1sbofp6XK+8QNF1MSdzHN5ct47eLVvo+PGPqTn1VOxCARwHLRTCNU1Un2jZp7LTR5SJ33EHmYEBtGCQwLRp+FQFxTbFufuFp+Azl4sUoegtAFOMzhSv9KHo8aFAbhL6D8DceTLD8psHykz0v3yDkl67ew9URKX0e3y4HOtVO0MmYwHGRyBSiR2pwLEKgILiVSUWQfbYgd3UzDkDfySK69gMvPfylDLwc0v+I0WFPoqC47rU18/gpS2bmXf8MfQNjDBv/il073mNL1x2DV/8ZAeLjp9WKgl3HRvNFySXHCVQWYOm+0v9ubgoinqUvT7a/l/RjpaF/xc1N5fDzXrl2opaKr9xs2mUYKisCy3t4OIqxfgX98j1xdIdoJwj7OBOZsXMDG9Aguvd19Uj95nSj60o2FAyFysajBUBdLEUSFEUHM/BsshcF5cXHwNHbP+36//PPXZwXVNeMyqua3uPFRwk1mjYsalXNVTv9biuhaLoOK6NWgJUTqlvW9FIuS4RXDQcFEUH1/bWF8+rUupH/soxXUCxVZyCnJuiJrqUQ217r1+hVO5d0k4rYE1aDLw2QMOpDehBHVWTgQeIyYvrlDXZpXOhIIMNb9vsWBZ/pR/dr8sMA2DrNqZrlkzHdEXHcq3SX1VRyRQyhI2w9+4ULMdCUzWZJHFtVEVFUzRZ5+3r4kqZrXf+MoUMfx3/K2c0nlHaZ9KcxHZtKowKLn/2cjbs2UDvdR/QvPdOOP5GL0JLp5RrbRZ1xp6ZluJprRUf5Zrp4rXslY67rjx2be+6Le6jCwOu+mTX3DAEZ5TXuQVwVU+XqMkxigNI1/vPdcq511O/EsWX4i1Lp9LMaG5m9/ZtHH/Cid4G6hH7HH/iSfzml0/w0dMXlmeBlL/pr9gUysz91PcD8tgueHFgavl9l86BN7XkWuVlUJ5AcO0jD1zUXxe16sV9XG80pUrfLgo5S6dgiuZaVRUsyyllW+u6UjaunaLLLj7XtOI9Q/axbbekwy5qtzVN8bBD+Xlxva4LU65pqhTaGJr06wNHsVEUBVWRQbdLMZdaysBd15V1uKXvTjHD2nblGnIBzdsG4O2BfdRFptNUVVPqR/UGmUXuRlVUAeYo3mMbVVHQMPGrBe+6VcvntpR7XXxehLqat27qX9dbpwvbrdV4H5sXRVeaGtQpT/UVP3vTu15sXDTyjkYib+FTNZlI1DS6x8dpqqwk4BlkjmYyTA+FyFkW7wwPs6i5GU1RSBUKRAwZ9DrevVtXFCxXznG6UCBnmtR6OdaaovC1FSuYVlPDnWvX4roul33pSyxdvhznpJM4TlH44j/+I5v/+EdOPOYYlGJgdFEDXQyNBkou4ek03HyzULwjI/Cv/yrUsJc2QTZbpoeLILuYjwWi3/7e94S5Nk1Byk88If15ucCOqjGeDTGt2i7hHMeGibhCZSVYBVd81Czwh+Rrkc1AT6/C7Nkugf+RZNSFTA7CwSMX/3WvgMxoFCIhW+Kpp9w3lEQKy9BxcFG931rXtlE8I1BQcBxbynFVFVVV0RQF0pPgN7CzWZxQoJRd7Crg2jaqpslvuapKFKcj4wjVp6MpqsR1Fb///zPAOldgfJ9UVZlZk861nVzw6AVi3ulNElfNrOK5q56TCeM5Uay8xfPXPl8253zsQjau2EjbyjZUXT1Skx3QiR2I/V3G9kU/vRA9pJbGReDdbov5zygigUPe65HjJ7l+rMlJtECgBCRdQHFdrFweVddQdUmEKPZZ2s71RgKKguK4KC4UDcuksrA4FiuWVDv//fHaf2/cViRHXBfp2GPHp673Xof8ZjmUtPjedWJS/qkpjXkKWVBUVFUvX1/exa9o5bHd1H2KY7impiZ+97vf0dHRwbvvvssnP/lJ9u3by/LlF3Ddddfxj//4j0fsV3ysqnKuHJzS2KQ4jtAUrTTG8Gk+jCmAu2AVKNgFDM04YvnRdrT9r9SOloX/VzVVlRKf0k3Wu+cbAdxshtLtsQiKs+kpPwxqeWbUdSSCy7ZwHRun9xBubEzKvgt5cBxht3sOeD8ALm5+sjS4LB8DLEXBdl0KhQKJRIKenp4SsHamaGwACoVCSZMNEtfV29uL5ZnHTExMkMlkStv/7f5TH/f19RGPx0vbFftXFJtCIYFpZnFd4Zcdx6RQSFIoJFFcF6eQoSI9JFFCQCzWzcaNK4jF9pPNDFMoJBFgbZPJDBOLHcTOJ6h0TBLj++jt2QaujeNY9PZuIx4/5L2OgndqxJQln0+Szyco5BPgKiR7kmxcsVGOeSBGZiSDa8rnUzRgkTdaBs0AekCnpa0FI2JgTVqM7xvnhetfkB87bxvHEhfxzHDmiMeFdKEUjZKL5xjfPy7HUy0ShQRD6SFMxyz9cKmKSrKQpGAXcFyHsBEmXUgDcCB2gLHsWMkdXEFhKD0kDHjsIKOZ0RJ77SLgO2fn8Ok+FjQu4EDsANe/cD2WY+HX/USMCAoKj1zwCMM3DVMZbsA9dT0EZoBtAp5Q0bFEb+3awjzvWiEl3cX8azMtf5P7yutcBBg6pjDecCQoV33Sb+YgpPZCer9XKt4t/bqmMNuq/28GkH+LppGRdvwAWPnS51fc9HcbNnDKyadw/AnzAAXTtNj/4T6J6bLy7Hr5D4yMjDBn7rHCsse9iK580nM3z5dju1xbSrmtnAyQCkkY6BIn75IO3QPaZloeK5roxLes8ErNbdFZWzlAlf0LKcgnIDMoLz5xCPo7Ib5f9kseLAPt7Ih8JqnDXp8HyJkq8USBoaE0liWmY/m8zcGDMbq6ejFNB8e7Tm3b8b7L8jInJ00sy/H2syjiKcFNhRKodl15ftVVGzl4MI6iwMGDMUZGMpimSzjso78/yfbtfXR3x9ixqxdUb/LR0z5nCpN8/8Wf0h8fK310mipVFrFsktFkrPTB9cVH+MGLP2UgOcY7A/vImjlsx2HSzHNK47E0VdWWAKUAc8iYOdb96Zc4joPtOgJEANubhLNdF5+m47qmgGInWf43dJWUh+NK+be5z8vC7i7/HVoh5eQ4Yk6GCXq9XNPZ7bLOzcs/a0w+ayflTZr8LSumYjoq+yeSJPMFVFXFdl16YjGOmT4dVVHY2tNDulAgY5pc/dxzADREIqzYuLGUTW07DjnLYiSTwXQcTMehq7eXvGVRYRjUhMPsj8VYsXEjQxMTPP373/OFf/kXkvk8m95+m2f/+Ecu/ud/5vMnncQZJ53E4jPOYFtnJ8pUd/CiuDmdFqr30KFyxhXAD38otdThsDiJTU5K/fW+faLZTqfLBmkffij7dnfL87vvFsp4/37JvNI0AdYHDsA110AyiVLIUxO1UF0HJZFCdV10zaV2uoNftYgELAJOjvDAYTTHRsUlEnY54XiHgOEKw+w4KLjlf7aNkkjJuv2HCRv2ketxOf44hzmzbGqn2QT9LiouiuvKfq6LFfLj4JKbmKCQSuFYllzvti3XYCGPmUrxxl13YWYy2KaJ5bpQEcbOTpKMjbPz9ttJ9vXJpJAH3GzLIheLYefzjL39NrZc4Ti2jeV6ExO69j+ntbZM7ILN1jVbCVQHSjFaru2WHneu7cS13PJj20X363Ss6pBor1UdKKpC+6p2qmdVl/brWtdFLp7Dtd2/y9juuK0D1VCOmKssMrQlEIyL4vOB4pBPx8hM9ONaBfLpOP3vbqGQjYuZ2WSy9Ny1CmQm+lF9KmY+Tf+7L1HIxsF1Stvl0zFwHRzbRLFdyOdkPGWZctSMl+XsCiB3CznsTX8Q81pc3EIOzIJEoqaT8jc27kWwjuH0HS6N19zYBG6pwsob82k6qOqU7Q7ixmO4qkyMmpQnx4pmsq7rohkhbFcFVRMpgmXT09ODaTvE43F6enpwHAfHcUin0ziOUxqf/fznP+ef/umfmDt3LmeffTaPPPIImqZjWRY33HADH/3oR/niF79Id3c3ruviOA69vb3k8wVMx+TD+Ids7dlKspD0blsyeT+eHac71k3ezpPJZ0jlUyRzScYnx0vbT5qT/9evy6PtaPtfoB0F1/9Z7YiKgCmPNQXCXkGyN9vqghifgdzEXUdAdX5SboChsPyoqBpK00ycrr/gdv9VzMoUBaqniVO4oojRhT/ozdSW5jexAcsRrsYwDAzDoLm5GVVVSzfdqVpqXdfJZrOlbGufz0d9fT2Tk5M4jsP06dMJh8NlBsmL4cpkMiVgnslksCyLpqYmIpEIsViMvr6+EsAWRqfcHMdmYOA1XNfF5wthmlnAJRKpR1U1XNeiqqqV1tYz6epaTyBQhWFEsKw8vb3bMYwIlZVN4hjs2lRVNdPS0gZAJjNKff0p6HqAePwQ2ew4ICy/ZWUBUFWdfD4FjopmaMw6dxaoUN1aTaQxIqVwHhMY646JVro7hmM7pAfTOJZD7KAsjx+Mo2gKXeu6WPCNBd6xykDv+a8/j5kx6e3qlQxtL1M7ND3E5us3Y2ZMsqNZYbVVh4AeoCHSgKEauLhMmpOkC2kqjUoGUgNcu+laUoUUESOC4zrMqJhB1syyYuMK9o3LwLbSX0m6kKauoo7poekciB3gyo1X0h3rBhcCWoD4ZJwD8QP0p/q58+w7sR2bzp5OPhz/kGQhSVdvF73JXjLmpJiI6R47/cb1Ep2luMI0o4rrd92ZwmDXLJZSbF8F6BEIt0LDeWJYZqWhEJeZes1PibEtDjwcS0C3FpLS8MAMqO2QPmoWw1s3Q2hGGfBaHuC1C2X2OH6gzAhXzjzSPTx+EFybJ37+cy6/7Kul76tpWXz5sis46YwOTj1jMTd8Zx1P/ew+otOiXtb1hBzT8L7P6UExE9P98l4UVZzJt6yA7DDUzBeDskIKtKAHrhXRgoO8vpIee61otc2s7JM8IPurGmSHoOt2WZbulXLw19ZD4xJhwl0LBrbL/qoiOdndz0CqF8uR72l9vZiUjY9nGR5Ol/Kre3sTjIxksG0Xy3LZv3+cVEomoioqDO+7ruD3+zBNh2uv3cT+/TEqKw0OHIhx1VUbOXAgRiRi8Mwze+nvT2JZLvX1FWSzJlddtZH9+2MEgz5qa8OsXdvJgoWN9CWKAHnU01erbN67nemRSvriI7w9sA/HdbAdh4DPT23VNPoTowynJnjc02s/sfNpTmyYi65qvDP4IbFsClVRKVgmE9kElmOjISx12AhyXfs/g6KgKcJoK4qw2CgKYV2GsooSgLEfiWZaUY/UVmODk4DxdV729XoInDRFN71GtNRuxgPkH8pnHGoD30xQgqD4PdDtTbQM3yQgm4IHyl1w8xSsSeoiEaKBAKOZDCrQUl3NwXica59/ntpwGJ+q0pdMctNicfRd29nJhj17WNvZiaFpHE4keG1ggIhhoHtVSx2trTiui+k4KMDdXV1s2LOHZ3//e0446SSqPBnPOSeeSCgc5sWXXuK6TZvYvX8/O197jfnV1QJse3vl9Q8OCnDWNPkXCEjE1n33iRlZOi0MdbFmWtNk2X33CTMdCIgAGkRXvWSJ1GtbFqXy8mKf69cLO75mjei6QyGUQBBsRwB/0Z3bu5Momne8oB8+0irPE2nZ3pb3XzIaS6RFz+wix6wMQ/8IzGmS/f6mKYCuCKBXnCLb6EBVBMu2KKTT2Lkcwdpa9FAIVddxTFNAtvz44Kuo4LRvfxtfOAyui10oYLsOTsjPnsceo+eFF8gODmJls5jpNJOjowAEolFUn69UCj05OoqZTlNIpbBN8+9e6//pZttoukrH6g5y8Rztq9qZd/E8FE0pPe5Y1YGiK6XHqDJ5XD23mgsfu5DqOdXkk3kiDRE0v1bab8ktSwhEAyiaUs7Y9lIyph0TRdGVMqAustLehIKZz+Dapsc0q6i6j0BlLbZVYOzAbhKDexndvwsFl9H9O0vPbSuP7g/i/O12qlrazspnMHNJJhMjKK4DPkPkfI6N/fzTMhZLxEpgGSOAtvzTUFEpFYSpJPaWjWCZKP6AXLeGgXbuhRCpRKlvxOn6i4z3UkVxm7DirmV6wN1FaZ2NEq6Q7be9IpdTIU8sHmfTpk2l8VqhUCQJ5PHExASFQoGBgQHq6+vx+XxUVlZSX19fGnsVqxUtyyIej7N+/XrWr1/Pn//8ZzZt2sRVV13FxMQEv/rVr9i3bx+vvfYaixYt4jOf+Yx3qaoleZ+t2KzZuobacC0RI4Lt2KQLafJWnmgwyoyKGaUJ/O5YN1duvBLHdWiINHDtpmv5cOJDClbhf/4aPdqOtv+HtqNl4f9Jzc3nj+TNXHFzZDKLEoocWU7k2BLRpRtHlBS5imAV15WyL1mmQiEHqrCRTn8PSmWV5COaJuRz5Rt9kTE3TUyfQSwWI5VKHQGqn3/+eZYtW0YikShFdPl8AtqLINnv95dAdCqVEqdvb3+gBKxt20bTtNK+AENDQ1RUVBCNRjl8+DDhcJjt27fT3t5ONBohFttPZ+ddtLWtpKKiEU3zE48fZMeO+1i27Cel8xmLHWTHjns577x16HoQUEpl7bZtomkGhUKKoaG3aWw8A10Peqw2+HxhbDuPbRcwjEipNNx1HY8xB9su4POFwNYoJGzJ4myuoJAq3/iL2uroMVGevfxZ9mzYwyUbL6GyuZKu9V2ct/48AN5/8n36d/Wz7CfLAGG2FU0hn8jz0i0vsWTlEg69cojebb0sunERgz2DXP79y0vHySQzHO4/TG93L5ZtcdnVl9Hd3Y1u6Nz3r/fR3tFOZ08nzZXNzInOobOnkwVNC9BVnXQhzS0v3cItS24hoAeI5WJEA1EmzUnWdK5hZdtKjpsuLsr9qX5e7H6RXf27WH/eenRVR1d1dvTtoK2ljayZJZFPEPFFeHfkXWZVzyKZT3Lvjnv55UWP4s/2oBRdu4P1nmO35/SdG4ZggwdoPQa6WDpu58W4S9UE3BbLwHE84zOE4fVPo1SCq+jCXO9ZA/NWi047NyTHnByC6vmeO/gETDvOc/AuSii8L6KLLCuWertwRLm1Wy45FFbSFNYcRfqONMrzoha7+F2dul3RyEzRZEKg6OJ9wqVw1j3yevSgAGzXAc3nAX3v3JScxG8TN3LHFGZ767fhnAdlnz99XTTas86H8AxhtGtPlXWm517uOrLPuY9SLheHtGnQ3V12C58xo4JMpkB1dQDLcshkCoRCBslknqoqP6GQzyv/c3Ecl+HhDJGI4X334Pe//4BZs6ppb2+lq6uXAwdinHPOHJqaKujs7KGxsYK1aztL2uwvfvEP7Np1BXV1YfJ5m6GhFLM+UsGdLz3OK92vcd8/3sQ/NB2H47q81b+XU5uO483+vRxb28pEJslYNs5JDXPx6wZ3bnmck2bM5dTG40p66epgJX8dOci8hrmAy0Q6yWB6jJMa5uLiMpaO8/jOp7n5418iNpkklk1wUsNHcHBQUcmaORw7S51/DKWofdZqBPDqTQKuR24UnbXeIsDZHgJzCAKnedfwkADu6atAb/VKRr3rwhqC8Tsl1kufC1aPGKMFFwjYxgORwzfC9Os9F/Lrydb8gkRBgFilYRxRzv3k+++zq7+fhy+4gHShQCKfpz4cpjeZZM3Wrazu6GB2dTWvHj7MKfX1pft12LvPq4pS0mHXePFeh+65h8//y79w+WWXAaApCi9u2cL3v/MdxtJpUpOTfPdrX+OmDz6ABQvgc58TRrpQEDDq8wnjvHatGJU1NMjyoSGYNQv6+wVg+/1i1uQ4ApSLudm2LQLn6mrPPdmR7Q4cgDvvlD4bG6VE/OBB6TOfl+0n82Wd8t/9ME/9UfZaUZc8t2UKw+uCactxj4i5wqsGyYjOOeBN0tkOHOiD2Z4R1pRMa1MFM51GMwwBzPk8VjZbylf2T5+OqqpMjo6WlgXr6nAsCz0YRFFVkocOsfeXv+T073xHSsBtW8YEgOO5aINM4OYmJiik04Tq6tADAQHr/1ebZcp4wnWwHBXbVlF0BcdyUfXicSUX23VcXNtF86k4pu3lZnuSqSJ2tCUD2/G2VTx5iet4YxS72K+J6tM8WZothALg2KbERM09HVX1oWg6mi5RolYhi6YZKLoPHJtsfAhfsAIjWElhMsno/p3UHrMQ3QgymRghNK0JczJxhHN2IZtgdP9OGuedTTY+hO4PEghOk+rAfA4MP6RTKNNrZbxmmiiG4fnnPIfadhZKtAb72Q0oLbNQWmbh7NiKuuxT8jkVChKT6l2CZDNiYuu6cp4LeQhH5L32HkKprMJNJmRsFwyjGAYFy+a5LVtYvHgx1dXV2LbtlX+7vPjiiyUPnGg0imEYTE5O0tnZSVtbG9FolHg8zrZt22hvb6e6upqJiQl+/etf8+ijj/L+++9jmiaapnHmmWfyve99j46ODv70pz9xzjnnYBgGVVVVHDhwgGnTpmHbNqlUispoJfvj++lN9HLmzDNRUEpeMLv6dzEjMoPeZC9LWpewrWcbn33ys7x51Zvc/srtpbSSxy96nAp/xf/1a/RoO9r+C9tRzfV/UXPzeSkR0n3i7ujYuKpW0lS7rusZl/lxhwZQGpogkyqZkrnJBEpVNei+0mwpRsDTcHujAzOPa7tgFVDCFR4Y9zRK3gwlnv6w4EImkyEUCmF7pWiKovD+++8zf/58+vr6qKurQ9M0hoaGaGxsRPN+sF3XZXJyklAoVGJfLctiaGiI5uZyrI5lWQwMDNDQ0ICu66V9+/v7aWkRg6dNmzbxwQcf8LnPfY7W1no2blzBnj0bmDfvYs4663tUVjaRSvVTKGRQVR+dnWtob1+NzxdE0wxUVWd4+B2amxcBCrHYAbq6fkR7+61UVc0kHj/Etm0/ZOnS+9H14BEabnBxHBNVNQAX2zZxXRvDqABc4vGDhI0Wkgcm2XHfDpY9sAzHcujf2U+kMQIOGGGDiqaKUt51RWMFz13zHM2Lmzn+U8dTSBcI14UFUHu52EVQXjWzind+/Q6923o563tnEagKAGBUGsT2i4nZ0vuWcve9d7PjjR0888dnWPG1FTTOauS6ldfRtbOLb3zlGzy25THqq+oZzYxy5swzsR0b0zGJ5+JEA1EOJw4zlh3j5PqTSyZmbw29xfJ/W87F8y7miYueoDvWzdrOtdzSdgtzonNQFIXOnk5aKluYVT1LPk/HKpWV66pe0r26uFRrKspr18L0BdD6OVCDwlxbWU8T7YHqIpAugtrR7RA9WUrHj9CserpVOy9g0FcF9qRneNYMkbmw83IxLztroyzbsxZOWAkVHxFW2857TLL3Q11ICXAtstRTQbbC31SX/G35eMF73Z7WLjcOWgD8ld4XHK/0O+PFfPULI65oUgLuC8v6+IdTzMVG5PHC1bKt48g2umfiVjxXrgXDr0P9Am+wrwrA9oW9A6tyDDMlhme+iLz82IeQGRbDM1WXiYtUr+Rcn7ESwo0knSjbtvVy4om1BIM6rgt+v45hqNi2nI99+8ZLMVszZ1aRyZikUgWqqvy89dYQdXVhmpsrmZiYZNq0IENDadav72L9+vMIBHS6unppba1i1qxqrrji2ZIZ2gMPLCORyBEOGyQSZfDu80PGmkRBwdB95Mx8KRYrbARxXAfLsUnm0qRyWX752kauWPgpoqFK7vvLb7jxrEsJ+Pyoisp4JkYyl+U3bzzPDWddiqFJKoLl2vLYddn0QScLW0/ioa6nuP38FfQnRhnNTHBK47EAhHQTdehaAbwVnxPQ6+YkdxoPKKPLMsVzyy9ex0Nfh+A/QPg8D3ybHoDug+BC2a57JkQ+CfUPiRt5YL5Ec2FDdgf4GuUamFgnRmcHTyQ1O0eqUKDSMLDdohYdcpZFbyLBjIoKwobB/vFxBtNpFjQ1EdJ1TG8SaGd/Px+dMQO/ruO4Lo7roqsqBdvG0DQsx2Esm6XOA2KaV1HlTGEPhzMZKvx+Qj7J254XiaAlkyjFyKxwWEzJDEOu2+uug1/8QnKsHn5YrveilqCop87ny+5gIyNi6V1TI2x2NCrbBQJl/fbOnfCJT5SNzSYmYNo02W7nTjjnnHKOdL4gcVRHfK+9ainbKYNv2xEwHPQE14n0kZFWU6OypraCJX043iReLi+mZLoGlg0TSQj6MYMGyYMH+eBnP+O0lSvRg8Ej4qEW3H47jmfaVVr2ve/hmCbj77xDaMYMQg0NOJ4pV3ZgAC0Uwl9djWtZjO/ZQ/T444/QJFuTk8Jo+/3ofj+2aeIUCqiGgeYlhfwftnwOJrMyoaFqcOADaJ4tINNF3mdsHPwBSMZh85Pibm34BShu+ndY/nmIjUle87RaKXmOjQlwr2koEwyOg+33k0/HvNzlBZiTaQKVtQKyrQKaEcSxTHKpMULTmihk4lj5DKFoA3Yhj2Ob6P4Qg++/UgLMVj6LbgRwvYl4vOsYIDPRj24Esc0coWlNpXVusezcdVEdcPOTMmHk98t7i42XjWM9EsNNxHB2bEVb/mncRAw0HeeVzSitc1Dm/0MpahXDkOu9olLGaZm0eOZ44zXXtgSoL2wvxas6O15FW/qPuIYfx3WZNM2SP45W1NsrCu+88w5z5swhEolgmiaGYWDbNvF4nF27dnH++eezadOmI8xrN27cyM6dO3nggQfYsWMH9fX1vPvuu1x88cWsXbuW9vZ2pk+fTjQa5fe//z0rV67k9ddfJ5lMUllZic/nwxf2oSoqlmuhKRrpQpqbt9zMt9q+RWtlK9v7tlMbruWe7fewqn0Vfck+TptxGqPZ0ZI563E1x2FoR7XXR9v/Wu2o5vq/qrmu/OAWZ8KLhheWjdNzEBJx3IkxSKWkBMjng+ppKHOOg4pK1NbZUD0dJRwRcF49DSUUEs1PUXPl86P4/RAKY7/wR/lRUxQUF9nHAwyKi7joWhbPP/88juPg8/kwDIP58+ejaRqVlZW89NJLuK5LJBJh8+bNmKaJaZpYloXP52Pjxo3EYjEKhQL9/f00NTVRKBTYtGkTsViMXC5HXV0dQKkEXFEUWltb6evrwzRNli1bxtVXX01lZSWg0tFxG5dcspFlyx6gsrKJePwQr7xyO6qqk0z2smfPBpLJXiwry5/+tBpFUWhuXkQ2O4brWkybNpclS75NRUUjiqJiGBH6+3dhGBWeHlT3Slk1tmy5BVU1cF2L3t4uksm+EnPtug7hcAO6GiAzkuETP/4EuJCL52ha0ERVUxWqTy1FiGQnsgSnBXFdlwseuYCTv3gymuFlVCsyqw9gRAyW3rcUX0RYonmfn0fHdzqobK4kO5Jl8/WbiXfHSfYlJe4rmee3f/gtX/niV8gn8zz1h6e4/MrLGUoP8cfUH6lvqMc6aDGaGWVh00IUFA4nDnPD5hsIG2FMx6SxopElLUtwivFvrsOSliVsvGQjDy57EBeX9V3reWbvM1T4K0r67fbWdmZHZwsricKkNcloVkoPD8cP09nTieVY+FQfKDru6Q/CnK96oANAFWBdkiMowugqCozthNR+qDlDWO1dK4SJzo0AtpSGv3YtZHulZDrdLc8DtVIGDbDgMfhMTErCP1gvQPuDddK/GZOS6CL4LWZd696AuViqecRcYhHUI2C1GKHlFMrMc+KAsMfBOunPnfr2VC/eS/GAtSrb+ivLrHx6QBzCfSFI9Ul59s41sm2qT5jrItuviZyDwZ3yvlOH4eVry8DazMjzxAGZnOi6HTIDyKSEKTrscAO8dDXE9gn7n+opx3IpKpqq0NRUwXvvjaAoCn6/hq4rrFixkUOH4jiOe0TMlqqqDA2luf32VxgYSHHSSXWsW9eFYWhEowEiER8zZ1bzk58sA1xyOYv29laCQR3Lcli9uoOLL57H6tUdhEI+6usjDAykSv2JYZpCbDLJuj//krxVIDGZoSoYIWwEcFyHvFlg3Z9+Sc4sEM+lOLXpWHyaTtgX4NvnfJWQEWQ4OUHOyhMNVTFz2gy+8tFPEvTJZ68oCiPJCe566WdMWgWWndBOXcV0bjvvChQFgj4fx9S0yEAZFxcfbt16qPiMdy+fhJFvgblfQK8jchWsAdFYu5NyHTkpaPix5Fy7NrgF+WzMPnEPn9wpn/Osd6HuPgHmoTNB9SZirBEInALmgJSNT78N1GqouBQFyavu9jTR+8bHSebzWI7DYDpN0OfDdV0G02lqw2F29fezPxbjqo0bOZRIMK+2lus3b8b2tNZj2Sx5yyI2OSlmZpZFxDA8MyIB1rbrkrdtLNtGU1UqvQomTVH4SDSKbZoooZC4dtfWCji+5hrRTxdzrIrRWgcPlrXXqZSsX7FCymYPHJDH2SzU1wsDXlMDiYQw4LmcAGcQS+79++HRR+V5NArXXy+O5V45PIYucogqLyfLPNIjQ5h13QPhroBrvyHPJ/PiVpb3Kpb+NioL7/tvO9KH/HjA/h757ho+6efQgBy/KgKWxQc/+xk9L7xQ0lOfcNllEiF1+eUouhhclSKjrrwSRVVRFIXo8ceTHR5GUVU0vx8chz0//SmBaJTswACvrVlD9CMfKZXM66EQvnCYYE0Njm3jWha2aZI6eJCd3/0uqYMH/8+Vihcp56LB1twTIRCS+5qqyvuvni4VApufFBfsTf8u0VSb/h3e2iEu28eeDNPrhCQYG4YXnhQX7OLEZvf7EJsA10XTDRpPOhdfoFKAtWfG6YJolx2bUFRAuZXPEYrOABQ0f0jylxWF5HA3o/t34tgmjl0QXXUmDrgUsgn6390isrNgBM0X4JUd73D6GQs57aNncPKp/8CvfvkrCpk4l3zmAk45/XROW7yEBYsW8fKmTVINqPtQWmbhplKQTkmM6vQ6tOX/JNWEVdNQKqrQLvgM6imng2Vhb35GgHUmDcGggG3LEtIEwLZx+g5DJo3S1IKz/S8i88tmUDvOFVAfH4dNv8cwDBKJRGnMVSwPP+GEE3j11VdJJBIYhoFlWUxOTlJVVcWyZctEAtLRwbx58+jo6EBVVTo6Orjyyit5+OGHufTSS1m0aBFf//rX+dKXvsTQ0BCXXHIJ559/PgsXLuTRRx/ld7/7HalUilAoRGdnJ+FwGF3VORg/yLaebeSsHBVGBQ8sf4C50bloqkZ7azv3bL+nFCHa3tpOdaCa46cfz+MXPX4UWB9t/9u2o8z1f1JzCwXR0XhaNtcWEwx3aED0Npm0lIdHozKo87Kuy87i3iy0Y8t6Xcd57veoyz4FeAy1ppWYasWycFVVfqiqqrwSc6ekVSqg8NymTSxatIiqqir6+/uprKwklUrR0NAAwAcffMCJJ55ILpfDMAw0TaO/v59IJEJlZSX33HMPp5xyCsuWLSux1Y7j8N5779Hb28vy5ctxHKc0o6qqKqY306ooCrFYDJ/PRzgc9sqKYkSjUWx7ksHBNz022jt/nhtyb28XTU1nsGnTtbS2nsnxx38KRdHQdT+WZ3K2ZcvNtLXdTDLZR2VlM9XVszDNLPl8Ar+/iqGht6ioaCQUqiGbHaOraz3nnPNDVFXD5wuSSPSydeudtLffSrTiBArJAqmBVCk6q1jyrRka5qSJZmj4gr6SQVnxXPR09tDS1kKiZ4qTamsV2bEs4dowdsEmPZomGA2i+3X6dvTx5Gef5LhPHseyB5bx/HXPU31pNV+88ovs37OfeCLO3BPnMpoY5ZpN13Djohv5wdd/wNnnns1XL/sqtmujKRqT1iSGZqAqKt95+Tvc/vHbS0zzWHaMZC7JR6Z/BMuxjtjnneF3WNi00MsPdjBtE5/m8xyYIZlPctufbmPtOWsJG2Fsx8ZyLEKaj9BksST821BxjAdcPZDo5GDiNag+tbxcC8lyvVL+2jkPTOowuk101MFaYYdVP7x5C8y9TCK61IBnhpbwNNteyXduRHTVoRmQG5McbDsvLHLVbI6gqYsGY8XyM9f7zy6IfjrS6L2e4rrSlVgauEopuOMZrxX+niG38+WMbbsgenS7IOxxqgcaPOZSUeV9WpNlMF17qiwvJDw2OiwRXTUnyTnaegt89Abo3wYD26RE/KFaiff62P0eq40AcNeGsXehcjYEp8PQLikj1wIkJxXypoJhaEc4hTc03MMnP3kcjz12IYcOJVi7diu33dZRyqhesKCJ88+fS0NDmL6+JLNmVaMoCvv3T7B2bSf337+U0dEsa9ZsZeXKNhobpdy8vj5CoWB7hKUwSCtWbOSZZ/by1FOfo729FdXvcNfLP+OkGXNZfkI7hibsan9ilJH0BCc1zGUwOca/v7mZb5/zFfKWyXtD3TRUTGdaqBJDNzBtE9txpsR1BclbBVL5DBX+MLqmexNpCnf/+Vd85aMX0VA9Hcd1S9f7VIfyoOagYFFyeC90gzUMvmZQAqKxLgJqJy3RWmqwDKqVIOIy7nkHZLeBPl1iveruP/LHIvceBE/3ro1ilYfHhmc7IXASSbsW03HY1d/PvLo6Kg0Dn6pieWA3Y5qEfT4s12U0k6E6EGBXfz9f/MMf+Ld/+icWt7RgOw6aopCzLBxg5ZYtrGxro6WqSlhpw0BXVSI+n8QXehVWw5kMlX4/bw0NURcOc+z06eKVblkETBPl8GGJw7rmGsm3vvhicfVuavLiiVRZ95vfyLo77pDr/sUXhdWemBA9dnW1AOuBAQHs93vnKZkU0O26EtG1ZImA6bVr4dZbZeKsokKAdnW1lHn3DsGcZjm240A6KzFVCrC/F1oaBBynswKs8wVZb3kO+z4PoNuOLNO18rb+IvNbrHZxYXhCorCOnSls93gcTpwrmmvLInX4MHt/9StOW7Wq7Epty7FUn49COl1ytlY0jWRPD7nhYaaffDKa3481OYkeDJbcxF3HIT8xwZ+vuYZlGzZIX6rKm+vWcczFFxP0JrmNykpcy2Lnd79bYsUXfv/7/+NS8dwkjA5CbBRmHw8+o/xZWiZk0+Id4/PLds/99kjmOjYqgNwsCAMeDMu64v10w0/hvE8Lg+042IYPxypgWwV0I+iRA5TKtWuPWYgvUMFkfIBg9QxQNcxsHHMyjS8YYaz7NRpOOLP08lXNR/+7W6ZEUZ3HwHsvE6xuoKJ2FlogQiETp7F1Li+/tIUTj53Dm53PcfZnvsZA70Hig/uZfewZOD0HeOvgIc77/CWM9vbibv4jatvHUKLTRcqnalIa/tIm1CUfk0kE05QI1nOXo/gM3Ng4GH7ciTGUqmqcbd46w49rmhLLWmSro9Pleo1UQGwCN5tGbZ2NvekPKE0tmKecUYpPveSSS6iqqkLXdcLhMIVCAU3Tjkh+KRqeGYZRkvFNle9NTYUBMZ+tqKg4gp0OBAKlceC0adPIZDIEg0E0TSPv5tnet50zGs9AUzVJW3AkZWQkM0JNqIbDicOs7VzLqo5VzKqahaqoR8vAj7b/5dvRsvD/ouZalvwYFXWZeMN8z/FbbWqVUiHLlKzqpZ8sG5QpigBry5KyLC+ywzU9kwwQ4Oy6ouEOhko/1KgK6AaKK2VGxdI7J1zB5JTILaBUWlQs3Z4xYwaqqvL888/T1tZGOp2msbGxZFj2/PPPs3TpUqCssy7exKe6g9u2TS6XwzTNkuZn+vTppe03b97MokWLiEbDoqtSQPEihvL5JKCQzY7S2bmWjo7VVFfPJR7vpqpqJrZdIJeLEwhEyeVi5PMpens76e3dxqJFN7Jjx71cdNHjjI/vo6trHW1tKwmH6xkd3UNz8yIURSGfT5FOD9HVtY6OjtUkEr389rcXMm/exVx43i9JD6WZ2D9B04ImcvEcul9H1VW2rNzCohsWEZ0bxZq0UDQF3a+jqArWpEW8J07NsTU8e+WzpRiSi564CMf0Yra88xM/HKdzjYDvZF+SqpYqosdEcQoOX/vm16gKV/GD7/yARDbB3BPnMj4xjqVauLhc/i+Xc/Z5Z/PVr3wV0zXxKT6JwrBN8na+ZCpSKhMPRnFch5AeYn9sP3d13sWq9lUcEz0Gy5Wy74Oxg9y7417Wn7ceQzPQVb0U+aUqKpZjoas6xQikiArarhXCHF/YLaxuUWdcjIhybdFPx9+BmkUCUOxJ0UcXM69LwDtY1kY7nnGZoomTuB4G//QpJeZ+wBZ3cDvvxYA5AmSKplBTS7+LGddefF055gqvmsSVbOpAjbedV7KaPCzmZIpSfl9FFr54yywkBVSrEvUmZmLF5V6WrWuLJjpYC6/fI7nU2SGY0Sbvw5bMUvSAlHXv/pGUcEePE3O2XWvhjFukLyMM/qiYo1W0wktXeTnX9bJ/qkeAvAekKUZyFVLyen1hsrafRKJQKsvWdWHIfD61FMdV/Ds2liUYlImx4eEMd90l2uk5c6oxTRtVVUvA+9JL57NjRx+f/eyTfPKTx3HHHWfR0BBh165+Tj65HkVRCId9OI5LNmvy1ltDNDZWsH59F489sRwbAX62V+aoKgp5y6Rgm2QLOSL+ECFfgIJtsmeom4/UtqIpGiFfMfPIxXIc9gx1c/KMj+DgoilqSdbQFx/m8Z1Pc/nCf8R2HFqiDeTMPOl8lunhagpWgbFsgkde/h1/+uFvUJEy5OxkjgMHDjMy2E00GuV7d9zGv/1uI36/Tk1NLX9+aSMMfx3qfwJWr2it634EakQY7pGbRV/tmwVDV4rR2THDYPWBOVjWWpvd5XxrJSxsthqhGNeVsQwcVNKFApqiEPT5Sq7BWdOk0jDojsdLGuvhdJqT6uoI6jq9ySQ9iQRtLS3kLIubt2zhhkWL2NHXx9K5c5keCmHaNqbjUOH3kykUGEilGEqnaa6sZG1nJyvb2qgLh/nWli08ftFFHIzHuW/7dn567rkSHGbbwjzffLMYk82ZAz09R4ZKv/MOtLWVy8OTSVl2xhmir56cFG32178uIH14GPr6oLJSdNhFoOzzwbZtMG+eMKcVFcKGJxJwzDECbis91rh3COY2C5vsaaDFlVkt5xVrmtwriuXgfqOMm6eWhTfXQ98wfKS1LM2aquG2nbLeOl8ogXYzaJTBTlrSHDTDKOUuy8+5U9JL+yLCuGcGBtj7619z6re+hR4IyO+HV7bsFApSgRYOY2YymKlUab831q1j/rXXYlRUiHmaYZA6eJD3Hn2Uk666iorZs/+PS8MtU8YeRS25qgpIPrQPWuYIgLRM+MMv4dNfBiMgJ2JsCHwBiE6n5CdjFuDgX6H1GOl7MispKqm4MN8ocPCvPHt4iO9+53Yc18W2LG688Qa+9C+X8oXPXsSu198mFI5QXdPAj9bczswqi9pjFmLlUvgraoWl9rKfxw++TsMJZ6JqUslhF7KouoHq+dlIaoeNqun0vfMip3z8n3lqw+84tg4ODmW45IrrefUPD9F0whIC/irc2Bh/3rKFz33zRkYOH8T917Uox52EdtHFuPFx3GQCtWUW2HaJIHF6DkIyhTJvvkwSlMaALvZzv0dpahFNdtcrqG0fk/Ni+FEilTL2s0yIx3EzSdTmmVJO79i4gKlqxGIxkskkra2tJe1zZ2en52MTLX2M/734rXw+j2maRCKR0njMNE1efPFFOjo6qK6uLm2fyWRKY7jFixeTyWSYOXMm8XicrVu30tHRQWV1JTb2340Rise1XZvRzCixXIzRzChLWpcQ8oWOstVH2//y7WhZ+H9Vs23cQq7s/g1QyGM//zRKZbW4UIYrIFKJduHnUIyAp80us92KIdFCiqYJePb5yg7gxdlGs4DTdxhF11F8PhTdQLFMucGnkqD7cF7ZjBobL5UUvfDCC6XZS8uySu6Pui7xCy0tLSSTSVpaWrBtu+QAvmzZMlQvg3OqS/hU8zPXdRkYGMA0TdLp9BHAuq+vj0QiwYIFC+jq6qJUtq5opfJsw4ig6wE6O9eyZ88Gtm5dg+taRCINJZOTUKgWVdUJhWqoqmph/vxLWbr0fiYnJ+joWIXrunR1rWPPng10da3DMCJUVMxg48YVjI9/iM8XKq3funUNLS1tzJ9/Ke3tq1B0hXB9mMrmSnKJHOH6MKqhogd1zl57NumhtLx/xyU9mD7CMby6tRrXdVl6/1JO+copLL1/Ka7jovpU4ofibFyxkcThBEbE4Nx15xKZEWHmmTOJzo2ST+RJpVI89fun+OLnv8jQW0NMnzYdXdMZHB7kcOIwpmOyr3sfT/U/xcHYQYp51QDffunbjGXHUJHPI6gHiQai7OzbyXB6GBeXuzrv4pm9zxD2hSk4BfJWHgWFWdWzeOiChwj5QqVZZ9sz+koX0pi2KW7KKOTtPAVXwT3tfvj0sIDSqRN0dh6slABpvRKqT5GSZdcSVk4Lw0d/7IHJt4RxtvPCXmcPw5vfkv1dS4CzPwpjO4S5Vj2Q+9p1ou8O1sny1AFK9drFaCw7L8BVVWW/qZpqRS1niCYOiQFYUb7heGWQRkT6mDoImAqsFbzyb58Hvt2yI7m/UpYpqsRoNSwQzfZZ90CoDmYsllLvzLBn7OZleFfNgaYz4fX7pJ+iy7dRIWXngWlS5l41V/Y79xEpAy++Jz0EjW1HAuuiYdvIW+Da2DalsmzHcRkcTHPttZvIZk26u2OsWCFu352dPaTTBd59d4RQyMddd3WyYcMe1qzZSjptls7nww9fwL/8y8kALFnSwjPP/DP33ns+DQ3iRn7SSXUMDqZ4/fUB8nmLfN7G51Npa2th7dpOFi5uZCgx5jl2u2iqxkQ2STo/ieXYBHU/D3c9JROAyRHuevnnTA9Xo6Cw7s+/JGPmsBybvGUSn0xyfN0sbNfhrpd+Rm98mDf795K3CiVH8V/u3khrtEE+Ps2HAuStAigKP9v5RxYcdzK7d7/CW6//mbde72TFFV9m2SfOZlq1zr/+6495Z88h3ntnB+++vonf/vpBOe/1P/GARC/U/RDsUYnisgdh2g0eG63A9NVQcbFMBJmDXqn4LsCS0vFpN3kl5NPlWjb3wdDVYB5GRX4THNfFcl2S+TzD6TSqohDxDM7WbN3Khj17WLN1K2c0NTGUSpGzbXoSCWrDYa5+7jkGUikWNDWxrquLL51yClnL4urnnqM3KeaPruuSyOdZ19VFbThcchxf19WFrqqs7ujAtG3WbN1KW0MDWiqFsnevlHUPD8ODDwrAVVVhn5csEb1qZaUYnyWTUsadSglLfcop8jyTEcdxnw8eeUSMzUIhGB2VdVdfLaXlXV2y78kny/Guv17Kyh0Hbr9dvodzW6DeK1me0yx/C6awyfmClG6Dx8LawjiDgPHifcB25Ds5tSzctORv8T4w1cOh2J+qiFa7KiLsdzgIrouVzeLaNlowWGatEVDtuq5EcHnsdT4Ww7FtcokEx33pS6i6Ti4Wk+0ti9zEBCgKupcJrgeDhOrr0QIBfJEIJ15+Ob5IBC0YLGmsK2bPZuH3v/8/BtZQJgVGBuHfHoRcVs5hyxxhsFMJ2e5TX4L4hGxTyEPVNAHOyZicmNFB+N2j0DxHALjPKE9e1jaW9nUjVXz5y1/liSce4/Vd2/ntLx7mmmuvI5VM8rkvfJk//eFxXn9tFyu/dSNfuPTLnsv3TkLRJlRVE6+GUCWabhCMzsDMZchM9GPmkgzv68L6/7D351FylfXeN/zZQ81VPabnIRMkQEiICAlJdyNTCJDgTBQREYSABBVEQAMKeEwiwQgqKCCCEw4BPQidhATQaDqdiRkiBtIZeh7S3TUPu/bw/PHbVZ3ofb/3Oe9a5znnuVeurKyuYe9dXdVVu67v9Z2MNLZp0Pf2i+SzcbLxIRzHofrEs/jxfd/g05+9itaPfJFLP30t3/vmCjJHDjCyfzdfv/NOTpy3gMu+dDPrv3w9ajqFetlVqG3ng5GTXJyGySLr7usGM49jmihNU1BPPU2+Y8w8ds9Byd9xHAk4mz4Tu3Mrzt43sDu3ClsNwoD3Hha14qRJwnL3dcu+pikLGo5DeXk5paWl9PT0oKoqpaWltLS0FHNubNvGNE1SqVSxCabAYPt8PkKhELlcji1btshXndfLwoUL2bFjB47jMD4+TiqVIhQKEYlEOHz4MKlUiubmZgC2b98uAau6juLI90ChJlFaF5SiJc0wDcLeMKPpUSaXTsareqXn+nhC+PHxf/k4Dq7/K4fjQDyG3eOeML0+tMUflgoGS3oucaXfR4/CaqdjWxKmoSgoHq8Ec9luRVc6JdtGSlEaJkuIWWFoGkrjFJykdGwqTVPA9dN5PB4uvvhidF3nhRdewOPxMD4+XvRTF3zYTU1NRbC8c+dOvO7+QLE30TTNoqSosAKaSqVobGwkFArR1NREZWVl8ddqaGggmUxSVlbGokWLjnqZ7KNWWG00zUdr60pmzVpGW5v4rHU9wOjofjZv/gqmmZEvVUVB1/0MDLxGOn2E5uY2SkunoCgKixc/yOzZV9DW9k1UVUPTvDQ1tbBz5wNYlkFb253MmrWMlpY7AIVLLnmY8vLpkmSqKETqIoSqQsXfS9EUPAEPDfMbQAU9oE90fa7pwBP0YFs2G1dsJD2S5uIfXUx6JE37de2YWZNtq7axd/1etq3ahq/Ex0u3v0S8J46RMMjFc6i6ytN/eJoZzTOYOWMmjWc10tPZw5Lzl/CzJ37G6o7VvPP6Oxw4fICd+k6ayprIW3mGU8PkzBz3LbqP2nAtGTNDZ08nCSNB3s5zWs1p9MZ7sR2bO1vv5K0b3qIsUMZoehSP5sGjevC4q/yv9L+C5cgqdEd3B4ejh/HrfvqTUvUVz8XxqEct8KR7hWm2c3CkU4Cu5ptgnhUmfMQjneKn9lWKJDwzJMA741YcVc6T41V/SAB4ceaqQlWrMNYjnZDuhpm3iFRcC8hjZnopZhoUqrEKoPcoyVsR7FqG1G8pKpRNc8GoOxK9Ex5rzSeAGdxwM45Rgsrtqvs8fQKOi0yFC95H/y4LCfULwVcmSeH5lISQhWonKrtsU24/4aNw9v3Cws9bCZc+IyFxg7uk6uvF64XRdix5rolekZIrGgQmybEUJo4J8vh1Z0F6BMeZ8FQnEgarVm1zL+cIhz088sgSJk8u5bTTarj//k4WLmxCVZVjvNPhsJfDh2MsXy491tmsyY03buTQoRgLFzYWGWpFgXDYS1NTKW1tk9F1jWBQvNiO43DnnW0svngatWWVpIwsOdOgNzrEQx2/ZzyTIOTxo6gKcxtmkDYyPL5TAPKTu58jZWTYvG8HqqIwGB/lncEuIr4QDg6WbfPZD17CL/Y8T1kgwjuDXVw7/6MsnrmAWz50Bf2xEb695acMJI7QExvmSDJK0OPn2vkfZcHkOYxn0jiKvId/9uRTfOGaq0At4/7vP8J3V38br26BVkltlSog2uwGJyeScTsJo2uEoc4PyN/xyN3Si+2ZDrWPAxoE20AtF+YaRfYdWyc/USWVfPQBCLSAVoWNhgP4dZ2I10uJz0ddJFJkr4+k06xsbWXZrFnc0dJCJp8n7IaPzW9oYN2OHUWQvGjaNFa2tZE0jCIgX9vZSTyXQ1UUSn0+bl+4kJFUqnjMu9raCHm9BHSddD7P7QsXcvmJJ6LEYuKtbmmR4LFsVhjrI0fgoYfg8svlM1Loph4cFGZ6eFgA+ciIhJ2dcILUaXld+fHOnQKaC5VbhePPmSMAPRYT8L5+vbDj8fgE2w2SwOzRBTy/d1hYZFemDUex1V6PAOBMTuTiHt39PKtwsA9iCQHrBcDsd88DOUNAedYQ0C3GYDcczXRZbNzHUcgMD7P7nnskjMzrxbYsEj097L77blK9vXzgttvQgkE0n4/ApEl4gkGqP/ABQvX14Dj4XUbyzQcfLCaIO5aFbZo4poltmljZLCgKgRpRiqgeTxFIax4PnlDoPxZm5tZBsfkZkW5rugBqzQ03C4YELAfD4A/INrFx+N0jkIxCuFRei42/g6kzJfBs/zswNgztv3HPn7bIxC/8JCSiKIrC6PAA/Xv/TDqXp7KiApU8i89toXnuhXh8IebPO5PBkTFCVSdQdcK8YoK45g2IVcwforzhFDSPl2BZLSP7dx9Tw1W4HChz1XjeEI/+bgtPP72egwe72Lz5Bb5674+w/LVUnTCf765axf733+f3v/4133h2I9m//QW1cTJKWSWOoqA2TYV4FGvTv0vydywq/vnYOHb3ARg/IvdV10EqibXx38E0USKlqG3no8yai9p2gbx1xkdRVBW1sRkSCZxEHCceR22aguItqBVBcWwsyyIWixEOhxkYGEBVVcrLy4lEIhiGUczWyefzRXBtGAaKohCNRmlvbyedThfnYIqiUFFRUfRmezwe8vk87e3tJBKJYkbOCy+8gG3bXHLJJXzlK18hn8/T3d3tnnMtcmau+BYybVMW5m1ZmG9rbqO5tBnDMuhL9DGaGT0OsI+P/6vHcXD9XzUcB1QNpaJSwskKYFlV5boLBhRdx+7vlftMc2KlspCOmk5idx/EGT+C1f60fFEBduff3J5QvVjJ4SQTcpx8Hqw8atNUHE0XCdLfXkJ1PTg9PT3Ytl2UeJeVlbF06VIikQkfjKqqpNNpABYtWlQ8adu2TVlZGaFQiE2bNhGLySq21yuTjoKHp8BuF0ZBOt7U1ISu63g8HsAhHu+mvX05uVzClYgLFVBePo1LLvkxwWAVGzbcSDR6gGRygL171+P1hjGMJMnkIIaRpLFxPrFYN+PjXS47/R7gsGTJI5SWNgEKwWA1J5/8SS644D4cx6asbDpLlz5GRcWJgEMyOUguF0PxOCiqQmIoQWpEFjC8IZH72qYtAWQHoijqUf2cK9vo7ugmNZSicUEjsZ4YjuUQ64mx77l99O3qm+gFvbONvl197F2/l861nWRjWRRVITmQ5Aff+QHXuNU3ZtakubWZ7373u+zeuZs9d+xhxfIVPP3bp+m+tZueWA8rNq0gk8+4PlEVv+4nkUvQ0tzCSHqEmzffzGhmlIVNC3Ech8llk6kKVpG38lSHqsWXjY1pm3T2dFIdqsZ2bG7YcANVoSr6En1oqkZtuJafLPkJpb5SeRxFQcnHJJjMtiB3RICyFnCl27oLWBUB1K/cBP5quU1RBHz760TyXd0q3ulXbpIE8OZPC4BGgeR+GOmQn8Vwsx6ITIO934HkQTlu5XwB6SjC8tqmC3o1iom08i4UllpRoGzqsUw0yPZl0wSMKghAD9dNLBTY9lEsvfvTdLu1C2FoDhNSckWDylOESc9nCh8ENxjNhL5OkYIbCXei7y4KFO4P10HtmZIwHqiaYLI9AVnQGHpVXuvoflkQSHTLMV1vsVRzpaW6K9ENiloEyldcMZva2hA//eml9Pd/lfr6CKGQF1WVz2lpqZ+1a2XydfDgOD09MR566GKamkpwHOcYJjsazbJ+/V7WrOnAceDQoRg7d/YWmXDTtDl0KMr117fT1TVOImGQSuWpqgpSVhJwT5fCWh/dWW06NkeSUS44cT6VoTKuPUsA8nVnfYywL8hDH78Dr+4l4PEys2oyPs2DV/Pg0z00ltVwy4euIJpJUBuupLG0mm9deB0Bj++ox/gTp9ZOpypSTtrIEPT6qYlUMClUgmIn6Nz+F8bHR1n6wWeJj77B0NAQf/r3XzC/5SLmLzib3//uKUg+J2yz4hVZd2qLyMAjyyQd/OjOa/LgZMW77RhS8ZV5BZz8UdutlveJ3iCMeLAVhm/DQSFhGIyk0yQNA9O2i+Fm74+OUhEIMLm0lEeWLGFHTw+3vfgiVaEQectiPJvlG0eB5KaSEkK6znAyWQTPK1tbKff7URWFd4aHmVlZyfyGBuoiER5dupTp5eXEMhkmBYN8/eWX2d7Tg9/rFUb6Rz8SEN3VJaC5oUHA7+HDkhheVib+6PXrBRBPnQpr1sj11avFY226FqZ8XvatqhIm27ImwPV3viNgtbZWPNi33y4e7rvuksdYtgyqqjkGPPu84q8uBJwVzgOWe05QFfFTG3loqHYrwdz7pjW4DLg68ZEvhKCpqoByv1cC1Bx3MVBV3EA1N6PhgNjXIk1NnPnNb6KHQqi6jh4IkBka4uTPf5708LAo1AArm+W1++4jn07j2Daq10tmZESA+cAAc7/6VQCy4+MomkZ6YIA9//ZvpAcHi/3YqgukdZ+P//Qw3TpPVYXPfknAdIGZ9nhF+v27R6QOdLgf/vRL2SY+DjNmQ0kFRRvOFSvgzA/BX56HpulQUg6fWSH+a8eRY255BqWimt889Ssuv/ILtH3sRhZd8jGeeOJxwmXVBCsbhVTQdB74/ve5+OKLqD+lDY+/BMs0qJ7ZQj4bJzU2IFY6kHAzTafqhPmU1s2k6oT5aLqveNmxTfrfeZnXX32FgYEB2lpaSI/1MnfWDBobGuiJaZjZpAt6j3CuESeRzvD3hik4iiJM9N/fBBzsjpeFgS6EkDmIKrGmvhh+Rt7A7vwr6llnS3CtZUJZpSgWyyrkb9/syu0dJD3f6xW5eT4vCkgjh6Jp2IooB5ubm6moqKChoQHTNOnu7i6SIx6Ph4ULFxYrUzOZTDE9fNu2bezdu5eOjo6i8vBocgUgHA7T0dHB3r176ezsRNd1dF1n8eLF2LZNd3c30WiUSCRCQ0MDCgrdsW5eHXgVTZH8lvHMOEdSR4r1ngkjQdbM4uCgKRoDiQEM6zi4Pj7+7x3HwfV/1VBVSCXc3CRbQK6igKrhGDmsjX/EGT+Ck06h1IhM0e47LKucukcmB4CTiEvNViKOuuhSlGAYxedHu3ApSoFGc9OdCQQgNi4nYjcQRMEBrw/1rDZsxyESidDc3FwMGZPd5efRQRgAoVCo2HHt9Uq3bU9PD9FolFQqxd69e4nH48eshnq93uJq6tGjIFMyTfMYz/e2bavYt+85fL4S1KJ81yGRGMCyDAYH3+Dtt59i+/b7aW5uZcWKdwGFRGKArVvvJpHoBxQaG+fT0bGaffueI5kcxOMJYhgJeno6GR/fz8aNXySdHsHnK3HvizM2tp/nn7+WWKybsbH9JJOSSu3YDh6/B2/QSy6ewzZtbNNG9+ssuHUBmk+kaOGaMEsfW0rp5FImt4m8e85n51B3eh19u/tobm3ma8Nfo6mlidLJpZzzb+dQPr2c5tZmvp74OkseWUJJYwm6X0cP6FxjXcNVV15FaijF5ps3YyQNqiqqeL79eZ7tfJYPfueDzF0wF5/mo7msmbObzybkCWHaJgPJAeK5OH6PePNWbVtVTOhUFZWu8S6Wty+nO95NyBsqVm2ZtslXN3+V02pOoyHSQImvhHWL1jGaHqWlqYWUkSKajZI0ksSNOMvblzOWS+F4SqFqISI/VgRYq25nM8DobqmKCjbA6evAUy4e7N3LBSCrroc6H5d9u9dLAriC7KNo4K+BsjlSudW9Ht5dx6h6MnPPPJu5X9jK3HkfYsapZ6KHaxlL61x9zdXMOPkUTjvjLFpa29ize5ew1LGDAn7F1C2/Z4HRVpgAzlaOYo9tLi6p4Zp/QmquqBNeS8ug2ItdOt0NYnNl2FFXpm7nXWba9VQXgs7svPyvOg0yIxNhZFZO9rdNd5HCfT3n3SnbHc1k/+Vm2T/SJFJy1SPS8YZWSB+R32Fgh9x++i3w2oMQrMG2HHp6Ynz3u+eTyZi8//4oN9+8mQMHooTDXtLpPOm0SAhLS71YlsMDD+yktjZcBN627fDgg4sZGrqVxx+/lPr6CO+/fxN33dWGZQnwrqoKsXq1APBYLFdkyO+/v5Pq6hB+v85rrw0w/8wniucITVGLDPO1Z30Mw8yjqSoBjw9N1aiLTOJbF15HY2kNPt1LTbiSt/rfozxYQtDrJ2lkWP3SE/RGhb0MeQN8oGEmjWU1KIpK2siRyee4Zv5HiiDdq3n4/tZfcyQdI+ILcXhsUMIU7Rg/e+JXfO7TH0Kvvg0z04NpWmTGXmRX54v8/keTuWXlL3hzdK2wzent4pfO7AatHmofAyUAld8QoF15F6AKmFZDAqidDPhnQWaP7BtZJtLxdKd4sJ0s5IdEWu6eLwFXPq+yxpVsDySTdMdiXL9hA92xGFPKyrijpQWPqqIpCul8nr54nEeWLGFSMMgNGzaQyudpLiuj2QXk0ysqUFWVg+PjnNXYiOU47OnvxzBNBpNJYrkc74yMkDVNbm9pYXtPD3nAiUQEAO/eLb3V3d3CTjc3T4BijwdWrhTwu3KlsNMFYHznnQLGNQ3uuAMOHZLjrFsnMvKDB+Xzs3atXB8YEMa7pwdmzpQ6rqlT5bvv3nsFCOctAbWWJZ9tv08+5FlDWOy8W6FVuJ41xKMd8Ml9ybQA7ExOfNiFUThP7O+eqNwqft+75wXbkeO9fxgME7NhEsmeHnbfey9WLofm8xE/dIjs+DjlJ59MsL6eqrlzsQyDkTfeQNV15nz5y2THxnj9/vvBcdj72GN0v/ACex97rOjLTnZ3YxsG6cFBAeiDg6SHh4kfOiQMtnbU7/afGZYlr7dlil964+8kCXzzM3K/7oETZok/vnDfxt/BtJNh3jmybyImIPyphyUxfNl1kIwLKB8dmiAO3P3N559i9Zr7WP+7X9P1/j62bH6Bz1/9BUaOHEFxw12f+vVT/Kn9BR75yY/x+II4lomiKGi6F48vTLC8hnw2Qf87L2Plcyg4eIOlNMxehDdYiqJ7qD/1fLzBUgbf/RuBsloaGhoYGBjknbdexx+p4h9/f4cDBw9R6UtzuG8YxXGwO/7MnliK4ZERpjUK0FeapogyMJU8loHOZmB8VLzTmZTUcTVNgVAYddFSiJTgGDlXdejI94cbWKu4YZl2z8HiQoYzNoK1+U/yWuXzWJufK5IUhYwb27YZGBigpqaGkpKSIlNdUVGBYQh4DQaD6LqOpmm0trYya9YsWltbiwRIAUh3dHQU1YqLFy/m1ltv5ZJLLikeA2BgYIBQKITH4yGZTJLOpbEci554D2fWn0nXeBcd3R2U+cuojdQS9ATx6378up/f//vvOfOMM/nouR/l0+d/ml//6tdk8hmimSh3fvNOZsyYwezZszn33HP//3vvHh/Hx/+gcTzQ7L9oOLmsAFXXj6OUlKGUV0jnYiHgIp+TtE0zL9uEIjCpGsaPFLsUlfJJOMm49CEW+hLzhty/8BxJlQRZLVXUYnK43d+D0tgsrLZh4Og6eVU81oU0cEVR0DQNVVWL8u7+/n7q6+uL4NgwDHK5HKHQhEQ6lUrh9/vZtGkTl1xyCX19fVRVVRU9PwUf9tFA3TTNIrvtOA7pdJpQyEMiMcrKlffy5z//DZ/PwymnzOCJJx5lw4aNrFnzIACZTILbbruDK664jExmnECgHFX1IB3WmhuGpjA+vt9NDG+go2NNMcxsaOhNQqFq/P4yQqFqFEUlkehn69ZvFTu2i2FoF/9SvvdMh+RgknBdmHxaEsI1r0xYejp7CNeGi4ng8d44JY0lBCcF2fLVLSx+UBQBBSk5qhxP0RUcyyGfzheD0BRVwTIsObZLfhgpg3f/8C6nXHYK8Z44VMLtr93OVxd8FV3V6Yn1FFO+PaqHfaP7WNu5lpWtK5lWPo2kkaQ/0c/azrXc2XYnU0qncF37dazfu55ls5bx40t+TG+8l9Udq7mz7U4ml05GVVQy+Qx5W2paVEUl4o0Uj337wttpLGmkL9HH1LKphDQvHsVBsTJgRMFbLtLtTL9InlFAjwhDhytV3n2DgOTmZVKrVegfdyxhr/Uw5EYksKvqrAkJdvIg7F0Fs+4UX7ERE5Y7O8T3vv8D/vpaP88/+wzPPb+RSy66ED07SPtf3+amW77Godc2S2BZYBKUTaeYEn7Mh7UAtDUBtYoiXutCf22ho7u4bYGlUoW5j3dDSfMEww0uy21STBdX9ImKr8yo68vWRWoZOyj1XGfeAWUnuo+HBKGFGwW8O3mKHuoXl0N9CzSeDbvXyH6l02QBQQ9N7D/2Prx6v4DySDMke8n4moimNLxeDcuyefXVASorg4yMpDj77MkkEga6ruDxaCgKxS7rdNokHpcQtJISL/G4IXltjlPswA4GPWiaQlfXOL29cRobS/4lSfzBBxczPJxi9eoOVq5spa4uQrhMpTc6QsDjoTJYhu0WYsXScUoCJaiKVEOZbi2QT/cCDmkjh0fT6Y+N8OSe57hm/kd4rfdd3uh7j5UXXIPuVvkcSUWJ+EIkcyl0TaciWFJMCS94A7N5A7/Hy+qXnuCDjdO5sPkE6ptPZ0/HLzlp0u8Y5Uaqm89j5omT8fp8pNMZ9nd188C61fzmqSfJpfaD92RMy2Lv3n/w5isvMmfuWfJecQz5P3wbVH4N9MlgDYEaQfqtTXAUsAbltsSzkPkbTLpXGGwcEqavKNsOejzoioLlOKTyeYIeDys2buSpt99m2axZPLZ0KbqqcmBsjMFUigUuWAZY3t7O+r17uWL2bB5ZsoSsabKrr4/6cJip5eVoqlpMCddUFdO2i2FnYa+XnGni03UcIJLPox04IOzzrbeKxHvePAFPoZD8zOfhlVdEzm2a8M47so3usrtuYCe2Ld7qr35VarZ6emDKFPjyl+X4w8Pi3b777olE8sceE7n52rWSGv63vwnwPtAnYLmqbCLI7IRmAcVHd1YfHVZ2QrMA5PcOQ2Mt6KqA65IQ5PLQPSB+a1WFPe/AgjlHnUsUAduF08r7E8c1mmt4bc0aZlxxBeGmJhRNY/j114v1WZkjR3j3iSeYtXw5vtJSXrv/fmYtX05meJjKOXNQdZ1kXx/pgYFicrjjOMUGEjOb5Y116zj56quxLYt3n3iC2StWEKyp+T8ngv/zMPMw2AMbfjeR/J3PyfVP3SAhZBt/B4svg6paGB2GTb+HJZdLvZZlyfa6F379QwHeZ54Nn/sK/PIHx1438+K53vg7XmmcxWdu+Rp733pdOq39YRactZB/+863WXT++ax/+mm+dfc9bN60kclTplAICHMcByuXRvP6UFQdM5tE0TyomqjiLCOD5gtN2OId261INIsCpN+vf5r77ru/OAe64/bb+PBHPsxFFy8hHouhaxqhUIhv33035517LsUmFzMP0ZiEjjU0y/Gj4ziphKR7tz+Ds+8d1GWfR22eJspFNym9aPuzTJmfqSp290GZ/4XCOEP9qI2TJUsnFIbScpzBftS6BgzdU+y2LjSzAIyOjpJMJmloaCCbzZLL5aisrGR8fJzOzk4WLVqEx+PBchc2stlscU43Pj5OR0fHMYFmhmGQSCTo7OyktbW1mB5eUlLCxo0biz3Z5198voTiMnE+dXA4kjpCyBsi7A1jWAa6ojOlYQoP//5h/hT7E1dNvoqPt32cP7/zZ1asWkHFUAV/fPqPlIZKGRwcLDbYHB/Hx//UcTwt/L9pOLkcjpETiZXHC2ZeVjQd21WOqhMn6lRS5N1eLygqds8h7D/+CvXjV4o0SFEkLdK2UDSZ2DB2RKob6hpRPF65P52CvCEJlg3NOLoOuRyKomB5fWTclcyj/dOFYDPLso5hrnO5HD5XVnY0SAb+Rfadz+fJ5XJFwO71eosn7NbWVkKhEAMDA9TV1eE4DoZh4PP5UFWbW25ZQU/PLp544hnKypo5cOAdGhunMnXqbNrb1zNjRhODg3HOOONsurvfo7S0AsexyOfTKIqGpnlQ1UKQh4miqJhmjr///Wl6e3dw8cUPuc9BgHh//x6qq0912eskL710By0tt6PrAQHt+TDpI2mCk4I4joOqqYwfGKdjdQcLb19IpD6C5tPY+MWN7HtuH5c9cxkNZzbQt6eP8hPKOfjSQU773Gk4tiNhZvrE/q0rWymfVs7hvx2mYX4Dus9NbndAURVQYfT9UTrXdNL6jVbKp5fz/LXP03RBEzM/OxNFUejo7qAqVMW6HeuKYPra568tAudHljxCzszRl+gj5AlRHign6AlyMHqQVdtWcVfbXUwpm3LMPg8ufpCBxABTy6cWK7wKvurr26/nuX3P8cdlf6S1ubUIRnyKis9KijzcUwLje6XDWpHnIyFdtgSPOQhwTh0QFnrWneCvFaDoiYjEuVBBNNIhPdaOLYDynyu9HAeib4oPG5WTT53DmtWr+WjLJKg5VyTamShH1DrqmqeTSSbQ1aPCvVQvxdnWxFt64vo/hxQpuCy141Z2Nbi1W8bEdRz3uC4AL1Rz4cjlQr3WyBsQqhcg/tINAnrLpsGWa6WL+uMbpZILpBfbtiA7BsFJbh9vVjzbiR4I1ch2ZkZYJk9QUsqDNXIbiIf7iROlrmvRY5AeJulppqtrvAh6C0D3zjtbmT69HCkpsIsp34GAB11XeO+9Ue67r5Pbb1/IjBmV9PUlqKjw09MTZ+3aTu64Q24Xr7XiTl7lsmnamKZdrP/q60uwZUsXu3f38fDDl6D57YmX3XHImgYhr8jFLUeCvKLpGH6P3Ob3eLEdh+++/CRXnXkpw8kxbvrjfSyeuYAbF36SkC9IwONDRWE0HS2qOfweH4OJIzy+81k+f+alVIXLCXr8dI8PciQd5dTa6WiKyve2/oqqQwa///Xv6FjfLHLtyDKW3xNg7mlzufGLn+fb/3Y/a+5bx1+fPod5i5+U11uN8Mwzz3Dvv63l7Te2y+JJYaFjcLkcp6FdmO7R1VD9fbBGRTJeebuw35ndULMO0EDxiYdb8ZO0guwfH2eNm9w9vbyctGkSz+Uodc/TN2/ezMq2Nk4sLydv2yxvb6elqYlPnHyy/HruOfy2F1/k/kWLOJJO0xuPs7CpyQUfDgfHx+lPJv8lWbw2HKbE56PL/R3ubG1lViCAtnz5BNh9+GFhkB1HmE1FkX7q6moBx9Omye1Tp4o3O5GA+noBZQWm1XSzSNyFWkxzItXbccSHvWaNSMEnTZJAs8LjP/ig3FaQbSuI3NuypT7LMCdAst8rDPPR10FuyxkQDk7IwY8G4TMmw/vdAsYdewK8T2uYeA5HHdfUVWzLwjYMRt96i2BdHaGGBgFHhsGRN9+k45ZbaDj3XGavWMELn/wkrQ88QNXppwszmc9LBZdpcuTNNwnU1BBubCTZ08Pexx7j5Guu4cjrrzPy+uvMvukmrEyGQFUV3rKy/5i/+uiRTcMvHpwAwZ9ZMVGtZVvCPBfuu/Ir8nwL/mwjJ77r2CiccCqMDU2A9Oo6CUfb+Du46DIJPvN4ZWHRsRkaHOKEOafx15c2MmvWqRzs7mdhaxuv7tnFrt17+Oa3vsXmFzYxefJkcM8RcoIRq51t5rHtPCP7d1N1wjxU1YNt5/H4wuJMGh/EEwjjDZZhpKOMHniN2lPOkfMU4Fh5VN2Dnc8ztK+DmpNaUTUPig0YOTkveb0uadGLUluPous46RTW4w+iXXuzhJnFoqgNk2XeFR0VD3ZdAyTikgy+5BNuKJmrFvT6KKSqOzg4PYdQSstRgmEcXZPXNJcDtyHG3vwnrEuXYRgGqVSq2MQSiURQVbVYr1UY/2zL6+3tJRQKEY/HaWhoKILtwlxOVdUi8ZJMJhkbGyMUCpFKpQgGg+zcuZMlS5YQj8cpKytjdHSUssoyuqJddMe6md8wH13VuWnTTdy28DamlU/jwPgBBpODzG+Yz7TGaTz5mycZrBykNlXLFz/zRS548AKeW/Ecv33+t7TObT1e0XV8/H9mHAfX/03DyeVkwlisYSjc4VZoxcaPAcGK4+AYhqxa1jfjaCqKZQsDXVuHoung1maRN0BR5QRfuG4YchI2cpDNiAeo7XwIhrA3P4e19DLGo9HiKiZQZJqB4sptb28v9fX16LqObdvEYrFiN/XRfupCHUOh/qEAwAvvp/b2drq6urjuuusIBoPHMNiFzkSfT6GpqZn29lWceeaVALz88krOPfffmDZtDr///a8566wz+Mc/DvDhD3+cd97ZjcejoutBVFUrBqHJY+tEowfZtu3fWLjwdsLhWjyeIIqiks+nePHF21m48GuUl09jdPT9Yg1XWdlUQCEaPcC2bau49KJfMr5/nI41HbTd2UbZtDJ6tvdQf6aEoCiqgmM7mFkTPaCDA707e4k0RiifWo6ddwPebAfNr+GYDpZhET0cJTWUYvLZkzny7hFSIynqTq8jNZLCE/IQrglLmJqq8GDzg0y/cDpLH1tKPp1HiSgknAS2Y+PTfKzYtKIIjB9b+hiHYodYvW11EWwfzUCHPKHia5QxM4Q8ITRFY//4flZ3rOautruYWjYVBQUH2SaajVLuLyegB8iYGcaz44S94SIbvrJ1JadWTEVL7IfsgISRaUHAFnbWMkTqneyS2q1TvgGR6cUJkTDEGfELm1l4ayXMWT0Baj0RkZQruP3YOUARqfmkFtlX0ejc/RofX3Ylve9sQQ/VCmur+kBR+ea3vsVbr+3mT396bsIDDRPSbM3nguNGNxXcN9FVXbhd8wo49oRcqWROjqN6hW32hiSkrBB2VgDTmkcS0jUvjO+DPWulXitYAyNvQkML7P2l9E+f/7Ac67UfwHk/Ekm4LbUyaH6IH4Jd34F533CZd/soFlyn6G903Fqv5CAkuyUsrWwGvHgtzL9TJOPxQ8S9M/nKzS9w003zmD69gpGRFPPmPc5vfvNxFixoJJ+3iUazTJoUJJMxuf32F7n99hZ6emIsXfpbli2bxSOPLCGTMQkEdG64YQPr1+/lhReuYP78BizLQdMUMhmTm2/ezMqVbfT2yr7t7ZfT1FRa7MKurQ1TVuZD8UjKbDZvyOKNohD2BkgZGZK5NCFvAL/Hx0D8CL/Y8zw3n/0Z/B4fvdEhfv3qRr527ufYO9jF7NoT8Ooe+mLD/HTnv/P5My+lvrQK07IIev3Yjs23t/yUzft2sHjmAr648JNMCpXxRv97lAci/PKVDVw7/6M0lFZz/jnnct21V/GFK+ZJvVblSkajOld/7kIO9AV4f38Pn7+skUd/+FWIfFT6rtVSLr70ShZfcCY3f+VLLiuN+7lICXNd8yBkdklPtmcKDH0VEk9B5Aqo+b4AahRI7wD/HFCDYKeJm3629x7hlKoqArpO0OPh/dFRBlMpzmpsRHeVRlnTRFdVYa7Hx/HpOhV+Pz3xOGs7O/lGayvT3XCspGHg0zQypolHVfFoGqZtcyga5Xs7dnD7woVs7+lhe08P93zoQ9RHIkXmu/3yyzmvrg7/gQMoq1eLvHvqVAkiW7BAQPCqVVLN1dwsrLOmwfvvy3aplLDYc+aIx7q0VPzb+fwE2M5kBDyvXCnAXFUFbBcsR8mkBJitWSOS8vp6AdcFgBwJCRttO5BICZutINcLdVmlYTnn5PPymAUGWkGO4/XItgUQXui/LmQrxJPivVYQxrypdiI1XNOwLJP44cMChK++mlB9PZrfXwTHs667jvTQEKG6Orzl5Yz//e8Ea2rY+9Ofcvodd6D5/TimyejbbxOoriYzPEzV6aez+557ir3Vs1eswDZNQrXy2Kquo/uPCmn8jwwzL0BubFhA8JLLoaJantdTD8PlX4SxkYn7JtVIF7bfXQSMjcNIP0TKYOsGkYIX5j3PPAEfvkJe1Fe3Cdhucr8PshkIBHnq+XZWr16N7vFh2TZ33P41PnrR2VQ0zKS2tobKCjdRG4f2f/89ZWEfwfJ699zn5tm4th1FUXBcMmLw3b9ROfUDaLof3Rd0u6lVHAcG/76Vymmnk88k0X0hdF8QM5dC98l3pq54cHIZUQTiYL+4AXXB2RAKY295XuZXugfFH3CVh2GZd7WeD+UVMqdTVKlFdSvUnHweknGx+9U2SACaorjbOTiKrE8XXjsnGZe/S0kp1rp7sO5YRTKZZOvWrezdu5dZs2Zx0UUX4TgOuq4f0+RiWZJhU5hvlZeXFxWKvb29lJSUEA6H0XWdRCKBYRh4vV4ikUhx7lcgSDweD6ZpUlpaSj6fL6oQc06O7T3bmV09m1Q+RU2ohkQuQdbKUh2qZjg1TCafoS/Rh/G+wTWfu4ZAMMD42Di//v2vmTdvHlPqpzD78tnk38kT0APceuutfOpTn/rPvX+Pj+Pj/+VxvIrrf9RwpP/aNItVXE42I3JvkCqt5mnyxayI1Extnur2SCKBHfm8rHjGY8JcKwr4/DjRMRRVRQmXYO/qkJCN7VslxGjRpQDHJIW//PLLgIBdoLhyGQ6H2bRpE9FoFFVVKSkpIRgMkkwmMQyDvr4+DMMgEomwaNGi4om48L8AopcsWcK1116LYRi0t7eTy+UYHx9n06ZNhEIhkskkBw92U1VVy/PPH6atbREXXfRxdH0pXm+Ihx9ew6c+dSWnnPJBzjvvQh555EF0XXF/T48LrFVyuQQbN65gfHw/uu4r1m+pqk4sJmFpicQADQ3z6OhY46afP0BTUwua5sVxbBzHYtu2Vezdux7HsulY01FM9saBhvkNxLvjbLhhA9FD0WI1l523RSJeF8bj9xA9EGXDDRuIdUug2fj+cdqXt5PoT+Av9VPSKJPtHet2EKoOoWgKJQ0lhKvDjHfJtuMHxrl297W03dWGoimkR9LkyRPLxXhr6C1URWVl60qWzVrGylapHZtWNo3Hlj7GtPJpGJaBRxPGosxXhoNDzswJsPaGyNt58naeKWVTeGTJI0wpm4KDg+lIj/btL95OKp9iPDvO/vH9rNi0gqyZJegJEvKGaGlq4cGdD6LiCGCuanUBcF4AsW24IFeH9x+CqhaRcnOUXxnk/iM7ITMAJ94kcvI3VwqgdCz5Of6WK6n2wmu3iBRcddnAdA8/u/9GPveppei+sDyGFgDb5Nc/fZD1Tz/DYw9/X4ByoYfasSDZJ+A32Sty8WTvxHWFY28HAdZ2HoykPIdEj4Ds0ikSjla47lgQOzABrL0RAcKvPiASbk9I2OtwM/Rth5Muh/MegqHXJJn83Addxm9MWH/VI3VdyV4JMUsNTLx2Rhy2flXuL3i7U4MCzMM1IoHfs1Z+pwt+Ir/j+PuwazWq6vD97y9G01Suv76ddDrPnj3X0trajGnKxKtQoxUKebj11gWsXbudefMaWLZsFnfd1UY0miUclvCzu+5qY+PGz7BgQSOqqrB7dx+HD8cIBDysX7+X1au3MX++7Dt/fkPRe712bSfBoAdFg5SRoXt8kO//9degKIQ80pvr070MJUbx615XDu3jqjOW4vf4yFt5qsLl3PKhK/DrXmrCFax+WfzWg4lRNu/bwc/3PI+qKOwbOUTKEDa/EIp2zbwPUxkqQ1NVPth4Ek1ltdx6zmcZSY3j4LDlLy9zzec/J/7pmh+CZwqVoW6e+9EYj62eTHl5GQ//dCuUXuH+UXR6+sb46986+eyV17nAumANyIIahtqHQfGDp0mSwc0BqL5fvNbV90vQWboDnBwEF4A17FZ69eNRDObW1hLQ9SIILvH5OK2mhqFUinguR9IwyLnVWu+NjjIpGKQ+EiHg8RDyemlpauJ7nZ0YlsWB8XFu3ryZ3nicEp8Pn66Tc0F2Y0kJLU1NPLBzJ4umTeOOlhbK/X6p4mptpf3yy2lpbsY0DJRgUFLBa2tF2r1ggbDSfX0i154xQ8DyihUCuE84QTzZIP3W/f0i9e7vl9sOHYIbb5SfgcBE6BmIBHzFCgHVti1gfPp0uOce6OiA11+Xz1DOEJ93V49bqeW4INoRpllRhKkOiRKCbE4k4AWmurDI53Oro3xeYaz97nVFcb+jkeOmMnLcSEhAuK7J/TkDO51l72OP0feXv+ApKRFZt2VN+Kh/+lOqTj+dUGMjOA5VH/gAe3/6U7pfeEECy/r7eWXVKvwVFUWpuKKqnHLddTRfdBGzrruOQHU14UaZ49n5fLHm6z81Cv70sgoJMptUI2DaNIXBVlS578ovQ2m5LHwUOuZVTSq4pp4EW/4AzdNhZBB+82NR7i35NHTvl8WLqlqYforMaeJReO5XEB3j05dfziu7tvHqnp28+carXH755QQrGsmmkxw6eIBXX93Dq6/s5tVXX6GucQqB8gb3FxeNlVLItnBsbNMgPT6AmUsTKK9D0/1oXr8Abscmn0vj2CYVU+Yysn83ujfAkQN7sC0Db6gcVfOgai7xkExiD/SiqBrqWWfjpFKSebNoKeheSQnPZlAbmrF3/FXmXR0voxgGjqJKYnj7MzA+6s7xvChlFajN01C8Ppx8XlLEx0dxrLwAa8eesB8FQ+DzoWgayqy5KIqCz+ejtbWV2bNnc+GFF+LxePB4PKiqWvRZA8Xa1Pr6ejweT7GSa9OmTYTDYWKxGJqmYRgG4XCY0tJSxsbGinO/srIylixZUiRXCpJxr9eLYRhs2LABRVFoaWphKDXEt7Z+i+5YNyX+ErJmlo7uDsoD5Uwtn8oHaz7It7/zbU778mls2LOBZ9qf4TOf/Qx/H/g7pmlS66/llJWn8MSvnuCWW27hzTff/M+/h4+P4+N/0DgOrv8rh22JXLtQiuk4rsTNRgmXoFROQgmX4KiarFratgSQuZVb1pYNsnJqWziZtKwOezwSgFFWDl4v1gvPgZETj05fN050FHXRUgnZWLRUHjOVQLEs8vk8GzZsKHZNF3zV/1zFtXfvXmKxGNFolI0bNxKLxRgbGyORSFBfX08qlWLjxo2kUilUVSUWixW3K4DpQlVEISzDMIzi5R07drgplwbd3b2cdNIMdu3awbp19/H5zy9nePgIP/7xr/n975/ivffeZuPGP3H99V8mFsvg85VgGHGSyUFs28TjCXLWWbewe/fDhMN13HbbEZYseQRN8xGP97Jgwa2kUsPMmvVpLrnkYRRFZ9Gi+5kz50qCwSp3lVdl4cLbmT37ChRdnUj2XtkmAR+WUwTcHas7wIbY4RibbtpEqCpEoi9BqCpUrNvqWN2B5tUmqrpWd+Av9dOxugPHdmi7sw1/mZ/kQJKNN24keiBKvDde3DZUHaKkqQTHcti2ahuao1HqK+WM+jPY1beLykAlDy5+kOaSZg6MH+Da56/FcRySRpKR9AgZM0OJr4SuaBc3bLiBnniPvB1tG03V0FQNXdGlz9q2eH/0fZa3L+fg+EG+c9538Ot+qkPVPLjzQc5uPpuGSAOaolEVrOKq067ihxf/UFjT1CFJ8c7HKaaAG3G3p9qB0x+EaddAoF5ABor0PeeTcn9VG5TMgMgJ4C2DE78sXdev3SzbTjoLjHEJQKucJ5Jyx4R8kuToQdZvHeKaz31aJOfZYVAUfv+rx7j3vh/y4jOPUdN0IkQa5XNYSO8ONwj4DTcKCI00yvVIo0yoj74d5Hn9rwB54fbCdcdyL/cLsEaRz/F5DwmQjh2WbcqmSOjY0GtSo1U7T1LChVKDUJXLXudlgaF+oYSYVc2d8Hh6wjD3KwKoLVGxEKyRCZkekN9j/l2iCujfJaFnvlI472EUx0ZVlWLa9/33d1JbG8Y0bWzbwTTtIn4YGxvlqqsu4s037+G88xbwyivf4AMfaMA0UyxZsohTTpnBsmUXcMstH+Pss2/g/ffHmD27mt7eOABXXDGbBx9cjMej8fjjlxKNZrn11gUsWzaLr3+9hQMHxrGwSOXSjGfi3H7eVQQ8Pizb4vDYIN958XGmT2piMDHKt7f8lEw+R0WolDf730NVVHyaB4+mM5wc4+d7nmduwww8ms4HGmbykVkf4vZzr8JxYG79TKkg+/MvqAyUcs/i5TSWiaw+mcvQHR1i1Us/YzQVY0bVZGzHIag7gCnvc3MEzGEBvNO7+dmzVXzus58S5Y85KEDayfDzx7/L0iUXMmlSNWAx4TvwyLGcnDDc+b6JZHA1CDUPy2b5bmG0h26S6q58r7vdWmylBL+u49N1sqZJxjSpCYcZSCa5e+tWBt3Oa01VaWlqIuT14jkqS6M2HObKOXO4f9EiNFUt9lf3xOMkDYOkYRDN5ciYJm8MDtLa1MRDF19MY0kJ08vLSeXzHBwfZ3p5OU2lpVzf3o7u9eKk05IIXqjAMk2pzJo7V4LLHEf6rFevFrB88KCA6cFBAcCFOq21a2XfNWtgyxbxbCsKvPeeSMBtWwLSbrlFJOMdHZJObtuSFH7hhRKe5iCAN+iDE5sFMFu2sNCJlADfwp+lEEgW8Mk+hQAz21XzxZMC1AtVW4Xzge3I/5hbxVUSEna7vGSiB1tVIWegBvzMuuEGPvLSS/grKrAtCweYtXw5zRddxKnXX4/iysk94TBH3nyTWS5w1jyeItB+9+c/p3LOHPJJCViLNDXxwa9/nZHXX+cVNy080dOD6vGgegtKmv/gyGXFK52IyRzj1z+CI0MChEFqtApBZL/5sYBpXYdkTPZzHGGwvT5JCF9wAfgCsPgTclsgBDNPk8vTZ0HXu8KQx0bdsLSn4ahFc5kHHfV6HxWAqhRk1JbUTBX+VgUfuqJqKLoX3RvAzCUpbzgF3R+U5hb3vsL23lA5VSfMxzQyVE0/E90r/uwCk4zjgM8n6sJsBqW8AqWhSfJ0NB3FTWfH6xXPcTHc7HyZp7mBaM6+d6QT23VMFdl2QPF6Uc9qw0nEwHZwHBts222IGZXqrnAJDgra0svkbavrlJeXs2TJEqkwGx2lu7u7+Fm3LOsYwkPTJGtnw4YNRV/29u3baWhoKDLd0Wi0SHwUVIvRaJQNGzaQz+eL3uz29nZGR0cBqVbNJDOoisr0iun8+JIfUxepQ0GhPlJPa3Mre/r2cGj8EO++8y6jQ6N84qJP0B/vZ968eVTVVfHdP3yXUDjEmlvW8MiSR5g+bTotLS3s2bPnP/cePj6Oj/9h4zi4/q8csXGRC8kZVaRXICuWtiXVWbmsTP5VVaTfjoPd3w2qinbhEvD5sV7cKNJvj1fku0YOJ5NB8XhRL/4IiqoVAzGcWBTF40G75OPyRZHL4iQT2Jp2TCpkWVkZjuOQy+Xo7Ows3h4KhZg1axaNjY3H1DYEg0E6OzvF93tUTcM/p01ms9ljkicL6ZRer7d4ua2tDVVVaWxsRFVVPvvZK7Fti1mzZjB58mSeeuopBgYGaGmZj+M4nHRSPXV1tbz55luu/MmPz1eCaWbYtOlLqKrO4sXrMIwE6fQRQEFRVJqaWvD5SmlsXEAqNVRkuL3eEmKxw2zceCOx2CFAoaLiBJYs+QmOaROpj7D0saWUTStD0RQUTaH1G0cBbsspAucd63bQML8By7BYcOuC4jZW3joGpGdjWdpWtgEQqAwQqAgUj7Ft9TYa5jUcA+jzKfFmtX6jFcfjkDbSBPQArc2t6K7HXFEU7uu8j/V714us37Ep9ZWKFByFtdvX8ty+5xhMDhLwiMT7po03cWD8QDGAxMGh1F/K2c1nUx2qpsRXQpW76PDA4gdoaW7hixu/SNd4Fzt7d7J/bD9JIykgd+9qAb2ZfgHZVlqAtB4WIPnazcJmJ7tcEJ4Af6WwzLlx10dpy37eSqnYSg/AnO+4ExBTEsNDzTD1czDvp8LoBur5/dYhTjttDied5jLjwUbWr1/PXWse5qVnf0HzyfNElq36BBgXwLXulzAx3Scya80n11VXAl64XXXluYrqSsf/F4D86OuFnulIo3ijYwdk30Q3/PkmCNUxOh5j7pkLmXtmC3M/ehszFn4UPVjK2Ni4sN99Hfz5+d+hRWp58MEH5TVUNJGRe8NyzBevl58VJ07UjqUG3O7soLyejWe7CeQ2lE6Fkqniw/7zCjxOClVVWLmylWXLZnH//Ys4cCDKl760iXzeJhj04DiQSBjkcj5eeKGD7dv3sG3bLs499xO0tJzHXXftJJs1WbVqLTt37uHZZ7dyzTVf5IEHdpJIGMyb14DHo/KTnyxhZCTNihUbSSYNJk0KcvLJk3jssaXMmFFBc3MpwwMZKkJlzKiajGHmGU2Og6JQFSnn82deikfTGUqOsbXrFR7f9SyqolARKOGdwS4sx8ar6lQES/n6+Vdz8Ukt9MdHyOaNIlA3bVNYa0XhlNpp/H34ID3RIdb++RfyWfT6CXp87Dj0Jj/f8zzJXBpsA808gDK4XMCzpwn0akAjmTJZ/8wGrrn6KleWr4GTw9GqefKpv/CFqy8XpjrdAfkD8vcze2DwBvmJDcEW8V7XPIykHeYAR6q7zBGouFWAdWB+MWncQaqaDMviDZf5tRyHwWSSvx0+TKnPV+zAvnLOHGl2cz2Y8VyOmzZupDsWI+L1krcs7mxrY9msWcxvbERTFAZdkN6fSHBqdTUDySQZ0+S90VFWbNxIQNepDAaxgbXbt7N+714swxBJ+JYtIv12HAk1O3hQAPbNNwvLfOCAyMPTaQkq+9vfoKlJgPHjj8N114msXFVFAr57t2y7fLn8nDpVFqXvu09A3U03TVR12bb4ubu65DtXVVy2+qjvYa8urLPHI73Xlj1Rt1UYtiMg2+OR4LOcIcy2qsr+9lHbK4oAdY9HtlMUAec+j2yfycnxwkE0VSHS0CA91JlM8RDhxkbm3XMPgdpaXl21StK/TZNJp59OuLmZeffcg6Jpx4Bw3e/HX1lJsr+fXd/6FtnRUUL19Zx8zTUMdnby7hNPAPznvNZGDjIpUfdEyoSVPuk0qc0a7pcarkgZjI/IdifOkv00DcoqZb9C3WEmDQf3SQaEqoisHFySwRZwnozJfh6vpI5/+V5Y8hkAdF8AxVVdOa6X2wFXXSb2OjOXFoZX94o1zK08y2fi9L39IrnkONg2vnCFsNtH5WcUbHq6L1T8/vQGSgiUVuMNlQMOZi4NQD4dxXYsWRCwbfB6JWDMdsR+59gyf8sbIg3XPCjllWhLPwmRMsnRURTUxR9G//KdKHUNWFva5bdwM00Ux8axTFA1t55VAdPEyaRRGqdIwJm7uKCoKtYLf0KxrWLjSmH+lkwmCYVCbNiwgUQiga7rxxAeQHEu19nZybRp04pzsFwu9y/ERygU+l+miB8978tms0ybNo1wOEzXeBfXt1/PoeghPKqHg7GD3LjxRvaP7Wd29Wz8Hj9WxKKvv4/6bD0LGhfwyjuvEB+I891PfZdPXvZJNmzcwFBqiIP9B9m9ezdz5sz5j7+Hj4/j43/gOO65/i8aTjZb/BIoplsm49JbmIhJKIbrc8XrlxNtKin+msoqqWhwHBxFkZCywX6U0jLsbS9LMMbRnm0ciEYlqbKhWeoyQALVdB1i4+TLJx2TClleXo5lyYm6kApZSIssvCdisRjbtm2jra2NWCxGaWkpJSUlRS9OS0sLZWVlxettbW0Eg0E2b95cfIzCamqhPiIej9PV1UVfXx9Llixm8eILuOKKxVx66cf4wx9W8s1vbuevf32J009fQFmZl0mT6qmvr+S11/7Bvfd+jR/84Pv4fJPwelXuv/9uSkpG6OnZzqWXPs7o6Hskk4PFtPDW1m8Qj/dRUtJIPN7Lb3+7lFmzlrF06WO0ty8vJoUvXfoY3d0dNDTMQ7NDOJaCmTHRfBqaR5MlKAccy0H1qDiWQ/RglG2rttF2Vxvl08sZ6xoj3h2nuaWZ9GgaX4kPPajjmBJqZps23R3dVM+u5qXbXqKppYmmliY613bKMaaJX9txHPp291HaXFoMVaNUxG+2Y6MqKjt7dzKrehYhT4h0Ps1tL97GT5b8hK7xLtZ0rOH2hbdTH6kH4LWB12goaSjevr1nO9PLp3N63en0J/p5aPdDPLD4gaKc33Zs8lYe0zEp8ZbwpU1f4qZ5NzGlbAoKCrduuZWHL36AgOpBcVzfr5mBdJ8w0HYORndBsEnYVz0kndQzb4HQZEkW91e5HxIHkgekL7t8LuRjEnRmZQBbwLinVLZ97WY4+fYieF949vlct2whV199NaR7oW4xHl+A2tpaKivKBZii8vLmDVT6MgKEVV1A6NF+a81HsWKnMAuz88JKRxpdkM0E2+W4vuqx9wXg+komPJrgpocfhnC9TDj7tklHdekU8UPvXgXzV0K4me99//v8dftunv/3p2FoDzH/TBYt+Qg11TWcf04rN3/iA5LyXTpFFhoUXX63zKiEnCmqyL1TA1A7X57fwA7pxtYC8hyMhOyfHYNcFEOfRNZbh22DbYs/esWKjdx66wJOOKGi6JlOJAzi8RyRiBddVxkcTPLJT36ImpqPsH17iKqq9TzwwN3MmnU2a9Z0FD3UmqZQUuLDNG0sy6Gzs4dDh6KcdVYjTU2lDAwkigFqtbURFAUCJQo502AoMcZoOkZ1uJyf7foTX5j/EcbSMWbVnnDMufXN/veoCJSQyCWZUz8T27FRUBhPRykNluI4Dt/7yy/59AcWMylUhl8XOa8CmLbF/X/5JTef/RmCXj/ZvMgoVVXqDDVFJeyxUTPbBFB7JiMVWrvAU8fPfvlnnvzFM3T89QWEnVYhs5uXO7q5evndHNq3EdXqg8A8sKLCRA9eXwxFY9I9oDcK8B5dLVVdjgPe6QhQz7vH1UDxAJK2nzT9JAyDWC5HdTBIzrKIuWFmmqoykEhwf2cn9y9aRNAFV7bjMJpOk8zlqAqHCXo8eFSVhGHwxuAgZ9TX49d1TNvmhg0bWL93L8tmzeLBxYvRVZXRTIa7t26lpamJlqYm1nZ2cmdbG1XBIDdv3sxTixejHzgAwaCA4NWrJbU7FILycgHA7757bML3Qw/J8x0YkO0LfuonnxQP9rp18lk8OijtkUcEmHk8E7dfcQX8+Mey7cgIRKMQiYjsvACchcqc+GwWxtFBZl7PRI1Wwav9zn4JLztx8rH7HjNVciCeElBt2VL91VQrnuxkWm43ZDE979jkk0kUVUX1+bCyWRRNQ/dL0J5jmuTicfwVFZiZDG9873vM/NznCFRVobup63Y+L7Yxt4kjn0zy9o9/zAe+9jUUVeXV1auZeeWVRJqb0d3apP/QyGYmzluJmNjOKqsFID/1ELyxE754pwBhx1XVjQ27wNmZ2Ke0DMZHIVwCf3wSPvkFAaG2LaSC7pFt/YGizQ2QvuxAEEuVphNc7/TRvulM7AjB8lrAwcpn0b1BHEXBMQ0UVSpFzVyaxJFDlNaeKE/HlJCyfDbFkQN7pOva42fw3b9SNX0emjeA5pnoATfSMUb276LqhHl4g2X0vbWF+plno6puHo6modg2dm+3tLC4zS1KMCRvi1QSQmE3d9OGRFxse+GwzNkKzS7pVLEJBo93gjQJhWWOODqCk0yglJS6250PpWUoqoYTHSUfikhN11HBs5qmsWnTpqIHu5DkffT18fFxtm/fXpzj5fN5tmzZQnNzMzNnzvyXOeDRnuvCXG5sbKw47wuHw3i9XrJOlhUbVzCvYR6Lpy+mPlJPX6KPLV1b2N23mzvb7qQuUsf27u289uJr/PrhX4MCQ4khbrvjNr5y7VcYOTLCjdffSFdXF5qisfyG5dzy5Vv+4+/h4+P4+G8YxwPN/puGk8tJeIZtuwmTdSi6R1ZkTdffVAghK4RlLFriBpfpOP9Ux4VlSjf23jfQb/t2saahEFzmxKLkJ9Vy6513suXFF/H7fcyZPZsffG8dF1x8sXwZOQ6ZTIaDBw/S09NDRUXFxO/rpnhv3bqVCy+8UGou3ATxQthZPp/n5Zdf5vzzzy8GXBRu9/v9xcquwom/EH5WCDGrra0lnU4XT9Dl5SF+9rPLeeqpQXp7uzCMGJ/97EKy2dl0dDxLf/8QwWApul7GjTdew913r+JznzM499xlKMp53HLL7bz66k5s26S0tJn29uUsWHArO3as+5eKrYsvfphNm1awYMHXKCubQiLRT0fHatraVqLrIbLZMfz+ckJ6I4qmEj0g4LmQEO4NS+e1kTDwlfrwhr3Ypk3vzl5qTqvBG/KiaBNVWy/e9iILb1tIsDKINyL32XmbzFgGI22Q6E3Q1NIkNdG6Qve2boKVQVIjKRrmNWBbNr4SH0bcQClXiBtxNEXDo3nQVZ14Ls4dL93B/YvuJ+gJoioqHd0dVAYrGUmNML18OnWROoBiwvhIaoQTyk+gNlKLaZvYjo1f9xdBe9JIctuLt3HLWbdQG66lxFeCaZtkzSxAMQwtoNqoSTf5++Q7IDxVJl1mGsbfgMozBET7yoXhLYx8TMCy5nY+ax4Bfb5yNzAs7/qtg2AlBVxoHnAUeLYOGj4MH/whZAfdx/6a9Gf7Kt3UcdsNPXJDyUqnCctbqOIqnXpsKBlMeLELzLYRFy91EUwzccF267D+BXy796keJqgSRfznudhEWng+Jc83MwINbZw8ey5rLqvno1/+AZTP5MorPs1lJ0X54/uVzD3jLG7+0k0UU9IzR8BIQ6pXJOKekLzmfdvAPwkyw1A3X55XahCCLmukqJAehnwadq8i2fpTtu0YorY2zLp1O3jooYvJZCR3wbYdUimDuroItu0wPJwimczR3FzGsmUP8PbbP2TTpldZu3YnBw58n1hslOHhDLFYCZdc8kV+85svYBgWlmXj8+lF8G4YFl/60gs8+uhSrr++nfXr99LefjmNjaWsXr2NJ3+1FMdxGEmOUR4sZTwTp/PQm+wf6eFr535OmCnbIm+ZBL1+cqbBO4NdnFZ3IoOJUYaSY5xaOx2v5mHVSz/jqjOXYtk2P9/zPHecdxVHUjF+tutZrj3ro9SVVJHN5wAYSY7z8z3Pc+38j1FbUolh5gl6fXhVC83sQskPCntckHhn9rDwwq9z3bXXc/VVn3QBdyPoTXzm8k9w4knzuPeeu+R1T3eCpx4808DJTABtAFQY/KIbZLYMqh90b45Iv3W+H4JnAbprp4CkFSSWy5EwDGpDIQ7HYtzf2cl9F1xA2Oulo7ubnliMj5x0El5Nw6OqbO/poSESoTYSYSCRYHVHB99obWVyaSm/eustdvf18f0LL8Sn66TzeW578UVub2lhWlkZNpAyDPoTCUJeL3dv3cpz+/bxzGWXsbCpCU1RCNk2qmHIwtzRYPjRR2VRN5cTafihQ/Cd7wiQnjJFnuvR2z/2GHR2igfb5yvKgNm+XTqwm5rghhsmKrr8fkkgdxyRid98s3i2q6vhtNP+F1/GuIFlbvVfMg3vHYQzZ8v9hYCzAtA2zAnfdNaYYK8dxMfdWDORNl4ITssZ0DskUvRcXlhsSxbs8paFY5pY+TyObaO5sm1FVd1cNDnZjLz+Ov7KSkbffJNwczNVc+fKd6mqYqbTaG4SeyHlGuDIa68RqK7GP2kS2Pb/MSXcyuexDQPV60UrtC8YOTj4D6ioEh91pEwY5kAI0kkBgBt+K8nfVXUTFaK2fYxsm2QU/K6cX9Ohay+UT5Jt8znxcJ9wqgDqZ34GF30SJkmFl+XzYKTj5DMJAqXVR4HieXj8EfLZBPlMEk8g/C+p4HJ9AjxPmnYm3lAZZi7F8HudxAb2UVo3k+oZC3j/rz8vXvb4wqTH+wmU1dL/zsvF7RpmL8LIxPD5SsHICgni9RWDyTAMnIFelJLSIjB2AKJjMmdzg87IZnFSCQHO/oDM17oPYj/9C5SZp6Jd/DGsTf+OtvST2D2HUZsmY7U/g7rgHJx0CrW6Bsfnn/gqSiXJh0uKJMmFF15YbGcpBMwWwPE/12sdPny4WNNV6KyOx+PE43Fqa2uLtayapvHCCy9wzjnn4HNr3/45rLYgJc/n86hetZjjEs1GyeQz9MR7mNcwD13VUVBQ3RaN7T3baShpoCfWw9LfLqX98naaS5vpjnUXt9/Zu5OGkgZOqjwJr/6/tzcYpoFhGXg17//P7Y6P4+O/ahwPNPvvHLEo1qZ/RwlLmIq14Q+QTKD4/ZBMYG/dLKu5iorS0ASJuADo6ChOPOaGY/xZJteaXvT0OIpybIDGtpdRGybz9XvuQQH2vfMOb736Gvev/DplO/7May++wO5du/jLX/7CF77wBRYvXkxFRQWWZZFMJolGo7S3t5NMJjn33HNJpVLEYrFimngh9Mzr9XLRRRfh9XoxTZNUKsXg4GAxJKMQppHP5xkdHaWnp6cYYlZaWorP56O8vJylS5dSWVmJoih84hOr+PnPv83u3X/loYeW8cUvruWXv/wNzzzzR37842Xs2vVXNm58mA9+cB7V1bWce+4y2tpWMnt2I+PjFl1do5SUNNHXt5vW1pWkUiO0tq5k1izZLp0+QlvbnXg8AZYufRS/v4xkcoRIpJ6lSx9D14M8/viZ7NixDr+/HMWjYufton+6c20n2WgWx3bwBD34K/x4w95iTVe4Nkx6JC1hZPvH6e7oJj2SZslPlhCqDjG8dxjHcTAzJj2dPRgpg/Kp5ZQ0lNB+XTuxwzFQIFIfYce6HZQ0lqAHdbwhL47loPt1bGxsx6Yn3sMNG27gUPQQIW+IVeetwnZsdvbuxLRNWptbGU2P0ljSSG24FlVRyVk5GksaGUmNML9hPo0ljfJF6nZkvz/6Pis2riBpJAl6gvzo4h8xs3ImJb4SbMfGo3oIe8NoioblWHSNd5E2kgJuu9dDdgSk+FPk4FULZbKlh4U99UTEI5zpFwYbBPDpQdnPV4mwf0Mua2eLpw/Ea737Bkh3Q+szcModIvUuPvawSMr33OAyHopMgDVX2q0oUDIFqj8gQFtR5XcqgGgFAcWJHhc4I0x0YRzNSMcOUqhNQfVOSMqtnAB4xwXYVk7YYpDtU4OuHD0gvuh3fwMNZ9O5YyfjsSRLG3shNcgzf/gjqpXhwzV75fk7jki+x/dDXyf4K4SBrm+V4758ozxufYsA60AVvLwCYodcX6ibOm7lIFApkvEP3orXHGXBgkamTSvnkUeW0NMTR1EgGPQQDHqorg6RTBqsWLGRVCpPOOzDMCxKS/fymc98lpNOqubhhy/mK1+5j9dff4uDB/fxzW9eyT/+8QMMQ4KUwmEvhw/HuPHGjRw6FCMY9PDoo0tQFHj00SV8/vOnMX9+I/ffv52WliYcx6E/NoKmiow54gtywYnzufWcK0kZGQ6ND4gnOh2TxHzdy9z6GaiqykhqnPJAhDUvP0lfbJhT66bzs11/or60imvmfRi/7sOr6cxtmMHPdz+PaZkoKCRzaX6+53k279vBUHKU4fgY6XwGy7ZRFRtldDUEzgQnDbjvrWALndv+zNVXtApYDraCZyooPn7z26e59/bzXDDsSr+VIOT3CwhXQ3J5cLn4qQtBZpV3imfb6pfHyfeD/zQJN7PjrvTcAhyGk0k01xBfF4nwoeZmAIaSSc6ePJnLZ88m4vXy2sAACcPgrMZGAh4PPk0reqzXdHRgOQ6Lpk3jvgsuYCCZZHl7O8OpFOsuvJBJwSAJw2AkmSSg68yorKQhEuEbra08c9llNJaUcMOGDaTyefKGgZJ3F88efFDY5G9+UxhmyxKgbJoCqL/3vQlgDVLb1d4ucnBNE492Pi8y8q98RWq6zjpLAsvuuEOA+NAQ1NQII26a8hn5ylegtxcWLpRQNcdxZd+WyLPf7xYQWKjJ0lRhlc+cLeA4lhQQ7ffKz5gblpZIyXH8XmGjXRaa6U0TtV2qOiEjVxSY1ij7jMcFoGsqFpDs6WH3vfeSHhwE20b1eLByOcx0GiudJjMygmPbVM2ZgyccZvLSpUxyFwlsw8AyDDR30cGxbRzLwnGToCtmzSIzPIzm8Uhg2v8BWCcOHmTXt76FGY+JJHlkAA7vF9A7qVZCy1RFarl+87AA77Fh8UZv/J37vDVhtgvnXAXZp6Rc2NhnfibHnXqyAPWySmG6p50Cv39U+q2nzhSwfWRQQLgDI/t3ofsCWKbBkQN7iA3sY2T/bhRFkeAxX4CR/buLt2se31HXd2FbBrGBfRw5sAccG033MmnamZTWzaTqhPmomte9PA9NlzC2QHk9megAk6Z9sLgdioI3WCanft0DXp9cth2wbQklq6mX5+r14iQToowpq0Bd8gmp0wqXQOUkYaB3/BXyhlj3SkpRL7tKCJFsRlSIKChNk2VO0XY++P0okRKsF9sFsHcflJRxl7EuyLNfeuklPB4P0WiUWCxWDKv96U9/SllZGUuXLqW0VJQ8DQ0N9PX1Ff3Tqqri8Xhoampi8+bNrFu3jg0bNmDbNosWLULTNLq7u4vbA2zYsIG1a9fy/PPPk0wmSSQS4EBvvJdYNkZ1qJqeeA9VoSpu2nQTWTNLT7yHbd3byFk55jfMpy/ex7yGeVwx+wraJrcxKTiJ02pO45bNt9Ad6+bU6lNZtW0VOSv3v30fG6bBP0b/wRee/wL/GP0Hhmn8b7c9Po6P/65xHFz/Vw3Hwe542U3t/gvkckUgjONgd26V651bJQly+syJ27a9jNrQXAzHcBRVAi9KytCWfAKnrxtH148K0LiAlJHjiSef5NsLPgCxMbAtqve9XTyepiiEw2GefPJJPvWpT2EYRjEdPBQKccEFF5BKpY5JhiycVDOZDGNjYxguS1GofSgrK6O5uZny8nLOOecc6eV0E8O9Xi81NTVFP/e2bduwbbt4jPHxcQDKy6fT3NxKefl0li59lJERg/LyUh599A+sWfMen/jEF+nqspg582Si0QTl5Veh60HeeGOMZDJFd3c3iqJQXX0q4XAd5eXTCQYncfHFD6HrQRoa5lFS0sSRI/tob78e08xQXj4Z2zYlOTSfYvr0C4sAHDdoteCXbrmjBX+5H0WXGi7No2EkDMysiW3ZlE8rnwguW9NBcFKQbau24VgOm2/eTNWsKmKHY2y+ZTM1p9UQqgqBA9vXbi/6rR3TOSb8zIgbGElDEsSvb8d2bBJGgrWda1m/dz298V4y+QwZM4OiKMyuns0NG27gvdH3mF09m954L4qi8OVNX8ajeuhP9HNazWnYjo1hGygoZPNZdFVnRuUMHr7kYcLeMDkzV1xtLvRZHxo/RDwXJ2/ni1+Wv/37H3FmrYTmZVC9ENKHYM+N0mOdHRZQjJt4eujXwgy/u1b82dkh6bJO7ofd10uAGcDbd0NmUMCEY4kk/N21AqL3rpJU8vB0yI1B4bEnzZf7ute7Hu2CtNsND7QMAZlmVi5Hu8QPDcJOw1GhZH1y3TJcNtuWn9EDbjr4NGHcUSB7ZKLf9ZjUcTdN2Ot2dTq2eKXzKXjpegHord+B+AF+tvpGPnf5J9GveZNBp5Hv/Nu9/OChx+CafXLs954W0B9pgNozoL8Tou/LogBIENquVQLo6+bDq+ukKzvZI483uAuSA+L3TnQL0/3qOvCE6O6Os3x5O5mMyX33bce2HfJ5m507e0ml8vj9Orfcchbf+14nVVUhFMXgxRef5+KLL+PgwXH27Onn5JOn09U1zs6dvdxyy5fp6+smk4mhqgqW5bBmTQfPPbePvr44liWMx+BgkkzG5Ec/uphgUOf++xdx5ZVzcByHweQo6XyO77z4OEOJMUBeyqNB8M9cz3VfdJg3+t8jb5l8oGEmv3ntBTbv28Hju55lweQ5XDv/o3g1D81ltfTFhvlJ5zPMrZ/JVz8kyd5+j5fKUBlXn/lhFs9cwOzaE/B7dMoCJViOjeXoONUPumqGAJi94pnOHxQ1hV4nYHlwBeTfFxCc2SVg3OyW2+0E6JPEO61Xgx2TSq/kc5DvkSCz2seF2caG0QcAFYJtwmDrNQK684dhaAW2YxH2+Ujl81zf3s5QIsFnZs+mxOejJixy1HQ+T8IwmN/YyEg6zQ0bNpA2TVRFYWVrK8tmzWJlayu6olAdChHyeouge3VHB15N49/ffZeVL79MlVu9CPDlTZvY3t3N2ZMn49N1WpqaiOdyjBgGTn+/sNDDw/CTn8DkyZLq3dEhjLVpToSOFfqq02kYHZUAssmTBQgPDAgDPTAgLLfXK2z2gQNw773CcJeUiAS9kCje3Q0nngjz58vjFULVLNdX3TMorLKRF8ZZVQVQv3dYfvq9Us9lWQLCs67PuuC3NvICthWE1T5aIm7ZwmYHfCIH7xsW4K6pUFUGmSzYDrZpFtPCs0eOFEFyPpVC0XW0QIDApEmouo5lGOiBAFY2y8irr4qnXdfJJ1zw5vqLX7vvPqxcjmRPD6+sWkWguhrV60V3+86tfJ58Oo2RTGLmJkCKbRi88+ijdL/wAqqiSE1oZQ1MP8n1qlvim7Yd2PJHkYLrHgHeZ50nFVzuQj/jI3I5b8D778BQv0jMbQs+fYMw3ArQe3iiPk1R4GNXwV+ehzM/BCeeKqnk006BvCHhYrnMv4BiFLV4X9UJ84q3W/ncMdc13Ve8rKgaqu7FFy6nYfYivMFSNI9XLgdKycRGyCXHcaw8/kg1Zi5D/azz8AZKMFLjpEYnlJGOkZVsHMuUVHLbAlWRUFpVg3AExTRdFYIq30XuCUwJRVCapmB3/hUlGBJmu3kquABcsW3s7gMQHZNj6R5huAtzx44/owRdNQDCIBeyaxYsWIDjOGzbto3f/va3bNq0Cb/fz+WXX040GiWVSrm/hoKu69TV1REMBtm4cSPj4+P4/X4URWHp0qXcdNNNRR92PB4vJop7vd7inO7ozBzDMOjs7MTCwqf7SOVTdPZ0Mr9hPut2rOO5fc+hKdox4Lkn3sPCpoUA/GTJTzgUPcTNm29mKDXEvIZ5rO5YTdAT5Jtt38SnT0j2/3kYlsGqbatYv3f9/xGIHx/Hx3/XOC4L/y8aTi6HEx0VoNx2gds3/SfUtgtQyitwxkaxO14uXsdhYvuWc6Fiknz5qSrOkRHszr+gLjwHpbJKJihuV6Pi2DiqyttvvslHlizhshlT+fPACMHaer5185c5VzFkNbS8kr917uBTn/oU+/btIxAIFCU/4+PjdHZ2Fjurj+6yjsViNDRI7UVh+1QqRUdHBwsXLiQSiRRlSaFQqJhMmcvl8Llf9kd7sAvHEMk52Ha+KDMChTfeeJMFC87m8ccf4bOf/SxvvPE6S5Z8hFdf3ck//vEPbrnlC0SjI8yZcwLd3Tp3330H559/Fj5fKV6vhJw5js2WLV/l7befYtasZSxZ8ggbNtxwlMf6UUDBNHM4jo2mebBtC48nCHkPo++NkhpK0XhWI6pH/NLjXePij76zjbKpZeTiObbeu5XF6xYX/detK1uJ98YpbS6lpKlEOqpVhc1f2fwvHuuSphJSgyl8pT58pT7G94+zbdU2Wu5ooWJGBY7l0L68nb3r93Lz+M04vglplqIoJI0kd7x0B7ecdYsw1etqWTZrGfd86B6qglX4dB9jmTFKfCVFyfdgcpAHdj7A/YvuByDigkDLsdAUjbgRJ+KNcHD8ID3xHuY3zMen+xiID1ATkXTlQsJ4ia6jOnlAhd3LBeA2L4MzfgSvfAlm3yP+aGwBJMkukVC/fTecfCu8u25inzMfhj9UyeV5jwgYBmG7310Lp94lwLv01IlaLyxhZtN98PfvwoJfIwy6K+EteC2jXeJ/TvZPyMMjTRMS7kKvdUHirSCPn+yTZPFCL7fmhVxcQGphglX0b/dJj3ShS7swCTdzwsa/eL0A34+1Q918ku3Lqfv8RvZsfoqTouvZEGvlmlu+TUBJg6+MI6NjeJ0sX/z8Mlbde6eA6A/eKnLy0mkTJxkzA/07YMqFcnnXKunNfnmFbF8A3DOXwYJ74OenkPxMF1+4+TW2bOli376bCAR0TNPmlVf6mT+/Edt23LBjpSjr/t73Hubhhx/jxRe3Egp5qKjwMTp6hPffN6ivj3DTTes4cOB3vPbau7z22gAtLU0cPhyjtzdOU1MJPT1x5s9vYHw8SyKR48QTK8nlpCfbshxUj0PeybPm5SeP6aCuCpeTyecYSY7zu9c3c9u5nxPWBQULh7f636M6VEFZMML9f/kl1531MRpKqshaeXRVQ1NUXu/7B+XBEiK+IBXBUtJGlqyZozxQgqZqRUsESN6AA3gVG699ECXfLbJwKwqpv0Dpp+X9bI6Ak4D0NshsFx+1HQfPCTB0IwTOPqb7WkC6B+w0ZN8SufjoamGtPVPBlgRoVPe97eRcyXmTgPuDM8g0HySn1nK92zP93k03EfZ6GUgkGEmnaWlqwkF81pqicMOGDTz19tssmzWLfzvnHKrd9G2PqhLP5bjtxRe5f9EijqTTdMdizGtowKOq7OjtZXZ1NaOZDKs7Oooe69cGBmgqLWXVtm3cvnAh08vL8edy+K+//lhvtKoK2L71VmGqC53VHo9IxWHCvlFglC0LjhyB1lZ4800B1gW5sWFMSMU9HgFqR44IWNd1N0AsI9u9/Tacf76rXjmKNzBMiMahukLA8t+74JTpUrHVPSDgGHcfTZt47AKALoxCEFpBMl5gyD2eCTdIoS/bceBAL9aUOuK9vWg+H96SEkbfeotgXR3B2loB1Lmc3FZbi+b3Y+ZyRBobcUwT27JQPR7pLM7lBKxpGsneXnS/n7cffrjYdT3/29/GEwph5fPkolEyw8O8+8QTzFq+nMiUKeg+X5G5fufRR2lZ9R2UbFp+T7drGpAALxSRbkfHJMl7yaeF1XaAxDiEyyRBvLxK2OwLPwGJKEyZIX/Twn6fuh6ScWG+p54EmaT4rb1+iiFoigq2heUt+IiZAKfuXMG28qhu2rfjSKe1qnuKWTbFTBtbFnStfE781O5x0uMDePwhPKEyFMeh7+0Xj5GKe3xh9zwvixdmLo1l5gj4y6TtxbYhGS/a9JxEHKVxcnGxA0WVlG83sVyUR5KfYm96FvWsNoiUipQ8UoJSMcn9rnJzdrI5nFQctWkKztgYTKqShhjLDXUb7ENtnoozOoJRUXXMPKBAVBQk4YX5WyqVIp/PF3uqCxk7GzduZO/evVx++eXU1dUVvdatra1UVFTgOA6JRIKuri5OOOEEgsFg8XEcx2F0dJRUKlV8nFBZCNMxub79es5uPpvPzP4M3bFueuO9NJY0srpjNXcsvAMUqAvXEfaGi3OO69uvZ/3e9cV5S97O01wiapygJ/i/lXsXmOtV21ZxV9tdzJw0E692XBp+fPy/O457rv+bxr96rutRPG6aqO2IF8cfkDTx0jJZyVRUMATwOUMDqPVNoGlY7c/g7H0DZdZcqWPIGzher0i2cjmIlPL6669zxoIFPHHTcq66625eP9zD4kuW8M7u3VSZWZSSUq75+p1UVlayevVqLMsik8kQCoWwbZt33nmH3t5eLrnkkiK47u7uJhQKsWPHjmOCMAoM9fDwMGVlZUQiEfL5PB5XkjY2NkZnZycLFy6ksrISx3Ho6ekhFAoRiUTw+Xzkcjm8XgXDiJNIDPDaa0+waNFaurpe4dRTz6W391UqK2cQjXbR0nIOa9Z8lw9/+HLGxw8Qj/dSVTWXadNO5c9/fp6urh9x4YXfJ5MZZdu2VbS13UkwWMXmzTfT0nIHZWXTiMe72bZtFa2tKykrmyohKGaO/v491NaeBih4vRHsrMqmFS/QMK+B6RdOJ9IQwcpbbPziRvau38usZbO45OFLMHMilU8fSZPoT9B4ViOaV8M25Us1NZTCV+LDW+Il2hVF82psvXsre9fv5fL2yylpLKFjdUcRrKOCYzooqoKRNHBsh+Rgks61nSz++WJQKQKB4dQwpb5SDscO88DOB/jRxT/ihg03cEfLHcUvsKSRJJaLEfFGKPGVkMlnGMuOkTJSqKg0lDYQ1IPk7TyqIknjXtVL3smzvXs7VaEq1u1Yx51td1JqlXLhhRcynBymOlRNPpen+1A3w+0f45E9p/CLX/6C97sO88dffp+PfmSpsM6Bepl4mCkJMBvpkGqtdJ8w28EG2LsGZt0JwWbYc/3EZduAsVeh7FQJ6dKCkDgA2X5hsM0kvHGH+L0DtSLTVv0TcuqCPNw23Ely7qgQswYB1o7t+rkBHOmx1rySFh7tEiBecfKx4We6b+K4qkdYcD0gE0rbENb76O2xAUWOt3u1AN+BXfzs33fw5NOb6LjrhH8Bv8xcxud/pzA3sI+bf/iiAOXCNuc9JL70AjtuJOBvt8EZtwu4x5HfK7Zfar7CjfK481eKL/uvX8Vo+yH/OAyhkE51dRjLcorzU01TGBlJUlERxHEgn7ewLIfzz/8Q777bzLJln+XRR5eSy6W5+OJFZLNZ+vtTxGIqF154Iw8+eBXxeI5HHnmFH/7wYmzboaOjm6qqEOvW7eAb32ilry9Oa2sznZ09LFjQSD5vY2smXr/CSHKcx3c9y9XzLmVSqIKuI92cUjsd3QXBmXyO90cOM6d+BoAbYhajIlSK7Uj6/Vgqis/jQ1UUNy3cJpZJEPYFSeRSlPkjDCbGGEqOcmrtdHzuBK4nOsQv9jzPLR+6gnK/ip7pBP9ssFOg17tndRPSO12fdQ0ofsCSTIDMDggsAPOwMNtO3gXXJfIeGL4ZKu8SMG32QmoLZHZD7Y/cY3vlWPlDwmwfHYiW3k7Sey6Wo3IoGmV1RwePLl3KYDJJ19gYCxobyVoWAV0vgmuQZHGP679WFIWeWIxSv58SrxcbAeK6omA5DrabzOxRVWzga5s3c/0ZZzClrAyfpmE5DstdYL9s1iweW7oUv+PgjUYFUBRqiRQFUil44w0By/G41G4ND0sHdj4vaeBNTVLNlU6LrHv+fAGp3d0i/VZV2LVLtps+XY5RVTUBXlNuWneg8PlzgXogOLG4ZZgCfv0+YaMLIWYFn/T+bhgZh1NPEKBduP3ogLMC+PZ6JhYEunpEHl4YmiqPZdtyDK9H/u98C2oqMSfXYmazjL71Fv7KSrKjo1SfcQbJvj7SAwNUzp6NkUjgjUQwEgmsTIb00BDB2lr2PvYYp99+O7lolL2PPcas664j1NiIlcmQHR1l709/yqnXX09k6lQ0j4d8KkV6aOgY4D3vnnvwRtyF1HweO5dD1xSR9FuWK4sPTiyEgCwe/vIHsPc1uOuHEHaDJXMZqdmyTJGN7/mbsNqfWUExQC6fg7Ejwl7jyDkzFYNAWF7DZ38JH7964v3igmvLNDBz6WIAmSdQMlGNZduYRhrdF5IYWAcG/9FB7cltBVIX27bIRIfQfX6OHHhV/NqBUgGxtkjSsvEj6P6QhJdNP1OOp+qkxwcJlE4q/kmH/tFBw8nnyhxOVXEScZyufTgD/agXXirnzLyB/dJG1IUfkpT1WFQIEzesTPEHcWJj2Du3oV3ycZm3gSxgHJWpI9sGwCNNDRjuQoruJrEjJ2hr4x+xl3zCTVAXcG0YRnHepaoqiUSCYDCIqqpYlkU0GmX37t1ceOGFaJpW9GJfcsklpNNptm7dWgw+u/TSS4v3F+ZulmXR29tLSUkJoVCIgYEBSktLCYVCxONxgpEgHq+H/eP78ek+DkcPc2b9mWiqxvL25azfu572y9uLQLsQtqqpGgPJAe7ffn8xNyZn5eiP9VNXUkfQEyTii/xv59eGaZCzcvh033FgfXz8t4zj4Pq/aTjZLE4yjr1187HA2G29Vmy7GFBWuM9RELY6n3c7EIX5LYabtV0AgSD2lueEjS4pc+stEgxv2UDD1TeQi8fRXIZg3sKFfGfpYi5YsoTEtBk0TZ3G9u3bqampIRaL/cvKZSgUwufzYZpmMZBs06ZN7Nu3j2XLltHc3Ixt2/T29h4DlP859OKfkypBpEn5fL7o4zYMA6/XIZkcQlEUQiEJYGpvX87Xv/4Md9xxN5/73C10db1PW9sF/PWvzxEKVVFf30g0eoB77llFf3+S3//+16xbV8f117/O1q13H8NOCyt/gFdeedSt6kriOBb5fBbTzBCLddPQMA9V1ent3UlDw5modgDHVIt+W1VVQYXxrnEBw3e1Ea4NE+uNUXlCJc9f+zz7ntvHZc9cRnNrM4qu4JjymXLcDs70kTShmhDRQ1HiPZIo3r29m6c/+TQzPzyTS358CfH+OGXNZYy+N0rp5FKy41mMpIE35CUwNUDciBPLxagJ1dAT62FVxypWtq6kOlSNR/WQyqfw6378uh9VUYnnJAAt7A0XmemMmcGjSU96Op9mODUskvHa04jn4pT6SinxlmA6JqqikjWzJHIJakI15J08KSPFvVvvpfS1Ut7e/SabnvkFezr/wqTqWq750re4+cs38dGliwTsKqpIsh0HHEM81X5hv6UayyMAxFGE2cv0wuCLMP66hJZZhdTxZrc+q0Z6tTN9AtIdW+q8rIx4uWfdBaUny6QQhMEusNNHZYwVk4AKjHW4UUC1lXX92EwkfpdOPTYQrWy67H/Mvm6gWezAvzLk4QYJNPOWIL5dHWIHWbh4Gdfd8CWu/lirsM3z75Ltt94M8+/i819dw9w5p3Lzl78kx929WrYpnSaPZZvymjnuc1U9FNPErdzE9cICwOAeNwQtCI6D4fgwLJWurvFicncw6KGyMojHoxYl4jU1IWpqwoTDXpYvb2flyjZOOKGc998f48c/3s33v7+YbNZi165e6usjxbRwy3IIBj2oqpwP+vuTbNnSxe7dfTz44GLi8RxlZX56ehLcf/92fvTwRfgCCmkjh65peDUdy7ZJGhlMyySbN3hyz3N8/bzPu5NNGEvHCHpE1ujTvYymooR9QUJeP8mcJCAfSUX5+Z7n+cL8jzKWjjKr9gR0VS0Cccux0RAPs2lb6KqKadsoTp6wV0WxEwKgFfdv7ORBcUEwqkjCR++bAM2YgC7b5t8TGXjl7ZIOvr9W6rc8TXJ79X0u8LaFqXYseZzMHpGXC/0qn5P8fozcCFl/WxE8K0DCMAh6PDiArijkbRtVUQQ0qyr7R0fpTyaZ39iIT9M4MDbG5PJyPIpC1/g4A8kkC5ua3NdDobOnh/pIhMllZWhAxjTZ1ddHk9t1/f74OGs6OljZ1kZQ16nQNCoyGZRYTJK6QyFhkUG6rR1HgsbuvltSwEdHJSH81lsl4fvMM+HVV2H2bAHLNe75QVUlzGzSJAHlZ58t33MFYN7cDI2NAswHB6Uju5A6HghMMMqaJpc9Orx/WIB0VTnMmCyPk8mJdPyE5olqrb4h8U5r6gTLXVkGk+uFxTZMeO3vsOA0kU8nUhNgOpmWx+odkqTxeBIrHCAXj5NPJPAEg4y//z6Vp56KqmnFALPs6CiVc+ag6jqKpmEbBigKr69dy4Fnn2XJ888fC5bvvRdVExYX20b1+Ype639hrq+/nsjkycdIxhMHD5I9MkLNBz6AUrC3KAqkEhAqmWDv3Zoo8sZE4Fl5lZtdoUlV18bfwadukAC0sWHpsc7n4N9/IRJwj0881RXVcn95lRwnb4gEPRCEQAgLB9uxGPj71iKrXD/rPNLRQYJltaCoWEamGGA2adqZ6L4gquYhn024Sd8CyPtdZrqs/mTqTj0fHJv0+IBbweWIn1pQ+wQzrukYmThHuvYwaZp8/vyBcvkcRscmEr/LKydA9MJzcHoO4fQcQrvk48X5nHr5F45N+w6FhbUuLUMpqxR2/RjC5JPynne/m5xcZiJVfOE5ECmVKjDDIINIvB3HQdO0IhFSnHe68/mjm14K6d+pVIqxsTGCwSDl5eWoqko+n2doaIiGhgY0TWPDhg28/fbbXH755ZSWlrJt2zYWLFhAKpWi2c14UFWV8fFxNLfe9dzF5zKSHqE6LHO490ffZzA5WGwpefjih1mxacUxLHVdpA5VUVFQOBg9yKptq1jZtpLJJZOLeTCqoh4PLTs+/seO44Fm/11DUcDnR114LurlX0C75OM4qlKUDjnasZ5pSSk1cMaOYG3+E6SkQ9GJjkL5JDkBl5Zh//kFnL1v4MSiEItCNoPd8TJVM0/ivA99iBdeehEcmwMHD3Lw8CFO+cznUE6axe+e+QOnnnoqM2bMQNM0ampqit7ohQsXout60V+juavXuq7T1tbGZZddRm1tLaOjo2zYsIFwOEwymSSbzRartpLJZPHy4sWLmT17dtHDoygK0WiUF154gWg0Snd3N8lkEsOwiETqCQYnYZo5FEWnre1OHn30MX71q83MnfsBLrnkPO67704mT57OHXd8mTlz5rJw4YcZHo7zzW9eiW2b3HDD24RCtbS13cmsWctobV2Jomg4jk1l5QwWL16H49h4vSGGht7G7y8lFusmFKpi06abMM0s4XAtL7xwMwo6ZsbEzJmomgBrx3Ion1bOxQ9fTKw7RqI/gS/sw7EdWle2ctkzl1HSWEJqOMX4/nHal7eTT+WJ98bp6ezBX+YnNZKifHo5jfMb6dnRQ93pdXz5wJe58PsXomgKJfUlKKqCv9xPciDJ1m9tBQVCtSFsJNW7KliFgsJAcoD1e9ezumM1Xs2Lg8PtL93OUGoITdFQUPBpPlJGqpgKDuBRPRimge3YhL1hBpODLGxaSMgTQld0gp4gcSPOK/2vyPaah6pQFXEjzpHUEcLeMOsWr+O53z3H1Z+/CjwR5rUtZtrMD7gMcdb1TAOx94StTh+G174q1VzZQXj1S5DqhuG/wjMVwlhjg6cMmi8TYJ1PSvVWsEl8zmYGcITx9tdKyFnykNR8pbtFXv7ufe7nTpPJn9sFjpUV33QBiLpEwDFeaUURBtrKCctsm24AmhuIFqgS2Tj/i30LqP2YLuwq2a/AjtvGBBiONNL50rNc/bnPCHi/4BEJOvNGYNFjUDqVnz/+KDd/+SbxU5dMhoX3CvjGTfcFiB8QH3fisPiwrZxsnx0TuXphcUP1Qd0CAfiODZkRvMn9WJbD6tUdrF+/l56eOKlUnlde6XcdJwptbc2UlflIJMTP9thjSznhhHIsy8Hv17n++jN4771Rdu3qZf78BmbMkOaBr351C44DBw9G6ezsIZXKoyhw5ZVzePjhS/D5dKqqQti2Q29vjNWrz8MXUOmNDrP2L79gKDGGadv0RId44K9PkcnnGEyOcmrddAYSo7zZ/x4D8RGe2PUn/LqXgFun8+Tu5xhJSo5DysiQMjLHeLVPqZlOzjQwLUtYWschlo6Tymfpiw7z9sD7xduzljPxRnHy7mXbBdZ5MEflb+mZChW3Q35QWGpzULzVILdV3Co/Fa8A62CLy0p/yAXWFpjDsl/BPhFsEd/20I1gHpL31+hq0Ks5FI1yfXs7XePjmLZN2OulOxZjJJUia5rs7O0llc8LWAamVVSwoLGR27Zs4VA0yuSyMgzTxLBtJpeVcVZjI0nDYMXGjbw3Osrs6mq6YzFs26YrGmXFpk1UhUIMJJM4wJSyMn5yySUMJhJEMxkiqooyMCAd08GgAOvbbhNAbVkCfktL4fbbBYz19sLXviY1XS0t8jq1tIhXev9+Ya23bxc11vz5Iv+eN08+h93d8NprArSbmgQIezwC6M87T8B8oYvayAtwVpQJWXdznQDr5joYHhPgHPAJ0FYVCTnrH57waL93WNjsU6YLc61r8j7QNTb2dXH6GWcwd85pnNq2kF/88pdgWgxnUlz0sY9y4ocXc+oH5vK3t17Htiw0r5dgbS16OEz1Bz+I7veDqlI5Zw6h+noq58xh9K23SA0MkE8m2fNv/0Z6YIAP3HEHzRddhCccZtby5UxZupQPfv3rskDmVnt5wuFjQsw0jwdfWRklU6cy7957/wVYW7kcgbo6Js2dC6rKxg0bOH1BC3MXtHBq27n8YsXnYbCX1d/5DjNPmYUaDPHsH56RYLKxEXex1BFgPT4ijLWuS7jX1JkCpOPRCWBtmdA4TbYNlwoY13SRjj/3K/npOGCaKKpO1Qnzj/FN674A/Xv/TD4bR/MFiwFmRw7scau0bEb27yqGmilQPEbtyWeTz8Tpf+dlPP4QlpHCGyrHSMdIjfULm62AbUkOjJlNMWnaBzFzKbzBUsBGcRzsbS9P5OMo6oQfunMryrQZIhVXFNRWdz7XOBm748+uZ/plOXs8/Yti3o5se94xmTpW+x9krudaIYr7d26FbIZNGzZyZtvZtLa28sEPfpDf/OY3EoDmdlVv2bKFYDDI9773PRRFYfv27cWsm3g8TiwWIxKJUFJSQjqdJpFI0Nvbi8/no7Gxkb6+PsbHx1m0aBGzZs2isbGx2I29Y8cOGhoaMAyDVCqFbduUlZURDodZdNEiHBzSZpobN9yI4zg8sPMBDkUPUR+u55Elj6CrOne23cmyWcu4o+UOyv3l4EB/oh/TNov+6dXbVmM6JkkjiWVbx0PLjo//T4/jzPV/0SjKwt1+QvFeC9vs9Peg1DdJgIXjyJe77fwvmO5PiifHzBf3V0rLpT8xFMbuOYQSjqCUlOE4Dgd6ernuhhs4cuQIqqbxzW98g0987GM4yTgtSz/M5666is9+9rPFyqyjqxgKHmmvWxNSYKILoyAPevrpp5k5cyYXX3wxtm3j9XoxDAPDMIoen6P7svNumuzmzZvZu3cvs2fP5vzzzyefzxOJBIhGDxCLddPYOB9N8wMiqzbNHNnsGF1dW+jr282FF64jFjvMjh3raGu7E10PkM2OF6+XlU3FNDOAiq4HMM0MfX27KClpIhSaxObNt7jbTSGZHCIUqqK7eztPP/3JIuvd1NTC3FOuZ/zAOPHeOM2tzcdIvI2UwUMnPsSsZbNY+uhSFE1xbb4OPZ09NC1sQlGljkvRFFLDKTKjGXas28HiBxeTPpIm1h2jYV4Dqq6y6UubuGDtBaSH03SsmZCIP3/t8+xdv5fPbPwMtXNrUStUDNuQNGU3bKyzp5OGSAOTyyYzkhrBo3nw6358uo9MPkNAD0gquKJhWCKhCugBusa7eGj3Q/zw4h9iORZ5K49X86IrOqZjois6jvsvlU/h1/xFT+pIaoSut7q48vIr6T24D48KhU7ecy5cys03XsNHP7zUBZQmpA6DMQrlpwubPdIhEvHsiISbvXKT+KmDUyB1UMLJTr5dpN49f4CR7fCBtRB9T4LTrAy8smLCqz37HvBNkuOc8TCoAWFrVdUNJnMl4VYWAtUU+6wVlWMruNywnX+Wg1s5Ab1HfQ6KzHXhviIz7p5HC9uabsiKERdmXHXZcctwg89cltnjpqY7rofbV+omfedhcDeE6qCvA/q3CxB3mVZeXD4hFz//xyID370aznlAttF88jgFD3o+BUfegroFZCwvRh7S6TxvvTXEWWc1ksuZhEIeMhmTXbv6aGwsYfJkkYLm8zaDgwlqaiIMDSXp7Y2zcKGkfCeTBl//+svcfnsLPT0xli79Le++u4L77uvgBz+4GMuyi/LyN94YpKYmxLRp5WiaimnamKZNoERhLB0j7AuRzKUo8Yd5e2A/5YEI45kEp9ZOJ5pJ8JPOZ/jcGUv45Ssb+PyZl6KparEP27Eh6PNRESxFQSFlZIrM9bVnfYzaSCUKMBA/wuO7nuXzZ15KVbhcOrDdv1vGyLL/SA+n1p1AxAMKBuAB8pDeDf45ApQVP8JSq65iwAtORsAxAJqA7eHboPI28Ex3e61XQeVKCTHLH4DR+yU1XA0wsc7twODNUHETeKYIm51/nzgzGU5lqAwGJZxZVUkZBknDoNzvZ1dfHw2RCFWhENl8nspgEMtluQ+OjzOYSrGgsZG8bRPLZgl5vcRyOSJeL8/+4x/8rbubez70IaqCQXy6Tl8iwZauLnb39fGTJUs4MD7O6o4OVra2Mq28HMtxKDUMlKEh8T9Ho/KzuxseeEDSwFesgO9+VzzUgYAkgScSUFc3wSzbtoSRVVcLS11VJSz3ypUwderENjDh1b71Vjl2dbXIz1taJj5/oZAAZ48HegcFTPu9ArY1VRhmw5WWa+qxndd+r3y+40cx1gWW23EgnsIpCVFZU8PWn/2KORU1HDJSnHTpYkZ6+/jK126lubmZe771Lfbs2s3Hll3Ge3//O5qikO7v590nn2TurbeiBwIomiZeXtwKrvJysqOjhJua2HDppUU5NzCxreOQGhhg76OPcsp11xFpapL7LEuqtf4PSeHxAwfY+9hjnPyFL1AxZTIoUFnXwNabr2bOzXdxqLuHk86Yx8j3v8m70+YyqbaWa75yCzffdBMfPWW6eKo1TXzvh9+DBvfv4/XD6DCMDQnABoiNS33X4stEMu0LwP69Us01qUYk54UO7RNPxdJ1jHQMVfOg+wL/5Lu2yUQHCZTV4tgWlmmge4Mi13Yc8plYsY7LGyzFzKbkGChFf3V5wyzqTj1PjmdbGJkYZi5DsLyOQq+2kY6SzyQJlteiqDqq5bgVWxPZOUp5xUQGTtv5wkRDQbmN4sh71Bk/as4XDGFvfm4iX8eWOY7iOBJW23cY+6mfypzv0mU4Rg5SCWGuW87FCYWpmjKNlzZvZtacORw8eJC5c+fyj3/8g8rKStLpNEuWLKG8vJzGxka++93vEgwG2bx5My0tLTiOg9frJRKJ0N3dTWNjI+l0mmAwiGmavPjiiyxcuBCPx1OUlOdyOdLpNJ2dnSxatAiP6/2PRqNs376diy++WL7eFIOh5BC1kdpi8JnjOBwYP8D3d37//2Hvz8Psqsq0f/yzpzPXnEpSqSGBEAKESYSETKBCQCZtW0lrY9tOBCTQIiqzgq0JkKCADQ6AaNttt51AqxDCJIqkUiRhTCBAhqokNc9nnva0fn88+5xK7H7f94/f1cP3urKuq+qcvfdaa++z9z77rHvd93M/Vcm3oRk4voOGhmVYpEopsrao4nrTvaztXMtty28jakbJlrPMa5rHl5/6cpXtfvSyR/+vMvGj5Wj57y5Hmev/6aJ8VCaNvuIytFhCXCxbZ8sDOJcJjDA4jOn+UJXNVrYtILoyc7rlRekzFpdY7bbZaLX1+AO9oBTHtrXy4r/+ije/czNvvvAsn/yLj0v/4Qhb/vQnvvjFL5LNZnnppZdIp9Ok02mmT59elRJV5EbAEcA6lUqxefNmamtrufzyy1m+fDmWZVUl4aFQiFgsRldXF+3t7RiGgeM4TE5OVuVLS5YsYcGCBaxYsYJischLL72EUi6mGaG1dSHFYgrbzpLNDqJpOrnccBXwrlixHsMIsX37D2lvX4phhEgkZrJ9+w/ZvXsDW7asIZPpJ5sdxjTDKOVQKiWJx2eQyfRRLmdZsuRGampaAQPHKbBp01XU1rZx+eWPEw7XsXz5bcydewHK98kOZplx2gxywzlQkibLilkkZiS44tkrWH7bcvSQTvJAkt4tvWimxszTZ+IUHOyczeZrNzOxd4JoY5RXvv8Kuzfsppwuk+5NE2+O88y1z1RBtp2x6bxLnMK3rNmCnbNZfttyFqxcQMfSDpQvQLfoFsmWs7i+i+u7LG5bTEedyLQKToF3Rt8ROZVmVfNeTxQmUCgMXeThhm4wXhjnex/5HmW3zNberYxkRzA1SfcFVNN++cpn5/BOim6RvJMna2dpjDXy85//nEsvv1Tk/RWX8EIvAuiiUBoSZrk4BPHZEGkR8Kv8gL0eg6ZFUveD90MicEuuuH6/tw6cDMxcITHYWgiazxZDNDsp6+ZcAWf8IIi3jsAp3wGrlmrwnRfERBshYWxj06ck4RUJne8GKbjcQGKeEda58URJx6VpMkmQ7gmMyZhyEjfC8pcOnMQJvr+eLf1AsD4ABcWxAGRHxD3cjAjQtlMSN+3k5HgrDuZaAI5bFkvb2RfAh+6fGnAWxuAjD4lB2qJvBbmtB+Hc7wvgt2Iimbez8vlAmPmWxdilEvu7U2zb1k8sZrFkSTvj43kcx8e2fVKpEqedNoPp0+Pouk6x6DI4mCUSsdB16O1NM3NmglWrNtHdnUTTNBYubGXduq0sW9bBe++tZubMOD/84UUcPJji6qufpq8vg+8rTj55OkND4hi+d+8EXV19DA1l0TWdqBUhXcwStSKEDIvpiQZ++drTzEg0ETFDNCca+PYFVzKrrplbzvsiHQ0z+cdXN/FS92uM5pK0NUwnakVY+/vHGEiPkQjH6GiYybdWfJm2uumYgVvxo9t/y3N7XuEXrz6FrmnV9F9OEMs+r7kDS/cl3/TwdWJU5pckBlqXyT/84BpX2GY/KyCbwOCowl5HFwrrjCfAOrshWPblNboQvBEYvipwHc9LCMWM+2TSZ+QaOQ7rOAzNoOA4dPX14fg+vu9TGwpRcF2uf+45Tpsxg5mJBLXhMNPicQxdZ6JQoOC6zGtqYmlHB0XXRSnFjESCRChEfcBofuqkk7hp6VIaIhGilsWBVIo7XnqJpe3trF+xAl8p7t+2jRuXLKGjrg7P9/nas8/Kd6lQkFzTiYQAreOPF9dw05T0XKWSAF0QJ/D6emGmt26FAwcEWLe3i2v40qUiF3/ySZGPVwzNQADd2Ji0veceWL9e9r9okawbGwvid31hn/uHRQbeOyT9hEw5jpINBwfBCb4XvUNSr2zLtn2HMdYdLYf9jiPAPPhtTEUtaG4gUxOhqamJsKaz4fHHufq8i6Fkc9ZZZzKrcRp/+tOfwPcpjI3xwVtuETdw28Z3XbxSCTefZ9qpp1IzZw7NH/wg0RkzmPupT3HGzTfLvgIDsx133EF+cJDC0BADf/wjxZERScvl+7iFAnY6jVdJi/afFN+22f3ww/Q++yz2xLgYliEZMFILzgIFmbFRmqY1Eb78Syw890Mce+yxIsV/aZOk0wqFA4O5CLTPFYb61z+BiWE5tzX18C8/Eja6kr7ruY2S1kspicGua5A84Jd8WoB1Q7MAbcAp5fDcUnXSoWJoBggI1g1cu4Cdl+9XxcDMCieqjuDK9zAj4hmhfK/qJj7zpHOxCykG3n4Bp5wjFK0TVvydF3GKGZTn4hRzwbo/4Lt2FVhjWhiXfFLk3eUyNDVjXPoptIYmiX9OTeA9uQEmRgUYK9Dqm0RtmKgFTce46BPQ0Cj3sePgP/0E7vpv4z/zG/S22Rirb0K/8OPyue0yWn0jxqWXozU2o4UjaCjSzz4ZTGjmaGxspK6uDl3X+drXvsZNN92E4zgMDQ2xdetWQqEQl156KY2NjSQSYiJm2zYzZ85E13Vc1+Xpp58mm83S2tpKJpOprkulUtW0qZdccgmFQoFNmzaRTCarBrfpdFpSd9k+LTUtVUn7SH4EQzc4puEY7jn/Hoazw6zevJqsnaXkloSVVh5jhTG+9/L3KLpF5jbM5aeX/pSYGSNdSjOUG8JTHo9e9ijJm5I8etmj/1f38KPlaPnfWI6C6//KoktaBm3mLMhn8Z77nUh/KiYV4UgVxCqU5E9smi4P7rp6CEdQjnMk4A5mWfW2OeJW6fuSc1HToFzC7/rjYUBcXB4JYrd936+mxurs7KS1tZVQKEQul2NycpJ0Ok1vby+u61Yl3pVUD5U2HR0dWJbF5ORkNU92Je5nxYoVtLe38/LLL6OUorGxkXA4LLlra2q49NJLsSyrmqdR0wxct8Azz1xLKBQjnx/hpZfuIJU6QCbTx+7dG+jqWodlxdB1kxUr1tPevrRaZ8WK9VUZ+IEDf8CyoiSTPWzefC2hUJyGhmPo6FhOTU0rTU3HUyhM4Ps2mUw/ixd/nUymn46OpYyM7CIWa6amphVHZelY3oEZNok2RNF0Dd/z+f2tv8d3fdrObqP+mHqRih/TQPuSdgnH9BXldBnlK9qXtZMbzqFpGhfefyF/vfmvic+I07Gsg+0/3F5NuXXsimMJ14WrYHr57csJ14apm1PHZY9eBhrYORtPeeTLeerD9RiaQcgIYekyk6xrOsc0HEN7XTurN69mf3I/nb2dAoajjbi+S9ktkylnyJQzLG1fSiKUwDRMls9eTnu9GPN4yqPslSm7ZUbyI3RPdnPK9FNIhBKEjBC14VoK+QJP/eYpFl2ySEDm7rtg+HkB0XISpnJQ714joM+IwonfAL8cyLqbRfLtZMGIS3xzaWwqvdZJN4lEPNwEiWMEFGoa7LkPnjlVzM3O+jGUxwN5eLccg3IDRvjwR5o2JfV2y0fGXh8u7Va+gFIzAM2p7oD1dv5M/j3V7ZHS8Mr6AJCnuoNYbE1Ab9cdsi3TIwZliqn1hWEB3ASMerpHWOnUPgHgs5aKJL04Km3douStHt4ONR0iLdd0ialGE3DvlUVGbiWE/c4cCmTyipJn0dubYcaMBKtXbyaTKVfjqicmCsRiIXRdJ50uk8/bDA1lWbu2k+bmONu3D7BwYSt3372V55/vprY2TDwe4nOfO43161dw6FCaO+54iUOHZPC7Zs0WNmzYzbp1XWQyZUxTZ+HCVmIxizlz6lm8uI3h0SwoxVguyY+7Hg+k3Yqfbf9dNQd1X3qEv3/+EfrTo3i+z10vPsZgZoyvnXsF3//YDUxPNPL3zz/CWC7JyS1zGclN0J+SNoeSQxTdMjsH92JoOl9e9BdcOH8xX1h4GVErQl9QbyyXIhGSDAo6DpozBDMfkpRbekKUBu6E5J/WE3LPqDKVHNSMfkPirFU+uBd0iK8QR3BMYaxrVkLTTYAuy/ELYOKuAHTfFygoQgKsJ+49DIx7uErRl8nQHI9z7TPPcCidxgcGMxke+OhHqYtECBkGXsCKAcwI4p6D6G1ilkXMsnB9n30TE3z1uecYKxSIWRbH1tcD4Po+a7ZsYcPu3azr6iJmWRiaxg8vuoh5jY2UXJei63LdwoX4nicgeOFCkXZ/5Suwd68AiP37hV0uFJgYHOT0xYs5/VOf4vTlyzn+mGMwP/5xJt99l1dHR1n66U9z2vLlnH7MMfxhcBAef1yYa8MQcL5vn6Tlqq+HZFLk5evXixS9rw+uvVZitrNZKBRFCXa4DDyTl1hpjSkw3Tsk38NKvZr4kdtqE1XzUWxX2O5oGK3s8G/r7ucvP/vXzL7oIyy7YAX/+JOfki3kcWybmZjSXtOZM28u/QODaJbFtNNOk99rXccIhdAMg5333SfPXtuW3NWui/I8zrjpJsqTk+y4805yfX0UhoboffZZdj/8ME2nnspFv/kNTaeeytgbb5Dr78ctlSQDR7n8fwTYmmlWpeUzzviApP+cGObfPvcJ/vLq65h9yqksu/Rj/OO6uwjVNcjzqlgQKfi+3SLntkvQu0+e2cWCAOdXX4anfy1xwc8/MZUP+5gT4Kxz4KOXi5HZwT0QjYMZEoO55lmSimvzr6UNGrGGFtxyCTQd5fv4lTzaQH5yEKeQxinmiTXMBHwKyUGcUhav+mxXgaklKN+lkBrFitbResoKNE0/Ike2phuM97w+JSfXDWINM6vrPNcWp/B0Ci0WRzmOxE1blqzPZSXX+J/JximXA5m7g993UMZnZhDCkJyQuGzfn5KQn38JKp3Ef/n3cqGUD9E4fv8hKmZvGhr/8oN7ufy+h5h//PF8+MMfZu3atUSjUX73u9+h6zof+9jHmDFjBi0tLZx33nkkk0k2bdpEKpUCIJlMVkP/Dh/TdXV1ceyxxx4hA9+yZQuu63Lo0KH/MP5rbW1l7ty51THc6OgoOTtXNUbtnuzmYPIg44VxwkaY1rpWFrctZjg7TN7OUxOuQUdnJDfC4jZJJbZnYg9XbbqKrJ2tpuXS0OhJ9nDVpqvoSfbgeu5/el8fLUfL/9ZyFFz/V5ZgZpVyGZXLoi8+V2KlPRfsEpppSroFgNQk3qaNqNQESgtcSX0PNSo/1Maln0Krb0TzXPzeAyi7jEpNSnx2sSAP/XDkiDhuhRiVaErhKUWxWGT58uXVXIUVqU9XV1dVJh6Px3nmmWdIp9M8++yzLF68mDvvvJOf/exnDA4Oomka77zzDh/72MdYvHgxy5Yt4wc/+AGu62JZFl1dXbS2tpLNZquznbquV/dVKBSq+RKV8tm6dX3ARofp7LyrykS3ti5kwYKVLF9+O0opnnnm79B1k66uddU6phnh3HPvJB6fTkPDscTjzXR2rqW1dSHZ7DD9/dvwfZtcbphk8kB1IqO2to1XXvk+tbWtaJrBtGknMDT0RhCXnSDVk6KUKpEdztK/TXJGr7h7BbqpVweuSil81yc3nMN3fayYRaw5Rrg2zKlXnEpdex2brtok+2ut5emrnyZ9KM2K9Sv4zKbPcPFDF1PbUUu4Nkz9nHou/eml1LbXUs6U2XzNZib2TeB7PjWtNRiaQUtNC92pbq7cdCXdyW4ydoZVm1bRk+ohXUpPxS11rmVabBqWbnEofYirn76avkyfHEe4lu5kN6s2raJ7spu8naezt5P9yf2M5ccYyg6x+pnV5J08Q7khYqEYPckertl8DT3JHtb9dB3zTpzHxYsvZrAwiTrjfrismypjp+nCLHesFLk3GoQaBHwbMWGs3/u+SMKLg7DjSpGDhxvBSAhorjkOvEJgyqVg7BXI9cAH7oPWj0GoThzHKyD+3btgzl8LKHHLkD4obTXtPwHRFccYgtjoaUEKrsA9vCIjT8yakn1X6qAF4D1w0z08Ftv3puTeniMMtBH0+eo6kW/bGdi+VvJTK3dq/avrpK1bkvXb10ytL6dlEsN3ptrmB+H3V8u+s72yLX1AjskIGMLcYADQ98K0U4J6LhTG0K0Yixa1ctddnSxe3EZtbRjfVxQKDvF4iJqaUPUe931FW1stt9++HNPUOOOMFtLpErffvpw9e66loSHC1q299PamqKkJVcH02rWduK7PLbcsY+XKBdx001Lq6yNEoyaxmMnBgymuuWYzfX0ZFi9txVN+NT76F68+ha9UFQSfPPM4Ht0mbPNj239HrlyQnNbbfkvUCnN66/H87DA2evHsUzl55twqQ/3L154mbFicMP0Y7n7x53jK5/YVX2Z2wyx85Vfb/mz7b/GUT94ukioWUZFThUl2hwL2OiupsrTIlARcC0tMthaBmT8C63iJpdYToMXBbAWzA4avlfjsad8JBt4jkrbLbIHp90PNFWJw5g7D8CpxDJ/xIBw3AjN/AhiENIflHR3UhsPCKHd1AbC4rQ1d03B9H9f3gyxUOvsmJli9eXNVpukpVY3NtnSdlpoazunoYCibxQ9CgOKhELqmcdOSJWz6zGd48KKLMHUdBeRsm32Tk1z/3HOM5PMc19SEreuo226DCy6Ae+8V5jkeF1C8fr2k6FqzhiZd561f/pK3duzgrdNPZ1WpxEVnnEHDhRfyiVtu4Tvf/S47Tz+dDYUCn7/tNoof/CAcd5xIxzMZMUtbuFCAdUMDRCJTLuFr18LzzwvQTiQgERcTs0hIJN1lWyTe/UEO7MNBt8ZUPe3PALnjguuJo3jFBRxwfY/vPfpj/v2+BznU3c2Lzz3H36y6ElcPwjUO79swMExRRhSGh/FdV8zK5AeED952G2Y8jhWPUxgZ4a377qtKwKPNzYy+/noVUHd89KOc9KUvYYTDmLEY5WSShvnzKYyMEK6vpzQxwY477iB74MB/CrCV5xFvbeWsb38bdAOFhvvkr/jev/2Wf3/0pxz61mpevOAD/M3q6xgfGxXH6khUzMfmLYCL/goO7BXQrBuy7cLLBUBf9Fcyprn407J84aegmIfPXicy8HAE5p4IuRT80wMwNhRI/I2pNig8p0SscRbKd3HtgihKDouZtqK1xBtnARquXSJS24xTzGOGovJoD4z+ADTDItY0a+rzaxrNxy1k9pmfYNbJ54GmHRHfjabh2VN5sw0zBLqB1tIqoXmWhd42W96nk6iUqHbQNPQLP452ygclhWokinJsvGd+gza9RUiVTRtRyQlUOiUg/MXNaA1N6OdegKZ8/C0vorW2QzaD33sATSn09mPAc/H7DuKMj3DXz37Oxuu/wp69e/n5z3/OzTffzDvvvMNtt93GXXfdVQ3RO/HEE9F1vQp+t2zZgmVZzJgxgxdeeKEq3T58HFhTU0OxWDwij3WpVCIej9Pb23vEesuyqKmpqbaf1TaLsfwYyWIShWJ5x3JmN8wmHopz/XPXM5wb5vKTLicRTlBwCnT1deH4Dkval/DZUz9Lzs6xrmsdG3Zv4O6td7OodVHV/Xtt59rqmMbx/8+qjKPlaPlfWSpOz/9f+mttbVX/24tfKikvk1ZeqaS8Ql55Q/3KeeJXysuklV8sKq+QV34mrfxiQfnFgnI2/lLZd96gnI2/VH4hr7yxEeWVilK3VFJ+saC8oQHlbPyl8voPKS+bObJNsSD1SkXlFwrKKxVl/wO9ytn4S+Vk0qpUKqlCoaDy+bwqFAqqUCiobDarhoeH1Z49e1Qul1MbN25Ud955p9qwYYOqr69XL774ohofH1fvvfeeCofD6p//+Z/VKaecon7961+rgYEB9dhjj6mmpib15ptvqomJCTU0NKTGxsaq/ezZs0cNDQ2pjRs3quHhYVUqlarHUSplVSYzqNLpflUsptTw8E71xBNXqExmUBWLKVUqZVS5nFOlUjZYzqpcbkzt2bNJDQ+/rbq7fx+0TapSKadKpYwaGnpLjY29p/bs2aT6+7erjRtXqqGhN9WePZtULjeixsbeV088cYXatu0BNTb2niqVMmrfvmer+yymi2rjyo0qN5pTE/sn1PDOYbVx5UY19NaQygxmVClTUun+tBp7b0xlBjNq37P7VGYwowqTBTW+d1zlxnKqkCyoJ654Qt3JnWrs/TG1Z9Me1b+9X+3ZtEeVMqVqn8M7h1VmMCP97xxS4/vGVWGyoPLjeZUbzanCZEGl+9MqU8yoVDGlVm5cqbgTtXLjSvXu6LvV9+P5cfXW0Ftq5caV6q3ht9SmPZvUZGHyP9T/z/rY1rdNrdy4Uo3kRo7YNpobnap/Barh2AYViUZUfEZc/fsf/l3tGd6lvnfnzaqpqUEByjRN1dTUqFpbZ6nR/n1KZfYqNblbKTujVDmpVHqfUqWkUpNvKZV6T6ktK5X6FfJaTipVTimV3hvU2SnrJ95UKt+nVHFEtts5peysvM/3K7X1Cqmb2aeUaytVmFDKdZTygj/XUaqcU2rifWnrOv9xu12QV6eklFOeql+u1C9Ptfvz7U5Z2lXa23k5jsPrjO5U6qmVSmUH5X1+RP5G3pT1o7uUyvQr1b1ZqVJmqv7w69KmnFNqcp9SI28pNfGebLsXeS2MKlVMKjW5V6lSWqnipPQ98b5SQ6/Ja25YqcKYUqWUUplBlc2WVDJZUDt3DquRkawaHMyo114bUCtXblRvvjmkstlSdfm11wZUJiP1r7zyd2pwMKOy2ZJKpYoqmSyoz3/+N2r79n61adMelUoV1VtvDamVKzeqXbuG1bPP7lOvvz6oJicLKpstqf37x9XYWF6lUkV1xRVPqAce2Kbee29M5UslNZZNqvdHDqpvPnm/2jN6SL1yYKcazyVVuphVuVJB7Qm2vT9yUI1mJ9U3n7xf7R09pPLlohrNTqrdQ91T60oFNZFPq7cH91X7600OqXQxV+1n91C3OjQ5qPLl4tR+Rw6qQrmkRrOTynWSSjkjShVfU6p/pbw6w0qV3lXKzSjlTCpVfDPYtkvWuZPB+kqbnUq5OaXsIaUmHlQqs1kpe1C2ZzYpVXzrsHoZpdyULL+HbK/UDeqUCwfVzuFhtXLjRvXawIAazGRUplRSbw0NqZUbN6qBTEa9GbzfOTysNu/dq94YHFSpYlGlSyWVKZXUZKGgUsWiShaLajSXU5OFghrL5dS+8XGpVyyqTKmkcqWSGsvl1KY9e9TO4WGVLBTUe2NjauXGjYo771QrN25UqWJRPb9/v/KyWaUyGaUGB5WanFQqm1UqlZLXkRFZl0zK+/FxpQYG1Alz56rf/NM/qbF331WhUEjq9/crtXmzOmXePPXErbcqNTYmbZJJpd56S6mVK5V6802lNm2S5WRS9rFzp1L79sn+R0aUchylbFteHUepbF6p3fuVKpXlfdlWynaUyhdlOV+UdZX6lb+yrdS73Ur1DSuVL1T7enXDb9S8446TPhxHqfGkOvOMM9TzT25SsVhMDR3qVWo8qVSppM4680z1wubNqpzNqv6XX1b50VFl5/OqnM2qUiajSum0KqVS8ppMqlIqpfKjoyrV3a3yIyOqODGhJt9/Xzn5vEr19KhSOq3K2azKDw+rrTfeqMbfeUeVMxlVGB1VW264Qf3qpJPUlhtuUHYuVx2HuLat7FxOldJplerpUeV0Wvm5rFI7t6lXf7tRzZvepFRyQqnebqV+skadeeop6vlNTylVKipVzKtzly9Xv/nXf1Fq1w6l+g4oVSoolcvIXz6rVC4bbDsobXJZpdJJpZLjwfoeaZPPKvWTNUp96UJ5HeqTbcP9SmVSynXKyi5mlWuXVLmQUb1vPK2cUl6lh7tVPjmoStlJVUiPqEOvP6UK6RGVHu5R5UJGuXZJOUGbciGjCqlKnVHl2CVlF7KqmJ1QdjGrHKesCunRah+OU1auXVKl3KS0TY+o9HC3cu2iKmUnZQwXjJ+8oX7l5TIyzioWZDy38ZfKG+iVMV2pKH/lkozrgjHbEWO0XFbaDA9KH8MDystlZCxYLMj7/r7q/tw9u5XXf0hte/zf1Lxjj1X2nTeocjB+OuOMM9TGjRvV9OnTVUdHh2publaxWEw1NDSob37zm2p4ePiIMVexWFSlUkkNDQ2p3/zmN9XxX6FQUPv27VPf+9731J49e1SxWFSFQkEVi0U1NjamduzYocbHx1WxWFTlclmVSiU1PDxcXZcuplX3eLfKlDIqWUyqbCmrUsWUypQy6lDqkNq8d7PKlGT8sm98nxpID6iR7Ei1TqaUUa8PvK5Wblypdg3vUslCUl3xxBUqU8ocMaYp2IX/xtH70XK0/L8L0K/+Lzj1KHP9X1lCYTSlAofJPxw2O9kjKbdCYWGpg9nPStyNcl3U5HhVRlSJj6q6VG7vRLMsjIv/Ev0zXwrcxnU0FUgCfU9mhi1LjqF9DvzxeYBqKq10Oo3rupTLZerr6+no6MA0zSNmKXVdJ5/PE4lEqnE+H/vYx9B1nfHxcbq6unj77bdRSlFfX1+d1Tx8ZrOtre2IWdRKei/XdQOmuIZQKIGm6dTVzeaSS35MoTDG5s2rg9RZPr7v0NfXRTLZUzUpq6+fzaxZZ6JpOps3X0sq1Q1AQ8Ox1NS00ta2iFde+T67d2+gs/MuWlsXUiqlCYdrj5CXJ5PdzJp1Fvn8KP3929A0uPD+CzEsg2hjlC1rtlRl3FbMQvmKcF2YxMwEoUSIWWfNIjsoDLdTcHhm9TNkejOsWLeCBSsXEJ8Rp7atlle+/wq1bbWgUe1zy5otWBGL3Rt2k+nL4OQdnr76adySi+/65EfyVem3qU05bt667FbqI/XV947ncFzDcTx86cPMrp3NGS1nYOnWf3DoNDSDW5fdWl1XH6lnvDDOrctvJV1KV7fdvvx2QkYIQzO49uRrCf0uxCOPPcLjbz3Ogz99kFtW38K8xjmsWLKAHU+u59zlS9j4jw8wvu+P9HfvpvnAbRJPHG8VBnhsq7DRypYY68jMKYZ7wW2BuVcBzISwP5X463fvArNW4rd3rJJY7Ox+eV8eF6bbiIrEvDgElqRakUA4AvYoLCm0jDBVWkOpKfl0RYoNIgM9Qu4d5KmuOIzr+p+ZnCnI9AdGaY7EcHu21CmOC+scbZYc1gTO4/lheOkGWX/+T2SdYcGsxVAYEdn8ioehfp6YkCX3QaRRXMMTrbDoNjExW3QrlFLSX7RZzqFuBanIFCRaIHNQ2HPdku2asNHbtw8wZ0494bBJOl1m3bouNmzYzV13deJ5qrq8bl0Xvq84cCDJVVedSSRisn9/klWrNnHwYJprr13I97//CgsXtjI2lqe5Oc7DD1/Kscc2cOqpM1BKcfXVT9PTkyIWC7F69WaUUqxfv4KlS9u5446XKJUdfrjlX/F8j1vP/yIttU00xxuFTUWjNznMaG6S21d8ifb6GSRCMb59wZXMrGliPDdJzIowp7GFb19wJVErjALGcymSxSy3nPcF2uqmkykWuPvFn9NWP51bzvsCiXCUomNz7x9/SXv9DL614ss0JxrI2QUANC1IgTWxLpBmrxNlhF4f3BP+lJzb6RVzsuGrAfewNmsAB0a/Kg7gkQ+IxHxiHZjTRe5dqecOgJ8TCXnNSogukrjtw/oqaTMYyGT4/ooVzG1oIGZZeL7P+q4uNuzeTaZc5t6uLpa2txMyDJZ1dGDpOp29vZRdkVSauo6uaZQcR1KOAa8ODtIUi+ErRcl1ydk2GduuOoX3pdMooDYc5sYlS1i5YAG3LV9O3rbZOzHBYKGAcl1hl0Hk4KtWiYO4ZcHVV4uL+PAwXHMNXa+9RjKV4tLf/Y5p5TIt06ez4aKLYHycV6NR9hw4wMF8XiTlQ0PCgq9dKyz4XXdJeq61a+X719MDAwOSwsv3xaVcruDUM6DCTBu6sM+2I3HVrjeVtzqbn5J/l+zAm0GTlFzN9dKlJ+x1+3HHMTQ8zHvPvgglm/3Dg3QfOMD8BSdy+Sc/yU9++hMIWbz6ynYGevs49+wlaLpO8wc+gBWP45XLjL3+Orm+PrxymfG33qIwOMj4zp14tn2YukZhhMNEm5vxXZfItGl4to1XLGLGYsz/279lzy9/KXJyTWPBVVdx7o9+xFm33y7O1+UyTqFApqeH7d/+NoXBQXK9vbjFIkrXUY3TaZ97HEOFMu/19MD0WexffAndvX3Mf2eruIE7tjw/SgU49kSJH96/W9y+dV1eTVNYacuU65wchX/9EWTTMHuexFQrjmSpL/60MN9P/ysUclRDbhQ4ZQmriDYK6xxrbMWK1KCbFk4xX5V1R2qn4ZYLEkNdTKMF3glj3TumpN6ahusUGd3bhVPOo0HVWdwp5nAKaQbefgHfcyhnx7EiwowrNMyIpC30t21B6zhGVIOmhXJdedz/mZs3rov31EbU5DhK1yR9au+BKVfwZR8B08S45FNoDY3yU1TfhGaGwHVQuazci5FgvGZaaDNm4W/vZPYHzmRodJT365pRwBtvvMGePXuYM2cO7777Lu+++y779+/nsssu49Zbb+XGG2+kvr6eSy65hPr6epLJJJs3b8a2bWpra1m4cCHJZJKnn36aZDJJW1sb8+fPp7a2tmpMm06neemll5g/fz6O47Bp0ybGx8cBSfNVKpXo7e3F0AxmJGaQs3MM54bJ2lkAcnaOglNgcdtiDqYOsmrTKgpugagVZTA3yOrNq8mUM7i+y/ym+Tx86cN01HWgaRoPXvwgvvKrY5q59XPxff+oY/jR8v+t8n9D3v9b//4/w1wPDSh377vyfnhAeWMjwWxkr3L37FZ+LiesdrBdZjUHpH6Vhc5LnUJ+irnOpJU3PCB95HMyS1ppk8vJPoYGlJdJV2dXnUKhOpvZ39+vxsfHqyxyZVazUCiowcFBlclkVKFQUE8++aRqaGhQ06ZNU4lEQj399NOqWCyq7du3q/b2djVr1ixlWZb64Q9/qPbs2XMEM/3ns6WHz6Km0+mAuc6r4eF3VC43EjDTOVUsptTGjSvVtm0PqHS6Xw0MvKY2blypBgffUHv2bFJ9fdvUnj2b1NDQW2rjxpVqYOA1tW3bA2rjxpUqnx9T6XS/KhQmVamUVcPDO9XGjSvV8PAuVSplVCYzqDKZQZXPT6iNG1eqO++k2k5ex1UpV1LDu4bVnk17VDFVVENvDR3BXP/m879RhWRBlTIlVUwVVSknr8WUMN53cqfauHJjdV2FCa+sL0wW1NCbQ1XmupQtqexIVpXSpSrbnR3JqoHXBtQTVzyh0v1plSvlVKaUUblSTqWKKZUtZVWuLO+ThaR6fv/zKllMqpHsiLriiStU/d311VnhVDGlRrIjKllIVttWXvPlvEoVU9XXw/tPFpLqDz1/UH/a+ic197i5sq6YVJv3blaRWES9tu0lpdL7lbIz6txzlqnfbPhnpcppYarzgwHTnJXl0oTUndwpbHN+MFg/Lkx1OWC3yxlhmCffCpjr16WfCsv9HxjvSfnbslKp5DtTDLNrK1XOHsZAB8uFicNY5YwsexXWunQk62znptjtwxnwck7qHs5ue44s93cqNbEnYMTzwibnR4U1LqVln898XqnXHxAWupgUtjo7KO2Lk0oVxqVupV5uKKiXkr9yTur1bFZq+I0pdruck/6HXwuY79fk81WWs4NKjbyp8qmkymRK1b/Dmetdu4ZVPl9WO3cOq5UrN6qdO4dVMllQo6M5lUwW1eRkQa1cuVHBnWrlyo1qbCyvdu0aVqOjOTVz5r1q06Y9anw8X2W3D6/77rujCu5Un//8b47Y9vQz7x/JPo8II50t5VW+XFCdPW+qd4d6VKaUD9YVD9sur5P5lNo/2lddnsin1EQ+rV7ufkPtHTmkDk0OHtFvtpRX33zyfnXq+r9SPeP9/+F9z+h+5TtJYZWr7HROKTevlJtVyklOMdfO2JGMc5WR3qVUaa+s718pzLSblT5Le49krp1xYbYrDLab/TPm+i2VK5VUslBQk4WC6k+n1RVPPKF2Dg+rwUxGrdy4UQ1mMmogk1GvDwyoTXv2qLF8XmVKJZUsFtUTTz6pTj/jDLXg5JPVB848U/2hq0ulikX1hy1b1JkLF6pTTjtNHTtvnrr1O99RmVJJpYpF9eD27eqKJ55QIwGznSmVVDZgv/vTabVnbEzlcznl79wprHIqJcz0ypVKgbyOjcn7996rrv/iX/6l+ub8+dU6b/37v6sLQZ1eX6+uuPxy9ZHly9UDp58+1cfkpLDTK1cKY71pk1K7dimVTsu6Bx6QfVf2USoLq2wHDHapHDDJZWGjd+9X6qVX5dUW5lmlc7KczcuyfRiDnQm2ZXKynC+of1l/nzp5/gnq1JNPUScvWKB+9ctfKuU4ari7R61YslQdN3euOmn+CeoP9/1YOemMmnz/fbXlhhvU5HvvCYM9NKQKo6OqMD6uxnbtUltuuEGN7dypCuPjanz3btX/0kuqODGh7HxeTe7Zo7bccIPKj45W+xl/5x2VHxlRhdFRZedyaqCzU5XS6SnWe3hYWO50Wg10dqqJ3burzPi2b39blXM55ZeKShUL6l8e+5k6+aST1KmnnKxOPmG++tUXVyr1pQvVdz92vmqdNUuFLEs1NTaq1lmz1OjBHqWKBaWyqSrjrAp5pR77vjDV+ZxSO7cpdfVlb9UuXAABAABJREFUwk6PD8v6g/uExc5lpc6uHUpl07Itm1YqOaFcp6zKhYwqZieUUy4o1ykpu5hV+eSwMM2pEeXYJdX7xtMBw11U6eFu9fbm+9Wh159STrmoHLt0GDM9qly7pA69/pTateledej1p5RrF6vbnXLhz7aVlFMuKCdgwu1CVrklUQD6pZLy8znlpVPBeK04NV4b7Ksyz+72LTLeKxaUNz6qvP5e5Y2PynImNbWt0nao/0h2fKD3P7LlmbTyyyX1zz9Yr06eP1+dcsop6qSTTlI///nPVbFYrI6thoaG1Cc+8Qn193//99Xx18DAgMrn82rjxo1q27ZtamBgoFp3z5496s4771QbN25UxWJRjY6Oqm3btqknnnii2ubOO+88QoW4ceNGlc/nVT6fV3v37lWpVEol88nquCFVTKn+dL/KlXJqNDeqNu3ZpHYO7VSb9myqKuLG8mNq5caV6oFtD6jXBl5TKzeuVDuHd6psKVsdd6RLaZUqptRgZlB9/jefV/3pfjVZmFTJQlKVnfL/1JD+aDlajij8P5jro6m4/ouKKpVQ+WxghmELg6zpEkfTf0hcwF/5UzWdg/fUhsNScF0OmibpHDqnUnhprls1J0NJPDVOWd6GwlMpvxafi8rn0FvacH+4Bm3+yXiXXs6h3l7i8Tj19fXoul51jSyVSkQikSPcwl3X5eKLL+b8889HKUU4HOb+++/nt7/9LXfffTfnnHMO11xzDQcOHGDFihX86le/4owzzsA0TZLJJNu2bWPFihVVA41KvLPjOFiWRTKZpLZWnL2z2SEymX5qa9vIZgepqZmFGbhDvvTSHezevYEFC1Zy0UUPMjCwg9bWhTzzzLXV9eeeeye+72CaUSwrhqbplMsZ4nHJ5a1pBo6TwzAiaJqOUj7JZA9dXfewfPntNDQcSzJ5gLq6NihH6N/Wz6yzZmFYBpVUW5qhCWkV5L3WdGFHlFLkx/KE4iEKYwW2rNnCsluXkenP0HKGuM1mB7N0reti+W3LMWMmZthEN3UxLCvaJKYnJIWxrxjYMcCsM2fx9NVP03FOByf8xQkY0wwydoZ0OU1duI6aUA37k/t5YNsD3HfhfVW347AZxlc+RhAX7CmvmgKj4BQoOSWmJ6bj+i7b+rfREm9hbtNcfOVT9sro6ITNMIPZQWbEZ6BrOplMhlNPOJXHfv0YS5Ys4Z8f/2e+/oWv8/i//YpP/sVlgM+HVlzK9dddw198/NKp+1IBblaYZa8EVg28ejXM/xrEO4TZDjXIdmVLrLIRFeMzJyWGZpopJzy3Hwr90LxEDL123QanrgUzJjHQuQNighaZjjDNuuSWLqcg3BAwt8EXs5JuKzpNclnbOTEUq7jjVxjvP39/eLuadhh9c6qPinFarl+YaN+V94k2SO+XeOmzboT4LHEMz/TAmw9K2ixNk8+YH5LjGNsp7WrnCKO+Yy0sul32qfyp9FqaKTHamiFseSWdWCVF14lXwHk/hvwAHHwe5lwIXd8m96FfohR4nhL/NUNDKWG0TVPH9+X773mKyckCDQ1RPE+xfXs/S5e2c+hQmrVrO7n11uXMmVOHUore3jR9fRna2mpZu7aT225bTkdHLd3dSdat6+L225fT2Bjlhhue57bblnPMMfX09CRZu7aTm29eynEn1vHdFx7huT2v8KNP3sz85jlYhomlGyggWUgRtiLkygWa4vWUXRtd04haYcnprOn4yqfklPnhll9z3fJPo6Hx/N5XeGeom1vO+wKGptOfHuUXrz7FzR/5PJ7yeWe4mxOmzyFZyPDo9t9y44c/x2QxQ1tNjJgVo8pSI2Zwkj5rHUy/V+Kq8WSbs1+Y6KZvSWw1rqz3M0E6rptAi4FRB1oUSe21lWf/NM7td/wAu9BLrKadn/7kR5x22gIWLb6Asi0u9K5js/vdPXS9+iqxtjbWdnZy45IlbO3rY2tfHz+55BJG83laa2vxfJ/O3l6a43EaIhEKjsP7fX1cdeGFnP2tb7HuM59haPdurr/uOu797W+58VOfYtXXv05XPM7qBQv45Lnn8qMNG3h8fJxbli1jRjxOTShEyXVJlkoUHIe1nZ3csmwZA5kM502fTuSqq4RVTqXku3/woDDMt94KHR3CXN9/P4yMkPv7v6fl+ed59Ve/4oR/+RepM306XH+95L8eH+fE66/nwa9/nfNefFG2JxLQKOmLCIXk1Qh8D7q7IRyGQ4fglFMkldeCBYd9aZkyMay8//PUW76SuOqxJExvhHkdR37v9x6CiZS4h9clpp4Lvge5ojiLV/or2/DOfom7Pq4D9vdid8xg7M03aZg3D800MSIRfNtm4u23ibW0YEQikppL0zBjMfFg0TTeXL+e4//6rykMD/Ona67hkqee4u2HHqL32Wfp+OhHOWX1aqLTpqGA0vg4sRkzyBw8yHuPPcYZN96IEcSka5ZFfnCQ3T/5CQtWrSLR3o7yfSzLRPM9eW5kkuL0XS6K0/dzG+GSz4iZWdsxUMiLU3qifortr5wk3xOGO58LUnGdIGy040jKLd+XZ/v4iBieXfxpmDZT2pdL8PjP4MJP4bW0Uc4lCcXrq6feKeex8ynMcBS3XCLe1Fp1EPfsAroZopgew4omgrzUcnGUr6qpu1A+hdQwVrRG3MQrYxElKb6G3/0TTcd+kFCsVn66gpvFKRcIWXFRDWazqFxGsryYpjiCaxqaaYr5WmXctew8qKsXEzLDlPhsx0ZrnIbyfbRKGkWUKBPDEbRYHL/3AP7Gf0SbfzLGpZ/C2/wbtNZ2tLnz0WpqqWaTUT62pmPbdjV1qq7r3HvvvSxYsICzzz6bYrFIe3s7mqbR29tLIpGQe8s0mZycrI7/DMMgn8/jOA51dXWk02k6OztZtmwZdXV1ZDKZasotXdfxPA9d14/IIjMxMUG8Ls6h7CEGsgMsbV8qOa+dAt984Zv83aK/Yyw/xsLWhXztua9V03JVntdKKX79zq/ZPrCdBz76AAqFr3wOJA9wT9c93LLsFjxfPInWda3jtuW3Mbd+LvFwnKPlaPmfLv+vVFxHwfV/UVHlMio1gWvq+PEoumahlHuYm7E83DXNADSUctE0HS14vMs2GXgr5aJrpoB0U0fTDDErQ0MpT/qopPSyy2imhW9oQZsShtLxQxEcXUeZFj5icobnYStFyLLQCIaKSuH7Pq+/+SZXXnEFb+zejWcYmJrGOWedxVe/+U1Wfe5zjJdKovYCPnv55Zx3wQV88corK8NKGX8Amuvi+j66ZaFKJf7w7LMsXboULRwmWlOD0jVK6X5qrUacUhkzFELXQihfBabqCs/x0EyFEdbxPBtdN0kmu+nsvIvly2+nvn4ObtnBIIJmaZRLaUJmLfg6mqmhXB/XL6E0G9suEo9OB6VLTmo/+LE1QLkKzRQQbYVcNG0qv6rCQNMOBzUm1TzJykXy4QaDcc0A30VhkhtJU0x66OFI1X188LVB5pzTimE4aLqB72v4jk1v1wiJWQ3UH1uP5jtYEUB5qEDyqx3mhC1fW0XZc/B8l5gVDQYN4KOC+0hhew4ThQlaamaKnE0p9MpEh/LIlbOEzQhxKyofVSnG8qM0xaYFdym8/NLLfPfvv0s2l+WsRWfR+fJW1n7vO3z8ko+C8vnQBZdw/bXX8Bcfv2wK+BEYhGlG8L6SX5rgHB1+HoNXNwNvfRNO+IaYoBVHxMDMqg1SZinwiwLUnayYpEF1f7ZnYLs6IUsjZOnYrqJU9tF1+byaBq6rME2teg59X2FZOr6nqorM6jkKxkKepzAMrdr2iGVDq95Hnq+IhHU8x8FTpvSDh0kOP1yDQhHSwBrsxGlZgoOBcgqE8EA3cfQwhm7gOXkMK4aXG8I6+AxW4zycaadjY6BZUQwUHhrKKWKaYVxND+4NDeW7mMUJvPgMfOVLuinPAcPCC8bDBj6a8uTYNYXvS1YB1zOwbQ/LdNF1C8NQ+L7H1q4RzjqrhWgkmF1Cw3Z0crkyNQkNtDDFkkYum2FWi+SXBQ+lDJTy8PwQ772f4ri5NUQiCt/zMAwTX+lomovtGmQdh6xdYmaiAQ+F6/uEdQNXKUxNw/E9yp5LPADUhibPyUou51QhRcgMY+gmIdPC8VwsQ+49QzNwg5R2JadMPBSttqvgKHnmyrrKPj0/T8QwCLkKHE2kxW4KrAh4JmhyXnFdsHwB3LYNRgGSNwXO4HPA8UU+WxqEcDP4BsmJSY474wO8/PQmFpx8Alu2vMxXvnEr77zyinxPDB/0fh7/91f5zpr17Nq2jTIhxks+JWXTEIpjY1NwbGrNBFHLwPXk/rQdH8vUGS1k6Hvvfb70xc/y7396hdk1jRi6RsusOjY+tZmbv3odV33lq3zus39Lf38f5523hC1bXiVcV4dlmMRMC88DdA+ldF4ZOkhvKs3Hj1tAPGSiaRqeB3E/hxmPiJS68sVyHDkv0Wh14upnjz3Gz//xH+n805/ErMy2GZqYoKVNxiePPPooP33kEV7dtk2eZY4LriPnI2RNpdEDaR+kV5OJPFfem4YA6LItjt++Dz390D5TpMueL3WyeUjEjsx1Pbdd9nk4+K709ecgOmRJfz39AswPA9SHA3fXdbBzOYpjY7z32GMsWLWKwvAwkcZGSpOTNJ9xhoDfhx9mwZVXUhgZITZjBuGGBt5Yt44zb7+d1773Pc64+WbKk5PsfvhhTvrSl4g0NZF8/32azzhDTOuAHXfcQe+zz/LJbdsoDAyw+5FHWHDllRjRKJsuvpiOj36UM2+/HUMDM5tEe+5x+OQXRaJdLsFgHxx7fNXtmjuvgW+skwkOTRMAHQtc1Hvel/Rcm38tgDkUFlBdAdDTZ4mjuK6DaYmR2asviyz8c1+VfShgfBgyk3gnnIbyPRn36Gb1meqUMozt30HLSR/CtYs4xSxWNMHY/h1MO/YswokG3FIBzTDwnGJ1PYGZ63j3q9X81ypwnHbKuSAv9kJCsXqRf3suoBh+72VmnngOKDA1Q2Tggcu733cQbWYr5LOoTBqttg5MC/+l5w4jRj6FSiXxu15CX3EJmmGCYR4GwD8C8Rp5HmRS1XUqk0ara5BQCsuCbAaVy6LV1lX35Xf+Ae+ylZTLZWzbJhQKEQ6HOXToEG1tbSilyGazdHZ2smTJEmpqahgZGaG9XTKCJJNJLMvCcZwqkG5sbKwSKkopHMfBcRxisZjk/rZtstksXV1dLFu2rLresiw2bdrERy76CBOlCabFplFwCuwa2cVZs87iUPoQ9227j/svvB+FImJGqpP6rTWtDGQHOHXGqcSsGKZukrNzGJqBZVhMFCY45Sen8MkTP8mPLvkRg9lBnu9+nh0DO7j/wvupDdcSMkN/PuQ+Wo6W/9ZyNM/1/1hRuHU1+PFYsOTj+fIAV0pm4xynyBSw1vB9LxjkuXheCd93se0MmzevZjLZA5YlM36oYFuWXG4Y33ewnQK2m4dIFFdzyedHmUz2cGhwG44JrqHjmCEcTUdpGq6u45kmXw2F2KtpZDSNUU3D1jRypsk/dHQwNDTEm/v2Yes6+7q7OdDTw5yzzyYWj/PyH/+Ipmm8PjHBCzt2UH/KKWQ0jVWaRnfgoukEs7t94TCrdJ3eaJTzP/YxItOnE62ro2QYjGk6daGZ4JqEQgncHEzsmWDTlZtI9qSwsy6br36W9IE8yjHRnCg4IepjJ3DZRb8kZs4Cx8TPW+SGCvhlCOn1KE8jN5zDztgM7BjEIIKl1ZGItmBnXXKDOeysTX40LzHOtkxOKEcRCntobgbNyaD5ArJ1XUPTTDTlomkGmu/IZEiwjJtGQ6F5JVmn62g41M6MM31+lMZjosTqFbFaj7nnzcLU0ujlITQ3g+5nsHZezbFnlalvjxAKuVhGFi2zB22sC00z0dHQfA/Ns9F8D1156GhEjBAJM4yufDQlcZQ6Gjo+hvKJGCFaa1ow0IK8vnqwXSOkmzRGGkiYEfEGUNJ2ZrQBU9OxlIcFnH/OYv7020d4fcc2Hvj+DxgcHGTBsbOCHM35ADBrkApSTdkZAdNeSd4n90NhVIA3QGEiqKMCYK3LNiMOZ/4UEvOkP2VAPhkwJUjcnlkDShN38fTB6v5sz+D9fRm+9OVN7NmXIl/yyWRdRkclh7NSkE7brF69mf37k8FymXzewXUVrifTVb5SbN3ax/7uCUDAeAVI27ZHsSh9ZjI2ruvj+QrPk/YjI3lsR5HK+uzdN8GWLb0oQ8cJJSh7LhOFDHnXpzjrXGxMXKWYcByKZoKiHsFDw1Xg6BHKvmKMKPaCL1GYdQ5lqwbfjJKzy5SVRm96jDdG++jLpLE9F19JkKmmm7ix6cLkujZKga2beGjk7CIoh5DuEDI1dE3YFEP30DWFZbrEoyXC7iuYegZdczDLnZyzbDrRUA5NldFw0ZRDyLRprCsR0oYxtRS1CY9ZM0Oy3U+juRPoGhi6wjI9Tj25lljExdBcLMNGx8XQHQxK6LrHcKHMHX/qImPLMVu6gY8M+DK2jaEbmLpMWIzm8zi+z/5kktWbN5O1bWqidXgYpEtlSUcVBMprGKTLNoO5HAXHJR6KUnJdOnt76U4mg7rihu34Pp5SbOvvl316IayShkoXJY9yqQxjJegegiuvhgPDArJdA7w47O2BL18N+yeg/kfgtMPeA/DlVbB3P+jTIV2EvfvofuMNmhoaWXDCSeDqLF92Hr19/bzx5lsCHD0dvNn87Bf/wpf+5m9wcjbJrEVuIkrcq+W17SYUo+SH6rj2apPubo3xMZ1sRmN02MB1NJpCtbS3nUAyOcnArj2Mjer89rdPkc9lSQ6O8NBDP+futXdw4omz+cAH5vOZz6wll2uhLhzFLYTYs0ejq0ujkDPA11ky8xj+av7pvP1GCNfVUUojnVIYsXAwC+XDvl7JYxwKBaDNEfa3ZPOzn/+cL332b2TZ8SAa5eGfPcbxJ57IvBNO4Kmnn+Y3GzaiZfJTsc+hIKXd4Ww0CHvtywQxpTIcGJA4ahDQG48K0LWdqTRbrjflAF4sB/HXvVJ/brs8jw5Px2U7YBnCWB++3jKhb/hIh/H2mbI8b7YAawXs70UViji5HO899lg1nVa4oYH3fvELmk49Fa9Uquaf3v3II4QbGtj9yCOYsRgLrrwS3TQ58/bb8UolIk1NLPzOd0i0t5Pcu5fo9OnohoGVSKDpOiddeSUdH/0oGrD7kUeqfUYaGuj46EdZsGoVE7t2YYYstM2/hmPmQzopeaZTk9DSJk7eleUb10Ntnbz/1UPC4h54XxjtWbOn0mht/k9Scbky1mFyDPa/MxVvfcln5Hk+OgT//EMB38ctECxsiHLOLqTJTwyiaVTTZ3muzdj+7ZjhaHXdeM+roHyMcBTfc45YH4rVMd79ajX+GuVTTA+j6Uem5CJgUIfe/SNOKU+0fibD772MQokfTj4r6bMmx8X9W9PEPyeekLjr7j1TcdVLPywpuzKpqr+Ot/nfwfem0nV1/kHuZqWOWKd3HCOx2LE4mhXG73qpuo/qvna/BUAul+Oll14il8sBUFdXx+bNm8nlcmQymWqKrVKpVAXdnufR2dlJJBKpeuB0dnZKLLNtc+jQIdLpdBV8b9q0qerJc3j61nK5HIxdHZYtW4aBQcEtcPXTVwMwMzGT1c+sxtRN1q9YT9SK4vgOeyf2cvXTVzMzMZO+TB8nTz+Z4dwwVz99NTk7h0LRl+nj6qevpuAWePzyx1m/Yj0HUwe546U7WNq+lLvPu5vtA9spe6X//4bmR8vR8t9QjoLr/6Liaj6e8qoyGt93+P3vb8a2c/i+C2hYVuSwFkYwU5ilUJjAMMLouvzYnH/+PdTXtwOKfH4c3xe2usJ8+76HbWfRdQvfd3n22etxnDyWFSEeb6avrwtPNzikaXQBB4CrgV5N4wagHYgDCeA6TWMQWDFjBj98+GG+8ld/xXmnncanP/EJvvfgg5w5eza/2LCB27/5Tc4+7TQ+ds45FK6/nk2LFwOwDuhAhJHjgKdprAPOAZo1Dc0wKGsaOU3jNWB60SG5b5LNqzdj52ysmEVdex0XPXgRNS01hOIhzl93PqF4CDtjCxB2fApjBeyMjUEU0MkOZ0W6rUDTNXRDJzEzgfIVbYvaSPem6euSlFRW1CJ5IEl+LE+sKUZxoohblFntUioDyhHAbCYkVzMiyQJfjLecrEiNc/vhtdXgZNHMmIz/zJgAReWLBkEz0PQwuo6AGWWj4aEVhyRHs26hmZKGSkt0EIobAtKNkOR2nrYITRd1Q1X1oOlUUkKJuMGoLqM8NOVV0zNpXhnNtxEZXiaQAgbdlDNoXlk+m50Fr4yW7pFjBtBDaLrB0PAIJGahaQbfW7OWj3xoOcfNP0kMuDpvlb7xoP4YOO9HQd5mJEd1qEbYZycPL14LTg5iTWBG5BgHOoWVdvLw4jWQ7hbg/cJVsq62VfI0F0ZFglhV2vhQNwfOvAnMCLYD69Z1sXRpO9OmxchkbF59dYD6+gjj4wX2758gGjW5774LmTOnHt9XJBIhCgWbXM5maChHJlMmm7U55ZTpHHNMI6WSx9hYXsCz62NZOqZp0NKSYGyswDXXbObAgZR4+xga06fHq1LrlpYaTjttBkpTlFwbz/eJWhF+8Kd/FpCLAMeoFeHuF39O2bUDJtYP5Pw6TfF6AgUjuwb34foe8VAUQ9OJWxE+0DqfWfVNeL7inaF9VTWDTL75lOwSCkXZsSnYJRLhGFFTR1NFkSy7w8G9KudT83NoI7dCbCmaHgV3HMwZMqmED24/FLbJ/aHpaFoE9Hp0IyYDRrc3MPYCjEZJX+WXgtutMgk1JtJotxdteBW4w5RViJmJBA9dfDGJUIgdAwOUAsWLAhIhYSkczyNr28RCkov7rs5OFra2MpTN0tXXR8yymBaPU3Rdvvrss/Qkk3KnBPdM5TVkmizr6GB2fT2mruMrRW0oVDX8WtzejuV5WPv2oV1zjah8ZswQNra5WaTMS5eKmVZPD/zd30mO5WnTZP26deAq8DVYs0Zk02vXCqhIp2FignlnncXE5CRdr70GhsGTmzeTzWY52N9fZXr7+gf4U2cnn125EjvRiK/04LdEY8kSiMU0YjGNe++FOXPk0CIRaV4qQbGo8f77daxb9zg333wrK1d+kC1bnueEE04CLNavv5ubbrqLF17o5cUXd/Ov/3obudy7KKVRUwNz58I558h+NA127BCQu3AhjI+LKrutdUpmi6HDsa1Taa8gAE8doOt0vfwyXzh3hYDUvmEA7vjWt9i77VX27d7Nk48/QXtLiwDjsi0Mc4WhDsJwKJarYF0EEr6A4GPbBNQC5ArCQNfEZT8NtQKCTUOuYUcLNNbKttFJ6O4LmNnikWB5MgPdgULuz9N0dbTI542EYM4sSOcEtFeKJm10X2HV1HDiF78oAPeqqygnk5x81VWYkQhGNMqCVauq4LecTLJg1Sp0wyAybZrkow7HCNU3YsTrMMJhvFKJRGsr0WnTJAUn4CmLSGMTH7z5ZtB1FgRAe8GqVeiWxcI77yTW0kJ05kxc20Fd/Gk46YypXNXPbYRwFDb/25GAGe0wEP1vkKiTZcs6EjAb5tTyBZ+S1FyVXNg/XgN1jXDFtVDbAJn01H43/zp4nHsBg+ww3vMqZjhCfnKQacd+sJoaq/m4RbjlYjVdVvPchRSSQ+JbaYaYNvesamotTTeOTLWFhhWrQ2n6VPugP1BVUJ5ons20uWdRyoxBkCaralxml9EMA335eRJ2t+w81EBfNa2W6j2A/8Im9NYOtLnz8bteQu1+C+V56Es+VAXgWBZK0w5Lm3qesMe+L+Dcc6Xvyj7yuSqAR6kq2O3q6kIpdUR+6tbWVhYsWMDSpUuJRCLVVHyaprFs2TJKpVLVtHbZsmXk83lKpRKxWIwtW7YAVPsbGBggHA6zZMmSav1IJIJlWbzwwguSB1tTrN0iKbOydpa7t95dTZ9VYasz5cwR6bYWti7E1M3qunQ5fUSdNVvWsKxjGXErVk0xuq5rHYZuMLtuNmHN4mg5Wv63l6Oy8P+iUi5nq+8FBOtUJN4iBVfVbQCpVC9dXfdw0UX/EIBqLwDOAsQHB1+lre3s4EGpB9sDiaYtjpvDw29RUzOLQ4f+RF/fVi699Kds3nwt5513N9S0sEo3+CZQDzRXjwB6gHuAW4CXga3AT4FeoA9YCESYkk8GfsSEgP3AWuB2YBpwK/BDRCCtOEIsXW1vBH14QDxbJjuQxSk61M+plwPSYGD7AK0LW3FLLi988wWW3riU2vZakj1JiV++dTnRaVGev+F5lt26DCthEWuKoRuHSaf9IDYayI3kSMwQ0GfnbcywTFx4ZY8XvvkCZ3/tbJqObyIUdmRs65XkqIvD8N46OH29AOexTojOhppjplhXJwe7boUP/CAY8DmgHEAXSTMBQ1sak37jc2DsZXGGLo3BtKVQOAi774IFt0JstsQh+664YteeJDG9XllcryuO1ZVY38qyUlMA3CtKfK/vBNL1imt05eQEF8QLHDg1IwBanmzIDYpDtaZx5VVfYUtnJ67rsfjsRfzDffdSX5fge2vW8JNHf8nY+AQ1NQkikQhvbu+kublZzkklpi9UC7k+sPMyiH31Hlh4mzhaG5UJJl+Y79e/LzHGh4I44URr4MBdgpdvhI88CJle6W/mIgHpuQGKkTmk0ja+r8hmberqwoTDBuWyRzxuoRTouki6QRyzm5tjzJvXhOuKMsEPQgTKZRffF8Y6HDYpFBzeemuYWbNqWLu2k4ceuojVq59hw4bdrFy5gIcfvhSlFMWiS01NCM9TOI6HZRlYUcXBySF+8epTfP6sywCYFq8nmc/SXFtPyLDwfR/Hd5nIp3l0+2/54qKP0xSrY/0ff8nnz7qMtvoZDGXG+Nn23/HlRX9BW/0M+lMjPLr9t3zhrI/RWj9dXOXRsD2HbDlPbThByBSli4ZWDSmPGrbcAsoGLyUO1t6QxBI33QJGs9y3flpyNvsFMJsl37PdDZHTwBsBZxisdnD6ILpQvunF7eDsgdorQAuD0x3EIt8CzgBYbRJ7bE4TEJ7dADUryU/7JZkg/2/cstA0jcFsltpwmKhpBubNMkiU8EP5MGYgh/WVwvN9DqVSDOZyLGptpex55Gyb1poa9k5M8INt2/jxJZdUXbJLrktNKFSVlpuBHFzXNDzfxygUqPnGN+B73xNZrK4L0JPZkynQ19kpAPvsswVU33QTHHusfBfHx8VBec0auPlmQauaVo0b/uNPf8qd//qv5DyPxWeeyR87O7nrzjv52IUXglJ89957efvtt9nw6KPkos3s2atx331wzz1ySKOj0v3AAJx2mhh2+76Q7NkszJoFvb1QXy/zAb4PnlfmuONm8tRTL3D++UvZvr3MrFkSuvz5z1/OBz94AV/60pUAvPEGtLXJvMCNN8K8eZDPy8cPhyES9gm5JZHNhswjY5X/T8XzBBBblgDo3iFomwmxsADnvmEBttHwYW18+avso1SGgVFhm1HCYDuutD22VSYbnSCMRKkp0P3n5fD4a10X8O0HsnHvMDl5pX31memLjDoSkXZ/HscNsHcfzGqBWAxXKXH19n003UB5Hq4WFoUGZTRDP2ybi26aeK7H8FiYeK1FKiXq+lhMznvYcvBtGz0UwgjAdSYDr3Q6fGi5DYaJjiegzrSC3Mbg5PNouo4RCmGFLFAKbXwInv61AOTmFnEJr0i9pwd5oscGpc7Fn4bkuOS+njZDnu2+P/XdMAzJj31gD3QcJyesEsP9V1fLcmW8mU5OxXY3NkM2jdfUjO/aOKU8bjmPFU3gFHPE6mdWf9dcO48ZTkgsdXJIYqmjtahKjmul8F2Ppz/+F1z0xEbMSBilpsKCVDD5jvJxy0V838WK1DD4zu+r8nGCfjQ0mBwX6fbSD0OiViYzNF0Yb00ytKDr4o+zRfxxtIYm+agVKfgFHwtmvIoQiaKFw8Gp8NGCewOlZD3IOZ06WHETLxXRYnE8NCbSabZ0drJ8+XIaGupJJlNs2bIlWG6o5rLGs9GtcNVHQz6WQtd1fN8nn89j2zaJRIKhoSHq6upoaGggmUxW+6uvr6+2OzzeOpWSfZ5/wfn0FntZs2UN9194P2OFMdZsWcPty29nbsNcfOWRtXMMZgdZ17Wuut5THgdSB6rtgKk6y25j3qFJaJjG3lqfNZ3S3zH1x2BpBiEfyUEeOioNP1r+58rRmOv/oVIu5xFIKaXycMrnx4lGG9B1I1jvoRQUCpOUyymamubh+y7F4iTRaCOg4bpFkUy7JUBhGCE8z8bzHAqFcTo717Js2S1Eo9Nw3SLxeLMQCYZFuZwhnx8hXUxSO+dDRDWNIAqWQnBsu4A9wAVAAzACzAa2AWcRELJAJqg/AgwBixDwXAHR1wZ/JgK4bwTmBvvJAS3Bfo1gua7okNk3yZY1W7jw/gvlvKXLxGfE0S29aiS2+4ndJKYl6FjaQe/WXjZ+aiPzPzafc+88lx+d9CMWrFzAZT+7DDtrow77IbGzNuG6MKGaEHbWJlQTqvbpuz7Pfe05Fl67kL6tffRt7eOyRy8jFLHRcj2we60A3UI/FAeh49PIdIA+9cMnVzCIsQ5ArBZIGJ20xAKbcWGo99wfgG8NNEvAtlcWkGNE4dVrJP1Ux0o46yGpIzcIWAkBnrWzg30w9QMMApyVJ+DZzkpKqgqTXZnRsDOHAfPaqXZ6EAftlSA3IGZah6eb8v3gswWf2SuDFYNSUto7eQHAyqW6Q00TII0S9jrbC9vXCKC2otI20iiGYChwCrD1dli2VvqunM/ihGzbsUYMwQa2ilHX8A6YdoqYexkiG82VLXx09u2b4L77trFu3Qpqa0PVOGmlYP/+CQYHcyxa1EokYpLN2kSjJrquVx0eKwA5nS4zPJxj3boubrllGdOmRfn6119gw4bdbNr0map51623LicWM2loiOD7MDSUJRazKBYd4jUmLa1xRrKTvHJoF++PHOTGj/wtru9h6AY6Gj4+OmIU83r/ezREa8iU8pzSchyO75EvF2iI1VJ2bWzPpXu8j9Na5/Pd58UA7MG/vIkZiSYilkVNOE62nKfk2Pzi1af42rlXELOEvagYyCQs0Pzgm6wHqcuGV0PuCZj1OMSWSVqo0i6Inikss3JBFeV+9iZg/A5o/Dq4ExA5RerrdaDXCCj3s7JceguG/hpmvyoAHX3qCVAF3jeR1RYAVGOpKzHv3mH+AJlymZhlVetYuk7GthnMZlnX1cXty5czI5FAA3YMDNBeW0tfJkN7XR1D2SwnT59OPBRiLJ+n5DjMqKkhapqUA7OuouOwprOT25YtY25DA6bnEfI8MZE0TTlfvg/btkFLi6CdhgbZZttw3XXCUG/aBO3tArTXrRMAZlkCPorFIPVTFurqZNv4OEyfTjmZZOb8+bz6hz9w3KmnopRi7qmn8uN77+XCJUvIxGeytUtn4UL5ym7bJuC5v1+AdTwuvl4VL7FYTIj08XE4dGiIcrmFc86B73zndvbseY9f/GID8+Y184tfPM6HP/wRRkfHOffcM7j//n/jvPMWY5pC8pbLcui7dwspr5QofrdtgxUf8TBzWYldth0Btx0tIps2Kv4KwTPIdiROWS60vLoevL4bmuolXdafm4el81AXnwLdlXjncGhKel15FlZ2pHzoGTgSFA8OwuQknHCiMKpipCDXRdepxv8qBY0N8O//DmeeKderebrEH1eM1BxHTNo2bICVK+EnPxFkO2uW3AfXXiszES0t0j6TId92PJmMRjotl722Vs6hacprZa7GNGWe5p574B/+Qbbt2CG3U1MT3HCDXNvjj5fbr/o7Z8th+RWbi+BRvXWrCC5mzJCP2VjnoDwbK2RhVCahfS+YKDLkva4Hr+aUeZlSgXJLk++vLkRB1Vhu76EpQ7hjW4M+VRATL5OZ0ubw383K708wDvI8fF1C1ioT4ofP1SifQMItMdkoH03XsPMFJt/ZTdOCBWimiR6YsirHQQ+FyBw6xJ5f/ILTv/51zJik1xp75x2mn34auqHjux6+66IZBuNvvkm4sYloczPJd99l1sIz5R6tAOpsEi0aB01DGRYVHxGtXEQF5maUi2i5DKTGUfNOoWpGVjFwUwrNslA970sKs+Cz4HtoPe9L+rJQOPhddCCf5brvrOGpp5/mUG8vr+/YzqmnnoanFN3d+/nSl7/M+PgEdbW1/OxnP2PByScB8P4LP6Z2xlxeeGOQL195FU88voGPffxj8t3T5PfQ81UQ7qbhez6+WwTfwQjX4rmu+N9QuaH8AOvLRJBCk/aahu+WcQwIKQ2KRexYhLBmYaGhyrLNMQ185RMulLBKNqr/EO6Ck7HxCQ0OwsxZOCFT6jg+xgvPoC85F6ehAVu5hGwPyzAldVnlJgcwDDGWO1qOlv/mchRc/w+VclnYZBX8IAwOvsasWWei6yZUjch0stkh4vHp6LpVNTXL58ewrCjlcppQqAbLipHJ9LFlyxqWLbsNy4oRizWh6ya9vZ1s2PCXnHjiJ7nkkp/g+w6e52AYocApW8dxiqQKYySbT6JX01iCAOCKPZGOyLgrYDuKSLpnIsz0Iwiz7R3WTmOKwf5a8NeMyMsrrPUEMD3oowYB7tuBNqAf+Ei6xNOrNrF7w26+PvJ1Mn0ZutZ1ceH9F5IfzdO5tpNlty+j4dgGlCOu3E7RITeUo3VRq0xWjOZxyy517XVHsNPKVzx3g4DnpuObAEgeSJLpy9C6qBUzbDKxb4Kue7o4985z8V2fuo46QpEy+uuroWkhzLwAoi1yhtyc5FmOBDP2lTjhKuOrYOIVaDxTgLFuTrHXO1bBiTfKQKIwALE2Ae8n3ij9mzVBXwiAQRPmeWI7NJwO4RlMDTWC18rb9EFIzBRgrbzATZrqDz++LceoB6yMph8GznWmRsBAcUzcs+uOPXK92KgKk66HwC0IGPccYY51Cwa3TrlceyUYeQNaFso+PBvckgB2twgvfxPOWS/AWwUTFuleqO+Q4zbCU+sLo/DLk2HuxyRfdLxF+rSzcrw77oKzbsKuOYGyZzA4mCWRCFFXF54yKPMFYLuuqpqbVWbzCwWHwcEsDz64g/vuuxBN0zAMjULB4YYbnudXv3qblSsXcP/9FxKNmlUzs0rflmXgeTK4F2bcxzB0RkdzzGyLUXBK5MoF4qEo8VAU23N4Z7ibM1pPYCA9xkhugpNnziVshgIDMr1qRPbWwB6a443MqG2iPzXCL159qspc5+0iuqYRNkOkillqIwl85WPpMkCpAHhTN/B8j2QxQ9lxOa6pAc3pEdBsNgOGSMRLuyByuqyvTBANfxWavgbGNGGcNVOAszcozHVsuSxrVjAZFBLmeuIeaLoRrHngjgqIrzDhpZ1gzQJztgy8/RJ5v5H9ySTru7pYt2JFdUCdt20y5TItNTXUhELsTya5K3CrPq6hgf5sljteeokn9+xh19VX0xCNkiwWqY9ESJVKJItFfvzaazx40UVHstKBMZY6DMQbmobj+7jBX1Qp6g4eRFu3Dh58kCNMuopFQTemKVRihbn72tdg/XrJ0bx06ZRE/NZbhc0uFqGvT9bdeCNDdXW05POwdi23JxK8d/AgT/zud6AUL/7xj3zhmms4uGsXuq5T1KKkCiEGBzXWrRMifHAQFi6UQwqF4JprpjDfT38qmMBx4IwzrsT3t2AYLmeeuZh77vkHpk2r56WXfs/tt98UZIxw+Oxnv8z119+AbU99rAozPmdOMC+oTRHCdTUeuu/LARwcnALGtQn+U2fuw83B+oZFyl0pFWOxw83D2gIG23GFTXY92ZfjHtlHBSjarrDbvpoyLOs9JJMgvi8fqjJbcPgkRzQq6yMRUSLMmSNgORSS/R3OzOq65PJeu1au65w5Ig1YuRIeekikAi0tIi3IZCAeJ2fW4TgaThCKXikVTOB5MgkSj0/5v/m+3E5f+YooEY49Fk46SXbz8MNy2DA1X5PJwMgIVRVCBbiXy5BMSp22NjhwAE45yZOQJV/JOfV9Oe818Sn5fcUgFSWTFce2yuevjheDb6njSvvDFQAVhYE67PeGw37CbFc+dCgApErheC5OLoeVSAQsvo7yPDRdx/c8vHIZIxzGL5fRw2F828aIRKSe61JKJvHKZRJtbeR6e48wcxvu6qLtvPOk/3gclCK5bx/NH/hAtd/xN99ky1e/SuuHP8wpq1cTbmggHIuijQ3LF6mmTqTvjg2FrDinVy5UZRLCNGXyZv9uaDt2CgBWWPqK8VupKHXOOhfSk6IUWLlKTk6pANGY+BUoYHyYlx+4i2M/+TmWfeKTPPHk7zjttNPQDJPzz1/Bp1f+JRcvnsfW9ya59wf3se2VLrmnygX6Bkf4m7/9Akopvv7Va/nE5SvBd/HsMrpp4bk2hhlCq0wUoFFIDhOK12CGYijfw3NtzJD4BsnPgo5dSFWN4yKxeiiXhOUPhVDBRJemFEocRCEUQnNd/IFeMWjLZtBa2tBM8z84pStHJvI1JWNn//eb0Zd+CBI1AbD2UZ4rhq26Dq6LFo0dBdhHy397OWpo9j9YbDtHLjeE65aYPn0BTz99NeVyhmSym82bV2PbOcLhWnTdxHWL5PPjAMRiTYRCtSQSM4PtBlu3rmPOnI9QX99BItESSMd9OjqWcfXVb7NixXpSqR6efvpqfN/BdYvkckOUyxl836Gm6Xj6NY3TOAI2AVMg+3qElTYQIKyAGQiwVkARYa91oBvoRED595BY6wSQD7ZdHbzXgTFEMq4Bi4HhYHkkZLD8tuUsWLkAwzLoWtfF7g27KafLdK3vYvaHZ9NwTAPKVeTHBVhbUYv2pe2kD6XZtGoTTmFKTp6YkcApODx7/bO4RZcV61aQG87h2R7KV4TiITqWdWCGTHzPp+m4Jpbfvpzatlpq22spjBdEsn/6epFqv30H5A/Jr0pxMEgJ1QtjWwRAlkaFlR7rFDAcmQmvXQuFQ3LGFMLALrgVEnMEWDctFDZ84EmRmztp6b/QC2NbAzk6AjCbl4FZK317djBY0Y6UXta2y7ZK3HWqR9hlTZOYZt2SbV4Qdx3Eg1cHPdUBwEFhtGtnB/1rU6PpClOhW8KA65ZI5I0wDG2TtjMXQTxIseK70Hyq9JsflvqWzPhjJYShDiUklvrFayB7CBqPk+WR16S9HzDh0Ub43C5Y9C0B7yD7cPLS50cehJo2cHLkciItrq0VeZ0fOM7v2DHAgQNJymWvCqpHR/PoukYiEWLevCZ+8ANRTgwP58hkbEIhgx//+BLGx7/JI49cRm1tiGLRZWysQLHoEgrplEoujuNVZeWu67N1ax8HDyZpagqMDJWiJhwnHhKq6d2RHpqidWiaRkttE6e3zidsWLi+x0Q+het7KCVu2SfPPI7R/CS+8vn1m8/x+bMuY3pNY/XSj2QnWfv7x4iaYXRNI2SIgzOaxt6xg5i6sAWGrlMTjtOUqAU8MFvAnBl8I3VhnGPL5by63cJk+3mYsU5k335GmGs8eVpYc4XhxghAd+AQrhxwxkTuPbFO6pozBIyP3wHeMEQXyf41AAv0BK5SrO3sZHFgvhOzLGKWxYxEgrmNjWRLJTyleGDbNm5csoT2WlFe1IXD3LRkSRVY+0rREImwY2CAouvSEI1y34UX0p1KsXrzZjLlMkYQY50tlxnL5/GVouA4ZG2bbf39DOVyKCAGIjv82tcEMF19tdDE0ahQwtGoLK9aJXQjSMqpSESk4R/9qFCUDz4oNHKFKR0dFXDd3s63v/c9TjjnHI7bsIFDL77Iz/7xH6Ufz+Nnjz7KF664At0wYHwcz5FJnXhcMPsPfwjLlwtYq6kR3HPLLXDFFXIYFRCcz8PWrY/w+uvvs2vXfh5++J9oaKjHcWD27POZP/91/vmfd/LAA+9y5ZU3UCzKYbqu/Hme4MQKSVkhMkdHg0uoa9JgbpsA63AI9h2aAsoTKXkFeY1Hgzjsdp79/QucuWQxp575Qc5eupSd7+6GugSvvvk6S//2M5y28ExOP/OD/OGPf5B4Zt+HSFhAYNmWtFkVhtzzhTEvlqVuOCTHNn16AHo8mfQYHpbrEYtJkHrlw1Uk3uecI4DZNCWovHJ9t26FvXsFxc6ZI4z17NnSZs8emc0IhUQ7X1srx1pbi61Menqmbh8zIIQrODVQBBOQqnR2CiBWSkL5x8bkere0yLW99VY53SCMdbks1ymRgGOOkdvSMGSdUrI8a5b86brUA+T6ZPMCcCMhmRBxPVm/75AY0RnBgc6TmHlsR77nZQcyuUBVZci1COLqCZnSR3fffwTWTvBMD5kyaWIYco10DeX7mNEovltRQAVF09B0HSseFwVdPC7S9kgEtyhmcTu+8x28UklSk3kehZERBv74x6qZW/sFF1AcHyfX18c3vvUtTly0iLZzzuH1HTtQrktxdJTxUIj1ts3nn3iCj3zyk7zf3S0MvGVxweWf5tTTP8DpZy1k+YUf5c339059wVw7+FIcJhs47mS5MKWi/P3+N2LaZoUgXguhiMSmG+ZUPLthUh2ZKSUXFwWbf805qT7adm0BKwyajlPOMTo6yutvvMln//qviTbO4mMXr6D3YA/vvf2mtNcNVl11Fffdew/hkIVuWjiFNEO7X0I3LXTDwrAiaOYUCQMQa5qFFUmIp4YZwgrHoZKCK5gI0fUQmZFujAqLDKhySSZFAhm79+zvZFIhFAbbRhULaDNmobIZ9PY5kM/i9x5Ab+3AuP52jIv/UgzkTBPNCoFu4D//FOrt11HpFPgKNTGK33dQYtOLhakMAZ7H0XK0/G8rR8H1f1mRmbdIpJFQKIFlxbn44h+j6xb5/CiXXPIjLCuGbeex7Sy+75JITA/SIqjAJfxakskewOCiix7klFOuCIzM5AeoojqIx5sJhWrJ5UY4//x1hMO1mGaEmppWQqEE4XA9lqaxXClqgDIiy96BgOMK2P4B8KNgXSqoEwq2u0A6eO8jzHMzsBphue8J1qcRoP08wmJ7wFKmmG4DWAI0AeGoRf3cei566CJ81+fihy7m2r3XEp8R56IHL+LUK07FLbn0dfURioeoba0lMTMhauOIydKblgpTrUDTNPq39aN8xYp1K1BK8dzXnqO2rRbN0NAMjUhdhN7OXia6JwRnKkVihpie9b/ST7g2HABPxEyseWlgaKZkOdIsALnhNLAnIDxN4qOnnytgM3EsjO8QVlr58Pp1claiLaBHhLF+7Vp5XfY4nHQTWHUCeAt9woo7qUBirQWycU/ikqu0EVN/GgKcw7VTTHSiZQpc1x0jlcqZ4Iff+M9uU6mTmCmy8GrMdjkA9JX9ecIWVyTl6YNQTkPbOVA3W4C2GdAuRhA75pYgtT8A0V+B9CHpJ1Qr56fuGGj7MLx2r3zm1+6FlsUCrCug3XchNl3My/BFUo4G8RnCYpczkBvB0WsYHMzS05MEoFRy6ezspacnyaJFbUyfXsPQUJaurj5yORvPU+RydvW0Si5QnebmGEpJzueeniTf+MbzeJ6P64oBmmVpDA9n8X2IxSxKJRfD0IM5CI1lyzqYMaOG3t40SsFkMcO6P/4jh5JD5O0ix01rp6WuKchHruN4Dj7CoDYnGjB1A6Uk3yeaxgda52PqBjef9wVaaqexe7ibvF0kaoWZKKQ5o3U+PoqxXJJcuSiMNRoLZh4HSKyyrxRhM4SpmyiClIDOXhheJTmaC1skh7NmwsR90Pi1QAKehtgSMFtBi0j8tWYJiC50BqC7FPR1FbiHILYUalZC0+1Ug0Ym1kHuSdCCUAPlwPCN1ZvY1DQeuugiPnvqqcQsi4LjMJTLkSmXKTgOrbW1aMAPL7oIU9f56rPPkrVt4pbF/KYmSq7L6s2bGcpmeXVwkNNmzKA5FqMlyPHal06zrL2dmGVRcl1G83lChsH0RIKsbZMul1HAKdOns2bLFqK+j3XwoMRbz5olIOzGG+W9pglAK5WEKnzyyalURRXENHeu1C0WRSZcKMg2w4DWVumrr49H7rqL999/n/2bNvFPr71GfUODALmrruJffvpTvnPFFQII43GMiMnQkOKOOwRs3XefpJS+/vqpMea8eYL5LEtk244jh1Y5vExG6heCDEnt7fDhD8vHWLZMMGEsJh/tq18VmXk0Kh+/MgdXUWBXiaIKC2wErtp9wyIR7h+R5cWnBRLvnABeTYNiiWQqxRWf+xz/+Nhj7HrjTdbfcw9XfOHzqGKZT1x+Od/51rfZuXMnG/71X/n81VdRtAzpOwBjJIIJi2KARI0AyEXDIjE/PG2XacpJWLZMTpxpyl/ly19hH0FeKyd0ZEQmR+bOlbaTk3JCCoWpzw4y2VKRjIMw4kNDkMlgE2bdOq0KkCuAGoRFXrVKrqNScogLF4oUvK9PrmdbG1x1lczv/PjHciiVc+84st4wIJeT29J1p+T8lX257tR1a2oK8FDZnsrbDQKWKwz2REqula/kunnBpG6xLNt1XSZJ3OB3Kh4VoG4Gvy/9IzLZoiF9VGfzlfSVzv3Zj5AAaM2QeHTfcSSMTtenWOwgDMorlylNToJSmJEIViLBou98h3hrK5pp8sbddxObMYNl993HglWrQNcxwmFKY2NEGhs5pVjkD88+y+yODjGUCxwAr/v61/nKddfx7ttv882vf50vX3WV/LbW1LHh0Z+y6623eGvLS9xw7bV8fvXfCfAeG4Le/cJme8FJzqTEIb2+Uczb6pvgr1fD4vMldj01LvdvJiXn9OJPw9kfERBqWlInkxIg7jrw2b+DHz4Bn/+agFwFVqyenn3v0dxYi64r6medyHjPq8xorOGdHS+CpvH973+fU+fN4tQF8+UMazpOMcuME5ah6QZOOS8AWik8p8zgOy/ilLIQxIC75QJOIUV+cqD6ahdSDLz9Ar7v0HHGZZjhaPV+V6lJMV7VNDQrhL74XPyuP8ncSjaN/9JzkM+itx8TxEBY6K0dEkuOJnJ/14FCHpVNozxnyvCtbbacq1AYreMYNCuEFo5UJfbV++5oOVr+F5Wj4Pq/rGiEw3WYpsSEitzUwjTDtLUtqcZ4xmJNmGYUw7AkFZfyyOWGAUVb22I6O9dWwbRtZ5mY2MumTatIpQ4AMDGxl2efvR7waW09i0ikXvZ+GJDyfRtf03GDEVICkWkvBErAKwgwTiAAewcCnEeAaxAmugh8O1inA8uARuDDQBioBezg9QeII3kcic1OB+1jCMDOBtvqbRflge/4uGWXwdcHCSVC5EfyuEUXO2cz+Oog7UvaCdWEMEIGylf4nk/qYArd1Hn2q8+SOpACDdqXtGPFLIrJIlbM4ry155Hpl/hSO2ujWzodyzpoPLaR9GCa/GgeI2SgmRo1bTW8cOMLeL6J0qNw1o/hmL+FUKOYc52+HkoTMH05lCchu1+Aom4KO+2V5SxesgtO/hZMvAYn3hRcgUBC/t56iavevVaAe808MTzTDGhaBPEOcPMiI891C2AvHJqSe1fl4MFIqQp8gxlzOyv7suKQ6g5YcCXg2wgHTLURMD3loE5Z6hhRYYArVINhSd10j/SjBf0qXwCvGZb46HIG8kPCaPuuLFditq0YNJ8Gr62HPRvEhMwtCtge7JL9nvgZOO/Hss/zfwKZg/CH1cJSJ2ZKn04lYAGINUv7F1bJ8cemQ2IGntIYHc2zbFkHvq/wfTj33NnMnl2PrkM0arJ+fRennDId31c0NkaIxawghtQPJsAVlmUQiwk1tH59F9ddt5BSyWV4OIfr+kybFmfu3KYq2AC49trN9PSksG3JDhCNmrS11YKmeGz773huzyv88+ubAwY5hqGbvDWwh770KKZu0psc5u+ff4Te1AgFu4gRxCEams5Aeoy/f/4R+lIjvDPczXHT2kkWskwW0pw+63guPmk5ETOEoeukijmMYHJkSp0iUmiZ7JNpMs1PC+DNbpC4Z3MaTKwR4DzzxxCaC1oIzCYBwhXmWo/J/VXcAeZ0uT/+vC88mPmwSMn9NGDAzJ/C3EOgCmJk5g3D9DtAedhunkyQBkvTNEIBs1wpUcuiO5Xiyk2bOJBKMV4o8ONLLiEWGJ/5QMI0+f6KFUyPx1nU2spoPs+ukRGyts1QLscZLS1cceqpwXmAGfF41SVc1zQOJJNYuk5dJMK3li+nDtAGBgSIxWIBezdvKkbXNGUgvWQJ7NolYKurS8BGT88U2zkwcKRTuG0La33OOQK+43GhndvbBUT39Ah4+/rXZZ9DQ/DAAxCJ4OVKrF2rsWGDdAHik3bddbL7oSHp/sAB+OY35dA0TUDWoUOwfbuQs/ffL4+L668XVvszn5G6FWnx6tWCKRculPhtEEK2klK6AuyamoIL5HjCUhbLApyObRNX7bntwmDuPSTbKg7gug61Cbq7u2lqbGTBCSdCJsfyMxfS29fHq9u2MZZMcv6FF4Chc3zHHOpjcZ7Z0fUfZeS6IWBaKWFVK8Znew9NocnxcVCKv/vGN5hz111ov/gFb3V1wb59MDnJvvffZ8n553P8Bz7AWeeey+53363uYl+5zJITT+T4BQs460MfYnclFCCREICwbZuc8IkJuXbXXCMod3QU7rgDhocJmT7r1yuWLZNN5bIcUrksl/rJJ+U8G4Z0de21MpnR1ye7WLtWbqE1a6bitCvScs+T665pcpu2tU3dnpXDq7TR9Smm23E1VF1iymldIUA7HJLXs08TAOh6sqxpAohDgQldyDxSPaUFkx26JpLvue0Cqm0nCKdwA/WCJtetAup9JfdI4LKe6+vjte99D991xeQLwPfxXRe3WMQtFpl85x0iDQ2gaZSSSZTr4hQKvPbd71IYGmLeX/81ux95hOYzzsCMRMj196M8j6ZTT+W9X/yCv7rlFlqamlC+T2lyEs+2GU8meXPnTj7z6U9THB/nsvPPp7+/n/1794JuUD99BpQlw0M6OYmWnhRAXd8Ix5wImST8+idiBhcOPBYmRiCfmfpt1jSYu0DM22rqITkmgLy+UcB35TweexJkk/IEN0MwOSo5wkcHAdCT42hKoesmZiiGFatHA2adegGR2mamzfkAu3e/y5NPbeamb1zP5ME3q2q3eGMruinstxmKonyXwXdexC0XiNbPxClmcYoZBnf/Ad93cIp5IrXNaLpJrGHWYSnMthNvbAVNwL7KZ9Ha56DsMmpiFG/T46BrGJd8UsB6Po/qfh+Vy8rvkGGgRWOoUhEcW+Timi6TC7E4Wk0damwEausxLrtcvudK4Xf+seLKiAqc20GTXOJHy9Hyv6wcBdf/ZUXD993A7VsGtr7v4brFQLYtoEbXjcP+JN62pmYWlhXntNM+x8UXP4SmTbmHh0IJliy5EcOIoOsmNTWtfPSj98seK6xjxXgk+AWs9NsLrAL2MRVjrRCp9sFgWw/CLFfk3OuAWUis9TlImq0M0IW4jv8NAsQ9xFE8jsRa28AgcAciA48GfX8FYbprAN32SB1I8sI3X0DTNNrObsOMmITrw1gxi1AiRMfSjuoZTR1IsWnVJjK9GdoWt7FlzRZ2b9jNljVbyPRnmNg7AUBsWgzd0gnXhpl9zmx0SyeUCJE6KO3Th9I0dDQQSoTYfO1mkj1J6jvq+eh9H5UBglcMZMkBC2tEwKqB5iUBa9cnLPZrqyHXI+x2aRh2XA25A+IGHu+AxDEyw21PCCg968fwiUE4436RSo92gp0UcG5E5azvXjsFwJUnr24w018BxL4jYBYl69IHpP9wrYBezRB22AhGYZWY6Qpm0XX5XKEaYasrt4weDkCyNyXLrp1dNQ2rGrbphoDcUEL+Eu0CpHVT+nTycpwvrJIJifN+DF94H1qXS/+5fjEkS/VM5b/2bPlc29cIEN+xVuK5CyMw+sZUf6luMUir1AlcyS3NYfHiNnp6kqxatYmhITlnhqFVpeAPPngRiYSck76+TJXZvvrqpzl0KB3I46jGZT/00MXMn9/E4GCWb3/7JXp703R29nLwYIps1mbVqk2MjOS5++7z6OtLEwoZ5HI2e/dO8Mor/Who3HnBKrZe9xi3r/gyYTOE6/lM5lMc3zybyUIKXdOIWmFObz2eX766iZAZYiA9ytrfP8ZAepRXXurkoWv+nmULF3Pt5V/g/d3vMqOmkagVIVnMsPGp31AXr+EnD/6YltomUXCkR/nu84/Qnx6haJfYNbSPsuvgVZzg9TqJia5ZCU23ScqtptsRnUpw3zuHBAi7fcE9k5B7v/iqOIabbSIH//O+MIUNH70evDEB5sNXyb09sXZKMq6LrsVRIUbzed4YGqLsuvhAzLJojsWIWRamphEyDJa2t7Nu61bObm3lYCpFV18fvlL4SjE9kWA0n+f6556jP5tlKJfjzFmzGMxmuaezk0QoRNnz2D4wwHAuh6ZpdCeTrNq0idFCgSXt7ewYGOBgKsXs+vophnnHDqEB43GhF6+5RkBZLCYAq6LhjUTELVypI9HQkiVTWl7TFIS7bp1Qz9dfL31ls4KkNmwQGrJQgO9/XxBuBfV2dWGEDW69VbFyJdx2m3T30EMwf74wzi0tArpmzRLCPSDAGRoSuXBrq0iT9++Xw7zuOrmsQ0MC+rZtE0x4zz2C9T/3OVE6V1SXFeB98KDsuxKCXs3/3DcsYKySektjisXuGxYgV5eogq157bOZGBuna8sWSER58re/JZvN0p+apGXmTDY89BMo2bz6yjb2HDzAwb4+AWYVNrVkC9tasuWZLQ86eanko0ar2qR/at48Oh99lNkdHXJ958yBmTO56vrrWfWlL7F32zZu+sIX+PxVV1Fxbbvq7rtZdeGF7H34YW665ho+/5WvVGWwWJbo8qdPF+Z6cFCubTQ6lX5t3TpCfomahFyfeHxKOZBMSij4229PRRMMDIiSYM4cIcpNUyIMVq6U18rcTj4v10PX5Vbav1/mdjKZKmFOIiG3ZIBFKBTkelkW2K4u56Yi81bBOS3bcp0q57VYomrIFY9K/QowNgwB2xqS+swOWHszMNy0HYnDt50p6Xnoz0CQrsn6eR0o3+e9xx5j+plnYkYiEg4BVQbbiscxo1GmfeADVel4dNo00HWsRIIZZ5/N7ocfJtHayoJVqxh74w2euvhi3n3kETEsC9KTJdraMILA9uLwMPg+vQcP0tzQgKnrxGbMwIrHaW9vp3dgUNhj3eBzX/oy7cccy7e+t4Z/euSnwi6XinJPPvNvU+nM0AQ8WyExMPunB2B8mCNMzeySAO1QSNzU/+kBGB+CQg5SYyIrr1yXw9OgAWx9ATSNWbOmMzQ8jOc4QfRZmb7+AabVR3jpDy/Qc6CbxStWsuwvrmb79h1c/ZXV/PC+deLGXswETHWepmPOQDct6ttOIt7YilPMkhnpZmz/DmKNs/DsgFn2XVpO/BDzzv0CLSd9CMlHnkJpCr3jWElXWC5V04/5W14E38PbtBGtphbjy9ej1dbh9x5A8zyRiUeiqEwaLZ6QXOKpieqtoc1qB9dFTYzhbdoI+RzGBZeC6+IP9oFj4z3zG1RqAvXnoQRHy9Hyv6AcBdf/ZUXhugV838P3Jf2WrpuYZhRdt7CsKJ7nTNVWoJQXuIhPXRbJXW1jGCGU8nj55e+i6waaJjE6lhUJWGqNVOpgwGr3oGkGyeRB8vlRlPLwgTXABoR9LiIMch3y+7k22LYGkXxnkXjrOxFxZxj4HPANBLafhoDkDMJ09x521FFEer4u6HMd8nu75rB9FAHlK7KDWS6870LCtWE0XeTboXgIzdR45tlnOPucs1m4bCFnLDyD7175XXZv2M3Pv/5zPnzBh7njzTv4ef3P4Xw48IcDdK3rwnd9iskivutPXQofsoNZOtd2HgHG86N5zr7hbBpmN6B8ies2NEfyTusm4MF4l8RIO1kY6xK5bNMieO/7AQheI5Lm3WsOW3YgMl32bSXkvWZA9iBMvhGYjwFNZ0H6XTk7yhWgveBWcQxfcJu0WXCbGIiBAOna2VMxzCBAtZJX2i0JYFUeRJsDibc2pek8nG0AqVM7OzhHngDfUI2AZz0UgGl9qqEW/DNCgbFZWcBx6oA4eysvoFGmC/DdswG2r5ULkOkV0B2fCa3nSB81bRBugKFXBMxrJiy8BeavhEW3yYTBjrvkOCv97VgLLYukzlk3yT4B33NxHJ9Zs2p4+OFLOe64ejklro/j+LiuT7EoEu5s1mbdui6am+OsXy+5scNhY8p8PWCzJyaKuK5i3bouNmzYzdq1nUybFmPduq1Eo2YA1i1CIYMlS9qDmFir2remaeSdEhP5FJU0UmhgGibxUJRTWubhK8XPdzzJ6bPm87Vzr0DXNB7d/ltxAn/xX7j+6ut44TdPs23HDtbefRdXf/Eq3hneT9iw0B24+ZabScxvYduht4Mc2X61/aPbfkvUCjMtXs9dL/6csVwK1welRcE6HmY+CtYciJ0LVofct+6oXK+JNVNA2A8mcorbxR3cGxfw7PRIvLY5V9hqs0MMzibug+hS0IQlIf88eEmY8RC0boKmbwVPFQOPMP2ZDM3xONc+8ww526bkuowVCmjAgVSKO156iXNmz2b9ihW4StGfybCotRXb8+js7aUnlWIkn+cjc+bQWlPDubNnY+o6qVKJH1x4IZ5SpIpFTp8xg1k1NfhKsa6riw27d7N2yxYc3+e0GTOIHu4wVclv5ThC+R0GmEilBK00N4t7VKEgyLVQkMDnChoqFETLG4sJ4mlvF0R0111H9rVokbRZtEhA2ve/Lyg5lxMJ+Wmn4WESi2n8wz9IqG9Pj4Dd7m7petUqAVmeJ4dUwfhr18pHOPzwIxGRF4OArVhMyPRjjpnyZqqw1OWy1IvFhFCPx2VdV5dgaXV4XugKs5nNCwg+rgNOPk5ew9YUS+n71EWiPH7nXdxyyy18cPFinu/q5KSTTsI0TX5330M89ut/5QNnnckDP3+UZYsXY2byU0C6Noi5tkx5LVeAnCtgp5KPWqOqJDhnxQrajjlGPoxpwquvMtrTw2u7dvHZT34SLItPfv7z9A0MsP/gQUYnJ2XbD38Iy5bxyUsuoW90lP2VE756tVDNb74p/S1dOhW/ffvtVGZB7LKi54CA6qEhUQSMjsLMmdJsxgw5pNWr4fTTRUngOHJ+i0VxBv/JT+RV04Qkf/99uPJK+WieJx56ixbJdW1pmXIj37ZNbuNKSLnjiON4rqLKjoYF8LqegOdwaEryHSgMKk7WVcY5kHX/3XV/x5zZc9Asi7cO7K9OoOzr3s+S5cs5/vTTOOtzf8Xunv0AlEol/uKTn+T4k07itDPOYMWFF7J/3/5q3nJN1zn9hhtoO//8qgQcTaOcyZAfGsLJ59lx5524+TzFsTFKk5Mo38crFnHyeTouvJAzbr4ZzTSJNjcTa2mh46Mf5eSrrsKwLF5fu5bR117j/8fef0fJUZ37/vCnqsPM9PRkzWikCUIBoYDISEIBOCYZg33sYzwO2D7YgMCAbRxIEhhhI8kWwbINNgic40HIYBhENkGDEhJIAiFG0kianKdz7qrn/eOp7h7Z997f+r3v9Tr3rle1Vq/qqtp7V/Xe1d313d/v830MtxsrqfHBZSecgMvnw1tRgau4uMCWO4tYWWVT3R5+94c/0t3dw7333MNtP/6Zpikrq9T/ylx+7499Tn8n//RwIR94Lpd3zqwAHBkIui9X5rm/qGlamf5vEQ7owB3TNtgX/wcAjc3TOf300/njn/4EhsHTf2uloaGBk2bN5j/+7WSOHvyAQwfbOXRgPwvmn81DP3mAm75+s0rCExEmTDsLb0kZRf5qPEWlfOtb32HajBOpqJ9OqvYcJp98oWZeeO1pzr/oUuacfBoLFy+l7fk/k00nMEyTmbPmMevkeZx+9tmcPn8B//XCSyrlnncm5iX/DoaJedHHkYgC6DyQfvEZnVhwuzEbp2ge73PO0+MOS22Y5rFgve3V/J+z2TgFCYeQ9vcVxB+PuT6+/J+45OTJ/ze9Ghoa5P/0JZkMSzIZlkQiIIlE0NmOjnsflmQyIvH4mCSTEUkkAjIyclBCoV6nTEiSybAMDOyRDRtapLd3p4RCPbJt209kw4YWSSYj0t+/V0ZHDznlozI83C7btv1Ennrqqvx5EomgRCKDEray0ici+0UkLCK7RGSTiPSJSFBE9ohIi7PeKSIfOts7ReRdEbnSKTvklN817niXiBwQkd3j2hjf5l4RiY47vltEWkUkGUtJ/+5+2dCyQfp390uoJ1R43xuSCn+F7HhrhyQCCdm/Z78UeYvkd5/6nUyqmyTPPf2cxEZjsnvbbmlsaJT3/vaeDOwekJEDI5IMJ/Pt9u7qlXggLtGhqIT7wrLxyo0ysGdA3n7kbTmw6UD+WHtru/Tv6Rc7HRGJ9YmM7BTZ3CIy+o5IzyaRZEAkNSYS6xUJHxQZ263HA3tFUmGRUaf82B6RdESk5yVdpwIiiUGRxLBIKigS63baCookhrS9WJ9IcL+u01E9T2JQJDmmbWRTItmMiJURScdEUhGRbFq3M0ndl46JjB4qlMutrYxIJqXlsmmRVFRk9ENd58umRazssfXGrzOpQlvZtJ5raI/Isy0ig++KxAZFEgF9JcN6fYO79fjQbj1XMqjHnr9KZOAdLZMM6is+KjL4rjx/z7/JmaefIvNOniMLTjtJdm95WWRoj1z16QvlxGnNcsoJFbLo7NNkx1tvaL1wn547FZZQMCbhcFKGh6Ny4MCIDA9HJRpNyp49/dLSskF27+6XcDgpwWBCAoG47NrVK62t7dLXF5Zdu3pl06YDMjYWl3A4KYODEQmHk/ntPXsGnDYG8nX27OmXTZsOSCiUkGAwIYcOjUo4nMyXb21tl1gqLh/0H5bOsT4Zi4XkzY53ZCgyJtFkXMKJqHSN9ctwZCx/LJKMSSyVkPbBo3LLM+tkw4vPyLTp0yWajOePlZWVSdu2LTIcGZPPfv5z8vPfPSZzP3K23PGD78nmjndlKDImHzr124c6ZTgSkFueWSen3PdZueWZdWJlIyKZMZFsQCQTEMmMimRDIuFNIondus6MiST2iPS0iCR2iaT7RDJDWicbFum5SmQ/us5GnbaGRLJBfaV7RRI7nfq7RZIHdN1zlZ4zG9RzZkOSSidkOBaTlg0bhJUrZTASkZ29vdKyYYPsHhiQ1vZ2YeVKadmwQYKJhESTSQklk9IXDsuHw8MyGotJfzgs4WRS9vT3S2t7u7zb3y8tGzbInoEBiSSTEkgkJJxMyntOe8FEQvYMDGiZ/n45MDIiY/G4BOJxCSQSEolExA6FRHbuFGlpEenpEdmzR9/v2iXS1ycSDou0tooEArresUPk0CHdPzam60BA1+vXi3z4oUgkovv27tU6Q0OFMsGgSDSqZYJBPdbXp+ueHokPhWX3blteeEEPt7TodGxLi8gHHxTej41p07t36/bevbqvt1dk/35tMhrV046N6ce69tpjL+H997WN4WG9nFw37Nmj9Vta9OOmYlmRkYBIIimSTIlkMoXtVEokndHXBx0iqbTIvkMir7+t69x2JCaSyUgyEpXKyko5uH+/7ht3bNa06fLKAw/rvmQqv19GAtrOSEAkFNV1JlN4pVLHdlQwKFMmTZJ3L71UpLdXdr7xhsycMUPkhRe0Q4aH5ewzzpBX//Y32bl5sx4LhbQThofl7Hnz5NWNG7Xjdu3SDh0d1U7JddK772pnDg+LvPCCRILZfxqraLQwPrt3a/GeHr2EAwf0/bvv6vvhYR2L3G03OKj1iot1fySi9cNhkZERLdPTU7iUwcFCG++8o8eSCUvsZEoknT62v8b3ezpTGMPxx8JRkURS3vjtn6T7iVaZMrlB3n37bR2XdEb+7fzz5dePPy6STMmG3/1ezpo7TyQSk0QwJM89/bTYw2MimYz8bN06Oe/cc3XM2nZJOhaTdCwmibEx6Xn9dRnZt09iAwMSGxqSUGenxEdGZOS99yQZDkt8aEhS0agkRkcl3NUlqUhE0rGYpKJR2fa978lYe7tuh8OSGB2VVDQqYx9+KJu//W1JR6My8v77Ul9eLlteeUXGPvxQdj/1lPhLS+Xo3/8uscFBCRw6JBPr6uSDd3aJHY2IxKIiyYRILCISj0lxcbGMdHWKvLdDJDAqkogVyvzqAZFXnhYJjIh0dYg8skqk+7BIPCYSDWsb0YjWSSZEug4VyiTiIoO9ejwWFQkHRJIJWfbVr0hDw2RxuVxSV1cn06aeIKGBDtm98y05fd5JMmP6NDnj9NPknV07JJOMSSaVkEw6KelERNKJiJy7dImsv3+5xAIDks2kJB4alM5dz0o6EZF4cFBCAx3y91dekiMdB6VxUp1sefMVSSciksmk5PzzzpXHH3tUspmUPLJ2uZw2b44kIqOSzaSkublJdm3fJlY8JnYiLnYyKXYyIXYyIdZAr2Tb94kdjej+VFLsaFQyG/8oVm+X2NGIWM4xq79Hy8ZjYoVDknnqL2KFQ2In4rq98Y9iDfRq2WRCjzt1rIE+sbOZ/5+f148vx5f/twvQI/8LnHqcuf6XLSaBwGFaW68jGDwK+RyvhePKVHvykm+fT2WdmzbdyOjoQWw7y+bNq+joeImionK8Xj+nnfYVliy5CxELj8dHSUkNODZjhuHltNO+wkc/us5hs00ymTi2ncG0LYZFuJdCzukFzhV1AL3AI8A0YAbQANwFnACsQeOz+9A81p1oLPUTwI9RiXc9mnbrIqdtgKnAemeddvY/iua+XgRIxs6zyW2r20iFU/n3hmlguk1G+keIDkYJh8PU1NRw3trzGA2OcsGFF5BNZJnWPI3Kikr2RfYR7gtTXFmMWMK2ddtYdNsiak6swXRpzmyAix+4GF+tj6kXTKV5cTOhzhAv3/oyjec0Ujml0jE0c2l+6rpzVe5du0il4ju/Dol+6H8RXKUw/xFNk5UNQ+k0mP+omnpFu6BukcOqunTmH1EWz12m79+9xYld9iu7bbghobH2RA7rueJdkHCi3K2UstKGS+XSGDrspqvAJFdO0XOmwrrOJiEV0ZlyU9UNGKay01ZKXymNSXekE1ov5zhuO+ZuuVzYOYmgnYW318LkxXot7lJlpv9+k7LfYmk6r3PXQmmD7ov1q4R78b1QOZ28hNNQiXogVcSV697lt2u+xt7XN3Lf0iNcedU1UDGVT33+q3zw3l72fNjJHXes4DOf/6IjffdrOrBoHx6PSrKzWWHyZD9ut4tMxqa/P8oTT+yjpyfMkSNBbrxxE/F4lunTqzn33Cn4fB4GB2OceupEhoZiZLM2Ho9KEjMZnRGfOrWS9esvZ9q0SqZPr8Ln89DdHWbevDoOHhzjxhs35eO002mLqVMrWby4GVuEsqISJpRW4XG5ObNxdj4d1+6+AyQyaWxgzau/ps5fjWmY9IWGKfZ4ueuia1h02tmMjY3x7CvPk7YybHzqr0QiEQ4cOsgLzz6PJRZfbrmSUyfPpLLYzymTZ1DsKaKhopZb/u3LVBWX4XW5uWbBJ7nkpHO4ZuGnNGVKthPib6nk2xrVXwHfYk2vVXwyZI9AphfqH9F0WoZbWW1cWrb+p9DwEkz8sWOItlWVF9l+NT0zy7St6u+C4dP47EwPVH8dskcdI7UjEH8LLwF8bhcrli6lZe5cPC7XMazy/IYGWubOZcXSpfz95ZdZumgRi846i49fcAHdBw6QtCy+89JL3LpiBZeecw7f/MQnuPjCC3li3z5Wbd6MJZIXbDRVVFBXWsqNmzZR6/Ox/vLLKfF4CCSTXP/cc3SGQmq86HYrazR9ujLPXq/Suo88oppdEZVtL16s1O8ZZxSSEVtWIUA5x1Z9/vPwgx+oBLynR2nLpUud76WpDmI5OjESccx7vBqP/f77UF6O5fUxebLBwoXKeK5YoeTonXcWMkEtX66M5ZQpymD+4hd62blUT3ffre7T4bBum6Z+nB/9qGCu1dEBzc0qSy4q0rpr1xaU7j6fMqVVVZrKWPy+QnwzKLvpMgsUuG2ruzcom5xjlU2D/iJD2WfgB/fey0fOP58ZU6fRPzIEJ06BYi+PPf44pRXlfOSSi7Wey1SGFZRZNQ09Z0lRQbKck40bRqGjVqwoOHydfLK+j8W0w+bNc/6Snceh8Q7ElqWdsn27fpaf/lTl+yeeqLSzywWhUKGT1qzRcqOjcPLJeOMBVoyT8zc1FbKCLV6sfWkYOh7XXaeX5Pfr7RWPK6Pd2Kipt0IhrbdunY7XGWfoeFqW3kLbtum2262X0turJme5NmbM0HbcpmC4TGX8D3RqX4FKtJvqVQ2Qu3czTix7Kl0wqnO5OPdzV9D4kcUFM6lMlqFt77Bz1y6+eOWVYFl8+oyFdPf1cmjzVop9Pj522WUYlWUALFywgKOdnTpmC04BCjHXxdXVJIeHycRiZCIRSmpqSI6MsP/Xvybe20smHifW3c3oe++RjcfZcffdhI8cIRuLMe+GG4j39xPt7mbHypUkhocxDAN/UxPzbrwRK5Vi/69+lY/h3rd+PY3TpzOjqooX9u4lMTzMz26+mfraWmbNmUMoGKSvv99hnQ2efvopasrLqC71aXy0xwND/XD4Qx2Iz39NzctSSWWhr7wJaiZCxwcap20Y2me5ezEwojHX/nL4w8+0XialUvHgGACP3nMXPZv+SjYcoq+ni9ee/BnuohKqzSAvPfNn9n/wPjt2bGPevFOU8XXyUhumC8Pl4e+vvsJ/3nA7VloVcO4iP5PnfgTD5cHjq6C0ejJLlyymsakJl6cYO5PAyqYYdhzJP3vFJ7Gzab76jTvpGxxmx6tPko6H1BANA0JBrNYnkdFhVR0ISCioLPXzTyGBUVUFuEzMSz8Jpgvr+acgEkIy6QKj/dxGiIQw5y+CSEhjt+NRjd32lerxwCjm/EXYbX9XOfqE2uMx18eX/yOX4+D6X7SIZGlrW82+fU+wZct9zt7cY54CbcMwSaejZDJx0ukoPT3biET6WbjwW3i9ZZiml8svX8/NN3dTXFyFZaUQsaiunophuPH76wChp2c7qVSY0tIq0ukomzbdSCBwSEG16aaoqBzLdLHKMPIg+WagGxVn/giNw04A7WjsdQcKmIuA5cDFqLz7GafeYqAVuI/8Izc+4AoUeG9zPq2JxmODSs2PAlejMnLbY7Jk+RLmXTmPS9Zdgr/ez+dbP8/SO5fiLnLzh9/8gS8u+yKnLj2VCz56AatuXIU75Ka+rp4nNz5JfDjOw19+mAMHD3D06NF8zLbhMrj0p5dSPb0aO2uTCqdIBjV+zMpYvHjzi5TWlmJlLdpWtzH/pvmEu8NsunGTXnGyX9NwNX4SSiarwViiH2Z9G3yT4YQvQclElWunA5ouSyxNpZUOKqCMHgE7rT3jKde4bb0ztGfm3Q2pIdhxLYQPqVN4mSNbPPiQSszjPVBUrR1ppaDciT8PHtZ28rHKVgFU2xkFz4ZLz+ktc/Zb2kakG4prND7bMNS4LB0hn6vbdCkwdnnJpd7I5zvVG1v3f+QhmPsVdezG1ms749sqD+/bovuKKnWyIdYPW+5WCbnX6at0FF69EQIHIB2m4+B+aqrKmbv436G0nqU/7Karf4x3trzKJy45H7epD/ALF5xFb18/2XRSr9/jA8OF5TwLBoNJwuE0W7d209kZYtGiJq666lTOO28KTU3l/Pznl1FS4sY0NRbbNA2WLm1mcDCaj6seGYmTSmUpKfFw8OAoX/vac8TjGWxbqK/3YxiwdGkzXq8Lv9/L2rUX5sG11+vKj/MrL73Cxy/8GGedcSbnLzmPPXt2IyLceN3XuP4TX+LTF17GR8+7AHdvnN++/SxpK8NgdJQit4KH8opy/vSXP3Pb7bdxwZLzef7FF5jQPIl0IsnaH/6QB378Y370998AQtrKMBYLISJYtq1u5C6TgcgYQ9Ex7rzoGhor6oAsGH5NpeWZ6qTkcun4+paAWQ6eGeoSnh0FOwhGse4nC5JSIO07S0H36H2OVLwf0h26D1Nl5tkhcFXp2tMM3pngmgh1D0Cmz6k3iNhxmsrLefhjH8NtmnmgvXzJEjymybpLLqHcsrj6qqt45PHHeevtt1m1Zg1fv/ZaECGzZQt79u7l3T17eP6tt/jzn/7ElfPmse6SS5xbtgCwq4qL2bh/Pze/+KJul5TwwNatCubb2khbFmYqpYDqrbcKKbS2bFEE43Ip+qmpUQQUdkyL3nWMg0xTUU4kovrpXNDrT36idbu7HcBi6bZhaPsej5YtKTkW6Z59NkSjmG6Dvj6hrU13d3drzPX06Xo569creHK7NSeyZSnQyjWfk4XnAPKECWp8Folov+TMtbq7C6c/cEAvaTw+dbkUoOXmEYxMViXZuTRLuf85Gfd3V1vlpOxyq9lVsd7f31u1ilmnzGPGrFl0dnfxy4d/DpbF+sd/ycw5szlx1iyeffpvPLVxI8ZJJ+TrYVtwsKvwc2rZhfNbNvhLCvHD06Zp50ybVshLfs454PHQ5PHQPzRE1onBFZeLrp4emquraXr8cfoHBsjaNqxejUyYQFdHB81vvFEwqMtkdLwrKlS+Px7El5eDaeJNhJkx3Wb9emHqVD105Ah51/f77tN9ObB9//26vXDhsdL+CRN0TsY0VVb+zW9qBEFNjRrWjTdC83qhtVXby4177pJtG1IZQ3/Nu/rVGdzrKfRlsTNJYaAy+1zcdIW/IPG3bTWxy7m/O211729nUs0E3M7klNE8ieaGRrps53uQM7cT+MnPfsa/X/JRBfbpLGLb7Fu/nq4XXmD/b35Dzbx5ePx+PGVliEj+2L7HHsNbVqZptqqrC3V+9Ssy0Shun4+aefMK5devR7JZ7GwWK53mmquuouWPfySQzfLpr3yFLz/5JMmxMR5dv55f/f73nLZkCb9+5RW+dcYZAISiMT752c8x76yzOXXhOTz02OO0/u1vGPEoHN6v/5e19TDdMTazsjqAlTWFSaZwACqqdf/vfqJg/OD7kE5BlWPF/1+Pwra/q0w8ERsnJ7egdpLGYTuTP7UzFpBNJaiffS6lVQ30vf8q6Zg6bPfve11l1bn84YkQfe+rpNpXNUnn402XgnDAQMimEmRSMRAbQfCWVuP2ltLV3U39xDrGDu8gk4xhulxMqq3kwL53GD60HYD/vPpqTj3vfJY9+RzD6Uw+FaTZ0Iy99Q1k324kHMwDcMMW7LZXHan33zHcbsyGKfmy9pbXMSqrj43dFhvD5cZobFYH8spqzKUXgsd9HFgfX/7PXf5XtPb/qa//G2ThqVRM+vt3y4YNLRIO90k8HpD+/ndlw4YW6e/fLfH4mMTjARkY2CMbN14poVCPxONjMjJyQPr790h7e2u+fn//HolGByWRCEk43Jdvr7d35zHtDQ/vl1CoR3bs+IW0t7fmpeHR6JCE4gHZY9vyoagke7uzHhOVdu93Xi2indwiIgEReUFURh4WlYXnXtc6x8OiEvBDojLwsNPuqFPuHVHJeEBUGn6tiPzEOVc0kpQDmw5IMpyUcF9YhvcPS7gvLMloUmLBmCxdslSe/+vzEuwOypPrnpS6mjr59ad/LVte3SIXXXCRzJ42W041T5WFpyyUH9z6Azn4wkFJRpKSCCYkGU7KwRcOysDegbzcvHenSsQHdg9IKpqSZDgpseGYJENJ2XjlRtn2k21iJYIiPa0iI9tF4oMiW68SaX+oIAvvfUEk1qPvk2MqGc9JxEe2a91UUGXdY3tVQp4KOhLxoFN+r8q/g/tFPvyJSGiczHxst55rc4tKydOOfDsVFRltV3l3JuHsi6ikerwEPOtIt+OjjhTckY5nUioHj/QW9uck49l0oV465mznXo4kPXe+nKQ80qfS745WkdiQSHxM98UGVf6dGBPp2CQy9J7I2EGR0NGCbDw+outQl9Yf2S/BvoNSXeaVtzb9SSQVlb9t+KMAsvHPvy3IylMRufP278gnLjzHaSsoMnZAZHCvRMJJ2bmzV1paNsjOnb3S1RWUlpYNEgwmJBJReXhra3teLj48HJXW1nbZtatX+vrCMjgYlR07emRwMDpOWh6TAwdG5KGHtsvOnSojf++9fhkcjEowmJBoNCmBQFwikaSMjMTyUvKxsbh88EGnVFVXy9vv7pRoMi4vvPKSzJ4zRyLJmHT298hYLCThRFRee+sNqayqlEA0JEPhMUf+HZdQPCL3vPCoDEXGJJyMSSwZl1ueelDKK8pl+Q++J74Kv0xuapDJjQ1SWloq5ZUV8qWvfVU+HDwitzyzTvb1d0gsFZdbnlknf3nnBRmMjMnhkR6xs1GVfIc3iWTHVOadGRNJfqjy7/AmlXSne3Q7G3Zk3GGVd4+XdWcCWibdJxJ+QSXmmRHdnzwkEt/uSMPfdaThe0XCrSohzwScNj+USDIhPaGQDEYiMhaPSzSZlJFYTEKJhLxw8KAEEwl5ra1Nps+YIcPRqGw6cEB6w2Hxl5XJC2++KZMnT5a/tbXJlRs3Sl84LKFx8vH+cFgC8biEHSl5Xzgsmw4ckHf7++WlQ4ckmkwWJOIDA3JwZESsYFBk0yaR7m6R/v6CVLuvT+Sqq1RjPTammttAQHW+ORl4TqcbDKpMPCcn37lT64dCeiynC87tz2l7h4b+Scosg4MSDNp5OfamTSJHj+rp+vpErryyIC8OBEReeaUgIR4b0ybHy8QjkcJHyn3UPXsKUvDxp9+/v6B0j0S03dzlZpJZlXx3D4jEEsdKjEcCKiEevy+dUSnyeLnxP8qPc+tYXNuIxArr8ZLl7oHCsfHn+EdZeK5TnHGc0tws727Zoh88EpHzliyRXz/8sEgwKBt+9zs58/TTjz3285+L7NkjG26/Xc6cM+dYLXdOvh8IFMY1GlX9dWuryNiYpAJR2bvXPkZmf+WVhf4Nh//5FonFtNx46XggUDjNhx+qTLy/X7fHj1fuHLnxz7WxZ4/KzN95RyQZt8Qe39e59x8eKcj7M46cPyfj/0dpePeAyL5DMmXKFHl3xw6RSEx2bnhaZp544jHjevZZZ8mrL75YkO7HErLqeytl4amnSax/KC/tT8dieel2oL1dMvG4SsWj0WNk3WMffiiho0dlbP9+6Xn99fz+0X37JDY0JJlYTJLBoIzu358vHz56VBJjY5KOxSQ+NJSXjOek6KlQSM8TiRxzDXYyUZB2d3WorHugR6XdibjI2Ii+gqMFGXd3TgreodLwR1ap9HugR6SvU+TqS3Rfx36Rx34kMjqkdfMS8qMqIY9FVDYej+p5f/WASFeHZNNJCQ8ekUw6Kdl0UkIDHfLepnXSuetZSURGJBbol3hoULreeU6l3am4pOJhyaSTkknFJZNKSCwwIKGBjrw8PB4alGRkTOKhwbwsPJNOyta212XalAYZPrwrLwU/66wz5Zkn/yDpREQOHzogVjIpya4j8t1rviof/chHJLPhd2L1dovlSMMzG34ndiwqmQ2/k/TKbztSbt1v9feKFY8dU9Ya6BM7lRSrP7fdK1Yo4JTvUbl4Kil2Ov2/4Sn9+HJ8+f9+4f9BFm5omf+7lsbGRunp6fnvvoz/5ZJKhclmk7hcatxj2xk2bbqBffueYO7cFj72sYcBg02bbqCpaTFNTYvZsmUtS5cuJxTqobS0lq1bH2Dfvif4/OdbmTTpDCKRPrZsWcuSJXdQVTWNZ5+9Nn+8vLyRtrbVLFp0K9XV0wkGO2lrW82SJcsJh3soL2/EP/EUMAw6UMb5PtTd20QnraMoq70WWIHKwxOoh7CF+ghvR+XdE516fag0PNfWeMLCRl3GM6iDeCVqdiZOe0XpLBLX2U7DNOje0o2v1kfNzBq2tW3jK9d9hbUL17LkjiVUTq3k7LPP5gf3/ICFcxbStrqNJXcuoWxiGWcuPZP7V9/PRRddpKSJLRguAytt0bO1h6ppVfx8zs+Zd+U8LvvFZYiTezMTz/Dqile5YPUFynibBt5iG8MKYWRCmoPa7ddPno3D7tvgtLWQHIIP1qj5WFGNppfyVipr7a1yWGpRFhkTksNQUk/ewT05qkZeBg7TZ4CdhOhRZa3PWKfsrlkE0UNQPkdTYnnLlPmN9qkRmeEa5wKe63lRJtrlVeOz8FFNa+UqUuY6l4MaKbDQoCy74XJMyVz/47btNAztgeqZkBjRMr7aQqosj19ZzUwcNt8GZ34XyhoK6cpyDuyv3wzzVyjrXFKjknbJ8tprb7By1Y+IhgOcc+o0XtuxnzWfmcQnvv4IVDTxhz/9Fz9Ycx9vvtTKRF9Szc3m3wGeUsKuJq69tpUnnthHS8tc1q27hOHhOJMm+fF6XaTTFm63SSZjYVlCPJ5mwoRSsllleBOJDIYBxcU6E67O4Yaj7hWGhmKEQkmamyvp74+wenUby5cvwe/3UFPjw+UysW0hlcpiWcLeve9y001Xs+XdHQTiESb4Kzihvok/P7OB2XPnMrG8hoydZevmLXzhc5+nu68HGyGUiOAv8uEyXbgMk4H+fiZMrCNrZfnhvas50N7Odx9YyXeeeZALT1zA8gu/ynXXLKP6hHquv+Fr/HZnKy+2b+WSk87hrouvpS80zITSCgYjY/zm7Wf50ceuwsgOgasSEjuhZCEYHv2WCs49kCGfE91OFFhr3OoiPnqPOoS7JjnHbJT9tsCOaT2zTN3GS86B8s+ouVl2GOwAjN0Pdeu0nOEialUAYImQsiyGo1GqfT5cponXNMnYNj1DQ1xw5pk8/Ic/cN6SJbz+4otc2dLCukce4bs33cScz32O0Dvv4C8qouy88/jr97/PUCxGTzjMoqYmEtkst778Mt9dtIjpVVW0dXWxsLExb3ZW4/PhNk397UomKXW7MXIutLEY7NmjWuuc7LuhQenedFqpwmy2ICuOx7XOhAl6fGhItdq2rexpNqta3fnz4eKLVWNdXFw4ZprKlDc0qK47nSZulnLwqAefzyCRUIZy/nyt8qc/wZtvwsqVeuoTTlCSHZS1LipSxjlHlqfTeorBQSVYi4qUZM/5cR06pIznbbfpRy4rU4Y7Z4h9xx1KBBcX2Xhc9rE+ieFYIS1TLh3TP+ZUtmw43KMSZNN0HKYNdaku8ipDnfs5Szvs8JFeGBpTFnzmlILTdU6WnDtPWSm51EOIaEdks1z3ne/w3AsvMDA0RE1FBWV+P4f27qW9o4Orrr6a0XCY8ooKfn3bbcx79ll46CHaP/yQq772NUYjEcrLyvj1unXMmzNHO727Wx3KFi8uyASiUZUPRCLaqcPDhOtn8NYWF/Pm6eEKvdW5+WaV8Tc1wde+puxyS4uS7CI6biJ6O4yNKUleX68sdXe31uvtVfn+kSM6XnfeqWNvWXr73XknPPig8zUb52vpL7Fw4ZiG2RYc6YOpDY6U34LDvTo2Hrc6gZc7THYoCh8ehlnTdJ9tc8LMmTz944c47bKLGRodYcasWYwdPIzbV4IEI0w661Ta3niDGVOnweEe7v/rX/jLhg28cu+DVE6fAieqGiuTTGKLIJkMmWiUoqoqzW9N4XkiG48jIri8XkyvF7EszY3t5MI2DINsMsno++9TNWsW7pIS7EyGWG8v+3/9a+YuW0ZRdTXZeJzi6mqyiQS7H3iA2V/9Kv6mJjKxGIZp4vJ6MVwu3IZg/PFhmHoSzDlD02gN98ELT8IVV0NJqaMaE/0CGWje65/erSZkn/gi3LVM33/pG8pUdx2CqbPUGTyT1pzYzTMKA+72aP7sTX+Byz4PFVXaA9kMbPwV9pe+gSVZMskYI4ffpnbGfDKJKJ4SP26vD8N00b/vNWqmnoG3pBwrk8JdVIKdzTLw4ZtMmH42mUQEd1EJ2VQCd5EPb0k5hukim45z4klz2fDEnzlr/kL6ujuZe+pZDA8N4Hb+35qmnMAbr7/GtBOaSYaHKC2fhHQdYdDl5aRTTmVs+U0YJ52M+dFPKoMO4C1CgqPYm1/FXPxvUFmNkUphD/VjVDk5/Up8GG43dncnxsR68HgxDENVBy89i7y3C2PuabguvwLrhWcwz1mKUVOH4T7OXB9f/nsWwzB6RaTxf3b8uCz8X7a4cLtLgNxDuoslS+5g7twWli5djmG4MQwXS5euYPr0i9myZS379j3B5s2raWhYQCw2zJIly5k7t4XGxgWkUqF8mba2NYgIixbdmj9ekKCrN3duu61tNT7fhLw0XdDY6G+j8u1r0RRZBgqOp6Nx0VNQGXevc6wTuBFNu9XvlA2jabZWoWm4DjllbDTGOo3m0R51ytvoI3rWqSeWEOoM0bqslUBHgMlnT6aorAixhKbGJoaGh2ha1oR/sp/DRw/TO9zLnHlzeO77z3HCR06gsrmS3/7XbyktLeWCCy4AlwLrTDxDOpLGVeSiYUEDxZXFfGHTF/jYwx8DIJvKko6lERE+cu9H8JZ51ancbWAYNkaiT2XhyUFNg7Xjeo2HrpkPmbAC61y6LLcDwFOjunYVQSaksvC3v6Z5qkvqwE7BcBvEjup2fjTQOO93v6sSs9N/DJiOJNuC9nV6vPwErefygn9S4biVJv8kKk5st7e8cDwxoo7iBgWAnQ47LrBpCHXovmxSAbDp1evIAWsZ58Tp8kL92epU7psIJRP0/EPvQHxEy8YHteykcyDer4A6PqQAzl2ir45nNOd1Jq7nzCagt41/O+ME3nj1RXatmscD37+dvp5u5mTfAn8d//XbR7lnxXd4+S8/Y+LkxnHu4eomXmzEWbFiCS0tc7nzzqWUlXmZPr3SyfVrOXGNcY2/83vx+bwcOjTGDTdsoqsrhG0L3/zmi3R2hojHsyxb1srBg6NEo2lGR2NMnuznxBNrKC118/DDO/Lu4XV1fuLxLOFwiv7+KNmsUFzsZvbskxgdG+ONzW9S7PHwX09uIBKJcOTIUeorJvC9O+/i9Lmn8oXPfY7vP7QWG8FlmBR7ivhg8DAD4REssfn+Pd/n7NPOZP6pZ9LT1cNJXziXOn81P/7373D7BV8hY2UZi4cp85ZSVuzjaie++uoFn6Q/NExTRR1Fbi+/eftZXmzfiuDWtFrWKJQscIB1VtNxZfsBZ2IFF+B24qcPwcDNCro9DVB9K4w+5OSxzkLoydzNonWtEX1fdx+UfRINPrFVgm5W88LzT3HWwo9xyhkfYeGiC3h/715sES696CLOmjuXz150ERctXszjDz9MIpvlWy++yMQJE1j72GOsXrmSS887j9defZWKxkaCySTZbJZFkybxwhtvcMI117Dt8cfZvmtX3oX8+ueeoz8SYX5DA2va2rBFWNLcjGkYuA2DOr8Cv0QmQySdxudyYRw6pAA4HleL7KVLFbnMmqVAuaREkY/LpajpttsUPJum6q5ralSr6/Xq+3BYA2AzGQU1Dz2kyOjuuxXlut1qD93Wpim6TjlFEWw4rHldDZPp0w3q6vTUdXXafFcXXHGFnv7llxX8ulz6rA4KiJctg/Z2fXY/dAi+8Q09VXm5YnrDgHfeUZBmWRpOvH69pvkqK9OP5fXq5b/5pnaHCLhdud+vcX97ZaXaL5atADuVVvdpyyrkVHaZKi/OpWfKWoVypqmgPJ8OKqXHc/mzmx1HD69HwV/W0g9Q7FUAn0/Lhf4mOqjy0Z/8hJ5du8h2dzO4fz+Htm6F/n5OmjSJrRs2cOCJJ9j5xhvM++tfddaiq4uTRkfZ+vLLHNi9m52vvMK8U07RjjIMRbhnn60dumyZotnJk9XC+513dGC+9z1cCEuXKtaurtYJjNJSNYTv69N+Xb6cY1KseTw67BknmUhtrTbtcimIzsm/583T05eUaNq0E07Q0w4P6zkefFAvNZmErVt1HONx6B8ASWfy+aU1f7jodjqrY9jVr2NR5NWxsEUB9elzdN/BTpXiiw1jIYjGqSuv5IxZs/nDXzdCOsPGttdpbGhghu2BdIYH//x7/vynP/Hyiy9SOa1Zz5tMQyiqsl8Rxvbt0zjqlSsJHz2KWBbRnh62f+97iAjJsTHe/sEPiHZ3kwoGkWwWwzBIjIwQ6erSmO3KSgIffICVSGC6XOz/9a/zEnHDNLESiXw8dk5CDpAaG2Ps/feJ9fay/a679H/wyptg8UXq5J2Ia4z09NlQVKJg+eD7MDyg/5feIpgxF75xD1z2BQXfCz8Cn/2ac4/64MR58NRvtW5tPUybBcUl8OdfwM0tCqJzDuJjQxp3/aeHIRpWQA+YLg+jR3ZRWtOEp7iM0ppGPL5KTLcXw3Qx+eSP4Cn20//B69h2hthYH5lUjJLKekY63sZX3YDXV+msK8B0YVsZXJ4STLcHl1sntyY1ncDpp5/GH/74R2wry8aNG5k0sY6m+hriiSQp9PtqlFfwx3u/z+mnn47723djXvZpnfTo70HCQY2V9vlxXfLvSNcR7OefRjJpjDLnB6i4GEQQ08RobIZEHOnpzIelmRd+DNeNt2Fe8u863pMmY7/1et4XQbJZJJVCkkkkneb4cnz5P2E5zlz/i5ZUKkYg0EEk0ktz81IUWuZMzNwqGzBMkskQXq+PYPAIbW1rWLp0BeXlzWSzCbzeMkSymKaHVCqcZ65zZUzThYjGbgcCHU79O6moaCYYPEpb2+o8E17XuIBESQ22YeRTaxko0BUUHGfJ809sQRnqXmAJGof9BNACPITGV2fQGOo1aFx2Hwrcpzif1osC7EGgEc2rnZvNuQV4LJTk+Rs30TC/gekXT6essYzgkSChrhCNCxrZ8PQGvvfd71FaV4rhMvjq5V9l2beXseaBNTzx1BMgMGv2LH78ox9TXVyNt9SL1+/FttRUw/SqkZlhGgSPBNl872YW3boIf70+THtLvRgeA8kKVsoiMhRh4kwfxo5rFTw3t8C8lfDcnMJ7b6Uy0ftWaZos/1QIH4D9a2H2bVA+k3w8dPQwJIbB16DAtrjWyWntU4M003kCNtwQPgj718CCxyHS4TDjK8DXrOVMrwLZaM84Jjqpear/abtB6xguBdC58+jJxr3PmdbENPbacFJwAYUnZqOQNiRHfeSY8WCHgtwzvwPFVQqWd6yGs2/Va3KXQPCgmp/Nv0OvraxJ474nLYD+7ZqOa7u20d/ZzqTTPwHhTu5cuZr9ncNsvH4CT4QuZcUtX+eVr0SZck4LXLQeQkf1XAuWQ8WJYCVIp7KkXZX5K9d0WnESiQw9PREWL24ik7FJpy1cLoOvf/2FPNO9cuV5zJnzc668ch4PPHAxHo8yIW633rGWZWNZgstl4HKZvPlmJwsWNFJU5CKRyNDdHWbt2i08+ODFjIzEWb26jZbPFfPAA2tIxOMYk/x8sGsvDz/4Ez7xiX9HRIinE7y/fTffu+su7v/jI0yqrKXGX4ktNg++/gdWXrKMrG3jMkws0ZjzvuAwv3r7b6y8eBk9oSEe3/40V531ceoravC6PLgMF4Jgi40twr6BQ5wyaSb9oRG8HjdN5X4MyerYG8X6DRXDUTCYmkrLDmn+6hwrbUcL94Md1v1GCUhyXCy2aKqukjMdwI5jbuaDzFHNcV1zB4FIJTNmnc6brz3P3DnT+PvLv+eG7/ySP77yCpdedBF3fPe7LPvCF0hYFtt7epjk99PW3c3F06dzJBBgXl0d0UyGYmDOtGn8ZONGvv0f/8Hm7ds5YepUOkMhLv/Up/jmlVdy1Ve+wo3PP88T+/bRMncu95x3HhXFxfg8HkSEwViMyWVlpLJZAskklcXFuE2TynQaY/ly+OEPna+C6L2fSCgQ/tGPNFi2qKgQK23bimJsW5nLigplNqdN07qHDyuyqqpSc6ymJkVIl18OmzZpHqYcKh4dVYA6aZICnGyWqLuSQx0GP/kJ/PjH5FNlZbO6Doc1hvrWW/WUmYxe6t13F1jRn/9cU3UvXqyvgQElx9esge9+V43R6uoUgI1vq6NDY3bvuENBXo4Br622MJKpAjMtzu+EZSujnGOvETXPSmfyjCfRuIK0/xmr3TDRSczsVhOtmVMKZZJprZerXz6ufo5hzTHgiYTGwE+cqJMeJSXH5qqqr1e2OZHQ8YxGFSibpk6KGEaB9o/HtW7O8CxnXJaj/10uNawrLYXbb4c//pHEUJiD/X5WrTLy+axtW4smElo0EtHxKy/XWyR3ux09qv1+663a7+XlCqZ7ejT11uiotlNTc2wYf1+fstqNjYVxmzBBU6nddhvMnmlR0nVU+63Cr4C6wjGdSzvfZdvWvo8l9J7sGdCJjWIvhKJc991v89yLLzIwNEhNdQ1l5WUcevYl2ne+w1UPrGI0FqW8vJxf3/UD5lXV0WMlabpgKdOmTqXMr6aeRcXFbH/+JSgtIZPVSSexbXasXEnva6+x5Mc/pvaMMxh+5x3avvUtPvrkk+x79FFq5s2jftEiSmpr2XnvvZz0n/9JeXMz8aEhBrZsYfS99zjj9ttxFRUhtk20p4cPHnuMuddfj3/yZOKDg/lyc6+7DjuToXTSJHbccw+zr7qK/b/5DV0vvMDn39mFkYhBKAChUQXCniKdULBsnTh2uQtx1qEAvPgkXHGN3g+GYy42PADP/Qku+QxUOrHX3R0KxA/t07jrsgqNu/7i1xXAjw0Vjv9iFZy2EL78TSyxsZ0JpGw6zvChHUyYdjae4lIMtxfJprGyaUyXh/DgIeJjvUyYeiZjnXuon3u+5qwWwUonsO0Mw4d2UDtjPt/49h1sev55BgcHqamuprTUx749b3O4a5CvfvUrDA/2U1ldy+PrH2GCa4SkfwafueIziICkU0w7cSbrHniAE5oawTQRw8TIZrGe/yuyb7eyzpd+Cru3C7NxivZb/jnDUHBtgCGCxKKQTCLxKGbzNMS2dL9hIH09GCUlUFaB4fM5j1pZCIyqydmSj2BU12ofu1zHme3jy79s+X9iro+D63/RkkyG6OnZRlPTOaTTMVKpEEVFFRQVlWPbWSwrhWGYuFxFRCJ9pNNRvN5SysoaeO65r7FgwTfysvB5867ksst+AYA4D9kiNqFQJ1u23M+FF/4Ir5PrWER4+eVbOf/8u/F6/ZimWyXqxZWYnhKgYEAmqGw7B6q3onJvx1aLtHPcRpnrNcCdQLVTvhRoA74A/AEF4SYFkWjukTyGgu4IhZzZWaA4kcEOJon0RdiydgtLVyzFXeImGUiy9YGtLFm+hM43Oul+q5vzVp5HKpxix892cNkvLiMVTpGOpimdWEo2ofJNr99LKpwiOhgl2h+lYUEDyUCSTCJDuDvMny//M3Nb5nLeyvMAKG8uJ3AooBLz5Usom1SGrwqMTFjZZ2+FfoDdt8Bp94Fbf8zVeVsgG1On7Le/Bt0b4dK9UDxByySH1MjMUwaWM62QDqhs3CzSXrIzMPo2VJ2m7WRjeo7hNgXiyWGoXYLKH30KZhMjyhhXTne2g1A3rwB2c8fLmnSf7ZwnB8rdRQVGOtwJ/skFID5+yTHXVkpBcfkUZyZZ7z+sFLx8rbLHJ7XARY/Cy9eN21Y2gJeXFfad+W3Y9aAeM1w6GfDqjfnj1270snnLDrLZDOcsOJufrXuAyooyPP4J1NfVUFOU0hzariJefeFZaqrK9RwDO6H+LOK2j1AojW0LAwNR1q7dwvLlS/D5PJSUuBkcjLF27RbuuGMJ06dXceDAKGvXbmHFiqXU1vq4+eYXWbfuEkpK3Bw9GmLNGpV+z5hRxcGDAdasaeOOO3T78OEgq1ZtZsWKpUyZUsGyZSpJ37//Ru6++3WeeGIfR7tuZEJdKYIQjIY5cco0tm7fRtMJzQxGxhiNh6jzV7PozPn8+Y9/YsHZC/C4dBws28ZlmsTSSYajAX7z9rNcs+CTNFbWkbVtDMMgEA9x5R9W8McvriKRSfPL7U9z9YJPMql8Anv6DnBy/XSK3F7uf+13fOf8L2GJTZkHDDukEzrZAch0Q8l8B2g7YQs52bhRBJmDMPojqFkBrhpI7nbKqyqHTIe24VukEvLkHig5WwG2WGA4QSWShcROdn5QxBe++J8ceH0h1CwnasygfkI9q373O363di1X33ADSy++mHs3b+Y755zDcCzG9Koq6v1+BgcG8NfUcNsrr1D0xhsMd3Zy7yOPcOs3v8m/LVzITTfcwPDYGOcuWMBv/vhHFsyfjwVkLAuPy4ULOBwM0hMOc2p9PeFUioqiIuLpNCVeb357osuFIYKRTitytawCkh0ZUTB83nkFlBMMKkry+Qos9re+paBt2TKlJEtKFLStWaMoZ3hYGdJvfUtdyDMZBW+33aZoqrm5cM5MhrB3AncsN/jRjwogKptVPC+ip85k9DTBoGL7SEQB9po12uy0aXqKoiKVGldWwo4dynw/+WQBjN16q3q5vfWWMtjLlhUA+uOPF5Tr5aUWRtoBwDl58fQmvaBI7J8l3uMXEZWQl5aQz0iQm7yznLamNR7bTiiqQK93UGXMhj6Uq+u6A+RzzHU6q9eVTqkOfts2WLSoAJSdSYt8/VhMxy7nAJ5zC3e7C/ps0PNb1rH67FWrlH6eMkU7fPLkvNt21Cjj+htdnHMOfPGLeslvvaVFpk/Xpsb3789/rmPq9x+7f+VKnWt56y1lrmfP1rqJhI55zksPVF0wf77eB8GgRiVMnw6nnw7vvQdNjTbebBLDNMhL67NWQZ6fj+tyng0juXEyVHWQTCuz3TxJ+7ij+5/fF3vJgSYyGe3TfH5n5/7w+7Q9EbJZS59tRIj29BAfGMA3cSL7HnuMuddeS3xwkKo5cwBIDA2x/1e/Yu511+Grr8dOqwpt9/33c9KXv4yvrg6zqIhdq1Yx++qr8dXXg21jer1Eu7vZt349s7/6VUrq6vCUlGDbNmJZJAYHiQ8O5s+7+N7vY2Qy+p/n8kAkpJ2dA8fTZul7DGWtf/9TlZDPnKfscw5Mp5Kw4uqCVLxqggLuTX+Biz8NkaAalok4CjM3DPXp8Y99DoIj0DQDikuwXCb9+16jfs759O/7OyWV9ZTVnoCryIeBgZVNM9T+FnUnLcbl9mBbWexsBneRD9vKOO9LEMNk4P2/E+jdR8Wkk2iYdyG9771CqL+dikknMWHqmYwc2UXDvIvofe9lQv3tVE6ezaS5H8kbjIkIpqCSeI9HHxmsLETCUFqmfZKTgy+9EKOqGkml9PbyeBHDUNCcSSODfQq6bRuxsshAH0ZZBUZVDRIYwd7yBuZFl2F4vNhdRzCnTMMoKkZSKRBb3cr37cb8/NUYFZXOOS84Lh0/vvzLluPg+r9pSaU09lBE/5S7u7dQWjqRmpoTyWaT2HYWr9dPMHiEzZtXsWjRrZSVTcbr9RMIHM7HSSv7fCd+fz1g4HYr52zbGeLxUYqLK3C5iujufovS0on4/RPZv38jVVXTqahoYvPmVSxZsgL/hJOIuLyEDYPJ6PNOBgXQtwDfRRnnEcBPIfZ6OZqOK7cIykBHUMCM084g0AMsRP8f4sAelP2e7pQLA8MoSL8VmAxUhZO0XtvKvif2MbdlLpc/ejmt1xW2z1t5HtlEFv9kPwPvDuCf6Kf6xGpGD4yyZe0WltyxhHBvGH+9n5qZNUR6I4x1jFFaW6oA3TneML+B5296nsW3LVbm2gRPiYfWZePOvf5yinxWAVx7yp3UWbYTc30LzL4F/NOd+GELldE6cdVFNc4+E0Z2QtUcjdsWS49bcYh3Q9UZKiN3FSuINkwY2QHVZzoPN27IRvTP1luuIEcsByT3Ktubi53OAWXD5QDhnmOZa0TjtXOgu2Kq80DpUjm2ldFz5GKwc3F3mZjGeGMoMMIogHFXsTLvoSOwfRUsuFMdxkMdhe3SyXqOSKcy0wuWQ6RHQX9ZszLq7tJj65RP0esw3OTZ//Fx4HZ2XCxwRtvv2wK+etLRURITltDfHwXIA9yWlrk8+ujlDAxEj9m3fv3lmKaRT721dWs3M2fWUFlZTDZrc8MNm44pmwPP/6Ptxx77OEePKthet+4ShoZirF7dxuq1Z5ItMfjl9r8R+fsh+o9286vf/5bOzk7+fPg1vnzWZfzoTz/nqe8/xqtvt7Gx/XWuOvvjTCitxDAMSr0lDEZG+cWWJ/Nx1CsvuY7u4GAeSJd4vFSVlPODlx/Pl/nexddydKyP3+18jmsWfJK6smq8Lg/dwQFm1tRg2BGVe+fAtKS1zyXtfHvdkNgGnsmaQqv3cii7EuofUmk44oBmD8S3QPFs3TaKNOY6+R74zuGYXAF2FDAJRSymTZ/Osz9Ps+jcFjZuv4IrPt3C7//8Z37+8MMMDQ6SNQw6PR4+ccMN/O6rXwUgnslw3n/8B3ZnJ9lslgULF7L2wQeprKxk56FDfPmqqyiJRvG6XHzyS19i6ac/zTmNjWRsm2AySZXDSm/t6WFeXR2DsRhrt2zh9kWLmFlTQ0aE4ViMaCrFqeXlmJGIAmbLUoqwslJRKSgt2NGhKOeBB5RKHhpSFDsema5bpyiqpUV1u9ddV0BLDz2kwM3tVlAXCqkG++mnFR099piCQsdBPEYpmGaeJDdNrXbLLfDtb8PMmQqmy8rU5ftnP9PLyoFwtzsffoxh6EdLp/X4rl06R5DN6sfduVNxYiqlEvFQSM+VCzl3uxWkV1dYuNKpcbHOOKyuo4iJJQrxujlAVV5aANGgbLbXUwBsTfW6nQNiKef4eHCecwfPndc0Cu3kzlPkVbB48IDqpXPx7uGwfqDxwc/r1un45SZLiotVabBqlU6MTJ9+rDu4Yah8v65O7b2feAJeeEHrmmaBehYh7SohnvVgmgaxWCHDVSKh1U1TGeqeHvJp1nbuVHCcSKjIYfJk7ftIBAIBveUeeUTLRiKqQBgehqee+gbPP/8MXV2dPPLIu3z2s6c5MfQHuf76/2R0dITy8goeeeQ3nHbqbDwu4Rvf/AbPPvccnZ2dvPvam5y2+Jx/nhyxnKl4w1G4ZLKwax9MqNIJEHEmNXLoXoBkSsfE7yvMBrlM5//KLoQHACTTZEzIRKOYLheukhLEttn5gx/kWWrfxIkYpomdzeaZ7UufegpveTnpcBhvWRmx/n7af/c7zlqxgp2rVnG0tZXmj36Us1euJN7bi+n18t7DD9P1wgs0f/SjzL/nnvxYGaaZj90Wy8IwTdxul/ouGOh/TWgMvMVQVAzJOPz113DJFRAYVvbZX67AOBaBD96BI+1w2efUKfz3P4WPfkbfFxWrnLysUoH11FnavmkoEE8m4G+/U2n42efCf35LzxcKYJeWYvnLHOWjQSYZY/TILupnn6tdL0I2FQMMRg6/zaQ552OYbv2MHKNHQwyDgX2vM/GkRZguN7aVZWC/xmWbphuXtxhMF+loIN9WNp1g+NB2Js05HwC34dG5M7GVcc6kweMtKN1K/Ro7nYuPV6MnxHDiyNNpjOISxO3WH5x0Sn9nbcF++Vlcl38Gu/sIZkMzGAZ2TxdGWTlG9QQMr1cl4Q5zLeEQZvNU7K4j2Bt+i3HSybg+3oKR+90+vhxf/jcux8H1f9OSySQYGzuYB86lpRMZHNxDc/MSJwe1AVhEIv0Oa+2nrGwyvb07aGhYiEgGw3Bh21lM000gcIS2tlVccsk64vFhQqHucSZmt1FZeUKeDVcQ7qWr6y02bLiCz3zmSSadeCkHDJO1wDoUDK8B7gDeBN4CHkaZ6gHgbgoy8EeAr6OAeCpwAAXed6Cy8SbUqCwK/NApl7Pv+i6a6xo0Vnt8uw+nsxSNJogNxmhb08bi2xZTObWScHeYzas2s/TOpVROrSQTzyC24PV7NV+1wTGAfOG3F7LtwW1cvv5y0tE0Lq+L5296Pn/80ocuxfSYGlftMBuGYSC2EDiszPXS5UupOrEKjyflgOuIpseykg7QLoOep2HoTVjwSzUa27cG5t4BvhP0A8Y7NQ577h2a91osfRix4uMYb5yZjbACVHcpFNcVAGR8SNnZ3HYmoqA9HdVYZ7EUOP+jRDxHD+X/QYV8zu4c6C5rVNY8Jx8vP0EBa46Zzl1f7hrTYT1nLj+2lYDoAFROhWzKMSnLQCoImaTm966fXwD28UEF7u4i3U5H1PTMSsLADmg8V/elQpq2y1um57azmjfbU6LGbwPbFZCXT1HgH+nWmO36BZpn+5XriS35BeGYPiuJFJjrO+9cyrRpVYTDKfr6Ivl9Pp+HWCzDqlWbWb58KVOmlNPREWBgIMrixU3jmOulnHhiFQcPjjkmZkuZNq0yz3rfeedSmprKicUyhMMpKiuLKS52MzAQ5Uf33cqzL20imowzY94sXvzL3wgko1zzuS8TCAQQE8r8ZXznjlvZ4+7Pg+OvLboCgFp/FYlMqsBcL/wUk8sn8P2XHiuYll10DS7TpDs4xC+3P801Cz7J5IraY8qsuPCruEwX33/pMX70sa9iiAVkILEDis8AaxhGV0HNcjB8IHFwVcPQd2HiQzD4LV0bjs5F0H01N2vaLjsI1gCMroWaO8Dd7DDXKbCCmuc6nyjdxWuvbWbl91cTjUWZv2Ahf3/tDW6/+25OO+00TpgyBZdhcMFNNxFqa+PJN95g1ebN3LpokX5vgenV1WQsi+29vTSVl1NfVsbE+++nZe5c1l9+OTdu2sRPP/pRNSgzDGwHOCcyGZorK4lnMtz84os8sW8fB266iXgmw+q2Nu5YsgS/x8P0oiKMUEjp4FzAccy5ufx+fWjMZhVAX3GFpuEar79euVKBWG2tgrc771Qm2jAUleYCnTs6lC7u7tZg6Vtv1e2BAUVe4zTCCaOEYMTF4KCRx/D19bBxo2K/HIG6YoU219Gh0u+cAdnkyXpayypIytNpfZ4tLy+k95o/vyBdzqWqFtH5hWhUme0VK/TcE6oszHBEWc2c1hmBjp5x7CUF4Hxi87jQkqyCqxzAyrHSmUyB0QxFNea6sgy6B2BaQ8EPIp0tMK62XZCJd/VDY722U+6HWFSvK5eLW0Q7b+VKnWHIgeV0Ws8f00lxolGl93MOYTk3t1wHNzYWZPvBoDLetl1QLnz3uzBlCmnDy2jCh99v5DFmjvhevVoJ79ykRW5+Jadaz0m9y8u16UOH9NZYskS3s1kF1Z2dSspv3vwmU6ZM46MfXcKvfvU0Z511GvE4tLR8hMsv/zLXX38Vzz77JOvW/YhtW7fhcQmbN29m2pQTWHL+eTz95EZOO/10jbHOjUWFv3ATpLMKmMtKtd9zY2fl3jvMdjqj41buLxikTWvQ49a4eo5KhwOdZKbUY2c1Jdfo3r1UzZ6t973DUs+59lrKmprIJpPEBwZIjozgq68/luG+7jpKGxrAAZ6JsTG8ZWW4vF6yiYT+FmQy7H7wQeZcfTX+piZsR6GQTSQIHDhA1YknkonFKK6pwVvkVVl4MqGybdNU8PvkL+HCT2nu6kP74KL/gJf/qiB4pB+ec1jriiq9t3LGZ+P/X8cz03WTdTAP71fwXVahxmZHPoTqOn2FxmC4D7t5BlLqp+/9V5k4awkD+9/EV91A+cQZ2FYG0+XBdHvpc9jm2RffhFgZRATbyuAuKiWTCOXl4F5fJel4iOFD26mdsUBjsOGYfR5fBYaDE/ref5WSqklUNczRX3MbJJ3UH5KiIgXLpX4kk9Zx8I4DtoZO3Itl6bOJtxhydUv9kM1oecdoVYJjGJXV2n4kjL1tM+aFl2m6L48H3B4MtxtxZgXzpmlLPqK5syuqjufBPr78y5bj4Pq/aUmlwnk377lzWzjvvJX4fLX54253UT5OesmS5Xg8pfj9dc6zlElujjGVClNUVMZzz91AQ8N8Tj31y3R1vUVpaR3bt/+Ehob5zJnzGQBefvkWLrroPuLxYYexVqfwxsYFZEqqWWaYPAHs51iQuxJlsKegsu0QCoRzzPUEYCMKwNdzbPz1t4EHURO06/6hzUqUCa8B9gEnUwD1twGzwykSYzFKa0uRrGNf78QExQZjeaOxDzZ8QPWJ1dSfVk8qlKK0vpRQZygPikM9ISqaK/CUevBN8GmM9eFgHqBXTavCztoEO4O0rWpj0a2LqDmpBitt4Spyacx12uKRUx7hW0eXYUadGOoz1qmp2QdrNJ7aP01ZXFcR7PoGVJ8FTZ/RbcPlSKZFWVlXMWSikOjTtuYuh6I6CLwDNQv0eGIAiiYo+M5GoGhiQeqYHHSYc7+6kJfUFxjoutMVYCZGoHq2AuBcvXCX5pzOMbwGjnQNBa25+GsrodeQjijYLanlWHDOse9z8dmGqcBestreqzdozPWuBwry7wsfdc7vgPvQYYedXqHnefMWWPpDBdMi2k+uIpWx57zrezfrxEEupjs5Cg1LtI/jQ5AMwq77822GrCq2bOlm3rw6PB4XPp8H29aHrDyhIur8vW1bD9XVJdx//9Z/YqOfeaadp5/+LIsXN2FZgtttYlmCZdl59/BbbnmJk0+eyMUXT6epqZxs1qatrYsrrtjAJz5xEo8+ernmFy6BnuAgj29/mmsWfoqmiokIdv43wBbBdExbcvHTX5n/cWp8ylwXu72813+QUyefhC02btPFSCxIPJPKA+nGyonEM0l8nmIs29LPa5jHnHdy+QQyVpahaICZNdUKrg3QqTRR9tldpXmtfYucWGm/M8FjoE6BWcgehdE1CsJdEzQ+290A2T4Y+R5EnoCyFqh/DDJHlPUuPl2Bd6bfMVAr1rhtqx9Gf8xo2U+ZPmU6r27eTPPUqezs6+O0+np8Hg8TKyv5+KOP8srAAG9fcw21paW4DM3Rm7Es4pkM7w0NsaipiWWtrSxfupQTKio0FQbgNk2S2Sw7HBBe4vFQV6qxpfFMhlAqRUNZGW1dXdT4fAzHYpw7ZQr+ZFLzwOZiT3PfrVhMGc9EQvXUzc2KRCdM0DI5++1c3bIyZUr9fgVd4+Oxd+9WAD1zJlxzzbF20X/+M1x0kTpgOQgrWlSD5fKSzSqYGh6Gs85SrOL4AWFZBbn36KiSr3PmqJLV5yuomwMBPXVO6exyqTn52WeTd5Xevh3OPLMAsktKlLCPRhVvejzgK7YwDcFIpDQuOgd+kykFUF6Pkyu5F4YDsPg0BdrdA8p45gC03+f8JlnacGqc7LjYC4e6YerkAhj7H8nMQc/17gdQVaGGaaahtPCECTpmOcY6N8vw9ttqHOfzFeT/IyMKuouLtVOamxU4f/3r8NJLOu61tQrGh4fVQWzxYu3cLVt0FuONN3Ti5ec/J+qqQFxuDh8ugOkZM+CrXz1Wan/ggGL3Bx/UsVu1qjCB4vc7yndHyR6Pa1fkQgE8HjWj6+rSyZEzzzyBP/7xaU455TTGxoY49dQZ7Nw5Rl2dG9sW5syexOaXXuZEj0/7OJXmhDNO5ek//4XTKusKkxM5VYCg24nUP8dfJ1I6njnFgWFonfFKhFAU6qpUhTC+LORl5hlDiHZ3s//Xv+a0b38bV1ERhtvNjrvvLjDNd9+dnygxXC52rVrFiZ/7XD5G+vJNm7ASCfb/+tecuWIFYlmM7t2Lb9IkiioqeGftWuYuW0ZpQwN2Oo2ruBixbaxEQl3Ii4qI9vbiKS3FW15OUUmxgutUUgFvNqNfiN1b4cB78IkvQYmv8PtQVKx5rHOM85e/qYOWiOurxAc9R5Sp/sNPC+W+cKOall36Waiq0Zs7B6w9XgWhjlzcMg19ZRKOS3hZHvwKgG2pZNu2sNIp3MW+/J9fPNCHu1hDBa1skmwqQWn15GPk4JNPvgCxLRKhYYrLJ+j/iduLjFNj5HJjmy4PbtODjA4j0bCyy25VmYhla38h+l3xlyu7bWXBspVNFpB0CvuV5zAXnQ9V1cpARyKYjc36WyKCZDPYr2zCnL8Yo1oNBgTB8BYXfsAsC7uzQ4F9LIrZPFUfVzye47Lw48u/ZDnuFv7ftqgT+Ny5LSxefBvFxVV4PCW43UW43UWI2LS1rWHfvicIh3vwen2Mjh6ktfVagsHD+VY0ltrgoovuo7u7koULz+WKK27noou+zNDQ2TQ1LeaMM05m4cLzueuut1mw4CPU15/KG288TVvbapqbl+ByleDCYDkKfCtQ1rkFjaFuQtNuJYGb0N/xmSjD3YYC4Yucsi7It7McBc8rUFC+wtl/G1AFlKEMtgdYgMrNp6MAfSb621laU4pYCqzDXWFar2slcDjA4VcPM7B7AJfXxdzPzqVpURORvgiv3/06gcMBypvKOf+e86mcXknjgkZCXSF+MfcXtF7bipWy8NX6uHz95VRNq2KkfYToQJS2VW3se2IfW9Zuwc7YxIfj2BkbwzSI9EWYcu4UBW/716qhWSZUcAZP9kO8C3beqE7gp/8YGj+pMu8dy9S8LBvR94k+wNT6ubb2rVZgWlzrtHEYSibqvkQ/7P0exI9qvHX8qDLjiT5HpVusDLG/UaXdhktZ5/qzociJOw4d1TJ5YD1+0sx5EjXHyStzwNpVVHAvt1IQPKJ1DQpsTw5k5wxactJ1K61GZYlhmL9cgfWCFVpHLIj16zVtX6XAe/sqZbnr5+vEwMvLVBbuKYVYn7N9WM8zeVHBEXzXA7odOqJlsnFIDBXadBfjdhssXtyE1+simVTUcPRokLfe6iKbtYlE0vT1RRARFixoYObMGu66aymtrZ/n4Yc/hmkaLF++hE9/ejannDIRy1Jg/uabnXR0jALgdhvE4xmuu+4s3nqrm4qKIg4dGmPZslYaG8t58snPsGLFUjIZC9PUB5H6shqWX/hVGspriaXjJDIpeoJDrHxxPX2hYUZjQXpCw/i8RXzv4muZUjWZUm8JxW4vHwx2cDTQz1B0TGfrgWJPEU2VE7nromuo9VfRGxxi7d9/S3dwkIydpS80wru9HzK5opYVF36V6pJyAvEQLtOksaJOBzPbCQPXabw0gG++pskqPs2ReJaSnxjJDkPGGZPRNQqgMz3qCD5yt4Jo10RNzVXWAjV36TmMIig+VeXgRpnGaSe2Q+YI/QOjynKXzOf+NWs47/zzqWtooL2zkwUNDQzFYnz8rruYUFfH+pYW2h12eVlrK4cDAbK2zVA8jss0WdTUhMsweOSyy5hWWYlpGHSFw2zp7uZwIMBNzz9PbWkp3Y5zeDyTIW1ZFLvdVBfrw9nZkyczHIvRVF6ut7rbjUSjCoQ7OjT49ehRRTOHD6tNd22tArB4XON5E4mcbAKeegq++U3VYedidF0uBd8dHQrkFixQoGfbKhm/6iplRRMJuOACPTYyot81vx/T6yIeF4aHlek85RQ1JxsY0CJHjqgLeGmpEu2NjfpasUJxUSZTkH3X1hbCjpNJXS9cqO+//nX9SBMnqll6f78Ss+GwzhVMmqTnOXiw8DNB94ACsXRWXaQNQ0FXMq1u4M2T1OkbFHCVlSq7eaBT+yfHdh7tU2CdSisY7+pXSfL0Jr2nEimtY9va9oFOPZ57b9vqZt08qcCQ19YWKHgoqAY8HqWAy8tVEh6NqqV2TqFw/fVat6tLy956qwLreFzl/f39enzBAmXetmyBU0/VWYvPflY73jTxum1sW1i9WsH0fffppTz8MLS2wve+p5c3fbpGApSX6+TFbbdp5EA4rKcEfd/fTz5VV3u7XuaRIzpeuThrKCi0u7u7KS+fRDLpdmTmBs3NTXTv2lPoY48DPvpHdF/PQCGlWUePA+xcuq9noFAvN/bDAV3nYt9z45zbX1Wuvx//WDbHYHtULrzvsceomTePZCDA2z/4AdlYjLnLltH80Y8y97rrMNxuYt3d7Fi5kmhXF6ffdhvJsTHmLlvGeY88QsmECRRPmMBp3/lOHlgX19QQ7+8nE49Te/rpmI6Nvm1ZZGIxIl1djH3wAabHg+nxkBwdxUokeCdnZhgKqER7bAg6D+r2mUs0TVZ1LURD8JdHNB7bdCkTffa5etx06f0ZHINnfq/racrIc+lnC+WOtCvQDo4U3MHLKvWcbrcy58U+jWH2eBAri9vro6RyIl5fBZl4kNhYL5lEiL59fycdDxIP9GPbGcS2SUUD9L73Mu7iUkzTjW1nGTm8C0+JHwyT2hnzqZh0ErUzFgAGhttLSUUt2VSc/g9eJx0P6cQykEmE6H3vFWw74/zPCxINY5T6sZ5/CgmOqrw+F0YQCWO/9gIERrC7juQnK2V0GKt1A8SjGA1N2G2v6gRBOITh92M9t1FjrbsOQyyCecnHoawcGRvBevFvfPOWW5k6cyZmcTHvbt+msvfyCtr/+l8svfLLnDT3ZBacs5B9772XfwpKpVLcdNNNnHjiicybN48vfvGLHF+OL/+q5Ti4/hculZVTufzy9VRXz6SoqIxweAAg7/B9ySXr+M53Bh2puJtt237spONahYhNOh2ltXUZweARPB4/1177De6/fznf+94cfvvbB7n55tt49dVVfPGLYzz11IO8+uoTXHppFbNmzeDrX/8rS5fehWG4Ne47E2eqCPegrPRkFOROQ+XbEdQx/McoCLbR+OgTUJDd5JS1UGn4T1BAvsRZZ1EH8Ueccj5nXzHqGm6jDuSHUeb7MLozHU2TjqQRS9i8anMe/M65Yg7lDeVsumETscEYhmmwZe0W2p9pJ9ofxTAMiiqKMEwDV5GLiqYKTvrESSy9cykurwtPiQfDVOn3tge34fV7WbJ8CXNb5rJ0xVKyySxjh8YIHQ3x3Neeo7SulMseuYxUwkDmrlB3cE+FOnY3tyjbvG+VA5RX6R9HJjIOPK9SqXcOSEtW68++VeuffKcys/sfKJTPMd35NtYok51b71+rZUyHGXcXQcV0RxrpUql4Nqk3m3+SAuac2VouZjkVce5GQ7eDhxVEQ4HxNnAYB49KvgFS4UI7wDH0r2Eq2z2yF8qmqPN3xTS48BHNXS2in9/waJsLVjjA+06Vf8/6nE4YTF4Mu36sn3H7aidFV48jfffCRx6GT7VqPTurruOTF+uEQMMSmHsVnL9OJWQ2eab6/feH6OoKMmlSGUuWNONymfT1RTh0aIyjR0Ncd91zHD0apK7OT2NjBTfeuImOjgDTp1fxyCOX4fG4aGvr4siRAPPm1VFWVuSktMkSi6WZMaOaxx//OD6fh56eMM88087q1W0sXtzMlCkVeL0uotE0tkBPSMGvJTYu04XbdPP49qd5sX0rj29/msqSMoaio5QV+UlkUgxGRomm4+ztP8jc+hmcNvkkfrHlSfrDIw4b62JXz356gkOkrQyPbX+KF9u38svtT+N1eRiMjlJR7Of7Lz3GQGSUeCZBPJPi3pd/SWegX7/Bo/dByWJw1Sn4je9Qxtr0k493x4l1d9WAy1E11CxXAF2yQN2/I0+onFwS4JkJ9evBM1UB98jdCsDdk1RmPngTuGsh08X37rmPWR/ZzoyzH6Cn6ygPP/IInaOjfOLjH2fBmWfyyfPPZ/D11/n1n/+MLUKJ2019WRkvdXTQHQ7TFQpx9+uv0xeJ5Jlst2mStW0SmQxr33qL2tJS7tuyhcVNTZQXFbG0uRkRocTjodjtZjQeJ2PbHA4EuPH556krLaXE48ESIZvJYLhcilSbmuDcczW21raVXly8WFFQfb2ipXnzVDZ8771673/ucxrH63IpmMu5gOcA2U03FUy0li1TKvpnP1PHsZISpSpvvlmP79gB0SiWmNi24eRi12I52bdlabj3/Pl6is2bFaMXF6vvms9X8JPKSb5HRgrpmHNzAuXl8Itf6MeePl0/8sCAAje3WzNM9fcXzpPOOAxV8ySoLi+Apxxgy4FjjxtOnKLx0P9Ytkf/E4+pW1aqYLypXk9ioB8yV8ayCuBt/PuufgXzwYimlbL/4berutphEhM6cxAOK6jO5RlfsEDHsagI/u3ftPySJfrhTzxRgXMOJa9erYPQ3a3jOW+egvSbb9ZJFMcl3nukHbdbb4cPP9T+TaVUPbBggQLpcLjw0wo6LvX1ymJXVjq/3oY2f+SIntbtLtyafX3aDdmsjt3YmKoMhoaUNCwp0dvO71d1ggBMrC6kNss4nhqTJhT2ZS3t+wZn4tXlAOfcREkuJdr4bZHCnO74/TmW+h/rHuzSiRGXC8M0OeOOO5j67/+Ov7GR2VdfzXs//znFEyYwf+VKfPX1iGWx77HH6H3tNeKDgxiGQe2ZZ+JvaqJq1iwy0ShppzNH33+f4upqkqOj1JxyCsU1NUw4/XTee/hhYr29uEtKyEQiJIeHKa6uZue99xLt7qb29NPzIB/bhhc3KPDd9F/gr9Btjxdq6iCTUgn422+qxDud0vjrL9yoQDid0jK5Nl7coH30X48qK/3Fb2g6rsoaBdrTZhfScL20URnuYp86jQ/3O2FeJq4ih4125PrDh3bgLiph+NAOQv3tuu0tYfjQdkAYOfx2YX+R7s9t29kMbq+PhnkXOWm5TAwRrGx6XL3t+R+J8eewrBRigNk4BXvrG8i+3dibX9UJyngMw+XC3vK67m/7O4avVG/+VBKJRjDPOQ88Xsx5Z2iaLcPEnDIdw1+O0TwVe8sbGL5SbdMwIJXMt/fpT36KNzduYErtBA39EMFu+zs3rHuYa/7zP2nf9z63fPObfOWaa8gtt99+O4ZhcODAAd577z3uv/9+ji/Hl3/ZIiL/170aGhrk//QlmYxIONwnsdiIJJMRSSSCkkxGZGBgr7S3t0o8PibJZFii0SFpb2+VgYG9Egr1yMaNV0o43CeJREiSybDce2+xbNjQIvF4QKqqKuQPf/ih9PRsl2eeeVgmT54kY2O90t7eKrHYsGzY0CIzZiBXXXWaJBJBSSSCMjCwRzZsaJHe3nckatuyR0RaRGSviERFJCQi7zr7dotIREQCIjLmvA+JSJ+I9DjrsIiMOOvd/1Bv/HbQaWNMRAad7bCIbBKRYqdcIpSUyGBEenf2ysEXDkq4LyzD+4cl3BeWRDAhG1o2yL3F90p7a7skggkJ94XlwKYD0r+7Xza0bJCBPQOSjCYlEUxIMpKU+FhcUtFU/njvzl4J94Ul3BeW2EhM2lvbpXtbt0QGI/LUVU9JsDsosZGYJIIJGTk4IpHBiCRDYbHTYZHUmEh8UCQd0fepsMjYbpHNLSIjO0RCB0RifSIjO3Xf2F6RWI/zfo9IYkgk2i0SHxBJBUUSw9rW2B4tM7pLJNYvko4W9o3tFulpHbfeKxI+LJLNiGSSurYyhbWVEUnHRDKpY49l0yLxUadO2nmNP+6Uz7WbSRXay9XPZkRSUW1n/PniYyLJoMjRl/R4MiiSDImEe0WiA1o+MSaSDOuxVFiPJ8ZEDr8gkgiIDO0Ree5KkXBPoezQHpGOVpHB3SKHN4lE+kRig3o8FdUykT6RgZ0iz7aIDO0WSUW03rMtEgknJRxOSiCQkFAoKYODUenrC8vOnb3S1xeWlpYNsmNHj7S2tsv27boeHY1LS8sGgZXS0rJBwuGk7N49IC0tG/JlRkZizv7+/P4DB0by27t398umTQekry8swWBCxsbi8uGHw9LTE5JwIiZ3tP5M9vV3SCAWltFYUGKpuLQPHpVbnlkn7UOdsrnjXTkw2CmxVFz29XfILc+sk339HRJJxiSSjMktz6yTU+77rLzZ8U6+3nt9B+XNjndkKDImHzr7Dgx1SjyVlLFYKF/nlmfWSTgRPWbbzkZEMgGRbFAk3SeSDYtkhkUyQ/o+GxbJjBbeZ8MiPVeKJPaIZKNaLxsWSewU6WkRSbwnkhlz9kcK63S3SPKgbodbRdordZ0NOO2EtVwmIKFEQlo2bBBWrpQrN26UUCIhgURCAvG4DEYiEkwkJJxMymA0KsOxWL5sy4YNEk4mpScUkp29vdKyYYO8298vPaGQtLa3S184nN/fFw5LXzgs+4eHpScUkt5wWILjztva3i67BwakZcMGiYfDYu/ZI9LSIvLOOyLhsEgwKBKN6jocFnnhBZG9e0V6ekQCAZH9+0V27hTZtUvr7d6t+/fsEbnqKq07PKzHQGRkpPC+pUXb3LlT3+/cKfLQQyKtrSKDgyKDgxIJ2zI2JvnXVVdpsb6+Yy+ro0Nkx47CJYTDhcsPh0UiEX0fiejrpZe0jUCgUKa9XfcNDen+cFjkhhtERkf13IGAHuvpzIp80CHSPSCSTIlEYiL7Dul6JCASjur+kYBIJqPv02l9P77sP27HEiIpp1w6U6gbjmqZ8ef6x/NmMuPaiWkf7t2rF/7OOyIHDugH6O0tdEwkItLfrx+6r087r7dXOzDXkcGg1v3Hfbkx3L9f3xcX6znHxrTd9naJRux80319Ona5Ps+NyTvvHHvbfPDBsbdcMKjN5srt3Km3Xk+P1u/p0Uvo6RGZNGmKvPTSu9LbK/LpTw9KaWmZfPBBRnbvFvnMZ2yZOHGiHNyxS/vT6ecpU6bIu2+/rdsjgUJf/o/G6h/LpNI6ZsmUSCwukkwWxi13PHefROO674MOkdffzreTCYVl7OBBSYyOSioclnQsJslQSGJDQ/o+GJR0NCpj+/dLz+uvy9iHH0rP669LYmxMj4fDkhgdlZ4335TY4KAkg0HpefNNSUUi+fbeuvVW+cvpp0vP669LKhyWZDAoidFReevWW+XD3/9egh0deo72dgl2dIgdi4l0HhJ5ZJVIV4fInu26jkVE4lGRPdtEDn+ox7sP6/GrL9HtkQE9HhgV6e4olIlFROIxkWhEZO8O3ZdwtpMJbT93vmhEZGxY5OgBkb4ukVhUsumkZFIJyaTius6kJB4alNBAh8RDg9K561mJh4ac7SHJpBISCwzk92fTSYkHc+UGJRUPS+euZyWTjBXKZFKSjkeOqZdJJSQZHTvmHOlERLLRsFgjQ2L190hm4x/FCofETibFTiTETibFisfEGh4UKxyS7IEPxAqHdF84KHY4JHYirvXDQbGSiWO27XhM3w/0aVvhkFi9XZLZ+EexkwmxhgdlSmOjvLNli9jJpAx0dUpZWZmkI2GxomHJ9nXrvX7woESjUSkrK5NQKPS/9Tn/+PL/vwvQI/8LnHqcuf6XLTqF63J5yDGAIhahUBelpbU8//zXSaej2HaWiRNPdaThfi677BfE48OOPPwI11+/l4997GFM08Pvf/8bvv71H3Laaf/GlVfezqOP/ozh4XepqGjG7S5h2rSr6epyccst6zBNlXpt3ryKffueIJIKEkFZ5RxjnUFZ7DVorPRqlG1+C5WIR4CDwM0oi+1HTcsslIlePa6e9Q/bttOGxznHMqADWAzsRSXmqWIXLo+LLWu3UFpXSnwkzljHGC6PC8NlsGT5Elr+2sKkMyYRdVygm5c007Za5d2bV21GskI2kcXOqrzbztr541vWbgHUFdxV7KK8qZxtD25DLOHSn15Kkb+IxFiCscNjeEu9eEo8eLw2hpWAWK8ypNHDsON6iB5UNvmshzTNlpXUWOnymTB/PZRM1hjp+euhZBIkBiG4R2OnU8N6D2QiGrd95jo1MQu8C/EeKKqF+Y+oC/mEheCbou+LqpXhNVCmenwMdI5UNr3KJCNOLLSls8ze8nFx145UT2w9no4qe23guJSakIo6rDTkT2R6nHacc1oZZd9NL9QvVMOzWL/Kyw1DmfBojzp4hw6rhDvYofHT4U4ItEN8QKXc9fP1/SvXQ/iIMvINS1QKPmGeXmukW4+HOqB/m/bF22sdOfhq/SyO5NwwIRpNMzAQJRZLU1rqxuUy8Pu92LawfPkSKiuLaWws54EHttLQUE5RkYsVK5bS0jKXO+9cSjZrs3r1Zp54Yh8PPLCVBQsa8HpdmCbcd98WnnmmneHhGHV1pccw1kuWNDM0FGfZslY6O0McOjTGwEAUU0y+dd6V1PqrCCTCWLZNMptmckUtd150DfVlNdSUVjAUG8MS4TdvP8uL7Vv5zdvPArC7t52rF3ySS046h5Prp/Obt5/ltIaZlHpLOL3hJEq9JTRV1PG9i6+lvqyGfUOHKHJ7ucapc+3CT+E23cdsq4IhAbg1BzWmviSrr8xhSGwFSTpx9VEoOQcyvRSS9lngqocJ31emOtsFA8sgc0jTeGU6YOg7IDGIt4GnEabs0PXAdVou/qbeY9mjmIbB8qVLuXLePB669FI1MspkEGAgGmVZaysHRkexbJsSt5sVS5fSMncuy5csIWvbRNJp1m7ZwhP79rGmrQ2fx8OipiZ8Hk9+v8sw6ItEuPfNNwHweTyYhsGKJUtomTuXBY2NrN68mSf27WMsEsHIMdTNzUoLWlYhaNm2lb7t6VG6F5QanD5d5dzf+Y4eE9Hg2dNPV22v11vQA7tcGoDb0qLrdFpp6Cee0PUVV6iu++tfB8vCMJTgvv56VSrfe6+ylDkzsmXLVKpdXa3VFi9WUj2XYvvmm8mnZzZNlYmLKHsqomXa2pRYmjhRWU6vV+N/YzElaouKtK7bre8rqw2kqV4NsNIZ8Lg01tnrUTMrr0fzWefyWLtMTb+1fa9Kv2dOKZieFXvV8CyVVifqSExZzUNdBROskiKt4zKd8lMKsd0njmtr5hRlsN96S52+pk3TC58xQz/cyIh+OMvSjolEVFlQWqo07zPPKJ08nqUGHaMTTtC4+BNOUAb8jjt0DCsq1Lhu717t1C1btFNNE1v0lgmFdP3ggwVfPNBbqqzs2FNVVupYJBJ6WtPUZn/4w8ItEg7rS0QVBnffrWHgLpeO/cAA3HFHHXPmnMFrr/2B++6Dp5/eSF1dI9Nnz9IxS2dUzp9bTEPHK5dCDY5VFYCOyfuHCtumof2dk/anne+IoMoF01AVQjhaoOenNcLZc/Vc3QOI2JRUV5MYGsrLvk23G6/f7/yFGWSTSfzNzdSecQau4mKKa2rYee+9ZGIx4n197Fy1iqoTTyQ5Nsbb3/8+VSedRKy3N1/mrBUr+PdXXqH29NOx0mksJ+76tO9+N89qR3t6KKqsxFtRoT+NNXXwpW/ounaSyrUNU18VNer2/YUbYcJEZaC/cY9ul5Rqyq2iYvBXahv+cjVBG+nXmOvyKpV+WzYc/kBNzyqqNV3Xgffgzz93JCculZWPaAxIJhmm7/1XySRVXeYpqaC0ugGvr5L62efiKSmntHoynuIyDNOkyF/F5JMvIB7oo/+DN/CUlDH55Avw+ipJhkepnbEAK5siPNjhsN36N+Ep8dMw70JM00MmGcYw3XhKKmiYdxGeknIMlwdxGRpb7fHi+th/qIM3osZltgXZDDI2Ak7OaoqKHE8hsF5u1WNejSs3bFvNyXylEIthdx/FKPHlc4Mb3iKM6gm4Lvs0EhxDAqN6bxn6bNPV08uk+npcqSQGBkZVDc2NjXR1ddHR0UF1dTWrV6/mrLPOYunSpbz66qscX44v/6rlOLj+ly0Gbncxtm2RSoXZtOkmMpk4jY0L2Lr1ARoa5hOJ9PHiizcTiw3S1LTYkXDbuN0lnHPOdwmFuvH5JgAG2WyGH/3ofm6++XRaW9fwxBO/4Etf+iKplIdwuAcRm6effp3LL/8406efTi4fdi7ue/IJ51E8LgVK7n/TTyH+2omWZQmaizqEmpo9gQJw2ylvACkKsdcrUGukXMz1nSioBgXwq8e1EUPjsJsBt9eN6TVZumIpVVOrCHWFKK0tZdONmwgeDlLeVE7z0mZMt8lYxxiR/ggILF2+VOXddy5FbOGl775EqDNEV1sXmXiGpSv0+JIVS3CXuIkOREmH01RNreJjD38Md7GbwOEArde1kollKPIXkQwmEVvIJB0Ztn+KfoCcFPyDHyk4lqzmno53Qf8LDvheBrEOGGrT3jG9UNoElfMg0QueSs1TnRp2zMqG4J3vgK9B3bMzIZXjJgYUEL99HTw3G975duF2slIKVHOS7sJtVgDELq8jGf+Hr3UqrEA0t3jLdOIgB9CtNHhLtQ0Z157pgPbczeLyOOZtzh+axw+lk6CownH6FnX1nnxOIV56xxqNE995P5z0WY0bv+BhlYbv+nEhbjobV6Oyjzzs9El0HJBeBfVnQWL0WIm5YeZjvW1HFl5fX4rf78WyhJISD1VVJYyNxenpCVNbW8rq1W088cQ+1qxpI5HI0N0d4qGHLmXatCqyWZvly5fkwbbbbfK1rz3HoUMB7rvvIvbuvZ7GxopjYqyXL1+CZQmrV2/mmWfa6e0Nc/bZDQwMREHA5ylmOBrgF1ueZCwexm1qftCB8Aj3vvw4pmFy6uSZIMI1Cwsg2DRMhiJjlHi83HXxNRS5vXzrvCvzMvG+sE7YdIeGWP3Kr0hm08ypm4YtNo0O4G50DNQaK+u466JrqCwuAywwy9GUWgaQdaTgqIzfVaex0oPfUtBsmFB+hcZj2/HCL4dZrmZmZFX6XfJvalrmrtWY7NhLui45W9fuunFS8tUag40FmUFMA2ZUVvLwxz6GyzRJZbNE02ks26bU6+W2RYs4obKSEo+HrG0ztbKSleedxxudnezo7aW+tJSHLr2U1s9/njuXLs1/JaLpNHc44NnjcvHjbdv41sKFeF0u3urq4mgwyNSqKu45/3zchpEH7ZXl5ch99ylC3bZNUe3XvqYodts2tW1OJvW4YWg89g03aDmfT3MlNTYqCr31VrjkEu2zo0dVjtzUpPWmTNF46wkTFEHlwPbttyt6zYG7UIispTLtxYsVH5aXK54XUfz/4IMaD51IaHquHLi2LG3mppuOBdCZjK5zxljTpmnI8Ntv6zxALr63pqYA3nKAPOdSnYhTALleD1iicmJQIJXJqllZKFqIiy7ywqxpuv7HxRZtp6ZSpeH5+Oys1k2mtS3L0tvQtgrgTcQ5ZjupwIDTTlOQm0ioRvrgQZWB+3zq2NbZqR0zOKjjd/Cgln3ySQXL4yc/RHRMOjsLMfjvvqvX8tBDalDX1FSQnNfWqmS8thbDKIBfn0+HPhemnQPH9fVw5ZUaqu31Kvju7S3Evdu2KtfH3yL19TrmhgENDeDxXMdHP9pIf38PW7dewuWXz2DyZLjnnkf5zW8eZdu2mcyZ80MeeujXUFwEFX6u+9Y3aZw5g56eHi657DJmzJqlfZdIafx8Mq1A+H8qBUfLWPY/x1QbFOKqi73HTqZksgrEc+2bLkyPh/jgILOvuor44CBiWYhtE+3uZsc99yDZrL5fuRIrmSQ5OkrXCy+QiUTYt369vo/H+eCxx/R9NMq+9eupmTePxNAQw+++S2J4mB333EN8YEBzKts27qIikiMjzP7KV3AVF+MuKcFdUqLhRoERjafGUMAManAWDqgb+Iy5+lktCybUQ/MMlX2PDUFdg/5euky9V//rUUdavlHreYs0v7XLhBPn6W+ty63nOdIOF31K/3NzUvHn/wtEGOnYia9qMm6vD8lm6H//VdKJkP6v7H+TTCIMholtZUjHgmoihuAtKdOUXSLEA/2k4yFKaybj9VXgLipl9oXXM/nkC/VxI5sm1NdO3/t/x8okGD60A9PlIj7WSzqh0nsjZ+RWWQ3eIiSr/ymGCGLbedBt+Eqx33odERvDtjVdl4DRPB2KSzA8Rc4jh6HmY6aJUV6BMXEy1gt/g+CoY4SWxe7pRGwLo7wSo3mqjothaBqwcDCf3UEScf3Bcp55s9ksnZ2dzJkzh507d/LTn/6Uz372swwODv7z79Dx5fjyv2E57hb+L1pSqSjpdIRUKoTXW0Z7+7NUVk6hqWkRmUycVCrMm2/+gIaG+UyffjFlZY358kVFFQwM7KasbDLV1TMQsdm5cxdXXXUNe/ZswzQ9RKMDnHvuRXzmMydyxx1/JRg8yqmnLmbdurWceeYUJk06g1hsiEikj8bGhWSLK8EwyKIzKjZ5r2AgH2WpzyzO+wiFfNd3Ao1oLuti1LAsgOa6NnHC4px6BhBEjc3Woqz3ahR8T0UZ7DXAT9NZaB+l8oRKALKpLM/fWEih9fHHPk7wqLp+n/Odc4gNx2he0kxsOEbphFKsjEWoJ0T35m663+pm4bcXsuNnO7jsF5chIhgug1QwRTqSxlvmxV3sJtwdprypnN4dvdTOqcVd4sZT4iEdTeMt9+J2ZzDJam5IRM3L9q3SmOnSqRr7mx6DbExTdaXHYOAlGN2h7uLuEoh0aJ3ZtyqjbSWU9TYMZWSH22DrF+HiHeCtgtHt4GvWMm4fxDq1/twVuq+4ToH1eHdwKOS99jco6B2fnstKOftSWj5XNp9+yymX+4PMbZtuzXHtKhqX6svrpPPq1W1sHXWxddQNtxMP5oDzxLBOROTyW0f7YNI5+vCQiSrj7a3Qz/D6zbDgLiit1+2B7RrHXT5Fz5OJ6x3l9et1WgnHmC03gaDx31G7nEzGxu02OXw4yOrVmmJrxoxKMhmho2OMkZE4kyeX0dUVYsGCRgKBBKec8gif/vRsfvGLy7BtwTQNotE0JSXqrBuPZ0gms9TWlmLbwvXXP3dM/uxMxqKoyMXRo0EHzBezfXsvTU3lTJtZTjKbZu1rv+XF9q089B+3MdFfjdflpjs0RFVJGYFEhNMbTsIWIZVNE03FKfWWqKeAy8NAZJTHtz/NtQs+RV1ZNXv7D+brnTZ5Jj94+XHObJzFpbMWY4nN+wMd1JfV0FBRhy02pqFQU9+blLiyGDlQjQkD34GaG8EzDU2dFQBXJWS6YOzHUP8z/aXIHACjXOOnR1dryi3XRBi6Wc3M3NMUjI+uPjalV27bPQkyR2HsAahZAZ7pzg9PhphVQsa2sURwGQYZ29bfkGSSOr8fESGVzWKJUOb1Yjmyq6FYjEllZfpVcOoahkHWthERbn35Za4/6yxOrKlxnNkNouk0t7z8Mt9YsIDhWIwlzc0MRKM0lJVpPaAU8KRSGNddpyz0Aw8UrJ2//W1FsitXqjM0KNgan4Zrzhx9//3vK+07c6Y+fI8v99BDSmVOnKjoafJkLZNOa5z1GWcoIFy9GtatI1Y2kXBE81zHYgqqchmSxjt79/QogM6l2fb7FVQ3NhacxEUKhuZutz6DlpQ4PymO71dHB/zoR0rSRqNavrRUQbXPp68yn7qFH7Mk04X801lLGU1BwfYHHQqcT5zi/GHYBfY050z9j22ZhoKw4YACummNCsy6HcfqnFlZPke2W024muoVwO9+V8fvjjsUrU6bpm2HwzqOP/+5Auvx4zd5snbO6KjOLni92qFnnqmTLOPHUEQ79qWXdN83v3nscdMk4q2mt9fgpZfUty6XcjuXM3zbNp3YcPz1OHpU94/P7rZ+fUF1kEgo0x2JFHzyck7hHo/6stXVwUknqenZwICC795exf+VFTZNNUmMnCP7P/ZhcZEC61yfz3Qmmi27AJZzi22rm3uFHyrKjnV5z03UWvY/57r+h/azmSwiNploFMPlwuUYjNmZDDvuuYeuF17gsmefPSZP9Vl33snOe+/ljNtvByATiVA8YQLxgQH2PfooZ95+O8mxMUyPh/cefpjZV12VdxZv/uhHmXfjjZTU1mK4XES7ujSd17XXEh8epmrWLIp9JZgd+9S4LBiAabMK9+jdX4Nvr4bySv0CjQ1rTPUlnymk6Mq5gF/2eY2xBgXZhqEA0zDA45geIDA8oG187HNQM1HBaVFxIW3XZV/AmjgJEQGxiQcHcBeVEg/0Eg/0UT/7XAzDxHR7nDIQD/ThKfHnU2+5vT76P3idCdPOJJtK4KuqV1FdKsrwoR3H5LKeMO1sPMWlJEJDuIt8ZFNx3N4SRo7somHehWCYGFkLA8mL3iSTVmfvReeBrxSjqAS7+whG0wmF/NaRsE5U5VJxGabmwM65kduC3duJ4S9Huo9A9QSM+gbHtb1cY9kNE8PtZupJs3jyG9dxxpX/yVAixcxTT2O0twdzoA98pTSceTZtbW1UVlYyceJE0uk0LifrwNlnn82aNWu48MILOb4cX/7fLsfdwv8bF7e7GL9/EkVF5ZxyyhcpK5tMa+sy4vFhysoauOii+2hqWszrr99NOh0hFhsiEDiC211Mc/MSIpE+MpkE6XQUw+ihv7+f9eu/RDB4lHfffZP+/hCf/ewPsW2LX/zim6RSMU4/vYnm5sV4PD527HiY0tJJmKZHmRyUcbZRRjkHtF3OdhwFyG5n7UddvR9BDc1MoAtln29EAbQb/VHtcPaFnXbLgXNQQJ1zCJ/mtLsGeAZwpy1CXSHNXQ24S9x5VnrxbYsRKZicbf/pdpqXNmO4DEprS4mNxIj0R4j2RZl28TQuWXcJFVMquPShSxFbEFvIZz0ywOPzYLpNKqZU4CpyUdZQxtD7Q5r70rI1h3ZWME3RPOTRDk23VToV5j8KLh/YWV546VXOOv8KTjn38yxceiF7nvomTFjMUMNtfPTfP8+Js07h5DOX8uYrT0NyQMFyUa2C8RzL7WtUYG3F1Tm8uFaZcJdXGdziepWJl83Q+kLBKdxb5ki/LQW7iRFdg4LhxIiuXZ7CenxZsY4tZ7qP3RarUDe3D8adq6eQzivXuQCxQWXIM1HNTR3pU4OziukweQlkEwqITY86kout5mcXPw4VU9Ut/O83aqoud5G2Ezyk4DsxpDmzEUce79x1uQcVw0XOnDTHIj/xxD5Wr95MOm0zMhLD5TJZsKCBqVMraWpSE7N4PMNf/9rCffddxJEjQZYta+XAgVGKilx0dob42tc2MTqaYNIklSZ6veYxMnKXy3Bk4wbTplWRSGS58cbnqa0tpbs7jOGkFfvqgn/nkpPOYV79DB7f/jTxTIo6fxW/2/kcdf5qXIYL0zAwTZNUJoPbNCnxFOF2uSjxeLnqrI9T5PHgMk1m1Z3An955gTp/dV7yfeHMBfRHRlnz6q+pKiljIDKKZVuMxUPE0kniaU01Y4ut/ZY55Mi4D0Pd3cosZw7D4I0q5U7s0D6uu4+8HeHoWgXdefZ5jea3jjyhx7CPZab/kanGVOfxiQ8rsB74loJvLAQ4Ggpxw6ZNxLNZ+qNRbnz+eXxeL4cDAZa1ttIXjVLsdnM4GGRZayudIXWwjabTHBgdZVlrKx2BABknb61hGDx4ySVMKiujw2njwOgotgjzGxp4YOtWFjQ04DZNJvr9+Wu4/rnnsFMpjExGacTh4WMZzJERtXKuqlKUM/74ihWKXltaVCLc2KgIJwcsVqzQY3fcUUjpdOQI3HWXIuAcWl68WNueOlWZbb8fTzKC36+/kzU1CnhvvFGJ1LPPLjCc/f2axWvFCgXWqZQ2k8sY5vXqK8dAZzL6nJsj4NvanBTR5WqWBQVDNMvSuQCPR3G/YVBgpJNpLZxKa4FDXfp5LFuBVJEX5kx3nLydn46cS3iufK6N3OJxK5M9nik1DK3TWK/ncrsKhmY9g3p/NzpGaKZRmBjJOb5VVuprZEQ7qaioMC633abH2toUrfr9Og62rWh161Yd69ZWlfeXlGinAHz60zr7cOuthXvB5yNdVMbRozpZ8fnPF7KJHTpU8FQ76yydIDl6VI9NmqS3xoMPKhhft04vYetWvazxWeKKixU4n3eeY7zuUm+1nNHd2rXa1po1BTJ9cr0osM6xzF63vmY0Q9H/xHwMCsZwthTUCKbpgOkiHePx7HSOuMm5x6czTn1bQfw49luSSSzHcT8+MMCOe+4h0tVFKhTijNtu47Jnn6V4woS8e/icq6/GcLmYv3IlpttNamyM9x5+mHh/PyW1tcxfuRIRoaS2Ft/EicxdtizvLJ6r73Em5sS22eew3fsee4zKE08kOTpKIhBAZpyswHjaLAW7ibi6d397NSTjTpyEp2Ba9tqzcM4FKgNHYNapKv9OJ9WU7PD+wn/mhscVOGdSqjjLG589Cdm0stiJuLqIf+FGqJ0IIoidJZtJUlxeSzaVoGKyptAy3UWYLjdiizOBCr6q+mNNyLIpQv3tjBzeha9qElY6jWGaZJNR6medi+HyMNLxtlPmbUyXm9LqyRSVVuGrmoTLU8ykOedjW1nsbLqglAsFsZ7bCNGI4/79d/3xAczGEyCdwtr0FARG8y7iBuRzVed/jLJZrOf/qim1omGMaTMxm6dCJIT9+ovqpu72QDik7uOAOe8MJBKmbsIEzjh5Lr+7/bsYfj8bNz5JY0MDM2bMYMKECVxwwQW8+OKLABw5coQjR44we/Zsji/Hl3/Fchxc/8sWZYxyKXRELNraVtPe/gyhUDciFl6vP+8QnkqFCId78Pvree656xkdPUB9/Wm43SV4vX7mzj2Xa689nYce2sOFF36Wm29+gK985TSmT5+Fabr44IMqvvjFL1BZ2Uxr63UEg0e55JIHqa6eSo6fzmFNN+rmnULZ6bBTYgBNxRU+5hNoLuuYs28pcD8q8x5CQXUKuA/4FspSL0PdwK9A3ccz6I2WopCy60nA6zIpbyqn660u7KxNOpzGXerm8kcvp/rEagy3kQfbF913EZlYhtH2UVqXtZKJZyibVEbz4mbKm8qJj8R58ZsvEu4MExuKEeoMKfE8EFVX8M4QrctaCXeHQaBySiVlk8t4/qbnCXeFnTES54HAUjB9+gMKNt/5FmSjBAIBrrzqWn77y0fYu+st7lvxJa6862XYv5bb7/4hCxsHObi3jV8/9ghfeKyKTPkZylLHjuofyr7VBTfx4jrYfx/ULgZ3uUrNXcWafmvX1xWMRg5Bclg73lUEldMLYNJwKWNdMkHXUADgZY0aH51bG65j03iNL2dbx24bLq0zfh8UzlXmsNugbHbvFo25zuVwN0z9w50wR1nnV65XoOwu1lRaAzth8kKVkmcTGv+NaHz1md9R1rukFtKhY2XhxdUQPKix1zng3b9VY99dHgTo7Azx1ltdeWn38uVLME2D+no/JSVuXC7NWb1qVQ58t7FoURM+nye/b+3aLdg2efn46tVtZLOC222QzQrTp1eybt0lNDWVE4mkSaWySqiPa/enP93OkiXNGIZQ4immsaKOlRcvw+tWMFzqLWYoGuDLZ13GUHQMSxRglri9NFVNZCQW4vsvPUZ3cIhqXyVNVRNJZtJ8/6XHGI4GOHnSdH65/WmydpaGijqK3F5+uf1pXu/YmWe0M7ZFWVEppd4SvG6vRgCIANljQa9Z+g/u32vAPcE55tMYaTuqTLUVLDiG1ywHs9J5fxvgGndshX7Tj9kGfEvJa1zq7obETsCFJcKatjae2LePcCrFKif2OZxK5fevaWvDEskfW93WRkVxMaFUKh9XvbqtjawIGcvKg20g38baLVsIp1JcNG0ady5dSonHQyiVYiAaxR53DW8ODCDFxaq3nj9fQdMjj2jM7uLFCppFVBZ89tmKPh95RNd+vwLikhIFEel0QYedA8tTp2rbLpci3ZztdzZbyIVVV6fA+7rr4PBhvEUmBgWgW16u+C6Xc3rtWnWNXrBA2cm6On3u7+tT9/CDBzVe++hRBWnZbCFP8pYtqnLPfdzt2xVTfvKTCqJBy3396woSt29X9hxQYDsaVKAL/5yuKWsV3pf7C3JwQeXe/1jelkIM8P9IUuwytY2egUJbOSCYY7XHH8sB5zvvdOj2Mu28GTP0Q/X1KZu9fr06gu/erfHuq1bpzMUtt+hY19UpvTx9unbwjTcWJkTuvlvpYVDWe+VKnckIh0lnTXw+g3PPLagETFNZ5NWrFRwPDsI552izIuokngPRP/2pzt/kMoN1d+tlgd5quUmSSEQvIRrV+YHbb9f6jz2ml/zoozq+S5dqGvJj+kycf/tIrBAvPb7PcxMoKZXzqi15SQFsF3u1v8PRghrBsnXsc3HzHo9jL4/G4YeicMLkPBA3ioswPR4y8bhKtK+6ivjAAMXV1QXgPDBAaWMj8+++m7ITTlC2EzA9HhJDQwxs2UJ8YADT7VaVXiqFbVnY2Sz+piaq58zBN2nS/4e9P4+zo663fvF3DXvePaXTQ9JDRggQAgEhgSSNCoQACSqCOSrOQsKkgkySREEPSSSIgKIiIHr0OBFUhBAIk0iaJhMQhgCZk57nPU+1q+p7//jU3p14zu+59z73+Jzndy/1enXX3jV8q3ZV7dq1vmt91mLO7bcTbZbfNc0wUK7LzCuukMivZcvQDYN3H3qIQFWlPL85Dux7R6TgoYjIuSuqpD4aT41WiuBaugxGBuE3PxIgeMY5cs3mspAcheap0o5SsPCTwkzrngps0aekjUsvl2X+/UeQGBFwnk6OxVgdoTYN107ELmTJxvoo5pJkRntBuSjl4joi066bPrcctWWYgfJrTdMxgmGUphOqaULTdZRdpPH4s8rLKAWZ0T6sXIK+XX/D8IfQDB+abshYyT3ObX9BXME7XhJAvOBsqKwSKXfnAUiNgW4tGEJ5+XKaLlpH5fNBJgX+AMYFF0MwhN7UihatBMWY6/grL6HpOld++zYmfXQh3T09XPC5LzDj/CVQyPOTf7mYh57YwHEfOo11v/oNjzz0UPlYPfDAA9x1113MmjWLT3ziE/z85z+nqamJD4YPhn/G8IEs/J80FAppXLeIrksdtVKKWOwA6XQflZXNtLevoa1tJeFwHX19r9PSMg9dN3jqqat5++3fMnPmUj784dupqJgoTCoACte16enZRkPDLHy+CMVihueeu5n582+munoKTz55Obt3P8GnPvUYra3zcRwL0HHD40hrejlmy0DAcSVSX11AmOf53t86pBZ7MgKswwhI9iO/jx1IdvU1wM3ABAQ4X4sA76XAwwhbnkCytbNAnbe+DhSTBQJ5GzNkohyFZnodEY4SczLHRfdqt5SrsAs2z9/yPBNOmcDMT88k059h8+rNtK1oI9Gd4PdLfs/MpTO54McX0PtaLy3zWth4zUbO+f45FNNF9j+7n55tPZx/3/lousZTVz5VlqAv+fkSNFPDHyhKr28x6Zl9BQQwug473niLz37+K+x5Zzu88U2YcT2Vk+bx0nMbOOucJezbtJJGYw986MfMObONNd/+GucuPA9ib0N9m7Dhu9aIxDw6VQBkrk8it2aukGmDL4tkfPFuwKstDNR5suySTDsgl8M/qCj/w1CS5ZU6DUoZ1eo/WUhDfrzLkVuldTl6W0pJh0Nsr+zPxHky3SkIKA9UiexcOXKWk4eharJst6cdIhOFpY42y/qNc0VKb+dEEh5tgerpcmwyvQKw566S/O5iVkB6dkBk8qE6ycCeu5Jk4FiuuGIDTzyxm8OHv4Fh6JimTkdHF83NFQSDItkOBEz274/xgx90cNddCwmHfei6xsGDcVav3szKlW1MmVJ91Ptp06Qeu1BwGBxMMXFiJbbtUiy6hMM+HMclHs+TyRRZs6ade+9dxOBghsnHVNKfHuIXWx/nC6ctpjoUZVy4GoCu+AC/2Po4X537CVqqGxhMj0q+tS/Avz77EJt2v8qiGWeyauHlWE6RdS/+W3naVfMupejYDGfinDzxWDQk8msgPUp9dBy/2Po4l8/9BOOj1YxmklSForw/eIjj6iczPuSH4j60klzbd4zcEYoHJFardoUw2b5WMFsg+WvIvQEN3wctcMSFoHnf4lIxSOmu4ulh3KxnmOaCsjzJ+bCA99oVwl57dd9pJ8T+WIw17e3cu2gRQ9ksqzdv5t5FixjIZFjb3s6KBQuYVFVFZzLJ6s2bWbFgAWGfj6jfT28qxbqODla2tdFaWclQNstJDzzAx2bM4MElSzgYj7O2vZ1b5s9nQjSKrmm4nsQ8USiQsiyaKio4GI+zevNmVi5YwKxwGO2VV4QGDIXGqNsjJcT33y81uytXyjI1NYKgrr1W5OSNjWKY9cMfClO6Zo0wnyVpcskcTdfxst4EdVVUCEV8pIz8wQfJGJXs26+Vmylh+cFBkYPPnStg7civ+1VXiVJ5cFDA2dCQYMTBQWG5584VfG/bgn9KBlqFguBJ1x3rG3j8cQHma9cKuJ4x3UHLF4Rd1jUBZj5TQFhJHuwzYX/XEVJhJYCrq39Mum0Vj5YTl2XEpYIjNUb5gkQ4DY6OSZZzBWFcdV3WHY6Jcdq0FhgZlnOyY4dQ8bYtbaVSAqzXrZPz19oqbR86JB+wdE6j0TGG2u+XA7JsmZiePfaYBIT/9reiRPjBD6QjpnROv/1tcqvvplDUOXxYo7dX+lFAjt/OndI347oCsO+4Q4jvCRNkvm0LVv/HaoJ4XM7T6tWy/LRpAsZLkVulaPUSLrQsOd9dXbK7lVEHHVU2VCPvna/mRk+2EB2rDzD0seN94nQ5X/9wbr/+47t54qkNHO7q4o2tW5l94izyRYtPf+ELvPvOLkLhEPW14/nZT3/K9OnTQdf48pe/witbXiUUChGNRvnB97/Ph045BU3XKWazFFMpfBUV+CIRBl97jVdvvpkzv/996k45hXR3N6H6eoxQCLdQYOTttwlPmIARCODkciLvXraMaEsLxUyGYjpNsLYWTdfJx+Mo28YMBrGzWcKNjSQ7O/GFQgS9qDYnnyc/PEz15EloJUn2eZeIedmU48CxIRAS6fcxM2GgV8Dw1OPkvP/6PmGgTz9LGGylRAbu9yTem9YLCE8npe0LPw31XomJVZAO7/UPw7Tj4UNtwtSm41BRjePzUUjHGD6wnfFTTycQrSEz0k24uhGnWMCx8wwfeE0k4IEobjGPEYiUa5rlN9wVDsEro1GuSzGfpJhLE65uRDNMUArbyuIULfzhSmwrh2tb+IJRAbuOheEPoaN7DLWScSQqhmWahoqP4G5+Af3MD6MyabSaWq8zvwJ0Y+zxIpOWTgZ/QPKw218UcF49rmx+Vm5r0cflM6QSuB0voS84W7Kxq6pFoh8bRaWT6M2TULqOpulogQAfDB8M/9XD/5ks/ANw/U8aCoUUlpUmleqlo2MdCxbcSlXVJDRNZ8OGZeza9SgzZy7looseJh4/yObNq8tg+7nnbuLcc+/E54ugexJcy0oe1VY4XMezz36TefNupqvrFbq6XmHJkgdJJA6TSHSVAfyCBSuoqpqEE6xCaRoFYDswGwHMUK6g5SBST30HMAc4D2ji6HpqB9gGNCBy7zgCmhuAzQh4vhup0W5BmO11CAA/lrF661uB4zMFrKRFqjfFtvu3ccGPLkA5isxIhnBtGE3T0HSN2MEY7avbWbBiAVWtVcQOxPBH/Lx020tlcHzB/Rfw9LVP07ayDTNsEqmLUMxKT3lmMEP72nbm3TyPiokV+MKSgW0XbHq29lDVWkXN1Bpc20VXGfyRoBwV5UqtshEE5ZCIx5k6YxZP/vkPzJt7Mk/88UE+/pXv8dgdbXz2e1sppPqR4EeTpZ/5AuefdzZf+dIXKblZlsGInZO/UB1ke8ZqtmeuBNcS1tzJChA/4VaoPlHyqf1RYY9LveVl0zGOBsHlr7T3hG3nx2qzzaBXWF/0ape95V3Le695D1beuuheEb1X8x0aLyZmfa9KHbVyhW220hCulxzrxH5hm+eulPzrl74JbXfKZ3/hmqMZ6tfuFlOydLe8z49IlnVJAl76MMql7H5upYQ9f/FaYbZnLCV79q/Zty/OPfe8yo9/fIEnm1Q4jksikaO6OozrKgxD5NfiohxjzZp2VqxYwPTpNWSzNvF4nvHjw2gaDAxkaGqqoFh0KRYdHEdhGDo+nxzz0rRkskB9fQTT1Mv12suXP8XdPzqbH237DZt2v8ri4xew8tyv4iK1wXc89wueeq+dRTPO5NsLL+eev/+WK+d9imggSHdikIe3PM7lZ1xMY8U4MZRKjRwBxuvJWgVcJQ/IuqYRNAMoFN87Aph/57wrsJwiyVyatJUj4g/xl7de5PqzPgnYaPgoA+tiD4TPAEzEKbwIgzdD7fVgTBQDMxxwMzB4E9TeBL7pIjEfuUsk5HpYzpMzKMtrIXD6Qa8CPSQseOpRYbMb7key0E1ybhRb6ThK4dN1lFLkbRsFBE0T1/uN2tLdzUkNDYR9vnKuta5pOEqhIVnXGcvCbxjkvRrt6mAQx3VxAJ+mkbNtDsfjDHj11mnL4pbnn+euhQtRQCKfpzoYpE7XMfbtQ/NqnstoVSlBNDfdJOi2qmrM6Gr1akG9dXUyrwSaS4DsyAJawxAwvXWrUJZ1dQLES7XBp54qiGvtWpErz5hBwg6zbJlWbubHP5Zy35I0vOTkncsJAKupkc0c6fi9YoX4qL3yyhjYbm6WebfcIqR6SXZ84IDUXd96qyxrmvJRRkZklysjUm9ZHo68B7lKmNCo1zGhEOBmGMJc5gqSd13KQD5yyBXGwLffJwAv/58A9pZGcRAvbTdfGKvF9pmQTklnyE9/Ohb4XHreKRTgtdfGDsKpp0rPREmiumOH0Pimp9IpSfYNQ+j7UmfK1q2CgKdMGTvX3/ymnMtp00jnTQpaEMcZc1vP5eS1YcimQJo5//yxsu8JE+TyCIWkHyCdlkvNNAXjly6nL31JrgPblt275Rb47ncF44Oc56Ym6eexbVl//DgHvSzZRljpUv3z9FbpKDnyeAf8cu78vqM7NiZNhB27ePnwXqYuOIMFZ3+Ux3/7e2bX1JOvq+bFLR1c8JGz0awi9//m33jsL3/mpWefA8fhiac3cuHixZi2y4YnnuDaW2/h3e3bMcNhUocP894jj3D8V75C5aRJFLNZ7FwOJ5cjOzBAuKGhPH7vl79k9vXXoxkGZjjM9u99j0MbNtB6/vnM/d73SB46RH54mHBDQxl0R5qbSXd18f4vf8nsG2/E8Plw8nl23nMPM77wBTTDIDJhAn6/ifaHn8PZF0kNtOmTeuqWqdLxbnjXRnxEZNzjPLmIpo+B5FBk7JpTLux9RxzHaxvg0Qdhy4sCwj/2eXET/91PxOzs1Plj3wfDlD/XxgmG6Hn7ORJ9u6meeDwTZp0Lrk021o8vVEExl+Lwjr9QNWEGTbMWgqbh2hZKKexCluED26mbNgdfuIpiLoEvWHlE/XaIkYNviOkZwipruiHzY72YwQp8oUqsTFzamT4HXffh84XFdCwRR29qReVz4hKeiOP+5bcYl1+HFonKcfHuDUoDd9MG9DlnolJJtIYJaP4gKpOCfA6VSaO3TkEVrTHQrhToBiqdxH1pE2rXTrSZs9HPOAt3y8sYiz6OMkxwbOlM8PnFHM3v/4/3mA+GD4b/h8MHNdf/TUOp0yKd7ufMM28gmZS62Gx2pOzg3da2CqXcclzW5s2r8fnCLF78M3K5EZ56ajmx2D7ARdMM/P4ILS3z2bLlPnTd5MwzbyCd7mfq1PNoa1tFsZglmeyhtXUB7e1r2LXrUdrb15DJ9KNQHATeQKTdJWCtIeA6i9RYR4H7gc8gQDiNSLxLUm8DAd5TEY4qAhxCLqRWRBb+E4TxthlzG/eqMsuxX2sBZYvpWMXECs6/93ystMUz1z9DuDaMnbMpZosopfCFfex+Yjfta9rRdI0t92zBylhccP8FfGbDZ2j7dhtmyGTRvYsIjQ8RqY+gGRqG38AMmbSvHYvmMgIGxVyR2IEYT1/zNFUtVVRPraaYK5IZzGCGgyi36IGErIDQYgp2XENV1M9jj/6eW79zBx9asJhnt/dzwvEzSDd+1juauieZVlJjffDfIHNQDMIKQ3IENFPqqEvGZ2/fBuPnw+w7YeBFyPaKZLwkIX93rTw8Vk6CYK1sQ9PGIrQcy6s9Ll14R5zY0sR/rM0GAdLK9ZZXY3XUjuUx3PrYj6HiaJm44RcAXIr2CjcKs+yLyGcszd++To5f253SjhEUwJ0bEsb6tbth/xMeg326TJ84X45XKeLLdaSWu/ReKanVNkNHOIevxC0W6elJct99F+A4qtzn4Pcb1NdH0XUNn88gl7MxDAHe/yj9jsfzVFcH6ejo4sCBGOm0xYEDca688im6upK4riIUMvH7BeSHQj5cV1FZGcAwNAYG0nR3J9E0jRUrFvDOm8PlGKxvfvgyepKDrH3+ETJWnm+d82Xu/+QtXHHGJzF0g29+5HNEAyGyxQJNlfWsWng5TZV1lEpLJlSOZ8U5X6GluoHu+CDr/vZvxPNJAoaPgdQoI9k4uWKBr879BPd/8hZuPefLuK6L47rURcfRWDGe2kg1V877OKDQlC1sMgqMOjAbxHAs+7JcN24G0n+Semo9IvFa/VeA0ytO3yNrgOKY87fTK3Xc9mGw9oEzACoHw7fJPEyRh1cshXE3Sl23GwctCMrmYDzO8g0beH94mJRlsb23l9+/8w6W41Cwba7ZuJHzf/tbrtu0CV3Tjqqj/vWbb9Le2cm+0VG29/ZyKJHgG5s2MZLL4SrFQCbD3pERNnd2YrsurVVVzGtpwdQ0on4/d557LslCges3beKEn/6U6zZtwrBtAdaPPiooqK9PANPgIPzsZ0IVn3SSaKVLkVulLKWI90Cdzwui0fWj63pL6NXnEzY1EhFzs1Jt8PjxgoKnTxft94wZWMk8Sh1d/p1ICOCaP1+Yy+XLBfcpJWD6mmuErWxoODpVStOEsR4aGksUe+IJ+YidnQLcDh+W96VdSiYFe4bDAqwPHRL8fJQKpqR+cVwB1u/uh3RO5rkOHO4TlroqCvUlSS1jEvFSW1ZR5MoB35gBVqlGuLNPph07SYB13pKa7oIl65WWKdXClhjoigoP5CtBmNGo9Crcfbegz1BIUO/ll4/1VpSAtutKkfQVV0iPw7RpYx0jc+bI+l1dYwfu2mvlQDsO/tgAgYDCceR4lsYrVniHTJPLYMECcQsvlX37fFJ1kMtJB0opZisUknkPPSTE+49+JLuoabK7d98tnR8DA7Lb8+fL9kr9CmVOQuIV5PWR9dUlw67S8S5Y8neks3dpWdOAuhrO+uTHaW5tkfX6h2EoRnAozoUXXIDm1dSfMXEShw4dkpOdK/Cxiz6GaYrK4YyPfpie3l5Sg4OgFO898gidzzzDe488glIKMxgkNH487/3ylwTHjWPXQw8RrK0lOzDAyd/4Bmgab/zgB6S7u5l9ww20nn8+Jy5fjvLaKq1TalMDQnV1nHrLLaAUr61dS25khNpZs3jvkUeITpyI5kVgqaVXyLX02/slCmvaCfK7eOA9KORk2hO/EWA9OiSs9UCPXGu+gBfjZ4/9ZtfUwQt/le/DZ66W6K7Fn4V3X4fDe+BzX4O5HxVQXgLvo0MiEY+PApRl3o3Hn0Uxm6Bv10sEK+sw/SHC45qonng8ddPnlplqzfChGyZ2IUN6pAvd9KFpGv5QFZqmkY33E65uZPjAa4RqJozJzjUd5dhkRvsIVkj7mqYxeugNwuOa8AUrMQNhMSpLJtAaJopLt9+PSiXRW6dgXvdtcQvv6ZKvt6vK9wn9I+eKTLx+AqRTIh8vWriv/h2tskqAsW5IXFdsVI6HpkEgiD7vIwKs285B5XPoiy8RZ3LDgEwKZ9NfUaNDqEJe4r0+GD4Y/hcPH4Drf9KgaQamGaKyspmtW3/EhAmnomkGkUgd1dVTWbLk55hmCKUUCxasKINtTdNRyuGVV9bR0jIf0xQpZjrdz0sv3UZLy3wWLbqHdLqfV1+9m8rKZiorW6iunsLAwFtEIg0ALFhwKzNnLmXBghVYVgZXufQAZyD504MI2HURNjqIRGT5EdOyaxEW2gBWI4B4NQKYOxDQjTd/HvL8MxWJ8QIB5gHgXuA9b1zk6LguzaeTGcjQ93ofjuVgBk3mfH0OuqHji3iMfcrCH/Hzqcc+RduKNpyiw8K7FgLw9LUeOJ5czaZvbiLZnaSYEbbatV2yw1nQYMGKBRLdtbINw2/gD/sxAyYt81t4Zd0ruJZL7/Ze8vE8mublXKf2wWvXQWFQmOTZd4IZ5qNnzePvPziR19qf5u47v0tvbx/zzzwd0zTp7+vxNJkuh/bsoFXbIZJvX1TiuIbaxdSsZK357loB0O+tAzMKkz8rtdd2RpzGW5eKhBx1dMTWkQ+0hr9s6DWWR50XQOoUoJD6j/XTTkHYZbcozt0lFrz0V5KPl7alnLGabyMwVnNtZ+W1hjc2hOHuuA2a5sNZdwloN0xPWl+UToKJ84VBn7sSLnpM9u/Fr3nu5YbIwbfcIfulGwKm4wcFYJcGpwiVU+Ds+yHVhV+lOPPMZhzHRdM0kkmL6657hlTKwrblgCmlqKjwl98fGbvl8+nkcjbXXvs0EydWMDSU5ZhjagkEDG6+eR7RqB/TFFZVKUU8nvUclP2Ewz6UgoaGKFOmVJcNzs6Y08rEynpu+ugX8Js+Ht7yOCdOmMZQOsYdzz1MQ3QcTVV1ZSdvV7mEfQE0TcPUdRQKUxezM0PT8Zs+CrbFw1sfZ9PuV3l4y+Pouk7EH2R8pBpd12mpbqAhOo61L/yS7sQgQdNPT0LAeH9qmJCpo7kpkWqjiQv44HVeHX+FxHA5w6BHYeIGaHxYLgKzEcbdBMV+iJwn0m5lQe0qqPy0sNv1d0scV3CWOInrES+ia1DuMr5p0PgQmM0QPAX0GsDFUhqrN2/mid276U+n8RsGba2tzG9p4eqNG+lLp7nz3HPL2dYZyyrXXq/r6GDh1KnMbWpiTXs7dZHIWI31K6+QLRapi0QYymSYVV+PqxRdySRXPvUU++Nx2js7Gc5mmVhRUY7iWtnWhvL5UPfeKyglEBjLoF67VkDJvHmCWh56SFBNCTyvWCE101deKYArl5M2Jk0SivGYY+T6LQGbZFIQa2Pj0aZpa9ZIzbVXAG2Fq7n+eg3HkfLuY44R2XY4LM/va9eOgWe/f+z96tWyqdLurVw5tvnmZsGBzc2icJ4z52gQPmfO2C5VV495e4HM18tg2jlaRmzoAqBPmCas595OmTelyWPsLQHfpgd2CxYc6pGxq2Sdg6V7qXdb+keDrdL2jgTdFZGxZZJpOTjTpsn+pVKwZw98/etCAzvOWK/C2rVSsFzq4PjBD8Y08u3tch6iUVm2s1NY3O5u0dePjIy1Vbo+Jk2Sg2aa+BtqUEqA8G23Cfbu7hYJeCmffN8++Tg//amc18pKOS8XXigKhFK/zerVckgSCamhv+462XSpQ2TPHvloLS3SubJ8uez6vHmyXioll6zUZeljNe1+3z8YkR1xvEuRaP/YsVGqfz9mkpyvfV2y3oTxR58nr6b+vocf5ONnfVROZiQkG1FAVZT77r+f8887j5pJk0DTyqZjJYCcGx6mmM0y+8YbxZTsiivwVVQQbmjgjbvvJjcywowvfAHD78cXjTLn9tsxPPv7spGZV1M9+8YbKWazZPv72bF6NfnR0TKobpw3jxOXL0f3+cj0yPWnaTps/KPIvEcHxZTsdz+RjGvdEFn3zi3y2vQJ65wcHQPEIwMyzyqIAdrGP8CUGQKU//1HArbrGqHnMEybKRfCgfcEtPsDYp5WMjrb+AcAfMEoTbMWohsmQ/u2EqpuxC5k6Xv3JYq5JBNOPAd/qBI7n5GsacC2coRrJjLjI1/G8Ic90NyD6xTxhSpwioUyaLcLWXKJQYq5BL27XiRYOR7bytH37ktY2QSNJ3yEyobpuE4R13VQuobeOhUtEEAl4vK40jxZfisLeZGEN7eiObYw0x7Y1QIhjCWXogWDuNs60CJR3PYXUbt2opIJVGwE5+m/lM3NUAoVGxEDtMpqjHOXQLQSvWUKJGI4G9ZLdJrPX67/Jp8bMx38YPhg+F84fCAL/ycN+XwC287xzDPfoLX1LI4//mIKhSR+fwWapmNZGSKReoAyoNY0nVSqj0ikHtvOlWXgbW0rSSS6+P3vlzBz5lKWLHnwKGn5kiUPopRC1w2UcrHtArpu4jgFfL4Itp0HfwTXFyajaVQggLrUs3IQAc4rEcb5Csbqph8ADiNM80og5P2NHrHOFK8dGzE/uw5htBsRIL8VYbWnetstIsDbSBfI9qUJVgfJx/MEa4KYIRO36OIWXXq29VDZXEm0MYoZMHGKDrqpo+kaG5ZtGKuXfnAJjuWQj+exszab12xmwa0L8EV8BKulTWVLTbdjOTgFh+dueo4zrj+DiokV8iPgKgbfHmT6OQ1oThZe+wb0PAELHvMAbxZ23kRfzZeZMG0OaLDqO9/jvff38KdH/50vffFzTA7u4/a7f8/292N84pJPcegP5+Kb+xPPJCzj1Sq/DXXz5ICl9gmwPnEVRCaLNBsDCqPQ/zS0fFLMzkqZ1CgBqFoJaGtjzPKRNdm6TyYmO4VRLsurtf8o8a6aIm2V4kBKMvAj66+9TYs025tv56RHvuRGrhkyfm5ZWarNwgfHarH9lV4MV0JiuHRTmGzXgheuFgb7osegaYHUZicOwfRPyLaLKfBVwvCbMOEMqb3WdJHJP3s57H8C6ys9vH+wyOrVm7n55nk0NkYZGMhgGBpr1rSzcmUbEyZEsW0XwxAW2zR1XFfh84nRWU9Pimef3c+2bT387GeLvXgtk/r6CJlMEYCKCn85yiiZtEgkClRVBdi5s5+TTmpA1zWCQbMsQfeHNHoSQ9RGKxlOx/EZJj/reKws3b71nC+z9oVf8tW5n2A4E2NW43RMw8RVLhqaKE2VwlUCtF3l0psY4mFPIj4uXEWumKM6VEm+WCBbzPPTV9aX2//2wsv51+ceLr+/88KvoLlJ0CLSgdK/bEyq3fiwgO2RdRKv5TvOk32vOaIWu1nk4HYf6EGRfBcPSXRXaA7lhPuB5WMRXSov0/QKKB6EkTu8OK4pgE7OMdkbi9OTTDK7sRFN04j4fFz11FP89u23WTpzJg8uWVK+FF2l6EwkWNPezsq2NiZXV2MA++NjbQBE/f5y9NZN8+YxqaqK/kyG2156iUd37WLpzJn8+IIL2N7Tw4LWVkxNI2vbbOvpYdGECZgl1tk0hbG8446x+txrr4UbbxR2ufQbmsnI67fekgyk884T0FwKjq6qEgrxwIGxgudAQOb7/YKMgkEBdrouBc6nnw5+P1a6wPuD41i9WmPVKiG3r7tOfLqmThWAVpJ9T5ggzZfe9/ZK5HM4LLFPJ54om73mmjGl+gMPyGYPHBAQt3Kl4NJSiTJIH0HpI+zbByed4KApZ8zHIZURoOY35V5TqtdtbhAAlsrIWNfF7Krbk3AXLHhn31gN9X+2Tgn4yQXgdQAiLPmBbi9CamwZ6eN0UaMjArRK9fJnnYVz8cW4mQxafb2wdIbXgZVKweuvCxrN56Uo+rTTcEIhiXJTCuPwYUGzbW2CVlMpqKjAqarCzWTQw2EMQ0z6XNdFdxxsf4ShXpsnnzF5ZYuPe+6R0721o0hzo013v8mcM30UMkWKOZu6iSa79/lYvVoqEvr7hZG+7+4iVVGbVM7ka9f5+NOfYHSoyEj/WNurVsGU1iLFnINVcHnjbR8fmutj+3Y576YJtVUWumPjGgbKywjXkln0QAA36EOV7vNevKLmKPQDPdDSWJ6vaTo6mhiT+X2QSDN53un86U+Pccopp6Cj4aJQyuX7a+9kw58f54VnnyU8rro8XUPnd7/7Hf+6eg0vbnqGmmhUIrj8fuxsFjMUQrkubrGIbpoYAT+aK3FOdj7P9n/9V3r+9jcWP/EEodpx4LrevILst2FgJ5OEasehdB3HKqJcl/zoKNnubkJ14/FFK2RdQGk6rtdpY2cyBCsrvIvJRSvkhYnev0uyqlNxOOZE+YJk0wKeN/5BTMnqJ8JvvLrr+efBZ6+ibITgSuc72RSEK+WElDqRHYdyp4NrC1h3XRgegGcehcWfwamfiJVLYBcyhMc1YWUTaLrB4J4OEn27qZowg4knnk02NkiwuhGFnF9d07ALiXIkl51PE6ioK0d3HVn2khntIVzdSDY+QD6XoGrC8SjXRVNFCqkRIuMmCqh2HdD9KByUstE1szx2ldQp6LoPV9kYmg+j9L1F4WgajipiaCaGC0rXxWk8GMLt6URvmoTb24lWPwFN13H8Jo6yZXkMcB3c7k70phYcQ8dxCmi2izJ1MEz0dAbDKlKsrcPy+QloGn7A8v783p/lPaMa3i/XBwLyD4b/q8P/mSy8zMT8/9NfU1OT+t99KBQyKp9Pq76+nSqVGlA9PTvU+vVLVU/PDpVK9atsdlT19e0sTzv6/Wsql4ur9euXqttvR61fv1Sl04Nq/fqlqrf3NZXNxsrL9vfvVPl8UiUS3eVt9PW9oRKJbpXLJVQ6Paj6+99U7+9/TiVdV40qpXYqpZZ647j3Gm88fMT8N5VSMaVUSik1qJTaoJTa5i1z5DrvKqV2KKV6vfFSpVTSW3+pUmqrt+6g975HKfWGUupA1lL9O/vV7g27Vd8bfWr90vUqn8irvp3yuntrt9q9YbfKjmbV7g27VS6WU/lUXiV7kqpnR49av3S96n+zXyV7k2r90vUqPZRW65euV7dzu7wfSKvdG3arZG9SJboT5XV6dvSoLfdtUeuXrlfZ0azas3GPysayqm9nnypmk0oVkkqN7lSqe4OMNy9VauQNpd6/T13+hU+pGcdOU9OmNKvPffKjKnbwZaXi76n+v35MLTwRNb05qk44/lj14sY/KmUllcr0KjW8Y6yNQlymWWmZX4grVUyPbWf0DaWslGy7tG4hrlQhrdTI+zK2i0e8T8n7kfeV6m6XsV3wpltjyxXz8jo7MjbNSsv0UruledkRWbeYl3ZK2ynmx5bPJ2TZgZ1KPblUqYE3lMonlRp8U94P7lRq/waZnx2V5ft3yLz+HUrlvc+U6j162SeXyjgzIH9HrZNQ6sBGeZ3ulzYG31Rq/waViiXU0qXrFdyuli5dr959d1DFYrmjpsViOdXTk1Q7dvSopUvXq507+1Q6nVe9vUn1xht9aunS9WrHjh7V25tUw8MZtWHD7qOWf+ONPhWP51Q8nlOJRK48fceOHtXZGVfvvTek4vFcua033uhTqVxGHR7tVbsHDqmX97+uUvmM2j1wSN30xL3laSfd9S/qpifuVX3JYZXIpcvzB5IjRy07mBpVt274sRpMjap4Nqn6k8Oq/cAb6v2Bg+qmJ+5Vu/r2q4HkSPn97oFDR21vz+Bh5dpJpawepaxu+cvtUKp7qVK5N5Wy4/L6PWT8j++zW8am2wmlcm8olX9PqeQGpbJbvXZ2KlUcOKINb7nSvOSGsXlWr1K5naoQf071JZMqmc+rN/r61NL169XOvj7VnUiopevXq7f6+1VvMqmWrl+vdvT0qN5kUsVzORXL5dSG3btV8I471MY9e1Qyn1fxXE692d9fXrY7kVD3bdmilq5fr+K5nOpNJtWOnh61dP169WZ/v9qwe7fa2denUt66S9evV9x+uyokEkq9+aZSS5cq9cYbSu3Zo9TgoIxfe02p++5TamBAqd5epXbskOV27lRqwwalEomxaUe+3rFD3m/YoNTWrWPrJJNKpVJKXXbZ0W0nk0r19Cg1NKSye7tUb6+r3n1XNrl3r+xOLKZUPC67NTAgr0u7OTQk42BQNtXbq1RXl2xizx7Z9NKlY5u87DLZZCwmu9PdPbbrb74p6y5dqtSuXbJcsWArt1hUKpVRatc+pRJppYZjSqWz8lcsKpUv/Mf5xaK8f2m7jAuWjFMZpaz/wTqlacm0LDMck2nFolKW9R/mu1ZRZYaGVDGTUVYyqaxMRlnptCokkyo3OqpGd+9Wm7/5TTX8zjsqMzhYnm8NDKhiPC7LplIqn0ioxMGDKp9IqEIqpYrxuCqkUsrKZMrjUluje/aoojc9n0wqO5tVbtcBpd7aptx0Srm5rHLzORln0kolYsqNDSsnn1Nu536lHlit3K79yspaKpFQKp2wVDHtrZNKKDXQrdxsWv68dlQmpdxsZmxaNq1ULqtUMqbcjLdsabvZtHJjw8oe7lPFQk4VrbyyLW9cLCi7NC4WlF3MH/He8ubnVDGfUcVCdmx5S5afNKlVbdvyirJyKWUXCyqbGFQrvvFldcrsk9Xw0EB5eSuXUp2vP6V+/ciDavr0aerA/r3KLhaUUygoN59Xbi6nnHxe5YaHlDU6oorplLr2qqvUpNZWBajXOzqUk8+rTDymPn7RReqY6dPVSbNmqXPPPlvt2bVLOfm8smKj6ouf/7yadfzx6qTJreq0U05Rz23cqJx8Xjn5nHL6epS9e5dy+rpVcf2vldPX4207q5x8Xl4fcXxVf7dSXQeVSqeUemurUsm4HOP4iIxTCaUy3nHP55TKpmWZbEap2LBSB/co9dCdSsVGpL1cVuYl40q9uUWprgNKpZOy3FtbZblUQqlcRtrLpJSKDXvnMqOK+ZzK5XIqn8+rQiEvr7MZlc/nVS6bVYV8Xl7ncmp4eFj19/erfD6v8rmsymZSquDNyx+x3P9o/I+vS++z2ZRKJntVPp9Q2eyoGh7eq5LJXtXTs0Pt3r1B9fW9qfbs2ajy+YTK5eIqn0+pfD6pcrm42rv3GdXf/5bK59Mqn4urQj6tct44n0uofD6prGxC5nvryPqlNhIqn0+pbDamMpkRlcsl1PDwXpVOD6qMU1Rx11VJ11W7j3iOfVMp9SXvfdx7Th1QSnV7z6+F/+eP/v/pUPC2/89q/4Phf/0AdKv/AU79QBb+Txpc10Ypm2h0Aqbpp6NjHbt2PUpHxzoMw4/jFMt10R0d61DKPeL9nWiazrx5NzNz5lLmz78F0wzx4Q/fTmdnO5s2XU802sgZZ3yTRKIbxylgWanyNtrb11IoJCmxlZs3r8ZfMZGMpuECaxBmeg3S+X8zwlLfAuSAbqRu+iVEHu544yVIDJf/H9Z5DqmpjgOTgBUe01aSk9+N1Glv894nESY86bhsXrOZSF2kXBdtZSza18jrV+9+laa5TWRHslS1VkmJnqN47ubn6Hqliw/f/mGqJlXx3E3PsevRXfRs7SlHd7WtbKNnew+RugiFRAErZdGxrqNcez114VTOvPFMujq6mHj6RDRNo31NO8VUTuSu2W6oPf3o2ufGhTz00IO8v20D+349j988+H2qu++H/mdpmP8dnv3ZUva++Xd2bX+Bj1b8SVjZYkLY6VIbKNh5Eygb5TpeHZJ1REzXWmGA6+aPrZvtOTp3WuOI9z3S812SfkebpBc63SO9xKXlSvnWo7uFTa6aKox48vB/no0N/Ics7VK+dm5Y2lA2bFsjTPW2teAWhAk/5yeQ6oYnL5X5OFJHXYrW2r5O2GdlC6NdNU0Y63Jba4R9131Hr+MW4YlPymvDL587MgGa5uMf6mDlivksXTqTW26ZT01NEMPQuPnmeeVpuq6RTBZYt67jqFrrRKLA2rXt5SgugFyuyJw5TUctv3ZtO9msMNiZTLE8fd26DkxTp6JC+r1Lba1d247m6tSEKnl46+Nc++c7WfP8IzRV1XPrOV8m6AvQEK1l0YwzuXzuJzA1YaZLsu+MlRuTgG99nHQhy1PvtXPX336NrunsGerkhIap/GLrX9m0+1V+tf1J/KaPwXSMz5+2mIH0KEXHprmqnm8vvJyJlXU4rg1uEtwUDN4C2Vdg/O1Sc+2mJHKrFJ+lrCPerwB72JODe4Z3I2sh86xEeY3ePRbvpfmOiOjylivNC805Yp4DI2uw9PF8Y9MmbNctS7rXtLdjuy63f/jDTKmu5qbnnivLwOP5PAp4pbOTukiEj82YQUtlJa5S9KXTR0nGS9FbN555Jh1dXUT9floqK3lwyRJ6kkkuXb+eNe3tjOaFXV+xYAFLZ84Uw6eSHnftWil8vfZaGd95p4RJBwKi0S1JxktaaqXGpmUyY6/XrZN5c+aM5S+vWYMq2UXff7/Qztu2iQGX6wrjvXUr1viJXHedxgknCGM9MiK70+eVF2cyUv5tWTL92GOFma6uVnzsY8Jga5rCMGT3TzpJ5MkPPig12du2iQ9XybOrWBRStrTrq1fL+0cfFcOsfB6uWC4xOmM50/0iAzYN+QNhr/9xPozJjpsbhcU+dpIw3vu7ZCf+s3WOzGa2HTEt6/RKRYr2f5jvOjaFWAzHtnE9aajymEndNAmNH09/RwfvPfIIxXQaO5eT+dGosLrA0K5dOPk8ynXFRXp0lFR/P0OvvYZTKJAfGSHd04MRDHLqTTcRaWjAVQpl2xLjVLTQYkPQPBXNsdGUi+a68joRA9dBU0r+Nj0G02eiGT5MzaYyXCTspjA1B2wb7eBusCy0fA5t7ztoto3mSE24pswc+WwAAQAASURBVOtoCmlH0+Q76pWYaAfe87bpoO17F6VpUDVO1gHGUpHBLmRBuSjXxcom6Hn7OaxsHOVNsws5NMMUtZ0XDeU6lrxWoBxbmFDgJz//JRtfeo1f37eS6uoqrGyC3ndeQCnF5ncGuf1fV7Phr4/ROL4KzQUKOdTIIM6G9RAfwR8Oo48Mobsul5y/iJeff55JpQg75LNe8dWv8v7bb7Nz21Y+duGFXHHllWhKYQSD/HD1Hbzx1z/x+h9/xwP33cvSz34W5Qij6na8dJQM2e14SY5ZqdzAU6NojiPXeHUt1HquftNnyjLDA1J37TjyJSxFatlFL3PN80XxB2F8A1zyVbkflur4AQ7tlqit2JAsHwjClOPFSfzQbtl2iVVGQ9v3LlqxiGEX6ffUm0qB67pYtuN9Fexy9GKxWMTv9xONRnFdF9tx6eruZTQWI5PJyHqWRXd3N5ZliXu4dw25rovjOLiui+u6pNNpXFeSbyzLoquryxO3KWGylUs02oDPF6a29lhaWxdQUzOFpqa5FAopisUsrmszMrKXDRuWEY02YppBlCqCpjMa28/GjddQsJIo79nV1TVct4ht5+nq6sCyUoDmqSfk6tV1UeZJvG2YjJ1nv2YwrGm4msZEJH7WBrqAryPPuQVEvRlA0mxC3nSL/9rBAt4HvuqN/6vb/2D433P4QBb+TxoKhRyuW8C2cyjlks0O0d6+lra2VdTUTKNQSJDJDNLevob582+hunoKiUSnF9G1iurqyVhWmnw+TjBYjWVlKBYzR0V4bdp0HW1tK6msbKFYzJJO93tu4iuIRBrw+yOARjx+gFi6n6qpCwlpGocRYL0SaFWKjKaRBKqBnUCzUowHrtM0ViBy7gNKsUbTWKUU0zSNxBGf9SZEDj5BKSpBpIIK9ukGqzWNlUhUVx8iJb8XGAD6LZvZ74+Q7EpQ2VxJ+5p2Ft23iOxgViK2VrVRM60Gt+iSGcpQtGxqJtcQ2ztK+5p22laIM3gxW5T3q9qonlyNa7u4tku6P02iM8GEUyegXEW6P03Hug7aVrVRNamKzs2dVLVWUT2lWlzJ98XI9MeY8uFGtOwhAbXh5nJ8loqIhFqzEpJHne+X+e/dBbPvEsDnWBDbCaEGVGSq1G/ner24rVVghlB2Fjc6hbzj4NN9+FQRLXsYdq1BzVyBFpkioNvOoOV6oTAspmfpHi9nOnCEDLzJc/nWxyTjxQyYAdD93nI9UDlZpGZHroMm66S7pV27IOvZBfBXUHZLLzmNl0zPkoe8+m1NIrm2rYG5K6BikixjJY+I0VoJFa0iI88OCAifu1Kcwf2VjEnddWl36xo4/RaJ7ApUSp51yXk8VAcvXSfRXFVToGczRFvldWI/VmKAfN18dK+WUNchkbCIx/NUVQUJh01yOZve3hTr1nWwalUbra1VZLPF8rQVKxZQXx9h585+zjyz+ajlV65so74+jGHo2LbLwECGtWvbWbVK4rtA6lD37iu5kLdxzDE1KN2hOzlYjshqrm4ApXCUi6mbOMrB0KTG2nZd+pPDPLz1cW78yOeJ51I8vPVxrjjjYqpDFdz1t19z+dxP0FLdSN4uADCUjpWXaa6qpys+UH7fVFUPyrMt1DQsO0OVz0LDFSfvkXWo2lVgjEfL70QFZ6O5cTAaUXYPmhZAmXVIl5pXK5d9FRWaC3Yn2sg6aPgxyu5CG1kNtatQvmlAAU1ZKALecquh9haUOdWLf8mi5XeCbyJWoY/38yczkM7SEI2Wo7a6k0laqqqYEI3Sm0qxxovTmhiNEjRNDsRi9KXTzG1qwtR1Xu3uZnZjI4OZzFHLhnw+2js7aamqYnpNDbbr4irF/liMdR0drGpro9uTk4dME4WUtfj27kUrOYB3d6Oam9G6u6Wo1bPVVskkmhfppFatgsmT0fJ5VG8v2po1Urc9NIS2ejVq5Uq0iRMhGEQdOCDTVq2iOGUKvnwebft21JlnCpDavh21YAGk02iDg+QmTGVPX5Q1azRWrFB0d2tMmCBYPBqFdFoeRisqFPu9uK5Vq5RIu4sKQ3PRh/px6idy4KDmycsVLS2Qy2nE41JXLSUPiooKwfW9vRrr1klb48drnhRd2rUsDQ2XSjOP1tmH8qK0NE+SrQE4Aso0z3laBf1oiTSqMipy5FQG5cm+NccVkFywypFP0mZA8EWhIO20NKL8PrR0FhXwo/l9AghKANub7wKOVSDT348RDBKoEgMnzTBQjiNyU8vCtW184TDKcRh+801C9fVk+/sJNzQQbW0lefBg2b26orWVoddfJ1hbSyGRoG72bJQHflKdnbz38MPMvOKKspt1uLERfzAgIK1YgO4DMPUEyhGJhbyXdx70crPy8PivURd/ES0QlHusXYRDeyQjWdfEBXmwF55/XDKRQyEvvqwoY59f7vUlrwsQk61N6+GCf8FpbEahUK6NpptlQFWSBWdj/UTGTSi7Uh/pPA1KOhqsHLrpRzf9XHXV1Ty1cSMDA4PU1o6jIlrB888+w5TpxzJ1yhQqKiokUdJv0vHKK6BphMJRGhsbGFczDruQxhes4Ln1f6Tmre2o3e+gf+qL6K1eyZJXN6zsIlOnTefPTzzBKbNPGZNTK/Ew2f7a6yz9l39h3z1r0NvOgcrqcizUS3//O5d8+tMMdnWie2kYaqAPralVQJqmj9mWuA4ql0WLRNGG+uR4Vo0bK5Wyi17HdVLk4M8/Dp++Us6N45aPI3ZR1h0ZgKd+L5Fb4xvlvc8vWdmaLhLzaJWc+8d+Aed/CqpqpJNb887/wfehdbrwJfkshMKoYJi8glgsRjqdprm5GU3T6O7uprGxkVQqRUdHBwsWLKCmpoZYLEYymaSpqQnDMI4C0o7joGkaiUSivEw+n8d/hNO2ZVkUi0Xa29s577zzyGQyVFWFMAwD2y6Qz8fx+yMUCgkCgSosK0skUueBYFDKQfwHtjM8/B4nnPApAF54YQXnnLMGgFSqj2i0ActKEQhU4fdXopRDsZhBKUUgUFV+b5pBidrSdBzHQtMMdN0g74+ApkvcK+VCpaPSRb1fRLLAW4hv0JHlkcfxXyMRtxDA3g5cCnwMiait+C9o+4Phv3f4IIrrv2koFAqMWYaJYZT0thkoVUTT/IDj3dxKAgINpRx03fQysn24ro2uG97YV54u2dmuV2ddqpeV9cdysXWUsr36a4uipqH5JYfQQXrzNCUxNUrTyym1hp0nmxslUDERE4WDhqlcbMBE4WoGCq8OVNNlHUBXDrrXCfDCCys5b8kDFHUD3XVxDRMTDRu52TneUQkUHey8g8/QcBwFQRMbxXDBIRIw8fkN4pbNhIJDMWAy6DcwckVqLQfTp6MXXfAZKNtFNzRiPoO3UMwvOLimzojt0mhI3Vg5wSpokkKh5x1ChkbeZ6D7DYK5IlgOZkBhGB5Lq5nCsGoGrqZjuw5+7yFDnkQNeZDRfeV4K+UWUZpOtpgnZPgxSj3a3jJp2+Jgoo8p46ZwOHaYaTUtBHWpWXY1A5SNjYmOhqG5wnaUALTSwM2LydqRpmMl6kGocMpO3poh8/LDEGw8ejm3AIURCHnmM6XlvWvxf5ijrfBqxPHAsefk6dpST60c76FHH6sBd+0j6raNMbCubIkL03RZTjPkz/AJ0PeOvydd8PZNl9eGH5I9EG30jr/n1q5cUApLBcgXNXRd2Bldc3GU1Fj7fDp2sYhJEUcXc0Fd2eg+P8Wii8+nYxYTWMrE1UMYHvNn2RqGrqFcG1dpBH3g1wvl45BzQ1i2RsAnJshDQxkmNEc8EG14oNrAsRWb/y453NOOqaG7L042bXPMseNQKMkQ1cBVLq4DpqHjKAcdg/17RmmdXI3SXHymAZpCU4aXnqZwXBcr79Lfk8bv91FdHcTn0/GHNQzNwa97zAkulmuiaxo6RRQmhibfaIWOUkUG0hk6Du1iZuN0qoMBxoWD7OyV3OyKgFFeVsfGURpv9O7nxIZp+A2FrUqGbEU0dBRy/3MxQBUxdB8aDkXXT8HOYRphii4YXtSW39CwXRdT1yk6Lobm4jPEI8ByFa6TImi/A6EzKDgKUwNHObgEZbu6PBPbShHQcgT1HDj9WKoGS2/EdXP4DR9FxyJg+gGTgguGpqHZLn6v3lPZNv2WRYPPh27Kta5sG60UKuy6xJTi9YEBFtTX4w8E0IpFyaV1XXy2je73o3txVK6uo9k2L/T28i9//Ss7v/xlGnw+2gcHOaWhgUpN49XBQeY1NWE48l3KG2Es28CnFbGViW5ITT6Ogz7Yj109Hl/Yh+1ouI4imB3Ff/P1YkEdDEI8ztfvv58nXnqJw52dbHtiIyefehpWMMqNK27m6WeepLPzMNuefZHTZ59ILjwO29XZ9MxGVq/+No7rYts2N3zt63x+0QUU6ppxXY1Q0MXQFAVLEz8ynxL/xSOeZEu3krwFI0PgD2qEwxAKKGxXjNr8phctV/JtdOGlzRrj63R6eqC70+WLX5AkgP4BaKgH25Uo69paERJoHvgb2PEa/uoqQuPHY+fzhMaPxykUsJJJnEKB3MAA408+WYA2kOrsJD84SO2sWVipFFYyyfu/+hVzbr+dbbffTs/f/saCe+6h7tRTQdPIj44SrK7GzueJ7d1L3ckng+uS7u7GDIcJ1NRQiMWINDagD/UJK33pVwVEl9hNX0BeG6YYZZVqdkvHbdN6AWSxITHQqqyW+KbFnxFwZvogHBX2tGSoVXKiV0rqg2saoK5BcpaLluQ4hyMoTROX5yPGZTYVuW8Xc0mG9m2lbvpcdMOH4QsIYw04hYy4UJt+NKDn7ecYP/VD+EJV3o8saIYPZRfpf/9lGo8/C9vKUcylpGbXtul//2XGTzsdX7ACQ2ko10FzXYlyKlriQF1ZjUol0FsmAzBlxgz+/LvfMXvWieIOXTbf1PjCl79MdXyEH849EW3mbIwLLuZbK1bw2JMbiMXjrP/33/DRtjbw+bwwDR11ZK5yTa2oAJRCGSaaa6Pt2wXTT5Tz5eU/i9eIF8VlH8FQ2xZkMxCpOAL0a2OMuMYYYHYcAeMK6RQ56HWeBIJjF//B96G6TswQKqpke1ZBplfVohomki46WJZFPp9n69atLFy4EL/fj1KKTCbDww8/zLRp01iyZAmZTIZgMEhPTw8tLS3YnrrCMAx0Xcdx5Hn0SOCtlMJxHHw+31FtfvWrX0XTNKLRIPH4ARKJTlpaxEsmkxkkEKjANEPlx4ViMcvzz9/CvHk3UVMzjZGRvQQCUSKROpRSxGKH6Oj4PosW3UsmM0B7+1ovvnYyxWIGny8iHWOagW1LAoGui7eDbefQdRPD8KNpJrY/hItGQdPKfj/NyPPuAYRYWoEoNJuAerlFcR1jXkP/FQDYAkaABMKM7/T2YwYf1Hb/v2H4IIrrv3FwXYjFUqTTFuATFkgZaFoI19VQqmSh4PP+TMCP6+oo5UcpA/CjlAnIukr5OXy4h3g8g6YFcBwd1zXK7WhaEPChlIltKxzHwHE0wCSg6fiLWcxCkqCVRmWGcDKD+Is5tHQ/brqfQCGFZqWJmkGCVhqjkMaXT2Cn+7FG9+JkhvBZWUgPEixmMQop7NH9GPk4TmaIZ5+9CdMMsWjR3RiOhb+QwixmCBVzGIUkgUKS3v3PolJ9aMDf/CYjlQFyET/xygB/9xsU/CbxigCv+w0MIOQ3uaIiwCG/QSMQDPnorQqSCPuxq4Lkwz4KXhvf8Bss8pt0VQS4PORjSkWAL4b9FCsCvB8N8MXKALv9BnG/yfjKAMsifvx+Axt4IeTDDjrsiu/h03/9Km/HDrMv2cvbscNsPPh33h3eT1dqgLSryLgaSVcxXMjyzmgnGw/8jZTS6M3G2JPsoz+XJFEscMXT13nLQtpxeLZzC7tjhwn5Q7jKpaW6hbiVZU+ih7jjknUVWWWQdx3yyiXn6hRckTzh2mCnYLhD2GwnJyZhTkYcwkuvXQuKMSgmBfA5OflBLwxA7C3oe86LGctD30awYpDeD/sfhO3LxK28GIf+5yA/JDFi+UEvnzsl7ZXiu3S/xGLppgBdIyBA2wh50/2e07kprzVjTMqO8gC6Jsu6tpicmcEx4G0EvDYN2UZpO05BXMQ1A6omybJ2ToznSv2Fug+/4VAZKBD15YmYOUIqTjTzDlWvXE7YHaHSTBHO7aeieIjKYJHoK1cSzrxHVcgmvPsh/LGdREM6lUGbiN8maEp7kaEXiR74DZUBC79RHOtE0H2EfDZVgRxB0hiGRm1thJ7ODIf2pshnXPo6s9gFsC3F3LlN9PamKRYUFcEwQV8A19JJDNt0H07jFDScvA62we53R7n8i0/z/q5Rpk6tZf/eOF+76llwdFxLJxm3KORc9u9OcPkXN7J/TwK/30cmU+Taa5/m8OEErnJJW0UOxZO8NzTE+0OjfPuZhzkwOkRPKsv+0WFu2fgr9o6MMJwrcOvTvyJlFfnoMafzy+1PMJLL8u1Nv+Frj9+Dg0HW9jGasxnNFcg5flY8/Qh7h/s4GBvi1qd/yaHYMEVX45XDB9g1OMC3Nj7EvtE4yYLNnuFRXu3cR87W8OkOFX6DkFGksvh3ItoQVbxPKP88FUaGkJajcuQKInoSv70X/+CXiar9VBop/OHZ+HWo8LmErJeJdk6hUusmamYJ6XkiZpYqM0XQsMXBXIvgz20kar1EpV8nqPqpMDP4SeLPv0RAd0gUihzOZukD9ufzJPx+tGCQEdPk9WSSTz/9NG9kMqQMg2f6+0kHg+iBAMc2NtLtugw4Dq9nMly2cSNJpSiEQqR1nWwwSNo0ea6nh7fSaWY1NbHlq1+ltqqKw47D7kSCHcPD5IJBZjU3M+Q4fP6550DXCe3bRVX7RsJWksrCMNEDbxN5+RkiWo5QXQUVfotgIUnUSVJpjeC//lr4058EWNfUwOAgl37kI7R/73tMmjABn1/Hv3Mb0cFDfHbxQl750KlMGjcOXzoOfj8h8kTzwyz7yqf5t1tv4a2XX2Ljrx7hmuu/TsFwyzgul9fJFgxcdBxXJ180SGUM3nrHYP8heZ1IG+zZb/ClLxu0TDb42td1UmmdXe8bvPR3HVfpZPIGOctgOGawcZPB2+8ZvLNLZ/VqOO00eP5FnUTa4IorDQaHDbIFg4JlMDRikEgZJNMGxXyevldfxV8RJT80RDGbJTR+PMq2Ua6LGQoRqqtj/Mknj4UuuC6RxkZqZsygEI9jhsP4q6qYuWwZumkyc9kyFtxzD+HGRoZefx28dl6/804A6mfPLuvpKyZNIlhbC5qGLxJBd10B1gsvFnCUikNsGP7wgABqkHthbEhcpzetlwzkIx2iK6ohMSKAesbJwmpWVIkrmusx1Y4tQM9xhOlVLkw9HsaNh6F+yKQEfB/eK5u0LVynKCZgroPmmZcp15bOfqXwBSI0zVqIL1iJ4QtSzKfoefs5irkEhUzck5ALMG866TwCkRov8kmcq61MHIUiVN2IY1sUcynMQIiet5+nWMgQqm5kaN9W8ETAJOM4T/9FMpKTCXGJTsbR6iegrAIqLZJgzedH8wfkcygxAFtz553s27+Ptff/xItoOhdVyLN23Tr2vbuLP/z7b/jWqm9jFfIemSHdPW7H30UW3v6iiOPtIiqbERZZ0+GYWfLb6fPLKpmkHOuiBf3dsP5hyvnmuqdAADkHHuOOVRAJ+e8fEPdq9whgPTIIv/2JSMP9niLhN/eJ2/jk4wRYB4KyvVwG/vjzsetBKfx+P5FIhOrqalpbWyXezBui0Shf+9rXWLRoEZqmYds2Tz/9NJFIBF3X8fl8+HzyO2tZFoYnt89kMmVGG6Cvr49YLEZXVxd+v5/rrruOaDRKOBxGKYdEopNIpJ5sdhjXdRgd3UcqNeCRQQ5dXR2k0wM0Nc2hvX0NSjkEAlGKxQzPPHM9oDFu3BTmzbuZQiFFe/vacnmj7GcY1y3S2dlOLHaQUo9dV1cHsdgB/P4oqVQfnZ3tuK6FQsPRpDO9DQHQJVn4kSWRdUAPEksbQQD3UiTJJuAdQwtJxvmfkXIXgV7gNm+8gA+A9f+Xhg+Y63/SkM/nj5DDjNWw6Lpe7gEsSWzmzZtHRYX0k23atKks4/nH9WzbJp/PE4lEcF3Xk+PY9PT0UFlZSVVVFbquY1lyK/D7/TiOg2EYXls2sdgBkskumprmoOsmxWKWQKDak9pkvegv6RUsFFKSh+iP4LoOTz/9Nc499058vggld3MA285TKCTw+yu8G6FDT89WKitbqKmZgmWlSKX6ypL1mpqpKOXiBCpJatpRTo1FJCs76h3HJNKzmALeBs5iTL5zK9CAyM0neuukvb865BZ8M/Bd5AZ6pDTn58ByRKI+jMSPzQH8+SQdXa9wQt0JhMwQIV+Iq566iq/P/TrjguOoDdeie5+7o6uDpoomGisa0dEJmAH2jOxhXcc6bp53M9NqpmHoBgW7QCwfozpYjambjGRHyNpZ+lJ9zGuZh6tcLMei6Bap9FfiKIeCU6A/0c+U2im4yqXSMNCKqTFGFxPsJOQGJeorWA/oAq7NiAcwbWG6X7tWor3Ckzx22GO2R7dB7RxhjXfeBDNugMpjPAZbF7CrmYDHaLuOAHSzEoJ1Xr72Ea7lRw7Ko6wccW7F8H5S4ofAH5b6cKWk5js60QPeHnMt2lSvndI/j86xUpKnrRtHzy/Fj5lhYboLcQjWyH6/9E1YsEbAOLocM3+l7FNvB0SaZF6o1mO+NdlOWYI+eWz7yoW+bTD+RNl+Sf4+Z4W04YvKtEw/ubqziKchkShQWRkgEvFRLDpIiW2Kzs4kc+c2EQzKA1Gx6FIsOjiOwnUVuVyRSMRfdiTPZi2eemof5503jaamCq666inmzGniU586gf7+FNFogLq6CJblMGPG/Zx33jR+/vMlLF++gUcf3cXSpTP55W+W0O3JxksO5d3xAc49di4hX4BsscBQOkbI9FMRjHDBQ1/jI9NO4zvnXYGrFJYj2fN7hg5zbN0khtIxfrX9Sb4y9+O0Vjdguy6aBrFsksv+fSVnTj6Zled+BVcp3unfz7hwJRWBMOPCVWhoOMolZCpM+wBasctzHDflTpDbDmY92INS1108LBFhw9+B9BMw+S0wauS8aF68Dy5geDXlt0HDnd51pUO2A3wTQQuCUS13Hc2UddyMTLc7yWjTiRccUpZFZSAgrMamTaxsa2NKdTWXP/kkj+7axWWzZvGzxYuxPcbvYCzGnZ7MvLWqir50mhcOHOCLJ59M3rbZ2tNDS2UlXckkzZWVRH0+wn4/fsMgYBhYjoOp6xiahu2xRgDJQoEaTSOqlHzNfD4pru7okDyuwUFxHo/FxHl82jSp+TxwQKymm5ulHvzGG0X7XVXF5FmzePyBB5i9YIEAg2gUkkkmf+hDPH7iicz+t3+DoSHUHXcwftMm/vKzn3HWzJm8tWIFF7z+OgffegsrNJ4DBzRWr4abb4aJE6X2OxQSZ/ISqV+6HRiGlJtu2SK71NoqH2H+fLzfHFl+eFhY6Kj3I5DPS0x1ybnc8QzKX3lFZPElV3OASCBLprOTXQ89xMwrriDS0kKmu5tdDz7I8V/5CtHmZhyvttQMh0WyfsTv9Mhbb+GvrqZyknTYDb7zDjWTJmEEgwy/+SbBceN471e/4vivfAVN0wiOl/uYbproAfntzI+O4q+oQDNN/D6zXBfNwfdhXJ0Apx/dJhnHNXUCoEsM9bh6qJsAQ73wlDfdH5DzWWIwvRrTsjLIdeXAZNPQfVBAta6PSc81XaTEXQdg8jE4wRCObaEbJprHsHq6N1RZhi1AGyCXGCJc04BjFUiPdFLZMA3N8JEd7SVS24RrWxTzGYYPbBeWWzdx7Dx2IYc/UoXhC4rCTtOx82nSQ4fIJwZpOL7Nk23rGI6SKKVdO8usc8k1Whk6mvddmHLc8fzl0T8ye/ZsqfO2bX5w7VU8+ta7PLfxKarG1aIpF6Xr4iyuXMikIRDghNPm8JtfPsKHpk1BpVLoLZMopWAo20bzB1Ajg7gdL6EvOButepyULpQu3tKFV7pQnSIkRqWNjX+A85dKbbWui9z/sV/Aokuls2T/LphynKfa8n4sS21a+bFcbLsIb3RA9TiJ5jJ06OuWzpZFn4L978K+XajPXoPyB7AUZLNZLMuipqYGoCz/rqyspL29nQULFhCNRnnmmWfYvXs31113HQC9vb00NDTg8/nQdZ14PI5pmkSj0TJrvWnTJubOnUs6naapqan8XSk9x2qajePk6enZTmPjyRQKaSoqGr15Bun0APl8jExmgJqaqbhukerqKSjlsGHDcubNuxldN8pMdU3NNOLxQyQSnTQ3z8UwgsRiB2hvX82ZZ95AMFiDbWfZvHkNZ555A5nMEK2t88lkholE6nBdGzc0jpSmEfJ+tQ15gsFAmOvVCICe4v1i3ABcgzwjVjMGtku10v+zUvEkRyfvPARU/t9Y/4Phf+/hA1n4f9NgWVbZDOLIHsFCoUBNTY0ncdEYGRlh27ZtzPeeMA4fPsysWbPKwPrIHsQjX3d1dRGNRkmlUrS0tBy1ndI5jcfj5fkyFHCcgmeoZgE6phnEdYsUi1lefnkNCxd+vyxft6wU/f07mTjxNHTdx9tv/5aTTvoc8fjBI26GxzAy8j5bttzDBRf8GKUcenq2U18/C1038PsrcJwC3d1bWL/+Uo4//hIWL34A1y3iBKtJaBr9QD8imVmDgOZpwB4E+M6h/MiMiRhDlG5YP/LWXYMA6YmIMUU/IsWpRDK3VzMmBWpm7MaqAZsRMH438ItCBoWLoxxMzaToFtHQeLX7VRa0LuBg7CBdyS7mNM3B0Ay2924vA2RN07j6qav57du/5bJZl/HA4gdwcXGVi6mZnpReXm/p2cKcpjk4ymEoM0S+mGdqzVSSVpJEIUFVoIpKfyW2sjE1k7Cu0FTRq7kaEjDt1YqJXNoDwsp7mtX0MQb3SNBhp8BOQ6hJ1ikv644BDTvjSa4jwlIbIe+BQIeRLVB7GhieaOpIUK2ARBdUtYxJG+GIuu9JnozeGQPVVlLY6kClB8i9h8ZiFgIVY+06BUj3CtD9z+TwxawA7HSfgNu6k6VtfxWk+yHaIMDZDJUl4/KQqo1J2F++Gc68TUCy7huTybu2MOKZvjEgHZ0A+VHJ9N79KBx/mRi5laTvhp+UFSSZLODz6QQCJrquMTCQJp+3qa+PommwbVsPra1VjB8f5vXX+5gzZwxsu64inba45Zbnuf76M5gxo5Y9e0bo60szd24zgYCB4yh0XSOft+nrS3HvvVu4555FlE6Az2dw4ECM7u4k8+e3ogccRrMJooEI6UKGceEqspaYeY1kEgxn45zYOK0sSzcMefg2dJ2CbfPuwH5m1E0m6POXs7ld1+W9wYPMbJyGqxRFp4jf9KOjkSvmCftFHliwLXb172dG/WQ0NPyGiabrRM0imj0ogDe3DXwtEtOlCpDbytdv+TVPPPkUh7szvLHjZWafPAtUjq9fv4on/vpHmb7tWWafclr5Oi8U8txw07fZ9NzfCAYDnHzSifz7r+7xyhc8dqlUeedmYPBmqL0JtDBpWtgzMkpfOs2cpiZ8hsGU++7jd5/8JPNaWjA1jaJSGJrGoViMH27Zwj0ldsh1iedyZG2bOzZv5tYFC2iIRLhu0yZuOPNMRrJZTqyvJ1Ms0lxRQcoa40QylkVdJIKhaRQcB91jX3TPeCriiGxWy+cFfRYKAqirq2HHDsnb8vvlL58Xxtp1xdlszhz4lNQ4snMnk5cv5/E//IHZJ5wgYMB1IZdj8vTpPG7bzO7qkrajUZ7fupVPX3EFkUKBmOPw51/+knNPOYVE47G0t2vU1cHQkIDcCRMkUSwSkWZfeUXioEvknmGMgWbHEX+oYtFLJPLuF+XSVnsMU5qmTM9m5W/8+DFscviwGK7deiucMC3Dttu/Q+czzzB5yRJO/853sPN53EKBxP79jD/lFNLd3bz/y18y+4Yb8EWjUn9tGLhe3ammj5l1pTo7yQ8PM/7kk9ENAzubpev554nv28cpN9xQXtcpFBh56y1qjj+eQizGe488wuwbbyRYIXW72sY/wHmXCHM95TjJSv7sNTLe/jKcfhZ8/uvCbhetMbm4YQpTmkpIzfboEEw9TjpYrbyw0aWyMsMQljSblhref6zx9oC0Yxq4RQvNMNB0w+ufVChHzBpziSF8oQjFXBpfMIovVIFt5TADEVAO2Vg/ZiCCLxhBN/0o1yEb66Pz9SdpPfUifKEKT04+B1+oimIuSTGXIlzTeISqyDhCdj6HYKBKgO2WzejnLhZmulS7rIFKp9CilUw59lj+/Iffc8rs2aDr/PC+H/G7Xz7Cs89sYty4GvD5UI5NcXSEg48/xrGf+gwqmWD73v1c+Pkvsu/dd6mJhFGmCbFRqKpCM0yUJt8x56k/oTW1oE2bgRatEGBd6uxNjkKkSvYrFZeLs64Rdr8pbHI4Kp4BPnOsntqxhfW2PXVTuUPa9cqepEwE3et5Kv22aRokY9JOKiEdLD6/p1JwwCNMLE0vP++Va+eRZ8BSrFg+nyccDpNMJjFNk1AoRE9PTxlYd3V1UVVVhWma+P3+o2q1Xdelo6ODJUuWEI/HaW9vZ9GiRWSzWaLRKKZZql5G1HUoKTe3c2Updzo9QDBY7ZmXOTz77E185CO3oWk6fn8Uy0rz3nt/prv7VS688Cdomk4sdpBksovm5rnkcjEeeOAkZsz4GEuW/JwNG5aXY2gvuOB+TDOEZaVQyuWGG77Fs89tpvPwYV5+4w1mzJ5NZz7Pxz/9aXzvvktFKMT4+nru/tnP+PH06VwH1CrFou9+l9TvfkcyEOCk8eN5+W9/I83Rz5r/d6XiR4LzVXzAWv+/bfhAFv7fNCilsG37KJlOOBxm3Lhx2LZNOp2mUChQUVHBokWLCAaDVFZWcuKJwoh1dXURi8Xo7OwkHo/jui7FYrHcVktLC5WVlbS2tpYNKY4cNE2jpqaG1tZW7730JKZSfWzYsJxUqo98PkYstp+nn/4amqaxcOH3cV2b7u4tWFYKny9MQ8PJbNp0PYnEYU444VIAfL4IF1xwv8dg21RWtnDBBT9G1304TpGGhpM9MzWwrBTPPPMNKiubWLr0z1xwwf2Ai+MUcFGkgHuAkxHTs3UIE+0C9wPzkeeCUYRdBgHJG7z5YeBfvv51Hp08mdM0jXd37iTnLbdv717OnjeP+ccey6Onn84tu3axAJgOPPvMMyw47TTmnXQSt51xBt9+800e9bZ1IHaAazdeS9pKo2s6hm7Q1tqGjk5dpI6TG07m+k3X05XsYn7LfNJWmoJdQCnFzxb/jIEbB7hr4V1iGqPGvFiVUmSLWZJWkjOaziBtpRlIDzA+PJ6W6pYyEL+z/U4q/ZXk7BzDmWFMSrVwnvRY80G2E7YtE+l3+gAMvSLgEn2sLhnlgU8lNdduQfKig3UiF3/jJq+GrCDzS4x2MQ35kbEsalUUQI8L489kDNGqsYelEtCt9jpyCklpF6/9ErB2PDBRNUXaDtcLi1xIelJxTQBtoMJjFbz2zYCXye09cDmWfM5C0ntg0eTY7LgLGufK6/h+AcTjjvEe0nzeNkrsge6Zr/WJpPzM2yDbD89fCYkDAtjtnGzHSgqwPvSsgG8jIIz36d+STO+z7pJs7heulk6AnvbyUertTbNs2QYOHIhRWxumvj5Kf3+aa699mrq6CL29KaJRP83NVVx77dMcPBgHoKOji+HhLGee2Ux/fxrHUVRUBKivj7B1azcHDsRYvnwDBw/GCIVMolE/q1efTWdnkuXLN3D4cAJQTJ1azezZjRw8GPMAr8X3X/gluaKFrulkrBxZK0ckEGRm4zRShQzD6QRrXniEvsQQsVySK6++mhOOncGCqafQvq2D7z37EN3xAW68/gZmHTeTMyafxDUP3EZ/chif4SOWTXDCsccx79S5nHH6HM44fQ6//f1vObZuEkop3hs8SH9qhJ09uwETVB6cOITng9kIOHLdhdu49JMX0f7yS0ya1Ord3Hygh7j0kktof/lvTJrUAnoY7E4YuBrsQ3xrxR1ousGed1/l7Y4f8IPvrwC9ErSAd6FqUDwgOd/OMDT8GLQwmBNwFfSl09RFIlz79NN0JhJsv/xyZjc2lllln/cQ3Fpdzeqzz6YzkeCmZ5/FbxiMj0SYXF3NPeedR8iUevYndu/mR1u3sqC1lZBpsn90lJRlMZDJcNNzzwFQGw7T3tnJgVgMx3XJe3RsqlAgl81CoYDmuoI0QSjiXE7swU8+WRjsq6+G/fvlQV3XhSZet07o4euuE4R68snygJ7JCE1cKMgDfjgM48aJk3lfH3znO9j9/dxx2238+a67ONzdzQvPPMPnv/Y1hl97DZ8Jp56qqKyEU06RSG9NE6C9fDns3QuzZsnuGl4Ndjwuu7Z/PyxbJnnZpilO5LYtfQKFguyezyfE+5VXCgnf0SHAvKpKPmo+Lx+xp2fM1N3W/MxctozJS5bwoZUrUY6Dsm3evO8+QvX1fPOmm5g5dy7z161j1/79KNelYFlcsnQpJ556KrNPOYXzL7yQve+/j2tZwmA3N3PRJz/JcSecwMwTTuBQOMzs66+nmE6z4447SHd2MvLWWwRrazFCIXSfjxlf+AL50VHygwMCrLe/DC/8Vep3TRO+eL10gnz+67D6F8J6phIiCz7wHsRH4Dc/kve6ISArNix1uamk1FnnvVprx4YD745R+9FKOPS+XCPTT/TumYz1XnDELRyRiFuZOH3vvoRdyBKsHM/Qvm2Y/hBD+7eBUliZOMVcgt53XsQXjOALVaAZZtkB3BeKMulDHyMybiJD+7aS6NvN0L5taEAxlyVcMwFNM9AMg1xiAJR71HIKoKYW48KL0QIlYO2iMinUyDBX3nIrLVOn0t3TwwUf+zjHzJxJV2cXN95yC/GCxTkf+xinzF/AGQvawFUU0fjqr//ASR89lw9d+mm++e3vsP53v6Nac3E2/VW+R1VV0jlxhFu6vnAJWov3O6NpcpyTMTnGFdXSYfG7n0jHhs8nx7SmDp79k3RsVFUdUTetvE6rjLwf6pOOD00TYF2q31YIyHZtMTv7zX0w3C/nMZXg699dzeTZH0KrqGLnSy+CrpFPp7l46VJmzpzJ6aefzuLFi9m7dy9dXV3E43G6urpIpVKsW7eO+vp6fvKTn1BVVUU4HEbXdVpaWtA0rSwTTyQSRCIRCoUCHR0d7Nq1i/b2dqqrq1m8eDEA1dXVnHfeefh8PqqrqzFNybUGec4bHd1PZ+crZZ8gxyngug7RaCOG4Ss/JJx33g+wPTPOkZG99PW9zsyZ/8IFF9zvkT5QWdlEQ8PJPPPMddh2lk996jHa2lahaQZtbSuYOXMpbW2rMAw/rmujaQY+X5hPfWopz23eTPOkSYwgYHYi8K1ly3hr927a33yTxR//OF+//HK+BtwF/PuPfkTjW2/xo3fe4eW33+ZXv/89eOuu5H9eKu5H2O6H+QBY/39x+ABc/xMHpRQjIyNs2LChfMM7EiAHAoGyJKdU+2LbNoVCgdbWVqqrq5k0aRKmaeK6Lv39/RQKhXKvZDabLW+n5OroeqYzpfiEMQZctltZ2cx55/2QaHQCkUg9Pl+Ec85Zi99fgW3nyWaHaWqaAyieeeY6QHH++fd5y4bRNINgsIaenm0UizlP+tNPNjuCMGUhfL4wiUQnmzZdRyrV69XarKW1dUF5f5VS6MUcVUrxY0SGUwRuB2Yjv/0/QiTgrwA1SMyXg4DjUxHA7QB3X3opv2pvZ8KkSQQZq3P55vLlfGXZMl7Zs4czb7mFri99iXZgWyzGsssu48f/9m/c9dZbfO+uu9h/2WUsBWxls6Z9DXOa5jCQHWDZhmXsHdlL0S1iK5uIX3pjz2w+kzXta8pstKPEDMRVLiEzRKW/kgOxAyzbsIxMMYPt2hScAjv7d4ortLJxlcuB2AE6E50s37CcPSN7AMg9mePY6cdSF63jwPsH8Os6WvoAX7/yC0w+ZiZa1VR2bn8Zep4QABiZxN74BOZ9dDHHzjyF0+efw6533oZ8n/xg40KgFka2S231tishewhm3SbMtCpCqIHyE1doAoQbAQXZLrASEKwVkFxMCWMrjjAydiyZ53qMsJUU6bbhOZL7PTGUQqTYZdM0NQa2A94y7tj3Q/oHvI6FUo126b3u80B4JWUDNN0PZ/9Y9uWl68VdPNPnsfA+6XwosfN47uq+yBgI90fHor+2rj56O/5KAdJXHBLA/dwyAeA1x8LCnwvgPjJKLDQe1xVWuRTNtWZNO7quEQgYtLZWsnDhFEZGspxxRjOuq1izZjOPPrqL1as3k8/bzJpVT3d3kksvPYHm5kqWLdtANmszOJihri7CmjVj7bquYvz4MJGIn0su+TKPPno5s2dP4LXX3sBxFH6/waWXfoXjjj2O4xomMyc4hcH0KK5yifhDjAtXkS9aXHbrlUwaN5HH/vxYOQIsGghz+rnz+c1fH6WltYW/vP238ryPXfxxnn3xeSrra3j10Fs8vPVxdE1jXLgKgEd+82+8sm0Ljz33JJ31FsOZOIauUxOqYCA9yrhQJWALm6yyEg2GDpgCmNE466Mfp7n1GDn/+TehuA/6l3PWmQ00Nzd714QLvmnQcD+Z+GF+8ctfs/o7X0AbvBaCs2hsrIfibgHTxf2yzZE1XkTYau961sFNYWiKuc3N/Gz7dm6ZP5/Wqioao1Eq/P6yBNwt3d9zOTRNo7WqirvOOw/HdelPp7Fdl5DPx77RUQbSaR771Ke4a+FC0pbFcC7HyQ0NGJrG2vZ25jQ10ZtK8bWnn+bkhgbqIhEU0JdKoes6KcsiDOj5vCDW5cvHAHQoJBFewSDcdZeA6GBwDHjPmyc0cn8/PPGEAIK+PkG5Q0OSwxWPe989YWs55RSRkT/6KDu/9S16EwnO2rQJfD5OnzmT5poa3hgZwXFcXLfUcTjGPv/gB7Ib0aj8BQKC20vYLpeD3l4BxPfeK9PCnj9jKjXGVDsOTJ0qfmy9vaJ8LxRg+3b5SMWisOQLFsCGDbBqlahowxMmcPptt5Ht62Pbd79LbniY2lmz2PXgg1z88Y/z3BNP0NrSgp3LYWcyJA8fps3nY+uTT7Jz504uuugirr7+enSfD+W6rLztNuaefjrvvP46D95/P19avpyOVavIDQ1Juw89VDYwy/b28vZPfoJumuQHB+nZ/Apq8WdEAv6ZqwWU/fYnAqoG+wRAWwWpja6sBtMvTLMvIJFPmx7zmEpTZMJl1Y6SeKjSfXHqCTIuWsKMTps5Bt5KznKOLfJwwLay9L/7d2GybYvhA9sF6O7fhqZp1E2fi23lqJs+l2y8HzMQYmjfNm+Z7aBcNLSjAHK4ZiKuYzN+6ulUTZhB3fQ5uE6RcO0ElOtQLGRwihbBivE4Vp666XO95eZK1XUyjrPxL6hCYUzOHq1Eq63j5/f/mM633sQ6fIi+999l73vv09LaipvLse+9d3m9/WVe37qFLZtfBn+AsN/H32/5Bm+99AKvb9/OK6+8wtkf/ShaOIp+4SVgmmilyEnXke27jjDmgQBaOELZGK40WAVhji/+knR0VFRRrpc/7xIZm76x9VzHk3v7pRdo3HhZBw90F3JSsz3YK+fN9Iu8vFRrr+tQXculZ59F+1WfZlJzE0S9+ohigSu++lXefvtt/vSnP3H22Wdz1VVXUV9fX3b7zuVy/PWvf+Xcc8/1LhlFd3c38Xiczs5OMpkMTU1NvPrqq2XJdyAQYN68ecyaNYtFixZhGAbJZJINGzaQSCQIBALlCC8ATTNRysHnCzNu3DQmTTrL+6HXyecTZaVlsZjFstJks0Mo5RCJ1OHzhamomOgRONdh2zkcp8jIyB42bryaXG6EM864HsMIMmnSh6mqks7VaHQiF130MFVVrdh2AV03ys+ckyfrTGhuxgEeRNzAtWCQz194IYc0jWXAxDPO4NChQxgIuP7xXXdxy/e/z0S/ny6gsrERi/8cHJfY6K/yfy1Wy4+w3R8A6//vDR+A63/i4Pf7qa6uZv78+eWaFb/fj8/nK9e1lBwaQYCxz+cjEAiU59m2TTQaZdOmTdTX15PNZss3Ok3TsCwL27bLbXR3d5NMJgFIJpNkMhls2wY0LCuF41j4fBGSyV4cxyISqSMYrMZ1HXK5GOHweGw7j2mGWLhwHT5fmHj8MC+8sMLLMnTI52NEIg0kk10oZePzhfD7w4yM7GHDhuW4rn1UhvfUqQtpa1sJiFxodPQAlpVGNwNUAHkkmgvgawg4vgIB1kFEsn0NcAipm056y3/Hm8ZZZzG7uZkSbFoH/HVwkF07dnDp5z5HC/DUJZfQ29XFJ/ft44f79zOutpbZM2fSABzX1sZgZydXv/46pu7j3kX3ctmsy+hOdPPE7ifoS/fRmegsA22AS0+4lJUL5DNVBaoI+8IYusGK51eQttK4uNRH6vnopI8S8UWwXZt4Ps5pE08jZIa4ZuM1DKYHmd86n+bKZh5Y/ACTqycT8Uf47L98lvm3zWdC8wSCZlDk29kuLv3052l/8gEmNddDzUlw8aCAYs1g+bXXs+zyL7Nn12vccuMNfOmKazw5dQ6GtgjTXTNLYsV6npBYLF+V1Cibnk6zmPIeDGxxIweITIJQI6B5JmVBCNWPXeQlwGx4bIOV8gD0EbL0kiQRjmC0tbGHkMR+qfsGAcglaXjBM2RTDlhpAeIl2XVpeiEly2seC+0WZR8/dIOw702e9kH3efFijpex7UCqU0ByRQtUT5M25q4UJnruSq+223NB91cJkAYB3iUQrWz42/Wyf3NXeOuugNwwhiEPFrfeuoClS2eyalVbWRquFFxyyQmceWYz1133DK6r+MlPLmDDhs9w660L2LGjF5/PYP78VoJB8wggvZm5c5sYGsqwYoW0u3KltHvNNRvJZovccssVLFlyJxMnNqPrOgcOxNmypZtbb72CpzY+y8SWJp58dzMN0VoMzSDoC6DrOnc/8Qte/uuzTJgxidaaRhbNOJMrzriYoOHnyxd/luOmTkND45OzPlqe19bWxpCWJhoIc+bkk7h87ifQ0CTrF0WqkAalqItWc3rLCYR8AYJmgEQ+zYmN0xjNJQETzAngmwThNnBGvZKFkj+ADf3XyTnzHyOgOP0EFPtBD3nXWhEogpNgf5fNuHE1rPnuFZy2+FXaPvopXvjbKzByj7den2yz8UGYPgD1PwQ3K/XdTi++/GaChsE9ixZhaBqvdHaStCx2j4yw/KmnOJxIeH1LGuPDYSr8fjLFIjmv47QhEvGcynVObmigJ5VifmsrFX4/vakUt730EgOZDCGfj3sXLWLRtGms6+hgTlMTA5kM123aRG8qRV86jVKKCr+fkK7Lg3okIsj1Bz8QBJrNCnNdKIyB69tug85OQbWHDglF3NQEjz0myHXdOlnvV7+SB/Xq6jENdsnheOVK2LCBlvvuo290lPc+8xmwbfb95S/sHxpixqZNaEoRDkNd3Rh4Noyx3fjXfxUgnc3KvEBAdjkcFkA8MgI/+pEA6qEh+WrV14/lbFvWWL316afLro+MCPGuFNx0k2AU14UPfUiAuOZ1IivHYdeDD9L5zDO898gjNM6bx8zly/nwhz/MMaecIi7JPh+aYXDwt7+lac8e3n3oIXBdTjvpJA4ePIidyaAch8f+9Ce+8MlPYvh8nLV4MdXAs3/5C+898giTlyxh5pVXUkilGH/KKeVt7nrwQcaffDJDb70lNdQlY6xACGbMkg+w8Q9iYlYCZa4LVdVyAEJhOHWBRG2Z5hhQC4UFoAXDwoT+5kcQH5X6XxBDrZLMPxwdq7c+8P5YjrJSDO3bxrjJs1FKYZj+IwCxOIP7w1WEaybgD1cRqqrHF6o6AgzPQdNNXNcZmzbt9HKZkj9UyYQTPoLhCzGwZ4vc/k0/voD3m6LrGL4A/nAVE088B3+4Sr7pm19Aa2qBdFLqr0cGAYWKDeNseExY49patIj8Xikrj7Pxz6jYiMimbRuVSaO5Du7mF8SobPMLaHYRZ9OTKNerQzB0VGzEy9MeBcM8wjHdAX8A5+nHZV8TMfjrr2F0UJQCsSHoOSjSfsPz5ygx1zV13jEOyfK/vV9k/EUL9r4jnSSFvJiY/eY+2faUGVJPncvI79i/LIc7HoYvXOf9fjucNXKA5n1vihO5YYJyCRZyXLhoEd3d3TQ0NLBgwQI6Ozvx+/1UVlby9NNPc9NNN3HjjTcyfvx4MpkMTz31FNFolGQySTgcpr29nalTp9LW1oZpmnR3d+P3+6mtrS2z1Y7jsHnzZnbt2sXmzZvLRI5t2+Wsa00zvSjYPgqFJK7XoR8MVtPdvQXXLWKaQfz+KKFQLbpueqWHJobhw++P0NKygEIhgWUl6ehYx+HDL1NdPZlx46YTjTZK7bzHfBuGPB93dXWQyciTowD8KJMmnYXynhE/h3j57ETisJqQ0r9H77uPJR//ON2AlUwyODDA1r/+lavmzuW2uXP58x//SMF7dPlHcGwhMu9HvXFpuQ+GD4Z/HD4A1/+kQdM04vE4vb29jBs3jpaWlnJNdKneGgRQP/PMMxSLxaNAdjqdxjRNdF3HdV3OOOOMsnT8vPPOIxqNEolE8PsljqKrqwvLsmhtbaW2thZN06isrMTv97Np0yaPFRj02GeN2tpp6LqPdLofyxKAEovtx7bz+HwhNM2gt3cHiUQX6XQfc+Z8nZJONxptpLp6Ek1Nc9A0k0ikHk0zyeVGvRqYAIsX/5yTT/6Sl8PdTE3NNAAMw8+4cVMJBmuw0LA1jV7gDu+4TQMGEeMyP9CIMNiPIr2MJ3nT+7xlgt60u7z1TUTC8/uuLiZOmMAW0+QgcFDTaGpt5czOTu4/5hiGR0a4pKMDA9j+xBOkUineP3SIrFIMZYe4euPVtFS28NaVbzG/dT7dSQHa6zrWkSwkCZpBptRMQUPDVsJKF+wCdy68k6AZJFlIctNzN/Gx4z5GtphlODdMxB8hWZCOj/vOv4+mqiYOxQ5x9car6Ux0MpobpSvexTkfOYdffP4XmLon/9RMVF0bZ334ozRPOhZ0T6CkHHjjRgZ7DrLjtTf43Gc/DZrOJRcvoau7h30HuuWcjT9DwLIZgVPvhQWPQ908ASQKAS+uLeA5c1jcyL2HVMnNTkGuX2q18yMC2F2HMnp2Sz98ShheMwiluKx/HPwV8hDmeBFb6W7IDXsO4s4YW11ilZ3CEcxzQcC3W4RUl4z9XhVUCXQ7Rek4iDTChDMh0y+53yX3cdTYPpRA8tbVY3Lxyilw7gMyLh1jp+Dtk/gUjIHoVbLMR+6R9iITvHUnQ+McHMflrbcGmDSpip/+9EKmTavBdRVNTRXousbISJaurgTXXjuHgwdjbN3aw9y5TUybVsNJJzXQ359m+fINpNMW3/rW/DJAD4V8zJvXwsSJFfz4xxfQ1ZXg4MEYc+Y0cdNNz3HRRQt55JHPYRg6+XyRtWvbufTS9Zx11llMmSb+DBed0EbI5ydtZRnJxLEdh7d+/SKXfONLNI9rxKf7uPWcLxM0/eU+knERMcyprxjHtxdezsTKOhRw0oRjMDWDZWd8kubqBnoTw7zVuwcNjZuuuZ7ZJ89m2eXLmFk1mZ7EII5ymT1xBoamc2LjNDknbgrsfql/Lv0slWTbdifU3yHXkx6F+nth4p/B1wT9y2V9Zwj6rwSVwc53c/hwJyd8aDk7tvyFH327gn/57BUMqBth4mMQnC3sdf81cp3rlYghGqBV4Y+cgqG5GLpOQyTCWZMmEfb5WNfRwaO7drF682aKrovj/QEEDIOUZWG7LgqwvE7T6mCQttZWqY903XIb6zo6cJUiaJo0VVRw76JFXDZrFp++/HIevfxyTp04kYrRUZRSVAUCfO2WW5j8oQ+hHX88O487ThCsbTNy223MfvRRZi9YwOzzzuPYj3wE89FHGf3Od8aY7RtuEO30/Pks/8Y3aH7pJbo1jUWvvcb02bOhv5/ll11G8+zZdPf1segTn2D6RRdBSwsN3/0uD65axdJbb+XkBQu4+Ic/5P6776Z1zRo0XSOfFxBseGlE2ayA53XrpMy7v1/mgfcVicjtYs8euOoqIeCDQZkO5VQzVq0SMO3zSR13Kb3I55NlKyvhnntknWuuEay6fz9l8Y1mGMxctozW889n5vLlhBsaMAMBUl1d4CmnCokERijEzCuuKC+nGQY/ffhhFi9cCMBoPE7RthlfWcnQG28AcOwpp6COO44TvvpVnGKRaFMTdSedBJpW3uaJy5ej+3yc+q1vyQ4VcmJ+VcjB6R8RML34s3DVSgFle98ZY52H+8VNPBUXMG0VZH4uI2z3b+8fy0peugxq64XpNn18/YYbmXzMMWiRKDv/9jzse4d8Lscnbr2dY086mZPnnsGi8y8kE2ghEBHvlzt/cA+nzG1j8mkfY+OmF8mM9oJSaLqBnc9iWzly8QF8oUqaZi3EH67GyiYYeO9lfMFoeZrrOYL37noB28qhHJvG49s8R2/JO9cNE92QOnE7nwHdwLXF4VlfcA7atBm4HS8JMO54SWqefX6MCy6G6nForovbdQhVyKOZPvQzz0KlkmhKfjfcl59HFS30tnPENXzBOWKMNmceJGJSU23buO0vlsE3dhG38yDER1HZDJrPh37uhXJhb1ovHSDxUZGFj28Uqb1Snjt78Wi2OZ+Ta3DjH8em+QPSuRIISudHaflN6+GEU8S0LlQhwNwwIRKVe1qpQ+3CT0tNfjgiLuO64bmFu7S2thIMBvn5z3/ORRddhK7rtLe38+ijjzI8PMzFF1+MruuEQiHmzZvH1q1baWpqIpvN0tbWRigUorJSVGNNTU2A+AWV1IU9PT0sWLCAmTNnMn/+fFHSpFJs2rSJVCrF+PE1gEsq1cfo6H4Mw4/fHyWd7ufpp6+hvn4WiUQnTz11JfH4QQBisf1s2LCMeHw/Srm4rsNJJ11GIFBFIFDFeef9kGuueR/Q6OnZRilq1nEsb90rGB3dW25bKdur344Qix0gn+phHFJmuA2YhTxTfgO4f80aevbtY+HatbQAyrbFFDiXY/rWrXzvj3/kO9dfz6433/xPpd//v6TiHwwfDP84fACu/0mD67okk0kmTpyIZVmMjIzQ1dVVltO4rktXVxeZTIa5c+eSyWTYuHEjsVgMXde9mANFNpslkUhQW1tblnqXsgk7OzuJxWJs2rSpbE7hum5Zip5IJFBK0dTUhFKK2tqpOE4Rxykgedo+IpF6/P5KNE2ntXU+UFJCKVpbF+DzRWhqmkNt7TEkEp1s2LCckZG96LoPwwhgWSk2brwGpRyi0QY2bbqeQiEJKC644H5qaqYhmdyKePwg3d1biMcP8fTT12DYBQyliAJ3IjeudqSH8ROItPsw8DPE2OxnQBzYgcQafA65gVZ48zTEsCyI3BRdpGa7GZGUBxBmvLqqih8/9hixW2/lkg99iBeefZZpJ5xApWli4rB682oe3fUoXcku8naeVzpfYW7TXN668i2+Nf9b1ARrMDQDHZ28nWc4M4zjOtjKRkND13QqA5XccMYNmJpJX6qPg7GDVPgrqApW0dHVweH4YRzXoSvZxaO7HmVN+xqqglUEfQLMSyAcoKgUZA7Ba9/wXMGB2JvCRp9yN139o0xobMQ0paZY001amyfS2Tcqzt5uQdhn5T151i9AHMDNI2KyPIY2OhlqS3XVHrtsRoUh93lj3e/N8+S4ZQfUIxxqy8ZqlHF3qecZwy+gWjkQbRbn8IrmIwDwEYPfk307Re81AsRLgLwkT1eeQYwZhsjEsZiuQLXIvUty8lI8imYcwVKvopxT3r/F2w+v/vzvN8m2le0Z1BTkeJz7c6kBx3vYyfTBi18TqTjAi9diGDpnntnMoUMxHEdhWS5DQxlSKQvbdqmvj9DaWs20aeNobq5izpwmtm/vJZ22qKyU2uqzzmpl1aoXmTKlhgceWMy4cSGWL99AV1cSv9/ga197miVLfs/q1e0sXDiVW26ZTzjsIxSSjplw2Me3v72At9++kro6L4LFMKmN1FAbqSLoC9CTGGTNnWv56Fln8d0vXI/PMHFxeXfgAFXBKI5yKdgWWUvcDEYzSZRS9HkguiRVLXjs2WBmhGPrJvG7Jx+jY9sWtu3Yxvi68XzjyqupjVRzx3MPczjWR94uZUsrkYUbdTI26+T6LMm2i93gjAijbR+W4xtuk2VD8+U8JX7hSbzX0HrM+ei6zmWf+yyMrOOUSc8xpVnj7V2HIbwA3CQUe6B+tdRZF/fCwFVQPChRXQMrUUrHVYqoV25jaBor29pYOnMmt8yfT962yds2W7q7SXlS74jfz2t9ffh0Hb+XFVt0XWxXgHpA18ttrGprI2NZfO3pp0lbFmGfj4BhsGLZMpbceScTm0V1YOo6jlJc8vGP0/7gg0yqrxf2raICfD5qv/tddi5dys6tW9n5/e+z7IoruGDCBMZ95ztynLJZqaFubgbT5Off/Cbd+/djDwww8Otfs++116Czk5+vXk330qXYiQQDBw6w7513xM574UI+8847vL15M2+++ipvb97MZ1taYOpUXHQGB+H114U4LxaljDiTEffw884TWbjjCJi++mqplTYMAd+PPgr33SfrlJjv664Tg7I77pDlSqpcyxIWvK5OpOB79sD118ult3r1WJsa4OTzJA8dItvfz2mrVhFubGT7976HlUyS7euTbGvHYd8f/0imuxsjFOKUG24gUF3Nt6+7jr27d3PDpz+N7vOheakF4QkTqJkxg9fXrsXw+5l04YUMvf46sfffJ93VxbbbbyfT3U2oro45t91GoLYWK53GF/JM5eKj8MRvPJbZEda5zgNqpbgtf1AAWwl8Pf3HMT+JY2YJSEuMwrGzhL2OVooTdioh27CLXLrwbNqvuYxJ0SC0PwNNkyEQZNlXv8runW/w5tYtfGzxBVx51bXCBmoa55x9Nk8+8Vfa2hZQyMTxhSLy7DHag2PnvAitIL1vP4eVk9+l4QPbCVbVY2WT9HjTJffaR3hcE3Y+jRmQjnzlFMmM9pV/G5QXFebYBQHPnpkYVdVo0YoxYNx2LkrXoWhJRFd8FJXLotVP8ELNNRg3Hq1xorDQ6RRaUwvui5vQqmsxllwKFZVolVVo1ePKgFrlc+IGPnM2ets5ImJuaoWKSsnXzqTL8nC1+DNw+89g8rFSC+94ncqlHiPdgAv/RcDv4s94RoP5MUC8+DNjhgOphADmI+fVjJfOkVBI5OEH35dr5Nf3SdRXNi3Kh89/3asBF6MBNf1EOTbAnXfeyd69e/nmN78JwMknn8y7777L73//ewzDwHVd9uzZQ01NDeeffz6maTJp0iSqqqrKZYmlZ03XdcvMNIgpbjKZZPHixUSj0bLB2e7du0mn04RCoiKorp4krLH3u19VNYkLL/wpfn8E0wzS0jKfV15Zh6ZRjtravHk1huGnr+814vFDBAKV+P0V5HIjbNiwjNHRvUyceBqJxGE2bFgG6EcpIn2+IK2tbei6n2Ixg2H4aG9fg+GTshobeU6sRp7/jv/BD9j05z//H+z9eZRU5b33DX/2UNU19Ux3Q0+MoggITozdGGMQGUxiYoiJJieJCZqAidGoEThHT45AxGg00ag4xJyTSRxilEEkJkSaRhAFNKggzdDzXPNce1/vH79d1XLu97nvZ71rZT3v/dzutXrteaiq3Xtf3+s7/Hhx+3Y+4/MxBkhXVOAPBOi47jo2A78ZN44Z8+ez9623/gfpd8b5O4tPfNSfDP/r4RNw/U8aNE0r9ASm02lisRiBQKAQVPZxiU5ZWRktLS0cOXKESCRCKBRi27ZtDA8PF2TkoVCIrVu3EolIw1bXdfx+Py0tLdTV1RGLxQqAOhaLFQIp0uk0EyZMQNNMQqHTGIarkBaeyyXRdZNcLkV7ewuZjARv5HIjEh+frxLDkAZwa+t9HDmymVisx3ngfafgqU6nw+zevY66ulnEYr1s3XojmUzkY72UJwiHO/D7R1NcXMuyZZswdZNTyE1YhPQyVgMdiKznZWc+DbyJyMRrkJ7IY8AKRBa+BymxAPKwqwLGNjTQ39PDG7kcOuBWSmRTjY20Ap+59FK2/v3vvPP22/z0/vsZ7O7mnHPPJWd4WNO8huVTlzO7fjbt4Xaq/FXcvONmAu4AE8onUFxUjKUsIhlhpyt9lbh0F293v01bsI2W9hbagm2MLx+P1+WlJ9bD9OrpnAie4OZXb2ZGzQzGFI9B13SaGpsYvG2QJ698kiKjiNGB0QTcAQLuAArFhpYN2FYK7YONcPYPBSjbaSieDL46YZPf/ynit/tYiJimC9DMg187Jw2B/DKcZXZWAswix4SxxhagbaVG/NrKggM3iV9b4Xic848OB1DbeW80FAAnOJ5qxyttZUbAdukEYeCttKSG59IjfkJNH6mJnZeUF5U4LHLmTECep1V1Uz6bhvMdINduOq325KDDzrsppIOXjIeFm4RpzncGjJ4NoePwt5tl/lP3Czi3rRHJrK8aIp3Q+Xfn8+nS8VA7H97+uZxn9lpchoVSUFdXiscj5XOqqvwoBT/60WvEYll0XUrteb2SJj5nTj0ej0kkkiYcTnPVVVNYv/4ydB36+uLccstr/O5377Fu3W4A1q5tZtu2r/LYY0upry/B73cRjaY5fjzI0FCS06dDjB1bTlnZSMiOhkaRKZLGdC6DNZBg2ytbuOX2H1HmLcZwGm3n151NfzTIP3qO4zbd+Jwarn/+xy56okO4XWYBLOec70cpxfl1Z+MyTKZMmiwqHUPna9/+Jm+2vonf7eHHl32TQJGXVCYfPaiD5pJOHs2F1AUwoHI1FC+XMlxD60S6HX7GuZ+jsmvxF2W/yn+Did1Q/RCjRlVw2aUXs2P7n6ByLSeDSzjZqZgy5WywY2BUCyjXAnKvZgccuXgX6H4SVb/ko2CQFVu2EMlkiDl/E8rK+NWSJezt6OC2nTsJpVJMr64uSL17olEurq0lmsnQE4tJEFkuh6nrpLJZToZCeE2Tx5ctY3xZGe/197Pu059GASu3bePY0BBXLVrEf/7Lv2DqOjnLImfbZCyLS+fPp37SJGm8HzkCJ0/K/9zYsfDYY7L8ggt4autWrr/nHti7V5DsunWCYtevF/11Q8OIBHziRNlv9mz46U9Fx62UAIhcTtDrxRcLS+7xSKrYypUwdSqcOIGyFd3dItPOk2wul1zeqFHCOFdVjSSE3367HEbT4Mc/Fp/0gw9CJCJhZZYloPrBBwVw53ICqqNROUZ3t/zk0egIM97TI8ft6ZHLVJZNNhbj6G9+Q6yjg3QwiJ3N0rFzJx888wyV06fLv4FlMf6znyXR24u7pIRcKsVtX/oSr+7Zw2/uuYfyujoy0ShlgQCGrtN26BCG18v0lSs5cewYYydMYPS8eVSdf34BUPtra9FdLnKpFMPvv49uGFLnWtkjdat3PCdfQHBAPrCyBWxFQ/LhTn4o4WYXL5Bx3jedr1098VyY9Snx6gYHpbSXLwDH/wHBARZ86lPUX/NtAerNi0E38Ty3iSUXzkCLhSGdYva8eZw6fZpEsBelFLMuvogJE0VZVuQvI5uMo2ngLa+lyF+Bv7KeIn8FtdMuI5eKoWybqomzKK09R8B0eS3ZZLyQNl5Wew6mJ0DXeztJx4KgwFMyikSwl2w6Rvc/XiebjmOYRShNQ9d1+WzxGCoeg5IyjCVfgLJyNFuJ73rsJFQ0KpJwjxeCQyIVDw6B24M2dhJUjEKfcRH64s85su/nIRZBqxgFhone9Gn0r1wvx3C50edeIgqCWARr51bQDSm/5fNjd56W/6/KGvl+T34IdeNFXZDLCcOs6/L8qKiGa26UhHZNl06Q6loBxKNqRurRlVbIdFmFrKsaM/K+BAgNikzcXQSXXy3p5KmUY50Kgq0kzO4/H0Ib6kNT8POf/5znnnuOF198sUCiHDp0iN7eXmbNmkVjYyMvvfQSL7zwAnfddVeBoAH+hyo0Xq+j3oFCDewpU6YUSrwahkEikaCpqYkvfelLlJSUoJRFJhPDsjJkMlGy2YQj+dYxDDfZbIJg8ARTpnzRSQJ30dy8hqlTl9PUtBqlFLW1FxMOt5NOR8jlkuzeva4AoDVNxzS9NDTMp7v7rcK+zc1r0XUX2WycVCqEYXgwDDdNTXficsJ0Y05LJwr86oEHeO4Pf2Dzzp0Ul5WRQyTj1cDnv/IVml59lWuBlcPDHNm/nynnncftCFGTRdqjQ8CNwEdIe/V/Bawzzn5x/n+rk/3J8L/38Am4/icOpmkWQiLq6urYs2dPARAfOXKEPXv2UFdXh67rBelNXV1dwePS2tpaqGv98WX5ULN4PE5TUxMTJ048I+Gxrq6OqVOn0tTUhMfjobi4GKXE9yLemF5s2yKVChEMnqCrax9+f5WkeTqJ4rt23QVQ6DUMhU6ycOF9TJ26nLq6WbS23kdj4wKKi+uYOfN6AoExLF36OFOnXoPbHWDevNsxDDfhcAdHj77sAO/ZVFZOwjSlkZ7VTTyaRjmwD3nQ9QOzkd7G5xFv9T6kHJcXeahFEF/1ZqQE1yhnrBD/9h7gnOpqxl9wAQd++1tWApteeIG6+nrOmjSJ2cCRnh5uQx686//jP5j96U+jT5pE2nQzoXwSjy19DK/hZX7jfMo95ay/bD0e00NvrJdIOkJrRyvd0W5WzVpFe7idldtXUuWvoiPSQZWviq5IV+GdObt+NrFsbCQoLd7HzTtuxlY2p8On+d6273Fs6BhKKWKZGJF0hJ5YDwBfP+/r4jGaeZ8AyAMrBXgaXgEipo+GT99LT28fOc0LRhFKabR3dNLYUC8XYHiFjc3GBJg7jIWEdekiGU8NgGe0+LOzEQTwKJGBA1z0K/A1yH6R47IsD34VI8DYdl4jDkktJa0csG84IqpCGJouoNnKShp42gFMVkYY4DzgVYj/WtNH/N2l4ymUHgufPJOR1hzKK+/tRoGnwmGnc5AYkO8iL0HvapGk71xStj3wM5h/j0ynI/D6Soh3yXxqWM5ZNlZY/N59EogWOg7nfAU+/bD8TqUTcWtpXKaG12s6uFyjtbWD/v44q1bNQilFJJKmvz9BLJYhGExiWTZut05fX4y77tpFT48kieu6RmlpEXfcMY8tW77CI48swTA0GhtLmT+/kVQqRySSxu028Plc/OxnrXg8JvX1IvlzuQxHXie1pcOpGOlchqP9p9i3900Ge/q5cPr5zJwynf379vP9763i8ccep6q4nGljJjEUDxFLJ1EoFp0zj6f2vUS5t4Rf73+ZHUf3EsskSGbTKBRdoQH6hgeIhCIEkxE0NP66dQczZs4gmc3ws7/9J16Xh4pAOYXeEZWCRItIwdFAJUHzw+jHueF7t1E/axedfTqLvnaQSefMA6uXG777Q+rHX0xnZxeLllzFpLMvlONpJo89sIL7fv4M0y++hs/f2M7jjz5EXV0D9N/nAHkNNLfcQ775IjP3zAQ7TtZWrG9pYfORI5iaJrECmoalFEWGwddnzOCRJUukVrXbjd/tZn5DAz9/801chkF3NMq9LS34XC78LhcaUGSaFJkmoVSK2197DYA59fVUer14TJOmhgbubW2lJxbDpWnYQDCVIpHL4TFNlGmiEgkYHobJkwW9gjS+f/976O+ndedOgu3tLJsxA8aNE3b7zjth+XLRWWuaoNW+PkGkr70miNXrHVnf1iYAOpUSQ/TYsaLBTqeho0NC0SIR6OjAwKa5WWTahjHifx49WjC97ghafD5ZZprwb/8m/QKTJ8OCBfJvGghIqvjKlRJe/vOfy2XceKOc0rblEq+99vtMmzaOKVM0Vq48xDXXyPY+3/e58spx1NZqHP7He7gCAWbecgujLriAV55/nqbPfIb/SCa5+fXXee+DD0DTxGv98sv4Ro/GLCri8WefpTUU4nf33ceE+fNJBYOYXi/pYJAvfPaz/H7rVpRt8/ctW+gLhVgwbx6xjg7QNOxcjtTQkOSkpCQ7ovyssziwbh3pRFL+75Z+jK08/ZFIwQ0DImEBcJOmyvz4cwR0ffZrci8P9onU2Lah7QORjIOEalVUyzbJuKSIF5eJF7usUljt8lHS23HFcmG8i0uho41f/vJhllz+aTwlo0TKnY6jchlAypD5K2ql3rWyiA93kUmEyKUToOn4ymtF4q1scuk4GhrlDVPxV9ai6aaTu63QdZNIXxuDJ97CstJouo6vbDTZZIxIXxsDx/dhFvnAysm5NB2KPGiBEgHO216E4BB2hzzb9ekz0eobUbEoZNKoaERk3S1/FY3VtBkQGh4B3C7XiOzbtrG72tHKR6E3jkcl4uB2o1WMQvMXQ6AE44rPSgm2eEzK3TWMk9dJOgmxiHy/jl+98K5ROKy0Lp0ZpgnJxAjDrWn5l50jI3fsV+GgeOWTccc3/5DUNW+YCCePig3gtefl9yurELa6uFTOVVktJdzcRdz/4IM8++yz7Ny5k+rqatLpNB0dHSxZsoT29nYeeughVq5cyaxZs1izZg0/+clPMBxFTR5k5wNwM5lMgcH++PJ8Mng6nS7YF4uLi2lsbKS1tdWxG/bQ0/MOpunF46nAzn8/gNsdoLp6GonEAFu2rCAYPEFp6ViWLdtEWdk4YrF+h4iaTTodBjgDfGezCcLh08yc+U0aG5soLR3HlVc+id9fQyYTQym7YG8EnbVrf8GUsRPo6ezkK4sWMWPSJMKdnay59Vb6QiG+cOmlzJ85k0/Pno1CiJzYhg3sePVV3pk2jRsXLODmO+5g0qxZOHGsJJFyrT1IO/T/jtc6g4DxbkRtOcQnAPv/uCHvrfjf6a+urk79//uQSqVUJBJR0WhUpVIplUqlVG9vrzp69Kjq6elRzz33nOrt7VXpdFp99NFHKh6Pq1gspgYHBwvru7u7VSQSKez78WXJZFIlk0mVSCRUNBo945ipVKqwbt++feqFF15QqVRcpVIR1dX1tjp2bJtKJkMqmQypY8e2qY6Ofeq555arRGJYJRLD6ujRLaqzc5+KRvvUsWPbVFfXWyoW61PJZEilUjGVTIZVKhVRqVRERSI9KhLpVh999OrHlodVMhlS0WifikS61bFj21R399sqnY6pVCqmIpFuFYl0q7iVU4dsWy1XSu1TSm1RSg0opWJKqS6lVMhZtk8ptVwpdVgpFVVKDSulOpVS1zrLrlixQlXX1SnDMFRRdbXSJk5UfUqpAx9+qC6cM0eNP+ssNe3CC9Xr776rjiqlIkqpr33722ri2Wer+okT1djrrlNvBINqm1IqmE2rcCqs+qJ96mDPQfXqR6+qYCKoBuODKpKKqMH4oAolQ2ooPqSufeFaNRgfVMufW664G7X8ueWqP9avjg0eU4d6DqlrX7hWdUW6VDgZVsFEUL3T9Y7qi/apDwY+UA+9+ZD6cODDM/YdiA+ovmif6gx3qg8GPlANjQ3qtZbXVDYdVioTUSr0gVIfPqTGNjaog607lBo8oNTu5UoNH1aXLGhSv970iFLpkHruD/+lLrxgplKZmFKpQaXinUqlgkrlj5PsU2r4PaXi3UrtuVbG6ZBSnduUSg3JdCaiVKJPqUxUqfSwUqlhpVKhkXVWVqlsSqlMXMa5zJnT6ahSiSGZz//lsrJfLjsynd8nfzwrq9TQsZFpKyvHy2WUSseUGjo6si6XVSqbHrmOaLdSiWGlEoNKpSJyvYlhpYY+VCoZVKr/sFKvLJdxKqJU79sy33tIqXif8x3FlEoOy7G2XqtU7wGl3n5ItktHleo7KNN9h5QaPqZU9z6l2rbI+JXlSvUfUmr4uFL9h1Wi/6Tq7o6o4eGECgaTKhJJqaGhuNq27ZgaGIirvr6oOnCgSy1f/pzq7AyrQ4d61PLlz6nDh3vVli1HFdytrr32BRUMJlR/f0xFIikVjabU4cO9znY9KhJJqf7+mDp2bFANDMRUMJhUoVBSdXVFVH19o9qxo0W9/XaX2rbtmBoeTqhoKq4aGhvUnn2tKpKMqVAiqj7sO6Vue/lB9VFfu4qnk6q5uVn9/tk/qFgqoWKphOqPDquZV8xXNWNGK8MwVFV1lWocN1Yl0kn15a99RQUqS2V5VZUaN2G8eqPtHbVz399VzYR6NWXquercqeeqJcuWqvePfqju3PJL9dzB11Q4GVPBRERlsnFlJw8r1blcqcQ+pSJblMqFZP4DZJztVyr1kVL57ZKHlUodG9k+eVjG2X6lssNKdX5DqUyXHCcXVSrTrVS2T6ncsFK5mFLJd53jvC3b50KyPBdSKhdW8VRKdUci6oOBARVNpdRwIqEGYjHVF4up4URCDScSqi8aVcOJhAomEuraF15QB7q6VHckosLJpNpy9Kjqj8VUVySith07pg739Khtx46pcCqlBuNxNZxIqHd7etSWo0fVQCymIqmUiqZSKphMqkgqpSKplKpvbFR/+utf1XAioULJpLLCYaWuvVaNHTNGHdyzR6lQSKlIRKnvfEepAweUCofVt8aPV7eBUsuXKxUMKrVtm1Ld3UoND8t8W5tSQ0MyPzys1Ntvy7aHDysVDssxly9X6uGHZX1/v1Jbtsj6LVuUOnRIxt3dSg0MqHgkq4JBWw0OyuadnbJq2zaZD4eVGhw889D5ywuFZNtrr5XDRiJnrvv4toODsmz79r+rf/yjQ40ZM1YtXHhQvfuufKwXX5TlDQ1j1f7WfSodi6l0NKpOHT6sKsrL1eu//rUaPnpU/WX7dlXs8ai62lplaJoqMQw1trZWvbdrlwLUuIYGdd706eq8adPUxRddpAaPHFGdu3ap9o8+Up++5BI1rq5OTTn7bLVj61YVOnlSpUIhlY5GVby3V+1dvVrF+/pUor9fzh+JqFQopMIdHcpOJZUKDirVfVrGwwNKPbZOqVhUqWRCqURcqVhEqeCQUpGgUvGYUqmkjJNxGcdjSkUjSkXDsm1+3N0hx4xF5JgdJ5RKJtTYxkZ1cG+rUqEhOW5wUKnH1ql1t9+q5lx0oQoHB1UmFVfxYK9qf2eryiSjasGCBeqF5zarXDalstm0SkWHVTzYrVLRYZVJRlU2nVDZbFrlMiPrs5mUzKcTquPgdpUI96lwb5tKhPtlHOpVWWd9pK9NZZJRlUnGVDadULn8sdJJZSeTKnfsfWUnkyr73H+qzN23qOxz/6msUFBZXe0qd/SIsno6ZVlXu7KTCZnu7VJ2MqnseExlX/idyr35hrIG+pSdSilroE9ZkbCyUillJeIj+/d0KiuVUnYiruxEXFmRkMq+8DtldbXL9oP9si6ZUOrUR0odflOpSEh+k3BQqYTze7y7T77veOzM36Tw2yXke393n1LtbXKc/Pj6RUp1t8tvdv0iGXefVurEh0o9ca9Sf98m90UiplZc/y1VV1OtDMNQ1VVVauK4sar9H+8qQI0fP16dd9556rzzzlMXX3xxoa2ZTCZVKpVS8XhcXXfddeonP/mJOnr0aKGNGYlECu3RWCymUqmU6unpUbFYrLBvfvzx6ePHj6t4PF5YlkyGC+3Fjz56VSUSQZVKRZ22YlSlUlEViXSrF164Vr355kMqHh8szPf0vOu0J0Mf2yemUqmoSiSGVTw+rD766FWVSoVVJNKturoOqOeeW656ew+ro0e3qK6uAyoa7VXJZFBFIt0qnY6p3t7DajAdVcuVgIUtSqlDTvtxn9P2e9tZHnTGHmf94Me2PaSU6nPao1uUUm8ppY4523QrpZL/i/Z/TCl1wDnWAaVUr3PuT4b/9wxAp/qf4FRN5U1N/xsN9fX1qrOz8//py/ifDul0mqGhIVpbW5k3b17BM50PM8tLc3RdZ2hoiHg8TkNDA4BTOksVeg5jsRh+vx/btgu9i++99x4TJkzgjTfeoKGhgemO3E3XdXK5XEHys2PHDhYtWuTMZ2hv301NzQzi8T5aWzfS1LSG4uLRaJqOrks4WjB4gv37H2HRogdQykLTdDKZGH1971JTcx6G4XYSHxWdnXupqTkP0JwgNJ1Q6DQul7fAhoMik4nhdsKngsE2Wlo2cNnnnuFGl5fNSEDEI0gvXw6R0kxEpBW9SKkuHxJYlkQkPS6kFJdyttMQ6XgHMM+ZP4H4uf8V8d3knOXDQKWz33HEs30/QDpOW/AjPKaHu3bdxaNLHiVlpYimo9T4a7CVjdtwYykLQzNQKNqCbWxo2cDa5rVMLJ9I1s6yYssK5jfMZ37DfDa2buTOpjuZVD6Jk6GTtIfbmVU3C4/p4VToFPfsvoc75t/BhLIJGLrBN67/Bnv+uofB/kEqKisoKS7m+Ft/4oZvXMXWt2L09g9RWVlBsdfk+L1BqPssR8vu4BvfvpGhoWFKSor59RO/Yvq0cx0W1xJWNvQeVM2RG1TZwux2PAeVc+CDjRJ2BpANSz1sVymF1GZlSZCZZghzbPodqaIljLCVEQ90vp51PuRMOd7uPLOdH6yM+K4D9cL0Rk7JdJ7dRolkveDD1iRV3F0sJbbyZcCcsBxyTs1XpSTADGScjcH+DTBrtZzvT8vEZ/3phyEdFibcUyHnSg5Jkvj+dXDx7dD9JpSOgzFz5HrdAYj1SNBaPkk83g++URDvhtOvi9y9bh50tRCpuBSl6SQSWcLhNMXFwkD7/S4MQyeTsbjxxq28/PJRTp/+AW63WUgYV0rxve9t4777FtLbG+OnP93DmjVNTJhQ7lQ8kzJflmWTSuXw+VwMDsapqPDxwx/exGuvvUpfXy/l5RUEAgH27DnEt7+9gsPv7qavt4+yinKKA8Xsf/dtktkUkVSc2tIqLNtm6aLF1H1qKutuWsMofxkAf/loH4e6jrF24bfRNI1UNo3f7XVUCWArhaGJTzljZdnw+q+ZWTeZC+qn8PS+P/ONi6+kKiCBaB7TTXdkgKf2/Zn1i7+B2bdC/NLF18LoRyh46K1+SRHHBgxI7AXPFHkK6AHIiYyb1HtgVsLw/VC5BoxKYaWT+yWB3DVWmPHkAWGnAaLPgets8Jw3ck/23waVPySuTSVri/VGA+czWbgMA9NhsHVNI+54pY8PD/PAm2+y7tOfJmfbxDIZ1re0cPu8edT4/bhNkyLDwFaKW3bs4Na5c2koLUUBA/E4VT4fyVyOWDrNmOJiLKU47+yz+a9nn2X6jBns7+pi4ejR6OEw4+bN46Xf/56Z06aNxGrfdBOxe+9lzOTJvLVgAef89KcwaZIwZbEYvPsuXHSRUMjhsDDPpaVw6BAsWSLM9sMPy/q2NmGrs1nYt0/iu/v7hSl/4AF4/PFCellM+Th+XONnPxOZdnGxEHb5utX9/dDZKfLtvKp8/XohyceOlW2ffx5qayU9vKVFbN6NjeK7XrdOQssbG4Vsr3biJmbMGMfGjS+xdOlM8mW/czmYPn0cm3/3B2acOxnD5WL/vn189ctf5uAbb+AqLsZTXs6o+np2/PnPnFNby9H//E8uXLMGO5Mh1tXFR7//PVOuv55Xr76az//1rwwePoynooIPnnmGC26/ndTQEO8/9RRTv/MdDK8XK5nkyBNPMOVb3yrcQq7iYkyvF8PlQneJQsJEof3+EZH8nnshVFTK92uYhdJYpFJQXgm5jCR7V1QLg93fJeFYX75BPLvb/igsuKtI5MqJmDDb1bXQuhMuagbTxbhzp/HS73/LzBIPNEwAdxE/W3cPf9yyjb/s2EHxKCnj1fXeX/CV11Iy+iwWLlrC929axec//3lwFBuJoW78FaNRBQbWIhHsxeUNOMFmIQaO76dq0iyUbTN44gCjxl/I4Mm3qZu+EDSNTCLMwPF9VE28GJevzMm/0MjXskbT0W0gOISKRdGKi7F3vy7e65IykYo7n1W1HUV1dYhsPB/6ZdvCfmdEQq1pOso0xY9e5BH/tJXDevXPaHUN6OfOQAH2zi3oc5qlvBUamssFuoEKDmG3vI6x9AtoH/0DSsqFvZ40dUT1ZTsWoVxGfgvH8y5ycYexti2RnVuWyP6TcSmt9tWVUiv7yzdAJCTe+qVfEbVB+3FonCTfdWhYbARLrhH5f/79lssK4+/1k1IUQsaKi4sLbcT8OP8u0TSNVCrF66+/zrx58wgEAnR3d+P3+9m7dy/Nzc2UlpYSCoWIRqOMHj2adDpdqIHd0tJCU1NTQSIeCoXYvXs3l19+GaZpkUyGCu29TCbC66+v4bLL1uNy+QFFNhsnGu2htXUj8+bdTkfHHiZNWoLb7SedDlNUVEJv72FKSurweit57bVbaGq6k7IyCRaNxXoJBk9QXT0dXTewbYvXX/8xixf/Et0JflXKZtu2lcxqWs1w1RTWaRqPIJVmXkaUkE2IOjLotPdWIzk99cAE4A1gGbAFaEBY6luRUrAJRCF5J1IONsD/9RBBKt7k27aPIW3YTzza/+8ZNE3rUkrV/1+t/0QW/k8alFIFqXZra6tIxhzvjW3bxOPxQs3r8vJyGhsbC4AYBGCbpjw0crkcW7ZsIRgM0tHRgWVZTJs2Db/fz8KFC5k2bRqWZdHe3s7w8DCdnZ2FYLTFixcTDoeJx+Nomk59/exCouO8ebfj91dj2xavvnozwWAb2WySlpb1fOpTdxX80sFgG6bpobb2YuLxPrZt+x7Dw8fJ5ZJUV08jk4mi6ybhcDuxWA8ul5dsNs6WLTcQDJ4gf5sdOfIiSqlCoEVf+27WKFVIXnQh0u8E8iAykUCzj5BAsxsR8OxC5OJRCsV6CuB6LBJidgciEZ+IhE+MQ6Q8rQg4jyGe7WNIIvn9zrFjWGxo2cDrJ17ngcsfwNBFTmtoBjk7x1ByiBPBE6zctpJoJoqlLGzb5pdX/JKxpWOxneCsBxc9yKKJi9jYupHNRzazoWUDlrIKHu4f7vghsUyMxtJGnrzySSZXTMZtyKN306ZNHDx6kGs2X8P2g9v56P13INHB40//kc4T75GL9dL30R6Of/guLH4PLnyIsydPYu/u1zl25G0OvPxTpp8zDqyESLwH3gTUx4B1TuTbphfGXQclk2H2k+JPNjxSdspVAiojcnE7LSDX9I14mEEAaaGElkuAqGaIlBrlpJ+6pQGkbCnTlW9UGS4JKLPSsk/pxDMTvZVySno5DRUN8UZ/vAyY/KfI/rpLymFlolKXGwW+KpF4118qoL+uCW6KiM/a9AhAziWkhFfPmwLGYx2SIP7WRph8NVRfAMkB+a7Cp+R6koPw11Wyn08aqbx5D0z6PBTXSnmvQAOGaaDrGh6PSVWVD5/P5XisIZu10HWNJ564kvffvxGvdyTMLRrNYNuKRx9disdjcv/9e1mwoJG6OpF4nzoVZOXKbUSjGZSCt9/u4fjxYSoqfHR0hFm79l6OHm1jaCjGRx+d5lOfeoCenhi//e3TfHTiOO92HmPFr+9i3+EDeF1FeF0eQskoGhoe080Va/+Fa65eTk1xBX63F4+riEVnz2XFnC9g2RY7PthDPJ3IP6iwHR931rYIJsIYusG3Z3+eeWPPYyAW5OsXLWUoESaeTlBkSgfeU/v+zI6je0lkbFTeW119H2RPC4gGAcnKgsSbku7tmwNWH/T/QOYzx8EaFFn38P1O+FmHLOtbJcFoWpFIzftWgWe6s//N4Fsg4Wa6T4C67oPqews+7LyrIT94TBND04hmMqzcto2TwSDRTIa0ZTGhvJz7Fi7E53JR6vFwX2sr8xsa8LvdlHk8WLZNTyxGKpfjnk9/mjHFxSSyWVZt20Y8m8Wl6/REo1QHAqRyOVra28nZNof7+mgPh5leXc1fu7pQAac519kp5bWOH5f78eGHefbFF5kxYwbn/PGPAqx7xFbCoUNQWSnlutra5P/qrrtEDj5vngDrH/0I9u+X8LOxY2WczQriLS8XdDw4KAWn4/FCbS3LEkn3ww8LsI5GBY/btuD0QED82MPDIzWrN20SxXo2K6B4+XK44AIJMrvgAgHSAOPHy7YTJwooP3FCAs3yFtTBQZGX9/fLx2ppcW4Z0yA1OMg7997L5LPPJg78o7cXT3k5f3aqQnT09uKvq+PCNWuIdXQwePgw/tpaLli9Gs+oUVzx/POg61Sedx4fPPMM7a++SjYe5/2nnpIyW088gbu4mCNPPFEo9RWoq+ODp5/G49S7Hjx8GCudxs7lpDPiK9+F+ZdDaTnkLHjxGUkO9/qldFO548dNxASEu9wyn0+dTiZGgs6GB0Qq/PtHZBwekvtg0lSRnOfzL3a8IMBQKR74tzX84eUt7PyXz1GWkd9PIfWsA1Xj0E151mqaLvmTjsbfX1kLCCGgoUiGBvBV1OH2lYFS5FIJR+a9H7ev9GP1scX2omybwba38JXX4vKWoKwsPUf+RjYVRVlZ8V8nw1K+qbQMvWEsWmk5xpXL0corR3IuIkHsXTvQGsahL1yGikuZOjU8iN1+Ei2XRXN7IBbD7u0SAOrxojltKAwTY+kX0WdcJCW3lI3WMF5k4EVeNJcLu7MdFRwsSMqxLNT4cyASFL+1lXM6c5Hj27bUpk4mRHZvW1IuLBKS9XlgrWkCnCurBUSbJnztByIzr6mFa1dBoEx+87NnyHKvH6rHiKQ/Muy8b50Oa9Mlvmxg69atBINBhoeHCQaD2LZdyPTJT+fbjh6Ph7q6OlpaWjAMg/r6evbu3VsoswXQ0tJCdXU10WiUXbt2EQ6HiUQiBcthnvjJ2xT/8pe/YRj59t4KgsHjmKaXWbNWEY12s2XLdwiHT+F2B2ht3XhGedZAoAbltJeUUlRXT2f37nWk0xGOHn2ZSKTLecWY+P01jB49g3i835Gge1i8+GEMw+20m+Vp/ZnP3Etp+TjGAXcD7QgYfh4By62I/fB+RmyFFyPtTRDw3YeQM/mSW/cjOT7rnfkNSJvzfzZ4ODNV3MsnwPr/tOET5vqfNGQyGYLBILt376a5uZmysjIsyyKZTOLxeEilUoVE8M7OTkpLSwvb6Lp+RqmurVu3cuTIEfbt28eRI0dob29n48aNfO1rX6O8vJy3336bVatWEY1GCQQC/OxnPyMYDDJ79myWLVtWuKZEIs7Jk6d4772/YhhRSkrqaGnZUOhJ7OjYw9KljxEOt1NWNpYtW27gyJHNTJ263AmjMNi69cbCsksuuRuPpwwA0/SwdeuNNDTMZ8aMr5+x77JlmxyphARdRCLt7N69jvnzf0xJ9TRyuonSNPqR9G8QRhrEq1KCMNohxIudQh6asxEAvhd5GCaQmoYXI5FIKSCMhKDlpwPIQ+4mpDfzRWCus30L0J7LMGfoQ7ojXdQW17K+ZT13Nt1Jtb+aH+74IXc23UlXpIu2YFuBlX7g8gcYSg7REe6grqSODS0bWN28mollEzkROsG63etY07yGhpIGcnaOVdtXncFqr25aTWekk5mjZzKUHGLd7nXcPu929nTsYU/HHv74uafRYsfh6INw/s/FC62Awf1S7zo9AEfWwZTbJRXcLBbwPLQPPLVQPNEJIHNY3tQQFFWAysLQfvA1gq8e0v1QVDMSRqbsEeYbDQb2yHa+enAVy8te///SP6cQ0GylBcAWynIpAb/uYqdOtRKmOn/8fEha3setnOMrHBbbYcAVI8cyigSE5xJyPsPr3D2imBAWOw/WXQLCk8OSJu7yid/aP0aA+N9/JIx2734JNjM9EDwGb90Ls9aAyyusefceAdq1cwSEz1oj11c6TkD6K1fDZ18kUnkphqEhGVEKw9CwbWGc88uUUrhcOqlUjn37umhoKGH8+HLSaYuhoQTV1X5SqRz9/XE6OyPMnl2Hy2Vg24pkMkcikWHUKD+ZjIVhaAwPJxk1ykcymSMaTVNT4yebtdm/v4t58xowPDaHe44xaVQDfpeHrJ3DbbpRtjDOHpcbDY14IWwMDF3HZbgwnY4m2/k+dU2nOzzAE/v+xDcv/ix1ZdWYuk7W6UR0GSbpXIZ/9LZRE6hgdHElhm4wlAiRzGb4zVuv8OPLvkmxS6HlNSiJPeCdC8pxtelOs6f3ezD6Yei9Harvcpbr0PsjGH0fZE9JunjNI9C3UgLKap8XAJ1oge6rYdxBGLxLQPikPsj1yD6Vt4NRC5oXrF6ijMfKV2XQNHKiUCbp+J+jmQwe08RnmmRtG835jmKZjASR2Ta2UkQzGUqLivCYJgPxOGOKi7Ed1jtn2zx/5Ai1JSU0NTbSH4+TyeW45/bbeeP11+nr7aWispJAIMA7R45Qe+mlVLS309vXR6VpUpxOc3z5cnjiCYjHmbdkCd/59rf55he/KPe6aQpdbNsCxDdvFiR7992CYp9/XsCzrgtqtSwB4vPmCYA2TTE6gxwvlYLnnpOgtF/+EkyTuB4gEtEwDMlFy3usUyk5bZFD6N1yC/zgB1INrKFBSPCDByXAfP16sX/nh40bha3u65MsNcuSfX/xC5l+5x34znfG8bvfvcTo0TMpK5NlF18MM2eO4/k//IHMi88z5frr8Y4axet/+Qsbf/UrqcoxaxZ/372be/7931l2xRUA2NksWj6WXNfRdJ2Bt9/GV1tLoK6OWEcHRzZt4oI77iAdDHJk0yamrlgh7LTHQzYWwxUI4AoEiHV04KupkZJTpkkqGMTKZChrbEDLh5dFwxLIpZQAJNt26iUrAW+aJoxrNiPMdTIu4K2kTALMtv5BmM9nH3eY8AskKMvZ/4abb2HrqzvkPikvo1iDXdu30nDRHCaMqqDYzoLPj3tMA3//y1Z03eTeB37Bpk1PMDAwQHFxMR6PhwP732RUVRWZeIjh04cZfe4l8ljWtEJNaCsVQzfd2LkshtuDVnhvKGwri2YIc69yGbKpOIMn3mLUhItJhLpxe6WOdqjrA5KhXurOuQR0E03ZKCuHphuoXA77b6+hL1wi5w4OYe9vxbhsMSoSRquolNJZHq94qkvLUOEQWk2tvENiUexDb6Nftligl1ISuibSHyjySticpmN3nETzB1DRCHrjeKxtf8JYcpWkmStb3omDvVK/evw5AnBPfAgTp8hntrLy4tId/3j+3WhbzrzDYufb2/3dwlhfsVx+O7dH2OlkogCc0XVRNnj9Is2wnI4a5wWpDJOf3LuRqVOnMmfOHN58802WLVvGli1bOHLkCH19fTz//PMMDAywceNGbrrpJgYGBlixYgXHjx/H4/FQUVHB1VdfzfLlyykvL+dTn/oU3U5yYCqV4oorruCRRx5h+/bt/1+Z6/nz51Ne7qO9vQW/vxqPp8xhsHW2b/8BY8acz8SJl1NcXEcodIrdu++huXltgZEeGvoIj6cEn28UmqZj25aT/O12gLMs03WTaLST4eE2/P4q9u69n6am1ZSXjyeXS6PrrkI97ZQ7wH5NYzYCgk1EsbgHmIEAaR1pL4IoInVGVI+zEHAcdf5qnO2SwG0IcfN/Jyk8gxA6/3fCzz4Z/vcb/lfM9Sfg+p80pNPSOLQsi1wuRzKZJBwOU1JSUpDY+P1+duzYwdy5c4nH4zQ2NmJZVgF452U9mUyGdDrNgQMHOOuss7j00ktZt24dfr+fxYsXc/nll3Pddddx6aWX8sYbb/Doo4+ye/duDMNgaGiIWCxGXV0dv/zlQ7zxxt/51rfKmDv3Vvbuvf8MoGzbOcrLJzi9iTrB4HFaWtbT1LSa0tKx6LqLUKjNAcZ3EAjU4nYLm5LLJYnFetizZyNLlz5KMHiClpb1NDevprz8LILBE5hmkfPgdZGvTWi5vOQ0g480jUEEMGeR5PBGhHHuAkoR4FyLPAyDSP3r+5AH4SAi3XEzwnxHgduRB+Io4BZnfjIjD9J6pEfydufY7wLz0zEsZbFiywo2H9nM8qnLufuSuzn3V+eyfOpyHl78MEPJIe7adRebj2zmg5UfcNeuu7h17q3cv/f+wj6PL3ucTC6Dy3CRtbIc7D3IxbUX0xHpoMgsKuy/fOpybp17Kw0lDdy84+YzzpnMJTm/ciJaalBYW2VDehBycQG5qX547y5o3wyNy+HCX0CqF46shym3gqtSgreU85LvbwVfLRSNgkO3wcyfCiC1MvDuajhvvSRfO40OkbflBGTzsWW6kz6dB8J5rq8wnx/UCEjPU4HpiIBiKy2BZrYl4DTWJdJwKy2s9n8f8se20o6kvNYp0VXspHYjbLLuMNm625G14zSQXDKvuURG3vcWjJou12Z6Idopsu7wcal9PXuN1NP+0zK4aoukk+9bLxLzwBjoPwg1F4+UM1PO9+R83nhWgsxyOUUmY6HrEAymSKVyVFR4effdPubNa0DTNPbsaWfUKB/9/XGamhqdzig4eTLImDHFvPNOD1VVfgYG4jQ0lNDRESls19cXp6SkiOJiN7mcgPdoNF0A8bffvpPbbpvHpEnl5JRFX2KQwfgwM+vOLoA90LCVgEJTN7Cd8nnJbJrBeIhn3nqF78y+ipriCoYSYfxFPgl7cSTlZZ4A5b5SbGWTsy0M3cDQdA51H6XMU8xwMsKM2rMwNDm24UgcO8P9jC8vx0Uc7LDUnNZLIHschn4mbLLuA+UoFECY6KH1kibumuBYFgbBHgK9AlQSsj2SMp7vaEnuEwm4NSDJ46M3Qa4fjDKwQmCUSJ3tofuIjXqKtmCQ7miUGaNHE02nqfH7ne8J9nZ2Mq+hgXQuRzCVotzjwWuaZJWEAZmGwUdDQ2xsbeWByy9nMJGgMxKhvqSkIBevLS4m4HZzIhhkfUsLa5ubGVdWhq1UQT7+wzlz8LlcVPv92EBpNiudrm1tgkpXrxY6+NgxKShdVwcbNghanTxZtuvqGlm+dq0g23/8A+bMEbRqGAKu3W5p+LtcIh0HoZ9zOWG1GxuFMa+rEzo5lyOqlxCJaOi64HBNk0P88Ify5/UK8Z1OC+l9002iLL/7bmG5779/BPM/8ogEmr388pm4Px6XY/b3y0d+9FGRf//4xy/xla/MLFRkOnECliwZx/Obn+PsyhL8dXVE29tx+f14KipQShHp7mbynDns+dvfGFdXR/CDDyg/91y5paJRXIEAhtdL7NQpUsPDVJ1/Pug6VjKJ4RVArDk9CMqyyKVSsl9xMS6/H2XbaLpeAORTv/MdfDU1uGNBtOCABFRtexYWfQnG1EvN6tAgNEySZ5uraASkJWICmgd6hLFeco2A7XRSQsuS8RHZ8NJrYNQYB7g5iiHlAMi8PPnEBxJ0tu1ZWHINVk0d2Uwc3XChu4oK9hrNScCOD3Xh8gbIJmP4ykcDCiuTxrazBRm4rrvQDBMrm2Kw7S1GT1kw8qjWdPIlOA3TTXy4i/Z3XqGkZiJjpl5KLh1n4Ph+Rk24GJfHj66ZaMEhcLklzTubReU/j6ZJUJrLhdI01OG3Ue0nMK5cjgoNYe/ZhX7ZErl2l0v2Taewd+1Av/JLcj1Kibw8m5WSX3mJtaahUGDZqM5T6HWNKNPlgHEbrbcT/vInuPp6AceZNPR0woTJjv3JEiC9+QlYeJX8H/lL5eZNJ6HjhJTx0vURG0CRF0JD8OEhmHoh+EsEOLuc/8FMCp5/ChZdLXW18+XY8nartvehfBRq1Ghe2LKV5uZmwuEwpaWlBAIBotEoLS0tlJaWUllZyRVXXMEf/vAHmpqaiMfj/O1vf2Pp0qVYlsW9997Lzp07+c1vfkNjYyOXX345N910EwsWLCgQQ+Xl5eRyOUKhEPv372f+/PmUlJRgWZZTkUyRyyVJpYJksykikXZHIVnE0NBHtLbeS3PzGsrKJqJUFsupsGGaRcRifWSzcVpa1jNv3u0UF9fidpcU2p4jy4oLCsnt21cV2q1Llz7G1q030tS0hvLy8dh2DlVUjKUZnNA07nPaiAFG2OYYYjXciLDKDc7yAYTA+RkiF68G3vlYG3ENooS0EMCeRdqbIxnrnwz/Jw2fyML/HxwymQy2beNyuTBN84yk8JaWFlKpVIGRbmyUhnIqlcLtdhOPxwvHSSQSDA8Ps2DBAmpra0mlUtTU1LBw4UIGBwc5dOgQZWVl+P1+Pv/5z9PR0cFTTz1FMBikqKgIv9/P9u3beeaZ3/DNb36D5uY1xOMDNDWtLqQyFhfXUV4+kWw26YBrm+LiOpYt20RFhXiAOjtbKSsbx7Jlj+H3V9PbexDlsI7RaA+m6WXRop/zne9cx+zZV/KlL22mvT2BbWcpKxtLZ+cw8+bN5dxzp9LUdCmHD7+NpRlYmsYr27Zx2wUXMHvmTCZNm8b+3/wGL/IgrEAA9GzgQUTG3QA85CzvR8B0CCnN9TbCVHsRVno94oHZjDxQbcRfswDpVZwP/NzZf14uQ87OYWhGoSTX2ua1lHnKCtN+l5+64rrC+tKiUtY0r2EgPsCdTXcWtjM1E7/Lj6mbuA03NYEavv/q96n2V1NXXMfq5tUsn7qc1c2rKfeUo1DcPu/2wv4NJQ2cVXGWADfTJxLvZI+kext+AYveMTDrCbhkG5y7WrzQvnphsT96VIB1NjriTa5uklrWpk+AOJrUz072wQW/GAHW6WEB1coSxhgoAGhlOUDXElBbYJ4ZAdq2szwPrK30CAAuKhFwXZQH0A5rXTpeGhEuv3NMp3GVicj+6YgsN4oEUMd6ndrXTsMjX5s62gF/uVE82popPmrNkaYnBgVYGy5hp90ljvxcF+m4ygqwzkvD65rgmx9AXTO8dZ8s379ewPjo2QLIrbR0DlhpkclregHUR6MZUqkcXq9JUZHJqFE+urujmKbOjBk19PTEiEbTTJ9eTX9/nFmz6nC5dN5+uwdd17j33laee+59Zs+u4/7791JV5aejI0JVlZ+VK7eRSOQoLS3C4zGxLIXLJWDH53M5rLnikksa8flc5HIKdMVAfJhpoyeRs22cCrPYykbXdHJWlngmyeHuY/RGhvC6ivC5PXzj4isp95WQtrL0RAbwuYrwuoqo8JUSTsUochXRHR7gUPcxAELJCO3BXiaNaiCUinJ+3dnomihyDF0X+4QGz7z1ilgUrW4YvGfkNzdqoOIWqW+NQ4nmTSDmGKi4TepfYwNZMGtg+JcCrF2TRCquEgKmVULm9WJwjRN2G0Pk4BhyPM0DZh3UPIiNpIVPr66mLxql3OuVa3aublZdHZZtk7VtAm43CqlFPxCP0xWJSE5ELMaP5s4l4HbjMU1m1NRwX2srm48cYWNrK6FUClspuqNR7l+4kMbSUpRSvNnZSSqXY+PChXhdLnxuN8eHh9nX2SkN9Gh0RF89aZL8X/f2inR7YEDQ68SJsu3AgBiV/X5BrzU1ot+ePVuAdV+feLLzRaZtW8C0yzVSoHr/ftnP4xFW2+t1ShEZBSzuEPsSwK4Jy1xfL4e4+WaRcN93n8jDH3xQksPLy4WhzgeZe73SV/DSSzB/vpwil5PT+nwCrDdvHjnP1KkjlwyiZjcMGBx2EXCyS4obGghmMtjZLFYmw/1PPcWnLrmEs84+m2wiQVF5OZquk+zv571HHiE5MICmaVKy67zzGDh4kFwigen3E+/qYv/ddxM5dYpsPA66TnJwEM0wMD0elFK8s2EDsY4OEv39VF90EZ7KStxFbrTQoNSzLikXprLIKzfSjudFboyCRFxAlWWJ3DuTlg+47Y9w6E0p3ZVnXE98KNLhWBgWf9lJDUck4m0fOqWftBFJsqbD5PMklfxrP8D2eMmkIvQfa8XKShJ5NhGm9/2/ixxcKfyVdbi9xfgr69A0jWSoF9vOkk3GCPccZeD4fgxXEbaVZeD4Prxlo8mm4vS8v4tsKu50OOrk0gm63tuJyxvgrOavUzvtMnTDxWDbAcI9Rxk88RaabqIrBFj7pMa2SqfktVDkhXgMa8efUcNDYNvo02ZiOKDZ3rMLra4B4o4cHOc4xaUiLUdDs23sjtOiBiguHlFb2RYqk4JMBs0w0OvGgsslQDwPmnc8JwqBcBBOHRPv9/jJ4qEe6IWP/iEy/U9fKb+R2yMy8lRCwPKEcz5mbdLkt7dtYcFnzpXf/Le/ELCdTspvr5SkwQcHxL89PCCAOuXIz+snyDpls2zZMsrLy6moqKCkpATDMCgvL2fp0qXMnz+fc889F6/XS0mJvGtdLheaphEOhzFNk/nz59PR0UF9fT2appHL5Thw4ABer7dwbKUU0WiU1tZW5s6dW6iBHYlEyGbThELH2b59JdlsguLiGsaOXYCmiS86mRyioWE+huF28ntMZ/kgmUyMQKDmjNrVqZRYykpK6pk373b273+YVCqEUham6cUw3DQ3/yurVh1j2bLHsW2LsWMvJRAYTSh0ku3bb8KK92MjXur1CLBOIcrELEK6bHTag+3O3w0IM12GeKw7EaXjx+Xg6xhJDv+IEVvhiMbrk+GTYWT4BFz/EwfTNDFNk1wuh9vtxuPxsGjRIlauXMmiRYsIBALccsstLF26lGw2S2dnJx6PB9M0CYVC5FUFkUgEv9/Pq6++Si6Xw+PxkEwmcblcdHZ2UlNTw7hx43jrrbcoLi6mvr4eXddpbW3F7/eTTCZxu92EQiEWL76csrLx1NfPobx8IsuWbaK8fCJK2ViW9EzncmlsO4dpFjE83MbLL3+LbDaOzzeKV175DuFwO3197zF69Eznk9rOgzHI9u2rMIyXWb16Bo2NDY4KSmHbOb7//R/x3e/exJEjh/nBD77Ljd+9BQuwlOKh667j8WeeYeahQ0S2bOGeG27AF41iIwzzjcgD7wHEhx1DhL8mAqh7kAdhhzNehTw0r0Z6J8sQ/8sapF3zd4S9vgsB1/cizDdWlmQuSdbOMr5sPJuWbWKUbxTxTJyHFz+Mx/SQyCWwbIvaQC2blm2i2F3M+LLxXDDmAhpLGnlw0YOMLRtbqIV9645b0TSNDS0beOGDF3in5x0sZTGpbBKblm1iUvkkRvlGcftOkYLffcnd1PhrSOVSfPuVbwtQM3zCxMbaBGB7ayB2Ukpz5WIjoFkpOPxvAroveBDQRN6sO9JDlBzPTkujyyyBc26F4nECXCMfwf4VwoxrJgUwnYvBOz8UoJ5nEDV9xHOtLJnORByW2HS80A5jbbhlPnRCalqjpEc+1DZCeWViTnkwR/qWL8lluBw2u1jOmYmApxIcaZkk2plyjGwM4r1w4a0SPgYChBP9IiN3+SE1OAK4wyfg9e9B6CPZNzEAs9cKU/3pXwK6SMGVDc33yvLLnNAtDSgdK9vYGfl9zCI5T7wH24aBgTjRaBrLUug66LpGU1MDPp+Lnh4pt9XbG8PlMpg9uw6/34VlKS66qBbT1Hj44cWcdVYFRUUmq1c3MzAQLwDtWbPq6OmJ8oMf7KC9PczAQFwANGCaOkVFJiUlRXzlK9NJJrOsWLGFRMzifIexztk5csomlk5yqOso6VyGIrOIIsPF9DGTqAyUkrMtOkJ9mLrBB/0nUUoxaVQjXeEBDnYdJWvlmDZ6Erqm0R8fZnJVI6FkFK/Lw3AyTCKTYkbtZHrDQwwnwg6zbfPArt8Sz6RYu/B6dE3B0EaRg2s+UClIvSP3n2u8SL4TLcJm964QOXduADwXMHIDWDD6cWGyycoyq0dk4FYPBTlFrt95cjjGk77vy3Fz/RKQ1nczHi3DmuZmDF2npKgIr2liOeD5dChUEGC4DYNitxtT18nkcvjdbrwuFwpYMHYskysr0TWNGqdW8sOLFxO64w6evPJKaouLMTWNOfX1+N1u0rkcllLMqa9HAT/csYNELoepafTEYlwwapTc33mpdiIBR48KLVxfL1TxtGlSNiuvyz7/fKF8EwlBnl6vMHeplLDVhiHy7zwqHh6G9nYB4x0dEAwK0j3rLNlnxQo5lmlCNoupWXi9Cr+j3D9+HN58cyTUzOeDW28VYO31CjYHwfSBgPQBPPywgO1cTojxefPk0vKebMOQv02b4Gtfu4Hzzqunt7eTa65ZxOzZkzhwAG666QamTKmnq6uTb31rEWdPmYKdyWDnctz1b//GjDlzOG/2bE6fOsWN48YR6+jAW1VFOhjEcLn44OmnC95plcsxdcUKdNNk749/jG6aKMviyKZNhW2y0SjYNi6fDyuZZP/ddxPv6OCsr36VI5s2UXX++Yw6/3ze/ulPUWiohokCnBJx8VwPdgsjffX14A+IDFjXJTTL44Wvfk+WKSUe3bsfhQmO/NjtEcAWDYvHetRopw62o8OvHycAbbBXnlnZjNTAHuhxioaHUKXlDBzfJ+C27QBoGrphMvrcSwABlvnEWzuXoef9N/CWjcHtK8VfUce4i79A1aTZWNk0hummatIsAlXjGDzx1ghgRgIB88uyyTi66SKXSWLnMoyesoDSMWdTNWm2sMeaBrksdle7vFp8fmGKAbvlr6i2D6G0FE1zlAMAykZf+gW0qTPRikvQ6saihoewtjyHCg4KI62kw0irGYOKRtBMt5TyGuqXcl/xuPQQgdNhpFAxR/1kGKgl14j0PjwkHSG9nVI6K512OqFKpQOksgYmThU1wcv/JWDcdImM/HcPy9i2oa9LwHRJuTDZWx0f/fZnRY2QB/LPPynl2hRy/LrxHzv2MGriVGxdp6Ojg+HhYU6cOFHwQyuliEQibNu2jbCjQgmHw7zyyitEo9FCuVelFL/5zW9YvHgx27ZtIxQKYRgGzz77LNOnT+e6666jra2NoaEhTNNk6dKl+P1+AoEAtm3T0tKCZWXZvVvAcSTSia67CQZP0Nn5JpqmU1c3m5kzv0UgMNohYiAa7eaNN+4p+K2XLn2Mr351m9gES2qx7RyG4aKiYhKLF/+CQEDMgpaV5r33/kBZ2Viy2QRbttxANNrFtGlfJpUKsnv3Ourr56K5SzCBC5B8nhhwAJF724gK8nanPTgbUUbeD9QhQPxRZ98xTpsw751e7bxFZiFt0ZcR4J1xzuFQB58MnwzAJ+D6nzrkcjmGh4fZsWMH8XicQCBAIpFg165dgIDm119/vcBuNzY20tPTQy6Xo7i4uBBE0dDQwN69e6mrqyMajRZqX+u6TiQSKQScLV68mFAoRCQSoaqqioULF5LL5WhoaODFF1/gi19cQnf3m9h2DsvKsHXrjWQyMTKZKPF4r5MAbhOJdLB1642EQieJxXo4cmQzmUyUPXt+ypEjm9mz5z4aG5sxDBfxeD+5XJrFi39JIjFEU9Nqli5dzuc/vx7QUMoiFDrFs89+l4MHD/OVr3wZTTNYuHAWXV3dvNHWxvcQL1ckGOQR4JFIhOrKSlxFRbgQVjnfc6gjcp1yxENzEvFYb0R8NbM5M6zCg7DUhxBZeAfS0zjdOd7LiEQoABQDNhbhdBiX7iKaiaJQ3LzjZoZTw+zv2k8wFWTltpW0R9opMouwlU1XtAvLtuiP9/Pdbd9lIDGAbdv0xHqwlc13L/ouSinWNK/h+S89T31JPTdsuYG2UJvcKApM3eT2+QKus3aWrmgX+7r2saZ5DUozJJxM5aCqyQkbsyTh++wfCni0cyIHz8VE6m16BUDbjswwG4UDqwScD7QKQB/YK9sHxokPWzfFnz37SQiMH2l0o8RjfcGDMtZMAch54JsH4LEuAa92VmpP59lqZ9vv/+Bmxp1/GVpRgEOHDsk+yUG+f/MPGXfWFDRfJYdatjohZzqpwTY+/9XvMPnc6cyY8ykWXr6I4wf/JkAdBJgrC6yUA9IN8NVA9fnCio+ZLez1X1fJdbkdVv7NeyDeI5/XVwOX3C8hboYbfDV8/66HGXfpjWjeCg69/SakghA5zfd/fA/jPvUdNF8Vhw7shWxSQDo2l1/5Jc67cDYzL55H8xVf5OCxfpRS+Hwu/H43vb0xIpEMb77ZSSQigWW9vTFefvkoGze24nYbeL0uwuE0x44N0dLSzvHjQVat2k5tbTGaBtXVPiZNqsDjMVmzppnLL5/Ixo2tbN58hM7OCPG4AOhIJENbW5AVK7bQ1hYkGs3Q0RFh8+YjJBMZOkP9bPzbb7BskW363V7OGzMZy2nsGLrhyMNNPuw/Sbm3mL7YMGXeYuKZJPFMksF4kMlVjdhKvMlel4cZtZMZiod5tPV5BmJBZtROprjIj2XbuF0mqWyWg11HsWyLmxd8FaUUsXQSSxmo6geh9F+kw8MKCxOd7QBskYCbNQK8ax6WsWe6sN25fgHbvTcISEZBotXZ7+fgnU8+pAw7BsYoyHUISLe6wTsLhjaAUSrn8c4ClaDRqWE9OhBw5PFZAm43PpcLU9c5FQ7zvW3bOBEMiu9a0/CaJjWBADoQy2RIZLPYTmM34HYXPNwAyWyWrEO7tnZ0kLVt2sNhVmzZQk80SlNDAz6nNvaCsWPJJBLi/3TqKOPxCAsHQuvOmiWN92PHxKR84oSki1VVCWo1TTh1CoaGBIQFAhJ0FonIX2+vgOq8FLyoSIDHDTcI4G5sHEkUz4pv1bZsTp7UWLFCNunpEe+zUoI9WlrktPfeKwR5Oi05avk8NduGA4LtePNNOYUm6l/efhs++kgu5dQpIeF/+cvHOXq0k46OHL/5TR/79x9n9my46abHaW7u5O23c5z+6ASH3ngDNI1MNMqvfvEL9r/6Ku/u3cszTz5J0x13kOzvRwOqL7oIdJ0Lfvxjxi1bxrQbbsC2bYoqKsglk8zduBHbslDARWvXsmz7dmbddRe+mhrQNLyjRmEUFTHlW99CLyqieOxYpt14IwDvO2FnOP5hwkEBRqFhAUrb/ihe2mRC1hV5HKBsSwu+yLHdjBotAPnk0RHZdy4rdY9TCZEPm25ZHg0LW/rVlQL2LFsA2+Tp4uf1eKGsAi0lgWNTPvNdaqddJvdlkV8sBwqy6Th2LkP3P14nl04wekozmqZhZWWZ6Qng9pViFvnQTTe5VAzdcFE1cdaZgNm2GXPupzjrkm/iq6wjm4rTf6yVbCqOppvUTV+Iy1sidaqVjYpG0evHjXi3cxL4qjdfhvHtmyEaFeCczUDwv9W0TqckQTseRR05hIpG5AazLGG0NdCd2tWiUirD+MwykXEXgmSlA04rLpX/NdtCKyqSFPcJ58j3veM5AcPb/ii/QSwikn2XSzpb8+t3PHdmIN22P8rvl1//6mYB10uukfrnS66R++HcC848h7JlnWGceWwNcug0NjZSVlbGjBkzyGazhaDcsrIylixZQnl5OQAHDx4shOtOmDCBpqYmNm7cyIkTJ/jXf/1XGhoa2LNnD08//TQffvghR48epampiauuuorW1lZM0yTrSPVdLhe6rtPU1IRlQXPzWr761W00Njah6wYul5/q6ulkMlFisW4ymSgdHXsJh6XjJBbr5bLL1lNUVIpSFonEICUlDVRUTAY0crkE6XS0QPIAbNu2klislylTvgAoTNPDvHm3Y5oedN3E76+mqWk15577JSyzCEvT8jUmCCCWv1UICVMMPPH977N33DiqNA3/oUP0AzekUnz185/nr5Mnc8mMGZy9cCEfHj/OeKd9+S+zZ/PpmTP59MyZ3DZtGilN40vvvosCrgc+5BOA/ckwMnwCrv9Jg1KKdDpdSAxvaWk5I2UxnU6ze/duZs2aRTgcZsuWLQwNDVFdXY2maYXtWpwY1ObmZiZOnEhrayuZTIbDhw+jlOKss85iaGio0PMYCoXo6+ujvLy8IAEKhUK88MKLXHnl3EIZLqVs5s69Dbc7gNsdcHzQNplMtJDquHv3OurqZjF16nKKikppbl7D1KnLWbjwPkKhE2zbtpJsNk5X1z4ikQ4aG5soLR3HkiWPUl4+AQBN03C5ihk9+rPU1FRhGBI05fdXU9/YSLi9nSc0jf989lm++sUvcu7Ysdze1MSjv/kNQ243FsIq53sOTQQM34yEU1QjvpdHECDtdab7gU3IDa6AmUiP5Uzn96kEHkfY7fmM2IQ1w0NpUSkKRU+0h32d+wqS79l1swue6nW715HIJkjlUigU8Wyc8eXjeWTJI4VyXG3DbfTF+jir8iwM3WB82XiaGptY37K+cAyFwsbGVjYTyibwqyW/YpR3FLXFtTSWNjKpfJKTXawkBTsXE780wIW/FLY0NSwNBs8YMAMQbxcAnddpp4ZEBn7Bz0U2XnkxJDqhbLqkg2smeJxjpvodgtvxKkePwf4bIHaCkXAzJZ7n5CDEuh0QbkCgTqZjXc66TgGwzrZXL55Py66/MnZsY/7LBu8orv7CF2h54++MbaiFdEi214BAHSu+eR1H3/8Hhw++w+cun8+3b7pDju8A8wKoTw6T9+ehFIRPy3xxozDOukvCyxJ9MHqWgOvwCdh1syxz+SWMLHKSq7/wOVpeeoKxDXXy/fhHQ6KXq6+6kpafXMjYMRWSIL7rZinBZfrY/OhPeLdlC4f2vcEt37ueb3zzG+i6Rk1NgJ6eKPfc8wa2rZgzpx6Px6SvL8b8+Q2cOPF9HnxwEZoGXV0RDEOjoaGEBQvGUlPjZ8GCRu67r5VcTnHbbTvZsaONrq4oEyaUUVdXzJo1zSxfPpXZs+sZN66MTZuWUVLi5oknDrB58xE2bGghFEoxa1Ydy5dPpWq0jyf3vcS0MRMZSoRZ95eniGeSpK0MGmApG0sJs5zOZZg25iyCySjTRk+k3BOgpriCqkA559edg8/txWMWMZwIE88k0dF45q1X2HF0L8+89QoAfrcHl25Q7i1h4GPMdtrK4nUVMRgXyZ+mB4SxTrSIjFsvdTzTLsdb3ejIuF1gVoNeDkMPi2d6aL2ElA2tB2xwNch/fvV9Igcf/Kncz7oTFJTtcbbfCP6FcnwrLGP/5WRyCfricfpiMTK2TTST4badO+mLx6kJBLCUYkNLC5uPHKEjEqEnFmPV9u20OyyRDfTH47zT00PGsjB1ndOhEC3t7aRyuUK5rpxt09rRQbXfj0vX8blcPLx4MSVFRVwzfTqJbJYVW7ZwIhikpqwMdfLkCHBubRWKVykBvddcIwh240bRT993H5x3njDZzc0jGut4XBjoY8cEqFdXjyDenh6RgOu6gPING+RYXq8w1kNDAso1DQwDS3Oxbp1sksf3LpcA7VWr5BDt7YLHP/hADuP3Cxn+858L9pg3TwjyCy6QFPETJ8R7XVUlDLdhwJgxst/KlcKO51PIBwdFJd/XN3INSjMxfT40w8BTUSHTjgzYSqc5eP/9eGtqConYVlJEnRf/27/hdxRfhtuNKxCg+oILwNlGMww8ZWUMHj5M5PRpcskk2USCdx9+GN0wiHV2kksm8Y0ZQ3p4mHO//W0ar7hCrASGeSYw0g1hpJUSYD3YI3Jhy/FGBwdlne74pYMDIgWOBGV5cEjkyIYJX/ymsOLhoLDdeaY6lwWvT/y8CgohWwroPInLV0Y2HSeXToBSDusp27k8AXTTxagJF6EbLpRtYVsWuquIMed+ilwqCsomEewGFKanmP6je3D5SqmbvhC3twRlWWi6gaabDLYdQOUyuDx+fOW1DJ18W86nyeeLD3ehNF1KcLWfgFxWwk/zdqSSMgkbi4TQ514CuoHduktAdCQMoWHsXTsgGkZvGIc2daYA6XAIa/uf0KrHiGy845R8VtMlrLRponl98p5UdqHTSIWGhNXWDZS/RMpuudzyfS76koDhpV+R7/+sqdJpMdAv/zd5sLz0K/L++Th41rUz9wcB6NfdJP56l1t88Yu/PLKNbkiZtSKveOsvXoBa+hWUc0+HQiG2bNlCJjMC6z6eo5ROp7Esi/PPP5+pU6fS3NxMIBDgySef5MUXX+SFF17A7/cXyJmamhq2bdtGNpvlhhtu4NSpU8ydO5eioiLcbjeZTAalFJlMBpfLhd/vo6xsAiUldWzZsoKhoWO43X6KioqJxXrZtesuotFuqqun0dKynrzke+fO2wgG22hv30M2G8c0i1AqV5COAwWSJxw+TV3dLFpa1uNyeQmFTjE8fBxdN9i1698IBk+Qy6VwuXy4XF50O4uhFM7bgm5GpN3rEc3SZ6++midbWvCNHUsPArpfAKwVK3j76FHOP3yYvs99juu//W06EUJmz7597Dl0iNcOHeKHd9/NlGnTWHLeefyQEfInzSfDJ4MMn4Drf9KgaRpFRUVcfvnlBRl4vrdv6tSpFBUVFVLE8z7s1tZW0uk0hmEwf/78wsMQoKysjOLiYpqamnC73cyZM4dMJkNJSQkzZszgvffeY/fu3bz11luMHTuW6dOns2XLFqLRKE8++STTpk3l0kuvQdN0fL4qiopKqKiYQCzWj23n8Pkq0DSToqJS5s27nalTl9PcvBZN01m69DFM00tZ2TiWLn0Ml8vH7t3rCuUS6uouJhzuQCkbXTcKDDgostkEPl8FpaWNIulCkU5H2LnzNjQEEIdyOf79nnuY8eKL7Dh9mv98/XVu+NrXCA4OYiNp4Q8iqeAWAqZvQfBXCPHQvIX4qk8gjVsNKbsQQUSiAeAeJPisGKltfQPCdp92po8DyukptZXNxtaNHB8+TqW3kkkVk/CYnoLPek3zGjymh+5oN3ftuoveWC9KKfZ17uP48HFWbV9FXUkdxUXCLsUyMbqiXSilWNu8tuCrdukuToZOsmLLCk6ETuA23Oi6jt/lp6G0gUg6MpIP5h0trHU+mAtN5OJWHAZahKlWFgQaheHW3MLqFlVAtA2GDkBRtQSYVS8QFlp3yTaDrcJuuwIC4FMOcH1/o4SlHVknfuTBN+W8gXrwjpKQrzy4Nj3SiPv4OjtXmF+w6Crqx46n4D/TDSibyILm+dTX1QkQLyqToLJ0FI+vmCVXfxPN8ICVYc6CyznV1e+cU4B5AdSXTxSwvHOFAN9R08V3nY3LZ9n1Q6iaIcngZ39ZWO2Pe6vTIZF/Rzvkes6+QO6kff8hrHjtPBYsuIT6pevkcyaHRHoe7wVlUeZKOH51RTiRRXMHcKf7UEqxcWMrc+dK7kUikcXl0guJ3ocO9TIwkEDTNPx+N5alyGZtjh0b4kc/2slVV03hl79cTDZr8dOfXsb8+Q38x3+8UWC/GxpKePDBRXi9BqdOhQps9b33LmT58qmsXt1EebkHn8/Fpk3LMDSd2y79OkumNDEQC7Kr7QCGrqOUoj8a5L2ej9A1jR9d+nWKDBdD8RDnVI/DbbgochURSycZiAWJZ5JkrSyd4X427X2xkCJ+26VfZ+mUJr4z5yp0TSeWSZLIpjF0nfPrzsZrFlHpL8Pv9qJpGsOJMKauO+WyVkr5rGyHU0bLJ7+Ba6JM6x6EuesFOwI1D0gYWeUaqNsGox8DjJG61rpfAHTFKsidgt6bHP/1HBh/TLzXZqN4tM0q8Vyb9bjd1dT4/cRzOW7cupXeWIxZdXVsaGkpBMCtbmpi+dSpzK6vZ/3u3Ww+coT1LS3kHDVAZyRCld/Pqu3bOREKUWSaVPn9rNy+nVQuRzybZeX27VT5/fTH4/hcLinPtX07iWwWU9NY7wD49S0taLkcWkeHlM3y+YQi9noFWa5aJePaWgHaW7YIuB4aEtB86pSg3qqqEfPyxo0QCgmgywPyjRtHTM0ul5iit2yR/Wwb7rlHgLgTHGWa4qH+4AMZ+3yyWf4U998v9u5cTkB0Pj+tuVkuLxYbUa2vWiXbbdwICxYI0J43z7GnDsp47lzB+yD9AP+9otjatWAaFihFrLOTgbffxs5k8FRVYXq9uPx+qi+6iERfH7lEgmhnJ9lEQjzTQKy726l1rEtStWWhm2I3iXV0sP/f/x1PZSWpgQGy0SjZaLRQmqvsrLNI9vez/667yCWTBBobmfXv/y7A2jRRSz8GurxeKcuEkjJLdeOFFY2EhCGtrhXApuki+Z44Vby2W/8g4LmsAiacC/GoPEvdHvAXy2/n8cLEc+WLzmWd/lUltbB//wgM9KAmTkFTCpe3BLPIKzJwJ6k8m4qQDPWirBwuTzGGx49uuEhF+sgmQiRCvZgeseeYngA9//gbLm8JY6ZeCkqRjofIZRJk0zG63ttJNhWhevLcgh/bV17H6CkLUEp83j3v78JTUiU+53AIzR8QaXg0grX9RVRoiHyAnFZSir337xCLoi9cJiC6fiz27tdRRw5ht+4CwFh8FaBht8hyshlJF68egxoewNryHIRDYFtYW18QmXhoGGvHnyEckuuoawDbPiMBHY8PRtfD138gSoDf/woG+6QDY7hPOruKS+Gz10nprZMfih/+6z+Q3zsclP2/fCMc+wf84VciHf/Do3Bgd4Gpp2qMqA+GB0TOb1lynsrR8PUfoFWNloIhHyNrNE0rlM+KxWKApH27XC4Mw8Dv97Ns2TLKysp46KGH+OMf/8gf//hH9u7dSzabpaurq1DOa86cOSilePbZZ6murqayshLLsshms2SzWTo6OjBNE5fLRSaTRqkcu3ev+5hvOgRwRuktXTdpbl6DZWULHuuWlvX4fKNoadmA319FNptA0wwMw3UGydPSsp4JExbS1LQapWx2716H319VKOkqoB08njIyGbGzRTSNhLwNqGZEBr4a8V7PXbCAp+rrSQBPIVLv5R4PjyxZgkfTWAN8Zs4czFOnKEcyfiKI1/pm4JmnnuLr119PDgHsHzht1CI+GT4ZZPgEXP8TB7fbTTKZZNeuXSQSiUIwxGc+85nCtGEYBcA9f/58PB6Rg8ViMRYvXkxZWVnBS/O9732Piy66iOHhYb7whS9w3nnnsWvXLtatW8err77KHXfcwc9//nOefvppWltbaWhowDRNXn75ZWbPngMYuN0+kskg6XQUpWyKi8cQDrc7MvA23O5iKisns2TJr/D5qjAMT+HzZDIxtm+/iWw2QXPzGr70pecpKaln+/abKCmpR9dNgsGTvPrqDxw5j0YqFWTr1hupqSmlp6eHl19eQSzWS23txXS0t1PS2Mhbhw5xrLubvy1YwE+BhRdfzKj6en588CC9zrm9wFcRf/VdyEMTZ7obmIYEULQjvZArEen3AOLXPoE8QPM9l/mezDBn9mpiZ3mn5x0i6QgPLnqQz0z4DLe8dgs72nZwbOgYPtPHY0sfY7R/NEChjvXG1o0oFLPqZhWY6Q0tGyhzSpXl618ncgkaShpGfNm2RUe4g1vn3kpHuANb2bh0FwpFKpvC7/ZLUqrhE7CrAJURkJs4Ld5rwydgWlkOu6xERm4lhHnVXZIQXjVfPr3QNgLQnU4QKi4W1jsTkX1Mnyy/4EEYdy1MXQOaC0bNgsyweIvLJkq4WH5QjDTOSyfIOt0l49KJwhzm8uFfWQplSSKnoO9tmS+uFybdHRip7QPQ/z4PPfIYn/v8F0a84GUTR0C96R0By/s3CMt/dLN0GOxbL2x1os9hqnulg2H2ajh7OVx8h4B6T7l0BOxcIaDZtuDUTgkwy39fxY2OnLwa3r5fttd0qJ3P17+1goYJZ/Ovd/8H//X0Jtz+YkxDY9OmZXz96zPQdY1Dh3o5fjzId7+7jb6+ONOmVbNu3W4yGQufT2Th0WiGjRtbC57qG2/cSnd3lEDAXQDqSil6emKkUjn8fje2DWPHlnHHHfN58ME3sSzFE08sY+zYMpSCG27YwunTYVAawWSE9X95mupABfd/9hZchkuk3okQk0Y1kMikUEo8k13hfgZjIYBCWjZIw67IcPNUngWPhznYdRRTN1i78HrGlIwq3PNHB06Rzok9wVaKUDJCzvF1nl09joL0O7pZ6lV7Z8nviyXr7Kj89d4CKilp4thyHxjl4rP2zUN0Lcg6XPKUqLxdQsyGNshxrT5QaQHTVhCyJwWo994gnUfZE7j7b0LXtAJo3tjaysIJE1jb3MyJYJDvb9/OxPJyNi1bhscwWNPczPKpU1nb3EzOstA0jdn19dy/d6+A4927qfL7C/PhdLoAnO/fu5fZdXVYSp0Bpi2lCgB+dXMzyjBQ9fXws58JGn3rLRm3twuSbW8XEL1/vyDa4mJ46CGhid3uEd/16tWCRO+4Q1LF8iA6j05tW9LCu7rEFN3QIEx3PjTt5z+X/8nkSIxPRYWQ4kqJrffBBwX0PvGE4Ei3eySLa8wYCRz3+WR5ZeUIGH/zTQHdn//8SJluTRNLOcDVV8ulgmS5PfGE1MPWdZmeMEGea9l4HJffT+X06WQiEeJdXRy45x6ysRjjli6l+sILpYTWf/NM+8eMQVmWAPODB1GWhV5UhGaamF4vVeefz4e/+Q2V06fjGTUKb3U1V+/bx+z/+A9cfj+uQID+t98m0duLymZRlgB9ZVmShH31t6FqtEjBQ8MCeCdOFYAVDsJAl4DnVEJY1FxOEsQ1TWTii64WBlN3vPIl8m4hFhK2210kXuvf/lKSyLOZkXrYGhKSFRoq+JY1EMbYAZDZZIRsMo63vBZN00mGBVDHh7swi/zougtf2WiySQFvptvL6HMvIZsIF4B0Lp3AcPvQdBNfeS2DbQcwTNcZfux8aJrLE2DMtMskrVzTBCjv/bsA7Ja/CmDe/TqaZaHp+siyltfRXC6MpV9EGSZ682UCtJs/g8pmsbb/CZVJF5ZT5JGwsmymwHjbLa9DOi3gO50649h6XSPaxLPlex/sle8vlRwBvwoB1o0THUk+4nX3eESm/68rnFJpU6RzOZ2WfwB/iagMUKJQWHS1POeuvh4umCee/FRCtjn5Ifzi36RDRSkB8+mUhKg983MY6EHLZQttR8MwCirJ1tZWAG6++Wbq6uro6uric5/7HFOnTuXUqVPceeedJBIJrrjiClatWkVzczM+n4+//e1vXHXVVVx++eXMnTuX+++/n1//+te0t7cTjUZxu92F/J+tW7cSi8VQStqm+XDc+fPvwOMpx7IyhWXNzWtxu4sxTR/vv//cx8ib1SQSgzQ3ryabTbBz520oZaHr7v+B5PF6K/D7q0kkhv6HQN758+8AwOXy4Xb7wZDci3yyhoakfG9Cqs/Mc94Oq5HKM99xxpsQEL0XGAtUPPQQSz/3OXyMlHLdCGzu6GDf3//O8uuuQ0famHc540+GT4b88Ekprn/SkE6nxVMYi9HW1kZXVxeLFi3CNE2UUsTjcZ588knOPvtsFi9ejHKkWfF4HMMwcLuFwcxkMoWkxjzTncvlMAyjUM9w6tSpLFu2DF3XsR3mJJfLFfZramqivLyYYLCNaLSLxsYmbDtHZ+eb1NZedEZpg0WLHsTl8jkss4RIdHbuo6SkgdLSBv7xj2cpKxtLQ8M8NE1j69bv8d57v3PqWT8OaFhWBtvOMW3abFatOodEYicrV37AJZcs4KyzBrjuuuVEInN5+Fe/ZeuBA/T19TF/0iQW7N/PvVOmkDt+nLmzZpE5dIjljY08jshyPAhQ3oz0Qt4NnOtMP+h87y4EWG9GehPv+m/bJ5EahccRMP0gIiFfjzxsJ2YSnBg+Tkekg9l1s/GaXmyniIOlLGzb5nToNL3xXpoamzgZOsm63etY3bSasaVjATgdPs36lvX8aO6P6I/3s2DsAo4NHWNj60Zun3c7kysnYyubgfgAowOjaQu2sb5lPaubVjOpfFIhUM3r8mJoBgFdkzrXRzbA1NUi6fZUQWpAGOhsDJLd4sG+4EFI9cH7G+DcO6F4kki6j6wb2bf8AqlpfWS9bOOpgXdu/r9eHxgvrHiyR5Zd9LAEoWkG37/5Zl5+ZQunT5/m4IH9zJw5E4Dv37SSl7e95ix/i5nnz5RGiZ2hpKKGgN9LT9+ArJs+BWKdjLvgcl564YXCPIH6Anhfv+GnvLJlC6/v2IKvuMwB8pbzp2QcOeWU0ForrPaum+GSB4S5Noqg9S4B3Gcvh4VPCGDOs+7oAq52rihsM27lXl669RxmfuU+kY1nExBoYNw5M2R5dqcc69MPi1+7qwW8Vfzmt3/k2R37eeH3v+VYj4f161u4/fZ5jBlTjG3b3HrrTjZvPsLy5VN58MFF9PXFGT++DF3XiMVG/Nh+v5u77tpV2HbTpmWcPh1m9GhJDN+4sZU772xi3LhS2tqCbNzYyurVTYwdW4rLZZBMZvF4TG66aTvnnz+Gyy+fSN04Hxtef5oZtWfxmcmzKTLd6JpOPJMslOAajIfpjw0zbfREdE3nH73HmVE7GQ2N08EennnrFb5x8ZWMKx9DZ3iASn8Jpm6i6zrvdh9jcpX8H8TSCfxFPpSySecyFBf5iabjpLJZnnnrZW5e8FU8riKKXaBl26REVuVaSe/O9QkDTVZ+F1xATjqW+u+Ayh+Ca7IEm5lVFEpu2THov3mkTJcdFol59gRoRYApjHa+7JedAHOU+LZ1H/TfTqZoAanA9Xw0PMzG1lbWNDdTV1zM/q4uxpeVkbZtOsNhRgcCjC8rI2VZhFMpyjwe4pkMpU4HaU8sxrrdu7mzqYn64mK6nfkHFy1iIJFg3e7drGluxmeaVAcCnHTKcq1ubuas8nIylkVOKUxNoziTwfh4vepbbpFk8IcfFtr3kUdGPNb33y9Aedw4kX4fOCA6al2nkD6Wr8O7fz9cdNFISngqJR7tnh4B5nv2CKr97GfhJz8RdtzZN4rUue7tHalPPWGCYPyaGgHPui6gefRowR7l5SM1sZNJkYQnk7L/vfeK5LunR0B4IiE4v7RUloNTOlgyqkgk4N13hcT3eITg85oJQGFnMgy9+y6+0aNJ9PfjGTWKkkaxoyinpJaybex0mvbXXmPw0CEuvPNOEr29GF4v2UiED555hovvuotETw8fPP00M2+5BdPrRTdNrFxOvMKGQTaZJPjBB1ROm4ZumsR7ekj09UkpL6XIhoL4VFZSwydPh94ukYcv+hKMrhNv9G9/AZd/0fFK5wRs73gOvnyDeKm3/fHM6SXXCOD67S9lOjggoWe/e1jk5xcvEAYV4P2DwmbveA6WXIM9qoZ0NoGryC/fAxpSkEpzfNeKXDqBlUthmB4Mp+ye0jQSQ914S0eRyyQZOL6PqkmzySajnD7wJ8pqpzBm+mfEP23Ls1Vz0srtXAYrl8Eo1MX2UjBjaTqGo1gnNCTMcUmZAN25l6DiMfSxE6Xs1u7X0ZsvA9OF5vGinPJYGsgNl5d4O+0XlELlRO6NpkE0jN26S47h9WG/9gr6os9BPIrd8lf05s+glVfIxVg5tP96SILjzpoGr/8Zln9HOqlSSekgiQahYaJ0mHh9cs7246JAMN1OAEFyxK70/FPyO1fXyj4v/Qa+8l0JSsvfExWj5Pp//whc8SUoqQCfX+6LaFh89JEgatI0jnd1U1tbC1AowdXc3ExJSQlbt24ttA8vueQSiouLGR4eZv/+/YV8nny5rXwpL5F6+4lGo7S1tdHT08Oll15KNpuluLiYXC7H9u3bC8e98spFDA19RCIxQH39bEfSrRgaOk4s1k1d3WwMw1XI8olEumhsnO8E6GaddbBjxw+ZO/cWSkvHYttZurr2U109Dbc7QFfXfoaHjzNhwmUUF9dh29KBqWkG0WgnbW2v0dW1nwULBMTrxbVkNY2cc4e5nbdHBOgDNgA/BiYBU8eN448vvcTUmTOJM1ID+2fr17P9lVd4+fXXift8VDptx27gX/7jP6h77z2e37yZDPAmEqI7gFSgcZIwPhn+Xz58Uorr/8EhFAqxa9cuGhoauOyyywAIBoNs2bKFbDbLqlWrWLhwYQEQW5aFy+Xi9ddfJxKJAJzh2969eze2bWM7ATofTx7XHWkngK7rmKb53/zeOaLRLurqZpPLpejsfJOamhnouutjPYxrKCoqda5eJxQ6yauv3kxNzQynPrXO9OnXUFxcy5YtKwiFTrFw4X2FfZWCbDbBVVfN4+yzZ9LV1c3GjW/z6KMBiopK2bTpSd5/v5I77tjHI4/8J489/RRepZhQU8MvN23i9PLlfH7GDK696ir+/eGHWd7YyFrkwTiAyLxXM5L6XfaxaT/CW3kZSXcs/dj0WqSkVwvygPQBv3TGExH/9STAsrN0RDqo8lexcvtKbGximRjHho5xw5Yb6Ip2MblyMvMa5pHOpRlbOpbHlz1Ola+KE8ETrNq+ilG+UWxaton+eD/jSseJNPhjDHcsE+P48HF8bh+xTKzAdK9vWU9HtIO+WB/F7mKMfCq3sgRYt28WcFs0Cj64HypnyQs7GxZg3b5Zpt93tn1/g7PvujP3zYZlOr9NNvQ/X5/sFm93flkuQb681tWL5tDy19cYO3as9NKHT4CV4eovfYWWv++S5eBQV5IW6vf7+fXTT4n3WsNhtidQSODWNKfUlgTR/Oy+jbz4/B/ZvuXP+LxekWlbaWlE6W4JVXP5hB1fuEmO5Q7Apx4ElPjMA3VStzrPVCsbou0CpsNtwnQn+ke2mbVarmP2v8pxU2HxXmPJvtOul+1mr5bPpxkiNX/7fv7lumv42+436Y3prF/fwubNR9i4sZVwOIVh6Nx5ZxPLl09l7dpmAgE3Y8eW0tY2zHe/uxWloKSkiLPPrjzDU712bTOmqTNhQhlFRWYhyGzDhhZyOVWYX7++BU3TOHZsgH37ukilLH7xi8U0NTVw1127iEdy/PCSa7l00sX0RYf5yWtP0Bnqo8h0Y+oGLsNFf2yYcm8xG17/Nb3RIWbUTsbQDDQNvK4iZtZN5rdvb8NGUV9WzVAizL1/fYZkJsX0MZPwuzwjvj+lKHb7CsC6uMiPx+ViRu1ZDMZD3LPzSTKWhTIbpfa0axxoXhnbUQHWWpHIvPt+CFavE0K2ESnLVSPAufcGGeuBM/3XqcPCVLsmObLvGqfs112SIm7WIGW5SkV6PvpxMoF/YU9HBzV+P79asoQqn48fvPoq9SUl1JeUUBcI8O1XXmFja2sh2fvcX/2Km3fsoNLvRwE526ahpISHFy+mKxKhLxajsaSEBxctAqArEuGRxYvxmiY72tpoGxrC53Lx+LJlTCgrozMS4YatW6m67z5u2LpVPJa33y7AevVq0UrfcQcFbXZRkTDWv/iF6KobRNaKzye66ZISOHxYkG8sNuK7njJFtNmGIeOiImGs6+okzKy+XgpPr10ry06elKSydBqlxPP8858LDi9yRCxjx8pltbaKR/qii+RyamqEcI/FpAT3ypUCrr1eqV+taULylZYKiP54+Fn+EWLb8hEGBwVwz5kDt90mXu1EApIpnXhnJwfuuQdPRQWJ3l6qzj+fkrFjBUzncgy89x7ZWIxkfz92Lse4K6/korVrQdM4+l//hae8nA+eeYb2V18lPTTEkU2bqJw+neTgIPv//d/JxOMkensZOHgQK53GcLspP+ssDtxzD/HuboyiIsrPOovo6dPsv/tu0okkdmUNatI0zgi12vFcoawZS6+R8k6GKcAtv00yIWD6v0/nA7Ly0+PPEUCWl59f8SXwBsDzP4ZkKQ10XVLi48PdZJNhqdHtJIXn0pLs7faWCgh2QvlQCl/FGNB0Bo7vI9LXRjYZxV9RK+Fo0z8jQWCajmaYoBvEh/uwcxlymST9x1rJZZKYHr9TnUp3wLeT/p1Jg9eHVl4J5ZUYi69CxWNoJWWy3hfAWPpFYfpTKaztf5ISVromUv5YFBUcxNryPCo4hEKhwsOo7g40wwC3G62yCmPZl9DKK9GKvBiLPiehZIESjGVfgkAxKjgkcnFdd9LCLxTlwJdXyI24+UlRFOx47swU79CwyPLLq+B3IsEX79ow/PExGY8/W5LBbVuOec0N8j75+D1huESF8LXvyzux65Qc6/gRKQXm9UvHiqHT4JSdMwwDl8vF3Llz8fv9dHZ2Mnfu3IK10OPxoGkabrebWbNmMTQ0RCQS4corr6S0tJTa2lq8Xi9+v59QKISmacyYMYPFixej6zotLS1kMhlM06S5ublwXKUUra33MjR0lOHhNrZuvZF0OkJZWSONjU0YhovOzjfJZhMFb3a+4oxpepx2b4ZFix6gpKSBeLwfw3BTUlJHX9+7ANTVzaa+fi67dt1FKHQSXXcV2ti5XJqOjj3MnXsLbW2vkcnEUEhwbQgBOHuANqdt+DMEADupLyjgp0DCaUMOAr/42c94+cUXeWH7djwOsNactuJkpYj9+td89/rr+cg5x3yEsFkgb5JPksM/GYBPwPU/bVBKneGlzgPefG3BsrIyTNPEMAx0XSccDrNt27ZCqYQ9e/ZIymwgwKJFi5gxYwaLFi0qPCBhpP614ZSQyAPv/F9TUxPTp0939nPR0DCfSKSD7dtXEQiMBhTbt6/C768ulOSyrAygCj6a+vq5aJpGOh0mm42jaUbBM7N79zpcLh/Llm3C6x3F9u2riEZ7eOaZP/Luu38nFOpi69af8N57+3G5/Fx00aW8+24bR44c5o03dnDOtGncoGmUAru/8hX2v/ceBw8f5q333mPVV7/KJiTpO4eERVyNlEDYBIxHHpaPOdMDyAOwHwHLjyAJ4aOcbSYiD76JiP86ifi0TyFJj8eAXYCpu2hubKakqIT5DfOxlKSH58Fxe7id46HjrNiygq5oFy3tLZwOnSZQFODe1nv53Xu/45bXbgGgqbGJupI6LGWdUTN760db2di6kXAqTM7OFdatblrN6ydepypQRTQTJZKOEElHBLhNXQ2Ny2WcHoRpawU0ajq4SqWudeNymT73TpmetlbW59fl93WVnnk8V9mZ692lIgNvXA7n3gHucpGE549r+h3VboYFi5dTP07C60j0SbCYlWbBJc3U10kJDTRGaosCRR4PNaOdddGukTrRKJGLRzuk/nTJWB544Of8YfPz7PzL65SVVzoNjxIJUjOcl2xejo4N6FLHGsR7/fdbZT45JHW05949EmyWl5HvWy/fUyok5/70w1DSKPtYKekwOLBRSnv17JPGkOmBzzwOJeMIxVJ0f9AqEvjZa3jpzy9TWVlJVVU1q1cLkL7jjvmUl3sIBNxMmFDOo48uYcKEcmxbYRg6fX1xtm79iMOHe7EsAabxeIbGxhI2bVrG+PFl2LYil1PEYpkCQF+zphnT1Lj99nmFecPQ6e6OU13t5623ulBKJOOf/vQ4UikJEotnkoXwsSf3vcRQPMRlj91I2Akv+88DW9lxdC9P7XvJ+YoVneF+Hm19npm1Z3PLJdeio2ErmyffFGm4gOWn6Az3A/Bo6/MAdEb62fD6r0lm0/yjt41UNsNnJs8unN+ys2gqCXbSuVmcMD3sjyV7942Aav9CYbjzbHa2G6o3CuMNUHytrFcKfM2SPZDr/FiK+MaRQDNs6P2uAPpcN/TegKEpZo4ejaHrFBkGPpeLR5cuZVxZGd3RKKauc3TVKp688krc/00W7tZ1vKaJoWncsmMHHZEI8xoaGOfYewJuN7ft3MmS3/+eldu3U+bxcNmECfy0tZXJDz/MDVu20BWJEMtmeWzpUvpuvZXHly4lZxioiRPh8ccF/C5YIGPDEAl4Hnlu3Ahf/zqFpP9IRFBsW5tQvO3t4rXOe6zD4RF5eD7s7NQpkYXnU8KamgQZp9NSoquqCg4exGXYlJYq7r1XwPXx4wK2jx2DG28UtjoQkFPecIOkf0+fLpecD0K7/37JVMvLxg8edIQo6kwruG0LYP/vuWynTwtxv26dLC8yc3zw9NNUX3QRvtpaqi68EE3XiXV1kRoeRtN1qmfMKDyLTL+fXDKJlUqhGQYXrF6N7nIx69//nat27aKoooKpN9zA6HnzCiW7srEYRlERldOnM3TkCFY6jenzUXX++Xzw9NN4ysvJJhJ88PTTdP3tbxTX1KDrUlFe6cYIAF5yjQDFwV7x144/R36zjwdnef0jAVde/38LyNJHfNxut9S9rqgRUFZdJ8fxeiUk64z9DGw7R8+Rv+EpqcLlKUYpm/hwD9lUlL58ordhkk1F6f7HX8gkwti5DMrKohsGVZNm0XjBlbi8AXLppKhTYkG63ttJJhHCyqZRuQy+itFYuUyh9Fc2GSWTCNP13l/IJsMC7hMhseBoGriL0ALFIsE2XejVY2QZoLlcKF1H8wegqAitYRwqEoFYFLu7E83nRystR2ucgN2662M+7mLsrna0nIXK5VDhYayXNzsAHOw9f4N4FKWBZppovgD6ZUuw+7qFYS4rl+8QnBC5b8n1fvkGAdORYalFvuM5CT/b8byw3aZLnmd/+dMIcD73fPm92t6HoT5576TTZ4aYacB//UKk/SVlAsiH+6G4TNjsdAqGB8imM9i2jWEYBU+0x+PBMAxGjx5NIpFg8eLFlJeXF8LIAIqLiykqKqK2tlbyITo7sRw7C0BJSQm5XI729nZyuRymaTJr1iyi0Sjt7e2UlpaybNkySkpKSCRSNDf/KzNm/AtlZeP4zGfuJRYbIJkcxrKytLe34PfXOJ7wzoI3e/fuddh2jmDwBK++ehPB4Al03SCbjbF163cpKWmktLSerVtvJBJpL1St2b17Hblcki1bVhAMnqC4eAzLlm0iEBhDV9d+/P4abKdtWA7sA0Y7fxpSZusLFAoxogF3ONv3A//1wAM8+4c/8OzOnZSVleFo2lAIAP/bX/+KlcvxqYULR8q3Om8szdnm78BRPgHY/6cPn8jC/0lDOp0mGAwWZDplZWUFGU5TUxORSITS0lICgcD/IPG+5JJLCt7rdDpdSGq0LIuuri5Gjx6Ny+UiHo+TSqXYu3cvixYtIpFIEA6Hqa+vd1K5BeSHw2H27dvH5Zd/is7OvdTWXlyQ6gSDp4jHe6mvn4OmmQSDJ4hE2mlsbCIcPo3fP5pIpIPW1o3Mm3c7lZWTGRr6iFish7q62aRSIfG5AB988CKTJl2B11uBZWVRyiKTSRAIVDlWXB3bzqHrBqHQSTRPBVZJHWFNYzQCeG0E/IKA4QhwGKk5uAFhoscg7HMjEkb2M+A+pGfRYKRpnn8omkjP5Tpn//HOuYqAFYzIxh8BitLRM6Tek8onYSmLE6ETbGjZwCNLHmHltpVsPrKZ5VOX89jSx7hj5x3cd/l9JLNJPC4PhibyWlvZmLpJLBPD0IQV1NAYTAwSyUQYExiDoRv4TB+WsjA1E4XCUhaGZpBTOTQ0/LqOoeloKicv40S3BJsZPvFdJ7qgap58Wt0lAFVTwuomesSPbAbEK5yNgO749pRNoaZ0/tjKEmY6lwRPhZTSUjYE34XYURi9EHz1cgzlOJp0nXETJvHSc39g5rSzhYl2ZN3jJk+V5RdezA033MjW7dvp7e2jsrKC4eEgb7Xu4tHHnmDrjr/Q29tLZUUZxT4Px995nc5YEQ1jxzNh/HiK/eLfLnK72Lfn73IOKzNS/xpNpsH5LAYF2aFSjhfdhshJAdWfelDAd15GXlwvAWhHN3PDzglsfTdOb18flZWVFJtpjt8ac5ZH6e0bpHLUKIoDAY6/f5DTp07zpWu/STKVQtd1qkZV8LN1dzFh6jx0XcOyFIYhku+DB3uZM6ceTYP29jAdHRFmzarDNHWGhhLE41k6OyPU1ZXws5+1ct99C/H5XKTTOSxLEQi46e6OEo9nGTMmgM/nIpOx8HhMcjnbyaLSSSYt9u3rZMaMGvr64gXJ+FnnlBLPplDAYCzIM2+9wnfmXEVNcQU/ff0ZvnHxZ6kvq6Yz1MeT+17i23OuoqG0hpyd4z92PsmOo3tZdPZc1i68nnQui9/toTPUj8swebT1+cL67867ms//+lZe+ub9Zyz/2kVL+a8DW/m3y79Dd3iAJ/e9xE+XfAs92ya+6MrVkO0EV72w170rBAgXL4dRdwuT7Ro74tfXXFKCa2i9+KuNWpF9YyBRhrpM2xHQPMJiW33O9msFmHddAZMGoe97EN1MfNww4axZqDG9vqWFNc3NjC8roz8eJ5nJMLa8nJxto2sauqaRs23e7Oykxu9nTHExJW43oXSagUSCrkiE+pISuqNR5jc2CtvT0UFdSQljAgHchsHJUIgNLS2sbW6moaSEU+EwG1paeODyyxlMJBgMhfh0NovW3i5MtKaJwdnlkum9e4VZnjhR/LqWNaK97ukROXhtrTTkczm4+WZhvmtrZZ1tCyOdl4Dn5eZr1ohG2+MZkZK3tsLcuSR0PzY6liXluG69VQjyu+4aUa8//rgA6/z83XcL6O7oEEC89v/D3p9Hy1XV6f/4a5+hqm5V3Tl3yJ1CEuYQCFPm0AqGAMGhv91NN61tO0BAgoIgiAQElAQNIjjQCji3bbdxQgyJAVEkNyEJgyhEBDLeeb41D2fa3z/ep+om/fmt9fvL9Vnfbs5aN5U6dc4+p6pO7bOf/Tzv57kDZs2S07n1VsHwN98Ml1wC5547s828eQLc//AHMTY7ts2HHxZ2u70d6uJlgkIatKY4McHr3/kOC665hsTs2aAUfqmEFY+jfZ/S1BS+4xCtr+flL36R0z7yEZIhE6g9j8lXXyU+ezaJzs6qSdqfH3tMpOIjIxSGh2lZtAivXOaVBx7glA9+kJrWVgzTJPB9iuPjRJMJEnXJMEatKIA3WiMASQciw3/iBzNS7n9eD0ffEhk34SzDxKg4Sdc3hn10IDMUgQ77fFMkwyg4uB8aZs04h0+NCTgDAXta41sWg6/9hnhjB/HGTiYOvcCseedjReOMvP570sNvUD/7FDoXrmbw1aerz1tPXibNROLowMcwbQZffZqOBRfiuSXG3tz9f2xrR5MEvluVkXcsuJCh/b+tbjdr7rlMHH6JzgUXojDkc3Jdyah2HGGb7SjaLRP8/hmM1WuhIg9f/g5UYzNB/xFUbR3Brt9hLH8HJMVwjUhUJOr5HJRKBM+LHFynUwT/+W3UgkXCXBsGulQUR/L0dNj2O1HNsyQjWyGfMQiozqUhUS+fbUWiPz0u5mUts2ViIAhCQ7M2ifLKpGRyJBzX8cLvRa7/L5+AHz8KF70HWjrk+zzyluSfN7XKjFLFx+St1+Df7oVFS9H/vB7PsgkMkyeffJLly5dTWytlR+VymUQiEUqnVdWzZ3JyslommEgk2LFjB8uXL6ehoYFMJkNvby8rV66koaGBvr4+EokEzz//fFhW2EhfXx+tra24rks0GsU0TZRyQ6+dA/T2bmLlyg00NMxBKUMc35WB55UoFKY4dGgH3d0r2L17M6tW3UFDw1xct8Cf//wTBgae57LLHmbr1nW88cYT3HDDUUqlqarke82aB9m+/XpWrdpAXV0Pf/rTDxgc3Mdllz2M4+QwzQimGUEpE9eu4aBhcj/CStcywyjHwrHfLddcwzNPPsn4yAhNzc0ka2vZ9uyznNbdzQnz5pGsrUUBdjTKpr17OTMcU37sn/+ZeSedxD333COXQ/g3hhjvWuGfCh8rY9m3l/95y9uy8P9Li2EY1NfXs3btWuLxONls9rh4rXg8TjqdDjsodRzLXFtbSyQSOS5SwXEctm3bRmtrK/l8nq1bt+J5Hvl8vhrtlU6nSSQS1ViuyrJz507a2yXiq7t7eRVYAzQ09NDZuYRt29aTSh3EtmMkEi1s27aeeLwFy4oe5/qodUBj4zzq67sZHNxLLNZAJCJVJgsX/jOuWwhnGweIRJLE402Uy1m2bbuOVOoQnlfEcXLs3LkRM5JgTCnuQkByPPzTCED2kBnFo4hk5xGEeY4gANtAAPdiBGyvQ4zLTKRjO4pIyQOkJuYCZvKwb0I62w3A+5Ha6wgyGVExGBvIDFD0ily37TraEm08evmjWMriMys/w4fO+hCPrH0EQxk8uOZBTGUyUZhgIj9BoAMMZRAxIlWQfdNTN3Fo+hBlv0xLooUTm06kPlpPxIhwcPog67au463ptwh0gKlMDqUOcc3WaziaPoqpwprr4giMPQdeGqZflh58/0b4/WWwbx2gRJpd6JMoLi9kAs2wzrIwJIBShUC0NCb12Hs/AvkjMNYr+yhDgPW+a+EX7VKP3XwuJOdLrTehsZUyqEa8VIB9tO6YmK5wAsyXOdxHHn6IgT/9Fq+QYnSwn87ZrWBGeeSRRxg4/CZeKc/o0CAHXn4Garvo6uxCO3kOvridV379LV753U/Yu+vZUC4evgfTlkztIJwnrrioV+iv9GF4+mpIH5DtK9LxSJ3Ix1c/Io/FyarB2SP//jgDb/4B75dXMHroVQ78cVe4/ucM7Po+XnqI0b63OPDqHtCaOXPnse+5Hby683H+uOd3/ObX21h0YisxdwTPC7AsAdgvvTRMc3Oca699kqNH09TU2LS0JLj++u309aVpa0uyaVMvLS0J7ruvl8WLOxkayrJu3VaGh3PEYhaHD6f47GefxTDkO9i9u59o1ML3Nfm8w/PPD1Aq+ViWYsmSLnI59zjJeIDmwEQfMdNmTuNs7lh9FaPZKUYzU9z8jg/QUT8Lx3cZzU3xwfPW0pJooOSVmS5m+OiS97HmlGV88PzL+dPQAQyl8IOAroY22mqbuGqpvH710r8lGY2z5pRl1Ebj1fVXLXkfqWKWjy55HwBdDW3cufoqiZqbvG9Gzm3NCmXdWgBz7RVhLXYnWF0wcqNIupUWg7NqFNdmCFKyn3sQRq4XaTmO1FcrA8Y+BYXfw6x7QiO0ZQKsVUyAfe0VaBVnOJtlulSqmoxt3LmTQGvaEwm6GxrIOw77BgcJtMYPAoqex5ltbcxpaKDGtvHCbOv7entpSSQYyGRY2NrKW5OTrNu6lc66OpK2TdnzGMnlCLTmoTVrmNvQgKFUNeor6zhs6u2lIxZDxePCIocTp7iuUMRHj8IZZwgS1VqY5+uuk/W1tTJAr7iGW5bs/+ijAsRzOdFUr1s3IwHfsEFAwDe/KdvY9sw2b74pEV+GQYCB1grDkF3Gx0XSXVGv33HH8X5pn/40NDQIyTo8LKD4hBNE1l1hqCuea888IwT5o48KsNZa5gs6OwVzVXzZbr89NN9uljL0vxyIYieTmNEopYkJRnbvxoxGpY44n2fq9dfJ9fWx7+678YtFzEgEN5+n5eyzq/XUheFhXty4UWTlw8OgNYHrUtvdzeK775ZtRkeJNTWx73Ofozg+TvPChbz+ne9g2jZb165l+i9/oe6EE6hpqBfDsFhc4pZqQtWPacKWR+HPLwlLvfRC+Id1wozOO03qdEeHxDirrgHqGuU1w6CSzIhhCEgv5KRG2ymJTHl6XFyrq2znv4kk2XOpmFm2nLiEZMsJxxmNKaVoOXEmq1prTcuJS+T5/PMxrQimFSU19BeK6TEC32XWvPPx3TKmFWHWvPOr+1a2RSkMK4JdU0fHGRfhu+WZNk9cgucUaTlxiZh2Og56agL/6a1yewkd0P2ntoJlY77rMpTWx7uDGwZGZw/Brt/NrCuXUZEopCYlC9tzq/nXwc7QsGzBIoyVFxL8+Y8iLy8WJLs9bFvnpCxPTY0JizwxIhMYnifAWqnjGeqTFopDeHpKVAg/fkTi0xqaZJLjyf8U4zmNXMjnroK175d71T9eI0oDrUUaP7sH2rpCVcOogGrXleviujtg7ZVyCWlddfeuqCItyyKZTGIYBp7nVaOzRL49UyZYKpWOMz+rqCwr0a+dnZ08//zzx8XI9vT0kM/n6e3txbLEY8MwImjtVdWMmUw/rltgevpgNZorCDzq6joYHNxHMtnO5Zc/Sjw+Kxwn9nPqqe9j9er7MQyLSy99mGuvfRUdlpCddtrfsXr1/ZRKKd71rs2hdHy0ul4pE9ctEQQuudwwQeDhoxkCHkRKBwl/LjlELm4CX37kEbYODPBLz+Pp0VHOP3CAfFcXA1qz++BBnn/lFZ555RXu3buXhQgofxn47I9+xKfvuYcCcBgpMwzdPoiFI6MJZFrX4232+n/z8ja4/istQRCQyWTI5/Ps2LGDgwcPsnz58mqtSk1NDXV1dWzdupXp6ekqEM/n8/T19VXrqp977jmy2SxKKfbv34/rutWOcOfOnXR2dlajvbq6uti7dy/d3d1VqbhSilWrVnH66adUz60CrF03z8DAnmqOYCXi4PnnH+DVV/+DHTtuRGvNqlW3HxPNJZMB6XQ/iUQL27evZ3r6IMPDL5PJ9JFO97F//xZyuWFSqcM8+eS15HKjLF36SUwzgmXVEAQ+y5ffihlJcj9SsxJFLkYbkWrfgEhsDOCfkBnAipSnYlIBUoN9MQKan0A6z4pEZy6wFGG/bwmPc3/Y5ieROuweRCo0jrhGmsqkq66LB55/gK66LqJWlMWdi7nl6VsA+OSOTzKvcR5fueQrGMpgd/9uDk4fBCBqRcm7edZtXcebk2+ScTJMFCZQKB5c8yDddd3E7TiO75Aqpgi0fMfHuovn3Ty+9tm4c2M1CxvtC0sd74B4t9Rbx0NX7aq8+w5hpkEMyJoXgzMdss9FAchWQmK6lCnbxtqhMC4u4mZMHu1kmH0dmZGGL7hD3LWbl8DEXon1AgHNToawgE4YFc3xUVwgzHll++LUDDg2rNDkLJSCB241ngsjOsOs150ArWfLo+9Ku5qwLntI6qt1AE52ZpY/jH07Tvpt2jMMvZMOHcsBAqhphvoT4cKHRRIeqRXZt1UjcvJ3PQKJDuhYAcUxeGa97I+WCY3RFyT267frpYbbqoGaFmzbwHHk97ZkSRcPPPB8Fei2tCR44IHneeKJNxgYyBAEmoceWsP0dJEHH1zD+9+/kJGRHE888Ua1lnrjxp3VWmvDUCxc2Mpbb01yzTVbmZgosmhRO9GoiWka2LZBZ2ctt902IxknUJzVcXJY56i59+lvsf7nX+Cxvb8gErqsRkyb01pPoLuhnahl4+uAqBUhbke5c/VVTBcynNzSw2Q+zX3PfJe8U6TglGlPNnPH6quI2REips1nLvowb4730Z5s5s7VV9FR38IZ7fOZXdfMdCFN2XPwAg9x9d4QgujbwZuQR0yplW59CMxZUNgFXh+03is51xV38Oq+nw7XG2EE103gT8DItcJue+PQfAsUd0mNdZAJI8CuA/dNAdvt3yRAM1Us0llbe5zk21SKg6kU67ZuZbRQYGlXFxOFAm4QUBeJYCiFFcp/7bAM4vZVq5gsFFjV00ONbTOSy/HUwYP0p9M0x+M0xGLURaPMTiapsSwGslkCravHrY1EuH3lSmrjcXQ8LoXFlYmjRGJGum1ZEtPl+zP51Pfdd3w21saNAg4+/nEB3uPjx9t1b9ok+u7Zs6Udz5Maa63ltSeekLrsmkodrmDuT3wCenoE99fVCR7/5jdlXRAIOP7mNwUYg4Djw4fFf8334QtfgPe/X8B4ba1s//WvS7n47t1yDPEikLYNQ9zCH30UTjpJ2rvpJviP/4DRIZdcfz8vfP7zxNvauPi//gu/VGLfPfdQnJig8aST2P/YY9UIrVhjI7HmZmadfTavPvwwuf5+CiMj9P3617z+ve/RfOaZeIUCZjRKbmCAfXffTa6/XyTgYV3269/5Du3Ll3P6Rz+Ksizaly8n0daGDgLG/vgndDQmIDjwxYzqwJ+Fib7sn+DwGyI5fv/1kM/Av39F5MKGKXLjv/2QvPn//DcYC4vPpyfgzT8J2DNMAdaVml/LEnm5GT4+9bOZumzTCkt0TOxYLVY0cRzQNawIkXgDs09/B6YdozA9EoLidxFJNGJYUlRfnB4m3jibkdefozA9KFZoVoRoskFyruP1GFZUEg32PyvZ0b707VY0TqSShx2vJ9HUQaSmDqXDMoa6Bsw175EKoW0/h1wOY/VlYrAaGlDOuINfJPtYNsaa92Ku/zTGxe8RqbaeAcrHAepVF6EtC3Pt36EaZ6EH+zFWXoQu5ME0MVaGbXf2zGSMr/kHYZFNSwDvkTflO3n/9bD0IgHe48NiZBaLC+he/bfyHR96Xb6fuafAk/8VGqsZ0lZLm3zXB16bcQkv5OWe4vvyPU+Pi2Fa4Mt+Jy+E6Ql0egpMk8bGRgzD4LnnnsNxHIyw33Ech6eeeop8Pg9QHQceW4NdSagxTZPLLruMK6+8klWrVjE4OIjv+1VPn4svvrgK0KPRKKtXr8bzPLZt2xZGcWnWrHmQ9etfZ86cVZTLmWpMViWaS+uAyy57OPT00ezYcSOvvvof7N69mXI5QySSZHr6ADt23EgkksCyYkxNHSSXGyUSSRKJJInF6nHdAs899/lwfS2eVyKZbCObHeG55+7F84pYWtOtNZFwzFhGlItxBADb4d8IQszMZsZJPIIw3X44zuwMH69FCJrJcCwaQxzF25ForuZwn0y4LiJ3r7fB9f/i5W1Z+F9pKZfL5HI54vE4AE8//TRr1qwhCIKq+di2bdvo7Oxk/vz5VRnPsXKc5cuX09/fT39/P2vXruXJJ5+syr937drF6tWrsW2pO/V9H8uy/n+6iwNoXUYpkyBwAIVSRijTdunv3x3WW5dpajox7Oxq0doP3R8DfN9BKRPDMAkCnyDw2L59fdVlfOnSm9iz58tceunDbN++nssue5ht2+T1K6/cSl1dF729m1i1agMNDXMBAzdSQ1oZVTm3Dh+vBZYB70M6wQrwVsx0lmNIZ7gLAdBHEWDdhTh/b0A6w5eRDrQP+DrwVYTlrgu/p1okZmE9Ig9PldKs27quKvv+/Ds+TyKSIG7HiZpR0uU044VxNu7cyK3Lb6Ut0cYfR//Iyp6VaDTXbL2GLfdvIX44TmG8wO+f/z31J9SzqXcTR792lMxkBtMwqa2t5QsPfIGzzz6bw9OHueKjV5B/Lc9A3wA79+yk/oR67t15LxtWbWBh03yUmxHAtu8aMRXruQIWPwpeXgzI4l0zdWuqwm544vJtRMNs7DCqK/CYcclWYmj2pzvg7AdlHycFsdYZmbgyZxzHT7tZXMpnrwln4cszTt8//xmLzlokH6ySL/SE+Sfy+E9+xKL5zQK6/bLEeBlRee3nP2XRwtPlOL4rzHdl8Z1Q5u7MuIdb0Sr7IjmwZdkmKEtt9EsPiUO4Ych5O1kB0pF6afO5W+CC+8UATVkyOZAfgpcelPVWTSgh9wTsB76sK4zIxINhwe9uEJDduUIyshdvEMBfHIMjT8HIPnjXN8mXTQ4dyTAwkGHFim4MQ3HoUIqNG3dyxx2rmDevkUymXH27t9zyNJ/+9ArmzWuoyrq7u+vo78/Q3V3P/PmNHDw4zcaNO9mwYRXd3XUYhgo9ETxefnmYRYvaCQLN8HCW4eEcS5Z0UlNj4XnCbNc3Rin4BQpOkZZkU1X+ffXSv6XGjlIXS2IoRdEtVz2EH/z9f/DB8y+nq74VU5k4voNpmHzuqcdY1HkyizpO4Xsv/IoPh5Lyigzxvme+yxmz57Oo4xR++NI2Pvk37ydi2liGScEt8eb4UVoTTZzYXF/RQoS/dBe8KYnZCqXa1F4hYHnqy2J8pgORhKOP6RnMyoUzM8lyrKy89X4B1ejwehsXY7NjZedGgqJuIVX20FoTj0QwQ+l32fP42LZtbNm/nysWLODfLruMgUzmONn4oelpkX93d6MBx/eJWRaHU6mqc3gizLTe1NvL7StXErdtGmMxLMPgkzt28NVLLwUg0BozrIOMuy6G58n7su2Z0OhsNqzTrRHg294ubHTFZru+XoKoN2+GO+8U17FUSuqsW1rkd+J5sm8yKQg2zMklkRDZcjwuNdsDA8Ju338/fPGLZGo72LVLsXixlGhXHL/j8Rll+siIAOa2tpmftdZy2EOHBO9/5jMCmitJb74vcwi33CLAfXxcUsD27RPAHo/PnHq5HJYbh295zuw8L33us/T9+tf0XHIJi+++m3133119fu5tt1GanGT/Y4+xYN06kl1deMUiL913X3Wb8+64gxfvvZcF11yD9n2sRIJYQwP77rmnus35d95JYXSU/Y8+KrLz9nb8chk7mSTwPGG3JyfxCwUaerpRY0MCdK/82IzSxw+gmBM2OxoTE6y5p4gBWeMsmBgWQLbmH6RG98B+kY0TSsWzKYnyOrhfGOrKc0PB5Lh8MOXSjHS5th5MEz9WQzmfYuroH2k//W9QwI2fvIknnniCvv4Bnn/uN5x+8lzijbOrpVzf/8EPuXrdtfz0p1t433veA0rxoX/9V/7whz9g2VEsy+Lmq/+O9/3zVdixOnTgMfznZ4XxjsQx7ChuIV11GI/E6ySizDBBKVQgE0ZKa5Fxu47kTNfWoy1LnueyBHt2Yqxei7Kk/prJCTE9q60Td/FVF1Xro5XnSq11fQM0NqNcl2CoH9XegbIj4SRrWVhqy4baOgj0jAxcBxJ59ZvHxSVcGXKPMm1RCVSk/rE4uCVI1lNVTbllcQa/6L3yvbSEE1b1jTNeIYYhbu/vet8Mc+178heJwZ5nYNm7BLxv/7FcBw1Nwo4//Qv8Kz9GCYMdO3awdOlSGhsbcV2X3/zmNyxfvpyjR4/S39/P5ZdfTn9/f7Wc0DAM8vk8NTU1KKWOcw2vjBeB49bH43FGRkbo6uqqAngx4i1jmlLmt3PnxqpsO50+Qm/vfaxY8WmSydmAIhqtpVzOhGk0CscpYIUTNkoZbN26ju7uFVXp+LJlN5PPj9PTsxLXLTAy8godHeeRTveRz49RV9fBzp0ypsxkBkkkWqmv76Fk1WBFkyhEtaiYKRc0EWa5GWGeNyGqxYqLeGXceCNC3MwO7zBHEQLmHQiABlFTauA/gfeG69uOOZ6PTP8meHv5n7i8LQv/v7gkk0mUUhiGwZo1a6pMsudJVfDq1avp7u5mamqq+lpXV1dVjrN7927mzZvHqlWrKBQKXH755USjURoaGli7di2FQoFt27bhui6WZeH7PpFIhH379lXZa9d1QxbcIpU6TLE4Va3DAU2hMEVn5xLq6rppaDgBrXU4iyiyHsfJkEodZtu265gOGVrDsLCsGlat2lB1Cq+paeLSSx/GsqKsWfMQSlnVnMKuriXHmaAFgSfA3StRrzVFIIvMJHqIi/cHkZlGH+kMw+EIZWRWsCt8vgRhuocR2XcUYag3Ixd3C3A90sk9iHSon0UAdjJsbxr4DFJ3bSmL21fezhULrmDDqg20JFqImBJX5AYuCTtRZZUf3PMgtmmzomcFtmFjKpPbV97OO9e+k59u/yldPV0opYhaUVZ0r2DeunnsfnE3O/fuZN316/jXD/0rR6aPML9xPl/+5Jd5fMfjJFoSDOWGmNcwj0cvf5R5DfOoVvZoDQs+M2M+Zljwyq0w+lu54JSaAdU6rDyf+gNVVtkPWa9CnzDZQbid3QBnbpQBhWFLdjZKQLtfDpnzGjjtUwKsmxdXy5mvWfcRuhasYmBgkDWXruXEU04FBddc+zG65pzAwMAAa9a+hxPPuUgY62gd16y/cea1Sy/jxFMXyqAlcgyw1kjNeEX+XZyakZkfG7ViRkKpZCDZ3O94MGTww3V2QqThxQmRvLcvFjBdcQk3TAHIlfVDuwSk/+Zaybq2j62aUtLe4tvhhItlvze2QK5fzi11EE69UgzR0PiBIhazWLq0i2zW4dOffpq5cxt49NHL6empx3VFi3HLLU8zNJRl8eJO+vrSHDyYYv36bbS0SOTW8uXdzJ/fyOHD0/T3p/n61y8lHhfWtlBweeutSa6/fjuzZ9cSj9uYpmL27FrOOquNl14axnECDENRVxcFQ5IJGmrqAM3sulncsfoquurbaIrX4wc+CsV4bprNv/s+47lpzpg9nx+8sFVk4NrHNiymC2k+eN5als05s2pMNlFIMZyZYNNvvkPJc7jtog+z5pRl/PClbZwxez7juWk2/ubbDKbHSURinNVxMu11zfLrDAryEbuHxWBMF0KpdoWV3gBGE7R9HbwxqZuugGT3oIBo96BEagUFYbgLu6tSb5pvB6NZarYLu0A7ArSbP3MM690ARiN+4BK3bSaKRa7ZupVD09MEWmMoxYaVK9l65ZU8fNllREyTpG3zqWXLiFsWgdbMqa9nRU8PSkmmt20YuL7PxjAz+77eXloTiarcfCCToeR57B0cxAsCNl14ITnHYTCbpeC6aMANVUz09YlNdqkkYLhUEoBtWfLX2npc/jQgwLmjQ4qf584V1Do1JYXO4X2IgQH47GelTaVgdFSKoN96SwCB1kIVr1wprPZNN8HYGKYK6OgQ8LtxowDgkRFRqo+MCDafN0+AsFICgN98E66+WoB1f/8Mwe55cqiK+nx0VNp74AExQX/xRVG+9/XJfMINNwiANwxpe2xMlO8+FgvWraPnkks445prUKZ53HMrkSDR1cXiu++mtqeHlzZtou/Xv+a0j3yEnksuYcG6daA1591xB8muLkpTU8SamlDWTLunf/SjHN2+ncLICOdt2CDScaVQlkU2lJxnjx4l1tBAtKFB+qHtPw6NqcbFlCo1BX1vSSbyT78t/dCV18E5K0RCPD4s2x5rhHXZPwk7akcF0E2OSR/e2CLAvbFlZuLUNAVYz2qHf7lBjLliNdW666kjf6D9tFWgA/JTg7xn7cX8+pf/RUdrI55TJNHUiTJMnGKGvv5Bvv2d77JkyWIBLL5L4Hs89NBD/OHlF/nV9+7jqw9+ketu+yKjb+4BhOWcffo7MCNxytkJlNZVU7PxA3sFSJsWlYgqpYHpUMbtOtA4C9U0C+2UIZ0SE7bdz6JffYlgxxPoXBbl+1Bfj9E9h6B3hqVWOhBJ+PZfoOrqwYqEFSQFMUPLZmccxS0LncvKJKoGPXg0nFTWoAPU9LjkUANkpmfUYZUabJBJDMcR+fjkqEx2VJzBn/qZKAjqmyRmzbJnsscnhsUcrSYh+/3wq/Kdg1zYbV2C1BqahbH+zS9E+dAyG/7+KgzLxrIsLr30Uurr6+nv7yeXy9HZ2Ulvb2917JjP54nH4wwPD1eTaRzHYevWraRSKdLpdFUJmc1mq9tUyhh37twpZozJJP39/XieRxAEFAoFTDOC55XZtWsz3d0rMM0IhmHS0DCPyy//Jk1NJ2PbcVw3TxB4RCJJMb8rZxkZ+QNB4FMoTOA4OVatup358y+uliE+//wDdHYuob9/N1oHJJPtbN9+PYZh0dW1lJ07Z8aUXV1LMQyL7duvJ6IMClqTRcoEJ44ZUoBIxUuIinELAoqHkTFju4wcqmPJOAKqm4CVx7RxC/AWoq68EmGy25lhqz1kbJkJ/95msP/3LW8z13+lpWJotmfPnqrLd4XRqbgyaq2PY6orM4f/3QgNqNbORKPRahvbt29n8eLF1NbWHsdW19XVMT09ze7du1kTRr8YhkepNFk1H6tkWQeBR3//burquslk+qmr66KxcT5PPnktXV3LOOusfyGbHaoaS1x22cPHGJNZ+L6DaUZxnCzlcppIpJZotB6tvZAp9zAMm1TqUDizeQcNDScACq19ytE6DKUqPs94zMz4VJ6XmJklrDDc1bIzpPNrRiDoHmT2cDb/Zy72I8A1xzx/FOl46xGA3QzY5RyZcppMOUN7sp2BzABtyTaGs8Ns6t3EQ2seYrwwzuZdm/napV/DD3z2Du6lp76HExpOAMALPGzD5vSTT+f7//V9Cs0FOpIdnNh8IgCHpg9x9eevJvVsiiefe5KiV6wy4RefezFLPrWEH1//YwIdsGdgDxf3LEUVhwElDHLDGXKTt5LgZuWTKI5IHFclqzreDcl5zJiVWRCURO6t/ZmZ+aoxVMhk61B+VuEScwclgmvBBgHYkUZhco3occw1tV3VTOrjlmO3qTtBBn+5QaibUx1Y4eYFJPtOaE4Wno9XnmGsj2G8j2/fl/xpMwKpQ2DXQKJNAPXejXD+rRBvg/E/QudKOf7wPgHQc94lEV1eUdY/eyOcezO89MBMHvbF34L0EYntal8iLuHDe2H24pljXPQwlKYh2iCsdes5AORpIpN1yGTKdHTI+zpyJEUsZtHYGGPv3kFmz07S29vPrl393H3339DSkmD9+m3VbOuvf/1SIhGJwdq5s4+WlgTj43mWLOnEskxGRnLHZWF/61vv5tChae6/fzdf+9qlmKYin5e8a4BoAvwgwAwzrQ1lCKAO2VmtQaP53FOPseON51l72kpufscHsE2bsufw4O//gw+d/27a62bhBx4RM8JgZoxv7Xmc2y/6CJue+U6Vza6w1VErguu7PPDsD3ny9V7+7e9u4+SWOdUc7JYaCxWEfICyQ0balnppZco1iy3geXJzyEDHw19/cDw73f4NkX9PfF6Y7shcAdSqRrbVZbm2/XQYw1VhvcNBMx7F8jSO0c66rVurLPWjl19OoDWWYVRZ6NtXrmReYyNjuRzN8TgoJf4IgB/20WFxQnWfO1atYn5jI29NT7Np504evuwy9g4M0JJI8MDzz1cZ8N6+Ps5sa2O6WCRmWcy3LFRvr2irBwfl8b77pOh4YECyrubPF1b0zTeFRr71Vjj5ZBmo+2FRzdVXS+5VX9/M/vG4bHfFFaK1PjZP++67BZwfPizb33qrPM/lyMyay87dFmedJZg/FoN77xVQvGbNjH9aKiW4XykBxCDrK7Lv888X4t3zjj/0N79J1fS8QrB7nvisffrTQtJblpDx69aJan1ypIBlCQvqFYv86aGHOPPGG7FqavCKRV750pc49UMfEpMypSgMDUmG9ac+hVVTU82/rhifufk80wcOMGvBAgzLQvs+WmteeeABFl5/vQh0tMaKx1GGwQv33EP/009zwVe/SvOiRfjlMtF4DSoIJA6qsviuSIMP7Ie5p4n8d2pMgNjUGPz2V1KL65bFnEwZIQDUAsCOZVNzKfjzK3DKWZKRXFEwoQSoHv7LjNmWDgiUQaDALWUZP7CXWfPOxSsXiTe0M//Ek/nxf/6AjnhBaqdjtVxy8cXcfPXfsfmRn3LDJz7Be977HtxiBreYJd7QjlPMsPUn3+PaT3+R/oN/JpZswisXCAKX8QP7aDlxCXZNHQQ+hdQIdk0tkZq6quYEpTC8AP/Xv8RYvFxAtdZQyIvJGCJrxvOEia6rh0StGJYFYtynU1Mi/155IaqhScDz/lfEtGzt36EzKYKdz2Be+rfSRiKJLuQxuk+o3qbkXCqjj5BJ972Z+9SRNyW/ujKJPTooEx9rrxQJeCEvedQ1CTjyhhiU+Z587sW8yMPTkzPf8dO/gH++To787185Pp+8sUWk4sUi1IWMOFq+z0hU3rPWOIZVZZiXLVtGPp+nsbGRWCyGbdsopRgfH2fPnj1ceumlWJb0c67r4nke4+PjdHR0sH379urY0fM8lFLkcjkymUzVILevr494PF41OUskEth2QD4/RiSSIJsdDs3KNpBMzkYpE98vUy6niUbriUTqSKUOYdsJ4vFmXLfA00/fwvLlnyKbHaanZyUA09OHQpXjHTQ0zGNi4s/U18/hqadu4vXXf8Y//MNPmTPngipbvnLl7TQ2zudXv/oob7zxBNd+apzxqEyKHwSWI8zzfQgbPQB0M8NQPwJVgmc2MyZl+4Bz5c7DUcQQ99Zwm58iqsm7w7ayQBpRRFZk5fYxbWkEqFfKGd9e/r+//P9jrt8G13+lpVQqMXB0gO6ObnSgUYaqjgWrANsA7c+AbddzsSM22tMoUxGYAV7Zo1woU1tXK+0oVcU92pftKvoXHWhQoCzp/CvtaF/j42FFTDzt4ysPrRSG1mTzY9TGZ4FpVwfbBgpP+1ihY3W5MEU80YKvg+McrS1lEhCE78cIB5WyjatdLGVWZ/oCHWApE4XCJwiNuwwCrUna8aok8NhFi9VR2IamhKKkFHWAoQMCwKrcdEIR6/GLogzsUoozgWatQ6GrvFaRDBnh/gEyg14oZ3C9AvWxBmlTB4wUJnnmyO+58rS/xTDCgIZK/S4GARqjIqEOz2nuyQv42Y9/yFmLziTnlYkaEa656lp++/ud+IHP44//mMVnLeJYx+65p5zJL37yXyw683QIPz+lfZwgStkF0wCltMSjWgZ+eP1Y7ig1vz0L2i+GU2+SSK2WCyi4EVxPY1kqNAWS/3uexjJVNcVKa41pKAINOgiwbAPX1diWwg/CsZqGIHAxDRPDMtFGAEqHrJ5RvX4qjyCvRU1h9dzAP+b1mQkmyzDxQx+ASlsc810GWmMaJn7gYyoDja4yiaYyZILHsAQiGRpb6fDbDcRR13VCYB5AfgJqGsPJAXfmEROcnIBzwwxlxZXpnFByrDWoIPw/gCuMhRkHPwdeVuqyw6tWY+AEJm5g4IfnqzWYSm64M+9XAFlQUbY4ATd9Ygef/OQyenrqsG2TYtHF9QPitTaGKZN0JorMtENtUwRfaywl32eh6EndtSHPA60xtKJQcknGbaK+j+m6aMtChTm7Wgc4QKAgGkBWu7wxdpRzW+eTw+Ore37Grcv/iUig8RUoy8L0QkdqHf6mtCYwDAzfxzcUhh9g2PZMli/H9H2+j6fAV4qoUqggwLFMnHIGI9qC61pE7CJmMEUp6KwmuQU+WLZH4GuCwMa2fUxSuEETnq+wbQFw8qixLQ/PszEt8L08tm3iulKTbpjSHig0RrWU2TAgYgcoFTCazzMrXkPENKvSdQ2kSyUSkUi1tvrYpeD7XPPkk9y6fDnzGxvRgSZhW//Hdjr8pxz4TBWLdCST/8c2xy6B7xOUyxJHVEGdyO9VheehgwBjbAydSqHq69FtbfKZm3L9aq2r2x67r/J9meA0TVE6hSDTMAwC38col9GOg47HUZEIOhB/hTeOJPjiFxVf+xrEa3zAx/MMTFNM9XxPY1qqikfQlb5Efh+oUAqMIgikDEVrhWnKhqmUSamoaZ/tV9+v0hpdaVDNPK/cD40gZEJ1gO95jO/fT+uZZ4HWGCo02Q7fu2mZ6BBQKR1Iu+GiNNXn8pqB9lyUZYd5zorA93GLBfxiiWh9HRrF2J/+RPOpp2KaBmZNnADwjplUB8D3ZDhgWtXfhaEQpjYSk3MNAgIFupIHXVnKJVQ0KvfHY9utuLmHH4z+78eUA1EpmSilRzCjkTB32kJrj1NPPZMf//iHLFp0NqB58MGvMT0+wuc2fp7VF6/l4x9fz3vec3nVCfr22z7DL375JKlUmv/6zx9ywd+slPpooDg9ilNOU99+clhiZlQvfNOw8f0yGJXztAhMC9+wCTwPW4Fv2VJGF45V3GMnrwDb8/CKBcxEEt8wwvEAWOkUdqmAU8jjnTCfQBkYgQ+OgxmJ4hpKDNQAM8w+J2IT6DBbwPfxLYuEU0aNDcK2H4tqoKkFxkeEQf7n9TOA+BP3CBg+1jm8sQVaZ4tRWqkon/n4kMj3n/pZKNNvkA+j78DM/pf8A9Q3i8pgZEDq7htnzZxDNBbKy5sITEURjae96n3VVGY1eaTklIhYEZQho57K9WBgVPchQCZYkQlWE5OyV2ZseIzu7m4c32F0aJSOzg4wOO4Ylce4YWEhYyG5R6vquAgdEGhf7vfKoOSW0L5HJBLHVIRjH46Z1Id0dpRcYYqamkY8z6GhtpWIFRGC4LgkkMq1PnNNaw0BCq002qjBCgcuQyiywJBSnAEktCaOJhOWJdq6ckeu3JsVTnidxdAMKoNTlcF7EEANAshnE0a76gBHa2JKUa81Jppjf3klFIFhvi0R/x+0vC0L/7+0KK2OA9Y6vKN7ZY/8uJhMaG8GLOtAY0dspg9P07+7n8ANMHyDiB0hmZBB17HtBF5AbjhH4AY4GYfJNyfZum4rqUMpAicgdSSF7/gzAw5tEgCu8igHLmW/jFYG0XgzvjLIOllGc6NyjmHnfDh1hHVbr2HUzePJKFTANJqp4hRBCHLG8uPknBwHpw+xbus6DkwfYFffLg5OH8IPfDLlDMO5YTJOFidwyZQzaK1xA0+ANRoV+CgdoEJMo1KHUF4JM+yorCAgqQOagwA78LHKGSKBj4HG0KACT/YPfGEJ5BMmpjUXukVmBT6GV0KlDmJ4JYzAk7Yr+2mNqUFpj2R+gMap/SgdnldhjHavwPtPugTzN9egfA/lZFB+WY6LxvBLqMFeOW9AOVnwXcy9n8dKH6XeThDTHj/4/L/Q//Kv+cLdG7jnzs+jCuPy/nWAcosiRQs8aQON0j6u41Msa1xXUK4fGOHACiYnC5RKHp7dRuZd/ThnfQ3KUzBrCQUvQjrjMDKSw3UDXDegXPYpFj327RskLHMjCCdtPF9uwBOThSrRFYSvaw3ZnMPwSAnHA20E5N0i/VNjIYCTQVCgA/xQVtafGuNzTz3G4elhvCDA9T28wBcjK99nIDXGPU89xtHpEXm3VTwtg0PP9wm0puQ66CAgCMHBUFqkx3mnhBv4BMrEB6KmxlYuSjtiYFXoBeVJ9I0ZQHE3RIugp8E7BMGkGFr5EzIfEq2VekXtgRfu7x6SR1zQORhZD+4boLOyX8QAS4ExDtk7hW0NcuAN4wYGRQ9KnkdvXx9vTU6SdcpkHAcvCDg4Pc26UHbsBQFDuRyZcpkSHl/75qXMOameSI3J9ddvo+R6JBsiFHyXtyYn2dXfj68g0SgmZF4QiHwYGCikmSwWhD2tfKQG5IOyAOt0GuV5GJkM6pZbUK6LEWiiKGq0wty1i/qiy+KihbVuHfVHB7hz5fuJHjqMsW4d9lsHMNMZ1M6dqMOHZYKqVMIYH8f0PAzDwAq0xAE6DmrfPpTronwZZKl0GjU8jO0HRFEoP6BoJJhMJxgY7SCdtti9W5FK1zCZ7WRoSOG6ikOHFFevU7z1lkU6E+HqdYoDB02coJliSdQWBw7AunXyaFkGhaLNzl7FgQOK0bEkb74V4+p1Ed46YFEumwTawvNlcisIRF0UsTW2W8bO5um0I8RyRVTJQb15FFUsY/g+DdEYEUOigxTMvF5yiJsm31q7llObmombJklbpgCV76PSOakvBYySg/HWUWIoOpJJVKDl9ZIjfWCl3bf6CDwP3/OqwDoIGdRcfz/jL72EXy6jg4DxV1/FnzWLYN48gvZ23DC/WQeVGTKqahW3UMAvl8N+HXEADwOnc4ODBI5DEEZWZaen0fX1IlPP5xn/wx8IPJfu2WU+c5tHbbKMaXqYpsYIpnEyg7jFFKOvP41bTAsTGQSgfZx8isFXn8YtpmRSKfDRvoOhPAxDY9kygYj2aah3aW6YZujVp9Gug1tIy76FtPQTvkd+ahC3kCbwCiIVrnQkQYBhmrSfdRbKMDB0IGylIaVahmmgPS/8DjXa86TONzxXncuIyZRTkrreCrD2XIKBIxJHZRhEk7XUWAY8vRUTTce55xJNxDF9jwCYTKWqxlIVMiNXLDGZyQIwPT3Ntm3bKDsuRGIEQUAun6fk+0ynM2zdupXJyUmCICCVSvGrp55majqF4zj09fXhOA7T09P0DQzI94ciCAK2bdvG9PR0uE6O7fk+0+k0+UKWaH0Tdk0dWuvQiwW0DvC8EhCwf//r/OIXv+DOez5XBWcAqdQR8vkxPK/MNR+7lN27n+A//uMHfOb2DRw48FsmJ9+kXE5T09hKbes8HCdLLjdMuZzBcbIE2scLnCr7OjCwB1dByoyQMQzcSATfsvGVQpsmvmGgDYMgrAFwQhVgybII6uoJDINAKSaU4rBSOPUNFNs6mJ57Em8YJtcpRda0CGripAyD55VsHyiFYxgQjXJIGewyDHzDwLMsXKVk5m3bj2cM4bQWpnrPb6UGvpIdPu9Ueb2yXbJeHn1fXMP3vyRg+b8bzEUiUhLwjY0iG//HawVw9x+UY+/4iTw/9hxqElATRxsKF8g4maqp6vpt68k6WQpuATdwMW0TDHADl6yT5YZf30DOyQlh4pXJlDP4+BxMH+S6bdeRc3JCilgWHd0duNplsjRJa2crPj6Hpw/T29dbTTc5OH0QHThYXgZVHEa5OUy/iNq3DpU7LGMahERR47tRmQPETJuaaBzLL6BeXI9ys6jcoXCfQyg3R32ylbpEM3XJNlqb5hApD4XbZmRM5GbDcWL42/XLqNIoyi/J5Ej+CHZ5GhswtMYoZ+j0SpxWTnOhW6Q18EkGHobvUO+72MEx406tMYMAE00MTVJrLK3pCXwOBT7/EXicHPicFPicGfjMCnwSgUez79KVOkhz4GMFXnWsqbwyqpwh5pWIBhVL3reX/w3L2+D6r7UE4OQcvLJXXaV9TTldJjErgdaawX2Dst7T5MfzOBmHhq4GupZ24Zf9kMwMX8s6ONkwVsGXm1zvF3tJ96VRpmL35t3s37Kf3V/ajWEYNPQ0YEbMarsAvuFT9IpMFieJGBH6Un34WmYs6yP11MXq8AOfkdwIbuDSUdvBbStuY07DHKyw1kiFM+Kz4rMAuOWpW8i7eSJmpOp6val3E8u6lzE7ORvbsElGkrQn2olZMWxDzDwOTR8iU06L7I9QkqyOuRzr56KsaMhMMMNaEAJXMxTYlDOAMOekj4SfvbhAq3AHZUZDtqwMyQ4qEVJKhds6OZk59UsoNy9S37bzUenDUoMbbUQlWlHltMiFDVMctVEwvAecLMp3oeUsyA8KOHPSYpa14KPQME9uBGYEZi9H1ffwrx/6EL97rpfJQlgbHHjQ+xn5f0Wy7Xsov4xrJCgUPFw3qI4bfT/A8wIaGmqOueQsCn4tTvM7wEzg+zA0lOXAgSmOHEmzZ88Avh8wOVlk+fKu49QCvh8wMpIjl3NpappREigFxaKL7wfU1Fi0tiawbQOfgFy5QEtdAyW3zEQ+hRcO4jKlLL4O+Pbex9nxxvN8a8/jaIR99gKPqBXBMAy+VXl97+N4gY/wVwKq804RlKJ/ehTDUJR9lz8OvclAepyIZXHG7PlM5FL8YfCN0PgpwHAPoEbWgdcvkU3xC0CFMvKgDLGzwB0Es17im8wGUDGRGGsPdFGAtNcP7jBYLbJ97Cyp81UxaL0PVL3sY82W60Z7YLZAzQq5jv0hmPgCbmBS9Dwmi0WWdXUxu7YWyzCEfVGKwUyGpw4eJGnbmIbB7GSSumiUZCTCoVSKdU9u5UBqmq9+81Iam2JVg6vRfL4a63R1CM73DAxwJJ1GA8O5HDnXrQL38XyeQGtakklM30dVslZjMSlUPXoUbrxRwF8QwKpVqJoa1OAgXHABKhKVCav7769mJqlUSup2+/pEMnz99dDaiioU4M03UevWwaFDqN27YcECuZAqut54XPYBVC6Hs/tFPG0yNKS46y4YGlKccQaYpqqu6+ubqdHdtEmRycj/BwYU2awivPTo6VFccAEMD8s2k5OKZcvEUKu1Fe6/X/HEE/DZz36CM8+cS12d4tVXX8H3Rar8nvdczHnnLeLs885j1bsv45UXXoTaBFPDIyx672UsOv98Fi1ezCmnnYYVizE1MSlzQX3DMD4NfcMoIGaY2I5bBdKAsPd1CcjmZb1hQF0SZRooP4BsAeqSEItU1UmUHahNEAQB+YEB9t11F5kjR/BLJZRSFEZGiDU18eK995IfHKRl4UL8UonS1BReoYBVU0Ouv5/S5CR+ucz4Sy+R6etDa40dj1djqsrpdBWUaq2paW4m8DyKExNEGxtJzJ6NAsqZDKXpaRpPOokX772XRNxnXs8Uhamhav9sGBbxhnbcYo7M6EHcYha3mGHotd8AivGD+6q1t4Hn4JVyYmwF1dKp/NQwbikLhoFbzDJr3rkoy8YwTOKNHbjFPNp38dwSsboW3GIOMxJHYQiI91xhV4MA7csEqjZNiETQFRMrebOhfEGJ3MGo3BsMVG2drI/EULEadKkoTs2lIkbXHOk3f/1L9PQE1NZiXHQZ5HP4W3+CnpqEZK0oSiyLeDyO53n09/fjOA7xeLxqRmpZVjVOKQiCqneKUgrbtrn88stpamrCMAzq6upYvXo1uVwOpRSdnZ3Ytk1dXR09PT3S1YU/hq6uLnp7ezEMowrggyCgsbGOmpqKGaDG84oMDOwhCFzAwDRjaK3ZtWs3R4/2sWDBQk4++QxeeOEl1q//BN/85qO4bp4dO26kre0s6uo6eMc7VpLJpJmcjJDPjyL5xmUMwyCbHeK55+4FwLaFu6vEJmkd0N29gsCKEVeqmgucVYobkZpWH3CVYgyR34YCwKpS56BS9CLlXa3AoFIUlSKtFJsRc9QA8VnRSnE+Ess0Et7gfCTyczYiE/aVwgK0MtEVAL32Srk21vyDPG+cBU2t6A/egLajM0D7sn+CXGZm+7WhIzyAHZlp75Ir5PK75O/KJ8EvAAEAAElEQVRh0VK5ZrMp+Mlj6MZZcl1e+o+yLtxHr70SIlF0TZxS4PFs/05iVowVPSsYzg6zrGsZw9lhAdCBx66+XRyePszu/t0MZ4e5fvH1jOZHWbd1Hf2ZfgAMw2Djzo0s7lzMUHaIdVvXhWOzDOu3rSduxyl5JYpekbgdr273zjnvZE79HOrtmJSs5Q6CYaHsWjj7foj3yL2xNCKKrsaFUDsPZZgo7cm1d8rNkmASa4HWC+D1+8GKoYDaeDOWkkkv9fr9MCv8Fosj8ll6OYkfzR+W9ZFGmNwH+cMoOwGxNpRfkjFYpE7GXnYClRsMx5sGGBE5H6EHwisvVASljoTjTiBwUSja0VgazMDD1AGW1lheCSN1EDNwISImakr7kBuWsaYZgUgtKjfEjI7z7eV/w/K2LPyvtJSzwgjoQJhj3/ExIyaBG4hEHJFvB84xzw1FbjSHW3SxYzaxxhgEYEZMlC3bAviutIWmuq+TczAjpmx7zDqASDIi/2+CTDmDbdjYpo1lWByePkx/pp/uum5q7BoaY41Ml6ZpjDVih66WpjIpekVeHHqRRe2LiJgRLMOSQZCb56anbuJb7/4Wh6YPsal3ExtWbaDGqqHgFphTP4e8K7P2WSdLfbSeuB2n4BZojTdjYswMJEHu905G6ncNS+pxK3W46cPSYRm2rLeTskNFjl2ahJrWUJWtBWwnZ8v2yhRw7ZelvYqsMHBm9s/2S4SU74ibdGEMSil46UuwZAPU9gjY7lyJaKRCN+v0Edi3Ec7/NDSeREUyfsIpZ/L4FpHYpaYmKRTydHR0wG+v5/Gxc7j+jgfoP7A/lMuJguGEk8+QfU7qhHgLaJ+sWxPmJRtVadfYWI5i0ePo0TTnnDObWMzCNI2wPExjhZLxXM7B9wM+97nf86UvrSEINI7jYxiKWMwMGW2fmhpbvMNC2Xix6PHCC0MsWtReHYgVix6mqaipsTGjGi/wRdId+LiBR8S08YMAyzDRaAbSY3xn7y+5aun76KxrrZroVb7wY52qu+rb8LV/jCRcWPDpQoaS6/DY3l/wwfPWMl3MclbHyaTyKRqTjdWigITlYozcCE3XQ2QeUt1U8Qf1j3/0RoWFVnEB0Dq8BgCMpMjElSmGWPEV4L4F7piA7MrFWqkF9sZBlwXEmw2gaiT6qelmcsbpVTMqUynGcjnikUj4m1LYpokXBHgh0x+1LCKmSaD1cfW+D61Zw3g+z+AxLtSmUuRcl6FslqRtMytMJbBD+fXNO3ZwRlsb/3D66cQsi4LrCnD3PNRbb83U2554otTsdnTIAM80hXFxHHGlamoSA6sNG8SZ6sYbpeC1o0O2tW3YtUteO+00GBoSc6xK4exNN8Gpp87U7FaO6XlirhUE5PwavLomrrlmZreHHhLsf+21M+u+/nXB8Bs2zOQaP/aYGFyNj8+UBLe3i0l2Oi3j22RyRg2rNbzwAjjOc/T0zGPt2pX88IeP09q6iLY2yOVStM6qI+KXeHzrr7h74738ce8LEAll3VquzS/dfie///Of+NUvfynrS44A7J7Zsm1lQtBxZ9aXHYhGwDIhX4TahFxOB/phXie4vmxTF0KMY34uTrF4nOv1wvXrqWlpIfA8PnDhhfx+/34mXJd9u3czr66O17/zHe58/nkmMhmCUom6hgauPu003vvpT5Po6ODpZ5/l7nvvpZBOk6it5esPPsiZp5/Oy5s3i4t2dzeZw4cpTUwQb2+XuuSbb8aqqQnll5pcXx/1J58I+hgFli/ybd8pYVh2+FOxGX7tGdIjb3Hq6o8d5xptx2oZeu03dCxcjVvMhDXA52NF45Qy4ySau3AKKdxinpr6FnzPwTBtDDsaxhqpqpZfaY0RgA786kdHIY+K1RzjEh1FK1ER6LCYW/k+2jSr8nIVfs+6UiPgOGJCFZVaV4xwW9MS0A4oZaBdB0pF9ME3oLkF1dZBoBS+HamCZsMw8ENZUCQi67dv387q1aspFArs3LmT5cuXk0wmiUajx6V/rFy5kng8zlNPPVWtj9VaYxhG1Q26kkO8cuVKksmkTKLYNn19faRSKbq6umhqqsV1cyhlYpo2oKoJJqecciZbtvyQs846s3rxaR2QTvdx0UWr+dSnPsM///PV/PKX6+jsvIJFi1YAmhdffIX3ve8KXn31BVpa2lFKkc0Ok0i04vtlDMMCVDXrOJMZoLNzSXh8CCJJ0spgSCm+DnwZkXgHiC9KHhhETKUqRlGt/61nH0fMqiqmpxG5E1e9W8YRUH0SAtr3IcaoQ8AiBGBX7k6HgAX5MrYp6rVqtrzW4QS43LOLaQen4FDfnqTqZRL4xxue+WH5DOA5GsuSaWQUaK1Q2keFtdDVfSsTXX6AMmUCXoeeKK6heLZ/JwtbF5JxMtRGajGUgalMXhh6gc66Tu7rvY+bl93MeH6cWfFZfHnPl/m3y/6N67ZdxxNvPMFP/+GnLO1aStSMUvJLuL7LjTturKakPLTmIRzfwTIsPv2bT/PFd30RQxmky2nqo/XErBiHpg9x9qwTMcZ7BSCXJqFxkdwbTRuw+MQnruOJ7c9ytG+AP+x+ikUnN814w8Tn8N1HH+Qjn/gcv/jBl3nf3/0TWDUsWfkuymW5J3uez/7X3+CPe3/LmfPrZN/TbpV0lF+0w99slf/v3zSTZNL+LvkcvZIYkMoHOUPgVPqMyr284gmT7AzHipVtOL4froxLzSjV+pbUQTFLrZkFtd1hKssxhqvhUukjjrsu3l7+P728LQv/v7UYAm7dgosOtPz5GiMESPmJPF7RozBZqP54daBJtiVp6G4gOTuJaZtYceu4QdbgvkGsqIUyFIP7BnELwtJG66OYEZOBPQNMHpgk8MKZuHA/q8ZCoYjb8SqwDnTA7NrZtCXaGM4NMys+C6UUs+KzeGn4JY6mjjKeH8cNXGzDZknnEsbz41y37ToOTB2g6BWpi9axYdUGTGVyYuOJfHPtN5lTP4dZ8Vkk7ASeFnOvkdwIdz17F4EOOJo+yo1hhnb1vQW+GFL5YYfol6UzjCSFXQYBypUOKlpXZaDxSrJNTas05jvypuvnyv+1qADIDQiw1kG4DTKzaIbxS5XOtTAqOcZ2Uoy6OsLIJWXI88KYGGI9c50AfrtGGO3CKGi45rr1dM07TRy0L/9/OPG0haQnR3jf3/8TC89bzlmffpmv/+BXbP35f6HCG+Y1132crnmnyj5rLubE894l78UrYhhQKnn4flApLWLWrATt7UlaW+Mkk5EwkknekusGOI7PwYPT3HLL05imwf33X0wQBIyP56ipsbBt+ekHga4aZpVKHuPjeTIZhyDQLF3aRSxm8fzz/XheQDIZwbZNlKkpOqVq3bRSipgVrcrDK+fR09DOnauvorGmjqlCirxTxPN9vED+uhrauPPiq+mqb2MoNc7m334fL/Cr8u/JfJr6mloa43Us6jyZH738a85on4+lDGbVStyKEdb6gwHtXwV7DniTzKSiI99/kIXCPnluzZL8ZBRgCyCu3EmDHBT3CsCOr5J1k5shthD8ESi9AkZMgHlQAqtdjmm1gp8B94gYbkVOQiGScMfz8IKA5nicuG0TaE1/JsO1Tz7JcC5H3LYZLxS4bts23pycROuZnONPr1iBrzWD2SxLOjtxfJ+y71PyPF4aGsIKWfCBTIbnBwYoeR5+EPDAmjWs7O7m5eFh/CCgIRol7zgCahMJQaonnCCGOQcOCPgdG5PIpfXrZ1ymLUucojZuFNepSrhwPg/Dw+Jkdc45gmZ9X5Dtl78swcW33y7O1IYhSHnFCgHsblir/vLLMDFBpC4GaO64Q7y4HnlE4psMA771LTnEI4/Iaf/bv4l3VzIpr4GcyuAg3HyzNF9JkorHZR8QVrq3V9jv5cuhs/MC7r23C61ln7vuktcsq4HfPmtALEo6n5P65AqwlqsdFHz7V4/z0Y98ZGYAFovAyXPk8fCQXE+GErA8mRKAbVvyvMJge57UXdQmJJapfwTqw5kA1xPAfqAPwtr1Y92q7dpaDNPEjEb58M0388iHPkR3Rwdozevf+Q59v/41t559Ni89/zwvvfAC7+7o4J6f/ITS5CTDBw7wgfe/n6/edRcv7drF7R/9KB+55hrcQoGWs8+WOnmteetHP6LxlFMwbJtTPvhBSqkU4y+/TOA4oDXJ7i6076J9D6+cDyeSTXTgY0ZqUIZF4LmgA2YvuJCec96DW0jjFrN0LLgQw7DQgUfLiYurjHfHggsxrQiB7xBvnA1aM3HwReKN7Shl4ORT8pP2HDyngPZdfKeI9hz0MXWTVYlPPIG/4wlU5xxUOOmnPI9g4KgYTAVipIVTFsZaEI9IxD1PnlsWKp4QA61KjNIxwLpyLGVZqEQS46zzMLrnyno7guM4VRbaMAwikUjVoFQpxbJly2QCzjTZsmULZ599NvX19bzyyitEIhFqa2tZvXo12WyW733ve/zDP/wDTz31FEopfN/nqquu4tJLL2X58uW84x3v4KmnnmL37t3Yto1pmuTzeXp6ejjzzDPJ5/MhtgjIZPp58slryWT6ue66TzB//mkMDsr95/TTF4V9u4FhRNiz5yHy+XFef/1naO1z0UVf4lOf+gKLF1/AsmUXcdNNn+RHP/o+zc0tOE5OLmG3wNat68hmhxkaeqnq8tzYOI/OzsUhsNb4fhkPTVopHgTuRYC1hxiUxpHYzeVhL/0SYkblMgO0DcT0dCJ8HAHWAW+Gr/ciAL0DMbm6PmxjCEkciSMgfRKJ9BwNL6NySVMsKhxHkZtyyU17lF2TQjrAcRRGJELNrFqK+YBcOsBxFblUQGa8zC8+uo2xv6QpOQaub3Jo5xB/+PfXcHyLYkFTyAbkp11KJQPHVRTzAWXHxHEUxYLG8Qwcz8TxDEYPZPn5v26laEAxcFjWvYzh3DB3PXsXI7kRDGUQtaIs6VrCfb33sWX/Fh54/gEWdy5mojDBHavuIGpGuWPVHfzp2j+xpHMJewb2cGj6EHsH9gKwYdUGrlhwBXesuoNkJEnJKwGwrGsZtmEzlB3irmfvYjg7jG3YJCIJPK3QzUvg9QeEnSaAQj+M74b8If7+jEF6tz7KnDk9ArjtOkkdKQxw5MghHnv0Gyw9byHEZoFdC4HL3md/xSu//S6v/NsZ3H3rRzljwemcuegcYcFPuxmcCWG8/35aGO/iCAw+IefQvCQc85qSPvLfFZFVJkfNPOQGBCDnBmdUg+WKssWH1GF5jNaJd4tiBnwnu0Jg3SXpJk7FhFNJO+nD4Dv/p/fB28v/+OVtcP3XWgIBtHZcHBsNy2DoxaFQdaJItgl4jjfH8cs+fbv6SB1N4eQc+nb14ZVETu6VPPp39+Nk5QfavbybwAvQvqZ7WTeRRAS36OJkHfLjeWafO5v6znrS/Wl23LiD7HBWOoNQHesHPnsG9lRrc7zAo6ehhxXdKziaPsp1267jaPoo53ecT3+mn7yb59onr+Xg9EHKfpn+TD9b9m9h8+7NpEoptNbMa5hHwSuIhVPYkU0VpmhNtmIbNjV2DQ/ueZAt+7eQdbLVKKvR/Dg68IUBBgHSuUHpyCJ1ArCd3AwLbdbMuEpXBk9KhUy0IdunD1F1vQ4cAeqGPdMRVjo5wzq+4zRMcYIG2HffTDTTszdKnvEF98t2L9wP8VbpZDtWwCsPQ2I2XDcBnRdA5iiPvK/IwMu/wps+yujAEQ78+RXmnHg6+57bwasv7uKPv/8Fv9n2izDf2YPCGI985T4GDv0F7/G/Y/R3D3Lgz3+UztnN4XmaeNymWPQol70qeAbFySfPIpdzKJc9vHBCxXFE6n/ffb0sXtzJ0FCWdeu20teXYfbsWoJAYxgKzwuwbbPK6AWBpqUlQSxmYdsmQSAMeEdHkhtv3IHvB/T3ZyiW3WoNXlA1IpPaKtsUhiIIvx/TMIhZERri9RTKBayQAbAMEy/w+ePgGwykxmhM1nLrhf8KgOt7+DogGa2h7Dm8MX6ERR2ncNPfvJ+YFRW5eGqUzz/1GP2p0VAartDuYRhdL5Jt93BYM30ARj8G/hjEl1GRQqJdcYvWLqDACCdY0AKkR9dLvTWmxDhhilTcbhdm2j0Y3rQrZR9aALbVJuw3YhAlRm4BVlgraypFMhKhNhLh1uXLiZomhlLcv3s3W/bv55EXX8Q0DOY1NPDo5ZdzclMTjuexorubsi/GVzWWhWUYLOvqYjiXoz4Woz+ToSWR4Prt2zmaTgMiD29JJFi/fTsZx5F3blnoUkloXRDAvHKlxDS1tsKcOTModc8eAYJ/+pNkJIOg1MFBYfE2bxbQPDw8Y+fc2yuA+hvfEPC+apVcXJ2d8K//KscC2X7ZMhgZIaJcbFMzb54kPVXIc9OEI0fguutEue44ckoDA8JUV/ybOjoEcD/wgMQwd3ZKStWePcJqVw531lmyr+cJy71li7QxOipvub9ftvv2tz9Iz9wTuPPuu/n3730v7M+D6kTl7t27mZ6e4vKLVoc/HA3OTPkP8zrl+Vt9kIzD4oUwvzu0to5AJgdlF44Oy3XT1gwRG07sEZB9aECcC20LutrAcVGZHMnubhbfcw+1J5wg7tdhvfTq972Pyx98EGWaBJ7HgmuvpeeSS1h2ww0Evo8ZjdK8ejV18+bRcu65/PbrXyceBOjnnsMtFLjsAx9gYHiYN4aGmPve91LT1ob2fc65/XZK6TSvPvwwhmliRaPEmpp45YEH5DdcExNAatlY0URobieAzC2JDDwIXHxHanjjzZ1MHnoJp5DCc0uY0TiGaROpqReDTUtYIysax4rVgtb4nkP7aRfglnIM7f8tVrQGw46GQFtqua1oHGVY+E4YQ+a56EIePFdkn53dkEmJS7Tvo0tFVKIWnc2gDANzzXtQkSgaDZ5L0HdYpL2RiLDyFck6FYWZiXbK+Nt+AanpmShA10V7rsjOAx9sW0wWLSusaw6qku1EIoHrumzbtq3KGj/33HN8+MMfZteuXfT09DAyMoLnedi2XY3a/NGPfsSiRYuwLAvHcSiXy7z3ve/lj3/8Iy+88AL33XcfO3bsYO3atdXLMZGQMrRt27ZRW1sr5oVOthp5lMkM8NBD9/GXv7xMPj/NyMgIf/zjbgYG9hIEHhBw6aVf48UX/8Kdd/6k2uZTT/2cz3/+XHbteoonn/wR+fyPmJ4+GE5y6Gr8Zm/vJrq6ljA9fYitW9cxPX0Iy4qRSh1h69ZryGaHKWUGqdeabyAGUR7wIrA4fJ4D1iPxRxVZd2VYUxv+P7SaxELA+KNAIwKuZyGZxlHE9XkL8AAC2MtIFFMGAdk1CEOOBq/gURgvVFWAO27cwdSBKawaC7/si6+NJ8RJYbyAk3UYfnkYK2qx9JNL2XX/LtDikTP77Nk0nNDA1OEprKiFXWNTGC8w/PKwzMWZRlV1WJwqMn1wmr7ePqYPTVPbXsvq+1fjaY/JokzAThQmuG3Fbcxvmk/cjqO1Jm7FeWjNQ/xl/V94ZO0jxK04K3tWMq9hHulymhMaTqCxppG9g3tpS7RRY9dwfuf5vDLySjX+84SGE/ACjy/0foGR3Ah/f/rfY5s2D+55kBXdK+io7cALZOJpwsnJuGzxY2DXC+gtj0GsFfZv4oKm39HVFJa9pV6ThJP4HILmpVx13c187Vs/JRoXJ3ncrLTlpoWh7tvCt7/5ZT76wb+TCzneJQA6ViELlfw1L4GVT8D5j8hYzy/Il+eXJW7Td4SAIfxSK4v2pV8/FiBrZsgbkDFB/Vx5rLDhqYMz7VlRaJgvbLZC9tO+HFMZUH+CnFPl2MdOAL69/I9e3gbXf63FAK/oVZlrwzToXNJZrZeuMMuGbaBMRc/KHgHihqLtrDaUUuIY7gW0ndWGDjR+2ccrexSnigR+AAZMHpxk5JUR7Lg9w3bXWNi1NqsfWE1tGAHkG77MUg7u5byO86iN1JIpZ4hZMaKmDCy+tPtLbNm/hft670MpxZKuJWzq3cQTbzzBRGGCuB3ngjkX8Nb1b/GZFZ+hMdZYrcW2DRsv8Ljx1zdyYOoATfGmqgFG2S/z9Uu/zvsXvp/6aD13rrqTN69/k9nJ9uMU4dS0Qv28UJqDzCiadijZaT+m06q4a/thZ6VC0F2pqT5GelOR+CiOj4oKwsFw/QnhbCXhaN0SCfixOcYvbBaZeHESLtgsQH/3XQK6/+YBAeilaQHK9SdA1zvhpQcF2KcOhJnKh+Q4XpHwrg2lEOAkZkv7KFh8B5z+fnkvgQPxdmxbYZqqCnoNQxGJmNi2QRBokskI8bgdGvVAPG5jWYoNG1Zx8cXz2bx5N1u27Gfjxp2USh7r12/D94NqfeOePQPkcg62beJ5QVhn7XHDDb8ml3Po7q7ni198F0opNm7ciWUpJgpp7nvmu9XBoh8E5J0im37zHfpTo7w6/JYw1UHAK0NvMpqepKW2mbIX1k6nRvnj0Js0JxqI2hZ+EKCQOKioZeMHHuNZmbyZP6ubyUKaqB1lPD9FoAO+/8KvOKfrVJoT9ZzbdSqm8lGqRnKQjQRMPgo1y8DqhqZb5Xl1CKZAF+VRmQKiR66VWmu0gOOmm8Htl+2sObJdzRJwh6DpU1JvjSEseZALpeaeSMUDMT7TWnKO47Z93HVuKEVbMskpzc20xOPkHIf7V6/migULeCCMzvO1mAXetGMHNbaYliUjEdpCR+m9g4MMZDKs7O7GUoq/mTOH+miUFd3d3L97N1pr/mbOHOY3NvLliy+utoHronp6RMYdGo4xPi7MdVgnzdy5ArJXrZLfTkuLgPAKW334MNTVCYCurZX/FwoiGT/rLEG3x87UG4ag3PXrhSXXWhBzX5+w2RMTqEwK19Vks8Jer1snh2lvh/vvl9MxTWm+cirr1klznjdTjz0wIG9h/XrZNx6XuOYXX4SGBmGtDQPuuEOk5qYpqvW6OiHgk0l47LEfcOTQET5/zz18+vbbBSg7XlVl8+3vfpcPvv8DWH4gsu9sXqTeMCMHj0WrwJhcIZwEtKo11NXH8DuRvgoB1XNDx3nfF9DtuATJeNW8LNfXx7677iJwXbJ9fZQmJ8kPDAijDCQ7OzlvwwaMWIyrrruOeSefzL1f/CLf/+53UYbBuzdupGCaOBdeSM2sWWz7zW/I5nIcOniQ8ZdfJj8wwPgf/kB+YIDiyAh9v/41+x97jFhjI69/73uc9IEPVN+qEbpdB74r7DGgDAO7pp7s+BHcYo4gcBne/yzac5i94J3UtZ+Ek0+D9innUwy99kwoxZZ23HIe7Tk4xSyjf9mJYdrVjGSvXMQtpBn+87PEG9sxDBOvXMAtZRh9c7d8jpYtTHNFlr5gEaquHqNnbgisk6hZrRjdc0PmOajMLqLLJYyeuajGWRAEBINH0U44kNaBGJmVSyjLwli6Cp1NQ8hCS+a4LbJxw5B85lAKbhgG6XS6ajKWz+fJZrN0dnayc+dOSqUSy5Yt4x3veAddXQIempubefrpp3FdF6UU1113HQ8++CC1tXJPz+VyPPfcc1xyySVYloXrupx99tkMDQ1RKBSqddZTU1N4nlfNP1bKJhqtZ/nyW1mw4Ap6elaQz4+yY8cNTE6+iePkiERq6epaQqEwSbmcIQhclDKxrJrQ9KyM1pqurmWUyxkymQGWL7+F+vruMO5TsWrVnSxYcAWrVt0e3mceYsWKT9PQMAeAfH6MOXPeSTI5m7pYA3UI0O1F2OPzgN1IFGcF8I4gADqshqeMxCQphG1uRRjtDALGcwhbPQFsQID3w8BW4E7pwRkC7gr3jyOMdi68HqU0QErr7LjN8luXUxgvkDos9ybDNvAcj8APsBIWkWSEORfMQRmK2o5aVm9eTWGiQLovzeALg3Qv76ZpbhMDewbQgab3vl66lnTh5BxywznKmTLlTJlIPEJ2KEvbmW0kWhIEXsAztz+DpSzyTp49A3tY3r2ceY3zsJSoEE3DlHuOaWMpC8uwKPrFqglZQ7SBQ9OHWL9tPS2JFupj9RS8AjftuImz2s+qdtdFt0jRK/LxxR9n8+7NVa+czas3s6J7BTfsuIGj6aMYyqAxkgiVhT64GfjDrdC8DGpPErA770PQvBjclKwLme0v33whK849hXPPPiv0p5mmGlpl18Npt9IfvZzf/ynFB664XE7MjAvrnegSIF4clkdlQutyKPQJY65MUJYA3/p5MwSMETLKFTVj4EHmiIz5GuZLckilpPAY1Tjpo4SzH+K1Uz9XHhUhcC8L0+2VZ7C7EQnvgWGZW2V9ELwNsP+XLG+D67/WEkB+LM/wy8P4Tui07Qb09fbh5l0y/Rny43kCV+JAlKVItCSwEzaRZATTNtG+xs3LjTWSjGAlLEzbJNkuIDp1NEU0GSXZnmTb+m04GZGhOzmHZEuS/FgewzTwih6+7zOYHeSstrPwAo+ck+NQ6OY9lh/jSOoI96++nysWXMHtq27HNm1qrBrJdf7UOMu7l1ffWnO8mZOaTqI2Wlt1otzdvxsv8Lj3wnt5cM+D+NpnIDNAS6KF9dvW05fp4xtrv0HcjjO3Ya6w5tqTjjl7TP28kw07P2RG0QhnBq2aGdCszHDS0pAOUvuyvRmF3JAAUyPsYHUwM9voh51f4Ep9dQVghzPtBI68VjdHjn3Rw/C3W+H82wAlYNmqEbB/8AkB3QSQbAMvLyA6dRBOez9c+DU5h8KIAPB4m8zqGjbEmsCKSx4zhJMGZTmfhrnyaNqyDYF4nWQdSiVPIoQMRbHoUii47Ns3iNYa39dVKfjYWJ6jR6eZO7eBzs5aNmxYxRVXLOCOO1YRjVp86lPL5LBa6quXL++mri4Sygw1nhdQWxvhppuWYVkGL7wwRF1dtArYXdfnBy9s5V/OW1uN9cmUcliGyQfOvYzvv/Ar5s/qZjw3zb1Pf4ummjqak3Wh5Dvg5JYeJgspTmrpIWZFmBVvIBGpIdABU4U0fVOjeEFAPBql4BSpjcQ5u/MU0JqmeD2GUmx410c5p/M0Nv/2++TKRTQWWhehuE/Y6PbN4A3A6A0ChNs3QZAJ3b6PhOxyCLZVjeyn6sKaa2DqG2B3SR6yMmUbFRGTtMipoGwoviDgW4msWQzR9kibrRsxlabGtjGVwgsCRnI5NFD2fXb395NxHMph/WVtJMKjl1+OARyZnmZ3vxjOfHnNGmKWxb7BQfzQMR1gcWcn7bW1HEql+Ni2bRycnubA1JSA69WrUUpxMDQ6mygUuGbrVkayWZRtCx3c2ysS8GuvFaRaQaejoyIVHxuT9dPTgl5bWkRvPTAACxcK8CuVJKg4kRDW+5OfFNZ6714BjIYhj1oLCP/KV4Ratiy44AL40pfA9yk2d+DXNaKUIh4XxfqWLYK9R0bg1VelGc+TJtvb5XAPPCDzApXmUil5fPBB2f8LX5CxTF2dgGrXFYm55wmp/q1vyfhnfFxk4WNjsv3YmCi6P/QvH+R3zz7LZCYtcu+SQ+6VP7Plpz/lIx/5sIBjw5BHzxfW2XXlMZOTxit16dm8MNx1STjYLwx2e7OA9kq9pR/In2lK31EsCzivT6KDgMLICM0LF1IcH6f1vPMwIxGKo6NEamspjI1h2DZuNkvgeRiWRU1zM1+7+27+8x//kduuu47P3H47bi5HfX09P/npT7nz7rs58+STefrppzntlFPAcWheuBAzFiPa1MT+Rx+leeFCei65hAXXXIOyLM674w7q5swJ73GawHNw8imK6XEMSyaRdOg4fso7P0q8qZOJgy9S0zhbEiLKeSlPauoAFJF4Pe2nXUClbtorF/jYVf/KiSefRqKxnVGvCZSi5cQl1M8+hXjjbB7+8kZ6zlnLz376Y4b2/xbTjvL6vqe48upPcfKCBZx59jk8+6VNIvtGwH5VMp6sFWZ5coyg/zA4ZXSpJBFYAK4jzLUnEx6q6wSUYRIMHEVPTaK6T0DZttRmNzZj9MwTubgYVghbbkdCSbhNZZpXa01DQwOXX345tbW1xGIxdu/ezbx581i1ahXJZFJMDgcHq67clmWxePFi8vk899xzD0uWLGHRokVhv20RiURYunSplNBMTrJjxw6+8pWvVMF2b28v+/fvZ/fu3ZRKpeqxlLKIROpobj6Fyy+XSccXX3yMiy/+Mk1N84lGG0KH7xEikQS2HcfzSiSTcr/K58cxTZtIJMlZZ32Q2tpOuruX09R0EoZh4/tiJldf38Pllz9GMtmBUhaXXPIQTU0n8dRTtzI5+SatrWdw5pkfwLIiOFqTQUDwWUA7Mjh9B5IXbAH/BHQi4PsAIvseRgC1h4DjAjOS7puYyRW+AJiDgO4bkWziueF+m4EnEAbcQwB9AFVwFa2NEvgBuZEctbNr6V7RLWV2StG/u5/MUIZIMkKiOUElXlX7ArwjdRFiDTGsmEXHeR307+5n8sAkHed3oAzF2m+uBQOyw1mevetZciM5DMuglC7Rvbyb4lSR4ZeHMSyDpZ9ciqc9BrODLO5cTMkrUfbLHEyJe/fh1GECAl4YfIGmeBMHU+Ig3lXXxdzGuXjaYyQ3wgU9F1AXraM92c5Dzz/EJ5d+koSdqLqA92f6qbFqmN80n4fWPMRkfhIv8EjYCUZyIzzxxhMMZYdIRBLYSqH8ouS2W3E458shWSEGsZz7dQGakWZ53c3y2pMb+NlTf+KOyyahOBTKqScFnAeOlOMlT+R7r57J5WsvY1Z9TMzL/AKUxkJiYhRevUv2V4QKwH6RphvRGSIGhHipSL21nvHgUSoE39VfKdW6u/ApCqifI21VpOLyJUsZY6U90xbVpWJGOVlRRVbGq+VMOAY9hj1/e/kfu7wNrv9Ki9YaO2HTvbwbwzaqcvA5q+ZgJ2zis+JEEhEG9gzgOR4EkBuRaC3DNJg+PM3WdVtxcy5WjYVbcAlc6eDLmTJuwaW+q55kexK7xmbpJ5eSHc6KFHwoCxoK4wUCPxAA75ms6FnBWH6Ma9Zfw8kdJ3PZyZfRkmzh5VdeRnmKD//jh9n6oa0s7llMe3M7F73jIoaPDpN1svx+9+9Zcs4S2pvaaW9o58QTTuSZ3z5D2Suj0SxsXcj67euZKE7wxXd9EUtZ1Rrtm5fdTH+6n6HsEIEO8LTHQGYAS5nSIUVCAx8dhHUyIegxIwJ2U4dEkqOQjixw5HkFOFc6x2rtTAjWlSGv5YZnTMwqoDxSK8eGal1MlRVXFjJTaYvUuyHsgA0bhnZDshve/VM471Mzx8kOwLmfkrrwoCzbpY/C7OVi9PHsDSJRsmJyk6kAemXA0B7Z3ytCOS0MOWEteWGs2ufH43ZoYAOgSCYjLF/ejdYwPp5ndDRHf3+GhoYYnZ0NHDo0zSc+sZ25cxt45JHLmT07iVIwf34TSimmpopkMg6Fgksm4/DJT/66ymj7foBlKT75yR0sW9YdGqEFtLcniMei3HbRh2mvbeaVwTcoOCUKbpn7f/cDWpKNbHjXR6mLxumsb+Xmd3yAulicyVyGPw69iaEMkpE4Z3WcQjJSQ20sEU7qClMbt2MkolHy5QKz4g3MSjbKR4xiKDMTwaXRtCSFtY5YNgoPVXH29icESLuDULNSgLH2wKiF9n8TJ3GUSLtH1oEuwNxXxPG74mTa9AlxFLdapV7bfRNGrhaWO8gJ0223g0oI4z1xlxw3vhz8cRi7FQOPnOOEOd0GLXGR7qXCTOMaSyKaaiMRso5DwXXxgXmNjTz+4IOcdeqp1MZi/PCppzi7vR0NnLFsGUvOPZeVS5bw7tWr+f2ePWzZv59Nvb1cddFFvPO887ho+XKWn38+6++/n7Pa2mhNJHhg9Wq66+sFWQ4MwOLFYj524YWCVC+4ALZtExQ6NERo2y2gev16AeRtbbBkichlSyWYnBQqOQiEtbYsoYrPOksQ67FLEAhL/qlPCUj/wAfg61/HsWpIFWN4nsLz5Dr/8peFVV6yRA65YoWs933B6EeOSLl2NApLl86YkFfKG776VSn5vvNO2aatTVjwyjzCiy8KO16pzf7e9wSM3313isHBIdrCOa/HH3+c5sYmmhoaZIVt8ePfP8NZJ5/CqaeeKgjcDJmJiCX/N015rE8K8I5YEI/Kcy+UIc7trBocEeZPUyyHwNqo3EBkn5po2MUYxNvbeXHjRmpaW+m66CJeuu8+Gk87DcOyaD33XAHgw8No35foLsfBjEYZ/N3vOGtykud27WK0vx+CgHesWsUXL7iAX37pS9z18Y8zNDjIwrPPxslm8ctlInV1LLj6apRlce5tt5Ho7CTX38+L995Lrr8fwzTRYTZtJF5HvLkTpxKTVc6LUVg4SJ298F00dp6OaUexogkMO4ICiqkR3FIGw4pQmB7GMAwmDr3A35wzl98+vV3qNCv30ng9nQtXc+RoHz/bsYclSxaTHTlIevgNCqkRHvr+Nhafdw5vvvYaj33oSv7lS1/FmZxApybxt/0cspkwTsuDaA26UBCG2o5AshZli3OwzqRRiST+9l8I8+yU8bf/ApWog6ZmyQPvPwKpKYL+I+jUJMdJTVFop0zQdxhVEwfTJBVGcaVSKfr6+gABzu9+97upra2lsVEmlnp7e+no6CCdTlMsFsnlcjQ3N3P06FF+//vf85nPfAYj/Fzz+TzPPvtslRXfs2cPr732Gr/61a/42te+hm3brFy5kgULFrBixQpisRh1dXU0NDSEruA+5XIa1xUJ7erVmykWJ9m69RpSqYNEIkmmpw+Tz48zQ+FBJtPP1NRbpNN9bN26LmS6s/T37yadPkIQuASBx9TUW2zdejXp9BEsK04qdZBt29bjODnWrHmAhoa5RCJJtA7o738eFU0yErp01yIMsgE44Z+PAOw2BHw/BKxAZN41CABfgbDQ94b7zkdY7hxiULYufH0x8CACpA3gW8B+RH4+gdRgT4Sv23EbKyYGhb1f6JUyO0Quvm39NhItCeo76pk+NF0lOJShyI3k2L5+O6lDKawaC6/gsf367SRaEkRr5Tc9fWiaJ699ktShFM0nNbPiMysoThWx4za1HbUoU9qp7ahl+/XbMSwxLVvVswrLsLBNm6gZZdNOSWnZuHMjju9wXsd5GMqort/Uuwlf+xTdIsu6l/HPC/+Ze5+7lyOpI3zt0q9xYtOJANW0l827N+MFHr19vdiGTWuyVX6HaC6YcwGvXfta1aFcysICKAxAaUImtt0MvHQDlEfl/+O9cl+dfgXsOnaOns2RqRgnfXAXJyxYyZ6XXmXdZx7hGz/YViVWdODw3e//kI/+6/th/0bo2yKmZdFZ0mZxMDQwG5GxlDJFHq7MUMLtyvhJh0xx1adHzYwDjcrUS3h/8p0Zfx8QIBym0WBGw7EpMyRMJCljTRUq4OrmyLi0UuZY13MM0D40o6582zX8f8XyNrj+Ky3KVEQSkSp7rP0wUivvkD6a5ulbngYNXUu7hKUONLWdtdUs69337+aNJ94gPZAWuawl9WyJtgSRZIRIUjoGJ+fw3L3PYVgGueGcxHFt3o0ONN3Lu6tu5YYlZi0dtR2s+8A6Nn11E7M7ZtPW3kZLTQstiRY++OEP8vXvfJ2DYwc57R9PY2x0jI9f93GSkSS33XAbY6Nj3PFvd/Dagdcol8v845X/yOHxw9RYNTTEGnjs3Y/RXdtNfbQeQxnErBjddd088PwDdNZ10pZoQ6EwlcmSziUyQ5/sFDMLkE4pfTCc2Qvl3H45NDIzZzrKioFZ1fDMCWcY50Hr2VB3AtVsHoXIeCJ1YWerBTxH6qQzdLIzZhaRUGzmZGD6ABTGZ8YVOpDzmb0MCsNSb10YC2O/AmhfArEGAfLPrBen77puIIC9m0RevnejdOCpQ1Cakk4XA2YvnYkIc7Kyb+Yw/HZ9KCOH+nr5vpVSuG5AJGJgGFInPTFRIJGI0NPTwMqVPdVrMJmM8NBDlwBgGIpo1MJ1A0olj97ePvJ5lyDQ3HjjDoaHs9x774XEYha+H1AsesyeXctXv3ppVSYOkEqJRNLxXKJWhLM7TyEZjdNV38ptF32YuB3DD3zyTonpYoYaK0p9TR1NyToaa2q575nvMpgeq7IzdlhWkHdK7B85QMSK0JxooDXZxEBGcrIH02MoBd/e+zhnzJ7PeG6azz31GOP5FO88aTGbf/t9wBQDMhUF5yD4o/K8/krQJWGw3cPyeVcZ61po/TLY86hKxUdvAO8oRE6S1yoy8snNkN0igNuogZoLYPIBPvGpzZxwympU1xZeeen3sv3kl7j4A3/i/POWc/GKFVz2rnexbedOPrZtG0fSadqSSeY1NfFf//7vzK6r41dPPMFoPs+NO3ZwaHqajOPwVns73378cbp7emiqqeGFoSEAnt+xg/985hnO+Oxn+aerruKRO+9k4pZbeGTtWgKt+fa//zvPv/ACvfv2sfXee5ksFrlxxw4miiLRD0xT9M+eJ7LvpUsFGB86JPXQSkktdRi5hefNFCSDaLJramZ+X1oLqN6yRfTb7e3yemuroNc9e6TtdesErF9/vTyuWwd9fTieSTyuOHpUlOJHjgjR++ijAoyHh+H55wVYT07KY0+PnKrWMwC5VAq7C1/WfeMbom4Po4vZuFFOceNGOP98+Kd/uobzzuticHCAl15aQzJ5Itdem+b9738fy5cvZNHZi/j6lx9k6y9+ISCx5MDBfr79kx/z0Y9dO/PeKzNfvi8A+WC/bJvOCVDWQDov21QAeL4kJ5XOhY7XhAz3McZpFadxXel+AvY/+qhItB99FKumhvPvugsrFmPij38kNzAgCqf6eib/9CdGDhzg17fdhl8qsfLBBzl8wgk0NTXR2t0NhsHI2BgL1q2jffly7tu8mVVLl9KQyxGpq8MMa6uTPT2UUymefM97KI2NHXd8HQQoZeKV8wy99gz4HuMHZiK2lA7wykUqUVf5qUGcQkreS5hNbcUSuEVJkog3ilnl7NPfwZXX3cMJ808CoJydwC2k0Z6DHwSsu/pq7rj+n4jYFg1dp1M/+xTsmlp+/osn+NQd94FSLFl/Ix0nnczOo4Ng2RjL3gl2BJVIiiw88FHdJ4DWaN8D10Hnc2injNEzl+D536PfeA2dSaFMU7aNidcDhoGaMw9dyKPaOlC19UKcOWX8p7dCPguRKEbPXPB9/CBg586dxGIxstksbW1t1VKayuL74pEhrLKAbMdxyOfzOI7Dvn37OHr0KAsXLuTkk09m37593HLLLfzgBz+gt7cX0zRJp9P88Ic/5Mknn6StrQ3DMGhsbKzGeOVyOVzXDZ3KfYIgoFAYZ8eOG5mcPIjWHjt3bmT//i3s3LmRIPBoazuLSCRBJtPHjh03Mj19iHS6j0SipVpPvXv3ZkqlFPH4LHbu3IRpRimX09V6bmnLwTQjLFt2E6CZnHyTbds+Rip1OIwTWyIeG4jp2I0IsA0Qg7HQFYMMcAswDXwN+KD0+hwNt3eROK5vIM7g68L24gio3oww1v+IgOuqgheRgseAw8BAuL2lIH00zZPXPkn6aJrF1y+WsZWn2blpJ/u37GfvV/di1VjVGuvKGG/nRnl958adaF9jxky6V3TzwjdeINmeRKHIDGR444k32LlxJ5nBDMm2JF1Luwi8gIE9AzhZh66lXWSHsrzxxBvsvn83CoUXeJS8Es/3Px+aX4oR2YZVG4iaUdKlNAW3cNx6S1kU3IKoHgyLhy97mPZke7V0Dzhue9uwWda1jKniFF7godHs6tvFW5NvEY/EUSgxUkOLiiveIcC3OCYf6qxlAobdlNRfax8iTeAV+NgNn2F4eIQjb/2ZI2+9xtLF5/HoTafzsQ+slm89f4jfPnYlnuex+l0XwoIN0HOFOIxHm6CmHRrPgTe+KnXYoRO9ePIk5GLJDYrSsBK16pVnSBp9zJdfGd8ZhgBorWcYaisa1l5XShB9ec2IiCw8NkvGbZVo2Aqoz/bPjE/TB48B4oNh8s1xxZBvL/9Dl7fB9V9r0ZAdyvLsZ59l+pAYU7gFVyTfMZO131hLpDaCMqS2WhmK1KEU29Zvwy24XPq1S7n2T9dS11NH364+UFCYKDB9eBodZqe6RRcrZnHhpgvJDGToXNLJgisWsGrDqip4AdCexlc+WSdLqpzi3GXnctl7LsMOa9IswyISjfDe97yXv3/v32MaJqsvWE0un2Pg6ABlr0yulCOTyXDZmsvYdWgXsZoY7S3tbNu+DduwJS8bxXRpmoPTB7lu23VknSxzGuZw24rb+Mqer6CRjt3THtOlaTGQqUQfaF86n+JUyFyHnZwZDTOlQ42OMkI3cWfG8EyZ4YxnIMDZMGeYocoA2IjMdJSVuhvDlPZrZgnQrmQW23GRZ8fbYPqggGi/LJnW2X4B1oErpmdGVM5p5AVpZ18IpF98QI5dGIPFG+CUKySqy7CkfTsB+RGqTuajL8m2yU45770bq4BcGWGpzjGKJcsycZyA3bv7KRQckslIqEKVemzLUsyaFQfEBbwCxG3b4OWXh2lrE+OyWMxixYpuRkfzTE4WufbaJxkYyFBbK+1NTxfw/QDblpivtrYkhqmJWDZ5p8hEbhov8PF1EOZQj4GS5EitNWXf5dXht1AofvDik9Vca18HDKUnyJRyaDSJSIxFnaeSLqRlPI7mW3tmcrDzTomrlryPZXPO5Hsv/Kqan50vFzhj9nzKfoB2D8Ho9RKvZXXMMNP+ENQsBrdP1o1+TKTh1iwwwmuisFcY55rFMHmfXDP+hOwP0PogzH0dWh8Cbwrq/xXaH+bv/5+/pfeZHzCnKy4sNxa0f40tW37OnhdfYOfevVz3iU9wzVVXsWX/fjbu3EmgNUePHOF73/0uLSefjBsE3Nfby5b9+7mvt5dUqcTvtOZbBw8CMBUy3ROFAvX19WzauZMt+/fzny+9BEpVzdJipkl7IsGBqSnWbd2KpzWb/lu7nu+L9PvGG0X+vWlTJTx6Bqlu2CDU8R13hM7WYUHyxIQAZaVmLLZHRoStvuIKAdeHDglFfPCgXLSnnz5zjM2bpXi6At43biRiiFKg4vY9OCg49cgRIbofekiY65oa+UkPDFDNpLZtqZHu74dbbpk5/cq2FRm41se/JYBnn32EN98cYGTEY8+eUfr6DnDmmXM47bR9vPzCK/xxyy/5zU9+zqJzzpHGwhzr3d/9Dz78oQ9JIxXZt1LCOjsuzOsSEF2flPWZHEQl7ohiGd48Ks/LjoDpvuFQSXMMsK523Uq2czyUYVTdws+45hoCzyM3MEApleKz3/0uC9/5TgZHRvh/PvQhLvjQh8iWy3z2N7/hvJUrufT66/nez3/O4z/7GZFkkolXX+WOz3yGpe95D+esXs244/Dwl79My6JF6CDAChUWe++8E79QYNkXvkC0uZkFV19dPX7FFbxSC11IjVSl2y0nLgEUZqQGAM8pEqtrwTBsybsOjcncYp54cyc68MlPDeG7ZQzTwowl0L4v8XR1bUTi9SgrwkNf+QrLli1lyfILcItZlGHRccZFZPIOruvS1tYqH10hz5zWFvqOHhFWurkZlUgK4+w6YnbmlNCeh7IiKDsEztkMoDDWvBfrExtQszvxf/1LkYIn6+R6Dv+MzjmoWE0YraNQ0RqMZReg8/nqF6idMqbnsmrVKgC6u7tRSjEyMkIQBDiOw7Zt20iH5oJ1dXUYhsHKlSuJRCLMni1S+quuuoojR47wxhtv8Oabb3Luuedy//3386UvfYmVK1fys5/9jI0bN/Kf//mfKKUIwmi/bDaLG9bz19XVkc/n2bZtG64rqqne3vvYv38L0WgS1y1Ua7BXrdpAoSCMvIDmjVVjss7OxeTz46xceTsLFlzBihWfJhZroFCYYNWq2/H98nH13KtW3YFh2ChlUVfXQ7mcOQ54a+2jlEFEa9q1Joowz0WkvnoWAo73IAz1w4hZmYfUUM9CALNCwHFr+MtpRaTgXwqfL0PqtBPhdjZS170OcQ+vgPOl4TYrkXFT73297N+yn977emmY08CqO1ah0Sy/dTkLrljA6vtXV83OajtqsRM2ZtRk5e0rjxuLxRpjnPkvZ3LpVy/FyTrkRnLMPns2V/z8ClbctoJobRQrZlHOlBnYM0Dn4k6smFXd7mOvfYxLHr0EH5+j6aNcv/162pPt5N08cSvON9d+k/ZEO+lymngkXjUoe/jSh5mdnI2vfVoTrXiBVy0LrJjZruxZidaanroeHr38UXrqegh0QMSM0BxvpugV2TOwh8Wdi6mN1pIpZVAolnQuIcBAl4aFqS4chdwh+cBP+AAsfoxrbv4iXWe+m4HhSdb8442cePbF8m1pDfkj8NKNMraqO0Vk3VYSCgN8++kUH77ycoyXr4doMyz+JiRPFIJk3zqRgzcvFgCf74fc4RnVmUYIFiMcF5q2HKNiTKaY+atIxyuLYYfxXToE5AdnkmuUGQL2sGa7wlhbISgnkLLEisEuzPy/4idUGX++vfyPX94G13+tJYDdm3dLx7ypl87FneTH8jg5pyoL8koe+bE804emyQ5m2blxJ52LO8kOZXny2ifxih52zCbRkmD7+u24BZfGuY0YloFX8hh7dQzDMojVx5hzwRx8x2fNQ2tomNsgkV+BJloXrcrSh7PD3PvcvWg0sxKzCAjIlDMM54bZ3b+bjJPh4PRBbnn6Ft7c9iYN9Q2sffdabNPmP374H6DhnQveybWXXMuFf3chQ0eHiGajeIFH2ZOatVnxWWzq3cTizsUMZYdYt3UdhjL46qVfxVAGWSfLJ3/9SZKRJD5hdiNQjcJqOoWqa3NVIq5mJDtKSadZea0at2BJJ2YYIZMUdoBOdkaCXVkHoasjM26P1fOwRM49+Lx01g3zpUN99kaoaREZkPZDeXcM3JzIuDtXCnBefLsA6SW3SyZ2aVqiut71iBiXFcYFtFfOySvAyD5oOUtmQUHex5IQkC8RNHD48DS7dvVRLntVoGtZBsuXdzN3rking0CHpYsKz9OYpqqan1VeVwqWLu1izpwGSiWPPXsGuPLKM1i1qocHH3yeFSu66eioxfMCgkAza5aYLlXk4sWiixdoDKWYymVoTjZiKJlNn1XTQKqYxjJM4naU+pokU7kM82d189rIQa5a8j7WnLKMq5f+La7vEbNtyq7LVCGNHw4IE7GEuOsrxVVLZfuPLnkfU/k0DTW11MUS1XY+uuR9JKNxls05k3QxhZrcKOzy1APCYE9uCtnmzZBYLYZk1XUbIcgT3mFFzq0aoP7D0P4oopyIQ807ZWbeSIDVKRJza5bIw71xLrhgKV0134GgAOlvAw54ozQ0CGgveh65TIb2ZJIrFizgjtA9+/qPfYzNDzzAyW1tFBynGr11+8qVNMRi1W2VUpzd3s68pibak0kMpSj8+MfUfO1r9D3+OI995zscSaXo7etDAx+7+mretWwZR3/wA8ZGR/+Pdg2tBZF+85uCQiuoc8MGcf6+7jqRgj/6KMybJ2D53nsFVLS0iC231lKY/MQTApSDQLKyIpEZinjzZjExq6+XSK4Kso1GjztmJD+NZc2kea1YIT/rE06Q5h56SKTc118vj62twlL398PHPy6AetYsKfceHRVcXywKtt+1S0zMLEvae+QROf1yWeYLDh6UOYYwupmXX4ZnnhHVkZ7XJQD5raPy/npmQ0ujPFaWSo20RozHohGpqw5dszk0IDMA5XAANzAqNdeGkrZdT9pTCNtdid/K5GaY7rJTlYonOjtZfPfdJDo7MSIREu3t1DQ389X77mPLBz7A+P79DA8P88L27aQff5zfPfEEr+7fz0t79nDPOecwL5lk75130vvxj3PfDTfw2h/+wOt/+APf+853qI3F2Pe5z1EYGREjL9etGpm1nHMOyjCoaW1l8d13E589m7GXXgJNFVDbsQR2TR2dC1djx2oJ/EpfbWBFajBMCyuWwI4lmTXvPKaOvkq8uRMCH9/5f9n78zCpynvdG/+sVWPX0BN0000PTA5RxFkQaDRxwgFzMvY+bvfONtGgEUwcIiq6o0kEE4wRoyZqYpKTnWmDJkZbEHEg0jSzggaRoYEeq+eaxzU8vz++q6oh2ee81/te5/xysnfWdRW1hmc9q6iueuq5131/7ztHoKoeDU0YcaUk6krTMHNJ+j7YyAd79/DiCy/wpU/NI1DVgDdYKRFghSzK8c6wLVPyp+MxcLuxP3gXYmPCSo+NShxXMIwWKhcZuMeDyudQmZTsqxYFlebxgsuF5vGiX3gR9rbN8veLR0ViHo+VjNBUqT5ToVXXoDdOgeioOIl7vbhcLiqdsoJ0Oo3H4ykZlnk8Hi677DK2bdsm8ZzpNF/5ylc477zzGBsb49prr+Wcc85B13Xy+Tzr1q0jFovhcrnIZDI0NjZSVlbGF7/4RXK5HF/60pf4/Oc/z7x58xgdHSUUCuH1eks12lu3bnUAvo6uu1m4cDV33hkhFJLPtKbpLFy4msrKqZSVVZNKDWFZeRYsWF4yJvN4gjQ1zcPjCXLNNc9QXX0yhUKaQKCGeLyXaLSLgYE9TJhwCosWPUdFRTPd3Zsd+bn9F8Dbsgzi8T40dJx7Yzg2f5TLKMwo4hDezXi8VhYB4cfvc2y1OAJ8DQHIq5w+sogxmvPrjw00A5cg+dk5BGzfgoD5o4Dm1sZB8vIFuMvcVE6tRHfpVJ9UzbXPX4u33IunzIPm0kgOJAlNChE7FiM1kGLRs4uomiGSf7fPLWx0qjCuRlGK5pZmqk+qxuVzobt1vCEvzRc18/Y338bMmvjKfaWywNhgjHQhXZJvP7b1Mdy6mwmBCbh1Ny7dRcATwKW5mN80H0tZ2Nj0J/tLpma3rruV7ng35b5yAp4AGSPDknVL6Ix2kjEzuDQXGTPDUGaIRCHBjr4dKBR1oTqWrl9KxswwuXwyR2JHWLJ+CW5NoWV6RaKd6YPKWZI1vWMxJA/x7A8eoffYYcyhXQy+eAmHd6wFMwWqAB8+At1r2PTdk/jUF78tLPRwO0yYw69feJNvfqbgmKE5Pjx2HvY9LBLx/aug7nI4/R4YeF1IkvQxua5y/BOsgoBbd5mjSjxuKbLXuldWYkccr56iso1xNaPLMw7GQUr4bEdP4fI6TuGafNLKp8g5yR7pr6zWSauxnPLDPH9f/mss2vEM51/lBWja1YyXybiBR5VS/+N/dU5jY6Pq7e39XzX5qy9G1iAXy6G5NFweF7pHwG4hWWDw/UHCDWESPcI256I5Ol/vpPHCRrxBL5se3MS+NfuY2TqTRc8uou3mtvHt5xaJdNwSuXchVSCfyBOcJKDEyBh4Ah7Jv3aWjXdv5NJnL2Xx+sXMb5pPS1MLg+lBbr7sZgqFAg888wCzz5tNhb+Cw2OH+eO//ZFf/exXTKqbxI/W/IiYHeO55c9xxhlnsKV9C709vXR3dTPzjJl8pvUzLFm6BE3TODx6mJAvRMbM4HP5eHDTg6zZt4bWma08c80z3Lb+Nu648A40NOrCdSTzSU6qmo6uxCm6xDabufGBEShlChbvNBajDYrSm+LApuEwC4bjMN5wnHkF44yQsiDRI0YVx5tXWDlK5mK6F7LDwowHauHQiwKWL31KwJaZcQw60rD5Hjj/bonuqjlLwHhfO7zyOZjxSTnHVayzdth1ZY7X46DJHVJvhZicFY/ZBtgWcSNEPm/h9bpwubRSlFYymUfTNIJBL7Zts3VrLxdcMBmfz01/f5JJk4rTFHEbHx5OEQh48fs9uFzjd08lcksAeSpV4J573mDVqssZGkrzxBPbePzxhbhceum6FhZen8Rt6c7ND9vJfHVpOj2xQZ7f/hI3zvkUNaFK3Loby7bwub3YykZHw1Q2GhDNJsgaeZ7f/ge+POczNFTWSBtNk1JUM0fAI2Zn7/cf4l/X/5CfXfcQVWXlonxAw6XpGFaGCr1P6q4D85HorE4B0RPuB3ez/N2MwwKwJzwgcvDS9nLJvj5+WwsIqLZGnH7udfKxbfm8qbysmxGmnjyPl174GWef2wK5vRCYxz9+4Vbe2rQJl6bx4h/+wGkzZ+LWdVZ///skkkke+MY3uOryy1ly221c88lPYlgWHoeF7k8mmRwOM/OUU/j5b37Dx2bNIuz1kjNNwXIuF2t+9SvWrlnD7U8+SU0wyLdefpmVn/kM9WVlPPzNb/Lhn/7E715+mYJlkTVNcobBDL8fLZEQ4FvvAEXTFBBoWfDLX4oO++mn5djixVKP/elPQyIhRc8g39VUCqqqBDB/5SsCqEdGBPnOni1gvbtbUHJNjVDJLpeg21hMkK/LRaqshgMHNQYGxGj8kUfElGx0VE6fPVsY63BYugHB68uXy30CpQRQ79kDV18N+/cLcK6rEwm533+i6qO4pFIiOwf47ncF+0+d6pigBS20Q11iVlZdLuC52ElxLCouxe2Co0HvGRAGW9OkzrrISitElnikD5rqhMFWzvh2qEuiuJJp+VsYhmOYJlp3w2Fy7UKB0fffJ1BXh8vvx8hmKW9uljprw0D3eNjx0EN0v/YaUxct4oJvfEOUJKZJLhbDymbJDAww8ZxzsHI5jFQKTyiEmcvRdtVVNF95JbOWLKGspoZ8LIavqqpkWgiQ6u0lE4kwYdYs3MEyLDOH2xtw3hd5fwrpGEYuRaBqMso2GfyonbrTPy6vw3KMwtxesC0y0QieshBGNkWgukGOa1JHPOPkj/Hvv/4fzKgP8+s/vMXDD6/E40Lcw8fihMMhbr+plTvueZCahukc/OhDJtfWgW0xe9Ysvj3vHC775H/DtehzqHQKvM4kOJXEbn8TveUStKoJYsAWHUOlEujN01GxsdJxgvJ517w+VDKO6jyAdtLHwOtFc5zBUQqVSUketteP1bZW2O6mqVipFGMV1bjdbvx+P/39/dTV1eF2u+np6aG8vJyKigrnK6UTjUZpb2/niiuuIJvNsnnzZubNm0dVVRWFQgHTNAk64e2GYZRqri3LwuPxEI1GSSQSNDQ0OGO7TT6fJxiU+UGhUEDXLWw7QzY7yubNK2hpuY9Eoo/6+nNIp4dpb19JS8tyPJ4AhpEhkeiloeECcrk4wWANmuaiUEixf//vqK4+iUmTzgTA6w2SSg3j8fjx+cqxbZPe3m0EAhNJp4dobp6PpnkAG6Vsstkofn+l3ETxhTmg6awCliMy7b1IVFZxWYxEaLUCP0Qmi0NIDfUVwI8R8HzLce2eQuqy0wjz7RofvSk42zoCrseA14ErkcivSxJ5MoMp/BUS0ekuc8scLlXgjXveYP6y+QRqAmy4fQMt97XgCXkITQqR7E8SrJW/kZk12bhsIxfecSHBSVJvXUgVSmV9mlujkBwH3Bvv3si8u+dRNb2K0YOjdKzqoGV5C4neBGUNZbhnuBlMD/JI+yOsXriaofQQj3Y8yqOXP+oMMYoKbwVZK8vOvp2cXXc2IW8IW9kMp4e54CcX8MtP/5KmiiZWbF7BsnnL2NKzhS09W3jo4odoLG/k4OhBVnWsYtm8ZdQGa0kb6b+Yy93y6i2s2bcG474ErvQRtH0rRbYdmAI7bxYA3NwKsx6CsskCevtehpYXYOKFMr9KHIL934WZD0CwCYa3w8QLZKDUvPKXMlOw5x447W4ITofkQQHWM++HQIPM2WLvw8R5AszbPwefHpS/aqpPjGndx6XEHC8HV8pROzrKSSMzTroUEuOycqvgmOU6c8pCQiThx89XU/0CrHUXf7EUVZWFhJA9lSf9x+3+vvxNLZqm9SmlGv9nx/+qzLUmjie/BG5QSp0NLAKe1TQt/Nd8Xf87Ftu2S46SJTCsi+t3c0sz4fowDbMb6N/ZjzfkZdb1s6g+qZpwQ/gESZHu0Vlw/wLZfmBBKZ7rtTteK8mRhACVPOzMSAbNreEJePCGpTb76qevxm27uX/B/Vwx4woiqQh1oTpGs6NYyuLUiacyrWoadaE63nvxPX72k59RVV3FH179AyfXnczHyj5G2x/a+Ocl/8y/vfhvdOzuYOFVC8WcpQbSRhrTNmmsaGRC2QRmVM6gIdxwQg2PhiaulN4gp0w4hYHkAI91PCZzVN3lDHDOyFeU8sSPHCfbcWobi8C6mGet6eMSnOLkV9NEXl6UfjunlybEtiH10KpoYuHU0+heR1bule1gvZiZeYIwZaGwybp//Fp2QSTe590Jux4F/wQYek+O154LJ39WzlEIYH7zK+OGF1ZeBtv+DomD8Iak1roY3RU76tT2SKyWZdkUCia2rUoAW9M07r57I4cOjQJQVxdiyZL1HDkSparKj9stQM3tlva1tSGUgqVL15XOKfZnmop83kTTNObObSSRyPPII+3cdtts7rnnLmbOPIXKyjK2bduF26UTiY9y7dWLmH3eBVx4wWwWXnI5O3ftBBQ9oxF2Pd3GZXMu4uILF3DVwitZ9m+r6I0Nkink2N33EZZt4dJdTAxWUV9ew4NXLKauvBqlFKZtYdo2lrIpc/vJmwXe6ztATbCKn133EFmjwLc3/oSBxChu3YVlW3hcAQHLgQXOZ8WQXOpJTwmwBjAHpE3dc+CZipjm1ULZfBh9FDDB6HViuHrBVSHGaKOrpI272TEzu12eNa8w2Z5p4JogsV+5vZKTbXTyzPPPc6Czk/sffJAHli9H1zTe/+AD/vDSS9xz330l52/btvnyK69wJBplMJ2mYFmkCgWORqOMZrMMplKEvTIZ87vdJSO06/7pn2h/5x3OCIWYUVXFt/7bf2MwlcLn9bJk6VK2btlC3jRxaRr3vvEGacMQ8Of3i8uX7tQbeDyCTtvbpZj50UclWmvHDqGOr79ePu8PPyz0cDAoUvBJkyQvWykB4+EwzJghpmjFgujaWgHRW7ZIrbXbLXTx6aeLrDwYxLIFTJ91lry0iy6SZhMnyr477hBMHgwK1j92TMDwyMh4epjfL5ddt05A9fz5cMop0k8yKYR80cTMsmT97rvl/kJ9/bj0/MgReHeXoyo5uVkcvXFqrou114bpsNaWSMGLNbRet7ynJ0ldM6Y1HtFlK2GkC6aA5u6I7APZP6NJ+q8ICbD2eOBwt1zHGcPSvb28+53vUHXqqfirq/FXVxOsrSXV11cC1prLxeyHHmLRunWc/fWvY2QyJI4eZcc3v4mVzRJsbKTmvPMEMCvFvmefJTs8TNmECTRfeSWn33gjnlAIzeXCV1GBlc9jJJMYqRRGOk3ZxIlMmDWLsf37weXC5Skrjc+ZaD+FTByPP0Sgso5MtB8jl6Z66tko26SQjglr6pIxPBsbJFBZh6578JfXiGLF7UXXXQJ4UbjcXiobZ7JkyW309/dzpPMwRzoPM2fObFbeezOfbJmBmU/zmU9dy49+9EMAdrz7Lv3pDBdffQ36gsukTjpUDskEmlLY7W+i9u3Bbn9LGGdNR5tQgzZlOnDicQ3Q3G5UbBR70wa0pmnCcrsl2k6NDmO1rZUaBo8XZRkC2mecit2xCTsYJJlMEggEcLvdNDU14fV60XWdKVOmlKTgGzduRClFR0cHzc3N+Hw+wuEwV199NZWVlZimyZtvvolhGHR3dxOPx/F6vaRSKdavX1+SgldVVdHY2CjzD7cbt9vNO++8Qzwep7u7m1QqJeX8hTTJZISrr/4RFRVTnEitNIlEL3Pn3kUy2U8oVIfb7SMa7WTDhjsd+fcYtm2RyQzT3f0OkyadeVzt9mECgQl4vSHy+QTr199GKFRHOj1EQ8McNM1DNHqYV1/9CoaRoaysGk3T6evbgY2wzGuQPGoXMEtGaLlpi4DuVuABxAW8A2GkdwD3OO0MYJnTrrhPR6TgivFabgv4BuMEphf4LsJ2T8YB9R5JWunb2Ydt2YweHGXdknVomsY1P7yG8uZyvGEv1zxzDRVTKwjVh7DyFmVVZdiWTU9HD8mBJA2zG+hY1UEhVUBzafjKfShb0dPRQyFRID2YFiPagSSXffcyKqdUAuCr8nHFY1dQ3ljOlIunUDO1hpA3RH2onlWXrULTNB7teJQ7L7yTgEdKwMrcZRyJHeH2127nrElnEfKGMG2Tjp4OMkaGnTftZMGUBXhdXuY3zefxbY9z+fTLuWf+PVT6K7GVzaqOVSVjM7fupsJXcUJ2tq7prF64mutnXY+GfRxz3StKjmKN9On3gKdS5juzn4HPDENNC+AWxV/5KTD7OQhNF2+Z2vkSp7XzVkgfEWfw7MC4/DvXD6Pb4LwfQHAKjO2SGusieA80Cnh3lTklho657Z/XWJdujGqlsg4SvU7NtYxlJTY61ec4gfeLstDlF7JF18fnji6/4wvkzGFLJA7jDuWaDr5KydL+uyz8v8TyV2WuHXA9AnxaKfWOpmlnAuuBaUqpwv/svL8F5jqfymOb4vytbEVmJEMhXSDRk6BpXhNmzuTN5W9yyYpL8AZl4tzT0UN5UzlV06qwChaWYaEshTfklXgHFBvu2MCFX7sQ27IpbyrHNmwKyQLesMi/BvcOUn9ufenOqLIF1NumjRWwSrXRt667lV996Vf4dT9tbW3UzKjhC8u+QOT1CDU1NaxpW0PWnWUkM8L5dedzUvNJPPHUE3zy059kaHiIOWfNobqmmp17dpKzcizbuIx75t/D1Mqp4ghum7g0F1kzS8hxA08VUty98W6WzV9GT7yHuQ1zqPKUoaV65Q6jyzsOkOPHJNva5XcYoLwA0qIhxMBOqLuAktGE5hIW2eWTO5XFeu1Ur9TfaMfJfZTtTH5zzt3NBrmOshy22JH8aC5IO07j3jBEDwrQDjWIq3dmQOK45iwX+Y+Rkrufux6Fix4V4F2UuBfrwZUh0vBCRoA79jiDremQHoJfnQ/X75RreUIkC/K3tCyRdRuGxfbtfTQ1lTNxYoCyMsm4Xry4jTVr9tHaOpMf/vBqCgWLRCJfknm73cI+Hz48xshIhjPPnITP58LjcZHNGng8MonXNO0EhnzLls1oWjWf+cyVvPTS7zlvzlngthgbi1JVXYXX5eHVl19hxbdXsHXnNgr5Am+8+QYLr7wSj8vFJ2/7Z7a98Q63rr6fey75F0zbIlPIURuqpi8+zE+2/54b53yKyRU1ws4pG13TcesuemOD/HL3Ou76+D/j1l0oFAXL4M2DO2ioqOGM+pPRNU3ifdw2mspCdrvEaCkTxlbBxIdE0m0cFdDsaZC66gnLne06cE2W+mvjCGh+qdvG5YDosvHyhNJ0DefZBJVn6oxzeOl3azj7rFOF6S50kvFexuFYjBWbN/OHf/5ndu/fzyu//z2rv/tdPD4ftlKMDg0RLi9nZPZs2r7/fZoqKuhLJJjf1IRp25xx6qn8j9/+lgvOPZfIyAgu06S2vp6RdJp3Xn+df/3619m5fz/L1q3j4YsvJlRRwfbeXt7+9a/peOMNfvrSS1T4fERSKepDIep0XZjrsjL5ro2OCvi1bejqErl3S4s4hM+dK6jzkUfgnntwrOblPMMQxhrk3F27RNut64KEDUOQ7bFjAsrvukscxFtaZN/KlZKFlUqRLq8jkRClQjIJkycLub19u8i4DUPA9/33CyZvbRXV+uLFokBva5OEr5UrpU1NDbz/vriNW5a8pBdekH4vvFBw6623ykv5h3+Q/4LbLf+9W26Bnzxr4fcqx0HWkv+PZQt4LpjjTLSthGkOlYFhjTPWui4A3OM+7oae8ztrWhQzlfF6RPJt2dK+OyIycb9XarOjcZgjrKCRyzG0ezeVJ5+M5nLx/g9+wJm3347b+Tua2SzF3Po9jz3GaV/8IsGmJrKDg3zw9NN0v/YazVdeyXnLl6N7PGDbaG43RjJJ7OBBas49V8aYQgHd40F3u0Wi7bAzyrJQQCYSYd+zz3LuPffgra5EmQXQdDRNBxRWIYdtmxjZJIHKOiwjj8sXQEPGdWXLWCjxWJCN9VNWKRNTZUrG9de+vpz1r73GwMAgE6qrCIXDHPjwT2i6jpnPYtsmV177WW69+UvMO62W+jMupa/nKDfdvJRjR4/h9Xh48vHv84mPf/y47y2OjFuH2Cj25jfRF1wKVRPQTBPlckMhL+3TydJxraJKxmXLRMXGxMgsXI69ZRP65YvQ3G5wgK3m8aBGRsDvE/O0WBQrEceeMp1CoUAymSSVSlFfX1+Sa6fTaUzTLLHXxfFXKSU3Gk2TjRs3Mm/ePGzbxuv14vF4ePPNN7n66qvp7u6mtrYWl8vFxo0bueyyy8hkMnR0dHDZZZeV2Oxt27Yxe/Zstm3bxpVXXo7Ho2PbFvH4MdrbH6GlZTlVVTOIRo+QSkVoappfqoe2bRNRP3lRyiYWO0o83k1Dw2zc7jJAiXM8GpZl0Ne3nVConp6ednp6tnDVVU/j8QSwbYPu7nYSiX5mzvwcStmORN2DqbtIuP0kNI1Jzl9MR5y+NcTJ26lqJYMYm92FGI+1MA7AHR0YGec5jMjEuxEXcD+SjV0cwZ0Ec4JAEngfiftaATyXyuPOmri8LnEAH0pRSBWomloFGvRs6SkpEMsby6mYUiGlfEEP6aE0uWiO9FCaqhlV+MI+mccpRfRolFR/iobZDbi8LtYtWccHv/qApQeXYmQM2le207K8harpVTKHdOuYeZO+7X3UX1TPscwxuuPdzGuah4ZG1swSSUaIpCLMaZhDNBfl9c7X+dTHPsVAaoBVHau4d/699Cf7uWjKRaQKKeL5OGFvGF3TCTsKQUtZ6JpemqcV53ND6SES+QTf2fIdlrcspz/Zz9l1ZxPwBAi53OhGAs2ISz61O+B8iJ35VnYIfFXjip/37oBTb4dAs2MGazjnOH+RHYvHWe/zn4TRncJ0WwX565sZ8FbB6HbpI9B0IlM++zlRCVoFmfuFG4WksPInqiFtw0meMY4jbI7KnEw5TIyGgGcjLecVTW2LKkmF9Fucv+ruv1RJlvqdVvx2/521/k+y/D8x1/83yMIvA36LKHeqgM8opd74szZ3IrGFAFRUVDTEYrH/f77M/9dLPp3HLthoulaSaBfSBXLRHNmxLE3zmgABv73beglMCjBh+gRsy0b36iIJ+k4HV3z/CjRdw13mRnfp2KZN344+Jp83GZffJXdWd/QRqg9RNb0KZQqQDzeGiXZGSfYnqTurDj2s05npZMXmFVgvW6x/cT2ZTAYA3aXjr/aTGZZtj9eDS3ehaRqnzzydN955g9+v+z33Lb2PsbExLNvilJNPYe0f1uKr9pHKp9jcs5kZVTM4t/7c0kA/r2keWTPL/W/ez8OXPEzAE+BI9AiPb3ucxxc+zsSyKrRYp9xhLJsohg/ZYaltljfnOEYZGfTix+QOopUXCc/xkhzNBYUEX132DV5+pY2uri7e27KBs+dcAlaeKxYuZGAkju7SCYfD/GDVw5zT7IOyag4N2/zLDTcwMjJKRXmInz/7A2bOOgvQRMrjq5S7qwM7ofZsqeOxHbmQbY5nKW5cDI2fgFP/gRJwNtLwxzsFhCcdaVHFNIeJd8v/MTvqxD2E5Jqa7sRJ5ElrVXR2Rikr85DNmqxYsZm77prL6GiGlpZmslkDn89NNmvw3nsDnH/+ZAIBt4MNhJlOpwv4/W5yOdOJHfaSy5lEozkqK/34/W5SqQLxeJ6GhjBHj0ZZsaKdZcvmMX16FR0dPXz5y5fy7//+Ah87/XSCYTepvDiZZwpZNvx+HU8/+SRvb92MR3dTMA0xKvP42bJ9K1/8p3/hvQ/fJ+Dx0xWN8POdr3DTnE8xnI7yrfseZF/Hu/T19PLSm+uonlrHGXUz+NwnP8MHnfuZEKygqqKKVY89SvOp08gZBouv+xeGBocYycRoqpnMUz94nAvPKkcbfRwmPeb8CHrkx1vTARcM3AbVX5Ga7NTLMPkFKLsAsrsdxtuUWjAzcpxU/GSw4wK4RWbB+NTMBHMUXJVMPek8Xnrxl5x99jnExnrJZA2CtdO5/bWNnDE2xvf/9V/Z39nJYCpFXTiMrRQFy+LTV13Fkttuo/qcc5jb1ESmUCDg9fLVW2/l9ddeY2hwkKrqasLhMH9Yt44brr+ebC6HruvUTJxI+NprefAf/oHeri7uWbyYvGFQ5nYzbdo0HnzkEUZ9Pi5sbCRnmty9cSP/dvnlAq4HB0UTPWeOZFlns+Ny7lhMtuvqJLf69dfh5JPh7LOFfX7qKUG7RUOvotueyzUORrNZQawej7B6Y2MC4hMJQb+2XQLhCb1CbkKq8d0w3tXxP1HbtslLBqnBvvtueSm7dgnwLt4z8HhEUv697wkRHwpJ37ouKni3e/w+XjYrb0dTk6xPmmiha0oMyHoGRMLtRGJh2XC0bzxOqwieD/dAQ63UXSfTEAoIYO4ZECZbIft9XgHPluUodpzzD3bBcFTquk+ZIgx5UVnQHcGcWk8hlSrJuFEK3eNh9IMPCNTX46uo4N1VqzjtS19i9P33CU6eTM2556KUItXby/7nn+eMm28m2NhIqrub/T/7GWffdVcJyOkeD8o00Z0bJkXG2hMMgq5jZjJYuRyZgQG23nsvn3zjDVw+iQbUUCgp7AFNIz3aj9vnY+TIbupP/zhmIcvw4e3UzJiNp6ycQibOyJGd1J/+cVAKyzJwub2g6dhGHts2GD68g5qTZqPrHly+MoxsQqTjVXWOiEkAre7yYOSSjHTupO60i3BrUketeb0OkyQTYlXIg2GgBYLH7ddRhRz2m6+hX3qVMNSZtEi+PXK+SiehLFBi+tF0rFdfRGtoQjttFmTSqEQcvaEZpeuQSYNhYHc44NvjJQ+kUik2bdrE3LlzmThxIrZtYzlS/0KhgM/nOyHfOp1Ol/bt37+fqqoqysvLaW9vp6WlhWAwiNfrxTRNcrkcfr+/xGZv2rSJpqYmmpqa6OjoKLWPRCKlOC7Il2TbwWAN6fQwzc0t9PR00Nw8H9MskMtF8furAJtUapCysgl4vUF6e7cxefL56LobTXOjlFkC4ZqmY1kFcrkYtm1h2waVlVMZHT1IR8cqB8RPJxo9QjLZT1PTfEBheQIc0d1M0jS8jMu33QjoVcgEcaL8OjIVkYI/hQBjwznnCFI7XQTSWeBdpGbbi4DvEQR8T3eOR4FK+bVAB25FDNC+lDVIHBpjy6otXPbdy0rg2CpYeMo8KFvWo11RyirLCEwIYBkWtmHjCXgwcwK0NZdGrDPG5hWbaVnegifgIRfLkRnJ0HhhoyS9DKUI1YYopArs/91+qqZXUd5QTqIvQd3ZdaXyQjMg/gJHYkdYuXkl9y+4n7pgHYl8ggmBCRiWgaUsXJqLsdxYSc59/azrefpqKfXRNZ2CVUDXdFy6C9uWeNRoNkqlv5Iyd1kJaGto5KwcS9YtKcnCv3f59xhKD7GqYxW/+eRP0M2EfKdcQfle7V4KH/s6hE+SsS11GPY9AjPvE7C6fxVc8LSUadkFGN0h7t+uMjFFK0rMy+oddZjcuJO5VBKMuGRhRz+AmrmQOib122c8AGVNTtSpGidd0ORGe7G+Gs0B28eRNSVAfNyPTSHpGOr6xuefxQG7kJBz40dEJVl9qsxHi2C8JCN3SKPjwb67bFxt+fflb3b5v10W7kZUPp9RSk0BLgX+TdO0ice3U0p9XynVWHyEQqG/xsv9f7fYYlg2dnisFLsVmhRiwskTaGqRiCzBUBpN85qonlpNIV1gw50bKCQKVDZX0jRfMrKLOYv5RJ71t60nXB/GXeYmdiRWyk5MRVLCOJa58FWIvMXtc9Mwp0F+wO0CKzavYM2+Nbg+6aJ3pJdYNkYylySejtPxfgeta1vZ3b+b0cQoR4aO0H64nW/+6puYtknLx1t4/b3X+f0Hv2dH1w5++9Zv+fbeb5M20pT7yvnCWV+gpbmFgCfAcGaYmmANt7x6C5FkhK/O/qoYbeguTqo+iSevepKCJdEqKtQowDrcCGgOg+zcISxmDlpF18aCsNmp3vHamGJOtm2UBrzPfeaztL/1OlOaJssgrAGpXtb82495f/dW9ry1hju/eis33PxVGRTLp3LzV25l8U1f4uC+97jn63dxw823y3WN9HgutcstxmXKhjduHh9Ii7XZ6OIMfvr1MrBHtkGiSxjoA2skkqtsIuz6nrDYxTpF2wR/tTDdGxdD7JAM7LoX3D5MU5Xyq1es2MyaNft47LGtzJ3bhK7DwECaxYvbGBrKMHduI3fcsYFEokBnZ5Sbb27j6NEouq5jmja7d0cYGkqTTBbYvr2PdNpg6dL1pFIFhobSdHXFAJgypZJ77pnPU0/tQNM0GhvLicfz9Pcn2bVjAFspQt4ybr9lKS1nz+Hb3/wmP/rJc3g0Fy5Nx+v24HN5QNN46smnmHvpAso8PhSKWDbBBU2nUx2o4JyGU7n1hi/zqW8vpqGpAZ/bzSk1zcSySZ79+U84vP8gO3fvYvGSW/jsdZ8na+Txezw88eOnefWPr1N/6wKaLj2Tm798ixiaVd8GKiegGkvWB24HOwl1q0GvEtA8+QVhtwdvA89kOT5ws0jHjd7x2C0M0B0FgiryKbb8WA/cyc1L7qVx6hn09vax8MrLOemU04knTT712S8y7/w57PzGN1jz859z7w9/yNFYDE3TSBUKRFIpzOMieS5sbCRdKPD1jRs5Go3yD/fey77DhxmIx/llRwfv/ulPNE+ZwqYtW9i6axd/ePtt/rBuHf/2la/QVF7OJ849l8d/9zt+//bbPPq73/Hz3/6W004+mfpQiNvWr8dWihWXXCJyW49HzMouukiQZigkNt1z5gj4zeclx6roCD5/vjxcLmn7/e/Lee3tQjUfPSo0cmen7Dt8WK6h6+N52JWVwnS/+aZcIxKRc71e3LqNaapSVjWMP2ua4EvTFEn3hRfCoUPw5S+LLPyZZ6TbBQvkuUiou1zyX5o7V/oqvrTOTujoEPn3l78sfXm9Aqx1XdTupi1u9/QMwGhsHO0rhGmeNlmA86Gu8XzqGU3CRBfNylw69A+LBDxviMT7eHMzzWG3i4z28YZp8RTEk8KQOy7lSimyw8N88PTT5MbGQNfZtWIF/upqMoODaG43p91wA/mxMaYsWsSEM89keM8erHyecHMzc771LbKjoyjLYt+Pf8yEWbPIDg+z+zvfITs8jMvrxeXzobvd6G43br8fze0mOzaGput4w2H2PfccE848kyv+/d8xnRuzOAyrrNrYZoHAhMmMHNlNPHIAyyyUHMVHj74LuuRiT5x+Pmg6Rj7D0MEOjFwaXXc5LuIpJk4/DyObxu0PiJt0oJJgdQNoLpSy0d3ekmmarrupn3kJWpERKpYGKVvMzEZHwOuT3GmnzlIphfXqi5BMoM+eB8m4bBtyU0M552vBsGzn86hUUuK6Ll+ENuNUKBT+IhdbC5VDZRWuqz+D5tR465pGKBTi2muvZcKECRQKBdavX08ikUApRSgUQtd1kskkGzduxDTNErDWdZ3p06fT2NhIe3s7+/bto6Oj4wRgbRgG69evR9d1gsEgLS0tzJgxg46ODvbt20d7ezsej4eqqiq6urpIpxMYRgaXy0t5eSO7d/+EKVMuko9h80UUCmls28DrDdHfvxNN03G7/VLipuk0Nc1Dd97raPQIbW2LiUaPkMmMEIsdo69vB6aZoby8gaqq6YDUYzc1zaej41GUskkkeqmtnUUsJuebugu/pjEAbEHY5TwCfouy7iBwBwKMjyI11l7E7Tsjoz09SL32Eme/QvKvNWe7HYnrmur0bSOMzg6E3QaRp38KsA27ZDKbGkjR3d6NmTFLwBpA9+jUnFpDYEKAzGgGTRPZt5kzySfyKFuhTEW8J86Blw/QvrKdYE2QyimVNM1tIjOSYbRzlFBtCDNvEnk3QnNLM03zm9iyagsNcxrwBDx4Ah40XYBdzsyVMqxXbVlFwBOgsqySjp4OehO92MqmzFNGubecZfOW0TqzlUcvf5TueDfbereVnMC9ureEJX0uH7XBWnxu+Y3WNb0UweV3+XlgwQO0XdfG01c/Tdgb5qkdTzG/ab7cw86NwNi7YjgGEsP14SNgJmUetO8RJ6f6EQhNEdm47pc52+gOierSXMJq26YA7/DJwkCjpN/hdgHWuUH44EHIDkLNPGGdg1NFdu6bBFZGxtZEF+Rj44rAIkFTBMdW/rjSw/x4+gzyvcc2ZN6maSfOP5Ul8Vour7QJNcoc0uWTNsXzUr3jsvRiH6HJosBU47/7f1/+8y5/7dsnZwOTlVLvACildiIxg+f8NV/U/5bFAcOpgRSXrLgEd5mbaFdUnGhNkWoXEjLRsk0bq2CRjCSZvXQ2yf4k625dR9P8ptId0PRgGoCmliYSfQmUraicWsk1z1yDv9pPw5wGNF3jg19/gO7WiR2NsenBTSR6EugencHtg6Ua6K/P/TodPR0YlsGNr9xIzswR8oT48bU/ZkbVDABcmovhzDBnTTqLkewIQW+QSCrCguYFzKieQW+il5cPvMwj7Y8wKTSJrlgXS9YtIWNkuLDxQqr8VXx97tcZSA1w8oSTyZpZDo0eYnHbYnoSPXh0D1t6tsggVTFDBicQ0Fx07rYKzl2/vNwdTPU69S0NDouADG7+idLOE4T4US6aP5vGJkem4xjoEGqkctKUUi1OfLBLfhi85QwNj7Br1y7+6br/Dmh8dtGl9PT2cPjgQbme7hLJ95tLZTD2lgtY1h3ZeMeDYmYGAv7jRyWjuuguruE4f98vA+5Fj8oA/eYS6dcqiNxJ90jMlycodzfjRyA7gtul8fGPTyEQcHP//QtobZ3JAw8swOPRsSxVAtwrVmxG0zSeeupqQiEvkyeHWLXqMgIBDwMDKZYsWU9NTZDe3gSxWI6amiCPPNLOmjX7iMfz9PYmmDWrlkQiTySSor4+xPe/vxClFCtXtpPJFHj++feYMKEMXdOxUDz305/w4cGPeODBb/Ctf30IXRcn80Q2yWByjEe/u4rOzsOs+s536Y4OsPKNn3JG/clcdsqFZI0ctlJc8olLWHLlP5HKZ6nwh4scGLUTJlIwCwynoiQScaqCFXhdHiYGKmmonUzIF+Dpz9zDwmmz0TQdVbsavDNExm32OjFcg1C9VOK4BhaDyoBnBgQuAs0nedVGv9whr14m+wItEL5eQDiIE7hd5E+cLzcaVH+VZ7/povfY+5jRPzDY/Q6H9/yIKc2T2PHSLLbv3kn79u388ve/558XLiTo8TApFMKt67g0Db/bzWsbN3LVtdcylE4zkk4zu6GBRzs6mNPQgGXbbO/r44LJk+mKx1nc1sbB0VHShkGtc4MxYxhYSpEuFJjf3ExfMkltMMiOvj7ylkXQ66WlSVQylQ5gwuuUX5imUL2BgKDTsjKorpY6adsWJvuuu0Qqruvjku9cTpDtWWfJ9qOPCvj2+WTf4OA4o71zp7QvSqyvu07k4Z2dQh8Dhi3RcT0949FZxfsOBQeL9vQ4RLEmpmPLlgmJfuQIbN4s3e3dK47jxXtW554Ln/+8YPi+PiHlQyGpza6vh098QjD/8Ylabjfk8joKTQDz3LME5CqnZhqksdfjxG45kkKNkqt3aZneIDXbug7xhCD/ipCA8WRa2ptO/bbfCydPkWefV3KVFQK2zzgJpRS5kRFOu+EGcsPDaLou67EYtU4NdS4Wo/K004RksW1qzjlHmGfbxrYsUj092IbBzC9/mbp589j/05/S/dpr7P/pT1GOft5Ip7ENA2VZ+Cor8YRCuDwejFSK8+69F93tpmziRHJjY1LKaJsOew2a7kJ3e9AYdxF3ub2l9brTP46RiRHZ9zYefwhdd+Fye5k4/TzMfKYk4S6rqGX06HuUVdRgmwbKtkvZ2EY2jubyUMjEpYYbhe72ENn3FkYuKe+72w2mid19VN7z6gloloXdcwwVHSu9Xv2ya6C8Eq26Bnxl6HM/LmDZ7YVCvuQIDhpkUtibNkAyLqy4vwx8fsmz9vnRmqZid2yS68eiWG1rUdFRLNsiGovR1tZGNBqlu7ubdDpNQ0MDHR0d5PP50s2Jjo4OGhoaSCaTbNiwgVQqhcfjIRQK4XK5uPrqq1m6dClXXXUVhUKBN998k0AgQEVFBfPnz3fqqTWqqqoIh8MsXLiQJUuWcMUVVzA2NoZhGPT19REM+nn77QcBRXl5IwsXPkahkCKVilAoJPB6QwwOvo/XG3aAtAevN+RIwDUHUN9MLHYMj6eMpqb5uN0+gsFaOjoeLWVei7rAJhY7wqZND9LUNJ/LL38UTXPR0DAHw0iV4sAoZKhRigjCGrsR124PMIiYlPUDtzmj7wDCaCcRUOx3zpkDPMZ47baX8TrrAGJ+thORm3ud/nci0V09CEAPOP3hggXLFzDjihnseGoHjXMbpfzOKbUDAdejnaOiPpwQQPfo2E6CgL/KT7wrTtviNsoby/n8C5+nZXkLmkcjGUnSdnMbRtqgYnKFECVLHKJkIIWma1zzo2vQXTqZ0QyFZAEjY6Ch4dE9PLfoOWL3xHj66qedG9Yx6oJ1hH1h/G7xhflg6ANOrj6ZH179QwKeAN3xbiaFJrG4bTGd0U4ShQSD6UE0TcOyLbJGFs0xJzVtk7GMZFzb2EytnEpzRTNL1i2hO9HN4wsf57OnfRalbInFqjrLmZMpmHI9nH4fuB0J9rmrYer1wka7yiA0Q0C0pgkQz40J0D1zJbiDjmIvI3/pTDfsWgr+GpkXOg7j7F8lfVuGsN/JI7Db+XQojnPt7qWUEFNUQqKEdU71jwNg3e1EbiHXTzplp38+/1SWc06fzNdcPpmzlsB0n/y/TiCNcIC6y4n5+vvyX2H5a9dcTwIOA7OVUvs1TTsJuYl4tlKq+3923t9CzbVZMKVm2lRYeYvkcJKq5ioZmJ0sSt2jYxt2yfk7O5olMCFAejhNLib1OlMumlJyjZy3bB7VM6rRHKdnZSvMvFmqy7ZNm/W3reeqJ6/i1VteLTmMX/PMNeTyOTxVHrJmFoXC6/JiWAYv7X+Jf5j1DyIfLKR44K0HWHHpCsrcZXh0D4dHDxP0BakJ1uDRPByNHeXbm7/N8pbl9CZ6aaxoZGrFVBa3Leai5ov41Mc+RbKQpMJXwZ6BPUwOT2Z61XT6kn0lidINZ93Ak1c9SZnbi6uQcnIIjT+T0vhOrGex8lJLrfukjqeQkvoYqyCD+vFOji4/uHxMPekUXnrxBc4+9wL5o2jwhS98gbfffht0F+teeZlZp5/K7vbX+Mdb7uXA3u3yWqIHmb3gCr7z/R9xyZxThXG+YBn0bRHH8MufE4b5smfgjVsEaJ/aCh9fLYP0W0vH95Wcws0TPyAbFwuQbpgvddsXLIOqUyF6wKnjvl/iHOpmk7HLxYTFkXgXn4tf3c7OKI880s4DDyxg2rRKMhkDy1LYtmLPngHmzGnEthWFgkVZmRuv1+XUbttoGtxxxwZWrrzUcR0XJmpoKE1tbRBdF0O0w4ejzJt3Jj/96a8574KzscNpfrLtJW644FpqQlUEvWVMqKhif+dBaiZMRNPg8e8/zotrX6RtXRuhinLe7z9IX3yIsxs+VnITryoL871N/8ZNcz7FZRcs4N9fWMvHZp7Gh4NHmFV/Mou/dBNvv/02bpeLF176HWa1l/rwRCZX1HDTl27knU1/RAF/ePlFzjs9gGZ0S+QWNhhdYA7J9uASYaPDrTDpB2AOigN47fcdN/CVMOE+MPrA0yQmZeYguCpFvgaAS5hwlMjEUQK8i26jdhz0CrDTkN5ANnQTtoKsabK9r49z6+sZyWToTSS4sLERl66jAaZt49F1Mg5163MMy7b09DAxEODUiRP58iuvsGbfPlpnzuQHV16Jz+XCsG129PXRWF5OXSiE3+3GsG229/ZSEwzy2NatLF+wgKkVFbg0DVMpyg0D3XImG0VX6uFhAcBNTaK1zmQEYKfT8MEHQhe73YJ03W6hkONxMTArL5ft/n5xC7//fmG9czkxRGtokGLngQFByHPmyHWTSQGp4TAZLYBharS3a5xzjpDaAwMn1lH39MDFF8tp8bhctrwcbrxxvJx77lxpt3KlgO/6enmJliXl5L29433ee68o3U1T/ls+37j5a9EtHKXQbBsHOcpzUSreXA8elzh/n9Ts3Kyw5OR8QUD0ny/HqQrB6atgjLuCFwx5T4og/bj6bqNQINXTQ2ZggAlnnonmcrF7xQrOvusu8rEYmUhEcqo1jdzoKP7qatC0ExzBXWVlIv32etGcOxDFWmrd7S6tW9ls6RxPKCSTb8MYl4qHw0Q/+oi6uXNQtrxPlpHH5eRFK9tCd3vHWW1tXDIe+dNb+CtqCVQ14HJ7cfsCDohVEqml6WJo5si2Na14zBZm2jEDMnMZXL6ykrzbNgsC1nGhoqOoREyk2ihxB9/8Jvrcj0NlJRo6dl8XWnklVFRCOgXBkNO1U5KjlNQEO076yjKxVj+MduoZuBZ9Dvv9d9Fmngluj8R/iUsYmseD1fYCat8etJlnY139WV5Zt44DBw7Q2tpKY2MjlvP9SyaThJz31+PxlGK2Nm3axL59+5g5cyZXX301lmWRyWSIx+MlaXjRQVxz3o+ivL+3t5dQKERVVVXJebylpYVUKkVtbS0+n49CIYvbDfF4V8kZPBisYcOGO5g3bxkTJpyKZRVIJLpL9dgVFc1YloHb7aOtbTH79q1h5sxWrr32J4yOHiKdHqSx8UJ03YNlFcQkTtPQNI3u7i2sWfMZTj31k1x99Q+dOmsvtl3ANHMUCml81dNLUtkjSDzWhQhgzjrb05xthcRzTUTAsBsB0D2IM3gGAdYPINLvomS8WI9dvAWWQMC1x+mvAgHWnUjN9c8zBcx4Hm+5VwgRlxjTFsmQorN3uD6MZVm4fW5cjm+JbdqkR9OUlZfh8rqwChYurwsja0id9a3rTkiAaVs8nghz7fPXYps2tmGTi+cITQphmzbJWBJrooXf7cdWNi7Nxc7+nZxeczoBTwC37kahSBeEiAl7w9jY2MrGrbnJmTm2922nJljDcHqY8yefTyQVoS/RR2N5Y6mWuniupSwxGUTHUhaGZZC38gS9QTyah0Ojh6gpCzM5WINmJsV8bP8qcf8OTRMnb2yHNfYI6+wqEyWgmYY9y+C0r0t+taZD8tC4JFwp6aNYgz31erjgRzIPHNsJlWcLAYFzx3XnV+DYr+Ca/WKQhi7kRKherlkagCmVd5Tml+FGmVc6X3/yCVERokGiG8qbSzf+pEwwMT4XjR+V47Y53leRKAJRN6LJDYCiv4/bL/PEvy9/08v/1bJwpdQgTsKCpml7gd8DS/9XwPpvZbFNm0JC7ja6/C6qplRh5S2627sZPTyKmRWwpWlOVJdbJzAxgFkwCdQEKG8qp/5cicop5mV3rOqQ6IZUgdGDo7QtbiPVnxqXKLnFWVx368xbNq/kOO7yunBVuNjcvZkydxmRZISl65Zi2iatZ7SSzCdZsm4Jw5lhls5eSiQZ4ZZXb+Fo7CjTqqdR5a9iS/cWOqOd+Nw+1uxbw8r2lbQ0t3By1ckl98h/OvOfCHlDHI0eJZKMcEbtGaxsX4mtbCp8FSWJ0uMLH6cz2smmY39EFe8gujx/JqXhxG1fuTMAKgHP4QaniNJz4l1DX6VzV7JXJl6ZQcCWgVQpfvHzn9HT3cXD3/oW99x3v7TLx2Rw9IZl4N25Su6mmhkB1gfWyL4pl0vdtOYRgK17x/OoZy+HQ7+TzOo5y8eZas0tr8vMURqsM0NybOoV0m+xf2WNb29fAfVzIB/DBo4dizE0lMayxGSsvz+JadqYps3JJ1fx3HOLmD69CqWgrMyD3++mvNzHWWdNQtPA69UZGkpx663r6OyMkkwW6OjooasrzpNPXkUg4CGdLpDLGaXPcDYrOdiJRIHp06uorhbzmpq6Mg73dXFl4/mMZuL43V7WvvgClVWVBMMS+fLE40/w29/+ljUvvUi4sgLDMji1diqXnTKH57e/xIYDW3l++0ukC1k2HNjKT7a/hIbGUHKUR978GSdNbKJgFnj6xz/iaNcxvvHQgzz0wDc4tWYKPrcb07Z46Psr6fhgJ/d/4wHuX36/AGt3jQBpMyLA2tMoTPakZ+GkEah73qmfLoP068JIl7KvHwH3JHDXyWfGXS/tjC7IdDAe4lIE27bTV0CY8ZEH5dldCxX/hK3gSCzG9r4+Zjc0EPJ6mRgIcNakSdy5YQOWbZM3TTp6ejgaixFwu7GUYsm6dRwaG2NWbS1D6TRKKZa3tNA6cyb3zJ9PwOOhKx5n6fr11ASD9CYSeF0uUoUCSinmNDby2NatrNm3j5WbN+PSNDqjUW5ua5PJ+LFj4t5dDIOuqhLnb9MUS+5MRgzNysoEWBdZaF0XpFrUWXu9MukIh8fp5EhE6OSlS6W2uq9PkGskIuj3uMgm0mlIJlGWjdut0dIiXY2NCbZ/9FFhl5ubxXxM08aV6pGIdHPffaI6X7BAXl5/v5zT1CSEvIyxAqhrawVg33WXYP5jx4QpPx5YJxKw513xKNaKbLRSklmtEEa5qU4AtO6Cxkmyfrh7/D0KlgkbXTA4wT1WQ2qpD3bJs8877gqeK0iD49lvj1tk4wUTZdu4ysqkjto0sfJ5Jp59NkYqRSYSwV9dLTnV/f2kurvJRCLobndJSp4dHpbYJo8wy0YqReLYMXZ885tkIpESe6rr+gnnoBSGw4hmh4Zk/9AQNeeIuMzIJYl8uAnd7RGm0raciej4TXvblM8lSlF/xiVUNZ2BN1SF21c2Dr4dp3Bsm8iHfyz9NooXpD3et/M6XV4/hXSM/j+9iZGNo7s82LYloDwcRm+ehsplIZVExWOofXukfjqVxFr/O5F7h8MCAMPlIv0eGxNgHB1FWYY4i0d6UbExsBX65/8FfcGl2D1daI3NwnBHR7HaXoDoqMR1WRZ6y6VoM89GX3ApLg0WLFjALbfcQlNTE6Zplpy9q6slHSESiWBZFpWVlYTDYRYsWMDMmTNZsGABLpcLj8fD5s2bCQaDdHR00NTURNiJxCsUChiGQaFQ4LXXXmPSpEmlqK6Ojg46OztL2dpFqXmhIKCpvX0l+/atob19JblcnH371tDRscoxJ1MlVrm9fSVKWbjdPjTNRUvL/Vx//WssWvQcABUVjYRCk3n11VuIRg/T27uVeLybdHoI08zT2DiXW275gKuvfhqXy4dp5hgd/YgNG+7E7S4jGKxBIWDXQiKz6hGWOoEA5hnAViTPOolIvzuRyeNhBDzXAjFEPv5joNH5FDrfLLII4206j3IEeA865wQQKfoK4GVAM20K6QLRw1HaFrcR7YxipA3W3bqO9GCahtkNtK9sx13mJjOUYd1X1jF6cJR8Io+ZMwlPCpcY6mQkieaStBiXz3VCfvafJ8KgIN4VZ/3S9Rhpg3wiz6u3vIqn2kPAEyBn5ko10/Ma5+F1eeno6eBY9BiWbRHPx/G7/Zi2Sd7Ms6V7C0eiR/C5fTSVNzGcHmZOwxyCniCRZITZDbMJeAJc2HghCsWegT10Rju5/bXb0dHJWTnau9vpT/YT9AS5ue1mDkcPM7liMonsGBq2SLYPPA6TPiFO3kWGODsIO26WumvfRKfszxTAW9MiUvGikey+lRLXlekVYK2UAO3mVjjnUUgdhV1LoKxBBpbhLSIZty04/0fw8dfFMbzIVFdMGy8zLL6e4s2zoiN4xQyZV9oFSqy3Jzgu3Q7VyWuLH3XcwR1TNN0nIDtUJ327fXK9fEKSXorDn5GWeYJVcLyCCvx9+a+x/LVl4SilfqOUmqWUOst5/vVf+zX971iUpUoRC4VkgWhnlHVL1pXqoz1lntKgPXpolEKyQHd7N7ZhE++Ks+FrG0j2i8xtwfLxgVdZinw8XwLc7Y+0S22PJd/m8OQwZtakakYVVz11FfGeOGOHx9AKGo3BRixlsbJ9JbMbZtOf7Gdx22IGUgPMbpjNI+2PMKVySimKoTveTVe8iyXrl1ATrKEn0UNNsIbWma08sOAB3Lqbw9HDdPR0MJwZZnHbYg6PHWZW7SwiqQhu3c3yBSKt9bl8nDzhZJ5b9ByaprGyfSWd0SPyZoUahbk+XkqjOHHbdgBy/IgMirpvXCd6fDuX1+mzQQbRwCRKdzeLdyw1nX/5ly/w9qZNjOb9NE0/jcjQKKYp9Tlq9nK6k36ap50yDp7nPCD9l0+HTbeLsVo6ItLvj6+WeIbIVgg3izv5Ratk3cggNbpOHXmyG3IxSPZBsOHE/tEFpBeBeT4OZROxLIXf7yYU8jqqB0VdXZhczmTHjj4STnmBadolkKDrEt+l6zpjY1lAY8aMap555hqmTq0kHPYyd24jfr/bwToC2L/2tQ10dcU5fHiMSCTJBRdMZsmSrzBp0mQikT6WLLmec2adid9ycf0//CM3XXMd82bP5ec/fp7fvfR7gr4yurq7WX7vfaQSST6z6JPMu2AOV37icso8Pso8fpZ94gu89MXHuPsTXyDoLWPhqXO56cJPA/C7D95mw4GtuHUXo5kEHw4eJW8WuOqz1/LHP/6RXDJDVaACt64TzcYp8/i56rPX8s4ftzCSnSmO38VoLfdEp25agdkFVlTAtDkArhqYfhhcdZJ5HW4VGbj3ZDme2SZ/N0zwTIHAhXJudrvsUyYMLJV+QeK6Ui+DMSDXUwpTKbrjcWqCQZauX8+RaJR3IxEiqRRLZ8+mOx5niQOQu+NxsqaJrRSzGxpY1dFBslBgTkMDbl1nRlUVzy1axCnV1dhKsbK9nTX79vHY1q3MaWhAQ7Kvu2MxPLrO/QsW0DpzJve1tGAd116Zprh/19QIzVtTI0B6cFDyrDRNEOpdd8n/Ky9GUKRSAr5dLtFeT5okADqZlIdlSR13McprzRp47DFhql0ukY3nckIxZzIC4mtqBCW7XBw5IupzyxI8P3Ei/OhHoiJXSkCwYcglXn9dSPJCQQzOisAbZP2666TtHXfIy1YKfvxjmDJFHlVVcl9g2jSYMEHOK8rQy8thwQI1TjArAA2m1o+DaK8HykMiE9c0GYdmNIqk2+sGt4uv3nkHU0/7GJrXy549e0q/C1dcu4gzr72Ss88/nwWXfIL3Nr4pdd26zrqNr3Pu+Rdw9nnnccbZZ/M/fvE/RD7udaPpOn7nxepOcHfTFVdQNmkSNeedR3jaNM5dtozM8DC+6mr2/fjHKMvCEw4z+6GHCDU2jhewaxpGOs3hNWs4d9kygpMno2kae1avRinFgV/8gppzzhEncsAdDIJSJ8jIiyZ2RjbFpFNbUEoxsP8dqZ12ZNt9H2xE2aZEbymb9FgfhXRMwLZZoO+DN7AtAyMTo++DjRTSMRSK2lPmomwLy8hj25YjN/ei6TqZaB/5VBRlm5j5NPHIAUY6d4GuYxlZAddOPbAWKkerrEafMgPXknvQp0zH3rLpBKCt0uJHrSmgegKqS/wCNCcOTJs0GZVMCOPZPA2VSEB0VDKzlRIzs7kXo5IJuabLDeFyXIs+h1Y5AZfuorKykqJPTKFQKDHVIFnVgUCAdevWUTRpdbvdXHXVVaVzNE2jpaUFv9/P1VdfzVlnnUWhUMC2bXw+X0lavnDhQjweD263G9u2ueaaa/ja176G1+slk8mIHF7TCIXK0DSdlpblzJp1PQsXriYUquO669pYsOAbaJoLl8vLNdc8w9Klh0qguFBIs379bVRVTSMcrqetbTGjowexbQuvN+AA8UcIBGrweMrw+6scYzOTQGAifX07Mc0cXm+IbdseZ/bspcTjXXR3t6OhMYyA5QzCVM+G0r5DSDRXBIjLCMxKxuXfRan49xCQfBSRkh9hPIarHwHiXc6xo8538kHnmIGw4PcDLwCarhGsCdK+sl3mWivbycVzpXnX9Muns+D+BSilSm06VnWQT+TJxXIoW51wrrIVylYYGQNP0MNVT16FO+DGNmwCNQEWrl5I5bRKLMM64bx8Is++NfsY3DqIrukMpge5fcPtHIkdIVFIsHT9UmqCNfg9frrj3Ty46UFyZo6ueFfpWE+iB0tZpTnckvVLSBaSTA5PZun6pWSMDB09HUSSEWbVzmJl+0qWzl5KZ6yTJevG53+mMkvkis/loyc9hDJz4hR+3pMw5R+k1nrXEpGLu/yOjPtRSk7atgVWFpr/u4Bn3SNExmnLJEor0CiMdbpL3MDPWy3qv30rnNrtFTKP89eIZDzTJb/VEy4QszPDKd8p+fYoIU/iRx02XY2D5+JA7/LKRhGYJ3vk3ONjvRyChoJTIuYNy7xVKacm21FfljdLP1bBkYO7/0wWfrx86e/Lf9qlGPnwt/RoaGhQ/7cv2XhWrW1dqx7iITW8f7i0vrZ1rUoNpVQ2lj1h39CHQ6pnW89ftM3Gsio1mFKp4ZQ60HZAZcYyKtGfUH27+tTa1rUqsieiEpGEOvTaoVKfkb0RlY1l1YvXv6i2PbFNDe8fVploRiVzSZXMJdWeyB61f3i/al3bqngI1bq2VX049KF6f+B9lcqn1N6Bvap1basaTg+f0GYoNaQSuYTqT/SraCaqotmoajvQpnb07viLvoZTw6on1qPaDrSpWDam9g/vV09se0Jd/+L1KplLqvci76me6DGlRg8qlU8qZRnyMAtKZUaVyqeUMp1t0zk2ekCp3nZ5No3jjhfGzy+2S/apKVOa1Xu7dio1ekBFhwdUX9cRudboR+r3a36jGhoalG3klTINdfHFF6mfPf8TpXJxtfaXP1HnnXu2UukhpbJjSmVGlMollMrFlHqlVanvIc/pQXle7Veqs03adrYplRlS6tXr5ZyBXdJmYJdsp51ju59QavQjpfIJOS+XUCrRq1TnOmmTTymV6FMq0atSyZxKJnNqbCyj+voS6tZbX1GJRE4lEjkVi2VVIiHHj9+OxbIqGs2oeDz7F22P379u3UE1PJxWqVROffTRsHrqqe1q3bqDanAwpdraDqixsYxqbV2r4CHV2rpWRaNZdfDIoLqv7Un1m3dfU4lsSg0lx9R9bU+qg4NdKp5NqSMjvWooOabG0jEVz6ZUPJOURzalUrmMSuUy6r62J9WBwWMqkU2pdD6j4tmUamxqVC+9uU7d/fJq1RXpVS9t3aAGEiPqyEiv+vmv/01NbpisYpmk6uw9pt4/uE+l81m1L9KpPrX8S2ry5Hpl5fuUMmNKmQnnOaaUMayUmTxue0ypxGuyP3dQqexepXKdx52TlOOFPqWyu5VKtI23LfSe2C7znlK918t2do9Sided41GlzIRK5nJqOJVSrWvXKh56SLWuXau29fSo1rVr1Ug6fcL+wVRKtR04oD4cGlIfDg2p3f39qj+RUIlcTr0fiajXDh1SsWxWJXI5lcrl1N6BAdW6dq3aOzCgkrmcOjQyot4fGFCHRkbUWCajDo2MqKFUSg0mk+rw6KjaE4mo1rVrlZFMKnvPHqXa2pQaHlbq+uuVeuIJpfr75XH99fK8d69SN9yg1NiYUrGYUomEUvH4+HosplRXl6yPjSnV26vU/v1ybl/feD/xuLRJJKTNRx+N9xmPK7VunYrFbDU4KJv9/UpFo+PrN9wg22NjSg0Oyr5Dh5R6/31Zb2uT595eOR6LSfveXqV271bqvfeUam1VatcuaTc4ON5fMqnU0JC83P375TmRUMo2TKVyeaXSGaVyOVk3DKX2HVaqZ0CpRErW4yml0lmlCoYcLz4bhvrjW2+pnqNH1ZQpU9R7b79T6i86MCjnGIb63dq16sxZs5QaiSo7kVJV5RVq79ZtSqWz6uhHB5TP51OJsTGlcnlVSKdVLh5XhXRa5RMJeU4mVXpoSMW7ulQ+HpftwUEVP3ZMRQ8cUIV0WqUHB1V6YEDFOjtVemhI9ba3q/TQ0Hgf8bjKjIyU2vVv2aLSQ0Nq5E9/UpvvvFONffSRyieTKp9KqezYmOrdtEmNHTigMqOjyjTyKhMfVF27X1Hp6IAaPrJbde1+RZmFnOra/Yp6v+17qpBLq0I2qbLJUZXPJFR84IjKJkdUNjmi3m/7nsomR5WRSyvTyCuzkFNGIavMQk4VcmmVzySUkc+UjuWSYyoTG1DxgU6VTY4oI5dWudSYMgs5ZRp5lUuOKSuXU1Yirux0Stm5nLJyWWVl0spOxOU5lx0/lkooK5dTdjar7FxO9mUzyhroU8baXyirr1tZ8aiysxl55HKldWt0ePy8bKZ0XWt4UK6TzZSec7mcikQi6sCBAyqTyahEIqFefPFFFYlEStt9fX1qeHhY5XI5lclkVCYj52WzWXXo0CGVyWTUwMCAevHFF1U8HlfZbFblcrlSX4lEQg0MDKi1a9eqvr6+Uh/Fa0YiEXXw4EGVSCRULpdQfX3vqVwupXK5lMpmo2pk5KAaGHhfZTJjKpHoU319u9Tata0qEtmjDh5cpxKJfpVIRNS2bU+o4eGP1Nq1reqhh1Br17aqoaEPVTYbVaOjh1U2G1O5XEJlMlF16NBrKpUaVqnUkMpmYyqbjamDB9epgYH3VSLRr9LpEXXw4DoVi/WouG2rViUTvFal1LBSar+zXtz3oVJqSCnVr5RKKaX2OPv3KKXix7X98/OGlVIxZ337f9BncX1MKXW9039MKZVL5lQumVOR9yJqbetaNbB3QCX6E7L+/oDKJXMqE82o0c5RNbB3QK1tXav6d/erRF9CJfoTKp/Kq8ge59w9AyqXyI3P2Yr97B1Q+VReZaNZlY1n1ejhUZXoT4yft3dAxXvjsv7BgIpn438x1yquR7PR0rE/n98Np4bVUGpIDaeG/6dttvVsU61rW1V/ol/tiexRI+mRv+gjmpFr7BnYo9L5tIplY8rIJ5SdTyg1tlepLdcrle5VKjeiVKZfqUJSqfhHSuWiSqX7lYp9pFRuTKn8mBzLRZXKx+S8j56Q8za3KvUrZF8uKm1zMel/c6s858fG221ulWvlhpWK7VfKyMr8afSAUkbOmVc6j0J6fD5Z3FdcN3LOI+/MMz+SY/mUrJfmpgln7paS9qMfjbcvzlfzSblWsW9n3lma6/59+ZtfgF71v8Cpf3Wg/P/l8bcArnOpXGnAjffGxwfL92UwzaVypX39u/tVoj+hDrQdOKFtZE9EJQeTKvJeRB1oO6Ae4iF16LVDKhPNqFwip7KxrMolc2rk8IgaeH9AZWPZEijPRE8E4QN7ZWCOZWMqmomqeC5eAtHvD7xfAt7RTFT1xnvVh0MfqmgmWmqzd2Cv6o33qht+f4PqjnWrXX27ZJCN7FEHRw6qPZE9qnVtq9rdv1tFEhE1lhlT1794vXp/4H0VzUTV9S9er3b17VL9iX6VyqdUNBNV2UJG2UbuuIEnJYNXaaDKjw92RSA9enAcUBdBeGlwzCtlFtTiG7+oGuonKZfLpWpra9WMKQ3q2KH96oLzz1NnnHaKOvOM09Sll3xcgLdz/Y8+eE9deOEcdfJJJ6nzzjpdvf/kFUoN7lUqM6ZUNirgNxtVamiPgOWhPUqNHVRqcI+A5WS/gPBkv4Dj+LG/BOPJfgHQ2THpd/Qj2Zfslz4SvUrFu6TfXMy55pjKxKNq794B1dq6Vu3a1afGxjKqvz+hdu3qU62ta9WePRGVSOTU8HBatbUdULt396loNFM65733Iqq/P1E6v7c3rnp74yoazah33+1XbW0H1J49kb9ou2dPRKVS+VI/e/cOqEOHRlRkMK6GkmNqMDmmjo72qXgmqfrjw6prrF8dGOxSd7+8Wg0mRtVQckwdGelV8WxKHRrsVu90vqvG0nGVymVUf3xYvdP5rkrnM+qfv/gvqq6+TrlcLjWxZqKaNn262rv/A3Xe+eepkz92iqqZOlkt+PhF6qU3X1V3v7xabdzxjjr73HPU6TNnqpqpk1XopElqx453BDgX+pTK7lKqt9UBzoccMBx3QHO/AOBCv1JGVCljVLaNMaVyHznHk0rl9guwzuwYB9hmSo7nPpL2Zkz6MBPSv5kSkN3bqlR2j0r9GRDeMzCg2g4cUHsiERXP5UqAd+/AgDo4MqLePQ5QJ3M5Fc/lVCybVW0HDqj3nLa7+vpUfyKhUs6xVD6vErmcSuRyajSdVklnfSyTUUOpVAmcHxoZUdFsVllFgDw8rFQqNQ6WX3tN0OgTTwjSLCLS995T6uDBcQR74ICg0mhUqcOHTwTfr70maDWZFHS8Z4/0s2eP7Nu1S6l168bRrAO+Uylb9ffL4ba28dN27ZLH8du9vXKpQ4fk0omEAObe3hOBdG+vvITWVvmVa21V6sMP5WUU+3vvvXEg3toqz3v3KmUZ5jiATqTGwXUyrVTeAd09A0p92Cn7c3kB4YlUCTgXH1OmTFHv7dypVKEw3o9zzs9WrlJnnXmmUoah7OExVV1eof74i98oZRhq765danJdvcqPRpUqGAKEUymVHhxUmZERVUilVD4eV7l4XI0dOCBAeP9+lUskSsA5F42qzMiIGvnTn9SWZctUemBA5RMJlR4YUL3vvKPGPvpIbb7zTjXypz+p9MCAKjj95xMJtfnOO9WvTj9dbb7zTpVPJkttxz76SGVHR1X04EFl5DIlEN21+xWVTY6oTHxIGfmsSkcFBJuFnMpnEqr73VdVOjqgjEJOFbJJVcgmVdfuV5Rh5JWRz5ZAeiY+6IDpbAmYp6MDqvvdV1Uhm1RGPlPqwzTy0lcurYx8VhkFByAn4spKJhzgOw6ci4DXPPihslNJAcSRPmX8/rcOEC62zSo7NqbMg/uVNTRQAs92OqXMA/uUFY8KgE/ElZWIKbPzwInXSMSU8eKvlBXpU1YqobLZrDpw4IDq7e0tgd9t27apAwcOqEgkotauXasGBgZUNptV2Wz2BPA9MjKiIpGIyuVyau3atWrbtm2qr6/vBBCdSqVULpcrgfHjQXdvb6/K5XIlkB2Px1UiMaIOHGhTmUzUAc39KpuNl4BxNhtTyeSg2r79KfX739+g0ulR51hcZTJjKpOJqoGB99XBg+tKoDmXS6qBgffV2rWtqq9vl0ok+lU83qcOHGhTkcge9eKL16t4vFdlMmNqZOSgSqdHVC6XVNlsXMXjvSpl2yWwvFsplXAee4/bF1ECqpNKqbSzHnPW02ocbPcft/6+UmpQCXDeq5RqO+7YXqdtsd06NQ60o0oIktRgSmWiGZUeTqtcIqdyiZzKjGXUwXUH1cDeATVycER9p/I7JXKjCLh3/GiH6nyjU+Zp0azKp/PqD1/+g3rY/7A60HZA2iZyKjWUUgPvD6gXr39RxXvjKjOWUalBIV8S/YnSNbMxB3jnEqU52Z7IHtWf6FcnXXWSmtw4WQHq39/493GAPCBzsm89/i0FqF+v+bVK5VJqT2SP+vyaz6s77r1DNU9vVhVNFer8eeertgNtau/AXhXNRNVoerRExBTnf0UwHcvGVDqfVtFsVCVyCWXl40rlRgXkfvSEA67HlMpHHXB9WKnssOzrXafU2HsOCO9XKh8XcF1IKNX3muwrgujj10d2OX3G5Jzs0HFge49S6YiA3kJC5oOZUQHZZmF8DnkCyM6cCKytP3uU5pamUrYlz5YpxwpppXq3jc9Ri+C7kBoH88Zx+/Mp55zjAPvfl7/55f8JXP/Vc67/vyx/C4ZmuUQOKy8mFsX3WEOjkC7wxj1vMG/ZPAITAngCHnSPmH/Ypi1mZUpqtnWPztjhMdKDaZrmNVFIFfAGvXRv6SYwMUB6KE3jnEZcfhepwRSB6gA9HT00zG7AMiy8Qe8JRhkLn1+I8igiyQgZI8O0ymlomoZbd3M0epTvbPkOT1/9NJFUhNc7X+e9yHv84KofYCubjJHh7o13c/e8u6kN1nL7httLuYfPLXqOglUga2bxuXxoaPQmemmqaGJH3w7qQ/Vs7d3K1MqptDS34Nbc2NjkzRwT/qOs6/iRcVMzlGM80fcfGJ1NFimONyQSHL3o3Osa/0NoOJrP4z7ntnFif8e3s7LQ1y4y7/IpjhmGIyGKbIOJZ4rZheaS3GsQg4r4MZF8182RbSMFnrDU5RTi4K1wHMA7pa569n3yGoL18n8uxEU+NPI+BCfDjpVSu10xg0TOzZe/3MaaNftobZ3Jc88tIhJJ8eCDm1izZh9tbdfR2FjBypWSfz08nGbOnEaWLFlXOuehhy7m9NN/WFoHqK0Ncuut67jrrrk89tjW/7Dt009fxfbtfcye3YDHo+Ny6bg8oDS7lFd945z/xlAqyqRQNYOpMZb+7ru89ZVnGEyOOcc/RZnHSyKX5he7XuXGOZ9iKDVGbaiapspJHBvr5+c7X+GGC66luaoOl+bCUpIB++2NP2HDga289MXH+FHHC2w4sJWFp87lK/M+R02oir74MM9vf4nvXn0DmjLBGpba5+QaaFgH/rMdOZoHEf1BKZ9aZcTUbMIycNVD7j3w1IHnFLBT8vfI7pA67rHHRD7ubhQHcr0ccnvB0yA12loAsMSR3DFOy9T8gs5ojO54nHlNTWiApSTf+sG33+axhQuxlMKwLNy6jkfXS1XdllLojhFUzrJYsm4dLx84wO9aW5nf3IxyjttKYSvF0WiU73Z0sHrhQgbTaR5pb2d5SwszqqpKn/yjsRjVmkaDZaH5/SIL7+sTHbbHI5//YmZ1b68Ykd16q+RaKyXtKypE0p1MyvGiOVomIwXTx2deb94suuvRUdFr9/VJ4XM2K9fzeMDrJWEG6I9oPPigqNEfe0xU5a2t8PTTolovbj/0kNRLf/SRtCv6p/X1SS328e0mTxYjsxUr4J57ZLusTFLDju9/eFgysvfvlz5+8VMLX9ex8dzpk6eIPLs8KLXR3RGpu/b7xhV+tg3JjMjF806bGY1MPeUUXvr+U5y98FLZHyrjCzfeyNt//CMoxboXXmRW+URorueN11/nvy++iWAgQHRsjN/96rdc1tIC5SEKuSyay4UyxZ071dfH/uefZ+bNN+Py+TASCXEOP/dckTO7nN8d22b43XdJ9/cz4cwz2f/Tn3Lal75E2YQJvPvoo3S/9hozPvc5zlm2TAzcdJ3hDz7AHw7z4fPPM3PxYgKTJrHz29+m+7XXaL7ySmY/9JCkknk9GPmkZFifNAe3L4Cuu4nse5vqqWdLX4d3MHH6BWSifWSi/TTMuryk4bdNA93lRimb/j+9STxygIr6U2mYdTlK09CUXYrqClRNJlDVwMiRndScNAePPwyahm0WMPMZZ/9s/L4KVD4LvjI003SMyyogGMLe8DL6gkshXAmZFPj8qMF+tNp6tGJ0nEJM2VJJNH8Zyu3k5MZGx03RJtai2Za8xqL5mabB6DB2x9tyjbIAms8PCgxNwzBN1q9fXzIqu/jiiwkEAqV911133QlmZT09PfT09HDVVVexfv16Fi5cSDqdxu12lwzPjj/niiuuIJvNsnnzZubNm0c4HObDDz+kp6eHa6+9tmRuNm/ePDTNprzcj9vtLdWpa5oOaMTj3SQSPTQ0zEbX3ei6G8vK09u7nVConnC4Dq+3HNCw7QKGkcUwsoRCtShl8ac//Tvd3ZtZsOB+QMPrDWEYGYLBGjHGswzcbj+goZRVum7OGySvaYwCG4GrnJ/kSUjNtBvoQOqopzv7Rhg3L7sfqcvOMl53HUPyq/c4/ZyCRNHUOX2nnXY240ZoO5EImwDgT+exDRvdrZdMZ23D/guzWKWUGJlpUg5YSBcY3DtI09wm+nb2Mfn8yWi6hpExGNgzQHhymPaV7cxbNo+qGVWYWZNkJEloUohCsoCvwkchXcDMmJQ3lZPoTrB55WYuf+xyXDUuTNsUrx7NhaZp/PGdPzJt2jQ+fvHH+eW//5ILzruAscwYNcEajhw9wo3/ciNdsS7uvedebrzuRly6i9WrV7N1y1ae/unT5MnjzXgpqyoj6A1yLHqMFe0reGDBA0yrnEbOylHmLqO9u52qsiqq/FVkzSwrNq/g/pb7mTVhhvz2mimZ9/jrIHPMMSe7DwJTYKRDJN6BRsgNiaFZWd24Cdrp94F/ErhDMNohude6R+q1u9dI3fV5qyE3LLLw074OnkonxksXubdtigzdHRZZdjHnumheZhXEQRykdlr3yFxQOR4gxfljKd/aKyUmmi5SdjM3brBb9JXQfSIxL44df27CO7Zf5rWVM0Q6Hmp0zND+bmj2t778X21o9p950Vwaqf4UbYvbGDs4Rs+WHmzLZmDPAHO+OodET4J8SowvrIIAiVh3jNRAitjRGK/e8iqjByT/sGFOA6MHR9l490YK6QJN85rwV/oJ1gRZt2Qdsc4YoUkhdI9ORVMF65euJzOcIT2ULhlnzL93PuhwJHqEw2OH0TWdm1+9mcNjh0nkEzRVNPGja35EV7yLBzc9yPym+ay8dCVZI4tSipA3xKOXP1pyqSzGei1fsJyOng5M28Sje0oZilMqp7CjbwefW/s5vtvxXT53+udoKG+QGIhYJ7ayyRkZNKswXjNdHLQqnWiu+DEnf7AwXvMC45mBliF1L8V8bN01XtejLBlwi9mDmuM0q7vGa2hSvUj9jeW0cwbcUCO8+4QYlll5AdvxLph0geNQCfRvlXVNl9fnLoO62eP9uQPO6x6WqK7MkFy7aFi24xH5P6cjAsrfWQaZAZg4S4B1MRdbWbhcGsuXt5QiuNxunYoKH8uWzaO1dSZz5jSwcuV4/vXs2Q243Voptmv58hYqK/20ts7knnvmU1Hhp6LCj8slbYaH0yf0X17uo7V1Jvffv4Dt2/tYtOg3LF26nkhEapkM28RWNj/f+YpjTPYHKsvC/GT7S5xRN4OFp87F4/Icd/wlqsrK+cWuV0vblWVhnt/+0gn9/HznKwCMpsfQ0NA1nZvmfIqFp84l5AuU1r84+1pCvgDZQp6mylq+Mu9zKNwoXAJ6JyyTGurAfCRwvgcGbgHjKNgJWVdpMHocI7NV4vTtnijr2KCHxcysbI4A6+QaMLrB7HaMyyLgP0PAueYD4wiogtRtO/Xbhq14ePNmFv3mNwyl02zp6eFINEqqUOB7CxdyNBbj5rY2jsZidPT0kDVNNnd1cSQapb27m5xpYto2fpeL+xcs4IXPf56z6uo4NDrK4rY2jkajDKXTWLZN2Ofj5QMHiOfzPOLUVz/a0YECDAcA9yUSBHVdgLWuCyq98EKppTadaJQ77oDubnERc7th9Wqx5/Z44PHHpdY6FBIr7qK5WSYjxcpKyb6ODsm+Pvts+MEP5Br5vJig5fNynd5eaVcooDtl3MuWCdBdvlyA7wMPCBi+/37ZvuceqZe2rHEAvmKF4NqKCjE3K7arrIS1awV0P/ccnHKKvLzR0fH+ly+X/2JlpWxXVMi1hsdAHZ87rRQEBCgVc6cpGHLhbF4MygrmuEN4sY1li4N4NCH7gmVQMPnF8m/Ss/+AmCouuweGo5hHenj4icf53dq1dL32Nm8+9jT/fNOXGMnLDTzd5cJIp8mOjGDl8+RGR+l7+21cPh/e8nI8FRUCrC2LkT17SPX2YmYy7HjoIQKTJtF0xRUn1ExrLhczFy+m+corBViD45CtqJk1i7KaGuZ861tkhoaw8nlO+9KXaL7ySk6/8UY0lwvdyS7z+MNMnnkJusst2ceaRt3pF+Pxhxg+vENqoo/sJFQzhZqT5mBbBfref51CJi51zY4Lb81Js6moP5Wak+aIwZkSh3CJ6rqAUM1URo7sJB45wPDh7ZiFDCiFbRnH7d8hfyvdJWC4rwu9oRk8Xsjl0JqnoYUr0Fy6RGkpG71pmoDpknu6gYqOgteDtf53EBsDo4C9+c3xWu3YqJOJbaAKeVQqAYUcVFSgTZmBVjkBzVfm+CMpFFJHfbxRWXl5OW63m3nz5jFz5kwaGhpOyLGePn06CxYsIJfL0dLSwv79+0kmkycYnh1/TqFQYPPmzaXzc7lcqQ+l1Al9h8Nh3G5/6aZ/EURrmkY4XE8wWE8uF0PTdGzb4vXX7yYYrCGVipDLxQFFoZAg7cQ4BQLVjI4eZN26pZx66ie55pofEQ5Ppry8gWx2lGi0E9PMYZoFdN2NAHMT5cScFQpJXMrGQgDuFgQABxGDM4XUXV8NPIzURhfdwlci5mM9SB22Qly/bwdOd56rge8igHwiYn424vTvQgD5YSQbu+G466HAzJjk43nGOsfo+mMXmksbNyN7QMzIctEc0aNRCokCbYvbyI5maZzbiJE1aJzbSKI3QdvithJJcnx9tm3YRN6NUD2jGoB3Hn6HZH+SUG2IcEOY9FCazSs3s2/NPoyUgVKKtJHm8NhhbnzlRhL5BOfMOQetQsOrezkwcgDDMqgJ1mCYBl+79WtUfaaKkfwI0VyUrngXX3n1K/zoBz/i2yu+zcTwROqCdUyqm8RQeoivrf8aTRVNPLvoWZrKm8gYGZoeb2IwNUhdqI7Htj5Glb+KFZtXsGbfGgaSPZDqlBrp/IgAa10X0DnpEnCFZI5U+3ExOtO90iZ8ErjL4dBTYmKWH5Q5kwZMmAuj78qcbeb9AqxPv1dAs+6Fmvlw4AnwVomhWSEq19NcTk01TpyWUzeN5gBrJxoMW9oWks544RmvuYbxnOriYjufQpdX/HQ0TdZdDrC28yWvtJKxWfF6x3sIhZscUP33muv/CsvfwfX/oUVZqjQobn1sKw1zGnB5XZQ3lLP1sa2UN5ZT3lBOejhN79ZerJxF1dQqAhMCbFm1hab5TXiD3lL8Q8eqDhpmN5DsT9K2uA1/lZ+tj21l35p9bF65GWUpueaKzePmG9Ecid4Ei55dROXUSmzN5nsd3+OsSWfhc/uY3zSfp3Y8RdgZdDQ0fC7Z//i2x/G7/eyO7OZY/Bg3vXITI+kRGsob8Lq9zKiawXOLnqM33suR6BH6k/3cvuF2ALoT3dy67lYayxt54fMv8MCCB/C7/fQl+rhr7l0MpgZxa27KPAGU7pUBqXKGDFixo3KHUFkQmiSDXHGQ8pZTcnlM9Z8YeWDlIXZk3JBCWQ6IHhvPLyw47kYV06H6NAHohaQMluVTpT/bFHBbP9dhpm2YPE8iHXSPAOGNiyE4Sdq+/bXxnOq3lsrr6u8Ql0hdlwG+82Xp0yocZ2C2XAB+/RxxBi86hmuu40zNHgDNhWkq6uvDPPPMNVRXl7Fs2euEQl5OOWUCzz23iLKyE/OvAwEPbrdOKOTl2WcXMWNGFRUVPp57bhGnnFJNebmX8nIvbrdOX1+CmpoAgYCH555bRHNzBeGwl9WrF9LUVE5TU3kJlFdWSn6mMjVcuqsEdm+a8yli2SQ3Xfhp/G4f/3r5TbiPA8Y3Xfhp3P9B+y/Ovhal4KYLi+0+BUB1sIre+BAr3nieyrIwt1/8jxwc7mJisIIHLr+R2tAE3jq0g8ff+RWWbVPuDwIKDSXg2nMK1D0nnxU7KYA5uUaAsJ1w1ldC2WwHCN8DeiWYIwKOM9vA7JNztTKYcL+0K5tznLP4KsAt56IJUDe6wTNVru05GY+mlVy+a4NBGsvL+d7WreRMEx0xIJvf1MQPtm9nToM4oF40ZQo1wSBnTZrEHRs20J0QM6Xd/f3Mb27GrWkEvV7mNzXRl0ySNgyWrF9PxjR54fOfp8LnY3lLC9fPmsVTV11F3rLY2tvLodFRzq6ro9znE/C8eLGA3Y4OMTDbsmXc5bu3VyjfxYvF6Ky2Viy1H31UHMISCTm32IffL/sOHoRbboG6OrlGLCbh0t3dQj/X1AijnUiIkVlNDdxyi3gShgQAz5snxPjTT4t5mWlKs9WrYcYMIcc9nnHAvXy5fKXTablX8MwzErEFwnA3NsolUym4/XbxVZs8WQD39Onw+9/Dnj3w7LNCqE+fDvWTQNP18dxppcAwxcCsCLrDQUH5PQMCpLsj42NRsY1LB7cLqspln6ad0P5fvvAF3t65nVEP7IkN0x+JcNGCBdBczwULWmhsbuK9vXuFEQOwbbwVFbj9fmrPPZeWJ57AyuXYu3o1ZRMnomwb2zTx19aSiUQwUilqzjkH3evF7fcz8+abab7ySs64+WbcgQDuQIDZDz2Epmmke3rY8dBDpHt6UErx3ve+h5HJUHPWWViFAmW1tcxasoSymhphznt6ABuzkKF/31skR7pQmo6yLTJReS+K+dY1J83B4wvh9gUZ2L+5BJC1osGaruMNVNIw63K8ZeVYRh4jnxZG1eXBG6jA7QueAMDd3gC2ZZTA9wnA3OVCxWNowRDW+t+DaUB5BVrzNKx1v0ONDjsTZvjqnXcy/YxZuMoC7H7yMUgm5APmgPGf/+4lXOFyXjZcaLPOQ2+cwso772DmXffjrqjkpXXrnd8bheb2on1sJiqfRY0OYXcfgZjkar/66qscO3aMiy++mIqKilKEVjgc5uKLL0bXdVpaWk4A31VVVQSDQYLBIL29vZSXl6OUIpFIcNlll50A2L1eb2l9/vz5+P1+ysvLCQQCpNPpE4C9x+MmGj1Cd3d7iT0eHT1EW9tiUqkIEybMKDHOmqZzySUPs337D2homI3fXwlAMtnPpk0Pkkz2o+suOjpW0dAwG6VsRkcP0ta2mFjsKIlEL7W1s3C7/WiaRm/vNkCRSHSV3MXdbj+GbRAATgJ+4nyN/Iy7h98PtDrPIMAYYBliPtaIAOL+P2u/HAHS9wM5YLvTpw8B053Oeg9wl/OcQIzSlKXIJ/IUkgVSkRTBmiCvfe01qqZXsei5RVROq6RnSw+FdAFPmadkdpboTZDoTrDh9g1EO6PEu+MlEzRN1050BgeCNUFJfhlMceEdF+INekGDvh19+Mp9LHx8IUs+WkK4QaK1PLqHoDfI/Kb5uDQX/cl+Htz0IJayOKvuLFE1ofPkE08y67xZ/OLWX3BBwwXMrJnJpOAkHp73MMNDw/z7i//OxfMv5rKLLmPtmrWs3raa2+bchq7paGhs7d3KYHqQFz7/AmFfmJXtK1mzbw27I7t5YMEDtF3XxiVT5qNleuC0u8TATHc57G2nZFi7gzDcLopAJ2oNrejYbcK5P4CW34G/XgB64qCw2jXzpE1ZPcx+RuK6lAHeamj6LJz9qMzNshF4725IHxNwnu3nL9y5NZy5o2NYVkjJPMtXLnM+TT9O2OgQMJUznPaO6tG2xBCtSNQo5fStjRMuxUUhakqOI4rsglzbSHOCivLvy3/a5e/g+v/Qoukn3uF0+9wYaYP2R9o58PIBkv1JlKWoaK5g0lmT6NvZh5k30d06l6+6nNM+exoAyla4vC7m3TOPmf99Jt6gl6b5TfTv7GfB/Qu4ru06rn766lL2dfGaLctbSA+nqWiqQKHQdAFET171JLqu8/A7DzO/aT7fX/h9jsSOCKMc7eTw2GHmN83n0csfxbRNagI1PNL+CGv2rcHv8RNJRri57WYOjR1C13SaKpq4dPqlPL7tceY3zcfr8tIT7+HlAy+zsn0l85vnE/QEcWvuUgzE+ZPPJ1lIUuWvcuQ79vh44w0KKFaWE7l1HJsNjqT7+MguYT5weQU0a8XYII9s154lg1vsyPidy6LsR3MJsNf0cTdJTRcAfPo/SXuXD7KjclyZJwJh3QWXPi0D6e7HJbfa7RNpeDoiIDzUCNe+IIDZMuSu5qU/lB+CibOAPwPT3jBUniRRXxXTwMzi1Q28Xhe5nMk997zBqafW0NcnTvKFgkwSp02r5LnnFjFtWiWmaXPjja8wY8YPuPnmNgzDJhrNceTIGAMDKSxLYZo2mYxBQ0M5jz22jUzGwLYVmYxBOm0QDHrxenWamip44okrOemkasrLfdi2YjCSARSNDmts2hZNFbVMCFSQMbIowEYxmBrjn8+/hsHkKJayGUnHuO/SL1JfPtFpX0nOLOB3+3jg8puoD09kJBXFVjbDqTH+8dwrOTDcRcEoUBuqxlKKvf2HGEnH2N37ETfM/iSmbWHalgBrCRkClZX31c6cyGRPeEC2i+toUPcMeE6WbOqy2aAFwX+mI/X2SwSXZ4oAZs0jWdjhVgHcegg8JwG6ZGOPrZJrGl0w8EVslac/meTRyy5D17SSY3dvIkGyIA7vnz3tNB69/HLKPB78bjed0Si3b9jAYDrN7IYGVmzeTMG2WeBIwS2Hbfrsaacxv7m5xFKv3LyZluZmwl4v/ckkj1x6KV3xOEvWraMmGCSSShHL5dCVklyqNWv46uc/z9SbbkI7+2z2jI3J/ilTuOJ73+PMiy7i7DVrWHD55by3a5cwzkB+eJily5Zx8oIFzFqzhn/6zGfk+xaPi4X3mjXwne+IS3hlJVxxRel6PPaYAJeKCgHdDv2slIBfyxImeeJEcfN+5x1x/b79dgHEixePk+zTpo0DZI9HLlV0G1cK7r5bkr/8fjEpDwaFCf/JT+ReQvG+QG2tAPDhYdi4Ue4vvP1HDeV1y4RKIZ32DgpL7XXDKVMkl9rlEnl4keG2lXwE/V5p47C7TKkHn5dYMkG/h1L7l178HRMmTKD6/LNomjqFSF8/+/ftA4+bw+TpPHqUU0895YTfFWWaZEdGMDIZas87j33PPcesW28l1d3NrocfxjZNwo2N1Jx3HoHaWpouv5x9zz5Lqq+PUGMjF/zrv1JWVweahsvvJzUwAECwsZHZDz1EbmwMbJsJs2aRHRpixze/iZnJ4A4EKJs4seQcnhkYQJk2bm+AyTMvobLhdIxMnP4/vYnbV4ZtGsJqn3EpHn+Y9FiEeP9HTJh23glA2MglyYz2oixhMm3bwnSk4EYujea0ifzpTdzeQAmAa5pGLjGCUgpPWYiGWZfhDVTIe6Tr6I1TsLf+EbVvD/bmN9EU2O1vyXbHJvk85/N87tOfYvMbG5lSMxHVeQC7/S20YAhCYbo0Nz9e/TgXnnsuAK5rPgtuN5fddAuv/vbXLLjgfMiksDdtgJSMx+TzUChgd2xCC4akP00rSb1tWxIcbMee3uv1Eg6HcbnEVfzqq6+mvLyc0dFRkslkqc1VV11FVVUVhmEQDod54403ME2zBLQ9Hg9VVVUsWrSI6upqvF4vtm0TiUTI5XLE43GuueYaAoEAtm2QSPQQDNawbt0SYrEjpFIR9u1bw+bNK9A0nXR6kA0bbmds7BCapnP55Y/i8QTweAIoZdPRseq46C7FvHnLmDHjCgqFZOnY5s0raGiYjdcbIh7vZv36pYRCdSil2Lx5ZcldXCkLN5BRijzCQOsyglNAwG49sAqYACxFQHQBYbkvZNw53IFc1CBxXFMR1/GpCKN9LuIqrgFznfNczv5y57kOAeaaW8NX4cMb9tIwu6FEktiWXcqhrplZg6fMQ7A2SKg+xFk3nEXTvCY2r9jMgZcPkOhN0Dy/mevarmP+vfMppAqE6kIlwsPldbH1sa0cePkAvrCPiikVjHWOETsWo7mlGW+5F92ro+ka0aNRyIHlEAifPe2z+Ny+UrpLPB8HYO/gXvZ+sJe2P7Tx7Qe/jcflQUNjMDXI7shuDMPANE0i0Qgb/riBn//y59x79718ueHL1IfqiaQipAopZtXOojveTUtzC2XuMh5Y8ADr/nEd85rm0VzRzLn15zKQHkVVnQuBZqhZIPO2sZ0i1870jLt6F6IynhoJx3XblDlV+hjUtow7ge9fBUYMsARk97wImhfSR2HHLdInSLleuuu4+K4euXZuwHH5Po6AKcq14046jc+RhivnH7swzngX9xenE8VFc8k8L9VHiQk3c/KcT8gJSsk80zZkjmnlRbFo2w7TXfZ3t/D/QsvfwfX/oUXZinB9mEXPLsLtdzN6eJREX4J5y+bx+Rc+T3hyuJSdqOs6tbNqWb9kPbGjMbzlXlIDKTY9uKkUxzXhlAmkB9OMdY5xxnVn0HhhI+VN5VQ0VbBuyTqih6MU0gUqmiu45plrqJhSQXNLM1UnVdG/s59cNseR2BFuW38bSilWXrqScl85uqaXJD4r21cyMTCRVR2rCHgClLnLOHnCyaxeuJrrZ11PTbCG1dtWc8/8e5hSMQUdnSkVU2gIN/DUVU/R0tRyAmN9/4L7MSyDCYEJZM1sKQbilldvYSgzJDcw//yNK6sVUKx7xutgHJYBcED0DKg9R9odH9Fl5cZrbWBc9mPlx+uy40ckU9vKOzU1Pukj1SdtNB3KpzmA24D+bTIgegKy7+Or4Yv74ZKnRLa+cbEMqJ/4AXzsOpGXp3oFXB9YI4z15PnyWoffc2IoClKLbWbg7dugYqr0G26Sa9oFubv61m1gm5R5FV6vRijk5dFHL2f+/CYefHATR47E8PvdHDkSZWAgRdE+YWQkw/LlRUn4AnRdI5ksEA77CAa9ZDIGmYwA9YkTAzz33CJM08YwLAYH09x990aSyTyFgo3Xq1NW5sblgiNHxujo6KG83IfUzIlE/Oc7XyFnFvC43PjcXtyajq7pTApV82+7XqUuPAFd0zmj/iTS+TQKqA5WONFcXtL5LKZl0JcY5ocdL5A18tSGqvnFrlepDVVTG57ApHA1QW8Z5zScSk2okn85fxGDyVF8zsShdC9Y2VL/rHICmPWwgOfa1VIvrQUFKBu90NkkEnGzF46eDINLJefaGpLaabNbIrhwUQLrrhqY+BC4m6Uu2+wXhtvokyguzSWTgbL5ePM7OLuuDq/bjVvTSvFY85ub6U8meXDTJgZSKUJeL72JBKZtl8Dyqo4OLp8+neUtLeiaRl0ohFvXTzhPgxIz/sCCBeiaRiSVYnI4TNowTojrmt3QQKXfj6VpJV305+67j/bvfIcp9fXCMi9fDj4fa372M95/+232tLZy5/Ll3PDVrwrALCvj3qeeQvN6OfjOO3zQ2sr3fvzj8XiuZcvG9dzFkOmqqhN13qOj8Ic/nEA/O6XBdHYKoO7qklLvWbMEZB9/uscZFpxEKWxbiPDbbxd1ejQqEV1PPSXxXdGokOZHj44nhRWx/iOPyD2AadOEbP/v/11k5t1dzmep4LDVLhdMbxDZ9+EeJ5MaYabLfMJw5wsy1jg51jcvXkxjUzO9vb0svOYaTjrtY8THonzqH1qZ1frfOGvuhTz13LO0vfSS1JamCjx31320/uP1nHXmWXx60Sd56rHv09zcDLkCyrLQ3G6yIyPsf/55XF4vyra54BvfwB0IsO/HP2bi2Wfj8vk4PkvcEw5z7j33CJDu7WXnt79NqqcHM5vF7fMRmDCBVE8POx58kGR3NxUnn4zmclE3b15JRr7vuefANDGzWYxkkuzQEFWnnYZtWaWca00phg9vd2Tgu3H7AxQcsF3IxAlU15OLD+ENVNAw63I8/jDKttB1N4HKOjKxAYxcCt3lKsm8R47sBKXwBiqon/kJifTStNIjUDWJgf1/5KM3nqHvgzcoTXDRwOVGX1DMm74MdG08f3r+J+Sui7+Miy66iIbGRvD50WacKvXSuo5S8OUbb2T1x+fgzWXkQ+XcBJ4z90Km9h0VWfv+D8YBu7LB5wevF33ex1HpFHrLpc7XQIBvVVUVtm1jWdYJ5jf5fJ60k2lvWRY+nw/DMGhrayMajZYAuWEYVFZWcu2116LrOpMmTeKtt94ikUiQTCYZGxuj4OTd9/T00NDQwNatW/nNb35DOp1mw4YNxGJJGhrmsHXrYw4IXklDw2xmzmxlwYIHHBn5IyXwnMvFHFCtMIw0AC0ty0vtNc3FhAmnEA434POVM2/estIxXfegaZQytbds+Q6GkWbu3LucNvejaW40lw+/4zGhI4D6ECLrHkLY6BDwPgKKQwh7/QXAC7i++lUCU6fyK03jtT17uB2J2nIjsV6X/exnhDSNX7/0Eg87X+/rgdXAlrfeotHl4rrVq+l3RvtvAgVdxxvy4iv34fK5uObZazjz+jNBCasc747jr/DjDcl8DeDK1VeWiJXPv/B5yhvLabu5jfLGcpStGNgzIOrDm9uIHo2iuTWuevoqbvngFrwhL9mRLJPOmkSiN4GyFYVEgf6d/fir/HjKPOCCgeQALs1F0CukxX0t99E6s5UKXwWGZXBe/Xm8+uardB3rYuZpM5kydQp7d+/loa8/xDsvvsMD2x8gEAxwy5duYUffDuqa6pg7by67d+0m5A3x3fbvMpgaJOQLMb95PulCGoUqeeYUyZj+ZD8TyyrRcoOw+2uQOiJzl5oWCJ8CtRcLc+2pkPpqTROAmekVoJyNyDrA+U/DxW0i//ZUyndY90lcl5UR0F0zX/rT3KApyI3Auavhk0ekRnvXEqnp1vQ/I2BwFJAhmV/FOmX+V0jId9blHa/LjneOlx+CzNfyCb56++1MPWMe2oSPsWfv+9JfcTzyhvjZT55Bc3t5aUN76diOP67jwks/zTnnz+a0mWew6nvf4wQ/oL8v/6mXv4Pr/0OLy+MiFUnRdnMbhVSB8oZyqmdUM+HkCTS3NJ9Qd5OL5ygkCyLxXrG5JAMvHi+kCihLEe+OE6wJsn7pehI9CXS3Pi4Df6QdTdNIDafkTqemobk1rIJF44WNaGGNVVtWcdeFd1HuK6fcV059qJ6CVWB5y/JS/fRIZoTlC5YzlB7icPQwi9sWM5wZ5ofX/BCX5uLxhf8/9v47zo7q3vZFv5VW7qxO6lYrkUEgBChLsAmWSTbGRt422zYOCGyBSQZswAZvI2EQGdtgsL1x9kaAMQiJjECNkJAIAgQotELn3CunCvP98au1WvK+79x33z1+5527Xfos1aqqWbPCqp41xxzjN3730BxrJu/kSRaTLF+7nJ0jO8k5OSqCFVwz7xq6k90sbFvI9JrpWIaFQhHPx1nYtpC73ryLx7Y/RleiS0YHPfuA/IOM5xLUNHAKvhTHGd8W75CypZgZz/bjXKYJM1yS8pRAtKbJSGW4QfbPjUK6T2RCSkkD69liXhaaIPvaaRjbCS9dKuxydlBAtJ0dj6FOdcpnx2PSmCb3Qf9bEnddir8+fKmw0rop59w0W64jUAnVh4qZ2eI7pAEPVEgD7+QhOyDfT71fymqaD0AU0ajFHXds5LHHtrNy5QY8TzF1ag0NDVFMU4YqmpqiTJsmTPbkyZUYhkZzc4zm5hiDgxmuvPJ5+vpSHH98M1dd9Ty9/gBOMGhy223tzJ7dQn9/mksvfZaOjji6LsefPLmG/fvj5ItFMsUceadAa1UjP/rUxbTVNNOfGubfX3iE7sQgwmzLttaqBjw/r2RttJqRTJxtvbvYP9bHypd+w4RYNQEzQMQKctFJ5xIyAwRMi1mtRzCcGcP1XEzNIFvMMZQew/U8koU0RzZMwUNhlMxEVBbcYUDJ82HUykCL0ycg2B2UFzOaGJ3FPu+z2dXCRtd+D/AOkH6vlDhqLwX2Tsi/J2y1OdF/Hnv9+OteiMyHiY/LsYZvlnjvsPzeEcui6HlMra7m4XPOQSnFHRs3lkG043n8aP16srZdBuA3LVpEcyxGXSTClc89R6pYxPu7/dLFInXhMPcuWUJjNIoCGmMxJldXM6mignuXLOHj5cu5d8kSIpbFR0NDaLqOmjwZHnqIxV/8Iq3nnSeIdeZMAcRtbVTfdBMccgg8/DAJTUPr7YXeXjIjI/z6T39ixa23ovnbm+bNk3vx/vuyzyOPCFq1bXjnHZGERyLjNHN1NZx2mtDP06fDww+j1LgsfPFimDIFHnhAlOiFgiz/6ldSpliUaItsFnbtGleuz5snh6mpgc2bxXutoeHg2Gzb/q8x3X7K6PL085/Dv12o0FxP4qotS2KnDeNgCbgCEmlhq3fthw93ywBEZx+MxPnlqrvp7uzEyWQZWP8mu9/dxuTJbbz19Fo+WP002959h5eee56ZM2cKC97WzJf+9V/54J132Pb223ywZStf/vKX5TiFIpquY1gW+XicE264AU3XKYyOkh0cRDMM5vz7vzP1s59F82Ozt956K+muLuxMhpEPPiBQUYERDNLz6qt8/Jvf4BUKDG/bhm5ZZPv7OfKii8gPD2On0yjHIdzQUI7JPvqSS9AMAyN8gPxRKcxQkKHdmwlXN+G5NhOmHyDPVhwEkjWg+eh/AV3Hc/32XNPxPIfe7a9gBsPYuRSog+XkaBqeXUT5BmIoiWFWngu6eXBZhZTxRL6gVddhnPMFqKkFT6FSSYyzP49WXSfL/T3geTLAq+sYi09Hq6lDjY5w149vZsEZSzjhjCVoVdUQCKD0cfMyfeGpKM9FO3KGAPaFp6IcBy0QRLMCaHUN6G3T8GrriMfjPPvss9i2jed5ZQY7kUjQ2dmJ53mYpkkgEGDdunVkMhlisVg5Trq9vb0MlovFIplMBsdx6OrqIpfLcfbZZ2NZFoZhUFlZSSAQAGDSpEkUi8WyJDwYDLJo0SLefnsbphlm0aIbyyDYsiKcc87D1NRMQ9O08rYFC64nFKrCtrMApFIDgMKyIpx55gMkEp2Mje0hne5HKY9AoJK6usM455yHqa6eAig0zTzoWKCRyQxx5pk/p6bmEHp6NqMQSbbP/5MA7gEWAA3++iuQmOjzkI6rzTi7/dUvfIEt7e1MmjyZASQOeyXCgr+3bx/DjzzCiXPnMoaA8wGE9c4lEtz8/e/TfNZZvIew4x7Ccluuh+d65fzUuiHdZafg0HhcY5n4SPWmWP+j9ST2JcgMZhjbM1ZmrNtXtpcZ7NrptbQtamPTfZtEPt6VJL47zrrl6whEA2QGMqy/eb3EZi+YhKZrWBGLxuMaefXmV4k1xcCC1qpWJkQmUHSKJItJptdM55aTb8HQx83O5n9uPjv27WDhPQvJLs9y6HGHcv8v7qfn8B4Wty3m/AvOZ9P6TcxrnUdHTwdbtmxhxowZeMpjxakrGMoO0Zno5JI1lzCYHQTAUx4Fp8DKDSIPv2PjHViaAR/dJqyzEZa+mp2E3IA0rMqVGOsS4aEZEm99/CrI9QhgTnf4wHgSVBwqYNorikxcOTDyFsy8AyYsgA9u9tlpR6TjhSF4+0qRg9fN9vNpm+M+PqV458op0gc0AtKnSvcIaeLZQnaUYqhjE6XfiD/i68vHv3D+52l/fT2TJ0+W66ia5puZKfZ9sIFHHv0Dc2efKHVWtIJrs+x7P+GGH3yfd9/eyhuvv86dd93NRx9t55/Tf4/pn+D6HzR5rleOuX7jp29gBk2525rIjUpxNwuuX0CoJkSoOsSMC2ew5N4lACy5ZwkzLpzBwhsWEogFsLN2WZpUAuGe4zH/uvll6XmwMkhFU4X4NegaylHolvzEAT3AqtNXcWjdoXjKw9RMFApTN4lYER4+52EiZoSTWk6iN9lL0AyW5eArNqwg7+TZ2LURQzfK8dV9qT6umnsV0UCUsBUm5+S46827aKlskVFu18bShFmMBqJs7NpYHmWd0zoHRzki3SkBS0qOjT4Dke7xt/n8dtmIrCQb9xlox2eujYD0vNPdAqI1Q+orJAXcBiqg6QSRWytfPxqoHHeF1HUB11ZEGuOT75Z9Yj4IPtCQbPMKiZc+fKnMU50Qrpe4aycrkvZT7hXQXkzJeTh5MS0rJuVa7ZzMB9+W69M0yPQKeM/0lp4kck6AZFLYCE0bNze78UaJ2fp7w/9kskhvb6pc3nE8cjkHz4NVqwSY33HHRpYsmc7dd3+KSMSivz9dNjj71Kemc889m1iwYBKBgFE+hlKKCy88lsYmYTFcz8NxHRzPxVUev9r0FM/veJNfbX6KTDFPb3wI23XIO0Xe7dnBQHIE0IgFIxzTNJ3fbX2WY5qnM5JNsK13J2ErREOsFgXEAhHOOWoRM5oP5baX/4OMnWc4m+DBjY8zlB7juImHM5pNsvKl3+ApJY+I2w/Fff5dsMZHifUqMJth+KcClL2sxFI3/VyYbBA2O3CEfG+4GyouErZbM0GPgj0AvecLo6188y+7H2qvAXsQ0AVQ293CYI/cQVEFCZmmsDElVkbTMDVNXL2vuYaHzj4bXdP43rx5vD8wUAbgsUAARymueeEFjm9upj+Voui63LhoERfOmMG9S5Zgex7bBgawdJ1oIECmWGTXyAiXrFlDslhkOJulY3QUy3eOntPSgu55aJmMINJ4/OAHJ5OBs8+GVav46sUXM+moo/jhjTfy+7ExWLGCjs5OaisrWXn66Zw4dy6LZs3i5XPPlXtRchwfHBQncdMUvfWddwoSNgzYvVso5lhMkG5CZIyGH8JWknzncsJYh0ISml2ScE+Y4P9F/J0K/bbb4Pzz5TCl0O7OTqnzwNhs25Y6DjkEfvELmDRJTrfk5bZ/v+yv68h/wQB09/vZBhiPpS6ZnFmWGJaVY6wN+X7UdNl3d6e0ZVNbBKg7npQ7pE0A++7OcRY8FBCJuaHL96qY7LNrP8QiEktsmtQfe2wZPDvZLOG6OuxMBjudJrl3L2/dfDOF0VHqZsxg+8MPo+k6odpatt56K24+z8J77uGYSy7Bc13qjjsOzTCINDby8aOPEmlsJFRXh2YYaLpObNIkZv/4xwRratjyk5+gGwa54WE++PnPyQ0PAz4Qnih/N4FwZVkG7jrFg2KkPdcmO9aDnY3T99Gr2PkUmqYdxHZHaiQuvcRuB8KVOPkMmq6jmQHsbJzsWA+ab4Tl2QWsUIUvCa8U927wH6SiWIl5Hri+s3dlJV7XPlRiFO/FZ9Aqq1Cahte9HzwP5TjgKd7/02958s9/4oZvfh3jnAvAtMC00JQqq6jEtCwIsUqMs86HqhofePvtuB+t5HqKDRs20NraKrHq6TSNjY0YhkEikSAajbJu3ToSiQSaprF9+3Y2bNiAUuqgGGxN05g4cSLJZBLbtlm3bh3RaJREIoHneViWxeDgIIZhUCwWWbt2LYlEgkgkQiQS4eSTT8Y0TSKRCGec8S+AR1XVFM466xdEIhNYu/YybFvi3JXyqK6exjnnPExt7aEEg5UYfuaOqqpWlIJQqIZ16y5n9eovYFlhHCfHmjXLGBvrwPNcbDvrG5bB2FgHiUQXZ575M2pqphEIVNDWthDTDKKUS2PjsWVwXcrNUYWYkC1E3L5DwH0IC12BOH1fCuwBRoH5ixfjtrZSAI5BGO4bgbzn8dtvfYsVDzzA/mCQOuACoA+Rjp962WV85aabWFBXx0zgJnlzINosmZSnQEEhWWBk5wjPX/E82aEsbQvbUJ4i3Z9mx9M7aL+tnVBViPaV7az+wmoyQxnO+vlZXPr+pVROqmTtZWsppop8+t5Pc9nOy7j36XuZMX8GFzx2AVs3bS2HDKb706DgN7/+DeHqMM+/9jynrzwdz/U451PnMPPImZw460ROW3Aajz70KFcsv4LTZ55OX08fF55/IScecyJzWuZgu3aZOAkZIQzNYNUZqzjviPO46JqLuPv3dzN71myWnr2U71zxHWoPrWXZmmUM54aZP2l+WdF458Y7y6+IRCFRrvOmRTfhYKBKpmOhennn5vr9vsweAciZfeLy7WRF6p3aJXHS4YlSbrsPzrevkNhsIyKAuvMxGNksknMjJOx152MiBS85ex8oJ286Q0B7iY0uAWCgbHTrORCqHQ8h9N3+y2y2URpA1Pz+oAvxvSxeNJ/WFt8Y2rOlv+nZeErxrWtW8sB99xMMRYRIMYIQrETTdeLxOBSTZJJjBCyT2qoK/hlz/d9j+ie4/gdNRsBg0U0Hx0S7BVcaag+qJldxzsPnUHtYLYFYgEBFgLMfPJvsUJY1y9aQHc5y9oNnUzOtRgC5oaGbOkvuFdC96MZF9LzVA8DZD51N9ZRqRjtGWfudtYCMrna2dzLWMSbthKNTGazEVS66byyhIekcmmJN6JpOwSmQyCeY2zqXikAF182/jgtnXMi9S+4lYAQ4tvFYXOWWY3z60n2YusnN62+mM9FJV6KLx7Y/xm3tt5FzchIv59kUnAIhM0RTrIm+VB8Pnf0QYSOM43moqqkyoqib0pDp+njMSuVkAb+pLgHQlZN9V/EWaRhLbuFl93BfzhNrhdrDfWY6JXIgPeA7Ozq+dFinnE6hmJL6FVJvch+8/B3Ij8g5pbrEzTvTLyC7FB9thOD0X0qD3DwH3r0fWhbL9YCcW2IPvH6tLOeHBTgrD5J7Yf0Vwoo3zxXA7drj4H3LHVKukMJxhbXety/Bd7+7jra2Kh5++BymTavGMLRyrHQqJR11y9KpqQmXGedczuF733uBPXvGuP3208vAfNKkSoJBgw8/HGTSpEo0TWK3W1oqDpKf790bJ50usmzZGvbsGcPxFJlijrAVLA986GgHuXkHDIu6WCVD6TFue/k/qAlX0J8ewVMeYStI0Axw8ZzPMX/KcfxuyxqOaToEUzfI2jkGkiPc8epv6Rzrp+AUOaZ5OplClqH0GF876RxiwTCe8hhIj3LcxENFWoknANhni7E7INsOzj4YvELcvWsvE5Z58ApZn20HlfLZbEMcv/uXSTqvpntk3r8M7F0QOk6Y6bqbRPaNAVarOImHZooTef8lsm7i41B3IwrIOw7JQoGC45TjpUuv1q5kkk3d3WRtm4pgkJlNTQC81dNDPJ/H0nV+fe65fPW442itqsL2PCZXVfHg2WczlM1y7Ysv0lpZiQfkbJtEoVBmtpOFAiHTZHZLC2O5XNl5HE2D/n7JOdXf73cglCBUz4MHHwTL4nc/+Qld27Zx6513cv3EiXDjjTiaxv6+Po765BO2HnMM999xB1/cto2BkRG5INcVeXhfnwCckv565UrZtnKlxFr39gra9ZnQEnYtnZ5hjGcFW7FCqrjT79+VJOQVFXD33ZI+6957ZTkYFMOy+++Xw5imsN4PPywx27294teWTI4fZ8IE+e66wnY//TT0D/i/UfeAAN6gMIGEAgKMC0UBvqYhn1BApOGGLtuqYhKbPX2S7Le3R+oI+kqaZFr2r4iOG6G5npRxPfmUjj8Sl/Zf10W+fcst5IaGBDw/8gi6ZWGnUtiZzEEy7qb58yVNl2Xx8aOPltfXz5pFZOJEQnV16KaJ8jy2P/KIbH/kEfDTfCmlsNNiAPnOT3/KvjVrcHK5gxzHlQIrXImm6Wi6Pwjnp3bKJ0cOirnOJUYIVzWVHcSHdm/Gc4oHMc+aLj+845uZKc/F82x6t7+CnU2g6xZmMErPBy9RzCbQDXG4VmhkRnqxs3G5b6YpYBhfQq7r4uZdXYveNhVqJ0j8dGU1FPJoDc1QyIuruKbxhg37UxmOWHIWUw87jE1vvcWly5fzi3vvwV0rDuKqFJTp2KhsRp73QBBGR1CZtIB1NAxNY8mSJRx33HEEg0FisRjBYBDDMGhtbeXNN98ss9OGYZQNyZRSZSl5dXU16XQa0zRpbW2lvb2dHTt2kMlkaGtrQ9d1AoEA0WiUZ599llQqRWtrazlm2zAMotFouRx4xON7WLPmYpLJbmw7y5IldxMIVKGUh+sWcZycPxgwwOhoB2vXfpuxsT3o/uB3ifm+4ILHCYVqSCS6mDfvGpLJbtLpflKpXjRNR9cNTDPI2FgHzz9/FcVimrGxXWXDM89zyWQGyad6maMUJdFszP/0ITHQlyOGZHORTut9CKsdRJjtLNAprTK3IQ7g04Ff3X03sxcs4KkTTmAIeMLfZw5w5eOP06XrHPKZz2AAXwTaEMMzzW+onZxDZiCDk3fQLb2sKEx2J4nvjbNmmUi+L3j8AhbdsIh8Is/CGxdy6fuXEqoJ0b25G6fgYIUtTl1xKspTrF2+Fjtrc/5nz+f5p56nPlJPIBpg0Y2LWPrkUppnNfPR1o949A+PMvuk2WUT22RnEoXi69//Ok+8+gRH/fAozvrKWdz9wN289v5rvN3zNjv27eC9j94jaAZxlUtbVRsPnf0Qr7z6Cud+5lxigRjpYpqHP3mY3nN7OeHWE3jslcc4/2vnl8H0ig0r8JRXzgiz6oxV7I3vZdmaZWTsTNnMdlrNNPmxgvWSJkuzhPD4+A4IVAsILoHhQBXYCfkcCJKVC0ffIOD8yO8JqDYjIi3/3ADUzIRgrfTtjrxOyh19g99/Mw5Yd6OYnRkh+eHcwnjcs1ccVz0q5QNqv401AuOkjVsYZ9hLk2ZArMkH1B1St2YKQWMGufu+X7Bg/jxOmHHo+D6eB57LfzzyMD+8+WbaDp/JYcfMZOVPbqYpZvPP6b/H9E9w/Q+c/j4mWrd0nIKD8sRgTCmF53ikelIUk0U8xyvLvDes2IBTcHByUj7dm+bZS58lOySgu3pqNS2zW4g1xVh3+TrG9o5RPbmaMx84ExT0bukl2hjFClsoV2Ermz3xPbR3tpN38jieg+M5vNH1Bp7y8JTH1OqpNMWa8JRHzs6hazo/O/NnDGeHeaPzDSzdQtd0blx4Y5l9LjlIrtiwgjktc8ojmmEzzMaujWSdLF3JLi599lJ0TefYxmMJ6AFsZeN6jrAQbh6KGWGGQRrIkqT7wLRZJRdHM1SW60hO3b8zrzBl5FBGIi2RlqP+a3oG8M3NrHFHceVICqwSO63cg9lqMwKnPyRAPzMgjuLpbjnnxaugZQGsvxLiO6XuTJ/IwT17vF47NW6MVnIRN8JyfafcC0dfJHM0CFT4nZwiPT1JbrnlFADS6SLd3Skcx2PfvgRXXvk8g4NZUqkiy5evw3U99u6Nc8kla+jtTTF7dgsrV7bjOB633HIykydX0dExxvLl66ivjxKNWti2R7Ho4jgekci4/HzFig3E43lfit6OrnRiwQiGbtCXHOLu9X/AVR6t1Q2+DLwRSzewDItfbRY2+3dbn+WYpumSci6bIFPM0Vw1gYZYLVedfCEDqRFue/k/yNkF+tMj5dRc6UKW+ZOPpT5Wy/Eth9MYqyNshdjWu5OGWC2nHzaHTDHH1u49qMgCiZN2ekTSbdbDyG3j7t7WlAOcw2+T7Xa3D5ZdGFk1vg3EXbycqisJkcVgtQko98bG5eNeQsqmn5b6IgvBmu6nsAsQCwSwDIMrn3uOPWNjuEphaBqxQIAFbW3EAgGaYzFigYAY7bS2MqmyksFMhj1jY1yyZg196TSVgUA5t/WKDRvEyKy9nf3xOGP5PI3RKA+dfTafLF/OxIoKco7DZevWkbVtxvJ5GczyPEmptWCBuHyVpmuvFZl2Oi0UbzQKV17J1+bP59XRUUYqK2mbMgVd17nwC1+Am27i+DPOYOq0aXywbdt4PYGAUMK6frD+WtcFBV94oYD6735XKOq+PnRt3FzcNKUKEEl4qYpVqyRu+tJLhWHWNImpvvlmKdvRId8XLpR460BAQPTmzQKiAwGYPFnyaPf1wbe/LeZlriuEfV8fzJoFTz4JE+pAS6bhkEmSy/pAw8VUBj7qEFBsmSLpBgHVibTkuXY9KNjCTNuugOhCUVjq3Z3CeBdtcRGf1CR1G7rUZTvQ4cd1T2sVFlyJkdn2hx8uA9um+fM5etkydNPEqqjAikbL6bKOueQSIk1NVEyahGaa4/LuZcsk53UJPGcyONksR118cXm7putk+/rQACMYRDMMTrzpJk7+xS9QcFBd0tHUsPNJej98Wdho00LXDaJ1EwGNXLwfz7WJ1jaBbhzEZkt+4BATjzlNmGfPxfMcjEAEt5gHjYPAuBmMYIYqmDDtJALRajRNw/NcPKdIqHICdk7iXknGcdc8joqPgG6goaEFQjA2irvmcRgdRumGkMvBsOSjDkd8QOXxnSuvprevn727d7Nn1y7mzprFL++7l0umt44bpJXeH7msGJqlErLGsiR1V+deGBtGde/HNCWn7djYGGvWrBE2C1ECLVq0iBkzZrBkyRI0TePcc8+ltraWRCLB/v37icfjPPPMMwQCAYrFIrqus2jRIi644AIqKyvLMdlAGahv3LiRI488kqamJsbGxli7di3JZBLP84jH4yjllQ3FBFxnys7dnZ3tpNMy4JNIdBKJ1JXjpdvbV0q4mabjeUWi0Sba2haSz49RWdnC5s3309w8i0ikjnRajPLi8f2MjnZwzDFf4swzH0DXTUwzzPz512EYIXTdJBptJKgUYRRBpcgD30UY7AWIedk8xIjsUsThuyQZvxmJra5AAHMCyZO9Anjnww958oknuP6mm7gXOAn4BrAJeLu/n5Fbb+Uv993HLASMF5EYbc+fo/mS75vXkx3MYkUt5n9flIKtc1rLfbWNqzYyedFkqqZUEWuKUTO1BifrsG75OqL1UcygiZN1eOm6l0j3p2mZ3UL7ynYWzl/IUXOPIlwXxopaVE+vpm1hG4nuBBd9+SJ+fOWPCQaDfPLXT8p9Qg2Nw+oOK6sKV7avBA3qo/V0J7rRdZ3do7v59rPflrSoegBLtyi4BTZ0bmBffB+N0Uaum3/dQaGAVcEqvr/g+yw9eik3LrqRglNgavVUHj7nYaKBKHe8cUe5n1cyVIvn4+g4aO9cCX+dCG9fJnfu6BuhGB8HzUffIKDaqpLPgYBYM4TwOPFnkv864suuh9pF/o0Pot+7FobfgBm3QGya703jSCz37IdEet71OAxvGu83GpbfbzTHY7Ddgk+yFAUsH0jaBCr9vqEPizzPV0iGxxWW+IRMYj8fvv8+T/z1SW668UbfqMwTAsYTkuOnq+7ithW30rm3g+3vv8eNN9/KR10p/mlo9t9j+ie4/gdNbtHFyTkHxUTrhk6mPyNGZnvG0E2JjQ7XhEkNiExu4Q8WluXhRsDAjJigoP229vGYbKXKubBLjXWyK0lif0LyY+8aoWFGA9Vt1YRrwmQGM3imR2eik/poPZetu4z9if2YusmMhhmki2mydhbbs9k1sovvrP0OQ9khptZMxfGc8n7L1y1nb3wvnvK45eRbCBmh8ujmTYtuImyFeejsh4gGonItbQupCFTwy62/LL8IKoOVdMQ7GMmOEDJ98ZURlIarkBxPw6UHAP2/xs74o4Ii68ZvSLsPTrkFsi1QIY1ibpjx1FzDfu7swgHmZj4DrpBRyTk3HJQKi5OuG18GOceXvwNWWJjn+G5ZZ0Ukf3WJeS7EhdGe8imJxz7hGqknUHVASq6bpPFPdUk+bcOCUx+Qel/+DthpQpZHY2OU1tZKrrvuJfJ5iatqbo6haVo5x/XKlRsAOPXUKYTDFt3dSZ544i4WL57JFVfM5QtfqGH37lGqq0PMmHE4n/vcQt544wY+/emFtLev89MUe5x33tksWHAS7713CxMm/IXPf766nCf7ppsWkYwXiVghPOUxmB7jy8efScEp4nqejxMMiYtUimv/5aucfeRCLvbTdGmaRm20hqH0GCtf+k2ZAR9Ij7K+Yyu/3bKG41sO56mv38X3TvkKFcEoDRV1ZO08nWP93PHqbxnJJpg+YRK/3vwUlmERC0aoCFZL3taRe8XErO4GcIYOyDt9E2hBP63WhSL5tqZDaBb0XylS8aYHYOpOaPw5YByw7/VgNI0z21YzeIXxFF16lXyf+KTU5/SBl8TUPPb5uag1TePuJUuIWRaGbzy2e3SUTLHITj9v9Z6xMRSwJx5n+bp15B2HsGVxzbx5dCUSuEoJ+wwHxWYfVldH1ra59Nln6Uwk2D06yt54nK5EouxOnrVtNvf0UDBN1KpVAq5vvVXQJcCHH0JnJ/GxMXovuUTQ5uzZPLV8OXU1NdTW1TEhFuO0RYt4fulSmDaNvXv3snfvXo4sAXLHEV11b69YdLe2wi23SE4sz5OA5+98R9Yfeqgc4+abcVzB9Q0NAqDb2wVYh8OSbvvhh0VJHgjIad95p2wrEeOJxPj3vr7xTGOlWOx8Xuq89NLv8pnPTOGEEzTOPfc9ensFC82bN4WzzjqcM86YyfXXz+Sxxx9DxSKgYO26dcyaM4eZJ57AMccdx2+fehLmHidu4BrjLHOhCHnfL8J1BTy3Nsn6mkphs3VNwHfPgADuoCUMd74gubLzRSl/YGqvqpgAbk3jqL8DzzI46+AWClixGJVTpzL7xz8m2iryRc+2cXI5Is3NzL7lFsxQiFBdHdl+kbrbqRRjO3YQqq5mxvLlBGtrKcTjRBobQdNwi0WSe/fyzk9/Ss1RR2GGQkSam5lx2WUEq6tBWm/MQJSJM87AilRjZ5M4hSzKc8iO9WKGpI3q/fBllGsTCFfRcuynsCJV6IYpjt+eK+aI+TR9H63HziUwAmHcYuEgZtvzXDRNwwpFUa6NXchK7DWgGxbRulZQqpyT2tvwcimeRVJuzZ6LdcFX2ba/q/ya+NY3LqKiupr9nZ2cNH8+lXUTUPERcrks533uPI44+mi2vv8+t9z2U/a0TEM7eia3bf2QSdOn8+bmzSy78iqmfOM7DKx7WuK8Y5V4G19Di1Xgtb+C19yK4zg4jlOOoS7JvnVdxzRNzjrrLDKZzEHAu729nWg0SiqV4owzzsCyrHIsdXV1NW1tbf8lJvvAdFulsgeW0TSNDRs2UCg4LFx4I1/60hra2hawYcOKMniORCawYcMKDCNAZWUruh44IF76h2iajm1ncZw8hYKEHoVCNbS330ZLy2xSqV7WrbuMyspWhOEO0dIym56et3CcPMlkN+vX/whdN9A0zWe0r8AzA3SgsUzT6EWY6v3AJcAk4N8QA7MFiCO4hsRHPwbcyTjbXAucici7t27YQM++fcw89FBmT5nC25s28b1ly/jwwQfZ//bbjPX18b2ZMzlhyhTWPP44d/37v3PLjTeSRQzVPI8yU71h5Qa8okfdYXWc8/A5GCGDRT8UZeKZD5xJMVNk7fK1xPfG8VyPN1ZJOtVgZZBYU4w3Vr1R9tCZdsY0Ft20SDK8lB5EDQrxAspT3PCtG6gdrCX9jMjDj/jcEWUFJMCtP7qVd374Dos2L+LaI6/F1ExGM6MsaluEqZlMrZnK1fOu5qOhj7A9m454B8vXLqc+Wk9nohNN05heM52Hzn6IibGJLGxbCEB/up+Hz3mYunAdyUKSglOgvbOd/fH9rDpjVVnFmLWzZOwMESuCjYY6+iYxI5t5h/SzolMlB3W4GWb/UuKog/UCXq0YxKbD8XdIzLXyZNkIC1sdmwz5Aag5DrI9fgMTE0A+9AZll/H8ELhirkemE96+HOrmQvVM+ZuPtUrfrWqa9OtK/chAxcF9wQNJG40D+oYdZZCMBt/90X1MOWYe+/fvZ8eOjyDWxIYNr7N3Twd1DQ1Y4Rivb3iDf/3WVTx4/50MDw3wxJNPcvc993Lsscfw5X/7CkccfjhvvPnWeJjjP6f/Z08HOlb+7/JpaWlR//8+FTIFlexNqr53+9TqpatV//v9KhfPqdVLV6tbuEWtXrpapYfSaseaHSo9lFbpgbTKjmZVeiCtconc+H7b+lU+mf8/rOfW0K1qx5odKjOcUflEXj1x4RPlugc/GlTpwbTa9dwulR3Nqkwmo4YyQ+rCJy5U9226T30y9IlK5VMqmU+q0eyoWrtzrdrWt02t2bFGcQtq6eqlKp6LqzU71qih9JBaunppef1wZli91/ee2jW8S8VzcRXPxVUil1C7h3erZD6p3u9/X/bLDKlUPqXS+bS6+G8Xq23921Rvsldd+MSFKpFPKNexlVdIK5UdUcopyqeYkbldUMq1lXJsfzmv1MgOpQop+W4XxsuX6iiklRr5ZLyMY4+vs/Pj5Vxb5t0bZZtT9MumlMrH5ZMbk08hKZ98Qj571irV/7ZSb98n+47uGt+nkFZqcJtSzyyVMqleWZePy/dUr1L5pCwnu8fXZUeU6lijVO9bMs8OKTW6U6l3H5RyIztUKpVXH388pO67b5MaGEip0dGsGh3NqlQqr7Zt61dLl65W27b1q3Q6r957T5bfe69P/fSnf1AvvPCOamtrU+3tm1U6nVfvv9+vGhpa1GuvvalSqbyKx3Oqtzep1q7dqYaG0qqrq18lk7L+97//izrmmBnl5VQqr4ZHUuqTgX3qB2seUIOpUZUpZFUqn1GDqdHyuo8H9qprn75X7RjcpzL5rMoW8iqRS6vh9JhK5NLq2qfvVX98e63a3tehrn36XvXJwD71esc7aig1qnYM7lPXPn2v2jm4X2UKOZXKZ9Rwekz9YM0D6thVX1TXPn2vGkyNqp2D+9Vj776gukb7VKaQVY6TUZ6TVMoeUsoeVMqJK+WklXLGlLLHZL0TV6pUJrlGqdw7ShW7pXxyjVK595XK7/TLppVyUv4+KaW6L1LqY5TqXjpejzOmlD06Xq7YrVRyrVL2oIrncmownVbJfF4l83kVz+VUMp9XI5mMWrp6tdrc3a0+HhpSS1evVqFbb1VrduxQ8VxOrdmxo7y8rb9frdmxQw2l0ypdKKgXdu9W7/f1qWQ+r4YzGTWazarRbFat2bFDbe7ulnlXl1q6erUaTKfVhU88oRL5vOpNJlVXPK5e37lTecmkUh9/rJadf75qaWhQhqaphpoaNb25We178UV1EqhjqqrUsUcdpU5bvFi9u3GjUr29SvX2qo4331SnNDaqYw45RB17zDHq8d/+VqmuLqWWLlXqvfeU+tnPlFqzRql4XKldu5Tatk3mQ0NSBmQej5eX02lPvfeeUh9/LLtu3jxeXTKpVDot1SxdqtTWrUp1d8u6996Tdb29Sr37rnwfHDz4MENDSu3cqdTYmFJPPfWaeuedLtXaOlm9/vq7KpmUeiORyeovf3lXrVkjy4ODSnm2o7xCUdXU1Khtb7+tlG2rvbt2qWAwqJJbtimVTCtl20oVikoNjymVyihVKCiVycn6VEap7btlfuByMq1UviDr8gWlirasX79F5oXiwfvZtlLDY8pJZ1QhnVaFVEoVMxlVzGRUdmhIFTMZNfrJJ2rD1Ver0U8+kW3ptCqk0yqxd6/Kx+OqkEhIuR07VPf69So3OqqKmYysT6dVfM8e9cnvf6/evOEG2dcvn9i7V224+mr1ye9/r4Y//FBtuPpqNbx9uxr+8EOVHRxUdj6nirmUyqdGlF3IKqeYV4n+DpVNDKj9bz+jMmO9KtHfoXKpYTW09x1VzKZULjWiCtmkKuZSyrELyinmlV3MK6eYU/vffka9v+ZOtf/tZ5RTzCnbLvjb8lLWzpfXZcb6/WP0q2I+rRy7oLKJQeXl88rt71H26t8pt79Hucm4slf/Tr365ONq/86danJbm3pn82bl5XLKy+XUd89eor4ze6YqPvZb5Q72q553tip3eFBlh4fVM3/+k3JzWeXlc+r+u+9SJy9apLxMWnn5nL/+wGP1KjefV14uq9x8TrnppHL7ulUul1WpVEpls1nV39+vVq9erfr7+1Uul1PDw8MqHo+rbDarnnjiCbV582aVTCZVPp9XyWRSDQ8Pq2QyqXp6etTq1atVX1+fGh4eVul0WuXzeZXJZNSOHTtUf3+/KhQKKp/Pq1wupxKJhBoeHlb5fP6gY6bTadXX16d27vxEZbNjqq9vm0qnB1V//za1evVS1d//ntqxY43q79+mcrmEGh7eqdLpIZXLxVUuN6YKhbTq63tPPfHEhSqZ7FG5XELl80mVy8VVf/82NTT0sVq9eqm65RbU6tVLVT6fVP3976nVq5eq7u7NKpUaUE88caHavPlnKpnsVfl8Uu3cuVb99KfVajifVEuVdPCWKqXG/DlKqTVKqff9+aC/La2U2qaUutBfHvK3T5w8WbW/+67qVkqt9cuU9pt18slq8V//quJKqWF/v5HScb72NTXznnvK23qVUvlMQfW9d3A/rH9bv1q9dLXqe6/voOWerT1q032b1Oqlq1V2NKsS3QnVs7WnvG+yN1nuv2XHsiqfzKt8Mq9yiZxqa21T7S+0q3wqr97e9LY64dgT1J+/8GfV/36/WrxwsXrsT4+Vj/Phzg/Vc7ueU6lcSt12121q0vRJalvfNpXKp1R3olt1J7pVb7JXJXIJlc6ny324zd2by325wfSg2tK9Ra3duVYlcgk1khkpl03lU2ogNaDe639PLV29tLxfPBdXyXxSvdcn67f2bFWJfEIl80nlFdNKZXqVyg4oVUwqVYgr1b1GqeHNMi+MKdX9nFL5Mdk+uk2pDUuVGntfqdygfArJ8X0LcdmnmPa/++uzvVImN+TX/7aU27BUqT8i88KYUnZO+nTl/mBa+nel/qSdl77eyCdyDDs/3kd0ivK9u93fnlHKtdVrr7ysut5frwxDV3955O5yuSu/tVRd9q0LlecU1cmLF6rf3L9SqUJKDfV1K03T1K/vW6FUd7t6+o8PKtM01cYNryvluf8AxPHP6f/XE9Ct/gc4VVN/74b0v8HU2tqquru7/1efxv9wyifyvHTDS5xx2ykEgiCZf01wbeyCh2tr5NIuFfUBLMvzXXQ0US8rDSdfxCvY2HmoaAzJ6JpyZTROuShPw857GKYiM1wkWhfA00y63+xh0twGdCvgq6zF/AXPpagHsJVC13Q85fkSU9muaxpF18bSTfpS/dRHJ2DoJq7nYOgmuqbheA4KDUs3SRfTeMrF0HX60/10JbuZ2zKPgGHxZvdGTmw+CcsQGSuAp5T/XfOPLecQNMDUHMDwEyp5oErx0A5gySU4abCC/kivgYgulP9xKQu6lAd2EYJRP37GF3lpvos4pXpNP/7GlWOUx75dcm4I2xPprqs8DDeP5dm4gQpcdFylMDWtdGfxlEdocAtu40kUlYalyZW4SmH55dzy9Ze9bnBU6Rgyt7L9uKEaXD1Y3tfxTcncosd117zIzTefQiwWwDAkntpUDkFNiVjJc/EMi42be5hz7AQCIZEjpvMeR8w8hscee4LDDz+abDzD4lNP4ok//YlZM44R3ayfZFh5Hpon7siup/jVb3/PQw8/yLtvbkK5jqSpMQwKxRyaEcVWFjkvw+7hTmY0HknRcdGMIndteJRnP25nyeHzuPH0b6B5AXQVwPPANBX5ootpKgqOOIFrmo6pG2LMrMugH366r1L2HaUUHwx8xKH1UwhoEQxdI54foSIcQ3ODhIIKy5BnYnxsWAkrrQeBNCgDSd7ighYZ/4P1skAOVA6MFg6WQPB3y9oBz15pvUfZsRBAOSjNxHNdPNdFeR5v9vdzdH09lYZvnud54t7tebiahus4vNnfz8ymJqKahmma9GYyDBeLjKXTLG5tFVMlP046WyxS0DSqQiE0x8H1XYcpNe66/B0pzyNXLBIOBtE8D9M00DwXTTOESX70UZFrP/SgsKv5gp9KSzH+gzDOcu/ZC5UVQjUbhpT5y5/hM58RObljC9saCoJhyn6FglDPuZww3NXVQg3pOkp5eJblG0JpZaNW5SkMS0NTimxOxzAVAdN/IJSOwqNQMOjYYzBhgsjAm5vBLrqEgi7hcKmswnU1DBM0FNMPPZw///lxZh53LENDOvPmH8JNNz7BCSeewP33w68ecQmYLjgu9a2tPPmf/8nihQt5/4MPOOuzn2XPRx8TCFhybcoFTUdL54RlzhflHu7rhZE46oipUBkBx0NzFdg2qiIyHmCu6+A6kMpBRUQen1J4jOuW4wOVUni6wkUMp3TNwFMOmmaSGxrESWcwYxEi9Y2y3gXXKaJbFoXRBF62gBEMYieT5ONxao48nGIuRbhmAkqXZ1wzLJRfp1LCEoOOUg7FkTjFXI6KScJIlmIXXSuErRmYgG4XsFBkXRsvEMFUHp5hYZRacuVR9Fwswyr/xZQkuI7fquMWQbfwNA1TedJS20VGPnqVuqknYIWi6IZFPN6HClUQMC30UEW5Pg0wPRcrncPVA6AUhltA2UW8UAWHzzicx//wB2YcNZOcZ9M2fQodH3xMTVUMzACup6FrCi+VxogE0YMmjI3w1u9/w7/+7Ffs+ehD3FwRL1zp/9krdEvDcxS65uGhoTzJ1CHNgELpioHhPia1tqA0DeUpnn/hRc44/TTJdKDLM67QSKfThMMhDN2Q50gp0ukMhXyOQDCEFQgQClig6eJWrhuAmEt6rotuGBi6jut5GLrut1Qajl0Ux3fDkDZE00QxADhuAVDouikx15qO45ueOsrB1EzydoqwFaWrayNNE08E3cRzCpiGhdJ0dM3AVS6mZmIrG0OBpWkkMyNEYg24ysXSTDzPxsXvgwC6pqOcHLoZwdIUJgqlGSjdIgnkvCJ1egBHucQ8G1vTcTWDoPIAF6VZKGVz6Xeu5Ll1z9PfP0BdXS2xigp2fvy+/671cJTilDPO5ZtXXcW/nXsWhpdHxwDl4OoW3/jGMo4/9hiuvOIyHDQM5aKhU8yD5+oEYxKm5uRs3KJL37sDNJ8wkWcvfZbtj21nxoUzOPP+TxOssND8UBE7a/PRk58w9dQpVE6s4O8nO+eiUBx+9OE88fjjzJp1PA8+9BA/uXUFwaAYcfX391NZWcmPfvhDLv3WMvSAgecVcewsI/kE0yceTfeej6mb0CB/AaXf1r9yTTlQutdK3K8LSv5GK8wgmnKlP4bCRqcj3kVLRQOW8jB1C0e5hMyI9M2Uy0B2lLpQJZYR9NsHKLoGBVtD17UyKes6EvpoGgpDU9iujut6UkYfz35imQo3PYARqcP2LN9DRt71pqGwHYVpGjiOwjB8U1CVw9XCeK7CsjQMN0ExlyYQjuIalTiujlKKgOXgqSKGYeFqogBVKAKGiacUrvL8fql+cJ9U08DJUDQiaJqGoel859vLee65dfT29FJTU0NNTQ1vb91MW9sU9u7rIFxRyafPWMLyy5Zz9mfO5b133uFfL/gijQ0N2LaN7bjs3buXF159lZNOPAHPU6XeLpb/9xowDAJ+CMnfT0XHoehKf9v2PAzAMgz//rsH/c2X5p7n4QIhw8BVCtt10TXtf3icf07/n0+apvUopVr/327/J7j+x0x2zsbQbTQ7gZYdgHfuQ51yj99IgXLzKKsSLbEb7a2VIj2OSC5AFaiUWGTloVKdaJtXSEqnyskS4/v6tXDidajKNrRsPypQhTb0HirWAuF6tNevRZ36M2n8NOm82QPvsDdyCAPpURpiNQxn4hxWP5l0IUssGCFihbA9B13TSeaSZOwiv978FN+acx4TYtW4nsdQeoyRbIKGWC2/3vwUF8/9HC1VDRTdIkXH4Veb/soVi7+M8l+ejudiaHp5udSAjWbGiAaj5O00TcERNLsTwnMAA9wRiYVVCgaugrorJU8xJSMyhQBjVww07A6w+8SpGVekwKogsbFAGUgD4AmIGrxWpL7WlPH1GAiwDrB7LEnINKkJhdjc08PEWIxD6urKAwQHzg1Nw/Y8LF0nUywS9GW/GpC1bYKmSda2ufbFF7lq7lyaYjEqg8EDBhso16MO+F4C3IOZDBXBIJauk03ZmLZLxIJo0DdTKoFhXS+74qLraPl8OYBVOQ5Tjz2Wx//8F044+igwTaYeeSSVsRhKKWafdBI/vfFG6n05KJrGV5ct49X2dgDWPv44MyZPlrjc229HRaPYWpCsCqFpGrrfOc/nNbZuhVmzFOHwOCjWNEmhlMtpfPABHHusvCgtS16OSo0bWHmeGFMpJRjsrbck33E4LJejaQrHgaEhjXQapk5VdHbC2Ihi8ULvYMVVCRj+jybXG491NXQBiwdOiQxUHRCbXHT8kwyIFNqy/isOB7AdXEOjmEySHR7GikYJ19WhPI+RbdsINTYSmzixDH41TSM3OooZCkmuYh98ucUiZjSKchzcXA6nUCBULRL4fDJJxK9T06VDgefh5PO8d+edHPGNbxBrbcUrFimm0wSrqrAsC21kAM2yUBVVaIYp11EC0OkERCvlPuRzUMxBZS1lE0DlDyoUCvD4r2DJ52FCM4wMwOggTD9ato8Mwrr/hLO+CGPDUNsI9U0CGA1DALguNuGuZVHMJbBzGYnV9QcHsmODRGoaOHBAQymFXjLPAjzHJl8IEQx5voGSV/4hSkMg/R+9Rt2UmVjhSpTyOPTwo3hi9X9y2OQGQpX1HHrE0VRUVKKU4oQTTuL2226loaICCnle2vgmX/7GN4mGw4wlEjzxlz9z+qmnojJptFAYhULzwWJ5AK+E8lwPpVwxy4rGpOkyDFQxL/cvGpOH3N9OMo5KJtFb2yRlVedetIoqsAJ4AYMceVKpXrZu/SVLltyFUnLN6fQw0WgdoLDtLLadJRIRa/VMZphIpBZdN9HQ8TwbzTel8jwbXTcZG9tPRUUDpQFLwwigaUZ5u+sW/XzFsk6AmIVrhdilGdyradwN6Eph4qdIOqCdTAM3ACuVIuYPNpb+Kkstb+kXdpUiq2m8B0xUipWaxg1KMc3O47gOwVAMGx+QaxqGUtgHDFqagJWzUUUXTdcoZoqYId/4TCmOOO4I/vSrP3HsjGP5ePfHfOGLX+Dz532e19pfIxQKccO1N3D66aeTGcrgFGxqp9XgxRN84xtfodbQuOdPq8llkTp1Dc3QUK7/vPmgSrkKzZT1Sil0A4yQXgYjKIXjeujKRTOtcoiT5ofTyKMkwDo71ocZimLnUoSrGnCKOYY7ttB05GI0w5Kmxy+rlEJ5Dv0fv86E6Sf5ucQdNN2UnOKm5bcRLprf+UZ5pHIj6GYAIxCj1B/Mu3n6U/2saF/BDQtvoDvZzazmWfKbKY90Mc3EiokUnAIeHjo6Hh6u52JoBkEziKEZKBR7x/bSk+phYdtCHM9hU/cmWipa6Ep2MalqEtOrp5MrJqk1FLqdBKsCZUQh24WW7UTVzwelST5lK4ZCR8ODsfdQkVa0bLfvKB1FhSagabr/t6H57u4CYxQC2rX0HrRwozyFo1tQdfMEhI5shvAkiE4SabJVhQrWi6GgAuUW0NLdEGtFGcHxBuaASTvoXeCh0Mf3P0AFjr+MgqnTD+GvTz7O8cfOgGQnVLb5bSOcctppXPnd73LeZz+L4ziMDA/QMKEWDY/Hn1rDNdf+gP2fvC2hZU4e2m+ABbeCFUFpJlrfRmieL+2UnZHnxIqIe75mynUD9G5ExVr9lKY5tPwYBGvADMlAbTEpAzqA9vq1cMJVUDWNomswktQIh+VvzDQ138eiiOcpdF2jsjLA7t1jdHcnmTOnlWDQYNeuEW6/fSM33LCQSMQil7NpaqrAsnSyWZuPPhpi9uwWdP9vatOmbo46qp5IxPLNKHWKRdfvR+jk8y7BoIHjeNi2Ryiq4+KQLKSpCEYJGBadY/38/u1nuerkCwlZQZTyM9oYFq4fXpIqZCg4NtXhCu557Y98/7SvH9SHPfLQw/nL6v9Eb4wwsLeXyy+6hCWfOYvXX32N2spqrrvh+9Qf1UZToIaTjp3FE399gjlz5/K3p5/hyxcs5dE//YnPn39+uX9XdF0Krsu1L77IdQsWcGhtLWHLOuiZytk2u0dHCZkmWcdh5YYN3LBwIYfU1LAnHqc7maSlooKwZZX7rLOamxnKZlmxYQP3LlnCcDZLbyrF3NZWdE0rU1MeAr7/Cbb/r0//Z+D6nzHX/6DJCig0NyuNaboPTrkbTdOhbxOkOtHMMBqONNYnfk/iUcwQmBG0YkpeChoCrEvGV9l+6bwtXAFWBM3JAQgQnzADbfMKaQRPuFoazeyQxKfoJsXmuTy65RkOq28jYFgc03QIw+k4D258nNFskqydZ+VLv6EvOURttJpfb36K9R1bGUiPYhkWuqbxh7fXUhOu4LdbnmFmy2HURColDZPnEbKCXLH4y2TtPHlb8iAncimKrs37vbtw/MZLKUVttIZVr/6OhmgETQuJw3Nui8Q7G9W+y3MnNNwqcbL4L0hnP/RfKoAaAOcAYO13+s0GcWxWrpTrv1RiZb0kZDdKWqXGe8Bs8us48G1oYHsa3ckk0UCA4VyO4xobqQgG2RuPs2zNGnaNjJTTKpX2sl0XVyk84KrnniNZKGB7HmHLYiCdJmSa3LNkCZMqK6kKBik4DsPZ7EHPiwI6RkYYymTwlCq/s+siEZKFAt2JBI0xk/qYTixsCmj1PLT9+2HTJnxKGM1x0BxHgk8vvxySSVkGDNdBu/ZaNNvm9Wef5f3Nm3nnjTeYUFvL15YvF1axIHGjv/v1r+navp1bb7qJ63/0I0G3V18N0ajk0jVC5HIa/f1yDwsFrQyEPU+jt1cjmdRIpTRsW+PyywVEz50LsZiMcG/cqJFKSeam/v7xjoltw86dYl7V2CiHHhgQXLZnj8Yll2hkMuIQbRgaoZDGokVKBhkOHCx0PWESE+nxlEf5InQcMDBn6JKrOFcod2gOmqqi43WAxMiGAuPPjkgXxh+l0idg4jkOxXSaaGOjAGv/d606/HBJoZTNYmcy5IaG8FyXcG0tZjiMWygw/MEHKM/DikbJdHez5cc/BsAMh8kND+MWCkTq6nALBYbefpt0VxfKdRl65x3yIyPUzZhBrr+fTHe3pGHKjbcVWm09VFShpZOQywjYLfpGL8Ui7PlInqdAEKrqfBpZCdjOZ+GPP5cn9l8vhZp6+eECAWidBskxAeEv/w2OOA7qmuCQY2BCI9gF6Ngux9R1AZV7P6HEmkVrm/GcIn3bX0V5DtHaRpTn0Lf9Vex8sszWSYofSb+mmxbRqIuhOei6i51LiMlWLkHPBy9i5xI0HDYPO5/2gYZR/u3C1c1ousnLL77Au29vYcuWzTTU1/H1b3wTUknsoUFW3nkXT/zlL+x97x1efPpvfPXr32Covw8CAbyeTunIa5RTNClAaUoGRi0DzTRRo8OQiKNyWbmPSuG9/hIk4qA8McRKxMXhOhbDXfcUqpBHb52MVlOLFo3i4lIopAgGK/nUp1bheS4vvHAtxWKaaLQWpST9USBQgW1nym7MgUCErq6NOE4e17Nx3CLgMTa2x19foLp6EroewDAsTHNczZHLxSkW5bkXcOrgODl6et5CKQ9bM1iladyKAOScpuFp4pDtAEOaRgFxff4uEPLXg3Tq0sCViAlVicXeqGn0I+ZUQU2TGFtNI2+FsMMV7AYKmkZO02gHUppGFxKjmwWMokMxkcdzJBZe13WcnBiDlvIUmyETK2xJrujeLo447Ag2vraRu1fdzdeWfY0/ffNP2BmbWEMFTtHj9oceYvdonFt/80dcTKyIhW7oZWDtFl3snC2ZQOCgWFrd0DHCxn/BYYaho5ui1nCLeZTyyIxKI1gC1mgQrm7CzmUwA2Fcpyh5xWuafWd1l8xoD8VsnMxobxlI1009AV0XJZem6dj5FH0fvUohPYZybGEyPa/s8l5Z0QRm2Femyb+IGaG1spXFbYu5d9O9HNd4HNFAlFggRiwQoyZUI/dSNwnoAd7uexvXEya2lCGk9BabXD2ZOS1z2DWyi6ufv5q5rXOZXD2ZxZMX05fqw1EOIcNAz/VJHuNcv5xbthNC9WhvXYqW3S9xvCD9KDsp27avlBRQRgjcNNpbF0N6N9rQG2CnpW1y8/D2FWjZfegoAeOeK+3dhLnyU71zpdRjRqQ8QHACmnJlUEwDrZwHOSjvX7eI5hakTf074AwKimnZ7rlQTMrcyYu3DIpLL/02kyZPobu7m09/+tMccvhRUDVF3kOe55tvjb9bCsUCZ3/mcxx7whyOO2kBDz70CE8/+Rfp4w1slawo/3Jv2ZhLUw5MXADKkT5l+w3yfKHQs4NoiT3w4jLxjJkwAy3djaYcNNcWg671V0Jin9zvYJX0OQMVsOh2ePdnoBnYKkgoZGIYOkqBbXu4rseVVz7P0FAWXdewbUVvb4rjjmtkZCSL63o0N1dw/fULaGyM0tQUK6cDvfTSZwFoaIiyfPlakskCjuMxb56A8o0bu+jqSpJOF/nOd9ayf38C2/Z4660ebNvz/64UfelBVr78G3J2gQ/7O+hJDDKaS/DVE88mZAXFsFHTsQyLeC7JUDpeNlQdTI8SNANcd+rX0DSNrJ3Hdm0c//l2lWJG86HUhiro3N/JScedwDtvv82d99zFN7/2DSaa1VRWVfLjB37KTTfexIK581n/8itMO+ww9iaTYizqPypbensZzGSY3dLCig0byDsOOdsmXSgIW+042J7HhEiEhmiUVW+8UTYyzToOIdNkTmsrYcsia9tc+fzzHNfYSNiy6EokeHrHDhKFAp2JBI2xGMvWrKHDz+7hKkUEMB0br1jkn9P/3Omf4PofNblFGV0NVEDFRHjlcnGPbp7rjyoCmoVqmCWMdKRBTLw0TRpJNwc9bwpjffhSOOl6sCokdcDwh747od/qmxE5zhmPiHFDzaECVK0orL9aGnZN58qTL0TTdCpDVs5LQQABAABJREFUYjgWC4ZZ37GVX29+ikwhy6zWI6iLVANw0xnfYu23HuCIhinc9tJvGMkkuHLxlxnLpbjq5AuZOfFw7njltxScIkOZOLe++Ct6koMopbjj1d+ilKIqXIGmaRzTfAgAQ+kxMsUcjudy3alfQ9dMkeHm3oLwif59G5G0R2Yz6BEwasFLA7qsq70W7B6EkdYPANY+a213lqVR2D1+zuFVAqojC6UcIA7ROqg8OIMyVw6GprGorY2KQICmWIyqUIj6aLTcUPWl07iex+6xsbIJlWUYLFuzhoFMhstmz2YgnWZTdzeO59FUUUHecbjuxRexPQ/b84jn80QsC89/cRZ8Se/0ujrqo1Eyts1la9fS4ZthVYVCTKuoQC8WBSiX6GDPE2fmGTMEndq2fPJ5AddXXSXM6qZNYNvCZt98M+RytE2SNEGWpnFlXx8b3nxTXKN6e2HjRtHY5nJ87d/+jVc3bGAkHodp08oo1/PZ5spKMZi+8krJL1xRIYfu6BC8FQ4LOTd7tpxie7u4NF92mZSPRKT8j34kLtCjo3JpB+Ywdhw57c5Oqe+aa6CnR4D3nj1yLGFwGEfoJdZa18XVuUvcawkFYLo/2NjRLcDZ0EXSWwLGrieGVK7vEh2wZDv+o+Z3fAmY4/Le0uSNd6F1wyRUVzcuDXecMlA1QiGsaBQzHCZYXY2bz5Pcv5+R99/HDIdpmDVLJKG9vWT7+uh87jk00yQ3OMgHP/+5bOvqYuuttxKqrSU7OIim69TPmkW4ro62M8+k7thjyfb3c+RFF2EEg2T7+uR+jA5Cx8fCUIcicj2du2FsBKqqBQwrBek45LKQGBUgjIJgCL68XOaaBqt/BcP9UFEjdek6jA7Dl74Nc06VG7F3hzyTugGHHSv7+nJWph0JmoZuWmJYpZs0Hf0v6IaJU8hi5zOEqyWFk4ZCNwPY+RSZ0b7yzyAdXwHNwx1b0JQ6wGX6LQzTIlLTJLJn16bMbOs6mq4zqXUifdtfATvDxV+9gPY33oBgkPeHR+nt6WHxwgVo0RgnzZlDS0WMdze9CVYALRrD6+mUAQnX76xrGjiOpGcqFvC696NFY+Mu0l370KwAxlmfQ6uqRguG0Nqm4W1cjxaNodJpjCWfQQsE8Xq7xd0dIBCioqIZ286yZs0yEol9nHLKzaRS/WQyg76CxMBxcgcYVInrfTRaz/PPX4Xj5DBNkZtaVoRotIF165b7BlU5PM+hWEySyQyhlEM0Wo9phnHdIp7nopTCsiJMmjSfYjFFIdnDz5SiGgHGKcSEKgkMI7mIlyNuzof4f1rvMR7QE0PANUjKpRRiWDXVL3M74wZWb2kaAaBL0xgAxvxtMWAI+Ln/XbddMgMZ1n5nLSM7R9AD0sXJJ/J4vvmck3ewszaTWiehaRpLP7eURHeCw1oOY8qUKTR9vYnqKdWYEZP7fnEff3vmbzz55yexjDCaZWBnbTzXo5gqYmdtjKBBICoDbiWAXUyKwZUR1LCzcZyCP9Duv5s0TfMl4k7Z/DFS2+QPvng4hSzFbAKASN1EgrFarFCMlhlnUN1yFMpzcew8ocp6dN0iUtOMUor+j9ZjhaKYwQhoBppuHJBLfAuuK51oYdGl/6ChYehGGVzrmk7eybO5ZzPnH3k+9376XqpCVbiey66RXSxbswzLsEgX0/Rn+sk6WU6aeBKJQgJTEwbMMiwcT4ZSHF8RN5Qd4rLZl9GV6CpnLZnTMgdTM4mYQXGHPvJ7YFUKMK9fCB/fNZ62Cd/o1IyCVS2mVkffKAZaoQZxkT7pITHAqp4BuV7Yulyezln3QHS6XHP9fOlLaRoMbYRsJ9TNlmOFG/2nGf89qwvILST9Rj0wbnRlBMSMtZTaSbnjhliePZ6FBE0Ar2aMm7d6Nr/8xc/o3vU+Tj7DQF8vu3d8LPvHO2R/3WL9i+s475RjwMkTjUTY+ubrfPDKX9j21O28/Oxqjjv6SLmm5nnifN3TLqlEdQuyA9LnzI3Iuf7L/WK6iibGYmZYTFYz/VBMCxBPdsqghBkREG2G5Vziu30g3iH9yn+5H/zhk3zeYefOES65ZA379yewLJ3HHtvObbe1EwgYGIbGwoVtVFQEMQyNzs4E6XQRw9C44orn2blzhGg0QE9PkgULJhEKmUSjFvfcs4RYLMCmTd3s2TPGli29HHdcIxMmRNB1jaef3iHZS3SdefNaMU1RbwUjOo/6BFDIDDCr5QgaKmo5vuUI6qLV5QELTdPY3r+bvF1kwM9QUjJUBSg6Nqte+S1BM4CGTjyXBGTwsHN0gDGzgK7rfPFL/4pSMOO445gyZTIffvAhQTPA0nPP5y9Pr+aNN9/gJz/9Kd09PXx20SIcz+PNri5SxSJzW1uJWBZLpk3j3iVL0DUN23W59Nln2TEygu267IvHufL559kbj/PT005j6dFHc8PChSTyeXKOw7effZa84xCxLFaedhrRQIDBdJoFkyax57vfpTEaZU5LC3du3Mjitjam1tbiKkUIhV7Mg+OguQ7qnwD7f+r0T3D9j5o0XRotJytSm9MflPRQaBBpRNMDMkqoPHG07t0ojZpbkJFIIwypbmnIPvUr381Qh/VXSR7lQEy2hf1ErbYwUygPxnZD7xvSwJ58tzSoCmKBECFD0mlt691J3i5y33nf44dnfIsJsRo+c/TJWIaB47oUnCIfD+5lKD3GMc3TeXTLM8SCYY5vOZxoIMRoVkYBNTR+s/lvPL/jTX616Sk0TeOrJ55NLBBmIDnCB327y5KbRzb9lbFcCkPTJdYKVwBw6DjEBTINwz8Bd1iWs5tE+q1XIC+8gHwPzfIZ7RIa8iP2zAawJgtgd/ohvACm7YXGn4GXA3snOKOAJfUrW+ox68GNg9ONAlLFIslCgQEfSOdsm1nNzXxw6aUs8POK3unnE17Z3o6rFI9t385t7e1Mqa6mL52mORZjY1cXBX908fLZs+lPp7n02WeJBAIMZzJlljpiWRi6TrpYpC8tTNHVc+fSEI0SDQS48rnnCCmFtm+fxMh2dAj4HR4WMBOLiSOzrkvMaywmFPHEiYJ6GxpkWzgMsRgZzyPe4bP/us6fZ8zg+IoKcF3iP/4xvfX1AqKvuIKnHnmEumiU2oA/8FNTI40xAoz9KrnmGskvDAKW6+sFQHd2isz7U58SwNzQAN3d8L3vQV2dlD/0ULj+ehgclNPXNLjxxvEsTvE4vPCCHKumRkynJ02ScitXythCLg9K1/+OHtJ9pjkoaZVKky9yYHrrOAutGHd+th2JmS3a8njp2sHstabJ91zB90pAwFUiPZ6aCXk0dcPADIXK++mmiRWLYafTJPftY/jdd9ENAysWI9bSQu2MGSjXBU3DCIWINTdTN2MGJz/0kLg1NzTQOGcOmmmiWxaNc+YQqK6m/vjjy2ARP47bCAaJNDby8aOP4ubzvku0K/l8pxwGez4eZ5EPnQF19eJr4NiQSUKsWtjrkX65mEBIOibD/bDrQxkoWHox1NbLDUwnoLIG6iYc8CMomHaEbPvTL+R4xYIcowTsAc0MiIOwHyfqeR5GIEwgUknVxMNpPuoUQPNBpA8mHLsMsvGTIzXPOB1QTJxxBkee8R0mHnM6aDqaJu7EmhlAKUUuOYjyHNKZDKl0luaj/gU7l+Nvz7/G8TOPA8emxdToGxzk408+Adtmd0cHe0ZGOaypUZjITBq9dbJ4FRTyfudEQ7MCaBWVwkQ3NOO9+ZoA52QcLRbD69onIRyAKuTRjjga/YxzJHZ10mQ//kFHb2kThlIpdETqWkqLtHHjnQSDlVRXtxEIRFm79jJSqT5AlZ2gzzzz5wQCFWzefD+trfMQtl/qicWaqas7lIULb8CyIgQCMXTdJBCIEY3Wk8kMMza2D103uO66H3LEEccRidTw/vsfUCiksKwIphHj2ssuY8ahhzJ7xgy+/2//RiMCclO7dnHa/Pk8dthhnHLSSby/fTtZYDbCWJeU81P9+a3+fC9wnbTm3Is4RUeQ/MMawmiHEefofmSo9Ci/zj4E36R6U5xx1xlUTKxAN3WUp4g1xcqybLtgY0Ut6hvqOWXhKby2+TWqWqsYzAyyt2Mvh007DM3QuPe+e3ls9WP89c9/pTJSSe/bvShHCXNt6WSGMgy8PyBA2U+vmR6UNiIQC3DWz89C00RCbwQjKM8RJ3VfvVBupqwQumGhlRUXL/mSfAt0HTsbp/fDl/Gcokh0NQ3dkJzfhhnADEUp5e1tOHwBumHi+cys59rUTx9Pf2YGIn774OIUcyjPKZ9HyAxRcAroCKO3uG0xITPE8rXL2Tmyk7yTZyg7xHXzr0PXdCoCFdRH6gmbYSzDoipYhWVYWLrkGNc1HQ2NeC5OZ6KT+ZPmM6V6Cl3JroOyliSLSfoyw6hIK+QHUW4W7a1l0nc66gfjaZv0EGy9DNJ7wKqEujkQnSwgeqhd1g9vFOAdqIZdP4PDvyfLemAcBGt+WFnJoTrcDFMuhBPuRwbxYxBpGW/CSik9fWk0ekAY6HiHL+kvZS4xZFu6x0//1Cug2o9Xxs1LhhK3KPt7tmzX/XRUni3HKrtY6wekkPKBj3Ih0wP1x0F+ROo0IwKiPRtaFkK0EZJdsPFmuV47A69cJsfu3SjLVgQijVB7hOwTa5H3WtUUn+jxyZloo1yzGRLw/c69ss0TIO+5Is2eNKmSVatOJxq1cF3FmjVf4oc/XIRhaKTTRXbuHGHZsjVkMjbhsEVVVYiVK9t5+ukd9PenCQQMFi5sY9GiSWza1E11dYh4PE9HxygzZjTQ1ZXkmGMaGBjIcOWVz9Pfn+bxxy/gxhsXYUgTieN49PWl0dHLBFBnfICexBAf9O2m4BSJBsLknSJ5pwgIA91cOYETWo/gle/8khtO/wbZYoEP+nZhGSbfO+UruJ7LBz4It12bnFOkuWoCsw8/jrbjDuOFF14ga+fZt3cv+/bt58gjj6TgFEmPJqkKV6KAO2+7jSWnn86UqVOxDIP5PrmxfO1aso5Dc2UlA5mMEDbxOLNbWuhNpaTXaxgsmDSJ+zZtIhYI8MtzzmFKdTX10Wg5JWd3MkksECBqWZi6TmMshuN5pItF9sfjKGDVGWfwuSOPLL2VCWg6BIKirtI0lOvIe6xQQOXzKPt/Xk5u5ThSr+P8nxf+f8j0z5jrf9RUSELPBmhZLKDZilEeEbUzSGc1Jg3xxpvh5LtkXbZf0jjNuQEqJkuMdaZX1s2+QRrh2EQZUUzskTzKFa2SQ/mk70P1IYhZk+mnpjKgfzN24xxsI0h3fIiB9AhHN00nXcgwIVpDpphDxEKKjuEuZjQfWh7Btl0bXRMAUYpbM3Qdx/O489Xfcfmif2Usm+RXfgx2dbiSVa/+lm/NOY+QFSCZz/C7rc/yzTnn8Xb3R0yuaS7HerdWVWFqHpq9S3IJ110H2Tcg9wY03g9OL4z8FOp+AFpM2GcvCUaDNPjoYO8DLexvS0jKJOUPNKBg8Dqp12yCgcuh6VciFx+5ExpWCTuuCgK2NYukU4FCTCIS+TxRP/dwaX6gpOfydeu4dsEC2ior2djVJfIcn0Fz/HjD0j66rnPxM8/w2PbtfLx8OYamkbVtVra384OFC5leU8OesTG6k0nmtLQQNE36UymaKiqwPY+aYhGtvV3QaXX1uJlUKWBZ/7txMh+kX3LZZTz75pv0Dw5SV1NDhWXxwpNP8vllyyR1lusybdo07rvtNqZMn87+jRu54PvfJ5fLoTsO9bkcd/75z8ycMUNevpkMvPcemUWfxlNaOYTWx4Mlry2uuAKOP15AdUvLONHue6WVTznvK/BK+Y3jccH1FRVymVu3wsyZsq1YLOU1/i7PPfc0XV37eeWVdznxxJnkcjB79hSCwSDhUAg8jx9c/32+eMEFvgRZ0hz9x18f5xsXX8xfH3+c8z772YPvWSnwc1cnVEZhQs14zHYiLQx2MHAwgFaMM5YgzLV/U2zXwc5kMMNhKer/VgLyTAbffZdwTQ25oSEijY1kBwaINDWR7e+nbsYM9ECgbHim+TfW8zzf/AjeXrGCE264AbdYxE6nCdXWlv9G3XweMxrlrZtvpvO555hyzjmc+MMfYlkmWi4r1xkMH3DefgdxdExYekM69uSyAsZHSzHU/yqAOxAEK8B3r7uep//2N/b39vHuxnZmtjbD2BBTzr1Afot8Fqpq+cH3ruaLpyxkJJ7gtC9+uQzUs6kEe7p72b97OxXhAOGqelyniGHKoEf/x6/TdORidMMkM9pbjju1cyki1U1gmHI/lKL/k3aajlhYZgWzI71Y4ShmIIzn2Fx+1bWsXfcc/f391NbWEAlarF3zFP/6b1/H8xRoOlOnTua+O++i7YMt6Gecy5+feJKf3nWn77EA13/3ci78t6+gTBPNsVH5nDDSG19DP+McNNMUdjpWCRUVkl/ZdeQB958V5Sm8F55Bn7sIYmJ0pJkSu69sW54n04JMWkamikXskIkydFzXpqdnM83Ns8hmh9iwYQXz519HV9cbdHW9wTnn/BJNM3HdPN3dm6mqmkxlZasvdjEZG9uLZYWJROrKQDubHcG2M1RVTWZsbC/BoABsTTOIx/fxy19ewTnnfJ/PfOYr/OY397Bo0Vkkk138eOUjuJ7ih/ffT1rTyPf309jUxJVAz6mn8qmvfpXtF13E7Mcf54+3384zW7ZQjeQTthGQ7DAOqtuAUWACkAeuBa4HpjHunFEaF3MYj9fWkNzHlcCkbBGv6OLZHvl4nnBNGCNssPyy5Tz3wnP0D/RTV1tHLBZj26ZtdPZ0cvGyi+na1UWsIcaPfvgjzj79bHa8u4OTzj6Jya2TIQ2xhhjhWJi/Pfw3Nt6xkUU/XERVWxUokYE7WYfUYAoraBGIBUj1pwjGglRNqUDTFMVskqHdm2k+6hScQhbdFHBcipVGyd+4U8ixa8PvqGycTsuM08uAUCFqJc03t3OLOYxApCwFLz3zeK7EaQejBCJVcrc0XbxeSp4J5XjuXoxAhGCshqxboOAU2NyzmUmVk+hKdtFW2ca0mmkUvAIj2RE8z2Ni5UT2ju2lqaKJgBFgKDNEzs4xrWYajucwkhuhMdpIx1gHK9tX8oOFP2By1WSGs8M0RBswNIO8k+fK569kXus8zj/yfKKBKGFcrNGtwiBruvRzlA162O/PiAyeZ6ZC06dg9sPy/i9H8DuQHwUz6Pe3qgQkl02+kDpyA6IKzHZCpBXCEwUslswoS74JmW4B8OFm2df/jbCzfr5jKBvMljX/Jf14adl/OD1P+hepLgHK4QnSh9P897db8FNE+b9NYo/06fSgbEt3Q9V0qcO1/XN0yyF/aKYAf/CJFCXHyY8KWF5/NXz8R1FAnnwnZIehepp/gjo4GV8JiTDYr18LJ14P1VP9gQMlpM7xl8l5pDph8wo44RqylceSSNr09qYYHMwwc2YTiUSBqqogkYiFbXt4nsfYWJ5MpkhrayXBoEmx6NLXl6KrK0lLSyW33dbOjTcuIhw2icfzDA5mmDOnhbGxPK7rUVcXwbJ0+vszvPBCB2+91cPPf34WpqmTTBYIh02Uktjs+SdPRNcRg17DJJFLk8xn+O3WNXxr7nlUhysp2AVqIpVoiGltwSkylB7j0S3P8K05n6OxopbRbIJYMMLOof3c+6Of8tpLrzI6NEJ1TTWuqfHGu5t54a31PHnXbxkZGQZNY/k13+WCL1xANBDmom98nZfXv0LMCjNv3nxuv+suqmtqDvLU2T0yQl8mw7xJk3ijs5MvrF7N5488kgfPPlvCA5ViIJOhIRot9yff7O7m2MZGooEArucxks1SH42WvX1uP/10RrJZuvy+5Fg+T00oRMg0UYhS8u2+Pj41aZKYIirfSBTK7xzV34tWUYVWV4/2dzHg/1cn5TiokUG8DS+jLzoNra4B7f8BMd7/NDT7XzUV0zI6aZiAJo1yMSEjlUbJ7ckA/AYbZPvGmyXG+vClcMbDAp433gwdT8NX3xeTif7NEJskI5gTZkjjaljCVNsZ/5OFdBc0zRFJkJsnbcR4t2cHteFKRnNJjmmaTtAM4LgOpmHgKSWNjeczZ5rOUGaMaCBMxArRlRjgN5v/xkUnnUt9rEbMWjSdgGkxmk1QF6mi4Ni8unsLcycfQ02kitFsggv/cCPzphzHt+d/gfpYDV1jAwxn4yycfKhI5by0MNRaKZb1QJubA+1vSmVD4A6C7kuttKC8+HJvQWS2sNSD10HdNT4QD0kZexdYU6H/Mqi9GgJT5QVOyZQqQNY16RiL05lIMH/SJDRgIJMhFggQsSz2JxLc1t7OTYsWMbW6utxI2p7Hpu5uZjY1MZTNcscbb3D76acT8UcSdSDnumzu7mZWczNhy+KytWuZ3dLCp6ZPp6Wigo1dXRxdX4+h60Qti7zr0p9KsaK9nT9++tMYqZTIX0uOX74zdBnZ+nHXeB5ksxAKCXo1DJGluq7MDUNiq0vJhLu65DNnjix3dMCKFfCDH8Ahh0hQdOm4ug6OQyZQjW0LuA4E5JAwjvGVEnx/441w991yWjCuon7jDZF1NzdL1boup9vTIxLxa66Bu+6CxYvhvPPktEuHf/HF1/nDH6axadNCHnzwKWbPnomhe8yePZWnfvsHZs6fOw6AS2y0obNv3z6+/JWvoJTi+u9dy3nn+eC6BKpLU2kff7+DpgPqk4B7R2Tnpf1LHSTALhbxHAflOBRTKQKVleiBAPnBQcxYDCsSYfOPfsSRF13Ex48+ypEXXUR+dJRQXR35kRHqZ80qm5PNvPpq0HVyQ0Pkx8ZoOP54lOOgmSZ2Oo2m6xjhsIAzXcezbYxAgFRXF/mhIeqPPx6nUCAci6IN9QlQXnIBNLaI+ZhlQVWNP1ijSpbtZdMx/vAAbHoFFp8FX1wmHV3d4PXXXmPa1GksPP10nnrsP5k54xjwFFOOPIqn/vR7Zh5/wjgwP/tLcgwQqXhNPXf+x+9Yv3kLv/jJt2k68mScQhankBHgrOsUM3EC4Uqy8X7MYJhAtJaSolX6sy5usYDn2VjhqnGDJ/+3KDkqe67NwCftNB6xEN2wyIz20PnOM1Q2TmfC1BMY3vs2Lcd+yu9saGjxUbRITDodhlFmkJWmgVNEMwOUXLxVTyeMDKFNmoK3cT36vJPF8GziJMikpFOx5LOQScv2M84W86p8Di1aIU7WL65Bn7sYavwBEk0XIKWJbNfGZXRsF+3tK1m06Eaqq6fyzDPfYvv2xzj66KWcfPIteF6RmppDGRvbzYYNK5g37xpCoZqyVHzRoh9SVTUJTTNQykEp6OnZTCzWjGWFiUbrcd0iqVQfmzbdy5Il96BpMDrawVtv/YzLL3+en/3sBj796a+RyaSZMuVwPu7uhspKdIRhVkDT4CDGIYewf3QUTBNDKaY3N/NiezuHHnIINuLXv9//zAGCwDXAj/1tJuOAOQOsREzRokATIj03EYCugIK/HEkV8FwZzCwJm5SryAxnsMIWgWjAN/oUCbdmavRs6uH3p/+eGRfO4OwHz0a5Cqfo4BZdXv3hq0w8cSJHfv5IAtEAylMUEgXMsInneJi+kVMJYBtBA8+RARTd1LEi4o7c88GLJPp2cOjJXxcZdlAcmJWml+XipZ6YcsUbQPPDf5Tys0EohVPMYpgBPMeWZz4Ywy5kZLCppgm3WEAzTHRDTMzE3OxErFAFxWwSp5DBCscY2v0W9YfMxs6lidROJOMW0DQNx3XY0ruF6lA1teFasnaWle0ruWHhDUyrEUA2kB4gY2fK4DlqRZkQmSDMu2sTMSN0p7p5ac9LHFJ7CHNb55al5oPpQSZXTyZVTDGQGeC29tu4bv51zKw/HN1OoZWk06W46rH3hUXO9kD9AsCTfpVVIWAThLEtjgmLG6yFd66GWXdDYQSyXQKit6+UXMnhZgGTxVEojELNTLATAsadjDDeelCO4+aF9fYkTh1D3Ocppg4A2L4cXLdkvRH0R5ktxoG2OrisZkgfLVg5PsrsFqVcySjt/+i95OR8hUJpUAHpZwarxkGw7QPlVKcQMotXjUvB1QHvNc0YB+nZITn3SINs63gGjvwS373qOp5e8yz7u3p498U/MjP/NzjjYQprv8k1dz7B83tjBGomM336kYTDX+Smm07gy18eH7DO5XLs27eXV175gJ//fDv33LOEwcEMt93Wzg03LOSQQ2rwPEini7iuxwcfDDJv3iTefLOLGTMaSKdtqqqChMMmpqnT0THGqlUbuf3204lELCxLx3XFHDWfd8QmJGAQiECmmCNoWHgoLN0k5xQYTI0SCYRoiNbQnRjiV5v/Wu7L6prG7a/8lvUdW3n8a3dQEYzyYX8HEyLV1EQruXv9H/jBaV/H1A2GM3He3P8+H/Z1cPHcz1Efk3ea53duDE3MC4fSo2SKeaJWkLrYBFLFImFT2ouC4+AqRSwQYM/YGCvb27lx4ULClsWESAQNIXj6MxlW+AZm3ckkTbEYU6urybsufakU92zaxKozzpDjK8VTn3zCadOmsXdsjBkNDdKX9IkhTymyts17/f3MnzSJSk1DjQ2jkgn0ljaUaUEqIR06Bd6Lz2CccwFaSXn3/+WkCgXcZx5DbX8P7eiZGOcuRfPd8P93nv5paPa/bNKkocQH0SWQnOmXRholo40vL4fckIDuaAuc/hCc/xyccq9UE2mUeOvPPCnsd35YJEGZHpg4X+Jp1l8ho6IoMfaI1EuD2rJQXgx2BvQAuqZzQuuRTK5t5oTWI9gxuI+exCCGbtAVH+DfX3iEnsQgBdcmkUuiUMQCEYKGODROiFQzq/UI/vD2WnRNI55Lccerv6U7PkC2mKcrPsAdr/6W4yYeTlW4kqH0GGErxJ/+bQXfnHMeDbFaAIazcWrLqUxS4MUBXYCzvRP6l/uy7YKYkHlJxC3cfzE5+2H4RwKwlQv9y8Dphsh8eYHoFdDwU7Cm+ZJycQLHOgSwRCZutUndygany/+ew1EenYkE9dEoG7u62JdI8KP16xlIp7F0nZBpsritjahp4njjLytd01jY1kbEsrjnzTe5au5cAobBxq4u0sUiHfE4y9euZVJVFSHTxHZdVp1xBp/3ZTrpYpEFkyYxnMtx7YsvkioWsXSdsGXx9I4d5G1bDLv6+0U/XZpK1DGU7LTleywmyxV+bJnjCDoFWTZNqKoSUNXTIzru5cth715BvA8/LMDa8wT1uq7ovZNJyOelH2CMHzKXG2eu9+0T8ByLwb33SlsNUnV7uzDQc+bI4WN+OOqWLbK9pUUOXVsrwPyCC2Tfri5YtkzKnHbaYm66qRXXlXKRCFRV+B2YaAhSmXEzs3QWDB3PdvjWV77GA3ffLWlOlCcMdb4oHZh8UZYPdBhPH2w6VwbWpfUaIju3HZGIl1a6rriKl54N0yQ0YUJZ8mxVVmIERJ486/vfx6qq4sSbbsKqrKTu2GPJj4wQqq3lrVtuITc8zMyrr8aKxTBDIayKCiYccwzpri6Gtm0DpTDDYXEYd10KqZSw1uEwmq5T0dZGzdFHM7RtG7rhD1glRuEL34KGibI8oREqqqUzVyyOKyJScRjqF+b1C9+E7/4YLvimSLrjY5DLsPi4Y2id2MT4xfojJRqQSkpdLzwBh80Q+bhuwr5dUFULgSC//uOf+cY3LqL5qFMwTEtkrsEwvdtfwc6lsEIxsvF+ItVNBGJ1fl9zHDyjGZihCIFItYwvubbIZ/H7prqBU8hh5zPUTpmJnc/Q88GLWOEYbbM+Q/NRpxCI1tByzOn+BSgcOwfVdSKZswJi6KM8vK69EB8B3UCNDOKueRwScfRJU9GOninlJ03B29wukm7DwNvwMmr7e1DI47W/jNYyCVIpMUMLhVGZFKSSaC2TUOmkGJ+5Ei6kMmmR0AOessuS8A0bVuB5DosW3cjRRy9l0aKbqKxspbp6OradxTTDnHnmzwiFaohG68sx2KYpDrnFYpJ0uh/HyTFx4kmk031EIvV4nouuBwgGK/j0p+9F1w0ymWF03WLJknvQdZPm5uNRyuOTTz6kuqaGu1es4JwTT+TcRYv488svkwNu7+piYnMzBdPE9tvGqW1t7OnsZBfwHYSpDgL1SNx1Gomx9oArEGA9zd/eCyz2yzcyzl7bwE7gYr/MRhAiLuuUwTNA79ZeYg0xAcdKUcwW8VyPdF+aYrJIy9wWSaX0wJn+oI3CClsEK4Kc+cCZzPjyDHRDFxdwQ8Mu2OiWTiAmndDsSFZevUGj7CBuBAx0Uyfdn0UBzUedwqEnfx0zEPHdvxNkRnvBkzR9Zdl3yRNA03AKWVy74JftATwZaMlnMIIRGUzSDexcCjMYJjvWjxEIohsWfdtfxSlkCdc0M7T7LQCG92zBDIYP8iOI1DQTL6RYvnY5qUIKTdNYMGkBo7lR6qP1rGxfyWPbH2PVxlVkbZG010frGc4Oc/en7mZK9RQmxiaiazo5O8c7fe+QLCapj9TzteO+xtzWuWzq3sSukV0UnAIBM4CrXGKBGHduvJPHtj/GHRvvEKMxfIY31yfAGqBmhgDkmhngpCDXL/fHTsJbyyCzj+9+5xtMOeZktNpjee/9T+DIa0CzKGy7jctu/i2HzjqLGZd+wL9dfoeA8nATU47/DIf/y3eZOecUZs4/i/98Yg0E62B0i0ieNRMCtZT7cbrlA2DPl3qXmnu/rUzs901pgyINP5DBdovjZIofk06g0ucObIjvkW1GwGe63YOBMP46J0cpFSue7zkTiAkw7t04LjPXNFE2Llwp+768HOK7xvc/UMVg56SPWT1NQHkxA0deCK7NFxZPo/3pR5k8uQ0qJ8EZvwKl+P7zYbTaQ9j5Xjtbt7zNT35yG9dfP5+pUyfyxhtv8dprm9i4cQtf//o3Of30JfzHf+zg6ad3YJriKn7ddfMJhYRp3rt3jGuvfRFN05g/fxKmqbFoURuDgxluvnk9vb0pDENAdHd3khUrxMfj8svX0dExxuBgho6OMTZv7qGvL8Vll60Vg10zQMG1Jd0WiogZpK2mib7kEFk7T22kkpkth/GHt9eSLmSxDIvvnfIV1n7rAcJWiHte+yNHNExhYlU9ESvEsrnnEzQD9CWHeXDj48yceDhXnXwhNZFKGYPWdAZSo2zr3UnRtVFKUR2upK2miYpwTH5qpejwvXp60+my587K9nae3rFD3L7DYRxf3RY0zbLse2V7OxMiEe7YuBEFJAsF7ti4sSwfv/L55+lPp7nw2GNpjEZZ1NbGSC7Hlc8/T6pQYI9/XE8pmmIx2js75fcPBNHbpvqkjIuKj0I6hRYIoC86DXTt/76U2zCEsT56Jvqi0yXLzX+D6Z/g+h82KYjvFBOIxF4IVMFpv5DYaeVJQxishNN+JgYdyqM8Kts8R2Q9Ly6TuOuawwVIWzFpCINVIjcHkYy3LJbGVCkfgPrxMvEOGHxnfCQT6IkP8m7PDgqOzVFN0xnOjImHmmExs+UwHt3yDLqmEbJCZIu+ZlfT2D/azx2v/pbjW47g+6deRMAMMJAeZX3HVh7d8gwTq+p5dMszPL/jTQbSI+VGaCg9Rl2kmknVjbjKw3YdjmmaTkWoxHP4LxGVl4Z/5A4IzwOVk9jr8ByZ918qoFoLw8htkHoMRlYKME89BlpErh38exAALyvgXWX838TD1/EhZmiLQY+BFoXQTNBMdHRmt7Rw15tvUh+Nclt7O49t305fOs2eeJyb169nQVsbjbEYOcch68eluH58i1KKez/9aSZWVHDV889TH41iaFq5kVyxYQP96TTHPvQQFYEAw9ksN69fT28qhQJ+8dZbPHDmmYzkclz67LPkHIf9V1xBRNeFQQ6HRZp9ySUCmEHmZVdRbfx7ab1lyae07HmivU4mZXnBAhgZgVWrYMqUcTRs2xLgnM8LwDYM2RaLHeTh5ThCcu/ZI9iss1PioHftEkC8e7eU6+oax/AFP5VyyRW8qUn2KxQEQEejMHWqjAekUuMGZytWyPFKjPdPfiJgvuiHB331oouYcfJCvnnpJQz19Iq8W8HdD9zPgtNP5YSTTvLvkw7TWgQcg8jGK6JS0c79Mq+Kjcv7FH6qLh0qYz6DYY+D8VK+Z+Xr3kv1UvpZtHLeaSMYRDdNCvG4AO+6OgrxOGYkghEMUj9rFtGWFmZddx0VLS0Y4TDJ/ft565ZbcLNZNMMg3NBA/fHHi1TUlwtopkmopgYrFsNzHNnn5pspjIxQP3MmxUxGgOGk6fIy9c8HOOC7Ekfw3dvlx6yqlnsVjkJtA/zuPhgbAkOT+OyqWskrn0nB6JA4indsBzS+et0NzDjxJL65YTtDU48ZZ/WnHwX1E9n45ibG+ns5+6yz/HRWwug5haIYMHVsQTNMIrUtaIaJ5hs9Kc9BeS52PuWz01754zpFkcn6Ms6+7a/ieTaGGSAYqyUYrabl2E8RiFQTrWtB002KuQQ9H74kBlK66ZtBlehxT2x7lEJrmSxx1JqGSqdQHZ+gUonyvdeiMfTjTkQ/8zywLJSuoy88VYB3MIS+8DS06Yej0km0aAx33V/BLqIyKel4tE2VwbBUUoB7QDrpamQITTNYuPAmLrtsJ+ec80t03SIWa+bMMx/ANEM4TqHcntp2lnXrLsO2s/5+NzBjxoXEYk3lsIHXX7+VVKoXw7CYNGkBjpMlmx1G1w0ikQnYdpZCIUkgEMGyohL/C2WXcgjQ1dlJ7dFHs3rrVu69/35u/OIXSQ8MMMt/5mMIm+07FZAB7kGMyAIIA30/EofdC1yKxFFfBTQDOQR4zwS+jADufX5dKb/eO4DHEGZ7ApJfN1ARwCk4dLZ3MtYxRsucForpIk5BHMOtsMRMx5pjBCoDKEdx9i/PlvhspdANnZHdI+X9112+Ds/xsHM2xVSRWIO0C4Vkge5N3YRrwhTTYmBWTBdJdibp2tiF8hShanmWnGKOwZ0by8+snUvLINKHL2PnU0RqW9ANC6eQpe+j9RQzcXTTEgO/ctlX8Dwbp5ARDOYUcZ0ikeomnEKuXMbOJ8UEsOMtqpoOpf6QOQBMmHYSTiFH/SHjMdiabpAoJLnv0/cRsSJs6t7E3vheFrYtJKAHuGHhDVw440IeOPMBYlaMfYl9LFuzjKPqj2IkN8Ilay5h99hu2jvbGcwMMn/SfIayQ7zZ/aYw1ZlBmmJNDGQGiAVj1IRraO9sZ198H6vOWMWaL63hZ2f+zH9PVUFhWBzDC8O+ms2Q2OqSqi1Q7ZtxRaBhMex6mC9c+G3a178oILA4JsZk+T6+/3gFmhFk58cf8sGGv3DntZ/x2WMPjBD/+cff8d7WN3nv3Xf54qmtwlSHmsQELd3BODouyb3FC0GIkZTfsCOx1VWTZX0pNrokrdEQcO4UINExbobmqypwC1A1Va6zmJJyIODZLUgfzvEzWQR91Y9zQNhb3yb52jwXCnHfQA0pO/yBkDrN84TUsfxMAKX+ZzEJdkpk6K9eKdsqmqVe3WTxZy+m9ciT5DqGtkFiL5lckV//6W+seOR5NCtC2ChwyCGTOPzwOt8pXOE4Hp6n+N3vHuUrX/ka999/Jk8+uZS+vjR79ozR3FxBTU0I2/aIRCzmzWtlaCjLsmVr2LFjhFSqyMBAhgULJhGNBnBdD6WgtbWS6657icHBNLfffjptbVU0N8f40Y+u4+KLT2PmzGa+/OV6NKVh6Dr5fJ7LL7uctqmTmTnzeC766tc4qnE6w9kEl666nlu/di1P/+CXnLXodP7zj38mFgwTCQQJW0GuP/UihjJjrHjp1/Qnh5lYNYHB9Ci/8rPojGQThKwgH/btZiA5gqc8BjOjHFbfhqs8XOWRyCbQ0LAMSYFn+Szy4rY2+lIpQr6c76ZFi3j8ggvIOg5v9/Zi6cJ865rGjYsWiYHZokUMZ7Ncv2ABIdOkKhhEW7eO2y+4gBNbWnjspZe4Y+NGBgcHmXbkkZx4wgl87l/+hccuuYTJtbXcvG4dj23fzr6eHs4680wuXbKEGSecwOuvv4679q/i/QFok6aiVdeCbqBV16GKRVQu+38LYGumiVbXIIz1hHpJ//nfYPonuP5HTcqDiklw+i8lb6EVEeBsZ8dHFj1HHMGtiMQJxXdL+oPUfgHDOx6TecJ3akzulca91JHK9EvDeej5ArpTnfDKcmnErQhEm32Wuw82r8BTHkHL4uim6aQKGTzP47iJh1NwbLoTgxw/8QiuPvnCcuqtkUyCjwf34nou0WCI9R1bGUyP0p8a4ScvPEJDrJa7PnM135r7OQKGxcVzP8eDn/8Bx7ccTktVPV8/6TP85d3nUSi64wPc+uKvGEyPYRom1eEDRn/1Kol91iKSf7ryAnB7YfhmcHrEJbzxZwKCARp/Di1roO4m0KuhYimYjaCySHyWkrJ6VMCzXok4gzv+x0Wi9hxxGNcjPoC/BA0XU9e5cdEiakIhfn7mmaz50peY09rKig0beKGjg6hl4fiSnrBpsice59tr1zKYyZBzHJatWUN/KsXtp5/O9JoaopbFz886i4HvfY9fn3suEysqeP/SS8k7Dt3JJNfMm0e/P5J515IluJ53EBgPmCaeZaEaGwWFVlTAQw+NM9aDgwK4QQBzsSia7IEBmY+MjJd9802x5W5sFNpYKQFW8+YJlVyin/fvl1RekYgA69FRoacvu0w6kD6xUGKwb71VwLBpCiudTo8D4pUrBc/PmSNS78ceg0RCPqUyP/2pbDdNIdJL+F4pOa3rrhODsxtvlDKl/V98UeqPhOD1p9fw/tvv8M6WLUyYMIGvXXk5KPjwvW088eST3PT9H4wzymXJM7C7C2IRaKqDoCXguWiPd47yRdi1X+aKcW17wBqXnwfMcXfyA1J/uYVC2WBM03U8x+Gd224juW8fRjBIMZUC1yVUV4cZDmNnMrjFIrov3x/atg3luljRKD2vvsr2hx8u16N85/F0dzdv3XIL6a4u8iMjuH4ge35khP6NGzF8WVewqgo3l0NLjsFfHoKhPmlPSgB7qE/WpxJicGYFZMDA9lPC1DbA166CukZxBy8NjIUiEI7Amy/LcstUXn/hOd5f9zTvLP9XJkRCfG3ZMgHhxbww58U8v35sNV+dPAHTsg5KnRWpa+bQk79O89GnUnJnL2bjvtGTH2OqG1ihCjF8yqfo/fAl7HzKZ/aSUlc+TdNRJ2OFKzGDEZRSZEZ7KWTGUCV2SNcZ3fsukdoWrHAldjZBdrQHCnlUsSAu+yDybF1Di1UK69zcgnn5DWitk6UukOdJK8VFIMy9UhjnfEFY7eoatIoq9MnT0erqMc69AK2yGr1tmrDcXfshnUIlEz7bXRCX9qoqdDRqaqYRiUzAcYoUiylMM0xPzxby+Tg9PZtx3QKmGWHjxlW+W/hKlHKpqZnO2Wc/SDy+j87OdgwjwLx5V5PJDPppzSCV6mf9+h9RLKYZG9vD889fSTYroD4Wa2RsbDe53AjpdB9nnHE7bW2t6LrONy+8kHpgxvHH0zJ1Kh9+8AFNkybR19fHtxyH/UCFUnR3dnJs2/+Lvf8Ol6q8377hz1qzps/uhd03XREQUAGpxoLYkmhMSDExJioWNNZYIIkmETCghlhij9FfYhLUxChFVNTAll5VpMhmw+59ep9Z1/vHd81szP2+7x/P8/yO+7nvO4tjH2tmlWvWDDPXus7rPL/n2ZB3AH8AOIY4gV/IEEhegTiLOxBg/pD1USaBc5C6bBBgXgssARYgkvF+QLPrBFoCbFy8kcY5jZSMLEGZCofPgeE0SIVTeca6bUsb/mY/0b4oZsoEDTJx6R9KR5bSOKcRw21w9h1nE+4O072vG7vHLhLwRAa7x86wScOI9kRRpmLGnTOwOWwYHoPa6bVD0VxKouZqxp+Hrkvdo6ekmv5juy0GeTvFNaeKlLR5x5CzdyaJhvq3Y4VtVoBuM0iG+0glwv/DMb6KRipGTUU3HFJ7rek4fcV4S2txeIqpnTgPh6cIhaLMU4apTLa0baHaV01rsBVTmWRVllElo3j20mfRNZ2MyrB081JWH1hNMBnMP17WtIxyTznLmpZhKpO2oBiWLVq/iGg6SnuonZn1M2kNtrJo3SIqvBW0h9opcBQwvW46Ozp2oDQdpdJwYOmQO7jNKXXTNreMlxJ9sPs2Ab59TVA+C6b8hrln1FLnPC59lHsYdLxFdNevePGVv7B06VI0zQSbm6rxl4j0e9ci+e3H22DnTRA9AZWzBbB//rC8fsxSApppYaXBqnnSvsxeK2WBYwst65YqEQSsJ0NDIDo+KB47OQM0GJKXa0ibOZ8c3RgyM4t0WHVXFti3+4b6mppZMtaLDwgLnfRD8LiMA701Urs97ipJkXlvoQDpxKCMPR2F4CyGXSth1lLrPVj3A90mf7E++QzKJkJBLc3HmiktKWHZo09y1vnfZM658/jwww8sdbtkTqfTJgsWPMbAwCBnnnkOmYzJnDkNDBvmY9asBtxug3Ta5NZb1xOLZfjWt05j+fImVq8+wIoVWwgEEsycWc8PfnA6FRUyIWCzaaxcuYVZs+ppaChG17U8e33TTVfz3nsfUlfXQDYr47+safLAz37Bod7j1N9xHpevuIl7HliMQvHitjd5c+UfmXb9pWzbuZ2/v/kmty66BX8wSCQZZ9n7fyCVTfPHHUIWvbD9TUylKPcW88CFC7+UolPhK8FhN9A1jUk1Y3EbTgwr7tHn9tEe7OXX7z6fr7MG+N7EicxuaMBmKdkai4qY29iIzzCYUV+fH3aksllGFBfzzKWX0lhYyOyGBk4pK6PF72dfdzdXf/e7bPzwQ2rq6pg3ahQ/mzOHLxIJAj/6EWf96lfs27uXn/7kJ8ybP58XFixgzXe/yxPLlnH5BRfwzIYN/OHZZ/n+jTdjzhHVlopFwd9P9p1/olIJ+Z4bhkzeZ6173P/FRTMMNKfz/xhgDf8B1/99i25ApFc6JpBO1OGTPzQB2p1bBACD1FvvXCGAevsyYa9PWQBV0+T54dViImHllBJohi2/OGkWE9mfO06Z0iaaSH2m3ouu6bjtLkzTxG13caCnmWQmRTgZteqwg3jsLmGuDSeD8SAl7gKWb3yJRDrFo1+7kwlVo3lh+5tsOLyVF7e/yeSasZR7i0ll0lQVllPhK+FX7z5Pq7+bcl8xPz33ajRNw2EzuGbqV3EZDmyajpF3We6HxB5Q4t6IfZQAY2M4lN4Dmg9wyKyxUS3vPb5TZN32kQKcq56zPvNCAei5mqT0CZGMp5tFct5zs7DfgDiGm2Arl89oYBmEV2NPbEEDRhYX47Oyrs+orsZtGCyePZvDt9xCzALQx/x+gC9JdwKJBKsPHMDndDIQi7Gjo4OsNWvpMQyarbzsznAYu83GlOpqCp1OzqiuxrBAjqHrLD5pxjIUCmELBtF6esRJ2uMRVjmTEWSbA8owVPzc0yPuX729AshbWoQirqmR42Mxqa2++WZpJ5MRzXbORbytTRBvT4+cF4nIttWrSQXj+HxaHr9ns/LyOdW6y/U/AmKlhIVevFi2FRV9+Zif/UzOMwxoaJDLOnZMLmXfPvFvW7UKGhuFTC8okPPnzZM22zs16sePA8OGXbdx+403sbmpCYDN27dy/MQJxow7leHjTmXb9u0sXHQzT6/6nYDo2kqRdgcj8l0YViqsdTIl+5MpqKsakjtrmoDOrAWy/70uu8iXLz43PBZboGko00Q3DM5cvJiCxkYMtxvD7WbX0qUSk6Vpwl7b7ZjpNIbLRcXkyaSteu2L//EPxt9wQ159kE0kMNNpDjz3HK3vvEOsu5tsPC7tdXZSOWUKX12/HsPtZs/DD5NNJLA5HVL/vHMTrPurSL7jUfktrPvr0HZl5qXRON0iBc+mBSBnLOmqzS7XEo/KQO+Cr0vMlstNQ20trPsr9j0fc/uIEjZv3Sb7lIK1fyHS0cbqt9fy4ysvByXRWaGeZnTdjqZMbHaXOBnrIskekrJuJ28CBf9D7NaXZa/bQZO67Y5P3yMdC+IqLMdmkzivjk/fJx0LUnXaVwTcgOQIe0vl/zUaIbvhn3mQnVOF6HXDIRolu+7vEAqgaTpme+uXALtKJSW/WrTpEBggu+Z1qXEzs5htJ1D+QbLr/o7yD2C2t6L5fKhgQCTlFtuN1weRMGY6RSDQzNq1NxKJdOJw+FAqS2PjHGKxfrzeCtatW0Qg0MLFFz/JokUHmT9/Fbpux+9vJhzuIBhsxeutYP36W9A0G1VVk6087GOUlY3hkkueFhdww8uFFz5GYWE9drsXpbI0NS0jlYoRjfYSCrURjx/hK+efzxsbNrAQaGppob2lhTfHjaO6spLJZ5zB+X/6E6OA5994g3RdHcbo0RQi7PRdQM41pRb4GbAGidRSQMDaV4iAbBAZeDfCWtsQabkbeBYYhdRum6Zi89LNfOWBr5CKphg4MsCa69cQaJEWw11hPnrgI8KdYSonVBJqC5GOpYn1x8gkMnTu7iRwPICyzAN9lT5Kx5RSVFuEr9rHmoVr8B/107Wni1B7CLtbGH27x46v2kesP4an3IPNLhJxZdXpm2aazgPCPOfAS8Xo6XkGWSFdT37bqKnYDKdMoP3bsSIFD9H52UYMlw+bTRQOJzPSNrsLu7so/1tR2TRKQdeBD/G3fUY6GcXMpknHQrgNF/64n0nDJtEV6WJa7TSaWptoCbSQVVmO+o+ycM1CYukYi2cvZsH4BRQ5i1gyZwkLxi9g8ZzF9Mf6WTJnCbqmM712Oo9ufZTVB1azvGk5sxtmW/dJAeOPbn2UGfUzaAm05MG25EnrMH7xkDs4WIo+C27EO0TyHesAZwUcekT2eeqExUbJuGr232l2f4fS0hKW/WYVZ828gDmX/JCN/3hGZOVl0wCNq3+0kInfXc21P7icvt5uea3xS+T1y6YLCI50iSlYTqmlYSnfGALUJ9dFA3nzM5vLAswpWVedJYZgNscQK51NWYx1Ql7PUWghq4iYnrnLJarVTAswRpf1ezfIOhUW0JyOgt0tYHmHNV7c+TAk/EIo5LbtWCZtJvqF0EHBeU+CYV1TKiQTAv4jQ+3qhhjtbryZzGALJ1pbOe3UsezauplHH/0tP/zhD+jp6SYWSxMOp/B47ASD2zjnnK+RTCq2bGmjudnPbbe9w/HjAdJpk97eCDNm1NHWFsTpNFi1aj7XXDOJxx67kKoqH4ah0dYWZNu2djIZE12HJ564mCuvHMdtt71DZ2eYadNqaW8PUV09kV/9ah/ZrElRkYtQIE08Fuf1V//GP154laeuvI/rpl/B8PpGdE3n+ulX4HW6+dapX0FHIxQOUVpWissqm5tUM4bPupu5bvrlzD9lBtedfQWxVIJl7/+BWDqB3WZISVftKfRHA5R7xHtH13SyyuRTi812GU4cNoPJtWMxIS8D14AWv58b1qzJx62GkknKvV6iqRQDsRjHAgFue+cdwqkUhq5b7WvE02ke3bqVSq+XGbNmUVVTQ1Ypfj53LiNLSpjd0EDg3nt5+tJLSZkmf3nlFeZ/85ts7+igvrCQt//xD25ftIiZ9fWcNXUqNdVVfPjkKkBD8xaglZRhu/RKNLtDwHZgkOz6f6ACA+L2nUz8H+X4/X9n+Q+4/u9azDT4KoVdjvVK5xnrt5iYjHSw7mFSO233imx86j0CqKcvAZtH6q81Y2j7tPtF+mNzymzlmXdb7pCmdIL5838mDPmWByTrsGSUyNGBn91zP1NOm0hlQSlmT4yVH75CPJ1kMB5iUs1YVj3zJAUuL6///Q0m1YzFHw+z5sN3OPecc7n58qs5Z8ZsJqQqefIb97L4/B9j020MRAIs2/gHuoJ9dIcH8rKZn91zPxNOPQ2v00Nncyt1xcN4cfubjBk9mnGnjmPKmbOYPP07/O3tTsgGwYzwxaGtzJx9DmNPncTUOddz4HCPfJ7dd0L6KMSawF4ledak5C/n9p2TmZsxuVEZtRLHNfDIkHx8YJl8ppkTQ2BbL4CyJcKAu06nNRQilk7TGQ7z0KZNmEqRMU1GlpRg13WWnQSm0TQWz57NgvHj+dmcOVT7fFw1cSIVXi8d4TDTa2vJWgOcrFJfPhfoDoe/JAtvCQS4Zf16yt1unrn0UjyGQYGuo3V2wgMPoJ04ISi0rU3yqCMRAcQLFw4BY6dTAqJztHE6LXrq3PNcrNby5RJA3doK27fLY7dbUHJdnbDhJ7czfTosWICjSGyEXC4oL8dy6RSyG+Qy9u2Tku1nnhGwnHMUr66WbT6fAOQxY+D3vxe5+ObNQo4PGwZvvSUvqWkyH/DJJ0PqdtOEN9+U9n7+c4n2mnZ2nEBAJLroOn959S9MmTwZUmluOu9iur5o5vixYxz/7ABnT5vGc08/zU133Cbu326nrL1uaG6DpDUh1t4jZmVFPonsMk2RjCslYDwSG8rEzi2pjGyzZOHRjg4SAwOYVoaksljvaEcHOx54gHhvL2UTJ3LguefIZWD37d+Pmc3KMQ8+SCYeR3c4MDwefHV1IjHz+bC5XJjZLOMXLmT4ZZdRMWUKB55/ntZ33uHA88/LryGbxXC5OP2227A5nSKxu/Q7MHWuGIzpluQ7mRIn8Px2mwDpo59J9FY0DIFB+Y1lzaHSAxR4vDJisLtA14nGEwTCkXx7f4nYmDJpEhz9XE654hr+9tprTJo4kVPvlf/kitHTaDjjq5hmhuhgp4xhdRsaimw6+SXgIMBakU7Ib+Zk4CGy15NASzZN/7GdArabd2BmUxhOTx6A9zfvzMvqM8kYFaOnCTNut4sEvH64fBaGgfIPkF3zGmTSmE1SS21u3gjpFHp1rRyXW+x2VPMhmQFSZr722mz6QJjMimFDbTRtRK+pA7sDvWEkyrCLkYzDKcB980ZUJvWl/OpMJsG6dYtIpaLU18/E5Sphxoy7MQw3mZMmXJWCwsI6HI4CamunsXXro3lWO5EI5Gu4U6kIgcBx0ukYbncRsVg/69bdjN/fzC233MFtt20mErGxcOGvmTbtImprp/HY00/zy5UrWT1xIlddfjkPPPssq2praQYKnn2Wp599lkljx7L04Yfxv/QSS61rqgMetdaWpojh1vNFQCtQafXuCgHSXsCOAPIuq51WJO/6BoQFN4CUTWf+qvk4fA7sHnHurp9Vz8crPkZlFVtWbOHA6gNs++02HAUOGmY3YHfbcZW46NjegXeYF8MlpkOZeIZ1t6wjeDyI4TEorCmk+d1mmpY34Sn3EGwNEmwN8tEDH5FJZIj2RPnoFx+RiWcIHAuwZuEagieCYH55AkgD0rEg6XiY2okX4HAXgpklk4xhdxUIq+wtQTccKGVippMYTi+1Ey/A7vSKwZluw1NSw8CxPRguL5lUDGWaVI6dicNThKYb1gTSe6TjIRKhvvxEkqeklt4jW8gkIqTjYTLZFDbNhtfhZWb9TBw2B9e9fR1LNy9FofDYPTx58ZPYdBuNRY08efGT7OveR4Wngucue46GwgZGlYyizF1GLB3DZbiGgPfsxWxr34au6fltS+YswabZGOYbxt0z7qYv2geaIVGKznKY+EvwjZAxVF8TRFoATQBvog889eAogSkrZd/Om4TNzkmuK2aSMSo5caKN00aWset3Y3n814v49qKV9LR9DlXz2PTBO3yy8yP2/Nc3KR85lx9ee7NMgvlGiRO54ZbXLBpuyahPYptzYDoZlm+oUpCMDEm9Nf2kvsAcqpM+GYjnWel2Kw87Rd55HIZysYtHyTqbFAWkyogMfe4K8FbJazW/ZYHmConMmr7YGgcutnx6/JI0k9sGlv9Pp7D14Vapy85Jxw2XPM61C/DZi3B4NQ0jRqHrOldVbgJlMn7imdTXN7Br1z6CwaTMtcZjfPrpB9x//09wOg0mTKhk2TJhppcu3Yymgc/n5JvfPI26ukIWLlxDX1+MJ564GF3X6OmJEgoJSK+o8LJ9ewdHj/q58ca1dHdHmDatlhUrtjBv3kimT69l2bLNrF59gGBQTPmKip0cPHKIguJCFtxyDTd944f86BvfZUfTVg72NFNbXMmf/vwnrv7e9zl17CnMO/d8Hn3qd9gdDnxON189bS6TasZSV1zJg/MXUuYpYtWmV5lQPYr+SIAD3UfxOtxcNG6WxH35e9jXcZi2QA/LN75EqbuQMl8RpjIpcHq5YMzZaIDHbqemoABN0/A6HLx1+DDLmpqo8HrpiURoam3FbsVoPbV9O7+54AIKHA5MpdjV2cnxQAB/IsFj8+dj03VuXLuW48EgDpsNpRRfDA6ycM0ajgcCZE2TP771FslIhPmXXEKFx8PB1lYy6TSqoIBYOo1pZmlsbKS9ut4yyRV1hLImgkmnwO7EdsFlIhVXJiqdFpn4/4MxXf/bLio3s/m/0F9tba36f/2SjCiVCCjVvEapnn2yjvYplQwrlQjJvkRAqVifUsmoUtEepSLdSgWPK3XsHaUSQdkf7ZHzY/1ybtyv1Hs3yzrht9oLKLXheqW6dlntRZRaf41SjyCv27tfpY69o/rCg2rtu+vVoaNHVFVttXpz4zr1593r1E/fWqUGo0G1/+BnavyU09WZU89SL736irp/zRPqYHeLqqiqVC+sfkX1RwJqw5YPVV1dndp//JD66Vur1KGe42pT8x51+spv59vZ1LxHHeppUd9Zdqv6196tqr6hXl296m51uOe4OtDVrIoqS9WmrR8rMxNRKtWpVOKgUulBpVId6txzpquXXnhSqUxYvfa3l9VZZ05UKtWhVLpXqdAapWLblWpfoFS6T6lMVKlMUKlMRKlMQKlMSKn4Hjkuvk+Oi++S10h1KtV+jVJpvxyb9is18LRSoXXyOD2oVGZQhRNxte7IERVMJFRnKKT2dHaqjlBIHezrU+3BoAolEmpfV5da8Npr6pPubhVOJJQ/Fsvv7wyFVDiRUIF4XIUTCbXfOjZkHZc7d393t/LHYuqdL75Qv9u2TR3s61OhREKtO3JEbW9vV2sOH1YHe3tVbySikn6/UmvWKLV9u6z7+mTd26tUT49S69bJvnXrlPL7lQoGldq7V6kFC5Tat0+pUEjWueednUpFIkrt2qXUwYNDbef2RyJKHTkij/fvl+2ffCLbQyGlBgZUJGLmX2LvXqUGBqQZv18ua3BQLqOzU6mrrlKqvV0eHzwoj0Mhpbq65Pzc28pdwv798nz//qG39MknQ2/9hz9cqNzuWmWz2VR5eaWqqxul/vjSF2rypElq4vjxasKYseprl1yqWr74QqlUWv6icaXSaaXSaXXO3LnqH088o1Q4qlQiqdSBo0qFIkolErKOxuTYVFr2J5PyOJ1WKp6Qdb9fqVRKqWTqS23n/6JxlQyHVfD4cRUfHFTxgQGVCAZVwu9XyXBYbb7zTvXn005Tm++8UwWam9XgoUMqdOKEinZ3q1Q4rJKh0JeOSQaDKhWNqlQkomJ9fSra06OiPT2qfdMmFe3uVslwWEV7e9XgoUNq8513qsGDB1UqElE333ijaqivV4DasWWLMhNxpSIh1djQoMaOHqUm1VWrSaeNU399+Y9KxWNKxSIqEfCrRTfcoEaPGK4mjD9NXfXtbyuViCsV9Ms6EpZjoxG18Mc/UrU11cpms6nKigo1auQI1XzgMzX59NPVxAkT1ITxp6mvXXapajn0uVKxiJzX3a5mTJum/vDss0rFIiobi6p0KqEyqYQKdh9TyVhIxcMDKp2Mq0w6qTKphEpb60wqoUI9LSqdjKp0Oinn5falk+rz959V6UQ0/zwVD6uov1ud2P22igV7823Ggr3qxO63VSoezj+O+jtVIjKossmEynZ3qPRrr6hsR6syE3FlRiMq/dorKvXgnSpz+EB+/y3X/kg1NjQoQO3Ztk2ZiYQyEwn5fMeMVpMmTlSTTp+oXn3m99Jed6da++ab6swpU9TEcaeqaWNGqT3vv6uyoaDKHPlcXisWVZkjB1W2o01lY1GV7e5QqS8OqO7u/eq11xao7u796vDhNWrbtt+pjo5d6rXXFqiurk9VPB5Q8XhAJRJhFY/7VSIRVl1dn6n+/iPW88hJbXyiQqHOfHuJREj19x9Rvb0HVTzuV2+8cZXatu13qq/voEokwqq7+5P8sbGYX3V07FLhbEbtV0pdpZTqVEoNKqXCSqlDSqnfKaXWKaX8Sql9SqkFSqn9SqmA9RhrHbD+gv+2PXTSefusdgNKqYj1egGlVJ+1v1gpdcTalogkVMwfU4lQQsUDcVn7ZR3pi6jYYEyFe8Iq5o+pUGdIJYIJ1b2/W7224DXVvr1d9R/pV9375HnHrg617Xfb1GsLXlOxQTm+/0i/6trfpfq/6FfxQFy9tuA19SAPqr6Dff9fH7+24DWVTiRULNijgt3NKp2MqXQqoVr3rFWfrHlEpRJRFQv2DH0/UwmVTiVUKh5WqXhYpVMJFfV3q9Y9a1UyFlIZa1/rnrUq6u9W6WRcxYK9KhEezH/n06mESidjKhEeVOlE1NoXV8HuZpVJJb60PZ2Iqne/2KDCibAKxoOqM9SpukJdKhAPqHAirALxgPLH/Oqaf1yj9nXtU4F4QC14bYHiQdSC1xb8D89DiZDqDHWqnnCPGowNyvlxvxqMDap3vnhH9UZ6VSgRUle9cZXa17VPrTm8Rn3S9YnKJoNKpUJKBQ4q1b9bqWinUsFDSiWDSiWtsc7Wa5Tq365U+xqlkgH527xAqT+j1OYFqrGhTu396K9KbV6g+g6/r3RdV5lwm1KHfqfU1mvUWWdMUu+t+4dSqYj8JYNKBT5XnZ+9o3xej1Lt64ZeLxlUKpNUKptWKp1UKp1QKpOW55m0PE8nlBo4rFQmJdvyfymlUlEZhw0ckjFabnvu/Ny+VESpVOyktlNKxQasNk9qN99WRMZ+sX6lYoNKhTutMd4+2df7iVLN65SKD1pjxKCMCZvXKNW5Tdb9B2Vs+PYC+VwHjygV7R0ajzavUyrcIW2HO1VjY4Pau/Fvcnzcr+ZNHqbW/m6hUj371P59n6rS0lK1bt0uddVVb6j29qB6/PGn1YwZM9Qnn3SrBQteU+3tQbV/vzzesaNdrVlzWPn9cRUIxNWCBa8peFAtWPCaCoUSateuDrVgwWtq9+4OFQ4n1MGDfaqtLaCuuuoN5XI9pNatO6KCwYQaHIypSCShIpGk2rdP2q6urlOPP/6mCiei6u2N6xWglv5uhdrUvEdt3vqxKisrU80nWlSnv1dNnTldXfXwbao3PKg+3PwvNaxqmGppO64iiZgKJ6KqL+LPP44mY6onNKBa+tvVpuY9qic0oHpCA+pYf7vqCw+qgWhADUSD6sRgp/qs66g6MdipesODKhgLK38spILxiAonEqojFFKDsZgKWuPDowMDan93t+qPRlVPJKL88bjqiURUXySSH1cG4nHVGQqpzlBIrTtyRPnjcRWIx9WC115TroceUmsOH1b1DQ1q8/bt6pp//EP9bts2daivT0USCfX9H/5QXXfLLeqT7m51pL9ftXR0KLvDoRa89ppqDwZVOpFQ37zicvX8U08pMx5T2VBQZft68ve59GuvyPb+XpXtaleZwweUGQmrbCyqzHhMmen0/0Ng6X/NBWhX/39w6n+iuP67lnTMkgdlh0ymYn7wlpEzysnPaGbTMksb65X6l3MfF2bbtOo+dUMkQLtWyoyl3Svtb/opnHU3FA7nS7FehhVQ0rlF5OUbFxE7ZxVt8RS9kUEmVI1i0riJ/PrpFVx2znyJ09INLrvkMn619Nfcf+99LLr1FibPmcazH/yNp3/0AG39XXx4dCe72w+xbvHzjL5sGi1lMeafMoP7zv8RD298ieumX47b4aLEXcCv3n2eDYe3Mv+UGby66BE8V57G5eddwuILfszpp47nj3/5E+dOn4JmhkSybRtGb18vo0+ZwmBfRz5lqrruFJr+9Q6jR4+R90QWzISVf5mbKs5AbAe4ThfjExWH3vsg8gbUvA6e2QjvkRZWu/enUHYH2KqlJhskpsuoJ551kzQN0qbJrs5OJldV4XM4iJwUo5BbdE2jqbWVmoIC/nXiBB+3tfH4RRfhtEnMhaFpKCCRyUhttt+Px26nzOMhnc2SVYpCh4NYJvP/87VsmoYzk8EIhaTiyuuVOK6jR4XaXbJE6ON77hFDspw8HITaNQxxFuvsFGbaZoOf/ASeekqk4V6v1GgvWiQM9YIF8MtfSr3nyJHSTiIhtdzDhuVrb4IU0tSkUVEhMu25c0XG3dkpudTB4JBR+euvw3e+IwxzTw/MnCnNKiXndHUJKX777VL6/Y1vyNvIZqWOe9s2IViLi2HHDmHChw+Xy777bqn3rqrIYsuk4Hgn9Plhwmipo9ZPku4phHE2LIZAKZn57x2AcAxG1cu2cFSYbFeu8BsIRWRbMgU+95CB2bF2qK+y4ri0L2Vgp1Mp0tEo6XAYV3k5se5uYl1dlIwbR7yvj4N/+AMTbrgBT3U1/fv2UTRmDIbbLdJ/IN7Xx4HnnmP8DTcIY53JCIttt6Pb7Wg2G8Hjx0n29VFxxhkkAgGcRUVfyj1/95//ZPSYMVz87W/zl5de4uyzp6Nl0gyfOIk3Vz7E5N3vwwO/H5K7JxLccesiMp4CHv/d79D6u+l+9Tmqvns9lFdBMm7V72vQckgcwMurxcjM5ZIYL12XuurCEvK5sbpN6q1thjzOlS8okywmGWVic7itGLEkmqZLfVYu2xcNlU2j6QbKzJDNpDCcXtJxyQ8uHzkVu8uLZrOfFDur5Hzr/1rUmlKzja6hWbe+XExScc04qiecjy2rMFuPoXl9qGhE2GRlQtCPCofR6xryEWWbmpoYUVvN3Isu5u9//COTzzoLDIORp47j73/7K1NOPx1lM6y4JZPBYJCx48bxr40fcNroUWz+6EMW3beY/f98A62mQd5rIoFmlROobBbNMMhqirSZEmM8TSeZDJFKRfjoo19w+PBb3HVXN9lsms7OnVRVTSJHgdntHgKBFrZseYR581bicPgwzQy6bpDJxLHZHGiajffeu49zzvkZdsv0SCmFaabp6NhBUVE9wWAbf/nLZYwfv4BLLvk97e3bqKiZisNbQUbTiAH7gKlAEChFGGnLmzhnJZmP2FqGSMFHIjLvAmv7UqSOejjiAr4aqal+zmpDQ4zO3FZbYcRFXLe2l0aTpEIpidnSNQy3QSaRweFzEGgJEGwNUju9FsNtSASyqVizcA0HVh9g/ILxXPbsZay5Yej5OQ+eg5kxKRlZgpmWumzd0DEzJpqh4T/mp+mhJuavmg9AMpjEO8xLsC3Itt9uY/5v56NpGoZXR1OKTDKGaWYwHG66Pv+I2okX0PnZB7iLqyiqHoumG5jZNLoh8Tm333Enb69Zw4kTrezcsZUqe4DS4VPwd7ew5MHlfLz7AC6ni9NPP52XX34JDbjokkvp6e6RtACfl8ceXckZU6aApotKQ1mRXnYnmm4QTseIZ+KYyiScClPkLMLn8NHsb2Z503IWz14sEnmnj0pvJaYyuXPDndw5405GFI8gnAoTTAbz5x0ZOMKKLSt45tJnSGQShJNhqguqyaosfdE+StwlVKysYMH4Bdx59p2UuctoLBiGoWloOUPWbBxSAXCVgdKs8U1WmGtHsaUeClqZ1W1QNp3hp5zBm7+cwGTHejhnDRd+/yFuv8TOJT/+LS19NqbOOpf9L8ymeOpi0pFOikdeCNHjPPbcP3jz7XVs2rgOIsfh4G/gtPuh6LShsg4Q9jibHJJuW79puZaoVT99EjudDMHgYXCXnZQrbf0QlFVSlBtPmFkInQBfrYz3QselTtrmFEY+3CY12xUTxZtnx3JRMhYOH6qVRkmdN5ow4ZvvFTVj4QiRe2u2oTzrzibwNkDxcPKRZsF2ef9V00AzuOGbM1m7L0R3Tw9lZaUU+HwcPfgpx/b9i2vv+iX9vT3gKODee5dw1lkXEIulGTbMyze+cSFXX/1jrr76h/z5z5+wfXsHjz9+MYlEhh07OqivL2L06BICgQRdXRFWrNjCz38+h+HDi+nsDOP1OvB6pdxicDBORYUX01ToupZfp1JZbDbNiuOCbNbk1FPHEAhczmBoJb29PYwePoojXS1UFJahaxrnzJrDA7/6JZ4CLzf86Hr2H/hExmfpJKefMZlf//rXLPj6lZy8HOxpZnzVaFHQaDrJTAqn4cBUJqlsmoFIiGKPj0O9x6n0lfLi9je5bvrl1BVV0hbs4cXt/+Ta6V+nqlASNaLp9JcitLx2OzZN45jfj/vfxoZuw6DZ72fFli3cP3s2I4uLSWazOGw2NKA/GqXU4+H0U0/lz3/7G5OnTCFhjSXH+HxMHjuWdR99RM3w4VR4vSigvLiY7C23cPC++xhbUMDZM2fy0E/v4jwjiz77PPmt6ViZ1BdIWZJScr9EE7+RwmK0EnHS/98hUuv/6vKfKK7/WYvKirFYx2arnsYEb7nUyGRPcnc2swKibS6RAJ3/e+nMzfSXO+Ady6TTi3ZJLUy0U57vWC7HpyNSpwNSh/3BrWJmoUyYeh9Ks9MbGczXUGdVlrEVjQxEgyzf+BIrH32EM6efRcWoWtr83SQzKWqLK1l65W1UVVfxzltrmTl8EjOco/jiyBec6q7h0nGzufsrP8Bl2PnFhdfjtjvZfvwTkpkU150t9SrXn/0NbJrOb79+Fz8992oM3YaGxs3X38Dpk8/m2oV30dcnctO2tm6qq2swDBm8a5pGQ309ra0n+JImS3chQ6us3BgyveCaCJgi9c72Q+VKqPk7uM6ATBeYQTEv0wwovQMGfivbcsO+gRWgOTBVlhPBIPe89x5n19XhsUsn77DZ0DUtH611PBDgurffptzjwWO3c9XEiTx24YV4reOzpimeRqkUA/E44VSKDsshMpZO408k8DkcZJQimEgwedgwPHa7ZBGmUsQzGTJWGzal0Hp7Yc8etGRSgEljo7iBdXUJ2Fm6VMBNOCz106mcK6kmWuyzz7Y6SV1AOAxJwA1jqBj63nth40ZByTkAFAxCSYm0a4obtmGIyfjYsQKsQeqtc6ZkdvuQ9Pvqq+X5wADMmWOV0SrB7GPHwhlnyKWvXAnf+56o1nNlPZ9/LrJwy0uNykq5bJDjVq2S9rp7QNlsMKoOpo4XKbdNF4l33oxMDcVAmEr2pTMwrAxG18ugKByVi9V1+crlzMwcdgHWXuvFU1bdcYEXWi2h6knAOv/ZWetsIkGspwdXaSn7Hn0UTdOY9otf4CwrIxOPU3zqqdgLCvLA2eZy4auvZ9qDD1JQV4eZydB34AB2a8aib88eIu3tFA0fTuXUqaBpuMvK0A2Dwc8/J9LejqbrnDN3LlXFxSQDAVLBINhsqOAgREKSOf3LZ05yCteIZjK8+M+1LP3lg2iJBPj7qGo5IA7hSolxmc2AWEScwgMDcq7LSiuwWcC5uEz6Nk0jbwLncIkLuWkK0H71KXEYd7gwzQxdBz4A0xRgkfNkME1xQI4HJRILkcT2fbGNdDxEOh4m1NNMJhlFt9lR2TTRwU7S8SAxf6dI2UxF52cfkIoFxXXcyoTvOvChyMpHieS8atxc0vGQmJdV14LThVZdK9FYmoZWUo5WVWO57psoZTJ3zmzqRoyU/srhAKWGJuAiYQHlqUQ+uqt5317Kioo4bbSU6cz9yrm0trWxr98v9wXTBIcds701/1tD08mqLOl0lFQqQjodx+HwUVBQw/z5q1iw4O8Egyd4772fUld3Nna7l1QqQjjcjabpNDUtp7Z2GuFwJ2+/fR2hUCegY7M5rcxrk3nzVmC3e4jF+qUuGNiw4Q683gqCwTZqa6flY79sNgf19TNxOgs4BjQhU5fTgZ2Ia3cCkXgfQ0BvGvgYybUejdRJj0Ck3z5r/0gERI+yeuXFCLBeYvX+PVZbXmAreTs9eq3tnwAqI3FZdo8dwyWlGbqVSV9QU0DD7AY6d3YSOBaQ7tHQmPOzOXx3zXe55KlL0O06c5bMYfyC8cz52RwKagsItYdIhpLkiAilFMpUmGmTkuElXPL7S3AUOoj1xfjogY8InghSMqKEi5+4mOCJIIlAjHRM6v5NM42uy3XVjD8f0Kgefx6eklq6Pv8IZWby32Mzm+YbV1zBB+9toLGhAU2zUT3+XGyGg4ef/CPeslo+/+xT9u7ZyW8eXgZKYWbT/OXVP7Nn725279jKzdf/gOsW3iglFromLvvWbyXm7yEVC2JoNtyGm+5IN79p+g0uw4WpTLx2L+82v8uypmWMKRuDz+GjK9JFIpPgiYufoK5QxpUeu4eaghp8Dh8aGjUFNfz2wt+iazo+h0+AtZnljnfuENm4zcVVE69i1fxVNBQ1UOWrwtB0tMgx6NsiYyfdkBSV/m3kTUh33QLZmEiZDTe4ysHbyA1L/khdQwPtHZ3Mv2cno+/xQdk0nrmplJUvbWbitPO5fMH3efaO06iNr6Fny0Oc+63FnH5aAxPnfId//etDXrmtXEB6oksMzT5fTh6w5uXempAeqdDQcCSHpO1ea2yXhMBx2e8shKqpYniW6wPNrLyXdESONbNSe22mxY8n0m7VXhcMAe9kQEB36Smyz+6VOmlfjRwT67WuybTytWVSkTPvtGJfTZGgf3SbJNikQlAxWYB1wDLLDR6HojoxwDUzoNt49vUttO99h0yok54TRzj6+V4w04ycPIcPN37Ap3t3sePjTZx++rk88MBH2GwahYVO3nzzPS644BtkMibf/e5EHn/8YkxT4XIZzJ7dQHW1j2PH/Hz6aS9VVT6effYy6uuLSCQyFBe7GRiIccMNa4nHM5SWukkkMjQ1tdLS4qepqZVjx/xs29ZOa2uQdNqkszNMPJ7G4bBxzjmNKBMqK4cx55y57Ni8jWQmxXs7P+LE8ROceuqpjGocQW9PDwcPHsQfC9LacpxYX5C9seMYuk5XqI+HN75EMpNifNVoAD7r+oJYKo7dZpAxsyTSKRw2O1VFZUSTMUrcBby4/U22Ht+P2+4ADWqLKll8wY8ZiAYwLPdvj91OfWEhd559Nl3hMNevWUNzIIDLbieaTnPj2rW0h0K4LHKlOxLhrcOHWW6VIHaGwyxcs4YvBgcp9Xg4EQwyGI+TyGbJmCY7OjqYWFnJP//+d0457TRGjRnDMJ+P3miUSDLJlVdeyZ12O7UFBezauZOOzk7m6Bm0hpHgKxTQXFiM/pX54u1jGFKeZLOjbDYx4ywpsyad/t1s4D/Lyct/wPV/16KUzDa6K+CDW2RWElNqWsKt8P4N0rF1bZW6aN1mgWlroJuJw7/uhoxVP/yVVXDqd6RjrZkFu38LjfOsGhol7docEr0V7YE5v5GZT8MN8X4cdjcTqkaxet97XDP1q9g0AbB/3buBioSLdW+tZcmSJVT6SmgoqcJtODjQfZSsMnnipWd56rlnuOzc+fztpT8xY+ZMCt0+7jv/R7jsTpKZNPs7j+C2O7lo3CyO9LVS4i7k5/Ouo6awnKzKsnr/e/jjIUyleGvDGjZv38LunU2Ul5Xyw+t/Lu9bxSHTY918josZmUpA8nNhlgHQwIxL9rVKn5R53SXAObxaoro0B3jmyLZUC2gusBVDfAdoTqh6GowawAYZv9RcqxRZnCxrauKWadM4EQzmjcsG43G+GBxkYmUldl1n5ZYtzKqvp66wEJ/DwZ6uLoqczrwj5P3vv08klcrPTBq6zpyGBnyWDXaJy4VpyUfKPB7QNLoiESKpFGUWYHfYbGKCYZpC+1ZUCHUbiUg9dDwOp58unaDPJ9+bwkL5mLLZIWr4ttskrypXJ+N2D6HX3LGjRknA9JgxgoZnzoT+fmHIvV6pyTlxQszNjh7Nzw3lsJSmCdh2OOSvrEwuNW+s7RDgnVs0TZrN9c9SGyqXMjg4FN9ts8mlejxSh93bK+eFQvKXM1AbVgla1oR0Vthry62b1i5hsnPmZEdbZa1ZF2835NgjFgAv9Mrn5LCkE7nz27oFSNtsUld9vFPWFSXQUC1APtdOPMlP7riDMePG4a2q4khnJ3avl8ozz+SMSy/lmr//nXO/8x2mzpnDo9ddR7yvD7vXy9jTTmP8pEmcNX06Z519Nqtffx0s9YNms1ExcSKRjg5SoRAVU6bgra7GzGSItLfTt3t33iW8bOJEvFVVoBTuigq8tbU4i4txV1ZCNou27q+QSnD1rbcz8cyzuPb66+lra4V4lOb9+8UN9je/4axzz2XOjbez8YwLoaRiKPf66AHw+IS1HjNxCERrujzOzZ4YdgGMkaAw3gCjJ4hSJxyEEadY5mmK/uadlI04Mw9MY/5u0rEgyszgLq4iHY+QTkbJphJomsawU+cwYLl8n3LutbiLKskkY+g2A09pDbruwFNcRTaVAEzKRpxBJhlHZTOYZhZN06iacJ6YLXqKqD39QnTDgd3ls1jmkxRdpilmZFbmtEomULnJK2Uda5pkt236krnRD6+9jknTZ3DdjTfRs/4tVPMhxowdy0AozNbde0DX+OfrrxMOhzl+ohXCQbIb/ikA3WdFdQUD0lg6icPhw273YLe7Mc0Mpim/4YaGOdhsDs477yELuCl8viqcziKUUsyevZhRoy5k27bf0th4LsXFDSiVkXpuM8s779yO33+MbDaJx1OGUmYeUG/d+ii1tdOsrOtVFBcPB3R03U7G5qBK05iNuHsbCMDegZiQ/R5x9e5FQPdMhJHOSC9OCAHVaet5GnEFt94xI4FnEBDeijiMd1rH1iLguhNxFDet9jVDw+61i7O7NdlleAwCLQHW3byOwaODVE6sJNgaRGUFIBc1FlFUX8S6RevwN/spHlXMZc9dRvHwYqJ9UfzH/IQ7w6y9cS3pWBp/s5+1N66VempNwLvKiJHagdUHaFreRDaVRWUVTcua8JS50HU7NePPw+70YTg9aLkJJA00XcfpLaZq3DlkMynQdXSbHc1mZ845c2kcPkL6AZVFaRrJjOLlV17loV//Ck3TiAd6qa6pkQkgm52SkmKJotNtJLIGmqYT83daihhhoDRNx1NSRX/zTpw2A0M3eHbXszx03kNkTWGYyz3lnLj9BKvmr0Kh6Ax38sBHD2Aqk5ZAC4PxQbJKfksaGhkzQ9pM47F7cNgcNLU2cXTgKBkzg0Lx0HkP8dSOpwB46pKncBtuHvrXQ2RMK8Ujl2cdPgr926VeuHzmEJNdPkNcxJUJoSOw40aInuDZpdfQvipO5qMr6Wk/wtFj7WDzMHLeMj58bgGf7voX+3dv48pFv4eGBYyct4y97zzGJzv/xae7P+aff3ma4adfCAdXitlZwwIxVtMYyqE2szK+ypmUqawFlJVVK20TcJxNSia0ylq52JbJ4ckxXGhSZ51zDs85gjuLhRDRHTJuzCT4yW23MXzCTDRnAfsOHpPPwu4jmUpzy10/Y8z4M5g4++t8/4Y7rXHljST7m7nl7gcYM+MKJs64iO9fc52MD5vfEtPcVEgA+78bnWm6BcJvl1zsbAJ8w+R6cv27bpCPM/vodrJZnY6OEI8+Oo9Ro0owTYXP57AYZZPe3igtLX4WLlzDsWN+CyQHaGsLMXNmPU6njb6+KK2tAXbv7sLptDFiRAm///0leDxCVOi6xowZdXi9dqZOFROzigoPbW0hTpwIcuml32XKlFPo6upg375HmDRhAgD3L3+Ae3+5hFlTZ/CLm+/jFyt+zQsH1uIrLeKRx3/LD6/6AZeecyFXfft7PLDsVzzwzVswlaI34ufWOd9BAcve/wOt/u58hNfejsN0h/pZ8eHLtPq7SaSTlHqL8cfDXDv96/z5+0tx2V0cH+ziV+8+T094kDEVjXk/nRvWrKE9FGJkSQnVBQXMbWigIxSi0uvFa7ezct48RpaUkMhk2Nbezsz6erruvJNV8+eTyWZpLCri2csuY3RpKXfceiszxo8nPjjIdy6/nIYRI6jweilwOnnlpZeYc/nleZa7zO2mwOnk10uX8tf16xl/6qn8aOFCXnnheZwXfR1t3ARrMCeqOdXSjOrqgHRaJobX/X1o/GhmMduOizmnNY5UmYwYnv3H7Cy//Adc/3ctNrtIsnc/OtR55QZsu1YKQDZcUHE67HrEko/bpEOL9QkoPneVnLNxEcR75Yu/7SEYcyWc9wQUNEDRaOlwQycExLsroKBGOsmNN0OgBWpmYieLy3Bw73nXUF1YbqliTe4+92pUR4TPvzjEhNPGM3ncRLZu28bNNy1i6z8/RNc0ShqH8daat3hv84csf/JROjs7mDhhIoYuMplAPMyEqtEMxEL86t3nKfMU8UVfKzZNJ21mCCdjbD3+CS9se5OsmeVvzf8CwG43uP0n17G5aSt0L6S+2k5Xb0oyWweWoUKraW1tpmH4WEh3iXw8/QX03g7ZHr6ceS3MMwULBCinj4tLeM8twmpnWqFnERgVYFRC+thJTuKDYFRBNiAs+/z5jCotpSMU4t3mZtpDISq8XvpjMXxOJ07D4OlLL2VOfT23b9hAbzTKjLo60qZJMpMhnsnwwFe+kp9ljKbT7Ojo4FgggKHreOySldvU2sqJYBAN6I1GaR4cxGmzYdN1sqYpCR6miWkYqOnThT2eNUuAdG8vPPaYIFLTtAwpLHOVW28Vw7NEQkD53LlQXy+oNJd3vW2byMLjcUGy6bRQzjnncBC5+ciRgmIzGZGhr14tJmfIqScfrpQ0tW2bvOzMmUNf+XhcJOHptBwTj1tzSBl5C0qJEdr27TJvsH37kEH5jTfKpb7+ugD0YFDeRu4143Ho6NJQhm0IDOfY5IZqAcA5hjm3T9OHsqj//ZwCSzoXjopLeA5A65bkr617CHDn4rdObqetm29+7XI+fP99GurrhfGyQKOmafz5lVfYtW0bu7Zt494//5mChgbrvSieWrKEXdu3s2vbNr51xRUM7NtH6PhxMrEYmq5jczox3G7i/f0iETcMYl1duMrKvtT96E4nus1GOhIhawFBTbeu9ds3sGnrdj755BP2bN1CeWEhP7zlNjDsZMysuMEGOtn1j9d4/NFH+fb9D9Dz1xfEuMzfB3UjIRKWCcFMBr74TBzDE3FIWcqKbEZcxY8eEMM0t1eivv7rd2KMVlwq5mnfWwSaTtW4uWi6Tsen75GKBnAVlpNORMhmkvgqGvGUVKPrBrphJ52MCTg+7RzS8RA9h5rQrHxqhZTgnOzOHPP3Sq51abUFaixlzL/32UoRD1jfgUhY3L7DIQE2B/YNSdxBvge6nh+MoGnYps0Gw46KhPlo/Tr2HzrE7q1bKK+q4sevvoHtutspcrv5209uZPHPljB19lze276D00aMwNB1kaDP+yqaw4mKRCRHOyJ5urrDQzodIxrtIZWK0NGxg2CwFYejgGw2gabZcDh8pFIR2tu3Y5oZfL5KTDNFSckofL5qLr30GSZM+DapVJh16xYxMHCETCbOtGm3UlAwDNBpbf2YcLgbu93FyJHzmDPnZxiGC103cDgKhIm31D6GpuFSKh8dk0UGFJXAQuALa1slklutI0x1LpHbh8i7FRADbgU6gKLcfwfCiJtAI7AJieoyEdBuQ4D3E1ZbuSUVSnFyudvJwHfLii2kwilqp9XStrWNTCwDivz+zUs3ozLCTKfjaTxlHk6/6nQi3RGa321Gs2kYToPGcxuxe+2orEJ36GRSGWbeM5PxC8Yz695Z6IaOpmvMXjwbzWZDN+xk0gmUEjUSZpboYIfks+d+s3YnhsuHyqRIJ6P572Ru0TQZKB9tPkppSQnLl/+G6TNmcfE3vseGdW/RdeBD6x4AP7zmR4wYOYoHHvwlf3zpD/n4LmDoWswsVePmEk7HyJgZVl64El3T2d21G6/DS0+0h3AynH/9FVtWsPrAasKpMK3BViLpCAvXLOSLgS+IpCJsa98mUXhmGhOTWQ2zGF02mqyZZUvbFgbjgzw2/zGU9c+m21h2wTJsug00A1U2HWwFUDACKmYJ+MsmIRsVUDv8KjhjlfwGD66wIruWngSIlwgQzMRgzx3gaYTpL4B3hHybbF4Yd7cw3xWzZR1tkVzt8tlw5pOgO2H6i+AdbvUDHQKazbTl7p0YGquBAOZgs+W0HREZt26T48NtVlqMNgSgc2WC2bQAac0m7t0FdQLedae0FTwGNgffvPIKmt5+WTK85YsDhpv7fv4rNODI3s182rSGR5YvFVfxcx7jvtsXomlw5L2n+PSj1TxySVLImqs/sRjvOvkDIW3GXSUkjVKihDy8WkB4MijqATMDHU3g/0KAeawXzCSccQe2tJ/Jk6vweh2EQim6uiJksybRaJrbb9+A1+ugosLLrFn1rFy5hfJyD48+upVZs+ppaQnw05++R3m5h/r6YqZNq+WnP32XUCiJrmvYbBqZjMm2be20t4fweBzceut66uoKKSlxM316HStXbuG22x5i8+ZPCQajfPHFCfYf+IysMtnYu5+Sq8/k8hU3sWXnVqZ85WyuPutSXIaDcy+9kGff/jObtn3Mjj27mH7RXDwOScoZ5ivjaH8bdt3G98+8hL/u3YBN13Ha7IytaKA3MsjVZ13KQCxINBlDKZNJNWOoLqygxFNEJBnjjzvfzkfX2m0GWaXyqTJdkQgngkFu37CBy089lclVVSilqPB6cdlsRNNpFDCtthZdEwVngcOBrkl+t3QLit8+8QTNx4/zeXc3r3z8MRt376bPimRd9uqrfP/qqwkkEmSUwmGz0R2J4Csr4+1165ixciWf7t3LuXPniuLK7oCgX0B00I82cTJ6o0REqmgU/ey5aHY7yt9Pdu0b+WQLslkB1gO9ZN9ejRro/Q/Atpb/gOv/rsU05YZw/lNwxRqY/nPpUDUD5q4UgAzSuc5dKTcFlRFZTzoB798ozDYMxXElA/I41i37/YeGZiBzMVy7H5UOPjcjGWmTzv+961FK0RHsRaHIKpNQIoqpTG65+Wb2HvqUzw4d4PMjh5g+fToXLlrAjxdei1KKcuXF0G0MRIM8/ewzeL1ezjvvPFBg6Dbag730hAfpjQzmcwEnVo8mmk6QyWYpcvmYM3IK1519BTuPfcZbez7gcO9xQPGXv65myngPhFdTaXuWM6aczp/+/AaULeaNTTOoqx/J6EY3uKeJjHtgxRA7TRbKFluAejGkjkPlKonoMmrz8VqYkaHHg48Kc517PrBcYr1UFlQCPdtNXzTKDWvWUF9YyOFbbmF6bS0ft7ZSV1CALQeSgJGlpZw3fDid4TDHAgFuXLuWtpCw80VOJ16Hg7kNDXSFw0ytraXDCofOWvXck4YNo9LrRdd1uiMRJg0bZrEAsoRTKbZ3dKCbJprLJQjzhhskVqu2VkKjUyn5M00B09msgODubkGhs2bB5ZcLSv34Y2GiFy0SfXVBgVDCbrcA65xEPMc8btsmaLi2VgYEixfDVVfBqlX5+C2Ql8xkBAx3d0tpd12dYPL+fmli+3a5/P5+MSePRGR7TuWulFzKpEnCRE+aJBOpo0aJu7jHI/XYfr8YMLvd8lpPPCHgvLhER+k6Kgem66tkMOJywJhGAca5fQ3VX2IYv7QdbUje7XTIRY5ukHYU8nfy8VlTjk9lhrbXVzH3K+dQV1sr35WT6PlsKkUmHh+6ASmFymZJRyKgaRSPGYNSinQkwq6HHsJVUYHd68Vml9grd3k5umEQaWsj3t8PSlF2+ukkBgbQDINIays7HnyQaFtbvu441t1NMhAgk5vRCAdp+HgNdHdgNzPcftddbP74Y3j1KRoqy8QNVgvBhteYMu4URjQ08GntOIhFYdR4CAWgrwMGe+FPj0NBsUi+c/nZvZ3iNGozZN+rT8m2wd6hqC+7U45/VcKXNN2g7+j2fMavmU3hKanCZjixuwrQdBuGy0s6EaX3yBbSiajkAh/dTunwyUPZ1vEgaBqGwy1uyi378JTVDMnMrQmo6GCnABulUMrEzKToOvAhroIKUCbmts3iFO5wotnt6N+7Hs2QGR1z0/vSlhWlRTAAmoY52AdBP+ZHG2goLYZMBn3DP7nthz+gacdONK8Ps2kj5158CR+uW8vO9zbwyEO/ptPvZ9zwRpGcR8Nk17yOVlCI7brb0YZVS3QXJuFwJ5s2PYRSJnV1Z1NQIDGOum7g81URifTicBRQVzcd00xbNdWuk1huRSaTxDDcnH/+MiKRbhKJIGVlo4lEulm/fhFebwWhUBtebwUFBTUUFw8nl4WdSoWJRLpIpSSyTqER0TS6gQgChEEcve9B5N8eBECPsn46uwCX1X+mEBbbbh23AnEMTyAS8haE3V6EgO9DwIsIqHZa++6yjs/VdWOCo8AhUnBrUaZi9uLZeeDrKnaRCCSEke4K09rUmt8/Z8kcNF0jk8xgpk0ysQytH7dSWFfIdTuuI9IV4aMHPmLCtyeQjqeJ9kpGtt1jp2RkCZc+cym+ap9kZ1u12rpdGGW70ysO4Nk0XQc+xHC6QbehKZNMUqTjGpBORPOP0TTMbFr6CXkzpOIxmQA77VS2b9vCqsce4wc/WkjaU5v/HTz/9O9oPnKQO677Fvfdd69VKiFAOZOMkYoG0DQd3XCQUVlag60sXLOQznAnU2umYuYmkQBd04mkIqyav4qeu3qo9lUzt3EunaFO3jr8Fiu2rCCQCDChcgIngifwx/10h7vpj/aLsY+mMbthNsN8wwinwhwZOMLWtq1EUhG6I90Ws22i2dwWQ2pY3xDdSkYplOdmCuwFclFTn4WR18CEn0kO9rTnwDeSvJfNpKWyVkrAeToiQNFeIiBb0yXOK94JHW+JHDzWCn2bxXl8x0JrBqhOGOVIx78BZGSd3265fkcsL6CTj9c0AdC+WguUayIZ16161YJ6ec/JkHVue/7cubNnUldqCMAVAx6iwX5e/OOfWPrzu9DsHvBWUlXmhWySaNrGi++fYOmvf4lWNxvifVQFN4vi0VMpn6fKCkh+byHE++CCp4WkgSGn8an3iht5sFmY7IpJEhtreMTXZ+Mi0O1kXcMIBpPYbDpdXWEeeOAjTpwI0toaZMYMSbYIhZL84Aen88QTF1Na6uZnP5uDUrBixccsXXpeHkjb7Tq/+c08enoi3HjjWpqb/Wzf3kFFhZeOjjA2m8aKFRdQXe2jqsqH02lj5cp5XHnlOMrKPIRCKRYtWkc4JAzr9dOvGEq10WxU+coJJiJomkZ1YRljKxpY+eErdIX6mVQzlr0dhzk+2EVPZIAydxHhZJT6kiruO/9HmNb32G13McxXxiu71lLpK6HUW4zD5sCwJr40wOf0cM3Ur/Lbr9/FqZXDyWSzgMmq+fM5uGgRsxsaWLllC6sPHMCu65hKcdxSSbZZY8QcmI6l0/RFo2SUxLlmTJOUNXbQNA2fw0FtQQF1hYU8unUrdZZycXptLQ3FxZS4XKSyWRKZDEcHB+kOhxldVsa9s2aJuiWVBE0Xj5PiMvQLv4a5azuapqMCcn/TCguhpBQVCWM2fSAJFx9/iF7bKGV22exQGsbmjf+3M7H/d1n+A67/O5dAs3RCBXUiFdJ1yEStrGvAVSoMtaNQOrtol3Rcvsqh2cNUGE75toB0bzUMnz+Uh71zhSWnVidFLSyRDjz3vHq6HFd/AWgaDy/+FRPHnkZ3Zxffv/K7nDr2FJKZNLXFlYDG3o7DZMwsl0/4CoYuLOqfX/4vpk+eyoUzzuHTj3fzX397lawyiaYTRJJRzqw9lerCMqbUnsKl42Zz3dmXY+g2Ft20iNPGnEJnRydvP/QSF519LqXKjf76UW78+g84ffIM/rV5L6+8/AcLIP+MZ595hmeff5mxp1/Jw8/HeenF58EzEzQP6EVQdk/+WFQK7KOh6hnJq850Q7YPYv8C3TMUr6UXDT0uWyKf/cmgXPMAGhj1pPVhrNq2jXtnzaKxuBi3YbC7q4tKr5cKn49jfj+L1q0jlEoRS6f52imnMKehAafNxmMXXsio0lIKnU4yFvN8xbhxTK6q4tb165lcVcWxQIBF69dT4/NR5HLhdThQSjGrvp4CpxND12nx+9na3o5d15leW0ssmRQUmmOO29qkAztyRFjqjFXDnytGjsdhyhTJtwaheUePhtmzhb3etElY8BzVbNWgAkPAGmDqVAHiLS2CdIcPh2efBZcLwxgCyG5rTOTzyUu1tsocQE+PgOJFi0TR3t4+BIyLiyVJzG4X5frChQK+iyzayusdSgxLJIZI99x8AMCTT0oUdyIhEd2pJGguBwyvkQNy7ymZgi9aRQI+plGAcioDsYS8V5cDxjYOGZjBUJxWoU/Ac672OpmS4xprIBAWQzNNk2NzQN7tzGdfK9PEf+gQ2WRS2E2Hg4W33srpU6aw8Kab6OvvRzMM7D6RI//4hhs4Y/p0brr9dmqvvhpvdTXOkhL2rlxJOhYj0t7OwKefUjZxInavxPLYnE7KTj8dTDMfxXXwpZfA2pfo78fmdApAN7NE//EKgaaNsOE1iEf5y2uvMaW6AnZuonzbe5x/zjls8FTBJd+hZc0btLS0MG7yFKlT15DzCophnZWX/e4b8pnl8rOtdjFN2ZcD1CNOFbb6ku/IIHjtX2WfOI1RO/ECxp7z43zGL5qNYPcXdH76PjnjoFysVv+xnaAUFaOn4/AU0d+8C09JDYbDK5MYmRTFteOoPu2cfJxX52cbScdDoOu4CstRZoZUNEDnZxvJJGMC0pMxlKajX3w5+qSz0JwulGmiVdWgIjLw0eoaIZnE3PIRWuNoKC6Rn051HSoaJVZRRSAaE8b78Ge8+uhKpkycCJqOPvt8uksr88z4Q7/+Ned95RzGnHZavs1cPJfm9Z0k0TDZsmUFtbXTiES6Wbv2RnTdgd/fzJo1N+D3H0PTyD8Ph7tIJAKYZoZMJk4s1kcqFUHXRQre0/MphYV1+HxVSP21g/r6WWzf/ji1tdNIpaK0tW3B72+hrW0LoDAMF5pm5GuG/12WnUWA8hyGwHQPAqCRHpazrXUGAcg5ZhpEWm4HfgpMAoYhoHuZtX+b9Rom0Gedn3ttlXsdHcyMmZ880w1dBsVlbuavmk/pmFKchU68FV4mXTOJsrFlNMxpoGR0CZc9dxklo0tQpkK36RLlVeCgbkYdhsvAV+3DcBnUz6pHmQq7247D6yDSE8FMm2i6RseODhwFDrzlXnTjJICfTUtZQzqJphsMO2U2Dm8pmlIoNGwON7ou/9dOXwmeklpLEaBkoItkVXd+9gGNw4ej6zrf+973SMdDVBp9DG9s5MixNvkdlNVhdxVgMxzceNt9/GvTZoKRuPxmUOg2O56SGpmQyKQoshdQVVDFo/MeZXjxcOw2uY62YBuFzkJchguX4cLn8OG2u63uMcuMuhl03dnFC199gZqCGkpcJbgMF5XeSjrCHXgcHo4FjnHzuptpHmzGoTtw2930RnuZXjsdQzcocZdYE8o5n5lckYB1D9IM8jXYulv6gWxMZOJnPmEB6rT8x+firmx2MTvLRCD8Bey+HRI9Aq5dZXJMuAWSfcJgX9ELFXOEDXdViPS84y15fZtTGGVf3b8BZGTtqx1innNsdDY9dHxBnbxe8SghW3JxWzm5h2aT9nNxW8r88rk5ZlvPTTiYNH++i1KPYtny5Zw16zzmnHchGz/cBNk0zfs/orTQzbJlyzhr+mzm/OAhNo78A7grBaDnJh8cPlFP7lwh296/Qcaa7krx/SkZKyz99qUWodMjIDvcKuD/+Lvgq8ZhV1RVyX2ouzvCW28dZtmyJqZPr+Vb3zqN7u4IDz/clP8dVFR4qKkpIJXK8tRTl1BQ4CSZzBAKJQmFUhiGTnV1AffcMxOXy+D004fx+OPbmTWrnp6eKJ991oumaWSzJpFICq/XQXd3hJtvXpfPvl587wcYuo3a4kom14wllIzQFein3FfI6TVjAfik6wsC8QiTasbQGxkE4NTK4QQTYabUnkJtcSVuu4vl7/+B9kAvNk2nwOUVxVRhGWfWncrLO9egaxqRVIzj/i5+/d4LdAb78dhdDC+pZkrtKfRF/Kz48GWS6RR9sRgPfPQRJ4JBVs6bx1UTJ+K223EZBh2hEPu7uxldWorPIWaGuzo7cRkG5R4P8XSarFIMxGKkTRObrueVKKZSLGtqyke8prNZ3IZBdyTCovXr6QqH2WmROdUFBWjA6NJSlKaBryCvxlKxCJrNQJ93KV+Kj9y8Ec00IZVEn/kVtPGTxezMbojpqM2GPud89O9dh+2r3wKURHb9Hy4T/49b+H/XkgyKlMZdIbODVdPgozukFtrhE1CcCguodhRJfZGZQmZrrRlQe4HMOIZbpZObvhiKRg2d561Bhha6rCNdcOJd6P8MvvKYdbMBlCKpOwmlEiiliKbi+JwevI6hul8FpDJpsiqL3WbQFwnw4vY3udZyPhT2TdEe6KXHchx3Gg6iqTh9ET9/3Pk21519OTWFFaSzGew2g70dhylxF/DKrrVcO/1y3HYHbrsrf/zDl1yDHtsism29AKnay0BsG9irwd7AT25dyFtvr+VEe4y92//J5DPPBTIMH3kqTqcHt0c6h/vvu5tvL7gCYk385N5XrHOi7N21icmTp5Cv6ot9DN3XQcMmMMqF9c90w8BDUHYvUW08JpAxTdLZLHab3Ehvu+02/rVhA62trWzcsoVTxo/n3vff51933IHL6cTldqMBX732Wm6+5ho6Bge5YsECjP5+Cnw+SsrKeOKpp6hpaKAjHGZESQk2TcNUir5olFg6zdKmJhbPno3HbsefSPD49u2snDcPH+DLZtGOH4dHHpFg6HRamOXjx4WdXr5czMhGjBC0aZqCVLNWDWyuBttul8exmEjLPR4B2jt3DtVvDwwImvXm6o8dQw7UkQh88gmRmRei0MSjxZSXfvBBAc79/dLU174mxuPvvgvz54sxWc6jKZkUktxmE9n32rVw+LBcWjA4BMKbm8W37f77ZX7g2DHxbluyRFzD43E53ueDooIsPo+ScbVpCvCtGyZgF8ibyuQcvh0WcDnZiCyVEaBsKpGFO+xy/pETIvmuKBEAnUyJDLyhWkB1wnpeVyWfWZGPVCLBqNGj+a+nnuKMs87CVVrK8ZYWKtxuHOXl/PwXv+DAwYO8+Ze/YHg8nDhxgoaGBuKhEL9+5BH279rFA1OnMv766zFNE8+wYWCaqGyWfb/9LeN+/GM8NTWYqRTpSARnSQmxzk4OPP88Z9x3H8nBQa751rfY2dtLb38/pcXFFBYV8e7LL3Ll975H1luI0nRGjhrF7+7/KcM/bYJLv8uxUJRrb7yZ/v5+9HCAXzz8MFdG2gUI3/ZrKCkTI7KSCgHNl34XKqqhr1MA80XfgqIyMT/r7fzyMbliesjvy/74blLxAJlEBE9JDWi6sPeWE3jF6OnYPUVgbetv3knVuLnoNnu+Jl1lUqQTUQZadlsScxvKzNJzqInKU2ah2+ykYgEGT3xC9fiv5JnA7gMf4u84kHcK1wDdBGXVZcvkpTDc5vo30c+eA4XFYLejKcUNt9zKunfW093dQ1lZGQU+H++8/RbfvOwyTJcblc0wYsQIVj32GMNLS6CgkIW3/oSmDe+QiceYPmE8T/7lbxS5nOBwQjiIueUj9DkXiLmMKcx6WjcJBI5hsznYtOkhamunMWnS1bS1bcXvP8bIkRdQUFBDONxJc/MGurr2ctFFq+QrnYrw/vv3MnPm3Xi9w9iw4XZmzLiLaLSPxsa5BALHCQZb87XVum5jw4a7uPDClXnzNKUyRKN9pNMJQqFWiorqcVdOZLumcbZ1F8ox0f0IMM65eEeQbOoupCbbxRBjrRDAbPX82KSXxgCi1v44UGG9huUZjQLuAG5HarObgUeAF8NSF29mTMvAS2TbrZuEfS4eUYz/mB+H14Gn3INm01BZMUFTGYVmyPPAiQBNS5u48LEL0XSNZEhcwDOJDCqrcBZKn5IMJdHtOna3nWw6SzaZxXAbRLuj2H12XIUuDI9GMuKn/9hOKkZNw3B6MDNpbE4PJ/us5Gr9cwx1btE0nVFjxvLa6r8yotKFp7iGiy66iDvuvodLLrqI5uYjzDnvYvbu2Y3X6yUWjTKsspyeQ5vZcrCXu+5ZwoFdm3C4fdg9xXkjQE9xlbyubiOcjqFQ6JqOqUwM3SCcCtMd7qYr0sX02um4DBehZAhd1/HZfWRVFl3TOTpwlM5IJ3WFdSxrWsbi2YsZUTwChbB9Weu3ZNNsKES2rmka8UycnnAPDzU9xF+//iJa5CjEOqDkDPnfTofBXgT+feCpAe9ICB8REHza/VAwStyt3VWi+DNTEO8Rt+/JK2VMlYlA29+hfyuc9ZR8I7NRaTsbEyA9/n7wDJft/n2So23zgG+4NdFs3R9ytwkzC6FWyZ3WLD/8nFmoaUKiX4C00yrZMtMynvPVWgCbIXCtEBAb6RRZdy4fO5uSMaTNCc5Cho8czZtvvMbkCaew59nvcOZt63n5qeVcfd0t7N27h3mXXsGBXU10fPIuZ379dl5+/EGuvvQs9raEmbfgJg786+8M88SgaroQOiotv6Z0RMafwaPCVOt2azLDYrjNtFzkR3fCwT8LYXP+k5AIQDpGKtTHodhEVqz4mJUr5+W/s4WFTjIZky1b2jj77DpsNi0/Z28YGi0tfn796ybuuWcmVVVCNnm9Dk6cCNLeHqS2tpDly5u4//7ZDBvmxedzEImkrBrtGIWFTnw+B6apWLhwDatXH2DBgvE8+OA5FJc5KSp20Bboybt3VxdVkMlmONDdzNiKRlx2B4F4GK/DjakUuqbhMpwoFIl0ksf+9We+f+Yl7Os8TH1xFadWDs+PW388/euUugut36YkukRScXxOL5FkFMNm8MzHr3PvedfQGxlk64lPOH/sLH7yzrusPnCAqyZO5OlLLxXz2nSan773HvfMnJmvtd7Z2cmMujoySrG9vZ36wkLaQiGqfD6qCwoodDho9vtZZo0XR5eU0BwIsHTzZpbMmcOokhIypsnCNWtYfeAA10yaxO8uvjg/1kxkMpR7PAxzOMDfj7nlX+gXXy4TfTbDSucAAoOYTR8IkPYViHKtsFj2a5J+ICZ/ohBRifjQ/Wv2+ahQAK2oGK2sEs0w+N9t+Y9b+P+sRbfLzGDpqVBr1fec9yQ4i6wZRKST0wwxm8hJR3Wb7N/2ECQGZcbS5rBmGVfKTTfWK5JxMymdcM4p0jMMSsbAHGuuPzdLGW4nnU3jMhy47E7KvcV4HS6UgowpN0ibpmO3GWhouAwHL25/kw2Ht/Li9jfJKpOsMjGVouckx/H2QA+6pvHHnW+LHNyqqe6NDLK/8whTak/B63AzuXYsL+98mxJ3Yb4eZcPhrcTTJspeJ7XSmGAGILYF3GeCIRLdb37rWpqadkrNkV4izt8YoDn5219eZd/uzezb8zHf/uZ869zpfPP8Ppr+K0pjnUVxqpgYoGEDexV45sq22BZAE2AdXg3pLkzEeOLGtWtJmyatwSA3rl3LuZdcwoYPPqC+oYEDvb30x2JSEwMs/f3vefi11/hgyxbuv+EGIqkUK7ZsoXPMGJ5av55X33uP6MiRXHvddditmuob1qzhyMAAkVQKj8NBWyiUn3ms8Hp5fPt27jj7bAxdp6m7m0FAjRmDevppAdQ33yxy7W99S4D16tXiHN7eLkXLOYOzXE11W5tQxYmEdIZutwDpWEyo5epqed7bK5FbLpccm0yKA/nChYJ0XS6YOBFNG2KcT5yABx6Q8UVvr7DUx46Jk3dVlWD/o0eHjj96VOYFTpyQc556St6SyyVS79zl2e3CTq9eLXMKSgnOnzsXOjqGCPeHHpLX9XnJRx6Rc/Lu6JXvgKnEGdymS+SWrg8ZnCVSEIwMsdUgjRd6LVdwviwFD0WFBR/bKGvFUL11R484lSM1zrrDgeF2k43H2fHgg1Q4HNgcDuyGwS033sjHW7eKu3dbG90vvki0owOH08mtN93Ex9u20frOOxx4/nkKGhpI9Pez++GHiQ8MUDZxIgeee05YacMgHYsB4LUcxg2XiwPPPce3s1lWX3UVMb+fvW+8wReffcLIM6ay9/AXfLJ3D5/u3M4/n36S4T6n1D+XVTJyxEg+fHcDn+7Zzf4jX3DlNxcI2zx1rgDq8iqoqBVDs6tvk/Vgv+y76haorJX/zHhUaqu/t0jAeF+XTGT81+PyuKIavvZ9UCbpeATD6aXj0/dJRvyobBq7p4iqcXOxuwvBzBIb7MRmd1E9/jwyqbhVs5ohm4yiaTqZZJRhp8xGWbXTmqZTecosADKpGHaXj6rxX5FZeTOLyqapOu2cLzmFd3z6ngwscmoQM4vZdgJCAbTaepGL2x1oponKZHjmt4/RevAgqZ4uuvbv4dBvHmRkaTF79u1l36aP+OSTT3nzH/9gxMhRmE0bya76Nc89soLP9+zi0HNP8F+vvU5hIpaXn2tlFdguvVJqt5NJcS63AH5x8Qh8viouvvgJxo27kra2rdTUTGXixO+xadOv8fuP4fcfY9y4K7noolWWu7rEcV1wwW8wDDeapnP48Fts3/44DQ1zACgoqGHYsEls2HAHoVAr0Wgf8+c/hqbpefO0d965g3Q6it3uwuMpZ/PmpdiQ6K0MUkedQWqfhyFAeiFwHChEAPA5DIHoOxBAnDs3Z/V0DDFEy4FvHxLrZVrbwohM/ARwC7DSOs8F3Il054GWAG1b2gi0BFh741oCzQHqZtThKfegsgq7x4671J2Xfmu6hpk2ifZHySQyaLpGuCPMgdUH0O06ylR4h3lBQffebiI9EfIaUMBMmwx8MUD71nYMl0EmnmHTQ5uI9kQtw2lFJhmlfOSZ6DY7us0QYI11wTnUkQPW+UXjpkW30jhiFO3tHVz21cs5+4Jvkk1FeeyRh/jdk89w1tlz+M73r+Xp3z9FTXU1gcFBLr/8cs6YejaX/vBennvhZf75j3/gLavD4SlGQ5GOhzGcbjoPfEA6IVLx1lArW9q20BJo4ca1N9ISaMHQDLoiXVR6K9nesT1vVqYj7vVKKSKpCAXOAiq8FSxrWsbqA6tZ1rQMXdOJpWN8MfAFN669kROBE2TNLF8MfMH1a67nuP84bsNNfXE99868V4BcrGuoFhoEJGNC+dkQaweykOyFKSvAbamTbG6Rdu+4AeJdAl4rzxFiIjf+KZ8rYDvZJ2Mmo2CIoW5dDQcfkQkOm1tqr72N4Cy3gK81vspaYy2QmKx4r6zzDLsOmSSEWkSJaPdaZYB8SeY9BKiTVg231W6+rtsyT9MdAqwNJ0NfCg00Gw1fWyGlO7W7IdjClClnMKKxgU83/52GMZNk30VToGoaU0YUMWLECD5t6RVpN6a8n3RcLsRRKJ9rQYN87po+9MXOxGHTPXI95z0h5Y1T74NgK3gqYMcyUkUTWLp0MzNm1GGaIgF3uQwyGRPD0KitLeDWW9eTzcqb0HUB2Y2NJdx99wy6uyNEIkkMQ0fToL09SGWll+XLm1i9+gDLlzfh8zk4dizAvn3dJBJZyz9S2tuxo4MlS+awYMF4fv7zOdTXF+IrMMgqkxe3v8lHzbtw2R1kshk+626m3Csqo4fee5FUOoPb7sJrF5Kp1d/NJ51HcNtd3H/Bjyh0eZh/ygwm14xF1zR8Tjf3nf8jKn0lOAw7HocLTdNw2Z247S4e+fAV4ukULsPBrXO+Q0ewl6e3vM7kmlPw2J3cM3MmC8aP5zcXXEDEUj567HbuOvtsvA4HaVPG2GfX1aGA7e3tVHq9tIVClHs8rNiyhVAiIUb0hsGs+npWbtlCRimqvF4ePOcc0tksh/v7aWptZfHs2SwYP57fzp9Pi9/PDZb/j8swCCQkwUiFgtjOuxgyGYnZyqRR0Yj4opSUY7v4ClQoCGYWraDIKlU5CVgrE5WWskTN4UArKcM27zJUOITm8f0fLRP/D7j+71qUEmONVNgapKUgPiAdqG6XGUMzLZ1wtMs6ziQfvTVnhXR22YSYkuVMzDRdZjhrZkLXTnEGt3tEtpNNQM1suaGYGZltDDSD4cRA0R0aYH/nETKm2PbH0glWfPAysXQCE8UnXV/gt+qyrp3+deafMoPrpl+OBix//w9oaEyoGsWre95hcu1Y7DYDl+HkR1O/ZsVuXYFdN3hx+z9pC/TQEezLdy63z/0eIPUod3/lB7z5o0dxGTY0+wgB1yoj7LVnJjK1LbzH3LlnU1dXa23TxPnbDMtzMwJmVDKudZ/kWWsu5l66iroxC0AvhsR+yLSRFw/GPobyX4qc3DNb/q9yknH3NNRJxhPhVCovt6k87TSSPh8D8TglbjftoRDzRo4U6WM0SoXXy6L16zkWCFDp9fLz885jwRVXcHZ9PUs3b2avzcaho0cxT2p/xZYthJJJgokE02prWTB+PItnz8amaaycNw9D17ll/XrKPR4iqVQ+/5iODgl49vkEhT7zDKxbJ8XODQ0CjnVdAILXK2i1oUFk4TlDs1RKGGuPR6hlr3eIVYxEBK3mdNheryDaRx7Jz1JmshKdNWuW4KiiImmqvFy+7p98Ik2AAOQZM6QO+7HHhmqrLUPrnNkyui4vF41K7FYoJAC9p0faaGkREH/55ZKl3WV5T82eDWWlJiSSlnQ7LY3lIrZAvjt2A+JJAdSmKexzzsjMa1kr5QYyoYi0U+STbQ5LUu50gNcFkdgQW6ExBL5H1uVdw5UlS3cWFXHg+ec5sm4d2554AldJCZrNxuv//CejS0pwlZay6/e/5+DatRx47jlsdjur33iDyaefTsNFFzF+4UIADjz3nEi+//AHqmbO5LRrrxU5uWFQ2NgImka0rY0dDz5IJh7ntOuvl/NvuEFc6U8/HRnMm9DfAy+vAv+A/OeNOEXefzIBiZj8ZdLyOfn7obRSgHRZpVWSsB/+ZPVHA73w1itidmYY0kbQL/FcNrvUVT/+C1j7F3m9bR/IY5QYn2kanpIq0gkBIJlklGwmSSYhtb3peIjOzzZiOF0kQn1oGkMA4bMPMLMiPbO7fXQf2gSA4fTSeeADsmlxUE9FA5KRnUlZ0V5hqQfVbdROnIemG2i6TZhzCUBG+Qfy5i0YdvSJZ6BffDkqZYFew8jXLmi+QrTCYvRZ54LdgWbYUYP9qMCATGBpGvqlV2Lc8Qtwe9CKy7Bd9k20klL0ukaIRcSRPDCI2XZcPkeHA1JJVCQkjKKZJRA4zvr1t2K3e6ipOYtEwo9pZi3w7KK2djqxWD9r1ixkYOAI6XQU08xgt3twuUpQymTBgr8zb95K0ukoAwNf0N6+DcNwcfbZdxIKdeDxlGGaGQYGvmDdukVkMnHmzVtBKNSB11tBLNbPnDk/w0QRR6TfaYbk3U5Eyr0akXWnEbY5t9iBxxGTMpt1jMXX4UUA+wngZgRs24Cj1vMeYBoCqscATzNkcDYGqa/evHQz3govTcubOPzWYcJdYZF5u+1ohoa3wouma9jsNnRDJxlK0rGjA0+ZB93QSUVSNMxuYNHBRdg9OVm+uILXz6ynbHQZygILDp+DVCyFs8ApJmlb2gh3hamdVsuWFVtQWUW4J4q7qBK7qwDdsBMd7PrSvV5EYcqqrTbz33dlZnj6909x4vgxkvEonR1tHD54AHdJLZPPnsf7725g756d7Nm9i29ceSXpRAh75ChbtzSxd+d2du/YyoZ31jNh3GhUNi0yUDS8ZXXYDBfhvuP0Hd0BStEWbGOYdxhd4S5WXLCCKm8VbrubabXT6I32UuGtYNqV05h46kSGFQzjW098i2Z/M6YyKbYX86t7f8XWe7ZS9GIR0b9GyaoswWSQFVtW8Nbht3jlj69Q4inhUNMhnr7kaYYVDKPF38INa26gqqBKSIbyGRa4M6Uuesxt8tkne6F8lnXMTDCKpV9RCEiOtYuM+8Ayed7wHWGmE90ytvDViyQ8FYBdi6SmWrOLI3jDAgHe0eOw8yaIHYe+HUPybc2qjzacAnizqS/LtrMJibHKHesoEAWhbpNrNDMSmZU7PsdY5/OyNVnn6rpzIDvYbJmjOcnflJQJKkt5eTnnT6pkQ9swKKinpaWFlhOtjJt2IeWuOOefew4bdrbCB7fQMqhoaTnOuHGnyrUZXjHS1W1DCshUZOhGrJSQOoGj8nqTb5HxaecWKTEsGSvMvAKmLcbhtLNkyZy8BPzo0UFOnAiycOEajh7109YWYtq0WtraQtx++ztkMibZrCKbNfn973dSW1tITU0hpqno6opwxhnVlJS4uP/+2SxYMN6qz1asXPkx06fX4nYblJa68n1JWZkbj8fgmWcupbGxmGPH/PR2x7BpOj8992rWXfcEbruLlR++Qqm7EI/DicOwM7l2LE67QXugl3gmid1mUOByM6nmFKvaX6fQVYDdZmf5xpew2+zE0yke3vgSfZEApjKJp5NEElEyponTcPD9My/h5Z1vY+hCUr1gEVR/2r0OG1BTUMAvzzlH/Hiscp9IKsXosjKKXC62tLXRFYkQt5zCZzc0MKasjLmNjZS53dw3axZVPh8tgQAPfPSRgOt580hls/z1wAFi6TReh4PfbNnC9//xD7x2O89ddhk2XaczHM5HelV4vRS7XMI+V9eiMmkwDPS6RsyOVvFLsTvyng96rYyhzPYT+RIus/2EpGeYJmQyeX8XdBtmXw9aQSG43cJ6a9r/kRLx/8jC/7uWZNCalUyLAVm0WzrlHctg6j3gqRIW239Y6l7OeUyANmoo7kCzQaQbvMMAcygXMdop50y9TzrjdEzaPf8ZkZDvWCY11+5yucl4a4mZJgOJOEVuH+lsJi+F2XB4K5NrTuGvezdw11d+gKZpGLqNrJnFZpktfNL5BW2BbiZVn0JlYQlZ08xLZK4/+wpqiyoxlYlu5dCK6UKaFR++zIbDW5l/ygx+Nu9aDvYcY2L1GEtynabEZUczQ+Lbq/vkvZuWGFBzQeaYGJiVLWb4qV/lzTf+wuTJE0CZDB91KoWFZSg0pp01hYeX/5qKinI5X/cBGYaPmsSbf13B5LPOtdhxG3TfBGV3i/u4Z4Z1s7MjvIhBOGPQYklsHrvwQvpjMZY1NfHUJZewaN06Vl93HfOWLOHVm2/GbrMx8ZRTKCgooCMUIlheztcWLeKVq64CpBbGYbPR7PfztW99ixljx/L7J56gLRRi6ebN3Gt1ljpQYNVp56TiCvKynve+8x3OLyxEy+mlAX76U0GcmYy4hTU0iLN3Oj2UXzU4KDSyUsJa19dLPnYmI8A5mZRjBwYEUC9bJqZl5eVw551ffnz//QLaPR7o6iJaO4ZQxIZpCrFdVSW11kuXyqENDXDTTXKJLpe8ZM4pfN8+kYg3NgqQ7u4W6feSJaJqv+46Ae1z5wopf889cvyePXDZZQK229rknHvuEdMzryuL/djxIen22MYhGXgqLc7eDdUCqD87CpWlMKZB9tlsApJzUu/6KgHi0biA63gS2ntgZK2lLDG/fHxOGm5ag5PmNm6476es3b2d7p4eykpL8brdPHzBBTy0dStK14n39TFu6lQeuuMOyg2D3lSKb191FfaSEjS7nYaaGlatWsXw+nrMTAab00mkrY0Dzz3HhBtuwFs3pEbKRKPoTiexnh5inZ2UTZyIbrdLuUc2i26z0ffpp5RPmIDNpmOz2dACA3BoH5w1B9Cg5ZAA6NJKaTSbM9DRJNPaVwTpJLz+Isy/EsqGCaguHwav/E4k42efB9+/1XKoM2W/0yWxXS2HoLQKSkrFEM3tEQfxTJqsw4HSNNKxAH1Hd1Axehp2V+FJsVwdnNj9NoXDRlEz4fy85Lvzs40Euw5TVH0KtRPn0fHpewS7DjPmnB/Re2RLfl/1+HNFTn5sN+UjpxLzdxDzd1I5dgZ2pw8FeQl6+cipuF1FqEgI86MNqAP70L97LVpRMebmjehzzhc23j8ABYVohlWnr0yZ8U+nwevD3PBP9BnniAN4wwiRuvsHRE7u9VmyuiHpb3bdP9DqGtDHnS7ycGtRA32YWz4ke+nXCEe7+eijX9DQMJdx474BgGG4iEZ7cToL6e7eR0FBDaFQO6+99k2+9a3XaWiYZVkrpLDb3ShlomkGSmXIZJKkUmHc7lKy2TQ2m4NgsI1QqJXa2ukkEgGSyRBFRfUkEgFcrpJ8G0qZpJ2FHNE0ViAGZnUIg2wgYHgZYkAWsv6KpAfGLt8q4gy5fGeQmup6JK4rZ5CWExNuQwzOvoHUZtvkjoiGMN8OhClwRJMEmgME24IU1hYS6ghRfUY14a4wzgInrhIxM3N4HSSDSRwFDpxFTpGGWzJyTdcwMyZtW9ooaiiieHgxZsaUWm4FNpcNM22i23WrdAACzQE2L9vMjLtmEO2LUjKyBDObMzRTmJkUpvUZKxSJUB/e0hrMTIbuQ5soHzUVXTcwzTTpeITWPW9z6rybRKqpaahMSiaHLNWbZthJx4P0N+/Kl0gowMwk0e0CPjTrPpJNRtGt72nX5x9RPnIqdpcXM5PGNDNs7/+UEk8Z1QXVdIW7WNa0jHtn3svIkpFyT9fgtvW3UdBdwPXnX88F515A4PIAl3/lch4850Ge/NWTpDNpHv3to6TNNG2dbXhLvHgdXjrDnew/tJ/f3/97UpkUhecX8tSdT9FY1MjHbR9z2V8uo+euHiqcbjQzK+D2wHIBvr7REDokMvDxi4VN3nOnPI61g6fuf1x7LGl1yJKPj79fpOaeeon6+tdlAqinPSd9tSAIMTBrXW3te168cZwV8uU7WcaN9RhluYPbBQRnUydJv09+Xidkiq4PMdaRdigcbsnFO6zIVCdkEjK5EG6D+CAMO5Mbbl7E2rVr6e7pzZedHP18H8daWrj2hkX097Sj2938YslirvzG10GZHGs5wbULLqS/rwfdVcQvlj/JledNArtbGGctx6lpkI5C0i/XEGi2xo73y1jUzIgJWtc2KW/c/aiMKz0Vci/wVoLKEM24yGSGcEQymWXSpGeYO7eRJ5+8mIGBOA888BH33DMTm01n+fImFi+eTXm5h3A4RV1dAcFgknA4RUGBg4ICp5UkYpJOZ7HbbdY8lGb9YTHjOi0tfhobi0kmM2iaxo4dHUw+o5LCEklkkTxqg2g6QTqbJplO8/z2f/CjqV+jsbSaWCqBqUxWbXqVa6Z9laqCchLpJP3RgJQ6Tr+cXe2fc8m42Sx7/w/58ewDFy7khL+LgViQSl8JL27/J9dOv5xSTyHxdBKP3cVgPMgL297knnOvJhiLUllUkR93JzIZgokEwyxX2FwJYtaqpxbyK82977/PT2fOpLGoCE2TrOyb1q7lz59+yoLx43n+sstQQDKTwW23owGJTAYT6I5EWLp5M/fMnElNQQF7urqoKypitOW34wYY6LVk3OcJoHa5pXTDVPIdTyZlktcu/YdmmqhEHM3jBV3HbG0RI040mVR3SnmTlkrJfSybkYnoTAYcDn5y1928vWYNJ06cYO/evUyePJmBgQHOP//8/PcnFotx7Ngxent7KS0tZdmyZbz88st88cUX/P3vf+fyyy/n/w3Lf2Th/7MW3S4yI0eB1EZXTJIIrrxRWUikUDlzMptdgLGZFnlRR5NIhLwVEsuwcZEAa7tHgPrxdwVkeyqHDCZ0m3TSNbNkX6IftjwAoRZsNifxdJKH3nuRnvAgSilchpMZjafzx51v850p8+kO9/PQey/QFujBpttoC/Tyq3efp9xbzAVjp/OHnf/kouduQWNICt4dHqA90MOv3n2e9kAPmWyWhze+hEJx3fTL8+z3/s4vGFlWT3uwl4fee4Ge8CAaJhpK5OBmWNhrFOheixFbYTl6LwM0yHRIfFamjU0fvscn75zBni2vUF5exg9/dC2kj0Bit8Rrdd8CmGCvkfqi2HZpu+opcRJ3T0Xk5XZIH4VYE6SPYiPGyOJinrvsMoqcToYXF7Nq/nx0TeP+2bPxOBxcf8YZeOx2eiIRnnv9dXbs3i112A0NDLz6KrF0mqbWVo75/ZhK8cqTT1KZTPK7lSux6zojiot55tJLGVlcjNdupzMc5oY1a+gMh0mbJptbW9E0jSVz5rBg/Hi+UlOD1tkptG1Xl7DVv/udDA527hTn7/Z2eZ6rZ1VKtkej0Ncn1HFjo+ivb7xRNNqDg4J6q6qEhl69WgB2KPTlxzlm2+MRRq2qCnQdn0+A8QMPiMS7rW0oqUvTBCw7HMI433ij7DdNmDBBms5kBJivWCHnLV0q+xcvhgsvHFK7r1gBgYDEcC1YIPMCuXNWrJC3rGkMOYU3iIuyFHjr4HIKYG7vEan4yQzz8U6Ri2sMSbvbe6RBS95Ne4+Vf50VZjx3fDIlNdbJlAycdE1er6GaZ1/6Ay2Hj3Bi40Y+//BD9m3axOW//S17du/m+a9/nV+Vl7Nk0iROmzGDijPOYMKsWXx29CjvvfACm//+d/7+t79RV14OmibAuqMDd0UF0x54AE91dV7FoEwTm8eDBrjLynCVl5MKW/FNNht7Hn6YlrfeomzcOHYvWwbKROvvhrf+CybPEIa55ZAw13aHDAIHeoRtDgwKsE4lxBU8MGhlU/9NPp8Kq778Uksy/s3roL9L4rb8/VKbXVAs/VbDGAHW6ZwA2Fqs7GhNKfqO7iDYdZi+ozvQNI1kNEDHp+9huApoOOOrVIyeTjadtEyhbFSMnk5R9SlUjJoqUSbWc5vhGNo3ejq6bqP/2O68EZqvovEk0zSpdT3ZqVzYKueQeUtd45fNXZSC4tI8yFf+fhlkuD0ivdA0AdaxKHrDyPxb1YpLwOHAbDsh8jtNR0XCKE1Dn3cp2riJFrso7IAys6hoGHVgH7YsOJ2FzJx5D6ed9i3C4U66uvYQDLYyOHgUXTeorZ3Oli0rqa2dxre+9TqFhbWsWXMDwWAbdrvHAsUSU5ZOx7DZHKTTMdauvZFQqI1MJo7d7sLrrWD9+kVkMjEKCqrzwLqjYzvJZMjKCTdQQAnwAuIMngPKQSR66wWG6qNbELDsRszIbNbje37yE8YPH06ppmHbtw8XIiUfSCa575ZbOGPMGCZPnMhz3/8+X7PauM86p1jT2L9vXx5s55bChkLqZ9ZTPLyYhtkNJENJMTEbJoZE3kovhstg00ObsHvs+Fv8RHujArANDf9xybH2VngJtgblPbUGWX/LesysiTIVNrtN5oKzArg3L5Mor+2Pb6dhTgMFtQWUjCyRqC9THLp7j2whnYyiG3YMp5voYCearlM24gz6m3disztJxyN4S2vzwBpNQ1MKzSbWb5qmo+kC6geO7aFsxBloNjtmNo3KpkmEBiQfPpNCmVlQJsloEKUUus2gatw5ODyFaDaJrrO7CznQf5BlTctw2pys3LKSWfWzqC6oJp6Jc9s7txFNRVl10Sru/d69PHbgMRw2Bxuu2sBzlz1Hia2E/3r5v7j35/eSURlsuo12s515f5qHoRuMLhnNKw+9wvJHltOT7GFHxw7aQ+2gweyG2Vw18SoxSVOmfFsOLLcitpbJeCAfubUM0qGhx87yL68rZgmw7t/Ol6O6llvHLIWy6UORXWZKTNEA+ppg3F0n5VtrIjXXkDFaDljnJmvl1yxjO5tLjv+S9Pvk5+2W50lKGsht/3encaVkzKgZAnRLTwEzzbMP3017y2EyiRg9HSc4emA3pCOMLEnz4U9r+HTTm+zf8TFXXnou+I/AewsZWQYffrybT59fwP4dm7jyiq+C3SVA+r2FclwqLH92nzD7KntS5vVyAdPOEiF6/j1SFk3GpYGjpFq30twcoLc3yvHjARYuXENXV5j9+29kyZI5BIMJamsLWLJkDsOHF+fl3u3tIQYG4jQ3D5JIZPF47BiGhtfryA9hYrE02azCsIwBu7sjhMNJIpEUW7a0ceyYMOOplADwQCDB9Om1OFw2EpkUbf4eDva2kFVmHlh3RwbYcHgr/bEA7YEeVnz4Mv3RAJNqxsiYVAObrvOn3evyyTczGk9HR+Pak8azpjL50+51jK1owGGz50sf3XYnBU4PHoeLEnchN838Ji67E8Owc8zvz48Lb1m/npiVG53MZMgoRdZyBAfQNQ2P3c7s+no6w2HimQxdkQiRVIqV8+axYPx4lsyZQySVYktbGy7DwFSKcCrF3u5uPIZBbUEB982aRbHLhdtu55zGRkYVFwtwz2Skf3G6sF18BRQUQjol0nBNt/w/wpKMkXMT120owy4T4mvfQA30oQ2rQXO4hM3eskmAtVKi7vL3o+IxCAbIbvgnyj/IlV//Gps/+ojGxsZ8f11WVsa+ffvyfwsXLuTiiy+mtLQUgAsuuID169czd+5c/lda/gOu/7sWpaTDyiahd4/MRM5dCVesgwuesXIGdYnoumKNVV/jFuD8wSLp3CJt0taulXDGXcJSK1PA81W7ofIMkexUngFX7ZLOEw3G/UBk45FuiVTw1ZJVZl6m8sedbxNNxVEohvlKxYisqIIXt/9zqM7azObrrl/Y/iZOw8G10y/nK6POwlSK686WjmZC1ah8uy9sf5OMMplQPYrf/uvP1BRV8LN519ETGeSutx4jkozxwraha8jfsWyl4u6tEtD7U8mgVuokR+8l8jkEX7DA9lIaGmrAPQM73dx+201sbtoB6V6J7Eq3g3uGfP6J/dK2Z6YA+O5FUrcd3y2gmwykO8E1CTQXCifHAgG2WcqIWDqNoev8ZP16Np04QbHLRZnbTTCZpMDpZNbppxPPZDilooLnHnqIXdu28dP33svXyPzuscf4YN06Hn3lFW7duJHmQACALW1tHBkcpKm1FY/dzp0zZlDicmHTdSYNG8b29nZGWCBfM80hNNnVJXXUiYT8zZwJpaWijc6pUDIZ2L1b1h6PMM69vcJOu91DjuPRqNRbNzcLuF6zRgqgq6slcmvJEsm52rVLGPBcZpbdTiYjT3OXtWyZqNIXLBBwrOtCpIOA5hwQDoUEn//sZ7IuKBD2ecEC2bZtm1x2TY28/IIFYpZWUiKX/txzAtgXL5Z9S5bk1UjiFD6mUUzITCVAN+fyrWlWrbUmrLauD+VVt3aRj9iaMFoYbZs+VIc9pgEqy758PIhEvL1b1hrCcH/RKs+dDvRYQmKyBgcxnE4L2Jic8sMf0nDRRUy6/XYilow70tZG3969fHTjjRx88UVsTie63U7f7t1E2tuxORx5Njra2SnntLYysG+fAG1LppwIBPL13ZH2dibffTcDn36K7nQy7sc/Rtc0MRjbuUm+P0UlUiv96u8toKuG9q/7K/gKwXDA6PHw/j/gtClSf61p0NcNb74C5dXwg9vkP2awDy68UoB6NiumZX99RmK3DEMA+lv/JWulhMW24obKR07NA2LTzDLQshtPSQ2absNbVkc6HiHc1wKIzDsdD1Mz/jxxqv38Iwynh9qJ84gH+4gOtlM5dgYOTxFo+klgexqG3YPh8qEbDlLRANHBDipGT6Oo+hTKR55FKiX9qFZShu3SKwWYzDnfckk9H6Xpkgm69g2J4SooRK9tENlcRMqAzO1N4ipuZlHRiOSDrnkdAM3nk0GMJYnXMhmJ+bJqvFUyIfnWmQx6/XD0716LzWbH4SigtHQ0druHgoJahg2bRCTSzbBhk4jHB8hmk8ybtxKbzUFDw2zC4S7mzXuUkpLhmGbacv8+RiYTR9dtlsP/MJqb32XLlhUk/j/s/XeUHNW5/o9+qqrT9ORRGmmCIhKghAgSSmCCCAbbx0kOcoBDEAZsAzZgEDbYRsIWxoCNbUywMTY2RzIGw0ggkgGNhCQECiAUZyRNzp27uiu9949d3SOZs75n3bt+vvd77nKt1VNdVbt21VRX7drPfp73eXMJyspqCYcraGhYyNtv308wWFIE1qWlowmFytB1A8+zCYhQI4JD0VITgHKUi/gBVNz1AMrIzEYx0j9Cyb37gbmf+xw/bm6mYfx4Iqh47QjwwPe+h6lpbDxwgHfff58bfvYzSlFpt5Z87nM86e9TiO1OokC55yqGSzf0Yq7r0jGlhEpDWCkL13bRdA1N15h/03zEE6oaqygdXYpmqNjr8jHlRQa67ow6RITmVc3sWbOHYDSIk3UYPDhI09VNJNuSCijeplJ5Lbl3CeKJiixwBTNpgna8y72GhpM3CYRL6Nn7FqFoFeNmnAdGgGBJGeK5CiAXcqj7/YlsrA87nyYb78VzLMZOP4dQtAorE6dn71sgEK0Zp+TnRhART6WXqxiJa5k4eRPXNouu+aJpdKd7OHfiudyx+A76Mn2sPn81CxsWcsOGG+hKdXH93OvpSnVxddPV9KR7uH7u9biey6rmVRwaOsSe/XsoqSjhx6t+zMcWfowFixbQtauLrVduxfEc7rznTvpH9DNm6hgmVU/iloW3UF9Rz/Km5RxNHOXXl/xapf3SDMBQTHMB5MKwdHv6CpWSq/A9P3DM/HYVZvfOchh1pqpr+orhegplAiUw97dgdqrYazuhypbUQ64f5j6sAHoBnBcmN6dYXXEVKE+0UjSLRTWZVEyA0XPU3LWOl4K7figg2rCkXDP+yVEcP0xAVwRJqHwYiGuGIl3sjHrPWIlhUmbbKsBVCsXCuq0r1cDE/LtUCCEUY6SPy2FdSOMqjgL1xYwztytQHQir9GDiqSw0hRRdUATjVmgsK1dupKoqwqpVCjivWtVMOGwwaVIVuZyDadqMH19JOGxw++1K7j1vXj3t7QlGjSrluuvWo2mQydgsX67k5LoO/f1ZbrhhA8lknqNHE/zgB2/Q05NG1zVGjowWXclLSgKEQjrV1SXEYjlCYZ1MPktZuITZ405AxGNEtIoxvsv3p6affVy/9Yl3XuD8qfMYXVbDPa/+Hk+EFedfwWvXPMz3l1zJqLJqgkaAhqrR/OCCq2ioqlWGimcvI2amiqGPN569TKWty2fIOxb3/uNJ/uP33yHvWFRGK7l382ZmjxlTjJfu9FO4xnI5un2CJWlZtMZiXN3URFsiwRdnzmRxYyMBXadlaIjuVIqyUIjfXHIJ4ysriQQCLGpsJGPbdKfTCDCvvp7WWIztXV1MqalhZDTKQCbDkVgMAbrTaRzPUwO5frYaTTfUgHFpGe5Lfwcrj1ZVjXGRUkO46/+GxAbQjnUR3/yGYqutPKTT6B87H2KDaqA5UlKsT5JxZP8HeM2vcfaCBdSPHcv/aXr88ce54ooristz585lUqEz+b9o+je4/pdNogwhcoOKtc50qlHC8noVv+LmVKNW0aDyHL52ndpeMkqB512/UUZomqHScNWcoGKvX71GOVWWjlENYLxFAezSMYqtjh+C1FFV39h5yqiiewtBO1UExJfP/QRl4VJ1mppGfcVoQkbguJE5TTt+pM7QDOp8sFwWLimOyhmaXmSov3bGpezpaWH++FlcPveTGJpBQDcYU1bDxyafTlk4etw5FIeEnW7FSLtdChwP3gNiQnAy1D6i4qMBKq+E8qVkIjcRT+Sh8isQrOcvj36RObOnKYDcewuULFTbtCAERkPPNYrVBr/+lVByugLzTrcC4u4gDPwAV2Dlxo2cMW4cjudRFgpREghwy8KFbGpvR0Toy2TwRMhls+w8coTrXnyRlnic1154gfLx47l54UIGslka9uzh6aef5rl16xg9YgS3LFhAxFD5EBuOyUvYUFHBVD+FlydCVSTC6NJSrnzhBQ4NDWHqOp6PJmXePBVrXVqqwHJr63BuKu+YmP0zz1Tg6brrVJmWFrV91CgFoufNG6aGV65UdZ566jCAfvhhpbeuqFDg3DQVSykCjkMgMMxOF4BxaakCv+PGqTBTx1F4qgCECyC5tFQBZdNU1U+bpvabMEG5jN9/vyLYC/VNnapOz3UV+I7HFXB/5BH1rxfCnslZKla6EDsGw2x0W7cq5MdDk7dU/uozZymwbTsQDipgfOCoAsoVpWp9sXwDnDFdgW1Q6wbjw2C7wIz7x5WAgREOM/rUU8knErzzox+R6eigrL6euT/8IUZJSTGOes8jjzBi1iwmXHopp61YgZvPYyWTjJg5EyMcJlJTg2YY6IEAkZEjmfOd72D29zNi9mx0f6jfzeUYOWNGMR3XnkceIVBSwukrVoDrUlZfr0Dc0qvh508rZjkQPB5Miwybl13yJZWreqBHgevPXQnVI5Uk3FPsLZ/+uorP/vOv1L7Vo1T6LSuvRjw2rIWdWyA+oAYqkkOw5z01Fw9vzDgQj569b5GNdQ4DYvEYc+JiotV19B3YjJVNUFI5irKR41V+65ZttL33Atl4D6FoJbUnn42uKwlDsKSM7FAn4nlkhzqxMnGC0UrqZi4hEIrS/eE/cPJZlWLLCGCZCZxcmrqZ5+NaJnowhBYK+yM2mrpmhRjpymo0O1/sYEgyrtJqdbah1zWq65kz0eoa1Ij9+r+BbSHJBLJnJ+TzyuyltGx4W85n0CxLHdNP00UqoViDhgm4OsTjrbS1NROLHWLDhm9jmoM0NCwkk+nljTfuJJXqIhAowfNsNC1Abe0piuEcPMC6ddf4ubC7CQZLSKW6Wb/+ejzP5ZvfPMQFF/ycsrJa4vHDvPHGnTQ0LOTCC+8nkWjz81+PJhKp8nNe6yQSR3E1aNe044C15n8/AfgtKu66B1+yjQLOi1CS8Upg9FlncXJ9PXkUy60D0UyG/3r8cW5euZJ+TSMMzKqtLcZnn+vvIyjgvhAV5x1BXT47azN4cFCZmR2Nowd0QhUhQmUhdF0ndiRGZiBDzdQa9IAC4R1bOnByDrqhY4QNMv0ZKhoqMMIGtmmzeMVivtT0JfU/BjS2PbSNxrMaKa0tRVyhckIlZ//wbELlIRJHEzQtb2LwwCDRmihuXhg1eR7jT/+0AtGaTmlNHU7eLOZoz8a60BBCJZVoRoBQSTnohh9tq/5Ga8YSCEWJ1oxTIR++C3eotIqSkfVoBcpPK+TGhpLqsXiuTX/LNoxgmP5D20j2tmCbaTQRxpbVMqJkBBOrJpJ38uiazurNq1mzZw2rN69mfNX445YnVE0gkU/wSssrKr91Nk5fZx97tb08veFpbr37Vr579XcZ6BvgnZ3v8Ken/8SHJ33Iyo0rMTSDk0aeVDQ+W7lxJXv797K5ffMwcC2bogBwoBRSrcq4bO5voWyyAtdzH1Eu4TWnqn3KJkPpBIi/rwC1k4Z3rlFs9WkPqFRdBZM0Jwv9m6DqFIpdXzsN5VNgxFzVJ9txo5KET1/hX3ZNGcpWTPDjsHUo88FB4ZwRJaFOtat5gYGumuyn8vKBtbhqW+VEBVgDYVVGDysSJnHY7xeithfSfBkhBbTtjKo3VKFCC6cthXl3qHXB8mPWrVAZYzxbbRNP9YWOzWEdrlIfLeAb5LYqVeT5v1VKyw//pAYR3vquImkqJyuw3tkMb91MId2rUVLB7bcvIh7PFYHz7bcvxjBUJpGJE6twXeHQoSG++c0XGT++kkceuZSSEoN58+q47763WbNmD64rx4Fzx5Eiy51KWcVtq1dvJhQyGBjIsmLFYqLRoN8lEUpKDHI5ByfvMbp8BNXRCgJ6gFAghKZpJM0knfEBvnfe5YQDoWFl5ZmfJhQI8vjW55gxdjIiwtFYN3v7DtOVHOBHLz9Ke7yXdN7kRy8/ytF4N6adI2QE+Z1PSCmyCDoTfdREq/igp4WvnX4JF06bjydS9NHRdZ2aSISvzprF4sZG7t20iapIhHs3b2ZhQwMhw2BseTkPXXwx0WAQQ9Nojce5ccOGYiotgKCu05ZIsLWzE4CyUIixZWVU+mA5Ggwyc/RoDg0O0pfJMLK0lPHV1Rzx47W7UinVZwoElXeIrqu2++031bsrk1KAOj6kmpS6Brzm1wGGB5oXngOREiQUQswMWrgErbQcbcw43A3PQ3xIhUXVNWJc813lIJ4zi+2ZWNZH4rA3b95MLBbj0ksv5X/79G9w/a+cMt0K/BphqFPOrJSMVGC7Z7s/zB5Q20+9UZV/62ZlXnbOA4Cu9n/lajUPlqiRx0ynkpUXgHu2VzXq76xWeQrTnbBope/2eDOMmk0Qj/rKMXx/yZU0Vo0FhFWv/o6OeC8ewk9eewLXc7n9/P9kXOUoMpbJyNJKbjj7y5SEwkXpd09yANdzi6NyP3n9CeorR3PbeZcTyyYZWz6S0WU11JaPQBA6/dRdt513OZFAiJGlVdx8zteoiVYieEoCPrjKZ6RXQ+kSGHGrMjezW1n+9VOpHz+Fjo5OLvzk9Uw5+x16hyKcc/7HmTVnATNP+xRvNr/Pkz8bq/Jgjr6b5ddcSX3jZH+fa5my+B8QaFCx2JWXwZjfquuOpwzSNIrnEMlv5oELL8TQ9aKxhON53L9iBc033EBfdzffXLaMM2fPZmhggE9edBFrr7+eT511Fu9s3swbzz7LhMpKphgG9911F5lUigvOP5+LFy/msksv5QdvvEFrPE57Msnz+/fTkUxi+5KgrG2zqa2NnOMUjdRWb95MZz5PfsoUvEcfRYtGFVhevlwh2Lo6hVRdV6FVz1Mg2PMU8rzpJsVGL1yo0Gpfn5KHl5QoRFxgq0Ht094+LBuPx5Xu23UVurVtOHQIixCHDyssNXGiArmTJin8fvXVClT396tTPHxYge2HH1ZlHEcZnQ8Owg03DKvsDh9Wsdb9/fCb3yhcXzBHa2mBK66Agwdh5kxV/sorlRR9tB8irGTZupJyG3oxzzT/LBUvgO28pT6tHer/C/qjBbqmclt39P435W0lI8/bitUOh+DkyUpyDgqs146gYHAmkRB2JoO47nEgusg0axrTr75aAervfQ89EOCMO+9EXJfB3btxczkG338f13cIFRHsbJZsTw877ruPktGj0XTdB4kGwdJSNMPg1NtuY8KllzJj+XLEdenfsQMtECDtDw4RCitmuZAGqACmL/q8irGqqlGx06UVcPADmDBVmZOFQkrWPdirpN/xIQW+Q2H40jfU9TsWqBsBuPDz8I0VCnT/8UE1X/Ggiu0++AGi64imM3LyGWRjXUUTON0IYgTDDB5+15eKb0U3ggTDpWi+7Lvx1E8oIB3rxs6llLmZYxEqqWDczCUEQiXkzQTBaCUaKuWg59o+41eJnUtiZeJUjZ1GSdU4xPOI1owr3k5iKQZZPFeN2LcfVaBGQF90XlEyTiCI3jBh+NpWVKLPPPWYEfvX0esa0aafAuGIkpm//aafz/p1tEgUdAOttAwtGMTbsnGYGQDFkltZNm5cSWnpKJqb72HPnjU0N69CxGXz5tXs2bOGzZtXA4LrWog45PMJLCtV3L5p00+oq5sLaDQ3r6Kubi6pVBfr11+LaQ6i6zobN64s1qVpWnE5k+nDcbI0NV1NPN5CMtmBB0UZ92YUOM4DzSgn8PuAJlRu62Nl28tQkvEwykF8KsOx2gK0trRQXVPDE6tWcfnpp3Pe4sX8+rXXcFDs96C/rwacAnzdP/YoQBwhn8iz7aFtLLxtIVXjq1TTZnu8dMNLpLpTVDVUEa2JEjsUY/1163FMh4YFDWi6hpWxyPRnaFzYSPnYcjRdA4GqCVVUNFTQdHUT6e40F/78Qk78jxNJtieLDHZFfQXiDrPcm1dvRtd18kmbYKSCaPVYXCuHlY3R+f4rBEvKCJVWY5tpIuUjyadVGISVTeDkTRDBzsbpfP9V7FwSROj+8A2sTBw9GAYNMkOd2GaCqrEnIp6L51hYmThmoh8tEKS6fjrBcCnjZi4BYNSUucXnpvP9V7DNJGXBUnRNp6GygdJQKbcvup2l05fyvUXfI6gHWbF4BUunL2XF4hWEjBBV4SqWTF7CrQtvZdrkaei6zkO3PkRVpIoRk0YwadIknn3zWfa8swcSEH04SvONzbyz7R2u+8Z1nNByAkunL+WOxXcwbcQ0Tqk9BRsDKaZ+MhQ4rjhhODe0OMNgVzzFNH/4EwVuNR1GLYBILey8FY48BTtvgUAZxVRa4dEKxI5cqEgMNJWCKhBVd93OWyDbBXPuV67iWV816NkqtlozFDhOdSpjM904Pnb5WBl44RxdSx0/n1TgWTeGY6/1gpuAfyMXJeKdalk3lPFY1WRVvqxexWSjqXOumqqAcKQGzJgyXaueCkseUeB43EIFiJ2MOlY+DpVT1PbqqYoZD1Wo9LDhKth2N/xuqsp3rWnQ+LFj2HGfCXfz0LVJgXjPgarJuJFaOjqSJBI5Jkyo4pFHLuWEE6ppa4sr/1nLI5HIs3r1Zp54YhfLl69DBN56qw1d14qA3DC048B5MKgXXcDLy0PFbXfcsZhQyGDRokYmTVLAPZWy6O/PYNvCpElVlJQG6Yj3sqNzP+3xHn708qN0xvuojlYxurwaUGlnI8EQ3zvvMiKBEJZjc8W8/2D++FlkLJMn3nmB6pLy49SbGctkw/63+d3Wv5O1chj6MLF0hS8V70kN4onHyaMnMrGmjh9ccJVKees5lPnAtyOZZEtHB7bn8fAllxA0DB6+5BK+Nns2iVyOkkCASCBAbVkZngiNFRV8d/58NE0jkc+Ttiw0YGQ0yry6OlKWxYHBQZrb2jjks95ZxyGg65SFw2Rsm+VNTbTGYpT4rHlpSMVQ46iYaBxHAeFF56JNnobX/Pox7HQebdJUpdoSkGQS49LPo9WMQvPTtOr1E5D4IO6Gv0MmhVbXoFzGbQv3xWeVOWpVNVqpGjTEdXHffBkZ7DsOYD/++ON87WtfI/D/B6m7/g2u/1WTeAosl4yC169Xo4B2Ct64ARWzUgs9WxXTvPkHqgHMdKt82NkeBaiTraqxLsh/SkapkcdCTPXmOxWwHrdQNf7zbodIlWqI37pFlTnlelXmjRtABNPOY3sO9/7jSdbtbeaxrc8B8JXTPs4T77xAX3oIT4SYmeKnr/+BeDZFdUkFj259ttjIHMtqXz73k3gI4UCQU8ZNpSJSyn1v/FF1ZMVjRFklI6KVfNDTwmAmzkv7NtOfjnGgvw1PDMTLwohbhuXfgXowxqKkTu389tG/0HFkJ05mD71dBzn0wXNMmjiOHW//id2bVvP+ru38ff0+JpxyDzgDoIX57f2X03FoPc7Rz9Lb8T6H9u9UjuE9VyuHceeoz5QPQHSh+r1GPwDlyyAyC1DSGU+EefX1tCUSfO6WW9h14ACJTIbW9nY+2LuXcY2N/OPtt3nhrbf4+5tv8uATT+BUVnJ1UxNmaSmxbJYde/Yw+667ePrVVzn59tt5fv9+2hMJFjY2svuaa2ioqGB5UxNHEwlCgQDzfUamkEZhxeLF1FdUYBsGTjSqAO6qVYpx7uhQ4HfTJoU0v/1thUALmu3ubiXxvu8+hV6XL1dS8HBYAfFJk5TJ2XXXqe3HBjOvXKlo5WxWIebWVgWwy8qwvABjxih3F10fNia/+261azKpDM3vu08d3nHgm99Up2iayottYECx3qCw7bEkuuepf+Pqq5VJWjQK3/mO+leTyeGQ8JUrh8F3xgQxdMWOivjoCGU0NnW8moOSho+uUQxzW7eaW45ivHMWHO2GUVUKKGvaMDgvlC+w4MGAmleWqZhuUMdN+PUUjuefxvSrry46f2u6jmOaOKZJWUMDp3//++jhMObAAHY6zeAHHxCpqSHb00O4upo9jzxSzIFrp1Ls/d3vjgPquYEBlRano4Ntd95JfnCQM+68k9K6OqxUipFz5oAIpePGFU3CEFHssplVqbW++i01D4Ug5McR2nklC//zr1RZI6BYmA1/VUx2QDme8udfK9Bt5eHiLyig/vEvqgGOMXUwZcbxoLu8Eob6oLwK7cD7aECwpIK6mecTilZiZRN0ffAanmMxbsa5jD/904yaMg8Rwcln0cQjGK2ktKaO/kPbCIRL6D+0jZIq5TheAA2aEaS67iRlzmtbdO9R4LugalCAZxxmogc7l8IyU4jrYucy6nqnksjQgAK3TX9VJi7ZLFowBNUjVJoSkWIMGskEBALK9MXMDo/YX/gpMAIYn1iqLr1pol/4KYzrbkW/8FNIIFB0Jpf4EPqSS9Fmz0W/5LPqXKtqIBRh8eIVZDL9LFp0G9OnL2Xx4jsQ8Y5bNowQoVAFtp0lFConFCpnwYJbitsDgQiaprNo0e1MnnxBEXhv3LgSz3OLZRctup1Mpo9Fi25n+vSl1NfPY+PGVcWydXVzwcoySoRVwEyG02ONAjrVW455KLB9GGVKZqKk4S3++kMoWXcBOOdQhjxtR4+y+eST+f327dz+i1/wsy98gf7eXoIo6biHAvIdfj020A6YIYPyunIueuAiqiZUHcdIn3v3uQTCgaJxWfM9zTQsaiBUNvysIhCKhmha3kSqO4XneuQTeTzPo3RUKQ0LG9h872YFxLMWlQ2VXPrbSymrLVMm1yGDRbcrifjCWxeCpl7tdi5BNtaNEQqj60GSvS3KWwCIVtfiunYxXZdtpjCCvh+AHiBaPY6Blu2AkOxtwQiEVGq6WA+BcEmRhXZ90zQnnyFSMRLPscinY2SGOv2BfJ1gtKr43BQGrWwnz8Ghg1zddDWHY4dprGzkoYsfoivZRXuinclVk3nk0kdoT7Szf2A/mqZxx+I7qC+vZ/zY8Zx9ztm0v9tOeaiceq+etqNtnHnKmVxx9RUcOnKIzrZO9hzYw+lnnM4P7/sh37vhezx8ycPUlNRw/YvXA3Bw6CgSLFchF5o+DGbRIX1YGY5ljqi7yuyCaKNiscuOkYuKC9NuVHLwOfcqVtpJ+3HTjtq30P7leuHdGyB1SPXLTvuFqkvTVAz3m5eqm0EP+vmqLQW0y2r9lFktCjw7OVXuWIm3hm8CIqrfZwQVMBVR+3m26h/GW5S/TgE8l4xSDDkM110wXTPCUDVJ/S/mgKrfMVXdpSNVfQXHNd1QfT4rCfm0WheuVDHmBS8f11bnMfNKJRH/2ANw+T4F2PWQOp95dwyz4+jq3JY8AhUT1bFfvYaQl6ChoZJ7732bAwcGaW5uw7Y9Dh9OFH+Wioowt9yygGXLZvLAAxfiuh4LFjTgOMKkSdU8/PClpNO2//0Sxo+v4IYbXmLEiBIeeeRSKivDTJhQxQ9/+DH+8Y8jvPXWUY4eTXDFFS9w4MAg5eUhMhmbTZvaOHQoVgyBrCmpYCAT5zsf+wqjy2v8n0XD8Vx+/uafyFg5RISaaAWRQJiGqtGMKa+hLBzlsjM+QcxMDas3z/w0paGSIpAuC5fSEe9jVFkV319yJTXRCh586y+MLqtB13SCgSB+tmgcz8MDXBHSlkV5OMzp48YxkM1yOBbDdl1cn90e4funeP47qjedJmPbTK6pIWwYGJpGUNcRIJnPk3ddAprG6s2bGVVaWiRlVm7cSNAwGFVayj3+ulXNzYwpK2NhQwN3vvFGMcRPc13lEp7LK1Oz8sqPsNNaRaV636eTeH9+FDQNsXJgWWi6rlJWHiMX1yZNVYPIBZC+8TX/7hTfZDaPtOz3U3UpcJ1Op1mzZg3/+Z//yf8/TP8G1/+qSTOON4LYulI1YvvX+PExP1GNadFEYpUqP+GCY2JnVimwXYyDCanGTbzhMu+sVsteXo1URkcfH1tTOUHNW54HhKARIJlLFxuNq878NKadL7LLdRWjsVz7I3KX//RTc10x7z8wbYuSYIjbzruccCCI7boMZOL0JofIOXm+ddaX6EkNsqNzP/1p5bo4pqyGUWU17Os9wuiyGubUTQOx0PpuB9F9+fckQPfdvgMQbACnX60LjPOva1SxznYbBEZB73W+hHw8eElwY1AyD4buU2y4l1DrC+ZoXnKYKbc7wD4MPcvB7Yfa32BTWWzYQLGF7cmkSrW1fn0xZlp8J/DGigrOrK9nVXPzcfKeSCCA7jeCty9ezGA2y/0XXkjrt77FqWPHcv369Zi+w+N35s+nPZGgO5WiLZmkJBAgGgzym0suYWJVFQcHBthy5AheOo0Eg8M663nzFMIcNWoYcK9erdBuW5tyGuvqUv9IYfs996jysZhCvYWA6JUrFbguBECvWKEawcJ+q1apxnjUKAzdxXWliOF1/XiJ+JgxKlVWb69iqXt7VTz2qlXq0CecoE49Gh1WsR8rL9c0Vcd996kyuZxitOfNU0R9VdVwbHfhXwv6pmYY/sloDMvAE2klY7YcJfM+oVEx1JMbVLouy1b/+7Fg++DRYZA8dbwqfywLbjvDjHXhOI6rwHYoWLx/coOD7LzvPkrr6ph7112UjhuHbZrkh4awMxncfJ7+d98l29Oj8mIHAoycNYuDTz/NqNNOo3TsWE793vcY2L0b8TyC5eWc9J//SeNFFzFj+XKcXI5UWxt43vHsuOMgrluUk9vZLObAwEfbqZKoYqIP7RnuoLmu+lHLKpXEuwCKXUfFWH32P2HyySp2erAXvniN6tA9+wfFSH/5OmVo1tulfgvD+KjUfNKJ8PIz6L/6MQC2maDrg9dBPAZb32XMiYvRjYBik6vHEooqt1QjUoqTz6GJ6rqMmjIXJ2+qmOlxJ6IHgkRr6nBySvamIgQ8dCPIiImnqZzZmo5nWz6If5VAuBTbTBEurULTDWVqJoK3bTNa/QS0qhqMj3/Gt723lJzbH2zQAkEl+d7/AZJOQiKOZDNopWUUU3QFQ/7NKSoXaFk5ZNNK+p1J+RLRAFrjJCSZRAsGMS7+DwXq1//ND8fwKC2tZezYU6moaOTCCx+gqmoiGzbcxNGjb3H22XdRVTXRNy1zCQajZDIDhEJlVFdP5pJLHqa6ehKe5+A4OcrLx1JeXsfixbf7wHsF2ewgHR1b+PjHf0Uy2cFjj80lmezg4x//FZoWKALtxYtXEAxG0ULKIOx2FDO9CiUDvw8l1W5F5aQehQK+I1Gx0QngHn/9Pf4+DioG+zog0NiIrutsW7aMVcA5c+ZQO3EiV73/PlkUML/GP2avX28KaOMYhlxU6qzRM0fz4nUvYqUtzEGTN+58g/jhuALBty1i5pdmYqUtBg8Msv7a9WT6MmiGxp41e0i2J0kcTfDGD94gcSRBz84eTvrsSVz8y4vRDI3yseWkulOsv369MjoTpY6onlzNJQ9fQuX4SlzbxQjr2Ln0cOo4z1EGfZPP8AF0kEAoSrCkjIHWdwmWlClJuKsMjypqT6D2pLMAjcZTP4HnOX5quhKMQITSmjrQNAwjiG6o+183VGo5J28SqRiFY+cQz0FDcKzscYZ/wUCIaDDKd+d/l/ZkO7qmEw1EmVc3j3AgTNbJoms6T//kaT4595P0dPVw4UUXctrM08g7eZbdtoyf3fcz5pwyh7MvOpvbf3I7Z550JtGgCleyXZtN7ZuwXIvyUDlpO01vppebXr6Jp95/ikQ+QWPFKDQ7heZmfdY3B7k+EFuZkbWtgWwbZA7D7h+o744JhfJaQMnGK6bBvMfAiPppp8ohexTeuRYyrT7I9eBD3zht72qw4wqEZ48q1roQ5402DKRFFOg3Ij7LHKeYpgtNgeGK8eo8XEuB8iKb3aWYYs8Z3k83lOy78K4K+ODZc4aPV0j9dWw+bM1QTt7iDcu9E4eVo3dh0oNQOlYdMzpC9Z8Kprglo5UCUtcVsN/xC1Wf2a+InuRReOUqVb5yIiz4kRo08Jzh2O/Ot4pEUGjLbUyeXGCsa5gzpxYRYd68emzbRdc1SkuDTJs2gocfvoRgUGfLlg5aWoZwXY++vjS5nE06bZFOWxiGzvLl63j00R3cdNPLdHWlcF0hm7UpLw/x+c+fzKJFjXR2Jnn++f2sXr25KCkfNaqUVauai6GK5ZEoU0eNZzCTYHf3Qdp9M93uZD9fnHMhv9/2PMlchq5kvwqfycRJ5DKUhkqYUD2WOXXTGFcxkmsXfp6x5SMoCYa564KrqascRVkoQjKfoj+dIO/a7Os7wpdPvYi+9BCC0JMc4McvP0pbrIe8YxE2AgQ0jdqyMspCIW7csIGMbTOmvJyg7w4O4HoeKcviuvXraY3FODg0RH82S9qy2NrZSca2ufmVV3A9j9GlpUQCAUqCQW5ZsID+TKZIytyxeLG6rTSN2xctYtnMmTxw4YV4IlSEw3x3/nw8TVPvmJf+rozJKipUjLRjD6eKrBmFFgojaEryXVaOcf33igPU7itNyGC/EmMsPMf3JTkfrawCMQLDCq/F5yO2pdJNxgYUYJ88DX3hOYgnSD7H03/6E7NnzeLEE0/8aD/lf+H0b3D9r5o07Z9MIu5Q8ptpS5Ucae7tqkE7drtRohrcgnnEvDuUBOj8h6Fiku9u6Q+FF8usUCO0r12nGkTNOH6bEYZ5K7A/8Tc6Ev3c+48nCQdCjKsYyQ8uuIq6ytFomsassScQMoIIQjQYKcpdrpr3aYayScZVjOL7S66koWoMGlAdrQQUE37Pa7/DtC3GVNRQEowQN1M8tvW542Q1T7zzAoLw3XO+SjgYUgBWCyGjV0Foqn/RRIFfsZX5mN2uYqbNd1DdLwMCY4HA8QB6cCXKGbwBjGrQIsO5q/VK9Smw43rlsFFayTwFsGu+o44l+WKaYw2IBoMENI159fXc9/bbxRFBx/MwHYf+bBbTcTiaSHDLggXEcznuXbKkODJ4JB5nMKvcx08bO5a+TIYbNmygK5Vibl0d7YmEqieTYV5dHfXl5fRnMgBURyIMZrPkHYcJZWWcm8sRWb5cMchTpgwHHK9YoZDnsYHNodDxYLtgwV1ApJqmgp+PDYj+7neVVnvqVKXh7uz86H6BAASDeHqQvj6taD6WTCrSfORIeOyxYTx1//3DeH7JElWFbQ+HbhfScYsMx1BPmqTIdcNQWcdGjVLm5KNHKxl5wZPtvvvUuIGIugSW47f3rqvYa0vFHJK3FHA+Nrd1YdJ1aGlX8u6AoUBzTcVHjctcT+17LAteYKt9t2Blouap+GxLdYrF8yirr2fOzTej6Tr5RIJMdzdGIEC2u1vJvnfvZsTMmZSMHImby7F95UqyPT3MufVWMp2dvPuTn5AbHCRSXU2mpwfHNKmYMEEB9fp6Yvv3E6mpYXDXrmF2fPlyHMti2w9/SLq9XXmt9fXxfkH+b1vKaOzoQXCsIovMU7/ygfYHyqysAIrPPBe+cI3fmYwoZnvD2mHQnYpDYkjFX+uaAs8nzICRo9WP4jpQM0pJzWtGKxYtEFJA+5QzQYTB1vcYc+Ji0HRqT/4Yrm0qOWw+7UtplWTWziYwIlG69yh5bLBEMdihaBVOPkPfgc1UjJlCIFKuGDtxi7muw6VVgJLju65VNJnqb3mHaHVtoQVShmriol/4iSIZhGFAtBRJJoZj0prWIoN9aLXj0D//dfS6RhWDHQqpHNdm1jcyW6ucUz0PsRRzPhyznYBEDBkaQJ85B612HO76Z5H44PCxxMOwHERcX8b9DTKZPjzPYf78G2lv34TnOYAg4vlu3gbV1RNoarqa1aurWbfuGkRckskOurq2o+tBPM+lqmoKF1/8EIlEO7ZtMnnyBWiaQUPDQq64Ygtjx56KYShZY3X1JC699BGqqycTi7VioEDzWJRT+ApgKXCHf8lWMgy256Lioyv9z20oMH2bv08YlbZrDfCbkSNZfN55LN6wgduB1sOHOXT4MG+edFIRmK9BgfQZfr3lKJY87HnEDsdof7sdz/EIl4cZf854NEPDCBk0LGxg0+pNiCdUT1ES0Xwiz+bVm9mzZg/Nq5oxQgbTl06nfl59UeLdfE8zo2eMJt2TZt0164i1xgAIhAOceeOZpHpStDW3KXdwQDM0Ord1KnO1oEG0qrboWN9/aCulNeMIlVaDiHL/1rWPuOXbOXU/O/kseiCEiEdpzbiis72TN/E8pygl13QDPRgu5sl28mmiI8YNO5XnlFFfIFiCrgcYN+M8giUVmG6eslAZD259kPqKegzNwPIswoEwtWW1BI0gOjq33HML5/7yXNpj7fT09PD+h+8zaA5y4ekX8tz65zj1x6eSvyrPiWediCPqOpiOiYiwoGEBf3nhL3z605+mNFhKZbiSWxbcwtLpS6kMV1IWLEEzu2DoPQWCt1+vgLMWUPHPE5bBqMUKcI5aqEBxoESBaNf0wab/ErDTYHaDk1L9gmMdyI2gAsnT74Czm+D0hyAyVoHwyBhVX9lkxYprHC/3NvxBsooJUHuq6mvFDys2OVzuxze76hxBlSsZ5RuWaQr0jp45zGAX1uWTw0qrf3YZ/+fj46l+o53xc337sd5jzlCMdOdmP9ZaU8x15+bhMi3Pg9mnYs9fuRrMXkXeWAlF/pSMVgMBZ61WykpxlYTeSqhjJQ/7AH2UAu4nLcNa9ADJpALGPT0ZNE0jGNQJBDSCQaOY87q1NU4qZXHddS8yalQp3d1p4vEco0eX0dWV4s4736CrK4WmUZSAf+97Cxk7tgxN04hEAui6xs03v8LhwzHOOquRzs4buf/+CzAMjTvuWMSECVX86lcfB4HaipFURytJ57MfkXg/vvXvjKscxZVnfpq8Y/Gn7evxxKMmWkU0GCFrmdz96uN0JfrZ2XWAT/3uJn78ymMYmk57QmXQaYv3MqP2BIKGged5jC6r5snt6xhTVoOuaceZpaXzWUSgNR7naj8rzNy6Ou5pbiYaCHAkkWBLRwetsRjfWL++uH1VczMjo1HuaW4mnssVWejr587lSCLBNevWcTSRQAOmjhjBosZGptTU8Mill1JfUaFSeokwubqa31xyCX3ZLM1tbWRtm5+9/Taa/x7S6serSIZ8DrFt0HQkrozJcGw1aGzlkMQQXkebUnBpoAWC6PPPQjIZ5Tzuq7m06hpf+WZBtBTj459Bq67Be+0lvvGTe2mcPpOOzk4uufcXTF10tnIpbzvM7574PZd/7asficO+++67qa+v5+233+bKK6+kvr6e/v5+/m+f/p3n+l815ZMqPmXkTNUIB0p8GU9INajZPgW2AyWq8bOzKj763IdUOSuhcmFrmho1dPNgmxD1nSZF1H56UB0nXK0a3XELFPi2fDnUpu/DolVkA+Xs6mllxtgpGJpGzrFwPY+YmeSxLc9x8zlfIxwIFfNVB3QDTzws16Er0cef33uJG89eRjgQYlfXAUZFq2moHkN/eoisnScaijCytIqslWMom2Dlih/y6ksv09PZzdce+C4/u+J2WjuO8omPX8KIaCVBPUAul6W19Qh9nbupGTGSy6+8gXff242u6wSDAX6y8kecN78EIicp0K1XglYC5lbl/m0fVsB6xAofdGsKWKOp8l4c9CrFhIsJWkG+a6kRX4LKmdxuU0Bbi5B2gsW4ljGlpRi+0UOrn/t6xeLFTK6uJmvbJPwGz9A0XFH5C0WEq5qaWHPvvUQPHybb38/GLVuYPmsWlz/9NH+/7TaqS0oYV15OzjQ5cvgwL+3cyaP79tH685/T39VFRWUlGdvmM1/4Asuvv55JwSB6b6+ibBMJpbW2LKWxfv99RQsHgwpYFvJStbQoNvqOO1RgdHe3QquJhALW4bA/Oq4rtLtli5KINzQoPfaaNXDVVfDznysEbRiwdi3U1ZGcv4SNG3Vqa1U+61BI4W7PU+rylSuHU2Tv3KkY53BYMdhVVUU1EsGg+he2blWHnTSJYt5sOD7/dXu7+pcWL1bq9FGj1Cm5rjp2ScjFcCwFkv0UNvhpLTjYBn1Dw/mvXW/4WhVyYJ8w/phn1zo+f/V/N7me6nzlbT8Hdr1a3x+DVAZOaMS2LNJtbez9/e855bvfJVBSAoCm67j5PIO7dxOpqWHvE08w/eqryfb08Oa119J40UXMvesutt11F20vvUTjRRdxxve/Tz6VosRPTyF+p1w8DzefxwiqPLe5wUGCpaU4uRxNF1/8kbq+9M42tERMpcyadJK6BralpN/vvKXY5SWfgVf+Bl/7tuqIeq7KWb3hr/C5KxTAzuf8nNefg4N74OD78PUbFZC2LRWPvWGtAuejxw2z4f3dCpB//IvKGE083HBYWRuK57soR4s5qyvHTmPc9HPp2vP6MTmtz8d1bPRA6JgUtEJmqIu2915gyuKvYmXiBMIlOPkcpSPGodyWuwhEyghGKhDXwc5nGGh9h1FT5hGKVuI5Fq5jEQyVormuSj0SG8Rrfg19wcegvBItGER8wzHZs1ONyp99AVq5YsRxHSSbwXtjA8bFn8Z98dliOePjn0EyaZVLNJvG2/gaxsc/g9dxFK20DO/tN9EXfAxpP4K0H1GyczMLgNf8D9yLLwUUM21ZGfr6PqChYQEiLroeJJ9Pkkp1k053U1c3D/BIpbppbl7F4sW3E42Oprv7PcrL60ilOqmrm4uuB+noeJs///njfOlLTVRWNrBx40oWLbqdZLKDysoGqqomEY+3smnTapYsuZdgMEpbWzNjTriYZk1nFPAL4F4USC48Ma0ogL0CmAxYqmUmiJJ1e8D8GTM4sG8frutSUV2NV1PD5kOHaH78cW6+4QYcRwGm/7jqKuSXv+QB4JvLl7N+3Try3d14nkfNiBHsHRigBAgmcsVHtOD+DeDkHF65+RXO/+n5hMpCKpbaX68HdTzbo2t7F7VzaglGVY5cTdeItcbYePdGFt++mOjoKBtu2MD+5/dzze5rKKkuwYyZRKoj4EH8aJy3f/Y2i25fRHRkFE3XCEaD5OJpymqj2PkM/Ye2Fu83186r3NeBEHogjJWN+Xne5xEqqTjuGaibeT6d779K7Uln49o5+g9tZdyM847L9T5uxnlomv5P+y05/lmacT5dH7zKyEmn4eRNSmvq+PoLV3DjmTeyqX0Tm9o38dDFD7G9azvz6+djezaCUBIowRWXw7HDiAjd6W7qK+rpSHYwt24uJYESWmOttCfbaahooDPVyYKGBeiaTjKf5NZXb+WWhbcwsWoipm1SEizBEw9DU1qD2276Di88/xxHO/rY8bslnBJ+BRqXsn7w09xx1z14nuA4NjdfdTFf/+pXoWwi8xafT94fLHWsLHv2tbBr41pmnboQ3rsBTr3fB99ZlcYrWKnijO0kGGWKBd+zUgHtsomqv6TpijEP1SjAXchLXV6vYraRYRY5VO6rBu3hfNVGyN+nsOz3OTSGp3iLAswlI1VMtWMqmXao4vjjoav6jz2+k1XMct1ZcNKXwRyEqB8o4fpPWM9WFXddNUURLttWKRIn3aHUka9dp5SN05Yqk7JwlTovw2fK37oZTrtR1QEqpHDeHSoGPBdT/czaufD69aQXPUrW0mlvT7J69WZuuWUBJ5xQw6ZN7SxY0MDVVzfx/PP7+etfP8+ZZ9bz1FPvs21bJ/fffyGO4xEKGVx77XrWrNnD0qXTeeSRS8lm1eB0eXmIVMrC81RcdUVFmGef3cuECVU0NFSyevUm7r13CaWlQQxDo6UlxsqVzTz6+4u5+7XHOKVuKuefMI+BTNzPR13D41uf48p5/8HYylHc+O0bePnFl2hva+e1TW9SO6meJ955gRMyVdzzo7tJZTOMH13HjK+cw4ovXc/YipHMv+QcDuz6kMqyCibWNnDVrd/kixd/mh+9/GgxB/bN53yNWDbJY1uf4/K5n2BkaTXhQInqF+7Zw9Lp07nr7LNxPI9GP4zwO/PnFwmcwnbL8+hIJGisrGRkNKryVFdUUF9RwbXr1xfLPnLppRiahuNjuawvPT/s91lvX7SICVVVHzmO871b0WKDKvQrGVf5rhd8DG3EaLyjLcPvpEXnQlkF0tWOVl6BpJJqIDlnKo+RTFq9Ixefp0KYYoPKZ2TBx6C8AunuRKusgmgp3obnleS8eiQyNKD2W3QelETxXnlBMd3VI9DC4f++3/V/0fQ/5bkuSpn+N33q6urk//opnxbp3SnywlI1z6dF8ikRc0gk0yuS6hIxY+qTi4u0NIk8EBHJDohk+tS6fFpkqFV9z8XVPkOHRPJJkb5dqu6+XWp98TgptV+2X637GSIvLJVcPiuHettlMBOXTD4rqVxGMvmstA11yaJfXC5JMy37eg/Lzc8/IPt7j0hfakhua/qlpHIZaR3okA+7W6U3OSitAx3SkxyQtqEu2d97RN5qea+4377eI5LIpiSVy8hLr7wsew8dkIbGRtm89W1J5TJy8/MPyKx7vyA3P/+AJM20rLrnh3LpJReJ2EMidp/E2p4WMd8XsWPy3pZnpLq6SlwrIWJuF+lYKmK+K+IkRZwhEScuYnWI5PaJOGkRJyZi94o4CbUt+ZLI4EMiub1q3b6I+p5cL2K1q+9Wl0ju0HHLqVxOOhIJ2dffL8lcTvrTaTk0OChx05RkLifpfF5SuVxxOZXLya6eHlm6dq3s6umRVC4nO7u75Zwf/lBefu89aWxslF8895x0JZPFcl3JpOzs7pZZX/2qnLVkiTTt3y/cdZeMOvlk+cPTT0ssm5W4aUrcNGUomxUvnRbp6hLZu1fNYzGR3l6ReFwkmRTZsUNk6VK1PplU61MpkcFBtZxOi/T3i6xfL9LdLZJIqO1dXSIdHWqeTKrP7t0iu3ap+rq6huvevl3Vv3On5Ne/Kv39nsTjqqrCIRMJVbSqSuTQoeH1hw6pqnbuVNt371bb+vvVv1H4d4aGVB1796rPsmUiDz6ovicSIvv2iRw8KNLZOXwp0mm1fy7riGfZIrb/SWVE9hxS81x++LttiyTTajmZHi5r2yK5vHzzuutk/PjxAsiOd94RyVsycKBFZs+cKbNnzZLZM2fKCeMniGEYMtjbK7LnkGx9fr3MmztXTpk1S06cNk1+unKliGVLPpWSjjfekEx3twzt3y8db7wh5tCQWJmM5JNJMYeGZONNN8lTJ58sG2+6qbgc279frExGhvbtKy7b2azkk0nJJRIysG+fmIODYqXTkunrk4EPPpCNN90kg3v3yr4//lE23nST5BOJ4443tH+/bLzpJvHMrEg2I5JJi8QHRYYGRMysSFuLyMMr1XzXVjXPZkR2bRFJxdW2V58TOXxAfT96SG03MyI9HSLth0XSKZFUQqSrTZW54kI1z6T8slm17dXnRB79qfp++IA4dl6yiV45+u4Lkk30im3ljlnuE9vKiWOZYucyYuezYls5sfOmZGI9kuhpOW7fRE+LWGZK7HxWEj0tks8mJRPrUdvjqrydz0o+myzWm+xtFctMiZM3JdHTIm7OFM/MimdmxV77pFh33ST22ifF7esRz8yKm0qK29Op1nW1i5tMiLN/j7g9neKaWXGTCXE728Qd6BO3u0OV6+4UN5sRNxlXn2xGHSOXEy+d+shx3J4ucfM58XI5cZMJsRODkkx2STYbE9OMSyrVK8lkl+RySVm7dqmYZlz6+/fK/v1N0tGxVdauXSrd3TtlYOBgsXxX13uSTvf/U5ldksslpb9/r+RyCXnmmWVy113I2rVLpb19q+zf3ySmGZf9+5tk27bfSCLRIf39eyWZ7JKknZd+z5Olol7MS0UkLiK7RKRVRFIi8qGIPCgiy0RkSES6RKRXRBJ+uXPefFOeb2+X0ePHy1s7dkifiCQ9T0LV1cKuXdIkIi8ePiyhcFjakknJiEhSRI7G43LaGWfIhZdeKqfcf7/gHyOXzkk2lpXskPo8e9mz0r2zW1I9Kdn60FZJdiUl2ZUUM25KdigruUROskNZSfWmJBvLSrIrKf17+yXRkZBcMidm3JRcKie5RE4ygxnp3tkt+5v2S8/OHtnftF+6d3bLwZcOFst2vdclLa+2qP2SOcmlc5LuV/ealU2JmRpQ917elGxc3beZWI84dl4SPS2SiXWr+9zOSzbRV3wGkr2tsrvpZ9L23jpx7Lw4/jNQuPczsW5J9LT807PU5y9/tJ6j776gnqW8Kb/a+pAsXbtUPuz7UHb37JZkLinJXFJ2de+SAwMHZCg7JB2JDln2zDLZ3bNbDg4clLgZl4HMgLTH22XZM8tkV88uiZtxSeaS0pXskqHskOzr3ycdiQ7pSHTIg1selKVrl0oyl5SORIds79wuS9culV09uySVS8nLrzRJ24HtMr6xQXa8+V8iG5eKN7BdqqurZNe210WGdsnhNZdIOBySZF+LiNkv0tEkMrRbxErK2h/Nlxn1iGxcKpLtEnkKkfhekWyvyOAOtX5ol0imU6RjvYiVVNv3PySSOFis75tXf1nGj29U7f+774g4tohry7rnn5c5c06R2bNnyfSTT5QnHvuNyOA+EceSrS+vkXlzTpZTZp4kJ544TX5653dFOprVdtcWsXMidl7V5diqfza4T8RKizjW8DY7r5Zde3i/7JD67lgiVkb171Jdav/C92SH6lP2FfqbO1R/0Ywd1wcUc0ik512Rnu1+33G32i93TH+yZ7vIuw+q7wMfqs/PUP3TvmP6s0MHRH6G5A+8KENDWVm6dK3AXbJ06Vrp6kpKX19aUqmc7NrVI01N+2Xnzm5ZunStbN/eKV1dSUmn8xKPm5JMqjJLl66V3bt7JBbLSiqVk3jcLH76+tKyfv0B6ehISCxmSiKRk8sue1a2b++Uvr60NDXtl9271XHgLtnwygHZ33dEbmv6pfSlhor93WzelFQuI0eHumXRLy6XL676pmzavU0aGxul6R8b5ObnH5CTf/hpiZRH5aXm12R/31F58ZWX5KSTT5JULiNtQ93y6z88Kt959j7Z33dUfveXJ6W+sUES2ZTs7z1S7AM/s+tVaY91+31sU5JmWuJmVrZ3dh7XT2zav192dnfLzu7u4vela9fKbn97Xzot/em0ZPJ56UomZW9fn8Sy2WIfc+natbKzp0eSuZx0JZPH1Z/O5WT5tddKQ6O6l1/btKl4nF899ZRUT5okM2fMkHlz58qOrVvE2b9HrLtvka+dc5bMnDFDZs+aKaefOkc2PPSA2M88JV42I146Lc6hfcX3o5vLiWdmi/vaa5/8b9+ZbvuR4jbPzIqbTqlyzzwlztaN4iUT4uVMcbY2q2PlzH8xOPt/ZgI65P+AU/9/DpT/P/n8rwDXufjxDVum9/gGLNmhQHIuLjJ0UKR3t2rAPgLKU6pBbGkabjCzA8fXXWgAX1iqGt3e99V+RQC+WzK5tAxm4pIw05Iw0zKQjklvclASZlri2ZRk8lm5remXRfB72AfUfakhaR3okISZln1+A7Knu0Uy+aw0t+6QZC4j/amY/OW9l6S5dUexTF9qSPb3HpGK0dXy3GvrJJM3iw3Qgb6jksmbcuKJU+Vvz/xZxNypwHN2q0jugIi5U/6x5mM+uB5Q2/Yikmzyyy5TwNjqVsDcSSpA7aSOAdxJEbvf32e3mlvtar3V4YPpDgXM7b5i3QVwncrlJOl/CqB4Z3e3JHM52e0vb+/slKFsVpauXSvcdZcsXbtWhrJZGfLBcSyblfrGRnlryxaJm6YkTFO6ksnhfUaOlIU33yz96bQsXbtWTps/X3715JOyo9BwdnfL+gMHxEsmFQjeu1fNC2C7q0uhzgLCTKcVQi2A7gJI3rlTpKlJlS+s27VL7Ts0JNLTo5BuV5dCub296ns8rsqCmheWIxFJp73jcHzh09UlMjCgTqezc/gUk0kFliMRkQMH1OGXLRseKyjUk0wOY/6hIZG+PnXqu3YNb9++fRjvJ5Pqu51zFEgeiIlYtgLPb7yj5rat1hWA9z9v84G12La8+drr0r77Axnf2Cg7tm5TZRJpVa9fz713r5RLP3auqjNvyexZs+Tvf/2rSD4vgz29MmrUKNmza5dYmYxkenslF4tJxxtvyMDu3bLxpptkaN8+sTKZjwDoAuguAGkrk5F8IiHJI0cUOH/rLcmnUpJPpSSXSKi5X/fTc+bIxptukkRrqwzt2yf5dLpYd+F45tCQenHFBoZBcluLAr2JmMhgr0gyroC3mRXp7Rhebmv5KGhOxofryJkivZ0i6eTx9be3KgCeSav1XW0iQ/3q+xFVxrFycvTdF4qdfscyxbbz4limOHZeLDMlZmpQLDMliZ5WBcDtvA8quv5p35w4dl5sOy92PitmatAHLV1FYF3Y7lg5BcAzCclnk9K+40XJZ5OqE5BMiDvYL273P4Hog/vEuvsWcQ7sFc80VafgwIfHdC5MBZhzueHvZlY8Hyh7uZy4mYy4A33FDoqbzQwfp6dLlcv6ID2bES+Xk1wuJdnskJhmXDKZATHNhGSzQ5JK9cpddyEHD74kyWSXpNN9snbt0iJANs2EdHfvkv37mySbHZJcLiWZTL+sXbtU7r47IgMDBySTUYC7p2e3JJNdsnbtUunp2SkDAweku3unD8J3iGnGpbNzu6xdu1Q6O7dLynNlSER2igLWu0UB6qSIpP35bhFpEpF+f9t6v/ygv08BlDeMHy+v7NghaRGJeZ5U19TI+W++KX0icsGuXcK4cfLZfF4GRSQmIku/8hV5+u9/ly9//ety8/33F4+fS+UU0I0pcNu5o1PWLl0r2aGsmHFT0v1pObD+gCQ6Egpgx7LSv0+B6WwsK907uovlu3eq7907uiU7lC2WMeOmrF26Vjq2dcjAwQHJJRVAP7D+gPTs7pFkV1L2N+2XdF9asrGs5DOFe61V8tmkGvyxctL23rrj7tsCCFYDQ6qsmRrwgXjPcYA5n01Ksre1eJ+rQaY+BZhzGXEsU3KpIckm+iSXjhWfi2OBtp03xcql5chgi+zu2S2pXErS+bQMZAYkbsalaX+T7OjeIUvXLpV3O9+VdzvflVg2JnEzLh2JDll/YL30p/ulI9Eh+/r3HQfI+9P9cmDggPSl+yRmxmRv317Z3bNb4mZc9vbvlaVrlwp3IUvXLpW4GZdUplck06nA9bZmkXxcvHxSamqq5c3XXhSJ75Vdf79Fxo0ZIfme7QosD2xVADs/JBedt1Du/+YpCkBbKZGul1T/Kh9XZZ86Bnhn2ocBd6ZD7ePX9+ZffyrtB96T8eMbfHBtiedYUl1dLbt2vCvi2HL40AEF8ge6RFxbtf9/+rWIlZbBvh4ZNWqk7Nm0ToFj1wfUdk7EOQZgHwueC2A7nyqC729e9dXjQX4+JZIdlHXPPSNzTpkls2fNlOknn6RAfrJDZHCfbLvvfFkwAZk1oVJmz5ohr730wnAfsHenAuKt69U8l1DHzcU+2lcd+FD1OVNdw8TNP5E1kukv9i2zmWGAvGtXt8Ri2SJwjsWyMjCQOQ58Dw1lJZ3Oya5d3bJ+/QFJJBSI7uxMyGWXPSupVE527uyWgwcHpKsrKXv39svgYKYI0HfuVMcoLG/d2iFNTfulry8tS5eule7eRLHf2p+KyVAmIUkf6GbypgxlEvJWy3uyt0f1bxvHN8prm96UPd0t8tX7bpIJkyZKJpeVgXRcmlt3SGlZmXzt/u/IB12H5OhQlyTNtGTzOTnccVQCgYB0D/UXj9eXGpK2oa5iP3h/7xHJ5LOSzuUk5vcN0/m8xE1TdnZ3y2XPPivJXE5ipim96bT0pdMSy6ryBYIlbprH9TH3+SA7ZprSmUxKLJuVgUxGmvbvl8jdd8uyZ56RhGlK08svyxNvvinj6uvl6Zdflt50Wo50dUlNTY28tW2bODlT3njubzK9oU7c7g5x9u+RwbYjxe/vbmqW6upqseMx9Z7Kmf5gb1zc/t7hAWIzqwaSezr9AeVOsZ95StxEXLxsRtx0UrxMWrxcTpwDH6p3XD4nbiI2PPjc2a7qy2bEs6x/NTr7f2T6n8D1v2Ou/1WTERqOpz7jViX92bpy2GjMSirJT7YP7ByUjVF5rfFg+73DJmfiKrnQuAV+xaL2++9iueetUPLyYASslIqbOf9hqGgkqGlEAiF6kgPc/cpj9KaGQNPIOxYrX32cjkQfN569rOiMWFNaRWN1Lf3pGI9ueZa8YzEiWskpdVN5escGQGPm2BMQzyOdz3DeCXOZM24afekh3mjZTjqf5bGtz2Haef72/j/IO1bRNG1kaRXPbWgiFovziUsuUkZmtY9AcCLf+/5vmHzyJ/jM8vd4Zs2T6F78+BjpwVUqLzWekn2Ln57Cy/oy+TJAV5Lx3uuU6ZndBtFFw7JwtxesFtCjKr4bUTJzrRSAKl+mCsq1ceXGjUW3Rcfz6EgmWbNnD/dv2UJA11mxeHHR2bvgSGloGkcTCYZMk65UChGVHzvgm1dcGokQsW0e/Na3COg6j1x6KZbrcv/dd/Pl884j9uST/Pi55zh93Lhhh9PCJKI01jffrLYVJLeOoyTe2awKXC6Yla1apTTaiYTSWS9cqLTcmqa02ZHI8CcaVdtKSpT0/IEHYN8++O1vVfkHHoDPfhYRFf+czw/HUIuo8O9rr1Vy7/5+FSd98KAqe++98Ne/KlX6ypVKze55Kqf11VfD/v2qXCCgFOyuC9u2qXjr9nYlF/c8FctdyCwmAi+/7F+ivKUMxTQ+moKrcAkt5/htniiJt5+666yFC6mfOsXfR1P12baa5yw4eJTHn3ySK66/Vh3vUBsaEE8kIG+T6e0jFApR48u3EQHDYMSsWex94omi4Zhn24jjUNbQwNw778QcGlJpqPzQguJvrusYJSWUjBzJ6FNPJdPZybY77yTb3Y1jmrzz4x8THTOGRfffz4xrriFaW0u0thZEjncV9zzlFO66yiG8kH86FFYy7iP7lSQyMaRirl0XQiVqvesoCXfViOONyYIhuGipn8PaVQZomgYlpVBbr2TiI0arbZqmpOLP/xESMZXaq3okXPJl0DRlSOYbLCkpup8mDDUAXJhHKkaqmFQRxk0/FyMQOc6cqXDd1HOoEwiXHmcUpemGv10QTaOkcrQfrwyjpy1E1w1cPCQQQAtHVBzZpZ9Dqxqh9hszFm3aDOWeqmmIZakUWtNmoC8+X8WuOZaf2iTlx1z/FYmpnJ/iuSrGtqwCr+MoxAfVOZWVY1z8aaioQgb7cdf9VaU00Q0kPkhB/K5pAXQ9oGJ59QCBQJjrrz9ASckoLCtDIFDC4sUriu7gAKlUJ2PGzMZx8nieja4HWbx4BZ///F9xnCzr119HaekoEok2gsGSYlx1NDqS5uZVftqvewCOS/vlAd8E3gQeABoYzmldiJqbCNSjjMpagcV+mSAqNrsJ+JX/e5WizMqWaxo/+a//4r3PfIbTxo9n06JFnP2HP/CDUAgdeOGvf0XXdS755CcRYATwiH98NPBcryj7rplYwyW/vaToEC6eUDevjuxglvbN7SBQXleucmAHdaonVbPkZ0vQgzqBaIALfn4BFQ0V6EGdfDqPuOpevODnF1A9qZroyCiDLYNkh7I0Lm6ksrGSUHmIMbPHsOHGDSSOJtQ+ukFJ5Sh0I6DMxjQYO/1cxp/+GcbNOA/HMglFK6mbdQGaphMdUYe4NroRAoRgaTV1M5cQjJSTGexC1w2MUAnmUJcqX1OHEYwAYOczdL7/Kq6TwzZTBEIlKu81qGPMPB8jGKFn71voukFt+TgaKhtwPIdDA4cI6AF0TWde/Tzuab6HNXvW0J3uZmz5WFpiLVy3/jqiwSinjzudrZ1bGcoOoWs6eTdPbXktWTvLdS9eR8bOsK1zG22JNhoqGmioaEDX9OPire9YfAcBLUBpsETJsDUN8EAz0HD4rz8+wmc+/yXGTzuNRct+xR9+/zihg6t9M7L7YMQZtO96gTc3v8dXvvM7CI+Ad78JlbOG78LTf6Xiq6evUKZnTlYZmnU+r8LDCnHc+3/BWZ+4hvrGiRQ7AKhHT9M04rEhAJLJFCNGjCRcUgbxVtW02crsMJNOEQqFqZkwa9icrJCGSzumu10wjwyVHxNX3VlouPjcly6n+a03GT9+vDoXI4IESvjK5VfwxKMPs/Pt12l6+FaWX3cDqbwg0bF8+me7+eEVZ7Nr21useeoJLrvyGsxgrXICLxkB/TtVP9IIQ9fbygE9O6RixY/1+SmrV+Zsgx+q81vyW+UHNHfFsLluoATO+zWUjKIk4DBlsspfPXFiNe3tCfr6MriuYBg6bW0JbrllQTGVVjhs4DjCxInVnH76ODZubKOjI0EwaHD//Rf5hqZljBlTRne3isdub0/S0ZEs5sHWNK2Y+/q++95m3rw6otEgjz32CaLlgWKq2Kxt0p+Os7vrACDkHYsPelqoLRtBY3Ut0WAETwTLyTOheix3fuFbJOIJtmzZgiceR7fvI5NOU+NEiIYi1EQrMXSDnJPnznt+zNnnnUNZNFo83r3/eJLqaCV/eOcFTqmbStAIIKJCYApx0i2xGFnbpiuV4oGLLvKP77B2zx5u3LCB7nQay/PQNQ3bdcm7brGPefuiRWxobWX5unV0p1IYmkZbMsm169dTV1HBXz//ee5dsoTWeJwnEwlOmjwZTdMYV1FBNBDgkJ/mMF1VhXgei06aRlsswXsf7kNvnEj16Fq0ymq0+gnE3vqHeuf5aTs118V/oSCxQT8eO4VYedWPCIRwn3gIystVnHU4ovqkfuotsfJo9ePRqkeoZyoYKrqJSyalyjoOeK6K/f7fPv2fkPf/rZ//Fcy1k/dHBuNq1DF26Bjm+j2RdEyxRekhkUxcJNYvcqBJSXXMmBrJNGNqhNGMiWQH/ZHYQp1JJR/PpkUScVVfslMk3aOOl+kTaX1JSYFycZGhQ5LKZeS2pl/Kmu2vSyxhSzzhSipjyYddrXJ0qKsoY0llLUn4225r+qU89e562dPdUmStE2Za4sm8JJKuxOOuDCbTMpRJSDrjSCzuykAiK/2pIdnfV2Cu18tgJi49sbgMxixJZxz5/JeWyU033SSekxxmrq0uEXOXSMdSeWXdb+T0OSdIPrFdsc25/YqZtvvFtjKSM+Nixzf47HNclTF3+/LxnYqJ3otatvt9uXhKbCstueyA2LkuXyLe6cvOl4md6xXTNCWRzRZZ67xliZnLyYaDB+V9X4KTyuXk4MBAkZ0+NDgoMdOUdD4vyVxOBjMZiZumbDh4UMbV18u6N94slt3f3y+xbFa+8vWvy7duukniplms68ODB6U/nZYX9u2T761cKdNOPFHS+bx4uZxI3hLJmsPy7aYmkaNHh5eTyY9SwP8Nc+2kUmIlEuIcOiROT49YqZQ4mYw43d1iHTggdjwuVjwu9sCA2tbdLXLZZeJ0dYnV06OWUylJJr0iu5xNWeJkspJLW7JsmYLZe/ceT3p/+OHw6cUGhsv39opcdpnIr39pSfuhrJjJnDiZrAz0qLq2blWn3t+vjtXSopjtd98dXh+Pi9iWI16BuT6WjfYZ6eOY6//m41qKXXL8+fjGRtnxtyZxc7ki6+MODMqmXz0uY0aMFNs0RT5sEWnvkR2b35bGxkZpqK+XSCQiv3/sMVVf3pR8Kin5VKoozW5/6x+STQ7Itdd+Qxrr6wWQbZs3Sz6Vkrb9+2XWzJnFz5RJk8QwDGnfv1/y2ZRsfOt1mXfaaTJ96lQ5efJk+ftTT8m+P/5R4i0tYqXTYv0TW53p6xuWlRdY8VxGctmY2JmEYqfNrGKVCxLvTErk6EEl244NqPalIOsulMmmxc6ZkjNNsbMZVa6tReTRn4odG5BcNiNWLie5dErs3k7FcOdMkd/dJ/arz0mup0PsTFqx3GZW3JwplpWVXC4hObMg184Nr8vEpH3nBsnnUpLLJSSfSyv22ZeIF2SyjpUrSsbtXKbI5iV6WoqSWjtvipXPSs6vy8pnJJceOo4BdHJZcbs7xTm473iZ2zNPSc7KS9J1JWdb4g72+2y0OSzxTiYU42xmxUuninPnwN7jpeAFVtsf0Xe7OxQb0N97/PFsW5K5nGTtvOSySqJsJkzJZbNimnEZGDgo3d0fSC6XlFwuKaYZl8HBQ9LevlUGBg4WZeS5XFIymQHJZmMyMHBEcllTzERW0vEhMZMZycRSkstkxDTjks3GpL9/n2Qyg0XmuqvrXcnlktLTs1v272+Sb3zjSmn0mbVf7NghcVGy76fXrZMZc+bIpNmz5aTp0+XXTzxRZKgnXHaZnDxzpkybPVtOOe00+fv6FyRmZWVfLiX1viy8yc7LpnRMZpx1ljS9+aakROT1bdtkTG2ttPT3y/7ubpkxe7Zsj8UkKSJf+vrX5Z777y8y5ZYCY7sAAQAASURBVFkzK/F0XFLxlCQ6EtK/t1+ysaz07O6RtUvXSuf2Tkl2JWXg4IAkOhOSSw9Lv824KcmupBx86aCYCVPMmGK2C2x1LpmT7GBW0n1p6dndI4de2it2KiZ2NlPc99nLnpVkp5Kdd27vlGeWPSNm3Czeo5aZkrb31kkm1iOWmRLLTB3DSFti+verCnE4rO7lwr2dy0g23nvcfX8sE226jiQ9Vwb6Dsv76x8osuCOlRMrl/mn4/Wquu2c7O7ZLcueWSYD6T5xHEtytildyS7FRPfskqVrl0p/pr/IOD+45UHZ2b1Tlj2zTHpS3ZKzstKf7pXXW14Vy85JOpeSh7Y+JMueWSZb2rfI0rVLJWbGJJlLSs7KiuNY4jqWmFZWkrmkvHzoZfF8Znf8+EafuU6InR2Ss89aKG/+6nyRfQ/KttfXSm3tGOnvPKQY6XxMxErLj37wPfn8Zz/tr/PZ6vyQSOKQSKZLyb8znUr+nY8rZntop5KHF7d3KFbbSosM7ZDxtVHFGNumSC4pr7y0TkaMGCGNjQ1SXl4urzQ948uyO2XH5teksbFBGurrJBIJyx9+/zvFQBf6bLmEkl7bps9im2pdYdmx/LIpn+G2/I8t48eP95nrtHiZfsXkv9IkkumVXVs3yrixtRIb7JCujsMSCoVUXzGfFkl3y8wZJ8szTz8pOV8Wncubiolet0ysVLdkcmmx8pnhPqLfV7VyqeFtfbuHww+HDop0bRlWUaa6RPJJycd7ZNfOTtm3r1/27u2XAwcGZMeOY1lmxUrH46akUjnp6krKkSO9YmZicuRwr/T1pSUeN2XXru6ihHzZsmdkoD8myfiA/PpXm+Syy56VbCYt7Uc7ZaA/JrFYVt59t1Neeumg2PmMeE5cHDsjAwMxcaykuHa8yP4OZJISP0a6/X7XQXmr5T1J5TLSlxqSuoZ6eWvLZknlchIzs/JM0/OycNEiOWXOKXL1NdfIiSedJH94+im5remXsr9PhUz+4Od3y5QTTpCDR45IJp+Tg71tclvTL6U3FZOEaUrczMiH3a1F9jrh9/Oy6bQ4iYTkMhkZymZlZ3e3LHvmGekdGhIrHpdUKiXdyaSk83nZ1dMjy555RgZiseI+6XxeelMpiZumOJmMePG4tPX2StVPfiJL166VmB+uOJRIyEBvr7y6d680NDbKutdeEzMWk79t2ybV1dWy7qWXJJ/NyLNP/E4AWfvYI4phNrNyy3e/K5MmTpTq6mp57aUXFdvc3VFkp539e8SNx8TtbBtmnY+VfGfSqkx3h9o3mVDvucK7r/Ce9N97SgqeG1aMJeJqH9v+/zJo+39v4n9grv9taPavmqwMmEnFjuIzMcGAz5QG/REdf71pKspu5EjQbAiGwcoppjUQUGWPm9t+jlnxmTd/RMkwlFuvyDHmVnpxPwFMSkgkNTxP802lhGDQ30VcAoZOa4vGypUad9whTJo0XN2xOY0NAw4d0njwQbj/fin6R3V3a1RUCOXlqtysWRN5+ulnOPnkUzEMAI1UKsUJJ4zjzTe3MWPGFNS4nm/SpGmIKJZt1qzZ/P73v+e000477tJ6nkp7YhiGv48HooHmYaT+SCDfDGMewLbSeMbY4n4igm3bvPLKKyxcuIDqqkpEtCJbqP3TPGAYGJ6guS5yTHol1y9jWjaaoWPaNhWhEEHfQEtxTEDOYuK0qTz73HOcMueU4v7pdJpxDQ1s3LSJWSeffJzXybFTSVkZHUePMqKqGtd18TwXXdcJiEBrK87YsXjhMJq6sIqdLJyD46hUYCJo/nUSEdxsll0PPsicW29VZlCa5qcsEsS2MSIRVY9hIK5brDvd0cHexx9XxlyRCJphKLM3cSGfQ3v+KeSzl/t5ufQioy6arhhT3yxG0NBcR11jw1BmWboB/T3KLCpahnZ4H1IzBremFgP/PvZcRDPQjqUUxMN2DVzRiAQ9lc84YByz3WeA/6d54dppGqJp4LlMmXoSz6xdw+xTZpMd6iJYUkYwUs7Vy79BTU0NP/3pPcVjfPkrX+UTl17Kl764lAP793LBxZ+g6fnnmDhuFCXVo/HERTk5SzHP9MaNG5k4cRLnnnsha9f+mVmzZha3iauu//33P8jGjc387W9/xbazTJlyEr/8xSouueDTHNx/iE98bim7d20nHA6iB8KIOGiagWvnMYIh/zky0BRPi4iLbWd55ZWbWbjwFqqrTqAgXjr23Iq/yTHrNUAcGz2TwqusOa685l8/dB3Xdenq6qKurg5dH65b19QvF4/F2LR5M0uWLCEY9I2jPJu8kyKfTxAOVxIKVSDiICJs2HAj8+ff5JtqtRRNtUKhckRcNE1HcaWe/6Nrx60vXBN1loV0SR6OkyWfT1FaOgZdD/j7GIi46FoQwcUNluBqhno+/f/PAVxNwxAhJILrXxsPlQbK859//Zi563mEB/oIItjhEvIVlcqABggAATMLoTCWrmP49WsieJpGBrhZ0/h53qHctNENHfEEzdAQV83V6yUProHrWRiBAJoXUG2BBradJRiMDJdHJ3Y4RjASJDoyip216f+wn7q5dYrx1SBj9hIIhAgHq33m1X8+XA3N0PjHm68yefJkzr/wQv689i+cNHsGAQzGj63npZdf4sQZJ9J+tIPTZ5/GofYWclU19GfyzCwN47oWH+z6gEsvvpS2zjYyToa5M+by57V/ZsbMGWzZtoXrr7yeHR/sREPDFYdzF53L93/4fRzb4drl11ISUeaAg4ODhEIhrrj6Sn7wo7vwPJtS3VDtBjod7/RRd0Yt6mrrpPpMykYOt5kqnZFeZBIdG4yggYaNiEEu6RCIBMDNY0RCuLaGEKRj82EaZ2UJtvwUOfl2Dr8bYcys0YSigBbAHEpRUlOObnjYloFoJv2HtjJy0hlk411opTWERzTgaRq65+KIR4mm07f7ZUZMnINp5wmNaMTQwEZDy6UJ6AGcYBhd09BdB0fTwcqihUoQ3b9PfWOjoGthZJMEI+VkXRuJlGH49yR2DsdziQYjBPAw7RzRYAkammoW/aYzlotTHi4noBlFIY3nv0fybg5DCxBG0NIdSMUE8Gw0TUeMY0wgCy/DY+YaAlYKMcKIEcYTF0PT0cRmwpQTeW7tf3HKrJPZvmMnX/7qFRz4cJd6ssTjjAXnsOqOG1jy8f9QbSoak6fN4jcP3MOFF19yTLtuFPfBy4NeopYLjt7iKTPYQhktoJRvWgDwmHDCDJ5b+xSnnDIbx7I5/+JP8aPbb+Kssxbyzo4P+eTnvsj7725h5MhRfPErX+OTl36cL3/hc7QebuPs8y9mw7q/c/JJJ1LMr921STHClRPVsnjHnI9zzNzwz0fNJ0ybwXNr/sQpp5wK4vLq62/xxa9eRjQaJR6P89DvfsvEU09kRu1kTjlpJj9e+WM+t3Qp77zzDhecez53/eiHXHndch59+298+6wvIwiG55BxXVL5LBXhUkpCkeIPVDC0tV2HoBHwlzU8vw1HXIJWCkIV2K6NEQhjOzZvvdXN4ZYEn/nMSZSUBNm27QgNdREqKqOMG+ubzKIjng16EM1LoXkJxBhDJuuStwxCIY2yUrAdjdbWJCeMH8SIrcKruQMtNAmw0ZwBRC8FvXS43fcyaLmdSPRMEA1NMpheJYdiaSLBIKNKSwn6z4Xut9egusptQ92cP3cxv//L09RMnMjqzZtZsXgRk6pUJoFsLse0CRN4vbmZKVOm4InHs399hrvvuou/r19PXWMjAf/hKOSqzto24UBAXS//LB0RKjxP5YW2LDxNw4tG2djRwfxRowjn82g7dyJnnKEUhLqOZ9vogQDYNlp/P14uBxMnqvN3XRBBy+WQaBQxDDTHQQyDvAhhx1HvXMNg4owZPPvYY8yZPRsJBvnH22/zwx/8gLRtM2/saN54bwerfn4/nzz/XJWhoqISr/l1XncMVqz+GRs3vEQwNoBe14j74rNKYeV5uBv+juzZif6lK9Aqq5BEvLivPv9sZd45ZhyYmWMMzipVO7Lh78rILBhUWEbXIZVQpmq+gZoWDP1fbWz2Pxma/VsW/q+aXFESZcdTKLOnBxJJkIDSyV59tUqr1NenJL7RKFx/PWQdcDWQIGzerCySDUPlO+ruVnM01dnzRM0Nwwcgnsq/29auXJBdT71oTBOSSUxKcD2NaFQjGlXZljZv1sjlNFxXI2gEcGyN9naN73wHIhEN24bWVo3mZgXIPU/DcdRn3Dj45jchm9Xo6VF1jB4N0aiGbWvccINqXHI5nc2b1ToRWLt2DePHz2bq1ClYVo58Pk9PTw+PPvoosViMTCbL5s1v09fXx4EDBxgcHMSylCuoiKDrOj09PXg+ILIsl3XrXyQWS+GWX4Y18nHyThmeMRbP8/A8j8HBQZqamshkMtTV1ZFMpshbDpZtHweoRQTLsshkMgwODeHqGoSCSq0loLkuhicYIpQBUTRGRCKEfFdxraUDLWep77oGAQPNttEOHFXrPY81T/8Xs2fNYvbJJ6MDmmXj5i36enrVMYC/PfMMY0aPYeSIEbiei5VOYfb1YaXTOJqGPWECVmGUzM+R6FmW+i6C57oKKOo6nudhZ7Ns//GPyfb3c8KyZbj5PObAAG4uh2fbuLkcWiCgALXvQt2/cyfp9nZEhGx3NyNPOQU8D7O/X513fxfaU79SaRg++5/D18jz1CcVR89n0Qa60J58EK2/G8210ew8oK6lpumq7IhRUFGtOl5TpqPVjCIw1It26AM0K4+WjKPlMmi5rALnnodm5Qk5WSIBF811FLAuDBaKkI31+NdGEM/Fc2w8x0I8FyubwMmrHKkC2LkkmaFO7Gycrg9eQ8TDTPZhZeJEKkZimxky2Sxr//pXLrv863iORT4do+3g+zz33N/57CcvIjPUxYTGOmZNm0DzxrcoqRlNLh/H82wcJ09b20by+SSx2GEaG4Xa2pGAAj8qP7Hq4GuGjojLE088yVe+shTPsxkY6CUWS3HKnAYy9gC1E0qprKrkmWefYt2L3yAWO0Qm00cs1sL6l64lFjtMJtOH6+YQKJ6DiEd9/Xw2blyJJzaWZRWfjXg8jud5oBtYlkUsFmP9+vXk83lczyOdy5MrKcOyLBzHUWVRHW50HcdxME2TsWPHovv3XWEqDImUlpVx8cUXEwwGaW9vZ3BwENEV4FXAugzLSrJ+/XUkEkeYO/d6Eok2XNdk48aV1NXNRcQjn08M1+13YNX1U3JwlZLKLkqhQRgcPMj69dfiOCaBQAlDQ4dwHJXOSO3j0tGxhaHYIRwjjKUZ6lnTNA4aBqJpOJrGFqBN03A1TXVgNDVAh/89o2kkNI2k/+kzDIZG15IePZahyipE17E1jbymYWoaTkmUvGGAvx5N44Cuc5Wm0aVpzAcqHPcjr5jsQBYn54BA8rDJuqtfxMsaJA9nabp6HfHDcdAgYJSA6GQGTKyUg7hCMBLEztlkB7OEykLUz6+nY0sHgwcHsZIWJcFRhEPViCfYWRtxNayUQ7onjWd7fGzRedRPGI8gdCTb+cYLV9E6dBBN04jFY3jikUolqampIeHEqbIyzIqGcF0LXdNJJNTv5+FRGlLhOL/c8ksApk6cSm9PL/v37VOZGlpaaW1tpbq+mmlnTmNP6x4+OPABu/fv5lOf/hQ333Yzd/3wThw3T1TXMZwUmtmN5iSpn1uL5plog1vQxKF8TAm6rikgmW5F23aVmmsaGi6BkI6WaUHbfh26m6SkUiMYgVDExdAdgmEhFM4z8WN1BA//HNrWoH24irGzRxDRjhB8/5sE9DQVY8IE9DSG008wahTTZw0efpdow0z0kY0kdJ1rNY1WI0B/IERKNxgx8wK8UBRr5HhMXecgGldrGkciZTihCBt1nYSmcdAIsNEwyETKOGAEuErTaNU0XKBP03CMEHb5SPKBIIcjZVzn35OOpqEFI/RHyhjSDVwtQGkwio6G5uaVzNlz0YGaSBVBTUd382jxFjQnhy4eAU2n1HMIB0JogTBUTlaDeEYE9BCak/PL54ffCYDmWuoYVgqCpWhG0M/Fa6CJrTKkeK7KOa0HaBhTTXdPD3s//ADsJIcO7KOl9TDTZs6F1CHYfh2vv/Iijuuy5IILKcb+iKMcvMFP5xWEzBHI9Q8Da80Pr0sehP5mSKv6sP1wPRHIDYCdYueObXR1d3PWuUtAC3LGabOpHzeOHTt3M9Dfx7N/b+LLn/k4dG1mUuNYzjxtJptee95PhdWsZOG185T827OHgbWIKgOQOKTKxg/Ba9f6633gn4uDODiu8KOfrOZ3f/oDG3e8TdOL67jlmzfSGB7J3t5WfvnEb/nd73/P6aedzgMPPsD8BfPB0BhMJ7h+0RfoSgwwlE3gaAbRUAk10QoiwTCu/94pAOlCHytjmQxm4oioNt7xPDK2jR2uwtYMPCPE0XgfP3rt90w5tYRPfWoCY0ZpVJZbLDmvjpOmlTJuZB9adiOa5NDERtdsNCz1nh/4MZpzhDJtGzXVBmVRGy3bTEgOMW1qBUZsFaSfRw+OQRMTLbsJJIumRVSddgtaz1VoeBAci5bdrAbRtCiWQCQYJGvb9GcymI5Dc1sbhwYHcTwPVwQRGFtVi67pZCyL1Zs3s2bPHt4/1KIybzgOd/3oRyw86yzKams5NDjIM399hh/fdRcvrF9PfWMjtuuSsiwEyNo2KcvCEeHqpiZaYzGVBtNxKHNdSCTQLAvCYfRwGCOZ5GMVFUS+8Q00z4OxY9G2bkWzbUgkMK67Dq2lBa2/H6qr0ceMQRdR65qb0Y4ehW9/G+3gQbRkEq2vDz2XI6Jp6G1tsHw52oED4HkKpLa3o11zDefW1/Pm00+z/a23uO+RR+jOmkyfMwev+XXlEO5Ltc8NuKRSKd7ftbPoDq4vPEeB4VBIuX5PPwW9frxK6XXMvt7bb6LXNaLp+vC6zW9AzoScqZabX0OLlKiwtHwOb/Mb/vrX1eDnsUTJ/8Lp3+D6XzW5qNElz1Ns87hxCkBrGjz44HAsbGUldHSoXEW//KUq4zhw000qwW97u2qECx1Vf1QLzwftW7aowFfXVUGuR49CXZ3aVgDju3ZhRSpIJDUOHNC4+mpVbV2dinvduhXa2tQuAwMap546nGNY0zTGjoWzzhr+1wYHVVhvNKpSLnd3q3EC/3nmyBG46ablvPxyPZ2dHXz+8xdx3XVTyOXg0CF44onHufbaKwgGXfL5PJZlkUgkeOqppzj33HM599xzufXWW7nhhhs46aSTCIVChEIhYrEYTU1NxGIx6urq2LBhA57nEQqF+PjHP05lZSUiMBSL8YJfrr29nUQiQTqdZs+ePTQ3NzNp0iQaGxsB9f8VgDVALBYDoLS0lI0bN+IWrnthrhuKEfJUeU3X0XKWiuUFmFyPFg6x/JprqJ80iY7OTi78j08x5dILitT/4394giu+fhlaYQDEzJO3bS751CeZOecUZp96Kr/+7W95/m/PAGpAwRwYIN3eju4rEAoJol3TxOzvVy/EQKDYydeDQdXZd10GduwgH4sx8pRTyA0MUDF+fDHvsdnXhxEOE4hG1T6A57o4mQzVJ5yAEYmA5zHq1FNpuOACzIEB3v/Vr9ARtFBY5S6OlKiG0Aio/o1rq+tVWaMY0FBElRsxGi0QVKmcNA1a98JAr+pQ2f4+wbCai6duwopqOLwPomVooUiRUUXXVZxPSRQNwQuFsLIJxFMjuqJplFTXYueSdH3wOuK56AF1TTRdR9cDeJ6tciln4+h6kEjFKIIlKiZR0zTCpdUMHdmBpuuU1ozlv57+CydOaWRyYy2aEWSg9R1GjqmltLSUV199mWhVLfvfeYX3du9hXIUCd5pm4Dg5RDwaGxcRDldQXT2R8eMX89prtzPMuA4z8iIeb7+9lVgszrnnzieRaMOyjjJ69Ai2bu3FtrPs3n2AAwcO0tXVR0PDQjZvvpdIpLIYI5tMtmPbWUwzjudZuK7tg0w4+eTPsXjxCjRNJxgMUlVVxYIFC3j77beLA0z5fJ7m5mbq6upIp9Nks1nKysoIBoMEAgGSySTt7e3EYjFc10VEyOVy2LZNZ2cn8Xi8yFwfOwUCAbLZLJZlUV9fTzgcRsUS6+TzCSwrVRwASKd7GTFiKo2Ni9D1IBdf/BCzZ3+dcLiCcLjCr/FY3Ye6ho6Tx3XzvqVAlEymH8tKkcn0Ul8/HxEP17VpaFhAKFSOrhs+yx+gvv5MqqrG4xlB2nwgDTAF9bIMAGcD4/22wwNSQBdgA0eAG1A5nANAHBgFdGkaV2kaEU3jCLAc6AaS+OoRv67tmkYamAD8GhVHvAyFBQCslIWTVwC5dHQp4glW0iLZkWTPmj1YKYuNKzeyZ80eNq7ciGd52BmbfDJPdESUQCRApj9D2ZgyqhqrKB1dSvvmdmItMcadMY50d5pcIoeu61hJi6FDQ3S/1404QqgsRHRUVKWucjxcTQH+x3c8zpo9a7hn0z38/o+/50tLv8SMqTNYcs4Spl45FUdzCOgBbNfijtvvYNZJs/jSF77EKd86hcuvupypk6bS1dnFP1b+g1NnnEomlOHaH13L15Z9jTPPOJOvfOEr3Pvzezn1xFOZVD1JMbieQ0+6B8dzyNgZLM9CQyOgoUBeZBQEKtDSh9G2X6dyGKOh2UnwcgqA7Vnp5z9eqZb7t6LZSbToODjxO2CUoOH5ygUHBreh4aCJh+amkVPuhcalyPTbCZUFMA78BEbMVfma37lWnYeTQet7k9FTzqBy7DRGnHwOh3SDazSNHlT+73YgA1ynaRwyDLSSCro0jSFglaaxBlipaXRqGqP8+3CV/z2haaxG5f1eVXjGAPxBIUfTWaVpzEXFul8DtGgaVUCJX0azkgp0GkEVa6sVfAlAQ1O5j0PloOlqWQNC5WiOAuNKlVR4Bj0VO1zIzaz5z6VnqXrdfLEuPMff7LL8G9dTP/U0Orp6ufA/ljHlpFmMGTOCR371AEuX/Sezz7yIT3/h6zz0rZNprLEhWA6zV/L4H/7C5edXo+c6h5sBTVPpSNOt8O4NkG2HkjEQiPrg2la/pwZUnACjFqn0W9NuVvUW6ogon4WG+nq6e7rZ++EewOXQ5r/S0trCtCkTqS41KI2W8PqbzVA7j4FYkq3vfcCM0xaruOSx81WMs24oTx09BLiQ9XNVByLqurxzr8ofve0eleYq06P8eNCUp073FnY2v0h3VzfnnnMOo8prOP2M0xkztpZ333uX2eOmcf7Cj9G0fh3b332Hp/74J7q7u5k+fTpl4TABw2Bcpcr9bHtKFWT471LHtemM97Hq1d+Rzpu44hXfA23xXjoSffzktd+TdyxKgmEQ6Iz30Z+OFfM5D2b6qBvjoksKzcsowEsQTYsqjxwt7KsKXLSeb4LbBSVzYfAeiMxAs1vRih453WheRqVYnfABaFF1jUrmg92trl9glPLfSa0BLwV2JwRGqzStuIQ0YVRpKdFgkOpIhHe6upg9ZgyNVVWYjsN169fz9SuvZPKECXR1dnL1F77A5ptvZun06bz8+OPMmjGD02bOZKi7m5899BBloRDl4TDLL7+cnnicpZ/7HIvmzeO8BQuwUylaBge5YcMGejMZDE3j5ZYWxpWX44ooFtvz0MrKlJeN33fTysrQSkpU5zoSUSYyo0fDNdegdXXB/PmqfHW16qT39qp7c9Uq1TlftUrhiNWr0RIJhRc8v72aNAkee0x10HVdYZCHHoI1a+j+4Q+htpacXsqPfvUI556/hMlTTsCdt5iDH+5BX3Qu2vRT2B6tom9ggElTpyEFeWtZBR4alqUhVSMxLv0comkqhWQmrVJpTT9F+Y8E/wmELzxH9RUjJcUyEgwqNjscUWnA/PWeHkQzAvxvnv4tC/9XTZmMYqiVbnqYWTZ8dq2Q9Ldw0xa2W5ZqhAxDsdpjx6qHY/9+ZUb1298qAL1qFXz/+yqHcUFiDvCNb8BvfgMHDqjy3/senHACabeEjm6DO++E559X6ZFHjFCYJhBQh41ElDq9t1ftetttKqfwyJHqdBxHndrgIFRUqOfedRUJv3o13HKLetaXLoWHHx7Ofazrql7DUGMIuq72KymxsawcgUAAx3FIpVJs3ryZxYsXU1FR8ZF1gUCAQCCAruuEQiEGBwcpLy8vss3hcJhAIMC6devYs2cP06dP58wzz2TLli1cfPHFbNiw4Tg5quM4dHZ2UlFRQTAYJBKJYBgGqVSK0tJSUqkUI42gApiR0DD++e903G5BNdANDbUQCkB/HEbXKP0RqP2TGSj3B1la2mHiODD+DyN0OQsLj/533yUyciTBsjIiNTVFqbcGSIGl9jz0YBDxvGL+Y8c0CZWVASjw7d9/2+68s5hDee5ddzG4axeV06YRCIcVg+1L791cDjuVIlheTrC0FPFvgmAoiObY6gYKD8vKSMYUIPbPp3hfFu59z1MhD8Hw8LNQkGa6tl9HQt1cJaWQy6qb5e9/hE9/XR3L8xQoTwxCzWgIhnCrRyDiYefTfq7YuQRLKskOdWJl40Sr64o5jYMlFWhwfD7YWUsQgW9841rWr19Pb18/I0aMoLysjPd3bKH/0FaWXvNDLvv6Mi77+tcIRsrIp2M4+Qxv79zP9279Ho5t4bgen/v4Ym6/6x4CkTI88XyJs4dpxohGR/iSZTVNnTqdtWufZsaMqXR2vkNt7WxA47rrbiIctvnxj79PKtXF6NEz+fDDg9x550p6enqYOHE0Q0MZPvaxOdx++z3o+vCLSEmcA7S3b6KsrJbNm+/l/PN/SjAY9SXQCkiC4HmF0Irhm7rAOjuOQz6fR9M0QqEQqVSKLVu2sGTJEv8n9YhEIv4xjx0cEFzX5dZbb6WpqYm2tjbefvtt5syZQ1tbG9u2bePee+8ln8+j6zo33vgtli69FMtKkUjk+cY3vkNr62HC4TAPPngvc+ZMIxQqJRQqKzL8iUQbzc2rWLToNoLBcqLREYi4GEaIgjQ8k+nHtk2SyTbKymqpqZlSZLLT6R62bLmfSy75DY6TJ5eLYdsmzc0rWbToDkrHzMD1pezbgTOOeezbgaPAPCDCcD7n24EO4FLgWmA1ylLJALb66zv8bc8DfwMW+vU6QB9Q4T9JNwK3ALUoo69IMq/wiD0cQmMEDSVisj30oM66a9Zx/r3nY/abbFy5kcV3LKaioYIXr3+R8396PtmBLM2rmrnw/gvJ9GVovqeZRbctomRkCb27eqmfV4+I4DkewWiQdHea2OEYo2eOVrmh/UEAdPAcD6/E48SpJ/Kzx3/G3+J/49b5t/LtL32bFT9YwfxF83lv+3t84XNf4Bd//wXnTD8HVxQYDxthPvuTz/Lm42/y2Z99lsc+/RimbbK7dzfzG+bjiYdpmZi2yeiy0cX9MnaGaCCKoRvFHMmCFKWsOjpRHTQ7MZzX2MlA0wkwYRmc8bACVuI3xnoYxFIhRUoMDenDsHe1Mr8qnQhmlwJcgXLItMCee+CkW6CkFoxSSB+AUDUSqYX0YTQ9BO/fqUD7ZwfgnWuh83m8RX/Hrj2XnG7QrGl8DvgkcBdq8OUGFNC+AKgDmoGZwABwDypX+ChUDvEw0CpCu6ZxqghdPsBe4d+bC4A2FNh+2P8eBu5EgfClwEPA9cDtIkxFKHFtP0RGU+yqdsw7SdOPz90cUAALz1JgsXj53GEAXcjNrAX9d4Ffp+63+b482D+Akm7bCQWK9fAxMmldmcGKrXJWOykwIoAOsXehZq4/oOzLvZ2s+s0jI2HbcvU7NC6FuY/48n9RQDpQCoEywIXcoDJC0zSWX/tt1j2/lp6hPCOqyykvL+fQ/j385em/suonq9E18NC57eab+PKXvgCxg7z68ovcev8aHMfBth2uXPYf3HTDt9Ugguez6PmEykctDnRtgbI6iI6E/l0wbqG6gNl+ZUhbVutfR4sJJ87hub89wymzZ9DRO8CJJ8/mN3/7A5cuWsKR1sOce9bHWP/my8yaOoMdBz7g5Y7tfPdjX+UPv/8Dv3/8cd7a1Awa6JqOKx4GGh6CrhUCVxQrbbsOrx3Yysm1k/nTu+u58exllASVsev7XQeoLqmktmIE6XyG6mglOpoyfvSEB976M7ef90UCmh8II/7vhQ56xXAr6HSDMUpdc1D3RkFFkN0MXZ+Dsk/CmIfUc6kF1R0vWQWgjTHqN1TBNuq3dHuH13sZBeLFwpRqbE/I2DY7e3o4Y9w4IoEAeddF1zT+64MP+MfRo9x05pn8fMsWHrjwQspCIaXCAprb2pgzdiw9qRTd6TTz6uqIBAJcs24dN555JiHDoC2RYK6/3m9R8DyPgK7Tm06TcRxWbtzILQsWcGplJVoyqfouPT3DHewJExQbdc89cPvtimj73OeU8+vChUp1evPN8K1vKfJs4ULV/+/ogPp6hQNuvVWBadNUnXjTBBGWf/ObrHvpJXosixE1NZSXlXHol7/kqj//mY2bN2NpBmecMZ8Hfn4/o0eWY2azXPDxj5NMJgkEApRGo/zozjs555xz8NDp6/YIlRi8816AceNg8mQIGQ6G5qqm45hwO9E0RFS4jab5oSCaxhsbDQ4dgouXuIwea5BIBwiFIKg7REIuGoLtBXAJEI3yf/X0P8nC/w2u/1VTIgHXXQc//alCogXm0zCGA5i3bIHTT1c35OHDCkwvXDgcL71pk2K8GxoUJbxmDQwMKDvmNWsUCu7uVg/YLbeosiUlqr4tW2DMGAW+DQOrd4jBaANdXRo9ParKlSvh5z9Xp5JIKKKwrEzJxV97TQ16nXnmMDgOBJSRtK7Dd76jVOyNjepZHztW4axUCsrL1b/c2qpO7bbbYPx4tW+hfUml1PFqavKICOl0mjfeeIM9e/Ywc+ZMLrnkkmKH3XXdIgsWi8XYtm0bF154YbGzl8/nefXVVznzzDOVDDGRYOPGjUWQrut6kZ12XZeOjg4qKipIJpOUlpYSiUSwbZvm5uaP7BM6ln37P4FrGJbhZ0yIhCHsdx4sR/2mEZ+VdV0oxHALCpQHDHBcNdeOCVLzPBxPMYOFGGhxHDUH8Dy1PhAgF4sRCIcJlJYW4+8KcdgFJ2onk1GgO5tlzyOPMH35cszeXkpGjSI8YgS6YWCEw0oq7jgYwSC5wUFKRo/GMU3sdJpITQ2hUECxGJ6rGGtQL8rWA1DXCMk4vPhf8IXlkErA+qeVw3T1SLWtosq/lrovBXTg2ScUgNY0xXYXroGID8hDww344X1QWgGZJEw8ES8QRHSNzFAngXAJRiBCIKwGMTzXoefDN4h37aVq3EmMm3m+L5236d3XzJgTF6EbQTzXpmfvW4yYOOe4/TODnbTvXMeUhcswQmGysV7f+TdYfJl0vv8Kqf4jTDv3qmIMu+taWE6GfD5BeXkdsdhhNm9ezfnn/7TIvE6dOoM1a/7E9OnTfNdqIR4fZPr0hWza9AYnnDC5yLLbdpbXX7+D885bSTAYZdas07j77lsIBDayZMlqgsFSLCvNq6/eyoIFN1NdPZmjR99k9OgZ6HqA3t7dlJePo7l5FYsXr6C6egoiRvH5KjxPsVis+PxUVVUVn8/Nfqz0sWqPwvNXGNwC6Onpoba2lq1btzJ+/HjOP/98nnzySebNmwfAuHHjePnll/9f7P15lB1luf4Pf6pqz3v3nO50p4eEBERoAmFKQtJBRcIQ4HyPHs1RcYCjAoeAAhKQBMWBBElEQEUF1IMzBgfEJiEgGkinMxBICIQMpDP0PO95rqrn/eOu2rvj+b2/3/u+a533nLOWtdZetWt6qnbV89R+rue67uumubmZP/7xj9xxxx3s2/cib7/9BM8+q2htbeb66z/I0JCXj33skxw48CZ+f4CJiXdJpYZobl4A2MRiJ0inR5k582IKhST5fIJwuNFhot0YagkLSKfHCIcbAEilhujqepBLLrkfv78SyypgWQXGxt5h2rT34glNo2D4SrHmGgKmXUDtBQ4jzPLDCHjOISx0HbANYbeTzjYn2rM0GeBEAMu+0xEQvceZtzjz5cB3EcaxKlsk+O4k8b44la2VpIZStC5uLblXFzNFfBGf9G0tBRZoHmEZc7EcgaoAtmWLD4Ot6Nvexx8+8Qc+9MsP0bKwBd2jlwB76bkm8nhDXgqpApmxjIDxVR1UzawiPZzGO8vLe059D7/7/e84+5yz2fP6Hq7/9PX8adufWNO1hlVLVnHdsuv4yte/IvUGjaJdZCIzQbqYZsn5S3jyP55k2fuWybk1g6IqMpYeI+KLEPQEyZgZPJoHr+HFWwJjlEC1oRmMp8epC9dhK5tKQ0ezzZMB18QOqF3gxL+6oLoIVgH2rYKz1wqrCbDrhjIgu+AxKETBVy1uya/dBMd/Jdvmfg2CMwSoWRk4sB7mrZf9MscFhF/4OGR6IdNHYfolTBgB4ppGFbAXUSXMct5yNpACvg48NKW+uG4Cakq9wamT7raCUycngRcQpcM24CPAx4DvOccfQwaB7kUA99VOHXtCKapsU+Tahl/AseET4KxM+R7rETY6WA/Vs6cKbZyrcFsK8j/wf6FawbZK70uKaTlXql+ApqbKbLJVlHPbOQdoA3hE2m0EwFcDEzsh1AL+BojthWkL5Xm759ENGSjZvwbaV8lAibJwY6pL4N0uyHkBzISUp0SlgL8eDj5UBua2LXc9Oybu2+4gqW0KKDZ88lFKProu619dCRevEyZb2c59de4FukjAt94NF94FVXMg3sONn/oQz+9LMTw6QV1dLRWRCva9s4/1j3+PDU/8ovSf/oUv3cZH/3U5AY+Pb37jfn732w0opTjt9NN44KF1zGhuJl3IEvGHyBVzZIoFfvban7n9fdcS9gXJmwXeGTnK6fUzCfmCMlCFhqlsvv23n3PtuctorZ0ug8SUB1FzxTyPvPprrrvwGk6prcdjHkGbWAN1Xwav66PjgeJxYZk1H5jjEiutBwRMe1sFbI/eJhlhisOSEUbTBFyjyXF2Eldk+4Ubl/LcXxOcONHHntdeZV7TT6Hudl74y9vc+9X7KBQ1gsEwK7/1EBVtbSxqbWX9gw/yy5//nONHj7Lq+9/nIx/+MLOqq8kWi1T4fFhK4XH8aXKmSSyXozoQYDybpWdykvpwmIe2b2f1kiXUh0JU+HzSZh12H8DQ9dJy1jSp8Pn47J//zIb9+1ne3s7TS5eiDQ1JfbnvvjIL9dhjwkrX1wt4nj9fUqS4wPmuuwQHbNsm+/qc+uV6MLkEhW2LgtUwpBz3PM89B/v2ldnvtjYB9K++Svp9y3i35JtU5vRcws00RaH69a/LWIDbdG1bTuEmsnHhjFvtDacL615eLieE3IwZcOAAPPQQrF4tmMDdP5mE228XrDAwIPjkve+Vn/s/dfpHzPV/1+TxSO4hXRdEmZc4U5JJAd2pVEkCwokTgmovvLAch22aArQHB6UGPvyw1EyfT2rmtdcKkPb7Zb+HH5Zz9fZCV5eg4lmzZBTLtvFNr6WyEk4/HTo65NA775TT2jbU1sqgl2XJ5XziE+WBs0RC9gsEKIW03nefgPPhYXjlFbms8XFZPzEhjaupSRrl0JCU6za24WHZT9410kmvqKjgyiuv5OMf/zhLly4lFovR29uLZVnkcjmi0SimaZJKpZg/fz5AKZ5a0zSam5vZsWMHmqZRUVHBNddcQygUor+/H9MUGVQsFmPjxo2Ew2F8Ph9tbW1MmzaNSCTCjh072L9/P1u3bgXEdMy2belExFOlNEzYtnw/fELmSjmgGiflEFAZORlYu6ythsTCo8kxhaIjsfMIsLZtSKZlrjnyO0PMwWzTFEBomrzx4IMkjh/HzGRA19GckdNgXR2eUMgxHrKwi0Wy4+PYzu/HsvBGIhQzGYxAgPn33Udw2jR2fOUrZEZG8AQCYmhmWeTjcfLRKFY+T6qvrzQ45K+uFvm47rxBXZl2LgOxKMx5rwDjhhkCpv1BAdKnzYXoGEQnHNMzTWJ3LFPk4ckYfPCfnF6kR+5rIibmfcoWYB0dl31tW8pLxeHUs2ByDHreQWka3mAEMy9xtANvvUQ+FQVl03jGxVQ1nU7jGRdTyMQZeOslzEKWprMuASR9jVKKYE1T6fjBt1/GKuYJ1zZx+vv/Dds2Gdq/hVCNyMJtqxzDXT/nQlrnLaOYTTDw1kuS+kbX8HgChEL12LblAEOpu/l8ogSmh4f3kkoNAQq/v5Lf/e4PtLSEOO202Q6jLOBweHiE+fNvJZkc4o47riISqeTqqz/KlVd+D48niGnKO6al5SK6utYCisrKNiyriN9fSWvrYmpqTmHRorvZvv1hbFv8BgzDoOikvrBtm0gkwokTJ9i6dSvFYlEk8n4/l19+OfF4nN7eXqLRKL29vZimidfrJRqNousiM29oaEApxZlnnsmbb74JgGmapfhtF8CnUineeustamtrKRQmueSSNfzhD89y6qknaG6ez4UXXkBT03S6urYDUFs7m5aWi7DtIrZtkcmMO0BbJ5kcZsuW+0gk+rBti2IxK8+1mGHjxlsoFjNOXLWioqKZK654BK83zMRED9lsFJ8vwowZF4o83SrSq2nchnAsNgKCliDsdC9QjTDTrolZAJiGMI0znb8AmzKw1p19QQBSDqnqi4EZzrZ6BKyHgAPAd4CvfeELXDNrFqeEfPz8zp8Trg+T6EuwL7aPBRct4IKFF3DegvN4+o9PgwaxnhjLzl3GWRecxYUXXcj7L30/b+5/k0KqQHo4TSFdoG97HxUzKvjca5+j6bwmbEsYKNu0ees3b1FIFlC2wlcpPRvdq9P97W72b9hPoj9B/EScV+9/FY/mwdAM9g7v5XjsOA8feJjRkVG693SzYf8G7tlwD8ePHaempYZsPsuRHknzVB+uZ+LdCYysgVarkcgnsJRF0S5yy8ZbhKH2htB1nQpfBUFvUN5pDqKbylZbyqI+XE8ynyRTzMi7NTMgoMlhvKk6W95TugMY0WDPnQKMz75fpLnoApbaVwt4bl8tQMkTFkZVmXDBD2H2dXDm3eCthvEdIjfX/VA3H/aulP2yQzD/R/IeqzgV6hZQ1H2EHDl2AGGXZyIDMgkkREBD2OWUs5xx6l8KUTW4gNqLSL8VsN0p5yan/i1EQg5agN8hjHjRKWMmkrJsNnAeAsJXKYVf2RA/KrJwKw/ekEjBNc1hsDVhrIPTRDZu5iHeA5Zbi12QWZDlk1JOUQbitgnx4/LdVynnysZkkANN5Ntj3c7xCt68R87hDJARbhNGGhumXQSBBhnMqFso+5QGv5U8m1CrAOMKB+yVDMyUKBt2r4DssKTn8oTAP13ON7FbgLuvRuqBm/7UHRwI1gn7HDvmDAzn5Pekh2GgW+5Zqg9eugEyI9Dyftmu6U79E18LrILUF38lfOBRUQbYBdi5hseXHqV/21OYsT5Geo9w5J038Fo5Vt50G7te3033rh3sen03137iWryGl4H4GNaCBv60dTPde3bx29//jlNPmUPIF2AwMcZ4KkZ1qIqQ18fqSz9L0OvHVjbvjBzl1Gmt+Dw+0oUsY6koqYK8O29/37XMqKknU8iRMwtiOqdpFJ3BiHNmnMYvX9+IR7PRNB8EF4NWIWlQM91Se70t0g6HbwGVlns5fJNIuLWggOfgxVAchNBCuXfKlFquBaVuWeMCwK0hPvKpB+na0snMtgaRltfeQrTnPq79zM387Mlvsq/7Yb6xdi2rVqxgcWsrtlKcc9FFPParX3HhRRdR6fPxQFcXhqYR8fnoiUa5obOTI5OTKGDFpk1M5nLYQJXfT0dbG7Oqqlh36aUMJBJEHGDt0h+GrpM1TUynH2roOiEnvO5eJ33W3YsXS/+vqkqYp7vuEmC9apX031ta4LvfhXPPFSXr+94nnW23X790Kdx7r3Tajx+X/n02K5jCNGU+Oir9Kr9f4j2bmkQ++uyzgpBXrBAA39sr/af58zEtAbLr1pVtm1yAnE4LyA6Hy8DbtW/K5+GrXxUIc+yYWEO5nEdWqg6WJadVSn7SjBlyebNnwxNPCOfndFuxLAkxfe45uZ4LL5SwVRcy/W+d/sFc/1dN2axorfN5qV0OOCqNPNk2TE5CLFZmrN1YateW27KkBioloHvNGmmQp54q+7laa295RJ9du6R2OrG37Nwpo2G5HOnKRgoFrXSayUmp1KGQFHX33fJpaZHRJqXkPXDnnXDaaeKt1tcHCxZIOz92TKTlt90m4Ry33CIDcp2dcN55JzPUkUh5lGt0VH72tGkmodAEkUgEj8dzkjy1UChg2zYvv/wyixYtIpFIUFNTQ0WFxEQVi0VGRkZoaZGBIxdAp9PpEgMtMdiqFBM6PDzMr3/9az7xiU/Q2NgIUJKIK6VKZQwPDzNjxgy8Xm+ZuXaMwjCMk5loKDPPcLIEvFh0lAq2OMVPIaT/0zT1ja0hxwAYOsVCgVRvL/uffJL2z38e27I48NOfcuHXvgbuPVMKzePBTKdRgJnNYmWzBOvrMfz+kumZC9DtYpFiOo23oqK0b2Z4mLqzzz5Z3qMUmcFB3n36ac5btUpiegwDj+5IRF2VRSEvnclCXuqu4XHiDfLCMtc2wLRGActmUdZHKgVcT45JfuXT5kJeDC/EVVKDo+9A66nyp6GAiREB6ae8V2KulYJ8Fisgo+7Z+Aih6kYysREK2RiRaTMxvLJfMZvEG6xg6J0tJTn4jLlLKaRj+IIVEuOjpAs/9PbLBKsbT5KTF7MpPP4g/rCwuVYhi+GTwQwzn8HjD5Wk5u+99N+xsSkUEmiaB683WDLcAsUtt9zBCy9sZnh4hLq6WiKRCPv370HTPFx88fv57Gf/jc985lMUCilAUSik+c53nmDDhj+QSo0yd+65PProQ8ycORvD8GHb5pTYYZ1CIeXEG4/i84Wd0Ikkfn8VHo9IuXXdi2XpGK7bvPNf4LbDYrGIx+MhGo2W8nb39vYSDodJp9OEw2G2b99OR0cHlZWVZDKZUmhGOp1my5YtHDp0iCeeeIKnnnqK008/HYAXX3yRL33pS4TDYcbHx/nd737LkiUXMDExyemnn8fY2FG83jC2XeTaaz/D5ZdfznXXfZpNm25l8eK7SCQGaGlZKAMoA7uoqmojHu/lN7+5mo9/vJPKyha6utayaNHd1NScgu3EGILCtk0ymXFHUr6KioombNskmRwuseJmsJou3cN8BAhZnAyMXZm4QkBOAgHENiLbdfJBYCMAKQE0OPtCmYn0OGV3I1LgIBBB4rXXAI8Df3j1Vf44ezZ7Ozp4at1PaA23MmP+DNpOb2PTHzZRm60lV5PjwvdfSP/xfkLeEM899xyXX3o5Vtrirzv/ysqvrOTtHW+TT+TxVfjwBD1kxjJUtFRITHamyF/u/guL71pMaFqIzbdv5rLvXFaSkXd8pYOaWeIarukambEMX/r6l9j8l80MjwxTW1tLTs+R+vcUC6MLib8UZzA9SH2wni9/+ctc85FrUAXFPy37JxKJBIZhEA6HWbl6JaecdwoaGt/b9T0evvzh0jvQ0A10dAp2AY/ucdzuFR7NQ9bMksgnqA/XnyQPH02NMrtiGpqdF9CU6YO6BQLASu7MxskMprKFpaw6S5hFzUtJKp6flLhbzRA5sqIckzu6TVjcUJuwqIEmCDWJFN0uijw5tg+qz6ZgBJjwVTOoaTwM+L/wBV587jn6T5yga88e3jNvHruAno0b+em995K1bfKmyd0rV3LtZz5DElitFHVf/zp/+vWv8fv9VE+bxlf/9jfmO38XWafu3UxZ+v0EZfYkgQz8DCIA3OOEFHmUTSB2FLKjAp6rZpf/iDStLKWeGr4Td1nsacK0ujLwSIsDzsMOeCwKYHf+d4gfFam0r7IsMXd77ZgCrGvmyv02wnLP0QUIB2fINVlp51nqIv8OTi9fFwiAf/1WOONOYaHN9MlMtxEWUK5p5eOsfPkZBhulfuy5E+Y/LpJ0b0RA9Es3wvx7ytceaRJQbjsD5tkJYaG9YYi9C8EGCNRAuFF++841kk+68hS5xfFjsu7Cu2Wdm2mjkBK2+4M/cO6/yO3zGCQKOcZSUZ7es5mVH/g0miamipPpGB/+2V1cetoC7vng9Zi2xTsjRzlt2kwi/oDj9i0mZQpI5zOEfUEUCo9uEPQGsGyLoi3+CHmzwPe2Ps2dH/g0AB4nFAMgU8gT9PkxNB2PbuM1e9CKvRJDrYXATghDrfKQ3SUAO/MKZLfBtK/BsTOhuVOY62KfsNUYkN0B3hkSS113jzDgKgdWFIxqef7mKEx8k1mLtvLsr+9h3oKPs3vnS3ziuns5/MZ3IbiAbCHF9MazefJ3v+O888+n3lHyXXXZZVz7+c/zsY98BK+uYynFroEB6oJBZlZXEzAMMg5zXRMIEPR6KTiZeEbTaSr9fip9Poq2TcY08WgaXsPAp+sUnP6Va2pW5ffj0XV8hoGhaYRNMWEtES2O2zeGIZ3vcFjWTU4Ksl2zRmjc6dOl8+ym6enqEpD80EPwyCNS530+wQDbtknnfdo0kZKvXy/l5nIiIw+HBXQ74XlpPUIioZVUq06EVylEe2pCI7cb7DLSP/85XH65eCidc44c7+43dT71uxt5dvy4/KRwuKyYragQks4l7Fetgve8R3DG/9TpH8z1f9fkGoz5nXRafn9Zsu31yrrGRqGM29pknTVFNlWSFTmxUG6DGh4up94KhaTMu+8W1OvxCEi3bRlO6u0VoH3TTRQCFfT0CFF+7JhgcHH2LrPRF10kbTCXk1NWVooS5ZRTZJ+GBtnHDQ2fOVO+/+hHchk/+pEo1Ts6TmaoXfL90CGJz85kBGA3NFilGOqpZmXupGkaLS0tJWOlSCRCPB4vuX63trYyOTlZWvZ6vXR1dXHo0KGSG21fXx+pVAqlFK2trcydO5e2tjZ0XWdoaKjkitzZ2UkqlcLj8dDQ0MDAwIAw17aCeNoBjE4X2+cRYK1s+ZP0egRUu8/u3V7IF+R5GLrsr1Fmv7N5h+l22GuFIxe3IZFyALYGKRn6U7ZNZmyM81auJDBtGpWnnMIFq1eju9fjyL+VbVPMZslNThKoqcEIBNA9HmzLIjcx4QDCAkYgIAZmTlB8oLYWIxAgUFfHxDvvoHk8Ion1ePAEg4Samjh/9WrsQoGxvXspZjLOMGVaQHE2XWabvQ4bbZnyFs6moHUOVNfJOtuWuGlfAHoOABrUz4BT2+UeB4ICunVD7ulpc6XMZ34igLyuAd5zdjl+23IkfbqOZngI1QiwDtU0Ud10OsVMHE0z0A0vvkgtuuFlxtmX8d4P3kTTme8X4UBQDHZcRruYTdDUfgk1LWfiDVYwbfaF6LpBqK4ZTddJTw5SzCXJp2OOy/gghl9kpU1nvp/qGWc4YQwCCGy7yMTEYXp7u4jFjtPZeSP33/9FenoOkU5H6e3tobv7j3R23kAs1sMrr/yFz3zmk9h2keHhPaTTY4RCddx+++d4++09HDvWx5///DwtLTMYHHwNpSx03eOUfQOx2DE8niCaphMO1zvx1eVJ1z3oug/QefHFF0sKENOUFGmJRILOzk4ymQy6rpNKpUptpLKykkAgQHNzM9u3by+ZBCqliEajpfYcDodZtGgRH/3oR7Ftm927d6PrAuQff/xxvvjFL/Laa6/x0ksv8dnPfp7e3oP87W/CEnm9YeLxE2zefDu6bqDrXjRN56qrfkAyOURDw1zi8V42bbqFcLieeLyX5uYFzJ17LTNnLiESaeLKK79PXd1paJqOxxPA6w3h8QTw+6vxeoO0ti5mx45H8HiCeL0hamvnUFExg02bVqBbRVqUIobEU9+OgGpH6Mgi5z6OU2axNQQoHwf+HZHgGgjjeBwBPhbCWHchsdc46+YBA0CVs24NApAsYPPFF9PZ0kIUqGipoGZODbqhgw2bv7GZhrkNjPWOEdJDZPuzZCezXHXFVeQn87x6/6tceN6FDA4NUiwWefX+VwFI9id59ZuvUkgU0DQNb8hLa0crW9dsJRfPlYzRutZ2ceLVE2VgbYiappAqsCy3jIMHD/JG/xv8fNvP6drbxfL25Tx+z+O8tuc1Thw8wRt732DJVUuwbItIKMKzLz7LH1/5Iy9ue5EX/voCZy08ixkVMxhJj3DL/Fs4ET9RYq4BTCUdfQDDGd6wsfF5fNSH60kVUkiqLgsdnYZIg4Bm3e8wmvNF1q0KzntSF5OrXTdAqsdtDbKfNyKsYeoI7LpJpN5WynGQTjr7OjRsbhimLYDIqcKyTbtIgLURhmSPlJ8dhLoLIDtIwRKTozBwB7DsIx/hF11dtM6cWVI1dCjFfZ/8JD986im+v3cvf+7s5PYbbySRTKIB9d/9Lof37eOVt99m3Vtv8dhvfsNcYAQxQwOJq34EAdBPIgM8xxHW2osM8JwD3Aoc1jSS8oaCyAwByhVOPzF+tMwmgzCzhUR5UDjSArVnCBDXmGJgNuCYlTkUmO512FlEcl45SwCn7pP9XPm5psm+DRdLbLunwlE2RYRVDjVLCzSTsGeluH57IxIn7d7vxGEB4VZOnueBb8vzcIF1oAEygwLGscrMdeooTLwGNefIM9QMiftuXy3X59LhukfAbtUpMGMRVM1yZN6WM5iShfB02PNdCDdJHHXVTAHayhIQfWiDzJUpygB3XXoIUr3CdMeOgi8Clz4u12Kbcg/tIkWlSOczTGbi3OkA6/3DPSgF1aEqXv73x7nt4k+QNwtYts25ze8l5PNjK8Wbg4cZjI0R9gXx6pJG02t4CHkDBL0B+mMjfPOlHzOeirFv8DBjqSgfP+8KRhOTmLZJf2yEb7z4JAPxMQJeH3sHDtEfG6FoptG0gABrKy73Vg9K/PPI7Y5BWT+El4pBmV4NFcsFUBf7ZPvICjB7IbRI9k09J0Znrm5IZWDkFonZ1gLCkKNB4DzQfJx2xmImJqN07/WD5uVPm3aTTCYpTE4yIxIRQkFJGi6/x0PONEkUCqzYuJHpkQiNFRXs6O+nJxpl18BACVgfjUa56fnnORGPc2RykqFk0umaaVT6fAQdYsZSiolMhpxpMpHJYGgaQa8Xv8fDbS+8QF8iIeRGT490gN0MQLounfE33hDy7KabBGj39QlL9cADZcxw9KjUw8WLReJ9552ybWREwkTffRfmzpU+fywmhNrgIHz+82WS7qtfFWSrFBw7JmolZ7zftgWj9/aWLxHKUMOFJseOSYTq4sWC+xcsEHCczwvuP3ZMYI+rgHWFuRMT0h30euWyp08X5epUfNDRIXjk+98v+zr/b57+Aa7/qybDkKEZFwy7Bk9Tjc1sWxBrW5tor2+9VWqiKyVPJGS/nh6hh8fHYdEiOe7wYWkFx47JCFVfn5w3mZT9zjlHNBa2DRs2ULC9pRRbQ0MCkt0GcfSoXN5HPiKNZmQEvvhFWT82VmacU6nyd9ekvKpKGmUuJ+tc0+dwWNQpP/iBxE/ouszXrZPGVF8PuZwwGLquU1lZyaJFi0in0xQKBfKOJuTMM8/k8ssvx+MAvq1bt57Uoa+qquLEiRMkk0k0TePqq6/mzjvvZObMmSVw7gJvgKuuuopYLMamTZtK5+7q6iqVqWkagUBA4q41TWTaleH//HwTKWfU2wHEpUmDU5rFAM1lsd3J5xHJeP9IWSJ+fFCAeCojy5VhSk7wlWGwFbphMO2cc/BWVGD4fNimycSBAyLXRnJQv/7AA5jpNIHqajwBceO28nly0SjKsgjU1Qlg1nWKqRRWoYC/pgZvJMLYnj2y78QE0846S36FrqMbBsV0mj3r15Pq7WXi4EEazj8fj99fHgCqqhWwrOsS/xydEEZ5cgx++V0B0ck4/Or7ss4fkEri9ULLbCljYgR+8V0B6aNDjov4MPz8URgbEuD+L9eLdLznHWG2bWdgQzegrwdMi2I2QSY6TKh2BsVcksH9f8UTiKAciXgxK27ixUyMoXf+hlnIyJ+lIXXLTZczdmSnqBlsG81xhx853E0xE8fjjxCorGe8Zzcef5BiNkWgchqFdKwsNZ97Ka7bqq578XgCpFLDVFQ0ldy8u7rWopRFPp8kmRxk61ZZv3XrGkAjGj1KX183M2ZcSE3NKQ5QbqBQSNHX141p5vD5KolEGh1AfZREop9Dh54jHu9zFCAamubF6w1hGD4mJ3tIJodQyiIalX/PK6+8UtgPR9KtlCq1sa1bt6KUoq2tjcrKSpYuXUo4HC65hi9ZsoT29naWLFlCLpdj+vTppNPpUtutra1l5syZ5PN5enp66Orq4siRI5w4caJ0nvPPP58ZM2bw2ms7+Nd//Skej5fR0Uk8niALF36Jvr4hams9dHbeQDR6jNbWRQQCVXR3r2f//g1s3/4Qzc0L8HpDXHXV4yil8HqD5PNJYrFjznE9iEN4nmj0CH/721eYOfNirrzyuxQKKV544XYAIpFGli59iKKyWOtIePsR+XcWWIF093qQmNYaoA1hBYedbUEEGK9xlgeBixBgfgIxkarHMaVCgPgY0IHEXAeBx4CNCCB/DOjEAd66RqAqAAp+/OiPeXTvo8y9aC5XX3s1V2evZuf6nYSmiSN419oumuc38+ijjzKvYR6FWIGFty+kkBI38eb5zSQHk3Te2EmiL8Hcj81lyb1LCFQHaF/ejq/CR8eqDm568yaiPVE6b+gkeiSKslTJjbxQLLC2ay1Ho0eZFprGI5c/wuzq2Vi2xe7B3QBMj0wn4osAEPAEmB6eTqWvkpyZ4/5X72cwOcji1sXMqp7F2q61XNRyESFviLyZZyw9hq1sbGVTdEIYnCRaAIS9YTRNw6N5SpLxUjytJyKxnVZOGFE7L+/mQw9D/eKyPDx9XFIxWTmRqGYGJea6mBTm+5w1UuaelSL3BpGE6x6J6Z18nVJeYrsgMcEDz4kpmmbAgXUYhThDSnEf0ARcdvHFzGtpQUPA8c3IYAyaxsFYjEXAwUQCva4O0++nAvj1+vXc961vkfL5OAc4pbGRYee4EKJ40Jz644hpKSKx+wHns8+5Qw8j8d66plHQDAG4Fa1y3+yixBSn+inJoa28MNCOigbDL5/4UZGIV50CDefKXNmOHN8FpQ5z7Q0LUCwk5H8z1CAMtptvWikZ8MiNyr1PHC4PghSTMuCRHRbg/M4DZdb5nQfkeR1YJym8ijFoXArnrofMCQHQgXopt36RPLNdN0F+HN57hwyCTFsod2/PShk48UQkRlv3iImalZPfpPvkvIM7JJY61iOAOD0sgBjg/Q/LffnLjZAaduTghjDWpy+HBffKfQ43ldc1LYCdawVo71orgxSFhNSn7BikhmDLHXg1jdpwNWfPeA+2stHQOLNxTmnMw9A0Iv4gPo8Pv8eLrWxW3nEn7aefQcfscxk93k+mkMNSNru37uQDHe/jogsX8L4lF7P26cfYfGg7P975LI2eaq5f/kmuXryUq963lO1d3SVX8J/sfBYNmNd8Ok2V0zB0P0rlBFh76uU+ZnaCNSqAe/IhAdKeFmG1ARp/LAqR0CLZntwgbDVAqAPm9ELdvYAhbdJ1BZ9YC57pEFoMdgzMfshspSoU5Xe//SX3rPoy5587m7/95WXee8YZaIZRUgmNZzIopYjncty2eTNDySTzm5tZs3Ur8VyO+nCYvkSC+nCYFZs20RONEvB4+NJFFzGQSFAfCjGWyWDatsRWA0cmJrixs5NjsRghnw9D0wh5vUR8PrLFIijFd6+8kleOHxdwHQ6XkePAgHSg16yRzvADD5QzCC1YUJaNu0HQwWCZ/m1oECmpppWPW7dO+v7z54tR8mWXyboNG4QeXrNGvq9ZIx34NWtA2QwPw/33y603TembL10qxJkbveey1qYpl+6ezvVPS6XkEjs6hIibPl2wfEsLPPmkrMtmIRqV+ZEjAluGhsplufi/pkaIv2z2/97n93/D9A9w/V81WZbU1K9+Vahad9TKRbLusMyxY7J+cFAahlv5NU0ao9sA3ZEstya7DWfNGjm2paUM4EG+L1okNXb5cgy/QUuL4qGHBPRqGrz2mrTTkRGpyA4m49vflqIHBkT27cZaTJtWlovPnSthHEePyhjAbbfJO8HvF2yfzYr0w++XD8h53nlHwsHf+175ea4kW9d1KioqaGlpIZlMsmXLFlKpVCn1j5tbt6Ojo9Shd3Pt3nTTTTQ3N/8n9tuVt7a0tJTYONM0S+Bh+/btGIZxEkgAkaTX1NQIQPF5hW1WnBxrXRWR5wACgrN52S9fwE3TVa4LtsRt54tQXw2zm2V93zCMRcVh3OuR5ZKZGaU3m1IKK58ncfw4u9eswcrnqT/7bDKjo2i6TrCujvPvuQcjEMAqFARI6zpGIICvslIk484b0ggE8EYiaLrO2BtvkOjtZdrZZxOoqaHhwgvRDAPdMLCKRYqpFChF3dy57H/ySernziXV28tu923s84vRWMxhryuqobZewPDf/gyvvQrZjBibvfaqmJpZVhmMh8ICsjc+ffK+FdXldRufdrRFBiQmofkUibU+dlDus1Iwpx0yCXTdQ6i6EWUVTwLKlpl3vu9y0nB5mdF+iRiSAcq2MPMZ6k9dQFXT6dSfugAzn8XNOvP3oFtDo/GMi7EKWUI1TdhWkfGjrxEfOkQxm6SYiTP49stomk4qNcTGjTdTWdlMTc0cOjpW0d6+nCVL7p0iv06zaNFdzvrVgE0i0U84XM+mTSuIxY5hmgV03YPXG6KtTdJ42XaxBNa3bl1DS8tCPvrR31FZ2cyLL6506pFNLHa0xPJKbLeG1xtCqSITExOk0+mSJLy/v/+kNlYybDEMAoFAybwsmUxSVVXF1VdfTU1NTQlwV1RU4HNcSF544QUKhQLBYJDrrruOq666itbW1lKIx+WXX867777LsWPHWbz4/2AYXj784f/Dk08+STBYQ09PlIGBASzrpdKAhGUVsaw8V175fT75yRe5+uon8Hj8DnN+jL6+bpRShEJ1bN26xjnuAcDGMPxTBjceIJHoJ5kcZP78W4jFjrN5822k0yP40FjtdKBagV0I83cH8odZjzCAtyGsYMBZF0DMyZYjzs0GAprlKYh78wbEsKqeMkPtAvEO53URBc5FgNMK5xo8gKUU6ZE0x7cd59vf+zZfnPdFDu07xB9+9gf+HPgzZ644E92j07+jn45VHbyRe4MNGzbw/sH307W2i9o5tUQaI1z+yOXMuXwO3eu6Sym70MAb8nLwTwe5/JHL8Vf6qZlTg+E32PHIDhbdtYjK1ko0j0bHqg4B4EEf93Tcw6WzLyVTzODRPbxy4hWOTB5hQfMCUoWUEwcNlrLw6J4SEx3yhlh36TrGM+MoFAEjwL0d9/LJsz8JgEf3MD0yXdonCo/uKcVdu8DCDSGylIVCoaM7T0g5BmU2ZPqFlVSOd8P534PZ1wvAsXJiOBaoh923yPeGJXD1QZEhh1phz11lUHdgnSNJRsrLDkrZ+XGRDU+8Jox3x+/grHsFNLavxvJVl1JqRZBBlRsR8Fvr1IEHNI0nfvtb/v3DH+aMmTO5vqODh372M6p8PsYSCUZHRnj+T3/i2gUL+OcFC/jDb39LK6KiyCEDPEVESbHdWc469dYRLbMQcaN347ZtpfCCgMHRPZA4LkC7xGJr8rt8FWWJt1102Op+Yaut/JR74g4yFEXybOWc/zEcmbgjGbcL8t62cs5+TuxxZkBiqotxuddumrRirAygG5cKq5wfkzLaVzkx8vdCsAWCTY78O1hOtXbgIXl+ypqSfm0tRE6R5/z6rXKd5z0s0nB30OW1mwWga14B2igY2iHAGCRtVomNdmS+ugd2r4ee5yR23TXRqzoF3v+IhBIoS5j8SCt88DFRWkwF35FWAetWXhj6zBAsvh+/KuDRDbmdmi7dSMskXcyRKxZI5bMSJWUW6HOY5o7L3s9f/voybTPbhDjw+kjG4nzu+s/yoyef4G/bt/LNNfez7QfPcvnpF/G5Bf/Mffd+lUsufj9vvfM2T/z4ST5//edYfcn1bL3lJ9x32Q1OlL2GpWzi2Tiap7EMrJUJgbkns9Wa32mTdaBXQLEHhldI6EXdamGy6+4FOwPDN4A5CN7ZoLJSWxsegYprxfQMBRPfB70KPK0Cxj3NfOADS3jlby/y+p6jrH3wQQYGB/n18DDHolGKtk1NIIClFL8/cIAN+/ezrrubpbNnc++SJVQHAkxkMixqbeWh7dvZsH8/a7ZuZVooxHd37qSlspKaYJDFra0cj8e56fnnORqNEvH72bB/P2u7uojncngNg+mRCCPpNLdt3kzP5CQAH587V1SCmYzETmaz0vFWSvyTxsYESC9fLipUj0dYKTcT0OSkdLwdwM7oqOAGXZfj3eNqagSEp9Mi/3a3VVRI1qDlyyV22+OB1auxbY2HH5asv5GIXN5FF4nY1WWv3ehUF2g3NsKLL0rRjiiAkRHp/x85IvAkkSjDG8sSlWtvr1yWG/rd1ydgfHCwrG7v6Tl5u9u9/l87uQzL/6ZPc3Oz+h8/xeNKLV8u/N6BA+Xvy5crFYspdd11Mp+6/p13lNq3T6lEQqloVLa/+65Se/fK9n37lEqlZPubb8q6vXuV6uuT/RIJOSYeV2pyUpYTCaUOHFDxmPWfTvXGG0p1dsohg4NymYODcuqDB+VUk5PyOXhQtr34oizHYkrt3i0/4513lHr00fJl7t2r1MiI7O8eG43KZ2BAqWuvlfW5XE4NDQ2pZ555Rg0NDalMJqNyuZwaGxtTr732mhofH1fZbFblcjk1MDCgDh8+rLLZrMpmsyqTyahkMlk6Jp1Oq2eeeUZ97WtfU4cOHVLDw8OlcnO53Enb3HMODw+rTCajUqmUymazKp/Pq3g8ruLxuMrlciqXzSq1/4hSW15TqlBU6uAxpXI5pYpF+aSz5e+HjiuVSMl+xaJSubxS6Yzsn8srlc0pNR4tby8W5ft4VKlkujwvFuWYfF6W9x9R+WRSxXp61NY77lAHf/ELNf7222rrHXeo9MiIysXjKheNqlw8rvKplMrH46qQSqlcPK7So6Mqfvy4yieTauLAAbX1jjvU5MGDKp9MquzEhMrH4yqfSKjJQ4dU/6uvqvToqMqMj6t8IqEK6bTKJ5OqkEqpzPi4mjx0SOUTCbX1jjvUoV//WtnZjFKZlFLZjFLplFK5rFJ9J5R6c4dSiZhSmbRSP31IqVRSqd4epX60Rqm+o0qlk0qlEkrFJmSfXFb22bdLqeiEuvW6T6uZMxoVoPZ85YtKRSfUeO9xdc7cueqcs89W55w9V5126qnKMAw1cfRdpeJRNf+CC9Q5Z5+t5s5tV2ec/h4FqJ3b/qZOvP5nlYmPqkI2WfpuFvOqkE2qXHJCFQs5ZRZyKpecVPlMQhUySZVNjqtCNqmK+Ywzz6p0bLh0fC45qdLRYSknl1bFQk4VskmVjso+xXxGnXj9z2pf57dVNhtThw51qv7+nerQoU6VyyVUJjPpfKLqj3+8Tg0M7FbJ5LDKZKIqlRpT4+OHVS4XV+n0mHrmmeXqa19DPfPMcpXNTqqhob3qmWeWq6GhvSoe71fJ5IgaGNitnnlmuRocfF3lcgmVTo+rZ55ZruLxfjU09KZKJAZPKieVGlPJ5IhKJAZVPp9WqVSq1Ib+vl3l83mVyWRUIpFQ6XRa5XI5lclkSm0ylUqpRCKhkslkaZvbFjOZjLruuuvUjBkzlGEYqqGhQc2ePVtls1n1s5/9TLW3t6uzzjpLtbe3q6ee+qnKZCZVPN6vfvKTD6uLL16oZs8+RZ1xxnvVCy88p4aH31TPPLNcDQ/vU5lMVB0+vFHlcnGVyyVUIjGk4vF+lUgMqmw2pjKZSZXLJVQ2G1NDQ3uc495S2WxM5XKJKWW9qXK5pMrl4iqbjZ10j0ZHD6iUbauYUqpTKbXLmU8qpQaVUi8opWJKqVGlVEIptVcpda1SakApFXfWRZ3lPUqp5c5xe53vbyqlRqYs73XKd+d7lFLjzjacedvMmWrntp1q7MCY+lvn31RTRZP6VvW3VC6ZU7lETp137nmq80+dKpfMqfhAXD31+FNqzuw5avcLu9Uzy59RQ3uHVCaaUcmRpMpMZlQulVNDe4ZK29xyDm88rAbfGFSJwYTKp/Iql8ypTDSjhvYOqUOdh1RqLKVyiZxKjaRUMpVU0UxUJXNJtXd4r1r+zHK1s3+n6jzUqRK5hNoztEd1HupU+4b3qc5DnWo0NaoSuYTaN7xPLX9mudo7tFcNJgbV8meWqzeH31TJXFINJgbVgbEDqj/er6KZqErkEiqWjalkLqmSuaSKZWMqkUuoVC5VWj91bheSSuUTSuVjShVSSuXjSk3sUWrrcqXGdyuVHlSqkFSqkJBPdky2/Qql+juVmnxTlifflOVfIcuxd5Sa3Cvl5qLyycekzG3XKpXuVyofVWpgo6w38/IpJFXGKqox21adTr3pVErtVEo1zJypXt2zR12nlBorFtXi971PbXrlFfWWUurSXbtUQ2OjemtsTO2fmFCA+uTXv64mlVI7jx1TwaYm9du9e1W/UmqjUzcTzvc+pdTuKXVr0lnudOpep1JqzNk/ZttK5VNKTRyU+2UWlbKKStmWUpapVCGtVDGnlFmQ7+7cPcYsKpVPyvd8Uo6dOKhUf5dSmYnyfvnU3+2bku39XbJcTMuzyk3KMxrfLfc9uk+Wty5XanKf89ySzvNNyjHus558S55ZdkzqgPsso/uUKqZk/9Lz3SfL266Vc2XH5Njx1+V8+Zg8z+yIUrkx57nH5JqPbpTvo3uV+vNymU++q1R2UqlcQuaT7yqVGVNq8rBS6VFZn4vJ78/FnXlMqfSIbMunnO0pWU4OSNkje+S3ZKNK5RIqnc+qdD6rkrm0SuczKp3PqoMjx9XK5x5RB0aOqXg2pY6O96uVzz2izl7/r2rlc4+oRDal2ma2qWdffl6tfO4R9eIrL6tZs08pHTOeiqpAOKi2bHtVTabjKhwOqyPHe0rnOf+C89Wfn++Uc+YyKpFNyTyXVrl8XNnZN5XqX65U9nWlipNKmTGlzLh8iuOyvn+5Utndsq1/uVITj8r6RKdSxVGlzKRS/dcqdQDZbiaUKgwolTugVGFQls20zItRNXNmq9qz42nn+DE12HdYjs/uVnfefbdqXrBA8bWvqY2HD6vBREIdGBtTi5csUd/56U/V8meeUfuGh1Uqn1cT6bRK5XIq4Xz2Dg2p5c88o/YODal4Nqt2Dwyoa3//exXLZlUsm1XLn3lGNX7722oklVKxbFaNplJqKJFQk5mMSuXzKpbNqs5Dh1Tg/vvVkfFxFc1k1GQmo+ypff3OTukkX3utdJJjsXJn+403lHrhBaX27Cl3phMJpQ4fLnew9+xR6sgRpZLJk/v8sZiUuWuX4AF33eCgUhs3KjU6Kp9Dh5RKJFQyYZcOd+d/D0ncbS7cePPN8r7uJf89rpiYkFO7WGJi4j/vNzYmx0ejsi2ZlEvcuVNuz+ioUun0/9eo6/+vE9Cv/m9w6n87UP7/5fO/Alwnk+UGMjhY/u4CZLd2urV23z455siRcg1OpaSWTm1AicTJjSWRkO+Dg+XGt3u3oNhkUmr24KBKxYvqzTdl11hMDt24USp5MqlUf7+A68lJuRS33Q8OSlEbN0qx8bgsHzgg80RCjhkcPLnxuMA6mVRqfFyWr71Wynj0UVmXTmdLoPf3v/99qYOeTCZVIpFQiUTiJIDd399/EigeGBgoLU8F6qlUqlTuH//4xxJwuPnmm1VbW5sC1I4dO1QymVQnTpxQc+fOVWeddZaaO3euOtUBboODgyqfz5dA8Msvvqh0XVcPf+tBAdy5fBkku59cXql3egQUF4plcH0S4J4CyA8eK5dTKJb3S6Tk2Hd6lOobVmY2q9Kjo2r87bdLIPtXZ56pcomESo+MqFhPj8rF42ry3XcFTDtAO5dIqMmDB1VmdLR0zNY77lC5aFRNHjyott11lwD0aFTlYjGVHh6WZRdwb9mispOTKpdIqKIDtnPxuComE8ruO6pUIirAOpMWwJxOKTUxqtRgn6ybCr7d74moUn3HBYSnkkpFx5V6a7d8z2bUKy+9pPoOvqNmtrWqPd3dZWB+4oiU2XtErf/IMnX1lVdIudFxpQZ7lZnLqPjwUfWbX/1Ctbe3K7OYV2YhJ/NiXhVzaZUYOarMYl6AtAOcC9lUaR+zkFP5TFIVsilVyCZV7xvPq3R0WBXzGWUWsg6wHlS55KQyCzlVLORUNjmh4sNHy2UW8yoTH1UnXv+zyuWSKpEYUMnkiAP6Us5cAN3g4Bvq97+/VmWzMZXNxtT4+BEHGEZVLpf6OyCY+DuwHVWJxKBKJAbV6Og7JbCcyyVLAHN8vEflcvGTwGk+n1bj40fUwMAbDtgst6WpA0/uoJT7cdtgPB4/aTBs6v6pVOqk5UQioQ4dOqRSqVRpgMwdyCqD8YxKJIac3yyDD3/60+fV6OgBlcslVC6XLAFj+aRULNanMplJlUqNqkOHOtXQ0F6VzUZVJhNV6fS4ymSiamKiZ8p9eFcNDe1Vf/zjdSqTiapsNqby+VQJhOdyydI9Ghx8XSUSQypTzKuUbau4EqAcUwKIXRDjrosqpVLO96RS6mZVBs8HVBkgXzvl+BGl1A+VACEXbAWcfXc484RTjgvG22bOVF0vdqnkSFIdP3xcRSIRtXvrbjX05pD67pXfVdWV1WrvK3tVZjKjHl/3uGqsaFRv73pb5RI5lZnMqHwyr+L9cTWwe0A9s/wZNfzWsMolcioby6pcIqfGj4wLcE7JOhdYD701pLKxrDrUeUj17+xX777wrspEMyo9nlbxbFwdHDuootmoOjB2QD2641F17e+vVaOpURXLxtS1v79W9cX61GBiUPXF+tS1v79W7R3eqzoPdSq+hlr+zHL1zug7KnB/QG08vFHFsjEVy8bUaGpURbMC2l1wPRVQp3IpFc/G/xPIHk2NKruQcoCvA7ry8TJ4dkFyflJAnAvUXMA1FWhvXa5UdrQMzlxAPvCC7J8ZLm8/+GgZDE7uFaBYEICfL6TUPisvgNa2VUrJQMsBpVTLzJmqe88elVRK/eq111TktNPUXqXUYafOzLvgAvXYiy+qTqVUOBJRr/f0qI1KBnU++JGPqAVPPqmGlQzGdDrro85nuVOnOp1ld5DIBd8HnOtIKyUg2nJAtWWWP2ZhyqdYBsTuspk/GUxPHJTlEvAu/OdtU5fd7YWUUoWMPKvYQaUyI3J/U8flGaYH5bml+51nGisPjgz+pQyGsyPyTPo7ZV16SKncuPMsnE96UKnYgfLgiDtQkhtXKjehVP+L5WddOk9KPs9fq9TovjIwzqcE9EbfVSoxoFRyUNZno/LdBceTPVPAdUIAdXJAqWMvyDwXk+2ZcaUyk045CaUGdyrV0ynHjL6p1LEXVDqfVYdHTqhXe95Qk+m4SjlgdzA+prb2vKEmUlE1mpxU+4d61MrnHlGHR0+oTD6r2tra1KcfuVOdvf5f1d6j76hARUjNWfFBtfK5R9TTz/xWAeo/fvkz1TvYr3w+n0rkUiqdz6pENqU+/C8fVj/40Q/VZDqmRpOT6uh4vxpJTqpULqPMYlxA7cSjAoILgw7IfVOpYlSp4oiA5YMBAcJmTPbJHZT1JTAdUyq7xwHhewWYF/odcN2vVHFYqeKouuHz16vmZmfAtr5azZndolT/tepz//YJdfp7Zqs5pzSpj3/8Y+rVgwfV8meeUfFcTt20cqUK1tYqr8+nauvqVNOMGepYf38JSO8eGFDxbFYlHYDtAumNhw+rN4eG1GAiUQLfk5mMimWzJcA+mEiowURCvfDuuyqayai4c/yRiQmVnALWi8mksvftk/59LCYd49FRWXY7y+76eFwAdiAgnenJSUGhy5crVV0tQNvFD9FomURzGa+//EXWj4/L3MUbsZh09JNJpWIxlUrZanBQiDD38GTyZEjiHjq1bx+NCnYfG5Nt7v6vvy4/JZGQMYKREdl3ZER+0tRy0+nyOV94Qda5GGLvXtmez/9/Crb+e6b/J3D9D7fw/6rJdQp3Jd6uZZ5jIlWK7odywEEiIRrqL3wBfvhD0UX4/WXbvnRagh4sS2QhbmCzkzSeO+6AX/1K5B9f+5r43+/aBfPmUdj9JsUlHySR1LBtObXrqwZyih07pLiBgXIo+K5dUszMmaJeaWkR+Yi4fYtaZe9eidU+dkxCRlavFst9y3IyVzlS8j/+EV59VS6tsRE8niLp9ARdXV1cfvnlZDIZtm7dyqJFi4hEIvj9/lL8tfv9+9//Pu3t7SxbtoyNGzeyf/9+2tvbufrqq0u33jVIi8fjtLWJHMqyLLZt20ZjYyPLli3j97//PXPnziWRSLBt2zaWLl2KYRh897vf5dVXX+X3v/89hmHgQyM+MMjS5R9h+vTpfPADH+C2G26CoONe7QY8uSm3YknZ5veJ3LutSSTfPX0wp1WcxUvrHefxvmFZzhfkuHxBZOb11VI9TAvTErMpzTBI9fez//HHWfCNb5A4fpxDP/858770JTyBAArIT0zgCYfxRiKM7tlD/TnnkB4YYP8TT3DWjTcSaW3FKhRIDwyggAM/+QntN91EpLkZ5dTXsddfJ1Bby4GnnqL9hhvw19TwxoMP0v75z1PV1op+5G2RgD//NFz+UaiuhWAYhvuhdprcmOOHoeWUcs7qowegeprsOz4CL/4elt8gMu+Nvy2X4/Ux68x2nv3Vr5g3t10q0sAxkX//4lHOWPtDHvjKV/jnT35KZIvJOFZlDcrr4eqrr+GypUv54hduRTmyUc194dkmuseHVcyXJKXZ+DjhuhmgbMxCFsPrxyrky87htoXu8WKbBQxfEDQdDbBtC5SNpnsoZOKMH32NpjPfj1nIUswmCdU0YSnLSRslrtatrYsxzSzJ5CDd3etYsmQ1oVA9SknqKJ8vQjI5RDo9QkvLQie/tQmOBDYWO+7kqF5FTc2pFAopDEMkd7ruBRSx2HHH4Gs+Hk8Q2y6i616UMrEs05FQ285rxyaXswmHw1iWdZJjf39/P83NzaW0WV1dXXR0dFBTU8O3vvWtUhvs7+8v5Yp3yzEMo3R/oTyAK78hhtfrJRQKYVkWXi/EYkeJx/tobp6PrnvRdQ+Sp1rHNHMMDOyisrIVrzeIaeaorp6FaeYZGNhJONzg5Lp+H4WCGE/5fBEKhRTDw3uZMeNCPB4fxWLGkcIrNE0HtCnnyOPxBFHKRNMMCoUkr7xyPx+46vsUNe0kE38dkYKvBO5C0hsVgZ2IfLsVSYv0I8QpXEPyXU93vtuIyVkECDvlpZ3yViIx3i3Aqc6+X7jxRjY//zyjw8PU1tQSDoTZ/dfddL7SyfqH12NlLSaPTfKxBR/jwc0PAlAxrYLp06dTV1NXej9t6tyEL+djy1e2sH/Dfj7e+XGazmsiOZgkNZyisqWS7vXdLF2/tPTcfJU+/vxvf+ay71yG4TfYtGITy364jERvguRQkqZLmijaRfoSfazZuoa7Ft3FjIoZVPorMW0T3XFwtpSFR/MQzUXZN7KPBc0LWLFpBauXrKY+VM8bQ2/QUtnC2q61/OiqH9EX72MoNcTi1sUn5bMGeG3wNS6YcUGpXmmaVtpuKYtKw0Czi46MF7nrqaMiBz7zbpEBeyJObmMlcbuug7iyIX1C4njPuhfCs8FycssYAUdaDozvgvr54jIeaJJY3LfuK+fHnv+EE7+cJ+Wt4BXdS4Pz3Bcg4QMmcM6sWTz97LOcOW8efx4Z4VOnnsoVu3bxmzPO4LNHjvC3+fN5Ze9emtvauO2GGzhn3jxuuPlmVkxO8pdzz+XHzzzDkvnzSSFhBV9BQg9CTt3bi6R5Wwvc49Q3x86rZKTmVYqIcv6oXWfqRC9Utsl9KSQkvtrjh3xCpOGpQTEns4si6XbzVVe0yPep/4tmvrwNXe7xSfvajqOqE6tdylHuRCy629PHJBWXVZC81rUXyD3W3CwclvNsdopDd2iWyMuttOQcb18NkTkSR2+m5QIPPCjr/dPgjdvL+yhTzp8blXzcgXoxVjvwWzj1GseETXd+pCbnjh8VmfiFd0F4hmz/USOcca2YkymTUm5tzaAU+pVPwPg+OWb3esmH7Q1LTHf3fbKsaSIRtwqkfLXEsgmqgpUYjq+GrWyKVhHbVvi9Pml3SmE67/lcMc+FZ53LI//xQ7an32XlBz7Nxhdf4N6vfoUqI8jiRYvZ+sqrfP2bX2fhoos4ddYcBidHsJUiX8zzhc+v4NKll/KZ667DUjZvDh7mnKbTGEpOMJkeY2FLM5pbo/QQFHpg8jvQ+H2wU5JKqzhwsju4FhRXcTsuEm+90qmVJqW8CsUe8MxwZOUeMTYzBx038VXgnQPDn5VUXhX/LPmw9UrQgmTsEJaS0Ieu3l4+8swz/NPpp/ODZcuwlcJnGNzQ2clzhw7xu49+lI62NjLFIitfeomVixYR8nqJ5nKMpdNcPHMmqUKBwWSSdd3dPHL55Yyk0zzQ1cVdixbRUlmJV9fJOVlpdE0j7PNhAMlCAdNxAG4OhdDcnLS6LnrqykrRVx8/LnGZbj7qmTOl719TI53tUEg64JGIxGpOzSjkzt3vPp/EWScS0tEGqUNTE1B7PCTtEKaplZzBJyYkXNvrWCB4vQJjPB7p27vJikIhwQBr15YzhHm9ZbdxwyjHVweD8hNeew3mzZPtwaBsGxyU6FY3t/WcOSI5v+wywSFOYqD/sdP/k1v4P8D1f9VUKEhtDQalpu7YISh19mzZ7gJt05RGk81KXmrTFDQ6NiaBBy0tYuE9Nan8jBlSxhtvnOxd39AgwQ9f/rLEaxhGuSErRUKvIpfT+MpXvsCmTc/R13eC3/52D4sXz2PFigkOHPggXq9jBJ3NcPz4UfbsGaWxsZYvfvF6du7cRiAQJByOsGbNI8yadSE1NVL8a69JyLjHI208l5NGqGliXH7WWeV0XK6Xm9dromlWqZOUTCYpFAr4fD4qKipKnfLNmzczf/586urqOHHiBC0tLRiGwcTEBN3d3SxZsoSamhrGx8dJpVK0tLSg6zrxeJxIRIxGBgYGqKyspKamhtbWVv785z9z9tlnY9t2CQz09/dzxRVX8KEPfYg77riDmpoa/Kksn7r1Zj76fz7EH37zNPM6LuK2m24WAFwZkR9ybEBMzNwBFMOZ2wrSWXEW370fLmwXA7OxKNTXwHtmCrg2LcfkywMDo3Bam8RpG9LBKBYK2G68jaahe70oUzohu++/n9M//WnCTU0UkkmsXI79TzzBGf/2b1TOmoWb/0BZFpphlMHznj2Epk8nMzJC6sQJZl1zDW76Nt0wsPJ5dt9/P70vvEDbFVcwd8UKnr/mGtquuIKF3/gGhm2i/foxiYu+8GL4p0+KI/i7b0NNvcRKX7FcclxveAKWfQzCFfDMk/CpL8IvHpVjv/kkPPeLk8upqGZW+1yeffwx5p3YVwbdgRDdmzr58I0r6N/zGh7bkvMs+1es6S309vXSPvccjvW8S920aQClNGVqynfLLDBycCvTZl+AN1yNpsRpXTMM8fBRCtsqMnzgFZrOfL/TB9dLgNvMZ7CtIoYviOGVNGeac++KuRSpseNkY8M0nLkE27ZkUEQrp8myrDzvvPM7enu3smzZY2zcuIKFC2/D54sQi51wQKantL9SFgKw9SnAuEA83gtAd/c6OjpWUVNzCidObCUcriedHiulpOroWEUqNUxr62KUMkmnxygWc9TUzKFQsEpmgS4gdtujOxWLRUzTZGxsjNbW1lIaLhd4JxIJKisr6e7uZulSAWdumcVikZdeeolFixZRU1PDiRMnqKyspKuri8suuwyvV9HX10U43EAmM14aVEilRjDNbGmgIJeLEQhUkc8nCYWmOQAZUqlRAoEqPB4/hUISTfNgGALQxcBtgMrKFnbseITLL//OSffVsgoYhs8B2Z4SuE6lxiFYhS8ovgsW5XzWbvx0ljI47kZiZ0eRuOkMAnCmAvGVCKCupZyy6wTwTSQ++xSkq+4apI4h5lcW4krenMhj5op4fB40Q8O2bDRdQ9M1nr/peRavXEz1KdXYTgo/M2vy0l0vsfD2hUQaI2i6hq/Ch5k1ycVyhOvDmAWTF+94kQVfWMD2h7bTuriV1sWtdK/rZtFdi6h7Tx1W0cLwGihb0nChQXIgSag+RNFfRBmKGztvZMP+DSxvX85PrvkJyUISDY2IL0LRLmLaJhoaOwd20lrZypzaORTtIkWrSNATFLdvTS+l+tE0DQMDU5kYmkHeyuMzfNjKxqN5sLFL+7rHGZpB1swyzRdAQy+DGDcO2F0uJiUf9bz1cqM1xLRKKchPCJBCSYywbYnZ2bRFEnu7/wGJ8Y3MEfBkO+9kuyBGWPvXCECrmCPv/7FdFKZ3kDB8KE3D59SJL9x4I39+/nliw8PU1NWRq6ig68gRfvWb3/DHtWsJ6jqWbfPJe+5h7yc+wSPA4YkJPnH99QSPHsUDVN58M3+9+WZywGvA2U6dKgB3IwM/pyCGefOBy5B0b7pTd3cigzhzlMKXj+PTnT9+zXDAHw6w9sqy4ZPKHz8qJlsN50KyD7KTUHu65Gq2LUicgIhj6qIc8zMNyCfFi8MIloG3QlKAFZJQ0SRXp4oS360s2dcuOOm8PAKUdT+keyE/LPmtXRBuZcX8StPEwK6hQ579WBd0fUTi4EOtzjNaJbH4r1wtgyFzvwbPnwlXvyt5zXVDzuMOulh5+R14JEY8eQIa58uAi5ve7S83wYFfSdz0RV+T9Ft/uUnirLNjsmw71sve8JT6g4D9sTdh2lxJ9ZYdlzRfypJ7MvoGNMwDTSeLF1spbKTOZwpZUvkMteFqAGLZBBX+CD7Dw1hqkpAviKHrnHPGXJ76zS+Y897TmBapLpkC5ooF4qk4F5wxj1e3dXHKnFOYXlvP3v1vMX16A2gaH+i4mE9/8Qau/+gnMTQdG4Whadz/0k/YevQNXr35UbRijzh8190FxozSfwejq2D6ww6oGxUjsslvS6y1US/5q+tWgacNrAkxLMOWhqly4hA+sVb2984BlZZY7Nw7jrt4H3hnypvSHAOVomC8l7wtqbaKloVH1/HouuSiBnyGgaUUpm0zkcmQKRbpSySY39xMbzzOwzt28J3LL+fWTZt47Mor8eg6w+k0923Zwob9+zm4YgVHJiepD4cZS6dZ1NoKQNGyGEyleKCri3s6OpgeDnPb5s3ctWgR8yoqMKYSbVDOVeXxiPGxC6wbGgTlZrNlRNvcXMYSxWKZpHMJvEik7Lfk8Yjh8be+BY8/LibJa9eWvw8Owrx5pCoaSSY1RkakeJ+vfGku3zcyIqbFSsmyC1l27IAPfxj+6Z8ko9CKFWXY4f7EbFbKHB8X4O3GaLtZxXbsEBNltwyPR/hDN31vXZ0c/z91+kcqrv+uybXNTqel1ixaJMBaOSZM4+MyspTPSwT/zJlynM8nNfHhh8VdoKVF5o88IsM6lZXSyFw/+/XrhTb2+6X2PvGEOAlms1L+6GgpO7yhy2FXXPER/vjHLtraZjJ9uow6bd5cx/PP7+Wll/ayZcterrvuBs4//0pqa2sxTbjiig+xY8c77Nz5Jrfddg/XX//RUm76/n4xQXDbtptlwB1Mu/BCGSu44QbJGJBIiPFBNmsRjUZJp9PYtk0gEKCioqLUae/s7CQejzN//vxSOq2mpiZeeOEFYrEYtbW1LFu2jFBIGKmamhoqKyvZuHFjCVh7PB4Mw2DmzJn4fD6UUvj9/hKYSCaTJRO0vr4+xsbGCAQCJTfy3z3fia7p/NOlS6EiVH5zeL2OY7gGp8wQp+8jvc5ABuXUXZURMUWrr5Hltib53tYkJme2LTmyK8ICwme3iGFaKlM2UAMyw8NMvPVWGfQYBpphcOF991HR1lZyADcCAc647jpy4+MA2KZZMiErplKOA7ZO/bnnEmlupuH885l23nm89o1vkBkZQXcAuOH3037DDbRdcQVn3Xgj3ooK2q64gvYbbsCyLDEzu+pjAoiv+Kiw1pom+addM7IXNkAuUzYm0w0B2YYu8wsvluP+vhzT6bR2vSDHbn5GDNOUzU/+9Dyf/uQn8dTUTTE9+y3oGj//xS+5atmVBPUCyiqWGEfbKqKsIrZZID05iO7x0dR+iQBrADQ0w4NCY2j/3yjmEugeL/GhQ6Dpwp7ZFlYxTzGfRvd40Q0vtiXGPMVcQngIpfAGIlS3nkVT+yWATiLRy8aNKygUEhSLaUChaQbt7f/K0qXSwV+6dD01Nafi91fR2roYgHw+wcaNK4hGjzuptMqDoJpmYBg+6upOx+eLsHjx3YTDDYDGzJlL2Lnzu4TD9Sc5k8+YcSEupRSJNFFd3YZSxZL5mOk4kJimSV9fH4VCAXfgVdM0RkdHqaioKKXZUkph2zbV1dU0NzeTSCRKZoSbN28mHo/T29tLMpksGQoqpZg5cyYej4fW1lYKhQL9/UO0tCwgnR4lEmlk06ZbyecThEJ1VFfPoq1tMblcDNPMYRh+isU0nZ03MDFxmHw+gc8XwusVKOv1hvF6gwwO7say8vh8YcLhBrq713PJJfdPAdYy0GEYfmfZQzR6lM7OG4lGjxKqakEFa9AdYK0hINf9s/Qg4HkYMY6ai6TjWuxsi0z5G4gAjzr7Tne2G/xnZ3ETYbhBDK8OU07nNR0X3xhohoayFbqhU0gWKCQLXPXDq6g5rQY0MHMmZs7EG/ay8I6F7Hh4B/lEHk3XsE0B5KH6EP07+0kNpbj0wUtJj6XpWNXBnMvKJmfd67rF0E/XMPMmvV29RI9GKSQLbPnqFhJ9CUFyCn58zY+ZvGuSx696HA2NkDdEwBMQkzFNx6t7WfnSSurD9fQl+siZObb3bcfv8ZMzc3T1dnEseoxUIcUNnTdwPHacol1E13QsZeEzfI5ZmUyuUZpH85QAt6Usgh7HJ9suloGRa7C1Z6UAa8Mn5laaAbkReP02SB6Rgq00jG0t56kGqF8C2AKsezfAoUekRtgFYTZTx6DvGQjNhAu+L6Zchbgc0zAfn10gBJhKkXeu/5HHH+dwfz8HTZODIyOsOXKE9cDqj3+cfW+9xb4336T7rbc4+xOf4EtOHcjU1fHsc8+x6e232fn222y++WaOIoZ3DjfFLYj7+O0I0NaA9U69vA9Jy1V0Ph3I4FBR08j7q4QR1n0OsHZYZG9YQKbuFYbVykPlTDE80wxJyRWsFVYbxBAtO1FOsWU5v1ghpmhGsNwwFHKOYIOAcXRRGOy+VQC2JyT/F6oIYzvEYKyYlP+YyCxRDExNwaV5HdO0LNR3yLlzo5Ln/P/0yrpAo6T7OrBe1rctF4WCtxpmXSs5rj0BYc93r5C0bGNdMnCie2SwIdwAzR0OU24Jw1xIwsXrBVhfeDf4q+U3XvYTMTWraHMM9pC6UUzJMYPdUoa/GhrOk3NrQKTRqbu6LDec56TkMlHAQHyUb774Y/pjIwS9AQYSYwwlxnhz8DDZYp4HXv4pA/ExPLpB2BfE7/Fh6DqWZRL2BRmOT/Dy3m0ABLw+Hn/kB3S8bwmnzDkFy7b55w9/iJ/++Md4DA8vvvIyh4/18MFLLpEmYlul/4Uvf/B6vn3NLVJfJr4tKbK0iKTi0kOSjqvhm2AeF6MylRGAndwAE2sEaLsu4Bri7l88LPvaaWGsXafwYp8w3WYfjN4l+bDxCLAuHoPMNjBqwNNM0dY5Go2yrbeXwWSSm55/np5olO6+PrKmSTyfJ5HPS4q7cJjZNTUsbmsjlsvh03XWOwPEjy1bRtDjoWjbRLxe7lq0iOXt7UwPh2mprOSh7dtpqawkZ5romuS8fqCriw379/Pt7m4MTWPdpZfS6maeyTpZTlKpcrafXqfP6Ham6+ulz15fXzYyXrtW+o6HDkm/KJcTdOqqX6dSxi74rqyUYy1Ljne/r18vzsMeDyghwObMkSLGx8umZNu2ST89nRa8r2lyyLvvSnqtGTPgd78r+6P94AcCO3p7JQNRPi9Q5pZb5KdVVclljY/LPrt2CSQaHRXI4popu4Scm+73f/P0D+b6v2pKJKQRBINS01ypR2trOYn81Ezt7nCOYchwUW2tMNd9fWUb7rExWW9ZsuzKQI4ckVGqVaukpQwMyChYsVgeBkqnSU2fg0Lj6FFRlF9yySyeeupZzjhjHnv3insfSMWeP/8M7r33Af75n/8Z05QGcvfdrpnhOGef3cSJE1na2z388pfys9asge98R9q1m+Y7lxNC/nOfg+eekwa5cKErGc+TSJSZLJfd0jSN3t5e/vjHP/KhD32Itra2EgO2cOFC+vr66Ovr45prrvlPktXnn3+e5uZmzjzzTHw+30nbq6qqMAyD0047jZ/85Cd0dHTwwgsvMH/+fKqrq7n55psJh8N84AMfYMmSJeTzef7pqqvY8te/UR0Mcd0nP8W8hQu47Ut3lEff3clWZVm36cjsXPl3wCdMNJTYaOIpOHgUzj1TUnRN3R5PiRu5MxVyOcZef51gfT3v/OQnnPFv/0aktRXd40FZFrnJSax8nuC0adiWhZlK4a+rk+22zcTevfhqawk3NlJIp/FXVZXScilgbN8+0sePC3tt2+TjcfzV1bLdqWOarqNME83jQddAty25BZpeTjlWLIDXL+mzNj4NV31cclb/9nH5Pq2xzGgoVU5JBzKqbxbh9S7oOcCsbz7Gs088xrzj+wR0V9WRKhZpOmUOr21+nveed6Gk69r4NCz7GOb0Gbzn9DN49OH1XLnsKoq5JGNHdlF/qkiNPb5gScHhXoMAYtuRfvtK67LRISedVwpvIIxtWeiOa7uybTSPV6TmmoaGkiKdeen3Aaadd1jp26mqagMUyeQwXV1r6Oi4h5qa0xA372Ns27aOK6/8PonEAJFIfQn4ZTJRisUkXV1rWbToLioqhBUoFFIEAjUMDOyksrKVRKKPSKSxtH14eC+NjfPI5+P4/VX4fCK7E5bWwLYtDMOLZenl3+aoRBYsWEBtbe1JDLb7P1EsSkqkVCpFOp2msbGxFLbh9XpJpVL09PQwMDDA/Pnz2bFjB1dccUXJ+T8QCJDL5QgEAng8HqLRKDU1FVhWlo0bV9DaupjW1sWkUsNUVrbQ3b2epUvXYRh+DMPH88//O2+99Sva25fzvvd9DdCprGxBKfOkwYDe3i6qqlrxeIL4nDQ56fQIyeQQjY3zAPB4AqTTY4TDDZhmjnfe2cDAwC4u/eefkdMNLATwNlGW0WaRNFoZhI2+HZjjtFMLkfwWEdypO/tOETqWWHCcMicRoB6k/Er5d+CLwCzE1dkDeNN5wTy25Ju2TXHMTg4JJLeLNtWzqokejdL1QBeL7lpExYwK2V/T8FUJaz2wc4DKlkoqWyvp395PW0dbiZFWpiLeG2frmq0suXeJlHcsSqIvQfP8ZnKxHLZl84MzfsDca+dy2U8uk9+kyh3ugcQAfo+f6ZHp5RzUmo5pm9z78r08uPTBkkzcwhLlkG5gKxtd0+mZ7GFm9Uy8urckCdc1nUxBcq77DJG96uglZttWdqmeRnSXk1MOQPE47LXmjE85gBtNXKJrzoXGy0QuPrYdatqFAc0NiaP0VKkwujw1MwOxt6F+oZTtrs+NSu7j/ET52PApJL1hEg7DOoykdluNOMannLkB7ADOQkCvB4g79aHCqTc7EIbanfYBR4CPImD6V8BshKEeQNzBPUhe9Q8Dv0PY6rUIsz0DiCiFX1n43PeibYkU2ldBSfLsDlIU08JQo015z7kacCUScJflTfUL+Db8lHJBT5WQR5odVtt5LlZaAO3pd0DFqVPUBq6UWpfzawi7DAKqda/DMjv/q2baoccMeS4TO4WxzgyIs7snPGXgRXdk6FNy/tgFKVNz1GdmEt78MlzwPVAep9UCQ7ug0RmwVDjMvlPW5BHwVwiwLsSFjfZVynbbYea9YYgegUA1hOrL1++qLnCvDbm/uUkI1pPRPPL3iciPQSOZT/Poq7/hixd/nFwxT8gXJOj1o2sat958Ky9s2sTIyAg1tbVUVlTwy5f/wBPfeIRt27Zhmibnz7+QRx55hFBFmLeHe9AzFqu/uJL+E33oHoOP3n49qiXCvUs/S39sjJHUBGc1zsHv8eHXCxjknBpYlJRcergs99YMGLlVAHLFcpj+fclZXbcajFoY/TI0rBcwrvIwcgckfyXu4I2PQ/GIAOzpj4m8fPy+clkN3xYZeKZL3MonH4K61cR5Dzd0dvKliy4quX8vb2/njoULqQoEqA0EMJ3/u1ShwPRwmJwpAxeGrhP0eDBtmx39/UwPh2mqqCBdKDA9EsG0bfKWxZ0vvsj85mYumzOH2kCA0XSamdXVHIvFWLN1K49cfjljmQxrtm7lrkWLODccRh8aEtA8NiYJnjdskBDOJ54QROpuW7BA6vDQkHSq771XsIMLuqFM8c6YUe5HHT1aZrrnzIHPflbY6mxWZOLNzYKcx8YoRGroybfQ0qKVyHOX9DJNKXrWrHL+67Ex6dfv3QvLlsllP/64bCsU5Bi/vywj37EDzj5blguFMgl/zz3CAYZC0h3z+8swyVXJ790r5P3pp8u+/1Onf8jC/7umdFrmrvRjKqC2rPJ2N/jZ3a6U1MRQSPTUc+dKja+qkprngnHblnkqJWWddlq5oSol5R0+LAz4974HQMpTjWVrdHdL/MP8+bP49a+f5ayz5uHxlHH6HXd08+abH+bIkX56ez2sWSNq9G3b4MorYf36r/D88/vYuPFPhEKC41eskHdFLCbhI2vXSkMKh6WhnDgh4wTNzZJRbPVqqKoyaWy0SCaT9PT0UFdXx/Tp00+KsS4Wi6RSKVpbW0sAYGpcZzqd5qmnnuKaa66hra0NpRTRaJQdO3aUJKrvvPMOAwMDXHHFFdi2zRlnnMEvfvELLrroIkDYusOHD7NkyRK6u7t5z3veA8ALmzZx4003EQwGoWgyPjmJL+Dn32+4kTXf+LpIugdGJZZ6qtQNhNV++0hZ/v3aW3DOGQKkQVhpn7cMTOMpAeYBR35nl8G2aZqY2SyFRAJfRQWFZJJgfT2pvj4yw8PUnX22KBMCAZRlYeXzeEIhlG1Lp1cpSSm1Zw+hpiaJn/7Wtzjj3/6NYH093kgEu1hEWRYTb70l+1RVsfc732HenXfKoLLfLwDbtvEaAsgYGRBWednHoL4RxoZh8+/gXz4rzHY6Lmm1wBk8siTuurIGqmqg9whU1cG06dK5KOQgn4OKKmad0c6zv/wZ8867wJHZK37y1FP8xy9/RddfXoTfPgGXXAN1Ir14ccsWPvvZz/P27i1E6lpQCgqZGN6AvJ1ziVGC1Y2gGSdJxYvZBMVsimBVPZqmo+lGqeNoFjIYvpDIdfMZbLvIeM9uGs+42NlPB01DmwLYcVLLaZqGZZvk83HS6VEHJK7H54uUZMmgUygk2Lz5Nvbv38CKFQcIBmtJJodJJPpobl6AxxMkmeynp2czAwO7WLLkXioqGrEs86SY41BoGjt2fIf3ve9rDsDWiMePs3XrGpYsuZfq6tnYdqEkLdd1nyODDpR8Ddy871PDNPxOHr3NmzfT0dFBdXU1pilA1ufzkc/n+ctf/sKll15KNpsteSZUVFQwNDREVVUVVVVV9Pb2lgbROjo6SCQSVFVVUV1dDRRRDkBTymJgYBcNDXPx+ysAF/TfwUUX3U4oVM/Q0Bsl6byuC+ssgw93U1Mze4oM3yr93lRqiC1b7mPp0odIp0fx+ysIBGrI5+MEg7UOk+3Dtk2UN4Rl+DisaVQhYAfKIKeAgN40cC/wPQTkPACsohw3HUJAeD9wHiIbX+scM8spx49014sIEFIIgDecbR5nWzCVp5AsoBkahtdA9wirZZs2KLCKFt6gl+f//Xne+tVbtC9v531fex8VMyrQPBqxnhhb12zlojsvIlAdINwQppgp8tLKl1h812ISAwme+7fnWHFwBZquoSwB8f07+mk6vwlN09C9osrp7eqlZWELdsgmUUiQzCdpqmgqybOLdpGsmWUsPcZwapiFLQtPAsRuOrtUIUXAE8C0TXYN7KKtqo1poWmkC+lSGq6iVcTrpsybMtijoZEqippp7/BeLphxAUFPkLCO0x4pgz83PjbV44DeeyA8x2mzlqR1MvPCiFoZATev31aOob7gMSjEIFAHShMWswTOHKmn5iiWMCWP8pT464S3EqVpKOeZ9yEpsRoox+C7EacgAzqNSFqtPgQsfxsB5UHKIDviHHMcAe0LnXrpDuzknLprI2EG1QjTvQFJF/c1oNm2qDSzAigTxyWWGuT36V4By6kBBww7KRQ1XQYVzCwk3fjpQHkQI9Yj0ubgNKieI6A62QeRGRKvnR2H2jNOBuEoAbJGsPwuzY+CvwHsrLChVhbMhKxz82crR2rtDnC4wBldUqV5wxB9C6rPgsJk+flnBiDUBuFZcm4rLcxpZlCAcqCeUt5vOwfeKqd/ZpXrUzEl4NlXJZew5TaYf4/cQ92A6LuQHoIZi8DMQdcqWHy/pNnSdLl/ti3nM3wn1ynd6yy7HQuNIjqxQh4FpPMZwr4gmqYR9gUBhaUU8WwSv8eHhqTdspVi3+Bh2hvn4De82A4oH4iNMZqe5JwZ0tfJFQscHjvOWU2n4tFFEaKUYv3ffs7Hzr2chkgNAa+fPQOHqA1WUhUIUxuuxm/Y6KqAZvZBsVfiqXEAdd3t4H2PMMsT66DhQRm4wgYtKGxzaLGz3YmjNqbB6B3O9wYnTMErz9POgDUoZdWtBi0EnkaRj2d3CsA2x8j4L+XdySj9iQQtlZWs7+4usdFBj0f+9y2LvkSC4VSK5srKkpR7VlUVPdEoD+/YwbpLL5X3nqNyTORyhH1yTwGGUynWdXezeskSGiMR/IaBrmnYTtz1vz//PL966y2Wt7fzo6VLqc5k0AIBQZMugz19etlPaeVK+cyYIf38SESQqWEIsG5qKrPV8XiZONu7V44JheA97ynjABCCrViU/auqJJD5lVdIdVyB0g1SKTkMBJoUi2UoAhLZWlcn1bBQEIZ5ZET8lgoFuRTXd8mNqXbZ53S6fNqpoPzHPxYg716+q3TduVN+Yn093Hmn5MiurOR/7PQPWfh/1zSFwSpNrmTDNR2IRKSmdnVJDR0dFQTqxlYsXizrenqkxv59eW7LaGqCgwfLCeOc+E++/30JhO7tpbDjDY4eEznG4sVy2slJOV3OSUdpmgKK//rXnzBt2qfRNE9JmbJunSSX/+tff8nTT29gcPAJ1q4V4BwIlFPqQVmF8sAD0lB0XQbeOjrKOe/XrJFtsViMLVu20NraSmtraynHdTKZJBKJEIlESsBa0zR0Xcfr9WKaJhs3bqRYLHLTTTdRWVlZkpGn02kWLlyIrusMDQ3R2tpaMixLpVLk83mRNiPn37RpEy+//DKnn346p59+OqlUimKxyFVXXcXIwADH3znI8WPH+Mi//Atfvfde1nzzG3J/DV0k4bZdZp41ZLkqAmedCqe2yfpzzpD17/bKvgFhSik4UZZVEQHXbhlFU6ThtsLj8eBxc1YDgdpaAIxwmJr3vpdCLIbu90tctZPfWtm2xGk78cC2aRKYNo3M2BhGIMAFq1fjq6iQOGwn3riQSlE3dy6G308xk6Fu7lyyY2MUMxmUZTG2Zw9WPo9tO6kGNj9zci7qjU/Djr/Chsfloefz8PNHxbwsk4ae/TDrPWJ45vFCy2wIBOXYI29DKsGNd6+ipbmZ/oEBLv/Iv3Lq2ec4MoghfvLQOj77L/8MqQQs/RAkYqVO7X/8x1N8+lOfIFIrwBpdxx+uIZcYQ9MNgrUtaJpRAr+uVFzXPQQqpzkyZ0vWO0ZmLrBWgBEI4wtW0tT+AVCQiY7Io3KB9dQ2r2koy8Qyc3i9QRKJfi65ZA0+X4Ro9Dj9/Tuc2GmF1xvmssse5pxzriMcbsTjCVFd3cbMme/H4wmglElFRTPz5l3PpZc+SGVlqyML9zJz5hIqK1toa+ugpmY2V1/9OJWVLRSLGcfbwEdr62ISiX5isR42bbqVYjGNaeYoFBKOTFrqV1dXl/MOKMvCKyoq8Hq9+Hy+kpzbzUufz+fJ50X26XocGIZBa2srO3bswOv10tLSQigUoq+vj+bmZrq6uti/fz9dXV2EQiG2bt2KUiax2FF6e7uIx0+wcePNVFTMIBCoQilbjOPQmD//C2zdKvewqqqVTZtuIZHoAyjJ39NpidO2bROlbNLpMSwrj6Z58Pur6Oi4B103JJe1L0w2O47XG8I0s/T37yAaPcrzz99EYvwwCgEz9YjU9g0EQN+HgGYNASvOG5cgIr9dj8i4ZyDgaQ6SiziEMOBPAs4bAQ8CpJII+HGEyCUQP0zZ4gclrLVdtEmPpCmkRDNnZk3SI2nsok0hVWDp+qW0L29n8d2LCVQFKGaLYENFcwVXP3E1de+pI1gTpLerl+RwkoW3L8TwGbR1tHHd1usoZopMHJ6g88ZOYsditCxqIdGfoK+7DzMnTFrjvEY5JzaDyUExE7MtTNukaBfR0PBoHgaTg8ydPpe8mS9tG8+MYzmxpxW+CjQ0vIaXi2deTMgTIugNEvKFSOQT9ER72N6/vRTDrZxc1m68dTqfxqt7WdC8gHguztHoUbmByhKAbKaEDU0ckXX71zo5jh+QO6tMyVHtmwbhFgGHhagwoWfeU5YNGwEINExhRMuABxSMd0vOZteQq32VyIzPl9rhcQaO3AGTU4E8EquPU19soMqpaz3OMw8iIDuMDOC4AHyhc1yXU0+anbq1AwlTyCMDNHuQEIMup656gceRGP4fAdVK4VN2GSxmJ6f8NmcyfMJipwZlU8loTAmwzo7LHJx7gyMXnyag23Ik+pWzBExXzpJcz76Kcq7sVL/cR29EYtt33SBzN2+y4fTWjYDIw11AneoRuX8JWOuUTOcwwV8rTHVDB3gqRA7uPn9/vRMzbQqo37NSzM7CLZJr2yqIDF33SX2wiw7zXHDugS2/IVAn9cZXIcZlVac4gy82VM2G+nPgr7dCehDm3SLx13+7DSxTpOI+J8ZbKUiPOiFlDmtv5Rz5vC3hR7aNrmkEDC914Woi/hBBr7/8rJSiOliB3+Pju1t/Q6aQQ9c0zmt5b6nNuPW2JlTJWY2n0heVfNjRTJJzZpwuBo+2RTQjuok73/8pnt6zWR6vpnNW4xwmswkqgxWkC1mUKspAsTENAudA9jWplQ0PglYlz8Y7Exp/VDIbQwvL8w4tkbkWgsyrkhtbj0Djj8F7qnw3h2D4JgHueoWA9emPg6cJPA2Q2S5leluEufY2EzKynFpTQ0dbG6fV1vL9ZcsYzWRY+dJLZE0TQ9MIer08vGMH9eFwScr9QFcXllI8vGMHty9ciNcweGNoiJFUikQuR8jrJeT1Uun3U+n38/COHaWc2Dqgaxo90Sg3dHZyLBrl+1deyYEVK/jOZZeR13VBih6PzCcmhMk6cQI+/3mJg54/XzrPbqDx4KB8N01hsByfHWxbynC/z50rx9XXSyd81aqyxtvvl3Luu0/iujUNOjrwGRagiEQEkuzYIXNNk+7Wa68J6J02rWx6nEzKtuky7llinyMR6duHnVHolBPtODIipx0cFAm4m2Z76qSUlLlihWCJigop75FHymr3/63TP8D1f9XkSl9BGoXLMG/ffvLwUHMznHOOGJGl0xKQMFU660pJ8nmRfezYUWbCQ6HyyNS0aQLKM5lyBviHHxbrvbVrKZw5j4cf1rjgAin2gQdk16eeErbZlYbcdlsKj2cD3/rWv7m55kuNYteu37J+/dfZsOElli+fzqpVMnJlmnL6xx+XMlatKrdxn0/a+PCwjCF86Uvl8jRNzJSuvPJK/H4/Sim6u7vp6emhqqpKOiSGQaFQIJ1OY5omtm2XOvXNzc10d3cL+HTiOLu7u2ltbUXXdTZt2kQ4HC5JUlesWEF7ezvj4+P8y7/8C2eeeSZbt25l//79PPnkk9x4441Eo9ESuLeVEiBs2xJPrZQwzgoBxccHkRFsU9zAcwVhoIsOYPb75LhcQRjr3iGJrS4UJZZad16Oh0/IPomUzEEk5l4vJNNYhQKFVArD58Nw3ji2aRKoqREgByLfLkn7RApum8ISjb3xBtmxMbwVFTScey7KNJl46y3MXA4jECA7OiqMdy7H7jVrsHI5AnV1NC5aRG5sDCubZff991Nz2mnkJicZ2bdP6p8bN73sY3If3OWrPg6oKTHRT8v+FdUiEbcs6VzoOvgDsq51DtTU8fiPfkh/Xx9mPMrIrm0cueuzMDkG8Qm6P3AG10dMMcapmSYGar/8Lgz388tf/oKv3fdVioUMyjKFmVY2weomx5zIJBMdQJkFNKXIxkcx8xk8gRC6x4fh8aF7/WTj4xTSMTmHskhPDqCsIsVMnIG3/kIhkwAgVDOdYibubBcmt5COMfj2yyizUGJCNc1DZWULf/3ragqFFJWVzTQ3z6dYzGLbRUwHgF955fcBiEaPOqyr1CHLyqOUjVI2fn81hUKCiYnDThx32jHkUiSTQ6WYYa83RDR6jC1b7qO1dTFtbYtJJAa44opH8TlyT7dMyxLDtSuvvBJN08jlcsyYMaPESqdSKQqFAmeddRZbtmwptcVXX30VAJ/Px9lnn00qlWJycpKzzjqLK6+8El0XdUM+nycajZLL5ViyZAnt7e0sWbKETCbDkiVLAIutW9f8pxhxYd4FbMfjx6mrO40lS+7Ftk22bl3D/v0b2Lp1DUpZdHSsor19Oa2ti0inR9i48WZisaP4fCE2blxBLNaDz1dJJDIDny9CW9tikklhspPJQTTNOOn8sfQQGQQ4K0Ri24Aw099EAEwGYZTzzrwW+AzwGHA6Ao7cgRmXjfYiYOcGJKY6gwBpEHAUcY7RKJunpYAYwtr6K/34Ij4iTRGULf8tycEkW+7bQmo4JaZlER9XP3E1tafVohliYhY7FmPjzRuZPDJJMVOkf2c/4YYwVS1V1MyuoaJZ5OORpgj5ZL4Ud71t3TawIVwfZvo503lp5UsUkgU8AQ+TPZPYts267nU0RBpQKLyGtxRj7TW84vatFH2JPm56/iayZpZMMSMAW1loaPTH+9nWu42cmaMh0oChGYS9YSK+CBOZCS6eeTFhb7hkimZTjrGeHpmO1/Bi6AZNkSbaqiX0AisroM4ThvMfhXCzSLnbVwlgbl8tgM8uyHrNgOyQgPFkD6SOQ8VpwlgbofJTzE8KeC468ceqKOCr9kJhtpUpgM2IwIU/hNwY7LoB2xnUcycDcZU/BwHTabfL4Ky/2KkrTQgQb3Tq03EEQJ+gzHzvRDpxYST2XyFycttZHnTO44rXNef8OcCjaRR1j4BBlBiTaQ4zbTgd/EJawHDVKWXG2paOOdVzJB64chYlyZbuAW9Qtpl5yMfKgDx+XO5f1Wy5H38PwpWSAZCB58AIC8jVPJQc3TVdzOWcrACEZ8K5D4nBWW60zFhbaVEYGKHyr9YMMbFrWy71wFcjKoXdt0pZ5z8KoRZHOTgqzxZbPrpPftdfbhJGuZB0nr/lAGRHu1pi0xUM7hAZuzcMSx6UgYOa02D3t2Herc49nzKQ4UrvXZm9UsLYKqukwPBmxwh6AyeZT+oOGDYtiwde/g/646PkzQIfO/dyYtkURcvEUoqgN1Cug0qRK2YZTk4wnomx+dB2Al4PmWKOaDqGRzeoCVVh6AYew+CuSz5DyCfx8n6Pj7Ma56BrGn7Di655UXYacequFpMxzS9A2tMk683hKffTJYgMcQN3Y7FPeVMA8vANwmSrNBTeFWa68QnwnuIcq0tryO6C4gkInIWEevgl5nvi2xRsH0djUbp6e8kUixiaxvpt25jf3MxgMsnnOzs5FouxfulSxtJpVnV0sLy9nXuXLEHXNB689FI8us4tmzZRHw7Tl0gwPRJhPJvlhs5ODk9MkCwUWLd0KSN33skTV19N0OPBVoqBRIJXT5ygsaICNA1D04hms9R6PNIn/9znpMPssksuE+WyV24Q89CQ9PdNU1BmICAYIJ2W55jPl0m6qirpqPt8wliHw4J2h4elfzk8LDGZkYhcQ1cXvmwcTRNYMj4u+NyFDpkMtLeXw7pdMW19fdlHzY3my2SkDJBunc9XBt0ukbZunZTz2GNiO7Vy5Re48MJZnHGGxpYte9F1uPhiOHbsBZYvv4Dzzjubyy9fyL59b/L301//+lcMw+ARl0j8Hzz9A1z/V00usLYsoYjHxqTSL1xYtsTXdQHbo6MyavXAAxJvYRgiCc9mZfmhh6TWDgxIIINpOm6kY3IOd2jJ45GafdddUpMNQ4aZHnkEX3WQhx9W5HKyevVq2fX662VQLJMRqcbOnb/l/PPP4dJL3wtIOq7HHoPduzfwjW/cy5///Bc6Otp44gk49VRKobPhcLnhzZkjQDsclvdDc7OMSi1YIHEcjz8u83xew+fzYdt2yX14yZIlfO5znyOZTNLb24tt2/h8vlLMNUiH3uv1Mnv2bJYuXXoS++1KwZPJJEuXLqWysrIkF3/sscd466232LBhA4cOHWLXrl1cdNFFtLe38+qrr/LpT3+6xK51d3cLO2tZAorHojy1+uvcduutJ6076XvvkDh+9w7J85i6XiHx17WVknprLApo/++PrQhD/zB4xR3UlXnbpsnEm29y+8qVvOfMMwlPn86B48fRDIOJyUkuWLiQs047jcs+/3nOWbiQUE0NWksLRiBAoLaWr913H3MvvJDLb76ZD33uc5jZLP6aGjTDINLSQlNHB9nRUTRNI9TYSP355xNqbubCr34VIxwmOz5OzZw58rur6+DTX4SGGc4w53T4zO0yd83LLrwYrvqExGLXTYd/vdG5N0cEwPr8cFq7tIdEXOq8E0tGIAh7dwg4P+W9ZeDu9QlrvfFp2Z6MOU1O5O+a1yfdFt0Ql2+hsglWN6HpHsxCllB1I7rhpdyRERY6VDcDw+OjmIljFfKEa2egeXxMHH2d+NAhxo++huUY9RRzKTz+IEPvbEFZRTz+EHWnnEcxl2bonS1gi8y5q2stzc3zSSYH2bjx34nHTzA09DqmmSWVGuT5528iFutxVBlBx1zrBqLRI3g8QYrFNKnUEIVCwnGzHuaSS9bi8QTIZMad9F4DU4CpsLmHDj1HKjWMUoqWlosou4276ajAtm06OzuZmJhAKUWxWGTTpk3EYnJP3YEmXddpa2vD5/MRDoe56KKLSKVSJbWI1+tl+vTpZLPZkmw8Ho+jaRpnn302kUiE6upqrrnmGqqqqpg5cybV1dVomoclS1aTTo+VQPKSJaud+/aA85seQCmL6uqZ9Pfv4KKLvuTsdy/9/TtRyuKqq34EaCcdk8vFSyDcNLMYho9kctAZxFvH/v0b6O5eh2H4Tjp/48yL2aNpjADbkPRJs4CHKXW3S2m2glPmIJJcmzL7nEAAkAcBTN9GZLnrcEAzwmqnnX2HnDnAgwjgngZohkb0eJT0mEAxf7UfZSn8VX56Xuxhx8M78Ia9mHmT9Fga27TxhrygYNu6bRx67hCp4RSGz6DlohZqT6tF9+hkJ7MUUgVSQykKiQIVTRUsumsR7cvbWbp+KbFjMTbftpn0SJr5t8wnOZhk062bmH7OdIyiweolq9HQyJpZkvkkQ6khEoUEPsPnSFbDtFa2cumsSwl5Q7RVtdEYaURDw1QmM2tm0tHWQSKXwLKtk+Kn5zfPJ5FPsKN/x0mAwsYma2ZLMvRMMUOikOCWjbc4d85hpXPDgC6gx0xDZLZjOtYHiXdFohqaIaB6//0CsKctcMynbJh4TWTKiXfFgTrgyFSNAGSGKDGmht/Z5hGpcHC6gK/9a6B3Q2lw5TAysNJDueOlOc8/7KzzIsB3FEqGZQmn/riA3CV0xikD7BqEnR5z9q106uAS5xymc94VTl0LAEEn3lrSkiHx1BpOuqseAdKGTxzCHfNGAcEOwLYKZTAe64Fi1pHJO+u8YQjUCusLAkJdltpy4rOrZsv99FcKQ9x+L1z5ltxPK+cAZeT7WLcMbARq5ZodHEq4BYJNMPG6nMtb5RAUNmRH5BiQ5zr/SYnpDjbKs73gh5JmqxSbD/hrhGE2wrIOJRLuQxvKzz81JAy0XaR8Ia56TYMZC+V8uZj8tnCj7HPxeqg5VUBzIQHRw/DyCik/3EAJfNoFAeCufLyQxOsYx+XMAhPpmCiIzAJvDh5mJDnJOTNOYzIdI+QNMKu2iRlV0zB0g4lU1GGZFW8PHcFGUR2qYiw1SXvjHC4//SLqQtWMpaISalfISmTaFLa7YMoztJWN3yODaHmriIaFZg0KEC4edcDxYTEfU0WwRqBwRIzIhm8QQA2AJWm2aleBp0XYbC3oAOR1gDsg5QzyoEBlpVxrXFhyl+kuHpdY7NBiaFhPwdboTyQ5Z/p0cVZXih9edRUfa28/iW0Oer10tLVxam0tj199NadUV6NpGpV+P+u7u9mwfz8Pbd/O/OZm8eQzDBa3tvL9XbswNI2w14tl26zYuJEj0Sij6TQtlZW8edNNWLbNcCpF2Ocj4PFgFItorgw0n5eYybGxk5moGTPEvKhYlA5yR0fZNymRgC9+Ue7JsWOyf2Oj4AJNE2nou+9KG21sFCXr4sVC2rW0iNlRfb1IVevrxWlMlUntoSHpwrneyBUVZeOxVKpsCaWUYHVX1v3GG8JQ63p5f5DlH/0INm6Er3xFygwEpHt39dUf4fzzu4CZPPWU4JC5c6N8+tPX8thjP2Pv3n3cf/96Pv3pa5k6xeNxvvzlL7Ns2TL+N0z/iLn+r5pSKal98bhIODIZqfSuLNxlrl3P+lhManQ4LI3FNAWUNzQIQm1qktp59KiA8HvukW2uFgPkHHv3yr5z5pST061eDfX1JCONWJbG7bffyIsvPs/IyDC1tXWEwxX85S9HqKmBD3xgEX7/5/nJT67nlFPk0nbtgv/zf7w0NjZSU1NXyl/97LMvk8/XlTKEzZkjDWxqjPa2bfDd70qDdDOG9ffLrTjrLGG1uru7ufTSS/H5fKUOVG9vL6FQiO3bt7NkyZKS+7eu6ycZmCml6OzsZP/+/cydO5errrqqJCF367a77JZdKBQwDINkMllyOdadHART82r7/X58ipNzU+cLEAmV181pgaJ18na/rzy40jcMrY2QTEN1pTDYuYLsf9pM2f/vj3VjsXMFyBcoBn3CQjvXqGkar3Z10dbYyKVXX82T993HhR0d7H/ySdo//3lsy+LAT3/K1spKurZv5w9PPw26zmOPP86rW7fyy5/9jOSBA+RramieORMrn2di3z5CTU1EWlqw8nmJ766sxPD7SfX3kxkbE9bbieP2+bxoo4MCcF3AnM1AMCSO37YtHRM3Ri+bhtikSMmv+rjku7aKArrd+O0XNgggr60X8BwMQV+PpPaqbZD+i+s3YCuIjsHkKNTUYzU0kc8mGD/6GvWnzscbrCoxh9hWKZZaYtAtMtFhvMEKfKEqbLNAMZd2jl2AL1SFskw03Si5gKNpmPk0huEFTUNzpH+D+/9KqGYGoZrm0rl13SuS8GAVxUKaZGYIw/CxZct99PS8yOc+t4twuB7QeOGF23jzzadob1/O1Vc/DkBn543s37+B9vblXHPNj5mYOILfX0E4XC/SdhSuMVkyOYTPF8bvr3Ik0EYpt7XbUdu8+Q4WLrydmppTpuSNbqGmZjaJRI4f/OAH/5e549/3vveVtl1zzTUlJru7u7sUN/2b3/ymtN1Njbdo0SLq6upK4RVT22ssFmPr1q0sWbKE6upqx9AsMiUft+XMFdHokVJe74qKForFLNns5JR49ACx2DG2br2fJUvuJRJpIpUaZOvWNXR0rCIcbmDz5tu46KI7CQSqMc0M27atd4zjep149NXU1MzGtk0kHZclMde6h6KjCvkSYlxWj5iYfQ9h/3TKzLSGAOMKBNy4pmeuaHMcAUAGcCtwB8JMhhHm20Lia9chZlMtCCAKOeV547nSa17TJRWXVZA0WbZpY5s2nqAHDQ3No5Vk5JpHE6xpKYpZibFeun4p6bE03qCXcH0YzaOVynLxosuMd97Qyf4N+2lf3s6yx5bx4soXueT+S/BXCbi3AlbJWCxrZnlj6A3mN8+XGGtNJ11ME/QE0TWd49Hj9Cf7WdS6CEMzhI3WtFI+7FQhRcQXKTmAm8oszd04bZAO/o7+HdSH6mmqaOKNoTdojDSyo38HN827FsMqCIA+sO7k+NrIbHlarqw43Qf7vwln3AXj28S4zDW/ql9MCQQWExKDmz5+sskZtvNu0AWguzHe3goYfVVM0t75FonFT7Pii1/kD889R+bECZbu2cPv583jMPD8xo08c++92LaNMk2+sHIlH/jMZ5gOXPP+99N34gQVVfIuu/Yzn+GW22/HpOw4ryjHVFc6602nLq5DjNMaEeO8+5DQhcXuNqV4r13EFz8mMdUeB7a7MdOldFt/Fz+t+wTsTo3FHt4p+1TNLjPVKIk1tgplgzTbMTxzz1GKvR6AimZK+cZTxyA3CPWLHAbXFACcPAbZXqg5T/KVawgQxZD0WrkBJ0WXE3vteFuISZgmEnCXiVYOo23nRHlgZcupuoJNMvjiWhDqXuh7FVo65Df99Ra44G5x9i4kJU+1lZf7UNEq963hPDG4c+P+lcOCK1MGB7Jjkst6xmI481OSX3zXWpi/Su4jtrDfr94FF9wJ4SYy3kqOTw7x1Gt/5rML/pnR1CS1wUoqAiGqg06AqlJYyubt4R5mROqpjVTiMTwYmmNciSJXLACKkC/omAZq7B04xLzm0yVmGI3JTAyfJ0DAK/2yXDHvuGILQ+/RdIKeItrw56H2SzD5XQheBJUfde6dLnHVwQuEaR78CMw5IUx2sU9YbqWBNSrx1Son91sLlZ9b8YR8gvNlffEQTDwoKb+8p8m9Hb4Nam8F32zAoGB7yNkali3ptnYNDNBSWUlDOEzQ42E4nabK7yfiyK/dGOqiZRHL5WgIh1FAd18frZWVNEQiDCWTrHXyWs+uqSHnuI5X+Hw8e/Agr/b28r0rr+TWTZv48TXXcHhignXd3dy1aBHvqasjaFkYsRhaIoFqbJQ3WbEo/f7qauk4P/64EGn5POzZI0Tc1JS9rs8SyPdcTpjs6moJWG5rE1De0yMYYdUqOW7dOvjhD8tycyclWEJV8PkbNDZsgGuvFTDs9vfb2uSSzjlH4MjwsHymZgRuaRFV+9iYjAOMjsrluPBkYEDKOeWUsqLdDSG3bWhvn8Vjjz3L0qXz+MhHdnP48Cf4058Oly59yZJKtmzZwnnnnQfApz71KT760Y/yhz/8gXnz5nHbbbfx3zn9I+b6v2tSzrDQgw+KXLu+3pEV56T2Fotl3YUrDw868acuq93QIPOWFmkYrkz84osFaFdUSO1esUJqdSgkQ09Bh0dZt66kyyhEanGzAXznO4+zb18/Y2MmPT0jbNp0hOnT3XR43Tz//PXMni04/pZb5NL/9Kci+/f38fLLe9m2bS87d+6lqamOUEgyhK1bJ6f8+xjtu++Wd4Wrflm7ViTk69bJz0mlUixbtgyfz0c6nWZiYoJCoUBrayvbt29n//79bN26lebmZqqrq0kkEiXWzJ2uuuoqzjnnnBKL7caMFotFNE0rxWdPTEyQz+fx+XwYhkF1dTWtra2YpsnmzRJX5PP5SiZOSikBuV6PAOGAD8JBiYX2esSoDA3yxfL2qojMA34I+mW9zytycdclIuCTWOyEY2L2nr87VtdEdu6uAycHsxJTMaW4eMkSZs6Z8/9i783D7Cjr9O9PLWc/vSbd6fSSlUUIYRFJQhZQMcRI1HF+GgcZ/c3oACo4IgooQWEckjhBFkdwFEfHccYZh4g62gQCKEg6TQIBEjCG7Env+9m32p73j2+dOt3gvO9f845zXZ6++qpzqp56qk7V89R57ud73/cXdJ1wYyOH/umfaLnoIvRwmLr58znvk5/kn//93/nY1Vfj2TaarnPfAw/wkfZ2dMdh1tKldMybB0ph5XJEW1qIzZ4t4NlxMONxJn/3O+xCgUR7Oy0XXCA/zI6DYRhgV2qR43AUchnJV52eku84OQL/8vfi6O150vByKfjQtRLxdmzY/o8wNiTpurJT8JYLxBhN8yefsmk44zyJeE+NST1jw6LjTo1J2TPOExM1z2XixItkhg+j6yHsUpbB154S4FwpMPjaU1iFNMq1GfrtrzEjMexSTgYijhXsO35sL8DMfTyZsh070otjl/FcJ8h73XLGcpItC4L97VIez3OYOPESTqWAGY7T2LiYurpO1q9/iJtu6gvyUKfTfaxbdx9Ll17DunUP4LoOmhZiw4bvcOONR1i9+g6U8mho6CCRaPV14Tag+VpkiMdnE4nUk0qdZGBgD57nYPppXyRKrfHOd95NItGCZeUZGtpHR8cyQqF4kP5uyZIlrFq1Ck3TWL16dUDdrm5bs2aN0N4ti97e3kA33dHREexblXRMZ30kEokZOmulVCDDEL218rXeMyM/ct4eTU2L2bDhYZqazsRxKjhOmaamhcybt5ovfOGLnHXWubS1nU9X1400NMzD82x27XqVu+/+HevWfZQVK65gamoNhcIYsVgTn/vcn/O5zz1FItHMo48+wvr1D9HUdAblcoZ8fhTPE/2g0jRyCGW3AtwNQY7iz1Oj11aBTQGhbx+nppE+ijh+9yHAuoBEDQcQvetiBIi/hACiGBKlvtVfViOZY8jwXjM10qfSdF/XzeTRSXRDR9M1+nv7yY/kCdeLG3h+JI/neFg5C6fioBwZOA6+OIgZM7nqW1cRioeoa68jnAwHQNwIG1Qdw4XMoRjYM8DqTau5uvtq1j+0HiNq8O4H3k2kPkLqeIrsVJZjqWNc130dJ1InyJQzXNp5KbqmBy7e+UqeE1MnxLwsFKU92c5YYUwcw33jJJAUP8lwktOp01iuNQNYB89iv1zJKbG6azWLmxdTF65j9bzVNEYbueb8a3CUgTLjkmv6km+BUQezLpFosvIn/Kru0MkFAoIPbYO2tRK1Lg7K0quI0ZkR8iPRpWma7c2gLJ8eXqjVqYeEiqw83yxrESx7GAP4sw9+kN6eHrrmz+fLfvv5plLc9+d/zld+8AO27d/Pv3Z3c9P11/O3uVzw27b5/vt5fv9+frN/Px/73OewkUmbaeRaQghlfMhvRyai+f8HJLIdQ4D3l4B1iJb/80C/plFBidba9eVIihpdO0i35VO3q/RqDQHDpQlZakiZZIeUccqQPia0cE2Xa5g54TuJ+wD+jdprMyoa6vHdsk/dQph9qVC07Zw4ueePQ3yOrDfjteg0yD6xVknRVR4T8O9V/Ci7DS/fJCnXjIQA68qkHxlVMLlPKOLFfqGkl0fE3Ew3BAyjBAzX+d9v5AW4+PMSgS4My3fNnIBf3yDfKdcv10M3JCf205+U/NhDvZA5Lu81Q4zQLrkVFlwp5/nCFomO5wcgewKeuk7qb1sGL2wFM46nPCaLGT72tqt8YN1AXTROXSQhEezsJBXXZuuv/ommWB1NyTrG8im2Pv19ClZJhpaamJ3FwzEcz+XVoSPkKyUuaD8bVyl+O3wUx3NpjDcQDYX5+jM/ZDgzTsQIMZqb4u6n/pHRrFw/hS7mY/osaPsHaPhziUJXBS7RC8UdPNQJ7T8R+rbdL3ppZxI0JcAaJQ7jaAKyR66TSLgWEaOy0Rsl6m0P++m77q8do+3vIbSIqtdCWKtgoOH6wLo1kWAgm0XXNPqyWe589lkA8pbFkclJruvu5lQ6jQfEw2GOTk1xXXc37XV1tCaT6MAWX5e9rbcXU9cZyuW489lnGc3nueb883nIj6besWYNnlKMFQpBGi4A3c+xTXOzMOkMAz73OTEgu/FGGbtv2yaD7htuEJpnPl+jlPb2SlRqclLau2nWbLdTKRn3z5snY6TBQaGBb9kiEe0vf1kkhq4rAb8bboBjxwgZLnfcoejuFs/jXE5OqaVFgPWyZXKaoZDE8C64QJYPPijxwnBYWK+dnTU6+eDgTL+laFSgTqEgh3UcwQO2Lds6OgQH3HnnmeRykwwO9vKd78CBA78gl8tx6tQpAH7yk5+g6zrve9/7+N/y+iO4/u96KSWa57vvrkWiq/qJFSukc2harZNUAcjevdLKq3xrkDKGIfyN1atlmskwahbcy5YJ6K6C7Pp66Zj33COUk3vuwXJ0XFcjHpfdPv1p6asgbBTXld0++EHp61VZyCOPyGRaNTvA0JDkuTt1SjTUxaKYH9x/v3ydBx6Q09u0SRguc+fKbNV09svEhEhLymWdOXPmMDU1RXd3N7ZtE4lEKPsOa9M1mqFQCMMw6OjooFAo0NHRMSMX9vr16wEB61X6aigUkoiAUnR2dpLP5wMaeqVSYXJyku7ubgqFAm9/+9uDqHVV0w3Il3L9CEUmLyZmDclaSi1Dh/qERLKremnXk6eH69PMDF3AdGya+cixPnETP3paorCWT3NzXTE9q0Zn/VFUoKn225ZbqVBOpQBItLdzyZ13svB976MwOEhhaIj9p0+TTqV4x8UX8+qDD5LNZhkdG+N4Zydvf897WLlmDf/+r/+Knc9jRqMk2trwXJfc6dO89LWvUZ6cZPZ554Hnkevrw7MsPMti4sABNMdCO3kYNl4PX/uBnNPOnwjQzk75UohxOPiyLFHQ2Cy6ak0TII6CxefUclgvXgJvu0zSeP3LN8Q1PBIliA0m6sXIrKrjfuzH0l+sCnzwE4BOyxnLaZh7NmYkzvixvWSGD+O5dvB+/PgLuE7Fp3e/RLxpruiizDCzF11Cw9yzaTljOcpzg30mTryI61QAFYBvwwxjFTMM//bXhKJJQtFkcOx409xg38mTr8jZKwfLyvr5miuARiLRSlPTAjRN56qrvkWxOEG5nEYpF9suEQ4naW5ehK6beJ6LUi6eZ9Pf30sqdYKhoX14nuilPc8lFIqTSLTw+OM3+FruEsXiOI5TIhRK8NRTt2CaUTo7V/jMgySGIWZlGzZsCFJvNTU1cdVVV5HzB/gbNmzwHb0hEomwcuXKGX3yPe95D83Nzdi2PQOYV5ki09fpuj6jT1e3g4bjFP0JAwHa6fRJfvnLT5BOn0Ipj3A4TjicwLIKKOWxfv07ePrpHcyb1+kbtBUxzRh/8Ref4NJLf8uXv3wO27f/C3/911+gqel8dD3ERz96G48++iMuuWQJkUgDQ0Mv+lr2OiKRehynTKWSxdUMPE2jDQG69YhpVAw4EwHPeQT0HgNuQoD4ef56AwHHlyFApg2hlX/df1/Vv7rAhf5nFzG0OtPfvwrujyEaW89R9Gzp4eAjB8kP50mfSPP4DY+TaEmQ6cuAJ/rr5+5+DqfkEK4LE4qF8FyPSq5C+9vacUoOk0cn6b6um/xQnnAyjGfLM0q58qzJjwo9HAWt57VS31HP3LfOFb111sIu2XiuR6I1Qbg1zAN7HuC2Vbcxv3E+c5JzKNgFLNcK8lcX7SJ1kTp0Tac10cqCpgU0RZsYL4yTs3KMFkbJWTUw2dXYRcyM4SfKw9CMILKtIW0qEUqQtbJMFCbIWTkcz6El3sJEYQJD0wSE7btRAFa0WRydPdePLruSv/iF6ySv8obX4ZKHBAwbMWhdQ2CeFZ0jkTU7K6B5ySbf5OzLEpnTIzD1skRDS0NinlbsE5M05QkgVy4KuOiyy4h0dqKAA8hEzP0I0DmRTtMK7MlmaZ41i/sjkcA53vbbgum3ReW/z1OTEOSBS5BotOa3uZeRiZ3PIvnSG5AJnQ6EFXEv0KkUph6CtosF5FbnuMyoRKl1s/beiMjRq6ZlDYsksl2/QHZqWFQrkx+U+jRNaOX54ZpxmfIkZ7amyz6eLQA+nJDr37JCrue+GwXs5k9ID2lZKcDZSEiE+oXr5D47BZjY4xuNhUXvHpkt527EJIUVCi7+e6hbJPdkfJ+Y2ClH2kPTUrm/LauEkt5wvtxPO+tPoJTle+/dLOXr5knUGQUvbhNAXQXGL90Lc5fL99VDsNdf/8JWAdx7N0s02ynJNWo6SyYlNEMi1mdvlP2r+724DeavheV3AB6h4jhvaV3A3IYWLuo4m4Wz5tIYq+f+3/yI5lg9kVCIkGFyYcdZ/NvLTxA2Qnxv78+5oP1McQtX0s/TxQxFq4xSivPazgBN43RqmK1Pf5+lc8+qsbyAG1d/mH99aQe6rhMPR/nLS95HW/0sXOVRcRUqtAjMZr/xINel+IJop/WkD4bvgfhlUiZ+uYBhPQEjN0t5zRR9tV4nbaOa/7qaYquaGzu23E/DdY+A7+LzUqem+dT+MpYKczyd5gZfMz1VKnHZ/PlETZP5DQ28Y/58sn6u67FCgXvXrqWzvp6YaZIIhUiGw6zq6uKe3l6RahhGoMu+3Z9o3ubTxofzefoyGW7YsYPhfJ5FPpuyva6OW59+mv5slrxlBdeS/n4ZQJ88KelzN26UwXJ7u3yHahRK02SwfdNNsly6VCSera01XOA4orcuFmsJpYtFeOtb4ac/lcF2NCoA++RJQcBV47ThYYxchgULZJz+mc9ItVu2CGBetUqAdH29gOvmZoEp5bIE21taBFy3tckp3XuvVL18eW2cX91ndFROd/VqmQsIhYRObtsCUywLcrkG/vVff8Ldd3+JVasu5plnnuScc87FNE1GRka4++67+cY3vsH/ptcfwfV/18s0Bdw2NAgS/cIXZH01p3U1gVy1o2SzNeDtmyEwPi4zWT09svzbv5XWODIiLT8alY5y5ZUy61UF2S+/LMevq4OvfhXCYcLUOvjXvy6dpwqqjx2TflcoSJ+segXcd18NKFeD6lWTgmoEessW6fMTE1LH+LgwUBYulI4Yj0u5kRFJNL9gAVx+ufT3SERA7vRoWCKRIOqbdiWTyWBwr5QKnL2rKYOmR8VcV1J6tbe3Y1lWAJwzmQzhcJhzzz13hqO4ruszjlulpOfz+UBnCghgDpliWNaQlCh1xjceqxqRKU/o3lW3b8sWszPLrtWhUQPpIDTw1mZJ46VrAsCP9QnIrksIVbxqeAa4lUoQrUDTsPJ5Ig0NAdD2HIfS5CSNZ59NcXSUH/zzP3PN1Vdz7F/+hQtvvhnXdXEch3wqxbM7dvBP3/wmX7zrLn537BiaYaCHQmi6jhmL0fq2t1EaH5forGlSnpykNDHB5KuvMmvpUpRuorrOlFRbP/62RKf/9C/hU5uEwv0v35DlJn/5w29ImXAUMqlahPvi1ZLDOubT+5SCnY/CGUvETbyhSdZZFQHaDc1w1Z/VtNeRqOiyI1HwHMxwjPbzrgBNC8CuYYSC9y1nLMMwIwGI1jQdu5xHM0JEkk10LF2LboSwStnaPosvwTAjgBZ81nSD8WN7iTbOQbmunw+7jrnnvh3QaFm8TMq+ZSWp1DG6u6/z9cwFBgf3kk6f8jXVJ3wqsiKT6SMcjjM1dZSdO2+iUBhFKQ/HEap3JtPH44/fSCLRQjbbT3v7JWQyp3jssU+SyZwimZzD88/fy8GDj6DrOrncUGDYpes6HR3LyGT6xA072+8bmrlYluUDdA/HcXjsscdIpVJMTk6yc+fOYCLKtm3C4TCzZs1iw4YNxGIx+vv7MQwDpRRPPfUUp0+fZt26dcTjcR577DEsy6KpqYkNGzZgmiZTU1M0NjZy1VVXEY/H2blzJ/X19SjlEgolcJwytl1GqZppWU/PFiRlmFDgh4dfwvNcrrxyA+3tbbiuhWFEiEQS/qRBjLlz38GaNbdTKJRpbm7GMDRsu8CyZStYunQ5hhHh8OH/pK3tQiwrx+Rk9ZqPEYk0BKZi1cg0CKAe8Zd+r0ZHAM0jiNmZiTg/D1Oj4C6ftk8UiYAbfr0Woq+tIJrcLyFAahZCB/8GorGNAE5I56rvXMWtqVuZ//b51M+rZ9Vtq3jxH16kY3kHaFDXXse7v/FuzKhJJVsJ0nSF4iF0QycUD9G0qIn3/MN7gvzYuqnjlB36e/ux8hbxWXFCiRB6WKc0WWLHp3eQG8qx7DPLROOZruAUHUb2j2B4Bvevu5+5ybmita5kiZpRhvPD3PLULVzaeWkAuj3l0dvfy6n0KW7aeROz4rMI6SGOTx1nJDeCruviCK4Ufak+oY0rMTE7PXma8cI4yv+r0sdbk63EQ3Fcz8VVLkW7iPIqaAe3wKxlUBqRtFhuUcCTERYQc+jrEoEu9kPhNLx4AxROyF1XtgA+z/GpxKoWjU4uhGXfhvh8AV2VCcmTrYdmRrVDDZLiqTIKL34K/LbU7LeZC5F81Kam8YP/+A+2/emfsmH+fG5bvZoH/vmfiYbDAUzZ8sUv8q6lS/mLD3+YUydOBPp+hTAqRv3PIYQRAQLaL/Db4r2IIZ/ntyMXSQf3CLBF03AUEkl1LQGO6eMSea72gOmyQdeSSQql5Ho4VamCkvGKZwtFun6+5HXODUrZRh+I13VKGSMkSw0/2h8SwOkW5X6VRuT+HdwiKbR8YziK/XLdi/3+td4i9zPa4k9snBaWQbEPXrgeskdqVPfsEVlXGYOW5VA8BS9+WvYxG/xjXy8meOVReO1OOQ/NBDst12b5JvneZgw6Vst3W3a7AO0qMF5+h4D6jtXy3ZZv8tffLoB7+R0CpsN1YqbnuQK0j/1CJhvWPiz7B/vdITTzhoWAjhtvQSnFaHaSLU9/n7wl9+ALb/8oc+pmEQtF2fbrf+bC9rO5+fJr0DWdL13xl7znnNWM5qb8fUo0xhuIh2WyX9d1YmaYf31pB+fNXcxgZowDQ0cYyo5z91P/SLqU45Z3fIyhzDgPP/9TOhpbcTyX/YOHhV5un5J+o8qSc9o+AfEVYLTItV94FNoekv408gVfj+0HIlrvlmuMA8VeAeRaUgD0rNvkaTlrk//5dolkt4l8CnsAYpdILuyR6+Q8tChlT3JVP7h+PU3RKKu6ujjhu3ifSqe55vzzaUsm6ayrY2VXF43RKPuGhjiRSlG0bb7y7LMCrteuJR4SCvxANsvNK1Yw5EfAq2B7eUcHm3ft4pGDB7ln9248JSnR4qEQX7j0UkbyeTLlMlqV3p1MCqc6EhFs8PDDglSLRQIH4e7umiP4F74gg+dkUvBCLkdgTDc5KaB5aEhCzqYpY/+REVizRgb4u3cLet22TRivXV3wsY/B6tXYRgTH0di2DW6+WQ6RSMjpjI7KbtmsvHcciWW0tgpOuP562XbypOD/0VFJxRWJCL38jDMEFwwNSXwR4Oqr5WvedJMcoxpID4el7Jo17+DBB3/Deee9xHXX3cvw8BDnnnsuL730EsPDw1x44YUsWLCAn/zkJ3z1q19l06ZN/CG//giu/7terltz8966VWaWTp8WoFxFs75zHydOSEfq65u5vVAQAF1FsTDTgWDOHOlQHR3SKa+8suYufuONtXoti/DYALrnBJh/1SqJXp8+LbtU02OtXi0d5brrBDB/61tS3fXXC51junv4woUCxG27FuXevFlAdU9Pjcmu64L7+/tl/fHjkn3AcfQ3RcN0XdZpmhbksq5UKjMopc8//zxKqTdFysJhcU5+I2AHgnRD1XWGYbzpuIZhzKS2ep5vMKYE8IJvPBaaaUSm6QKgj/pg2zBgMl0D1xX/h8TQfeGJ41PN50nE+8hpKVuXEI12U72Ab6il+FIKt1TCzuUojY1hRqPopolyXbLHj6Ncl0hDA7ppEj/7bB79+c/58w9/mIs3bUI3TZpnzSKZTPLRv/xLjEiEsy+8kEsvvZQX9+2TSRdNQw+FwDRZ+P7303LhhXi2TTmVouXCCymOjtJ09tlopikU9UgYnviJAOFQGCIxeZ8ahyv/jyzrG2c6hkMtfdfTPxOw3TJXAPLxQ4AmUejF5woAnxiVBlQsQKUk9PGWdvjoZ6FpVm2SSgGhEJqmo2karl0hFEkIWA5FCMXq6Vj6LsLxRjQjxNxz30443kClkGbsSK+4gwNoGp5rE4rW+fu/i3CiCd0M41olOpauRSmFUykG4LsaYaum8Bo++GtCiUbaz3tXYGZ28OAjWFaOnp4tb3LFllQmGh0dy6lUsoHRlph4KQwjgmGEgn2ef/5eOjqWoWnamwy/1qzZxJIlG99k2KWUYvHiK4M6enu3UalkUcojFAqRSqV4/PHHAXjnO99JPp9n0aJFrFmzhsHBwcBtvzo5V+2b7e3tVCoVBgcHWbVqFU1NTYRCIYaHhzl06BCVSoVcLkd3dzcPPvhgMAlWKBTYuXMnr7zyCjt27EDTTDRNp1AYZefOz2LbBVav/lJgWiY6c426urnMmXMBO3feRCZzGsMIYRgRdN1kcvI4TzzxGX7wg+/w939/gEsueS9XXLGe73znG8RiCUwz5ucQHyKT6aOvbzeVSoZKJRNcq2x2gFTqOI7nYCKRv+uQKGMJoXqfQqKBQ9JauRXJGXwHQvNW1MDLVuQHtg8xLxvy6zuGpEfynyzc5G+7EQHwn0Si1fcjlPI7gbBSOCUHp+RgZS0G9gxQP6+e9d9cH+iuK9lKkC4rnAyjGZrorjVN/IF0Dafi4FbcAJBXI+CtS1spjBUCV3Era5Hpz3DwkYP0butl1hmzyI/l0UxxIO9a2YU9YWPoBslwkrZkG/WRegzdoD/Tz7a126i4FXr7eyk7ZZLhJCs6VxAPxdnyzi2UnTI37byJlkQLw/nhoG2Zusm8pnl4ysNyLfpSfSyctZCWhAzUNTSiZhQNjbJTpre/F1e56JrOvIZ5ZO0yasnt0Hal0L37HpFIZ/G0gKnCabj4m3DVIWhZA6VBOOfzQgPOnRS6sB4ROnDVqVoPC6Db+1eQOyE3vjTkA7BhAUOBE/ntEsFVdg1wo6inpr93/XZhOQ733H03P/rpTzlx+jS//NWv+OuPfpSpiQkU8N1/+RdefP11nnn1VS5Zs4YPbdggPwUIM+IbiIlZVX89iUzOPOCve9Vvkyv9z4f9dnd7tc0qRcTKTIsqu/LerdS00tVJT9cSsOg5AqA1XQC0bsg2pyKTF6GE/Mblh6B+nvSSgDYf8XM6x6Qu15+Y9hz5r16vKk1/ySaJQP9ua229nRbgXXV9N8Jw6N4a2FZvqMdOA16tLRzcIp8Pbp2Zlq26j52ZeTwjDKFGOY+GRbJM+NIl3ZCJg4410HgGrPwb6H8GnvY9SFwbiuMCmOsXCL07OsuniZ8QartTEoB95vuFxo4Gg88J4+LSuyTajSblf/UpFFCwSvzgxV9y3tzFTORT3P3UPzKcm+TQ2EnG8ynOm7uYH7z4S+LhKAPpUbb+6p8Yzk4wkp/kvLmSSuuVwcP0p0fZ/PT3GMiMUXYsbrrsI1w6/3z+ce/PaYrV8b29/8nOw8/zj3t/DsA/7v05581dzHB2IqCdJ8M6mt0nKbNGb5BIsxYTgD12k0/VLgj4dU5D653gDss2d1Qo5PYRSbcVahPKOI7vEL5YALfR4n9e5OuyDYmIx5ZLb5jcWot042KgkfTHgrPjkk6zalA2kM1yIp2mp6+P46kUvf39eEqxorOTRChEplwO6N9RPyd20ba5sK2NhmiUSzs7OZVOM5DN8uD69URMMwDa96xdS96yGC8WSYbDTBSLdNTX05ZMopmmDIhnzxbL7FOnBJnm87XoNMi2efNEwNzUJMuurloy6LExGYwfOSL4IhqVQfv8+SI3bW0VlHzypHy++GJBvNu2wUc+In1z927o68ONJNB1oYQvWiSnUvVabmoSMO15NbgRi0lV1QBbJjNTBppOSx2lkvzn87WY38hILXB+6aUyLxCNCrYA8WsaHh4OlKyf+MTfsmbNOznjjDMkJe7oKKdOneLUqVN88IMf5Ctf+QqbN2/mD/qllPpf99/R0aH+4F+5nFJTU0qlUkrt36/UxIRSGzcqtXevLEGWe/bIMp3+/dtTKaW6u6WOTGbmtnRaqddfV+qaa5T6xjeUGh1Vanz8zWUyGaWGhlRxqqCyWU9ls7J6clKpo0eVGhuToq++WjuN6bt3d8tpHT2q1NCQUocOyWkND8syl1PqwAEpf+CAUkeOKNXfr9RLL8m+4+NS5pprZn69qamyymQyqlwuq2KxqIaGhtTPfvYzVSwWVSaTUblcTpXLZVUqlVQ+n1fDw8Nq+/btamRkRFUqlWBb9X21nmw2qwYHB4Oy5XJZvfjii//l/tlsVv3nf/6nKpfLamRkZEYZlSsoZdlKFYpKFUryeSIly4PHlMrmlbJtef/si7K07FqZiZR8tv3/ckX+C6U375cvyj7Vcr87rlSuoCq5nEofP66KExNq4re/VbtvvVUVRkZUJZdT87q61Au7dqlyJqMKo6Nq9623qm/cfbdaeemlqjQ1pSqZjLIKBVXJZNT/vfpqdc+dd6rC2Jh67FOfUp1z56pdv/61mnr9dbXr5pvV1KFDqpLNqqlDh+QYo6Oyfz4vdWSzqpLLKbeQVyo1qVRqQqmTR5T69mal+k8oVS4plU0rdWCPfC4WlOo77m8/OXN7arK2re+4UvmsUr/dp1QxL+s++V6lRgZq5fuOK5VJvfkYmZRSU+PKscqqmBlTfS8/pqxiTtlWWdmVonKssjr90i/V+ImXVCE1ok6/9EtVzIwq2yqrvpcfU+MnXlKl3KRy7Ipy7Iqy7YoqZsaCcuXclLLLBWVXSqqcn1Kl3IRyKqWgvGOVVTk3pQqpEWVXSqqYGVWOVVal3KQql/NqZOSA2r59o8pmB9Xw8H51+HC3Gh7er7Zv36hGRvarcjmrMpkhVS7nVDY7pAYH9/nbDqhsdliVy9kZ9YyMvKoqlYIql3Mz6ikWUyqfH1WlUkqVy9lp5Q+oYnHmuqGhl1Q2O6wqlbwqlUpq+/btas+ePUGfGR4eVqVSSRWLRZVOp1U+nw/6xfDw8Ix+Mjg4qDKZjCoWi0H/Gh4eVkeOHFHFYjHoy48++mjQF9/YP0uljCqV0mr79o3qrrtQjz56jUqn+9TY2O9UuZxTk5PHg3MfHNyn9uz5hjp8uFuNjBxQLS1x9dRTP1YTE0fUl7+MWrbsPPX44z9Vw8OvqK1b36VaW2epvr6jKpsdUtnskCoWU+rSS9+mbrllVbCues0LhXE1MXFE5TxXTSmlNir5wdmolPqdUmrvG9allVJZpVRKKfWEUmpcKdU9rdyrfpmNSqmxN+y7Z1q91XUTv6f+6udytqwG9w2q7Ru3q+FXhlW6P60Odx9Ww/uH1aPXPKqyg1mVHcqq4lRRZYfkfTlbVsVUUY2/Pq6KqaIqThXVxJEJlR/Pq3KurErpknwey6tSuqR+9hc/U3dxl9q+cbsa+92Yyo/l1cSRCVVKlVQ5X1YTxyZUdjCrBvcNyjGHsipfzqsDwwdU9+FuNZ4fV/lyXk0Vp1SunFPZclalS2mVKWdUppRRY/kxlSql1Fh+TA1kBtREYUJNFCZUtpxVuXJOpUtplS1nVaqYUkPZIZUpZYL6/+Jnf6GmilNBmXQprfLlfLAcyg6pdCmtpopTyqpklWdllSoMKZU+pFQlo9Tua5T6EUoNdCs1dUCpXRtl+9R+eT91QKlKWv6trFJWTt4P7pBtmSOy/66NSlVSsgw+p5XKHFVqYq+Ut7JKFUeVmnxZqd3XqLznqXGl1BGlVPv8+eqXr7yiskqpZ158UZ1x5pkq69/rvFLqore9Tf3nk0/OWDflv49EIurExITKv6HtDSmlDvnLQb/NDPjvX1JK7VBKZfx9gn/PU0XPU8ouKzV5WCkr779/XSnHUsoqTFvaSrm2LK2CUpWslKvklSpOytIq1PZxbVk6luxjV+S9XVbKqfjHOTqtrK2UXajdi9Srcv3tgty76vrJl+SeWVmlyuOyrGRr9zP1qnyP6eWLw0qVU0pN7KuVmX6sqf3+5+ltYlp9dt5vD3mlKjmlymn5vpWs/z6rVDmrVOqEUmMHlPrlRqXGXpV1uWGlilNKlTOybfKQbP86siynlDrerVRusLZvcUqp4vgbyqWDz9bxJ9RYbkodHD6uTkwMqFt+8YA6/54Pq1t+8YB6deiouuUXD6gTEwPqyNhplSsXZmyfKmSCfV7zy1a3nZgYUJlSXuXLRXV47JR67vjL6vXRk+qWXzygDo+eUtlyXh0ePfWmY3pOTil7XKmBjUodQpZOSqmBa5Sa/Ia8z3YrdbhRqewOpZy0UvaoUsWXZemklSofVar4gr894//nlCq/LnUMXFM7hjWklJ3yy6SVcrJKlfbLttJ+peyUypbLwf9EoaCGs1k1lM2qHUeOBOvSpZI6OjGh+tNptW9wUG3cvl0dGBlRqWJRbdy+Xb0wMKC6Dx9WU8WieuLoUTWYyahD4+NBPdG771bdhw+rdKmkcuVysJwqFtVEoaDy09bly2XlVfHAxIQsJyeVevJJGRin07LM5ZTKZmWgvX9/DQ90d8vAO52ujfVff10G3+m0bKsOrru7a5hh716lrr1W6qwO+sfHldq3T6nubpXPeerVV5V64onaaWSz8vnAATnNdFrG8m881SeekMNWx/0vvSR4IJdT6tgx2XdoSKlXXhG8MB1TfPSj16m5czuUYRgqEmlVXV2LVTar1Mc+9ldqwYKzVTK5WG3Y8OdqYCD1e6HV//2//1fdf//9/xXy+v/tBQyo/xec+ke38P+uVz4vUzvVHFUgIduBgZrlXtU6u6tLeBRHj8rnjg6ZHtq0SdbbttRhWRL+3bxZQscLFtTqrZZfuFAi1lu2yOfqlFQ0SsFswLK1IC99pSITYQsXEjiAm6bsvm2bRLjjcaFy3HKLsFnicWGzhMOScnvpUpnpqiZ8r9Y9PCyn1dIiegzfsJyXX659/X/6pwoDA6eZN28e6XSanp6ewEXY87zAwbvaRqsO4NOdwG3b9o8bJp1Ok8/n6ezsDPbTdR3XdRkaGqK9vR3P8zAMI8jf29zcTF9fH9u3b+ecc87hyiuvxHEcTNMkFAoRMQyJNIfNN99jy5apPkMXfXSuIBHdqE8Pz+TFzKx/ROjftiNR7LqEUL6h5hw+b25tP5D69r4KsxqxF8zFLhQwIxFe+Ju/oeWii9jyi1/w5DPPMJ5KUR+J0DhrFr998UX6n3qKD956K5/9ylf4P+98J7HZs0HTmHz1VcqRCJ/58pc5dfo0ub4+Nq5axZZHH+XFv/1b+p54gnnvfjfL7rqLF+66i5aLLmL2RRdx6Pvf55I778Qtl7HzeULJJNFEHP3E72DRuZJn+sXn4K//RijgO34sketcGuafJZRt5cksv12BE6+L8/fsNjjyquS+zqVFc+3aUn58GFITotEuFWXd4Ek48zwYH6kdI5+Rc/Bc3GiEod/+mlkL30o43ohyHUrZceLN7dilLJpuMHakl8zwYRrmnk3bOZf5tPCZLuEohfJzhaM87Eqe8WMv0HLGMsLxRvyGFbiQF9MjhGJJdD2EGYkHskWlFK6Stuk4ZYaG9tHWdhGhUMzXUTvouolSHun0SXbv3sbatfcQDiexrDyHDv2UoaF9vOtdf+ezKmJIlFs0j7ncMMnkHDzPJpPpJxyuJxoVHXFb24WEw0lc18JxSoyOvkZT02Lq6uailBc4jgN4nkkmk8E0TZ599tnAKfy9730vqVQq6JOZTIbt27ezcePGwATwd7/7HQMDA7znPe8J5BT/1f7T+/TU1BTNzc1YlkU+n6epqQ6lHJRyGBjYS319F9lsPw0N88hmB+jouIQdO27g4MFHWLr0Gq688j5MM4LjVDjrrHP4/OeXc8MN/86LL77Axz/+KV577SW6u6/j4MFH+MlPzuTuu7/KqlUXEg7XEYk0snbtu7nxxk/y/ve/j8Ae279nmqZhG2EcI0yfprEZifS1IjrWTiQy/SUk8rwQMSvbjWha5yGR6uVIpFJHIt8xxIhqi1/fgF92NhK53oRQhU8Am5FI+CJ/383AP2fLdF9bc+6+/K7LsYoWjfMaMcIGmq4xsGeARJvkry6MFkjMSYgcEQ3N0HDKDrmRHKGo7xIe0gIn8WqUe/rzVdPERK1nSw+rb19N0+Im7KJNOVUmnAwTrgvjRma6hY/kRujL9vHWuW9ltDDK13u/zt+96+9IhpMopSg7ZeKhOIZmYCub8cI48VCcqdIUfZk+lnUsI6SHmChO0BBtIGpGsV2JkFfTdFW1157nsXdwL23JNubWzaU/0097XTt14TqSZlii0HbGT80EpF4V7a5yRctrJOHgV/1I6IekS+y/Bc7+nLhFpw5A0wUSidbDQk+OtkgPz5/wnaU3iXla7phEPy9+wBdLZyHaimXGmdTDxH0q59IFC/jez39O84UX8tXRUZ4+4wx+88ILNJ1zDpljx7hi2TJ2799Pub2dzZOTPDhnDjHgF48+yh0338xLp09j+s8YHYlIp5GIddWpfgHCfKjKD8J++QlEcqArxaimUVYeZ3ku4enu3kBgSlbVTHuuuFZXddTpE1CalLzY4SRYeUk3VX34VdN26SZkTwkNupoD+o2f0SQi55Z9qrivnfUqPl1Y9x+onkSL0eDFT8KpH0n0+m3f9OsIEzhyB07h1eec38eVV4u+a4ZEuf2sD4GjuM+Sqb33v5Ry5Te5OAbxVv/3rCD5q6v0ec0QxgIGFEYkwu1VZFvVNTxzUnTXy+/w03Phm7kNwamdsODdkJwrkeq9W6RcwyIxQtu7GZbfSbFhUXCvBtJj/OPen/NXy/+E0fwUc+pm0V4/m1cGD3N2ywLSpSz/uPfnXLviA3Q2zEEpj4HsGKO5KVqTTXxv73/yieV/wqx4A/FQRGxfPBddF7d/13Mp2RUe7PkPPrPmz4iHogxkxvieX+cZzY1ozphEpye3wKw7JMLsZSRCPbnNp3MnwZiFuIGHAd9jprQHQu3+vreLudnYTdP2afbvawVOnA2LT4FXmFb3Jolw4wT3ueBEsT1P7rym4SlFWNexPS/4rABT13GVYndfHx/cvp33nX02D2/YgO267B0cpKuhgdnxOIlQiGNTU4H79xnNzfT09dFRX8/Wnh42rVnDYDbLmnnzOJZKkQiFKNk2/dksyzs7iRoGCdtGq+avam8nSBZ98qToL++7ryYZzedloLxhg+gyH3pIsERVXz08LPTSVasEG5TL8POfw3PPSdloVNqcP+5H06Rc1QZ8zhyIRsmqOkbHtIDqvWmTjMvjccEGIyPipXTffTU/NMuS6iIRf4jkN/1QSL5aFScsXCjlqvCyClHuuENOoVKRZEhPPimndc89M5WysZicenjakPgP7fVHt/D/ydf4uFA4Dh+Wlrd4sXSIM88kSBS9erWsf/55afSrV8/cPjoqFJKhIWndixZJB+rrEzAO0lnvukscBPbsEfT68MNSFkDXsU4McPyEAN/jx4WiMTIiuN51JS3e9dcLsF60SHTT4+MzqRzxuLBOQiHpAMuWSee56SbZzzSF0d7TI8+BZcukjs9/XuYEqgyWM86Q0zMMnfr6egYGBgJtZkNDA8CMtFmDg4MzB3zpNN3d3aTTaUzTDOjgmUyGH//4x/zyl79EKRUYpTmOQ2dnJ5qmYZpmkB6orq4O27aZO3cuH/7wh1m7di2maaLrOk8++STpdBrHdWvmZa4HpUpNax0OycOwbIleugqsM3kp35AUAD6ZlotcseTiHeurmZ9FwwK8o294iugaXHqBuI0DRiSCZposue462lau5NquLn7761/z7Gc/y4MLFvDDD30Iu1CgbeVKfvP003zsIx+hODxMaXycfXffTbS5mWilws8ffZR9u3fz7zfcwKZvfhN0nSXXXce8d7+bJdddB8CSa6+lbeVKDn3/+/Q98QSarlMaH+e1hx6iND6O0g3U4iXy3asa6IVvqVHAn3xUPkej4gruKQHMP/4OdC6CugZ58i56iwDr5lYwDTD9azBrDpx1fk2fnU0L+FZqZm7rxUsEsP/ke2iOS9s5lxGKJnGsolza+tmUUoOEY/UzTMdazliOrpvoRmiay3cOq5ihMDWIXUwz9NunsSt5dD3kG5m9gEJRyacY+u2vUK4MBOPNHT6wjvm/Ji5OpUh1UFapZDGMMPPmrSYUivmpshwA36jMI5Pp59ChR9m58yaU8igWx+nre44rrthCoTDCjh03kE4fBzQ8z0Epj0SiBdsukE6fJpcbwnHyPP74DbS2LqVQGOX06efIZgcZGTlAe/sl1NV1YFl5LCtPLjeAZeUBjUwmQ1NTE8lkknXr1nHBBRewbt06lFJks1kOHz4cuPV/6EMfoq6uju7ubrLZLG95y1tYu3Ytuq5TV1c3w6xMKRXIMDKZDOl0mscee4x0Ok1zczMgYFZyXUM2e5odO26gvr6LpqbFzJ9/GQ0N85g3bw2mGQtyUK9dew+Fwgjd3deRzfYTCsVZseJz6HqIefMWMDIyyuHDR1mzZhPNzesZHBynvb2OZ5+9k3x+BPBwnBKTk0cADaUcHKdMOn2SHTs+TaWSxTNCPK9pzAIeRkBzDDgDmO+va0e0s0VEd73W37YIWI0Aa89vBQsRcL7Y3/dMv0zc7+rfQUDPzQjgfhjJadyLAKVvA8rQWPfAOm44dAPrHlhHtDHKrDNm4TleMNHYsayDpoVNOGUHzdTQdA3d0MmPi4O4buo0zmvELtp0X99N6lgKK2fRt7tP8mOPFUidTEkaLgWaqWFGTbpWddF7T694VY3k0XSNUDyEG3EDt/BjqWOE9BDRUJSWRAuZSoatPVtZ1rGMkfwIPX09nM6c5rM7P0vOynEsdYzru6+nYBdIhpP0ZfpoSbRw4+M3cjpzmng4zguDL3AidYJP7fgUx6aOAXAqfSpwJy86RS5pv4QtPVsIGSG29W4jXU7j4QlQC6jbQ2DWw2wfWJcnxBwrNkfyHM+/WvJT66YA68P3CyhvPE+cp/d/SW5kZBagQ/a40MTf9pCk5FIeJM+QHNpGUurJH4NCH7YeIqlpfO766zm3s5OhgQGuWbeO955xBk/OmcP5Dz/MxzZu5E8uuIA//8AH+KsHH8SZNw+zUuHQVVdxxdKlrLzgAjZ961v8xy9+QRgBywUI8lcnEDAdRkzPBv22FfLXVRDTs2Z8EzRNIw5ENJ2K7lunaVoNvKJkQsEI+48xw8+B7Y+W6+dD6wUCtj2nZoZWBZl6KHgWBo7iyp32edh34vaprgoCV2+FAO3KlJ9iy39Vdd6eDWff7BvL3VHLRV44JbT9winRTztFMUar7lP1+Lcy8MoXanVXHeSrNoOv3OaXr66n9p0AsiclZZbrCLBWVZK/qtVh5+X7uxUop3wqfVYmIeq64B3fEA21GRXjPCsPmVOSjis5V6oyE/CubwuwVg40LIa1D1NpWEDBKjGam8LxPObWz+aOtX9FV2MbF7afxdy6Wbw2fJTP/+I+LKdMZ2MrX7nyWtrrW7Bcm7uf/h4vD7zOW1oX0NXYxleuvJbOhlYS4SgeSjx2jVogQdM0vv7sv/CfB3/DPc/8EIWia1qdHiZKFcEeEuq22QVeGvS4gN/AmGwOqCIiYPBAaULxji6V7dVyXrpmgGbOkfLFHknfNf9FOSkvO63uzdILnHHf4KwHDzidydDb38+pdJre/n5Krouh6+Qsi+OpFJ987DFOplKMFwos7+jg1U9+kjvWrKG3vx/b8zivtZX+TIaYHxjb1tvLLw4fZqxQQNc0Vs+bx3Aux5PHj9OfybDcNyv8em8vjdEo/dksLYkEN+zYQc7yJ5uGh+ErX6n5KB0/Lihy8+YasAbxSlq9Wgbe//APAqhvv100nMmk1LN0qQy29+2TwfbHPiaD6khEsMaRIzIw7+8XjnY17U9fnxzz1CkM3aOlRTBBLCZptD1Pqnddcf7+67+WIavjCLCORGScn/ebeKHgN3VX5gMefVQCc5ommP+55+Q0PU9Ob948qWd4WOjmq1YJsI5EBI/ceKMsqyz6/82vP4Lr/67XdPevqiChmoopn5ftti0d7OMfF2CcywmQ/vjHZek40iESCRFBvPhirVVfcIHoqT1PUO90x4E9e2RG7BOfCDqwtfgctm2TqPV0fTRIv7/33tq6Ukk61nQ9xUc/KqeRy0nVExNyGvX1tVRcVbfBD34QXn1VTquzU+ru6pLOYtvSeeQSeYEJmeM49PX1YVkW6XSaHTt2UKlUCIVCQSR6cHAQz/MC7XVPTw+6rgcRsLlz57Jx48YgNVBdXR0rVog7sud5eL45mGmavPOd7ySXy7Fz505yuRxdXV0Ui0W6u7vJ5/N0dHSwa9cuXJgGrl2JQle11iBjken6a8uG+qSA50xeotTLzxcg3pCUCzCZhoHRWlsx9JkGadWXZQcGnG6lgue6RJqbCTc0sOS66yhPTQXA+NxPfIJwXR3hhgbGX36ZiQMHmHX++Rx8+GH6nniCQz/4AbPOPx/dNHErFZbddRd1PvOhPD7O2+64g2RnJyhFct484nPmBHWjVAC0D33/+4CCqVH40YMSrf7oX0M4AtfcIBHsqz4iOuyxYSkzNSb/C88WoHz6qKTg+tFDErmeGqslQBwfFgO0sSHITApY37ldjlmpwLoPzTROS0/BO98LlQq6GUbTDcxwDC0UxghFMKN1klKrmCEcb6D9vHehG6Y/mNRoP++dzH/bBwKXbzMSY+L4PuJN7Wi6iRlNcM7aG+hYuhYNDdcqEmuai1MpMvTbX2EV0uhmCDQdq5ihmBpFN2v6ZABN00mnT9LdfR3p9Ak0zUDTdDKZ0/T19dDRsZxPfvJV1qz5Mrpu0tgoKahCoXhg7LVr12ZAkcn009fXg1Iu4XADTU2LmTdvNbt2iZ7atvP09GwNjM8SiVYGB/fiuiXC4ToAnnvubnK5IUAAdHWyqlgssn79egqFAt3d3dTX1/OhD30o8CTo6uqip6eHw4cPk8/ng4mtqakp+vv7aWho4L3vfS+maaJpGmvWrOHqq69m3rx5ZDKZAKhblkUqlSISifhu/m5w/tlsP5aVZXLyiG/6dhylPJqaFrFhw8OEw0l2797G1772CEuXrmFwcJg//dNrOOecpcyZ08pDD32Dj3zko6xdew3f+c5p7rvv65w+/UMOHnyEz3/+L1i06C3s2/cqX/7ygyxadDajoyMYRphduzbT0bGMfH4EzXVoB/YjGutB4HrgLUiE+jSSq3ocAcxfQcDwfERPfR1wBAHeNpJOqxof1/111yFg/Sb/EXIz4jZ+3N92CjgHuBbJf60paoFFIFwvIw8zauIUHdFbVxw82yNcH8Yu2QzsGUB5iro2ue87b95J5nSG7EBWtNT39BKKh+hY1sHg3kHsok0kGSHTl+GxTz5G6liKqWNTdK3qYu09awFItCQIJ8LsvHknjnLY0rOFRw4+wtaerTjKoSXRwnhhnIZIA19a/SWuXHwl23q30ZJoCcrmrNyM/RSK5Z3Luff5e3nk4CNs6dlCppyZsc+23m24ymVrz9Zgv0w5g6Zp3L7mdhzX4bZVt9EUbcLUTcCt6WwP3+9fNf8OxNqmRRxdWUbngBYSR+mLv1nT2f5uKyy9U5zG3aKUr1sAPR8UEy23KGAKT3IlexWYfAGirVAaQqHhAnd/5zs8PjDAIcfhyOgoh48d47fAL6++mhdfe41/O3CApa+9xoc+8hEGgUWJBM/t28c9r73Gjw4c4NCvfsWZF1xAD8JuaKQWvdYQ87yX/W0parpu1/+PIYyKk9RSvbUpRUS508Ct6xu5ecHvzptfmoBipUR7rfxobI2zI8WMsPw3n1Nzw9YMPxf2AtFop4/LMfGjvmZcgKSVgUiLH43WJBVX/rhvatYH9WfBsoclb3nLKrknxQHRzhcHfJfwUThwu/9dfLO1lz8rEy1L75R6yuO+nrwoTAMnDxfcLdsmXmBGqq9qPe0rBRgbIT9a7Ue8XVsAN0raVnyOlEm0iTbdjMHEbyUab8b86+y3yXA9JObCc7fVLmO8VdqfZ8MzN8m1Qsf1Tf/qowkJOPjFHSWZIxzP5YL2s9lx7Tepj9XLvIDP9AgZJn9xyXt5eeB1NGAgM8pXn/wug9kxFArX8wAtSI8n+a91rl3+Ab71f77IV668FoCyXaFolSnaZWFT2YO+/tkX7GoJKL4IrQ/AwkOyRIkWW4vWWAV6UtzB53wHFh4TozKzCxYehjkPirlZVcdt98sSHfQGyXNdt1Ei5coDc1bgLq6UYiCbZVlHB/FQiFYf5J5IpwnpOiP5PJ+/9FJioRBF2+aGxx+n5Di0JZN85Kc/5aadOynaNl0NDewZGEApxaY1a/jJhz7EhW1tQfqujvp6Dt94I5319Xzqscc4mU5zz9q1pMtllnd2cu/zz/PIwYNkKhUZHFcFxf+VG/CRI+ISlsvVnL+OHKlFsjZvlnF+NU3X8DBcconsc+SI1HHypIyjqsfavFmwxxvT/mzejNJ0IV4aAmbPPNPv4T4TdeVKyRRWzRZcDYjv3i2MV02TeYC+Pjl0Zyf85CcClqsZxVpaZI6go6OWNTgcFjC9apVExqus1+mXxyek/u9+/b9xxv9Q///XaK4PHBDtw9iY6CAKhZkC5f37Zft0ffUbBc/ZrKw/dEh0Gq++qtSOHbVtVRFE9XNVezFdh33ggKrseFoNDXmBDqKqjx4aqkm6q7rr0VGRZUwvl07LKRw6JJrq6rb9++Xzq6/K4av1DA3NlH93d7/5aw8P26pcLqt8Pq8OHz6sBgYGVKlUUuPj42pwcDDQbpZKJVUqlQK95nTtdLlcDvSbg4ODwefp+tFyuTxDD3r48GE1MjKijhw5ovbs2aPGx8cD7eldd92ltm/frsbGxtTIyIhyLGumXjqbF310rqBUpSJ66qr+uqqXtu2aprr6P72M9YZ1FevNmu1p+1qFgiqn06qSzapdN9+sfnzRRWrg2WdVJZutaaF9bfTU4cOinz58WFmFQqCnTh0+rOxiUT1/++3qR+eeq3bdfLMqp1Jvqq+q2556/XVlFQqqNDmpMn19NV324cPKK+SV+u7fKfWrX4hGulScqZ8uF5XK5+TzJ9bJMptWaqhP3p94XfZ/+ueyruDXUcyLlvrE67LMpmt67lJRqddeVOqZ7jfXncsoZ3xIOXYl0EnLclKdfumX6tXur6u+lx9TdqWknEpJWcWs6nv5MVXMjKrMyHFVzIwp2yoH+zp2WTTWuSlllXKqmB5Vp1/6pSqkRpRVEj13KTepxk+8pPpefkx02L62u1LMqkoxqwqpEVUqpVUuN6oKhfEZeuJyOatKpbSamDiq0ul+NT5+SGWzQ6pSyatyOadKpbTKZofUkSM7Ap12Pj+uyuV8oKnO58dUuZwJ6spmh9Sjj16jstkhNTJyINjn8OFuNTCwN9Bfl8s5lc+PqSNHdqhSKa0KhULQ7h999FFVLpfV+Pi42rNnj3r00UcDT4Nq/xsZGVGHDx+e0QcnJibU0NBQ0AeLxWJQfnq/m5iYUPl8XpXLZVUoFFQ2m1U/+9nPAr35+PghVSplVC43qsbHX1eDgy+pXG50xvcTLfrQNO34UHDN8vlRlc0O++uyanj4QHAN36hjn661zmYH1cjIATU+fkht375RjRan1A4l2tQhJfrV/Uq0rONKqWuUUt9QonPN+v9ppdSkerNOO62UyqmaHnvAL1+tr6rL3u/X98b9q+/LuZrmOjOQUSMHRkR/vX9YldIllRnIBNtHDoyoiSMTaviVYbV943Y1uG8w0Epv37hd5cfyavvG7So7lA3qGdg7oA53H1alVElt37g90F737+lX2zduV+VsWQ3vr9U3uG9Q5ct5tX94v9q4faPaP7xfpYopla/kVaoky2w5q7LlrDowIprsatmBzEBtv5H9qlApqHwlrw6MHFAbt29Ur468qoayQzP2eWnoJZUqptQrw68ExxvKDql8Ja8ypYyaKk4Fx8uWs6LtrWquyymlCsNKFYdEw2vlRSddGlVq6jXRzRYGarrcqQOita1k5L2VVWpyv+i1S2NS38AO0esOdMsxrJysL08oVZ5UauAJpSoZlXFtlVGipx+ddt+H1Eyt9A7/Xl/jt49qe3lRiV5/Som+Ou3Xk/LXjfnlXvXb3xGl1AF/Wa3jgBLN9RP+cqRUUu95//vVojPPVEvPX6redcU71dHfvaaUY6vR4UG17sor1RlnnKGWLFmifvPMrwPt9At7etXKlZeq889fqi44f6n61RO/FM21XZIylZzoqwN9dnGmrtqd9j95WLTGVV12OSP3InNErnf13hWGRL9e1bjvvkauc2lc7lv2mFKVKSm3+xq5J1ZWyk/sU2rqFf+evlK7v5WU3LfCoKzbfY3sX9Xbl0aVKk/Jva5q9K2caKazA3LelbxSpZRSY/tFD50bUmr0gGioi+OybeqoLCu+Xruq004dk7K5Idl3dL+ULU7VdNyllOi2K1mlSv76cloVKkWVLxdVoVxU2VJeFSollSsXVKFS9JcllS0X1J5Tr6pMKR+sq5WT5Rv12JlSTk3kUypTyqupQkZNFTJqspAOjlHVeVc12KPZSTWRT6lsYUp5dko00oH2+YBoomd8zoteurSvpp0uvTLt/f6abjrbLftku2s6bntM6qgey8n6muu8r93OSt3ZbpUvl9X+4WG1cft2tX9kRHUfPqy46y61cft2lS2X1Sv/xbaxfF7tOHJEDWWzKlMqqWy5rF4eGlIDmYwayGTURKGgDo2Pq43btwf7pEqlGZ/H83mVKpXkHEZG1Mbt29VQNqvsXE55bxwA/z4fpd/9rvb/xnUvvyxj/1RKBthjY6LhfqOoeWpKBvDVAf3QUO19Pi8C6pdfVvm8pw4cmKmnzmaV+vWva/LwbFZ2P3pUdq3Cjaefrumqpx96fFzWT183NlbzcnrwQdlneLgGX8bG5DJM921KpWR4/Yf84o+a6/+hV6Eg0zwnTsjsUVUP7XkyzfPII2K7/eCDwoW44w6hhx87VtNUx2LQ2FgTOEDNzi+blSmhkZGaiHnTJpkRe+UVuOgimdlKJIR/8Y53kP3I9ZTLWhDohhrVwzBkdkopSbX91rfWzM6rEtRyWZaJhFDIq1/h4YelHt9sGscRhsvu3ZLneutWYbLv3SszWePjMitmmg5QCujaVSo41PSPAI7jMDw8TEdHR5A/d3q77e7uDrSeGzZswLZtdu7cOWPd9DIrVqygWCwyb948lFIUCgUSiQSZTGaGRhQQzfXve7ke5EuS41qj5upt6DOka8HryGmJbrc0wVnza2Vct0YHeqNmG6BsYevguaKDyg8McPDhh1ly3XXEWloCPXWstZVoczOp119n1tKlmLEYVjZLqK4O5Xlo/jHy/f0cfPhhzrv+ehIdHdj5POkjR4i1tHDwu99lybXX4rkuxx55hItuuYUX7ryTwWeeYc03vsHsCy8ETcNKTZGoS6Bl00IBv/rT8O/fksj0uW+FxlnSaMaHhcZ91dXiCq48cQAPhSHZAFYZHv2+pOOaPUcaX6UMP/kerPsgNLfUGumj35NyDU1+1MCDbAZicYjFcZVomApTwyRmtYOvnbaLGcaP7WXuuW/HsUqMH9vL7EWXUEwNUkwNMXvhxUycfIn2897psxqFZuu5NoYpOr7hg78OtNpzl7wDp1Jk4viLzHnLGgwjFNxKu5TFjMRxHQsNTToECs9zyWRO09OzhXXrHqBYHGf37m2sX/8gnucwOLiXZHIus2adRTp9gl27NrN69e3EYrMwzTCe51KpZIhEGhgZ2U8i0UpdXTvhcD3p9HF27drMmjWbaGxciKYZKCV5sV3XQdMI9MpLlmxkw4aH8TxJbWUYIZQycV2XgYEB5s6dS7FYZNeuXaxcuZK6ujoikUjwYzEwMEBXVxdKKXbs2EFHRweLFy+mrq6Oxx57jNdee40lS5awfv16du7cyfr16+nv7w/S6zmOQyaTob6+np6eHlauXAm41NWZFApj5HJDdHauQNdN8vlRwuEESnlYVo5wuI7XX/85fX3PsWHDw9K9fP25ZeWoVDIkEm1ks6fZtWsLa9ZswjRjlMsZGhvnYxhhNM0gnx8lkZhNPj/Ms8/eyfHjT3LttfuIx2ejaTqe5+KGYjhGGFvTeAGhasf8/zok/nkC+DtEK92FRLLvQaLZm4HbgLlIlNClpn81kdzECf/xUI1ml5FUXSepaa6reuzbgbOzFbqv/SUHHznIDYdu4Nk7nw301xu+s4H8SP5N67qvn6nRTrQkyA3mSLYnMUIG6MzQca9/aD2hWIjU8RS7Nu9ize1ryAxkaOhsoGFhw4yy73noPThJR3SZyvWjxZCtZKkL1+Eoh+u7r+fJ409y6rOnsD2bilNB13SS4aRorj0bUzcZy4+RjCSJmlE85WG7NhEzgqc8DM3AVW6Q79pVbrBe0zSylSw/PfRTnut7jrsuv4uWRAthI0y9GYXs6xK9vvhBiS5OvQiN50uEtDwhOY9jbRIhLY0IhXzwF7D6JzB7hWx3K5I3uTwBkSY/MudThCeel22JhRJlrOZFDtXLv3Ip2TmOxjvYrGlsQlgQR4GPIdTuO5CUWvUIdTuGMBW+ieRFV37bKfrbmNZm8oiT/Nf8thRCaOK7EW+AIcQp3KGmuz4BnCyXqfz617x7/XoM4J+++ff85NFHefbXv+Ljf3Ut89rncNedX+HFvc/zgav/gpPHjmKaJl0LFvKD73+Pd11xBUeOHOFd697N4d8dJBaP+eJKrUb/ruqelZJraETkPwhu+09NKycO416ltk7TJXXWoW1wzq0Sqa5+vvgBiThX9e6RVolIn3MrTOyG8d0S1S6chniHOMRX72nLKnHnDtWLNlppouU1Yj49HHDzIiEonPSPcbvk1o62wJPXScqt+vlCE1cOPHWd5KP+y0MSXY61SK7r5ZuEAl4chXCDUMAzJyRv9fLbwayDeIvczSodP3MS9t4tx6ibJ9fCMP3raYJTomjWyfMYha7p06LMClMTfbqnatt0NKF7o1F2KnhKETHD2J7DZD49TY/dikLN3FfTGUyPEzIl3eJ39/yM8+Yu5tL55zOnrlnqMsBUGTQ9Lo7guUckotz2bXEADz4/LI7iE3fKuoWHfv/7uo3QfDNM3SfR69EbfV31QmraeUv+9TqEB+Rr83HBK5B1m7i2u5tHDh5k45IlPLR+PTc8/ji3r17NgsZGrvs9275w6aWMFQpcNn8+J9NpNu/axaY1a1jc2IijFOOFAr86eZINZ53FSD7Ptt5ebl+9mkVNTZxIpdjS08Mda9awsLGR46kUD+zZw33r1qFrGqaukymXmWsY4DgyFqtUZLCsaRLS3bwZbrtNEkdXx8E33VRbVx2HDg3JoLquTvqW49R02Nu2CW5oa6uZH7kubN8O73ynsGMdR6y6BwfJrHw34+Ma/jCS3bslwrx4sShOt24VNvq8eTJEPXWqZhV1xhlC+V66VKobGJCgeCwmX03XRdFaXy+nOjIip9nWJqdaLZ9KCa7o7JTL4bqCD/J5iaQnk/zBvv6/NNd/BNf/Xa9isSZcqKr2H3pIWvHJk9JK77hDBM6O45uH+Ai3KmQIh6WlVq31N2+Wlr14sbTOO+8UQXOV011Fup4nrbunR+jjk5Mwdy6FRAvZrMbQUK0fVj3RPE8O5boCtisV6Sijo7UGXl8vS00Ttnm1o8XjwjyZmhLQXDVGy2alvGFInVVjtFtukc5pmhWgBqSrhkeO41Aul4nFYmiaxs6dO7niiisIhUI4jhOkBaruk81m2bVr1wzjpOlAuampiampqeBzVXedzWapr68PaOHy3STXteM4NDU1Ea7YQs9ueEMvtxz5ov0jsKjDNziZZnz2RqOyN35WiPZ6UQe+65D8yGqIRtlxRYesa9iWn6Pc89AMA+W6aIYRAOVz/uIvKE9Nkezq4qlrrmHdf/wHkebmAFArv31phtD5qmC7NDVFtKkJgIlXXmHXZz9LxzvewbK77gpo0wUfzF/8xS9SnpqS4/3lX9K8eCHaD78h6bfeuso3upmSFFsf/ARE49RMaPxXNgX1TTXQve5DcPx30NJWM0Orrjt2EK65EXJZ0Z/HE35+VAcKeYgnoZiXHNh1jbjRKMo0wfOwy1kmju8T8BuKBNS+wdeeDkBy61mXojwPXTcDvbTI+lzsUo6JEy8ye9ElRJKNWIUMEyf20faWNehmmMLUIFYpQ7yxfYYZmgwvFcpT2OUcSoNccZjnn7+f9ev/HqVEFtLdfT1dXauYP/9yenq2cOmlXyAabSSRaKWvr4ft2z/I2We/jw0bvoOmGUxOHqG3dxsrV95GY+MCisUxotEmTDNKX18PiUQLhcI4HR3L8DyHnTtvYvXqTTQ1LUQpD9su8tRTt7Bq1a3U18+jUBghEqknHG4gnc4Hfae+vp7HHntsxqQU8Cazwf7+flpaWigUCvT29rJmzZogb/WaNWvI5XLE43FmzZo1oy+XSiXK5TLPP/98cIz3vOddFIsjTE0dp66uneefv5d3vevviETkYVOpZANwresCwuPx2dO+42Icp8jQ0D66ulaSzw9z/PiTNDefSX19O9nsEPPmrfYN5EIo5aLrJpVKllxuhObmRXie7RupdZJItOKE6+iPJOkHliGGUXMQ4LuFmiHZBiSl0bcRwPw74GJqRmajSAqvBQjd++sIAI8jOtgRCAzTzsBn5yLgSUOA+mx/XcRyyL4+ya7Nu1j3wDqK40UBwHesoWlRE5VshdxQjt5tvbJucROpYwKSV922iuTcJJF6SQZV1Wl7tkduKEfPlh7W3LGG+q56dn5uJ1dsuUJyY5s6nuOhGRooSJ1ISdlNa2hc2IgTdshaWYZyQ9y/537uWXsPsVAMHZ2xwhh5O89wbpgL2y4kU8lQF65D13TqwnUoFMcmj3Hvnnu5Z+09tRRbmkbRLlKwCjRGG/HwiBgRTM2k5JR4afglVnatxFUutivg3NRNspUsuqYTM2PEw3HCniVpsqo66Vc+B2f9tdC1X74ZlnwJisPQurqmu82fhPIwxDvFnGzJ7T54uwku+Y6k8zq4RfaNL6j9GMLvB4To5HWDm40odyITKiFEOjCCAN8qUD6G5KS+x39URpEJF4Oadjrtt4mtyOTNQgRWVKnBrv+5jFDDW/02uxUB8QsRQB5BpApJxNzs1It7ufpDGzl19BDJ5jkce/0gbXPnAhrLVqxky+a7ufDCC+jomk+lVAge5+dfeBF3ffkO/vRPP0BgPOa5kD0NyXbRE2eOy3vXFnCdHxJauKbVcmsbMQFLuaNyfZd9W/Jd9z0i2uplD9fMykDo4dVtl3wLHp0t75feJYC37mwp59mifS8OQdOFNXM7IwZeGUxfM63pMN4LsXbJT44D+z4jRndtVwpI9xQ82CC5p9c+PA0QnxCjsbc/IL9Pv7pBwPYHuiHZCS9sETDdcAYM9kC0SczgOi8ToF9JQ2xWzWjNzouZXLzFN1Tzv4ceAuVS1CI4nhuA32wpSzQUIxaK+IBbo+LYmIaJoek4nkumlKMhVofpjwcKVpl/2L2dmy6/Bl3TMDQd1wfiZdcibIRwffMvXdNRKEq2pEOdKKT5wYu/5K9W/AmdDXOIGQ6asuV62CclLdasTWJqZp8QTXTzF0BvAj0B7pDopVsfkFRck1v992M1UzN7AEKdEDqDwKisOmHjZeWzXg+qBKW9EJoHxmwxQmt9gILXzPFpAHlhYyOeUhRtm/0jI7TX1QVgeHFTExXXFYmFrqMDn3zsMX702mtsXLKEB9ev50YfmCdCIRLhMMlwGMe/PienpkhEIrQkEoR0HaUUg7kcRdtmkT+2Ath76hRrHQdt7lzJgfvII5LPet48AcwrVtQAtK7L4LkarertFV3l/PnBuIxiUUTOK1fWvBCmOxLffXctoDc0JPRzTashWE2jqCc5dhw2b9a49VYpcuCAyL2nx/8eekhOZfq6hx8WOngiIUrUEydE3v37vJqrEKcKb3bvrhkdf+lLApFWrJAYSiYjeOO114Q2XsUcf4ivP4Lr/6lXPl9DoLfeKqZj9fW+MYffEfbtkzx0muYbe/iChtmzJWJdLNYi0v394h5YbdnF4psj17ffLtM9110Hf/d3gmhfeUXcyFyXnF6P52kYhuiqs1kBxlWwvWmT4PaTJ2UyrWpafuutcohoVDrIiRMCvFtaJLI9OiqfZ82Sz+m0SMQjEcH3bW3wta9JPXv2CKBfvRqi0Znguvq+WCwGwHq6sdnY2BidnZ1BtNm2bUKhEMmkONHquk7WR/S6rhOPx4P9PU+cZnX/AZjL5QKwHo/HcRyHp556ilWrVgUAorOzk6hp+iNeF04OwcKOmgb7yGnRVzckBWRXgbOnBDhXI9WLuwQgVgdi1Sj3eApa/WiIoha5ruZvDofAsrF1yA8OEps1Cz0UCgB2eWpKHLzr6ojNmhU0PRk42+imiabrojVXSgbsr7xCfO5ckp2dKMfBKZXYf999nPPxj1McGSE+dy6RxkZShw4Rb2ujODLCrPPPR9N1XvzqV+l74gkWbNjApV/9GxgfRqtvkkFPOCJa6SrYzqZFM73oLWJUplRNw/bDb4iW+pLL4H1/LlHsf3to5jrXlWg3iJbNdQS87/gxvOfD4ibeOBvSE9DSjtvcAromTt9+HwscwxvngG5glzK+8/dywvF6QMPyI9uzF11CKJpAM8M45Tz58VOU0iO0n3dFcN+sYga7lCfe3I4GFFOD9L2yg64L30O8aS7KcyllJkg0tzH42tM0zj+fsdQhOjtXAKK9BkiljmOaUZ599k4OHnyEq6/upqGhk127trB69e1kswM0NHRimnESidbA+frqq7upr++kp0fKNTUtIpU6STbbT0fHckAhBmmnaWxcRD4/zK5ddwdRbTFEsykUxgiHk0Qi9fzylzWGx/r163FdF8uyiEQihEKh38sCqb7eGL2ePuEFkM1mZ0Sqp09s1cB6PZaVRtdNdu78HJdeegvNzWeglIOm6dMmFm5l1qyz0DQdx6nw29/+O01Ni6iv7/Aj/V+isXERfX27fBbAGfT17aara+U0pouGbRcwzeqzxSSdPkkmc5qOjmWUy2kxmUu2kok10whB5Ho+8GkEbF+JRKVvAG5BwHMvYnAWR6KMtwN/iwAYA4lSuv7non/99gPvQQD6wwgQNxBgVQXZpxFA//eWQ2PFRXkK3ZQBr3JUAID7e/vpWNaBpmsUJ4vYJZtwPEx8dlycwF2FXbRl4qdgk2xPiku4qaEchaZr9PX08cifPsLZ7zubDd/ZIM/UsI5ylQTYTKlnYM8AsdkxkkuSDOeHufPZO7ls3mV84JwPYGomETOCruloMtXEkckj3L/n/sA1XPf7gebrO5X/F9JCOMrB1EyyVpaSU2JWbFZQ11B+iLpwHTEzRskpAXD7r27n7nfeTTwUJ2yEA4fjhKGj5Y4LkIrNkefO5D5ofpsAOTsjOmu3ApN7IT4PkgtlEP/CdTMj2Kd+BAuukShoAOoekgi2pkF5EqKz5RhOHl77G7jo64CHZcSp6CFOahr91FzkHf//BYT5EAMeR7TT91ObhMkjwHiLX8ZBwHZVa30MAc+3I2Z6nt+GcgggfwGJVv8fv12NIuyLAwj47gQ++9E/Z05jI1/57EdpX3IZlWI+iChvvPoa3r32Cj7+iWtZsPgMtn1tKxs/9EFefHEfqy9/O1s3383NH3+/D6YjBHwMK+8bnlmirw7XSWS2fr4AMSvnR7I10WY7hRpo3nBcIsgHN8N5X5Z7g6oB2vwpmeiYvbwWdQZ/cjok9VVfTkkAd/YoVEblfmomlEZFa31ws0yGxOZC6hVovUxArluSyZlD2yRCnliso9eYAAEAAElEQVQAT17ru3cvlLo9x3cbd302g1cD21c8VAPaZ2+EKx6U37Ce2+Ht9/u6dfldppSCREsN6CtgeA+0vU2A9nO3wNtuhWQbRbNeft8R9oanvKCf6dVJemrRa9dzKTsW39z1Y25c/WFi4WgAuvHH/q7yyFUK1EUShI0QQ5kJJotTnN9+9szIuK5z91Pf47FDPaw7+1K+cuW1xE0X3fMNXPWkXAOvCGO3Q+sWyR9f7IXQAgjNn/Zkq748aamqJPcl+AJFKO+H2CXgpkCVfcB+XPTXoU4B482fFzOz6FvheDssPESOheQti2ylQnud+E1Uf5ss18XQNEqOQ8zPY92fzbJ51y5uXbkyKH/Tzp3csWYNA9ks7/m3f2PjkiU8vGEDvf39LO/sZLJYpDWRoKevj9ZEgrFCgeWdnZiaxo2PP86tq1bRVV/PZx5/nHvXrqXBdYlWWadVNutDD4kI+Re/ELHyypXy3QcHa0mgq1GqWEzQbH9/LeQbi9XCxp2dM8PB558vdXZ11YJy08u1t5NZeAHXXa8HgPmuuwR6JBISua5Ciiqmnx65PvNMAcL19YIlbrjhzXG+bdtkW1PTTHMy15Xy08F7NCq+z9u2CU4488z//W7hfwTX/12vTObNUz1Vm/3bb6953muauAM0NEhHKhRk2mblyt9PH6+27Ko5WnW2yrblPxSSOnRdzmHOHCiXsZLNvH4yTH+/RmenHHLFijez1L/9bTmlfL5GC0kkao6B4+MCoqsTYFU6eChUm72anklswQK49tpa/X//9zIfsGUL/PCHlSBdz1VXXfWmCPQbQXd14F6lcVcHzalUKoigVencVSprNQVXNa2XZVkUi0V2797N+vXrg2OuXLmS/v5++vv7ueqqq9B1HQ0I68Z/be5StgQ0nxqaSfmubvt9KbbA/33x2QVVSnmVHu6pmWm/MnmsiIlnWZQmJjAiEaLVqLSmoar7KYWm6xLVrm6bRgf3HAfPtjFME891KU1MUBweZtbSpRSGhzn8wx/ytjvukNnp116jafFijERCouW6jjaNkn7xF79IJB4VIy/XlahEKCIRadOnTI4PiVnZk4/Ce/5MUm85ttDcJkd9uvhHfDq4V6ODv/tDEsmuXvRSEUoFiXhX035dchms/VN46qfwEXHIcHUdpWloPh1cUx5Kk3sYAHvAcywAdB/wD7721Jso39PBtu7TvjWgMDVItL5FaOF+xFrSatlMHN9H21suEzMzn46uNIVmhv12K5FToTLL4KKaguuqq75FLjfE8eNPMjj4Au95z0MB5RkUlpWnUslQV9fO449/lrlzL2Lx4iupq+ugr6+HeHwWzz9/L2vWbCIeb2HnzptYs2YTmUw/27d/kA996CfMm7c6aFKaplOpZIlEGkinC+zevZu1a9cGYHr6JJOcZzrol01NTcFElWVZ5HK5GX2v2k8dx+Hxxx/n0ksvnRGp3rBhA67/7NJ1nZ07d/Lud1+Bpuk+oDbxPCtIU1adWKhS2pXycF0bwwih6yaPPfYpXnvtR0GKLlkfmnHdIpEGwuE60ukTZDL9wQRFjTqe8q/f7dTXzydn5QnXd+BqWhARjCPR6SHEHbwKZqqPhir127c0oo8a2PEQkHO+/z6H0IATiHnZHYgxWpXgeByJaG9CKMIbgEKhQvZUisZOuSdVoKvpMjGXPpnGCBs8e+ezXPr5SymMF0i0JHj+3ucl0ryoERRUshWsgkXd3DpxEA/ppE+k2bV5F6tvX012IEvDvAYa5zcGkyQgQFgzZfCuHEnd5YZcXFwx+vOp24cnD7Otdxub1mxiceNiHOVwXfd1rOpaxaquVcG2hY0Lg3qFjiqRuIJdIG5Kqi4Xl4JVIGpGKTtlAOrCdbjKpbe/lzmJOfhJ8djWu40H1j3ARHGC4Wwfa+ev9u+NT/ctj0O8XZyoJ/dCvEtAW2VcKL+eXQPLTl7SdsXbJZJ6zpeg/ky/LlcAjxH1mTQeQVqhavRWMwXQeRYYMTJmgl5NY6nfjiJIRPk0MlmTQZgRLmAh1PFWaum14lIzJjIBsxcB5AsQw7tHkAma7wCTiPO845eb55f7a+Czft1tfv1fAM7avJmnurv59VM7KRVLtHfNo1IsBPTtjX92Ne9edyUf//hfcmD/AW770u2Mjo2y5NxzGR4Z4f3vey9/feMNBOmtNL02iTz9pZBrB7UopF0QF3KQa+VachV0f3qpSofOH58GgtuF1l1dt2STTIqgCdVbj/ppr5D6PEu2VVN7eT4NvFp//pSUj8yZdu/885weIV/2sPzOaSYMPw8tF8rvVmkcXtgqNPDEXLkORli+X65PgPayL0kU2wj5EwS6RPRf3AaX3SO0+GDCIVo7j6EemPM2cScvjUGyk2LDmQKMAdNPT6drGqDhKg9D06k4NqAIGSY6GnmrDCiioQgaMJydCNJ3dTa2+kDc7y3Bez87CzCQqaX7aorXc88zP+Ta5R+go6GFqOmgezk5Xy0mfWQGPfxhalM+OhR3QXwl2Kclqj3rDnEat49B3Z+AlwNzLjgTYM4mkBqUXoD4Cqm7+fMwdW/tGHMeBC0sruLxlWTtGJ/esYNt73oXiXA4SL9VXVr+70/YjxRPp4nfdfnltNfVUbTtQMFw086dfHnNGhb4FPGQpuH4v3M6kLcsHM/ji7/6FbesXMlvTp9md38/D2/YINF/IO664Lpo1fG648jy+HEZNHd11YBzJOJL5CqyjMVqstCTJ2Vw/aUvSSTsr/5KUO34+My8t9Xo1/i4RLvGxmrb/fKly9dx5LjBli0at90m8b+6utrQ1HFqmYHKZQG7rluDKdmswAvXldMaGqrF+e64Q3DC5z4npmUTEzW166JF8rWrnxcvFugyNlY71TVr/rCj1vBHcP0/9yoUAJ/arSEt0LYFfGTS0nrDYWmx1XQUuibgyvOgXBLkWi7LdNIbp3CCSKA/9NeQVE+GXsurDQEIV4aBQsNzHFzLluhHtRd54DgeuqFjuSE++7kQf7fFprHBDoCgZvjl0XH954NyhaZsV1yMkEmp6BKNG3i2Q75kUi66zGk3UbaD0rRALl5NC+PqeqCFvu2222bootevX8/jjz/O6tWraWhooL+/n7lz51IoFAI6d09PT1Cuut9VV10VUMLXrVtHoVAI9J11dXVomsYTTzxBV1cX55133ox9L7/8clzXJR6PE4lE0DQNQ6vqwLSZ1/333YsZn30a239ZVqttD/qgfx/9MhoycFZKIlbF8QnCsRhusUikZTb4ObuVpqMphes6KNtGj0T9Q9SO4ymFnS9ghkyMWAynXMGMhIMymn9MD/9+o/BcDyuTJjq7JdhePTcHF9ePLsrXckXHiwaui6sp9FwWL2RANAmawrA9lGHg6srfz//hVBpoyp+5VkFdAa28UkSPJPCCbTq6ZeP5fULWmbh4OP4gXbSKOrYfCfMQKqzhn6+jXEJ6CE+5QonTdHR0HM+WH0DPxQjHg0jadAAA+GBCx9AMHNcC3QiApY4e7OcqBw0Y6u+lsb6TeHw2w8MvB7mc581bTSZzil27trBy5a0kk21omu6X6aSurp1cbigAg/X180iljtPbu401azbR0LCA7u5rAwB6+eV38a1vncuSJRtZv/5BBgdfmBHtDoXi2HaBhob56HoIp6xhGubMKObvWQYoE3BdF8M0UJ6fH7la1vUnwzSEyWergFKsPB8I+iOW6Z+Vp/AiHray/WiMK+3ZHyzmCqPEI/WEdBOlh3ARTbymXEwzRrYwSkNdO47n4Lk2piGu8a4/8NR8mOX425Qf4dc0HQONfH6MaGIWnucQNkIoPURIuZjI4D4AaUEuXJMCLlEthKZcSbnh92VbMzhqxjnLtXA9i916mAuARs9CaQam8qjm0LX1MKZy0Dy7Bsg0kyIufVqILmUTx8DRNELKBx1Vlsu0xwnUJiGDEaEGru1h5S2iDfIss0su5UyF0VdH6bhkLuG6MEZIfntK6TJu2SExR+QvTsnGqbgYsRC6BmZk2iSjAs9T6Lom4MWzcZTCQWfPwPNc2LqEZCiOaYSp5R12UJqJNj1/cCAbqV1Xxy3jYKDrBgYeZbtIRUEFxSvDr9BR38HWnq18cdUXGcoNsaJzBZ/e8WkeOfgIh244RF/qOGsaW4hZk1Tq34pdKhCOJQirPJZWR9k2MUJRdCq4xDA0G9uyMcIJXE9hqBIh3SIcicEL1wq4+tNRLC+K7Zq4dplQOITrmRimjud6KOXhKY1QSMMulzAiCRxHYZoarqsw6iK4mhbICjYhUegUQgV/gJpW/1ZkouUUEpG+H8lP3U8tx/rn/fIr/fVVacEA8FaE8j293DJksmcb4kp/n3/Mr99zD8/8x3/w8+5uZjU1oWnQ0tTMbw/9joVJC5LtLFv1dv7mzi9x2dqrcJTC9H8jPKVYduGF3PfA/Vx+2WrCZoiwYVJ0XWxPEdI14lVFkF0INNeW62Arhas0ieQpl7IHCcNDzx9FKw5A01ulv5VGJCXVa3fWQO7Su4TaP51FcPEDkjKtOOBPmiyWcU3hKBT6azT/Kjg3opKnvDwyUwJgxP1o9hZ4631QmYCDW1Dn3YEbXYxnW9gkg/GP7RiEyKMcB5cQ0ZhBuDIIkXqsYhk70oHrCUCxbYWheyhMPAWmKuIQR9c1NLeAbhi4noGhu7j5KcLxqFyvXJpwPEo4GsayPMqqnrIq4KoSzbF6UqUcTbE6DJ+Rp2sarwwd5by2xYR1A8tzUSgiRoiyXcEwTf7mye/y9NG9fPP9t3BJ17n+003hui7pUo7WZFPt+QK8NPg6s2L1zGtsAw0ylSJ14RhKKcKG9AHP9WZM5tfee2iaK+wXXaL7urUXYm/Dc7SAhacbFYzJmyH3IzhjFMeO+Nt94YOn/N3zeG4U9DDKc9F0eZZouobyXH9dGF3XZJJATRu/Kf+Zo+syjAE8TeNwOkODadAej9UmhzxX2AWe+6Z1rlJULItISCbSlecJJRyF68r3thVEdJ956R9XmaaMoR1XAg2JRDB+14aHUU2NaL3Po7d34C1YgAqbcg5M+w6eJ/LDUCgY8xvP78FbtRI1Noq243H0M8/CXXkphMwaC7L6m1H1FjD966pp2LYo8+2KRSRqYGg2njJ4dleItrlhFs63UK5NPCbXQimNih0ikwtj6BbxiE0i7qIw8JSO67g4XpjJKcinLeZ2hvnMZ8P86EewYwcse5tFY72Nrskzv1zRCYc8dN3DsRXZQpRoPEwiwR/06495rv+nXuGwNOJsXpaGIUDaU9A8C2IJGJwA261pbEEAtmmI8KC5GdrmigFU9eV68l8dTFVsOHpa8i+bpvx7StJAlSr406BoR/vwrAqeVQFNoRyHciqFUygAHmZIwG/UKPPwQ0Wa6q0ayLIt8oODjL/0Ep5dkUM4DlWtWiis4ZZyRLQiXjFL6revEMqewhjcR7HvJPu++hXKo4M+K1iANf4PwerVq1myZAnatPdr1qxhcHAwSLellCIej1OpVOjp6SGRSAQ5dAcHB4P8updeeimu6wbbquUPHjxIb28v5XIZwzBYs2YNixcvZnBwMDjm6tWricVixGIxnn76aYl8e3KdnUoRz7awihkGX3uKSj6Fa1dQnhfkRlaug/KqOWeF5lgFykopXLtCJZ8K0kJ5TkXyISvPz3cs+7l2hWJqSB7GKFy3QjE9jKbrJFtbicSiRCtFdJAfVMcBq4xCYZgmZjQq9+yJX0g02BM9kaHrRJIJDNdBQ8MsF/C6fyIP3tQEbvd2VGoCDYWWTaEGTqMrl9js2f6YWsmPl2vj4DKVPokfjkApl1JpEsvK4SgXW/NA13Dr6/GicSwnz2M7bqBEmancKT/Fkuzveo782AHgMTl5jL6+HhynTL4whmXlsDSXspUFFJ7n4HkOjqnjeQ6p1AnpFnhkrDwFuyjmZkDFs+jt7w3MlHb17eJk+hQKGMmPYLkWOStPyS6hoWF5Fr0Dz3M6P4gejnE8dZw9A3sEmE/7A0lT4nguFdciaxfIWTmG88M4noPl51D1/D0d5ZFsXUoq00e5nCaRaKGnZzP//u8bfOq2pKHq7d2G5zk89dQtxOOz6enZgmGE6OnZEqTj0jSN3t5t09JzeaxZIzmgV6/+EpFIPUuWbGTVqtvQNIPOzhXB/j09W4hGG+jp2YpSrpjkKZ30qTRuxRUwrGtBZHL6EpcACBshQ4A0Wo0u7CjcikslV5GBlIs/sJD9nJITpINVnmL4ZUllp1wB1hkrw0h+BNuz8VCgi+GappvEEq0SXTJjnMj2cd1jn+REtp8SgG4ST84ha+W5aefNlJSDp2nkrDy9/b2UnYooLqw8ZddCofy20MPRyaNkrBzxZCsFu8jeoX24aJjKIeTk0EvD6J6Npjx5iioHDR1NWSQxMKw0hicRDs1nS4SUy1ucImbuMNG9n+Ad2deZVZnEHNuF6TloykJTCg1FyC2juZb0OTy08jha/gSJsV28JXeE5NgudDtLyLXQ9Iichz/HpQGaZ6FpCt3OoSlX1nuevK9kMTWbWGNUBvBAKGZQNyfOGVcuJNYUxTQ1/1wg1hilbm4STZefoHAUYo0hwlED03TQrKyUVQrNyqJrnhw/fQztqesIZY4TxePtbefTpOuEShPB95R/Zv5bebRnbkKz8qAcmbzzbEKlCaIahPEwgaRu0hyKMTfSwPp5q1hc387frLyF8fwQyzuWEzWjbFqziWsvupYz6ztZO281scQCrLqLmMrHyLktlFUDRbOTyXyM4XEPy9FwiON6YHshKm6EUtlh164+jp+uYGmN5K0I2aU/oHBViqLXQNkJk827lJ0wlhvC8aBieWRyDoePZvj0DU+QzjgoI45te1QqDp4nj1c/bThbkCjzZqAFAdaPIJHrzf77bUjUeav/OTutfHX/exF6uYmwIx5CgPUH/bqml7sEYU3MB25XigkE3P/Dfffxnz/+MY8+8QQl08TyPCqux7r3vY9tf/9Niol5/GbviwwMDXHJ5WvxgLGRETzA9Ty++93vEk8kuOzt7+CTTzzF61Npiq7HsakUvf39OJ4i6ygsDywjRt7xKLoeJQ8U8ry3PI+K0kS/qmy0g1uERWBnJP3WoW0w8iSc+yUB0efeJprp/CkBytV1niuAODJbotlOWSZ9frtZ6ju4RYD4oW1gpwnStE3fdnCLGI9VP++/DaJtqGUPUw6fTb4cw9YbcJWJ45pYtsHIiIalkmQqTQyNJ5nMRClFFlBwZzFpd5HJSfoxy9YxTBPHC6PQ+cIXdI6eSvD8Hh3b0XC0JA5RHBXG8qIUjQ4qejMlN0HR6CRrN1N0kxzta2B0VKchnKDNTBI5McScWAMRX18dUmAcH+TitjOJGCa6phExTKJGCN31iBdtwkrnznddy4N/civL2t+CbjkylkDKtiab/GddMEfK2zrewsLmdkzHw0CnOZokrBuEDRPPlUl45bqUUyk81xU2nQ8qhfkeQnk6nu1gF8q4oRVkTw2z9ytfJXdqgLGXX6WS07Aavo3dOY5jJ8mdHuaFu/4GO5/Hzhcojo1RyRap5A323vm35Pv6GH/pZfL9/ShP4VoO+f4h9v3tVjQUulJorkzSalrtOacp+derE+GeyzkN9bQbGtqPv4PmOmhWBe3ob9HGR9By6Vo9rovm2BgToyROvY7p2JhAWNfRfM16yLEwK2WiypVjOPJsU7qO69rioRcJo2JRPMeSdJ6lDG7rLIaO7ca9bBXuOWdTUWUGD8o2pWl4ro3y/LFiOIRCJhKIhHHfcTmurhhKvY714T/BfftleIaMUZQfDFG6hsKjkBlFmcKeU0qhK4eIWSJslEiWdmOWjqJP7MIsvM47V05y1uIC8UiFZLSEPrELPX8cw80Q0ydpaigxu26SpHcU7YVr0Z00RvEokfRviIeydLUVObf0GRpjk/zgH7M8vdNi7TtLNNcXMYrH0cZ70NwS0YiHocnvVsgZpck4gmlY/G9//TFy/d/1chwxvQpNiyJXadsav9892vNHsK4rEWjD+P1GWNODodPrWdwls1p9w9DZJserT0qVjkO2v190u+GwUIirxlaTk4STSTTD4KXNm7nw85+XGa1cjlAiAZqGbpoUBgc59IMf8NYvfpFK1dzq4x8n2dVFYWQEMxYj1tyMUopKKoWVzXLo+99n8JlneP/TT6OHwyjHkdlKJWDQMwy8aZTvqs66Shf//4pcV6mqtm0zODhIW1sbxWIxiFxX3Y9XrVpFMpnENM2AIp5KpQiFQkSjUQYHB2loaCCTydDQ0EA8HicaCWMX02/S4pYzY8w5Z41QV6szm7pEj5VSjBx6jrZzLgPlUUyPEIrVEYo3+Ns9XKuMEU0IddnzwDADV+uqHlhmVpVEpV0PzapAsYC361foq94ByXq8nf+JvvLt0CR6a80TEKgZ0sYUMttapUrjOGjhSC167s/EKttC/e5V1NAAxvo/QeUyUFcfRPyqztvV6HVFlXHdij8pIBHAcDiB57kMDOyhs3MFjlNG183ApdnzbHQ9hOc5WFYW04yRyw2Tzw/7emF8Oq/nH9Kj6nwtlOGaMdfKlV+gqWkxrmtRKqUIhxMQTnI8dZytPVu5ffXtzG+Yz0hhhNZ4KxW3QraSpSXeAkDFrbB/ZD8rOldQdsrc8tQt3LLyFhKhBC2JFhzPIWyE6enr4YI5FwSAOm/l6ajrQKGwXAvLtagL11G0iwxkB2iINDAnOSdwQXY8h97+Xrrqu5jXOA/lOpieHUSlq+7hhcIoPT1bAyp3fX2nr7vuIplsI5cb9iPXt9PYuJhU6phf/nZMM0E8LlHXoaF9tLVdGDwaRkb209Z2IYXCWLC/acax7SINDfPR3DB2ziUUCwXfUTf0IKpsl2yUqwjFQwGARhMgqbyZet0qxRjArbgSlQYB60rV6izYhJPhYL2GhhWxODJ5hLHCGBf65x8PxQMTq1Q5RVO0iZgZ47m+55gdn01zrJnWRCue8hgvjJOr5FAo5iTnoGs6iVACx3PYO7iXFZ0rKDklbn3qVm5ZeQsD2YEgH/OipkW0JFowfBp+0S7SHqtHs7PSr42EH3m1hVrslsUgafZyH+Wa0maVJ/mNG5agzBhaeQIePx863gdL/8bPq2zUtL7FAcmnO2s5WCkBE7E2idShanRWPSpU1lCjf1eVr2dNEphCVSUEVbpt9TXdrdnPcS4u+6ehYZFfV07y7FYj3nIDIT8g+YnNqLgg1y/wtajVujTRyQ72QKwVoo2Sm7eqGcUDuyyREyMs18mzpA40P9ev0Fd57jZY83cEOafNqJxnMPfvoTQDzSmh0NBG9uIlu/CazsAMxbEci5Bng5VFs7JUInOxVYRy2SGVKtPYGCUaNXEcj97efi66SLwcstkKc+YkGBjIEIuFaGlJYBgSbVZKYVkukYgpEXq//Ph4ka1be7j11pW0t9dhGBqf+cwTrFrVxapVXYyM5LnoornyOzCS58EHX+Ch727AMgz6NC2g+y9EtNBbmBm5vg0BzH1KsVnTZJtS9GtaELm+A1igVCBDKGhaIFeolq+6k8eAklIsRia2bV3n2OAgy7q66Fy0iPpEgpJtk4jFOPf227nu7LO55VOfIjMygm6abL33Xs5bvpy6cJj7v/Y1fr59O0opFpxxBl+77z7esngxZcchUy7TkkgwXijQHIth6DrFaclqi5ZFPBwmU6lQH4lwYGSEC9vamCgWGchmeff8drTCMekX0yPXh++HC+8Rh3fNkH7y6u1w/hZpV64Fqf1C4a9Grs15clCnD4rTItfn3gbRauT6+Jsj12YcnGJQVkXnUvaa+PRnotx/P4E1TrlcY+7quqQYrmpFzzpLMTKi0doqEyvFopSPx0Wl19Ag6++4A775zZrUrkpQvOUWWe+6Ip0tlar0WcW8eZo/pHPFsM/1ahKyqnyt6uej+8+BGf3ahRMDKH8sqbkuQWh9etk3kO1+L1vPf9mWRb6vj0P/9E+87StfwbMsCZz4Y8xqcKGcSuFWKiTmzgXPY2L/fvIDA8xZvpzorFm4lUrgHxOKx9n7la8w+Mwz/MlvfoOybSZfe41oayvJzk6cXA49EsGzbQ7cfz9v/eIX0UMhxl95hdlLlxKORtAmhuGpn8OffbJ2o2wLTr4OzW3QMsePSmszJZauAz/7Z3j/RyUA5nk1bb1Wvc7VMbq4fzM19mYvmNZ2KBflBjY244ZMrEIau5wnFEui6yHMSAzXsRk78jxz3rJKIvimSAecSoH8xGnCsUYSze0oJBtJdYwYitVjl3wPmKY2mcQppJg6tZ+5570T1xY/I6dSZPLkS7SdcxmabtbuCWDggnLRcH3TvLD//FZi+KeHQQtNk2V8QX6HIs2AIWPC0oiYBkZbxOTRzsok1eQL0hc9/xlwaBvKl3Bo0+uvNjbNgLHdEG8DI44XbUOv/mb9gb7+SAv/n3o5/kCh+lL4ndxvTNNBs64HztCUKmKOtbhTGvp0Y6yqnrdan8abwfcbQXvZAl3HVi6lyUnMWExAczKJUy4TrqtDD4fZ99Wvcs5f/iXjr7zC/A0bag+0lhbic+ZghMOUUymiDQ1opsn4/v3s+sxn6Fq7lrd9+cui9TVNvEqFyddeI97eTqKtDc9xsLJZzHgcPA+nVCLa0gKeRygcQisVcHQTJxypURurX1H51EN8J3HXQSvm8ZINgg0R6o82PozX0IwKhQNwXnUeR6kAvFeZ0p564zH0oLznu0BKdKhKz1Z4rsPo4V7azlkjYA9wKwV0M4zn2MFDUdd1n6bt4VRKuE6ZcHKWAGXPAzSU5wDgObY4VaPN0P52LF0LKIqpYaL1LRgYaLaNu/M/UQf3oy25EP3yK3G/tQ3tgmUY6//Ej3QjdGvP9SWAugBu3Qg0yFgVtHBtkkb5Wh4NULoupmFmCC2RlPKT43h7nkNfe5VQtAwDBw9X2ThOhXx+mGx2gI6OZZhmlEolJw7cpqRwct0yoVAC17UwjChK+d/dsymVUsRis8hmBwiFYsTjswNH5xqwNvz7Lw/pdPokoVCMuroOPM9F1w0qlSyEk4wWxmiMNhI2wtiuTaqcYnZ8NiWnxIGRA8ytm8vWnq18afWXmB2bzZef+TL3rbsPhcLxHBzPYTg3HOhCFzQsYCg/RHO0GduzyVt52uvaqTgV9g7upau+i4VNCwEB3slwkpOpk8RDcWbFZ4lOVdMYL4wzOzGbiB7C8L+LTDTYwfeVdmj42mwT13Mxpn32PAfNCPsTcD4V3gijXDug2HvKd8T27GAfXQ/hAsqzMY0QnivbcHU8SwuMrNouaAv6RCVXIdEqnCw9JDpS5UinCajcbo3y7bliqqMZ0n8f/+vHWXHTChrmN1AcLxJtioIHRsRAMzQ820PTNZ/Kp7AiFmW3TMQQI6wvPvVF7rj8DuIhMSQ0qKVtKjvlAGwbusGegT1c0n4JHh5RM8qJ1Am+3vv1wDzLUx5jhTGS4SQ7j+7kvW95L2EjHPg1FO0invKYKE5wT+89fPuqb5PQFZqdl8G77veV/V+EC+72DYw8GYSnXhWQrXyQqIcBAyZ7oelisNIClkPJgOXDKzfD2TcJBdVOwaF7fefqQZi9SgC3EYNwk0+jxAf51XRH016eLYOSatojNGa48wc0bgWZU9NMp6od/veNpBE9aGkCYrOhcbFfB2BlRTdadX5GCfDOD9Sckd/+QA0c62GophpSng+wbd/MqUoL90GAnYdQ3D+3armQ0MUB7KJsd302ViUNiTYB+q4l6ytZLBWl6MVRCmzbxXEUxaJFoWBzzz29fO1rV1BXF0HXNaFwahrj4wWKRZv+/izLl3eQTpeZPTuO43gzwLnrKnbv7uODH9zO+953NnfddTltbUlOnEiRSIS5++7n+NrXrqCxMYrrKiYmisTrDApkiURjNNbNCtKxVdXsrq/hrGrzpScrdAW2pqGj0AFbgakhzApAU4qpzCjhSJJYLCH9H4VtVzA1HaUbhHUDB0jnp6gzQnz9mR9yfuc5XHHOKsKhCKbrYjsOnufx+Sef5AcHDgQOyVU9at6yuO3pp/ncihWcNWtWkHaomobo6OQk9ZEIRcdh865d3FHVpnoetuviKEUyHEYHSj4InxWPY+p64OAcMQyaPA/NVKD57gW630hnTBhVNSVuzV1bM6StlG0BmloYSpZkZ7lwKTQmpD63Isaamk+fqcoSRiaguQFCUYSeo4Mm7dJRJs/8JsqyZYKxXnhBUg/58QZ27xbfmk9+cqZnDYh8dts28ZWtr69lQGpoIEiFWsVmhiFxEF2HXE50r6Oj4sJcLksmpTPPFFluZ4dHQ9Kr9drqGFDXZ3q1VH1cqsGc6qNjzwGY1Yg6az5aqSKZUJLxmklr9aWU1DswCos6aylGPW9GWatc5oU776TlootoXb6c2KxZGJFIIDn0KgLyqkasbqWClc0Srq9H03Ve2rKFC7/wBcqTk/zuu9/lnI9/nPqFC2V/v47xV14h2tREqL4eMxZD03UMH7x7rsvEgQO0Xnwxdj6PEY0SDhloP3oI/s/HfQ8YJV4v1atWNQ/OZSBR5wexSmCVxFxVKclCkknVsp9U6d2xxLQJDP+5Nt2gteoF87HP+vlulcjkEkkGX3uK2YsuJhxrCIJbaLr8FgHFqWEByniU0iNE61olqDU1RLyxjaFpKUHbz7sC1yrjOmUmT75C2zmXzfCHsSsFjJA8hzXNCL6z59qUs5PEGmZjGvgBEwgkOtXJT7co6eKqT6odF8I7n5Tfpcm9KN8AUgMffG+BJZtQ8Xn+eETVJp6Lg8JASb0CF/ydHEczJZVhvEO2t/gZZzwbpYfQ9MhMY8I/wNcfwfX/1MtxoVwRHfT0NE7TH3pQG+RUdRTgm1tpkCvKuoGR/zpy/cZX2fLTQ/kPRE8Aous6eK5L9tQpDn3/+7z11luppNMc+v73ufALX0DZNumjR2k+7zzKExOy/nOfw4jH0XQd3TCECu5rOKpaGXSdwtAQB7/9bZZcfz2x2bPR/fx9hZERWX/ddcTb28n39VGemqLp7LOxCwXq57ahlQoQ8bWEVY1wuSizhx/4v2KUlc+AXYHHfBOshkYpF46IcdZjP4b1H4ZoTB6OlZI8LGPxmv9/uQR1DaJ1CfuGKY4tM43pSVi8BAwD1zSwimnfVXoZoWi9RFF1QzQ6rs3IoeeYvfht2KU8ZiRBONmE588UapqGppu4VhEjkpBbpWm4doXR13cxe/ElEtENRcAwg6jy9Mh1KFrH0G+fpuWMZRihGJXMGMmmDtTkON4Lvejr3isPMOUDZ8dGlUuQrJOHpW1LJDIckeiz/wBVVKPbSDqriD/QDkfRXNHFoxsyqeDPOAutXJMfqSqwA2xdAR6WlcfzXH71qy+ydu09mGYUz3MolzMSUfZfIyP7qatrp7f3HtauvYdQKIZtlwiH6/y8y1qg35aod8hvEgae5/LUU7eybt29KOVSKIzjOJUAkAO4msnx1HEGc4Os6FyBoRsUrAIlu0RLogVPeViuxen0aUYLoyxuWkzBLmDoBlt7trJp9SYWNi1kMDfIk8ef5PD4Ybat3SbUfOWiazoThQmaYk24Sq5JFbwrpRgtjFIfqcfQDXR09g7uZW5ybhBJbYg0UAnHg1icjuglQwjl00KcfBdQi2h9GaFzesx0mG5HTI5Kfh1rEI1mNSo2D0n1NOrv30ONhvrDfEXArQ9ydVOvRaINbYYWOj+WJ94cx3M8yumyAG4lANu1XIywDHrfqKeuZCtYeYu6zjo8y/dyKFhYRYvE7MQMrbVdsNGbdbJWlkwlQ0OkgagZBcDwdez/D3t/GiZVfW7945891dzd1fNEN6OiIuAECDRoVKIoJiYmZjAnk4omYNRoNII5ahQ0oHGIJtGomXMSkpMTDYpKNEaQ0QEHNAg00DM9Vdc87On34t5V1STP/+X5P0+uK8XFVV17ql3Td9/ru9a9luu6bO/ZzoSKCUyqnlTKOS7K9K/bdB03zL+BydHJXPnnK0vmWQ/seIB1S9ZRdKWu8ldxMHaQtVvXcvOCm2mpaKHCV0HezrOjZweHxw6zeOJiZtRMQjVTXnRPhXxaRoXHBI8DyKE2jjGxyh6FQI04FI+9DTVzQPV+Y3jg0hyDsXegboEwuUVwrIyDXK4lRU52APbeDSetguiMsrKpWBwWwXWxN9AxBWgWTaKgDGKdgoDi8WxA0bFZ8wn4sAvCYheZ64oJcl6Jw54hk78crZTqh3Aj9G2DlgVeQZqUqCHXpQSqUTzwMyrMoKrJccwMDL8DzfMpFWJWFvIJL//XA1l23iuMNejfJsxGMd6o+nhhwPMJ73ksUnaIZFIkhaGQgaoqOI7L1q1dHD48xqJF7XR3J5g7txVdV8nlLCIRH4ODKRoaIqVecomitdF1laGhNKGQFHrBoE4uZ2Hbsl1lpR/HcXFdSKcLBAI63d1lJlwPOsQycWpCUWzX4Z2+D6kNRakJV/LhUBcnN03FtC2CvgB3vfgT3uh+nz9f+WDJ7dlyxNuhNzHIEzskk7guHAXAr/tKvgSWY3PvSz/l5OapLJg0m4ZINZYj6/riQ/gNg6xZ4Mmdf+Kms7+EjSjGUoUCjZ45aN6ysF2XKr+fA7FYyUH5te7ukkHT8o0beWbfPv7w6U/T0d5eKkUUzyzKtG00VcW0bUzHIWQYqIpSikGaUFFB2OejPhzG8WrP7rExTgoGUYtZoMU80KLPTCYjiDOXE1Dj85UdVVVVHJCSScn3LBmDeq1z6bTQwd/4hqDT668/1mQ2lZIaS1XhjTckWcVxYGiIdMs0TFPY4l274NRT5ZDxeDlmOJ+XpyiaM4VCYuT02muSglpdXT6VYoZvLidGUPq4ltiREXmZoZD8TyZlm+JPvVjGVIRsVMcum6GCKCQ1tcymFoEwlOvLA93Q1iT1aKU3O1Cwyikm/7gPyD6tDRD0lxNOimy57UAqixX2kzx8WJhqXccfjeJaFoVUikBNDXj1hmuaaIHAsSa1jij38rEY7/zgB3Q9/zztF1zA3NtvJ9ndzQdPPcVJV11FIBpF9fmOUVwWb4qq4njZ0a7rkjl6lOiEVhTbKrPMjgOdf4dojbDMlTVimmoWxDA1EPSiQ6XeEXMgFX71A5h6IpwyX8Yg3Sh/IK7jZZC7MNwvNeiFn5V6sqZejFoLhXKfdiFLwadj+OW9tws5qQEVlUysH90fwheqxMylGD64m6YTFqFoBraZRTMkKrTIXNdNOQO7kCVU0+qRKgqOVSjVl4Y/jKJqpVq18YRF2GauZNRaTErRFFv8PtTi5KynhVE8r4z0IVF+1M7zYvQOe2qruTJx7ItCYRTe+c9jjf+slLRVnHgz+OslyvDEmyEyVUC7mZD2DmyIvQ3Vs0Uh5loe490OldP/Da7/b9z+ZcB1PAnhoADnYlST3/hnic0/strFm+1AKlMG57bzzzOMtuMVd+MGW9uRGcnx8VDILGNuXLbxyNtvk+rro/WsswREA4qmMfj229SdeCKqYeDaNiPvvEPV9OneOO1iRCICrJHea1XXSR45QrilBceyRN7jMeMbly5l0rJlzPnP/yQ7OEigvh6nUKCQSlHRUC/gerxUGQAFCjmJc3p+gwxaDS1lk4mhfhnEppxYdl5UkNccCMBAD7zwewHcja0i9UnG5XOoa5DjJOMyXVwVlf29wdU29BKLPPGMTxCsasB13bJD9NS5pEd7yMT6qJt8OsOH3qB15nmeM7XrzQ5aKJqBgouVz+I4JkYo6hlLOJj5FGZW5EElEO+Xz9g2C6iGgZlNYBeyBKoaMbMJAsEaFG920S3kcTZvRF1wFoQjuAP9qBPaS0W2m8mghEJyrYyN4qYSqK0TcXUNxbN3d9MpqQxq64XVTqfK74dZkAtDOCLvTT4H4YiYh3ifUwELxymUnJsLhTSBQLXn+KxQKGQ8cK2UGOje3p0EAjXU1EzBNAUu6p6zq6pqJSm44zH76fQAPl8FhiFSWcvKlWThhhEmEIjS3/8mEyacSR4Y9JhrFxef5kNXdJKFJH3JPtZtW8eqjlWEjBAZM8PEqonYrs11z1/HovZFfObkz6ArOpZroeIZlbkWGTPDtzZ/ixvOvIGWihZcXFa/tJqHlz6M7doMpYfImlm6E920VrbSGG7k+heu58b5N5ZkxwAtFa1ogUqSiPnQWsouwDbCZmUoxzAV+RUFkX6a3nZ+BDhHkDxbn7dfkLLb9CDiRl3pLVOAfuAl4MpkXgxoLIfenb1EmiNUNFegaiqoyLKWCNWTqkXGnTHZ/K3NLFm3BD2oi2zcA7zjJeQlNltVKKQKDOwZoOmUJvLxPL4KX0km/sL1L7Dg5gVUT60mfjjO1nu2cv4vzufDkQ9Zt20dtyy4hem10+Vz8DJWiwXZSGqE6lC1fL6qD8u1cF2Xzlgn39v2PX544Q/pTfbi1/wcGD3AzMaZVPgqGEoPUR+uR1d1UoUU/al+wkaYxkhjqd8+4otQNK2r1FSUxAEB1IF6jxl2xDTJF5XHuUGRlJoJsBIiN3XyIvEO1AlQ3HMznPhtCE8Et4Awcvq4mf5VkO2D6CnHsttOXpjt3CC8OAc+uhsik0qTWzJOlhrYvd+9I+yvr7LMYnvtL6UvUul+HDA30wK4veilY9yei4DZzoE/KsVOUUqJSsnhuXQ+UALVhZT3muxxcUU6xA6CLwjBemEfrQwM7IKKNkj1Qutij61WKMnxM0MiMa9ohZe+Vo43+ugTUvTZXn9evJNUYDoHDsa4775t/OAHSzEMFdN0BEsUbHbv7qO+Psz9929n1aoOmpoihEIGqVQBx3FJpQq0tFTgOPKds20Hw1CxPbO+dLrAt761mZtvXkh7eyUrV25i/folDA1lqK8P4fNpjI5mSadN7rtvG48/eSFpM8tQKsbPdv+Zr8z9GMPpMSZUNRD1jKje6z/IrJbjRGEF5KwC+4eOcHLzceiKiuU6FKwCyXyGsE9i5DRVZSg1xpM7/8QV8y6hLdpIqpBl2HueK+ZdwmBqlMZIDdFgBblClrqKWhzXwXFVcpZFdyLBum3bWNXRQU8iQXMkwpTqajRVJVUo8McPPmB7Tw+rFy3CdhwmR6NkPPY57PORyOdpDIfJ2TZhjxhwPMmpAiV35tJy1yWWzVIbCqF5zHXRpTpi2xCPoxS10xUVZUflIlOoKMfSvZlMmfIt0sNFQP3OOwKUi/Xtjh1CMx85Uo4mCoXKmaH9/eXoI699L0mEQ4cUhoYosdeqKkC7ulpSUQIBOY2xMTkFVZXTz3i8SCYj23R1lZOSDEMed3X9c4JSUU7uOHJaxb9dV04tEpQ2L/l9OuW6r6hgHN8aWKw3i62GxSQS24HOHgHb45NM/pG4Gf+42OKoIMcZV6taplnyqHEdh3w8TiAaBUUpqR1LOMOTjLuWhW2auLaNEYmQ6u5m7+OPc/LVVxOeMAE7lyM9MIARDhPwWg2dQgE9FMIpFLALBTS/X2pUr73R9doKdV0Ih9K46NgChFUFMml4+pfwua+VZeJVtVInDvbBpt/B+Z8WIO664A+Wmey+wzD1JDlmakzqzaqoFzXqlK20FUVY73xOCJ1ACIb6sesaKFg5j0SZW5KGuyjY+Qy6P4SVz6D5AqKOVGTCMBMbwAhEMMJRFNclE+sjGG3GdSxsq4Cmi4HnWN/fqaibhO4PllosHdtEUXUG3n+Fsb4PiLacSMvM83AdS8C1mZJJXCMi1zoUMQGMTITBV2XZB/fDjNsk0hClDIAjk2QCOj8yru2iUT7nohmhrxqyvXINVAMyuWwm5dpaBNSuIy0ame4ycA82eRPb/+/e/m1o9n/zVhURuXfQLxLtgK9cuNgOxNPHFjz7u0QW7rqyXFPlGOPnPzxFU+mmqeXZufHLNE36rvNe4ZEroKgq/mgUxzQZevNNAg0NtC9dih4OC4MKuJZFw+zZ2Pk8icOH2XXnnQTqxJn6jXvvRQ+FMFMpcsPD0jft9+NYFrmREbLDw+C6vPvoo2SHhgjW1tJ+wQWcctNNpHp7SXZ14ZgmhWQSPRAQgO4Pymzirx+RwQ4o5SYnYyK3ee63MsM4MigDZWwIJkwpTwc7FowOlbMC/vI/krdcUy8xTr/5oTDfdd6VyywIW24YwowrigB22wRFoeXk8zjpoysI105A0QxUTcfKp0kcPcjQwV1E6idSP20eViFL/bR5AnitAvnUGOnRflTd8JQ2Dpo/hC9YBY7DwN+3gqLiC1YRqm5mpPNN4v37GOl80xv8NZGJuy6jh98mUNkgrrma32OmHOnx1nW0c5biJuIiK4pEcDPpUqGthMPyOD4Gfj9KOIK96Y8QG8EteOxAKCxVQCGHm0oK6x2t9tw3FQgEURRVJOSBoJiOxUawN/4eO5/GcUxc18EwQiiKit9fgeMUShJlny+C6zqAS3//mwC0tJxBbe1xjI528tJLq9D1gJiKeNLuVGrAkzJrKIpCIFCD31+J41h0d28jmeyntXUuW7feQzgsF4K2tvkoio6h6GSsDPFcHNuxKVgFTMck4oswmB7kxvk30pfsoyHcwMSqieiqjq7q/OiiH7FgwgK2d28nWUgykBogWUiSKCTY2rWVvmQfc1vnsm7bOsZyY8RzcVbOXUlnrJOrN15N2kwTNILUheq4Z+s9jOXGePHgi1QHqulo72BC5QSigSiGJq7TIeBhhKMcoeQThuutKwLr4k8db7te73EeuB4xOgogc81e8AwB777O+9tB4ngOAbcjGbooEO+K07uzl9a5rfgr/RhBA9UQoNw4uxF/hZ94V5znVjyH67ics+YcfBU+rKzFyP4RnlvxXOkEi2w3CqRGUji2gxE0aF/UjhE0CNYE0XwaRtAgF8+xd8Netq3bhmu7bL1nK/ue2VeSbt+/5H6m1U4TY7nubaQKKVKFFHkrj+u61EekZ951hbHOmlmyVpZptdNYvWg1f3z/jzRHmmmKNHH2xLMxVIOcleNg7CBZK0uykASgOdLMXa/eRU+8h4gvQtAI4uKSyCe4/vnr5XdUMUVAcm5ICghcMUwqjMib6KuU7fSQOBCDAL1AA7jeJ1rfIf3ITh7yo2XQ+MF6KVyCzbKNHpIxzHUFiIKA0UAtLPvQ68P2PjzHlLxgOy/At3hTVGGsizWvUxBG1/UuGPlESTot44Re3qf4eoq/fdcVwOo6sjxQW5aoq5p8Q13p18PKevJcBRKHYPNyOT9fBaUeRdeG/l0iK6+eLL3ZTkEeA7R2SE93ywJZ9tfrZbyzs9C7XUB/1UQ51tkPwomXw7zvyGuwct710oZkN45jEw4bPPzwUnw+Yaa3beumuztOOGywcGE7NTUB7r9/CQ0NYUIheV2RiI9QyEDTFA4fjrFtW3epLSmZLLBixXMcODBCIKCzZs059PbKuX/jG/PQNIV1617jj3/8AJ9Po6EhTG9vgvnzJ5ArWKTzGUYycb54xkUMp8c4uWkqdeEofs1AUVRmtxxPMclAVVTCvgCzWo7Hsk1ShSx5q8AHg4f54m++Q87KEzB8BHQ/IcPPt8/9CiFDJqdDhp9YNsFpE07Ap+kcV9/Oz3b/mXQhS8AXxLKtUouUoWkMpFLcNH8+YcNgQVsbU7xJd8tx8Gkan585k/VLljChspJJ0SgHx8ZYuWkTYZ8PF6gOBNBUlaCuo0IJLMtrEamr5ThkTJNrN22iJ5mkMeJNIheLf9fFdgSYKP39An5DoTJd67rCLn/rW/IdKwJox5HtKivL2xf/V1SIftu2ZXtVFXSs65ID9NhjkhEajcLu3XJ8L9+YQ4fga1+Dzk5cVzD33LneHHNe4odOP11ii4puxnv2wMsvy2EiEQHUO3cKeNY0+d/QIEz27t2C3UMhwf5TpsDixULGNzXJtoYhzHXx5WiasOLF1mDyBTGxzZd72unql3ZA2y7/3dVfrjfHR3xqKlSEvQbygpjfemN4yQy3SNrYjtSlhu71JDsCUm0HCha2bWObJqmuLl6/6y7sfJ5AVRW50VFwHPRAgPzYmKgfi8rM4hhu26XJj0hbG3PvuINwaytWNouq61ROmkSgthZF01BUFT0otVE+lQJFkeO5ZZWdnc+Xj2kWBCx7E/Ukx0SpGAwLsHYcYaKnnQw1dd5sRgA++ilIjEqvdCgixMzBvaKenHS81JPxUVE/GoaYDeezAqZ1wzORdaEyCo0t8ny4At4NH8MHdxOqbkH3hVB1g773XsaxCqi6IVJun7QJWvkMZmaMvvdeRvcHUTVRDrquS6i6ReJRdR+GPyREjqISbT0Rx7Hoffcv4DiYuRQDH7yKlU/RPOMcjj/rKzSffC6FTJy+91723qe4AGs7DbuuhvRhuY65jjDWH9wvrHS2RwDz6yvlepftkUnX2LsQniyO/eHJ0r5kVELl8TKZqvoh0OxdRxMyafzu7XIsVZNrn2YIsA7Uy/HtjKfk+te+/Zu5/t+6FWXhxRnEfAH8vmOl3bmCJ9OJlAc2y/7/LfEp2ujbjoB2BRk8x8t5xs9K5gvlfhrbwbQtUl1d7P3JTzjxy18mNzpKwxlnYGazGMFgaXYwG4sRamgAkB7iogzcNFG8Ac31zs/KZlEAPRCQC7fXZ6MawtAXZxRzo6Pofj9mOo3hmadpmiZ918kxAXu+AAwNCHiecqK8/v3vQnW99MYU8lBVLe+T65RlPcGQDGqVURlAVU3A9nO/lVnIg++LDKh9mrDh/oDMKGq6FHFjMTkuYPsMHKuAbRXQAxEUj7V2HNNjmyvwhapwbYtCNoGVzxCuacXMp1FQ0APSk+OWWCaV/r0vUzf1DIxgFbi2zEQGIxiBSvr3vkzzyecKwPL6u4sFbjGvWXEUiA3jbH0Z9fyPlY3NOs5Bqa7FOdKJ0twqvdLj2OWi2ZibjON2fogydTpKKCzHVVS+ccMN/PnZZznS1cWb215jVm0UpTLK87tf5z/vuINCwSQUDPKjRx9h9gkn4B7t4/X9B7j+u2tIpeIoisr3vreGxYsXkEz2YxhBfL7IMdLwcFi+R67rkE4fxe+vpFDIeNuGS/3xlpWhv/8tmptP9ZhKFcMI47oOmzatZN68b5BOD1FdPQXHKVBdfZzX051F0wLkHJPlz17D48seJ1VIcTR1lKPpoyxoW4CmaOTtPIZqlCRpeStf6t11EGZoMD1If6qfua1zCegBHNchY2bQFI3eZC/NkWZs1yagB9jVu4sZ9TOoClQBMJwZJmSECOgBTMfEduySzDlkhHAUFfwVjCBMcxsiCe+kbGQ0GQHLRbZ6F5KNHEAY6FHkp34SMIaA8Dzl3NupiLzcQRhtx9vma8CvkSzcnydydG3pItwQJjuapW1hW6l/upSbDPz5yj/TvridEy45gUKygL/Kj6Ip9L/RT8sZLegBufiJU6zsr2oqsYMxtt23jSXrl5SGwqL0XAtomBkTzdBQdZXY4RgVTRUoleLU7iI90O8Nvsfc1rnoqk4xQ9l1XTRVPsd4Lk5NsKYkGy/GqDk4OK5T+k6NZEZImklqg7X4NT/diW7WbVvHzQtu5rXu17hw2oWEfWF8mg+fJ0HrHOlkVv00lNTBsiSulN9bZII9xih1BLLdUHemFAOOJXK4U4p9ZZonpesW6ZuV9PJ0PRm0awlzW5TQhdrK8nBFk+PZWZnBVwPlMd6lLCkHjskN1vwChM2UFC2pPpF0q568u3JS+WLhmOV+6WIPdZHVLhqXKQpYea/Hddz2ul+AdSEFhbhk/G5eXmaVlzwu3z7Hktej+jimt6/YT1vcxsoIo+GrKhtVvfotOP1GOedEp+QCz7tNzNiKWcSZIQjWyPGsLGmlhgMHYqxdu5VVqzro6UnQ0BBm4sQoqqoQi2Wprg7g9+v09SVpbAyTzVo4jksyWaCqyl+Sdw8PZ7nnHjmO47i0t1fh92ukUkX5d4K7797CqlUdNDSESacLZDIWa9bIskmToriqg2q49CeGeHLn01wx7xLao02kCgK4n9r5NF+eczH1kWrCvgCgkLcKvDdwkMZILdFghKAhrQWaqmI7DrFsgupgJX2JYZ4clz/898HDzG45npxV4MG//ZovzbmYtlKOsUrP2FGe2PknVp13FYaqcWBc/3RPIkFTJHJMX/WtHR1Mq672hHXSH+3TNDRVRVXE5ftwLEbE76c6EOCN/n7mtrYCoKsqlgegNUXhwOgoD+/cycNLl5ZAeM6yGMvlqA4GqbUslMFBQaHptHy2FRXlOigeFzRr24JEHafMYg8PC6oNBgUB+zwSo1jbFgGmaQrA3rkTZs0SpNws5nal4+VygqgnTiSpVqKqIgs3TTl8UXWezcrfe/bAKaccK7wrqtCHhgQ4HzokZPn3vy/b6Lqw0qp67GkWT0PXy4z1yIiw5EVCNBywURyPhXZcqe1UVWq9/xNzrarlbRSEgfb9H4BLMa4plQGfIduksgLC84WyNPwflJNmLlf6fqieNLvoZ6F4rX7jWeoiQC5OnJRk3VA2TfVqRtVrPVR0XZhvb3sAM5USHx841px3dJSK2moU0/QmBwPlMccsCGkjg6b3oXm6fNsUgPz876XH2h+QmrJobqZpQgRlM9K2GPD0+8XY3P9+Cs7/FNQ1wfAA/OVPYqamKPL8KNi6hm0VvK+kgqL7BLyrGoX0GFY+fYya0cymOPL6/5R8eIrvT0lQoIBr25j5lLfPPFRVR1E1VMNPZrSPrjefobJxKq0zz8PMZzD8IXrf/Qvx/n2cdN4VaHjvwdBW2PopMeCc+5hMBgcaJLJu7xqY+2PYdY0A7UmXw5wfeUoqt3xtLMUuFq9HRfm346mc8qBH4PAvof3TlKIli9e6nMd2awFZZ4T5f/n2b+b6/+YtXyizxz6jzCIX2YWAT8Cv6wjQPtB1rGFEUXrjOLIub3qstOqZJSiy3/4j5WNrKkxulcfhIOAKG364D4BIeztz77yTyqlTaZgzR3YZl6Gt+f1EmprKA1mpF5rSgGim04y89x64LkYoJOy1bZfY86J5hetK5JdTKJRkQnsfe6xkrGb4ZTsqolIIZtMis6mshv/6oQxi02ZAfbOwp1XVcPDv3gVDF9Z5eEAGxapqkXoXGZmxYfjopcJ+zzkLjp8pA2t1LUQqy1orF5m5LORkRhJQVA3DA9aZsQE0XxBfsIpw7QR0n/CEZj6NL1hJuKYVFAXdH0bzy2fpOjLg9e19GTOXIBhtwsymcW0T14VQTStGoAJFVWk5+VyKRhM4jtfOY5Ee7cXMjMlFw3VxE3FxBvcFUKI1aBdd6kmXQJ04VWZQVRW3kMNNJXALObmwjY3gvPICysQpEArj9ByRnuzYMJcuvYAtL/2Fie3tuIU8avtkYi78x5e+zE8fepA927Zy7/XX8h//8UUwDJQJk7j0iqv4zndu5bXXNvOzn/2Iq676Gvm8RVVVO+FwAz5fBMvK8dJLq71+aJd0ehDLyuL3S/96JNKI31+U/Ahz7fNVMmHCfAwjjN9fiWlmcV0xLDvzzG+yc+fDtLbOo7KyjaqqiZ402cJ1HcbGDqMrKqsXrcZyrFIsVlOkieUbl3MgdoAdPTs4NHYIABcX0zGpD4kzuO3YRHwR+lP91Ifr2dW7i1QhxYHRA3xr87ewXZup1VPJmBn+vO/P+DQfrRWt5O08pm2ytWsraVMKwms3XYtP9RHQA9QEakrZ2LqqswOIAk2UMdIDCKPc7C1TEDbb8pYPAtcg/dOt3r4feu9cCmGxGxD22kL6sHchoBvvWD8ANiI93IqhMXHRRConVNI2v43YoRhdW7uwchbpwTRjh8dAhUWrF3HSp08qjQuuI67hFS0VbFq5iZEPRwCJ2MqMZEoScSNiMP/m+RghA1/YJ5JwRaFnZw+FZKHkLg4QnRjFsRxsbLJWlsH0IJX+Sk5vPp0dPTtIFVLYri3MtSfZ9mk+GsINaIr0tru4JPNJTM/wTvXcqjVVoynSREgPUeGrIGgEifgi3LzgZip8FXxx9hepDwsTftOLN5HIJ3Bch2m10wT0aiFhlUsSZa94ABjeAalDwkrXnknpMqr64NT1ApDf+pbIvzU/VM9k3AypNzGYkgJGj8CcH4vMTvEmTJ28J9tWhAUo7uvaHqPsFS9FMyeQCUVfZbnQ8VVIX3QRICuagNSSi7AqALlykpxjsVpT8PqcDYh3CrDWPCSQ6hGjs1RxYluBdL8w1YoG81YLsJ53W3mSQDPKbLxjjXsfvddUSMj5ZYdgx92yTvOJedlHfgCVE2Ws91VB96tilmZnoXcLjB2Q7fq2SS+462BZLmvXbmXDhr2sXbuVuroQg4NpBgZS7NzZQzptsmLFJjo7Yxw4MMqRI3FCIYOBgRS33/6KB7gjaJrKPfeUjzNpUpQdO3o4cCDGdde9wJEjCbq64qX1uq5SWxtizZotpWWO41LIikHmkzuf5oV92/n57j/j4uDTdJ7ylv1s959J5TNkzTw9Y0e556WfUheOMpyOETT8pW+O5TiMZOIEDSlKn9z5J17Yt50ndv4JVVGoDlZw9+YnGE7FOLl5Kk/u/BM5y+S7L/6EvFXgCW/7vG3iAAFd5+YFCwjoOrMaG3lk1y4c12Xt1q1s2LuXe7ZuxXJdsqbJobExrnvhBboTCbZ2dXEwFkNTFKbU1NAYDmM6Dgva2rBdlx09PaQKUo+81tXF/pERmiIRHl66FNtxeL2vD9szDm2KRNBVlVyhwCUrV3L8zJnMPvFElnzykxw4cABUlbXr1jH97LNRa2r404svet93ISAGR0e54JprOG7ePE5ub+fVjRtlXaEg9QoI4O7qkn7rbFbk4UUwXezxPnpU6OIiu7p8OZricOCAy9VXy+JDh6S927YFaDsOnHyyHKa/Xw7f1yeM9NAQLFwoh3rgAQHZkYjMFxiGnNJ4Er5YZqlqefmOHTLPMDLiEauGJz3Om5DOCQDWPNAc8Ik6UlOFZZ7YIvc+XcB2MRK2KAsvstMFU45ZbEusjMgyFI9CTwspJIOrV292eftIreQ6DnY2i5lKYXtgGygBYsey0AyjRKoUb0VQrOo6+UQCVRPjLUVVUT1ArejFscPBKRQw0+mSlDzd309udFTAez6PmU4TrKnBth3c+Ch0Hyz7VCiKAObim+15EZHLwO8ek9dTUw+fubosBQ+E5LGqwu+fkG2TYwLAfT55/4ovduqJ8Oom2ba2UdjxfFZaFH/xEAwPoACa4cMuZMnGh3CtggBlBXyhSkLVzSiqTqi6heGDrxOqbqaqebqnjiyntQhet3FME0XVGDqwi3j/PsxsClWXRBbHKhCqbmb6R66g+aSzcV0Y2r8D2zJpPulsjjvrK2J+aucg2y8O/R1/hBmr5TpmVMLQFumZnvs4KIbcfyou16tiO5JrjpsdcmWMH9oh1z6jSq5PrjXuc9Bg8pc8g05LroOFuKwLNMn1MB8TUG9l+Ve+/Rtc/2/e/D4xI/P7ZOZvvLFZwZOrFExhq7sHZGArAups3pud9Bp9JjR6g563z+E+AdD5QlkCBDL4dfbIc+qaDADdA1itdaWnFgMjKRSLyoVkfz9OoVDKdla9XifXdbFzOS/XWrbVQyHqTjnFA4Mu2dFR+dFrGlY6zVv33Sezkd6yopEFisLpq1ZR2d7uuUlqnswmJj/WQEikNdV1cMFlAhhdV7b59aPCak85wXt/0rDhcWibIqy0okK4UmYCC3lhvoNhOG6mDIRDA/DLh0tu2OiGPGcmyTduuIFJs09DaWlnz563AQXXtnj6D7/hrI9+nFNPn8OCjkXs2bMHRTMoZOKcdd5FnD73TE47/QxmzT4Fwxfgzd3b6HvvZRRVLQ14Qwd2UdV8PKGaFq8vyaaQHpN8w0yc9GgfrmNJTIKi4Nom/XtfQfcHMUJRuXgpCkplFW46LX3XyIwlZgGn5zBuPucBMwVFN0TibfjEyGn7FpT2ySgh6ZlW2yaL0Vm0lrM+ej6t1VF5P00Te+MfOPj2Hmpra5lxyqkousHiSz9NV18fb+15m5HhYYaGhjnnrA5U1WDatClUV9ewefPLniGZjus66HqAs8++HcvK4jgWkUgjuh7kpZdWkUoNAApjY0dIp4e876DM7KqqjmnKgFpkvB3HoqKimaVLH0HXA4izNjiOuJWrqkE0OhENmBadik/zUeWvoqO9g6ARZGHbQu7bdh91oTp6Ej2kCin2j+znzf43ORI/wnUvXEdfsg9N1Zg3YR73b7+f+nA9iXyCgdQAa85Zg+M6vNb9GpX+Ss6dci55K093opu0mWbFphXUh+vpjncTz8f55pnfFCZVUQkaQar8VQIMHYtFiJxbBV4DjiAS8f9AGGsNYbKvRnqkXcqZtV3eumsQ5nsr0AfMRQB41lsWRoD6CsTkLOPtMwEB5gCFdIF8Io/jOFRPrKa9ox3XcfGFfSR6EjgFh+jkKEbQwAgZhOpDGCEDXNi6VqTcmeGM1F8hg4pmkQA7lkOkKUL1xGrsvI1jOxSSBXp3iwTdF/Hhq5RCzbEcnr/uedKDovgI6AEavM98JDtSikBb8dwKDM3Adm22dm0lmU9yaOwQN714Ey4S5VXprxRQPW58A7Bci+YKYaYOjx3m8NjhUvQWLlz//PX0Jfu4du61pf5u27WxUXH1sERNqb4yOMSVIqF2roBhNSDrvVWiLLIE/M68XeTfwSYpMowqKR5UQ5yutYAAeNfbWVHAyclsfxEwu5b8ndhPqYpT9TKwVigz5I4joDjZVXbUrpxY7m0u7m8XPIDtikS8CLbtgrdNEZj3lYG0ghw/MkEcxCsmeK/XFkDfskD+1kOw5DGPWfYmJVy3DLRVHY6x9AP8VbI83ATn/lAixvIJ6N8hssPskIzpwVr46t+l4HpphbyuzFF5/U1zID0AhSS6rvDgg+fzwQcrePDB8xkdzTJv3gTWrNlCfX34GMBcVxdi7dqtAAwMpLjxxvkMDsokWSTi49ZbO7jsshnccstCCgX7H/bfwty5rVx22Qxuu20RPp9GJmNy880LSst0XSUQkvf3q/M+zkUndvDtc79C3jJRVY0r513C+dPn85W5FxPxhzA0owSAf7rrGWY2TyNnFRhJj5G1CuStApqiEDYCaIrKFd7+V575CQzN4BevP1sC6/MnzuLKMy9h78BBXti3nfcGDpaeL2wESkZmU6qrqQkGqfT7+cHSpbiuyy0LFnDZjBmsXrQIBfDreglwr926lbpQiHu2biVtmmRMk/2jo7zZ38+hWIydPT2c0dJCQNe5dtMm6sNh+lMpxnI5ehIJuuJxzmxtxXIcRrNZDsdivNYlpMLyL36RfS+8wNsvv8zHP/EJrrz2WsjnOS8aZdNDD7F4xgwBwUVEatt8+/bbOfOMM9h/5pn8NJHg8ytXYhaRq20LyDYM0VzPny/od/lyYbubmgS5HjkC//mfgpBVVWjmDRswLYX16xUWL5annDxZiPVCQSTg4bAwyoYhzuAbNsj9pz4lvdRXXw2dncJYf+ITcvgicC72U7tuWb1evD96VO7PPFNMzYqEvapI1jKaJqZk/yg6dV1Pzq2U/XpAXlNFWAB2Ni+/86oIpZQa8Ey8FAHifp+AdL8hBM3BbqkrFUXq0wmNUr/uPyIKPU/ZWDyH8TnXKIoYkXnr7XyeobfewkqnSXV38/pdd2Gm0/ijUW93eVFFJrr0t6ahGgZGOEwuFsN1XcLNzQRra7FNE1XX0T2D1kIshhIbgine5HA8JvdFIzgoTyYGw8Iw+wIyFho+eX80vTwB4wsIWPYHobYePv91GXdsE0aHpW6dfy588suinIzHBIgHw+L947U2qqaMiUawglBtqxeNpXnDroaZSzH44TZC1a1elKtL68wlopQsX4HIZrJc+unPMmPWqZx6+hy+cuN6YlYFoZoW1q5Zy8xTziAQruLpp5/xZOEZXNsiEG3iu3et4aSTZ3PKKadxzpKlKNk+T6bdBw0dIu0ujMm1rG6BFyGpCtjdtVxMzopSe9eWa5idleuWnZX3pX6+XPtwJB7PsWSC1oiU93MsGNkt1yY9IiZoyf3yHHZG+rudAv/Kt3/Lwv+3bpYNHx4ux2JNaxf2uSjVKUpzPjwioLo+KgPWeBMy1y27f48zJjsmbmv8cf0+YbHHR3F5s5OmpmCm0+A4ZEdHCTc2onqMdWkQs23ysRhaKIQeCJRkPY5plvpl3OIVQVVLBmeKomBmMiLTKTLe3oylquslt0iKM5KWhWNZ+ENBMTRTVRnALFNAc7jSk2hloLtTel1GhyAdF1dv12N/8jlhq8dGhJEuuoZXVssVLzEmknGfXwa8v+8R2c60k8pyoEKOV7fvYMrUaXQs+Sj//d9/YNbJJzI8NMjJp5zBy395keOntvPs73/G7d//Ge+8vQfXsVFUjXwqxnDnbra8O8C96x/k2V/cS6i6hWjrSZi5REmqU2SpzVxK3m8UNMOPbeZRNB3Vc53MjIlxRXq0h4r6yai6gW0V8OshnO5DKI0tMnHg8wuTDLiqJsu8iYxS7JZtoaDi6t56wwfxGM5rr0isFoqAE8PP5OnT+cM3rmZ2aoTksss4bslSnv7pk8w/cTp/3r6TT3z5q/z+l7/g0k9/msnTjmPtt77JpVdfyeuvv8E555zPnXfexic/eRqVlW0YRhDLyhKNTiEWO8jWrWtZsOBmKiqave+K5hmdSSE/NtbJli1rWLRoNaFQPS+8cD2LFq0mGp1KOj2I31+BrgcoFJIkk31s27aOjo5bCYcbcV2HF1/8Jh0dq0gkeqhvnctoLkFjpJFDY4foincxt3Uuhmqws3cn8yfMR1VUbNdGUzQcHA6OHGQwM8i8CfNIF9KMZEboTnSzsG0hXfEuQkaI+nA9qqKyrXsbLRUtTIlOIWtnWfHcCjbs3cBlMy7j0aWPoquSyzycHiZoBGmMNOK4Drqik9YNfJqPLAKw6xFZ+CFEFn4zcDxwJQKmLwMeRwD4GuBRBDAX130T+D6Sa2sg0vB6xMTs9nHb3YHIyIvHCyTzjHw4QmY4Q9uCtmPzqr0oLStnoRkaiq5gZS16d/ZS2VZJ9dRqIV5tbx/TLalwFFXBylk4toPm09AMAX+OKRNwmcEMFa0VxA7F2LpmKx23duDYDtvWbeOCX1zAwdhBwkaYaCBKPB+nLlRXArxOMS5OUVAVlW9s+gZ3n3M3w5lh1m5dy+pFq5kSnSKTSZ40vHhd01QNx5uQKgLwdCFdYsKThSQTKiZwIHagFOHVFIig2XnI9ZciRvDXw55vlTN3rRSMvQd1870B3xPrDb0mmbuRqSJzBikesKQYc23vsSehk4HXO4anZyjKybWAFBmuDVpEwKai/rOLavEaHu/85witf7wVJeUlmXbx+q9wjHv5eMdw1S/nUCwEi6/VzstzJrugae6x0vLMUZGz+6uE3bBNOW9FhfSgSP40wwP+CvRthcY5wlqYWaiaVO4RD9aUJYe5EciOCOhu7RCp++71sHgdGGFShQAHO8dYu3YLq1cvYvLkKACHDo3R3R1nwoRKTzK+iJ6eOG1tVUycWMXhw2OsXbuVBx88n6GhNL29SRYubMM0HUxTJvTefLO/tP9tty1iypRqzylcerNTqQK27RII6ASDOpmMiR5wSZpJAkaAgC5yZQXpT07kUqiqil/zETL8pApl47OrzvwEE6oaSebTpAtZwr4gEV+QtJljKBUjnksyo2mafL08t/D+5IjIxM+8hJZKGbPyVoG9Awc5oWESIV/AMxjTMB2nFIelKQp520ZVFGGRLenNDhtGqag/NDbGmi1bWLVoET3xOO1VVUyKRinYNl9/7jlunD+foXSa+nCY+7dvZ1VHB387coTXurt5ZOlSTMfhuf37+fRJJ3EkHi8da1JVFYfHxjgxHMbX2Sng99RTeX3fPj71+c9zuKMDbrwRhoY4+zvf4fpQiEuefVa+Y0NDRGbP5sCbb9JUKEB3N3O/8x3W3nor533kI+LBUjQ8K96WL//n3KzxWVqPP14yPUs/+V/EEyoVFWWOY8cOcQ3XNAHWIH8fOCCYfPVqaG+H7duF1S66hXtEe0kRnfesdQKBMobL58uGaY2N0NsLp50mLLmiQDDgYKjjYrhwhYDBhYM9x9aIRQdxryWQVNZzCR83Dpj/IBEvSsOLKTOWLeC7yFICJNIQ8Vw+hmPY1ZVYlomqaeUkmm9/G82bPVCKhmNIregWa0lNIzs4iJXJoOg67z/+OKfdcgsoCprfXyJmSvWmomBns7iKUmphdB0HO5crGew6JZDtQ8lmxC+maOw4fBSe/Y0w0cm4tAwu/YyoIouTNZpWBuAuZZbbdUXZCB4I/4f2oFzGq9WzUm92H4SKamiaAEd7pYd72gxsXaeQjWPlUoSqW7zI1rLM+5/iWF23ZOipqipWPofmC5DP53j5r3/jgvOXoCgqj/7ox/zxj3/k5b9s5tW/PEdDczNXXnkV13/zRs6dP4tMrI+G4xfww8efYsurW1l/65fIDndSN/Nimnu+K5PFTR+VWCwUrw+7qqyQck2RhPc+I+x2g6foGt4BwVYB5KmD8P490t5U9CDRvTqvGKsIgApv3QjHr5Q2qNxReS5FgdE3pO86NyTnpIflWvv/6O3fsvD/m7f2ZgG57c0yUBVNzYoDWsGSdcm0DF7dA8ey0IoijPeUCd7o7DXi/ONxj5tYBuPj14EMlEHJHTRTKRRdJ9LcjGPbvH7XXaR6enBdl1RvL45p4q+pwQiFSuy2Y1ns+f73cTzpzdAbb5DuL59fsb/G8Nw9csPDOJbEfhWZ76KzOICZTjP01ltkh4S1JB6DrgMioXFdAdbpuAxKhk+YaceWQXDqDJnSLU73Gj6ZAp5yggDr3a+K26PPJ27iz/xSth0dksiuuR+R4/36UTm+x5YvPvlEJvz1vym68SqqxpGePmprajl55iyGDuzi7HPOo7u7hzfeeB2QSQa7kCVUO4Ff/tfv+cpXvkzLrI9S3XayGMb4I7TMOEeiF7zJBt0fRveHUXUDy8yh+UNoXvambeYI1bTiC1USnXASeiCMmUsztH+HzP62T0Hx+VAiFSh+GeCd3i7pv/KJ9NbpPiymZbaFoum4muRc4xmsOVteQmltg2QC+4WnIelJMgFt0XloN95B9cmn8Ptf/4rV31vP3M9czubNmzlp8mR0XXru//Tff+AXGzcxb14HjzzyQ+bPn4frmrS3d1BdPYVwuIFksh/Xtdm6dS17925gx44HMIxQSQruOBaOY+O6Nlu2rGHv3g1s2bKGXG6s9LdlZQgGq+nt3YnjmOTzcbZtW8fevRvYuvUecrkx8vkEBw++iGGEmThxMX49RH2kHtu1aYo0Mbd1LvFcHBeXBW0LUBSFZCFJ3spjOiYaGlNqpjCvdR43PH8DA6kB2qva6WjvQFEUIkaEulCdZ7zjsKBtAUE9SMbKoLgKqxet5rIZl3HbIslkVlUVn+ajPdpObaiWRD7BiudWcHDsIIor7PJRhIFWkJ7oNQgQXuc9XoUA4duQwbkZkXW7SMzWZd42w97jCkQSPg8YQlzEbx23XXTc8TQ83DOckV5rx8Uu2DgFr0/Zchg7PEbvzl4c08ExHV64/gXC9WGMiHdxLFYCDiiGgm3Kb8a1XfSgLr3Y46bZi3nWr979KmOdYyS6E+x7Zh+J3gQ1U2u46LGLsF2bvmQfYV8YXdVpCDeUwK+GmNvpqk7GzJAqpHjg/AcI+8Ks3bqWDXs3sGbLGrJWFtMx6RzrZPnG5XTFu0rA2nLEVdxyLI7EjqCpGiEjRNQfpcpfhemY3LP1Hua2zmUgNcBLR7biaobMup94o/RMm3G54Gf7YXibAOT6BR4YLc4wKJJ7rYWlMDEqZH36kBQnmV7PAdWG/FAZfOMVkFZSZu5TnSI5LzqvFsF3kaUuem8U/xc1pf/ILBdvpRYYl1JGsJ07Vo9aBPVFRlzzCwNt5cvPX5Sku44HzG2obBeQiwvxLsgMCuDdcZdXtBbkC1OcECiCZS9uDccWaWDTPAHOwTpxBTfT8OrNwlg7Ngy8LucWaoCa6eIqrmiwcy20dIjM0BFQGArpPPLIUoJBnVSqwKFDMaZOjTJ3biuhkMGjjy5l2rRqFi2aSGurjEmRiMH99y8hGDSYODHK/PltDA6mMU0bn09anBYsaGPq1GoeeWQpXV1xEok8nZ0xrrpqIwcPxnjjjX6GhzOMjmbZv3+UFSs2kU07RPwRsmYOy7HZ07uP7thR8laBmlAVplkg4EVq5c08E6ub+c6SK2murMN0LCL+IH2JIUbScVAglc/ws91/psIf5u7NT9AV62c0NYquabRFG/jPj15FU0Ut7/bvL0nMGyI1uMAdLzxOb3yo9BM+GIuxtauLzliMHT092I6D7Tjc8MILDKRkIrgzFuNrzz7L5GiUR5cuZWo0Skd7O5Oi0ZJx2aqODobSaea1tnL/9u0lhnvJlCnctmgRIcPAdV0+Nn06pm2zZssW2WbLFgDWbt2Ka1mwfr3YZodCPPTDH/LxcFhA7/33i6uYaQot7Lqwcycj+TymbdPU3AwTJ8JppzGpuZmuo0cFtYLs445TAN58s4DoVatkvWEIIr7sMrnfsQPq6uCJJzBck6oqiVnLZIStnj9fSO+cdF2xdauUJNOmCS6vr5flEybINkUjtGRSFOkgy8bGygr04k/TNGWb+fOlnfess+TeMIQtzxe8Nr3xhmaqCpYjBI3fR8mTx6fLuv1d8tuMBMdNpHlfAJ8u5M2HR8pZ2Zp6bIui5cl5c3l5Tr+ngklloKEWVKXUAlg5eTJz77wTIxxG1XXe/sEPSPf0YGcyDO3ZA4Dq85WMx3wVFVROnkykpYXTbr4ZM5dD92pPvLrSzuVwXZd0Xx9v3Xdf6TXY2Sx2LoceDpPq6mLozTfJDg6y6847xRzPMKRG7Hy/LPn+wrUCjv0BOGG2LHNsaS1MjgkJkRyTD8gswIH3xBStkPMMzHyUXMFtS2pX2xbm2h+U9y4Zh8knQoMH2huaRT3ptVj6glWEaiaAomJm4vS+uxkzG8d1bFpOPpeJZ3yC+qlzcGyTdKwP17Gxcil63/2LqEkBv9/P0gvOl3kSVeXMeXM5fPgwLrD4vAtpa27AKmRJ9O8vme8a/jDf//4DrLn7TlpP7KCqeTpNTc1w+iMw8XMCjlOHvd9ElTzetVzuFR/MfQI+MQANi7zvjyHMthaS69f79wj4zg9KPGKRpXZMWZ8+4jHfnaLqynTL9VUxPOfwINQthFxMfE5wx006/2ve/g2u/7duCjLYFYFvEVC7SL9LriA9MYYOE5tl+/HA2Bk/ECpeH7Yr2dd+HxzXLsfVvdm2uFwMS7034yMWAFXTCNTWlszFcBxO+NKX0Hw+FCDc1ASKwtAbb5Do6pLazJOHn3bLLWT6+3n97rsJ1NQQrKsrAWfHsspP4rr4qqo8k1iN4XffxcpkyAwMMPzuuyXHx+oTTmDfL34hg/cLv4fWyeUpXd3rwW5sFWkOSHxCISfMtlUQIH5on+wfroTODySua85iuODTMkiODsKeHXKMmnrpuXYsGQQ/v0L6rItRDc95wDwjkkDXsZncPoGR0RG2bdtO/bS5vLLrA5LJJAf37yMT6wccQjUtJK0wr766hcsv/xyK63LdddczZepUjECYPe+8h+LJi57b+AzzzpzPaaedQcfij/D+3w+IKsC22LVrF4vPuYAz5szlpBkn87171so1spCWfhnA9aplN5MW5hwFdcIkiWuIjWBv+h+UsNfU5c0yK16sjqKKIZO66FyUqdNxtr2Cu3cPzrZXjrngKrqBi8tHzjmXV15+mdd37OC+Rx6lLxZjxszZKIaPWbNmsenpP7Fz52v87GdPMTBwlFNOmVs6huNYtLbOQ1E0Fi1azYwZl3Heed/DNLOMjBygv/8NHMfGcaSvq7hNR8cqAoEoM2Zcxvz5N9HX9zqqqtLaOgdFUfH5Kliw4ObStpFIM5FIEytX7sPnC2M6FgXHJG/l2dq1lf5kP2O5MTJmhm3d28hZuVJvtaEZKCgkCgJ+D8cPs3LuStZtW1eaLAJoiDSUpMfyk1Yk1xoXn+5janQqjy97nMnRybiuS9dYl8iVvf1DRoiOtg7WbFmDz85RieRYdyCRWeMB83gw/RhiYpZC5OHXIv3U9QhTPQ3pxw4B+xEm3ECk398GGr1jTEWY7MeBKQj4VgyVtg4xMbPzNsmjSTKjGRxbAHZVWxUT5k9A1VVUTeW89edRPa2aSH0EHBg5OELXli6svIVjOh4mU0qkq5W16NnRQyFVYOTDEZ6//nkAlj68lEhzhPaF7VzzzjVUtlXS9VoX8SNxNEVjYdtCHNchbaaxHAvTNqWn3TUp2AWShSQ+zYeLGJsZilGa3Lhp/k2M5caEAE30sbh9camfutjvrqs6hmrQFm0jqAdLffeaqpG1sqxetJqPTv0o67at4zN//AKmq+LWL5LZ9erTxNyl/bPCSteeOW4CwfL+ltYGFEPkcW9eX5bDBZvgxG9BuFWA8+srBYAXZ+UVz63IqIKBF8VARgtJcWHnhCFwbQGoRbdu6QMp3+yCyKurpgjTXHIGdznGiK0sNSgv977dJTOaIoh2TBj9AIrmZ8lur1jyjqHqHqAektcZnSjGZpWT4NxHpcBSVHl9Zkb++6u853XhbzcJ6+2rkPMNN8sxVV16qRfeDYk+YbhbzpT9iq7nRdn5vO/ASV+Q4lXV0TSFTMZk5cpNZDIm4bCP7u4EpumycuUmjj/+EVas2ITjuBw+PMbXv/4cBw6MUlsbYng4y9VXb+TIkTGGhtLU1oY8Y7MMoZBBPi/51jfc8ALLlv0X8Xj+n/q7167dSlVVoLT8Wzf+Bb9ukDML3PPST6kOVjCcGUNVFHrGjqKoKj3xQb774k9Im3ls1+GuzU/QGx/i3f79pPJZZjZPI+wX1jniD/HlORcTyya5Yt4lJPNpaipqsR2H4fQY/fERNEVjZvNxJYn5Ezv/RCqf4YV923ly55/Eodt1uWfr1pJse/6ECaV2io62NtZ6/dZrt27l1+++S8G2ieVyHIzFWL5xI52xGLbrsnLTJtqrqpjX2iqTg4sWcdmMGdy2aBEtFRWEDQPLcaj0+wnqOmO5HKs6OrhsxowSKF/V0YEJwiRrGmvvv58Dhw5xz09/KqD3tttkwryyUpBtZyfMmVPWTx8+LCg3ECibnyUSZVtuuTAJEGpqgocfFrdwKOu9H39crLsbGwVJ5/MwNEgiUfZQi0Tk51RVVb5szp8vDHYmI6cWCslXMRiUfukbbhBwXMyu7uqCbdvkcTYLH35Ylo+/8YYcN50u52hbVtlMrVRqFb18fIZXZxrQVFseE0o9xcC0NnlPVEXaCT88Qkk+7o47Vr4g612OdRsvgvRjiB/FUwamcByHdE8PudFRzFSK7NAQjmXh2jan3HADHzz1FGY6TfVxx8nHYJri/g2ofj+uZZEbGwNVJVhTI5YPhQKubZPu7eWNe+4h09dHpr+f2pkzwXFIHD7MG/feS250FAXIDg1Rf8opBOrraZw3T77HsRHIpDxpuCt91aNDApjzOThjsSTUjA4JaDbzcPhDCFeVjW6PmykthwGPqdd0IW063xfwHfQ+7CIQL1hlJtyyRIXpjbFOPldqA3SsAq5jM3RgZ6lX2syn6HvvJYxgBUawEkX3Ea5pRdF9KJpO3ZQ5qJohLuGKKr4lmphoPnD/ej528cWY2QS9727GCEYIVjVR0z4LIyAGvMNHezl6dJA/b3yWs867iE9dcye//f0fcTPdEq1VO1eUUq6nrsr2iX9IaFIZ5BbblMyE/HcdYZdVQ9RdHX8Q1vr1lXLtcwowulvey0A91C+EfQ9KP3f9Qgi3SyKHmYDXV0DmCNTNkb+z/fyrO4b/G1z/b91c5Eul/B/WVXmzjMXBsJjl6DcEjPu8x0UQXuyjUTXpgcnlwWOMUBUZPKvG9Wv/n07HtlFUFc3nI9jQgB4OE5k4kWBDMcc5z5777qN6+nQqWlqwMhneWr8ex3N5zAwM0PvXv/LBz36GquvkRkZwCpLJXDSzGH7rLQBysRiJri7qZs1CDwQI1tVRP2sWVjrN63fdRX5sjFNvuUUGpgs/W3ZiVDWZKTXNstTG8AvrnErIC8lmZKZw6kmeYYkCrZPEROJj/wEH3oc/PAmTT4A7fiTviW15Npw+Oe6B96SAy2fFSbwIzEMiYzFzafJH3+NXP/sJq2/7DgvPvoCX/7aVk048EcUx0f1B7ILoun7xq19z4dILqAhIPvbHl13AKy+/xITmBsxcEscsMDoyxBe/cgWPPfIAb731BveuvZsvfukr4Enqv/71ldz67Vt4ffcutmzZwkM/+BEfvP8BwepWFFUuRMRGsDf+QQbycbFYxGMo1XVoF1+GUlsvDpTxMS+aSwpr17EFkFdGUSqqBGTPOAV10XkcQ3F5phl9vT0C5l2Hu+/9Hh9ZMJ8pPpnEGRg4iu19z5588inC4TAf+chiwKVQSJLNxuX75tpEo5O5+OKn8Pki+HwRamuPY+LExSiKiuPY9PRsJxSq5/zzH6SYcb1s2eNks6NMmDAf2y7Q27ubsbEuDCNMZWUby5Y9Rk3NNBKJLp599hpSqQEUReTwR+JHWLlppfRAJ7qpClTRXNFMR3sHhidLOjx2mGuevYaDsYM4rkNHWwdhI8y0mmk8dtFjpAoprn72ao6MHSkB65yVY2vXVjpjnQCE9JDEfTkF0maajJmh4BRojDRy9zl3oypqCZBfPutyvrPoO2iKhgncgBiSpRAmeQoCficj5mNBb5uYt74XuN9bnva2+TvSl51E+q29Sz8h4FnE5Kw4Eni8AxYS0YXjEDsQY+PyjST7k1Q0VBBpiBA/Emfj8o2YGZNkT5KNV28kdjCGgsJzX3uOkQ9HKKQK1EyuoXVuK707e4l3xdEDOrGDnila3sJX4SPcECYfz7Nt3TbmrpxL/EicA387wGe//FlmnDqDxcsWc+mXLmUwN8jWtVs5sPMAl37sUhadtogl85fwyt9ewdAMAlqAT1/+aRbOWch5C8/juFnH8fRzT+O4Dtt6tjE1OpVHlz5KNBAlY2a4euPVtFS0cMkJl/Bm/5ukCikS+QT9qX6ShSSW1ytmuzambdId7yakh7h5881Mjk6mtaKV1YtW84dLf4NhZ1CspGe24gpodm3pRyvZ0Sle8eR4671eaS0Ip94HmS6Zrc/2C1OdHShneWb7JMfaTELiwzJj/bHDMPcncpxMlxQqoQkCfJ3xwNf779pe77Qnr3ZM/smUrBjb5ZiUcqyLTLJjw1ingPhiEVUE0ZoPGk4tA/FiL3aRqXdMMALCMm9eLhnW3jiCokHiiCwfOyDbGBGJzsoMyfpzHoboFNnHCMlzOHa5Z9xfCVWtgArpo2J+5q+S83v5Wnlc2Sav7aUVED+EZbmsX7+NhQvb8PulOJs7txVFgccfX0Yi8W0ee+wiAB54YDsLF7ZRWenDMFQmTYry/e9/lKNH06TTJtdc8yyHD8fRNEWMKEPynj3yyFKee+7zNDaGefDB87n88pmsXr2I4eEMq1cvIpHIlfq+169fQsG0eGLnn9h++G0qA2FObZ1O0AjwqzeeI+IPM5ga5YtnXMRgahTHdUogeGpdGyPpOG/37afCH8a0LcK+IO3VTZw+4UTaoo3MbBbQoioqNaEqmqpqS20QX5338VJPdsQfkr/nXYLqOXjf2tHBSCZDR1tbCXCjKHxh1iy+09GBoSg8unQpGz/3OTRFoT4cpieR4Mb58+lJJLBdl1+/+y5H02lWbNrE9EceYVJVFY8tW0ZA1+kaGyNoGCzfuJH9IyPYjkN9OMzU6moeX7aMlooKXjtyhIlVVYT9ftyDB7lv8WL++Pvfs2nDBkKTJgngnjy53JBcXS0o1+ejdsIEdF1n4LvflWZon4/Dvb20t7YK8C72AR8+DF//utxHo1ILZDJSdyUSYu2dSkndMXWqoN4VK8jVthIKKRw5IrunUvI/HpeveDIpwHj/fjlkOi0YP58XjH70KDz4oJxGNiunHQoJMZ5MyvJwWIzP1q+X5YYhx/L55LluuslTHOcElAPl1BkQQGc78j+bF/Bc9PGxnXJcl6LIPu1NZbJGoRwXGwmVwfrUNmioKasfTetY4kdTS1ngrm2THRwkUFODEQ4TrK0tMayKojDn9tsJ1tejV1SQ6e9nZO9eUTWqkiDhIkkzmt9fYrRVXcfO58n099P1/PN88NOfUn/66Uxatgw9EiHS2spJV1xBNhYDRaFu9myG33mHzNGjtJ9/vjcDEpUorYN7pWb61BXSTjdputxrupAsVTVihhsbkftfPSyxrEf2C6N9YK/49Rx4T5aPjUp8V5EBz2cFuFdEZdalaHpm+KROdR1wbNxCDjObIlTTguKZ7tZPm0dV83RC1c3jPHp2Cnj2/HnMzBh6III/HC2Pu3ilnetw773rOdzdx9q77zom5ktRFGLd71FIx0SB6oBlWQwe3svf/rKR3/z6V9z4rW/zzutbpbVJUcUTBG+sr50v/hZ22jPYzAsIt7Oi2lI0qS7MMQHdgQYBzHvXyvHsHOSHITpbQDsaTP4POP0HYgZajP1yEab7hG+W+7S7Nshx3HHE3b/g7d/g+n/zpmnHYBdABqqivNulXOwUHQ1zeTjQLQNkOCgA1NDLwFnXZHAdz4SPk2Eek3c97rlVQ2a97HyeZFcXQ2+8AbaNlckI4B0Z4bjPf57syAi77ryT7OAgM7/+dTL9/ey64w5CjY10PPAAM5YvJxeLYWezvH733aS6uhh9/31wXQK1tbx+993Y2SxGKCT7esca2rOH7PAwtTNnsvfxxyWCwbYlEktRvb6YARncirOJxccVUXk8OgRP/0IGueIM5OigODmOHJWZxAN7YcknPS1VHjr/LgPiLx+W4wVDcrxfPSzLhwck+us/rivNbg937ibev48ZrX5e/ssLvPbX51l3z9309fdzyhnz0fQAjmPS886L/OynP+WrX/1qaZ/pjSrNTXU4tslYz15sO8/+/fuoCvtp8IsM9Mw5p3LkyCF2bdsi4Nd1OPTea7iWSXzkKJrqEglquLZJ77ubwXVwtr4sbPOWl1BccLa+VHqM64Bl4qZTXgFS683GFmSdZ0HqplPiIh6tRVv2Ka5Z/R3apk6jp7eXCy6+mONOkl702+9ew0mzT+G46Sdw5MB+nnj8MZRIBKevm8effJITT57FiSfO4Jlnnua3v/0FiiKTHD5fJeFwHZaVpbt7G5aVx3HM0t+glHKsdT1AS8scNm/+FoYRJhqdhOpFK7W1dZScwNvbF1JR0ejlatueaRpUVU3k4oufQNNCGEbQc7ldyzP7nmEkMyKGZnoQQzVKbtO6qjMpOolHlj7CcGaYZD7JZ2d+loyZYfnG5RyJH8Gn+bhx/o10J7pLAFlVVBZNXER7Vbv0giHtED7Vh+u6dCe6uXbTtRiqQcgIYbs2nbFOrnn2Gg6NHWJidCIZFI4AKxGHcA+SkURyrMcPE+uAasAPzEcA9ErErKwKYaTXe8sXIsB5B8JsH0JYa9U7to04h+/w/nYtl61rt7J3w162rt2K5tdKmdN7N+wlH8+zZc0WWX/PVnJj5WxqRVWIH4mzaeUmwvVhEt0JXNsl0ZMgXB9m04pNjHWOEYgG8Ff5WXDzAqKToiR6EoTqQsxMzWTrH7fyP9//Hz75mU9y4x030rGqg/WPr2fW6bPYtGMTP3z8h6y4YgVH40dRFZUnHn2C3W/uZtuubfzhF3/g1mtuJV1IM2/CPHqTvRTsAg3hhpJEfO3WtSTyCerD9WiKxkBqgNtfuZ2j6aNoqkbaTDOQGsBQDVoqW3BxuXXhrQBYjsXk6GQ+0r6g9J0m2CKz80W2dfzNscrMtWtSYpQD9QK2VZ8UHB+sh6qThJGunQtN50vsSKBetv9gnVdQrCnLqF1LHhcLDQUBs5bXd12KB9PKINoxywZr/kphkysniSt40Um8KOt2vQuEooqJWKrXA9cKRFrkOC7evQ3JHjlG5cTytUXRxVhs11o4+AxEJ5eKSfmRToSz7pf+6lC9yL9f/ZZIvV1PWmlbXhGXLzMjWlCewLYgMyzf3HCjmJbhwhsPwGk3yARp71ZxLG+aC7vuQdcV1q9fwqWXnghAOl0gFNI5cmSMrVu7yOcthoczpFIFHnzwAi699ERUVSGRKJDNmlRU+FiwYAIPPbSDhQvbCAR0GhsjZLMWtu1gWXJ9nT9/AkePitLpRz+6iMmToyxY0MbkyVGamiIYhsaECRWEQgY+3eCqeZ/g6SseoMIfpmBLVN+3z/0KhqpxQsMkfvPm8zREavCpegkE64pG2B9gRtNU3hs4iKZq9IwNsqd3H5YXg5O3CliOTcbMkTMLouj3xtGWijq+s+RK2qoaCfsC/OdHr2JCtLFU9E2ORlnU3s6hsbFSbN9QOk3OsphcXc3BWIwVmzbRVlWFoWnoisJpzc1U+v2c1tyMX9O4bMYMqvx+VnV08JtPfpKMaTKQShHUdXqSSeK5HIvb25niRXpt6+6m05Oj9yWTfHLGDLricTBNHvjSl/ivd95h8/TpRGtqhAq+5hrYt08QK8i17NAhuc7V1fHpSy/lx5MmwcSJ7H76aXqPHOGsCy8UnXaxX/a++0Refs89co0fHIQ33xTEWlEhdt6hEHzzm0Ihd3XBhg0oivze77lHdtc0aQm//Xa5V1VZvn69MMv19cJkj4wIMJ43T54unxdWemhIQHdNjeRkDwzIsc46S+YQpk2T0xgagtFROeb3vy+nOTIixwbKLPP4dBmv/e+Y1kPblr+LruAgbXTFm4vUmsVjFDOuTUu8fAxdHuuaAO+iChMElPceRVU1oiecgJ3LlT4fM51m6J13Sm7hxb5pLRym/tRT0QMBXNtmZM8eiecqRmopCkNvvUXm6FEUTaN21izaL7iAU266iXRvL/l4nHR3N7vvugtFVamfNYvEkSPkYjHqZs8m3NSEahg4KNKKmEqIRDsZh988KvWQAkRryz3Wnus5U0+CTRtK5mNEqv75/oU/wLQTRUF58H3psfYFpN5MxYUISoxJjTo8IETQ/vdkPKyqIVTdDI6NXcii4GKEqmiduQRF1Wg+6WxOOPdqWmYuKUniXdfB8EcwM3GsfIZjPjhF4f7vP8j/PP0MT//hdwRDQZpnnEO05QQcS9RFFY1TGO58A0VRaGhuJRwK8rnPfxYjUMGkSZOYP28Ouzo9L4vidSMfw/swZFLXqJR1ZhwCLfLcu5bL9Uvxg69ajD19NXI9mHEbTPyCqLICDV4/tSqPR/bIuD/+uuYWpGVK0UWirhhw1kY4+TuiwPoXvv0bXP9v3xSOBdM+TwKYysgg6TjHRmn1HPX6ZwwZ1Az9WMAMMlAWZeDKPzxX0SnyH9Zpilrqu84NDRGoqRHgOzRUAryR1lY+eOopmS186in0UIi9P/kJXc8/z96f/IT6004jMzCAmUwes9xfXY2ZTvP+k0+WlgWqq/9pmw+eeoqmBQuYsXy5xC0oisz63fJFGYCK8uwXfi8XxeLjF/9bQHjxcXGwy2WPXeYPwMe+IAB7bFSWVUSP3cZx5XjF5zlhtuRoezEQZNOlGUUrMol4/4cMHdzF2nvXc/ZZi5l2/HR0f4ihA7t48flnKeQyLDnvXOqmzCnFJmi6H1UzqJ4wA033M336icTTeQ6OyMX+N0/9gFQ6y7u7XwZc7r31KtY/8lOmHH8CM0+bx8rLl6AlD2NbeZENmVnUjnNQP38l2sWfFrn+OPbZLUamhcLg2Ci4oOsiGS/Jvl0IBFEMHxTy2M/9Dz+++7t0HdhPITZC/953+fC9d8Gxefy+9Xzw9tvs//BDfvGrX1FdW4ez/VWUCZO4/du38O67r7N791/42c++j+sewbKypNNDFAoJTC+SqrV1Ho5joqoGbW0LKDLbtm1imhnS6UEUReXCCx9FUTQURUVVdW+7BJnMKLounKyuh9D1EIYhF+FCIYFl5eXiY1Tx6U9/jjNmnsGe2/dwwnMnYA1bLN+4nB37dnDpxy5l/inzWXjGQl7d8iqpQorX+16nXW9n5eUrOf3k0/nY4o9xjnIOYUMyj0+qO0n6rlHEoCwzXALUAJ0x6es9GDtIpb+SsC/MDWfeQFe8i2uevYaueBf9qf5SP3DOyhF0bRqA44DvAQPAcgRg18ingyf4xYc4exc/uSHEFdxBJOAHgW8BLQiwdoAzkZ7ulYgJmuIdr8tbNgfoBhRdoWNVBzMum8GiVYtQDfWYZf4qP4tWL2LGZTPoWNVBIBpgxmUzWHjLQjSfVgLe2+/fTuu8VhRNoXVeK9vv387eDXvZsmYL4YYwvkoftcfXovk1Wue18tYjb+Hf4ue1e1+jdW4rZ555JgPxASpaKnj6T09z1fKraIo0ccYZZ9Dc3MyHb3xIspAkq2fJmBkyZoa7Nt+Fi0uFr4KCXWD/6H4GUgO4rluSiK9etJpKfyVD6SEMzWDdtnVs2LuBe7beA0B/sp//fOU/ORI/wmh2lLydZ1J0EqlCCtM2sRxLgLUelHcxeUAyQF1bZuLfvV3ka6ouzHJuBBQHlPFtOIrMyr97u/SRnbIe1CCcdIvM4odaRWruFET+Pe8JWLZfzGAKcTFLcxGpXftlMMPrD7UL5WgtXIgfFlBqm5AdLS/PJzzVlAe+i1Jq1SiDcqDkSh5sEAM0zecppPzHmkCpmoDqlOdhX0iVWW7VgLMfhOU98u01U/DXb8DYh/K8iirg+q/Xy2v/yINez3de3kPFG5tUn0wcOJYc28yU5eEvrZTX6osIeF/0PVn38ko5d18FnHg5nP0ghmJTWekjEvHR2lpBICCTceGwQUdHO6bpUFsr8VzLl2/k6NEUjY0RDEPlzTf7OXBglESiwAMPnM/ChW3cfvsrHDo0RqXncq/rKq4r9+KD5JLJmLz//hDXXPMsIOZpgYBGLmexbVs3KC7NVXXYjgOeGmZP34f0jA0SyyYYGhedZbsOd5x/NS1V9YR8AUzT5l5PTq4qCvWRKk5pnS5qFNvG0Aw0RSWWSbLurz+nKzZAupBFUzUGkiPctfkJusYGeKt3HxkzL2Z/UAK4OdumIRJhIJVixaZNpE2Tnb29HBwbozuRYMPevazZsoWMaaIAIcOgtaKCgK6jAI8vW0bE56OlooIFbW1U+HzUh0KEfT4WtrXRFIlwyQknkDZNjqbTzG5sJGQYzG1tJWQYOK7LxGiUnqNHufHttxkLh/nIBx9wSkcH8776Vbj5Zu6+6iomnHoq2/fs4cpvf5sJX/kKQ2++Cdddx/duuYVtb73FcfPn8+Vbb+VXP/oRxuioMNKWJf8feQS+/GWhkR1HEGxjo1DQjlNuoF63TtYtXAgbN6I7BTTN5dFH4bnnBOwWmeYHHhB2+bLLBFx3dgpe7+oS4/G+PiHGu7thxQpoaxNS3HFEmW6asu7GG6GnR5jtr39d5g0mT5bTy+XkGENDcsyuLu/3WBEuS7fzhTJrvb+rXPuBAGK831c2X45tzRWkfswXYHJLGTArihA6xVo0lRGS4kCX1JwKZQCeK8CUCbi45EZHGd27t8Q847rUnXwyVjot9ebICFYmQ7CmBiuTwS4UUFSVmlmzSn4QqhfzWnfKKQSqq9GDQVTDYM7tt+OaJpmBAQLV1WjhMPPuvJNwa6v4orS0EKirAyRGFkBVFalzKqqkrqttgE9dKcy05kkDihOLwZCwz1BWMF74WQHmxfuLPgeRCrh8hYDm3zwqprmuC798SMbKtqkiGd/0u3KtqShSf/72MfkUHCEMVN0gE+sD2/JAtIuiamTjgxTSY9hmHsc2Zbmmo6o6uj8ECJsN8OADD/Lb3/6WZ/77N9Q2NIGiYuaSZMYGcByTQkZY/aYTF5cY789+7nNsf/MAViHL8OAAr7+xh1lTowKWE/tl3A3UcgxwKE4g+2qFsTYTZWCMI6Ba83nxiRGomCZu38kDMPwGJdM31xHJN0iU17K/w2kPCmjv2iB+JLbnu1TfAZHJ/2zc+S92+ze4/v/HTVPlS3Owuyzxrox4jKJ9rInZtHZorC3LwvMF2S+b9yRzHhPpM8pZhccwKkUG3BtAi6tUBUVVMSIRamfO5IOf/awEopsWLODkq69G8/mYsXw57RdcwMlXX42iacy46iraL7iAGcuXo+o6oaYmciMjxyzPx2L4KiqO2Vc1jNLj4jYzrr6aUFMToeZmrEymLAs/5UwZvC8a1zetquXHF31OZDwX/cPgFwiWB8SLPkfJFeTAXpHkXPhZkeiMHzQ17dh9quu4+jt3MqG5mZ7+AS78zOXMPPVMWmcuYc299zHv7GV85FPXcvjwIR596HsyICoK9dPmsnHLB3zpy19CwcUXrKR15nn4QlWoug/NF8AIVqLqPqI1dfz+97/n9rvuZc68M9n9QR/HTWmjZsIJgMJTv3+Zb193BZ37/86bO7fy6G/+wrAVRdP9VDVPx3ZMqK5DmeCxRo4NkUq0ZZ8S+ZPrgqqVYrvcfE5kV167gQIoRUMOAJ8f7YKPo4QlnotkEnd0GOIx7Bf+LFWEl9eNWcBVVdQly2BsBHvzs2iKQThcTzLZR2PjbIrZ1T5fBMMI4fNFsO08hUKaQiFBKtWP41jonolRMtnH6OgB4vFubDuP65qk00OYZkb6xHGJxQ4Si3Xy3HMrKRSSgINpSrSXPI+wW45j8cUvXsYbb/yN7dtf5nOf+hxXXnUli9sX89T6p5g7by579u5h/SPr+dRnPkVvvJeZDTO57qbrOH3O6by9921++uRPufMbd1Ljr/GkanLBszxZ0l2v3kVnrJOtXVs5PHa4FPFVH64nVUhx96t3o6s63YnuEns6t3Uul824jFs7bmVX7y4cXN4ECgj7/CDCOocp918rUGKQLIRpxtvucqSvOoUw2xuAHm+9H4ncAmG613r7G5SjvFykjxugemo1yx5fRvVx1TimQ2okRfU0Weav8hOdEpX1U6vxV/pZ9vgyao6vQfNpZWC+epHEcwF6UC8B8kWrF6Hq5cuK67jogXHrb5P9Hv3Royy7cBlDg0OYpklVXRUZM0OikCDcEKarW5zaawI13P2fdzN/9nxeufcV5lw/BxQYzgwzu3E2R9NHcXGZGp3Kjy/6MWEjTMQXYfHExaiKyoPnP8jlMy/ntkW34bhOCWz3JHokSs0znAvoAUzHxLRNXBRc15ELf65fGOZs3z/MuNvlgqBo2jI+w7m47QfrZNZeCwpI3/0179NwpHDJ9kvBooelMAnUy/q3bgB/Lcz9sTiPO7Ywx+DFZilQNVlAqq8SmucIaI0f9kCyVr4kFHuaiw7fea/FRvNRKqRKE7geQC8+Vrzncyxx8HZd8Fd4LLpMpJEdESMaHMmjPvdRiB4nxZbml9f/kQcpRZpZOZFyxw/BK9/0QL8ioF0LSDE3+Kas1wLQPF/Y8WC9/Dr8lfLaz/uxnJNRIRMMRgQLjc7OGIODaWzbRdfVEqA+eHCU669/ga6uOD09CTZs2Et/f4rOzjFWrNhEfX2Y/v4U8XgOTVOJRHzcfPMC6upCJJMFduzo4dChMXbt6sWyHOrqQoRCBqGQweholttuW4TjuHR1xTl0aIydO3tZuGgCvfFB3urdh1/3oak68VyK4+vbCfl81ISqaIs2suykxdzykS+hqRq2Y3u+VDbN0Vre6H6fWFZUT5bjsPYvT9E9dpS8bfJ234f0xgc5mho5JjO7YJulnuuixHw4FeO7L/4Ey3Go8vtZPHEimqLgU1X6k0me2beP/mSSjvZ26kMhOtrb+fLs2Txw/vn4NI1EocC27m5yloWuqhwaG2P5xo2kCgX6k0kGPdZ7V28vOcvCBQxVJeLzUen3c2RsDBfIWBYrN20iY5oMptMcGRsjWluLOzbGwYEB9uzcyZ7t29m5cSO0tHDbSy/R89Zb5N97j+Fdu+jZu5f6p56CG2+kccoUXvzjH9n/9tvsff99PjJtmiDUigpBpkXG+8EH5X7FCpGER6NQW1umlbu7xWWsulrQbHs7mlkgmRQC/ZRThI2+/fayjHtkRHB7KARr1wpzXWS5160TUtRL9WLNGsH5qlqWfbe1iVdbW5u0i//4x2KEpqoiNb/uOnkp3d1l4l1+k0pZpl0RlifqOSoRWUVb8oM9ZVWjpkm9mS/AyJjUmobugehxE/AKQuhURcqS8b7BMogvGp0ZhjzWVFzXRQ8EqJ05k0Iyies4aEExT1N0IZJ8FRXoQW+iPBiUvz0/H9XnIx+LSbKMz4dqGKX9R955Bzufx4hEqD7pJBRNQw8ESHR3l9oV8/E4VjYrXkK5HJ+89FKmz5zF7DlzWTLnNA68vgNcl7V33sH00+eiRir40zN/lg8jl5H/fjm3l/fuQ/v6d3jwd/8tHj31zcJoV9dJL7Ztl41zn98g9dT5n5K0GlUVcmfpZ8q1pT8gRM7k6QCYuTSOZaJqBsFoM9n4oKTIZBP0vfcSuj+IlU/j2AU03Sil+DiORe+7m8mnxnAdm+7ePr518y3EEwku/PhlnDFnHgsWLmL44G7u/8FjTDnuJN58dx8rrr2RydNOYGhwEBdYc/ddvPiXlzjtjPmc+9Gl3HzTdcybe6ZM7lYe5yk9GGdmdkC+F7u/DpnDklxhRGHS5XD6g2WZupX1JoWzlBzGjQg0LPAuJ5a0RblFvw5FGG09LKadU6+ChsWeR4d3jSok/uVzrv8dxfW/dbM8aZzrihu43yd/+/RjI7eK8VnFGIVcQQa/tiYZADt7ytFaE1vk2H5DemsmNEHAKEv88HppwAPh3sDpMRWFXJZcLEawtpZUTw97H3+ck6++mlBzM/mxMfzRaCnOQNF16dUoFCSjUFEY3ruX6qlTMTMZgvX14Dg4prAfiq5LzJZto2haKfZLUVVUv5/cyAhGJIIRDksUl2nij4RlEHacf2DglfKkgGWKeVlNg5hLFHMebbscM2FbklttFWRmsuBdUA1DXr/hoxSxYHnb2l4/x8igzDJe9Dmob8LWNHknXacUlVCUl7mAmU0wcugtmk46S05ZUShkxhg++DpNJy6WHmlVY+q04/jD7zcwe9ZMcB2y8SGMYARV1bFchQntk9mx/TWi0SjtEyeTSSVKg9VnPvM5liw5lyuuuKL0HKrt4hbykIzj7NhSjtPy+eUcPUZCAS+OS95Ap/sQSrgCautE5uwVbqiquIWHIyiWhevzodg2rqahOI7MQBs+ydX2vj+uKd8FF7BUF8e1PeBLyQisUEji91fh80VwXYfR0QNs27aOBQtuprb2OLLZGH/5y83Mn38jgUA1pplh69a1nH/+A6TTQ6XornC4kc2bb6StbSEnnngpqdSAF8O1iqqqdmKxztLjaHQiyWQ/vkgTu15/nSu+cAV7P9xLU20TFzx0AauWrqIp0sTC+Qv57l3f5eMXfpzWulb27N1DfaPIh89aeBa33XkbZ59zNgoKmqpRsAuoisrv3vsdfz3yV2468yaqg9WlaK6clcPQxAl3KD1EY6SRFc+t4JaFtzClegoFu8COnh20VbbRVHc8huaTghMBv0VpePFz073lOsJC7wZOQXqptwLtiCGag4DpCkT63YdIzdd522reNhqSdX0XIhUHCHpRXNvWbWPR6kVEJ0dLeMp1XDFKUZG4LUWhkCqQj+fxVfhQVAVfpQ8ra5GL5QhEA6iGilNwUH2qKHlNG9d28UV8WDmLvtf7aDqlCV+FrxT3de+6e9n0wiaee/o5cvkck6dPpnOok2QhSWO4kSv+4wrOWXIOn/nCZ0pGZLZr8+hvH2XDwxt48uknGcgOMK91HgE9gOVYGJpBxszg1/w4rkNXoos1W9awqmMVk6KTGEoP0RRponOskzVb1vDohY8eE6X2k4t/QjKfpNJfSUQFxfSUQaoufc/1C6F+sbiinnwbRKbI2JI9KiBYceWTcwvC/KY6BWDPWC2z8CjijmpUCRh0LQGne26B6d+EiuPk03e9FhnXhtyw3AcbBYwGGii5fRfNyYqxMcXx03UF+LquSL0rJ1KK0FIQYG2EKbmCH7Nvcfz17h1b+qYjrZT6tEuDDFIEWVkZc11XmHjHlsIo3AKJQ7BzDcxbJWZljiVA27UpR4F5ssRidmryiDiAn36jF7e1UJ4r2Scyc9cSCWF+TPrVQ03lfebcTDwwg8HBNJmMSShkUF0dYOfOXtraKunuTrBs2X9x2WUzePTRpaxYsal0v2HDXi67bAaPPLKUQEAnn7fYvbuPU05pIhjUvUu5y403vshDDy2lULDYubOXCRMqmTq1upgWxJYtXZxxRguvv97HzJkNhKMaH450cnLTcTi4aIpKwTYxVJ2smSdVyFATqqJgmwR1fymZQFUURtNxifDyJkXHsgkqAxU4rsPegYO0VtaTLGT55evPcuu5X+Gel37KV+ZeTF24hqDhw3EcRjNxwn7pwVz38s95Yd92/nzFQ1SHouQti529vbRVVjK5upqtXV3MnzABTVWl/9p1MVQV03UZSqcJGQaD6TT3vvYaqxYtoi+RoDMW4/JZs9AUBcd1UcfdD6bTVPn9xHI5kvk8TZEIuqpy7fPPs2HvXr48ezYPL12K5ThUuC5aoYBy5IgA4QcekO+D7smbi740xeu/ZckyyxL0Gw4Lys3nxVpbUUR3vW6dOIP39IgWu6FBkGwgIHTz3XcLfVxTI/snEmKc9vbbpDvOZyyhlnqjAX7xC4nZWr9e/M8+9jF47DFJ7+rpEXC8dq14sE2dKiB57VoxIo9E5Gm8S/oxqWA//KGw3V1dIidfsaK87gc/gGuvlWMcNyXN5z7/Od7/+98JBgI0NDTwo4cfZtrUqaxdey8//8XP2X/kMH/83e+45GMfL9WDX7niCl57bRvBgJ9IpIIH169nzvwz5WTG15w+Q/YpSE81CkLSVEVk2WhC6tmpbeC6WK5D8sgRMoODVJ9wgiQ7hEKlnGo7n2f0vfeITp9eiswqpqfIcCWsteuIoaaZyfDOgw8y6xvfkO0dh+E9ewg0NBBpbRU219tvZO9e6mfNwrVtht9+G6Wqil379nHxhUtR0wke+dVv+cOf/odXNm9m15ZXqaur5atfX8n1113PJRcv89o2ZSIx/vbrLPnaN2hsauLcxYu4/utfkxSb9mlSPyqqbF/Iw6G/Q00j1DWKEZqiyBhoFrz3TC0Dz2wadANbAVcXpU52bIBAZQOqZuC6Dn3vvVSK4GqZcY6w215doSjQ++5fSusbjp+PEYjgWCaKZmBmEwwd2En9tHnoviDZ+BCh6mbMXKJUkxZvqm7gFqPbFBUNC8VMSLWQHZCJ4BmrxRfkb8tENTXnUfjvevl77uNeKkNBxl4zLlFc6UPetW6VXMeS+6UVqhhbCZDugr13e9fDqR7Q1uSap/goJVAw7pqA66Vr/L95+3cU1//NW5F1DgcFKAf9AgbHOy8qiPO332MVi3Kf7oHyDOXJ04TR9nlScZDlxQxHzfvhpzJeTID0DlM03EkIA65oGnY2y+7vfpdATQ1z77wTXzTK0J49WOk0u+64g+zgoPR82Da5kRGyXrTWG2vWEJ04kTe/9z0Gtm4lefgwu+64g3RvLyPvvssNN93E1OOOw19Zyes7dqD7/cT+/nf+/N//zezjj2fmiSfScdZZ7Ni8mV133kl6QOScd976bY4/6URmnj6Hj5y3RPqoXWRiID4qEpyH/1NmCl1vYMhmhakY7BdZztgI7H9XpOCdf5ce6u4D8p7EhqXfOp/3Lsx6WTLZ+QFEKuEz14ghWiEPjoPpuTriWLiOTSEzVopMUFWdQGUdhfQYmVgvuA5GKErzyediFTJkYv2edEcqUMmxNkgUVFRN5D1r1t7LR84+m6lTJlNVESYUCvLySy/hOg5DQ0Ps2r2bGTNOxrVNzHwaxyrI687ncLa9UorTcvp7IDaMm0kJc62onnv4MG46CbiobZPEaANk0PIsRxUUifVSNcnM9np8ikYaJcOk4ojnubnbm58Dy0L13OwLhSSFQhJF0UmlBnjlldtJJvsAmXEtxmdt27ZOQOjQ+3R0rCKdHiIcri/FdeXzidLf27atQ1U1OjpWMXXqRykUkuNiuNbius4xjwECgWp01ccTP3qC8y86nyP9R7BMi7NOPot129aRyCc49YRTGR4Y5v2u9zFNk3BNuGR2NXHSRHq6exjODAMi/f76c1+nK97F5bMu59ELH+X4uuNL/dkHRg4Q0AMoKKX4qIyZ4UcX/YjpddMJ+8KEjTAL2zuY7AFrBemv9njDEkudo9wTbXnrxxBpuANsAxYAE71tDiKmZYcQMB1GTNCOIsx4HunHznn7POp9igZSlGxbt60k4XY9V1nXEeDrWA6FREEmSxyXZF+SV25/hdTRFEbIwLVccrEcubEcm1ZuItGVQPWpqKpKrDPG89c+T7JPJlyyI1kaZzeiB3Ty8TypgRQPPPwAT298mp/f/3Nevv5l1ISKrusMHh2kJiCV55HDR6ior0BBYTgzXFINLL9sOZl0hl1v7mLRxEXomo5b/Oe6+DQfaTPN0fRR1mxZwzP7nqEn0SNSb1vhs5/+LJ/s+CRv3/E2n7zok3yh9QtcNuMyvnbC1/jkxZ/krNPOYt5p83j11S0wtkeAnBaC0x7k5X1VaPWn8+D2mVIoxPdJgRFsFJl4blhiRnZ/XYB1ZKqwzsEm73fkQrBZethcE4a3CzCvnStZn1ZKTGBwy9LoQKPsrxiyr2NK73Mxd3a823dxItd1yvLuyokc67CNJysfx2ojT5mLD3LJJz7B8SeeyOxTT2PJRy/gwMFOiDQzODTEBcs+wXHTT+DkWbN49bnfegZoFq5rc8dtt3D81DZmzjmLj1z4KTmgawmwPviMnLPmKz93dkTOz8qLuZnrqbkURUDyvg3wxv3QsgD6d4qjeNVEGDsI/Tvk+L6IgGzHLO+zex2GDvX1YXp6EqTTZomR7u5OMHduK5ddNoPVqxcRDBr8+McX4ffrrF69iMsum8Ftty0iFDI4dEiY7JkzG4hEJOZQVRXyeZuHH15KoWCzc2cvDQ1h+vqSXn3uYlkOs2c3oqoKixa1MziYJjacZ2bz8Z5BpIvl2LiuQ8bM4eIS8YVKBmMAeavAW737ODI6QGWwgtFMnO+++BMyhRyZQp67Nz9Bf3yYmc3HURuppioQ5qozP8FQKsbq875Ke7QZ13WIZRIoikJlMEI8k8KvGVw57xLOnz6faKiKzrExVmzaRH04TLdnTtbR3k7WsjgwMsJQOg2KggPc/OKLhH0+Ij4ffckkLx48SF8iQUd7O1+cPRvHkVz5IrAuEjaN4TCaqlIfCjGUyZDM5wkZBo8tW8aHK1fywPnnc8iLAVMtS5i65mZpNM5mxWo7mRSmOZGQv5cvh4OecV7RUSwUkj7q5csFUBfdwAYHBQVPnAgdHYKGKyq8PGNHAql37RK2ur5eFFvf+x7098OCBbiKwvCwENvFWK1LLpFDggDrVasE4/f0iIH5lCll4/F8XkD5I48IO11XJyB85Up5+mIC2G23CdYPh2Wb3buPXaco8Oij8tYALL/iSvbt3cvbb77Jxy+8iCu/9jXQNM7r6GDTc8+yeNGicl3o3T5xySW8/847vP3WHm699dt8+guXlyO4iox2wasnizJzx+vVrozI2JHNQ31UalFVgVRGzG4HB2k49VSp+T74gFR3N7mREVJdXZIwU19fAsqKB2gVVcXO5UoAPDcygp3Po/n9zLruOvRgUExy9+yh5uSTCdXXl8a53PAwdj5P7YwZmOk02eFhotOn4yaTLL3gAiEAfH7OnDaJw3vfg8E+5nZ0MGX6iTiqyj333cfxs08RdvvCizhw6BArH/4R06dP59Vt2/nmbd/hT89tEvOzYBhch7PPO4/Jxx3HKSedwCmf+woP/NcGT4IQkKur40i9+ouHJL4rky7bu6sqaDpmPk3fey+j+8MomoHrJbkU2xDrp82TelEXLKCoKuONz+qnzkH3hSlkEvS//wpmNoGZTZaM0FTNIFwrfdFDB3YRjDZh5tKybS6NY1sUMnGk+vPGaDMu17Hxvh+1c8e1I+nlv1V/Waqd7RdjMlwITxIDTy0i4/HetWXTzl3LJYYr01U+vlsQNVS6U/qtUwe9MlMdJyN3+VeHp//aZ///+q2rX2Q7piUgO+fNbLU1lQGzS7mwcPlnV8aAT4D3gS4ZBFVVTCiK8p2iUyRAZdibXTNlIPQUGFRFsA0Nx7KItLVxxm23oQUCWLkcRjhM/SmnHNMfDZJXrQeDaMEgeiDAGatXo4fDnPjVr9K0YEG5N/tnP6N25kwu/cQnePCii2ipqyMfi7HrzjspBAJcc+utPPWTn/CbFStYf999fOmKK0py9Icf+QHvvPsO773zLu++vpv/euxR743z6JFAUCTicxZLz8xQvwDlZEzMI/6xB/u538LEaSLFKWZiP/dbkeUkYrLvUJ+YTAwPSExDT6fnmDsiLJWZx8wm0f1BMjGZ4DD8EeqmnI6ZTaH7g0TqJ2HlswSj3tXOcbDzacxsihtuuZ22tjZ6enq48MJlTD9+OunRfm6/405mnTqXqVMmc/jQQR5/7IdkxwYwfAF++1+/4ZZVqzntjDmcc+55XLvia8yffyZmLs3gh9swc2np1AtHUC/+NOrsM8AfQGlsQamMQjgijLRlyoRLtAZ8PtzRYezn/keAt+PgFgo4A70CoIvST9fB6T6MOxaT17HxD8Jo+4OQGMPpOTzuMwH17PPA58NWha0WlroCTTP+CUhrmlGK2lq06DYAJkw4k5qaabS1LUBRdDo6VjFjxmX4/VXHbKsoGtXVU6ioaMXvryrFcC1atBpF0Y55rKoGui/C3Wvv5uCBg9xx1x0EvX7ty2dezvc/+n2qA9UoisJYbozvvfY9AAbTgxwcPVhyErcdm7pQHbqqs37b+pJ8+NDYIVY8t4Ij8SN0J7p5Zt8ztFa1lmK/9o/sJ2NlSi69Pu8C5NN9aP4KDmo+liOxWSEki/ow0nP9offOzvHWfx0ByfXAvQiL3QRc463PIvFcG5B+6iPA7d52EW/dCsRZfCcCwIPedisB+x8k2qquCoL3PmJVV/FFfLi2i2M5JSCe6k+VHMWtnEV0YpSljyxFD+o4plMC7fue2UdqIIXruKiGeswxf7LhJ/zud7/juWeeY+LMiVz8xMVUT6nmkk9ewi+f+iWmY/LS1pfo7+tn6XlLee3wa/z9w78TNII0hBv41XO/YmhoiAvnXojjOBxNHSVVSGGoRinfuj/ZT0O4gccueoy+b/axsG0hN714E6PZUb58xZd5fsfz/O4vvyM7Ncs9N9/D48se58ff+zFz587l9XdfZ/X9q/nsF6+gEJ4hvWOOSTxd4NvffZALL1gi71OmW2bkiyA1NEFAcHagnIuNA1ZG3MWL2dROQQoLNHFRzR2FpiXCimcHpF9ZwWN19TL7UdQ3pHoFVDqmJw3H+w3bwmzbBXkuK1/uXy4kRTaueeYwxWPaecgny9cIXyXLv/IF9r3/Pm/v3s7HL1zClcuvAS3It2++kTPnns7+D97np088xuev+TamrYCi8/CPf847H/by3vv7efetXfzXL56EQI2w6/NWwcV/kPztzVdD7EM5V1+FnFchIUZnKAKyzQzMWw3TL5N71QfNZ4pc0LUg1Q2Nc8R9fPNycSDHLe8z5xZCzig+Q2HevFbuuUfisO6/fzvz5rUSDOo8+OD51NeHyGRMDEMllSoweXKUxx5bRiCgk82arFmzhQ0b9lJR4aezM8by5Rs5fHiMigofluXgOAKih4czLFjQxqFDYyxfvpFs1hJTpqEMyWSBo0fTVFcHSReyAkC9t9rQDMJGsUlDbpqqkzFzrP/rLzi+vp36imp0VaUuEuXWc79CxB+kpaqeK+ZcQlNlLQoQy8QpmDYtlfU0VtRiaAYOLiFfgJxZ4K7NTzCUGsNn6CiKQnWokq8t+BSuCz3xODfOn89QOs3c1lbp4XYc4vk8lX4/daFQKff6e0uWYKgqg16W9YcrV9LR3o7jsYgAqqKU/jZUFQXp677m2Wc5Eo+zoK2NlspKOmMxXuvqojoQwFBVepNJmiIR8Q0p5q5v2ybAeOVKoXOvv57c4cNccuWVHL99O7M/8QmWfOITHOjvh/vvZ+2Pf8z0Sy5B/f3v+dO110qN1doKCxaw9sknmT5nDmp1NX/auFEQ72uvCWudycCePXJ//fVy8g88IMw14FgOPT2Cu1euFFZZ1wXLa5qAZtsW4vzss8teYd/6ljDW27Yd6y6uaZIA9qMfyXGKQLy9XeYOGhvLEvT6erjjDlGuG17XxIYNEAgEuPCCC1BMAW5nLpjP4SNHwIW5HzmLKV7kFZmc1JsFCxyXjy27GN1nQCLFmXPn0dvXh9VUJzVlRRhOmlpWURZMqSULnoy3OEZUevR9sW+7KoKiaVRPny4gd2SE2tmzCbe2EqitRQuFGNi2DT0YJNXTQy4WK41ZjmVh5nKidFQUAnV1YnzmjVFFOXjt7Nnkx8ZwLEuMdL3caxwHVdfJDg2x97HHwHWpmz1b1tk2iqrx0C9+zcc/81mRd3v7MNjPRxfMY98bu3j7tS18fN5pfPzST6GaBa6dXMt5CxcwZfIUedN1o2Ryi67zwEVnsef82ez5xhe4YeUKj4BwhLBRlXI9uul38oGpqhA+h/eBpqGqOi0zzsEIRaH4e3HLxma+UJX3vSt4BmaeeiRQQfNJZ+MLRWV88SK8hg7sJFTdXALmmVgfuC6ZWD91U04nUj+pZLQ73Lkb17ax8mnMXILed/+C46q4RSXViTcLiD75OyLXnvu4TBBrPpGNhycL6LWycl4VUyXzWlFEgWWlPVWSA6d9X6Tj4wF7/QK46APps1YMuR7tXVtunXIdabEa2iqg3Urxr377N7j+37qpikhnGmtlkCr2uigIgz0eMBcvS7m8PJ42jsl2XGGxqyLCfitIbMKhXllfBO7ZfPk4Qb9sX+y7hpLc27UsyRF0XXSfj8E338R1Xc647TbO+uEPmbF8OVY2y/tPPIHm9xPwXD5zXuxBxcSJhBobj+mv1oNBOhYs4IK770YPBinEYvT+9a+89PDD1NbWclpHB2fcdhuLzz6boVyO7KmnMmP5cu574CHuvfdefKOD8JtHaZo8TQaq/e8JkA6GoakNvnidAO0X/lAG067zzwYUF31OYhb+4zpPZ2vIspNOG2c08bsyEFcQEJ4Yg2d+CYU8iu0Sqm7GymfR/UH63nsJM59C0wOEqsU4QveHCdW2YOZS9L77F8xcAkUzCEWbuP0bn+HFp26lc9ef6Ovp4q3tLxGqbuTxH/+Qzb99gD//+EbuvflLVFdXE6iow7YKLDrzdP70xF3s3PIS777zNjfccAO4bmlg1DUDYsPSD+0VIEqkEsUfAE1HcV2cvh6R4RuGRDn4/LjplPRpx8ewN/1JVKTtk+U7Uijg9HbJhah1Ivh8KIYPdcnFuKmkXE8rqlDbJpck51gmij9YctF2XQefrxKfrwJVPRZIq6qG40gc17Jlj1NdPUWcthXVy/Icorv7NSor27jooh9jGCG6u7dz1ll3EA438NBDE/nzn6/Etgv4fGFqa49n2bLHqaoSV/Hi42h0Mvl8gu8/8BDPPfMc9/38Pm752y3U1tai6RrvH3ofVVEJ6AEOHz7Mq2Ov8nTX02i6Rno0zdzWuTg4HDl8hKbWJq7ddC2dY52sX7Keq069irMnns3Eqok8efGTRPQIc1vn8qfP/AmfKozW/AnzqfJX4df86KrOP7bZWMAaBAyvQxhpm3IvdHGZS7mX+h5vv9sQc7N7/2HbuUg29rxxx16LAPK1445R5623kEiv3wI3+HSiU8vA2C7YuI4Aadd1cWynVExpfo1FtwkQnzBvQsnMTA/oJPuTbFq5CTNjovnEnXjR6kV8+g+fpnJCJRuXb6SQKmCEDEY+HOHnX/g5q25fRTwZ57wl53HC5BOYv2A+hWSBO+++kzd3vcn82fO58es3cucP7uTaF6+l2l/NLStu4WOLP8ZnzvsMv77v19zz43u4+bWbORI/woHRA/Ql+3BxWbNlDRv2bqA/1Y+CwpH4Ea559ppShvl9u+9jxoIZZMwMISPEmi+toetIFy4uT//xab585ZexXZtnUs/Q2tzMq1u2eTLUDCuvu4nbvvllap19MtPf+jExK3NtmXUvstXRWZAfkUKieEseke1cS4qKoV1i9qIFZbtACzh5AZB2piwFdy1hFF5fAcmDsk1kAvijXhyXC/GDnrs4IvVO9VIytfRViFTRV4mn+RdAPXbQi+nyyzbe1zUQCHDhxy+VtgA7z5nzz+TwoQNg59nw9PNc8/kLQVGZM2cuLc1N/O3VvwGw/vsPce9dt+ELSOHd1NQkr62QFCl4a4f0S3vMcukJjYiA8KJLeLBWwHWxl7pysvTxpfvFXE7RodVj5FK9wojvWisAvHISnPcYVE+noFfTeWjMYwYXHcNUX3vtJlpavs/117+AooBpOoTDPjo7Y1x99UZisRyxWI7Vqxdx+eUzUVWFhoYw99+/hIoKA8ty0DQVv18nHPaxcGEbAOvWvcbixe1EIj4CAZ1Dh2L09ydZsKAN3SfAcyA5wt2bn6B77CiZghhoBQ0/IZ8fx3HIWwVUReH6xZ8nZARQFQXLcbAch/V//QVd3n4TqhsYTMW456WfEjQCtFTVYrsO7/bvLzmJ98aH8BtGqd+6Oihgcf1ff8ElP70RyzGZUFnJ/du3M6GykrAhk4uj2SxVfj+NkQjd8Tij2ayXjgA3b95cMjsbSKWwHYeBVEpEZl5vaKeXgX0gFsOFkiHa+lKGFEyqrmZBWxtjuRxZ22ZxezvNkQiq6ynSRkZg9mwB19OnCxq95RaIRln+la+wb8cOYWznz+fKCy6A4WHOO/NMNp10EotPPRW++EUBRh7jfd68ebLu9NMFWK9cKci1p0d6rEF029deK89/9Kisd12M9BiLFrlUVpb7rH0+OTVVFZA9daqwzQcPCnHe2Sl92ffcI8t7ewW7FwoCoLPZcfNbdkkdTSAgf3d0iHx81SrYvFm2zWYlkuuSS7w3sQh6gYce/gEfX7as3KrhIi2Jmufw7dOPjWitivDQIz/gwo+ejz4wLHWmqki9OF41iVJOpbGdsn9PMfbVM0FzCyaaZz7mj0aPieEK1tXxsc2bCdTWEm5pIVhTg5lK8fqaNWT6+gjW1JDp62P47bdJd3dLpnV/P7gub9x7L4nDh7FzOVJdXWSHhgjW1JAdGuLdRx8lOzoKQKS1ldNXrUI1DIbeeENM1VSVNWvu5sD+D7nntlUw0COM8uggam09p596qni7HPo70044kf2dnTx0w0rmfutOKjxzNAoFaUl0nHKj/Okd5X5qFMnFLiYjqP/g5eP1ldPQIrGwiiKybE+lo3hthq5bnlAofhlU3YfmD8mwrSilbOtMrNfz+yky3XNRVI3WmUsw/GHy2Ti2ZaIHwl79Gj6GFc+nRghFm0qxX/0fvAZGFa5RCZXHSwRkZKpcn3Yth8S+ssHm61+Xa5trcUzaxP/H3n9HW1Wdbf/4Z6219z67nQoHDpxCtSJiiXSCxqhRMDHJk5NCijFGfdQUG4lgIkbFFhSNxpryxjRBozFHLKhBmhwEKUqHw+H0vntd5f7+MdfeB5Ln/b1jfMf3Ge+T38gaY4+96ly7znlf87ru+xJH1cXwVYHHf5wlpK3Y7gLrbWWVLBzcsdAYLth51gOK3d52g6o5km53U5As/pWXf4Pr/87FtBSADgdh+lRlZVBYji8uUZixO96venhKGCbXQ3npcK9cM0JJyWG4Q8ybqs1Dba4kHNUBlofddnSSnZ1kIxEMnw/NMOjfs4dR55xDurubD++/n8rTTydUW0vs8GHO/P73lYzcnV0sKS9X8p2hIcS2CdfXM/3OOzFKSki0tyOOQy4SIR+LUTpxIlesW8fn7r+foUiE5u3bMUpKePXVV0mmUgQvvBCnvJzevj7++ubbzPjS15jx9Gpe+O1vhisxFvKkMynlXW3m4av/CTM/NVy8LBZRwHvUWDhpisqBsUwly/ndowqge33Ky3DBV+H7dylvw1ApLPiamxuDqhi550PobFHTz7pBsHIMAy3bifceUcxoSUBNflp5ZXXg2MfNIG7F8PjQDM8JnVk62oM3EFa2Y44zXFF80nkopGugGx4Mj4+REz+BmVUTIWY2jjh2sS2vN4Cz+T30T13ipik6qmiZqYJssS30unFovhLQdLffE7SGiehnnotWXoE+65MUbTEAPB60UWOwX39Z5Z8HgsVKK1ptAxIdxOlsU9ZdbqVYJYESbGyi0VZsO4+IRVvbBgYG9uPxBLj00l8Qi7URibSg6x6SyV5EHHcQ0XAcm3w+TmnpWMLhGtas+U9isTZEhNbWd13LLYfTTvsil1yy0q0gbhCNHqWp6RpisVby+QR/+9vVRKNHyeUSLF/+U1avWs0zq5/hyT1PMr12OpqmceGCC7nuruvoSnSx88Od9HT3sOKaFTROaeSKL1zB7379O258/UbWblhLa3srE86awPTa6dy74V4C3gCPXPIIhyOHlQw8cpiqYBVBT5A59XNojbVy/ZrraY+3MyI4guvXXE9PsgdDP1Fy6wGWosDwj1AWWwaw5L/Yt9jddwdKwh1w9//j9UFUDrXnuHbu+Id2lwAD7rU5VO72X4AVGROxhNdvfB2P34OVtRg6PMSa69cQbYkCEG2J0nRNE9GWKBUTVHEzT8DDpU9cyqI3FhEeE6asrozZi2ezZeUW9UYFyurLqJ9df4LVl9iK0e5p6mF142o+3vYxy6Yt49vRb7Pk9CVko1nG1Izh5aaXmfXQLFavW83b8jar9qziiZ1PsH7Dej748AO2bt/K803P83f978WicSODI3nQVUkUqoXPqJuBIEVrrvs23se4inEsnbeUtS1reXDzg9SEa3jul8+x8PKFxIfi2JbN6JrRGJrB7XNvZ8L48bS17IWP7uTFF55HN7x8tmGzqgDe8/ZwhVMzNjz7vmc5Ra/Qrdcp72qA6hmqGEyhKMzI81SRtIIHdrrV7aurVU62J6hy1j64XjHbI6arPO90pwLEhk8V9LJzkIm6bLWugpWyca4EvbC4/VshN9soUfnTBWlfgZEqzAcVQHtJGY8+8Qyfu+ILDEaTmKZFzeSz3fMNxo+fQFt7J/F4TPXhK69hxqzZzJh7AS+88GfVoOFXxcryyePY6DsUSM4nFKuuaW5OnqZUQ6EaNyXIAziKUQlUuz6pjsr/7twENTPgm7tVu5qmcrvfvhZih8nnLe6+ewPjxq0kEPDwxBOX0t4e4/DhIZYvv7Ao/w4EvORyNiJCR0ecW2+dRWWln1GjQkycWMFTTy0gl7NJJvOUlHgYNSqM4RZw0nXNFZtpbN7czv33X8gVV5zKoUODbNnSwcyZdUycqJQyuuh4DS+9rpf1YDpGwFtCe7SXn731LO3RXtA0/B4fAa+faCbJzq6DaGjYjoXf8PKjC68k6C0hk8/g4PCr5lc4Y8wk1WdGurln7XOMDFUS8Ho5q/YURgTLGRms4HNT5nPbBd9UvwRN57szPs8lp8zCo3tYvnEjq/bsYfnGjaRMk41tbVQFAvg9HmwRAl4vKdPkmqYmWmMxbpw+nfs2bqQ6GMTv8WA5DoeHhjjqMtEtkQg1paXcMmsWXQmVFjKnoYGDN97ILy69FNtxirmypuOQNU0imQyHIxF29PSo399xzCWzZyvEev314PHgr6/nsvnz0XbsgLY2Zo4aRWt/P3R2Mn3GDCZecokCzB6PasdlvKePHs3ECy9UtLOuD1cQmztXFTXzeJTm+uSTlaT8pz9VftibNmHoQsqt2ffFLypwbVkKkzc3q5e3ebMSizU0wCc/qc4JhRQ4HhhQ+dOPPKL2BQJurVAZfqumOUzYt7SoXOtkUqWdf+Mban8wqFLDe3vd/2neBENn+d33cHjvXu67+55hRxoN12XGcJF5TsWE7g1//4c/sOrFF3nmRz85sZCuoEidMyYr1aTm3ufgMXXQ51WxbDYPo1zCyLbRvB7sbLbILpupVBHkFhbNBYgigjcc5hNLl5IdGEBsm32/+Q0VJ588rJx85hnMVIrOv/+d7MAAhs9HxSmnkIurmjSl9fWcfvXVhGpqsHM5BnbtIt3TQz6ZpPKUU/CUlPDzhx/m5Rf+zOuvvEywrBziQ7BziyJUvCUqRvzjE1BawYPP/hqPx8NZX/s248/+BC++/ArH2tr4/UsvK3ImFVeTlLrOjx98mKkrf8eXf3grLQf3q2Jnuq4+n0xaqR+//n2Vavj8L1TsOtSn7gdougfd8Ax/LuAWcD1+GZ6cF1HfqW3msM0cwUqlMPEGyhh7xoX4AuXYZs4lgFKU15xM7/4NIEKwQqUj+YJlLiteQbByLJrhYezUizj1wmsZfepcHM2L5i1Vfa2vjBOssg48osYW3af8qb1hNYm89Ro1EZw8qgCxenPQv1nt84TAikOoQbHeJSMgthvOecStN4JKjQpNUAy5J3xcAdAVaszTfS5Q/9dd/g2u/7sWx+2QTmoYLrzlOKpzOnhMzQqeO2U4fwVR52VywzZboK5xRAHlQkGPvDksBS/kZBeY7brRan8h71qG2wnV1OCvqiIXi6FpGtVTpyIi7HnmGUZMnUqmr4+td96Jf8QIvKWlWJkM+XgcO5crVn70+P1svesukm1tiKaRi8XY8/TT6F4ve555Bt2nXmeyvZ0DK1fym4cf5ke33sp5553H3154gVMmTSL60Udsf/hhLMsinUrQ/OKfeOFXz3LT0jvY9UaTknDncwogiyiw/ccnlM/1178HI2tUp1ZR6XpdD7jyHVeiU+KHyVMU051KwJE9ym6rapQqRhEMq+JoA73qHvkcLH0UJp2OOLYq4iVC9eQZNJxzuVut8W2sXBLN8GJ4fcpncfL0IpBG0+jeux7D62fsGZ9GNzwEK2rwBsoBDV3X8YUqGHvGhXgD5W42gI6m63hKgvgCZYSqxgLgC5SjGR58rlxIVeteAJk0Tme7uq7Ej+RzSHQQPF4kMojdtBoZ7IN8ThVjsyyVe+04UDVSVQy3TOy3mhQL7Q9gXPYFZVtx/H5NR2JRtFFK9i6aisILcbgtqvJ3ItFFU9M1lJXV4fdXEAqNJpMZIhI5wqZND2DbJj5fCE3TcRyLwcEjZDKDeL0BRJxijvXGjcvRNI0FC56ivFxNQF188QpSqT6amq7BtjNs2HAve/asYsOGe8lmY+5193H06AHuv/854tE4V33hKnbeuZNfXf8r0mYa/WKdvdv3cv6553Pt1ddy92N3c2r1qTxx6RPcdc9dvLL2FVZdu4rrv3s9d//ibh7+4GEumngRS+YuAQFLrBNAmiUWlljYYnPfxvuKIM8Sq7huy/HgRrHUk4CngNrC5+fuewaVE51Gyb1HZrMkr7iChSefzLhp0/jaRRex7/BhRgB39PWx+DOfYc5JJzHtjDPYsn49NqrIGd/+NlecfDLTp03j2jlzuO6DD5iIytMeAdyMKno2F/DmbdKDaVXV29DRDA1f2MecH80hNDqEpmlFhnrDvRtwTAdN14gcifDmD99k9JmjcUyHji0d6B6dSx65BN2rY2WHZ5mLFcXvmIfm0Zi9eHbR2ksztBMqi/srlDxWQ2PpvKX0p/pZMndJ0VYrko1Qv7KeSCZCeUk5i2cvLh4bSA9wx7w70HWdCRUTeGbhM0Vv80IbS+YtIeAJMKlyEqeMOIWHLnqI5cuX03KkhTvvvhMHR+XNa6pw2uTKySofrft1enav4p7l9/PoiuVq9j00Xsm4vRVqxt1Xftzs/FIFWvfePyx1M+PqG99znwvA71MB74jpJ4Jy3adY7REz1DUFOd3e+9T9pixR9l1iKwYgekQB5VFT1XOsxbW2Mty87HYXKNvquchYZ1XAkk8M77Oy6jzEXXdYvnw5hw8f4r7F33GrjKtvSLE07iPTj2XmsSyLzJiLaN68gRee/w03/fhOdu3erfrnCx6FwY+hfKKqIJ5oU69V09T62msg2qIKl1lZV+6eU1XC033q3HeuV+w/7jWBanj3BiVPDI0Zzrl2c7t9XoOVKy9hx45rGT06xJIl71BTE6auroxw2Mdzz13O2LGlxOM5br/9bXRdo66ujIGBNOGwj76+pCpYawuOI2SzJtu2dWFZDiKQTpvE4zlXAg719aWUl/sJhXxMmlTFJz4xls2b22lpiZBK5UmnbDy6wahwFb/b9hqjwpUYus6vipW8/4ojDoZu4IjDyHA5IwMVrq+1h5xt8sA7vyVrmlSXjkBD47YLvsnscWeSymf47Qd/480D79OfiuD3+hHHwedRhah+fOG3iaYTRTuuseXV/OTi7+LVdVZecgnRH/2IZxYuxO/xMDoU4rrXXqMlEiGVz1MdCtEZj3PrrFmEvV5OHjGCpxYs4JSRI6kJhynxeJjb0MD4ykrmNjQQ8nqxHYfx5eXMbWjAdhxM26bS72dzezsZy+JoJEJfKoXPMBhXWUm538/yjRuZOmqU+okVjJ97etSY9dBDijKurlaodmhIsdqdnTy6aROf++xn4ZxzVHXvL34RTjpJgWVNU4i2ULb74ovVsZISlXMdDis6uaxModtIRAHq3l51P78fzjyTfKiSri6Ne1zCLRhUTQwMwPTpCiiPGaOsuI8cGc7H9vmUZ/U556jzH3kEDh9WavR0Gg4eHC5a7vWqfG5dVxXFp09X8wIbN6r5gNtvVx9FOKyKpeXyIKUhfr5iBX956SVev+dhgqHgiamHAvQMDvthlyqJ9wuP/pK77r6bta+/zuhzpg6nH4I693Cby2S7cWiBuDm+TlAurx6tXZBXVlKZvj7FJvf1Yfj9+KuqyCeTSire14eZTCpLrqEhzGSSzMAA5aecgu7xcNYtt6AZBqdddZVylrn2WoKjRvHZN99k5Nln41gW3nCYka6ndf+OHYRra3Esiw/vvx9/VVXRpiszOMjNn/0sL7z4Ems3bqZiZLWqq1NVDdffoWrrILB9I3ywnuU3fY9M3mTg76/TuvHvtC69jv+49BLGjanh61/8vCpWFiqFwV6eXziP/VvfZ/e2bcybPZuFX/ma6g/7e5Q7jWFAWYVSQb7wNGx5V1nFDvUVyS5xrBOL5MLws7tPOVUIYptY+QziWOjeEnSPt2jPhaZhZpOkhjrRdYPRp87D4wugGx5qTvskuseHbeYwc0k6d68ln4mp961pLjmkHpruQcNCzMRwmpHuO5FRzvbAwFa3xoYzPG6ZseH87HQ7DDardcPNQbfSCmzbOVXE0z9WFQZNHhlOkwJ1nsjwPc+4w51w1eEfYql/teXf4Pq/czlejmO4BSa8HphYN1ycLJFSHSKoP2HJcWxzUYqjD7ehuR1fXs2G4S9RzHgmpwqa+UvUH93QwbRVpyugGQapri76P/yQkoqKYt6KputMueaaE/Ko9zzzDPxDp2nncuQGB9EMg+qzz8bw+9ENg7IJE5hx993FdoySEqxsluzAAKddeSXnjh9P0/PP8/hnPsO9S5fS2dHBzIULmX/HHYTDYb6x6OtQPYbxp5zKnDlz+SA8WsloCvkr2YwqZna8HNw21YhUPVb9MYNB9VlommKrX31ezSr+x3eUXHz8KaqS+FCfAupH9ytAPXK0yuWODipPREA7sk+xv+JgeP0EK8ecwFBrQD4dxcqm8QXKqT3zYqxsinw6yqiTZtCzT8klHduia8+7mJk4jpVX8vFMjHSkGzObcAtGWUV7BU3XkYIthlZQ3TjKWksDzVuiAG84jL3mL0gugxYMQWmZkoVvXodWP17J4r1eiA7idLWrczxeVczYlcrr0+e4LLaSNDltLZBKDu9PxtHG1KL5A2hu3pGkEhQqFBumfUIxso0blxMOjyYWa2X9+ns47bQvcumlv8AwvHg8ftraNhKLtVNePhbTzGDbqmBWId963rylWFauaMX15ps/JBY7xpYtK5k9ezGaZrBgwdNMm3Yl8+bdQUlJWfG6iRNPJZuNs3vfLpo/aGbr9q28t1F9B3ctvIvGBxrZvHMzW3ds5fJLLkcQSjwl1NTU8NZbb9H4dCPrt61n3FmK3awrq8MRh0gywte+9DW2/GgL5b8p59gvjtHW0oZH99Df10/HEx2Enwqz/Y7tNG9qpnFKI3fMu4NHH3qUU045BV3XeeWVV/CjZNk3o6yzfCjGOQEcRuVYl6EKlJ0CnHfNNWw/cIC9u3bxic99jluuvpqbgTN//GO6Z87k3UOHePA3v+Gqr32NrGmSBj77+c/z/t69bNu1i5tuv50rv/SlYrdzM/AHlKTcAjSvTmhUiPJx5fjKfKR6Uqz76To0Q0MzVBGz432wHdtBHGHDvRuom1WHOEKqN8XoaaNJdCWKVeL79/YT746je3UqxlcU86l1Q2fEySO4/NnLKW8oJz2ULlp9VUyqwBPwYIlFc2czdaV1zK6fzeSqyTxx6RMEPAEyZobff/73VAYqCfvCTKqcxDMLn2FS5SRm1s1kfMV4TNtk/bH1HIsewxEFlidVTuLphU8zrmwcG9s2kjEzzKmfw2+e+A1vNr3Jyt+v5MOBDwmVh/B4PBxuP4wgJPIJjh5ro2H6d9menEt3TOes6fMZf/ZneXFDPz/7+bMs/dnDMP1pFRgEx7l2WRNPDBJO/5EC4ZrnRHmc5lHBxem3DwcTVhq236gKxnjLj8t/uwOC9W7um9+VoXdCZgCSbpGwZMfwNpx4XGzFAhfP6VT7DO8/7wMwvCpof/kVXv/TEwS1FCNKMng8Hnr6BovAurXlMA3VQapGVBMOh/j6586Ht69lfIXJnNmz+WDbDkBXr2/MTNVv/P2HsObryrc6OArCY+Dc28AbUHLwdTcNVx5PtCv5e0FOvvU+de8xM1ShswOrVLE0w6cmF6bfPpzb3bmR/v4Ud965jtbWGCtWXIJh6Fx//RqSyTxHj0a5/vo19Pam+N73ZpDNWixfvpGpU0fR1ZWgvDyAaTpYloPPpzN6dClTp45yh2enaL0VCHixbWHChKqirPzYsSgiMH16LaWlJcRiWVpbY1i2TZ/LXPclIzgiXD3j8zz+hR9x+4Xfxmd4SeUzDKSieHQP40bUcHbtKRiaTsBbwjfOXUB/aogOl+2OpOOMKh1BuCTIleddzhenfopz604j5POj6zrxbJLOaD+WY9PjWnT92gXxOzsPYIkQ9vkwbZuNbW0cjURoqKjg1QMHeHDzZpK5HF5NY3Z9PSdVVTE6HCaRzzOYThfzrAsVwW3HIZnPMyocJuj1EvB6OTI4yKb29uJk7Oz6esI+H+MqKxkZDNKbTJLM5ykxDJbMnYuh66TzeQWqFy9WyNRxlDfVJz+pDKSPHVNos6KC5Vu2cPjYMe577rlhQN7fr6558knlX/XQQ8MVwerq1O+7p0dpt48eVcA6k1Hy3+pqxWbPm6fo4tpaKCvDFp2eHgV6QQHiVEoVHb/xRgWOOzvh1VdV036/AsGHDil2e/VqxWxr2rBVVyym8H4BRF97rXrWNMV2X3yxOl5dra658Ub11q+5RtVZ83jgkUdX8qcXV7N2zetUTGxQMWEBCLd1u6q+5HDNn6oyVj37K+545Oe8/dSvaaitU3HopPphj+vjr/d6VAxZqP9z/PrxHtvtPYjjFNlobziMBuz77W8V2C3EjwMDaIah9hVk3f39KjUxECB64ACDu3cz9YYbCI0ZQ7Kzk6G9e0l3d7P9vvtIHDuGlU7jDYWoPPVU7FwOj9/PKd/6Fof+/Geqzz0XTdcZsiyeeO89IpEhLrh0AWfNnM2Mb18PkQHueek16k6bwvtbmrn6hTWU/2Edqw518PrD9xEcNWY43uw4Ouwy03bEVfOVUD9jjnJP0TRu/M63aTnaymBvjyJy6iaqOLO8StW7+fr34fG/KAuvk85wFX+geXz/5D5TkDGkI93FSugaiuXWNB3d8KoyHIaXbLyffCoKjoPXH8ZfVo1t5tAND5lYH7lkBM3w4i0J4fGHGDy6U7HVrgWiODaa4cXKpek7tAUNGy0fRbMyiJ1RNT8Ayk6FGc8qRvnASlUTpFBjpDBuecvVes3FClz7qxV4ttPq/RX33aDY7GJBs+XgZGH7D5Tc3BtWv9+wy2KHxlO0s9RL+JdeCibm/0qP2tpa+R+/mJZINidimsOPXF4klRHJH7dd2Fc4J5sT2dciks2eeN1ARCSRUs+xpHo2TXWf4++Ryqjz8+Zx55iSSySkY+NGyUajkovHJZ9KnfhIJmVo/37ZcPPNMrR/v2QjEdlw883y57PPlo516yQbjUrXhg2ST6UkF4tJZnBQhg4cKJ6f6umRjnXrZFxDgzRv2CCp3l6JHjkih3fvVucePCjf//rXZeHFF0s+mZRcIiFXX3WVPP7QgyJdbTLYckga6uuled27IkP9IkcPijx1r0hkUKT9iFpvPSQSGRDp6RCJR0WyGbVv1xa1P5UU6WoTefsVkWcfUNvplDovlVTX7Noi0rJftdd2RLWVcNtKJ0WScbHMnFj5jOSzKUlFeiQd65Nj2/8m6VifWPmsmNmUmLmUxHqOSDrWJ7l0XLKJIXUslxErn5Vj2/8mu5t+Lse2/00yiYHiupnLiJnPqnPNnFhmVtKxPretXvc+vWKZWTHz7iOXFjubFSeVFHP178Tasl7sznaxDuwRJ5UUO5sVOx4TOxYROxEXJ50SOxkXOxYVu79X7HRKHPdhp1PiZLNiJ+Jid3eKufp3YnccU21lM6oN9xq7xz3e3Sl2PKrOSSbETsYlm01KT88uWb26UXp6dksmE5PVqxtly5ZHpbNzmxw40CTd3Ttk9epG6eholgMHmiSTicrAwEHp7t4lBw+ukUwmJplMVGKxTnnppUXS2blNstm4dHfvlAMHmiSdHiquJ5P9ks3GJZHolebmx6Wvb69kswmJx7sknY5ILBOVWDYm+/r3yfbO7RLNRKUn0SN9yT7pinfJopcWyY7uHRJJR2Rb5zZZc3CNdMW7ZF//PomkI9IV75KnPnhKDg0ckmgmKgPRAXny909KX6JPopmo/PyRn8u8T86TRDYhX/76l2XxksXSn+qXd9a/I2Nrx8pAYkByVk6am5vlyJEjMn/+fHn55ZdFRCQpIhER2SUiB931pIjERSQqIgkR2SkiTe45TSLSLyLvffCBNIwbJ7tExBMKybvd3RITkZiInH3eefLK2rUSF5EuEbnebe9If794PB4ZME1JishuEWl0n6Mikk1mJZvISiaakUwsI6sbV8s9/nvk4JqDko2r/YXnZF9S4l1xSQ+lpXtHtyR6E9K5rVNeWvSSxDpixXPjXfFim/GuuLx85csS64hJeih9QpupgZRk41np2dUjqxtXS/fObskmspLMJiWWicm2zm2y6KVF0hXvkkg6IkPpIUlkE9Kf6pemA02yq2eXPLv9WelN9Mq2zm3SdKBJdnTvkMbVjbKje4ccHDgo8WxcdvbslEUvLZLOeKcMpAakPdoui15aJLfceYtMO2uatHa3Sle8q7j/8sbL5Zbbb5FoJiqr3lolY8eOkVxqUCTdJZJPiuTjIrmofOvrX5VHHrpXJNMv0tEkMrBVpGONSC4mkouKxA6JpLpEckMi6R6RA4+LbPmuSD6hjpspdazzDZF0t7ouHxfpeEtk/6MisQMn3E+63hB5qUYk0ytimSJmViSXEBncr86z8v+wbYrkksPbZlYknxrel3P3pQeP25dQ+6y8rLj/bjnn7LNlqK/7hHa/9c1vyJ0//YmImZWtmzfK2LFjJN/zkUg2Jt/99tfliQd/KhLvkMHOI9LQUC/NG98VyUbVo2WNSN9ukUSX2s7Fhx/ZqEg2JjJ0SOTDx0V6ton8rVGkd6dIqlc9/61RpG+ner3pIZG+XSKvX6nWs1GRVJ9IJqLW/9YoidYd0ti4WmCZLFr0ksTjWRkcTEk8npV4PCuHDw9IRcX90ti4WoaG0tLUdECamzukqysuhw4NSDSakWQyK11dcenqiksikZVIJF3c7uyMy6JFL8muXT2SSKg2Fy16Sfz+e+TgwQHp709JU9MB2bWrRyKRtLzxxiFJ5TISyyQlko5LLJOU9kiPpHIZ6UsMSctAh/QlhqQ3Pii3vbpS+hJD0pcYktbBTklm0xLPpiSZTUsim5L1Rz6Uj7oOyfojH0o8k5SNLTskkU1JKpcpnhPPJKU/MSRtQ10SScdlKBWT215dKQd6W4vXx7NZ2dnTI1e+/LIMplIylE5LMpuV7kRC4tmsRDMZSfzDczybld3d3dKbTEp/MilvHDokQ+m0RDMZSWaz0p9MStOBA7LLPae5o0PWHDwoXfG47O/vl6F0uthWXzIpfcmkJLJZiWezEkmnJZ9MirNzp0hTk8jOnSKNjeq5t1ekuVntHxqSh37yEzn3tNMk8tWvikQi6rFtm8h3vyvzZ82Slx98UJ0bjYr09Ii0tor09sr82bPl5TlzRCoqVJuRiDpn9251r64ukV27hu/b1CSphC07dzrS2Khu8eijIvv2qVNAPff1Db/kpia13dsrMjCgnuNx9ejqGr5lR4fI/v0nthONqmsL5xYeAwMnntd2tFUAmThhgkw780yZduaZMv2880QSKbn7ezdJ7dix4vP5ZERFpdSOHSt9XV0ipikej0fqampk2tSpxesGOrtE9h5RMWciJbLnsEg8eWIsmf+HuNI01Tl7DoskUmKm0zK0f790rFsnmaEhyadSkhkaklwiIZsWL5Y/nH66bFq8WMV88bh0rFunYsr16yXV1yfRI0ck1dsrHevXy+CePZKLxWTDzTfLwO7dsuHmm+UPp58uG26+WaJHj6rYMx6XWGurDOzdK6neXsm57ebicdXGgQPiZNIiybiK/VJJkUxaJBFTseG6Jllx10/lnLPOkqHuTpH2oyoGbDtSjAnnz5opLz//v0SGBkS62sTs75GeliOqzXhUXlyxXBpqx4rEhkQyqeFYdahfxaq/XqHOTSVFejtFIoNimblibKjiSxXbZRODJ8SDhXXLzEk+k5C2D1+TdKxXYj0tks8kxMylh/dHe8XMZSSTGJRcOu7GpRkxc+linJmK9BRjy7YPX5N8JiH5TFJy6bg4+YRIqkNkcIfIhkaRgW1qzLNy6lEYt1JdIpsWSabjffnc5QvkpMmT5MypU+TTs0+VQx9tEcn0y73fPUNOHqO4oJdXPS+S6VNt/gGZflqVTDtzikybXCFTTp0kgOza8oZIdkjdP9UhEj3gjgsRd7/7Ov4HL0CH/P/Aqf/2uf7vWixXagdK1q0dl0cdSyq22dCHCyYUFhHI5vn+bbfy6prXONbezo4XX+Wsiz4Fpskb7/2dO376U/IaBINBnv7lk0w74wywbc6/9DMca2uj3K12+a1vfIObvv8DSKSwQkoylmxvZ88zzzDlmmsI16uCLI5tY2ezeIIq7zYXieAtLcWxLCL79xOsrmbPs88y5ZprKKmqQjcMdK8yuX/9y1/mgl/+kpuWLeONN9+kp7eXEVVVhPx+fvelL/H0sWNs3b0b27aZcd55PPzgg1S5RSNikSGuuvJbtBxtBV8J1197Ddc3flF9Dv4A+IMqH9jrU5LwfTthyjlK1p1OqirZqaTKbaka5eZop9W1mq5Y3HxWbcciambRzCuJ+QfrVfGJr10Pf/ylKkYR6cc+eSr5fAormyBQMZZiJXfHxs7nMPxBzHSM/sPNjJx4LlYuo+Tcmpt7o/TeOFYe28pjGD7QoHvvOqonz8DrLyWfjuELuDZYQNfH7zD61Hk4tkmyv5VMtIexZ3wKEeWrbWUShLQAhEshmQDDgwwNoIXCOO+/hz7vQrSKEUguA8kEzuZ16PMuhEAQ562/oV/yWUglcTa+iz73QrTKEer9vPYSsmcn2pSzMC79Ang8yGCf66O9UDEUe3chne3oF18OsQjO++/BJQsZTHfi8fgJhUaiuVWTo9GjGIaPdevuZNasW3j//RXs2bOKKVMaufTSJ1TuuGPS1raJUKia999fwbx5S4nF2lm9+j/40pdepKFhblFGrmk6bW0bTzi3rKyB9vZN1NXNwDACOE4eXfdiA4ddD+Mlc5cQ9AZJmSn8Hj93rruTVw+8yotfepE5DXN4v/19po6aStJM8taRt9jRvYOVn1mJ5Vjk7Ty3rb2N22bfRtAb5PXDrzOnfg4/fv7H7H18L+t3rWdawzR27dlFsEopJi7/1OXcfc/dXHrJpcW/8fz587n2xmv53Gc/h4WNbvjJenx4ABMlDQ8z7HeN+7wRJeVeAaS+8Q0aqqq44ac/5ZyxY+nL5Yo1a77S2MjQZz7DU1ddxRhUfnYWePgnP2Hb7t2M+utfWYKy6SoH/O51Jakc+bhSyvjCPiItEeIdccacM4ZEV2LY/3pSBWLKcE6uBpqufK8Nn4GVtXj7R28z+9bZlI8rJ94eZ8O9G5i9eLiYV7InSVldGRuXb2TukrnEO+LUzqjl9RteZ8+qPUxpnMKCpxbg+B1EFxwcbMcmY2ZY/PZiHvj0A+iaTiwXI+wN81HfR8yuV+33pfpI5pPcv+n+olf1E5c+gdfwck3TNXyy4ZNcceoVJPNJRoVGcbDlIDPPmMn4CePxBX30Jfuorarlmiev4Z2P3iH+5zhtrW1oHo0nH32Yi+bPcj093dxgNK68+j8569RafvjJY6oqeLYfquepXOyCz2e6Q0nfCp7Yp/8IQhNVJdRM17CXaGickjRrHiXnjh90j7ltBOuhZKSScWe63XvNdb+IAr9RHDSU1NsoAY872+84wzUl5B9PL3yhw5d3tB2lfuLJTJw4kdJSpZwqKSmhefNmeg9t5xvfu4OjrUfx+Up4/NFHueCC+WDnGTy6jW/fsJiWjkHI9HP9D3/M9Ysug2QXjJ2pZIaIYp41Q91XLIqVZ3Wf2m9n4N3vKVb6lEa46GlXPmgryXwuCmYGwjXuPo8q+CaiCul0bYZwHfl4L4OhWcRiOWpqlCXXsWMxpk+vxePRi5LvbNaiosLP4cNDdHTEOf/8cRw+HGH58o0sWTKXYNBLKmUyaVJlsfiZrms4jnD0aJSHH36fpUvnYZoO1dVBksk8lZUBmps7GD06RHm5yt82vEo80B7t4VfNf+U7Mz5HfUVN8YM/ngG+8KnreP27v6A3McRgOsaocBW/an6F78y4gvqK0Yio/4iOeh/qWt39SoePpcwsYa8fWxwimQSVgVIimQRew0N5SQhLNN7v6GBmXR26ptGfTFIVDBYZtZvefJMfzpxJyOsl6PORyOUYHQphi5C3bZa88w7LL7yQoFd58QIYuo5TWNc0craN1zBoGRykO5Vidn09GrCpvZ3a0lLa43HqysuZWFEBQCCbxXPNNcpzesWKYZPnZ55RGukZM3j4ySf5w5//zNsnn0zlHXcoRvW++5R2etIkzr/gAn7o93PFE08o9vvw4aLJ9Pk33MAPv/AFrli4UFHOy5crqjgYVPnW+/YpBrxw35tvJllZz3d+MpZXX4UXX4SZM1Wols0Oi+UKudObNyu2ub9fkeDt7Srf2uNRavZAQJ2bSChnzNJSlWN9773wk58o1ntoSPlgZzIqx/qOO1RF8UxG5XjX18MZp9no4igJd39EpQSW+JRUuyw8/H83TcVAO266YSyptgs56QVf61hSqSdPanDT6tzRyJHhOj6lIdVuPKXuYVqq0BmQz2bp374df1UV+377W6Z897uke3sJjhlDsKYGxzQxfD71+zRNDK+XbDSKv6qKxLFj7Pv1rzntqqsoGz9e3VfTSLa3k+7pIVhTw75f/5qzbrkFTzCIlU6zc8UKTvv2tzECAbzhMNmBAfY88wynXXUVgREjsHI5SkePQsumVaXuN1fDgq+oIrYvPE3HnIXUT53GxLpaSqtGgAgl/hKa317LPfffz1O/+g390Qil4VL8Pi87/vy/CJ5+NvMv+Qy5bBY9EWVk/TgevukGpl12hVKn/u5RldP9wO9UGqI/oHK1X/szfPlaCISw3XoNmvseOb5bFlGFywqqRQENQTSdaOdeMkNdjJlyAaAhovzAHdtE95SgFQqhuW0WagJ5SlQMnB7qJFA+mkysB8On0g8LtYBKSnzo2R5VnLNtlarwffYKVyUlkGx1C09Wg6aTzeZ4992/c+n5Z6E5WR5/4klefGsn6955i63v/ZWRQ3/kqsf6+OFNt3DFZxeqcXDPcqXACk8Ex+LFv/yNu+65j482v6pY7tB4VBRkqIrjO2+D026F4Hg1Lv4L+1z/X2eh/988/mWY6+MZ5QKTXGCk86ZIKq1mDbO54VlDl+1+73/9Udr3HpBxY2tlx7O/F9lzWIZ6eqWqslI+3vqBSCoj6994S6ZMmaKuG4jI/Lnz5OXHnnTbyaq23Hta2WxxVrAwG5iLxSQXj0s2GpVUb6/kk0nJp1JFBntw3z7JJ5MnXHP88aH9+yWfTEqqr0861q9XM5cuK308652LxyXV2yubFi+Wof37JTMwoGaq00mR3c0ig30isYhIMqFmGzNpxSQXGOv2FjUTGB1UDPXuZnVs1xbFRscj6prCDOLRgyKpxPDsYSYtcuzQMJPddly7PR0i37lEzTYm4mLls2qWMB0vzgjmMwnJJofc2cdUkZVu+/C1E1noAqudzx7HdvcWZyHV9Wk1Q5lLi5lNFY+lo70S6zly3OzjMAOeGehUrHGRec4UWez8spvFXP07cTJpsft7T9hn9/VIftnN/7TfyWQUe11gpnu6VLuJ2HHMeJs61tkmdjwmTjpVbCPb3y4HD66RWKxT4vFuyWbjxUc6HSmyzd3dO49jtqMSibRLNpuUZLJfVq9ulHvu8buMdkSSyV5JJvtlYOCgJJN90tm5TTKZaPHcZcuQl15aJNlsXFKp/iIDvnp1o3R375RYJiaNqxuFZciilxZJLBOTeDYu0UxUuuJdsubgGtnZvVMaVzfKzu6d0hnvlKYDTdKX7JN4Ni67e3bLopcWSUesQ/qSfdKb6JVENiEDqQFpOtAk+jRdLv/G5fLe3vdE9+iyq2eXPPXBU9K4ulGu+MIV8sRTTxT/+jkzJ5+Y9QlZ+sTSIrO6q2eXdJk5aRSRbaKY612iWOUdotjqnaLY5UYR4d57ZcTMmdKVSknrwIB4fb7itV0icumXviSeX/1KGkVknyj2+6nnn5fJJ58sz/f0SLPbZkQUoz3ktp2NZ6VzW6esblytWOlIWjLRjPTv65fVjatlGctkdePqIrMd74rLS4teknhXvMg4d27rlFhHTLY8ukWdG8nIS4teki2PbpH+ff2SjWXlpUUvSUdzxwltJvuSJzDXPTt7JBvPSiKbkK54lwylh2QgNSCRdESe3PpkkaFuXN0o2zq3SSwTk2QuKYcGDsnu7t2KpXa/0109u6Qv2SeJbEJi2ZhEM1HpiHXImoNrpD/ZLwcHDsqu7l0SSUeKv5PG1Y2yt2+v7O7ZLclcsthWf7xTnKGPh2fu83E1ux7bX5yNlw2NisHORf5hX5/IpkWKlY7uU2xAdkCtb2iUzG+Qz80dKydNnihnnjZePv2p+XJo7y6RdJf0tu2XSz59vkyeNF6mTKyQ9955vdj+/Oknyfjx42TatDNl2rQz5eEH71MMtG0qhrljo3q2TcVom1m1bpuK0T5+/R/PH9wv0rF5uL30oNoe3O8y33HFFBfaKTDi2ZjIkTUimSHFNO98RjHImSF1/lCLYsALDHU2pljmY28rJrrAbheOJbok89evy+cWXKLYkVMnyKc/OVMO7dkpko1Jb3uLXHLBbJk8boxMOe1Uea/pDyK9u0RyCZl+9hSZdsapcubUqTJp0ikCyNtvb5aBgZS0t0dl0aKXpKsrLjt3dsuVV74skUhaotGMJBJZiUYzRQa6ouJ+OXhQMdgHDw5IPK5Y7N7ehAwNpeXQoQHZtatbOjpi8uijW6SxcbXEYuqcaDRTfHR1xWXfvn6Jp1MSz6bktldXypkPfVlub/pFkckusM2pXFpSubQMpaISdxnqPV1HTmCqU7mMHOxtk2NDXRLPJCWVy0jrYKf0JYYklcvIgd5jsv7IhzKUikkql1EsdjYph/raTmC21XpWuuJx2dffLx2xmETSaYmk00UGeyidlr5ksshKR1zm+q3Dh2VbZ6ds6+yUHd3d0rh6tXzY2Vlku+PZrCRcJnoglZJIOi29yaQMudtxt+2DAwPS3N4ujatXy1A6LfFsVpx4XDHH/8hcu5Ru+549irEdN06mnXyyTDvjDJleVSUCcvcZZyjGVtdlBEhtICB9Bw+KNDbK3e62z+eTEVVVis397GeHqeBI5H/LXOe6+mXXLsd9SYrB7uxUlxSY6v5+kURCPTc2DpPszc3DTcXj6m0Uzo1GRZJJdcvj1/ftU89r1iiCva9PHY/HRWIxdW0uY4nk88NMcy6vntd9oJ7zecVGFxjognryf3d+Mj18TjZ34rUFlaTLUhdj2eNYbjOdlszQ0AkxYv+uXdKxbp2k+vpk4OOPZcPNN0uqr08G9+0rxo2FGLFwTTYSKSoqC2x0NhaTbCxWjDcHPv5Y9j///HDs+g/xbPTIEcnFYuIkE4qlfupeFds9da9I1zG13tWm4saCojGTVorFbEbtS7sxYjo1HJsW4spjh5Uq8ql7VdyZSqjYMzKgYtNCjJpKqrjyustV++0tYpm5E9jjAnNtZlMqDjyO0c5nEhLraREzlxLTzLpsc0IyiUHJpxP/xG4r1WTGjUFV7Fi4zwlM9nEsdzYxJHYuJU6qa5i5TnWIDO1SqqxMvxr3Mv1qTCuoqbIRxSrHDskH76+TcQ11J7DO8z85T15e9fvjVFzDzLcM7ZTPnH+uPHLvrW4bB9X9Cqx5qkMpuDY0qnHPzPy3QLP/rxb+D8z1/3Wg/P/m8S8DrgvAuQCm8/nj1t3OqyDhXr9tuLMrdGADERnXME52bH5fJG/KB++/LyeddNKwNGfvESktLZXtq18RiSVl/uw58vIf/qTaTaaHJT2mqTqtRKLYUUUOHJB8KiXZWKwotymcs2nxYtn//PMSPXJE8omEDOzZU7wmF4+f0KGl3U4z1d0tsWPHJNXbK9l4vCgVGnI71IGPP5YDf/xjEWxnYzEl30kllZym9ZDIR9uGwXAqqaTdb78yDKqffUB1dIN9w/LuZx9Qx9LJEzvTZEKk7fCw/DseUR1oMqHaLgDveNQ9Py4SGRArly3KaY5t/5ukIj2SzybFzKXFymclmxgSM6sk4flM4gQQXZCL5zOJE2ThBSlPPpOQ9h2v/5M8SAH6I5KKdBXl5wXJeD6TECubETvuSrxjEbG2bhZ7oO84cNw5LA0vgOKeLrHjCizb8ZjY3R3F/U5OAeuCzNvJZcU6uFfsaERJwP8RjMdjSmLu3s+MD0k2G5N4vFP6+/dJOj1UlGdnMlHJZhOSyUQll0tKJhORRKJX0umIZLMx93hSUqn+EwB1d/euE6Tk3d073WsSRfl5PN4lPT27izLxgYGDcv/9FXLgQJOkXID8xqE3JJ6NSzwbL8q+u+JdEs/GTwBVPYkeae5oLgKzpgNN8njz49IZ75R9/fukM94pXfEuaVzdKN/78ffkrE+cJZ2DnfLHLX8UDKTpQJNEMkpO/oUvfkGefvZpEVHAOpaJyZx5c+R3f/7diUAuGxe/KNAbdZ/9osD0Fvd5QER+9tBDcta550p7JCIJUeA4EAzK3d3dskhE9orIOeedJy+vXStD7vFf//nPMnHyZNl77JjsdNvaKf8M4jOxjBxoOiAdzR2SiWYkPaTAdbwzLp3bO+VA0wFJ9ackPZSWl698WeKdcYkei0pqIHUCUO7b2yd9e/ukZ1ePZJNZSUfSkuxLysE1B4tS8oGDA9K9q1sB6d09kkvmJBNREvFkX7J4PJqJSjQTlc54p/QmemUoPSTxbFwi6YgsemmRPLrlUdnXv0/i2bj0JftkKD0khwYOFb/nSCYi8WxcEtmERNIR6Uv2SdOBJumMd8qHXR8WZeNNB5pkKD1UnPDY3bNbgfFMTBLZhPQmeqU10ipvHHpDzHxCnKHdbqDRp6Rqg9tFBrepwT+yW4Hv7OBwcDK0QwUTuaiSZedc2VvssAomBrZL5sgr8torL4iTjYrkYvKLlT+X+Z+cI5KLyre/9jm589uniwztkq2b/i61Y8dIPq4CnvlzZ8jLv3viRNBcAMtWXgHifFLEzCngWth/vFQ8l3Cl5Ml/lpKfIBVPDrdnuWDbzKr9+dSJcvOCdLvnw2EgnUsogJ1LKkn38TLuXFztz0RE0gMi2biSjA/uF8lEJBPtkddefF6cNd8SiXfKL35+j8yfN1ckF5dvf3OR3Pn9r4p0NcvWFZ+W2jGjJJ/oVwHf0EGR3o8kFsvIvHm3yqRJp0pfX1IOHhyQvr6kbNvWKfv398uiRS9JR0dM+vvVsV27uqWxcbXs2tUjXV1xOXhwQHbuVPs++qhbkslh8N3Xl5R4PCuRiNq+8sqXZefOHonHszI0lJYdO7qLIL4IzpNpSWXTsr+3tSj7Pth7TAZTUUnlMkXZd298UPoSQ7L+yIeyv7dVBlPR4jX7e1sllUvLYCoqQ6mYHBvqkqFUTNqGuqQ3PiiJbEqODXXJx12HixLwVDYt/YkhSecyksplZH9vq9ze9AvpSwxJPJuVbZ2d0rh6tWzr7JRkNis7XbC8s7tbmg4ckJ3d3RLNZE7YH8tmpXH1ahlIpaRx9Wph2TI5ODAgu3p6im1F0mnZ3dMjTQcOSH8yeQKQ74rHZc3Bg7Kzp0cODgzIju5uOTw4KLt6esRKJBSyPHBAoc2CTrqmRqHU/n61P5FQaDOROBGE9/UNb+/apc4pbG/dOiwV/8frUimRwUF1fXe30mEnkyJDQyKRiOQiSYlGnaI0e98+dcrBg8OS8N271SXHA+7jpdzxuMhHHw2r0Q8eVNcUQHc8rmTnixYpyXg0qs4tAO7OTvVyurpErLwlznFxXTGWPF7CXTzmphMeH4ceD44LgDmbU0RPPi+Syapr8uY/A3HTHAbb7j4rlf4nwqUgEY8eOVKMFY9fL4DjAtiOHDgg2VhM0n19kkskJBuLSaytTcm+/wsAPbR/v5jpdFGSvuHmm2Vwzx5J9fVJPpkUMxEXJzIwDIrbj6r4rqutKO0uxoJD/SqGbG8dJnWKYDupYsRYRGSgV2T3VtVGe4s6vm/HcKyaSoq0tykZeMq9PhErHi8QJf1HPywSNvlMQtp3vunGgyeC4+MBdEFSHu89ImYuXYw5U5GeEwF0IZ40c5JzQfjxqYYFcJ1PJ4rScjMTVfLwXEw9Mr0ukI6cAIol1emC4O1qLMzH5etfa5Tv33CdGgPzSZFcVOZ/cq4C17nI8FjoTj63vbhQAoES6X/tiyptKhdVAHtgqxpno/tEonvV/QopU/+Dl/8TuP53QbP/ziVvqiJj2TwcOgY5t8r3oWOujCc07HV9+iQl0/G4Vj5ej5KOI9DVD7k8J40ew+DAIJs3b4ZACa/u20UikaA1l1bX6To/vmMpUz85hy9/+1u07D+gKpNn88XiZcExY5h+552EamuLXoF2Lkf/hx+SbG9H03XOuvVWRp59Nh898QTJjg4CI0cy/c47CdfVoRnGCR7X3nAYT0kJmtdLYORIVdRC0wjX11N9zjlFi4V9v/419RdfTHD0aLYuW0a6p8etjogqWhYbhPIKeP5RZaWl66og2aTT4c9PKYnPhFOUzEc3VNGzt15S+2IRSERP9BnUdeVpvXMLRPqVrUImDS17ldQc3MILSbjkP1SVcZ9f2TaIU/SYHmj5AF03lIRb03Ack6497+INlKJ7fCcWO9MNpYAUoXrSdCrGnsaY089XhSk8PjSPl6rxZyGOhZVLqdkt93UUrL9UW81KIgRY+Yx6vYkEEhlE85WgTz1LSeUrqjAWfBEqR6CJoPlK0EaMwlj4JbSKKjRfCcaln1f+3RUjMBZ+CSqrwHFwNryD86dfKSsuAa20DOedNRAKKX/ruReiTTkLfd6FCOC8/RoEwxgLvoDuCwA6iUQPQ0NHcBwbny9MJHKUVKoPy8qSSvW7hcs8eDw+dF1JQi0rRz4fR9M86LqXrq4PsKwM8Xg7odAo4vFOZs26hXi8A03TiERaiMc7i17YHk+A+vrZKI/tMDfeeIDa2hl0tm1kQsUEZtTOIGtlAfDoHo5GjuKIgyMOD1/8MIumLmLpvKX4DB8r3l/Bqj2ruHfDvcyoncGXTv9S8TsREQLeADW7alj/5npe/OuL7BjYwenjTidQEsCf9XNt07X0pfo4duwYE8dPJGNmiOfj9KZ6ERFssYtVq++YdwcVnhL+ApyDsseaC3QDK4EhlG3Wsw8/zJ/+9CfGr13LQEUFAiSBS770JYaeeooHgGMffEBXZyd/mD+fNuDFVau45447WP3224xtaCh6XS/nRJ/t+wDNozPmnDGUlJUgIsTaY6y5YQ2O4zDi5BGMOWcM6YE0VsZixvdnkOhJ0LenD92js+DpBdyw/wYWPLWAcE2YsoYyyseVY6Ut4u1xXr/xdcI1YcQRXrvuNay0ReWkSlW8bEIFjumQGkiRT+bxBD2ERoUoHVOKoRnomk7AE0DTNAbSA+TsHF7Dy0MXPcSc+jncue5OWqOtBDwBdE1ndHg0OjpHo0e5tulaWiItAByLHePG129kVGgUIW+IgDfAnPo5/Hzzz5lRO4PB9CAjAyN5auFTjK8YT8bKkLWzmI6J5ViYtsmMuhkYgOYfCZXT4MObVIGW0EQIT1b2IsEGZSeCBqWTVYGz0HgldxaBxH5lyZXpgZJKwIHwRPyVE7nsEyE0yYM4zJwxndZjbaAZrPrr21y37GXwhDnvtCrGlud47+0mJanTfRCsVv2FnVcpMIVK4LEW16arRPVpund4v51Tj/BYJffTNCUdr5ikzge1XVJ2YnE0X6mSXoM6phuq2JjhG65ILjZsewjGznFtwCxI9SiJuuZR8u9EB5z1fVVtNtWj+jInr8a1nm3q2Rt0bVcEv8/DZZctQDv7B5DuZqa+jtbWI4DGqpde4bqb74KyBs77zxcYO7aO99ZvBnRVJK28Hl3TMIydfPOb30JEGDkySCyWxevVGT06xEMPXcTAQIYbbnidVMqkvT3OqlV7uPfeDQQCXkaNCtHVlWDFiouor6/ANB1yOTVe+HwGyWSeG29cw9GjUX72swvo6IjhOKqy+H33bWTWrDocR+juThIK+cjnbNJmjgpviH3Pvs2ss6dz6fxP8x+Xf4GP9u0hb+Xp6e1h0Re/wvQzz+Hbl32ZZb9agdfw8qvmV2h69w2+cMlCZk2fycyzz+OLN3yTjJnj454j+L1+IpkEOzoPUFoSotQfZN2RbTzX/AppM4vP4yOZz2DLsH1XfzKCads8uHkzq/bs4cHNm7FETrDmGhkMsnzjRoAT9jsiLJk7VxUimzePxilTqA6FuHfDhmJbtghtsRjVoRA3vP468Xye3lSKO9etoyuR4IxRo1i+YQOjQiHGhsOMDAa5d8MGVQ18505VXjuVUvLl7m648ELlS+XzKTlzJqN02SLKZPqZZ1QlcF1Xfli//KXyxk6nYcIEePxxZUw9bpxq0zSV1vqZZ5R0vLNTtVlSAj/4gSr7fdVVSp99442Qy+PRbO64Q2hqgtGj1anh8LAld0eH8rAeNUpVCM/lYOlSaGpSLl8i6jpdH64Y7ve7RjCOst7q61NVxcvK1PUFP+0771Qfg2GoImm6VlQA4w5UbvXuTvXsiBtvtqn18rD6jx3tVLGnoIqYnTzOlY07Kk5t7VLxaSqjZOaaGx8VCpkVqoqbZnFftrqCz3+5kdOmTGH+F7/InTt20JPPUzp+PA89+ijnXXwxn3zkEVonT8ZbWsrp3/0uDZ/5DE+2tnLu7Nlc0NjID//+d97fv590Tw/b77+fRFsbAIGqKiUnh2Il8TPcSuKOZbHtnntwbJuSqiqm33kngdGj6Xj7bbYvX47oBgRCyJh65Js/UNXCQaUFGh6VLmjmVSVxNCXdHqm8zenvUjLvvi5V+TufVSmJLz4HFSNUkbLIgEpFnHCq25/ZqgjXyJHKvaYQw6bctJVB5aFWPXk6FbWno+sGjuvKUnPaPMxsnO696115t66sywrpiC5QS0d68JSEwI1Fg5VjGTy63a0cnlD7RbByaVXYzLUKLHham5kkZjZO38HNmLkUmuFhxISzSccibkojbhqRT6Xb2BklyT7nEcj2gRFU417pJNA8LF9+L4cPHeC+ZbcOp/X0b1SpPk4O+jepdCndC+eshAX7+O2u01h44XmMPP8Xqgp5wdIr26fcMPw1Kh0qMFalRv2LFzT7N7j+71zae1TlweMrMVr2if6ChfXyMARKhg3rk27VPcuGSBzauikfMYIXVzzK7Uvv4Nzp03nrrTc5/bTT8AT94PPw/LJ72f+bF9i96q/MmzOHhVd8rti+XqiA6IIHx3EIVFZi53KI41B91lkq51pUBcdi5fBnn0X3etl6113Ejh7FsSxKqqqYesMN+CoqsE2TRFsbhs+HY1kk2tvZdvfdmIlEsYJ4oWM0SkqKYDvd3Y3YNpphKI/lCacqcPuNHyibLBG1/eZqlR/95mo4/WwFnAMB1UEu+Bqcfo4C5pm02veN70P1GPU5fu0GWPakysf+3aPK4qt2wrCtl6apao+j64bNJsPlymN60vE2WzqOlQeRYmfVf7gZx8qf4GudGurEzCXRdQNvsJyxUz+Nlc/Q+dFa8ukoCJSEq9A9PtVRahpWLq3a1vQT2gLc+zUjjgXl5ej1E9xcRRM0TZljaTrksjjtrUhkAPtvq5DYECAIoiqFh0oRURW/NdNEbFvlabvgGXFwNr6LfLQd581X1UARCmNc9gXl2Yio8xDQPcriS2zS6X7q6mYVgXN5eR2mmeL112/ANFOk0wNEIkdoarqWSKQF0PB6A3g8fhzHpL19M+HwGGKxdmprp+P3V1BWVkdz82OMGXMOAF5vkOrqKZhmGtvOEwhU0N6+mXi8AxEHw/DT2dnM2LGfQJAiuGqJtLC1cytTR01F0zR6kj0EvUEev+xx6krrGEoPsWTesOVTwBsg4A3Qk+zhznV3ArDykZW8/erb/OmVP3EwdZBRoVEEvUGu+MIV/OrZX/HqgVe59be30tXZxfTZ00mZKZo7mslYGSzHwhGHurI6nrv8ORoqJxIwfMwFHJQ11jXAEbermAvEOjq4/ZZbiESj7LngAr5w1llcMGMGvYDzwAO8v3kznzzpJG6+8kqe+f3v+bXXyzjgmkWLyGazfONzn2PuWWex86yz+NzgIEs50Wd7CYAtJHoSqjo4GqVjSpl1yyx8IVU1NtGdYP096xERKidWMmLyCGrOqqF9czuxYzHW/XQdsbYYjukQORyh6Zomkl1JYm0x9qzaw6b7N5GL55SV1/INiCVouqa8s69twkyZ+Mp8RI5EaNvYBhoqhxQN27H5sPtDRgZHYmgGpm0S9AZ5cPODrNqzirZYGy3RFq5puoajkaMIgs/wMad+Dg9tfghb7KJ1Wl+qj2OxY9y57k51/KKHEIS0meaWtbdgaEbxN9Kd6Oa6165jID3AiOAI/JqmKpwOfagG+FNugnS3CiBs1zpEM9Sne1zeMtne4RztTA90vqryqDUNPrwZkgdV1dRiZdUMjz7yAJ87z89g23ZMM09NOKPA+J57GV82RNvW58BKgJXmx0t/wtSzz+XLX11Ey+GDCnAfD4jFzb3TXVeJ8okKQPvK3Nzn/2oRyMVVgBiuU1ZXZeOHc6SLll05iuFCoSI5wIVPwpRvqcRizVD2WL4y9SvXdKidB5WTFIAu5FBnBgENxkxXQPydG1SlWisD3VvUOVUnQ9l4Ht3k43MXTmdwoB/TNKkJ5l3wrjN+XB1th3ap7bXXQPwYne2tNDdv4mtfW4RpOnzve8MgWgWtsHz5Blat2sN9921k+vRaGhuncOuts9i0qQ2PR2PWrDpKSjz09aWwLCEQ8GJZKrk2HPbxwAOf5pFH3ieVynPOOQp0lJQYPPHEpXz962cCUFMTIhTyEggZ9CWHeODd33L5V77IO83v8cH2bSy8fAE33/gDehNDXHHVVzh12uns2vsxi+//KX//xWocy+LqGVdgvtnCjTd9n0vuvorfvvJntv91HSteepaTqhvwGh6CXh8nVzcQzSQIeP088rlb+M6MK7DF4Z61z9GfjCCOw3dmXMGscWfy2w/+xtsHN7PUBcd3zJuHR9dZMncujVOmsGTePAbSaZbMmwdwwn6PpjGuvBxbhEkVFay85BI8mlZs60dz5mBoGjPq6ljx/vus2rOHWC7HfS5Af3DzZjy6zh3z5pE2Tb73xhukTZOl8+aR0TRk1iyFWn0+hVbDYVUx3OuFDRuUXZbfr8b/LVtUArPjwN//rkDywIBCut/9rirfrWkKUE+frkpuR6MKmB88qPK4Dx1Sic2Fc2+/XSVNL1kCjY3kH3iEQaeCVNZDQ4MCzjffrG4bDCr8rWnKMtvvVyDZ64XduxXOr6sbrjDe3a3Wq6vV7ca4WDUSUbcsVCA/fFi9PU1T57z1lqoeLqLytAEFkl2faUTU/92t3o2uqcfkepUbffAY5C2oHaX+6+ICbEHFmI4M22wVKoUXYlPTVO2PH6v2g8q5LoDzQAnfufJKtq9fz7bmZi6/7DKuu/56Sioq+NT8+fz1pZeYN3cuJ335y9jZLOG6OqbfdRf3L1vG+pde4omLLmLFT37Com99i1R3N2ffcgtht7J7vLWVD+6+m6RbW2nqDTcQqqsj2dXFvl//mpMXLULTNDwlJViZDJmeHvq2beOUb30LQ1egVLNtBVIL/WHLPgWG8znlGFM/UcV/IuqzdBzlg33SVEVelFdBSQAqR6h9b76ogHVflyJ0QDnQ/PkpBdbFUUTOng8hOgDlleqDHjEazTTxBSuUzaOmY5QElV1WNomuexlz+vyi84a4YN02c1j5NBoQHDEW3SgBxyafihKsrKXm1HnouoGue4pxvccfoiRUXgTm1ZOnM+4TnydUVYuZSRLvPYKVS2FmEgy0bCdcOQISh2DrdyF+wP2BaaAH1Krug5EzXdeJozC4lZ8//Ch/efUtXm/6K8HSEcrt4sMfqoloowR0P1RMg30Pqb48N4Cg85vnV/Gd625VedyGX7li6AEY6dY30T3qfoZfTVgb/7sx619j+Te4/u9aNNQM33EzfTSMUQxzcSZQG17PW8qb0DRVZ1DiU4UmPAZUlrltWVzwH5/nvXffYft7G1hx3ffp6u7m9ImTIZakfsa5UF2J1jCGG2+4gZbODga96nUYhmJe7XyezMAAdjarWDrHId3Tw9af/QwrrQC9pmnDoPi669A9Hj6xdCnBmho0XSd24ACeYBBvOIzu8RCsqVFsdFcXmZ4e5Zk9MMAHP/uZmlm86y58lZXkIpFiuyPPPBM7m4VDH6kOzFeiOrqBHgWEB3rUdO3xbHRVtQLOtqNmuquqVcc38VSIDanZxCN7Xc9rd+Ap8auO7pRpynorVKoAeElg+LvKppWnoWODrpGJ9WP4Aow5/Xx8QQW2M7E+7H8A02Y2hbckRO3UizAzCTp2v4mue4ssdwEcD9t4CbaZI5+K0vnRWsx0DMMfwsqlSQ914fEFGHXyLDy+ACKC4zhUT56BZnjVICgOEh3EfuOvkE4q8OzYyl5rVI0CyHt24mx4R72vfB4Z7MNe8xewLLRgCMllweNxmez/gIoqxDTRZ58/DLZ1XUUJhkdZceVySMtBpKcLiQ5i5dJomkZ9/dzhzh0wDB8bN95XtOfy+8uJxzuKTLRlZQCIxdp4/fUbCYWqSSQ6qa1VkwkFe6/a2ulFD23TTNHfvweARKKLNWtuIBSqJpnsJpeLA0Jd3Sw0zUBEiuBq+cbljAyOxGeoYiqCkLEyvN/+Pm3xNkK+EJMqJrHykpVUB6vJ23lM2ywCuf7ufu5achfHeo9xxaVXcOsXbuXrl32dtJUmNT/F0d1HqXy2kpbftPDcb56jNdHKDWtu4G/P/Y1PTfsUO7ft5Lbv3capE09l+6HtxdlhB2XDdR+KTX4QiLr7J9TV0SfCm0eO8OjOnWzfuZO/NzfTC1w8ejS/eestdh46xPo9e/BccAEWcAz4gmmypr2dV3fuZPPOnWzbuZPfjhjBBCCOKpz2DDAZ9y8RLsFMm7RtasMoMdANndeue41oS5RUb4qZN83EKDFI9aWwcha+sI+6mXXEO+IceesI8Y44RolR3I51xGiY08BXm77KvJ8o7+qCj3U+lcfO20Xv7I3LNyKWEG+PExoVouuDLmxsLMfC0A3m1M9BQ6M/1Y8gGJrBkrlLWDR1EfPGzaMmVMNDFz3EmNIxZO0sR4aOMLd+Lg9d9BCGZnDHvDto+moTcxrm0B5r59UDr/Lg5gcBsByLcRXj+NXlv0JE6Ih3MCo0qvibaY+30xZrwxAL7XgQrHtg1BwFnrf/UAUjZkJZiWy9DpItCnTv/imkjyl/z8pz4LMtatZe86oiZt5K5WW9bwW0rWL5/Q9yeM8W7rvsEOx/RI0H4QmK9Z2yFIJ1MHYh6H6e/8ML7N+9nd3rXmTe3Dks/Px/qP94uA4CI6G0Tl1fYLQLbISTd1koF9jaeXeS1VHngmKp48dcRlsVniF+bJj1LoD3QrGkwj11Q4FiO6fadiz1GqJHVIExcaP4dJ+6b2AE9G1Xz2Kpc9K9UDNdWWtpxrCPdfQwy39yM4fberhv2e3KqguBUDWYKXj7Wrcgmgfy8aI91x/+/Efmzfs0S5c209OTZPr0WpYv38iMGaqgmePA4sWzaWycwh13zCMU8vLcc5dz0kkjOP/8cViWYBg6S5e+Qypl0tzcgW07tLfHueGGNcTjOYJBL489din19WV4vUppZtuCx6OTTpsEg16OHIlwzTVNmLbDbz/4G+8c3cbh0hhl/jAlHh+fmD6dY8eO8dsP/sbeDR9iTx2B7dh8/tMLGDt2LP/r5T8xtryaoM/P33as480D7/O7918l6A/w/Yu/QTSTYPnbvy6y109ufpH+ZISzx55CbXk1j67/E28eeJ/ffvA3oukY9eWjGF1axdUzr2Bn534mVFSwbP58/t7aSlc8Tsjr5ckFC5hYUcHchgZOqqwEYHJVFc8sXMhJlZUI0BaPc01TEy3RKKAKlDWUlfHMwoWcXFWF1zBApAi4y0tKTgDypT4f4ysquG3tWlbt2cPOnh6qg0GChoHW2grXX69AdCCgmMCWlmFU2tamxnbThFmzlC/1ddepY+3tw/5Vq1ap58K5Q0NQU6MQcEnJsNfVffcN+2g5jmKyJ09WscPKlZhlI3AcjfZ2uOEGDceBxx5TwFrXVVPl5Ypp3rxZEeB+v8LyPT3DLyUWU6z04sWKbJ87V7mBXXONAuoTJw5bejc0qL+kZak5hm3bFP73eNS8gBrXzaLPNKCAb3WlsnjN5tV/UDjBMouAywLmzGHlZHlYxSmT6mFUVTHGpMGNsY51q8JlPu9wobPjWHO/389ll15KcMQIxLaZfu65HGtrQ/d4OG3MGAZ/9zsVZ9o2+WiUgR07AKiurSXd00Pn3//O7j/9CTSNwOjRRA8dQiwLTdPIDg1xzm23EayuVoXRbBszmcQoKWH6smWUjh+Pnc+jeTx4QiFKJ0xg+l13UVpfrybRshk3pnPVgWZOqRwjA4pcqZ0AiZhimSPuRKGVV2TCSVPgr79TcWEuo/rSGRfAV69XRNDp56qiZY6t1JETTlHKyj88AQ2TYfmvYfIZ6jM0TcV+pxPk0zG6Pn4Xx1Y2up6SIN6SEI5j0fXxO9hmTvWZhgfQMLwlGL5g8WM3/EF6DryPv6waX7Ac3eMDTcfjD4HYWLk0+XSU1FAXmqYjmoY3WEGgfBRmLkWgfBQnzfsWoapaPCUhglW1aGKh7VmuJoKz7iSTt9SVRwgMbgUzrlRagRoe/tWb/Ok3D7P2xceoKHOLIHrL4LwnwVPqjkHuZ3bWQ+778fPu3/+Ole7novmfUIXSEodVUc+SCnf8EDWmgrr/vziwhn+D6/++RdMUQC7M9J00Tj3bDkxucCuEi1rPKdk21RXKr9pxZyP3t6gf3bgx6tryMN2DA8XZxrtXrOBT8+cz2RfCSqTojQyq+8STvPTLZxk9ejQjpp+lrnU7YsPnw19VhVFSAiKYqdQJ/tZiWWQGBwmNHcv0ZcsI1daSaGtj2733kh0YQNN1/NXV7HjoIZJtbSDCnmeeKbLcI848s+iZ3b52LZH9+9E0DcPnw1deTtBtF48HWwSpGAmHPy6CRF5/YdjT2rZhZA18s8Bmo1jbeETNFBqGkuF4S2DyFBhVq54LuinHViB60umqcyzIfg7vUZ2kpqkAMRZRs4+RfrS8SaC8Gsc20XSP2yG+gzcQJpcYxFMSpHbqp7GySTwlQTTdQDSNQPkoTp5/JbrHS/eevyNWXsnDjwPjgpq46D+y9QT5t5lN4ynx07t/I45tKQm5pqEBXn9YgVePR8nSN7xTBNCaDP/cxB84Tsr9afVZ5bLK/7q2HhIx7NdeUp8bGmLmi1WDNY8HwqXo51+iJh9sG4YGEXHUDHAojHbmuej1E5BYFCfod+XTrh8hOiI2muZh3rw7mDKlkblzlwBQVlbH+++voKysDhBE7KI/dnPzYzQ0zMMwPBhGCZrmZe7cJUyadDGbNz9YBOl1dTPJ55PF695/f4XLdKsA0LZz2HYOQzNYOm8pjVMaWTJvCQPpAQLeAL3JXo4MHcGre5lRO4Ofb/45JZ4SYrkYsWyMoDfIUGYIj+4pyrjHNYyjcXUjqf9McdZdZ/H25rfZ9P4mlm9Yzqudr9LwvQb27d/Hrt27mDN/DvduuJdVe1YRmR5h/5H9DMQHONh2kINHD5Lz5xDHwuN+YmXA7Sg2+UdABTCAGkA9QDtQA1wHHAJmA19GsdytwEfATFTnfbwEvMo9vwclB1/PMJi/xj0mfoNQdYjSsaU0zG0AgVh7jFm3zCLWHqN+Tj26V6ezuRN/pR8EIq0R2je3UzujlhsP3EhZQxltG9uGt+vLaLq2ibLaMsrry/GFfSx8ZiGhmhC9u3qxczYXP3wxN+y7gUtWXoJmaNTOqCXVlyJcE0ZDw6N70DXFYBu6wYjgCLJWlt5UL+MrxvPUgqdI5VO0x9u5be1tdCe6iWQiTK+dTl15HUFvkKyVZWLFRBrKG9jUtokZtTP46LqPWHnJSoLeIGFfmK2dWzkSOcINa27g7DFnM7FyIisvWcmiqYuYUTeD5RuXczDSihwHgtmzXIHHvfep7QOPqODBG1Ye156wks194nEwwjByhgJ9Qx9Czg3cQuOgpFoFKlOW8vNNZ/KXpnd5vekVgic1MmLO3cpP+vAHkOmF8ARaE6NomHQm2FnqG8aBnUMrreXGa6+i5egxBocG/1niXZBsO6bbv7lyWrGHATdAPqnOKVQfL62lYG6hAPXQsDy8AN4LxzVNseLiqEeiHd6+DpJKiUCyHUZOhegh6NyowPC7N0K8DUafp57fuUEB6VQ3jLsIZtyhAirXx/rnP/4mf1m7lddfeJLgRw8zovuveDSHnv6o8r0+sIrWfdtpmHSaYspPaUSmL+X53/2ObPZMVq3awyOPbOHLX57CE09cRjCo2OfSUh+TJlXx1FMLmDixkng8h207xSEjnTZJJvPceef53HffRqqrg+i6js9ncMstswgGvTiOuFXH3cyimKIsIQABAABJREFUtMkNN6zhyJGIiiUNnQcf3MyqVXt4f2MnV8+4gktOmcXVMz+PR1eTgE8+/ksuW3gZV0yai+YIN136LT7uOYJX91AxegSxviF+9tazPPLLX7Drxfc4+sCb/PaG+7nr7p8xrraeXzf/lTcPvE8yly6u//aDv2GLg67pXHne5Vxyyiy+O/PzjCwdURwT68pHc9sF30QHLMfhpKoqRoXDjAqFaO7ooDUaVekiuRxbOjqI53J0J5PkbZucZfHgpk3Mqa+nxDAo9fmYUVeHoevorozVEcHQderLynh64UJKfT4mVVTwzMKFjK+owHIcNGDxnDk0TpnCeWPH8sM331Qf5n33KTR6333uoCaqnPaqVaqC+IwZal82q0BL4fzCMZ9P6bEbG1UJbsNQKPenP1Xj57ZtKq5asmSYoX7xRUUxX3ONAvJlZfDww+pv4Fb3LvhSB4OKne7uHibNRdQ89Cc/CaGQemmtrUoGvnIlrFmj1h97TL2E669X7LTfPzwHYNvqHnPmqHmAlpbhOYbRo9Xxnh41H6D+uybU1ahnw3UEOHmcWm/rVoRMIqXOGVWlwHPhf1u4VtcVED/SrgD1SQ0KRBfi1ZYOVSXctFVF8eNijeK6I+i243YZOR5/8kkuX7AAcRz2ugrFVHc3mmHgLS9n5LRpWJkMQ3v28MjLL3N7JMKda9fywh/+QHjMGKrPOYfBPXuUauqUU8gMDrL9/vvJDgwQHD0aK5vFjMfZumwZSVctmWxvZ+uddxZTGu28G9fE3ZhuoEeB5D8/pdSKQ30qvsxlh72tY4PqWOGcSL/ar6uJIob64fePQaQPAiGoGqnY70RckT+nn6OUlQWQ3bJP3ff3j6lrRZCySvoPNxNwnQLyKQWC0Q18gTLGnHEhusenWGvHGe5qAXFs5VEtDjWnzVXXp2OuIjKmnGnyOTz+IL5AOf6yajLRbnAsNMDMpug7uNklbExF7GQSlI2ejGg+ZMoSmPuikmQ7OTXx6eRUKs+ImcrjOjtIR1c/t/xkBVGrnAuuuJ6zZlzIjDkXgDjcs+x26urG8H7zVq6+YTF1J32C/kgKBpvBX82vnljOt+ek0e2EknxXTlNjo+ZTsvCP7lRuGk6e/39Z/m3F9d+1WDYcbFUdmccoWheQzasOsGGMmnE80q5mF6srVSeYM6Gjh2t/vpzX3niDnj5lbVXqD3B47z6++4PvsWHTJizTZNaUqfzi2WeoqKggFYky/zOXkLNMdF1n5IgRPPzQz5k2bZr6h2bzmLrqBPPJJAFX02SmUmT6+8n29zPizDNVnottY7vyYU8wyNY776TtjTdo+MxnmL5sGVuXLTthO9XVxZ5nnuGMa68lXFenFEft7aT7+hg5bRrp7u4T7L/EcZQtg8eDx9DRHFvJcMSB/h7V6S34qmKa0dR+2wXftg2pGATCajvv5l8Zbk5gEVg7ap9tw5E9Sho+sgYO7oayStX5TjhV3fdPT0LDJPjEPOxAEMexsK083pIgnR+9Taz7AOVjTqF26qdxbItMrI98Nk7FmFPcL1tDHIvuvesYOfE8cE0WBo9uZ/Sp89ANL+lIF6GqsQgaZiZO/+HmojVXIRVAK+SgA+KCe03T0B2QfBbN50eigzgb3lEAurIK4jEoLUMTXDsH19pNQPI5NTvrK8FZ96ay3Zp6rsrTFnE/WgfpbEMLlyoZk2WpKEA3IDKIxKPotQ2IritVgwiWDtl8DBHB5wthmmnWrr2NOXMWU1ExERFloyUiRSutVKqfhoY5atyLt7Fhw71ccslKAHK5OKHQKDRNd69ziMWOsWHDvcyZ8yPC4TH4fGHy+SS5XIySknJKSsqwbRNdN8jnE4jmwTF8GLqBLTY+3YfpqBnijW0bqQ5Vs+L9FSyZu6Qo787beTzuZ+zRPOTtPCVGCaaYeHUvRyJHuHfDvdwx7w7GV4xHRydjZWjubGZ8+XjGV47HdMwiC3rPhntYOm8pkysnkzbTRLIRKv2V+D1+0D3EvX4CQJphG64C4BbgKAoYzwB+CEwHvuT+Hm4Dvg/0oyTkBpACSoBeFGAvBfKAD5Wn7VZsYCNQ7V57DlCVyhE5HGHj8o0seGoBsbZY0S6rclIlye4k/go/2WiWQGUAcYTosSjv//x95i2dhyfgIRvJ0vxYMxc9dBGegIdcLMfA/gHqZ9dj5200Q0M3dKysRde2LsI1YTbdv0nZfE2sUL89U2i6tolLf3cphyOHWb5xOSsvWUlvqpf7Nt7H0wue5ljsGMs3LmfJ3CWMrxjPNU3XsGrPKtZ8bQ3TaqYRz8UpLylnZ89OastqGVc+js3tm4tWa+Ul5QD88M0fsnTeUiZUTODqv13NnPo5zKmfw4ObHyzutx2bY7FjrNyykl8veBwteVgB6ylLVd5zskVZbp3zMKCfaK0VbIAdN8HZj6jgZPADqJyq2FhPqQK3aGAleHjlE/zhxTW8/WYTlRUVRQn2lVddw/jx41j20yV8sGUTV3zlKloP7kaz0wwmdUaPrAQ7x0tNb3PzrbdxrOWwYoSTHUrKrRuKNc4MKEBcMUkd173q3hpqwjF+DMJjwDZVPnVxzMqptsJ1CmAbPmVzVYgR7JyShIdrlXTPSkOqCzbfeZyF1jOq3eyA2n/uLUXAzCmN8OmnFBAvbF/4hHptvR/C2FkQO8LDt3+LP3yQ5+3f3knlSZ+ETD8038uVz6cZf/JUln3vy3zw+1u54qFdtB4+hNejWJZ33niVb994O+9v2UMiYVJTE6K9PU5bW4y6ujKWL9/I4sWzGTu2FL/fQ39/irFjS8lmLZqbO6mvLyMQ8JJOKwuubNbGcYTe3iT33LOBpUvnMXJkkFQqz8iRilHq60sxenQI0BgYSGHbDjU1pRw5MkRvb4o5c+rxlAi2OGTMHCvX/5HcpnY2vruO1954nUwmzeTxk4gkYmStPMlciu9ffT25Wj9dDYL56iFu+873+HzjF+lobefCCz/F6r/+hdHjavlV8yvcdsE3iaTjPNf8ClfP/Dx1ZdV0xvrpSQ5yRs0k9bU6Nrqm4feU4CDoGLREowQ8HtKWxb0bNrB49mzGlpZS6lOMkS3KIsxyHPpSKcpKSkjl8/g9HvpSKXpTKebU12M6DlnLQnclrTt6ephRW0vA48EUKRKdujtZXGgXlJWYR9c5EokwJRTCaGlR8u45c4btSQt+VXfcoWhf24Z8XgHplpZhS60C4+w4itGurVVj2bXXDttrPf64Yri7u4fRsmUpYF0459ln1b2PHiUfKGMw1EBXl0YopKTbhw+feHlLiyLUp09XINvrHXYAW7lSYfh771WYv70dFi6EK6+EX/xCMd6GW2JH05RSfc4clZf9H/8Bn/3ssBPZuHGKKZ80wUbL5tDaupGGMWh+HycgsWx+OLWwwE7/VzHn5AZV72cwqur9lIXdmMn93G03jjAt9zM3FVn0j+3U1WB6NO5aupTX33qLtW++SWlVVdHy9ccbNnDTLbdw+YIFxfgm2dbG3ueeY8p3v8v6Dz/kZw89xBt//jNlNTUKTOo62YEBPnr88WKcOfXGGwmOGkW6t5eezZsZ/OgjPrF0KVvvuqt4zifuuAPNMPB5DbTfPTpst/rZr8NPrnGtV29QzPWXr4NkVNllFfYV7Vnd7a9/X8WJrz4/fOybP1Cfz6GPlWy8qlqROwPdKv589Xm4+IuqHtBx97dHjlb2WYYHQcPOpTF8fjRNH86tBtJDPQQrR6Pp+nCaj3tMbEuN6JpO9553iXUfoLJ2CjVnfArNPcfOpTB8QcxMjP4jHyiFZSbBsW0vc9L8b9N3cHMxnh118iy8JSF0zUFzTAWo0d2x66xhpZKVUsqsdDtUzwbRlIrLGy78uyHyIby3EBoa4bwnVDqVlYKOV5TFl51TQLvyHPCElPqrMHYaATAjym5y1DzFhP8LLP8nK65/g+v/rsVxIJ0d7uh0XXVcun6CtOaEjq/EpyQ7BbB98jh1Tt6EofiwH+F/tcSSauaxoxcm1rrA0lHyoYl12I5NvLWVdE8PlaefTqavj0N//CNn/+hH6B7PCf7Xobo61aHqOlYmQ3ZwkP2/+c0/+Q2efvXVhGprVe60Oxg6lsXg3r1UT5uGuEXU0r299GzaVOwQ+3fsIDh2LOVjx6C37IWTz1Qzga0HYOJpFP/VhqHYFjOn/KzNPLz2JzVbWO16hZp51bmJm+PnelKjGyq/xrbU7GFsyJXqWCrfprRCdYCXfUVJzd3F9hjkkhGsXIpgVe0wEJ50Hr6QYkrz6SjeQDlmJoaZSRKsrAHdYP/apygbPYmxZ1xIJtpDoHy0eh0osKy74F+OCzoK/oYCZCI9BCpr1CDkqGBcxMGDobYtUxW8MAxENxSQ1nQkn1W/ESvvAm/le338UgTll3wOUgnleT3vQrSKKlWw7LW/YFz2eZzOdrRRNWheH05bi/LSbt6ofK/dCZC8ZmFaWZLJbjZuXM7s2Ytpb99Ee/sm5s9fhm3nSSS6aGiYSyTSwsaNy5k7dylVVZPI55N4vWEXgBvkcjG83pALklOA4POp5DIRGxGHtWt/xCWXrHDB9YlAHGBw8CD4wpSX1pGxMngNr3u96tsssWjuaKY6VE1/qp9z3HzugDdAxswUfa074h3Ul9cT9ATJmBkmVE7AFpu0mSbsC5PMJ4nlYpSXlBP0BmmNthaB3+TKyaStdJGFNXQDR9SsvumY+I0AsZIQhbS5LuAtYAdwP8qHeiPwdeAgCnh3oWTji4EtwHhgDuBFyb1jKA/rFIr99gA3ooB4COWX7UUx3stROdcn5y20jEWqL4W/wo9maKz5zzVF3+nLn7ucaEuUDcs3MPf2uSS6E9Scpf5re1fvpXNrJ5c9fhlN1zZRP6ee0754GsmeJJsf3MwlKy8hPZAm1hajdkYtnoAHBOyszRs/fIPa6bVMungSpbWlRFujxNpilNWVETglwOb2zUwZNYUqfxWCYDpqgqMz0Vn0In/s0sfIWlm2dm5l3rh5HBo8xIObH2Tx7MWMCo3i1rW38szCZ9DQODR0iEe2PMIDn36AkC/EH3b/gYmVE5ldP5u0mSaei/PTdT8temQ/vfBpBlODJPIJJlROoMwwXA9SS8m6nayaZZe8km1nuof9QRsaFWudbldget9DcO5jqk/KR1SutuuD3REtoX7iaUwcX09pWQU4eUq8QvOWLfT2DfGNK6/maGsrPp+fxx/9ORfMn0sqlWL+RZeTy2bQdQ8jR47k4RUPqYlTACvr+kXrLgDuUEyzXkJhou+E3HA7A8keKJ9w4lh0PDAvMNO6MVyPwjHV+9MMdZ2VUQx4qgs+eFCxz+UTVVv5uNqf6lFgfevy4eOxw9B83HY+XuzzO3a9Rf3cK5k4Ybzrt60pv+31b9Hb2883vnMdR4+24Cvx8/j9S7ng059R71v38bVvXsn4Safyla98n3vvVWC4vT1GdXWIFSveZ9WqPTQ2TmHZsvlUVPjp6krg9Rrce+8GbrllFv39Kc47r5YPPuikvr78hDYWLvwTjY1TeOyxz9DdnaSzM05tbRn33beR22+fS2dnnLq6MiZOrMS2HQxDJ5nM09WVoHKEj5E1Ae5Z+xy/f/o3lLeZvPP2O5SVl6FrOtWVI9i55yP6JM5Nf12B/ft9fO9HN7Et38ozV/2Mgdggpm1R4vHxza99nZnzZnPddf+JIw66phHPJin3l2I7Dh7DIGfleftgM3t6WvjxhVcW/bDbo738qvkVlnz6Gq597TUeuuiiojy7ccoUls2fz9jSUgxNw3QcvLqOLYKhaUVQnMrn2d7dzbTRo+lNpXhw82ZunzuXMeEwHl0nY5qES0rwahpOYUx127AcB08BNOOCa/e8kGkq0F0wjrYs+PBDxUjb9nAxskwGfvhDhVYnTlTVwWIxqKxU+x94QAFvr1eB8J6eYXQ7cSJ85zvDQPq55xQFPTAwDODr69W1pgmGQb4/Sn7kGNANbFtj40bFIK9YoZoMBFTe9IoVCuNPnAhXX61u8Y/W2Y8/rvKqn35apYAX5gXKyoYV8IV9HR2KUJ84cTiX2zShptpGO9h6Yoxo25DMKKZZ14p/+eJy0I0pR1Up6XjOVIRPAYCHg6oNQ1cxV94aPlYaUkSRZUOHm5s9eoQigkTAsrn/kRW88MILvPnaa1SUl6s6OpqGnc1y0YIF3HjddXz2sssw/Kqg4vFkzYyf/YzTp07lsR//mJmf/CR7nn2WKddcQ3DMGOxMBjOVwhsOYwQCpF0S57SrriI4ahSaYZDp6yte4/H78ZWX4wv40fq6FElz2VegtBxeeNolbGpUAV3EJXRcGfbAcaTOiFHqMzQMlWpY9Mv+qromXK4Y8EL7o8a6fSSKHIr0Q2W1Ov6ZL0H5COxwmHw6Rv/hZkZOPA9fuBIzHcNbElKflwjiqog0F1QLqNiw8L9wJ6gKMWQm0kOwagyI4Lh52pnYAIHykQDEug+SifYwZsoFdH38DmNOP7/4k9AMVYNJ0w0Mj1dNlCYOK8B77mOqv7dNJQf3hN1Up6lglLqTtHnVv5dOLNDrSkJefoZiuq007F4CZz+sVFxioygBR/04t10PrX+A+WsUkDdj4C0HX7k77vj+x0vD/w2u/28ujqMk3Adb4eRxiGWpHtLjVWDUdmcKLRvxHPfDy+fBV4JmuAxkITcOhmezCuvJtOoAj6s8Xej0NEEx5qaNrUEuMohnxEgcN69a3AFTACuToePNN4ns3s05d9yBI6JAnAuQsSzSnZ3sefppplx7LaGGBvWnL74sQXM7ANE0sCwc20YvKQHHwU6llOzV7yfR2oq3rAxfKEiJx8DWHGxNMHzK+N4WCzSjyIDqsRhOKIiRSsO+HdjnzAavF03z4IiJphkMjyiquqKmaYAOYqNruhuIGDjiavkcB3IZNI8Px2OgaaoD0HUvmUgf3hFjMDUDj6Zha2CgYQKGbeIYHnQ0yCTQ/SFMTccrDlZ/J56KahyfH0cEa6gDf+lIbK8fA8FGw6OBjYaNAj6W+x3o7rdf3I/qiizAJw5+00QG+3E2r0O//EsQGVQAee6noHIkmmViv/kqTk09Mv4UjIpydENwTMEWneINRNC7j0HTH5FvfA+nJIzu0RBb0D0ajiUYhkpLsE1ByyYRzYPu9+FYtipo5tURB0wth62ZWLaJR9MRx0QMH4YIHq8fSwTbypGMdxAsHYPPoyq1OIBHM9AQNMfCNNNo3iA24NG9GGjEIkfRvX6C4dFuEGaQs9LoCIYniO1+rwY6lplC8/pJ5lPFitOappHMDTOXBWZ0ydwlTKqcxJHIEZZvXM7i2YvZ1L6JTe2buGXmLfSn+5nTMKfIYqfMFIvXLmbxnMWMCIzg5rduZvHsxZw84mSu/tvVRXD2zMJnEBE8ugfLsRRAtE1ssYus6skjTkE3vDiAz80DFzR05IRYyHG3ulEgOYzgQSuUqMNNKKELjREoVmgzME8EHcFB/Z4KOoh/jLUAt+K0CZqHTNTETOcpqylBNC/HNnVQM6WCkoogmiZq4BcNTS/0OzaO4yGX1nBsByebpnR0wL2J7gJSQwFrMbBNHQ0Tj899TeJgWh52/X4vEz89EX+9n5ZIC0G9lFHBMTiO4PFoWKaA7qj5SVtDdJOb3v4BN826iQkVE9jY+j5TR0wj7AujYWDoGrYjGIZGMpuiK9MOus0vtv6Cxy56AtvS0HRB1wzEERzNpC8xxJiyUTi2hseruSIZwevVwBAcHAxNRxAcEbyahm2lMDxBJXF1u1tffgD8o8ibaTTDi1cDbBPTCCJi4UkdxfaE8XrL8OZ6wAhglozGBNC8OOLg0XQct//yuIDG0FxwohvYjlDiAQNXzl3M6ir0FgUdhOmua/9Fr6KrY4Vq3ljuOT43SO+C8rGFzsJt5/jAaPhXCh4VdOddlZBlU9RO6O5EsmUpgK6jxj7NUsc97vmarsC+Zit5t+2OmbrmSl5N93fqB0dT13h0V82EYtBMywUGEM97+e41TUUg/cQTl9Lc3EldXRkPPbSZBx64hGDQj8+nYZrw/vutdHTEaGycChi4cS4gmCZEIklGjgzQ3Z2hvNyD369x3XWvccsts3jssWZmzRrHl750Bl6vh8HBJNXVpXg8YFkaui5kMiaBgA+f1+Gxxx7m+T/+nrVvvcWoquHJzyuvuoqxDXX85Kc/YWvzVhZ95WscOnyInGMxqX48/+sPz3PKuWfw2Nrf89LiJ3j+D7+n4fTJlPsCjApXDv+lEQWwCxWH3f1ZM49mGPxs7bO8faiZ9/7zOZVypAummWVTZw9n1tRQ4dXQdC+WlcdjeDE03P+yjo2OOBa67kUci4QNN699l+ljRnH5pPGMLK3AwiCbz+DXBb+ho+leEBsNBzSDrA0+Q8cQk4yjc8Ob73DzzJmMLi1lpEdDExNHDMQG6e5GHzMGUimckhLwetEBwzQVkH7rLexZs4bjlEJcZJrozc1w5pk4oRC4MYyu64ir49Y3bcKoq1NAOpfD9vlwNA3dMNREguPgFCaUPD4yZgmaDo6jfjM7t5ucO80mHHQwvDrvrje4/AovX/wi/OppE0OzEcvB8Ok4lkPW1AmV2MNKOsPAytkk0gbZjDBqjI6OYJsOtmhYpoY/pKE7dpGcMfFy4LCXM05VhbNEw1WoKSazSC6Ig2ba4PWo0UJzR4vjzysUQRNR8ZUDjmUiHh1NN9BFwzHzajuRRi/xD5NE7T1wUgO2248/svJR/vinP7P29TVUlVcUQSEqCY4LLrqIH3zve1xx+eWIpmHmshzef4DYSy9x2ne+w97OTi697DIOHzjAiKpKEp1deMMhgiOr3fepF3/Hjm1hpVJEDh2m+pyz3WhPw8xksFMpAtUjKfzqbdx+Uxw8mqaICY9HkTFD/ZCIYk2agq2plAbHtjByWTwdLXDyGdDXDR4fDPVgTjoD2x1nxXEwdA3PH3+J1TAJ+4xPoFeMxHFsFfcko1illarHFMGjaxCLkK8ciYit/qUiKmYVG1334FgmGJob2uvF9CgBFa+C+l41AzufQff5QRwVS5g59XnrGrpmqBjXtlyW3KuUj55h8imfjhYBvtcfwvAFVEFaMwnN34HqOTDqfMh0qkJmmte91v0WzATsXAyn3abcMaz0iQqukmrYeRuc9YACyLpfjRV2Rq07mWGs8uFNMP3ZYRb79NsR/2i0D3+ITFmKVnbq/2iA/W9w/X97cRwkr/IIRAPNthHDU5ydQhSgFnEUOxsKo9mWOuc4ycgwoHbZSseGbAYtEFIdmpVXoN2ycTqPoZVVoIXLFRvuOODY2JpGxrTweDxFAOI4DpZlkcvlCIVC6MfNLIsItq3+3LquI/k86Z4eSuvr1WCk6+TzKre4pERZ+4gI6XSaYDCIZVmsXbuWmTNnUlpais/nU9Iwy8LweBjYuZMRZ03FttJ0dDYzZsw5pNP9xOOd1NScRS4Xw+crVR2O7sXjUX/USKSFzZt/zkUXPYRhlGAU8g1x3I5LJ5eL4/UGEbGx7Ty9vbsZPfpMV1Zc5r7mMvL5JIbhwzBKimyq7Q0S03QC7gTEFk2jVoR2TaNOhJCmEQNOFqEFWK5pLBFhMiqsNTWNrUCDCCOBpKaRESGgaYw8blbSK4Ljfq+GCLYLsgvfdxKXnRShQgTvX/6A7NmJ50f3YLUew66qQQuUgGjouST4g5hZoXNbFzVn1eANeV0WXNA8GmKp/7qZNikJe9VkqAuY8kn1G31nyTtcuPxCPH4PjuXgCXhwTDUra2Usenb2UDezDgJgaSqP3xYbQzOwHVuBUk8JaTPNbWtv46aZNzG2dCxpM82IwAiOxY7Rk+xhZt1MDM1wJz3Ub64ASr26F0FI5pM44hDyhhAEy7GKBcrydh6v4cWre4tAO5FP0Jfq476N97F49mImVU7iWOwYfo//n1jKa5uuLW4vm7+MvJMn6AmSNtN0xDuoK6v7J/C9bP4yTv/l6TROaeSXl/2SzkQn9264lx/N+RFjwmMwNIOAN0BLpKV4bU24Bkccbl17K89d/ixh97eqOSbYecQoQUt2KisjraByyKnvTfe5Q6wLqY9nH11grjl5RFdMveZKhCVch6a74MpNESheKCr/VhxVOAY3nYDoEbSty5HzV6q2dEPJtXDcwlYmeEMQbwevHwlWq4EXwDHdKqjuDHWh0rSm6hGobQ+a47K+Th7RDBzxuOpPIWN73eDVwevVMU2HLVs6qK0tpaGhnGuvfY2lS+cyYUIlaK5k1RJ0XSObtYrxotdrIAIDAynCYR+BgBdd17Bth3zeJhTyFq9Tc4COmou0HLxeA8PQ2Ly5nZlzxtKb7qc/FWHqmJPU/8Y28Rpe8rZKBTB0ncFknN7kANNqT0FHI2vn8eoeNWHmTurZbsrHUCpKqCRIyFsCmo7l2Hh0xTR+3HOEmvBIastHFvNmBSm2oaGRyEYZXTKAZnZAcLb72ach+zEEZ6rvqjglZ6jfjGTAjoJnBAooF5bCbJsF1iAYFaAHFZgSB6yjoJWCZxQ4KfeSggzQBqsf7DAc6YO2DsUwer2KSUwklIbWstREsaapY4ODSkuraSpBNe9KWLNZVRnatpXGtrsbZs5UYKQoVdWG9bYFhrHQV27ZomTADQ2Ix0vC9OBoHgxDPx5HoGmqkFRbm0Z9vdDerjFjhuD3Q2urht+vWEmXeMM0wesVLAtEtOK6rjukUjbhsAfb1tB1jUwGdF1obh5uu65OmDxZjfGDHUcYd9rJTJwwgVK37HNJSQnN696jZ2CAb1z1bVqPHcPn8fL4j5Zy/le/BIbO2++8w49vvx3LssibJl/9xtf4yeLb3a/BQUumi3JdaVC1WTRHsV3HT6gJCnznLZOA7kHTLMROo3U3I6UNEBiJtv425JM/R/MGFagpBvaCaErJIWKjbV6GzLnb/f3oaN1bkNFnI0YQyUUx0t2Q7kPGzFL9XM9WCNch5RMhdhQt2Y7UzCCn+fBqomqKxFrQmu9BZizFCoyjf8dulaOby7Hz5z/nlG9+k2B1Nd5wGOnsRKutxcrlGNy9m8rTTsPw+xHLYvCjj6g87TQ1pvrUJI+YJrrPB5qGlUqBruMNhYqgO3nsGB8/9xxTrr2W0ro6HMvCymbxBAJ4vB431UopAW3dwLBN1Xe6BaikJEAxNS2TQosOKUvPymrwlSBmHi3SD5OmgK4htoPm8SD9vWg+L1JarmI9x1YsqogiNVr2Q0UVDPUhVaNIBccQDDrkckl0j1c5jrjpXaDhWHl692+k5vTzAcHOZxVhARQK1aq2lSIsE+vHGwjjC5bjWHkcK4/hC6q40Dbp2bee6gnn4rO96GVloFEE1aJpHProQ04/Z5b6TQcDSDKJv6qK9997j3tXPMzTzz5L/8AApaWl+D0etr+9ltDoUVzy2SuIxeN4DINgKMjP7lzGp84+Ezw+tFBoOL5NJVVBWp8PzXEQ3QXahYmCwrRxMT5Wk89OPs9gIsmGzZuZN28eFRUVxxEunLBe2LZtWxUN83jc46Bn0kggiO2Iin9F6OjooLS0lMqKCjWxU1AiHveMCG3t7ZSVlVJZoQoBOk4ey0ri8fjRdQ8iDrZt4vH43Xo1Oh0dW6ipOdvd5yDiYJqq783nk4RCo11nFvd/6MYLattxt7UiKeV+8cr6y7HRdYOej/9OrOcQdWdfhr+iWsXOlgdNMzEyh9F0HySPKDusTJeyyNpzH5x+uyrwCdD+krLamv7MPyu4pi6DnrUwco4CzOesVBLyvffBlCUq39pfA2UnK8yDhrb1uyde/9rp0NCITH8Wzfc/VyL+fwLX+v/uwL+X/28WcRwkNoTdtFrlsOo6mts54dgqj8K2QNfRwmGIR1U16Hi0CL7F7TgQB3GrYGu6AfkcdtNqJDqI5lEzPJJJoY0eiyRi4DGQbEZVmH7tJWxNUwDX7Vgsy0LXdVKpFOvWrSMej6s2jptwKQBxy7Iw/H7C48Yhuk5HRwfRaBSfz4fP58NxHExTDTrBYJB0Oo3X62XBggVUVVXhc3O5hiIRXn/zTXL5PCPOmko0epg1r6sK0JpmsGHDvYwaNZVEoov16+8BKNo3WVYW08ySTg+yYMGTRfDsOCYiLtCzs9h2lpKSUiwrwxtv/AARh7q6mS4411xgXY7ySlYVDh3HIpnsxUTD1nQcTaMF2KJpzAQaNI1ZgF/TGA00AI6m0aFpvIoC2JamkdE0BoFpQIemZD4VQEDTqOT/Ye/Po+Mor61hfFf1PEiWLMuDJMvY2Aw2ngjYxgMkgJnMkEsuDolJQgaGBAgBAgRDEpJgJjMGEhJIcnNDCAnGIYBszBiC5Xm28SDZkm1JPUjd6qGqurq6pvP9caqqJXLv/e77e/Ou72b93l6rVnUNT1V1d9XTZz97n30YeFvgusamA6azAGRBQAos9zUFASY4L1dwzmMKglc+yyIR5tgJXKoMImyboJkhmJYANV9G66JWBCIBWBUeJQUBtmHDUA1AAIK1QQ9Y206JmUA0gGBtEBc9dRGCtUGIARG+IMs/BUGAGBARiAbQurAV5UIZlmBBhAhFV5BW0lB0BQDQK/Xi+rbrkS1l8czFz2DyyMmoDdZibIzl7q40VxREDxQbtgGXx82qWWgW26JGAhFEA1F057tx45obkZJTqFgVTzZ8y1u3oCvfhfaedhDZkCoSHmp/CK/sfwWPbnzUK830dtfbuGv+XVg6bSm+e9Z3kSllPOOy5QuXo6W2BVF/FHXhOjzY/iAaY42eg/SjGx/F4kmLsXzhctSF67w2pmViUt0k3H/O/Wjvaced796JgI8ZyKFtpYoEv+jHfYvuQ8gXgiA4NdN9YSBYC8EXAkacwA+bzm6Zgi8ECD4IxW6HYTYd0Gp7wBoQIFgV3t8NnCwdKOcgKH0Mbm0DKHQ7kiyHdSQLqBQhWJpzLJsVBIEYcOwdCKIPQiDOBlm2CahZHoEO1nJAEx8DhOohJDZAKHRzWzKd8koOe5LeyiBcECGYGoTkZg6yXaD9t+9CkHoh+gQIsGDYARSLBo4eLSCbVaFpJjZu7MW4cXH09kowTXJqEbcjkZBgmQTLIliOmY4oCggGRQQCPhiGhQ0behCNBkHEZlO2zQ7Q4bDfsWJw2A3H4XlwUIUgABs29ODo0TzOPLMJgYCAkdERmN18CgCgUJa8dANF4xr1IV8Qo+IjMDo+Ej955wUkigMIOyPtumWgpJfRk09jxXu/RkrKorc4gIySBwQBvYV+PPDur9Bb6MfH6S6MjNSiIV4Lk2wvpUC3DKh6GYOlAgBgTLwGgm8UEJkL2ApgppjRjc4DqAKYA4BxFFA3wWOkhRBAKpC+ETA6AVtiAG1LvJy+EaASYOUB/QigbuDfMDAJ8I8BbBkYWO7+m/HMzPL5rCgD68ZGdnQ+frwqIXdNp8JhBs0Aa1/DYZ5c2S9QtV8GGHTPmMHyX8NgoC057lGu/XJPD2/v6mK36KYmrlskCDCEAEpaEKWSD5IkIJkUIEk8ybKAaFTA2WcDEyYIOOssYPlyXt/SwuZR7l+faz2h6wIqFQGlEiBJAgYGBHR3i1CUIGRZQColQFFYibxli4A5c4BIREBjI7ByJbNR4SChtbERVFTQ1dmJ3du2Y/emLdiyvh0AMHbcWLyzbh0OHzyI/a+twWfOP5+fK93A4vPOw44tW7Fn2zYcbN+E7991DwQAgk2sbBsR51SwwQKEis5qNYEHjhw0DEgKhIoOvyAgEgjys1jsgpDaBjTNh1AznoPxcWdBUAeAxHoIpsYu78XjQHID90VkQZCOAwt+AsFQIFgVBjvj5kBI74CgF+EL1gCxJmDsXN7mCwEtZwM14yEI4H6maT4E2AhZJfjKGQhWGYI/DHS9AWHLCvgDQN3JJ2P7ihUoDwygYfp0HPzNbwCfD3JfHzLpNGzThODzMbB2JMPbV6xgs9ZIBOVMBtk9e2BpGgNZy2LmGmDjq0oFmR07YFsW1FwOU6+7DrFx40AAMvv2wR+LcU3pbBrCkf1c1sk24dNKPJA4kGQDLLkIoVKG8OLTEDIpCOEom6hOmsoS4po6BtbNE9l5uqxCkAqAaUAYOYoViqt+zTGgq6gbSEJ48WlgRB3Lj2vrIYyoRyxsgUQRoi8A0RdARcmjlEs4hldMLIw8YRYMTULy4/ch+gMwNBnJj98DWQZ01alSUlEgiD6Ea0chc2QLXLUfu0/zcK7oC2DcaedBr5RBtTFWF5IF26wg+fH7MNQCppw2G7pWwpGDB7Fr61bs2tiODT/4HhAI4N47bkPvoYMoF/IYOHQAPZ0dGBXyI1Zbh/WrV2H3j76Hne+8hfW/+zecu2A+hLoGjn8NA6RX+D8yHGFgDYH/SxwgTWoJpFdAug6qlEGK5JSvAgABViCI9Rs3Yv/+/RgxYgR0l9xyHu5169Yhn88DAPL5PEqlEhRFwdq33kKhUEBfXx/y+QLsSMzxFmZgbZomxowZg3g8jlw+j7a2NuTzeViWBdtRO9i2DZsIo0ePht8fQMUhnwALwSCb09q2iVIpA58v4MSdaei6gqamM/DWWzehUOhGqTQAgAmgQCCKWGyMF7dXKhL6+rZ44JSc9DPbNgDYMM3KkG0WewhZFZhmBaNPWYCW2ZeggjJ6ezfBNkToJR1H/5qAqo+HHW5mM88DDzOY3u+YeB54iM04DQkYu5iBshhgKfepdzEwnnYvEKgDxl7AwLrnFZZ7u0ag+x8EQqOAg4+CiFDs12FZftC0exlMT7sPFKgDWpfCOukeWLYzeP9P+vq/zPX/4RdVKrCPd0GIxYG6ekCWYG/8G8TFSyAEwwyw1RLLVfyBqvHUtFlcKokIEH1DjKycfFqyYbW96u0rnnOB57gthCNs9uX8tlbbKnaY/t6D0HXdY6ndkTbTNCHLsjeiHggEho3EWZYFnyO9KpVKqFQqqKurgyiKw9jvdDqNpqYm+P1+5PN5yLKMsWMZVPl8PoiiiDVr1qC5uRnjx4/HyJFxlEr9CIfroGkFRKOjUCz2IBYbjXffvRPz5t2GESNaoWkFGEYZ7e0rsHDhctTXc14fj9aJ0HUF6fRutLTMgygGANiwba5xuG/fH3HyyZdB12WEQrVIp/dgzJgZEATRYb0DMIwyiEyk03swdtJimD4/BsDcTyM4THW58aFy7c0AZg1hoqPg/NZHwS7QU8CQpgKWKRXBObKqs68PLNZ0hk5QAcuAhSHngXOMcNkAGW7dRgbLlm4hEAkwMy2yRJdsgs8pD0M2QfAJkFMyYo2x6jYClIyC2KgYBB9Lwl1mu5QpwdRN1I2vY+AtAIktCcTHxSH1Smie0wx/2A8toMEv+GGSCVEQYdomAmIAt7x1C85oOgPXzLgGAgQMlAbQGGsEEaG/1I/aUC1qgjUwyUS2lEUsGEMsGMPR/FGWbS9a7uU890q9aKltQZ/Uh0tfvhRrv7gWs8bOQrFSRE2wBn859Bds6tuEh857CKMjI5GrSJ4Z1t0L7sakukk4XjyOlRtXYuXilQj7w9jYuxHNNc04oe4ElM0yBAgI+8PoynchraS987nM9b2L7sWY2BgQEeLBOCpWBUEf/+GLgogj+cNYsf5B3LfoPkysnwgQ0F3o9hjtpngT4qE4goIfQdHnGFA5TLXoqxpM1U5gMGtV2KEZYLdOMVSl3rycV1fRMuTm0SVuN1TpUujideEGDMuTtUw2XyELHoPpSQsdU6ztK4GzV7KhVXIjEB/PBlnFLi6b9Kk7gHA9H2/LCmDOcs71jY1jcy1B5Fwr2/QYefz128DptwE146u1R20Lih4CCTxIxCygAV23sG/fAM44owmBgIgbbliDu+9eAIAwaVI9DMPG1q1sQtXbK2H27HEQBECWKxg7tgbsjEq4/fa38cAD5yKXK6Onp4g5c5oRifihaSa2bUti1qyxiEb5T9y2CbmcinFNcfQpaWSUPE5qnACloiIeiqIzcxyjYnUYUPIYFa3DBCffzXDSdgzLRDgQxJ5kJxpj9WiIjcDTH72Mq2dfiKYRjRDA+bH10Vrk1CKW/f5enHXCTHzpjCUolGWMiY/Er7b8BV+f+1lkHcZcdGSq0YAIP3RHwORjgNx/C9BwF+BvHcLk+Li3oQpABiDEmL2WVwHlrcCo+wC/I/tO3wDIrwA1S4GxvwDUrUDkTG5vFQBfPR/POMqKA6MXiMwBM+AGoAcB1eQk0R/+kIGx38/MdbHIdYrCYZcCrkpLAWBggNFsucw1jceMqXqTuAmp99zDBlfjxgEnncSAfcuWKktummypXF/Pya+SBGnsFGgVESGnw964kaswTZxY/U/u7ubU3OXLGe+n0+zWvHw5kEwCM2dWifTNm/nSxozhjxYIsKNzYyNf6sAA58xGo5xjm8lUSXcnOwojahwTKlGsGpsC8MoEuekWQ1+WBXQngPFjOfc1FARCAfZo0Y0hebK+qvGUK7V35buTWqoeL0NzQ6wyoKa5DM7ATmDMHGc/Hw/wkQVs+D6wcAXnT7pl3Fy2z+0rbJtloYbMg2++CCAdA4JxINrI90ylyOXWyhmgaYEzSEiAoQIBh1UtZ7kv0fKAqYFqJ8LQib8vR4pLtg3R7weZJgjA4L59GHnqqRB8Poh+P7b84Ad/Z7p66rXXIn7CCZzO9sILmHbddYg2N0MggpbPw5AkdPz+9/jUvfeCLAuDe/ciOm4cYk1NEEQRfhAEucDlmfQKsPo3bFY1agzw4k//3jDr2z9itjqfYQPV3EDVNDU/CMTi1RuDCDjaCUyYzN99PsPmWpdczWVJ7/06MO9cNtfy7gkDVoSN9FwG2rYt2JYBn1OWSRRFz4R1yjlfhV4qwB+KIBCuRerAXz0zq6Zp53r/IwJYvWRpisN0OylAjqpJAEC2BTWfgj8Ug5pPoFxIo2n6eRBsALlsNaYN8HXQYIaJnpYJXt6w4Maja1+D0DwewoknA9E4D+A7/3FkmoDPGYAeou4ky+TY2U2FqxvJD5dUBEIhCHGX4SQYEFBx4lw3prVtG5bFZIMsy9i4cSMuvfRSL7Zta2vD/v37MW3aNFx66aX/IcvtKjMFQfi7/QGgVCohHA7D7/d7x83n82hvb8dll10MXZcgyymEQrWIRhvArLLfAb5MCO3e/VtMnco2prpeckgn0YlnwemLINi2Cds2PZbbMFQMDHyM5uY5EAQ/iAxnbg1b5s/hsN6WiMIRGetXrMdZd5yFUqaEpjOaEIoR/MZRCGpvlbmetpwl34II8sf5O7ENQAhwIpqtg2yT87PJBkpHIexfATr9KQgOc03TlkNQ+0DRVmj2BIiBEPLH8yglCzjh7HEgCvA/mGjCNHzwhcJM8PwPff1fWfj/xy8yDJCmwjOisi0IpgkKRyCYJuxED4TaOpBcZAAu+mC3M4hGbR1g6BACQVhrVg8D3eQYfHGndil3TqIIMg3Y76+DeN5FnLfh9wNSAfb692FdthSVSgV+vx+iKKK3txc1NTUIBAIwDAPt7e2ejMY0TSQSCdTW1kKSJNTW1nr71dTUcE4SgGAw6HU4lUoF7733HhYsWABJktDc3DwMgAPwJOiRSAR+v4B8/rBjeLUcI0a0epIZQfAhnz+G9vafYOHCeyBJCaxa9a+48ca9iEZHOceqIBCIQhB8yOUOY8OGh3DhhU+iVMoiEIg4HZMflUoRui4jGKyB3x/xRiJLpQEEg/Hqb0U2zEg9isE4GuFlwEMDg2sbwADYmVkFUO+s2wZgFphpVgD8GcAkAE1gI6mnnHZ9YAfoKBg8A8BGp+0g2NSqEV54DDeTPFg2UOjKIRAJIDoqyn98DiayTRuJrQmMmTHGk3L7gj4GzSaDa6Aq+w5EGYwDgBhwc/p5P7NswjZtBKKB6p8rkXesoTpDO2yjqBchVSSMiY2BZmkI+8JDWDcdpm0i7A/DtE1E/JGqfJxYPh72h/lYZHsu0K5sGwB8gg+b+zZjTvMcpJQUWmpa0DnYiUc2PoK75t+FltoWhHwhmLaJhkAARmYz9JFnwhJ88Ak+BEURFtnQbYtdwa0yTCHg5CaJsGwDAQGwIDrp6DYCoh+mbTi50xYCog+GbSEk+mARQScLITIRFjkXVUcQFbOEgD8MgwSEBIJWSOGL3/guOg51IBKJYMzoRjz3859j8uTJ+OpXv4oNGzYgEo0jHo/jqScex5lnnul8qTogBnDw4EF8as48XH/dN/DUE49XQbVRYmk2UJVeGyXOS/KFq2ZW8RZmjKwKz72gmvP1vPZu3+8ajggiAJHLJs26GahtBSoFDsIrBSA6Gnj3eqDrDeCyV4HmhbzsOj9/6nZAywGNszgo8oW9zwQIQOEoUNvssNvbgFEzgGAcqhWGrvPT5vMJME0bfr/oPJPctyjO/RuPB2FZhMHBEurrI/D5RIiiANsmz6F5lmPAFosFIMs6FEXHkSM5z9hq+fKF6OuT0NRUgzFj4ti1K+WZUz311IWI1/nwk/dewB2fvgYRfwgQBMeISYBpOwGapqA2UoOKqUMzKqiL1HA/RwSfIGJ3soPl5ERIy4PIlPKY1XQyLLLxceowpjROQDQQhkU2imUZNaEYHnz/N/iwazsev/x2zGyaAkBAspBBRs1j4YQpEGwZsIuAWMO/k/xnIHYhM8x8A/F6s5/Zav94wOz9BCgGQBpLwI3jwOAKoGE54BvNxzW6ACMJhGcya+0CcQAgnQF6YDwQmAhIaSAwrlqTatMmZp3j8SpQBhg8yzKD7VKJp2QSmD+f2w0MVIsENzayXPzkk4ELLgBuv50Np8aPZwS8ciUjWVUF7rwT+O53gSlTgI4OoLYWpXEnQpIEFItATQ3f4prGuN/F+7t3A5dcwiZTv/xl1VB62TIumeTzsXz8scf4lKLIl+bmY4siQVEE7/Fx/bUiETafevhh4O672YyqXAbGjrIgGAbnh/8HOBo2MYAOBqo+LKIIaBUgMQCc4BgmBQPAkV7gxBb+Y5BLvC4SYtA9FFATDQftusnAnsCDdqYM6EVmmR3pKQIxJwVEr7rIuwNutskAORBnsLz1IWDuvTxwZ6pcVk0MOO01oP1eYOGDQCDqXIuTu2kbTn9gw0sjATHANlSgthW2bSO1dS8apk+H4Pcju2cPoqNHIzRyJHY+/DCmXX89QvX12PnII5h23XWIjx8Ppa+PDVlvuAHx5mYYqsoeL7EYyv39SLmGqvfdxyDdAXKmpqFSKGD/L3+JU7/6VcSamrztwRAbXnkpfNv/BhzYBXz5O0B/ompyFR8B9BzmMqAv/pQBuFwYbpo6spEl35kk10b+/A38/WplNtwyDaAwyKx33Ujg8H42dzUqwGv/DvzLV4BQBFbAD10tcJpcKOqBYsEXgC8QYnZ+CGDmwSwmaAzHUKtx8lyIoh/+cMzJwd2KxslzIIoB+MIxkKnD0ErIdm/zKpokP34PoyZ9CmaljGBsBHz+EEy9jFAgBnvNagjjT4Aw/gTYWzdCvPAyBl+uNFmvgIJBr6IJbJZgk2Wxd45besqVgbu50boOhEKgdBJCTS1XRRHEYQOzpJZYNkIEhCIQwK4PtpOK859JwQuFAurq6ry0RlVVvfg3Go16BJGiKBg3bhxkWcbmzZuxePFiBINBDzQvWrQIxWIRtbW1iMViSKVSXszc0tKCcrkMXddRXx+FoqSQy3WhtrYVgUAE8fgYENlQ1Sx0XUF9/YmwbcO5bh90XfGqsESjjXj33TuxePFKp3JKCcFgzImVXZkK4KoQ2FQ2ha1bn8WFFz7uxdS6LiHoSK2p4kNpQEV0ZNSLE8kmvHXLW5iwqAmzrz2V08tcDxX3DCRCgOurYsE0BJQzMnyRKMRgCIXjBaj9RUxYMAaWKcIfFiGKBNv2QYAFTbKR2JFB85nNKOfL+O3Zv8XNh28GCLB0C5ZuIVgbRCgWwv/k1/8F1/8fv6hSAVXKgCKDSgqEsU1V0FtSgEAQNJCCOP4ELp0k+hiECwKgyECcc46HlWAKBFliVDsCgi/ANYt1HUIsxu0GswCIza/mfwZCQyNgGtD9AU8i44JiNz8agMP2sLRlKGi2LAuWZSEYDKKvrw8tLdX7yd3HBc/79+/HxIkTPWY8kUggHo+jvb0dCxcuRH19/ZC2GkqlAYTDdfA5ckpBEGEYZU/yLQh+2LYOUfSjr28zRo8+DYDgSLxdSayI3t6NWL36atx66zHvOL29GxGPN6G+/gTIcgKx2BhIUh+KxR7U1jajvf0hzJ9/F2prW1Au5xAO1wHhOlj+MJtvgEEuwKWRloOBcR2ACIBuACsAPA7Guikwa30PGFyvBzAawElgMG6BaxQ3g2sZz0GVvXbC4qEZtgCYzY4XNecLA0qZEgLRgJdPLYhDFAYVC5ZhIRgLwrYYdI8+bTRCtSGQzax0eEQYYkCEGBChSzrIJgTjznfvE6BLOtJ70mg6swmiT6yCdVGAZVjwhXywBAuWz4Lp5O0GhABkXUY8GIfl5Om515QtZTEmPgYmmdAtHWk5jYScwFktZ3lA3Cf4PLb3vkX3YWLdRJhkwi/4YRGDGc3UEA1GkVEyWNe1DudNOg8tNS2QdRlSRcKUES0QbMNNvWLTjek/4rIPIAZ5vauBkWdyneJZK/n/SIzA01BmNvBIbWwi/yKmyiUoQqOcANMCdtzEbppqjzOiew8Qn8x/9noR8MehaSo++Ot6XHzpFRAg4Nmf/wyvvvpnfPjB+3jjzTdxySUXw++Mlt9863dwrHO/U+KoBYYt4NzzF6N1/Hg0NtQxuLYqHPi67DN94i6xdQbYhW4OgN0yTENzrd3Awqww+ywngKZ5DrtsccAcGc3LsDnQzexmJnrrQ8Dc5cxIS8cA2QHwShKoaXKcn+/lz9A0nx2kQ7XVwPzD24HZNwEjTmRmTC/yuZxrUswoZFlHNBrwgLIoCpCkCmRZx4gRIbz++iFceeVUpNMyenslzJ8/HppmYvfuNM44owmRiB+myTmUx47lsWJFO+6+ez4mTar3gqxbb30Ls2ePwwUXnIhYLIB77nkf9967CIqiY2CghMbGGE49dRSUcgX+qIVYMAzTZvBbF62Fz82TFkTOPQTgcwA136M6NEODXCmjMV6PeJCN9/JqESOjdbDIxt5kJ05qnOApg0RBRDgQhCiISBQGkFYGMTo+Er92GOxIIAhZUzF19GgItsSAV6xhYAI433HYWbar9wSVuXcpbwb8jUDucaDhXpZ7k1FtbyuAEOH9xTiQ/iYw+mHA6gcGnwRGrwSEICAEWHZu53keXQhURODIUXZavusupoddYOf3c2DP7l4cKIfDVdm4onCb225jZtrvZ8D92GMMoF1k7FStwIYNwNSpvN/evcAZZ7A8/MkngZ/9jOsVtbRAnjQDkiRAFBmDu6mwnZ0MlO+6i6s2tbczAR6JVNPCXUNqw2BwfPPNQGsrsHUrY/tRo5i5dlJ5IQh8eUePMjsei/Fxr7yyWj555Urg335twe9zTAuLCku5h76GKlAE8EEtu8pKV/RqRZFwsFphpGUsX+yIOIPuiU3V2k7uy0md8MB6bxo4cQw/g+7AsuADSv2sfomNZbWLbXAfsOVBYNHDfG+5DHaiHVh7DXDJ73mAjWzuVwJRlpLrkqe4w86ngU8/yV+We4+SmytrMbD/2+3cv8h9oLFzYSGIYncPDv7bv2HaddchWFeHXStXYvpNN2HNZZd5pZn6N2/G+PPPhz8ahW1Z0AYHEYjHvXxqMk1YhuHlbEdGj0YwHoeuKGwSViohUFMDs1xG28UX45yf/xzRsWMZpF93HeomnjDcdbpxLJDtBxqbHBk3+HMIAmDq1c8FYmWQaQA71gNdB4F/uZZrJP/hZ1wP+azzuNZysgeYdEr1x+86ALRMBJQiM9kXXsWHrK0HinlYzeNhVsqwbWM4KA6EIPicQQPLgGXq8AejQ/p/t19wc7FDEAQRpVwC/lAEZqWMaN1YCKIIo6JioHMjpP4utJ5+GWIjm1Ep5eHzB+ELxTyQamgKAoEIhHyO2X2tzKx7IMBstc/HwNlhrclRWgiCwLFwvBZeqqNtcVxMBCHEhl0EsEeRIIISxyGMbQbkIse1C8+DUM8KTlJkHqDQOU4ygmHk83ls3LjRA8O6rsPv9zuPgshpjj4fFEVBPp/H6NGjoes6wuEwBgYG0NLS4vkNqaqKjz76CPPmzcPIkSP5kXH6bwAYHBxEOBxGJBKBYRgYGBhANBrFpk2bsGTJEhSLRdTURGDbqkMGiXC9gVwWmfOkAzDNMhKJLYjHx6GmZiwOHHjVq8Jy9OgHmD79i7BtpmZc1przq/m+I3Jl4Rb6+/eiuXkORDEI9iOyvXjaNMsIiiNhG9V8cpe0sQ32+BB87NfjKSNNVku+e+e7mH/nfNRPqodZMfHWTW951UY+/aNPI1zPVUgCkQAqxQogAHJSxuYnN2PxysXwBX0wygYs3WJFpXNusghmxQRZHJOGav7/BFwLgjAOjDGmYIgzChFd/r95jf/Lr38ucK2BZAn2h29DXHyZMzoXghCOMGsdr+XcG0EADQ44gPjTEBoaOXzTdQhB5yZzR6MJIEUCTANULEBsnTgEYMcBQYT11l9Ae7Z6TLe19jVYl1yJfKGAQCCAeDzuHLI6omcYBnxO5+d2HkTkybmHGpN90sRBURREIhFPChMIBBCLxYZ1Qu6xTNN0OjrTyROBw1ibnkmDO2o3f/6dCASiMIwy6utPBHcSlsMaEEqlfoRCIxAM1kBR0ggGY54RGiDAMFRnnYRYbAxMU4Ntm3j//e9h376XMG3aUixZ8guYZoU7u2gDukUfHgSXQBoLvtnHAlgLzqX2gwHxIIDp4HJKAPBDAK8AWAbgF2DGews4PzsMBuWeAzg41zoOBuoVZ66A865Hg8PkCoARqg69WEGlWEGoNoRgTdBjokv9JWx8bCPOf+R8BKIBiEERpmoisTWB2pZajGgdAUM1oMs6QiNCSO9Oo6apBvWT6j0G2wvsAAh+AbnuHOQeGa0LW5nh7y8hNiYG0SeCbIIe0uETfNBtHaIgwi/4YcP2zMlcibhiKIgFYo7zJQ3b7tntCIBf8EOA4EnM73j7Dtx4xo2YWD+R870hYkPvBoyJjcGk+kk4VjyGxzY+5km9RUHk0knKUWZLww7/b8r8wXwsPYPgAzJbgFFn8LltnYGlQIAvWmWDXTAuBrjMUX430HAmS7S5Iddk7H8fGH0OA3IiBi1WxQHlJaDmZMC2sH3rZvzrNV/Hsa4jw77v7GAW45rHo5zYA7+RB0aeiu//5BE0NtQhV1RRKBbx1GMPV1kfoCopNEpOHjSqgAVgYBusGfabOp0HB8y2wTLvUTNZzhkd7Xwkw3H39PMxAlFmq9LbgIZTAH+EZZ+CI5lQEoCucjDuDzmuns5JCew+qhe5tEYg7gwAhIF8J7DtYeDTT3Egvn0l5EW/9q7Sdty+LYvnqmogFPJ763I5FQ0NMSc90R3YY3dxyyIPnP/xjx/jiitOQSxWlXz7/QLKZRO2DUQiftg292/ZrIpSycCDD7bj3nsXIVbjR22jiIySR74seWA46AtAN9kfoDNzHCc1TkDIF4BP9DnmYzxIo1sGfIKIXKmAUfGRsMiGZVuQKyXUhGLwiz7oloFMqYDfbHkd1555GRrj9QgHQlwGybLQLw9iXO0or2+O+S0IRqcDeB9xzMUcwzKyHDD8ENBwN+Cf6AT+QQAG50iLIUB02UgCzG5g8AkGz2IULCO3qkDdLvHvLMacHs/kuS07+2tAKcQ1gt94g9HkwoUM4ly5cirFIHnvXkayosisNRGvNwzWWNfWchHfoc5jssztH32UCwYDTD3X1vL9fscdrOMePZqZ8koF+M53ID/3IhSFvzMXXAcCXGP4nXcYKD/3HAPi3l4GwK4CffRoBt+PPspA2SXHb70VqKvj7aoKHDjA0m83L9t00mXdR3DjRuD00xmcX3KRjS9fY3s4zH0U3VJPHrvvvtx9dJO/x0gIONzDFUFG1zvSeufBNq0qGy2AgbQAeCkCNnE1EZfddkt6jnaMsMgc8tw7g4cAp3qIPu53nMCcB3EcFqvYw94LEFnREojxoFlsHLwBHkEAlBTXU3fTT1zPBatSPZc/AvxyHHD5nxmo2xZI8KFSMlBKJqENDmLk1KnQCgVEx4yBls0iUFMDXyiEUjKJAy+8gFO/9jVERo1C77vvIj5+vFdq9OBvfoOp112HzPbtyOzahTn33w+ybdimCTJNGKqK8MiREHw+ZHbswKgZM7DtgQc8efmCB348vF7yl251XOn9gCLxd+Tzsfv02j8Cl3yefVBCYaCsAuEoj8RAYLAcH8FMtFvaaen1DEZtm8uQjp/Myz6RgeqODUD3QeDqG3mfkgyrvgHwsfRb6u/ClEVfhi8YgppPIxCpQTA6AhUlj2z3NjSddj7INmGZOnz+IGyTQXcwXu+V8bRNHemDH2HUiWcgEOLYkWxzWFzIxmexYWw5HJl4vHZMVV5O/P9EIAcUCxBcl3bHrBfFAkiWII4/gcdX3OfANCEEAnx+APbbb0KccxYTScEQhECQVZnvvAnat4Pj2kuuBPnYe0gIBBlkhyPQ/QG0tbVh/PjxONUxt/P7/fD5fP9hjCsIAmRZRldXFxKJBJYsWeKlT4ZCIc9TCOAY+b333sP8+fMxYsQISJKE9evXY+HChZ7Cs66uzpON33nnnUgkEmhuHgtBsGCaZQCcN11T0wQ4edGC4INpagAIPl/QkX2zqkMUuZoNE12cVy2Kbj4yG5a5MXZf3yaMHj0doVCN09Uz4GYT4EewaNG9qKs7EYODh9BQexoTLETQFZ1jPL8I27ChDqoeEQMARsmJIWtDOPTGIdRNqEPrwlbYlo3C0QI2PLwBi+5dhLqJddW4EqimHQoCKkoFoZoQLwcET3mZ3J5E05lNXj9mlAyEakPwhXzwD02j+R/2+kcamv0ZnBL6FwB/GjL939d/9fL5gVCYAbMochBhGrDeeg1CLM4gGYDLNNP+3bA3fshyJAjc2ZLNI6WO5IP0Cq/3ByDE4rDaXuWgJRoDKTLItuC76Ar47/oJfJddBYgixMVLAEFAbW0t4vG49zCWSiXk83lUKhUEAvzAmqYJ27ZRKBSwZs0aFAoFtLS0QFEUBALMfvf19UHXdZgmd8TxeBw+nw+2baOurg7hcNjLcREEAYlEwuvM3BFEgGCaqrPehmGUUalIsG0TwWANlix5DnV1ExGPj0UwWAPbNmDbJkyTR95MU0Mu18VuowDi8TGQ5SQ+/PCHUJQ0RNGHeHwsRJGd14vFXif3Oo4lS57D7NnX4cILn4YoBhAIRDj/hSw8CAbJj4KBbhDAUnCNYQKQAAPrRgD9YOA9AgzGlwJYCWa1b3L2iYAfHDcGCgLYBK5DTGBpuBtTxcFychHsPN4PABZ5HZb7u1XkCgLRAOom1mHJL5YgGA/CNm2YZRMgoHlOM2rG1UAQBYRGhBAfG0cwHsTo6aOx9WdbvSdfEAVPElTKlJDvzqO+tR5jZo6BoRowyyYKxwo8suiMYPoEH44WjmJQHfSMyYZ60wbFIGRdxnff+S6OFY55wNrxt2aJtsBztz05SFCAgJUXrMSUhinwCT4MlgZBIMwfPx+T6idBFEU8tvExzGmeg6ScRE7N8XdCFhBrBcKjq6AyUMM5QIII7LqTXTBHzeF6jttvYjbOH3VAow9ePrOWA8ppYOftvK1xflVeTRZvC40CRp3FTplKN2AqQHYrM+XhRnbaFP2AVcHTz/0aV1x+mXPLWyy7FICnn/4pLrnoQvhHnghERmHLroPYtHkzbrn5Jt7HfblutQBQPMYBcbCmeiwXOENgUFzs5uDVclhqxyCOayH7OfcRxMGw4ATRvhB/btvgPGvbkfqOmwsMHoDHNJHNJkeCD6ibxAy1IDo1j2V4TE4gDkQdFqx4DHj/W0DhCLNlHa8w8N76IDB2jgdKuO+xYZq2E0gQIpEANm/ug6aZGBhgKbgb6LBElw3KXBM0SapAFAVcffVpEEVAUXRIUsXZpiObLSMYFHH0aB433bQW5bKJxsYY+vokvPFGB1asWI/GMREoFRW/3fYmJo8aj2ggjJA/AL/oQ8gfQCwQxqymkxH2B1GxDFjEJjaAAIts+J3fqrGmARbZqJg6nvzbS4gEwrBsG5qpI+wP4TdbXsfbHZvw221vIuwPQjMqOJZLYcV7vwYEQDN15NWi883YwOCjQOQs54tKVVlnu8jAuvQO4G9xmLQsYHSzqzepgK3x4I+6kQG5bxww8na+D8yUw2aHGTS7tb0Fl/kyANLZBE0Q4ZX2CogMfFMpBtYuMHbzqseNY4S7cGGV5v3hD+ElI2/ZwnRw1D0PqgjV72eU+8orHHy7kvFIhNHy3XczUx6NsmwcAJ59FoIA9PczKFYUZxzKAB54AFiwgJlk22ayfcwYbv7sswymZRmYM4c/zvXXM5E+Zw4fPh5nYB2LMbCWJMdrTapetvuxFyzgy7znHuCaZQShonNOtE3MXNsOKw0n1UYAs9OHjzMrXVQYYIWdwbxJLcCYkbyj7iQUiUI1f9sdeANxDeMjPXCcmIBYhEG1pgPHU1wbGeDBL1eiLfhY9fLeDYDc46SYGKxm0SWOPVwwLviBERO4vxD9PDgXiLNaxgXOjrkooqMc9YGzzjZ5YA8in0Nw8sG/vBcYNw+oSJySIh2FPxxAoKYG0bFj4Y/F2GzMsqD09qKSz0P0+3HghRfQs24dDv7mNzBKJYydPx8N06fDkGUc/M1v0LNuHQ688ALGzp+P0264AZVcDpbjAh6IxxFpaICl69j+k58gOnYsiAjTrrsOrRddhGk33MBeN5dczcD6kqv5OxdEvnf/9EtmpSFwvvQFnwPyWZaCF3LAGy+yNNzQga79nFvs8zHwlvPAVdcxk+0Oakw8lX8/o8LHB4D55wPLbmKA6Q5GCAJIENE4eY4DrMNQ82n4QxEYZRkgQrZ7G4qpDkAQYGglDHRuhKGV4AtFYVZKMNQiEvveQ0XJQxB9GHPyQohigM0sRRGiPwjL0NB/qB2C6ENsZBMCkRGwbQOlXBJk6rD0MqL147yqNoJpgSwDcCobUFkFinkQBJ7nshBsYml3TQ37AA1mPSYbTj49bGaxxU+fD7v9AyaL5CIbApdkiBd/FuKy6zmuFQQG7X4G5QiFOAcfwMKFCzFt2jQEg0EEAgEvFvU5yg7DMKDrOnp7e2GarMAbP348Fi9e7Py3DI+3JElCb28vfD4f5s2bh40bN4KIsH79euzfvx/t7e2IRqPYuHEjBEHAZZddhttvvx0+nw+tra0QRUKplHZYapbq67qCauQnQNOKniKTyIbPF0AgEAMgeuyyrsvw+yPgCjp+B1izqzh/hvkIBrmNO9gtigGMHHkiLrvsBQSDcRCZqK0d73ntuF2HWTZRKVbw7t3vIj4mDl/QB9Eneua2+aN5EBGmf2E6Ws5qweCRQfRt6kP9ifW49PlLUTepDrbFMaibVggwgIYIBGNBHmNzK9eIrABomdeCYm8Ra25cg+KxIoKxIMvDK65u9J/z9b/CXO8lohn/h6/nv/X6Z2KuAWd0znblUARr7WvV0beLr+Q/UQIz16702x+AEK9hIO2AEgQCVYmNaULw+z1TM/ELX4dQW8eSnHCUTQZ8frhlDWzRh8FCwcsPGSrTdpnkT3YoqqriF7/4BU4++WRcdNFFUBQFmzdvxoUXXug97K7JWSzGuaDuesuyIMsyZFlGS0sLRFFEpVJBJpNBS0uLA7oNp2RWzGGuh5YXYNMGt6SAK32xrIpTNstyZDU2SqUMIpE6+HwRyHIfurreRiKxFUuWPIdC4SjWr1+BhQvvQU1NE9fpdPJP3BIFQ8uSUSCCLl8QPYKAOWCGOgAG2VEwk+wHd139YDAsOtvc7swC0A7gGgC/B7AQPJ5/FMAjAO4FMBLAHQCecNraYNDtthfBLLYKoEVh1lqXdQRrggiN4PvFtmyvA3NH/8SAyLnW/mrOtW3Y6Nvch5rxNaifWA8y+XdLbkui6YwmiH4RSr+CcF0YsAF/xI/Bw4NQUgqa5zbDH/RjsGsQSpKXrZiFAXUADdEGmLaJglaAZmjok/swf/x8vg8EEbqlI1/OIxaMISWnkFJSmNs8Fz6Rc6lnjZ2FpJzEoxsfxfKFyxELsLmZVJEwOjYa4pCaj6Ztwif6YDqSqIHSAH7w4Q/wq8t+haP5o5jecCK74LrfnitBtFRH+k2AlmXwndkIRMYC8UlVYEgmkN8DRMYB4THMVtfPYMYvtw2om8FAnAQguwmINnFZifZ/BRb9hQE4OQxPbifQcAbgi+HBhx7Gm2va8P4773D6hfNf9vvfv4SfrHgQH33wHsaMGwe1VMKicz6NV1/5EyY2j8L9D65EIZPEUz/9OQexRomBqqUxIzRiEqqjCMJ/wFSDr0XLOs7krOSAqfKcnECmUmBA7l7YwG5g7Bl8zvIgEK7j7/Ov3wbOuJOdzdUMs1W+EE9u0O3OdQkoJYFtj7Lc0x8FfjejmqedaAdGnw6UBwBfCEpwImRZRzjMYMHvF3HkyCAefngj7ruPy29xqSwRpskMtG3Dk48LAnDLLW9hxYpzEYsFvfXcHzH7HQiwm7hlcR+8ZUsCHR2DWLBgPB59dKOXh93aOgInTq6DKZiwbAshfxCmXf2T/zh1GKeOmYSQP+gpMWwH3IgOY1jSNc8ETTM0xEMxBH0BfradNoIAlHQNT/7tJXz5jCVorR8L3TKxL3UEy9c8gweX3IKZTSfxs13IYHzdCER9GgTRAaLqRiAwBghMYZBt9QNCnJlmwcfg2K17TbrzexeZvRYiDKLFmDNYtBmInMHr2fUOrLEx+H4vb2KjMyEEGEc4JzsyF7DCQE6u5li7NO5QNta2OfG4VGIg7ZqabdzI4PvEExkFA4x0bZuTpGtqGIybJrN/ssy0sptjXSwyuk2nWbPd2wvMnYtioAHXXy9gwQLG9KkUk+Y9PQy658/nSzh2jMG1S7JHHG8ty+LU8SuvBC6/HPjxj5ndNgw2KyuVgBNOqFYJG1rOu1Lh9rW1VXxUG7Mg6EbVbCzoZ6Bb0ZmNHpoXXa4weK6NOYNjVAXQbhun7BZax3EOd3cfMKmZQZoAloc3OykXQ6Xkh3uAljHMYNsag2cy2dm/ppVB9WuXsnfC4hd4oMznDLoRsemia3IYcP/tHDYbGN4HeJyNk74i+DiFxB0QzOyrpqTA55gkPgCceReQ2AAkN8D6zHPsFux4thilEgyn1JNtGPBHIpxXLYrwBdgIyR28t8rMDop+P8RgkNPsLAu2acIXDHKZK1GEWS6DAJQHBuAPhxEZPRpaLodwXR1MTQPpOqINIznnekiNavh8QLqPiROfj4mOsgpEopwz/cdfAOdeBjQ4Lnj9CWDdKgboo8fxvm7cXcw7udtXsxmaZfFx/U66jivnTvcBb6+C/fkbYbvu+p7JmCPrrh8LQfRDV4swyjJiI5tRyiXQs/NNjBg7BeNOO4/jHFOH1N+FeEMrfMEQLL0yRGY+F8HoCO870ofkaQdCPBhglCVvXTAUh6AbrK4krvjBxBBAaglCLA677ziEplbWrwkCKNED+6UXhses0RjI0GG/t5aJqPoG/vyijwkoTQOVZEelabA8fEh+t2eYJojQLRPw+VEoFOD3+xGNRj2DMfceMU3TM+6VZRmhUAi6rntqy8HBQWzcuBHz589HQ0MDjh8/jlgsBlVVvXiWiGAYBt59913PZ6ilpQWCIKBQKHjLDOh16LqCYDCOwcFObNz4KC677FfI549CknrR3DwXPl/Ai2nZhIyJq7ffvg1z5tyM+voTHeabUKlIXpla19AsGIxDllNQ1QxaWuY5QN5y0j8HEXTM6ljFORoiRQELGDw8iFJ/CS3zWpi5Nm0Ue4toX9GOhfcu5JjRIXcEUUApV0KsIcbg3CcguS2JUaeMgi/k81IVAQbRLHrheNPWbfhCPlZSqjrio+Mgi2CUDeglHb+Y/gtc9epVnmLSH/IjEHEZ+v95r3+kLPzfADxIRIf/URfnHDcETlu9EKyk3UNE1/xXbf6ZwDWZJo/iDckVQSQK+903IS46H0L9SM6zdkfuTBMkoCp1AYBCjo3Lzr+E19kWBIggv98xRTsOsWUCd2K1I9hRcdF5gD8IBPwQAkHogog329pw1llneWC4oaEBALzOwJW3xGIxvP3221i0aBH8fr83+tfT04N4PI6amhpnFE33amMP7bBsp34kAO+48+fP94zQrrnmGhw6dAiRSBijRo3ET3/6JCZMGIfHHnsGL7+8CkeOdOHll1/E+efPRTTaAMsysGvXPtxxx3chSQUEgzH86Ed3Ye7c01BfP3GICZqIt9++A2eccSPq6ydBEASUSgPQtAJKpQFMmHAO8vkuSFIfmpvnwu+PQNclT6JDZIP8UZg+PyqCgDzYtIwAzACwF5xX3QtgLoA8ABmcQy2CQ9mjzj5zwYDZQtUlfDeAKwG8CmAegJcAfMVp8xDY+CwDZsbnoQri/UoFtmF7zLHo5xF/t4yWC6gBwDIsJLYkUDu+FlKvhNqWWkh9EmqaalDbXAvbsr18GLI5x8U22MTMBWhiUETPRz2INkSx5adbsHjlYgRjnApgVkyIcRGWz/LqOd+z8B7EAjFEHLM4qSKhJliD2lCtB0AGlAHktBwe2/QYli9cjoZIAxRDwQMfPYCF4xfiC9O/AIBNzGSnJNXe/r0eWHdzsy2yYFgGIv4IDDIQEALQLA0jAyEIhsSMTMSRJ5IN5LZyXcX9D3KpiMhYB1RmgP0ruIxEZJxT0xlAdiPnUEebmHEZ3AbUz2J2xpHSgQjYeSvnbQ9uYwabDCC3HaibxYw5CI89+Rz++Kc/4r1Xf4m65lMdtgb408sv4b4f/BDvv70OrZMmAwD27d2Hcxdf4A1SFfI52LaFf1myGP/+0qvDzcr8DqNlDjUwc4ZmhsnEXcTtzHWZ9yNiNjkQAaJjnM1OTmVFAjJ7OPg1NaB9ORsTOZ4I3nkKXRxkGyoz0HOWO8saUDfRYc2PAbuf5ZzL5Aa+zq0PMuCumQDXSE3Ww7BtdvfOZFSMGxeHbXOpLRcQZzIlVCoGwuEAGhtj8PnY5MyyCLFYAIbBdazvvvs9PPPMxejtLSKRkDFvXgsCAa53fPQo52IvX74QkybVo1zmlBSfj8GuWyPbHwD6lDR+u/VN3HbOMoT87AA+Nt6AEZE4NLOC+kgtIAjoLw7i+S1/xnc//SUIgoBIIISefBq/3fYmrj3zMoyvH+vkXI9Aspjx3MDrI7UQBCAaCHMwJ+Xx9S9/FV2dR7hfbByNH698ANNPPQ033fBNbN+yBZGwD/GoD089+RTOPPMMoLwFhxNjcP2N30G+UICmaVhy8WewcsV1EIMTHOATQHW4DvCG70ivAnBbZmAtCLyfrTDwNgcclrseGPieIyGvZdOzwRVAzS/4HC4r7fMB27YBp5xSZaM3b2Z06zLV48ZVa17t2QOcfTbbd/f1MU0cGBJMmSaQz7Mm2+8H/vAH4KOPgOefryLZaJTfhzi4LwVGwDA4uNN1BtGPP86GY62tjPNd3O7zMWgWRWalk0kmy++9lxnqcpnJ8a4uNi2fN48v45MvRamapdXU8P4PPsiq9enT/gOn8KLCn7MvXQW/7suy+eICgSHPsghICoPxIz1AJs8M9IQmIC9xznWvc6xQgH8PVwIul4AprU7uujMiIOjcF4i+KngWXQBcy+qSisSDYm6utTbIz6sYBDJ7gXFz+F5yZK7I7K4qYv5ugO1erobgSssLXcC2h4Az7+ZBQrMMdK5ioD/3XpBtwq49EVbFHGIbQbAd86ndjz+OWXfc4dW2Tmzfjm8/+ig6jx1DJBJBY2Mjnn3qKUwYMwZXnX8+juk6/KEQAoEAfvL972PB6afDHw7DUBQEamrw4Ucf4bKrrsJPvvc93HnvvZ56wg+CYBncIYgiM9KGwQDZBb5O6SwUB9kZ3JV5k8NCk+BIwwG3mgv0SnWQ6ZXngc0fMDv+5VtZceCO3FgGPwPhCODI0+3bH4Q9eSqDRHC/beka/OGYpxwhAAIRzIoK2zZglBVERnD6T9WobA78wShSBz5E07Rzkdz/geck3jz9fFRKRfj8AfR3bhyyfjEA8tzIR4w7GS3TFnOuMxE/cLG4d20CEUjk+ug88Ewg0+AqOe5/qfPbcsqA7dRXJ+83INvi9MdUAkLtCAgj6kElhdMs538GqB/pOYuTZQDFIuyGRlgALMti9/REAk1NTZ7MvVAoDDPv7e3tRXNzM4gI5XIZ4XAYmqahu7sbp556qleO1sVK7nFcQ+C6urrqwI7jT5RKpRCLxbBp0yYsWrQII0bEnLRHAWvX3oSWlrMwc+aXYVk6DKOMTGa/A4jZc6jqQeSea6OTP+33QDPvy4Plfn/Iy902jDLS6d1oajoTmlZENNoA15tocPAIVHXAOVYAVPGjZ30PappqsOHhDZh/13zUNNVAV3RoeQ3hhjDiYxgEu6AZIjyCBgQPkKuDKiJ1EfhCPigpBfGmOFegGSwh2sD100sDJWawBc7D3vjoRiy8byHqJ9XD1jmt5e3b3sacm+eg4eQGhOL/c/Ou/5Gy8CcAbBQEYaMgCB+40//+JeJhcAR4EhFNB/Ddf8Ax/+e8LAuoaFXJd/v7PNp68ZVAbR1Ilrnz0HXvH18AAFliuXcxD1IUiOcvAcoqrLf+4nTAIqBXYCd7ILZMAPn8EJsnwG7/gM+z/n0I0SgbppUU+IiwaOFChMNh1NbWIhwOew/uJ+UtANDR0YH169d7ZmdtbW2ora1FQ0NDNQ/QAdaFQgFtbW0oldh11N1uWRbWr1+Pjo4OT1Ju2za+8pWvYO/evdiyZSMuv/wyfOtb34bfH8acOafg1ltPwrx5n4IoijCMEtasuRHFYg+uvvpL+N73bsX77/8J3/hGK26++W5ks8cgikHk80fR09MO06xg8eJHUCr1Q5J60du7EdHoKIwadTJaWxcBAGQ5iVisEe+/vxwAIRCIIh4f6+VcWz4fLEGAD8AoAHcCSALYA451ImAjsi1gVjkFZpy3gsF0jbN9m7N+AJyLnQGwCAykF4DzrT8H5ofCAM523jcDmA8u8yWBpeEQgOLxItZ+ay2Kx4veU1vsLUIdVOGZ+RJBK2qIjY4hGAuidWEr6k+s59rUuTL8MT+boUUCsE0b7y1/D76AD8E417U2SgZK/SXoko7WBa3Y9PgmtJzVAn/Y7xGbgVgAosGDKX1SH+446w4kpAQaY40I+hiAj42NRdwxy+lX+iFVJESDXEf6jrPuQJ/UB5/oQ3NNM352yc+wbMYy+IVq1BoNRFETrMH88fNhO/Wr73znTo+1DvlDsMjClr4tkHTJkaSTI9euY4m2pXJQOGo+g9pT73LyTh22df8Krr148FHO+xP9QGUQiLYCkSZn1NwPjF7kBJlgFthQAFjA6T9lQD7akbzqMjBqobfvEw/fj5f/+Ae8u+oXqAvqnKMsAK+8sgr3/eCHeO8Pj6N1ZJW1mj59OjL9KRzrOoJjXUfwnVtvxde+9nUG1gIYRJezPHdfQ9cN1VY7ztZw/AwA8PUFYs5dbAOBsOPkazKITrSzNDRYAzTO5HxoXxj49BM8sGBqwF9v5cBYlzlwjo5mCfkZd/E8OpqPqct8XXWTgM88xdLT5oXc5pzHHTMzH1Dsht6zCT09BeeyBYwbx/eNrlsIBHyoVExs2NADVTUwenQNYrEgVNVwcml9qK0NoVw2MTjIQf7tt58FQRAQjQYwc+YYGAb7M9g2IRoN4PXXP8Yll1yO2bNPw2c+cxaWLr0CGzfuwTe/uRbXXPMVnH76aZg79wx87qIrcF7tNMSCEYiCgJW3/RCfW3wpzl/4GVz66QsxIlqDNW+2oSFei6+eeTkiwTBCvgA0U8dvt73pyb1BhLpILWwi/GrLX/B2xyb8estfEPL7oVRUTpcgQlYpoPbMCdi4cwv+/MEa+KeMxHe/fTs+Tnfh4kuXYN/ezdizrQ333HMvrrr6SwBVgOh83Hn3D/Avn12C3Ts2YveO9XjnvXase9ftrYKoWjLazsTMEswkl+IyugGxBqASkF7u3D8OM+lvYKm4rTp53lFu72/l0l0+B3R0d7OTl6YxQAaqDPaCBYxSAwGmkltbGaFGIsCnP80gwgXcN9/MFLNbZmvbtmpNLEFgO++nnuL26TTbdB87xscSRQY+TgDs4u6GBpZ9jx3L5Pbu3SzlrlSqaQVEDI5dFfqKFUyyT5zIlxGJcPsbb2RjNGC4zUEyyWr3ZJKP5ZbjfvBBB0NUdGaZ3VzEmhgD60ye2WVXLk7g//VgYIha1BkwCwUBWWUA3VjPc78PGFnLwNo9liAwy30syaB7khP7uWklPufPIxBnE7NEu+PFYLFZIZ+UAbaPB78g+Bw3cAckjprOz7d7nGANVwgoHObqAcUuPt+2RzkFZNujfD+pA3y82BjuM2paAPk48NGdwJTPAec+A6ppBTnA2jIMWJoG0e+Hmkphx8MPo5zJoPFTn4I/FoOaSnm1rb96zTXYv3s3/vbqq5gB4Btf/zoA4Jnnn8fGt97C1vZ2PPvEE1j21a8iOGIEypkM9v3sZ+jv6sIPH3oI58yaBUOWYRuG07X2AaIIKuaBwx8zcKyt53uzogGv/AqeE/fIUUDLJM7DLpf4u3TrYCt5vskqGrDqVyyxL+aAl57l+ee+xsB6yRedPHeBf0NRZCAejfNNtYTl6TR5KtwEfwEABJHzoIeQZDxWanEJrsgIxBpaIPpYOj14dAeKqQ5kjmyFZVZQTHVALaTROHkuRow7GY2T5wKCiNyxXbBMHY2T53jrbZv70qH7umwxFBn2h28DUsEDyFRW4cmpBJGnYJhrVCsyCATKD7JEvDDotOP0MaqUHdUmgEAQwpgmZ5DDByEWh3jBZY5Rr8kAHATBH4TQMAoEBtBr165FLpdDS0sLbNtGb28viAjt7e3Yv38/1q9fD9M00dTUhGKxiHccdZnf70csFsNpp50G27ahKAp0XYdhGOjp6fHSJkePHo1isQjbtqFpGnRdh6qqCAaDaGlpwaZNm7zzALYHwJcseQ6nnPJZVCoSVDWDYDCGeLwJpVIGRDYCAWbPTbOMdeu+A11X0NIyDz5f2PlvlLz1fn8ERBb6+jZD1yUoShoAMHr0dGhaEfH4aLhu4kQ2GhpOwvjx88HlvUxYpKF1YSuC8SC63unC5ic3IxAJIFIfgTqoIj46DlMz0buxFxWpwp47ko5SpgQBAsSAiPzxPNSsitioGHxhH8jidJf80Tz6tvQhPjruMdrxpjgCsQCCNUGUc2V0vNGBQDTAJmqCANEn4uKfXozQiNCw3O1/xtf/Crj+PYDnwGD48SHT/88vQRBiAL4O4F5yegciSv/vHPN/3EsUuTNY8jn4brob4pLPcQft9/OfczTKHU2lDFIkUC7Dkt+NH4I6PmbDspYJEEJh2Bs+hNA83slBeRUoyRCaJ3A5Ar0C+P0QF57Lda8XnsfdmmmCcln4bAsN9fWIxWJob29HPB5HPp/HunXrIAgCFi1ahGnTpmHhwoUAgKuuugoLFiyAYRgIBAI466yzIMvMKPr9fgQCAeTz+WHAfP369SAiKI7Mz+fzYdGiRbjqqqtQW1uLtrY26LqOJUuWAACSyRROPbUZhw7tQrHYg5NOasQZZ1zoScDr6ibggguewF//+lNks1ksWfKvqK8/Ef/6rz9BIFDBxx8XQWRCknoRizXirbdugiT1orV1Afz+iFP32o8qg0dobV2IkSNPwgUXrISuy1i37jswDBU+H+8nQEAZLPnWAHwbXE4rBGaqVQA3g3Op+8AMdQEMmENgIzIJbHwmOG1fAbPd3QBuBdADYAy4pJcNZrWvBIfBt4Ll4POc9T7wKKHSr+DiZy9G/aR6jo8tQl1rHWKjmOksDZQg+kTERsUw6pRRXLLLL3jSnXGfGgdd4jxesgmiX8R5D5yH4vEi2q5vQ74rD0EQ8OEPP4SckgERuORnl2DGNTO8jrKnvQdm2URpoASf4ENLbQse3/Q4WmpbEBSDiAQiiAZ4hNJ0TFHqInUAGDA3RhtRF6rDgvELEAvEYNkWBpQBz8zMdQ2/vu16dBe6YZONTCmDmmANVl6wEmWzjJvW3oTDg4dhkYV5LfMQ8Uc8KRoCNfBMx3Ifo1q72c+AOVjLsmgxBJz+FHBlPzDneXj+jOFGloq77qq2Ac+kzJCA0EiH4fbBY8alw8DO7/A22IBdQd/xbtzxgydQyCbxmX/5BmZd9A3MvegagIBlX/oyNN3EFd+4D7M+cxVmnf4pDGYy1WDafZHF7JH7irdAE2rw2Wu/i5NOmYqZs0/H4qu+iSOpElDTgq9+9es46dRTMXPWbCxYeDa2bdvGwRrZuPbaL6F58mmYdcYczDrzLNz53TscIBwDpD4gvZ1dvusm8WcI1bJRmffsgEHz6bcB2x9jKXnTAmamC0d4v40/YOlobDR/L8VjzucgZrEgAk0LORg3Sgzqt6yAHhyLxsY4VNVAOq3AdNQYwaAPggAsX/4+GhtjSCZlRKN+RKMBRCIBKIqOW29dh+7uPMJhPxoaIojHgzj55JGcKj4ujlgsiGg0ANO04fMJaGyM4fjx7+DRR+/C9u17sXHjNlx00SX4+te/gVde2Y9icSK2bNmFLdu24ebbvo1rvnANmzAKAv7wyh+xedtWtG/ZiFt/fDfqR9bjwgsvhGnbGBWvw95kJ0RRRMQfwtfnfhYXnnwWvjHvX1DQZKSkDPYkO/H1uVfgwpPPwlfnXIaA6Ec8FPUc8+tqanHlFZ9F2azgV5v/guNhCR1HOjEyWotLLr0EEEMgKmPeTB8SyRxM22E2SEUx8SJgdKEs98LQKxg3bjwgBAHogLoZntme2g4Yx7inGXyQa1wPrgBgMiM99mF+b2YYdKdvBJf0agKEWPVeEHz8zFgWA4yWFmagXVBcU8NgxC3BVVPDINgZuEU0ys5i5TKX4UqnmfZ94w1GsuUys9zTp7OW+9Zbuf2mTdzetpkNdJOoTZPp49tuA0HAsWPAt77FDHJDA2P2VIoP7TqEBwLA4cOMz30+Bs/Ll3N5rnvv5UswDG43ahSX13rlFQbglQpLxHnQpgrKH32Ul93j3HcfYJMAGhFnSTfg5EILw0GyaTGglhQGxp3Hq7nXFWeArKIDNVEG2Sc0OWW9BG439FgAg+xMnkG3KA4xOoODdZy0ELmHQfMHN/P7pvncR5IFr8HQUn6Z3QyQgzXVATe3r9KLVTC9ZQUPqJ15F8vMz17JwL3QzRcQiAFxZwBzC/suQE0D790IodgFkImtP/oR1HTauXcJ+4fkV7defDFgWdj//PPoWbcOR19+GZdecQW0TAb7n38eDceOobuzE4Lfj/r6euz72c+gplKQnLiEbNvLyb7xa1/DXbfeiqYpUxCoqUF2zx6QaUJNpQDbhpAb4DzqP/wMyKaBEfXA0Q7gsi/y8u+eZkZbEDjPupj3fHYweRqw7lU2J1OKLBW3bTY/2/YRz8MRZqwbxwKZFAN5o+IwuXDqwBeAhrFsqObWg3ZduMFA2igXUcolUMymcOXn/hVTp8/E6Z+ag4suvgSHOw/Dti1cd/2NuOTLd+NLy3+HK6+/Hx+1b0Fd06kIRGrgj9TiV69txozTz8LMmTNxzXceQihWh0BkBJqnL4YvEIZt6BAEAcEorwtGR8D2cYlZjzxa/z4Ep0SWEItz+S1wTW44IBgqM88o5EBSAdTxMadBghy7fp3zzB2ptyCIQFmF/eHboHyW2XDX5DcQAIoFTo/MD4IgwCLCpk2bsGDBAs/dW9M0NDU1QRRFLx974cKF0DQNoigiEAhg8eLFnuIS4BTHUCiEaDQK0zTxxS9+EZdccglOO+00XHrppejt7cWECRNwww03YMGCBZg3bx4uvPBCfPDBB/D5fFi4cCGCwSAeeughzJu3CNOnz8b115+DfL4boVAtFCWNDz/8IYrFHtTUjPFKzLoDEn5/BOee+wB8viB6ezcin+9CT087ZDmFOXNuhiwn0dZ2HWQ5iaamMyHLKXz44Q8hy0mEwyMQ9NzimfD66CPmMV2Vp0gR2CqzzMF4EN/Y9g2c/8j5KPYVUc6XMf6s8QCA95e/j+a5zQjGgxBEAcGaIKKjolh32zrku/KoG18HQzWgDqoewx0dFUUgGkDTmU3QFZ0VkqYN27BRypZANqF5TjNu3Hcj4mPiHIfewHEoEXH86vtkUPTP9fpfAdcgoh8Q0RtEtMad/jfPfyKAHIDlgiBsFwRhvSAI531yJ0EQbhcEoc+dXPD2P/1FpgnKZWD3HoNg21wuQCrA7jnKnURJ4VIF+RznqcRqHHMGAeKi8yBe9RUItXU8spcf5HrW02axe+L4E0CyxMf78G1ALvI5ZQnivLNBUoFLeQkCm5699RrEwiD8oohFi5jFjcfjuPDCCwEAI0aMwGWXXYb6+nrouo7W1lYA8AzLGhoaMH48P2ylEpsnjBw5chgwX7Ro0bD8ZcuyUFdXh9bW1mGjhYIgQBRFNDWNwYoV9+Dkk4GamiaMHz8fs2Z9FaLoh2mq6O3dBFXN4qqrfoaxY8fhj398CbZt4ehRGalUCX19/RAEH5qb52LTpsexf/8rWL9+BQABpqlizZobkc93o1KR0NZ2PQqFo7BtE4ZRgqKkAADnnvsARDGAUimDfL7L43fgzCeDc6RtMKBOglnmWjATHQFLxwHAEchhlLNdB3Af2ORsDrhs1yvOXEM11vGBDdIizjYAuAWc+aiAc1fGzBjD8m9XihMQUegtwNItkE2INkZZ8u0YjwFgmQ0A27Ah+kQE40He5gwIikERGx/biK53upjRjgYw/675UDMqCl0FrL2JmXJRFBGIBNA8pxmJLQk2OiMTaSWN5y55Dq0jWmE7RiZunrRFFo4XjiMoBj2HcJ/ow5j4GBwvHsd1bdehR+rBmJoxMG0TqqHCIgsr1q/AK/tfwYr1K6AaKqLBqAe4+0v9Xs3rnmIPrm+7HseLx7G5bzM02wJZKrD1ekDrBxrnAsoRXjYV/qaNkiPvNpmVLfVVt8vdnItNFgMR17hs5+0cKPrjzNxYKhuiZTfyL1QzBTj9CcAqc3uIaGkZC8rtRdeB7di9cyd279mHLZs2ASAYlTJ6jx3D7l17sHvnDuzesQMNo0ZVDcycmPb+267FU8/+koF94SjLsesm4frrrkfHwf3Ys3MHrrjsEnzjjgcAMYR/uXwJDuzZgT27d+Geu+/GVVd/gQ2EBBEQA7jz9u9g947t2L1tE1aufIy3EQHxsUDLIngOw1aFmWcXFKtpZuvLg/z5z3uOGScQS7wjjTx3g2rbZPa+cQYbIhmlqgTQUPh4bq3uM+9CUB9AJOJHMinjBz/4EJpmQpZ1VComDMPG449fiBEjQli4sBWyzPWqb7ihDf39JcyZ04wHH2xHMCjCNG2k0woMw3ZSVvjel2Udoiigu7uA669vg237MH36ItxwwxocP17EKafMQjisIJu9E2++eT8SCQW6aWKfkEK2fwBSWYFSKUMzdCc1QcSmNR9i6dWfRzAYRMgfRCwQxmljJ8OwTOxOdqAhWosfXHAd+uVBSOUSfr3lddzxxhMYUPJYfv7XMCpWDzgScgBISVk8t/FVzGo6GY2xenx97mcR3JvHFZdfgabaRthEEGBCECJ4+oXtuOTixfCLfL88dW8Uq97Yj6YT5qFp4iJ8+UvLMHv2tCpAis7n794qcK1rIcLAu+FeoGYp17g2s859r1UNz4QIMPIOzq+GALYC9oGHAAW+930G225/85uMZFUVuOkmBtSxGLPONTX8W6fTbEj2ne8wKF+4kFFtYyMj2MZGdhxXVd5n5kxun0iwFDwW44TpeJzP9cMfVsG1z8eA/Y47YFlczWvBgqoB+RtvMOE9bhwvDw4yQJ4woWpEDnD69/PP81xVmUTv6uI2995bBd5EfLrDhxlkD922eTN/lF/8gj3YDnU6KpKK7gFFWDaD4pMmsCQ86Gc5d62Tg31iC4Po2hjQ188XFwoyCBfAbX1iNV976LGA4WBbQJWtdvsXN1d63Fxgx+PVZ1dXWJmSaHcAswz89Ts8yEcWD6hFR/P95A9zWolbAzc4ogqm597Lx68/BVj8PA/MyT08YPfejcxwgxi4n3kXcMIFw4C5pZWHGZUREaZ+4xtoveginHbDDRB9PpjlMk792te8dSBCuLER066/HuvDYVx++eXwBQLY/8ILePTf/x2nzZ2Lq6+5Bi+/+CL8oRCmXX89uiZNwsiTT8blV1zBRlh+PxqmTwcJAhpmzICp66CJp3CtahcME3HN6lBkOEjWVH5fHGSQ/MaLwIlTgX/9Ot8IDaOB0c3AsU42PzvzbK6RDcFhxiuAC+Rf+hkz36LI5mev/46BvFyo/oxOyoBZ4bzzQLQO0bqxCMbr8Y2vfx379+3Fmhcfw6WXXIwbvvlNiD4/HlnxY+zctgnbtmzAz599Gld/8RqMmfoZiKIfTz/xGLZt+AC7dmzB7l078eJvf4PU/g9hmzoAgugPcgmnisr5s5bhxCIEEkX4LrkS4he/AfGCy/kC4zWgwSysda/zIIXAJmeCacJe/74HxMXWSfDf8SMuywUBpFccYzWnJK3PD5ANu91p0/4BBLJh9/UApgEBwpBt70MwDYglBRdffDHq6+u9WDQajSKZTKLgVMtxtxuGgba2NhiG4bHPbjlaAB4bbZomPvvZz2Lv3r04ePAglixZgs9//vPI5/N45JFHsH37dmzduhVPP/00li1bBtM0UV9fj5dffhl33XUXNm/+CMuXz8Cf/7wXL798t+MVNICzzroTNTXj4POFhjiAExKJrSAyEQjE8PbbtyEWa4SipNDSchbq6k5AQ8PJ2Lr1Wezf/wq2bn0WPl8QDQ1TcPHFz0LTCgAEBAJR2LaFUikHQMDZZ38PgADDKHM5LwsI1gQRHxdHsDaIWGMMoboQRrSMQHxc3MuFvvBx9liyKhZMjdMIQcCcm+eg/UEeMJX6JBiKgbbr2zB4eBBm2WRTtIAPZBOkXglv3fIW3xqj4wABZsVkiTgB7Q+2Y/8r+9H+UDvkhMwKTRv/1K//FXC9QRCEWf/g8/sBTABwgIjOABOFfxIEYczQnYjoCSJqcSe3jNT/+JfFOTZicytIK3OnsP59dgmXioChw070QGxqAUJhNm5wRuSEmhEQJ5wIe/N6CK2TuN51gPMl7fa/Qjh1OsTxE72RP3YYtyGMbYa9+SMINbVAOMKjipv+5nVmPkPHSAdAS5LkSbgBwLZt6LqOYDCItrY2CIKAQCCAvr4+GIbhGZjF43EUCgWsW7fOcwe/9NJLUVdXB13XvTJfPp8Prlv4JwF4qVTCypVPQNMa8Prrh2HbJtauvQn5fJcDvoMYPXo62tsfBJGNV199GS+++DLmzz8XTzzxKE46qQ66nkdf3yb4/WEsWnQvpk1bioULlzvnDmH+/Lvg94chin50db0DSUpAFP0IBKLI54+iVBqAIIh4662bYBglyHLyP/wZJwI4DuAGALMA/AvYkIzAz78fDKxFMLO9GSznDoPrXf/c2Wc5GGgvB8vHTTAAjwIY7+wTd5bPBWdLRgBPzZnvyjPL3J2HpVuoGVPDkm3Ac3UE4Elw3EkMcAktCIDg43rVZDHIvviZi3Fz580IxoMwygZGThmJ8QvHY8PKDdj/yn5seHQDIAKR+giS25MYM3MMYmNi8At+zB8/H31yH25ccyO6C918y9sWSnoJEX8E4+vGIyAGEBAD2JrYCslhYvukPrzR8QZWrF+BhJRAT7EHiq7AJhtPXfgUlk1fhrsX3O2UL5KRklNYuXglJtZNxJdnfhnnTDgHLbUteOKCJxD1R7FowiIERAHC/geBxBtAOcFfmJrg5f0PcqmtUAMDPRfBaoPA6LPZ4TvWAoyay+W7tAwbh/kiwKxHGThvv4nBui8GBGqBUQucYxEDSjHA7XffyexEzJGXD3X0Jv5T4tM7rLqt89yVXLpKqBGTmHm2KkAwBlgVhLUULrnkIu+ZnXfWQhw7fhwAcPnll8IfjACWjnnz5iCRSMA0DHYOJ+K70zb4BKbK9bDNMkvivZOKHPAG4/x51H5g8wN8fdFGLr9jKE6wTZw7Xc5wvvXJS4G598EtywI1w4G6L1hlw4JxINbEwbbgByKNCE5YACLCo49uxDvvdCEeD6KmJohQyI+tWxM4ejSPI0dyOHasgGg0gFgsiAULxuOxxzZi8eJJWL58kWduVl8fhs/H+dWbN/ehp6eIcJhLbq1Ysd5hpyve+xUr1uPll3+NJUsu9c4Vj7MruL2jHxdcdCHi4SiiQZbjqboGTdPw6iurcO1Xr4UggBUaAERBgFwpYfKo8QAEiBAwJt6AXFnCN+b+Cx6//HZMHzsZQV8AFaOCslOTFQDG1Y7C9y+4DmNrG2CD8OJzv0ZUFXDv/d9HyBdARsnDtIEXX34br7z6Fzz/iyf5+4MfP391Er7whS8jeWw7jncfwEsvv4J339/BQDl9Gzt8wwJ8DUD/XYBvFP/e/mZg7POAfxzgH+tITcNA9Gwg0Mrtc89xPWuji1lso4t7KaMb2rHr8NnPfwUnLViAma+8gsUXXYQjvb3A7bfjq3fcgZOmT8fMWbOw4NxzsW37dka7mQwOX389Fl95JWaedRamzZmDP73wAoNmn4/nDz7I0vL+fq6BvWABcOgQI+PNmxkVP/RQlSoOh5mmPnIEmDgRQdHEypWEBQsYfx87xpj9ySd5l9tuYwV6LFYtxe2O1ReLPAZgGMx4R6OM8dNpVrM//zzXyA4G2bRs0iRg5EhmvX/xC97/6quBXbvglHvjVHJ+nuP8vTu1cyEIbGB2uMdhlh0Q7vdXzckEAZg83nk0h+Rs6ya3dR9bQWBGnMDPZdAPTJkwPJfbpqosHQI/x74wA2H32fWHgVKCB8zeu5HTOGbd4jRxBt+CtdynJDdyfyL4uf/zhYG6KQ6YjvH1F7tYJq4rVSDftMDZ7mNpeXQcEG/2roPm3gshEPYcuyONjTArFZQHBnDGffch1sIyd18ohJoJEzDn/vsRHz8e5cFB7HzoITzz0ksoxuN49MknIfj9mHrddbjrK1/B/q1b8ftf/xr33HMPdF2HHAjg1WPH8OQTT4AsC5VcDrbz2wjO8ZXsIMgfrDqGu9Ltugb+Pbz1X2Dn7zPP5rxrF3S/vQoIhIDfPwsMpIBKGRg/iUHyNbcwSNc1YPJp/N1+EsibxnAAH+FBSUOTkNj3HgxNgi8YQSmXhKEWYBkVhIN+XHDu2RAEwtip52DeWfNw7NgxEBFGjRkHQfSj/1A7clketCHLgC8YxlPPPIcnnn0eEUeGPm7cOIyd9hn4/AGYlTKMsgRRDED0B6CXCigXMyDL4DG3isZMdeskZpSd3H5SFYhz5gPFPOyeoxDCEZDPB3HReayuXHQ+DxC5bvdEXC/b/V91UiSJqKrIXHQeSBQhxJkwIqMyZNv5sBM9gF5BPp9Hb28vdF33YqLW1lb4fD74/X68/fbbwyTi7e3tCIfDCAQCKBaLWLt2LXRdR6lUwocffgjDMHDNNddAkiS0tbVh6tSpkGUZfr8fI0eOhG3b8Pv9XmqkaZreudvb2yEIfsyY8U2EwxGce+7tKJfLuOWWR7Fw4RWYM2cRLrroEhw+fAimWcE3vnEjPvvZ72DevE9j4cJz4fNdAlUdxPjxC7B9+w585jMX4Iwz5uGHP9wBQbgQF1/8U8+4LJncjsbGqcjnu9HT0w7bNhGPNyKf78K6dd+BbRtOZZwgIAK67LDKOtewtg0btmXDNm3oml4lZAQ20E1uT6LYU4ToE9EwpQGXvXAZIACti1qx6alNGL9gPIKxoFeCCwD8YT+UtIKWs1pglk0Mdg6i7fo2KEnFI4IWLl+IaUunYcHdC9D9bjeD9n9uVTg8wPT/NgHYB8YCBwDsdKf/bvv/5JijwEPhviHrtgE4/79q19zcTP8ML1vXyUonyFj1O7JSCbK0MlmpPjI79pOtyGR27Cer7zjPU328XzE/vI1a4nWJHmddH1mJnmHLbnurWCBb08gul8muaGSbxvBrcM6llcskyzKVSiVSVZVUVfXel8tlGhgYoM2bN1MmkyFZlqlQKJAkSZRIJGhwcJDK5TJpmkaappEkSfTaa6+RJEnD1muaRuVyedi6crlMhw8fJlVV6aGHHqLTT59NHR3radWqpZRIbKctW56ljo42WrRoPv3hD78mVc1TOr2bKpUSlcsFymQOUiZzkFatWkqjRoF+8INzqFzOk6IMkKbJpKo5UtUcpVK7aNWqpZRK7aKOjjZKpXZTNnuYVJX37ehoo2RyN2WznVQqZWnLlmeps3MtlcsFkm2b+ojoIBH1EZFERANEtJT45usnopyzrpOIMs4+u519dhFRgoiuddYXiEgmojwRHSGizU7bpHOOpLOt4Oyfd9bJRLTXOUe5WKbMoQwdeecIaUWNyoUyabJGmqJRuVgmTRqyznlfLpZJGVBIkzVK701TR1sHlTIlblPgNpqs0eF1hym9N01SQqLXrn2N1JzqbX/t2tdISkqU3pOmVUtXUXJnkop9Rerv7qd96X00WBqkpauWEu4HLV21lArlAmVLWcqrecqreUpJKcqreTqUOUSJwQR95sLP0AmTTqBp06fRZ879DK3fuZ6e3fIsnX/l+dQ6qZVGTBhBs86cRX9r/xsVygUqlAt0x1130ClTT6H6E+rppGkn0S/+7ReUUTJ0OHuYcmqOZE2mnJqjY4OHyc7tJuprI8rtJlq/lOd9bUS5PUS6xPP1S4my24lKCSJdJir18fL6pby91MfvB3cRlZLV/Q89ze91ide7bUqJ4efLbufjbFhGZBlEhkakl4hMw5l0IqNSXR48zHPLqK63nP0GD3N703COUeH1eonI0OiaZV+kb99yM+9vOftUFLrv7jvo8kuXOMer0Fe+/CU6YcIEmj71JFpy8YW0a9PfiNQskSbxVM4T5TqJBvYSdbURpbcTyUl+v+NpXn5zKdHAHiKtwMtrlhGVc0TqALctDfCy1Mdtc51Eya1EuU4q53rpikvOoymTJ9GM6dPo/HPPocMf7yAq5+naLy2jE0+cTNOmTae5c+fRBx+sp1xOpXfeOULFYplWrnyKTjrpZDrppFPppJOm0uc+9xJt356gZFIiRdFocLBEsqxRX1+RJEmjQqFM+bxKiUSR1q7tpGy2RP39Mm3fnqClS1dRMinRnj1pWrp0Fd1yyz105plzqa8vS729BWpr6yBF0eiZZ56nKVOmUHfPMZK0Eslaidq7d1G/nKNnn3+OZp0+m45m+6hYVkgesr2j/zgVVZnuaXuGBuQcSWWFJK1Eklaizv7j1N69i2StRKWK6szLpGgqZZQ8Dcg5UjSVfvzgAzTr9Nn09p6P6FD/MVI0le5pe4Ze/sO/0eTJk+h4914iI09kykRGhmKxKCWO7yMyFaLyXvrut6+k5d/7DpGRI1J3EJW3E/UtI9KTRMYAt9X7iLSDvM6UnangzCXnvURk5nnet4zoIIj6lvK6vqVU3g1a8+orZO/eTbR0KT1zzz10zoIFRJJEr//hD2Qkk0QDA/TmD35AE5qaiGSZaM8emn/66fTCU08R9ffTwN691NrURH0HDhAlk0SKQlQo8L6Dg0SJBNGePURLlxLt2sXrOjuJnHPSvn28/+AgzxWFKgWVCgWbli0jevppooMHiSSJNy9dSrR9O58qlyPK5/lUsszb+/qIrr2WT5tM8tTXV20nSdVT79rFx0gk+JIGBvjy3XbLlvE+xSKRbZhEhkEkKUT7j/DcMPh9b5pI04hKKpFu8HqtQnSgi/fTKrzdMIjkElE2T+WiRFdcfjlNmTyZZpx2Gp1/1gI6vHsvUTZP1y67hqZPnUozZ8ygM04/nd779e+4nWHQtV/+Mk2ZPIVmTJ9G8+fNpa3r3+fnWc0SaUXuByoKL0t9RIMdRBWZSM0RyQmiwUO8f1cbUXIL9wFyktdVZOc4zvtynqjUz+uUFB9XTjrHPei0c/qe/t18zNIAkSaRpeapUiySdOwY5To7SSsUqNDVRaV0mvRSiXKHDlHx2DEq53LU9+GH3vKdV19Ns2fMoK5Nm6jvww+pnMuRXipV9+vspJOmTKFNf/sb/WX1ahrd2EgTWlupZexYikUiVF9XR7ffeCOVBwepIkmkKwqVczmytTLZqkKkqUQ9XUS/WEHU201UVolUhUgtEZUUfq+Vh++zZwvR1y/k5eRxosIg768qRPks0QuPEB3t5PflIcfv6Rp+vp4uoo+3k6lr1LNzDWW6d1BZHiTDqJChlUiTc6QW+6mY7iK12E/Hd7xJarGfvnD1Urr5W9+kUj5NxXQX3fnd22nSxIlUX19H7777NplGhbL9CfL7/fTAj75Ps047ic484wz6w+9/R3pZpt5db5FelsnUy2QaFTJ0jTR5kIyKSqV8mmxNIyvRQ+bhg2SpJbJLCsesUpFj0ZLixbnGqt+RlU6QpWnV+NeJi21FJis74MWzajZDl196Kd/j06bSefPPoo6dO8jWynTtl77E9/jUqXTG6afTO2vXkpXpJ1vTaM7sWTRj+nSaMGECnXrqqQSANm/eTNlsllKpFHV0dJCiKF7cm0qlaNWqVZROp0lRFCqXy9TR0UEPPPAAZTIZOnz4MCmK4sWwr7/+Om3evJk+//nP04033ujFvnfccQdNnDiR6urq6M0336RMJkOqqtLmzZupubmZWlpaKBwO0/PP/4wSie3U27uPnn/+hyTL/ZTNHqaVKx+g+fPPJFXNUTrdQ5KUpGKxj9avf5tGjKghVS1SKrWbxoxpoD/96Re0atVS2rDhdWppaaajR7dSR0ebFweXywVSlH7q69tGq1YtpXR6D3V2rqVisY/K5SKVy3mSpCRpkkZqTvViPjeGlJISSUnJey/3y6TmVNIkjQq9Bepc2+nFiO56TeJYtJgo0uplqym1O0WVUsWLHVO7UiT3y5Q5mKFVS1fR/bifVi1dRQMHB4bFr2pOpc61nZTelyazYv5D8dg/+gWgj/4rfPtfbaThQPic/2j677b/L477DoBLnPcTwV5Pzf9Vm38acK1pZKz6Hen3307Gqt95HY2tyNzBlBQP9Lr7WZn+4W3K6t+vc9oNO+6W9WR2HmBgbRh8fsPgDq5SqXZm6STplQqlUil6/fXXPdCrKAqlUinSNI1UVaVEIkHZbNYDx58EzkPXJRIJSiQStHr1ag9kq6pKmUyGisUiFYtFrzMrFov04IMP0vTp0+n48SO0evUy2rz5acpkDlK5nCdVzdGiRfPpj398kTRNokpFoVIpQ0ePHvY6nEcfvZcmTaqnVGo3VSoKpdN7PXDsgu8HHgg7HU4/dXS0kaZJlErtplWrllJf31ZSlH4qlTIe+JakJK1atZSkT4DrvDPtJaI2YhCcJ6JDxCB6LTGwbiO+OZcS0QEi2unslyUGzS7QPuy83+G0yRADaRewtznnkomo6KzPqzppchUUZzoyXufngmWlXyEpVQXCqd2paptitVNM7U4N264VNepc20kDBwYosT1BqV0pWr1sNUlJyTvf6mWr6X7cT6uXrSY5LVNRLVK/0k+SJtHu1G5aumop7U7vJkmT6GDmIOXUHCWlJB3MHKSElKC1nWtpy9Et9NLql2hXchdd+9q19Mjjj9CCRQtoQBmgl199mXpyPdRb6KU/rv4jjW8dT/1yPyWlJL2y/RXanthOT29+mn770W8pFo/R5/7tc5SUkjRYGiRZk0nWZCqUC2TpCtmVAgPdl8DzSoFIOsLzoesLB3hd4eDfr//P3ud2/32bT7bXsjw/9DSD4orsAOMqKK4Cbn0ImDaqYHywg4PRYdt1InXQO86KH/+A5s2bSyWpyPsOHiKqKPTiv/2KTpoymdK93d76vu5OsjSZqK+d/vzKSzR2zGiSj+/i7VqhCrIrzlTqJ1LSRGqmGnx7wbbEQfVj4CD5zaX8/s2lRNkD1amc54C5fxeVD/yZ1rz0LNmDHUTlPD3z5GN0zqIFRFqRXn/1j1QoKJRMSvTyy6/S+PGtJEkaybJGv//9n2jOnHl07FiK8nmV9u3rpief3EDLlq0mSdI8kLxnT5okSaO9e1PU2ZmlfL5MkqRRschAO5dTSZI0yuVUWrfuMCWTEv3kJw/SrFmzaevWI5RMSpTPl2lgQKHf/vZFmjjxRNp36BANyDnqzvZRvzRIaSlLWSVP8xcuoCd/+jRJDjguVcoeUN58bA/lVYle2rGW9qe66M43nqKD/UeppKnUm0t5+yqaSj9a90vq7D9OxbJC3Q5Qv+dH36eTpp1C3X0Mqr+/9udUqqj0by/+O02efCIdO7SWAW55F4Nk7SBNP+1U+vXPbiPSk6QUjtOnTp9Of3h2AVF5N5FZ5P0Hn3ZA9lIHULsAWqnOpXd4W3mXc47dRFIbUXkPg/G+pUTlvQ6I38PLssQIM5OhbR98QBNaW6uoNZkkWruWMgcPkt/vJyObJervp1g0Som//Y33KxTososvpscfeohRqCQR9fdz+2KREe+RI0ThMCPaTKaKYnO54Wh3926iZJLkg73U2cmgd/t23rRnDx9q926ibJabFYv83j3t2rUMhrdvJ9qxg6itjU+Vz1dP7wJ0oHo56TS3u/Za3jeX4+m556ptPHB9oIuoL82A2TCqoFkfMpVUXt+bJsrmq4DbMIhKZaKiQuWd+2nNq6vJ1jSibJ6eWfkYnTN/AVFRpvymnURFmcgwaOeGTVRfX09Whc/3+quvklEuE+llevPPf6IJ45ucgbEMUddafmbVjPPc7uVtaob7ifQOZ0DN2efNpX8/8Ob2Hy6QVnMMmLvaeOBOK1b3T2/nfdXssD7E1vJkqjIlPvqIsh9/TMVjx6giSTS4fz9tWr6cKrLsAeq+Dz+k8uAgFY8do0dWrKCZ06bRsZ07qe/DDym7dy/99dZbafvbb1Pfhx/SH2fPpo/eeYfq6+ro2N69pCsKVYpFSnz0EQ0eOEBXXXghrXzoISoPDlLu4EHacNddVOrvJ7NUIltVyFYkopLMQNcFy0MB9wuPEOUyDJy1chVo93bztnzWAeCl4aD6gzeI9mwmkosMrssqkVTg9iWFl91zKzKZukZ6WaZSPk2GViJT1zzQW0wfp4oqka6VqFIq0g/uuYPmzp1Dg/29VEx3U0WVqCwPkl6W6S+v/I5Onz2L1JJMieNHCADdfsMXKdO9gw7s2UqjR42kbZs3kKGVSFdl6tm5hiqqRGpxgHp2riG9LJNelskuqxzDlkpVgijVR1ZZ5djTIXssWSJzSzsZq1/y2uj33+7EpIlqXFxWyVZkKvX1UtufV5NVLpOlluinKx+hcxYtIluRKbttE4N0qUhbH/0x1dfVkeG0tTSNKg7p89JLL9HUqVNp9erVlEqlKJvNUl9fnwewXaJIkiSqVCqUTqdp1apVHghXVdVbl0gkSFVV0jSNfvSjH9GZZ55JqVSKisUiKYpCnZ2dJEkSrVmzhmbPnk0ff/wxpVIpmj9/Pv3sZz8jTZNo8+Y3qaEhQn/96yukaQyWV69eRpKUpPb2v1JraytpmkSaJlGpNEiSlKS3336T6uvrqFTK05Ytf6JgMEirVi2l++8HrVq1lE47bSo988xy6uvbRorST+VynrLZTkql9lI220n33w967bVrPdCtqjk6cuQdPo+skZpXq+C2qA2LMzWlCr49gC1rlNrz9zHi0HbJnUlavWw1lfNlD0ivXrbaA+PFvioAV/MqSQnJA/RD1+uq/g/DYv8nXv8wcP1/agIrZ//qMON7AHzu/63NPw24Nowqa5xOkqWqZBXzZDujepYiex2L1zFJxeFtKhqvc5nqdJJsrTx8H6lIZucBsqQCWZl+HjWsVLidu6zr3NGZBmmaNgw4Z7NZj7V2wfXQkb5UKuUB508CbbfDefPNN4dtUxSFstksJRIJb7mjo4N27txJAGjMmDE0ZcoUmj59Ks2ePY1WrVpK9913F40bN5r8fpHq6+uoubmJenu7SdMUuu++79HkyZPpxBMn0SWXXESdnXupUlGoXC54k6bJJEnJYYw1M9i7SdMkr1Pq6GijdHqPA7S3UEdHGw0MHKD77wdJtkXbiehz5TKdc8UVdOKUKXTajBn06fPPpzWHD9MAEX3x2mvpxClTaNqMGTRn/nx6autWyhMD462lEl1x9dU06cQTqXXKFPr1qlUeK10kZqUVYtA8SMxwJ6nKfG8hZquTxOC+g4g0VR8GijvaOiixPUGawiOLmYMZr6MbOipYLpS583Q6PjWnDt+e5+3lYpmkpESlbIlWLV1Fm5/eTIntCVq1dBWl96RJkzTKdmZJSjN47+/upz3pPbRs9TLqK/bRsfwx6sx20p7UHlq6aiklpSTtSu2ipauW0vbEduop9NCy1ctI0iTql/spp+borQ/folhjjJJSkiRNoqSUpL5iH+07uo98fh9tPr6Z+op91FPooaWrltKBgQO0aecm8of99Mi6Ryin5ihfznttj+eOkF3OEJUHqgz1UMZa7a+uH9zB7LNRGs5C5/dW2epPvtclBtafZLtLySHM9V7entvDoNsFxEPArwe41cEq0DY0XufuIyeq24euNzSiwUO08qEV9KnZMymfHWDgPXiIqK+d/virJ2jy5Ml0vGPPsPU0eKi6XJHopMmTaPvGvzGgdq/PY59yDth2lvv3cPDbv9tht/dUmWkXmCspDpyHHqeiOIH6Wma0tSLPBw/Rtr+9RRNaxzNgV3NUKJRJUTTq6uolv99Px44NkiRpNG/eWfSnP/3FA8htbR20Ywez1rmcSkuXriLgflq6dBUVCmXq7MzS7t0pamvroExGIUXRKJkseiB8+/YEPf30Zpo588s0a9Zs+uCD/d56SdLod797iSZNOpF27z5IpYrqAeT9qS7KKnnas38fxWIxSgykqL17F3X295CiqR5D7YLnrJKn9V07aV/yMH3UtZMUrUTFskKH+o/SnW88RYf6j1G/NEgbj+6mYlmhvCrRgcMdBIBaJoynyaeeRKdNn05nnHkGHe7vIZ/fTy0tzTRzah3NPAU0c2odZfu7iPQU7dy2nuafNZdmTD+VTplcS3fd/mWys085LHOBgbB2kJcPgoG1kf8EQ11k1lpPVffrW0qkbq4exwPjuWpbSWIkunYtXbN0KX37m98cxiJTPk/3fetbdPmnP81oNZmksz/1KXrk2muJdu+mrksuoYa6Orrla1+rollZrlLGhw4xYk2leF0+T1Qq8Xz7dkbHQ9HugQNUee5XJMs2FQrMKNfV8aaBAcbtilJlsl3GWpYZEK9dy2A7mSTq7WXA7J7WbZPP89z9iIUCX7rLZLv7ShKD+t5eokrZJNsFzxWdQbOk8LLDRlNF52WXsXa3VfQqsJZLPDeGAG6tQtve/StNmDChynpn80SGQX997z0G1wOD1WNpFaJKhTJ93eT3+8hIbHPA8W4Gu1qBn9PSAD/nLsucO0xUPFbtHwb2/P3gWq6zqnqpKA5ob/MULKQVhu/v9h/9u71rsDWJ5N7jNHjoEFUkiScHCOulEumlElVkmbR8niqSRH0ffUT7/vY3AkCTJk6kGdOn04zp0+mM00+nnm3b6IzTTqOpp5xCU088kebMnk0//fznSSsWqVIskprNUqm/n/o++oiu+cIX6LFHHqGKJNH622+nQy++SGp/P5ndHQ5zfITB7tFOXj7WyUC5mCdK9hAdP+yAYAcQu2C5JPN+LsjOOSC7pFC5P0VXXLqEpkw8gWY0j6XzFy2gwx/vI0r30bVXfY6mT5lMM53P8l7bm0QlhSy5SGefvYhOmDCBZsyYQTNmzKDHVj5Khq6RYVRIVxl4/+QH99Dpp59O2YE0GbpGpq6RUVFJkwepokpUUSU68YQW2rJ5I5l6meLxOH28awuV5UE6vuNNuuzi8+hnTz9Ox3e8SaV82mPKj+94kzLdOxwmvJtMTSUrnSBbLQ0nfDQnbnXj2kQPKzClIlmK5MWqtqaRLRXJKuTJPHKoyn5rZV7vtNm6YQNNaGkZpsC0BtL07leuovp4jExVJbuQI9uJS9PpNM2ePZseeughyufz1NHR4bHSfX19Hlvt7itJEq1atYruv/9+WrVqlae6dNd1dHSQJEn0k5/8hGbPnk3JZNKLd90YWJIkymazdNJJJ9HGjRvpxRdfpEAgQJlMhsrlAq1atZSmTgXdcMOnSFVztGrVUtq8+WlKpXbR2WefQN/61g2e+vKWW66jE06YQHV1dfTjH19IqpqncrlAra3j6Ze/fIRWrVpKb731BwoGg/Twww+QovRTKrXHU2xms51ULueHAGsXdO8jTZM4XlY0khKSF1sW+4qk5lUqZUuk5lSSkhJ1tHWQlJCo2Ff0AHb2cJa2PLuFUrtSHivt7qsMKB5gVvoVUjIKda7tHBZnusSQ3C+TJmlU7CtS5mCGin1F2vLsFlq1dJUXz/5Pfv0jmeupAP7kyMH3utN/t/0/cvpnAddEQ9ljjaySXJXJpBPVDmggzZ2KK6XRNLLLKsuRNK06CujKvcsqWYrMI32VIaODWpnBdDHvyXXcjs3WNO+aKg5z7cpdXEDc3d09DGS7kphsNkv5fN4Dye4o3dCOZSibLUkSdXZ2eqOF7uifO2roMth8jIIHel3W2R2Vc+Urqpqnzs61pKo50rQibdnyLL322rVULhe9ETlZ7ne2y06b3CeOVfDk4qVSZtg2Rcl4zHXBtlgCXi7Tp9esoaJtU4qIVj7zDM0/5xzaQ0TnvP46HTcMKhDRn958k1omTKBDxEz1PT/6ES37yleoQETburtpVGMjHc1mqUhVBnsPMePtrssT0ToiepYYTCvELHeOWEpeLpTptWtfo8T2BJWyJdKKzF5rstMxHcp4o4ouc53emyZlgDs3TdJ4n7zqdYjpPenqaKOiUTFZHCYrHwrCpaRESkahcpHXH91zdJgc/MDAAcqUMt66g5mDw7YnpaQ3bU9sp6WrltKSzy2hq79+NfUV+7x1u1K76La7bqNFixd5x01KSbr7gbtp8pTJFI1G6aGfP0SFcsFjzLcntlNOzZGu5Rj8ankGuJUCg+dKgYNGXSKqFIkqOX4vHSbKfcz7esBZ+sR7haiS53lubxVAazk+lpYlKvUyoK8UiAyFSE3ydl2qysD/E5BLeqk6Dd1nKNP9ifWP/+BmOn3mVMpl+qvS8opCf/r1k8xudh2pMuEOqO/t7vAY8E0fvU8NI+upkDrGAXTuSJW11grcRupj9rqc46D6qTAHv6V+JyiWqlLO/r3OMZzvuZznyT2Wy4SldzmgPU/XfPFq+vZNN/DxKjIpikZ79qTo6qu/RRdfvIQkSaNkUqJgME433/w9OuOMuVRfP4luv/1H1NbW4Um/Xam3y1zn82UqFHjq71fo4495/VAQ/sEHuwkAnXDCRKqrm0DAGGpomEKyrJHf76dx45pp5MiJNH3GdGqc2ESzH7iKPuraSbJWotvv/C5d+fl/9Zjs47mkB5pdKXhGyZOiqZQrFel4Lkm5kuQw3CwFL5aVYWx3viTRYKlAkrM+o+QpLWXpnrZnqKP/GB3PJWlf8jCliwmyy7urrLKRZ2bZyDjAN+8wzNcSaQeYZTb6eZ1ZqDLSpuxIxHNV2bcpOaBZ5mN/krn2pOOyc54kn7/IKHPF979P8848k0qJBNHhw4wwMxl6ceVKOunEEynd2ekh06N//StduWQJzZw4kS4XRVo6fjzddsMNRFu2VOnfQoGRalcXo93BweFIOJ9n3XVfX5W53rOHKJkk9Ugf7d5te2R2ZyfR1q1V4OwC5GKxCqj37OH9ksmqCn37dp76+nhyxhD+7hiHD3MbRSHau5eP4wLsfJ7bqLLJwFYusRS8qFRZ6Wy+ulzRGVgf6KoCaq3isNmVKtAeymYbBl1z9dX07etv8AD63XfeSZMmTaL6+nr64Dcv8vFdUK7rRJpG991zF12+5KLhYNd9dpUUD5BpBX7++50BtbeuHfJsy1WQ/eZSZqYrijOQJjnA/BAP3mlFp38pDtl/D9HRd3h/t+9Rc0TvfovscoEqxSJpxSIVjh4lrVgkNZOh0sAAacUi5Q4dovW3307Zjz+mUirFTPW+fSQdP065gwdp/e23U+7gQWa4Dx5kQD4ENA9rn04zWC8WqdjbSxVZptLAAKnZLJnFAgPi9/7CAFouMjguDBKVS468u8Tr1RJR71GivVuqLLVUYFa6t5vn7/2F6PgRB5wfpnJ2gNasfpXsVC/RjZfRM5+/lM5ZuJCoJFO+/T0+V6qXdm7cwIMkaolMvUxnn72IVv3pD6Sr8jA22jQqVJYHacX9y2n2rFnUd/SQJw9X5QIdOrifQbau0YYN66m+vo4SxzqpmO6ir3/tq/TMT58m06hQ39EOGj++hV7/98dp39qnqJjuIqOiklFRSS0OMJCvqJ4k3XJj07LKJE86wfFopp+M1S+RufkjjktliWNXtfT3pFKi9xNy8T4+VjFPdlmla77wBbr5kgs98H7X7bfTpBNOoPoRtfT+W2vJkopkvPZHsop50spleuGFFygSiVBvby+pquqx06VSaRiIdkmfQqHgScRTqdQwIsmViz/yyCM0e/ZsSqVSXoycy+Vo//79Xvz70UcfUX19PR0/fpxKpRLV1dVRW1sbaVqJ9u//kBoaotTW9qITj+6mTOYQ3Xbbl+nMM2dTNpsgSUpSuVwkRRkgRRmgNWtep9NPn0XZ7DHKZo/Q1q0baPHi82jmzOn0hS98nhYunENf/eosSqf3UEdH27DYuVIpkabJQ0imXaQo/Q4BtZvKhTJlDmZo9bLVtO0X2zxpdjlfrqYPFqsxocs4p/emvbZbnt1Ch9cdHpaW6O7vMtEuoE7sSDAAz3C6YqGXAf5Qebqclim5I0lSUqJKqfKPA2L/B17/SHC9F1yD+mxw5aEFABb8d9v/I6d/JnDtvv4u97nzAAPgTD+Zmz8i47U/MqAuO4Day83mHBZj9UsMxNWSA7y1KvgeksftympsTSNj9UtDRhKro0BuhzEUWA8FyUPzr2VZ9kbkXAbb3e5u+4+k4u5InjsvFArU2dnpdVTpdJqy2X7SNMljkd2HnvNEdlO5XKBisY80TXZG2/KkaRIVi32kqjmSpAQlEts9dtod9evoaKNCodfblkzu8NoNDBwYJhFPp/dQpaKQJCUpk+kg1dRpj23TUhrOKP9u2zZqmTCB2ojoaSLa7qzfl8mQ3++nfYZBCSJqnTqVXty0yZN/f/aqq+jRF16gZcSgWiZmuHuJwXPBOU/SWU4Rg+1OquZqK6o+XHoja9T1Xhel96ernaCs0Zpb1/CooDRE2uPkwnSu7aTErgRpRY1KmRJVShVK7a2OPKp5tcp0F7Vh8vJib9ED2aldKerv7vfA7d70Xk+avTu92wPTe9J7hm0vlotV0H0uqGFKA/VkeoYB8bm3zKXJUybTixtepB3JHZSSUlTUipSUkrRs9TJ6+Z2X6dRpp1J3X/cw8J4pZaisFcjWZUeWWGDQrOWJ+tY5udRJXl/O/L1sXMsPAdZFnsr9vG9fG883LGOpd+Fgtc1/luOd3U7U8ezfgVzSleryf8Zc60q13SfW9x5l+d6kSRNp5swZNHPGdJpz5plEpkF+l92cMZ23zZxB2VQPkVmh8849l047bRrNnDGD5s09kz5Y9wYHtW4wLfVV5Zpy0gmQC/xeThJ1r2Vmy2Wu3bzL0kCV4dIKVSbKzdd2AXhymwe8V9x3G8371AwqffyqJyUtFMq0cuXP6cQTp9CLL26gHTsS1NdXpFgsTsuWfYWyWYUefvhtGjGihV56aRUpSoXyeZUKBZZ/Hz6cpR07+khRNNq9O0XLlq32pN6SpNGOHVUQLssalUoVkuWqrDyZlCiZlKizM0OyrJEkaVSqlKmj/xh91LWTOvqPO0C5SB917aQDqW7KKnkqaSpJmkIfde2kP+5cR/tTXR7ILqgyDcg5uqftGSqWFRqQc38nIe/sP06DpQIVy4oDrtVh0vFsqUAlJ+e6e6CDSFpLpB+rMs96L4NpPVmdvG1JzpUu7yaS1nH+tcc6uznWBYfJzjhA+uMh24Yw20a2mqvtAm9TIVIUWnnbbfSpyZMp/9FHDHiTSaJCgf749NP/D3n/HSVHda7745+qTjPdPUmjGc1ogiIINAhEUJ5BJCEEIjjJxvjY2McEW9gmGAGSMLJBEkgm2WCSIzYOCoYDo2QBlpnRKJCEhCRGWZNz51jdtX9/vNU9M9j3nnPW13f9ju+ttXpVV9Xeu6q7q3bvZz/v+zxq4vjx6vT+/YMUb0+P5EnX12cR7fxLL1U/f+YZAdZtbRJrXV8vcd0+n9TJlK+vF8ScCTv/4INBNOv3KxUMKr/fHEZmZ5jljg4Bv8ePD+L0nh5pdvNm2e7rk/fPPy9keaac36/U1q3CQmdyqjP4v71d6gSDUr+9fZDx9vsFgIeDaWGuDx2XcO9IdBAkZ5jsWFypRGJ4iHgmTzsDvIfkXWdCy1c+/LCaOWOGinT2CHC38quVYajtP/+NumjS2SrR0S37D59QKmmo3/761+rMM85QXS3HPwWOM/2ntY72y7Mc6R2cPMvkVmfyszMgPBO1Eum2+o126TdivkHAndV5sPqPzg+s3OyewRD0eFCZ8aBqf+cdFenuVnGfT4DviRNZINxw993qj+efr9p27BAGOxRSbe+8kwXQr0yerBruvlv1fvSRarj77ixQjw0MqGhfn2p75x3Vt3+/atuxQ/lPnFCJYFDCwS3QPdDcrOKBgIr39ynT1zfIVp8+JiA6kwcdDg7Pie5qU6q/R8LDM/tPfCLAOugXgJ4JK/9o9/C6H+1W777xqqRWxKICzluOKxX0qb9u3SzgOhRUKSOhLr64Tm1Y98csuA10HVcRX5dKGQl16sSxLIs/+cxxatL40WraRReoYMCnZs2aqWomT1bnTpmiZs2cof6ybUs2tLyrq0MtvOYaVVMzWdVMnqx+8vSTKhroUYGuEyoZC2UBvGEkVDTQreKhAWUkIioeHBgc17a3yBg14Fepo5/I+6B/iD5Qu0r39Sgz/PfpkBnCaRgz7RetoYdv/LyaeeEFKtTVORitaYH0bX/6g7pwwjgVO3ksq0UUD4XUgw8+qK699tpsSPfQcWoGUMsYtC9LCEWjUdXT05MN9c7si0aj6p133lGAGjdunJoyZYo666yz1Pnnn6/279+vZs6cqSZPnqzOPfdcNWPGDLV58+bsuV577TV13nnnqXPOqVFnnTVJ/fCH96lAoD1LBK1evVKdf/5U1dp6RAWDHdnc6M7OferVV29W0ahPnXnmGaqp6W/ZMbDkVgsxNWnSmeq1136vQqFuFYv51caNN2XHzgLU/X9HMsVifhWJ9A3Lr84y1plxoBUKHg8OIWz2dal3n39XNdc3D8ulDnYEhxE2Q8t3fdQ1bCzqb/WrvqN9KtwbVn1H+lQsEPu7VMbdT++WsPL/h5jrD/+rZf9Pv/4lwfWn869jEk5jbHwlyzSbsagyoxEJ+w4HVbptsFNK7X5HOpRgQGYAo5GscES6r0c6pH8gKpENJU8Z2WtJJBLZjuPTwmOxWEz19/cP61gyQHvjxo2qvb092zm1t7erQCCQBdCZ3OoMo33s2DEVDAazudcZtjsTniOAtz3bUSQS4ez7aFRCWtrb31PxeHjI7NtHw9jqjRtvyoZ6D52h6+uTHO2enkMqGOxU4XCP8vtPq1CoS8XjIRUO91ize+FhHdDGjTepkJnOhnIfVgKmx3/lK+qb3/2u8ikRNbtJyc141/Ll6uLrrlOLlABuj9erXu7oUO3W9qR771W3Pviget+q51fCWHcrAdQZkN6uBkXOjsdi6iorJL3m3HPVpZddrg7uO6hi/pj6t5v+TU2cMFFNOWeKmjljptryuy3Zjum5nzynzj7zbGWz2dTSW5dm2ezMDGSkL6KCHUF1ZPMRFemNqHB3WLXtbRsUO7PyafqO9g0Tmeht7lXt77Wr3iMWWx4NqCN9R1R3uFvVN9erj7o+UpuPbFZP735aHeo5pALxgPJFfcof8ytfzKfC8XA2fPt7D35PFY0vUo3NjSoUD2XZ7Jl3zlTV46rV/ub92XDvo31H1f6u/aq+uT4LpC+74jL1y1d+mQX373e8r3xRnzDXyZAwy4EjFuMcUireL8A32iUAO94n6503CehOWAJlw4TN9g2WibRKW3GfUn3vDwk3DykVOCrHhoL13t1WjvbhQWbZSAyy0Rlg/Wlhs0xudXRgEIR/Oid7aJ52JrQ8lRwCxmNKJaPDQX0GxGfyvTNs06abBFRnmKP+T5T64JnBsNCohHCrULs1qI4oFesfHEhnGWprwJ3J0Yz5ZLtjrwzaO3bL/u59au03zlcXnn+u8nUcVyrYKoPvuN/Kcx6v3nrrQ9Xa6lfHjvUrvz+mzj57snrttc2qublXDQxE1R133Knuvfc+1d0dUh9+2JkN6c6Ikfn9MbVo0Xr19NO71XvvtWdBtt8fU4FAXPl80SwoD4XiWXAeCgkAP3KkLxtyPig6JoA3GAurgUhABWKhLMt8pOe0enDzzwQcxyOqP+JXHYFe1R3sVw/U/1Qd7DyuXnl/s/JFhb3uCQ2o3pAvC7BbBjpVKB5RPaGBbDsDkUCWyQ7Ho6onNKB6QgOq09+qzGxO9M0W8+wfwigPBcPdQ0TIbhYgnAHQyQ5hozOst+GTstF3h7TnVyp+fAjw/stg+8k2pdpuUSoVVI8/8oi6YOJENXDq1CDYbWtTf3rySTVxwgR1aiiw7u5WqqNDdR04oNJNTUrV16utzz2nqkpKVLSlZTCOetEiYbH9/kFA3dMjIHrPnkHEPDAgKPaDDwZjto8dU+FQelgathWdno1WH1p13z65rEw+9qJF8jH27RsM9c60k0kHb2+XdSYEvKtLAHTm0t9/X+YIhoadp5JWWHiGbR4Knj/9+uTkMICcZbYPHbfEzRLCPhuGWvvYY+rCCy5Qvq5uKTuUEU9KiPikM89U7+3enQ03/+Ovf6MmTpigTh89PDgZFhsQQHxy65BJsoA8n6F2K8+6b1CAbChIzoiXZZjtYNsQwG3lX8etvmLLzVb4eUgm3uKBIREwH0rOdc9HyogEVKS7WyVCoSww3rV0qer7+GOVDIez+dZZljoTQh4OD9s3lLmOdHWJKFpPj4p0d2fZ7XggoIKnT2dFz/r271eBU6fUQHOzamtsFCGzT+dZZ7ZDgeHHIiFhtYeC6OdXDuZQx6JKtR4f3Desblh95fOfVd/9xs1ZcH3f3Xer8dXVqsidq97+4++U6mpTqVhE1dXOVhPGVqqamsnqC5//vDryySFlJOMqGujJhnEbiZgyEjELBMcssbMTgyHiRiZUPDYInBMxZSRjKhroyeZxp/4BgB8qmpaODQ8HT/d0yfjTCv8eml9trH9Zmf4BGa9mmev2f6wjFA4pMxhQj/3bl9QF5aNU76+fG2THmw+q5KNLlWmNb88sLlK7H/1hto34np1q7Nix6uc//3k2WrKnpyerD5RhpzMAeGhe9e7du9X69euzhFMmcjMcDqtwOKy6urrUq6++qiKRSHbM/GlR3wxwj8fjKhQKqfb2dhWLBbOaQZ2dH6pXX71ZPfbYKnX++eep1tZmFQ73qmh0QPX2nlB79mzNivxu3vxb5fE41eHD71i52b+zgHlYPfPMU+r886eq3t6jqr39PREps3K2M6TU0LF0Rhw4M04O+rqy47xPi5r1H+/Pbg+NYoz0RVSkNzJclOxQz7BUxKHHogPRwXBxS/wsA+iD7UHV+0nv36UqZoD5vzpzrUmZ/3zRNO0J4DWl1Dv/pQr/B5fKykrVlvW4+NdYVCqF6u9BBfzolWPAZie9aSNa5Ri0KeejmSZmewtafgG4PaDpqM42zD/8QmwG5l6Jll+IMtPijY1Cs9lRmi4WX62n0avGii2HMlGaJjYJKLDZ0RyO7LUkEgmUUhiGgd1uR9fFP1nTNFpaWsjPzyc/Px+fz0c4HKaiogK73Z61FnBYbQ218TIMA5vNhmmatLe3k5+fT1FREf39/ezdu5f58+dnPbBTqRQAdrtJMhlG02w4HLkoJR61kUg3O3b8gIMH11FTs4iFC19k8+bFVFRMp6ZmEQ6HB9NMoesOTNNg27a7mT//CTZtun1YHaVMTDNFPO7HMKI0Nq6itnYpI0ZMRFk+sEqZaJoNv/8EDQ0rmTPnAfLLzkMBJzSNlcDIVavY+8Yb/PStt3jS7WYZ4nn9md/9jv6HH2byO+/w+qhRLAI25eWx+8gR7OXlPASsW7KEL+Xk8MSPfkQHsAbxzR4HtIOUAbqBVuv49+Jxut5+m3ELFvCopjHr8afYuHEjr/7qVf76/l+5ou4K7HY7b+58kzvvvpPD+w4T98c51nEMV46LVStXUXNGDUuWLZHfSbdsETRQpsKIGby97G0uXzVoKZ+xXEgn0thybBgRA3uuXX6vRAqVUiSjSZweJyktRTovzeIti1l3cB03TbmJZ69+ls5wJwWuAnLsOTh0B2mVpi/aRyKZoKqoimeefoZ1f1zHa5teY8SIEfRH+hnhGcHG9Rt5ZMUjvLrpVcaNHUfKTKFrOqYy2f3hbqadN43FWxbztaqvcfN1N7P5L5s566yzSKs0Ns0mz4JK4bHZ0ZQC0mCmxU5Ks5F1FA+fgIMroWYZeMfJfpWGmHiec/ARKJ4OZVeCswhaN0DxTDi8BmqWQrQNGj8PtX+G0tpBC5HIaatdq4y7CrzjxZ4m8wzKLyE2NrFeyB0J3tEQ7oC8KquMDrpdymUeLYXYgoU7IH+M2JyA2GHZHBDuHNxvmtbzr8QqJmP7pZR41tqccs3bbxFLnIo5EOkCb6V4VU9/ANyjoOcD2RfugNEzB68J5PvS7OA/AeEWKJsu37OZlGsJt0HZDLm24GkItULFHJ5YfAmv7BzgzW1bKPJavrjAul89zdKnNvDU07/nt79t4YknrqS/P8bKlQ2UlLyHrif50Y9WkUjEqKuby/e//31uvPGLpNMmwWCS5uY+pk2rQNPAbtc5cWIAh8POQw/tYM6cKi6+eAw//nETa9fOw+t1YpqKvr4obreDYDBBaakHXdey/R+A3QnRdAxd03DYpK8LxEJ4XW5CiQjRRILRhSUkUwamMvHHQvz63Te4a+5NOG0ObLouXqkobJqOAuy6Tou/m1/u+Q++Me16qkeUkVYmKEXMSNAfET/5XIeTmJHkN1Z7uQ4Xuqbh0g1spKD7WzBiifwG/avEp9oxgUFjQOv+IA2pXrCPAuMUGC2Wz7VT9tsKILYXHFUQ3QGeq6WsSkBsD+RcAOle6F8p57CVQnwfuOcA0NbWSdXYsxg/dix5Xi+kUrgcDvZs2YJj7FjKSkspLigQiy1N463/+A+KR47k57/5DY8+8QQ2m43Ro0bx0xUrOOfcc8HhEJsq3bJyczhg1y44+2zxvnI4IJUSi66xY8Ube+RIKWuz7n1dJ5kwSbjy0TQt63plGPIIDD3FqVPw+OPw3HNStbERvvIVaG7G+o8T56/Pfhauu05suHQdgkGx5lqzBpYuFTsupWDnTpgyRey3bDZx1IrHIRIyqS6Jo7V0wgTLVmuo7/SQriG7HGuVskYK7DY43gqVowa9rp12nnjySV753Su8+eZ2ioqK5HMmDU6fPs3EMWPBprP3/fe4auFCjjc3U1RYxLoN61n24IO8ueUNxlSVW8+yTZ7drneh5Dyx0HPmifVexh4sGbL+JPIs/3QgbUid0vMGLz7cCYXjIBWHZAByR0G4VTy0py+D3GIwQuAply9N08Sq68LvQ6xHLMBivZija0mlbETa2zn8y18y9Z570O12+g8coOTCC0nFYthdLvb+8Ie0bN1K9VVXMX3FCtB1VDoNpomeGe9Yz7TK3AxKoTSN1+bOpeLSS7nw/vtRponN5SKdTLLv8cc5+9//ndyRI7E7ndg0hWaacPITGDEKSsuhpx02/VHstAZ6xSbr6i+Jj7UyxfPaPyBWXNfcCCVl0NsFW9fD574BDqe80mm5AZJJVj30IG/sepe3Nm/C7fWKDZemwclPePPeb/PA4S527tuPzZ3DyRPHGDv+DJSm8dOnn+C5nz3H/n3voesOjvztl4y56LPkFpQAGprdIb+O9X0rM03Xob9RPP5CdN2OzekinUyQTiVxegpBKTo+fpPyyZeg6XaUKWM1zeYgnYhid7lRKk3Hx28T7D7O5MtuA98AZuNb6HMuBW8+qrMNraAQCkfIMxsOiqf1nEvBmwdoqM42sai1O9DMNErTwO+TduqugKIRPPn4E/z+D39g693fpnjB9ZBXQMpMc+rj/YxvO4E+/3r2NjZw9Re+yNH39zJi3ATUQD/bt23jm8t/wMcff4xhGHg8nuwYt7W1lddff52bb74Zj8eDpmls2bKFjz76iJqaGi655BJcLhdOpxOfz0cwGCQ/P5/Gxkbq6uqw2+3k5ORgmibbt29n5syZFBUVYZom6XSaN998kxkzZpCTk5NtP5lM4nCYbN16J/PmrWHLljsYO/Zmpk27mrFjq8jLK0DTNJxOB3/5yxauvvpaAoEAdruDZLKTGTP6ufbaRVx11U9YtWot69e/hlKKiRPHsnLl/ZxzzkxOn36HysqZ6LqdSKQPr7cMsecSWzNdd2KahjXGb8TjKSHXWYrRk4u31IvNaUPTNVLxFLpdR7eLfatm1/Af99OwsoHapbUUTSgSW9gTPhpXNVK3vA73SDfb7txG3bI6CscX4j8xpPz4IuKBOEbEwDPKI/awmoYRM8QvW4NobzTbVtH4IsyUSdpIY3faceW7+J+6aJrWrpSq/F8e/2+A69nANiAExMkM25Qa/8+40P/O8q8IrgGUYaAGeqWjqbsc3F7pQMMhzKYd6Jdfjabr0tHEomhuD+ktr6LXXYFWOELa8PWDw4HmFs9DNA1leVBqSsn7UEB8s7va0fIK0IqK0VyDN2kGXANZ/+pkMpntDJRS6LpOS0sLbrebPXv2MG/ePBwOB5qm4fP5aGxsZPbs2dk/dl3Xs51RRUUF8Xgcr9dLKBTC6XQSjUZpbGxk/vz52WvIy8vBNA103Y5ppmhr201eXgVudzHRaB+Njauoq1tGUdEEEokgoVAHe/c+w/z5TzJ0VJKpHwictuosx+stw2ZzYZoGhhHjrbfu58CBV6ipWcQ11zwPYJVfTW3tcoqKxqFUGtPpJWl59d4GrPvxjyn64x/58M03WVJYyDrEq3r+n/7EyuXL+dVbb5FXXc2jwHJgUU0Nz/7iF5w9cyYdwA2LFnH3lVey4JvfzALpRcCLiCd2BnA/D9z+qeO3Wts7/9bEF2/8Im+99BYVMyqI++K4R7rpbu/mjPPPwN/jR0trtL/bzqhzR7F4yWLOO/c87rj9DjSbJvaqRlo6z1gKZSrCPWG8pV50h47NYUO36xbWlO810hvBiBo0rWniiseuIK2n+dotX+Pgxwcxgybjzh/H3Svv5rdtv4XXYPeu3QTSAcaVjuPpJ59mygVTsOt2Vjy4gjf+4w00TeNI8xFGjRpFUUkRds2Ow+lg8tLJ/PGLf6RoZBGjSkaRMlN0h7t5dfOrROwRHlv8GL3tvdjs0vl//97vc/1nryeZTmaBz3e2fIen561lhA20WAccfQbOfxI0y/sVTZ6z3kbIKREf67wzIadMejEjjAATINZlgell4B4DiS45bvdCbhn07oaR02XgmY5K+w6vdSvqlm+1JmBXtzyk00kBnd5KAapGRAaqpiGD2wxgzoBhgERIAKrukPIOj+V7nZQ6mi5A3Zkn3rNDwbdCrkOziQdtuE2AfNoQL1v/MQHaTQ/BhfeI/2zzOvG7nbVCBtOxXvGkfvdRmLYECiZAqEUGyjOWiT923Cd1py+FwvHQ9o4MkN9/XMoUTASVpK29m6oJZzF+3Bjy3C6I9uAqrGBPw1s4CisYVToKpysfu13H6bRx9tn3sGHDKf7858/yq189zKFDH+Fw2Lj++htYvvwhDMMkGjW47743ue++OVRV5dPTE6G8PA/TVOi6RjicJBhM8IMfCMj+3OfOpqsrzJo1TSxdWsfIkbns39/N1KllAFngresautMkkozRF/Hz63ff4N5Lv8pANMgr72/m+5d+FV3T0K1Bu6kUuqaTViY2TWMgEsDjcmPTbfz4ry/znbovkWN3YtN1Htn+CzYdbqT+358kx5GTBe82TUfToDs0wEhvEYFokAJ3HjZNJ24ksNsc5No17JqJRgqwQ9d3IPRrqPgLuGdhOVpaa01AsuYAHNa9bYJKguaSG00lZDt+AJxjwV4JZti6txyADl33wojbwDFWQLkZAM1jgS6bjAKCITGKLrcAkxJ/WgxDEKqYkIs/tdM5DAiTTg9u22xS1zShtxcKCwWp+v2CZp98EtauFTNpXYeTJ2HcODl3Z6e8ZsyA3FyiuDl6DFat0li2THyoHQ4BvMmkVHc4IBSSU61ZI01ngHEwCMuXi+V2ZvF4BvHgzp2DoPullwY/rmHA3r3iiT1yJNx5J/z6F2lyW09DngfKirFuGghFBCxnvKg/vS9tDk6SaVp2fhDTpK3pXaouq2X8+PEysQG4XC7+uv1N5l11FYFQELvNhsft4eGHHuKyK2QS1ZGbS1lZGcUjigQkK5O36tdTXD5WADEmaDbiCYMv/dvNHPrkGLm5OZSWlPLc048xcWwlX7/5q7x/6DR6vBdH/mgeffgHXK79GaYt4ev3Psn7H+5DVwYOXfHo6ke5fPa5cGobnPFZ+Zzv3AsXfV/6k1QMot3gGYVCR+vag/JWkXZXk4wZpKJRbA4Hms3Gviee4Oyvfx1vdTV7HnyQkvPPZ+T553P4l7+k5rbb8FZWotJp4gMDOPPy5Cu1gHbc5+PQSy9Rc8stRLu7cZeVEe3qwlNeTm5ZGZGODg699BJnf+Mb9H34Id6qKtxlZXhLS3BgQjwGuW7xmXblQDIhoFHTIJUEm1366swYK2XIvW2aAqJTSfjNU+JXPe1i+Npd0NsJ2zbA577Bj597gT9u2Mibv/01hemY+F2jIOCDknIY6OWsuZfzyovPMXVOLclYgN5jeymZOB1dd5A/opS9W3/DOXWfpfPgDsrOuWwYoEYp629QkzGiMlGmgK6uw+8wcsJFGLEwnhEVpJIxzFQCu8uDbndmywFC7Fj/uUYsiBEL4S0cDaYp59NtmC0nMNf9Gm3SOdiuXYTy9wuhVFGNCvgxd7+DXnc56Z+tQauZiu3aL6D6ezH3NqHPv1YmOHWd0y//gnG3LGb82DHk5ecDGk7g7Vf/zPyvfIWAPyD3uNfLj5Yt5dKL6zDf3oY+fTY33vV9Jk6cyPLly0mn09hsNgKBAE1NTcybNw+n0zlsMjWzZPb5fD68Xi9bt25l1qxZ7Nq1i+PHj3PHHXdgs9lIp9Poup6t7/f7s+Ph1tZWioqKKCgooKGhgdraWoLBIFVV5aRSYZQycTgy42yTt95azuWXr7QmAxOEQt00NT3GvHlrcTrzUSpFJNJLKhWnsHDMkHHuamprl5GXV47N5gQ02tp2MWrUuTgcbos8ixAOd9HUtIa6umV4PGU4HG58vuM0Nq7imnm/QrfJeEGlhTzRNA2H24H/tB+Hx4F3lFeOmyo7lkzFUtjddlLxFHF/HE+pB5SQOOlkGpvTRswfo/fjXqrrqknFpJwRGxxPOr2DXtiarmGmTGxOG2bKRNM1ktEk7iI3NqeN/6nLPxNcNwOPAe8h/+AAKKUO/n+9yP/u8i8LrhMJ0m+sQx3cJx3LNZ8DTSNdvwGtejzaWTXy7+/KkZFANIKWkytjbpvcZGbrKbSyCunMHA4ByboNknEZwHi88uAmE6DA3P4GtgWfAVcOmt0OiMF9Oi2m86lUimAwSFNTU7Yj8Hq95OXl4XA4qK+vp6qqiqqqKpqamqirqyMQCPCHP/yBG2+88e9m9eLxOLt27WL+/PlEo1EaGhqG1bnnnnuy57v22vkkk2FCoU7C4U4qKmYAJjabC6VMIpFunM58nE6ZSGhpacTrLUfXdatzeYCioomAsphsm8V+Ayh8vhM0Na2htnYpHk8p27bdSV3dcgoKqjHNFFu3fo+KiulMnrwIp9OLUikMVwFhTcMGrHniCX75yiv8x5tvMqmoiE5gFXDRunU8v2wZr775JiVjxmBDhrAAq1asoPXUKZ7/9a9pPXmSy2bMYNOhQ1SNHDmMufYAxchw2OIsOQGsRED6eOCYdT7bl76MPWpn9fLV7Hp8F7UP1FI0sYj77ryPnVt28sbmNwi2BckbnUfh2EJuveNWzj3nXL57x3cBSAQT9HzcQ8X0CnS7jpky0Z06CX+CcFeYpjVNzH9qPtHeKA0rG5i9ZDZ55Xl0ftiJ77iPqjlV7Fi9A3WJ4jM3fYZUNMWLf3qR/3jtP3h92+ts27SNjemN1B+rZ8nIJfxq1a840HwADY3tf9nOnLo52Jw23tn9Dl//7Nf5y4d/4ckPnmTJ7CXsbN3JztadPLPgGey6nds33c7rza+z4QsbmFYxjfc73qe2uhaFIm2m6Y/243a66Qx1sqZpDctql5FSKaaMGIcDHUgJENA0UIYFdC3mNXwMDq+FqWvBkWFhdAssmMI67L0VWtbB3HpwV0OsDUbOlHY0m5RDh9AxOPwoTH4Acssh3i1sdaZNUmCzJs/8xyHWJ2x14QRIJQTw5o8V8JtOCEgGiw3XBpnnYYs14FZp0J1ST9OEHc6C7PZBEJ8B4JlzF4yXOsmQgONQi9TNMNczlkPOCOjdJ+zz24sHQfflP4O3vj24fcUL8OZtg9vzXhTwPqzOs9C5R9hte65c9/Zbh7TxPHQ0ESu5mCMnIqxdKwxzTo6dpqZWpk+vIBCI4/E4CQQSFBTI4PXOO7exZMlsdu5s5YwzRjB1ahm5uXYcDp1USmGzaRZOU0SjBsFgAqXgoYd2sG7dQRYtqmHFirnk5Tmx2QTQOxw6O3e2UlWVz9iJefRGfDzXtIFtzbt47euP89LuV7nz4i/jsNn5uOs4o7zFFLnziBsJCnLzMNIGplK47E76I368Ljf94QAjPPlEkjG8LjcAT/7tFZbP+yYpM03cSPDUO7/n5unXUpSbz9q/vsw3Z9xAkVve3zztWkq8RbjsTnLtCnvqOFqGrbaPge47oOwFIGnd62kwo2AfKT2LGZbeRfcyCL4BFZN7DPuQyI5P3Wfo8jKOQ/8aKF1rtZOCVL+0YYwVJJqTI8AZBFAoBXv2wPTp1vks2ljTBNEGg1BaKvd4NAr79sF55wlAzoBoELQLwmCXlQlNHI3K/nhcEG9HBxw7Ju319ZGsu4xoysnOnRolJTBihBTL4PrubsjLg/x8AcO33w5z5sDcudDWJpdstwt21zTweqGkROp+97twxx0yj/Dhh4Mg2uOR8mvXwqOPyuU5HPDb38JZZ5pcdnEKLWlA0oB8b2Y0AIaw0KRNONEGFaOEqbZZEw8OxyCojiegtQuqy8EfgmAYzhwD8SS0dEJVmbQFcrEg7WaWE21SJscJZkwiX4yQ9IOufPmtA8cg1EbcXsLbv/w+C771EzSnh2d+tZENr73Bjq3/gT8QovCjH0Hp+XwYrOTyz/47fQ/G0M+4Hv+0NRQWFkI6wYf7P+HyBdfR13EaXVPSB9ndcp/2fSxRMwyZJAxZUTAJP9GIjpZbSLyvj4MvvpgFvb0ffsj0FSuIdHYS6+5m5HnnodlsAqKRSLpIezsHX3qJi5YvJ+HzAXDwhRconjKFstmzsbvdfPTkk1y0fDm63Y5pGMMY8CmLF5NTVMS7jzzCzBU/wN7fIwz0/C/AqAr5bp2uvwfQ1tjqHy4pA7raYNMfhMkuLoWXn4Yzp/DEzn28sm4db77+GkXFxWBzYETDnG5pZeIZEwGNva9v5KrFd3P84Me4RxTxceOfcaUGqL7gWrbt2Ms999xD86F9ON0FAqSVEvAbD+PI9QoQnzAdu8tNLNCT3Tdy/DSivnaivg5Gn3M5mmZFVAwBncmoPwvkHbn5aJmJamTiOtrfjsczUu5Vw4BQQIii2svQCopIb9qYHe/qc6+UiLJcN+Zf3pAyhcWk69ejVY1FqxordesuRyscgQqHwDCEzZ59CXjzQdfRHA75a/QPCFFVe5n8BoYBdjspTceXStPQ0MDs2bPJy8ujq6sLj8dDUVERhmHw5ptvZsmhDKgeuj5w4ABVVVVZ5trhcOB2u7PfS3t7O+XlMhaNRqPE43EikQhFRUV4PB62bt1KRUUFEyZMwOFwsHPnTi6/vI502iCdTrB9+73Mnv19CgrGEAi0EAy2UVExA5vNQSIRICenCJ/vRDbasqhoIkqlMM0Umzd/m4MH13HjjfUUFFTR0LCS2bOXUFg4jmCwxRobL8XrLaej4108nhIikV6Kiibgdo9ky5bFHDy4jvu/H8c0TEzDpH1vOwVVBXhGebDn2Gnb3UbVnCpUSpFOpkGHuC9OIpQgrzwPp8fJ6YbTeEo9RHoiVM2uIhVP0bWvi9HTRmN32THTJiqlaNvTRn5lPsG2IL7jPsbMHUOwLZglioyYgSPXgRE1CLYFqZxRiS3XhsvzP5e1hv8cXOv/qwP/YAkrpX6pxIb3YOb1T7jG/3cWmw297nL0L38T27VfkI7Q149eezna5HOFwd6xDUJBNN2GZrdjdrQJsNZ0VCSMXjUOUKhEXAB0KiVDo1AQNdAHAR/p+g0QDqE5neh1V6DiMZlptRa73Y7NZkPTNGw2G01NTRw8eJDGxkbcbjdNTU3E43EA6urqmDBhQrZMQ0MDFRUV1NTUUFFRQWNjY3a/x+Nh165dHDx4kEQiQUNDw9/VGXo+pUwSiQDhcCceTwlbtiwmFOqktbUJw4jidpfgdLrRNBupVJwxYy5hxIgJFBaOo719L42Nq63wbp1A4DRvvHELfv8pa7LWpKlpDQcPrqOxcRUORy7XXPM8Hs8oDCOKzeZk3rw1nH325wBFMhli8+Y7AGGTb29r4/F77qHA7+fWSy/l0qlT+eaMGbwILL3pJmLxOF+5/nounTqVSVOncqC/Hztw1733YsRinD9hAp+ZP58znnmGuSNHsg84A2GoRwMjrd9CQ4ayXda+55GQcROYCExatYrjp07wxDNPsOcne6iaU4U9x87v//B71q9bzxX9VxDqCFE1u4q8ijx0p04ynCQZTmZDwV0FLipnVqI7BkOFVUrhyncxYuIIuj7qQrNp2Jw2quZUsfvJ3cSDcaprq5n69amMmDCCS5deiud9Ca9yep1cNO0iWk63oGs6C69dyIOXPMiGL2zg0tpLaWtv43j/cTRN48r5V+JwOXDoDi6bdRkoeGTrI6w7uI4ndz/JF2u+yLNXP4vb4capO1lWt4wNX9hAZX4l39nyHUbnjSZtpjnaf5TbN91ONBWlwFnAxBETeWDOA3RHuin3lmPXnah0VFhplRbQisUgyweWkO2RswAFwWZ4bzGkwnIMZP8FT8Ilm6FkjoR154yG3iaLpQhLnchJ8FTA2fdArB3MhLDdKi1sNspi/zQZTHgrrDBwqx8Ot8lgU6UF7NocMsBMJ+V6Net3SicgcFzWgEwE2IR1Rsl+3SntugoFWMf6pH3dZqGDSjl3XqUAd2XCjjvhhXIB1qNnC+ie9yIUjANXAZReADaXsM+TFsG0++S805fK9oyl0nbm+PSlYMQFQM/IlFkmzHZuCbx9h0wwwGCdGcvl2kfPIa0crFrVyPTpFXR0hLj99k1UVRXgdtsZNcpLR0eIhx7aQUdHCF3XWLfuIGvWNDFv3njmzKnGNBV2u04slqKxsYUTJ3yk0yaNjS04HDYqKvLIz3exZMlsFi2qYfnyOgoLc/B6nXR3R/j2tzdz9OgAU6aUkpNjJ2WA1+Xm5mnXMn/SLPJcbu6aexP+WIjVb/2Kotw8usP96JpG1EjwyPaf0x0awGVz0BXs47mmDfSGfVSPGEVfxJ/d9jhzWD7v32nzd/PI9p/TF/FzTvkEfr77NcKJKNuad/HzPYPvf/3uG4QTUUxlYtPSAqxD66B/rfweZc9DhsnWXKDnge6GaBOYQTD9oFmTGiot97kZApxyf2oOhsUlZ0J+s52EAZobcmeBlpP5EwN7GTiqBwfhyaQAjVRKXjYbzJ49yLq++66AYaWgr2+QRtZ1YaLr6gTxjh0L99wjIPuDDyR2+7bboKICJk6UczmdEIvB978vxysq4OKL4YwzYMYMkjETTdOYMUNY6VhM8M/u3VL8Bz+Q5pWCpiYJ7Z4/XwDy7NmyPx6X0+Xlyf7Mx3zqKbn8YBBqa+Vy771X5rTXroW77pJ5hr17ZQ7hy1+GC6fp8n20dkG+BxJJOHpamGrThCOnBXTneaCtSwBy0oBTHVI2EJZ10oBenwDponwByiDbvT5pP2XKK7MkDQkpz7Sv6xbg/vRkiiaRLu+uhZLzyPHmc/X1X0Rz5oOnnJkzZ3DqdBvEByjMy4FLnoQzPkcgbrXztQNwydMCrDUdzDSBHQ9jUWIyCedwSzTMO0vAO8a696yIimhXtp9QqSjOopHYc3NxjxrF2d/4Bkd//3vKZs+m5pZb0HQdb2UlI6dOJeH3Y0Qi6DYbmq6j2Wwc/tWvaNm6lf5PPsFdVkZuSQnTHnqIkRddxMEXXkDTdS5atoyE34+ZTqPZ7Vy0fDmXPP88F9x/P7mlpWhOJzW33Sb38rb1wjhvWy+/VyolYNnuEBIk1/2/B9YgZcsqhbEuq5K++eov0VY2nnse/AH+zg4uvfZ6ps6uY8bs2Rh/eomvfWsx58yYzdRp07jryWfYsHYlRcXFJBJJblnyOF+8+2fUXnEtTz2+mvV/+h1OdwHJaID2A9sx4gKs7a5ceo/tJdDZTO/xvaRTiWH7+k68i7dkDCUTZ6BpOslYEDNtEOlvIxn1g1KD9Y/tRUPCyrEIDKVp2N1elN2Ghoa5vR7V1oJ+1Q1oBUWoaFSAcs1UWecXorm9EAlLmuOIkSgjISB7wiTMph2og/swG96y+hMDFfTLvt0NAqx1HZVMoikwG96SY41vo+XkQl4eWl4ByuPNjj0zY9mqqip0XWfTpk3ZVEeHw4HP56OlpQWfz0d9fT0+nw+lFIWFhXg8HqqrqykqKsLr9RIIBNi0aROpVAqv18uWLVtIpVKkUil27dqVTae02WzMmzePqqoqduzYQSwW4/LL5+LznWDz5m8RCnVQUTGdxsbVaJpOMNiGx1NCe/se/P5TbN9+L37/CYLBtuz4VSmD1tYmNM1Gbe0D1NQsorJyBg0NKzl4cB1NTWsAk8bG1cPGvPn5Feza9Tj5+ZXk51cQj/upq1tGTc0iMIWFjg3EqJxVibvEjcMtNFFVrYDlSH8Ee64dm8OGt9yLq8BFPBAnlUhRMaOCnMIcKqZX0NrUSqQnQumUUrYs3kIynCTYEmTz4s14SjwCpqdXMOHKCYQ6Qow6bxSxvhhOj5NQe4icghyCbUE8JR42L96M/7ifZDT5v3+u/ocv/0mvMGzZpGnatUqpN/6PXc3/5Ytmt8OIEnB7UYk46DYJ99ZtoEzSe5vQ51yKViThY2ZvN1p+vuRVaxparlv+F0MhcLnQnC4JA1dKZvxmzcVsfFs6HN2G7ZrPoRUUWbk28seQYa/tdns2vKWurg4gyzDPmTOHnJwcNE3Dbrfj9Xqpra3NlnE4HCxcuBBN04bVHdqWy+UadszhcHD11Vej63q2LU2z43IVUFExnW3b7qKqag52u4uKihlomoZppolEejGMGKFQO5WVMwGNVCrGbbftIxA4lQ0Jz3Qquu7gmmueQ9c1rrzyCXTdwZw596Hrdvr6mmlqWsPs2fdRXHwmTmdeNhzd4ynniiseQ6FYg8arlZUsUooXka88w0dGgAOGQQHgBb6JhG4/i4Ryuzwefv2nP2UzIE8BPwamAgmE4bZbbWUCrt4FzmcwKtjKxGLVj3/M1j//mdfffBOH082Cny5At+v86U9/YuWjK/nrzr9SPrIcgC3f2cLMu2aSNzoPR64Dm1NykUkj4TzWolDoVs6fmTJJxVPc8u4t2Rya2Utmc/bnzsbhkZnEUEeIpjVN1C6tZf6TkjePDV547gXmXT0vm2c9oXACYwrGMOsrs1ATFY/teowXF75I1IgSSUYodhfz+5d/z5hxY3jxKy+y5M0lrJ23lu5INysbVrK0dinl3nLGFY5jTMEYbq2/lXUH1wHws6t/xpqmNdntFxe+iKZpjPKO4owRZ+BP+AETDROcI+RL1BwCDtAgfByirVA8A0bWChi2e2DS3fIrZMK7990rrHbhVAkPdxSAsxDcoyHeI+8n3Q02j4Rru8dCbpWwxNOeE/Di2yeAPKdURtrJiDDKBeMF2KaTgyBbs8kxMylh25qEXQkzbRsE4bklUj7DcKetJFJXvuy3ueQzF0yQsnaXlNEdcqxgvHwPypTB74xlUi+vCjS7XHfwNOxdLSHgntHSXv5YYawzuevhDrjsp9D9PnTshbO+BJc8Bcdfh/xqAer546WOLUfCPnf9UPK77S45d8E4AfJo0P4OeCqxucezdGktLpc9yy4DPPvsApxOG2vWNGX3Pf/8NVmAXFGRj1IKh0PnxAk/K1c2cM89s2htDTJ2bBElJR4WL97MsmV1jB9fiNtdxNq18zCMNHl5TtJpxerVjdm2V6yYS2VlPseO9TNxUiFjR5Tz4LxvcrDrOJPLxvPzPa+xrXkXAA9c/nVsuo1fDNm39IpvDCvzgytv4dfvvjFsWyk1rMy3Zn+eaVU1eF1u5k+axS0zP5N9//Xp1+J1ua28bR1VvFSIzNK1wiBlY15SkPKBvUTAtbtO7n2b3UKGmdA6G2j5oOJSXkWH5G1b4FWlB3sgzS5tFnzVOpaAtE/qa26gVPYHg4JETVOQqc0GLS3Q2iqh2nPmQHu70MVut9DJmdDw3l6pU1QEd98Ny5ZJvdJSqXPPPUIFh8NSJxSSdmbNkucrFJK1FVpuS6c4fkqxapXGPfcIG11aKoz03r3w+utyyS++CNOmCXhOpeRxSiYF92dI9lGjpGwqJae/7z5YskRI9Ayeuv9+WWdytwFmzpT1d74jdQrOBlVdLr9ZBgyPHT34HmDMaCi0oldauwb3V46SchOroaRImGunFYmjkG0QsG3/VAjl0HbGjB4E7nYF0R4r2sUrv3XMB3VrpL9x5MLZN8lz7z/O08u/wfXXzJNcaUzuX/4j1m/8Mz6/n41/eBndUyZfmBHm/gcfZv2rm/AN9LLxt89L2OlFSyAZluiY5nXSh/iPWToPS6F8NvzlG9C8Dg2wzXsJI5Gi/8ABcktLOf+++9CAVEIidcItLRx86SVqbruNnJEjUakUCb8fW24uFy1bxpirr6bk3HMxwmGMcBiH14untJTiKVOI9fZKKPmtt+IsKCDU0kK8t5fic89FdzqJ9/Rg93jwjB6NzWFHfeU7aP/2Xem7Qn5J5UulBDD/dxdNAyMJugYjy6gcqVDPr4R9u+Gxl4V9TcYh4GPnl2+XcHRXDnScgvGTQZl4vB72vrsXTSnaD2wn0NlMQW4ElEnvsT0EOkU0YHTNZUT9XZRMlOiRkonTsdldJCOBYfscLm82dNzpLkCZJp7iSpQp+bqDZWeApmEkIvQe20PJxOk43YUYsTAul4Rt67PnokJBAd8R69o9HmwLPy/58L5+YZpnXwI5uWAqzO2b0Cqq0KdOQ6+7XGJmai9DpVOoYAC9ehzaPSvQrO/bbD2JllcARcXYFnwW87xpaGXWf6emo/p7oLg0O8bMjGWBLBEEMHfuXDweD/X19cyaNWvYsauvvpqqqirrJ9Po7+9nxIgR2TKXXHLJsPcZIA+wYMECtm3bxoIFC7IkEsDChfNobFzFQWsMM3fuCsaOnYum2amomMGWLYuZNeueYWUWLHiGmppF1NUtBTR8vhPoup3Kyllcc81zmGaaurpl1ue8D02zZ7fr6pajlMqOizPtOZ1uvN5RkhqZZnB8t6wWR6GDm268icOfHCY3J5eSkhJ+8sRPmDhqoujupBV7D+5l4WcWsvT2pSxfsxyP3UM0FmX5L5fz/gfvo+ka937zXjSbRqgzxLzH56HbdIrPKkbTNPIq8sgbnUf/0X6a1jQxe8lsquZUEemOUDGjgi2Lt3DQ+j9e+OLC//4z9j9p+d+pnQ19AT4ED0SAAWt74L9a/5/5+ldUC88sZjyu0qGgSgd88soof4dDovDd2aZCf3pZXbdwoTpj4kR17pQp6orLLlNHDn6szERCPbJihTpzwgSlaZracO/3VLqzTaXjcZXualdN6/+oZlx0kZp67rnqrEmT1KOPPCzef51tWa/szGIYhopGo6qvr08Fg8Fhvn4ZFcUjR46otrY2FQqFVHNzs2ptbR3mW53xsc7YFmQUE6PR6DAv7Ex77e3tWfuu3t7erJ9fLObPKng3N9cPs+QS5e8jqqPjg6yCoighBrMWWkOttYLBjqy1V1fXRyoeD6po1KdisYBav36RevTRwmHnjMV8KhodyPr/RYy4+sg01U1q0B4rpMRGq1sNqnu/pwY9qxcpsewKKKV6lNhn9Vl1+5VSXUPKZeoNqEHF8HYlvtd+q41jSqlHHn9cTb3gAnVqYEDFEkbWruCFx15QY8rHqL2b92YtENrfa1e7n96dVW78ype/olavWK06P+xUzfXNqnPf4DpTPtAWUMGOoIr5/l4RMqMc2Xv4U0qO/pja9L1N6oc/+KGaNmOaajzWqBatX6QGogOqI9ihXvzli2rMhDHqupeuUwe6DqhQPKSC8aDyx/zq9c2vq7KKMvX8ludVb6RXBeNB5Yv61OHew+rp3U+rmzbelG3nWP+xYVZfvqgv64W9v2u/8sf8aiA6oHxRURUPxoNiwxVpG/SgzthlJQYse6w9g0rfGSXwuM+y29osdcOnBz2y4z5pa+CA2HklQ6IMngjKvoZFoi4esdS0Yz1KtW+W7bhPyg614UqERbE7Y3GTUQE34kr1Nw8qeycySuFD6qaS1rHgYFvRfksVPDlcDdyID7adjIgyrxGX7bQxROnbsuI6uVXWQ/1uw12DFj3d+8TrNu4Xu56Bo9JmqEOp/sOyHjgq5TbdNGjfFeqQc4U6Bm2+evaJVU/PPktJfI9SA0dUOBhVwaBYYGXssTLe1UP37d/fpXp7w1mV72Awrrq7Q2pgIDrMy7qnJ5xVDs/s8/tjWcut9vZgtl6m7fff78gqi2/Z1qx6guJZHUmIZ/VAJKCau0+pe19/Sh3pOa2iiVjWruve159Sh7qOq2AsrJp7ZLu559Sw40d6TitfJKDC8eiwfZF4NKsefqq/Q0UTcRWIhcUPOy5K5dFEXKWNgKiAp/yi/p3xqjZ6lIofsVTA3xPl72THEDstn6UIfrPlWR1UKn5YqWS7WHsdxvK/9g/6XAc3D9p2Gd1D7LlC1jm7rXJBkcbu7JT3AwNZSyzl88mxY8cGPakyxzs6lLrlluHlu7uVyskRye3eXlEHHyr77feL8XTGhLqra9CCq71dqcOHlWpvVyF/KmvFddNN0nQgIDZZGV/qAwcGLyPTZHu7qIMPcRNT4fBw3+tnnhEV8YzPdTgs7Wfaqa8Xu6/MRw4GlfL70soMRQZ9pjNe1/HE4PtQRLbbuob7YWdst4aqh8cTovydSMq6rStryzWoRp4UW6+h7QytHw/IcxjJeNC/b1nw+Sxl/w+zz/7K5XepmVPGqkj3MVECzzzzMZ/a/vJKddGF56tEsGeIQrjYeG3f9Jq66ILzVOK1L0l78aBSPQfkvBnLrp+VyXni/sH+put9ZcbFUqv/4EHVtmOHSgQCqu/AAXlv2W398fzzVay/P6vyPfDJJyru96u2HTtUbGBAJSMR1XfokGz396tkJKL8J04Ms+qK+3xZhfC2d94Rf+veXpUMh1UyHBb70pbj4nU90KtUOKRUPKZUYnAc9V9ajKRSvn6x8vp0WxkP7KGWXy3HpczzK2VfLJq160oZCWUkYiplDKqDRwM9Kh4aUBFfR3Y7ZSRUylL7TiVjw97HwwPKiEdUxNepWj7YpIx4RJ1+/w2VjIWGeWfLeaROxNelYqF+dfr9N9T++h+r0++/oVKWQnk6FlVmMKDSGWvYjPVWe4u44vT1/L1qeMZONuNrnXG+6enKOt6Y8biMjQM+cdXpbBN7LkttXJxw2rOuOGY4pIz1L6tYNKqOHj2atZtNJBLDVMEzSt6JREJ1dnaq5ubmrMd1V1fXMFvajEtOPB7PlgkGg9m2hr7v6upSzc3NasWKFX/XZiIRGTIu3a/i8ZDq6zui3nvvF1k72qGON11d+7NONkOdc4LBDhUMdmTHuplXLOZXfX3HrHF0b3YcnTlnZ+eHKhr1Zce8oVC3Cg8Es+O7vqN9aqBzQL267lUVC8iY8MkfP6nq5tRlFcU7T3Wqiy64SC2Yv0CtfWyt6tzXqTbetFEt/f5S9eVFX1ZRX1Tt2bxH5bvy1aG/HVLxYFyFe8Iy9vyoUx3ZfOQfjjcz58tYg/Ue7v2/wuf6v5NzPeZ/Ac5P/1NQ/n9j+VfNuQZQqRQYSVHz1nSZ5bMUv9F00lteI3nuBby9axcL5l+FnpfPM889z8Y//5m3t21l73vvUTJyJN/4/Of4zpQzueHzn8e28POoVIoL5tSyYukDXFc3h75t9Zxz74O8veFPnNXXIbOHQ1TDE4kELS0tVFVV0dramp2pi0QiGIZBY2Mjs2bNIhKJZHNPGhoaWLBgAVu2bOHgwYPU1NSwYMECNE2jra0Nj8eTzTv52c9+9nc52YWFhdnvwTAMHA7w+U4QDndSVTUHELENgM2bF3PgwCtMmXITV1/9bFYtfMKEK/F4ytA0jUDgNF5vOaFQFw5HLh6PMHytrU2UlEzGbs/F4cglk/3g8x3D4XBjGFGCwTby8yuzuS52ey6mmSRlzyFsF7GhLiTneRmi5H0OsIThomM6wvOEgfut4yOBu4AHgLHAEeDxIfWeR9TBLZ4CD3ASeNSq42hr45yqKsaOH483Lw/dVETbo3xl4Cs8rD1MaUkpzqQT7ygvfc19rL5+NQtXL+SVP73C2hfX4g/4sdvs2FN2fv/C7wnVh5h1zyx2Pb6Lg+sOUrOohrkr5gKQV56H7tAZODpA4+pG5tw3B+9oL3aXCFZkZjbrltWRX53P088+zfoN63l1y6scDB1kSukUCnMK2bB+Aw+veJj6LfWUVpRi02zEUjE6Qh18/6Xv88lLn/DCKy9QNrGMx3c9zlPzn6In0sOqxlUsmb2EMm8ZGhq5jlwcukNyrFWahJGwxJ90NDTSKo2u6cSMGE6bk1gqRnekm5qiahyaA0gJo5PoAXse2Kyw2PcWSy519SKYsgK6tkPpXDi4Ci54HOL9EO8YzK9OR+TXTYXBVQzRFji4WhTBbW6oP1PauvAnEO+SdibfD56xokp+eA3M+h0ETgo75CqUcO500mIHNSs/ugKSQcmDzqiHF04Y0mEM6Z8/nT+dURU3rbDfTP6srlvK4UOzfpSlGO4A3xF4/0m4eI2EcpsGRDphzyoJAS8YB2/ePiSf+oXBts2UvPcfgXfXCNNddCb85ZuDCuTvPwl1j8nn1nR481tw+JXBtrbfNqztiJHDseN+OjpCzJlThWGYJBIpcnMdxOMplIJAIE5+visrVuZ2O+jri7F27U5++tMFtLYGWbmygeXL65gwQfLojh3zsWpVI0uX1jJhwghOnPCxcmUDDzxQS1VVPum0idMp6THxeIoNGw4xceIIZl9cQTwdR9M03A4XRjqNkTaIpxLk5+Rh121EkjGe27meey75N1GrR+NA51EmjqyS4AOl8DhziSTjuOx2nDYHbf4efvXu69x58ZdJqTSpdJqkYdAZ7uOcsgk4bXLf/+gvL7GteRfzJ83iB1feQsxIUJTjwJbNuV4uImMZZW9HJdjLofs7kHsx5N0gYdyaA6K7IGfKkBBw3apTLirj0SZLAdw6luoWJfG0H2yFElZunLDyrtdI6DkKojuBWjh6VNjn2bMH2ehgcDgFbBiDSc8ZsbJMjuZ778FFF0m9REKOjxsnNPKuXTB5sjDXubnwrW/BK6/AokVCPScSsv/oUYn1nj6dmHsE/qBOIKBRVpb5r4FAAIqLhXEeqqeWTMKf/ywCZQMDEInIJT/2mISMt7XBwoVyyp/8RLTV1q4drq3W0SHh5vfcIwR8LCbk+/TpMKIgjS1lDOZD/6PFVIOh3y6nvM/3DkZvp03Jw86GNlkfIGHlW1eXDz7ziaS00doF4ysG86+PtsCAH86fDA5TmOM9K0XQMNYr/Yl3tPQ3HTsht4Qf/+QF/viXD3hzwwsUjhoraSSZZ77wTEgGOOvCS3jlF89y4bTpg/2NpkMqzlnnTeeVFZ/nwoIWiVbR7MMZa2+59Due0XJMlzx/hUYynqbv448pnjyZSEcHh3/5Sy5atgzd5SLS2irCZOXlRDs7KZ4yhWQkQm5xMSqVIu7zkU4msTmdWeY6Z8QINJuNcHs7B59/nprbb8czejSk0/R99BHF556LMk369+8np6SE3OJicvO8aL99GibWwITJ8Oar8Pl/F0bW4fyvs9fxGPj6RC38hq9K/cyPa5OoRXwD8PrLg6Jn130FHrwVLr4avnirpbVhknY4BkXGdFt23IgyrV4Ior4OTr//OvmjJjD6nMvp+PgtSibOwJHjpePjt4TtLp9E6ZmzUKZJKh4mEfFRWHE2oJGMBrDZndicLqK+Lhy5XoxYBHdRGShF1N+FIzcPp7tAHGkG+oSRnn8dmt0xLM/atvDzKP+AlROdxGx8G732cigaMZgzXXe55F6/sU5yr8eMR4VC6JXV8s9lJFHNh6GgYJjTjjrwfvYcpNMoS1kw7XAQN1JWVJP8RkqprJuNiIels6K76lM5162trXi9XgoLC7O6RJm2MmVAxtAOhwPdcofICKc1NDQwZ84cCgsL0TTNUio3LLVu0HUHSoHffxybzYnPd5LS0inoug2nMw+l0iSTEd58cwlz5iwhEGjlD39YmHXBSacTWRGz+vpbsw45CxY8g83mzO4777ybWbDgpyiVRtNshMPdGEY4KxRc6DkT33E/jasaufbn15IMSxi2w+1A0zXeffddvnTjl3hv+3s4ch3cdtdt3PhvN/Laf7zGuVPOZdy+cVTNqeKrT3+Vr437Gt94/BuEu8Lc9eO7WHDtAv796/9OqDOEw+2g50CPpCZawrlDFcULxhTgP+mnaHwRRtQgEUjgKnDhzHPi8v7Pzbv+p+VcK6VO/6PXkBO99f/1Yv9fWDS7XUCuFc4tMQF9pOs3oHx96POvJbeimms+9wXJH0nEmTHpDE6dOI6mFDOmz2Dc+PFoBYVo1eNEdVyXn1ED/H19mE07CB/aj9Nup3jsePRrPicnz8StATabjfx8CSutrKwknU4TiUTweDzZkJddu3ZRUVGBrut4vV4WLFhAPB6ntraWmpqarIhZpq1M3onX66WmpobKysphOdnJZDKb02K321EqPQxY+/0nqK+/lUDgNAsWPMPixYdZsOAZDCM6JD8aUqkYmqbT0LASm81JKNRGPD5AOp1A03Ty8kbz5ptLCAZbSSZDJJNBQJGXNxqPp5TGxlV4PCXZXJctWxbj9x9H122kdDt3ahqnEWC9DhEZmwEcQoD2IkR0LIKEhbcCMeBOoBwBzS8iwNoG9ANLrXrLEJXwR6zfwWP9bo9a51oNVFRW0qMUbx0/TtO+fext2kvD2w3ULKqh/cN2dvxyB3v+toddf93FM4ueYcEPF5Bfmc+37vkWRz8+ykD3AG3NbRxsOsi4EeOoXVpLpDdC7dJaahbVMOe+OeQU5JBTmIPuFIuKoglFLHxxIXmVeYLP7HJPZfYXTSziJ8/+hHUb1lH/Wj3FRcXMqpyFx+lh44aNPLziYV7d9CqV1ZXomnSggUSAe39+Lzue3MEDzzzA3Blz6Y/2c3H1xThtTtqCbbze/DprmtbgdriJGTFsuo1jvmN8a9O3iBkxchw5RI0ojS2NHPcd59b6WznSfwTDNLDpNpw2J+3BdtJKg8gpAckakDtaxHo0XQB2zTIBwzXLwFEodlsHVwngNsIiXJZTBntvF3BscwvwzC0DlADrlnVSJ6dE2pp8v4j06C7J0T7yEwGe7io438rBLhgntlOhVhEyS8UBXUB2rE8AtqtQcqLThpUbjQymEkGydl98Kn86m63/6Q5G+pWs6AxYudsnBFgrU8DvBXdJ2GfnbgHneWNkAFx0prQx/YHB3OlYP6RTgzm5Ki2D7OZ1slamDJbHXinbZdMlj3L7rTK5cPGawbY0x/C8a81GKg1tbUGKi93ccks9ra1BPvywC9NUBAIJ7rprG5Mn/4y77/4LbreD4uJcPB4Hq1Y18MorB/jOd7YwblwhK1bM5Z13TvO3v53GMBQTJhTxs59dzZgxBYCiqiqfl166lrIyL06njdxcBydO+OjpidDVFeGdd1qorMzDElAlFI8QScb5uOsY/dEgeS4v/RE/KMVPG/7I58+7gmTa4MP2Zlp8XZwYaGfNX18m1+HC63KjUNhtOqZSRJJxusL9fPmCq2juPU3SSFKYm0dnuI+i3DxWv/Ur2gM96JrON2fcwPxJs/jmzBskJFwpdEw0ow1GfF9ynuXPxMqH9krOdekTkP8FSPdBbLeA79zpch903wGpTgHW9hIwOuU+zJ0l5aKNYtmleyAdsGy5rDxtewWMelqAthmEVAfkTJX/k85O8aAKBgXsplJQUCCIs79f7sPcXEGcmRDu73xHysfjEkPd2gq33irIdexYQcM2myQ2e70CxMNhQbSLFomUd1MTTJo0eA0lJXDXXaRNnVgswR133MCFF57JnDnn8fnPzyMYPIZhwK23fp05c85l5sxzGTOmiKlTK3n22fNYtGgemzbt4bvfvYra2nz+/OccrrvuDB58cBqXX/4Wy5fLpX/ta6tobJxERYXOxo2vEYnA6NHwzDMCrEtK5OOUlIj4WdIAZbOAbzwpOdZxK5cws500INclgLqlE2IJETALhOVGzADreGKwvJEScbIJVQKmnXap63DIumcAjlsERDIlYeNFBZZ6e1qAdfM6UfYvmy59UDIifULZDJ549uf8Ydv7bN/0GoUVNWDPxXBXc4zzpP/AZO9HR+jp62f8mWdjpDWOHT+ZBXp7P/iYnn4/42d+TnQYoj1yL2VCwz94SvrOjKhjqBW234oKniSdNkknEoycMgWby8Wxdeu44P770axxjre6mpILLsDmclE8ZQr9Bw7gKigg3NLC3h/+kHQigWf0aHKKi/GUl5NOJOjdv1/+b8vLmfHww3jKy0VdvL+fwrPOIp1M8t4jj5AzciSesjLsbjdKt6G+eBvMuBSCAzDhbLHYevlp6GqV3Ov/ymK3i9L4jd8CV658R8kE/P5ZsfVKpyG/QETTpl0some5Hnn/hW9CLALd7XD8kHS/GXssAE3DTCUxElHMVBIzbZCTX0L+qAnZXOqKKVfgzM3HTKcYOX4aBeWTLLCdhyMnD1feSAtYY1lvRjBNg46P38buyhUl8eIKjHiYjoNvZ4F158dvQ8qQ3Ofmj9Fsdsy2FkltrJkqllqajtn4NsTjEuY982JU0I+m1GDOdMNbkE4JyJ4wCRUMoHm9AqB9/XJdU6ai5ReQ3vxnlL8ffd5CtCkXos+/Xr4Ju9iGEg2jd7TidDpxuVxZ69etW7fi8/nQdR3DMIjFYrjdbpLJJIZhEA6HMU2TN954g1deeYXGxkYMwyCVSuFwOHjzzTfZv38/kUgEXddJpVL09fVhs9myNl+JRIJQKMQVV1xBYWFhVlHcNEVbIBBoJRLpxTQNwKSwcBx5eRVUVEyju/sjgsFW3njj3/H7T9HV9SEHDrxCQ8NKKipmZMPDW1oaCYU6iUR60TSd2tql1rFlWeKotnYpU6bcxJVXPm6dC0zTwO0egcPhYdasewgEWlEmBNuCzPr+LBnzOXQ6P+jEf8pPMpxk6TeWMv/S+ThyHWxr2kY6nmbhgoXZ+2T+U/OZctMU2jrbCDYGaVzVSNWcKqorqvnrS38lGU6SV5GHK89F9cXVoIm4bv/RfuxuO9f+/FoKxxYSaAkQ7Yui6aJUrtk1Ql2h/9qz9T94+S8z1/9pQ5r2oVLq/H9KY//J8q/OXCsjKV7V8RiaR5gAc//7qI52bAtuADMtvow2G5qm829fv5kRI4p5+tHVMu7u7ebyr32d733nO9xwww2YrafRct3sa2nlM4u+iFKK3r4+nnvsUf7tqnlo+QUyY1h3OVpx6d+phvt8PkKhEGVlZTidTpLJJIlEApfLhcvlIpFIYLPZsNlsDL1fMp2KUor6+vosm71w4eADmLHtyjDXqVSKcDhMQ0MD1157FQA+33Hsdhc7djw0zKfaNFPYbA7C4V683lL6+49YOdNLKC4+01IItyPK4r3k5BRimim2bftetp25c1dkAbd4WguoFwswB5s3fztr0bVw4YsYNicn7Tm0ahpVCHCeAeSSlQ7CAJLA+4jidxECrluBCxBWejXCYo9GcrOtzEgcwC5ErMyOgPQngRYGlcLHWu3nAEFgRCQhQtFp8R1UKREqy1oZ2DSMqIHdaadlZwtj6sbICRVZr0KVGrK2crDNlMn2Jdu55KFLskIWmRlENKi/tT7LdE/9wVTOOOcMxlSOgTDkV+fjdDp5u/Ftir3FjBo1ivyifGyaMIGvb3kdV56LGefOIBQKUVpWSm+kl4q8Cp596VlCRSGq8qtoDbZSnldOubccr9NLWqVJppMkU0n6Yn2sblzNA7UPMK5wXDYP+6YpN/HM1c+QSqfY076H6vxqakZUo8d7xJ86GRSPVfnSLFLOJrnNthwBsZoOqQgYAQHVKjXIbs+tB3elAOma5eKJnY5D/x4BznkTrXaVtLHvXsnFzjtDfuVUFPbdB9NfFDA5lHHOsNMF42V/XqXkRWc7COv5GmoTMkRzanDbYqKd+ZYPtsWC2yzhqXRC9hWOH65Wnj9GAL6ZgoRP9qVisi+3mKyYmsYgsNds8nnTSTlgzxWhtT0rBSDnjx0E3qGWQZuv46/DtRskF1tZCtRmQmzFQCzGzBQRrYRYPMWdd26jtraKL31pimVfLB/42DEfq1c3ct99cygv96IUfPhhJ5WV+cMUxuPxFPv2dTF6dB6rVjWyZMlszjyzmFTKpKUlQFtbkMrKfFatauTBB+sYN66QdFpZ7AKkUiKMhj1NJBnDpus4bMJWHOg8Sql3BD/f8xrfnHkDZXkj6Qz28Ys9r/HVi67BFwtRWVCKYaYozxtJLJUkx+akO9RPd7ifCyrPptXfzS/2vMa/z7iByoJSNCCRNlj91q/Ycfw9Hr/ubqZWTEJHy3pkY6nyOm1pbCqEptkESKML65xzrqh4m2H5bfQ8skJRqT5hoTU7HCsH73Uw4m4YeB7KfgpY93D3XTDi26AXCajO+mVbCuOpblABcJwh4FpzyDXE7QKaM5ZbYDlWWL9vOCxK4NOmiaWW2y252fG4UMb33SeKYB0dcOIEfOlL0lZPj6DTaFSOf//7ArozHu6GIe/37IELLpA6ixfDxRcT+uq3OXAgwf33v80TTyxg0iSNVaue4Re/2MD27TsoLPTj9xfy8MNxJk58iWee+QENDf288MLPWL9+JfPn38bq1Xfyt78d5fbbP8NLL/2ZO+64ipaWPsJhnfff38vIkSNZvPgb5ObeybPP3kBpqdhuLVsGEybIV7J4MaxbB6FAGq8WhxyXCJn1+iR3+swxApT7/TB5wiBTHbdyctEkhzqVlrWmCaBOpeXz53vhWIuAZqUEYCcNYa697kGbM10bouWgxO4rzwWBo8Of38OvSN+QV0HblhVUfe1Vxo8bR16eTP+6HDb+unQS8x79hEA4jt3hxOOy8fB3v8Bln/8W0bjBvAXXEQgGsdt0PB4vD694kMsuvUT6w1ArFJ0hE4xdeyTKJXh6kMV2uOGXZ8KkRagrXiSVtgtLmPGu1jTiPh92lwsjHCZ31ChS0ShGKITD7cbu9bL3oYdo2bqVuT/7Ge5RoyQv+9ZbseXk4CosJNrVRbSrS/Kr7XYiHR1ZNXJ3WRmvXnwxCzdvJh2LEe3uprimBpddQ4tFRbhMt8G6F2HcJJh8ARSNlNzh/8qSiAtIjkUhxy2RHPGY5FNPPEeec8sCFOvzSvSRJiD+9BEYdzbpHBdmKgmaLuMvNJIRP30n3mXk+Gk4cr3oun3wP0Qpor5O7Dkey9c6V0Boxv8bLHsuRdehHYw6qxZNtw1juEefczmabsOIhwn3niLm72L0OZdx6C/PMvbCG/BouahgEK2yGgI+AdEV1Va/oFBGAtXdiTaq3LLkc6G5ciQHu3GQuc787ZBOCYgeojKu5RWQrl8/zGlHpdMQCQ1jv0kmSDldxJNJQqFQ1gXn9OnTtLa2cu2119Lf3084HCY/Pz9rz5WxmfX7/VmHm/z8fFKpFN3d3VRUVGRZ68w4OFN29uzZeL3eLKPd2dn5dwrjmmaQTsex2XIwjAiAZbVloGk20ukEmzeLincmWjMc7sTlKsiy2alUAtM0cLnyUcokGu0nN7cIpUxiMR8ez0gikT5yc0dgszlIpxPEYj4MI0pj4yrmz3+KaLSXnTvXiNWXrYBkII3D7SBwOkDDygZm3TOLSG+E32z/DS8//TKb/rwJ93g3N3zpBrZv3Y4e1PnidV/kqpuv4uuf+ToNKxu4uf5mtj6/lTOmnkFBdQFfnPFFRo4dyc/W/4xkODnIRHtFvGzg+IAImvXHBtXBXTbJw35M9H0cbgeeUR5y8nP4n7r8M9XC/7Pln4PS/29f0mkI+Elvex3cHiucB/QpF6AvuB7l7ye9aaPMLqdSrHrsUY6fPMXqH/0Qs6sDIiHpuDQdlUphnj6BXjYaCgpY8/gTrHr4YU4dPcKBPbt5cPWjHA7F0PIL0WdfgrmrQc5vLXYLZDc2NlJaWkokEqGlpYVIJMLAwEC2E3E4HKTTaVpbW61w7EBWWREERGfY7Dlz5mAYMluWSCQoKCjgmmuuITc3l02bNqFpWlYAoq2tA6XSNDau4vjxvzB79pLsLJx0Hn2YZhq3ewRD1b+bmtZgWmrQPt9x6utvtTosCZfKzObNmXMfOTmF5OWNJpkMk0olUCplhYH6USrNNdc8z913dzB//lMA2DSdEmAOAnLrAD9wHPGdPopFjAKzgbOAEqDTWgcQYL0OAc0Zq62MuY0BTAdWIArhdyAWXK2IKNoERPgsbZXNRxrwnfIR6Y1kwbERMQi1h2SyQ4HdZUezaYy5ZAzYwHfCR0tjC8oc/lgqpbIq4rpNZ95j80ATQbRUPIVm06i/rR4jalD7gDDddcvrqKquIjoQ5cezf8zX/V+naW8Tr7/9OmkzzUB4gANHD9C0t4knXn2CLQ1bKCgqIM+Zx8effMyptlNMXTGVFX9cwe/+8juebX2WEk8JrcFWZlfNprGlkUgywgnfCW6rv42uUBeFOYXk2HOYUzWHHzf9GICn5j/F4cWHeWbBM7QGWlm8ZTElnhJyHDkCAO1eSPRBbukgMFRpSMegZ7f8AmbKsqmyiaiZs0COD2W3i6cPstrRFhFE++BOKLpAwr6VgvBJ2HsLxDph0l3gLrfUxL8jYmjF0yHRPxjunWGcNdtgSHfhBCtU8qQ87yDXnQxZod4M7ksnBCSnEvKZkiFLjAgId4o4UTYsEwtsl0sbn1YMD7XJHZlbIqDbliu2PBmm2VL8FQbcNhhybnOKMFngpAyWL3tWhMxUWr5T33EB3p5yURS+7s9y7jdvF2AeahUxNDMlAkfdH4rvtgYul51nnlnATTedi1KKpqZWTpzwkUqZnHGGMNCg2L+/G5fLRnl5HuXlXp577hp6eyM0NbXicNioq6tm7dqmrKK4aSpsNh2Xy855543KHnO57Bw/7ueWW+o5edJvhQprpFIm6bQix+7EZXeiAQ6bnakVk7JCZD/f/Rq6ptETHmDH8fd4+b1NnFM2gVJvER+1H2Eg4semaWi6RlnBSM4bfSZpM81v3n2DqRVn4rTZUSI3iMvu5IHLv86Gr62hzDuSfe3NJNMGSikefetXRJJxa8Sp0LQcAbVmVMB07jTpHIyjEP9A7iVMUQRXabCXWuVjMPrPIlyW6oNRT4rFVtetkDoFI74DeiHYi6VutAmMY3LcOCHt2MrJzu6kOqy6KRlAR6MyaHY4hN6VP4VBJXCHQ1TA8vIkhPuOOyT8e9YsibuePRs+8xn43veE3Y5EhMnu6JDY6tWrpc2eHonSam8X9FpVJfdoTo4g2698BaXg6adzaGi4mrVrNUwT3ntvJr29p1i1CgoLC1m1CjZuzGHPninYbBqrV8PMmTMZGOhm2bLbKSoqZNOmacRio1m7tkE+ckpw/rnnTqewcDytreJ3vWqVzBusWwcrVwqwzlzOokXgzkVAroaEb2dEybC2J08QYHzUYrRznOB0CFt9vNUScYuQ9Qtv65LyGqIA3tKZjVxD16HAKyD8VIesM5MehiHt5FtijAUTxQqvYJzcM2OugPJpsGclledcgooHOb5/J/t2vcW+vQ3saXoH9+z72PnH1Xz8wS72vbuTndvWc9lnb4FYH26ji50PTuTjPW/Jsbde57I550t/E+mEdx+Tfi7hg/IZ0l+8t1ZY7L2rpC/KOBPoYq+Vjset/6s0yjTJGTECe24uut2OBsR6ejjw7LPE+vvRNI2aW26h+qqrKJ4yhYMvvUT7X/9KtKsrGxIe7ekhZ8QI3nvkESIdHUR7eii96CLcpaXYc3K45MUXyR05Et3ppGjSJGx2Hc0/AK//Vhhrp1PCwidMln19nf919hpEYLCvK0M5Q/tJqJoA/T0ilpaxsTtxGPq7wUjAb5+GoA/OmCL3BIiTjG7DTItTTN+Jd7Pq33rGJUITG632A9ux53hwuDzYXW5U2qDj47dIRgMowLDKGPEgI8ZOpevwO2i6jZKJM7IMt6bbSEYD9Bxpwl1UQdlZdaDpFJRPwp7rRSssRq8aA5GwsM5ur/RuqRRmywmIRsTlJhoRN5yYgEvcHmzzrxfRXUBTpvSLmoZeezn6jf8uNrLePNA09PnXY7/7IfHGjkYg4M+y3yrgl7Hztv8gbbHIQ11wxo8fz/z581FKEQ6HsxGalZWV2X3JZJLCwkIWLFhAIBAgGAxmLbwCgQCbN28mEAhkCSWbzUZ1dTWRSAS73Y7T6cThcDBmzBicTiepVIotW7ZgGAaaZkfXnYDCZnPidHoxTYNwuJtEIojNlpMdt86bt5ZA4DTvvCPxjUpJWLqu23A4PPT3H6OlpRGXK59otI90OolhRKivv41UKkIsNmApky/GMKI4HG5mzboHTbOxc+caKiqmEwp1kjISOL1OABpWNnBw3UF2Pb6LDe9uYMtft/DIDY8w6fJJNO1oou1kG9NnTefCKy6k6VQTjz35GN/60rc4uO4gRfYijGIDb5lXCJ9qxTlzzgFEMG3HQzsIdQgT7cxziiWsTR+uDn7CT7gzzMF1B2lc1YinRJxp/pWXf+2r/xdZVCqFSiQk3xqFCgWwXXW9BHa2tUjuSesp6cDtDvRZc8Hp4vEfr+XPv32ZTev/hNvlRKseJ+riIHksGuiVY1DxGH29fbz6+sCTv3oAAQAASURBVOvc+JkbQCkmnHkmM2fPpmlXE2bbadB19PnX/p2iqM1myyp9Z6y4gsEgHo+HzZs34/f7iUQi2dxrpRSBQIDm5mYaGhqyHU1RURHXXntt1kcQBpntdDpNd3c3M2bMQCmVBeKlpaWWtcAyRow4g+LiM1i48EUKCsbg851C03RMM21Zc8WyFgK1tffT1rYbpdIEg+3MmnUPoVCHlWPtpqhoAvPnP4XbXUpX1z75vpSJzea0mHcdh8NNJNJthY1Hs9+Hodv5QNNoRRhoExiFgOdM2LaG5EhnwHYUAdpFVtmngL8AzzHIeIcRwNxlrZ9CrLnOQkLDjyNMeADos8okrbqmqXDkODAiBvW31eM76cOZ5yRvdB66Tcd/0k/9rfX4T/qzpJXT46RqdpWEd5sQ7pUQQ03Tssy1MhW6XcfhdlBVW0UimJAwoXtm0bWvi6LxVkj4OPnz0+06dcvqmHLTFNIqjcfhwa7bMZVJf7SftkAbsypnkW+pWFtJD9g0G89e/SxfqvkSa5vWsu7gOh7f9TjTK6ajazp72/dS4ilhVeMq1h1cR2uwlRP+Ezy04yHmVM1h7by12HU7vdFeHnnnEWKpGCPdI5lTNYfn3n3Oyte2pjByyslOZ5gpAYn2HCidbQFFmZTBCELoKLx/p3hUpyPgKoEZPxeLqAuegrE3wcgZArSLp0OsQwB1Rn28ZR3EO2Wg+P6dcnzkLMn3HvdVYcQdHgkbLxgva80mOc4Zpjd4Giwfd2GGGQTK6QT4TwwyGs48Ac1oln3XSSlTMFYY7FDroG1XwXhhsc2kgOKCcfK5TEMAcrhTLHKMqAzK91jhmntWIhZMNmFqAicEdPuPQXujnNNTCu5SuYa0Mfh5iicJC/7WYrnG0bNF8fz465AMQLhVBtFv3i6Dbk8ZvLWYdMqkqakVgHg8RVNTK+XlXlpbg+i6zvHjfr797c2MGuWlrMzLt7+9OctqA5SUeDjvvFG8+2478XiaZ55ZwM03n8cTT1xp9UNQXu6lsDCHZ5+9mq1bb6K01MPKlQ0WCN8J1nNmt2vYbRo23Yauadh0HVOZw8K1b5n5GXRNZ+roM9l66zOsuPJWHDY7kWScD9ubKfIUMhAJYqQN6eOt9J87L/4yV5xhOSEogdeRZIy1f32ZhGFQ7M2npmwCH3cdpyvYz5fOn09v2EfUSMgftYoL6O25E9LdAqbNoIR420uge7GA7nQvdH8LjCMClrUccNdKnrZ7ttxLWVuv1eCcCCoKXbdDulNytPtXy3GjVQB2z52y1hyDx/Q++XK7uwUYHzsmiPPECQn77umR901Ng+CwqkqY6PZ2+PznhXnu6pLQ8VWrBIivXSuy3l1dcNNN4oGlaYJiOzoEbGfQrMsl7VZXQ0sLNl1lge2yZYJrXa6nOeOM61m6VO4Xj+d+PJ4JfPDBZ7n//o0sW6bzi1+sQdc1qqvLME0pY7Mdorn5B/zudxtxOvWs7VZBgXyMOXMkQr2wUM53//3iOpZOS9r4s89agSimKaHZOU5hrDPe1k6HgOGWTmGwdV3yrwPhQfuslk5w2KXRobZbAGXF0p7LIQy1wy5dXyIp7Q0F3plzmSYca5X+USHP9fZbJQLHZlnpjb1yMHLFCtfGfxwKx0HeaHl+Ayelb3v7DolACbVa6SDdUj7UOhiFkwlBD7dK2bcWS79y8doh1n42mLUC3GXWf40dm8sFStF3+DDWA4ppGDjyBGw1v/wyLVu3cviXv0SZJrmlpUxfsQLNbufsb36T6998k5ILL5S82ViM0gsvxO7xUHL++Rz+5S8pOf98Rp5/Pk2PPML1113H3K99jQtnzuTaRYs4dOAAdqeLS/7t64xb/SJTr/ssU6fP5MmXfiF+11+9k0u+/DXGTTyDqVOnMnXqVJ588kn+4ZIyoLcTTn4CY8+U/OPXfiOA2ZkDI0fJOjAgwHPCZHGVycmVUHGHE/q64ejHVoMamGk0m2gaDAXCWK4QSoGm23EXjabv+Ltoui5g3GZn1KRajFgYDdB1O6PPuRxnbgEu7wjKzr6YtJHA7sil9MxZ2J25oEyMWIiR4y8klYig2wWQlZ45S8Z/GdbdlYNWNhqtoBBMRfov9WijRou6N2Du3DEYBq4UqqsdFQxagVgZ7SFr8qCoGL1qLGZHGwT9osUTDZPe9h+o/l7xGs/JFRvbmqnolWOyQFvTNFwuF7Nnz86mL+bn5xOJRKivryc/P5+cnBxqa2uZPHky4XCYHTt2EAqFrP+gOOvXr6ehoYHRo0dTUFCQTW9sbGwEwO/3MzAwQE1NDdXV1dbtadLW1kYymcTj8WCz2Zg5cybhcBjDSMjEB8oCvy3oug23eyQOhxvTFA/rhQtfADQrHHy6ZU27y/Igl/+8ESPGUV1dS0fHuxhGFE2zZVXGGxpW4fGMpLFxFc3Nr+NwuMnNLSIS6SUc7mLevLVMmHAlkUg3dpubZDgprj/L6qhZVMPB6oNs+I8NbH5jM5/92WdRSuFucnNX4i6erHuS5oPNzB47m/vuvo/n/vgcNYtq+OKNX+TFn79IuCPMr2/+Nbs+3MWif1uEMhVNa5o4uO4gTWuaUErsX+25dpweAdkZHaCGVQ1UTK8QMmdZnYxRhwTv/Usu/zu1s//OC/jgn9XWf/b6V1ILNw1DpbvaVar54HAFxHhMmZGwqCT294p6YiyqzHhMpWNR9ePHHlUXTJ2q+g4dUOn2VlFIjMeUGRNFxrl1dWrjK79TxsZXlBmLqmTLSVXk8ajt6/+k0sGA6trVqKpGj1YNf/q9tGud+x8thmFk1RSbm5tVOBxWGzduVHv27FGhUEjFYjEVDoeHqYQ3Nzerrq4uFQwGVV9fn4pGo1l1xM7Ozr9TVxyqSB6Pxy0lx6CldOhTwWCH2rjxpqzCtygnfqjWr1+k2tr2qCNHNqt4PJhVFO/o+OB/qRLe2blPRaM+1dt7ONt+LOZXnZ371MaNN6l4PKja29/Lqo+LoviAKCymDdWjlDqilPpQqaxquF8pVa+UOqBE7fuwUupp6/gnSqmwtb9PiVq439rOvPzW/qNqUDn8I6teRlk8pERNfOg5/UqpeDiuYr6YOrr1qIr0RURZMRjPqjg21zerR3IeySp6x8NxFewMqmBHUMoEhpeP+aRMb3OvCrQFVNQXzbbZeaBT9R3py5YJtgdVdCCqwj1h1Xe0TwU7girqi6pwPKw6gh1qX/s+5Y/5lT/mV+F4WPljfhWKh1RfpC+rFp5R/v6o6yPVEezIqn6H4iHVHe5WwXhQdQQ71Pvt76v65nrli/lUfXO9ynkkRy1av0j5Y37VG+5Vi9YvUk/vfjqrHP5e+3vKF/WpjmCHSieCou4dHxDl7sARUQKPD4gyeKRDqf4PBxXDo93y/hVknfCLInisV9TFB/YrlQwqlQzLvmi3tJMpH+ux1r2y/mOO1Ev4BtXIM+rdRmKIWnfIUvwOWargyUF18FRiUNk7oxCeaePTauD9nyjV1ijrtCGK46F2KZcylOo/YpVNDlcmT4RFzTyjDn5is6gEd38kysGRXrm22ICo+G66San3nxaV4GCrUr7jg6rAcb+oAMeD1nu/tPv+06JAnGlv4IgoDUd7B8/bf1ja/uAZFQ7GVCgUVwMDUdXdHVKtrX61efORrDJ4RvX78OHeYQrgQ5XEP/ywU7W2+rNK435/TO3b12ltd6ojR/pUb29YdXeHVW9vRIXDcfXRR3K8oyOoBgaiamAgqny+qArHo6onNKAC0ZCKJGKWmrfsD8YjKhSPqKaT+1RPaECF4hEViIbUyb627HYoHlGNJz4cpvodtBTBByIB1XD8A9UTGlC9IZ/qDvarP36wVb1z/IOsiviBjqPqneMfqEAsrB6o/6nyR0PKTPlF5btt0XCF72SHKIZn9n+6TPyQUkbvoGp4asBSBf9Qjsf2KZUKDK+T7Bg8bvR+6pwDg8ci7SKLnZHnXrRIqd27ZX3okFI9PSKh3do6KMu9b5/s27dPqVBocP+HHw7u7+gYfL9okUh2Z87z9NODdfbvH5Ts9vuVqq9XAb+purulidZWpR58cKWaNm2mam+PqEhkUAXc71fqjTe2q/POu0gtW/Yjdf75FymHw6FCoUGx8+uv/4L67GfvUTU1F6m+voTy+6Xe1q1KzZ49V/32t69mBdMPHZJ1R4cojx85Iu+NeGpQ8Tuj3J1IDqp39/mVCoSlTDyhVCSqVCwu2+HooGJ4Rl380HGlkoa00ecTZfBPK4kPVRkfug6GlYrH5ZUIDe8H3lg0qB6eeZb7Dw8/Hu0bvt13aMixnr8v33dI2smojw99/jPtxXzyyqiIx3wqGehVCUuxOxEKqWQkogY++UQUvbu7VTwYzB7raGhQviNHVLC1VUU6O1Xg5EmVsI7FAwHlP3FCRbq6VDwQUAOffKIa7r5b9X38sYr09KhEKKQa7r5b/eqss9RvHn1U9R86pBruvls9+sADqnbGDGXGompuba169Y9/EMXueExUvcNBpcIhNbd2jnr1dy//5+rhsahSB/YqFQoqFQpY9YPSVkerKIdHw0oFfEpFI0q1nlSqu032B3xSLuhTKuhTKSOhgr5edd1112bdZC6//DL1yaGDKmUk1MUX16mxY8aoKVNq1OQzx6lHV/5QJaMhZSRiKhENqgeXL1MTJ0xQNTWT1cV1c1TLB5tUMhZSRiKqjEQ0qyoeDw2oj7f+VJ1+/w1lJGMqGui2lMi7s4rlRkJUxFPRsEp3tg9X8W5vVemAT9TAjxxW6WBAmdGIKIN3tCozERcl8XhcpTvbZH9nm0odOSRq4RkV8Y5WGTt/Sm083dMlY2lrPGzGojKW7u3OjjGHKn7HYjG1fv16tWLFCrV+/fqsIngsFlPNzc3qkUceGab+HQ6Hs043sVhMBYNBtXHjRtXR0aGi0ahqbm5WbW1tqq+vb9i4NxKJqFgs9ndj5YxrTTQ6oOLxkDV2HVTyjsdDqr39vSFuOR+q3t7Dqrm5Xvn9raq9/X3V3FyvwuFe1dd3RLW3v6/8/lbV3FyvotGBYUrkiURYdXbuU83N9aqra192DN3cXG+55ATlGoIyvutt7lXxUFw1f9SsADWmcow656xz1JSaKWrahdNU54fiMtP1UZeK+WPqKzd+RT36o0dVPCTj0v7OfvW5z3xOjfKMUsVasXryviez48mMy03X/i4ZZwZkXBkPxVXUF8062HR91CX7BqIqEU6oeDiukrHk//65+v/zwn+iFv7PZK5b/4lt/d+zpNMSKjNqtGwrU5hkX7+sUwY4nCj/AOnNr6IScdrb2vj+fffj9/u5/Es3ccFVVzNrwTXgH+CRH/2QqgkT2LVnD7d+93uMvf1Oejs70fY08PvPXsWSJfdx/sxZXPrVm/nuV29i9vwFqIG+rBCEsOfDF7vdjsvloqioiOrqaux2O/PmzeOss84iGAxSX18/LJy7sbGR6upqCgsLcTgceDweNE0bNrunlGL37t1UVVXhdDqJRCJs27aN/v5+kslkNuTDbs9BKYXTmcfVVz+Lx1MKaFRXzyEvr4Jrr32J4uJJVFfX0d6+F113UF1dy4gRZ6CUys7YJRIBGhpWcvDgOhobV4nSr7sEuz0Hn68FgKamtcyceRefDjFXykTXbVRX16KSEXKUogzJeb4bIYM7kXzqcUjY9nGgFngMyau2CGMyOqAZFfG0td/KXqQEya3OCKVFgW8jOdcawmLfhbDXvdbvo9KgOTQqZ0puihE1MNNmlrHOr8znCxu+QN3yOjRdAxMifREcboeEhavMrafQdI32d9tJBpO48lySb9MaoKWxhVQiRWFVIUbMoHVXK2bSxJknIYixgRhOt5NkJIlpmJjKxGlzMr54PK3+VnojvaRUCrtmJ63SOGwOQskQESOSZaRXNqwk15HLCwtfYFzhOABcVr6xXbczfsR45lTN4a6td1GZX8mGL2zgvjn3oZTCrtu5f879XDnhyqzn9ZqmNdh0Gx2hDtKmYfkxA3qO+EzrDvnyLvypiOccWg3trwvrbHPBBU8IO12zbDDUu3+PsNS5o4S5MfwSEh7vgqlrJB/7omeFBZ7+ovy6NcthwQEoqZMQc0xhsDMz+qYxGNKdTkJsQNaZ8ECVlrzpwEkpi7XflW/lihvCBJmGbGtIuPWIsy3/bCRf0pkvId8qDQVjBtvJhJSbhnwmzSF5jpMWSe6jEZHyeVXw9uLBHG1lCrtUMUdyqDWbiL+9tVjy2g0r4sNMCKttDhE2i3QKS/32Ysm5dOYLk54RM3MWZNvWzDihUJLe3gi5uQ7y8lxcfHE1brcDh0Nn6dI6Fi2qIS/PydKltVmfa9NUWfZ59epGQqEk69YdZOVKCeVtawtyzz2zyM11EI0a7NnTTmdniMWLN3PsmJ/q6gJefHEhXq+T06cD3H77Jk6fDqBQeBw52T5Kt5hmTZO0kbRpcm75mbgsBkfTdew2G31hPzqiOnve6DPlq1EmKWWiAcmUQSgRoaZsAi6bgyf+9jv6In6uOHMG55RNyIadZ8LMbZrOXXNvQs94VesFULwE8haJYjgO0PNBy4XiZbJfLxh8X3yfhHtjl5eKQfQ9q9MfC6OeBfsYSPVKyHjeIqmru8X3uuxFCSvPHrPO6Zggx1S+PDcZqnjpUujrk+3CQmGaZ8yQ3Os1a4RtXrUKRo6UdTo9uH/16sH9brfQwqtWDTLUIO3u3SsKYs8/b/nIJ6X9piaYMQNdGdno9F/84sfU1/+Z9eu34Ha7Sacl4ry9XQjduroraG8/zTPP/IGf/nQ7DoeDrq4uwmEhzU+dOsXo0VfR0hLi448PEI0KEz5DLH+zp96/X0TN77tP9Nc8Higvl7WJhsow0P1+YZABAhF5bgs8wmgXWH7DsYSEcxd4hZF2OSVfG6TcGdXCTB9rAW8uJAzJ3Y5ZESuZcxV4B0PM27qF1W7vsdSp08Ict+8c7AdmLJNc6FcXyvNtpuUZnbZEjk+32OWh5V2Fg8KENo9oPmSe72n3gatIoivyx8Jlz0h/PPR44JQIH2oa7LgbgqdFv80lecFGJMJ7Dz9MuLWVaFcXRWecgc3lIh2LETx1ivcefpiCSZNwl5WRM2IE8UCA0OnTRFpb2fvQQ0Q7Ogi3tBDr60PTdQ6++CItW7fS/PLLOCxdgGkPPcRnt2zhxjvuwJaTQ8n551Pa1UVrZ6cVXj2EPjNNERozkhKqLVNKw4Ri/+Fit0tetVDFEh6uW9oWfR3g6xVWWhNGmhEl4C2QyCubXXK002nY8EtQCs3u5Jvf/HcOHdzP++/t5dprr+XW22/HTCVRpsnjP15D/a8f5Y9PLObGqy5AtzvQdJ1nfvYC+/fv56N9H/DRhx/w+PLbyC0sw4hH6Pj4LYx4iMhAO4mwD93uYOKcmyiZOB0N6D22l0BnM73H9mLEwxjxIJqu03/yfXRNF5GynFwJzz59DAoK0BwSKaiNKgdlkt60UVjt4hIZk9ZvAH8/FI5A8+RhNr6NVlouaZNbXkXzeFGhIHpFNUrTJa+6Zir6nEvBmydh4PXrUb4+VCQs+d4DfdLXJiUKTClFJBJBKcXVV1/NjTfemI3UTKVStLS0kJ+fzxe+8AXq6upobm7Gbrdnxcj8fj/19fVEo1GuvvpqioqK0HWd6upqotEoOTk5w8a9mbzroWPliooKQCOVilnRkkFMM00o1E5V1RzsdsnbdzrzyMsrx2ZzUVR0Bnl5FVRXz8FmcxKJdGfFdw0jisuVh8ORS3V1Hbpup6BgDNde+3Py86sIhXrweEqprp5DQ4OMj3ftepyKihmi2QH4/ScACHWG2PHgDlLxFB+v+ZjdT+/mwN4DNL3VxPLzl1M6spS6z9Xxw49/yJfv/DLHTxznZ4//jImfTGTZvcuYctEU6i6ro7e3l30799H0RhPdkW7GV40ntyCXTds3MXfFXPIq8vCd8FF/Sz2+Yz5aGlpIxVIUTSxi4QsLsefa6T/aTyqe4tSOU/iP+zHT/8lz9T98+e9YcdmB7wETlVLf0jRtAjBGKfX2/8kL/EfLv5KgmUqlIJ2yxBveRp99KRSPFEEzBUTDAJg7tqFVj0c7q0b+tV0uWWfsC+oul9wTu0PsDzQNZaal01UKomFL2OEKcHtQnW3oFWNQMclzUc0foy+6GVU9XoCezZbNuR66JBIJfD4f+fn5RKNRduzYwcGDB7nxxhspKCjIij0UFhZimia6rpNMJrHb7QQCgaxARKaD6u/vZ8SIEcMEz+bOnYvX60XXTUzTQKk0NpsLn+84jY2rqK1dSlHROCSn+kTWOkA6pA6qq2sxjChdXfvIyxudFWuIRLppbFxNXd1y8vOriES6cLnycTg8aJod0zSsXG1FONxJQ8NK6uqWU1g4FoB0OonmzMe02UlpGjoSzm0C+5DQ7zhwL/BdRAW81joeRdTDI4jK+FJg/JD6ISR/OhdoQ0B4CRL2nbCOnUQA9zKgAnBadXOiSZKBBJpNw5HryOZMDxUcW/jiQjRdIxlO4sxzkoqmMNOm1HE7homh/SOBs0QwIYC7wEUykiQZSrLr8V0s+OmCbI63MiWsJ6WlOBU+RUleCS6bC5tmI2WmJFpZs9ET7iGYCDK2aCx23c5J/0lWNqxked1yxheNJ2WmSKaTdIe7ybXnUuYt45jvGKsaV/FA7QOkzTRrmtbwwsIX0DWdtJmmJ9JDqacUu27nhO8EqxpXsbRuKWMLxnJr/a38ZuFz5JgJawCTCyopgzkzZQ1SciR/Oto2RKxsmeRQn/4DjLoEQscElDsKRRitf4+Emfc1Qu9OCRkPnxis650ggFWzMUzI7KzvQ245OIvloQoMERQrGG9ZYrkE9DrzkDC/JCT8othbOE6e6Yxg2dD6hRNERdyZb4mWtQnQtrmknDNPjoXbh+/PCppVC8iXzkm+l1RMJgHe+vYQi6wXySj/8tZiCfk8+yZRFw+cgtEzIdIl59i7StTFCydIW2lLOO7txYOiZhVzINon4eQqLYDe4YU3byM892WMlIndrnPypJ+VKxtYurSO8eMLSSTSmKbC6bQRiST5+OMeZs6sJBo1iESSRKMpVq5sYNmyOkpK3Nx55zaWLq1l4sSirBXXsmV1uN12Sko8RKMGf/7zYXbtauPpp6/C6bRhmorGxhZKSjwUFeVQUe2hLdCDL+ZnSvmZDJUTafP3iKjZjBuoLBxFW6Cbn+8WkbPyvJHoms5HHUc4d/QZxIwET/7tFe6//OskUknCiShel5sjvacZ6Sni/bZD7Gs/wg+uvAUNjdP+Tn699w1umfkZKgpKSZlp7FYoYY4tia4MAbuYCGA2wThp2WStFVCcnS/PiJJp1r3ZJ7nTWdkgDTDkHjg1HcbtlzpmFHruhVFPSZh5+HUYvUHsupQBmlPaNUMQ90oycsbfKrOIGp38f9ntgkA7OgRIZ/ytKisFJHd0CIi29sdHjeJLK1ZwqLmZXF2nNBDguZ//nIlz53LJ1Vdz+vRpCgoLIRLha9ddx10dHbBkCat++EN+8/HHHD11it//fiNHj55kw4ZXeO21Nxk5sgjThHTa4NCh05SVTaS4GJYuvZOXXnqGd945SmnpOO6552YmTapi9uyv8eyzPj766AZ+8Yv1fOUrC/nFL45z+eVFxOPyET/72Uu46aY7+dznbsDrFcBeWiofbeVK+Tjl5VCQZ+K0m8MwGklDvh/bEG4jnhRQXFkm+dEFlp5CRrzQVFI+aUg+da8PptXI+6GiaKYp4Nxhl5zt6nIB6MGw5FsrIBGCv31ryLNZKxNugeOw5xEJ0w53wOha69zGoE5FMiQpHu4ya+IvJX2CZ/SghaBpWJaDpvRFKiWTb7mlEOuxcq5d4D8qudgzloobwQdPwmU/RWl2UmmbWE5Zwl6azUYqEkF3OIgPDHDg2WcpvegiKi+7DCMSwZGXh++TT8gpLKT5d7+jeMoUymbPxu52c+CnP+XCpUtRSpGOx0UJPJ3GNAxifX0cfOEFam65hWh3NzkjR/Kdhx+mMD+fZ3/6Ey695BK6+vpwOF1MPvtsVv9oBePLy2DjL7nk5xvpGvDhcDqYXHMOq1evZvz48fzDJREXMTMNcLgkncZmTQZnRMxOHoHKsXI8HBAQv+kPcNUiCR03TdK5uQJYUdb3A+9/8BFf/NKNHDvyCZdfcSXf/d53uP7ahUR9nThy89BtDmzOXMaOm8D2v2zljDPOkFsrbaDpNqK+LpIxP3kjx2BzeUgnIthcbjQ5C6BhxIIYsRDuwjKSsRCpRBTPCBGJ1ZUOybjkTLhcMnEQtoTGZl8i41bdRvrxFVnrrHT9hmF2XZimZU+rYbaeRi8ZhbLb0eyS8qDSabR0SkLkrdD3YW0s+AzpLa+iz5pLsmgkms2G3+/Hbrfj9Xqz4mO1tbUUFRVlhXYzdrPV1dXZNEYga9mVGbdmxr+BQCBrL1tbW0teXh6hUCgr2ltUVEQ6nR42FhYx4PSnBHnPsBhOk8GUxTSGEWP79nuZM2cJbncJ27bdSW3tUgoLx9LS0ojHU0ph4VjsdhfJZAS7PZdgsJWGhkeYPXsJXm+5JXiWQtNs2XPW1S3Hbs8hlUpQUFBFff2tLJz3GyI9EXIKc+QxT5mEOsV6dfaS2cQTcXa+u5OcnTlc9fRV/PQnP+WVX7zC9i3b+fHKH7Nz7062f7idHct2MHnxZCrHVqJpGk8teoqObR28WfImSx5cwlWXXIV7pJttd27LjlevWHMFvYd6ya/IHyakVl1bzf7f7adtVxtXP3s1OQX/uoJm/x1w/Tzyb12rlDpb07RC4E2l1EX/lCv9byz/SuAaQCXipN8QpUPbHfcP8fu7DIqKZRASCckMXjqN2d6C5s1HG1GM2XJSZvDicfH4U6aoJKZTaA6n/MElEyiniO9gmqhoBC0nFxwOVCIBoQAqHEKVV9AfitDQ1ERdXR3FxcV/B7Dj8Tj19fXMmzcPXdeziosZQK2Uyvr6ZXKrk8kkOTk52baGKi56vV7sdnt235w5c/B6vTidTsDA5zuB0+nB7R45zLNv/vyn0HUHW7Ysprn5db7whQ1ZUP3WW0u57LJHsNmclt8ftLXtZmDgGOPGXUZBQTXxuB9dd2CzOdB1B6aZIhhsxW534/WWyu+iTJRStLfvobz8QkCBeyTHNY1uBExnGGkd2A1MRVjmJ4GfDTmmyA53SQEfIMJlaQRw34cw0pWAGxExy4DwCVa5W4HXgQ0IaNcQ9royJGBImWqYQrjvuI+mtU3MWzvPutHI5rWAdJaarg2rM6gELcrgDSsbmP/UfCLdERpXNzJ7yWyKzyzmjW++QdWcKiZ/YTL2HDu6Tf54NLtGnDgJEqTNNDbNRq5DZl7FCziO2+HOqn4/9NeHWDNvDWhg1+wYpoGu6eia5LIqJRMFt9XfxrqD61hUs4hnr36WzlAn44uElT3uP87KhpUsmb2EM4vP5J3T7zDSPZKB2AC11bWc8J3g7KIxOMMnxH4rZ6T1ayh5aRlZOWTAt/fWQc/r6S9ad76lZN2/B9wVYr119j0Q7wXveBkguqs/VfcFwAaRk3BwJZy9BPp2Qv9emPac5bHNIAgeqgyeTsqA1UxZkwD/P/beO0yO6k73/5wKnSdrRqMZzSgRLQQSGAkUjG0QAiEMOLBO67QgbARejA3Ywr7gXUuAMBjbBBscd9dh5bQLQiTjxWgQkggmWCZplCZqgmY6d1c6vz++1d0j7Lu/vffuPs8G1zzzdKjQ1dVVp8573vf7viGrbEZl3lTQPHV9Ixr+fvqPc699Rzpq2b4jwbj3pvUDRwCuDoR9fvIaicsqjApQXnK91EMblfYlG5oSbarl0w4/I4B7eBc88F6Y9y44827IDorzb7JdWPzSBLhF2BU6EzfMFnamOCrgujhKLn4sniedmbVrt7B5824uvng+d911LuvWPcQXvrCcgYEMXV31dHc3oJRiZCRPJlOivj5Ga2sS01RhH1VjGArX9fnUp7ayefNutm79IKefLjf+QqFmQFRXF0Fr6Qv29k7Q15dhyZKZRFMwWUzTkmwUxhpF3iliGAabfvPDIzKo35xJDaBQjOUnaIrXk3dLNMRSlD2H3w/3Mi3RSFOynm88+RM++/YPYyqTqGXjBr7EboXn6YuDr9OWbKazsY2y51B280xP1aO0GyoeQuDsHZLf1EghWQQeVRvFIBc26s9DbJEw3MrgCCdwNHjDsr4RAjpCYyWvV4B7yxfBDo2vtCtATJegnIB0RkzI2trkQBYKwjyDmJLdf78ESS9fLts0TQHkY2MSLN3YKBlWk5PQ0kLJ9/nNb3/LuWeeibIs7rznHn5+//08sXUrbz/3XK761Ke48MILZRtr1wqzffHF7LrkEqa1tvLxKz/Nuy78CJ/73KXMmjWXTKaO1laAKD/84b9w1VUrGRtLMzYWkE6/Qnv7DFpb5X6glEFjYxM9PWKEl0zO5IQTpvO5z/0tc+e+k7lz4atf/Qrf//63GBsbJZWqIxqN8eSTv+PGG1urxudvvAFnnw3NzVCf9InZgYDi/kMSnVUB2iVHWOiGlLDPoxPQ1izsdNiek8mF7HWket5Wgfi8LgHSlWzrSuZ1LCKfV8nHrrDllclzIPNGeK2vF2Bs2GF75NYUPyh47NIjB9weW1vLs69kXg/ukOu6czkMbIe2k8JEAEPazYp65/F1f7ytqa/DdlhrzeSBIZIdHeQHBsT1+9JLSXV3E3gefqlEcXSURHs7heFhXvne9zj+E5+gbtYsRp97jqbjj6c4Osor3/seb7n0UpIdHfjlMsWREUpjYzUn8UsvxYzH2bJ6Nd3nnMNxH/0o6y+/nJcchwd/8QuaW5rpf/UPdM2diy4WuOvHm7n7O/fxh+eeg7Eh+n76PbrWrUdHotz17W9z991384c//IE/OZVLcs76oQ+IHf6eFQf8zffBWRcKa/2Te2DVeyQb+54NcOM9UNcI2sePxkJwjYBRHfDRj32CpsZGNt7wOda872MMDw1hmQbzT1jAhg1fYc7s2YyPDDJz9jHc+L/W888PPARKceWnLuWMk2Yw4y1vxysXGO3dRetRi3GLOex4HV4pixVLYUdTKNPCKaQZ3bOT1qOWYEXiDP3hCWa85e1YypZIrsE+qbGORI9w9jbOOBuVqsN/8BcYK85CNTUL2RSSQaqxOYykHRfTOMcRF/Glb4e6BhmgS0+iM5Ni5mvZgEZPHK66jWPZMihl23ip+poXaIhvDh48SDKZrALpqWRPJWK20ofV+si8656eHs4991weeughTj/9dJ5++ukjknF8369GcmUyGerq6qo/u+/79Pf30909PQTHreTzo3R3L0cps5paMzm5l23bNrB06bX09T1FX99TnHHGl9m791HmzVtFXd1MPK/I4OAztLcvxLJi9PVtp76+i0ymj5/97L1hH3lZ6D7uhHXaoc+OMnn55Z8yZ847SCRa8LwiEdWCkz3SzfuBSx6oAuDVd61m67qt7N68m3WvrOO7V36Xm399Mzu37OQdl76DBzY/wAmLTkAHGifroCyFaZsYlkF2MMtFH7+IT1/5aS644AK0r5ncN8lTm55i5a0rq1naD37qQV7+0cvMv3g+5955LqXJkkTE2gamZVYN1/4zTv+e4PoFrfXCqZFbSqkXtdYn/Tvt6795+i8Hrj0PPT5CsO3xPzlqFwz0oWbMhKy4Hxqnn4HO5zBmza0x3qsugHxOGpMQlAcP/KzWsESitfmV9WfMJHjlZdRbTkRZFk4uywNPPFltGM4//3yi0egR++q6LuPj49i2TSQSQSmFZVm4rstjjz3GsmXLqK+vZ2Jigu3bt7Nq1Sry+TyZTIb6+nosy6qy3ZXG5/Dhw0Sj0VCa51cBuml65PPjRFOt+DrAUhaaAF8H2MqkmBslkmiSDj4QaB8jHLUMgMB3se242FfpoDoabCgDA4UXuAS+i2VGqqOiKmR2PO1hKxtPe8K8+g62aQMGlgqIiPsXtQ6CVduHCqNXmS8/cnWZ2nMdmiGJkVagLFzDpmxGeN53ON0vEa2YbCkLtIdWFoFSGIE4TApcVyJ1DkExUHsePgZ+QCldRgcKK26hDIkXMiOGSMX/6KSUe3rFYLoS24VSVBKAqp9TWaTylSvv+Q4ELlpJJIghG0Erk4KTpRjIvrdE61AEIcgl1LmH300HoMQ9uejkMMwYMdOq7BBaSdSaQYALGFrjavD9IskKK6IMwEDpgKIfwXU1RiVuzJfnQfCmyCVT4Qca01T45Tx2JIIbWPLaC0JZmEajQsdpFUY1qdDUNVz3zVFOoRGH52ls2wArqBpiVQ5qoDV2+NrVujrQMPVRzp2p8xS2YWIHLmUd4GKGy8m5bxomfuCHEmL1R9ubut2YqVG4KEwBSxP7JYe28zRq/vYaVOUkqfweHmgjjAqqfJ8KQ+qDDiWnFRMlXRnY8MLlK+v4yOCHvK8xKPoWbqCxlMLT8hhomJgsEYuaOEWfaMIiEjMxVWhfpzWGUhSLLvGoTdn1mDxcom16EsNQ+FqjfbAtVflG1eNvKcXQoRzTmhKYEUOi8nTt81NBgOG60rHzPDGC1CEkrchBK0Cxuowl7/s+WBaBJ+sbmup72nOFjfE8tGUR+D6m1mjDoGzAQGGS0YlDLGqdi2HbWBoIfALTxNQBKp448qL8306VxoHweBv86fUqv4f5pvm69ugPg9ku2wgKoMqg6gETzxVncx0E1Rzi6hQE8r5pVkGE9n2MIMAyTejpwV++nKBYFEMz0/yj7Tz77LN84C//kjdeeYWzVq3iynXreNeaNdVltOti2LYwTYbBWatW8ddXXMGqs87HsE2K+YBC2aBjurQ1yjBwPSXpVtpHGyZK+3KPCeOrtJbr11AarUxMJW2RFxjYNrWYq8CnYjbouwE7n7M5/TRfoo2CAJS0vVopdFgCogKNsW+QYE4HutokhPca1xezM1259/C/fz7ltUJBOou2TZTrQ30dOvDkXuf76D+xTYXGCMIyldxgLRKrflaVLcYv1gbVllwvSQBuQQwRt99QA8bv+IaoWHZthFM+KwNnnW+DzF4xSjz1Wmg8BjL7xNxs8Xqo6xaDs50bRCKenCElJ04GnezAM1JoM0JhZIThbds4/OKLvPWLXwSQ8ymsaxx76SUaFyzAjESqoKh2eESybZhmmERWm6+1RpfLGLFY9f3bb7+dn//852zdupWGBhnEQ2uU8gm0h1IWDQ0t7N37Os3NDZjKxFYRAYRALBZjYGCAlpaWI68Dp4yjPQLtYYR9nGo5kFaEUkTMva8TzDseTfCm7xIuG5pa+ZEELgoLuGXjRh7ZsoUHfv1rUtEI+wcHmdXVjac137nrLu675x6e372bocGDHDVzNutv+F9cd8ONDOzfxzuXLecXW7dywkknVUvZxK9bUWm1K/a3AWD4LkEQoC0bSxl4WmMrBY6P6fjhbk4hAEJlnGnJPdF33xQHGpIBypT3DEuhA6rla+gAQ0GgVS2ZzFC1z3mTAs+wVXVMyLd9XO1iKavax9NoDAw87WFog6HBIWbMnCH7EEg5jzakBK2yTiFXIJESssBQBoFXOUIKw5L7qtIKrTSWspCeqQywVtZR4V/UimBWYvEUVXLiX2vOC4XDDA3/jo4ZJ2OZESw7ccQ5fkQz/yf6bEdcC1rugp5XQhk2lhmRPqfnhn1EaefACFVr0rdyigGRuMlHPvZXNDW38Lc3fJFpHbPY8Dc38Itf/TOg+cxfX8lfvO/dR5yr71i5mr++4nIuvOBd4bbDfp/2qx1JrRVe0cWOq+r5Hbge5QLYqSR23P7jL/OfZPr3jOIqvWnD5v/h+v9jJ2VZqJY2zPPfJ67dy98pI3orzpQs61SqKuvWu18gePq3MkKnNUHPb9C7X4ByiaAnnN/zG7mBh86LKhY/cv7TvxVJOBp9cC/ks+h8DjMaY8UUB8U/JQu3bZuWlhaSySSPPPIIt912G7lcjkceeYSXX3656hBeiTkol8v09PRUow16e3urLo3Lli1DKcX27dsplUo8+OCD3HbbbTzyyCOYpkmhUCaemk7JK9NzsIfeiV5RrflyM4ql2qRmWQf0TvSydstl7EsfQCuTkcIYmPaUDnOAYUUpukWyTpaMk2XdQ1eCaVPWHtsO9rBnvBeNZu/kXp7ue5qMk6HgFgh0gKt9PC3MTMTLoYpD4lzpF1GjPahcLypwMUujKHQI1EFpD+VmUM+uk2Uqz90MCo2p3ep7Zm4PUb9Myivy9syrxEqHULk94fb3okojGNrD9B2M0phsW4MyovKZUC0DC5smVDmD8suYuX0kGhSxhgh2zMaOmViWh5HZi/LKVSGoCgLZZmVb5YzMdzIY2pFYVD1l+76DCnyU72AEZVnHK4f/BXlfBxhoWS8/jOFkSY2+wDTDYFq0DoMApQyU1qjAQz2+DuVkUJO9qMfWotK9GE6W5BN/TSzXHx7XINxfFzOzD/XYWuz0fqzBp4jlDpCK1KHSlfX3gg4oeBHyBZ9S2a+Ww3l+gOcFDA3l8LyA3t4J1q3bSjrjkM+7ZDIOyk7i+BZaQ7HoUSoH+IHG86mmo7huUAXYSkG57FMseoyO5qs3fq3l/uY4AaOjebQhecmO71IBy6DYPbyHg5MjZEJ36f7JESYKGbzAp+w55J0iuXKRiUJmCiiGsu9RwKTow0Qhg9YaL/CPfPR9/Eqs15QpCDujMTNAaQelpTwCXYamOTDzNKRAwQMqNz9qrH+QlecGVEFykIHhq2SeDsF49Y4QOpxXu2ihC4H2ICiGz8ugSxR9iz2HJ+g5eJCi51H2fXonJkDBNT2P0VfM0NASw44aIZMM+yYnWbtlC/smJ4nHbQwD7IjJjBkpfDRZx2EolyPvO2QcBzcIyJTLvD4+ztotW9gzMUFrWxIzIju8Z2KC7X19ZByHhO9j7NmD2rFDzlmtUa6H0hozm0VlMqjBQXk8fFiuKcNAeV547mqU62KOjWO4HmrvXlS5DFoL0A6C8FoIsLRGmSZGEBALYG6imdPKEWKf/BR2NofR24ux7grMbA4VT8pVPHWkAISh3NMnj7W7Tm2eE4Cva68r66dzUHLBN0JjiECAo+PK8uk8lDygHYJwe14EykkqwNp3Xfzwu+kw5lEHAg6yg4Ps+vKXyezfj5vLIaVMAYFt4yiFd8YZuJ7HyCuvoJUi199PeWJCgGm4nTvvuYc1q1cTeB46CLj+S19i0Vvfygc/8hF6e3vRSuF7Htr3cXM5As9D6YBkAmLpAZofvofO6T6G9jFMExUERGwwxg+hfnwXRikvv0Uxj/rxXaiRAQwdEPGKWF4JS3kYBBiZw0QsjXLKqOwkFAuoycOoUgHluVjZwyxd7Mo5EJrZGErYRT9wcct5fK+Mr138uR2UyxkGf/84QeDKcVEKbRlo3yN/eIDAc6SGFqpAMn94CKcwKT9f4OGVC2jfEwVQfQLPCNANSTS+3PsNCCLCOOYPD6B9OYZeuYDWCq1stGkLKA4jsbRC1DQE8OS1Upd9+o2QmA4/WiwKmOQMYbwrtddWrLaN526DGYsFQFYSCJ7ZBPkBqJ8Db78D4i3w26vRDXNk2wM9op6JNsAzm1DlSZTyKTsOVlMTc97zHk7+8pfRkQg6EsHTmsCy0LZN3YIFGLZk0ff19VXjQScmJtiyZQvpbLbWRwjPyyAI8H0fIxYjCAIKhQK33347mzdv5oEHHqg6S5dKJYYPDeAHLloH/PKXv6C+3sIwJti797e8+vouXCXn/C9+8QumT5/+x8AacLRH2cngeWX8wAEMHCcr7aMhoEKj8ecdjz+ldK3iIO04WTy/LHGidhwHOV9uv+027v7Vr/jqQw8RSSYJTIvO7llklGKHYfCBK69k39697Bsfp71zFqlUivM+8lE+pxTds+ewZNkynnn2WUaVwleKQCmUMigpxV6lqu/r8HnWtNkbidFjmOxRih7DIOf4eIeL0jSUPHzXF+BrqNqgf8bBcwLyI3km9kzw8FUPC0gNNH7Zx8k45IZy+G7NR2b89XGcvEeADOZO7EuzZe0WypkyE70Tko6yZ5L8aB4n4xB4Ab4TyKPt88bEG6zdspY9E3vY3redjCP3Ujdw2dG/Ax+fGTNnyLWDxlMegSGD1J72KPtl9k/sJ5lKknEyDOWGyDk5TMvEtEypjNEBo/lRDqQPsL1vO07gVH/zdDnNNY9egx/4+NonZkVkcFQHYb/KFWCtfbl/hC220mGfyyujJveSiDUwb+6ZxGONROw4hg6kz6bD/pZfrr2u9BE10mebDPt+5YwMrRqiGIxoH8u0pX9ZmsDQXri98L4UDnKpx9aiJl4nYha4acMG9rz6Ejf/zfX4novneZSKBXZu+Q7/eFk7V3/2Gl566fcoJ4vKD6HKmXAQLxzUnDwQfsdAhhoCv9oHjcSVfGffQwUepuETrwPFH/tD/Vea/k/A8UtKqQ8DhlLqKOBbwBP/IXv133BSloWKxlCRqADtNe9DtbSi7AiqpQ1V11AzbFhxFtowpfYkjBogGqvFDqw4U2ILKs9LxTfNPwsiNioSwzz/fajmVlSqHjMWp6WlhfPPP59p06Zhmuaf3FfbtrEsixUrVjB//nyi0Wj1+YoVK1BKVQF0ZV4+n2f58uUMDAxQV1fHqlWrSKVSBEHA0qVLq/Mr2/B9H8OO0Du5l+eGnuNts97GrMZZGBjYhs3TfU/TO9ELwKH8IW7qualqiqXRtCXbMENGO+tkufqRq8k5OelUaE0qkuKb536TklfimYFnWNy5mK6GLhSK2Y2zWdq1FIBrHruGrJNlMDvI2i1riRsmqjgIuT2Q3w/OBLQug3i7tARWQmKcAk9MqEa3y0E7aYNEOlkpMbyy66Q+95nL5f0wO1kRYAQOqtAHsVYwEzIvNUfqfQGltHzOs+sgv/dNdHE4aeT9aL3I+FKdKGVgRgxMW9hnlesXeXBuisqjyrqHm43US+1XpE4eK2Y3lagoM5QGVzKOCT83vVekwWYUAhkEQHsQa5J62xmnoSIpVGa/yP8m3gg7bRre8U2w4yId3P+osBflSXhtM8qKiqHWY2shvV8MOOKt0LEM9eytEJ+G2rlRpNKViJedG3EDi3TGQSmIx0OVQaApl31KJY+mpjiWZdDd3cg3v3kuiYRd/ff9gPHxAiB5y5GIQV/fJOWyAFbLUhiGge9rHEe2F4tZTE6WaG5O4LpBlcnWGizLoLU1KYc6NGMLtKbkOhScEgtmHEN7fQtxO8rCzmNpTTXSEK/D9V38sAOYisQpuGU2/vp7Ieh2OVxIMzg5Rq6cpyXZgEZjGWb1OjANkaaVPYdNv/kheadIyXXwptzIFBqlCwhb6QlgrrDqKgrKDhlrT8BvhXU2QmDnHZJ5IGZa7beDioHOS/TT8FqRIweZN52vrtT9KivclgYVB/8wbqCJ2zaLOzvZOTDAoVyOhC0j1veuWUNnfb10DpTCNoQx2bBtG5t372bDtm3hoEWNR48YRvU9EEMyX2tsw6Cjro7bVq5kMIxd8cPlZjc2sry7m7pIBMvzUDNmSP6y74vcMHTBUqmUuFZ1dEhuc3NzjekbHw+ln+G1M306yvdFJh2Po8LPUr4PjoPatw96eiTCau1aVG8vRiaDmt4Od96JSiTg61+HxYtDtg4BwK5Xaw4cT8BwZ5tIgEuO1OdWpoosuFLfaxpUywoitkiKPV86+aYhjKwtskuScYl9MkO1gh8IsxpKlLXWFIaGqIxk+Y6Dm8tROnyYfH8/VjRajUoy43EBv75Pvr+fXTfcQLavDx0ENB17LEopzHicSMgY6iDg5ltvpbe3l6/ccAOGZfHde+7hpWef5fldu1h2+ulc+O5345dK+KUS5clJrHgc07ZRuTRMjqO2/hTOfBeqLJ1/fF8MRIt5mNYGF31M9v3Hd0sM5pxjYes/yvHJTMDPvoMqleT3rW+S9Qs5SDWg0PDwz8ITzISGxurgYW30QqNV2AZEEphWRGKMDIUVTdIy5xTccl5yhgtpYeNNi2RzJ4YVQYWGeYHvgtYkWzqIxMVErjAxgmHZYJgoNIWJQ5ix8BpFANvQ7n/BLUyGGcci4wWwIwnUxDhB/wCoCDo0KdNL1strI4JWJrz1czD4FDoEl8w+W0pLBrej62ahz/oWxFpgYHt1Gyz5ItpMgDLRU8zLdKQRiofQxVEYfRF9ytWgFdp35DNOvQbKaTj1OoJIIxjRKhAeHx9ny5YtTE5OEgQB+WKxalgFVMvTuru7SYZGZbt27WLp0qXU19fLZeI4FAqF6nqV7Q4MDDAxMcH69etJp9Oce+65nHbaaZx77rlMTk7y7ne/j5NPPpVTTz2de+/9Lg888BA7dtyBZdVz4YXvZdGit3LSSSdx9913c//99/PmyfMcAu1hWTGCwCWfPyQDKkAQ+FUAncsdCiXCJp5XloFSryQsozIwzQhKmWhlUFCKm2+/nZ/95Cf8/LHHuLOxERN4zff5xKFDBEhJ22O/+AWN06fTMW0aRWDZBz7A/Q8/zA3AyMQEz+3axQknnkgCuIJaXGg8/C8CI+F7bYCpFDchXjEbw0fT9TFMxeTeSQZ2DpAbzNXAccah/+l+8iN5DMsg1Z6ifmY959xxDmjIDecIvAArZvHkV57EK3o0zm7kvG+dR6wxhjIUvuODhp137mTptUuJJCP0bOypxjfFGmJYMUvMr0IW1/EdEnaCO8+9k4SdYEHbAoayQ6zdspYD6QOc3nV6NUIUoG+yj08++En6Mn14gcdQbgg/8JnVNAtPe8StOLf03MJofjS8Z/iM5kfJOTlaEi10N3azvHu5/N6BR6Ys975bVt6CRmMqiXVUgRv2gRQYttyPjcr9N2wyUNLXMqPQMEdIiXIG5TuyrjKlr1a5vxl2GMspBAN+WZ6D+Kv4ZenjoVBBqBSM1KN0IKoVO1VTmvll2QkrJpLycGDstttu55cPbOWhn36bxParaTbGSKWSfPiD74ddG5mde5xlJx/LM888C5GUlJlEwhKjl7+LyuyFhpmieilnYPJ1iQFN75Nj4pelJMWMSDTp45ejMvsxzf85hmYp4DbgwvCtfwKu1lrn/0P27F+Z/qvJwv+tk650zKxKRyqUWAY1GQVBKElDhfI0QzpThhGaymiwLJT5x6z0/+nkeR6+71frUN78HKjWX0+txZ76CNSs6UPDCKUUQRDg4LDt4DYWtS9iKDfEpu2bWL98Pf2ZfjrrOklGkrQmWzGVWTWxqphiuYGM/FUasuGcZH9u2r6Ja5dey1HNR7F2y1puP/t2RvOjDOWGWNa9TMg6NKP5URpjjRxMH2Rm/UwOlw7zaO+jXLnoo6hn18HCmwX4oqA0Ana9/IeyH7QH5XGItoiJ0wvXwsJboTwq9bdvvROeveJNtb1hxxYlWcmv3CrrWHHZhpeHSCNMPAfNi+U310pAaPUcMHgzzq6eP/pNs/yySP4aZteYSPhj+ZAOl1XS6OOXpF4YHdbghXUvTkYafe3DwDZoPYlKRw47JbW8yqyxnUqJVP/1n0H3SslHrkiP/LJ8JzcPXkk6bYVhcZz99afglR/BRVvk/Z0bRTrYMFeOE8jnVWWGnyefeAvpjEMmU6a+PkoiYZHPu2SzDg0NUerrIyL1NBTlsifYImJiWTW5dzbr4vsBhqFIJGwOHpwkFrNpbU1iWSIBP3AgXTXcmj1bgEA+7xAEmkRCAGGh4HLddb/mW989h7LnEGjNaG6CHzzzAJcsuYjOhtbqIBBKYaBwfBfTMDFDCbdSir959D4Wdh7DKTPfwg+feYDPnPEhkpE4gQ4IgoA7nvwxn1r2PhJ2DC/wcXyXr/32R3zk1DUEIfuXLmU5ccYxIolTBnHTRVWAr7IFUFe97SttRigT1kWqBlaV97xDYDaEgLoI/iSYTeF2oGa2FbLdQTp0tE5QLQtw98H4BnGmtueS92z2TE5yx9NPc9vZZ2MaBqZSuEFA0XWpi0YJtMbxZZAgAIayWTb29LB+xQoSlkXRdUnYNm1h59rXmpF8nlQkQn00WpV9a63Juy6GUsQt6wiZqGkYeEFAo9YCfi2rJgHWWoy54vEQmEYESFfMiEBA6Z498NWvinlXMlkz+woCaaMdR7ZnWfDJT8LNN8u2ikV4/XU4/XTZ7ugolEpi/HXoEMzogGToGuwHso1cQWptDUNAb2UqOQKc/1Q5CEAmL8DZnNKpU4TMd3jdTpV4+2HNcDRSk80ATqnE6IsvMm3BglCzqfBLJexUisKhQySmT2f0+edpnj8fMxYjc+AAidZWnrvpJg4+/DDd55zDqV/6En65jJ1KgVK4uRxWMsntd9zBz37xC7b+0z/RUFeHYVko08TN5/HyeWKtrdS3tLD3lVeY1tZGvq+PV77/fdY/vZ2rPvExLrz4/TWZTzEfPhYkOzgSFYfmh38O7/mE7PvAPmjtEPA9bTr83dfhqPlwynIB3o/8DFa/v1YT+55PSDmWZYe/rydGVJXfuVyESAzftqrGXNr3BEAbZnWgZeDlx0gPvUbDjGPpXHCWVBU4RaxootZmay1lTZXfI2w3dBDgFNJiLtXSIT+i1tXmncCXzOJogsLEING6aZhWBOUHkM+hYnGCoX6Mzg4wtLQHZQ9tWlLbb4eGZSr8jsqXe0Gl7r4ynFVJIAhlpPrgAfx/3oz18cshGQuv+7DuuiILxSAYGMDomFH9bB2aQwYY+Ji4rothGGzduvWI+tiBgQE6OzuxLKva91BK4XkeQ0NDzJw5E9M0cRyHcrlcBdyVGtoKu1ypla30Z4IgwArbBKUUrutiWT75/Aium6en5yaWL19PQ8Ms+vqeoqFhJi0tx2JZf9p0yfMcxsdfI50+SHf3CiYn91XNWRsb5+A4OR577BqWLr2GuroZGIbcP/L5MerqZgBieKWUidY+Shk4kRTbBgY4r6uLzrlzaa6rwwFS0Sj3/uY3fPiMMwjKZQzDoGHaNDbdfjsNJ53EBuCS8XFu/vjHGdor4Oujl1/OX15+OQng74BlwCbEUHUOIlVVwE6gCzFo3YeYsTYBE8BMx0MVPbau28qZN5+Jm3dx8y51M+uwIhblXBmv5JFoSeCVPNyiS6IlgTIVuUM5ytkyLUe1UBwvEq2P4hZcDNsQ49ZA07e9j/qZ9TTObmSid4LMQIb6mfX0bOzh9M+dTuPsRsyIKWaueUeAdjxgz8Qebt1+K7euvJWEnaDnYA/v/dl7ec/x7+Hb530bJ3BE2q3EFfzVsVdpijWRjCRJl9NMT06nP91Pf7af02aeVlWPub7LzoGddNV3MS05jd8N/Y7l3cspuAWueewarll6DbMaZ1H2ygQ6IFPOMD05nYZoSgCyEZHrxg9LMiL1cj1kDgoYNqYQXlqH5qe2XENaC1FSP1uupammpX5Jtp3ZL8B2qqmpYQlorZ8V9s+o9fkm94jq5O13iOdKrk8MB8045Pq5/ds/5kebf8Wvt/4zTc99XgD38R9i7c8UCxct5PK1f8Xh0SEWLTubn/39vSw+fYXsZ+Dw9lUXcNW6S7nw1Gnix5Afku9VKSm5aAu0nSzth5uVdILRF+CXq2s+DNGGP3lt/WeY/t1qrv8zTf9dwfX/tKnoFnF9Fzdw2TWwi4HMAO8+/t3Ypk3FqTLv5NEIE13ySsStOCWvxM6Bncyqn8WcpjnV2prrHruOS065hKOajyLQAX7g4wUevxv+Had2nIqvRS4XMSOYyuTTD32ajWduZLQwyqanNnHLWbfQEW9AuVlhm/9wE8z/AhSGoOkkYaN12JmoUL+BA/l+GNsG7WfDyzcIoD5jyxRX6vVgJQWIV+qyn/s0HH0FJLvFACs+U5js5z8jyye6AS0NphkTAOo70pAqJe9XGkk4EihXDIlQtcgP7UsDmwrNa0CAbaSutgHty3/lBlAxt0HVgHPFCMsrihywAvrdgtwYDFu+o1MBcKY09tU6ax2aeFVqb8JaUN+V/VambPuJq+DMu2omOO/eCq0LZbuJ6eGxscKOnUnOsXn99XGGhnIsXtxJImHx2mvj3HLLdr7znfPZt2+CgYEsy5Z1ibl+weX3vx/h1FOlU1osurzwwjCnntpBNGoRBMJSu25ANlums7MO39dHGG5961trMAwYHs7R3p6Sw+AGRCImpZJHssHEC3wm8pMYhklDvA6rCloqddGq+rzkOlVgnYrEKXny+rYn/oETZsxjzfErKPsCDG3TBq0peQ5j+Ul+8MwD/NWSC/EDn7gdpTXVxOFCmuZEA1pr0sUMDfF6UraP0iXpIPvD4A6DPRPGbw0dp2NQ2AXxMG+oatMX1mIBFHrA7gC3H+xOGP/qlHW3gz0rNMByJeZJ5yS+CQN0SVyos5sl3qn922TcGJdv3cotZ51F1DRJl8tVkFyRgZd9n4gp9dYZx6HgONTHYjwzMEBrIsF4schpM2fiBQHPDg6ysL29un5jNMqeiQnu2LGD21etwlBKarVdl0hYD2wqRc5xWP/443zvzDPlcgqCGrAOAgHE+/aJI25TE+zcCV1d8m+ErO/AgOQ9TZ8u4LoCkA4flqipynYrddqGIYD85pslaqq1FZ5/XvKegqDmvhuLhwA4BNe2FQ6+vfnap8okH+FGXZnSeYl4sk3o7RcDLDuMBpqKxdM5iXqqRL+lc0cCeQ2uKyxg7uDBqkFUsqtL5OFBgLJt8kNDFAYGaDnxRAHIhoFbKOBms9h1dfjFIk42S/2cOVUQevttt7H5F7/goQceoHnaNALPI3/oEOlymY6uLp7buJH9xx7L52+4gVefew47lWLnl75E21vfytp77uGvP/JBLiIjADiWkANTLsl/XYPEG02MCQBWBkyOwZzjBHQHYf316JAsB3D/38MzT8Kpb4MPXSEAPBKT418uiVNyqkGOTeawDEQ0NIIVwbctkXdrLf4fkQRuKYNh2FixBE4hUzWJ8ko5rFiqahZVMY4KPDeMU5JzsTA5QqKpXYB6BUzrsMY7HBzRiNmVRlGcGCTeOCMUWASYmDA5jk6LQZRGo0wL7boEj23BWHqGxIem6iBZJwasTzxyhE+M1prgkQcwTlsupqxVb5h3QSEfmlWdiU5PomZ0hn4wYuKqmlrQmTSUS2K+2tCIZ0XwE8kjBuArj1MNUhsaGhgfH+fpp59mxYoVJBIJHnnkkaoLdAVgd3Z2opTC932y2Ww1MhSE6c5ms+RyOTo7OymVSqHBKmSzWRoaGjBNMxx486rOy4cP72Hnzq9zzjl3hGZRGtOMYVl/2nSpXM5x8OA22toWYNtxtm69vGrYesYZN+L7ZQ4ceJKmpnk0NHRhWYkwilSSZDKZA2zbJmC8rq4Dw7ApR+vpUYpWxOx0OcI4jyEpJEuAKPAGEhO6Pnx/DbAFiRMdRED0eqA7bNXLSOzoj4CLge+E200DKeBlhA03EC2Ti6SZxBwPd7yIDjSF8QLZgSxdy7pkjC6svXaLLo997jGWXrOUZFuSoeeH6FzSiRW18IoeueFc1egqkoqgA40ONI9c/QhLPr2E7GCW7uXdbFm7hdfuf433/fx9dC/vJj+Sxyt5pA+mqe+srwLv+LFx1m5ZyztmvYO/OOEvxJNEmTwz+AyndpyKpz129u9kRmoGc5rmcDB9kI09G7lj1R0cyh/iq9u/yq0rbyUVSVXZ7bybJ2ElOJQ/RGuiFcd3iNkx3hh/g68+/VWuXXotO/p3MLtxNsu7l2Mqk9fHX+eW7bfwheVf4C3TjsMOfFQlIURrMVDNDQqhYIaeOhWCLKz3BwQwN86rRWS2Lfpj01I95QZQie4sjonqr3420rcK2zOF9LcCJ3TxbxUCppyFxLRQlenQ/8t1dH30V8ydNZO6uhRoTdQdZeezLzE+uIePr7uWvf3jUBzl8suv4PKrrgXgKxs38a37vsvo+AR1yRixWIzfPbOL1pYG2Ue3AE99Ed7x9RBY52HbdXDKZ6DxKFEtLlkvPg2hWe5/xun/GVwrpT7yr83XWv/d/+W+/V9PfwbX/z2mfDlPxsmQLqdpjDaSjCRxfIeoGcXXYvZQ9ssYysA0THb27+S0madVG0tf+xTcAulymoZoA3WROrzAk7qZwKMy1m8ZFr0TvfRn+plZP1NinJavxws8kpEkt/Tcwlfe+RXqo/WkKn3MwgAMPwqTv4dFXw2BZcU8S4UAG3ksj4N2JMKpwly/5fNQd5QAyPKYsOBuVqTfipARDOWDOqgxxO5kyBoriTyJt8nrckZAasVduuIMbUaO7GDDnwDcb16gMoVSqqkGVIFbZUaEpQhCgBB22CvOrzqQUVWlhEXW/pRjFAJntyAA2LDF5MYrQ7w5lDLF5PNDMzICV5Zxi9A4N9yOLUC7PAnJ6bVjXpW2V8C+JlPQlLwIkYjJ6GiectnjwIE0a9b8hImJ69i5s5/TT++aYhQjLHY2KwAhmbTxvIDnnhvi1FM78P2azHtkJM/06dLx279/shr91N1dj2UZeF6AadZk474vADteVzMcq8Qy/eUp59Hd1E6AFnM+wNcBJbfMV5/4ez6x5AI661sZyoxVI5+aEvXkygVaU00UHLG+yDtFUtEEhlLcEjpY3/nu65ieauFQbpyFncdSCj/z46deQGdjK17gU2eDwhEGeuwGaP4ceIchcZocW28MrFY5n4vPQGxh6CLth6CtFLLUHqg4BHnwBsMBlmFILA1PrYJEOrV8DlQyjIEiBOadMH6T5CerJFm6wuMkhmIVUW2gNeOFAi2h+3SFuY5aIrPf0d/Pks5ONCIFzziOAPNEgpLvkymXqQuZ60seeIBrly7FNAxu6ulh/fLlHNXUhBsEmIZR/XxDKVKui8qG53bYIT+CfT5wQED0aacJoM7nJXtp40ZZNh4X12wdKoqSyXCQSwug3rEDOjuhrw+6u+XfccQxu74eDh4UN+3TThNWW2sJbgbJM66wyAeHoKsd4qFqwPFkH2OR0AQAWbayfNmRuKbK93n293DcXHlvKkCvPK+4UlccqP3w+5fKEI3g+T6B5zL6/PPEWlqwGxuJNzfXYo7Gx4m3tBC4LmY0KrWxQUB+cJDd997L/MsuIzF9OqXxceJtbaAU/f39zDvuOObMnl113Y1Gozz8wAOctWoVjudhKMW0adO46YYbWDB/PnYqxYYNG/jOD37A6NgYdakksVic3z39FK0tLZBJy28C8I/fFgZ6YhSaWgVQF3ISfdQ1T9jteFLer3R2xw7Bw5vhvA9AazuMDMHWn8Kq98nriTH5n3u8HB/PkUGQzCR+SyuBZeEWs/hOnkRTByhF4LmUMqPEmzqqg7WB51DKjhFJNvDGb39AY8fxtL/lDAzDRKNwi2nGep9lxglnotD4nsuhV7cxbd6p2PF63GIar1Qg0dxRZbsJB6dQivz4IFY0TjxWH6aQ1KHzWQHYpaJEKaVSKMtGowh+vRVz5WowDPTk4RpgzmRQdXUQBATbnxCwnc+hkqlwQEoGPXV4vWrTJHj0QdT06ah5x6LqGo6QWfkP/hJ/9bvluISKGynD8asqt6klbI8++ihvf/vbq4arP/zhD/noRz96BCgHYarr6upobGxkcnKyGp/U2NhIX18fbW1tuK5LNBpFKUWpVKoy1tlslu7uThwnDRDGeVaUeBKtdvDgU9TXV9jrPwbYnufg+yXGx98glxumvr6zyn7X13fj+yWUklKe/v6dzJixKPwOJrYdPyI9Zc2ab6OUjRdJ0KsUfQiQjgEDwB5Epn0bwjz3IYD6YuBOYBfCTCtgGHgEOBroQCTe14frX4UkmxwNZJAI0ToEYCtgPzAEnIYAbStX5vHrHmPlLSurZmbjvePk+nN0LumsjsmmD6TZ8bUdnH3b2fiuj5t3SU5PopTiYM9BJvdPcvxFx6O1xk7aYWmIAOyVm1ZiWHLslSHvmxFTarZdX577msAPePSzj3Lm3WeyN72XuU1zKXtlnhl8hoXtC0naSfJunheGX+CtHW+tEi2j+VHS5TRHNx/NodwhkpEkCTtBwS3w0qGXOLXjVOJWnKJXZKI0QcEtsLFnI9evuJ72ZDs/3f1Tdg3s4razb2M4N1yd15fuY81P1nDx/Iv5wbu+S9x3hIXODQqj7Jfh8BvQfkqNKHnzQGnlRWUgVQc1wqRCeLh5UTdWALkyawkj9bNlExXV49T3A08Ae4WtnhqPt/gL0P8kDD4lrHZxHOo6a4RGhXnf9nlRGX5ij3gpVPqBFYKkYnA4820iV9+5UXwaKpGkFUImvQ+eu10IFZCBgUTbFPLnP9/07wGuw8Ii6oEzgB7kp10O/FZrfc6/077+m6c/g+v/HlOunCNdTpN1sjSE8o+ck8NxHWY2yjlbcXmsAOWskxWXTtMmYkQICMgX81zykUt49ZVXicfjtExr4UNf+BBLFixhbtNcfO1z9+a7+eLHv8jf3vS3fPKKT1L2y/zyx7/kzm/cyRuvvcHf3vS3XHL5JUyLJIS5Nu2QwQ2BXH6vsNDHXwvxDph4XpjpaGsoF9cwtgMaTpB66dD9u2r+5GVDUKhh8kVoPlUaMy8joNtuAAJ4/mphrs2E1G+jITqtBpCn2ntXpgo7Vg73+4g4p84a262pSbvN6B/j7SrzFdS2SSgD9cOGvBodVQ4bRyuMnPKlQR19QWpudm2Et39NGtadG6WxtlMy0jr1LmKYoRpAS060W5DR04Gn5AaU669Jh0w7HHgIJP6l9cTwu0QoeDaOE1SZD8cRqe6uXQMsX96NZSn27ZuoyrwNQ+H7whAcOpSnri6CYSiSyQj79k0wPJxj2bIufF+kxMWiR7Ho0tqaJAh0uL7GtgWA790rzPjSpV0oJYC8ozsh4xVoiVnSgTCxSvHS4OscNa2bmB2tHGUOTAwxUcyysOMY/vax7/DIa09z3vHL+fyZHw/ZVgMv8Cm5Ze548sd8+JTVzGqawYGJIX7wzAOsP/MTvDy8h6Z4HX/37IN87NTzeWHwNZbPWUjRdfjRc1v58tkfDFnZAqhYbXBD++FPEnZiCzvAbgVrFnh7w0im9WDPDZfVHBH95I2JXBwfiruEDS/8Foq/g/ZvcqRD+JGPeS9GxnFQQCoSwdcaU4lrt6kUmXKZF4aH6a6vJ27bTE+lRMatFEXPY+fAAF319UxLJim6LtMSMuhQAcsK8EIQ/emHHmLRjBmcM28enXV1eOEyvePjJKNRWpNJGlxX6qETCWGSK4NP+bycp/m8xE/dfDNcey20t8PICMyeXWObQ/aWq6+Gq66CuXPldQV0v/gitLTIOoYhLHh3tyyXyQiYHhmR2u59+2S5REKMy+bNlDOmVK7lJVfk65W66Mr1nMmJXN0yQ7Z76nUePpkqH3e82vqBhmdeFgCeShzJbmtwi0V8z6U4MsLu++7j5M9/HgA3lyPW0iLyWtNEex5jL75IdNo06mfNwisWCRxHpOBA6fBhrESC8uHDvPK977Hws5/FisVCR+4Av1RCA1Y8LtFM995bzSVOtLcTbW7m+Ztv5tQbbiASjaA8V471vlehebp8/0RKHl1XpNxKCQNtRwQYpxpgPATRFfl3ZhLiCQHbgV87bntfhfoGaG6TbWUmZP0K660D+T1+cjfBsSeil51F/vAgdizJaO8zTJt7KpFEPTrwCTwHMyKDR4WJQex4CjtWT2FiMMwRBt8pYFgRiukxrGiMSLKpmlEc+C7a97GiCbxyAcOycUt5xvY+c0RkUutRi7HjDWjfxVQ2ynOrjHWF/a4C03xOzuFIDOV76GJRvAbCsgr9+xfRB/Zgrn43OpuRCFFdGSjVVP1AKoO04R2csoBXbVkii698tgIXYajT6TRdXV1HgGvP83jkkUeqcaAghmUVNlopheM4RKY4hlf6tfl8nlQqRTabrS5TV1eH1prDhw+zfft2li5dSktLC47jYNs2Bw8eZPr06cRiYjxWLmdJJtswDIsg8Ojv30EyOZ1kso1Dh15k1qy3EY3+aRBQLmd44IFLee21+7n44l/S1bUUpQzK5Qy//vV1LFt2LU1N8/C8IkEQkMsNY9txUql2Jif3sW3bBpYvX49tJ0km2yhH69iuFAsQZrkB6Zi7wFPAe4H3IDGhg+H8BHAAAeELETa6Lvy/FNgMfAgB4SEEwwAKCCjvQMC2BzjhvJ3h+8c6HmbZJ/Br994KYx14Ab7r4+QcktOS4hAOlDNlDNvAikqJoVf0qvNMWyTelUEVAMM0mOid4PkfPM+ZG84Uh/CwzapGjKrac9/28fHZN7mPDds2cNvK2zAMA0tZRK0oeSfPjU/cWI0INZVJ3smTsBOM5EcoeAXiVpyCW6Al3sKLh16skjJfWP4FhrJDvHH4Dc6Zdw4z6mbgax9LWfjar8rP33Xsu7jz3Du54qErWL9iPXMbZpOyE2K+WjwMzceKX04Q1CTeU2XblanCSAdujUipgOpKf1CFbXl6v8RkmlFZp9JX9Eo1ibhfhsOvCPsduJISEm2USM26LmG8f7UGjv8QnHFbCH6jtf5gJeferqu998Rn4OzvhhLzm6SvVz8bvj0Dzv+5RPcZZq3c79iLYeV9sq3CcJhGsF6IJMOU/XcLAtbNP60K+c8w/T+7hWut36e1fh9yrb1Va32W1nol8FYkwvfP05+n/+vpUO4QvYd7sQyLuB2nPdVOd1M3Ruig6QYuOSdXlYkn7SR+4HP1I1eTCaXHCsVHPv4Rtj23jad2PcV555/H9778PYZyQ2g0mXSGn3/j5yw/czm/fPWXlP0yUTPKwpMX8vc//nve9xfvY6I4wa6BXUAQSnTCSyN0c2X3Rhh5EpJdAp7bzoDELJF7gzR4DSfA5AshSExDcQi8HNVaUyct4DDWKUZp+GDVwyu3QHFYnr/1TgHWkQZZrziM1Fmbtc6tUBFUawornb5ISkAwyGPDHJFuT623jtTX6qa9kjDiFaoQLd/DMGrbR8PkvtqIaOW9sL4P3xXA7hVl9LR9iYzMvvVz8tqMSeP67FdDOXc4GVY4wlmCwe219ZPTZdutJ4mBWutJYQ1RSo7d5F65IcxYUhvV1EGo4DXC2n5FLGaRSFjMnt3Arl0DAHR1NTJ9eoprrnmU118fB6CvL01v72FhmuPiOptI2Cxd2sW+fZP09BzEdQPq6iLU18cYGclhhDf2IAjIZsVErbOznqVLu9i+vY/e3sO0tEi9fsEtMZabIO8U8bXmbx/7Dv3pEY6a1g1InjFA2XNoiKVY2HEMpmFy6ZKLWHXs6Vx9xocYzozxN4/ex+DkGIZSJCIxvrjyr6iPJlDAzMbprD/rE2TLeU5on8ffPfsgj7z2NP/w3FZWHXs6zYkGRnKH+cCic9BY6KAARgpdrX8MFQHemDDT2oPYfHAH5Bwd/xrEl4WMtQJdDNUWWRi+VrZhNct5euhaYb7dfkieDe3foBb1FA42uXtheB0EGZzAJhTCMVkukwkNh0qex1MHD7JvYoL6aJTpySTdjY20JpOocH7GcXhmcJDWZJKBbJa6SIS2ZPIIYJ0pl3ltfJzLHnyQfZOT3L5qFcu6uuidmCDjOJQ9Dy8IOKqlpbouWsOMGQJ+KwDU92ugt7VVAo3vv19qqzMZOPpoYbR37RLgPSweEGzaJKA4lxP591VXCWheuvRIYN3WJtvu7YUXXpAa7Eqd98AAVAaTj+qqXc/xqABh0xDgaCh5HWhhnd84UMtIDgIxQoMjQfWb67JtSwB6OqxTXnKi5DCb4cCg44WO4wFGWIP9yve/T+uiRVhRqTlWpon2fUaff55cXx+jv/udMNvJpLh5K4XvunhhXrEVj2MlEpjRKKesX48Vi1GamCA/PAxKYSWTWLGYuN1Go7QuWsQr3/8+0aYmdt97L24uR+uiRVSikzg8Kgz1zLnQPA2cMvz4LhgdDs3awmOQzUg99uigMNnpcZF/T4wK4B4fEfm31tLpGz8Ef/91aGgSg7Mf3Qmlgkinxw/J67FhcB0B7ef+BcaeP4AySDTNYLT3GdJDrzG29xlQYVtlx6p1/7H6VtywPjze0Ebge+jAY3TPLrTWJJtnEEk14xYzDP3hCdxSjnJ2TIyyDg8QBB7KihBJ1DNt7lsZ3/scvlcm0dSBFUmgfVfi4ZRCWzZkJUWkUmMf9B+E9ATBk78GQAW+sLTJJNU4BMPAWLAQY9UF6IofzOS4xItOjlfbY3SAzmfRE2PociksH0LSUQxD9sEp4W/9peQba006nSaZTDIwMBAaRMp907Ztdu/ezbZt28hms8JuhlGhuVyuCporDuGO4zA5OcnWrVtJhKqXZDJJU1MTk5OTTE5OUkkx2b17N9u3b0drTSwmv0VnZ2fVJC2bHUYps8pa+77L9OknEY3WY9txurtXYFWMPv/EZJoxVqy4nmOPfRft7QtJp/fzwAOXkMsN09m5mKee2iRmcShsO45tp0gkpuH7Do2Nc1iz5l4aGmYRjzfjunmswGOF1jQA0xFGeR9wGTAT+DlwK8Iwf2XKfvQBC2otvfwUwL3AIURCfhBYh7TSvYjJWSdwFNKCgxid2QjLNi9cFgVewaOcLeOVPZysw+E9h9l6+VYKIwUSLQm2XrGViX0TYICdsNGe5uGrHsbNu1gxCzthY8dtMn0ZMUR7Yxyv4GFYBjrQ9NzUw5l/eyaBK47ggDiLX7aFyX2ToKEwXsDJOnjaw9c+G7ZtYPPuzURMGXTpy/SxdstaRgoj3PD2Gyh4BRzPwQs8Cm4BX/u0JluZ0ziH9lQ7KTtF3I5z0vSTuHX7rWzevZmbem5iaddSlnVJEs7eib1ctuUyeid6cXyHk2eczN5P7+WOVXcA8M1zv0lHqoOknRSCqGEuzDhV+mHlDKCFNKifFQ7M+dLfCvxaO13pa5Wz4Q8XmdIXI7w2A0i1C4gGYYK9cri6USsHjNYLWWFGhADyCvCbK0Qanh8ShvnyMTjzHulnPb5OvG0CLySZBqVmujAs+2AnpTZa+/LZp3wW8oekf3fZoPT9nrwWnJyw0p86JEx45XvbSVnmmVulr/rE1bLvkbr/1MD63zL9/4LrKdNRWuvfV15orXcjA1p/nv48/V9NAQHjxXFm1s/kioeu4GD6IACZcgYv8PADH8uwSNpJ3MDljfE3uHTLpYwWR7li8RVoNHvG92DYBsctPY6rHr2KfZP7WHDyAvr7+lnatZR9k/tY8b4VfPa6z2KnbFYfvZpAB+wc2MkxbzmG4487HmUomuJNtCfbZYS90AelsKNQacDmXw+rX5RGzy9LY+IXxdE71wvlw1AegWmnh6D4kMiarQQC2BPw6u1iPJHqFsbbLwEaTvyKsN9eTiTmVkpGC01bar8VVflzdapIFo9QfKuqMyRmRBq0Sv1lJZ6pAs6VGdZwR8KRUGrrVYB2hS1vmCNAd2rDXjGhMEMWyEmHMnED6jrghbtl/UQbHP+X0lgTdlIDDyb3y3f6zRUwbQEUR2qu4lrL4ELl3y+L2QYaGudAsl1uFNqvsfLAvn2TrF27hTfeGMfzAhwnYObMBpYsmcmePROsXbuFvXsnuOGGt7Np03Y8T5NMRli+vJtYTDKuLUvR1pZEKWhtTXDSSdP5zGceobd3gp07+0kkImSzYpw2OlogmRSjtCCQ/+XLu5k7txnTDBmbUJYZNW0Mpfjs2z/MRCGNZRikonEWdR4b1knHaEmKekNrzYyGady46jJidpS4HWHFnIW0NzQTVlXiBwHNyUYG0qN85bHvMJgeJWpFiJo2ly65iLvf83muP+uvsE2bw4U0J7TPY1bzDCQKQ0OQQQVZ8EcgyMm5ocPzURlgNEBiubDb7XdB3XvA2Qe48p4/Fs67BXRBwLK3H5qvgMO3Sc22NVPMy4bXgrtHJOHuXlBxaP4sGHU4YcRThWmKWxYH02nWPfQQrckkfZkMgdZ0NzayP4zf2jMxgW2aBFpzQlsb39i5kxXd3XhBUP2vAJZUJMJIPs+jvb30pdMYSjGcy7GgrY1Aa/oyGXb095MNgbYfBBLzMzQkhmO9vQKeCwWps/Z9cfju6oLdu+G73xV2WSmYMwdWrAiBbsgmp9PiLl5xGH/nO2FoiLBYH9atE2Dd3CyPs2fDsmViYvaVr8g1vnSpgPeKsVjFMbzkwBsH5XUQcIRLeN+wyL0rADpiC3AGef1m1UplXYUA6YZk2Ha8abkKmDcMTMPAisZ465e+xNx3vxvfcTBjMfxSiWe/8hVizc0UhoeJNjXxh+9+l3hLC4XBQZ7dsEEA9OHD5Pr6sGIxvEKB7NAQFaOuaFMTybY2lGHgl8sC1Pv7SbS10XX22Sz83OcoT0xwwmWXEWtpYdqiRey68UZpl6Ix+ODlwlYHgUi4n3lSHj1P2sIgkOOQnoDOOTJvznFSVz33OAHHR72F6gHw/SO3E4nBRz8jzLYy4JGfy7yH/lEAOxraOuDDV1bBeccJZzLrrRfROu/U6vnplXLkDw/IYIUVIdnSGRJRmuFXnsQt5Wk7dhmGYZI/PIDSAaN7dpIeeo3RPTuJ1k1jdM8urEgcO5qEwMN3SkQS9bTPfwdWJEmiqZPhV55EGZY4jGuJ3REm38Hf8nOYGMeY0Skxn51dArwLeanFVgY6M4n/4C9g8rAklYSZ7qqhqRYhuu1xCDTalRpzlUjKcYxEpV68kMff+kv0+CjadSESxVx9EappGoZSzJw5s8o0b926lXK5HN6CFR/84Ac599xzq0x1KpXCsiwSiUQ1UrSnp4fXXnutOn/VqlUYhoHnefT19ZFOp+no6GDbtm0EQXBEAopt29i2TTQarT4GQUA0Wkcs1khf33bK5QymaRON1uF5RbZuvZx0ej/Bn4g+rEyWFaGxcR5nnHEjhmGxbdtGdu/ezPbtm5g7dyUrV96K4+QoFEZxnByp1PSQxZaBDdct8NBDV5DJ9GNZsWpEZcUB4yBSY70ZkXcvQ5jqDcBihL1eiwDvBkQSfgNSo+0iEm8faESY7a+H290QbvOm8LN2IExaDqnPdsPvp0M3bztpE22IYkUtlKnY8bUdvHb/a2SHshiWweq7VtM0pwm/6NO3vY/saJZzv3Eu0fooylACmBUk25Octeks8iN5SplSlY1ecf2KKogvjBbQWlcdxOs669CBJtmaFJCOjalM7jv/PoY+O0TSTpKMJOlq6OKapdcwkBmgPlpfBdyffPCT5NwcJa/E2i1reX38dXJOjkQkweVbL2esOMatK2/l4vkXc/2K61EoNm3fRGOskY09G9m8ezMbezYKiEdzzWPXMFoYxfEdrnvsOmJWLGxutfS5JvfJ82i9tB1OribRDlypfw79FarMh1JgJ2p9vko5YXpvON8U8qFhblhiNxmqc8rCRlcUlJO9obLGkUH0Slzei/dAx/Lw/hD6eSSnQ+/9Yhpb+bxIA5x1j9RGWwnZx8fXyfZTXaJUbD9FbiSGJd/vjNtku/nhsE8cE2BfAfhHvxfe+U3Z770PCvtdKQH8Lzz9n7iFPwXcB/wwfOujwFqt9dL/oH37305/loX/95iKbhHHd1i7ZS2bd2/m4vkXc++aezGUQe9ELwOZgSNqpPsz/dUalrtW38V4YZymeBMRM8JlWy6rbkP/QhOti3LnN+7kwv91Icl9SX709z/iU5d+ij2RPfzqa79iJD9CKpKi4Ba48P0X8t53vpdrPnsNrXY0xJmVul5DGqE310grQxrEg/8Ih/4F3vpNePZKWPIdWb40JuC7MARtS8PGwoBsr0hqYtOgYiJWYYm9HLz8ZVh4Syj3CTvDZmi0M1UyFAQ1SVBlmgq0yxkZFdR+aDKmqLpzTzUxC5za/IrkqGJ4VllmihRUHgNZzsnId3EyoYw+lNL7pWpEF4ErjSnUzM9CN0mUAa/9XCRIilqDWqmlrjxWRgQyB6Q+qGNZuDMGFaOOdNGkp+cgra1Jpk2L09qarNZNA/T0HGTBgjZM0yCVirBnz2GOOqqZffukhvq665ZyzDEteJ7GdX2iUZMggHzeYevW13nHO+ZU5eQAuZxDPF5zmy4UXNLpclVeHotZRJOw//AQ44U07akWhnPjnNA+j4hp44eGe7lynsZ4PSXPmeIofiEtyQZs08bxXRJ2jLLn8PvhXtpSzTQn6vnab3/EZ874EDErwsOvbud3A6+x/qxPYIbScUMZFNwSuXKBVDRB3I4ykB7l6OZGDH8YrPbwt/TlhlfhNNyD8h9fIu+7+6WWOr44vBYcwOIIt2BMcHrBq9Rce1SN9Yo74NAVMHsnNUdxVT33HT+gTJJMuUzecZhRV4cfBPROTHDnrl1sWrmSpG3jBgFrt2xh8+7dXDx/PnetXs1oPk9jLEYqEmHf5CQbtm3j+hUr6Arjd7wgYFcoGY/bNiXXJWbbtCaT2EpR8n129Pdz0vTpNMRi+Frj+j4tvo+xbZsw1KOjMG+eAOtDh2DDBvjsZ+X95csFJBeLtZro/ftlmeuvF8Y6WQGpWhjthgYB2sUiPPecsONNTSJXbm2VGmvLEun5z34mdddf+xr84Ae1wa7K9ZjOSQ12Q0rA9NT660oHzPVEXv1mw7LK5AfiOj617rryvhG2S34Ae/th5nSIRavA1HNd/DDbG9PELxaxEgkCx+HAQw9x+Pe/5+QvfAG/KA7/ZjzOrhtu4ODDD3Peli0owyBSV8f4yy8Ta2ujftYs/HKZ8d//nqbjjsOKx/GKRV746lc59sMfxq6vJ9bcLLFkgA4TKTRQHBnBiseJNzagKgx1Q5Mcr7FhODwSgubolBSOQJQ3fiA1182hL4BpimTcdY6swR4/JMD6vA8Is93YXFunXIKf3SfzUvVipOZ7cHgUP5EgSKaqEnAVKo6076G1uF0fenUb7ce/Da9cYLR3F63zFpM/3E8k0Ygdr8MtZkk0toNp4RbSVRO0SKKBwHNQhhnKzCUnuTa/noGXHiPR1EFjx3FowNQKlIHSgTDOFaOy89+HnjgMqTqUIZnbwWMPYiw9A+wI/re+ivG+j2J0z5Fkk0oddHqSoEfqsVVji5x6TrlqIKdCubz/4C/QLz8XftbF6MlxqeNedQGuZZMrFIjFYjz00EN0dXXR1dVFPp+nu7ubSo51XV0dTU1Ncn17XvhzmVUZcSWlxHVdfv3rX7N06VIymQzJZJJ8Pk9XVxee51UNzAAsy/qjWFLXdQkCl8nJN3jqqVs566xNRCKiUpOaa4OXXvoH+vufZvXqu4jFGv7ExUW4nw7j46+SyQxQX9/Jtm0bWLHiizQ2zgE05XIGpUwikeQUWbsAa4DXXtvC8cdfgGXF8SIpMkqRRWTZlWKb7QiTPRthpItIy3wdIjF9NyIDzwG/QJy/OxCW+5ZwnkLqrIsI2N6JGJ5VdK9GuG0XAdunAZNFl8Qbh3n6a0+z6murUCiUpQjcgP4d/bQvbCc7mGXXnbtkvlIi6Taoyru9sodhGhiWQeBJHna0PkokFQmPdy03e/z1cXZ8bQcrN63ETtq4eZfHrn2MpdctpWl2k+RnRzVpP03MimEa4gbv+A5D2SE29Gxg/fL1zGuaR3+2nxueuKHab7xj1R3M/cZc3nXsu7jxjBsBeMvdb6n2S0Ek5Eopeid6q9LxjT0bWb9iPR2pDjmfDKv6uYYyyDk52hOtNYANAm4r5maoKX2oaK1fN7U/Vum/Ba4oAysS8op5rZsPywGnbFNRM0GLTxPZ98jv5HnD3DCxxQtJihhVTyE3H6o3FdWSMb8s/cnJXnj2VnjbJvmcwIdXfwrHvFv6b5VkGdOW14VRiDXKvg7tgGQnNMySfS6OifQ78GF4p4BzOy5sesNREF5v/1mn/2dZ+JTpE8DlyMBVCfgk8PH/t9378/Q/eXIDF0MZfGH5F7h4/sVct+w6Cm4BhSJhJThj1hnMapzF7Wffzl277mJx52Iunn8xX1zxRaJmlOnJ6Qznhnnq4FPVbUx/fjr79+3nq7d8lbFDY4w9PMZ1X7mOtVvWknNyrOheQdbJcvNTN1dHHvdP7udf9v8LcSsugFaHALoK7KbUOef2wq61ApJRMOsDcPId0iiefDu4OQHisVYxRWs9XRqm0R7I75N65GhL2IBKJwcQBrw4Aotu44g62DAT84gIBR0KabVfk4FX9q+ckdHKSP2Ut4NazbQddvaVqjHRvhOCdWomZr4j8pxKDV1lEE5BVRpeqX+ONoR12F4oIQ+PnTIkZkwH0tEsHJJaGq8o75sxOO4vZL1yRmRJbrEGIqomauFYfX2XAOvMARjYLjcDrcHJYNuKmTPrue22p4nHbfbuneCyy4SpNgxYuLCdQ4fyXHXVI+zbN8lRRzXj+wEbNmxj8+bdDA3l2Lt3kqef7iMaNUMFpERyfeADC2hsjNHTc5C9e8dRClKpSOhkW8KyFJZl0Nt7mEOHRDZumpK1/INnHqA5Xk/MjnBSx9EEOqDgiilZoAMaEw1oIFcu8INnHuCR157mOzv/Cdu08QOfglOkf/IQNz3+fZridYzkDpMrFzhhxjxGcxP87WPf4aSOY/jCmR+v+ROEgH80N8E923/OaG4CA8VYfgKlLLA6whMj7FAGudDV2wVrusi6D60D94DIu+OngndAGGhvMBz0qfAnCOMdOWqKmVk5ZMF9iJ0Mc16gEr9THUEPz+mIZVcxXUsiQc5x2DkwwNHNzdxxzjkkbJuy72MqxfXLl3Px/Plcv3w5UdNkRipFfSRC2fOOyL2uuIFHLYvTZ85kKJejLZkkbtskIxFGcjkZElCKZV1dNMViUlfvungV07LubgG9y5ZJHFYkIqB582a47TZx89ZarptEolZjXVlmwwZxB49GBSwPD8MNN4icvFgUoH7aaXDMMVKz3dkpgHDXLjE3i8fhwx8WCXnFKK3sSg11ZapPQXuLgJyudmGnw2YA15Pli+UasNYI810hRBwvZKmlnrbKjFcG0YJQBq6UAGvHFVO0vf3CUAKFwUF2ffnL5Pv6OLx7N7mDBxl78UWmLVrEouuuIz8wwHM330xxbIzyxAQnf/7znPfAA8Tb2vDLZZ6/5RaajjuO+u5uiZbKZmk65hhK4+PsuuEGiiMjtCxYwCs/+AGR+nqe/cpXCDwPv1ymND6OVy4TeB7Zvj7Kk5PyO9i2sNfFAkyOQ8t0qb3e+6qAPt8VwP33X5eYrXhCgHhF9j0yWK0HBmR7ThkamuHDn5aorrFhycSuDJzEk/CXfw2tM8Ia7dC3YnIM6ptwS3lG3tiBDjypkw4C3HKeoT88gVcuEG9sx/ccRnt3CSvdu4ummW8h0dyJW8xhReMUJodxC5O4xSwdJ7wTO8y8VqbN8B9+i1cuYEUTRzDbaGg9agmp1tmAGIXl08NyOigDY9W7MNddh7HqAlAK1SSlEDoIUJaNcfrbCLb/FpVMYbzvo6j6BmG6M2m5hA0DVd+Aef77oLGlOkCq7IgYl02OC6ieHMdYuQY1fyHGsneADqqMN0phuk6VhV6zZg0LFy6kubmZ7u7uqsS7vb296vjtOA6VeM+Ko3hfXx/ZbJYHH3yw6gTe09NDIpHg6aefprOzE9M0KRQKHDhwAM/zqlFeb56k5GeSTGaQc875erWmWmvNwMAufN9lwYIPctZZt2AY5h+tP3WyrAgtLcfR3b2c5uajWbPmPhoaZnHw4DYACoVRHn/8CyEDLhJx183z2GPXkM8fYsGC92NZcbT2CRD2uYmaVDuDAN054dq9iLx7GPgacBFy+btIvfW7gRUI4301tfpqEHa7NdzOyYgMvIDIytcixmnbgXZgHGjxAzIDmWp29fjAOO+9+L2ceOqJvOfa93Dhhy5kYHKAxZ9ezJkrz6S7s5tTTj2Fxacv5pt3f1PEcrbJM88/w/IzlnPaitNYctYSvnbn13ByDuOvj7Pl0i1M7JkAID+SZ9XXVmEnbfp39KO15ry7z6Oxu5HADxjYNYBneCTsRPX3KrgF/MAnYSf47OmfpT/Tj699GqINrF++novnX8z65etRKA5cdYBvr/k2M+tn0hhrZMsHtnDX6rswlYmlLEbyI+yb2MecxjkEQUB3Qzf3rrmXjlQHByYPVBWY2XKWtVvWsm9yH7EKuVDJoPZDwGwnw/6dlv6aHz73ywJi/XLYHwv7YMoUYF3JkPZL0kcLXNmWXxZQ62TlfquROuv4NIk0VeaU54pSqcyFF13EMW85kZMWnczKM9/OnldekuvfLXDjdes45oRFLHjrMt6x+n2yb8/eykjkeM658IMcfdx8Tli0mCfHumU/t30Bsv2i+vRK0hbYiVBaflAUilOBtZ2UPuLwTqm3zvWJ0jE3KH27/+LTvxlca61f01ovBlqAaVrr07TWr/3H7dqfp//uk4mJQjG3cS43nnEjPQd7eGH4BfZN7sM0zKpRRCqS4vZVtxM1o3z3/O8yVhij+45uSn6JDds28N6fvZeh7BAL3ljAtke28a0ffwsjYvDsc89y6NAhzllxDpsv2cxD//wQ3/v697hv033ctfouNJrrl1/P3Ka5vOf491D2y0AgjLOXl1FDXWHntDRiuzdK1NYfbhIwsmutOISP76LKQPt5YfZalwmgfnZdCLb7RB7uF2sgWWt53bockjMBTxpJL2wgDYm9OaLBDTxpKA2zVpdSqbuJ1EnjVJF+V6Q5WkvDrswaK1+Rs5nhaGlQAcWmGIlFUiEwLkmDXXGIVCHzmOsTKffkHqmbzg9Bqi10Ag8BckXapBQ8e5tsz4pTbXqUIR3ZSD2kD9QkScqQG8evL5M664EeAdXalwY8NQN+/UlI94IVI3DKbNzYw+bNu0mna883buzB8zSZTJmRkTy33baSzk7pKJmmwR13rOKVV9axYsUsBgYyLFjQxv79UmtdLntYlkE26zA2VuSkk6Yze3YznhcQBJpCwaW5OU5v7yRXXPEQra1JhoZyRKOWmAaX4dLTLmJGwzRS0QQvDr7BSHaCqGlT9hwOZQ9z06+/B0AqmuBjp57PqmNP55LTLsJQit3DvTTG6/nOzn/ikdee5u+efZAT2ueRiiY4fdaJR4BxpRRu4HHg8DB/8+h9+Dqozv/BMw8QoFkw42g5l9394I0IAPbHwYiBkRR3cBWBw98Ia6wjkHibnMsqJu+N3xpuY6/IvLUbMtKBgHT3dRj5a/BHQYUlEZjiOB7kpqwX1naHkvTRQoHLt25lpFBgaVcXWcdh3dat9B4+zHihQADMbmzku+efz+zGRnKOwxUPPUTv5CQTpRJfCIH3+uXLKbgua7ds4Y3xcUq+z7KuLizDYHpoyjSjro59k5Nc9uCDHEinpUN6+DB5xyFh23IddHfXmOt9+wRgrV8PF18MX/yigN9KVJfrwvi4nLfXXy/LXHednN/lsqy7aZOA7k2bCK2GJce6wpiF9aycdpoA6kxG3uvogJdflmUMQwC11gKaMzmRhvcNC2Ndid4Kgqp0m4gNew7WQCCqNpA2NRvbULJOxA4H2Qx5rxL5FYsKCD84BHVJcAQgFg4d4viPfYzCoUNEm5vZfd99IgO/7z6UUuy+914OPvwwf/jOd4iGZlS5oSHQmkRbG8d97GOY8bhIv597Dr9cxorH+cN993Hw4Yd55Xvfo33pUk647DLcbJaTr7sOw7LQvk+0qQllWSigddEiYs3NYJrougaRbUfjUBcOMra0wdEL5HhbEZjWDn/5aWGfKw7XU2XfFVNH05C2KBoTV3GnJE3bcSeJ8ZlhiPTZc6H3DyIJD3zITYJpERxzIgBje58h3tiOWxJAzRR599jeZ0i1zsK0IrTOW0zDjGMlmqtcxC1mSDR3ML7vd8TqW1GGJRnYKLTvMvj7x3GLaZpnL8Qt5Qh894htAETi9dixFG45jw4C4vXTpD7ac1G21M1TyKFLJbTrVO8NOp+DVD3GyjVow8DonkPQ8xt076sQOmzrIMB/dAt68jAEPkHffpgYI+jbJ6+nSMaVZWOuugDV0IxWCmP5maj5C1GmSeB5VbBbActbtmxhcnKSZDLJWWedRT6f55FHHmFychLLsshkMvT19eH7Pg0NDUyfPp1cLsfKlStpampi4cKFrFq1ing8zurVq6u52KlUis7OTgYHB/HCz63UWFf7JqZJMllHe/tCPK/E+Pge8vkRlIKurmU89tg1pNMHiUbrMf8NtaGWFSEarcO248Ri9VhWjO7uZWgd0NNzE4sXX0E63Uc+P4bWPpFIHaef/ll27BChdjXvGmGdbWAEMSoLoRslBFBXJN0bpOVlGHgOAeNGuF4WkYfPCF//NfA6AtTHgSQiL28PP2sTNZn4NOBmhN2OmgYzTxfyzjANUm0pPvahj/HiMy/y1KNPce47z+WzN3yW5rnN+CWflc5Kdj65k55HerjsI5cRuCJzvvIzV3Lt567lqcef4vGtj/PNe7/JnoN7iKQidC3rYvtXt6N9TV1HHQ9d8RCH9xymbUEb0fooE3snePiqhwGYedpMKvnVJa/E3sN7yTk5YnaM6anp3PPMPcysl2VSkRRtyTZuPONGWhItGIbBUHaIy7Zcxt6JvdRH6plZP5N1W9exZ2IPGSdDS6KFaFhjX/JLXPfYdVU2+46dd7CsaxkxK0YykuRzp3+OvnQfvvapguZURwiaDaqZ1r4jfc1Ifc3Qq35WTUGoQoWh9uX92LSQnAlrqSt9skrfzw4Z30rZXOM8IX9Q4fNICH491r73DF77/e948YHbueDC93DJpz4NT17DN+75Di/tT/P753fy8rM9/OT7d0u79s5v8vm/f4XTlizmjd8/y/fvuIEPvv+9uONvwMIrpE/o5qXcL3NQ+pKvbRaD20hDLUEm0Sr7O/wsxNsFdHculzN0xuk11eZ/4enf4hZ+tNb6DaXUiX9qvtb6pf+QPftXpj/Lwv97TI7nUPREMngwfZD+jNRJa60xDRPHd4iYEXztY2Awkh+hMdaIZVh85pHP8LVVX+Ng5iAbtm3g+DeOZ/NPN3PDd27g2K5juannJtYvX8/cprnsndjLxp6NFH9WZNmpyzjnw+dU4xLmNc7j0ksuZeFJC7l03aU0mibKLwloqLh4T7wAiQ5IHQW5PWF29fWQnAW/aofOd4WMsxLmOtZWY6R3rRUw3n2xmJUZYU1zYX/oPv55ieyqyqJDqbhfkGiv3F5oOD6UeSeoZUW7VLOuocY2VdntSo11yLxXGueKs7f2a8D8zXLwinRbawFAXkka/qlSpUoUlxnKUA1TAHbn2wRsP3srvO1W2efCCESbpKHN7JPIhbeFBhaBF9beGNJ4H3oOZiyW7T+2VhrmYy8WGZJXhES77MSvP1mbd+bdOPk0rw4m2bTpKe6881w8L2DnzgFmzWpg9uzGqkS8VPKYnCzR0pLAtg1cN2DHjn5mzqxn1qwGBgdz9PYepq0tydhYgWXLuuXeFtQk5r6vp5iaHZl9fddd5xKNWvh+QD7v0tQawQt8XN/FC3wcz6ExUY/juXz9yZ/w/kWrmFE/jVw5T1NCpIUGirLvYBoWlmHSN3mI7+78Jy497SJmNkwXAxwF/ZMjfGfnP/FXSy6ks6EVhaLolRnJHmZ6fQvjuUm+E67X2dBGySvTFFUo7xCYTeBPCqgOMmC2hb+vK2A6KMDIddC2Seqrxzcc6RZeqbor7gK7W9zBK/FelQzr6XciEvKQsfYGwdkLsQUI4E4CBhnX4tIpku9716ypmpGVXJfmRIKC6/LSoUN01NWxMYzS8oKAr+3YwR2rVhGzLMqhu/CXHn+cvzrlFOY0NmKHsuFD2SzT6+rYOzFB1LK44Yknjvg8AEMpDuVyzI5GcV99lQ984Qv8Yd8+4vE4ba2t3HP99Rx1yikCloOA3/z2t6y84AJu+8pXuOr882FggDemT2ftlVcyMTJCyXU5b+FCbr33XozBwZpcfPbsUHrsSSdr3z6Rft9+O9XIrkJBYrkKBWG+bVukySCAr1Ij7fm1WmrXle0qJSxzLCLS8fqkNAzZvADjN8vDS44w0pV4r0r0VmXq7YfZHbw5N9tzXbIHDkjG9WWXkZwxQ64J16V4+DCmbeMXi9X5VjSKWy6T6uiYop5R1cgmZVlozxMlR18fr3zve8xfu5bYtGnYiQTZ/n7MSIRIfT1ONku0sRHteTjZrLyXyVDX2iIO2BXHcLQAZ8MU9Uzlc10HDu6ROK66htrzrT8V0DwtLJsYPwSP/QouvnSK0kjXlEcgTPcjP4f3/JX8Rr27Yd5bRBIej+PF4gSBuHsrFGaYEOCW8zX5drz+iPbbc4qYtsAmZRgEnoNXLuCWctjxFKN7djFt7qkUJgeJJhpINHWCUnilPGZUaiGLk0PE6lurv1fgufheiWgkhdKgUAQDB1H1DTJAEAQoO4K2LMhMEmx/AmPp21EtbejAl7rp0GWcbKaaW12L5BJ2S+fzcs7G4lCRfq84C5qa4fBYbb3GZjkVDYNyeD67rott29WoLMMwqi7gW7ZsYffu3cyfP5/Vq1fT399PMplk586drFy5Etu2cV2X4eFhOjo6sCyrKrPO5XLEYrEjMq0rj7V4xvDyMk0sy6JczpLNDgAmdXXtVTl49XgGPkoZKGVimvb/Nu/6X5scp0C5nMa2E1Vpez4/QjLZimFYVXn4Y49dw9Kln6Nu+klklCKNuIQXCEEuAp41wjJvQOK1upD66kbgWeAkalq8nwPvRxzB9wJnIVJxEKOy8SnbziExXeuROu6FCKiP58uk906S6c/QvbybwBP2ePqJYl76/AvP85G1H+G2pbdxe+/tfPicD/OJaz5BbjhHXUcdXtmjNFHine9+J5++8tN86C8+RN/BPla8cwXbn9hOQ6SBcrZM3Yw67ITNlrVb2L15N/Mvns8ZN55B3Yw6tly2haXXLsUwDXpu6mHVd1YR2AFDuSFMZVJwC/Rn+lnSuYSyX+alQy+xtGspSikuf/ByfvTyj6rS7zeXKK7buo7FnYs5e97ZNMWaSNpJ9k7uZSg7xGkzT8NSFk7gYBomQRCwd2IvQ7khuuq76Mv0saRzCXErTtyKorSPqpTp+c6RDuFyJob9uillelDrd1VICq9ck39XolOtaI2EMe3a8lAjTCpgPgiOUP0BYCd59rnf8d6LzmP/QxuZuWYDv/nnv+eY+SdDeUL6b4YJh54lNf8i9ry8i/YZHXDoGRafdwkb/+YGzjrvvdI3fHxdrW921rekr7bkevHuqezj8E5IzpB/w4TckADwxV+QAQCoJsH8Z53+PaK4tmit1yil9v2J2VprPff/dSf/T6c/g+v/PlPBKeD4TrUB+cwjn+Er7/wKY4WxI2qtO+s7aUu28ZlHPiPRBo1z8QOfklciPZLmuKOOo72rnbq6Okbzo0x6k1x8x8XcuvJWHM+hNdnKurXrmL9gPi/MeYHNuzdzVfQqfvyNH5NL57Bsi1Qqxf2//EdOWXQSZF6HVzZJ9FZsurDLsVZpPFA1kKoMyB2ERKcYm5WG5fkrX4VT7oTCQcm9PuGLkJpXA6zPrhPzs9kfkoZPaxh9GppOEHOzSo5z4IiLeAUQGzbV3rH2BZzm+kX+U4lgAFnGL0kjPhUYTy3MfnNdT2VeNcZrZg08TwXx2oPShDT0VjI8JoZ8XmX0NN5KJe9UmPLK/rqhWUc4iGCY4YBBxaIFAed1nWKAsXODNMz1c+DxT8Gp10DDPGHxd22EU6+DpmNgci/5SDe5ssXgYJbbbnuaW29dSTJpk8u5XHvtY1xzzVISCZtCwWXjxh6+8IXlDAxk6OioY3Awy/Ll3RQKLrZtMDFRYto0kZbt3z/B4GCOJUs6icUsHMfHts0qUK9s74tfXMHs2Y0MDmapr4/S0BTBwyPQgWRahx24lwZf59i22SQjUudrEEaPhJLKiUKakuvy/Wfu56q3fZBkJM7UODpfB2SKWZqTjWHmu8F4YZKoFaXiqv/NbT/l0yveT9SSARhTmYAmbgYo7dZAAgZVN29dAhVHaqY1ZP4Rkm8/EjC3f5uqnFw7IWvtAhYEafAPhbFdn6dUtnn/h6/kD7ufJZ7qoK2tg3vuup2jZqkw5/pafvPkXlae+34+e+ONHDj+eL64YgXXXXIJBw4cqMqqdv/+9/zdT3/K+e961xF113eeey5eENAQjbJnYoIN27axfvly5jU1UZoS0TWnqYmc45CKRPjUgw9y+syZLOvu5qaeHr64YgXzmpoohvnJRc9jRhBQ7u/nN7/7Heeeeiqqo4M7v/Utfn7//TyxZQuYJunDh1l50UVMb23lzDPO4KorroB0mgsvuYR3nnIKn163jpJtc+rb3sYtn/kMqy++WI5pqST11Pm8yL3XrxdZeTYrDuXxOBX3ZnxflrNtaGgUqXfErjl8T43NAgHSEVtY7NcPwDGzarXTlRo8jTDeleWmTq8fgNEJaG2SdatdAy0S875hmDuz+p7rupQmJog2NlbZx/Hdu5m2YIHEI2UymFExHBx/6SVxDK+vx4rHpSIlFqt+z9LEBH6pVIviSghAVIZBEILvwPOq22o6/nhZP5Txj738MomWFpLt07FjMdTokADdaAxKRQHQKAG+zW0i7XYc2P8atHbA36yDW/6upgD6xfdg1XvFObyhWfZzclyysKduz7Kktrjym2XT8rnxJLzxMsFR8/EreNyOoHSA5xQxTBvDEsmn1prhPzxB8+xF2PEUyrTB9yhMDmNFk9ixJMqwGNr9G6Yft4LAd8mNHSCaaCTR1CH9Vacg9dyVJt1z8Mp5QDG2V+K/oqlGBl56jNY5pxB1tIDe089A53NSR+266OFBjJndIuWu1GKvea9kZodZ1+aa9x5Zqx1GcqnGJgGqoYGbdkpgR0IPE4V2HPTwAMGPv4N5xefF6AwgEqVS3FQul7FtG8/zyGazbN++nRUrVtDQ0FDNqq5EcmmtOXjwIJOTk8ycOZMdO3awcuXKKkOdzWbp6elh6dKl1NXVMTw8zMyZMwmCgFKpRCqMgnMcp2qK1t/fT3t7O5FIBMPQlEoTRCJ1TEzsw7bjJJOtKGWhtYdSJtnsEJFIAqUMIpH6/2OQXanHfuqpTZx77jcJAh/TtFHKqEZxLV16LX19T9HX9xSr3vNTXleKTcC1wDHhdiqstIbqsdQIMC4A1wCfBdoQKfgdiEv4TW96vh5hpq8On/cjNdezwu1VnGdKwATQlSnT99RBOpd0YpgGbkHcv9MH0/Rs7OEn2Z8wvXM6H13wUa7+h6sZmxzDtm2OO/Y4rr30WppoomtZFy+++CLv+8D7KE4Uyfk57vz6nXzgvR/AjJg4eYdIUu5jE3sm6Lmph2XXLSPVkSKSjDDRO0F9Vz1bL9/K7s27uWL8CoJogBd4xO04T/c9zYK2BcTtOJEQrOWcHMmIJM9c+dCVXLfsOuY1zSNdTpMup2mINlSzrgezg2zavonrV1zP3Ma5/PbAb2lNtjJRnGBJ5xJ87Yf3V3i6/2laEi1MFCc4teNUNBpTmdRHUhh+aUq9dEhgKKMGkHP9Ugt9xBRe0RUiw4rWFI+ZAxK1qtSRIFTXVqt5+oSlQX6oxvTLoeltpuqd85dr/5rmpkb+9tpP0nL0aWxcfyU//+etYES4+mOr+YtLrmE8XaBj9tGUX/ml1Eg3zuPiD3yQcxbP5hOfuEQAdHpv2G/7YpizXVEvhukkbiEsRyzLflkxIVJ675fors7lYf9E1STw/wmn/2dw/Z9x+jO4/u8xOZ5D2S8TaJGC+YHP/on9xCPxI4wmrj7tam7fcTs3nnFj1WDiG+d8g6HcEAOZATrrO6tMdaVBrDDTCStBS6KFklfimseu4daVtzKSH2Fjz0aRhmtdNaBAQxCUabDjqKBM1TDLiEJun0RmLbxV8pq1J7nW8c4QNIeAeeHNwl57eVm/PAzTTgOUMK8Tr0LbYlm+khuNDsGrKaZmxaEQpHfJ8/YzOcIpfCprPdWwonFereENvw9+uQaUDavGWHvlPwblgSv75OYlC7GyzaqRxoAsTyBMupsVqY9h1xr9CsiuGGQUxyVH0YzKa5RIht62SfY7NyBxW05WorqmMAi1rHAg3Q/9j8PgU3D2d0JJuw4N1Irw+DqKC68nH5vHunUPsWxZF8uWdbFp03auu24phqGYN6+ZIJAM7BNP/BZve9ssrr76NL75zV3cdddqDEOY7XjcYu9eMTpbv345qZRNU1NczFgUPPPMICec0HaEoVmlVDeXc8hmHerqIjS1RuifPMRofoKFHcfi64DfD73B0dNmEQ9ZyJcGX+eE9qNk3hTDsqJbwjZtknaMw8UMzYmGqgxT9kOkb37gYxoGflgnefNvfsCHT1nNC4Ov0dXYzvRUM4dyhzmubTYA0+I2qmpEZkCQl3+rLTwHCvJvtdaWcfeFzPX1YM2Q3yUowcg10HKNyL91UUzSKuAcm1KpyG9+81vOPecdKFzuvOcf+Pkv/oknftwJhSdJN29j5Tl/wbS2dla8/e1cfuWVmEr2zgsCSp7Hi88/zwff/W5W3X03t69ezaF8npt6erh+xQrawzrqoWyWL4VM9JYPfICuhgY2bNvG504/nVmNjRhKsbO/n5n19bQlkxQch+mpFJ7WjOXzFF2Xg5kMnfX1zG5sJBUEmL6Pev11kWgvXMizL77Iey+9lP2//S20tvKXl1zC+979bn75y1+ysLeXq777XZg7l4ve9S5OHh3lSz/8IRNtbZy+YgU/OeYYFt10k9RXX3IJ3HknXHGFyMQvvhi+/e0amPY8qbvu6hIjtclJAddNzX+aca4wzdGwPXj9ABw9S5joCvs8dblKXfbUCK6KOWLZOZK5dtyaGdobB0SSPsU8zbMMsn19FIaGaFmwQBykoWpgpiwLM3RO16GJmGGauLkcyjQxbRsNjL/4Is0nnICTzeLmctTNnInWmtzAAK9897vMX7uWwsgITcceK9eA72PV1ZHv76c4MsK0k05CWRZesUgkEZds83JRZOEV0zIz9AnwPXnueyLzTqaE6fnRnfDevxI5uVuW32JgH8w+VrKsXaemHPBdGejo2yNgG0KH+FBCXykX8DzQAX4shg58dOAz/MqTTJv3Vux4A05+UvKoQ/OywsQgnSeuxClkGN2zk2lzT8ErF4kkG7DsBBUTtFJ2hHhjBzrwZHtz34odr8cppKvbsyIJlGUz+PJjpIdeo2HGsXQuWIlTTGNhYgwfQiVT6EIeo2s21dKhsD3TUxnnVJ30yx/6FXr3CwKMXUcY6BVnhnXaANIGSU52DCIRlOcRDPah2jtQli2gO5tG1TWgnVJ1MNBzPYJE8giG+Yknnqgy1WvWrDmCXZ6cnGTbtm0sX76cVCrFww8/XDVBqwDydDrNT37yExYsWMDZZ59dNS3L5/NEo1Esy6plM4fsdjKZfBOIr0NrF9+X/sDQ0HN0di4J22ADzyuRTvfT3DwHrTWeVyIeb/k3AWzPc/C8In1920ml2kml2imX00SjDShl8vDDV7J792bmz7+Y8877Fp5XQqfaOaQUjcAkYmJmIHLuIUS+fT0i5zYQANyIuIp/Dfgi8CiSa70DycX+HRLbtRg4G6nnng28CwHZtyORXRXM1hd+bgSIOB5GyRczOVdY6/quejJ9GdZduI6xeWM8/i+PYwUWP73ip7zrxndhp2z+7pd/x13fvIvntj+HUoqPXvpR1py3hgUswDze5IIPX8A/3vuPnHjKiQy/MEzdjDqajmrCycrQgZ2wmdg3QWG0UJWlT+ybwI7bxLpi9E70MpQbYnnXcmniCGSQO7xnjhfGidkxEnYCy7DIOTmKbpH6WD07+3fS3dDN7MbZaK25dMulR7DZgQ745IOf5J7V93Awc7Da95zXNA8d/gnJrDiUO0TBLbCg7S2oyV4hHyL1YVLLFAMyrcWrxIyH5XdTjMnSe6UMTpnUIrgM6ff4rmxnal/OL9X6ambooVNhrytg3rDkM8oZcHNs/OY/8MBDj/D4Q/9MqezRMqObL3/pC/yv67/A/v37WPr2VTy0+dvMbG2m46R3Uk4fopIac/H7P8A5Z5/JJ86dDx1LqSJ7tyB9yWijMNV1XRBrgd9eDYuvF/OyWBPViFU7HhqcudK/i9T9lwbX/78110qp+n/t/993d/88/U+aXN9l3+Q+1m5Zyxvjb1D0ihzdcjR1kbqa0cSK9YwVxli/fD2Nscaq8VnJK3FTz020Jlu5qeemahxCW7KNeU3z+Ju3/w0t8RYKboFPPvhJBrODnD7zdF4YfoE5TXO489w7iZpRhnJDfPLBT/LG+Bv42idaMeaq1CtXIqeSXXDK1wU0Zt6AXZ+EWLuYllWMnU75ppg5vHyDrFsahOwbkN0Luy6D4iC0nhKOVHo1MFvog9Edsg0rCeUxaDpJmPKWxfJ+BTRXRylD2XbDXMmWbghZ8fR+Wb5ST53rD0Fsf8gSS4N4xPtCLVRl4aUgwoWX38Ixp60Ro4tzzmXPS9try6P4zaNbMFvnc8e3fiAN+sQerv/IMhacvJiFp7+Thacu5af/8H0B6BUDtMqN4axvyQ3GTsGM08LvZdXkUW6xln3thwZEDTNh1tkyGooxpZY8EIC95Iv49fOwbZP77lvD+98/n7GxArfdtpK5c5s56iiplR4dzaMUvPrqOr70peXMmdNUBdaZTJlIxMT3NTNmpHj00V42buxh+vQUBw9m+OQnH2T//jRLlsxEa+jtlXiv/fsnpYQqBCzNzTFSqQiBDojbUU7sOAaNJl3McsKMo0FJvrXre5zQfhQoxWQxyzGt3STsCFErQtyOsXe8n6HsGHc/9TOGM2NMFjIQguqJQpr+yUPc+i9/hxcEmEphGAZXve1D/NPL/8L5b3kbizqPJWZHaIk3SH5zZQpy1AaOkmJiFmTAGwIVA6tFXg+vk/pse54w1vY8xDXfkhrq+BlSg221yfsqLucREdAesZjF6nPPRPkHofQ7TltyMvsP9EHbHTDnRa648iq+eHmcpuZmTKVwfZ+hXI6S52EZBjHL4u9+8APe9/73c82KFfx+ZIR5TU3cu2YNcxsbyZXL5EKgfMeqVXxowQKWzJxZNTc7XCwSMQwUcPrMmQzncqQiERKRiGRfb9lC1nE4mMkwLZHgpp4eAJwwZohNm2DBAggCvn733VywejW0tvLzX/4Sw3V514oVAqIuukhqo4E7vvY1fjY5SceKFXQccwwfaWxk0QUXVOdzxx0Sz1Wp316/XoBZKJHGMOD008XwTGuRhtu2gD2NyMHTednWwSFhmg8O1X7b7hnyE0yVdZcdmNku23ZckZKXHAHiJadmeGZbMKujJjOXhkceZrZDc70A69EJ6Bsm8H3MWIzWhQtRthjTGZYloDoWwwxlt16xyHMbN1IYGCDwPKyESGBHf/c7/HKZWEsLz37lK/jFIvFp09j15S9TGBqiND5O66JFGLEYbaecIoy3aVKcnEQBheFhWXfDBtxsFtOWuDtVKlD1kKgMWvzjvWJKVr0OtIDoH90l5mQfXCdssw7rr6MxAc6RaA0sF/OhtBz5TTrnSJuaTUPvKyJF1+F2PRcmRgkAp5Bm+A+/RRlmaETWgFIwvu+5qnlZqnUWM97ydtmtYp5pc08lkmgk0TITK5qSAYrAQ1k28aZOdOChtSbeNIPR3l2AZmzvM9Xt+X5ZatGPWlKrv1YKO1aPGUuhumajWloxuueiw3ZUQEEgIKqxBXPN+1BNzSLXN00B0vMXguehmqdhrnkvqqkFXSoSHNwngwmAnhiX4zh5GP+R+1Gds6S2OyzRUKm68F5nE4wMoyIxdDKF1roahZVMJlm+fHk1KksctHWVkd62bRu7d++mp6cHy7JYsWIF8+bNY8eOHXR1dWGaJt3d3SxYsICzzjqLXC5HoVCo1nQbhoFhGNVs7ImJCRKJBK7r0tPTw+7du0mnJ5iY2CO30dwwjzxyFZ2di9HaI58fwfNKWFaMlpZ5YbunsO0kvn9k/fafmiqM9ZYta6mr66C5+Siy2UGeeOIGstlBLCvK8uXrWbDgQ5x99u1yuKw4JpJt7SEA16TGUNcDnwvnx5Fa6Q5pjZmHOIN3Ah9AgHUX8EsEiH8TeA8CsocRyfh6RFL+pXBbbvgtK8OnGnAiFhiQPpDmoSseItmaJDuQ5Re/+wXjbxnn/n+6nyeueYLccI6T3nESPRt7iNXFWHPCGvpH+sk5OdLFNFsf38qHP/JhTvzwiZyw+AQWzl/IvzzyLxiWQeeSTnZ8fQeBF2AnbCIpKRPY+fWdpNpToMF3fBq7G4kkI3jaYyA7wPzW+XjaIwj7Z17g4QUeRa/I9NR0UpEUCoUXeFiGRdbJsm7rOlqTrRxMH6wy0p9f+nlev+J1vr3m21jKwjZs7jr3LmzT5qvbv8qjvY/SUdeBr31xSw8HjAD5HDuFG/jo1MxavXQlxzlSP6VfFw1BsJIBv/TeEGSnhPE2I9JnTO+rERjRelmmeLjWl8sNHNFXO3IKGfN0KEQuDPPVaz7AL//5fh7655+RiJo0NzWSSqX48PvfA8DsWV0sW7yQZ555jpbuY7BMk+GffVQIkcwB9v9hF92tCQHWblGAtLKkJDAxXRzK2xeL146TFcl4pTb78XXim9M4V2rFC4ekv/ffIIrr32JoNokMgE3+if+J/4id+vP0P2Py8dmwbQObd29m0/ZNpEtpfO1TF6mjo66Db6/5NvMa57GgbQEzUjOoi9TxrfO+xdzGucStOOuXr2c0P1oF4tevuB5TmZS8EjPqZpCKpNjQU9v+h078EMu7lzOcHSZiRhjMDh7x+b72iZoWyi9KvnTgiQGZlQDMUGZdgtJQaGp2M7QuFVZ711oBycV+mbd7owDj9rNFXn5wM7z2tRDcepKLXZGVm3XQtpxqR3baaVLrbcRrgFOFDJKGam12peEMQiGYUtJIVUA0+ki3yCCUmqNETlR5vyIXr+RU+2XWfvB8XvvDbl783fNccMEFXPLZDVUQn56c4PMb72b1OStro6KReq5Z91Fe3vFrXti5jQf/6eesvfoGxsYnoJSp7Q9G6GappbEtHAob4TbZTmFEshKnLYByWkY1TVv2q26mZEAS1OROCOvmpI5i7/4cV131ML6vicdtTj99JnV1URzHr7p/t7UlmZwscfBgmjlzmhkezrJjR3/VAVxrXX392mtX8KUvrcD3NTfdJAZpN93UQxCIQdqmTdurpmlThQV9fRnWrt2CoQwc18MNO1styUYmC2miVoRFncdhGiamYTKSOcw9T27mYx/4CO9Y/DZOXrSIC847HzPtMpKb4KOnrmFaqpHnn36GpmQ9X7llIzE7xmh+giuW/wXfvfc+Fp24kLcuOoUzl53B2sUXoYFNv/khRdehvaGFuB0jZocKBSMlj0ExVAa4wj6P3Qy6ECofEtB8tbiFu3vBG6c6iFSZGt4PbbcKAB+7QRhu7cly3gEY/iR4B0GlwG7n65s+wQXnLQXg5798BIMi73q/dBzHikWueuQRkpEIhlLkHIeB8XEe/NWvWLR6NUe3tHBqZydFz2NgcpKi59GSTFbdwmOWxV2rVxM1TW5buZJLFy1ieVcXKMXhYpH+TIZlXV3kHYd0ucym7dvZvHs3Nz/1FIs7O2mOx7lr9WoihoFbLMq1dtdd0NDAxptvZk9fHzfdeCPDIyN85atf5etf/zrU1QlwU0qAhedx9/e+xwc+8QkGe3s58NJL/KhY5DHThGuuEZOyWAymTxcJ+Le/LfXXxWJNJli5jpculRrqTAZ27ADLFJC85yBEQ/a5e4ZIuLtn1NqOWESk4Hv65BGEbY5FZBsRWx6nAvNKdrZhwERGorlKTug0bsplVll3ymcapokVj+M7Dn6xyLMbNkhudWhQhlKocJlT1q/HTCQk4il0aG5duBAzFuPVH/6wal6mTJNFn/0ssdZW2k4+mWmnnEK8ubmadV0cG6Nu5kxQipYTT6Q4OspJf/3XAJQmJ6l6RaQPw57fC+McT8JfXCY1wPkslIvyux0erRmYpcflGE6Mwt5XpF2LJwWQ9+6W6K14UiK9fnSnLJdICfhuniZmaRXgbkcFoDe3oSM2o3t2hoZjWQZ//xu074KGGfPfQWPH8bQetQQ7VodXLjDw8mMkmtqJhP4LVdfx0BW80lUupkfxnSINM46h9ajFgKL9+DM4+oyPM+Mtb8e0ouhQzdJ2zOlEEvUUDvfjFCZQGkhP4j98f1huEn6O69SKhsKYsKqiUxnQ1IJ53nukRCEQQKC1RkWiqJkSl6UA1TkrNGayMM5ajUIT9B2YUpAk6hSlDNTMWdWB4yAIsG05tw3DoLGxkfPPP5/6+noeeuj/Y+/P46Sq7nV//L2Hmqt6oJvuhh6YBFREcGJs1KiIAhpzosQcYxInHEDjBERwSiKQgIgDTqhJThITA84yiGhCpGkGQXFAbaAb6Hnumse99/r+sXZVQ5J77rn35v5+55yb/XoVVbX32qs21VWr1rOe5/M8m+nt7cUwDHw+3wkZ1aqq4vP5CAQCTJ8+ncrKSrZt20YoFGLWrFk4nU6i0WjOjdwwDDZv3kwwGCQSiVBXV0ckEsnVd2dBfXl5KbW1K0ino2iak0mT7iIUaiaZDOHzlaDr0iTKMNLEYp1YVgYhTNLpMIaRFWf//c0002zfvpQDB9ZRU7MMIUxqa1fkMrAB/P5BzJz5NJrmIh7vxtJdWEgJ9wKkKZmBrIf+EVL+3Y2UfqeAGqRzeA3S+CwPOALMRzqCtyBdww2kA3gHkr1ehszLPgmoRrLYaeSE/ygS1LuRYLsWEJagZlkNdW/XkehL8Mb+N1j/6no2vr2RgWUDuegXF7HzyZ34z/AzbfE0kqEku1t2UzygmNhXMQKuAF6Pl7defosNczdQv6+e/Qf2c/r409k8fzPhpjAzVs8g3Bhmw9wN9BzsAeCSxy+hYGgB6WgazSHnSbpbR1M0xpeNpzPWSU1jDSkzhWmZ/OjdH3EsdAy/049hyYUgRVHY1byL9mg7zeFm1h1Yx6qdq5hYPpGMmcHEZGTRSIq9xexs2kkoHaIh2MC8zfM4GjzKmkvXcPj2wxiWwbxN86jvqyeajlLTWEPSSGJaJqX+UuKZRL9xbDauysr0g+lsOouVsSXTGWlWpjrk3Chbhxxtk0A6W/tvWRJgl54l2wsk4TLgVHmvINtGWmwyB5tYkWPlY0tu4A+13Wx96w8UOGwmXFH57hUX8+6rv4RMlN6Wg+z55AtOP2sS6B6umjKY5377DmQifPS7e2np6OU8x5/l9XR9IueJlg2QFQWKT4Ntd8mILW+pjF4tnybnf2cvAl+ZnDdo7twIkSO2/gtv/5SF/3P7/9uWyCQ41HuIpduXsmjqIgb5B+HW3dy++XYmlE9gxogZlAfKaYm0kOfKw+f0oaAQTUcJp8KU+kolAxLrIt+dj1NzUttUS0VeBcMLhmNhcSR4hKXbl+ZyCGV2cBqn6kRTtdzxRVMXMaxgGAW6jpIJS3m2p0JKb3p2S4m2b5g0GlNU2Dtf1lF7h8Cem44zLXsaPr4TzlgpgbkQEnTHGyUQRwcMyfQJm7kWSJltOiSZ60wEPDYDJYQE98dJ9k4wLMvE5Irf8XEg2Six43MQszW/WcMM4IRVTSstBzTUfhmSKldK925/lytvuIejhw8Bgmt/cB1X/cs3ef311xg/ZgR33nG7XIE14nJw1r3U1dVxdvUF1O96m5KRE2WfWcOKrBNmKiQl9L7B/Uy+6uhnuIVd/xjvlCy3osp7MynPdfhlvY6iEk6o3Db/PVasuAifT2ZNJxIGqgput04mY5HJmGQykrn45JM2qqurqKlpZPLkChobwyxfXsPixdVUVuZxxx3vsnLldDweB6oKsViGBQu2smDBVE46qTDX1549LVRV5VNRkUcqZRAMpnjooW2sW3eAcGIBGSuDaVm5vOlUJkmeJw9VUUhm0ggEyUySD77eQ7Khm2P5ce4871/51dqX2PT2Bt7avIEv2uvxWg6+9+2rKS0p5eLpF3H7j+5AUzReff01Vj/2GOfefRX3z76Z+sYjvHm4hnsuuBZd1fiivZ6zKk6mNdSNU9epzAucKAsXpnQJd58mV5vRJcC2oqCV2p/PtP15TdltT5fgG6f8LMdroPVK8F8OZWvl5yq+XUrLjS7wTmXZkmm88+4XfPDqdwi7l3DJ7H9l29b1FKQf4ZofK3yp69x4661ccfLJRNJpSn0+nnnxRR574gkOffYZzeEwTeEwE8vLces6R/r6aLSfe3SdI8EgTeEwUyorAdAVhYxlyZp2RaE3HqfI5+OPX3zB5aNH0xaJ0BaNMrGiAo+u09DXxyN2zfZpPh9aQwM0N/Po3r288tZbvP/GGxTk57Px/fe5/rbb8Hg8IATdbW04vV5unTuXpfffj7+8nIMffsjgUaPg9ttZ4PXi/POfWXrHHfCd7/SzoFm59fEmZPX10NwsgXUyKQH5L34hHcvHnCal2dma6JE2KMnW0llCGpb5PbK/7M96MiXBc8AnGessm2tZElhnI7wURZ6frcVOGxJQG6a8P15Gbm+ZdJpMNIrmdKI6nQjDoOezzygaNw5UFSMmGfZMNIrD5wNFoa+uTsq4AaEoKEJyPPuWLmX8vfeS6u3lwNq1nHL99XhKSjASCXSPh0wkgsPrpe/QIfwVFTj8/lwOtpFI4C4okM7hqSR6Mi6vN3+AXUMt7IVSXbLMqaR0CVdU+P3TcMkcGcXldEsgXT5MtvF4oake/PkQCcJJp0nAHiiE4hI5XqaT/fXZTpcE45tegRlXQUERlk8ymarmQNh5zwpImbiwUDX53gvLpO3An/EUlFFYMQbLzPRLyN15xPtaTzAy011ekuEufAPKc2RUJhHOGaQJIehp2MvAkRMRpoHDW4AwM5hGGpfuxdywHnXKN6BwgJRbZzLyI6Pr0NcjzcxmfVsy8KmUHSln/26EguBwSFm5oiCajqKUSjM72db2r06nUNweaZoWyJPvebbv6guhoFAufugOMqpGX18fNTU1zJgxw+4qhcvlwul05jKsNU07ITqrpaWF0tJSHA5Hjt0+3vhs1qxZxONx/H4/fX196Lp+gtx81qxZNDU1MWjQICKRSK5uW2ZnWxhGhFisg5qa5VRXLyEQKENRVJLJEF5vcc7grK+v3m6zGL+/DIfDm4vv+ntblrmWmddLyMurIhxu/KsMbIVgsJ7t25dSXX0fjsIR6K4AtUgQ7ARiSNY6AhwAJtojexAZ66MgwXcSCag76Zd/v4AEy0uR9dhdSCdyA1l3/TEwxT43RL+BWikSpDcB56UNRE+CWEeMcEsYq8zilLNPodRXSnFFMZpDw+lysmXTFqbPmE4inkB36BQVFTHLPYvv/uy7uPJc/KX2Lyy4dwHxvjh6ns7tC29n5FcjKZ9QzoiLRxAoD7Dx1o18/vLnjJkzhkvXXMrm+ZuZtngaBScVEKwPEmoKkVeeh6PKQY/VQ4GnAKfmpCvWRSqTImWl8Dl9VAQqiKQjaIqGx+HBElZuDjl/83zun3Y/VflysUggywbTZhpVUVEVlbZoG+/Vv8fIASOpyKugMdTIhPIJNIYaWb1rNasuXkXGzODUnDg0B07Via5pOC0TJdos65CPj1ZVkPLs3jrwDJBAOmtadkJ2tb2lI/J5dj6YikhAfnx5X9abx0r3EzQo/QQN0HysnsoRJzN82FACAdm/y+Vkd82f6fniXa67fy0NR5tAUbjt5pu4be71oGp0dHRx7Q+v48ixZpxOJ2se/RnfuOCifsCvqP2eOBPug8AQ+Oq3sqRvuj0/CB+Vddnnr5bzu72PSpNbkL9rzjxZavhf2NDsP8JcZzuqVBTFaT+eqijKfEVR/sejxz+3f27/k82yLEYUjGDt7LWMGjAKj+5hT8seVk5fydTKqRzuPUx9Xz0PbnuQnngPGhqWsHDrbn5e83Pq++pRFRWf00drpJW5G+ZS7C3Grbsx7Frd4QXDWTt7LcPyh+ViFkzLpDHcSE1jDUPyh7B29lpGDhiJIws6E+3w2YPSGbxnd3+MFna9suaBCWvBP1wOJGMWS2A9ZrEEKGesgmSnZLOjB8FTCt4K6KqFWIOUlEcPQ9cOmZdtRCVY172AkHUpwrTl5zfJaxKWdO3OxnFlDR+yWYGWedxxe0A1U/2roVlmOhvJJSz7eL0Eq4pmy41SEvxqbnkN0RaeeOZFvjnjPFBVXn11PaqZ4PLLZkrZ9pF3ZQQXAjQXTz7/a0aPPYMzJ1WzdsV9lHhT8n3bs8yOZFhuLwwIiLdD7YPyelprIdIk/6+ZKPQdlCYX4UZpcBZvlyud4QZZs+3wQqLDjuo6hKbprFw5ne7uBHPnbuDgwR5M08KypHz7lls20tQknTE1TWHChHJSKZOJE8sRghwzvWxZDZYFEyaU09ER4+abN3DoUC8AzzwzC8Mwqa1torExzPz5m6mszGfYsAL27m21VbwuFi6cwpw5Y9AUBbfuPCFveoCvgJSRprGvnRV//jd64iGKvAWcN+psGvKijB18Ej2xEF8qHdQfaeCL9noKPQEWL1jErXfdzsCBxURTCX723os0BTt49smnOWn2BLY17yeaivN6/XZOrxhJV7SP5R/8ihL/AIQAp66TyKTkxNSKSqCMvQDjnSLZbEUnl2GtFZ74o5y9906V8V3tt0hGW6TkvhHHoOhB5E+KAo5KCaw9E3l01TO8vtVi8++vwjv0WfZ9/CVtbe2MP2c6Q6f+hbfeeIOGN9/k0Pr1dESj1Pf2YloWm9at497583FoGl6HgxKfj3mbN9MQDOJ2OBhoP68PBnHrOhPLy1Htmu2MZaGp/T9v2RiuC4cNw+d0MrKoiMr8fO58911CqRTFXi9TKytZWVsrDZmam3ls61b+8PrrbF23joJ0GgyDWTNm0PHuuxydNImjGzZw5SWX8OC997J0yRIwDIYPGcK7u3aBohBbupQ/79zJaT/4AXz3uzJ+a9eufpfwhgbYsUMCEkWRTPi558rHbjfcc4+89/nk9/t4ptqy2WnLlngfbrTNzmwZdHbV3+WUEuaGZin3djulCZrbKU3L3HYdsWGAzyOBOMg2qiLvszmrpiVvoWj/IK4oWJkMlmGQ7Okhf/RorIx06lY0DYTAmZ+P7vGgeTwUjBxJvLNTmpQpCoquo+o6Zz/4ILrbTby9nc59+yR4drvxFBeT6O7m86efJtHTw8Dx4zHicRKdnez92c/QXC6cgQBdn3xCtKkJ1eNBFAzoB9Yg/x8Ol1yAzCuEwiIZx+Vwwvd/BGXl4PbKj/mo0yEahrd/KzOwy4fBe6/BsJPlokXhQNi2oZ/Rd7pg5BgJqD2+/jivLeuzP3IY6QRGKi7dtoWg7cCfJSsMGHY8lqKoDDrtQgrKT5Eu1KpO0bCz6K7fCwjceQPRnV7KTjkPIxXHMtN4Cwf1/x2EQFE1vIWD6a7/CIfLS/GIc9CdPmJ9rSCEzNo+WIulCBmDVVQMhoHo7cbc8hbEItJArnabNCtTVekK/uH7sn9FlY7nefng9SGiEQmgB1fZ7NhxbR1OFJ9f1lv7AtLwTIhc31bNB7aZmTsHivfs2cPFF1+Mw+HA6XRSW1tLLBazHbTlfVNTE6FQiObmZjKZDIMGDcq5fsuPo3ICq61pGplMBiEEtbW1pNPpHDNdXV2NqqoMGTJEMpi7dvH555/T1tZGJBJh8+b3cDi81NY+SmXlVPz+MqLRdpqbd5NOR9mwYS49PQcRQlBTszzHQmua02a1//2toGAEs2evxe8fjKKoFBQM47LLXiQvr5Kmph0IkTmO3V6OkomjC8F4JOA9iGSsG4HPkRLwFLAbCbpvQTLXejLJTVdcQcWoUcweN45Tp0/nR4cPowC3nH8+HwwbxnfHj+fH48fz1urVDEMy44smTuS88eM5f/x4Jp52GuWKQvdnn2EhpeElQDppko6lKRxRSFV1FcW+YtbPWc+tsVvZ/eFutvxuC4tGLCLdlubD9z7k13f8mvdefo9XX3yVa1dcS6wrhivfxfQZ06nZWsOaOWvY++Fe7rjtDqavnE7l1Eq2PbSNvoY+pq+czpg5Y5i2ZBote1o4sO4A25dtx0pbbF+6Hd9AHzXLazi07hCDAoPw6B4AyvxllARKcKgO6nvryVgZ3Lo7B6yFEPicPty6m+dnP49bdxPPxEkYCZJGkmg6yp6WPQDEM3Ee+fARqiurmVY1jWJvMeNKx3HXlrvQVZ2V01fic/jwOX1krAyLti4iY2VwKBpKNorreGAtTAmsNRcMGG0bgNEPqHWXvA8dlfM6FMlUZ+eDqbCUjefMbO2ywWwEKtgLsLZyMNggX9NMUVFRgejYT/2aqezfsYX9u//C7ld+AsEGikZV8/Ybr/PF7g/4Ytf73Hb1RdC2E4SgtKSI915czKH9NRz4uJZvTB4v54KxVkn2IE6c72HC6O/AhU/bi/WmBNZ166SZ2p7lMn5LWJJgsn9X/jMD6//I9h8G18BbgKooSjnwClI58sv/K1f1z+3/iU0gaAg2SAmNmUQgGFYwDK/Dy4raFQz0DWRZzTLWHViHS3dxuO8wczfM5VjoGPMnzGdF7QosYeF1eGkON3Pv5HsZUjCEQk8hNY01HA0eJZKOMHfDXI6GjtISaWFq5VScmpMyfxlTKqcQz8RzN1PYk9KsjPvAMnAVw1erpMRb0WwjMftrI4QEx/FmGbPlHwH75kP8WH8e9ler5DkHlkmQnt2f7fvL5ZAJyn2KLg3MPrpN9pGVn0MO6PbX0kCuTvPvHc/Jf2zTMGFKeXV2nzD/9vgJtdkKKBrLnv49hxvbWb5iFe1t7TyydClPPHir/L93fwGd++GjFTaLpnPH/Nuoe3witfNMlq1YRY/jJECDCYtlNMNEewFCCHleNgPRU2z3Y8oB9+8dUxTYvax/UM4+/mgFqmLg9TpYunQ769YdYMWKWoLBJA6Hlsu8XrGiNldXHQwmGTfuOZtIVLjvvmrmzBnD4sXT0HWFiy8ekQPc2b5SKYMVK2o544xB/PSnH7Bu3f1MnXoGkyadzfLlc+noaELXVUaNKmLt2tls2/YXAh4/8++/J5c3fdMNNzF25CmcP2UaT938MN+/5XosBKWBAdw48YpcfvU7L79G2fgRFHgCLHliKQO8+Zxx7gScmoNdxz5nS91OXtr9Jl9//TXlCR/dL+3hW9Nn4/ys74QM7Jd2v0nazFDoyeOl3W/ZONkCo0nWVFtRpDu4IbOvrSioeaDYC00iCYmdUvKd2CUl4HoZDLhH1mob7dB+s6zXdgy1F04sKTN3j+Oxxx7lD6+sY+uWTRSM/iUYzcw663U6jm3laP3XHK3/gm/9y7e4b8kSHnnkEUYWFXHukCE0Hj3Kp598wnevvhrDsvA5nXTH40ytrMSpaZT5/Ty5ezfrDhxg6fbtlPr9pEwzN7ZoqoppWXTF4ySMfgmgz+nkto0bSRoGK3bs4K5Jk3CoKvvb2/n2Kafw1KWXInSdpspK7nniCYLhMN/41rcYf8UVTKyulp/bIUPgggugpUUCYpcLjh2D227j3x54gJd++1vGTZjA2dOmceHkyVx9663yorxemDABdu+WwNrjgXHjJLC1LJmrbRjSxVpVpXR8zx4oLJTnu5wwskoCY02VjxUFmjuk2Zim2pOSbAmJkGA5k4HyEikrP9QoAXKW/FPoz7fWNSkhB9nGsttpdl/RuDTyyrYBNJcLze1G1XXcRUVoTieKqkrDMpcLRyCA7nZL6Xgyie714h88GFXXsex9lmHkzKoGnn02M19/Hd3jIdHVRSYWw1dayik//CHJ7m4AHF4vX/3ylxSNHUu8tZW9jzyCe8AA4u3tUgWZSsg6ajMjgXUu49ses51uCPf1R3NZlnQAf/lpGavlcsOl35Gg2+uHa38ECMmybnoFLrhMysN/+6S8P+c8+M4tkvX9wV2w6vdShu5yyzxnVUfVHXZ0E5SMniol3ppDOnyrSg5sK4qKqumAwOnNZ/BpF4CqoWoOFFVD1Z34BgxCd/lRVI1YbxvCkhPpdCyIt7CcspOnoWoOHJ48FEUhUDwURSFXk9321V/kAgNSti+iEUTdF1g1fwIhZPzWmPFSql27DaW8EqJRmWFtZcsgMuDxoDhcKJqGojsQ8biUecejiFgEALVqOLjdqOVD5Htx8WVo8xahzvimrPVOJxHRCKqiMGPGDJxOZ+6zcPHFF+cYNbfbjRCCkpISampqKCkpweFwnBC3ld0KCgqYPXs2eXl5pFIpwuEwfX19TJ8+HYBIJMLs2bMpLCyksbGRnp4ehBBcdNFFthy8nO3bt/P5558Tj6eYNetZxo37PqqqsX37Uny+gdTULMtJuDOZGNOmLWHMmDlMm3Y/Dofn382+zrLWGzfeLI37oq1s2HATPT0HSaejqKpGSclYDCN9XL+L6Wn7GBPJIkfoz55ehmSalyEZ64H243V2GxMw584lWlfH+E8/5Vvf/Cb33ngjB4HDwJLVq6nZv59T9+9n5l13IZD12St372b7/v2M37+f8MMPM+S00/CefjpzkQx2J+DTwOlzEmmJyJr5fBdTFk5hzJwxaC6NmmU1HFh3gJplNWhOjdO+exrh5jDJYJJQc4jyCeU4/U5ceS6KRhUxe+1sfCU+Yl1S9VK7ojZ3PsDs52dTOKKQ/Kp8xswZw9RFUxFCUH1fNbGuGNWLq2mtaUVFpaGvIZdZ7dN9NIWbGOgbyC0bb6Ep3EQ0HWXuhrnU99VLGzIhuHnDzQSTQfxOP36nH4/Dg1t3M7Zk7AnePXmuvFwtt8/pY9mFy2gON+N3+mkINnD3lrvxOrysvHgluqrLpA+Hz5Y+019Op6i2wVlKgmbLkASJwyfBdJYs8Zf1z/vABsjpE2uzsy7gqTA5BjvrsROql8+d/v65nzDkffVS2aZ1l6yNdnilMhBLqigzUXD6ZE11dsF98BTZrnWXNC4TFux6pF9teP7jMOaH8l5zS4VhMgihY3I+fMEa+NYGaYg7YQmM+b5tYJb/P/ze/Ffb/sOycEVRPhZCnKkoylygRAjxiKIonwohxv3fvcS/3f4pC//vsYWTYbY3bmegbyCrdq5i8bTFDMkbgq7q1PfV0xxupiqvCrfDTYmvhM5YJxNenMCskbN4ZtYzpM00Ht1DLBPDsIxcVNGCrQu4Y+IddMW6GF44POcw/sLsF2gINtASbuHMQWfmIhbuq76PEYWypsWvKijRBhmfNWaxBM6+KgmcsyZi0XoJjs9+GtJ94CyAdBA8ZTLCK9kumeoDy+wIruE2CG/q35/t21sBrhIpJZ/wnGS1j8/F3jsfprx8omN3oMKu28lOKGwZ+AnHXX/rFJ6J9TtL5g09McZL1aVUJ1AhJUmai0cff5pX1v2R99/bQkFBARs3buL6G2/E45Y/EN3d3ThVk1tv/D5Lf7FaXoplQKQRdi/lkseauenm2/j25DIonYAEXTYzaqVz7Zi4GCLNMvMwf7iUl8faJKCeuEQy2oEqeSxUb8uJHpe12buXwjmLiLpH096VJB43WLp0O4sWTWXQID+6rtLaGmHZshoWLZrK4MF+AgEX9fW9LF1awwMPTGPIkAJZ9mTKH9jdu1uYNKmCY8dCJ/TlcKg4HBq6rvDll+3cc8/zPProbXR1xfnyy4289dYbbNmylUTCoLGxk5vmXsXAkmLOnDIBY1wRN036Fj+5ZwknjzmFf/nB1RJs29nVpjBR7Xis+3/yEK+8to7N777LkY4m7rvhTt7evAGH18n9d/6YqlHDMMYXcePEKzjrpLFcedW3eezJJ2hqb+bqy67kZ0t/xtjqs3lxl8zAHuDJw+fy0BTsYERhHrqSNdxRZGlC8lPwnANmn5R7mz3QsxpKV9uLN9l6eQBTljAkP+k/5+jptiT8Rclm9yyDksdpbm6hcvg5DB8+hIBPA8WByyHY/XIjnNQuXzuxm+/d9gqnnn46t82fjwDimQz3LFqEEonw7AsvEDcMvA5HTuqdMU1M+3frzi1buH/aNKry89EUJRfBdaaduRxKpQg4neS5XNz4zjssnDKFHU1NjCgs5MxBg+iMxVhZW8uKiy7K1Xv7UinUZFKCX9OUsuxkEsrLZX10NCrrpoWA2lqoqpKs9OzZcM018Nxzst2ePdLIbORICeAsSxqV+Xzw+edQXS37Agm8s0zrsWOwfLk0Oysqkn0NGyavJfudb2iGitJ+tjqZkmZjWafwlk4YcZxiTSDZ7YpSKfs+HlzD30Z2maaUhh8vKTdMCdTzpYlQJpMm2tgoc6xvuol4RwfesjL8lZVkYjEykQju4mLMVErKuv1+HH7/ied0dTHwzDOx0ml6v/iCgtGj0b1ejFiM/Y89xsnXX49v0CCS3d04/H6cgQCWaRJraUF1OPj86adpfPddqi65hLPvvx+X24kS7JXviT9PvqfHDsGw0f2Lor1dsNEGwJGQrJ8edrIEylvfgGtvh0Rcuo0bGRnXVXmSXERJJaU8+uU1kqGedAFce4dcFDEN2yU8I9uoKpaqIjRN5kQrar8U/u/eW2QD9wRS5p1JRHB4ArImOx1H051YRgbN6cbMJFFUHTOTpKdhH2WnnidBpiLr2jPJCN31HzHotAvtOm9B+9fbKR5xDg6nDzUUlI7g1RcgwiGU/EIpExfI3xNVlcy2qqJkMjL/WpGGTTmTSvt7aDUdlYy2LyDfo0wGq+YD1Cnny9gyp2TTFMuSbHZ5Vf/7gazptSwL1VabCCEwTTNnQJatxc4CaWFHmIVCIWpra7noootwuVxYlvV3peLNzc1UVFSwYcMGKisrGTJkCDU1NUyePJlYLEZhYWEOyCuKgmmatLS0UFU1GMNI0NKym0GDziQe7yIUaiIvr4KammVMnboIv38QDodUnem6G113/4+mPDmH8MbGGkpKTsPlymPjxltyruDnnfcwgcDg3P8VBKaZwukMYFkGhiuPiKJgIY3HVtAfmVVFv5y7AgmwFyGl3sfs54uBvr17uebKK6k+epR155/P1Dvv5IUrruBUYA7wMFIaXoVk344AMy69lHkzZvD5nXeyzm63BsiLpLAMC1WzXdc1xa5EE6i6Su/hXmqW1TBt8TTyh8rECzNtsmneplxe9cxnZmKmTYQlSEfT+Ep8qLpKOpom1hE7IXpLd+tkYhlc+S7MpIlpmKQTafzFfoQlPxOx9hiOoY6/yazOmBnmbZ7H23Vv8+pVrzKpYhIvf/4ye1r2sGTaEgrcBQx/cjhf3PIFZf4yLCzSZlrOMx0eCn9RmEuqcWkuMlaGYDJIIpNgac1SFlcvZnjhcOa+MZe+3/Vx6OtDONwOSkpKeOm5tYwcWsH5F1zAseZO8vOkrPsH117LXddfDv4KPvr4M+780TyikTCKw8tjP7mHC845SZIL+cPt0j1bEZEF5qGGE9NigvX23M6eC/rL5Vyx4yPbY6eSE1Jq0nIRDGceYMkFSTMtwX22pDBbkqjaQD3RDek4ONyQjknA7imW12QkYfsiOGehfc2GnFfuWS5BdP4QeW1tu2WUV/4wW3mZliDdSMi+VIcE9P+Jt39YFJeiKAeAM4HfAY8LIXb8E1z/c/s/2aKpKJawaIu2EU1H8Tv9DA4M7o9MsN0aG/oaWFm7kpXTV+LUnGiKRlO4iUe2P5LLHqzrqWNF7QoWTlnIjqYd7GnZwzMzn8EUJrVNtQzJH0JVfhW3bbqNn1/4czwOD72JXoLJIJ2xTqZWTaUx2MiYAUPRjIhcsXOXAaasu+773K6ZBrpqJAsdGA2xo/1g2X+SLce0QaQZh549si7bP0yuFKoOcrnSlkHO1TZbXx0/CgeW94NyM2XnXnNCiTSWKQej/1FdV3aClK1dzsT6ox2yszc4AZ/L2k0LOj7hsV+9wctvvMf7W96lMMucpSP29fjBTPDDm+9k/OljufP2W8DK8GVdPacOLQHdRX1jO1MumMm2za9zymnjbPlqjxw4wf5/GxIg+8rle0NWvmQ7IwtD/phkc5nb9kDZ2dI5s/FPMt96kFQUpE2dnqAEjU6nhtOp2e7gUYqLfaRSJoGAM/c7kR32LEug6wqRSBqXS+eWWzaybt0BrrlmLM8+OwvLEqRSBpmMRSDg4siRPlaurOXZZ2eRTBq5muve3nr+9V+vZu/eA2iayrx5NzLmtHM5eKiGomGDWLLgxwRcPm668UbGjxvP/DvmY9kXkXUXjWdSXHPnDXR9fITX3n6DkuKBbN60ifm3ziONSZ7bR29PL06nk+tuvIGHfvoQk86awMpVj5I3ahD3vP0YfNjC+aPOYcH9PyaaiuN1ujnc3cSwonICTi9+B2CFUbDAioCaD4oLzC7QSuRnIL5L1lUrLkjsBkcVOIbJv4sVtz8wJnTeA0WLIdMK7vESmGfrr0cck+x4zwooWij77rwXSteAGZSy88Ru0EsIKTIX+UhfH8tqanjs4ovpisdZXlPDwilTKPP7yXe5aAgGWbp9+wn7TCHQbdYqYZp81NLC2JISAi4XlhB0xmL4nU4CLhf5P/85c8aM4eHzzsO0LIYWFNASieB3OnFpGm5dxxSCgGFISVd9vcyivu8+CYhLS+HwYWhrg4kT+82mQiHJOre1QVkZNDXBI49IWXdhoQTHK1bIWzaqKRCQQCyTkeA9GpXn+nxw000ypuuaa+DZZ2V7n08ajNkxWISiEiQfzzQjZJ+22RSWJUF4ZVm/0VlWKv+3JdR/u4WiUiquKJK9zuZqJ9PgdJBOp9jz0EM5cHvyD37A1//2b0z86U8JHz3KV7/8JWcuWkSyt5cvX3iBU66/nryhQ9n94IO5c85YsIB0KMSBtWs59YYbcBcV8fGKFZxy/fV0f/IJ/spKvKWlHDju/NxQZZrE29o4sHYtp918M97Bg3E4dDAyUtJsWRI8B/Il65yIyzrqVBKW3AA/ewF62mHoyXJhQdPlooItZyeThiNfQ8VwGdvlcMq+NF2CaQU54bQsWatdUCyP//F5mPmdXKyXWVZBOh4ik4jgLSzDTKdQdclEC8skGe7GO2CQjVVl5nXR8DNxuPyk4yGMdCJXb112ynmYmQTd9XspO+Xc/lpuG+wmgu2480py+y3LxMwk6Tq8m0D56fzwpvl89dVXeDxuBiJ46vwJjDz3G1z05AscO3aM/Px8UBS+/71ruPPa72HVfMCNr27g488/R9V0HA4Hyx/5GRdecIFcCMjW/QsLYRoomg6KitV8DLVsMNjMMiCBdfMxlIqhUjlgS8eFopKhH1xblkUikcDj8aCqag4YAyew1FkA/uWXXzJ69Gii0Si1tbVUV1eTn58vAZ6q0tTURF5eHgUFBX+37vrSSy/Fsix0XSeTkb8h6XSaQMBLMHiYHTtWcOGFP8fl8qMoGqaZRtNcCGGiqjqZTJxotJOiohH/U2Dd0/M1uu4hk4lTU7OMWbOeIxRqPAGo67qHLVvuYsaMx6QUX9EQtsdKFlyrgBdZX227uGQLcrCLrkgAPvu4QBqQdQH3XXstBQMGcOsTT3Dp+efja2/H7XAQO/VU1ixfTvnw4Qy2r3kxMK+piWmjR7OhsZGC4mJWICO9yoC8WIp0KE2kLULtilqmLZlG/pB8FF3BSBg5ozFVV+mq6yLeEadqWhXBhiDbl26XoHmQH2fAiTAEse4YDo90BD8eqCuaYnMI9mdJV2T7rhjeYi+hphCB0gC6R8dMm+CHULo/szrfJT8P9cF6mkJNVOZV0hRuYkL5BHRVJ2Wk8Dq8dMQ6GOgdSMJI5MiXLGi+8Z0bc0SMaZm5+WlPvIeeZA9dsS7OHHQmyWSSfTv2MfScoTy++3FObjiZ9zdsZdvrazl/1tXceduNXPGd78t5TKASOj9BuIuoHHcRv37hOS6aOJKD7RkuuuRS6nZuwFNykiRFLLM/21pzyT92NlI1UCHVZlbGZrOP9IPu/OEShAcq7H7s3y0zJUvuHD45p4u1wr7VsvZZd8tSvSypkQ7brLtle/HYHj2ttfJ6di+VgNpbBodeg/Y9cNGzEnC37JTXffLV5OJgFR1ineArltf60Qq48Fl5Te028B4wUpYC/ifd/mE118AfkItlVUCtoiiDkOqQf27/3P63tyPBIxzuPYymajy47UGOBI8AcLTvqKyPFiYra1dy1yRZ07KnZQ8JI0Gxt5iplVNZsUO6fLdH27ln8j20R9u5ePjFrJy+kqOho9yy8RYq8ysp9ZeiKirPznoWn9NHX6KPRCbBozsfpSKvAofqYEjBEFQE7F8E7e9Jhk51gR6Akmk286FKkO0dKv8Dx8u8hSEHjthRMMKSdf7LbDjwMxBpKflOh2x2t96uyW6A7lrJ1loJOYCO/Yk0T9tzM7xWRM6gzDL7QbGqSWCdfZ4z7jH7GTBFlbU6imavTNqo2kjZddf9Mtrcpqg0x73c88AvCAZDfOPCixg//nQmTp4i+0iH5WvH2qB1J6T65EKB5mLhkocZM2Um46dczHe+P5c1q5ZzyrBSWefz/s2Qjsr/R6zNzleMSwM3K2NfmyX7b6mRg6yqy/cr1iaBvasQWmpl+5YPpcukXcPjVNP4fA4+/riN+vo+amubUBSFkpKA7R4uTc1M0yISSZNMGqRSBjU1jdTX9xGJpEkkDJYsmcacOWNYsGAK7e1RMhmT5uYwX37ZhaLAkCEFLFggF1k8Hp3q6iqGDSvgmWfWMH36pXi9Dt577200TeXmud9DQWFQoJg8l1yFVVB4Zs3TTDhrArNnX8a6rW/THOrkp++9wKOPPsrhHZ9z7oI5JDST/a0HmTlrFkebGmltaub9vdsZOvFU5t45j7OuvoBPWw9xyTdn8/Lrf+S0shG8POenZI4FGXv6WL7uPMp3fvtjVm37HaeWDqe+O7sYaaAoGpjt0uE7KxHvflA6fMdrJVA2e6BjnjQlU9wSiGcOQ+edYHbIH/LIOslSe6slOG+fC44KGPyqPN6zwm6zAtCh6H7Zl0j092104lAlu+RzOFg7ezZ+p5OOaJS36+pYUVtLOJXCFCIXsbWithZdVWkIBpm7YQPhdJpwOk1PPM6kigp8Ticp08S0LA739tIRjaIAc8aMYXF1NQGnE5eu0xAM8uC2bXTH4zg0jfq+PuZt2oSpyCxlmpslQM6CZkWBk06SddGGIYHY3r0Qj8vbQw9JBru5GaZOhfx8Ke0eMkRmWwdsExq/XwK4cFgy2cXFso1tksbq1RJYr1zZn30tkGx0ZZmsky4rAr9XHs/K4bPAOi1Zypx03GVLVDVVstrhqATIWYk4kHWFls7hptyf7ycXDwYSWIME6qqCoqqMuekmqi65hDFz55Lq62PMzVLq+tUvf0nju++SiUb58oUXcm7gQogTzlE1jQNr19L47rt8+dJLZGKxXNuyKVMoPv10Dhx/vl2rLSwLYZrE29s5+Qc/INbWRvY/omTSNtuiSll3JiOBMcj9+YWScc4rgBGngpGG3z8jJeENX9pjqSXfz8oRkoV2OKVc3HaFx7L//qYh3cfLh0kGPBGzHcj/KGuwN74ClkkmEUF3eWj94k+ougMjFaf1iw8wUnE8BaWkokFav/gAYRmUjfkGTk8eiqajOdz4BpSTSUQJd9RjmRm6Du/BUyjBeCYVw7IztON97eguH0IIWj7fSjoRQdWddB3eTaitju4jH3PjjTfw5Zdf8MnevXzzh9dxy+4vUKd+A4wMqx56gI9rd/BJzXbuuuNH4A+gXTSbVQvv5dN9+/hkzx6ee+Jx5syZg5lMQDplB03I91rRnYhYFJFOofj9WC2N9mdXsl/mptdRfH4UTZXvp9Mp67aP2wzDIB6P43A4iMVipFIpSkpK7J84C8MwSKVSpNNp+yOvcfrpp+NyuQgEAlRVVRGNRjEMI8eCV1VVEYlI2XIgECAQCJxQl63rek6OnjVQk/nXsua5vHwCsVgHGzbcTF9fPc3Nu+jrO0xjYw3d3V+j626Ki0f+u8AapEP4zp2r8XqLyMurYMqUhcRi3USj7Vx66RoGDBiJ0+lHVXUuueRxVNVJJhMnnY6QycTZsGEuJrIe+o9It28NmXFtZV8DOanXkOAbpIzcAG4GRi1bxl8OH+Zny5dTAXzw29/y+ddf89FnnzF/2jQWzJ6NAtwJtAJnAD/89a+5ZPZs1OJiRgHPIYGAAxCGIBVOsWfNHqYsnEKgPICiKwSPBNk8bzM9dT001jRiGRbxjjglY0uItEYoGFbA7Odnkz8sH4fXQbAhyIabN2DEDRRVYdO8TaTD6ZxCoedwD9GOKIptrJgOp2WbSBpVVXG4HUTaIrxz4zuEm8MIS9AV7+KhbQ/RFe+iPdZOfZ8E1lOrpuYk4vM3z6cp3IRbd3Pbptso9BRiCpNQKsSaPWtYOGUhFXkVqKg8fenTtIRbUFA4FjrGruZdGJZBib+EJ3c/SXleOW3RNtxuN1MvnEpXvIvVM1Yzbco0jh49ZudOO2SWs5mxAbEGnmJ60h66urq4aPp0yB/GqKoiCvLz2bzzoASzZloCVKe/vxQwm5WdP1z+1bNxXop6YkoMimyj2oqlZE+/U/me5TKHOh2SALdsggTZ798CnoFSXSgMKQGPHIMPbpNzx2SvnFsOntpfP/3RCjl/GzJdAvTQEdh6MwQGy5prkGB+61x577WJlt1L5euGG+BP8+TrRpvsGvP/utv/klu4oigFQFgIYSmK4gfyhRAt9rGpQogd/3cu88Ttn8z1f48tnApz0zs3ce/ke+mMdVLiK6HQXUipvxTrOBv+eCZOZ6yTZTXLWDV9FaqqEklFKPHJH12n6iRhJNjdspvKvEqGFAzBEha3bLzlBFlQNC0lmJF0hHxXPvvb9zPz9zNzxwECqooqzP666TFLwGdLWTRPP8OaZaej9VJCftr9EhCjgBGRA2L0iKzfHnM/uAbAx3eTHPYjrr51KV9+8iEeNUpJSSnPvrSek04aLtlyR4A//aWW6bOvZtXPf8Kd/3oGlM1g8ZL7ef3NN3I5oEt/+jNmfGOSHExVB2RzpIGc3EdzyRVI6KdqFaR0yBmQYDnaYg/6zuPcupV+V+GsOVrWhANklmHLh3IQzB8Ksfb+lUvfINlvqEHuu2CNNCCrWydrri96vv/HQbEn6+mwjOTas1zKwPOGSAdJdyGgQdsuyVhnDd+yMvhsPZGZAs1JzHBjGJLZUBSIRtO5iC3TFOzd28qECeUoCjQ0BFm6dDv33DOZrq4Y1dVVmKaFy6VhGIJ02uTYsSCPP76bNWsuzb19mYyJy6Wj6wqGIbAswUUX3YSiHOTpp//I0qXvU1f3BD/96a857xujuO2O6wnnCV5/8jcAtLW0UjqoDF3T+N5PbmfHS+9wzVP3suWzGr5e+g5VQ4fg9fnQVRWny8Xjf3yBskAR5fkDeXjLWl78yeOMHz+el36xhgJPgH3HvuSph1awY1cthd48Lr/im2hTK7hh4hV0RnspCxRRkV+CaX+ffLqFQkYakkXWwbCvJMiOrIPAHBm/peafuK/seVlbfcK+52QfRfdLZrt9bv+x0qch0yh/5HuWyzZ6Kbn4tM4fndA2bPpRUTBsCaimKJhC0B2PE06lKPP78eg6x8Jhlm3fzqKpUxlWUMDtmzczuaKC751+OgDdsRgDbVdq07Iw7EWmYDJJic+XUwp0xmIMCgTY0dhIkddLVyxGdVUV8zZt4q5Jkxjn96OnUhJUNzVJltrtliBN1+V3I5GwjcYs6OyU9yefLLOr166VTPTx8vFMRvaRdQu3LAnIFyyAe++V9dsVFRKYV1TIW/Y1MxkJ1BUbHDe2SVMzt/PEuuh/b8vSvemM/F4faZFy74KAfJ4FzmkDNLtuO3telp3Mjh92X+lkMje2qLqOZZqomoaRTJLo7OTA2rWc9eMfk7QdwE+7+WZ8WQbSNFF1HWFZRJubc8edhYV8/POfy7bl5ZipFImuLsls33gjDr8fze0mE43iGTiQWEvLicy1rqEkYpKx3vxH27V7gLzOPz4vn5dVyL9Jd3u/s3f9l3D4AFxzuwTJOcfvAVIeriCZ71AfhHulsdmmV2Dm1RKsxyLSVdw0bOb66px7uFk0EOFwYqRiRLuO4h84lM6DtYTa6sgfNJrBp11I6xcf4C0cTH7ZKAQCy8yg6U4UzYGRiqE7vVJarmoIy0DVHQhLkAi2ojl9ODx+MvEw3Uf2UTJqMof+8mvyB41m0KnnY6QTZBIRfAMGS5xrZNBMi727dzPnhps4UlfH+eedx4/uvpsrZl4q67AVRTL3qiafA9bmN/nQ0rnyhhvpbGpCdTggHESEw6gVVbkcazIZRNbILBGXxxQV0dMln5dLrwAplZcS8zQK6XQ65xAuhOC9995jypQpFBUVSblvLIbD4cDhcOQyqmtqapgyZQqBQIB0Oo3b7UbX9ROAeCAQyDHe6XQ6JxcPh8M0NDRw2mmn5ZzCZ8yYYf9+KEAGyzLskqE0wWAjsVgHXu9Adu1axaRJd7Nr12NcdtkLuFx5//73D8hkEphm2v6/dOByBXA6A6TTUYSwiEbbyc+vxLJMUqkQLlc+qqoRibTi9w9i1aoy7nnAwFC1HBOdLQ5TkSD7C+B0+/V89lc1y26vevRRXnvlFd58/32sggJOR8rFTaANGcX1LbebS1paeKuoiDnAQ0Jw8YgRPP3ss0yYMSPnGi6AHmBEIoOaMqQs3BI58GskDb56/StGXz46x0ILQ9BzqIdoe5S8ijxqV9Zy0S8uwul30ljTyPor1zP68tHMfn42vQ29+Ev9pCNpXPkuVE1FdaiEGkPULKuhenE1x/5yjKYdTcxeOxtFVYi0RGj4oIEBJw2g5LwSbtpwU27+9+ysZ9nZtJOBvoEUugspdBf+XYn4yAEjmVwxmbgRx6N7OBY6xvKa5SypXsKIwhFYWFhCysUB9rTsoTK/km1Ht7GjaQc/Of8n5Lvyc+cuq1lG7JUYwwcP48lVv+D86ZfS3t6Bw6Fz6imnsHzpUoaPGA6pMENHjWHFTxYx5wfz+Kj2L1RfNIvlyx7h7jvmkTMlM1NyTpZ1Dw8dkSZp6bCc8+UP73cTh37V4gnlgJn+eV+oXrLDWeba4YPah/rnaxc+bafeZCQozu6/4Cn40+3S/Tt8LFeeh28wODySONl254n9oEhwfvxcUJiyJFB3/dXrrgHdL/v6T7r9w2Th/4EX+lgIceY/pLP/yfZPcP3fY0sbaep66iSrjEpfso9iezWrM9ZJnisPv9OPEILbNt3GhPIJfH/c94mlY3zW8RmDAoNyA5/H4aHAXUAwGSScCpPvyqfAXcDult0MyR9CRX4FaSNNc7iZtmgbE8on4Nbd3LrxVhZNXURlXiXzN8/n17OfRcNAOb72ecJa+4qFBITZehdsyTW2zMVMACr0fQrFE8mBQFW3wWIByaTBn7Z9yKXVJ6F8uYw1tcN5dcN2tr3xBHy1glD5PKbPuZvSkmIunHYWd978Xcg/mc2b3+X888/D43bz6d6dnHvxZbQ2HcPnsGxW2paCZmVC/sFyddSVb0sXbbGYEDZgVmQt8/H1Otlzc/XYrRI8Kwq5LGyQg3PfYbm6OGii/D+GjkGyG0rOkgNlSw1s+h5cs0fW0exeKoGz7oFMUtbruArlc2GcOHBPX5tjpOUPSsaWjw86TsZuLyZYaUAhbTnpCZlomoLH48jJvTMZCcZ7ehIUF3ttqaBCa2uU996rZ8+eFh5/fAZut44QYBgWPT1x4nGDlpYwpaV+hg0rIJMx8XgcpFIGfX1JEokMS5fWUF7+Oe+++ya//vXrrFr1CevWvYHLtZHCwgAOh0J3Tzcup4sb5t7Ijx9YgtvhJGNmcGgOEpkUZ51+BqufX8O+9FHuPu8a3A4XqqIQTyeJHCfrHjd4FC2hLl7a/SY3TfoW5flyYSllpFn+wa/YUreTGaMnc+uUK7niV/cwY/RkHph+I8FkBJfmxO1woasaHi2NYnSBiOZqozE75eOixTLX2n2mZKJ7ltrgeQRYITBbbZn3YtAHy89/YrfNdHdCz89tIF0JHXdByTIpFTc6oeliqHxPmqFljpzQd8zQsIAjtuz7vupqWsJhKvPzGVZQQCiV4kBnJ1MqK3MAuSsWw+d00hmL0RwOM6G8HIc9uW/o62NFbS2Lq6tpDoepyM9nREEBnbEY0UyGpdu3s2TaNAZ6vdy5ZQuLq6sZXlhINJ2mMxajOxjkguJilL4+KCiQ7PT48fJz5/HImuhly2RNdGurPOb1SpBdUCDbHDwoY7SyknK/v19R4vWSMx47fBhWrYLbb4fHHoO775b3zz8vXycLtgsLYdBgyTo7HP21z9nN/CsJ+F9vx5eV/HWJicAG/Wp/X9G4BN+q0h/z5XLKvoX8/mWMTH8XloWVluOK5pJ1gcI0SQWDOPPy5PdVVXOAWsnW1hp2nbLdVnPb7tHAZ48/zum3344eCIBlYRkGqsOBME2Svb04vF4cgQDCMDCSScxkEv/AIllz/fZvJYN8zrlw+ffkRT4wVz6/9g75Bvz2iRPbGAYUlUijsuP3FxTJ87P9Xvxt6SCebfO9O+w8bZsrtEz5/w0FIS8f0+kknQjTXf8RpSdPk3XTuaitc3C4A6TjIVTdge6SzvDxYDsOtx/d5SUR6szJwgedej4AmWQMIxXDW1CGmUmhuzzEeltxeALoTg9tX25j4IhzcHjy7eg1k3hfB97CMjShIHq6+P6ddzGgeCCr77qDC6+/ifbOTjnpP/lklv3sEYYNHw49XYhomMXPv8Srr71KX08P63/zb1xwyaUghJR5B/Kwdvz5uGgvm0UTNo+qyM8HIMF4KIhaORRhGFhbN6BOOpdM0UB7WO+vqe7p6aGgoCAn2c7ub2trY/Dgwbna6EQigc8nGfts7FaW8YzH42QyGcLhMOXl5ei6nvvMZsF8IBBg48aNTJo0iUAgQCqVwul04nJp9PUdpqZmGdXVi3E4vGQycRwOL4YRJxRqJj+/iuLi0X/XwMww0phmGkVR7QxswdatC/nGNx4GpImdy5WXA9a9vYepqqomnY7y/vuLmDTpLoqKRrFx463MmvUskUgL7qLRNCgKS5GS7eFIYDzQfk0HEnRn7McgWesVjz3GSy+/zFvvv0+4sJAK4JhhcEpPD1ZpKYeBz197jafuvpvNx46xAlnP/dEHHzD/uuv44uhRDqsqK4CFwCik7DyQNlBTJsKU0m1hCRRdyrmDR2Q8VvmEclRdguONt2zkwp9fSCaWwel3Eu+OS7B8XzXhljD5FfmEmkMMOnNQrt56ysIpFJ1chMgIGnc08sb33uBbv/sWFZMqMNMmrnwXqVAKRVPQHBrCJTA1k4M9B1lRu4JFUxcxasAoGvoaaAo3MbF8Ih7dQ0OwgcZQIxV5FSyrWcbCKQsZHBhMnisvF8PVEmnJxW6NLxtPa6SV9mh77px7Jt+T8/ZJm2mGFQxDIGz/FFj5i5W8u+ld3ntvC/m+AM1NjVRWVCAUhaeffoZnnnuOL7/4HIwUn+76gEVL19DR2cmYU0+lrbWVb148lTvuWdwfy5X9XkVbJTjOJn4oul0+5+gf4FVVEin+wbJ9ohtKzuif9w083a69xvbwseR5WWJk4v1SHRjrkrXSwcPSYHbiYkl0GMl+Ztw2wAUk6102Acqn9vvmBKrs7/9Rm0RZDHnDbbUnstQm1CBNaicukXM93X1iBNl/su0fKQv/n77WP7Cvf27/D2xO3cmIwhG0R9vZ3bKbWCZGbVMtx0LHeHDbg7RGWoln4ljC4qlLn+Lbp3yb+Zvm0x5tZ2zJWJbXLGfdgXU0hZuIZWLM3zyfuBHnpAEnEcvEmLd5HhV5FVTkVdAT68Hj8DAoMCgXnXAkeIRnZz1LZV4lCSNBdWU1mgKKkYBTFkpgfdr9Ehwbf10BYQ9yyS6INsrniXbo/QiKzgSEjOPClhjqbujag1s3mDnjfBTfEDj9p0yqvpijjY05h/L5963i/ruupciqk8BRk1KeS2dMx+OQBhZjx41DCIuuri477zB7PRznAN56YhZiNgdbWJKdVp1/JR1C7k8EyblJ+suOc6xM9Q/EwpQxWOXT5HujeSAThkGTpOzJTMlB/PqDEkA7/BIw5w+3Tcuq5L6Oj+TKaUuNzEMcPUcO6Io90G6dK+81Xf5AZMVvlinZcsuWv6o6aUvD73cihMF3v3sVZ555GhMmnM2sWZfw5Zd1JBIZUikTTVP54x83cuqpJRw7JrOsvV6H7TclOHDgAGPHVvLYYw8xZUolgwb52bu3FY/HgRACt1unpMSHz+fk9dd/yW9+8zu2bNnCKadU2JLyb7F7dx0vvvgBXx8+yIzLZvK9+Tdw8z23U9d1lLaWFkDhk5Y6tm3/C/FwlEnjzmLJRTfQGw/z0/deIJZO0h0P8Wztq/TEQowbPApN0agsKOHBi2+iNFDE520HiaUT6KrGjROvYMboydw46Vv4nB75eOIVBBMRBnjy8TjdGJZh1z4qoJdIwFy2VpY+6FWSiXaMlBJvgEyLZKAdQ8FoATUAjlGyXaZV9tNxJ2TqpcO44yR5TC+Vsu+yJ+U5KHLfsP0y7stotV/vecluWyFUJJuTlX0vr6mh2Otl6fbtJA2De957jzK/BJKHenuZu2EDY597DoDmcJiBPh/zN2/mWCiEoiisqK1l3YEDLLP7WbZ9O6YQFNl9Zh3Gg8lkrp1py9KX1dTwdTgsAbLfL6W/1dXycTwuJywVFTB9upR5V1dLsAwSAO/ZA0eOSNZ73TppTJafL+uyIxHZT1OTjOBKJqVR2cqVkvVeu1beL1kiv7fNzdJdvLxcMuAKEuC2dvYDaxvoyusqPRFYCyQTbdolJccNXZiWLQs3JRte3ySl4pYtJ89KwkHe5/lku+z5NkMV6enhX779bcaMH8+E885j1re/zaFDh0AIps+cyenTpnHO1KmcNno0K5cuBSHo+ewzOjs7mXX55Zx6xhmMP/tsttfW0rZjB8G6OjS3m49//nMKTzkFFIXI0aPsefhhEl1dJHt6cuA80dtrD2kWRiJBOhzGSGUQHq90+z7nXLjkKinP9vjk81nflWOhpkl2ObuvcCCUDJZjTXb/JVeBxy/f3/qvJXiecZXMvD7+XF2X71kiZpflCAnQH7gRfvcUCEHX4d14CsowUnFaPt+KkU4weOxFGMkowfY6nN58HG4/wsxgZJK48waSScYwDQmcuw7vIdRWh2mkMY20ZLNdHloP/AnL9u7wFg5C1RyoupPysdNx+gpBVWW0nKrhGzAIYRlYZppljz5KfUMDj0w9E8Xv5/knH2f0iOGkkilqamoYd/bZ1B8+BEUDufAHN7Duj38kkJdP4cASfnjHnaQzBkLTUYeMQCksYpt/II7KITzx9DOQScsc795ezE2vS5k4SNY9HELx+TE3vgaREEp5JSIuFWXpdL8MWFEUEokElg3K+/r6eO+991BVNQess2ZnXq83Z37W09NDX18fjY2NhEIh/H4/kUiE0tJSEolETk4OEI/H2bZtG8FgkOnTp1NUVEQkEuHDDz+Unyth4HB4ufTSNTgcXtzufGpqluHzlVBYeBJDhpz7d4F1JpMgmQxh2uymaaYwjBQguPjilTidefY58jsUi3Xi85WSl1fOu+/eicPhZebMNRTaJqvTp68kGDzChx8+goXMpV6HNCizkOy1A8lONyAjuDLIiK5bgP3NzTx6zz30BYNc/o1vcNf48VwwcSJnpVJ8Z9YsvjV2LHeNG8fqZ57h8bffZgTwNNIN/I6XXmLWddeh2sB6HRJ0C6TsXM2Y9B3pI9YVI3g0SKwrhjAEwhKEmkL4BvrYPH8zocYQWHDpmkvR3Tq9h3tPdBNfXkPV1CpCzSHWX7meVChFzXJ5rHZFLUbCYMPNG8grz+PGPTeSV5HHpts2yb+T/XrhpjAbb9mIqcixblTRKNbOXsvootGYwsxJwedtnkd9sJ5hBcOorqqmOdycKyn0OrwYlsH2xu05peO3T/k2U6umEkqF/ibFZtXOVUwsn0hlXiUjCkfkQDXAw8se5g/r/sDvX/s9bo8bzBSV5WWyhEII5t92Cw0NR+jpbAPNybjqmbz7zht88sEf+d2vXqC1rZUxw0vkXCyb9KI5+4GymQJUCZatTL/ZmWobkKbCco5nZvrneorW/xhFMszxDikLN5Ly5hskmeZIo5R+R45IZrxghNzvLpaLsXlD5VxNUWU/798i54hnL5A1177Bct6XN0wSLGYaCk6y54Ij+8sSRUYeD1RJpWOkCWIddrzYf93tHwmu/zEU+D+3/6c2Qxis2LGCcaXjcOtuxpWO49HaR1l3YB2rd63G5/BhWAbd8W6cmpO7Jt3F6l2r0VSNxdWLuWbsNUwbMg237mZq5VRW7lgJkBv8ltUsI2EkKPQUkjJSfNz2sXQdL5/A0u1LMYVJ2kwjEFw99mo5kfpsiXT+nvA8qG45uICsVQHAkoNI1y4wo5BolgOF5oEBZ8s86+gRcJcCul2zEoCBkySo7Nkrjxtxnnj6eb552SwYcz+vRn6M6vBy+XknQbwR2t+XxmkK/YA30c2v1q5h+PDhDBk61DamSNsDLX9ba/PX2/HyTs0lB0zVlpcqKpSd1Q+8NfdxYN0e4M20HAgHTeln7xVVrlRmTccizfK9sAzJZrsLZV5181/6a24SXVB+rjT08JVL9j0LwIXRX8ez246JEKb8kRCW/PHwldpSKdsxEzhypI9du5r5/vevY+/ez9i6tZYrrvgmd945j5ISP6Zp0dcX5Mc/XoQQI/nTn47i8zlIpUxM08I0DRYu/BGXXXY5Ho9Oe3sUt1tnzBjJEkumRNDTE+fIkWMYxmYCAcH06Rcxfvx4rrtuNi++eBk+n87EieVYwiKZSVOeN5CyvCJOKzuJH/zwOkadejI3Xfav/GTJg/zby7+hsKAQgeDF3W+ypW4n0VScX+5+KxffBdAU7ODhLWtpCXWCEJxcMlyyO7EgZYEiHrz4Joq9+fTFwyy56HoqCkoZ4M2nOdTJz957ge5o0JaGKxIMWyEQKdAL5Oeh/Xa5D0vWVbfMhMRHsi2mrLkWpvwh9E6SK+QlK2XGdfeDsl3mGHTcLhluAKO5/7zslj6KtCPWZKyXFcHCQSyTYcm0abm66O54nPunTWNPS0sOAFtC0BOPs2TaNC4fPRqAiRUVrNq5M9dGUxQWTpnCnDFjWDJtGt3xOIurq6ViQVFYbL/G/dOmUeB259qpyPiuxdXVXDh8eL/c+5NP+nOpi+1Jxb33wjnnwIABcOgQ1NRIJrmvD0pKZN31hAlSIr54sQTW+fkSjIME1wMHkrz7bq645hpGTZvGuKlTmf6Nb3C4rg5GjJCA7cwz+dOHH6KVlvL4U0/JcxvbOJQIM/3iixk3Zixjxp3OH3//Bzh0TNZiZ2unBRIwZxlpO2NZ3ugH46omQXNPsD++K5tnfbhRAu5wFFI2U25a/W1skHvdtdey8803WXv55Vw2axa3zp9PJh7HzGT4+cMPs+uDD9iwahXnGwZWJoO7uJj77ruPiliMjzZt4vknnuC7V11F3imnUHDyyai6zpi5cymbMoVMLJar3463tWEmk+x95BHMZJJAVRXRpiY++tnPMJNJkj096C4nitMt2eZr75Cgef8uaKqXz4tL4Q/Pyr9pXxdM/xfpHp5JS0l3Ji1B9rU/goGD5BtpZODpn8iItJLBUDUSBgyEK2/sP1d3yJpsVSOZyXDF639m1Dt7GffEb5kxcxZxz3AKK05lxqxvMu2bNzOp+gLOOuscnn3pt8S7m8gkI9xww02ceto4zjzzLM47/0IONLThcPlxevIZeNIE8geNRtMcaLoTb0EZ3Q37CLXV0XV4NwhBvK8NVdVIRfto+XwrlpFGGGkyqRjCSMusbc3BqifX8Oa2D3nn9pvwHP4Ka8efqays4qZrvsuB5Q/SdPAgqXSaH15/vTQsczh47LFVfLxzB4e/+hKf18tnn+1HsUxEKkHvG+tYfP/9zLxkBgDC4YBQEBENy2guIaSHgWWiVg3H2l0js65rt6EMH4VaOSw3PGSBsWEYVFZW5jKvXS4X06dPz8m9s+Nx9rmu62iaxpAhQ4jFYni9XiIRWc9dWVmJoijU1NTkwLsQgh07dnDgwAF27NiRy8ouKiri0ksvxeVyoSjSrGzz5vlkMgl03cPMmU+jKCqa5sDlCvxdYN3Tc5BNm+aRTkcQwqS5eRea5kAIk6amWtLpsM1oyxqLZDKEqqrouocZMx7DskyamnaSycSwLAOnM4DPV8aMGavRgCVIt+4lQC3gQkZzpekH3hH647herKigUwjm1Nezbf9+Vu/fz7bdu8n3+di+dy+7P/+cv3z6KQ9+8AGbxo3LGSkNA7b//vd88yc/wTrude+XozcGYBoS1LoL3OgeHadP1q4rqkLFxAp2rtrZH6WlQLgxzOZ5m/EN9JHsS1J9X3Uuu1oIQV5FHqMvH40r30X1YvvYA9NywNzhc+Ar8eVAeSqUIh1Lk46kqV1RS93bdSiqwpHgEW5850aOBo9KBUMmzoTyCazauYp1B9axdPtSDGGgKirleeWs2rmKirwKNEVDUzSmVk6lNdLKQ9seoj3ajoJCviufhVMW0hXrYnH1YuaMmcPi6sX0JfswhYmFRSQdwbAMnnz8Sd567S2e/eOzLNm5BF1RMU2Tjq4+skazr73xFqWlpRQ5EyAs2lpbc/OtF555DJ8/wAUXzZBzuWyNtqB/jucM2O175fxPQY5XwQY593L4bNftvP65nrAkQC+QCzfE22WEluaR3jYfLrBLAzVpTvbpM3Jul/vtENC1H6wUtNbImC5hyWu54ClZi50/XIJkVZfXjSUl4s+Vwns3SNLIStuRr1JVw4eL5LxSdciYr4Lh/+Vzrk8YbP5PbsDH/6i+/me38vJy8c/tv8cWTUZFc6hZfNL2iZizfo74pO0T0RpuFXPWzxGt4dbcrTfeK77u+jr3PJKMiGgqKsLJsPi0/VMxZ/0csbdlr2gNt4poKprb91n7ZyKaior9bfvFnPVzxO7m3WJD3QbxZeeXYn/7frGhboPY27JXNIeaRTgZFmY6LESsVYje/UJsnyNE924hWjYJkewTIh0WovdTub93vxCpkBDBOiHS0ROPde8WonmDEKmgvKXDQiS65C37PB0VS3/6gJg08RwRC7aLtsZ6Me70MaLvwCtC9H4qfnDVhWL10ntlezMjRCYpRCoi3n/9V6KyskJ8/cVnQqQiQsR7hDDSQqRjQhgZ2dZICxHvFSIVFcI0hLBMeZ+K2u2z7Y5rb6T792VS/cdSUSF6vpb/RzMjH4eOCZHoEyLRK0S8W15HKixEMijvE31yX7hZtk/0CRFplee9M0eIR5H3yT55TjIoXyfXR0SIzs9km077/5k87lgyKJ93fCpEz1dCvDNHBIMJcfBgt+jsjIoNG+rEvn0tork5JP785x2ioqJKRCJJEQwmxNVXf1c88cS/iaFDzxMLFvxUxGIpsX9/mzh8uEfcdNNdYvz468Qtt9wjbr11vmhrC4vW1rCIRJKitTUs9u1rERs21Imurqjo6IiKcFj2GQwmxCeftIo5c9aL/fvbxXPPfSQ6OqIilkqIuo6jYsHbj4sDbfUilIiK+zY8JV7et0k0dDeLSDImosm4CCWiIpqMi95YSHxY/7HoivTmzjvYeUzEUwmx6+in4sv2BtEXD4tYKiFiqbiIpeIinJCvE07GxLHeVnGwo1F0RnrFgrcfF72xkFjw9uPi9JXfEQveflyEEhFhGUEhjKAQRlgIo1eI8CYhEp8K0fOEEJkOuT/dKkTyKyGMiBCJfUI0zxEisVceS34lRLpZiHST7Kd5jhBfIfdnHzfP6e/7+P7SrfKW7S/dLIQRFsFEQlzz2mvi49ZW0ZdIiEgqJfoSCdEVjYpP29vFnPXrxb7WVhFOJkVfIiFaw2HxZWenaA2HRTSZzLX5rL1dhJNJEU4mRW88LsLJpPiqs1M0hUIimEiI/W1tYkNdneiMRkU4mRQRu79oKiX64nERTCREMJEQ4WRSWMGgEBs2CPHxx0IcPCjEp58KsWmTEKGQEL298nF3t2yzZ4+87+qSbTs6+u+7uuTt0CF5bjQqn8+ZIxI7doiNTz4prKuuEqKlRTy1aJE4b+BAIT77TIhoVASbmsQ5Z54pZk+fLlY/+qgQyZQQ4aiYMnmyeOEnS4XY9pHoPHpMVA0aLJrXbxQikxEiEhPiwGF5H44K0d134r5kqv9xOtP/uLtPnh+Oyn3hqBBN7fJxKCLvMxkhYvFcu0woLNLRqEj29YmWDz8UsfZ2UfPBB6Kqqkp0f/GFGF9RIX7zxBMi3t0tgvX1oreuTiSDQdH84YfC5/WK7U89JYL19SLe3S3GDh8u3vzNb0Q6FhOpcFikYzH5OBQSsfZ2sWPhQpHo7RXb775bvHzqqWL73XeLVDh8wvNEb6+wYlEhOlqEaKwX4tNd8v65pUI0NQgRiwrR2yVEb7cQibgQTccdS8SE6OsWIhaR7T7dJcQtl8nj0YgQL/xCiHhU3r//phCtjUKEeoU4dliIZLz/dRrrReLYYbHxj68IKx4TZjIhHn/sUXHuudOEkU6Ic889V7y6fp3IpOIik0qITCYljHRSZDIp8cZr60XDnrdFV8M+8ebrr4ohQ6pEOhkTRjohjExKJCM9ItbXJjLppMikkyIe6hDH9r0j4qFOYWRSIpOMiUSkRxzb9474bMOjIp2MiVQ8LBKRHpGOR0QmlRC/+Pkyccb4caK7rU2Y7S0is/43ItXcKNqONIjMay8LY9eHYv3LvxOlpaViSFWlSPb2iAlnny1e+82vhdnWInb+6X1R6POJ7q8OCLO7U1jxmPjed78r3nz1VfGD731PPLZypTDjMWHUHRBWNCLMRFxY9s04+KUw21uEGQ6JzPrfCLO9VVjJpLCSSZFIJERXV5eoq6sTzc3NYv369aKtrU3U1dWJlpYWEQ6HRXd3d25fW1tbrk0ymfyb593d3SIcDouWlpbc/paWlhOeh8NhsX79ehEOh0U8Hj+hfXt7u0gkgmL9+jni4YcRdXUbRHv7p2L9+jmivf1Tkcmk/u58JpkMi66ur0RLy17R0rJPrF8/RwSDTaKtbb94662bRDIZFolEUCSTIREKtYhkMizq6jaItrb9Yv36OaKt7VPR3X1IJBJBkUiExMGDm0Rb26ciFGoW69fPEWHLEn1CiG4hRFgI0SiECAoheu3nnwoh5gghWo97/JkQolMI0SGEOHRc2077PmjfWo/rY4MQ4hP7/P1CiKgQos9uFz3uPhxPi2hXVNRtqBPJcFKEW8Mi3hsXse6YSEaTIhmS+8Jtcv/6OevFwzws1s9ZLxJ9CRHtiIpoV1SkIimRCCZEMpoUiWBCRLuiItwaFpH2iEgEEyLeFxddX3eJcGtYJKNJ0bK3Rayfs172bd9a9raIug11IpgIijnr5wgeRsxZP0cEE0FxzWvXiL0te3PzwOzcrzPa+TdtI8nI3/TRGm4V4WRYBBNB0RpuFX3xPtEb7xUb6jaIL9q/EH3xPhFKhsQnbZ+IX//l1wIQQ4cNFQVDCgSliHPOOUdEgz3irDPPEKedNkacPnasuOAb54n9e/cIEWkRIh0TDy9ZJEaeNEKcNHyIuGzWTNF4pEHOubK3TErOkdKx/rladk6XnaelIrK/nq9lm3Ssf37XUyfbGfa5yaAQvYfk/CwZFKJ+gxCxTnn+xmuE6PjEPhaWt85P++dksU4hYl323C9y3LFP++eA2bldMijnf/WbhIh3yWtI9AnRsV+e075XiH1PyMetu+R9vEsI4+9/x/6zbECz+Hdw6n+YubbNzP7dJv/7EP+f2/+rm0Nz4Hf6cxLv5TXL8Tq8rJ29loAzQGuklf3t+0kYCWn0Iiw8ugeBoKG3AdMyGegdyKrpq+iMdeJ1eMlYGYYVDOOZmc9Q7C3GsIwck/3k7ieZVjWNwYHBeHUvN75zI+3Rdty6GwWFnmQY4fCDuwTOXCXZ6uJJMqPaSkvzsqw7OHYESvQwJFr7j321Coom2nXDwq7BM/ojDITBo489wetvvsPmd17H6/Wzr3YTbU2HGX/JXQw9fTqvbtrFTx99iSX3P2iX0Gj8ZccervvRg7zz1puMHjXCdot02M7ftnAkeMQ2vUjIVU1EP+OrKHKF0UzJdn+dx5WK2JJP1WaLxXHstku+nr/CXhHVIdxks5J2bXnrLlmLLYRdL63Arp/JOpvOjyV7P2GxLf9eAmQjb+L261nycdaYY/pamYMoTLlCGmuT8qTWWggfkTXfxz6ACfehawrxuMH8+ZsZONBHW1uUSCTFc8+tYfbsy2hoCHLppUuIRg2uvfYqxo8vw++XtdnLltVw9OgXvPXW++zfX8WHHzYihCCRSJOXJ83Q/H4nAwa4mTy5wpYi6hw9GmTu3A0cPRqkpSXCunUHWLZsO9/5zmk4HCqGaVLsL+CB6TdSlleEAtx13jWMHzyaZ2tfpTXcJf9kiTDNoU6Wf/ArSv0D8DrcVBSU8sD0G6nIL0UgGDtoJOX5JXzZ3kAsncASglg6yfIPfkVzsANNUSnw5FFeUIzb4eSH51zGVx1HcpLxGyZega7qCBwIKw5WGIwOcI+TddB53wHFIxlos1Oal2UaINMBnnNlHXXWGkdxStMzFFl/HZgjnxctkY+L7gejBxxlUiJutsr+zFa5Up11ELcigIWuKCyYMgWPw8HNGzYQWL6cmzdsQADDCgr4yfnnM7yggFg6jWZLlQNOJ/vb28kIwdCCAtZceimNoRBH+vqwhKC2qYlgMkmp34+uKKiKwuO7dlHf10dPIoECRNJpOqJR0rYDtZat6YxEMB0OxMSJ8POfyzrqpiYYO1Yy1bfcIvOrnU7JUHd2yiiuefOkdByk5DsrL3e7ZV61okj20+2GJUtwjx7NzJoalPXrIRxm0r59HO3qksx3OMz8H/2I+6+5hqJDh2SfDc0QivLpZ58x87vfgYGFDCwrZdz48fxxT41s09gGXX3y3u2UddPH7zPM/seI/sdZmXlTu9zX1A6FedI4LWPIe+g3Omtql6Xapomiqgw86yw0j4fHfvELLps5k69++UtSvb3c//DDnHPuudy4YAFNnZ3yfR46lIxhcOr06USbmlBUlVHjx9MZjRJtamLPww+TicXk45/8hFQwyDkPPIDmcvU7jd98M6qmMWbuXKouuYTTbr4ZzekETUP4ApJZHjlWMtXfvU1mXtcfkCZjsTA0fAUDB8P3fwQDy/oVPV1tshZ7QAk8/Kw8riqS9U4l4dvXS4fxjX+QqoDiMjmMbnnVdgl/BXdBETMvnYHS3Y4I9zJx8mSOHT1mS5wl+9N24M8IyyATD9Hy+VYy8RCzL7uMirHfwFtYzpC8JC0trZimSSYVxzLSaG4/Lv8Am6ASqKqDwaddiMPlAyGku7jupOyU8xh13nWo9nPd6UXRNFpaWlj048X09fVx4YwZnHnxJUz9xZOkLIvZ3/42ZzywlDOvu5lnnnqKs884g8svu4xMbw9f19Xx3Rvn4hs2nNlXzuHxhfdQoCmQybD+jTdRVZXLZs+2x30LRdWkaZnDAaE+zA2vInq7UUoGIUJBFIcTbcY3+43mhECznbrLy8vZuXMnBw4coKamBq/XS21tLclkErfbTU1NDT6fj5qamlwbIcTfPPf5fKRSKWpra3P7CwoKTnjucDiYPXs2Docs+Tm+/fbt21EUnerqxYwZM4fy8omEQk1MnnwPoVATZlYpdtxmGGnS6Shu9wCKikZRUDCUoUMvQNOc+HwlzJjxGMI2lrQs087GhsrKKdTULKOu7m0cDi9ebxGGkSKdjlBSMhaHw4Ouu6msnHpCiqYBfImM7GkCbkXWXj8HBJDM81PIzGsPcDewCSkdr0FKyZNI9jtOf7TXUruf5fTLzzPYWeT2fTvSQE31ONA9OoPOHISwBE6/k1BTiERvgnQ4Tc+hHrbcuYV4RxzVoTJtybQcUx3vkft0l04ylOTdO98lHZZSes2poeoqiqbQvKsZBPhKfOhuHSwoGlXE7LWzceW7cAacOHwOCkcUUlVdhaqoJzDLnbFOFkxZwOpdqyn2FvPsrGdpDjVz5forCSaDubZLpi1BUzRURUVVVJZMW5LrA6CmsYZoOorX4cWhOVAVlamVUynPK+do6CitkVaW1yznzp130hHt4IuvvuAvu//CnDVz2L2zFp/Px95dNXy+fz+ffrKPD7ZsYtz48eApAUXjoQcf4OBXX3Lo6y95+/U/UllZKeeOqbDtMaPaprpWf6me5gJX3nEKwxbp/h2o6D8vHbFN0LKlPsJOfXHIuZyV7peL/2m+LLk7627wlvZLzDPRfjVhpFHOxf40r3/uebzSEKS0u6XGzs1OybLIkvHwlwXytRVFXvPR9+Trjfm+NDhLBeHse2UO9t/5jv1X2v5XZOGHFEV5QVGUcf+D42v+ERf0z+3/rc2py9zq4we4lJFCCJGL2BpbMjarjgDAFDJj0OPw0Bhu5M4td9IR62B82XgsYbGjcQcpI4VLc7Fg64ITBtuV01cSy8Roi7bhd/qp+WENZww6g+54N6YwSRhJKdned6esKy4cLyWw8WY5QJ25GmZ9BWc+LkGGuwQ0H+h50lk8W6eteyDZIUE12GYPAjQPjz36KH945RW2vv4cBXk+EAazyrfT8azC0Z0vcLS+jiv/5QoeXLyQpY/8DIAPt33Atdd+j7defYVxp58u+3MG7Pqb42RBBcPkIJwdYMkaTSi2aYUi2+YPk49TYfv6bOCdNZ5B9Mc1ZM3MVIc0K3P45H6HV/ZpJGWfg6dA4UnyOlpq5aBZNkEaWHiKpRTc4ZX5h/kjbDMyWTNNJiol49vulDVAWbd4I97/f/UNkgC9eGx/fEPBcPCWYpqC5uZQzv17woRy/vCHZ6mvr+eBB37K/fe/zc6dL6Prs2hvj/Lmm1/zxht1mKbg7rvP4t577+RXv3qROXNO49xzq1BVhYED/dTXSwB98GAPBQUempsj/OhH7xKJpCku9jJ1aiUrV9YyYUI5c+aMYdGiqSSTGZxOFV3TsOxcTrfuRFM1PA4XvfEQd513DYMCxQgExb4C/u2jd9hSt5MXd79JyswQSyfoS4QxhUksneRYbzufth7klNJhuDQHy97/JV3RPk4bNIIXd7+JKSx0VaMl2M3P3nsRTVU5bdBJVOSXsOAb32eAN4+kkUKINIrq74/iMu0II6MDUGUZRM8yGwAvBe8UCFwh47ra54KIQWKPNCUTFig+WbuNZddprwHHcNAKpMGZSJwYyaU4oXyDrOfWywEVU1h4HQ4G+f08PmMGX8+bx/OzZuG0gVx5IMCxUIgfbdlCQ18f0XQal65TXVWFAuxobMSwLM4cNIhtx47RFYtRkZfHF52dJA2DYCpFNJ1m9YwZVFdWcqSvDwG4dZ0BHg+mZVHT2MjBnh4ShkGBx8OXwaAExkuWQDAoHcOjUZlVvW6dNDSzLNlm4kRpSpbdr2kwfHi/m7hhQHc3HD0KtbWy9nr4cHC5pGx8zhzIz+cJl4tvjhwJEyfy6rp1qKbJ5bt3y/PCYWlWFo5y1vgz+N1r62HkEBqOHaN2z26Oxu3vcdUgGFgo7xVFAsPj9+la/2OU4x4DodiJbV0OCdDz/f1GZlnTM7uveFsbXZ98gplKsWL1app7evjJ4sWMmTuXn11zDZ/u2sUnH33ExPHjueoHP6Dr00/JxGIA6B4PhaNHk+rrQxjSEyAby5WJRHKPD6xdi2UYZGIxNK+XM+69F39FBZZp4quoYMJDD+GvrJTg1ZSO2qRT0NECv3kC+rqh8TD4bGO1/EIYOlo+Ngyo+0yCaqcLQr3SsCwbvdXRKvvoaoWmBvn33LIeho2WzuH1X8q69Wvmw49+CrOukbXXugP6ulC+2s+ap56E6SEYAAEAAElEQVTm8ssvQ1U1ELDk/ge49NqFXHPtdRz6+ivKTj4X3eVDURRUzUHPkX389s1tXHrJJTgcDjLxoGRDjDRmJiVl3paB7pbO+JlUjJbPt5KK9qFoDlTNge6S5o39jtwqhV6NdDxC/cGDfFyznY937WLXX7bhKx7InpoaPtu3j4/ffJULzzuX7vpDLLvnbrxlZXz28cckQ0GiTY08dN+P+fkf1qFWDqM9HmfZsqWs/unDEgQoCtmFWpFMgmli7diGUjlUvreahlo+BJH1x7SkVFwYGTTLxOl0ouv6CTFZ8XicqVOn4na7SSaTVFdXE4vFqK6uzrVRFOWE56ZpkslkcLlcTJkyJbdf07QT+s4aomXdwf+6vaIoFBaOYObMp1FVjby8CnbuXEVeXgWq2m+MlpuXmGmEsLCsDKlUmHi8k9GjL0fTnOi6B8vqNwBUFJVQSJryGkaSKVMWctVVr2IYSeLxbnTdictVgMsVwO8vIx7v4ZRTvg1II7Fsoc1kpES7DAmKdSTQvoX+7Ota4AiwErga8ANT6a8emYjMv55nt38aKEQapmXl511IN/Fe+zUGI8G4ljawMhbxnjixzhjCFBQMKcBb7CUVSlG7opYD6w6wfdl2zJRJXmUeMx6fQV5VHp4BHpp3NZMKp3Dlubjk8UuIdcTYMHcDoaMhLMNiy51b+g3RdFW6kauw5Z4tpMIprIwlY7xu2kA6mpaGapbC8MLhrJ29lsGBwXh0D8MKh/H0zKfxOXx81PIRFXkVXD76cgo9hTSHm1lx0QqKPEXcsvEWDvcdRlM0SrwlrJ29lhGFI9jfvp9/Wfcv3P3e3QghqO+rZ+6GuRwNHSVtplles5z36t9j4ZSFvPLtV3CqTpJmkqEFQ3l8xuP91GM25zkdkfOp7BxL1eTcSlXteRrSjwakPDrU0A82zbRtWJvq79dfIdNb8obK9qrLJllStizcIUG8ELKv7BxOc8vvrJmWZmV16yRwVjU5F+s7KN3GnQFpQjZ6jjSxPQFMW5IsyXrmCEsCcE+JzKxGlcA/1g5TH5HvQUsN+Kvg+joomwgtO2Tp4OAp0vw3MOS/fM31f9gtXFGUfOA65AJZJ3JR7DUhji+o+//N9k+38P9eW9pIE8/EZQ2VsMiYGdqibSyrWcaS6iUMLxxOwkgQTAYpcBfkmGtLWHTGOgkmg3TGOhlROIIyfxlHQ0eli/i0JQz0DiTPlce2o9s4reQ0BngG5FwkF05ZyKiiUYRTYTRFw+/04yaD/tFxTuFjHwbXQDkQJrvAjNkRXYvBOwSwDcLAnjHYYFSh3z1RWLabo0FzSweVw0czfNhQAn43KDoup4PdW34JiRbwVsCBZfzwmSTjz5rKnXfcCpqHkaNPIRwOM2hQWe59++2vf83YU0f1r2BGm+1aaXtQstL2tdmAOnfc2b8SqmCz3qKfvRGAmbTjGsrtAdg+kI34UhSbkTftAV6TK5IgB3LVAYkeWftjpWQd9uCpsq5GUWSfRlKupgpTDujHRzFMX0t/5Jkqr8mISZfKrEu46pDnttQSKzmfcMQgFEqRn+/il798mt///g+MGnU3a9Z8i9dff5sFC+ZTVBRAVVXa2zvx+91cf/1crrpqDrNnX4LP50UICAaDgGDWrMuxrCtYt+4Ac+aM4ZlnZnLbbZuYOrWSqVMrWbGiloULpzB4cIBAwElzc4T33qtn5MgBjB9fRn6RTiydRFVVXJoD1Z58xtIJYukEA7z5CCHQVBVLCH7+wa+4bsLlVOSXyhouIdAUlYxlEE5GiSTj/NveDdww8Qr2NX/J/paD3DrlSgzLpDy/BMMyCSfCzHrprpxbuKaoWAi+aDvM6YNH4tEsFIy/is5aIwGzoxIyTf33nomguKWhWfeDJ8Z19T4mQXXmKDiGgRWTn/3k5xKQixQYbZBpB8eg49zBh0kTtKw7ueInRjn1wRAt4TDleXm0hMOMLysjlEqR73Lh0XW64nEK3G6CyST5bjcftbRQkZfHspoaFldXM6KwkIa+PpbW1PD0zJnc+e67PHnJJZhCsLe1ldNLS/HbdZWxTIa2SIT2aDTXxz2TJ9MVizG8sJBirxeHaZKfdbUWQtZAh8PSHXzFCgmKhw2DWAzy8qTr97JlsGiRrLvWNGl0dvSo3H/ffbLmurBQMnqWBamUBOeWxbLVq3ln0yY+ePNNwokEl1x+OdvWr6cgkeCHV17J+O98hzsfeQSAo0ePcs/ChdTX1zOkohK3JSgfMZzHHl994sBqiZzxmPz6in6Tstw+e6zK5mOn0pBnO5tn3cfTGcmA/9Wp6WSSrn37cBcV8fjTT7Np1y42vfUWbiHw2PXpiqpiJBJobjd5xcUc+fprXMkk5WPH8smf/0zVyJF8vGIFd7z3HsuWL2fiyJEcWLuWM3/8Y1J2hNeYm28m0dGBa8AAAkOGyIVWIewhVpPsuaYRa24mr3wwmqb2O3tnHb2v/ZH8z2o6dHVAbzsMO1nu6+mEcB+MHiezrnMRWwPgD8/IPiZdAP86T455RkZGsXW1QH4RvLuuP7bL45PgOhEHj5elKx/lnfc/YMMbfySQV0BrRxdFfieeghKefW4tzz33PJ/u3ycdtgEUhZdf/j3Lli3nz39+n6L8AJaZRncHUDQdRVgYqQSmkcblL5R/ZtNAmAapaDeeARVk4sGcs7iRitPdsJeyk8+V8V1CoFrSYVgRFiIWhUwapbAYYWRY9cQTvPLSi7x71UwKz56EdtkcRF83Vs2fUKsvhPwCvIUDaNz+Z/a0dHDDzTfjccvfh+6eHpy6xi0//AFLf7ESYaRRNNvwyDTkey8EQlFQhJAsbiwKPj+WqtETDFJQUGB/VPtdw7PgN2tgdvwxVVXp7u4mPz8fTdMwTZPnnnuOYcOGMWvWLDKZDIZhYJr94B1kPnZWvhmLxXA6nbm6ayEEzc3NDB5cjBAZQEFRVDZtupUDB9YxZsycv4nfMow0mUyMWKwDt3sAlpUhnY7gcuXhdAawLAPTzCCESXv7fgKBcgoKhgDQ1FRLX18Dp512NcJ2WG9p2U1eXiXRaBvl5RPt90Aj7fQRVhTakcZiS4AqoP6450328/OQrPM9SHB8LhJkNyHZ7GX0O46bQAzoRoLwldiGZfYxi/78bIV+cO+MplAtMDMmZspk68KtTFk4hcIRhaTDaSKtEWpX1DLt/mmEm8P4SnwUDCsgeCyIy+/CN9CHoiv0HOrB6XGy7aFtHFh3gDFzxnDew+fRsLWBU686Fd2tYxkWLXtayKvMo3B4oVz/Nyw23rKRA+sOMO+reaCCa4iL+r56WsItnDnoTASCcCpMwBlAVVR8Th8qKhkrg6qoHAsdw6k5eWjbQ7norhdmv4Bbd5M20xiWQWO4kaXbl7K4ejFDC4Yyd8PcE2Jej4WOsWLHCn5+4c8pcBdwuO8wy2uWc1/1fZxUeBI+hxsltwCVnXfRfy/M/ois/OESAP+1u7enWJISOdBsG4Yev/31PC/7Atl5m5mC3jooO0fO8YQgFysbqpdg+cKn4YN5/XOxyQ9L1/DsgpIQEnB/uEDGb+UNtV/G7gdLvk6yT5I87XuhZJz9+ml53hl3SC+ebJLMWfdI8mXwZGlmFqiUc8P/xNv/lSguRVEuAdYiv2vPAI8LIWL/21f5v7j9E1z/99vSRpq0mSaUCuHW3dy26Tbernubz275jEJPIX2JPuKZOMtqlnH/tPupzKukPdaey6seFBjE0PyhKIrCvE3zmFA+gYtHXEx5QBpLZW+6qp8wML502UvU99VLID9tCScXVOE049L92hEAhIzWGlgtH++5+a8iumzXcNOWg+p5Nhg06I/nEnI1MhfflYFUDzgKbJlPBvnTJWDP3BP7F0Lm/Zkpm4ly9o+nAjt/2yEZaM1hx2/l9R+3M6Dl4PpXx7NtshFd2HJuzSllR389oJ8Q8ZUno7uChyQzPWGxbZJhjyfC/jlWbIl5rE2eaySkk6R/CORXkjNES0dkzuJHK+TqZ/5wctEQwo62yQJqRZePzRTULIHqZUTEAA4e7GHFiloGD/6cbdveYejQO3jzzWNcc81YVq26GJdLx+FQsSzBLbfcSHn5KM477ztMmFCOw6Gi6yqplMmjjy6jq6uXq666m0GDAixdup1Fi6YyfHgBx46Fcbk0HnpoWw50r107m3g8g2UJ7r//Tzz11KW2ot7CME1UVSWZSePUHeiqytHeNn790Tu5LOoibz4D/YX4nG4UJJg2LAO35iSWSRJLxRngK8ipNzKWgQL0xSMMyismlk7w+Ie/54fnXEZFQSkPb3meGydewaC8YpJGGk1V0VXdjuIyUIQBxjHoWQklj4LqkX8rkZDss3O4NCfrWQpF94E+BIwGO4ZrST8AV3xSUo4JVhwUl/3ZdNh/O1tGbkWkWZpWJj/DRidYQXnvrSZhujEFmEKQMgx0VZXyYVVFCIGuKNTbwHlxdTWDAgGOBoM5I7M5Y8awdvbsXD62rihk7Jzr3S0tjCstpTuRYHn2fL+f2999l3smTz6hjzWXXoppWXgcDvJME8U0JXgGCYwNQ15/PI4doC4/lzkjMFOC8Gwkl65Ltvv112HnTnjuOclaZ/OuXS4QgkcffphXfvUr3n/rLQpOP52NW7Zw/fz5ErQoigQtTie33nAjS6+7WbLGqipZ6EiMS75zFVd9+9vccP31UsKdSktX8Wwedva52ymNyI7PxE6mT8zNzm6hv4r8Ekhjszx7wqOAkUphCcHqxx7jlVdf5RcXXUT1j3+M5nSSisdp+OQTTpk2DSyLN955h4WLF1P3ySfsW76cxS+9xEmnnMLql1/myYsu4snOTo42NeFwSnNFVdMwDQMrlUL3+TDtTG3V6URRVYRhYGYyCNOU8V2qyp6HHmLKz34qF7FSCQmwt6yXjt7FpXDwcyn3zi+E7g4ZpzXru1Le7y+Qn93fPHFixFZXm+zjO7dIl/As8C4ukyD790+fGNtVOBDam2HLeh49FuaVLVvZ8NarFBYUoLs8EiCqGplEiEwiSsmQUzlaX0em8wDFI87hjQ3v8dBDD/Hupo1UVtiu2EYG3e3Dsp3CdafXJonlb4aZSZOKdOEpKENRNFo+30qorY6R511H9+E9lIyeiqY7MFIJLCuDy50PvVnAfAE4nCheH4/94hf8/u13eO8PvyP/832o0y7E9OXR+cqvKWk5gjJmPG+mVe758X0cPVgns7CjEfAHUARcd9NNjDv1VO648grUqmGIvl5wOFDcXgRW/4KSy4Vob0UJ5EmFQCZNxpeHoapEIhEikQgVFRWoqoplWaiqekIGdjanuq+vj9raWqZPn57bl06n2bp1K1OnTqWwsJC+vj62b9/OzJkzsSyLaDRKOBymqqqKTCbD1q1bmTJlCg6HA5/Ph2EYOZm4olik0yFSqRCBQAU9PQeprf0FU6cuoqhoNE6nL/d1SaWiNDZup7R0HC5XwG67gosvfoxEooft25cyZcpC/P4yhLDo6PiM/PwqQqFGyssnkkz24fUOJBxuZPv2pUyefA+xWBcVFZMJh5tzcvGMu4CkvUCWQMrCz0GyzuuAa5DMswHcZu+bY+9zAHORYHvVXx3T5CjOPCSrPZV+sD4cKSVfigTjJ9ltBeBOZAge6mX70u1MWTiFph1NFI0uonJqZY4at0wLVVf57OXPKBhSQFV1FcKUUVexjhiuPBfpWJrDmw5TObVSgvEl0ygYXoAw7d+8eIatC7Yy+Z7JBMoDOLwOjKQBFkQ6IoQbw1ROqUTVVVKOFNsbt+fiVi1h5VJndFXHqTnRVZ2DPQdZvWs1K6evxO/0E01HCaVCuZxqp+bE6/Tm5qamMNEUDYE4IebrpMKTSJpJnJqT7lg3pf7SXITXnpY9rJm5hnynX7r252JNs8sVx22hBgkwB5zyV7nUhnwcsImT7FwvG8el2gtYivL3521mSgJVy5Dzp3TEloMb/XM+RZdzyWzcbPiInV39Y6lyzC4KhI/C7kckU50/DNIx6PpUJstkY7TybPVk6LDcd86PwVsCf7kbzlkoWerWHTD9edh6M9S/DZe9KqO7UGS5YcFwqXL8T7z9Q6O4FEXJUxTlTuAJ4ABwO1KRsuX/5CL/uf1zc+pyYtcZ7URXdZZMW8KrV71K3Igzb9M8YpkYzeFm1h1YR3O4mYSRAMASVi6WS1VULGGxYvoKplZO5aFtD3EkeARVUXGoDjRVrlYvqZa1NPdPux9TmLl67BU7VqCqOiLVDZ8/ZAPgQiieKtlSRZOMddUcKQHPSr0V3QbV9speJgzJdgkqNY8NiO01X2FKmbm7zGaYbflz1vk6Ky0fs8SOzNJsFjwr6xZy9S/LGqu6Ldd0ycE2y1rn2HMbiR9//Pj1NCX7j70z298JruPibyO+0hG5gLBnuVzh3LsSeylZHvtgnhygs4O3v1z+eGy7CwaOg7wKCUhiHSAESUvnipseYtRd+xh34XeZfuksDh8+DOkI4v3bePinP2PU6ZMYe+ZEvnHxTHmtDh/X/S7O6ZMuYOrUCVx88bl4PF/z+OM/JRQKUl+/mrFjX+err5bjcmlomsK2bUcZNWoNQsCAAR7OPXcImibfoyNHgtx22yZ6euRna+BALwMHennmmZmMHDkAXVcZOjSf8vIADzwwjTlzxnD//dNIpQwsS5CX5+Kppy4lEkljGPLvqmvyM+F1yvxqSwh+bUvAX9r9JgWeAL/+6B2iqTiGZRFNx/m87RCKvYLSFe2jKdRJe7ibz9oO0R7pZsWf/o2eeIjB+QOxhMVzta9y2qAROO3XeuDim6gsKENRFHxODw5VJ5gI0xLssv8ecckglz0r66vb50LmoPw7OU+SbXpWgGeqZK5RZExX2XOgFYNnkjxfHyiBc+YoJPcBJhi98rkwpdQ8WxZhxcCoh3iNfP3eR8EhPwOWleBIMEhtUxMOTcOpaaiKQiSVorapiYRp4nU4OLeqCpeu49F1emwX8Kzzt6YoJA2DrlgMATSGw8zbvJkSn4+Ay4Vb15laWcnK2locmsbCKVPoisVO6MPrcOB3OvEIIVnqQ4fgzjslWBZCstGKIhlptxtaWmQ7gIYGmDtXMtiFhbJdOCydwr/1LRm3ZZoSkGf7MQwee/xx/vCrX7G1r4+CNWvAsph1/vl01NVx9MABjr71FlcOHMiDi37M0p/8FE6qoqOrC8sGyFu2/4UvDxzgX6+8SoLmVFqCYYcuWWdVkc+zMVq5LGtbYXN8PbZAgm+QYLy5Xd4DhGN2PFd2zAChKBzct48fP/QQoXCYBVu3MvG88zjjlFMItbdzwwMPcObEiZw1eTLPrV3L6+vXo3s8jJk7l3uvvpqjmsZZF13EL8NhXnrmGZwuly1hljnXiqqiulwSWNv7u/btI9rURNcnn5Ds7sbh96PqOoqqMubmm6XSIJWQ42ZpuayZ9ufD4S9lrXRxqZRsR8PSRbyvC5weyKTk+DsrG8M1R/4/yyok6+3QJbC266oxMlLq/DexXVI2/tgvf8MfXv4t727aSHHJICzL4NgnW2g+1oAwM6iqgw1b/kRxYR55PjeegjL++MorPPjAA/zb44sZNLDAHp8VdJfHfqiioJBJhmn5/H1S0T6sTAZVd6K7/bQd2IYABp92AUPO/pasvz71fBRFIZOKo+oOHJ58FMvCqvmTdOyu+ROKz0/Tlwe49yc/JRgMcuGc73L2z1YyeeZlJBMJvvnUC5zx0jrOemg5z77wIm/+6iWsxiPQ14Po6YK+XswN6xGppKw+qhwKloUIByGTxtz8ugThQmBt2wKRMErJIPnabg9WzZ/AstA0jXA4jN/vZ+PGjfT0yHQOIUSOcT6eta6pqaG8vJxYLMaGDRty7WfNmkVBQQGmaeLz+Zg9e3bOTTwcDuPz+diwYQORSIRJkyah63ouG1vTtJxjOVhEIq1s2/YQfX31FBYO57zzHsbvH4SiaBhGmlQqimGk0TQneXkVdHR8ihAWu3atprJyKrruJhRqoq7ubXbtWo2qOnC58hgy5Fz8/lLKyyfQ2voRTqcfRVHo7KznoYdep7r6W1x55SIuu+xKvvjiIzKZGJMmT2bqGWfwjfHjOfe00xiqKAQ++ww3EP/hD/GUl/PJ+PFMHD+euQsW5GTd9wNu5GR/MZLFzh5bDOxGxnb1IYH3xZCL3VoqR/UT4r8MJAM+F0iZFuGWMBetuIi8yjzG/WAcFZNtvCHsv5eqYKZMTvnWKZSNL6PnUA+NOxqxDCuXje0b6KNodBFFo4q47MXLCJQHsDIWoaYQjTWNqLrKpLsmsXPVThweB8GGIJvnbSbSFqFwSCGDzhzE5ts3SyCvqFTkVXDXlruIpqNYwsLr8OJ3+vE5fBwLHiOWjrF612qmVU3DpblQUXFoDup76+mKdaGpGhkrQzwdx6k78bv8OcWkpmgMDgzm4fMeZpB/EJ2xTo4Gj3LzhpvxOX0cCR7hkQ8f4dunfJunLn2KeNomXsy0BMbZWNPsWJolS/KGyDmX7ur3ugG7jG+4lHpb5nHlgHaKSy4xJv3341VdefL1hD0pdOX1qxTTETumUeT+ZghTvt6Fz0DhSHLzOmFKAqT+bcmmC0uC9tIzJYjOpbvYHkPZfftWyXnleatkPNfoq2HiA5KkmbBYAmt/hQTa4WOyPjtYL/8//4W3/xVZ+PPAN4FXgaeEEHXHHftKCHHK/51L/Nvtn8z1f78tbaRJmSkUlNwKoSlMahprKPGVUOAuYKBvIDubdjKtahoZK0PGzJCxMuS58kiZKdyaG1OYCAQ3b7g5x06/eNmLucxCn73aHEv/f+z9d5hV5b3+j7+eVXafzgwzTKHbQEGN1EGNERFFjYkxxURzorGbYGxHMIkmggbsGns7OTEajolGEcQeGUfACooKzAwwve/eVv398ay9B/Mp1/f7vT7f7zk5P5/rmmvPrPKstfes/ax1P/f9vu80JV5AfUHCc9eSu6j1hxD/yB4XxFFWFrQwFOqEjTh8ugpm30pRvoyAZBt8dosEyJEpHqBWZD+udYBc3FvuGEhzL2PMsKIQY6Cokll0bQ/g48VmeaNyARfHD5ixLJ/6ZQmo64CR+p8z1zA26P6DwuhL6+28lCwVZk+tnJSBZwYlwD7+LjnrunXVP8xOPjz23t+4XMqc6hdKhnrOSiibKMF1rJ83tu5k6ZJvIBSd++6/n2f/+jfeeu1l7r73Pv6+uZVnHrsHX+Jz+t0maiskGx8zQ5TX1JM1NTa/8wFnn30abW1d+P1Sqi8EXr61fHPd3QnGj4/g86lomqCtLcrq1S2sXLmIrq44y5Y9XZSAq6rC0FCaWCxHRUWAdNpk9eoWVqxoZsqUChzHxXFcBgfTRCI+Skv9xRrrTMakrErH8vKFNUXF8erIe+NDPLr1eS6Y+00GUqOMC5dRHa4kpPtxcFGEgmlb6KrKYCpKRbCUaCZO0Bfg7ref5qXPW1hy8HxWnPgTTNsipAfYH+1jJBNnfKSKgdQIM2un4td8OK6Dgij2G1QtRIFJ1sZD/8Vjcu9xN4Ja412nOWlAVmCr9SnetZCTEV2B2aB4wkFrAJyoBMxVK0GEwE170u/rJRsenAMDl0PlVTB6+9gxa+4iYVeQs22CmobtumRNkxWvv84dS5bQmUiwevNmVi5axNTycpKmSUjXUcArI3FxvAfudzo7mVVbS1DTuPill1i3cyfrv/99GsvKWLV5M9ctWMCUigoUz+DMdl0ypolPVdEVhXe6uhgfDjM7HEbp74df/UrWUZ99Ntx/vzQjS6elOVk2C9u3w4IF8vt48cVj2z70kGR9LUuy3I4jpeOKgheoDq5Ld0cHjUcfzZSGBkpSKRg/Hn9JCVtfe03WaI8bBxdeyI/XrWP26tUsv+Ln0NnHo29s4ta77kBVVSZU13DvRVcw85STxhhmx4aOHgmuD2StAbJ5aVZWYKr/V8z17v0SdFdXwEETJehWlLExor0bs34cH9xyC0f87GfokQiu47DtxhvpfPllmk4+mTk33QSOw/DOnYw7/HD5PY9G0YJBNJ+PkZ07qZo1y6tMcSUwLgw5ntTbtW0c0yQ7PEymr4+qww8vbjPyySdUH3mkTBbTpORYUxWExxyz9LsSYLuOlL2n4mDk4NXn4ewL5cSD8FQHG56RLHZhvBwZgtiQBOSKKv9nw/1yu5POkiz2QYePKX48FhkXund8SOO8RUxpaiJcWsr+zk7yuSyNdVX0D8eprZtAKBiio6ONqvII4XAEVD+fff4F4yrLqSoLkcgYRGNJTMvid7+7lUt/eh5DbVupnjYHM5ti//vPUVZ3MDUHzUf3R+j55FVCFRMIVdYz3P4e1dPm4guVAZBPRRnueI9xU46RUnLTRMRjkrle9A2oqMLZ8DzK/GMRnsmYC/KzEgpC93n3JAUcF3v9f6DMPw7n3b8XX92dHyNmzEY57iREKIybyyKCIZlzfcA6+/41iBmzUZecIfOtNamOsHQfbqQE13Xp7e2lrq4ORVGIxWLE43FKS0tpaWlhwYIFVFVVATK2S9M03n77bRoaGjj00EOL0m4Ax3GwbRtd173bmBwnNm7cSF1dHYcddhhAkemORCKoqkpnZyfhcJjS0gCbNl1alIIvWXIX8Xgn2ewoTU2LcByzKPUOBquwbRPDSODzRTCMJMlkH62ta2huXkEi0U1t7ewvsdglJRMwjBSh0DgsK8vrr69k4cJf8c4773HyyUsxzTQPPfQ4L7ywkZdffp68HmJID1IObHj2WdbedBMtn3yCAC778Y+ZOXs2ly1fzmagBjiIonYIy3stPC4UeNMBJKgeBRYcsH4vElCvBCYB+7y/b0DK0C9Egu29WZOgx1wvWrmIUHWITcs3SeZ5crmsgfZKU1zHxbEdut/tJlwd5t3b3y1uZ6QMtGBBdixl5q7tYqQNcqM53r39XZpXNBOukc9vm5ZvKsrHlz20DNd1iXXGqJhUgeE32Ny5mZk1M9EUjbyVpypUJWvsHZuclaPUV1qM4spZOfpSfUVZt6qohPUw73S9wzETjiGkh3BcB5/qw6f5MCyDnJ1DIFCFStpMc/nGy1m3cx1fXPYFHdEO5tTPKR7bdm1qw9WIWLtU7xWImgIjXSjlO1Aqzv/i93zCM6U1xthsxS+fxVQvQkvRDxiX1C93dACPgp2F2D7QA7Je2zEk2ZHslLLsssnyex/f66kTr5fPlt1vy3PetlouK5s6xnTPXQmpPlmXneyUy46/a2xcNZPgK5PvIdomFY318yWwLsjQT3wAet+F+kX/47Pqf6H2f0wWLoS4CnjUdd34/2Rdneu6ff/PT/P/XvsKXP/3a+l8GgeHvJVna89WGksbmVoxlbZoG92JbhpKG1jdspq7ltzFUGaIVZtXce2Ca5lSMYWuRFfx74KBRaHuekXzCqZUTKE92s4tLbcUtwFYvmk51y24jknlk3Bx0RSNUlVFpNplXfVh10HAM/v5cLk0M8sPS1fwQ6+VWdhaqawpHtkqty2ZDNsOqNme8yC8fwUceg34a77cz+drYPYaj21WIdUulx12PYQnycEv2wflR5DJO5imUwSJkvhy0VRRfGZ3XXBcl4Bfxac6oKgYpotpOtiOiypchKpgmi6qKiQZp4Bpuei6lOBaloumyTxnRZGvPl2gqgLTdGU/qsCyXHRyhJQUpl6CIXQEDo5toaia7Fso0lTFUxRo3qvrWKiKhuOBIwXJSjmujeLVI334wQec871z+HzPLqZPmcqGlzdyyEHTUew8piexd1wHRQhUBDbw97fe4gff+wE7Pv6M+glBQMdxbIRwcNFRFAeBw2jU4bPPhmheOAHHMdm9J0l/f4ZFzXX0D+SoHR9EVVxMC5IpB59PEAkXblIKhUeVWNykrExHYOG4GratoCgWinBxUVGEi+EoGI7iTRpJV1wFsFwHF4EmBJbrogqwvaxxVQgs18YwDe56+4+cd8xpDKejTB83Cb8ewLAlILRd0BUVBRjJxij1l6ApavE4tvcwqYBXvy2vHc228bkOwrJBV2U9pCNAV8CXk/nUYhoYWXkNul/IOmrT9W7MwnvYRj6lqap0oWafdA0XVRKMaZpk+HQVRBackNxOVyDfB/4SEKW4hoWt66RdHddSURUBwsFxFPK2genaBIQfv09gW/J6L+AwywJFcxGukKpsHSzTBcWltXc/xzTWsrWzj/GBMqZXlYOjytJPZ0zRXZyrQpolBhSHgJmG/fvhttvgzjsh7LGSqgZ/fwtmzpQA2u+HYEhmHY+MSuBtmnKdqsptJ0yAgw6i6BYei0Ft7RgQdlzJjLpIRln1JH6OV67RshmOO07WPo8mIOjHDvpwLAs0TX5/FIFjWQjHq2kV4B4IVgv145aFELLGX/FJKa1j22PrC81xZF+KQNF1sG1p/qSoCEWgWQ6W64BPA00tSh5dwLUshKpKhtH73cV7b0KAoiLwzhM4sA5XnriLi0Aw1qedyaAGg3I/hPc5qd6zovCMsWyEIhC2hbAshD/oud0yNtno2PIfrulfnoAc+6S861uuE7FhKCn/kmGXm05CafkYMC/0YeTlNZ/PIjQdV/eTy+V44803OfHkk0EI7r//fp577jleeeUVydI7Nq5QeO6551i1ahUffPABuC7bd+zA7/ezdu0ajpx9JJddeglCkXXHqqZjZlNoug+hariuKObGWvkcjiOZcT0YKYZIuF6NuqIIhG2gIP9nrionDhwFbMeU1wYOitBxcXBdGyG8z9nMo+hBnKLPhvDWyzpL13UQQsN1LW8fBcc1Ea5AKAqOa3u15d74IVRc10IVOg4qsViMzZs3c9ppp2FpGraiIA4YcQv1vgVwWBiRbddFKVxbngliEU54/x855sqs+8KwVQCYYyM6mI6DrijF9W42yhsv/4wFC64hFBrHG2/cwNKTfo9rKbjYmHYSVBu/vwxV9TEysgtNCxIKVdG9/z2qK49A0/3ofqkoS8b6ad+3kb7B9zl58T0Ix4frOLiKVPgIR0doAtd2EQq8//77/OC8c9i14wuEpuBaLq7f5YwzzuCExSdwyeWXoAmNn15wIUfMOoLLrrgc2xvUBDaa0LAcsyhnFoomzWIdE13RsRwTIVQyqo8w4HiTBapQUBBYroWm6FiuhYqKjY2CSkrVybg242yDoKKhuQ5COB5otL0BujDh5OA4gtRAlkiNH8fRyYymKKkJIIQHAL3rAdfCdVVwbRw079/peOvHCAoXleRghpLqoMxQV3R5fIS3mfSFkde/lKDLyRXF8z6huM4baXBcm1guTs7OU19SBy6krQx5yyBtpKgJV6MpOvF8nKyZIaiHCPki5K08++P7uWvLXTyy7CHUA8fRA3GtbUrpdRHwMkaaFH8vTDAcSMI4Y0Zoij7GIhfWF0rvisuE508TplieWCByiiSNAo6JKXQM1/U+ARXXtfGZCfR3byR//N2Y3ncG28BBoKjehL2dRd+1Dn1gG+bX78OkMG7I9154rlOFV7Nf+DsziB0ahwtornc1KRq2lUMf2ArVszFR0LHRfSVwQOnFf7X2f0wW7rru7f8zYO2t+/8MWH/V/ns2F5eOWAeXbbyM6nA1XYkuLFdGaFWHq4vS7Xg+zqrNq6SMu3UNtmt/6e9YLkZ/qp9xwXHceNyNVIWqSBvpYtRXYZtYLsa6nev4XevvyNt5upPdtHS2yMEnUCeNzIZa4ONrwIxJsGwmDojbWiMHrfReeP8yCFRDrk/OKBak3YddJ92uq+ZIsP6P/VTNkeD5vUvBNWWfnesk640FZhxyfWTyDvF4nr6+FPF4Xj4jeupN23FxvAE8l7fZvLmTXbtHMSyBYbpkshaG6ZDLWbhCIR43yOctbNtFCAmsC38X+iwCdQ9IG6aLYbryPiEksDYMG4IBUr5Ksmjs6NtDd3yE1W/+kbRpYrngCKU4STqaiWN6D6iuB6wB8rYJ3ozyaCZBZ3QAy7ZZe8cdzDlhIf3DAwwODPLX559j4cJjWXDcYp599i9jjKzrsmLlDRxy0MF89+zv8uy6P9JQM4AysByBgaY6qM4gKnEUJ4lwMlRWaDQvHI9wEqiDV3LIdI3jj5uApkL9BD+aSCAGLsVHB5VlWSJhFeFaCAQCCwnnLco9YC1QUISLrhlowkYZ+DmK1YHpKBiOiuPK2KflL79M0jAwXZe0adHa1UVbNMryl18GBIqiYjkOScPAdQWmK5hRO41/e+9FZtROpy+T48L16+mMJ8mYNqMZGclluS66GmI4k6UjGqW1qwvTkRMPhYdR03FwgFw2i8+2EbYjWdV4Ut79+vpkna0RgGw/ZG2wdFArQZkHpoBkGhJJKXdOZyCZgXdaoa0dtmwBJoEYJw+YzcrthoZhTwfYIdjTJqXTezpAGQ92BHa3IS67DNMQmFmNd1oU9uwRpJIKLZsFOn6UfBDbVHEdgaIIHEeCHMsSuK7ANgX79gnyeYFpQD6vYORUmidMxmcFOapsCr+/aRyZlEomI7BMue/mzYKODvm6e7cgkRC4tkbW1Enr5dgTp8Bjj0EgJL9gug/SWTj6GBg/HiorIRSWEwaugJQh33skLNliIeD44+HgQ8C05efl80tgDZ4kUJHAuvC3okgJtu0h/lQG5s4HVwIAs7IEwy8Z/g9vv51UVxe260iA7LoY+Rwf3HoLjhC4hS+0h7BcxyEbj+MIcB0bI5nEyucx02nsbLa4nZ3PM/TRRxj5HFYuRz6RwLIs+RDrPaQawpXvURGYmTi9n76ObeYRritl2kLgWAZmPkXvp6/j2qb3wO1iZmPF+CnHMqSjdQGcOw5WPo1rG6RHe8mnouA4aMGgBN2u97F5MmErn8HMxujd+TqWncUVMmVCBCNefzbuyBBOZ4cEsiABsGPjdO3DjQ7LbWRxqFxvmTidHbjREdzySlxDple4ioqr6bjBcPGehffjevs6XfvAF8DV/bhGHn86yeKTTy6Og8cccwz79+9nw4YNRKPRIvh/8skn+fGPf4zjOBimSXd3N9XV1cWJEKFqOK50E5d+DmEMG1wU9nd2YtgCw3RQ/WF8oQq0wBiwtiyLzs5OorEYubyBq/gwhU1emFhYmIrDSKyNVGaIvJnCsvI4rleP6b1Tx7VJGzEMS/oNOI6N69o4Xt1mIWIKHBxPZmrZGTo7W4jG95I3kqxffyH5fIJotJ0X1/+UaLSddHoYBwfXzaFpgvb2dmxdJ6EosrZYCCxgSAg6hMD0fgaFwBECWwjyioKiaTjedZcSgneEkPsrcqLK8n63vP1zQpD39i+UHDhCoKkqJpATghYh6A5WcMopj1EWmobPrWTpSQ8SbU+w/qfrie6JI3Jh/Mo43LwGjkJV1cFEIjUoBCkxj2DwvQTC8oGtYsRtAloNs2acz9JvPIhwPJbdFSiKj/h+6ZQdbY8WMCn33ncfy5YuAwSO6WDYBvu799OyuYVTv30ql224jLZoG4PpAe695x7mf20u3zvjTHZu/5iskcG0DbJmlng+TiKfAMemY3QPl2+4jEQ+TsbMkMzHcbMjKLYJroXAJWkkSBgJWjpbaBvdQ2vnOySNBBkjjevalNommZE2EtkRdNf0RC0uwnURbt67X7oIb0JFVRxKqx3U0VY0NUNpbQjFzSNygwg7J7d1TITQUISNoiqoTtLrx/vOuzbCdRAfLkdJt1M6PoRiJ1GjW1FUF0WAImyE4ve29yaUhEAVCpo3ES0c25tgoniPVOwcWqKLqmAl9SV1CFceL6IFqQyU01jWQEDRURWFymAFDSX1VAbKUYVCSA9x6LhDePz0R1C9CSHhugjbkOfs2IjcqJQ6Zwbl98q1JUg2PU8e15ERo/EOCcDtvPdqSgVgtF26bRck5W8ul07eBVWhbY5FmuJ6Ckh7DIjbOc/Xpg/yccjHMVHIOa43oSa/J65QMP2VZI6/B8ulOBHhKDqK6sN2HWLZBPsTCeLTv0fmhAfII+iOD7G9d48MYHAcPu7ZRVd8kLzjkDJyDKWipIwsVqiGvG0zmkliCE1OCLounw53ka1rJqUE+WCwm32pNOb/Ukr5z9H+b9Vcf9W+av9vNQeH1ZslgL793duZUz+nGNE1lB7i+ubrOXvG2ZT5y4r5g9ctvA5NaMV11y28jopABWWBMrYPbMewDbb3b8fFLUZxFbYpD5QX/w77wqzevJqz/uMsutMj0rHTzsPQO5Jx1sslWPaVfRk4q/5/yLaeA7gQmXwAOL8OahfL/Qr96F4/tSeNAeqRbQfUc68ANLld1RxsWz7QTphQQiQyJnuzbYdUyiCRMDBNB00TNDc3UVsbwbBcDMNBVaVJl67Lh7hQSCcc1g9gNCAY1McU5AcIWYQ385vNSrMuISCXsxgeThMu89xWkZLnI+oO4sn3XmRm3VSGUlFs16YnNoRpm+C6VARLvVlN4T2yyb79qjSPMRzLy2mu5s7bbqd7XycP3HkvmlCxLIvRRJy333mbB594lOuuvpZPd3xSlDr/669XsvXjd3nmj7fyr9ffgGmXQ+1dCDcD/ctBCSOUkPzfDF6PcBIIJy3/rvwZQgSQj3BCmn0p5bIeWZ+MUCKy/vnA2WZccA2vnwxy9ttFWP3gZqDyCoTZjemo7ItGGUqnCek69yxdiuO6bOnuJqTrNDc1MbG8nHuWLsVF3pS29fQwlE6jKgqJvMHSQxfxrydegOXA6s0tvLBrF/2pFEFdpyoUon10lOUvv0xA0xgfidBUXs7s8eOJZgueBPKcr37lFTqiUcpUFZFKydrgDz+UDCvAzTdLJ2wb0Jpl1vKWLdKQK5+XbGwkIuXNfr/ct69PZj/398u858KsTFsb/PznMDAg85+7uyXT2NcHX/861NWNXWThMMbvHyGWDXjXL0ydCn6/4Ljj5LNxSYlA1+X1eGAzjMJzsaCxUZ7GRRcJBgaKVzCuKygpEdxzDziO4OOPpYH3xRfLU+vpgVmzYNo0+fY0rXAcCRKxHckYOw60dcrPq7REyql375eya58mJcalXm2z7cj3a9vgscr4fXK9ZXvrC14LQl5W8ZTsE6QztyLGjpc3sCxLmjJalmSlhODIq68mWF3tMb1IyXUoxFH/+q/yu+sBbtdxsLNZrGwWLRAoSq21YBBF08iNjvLBrbdiplKY6TSu4zBu1ixUn4+P1q4Fx8HO58mNjmKm0ziW5YFxWypocknqDjseRffjuo5nvOciNB+KqjH+kEUIoZCJ9mLm05jZDOOmHIMvWIKi+eQ+jj0mJUAyrYHScfiCJfIj8sorKHwLvQdn1RfEzKZJDu1DUTRURUfzhcB1cG3J5FNZhVLfJEE84OZz2BufR0QiuIm4ZOxjo7iZtGRzcRHhUvnZu+AGQ6CoEowbeUgnJYg2DNxUUrL+QiB8fpSJU8C25Xa6jl1ZRTQeZ8OGDRiGwf33389pp53G0qVLKS8vJxqN8uSTTxZNt1566SWSySRNTU1UVlZiGAafffYZsVgMx3GKP6ZpFuXO4XAYn8+Hqqp0dXWRz+e9TG2ZfLBx40bC4TCJRIJcLoeDRTTWwYaNl5M3kriuTTLZRyRSi66HUFUfL7/8c0ZGdsux2Uhimhl0PcSmTcuJxToAGB1to7t7C9HoXtLpIYRQiMX2smHDJcRie3Ech/HjZ+HzRdD1IIsX346i6GzZcheNjQsJh6uJRGqIRttZv/5CTLOfS352BbYHdC1gN3ChEKSRWc0FBjsEJIE+pFFXQgjyyDzmEqAO2AakvH0KUwXC21/3+ssi85pbkZnPLpAVghFgFtCQszCjBtE9cdZf+BKxthjJ7iRNxzZRUl+Cz7sfmxmT7EgWHEW6iFuQ6EwQrg6z8fKNGCkDX8SH5tOw87Y04xJgpAwsw8K1XComVbB47WL0kI6ZMblxxY20t7dz44ob6WrtAkANq9z3yH0cf9LxNNY18sCpD9BQ2sD9t93Pjs93sOX9LZxz7jl86/Rv0dreyv74fn6+6ef0p/rRFA3btQnrYe475T4ivkjxp8RXgumYDKQGpKO2HibiizA+PJ7VLas5vOZwBtODfNz/sUyywGFixUTqI9USAqXaYehdj131SzDnHPipg9DDULMIoWgIx5JSZjtHsaROKFI2nB8G10HoJWODvZWB9y+XZMYRN0OgDuHaoJdC9TzPo8QeM371QKZw7bHaXRdEgQFXdLnANsZY3bKJYyXQAm/iS6qAhAs4JiLWjrDyXt8OuqLiUzV8QpGAvJBLXWiO6d0DdAiPl0ZisQ4ZReVY8v1G90jgO+5wWW9sZWVN82sXQ6pTLtcD0qH71QtlXfLCm2VddGGCVvX8eWzDO3lHKgj+frUE7IpPRpy2/hoy/aBHMIVGzjLoHB3AtE2pKnRdMkYWy7FJG9miGrKw3LAM/Jqf0Wwcv+YjbxnkTIOB1AjTxjXSGZWRoTNqpxLUfShCMJyK8siW5whoPgzbJJ1PUxYswXZsLNsmY+aYWTudvsQwt7z+BBXBEvozCYz/a6Lq/7Lt/5Fb+H92+0oW/t+vGZbBFyNfsGrzKm5YdANTK6aiCAXbsclaWaK5KBWBCkK+EK7jYnlM4rvd7zJr/CxCeghFUVBQMGwDFxef6sNyLDRFKw4cilBQFIV4ToowwnoYVVFpj7azavMqVjavZFp5E0FVkwOz8MyHXBuUgDcbaIwtT7ZLgD3zBllfXRCrJfeMLQ9Plm/Sk+LISAOvz9Reb7tfyu0KA30xFsshldexLKcILhRFSmMty/0ffs9mTWzbJRjUikDZNG2PmXb59NNBFixolB4YtsvwcIZs1qShoZR02iwCb8tyvtSH48j+e3uTTJhQgup3i5+pEMIDzm5xIFYVFdtjlzNmrhg9JTzZZ0E6Zdo2uiflc1yXe+68m2f/4z9Yv3EDpWWlCAS142rYsm0rk6dOxnYcfvSDH/KNxSfyg3PPkTJ4zUdIs1DtQQ454iSeumsaR3/9VulODbI22DVBBJFRaS4M/AKqrgD9YHCzYMdBraLoigmQaQW9Xpp3FYWDBcGgKl+dA0ISBpdD1bXS/AuImz4G02kypsnqlhau9yKjkvk8QV0vgumJZWXUl5YykE5T6vOxfWCABY2N8hbpugyk07SNjjKhpITeZJL60tKi83V3IkFtJEJdiaxXTBoGteEwWcuiN5lkTWsrK5qbsRyHNa2tPH3SSSi9vbB3rwTGqRSUlUlH67fflo7Wrgs/+xncc4/8PDRNIllVlYz0NdfArbfKv4NBub6tDW65RUZUhUJSBn322fDII/JYa9fCffeNzd4MDkqgDqTVEuJWhL4+CZAbGyUOnzdvTP4tyyAkxv/4Y7lOXpcUlRxCSA+ypiaJax1HmnOXlUn/sWxWAmjTlAD7vvvgrrvk27A97JZKyX5qx9kobftk3bLfB+1dEvRWloJP/5JE+0vO3IW6Zcf1JPBaURb4P22F268ADAmci33FktKhe/pEjHwOoSikurrIDA5Sccghks1FAlE7m5XsnW2jh0LFGmbXskBRsHO54vaObeOappR7qyp2JkPnpk00LV0qtwfMTIZAVRVWOo0WiWBnMpjpNIGqKjIDA+x86CGOuv5f8ZWXYWbiEtj6/GSi/Wj+MLpfRnf1ffZWsU5Y8wex8jlCVfXgWNhGHtUfKtZc20YG1R/2/pZlLV+SiguBa5ky3smVElDXsRCqju0ZdmlCl2x0Ii4BdS4LPk8+bVs4r76EMm8Rbtc+3J4u1FPOlJ+h7X32+TyEI/Kzi43ibH5d1iVrOuTyUvafSkIoIgF5KoEoLcfZshllyWkyY9sbt12hYLgu69evp7GxkQ0bNvDyyy/zwgsvoKoqfr+f/v5+LrnkEkpLS3n44YcxDAOfz0dJSQmO47B06VICgQAXXHABy5Ytk7LwgvTZHTP3cl23WF9cWG4YBgMDA8RiMQ477LAD9suxfv2FNDYupLFxIa2ta1i0aCWhUDWbNi2nufl6HMemtXUNp532CCMje9iy5U5OPPF3OI7F4OCnNDTMpafnPRobF3jfTykpXb/+wi/VKOt6SLLJqUECgTKUQmylx3YLodLb+x4jI7s57KjzMVU/ugesC7XCFlCw/ixKwZHRUdcB1yDrgDsYc7ieyljOs0CCbBcoRYJpn9enyxhg70eC8jwQAyYYFqph41ou6eE0Ha91MPn4yZTUlxDdGyXZk6SpuQnHcuje0k3JhBIqplbgj/gxMgZWxmLDZRvYuW4n18WuI7YvRrI3Se3sWvSQ5wmiCaysRS6aw8yYtKxuYdHKRTz+wuP86Q9/YsMLGxhXO05O3iiCrJZl1mGzWHvXWsKHhmksbSSkh4peMmE9zGB6kBPnnMjjf3icCQdPKLpW37v0XnyKj6yV5YO+D5jrRXwVriXvv4JAcOWmK1k+bzl1JXX0JfuoCdeQMlJUBCqI5qKUB8rRFI1yVZY8ke2FQA0IXf53HAOyA5DphFAjZLok+SA0GN4CoXrPj6bw6TtjwNy1vDIHTa6zkvK/mO2D0ATpQZPaJ4FqoFquszJS6aeXQGD8AYavvrFaggLQPzDKqjC+FCY5i9vkJFD1lXr7u/LZbfAjz4l7ivy7EHdl5bz66XpJuhTk34WMaNuQ78vOy+WKJpnq8AS5X9lUGU2lebGn6X7Yt0kmqxy7FrQgvObVJZ+5HmqOkuea7pdsdN1c+dllBuT5OQak+uV5fHinNCdL98K+V+R7OOEeUq5K3jII6gFs1yGaiZPNG9SVj/PKJ+SzWzKfIewLEvZJQ7cCm205Dre+/gTLj/0BIV+gGB3q4LKjdze14XHUlY/DsE0My5TjQD5DTaSSjJlDEQKf5vPK1QSWY9MTH+TpD1/m6q+fS1D3o3smrf8V2/8rUVz/2e0rcP3fsxVMzfyaH5/q+z++/H93rIJJhSpUdFX/X+73PzQr690I/GMDI3iO3nm5/H/X1/+F7VKpfBHwSlmsrJG2LBddl7Wm6bRBIDA2EOm6QjJpoKqiyFr7fEqxpjqRMMhkDGpqIkX5dzyeZ2AgRUNDGUHPXKRg2vWLX2ziyivn09OTYH5zPabIE9IDOLjgTVrYXka57TE5XwzuY3ykkvJQKbsH93HEhIPQvMiIQr20adsIIeiJDXLpyisZfL+dtU/ex7T6yTSU15C3DC675FKOOfprXHTxRQyPjNA8dwH/9qc/ctSRR7J//36mTZ2KT3X4YNs7LD3127TvfI6KkjwEv1Z8CEeJAK4HhgtVex5yG1wBtfeAm5cgW6thzAqmAKa9OW1zPwi/3MZ1PJD+c9DqoK1WmnTVPgxA2grgAD3JJK+0t/PpwAB3LFkiawQLNdGAKgRJw+CaV1/lynnzmF5ZieO6vNvdTW04zCTPhEsIgQrkbJv98ThD6TRzGxrQvJtdoV+gyJC3jY7yjSlTmODFV80oKUGxbYTjGRRls5KJVhSJRD/5RJp0FZphSDSaSsl4Kb8fnnkGzjpLghFVlT+XXALz58N3viO3aW2VKLmxUUrBFy6UrHUgICnjQv2xrpMwg+RcP9GoXGUYEgR7JcXFEuZcDrZuleB50iS53isHBqCrS/7Mni33B88U2/VISFfus22bnFcIh2X/HR2SqJ87V566KhyCAQeRMySD7NP5UssZ0DMIU737quPCB59CeRlMbzqQrPlyMyxZT60qnprYGZs9KADrvCFNxyo95tR7MLQsE8e2Gf7oI8bNno1QFMxUih333MMRy5ejBQIIVcVMp8FxMNNp9JISFFUlOzjIzkce4dCf/IRIQ4OU/3kgWvHYT8c0UQMBrGxW1kkrsqQj+sUXVM2cier34xgGQtexs1k6X36Z2J49fO2GFaRH+whV1HrPp0ICXd0nmczeL/CHygiW1ZKJ9ROqrMfMJhhuf4+6GSeM5Yh7ABoho6dkbffYumK2tXeMA+uxCwDcNg10oePaBQAuGX3iUWneteB4Caq79qEcdxIEgpBJSQC95AxIJ3GTCUTtBISqfcmMS112lvw/CQWMvOzXNBChcFHOXnAQH6s/l14Qo7EYDz74IH/729/YsGEDjuPQ2trKggULqKio4NBDD+Xuu+/m5JNPLoLkVCpFeXk55557LqFQiFtvvZWKigoMw0DTtC/FSJWVlRVBUgFUFwC2z+fDsix6enqIRCKUlJTg8ylEo21oWoDR0TbC4WrS6SEqKqby8MNH8p3vPEtT00IMI43PF/kfgHhz80oqKqbiOAU3X3mRZjIjmGaalpbVLFp0A6WljVhWFp+vhDHpuMxrjkbbaGlZTXPzCioqpmEpCu1agDVCsBbwbENRAMN73QYcgXS7XgP8DgmMPwXm8T9GTy33tgsCW4DZSMY7A+wA5nhnX6gOLrTCHaIynSfaFqVldYs006oOs+nKTSy6YRFlTWXe5eCNt14Gc+P8RvylfvLJPI7lEO+M07K6hWUPL2P9hetZfPtiAmUBYntjRRMwPazjL/Wz8fKN7Fy3k45ZHexgBxtf2EhYC5Psk1nRzSubeb/nfX7605+y6I5FXL3waobSQzQ3NbNn3x6aGprwa34+3PYhZ33rLHZ8tgNDM4jn4kyqmITqmWoatoFAoCkaW3u2Mqd+DrqiYzomW7q3MKFkApZjsaZ1DQ8vexjXdWV9tmth2Aaal3fsU3yEFBdhJiVgVGW0IPkB6UWjaF5MlE6x1tf1QO/wVgmwd66Co+6C/CDsuguOvHMMDH90JUy/HIK15EyV7/3wx3z2RRvBYICamhoeuPcOpk2qZe6xp5A3THAsLNtl5+e72P7Bexwx6wjO/PZ32NvRURxnd+z4hOf/8h+cfsYZcrwtZEuXTpTMb2HsPvC1QKYoqpR2lzRI0F6oExeMRWAdGKMVqQfVeya0s944n5JGuIWY16HtUOtNOqQ6pcP2nBVy/3CtBN++Uu9zcyR4DtdJ8C9UyI1CLgYf3AbH3+UZzK6WZrGRWgnKXUdKxt++Br52nYy5cgwyipxsxXUxHfkcJoCcZXDn35/iyuPOwQXS+QxV4XIMyygC7UJ7s+09FkyaRVmwBE3xvDw8Q1ZFUbBsi5397RxcMwm/5mN7725qI1WML6mkLznCYGq0aL5q2DJ3HNclb5uUB0u+Atf/X7evwPVX7f+fWjqd98zMlCKDDDA0lCIY9NHbm6S/P0VDQ2nRzXrq1IoiWB4ZyTJ/foMn7RZFCXgyaeA4LsmkQVmZn1BojPUoGJ4VgLdtu2SzJqGQD6HbIOSDq+I94Lquy21v/oHLm79LQJc1T/uj/fzh/fVcd8J5DKfihHx+KkKlHgCUAFsgQWNnVxeHTjuISZMnEY5EcF2HQCDIXX9+hBq1lJ9dcjkdHe0oQuEnF17A2ed+H8WG733zLOLxOD5dIxwK8Ntf/ZQTDn9NulTr08Bsg5FboOZOGTs1cgtU3QD6JO/T9UC2a8v1Wj1jYNqW6zKtoFeDWgeKd1N0Dflj9YPVC6FmuV3RRVsjZWkkDQNVCHTPkXpvNEpA1xkXCgEwmE4zPhxGCEHb6Ch3btnCvUuXMphOE9Z1/JpGbzLJ6pYWrl2wgAklJaiKgk9VDzBD80Rx3u8u0JtMMqGkhLxlsbWnh6ayMqaUlxOyLERbG6xeDb/85RhKVdUvo1VFkWz0rbdKNrq6Gq69Vhp8hUISDA0MyLrtKVMkMHccST2vWQMrV0p9dyIh5ebhsDxGOv1lhjubJT15Bm0dKt3dEovX1cnoYUWRp3LllfCLX8gyZ59XytzTA/X18j/oeTIVCYh4fOy7U2CuIxF5Kgcy2YOD0muswHJfdZVM3jpihpdxDV/OhC5IuVXvxEx7jGX26RKIwxhQVpQx5vpLDLU5BtgP7LPwQFdw9J7aKHOrvWNYqsBIpTCTSfSwZ/QihGSkC2/ecbAyGT6+4w4OPvdcSidNYvDDD6mYPh2haWih0JecuG3DQNF1HA+Q6eEwZiqFUJTito5loeh6MVv649tu4+DzzqNsymRcbITm80wgvDfpGexkY30Ey+s8BtqROFlR6NnxCqGKCZTVHeQx7CqKWniwHQPZBXBcULu4QkhGCvFllttb7rouKqqMiErEJHOtaQjDwPl8B1R48nDbRvgkELDX/wfurk9Rf34D5LL/wEiXSVC+8OsQKZGzPj5fkd0GCexdITxgHYColx992nfkeaSS3P7XF3jmmWdYv349JSUlbNq0iV27dvGd73yH9vZ2LrzwQu69916WLFlSvNQcx0HTNH7yk59w6KGH8vOf/7wIlHO5HIFAgHg8TjqdpqGhgXg8Xsx8LjRd14nH4yQSiWJutBzfbRzHQFF8uK5JOj2EaeYoK2skkxkiEKigp2crZWUTqaiY7DHjNun0EI8+egxnnvlHysoa2bx5Fc3NK4pGX0uW3CGjLF0HRdEYHe2gvLzJu0wVurpaiURqCYdrUJSCPRk4joUdrORyzc+VyFzlAgCeAKxFguQSb0TeinTDLmwXRHKfHcioqEI2s41nUua95rx9JyCZbdtbZwPeXFzxKygALZ6jq7WL6sOqpZO1C3dPupuLd1yMmTVJdCWon1OPFtBwLAfFp6DpGqpPJZ/I89KlL1E/p55Z580CpHS8wFivv3D9mNv1w8tID6axshbPr3yei9dfzORJkykpKQEX/H4/b258k3wyz0XXX4RerbP8+uUMpYeYUz+HoBZk2dJlDAwMYLgGVaVV/PqmX9N8XHMxdUUTGoZjMJIZIWNmWNWyihXNK6gOVZM201QEKtjas5WGkgZCvhDV4WpwpRmpEIKUkeLTwU+Z1zAPx5tED2gBwgoIMy59OnKDUDFbMsiB8RIAKqpnLuYBa8/8DteVJrBvnw4nfySjTw+9TprEWklp/upaslwuMpWcUsUbb7zJ0pOOR6h+7rv/YZkm8swvofJo2e8Hl/PsrsO56Y5/55MPtsi4qrLJ8r/pOrz//vucvOx0erv24yMvQbCiU7zfu95MbMHBW9HHxiPHGCNPDgTeRkI6Wlt5j4Ge4uVIe0kaijeuWxk5LlpZyUaH6yT4VlRZH+0YUgZecMw++irIjUB9MzgWuUyK7513EZ99uoNgSQU11eN4YM1KpjWNZ+7is8gP7YbKQ7CSfezcH2f7u69xxJFz2NO2h0uvWM7g0AhWZpRfrbiO755+AiS7yDR8g7SRZTgVYzgTY2btVJL5NOl8jo96v2DJwfMZTEYZzsSYNeEgVKFgOhYKAtOxSOTSlAbCOK5LKp8h4g+RM/NE/GH8mkxKKZAtALuG9jOjdirgoqsa8UyCkkBJcWLwtjf/wDlHL6WxvJabX32UlYvP/xKQ/6/WvgLXX7Wv2j95S6XyJJOSmS6AXQBNU8hkpAw8FNJpbe3iW99ax+mnH8zDDy+jry9Fe/soRx5ZRyikSedvn4plOfh8Cum0SVdXgjVrWlm5UsZLFeq7Qd5Ttm3rYcGCRgAMw8YwbLJ5g9oJYdJGlqFUlCffe5Gfzj2TsmAEXdX4tL+d2kgVfl0nZ5nUllQRyybImQZPvvci/3rCj4uycYC8ZbD2zT9w/txvEtR95E2T8aVVjGbiVIcriuz42jf/wDUnnEdXtJ9nt7/G1V8/t8iAB1UHgQn9F0HqBZjwV+lw7ebB7AZ9ImTfl9nMvoJ8H8YewWy5rfBTfCSzhsBNgTpeMt6aF1MFSM7Ek8B9yX9Wl/2gkrKDxPN5QBqalfn9qIpCQFUxHQfDtrnm1Ve5esECehIJGkpLZS6zz8fmzk7mNzQghKCls5PqcJihdJqFTU1kTRO/lwddYKtThkEin2d8OIymKNieVPTKTZu45JhjGEqnOaqujlrHQVx2mWSZf/hD+fDwzjvQ0CBBspRByLeYTsP06VLefdNN8u+JE+GDD2SNtaaNgUjblsD6178ei6R6+GG47DKJjqdNk9v19MArr0j6+I474IorSDz8NO+0KsybJ08nm4UdO8YOkUhI1joUksC5rAxKSsbMp9NpidVvvlkqzQunVJgbuPZaOPhg2LVL4v7rr5dA/ZprpFq9cK3398PvfgfPPGUjsjkJgg+UfP9jrNU/xlUdeCv1mNYiM51IQyQo/zYtWacNYxFXICXgfm9W4b1P4ZgZsK9XHmPmNMygr+jqXXhN9fSw88EHOfQnPyFYXU10zx7GHX54EXQqqoprWVi5HPG2NqoOP7zIShcl+kJgZ7NFkO66Lq4pDchc25YGZaoq2VnXxcrlUH0+tKCfTKyXUEX9GFl/ICj2/na9mY/C345lYFsGmj9c/IxE4XwOANICV85juS59O99g3NSvoYfKJVB3HMx8iqG2bVRPm4MvVA64KJaDm04hwlL/7+LiDvQhxtchfAGvb6SU1XXkcRwHtzABIARubxfCH0RUjfPm0fJgmYiQZ5KWSkiG2ptwkHmvAQ8qusVJAtd16Onqpumgg5g0aRIlJSVFNrmlpQXXdTn33HOZOnUqv/rVr4jH47S0tNDc3MyLL77ITTfdVIybCofD/OEPf6CpqYn6+npyuRw+nw9dl47vnZ2d1NTU4PP5SKfT+Hw+/J5DdaFOW1VVbNtGVW3S6UF8vjD5fBy/vxTDyBGJjC+C7VwuTiBQTig0jgMl3JnMCMFgGd3dWwmHawgEygkGK7GsHJnMCIlEF/X1c9G0IKlUPz5fiHw+js9Xgq6HsKycF1WV8o5dhqYFMBSNjC/CoBCsBq4FxgPbgZlIOfdeJFu9EikDb0dKuRuAu4A7vGtOBdqAW71ta70ROgqUe1/PA0fuLJLR7kTWcC/wRvJAxsCI58nH8/hKfAhF0PdhH00Lm+h8p5NwTZhAeYBARYCerT2UNZVRdXAVmk/DMixGvhhh86rNLLlnCb6gT7LVqzez5K4lpAfStNwiGfFEd4LSxlIqplZgJAxc2+WNX77BkjuXgCtB+eCngzTOb8TyW5iOCQI0IWuo5Th/JTefcHOxTCCkh4rlcACmbRLPx6kKVuHikjEzhH1hVCHZ7LyVx7ANclaOtJVm7TtrWbtYDo6O61DuL/eM56QnQWFivEQF1RXyfih0WSa363Y4+j5kobIHpoUiJ8YKTK9ry+/J8FaoOEICTCEkSC44XGcHwE5CyGOVUx2Q6YWK2bz/4XbO+uFF7NuzUyr/hA/MGEuXncmS07/P8ov/xQO4wpNml3LJZZfh9/u56/bbihOAkrk+gGV2DMjH5O9FBrphDGT/z6TfiuaNpe6YfLwYseWTbLXmh1ibjCBddKvcT4/IzwHkcQu+EnrYq1n32GpfKblchjc2vcjS445BhGu47+pTefYThbfWPy3l5H+/Br5+D88+9zw33XyrnFxwbRYeexz/Mj/IBaueYyiW4WsLv07rn2+h/oiTSKkhhlMxVEWhPFRG3jLwqbon4QZd1dneu5uKYAl/+vBlrjzuHEJ6wJOGK6SNHGGfn1Q+S8bMUROplM903vhv2GbR+yHiC2K5NqZt4bguOTNPeaiUQoqBEDIJ4ba3/p1rvn4u/ckRmipq8Wv/FxWk/wntK3D9Vfuq/ZO3eDwHwN69MW65pYXrr5fMtBDQ0RFj1arNXHvtAiZMKOHDD/toaipj+vRKotEcmqbg86lFebeqCrZu7aGuroTJk8u54IIXWbduJ7t3X04mI3OcC32lUgY1NWFc1yWdNkmlDMaPlyyrHnQ9CdAYC+26Lp/2t3FwzWRS+TSVoTJMW8pP/arOhz1fMHVcI2FfkJ7YIP/+wUtcedw5BHU/ndF+wrqf6pJKMqZ0520b7uTwOlm/XDiOaVt82t/G7AkHS6LOkyEFVBkvg9kOIghqBdhRUMtBBCQ4VsJg7pXZzTVrZQ19phX0JvnjmmMZzoCUkWdALZFZzmYXBOd6ALxwM/WkkSIg9xe6XCZ8JEz54FtgjxtKS5lYVkZ7NMqa1laub27m7f37eaeri1/Mm8e927Zxn2du5nqfbeFhaSSToSocRhcC03UZSqfJmiZdiQRH1dUVme7qcBhFCLKmie3K/9F1r73GXUuWENQ0QqaJsKwv15rZNoyOSna5t3cMgU6dChdcADfcICnl/fsl43399RJk790ri6PnzoVgkFwqxfd+8hM+a2khWFtLTX09D1x5JdOmT8ft6OCmF17gT089hX/8eMbV1fHm88+DYZCJjOOXN97MX/7yNIGAn+rqcbzwwpsMD0sluq5LkL1799jhAgFJIBZwaeHVccbKuQ+cG3j4YalOL+D+G2+EV1+F5mbZ55w5snx8716YcYiNsmcfNNRCz8BYrbWuecDYY51zhmSYpzSMMdxOwZzHu4QcV7qs+30ykqy9WwJ1vy63tT1pfSoj36hpSuOzREq+Og50dGNPqcfxWOR/lHSvP+005v72t1QfeaS8ah2H/MgI/qoq7HxeMt0lJeihEMMffUTZ9OnoJSXY+TwjO3YQqq0l099PqK6OSEODdAX3rg0rk8FMJgmMG4edzxfro2O7dlEzdw5mLo6ZTROqnCDBqmMjVB1ch0y0D80fxhcul27hINcBCOkyPtz+HnUzv1F82BaKyoEAHddBKKr3EObiCmVMdu26xPp3UV578Nhkgi2/l2Pg+YDtHRvSKVlT7ZWnyCgsIdlqr05bxnQ5xVkaVygQG8FNJlAaJxdBubNpPcrxJyJ0n4w9cxxIxKTMfMHxUFIKhoEZKSWfzyOEQNPGZI4FJtm27SL4NU2TwcFBmpqaitFUCxYsoKSkBMMwyOVyZDIZGhvlhGc6nSbkqWD+sea68GzX3d3N+PHji8dWFOnmPTKym9bWNSxYcC1VVYdgGNKISdfD2HYOTQsW+5KXtoWi+DyBhOnVWctx37KyGEaaXC5KOj1IQ8NcVDVIPh/DMFKUlNTjekDQsrJoWoB0egCfrwS/v5y8L0haKCxnTNr9EBLw9iBl3wJ4CngXCaYvA64Cbge+DnyXsZrsYSQo/ytSDu5H1lknGTMyKxib6cip0iGkHL0PuBN4LJlnpG0Ef8RPuDqMUIWXBOUiNCEtNzw5eN1RdeRiOSK1EfwlclLDMiysrEV6KE24Olxkq2f9eBZL71mKax9Qy/11WcvtWi5d73YRHh+mrKmMnq09lDaUUtpYipW1UMYpJI0kiXyCmnANOUs+G/Ql+wj55HVQF6krRm8VfGbcA2b+BlODVIWqisvyVp6QHsJ2bXyKj5ydI2flGEwNcvuW23no1IcwvBKAvJUnoAUYSA8wPjyeMk0HMyHVcGoYnBx0/RXqz5DAUuiQG4LAOO97r0gjr9ygNCMrmJal2ovAGdUnZdcoMNgC5YdI9vujq+Hoe8B1+NE5Z1M5ro6777wNoh9C1Vy6egY4+PBj6NzbwbiqijEgD2QzWeoaGtn89zc5fObhXi60X9ZAj+6CmlnyuHLQkVdb3JN6B8fJfOdYO2RH5baKLhlq1Sel17je5IEiDcQK+5VNlcdwLWlGVn8sTPvmWN6zHqHo6eO68NaVcOTPoHwaclJCk327lidRN0EovP+XWzjrqgfZt79brlc0MFIsPfMHLFl8Ast//jMQCpGySnY//ysmzD4F3lvD6fcOcPwJi/nFjB3kT3yEPLLu2q/qOLjoiobl2Oiq5hEXCqPpGGF/CJ+qkzaytA13csSEg+RYIgSWbWM5FrrmgwP8dnBdsmaeoO4nZxmk8xkqQ2VoqioTEA6oncpaeQKaD4FAETIFRghByHdAqeV/sfZ/LIrrq/ZV+6r95zSfT7Kst9zSwrp1O7nllhYsy8G2XVat2sy6dTtZs6aVWCxHc3MTBx88jkBAp6zMTyCgIYR0+f75z1+mszPOwoWNNDaWIgQ89NCp9PVdRW1thIkTy7j99sUMD2cIBnXq6qRYTlUVQiGd3/72bfbvj2NaFt3xQVa/9jipfFY+IDoOOcvgsPFTSefTjAuVA9JJPJ5NYrkO4yNV3Pn3pxhIjDK+tJKVJ55PUPfjui6TKuuoilRgOQ73vP00I5k4h42fSk98qHicwqB/UPVEbNchb5l81LOLntggA6kULpYE1m4GBi4DNw12DMwOGPy5fDUHYPy9YyZnWq0ExuZ+uY9eCzjSnMzuA228BNMiCME5kN0KZifFoVMEIPspRSM68I65F00R7I3F2NrTw5z6esK6jqIoRHw+rl2wgKCm8d0ZM7hryRKaysq4d+lSspbFcDqN38sJzts23fE4laEQQ+k07dEo73R2UhEIMLG8nDn19ahC0JtMkjZNLly/nt0jIzJ6y3Up9ftZu3gxmqKQLNhrq+rYa8ENvLZWgusJE+DYY6X823VlFFWTlHby+99LGrixUQLBoSEpF4/FJL2cyXDhT37Crv372b51K2ecfDIX/O530NDAPR99xI716/k0leKTu+/m6ZtugksvhaEh7rv/Pj766BOOPfZT3nvvEx599Gk0bazrri55KiUlEgRv3SrrpLdskSx3LiffRl+f/L2jQ84RjB8PGzZIjzZFkeZlP/0pPPSQfJvnnTf2Fi6/XO5XWwvDowK3qU4C3SkNUBaRDHLelJLtgqt3wCdrrEEu371fSsIPlIErQu4f8IxvonHJgBdqMxASmJdFoHdQAnmB/LvQpjdJl3Dw4rDAsSyyw8O4rsuyF16g+qijwDMxy/T1seO++7BzOXKjo6S6uiSDDVTMmIEWDpPq6uLDW2+l4uCDCVRWMm7WLLRgkFRXF9tuvJF0Tw94MvFAZSVCVcnFYozu3o0eiRCsqSE3NISi6IQqJ2Bm4mSifcU66b6db6L5g6iaTzITmg9F1T0GW7IVw+3vESyvxcwmyET7pTITZDyXN7EkvO+UQDKwOI50Rs/l+Pa3v8OCb3ybo44+hiUnn0Lb7j0AzF+0iCPnzOHIufM44qijUIJBduzYjhAKmVyOH5x3HtNnzODgmTP5j6ef9or6fYhwBHvjc7hGDjcWlTXXo8MyvzpS4gFrF4SXv7z4FEilsF/6C8RGZZbz5tdxd36M0/oW5HKSQQcymQybNm0i4cWabdy4EcMwME0TTdPw+SRDEwgEaGxsxHVdNm/ezM6dO2ltbSWXyxEOh8lkMowfP57R0VHWr1+PaZpkMhni8Tgvv/wy0WgU27aJxWKsX7+eWCxWBOLRaJSXXnoJw7BwXYdUqp/5868inR4EHNLpATZtWs7o6B4UxYdhpEilesnnExhGikxmBHA8d++LiEb3Ytt5HMdE0wJEIrWUlU2kpGQCGzZcRizWjhCCt976FdFoO11drViWdB1XFB9+fzlCKBhGAtvI4CAZ67OBXyLBbzXStXvUuwbOAx5EAuIHkWz0CuD7SMC8B7gQWTf9V2CR9xUqgO6ChDzi/V74qqpIqXkpUn5+FXISqayhjNC4EAgJpB1Tmpc5hmTkFE1h/BHjyY5mCVWHwJWgGkDzaWhBjWB5ECtvseDaBRx+zuEsuXMJsX0xOt/pJFge5IhzjiDeGcdIGqQGUzQ1N1E5tZJcLMf4WeMJ14RRNRUjJY1ae5O93NpyKwJBSA8R8UU4uOpgGkoaqIvUoQmtaEzm4GA5Fol8gkQ+geVYVIYqARjNjnpDlILt2rJW1jExbZMSXwnTqqZxz9J7MB2TbT3b2B/fzwd9H7Avvo9fvfUrslYWcBC5QRj9WH6Sih8mniPB83uXSom3FpLGrR9d4+FWRcq/1cAYc5vth+p5ksHOD8u4UjMBNQsl0FbD8LV7wc6z+saraetOcMstqySwrZgFI+/x5B/+yLIlxzOuetwBDLns/tm//IWDpk/n8MMOkcfUw2OmZpUHy+91rF0yxq4j9400SIBc0iD7idRLYO26Elj7Srx7vneQxD7IDo3tF5ngDfFCns/xd8FhP5Q11IHKsf1i7WPu4QtvhpJ6eW6ZIcCRYP3ViyDZKbd5/VLu/ttnnPHt73mTEHKSsKu3n7+/s5Ufnr5IAvl4B0cf/TX++G4c3ltDR+s6Wt99l32dndD1Nkr/VhQhCPuCshRQUYu10rYXLWg7NpXhcr4Y3CsJEF+QIyYcRG98mI96dpG3TFRFZTid4LevPILrunTHBvm4ZxeWYxP2BVEVlaFUVEZz2Sb7R/v5uGcXtiu9eRwkkM4YOWzXKTqV/7O3r8D1V+2r9l+8BYM6uq6wYkUzZ589gxUrFnnkjsv118tl1123kIqKAD6fimlaJBK5sSxr0yEQ0Lj66vk0NZUDEjDbtouqKmzf3k97+wiqqlBWFmDevAY0TXiKTWmg5vMp/P73pzBlSgV6UPDH9zew/NgfEPHLgVlRFEJ6AF3VCOgBLMfG8mROmjdY+3Wdt9rfJ6BraIpWBOh5yyiy4Jqicu0J59FYNh5dVfFrOsuP/QG6qrGjdzdpI0tQ95P3TDcOqm6iIlRKWSACaGNgOLgQRm4DtUzKwiuvArNXSsWxIdMi66X1RikVH1kFyXUwcis4CSktN4cpVuCp1TCwEgKzQG8AJwn9l0nAHpoDblb25yQkcDe7MB2XsBe5VYjKUoHqUIipFRUA+FWVoKbhU9WiO3hZMEihgjWsaTSWl+NTFGrCYaZUVNDc1ISLdFrf1tNDfyrFvIYGVre0sG7nTta0tpLI50nk8xi2TUjXuXzjRsLeAzyplESVQshi5BLPNdVxJH173nkSSCuKpHIvu0yi2LVrpXS8IJFrboYHHpDodGCAwGefccrUqYiLLoJslnmNjez76CPo6GDt/fdz6/PP49u9G+bOpfahhySNfOed3H3P7axdeyv33itZsVovB3rrVlnSHfAmrzMZqTCfNQtqamDRInnqkYj80T0yeN48KfEWQqrdW1sl6A4E4M47ZV8F8r65WbLcCxdKwt7ng19cpRDN+XFLwmMGZKURyVLrmpSJFxRfLpL57+qX8u2ufrl8bFJ+rKkKzD1Csth7OqXUUVMlIHeBaY0SjBdivnJj1LxQFFLd3Yx++imKpqGHw/jLyoo10Y5h4Jgmrm2z8+GH6Xz5ZcxUimx/P4HKSt5ftYp0dzeGVxv/+eOPc/C556L4fIx+9hmZwUH8FRXFfXc+/HDRGC2fSOAYBpHaWqpnzcL19leDQRzHwsqnMXNpAqXVWEYO17Gomnw0eqAE9YCaOdd1cC1DAmnXZcLhJ1LeMAMzmyFQKms8BaBoPi8Sa6xJpbWC63gybOCCC85n56ef8MG2Vo792nQuvOhCBPDuC3/j/V9fx4ctb/PrFdczc8YMDj/kYFzb5PaHH8HvD/DFnb9j41N/4PLr/pWR/fsRkVLwBxBNU+QDs6YhGifhbNksLyRFxY2NyBrt2Ij8BysKbiYlwfQ7bwEC9ZRvofzgApSTTkeUlGJ7byISiXDiiSeSSEh2uL6+nmQySV9fH4ZhMDIyQnd3N9FotAiam5ubmTFjBgsXLiTiOfQ1NjZiGAatra3s3LmTlpYWQqEQmqbR2NhIKpVCUZQiMC/Iz/P5fHGfgYEBXNelru4o/P4ympqacV2HlpZb2LlzHa2ta1AUhWSyl7fe+rUn747g84UxjDSbN69i5851JBJdpFJ9bNx4OfF4J4aRJJcb5Z13bmXnznVs3ryKXC7Ozp3raGlZTU3NTJLJPtavv5BYrA1FUdD1MLoewq8HUFyXBiRonoyUgS9HguAQMOhdCzYSDAugGZjmLS8BJiEB+n3eukI9tYOsyb7I61d4y0ykO7iNZMLbvXW1gFAFjuVgmzaxfTFeuvglEp0Jag6v4aWLX2Jk9wiO7ZAeSDPaNkp8f5z9m/djJAzMrFRqaD4NLaShB3RKJpRw0u0nFY3OwtVhNly2gdjeGA3zG9BDOqGqEEbKYMNlGzDTJr6wj9dXvI7jOERqI7iuy51b7uTmE27GcixaOltoH2nHRSaoDKYH6Yh2IBC0Rdu4aP1F7I/vJ+wLE/aFUYSCqqioikrWzNLa1SoVFYqG7dioikpAD6AIBcd1sGyLrJVlYeNCJpVP4tiJxzIhMoE7T7qTiC8iv4taGKo9E8yhVkjvk+7h1QslgBYqfHEbHP5rGaU11EIxoio3JFnZcQtg6EP5TQ+M91jtCMX7r5WCD3/Bbfc8wl9f3c7GF/5CqGScXKeGcctn8sSTT3D++T/xLpK8F4kl72uPPf445//4R5DsoWhO5iuVYNVfKk3NfKUe2+6VjKl+WUNtee7iakAy1nZeRl/FO7z7gJBjRkmDlICrPi8mS5XbWjm5TXZYgmg75yncvMEh1Q3BanjjMlln7djy6gyOk4a3W1fJWuytqyAfY/X962j7ZBu3rPqtJAgAHIMn//RXlp2yhHFtD3jbr+bfHnuIrdv3MPtft3PlGxP4xgnHo6kanLcds+YYFA/UAqgIUvk0OTMv1Q6uSyybxHJsZk04iIg/QG98iKFUlIHUCBXBEm55/Ql64oMMpkaYXX8QQhEEdJ2qYBmfDXQU1RGNFbUc3XAIYT1AY8V4jqw/hEQ2SXdskFteexzbton4g+Qtg+F07IDJ53/e9hW4/qp91f4JWijk46CDqnj44WVMn15BKOQjFNKZNq2Cxx47jWnTKgiHfViWQyJhkMtZWJY0ERoZySAETJ0qZ0sLoNuy5EPqnDn1TJ5ciW075HIWLS2d7N0bw7YdLMsp9gNyzNOFxtVfP5ewL1jMUS44+YJLUPcjPLmQEIKKUDlr3/wDOdPg9tN/QVWoXMYwqBo/OvpUXGTddUFeXpCSd8cGefjdv0oZuqpxVMOh+DUfo5k4mqJyefN3iaVT5MwcAQ0EjpR9D/8aQgul9BskGB69B4LzJQjOvidBsloNwjMeqbkLSs6RZmdKOUztlEDcSYLVJ/ervZ1cLs83zziZg2Y0M2vpNhaf8i+0te0BJYCb7+TG397DQTMWcfiCazltyZIim7xnZASAP61fz7hIhFVr19I2OkpnIkHWsrh0wwb2xeOEfT7CmkZHNMpF69fTHosVHcAB2qNRLly/nt5kkq09PdSEwwR1HUUI7lqyhHMOP5zrFi6kLBCgPBDAtG0UIfjFgdlVgYB0DbPtsRyqgjOzYUjXr6GhMUQ6f76kgltaJI18ySXQ3i77KsR13XabBNm33SaRqs/H3ddfzxmZDIkbb2RgcJC/PfAAc7/1LeaefDJ/PvFEWL+e4ZtWMzg4wB//+DfmzJnL/PlzOfnkP7Nnj2Spp06VbLLrSgOz3/9eAuqCh5dlSdK8tVXWYpeWymXNzXKfyZPl6cRiMm4bZAzX1VePebjV1sK3vy3rrTVNRnSVlVJ0Asanw/hKmNYkgfHURmlmBvJBSFVkZFd1hWS6C9nYBbOyAljO5uUynw6T6yWD3dbpyYlTY4x43pD9Bf3y9937cW2bTF8fgaoqtt10E8muLhzL4sNbby0ajql+P0JRmHHhhTSdfDJ6SQlVRxzB508+WQTMgYoKhKYx++qrUVSV91etIlBZSaavDxynuO/Miy4iH4uRj8UIVFVhxGJYuZxknoVg9tVXo4dDmNkkiqIRqqrHymcY2rMFoaj4IhWSqQYy0V5k9FYOoWgEy2tIj/aQT0XBdQlX1qJ4tXUHAmoBWPksRiZWPK6iSRdyXRUcP2+WjCLUfCw580d0dnaD6+K0vI5omAjAY48/wU9+eA74/JBMsO6JJ7joe99BOf5EJnbv5fhjj+X5t97CNfI4b7+GOGSGzLF+axNi4lSUU7+F0DTJsBRY6c2vSwMzx0FpmIT2r6tRT/kWrmNjv7IeUVsP2TT2+mexFVE0J1NVldraWnw+H1OnTqW1tZVwOFwEvuFwmJaWFnbu3Mmrr75KMBhkyZIlVFVVYVkWqVQK13Xx+/0sWLCAGTNmsGiR5GbffvttGhsbaWxsxDTNL60vyMULy+rraz2JeoCSkjpc1yWTGWbRopXMmHE2Cxdeh+u6tLauKYJtw0iRTg/j85Vwyim/5/vfX09Dw1w2b15dBM+aFsA0MzQ3X8+MGWezaNFKAoFy7/cVKIpW7HPz5tVoWpBYbK/MuEamJkgrSCnTDgFXI1nqPqAMCX5bkXFaA0iA3IZkq/ci5d/TkPXXew9YriPNztYBq7z+l3v9Rr2/r0Sap5XhOXI4kOxNkhvN0bK6hZ3rdrJ51WbyiTxNxzZR2liKEILIhAjjZ40n1Z9i/KzxZIYz5GI58uk8ZtYk2h6l851OtICGHtLpfa+X+rn1pIfSzL9qPlpQw0gajLaNsuHSDaQH0tTPqWfLXVtQdIWT7zwZRVVIDaTQhMbaxWuL4HdB4wImV06mI9rB5RsuJ+KL0FjeiItLX7KPF3a9wOqW1ahCpTPeyYXrL2TPyB5SRoqaSA014RpiuRgdsQ4u2XAJHbEOhtJDtEfbaelsoTfVS0AL0BHr4KL1F7FnZA9BPUhQD2I5Fo5Qce0MvH+ZBMA1zRBulK+N34YPfg65Ppi9RgLmUAPUHCtBuZ2VrPa2iyDdATVzJfDM9kvW2rEg1Sb7yPZyx2sVPP3MM7x68yTKffGxgSLTwxubP8ayYXHpOrnMzkt2Gpe29g7e/+BDvv+9s6F8khxY8kmw8+TyBt8843QOmncqsxacxOJvfJ22XZ+BC3PnL2D2UUcz+2vzmDnrSISms+ODLeCLsGd7K19f9n1mH/01DjlsBlddfQ2O4pdO3K4zBrIL5+HaknkOVsMbl8vfFc/scsJCyXi3vyABtBaU95VMvwToc1dKk7O5N3Dbg0/z1z0VbFz/PCHNkQx1shNXDfHEE09w/rIjpdv4wWfD3JVMmjSZvzx+Ox+/+wZ/e+tT4sksMyZXgRZE1QKeRYTLcDpGysji1/34NR/7o33c/OqjZM088WySVD5HVbicurJxhH1BZtZO5Q/vv8SmXe/y6NbnOWLCQcyecDC/feVR8qZJXVkVR0w4yJN4O+zo3U1PbIi0meM3rzxCZ7Sf0mAJdaVVXPP1c4n4ZUnDUCrKA63PMpyK8s/evqq5/qp91f6Jm2FY7No1Qnd3wmOc5XyZ47jFstqC27eiCNraRohE/MX66hUrmgmHdcaNC2FZDu+918vhh9egqgqlpT7a2qL096eYO7e+2IcQ4AsJ0kbWC8VxuXfzM1z99XPpTwzz6NbnOX/uNxlMjVIVKqMmUsFQKkZNaSV+VUcRCpZjk8ilqAyV0h0f5NEtz3PB3G/SUD4ecIs1OZYXEeG4Dj5Vx3Gl3Pm2N//AD48+hXGRcmzHQRU2FYEgws2BuQ9G74Pau+Ss+MClkskOHQcja6FmjczKdE1AkVJvvUmanlmDUiputst4LatL1mhXXQv6QeRyeelaunQJQgju+/1DPPuX53nrjQ3cfc8D/P3tFp556gF8usrunjy37djBr48/nojPRyIeZ/bChYyqKrMXLODB3/6WO7Zs4f5TTqHhzjs5/eCDeWjZMgRw4fr1rNu5k7NnzOCm448nb1lMKi//0vJfzJvHaDbL7NraopmZEAJNiEJFODnLwqfKmtWsZVGreDWoBwLqwo9pSupWXkBwxRXS9auuTtp1r1olZeGFwuX77x8D65YFIyMyB9iyWH3LLbz4+uu8Pm0auUsuoWrxYm667jp+tXw5+4aHWbB4MRv/8hcqJhzExMnVnHPOTdx556948cV9nH/+Au65ZyM//vGsoty7r08mhOn6lyO6tmyR0VuhkFS3+3ySZI/HJQhXFEnUp9NS9V5TI2uvr71W9lEoIZ82TX5X2tthcMDhG8da0jG86BbuAe32rrGaaSEgnpKgubpibNuC23cBIB9ofDZ94lh3By5vGA/dA3K9wKvFVorbWEcejKOIogFMwUQu1dtLuK4OxaunLTp727aUaAtBqquLnQ8/zMyLLiJUV4eVyaCFQmy78UY6X36ZppNP5ms33IAWCOB41ul2IQfbdbENoxjJJVSVfCJBoLwcRVNwcRCqLhWYjk2sfzfldYdIhlkoKIqKY5vkEoMEy2vlw6LrmbK5YGbj6P6IrKv2JpHcguGZL+jVRhf8gmQ9u/Dknq4QXj01nHvev1BVWcldt98h+3ehq7ubQ444gn07P6V6Qj32i+uoOOd8Prv/Thp+eAE4Ntdefz3+3m5+8+hjCMeVud+b/jYWwbX0TNxcFhEpxY2NyHrq5hMQFVXeuZqQSo7lYTsOIlJa7MO59mYMy0LTtGL9suKpEWKxGPF4nLq6OpLJJKlUitLS0qLrt+aB+oLZj2VZRQOzglFQd3c34XCYrq4uurq6WLZsGRs2bGDevHmUlZUVncWBYs61EDaxWAfxeCf19XM8h28XVR07R1CIxTrYvHkVixbdgOu6lJc34bqQTg/g95fi95cSjbZ726xE04KYZo6Kisk4joniRTa5ro1tm6iqj3h8P5s3r2LhwusoL5/MSy9dzM6d67jqlxZuISPc+3p0IIHwSsZyq7cAM7z1ChAALmasTvs+4H2kKdmFByx/kC/nYFcDvUg2fLZ3zDASrA8DVUAwnsPO26h+FTNj8uo1r7LwuoWUTyonn8iT6k/JiKwVzVRMrcB1XIykweCngzTMk6WYQhWYGZNUX4pEd4KGuQ0ITaBoCrGOsTiu8inluJaLkTYw0gaBsgCqX0VRFVzbRaiC7i3d1MyrAR8k8lIBkTSSlPnL+Lj/Y/aM7uHYicdyS8stXN98PdMqphXl3gLBxS9dzF8+/wt/PfuvLGxaWKzHdlyH1q5WvrXuW5x+8Oncu/Re4rk45YFyYrkY1eFqhtJDxPNxmsqaUIRCPBunJlJDRDgIx/DypFUJiPOjEkS6jjQh++J2OOYBmU2d6RzLu7Yz8rXzz1B7kgTeiT2Q65XbqEF472LY9xTdoTNpPPM5pkye6Lmou/gDAbZufg0E/ODcnzI9tIubTvwEzuiCQK0cJByTFb+8iZ7eXv7ticflOR0QC5YzHd54/Q2WnrIUEe/gvvsf4tmXW3jr7y2SNVZ0MNM8+8Imbrp5FZ9s/xhc+OaZZ3LC/CP42dUryJlwzNx5/O53v+OUU07xmOdCDbYqJwzwxq90vwTbWkAy4fG9kNwPtXMhH5Usd9kkiO6W5mfH31m899xx/+M89cyzvLbheSpKg/DWL+Dzp+Dgs3ld/QH/cv5P2ff+epTyScVYtIEdL1N92AkoCmx66QV+uvwGdt2zkOCyx8k4AlfR6Yz2M5qNM8urowb4zSuPsGnXuyw5eD6/OumnAMWILcu2CPoCdMcGeHTr81ww75s0lI3nxk0PsWnXu9z3resYH6nk0a3P8+NjTmNcuJxsLssPf/BDujv246gwtXESd9x7NxMa67nhibV89MfXMYw83SP9+I6o5UcX/4RfnfRTFBvOP/983nvvPRRFYfXq1Zx11ln8V2hfGZp91b5q/42aYVgYho3Pp+LzaaTTefJ5G11XyWZNLMulrMyHZUkgnM9bxZzrrq4Yfr9OeXmAyy/fyAsv7OLZZ79Dc3MTmYzJNde8ylVXzaemJswvfvEKK1cuoqsrzvz5DeRyNolEntJSP6WlPhSfQyqfJW1kCfuCjKTj1JZWccvrTxQH5R997VT+/f2XuGHxBaieqYrtOBi2yZ1/f4rzjjmNqlAZa978ty8N5K7rEs0myOYNGipqsF0HzcvoVBBYnlnGaCZOTaSSodQo1eEwQfYjRlbLGC5tEmDKm7eTkYZmxh4IzAQ0GLwOqq6RknGtBpQK+erEQKmUddvCD/0XSrl4Mb/akfsD4PD++x9z1tnnsK/9IxomzeaNV/7CQQdNBTQyTgjHlQA3msvxyyuuYMHJJ3Pn449z1je+wfHf/S51JSXURSJ82NdHQ1kZ0ysqpJlbNMrqlhZWLlrEuFCI7f39NDc10eEtX7FoEb2JBIuamshaFrFcjqxp0pNMMq+hQSY6WRZhn68YLWO5LmWWhUgmJQot5F1lsxCNQkWFpHOvuEKiT8uSuupCDrbjSNp39Wppzz1lCt7T9pj19tAQt/3oRzxjGLz2xz9SPnUqGAYlU6eyffNmpgwMQF0d37nsMpacdRbnnn8JVXVVbN68nSlTpiAE/PCH3+HEE5fw4x9fgGFIr7VYTBqVNTZKw/F588bMyjMZ+Phj+NrXJKOdy0kQDvLtZDLyLT30kHxLPT3ybV166dg8wUMPybdyxRXwyEM2QcdzCy8JS6m2izzYtk/gsKkQCY0x/6nM/95FPGdIKXljrRfZ5dXp5c3/tRN5oW9vX3NSHWY6TXZwkNzwMKG6OlS/v1gPXajFzsXjBCsrx+K2vMx51wNjyZ4eghUVqKEQmd5edj78MDMuuohwXR0AwgNgBTdyxzBAUbAzGaK7dlF95JFY+TzxXbuonnsMBRMz2zJkfXVB0u06GJkEquZDC4QwMgmG2rZSPW0uiqKj6j4ppfQmeFzbRCiaZ8TleOfrkksMESqvG3Os82YMHcsEXLLxIe5+8EnWv/QSf7jzX5n+tdOKUVyrHn2CT1re5s/PPYcor8I1cpTV1PLFju3UlUZw3t3M9W9vIRAIcNMvf4mz6UWUbywdy75u/gaUVyBsWwLssCdT9Upyivna658dA+OnnoVrGZBM4LS+hX3qWVI+7rrF+mohBF1dXYwfPx6/3/8lA7KCeVghz7qwzLIsDMMg7E2gAbz44ovs3LmTWbNmcfLJJ8v/nxDEYjFUVWV0dJRwOMy7777LokWLKC8v90zODGw7h6r6SKeHCYXGoSgKhpHB5wtjWXn6+z+ioWFe0SUcXFKpAQKBcnK5KIFAOZoWApyiqZlhpLCsHJaVIR7voq7uSDRNTpAIoWBZOTQtQCLRzd69bzBjxtmkUn1s3ryKk7/9DEkhCDDm5H0gOL4PuBwJjCcDu5FA+Q4kQC44g3tTV6hIlnu1tzyEBOJB77UQzwVjEV113k9BjKz/Q851xZQKulq7aJjXQKovxVu/futLcVqu66KoCkbSGMumXtFMpC5C73u9hKvDvHv7uxJMTy7nxQteLO5/6oOnkh5I4y/zY6QNrIxF+dTyLx9/cgWG38ByLEzbpCvRxZrWNVy74FqmVU6jL9XHr9/6Net2ruPsGWfz0LKHsB0bn+rDciwEophrbTkW23q20VjaSFeii4bSBroT3UwsncjEiok4rlM0RSuYlV656UqWz1tOb7KX5qZm4qk4l//LJXz2+Wde9vR4HrjndqZNn87cefPJ59KghbAsm52ffcH2V+7liKPmQm6Q+5/dyb0PPIamaSiKYOtrfyIQqZZybYSM4Ao1gX8cfLjcy8IegkyPrLE2E6B7hmBbL4AZK8FfLbed94Q0khTiyyZlnoEhiU4JYP+xdsfO8/7mjZx1/lXsa2+Xsu/SSaAoLD1lGUsWn8jyn10KQuXMs77LUUcdyS9vuIFoPMH8+fN5+umnOfLIIz2Xb3ese8eRbuCx9jEX8W2rJSMdrpXn0b8NSppkXbdQJJPtL5fnnxmmezhF40GzmTKxgZKyCnBt/Jpg629mwNyV/ODy3zK9sZKbjo9J5jrTD3ULePTxf+PW2+5AVRQmTJjAvWtvYuZhh8DIZ5i1c8i6Cp/07WFm7TSEEJi2ia7qRZLkp/POpLakirxlFkmUKxZ9T6oTEViOhaZoRXNZ1xujo9kEyVyG0WyCxrIacrkcO7Z+xJKlJ5O3DO6+9x7++PRTvPfuNk5ceBwrfnkDS045mT1de/n63GaeXf8cx81p5rZb19DR0cGTTz7J3r17mTt3Lp9//jlVVVX8Z7evDM2+al+1/ybNMCy++GKE889/kd27R8hkDCzLLbqBB4M6paU+EgmDvr4Utu1gmg6ZjIxWaGwsp7o6TCyWY8WKZp599js0NJRy4YXr6e9P8rvfncj06ZVEIj7uvPMk7rtvK3Pm1KPrkvmsrAwQDutfOqfSQJiIP0RjxXg0VeOCud9kycHzuWDuN4llk/x03pnEskkyZo7u+CC/e+NJXODaE86jKlSGrmr8dO63ePH8O/nl4gsQCD4baCeoB2isqMHFRVMKdjSAEKie06+qqPQmhqkuqSKoC4TZDZVXg/AcOAsO3igyv1pvgMGVgIDaB2TWdeh48B0s664RIKSUDGtAOolXrZDAuuoGCdL7L5ZScXMvWEPcfe/9nHHG6SSSOQYGBvnbi68xd94i5s4/luf+Yx0dsRiXbdzI8889x3A2y9lnnsn8xkaqg0Gam5qojUT49Ztv0tzUREjT2DcqTWamVFTw8LJlRHSdkXSa2bW1XPLSS9SEw8XlC5uaSHr5xLWRCE3l5cwaP54rNm6kIxol4D2cF296MFbnZZpjumrHkbTue+9BZ6fUY3d1Sca6q0tSvR0dUntdXS0Z64kTpVS8kG89Zw7E49xx7rk8vWMHr86cSfn06RTcyL9fW8vL69bBMccw+tlnbGtr44gXX8TX8QVnnfU9Nmx4GduGjz4a5bXXtlFZeUSx7Kq2VkZpLVokZeL19XDxxbIcXFFkvfUxx0gAnsuNzQEUTjsUgkcekdtqmpwT8PtlFPfZZ8t5Ag9TsmaNLKtGVSWwtmzJIptebdthU6XZmGHCvl5yiSTf/Ml5HDTrCGYddRSLTz6ZNjMD1RW4jbXc+JvfcNBRszn8O2fw9SUnSSAuYNvWrcw7/jiO/MG3OfRrR7PmofvHgDXe8V0807SJMnoqmeTzxx8nUFmJ6vdjZ7MMffwxZjpddIYOVlZiZjISbLsuruMwuGNH8btT0tAgZc6uS6SxkTk33kiJZ6A1/Nln8hKxbfKjo6S6uxnevp1Mby9aSQmB6mocy0ILBKiaPduL1lIwc2np8qrKSJq+z/6O69j4w+VogRCu4zDUtpV43y6G2rai+YNYpicxdx0cy2Bg95ZinZ1QVISqoag6wYoJZGJ9uI7jvUf5PhVNQ2g+Hnzyzzz/wos8uvZqjNh+hOuAriMaJ/Hkv/0bP57aIGXcXj520+TJdPb1I0IRlBNOZt++fTRWV8uPfPGpuP09iNJy1KVnQkWVdLTVdAiFsV95CdfMexnnBk5vt2TnF30DMWM2yqITQVFwXn1J9rf0TIQjncAPBM6maVJTU4OqqkSjUTo7O7EsCyEEtjdJ4vP5UBSl+KPrOuFwmJ6enmJ/p512Gueccw5LliwhFosV+ykrKyMSidDQ0MC7777Lzp072bx5M4lEomgSl0z2sWHD5fh8Eqzn80kMI4Xr2qiqTn39HO+ek+LVV68DBOFwNZoWIBQah6YFcF0Ty8ohc61VfL4wkUgt77yzhnC4Bp+vxGOvXUDx9nEJBMoZN+4QNC1Aeflkli17GBsJgJXi1hIUn+29bkMC7TXe16MRCbh1JNj+PZLdzjBWQz0VyVhPQ9ZQh5Gg20BGeFmM1XXPQgJrxdvXBVzLLcrBW1a3YOdtQtUhKc0v87Pg2gXMOHsGi25YhOu4RNujJHuS5BN5Wte0Fvezshb1c+p59/Z3i9Jyx3K+tL+Vs3jr12+R7E0Srg6zedXmLx2/dW1rcVJnS/cWCYBS/Vw1/yr6U9Lnob6knpWLVnL2jLO5YdENZM0sl264lL3RvYxkRnBxWdi4EID3e9+nJlxDV6KLcaFxrG5ZzcKmhUysmEjKSBVNzgCG08P0JHq4+YSb8Wt+5tbPZW9sL+/1vsdPLziPXVueZfv9MznjpDlccP55YCbZ2voWH7/3Nh8/MJsbr7mAmTMO44hF34PcIH974zOeenQNWzY9xietz/PaX+5B//y3kBuQ39P3L4dAtWS5tRDMeVgC1c/XwLi5kk1OtUO2T14Mnetg56qxbRXfmC9Ioe66IH8RKpQ2SVY63i5l20ZCvgrB3Y8/yxmnniyPVzYFcOna2crf336bH/7oh7JvReWuO27jP/78JyY0NDBhwgTOPfdcCazlCCr7i7XL9+OYktHftloy+ttWSwm4FpRAuv99qJ4FoeoxgzQ9IpfbJoRqaNizFrd3K+1vPMjH297m4/da2draAosfgVANf/r3J7hpxS+kxPz9tTD+GDBTXPCt+bTdfQy7Wv/Km5teYOa0CfK4449CF+BXBLMmHMRgcpTtvbtRhIKmqDSU13DD4guoL6vBcmw+H9zLcCrG945cwlAqym9eeYSe+JBUJnljsuu6xTrtnGkymk1QE6mgMlTGuLIqTlt2GqqikDay9IYyWLEsYT2AEILR6Ch+zUe5FqI8UsrBTdJJ4c9//jMXX3wxAJMnT+b444/nueee45+hfQWuv2pftX+SZhg2a9a8w7HHNtHQUIZlubS2dtHeHqWlpZN9+2IIIfOv9+6Nks1aBAIaqZRBPi9jUHRdIRBQmTChhObmJtaubWXhwkaamsopLfXT0SH78vlU7rxzCT6fiqJAKKRjmg5DQ2lyOVkTHdB8BHU/lmMTzSToj48wmBrlhsUX0Fhey5H1B1NfVk1FsISwHmDdR6/ww6NPIaD5UJCyck1RqSurojxYyto3/0B3fICZtdNxXZee+DCmbXoz5/BpX1tRJq4pChWhUmpLq+iPDQMart4kAbMmH5ZxEh64duTPyGpZdy0k44JrQVFAXWDGTHBSUhqujZPbjv+97HfwGml0JjTQJ7N67R9oa9vLLatuwjIzWJZFNptm69Zt/PlPj3H1Nddyzb//O+u2bGH1zTfzrzffTNIwSBsGbaOj0mxM07h9yRIypsnGtjbGlZTQHo3y9v79GLZNRTBIdzJJLJfjqU8+YfmmTTiuy/hwGAXQHId/+f73OXLmTJqPOYYfnnkmVx9yCFMrK9GE4Nabb+boww9n3tFHs+TEE4sPHceffjqTDzuM2QsXMvsb3+DOf/s3OPxwyUovXizzrlRVgu6FCyUrXVkpHcV8Pqmf/tWvpHOYpsHixXSn01y1fTuxcJivf/YZs+fMYe6UKdDbyy0XXMDLr7/OzOZmjv3Nb7juW99izurVEAzyq1/dwubNL7NgwUxOO+1YMpnreOGFOViWPFShvAEkxl21SjLOq1bJuQHbHiPe/X75U1cH27fL1wP9Agpst2XJeuy77pJK9ksukYA8HIb+Acnc0tYppdmmJd3CDXPMxbtgYNY9IB3SH3ua7R9+yBlLT+GCKy6DgyZyzyMPseOTT/j044/5ZOs2nv7jUxKwx1NceOmlrLj0Cj5qfZd31m/gtrvu4rNPd3rXoPeFd5zic6FQFPRIhEN/8hNyo6OyTnpggOojjkALhaSS3DCKruKOaUr2WVWpPvxwhKpKmTigBQIouk6qu5ttN95IfO9eAKoPPxw7nyc3OopeUkK4ro6qww8nMzAAjkO4tpbs4KB0E+/u9kzGBL5QKaoviJnP4NomNQfNxzIy9H76OrZpIBSF6mlzKas7mOppc5F4NYBrm5j5DAC1hyzEtU0c25TfSNvEzKdxLINAiYzxcW0TK5+RINuFu+68iz//eR2bNm7gkLnLKJ9wqIzNipTwxlt/x9J1Fp92OsrCr+OaBug6Z51xBg/edy/2pr+x94vP+fvmFs6YPxfiUeyNzyFKSnFjo9KIx8hL2bdnzKgsPgWh6aCqCN2P4tV1i/Iq1GVnQUUlrmOjLDgOfH7pPG7bxONxstmsx9JJsCyEQFVVSkpKqK+vp7e3F8MwvjTeHwi8bdtmdHSUCRMmkEgkisvr6+tRFIVEIkE4HGbjxo3E43EymQyqqnLqqafygx/8gIULF2KapvcAbNPSspr6+jkkk7288cav8fvLCYerEULzHNrlRajrIRYvXnPARel6Dt8pUql+HMcikxkhGm1n48YrMIwkp576AFVVUmKazydIp0dwHAnEOzs3k8kMU18/D8excRwLIVQ0JDAeKFz6SND8MDAF6fq9AVkTnQK6kDXShRE86O0T8EbyFiS7nUOC5TakfHy//Drxa2TMVwApPRfANUgWvMBoC03QvKK5CIDVgErVQVUoqoKvxEfVQVUse3gZFZMrSA+maV3TSvsr7fhKfGPAeeUi9JCOFtRYtHJRcVn3lm663uniuBuPo3xiOa9e86oE0WtacSyHRSsXoWgKzSuaOfycw1l631IK2daza2cjhGBh40LK/GVFwJyzckwun8yDyx5kcvlkrnn1GtbtXEdXoou0mebily6mPdrOcGaYr034GuWBcubUz2E4M8wNi25AV/SiA3nKSLH85eUk8gkqQ5VMKp9ExBehMlhJb6KXrngX9ZX1nHLyYsTnt0LnOuZVfsC+3qg0M3vvUplTXTWHxx68jfN//EN536yay9q1a/j1qSOUdd0LvjKqBx5C7XkWPrsFzJgEy5/fLqXhVkayvi6ybjvTNQa+c31Sat10Nsy4QbqMy3y0L9c740opeHyvZyamSEMyX4k0MlOlSdnqNXfQ1tbOLbfcKk3MHAMUlSf/+ibLTj2VcRWlXl8u9z/wIN//zrfo/fQt9u9t56mnnuLVV18d+/KmumVsF4JiHcvclZKRnrMCTntWvrfXLxtjr9/8OST2Q2+rfF/hWmlyluiAuvmQHYH6Zvk5FpqZKkrcidTD9G/DsWvlMY04fHCnjP8qaZLnIFR5jNcuhlgH/p6/AxDUfRxVfwiqomI5tjSz9dQ0nw90UBksJZFPMqlyAo0V47n6+B8RzcYYjEsywPEiuKKZOAHdz1B6lPJgCY9t/RsIgU/TSZuyjDDiD5Haso/TTz8dwza59Z7buPW3qzl42nRmzTyC6391A7W1tTiuQ2dnJxMnTiy+3UmTJtHZ2ck/Q/tKFv5V+6r9kzTDsBgZyTIwkOb++7dx++1LcBwp/87lLGKxHLmcRWdnnAULGslmLa699lWuuWYBoZBORUWAQEDjiis2snr1NwiFZCZqR0eU3/2ulZUrF9HUVIrjFB6sVGzbIZu1WLHidVat+gbBoMbwcIb6phBpM8dQKsqT771YrLHuivWz7NBF9CWHGUxFqYlU8phXg91QVkN3fJDB1Cg1kQoe2/q34n41kQpsx+HJ917klyf9lOFUFE1RCOgBUvlMMS4i7AtiOTY50yBv5SgPlkqHUzWPYg2DWuXdzFSKHITVL+unzf2yrhoHnCzktoNeByO3QNVKua+T9cB5YX/Fq9HSpamZHQUlwm13PMAz//Eir216gfLyUkCjpLyW7R++w5RGBUZ+y7d/lmH+15cQqazkl8uXo/h8+FWVoeFhfLpO/Qkn8PT991MTDpMyDKq9HOvW7m4OHTcOVVFkfJcQJA2D5Zs2ccOiRUwuLwfAdl2MfJ7nN2zg1FNP5ZPBQd5//nk2vvACTzz3HM8+8QStmzez+oEHGFdSwluffsr3Zs5E7N7N8aecwvLbb+ebJ58sbbmbmiTaLJiYCQFtbRJsX3utzK768EOpy5448cuh0Q8+KFGvaUqaWPHkvpdcAk89Jbe55x4JxFevlpRxdTUsXw4rVpCedgSJhCASkWz0qlVyk8mT5Wnk8/LHdSX4LcRtH6hMT6UkqDYMqVC/9lq5rkDQDw1JBtxx5JzBO+/AzJkSvF9+uXwr69fLeYSAbhPYv0+C52NmyBrqAzOoHUcC7oKk2++TQHx6E++/tZmzLvgX9rW10TBpEm9seoWDpk2TIL0gD2+o5cjm+Vx5xc8499xz6ertYX5zM++/+ga1TY1ym6mN8hh5A0rCmJaJmU4XTcuEomDn8xjJJFowKJcLgVBVbMPAiMcJVFQUAbBQFFxg5JNPqJoxA4BcLEZ/SwuNJ56I4vdjGwaqpiE0jdzoKHY2y+ePP87sq66SAF5RcG0b13Ew4nGCdeMxswnMbJJQRS22kUeoGqrmIz3ag5GNEyqfwOj+7dQedlwxizo7OkCwoqb4N54E3bUtbDOPFgiB42IZWVTdK0lA4FgGjm2i+SWDO2nyVCZPnkQkFESoGn5/gK2bN+M6Nj8878dMmz6dm375ywPUn4JULMr53/omH3z+BWogwG9+8xvO/s7ZYBq47btw+3pRl57hPUM7YBryoiopRTgy39qrDPcytAEhcFMJsExEeSWuZSJUDdc0MVWNVDaLaZq0tLSwYMECKioqiMfjJJNJamtryefzhEIhEokEiUSiCJgzmQy5XI6tW7eyePFiVFVF9fwThBAkk0n8fj8+nw/XdUmlUrS3t1NZWUltbS3JZJLW1taiJDyfz2MYBiUlQaLRNiKROnK5KCUlDTiOgW2b6HoQ287T3b2V0tJGyssnSvWLY9HTs5VIpI6SkjrA5fXXV7JkyR0IoZBOD7J371vMmHGWV8PteCBdwXUthFAwzSy2bTA4+AlNTYswjCRCqOh6ENMXYZcQlCIjtULAeMbqrCcgo7JKkMz0FmAfMB9pSjYXCbDdsVGbQW//Ccis7NeRQH0+8AdgurduNdJh/B1gKVIW3gdMyZqoMVkv64v4inOwri1zrl3Txcya+CI+GdNlOfS+30vt7Fp8ER9GysBf6me0fZTWNa0sXrsY3bvnJroSbL55s6zhnlJOojMh669vWERpYymKpuCYDkrBQ8V2sLIWolKQNJIARHyRYpa1YRv0JftY1bKKlYtWMrV8Km3RNla3rOb3p/yeyzZcxrqd69jwgw3Mrp0NQNgXRkXFcAx0RcfyspQN20BXdbJmlqAeRBEKilDY0r2FmTUzCepBVKGSMlKMD5SgpDpg5yp+dG+aynG13P39pATITWfTVXERBx9zKp0du2T2NILKmnqu/k4TL21XyZs25559Cj9r3vdlafeMlZLx3XUnzFoNWqkcyLddWOybr/1eAk3hevdnz0BSCOmpAhJM2yb4S7x5dEf2m+qWYFTRwbW57fa7eOaZP/HaK5soHzdeMtuui5vsYurXlvLA73/PkpNPKkrMI2UV7P7iMybUjgehcM111+Pz+1m1apWcjLNynqu4f+xYIIG/8J4tMp70uwB6P39KysOPvAL8ZbDlZqidA5NOglCtNEHbugrmXC8nBSL1Mg871gHpHslaF/oqHEs6lsmYsEy/3KZQd+7amGoIU6hYjoPt2Hza384hNZOIZhL88YMNXH38jxCKgmWb+DV/sUQgZxmEfUFyVp6hVKz4jFfw2WmqqOWjnl2MC5cBAkUoDKZGmVk7lTvW3sYrGzfxyDP/TkVZKVdedAWnLjuVs7/7Xdo62jl18cn8bf0LHHrYYYyvqmb37t3UeWVL1157LQFv3P7Pbl/Jwr9qX7X/Bq1Qa11S4vsSsNY0GZUVCGhUVgbo7IxTXR3m4otfoq8vyZw59XR3J0inTS67bCMdHTHuvXcpAwNpLrxwPZ2dCfr6Uqxbt5NVqzajKArd3UkuuWQDu3ePkE6bOI7L5ZfPoa8vycUXv0R5eYBUxiSVz/Dkey+yade7PLb1eWbWTmX+xCNwcHls69+oCJbw2Nbni+tdXB7b+ry3/G/F5YUZzgll1Vww95toQiHiD1EVKh9zj0zHCGg+umMD3Pzqo0SzCQJ6gN+++ihdsQEsR8HVxoO1X8q5nYQE1S4SWKNKybe5X0q77T4IHC6BdXKdjOJSwrLW2hpCVuUBOF7ddgLsBGi13HH3Ezy97kVefdkD1q4LToLvn17LyxueAeFntGsd72/bxoSpU5l4zDHs3r+ftvZ2Pt+zhzPOPJMpZ57J57NmsbqlhaCuE/b56E+lSBgGCxoaCGgaKcMgb8u8ybCu89hpp9FUVobLAa7h2SwTjj6avlSKYyZMoGnGDPZ0dJAxTW6/7TZuuvlm6svLCWgapxx5pDzXwUHp4KUoUgpeWyvBtW1LhGqacru1a4txWUQiEnlOnCj3e/hhadP90EOSNp44EXbskOAcJAB96CEYHpavgYBExAXKORaTv69dW/RE6+iQKvT77pPA+pJLJL7fskWCY02T+Ly2VvqrFeK2XFfWWl99tVSqz58/Vnvd2irBeFmZ7P/CCyXpfswxcN11EjMX5OFz53rVBKqXc11dAbqOWxqRxmSlHmudyki59rQmCX7zRjHv+u4nHuWM004jEY0xMDDA355/nrmLmpm7YAF/fuYZaKgFTeWJxx/nlzf/lqZpUznosMNYffmV1DY0SGA9EvOKPjUoDXu1go6UQntAOdXTw8iOHfhKStBCIWzPyRtAUVUC48bJGlBN896UNMYqmJLlYjHsXI6GE05g9LPPEIAWlA+kQlEIVFQQnjCB2VdfLY3OCrJ48f9j78/jpKjvvW/4XdXbzPSswMwAs7C6IgoaWQcTo6hETPTETM4JOTkaFY2aE5eIEYhbBCIElwRj4pLtxCyMxG1AcEmI4MgqoI4w7My+d3d1V3d1dXd9nz9+1T2QnOvc13U9z30/J/fF7/XqV1X9tqqu7q6uT32/n89HQ/d68ZeWogGphElB2SjQPHgDBei+AE4mRX5JBSWjziKdNBl5dh2SSdH5ybuk4mHyh1UimdQQb1kc7HiYeLgbx0mRSdl0fPIOjpMiHu5BMipl2uP148srRAOqq6tJ2xaHDh7gwz17+HDXDpre36KOMZ3itz9dw8NLl6iIte3eKDsZggUF/OHNjbQ89xMO7NlD/YKvQ8JU7+uCz6DPuxYJDZDZ+Jp6u/4AFBYpHrnyNUTSaUBTKeNOBkla6imN15erd1qPgRnD4/EQDAZpamqipqYml+7d1NRERUUF0WiUzZs3YxgGPp8Pj8fDpZdeynnnncell17KggULqKysxDRNZs6cyUUXXcTUqVO54IILKC8v51M3lf/73/8+06ZN48Ybb+Sf//mfeffdd/H7/dTU1PD++++rr20s5qama5SVTcTrKq+HQkdpa2siFuvEtmNs3HgXlZUX4PEUU1//dc4//zPMnPk5vvWtVYRCGj5fPp///BdZsqSJiy+ewfnnn8+IEWcCk9F1Lw8++Aif+cwspk2bzbRpM/jDH/5AOm0py61AEbW1lwCKl+84KQYGDpERh5VAKSp9e6R79fWixMnGokBv1oZrDvB1VHp4ndtP1NUa3V1WAlWoaPUR4Gso8bI73TFzUKngK1FA/Ep3v36U33VeysGO2/iL/EhGQFde1xvu2EDocAizzyTeq2gekbYInbs6qZ5Rjb/IT8pMcWj9IeWVXVvC1T+9WgF0QPfp+Ap9XP2zqykdXwpAUXUR17x4DSU1JQpEaxqhEyHEEcQRdJ+eGy8iFPoLXQ0SnWQ6SdpJ0xHtYG3zWpZtWUYinWBU0Siem/8c+Z58npv/HOH7w8ypnUOv2ct9b99HNBklLWk8uoeoHeWDtg+Ip+O0G+00tTWR78vHSlu5CPaM6hkU+Aqw0zYxO8be7r0MJqNI4XiW/+UsDp/oY8XyZTBpsRtNXsKv/riJ+fPmqqhvohskTTojHMtcyHub/sjGV37Lz3/zOo1914F/GIT2wrSfQ0GNAtbnLFJgcc/d6n84O/d5S1UaOED0GPS6v31NV6A2k1TbHj/4C12wnBniYfuLINYJuocnfvwMv//DS7z90ipKvTH1RfL4IdbOn9/ZRDqTZu7n56g5Mkmwo4wfN5aNr/wWnDSmGecvm//CeZPOxb0AK8GyQLEbwe5XYFj3QtQNCmpeSMWVcnisC6xBFZX+/BoVZS4YqSLQVbOh6SEFrKNtymJrxwpl07VjhXpPsTYYMRnCh3L+1qCpMe/cppb+QtXHBdWgk9L8HIsMkEjbdBsDfNJ9hEkjJ5Dn9VPg8/O9z9+QE1/06F7SToaPuw6DphH0K5FEv8fH6OIRLL38JkaXjOCi6nOoKBqGrmlcVH02I4JllBeW0RsbpCy/iOvu/FdeeeVV/vTaq5SWFNHZ3cMbr73O9V+tB6C0chgXXnwR2z74AI+uU1tby4kTJ8iW48ePU1tbyz9COQ2uT5fT5b95OZlrffRomNWrr+TYsRDbtrXnhMsyGYdAwMv06VWsXv0Ba9c2s3JlE3Pnjmf69GpWrNiaA9CZjJyyPW1aVc4/2zRtli3bkhtvGEkMI8nYsaWsXNnE2rXN7NjRQcDnpTBQwA0XX8OVZ83klhnX4fN4KS8sQ9d0bpr+JUKJKDedxMH2aDo3Tb/27+rDiSg3T7+WgMdPTelIBSb9eThIDrz/aucboGm8cBJYjyXjufVkxmXLDSxXoDnTDfZhVOwC1eatBG8tVKwG30TQi2Dki1D1Fgx/CPAq1XDvSEiHFMc63QVORPX1Dqe9vZ1771tCOBzi0svmMmXqVKbPugz0IlasfpmNm97lvIu+yCU3FHPXfd+jZMIERhYWctv69RwcGMBIJtE1jbnjx1M/aRJL58zB46ZfgfuQ2bYJWRblwSB+j4fjoRC3b9iAYdvEUykyjkNlMMjsmhpWNTUxoqCAlU3Kr/SXP/sZ133pS5QAkYEBfrN2LTNnzmTuJZewrqFBAeMpU0CE7z38MJO/+12+umwZR48dg56eoS+diPKw7uxUaDcWU+1ZhfEsVxuUBPcnnyg57+LioT7ZfO3WVlW3eLFCsUuWQGmpWn/8ccSNJldUKA/rXbtUpPqll2DFChgxQuFyv18Ba79fYfbp0xVQXrhQAehvf1sB7gUL1LOAu+5SAfL2djUmi+2XL1f3WPfeq/YzYYLC/z6fmuemm3USBBBXuVtL2soqK6sMl00NP9wKnx5R4Fpg+YoVHD5yhBWPLSMtSt05kbLZ3tTEH3/3O+5+cCn7Dh4An5cfLlvOiocepvXwEZr37GHJM0/x6Scfq0j4Ra4ecsZRSw00rzeXkh1ra8Pj9yv/6sceIx2Pg6aRNk1SsZgC2iIqDVxk6HNyP1fFGS0hf/hwvPn5lJ11FpZhKBE0rzfHb85+J63BQXQ3P1/SaZxMBt3jAU2jYPhoxMlgm2E6Pn6bVDxMItJLOhlH93jx5RfS2fxnUpZJfulI+g7vUJFfATseUWOSJr5AIQWlI0klYjgZ2+Vn7yCveASa7sWOq/nteJh0Mp7bTsbCCqg7DqlEZOi7C6DraD4XkLgp15rPhxbIxzP/K2ilwxTY9PkhZZNpfBlC/eDzo0+bBZEQTttxFdWORdU59QfQPB6c9lbEdvnXGqDpyis7k8bpaEULFiFGGI/jqN/73Lmcc8457vXcZu7cuei6TiAQYN68eRQVFREMBsnLy+POO+/kk08+YceOHcybN48HHniA0tJSduzYwc6dO9mzZw/3338/Z511Fm1tbYRCIc4880zeeustXn31VX72s5/xb//2b5imyTnnnMPVV1+NiDB8+HCCQZUma9tGzr+6qKiSqqqLMYwOLCtCVdU0TLOHt9/+Ll/96pV88MEG3nrrt1xxxSXccstCWlvfZ/PmjXz44Ye88spT3HvvbdTWljJ58iREHO655zvs3r2NHTve509/Wsu///t9hMMmth0lFusmK4IWCJTg9wcpKalGT9ssdrUhhqOsttIMpX1r7vodKLDsGuHlLLUE9ThUQ6WNdwFRt70SuMRtKwSeRgmfpd0xCRTormYoKm6rj1T5Ths2se4YdlR9h6qmVbF1+VbySvKItEeQjODL91E4upD4QBwn5YAOZ1x9hvrOoYEO4dYwjQsbCR0OkV+WT1tTG7pHJ3I8woZvKcDe+n4rZo+JOEIgGCB8PIzZZ6o5AUFlLRwcOMjCxoUcCR3B57pozKqZleNbh60wx8PH6TV7ORw6zMLGhRwLHyPtpGk32plWNY2+eF/OmssRh8kVkzGSBl2xLsqD5dy2/jY6o53cOe1OgNw+O2OdOOJwXsV53PXWffxw9VP86U/rePOh0RQ4fVA4Eab9HPHk8cufr+amf5qugGVeBTgpamuq+Zf6L+PJr2REYYYvXCBse//PCtAOv1iB6fZXYeoqKBwP6QRMXa141vF2+MwapbQdPawizwWjFBc7dgKc5JAXdcZyU8Ft12uaoch13nAoGa/+z7+7iHDU4tKv3c+US7/C9BnT1ReqsJoX/7SFG2+4QV3vsqnmHh+//sljvPjSK1xw8Uw+M306l826kH++/ktD0fOsMFthtQLCRdXquIad6T4RzijudctatQyUQLxHvVc7olLG/YVg9sIlK1WKeNUcOGcBTF+sAPu0xepcjZyu0sN3rhzyw3ZSannkdfUQoaBC7SOdACsEmkZK9/OrnW+go7ypJ42cQCxpIsCwYBkZhGTaxkol+bjrEMm0zYiCUpq7DgOohzuu/o2maQyaEdJOhgJfXs6itcCXR57Xz3kjJ/Dtpd9lx1tb+Pz9/0JRSTFl+cVUlA8nvyCfFxv+AzuTIjQ4yM4dOznrnHNIZdJ85Stf4Wc/+xkAx44dY/PmzVx77bX8Q5Tsn+g/0quqqkpOl9Pl/5QSjVpSX98g8LDU1zdIOJyQjRsPyeBgXPr7TRkcjEs0akk4nBDDsGTPni6pr2+Qffu6xTAsiUYt2bevW+rrG2T37k4JheKn9Nm1q0P6+kxpbGyRNWu2y65dHbm2UCguoVBcwuGEdHYacsMNr0hnpyFRy5StR/dIl9EvvdFBiVqm/OHDjbL16B7pjQ6KkYiJkYhJPJmQSCImphWXwz1tMmCG3XpLopaZW5pWXI73t0tvdFAiiZhELVMi8agc6Dku973+lBzsPSGmFZcDPcdy273RQbnv9aekpee4mMmEOOmYiN0pkh4UsQ6KxHeKpHpEUn1qO9UrkhoUSRuqn7Xf7R8VSYfVMtWv2tNhEbtDpH2BSGKP6tdeL5LYLZIaUO2pkIjdJmJsEEnsddv3iaRjIumw+94siViW9MZisvHQIdnf2yu9sZhsOHhQwomERBIJMSxLdnV0yIJ166Q9EpGwWzcYj0vMsiSUSMi+zk4xLCvXdstrr8mujg7pNAxpbGmRfd3d8tCjj8pFF18sWw8fli/94hcCyKIlS2QwHpcPPvpI8svKZM/774uEQtL6yScihiFOJCI/eeghOeeMM0RCIZFwWL0GB0U6OkQWLBDZt0+kvV1kwwbVJxpVfQxDpLNTJBYT2btXpL5eLdvb1fqePWqOxsahcQMDIkeOqPXBQRHDkFg4Kfv2qSG7dqkpDUPturNz6BWLSa7fvn2qT329CKi+0ahIX5/a3e7dIk8/rdp7e9Xr5EOMxUQOHlSHEAqJHDig1rPztR1Pi/SHRFIptUxYIkZMpPmwSNRU9VFTtVlJWbVsuVx04YUS6u1TbamUFBYWypF9H+fmuf7LX5bnf/Yz6evqEr/fr+rtVK7tuWefHZq3+bCIlXRfltjRqGy55x556dxzZcs990jSMHLb4SNHJHz0qFiGIYnBQYm0tkrSMMQ2TUlGo2IZhliRiHqFQmJFImKbpgweOCBb7rlH+pubxTZNsWMxSRqGRE6ckMGDB8WKRGTgwAGJHD8uyZPG27GYmN3dEu1ol7RtSSI6ICd2vyEfNf5ITux+Q8zBTjmx+w1J29Yp9Ylov8Qjvf/pmFQyLid2vyHxSM9J671iJ6K57Vxfy/y7edN2Qk7sfkMcy5JMR5ukD7eIY1niJBKnLi1LnERcMrl1VZ9a95LYD98jqYbfiJOIi2MlJNPXIxnTlExHm2T6e8WJm5KJhCT1yh8kY4TFsRLiGBHJRMJqv90dkmr4jWTaT0i6pVmcWFScpCWWpV6xWExaWlqko6MjV9fV1SUNDQ3S1dUlLS0t0tXVJbFYTBKJhBiGIZs3b5ba2lpZt26dRCIRicfjEo/H5fLLL5cHHnhAHn74YWloaJC2tjZpaGiQWCwm8XhcioqK5OOPPxbDMMQwjNzcDQ0NYlmGdHTsknXrFohhdEg8PigtLY3S1bVP4vGQRKM90te3X7ZvXyOHDm2URCIsiURYtm79i9TUVEl7+y7p7z8oiURILCsmF15YKytXLpNEIiyWZZz0isq+fTulsLBQWluPiGF0uPvsFNPsF8PolHXrFkhX116JZFLSKCK9ItIvImERiYqI4a7HTtrO1oVFZFBEOkQkJCKRk+oWiMgud0zUre8VkU53fHbZJyIb3DkGRaRRRHa6bYlIQqyYJZZhidlvSqQjIlbEkmh3VMw+UyzDklhfTFoaW6T7o26J9cQkEUmI0WmovlFLEqGE9B/sl66PuiTWE5OHeVga6hskEU6IFbEkEU5IQ31Drr5tW5s01DdIfDAuiVAi19foNKRjV4dEEhHZ37df6hvqhYeR+oZ66TP75NPeTyWcCMtgfFAMy5BwIiz1DfXSG+v9u759sb6/m+PT3k+l0+iUTqPz78b0m/3/w/73PnSvXDj1Ahn85A8i/dtFIgdFBveJbKmXd175mdRUj5JMIiyS6BPp2CBihWTZw9+T+/79JhErJPGBI/KZ82pk7c8Wi5idIvFOkWRExI6KWCGR5KBaWv0iW+pFXkIt+7apZTIskugRSYZE7JiIbYikLJF0SsQ2RZJRkXRSbWdSahkfUH2yL9s8aTsp0t4kMnBQ9U/GVF12bNoe6p+MigwcUMtoh1rPpE+9ecuk1di/rbdNkZ69Im/Ui/TuFRk8KGKFRbp3ixxpFDF71b5796k+3btEop1qX1ZEJGmIJEIiRpu7/86hsfG+oXazR6T3o6E5LCO3XzvaJZFETAzLlN7ooHx/w09z924xKy7heFR6o4PSYwxIl9Evx/rb5cRgp0QSMekxBqRtsFPMZFyilikxKy5tg11ysGfovqy564j0Rgdlf/cxaTl8UAAZXVstZ086Vyaec6Z85uLPSNQy5U9vvCpTpk6V8yafJ2effbb8YMVj6p4xmZBYLCb19fUyfvx4OeOMM+SPf/zj/84t9P8tBWiX/wKnnuZcny6ny3/zko1cL1u2haVL5zBhQhmOIxw+HOLpp7fx5JNXuv6pGum0g9erY1lpfD4d284QCCi7C9vO8PLLn7JtWzuPPnopsZhNdXUx3/rWeh5//HIGBhKsXPk+a9bMI51WImI+nwePR+Pf//1N7r57JmPGlBCPpygZ7qM90sML217lm9O/RH8s7IqXFbP83V+w+cguVn/xHiaPmoiGhs/jwRGlXG0kDAI+pRxr2gkKAwUU+PJ45K3n+Ob0LzG8oIRVf/kNN178RQShwJ+nLLeiA5ipJPm+AJVFyorhZMuQfE8GDVuJkklG2W9JQkWitTxOSRp0YtD7CIxczVCyYUalhIul+osB8fch8T6MeATMd6H4nxW/K/6BsvXSC1CatW4qNWk11oljOmUYtk1nNMrKpiaWzJlDTXExPl0nI4JH03LLtOOQchzsTIb733mH+2bNosDnI55KsaqpiTXz5uF1x+mahpFMcs9bb/Hc/PkA/PjJJ3nl5Zf542uvcTiRoLyggEvPPpstO3YQrKjATCZZevvtfGnuXG6pqxviUo8aBcXF5I0YQceBAwwvK1Nfuqz11pEj8MQTSrxs9OghiyhX1RivV0Wxt21TudZZSe7f/ha2boWlS9U+wOUqp1TquaYp4nN1NUbteWzZqlFertK/J0xQQ3R9iIO9eLFKFb/lllPts7Ke1iNHqpTyxx5TEensPCUlQzRwx1GR6kgEKivV3KtWKYVwTVOp6e3tao6fPuNQ4Df5l3/9Op9++in5eflUDB/Os08+zcTaWqQ4yCOPPsrv/vhHooZBLBaj9dMDlI0eyfSZM0kmbdo62gkEAnR1dfHeO+/w9RtvpOHFX3LRJXWUjxrFy3/4I5//7Gfp7+riwpkz+eMf/sDM2bOUd/anR+Cic8HrgWSKTCKBERoY4kDn55O2LPb+6EdMufdePHl5xLu6iPf2Unb22coH2D3P2VTybMnabPV+8glbb7uNuiefpOzcc0EEb16esuNy7buyPOuMbSOZDGnLwl9YiObx0LF5M2OunoeTtklZJv1Hd1I+cTqpRBRffhG+vCJSVjRnweUvKMkdw3825sSuVygZdRZVky8nk7aRjIMnkA8ipCyDvsM7XCsvL46TUtsTLsYbCCpObzJGnr8oF+kUTUPaW9FHjlap28HCHEcaN83b2fQG+qVXoHm9OG3H0UpKoXQ45DytL4OiIjQ0ZcdVoNL0RUR9l+0kBAJo/jwyb6xVllyTL8LzhX9Sb1QDG41QKJRT/M5kMjlBs2g0ypEjR+jo6GDatGnE4/FTfK8feughhg8fzmOPPUYgEMA0Tfr6+rjooos4dOgQw4cPR0To6OigqKiIkpISXnzxRX7+85+zfft2dNcGbGBgIKccfv/9d9HYuJDa2ks4++xrCQSKFb8c0DSdcPgYW7Yso67uAYLBSrq79zJy5BRuueXbjBhRwerVKxFRehZtbe1ccME0Dh36lGHDStFdr+o1a37Kz3/+Ah0dnTz77Bq++lXlTbtv3284++xr0XUfXm/A5XLvoGrc5zns8ZOvaVQwpNqtoSLLee4VOvf9GbqS48pFYQL7gItREegYKhp9BCVathjFuTZQ3G0ZuurjAN8GvoOKautAkZl0tbCETFKpvvvyfTnP61n3zcJoNwiWB8kry8Nf6CfaGWXHmh3M+/E8xNUuSZkp7LhNsDxI48JG5iyZQ9nEMiQt4EH5XT+2hbqldRRVFuHxe9B8Gul4Gift4CtQ3uZtH7Qx8nMjidpROqOdrGxayZI5S6gtriWRTrC3ey+jikZRGawkZseIp+MUeAuIp+Is37qcxXWLqS2pZSA+QGVhJcfCx1i2ZRn3z76f0YWjCfqD7ldW42j4KMu2LGPpnKWMLx2PYRu5fS6uW0xlsJJIb4SzJ57N+PHjKCosgHScQEEZ25+cCK1r+dovazlj+j/zyINuhFUENLB6P+HWu5ay85N2NBy+fPXneHTFkyoS/ekKlQqeP1pFp3feBpMegIIxED8B+38EU1YNfejeAjBbIX+kUvIWUXUZV2xD9w0pYjoptZ39YQ5dEd2FqD+KpKHSxtGUqFlWMCzLZc76sYujRMbsqIpMI+qY9ZO/qf9FSSdUVB1dRZcLR0LHVqUovnu1EkCLtsEr8+Gserj0x8onO2vjVTIezB7wFah9ewtUf28eBMqgeydUTFER9yyf+7I18Pat0LKW1D+9xbHCM3lhm/KjBhgRLAWg3wzzq51v8M3pX6I8WIojQp7XT5dr0fXN6V+ipqSSjkhvzs+6vLCMA73HqS6p4Npf3suVZ83kW7Oup6JwWK7fzdOvpaZ0JBnJ0Bnp44Xtr3Lfpd8gFDd4weVtjyoe4TrEQIGbfv7fsZz2uT5dTpf/FxTbTpNMKqDs93uIRCwWLmxk0aJZ+P06eXk+ysuDrge2UqP1ejXSafUUbfv2Di66aBSOA93dMdraIlRXlzB6tEpx9XpPHePxKC63x6ORyQimabNo0Ts8++zVGEaSsnI/aSfjpgZp2OmUSgdC6Iz00XOSaNnN06+lrECpgd80/VpqSitIpJL0RAf51c43uOHiaxhbNoqZP7kxd0E++eI8PFia813MXsQ1NAQhkbKwUjZFAR8jC3Q0zQeaH/XnmUGx8dInLV2VcEmpVG+yKbOaAuOaqzureaD7DhixRPX31nAKq08Sqq/mdee0FTDPCqbhEEkF6IrFeGjzZtY2N1M/aRLPX3MNJ0Ih8nw+yoNB7EyGjOOQ5/XS1NZGdXExfz1xgvfb2vjJvHl8+803mV1TwzfOP5/jkQgrtm5lcV0dE8vKOBoOM660lB898QSvrF3Lq+vXU1ZWRjydxqvrfPfOOykaM4al996LFY0yZ8YM1v3qV1z0618z8PWvU3nxxeDzse6557hn6VJObNumEGxWQczl4OZktqNRhVRB3YjcfbfKvZ44cQi5bt+uTKRraxXpuahIgW+XN0w8rsjO992nxNFsG7OoEsPQiERUVnlBgQK+48fDHXcoDvVXvqIweTQK3/ueei4wdqxS+M4KoLW1wfz5Cng/84wCy9GoAtNFReq+KRYbUhXfuhUmTVJtvb0qlbyoSPlgjxoFfq/JX959hy984QtomsaaNc/wckMDm//8Z55+Zg1//etf+dFjy5lw/nmMqamltESlxAf8frb/5a8MRA2uvGY+n3zyCRPHT+D2G2/k9m9/G1Jp3nn7be5/7FHS6TSppM3NN93EPffcPfSDz/q0aiiw7feR8ihQGGtvV/7UCxcSrKqib88eyi+4gB2PPMKF991HYnAQX2Eh+cOHI5kMViRCniuCp3k8Oe9q3eslbZp48vOVSnh/Py2/+Q1TFy3KqYtLOo0VieANBHKAPnzwICMuuADd7yNlGei6V4mQucDVSdtEug9hhXsYOelSNMDJpOje/x4jJlyML69QpVi71l0AdmLIB9vrz6fr0805QJ5OJvC6IDtHsj9pKZk0mq4eCOgZxa3OcaR1XflUezxg2+rBgUcxdMVx1D16ykZ6utGralRbJo3TfgKn4dfoX/k3tJJSxIigjayCLEjXPSAOYpqQtNCGlyOhfiRqoNeOA8fBaW9FCxaSGjaCmGnmRM3q6uooc/3ss97XAPF4nMLCQvfnJTz++OOsX7+eTZs2kZ+fn7Pqevzxx2lubuall15SERKXay8i/OUvf2HhwoX8/ve/p7u7m1mzZlFUVIRt27n9X3PNVYTDRwkGR+Lz5RMKHWXr1uXU1S2mrGwi69ffSlXVNCZMuIK8vGHoupeVK1fz2mvreOedd0mlBojFuqipmcXy5T+kuXk///Efv0Ak44qYaTiOjeNk2L17O3fc8QCbNq2n3LU8U77YDps23cOMGd8hGKwkECgm5c3H0DQimkYJKoU7m7qdvaJnAXUa9UhTQ9lpLUNZdmVTu4MoHnUCpQo+H1iAsuZyH4GewonMCqGBSgm/D3jxJJ/rK5+6EoCkkSRYESQZTdL7cS8F5QVsW72N+T+fr/5C0g6arpG20iQjSQIlAcWV1lwhNI9GOpEm2hlV/tUP1FE2oQxxlEhaztd6iarPJDIkQgnySvPQfTqZ/AwpJ4VX9+KIg1dXdovdsW4ufuFirphwBT++6se0RlrpNXuZVjWNAm+B4lZrHt5ve5/RRaOpDFbi8/jQNfXwxaN7OB4+TmukNed5Pb1qOl7dy/aO7cyumY0jTm7ffWYf5cFyovF+qoLDldyD5lFp04lOZY01aYnyqhYbPPm4JwH6mqBsskpl9pVA2lTq331bYev1UPVFmPww5I+C6BHwFUF+FTkQnLFgYLviZQfHgNUH3iCkIuArVqJoTsoF2w5k1cJFhnymde9QXZaHnfsyyBAQ1zSVUp4VEPO4YE8ykDKHQHgW7EtGqY9r/wuM2yyXW/MMKYi3rFWA+vNrFC/74vuhZJziUJ/clj3G7Lnv2qaOc8cKuPh7Kh38r/fAxYsUjztQot5P93bM0Z/lkbdfZFPLB1x51kwWX/5NQnEDgGebXs7VL517M17dgyMOj771fK7++3Nv5gdvv5Db/tas6ynNLyLtZFRwZNo1lAeHkefznzLugctuJJyI5vbx6o2rT9nf4su/iUfT8eie0+D6/+lyGlyfLv+nl3jc5tChQaqrixkcTBCPp+jujjFrVk1O6Cyddnm87g2YiJBIpCku9pNOC729JtOmvcDOnTcTDPoxjCSVlUE8Hh3HEZLJNOm0sG9fN1VVxZSXF1BQ4COZTFNY6iGdyeAg6Gh4PWq72xggz+9nWEFJ7oJ69Tl1PHDZjbSGuwknokwdfRYZhFA8QtSKM5gwmFp1Fo++9Ty3zLiO0vwiEimLMlcJPCMOPzjp4rx07s2knTSRRIyS/CJ++O4v+eG8b6JLbIgfja6i0xJXPOzhi8FTAb13KWVwby2kj0CqG/IuVAJnWhF4yiCxHXw14Cl35wLQIHUIBn4EFStd8TOB9DFIdUL+dDdiHYVMJ6S6SfgvIWyTi1wvnTOH6uJi+uNxzFSKFVu38tSVV9JrmizfupV7Z86kzzQZX1aG7TgUeL3EUynyvF5GFRWRzmTwumrBuqaRcRy6Ozs5Z+JExo4bR14wiIhQmJ/Pi42NPLRhA+batRw7doz+eJxF3/kO3731VuxYjM9ddRXJRALd52NEWRlP7NjBBa++qvjYhqGi1I6jQsDB4FD4NxZTaLWkRBGce3sV19pxhgBPtni9SkXsscdU6LmwUNl5ZTnbPT3w2GNEX/gDhqERjSpwW1ysph05coi67fWquqIiBYwtS3Gkb711KJK9Zo1S/l6yROH9TAYOHlR6bI8/rnYfjytcv2qVmm/5cnjgAQWoR46EM85QvOuzznTwpSzFty4pBMtm14a3uP6+73C8eT/VE8fz5zc3cWbtGPjksBI/m1hLjkDulnnz53Pl3Lnc9Z3vKMCcTg+pj7d3K1VwXf9PAykAHDqRUw5Pa0Lattn12GO0btxI7VVXMe2hh0j095M3YgTxri7yhg1j8NNPKTvnHBJ9fez/xS+YtHAhgdJSQgcOUFBZSfPzz3Ph/feTDIVyIL2wuprtDz7IOd/8JrrXS7y7O9c3O/7DlSu5cNEi0DQSfX2UnjmBjo/foffEJyx5+lWOdvSTn59P+fBhPHTXAi6+9Do8vgCP/mAZv3vpt3g0hxEjytn6wU7SyTgf7v2Ie+/7HjHTRNM0frTqcT7/+c+750By50TQyFgm3rxgLuKcBc+STqHpnlyEvGbSXAVyjQh67Th17UunwR9AwgNKnMzjVZZdyBDwHuzH+eA99LlX5x7cSXcn+ugaMpteR7/qWgXM3WMTjaGoOILm9UMmPQTos8fXfgKnqpYMGhs3bmTatGmUlZWh6zqO45DJKIvE7u5uqqvVfZrjODz66KNs3LiRV155hYKCglzU27Ztzj//fH784x8zbdo0tm7dypw5cyguLuatt97izjvvZN26dUyYMAHLsjBNk7KyMoqKinL/AWCTySTxetWNq23H2L//T7S3f8AXvvAMth1z66MEAiX8+MfP0tDwChs3NlJWNoK2tq2MHn0xkUgr06bN49lnf8pll32Ojo4dVFZOxu8vRiSDiENn5y6+9a3HufHGb/BP//RlQqGjRKPtVFfPQNN02tqaKC0dR7BsHBmPn4OaxkrgCWAABZofQCmF3w08hbLrWuHWVwIfosBzIwpcZ9W/RwF7gGkoEbOn3J9UJ0qwLO72fQDliX3kpHnfAxZGLNq3tTP64tF4fB7EEeL9ceyETVGFijBnxcxKx5QSOh7Cl+8jWB5UauJpBaYRcuBZ0mqZjqfx+Dy573i2rXFhI81rm/mXxn+hpKaESFuE4pri3Lyp/BRpJ62ywXQfR8JHWLZlGYvrFtNutFNbUkt1cTW3rb+Ntc1rqZ9Uz3Pzn+NE+ARtRhvTqqbh1b18+81vc8+Mexg/bDxZ/futrVuZVjWNHR07uL7her541hd56sqn6DA6mDhsIt1mN28deYsdHTt46sqnyPflU6AJWuwINC9XEefCCe5Zzj7QFsjEwVOgIs9WDwyfCekopGMQqFDnoK9JgeV4mwLVeaMUAE50QqIXymeqaV1lcs65V4HqETMUiDYOKh/scxZB6QUKaJ6sCK55lK91YhCGnTUEit2/dnXNdfMgnNRQtFr3qe3ej6Fi8hAIFxTIj3UosJ5JqjZPICcsiab/r4FsUCJn4cOKL32x8pcnOFIdrwgYx1TbZ76rlMZTcTeSvRgKa1Ug4M93DgHwmQ/Dr85V61e8AOFjSgBt1HTiniCt4R5+sf01bplxHVUlFZh2AhHJRa5vmXEd1SWVCCrLMOsOc8uM6xhdXJ6LSGeBdIEvgDqTgobGJ92HmTzqDNrDPbyw/VVumXEdPdFBWsNdTBl9Fr/a+cYpkeub3ch12sng9/gIBvL/187f/4PltFr46XK6/L+k2HaaWCyJbacpKPBzxhnDCAQ8lJcHaW83mDy5gmg0STrtuIHEjMv/AF1X6aFFRX4Uq1QwjCRXX30GI0cW4vXq6LqmHu7GbO64YwNtbQYiwvTpVfj9HgoL/eza1YnPp8Q6uqMDLH/nF3RHBwB1Qe0xBzEsk8F4JCdadvdnF9Bl9PPrnY2cWT4GM2XRHwuR78sjbEWpKBwGwINX3MLo4nKC/nxK84uxMylMO4FH07nZnesbF8/n465D5Hn8DA+WoiEsuvQbKnqT6YT+h5SYmaaDp0QB6+hatXTCQ8rgZGBgpbLdciKQ6gIxoecOVZdqUynfklYAnbRSFs+fpoB490KlTK4Vqv49d0DqqPpTdufN7/93iv1+zhg+nDXz5lHg8+HTdcqDQVZs3cra5mYiySRPbdvG/bNnc+bw4VwyZgw1xcWMLSmhIhhk4rBhVBUVcTwc5lsbNnBkYAA99+etUVNdTV8sxpqNG/nD22/zxl//yjtbtrB8yxZea21lzX/8Bz954w2OHDjAt26/nWQmQ7C3l13LlvHxH//IvkmTePeZZxSwrqtTIHrUKAWWbVvlXeflKdWwWEwh0iNHFNo980w4/3wFxru6VLvjKAGz3l6VNltbC2+9pVBsRYVCrv/+7wr5jh4Ns2ejiUN3Nzz0kMLroA4jlVJq4QsXqmVZmYpkHz2qMGoqpVzAenqUX3V+Pvz0pyrincmoQ+ntVW8L1CE6jkobDwbV4VxyCTz9tHobQVeYOxgEHUHTNQWEBWjt4ukXnuNLV8/H+PQgPf39vPbS75k+7wqmf/tm/rjzfdA1iCXUzgTa2tr463vv8fUFC1SdrilQXVIIHT3K6svj5qtnXE9rO+U+qHAnKS5UfXxeHMfBjkaZtHAhtVddxaRbbyUZDrP+mmvYvWwZwaoqvAUFDD//fFKxGPt/8QtaN26k+bnnSJkmecOG0fz887Ru3EgqFqP5uedy7eI4CmRXVdH83HOn9M2Ob924kZQrmrb/F79ANJ3yidMoHnkmt935HfZ/2sye3Tv54rXXsXTVr/AGgix/8D727t7Jh7u28e6fnud3v/8daBqeQD5f+eevcf89t/Phru38/ncvcdNNt2C6wmGiaTjpNJmUjaRtPIECpSge6iAVj5BOxknFIyQiPYCg616MniNqrBFBCxYqgbJISAmPpdMq3TtqqHo7CaFBJBFXiuVlw9Fqxqn2Ta+BG4EWI4w+71o0XXNdeFw7LsdBqxhJZtPrEIsiTgaJm+pBSWgAp/UYWjqNXj0WB3XtveqqqygqKmLTpk3Yto2I4LjicRUVFei6TiQS4fbbb+fNN9/khRdeoLKyEsMw8Pv9DA4Osnr1alKpFHPnzmXr1q00NzcTiUTYuHEj3/rWt/j973/P+PHj8fv9lJaWMmbMmFzk2jAMF2DrOE4a244xMHCQTZvuorZ2NnPnrkLTPPjd9OD33nuMH/1oFevWvUFj4ysYxieEQkeoqVGWP7t3Hwa8XHrpJWzadA+FhSPx+4vZv/8AIg667iWZLGfv3n309TUQDh/B58ujsHAk69ffxuDgUWpr6ygqGoXj8eG4wHotSoxsmbu+Aoi46xF3O1sfRoHnepQd13K3baXbdzrK1uvn7jLitpWe1HeF+jc4Zd65KMBbNb2KjJUhaSSJdcXwFfgorSkl2hXlrUVvoekaJTUloEHR6CIKK12xQwfMAVeITEN9fzLuNUXAm+el7YM2wseVyFn4SPgUX+3q6dVsWbaFYHkQX4EPf9BP2k6jo2OlLbrNbtKSZtmWZaxtXsuqplVcMuYSRhaOxKt7eerKp9h/x36euvIpEqkEHdEOjoSOMJAYwM7YrNu/jq5YF22RNpramgC4cNSF3L3pbqqLq3n5Ky+zdM5Sgr4gpXmlnDBO8NDmh5hdM5tVc1cR8AboMDoUAG1e7npTr1T/u7Gj0L/dzQ7zKRqV7oXgOBgxS/VJdMNHDyrA3dekItfxNiivg6IzIPyRuv7F22H4Z5StlGQUsM75YE9XmWMiat+5Y+BUlW5xcxJKxkPFBS6wdksmqdLAJZPLvEF3AbTmUcrbIlA5dQhYZyPNuqs6rmnKTzvWCbiR7vARSCWGBM7+Z4uvAIadDXOfh+AolR6e6HeBOlAyQUWs470KXGdF0bYvx7V8UCnjZ9XD9KWqz3WNcNkzan6zQ6Wdv3sHAKOLy/n+3JupLqkkIw4Brx+PrjOmbBQPXnELVSUVpJ00GXF48q8vsbezhW/Nup6qkgriKYtRxSN48IpbGFM2mgJ/Ho+98yIzf3Ijj771PL2xQSYMr6bDtV9dOvcmRheXc/7oMzjQc5yKwjKWXP5Ngv58qksrefCKW1TKuCvA6ff6/rMz9A9TTkeuT5fT5R+gxOM28Xia7dvbqa0t4ayzhrvp2iny8jxYVhrHEbq6YixfvpVFi2YxYUIZbW1GDjynUhkyGSE/X6Uher16LtCYyagU8L6+GEVFedh2hljMprKykLa2MK2tBtOnVxMIeOjtjVFZnX9Kqs+DV9yCjoaD0BcLUeDP43B/G+OHV1MYKMhFnv/8rZ+RcRxMO0HQn4/f6yMcN6goGo6dTmEkY6RSGXw+D2X5xeia7qY9Kr62nUkT8PiwMyk+6T7CyKLhlOYXMTxPR+9ZqMBzUT2M/Bmk+0+KXC9Rkejeu2D4UpXmfXLkWvNCz51D4yvXoP6tstEFP6QOgxZQAD63n59D962n7jd1VM3rqyHhlGBSTjiRYHhBAV5dR0NZaS13I9f5Xi+tkQhthsG0qip8us6xUIiRReomIOjzcfuGDbz08cccuvNORhQUkHIcdnR0UFtcTJ7PR2leHmFXYdyn6xwJhVi2ZQs/v/pqEul0Lnr++7lz0RcuVAhz9eqhsO8LLyhwnJengMjevTBjhgJ6uq6QbDoNe/aoXOpYTEWvCwuHotZZPnYyqebJ8rIHBlT/MWNUqPnSS+GrX83Nbegl3LJQP8U223LdjbZtI8fFnj5drWcP99gxxZd+/HEFxv1+hfMV9UG1LV6s0scPH1bbDzygto8eVWB7+nR1qFk6uM8HeQEHr22ht3VBzUjID7D8B8t447VXefcvf8GKxhg+poZHlizlwYce4vjRo8y69HO8+czzXDD3UmXTZdn84IElfNxxgrW//4Oy7wr4lbJ4wK9stmJxBbTFZQlrgJ0Gv3foh589hxmHtAaOu51JJPC4/OidjzzCOTfdRMHIkcrHevJkMskkid5eFbm+9VYVud6/fyhy/b3vkRwcpPm55zjv1lvx5OXhycvDV1hIrK3tlMj1ebfeir+sjA9/+EMu+t73ECDR20vJGRNIhDsJFI7A4wsgImTsOHv2fcJXv/Z1Drd8yriJZ/HWxjc58+yz0URFhkQc+gcGGTN2PGY0TCLcQ8GwUUyd+hke/P5SrvnClXgC+UOZlk4aXffS8fHbjDznEixjgIJho3N2Xj0HtjBiwsWkElEKS6vQ0ilXsbsQ8vIhZeNs/TP6nMuQSBjn9y/iueN+9Z1N2ThNf1URa58fp+0EhAbQxp+BVlSS86+WSBituEQB9+ISJBZDrxkzdEMOkEoiHq+KWqdSSG8XWnEJ6cJixOvLZRANDAxQWFiIbds5ay4Rwefz8etf/5rbbruNyspKKioqEBHy8vJ48803CYVCLF68mAkTJvDII49g2zbJZJKioiLOOussEokElZWVOI6Dx+PhF7/4BZMmTcJ0U9KDwSDd3d2Ew2EmTz6LWKyTzZsforl5LZMm1XPNNS/gOJlceve77/6Ma65ZzNixYwgG89F1L4GAn61bNwM63/jGDYwbV8OSJfcRjXa5qeKz+eIXv8iBAx9RVlaF1+vlO9+5nXPOSdPa+h7z5/+cxsZbaW5ey513HiSVShCNdjB64lUYmkYfClQ/hUrrXo7iSlegVMGfYihyvRgVuS4CLHWl5oQ75n6Uh3UxQ5xqL4pv/beR6ywXOxu5Xoqy+MozLJXF4Ai2adPzUQ+jPzMab76X9bet5/LHL0fTNXwFCgRoHg0npfyuPT4Pmlej7f02Ks+vzLV7fG72gwZ2zObte9+meW0zk+onMf+5+bkItu7TGTw8iNFmMOaSMQrcd8coOq+ItJPGEQe/x5/jTT9xxRP0x/tz3OqKYAV3bbqLxXWLCfqCVAQrODR4SPG065YQ9AWpLKwkIxl0Tacr2kXQH+TVA6/yXut7PDf/Obyal4wofYBvrf8WL338Ui4SHrNj3PPWPfzuSy+ip6JoqYhK3/YWqvTuvAqwehUA9rhUKyfl0qiAHbcM+VWffQ8ceEL5VutexUUGN128Ql0FRFR6eaJLgflJS1SEO1sSXUOp6EVnKjCesf/zCHUuql09lFIN6vgyNviLT7r+WioVXMO183Jy3th4/MrTOhvhzl4HTuZil45X7+l/p2RBvCdwKrBPxdUb0X0KxO9YrpTDSyeoVHUnDd6AOu/igHFUge/pi6F4HLx9C7SsJX6HQSyVwqPrDJgRFYHO6tz4AlQUKT2HjDh4NJ3OSB/Pb3+Fm6ZfS1VJeU7bQnej8444JFJJnvzrS9w47YtUlVTgiMPyd37B1y/6AqOKR6h7tsLhDAsWIwL5vgApJ41P95JIJ8n3BhAUTSHfjYL/dy2n08JPl9PlH7wkEinCYYtIJElhoY+PP+5l9uxaTpwI09oa4ZJLxgCQTjs0NbVRXh6kr89k+vRqtm9vZ8yYEgIBL+XlQTweFZ02TWUrUlzs5/DhEMuXb2XJkjrGjSvLRbb7+kwsK00g4CUUsli9+gOWLJnD2LElePPAtBPEknEKAwUU+vNxRGiP9PKiK3gxulhx7Ly6J5cW9NAVCzHtRA5cFwby6TfDJFI2L25/lZumf4mKwjLSjkMsGWd4sJQeY4Bec5Azy8ecIqrxjc9cTSgRpbqkgpqSIrzp4yoqPXwp+Cag2HpZrrWPU9l2J0niiK3406mj7vjFoBWAt+Jv+rrrqaNDqea+iZA64o5bAr5x7qfmYDsBBizlDxz0+bAyGWVfrOv4dJ20CF5dxxHJCZvFXMugIr+floEBVjY1sbiujopgkLs2beKFa67hqAvM7505k7K8vFyK+eI5cxhfWkprOEzA66WysDBnidEdi7HpyBG+efbZBI8fR2tvV9zo5cuV6NiYMQrRdnWpuuefHyI0P/CAUgDLAulYTPGmH39cAe8sqVnTFOC27VO51ROyqYKoqPfYsQoZr1gBDzyAfca5tBz10d6uMXu26pZ1kTp6VB3O4sUqIn3zzWq9thZuu01Zb9fVDQFln08B6wcfHHpu8NxzKvqd3X7mGWXvPXkymKYKoGcj4T4fFAczeA4fV5Hl8jJ+1LiOP/zhj7yzcSOlHh8UF1I0rIx9u3czfvx4AL5SX8+VZ53Hzd9fDH4v0nKcCXM/y7MPP8aVC/55KEKt63CsQ/liW4r7jN/r2m7h9hOImgqE5/khkSSta0TbWlWa9q23UjByJFZ/P76iIrz5+Wi6TqKnh56dO6mcNYt8N/0+a6sF6kbISacV19qyiBw8yPALLkD3eHAch0RvL+lkksKqKuUu5fUimQy610sqHsfj9aL7fGRcGzZPQT5uziuZVDInMnb/47+mvKKSRx55mIrKUdx3x7/y9ta9aLqX73z7Dr583TV48wqZOPEMVqxYQf31X2bHrt187nOX8oNHvs+9996n0qudDGh6TpwMx1GRV00jZYbpO7KDEeMvJh7qIB7qpGryXDRR1AQty8dGwIxBIo7ETfSascpWK1ioOMwbXkGfMQetpEwJlgWV1JXT3opWOUoB7tajaMFixDTQq2oRK6Hsu+ImEo2gVY9BcxwF6ItLkFgUrapWHasZI1VYnAPCgUAAv9/PwMAATU1NzJo1KydKFo/H8fl8p/TLAnLHjeY4joNlWTkOdnt7u/L8Tqd59913ueyyy07573j77beZO3cuHo8Hj8eDbdu8/fbbzJs3l3Q6RjTaSVPTSubMWUJp6XhCocNs3bqCuroHKC0dC+gMDh4iFuumuLja5WY/QEnJWEKhIzQ1raSu7gHKysaTydiAxoYNt1NTM5uamtk0Na1k1qxFFBdXE4t1U1Y2gXD4KFu2LGP+/J/T2vo+RUWjya88H1v3UOBeoT9AgeOsuJjmXoU9brt20noPimPdjPLEzoqcvY/yrZ74N2M46YqeRvG5s3VZlQ4HCMSSOGnHxTE6OJBJZ4YAMopjHWmLEO2IUj2j+hR6hxIS1JREh5sinrXz8gf92KaN2WuydflWZn9vNsMmDiOdTNOxvYPimmLFxXapXbGuGJsf2sxVv7mKw6HDrNi6gsV1i5lYNpFWo5UCXwFL/ryEaVXTuGLCFZTllXH2M2fz2+t+S11tHR7Nw23rb+Olj19iw9c2MLN6Jscjx3PzFPgKMJIG1cXV9Jl9jCsdRyKdYHvHdmpLahlRMIK7Nt3FkjlLqCioIM+Xx2/2/YY7L7wRPXZMRYynrHK9pzXoe1/ZXe1frQBvYAR8eDec+4BKHTePqUj18OnqbGu6enC9517Ft/YGFeh10kogLKez4H5SyT4X9HrA4/bNJNT1yFdKDknbURVV1jxgGy5QDai+mZTyolYpKX8jfOZ3v3QuZ1vznJQ+ztDn7GRObfvbdPSsJdf/rMjZ/0zJRc59ylYrGVYCZv5iiJyUUl48Vu337YVDaeJznwPjBGxfRvyKX3F8sIuKwmGs/Muv2dTyAWv+6X4qCofRGxvk7IqxuTTwm2dcS3VJ5ZD9lgiOezJCcYN4KsmL219V/Yor0DQ99+DGtBOE4lF6YgM5u69s4CSbVn7T9Gsp8AXI8wVy95TFeUECXv9/eSr+/1lOp4WfLqfLP3hJpx06O6M89NBmentN5sypBYTKykKmTasikUjR12ei6xqzZ9dQUhJg6tRRBAIeN9rsxTRT3HprI8eOhfB4oKDAp3Q7HKioCLJ69VyCQR+ZjONqTwkjRhRQUOBl5MhCxo4t4dFH67j11gVMnXoe0z9zMV+6+hqWv/wsA/EIGSfDsh88xsypF/OThQ9xxeVzlap1Iso3/u0bXDXr87y55AUuv/Tz/OX993i26WX6zTAAZfnF/HrnG0ypOhO/x0fA66c/FubZppfpMvrpjg0wcUSN+u8Sh1+5fYP+fKZWnUVhoEDxxnzjoOIpxZvuXqh8qlOH1HrqEKQ7VZ0TVVHo7pshdQJ1O5VSgLxyDaTaQZJuffZfU1Mguvte8I1XEWvfeIhvU8vKZ8A7SvG80+0gQsoRekyTuzZt4mg4TMZxuPPNNzkRiWC4IDrtiir1xmLEbBvTtvG5ys5PbtvG2uZmlm/dSp7Xy3Pz5yMiLHdTyld/8MEpKebLt2whI4Lf62V4QQFGMkmfaZLKZDg8OEhdTQ0FoIB1ebkK9z73nDKS7u1VyDJrBi2igPXatQoE+/0K6S5cqNDrtGmqf2fnUD53QYECz7fdNtRn+XKFXA8fVmHloEo5ZcWKobkdYfx4Rd3WNDU0GlXdTvamdhx45BGVzp1OK471P/+z4mhPm6YstVMpBZbvv18B6cWL1VvJWmwvXaoy2uvq1POAShVUwuNRbyeRUM8FpHYUlJfxxGsN/P4Pf+DtN9+ktN9QaeJWkn+57sts3LQJLJvBHfvYsWsX519zlVL3Bv58rIW0CHO/ej34T4pqeDyKmw0KOGej1BkHUmm1PNIGwXzV7o5xxGH/L39J+dSp5A1TNIosxz3rZ503YgS1V11F/rBhSCZDYmAANA2rv59MPM6Hjz/OiQ0bSPT3o3k85FdWonu9SsU/lSLW1oau6/Tv2cPLM2ey/fvfVzdRmYxSCk8miRw7xs5HHsHs7lbfcStK16eb0b0+vP4Cfv67jRzc/wnLHvsB6ZRNOp3GVzSKbdu28fvf/Zb77n+A5pajaOKw7uWX+dWvfsVFF09nzU9+wuzZs/DoWk6QDE1HMilSSRMch5QVdb20I6SsGJGuFvqP7qSwfAzlE6cPcf5tC4kZ7jxAfgGMqFTAWtNwtm1VXyA09HnXgu4h8+Yr4PcjYZXSrY+qAq+XzIY/oRWXQGkJ2qgqBXYLghDIQysuQasdj+YIgqDXjkMrG45WMxYiIZV+nlK/82g0yubNm4m6X+zi4mIuv/xyTNNERGhvb8fj8WCaJps3b8brVTSALE86y9G2LItUKsWGDRuIRCJUVFSwfv16otEo8+bNw+fzoes60WgUTdOoqqoiGo2yYcMGQqEQAPPmzUPXNfz+QoqLq7n88pUYRgciGbZuXUFz81q2bl1BFkE0Na0kGCxn69bluTaRNE1NK0/aFiwrgqZ5qKt7gAkTrsi1NzWtxOvNQ8ThzTe/TWnpOObPfw5N81FVNZ333/8heiZFlwjvowBwNTBWXZXZAhxC3azGUSrguFflo8BhIADMdo84gRI1m4XiUh8DbkMJm2VBevbK7kVFrL/pzpVAgXVBdUgn0pi9pgLZGmTsDMloEiczlO7tK1Ae121NbTgpR3lXd0TIJDNKMVwgPhAnbaXRPTpmrwka+Av9lE0s49IfXEqwIogdsxFHqK2rpWxcGYgC7+IIgZIAsxbNIiMZVmxdkUsFd3AYUTACO2Ozau4qZtfM5qHND9Ed62bnzTu5cNSFdMW6iNpR1sxbw/479jOrRs3TYXRw78x7aTfaKckrYWXTSvK8eVQXV3M4dJi7Nt3FBZUXMKJgBIX+Qn7wuR8wrnQc+b58fJqP2TWzyWRS0PIkTFmpAO+OhWAeh/LZClh3vK5AtCeg6g78aEjgrKAKdt2hos7925WP9ZQV6uzvusONPicUn3rX7UoALQvE80aCNQC774LoIUgZLtj2qWhtJqlSurMRX9tQvtHZqLPmUaA7C4jtqALVkWNDkWw5CVjnthlazwJrxFX9FvU+/cVDquGZlHofTto9LhvsmNv/f7N43HR0bx7kD1dAHoE/36FSvrMp5Y6t0senPeCmiS9Wx1cyAeY+hyPCb3dvwOfx5mh3k0dO5MXtr1KWX0QsGedXO99gU8sHvLDtVTJOhtZQN3s6DmCmLJKZlPKlD5bw65P6pcUhIxnC8QimnSDfF6AnNkCZq4+TTKVyWjo9sUE2H9nFr3e+wfBgCfm+AD6Pl4GYuqf8Ry6nwfXpcrr8Ny8isHJlE2vXNtPVFePo0TC33NJId3eUSMQiEPAybFg+mYyy4RoxooBg0IemQTSapLw8yIoVW1m7tpmOjijRqE0m41Bc7EfTFNAuLc2jsrLQ5V0L27a109oaodLlkAUCXkpL87j77jvYvftj3t++nYKzR/L7lc/xi+2v8cyaZ/j44494b8f7fPu5R/jtS78lblsEfAHmXfMFtu78gDf+spF77vsuC//tm2xq+YBf7XyDjOOwr/Mgd392AVNGn8WzTS/THumlPx5mU8sHvLR7AxdVn03Qn0+ex8en3UdP6dsR6SPP68fB494Q+aD3Xoi+pLjUAyuGONeeEsWj1gKKF53lX2vZqDQqgl1Qd5Lqt7jp5QnVd9itLsi+VUWwC6YDGdDyQPOrtPNj50Kmm4yTyAHfFVu3ErasHFgu9Ps5Hg5zx4YNRG2b4QUFFPr9BP3+HBhfNXcu9ZMm8d2ZM+mPx1Xc3XFYXFdH/aRJLJ0zB7+us3jOHOonTWLxnDn4dJ14Os1t69cDEE+l2N7RwbSqKooCATSvV0WsV69WSFLT4MMPFTIdGFBqYPX1KqK6aJFav/9+Ba6zSHflSpg7V6HRlSuH6jRtCJBn+yxZoiLgK1aoCPcZZ6gc7yzaXbyYlO7n6FGN3l6VBV1ZqXjUmqYAdGOjAsUiKnhumgrT33mn6h+Pq3XTVGLlx44pOvhTTylF8LvvVsLka9YM8ao1TeFcV39KObh41fMBjxe0pE27lubexQ8QDoe59Iq5TPnn65h+3XywU6x49FE2bnqL86ZO4ZIF9dz/bzcx7eJpKuJs2bz42//gxptvQg/mD/Gn/T61flJ0C0dUKrjXo8C0R4fxVergHFFK4a4l1pR772XEhRcS2r8fDcivqMCbp0SpxHGQTAZN13HSaXY99hjevDzMjg4+fuYZrHCYqfffz4ipU9V2fz/BKgUWzfZ2dj32GHnDhhHv7mb4+efnON2614um63gLCtA8HpKDg5xzww0kenpcVeQoo879HJrHx+MrlvPmu1vY+NbbkAxTUlxEYWEhX//61wEYU1vDrJkz2d60hY6P3+HcM8ewvvENdu/cxi+e+ymdHR1MnjxFqUmjIn8py6T3YBMpyyCViBLpaqHv8HYKykZRMuosyidOx5dXpGy+RD2oIhoFlxfttB4FI6zOv6ajCehzr1ZR/ZgB6TQSM9Bqxir1cp8fLVisotCOoM+Yg/PhTjSvH82nXhI3IdRPZsOfINSPWHGIRsk0vowM9KnMjaJiPFd/GUrVgxC/309NTQ2maWLbNh6Ph0AgQG2tinBXV1cTCATYtm0bzc3N6LpOOp1mYGCA1tZWQqEQb775JqlUCsMwaG5uZuvWrdi2TU1NDcOGDcO2bTZs2EA0GqWkpASPx8OECRNoamqipaUFwzBy4Dv70DAW6+Kdd1RkWdN06uoWM2lSPXPmLEbXvWQySerqFmOafbm2urrFaJqXWbMWuX2Xoute8vJK0XUvZWUTKSqqYs6cJW7/79HW1oTXm89lly1HJEMqFae9XdXNmbOEjO5huaYxCRVNHgscsiy+eO21/PuZZ/K1Cy7g6rlz2X74MCXA56dPZ9aUKVw/ZQr/ft55VGgauz/6SP0uUNZdLfv3M7KggOvvuivHwxaGgo/iXuGz3O7lKIVyE1iIahRHKKwszCmy+4v8+IN+dJ/OwOEBGhc2ko6n8Rf4CVYE6dzViZN2KKstwxt0H5xpkFecR8f2DmI9irctjtC6tRXbsPEX+vEX+vHmedE0jdatrYSOhrCjNt48L2krjR23GX7mcHyaj6eufIoDdxzg2auf5Vj4GHe+eSfxdJygP8jKppWsbV7L8q3LqSyspDPayUObH6Ir2oXXTU8WEfweP9XF1az+YDXVxSr4trhuMZqm0WP2sKppFXfPuJuAN8CHXR9yNHSUoD9IzI4hCGlJs7JppVJYn/qE4vruXwkVlyj+tKbBhU9B3Z+goBp23g4jZqvoNh7IGwHNK1RqePNyFdn+dIUSKQO4YLlKp/YWgNUNI2YqcbMdCyF2TJ1UbxFUXqqE0Lyu8JWkwLFO5VyjKQXvyDH1qTspZVnlpIb42R6fWvpdznzGUv2dtBqT3c4kFTjPtklGAXMRBeYzScgfofqHjyhArelDHOxsunjaAtv8/w3Q1nTYfBc0/0otNU2Bbl8hpJPqIcLlP4fSMxUg13VIxdHRuOuzC+iODlBdWsnSuTcT8Pq4eca1hBJRCgMF3HDxNVx51kxumXEdXt1LbdlIpladTcDjZyAWZsU7v8C0Lb532Y2s+af7WTjjn8g4yrautKCEgNfPJ12HOG/kBH6zaz2bWj6g1xzEtBMMmGHOrhjLk1+6l7s/u4D2cC+PvvU8cduiIBDIZd39w5b/ygT7v+urqqrqf+zsfbqcLv8vK8lkSvbt65b6+gbp6zOlvr5B4GFpbGyRvXu7pL6+Qfbu7cptNza2yK5dHdLZaciHH3ZKLGbJ4GBcenqiEo1a0tlpSE9PVAYH4zI4GJcjRwYkHE5ILGZJOJwQw7AkGrVydZ2dhtxwwyvS2WlIOJyQnp6omFZCXn7rdSmuKJODvSdkdNVo2fPxPjGtuPTHQjJoRqQ/FpL+WEhMKy7NXUfkvSMfytG24+L1euXeV1bLgZ7j0hsdlD98uFH6oiF578iH8nHnIXnvyIcyaEbkvtefEiMRkwM9x+WBxp9Ib3RQBs2IGImYPND4Ezl/1Vflvtefkt7ooHzx+bvESRsi2ZfdJZIKiST2ibTXi8R3iKR6RdKDqj2xT6R9gYjdKZKOuOOiamlsFEnsFbHb3VeHSKpHjUn1q/n2o5bpkIixQSQdVi+7MzdvMhmRj7u75GB/v4QSCTEsS2545RXZ190t4URCbnjlFWmPRCSUSMjB/n75sKND2iMReXrbNqlvaJBQIiG9sZgc7O+XfV1dUt/QILs7OmRXR4d82tsroXhc+mIxaWxpkW1tbdLY0iLhRELqGxqEhx+W/X190tjSItvb22XBunXSaRiSiURENm4U6e0ViUZFDEOt19eL5OWJNDaKhEKqvrNT5NNPRbq6RExTZN8+1W/vXpFIRNXt3avqPvpIJBwW2bFjaDsaFYnFRPr71XzZOTs7VX04LGIYEg47cuiQSEeHqgqH1dC+PnU4+/apQ1qwQGTXLpHBQbULENm/f2i9vl5k2za1DIfVoS1YoHbn7kpCIfX2+/rUdk/P0KENDqrDOn4sI07UFGk+LGLERKykiJ0SSdoiqZR67T8qYlki2X5RU8RMiESiajuVUuPMuFqmUqpPf+jUMf0hNXcqpZb7j6r67Lpti9gpSUajkoxGpX3zZhn49FPpeO89SUYiYrkvs69P4r29kjQMsSIRGWhuFisUkvbNm+UPU6fKlnvukaRhyJZ77pGXzj03t52MRKR982bp/+gjad+8WRKDg5KKxyVpGGKbptimKYMHDsiWe+4Rs7c3tz544ICkU0mJR3rFig7KqpU/lKlTp0pPZ5ukU0kxQ92Ssi258d++Lj9a8YikbEt6uzultrZGXv/NE9J3dLccPdQs6VRS0nZCnn32GbnwwgsllUxIyq1Lpyxp/XC9fNT4Izmx+w1JJeNyYvcbEo/0SjqVlFQyLqlkQqzooKTthKRsS5xEXDL9veLEopJuaZZMe5tkLFXvWJakD+2XTHeHZIywpBp+I5mOVnEsSzIdrWq7u0My/b2SaT8hqXUvScaIiJNISMYIS/rgp+LEopKxLEkf/FTsh++RVMNvxIlFJdXwG7W97qWh/cVNSVmWGIYhfX19EolExLIsSSQS0tXVJQ0NDdLV1SXxeFwOHTok8XhcEomEDAwM5PolEgkJh8Oybt06efjhh6WhoUFisZg0NDRId3e3WJYlsVhMYrGYJBIJiUQi8sorr0gikZBkMimWZUl3d7e0tLTk9mkYIenu3ifr1i2QcLhNDKNTLMuQ/v6jYllRSSTCYlmGvPbaLdLd/ZEkEmFJJMISj4fEMDolkYiIZRkSj4ckHh+UZDImsViv9PcflFisTyzLcOdQ9QcPbsiNM4wOWbdugXR17RXTHJBDhzaKZUXFdDKy13GkU0QiIhIWkT8lEvLE+vXyFceRvSLy2E9+ItM++1mJiEiXiERFpE9EvtfQIBPOO0/qRWSfO77XtmVaXZ1c/7WvyYLvfEfqRaRTRPaISL2I7BWRdhHZ4K7Xi8hH7th6UTeaVtSS+GBcEuGEmAOmWFFLEuGExHpj0vVJl1iGJbHemMR6Y5IIJyQeikukIyLrFqyTSHtEjE4j91q3YJ20b2+X/oP90r23WxrqG6R7X7ckY8nc2K59XXJo4yGxDLWfRCihlpFEbg7DMmRv91654ZUbxLAM2d+3X57e9rQsWLdAwomw7OveJwvWLZD2SLuEEiFpbGmUvMfypLGlUfZ27ZUF6xZIh9Eh4UQ411bfUC/hRFhiyZiEE2GJWlEZjA9Kp9EpC9YtkO3t26WxpVHCibB0GB2yu2O3HOw/KH2xPkknDRE7JmIbImanyMAekS31Iv271LZtqO2XUMtkWNVZIdVnS73I4F6R9kaRwY9E7KhqNw6LDO4bao93njpPolckaYhYgyf12ydiHBGJ94gkoyIDB9SxpVNqvX2riG0OrQ8cEMmkVN/4gEgyptr/tk/aPnXbNk9dTxr/df+0LRLtUPMnoyJWWI1JhETigyLRTpFUXLWlk//rN4jppEjvPpE36kV6Pzp1jnRS7evkumRUZP0Csbv3SiQRk/tef0rMZFzMZEKililmMiGGZUo8mRAzGZeoZUrUMiWSiMn3N/xU+qIhiVqmGImYDJoR6TEG5IHGn0hLz3F3fFwO9ByX+15/Sg70HBczmRAzmZAWty5qmdLcdUTue/0pae46IjErLoZlyn2vP5W7p4taplip/41z8f9gAdrlv8CppznXp8vp8g9Qsj7XHo+y2IrHbYqK/Ni24lTu3NlJWVkeq1dv4557ZvDEE9t4+OHPUl1dzLFjYZYt28KiRbMYPbqIvDwvR4+GWLmyiQcfnMOYMaVkMsq+y3HIWXlZVoa8PE/O9zqVckilMqTTQukIHzfd+E1KS0v57uJFnDlmAvcuuZ+/vPk2djrFmMsv4If3PER5YRlBfx4Pb3qOb3zman6+eg2HDxzkp79+nu2tn1BTWsmkkRPw6d4cX/um6ddSW1pJWtR7e+ztF5hSdWbOuuFk3+ybZ1xHWX4RTiZORTCIpolK/e69H4bfD96R6gRmwiAWDDwOFY+DXgh4IHUMBh5z+dPjVVo3AtbHUDDDPfsubyob80gdOZVzLUkgA4kd4KsF31jVP9VKXJuALUK/aRL0+ynw+fBqGhmXSxmzbSLJJMWBAHHbJuVyK23HYXxpac6Ka2trK+XBIH2myQTXy3praysTysqoKSlh2ZYtLJkzh3yvl5BlsfqDD3jqyivxeTzcsWEDl9TW8k/nnMMwjwd/JoOWTKpoddb0OUtuXrJEyW5XVKj32tWl1L737FGeVieHfNNplU6ence2VYS7vFxFtUGlg2fnHTdORcv9fqUavnw5PPEEZsloZbd0ksJ3cbGKJGdLfv6QXbaIEiRftkxFp2HIHWzvXhWlLihQhzl8uIpkP/aYCsSPH68OwTCU9VY8rubr7lZvb9UqNbY4mEHLuD6ojgzxoo+2K5GzPL+q108OQ5NjEKjvXAaOdkB1JeQH4OAJqB6pLLhcPjdn1HJKKNtKQlu3qnfcqEfUJJXvJ2Wa6B4PA83NlJ11FqlYDF8wmPOpTsVi5A0bhu71Dnlh33IL8Z4e8svLCVZXE+/qyomY5VVU4PH5iLW1KS73LbdQWFOT2z7nm9+kaMwYdv3gBwyfPJmx8+fTv28fW+++m7onn2TkrBmkk3E6u3sZf8bZjB8/jsLCQkQc8vIK+OD9LbQd/oQ7v/t9jh07ijjC7XfcwW23LsSOR1j6vXt4451toGmcfdbZ/OTHT1FdU0Pqv/C8dtI2usd3ih2XSgzI3tCAFh7E2fIu+szPQmkZRA0laFb3eSguQ9qPo5UNJ/PTlWiTpuCZf72KOjfvPWVbqxmLVjMWp2mzGpsfxHn7DfQ5l6GVlJFpfBl9zmXg9UEqhbP1XfQrvuh+SR2IRUkVl5J0JCdeFggo4bfGxkaam5uZNGkSX/jCFwByKeDZKOn69eupq6ujpKSEdDrNpk2bmDNnDoWFhW70GSKRCEVFQ+rHHo9HcX1dnramablIeXt7O8FgkOLiPN5++zs5L+vCwtGuPzWEw0fYsmU5s2Ytoq3tfdra3mfevGfcKLaNx+PD4/ETjXbj9xegaR5Ms5stW5ZRV7cYw2inuLia0tKxiDg4ThqPx08kcoL331/J5Zc/juOk6ev7lNraOtLpJCIOhpOipLgqZ+BkoFQytgPlQB+Qv2sXN1x/PfuOH88pYGjAdfPm8Zkrr6T6rrsYj0oHX/b97zOivJzOwUHscJgV7oViISpKXQ88DPwZ+BoqWr4DuND9CRvAOJdz7aQdOnd2MnLKSDwBD5rrvKGd9NtPmSl8QXXNGzg0QHF1MR6fB92jxOpCx0KYPSbVM6oREeyYTe/HvUogLc+LOILZa1IwooBUPKXE0y52xdNuXc+Me2aAQHBSkIWNC7l/9v14dS/Ltixj0axFjC4aDcCHXR9SV1vHiciJUyy6pldP566Nd3H3jLupLallR8cOaopraDPaqC6uZmzpWI5HjtNpdDJl5BQiyQhF/qKcwNkz854hz5tHRpQDyYnICZZvXc4fvvQiWuwoJHpgxDQVWc4KlU1+GPJHg9kK8VYYMR30PHWGBTCPKsEyX7EbBRaVyuzxKeGznd+C4y+puaa/ALHjkGhX9luiDXlVn7zPac+psXrgVI50lgtdPFbtK9YORdWqHzDEwkfN6aRU1LuoWvGvM8mhbc0LxvGh9ZSp0q1zc/5Nfz3gRrwdkLSa28moaHtOTC0JXduhqFZZhZ3su/0/U3I8bK+a2+P/G3Vze6guY8PgAdi5kuSlz3AiGqa6tBLTTqBrGvm+PJdbrWGlbfweHxnHwefxIAIdRi890UEqCst4cftrfHP6l/iwfT97Ow6ydO7NAPzw3V9y3qgJzBxzfs4NRtMg416TTvHLvuJmRKDL6M/d/w0rKCboz/+H9rk+nRZ+upwu/wDF7/cSCHiIRJIcOjTA7t1dHDkSoqmpDccRZs2qYdiwfJYsmcPw4fn87GdXU12tVC87OgzuvXcm3d0xIhELx5Fcmnl5eSFHjoRYuLARw7A5ciTEHXdswDBUqpJh2Nx110aiURtN08jP91Fa5mfpww/y8f5PWPrIg8STcZyMQypp8+f3NjPj9i/y5s/XsnLtz4gl4zgi3DLjOt55fSMbX9/AT9aswUrZVJVUMCJYxvJ3fkEqk+bF7a+yqeUDXtz+KnYmBaL8nB+84hauOHPmEP9n+6vk+wI8fOVCRhePIN8XoKKwGC3dBukBBZxHPqP8p9EUsPaWKxCdPxMyfS4P+yikWofSxnHctHEvFMxSIB1wiVlq6URAC7qc6zPUmHSbUhr3liu+tiuNE9dGcSgU4tbGRsyU4idtbW3lSCjEltZWkpkMeV4vj733Ht3RKCMLCxlZWEhlMEinYeCIkOf14tE0qouLWf3BB1QXF1NVXMwZw4axYPJkZtXUUFtczHPz5zOutBQrlaLPNFkzbx5eXSfP42FxXR1fOfdcddOYTCq0uX27yqO+4w61PWaM4l+PGqXQ58KFCsGOHAlXXKGA8Ek+vziOyt0uLFTp5MmkUhlLJOD999VSRKHVbJo4KCDv8QzVR6MgTo7OfeKEwuOOo3D9nXcqUH3kiBIaP35cTVNTM2S/1duraN99fXDRRSrrPRpVYProUfU2sofg8ah5H3pI7cvrVX1XrlS87c5OdUoAV9xGVMq244rdVFcqxW/LhsOtCnBbtkrttmwFvrPF44GioALLoPyqAz61PG+i4l67Ql2kXAuu/ADUjnI52poC7yWFiOMQPnAAgIqLLiLR38/HzzxDor8f3esFx8FfWEjGthHHGbLZev55yi+8kLwRI9CAwpoapj38MMHqanSvFxFh/y9/mesrmQzxnh7OueEGrP5+JJ1myne/y4ipU9n5gx9QUFlJ3ZNPMvz885FMBm9ekNraMSTjBn9d91N2bW/iw107aWraCkD1xPN4+Y+/5cMdH7B7x1a+OHs8KStKOmly4zUX8u7apznwaTOvvPonampqlOXt4e259G/d46Nq8lz8BSWkkyb6SQI34qiHH7YZpvOTd5WquICz5V2keS/OB39F83hxtv5ZbW/9MxqCXjUG8vLRJk1Br/s8IijAPGmKUhTXdbU94Sycps25sdhJtb7lXUDDM/96KB2Gll8AZcPxXH09mj8ASQtsG6dpM+geYrEYoVAIn/vASdM06urqmDx5MldeeSW6ruPxeHKWWul0Gk3TqKmpoampCRHB6/Xyuc99jpKSktz71zSNaDSK4zi5V5Zbnclk2LBhA3ZW2yGdpri4mO3bt+P1Bpg7dxXnnPNlAFIpE4BMxmLLluU5nvT48XOpq1Pp4QCWFSKViiPiUFhYia578Xj8vP9+llu9isrK8/F681zQ3YfjpEmlEmzZsoyqqmnEYj309n5CdfUMbDvGpk13EY12UFI4EsMN9KRRtln5KO71anf5/NNPM/9LX8o9itJQdndb//pX9n/968wGpgBf3r6d9z74gAXf/jbZW3NB3ewuQQHrpUAt8G9u/YfA11Ep4X4UDxsB3aPjDXipnVOLr8CHx68eXqSTaU4uXteBw0k7FI0qwhf0kU6kSUaVyvewCcOomVlDKp4iZabQNE2Bdb/rnz0Yp6C8AHEEX4GPqulVJPoT2IbNjHtmYPaYSlTNUunb48vGs2zLMl5veZ3uWDcFvgLyvfnMqJ6BIKx8fyWza2YT8Aa4ZMwlBDwBVs1dhVf3cuebd1IeLKfNaGN27WzGlY7Do3moLa6lrrYul0reHevm+nOvZ+mcpXh1L/F0XAkEarB863LWNq/FcdKKPz3iMwo8nvuAArnn3q+ExXQfFI5Tqds771C8aietPK6D49UHkzLVf6bmUfzsHbep1O8pq9Rck5aodPHgWMivctuPuinbwIVPwtgFqp/mUf/f2bTsTNIVMvNDiSs26gmodc07lMqdtbpSH7pKny4Z54J0TW2XTlDfFs2j1nW/Uu4OFCt17mydyFB/jwvycZRH9Z+/rXjY3jx1bnAUl7x7J4ycpuozSf6H5X/E2fb4FbAOHYb2v6r3nE4MAem3blLLLMgedjZc9lMCHi/jhqkARMDrJ9+XRyZLr0Ejz73e+nQPacfBEYcXtilO9ovbX2NTywf8YvtrzBxzPrfMuA6PpuPVPdz92QVcfsZ0AOIpi4yTIeM4eFxht/su/QZXn1On0s1dBfnRJVlbsAoO9p3gHzHwe3I5Da5Pl9PlH6TYdoZIJMnKlU2UlwdpazMoLw9yxx1vcvRomMrKQiZMKKOyshARIZ12SKcdZs6s5tlndzJ16ihGjSrC7/dw//2zWLBgMvn5XgIBL7Nn1xCNJunoMFi27PM4jvDd777lAvG55Od76emJYRhJnnxqNW82rmf9+g0Eg0EmVI+nsLCQmfM+B8APv/Zd6mbXcYFeTXlhGQBNm/7KU4+v5rLvfQ2nwMOYYaO4qPps/B4vU6rO5JPuwzlRjRunfRGf7qXL6OfRt56nNdSN3+UCXXnWTG6ecR12Jk1HuJ/BeMS9CDsqSu0d7p4tB/KnKw61txzwKBXxoi+fxMNepnyri+qxgvdx7XVf5cyzp3DBRZ9n7pVf4vDRHnBMdjS9wowZ05h60SzOOf9SVv7oJ5DuARwWL3mEsy/4Mhdc+T6fmTGPTVsSkDoO8SZSkp8TH1u+dSsR1yqrzTAoDwa5Y8MGWiMRplVV0RWLcTQc5rb16zkWDjNl5EjsTIZ4KoWVTp8yD8CxcJjbN2ygzTDw6Tq6G8GrLS3lkjFjMCyLE6EQPbEYE8rKCHi9GMkkyUQCbdkyFV3OiootW+beQHhVVDnLm25tVa/HHhsKHSeTSi0cFCjv7FSS3WPGqJuKtjY1d9aQeuVKxa1etUoh461b1Rxr1sCCBVBSQsbRT9FOGzFCAd5sXSRyqrBZOq2CwlmB8mzbsmUK03d3n1o3bdoQdVzpFwzN5fOpeRYtUs8QVq6E2bMcFUGOKiEtoqbynz7cqnZYUgitXSr6nMko8Oz3KiA8vkqB7IMn1HLkcAWWQfGpPe5fbmHBEDjPFfdmIidkpufm0nSd0rPPRjIZxHHwFRbS3dSkALDj4MnPB01TyuEeD5NuuSXHmwZIDg6y45FHiLW1oXk8RI8dY8dDD2F2dnLRkiVc/cYbXLhoEWgaBZWV7P/VryiorET3+/EGArT85jeUT52K7vdT8ZnP4AkEwOvFSdukbPUQquKs2SoCKkIqHsEc7ABx8OYV4g3k039kJwVlo9F0DwXDqigdfQ7lE6cNvXvXQ7p84vQcnxpNwxzsxDbDeAJBxEmTTsbVjbXHi4bQd2QH+aUjSVmmCmjN+twQUNZ09LrPu0BabYvPi+YPoH/2CuTEUZxNr6OVDsMz/3q00mFDImh5+eh1WdB9+RAgn3MZYsaQ8CBy4igSjUDMQAb7EDMKgTzw+9FnfQ4yGUzTpLKyEtM0SSaT2LZNWVkZV199NfF4nMbGRsLhMLFYjMsvvxyfz4dpmtTU1DB37lw0TaOtrY1AIEAkEuHNN98kEokAUFtbi8/nw+/34/P5uPzyy9mxYwe6rnPVVVfh96vvkqZpxGIxZsyYgeMoMbOTzzsI7e3bmTnzXpdHvYT8/GEEgxW0t39AJHKcwcHDxGLdgIZtR0kkBkinE8ydu5JJk+qZO3cVicQAmzc/SCh0hMHBQ0Sjnfj9RVx55VNMnryAQKCIYLCC9etvIxrtpKpqGu+//0McTSdP0ziGii7HUSB7OSrS/PXlyzl8+DA3rlhBAmhCiZ299KtfUTF/Pq+NGMEKoCse593bb2f4889T6F4TbZRYWS9KffwFFKfbVdQgDcwEWlDg+i7gAgAdJVwGSEb9Np2Ug9lnEuuO4WQckkaS0JEQjQsbGTg4QNpKK0/rtKB5NWK9MfKH5SthM119Dr6g8q3WdI1Yd4zwsTDB4UEixyNsuH0DkVYlhrb5oc1EO6MMP2M4NbNqMNoMdF1nQtkEPJqHJXOW8PJXXqamuIatrVtJO2l0TcejeVg1dxVfdh+exOwYGSdDob+QPG8ei2YtoiRQQl1tHT5tyEvYEQWentz2JJfUXsLootEU+AoYWzqWgfgAXdEubm28lUQqweK6xdRPqkc0D5KJu4D3uOJbT/uZssPyFkD0KKTjCnSWz4b9q1zdCX0IdEpKgWEcJY5WPlv19xXCxc8oYO4vVVzqrM+11aU8sncshGQ/XPwsFI49iUfdMcS59hejHrKnVMQ5k1QfrmQUx/pkMCvOULQ7F8lG/XGIuIBYlDd2Jql8qbNt4qYt6bo7xp0r7Uatty9TADrep96/pBXA9xXCyOmw+W51rtD/cx72fwaUT27LpBTfu/wC+MtdEDqk6qNtcNG9apl9rx6/eijgV0rqpp3ATqcw7QSr/vxrstlUjhvgyJ4Sj+7hpumKk33T9C/l+NiVhcOoKqlAUBlEBb48+k0lStsXC+HVlSZOW7ibR996nlDc4HuX3cio4hE44pBy0iqdGtjb2cKIYBne7MP8f9TyX+WM/3d9neZcny7/J5ZkMiWdnYbs2tUhjY0t0tcXy/Gv6+sbxDCsXPvf8rB37eo4pT4atcQwrByXe9euDjEMK8fhzvbPjtmzR811110PypSpU6S9u0Naeo7L1qN7JGqZ8m833iBPPP2ktPQclztfWibVNdXSsPFVue/1p+TJ59bIhAkT5PZfPCK/d/nVWY5P12CvXD3/ahk/YYKcN3myzP7sHNm2Z6dELVO+/qO7paB2mFSMq5IJZ0yUR5f9QI72t0uPMSA/+dkzctY5Z4vH45FLb7pWUqmoOHan4lmnw4ojnQopDrR1wK13+diJvYovnfhIJB0TSYclEeuT9a+/LE58j0h7vfzkifvls5fMFkn1yAWTx8lra1eJtNfLQHezlJeXSfOfrxRJfCQb3vijxEN7ROwO2bvzbSkuLpbYwX8SGVgjZtKSvS5Xel93t3QahjS2tEhfLJbjRdc3NMinvb3SZ5qn1IUTCQknEtITjUpvLCb7ursV57qzUwbj8b/rG7UsMSxL+k1TBuNx6TQMCScS0mkYsqujQzYeOiSdhiE9g4Pi7NunyMwn86UPHVLkZMMYIjv39an2p58e6rtrl0h7uyIxDwyousHBIZ52lr+dJUEPDg4RqRsbRbZvV/X79inedjQq0agju3YN0bkbG9WhZCnenZ1Du9+7d2hXe/eKbNgw1LZvn9pNV9ep/QcH1Ssa/XuaeCw2xLmORkX27BFpO55WnOhI7NTl5p1DfOosb9pKqtfJPOqTudknv+zUEL/aSqr5kknF687yu/92zKdHRNq6xTZNGdi/X95ftEjMnp4cJzoZjUpiYEAGW1pkyz33SH9zs1iRiGozDEm5ff6Wa53dbt+8+RQetR2LyfuLFsmB//gPCR85InYsJnYsJmZPj/R/8kmuX+TEiRy3OtJ9zOVJW7llpPuImKFOaf1wvdiJqGpLJsQMdZ/Cm07blljR0CnjU7YladtSvOpUMtcvnVLt8Uhvbo7sdiI6ICd2vyEZy5KMEZZMb7fiS1uWeiXi4iQtcayEZBJx1a+741ReddyUTF+POImE4lA/tkjSLc1DfO2Dn0qm7bjicredkFTDb8Q8dEC+eNnn5Yzx42TymBq57JI5crC5WRzLkm1btsi0adPkggsukDPPPFMefPBBiUQiEo1G5cMPP5Q5c+bIWWedJWeffbb88pe/FMuypKurS1paWk7hUZ/Mv+7r65Nt27bJa6+9lqu3XF73unXrcjzseDyeWx48eFC6urpy869bt04sy5COjl3S0FAvXV17chzqRCIkiURYksnYSdzpaG49Gu05ZWxHxy6xrIjEYr1imv2ybt0C2b59jRhGl1iW4faPSSzWJy0tjdLd/ZH09x+U9vbt0tLSKL29+6W7+2OJOI5ExeVLi+JTG6I41OevWiXnXnSRtIdCckhEukXkQxH5iuNI1bhx8ruNG3Oc6Xc/+kgCI0bI6DFjpGrMGCkuKZGioiL55298Q/pEpNHtFxXFwd4lQxxsw11/2q23DEuMTkO69nRJQ32DdO3pkpbGFunaq5Zmnyl9+/ukob5BHuZhaahvkN5PeyU+GJdYb0zig3HpP9if63/ysqG+Qbr2dknHrg5pqG+QRDjxd/Nk141OQ+KhuJh9pkStqITiIek3+yVmxcSwDOk0OqUt3CYL1i2Qvd17JZKISMSKyK6OXVLfUC+7Onbl+NiNLY2yp2uP1DfUS6fRKfu690l9Q73s7doroXgox7fuMDpkwboFsqtjl3QanWJYhvTEeiSUCJ2yTCYGFF+6f4dIokck0ad41cmw4jt3viMyuOckHna7etmG6mOF1ZjIQcWfNjtP4mLvU3Mm3b6JHtUe3q+2319wKgf7gxsUlzuVUPzmgRbFd07binP8n/GiU5bb94BaplOqzjbVMp0a4mOnUyf1NVR9xq3LrqdTamzadpcu3zs+oPjQZo/iWluGSLx/aD3aKbL7acWbjnaKxPsUD/uUG8Coav8Rapk0TmqLiSQG1ZzxQZE9z6o+VniIj92z9+/nFBEzmchxoFtcjnSOe52IieHyq/vNsBgn1ZuW4mObVlwi8egp2jhRy5T3jnwoFz/59RyHOhQ3TuFVD5gRaTq2V2Inz5OISTgelQcafyIx6++P9b9T4f+Cc/3/d6D8v/M6Da5Pl/9TSzKZkmjUkkjEEtNM5sDxvn3dEg4nZP/+vlMA97ZtbX8nhFZf3yD9/ebf9Q2HE3/X5+Tt11/fIYCMGzdOJp8/WSaec6ZMvehCiVlxOd7RKvOu/oKMO2OCTDzrDFn5xCrZ4gqUebxeqaqqkkmTz5OzJ50j5eNGy/vNu6Q3Oijt/V3yu5f/mBO1WPXkaplzyRzpjQ7KWZPOkeuW3CwHe1vlWEerjBgxQl7bvFGO9bfLBzu3y+69H8p19V+Wr9+7UOLWgEhq0BUWywqUhRWoNt5y27KCZzG3X0zEOqgAeKpP1bliZTvXXy5jxtSIpAdlypTJ8usXnxZJDUjrsU+kamS+dL2HiNF4ElDfJRk7JEVFRXLs4HaRVL9ELUtC8bj0m6aYyWQO/BqWlQPLH3V3S3c0KrtcobL6hgbZ29UloXhcGltacqC8JxqVT3t75elt22TDwYO58fu6u6U3FpPBeFxC8bgc6OuTDsMQw7JkMB6X/X19Ut/QIGu2b1fiafG4OFmRsfZ2kQMHFFpta1PbHR1DdeGwQrYHDpwKmD/9VI0fHBxSC+vpUcD6ZHC+c6daZsF1tn779qH6gQGJRh0JhdSUsdgQVo/F1JDDhxXwzU7T2al2V18vsmaNOuRPP1WH39k5pNOW7btggQLU2TkaG5XwWRbEn/wyDJHBflfQLCs+9rciZGZCAV8zrgTHsutt3acC45NBtm0PgeioqeqaDyuw3XxY5L1dat6kPbS/LCBP2pKMRqVj27acyFhW4CxpGDmgnRgYkMTAgJg9PWKFw5KMRMTs7hbjxAlJDA4qIH3woNimKWZvr4SPHJFkNCrvL1okf5g6VYmkRaNq/khEOt57TwZbWsQ2TYn39f0dQFfAeFCBYttSomLJhALLrvhY39HdpwDqSPeRnEBZFlhngbMVG8wBcSs6mAPZdjwqbXs35bZP7H7jlDmy4NtORJWgWSI+BKYTiZMEzRIKIMdNycRNcayEEjPr7lAg2hUrcyxLMkZEMn09LkB3gXdXe070LN3SLJnuDol99KE0rlsn9tpfi/3wPfLUTf8mn50zR5xEXC6YfJ786YHvimVZ0t7eLiNGjJA9e/ZIIpGQGTNmyE9/+lMxDEM++uijXFt/f7+0t7fLunXrxDAMSSQSEo1Gc8JkDQ0N0tHRkQPKfwuyo9Fobj0Wi0lLS4t0dnZKS0uLJBIJaWhokO3bP5BEIiwNDfXy8MNIQ0O9RKM9Eo+HJBbrzYHgSKRdGhrqxTA6patrTw6I/+3YLOju7NwtkUi7GEaHO9+gWJYhXV37pKGhXtrbt0t//0Hp7t7rnZkNgwABAABJREFUzrVXLCuqBNEcR0KiwHRWmCwmIj9YvVouuPBCOT44KCFRADgsCiSveecdKa+pkYFMRvpE5LAMgfKQiLSJyOSHHpKbv/Od3LzbRYmYGSLS786T57aFRYHs/e52IpL4O/Dctq1NGuobJNYXUwJm7ZEc+O7c3SlGl5ETObMMSxIhBZrbt7efsszO13egT4xOQ6yolQPd3fu6xeg0cuudH3ZKx+4O6T/YL1ErKnu69sjB/oPSaXTmgPKujl3y9Lanpb6hXvb37v9Pxc7qG+ple/t2qW+oFx5G9vftz63XN9RLKB6Svd17/26+T3s/lXAiLIPxQemJ9ohhGRJOhCWcCEvKjoozuE+B40SfSPsGBYDjnWqZDP+NoFlItdmuENrgPgWSzY4hsbOTQXMypITOttSr+U4WLzM7h9Y7NypwbhsiVr8LqE8CyicDY9sFw/+VwNnAAVdgLHUqkB5oUeJk2TkzKZFUUq2nky4gd8F8OjW030RIzdf7kYjZq4Bwti4rcmYZIj0fixhtrjjZvlNFzlJxBboHD/49+E7GRHr2uCB6j5q7e7eIFfkfA/J0UiwXSJ8MeiOJmBwb6DgFWMdc4Gu692lmMpETLWvpOS4xKy73vf6UvLR7Qw6oH+g5Lu8d+VAO9rZKPGlJ1DKlNzooDzT+RA72npCQGcnNm91H1DLFsEyJxKNiJhP/394u/99a/q/A9em08NPldPkHKn6/l8LCAMXFATRNo7a2mOeem8/48aUAlJQEWLRoFvX1k1iyZA79/XGWLp1Dfr6XxYvrcvV5eV5GjSrkgQdU3dKlc+jtNXN9li6dQyDgYcmSOdTXT2Lx4jnoegkffdTNJ58cYNvOnezbu5etTVsRhGHDhtGw7mXe3Pou1626gxtuuYmKwmH8Ztd6mjsO03LkEE07tnHNilsZ+++fJ5On4/N4KQoW8Zk5M5VADDDlwqkcP36cZDqJ3+PjynHTqC6p4ERPO5akGDF8OMX5hZx73iRqJozlyGAHZ44Yo7hBWlYBy4NK+kNZaBVMUxZduBwtxwAnAYhKGdfyVJq32DB8CRTV8/Rv8/jSF+cDfn75s4f5/sOPUTv+fM485zMsf2wxI8fXq7TzgeVuivlKfvmr/2D8+LGMGXcOaF4yIty9aRO6ppFyHBwRkpkMVjrNuNJSnps/n/FlZXh0nV7TZHRRET+7+moKfD66YzFGFBSwbMsWwpbFH5qbSWYyvN/WxsjCQsaVlrJm3jzaIhE6o1H643HSjhIh6YlG0QBd06gqKuKJK67g8vHjueett3jt448Vvxdc5S7Fy6ewUOVHd3Up0vPx44oE3dcHVVVDFl333z8kgub3K2+reFylR+fnq2UopPjXJSUqXdzjUenVIkM2YNXVqr6vDw2Vfb5tm0rr1nV1iJalsssnToSbblIZ6KWlcNddqt+iRXD55bBvnzp0XVdTplIqdTyRUH1fekmlgKdSKqO9qgqeeELxtru61Lx33aWWAEeP65AXUKnbeX6VBu7zwNjR4PMOeVNnRdssG453QuWwoZTwjKNSyW33O6dpan189dD4CTUq+652FJw7QZ2jw61q3qSb8pe0IZ1B93gonzwZSbvzyZC/tTU4SCaZxI5GSfT14Q0GFfda0/AVFZFOJPjwhz+k7NxzCY4aRSaZVKJnbW2Y3d185sEHuW7zZoZfcAEfrlhBrLWVvj17yBs+nHhXF5LJoPv9TFq4kNqrruK8W29F86g0P8dJu9znDOmksnbzBvJB0ymfOJ3C8rH0H935n1poAXgD+ZiDHSRjYXSPD83jI5U08QQKlB6RpqF7fYyc9DmVqPifpI3bZpiOj98mbSfcdEuXH+/mMmqAZJRgklY7XqWup1NkNjWCOEgkjBYsVF7X4QE1KB7D2bwJ4jEVhdB1tLIRKnW8bDh6zVgoLiV/VBXzrr4azyWXo02awsx/vYHjx44pQTQRIvnK1727uxuPx4Ou6zQ2NvLRRx9x1VVXkUwmaWlpYdiwYTz55JMEg0E++OCDnD91Y2MjpmniOA5btmyhubk5x8PeunUrn/vc5wiFQjQ2NhIKhRCR3HpHRwfBYJBoNEqVa7tWV1fHOeecQSZjn2Kt5fUGiERO8OabdxIMlhOJtKJpOi0tr6NpHrzePGpqZtPU9CPS6WTOZmvOnKXqiuvxUVo6jkCgGBHBMNpYv/42wuFjGEYbzc1r+eCD1e7c7cyceS+G0U4qFcNx0rkU7awt1jLgRHs737/3XiLhMBddeilzpkzh0unT8QBVwMoXX+S6G2/Er+uEgTIgChwEbgX63X7Jk+ZdjfLDPgbc7ra/jOJg+1C+2KOApwDNoxEoCVD3QB2T6idRt7iOeH+cOUvn4A140T06gaIAZRPKmP/cfIadOYxAcYBYd4w373yT8Ikwmk+jbnEdZp95ynJS/STmLJ1DcXUx8b44b377TcrGlzH/5/MpHVeKv9DPF376BUrHlVI2roxYV4wXpr1ARjL8qOlHVAQr8Hv8Oc/rlU0rmTt+LvfPvh8zZXI0dJQjg0f4l/P+hTXz1qBrOotmLaLP7MuldBf5i3LrS+csRdM0lm9Z/nfzleaV4tE9eHQPeV7FYu83+2kNtyJOCi3eBhlTeVOXTXY9nv3gLVS/x0mLh7jTmhc8hSolWtIqzXv4NOV1vWOh4lKfzLXWPOAJKosvb57iZHe8rsZ5C5SAWeF4GFGnfuhZeyxXFFDZbrWrOk9giAftL4Zh56j5C6tVOnWRq00V64DEoEqp1lDHHHD/J0vGYTl+rv2n6znznHO4YMpU5l41j8MtzRA5xs4d25k95xIuuOB8plx4IX/+81/U/tx08p/+dj3nXFjH5ItmccG0OizLgvAx6Nzmzl+j0sjb3huyC0sMKG63FVbp5fkj1JzppJuebqtzuWMFtKxVSw0oGKk42Bcvcn2ul6pxGRtsk2TK4kS4h8F4hJtcSp7iQOs5MTNE8OgeZV/JkF6nI05OI+eF7a/iiMPN069l5pjzc9o4L25/lSmjz2RU8XBaT0oHX3z5Nwl4/UrJRhx++O4vSaSSxFMWraFufvDW83TH3OvwP3A5rRZ+upwu/4DFttMMDCQA6OyMsnJlE0uX1lFbW4quaziO0N8fp6QkQF6el87OKJqmUVKSl/P53bmzkylTRlJQ4MPr1XNq5ACxmM3SpX/mscc+T0GBzx2j4fXqJBIpSko1vJrLdUYDMmTEy6Nv/4aNLU28s/DHJFJRoskkxXkBSgtGYFg2gpDJWIwIFhC3HZIOBP15OCLEbYvbbl5IZXkFq1evpvnjvVz/5a8iIvT19fHNxbfzta9/g4rgMPrNXi6sGs8N37ydyeefxwP3fpuU48d2wK9rgEPKcQGACF5dQwQyIng0DZ9mg+Yh5XjIIPg0jYw4eDSdx3/4OBs2bOD1DRsoKQxy479+jS9cPZ9r679K67ETXDV3Lq82NnLG2Wfj1TR81vtsaTrCjbc+yttvruOsCX4Y+BHx8hdxXGFUO5Mhz3HIcxzCjkPMtqnOyyPsOOzt7mb2yJH4/H40x1H+vJpGRyJB0O+nzOtFMhkyfj/HTJNNR45w1YQJtPX3M3XYMPw+H3mBAE46jVdEeVkr2XcyXi8ZTcObTmNrGnmApeWTFg/igM/r4IhGOiX4fUL+PbdjP/gD7FgK/1tv4N/xvlIOC4cVl1rXsdMaqRRkfHnkYeG//x7sJ9aQwosj6jx7NEHXHBw8ZBxFR9YQfE1/hcOHsC/7Av6qcvyJCJFAOU1NGpMnK/CbVf2+4AIlVvajH8HTTzkUFwp/+avGyFE6HR0wZYoC1dEoeHQH2xLyCzT8eaq9okKB9hUr4MEH4ewzM+hAyoETrR4qKhQ/+8EHFQe7vl5puiWTUD4sQyaVQhyljuvxevFo+hAPurVLgeI8PxxqJVMQwBlRipZxEHFywFsBOwc8OuI4LifZQfd68Xi9ZDIZnHRabR/tgN5BpSI+sRZ0jUzCwtEAl1ev44DuQTJpNE0nIy47LpMmlbSxEwmCI4ajZ3/kmQxp20bzeNB1jXgojDcvD4/XgzcvH8Qhk3HYteKHnPWv/4qTydDym98w9Z67kf8Pe/8dLUd5Zn3Dv7tC55OzTlAiGCSBSMoCmxyEs2VjbIwDAowMIhuJsZgxSEZEk2xwmODwYMHYGAsJGQwYHR0kEQ0WWKB48tGJnUOl94+rult65nnmfWet+b7lWUv3Wr26T3XVXeFUV9W+9772zuUI1NeDpuP6Gdqe44gpGB4EAnh4KE3HzmfQDBNNlyxv7xBg6zoWQ3/rpOlji/zv5RrjeR5OPo3STTRNl5xp7xAHcJmpVO9XBNfF6UXreM915CEe0JQmueDFHhwbz3EgEMQ7sAdVWeVnWcfwlIJCHqXpOJufRbV1oB13AgSCuD37YGwENe0YVIVvIubnb+OJo7fbvQ8Vq4SKSpRpgtK47Otfp6a6ige+fhnvDAzx2eXXyvVrZIRHHvkhX/nKJXiey1lnXcCFF17EDTdcx/79e1i8+EyWLv08Dz74IOPjCXRd55VXXmHXrl0sXfp5OjpacV2H3t4BYrEqotEomUyG6urqkvP4rFmzOPfcs4jHxwiFokSjYSyrgGmGGB9PsH37di644ALAwXXzJPMJzGgDdnqUaKyRicww3R9toqZmKi1TPo6BwlUKFzAcC90p4OgBbM3A9OQ8tzUDw7WwrRwEKzBcm8zEAUYT3dS1nCy13ZqJ8hw0z8NROsrJk8yOEjFCaHaBYLCSXCCKphTZgk264FCvaxiOi6trGK4rNcymhut5KAc6Qzr7gM9bDmEHCiEdFTAoIK7fvQWbz1sOEd970TY1RhyXaEAnBhwsOIR1jYjjYgR0wVCWUxqQ8RypmS4kCgSiARwFtn8fsR157+7sJlQfIVIdItQYxdAUmuux8ZqNNM9p5dilxxOOBtARO0zXRyeuK8srxwVDw/anmZpiYs8oRjRIoCZEYSJXWnc4GkA5Lk7YwXZtDM3Aw8P1EzU0TUNHx8WV6b4rc97O43hSb11wChScApWBShwcHNfB1MxSP5rSSOaTJAoJqoJVhI0wuqajKQ3btdGVTn+qn6gZRVMaqUKK9lgDQc9GvbVCsqinfEXAqGcLcLVT4hCuHZK44Xm+S7br50Dr4pbd/TQMb4FTH5Z/gmsf4uaNzKOZ4iieHYZIqxifmZUQbvJBte8grvkGX/mE1HOHG2T9nlP+/lA38UM/F7Owlb/NpRpqB5ROLp/jpZde5oLzzkXpOo88+ihPP/UULz/3G9qPm8u//OxnnH32WXz44Yecfd757PpgJ+FQiN///hnW3XsfG59ZT1VVDcMH/kptUzt6qEKOg5WB0b9Cy/xy4oDn+a7orriAJ7qhosU3SjP8mvIKCFZJjfWONTB3JVQdJaZmnSth4Z1SG27IoCdjfwM9SCHaimVl0c0ww5kkVeEKNKWxc3A3x9cfK/8ez8MwFY7moLs6luWhGS5Kh4H4CIPxcWY1HoNpaJI4Yyos28GxPUxTXPB1U3H3Kz/nY01TWDD5BOrDddiWi6aD6yiG0sO0VjXh2B6ecnnhoy7eHvwbK8/+BrFg5P/4/Pv30P7f3MKPgOsj7Uj7H9hSqTy9vUkAVq9+hfXrd7J06Qwef3wJ2axFKlWgsTFKJmORTheIRgMYhsaOHX20tlaydm0nN944n+HhNAsXdrB//wR9fQna2ippbIyyYsXmUp9PPLGETMbi5ptf4JZbFtLREaYq5qK8jBiGASgdz79D2S4YTg/KaMBTAZQ9gqdF/fgr8W1VOHh+oIo8CjusXXsPGzZsZvPm31IRq+KSL1/GJy++iEsu+Tz79nzEGWd9kuc3PsPxxx+PZ+1FG72Ly2+DE0+czTXXXkvG1lBK+SDENyJ1xflS1zTSvnNuLBDA8TwMpdg3Pk57dTUgTO/DDzzAU089xbMbNxKpqGBidJTjjzqK/SMjGJr0f8VXv8rpZ57JMeecQ3tlJX3vvceyb3yDp373W46fNQsdF8dTaEoj5DjoRdbWdVGFAl44DHv3ou66C+/BB2FkBNXdjbdgAapIyd50E96UKWAYKMsCTcPTBDj05/NURyJE/D647Ta8o45C7d0rVOy8efJAcPAgXjQK4bDEFgE5PYKNieMolAJNk7FowWEepiGJWiiFYXi4DoRGegiMDsL06WSNKDk3SCajuPVWuPVWj2nThCl2XcWBAwJ4GxtBKQ/HURSxvkRpeSgFY2OK+noP1xUfNcdRGJpDMFB+lslkhFwX8Oig9vXhTW0FXcd1IGcpHFfDsVyiWo7AwABeRwuEgrz8ZwHrtdWy37oG5PKo7vI8+OcIHvT1QyKl09QE1RUOOHlcxwEgPzFBsLoadYjBiuc46LkCVMZwHYdUTw+ZwUEikyZhBIMEa2pK83uuS7K7m9zwMJGmJom9uuoqYq2tPuBWZdDoz69puoDrgrj064aB5tqoIqhMJaCiunROKNvCc128YEiAQvHhTGl4nismXckJvMoa8AGxRIX9Da+6FqeqjsLEBKH6BhQuKIWKj+NZFtQ3CXvrOmIiZhVQeHhmALcYy1YEwf46le+C7nkuStPxlMLKxBnd+ybNx3+8xLqjwEOV9wtKABspRJDulSbr9x92/0MMV3HdKDQUynd3d3sPoKIxVE1d+Xi4DqRTor7QNDkWmo43MSoRXgs+AXUNKM+VQQzDpDRioBReIY/7wga0hR9HVdfhFXIoFGvuvZc/PPkkL/75FaLVNXzpq5dx8fnn8eUvfpEPe7o5+5xzefbZp/nYx46lp6ef7353FXv37qOtbRKhUIDKSp0f/OCfqK6eiuc5KKXheWBZKZLJfrq61rF48Sqqq6eSTmeJREIoZeB5DiADN67rMDDwJpMmnYpSOp5nl+bxPI1MJkssFsbRA/JSCsM/fq5S6Id8xr9G2oDuydXdBnQ/MiyTy/HNSy5h1/vvEwqHqWls5AePPcaJR03n1dff4I7rryedSuEqxbr772fxJz6BrhT/9rOf8eiDD7Lrgw+46557+M6K63BRmDlbAGUsgOd6KF3UB+P7x0l0J2hf0I6dsxl8Z5BJp7VihHTsrE3fjj6qJldRPa0Gx3LRDVmuCJA9W/ryHA+lKVzHxc7ZBKIB//d2yHyGzOdaLpqp4eoCppVSDA2lyGYtwmGTxsZY6Z45e3Yz8XieqqogsYgMLqXSFolEnqamKIau4bgemqbI5WzeeEMGtaNRE6Vk2o4dfUyeXMXUKdVkczYTEzmam2OlQSrXX17TwbE9lOGC7jCcHqY2UouhDBzPQVMaCsXeib0MJAdY2L4Qx3PQlc5QaohIQFzFbdfmzYE3WdC+ANcTlVfGyhA2whScAqZuYmiG3Jn9fh3XYXvfdk5uOZmQIXFNutKIaJoM+vm/P+yMgOpANYxuh5qTxVFc6UWfrNJvkdywgOPCuIDg2JRD6FEHlCdGXVpAWOuddwqjHZsu4Fsp6dcrICFuvolYEUgW+zr03RVGllSvsNZFR+/izcDzDjFcQ25eFAcE/FbaD3jjjTf4/Be/xBs7ttHaPpl8OlEa7Dth9mzuWH0Hn/30xSw6/RN8b9V3Offsj0tfnbfDgjtkXteWgQPldz6xF9J9MGmhvz6tvG2eC5mDEGmUY+a5wsRrus+2m6D76ig757P/ppiYFVLw4lWw+G683ATZQCsWIXRD4bnw3tDfmNX8MVzfwG/btl5OOKGJWCyAbbvs2NHHCSc0EY2apXhWUBiGRMSapkzzPDBNAdw9PXGJe8XB1HT82yqe55HP24TDJvm8w/btvbS3V9LRUYXSPcygdiSK60g70o60//+2QECnqir4H2Tguq64+eYXqK6Wi9KKFZsZH8/xzjuD6Lpi7txW1q7tZP36ndx332vMnduKpinWru2koSHKmjWd/Pa3H5Tk4itXLiKZLLBixWZ+9av3uOuuLcSiHgp/lNi/ieAmUdaHqMErMJ39KLMDlInyCmA0obQIyrNRgzeh3AS4GZSbRHkWGhb33/cAv/vdb9n0h3+lMpRldOQgv3vmOb58yVIUOtOmH828uXPp2nQTytqLZvWIHFvpKApYrkF3IsGyDRv4aHS0JDMsAmIFhAwDU9exXJdtvb3smZigvbqannhc4qt++EPWr1/PH557jsqqKlzPI6VpRKNRXt+6Fdt1efG999i2bRsbJiZoiEb56+uv861vfIN/efJJjp0xk7ztsGc8wZbuHvRCAb1QQCWTqD17UNdcA7aNchxUXx+ceSYqHEa1t8OJJ6Leektk2o8+Cq2tKF0XwNzVBek0KpFADQ4yKRAg4nmohgY4/XT44Q9RrivM8pw5QscmEtDYiDIMVGcndHejDANHmaRSikJBQKzrFoE1aJrvCqqUj2sUr21T/C3dTuq400gHa5nIBBkakieLu++GtjaFZSm2bZOc6qlTBRAnErBrl+Kaa+Sz65O5PT2KZcsUoRDs26fo6pLlYhGHMHn03ftR2RwaHrGIh8JDxVOoggWtjShdQ+Ghax5hwyYYcKmq8AgMDMB4HKXJ9584w6Wu0ka3C+iesK3Kj7VSeQGHCg+Vy6N9tJ+2ujzHHu0QjbjgWiR7ethxxx0ku7vRg0GG33qLxL59uJZFqreX4bfewjI07HyezNAQO594glBtLXoggJ3J8Madd2KlUiV379zoKKHaWnb+5Cf0vfwy4bo6nHye/NiYMKsIqHZtmze+/32SPd14rktmYIAdd9whzP/4MOz9QA5mVa0AwyI4N0yUaQqwdl3IpuHJxyGXlbxugMoaVD6HKuTBtuQ17WOo+mZ0QyfS0ICyC6iP/ooa6odgSPq0LbSRQbQ976OGB1CZlLDZuoHrWORT46TH+vEcC8+T4+p5HnYhK2y362Bl4ljZJLVTZh8+kFB04vWbY+XJjPf5QBrw+8J1yYwflH32vyk9+xYl30pDwz+ZXQfPdVBtHajKKrxCHi+dlgdRTYdYBcoMooyAD+RdMEy0+R8X6UQhh5dKguvJoKHn4qWTeIU8yjTR5p2O57vmKzPAvQ8/zO/+sIGNL7xAxHUZ+vU/88yzz/LlpV/ANjVqah3a2zVeeul5stkxOjpaefLJX9LZ+Tzf/GY9Y2OjnHzyAuLxbiYm9rJhwzJGRz/C8xxMM0w6fZCOjtPR/ezaQmGQDRuuoFCIE4/vY8OGZYyP70HTdBoaZpBOjx5ylDxSqSFsO0UsFsW2c3h6gLxSjACWn4udBWwlbLWOSPItRFbtKYXtDwLZQF4pRpXia8uW8eauXTz/l7+Q/dSnuPaKK3A8+OZnP8s3//Efuecvf+GX69dz9eWXU8jlcICTTz2Vn69fz9IvfxmUIo9CsxxwXMyIied59G7rpZAs4LkeFU0VRBujPHfVc6SH03Qs7EDzgXd2Ikvb/DYqJlXgFhwyQykRU7kSi1VIFkgPp/FsOcfsnJRVFFIFCqkC+YREZbmWi5WxcC0Xz/XQdAHW8USBTEbKaBoaonR0VNPQECWXs4jFDBYv7iASMWltrSAUMtAMhetBKGTQ0BARgOHKutPpAqOjWU48sQnX9fj2tzeSShWwbZcTT2wiFDLYvWeCa67ZRCQSIJkskEjkSSTE4dl1ZbDzuuueZ+9HCZRrUBepw1QmjudQcAp8NPoRjucQMSLMrp/Nl77wJU6ZdQrzT5vPt5Z+i4M9BzkQP8AlD1/CrV++lfmnzWfhnIW88vIrxAIxdE1nIDXASGaEne/vpKGmga9d9TXytmzDaZNO4/rN15ccyMOahnItcaEe3SHnmxkT13AtKGy2ERbgaKfASkDiQ5GAJ/cI6B59HYwohOp9QK2kn0y3uJDnBoS91cNlSbhXkN+x0iTea3ib9O85Ihd3LGGti618yfEl60GITfLVPXmJ7fIcf4DAk1fx2qS0QwYGPJnPLkd9/fDhh/nUJy+mvqaSlpYW1j/9W1CK119/g10f7mb//v3gOrz/t7/xxptvsfAT53Hq/MU89E5r6RqHk5dIrnxCgHZFqziIT+yGF66AQlLW9/J1ski0UZbbchukB2SaERYGOxApZ1oXHcGLmdd6AE6/BwIxspHpxDM6AwMpEvECjuNyQvPHyOccDh5MY1kOixa1E4sFcF0ZYJozp5XR0TT5vINte+i6hqaVlUiuCz09cW64YbMPvGHy5GoZA3E1Cd9ISpzssmUbsG2PVKqA67osWNBOJGJiWS7K09C8/9lu4UfA9ZF2pP0PbIGAQV1dmMrKAMccU8ePf3wRHR2VdHX1cOutC0tS75UrF3HwYJpJkyq49trnS9OKddWRiInrutx22yKGh6Xm+rXXemlqivKTnyyhsTHKe+8NHVabnUorPBXwbzID4OWEwR5dV4648vIw+B3AlM+ZTrC7oXE1OANwcAXggX2AB9bdyP968kle+Lejqa6uAC9DTfB9otEIL730KuAwMjzA9h2vM3P+KllPeA60bpSDoQLYnse6rVtZ2N5OS0UFjutiuy4526arp4dkoYAH7OjrI2vbzGtro8ePswkaBhPDw6y89VbGxsc5/9xzOfmkkzjvjDOYUlfHP//yl9x4002cMXcu3/va12g6+2xesm3ue+01/uH66ynk86y4+mpOnzePsxYsINHdzYlNTQQcp3xPv/deuP56oWk7O0XTPG+ehDfv2SNId+5c0TgPDAjNq2nwwAMwf77UNkci8IMfoA4cQCUSop3+6ldFtp1Oy0tQsrByjgM33yz66oYGoESgY1kCegcHZVWZjPxtWYr9++GqqyRp67TT4K67FD29CttRJTBeWSmr6OqSZefMKRGY6LoA6WhUdnlgQMq3D82cjscltWvWLNCUJyCxewBGJyDoPwjkCqgPD0g2dMGSDGjHhWwePjqAZtsEDA/lOSLRPul42bkPD6ByBTRDirCVrslyBwagqkJqqf2oLKVpMK0NZRromkco4OE6dikn+oOf/xwrlSJYW0tuZASlaejBIKG6Ot64804y/f3YmQzHfeMb5MbGSgC6btYssiMjDL/1Fp7j0HjyyeQmJpixbBmLHniA7PAwb9x5J3Y2i2vbOPk8w2++SWZwkPrZs8n4EVvF7cB1YWwYKqrh149CLgMjQ5CcKGruBWAD7P8QgmH40lXy/a8egWG/oNwMHDIg5oCVFwC+eydYBQHOlTUQH4VsBqpq5B86PizgfPPTAuyLVI/SCESqiNZOknrpXJK+917EyibQA2GsvOQim8Eo0dpWArFan1X3mWd/4EueYz10I0C4ugW7kBWw7jo4hRxKU0Rrm1F4OFaegZ0vC1MPaLqB0hR2PiMMvW2J0kETFs/t65bfnZXH2fC07PfEOM6Gp/BGh8s/ikAAL5sGTUeZAVQwJMuNj+Js/B0EgijDwEunUDW1qLbJeBOj3HvlN3nyN79h89Prqamvh2CQ6qEeotEIL2/twvVsnnvue7z/fi/t7RVYVoa3336OQiGDYYTp7a3ir399h0sv/QodHQtJJPqYPPkT1NRMk0xlu0Bz82w+9rFP88orqw+rY87nE2zZchc7d66ns3MtyWQ/6fQQsVgjnudiWRkKhZTPgrtMTOyhZ+hd9gJvAs3IQ6AN3AYcQCKrdiN1y91I3rSND7L91wRQEwox68ILSfqDJdfOm8fA/v2MjY0xOjzM584+m7mAdswxJKur+cWmTejAjBNP5OjjjkNpGi6iGNIth4m9E2xYtoGxPWO0L2zHDJukD6ZJDacIVYeYf+N8KporGD8wTk9XD3beJlwVJtGT4Plrn8fO2ETqIv6p7aIZGmbYJNYUw7FksMYIGWiGRqw5hhk2MSMmoZoQeFBIi7IpfiDOxuUbcVwYGkpz3XWb2bNnnOHhNJmMxdBQinDYpK4uiudJROb+/eOMjWWwLIm/VAps2/NPLWGdh4czrF79CgMDKQxD4/rr52EYGu+8M4hSioaGKIODydL9OxYLEIsFqKwMouuq1O8DD5xPJGLiWKD7bKqHR9gIM6lyErrSqQ5XA3DZNy5j42sb+fUff83p557ONVddw11b7uLFNS9SfX41W7Zv4Z8e/Se+/NUv88HABwD0JnqZyExw8Zcv5hPnf4L6cD3XbLqG7ng3AT3AmjPXEDJCDGeGRXeWOSD11qFGua6k9grYLbLK+RFIHZAabCMK0Q44+T5hn42IRG9lh+DNFQKoXQs8qxy7tXMNOFlZ9oL3JOqr5K/iCViunyufc8NlwGxG5RnF9V9OgRKQndgjZ74eEAY7O1KWjPuDaTg5Pwc7J9PzibKMXQ9ArJU16+5n9+49rP3+atAC/P63/87P//lfOOnkU/nhww+zaNFCDENk8rbtsG//fl59YQPP//5pHv/pz9mw6UXZDjMqgxLFiLzsiGxnbhROvQXMsMwz+1qJE3vhSkj0wBn3Q/XRsn3/p/iu/73pAZGRx/fjuIr+/iR33vmqX1ogg+rhsE5jY5RQyMCyXPJ5uwS2DUNj8uQaBgZSLFu2gb17x3Hd4jkv14HJk2u4//7z/OcNr/RcUFRUxmIB1q3rYv36nRiGlDBalsvQUJpoNEA8nsNxwCq4/9me/N23I7LwI+1I+x/eCgWbXE7qpR3HIxQyCATkppvNWhQKDqap4zguuq7hOCLbKc5XKNhYluPLejQsyyUYNAiFjNLyhiF9G4b0E4sUUNZuUBVgNMmGWHvF4KvudjCnghtHwkIToDcIyNZikNkG4dmgwvT2dtM+ZQbTprRQERqEwLEEg2G2v/YSL774Z25duRrbsrFsi29d/jluuP47oIX4l3/9Dbd/758YH5/ANANEYzH+11NPceJJJ5GxLGKBAK7nUXAcArrU1G3v6+PUSZMkt9G/7mlF1sayZD5fVg4CH2yfGdSUYiiVIurnxsbzeaqCQaKmKQ/4SuH69dwDySSxYJBGTUNLJFCRiBQTaz6oiUQEsOTzgjYrK6GuThBpJgNvvAEnnCAmY5omKNeXf+M4Esb80EMyv+PAjh3izlVfL2j2ttugr09Mw4oGWOvWwcqVJKacwMCgorm5DLJNswyMTRO2bJHNGR6GBQvEWKxQgNpa8TobGZHpRfwPsnw2K8ubpvRb7G9oCGbOhE9+UuKtly+X8QDTlG2orXIwHEvMwg5tiRS8vwfqqks1yBQsMQ8bHpfa5GOmwEcHoK1JwPeHB+S7mUcJSO8egPZmMREr2ALUNQ1sB1xP1ul5kmUdDEC+gB0OkOztJTMwQN2sWWjBIJ4PgN/94Q85YcUKMWHbvJnR995jxtVXE6qtRTMMPFck1dmREVL79xOqrWXXL3/J7Jtukgxqv255xx130P3885zx2GNEmpvZ+cQTHHf55eQmJqg/8USUf46m+/t5/yc/YeFdd6KsggDr11+F7/9Uzg/DxC9eK7+7rvzDTFOA9euvwmmnw1evhcQEhMIQjpaXKbI0+ayActcfoCkODRUlnCDHKp+DbBqnvhHXZ6tdx8IMRuh770XiA7uoajmW1lnnCODVDf/BS8zJcF0yE/2EKhvlWdcpYAQiWNkEw3t20HDUHDTNRDeDIkMvyrEdm0I2iRGMYOfTBKI14Dk4hbzMq+noLiLTNuSk9pSG8rff7d6L++yTGMtXSi32xBheJo2KVeJ2/klyqavrwLEhGcftekWysRMTEI+jZp5YkqPjDwoc+NcnmHrVCqY1NVLR2ISXjBOqqeO1Fzbz4p/+xHdvuw07GqNQyHPppZ/llltW0t29lWee6eS++x4iFqtj0qRW7rnnTqZMqWPLlrtYtGglVVUdxOMH6Oq6l7PPvhvTjKCU4r77Wjj22E9ywQWPsGnTci6++KeMj++ls3MNixevJBxuYHDwbTo6FlEopHjxxVtZsOAmqqunkkoN8Morqzn9wsd4PVLHfAQ8rwVWIgB6HfAw8B3EAGwDkg0dBBoQq8hrEYOwCL46yP+5XvLVr/JhbS1P/fCHLJkyhfZ163h26VIuef11Xly0iBPXruXlG25gr7+e7OWXM2v2bJavWEFNIs+GK/7AzvU7Wf7RcgLRAPlEnmhjFKUUVtZCMzT0gI7SFLlEDitpEawKMvjOIGMfCSBPH0zTPLsZpSuMoFGWg+uqxEybvnS7ND1t8eKtL3LOPedgRky6O7uJ98Q59suzGBpKU10dYmIiR2NjlD17xqisDNLYGMV1vVLpf6HgEg4bJJMFDENhmjqBgHaYRDaTsTn22Ef45S8/w6JFHaVSqx/84CyiUWEHQyGpay0UHIaHkwSDJk1NMR+kyO+xvz9JZWWQyqoAtiYlCSOZEeoideI54Ld0IQ1ALBDD8Rxe2/4aX7v0azy5+UnOnn027/S+Q1O0ie88/x3WX7OeBZct4Nl/fBbP8zj9a6fzQfoDjq84nlNqTuEXk37Bhks20FHVQdgIl9ZVqYEa7hSmOjcsQHl4qzDWTk6YarNKpN+eTSlfuriduYMiH8eF5+fC+Tv8emgDkh/B+2tFBp7pgdpTITckoPu4WwScO9my7NkDRnZA85kcVt8tFy5Zr2aWr2lWWpjdElteLCZTIh1P9gjIDddDRfvhsnDP4d4HHuHJ9b/hxc2bqa6uknUVa5r8dtzMmTzywwc46+OLmXnSHB66by1nfuLjANx82/cIBgLc+Y/fk/pokONiRsXELFzv70aRSfdk+1+5HupnwnGXyrFycpCfgFCNLGuE+U9bPgF/+jaJhT/h29ds4vrr5zF5chVvvjnAggXt/nktO6GUIp93fJWb7J5Sim9/e+NhpYiGIWUT9fVR/zbhsXz5Jm6+eQHTptWUBphc18MwFHv2jBIOy+9I0xSJRJ5kskBFhQwoaZoiGCw/x/49tiM110fakXak/fc3J4VfgSfgOfdXiMxH7izFC6KDPHr581EqtoHs6xCaKQBcqwCK0qsIWHt8kL4SzOn+cof0m+mC8CnytzMKWpS0W0uiUKA/mRTQGwgcBrANTcPwkWB/MkljNErOtlFKETNNHM8TQx3bJmIYpZpsp2he5H+vAYlCoQSuc5ZFYzTK7vFx1nR2snLRIiKmSSKf58RoFGN4WFhjwy9mtqyys/bgoEhQD/38zjtC546MiBPXqlVC8S5ZIo5bjz4qttZTpwpgj8cFZL33HkyZAscfL/PdcINYYj/2mIDvWbPAMEjFmvA8RT4P27cL/u7oEEyfTkNLS/kmWiTB02khwG+9Vb4PBMrK3iJ2N00h3eNxaG4WoO0r04vl3+Tz0NQky4bDxTptiIYdAnYe8hZUyc0Z1xMgrWlgSP2xnFK+C3fPoLDVAX9koFRP58qGB0z4qLtsEDa9vTwSUHyAKumKvXL/mRxYNlY4gGfb4miay/HOffdx7GWXlU7/j379a0665RZhR3VdgHBPj9RTL1tGrL1d1uRLsu1slnfuu4+Pff3rVHR0kOrpYde//RunrFqFWyiQ6uvjo1//mpNvu410X5+A7W99i4r2djzbxgyYMugzMggvb4AvLiuDYNsRhrqqliKbjGPLcYiPwcYn4aJLoKEFLF9OWTTI0U3fYr0AmSQEQsJYh8IQCML4CIwdhKkfKx+/sWHY+CTOZdfi+rJv17EwAmGsXIrh3dtpOGouZjCKlU9hRqqx0hMl4GxlU5ihKGa0BhybbHyIcHVLqfbcg5JHgFc0Qzt2kQxeoLDzKYxQBfistmaImZim6Wg+uPYpRYjGULYtJnNiMgDJBG7nS2iLzkTV1EMhLyz4wQG0tsl4aXEK93a+gzpxDvoFnxZZuOfh/ul5tLPOl8EPxy73tfATEI3h/W0nVNegdUzF7dmPilVi19bguAW/jlpH0ww2b76BU0+9kurqKeh6EM9z2bDhCnbuXM+MGUu58MLH2Ljx27S3L/RduqXeOh7voaqqHcMIk82OUVd3DJnMCKFQFblcnFisifHxfXR2rmHBglsBj0AgRkVFKyKxd3GNEBk9IA/JCIheCjwK9CNMdRq4F3gMUVkb/lW4+AtSgOW/bODHa9bw2B/+wOif/sTSSITv/OUvrL71Vg4ODdExYwZvDAzw9U99in+49lr6gOeBH15+Od+aPZtzV6zgY6k8qT0TbL1nKxf9+CLsrA0e6AEdp+CgmRrx7jidazo578HzyBzMsGXNFhbcsoDao2pJDaR4ZfUrnHPfOQSiASkB8TgclOtKaqkDGuO7x0n2J2mb14Zmani2AIrMWIZoXRRlivw9kSigFET9+uzh4RQNDTFc1ysNZgv7JoDCcTwyGYtkskBzc5Rs1iYez1NZGSQSMRgezpDLSd12Q4MMHCgFe/eOs2ZNJ6tWLSIcNqmpCREMClgfGBDD0pUrF9PYGGHFis3ccssCjjmmjsFCNxEzwkhmhDWda7hlwS00x5qpDlZje7bUSnsOlmNx1Tevor62nnsfuJcZx8zgzrV3cs7F5/DWG2/xmfM/w+p/Ws2y5ct48/U3ueN7d3D7T27n1X97lWQ8SfLMJA+e/yDbe7fTVtlGb6KX1spWGoIVTCItjuF1c0W67WQF9CU/gg/WwZyfQnqvMNAzVkGkA3KDYFbImTT+njDPxRHesTehfo5/qfafGVL7pB57x1UiDV/0tDiIW0lxGt/1gLiMmzHQwsL6OnlhaYtGZkVw7BYONzRz8n79dauAV00vg/JCUgBrcVlfNn7/gw/xq1//mheffpyathm+C3eegd1v0XLUSaCZ/OSRdTz+i9/x+vZtKFzWrFnLRHycdWvXkE0nOf3sC7jlGxfxhW/eJLL3YilMkfF3bd/MrGjUZpcBtluQ/bKz/iBBNQxuh4oOqD22LAP/PzWnANlRsqoKx9NL57Bty7tlCQkDYFkO+bzDu+8OMWdOK4GA+EDs3TvBXXdtYdWqxTQ3R0sgWNe1ksLiqad28vGPT6W+XtQk+/aNc/fdXaxcuYijjqph924551euXERDQ5Trry+f1wDBoE4gYPyf9+HvoB2puT7SjrQj7b+3uQWw9kFmq0jCtUoInQC+WRn2oHwPlIdxfUCT2QZeRuKxcGHkTnAGfUAwCtiHxFvdI8tZ+2HwSrA+lBuN2QRD14jM3GgAN4HjWcTzeR7Yto2mWIyIaZIqFBhJpzE0DatoTmXb7B4bI2fbHEynue7559k7Ps5wOo3tuoQNA9t1GUylsFyRJRX/TvmGaK5/43U9D1PXsT2PNZ2drN+5kzWdnVSFQlQGg2imKXWey5YJ5dvVBb29ZUa6oUG00yDstGGINDydFhn56acLUl20CDZuFKAdCkk2laYJQq2tFQexhQsFKRfnGxmB22+X+WfPlvWEQmgK9u3zuOYaAb6RSBkzNTVRMhsBma5pMs/NN5cJ91xOgLFtyyZv2ybAGmR8QNNktbrvmdXZKctMmSJjCIYhwDuTgbExwc7kC8Iqf3hAZN+eJwC5GE+Vk0gqQeZBOHqyOHUXLGGuXQ8SabBsYbZzBYm9aqyF6W3iaKaQ713vkJpeBFg7rrwiIZxwACudxikU0HQdIxzmY1//OrmxMSo6OsiNjHD0pZeSGRgo1VbjeURbW5mzejWxtjaKZlxOPo+dzWJEo5yyciVGOIznOERaWjhl1SpSPT2M/OUvRCdN4uSVK3EtqyQFzx08SHpggEIyiac0vHwW6pt9YO2b5BV/XpXVwjzv8Wuyi4Y8DS3w1etE3u15ZWDtm3gdxu5U1gq4rqr1j4suMvKpx8KBj8onRXUtnL8UNB1NF6fwgx92UcgkCESqmDTzTDTNkPLLYAzleQzv2eHHce3wQXhWjNh0g0jNJGH0obQtHsKQaLpJ47ELyw7IeBihCqxMnP6//gnXtVCajpVNYucz5RrJVApvbATluniFvAxEKQ2lG7hdf0a1T0FFK/AKeZw/bQIFWttk2edgCG3Bx1EzZqOddzHe+IjIyePjaOdcVALWCgXVtegXfrZ0vLQTTka1T8FLJVFtk3FjETxc4vH9/PGPNyEA1+G88x6gqmoyvb3bGB/fi1I6CxbcyiWXbOCCCx5F1wMsWrSS6dPPI50+yDnn3EdFRSuTJ59OOFxHPp9i27b70TQDy8qwadN3sKwMoNHZuYadO9eTSg2gaSbj43sBD9e16enpIjHyIRHPQfc8bkOA9UoEVE8CQkgk1Y8QmfhWIIfIxT+SKzR7gauAHuBH997Lht/+lt9t2sTSSITbgdknnsiTzz9P59tvs/6Xv6S6v59FM2bgAU3A6cCpcgdgHZBSUD29mot+fBFOzkEP6OhBAcRGRGT/id4Eu57dRT6eZ8uaLexcv5OudV2goKK9giWPLyFUHcLO2YztHmPDlRswwgau7ZbqqjVDgHSgIkDbvLYSG5weT6OZGtF6Adae7ZV+YhMTUvds2y51ddHD1DojIxk/mKHMYkciJvv2jQPCWO/ZM8bBg0lMU6O5OUZHRzVNTTG2bevlwIFxlIIpU6p57LELiUZNMhmLFSs2k0oViERMBgdTPPvsLtas2cLERI7163eybl0XrufRHGsmFojRm+jl2V3Psq5rHZXBSizXouizrymN+9fdT8/+Hr5+09f51h++xd0/vZt//vk/c/7i83ns0ceoOaaGhJXg1d2vcsO1N/DTJ37KKZNOIWNlsF2bRy58hKAeZFHHIvqT/TRGG1nbuZZEbgyV6YOaE0XK7TkCsPEEQPc9CzgCrLvXQ6ZPwHeoQdhsswoa5gmYLB7A+rk+iMUfcDeg4igx6jr5QfjkXqg5CTID8p0RhWOvl7PJSlGSfuumgONiPyDXRC1QloY7eV92NQKpfg5T68T3CWgGiBfn1ejt7eXGm29hIh7nE5/5FrNPncfcBQsg1ccTv/o9x8w8iaOPm8kf/rSD3/37v/vmjg43XH4RQ/vf5/gTTubUhZ/ggvPP4wvf+q7Ubxfl5njQ1ylydM0UY7P+rvIgQ3ZEtvvFq2QeM1YG1uFGSHZLf/9Z86XhLjr79km5g/+oU6qTdn2fgNdf78c0NebMacUwRImRzdq0tMRKEbDBoCiTTFOAta6Lz80ll8wim7X5znc2kcvZtLRUsHBhOw8+uA3XFeXkLbcsIBQyMAzF6ad3EI0GcByXjz4apVBw/m978D+iHWGuj7Qj7Uj7rzU3BemtED4NYcoCAoBH74S6W0Bv8c3OwhxCKcoNxMv6TLUNGFDYDWP3QfPDEP8FRC8Q8D26BhofBC0Kdj+k/wjZHdD0oADr5HqoWApNjwE6BSfPaCFCyGedt/f20l5ZSUdVFUPpNI3RKIamUXAcspaFrmm8NTBAQzRKTShE1rJY19XFunPOIWwYdPX00FZZSdQ0D2PBDaX4aHSUtV1d3LJgAcfU1aGAvePj9CQSzG1rI6jr7BsfZ2YohHblleWcpxtuENB78snlY1lEt3v3CiM9b56gz0ObZQkLV1HhAyclaHV8XKTguZyg3+uvh0mTRGZu2+UCaNcV+XkoRKJxOlcs01i/HjZsKGc9L1ggsxUBsWHIag1DcEkoVGarixKxQkEk35MmybRMRnD9nXfK+EEmA3/9q+xSkQ3v6pLo63QajjmGkpmZgSvg+VCWGmB3DwyNCvs8eZIAcH+cBjhcBl4RFSA+PC6g+ugOmcdxYV8fTJ3km+BQnp7KyHIgQD0UwMrlSPb1kR0cpO6EEygkEjj5PMHqat66+25mXHEF0bY2Rt5+m9oZM3Btm3fuu4/jvvENIpMmoem6MKGuy9t3382xl11GsKaG8Q8+oO6EE9CDQQ7+5S80zJzJ8LvvUj9zZokBL4FLx0EZBtmxMYKVlfLwEjDB80TmrGkwMQaWA1WV8iBZdODOZaB/P0z5mPzTdF/ibdvCaLuOyMIP9sHG38BFX4b6JpmejIs0PBD0c8gH4Pmn4JKr5Z+YSQnL/fxTOF+7DpTCyqVIDe8nOzHIpJlnkR7rwwiGGdn7pjDYkSpwbTLjg5jhCsxgtOQgXnLi9f8pmfEBwlUNaLqJYxfIJ8eI1LaUarSLjuFOIYceCEnNPGDnMuiBELpXfjj2lIb7p01oiz8hMV+6IXCjkIN0Ci8RR2vtEAY6lcLtehlt0Vm+s7hXOuG9ZBwsC1VTC0rDSyXAKuAlE6jmVpQZwFOgbBu3r1sM1BJxVGU1VjSIZxps3HgNZ599N9nsaEn6XV09BfBwnEKJvY7Hu32J9yqqqib7jt8uExNFNvoWvxZbK9VRb9x4Da2tc5g+/TwqKlqx7Sx9fTtoa5tLX9/rNDWdSCo1QFfXOhYtuo1kcoD29gU4wUqKBmUFhLWeDGT9/0gFkEIY6+8CNwF9wDwoMd4n3n8/1q9+xcYXX6RQU0M9kAGuHRjgey0t9AMf/uQn/Ovjj/Pi66+XSm4KwIrLL+eE2bO5YMUKJmctgnkb13bJxXNSO+2BZmoUkgXy8XxJAt48u5nMWIZYY6zMSNsu6aE0wcogZkRqtUPVIYyIgVtwZfDEZ6gPlYp7toeHh2ZoODlhyIvf27oiHs9jmhqmqWMYGoWCQzCoUygIo3fzzS9w880L6O1N0N5eydSpNfT3J2lpqcBxXCzLoVBwCAQMHMclFDJKElnAB/ceQ0Ppkhz2rbcG2LNnnIUL23nggW2sW3fOoR6ArFixmdtvX0z7tAhZN8XKP61kzVlrCBthPDwCWoBEIUE8H6ciUMHPHv0Zv3vqd/xh0x/47tbv8u8f/DtPf+Fp5rXNI6AHuHbTtWy6fhOPPPwILU0tXHjehVRVVGG7NiNjIwS0ABd/6mJuWncT67rWsXLRSiJmhLSV5mCyj3MmL0al9oqE++T7AQ2suABnOy1A2vPAKwjwTu0TafeMlRCdKvFbNSdD/qDPbq8EPSJycWWAI4NGmBWQ3C3rOe4WCPuOAUZMni+UIcDdTkPYNwsrHrciQ/0f2Gwlg3ETe6Fysj+vLx/3HInHMkJw8G2RaVdPF/DqFAR4p/pkOU0/RA7ulaO8PMffd9sH/EGZnh6QeLBiKU/RvTzZDc1zpA89KK7gRlgGEPAB+NDrMPYhfOxLsp2ZYQj7Phh+1CNm5HD22in42+wbneUTxHMB8nmHcNjAtl1GRzPU1UXI5WzeeWeQ005rJRjUGRhIluTbSqnS4FI2a/tWFTq6rsqO9hqHsOBlibllOViW6zuNayX1RyZjlX5f/f1JKioC/OUvQyxc2EFl5SFRbH9n7QhzfaQdaUfaf3MLQGShsNaObwRitkPTj0BvLQNrz5HRbDdVNj7TKhGDsy6p0TanQtMjgCFgWYuBOQ2aH5fPrtSNUfF5aLwXVBCaHoXWDVLbjUQBBQrvUuUbYbmuy4lNTbRUVOABrRUVaEphuy63vfgimqYRNU1Obmnhoe3bydg2PYkEc1pbGUgm+c6mTZzY1ERjNEpTLEbIMNgzPs6yDRvYPT7OpKoq/rhnD5XBIK7nYbsu02tq6Kiq4vW+PmzXZVpNjWTfPvggfPCBvI+NifNXJCJotbJS9k3ThNY9/fTyQ30RRO/ZA1dfLbpq2TkBSW++Keh12zZhpR99VPovAvXOzrIEvUglp9Po+QwrVwrWnztXNqUIrCX2B9+MR8BzMimLHzggm5DJwIcfwooVIgVvb5f37dvl+/vvl83J52X6/PlCyq9YIX3OmycM+eOPy+44DuTzCk9Th7PU8ZS8H9UOp80QWXfAlGkfHZD3gi3S8IYaqZfWVPnvaW1lCTmeAOtilJaH9I/PjtuOLBsKlL7ODg4Sqq3ljTvvxMlmyQwMYKVS9L38MpmhIZSmEW5s5I277iI7PMzHvvY1QvX1Qo6n07zx/e+T6e/n6C9/mQ9+/nP0cJi6WbMYffddUr291M+YQT4ep/Gkk8RNfGKi9BCS6u1lxz/+I6meHsK1tTi5HE4uC9k06mC/SMAdVxjm+gaIj0stdjYt/8RwFKYdJ3tiW7J/fuwVuiFsNEBdM3zlO1DbQMmht7JGYr5+8UM42C9GZud8Rv43+3dBMCTzX/JtUIpCJs7wR9uobD6aSTPPBKWI1DQzsvdN4gO7sLJJrEyczPggkZoWApEqPF9irfwaRaeQBQRoROtaUbqJ5zpiblbbgufa4vwNAio1DT0YZvD9V8inxvFcByMYAp/99op1566Ddtb58j/NpIX5L+RRgZCA32gMZ9PvRAYfDKLNPwNME29iFC+dFICObKOqqsZLp+R4RqJQUSlMt+8irmwbd6AP1TYFVVWDahP2Wg+EUUrjnHPuIRCIHWI+tgbHKbBhw5UkkwPC9EOJdd66dR1Kadh2DstKl6Z3da2TcyQ14BuV6VxwwcPMnHkJ4+N7KRSSuK5NS8vJ6HqYjo5FBIMxAoGoLy+/l7a2eRhGEKUUe4AVchXFhxas9N/3AjfLWcFdCLCegzw0rgKW9PbylxtvJDMxwZJPfILPzZ7NWXPncjuQeeIJPnXMMSw/+mie/8MfWPO733G1UnQDv/mXf+GktjZ+/9RT3HnHHXy8rY1db79F/ECcTddsIlIbId4dp3dbL67lEqgMEG2KEqgM0L6gnUBlgOrJ1cJIDwgjbWdtQjUhAjGR+wZiATZfv5nx3cIgP3flc4zvHsfJOxSShVL9dWpIHN9dyyU7kfWvsYjDuAeVlUGCQQNNUziOyF2TyQLbt/dhmmJK9uCD2zjhhCYaGqI4jktzc4x0usC2bb1yTkcDRCIGkYjpX/NcDENclotGZZqmCAR0YrEACxd28KUvzeCBB7YxZ04rAwNJbr75BQCiUZOf/vRipk2rwVEFQkaI6+dcT0WgQmrTXYv9E/txPZc7X72Tf/7RP/Pbp37LMxufoaKqgh9d9CN6VvRwTOAYdE2uhyf1n0RLTQtTT5rKQwceYsv7W3j/w/d554N3+PZ3vs3Znzubh594mAe2PcDC9oUEjSDNsWam1UxjbvsiOWbvrxVmWpki007tEVBq+AOXSoEeFeOyQ43KcETebUTK7PbONRCogreul3pis1IApueU17PrAZ/5jkF6n7iPp/bI+oO+8ubQUiEQsGpG/Yk+Enb9wcaqaf7Aqy7MNghQDVTK3+EGqPBxVKpPBjNTA1A19T8Cayizx7rvTK582bedlXUGq3zw7ZbLmqLN0LrYXyYq85kxmTfZA7kxma9lgdRbe64ck0ijvx9WuT/HotScgmRb//Gb8u4UQDN8Hx2XDz8c5aqrniOTsRgZyWCaGnPntrJixfPs2zdBTU24KMQqGfW5LsTjOYaHk/7jigBlpYqlFCIzL5ePufT2Sl25aWrs2zdOZ2c3uZxEcY2OZsjnbXbvHmNwMMXChe2EQn+/kvD/L+0IuD7SjrQj7b/WijcfLQx6TXGiz6i+DfYQMopq+qPJwzCyGpyDArSHrhE5t9Xrj7RmRfJ98DqZFw153FOyPLr0pcUEmGe3C5g3p0LiSQAKwbnsGZ/gjf5+goZBVShE2DAYz2RKwLg7Hmf1xz/OQDLJFRs20J9MMr+tjd54nIUdHXxpxgxGMhkeOO88KoJBMoUCtutiaBox0+Sm+fPpTSQI6jq7li+nJRYTEzNNw/Y8mmIxTp00Cct1xZ28eFMvtvnzBc36udWlO5bnCfK0LHj9dZGQF7XUa9cK893TI9OXLYP9++HUU0ViPmsWfPSRTG9qkv67u0Vyvny5oGKQv9euRevrYdo0j8cfLzt679kD11wjmyGZ04LZHUcY6GBQ5quqkprqdevg2mul26I8fNYsYbBzOam3dhwB1Pv2iXp93TqZfs01snn33SdjANddB4mUz6yahoDifEE+5wsCovf3i5xbIQZloxPynaHLcTy6Q8C1h+zE9HYB0kXzM8uRvwV5yYZXxeShKByUdTmO1Gg7LkrTqDvhBHJjYxx3+eVkhoaoO+EEzIoKFj3wAJGmJrJ+/FbRUTzW2kpmcJAdd9xBbnRUHL+Hhqjo6OCUVavQdB3NNGk87TTCDQ1ouk6wuhrXcfAch3BtLXY6TXZ4uNTvzieewHNd9ECAQCgkecy1DSLd3vO+MMiOLWD5M5cL2xwfF+baQ4B0ICiAMJcVI7JfPiT7f7AffuOPcBTPRc039KltgPM+L8B6+gw5Tr95HKYeB2bQP18L4HlomkHLjDPRdIOBna9QyMRBM2g4ai5VLccSqWnGyqYIVTbguY6AaiNwSG21Cyg818bKp3EsifxRmubHeoFSuuyL55al40rRfPwZBKNVoDSRjPvzl69TmriHG76JkRmQAS9Aa+3Afe3PeLv+Ki7r4QheJiOO4FU1EAiIQ3ghD2YAL5OGQAC3vwfiE+B6UlNtBiAQxHnhOVRru9SKZ9IoTaEqKuC5ZwCNQKACz/NYtGglM2YsZfHi2/1Lwk0kEr24roWmGSxevIoZM5Zyzjn3MDGxj02brsF1HRYtus1fbhWWleGVV1aTTPYDEI93s2nTchobZ5FOD7F58wr/O5dCIcX4+F5eeWU17e0LOeece9D1gNRdI4D5Qfn18RpicHYnYmDWD9yIGJeFgYX+dBPoAH7Z1kbK8/j9nj2c+M47bHrnHf60fTsPAXetXs3cDz/ktx99xG+efZbftLdzC9AOfOXyy3m/t5fBdJqhiQl29fZy4szZdK7pZOf6nXiuRyAqQFozNSHs/BpqIQV9JtrQGNszhtIURsjACBolQGWEDdoXtdO5phPP8di5fiedazoxwobM67uGS9mqjdIUsaaYsNaeR6wl5o9TjrNs2QbSaYvu7gRXX72RoaE0c+e2MjKSZdKkCh544DxGR7O8884g3d0Jli3bwNBQmlmzGlm+fBM9PQnxAcw7OI5LOGyyZ4+Ai717x9m+vY9MxmL58k3s2zfB6GiGgwfTPPLIBVx66SwOHkxzww3zMU2NLVu62bdvQmK5bIWmNKbVTcP1B4Ic16Eh1kAyn+TLHV/mH777D8Qn4iw5bwmL5y7m44s+jqEZ/OynP2PGcTOYedxMntvwHD/51U8YyY6wsH0hDdEGPMRrxNRMWmIthPUwd599NwvbF7L6ldXsHd/LlgNb+HD0Q+J2Hm/GKuhYKqAzNyBs9RvfEbbZtWC4U8BvqAmOuxXO2ACnPgoYkNgtxmYzVkofM1ZJPFedXzqW+FCANpp817FU6qtTe0VmXgLrd4FyyzXXRdk3nsi6PUe2Jb6/XBpTjBP1/AE5f4yxbHDmt+pp8rfnCXutBaFqisxcBLnF/lFilKa0cmQXLqT7JUrLzgjj7OR8CfgBGNgGeshfuSZMtx7wDdiUMNFWWlzCJ3bDwGsCqCUQXAYOht6ARLdMi+8tu4c7Bdh+F+xaL+9OHlwLJ58hHs+XnLt7ehKk0xbXXLOJ3t4EN9wwn7a2Cl+2LcdCbhPCUjc2xpgypabkMg7gOB6VlYGSrFwG7F2GhlIMDKRIJvNIamiU+fPbsG0x/Kuri/D66/3MmdNKRYWw1X/PZmb/X9oRcH2kHWlH2n+tuQVhnQevArtHwLGbhMEbIDwPzCmUwkZxJZoruV6k3sqUz2P3SZwWnpiaHRrjhe+SZe2FoeXgpUUSbu0VYG00gNUDOFD5OUCR8wL0JhLMbGwkb9u4viFSUyzGPV1dpXroaCDAOv/vdV1dfP744zm5pYWsZRE2TU5oauL6zZvZNzFBJBDgqueeY8/4ONFAgOpQiIUdHZiaRlDXxWDZcUgVCnT19KABE7kcQ6kUEf8hnlBIgG0oVC42LoLrZFKKkJNJMR07cEAA+KRJUmcdDIrOukgzr1kjQHvtWkrRXUXkun69OIrbtky/7z6ZtmYNpZDpBx/EnX40yaRicFBYaF2X7ubMEWBcdAOfO1eI9VxOpNzRqGxOczN897si6bZtAeHd3YLpw2H8EW15X7RIdjuXk90zTcnGDkkEO/fcI+utqvCZVd03L6uKQSQk7z2DIvPuHpCH6/ZmOH66gOnd3T5D6UJO4rmAchF57xBUxoSVLiqPNU1cyB0fZDs+W16wRR7uG7logQCRpiY++Jd/IdLUhBEKYUajNJx8Mrt+8QuCdXWcevvtnPHYY8y46iqUaWKEwzScdBJ/++d/pv3cc4k0NzP81lsoTcNKpXjjzjtJdXejBQJYqRROLneY/NgIhwnW1jLjiivoOP98Zlx5JXY2y+vf/z6aaZZl22ZAWOvfPC4AO1YFffsEDA/3iaxbqTKLYQbkpeviHO55YnJ25sVlgO55MsCw5wMBlPXNcMwJ5brtr3zHr1tXMD4Gv/8lKHH/tgsZPNeh8diFGMEoyvMwI1W0HP9xQBGpnYRC4dgFXLuAZ8tDn+AghR6KonQTIxAW1++im79SeK5L/1//hJWZID3Wj5WNkx7rA9fFyiXJjPej8NB0g/TYgPxPbUsGtsbHcDY8BYkJVEUl2BZuz35xCjdMtPM+hXH991CxCpFzx2LguVJfnUygWtvlATkZx31lsz9tsvyOA0FUZRXOc/8OyTjanAUQn8DZ9Fs5ppaFu+VPeB/8hWKdtVKKiopJXHDBI8Tj3SSTA2QyI7S0FMtEFJWVHVx44WMEAjESiT7mz7+Rgwffo7p6GkuWPEF19VRefPFWdu16llRqEM9zSqy2ZaXo7FxbYrg9zyWfjx82DcB1HQrAODAbid26ConlivovHamLngZsQ4B20ZLSpsz92QirPQcY9PvZB7QhYNx3zeB+vy/8u8IQkPBfYSAb0lm8ajEzls5AD+hEm6IoTeTeds6mu7Ob8X3jpcxq13LZfP1mmc9Q2Dmb1ECqlGvt2i4nXHoCi1ctRhmKGUtnsHjl4kNKakXJUdFSgRkxUZoqTSs22/ZYs6aT9et3kkjkueuuLaxfv5O1azvRdY3a2rAvGdcIhw1OPXXSYfMkkwXWr9/JXXdtobc3wcBAkng8h+t6rF3bSUNDlDVryu9SS72VxsYoLS0VZLM21133PLNnN6Primuu2URDQ5SenrgwflqU4fQw+8f3k3Ny6EonYkaIGlFaKlpYNHMRGz/cyLNdz/LMS8+wdcdWXtryErqmc8N3b+Bvf/sbb//1bX6x/hfoVToL2xfytRO/RtgMo1CEjBAr/2Eln7zuk+wZ30NVsIp1Xet4dtezDKYGOX3y6RxTdwxhPQTRKXhzfyolYnVz4aMfwey7fem1KTXZmT7578emQaRd4rvSe4WBDtaJRHzOE1JfXXMyTLlUlt39OJx0vywbnSpRXEWme/CPIhHvWArH3ypAUiHscqCCkjlYbJK8K01k3ErzM6V9AKr08n0jn/TroB353sn7kmrz8Nqo4kWslIOtCxgunUPKNw8bk+trehBOuVnYcKXJvA0nSu146yIB1CCgO3MQJvbBS9cIUI42yT6dcqPIx+tnCRh3bX+fFUxaANVT5RcXbRaWvCgFn7sKjl0Kc28XIK4HCOkWVVVBbrllAUuXzmDu3DbWru3k2Wd3EQ6bdHRUMjYmao583qGzs5tUqkAqVSCft0vAGGBsLMOePTIQtWfPBKapfBk5hMMGkYjBnDmtNDfH2LdvgrfeGqCnJ8FNN71AMikDqvPmtXH99ZvJZOySodr/5Hak5vpIO9KOtP9ac1Mw8B2oXS5AWulgD4NeLzcNdOQRyr/LWPsENNfdLpLvwSuh7lZxAnfjMq8zKAC77nYw2kVCfvC6cm117Q0wdr8vIfdEHo4udVxenrRbiYNBMp9nMJViXVcXty1aRJNvGLZi82ZWLl7MUTU17B4bY01nJ7cvXsyU6mr2jo/T68vCDU3j1++9x6vd3dxxxhkc/9hjLJ0xg8eXLOHAxARrOjtZtXgxk6uqODAxwV2dndx/7rkMZzKs9d3Co6ZJ1raZEY2i7dkjtdQLF8qxcJxyhJamCeqsqREA/u67Uo/d3y+g++STBTgmk9DaWo7kWrkSpk+n5K66d69Mv/12KWj2PAHqxWnTp0s/qRSpaBPxhCKZlBLuykphrsNh2YxiQtgtt5RNzMJhAdz33iuAuOjB9tprMGOGfB8IyO787W+C9W+5RVZr21IaXl0tu9rRIZvoulJ3nUzCMUc5aLm8AOiOFpFnF29Lrgt7emR6viBmZ011AogrolBbWXYGHxkX4F0VE7Csa8JeF6z/LZbLFMC9u0civOIpAdzT28GycTwXB68Ul9Vx/vmcsHw5oYYGyea1bTIDA+x84glmXHEFkUmTcPJ53vrBD6TuurERPRxm+M03CdXXE6iqIlhdjVIKp1BA96O9cuPjOIUCkcZGUr29fPDznzPjyivRQyF0wyBQWUl2bAwrkaBm+jS0oT7Y/BRc+CWYGBEJd22jyJpjlbJPtn9+2Vb5/Ni/G6YcLf/cj96DaceLA3hNfbnQXvmsddEp1yoImM9mxCxtfASe+19w0ZegvkVOZUMnnxrHzmd8AC3/tsxYP2Y4JhJwx5Z6Z3+wS+HhKQ0rE2d493aajzsDzQjIlUIJ6PFcm2x8uNRnPj3B6L43qZtyEnYhT6RukjDEfoSO8uNvPKXQHQ9vdBhVXYOz8bfi+D1jNtoZ5/ou/RGwLVQ0JjXcyYScvEYA5dh4SuH88E7UsTPRzjgXFavAee7fS/3oSz6PZ9soXT98+oWfxXn+98JeTz8WKiolHzsxzlgVGEaQaLQBpXR6err41a/O9xnqe0mnD9LVtY7zznuQQCCG57kopeG6Dps3X89ZZ63BNCN4nodlpclkRjDNGLFYE+AxMbGPLVvu4rzzHiSTGWbLlrtYvPh2amqm4TgW4+N7/HrrlUSjjZhmFAJRCr4s2He/wAECiBz8fuABSjwaIKD5LkQSPgUByE3Afn+51ZSdxx+nnBnh+v3vQQzQ5iLAPgm0Imx4tmBTm3fwXK9UQ61pGuP7xulc08n8G+cTqglhpS0613ay+PbFVLZVSjZ6QGd09yjBaJBogxiSJfuSBCuCBCoD2GkbPaCjBUQNMbF7gi1rtnDeg+eRHkpLf6sWUz21GtdxS/XYrqmVHI0ffPA8Dh7MsGbNFql3bpeSnoMH0zQ2RsnlbEIhgwMH4qxZ08ntty+mvj5Sqo+2bZf77nuNH/3oopID+OBgira2Snp7E7S1VR6ynjRr1nRyyy0L2Lq1h3PPnc7q1a+Uoo8efvgCXn+9j0WLOtBCIv+1XZuMlSFrZUnbadZsEefwpmgTOTtHfaS+ZHIW0kOkrBQDyQHWda3jtkW3URGooDHaiOu5pTivfeP7WNe1jnVnr5NUjUCMfeP7GEgNsKB9Afsm9jGY6OGc+vaSW7inh1B4MrBnZ+Cdm+G4myAyuQwoXQtGuqDqeGGZDV+q7VngKb/eueCfNX4ttZXw67j9emk9IpnYH6wTFlv3TcoAgg3+medfkYqxW2a0fE1MHBDArQXKzLXSy1LyQsJ3HtcON4j0/P4OndctcFjEF6oMvot9GSEY/8jPs47KdVYP+tddn6lWmn/NHQYrD7Emn832j8HEPskLb54rMnm3QCnvu5CALbfCqTcL+K7oEICtVNntvFjzXazFtrMULI+CU3QM19i7d5xIxKCxseyIX3QGv/HG+Rx7bB2pVIHBwRTr1nWxatVipk6txnU9li3bUDpHn3hiiWxWQQYVw2Ed25abemdnN3PmtLJjRx/7908wb16b74a/iD//+QBbt/bwk58sobLSH4X/O21HoriOtCPtSPvvbW4B3AzY+2F0LdSt8iOzijIlDbDkxuIMg97o4+zi45ZGKZ5r8AaovQoCRyOPYcVHOc8H5WskksvqBbMNVAS8DFiDEJ6L6D5Nso5JwfUYSKW489VXmdPayrnTp1MTChExzVKU1qKf/5w1Z53F3LY2TE3DcV3GslnqIhEsxylFcg2mUjRGo6zYvJl/WLSIjupqrtiwgfU7d7J0xgyeWLIEy3HIOw6xQIBl/9t3Gcui2XVRBw+K6VgmI1lW99wjAdLr1gmNW1UlCLSIakdGYPVquPFGQb6rVwswX7RInMfmzJHDEwqJ01iRlQ4GKWVeFRGx5wm13NYG06ZBoUDKqGbXh4oHHpDVx2JlKTjA1q2iLu/sFDD86KOyeTt2yPSODlGun3CCbN6+fbIr99wjq+3shM9/XjKtn3iiXKe9Zo3s0vCwbEo+L6bntg1VMQf14f5ydvVRHQKeDwPankjEewbhmMmywQW7HMllGmJOdiiILuZetzVD72C5/6Ix2uCo5FtPa5OHEE0J0DZNbB2Svb0lAB2srUUzTQrpNKHqanasXl0C3rOuuQaA5y6+mI7zz2fOHXeApuEWCmKGViigBwKEampQhkGqr4+dP/4xM664Aj0cJlhVRdf3v89dr7zC/rExIrEY9bW1PLRuHdOmTuXJlSt54t13yQ/2kVMaX7/sMm65/R9E2r3xSR4bsXn4F7/GMAw0TWP7n18mFAoLQDYDEt+18Ulx+K5vlv0sGvm4rriMg0jHK6rkN6yU9F8E81W18OYWaJgE044F3cDRFHY+gx4I4zoWB3dt9SOzzEOcvz2sXJLh3eX8as0wUZqO6zjofh61nUvj2AXMUFQyqn0TgMyEb4IWqihLg31WvigCd+0CrmOhGwEMDDzHQukG3sS45FcvPgvvwF687n1oSz4PxczgQ7O7obycY0Mqiaquk/2YGMXd4vcTn0DFKqGuHibG/Olni9mZX3bgpVOlAHkrpGPjoGkGjmOh+xFYjpP3P+ts3nwjTU0zOfHEr2FZGV544WbmzbueiopJJJND1NVNL8V4gYbn2SilMT6+l66uezjnnHvQNIP+/jdob5+P41j09e0gFmuhoqKFQKACx8mjaQZKaRQKaYxwLRNGAA9hj6uQ+K1q/ypsIaB3Aqjzr8rLKIPnBxFwfS/CTgcQ4LwWAd9hhAEfoQzII4gTeQCRlo8Bjf76Qqk8E3smSvFaFS0V6CGdjVdvZOf6ncxYOoMljy9hw5Ub2Ll+J5dsuISq9iq23LWFxasWUzW5StQOHgKiLY9CukCwKliK2bIyFmbE5LmrnmPn+p1c88E1vLL6lXL/TyxhomcCM2gSbYySR9zA6+sjGIYYMBUzgLdv76OlJUZzcwWBgM7ISJpw2KSyMsjYWBbbdolETF+tEMC23VJk1403bmb16o8TjQZQSoyeisZQSnEYSLnjjjOorg6VAPftty+mo6OKTMaiotJkT3IXjdFGVmxewcrFK5lWPY2sleWp95/ijf43+MHZPyBiRtg7vpc1nWtYtWgVk6snY7s2Y9kxJnITHEwfZFHHIjJWpsR+e3i4nsv+if04rsP92+7nnnPuIaAHCOkhCm6Bq567ijsW3MRxsWoxHytMiLlYdgDyQ1A/T8DmyA6oP01Y6N7fQ9unysD7Y7dAxXQB1m5BzjRlCLjWApKd7RQgNhncvHzv+mysCshyxUF8pZHLpPnSZct4/4MPCIfCNDbW86NHHuGoo4/m9e1drLj+elJZC4XL/f90C2defAk4FpdfcTUvvPgnGhrqATjn7LO55wdrfBDeWgbvqT6onCKMcdHMTOkCbvWgD5jLjzBijqaDlYW+V4WhLuZpW76fTKCCkumZa0std/VUSvLu7XcJ81w1rfz3nJUiM2+YLZJx5UvWMwchNw65EfmuEJf69XDdfx7P5bd0Ok+hIJ4AjuP9h/PxiSeWMDCQOmyw58c/XoKuw/79ce66qzz4dP31m1mz5iwiERNNK+ZgR0oDUCtXLqKlJcZ3vvP8Yee7bbtMm1ZTir/7e21HDM2OtCPtSPvvbVpAboBGO9TeAtYQuAkB3CXK0a9lwvClVCZl8O1LsbCg+T4BzcXmZYUZ91xhxZsfl/fwaQKw3QkB3OHTRJJujwA2juexrbeXpmiUhy+4gM8ddxx3vvoqruexb2KCZRs2sHd8nKeXLqWlooKCjyaDuk5TLIahaQQNg5BhEDFNptXUUBkM8tOLL2ZqTQ1KKVYtXszSGTO4ffFiPM+TWuyA3ABWLlrE0hkzWLV4MUopie0yDEGWV10lttrXXy8sWU9Puf5692648spycXJTk7iCjY4K8L7lFjj3XEHCS5ZIHbVpUnICHxwUc7N0Gvr6pE/XlT737xcU3NYmD/s33IBrOwwOCqkNIvnevRuuuEJKt2fNEgx/zjkCmPfvh29/W9K8DEOA9bx5AqwtS/qZM0fI9mXLZFVPPy2Eua7LuEJRzX7ffTLvCy+IFN1xRFJu2eAVjcg6WuR8qYoJU41/yuzpFeA7eZJ/DuqHS8Z1za+jViIF7x2S+dqbZUOL/bc3i/TcccvGZ5ZdNlKriuHksljpNMHqamYtX05k0iSMcJixv/6VYEUFdjbLcd/4hki3ly0j0thIqL6eKUuWcPw3v4mdzYLnoQeDhGpr0YNBjHAYx7LwbJtwXR19L7/Mzp/8hFBNDWgaJ157Ld++4QbeePFFXt+6lfNOP52vfv7zZIeHeXDbNm675WbefvddtnZ2cu+Pn+D9v/4VNj7J759+ml/9/Gds+/3TvLflFV78xT9jZtP+7ycg58LGJ0UOnhgXxvrffgjDg2VJejAkJmiVNXJc03E5dpufkuU2Pin9zfkETD0GEhMlwz3XdwHXzCAtMz+BbWXpe+8FrKzfh9IY3l2O4dKDEaxcGqeQw7EyZMb7wHMxQlEC4QocOy8RV74TdqiyAU0z8FybfGpC4rfsAq5j4/p137oZxAxGSrXcpJI4zz8LVdXoSz6PqqlDTT9WQLDSRL694Wm80YN4hTxu9148Kw/JZFkSXlOHNzGK+9y/QyQqjHV8AvepfxWzs0IBohXoF30Oamrx8nm80WHc7n2oUASqa1DRGAqNVGqQnp4uWTcefX070LQAruvgug7nnXc/M2deQnd3J8nkAK2tc+jqWkcuN0Fd3dG4h8bGIe7gExN7SSR6ee+9X7F58wqUUlRWtuF50n802kAqNUAuFyeR6OGee+rp7u5kfHwvmzdfRx4XHRhAGOchBPxegzDYo8B2BHB/BwHAqyjHdoUQIP0c4iiuA0chWdk9CCg3EGC93n9v8n/Klv+qRx5AXUSx8NqDr7Hw1oXUTq8lUBFAN8pS8cW3L0YztdLfbXPb2HKXxHFtuWuLf++AzGgGtyD1x8HKIE7Ooee1HuycLWZnwKLbFjFj6QyCVcHD+le6omZKDaGaEE7BwdAVTU1RPM/Dtl3S6YL4ACjFaadNIhYzCQQ0dF3R0BClujrIwEASw9BoaIjy1lsDBIM68XiegYEUiYRcz9atO4eRkQxXXrmBffsmGB/PsX//BMuXb8TzPFatWszSpTO4/fbFtLRUUFkZZNq0Gp54Ygnt7ZUMDooJW8G2WNO5honcBOt3rmfNljWkCil6Ej18+mOf5oHzHmAwNUhfso81nWtYv3M9PYkeDsQPsK13Gxkrw72v3UtbZRuGZuB6LqZuYrkWOTtHZ3cnmtIYSA0wp3UO/cl+vr3x2+yZ2IOhGdy64FbaqifjGTEojEOoWeTa0XaoPlHMy5wc1MwWpZkyRB6+Yxlk+6Wm2ghLLfbwVjkbirJqLQyj2yFQA7EOv77Yb0ZUap5T+2Q515K+7TTgsuyKK9i186/85Y0uPnXxEr511dV4wGeWXso//tMa/vL2m6z/zVNcfu3tZDOZEpt98/XX8s5L63lnRxf3fH+V9BuICRMMAqazvoFrqle+cy0/EitaBtbFmgk8Ad6uD7AbTxb3cc+RuulXb/bPW0fmHdgh+1nRWgbmyR7Y86wA6uLfRWl48xwB0y8sg/EPJXYsXA81R4sxWnoAulYLCC/WX/8nrVCw2bNngq6uHvbtG2fr1m6U4rDz0TS1w6Tkq1YtxjTF8Xvq1GqeeGIJkyeLSuvOO88EIJ+3cV2PpqYYSqlSCcSaNZ0Eg8Zh/YvjfjWJRJ5s1vp/2eK/73aEuT7SjrQj7b/W3CwUPpQc6sZ1vqt3Cg6ugqb7fY+NDOT+CpH5gFtmnIqPU54LQ7dC4z/K8odGdqEDlvTh5sDw+Q3XB956tdysvWypv4IXYTTncTCdLkm8u+NxYoEA3z+EyW6tqAAkuxp/rUopdKVwPA9dKRSQtCwqTFOqxj2PguNguy4TuRzVPhtuOQ7b+/qYFIsxpaYGTSkylsXql1/m7nPOobpQQC1bRin3qq1NkOaqVWX59tatQvU+/bRYb991l3w/daoca8c34zpUEt7bK5LxUEhAeENDmbWurBTw3dIC770nGu54XKYPD5Oddjy79xuEQqq02PbtcNxxh7PYhiH44TvfEUB86aViRp5OCzC+5RZhoHt6ZLxg9epy4tgTTwgzbVmy+u7uskK9vV3GB26+WWTj3/wmfP8Oh2MmWxDwJW7xlDDQplGWhAdNAcG6XqqLJlc4XEpe/Lu9WfrSfRBdlOi5riybzUPfQXEixz/tcv606e1Y+Rx2Pk8hHhegrBS7/vVfmX3jjRiRCE4+T3ZoiHBDAx7wzr33ihy8pQUnm2X8ww9pOPFEAZ+WhR4M4to2nuMw+t57RFpayAwMEGlupqK9XeqD/bpspevogQBvvPUWl3z1q3z47rvMPeMMrl++nK9d9hV6PvqI+eeexxudW2iurWXRuefzvdtXcu7CBQKmi/rqTAqiMZmWzYipl2HCLx+GbS/BaafDl68pm5kVSxUKBQHbiXGpvd74JFx0CdQ1ybRoTOaPT+A0tZAe6yNS0wJITEvfey8QH9hFVcuxTJp5ti/ZFgm3lU9jhiux82mMYFTk4yEB25HqZl96qfAcC8/zcB0LIxDx+3DJjPeTz8SJVE9iZO/rNEyf48d8OSWGOxSowNnwlORYT56Gu60T7byLJZsaJL4qGcfbswuvrwdt8Vli9BYKSy52NIaXTqF1TJW66ff/gjfQj37Bp/AKBTm8gSBePov74ka0eYtRdY3S5yHLq8oq3M6XcC5cQnffNhobZ6FpOqYZ9VnnPWzb9iAXXPAQnufgOAVAkcvFCQYrMAyRRArTnDqMzX7//afo6dnKBRc8UorcMowwbsngCHp6tlJR0UpNzdRSvnVb21w2bryGnTvX88WvbKZp2jlcpVSJjf5H4I/ApcAbwGn+T6OoM5pAGO4EAoxt/2o9iIDnlQhAPwF4GliExHKtBu6mbFNpUZah60g995RkXsoCbKl7Vpo6RNXryd9+81yJzhrfMy7M9crFVE6uxC24GFHDv714KEOBgwBiTbH5xs18fPXHCcQCYlzm91uUgRfXrzRFIV1ARQMc+nRcZK1HR7NUVQUJhw1cV0ycCgUHTQPTlJiucNgoScWzWZsdO4TpPvrousMktJdeOosf/egi+vqSZDIWTU1RolETz4OxsSyNjVFs22XHjj5OOKGJSMSks7OblpYY046qoie7l/pIPSs2r2DV4lW0V7Szo38H89vn43keO/p2cHzD8YxkR1izZQ2PXvgo12y8hhvn38h9r93H+p3rWTpjKU8seUJ+I55Hxspw8ws3c+3caxlODzOndQ6j2VFWv7K6NP+jFzxK2AgTVA5Gcg9EWw9hmvMQaRXgqZsi9VZKGOe3rof6+dD+WXEPVxrYSQGOdk5itzID0LhQ/vmuJYw3rpieOVmp2fYcWZcR8cExMPEO1J4mNdw+w/3GW+/y+S9+kTde+A2tM88gn0n7LHOAE06Zzx0rb+KzX7yUyy+/nNkf62DF1y4SgBqbJLnXFe1+LbUPkhMHhK12bVlvshdiLRIx5uQF9MbaxCG8fOII6z7+Iby+rsw6hxulr3wcIsWSOiB9UPK6d6yReYsy76ppUkednxCHcDwB1rvWSz312Y9LlFeR6U72wO+WyHfn/ERM1v6Tlkrl+eY3/8CNN85nfDzLaadNQtdl8MhxPEZGMkQiJjF/kMp1vVI8ned5mOb/3YAsnS7gOB7RqHlY6cS0aTWHKUKyWZtoVBQfrutRVfX3Kw0/Igs/0o60I+2/tzlxGFwG4YUSyTX6ADTeDVoE0CGzFcxJwmzb+/xa6lVgdICXRkaoo3KD9DK+1DsrddfWgMi9nQkwilyHIzXdXg70Oji4QvrTGyD3ljDfow+Sqv8RyYKF47p8909/4uYFC5hcVUXWtulPJlnX1cWqxYuZVl1NxrIIGQb7JiaImSZ1kQi6D8Jcz2MkkyFiirw1mc/TFI3ieB6/ff99ls6cCYCmFPFcjpxtUxMOE9B1rn7uOa6fNw9T0zi+ogI9kZD84mBQaOLPflaAdEeHoM65c6UouaZGrLSLCPXxx8v1YUqVA6iLuuvPfU7mSSQEPBcLqG3/pv/668KOF83TRHdIwg4zdFArgeSVKwUkJxJCemezAqyLKnPHkZLuu+8u4/olS2QTH3qIUn714KCMG6xcKeR7MimYv5iT7XkCtHW9HME9OirfTZviEIv40UzFrOtifNQbOyXDujJ2iFFM8Tx0wHZlfl0rSbqxLJm/2BTlPOyiLNw4BKRDWXChwLZtCskkVipFqK4Ot1CQ+C3D4P0nnuC4b3yDcH09RjQqddW1teTGxqg74QTe+sEPmH3TTRjhsNRnOw6arpPq6SEzOEjdrFkUUinCdXUSwRWPE66pKcVwuZZFIZXi6ltuoaamhgfuvZd3/vIXPv/FL+J5HsMjIzx+9xou++a3wCpQO3U6Ny1fznMb/kDecbnsq1/l2iuXQXxMgPEXrxQTtI1Piry7okqM0M79vERKFfJihFZTL5nXF34JGpphqA9CEanlBti3C6prYWwYpn4M8HBCYR+wikzbzufQDAOl6X7+tPId86Xaugi07XwGzTDRjECpFnvw/T9TN3U2gUi1HAvXwbHyJQm5yLjLBmdFAN8662z6//oSdVNPws7nqKiehJfPoQKB8ra5Lm5fD6qpGWUGhF2OVUJMDI+8gV5U+xSIj+N2/RntnItQgRAU8rItpiknbTqF2/UK2tkXSrb1xBheKonWPkUAnOvibPod2vwzxIl85zt4y2/Gi8Ww7Rx9fdtLUu2BgbdKn/P5OMFgFYOD71BZ2UplZQfx+H46O9eyYMEtxGLNpFJDVFa2+RFaUo+t6yb5fIJ8PkFFxST/J1HAtvN4nothBFBKo7d3O5WV7dTUTGNiYi9bttzF/Pk3U9VyEns1nbuA2xEn7z3AI8DDctUtCljZigDqg8BipM66uFwIqaEeRkzMhoEa4HXEMC3i91NAJOHF4p9iLXYBiGQKFOJ58vE80eaoOHl74BQcHMshEAtg52xyiRyxxthhOdWaqYkZWWnc1iM9nMbKWkRqI7x464ucc885GCEDK2Nh520idZESoLazNrnxHKGaEEbIkL41Rd7z/PxeSoy1xBJOcOBAgkWLOnBdj3xe4oSKOb9dXT1MmlRBR0cVBw7ES/Wqw8NpqZPWpI71nnu28sgjF/jRRl4pL3jHjj7mzm3FcaS/bNYiGDTIZCxuvvkFrr12rvS1uAMtaKGhYXs2mtJwXAcPj/3j+4kFYzRGG9GURtbKYuomAT1APB8XdQhw8ws3c+vCW5laPZU9E3tKtdpbe7aytWcrj17wKLqmo2s6+yf2c9eWu7hp/k1MqZ6CoRnElItZGBc22YoLsNX82Klsv9REz1glNdf5g+VoLispzuFKCUi2EiIPH+4U8O3kRF6eG4H6ueWzMT8GoXq/1tgVJ/EP1km+du4gvP8DmPtzYbYVfPWyr1Eb1fnh965kyvylrFt3L0u/8Hle7/ozi86+iLV33ckNN1zP5V//Bn/+86tURIN0TJnGnf/wXWafcqr0U3QCL4Jsj0MGDryyoViyR5jtcD1UTf/fbirpMhA+7lI4+0elchQ50fPl+CwzAi9edTho7t8KsXYww8KSpwdFTh6sgcHtAr4r2g5f7sxH4KXlYmJWNVWY9v+kFQo2f/vbKH19CU4/vaM0cFSMizMMDdt2GRnJkM1a3HWXSLsnT65iaEi8B4rlE7qfEV9smqZKoFkpSjXemYzFG2/0M3t2M5GIST5vY1kSTVdVFSrF1/09tiPg+kg70o60/95WZK5VUCK2wqdDxWco5Vsf9vikgzsOub9BZAFlF3ED4T4037zEOWTZIorSwNrj112vAqNZ+ks8CeYxPivugD1Cwc4w6k5BV4qgYWC7Ljv6+pjb2oquaVyzcWOJvZ4Ui5Wk2ze/8AI/vugiLJ/J3j8+Tn8qxdzWVsKGge3XYCsgZVlETZP94+N0JxKlefZNTNCTSLCwo0NIe5/prnFdjGRSbqIx/8ZW8G/E/7vL1/TpossuItSjjxansaLbuGGItLyqqgzGQyEJnb77bvjxjwWsr1kDt90myycSss5QqMRqJ2PNgMInZCUWOSyy7pYWAcWRyOF4/rXX4MILBVA/+mhZGl7EHPv2SfennCIs9sGDApqL4L2lReTl991XJuWVEs+1UAimTXZQjlMGuwVbUHswIA7gx0wWVrpoRFZs8RREwzJN0/4jk12ivjxwvbIKAMrrcj2puw4GZBnHxXJsEvv2kRsbo+bYY7HTaYJ1dbj5PN2bNzP63nvMuPJKIk1NpHp7yRw8SMNJJwlQLBrVeR6aaeK5Eu2VHRsTEO26KF3HtW3evvtuTrr1Vhk+siw8x2F81y5+9sILPLdxI8/8679S1dDA5VdfzScvXsKlX/oS+3Z0ccanP8fmp37D8SefQuWkNr74qU/y44cfYnx4mDM+t5S77/geSyb2iaT7+z+BZ38hn087XVy/NU2k3RVVsHun1FPHx+S9tkEYbuWPrDi2vEIRSvE1/jF1DBPXKWDl0sIkHzUHIxAhGz8oTLRugC8bD1c1YheyDO/eTsNRczDDhzPOuhni4K6ttMw8s8R0izzUwLMLOHYBTTfRzGDJDK3hqLmYoQom+j8gOz5Ay6yzxdCskBc2OhoTY7d8XkaLDBPSKYjEUI4tMWXKPwfwcDY8LYz3cbMglcTdtkWAthnEsy1hqucsQFXVSKZ1a7uwfY6NQgPDkIzs+ASqsgovEcee3M7ExH6SyX7a2uYJc+45OI6FYYTBdxL3PGFuMpmDVFRMYtOm62hpOYnp08+jomISrmtjWRlefPFWFiy4iWi0iUAgxujohyUztHR6iM7OtSxatJLq6snE490+kL6RdHqY2trpBINVGEaI3t5tNE/5OLYRQleKDAJ8twPFq/Q2RMottmmQAxr8K3sWeApxAJ8ErEGY66MQgL7Of4WRuus8AsIb5AqO7ffnIVnaP0vmySfyaKaGETQE3CbyvHjriyy8ZSGVHTLIo+kCpNMjaQIRYdA818OMmNg5m2R/kq51XSy6fRHVHdXgQSFbIBgLCmg2FXbWRvdZNqUrrIyFbupohlZmyRU4Cgr+g34RWNt2GXC7rodlOYRCRglQFMFIKlUgGg1w9dXP8atfvcfSpTN49NEL0HWNAwfGicWCNDfHyOUctm/vpaOjklDIpKYmRDhssGfPOAMDKRYsaD+M1fvtbz/g1Ve7pa+Qg6tZ6EpnKD1ELBBDUxoVgQoGU4NEAhES+QRVwSoyhQz10Xo0pZXqr1cuWsm0mmkoFLZnc+WGK0vM9B1n3IHt2kyrkZgvJVaEJcMzDQ0XlzAehqYkTitQIWZiypBa6PyI1GGbVRBqLA8UF7UQHjC2A2pOEVl5sLY8T25UrkHhJkrxiUoG7MQsLS2/3bdvFnn5lEt9wO350vIga9bcyR82PMefNm8k4o7xl73j3LpqNUNDQ8yYcTwDA4N86pMXc+2VX6NvcJSW9ilomuJ3v/s9316+nI/+9gGxipgw6ql+YZm1Q9jZfNKvd1ayXU7BZ65bfVO2QwC5nRMp+I618PEH/XtQqKw0KpqZFd3LM0NlBtoIw6/mwIW/hEkLyWUSfOlLX+T9PX2E3QSNHcfxox89zlEtEV7fsZ0V119HStWhjCD3r/kHzjznfPDgM0u/zL4D3aXnq3fffZdnnnmGT37yk6VdymYtbNsllSqUBouKoBgEFIPng23dP+ddtm/vY86cVkBM/iorg+i6LBMI6L44SsPz4KOPRhkYEDO/e+7p4qGHzscwNNJpqxThZRhaycPg77UdAddH2pF2pP33N9evHbL2Cej1DqmPUXJzk8coD9w0qFD55ofrj/gOgVYpL9zydxxyA7OHYP8smPS0ZFuP3gWN94OKHmaollbHMpHPM5LJMJhKsaC9HdfzMJRiKJ2mLhJBU4qsZeF4XqlWOlUoEDYMeXjybyC7R0Zora4moOuMpNOETZOqYBDbz6QezWQYzeW477XXuH3xYppiMcKGget5pAoFbn/pJdacdRZNrouWzwsK7e4W1LlggSBSwxAka9vy8F9fX5YvO468DtVhP/iggOsiYh0cFNa76BY+ZYoURz/7LDzzjLDWSgkVXSyyvvVW0seehGUpP3+yTHSHQuXVZzJlMlzThHG+4ooyZt+zR7q77TYp825rE5W7YVBKdLryysNl4kV1/NKlcMcdsu6WFllvLOyDa8cRKTiHMPbZnMRyuZ64fv9fZeCmGJr9dbew08dMlp2JpyAWlqzr4rKmIeA6V/BB+CHNAyufY/vq1Zx8882gFFY6jRmLMb5rF6HaWsIN4kZrRqPY2SxGJILnOOTGxrAti1hLC/igevjdd6k++mjMSKQEtIvvVjJJPh5n5+OPl9jwBx97jH//wx946tFH6X/6aRo/8xlmnXUWmeGD8rDyy0f4wg8e4tyF87ninoeYuWARD627mzOXfBLyWW6+bRXBigpu/9bX+dLSz/N+qkA4YNLoWfzo8cc5qqaSHRNZrr3xJvKFPLlcTgzSrl8Bms5nPv8F9v3lLQHejs27H+7mmd/8hk/OP7UcAea6kIrjVFThagrHypEa3k92YpDm48/Ac100MyiO3kqV3gf/+hLjfTuZfOpnMMMVDO/eTv20U9CNEEYoKqDa87ALGXSfdVWa7j+8lp9T7FwGPRD0gVMSMyxSdbuQJRisEGBdKEA0Jti5Zz+qeRJkMnipBKq1o7RN2Dbu5t+jnfcpuXTpOp7r4g30ojU042lKQPWCj0NVNcQnxCRt0ZkQjeEN9KG1duDhQTKJqqmTKDDDRDk2Bc0mlR4hFms8zAVc00wKhQTJZH8JHAMopZfYac9zSadHiERqKQ4UFQpJhobeo6bmaCorJ+E4eSYm9hMIVPDKK//Azp3rmTFjKUuWPM6GDVeW/r7ggkfYuXM9NTXT6OhYhBOIEkeRUIom/6pbdMWwgR1InFYEqPWvyFkgDlQc8nOpAL4NzAe+gJigdSGO4/MQgH0bAsAHkVzteYesq8hcR1PCWmeGM3Su7WTBdxdQd1QdruXi2i6uI6VFyQEBz+c9eB4A+XieQEWAYEWQZH+yZFC2/MPlWFmL1ECK9oXteI6cP8XIreK75z/Ma4aG67jCrBnCiFuaYv/+Cfr7k8yb11YCz5qm2L9/nPvv38ZDD11QOhZFMCKXcL/sqBjdBKXvXNcjnS4wPJxhzZpObrxxPnV1IWprIyWQblku4bBRkpwfPJiko6OmtLxpaozbw7w79C6TKibRm+hlTuscTN3EVCa2Z2MoA8uzyFpZQkaIveN7iQaih8m7n1jyBK7nYjkWA6mBw0B3upDm7cG3OXXSqYT8MgXbtdnWu43WilYiZoSWaD0RTUPlhkSyrUd8IG0J6+sWfFm3Iz/hIvPspEErPhP4BQLFY+XaAko9SQPAyUgNdjFesMQa+z8LO+PHTqUlnmvGKu796fM8+b9+zYvP/4Hq2iZ/wJOSJBwjxHEzZvHID3/IWWed6V/7fdl3RSvHzjyZX//rTznltLkQ3ycDB4Eq2QbNlPpmPSgsvZWWz07eNyfzy96K9eNOwd9umxL495zyYEGRsVaItL7oPu5a5XkB4t3w1v3k5q3lpT9v4YJzz0bt+g2PPP4znt4Z5OU/Pkf79OP5l588wtlnncmHH33E2Rd+hl3vvU04FCgbqIXreOPtdzn//PPp7+8nEDj8HphI5MjlbExTL53TMtiuHTZ4ZBhaSW1h2+XzvVBw6O2Nc9RRdWgaZLM2r79eZqdHRtLU1IRLmdnlFxQKLoWCQyCgEwjof9emZkcMzY60I+1I+/9B88BNgjlZgLQy/VdE3r28fA++RMukDKzzfr20ITdYXP8G4t9spPhNlteiAqzDc8t52W4ScARYJ9eD1YPjSd501DRZ0N5e3EJsz6MxGsV2XZL5PJbr4noeGcsiVSiU8qizliWO4sC0ujoihsHrfX1kLIuqYJDd4+Ms37iRrG1TH41SGwpx3znnMLW6mqCuY7suK55/nuFMhuVz5tCfTPLnwUE803c+7u8XwJvNCph2nLJWOhIRF7FEQijfrVuF6m1okPyr008XennSJPl8zz1w2mmCgoeGBKUGg1LU3N0ttLLrSn+OI8uuXw8DA6WHyaLJeDgsL8OQ5w9dl8979kjXxZLcJ54QxjmZFGBdjNsuGpaJ662Q74WC4P+lS+Vd12XTNmyARx6RzR4YEGBfJNcpWOTG43z6M5/lmI99jBNPPYVzLjif3V07wIMdb7zOvIULOOlTF3LciSew7t57BSwPj4uxme3wQX8PkQtOZ8WPf1jGYpWx/7P5GZSBtUc59zpfQPNgxlVXYVZWirxb18mOjlJ99NF88POfY4TDmNEoqd5e3ly7llR3N8NvvYWTzRJraiLd1yd/5/M0nHgiZjgs4Ht8HCudxsnlxBAvEiHa0sJx3/gGuZERHnjoIZ565hk2PvMM/U8/Td/LLxO2baLRKC93deFZNiNzz2F7IsfMy66C6lq+fPnXeX7jczA6RDaT4ZVNGzhxSgc0trDse3ey66/v8ZeurXzqK5fxrZXfg/ZpLFv+HVauuJa3n/0tW3/6CPc+8CDvv/ce2Da/e/op3vnbLt556QV++thj1NbUcP555wqwjlXCcD/84ocCYDUNO5+mkJ6getLHaJl5Fppm+OyymI9JprUMSjXPPJOjz/g6kdpWRva8TnxgF3Y+hx4I4zk26bE+rFyCQnrCH+RIY+czpf+R54FjFVC6QWZ8EIDRfW8Ko20ECIQrRO6aSuKNjYjMu/cAWsdUVDAsBmPtUwT8ZtLCapsm3q6/ijw+k8LZ+FtIJ1HNk3Be3CCu4a3tuJ1/kjrAzj/h7XwHt/MlUBoqGsPZ/Cy4Hioq6hTPMCSOyBHmKhCIkM8nSKUGKBRS/onpopROIBCluXkRl156BSefvJgFC85k3rzjeOONP2FZad5770NOOeV45s5dzLx5p/Paa+9QWTmFyspJpFIJLr/8ShYv/gLz51/IxMRpzJixlMWLb0fTTBYsuKX0t2GEmT79PJqbZ1PQdGwUA0qh+1fdvFxRUXJV5nQkbqsGAdpZhHneg5ifGUjttYO4hX8ZYaldykB7HWJmthYB3c3+dz7UQkfiuBwEexSSBTrXdrJz/U6ClUGJxfI8tICGGTHJJ/J0reti5/qdKF2RHEyidEUgGgAdglVBzr3/XG7ov4FYcwwzatI+vx3XcrHzdsltXilVqslWSpEZyTBxYAI7a5MeTlPwjcc8z6Ojo4p589pQSpFMFkpmT01NFaxbdw6O45JIiPxVGG258GQyYsCVz9t0d8fp7Owml5Ns4EzGwjC0krHTffe9RlPT4ZLdcNhg927JDe7vF2DtOC65nE1nZze7d49RZdSzsGMhI5kR5rfNR1MapjJJFBIMpgaxXAHWYSOMoRlMqphEzspx26LbWDpjKasWr2I4PcyB+AFu+OMN1Efq+fFFP+bPB/5Mf7KftwffZlbjLGzXxnEdbNfG9Vzmtc0jGohSH63n1Z7X8JSGF2qATI/UQBcZ21JyiOur2hSEG6TG+u2bZX47BTuulLxrEHk4Xlm8VoybUl45ais7AMNdEsW14yrIDkKoQYB193ruX/11/teTT/LCpg1UGxkBqa7DwIEPRRqth/jJ4z8mGg5y5pkfBzx6935QMjDb9tIGRkdHOao5DNlRYaKD1bJ+z68DD1ZKXbWmy2c9KPnVh0q9PUeytIvHws6WgbdTEKa6OIjs5OCVG/wac//+pAV8SbonRmhmGGYvJ1QY4sLgRjlEx13CvMvuZX93D6MjwwyPjHD26fPAynBM94NUV1aw6flNMhjw6s3CiDsFfvazn/GVr3zlPwBrgFDIIBIx6e6Os21bL47jYppa6RwHiEZNwmEDTVP+gJDmh5P0YhgaxxxTB4jSI5HIs2hRB6GQwbZtvdTVRUr12kopDh5Ms3v3KImEAPZo1GR0NFMC7P9T2xFwfaQdaUfaf715nsi4PQsynWAPCrC2eyDTBSifkfZBs5sQiffgNf6odkRemTekvyI7VQTlygCtQkasI6cL8934IEz9APQmQIe62yQDOzyXkDdEUzRKNBAomZV5nkdXTw97x8fZ0dcnjrrBIFXBICHDoCIQYDSdpice582BAQCShQKW4+AB89ramFxdjQf8cNs2rp83D0PTGE2naYnFqAgGy1VVSnH/eefxw23bmFJdzbquLj4aHxd2TNclTmvvXlixQrTTxZbLCdJdvVoYZk0TRvqRRwTl3nOPLHvlleIe9ulPyzTTFIS6erW8e56gX9uWv9PpciRXc7M4ks2di8IrOYB3d8vqly8XTA+CB+JxqZseGChv6oEDwj4HAocD55ERkXq7rmzuUUfJPNOnw2OPST13NivvJ58sddaTJgmBH4lImTgg4Nc0WfaNb7Lr/ff5y8uv8qklS/jW2n8Ey2bZ1VezcuUq3v79Rra+/Ar33n8/72cmSg7glgbLrr6az1z8Sf/chFwux6c/91mOOe44TvzipznnthXstjIQT7Fjxw7mzV/ASbNO4LiZM1h3372yHfkC37zqKmaecQYnn3IKM446ilX/9E+YkQiarjPjyitBKexMBj0U4tRVqyROq66OXb/4BUrXibW20nDyyYz/7W9YaWELnFyOYFUV+YkJrHQat1AgNz4OnkesvZ1MVRW3r1lDPJHg3CVLuHrjRn6QyxGbNIl/fvhhbr1tJbNnzeT0L1zCilu+y/yFC2H3+9zwpS8wlC1w/BlncuonzuKCmiBf0JOEggEuvOhClF2A3/yYeTs2sf+D98EvcZhIpqC6jnRTB4FggNqGRmFWshmIj0Oskp/98ld85bOfJuDYAqwNU4zNzl8KLz4jJmzZJEYwTGZiECsbxy5kUJ6HGammbuopPkgWgKw8D8MMYWUTtMzwgXZdK1YuwcD7rxCqbMAIRAhVNuA4BTTNEODtebiOFOrrRgClaURqWnCsPC0zzyrVbafHBsFzcbteQUUrwAygtU32GWoLd7BPFAWGCaEwGCZKaRjXfw8VjeFufUWA85Y/QS4nn7teQU07RmK40im0RWeiffkK9Is+J3XXmTSqfSp4Ll4+J5J018UbHcbZ/HtwJUIrlRrklVdWk0z2o/kSEc9zCIVqmTlzKZdd9iV+8IO5/PGPv+QLX/gKV155FYYR5tJLv8W99z7BH//4a775zXa++c0rCQbrAMWDDz6MaWrcd98Z/Pa3v2LlyrtZsOBuPA96erqoqzuGCy98jEiknu7uLUSj9eTzcWzNJK0UFUjMlkKAcRFojyJguyjZPhEB1tv8zy0Io13tzx+llEhMsRgjitRjXwH81P+JhxEzsxxSu50HKv350SFYGSw5eceaYsT3x9n47Y3E98dRuiJYGWTBLQuYsXQGuqkTjAWx0hYbrtzA+O5xApUBsqNZNq/YzOiHo0TqIkzsn+C5q57DtVwKqQL5ZJ7Rj0bZsEyW6d7ajZW2MIIGE0MTXH7d5Zy8+GROmXMKn/70RezZsxuAt956g8985lxuvPEzfOYzn+DPf36Z0dEs2azNAw/cySmnnMDJJ5/MtGkz2bBhI9GoSTZrMz6eo7s7TkNDlOXLN9HdHUfTFKapc//95/LBB9fw4IPn+XWoYlyWydg4jsfAQJLTT+8gGDRQCrq74yxfvomGhig9PQkcy0OhmNc6j+5EN9c9fx2JQoKQEUJXOprSiJgRdF/KHNADTKmewvSa6fz4oh8zrXoateFa7u26l1+99ytu+OMNAGzt2UosEGNhx0KG0kOs2LyC7kQ3WTvLdc9fB0BVqIqt3Vtpq2hD4os1aFgsJmWZbgHMqT3Fh4XD343/h70/D7OiPPP/8VdVnXN6Ob0CzdbdIOCOCG6ILGYxSlQyyZjYSYZMJstojJrEaMQIJppEMGLcEjXRLDNJJhu4JNoiakyINAgICiiyN9D7fva1lvv3x13nnMZkvjOfzzXf78xcP57r6quqnnqep+qcrlNV7+d9v993FZz3fWW5rRCccRuUT1IgaYXVBRyUCS+kpxrcou8IRkBDxetnw977oGONaq7FgZnL6Spfwi0/eINoNMb7PnApcxZ9iAsXXAyGxRM//w2nnnYap5x2Os+tW88zTz+FYSfBzfOZ677CrDnnMmfBB/nqnQ+w9re/onby6QpKzaAC3VB1ad3zgbOM+nigwNiwSuuhwhXuR+YV2HgzoKHviLYLVsH7HtJ6N6cMu3gKqu2UtqucALUnaej5xat1nNQADz/yIz685HLGjalh0vixrPn9CxCo4PXqz7L/4GGOHjmi3/OieyFQQSaT4Te/+Q2f//zn+VslFNKIia6uOOPHh9m6tZtMppSxwPPEN7/T7aGhdFGTPX9+s96vPchmHTZv7mTMmApyOV2fNEknkRxH5Rau69HQUEljYy3V1aHi5FQ+71BWFvib5/e/pZwICz9RTpQT5f+8uEkNCTfKIdCgummjTIF2oAGcGFTOo8RReLqv/CwgqGHlAV/BZx8FuwMq5qKvafiztwU9tuWz4RnIbIXgFAhO80/E956VHHEnTNbRXNW9iQS9ySRzGxuJZrPF0O/KYJCOWIxVbW3cvnAhJ9XWMphOE8lm+f7Wrdx36aVUBoNYhoEjwmAqRc5xaKypoTMWoyIYZHxY07P0p1JUl5VhALv7+4uh6Jav567K56mKRksh31/8olpvX311KQ7bNPUh+W//pmZlP/iBstCuW3IL++IX4amn1Aht3rzS/tGx1k88oSA+k4Ht27WdZSnINgzVfLsuMWpoa1On8MFBBcEvvaQeab29mrN6+XIFvgVZ9969SqCvWQP79ukcwcyZut/z9BCJBDQ2KuO9apW6iRfKI4/oxyqEjBdkz4WPV1nuYhpSJCuIpyAYYPtbu/jY1S0c3X+AcxbO56tf+Qqf/sd/pLOzk4sWLWL7li1MnDARgG/ccQcNVogRXKLJBA+t+i7Zg0f5U/s+Ll+yBMMyeeTRR3ny6afZ8Ks1zLnyMr59zfX83azzGAkanP7hy9nwyh858/Qz+EzLJzhr3gXMGxykY/16TlqyhAu++U0KhlqGD46SHR3s+fGPmXnNNVSMH48RCGBYls+MeUX3XSeV0tByP42Xm06T7u+ncuJE9vgGadVTp+Kk09ipFOVjx/pSPIPBnTupbGigasJ4gniqE/Y8OLIP6ht0u6Zev1zx4Dc/9PNZj/fDt+OQzfCPLR9jzMw5PPzoo+zc/RYf/tjVJYO0Rx7h0x+/WidmEPjd42Te/xEmnX8RG7/yT8y65iZo0FB37Jy+TJaV4wY1J3TPnj8Vw7s9zy7mtA5W1GKnY5hWEM+zsTNJKusngmFhZ+JF3bSdSZBPR6msbyy5gFfUqCGcc7ym284kCVZUE6qsRQA7HS0dr7waXA/TcTW823WRvm6M6hp1Db/8wxoOnk5BRaX+fwwTw3UQy1LW29OJtWK4+KJLMOrG4h07jPfc77Cu+5rqsTe+oqHi1TW+S7uJIV6RdZJEDPI5vJoabMujq6vkGB7yjYVyuTjBYKWGvxsmuVycP/3pDsaNW8rSpZ9j3bpfMGfOJXR2vkEwGObQoXV87nOP8s1vfpP3vvdszj9/IY899jDnnTeb+vqT+NSnPssHPvAB/umf/gHXzZPPJ6msHEM6PUw2G6W8vE6PXV6LG6igyw8JD/l36BgKmjtQNvo+FFSbqEnZWJTB3oU6iVegIeDz0HRcMdRNfDfqGF6hd3oylMzNqigZpWUpgXEzY0M0i2EZBPyX6tZrW4/LQV1wDB/t8l3Ie/3uPNgzW2ZyxaNXsO6GdcWc1oUyOrf1vJvnseWBLSx5fAmJSIKNWzey+AOLeeGGFzg2t4unnnqKZ59dz+zZp/HYY0/wgQ9cwr59B/i7v7uCRYtW8/Wvv4cjR7Zz0UWLCIcr2blzJ0uWXMZf/rKbhoZ6+vuTNDfXcuONL/Dss/t5+ukWFi6c4gMQYWBAjaAK4eOF0HHbdovuy21tHTQ11dDREWPJkt8U9duBMo8MSWpCNXzuuc+xoHkBC5oX0Jfs45xJ5zCYGqQr3sWFjRcSMAMse3kZqy9d7UugTAwMXHExDZMtXVu4sOlCDAw88QgYAVxxuX7d9cxtnMtlMy6jvryeJ995koVTFrKqbRW3XHQLEyvG0lxeiWFYiKVyBgbaoO0qWPgkVDYrQ13ZBOkeaFigk+uF1FBOUsPEnQzsXAZnLINMNzQs9MOoff8WN6VtQvWaoquiScPPnZSy1sX3BVudu8VQFtjNKatc0ELn46p1DoZH6b/94uUUvNspCJSX9NJe6XetxmN++HcxwwklBtqzFXxrpbYx8MPWHQXP4kDPFjUgq2ryQ9wLod+dmooLINmpuusLvg51J1OMAIi2Q6oLGmaz6v7HeO759bzy9ZOpXHg7u44luG35N+gfGGbmmWfQ29fLh5dcyZe/+FnNn71tFb88djY/+Ndn2LZl87+b+zqTsUml8mzd2k1DQ5j773+Nhx5azOBgmpUrN7Js2XwmTqwqXrNvvNHLnDkTGRpKF3NYd3XFmT17AsPDmaL8ob6+nHTapqsrTlNTTbHtjBn1HDoU4Z57dPvkk+sJh//n6q3hRFj4iXKinCj/rxRPgbWkIf2aH/ZtQuUiGPn5KPMyC32dCigoHlgG7qCy1n036UMlOEXZ6cwbynxLVt3I7XbIbAGnC53hDfosdhV+LC/6+qbnYhmaq9ryddbjw2G2dXdTX1FBXXk54VCIgGnSk0jw7P79fG/zZkzTZHw4zGAqxUVNTfQkElzb2srhSIRNHR2kbJuyQADTMOhOJAiHQmo+BLRHIvQlElQEg8waP54Dw8PFvuWBABUVFUg6raA5l1OU+YlPlBzD+vsV0LiuMss//KHSvratVPJNN+nyhz9UcfP8+UoVJxJKEz/+uG4//rhuZ7OwbRvZMWP4yKc+xalz5jD7fe/j0pYWDu3eDddey643t3L77fNYvPgcvvSlM/jd71azeLF2/8UvVrBr1yyuumoOV101h9bW3+K6mqbr8ccVWE+YoBrrW2/VyHVNP6O5so8cUTfxNWsUpE+dqssvf7kErAcH9SO1t6s5ejyufmRFYC2oSVne5uEfPMKHL1oIuTz/8tgP+caKO5gybRqnnnkmq264iYl1Y8CArdu28tq2bXzpi9erxhqgo5fyZIYr3vt+DEv1dvMmT+Xo0aMwYSyGYRCtCML4MaTqq5S9HTNG/y9hdfq+4M47+eimTVxw552I52Enk2z/zndIdnQAsOfHP6Zj/Xr2/su/YJWVlUB3Vxfb7ryT+NGjmsoL2PP44+B5lI8ZQ7q/n/KxY9nzxBPa/2c/wzAMMkNDqsl2XQZ37cLJZmk45xzSg4OkBgeRirC6df/ucWiarg7fVTUw4IdqjwyqYVnB7fuX34d8jlX/8m8c8oLc893vguPw3fu+xz233kzHt7/Knte3suLOO3nn0CEFiaEyOHUWT65/mVNPOYVZ//xlZasLMyFWQFN15TJ+arMADSdfiJPLECirPC6ntYEweHgbVrAMO5MkUFZBz9t/ws7EsTMJv91WKusnUtVwEkPtGio+eHibfy0IrpMv1R/aRiBUweChrWoiJnLc8QBMMwApP7w7EcMYPwmqa7A++HfgeZr/Op8v6h0MQExTQTeC+/I6cGyMYBDrQy0YdWMRz8WY1ETgi8swAiFluPe/jSQTGFZAAUVkSHNnR4ZUf234Jnt/XI9phnwzM4P+/t1+yiwoK6vFMCxsO00uF8cwTBYvfpAf/vCnLFlyBXv3/pCqKo/f/vY3hMMNpNMzOHDgEPv2vUks1sHAQJy+vqcZO/YUYrFjjBkT4OjRw3ieQyBQRlXVBAzDIhwez9ixp1JeXkc+n8ayMwSAqSi4zaEh3jV6B6cLDd/uR3Ncp1Bgvdn/eU4EbvL7nI/+dnvRdFvlqCFaJaV81gJc6O+Lo6ZpoKHieTRdV8j1VAPtStE5f+FyZbEXLV+kZlqOR0dbB7lEDjtjYwSNYpuFyxeST+WLzPeC2xZgBIxiHutQdYiy2jJC1aEi+71oxSLSQ2kWLdcc15ZYXHnllZgBk4XLF3L++XPp7Oygr2+QoaFB3vve9+N5cOqpp1JXV0dtbSeTJ9cyffpcduwY5OjRCOPHT9dQdjPLwICaNgWDJitWLOLZZz/BokXqMJ7Nqi7VMAyOHYtx7bWtHD0aLZpJ5XIunqfGUbNmjae8PMCCBVNobf0k3/jGIioqgrze+zqmoU7hDy1+iMUzFrN682oawg3Ec3G64l1MCE8gko2AAfcvvp/uWDdD6SE80VzghmHgei7zmubheq7Wi2B7apT26BWP8o9n/yP3tt1LX7KPq8+8upgz+/7X7qe5ejyGVQ5WGYZh6QTfuItg4dMw9kIF1mPnKiM97kJK7HVYGexAlYZEB6vh3Ach26vAWkTB7dB2f3+tgnA76ufHrtQ+blodxt2shpA7KT+02tCw7bIaBcOZEc1TXVanbLJhQj5ZArWIguL4MT/cO1RioMUpvfYE/PBvz7+y/SwGmpHDUWa78H4kvtwtekR/JUZB7mZDw2z9DGZgFEOdhtpm/73G07Rdze+Huuk6ZHpY+9ZOgcZFfO+Rf+HpZ9fxwnPPUHn5D6G6idmzz2F967O8uW0j//avP6Hn8FvMPO0kNUWrHA+NF/PTx7/P5z+xBEb2/bv5rysqglRWBrnwwibuv/811qzZQyyWY+XKjaxZs4fVqzcTj+eIx3NEo1nGjaskkcgfl8N63LhKkkn7OPlDQ0OYVavaistCW9cV7rmntG3bQj7v/M1z+99SToDrE+VEOVH+z4thqZFZYCpULqQUGGjCxHtQTXZ61MPLUxCd2abh42al5sR2On0gfRgqLtBQcyOkab6GH4Ly2arrxh6VjqueYnoMUcfxvGdyOBrl2tZWen1Ds4FUioZwmBvWrSuC5QPDw8yZOJEnr76a+y69lKN+n6aaGq4+80xWb97Mmj17WNXWxrjKSu5pa6PBZ6oXNGvI0+FIhOuef56JVVX0+vHU8Xy+2LcrHifjOIhtY5SXK1vth6pTUQFbtigyPXKk9HAu7M/nFYz39mq8tuepkHmr/0o6YYLSyQUK2HWVrT58WMH47NkwfjzXfu5z7F+7ll2zZ/PhefP45699Ddas4YYvfYGamuVEo29y3nmbeOSR7xGNvkMoBDfeeCuvv/4Wb7yxk6effp4bb7yWf/qnIY4cUfBdU6OHmjYNfvxjZaoL4eQLF2r9woVqYP6NbyjB/uijaoLW3q6R7YVo9VWrVIJeLK6nhmWeXi+rfvgIh460c8/td0B1mO/evZJ7Pv9FOl7cwJ7Xd7DiBw/yzv59pNNprr/xRn58+zcx6qqh3o8zn9EMc2dBVSUc6gTP4+Hfr+XDVy5RsP6N7/CNb93FlMXv5dRz57DqO99h4kRlwbFMHnnsMc6/6CL+/uMf543t28mOjGAGApz26U+z91/+BXFdZl5zDVM++EHmfO1reK6L+Lms04ODdP/5z2SHhrCCQYxAgHFz5pAZGmLbnXdSOWECwepqZl57LSctWcK5t92meULDYdxslu133039KaeQHR5m2513Un/aaZSP8Z10a+o0P3V5pbLXkWENcV78sRKr7bnwlxfgg1fzvV/8mqf/8AdeWPs7KsNVDMXiPPPss/zD56+BT36R6Sefwry5c9nUtgna98LIEMx9Lz/9zW/5/Kf/EcZNhHwWfv0oDPZCKgFDfXp8w0CcPIGyMOExk8EwaDh5LrWTTqPh5AsBg4aTL8S1c1TWT2SofUcJUNdN9NvNxTADBMvDNJx8IbWTTmPc9PNJR3rwPAcrEGLc9AuKYzr5jD82yN84niFS0kVv3oBRXgGJOG7rkxCLYM6dr7NBkWHc559SV3I7jyQT4HlYl16hl+O6Z5DhQQXWhokRCuF1dyCRYczLP0LgyyswJjXidXcqI1Vdg3nphzDCqvs2wlVIPIY3eRLR6GGef/46AKqqJtLZuRnH0cDrkZHD9Pa+gWWVEQpVc999D3D48GHuvvs7LF78EC+8sIF167Zz7rnn8aMf/ZT58+cRClUwZcoCQqEwH/jAfYCQSg1SVTUZ0wzgeTYvvPAlotGjiHgkk73YdhoQQqFK8ggJ4ABwLZpnugI44m83oZrpe4C5KHC+DnX6DgLf9et7/Pp2v82NKEt9AGjz93/BX5p+W4BZfp9rgU7/qSGe8NLNL+G5HpHDEdbftJ7aKbVc+aMrqZteh4GBGTRpnt9MeW05wYog4gjVjdUseWIJtVNr2fCtDYQnhlnyxBKqm6pxMg7BqiBLnlhCWU1Z0fhs7KljWfLEEupn1NM8vxnP87AzNsGKIK7tYgZN6mfU88MfPsJll13BlCmTmDBhIk8//SSGAdu3v86hQwc46STVRpeVBZg9ewLhcJAXX3ySqVNP4qSTpjJlSh2VlZqzeurUWubPbyKRyPupuwI0N9cxcWIVPT0Jnn12P6tWtRW1qwX9djBoUl1dxqRJVViWwcKFU5g2rY4tW7qYO/EiKoOV5JwcFYEKJlZN5KHFDzGcHqa2rJYLGy+ktryWlJ3iC61foD3STlNdE5XBSnqTvcRz8WLqLhOTrJMlmU9yOHKYLzz/BQ5HDjOYGgTgoQ8+RDgYpixQxkOLH2LprKWsWLRC/6HpLj8HdVaBbroTxi/0AV0TbL9RwbSbg8Qh2PEVBcF4Gg5tVfpgOqjAGUMZaHFh3AX6LhE/pGm5ysbpdkF/Xd6gIeJvfFXD0S0/1Zf4pqkiyjKPOU2ZYjPkR2nbyl57NsQOl9Jp1U1XprswhueWQLab01DwAhAfnRtSGGVQllUTNM/W7Sr/uWJYCqatMj2n8ETNZx09BANv+AZolq8xt+Di+2DSPE3hFT0AlQ0Q74T0IA889DC/WfMkLz/3FHX1/vtQNkpvTw+F97AfP/E44YZpvP+SS/UelY9zyJzD9vYkn5xbpax44Xv8G6WyMkRFhcXy5YtoaZlJbW0ZK1bo+m23LaC2tpza2nLq6soZGkpTXR1i+fKFtLTMZPnyRQwNpamtLSv2v+OORYRCOtE0OJg6rq1lGdx+e2nbtl1yOfffPbf/FaWQAuJ/019jY6OcKCfKifLfWNy0SL5HJN8lYo+IZN4U6WoRyewUia/XOicu4kRFnNio9aS/HtF6u19kX7n2dWI6ZnavP25EJN8tktk+auxWbWNHRJyEjmlHJJE8Ii1r1wp33SUta9dKNJORwVTquLotnZ3SsnatvDMwINFMRqKZzF/12dXXJy1r18rOvj5p3b9fdvb1SSqXk4FkUmKZjOwdHDyuz2AyKalcTnricdne3V2s2zs4KLl4XKSnR6S3VySREBkeFolERKJRkZdeEkkmdT2ZFBka0n3r14ts3SrS2ioyOCiyd6+uv/GGSEuLSFeXjrl3b2k9Htd9jzyidXv3av26dSIgr3/wgzJ1yhSRvXvl7LNny3e+86+ydKnIW291yKRJjbJpU690d4uMjIgMDIgcOCDy2mv7JByukpqafjl4UCQW0yF7evSj7NwpsnSpro+M6CmMjOghd+3S+p4ePfVoVJfl5XqakYi2iUa1j2c7Ivm8iG2L2Lbc99175bxzz5XI4KCIbctgb6+EQiGRPYdEEimRvC0fu+oqeeKRR2T39h0ybuxYmTpxkkxtbpba2lqprq6WT3/qUyJDEZF4UiSelJXfvFPmzZ4jqf5BkaGIfPx9l8qv7n1AJG/L4XfekaamJtnz5k6ReFKOHTwoQ++8Ixtvvll+8f3vy4SGBunYvl02LVsmqYEBycXjkk+ldJlMSj6VklR/v6SHhor7YseOycj+/dK1YYNkRkYkG4/La8uXy75f/lKihw8X++VTKcmMjEjXhg3F9r8680yJHj4sG2++ubieHxkW6Tgs8qOVIkcOiIwMigwPiPR1iXS26zIeFdm1RbfTKbn/7m/LubPOkpEjh0XiEZF0SpxETOrr6uSVW68TGRmUwc4OaW5qks1//pNIMi7S1yUHX31FwhUVEjt2RKSnQ4/1p2f12LGIyO6tIpm0OHZOUpE+ObbjOUlF+sTOZ8W2c+Lks+L4y8J2IhGTJVd+UKZNmSyzzjpTLrnk/fLO2zsln0nIs794QC44/zyZPXu2nH7aafKtO5ZJOton+UxC3nnnbXnPey6Ws8+eJaedeqrcdNNXJJ/LSDo2IJ1vviB2LlM8Xrz/qLjZrLjxqLiD/eLGY+JlMmKv/YXk77pZ7Kd+JV42I142K148Jm5Pp3iZjHjZjLiJuLjxqDgH3hG3u0OcrW3iDg2Il07pvlhE3GhE3KEBceMxHT+bES+ZEGf/Hj1mb5fYa38hbm+X1vV2STY+JM888xnp7t4umUxEksl+6eraLvv3t0oqNehvb5MDB9bJ3Xd/Q2bPnikdHXslm01INhuTeLxHYrEuSaWGpbf3TWlsrJY1ax6XoaGDcvrpp8orrzwv6fSIZLMJueqqv5O77/6SdHfvkC1bHpb9+1ult3enrF3bIt3d2yWbjUsi0S/DuYTsFZEW0ReqFhEZetd2VER2ifxVu5F/p37AH6NQv/Vd+wf99b1/o+87IpJN5yXeE5f0SFr2t+6Xh056SJL9ScnGs5KJZmT48LD07uyVoQNDEu+JS++bvbK2Za307eqTbDwryYGkZCIZycaykh5JS/eb3ZLoT0gmmpFYV0wOrDvwV32yyawu41nJxDLF9Ww8K3etuEsuuOBC6esbkXg8Kxs3bpVLLrlUzj57tnzsYx+Xiy9+r9x77/2ya1efXHPNHyQez8of/rBOmpqa5OWXX5NIJCPxeFZ6euLS0xOXWCwryWRWRkbSMjKSls2bD0tT0wUybdoMmTlzlsyf/x5pbX1N4vGstLb+Sc4//0KZOXOWzJp1tqxd+5xEImnZvbtXrrvuq3LGGTNl1qyz5YyZZ8g9P7xHRtIj0hPvkb2De6Un3iPxbFyS2aQksgmJZCLSsrZFuAtZ+tRSSWQTEs1Ei8tIOiKfeeYz0hPvkWgmKrFsTNYfXC+PbH1EeuI9EklHZN/gPumOd0tPvEda1rbIzt6dEklHJJFNiJeLisQOieQTIrkRkeywSNd6Xc9FRDa2iPwKkeg+kXS/SHSvyPAOkVSPbueiIvm4SD4pkhkQyfSLjOzSfiNv6rjRvSKxA7q9sUVkZKffbqduD20X2fewrudGRJysiGOL5JIi6WERJy/i2iJ2TuuG9+nSsXW9q03XnbwuXfv47UJdYaxCvZ0VyadK4xfa2TmRRLfI8P5S21xSJNEj0v+myIvXiGTjItmo1id7ReKdIs8vFRnYJZLz92WjIiMHRH5Qp/uycZH0sHQefFsAmT7tJJl99iyZffZZMvfcs0USPXLXitvklJOny8kzpsuHrvygdOx9XeTwOpHUoMjIAbn9y5+VTy/9pEj7OpGB3SJO7v/xNS8Wy0pr637ZsqVT1q8/KIlEVqLRjCQSWUkkshKPZ+Xw4WEZGUlLPK7X+L59g7J9e7fs3TtQbDc4mJQDB4Zk9+5eaW3dL4ODSYlGMxKJZKS7Oy5/+lN7ceyBgaS89VavpNP5/5s30//PCtAl/w849b8dKP/f/J0A1yfKifLfXNyEguDsXhF7SMHvXkS6lh4PprMHRTJv+IC4X5eZ7dou3yPijIhkD4hkdmmffJdIdt8ocB4Ria8rAfD0Fh9QHw/o09m47OztlZa1a2V3X5/Es1lJZrN/BZZ39PRITzwuB4aGpHsUIH6jt1cODg1JTzwu+wYHJZ7NSsQH4NFMRkbSaemJx4/rs6uvT7Z3d8tnnnlG4tmsxLNZiWYyEs9mpSceFzceF3nzTUWh3d0KsiMRRZ3JpCLL/n7d7u/XtsPDikAHB0sIdWBA0enWrYpICwC6q0ukr0+R7eCg7tuxQ/tv366IeP16+VRLi3z5uutEIhHZ9upmaWqaIo2NzVJeXi6PPvpzGRnRrpGIyD33PCwnn3yqVFRUyqOP/loGBvQ04nEdLh7XU//KV6TYLxbTvr29+jHXrdPtSKQ0J7Bzp36EnTt1vMJH27vXB9eJlMhQRO5fvVrOPeccGRkYEMnmRGxbnGxW6uvr5ZWXXiqC7eamJtn867Ui2WwRlItty53LV8hXbvySAuuM7rvv3nvlvHPOlcgLG0T2HJLB7h4JBYMKvP1jfOyjH5UnHnlEJJWRfCIhm5Ytk/2//rWkBwbklFNOkQ2trZLs7pbUwIDEjh0rAuLhffsUXPf1yfDevQrA+/okF4tJZnhYht566zhQnurrk9eWL5fUwIBkIxFJDQxI96uvSmZ4WDLDw5KLx6VrwwZJDQzIyL59svHmmyU1MCBuMq7g9vOLddlzTP9SCZG3tikwTsRE0imR6LB0HjqoL2BNjTL7zDNk9qxZMvfcc0V6OuTlZ56Sc2fNlLNnnSVnnH663P/de0SyGZFMWiSTlttvvkk+/clPKqgugOvYiIL7eEQkMiTS2a7gOZvSpQ+k07EBvy4jdj4rjq318cig/P7ptZKOD0o+k5CHH3pQLr54kRzb8ZycNm2y/OSBO8TOpWWgv0caGhpk9843JZsYkb/70Ifkrq9dI4PtO2S496icefqp8uzvn5ZsYkTeWveQHNvxnNi5VPFYTjYtbl+3gty+7hLYzmYVVGcUXLtDA+L2+u26OxQ8+wDafupX4mbS4mXSCrzTKQXSmbT27e4UNxkXL5PWcdMpcTNpsZ/5rThbXlXg7Y9jZ1OSTkckHu+WwcF9kk5HJJOJSDTaKU89tVT6+nbL0NAB+e53vyOzZ8+Sn//8Y9Lb+6ak0xGJxbrkrbf+IvF4t2SzMfnCF86TyZMN2bfvOclkorJ8+TK5+uolsn9/q2zd+rzU1JTJ7t0vyv79rTIw8I6kUoOydm2L3HUXsnZti6RSQ5LNxiXpOtLjebJdFNzuFJGIKGhu8ZcHRaRXROLvqo+LyDoRiY2q3ykKumMi0iMi20Wk1a8fPX6Lv79HRN70t3f4x0nnbOnb1SdrW9ZK785eyUQzRbCdjSnALvxlY1l5aulTchd3ydqWtZIaSmmbAkBOKEAugOneN3slNZSStS1rS32GU5JNZCXeE5fuHd2yv3W/JAeTkk1m5Zs3f1Om10+Xzs4+6emJy/bt3dLSsrYIlPftG5RTTjlNnn12nfT0xGVkJC0/+9lT0tAwSf7859ckmczK0FBKIhEF0i0ta6WrKyY7d/ZKS8ta2bmzV5599m35+c/XSiyWkaGhlKxceZ8sXHixRCJpmTRpsjz9dKuMjKRl27ZdMmlSoxw+3C/9/Ul59dV9xTH27jso4aqwHOk6Iju6d0jL2hbZ0b1DEtmE9MR7ZCQ9IvFsvAi8I+mI9MR7pDfeK5F0ROLZuEQzUYln4xLPxmX9wfWyo3uHjKRHin+RdETWH1wvA8kBiWQiUn53ubSsbZFoJipdsS7JZqPi5eIiuZhIdkiXBaCci4kMv6mgNxtR0NzVKpIZ1Db5uA+ukwrEYwdERnZrm1/hg+Wogs1cVPevrRPZtFT7pvtFkkdFuteJRPeLZH1APxoM5+IiwwdKADifEunaoqDa9UHv8AFdd31APXxA6+1sCUT/FeguAO+c7h/e7/fJHQ+0C3/ZqMjwXpHnWkTiXSL9O0UOt+ryuRaRvu0iOx7W9UykVN+/UwF2vEuBd6HucKsC9UR3qS4X17p39+t7w697U/slevR8/gNgLSKSy9mya1eftLSslV27+iQez8rAQNIHyClpaVkrcJcsXfqUxONZ6e1NSE9PXJYufUp27+6T/v6ERKMZaWlZK1u3dhXbt7SslS1bOmXp0qekry8hIyNpiUTSsm/foHR2RmXdugMSj2f/06+j/x3lBLg+UU6UE+W/vrg5nz32QXBmpwLdfM8oAO2zzdkDItl3FChn9yqwTr9RYrXtiA+k4wrEswd8Zjsu0vWZEmOd2aVLJ6qAPt4qkt4qEm+VRDYl/YmERDMZ6YnHZelTT8nO3l6JZ7Mykk4XQXI8m5WBZFKimYwsfeopeXjLFnlnYED6EgkZTCaPY6X7EgnZ5YPySCYj6w4ckB9u2yZ9/nEi6bTsGxyUnnhcYtms7BsclNb9+2VbV5ccHBoSNxZTYL19e4kSLoDgwUFFmzt2KEgusM8jI0rrplIiu3eLHDqkaHbnTt3f06MgvACgEwlt39Kiy9ZWva23tIjE47LyS1+SeWPHSqqtTaSrSz56VYs88cSvJBoVeeutw9LY2CSvv76nyEAfPCjy9tsif/rTTjnzzLPk2LEhiUb1sIWPUpgbePtt/SjRqJ5GX59+lAIjHY3qaRROJxotMdyFOYKlS31wPRSRzoOH/Bn5aTL77LNl9tlny9wLLhDJ5eXl9evl3HPOkbNnzZIzzjhD7l+2XMFxAVjnciLZnNx5xzfkK//4mSITfv+995bAum2LJFIlsP7bJ0WGIjJ45Jg0NzbK5g1/EbFtOXrokKQGBmR47155/FOfkrFjxshAR4cC4JERycZismnZMhnavVu6NmyQXDwu0fZ26dqwQQF4X59sWrZMRvbtk662Nkn190suHpdcMin5ZFJysZik+vuLQHx4374isM7F4zJy8KBkYzHJjIxILh4XO5USJ50WLzIk0tOpQDqZ0L8CKI4MKbBOJUX6u3VfOqn7fNZajhwQ+fG9CpYzaW07MiTy84d1zFRSlz9/WMdLJpQJP3pQ22czOmY6JRKPiGPnJJ9JSD6TUHCdy0g2MSLp2IDE+toV8PqgN59NSSYxLINH3pBYX7tseW2TTJ06VdKxATnztOny4x/9QOxcRo60H5LGxsnSeeyI5NJxWXL5pfKNFbdJJjEsvR3tctqpp8qrLz9XPG4+kxA7lykx5ql4Cfgm4wqGfYDsJRPKRqeSCrqHBsTtOqYs80CfuAN94qVTCpbjMQXZ3Z0+sM6Im0krUPeXXjym+1JJBeDplLjdHUX22o3HxMtmJZuNS3f3dnnqqaUSj3cX2eitWx+R/ftb5Y03XhJApk2bKmeeeaqcdFK9XHDBedLdvV1aWmbKtGlTZMaM6XLZZe+RDRv+RXp7d8n+/a3S339UPvzhy2Xq1EaZNKlKPvYxBdHJ5KDPfMelr2+3HDy4XrLZhGQyUclmExL3PBkRZacjooA5IiKHRBnmA6JMdL/f5oAoE90qyjojCrALQDkqCsb3jxovKiJJfxkdVTcgIp1+u6h/jKSIpBPZ48BvAUjHu+PSvV3Bb++uXtnful9SgylJR9Ly1NKnpG9Xn8R74xLvjsvQgSFlrxNZycayMrh3ULY8vEWeWvqUstnbu4vMdS6Zk0w0I4N7B2V/637p2tqlx7/lLpk5Y6bcxm0SjWYkGlXwu379G9Lfn5AdO7rlO995QObMOUc6O6OydOlT8rOfPSONjU3yyiubJB5X9q2/Pym7d/dKIpGVhx/eIkNDKenvT8rAgP7F49li24GBpLz88qsyZcoU2bbtgIRCIenpicv69QdlZCQtZ555ljzxxC8lHs8eB05ef32XVFVVyeGOw3J4+PBfsc098R5JZBOyq2+XtKxtkZ54j/TEe2QoNSTxbFxG0iNyzR+uKbLWiWxChlJDkswmZXfvbjkwdEAiGWWoC+0KjHUBlDu5mLLQBRA9tEOBdC6q4Dc7LJLuUTCcHdL6rnXaJ5/0wXVCpGeD1hXabLmmNE4+LhI/pKA806/tUj0iQ28o4M5FdKyR3XoOTr7EKKeH/xoA51PafjQrbWcVVBeA9Lv/Ciz4ccx33l9PKMjNp47fn0/pPjt7PHOdjSjY7dmqy++hy6F3RPp2iGSGj68vsNij63q2lPqMbje6Taq/BOgLdelBkUSvntt/siSTJbY6Hs/KgQNDEovpegF49/TEj5s8ikTSkkhkJRb795jrlBw4MCQ9PfHiGG++qfu2b++WWCwjuZzznz7H/47yH4HrE27hJ8qJcqL8nxcvD/l9mnt67AoIzgB8AwqnF4bu1BzU1S0w8XHwMr6WqJDXWqD/qzD2yxD0nTCx1BFcbE3dZdbqWCP36hiYqLjJ13fb7TC8CsYuJ2+dxnDWpjIYpK2jgwbfpOzCpiYCpomIYLsujgie5/HWwACTq6tZ1dbGHYsWMaO+HtvzMA2DW158kesuuIDpdXVs6uykIRwuOokXSlUoxJFolJUbN7J84ULCwSBjKys5FotxT1sbyxcu5PSqKkKJBMbAgDp9NTZqcujly3W7YNk9fbrmqu7oUPtux1GDlC9/WV2/P/pRdf9as0atu++883iX8BtuUF33ZZfpODfdBKtW8b2f/ITf/uIX/HFggLpf/5qhM86g8Ywz2LYtR1eXGpMtWXI1n/vcZXzta9fQ3Q21tWosLgIf/vAH+exnr+HSSz+KCDzzDLz6Ktx1l6bTgpLsOxBQua/4Hi/btukpHTyo8vELL9Q2r72mfR96CB54QNvX17gYnp+qJGdrWq4ZTWC7kMtDdRgc3z29kJva9cB2dH9NlW/c6h+8bxga6unqOEbzqacyffp0qqvU2bSsrIytmzfzxxfWc9vXv45jmdipDP/8qU9x8zdWgOtxyaWX0j88RG5wkHBtLXctX874ffuYc8stRQfwrldeYWD7ds6/4w5Nb2WauNkshmVhBYMku7rY9/Ofc8Gdd2KnUhiA5ee73rFqFad/9rMMvfkmzZddhhUM4mSz7Lz/fs747GepGD8eMxDAyeWw02kqGxowAXOkD2NkUF3C1/0WrvwENEzWz51NQ3QE/vgMfPKLJUfx2rFQWw8VYfjXB+DkmXDuAk239eJauPzjUF0LyRis+x1c8XGoqi3tv+yjkIjCqbMgm9FUXeUVYBi4VdV4dl7TZllBTCuIYRg4uTRWqBw7m2Tw0FYmnflenHxG3cFnzCVQVsnHP/ohJk05mYe//wi7du7k76+6CgyTwcEhHlr9HT5/7fVgGLz1+p/5x2tuZiQaJxKJ8KXPX83d9z2qTsduHisQwgwENX+7eJhYfvoro+TwK4LYeTANDCugDuGFesPAEA8xTNVXxqNFJ3DpPIpx8ulg5/Ha/oS58P1QW49hWkgui1FWrmO4NiTiGPXjcJ9bg+zZiTFzDtaHrkZyWeyQyXOt1zB16vs466yPI+JhGKafbsyiq2sr4XADW7d+n0svvc93ELdw3RzvvPMkHR0bueKKR0mnh6moqKOz8zXC4QZee+1+Fi1aTiAQJhQKk8vFKCurJZ9PEQ6PwzDUddvzHGKxo7S13cPChcupnHA2PYbBYVRHfT9wG5rX2tS7MH7yH3YCk1GTs2a//U3Ao6gxWaH/cmA6asUEqr2OoSZpadRNvNsfoxM1OPOAp4FPAKG8gzucIRfPUdlQiWmZGKZBoifBhm9u4KKvXURqIEW4Icxr97/GohWLqJtW5zNEYJgGkfYIbavaWLRiEZUNlbx404vMXzaf6snV5FN5rKBFoCJAqCqEZ3sYpkE+kccMmrxw4wtsXrOZB3mQaSdNw4t61DTXEggE+fWv1/OTnzzA73+/lnTa5pRTTqOm5u+5666/Y9OmTu699+PYdoYJEyYU7w8/+tFPOeusWQAkk3kyGZu6unK2bu2mubmG5uZajhyJ0Nub5MILG/niF/+ZMWPG8N3vfo/Zs0/n299eyUc/ejX/8A/f58UX7+D22+/ka1+7hfb2CJ/5zHIikVcZHOzl/OvO59d3/prKYKU+ej2HoBXEwEAQgkaQts42xlSM4fRxp+N4DrZrY3s2hmFQEajA9Vy2dm+lqaaJrngXJ9WexNS6qWoiJx6WYSEIjucQMAPFfNeWYVFrmRiZHnjrTk2L9Z51UD9H78dWpeqWzSAk22HPSnUDr5gAwXrNaW3H1KwsUOX7p3jquWIYqiP28pDuUzOzN26CmSugaprv4I1qkwc2QeVkHTd1DOpmq4baKterOJ9QV+x8XNfrZpTSZxUMvwvyafHfbcxg6XlSTKVl6ucxKJmX9W2DinFQ3azHcPOQi0I+BbXTSnm6PbvUF1N11skudQvftgouvEPb5xPqVm6n/PrlUHsyOGlI9pTqEn7fyvGw4Sa//wyIHiy1CVSqpj0zqPrqQhtxdPzyOtXF/wcllcpx6FDkrxy++/r02jUMA8OAjRs7aGgIMziYYv78ZgCCQZP29igrV25kxYpFzJhRx+HDur18+SKmTavjmmueY82aPbS0zOTmm+fxwANb+PGPl1BTU/4fntt/Z/mP3ML/21no/5u/E8z1iXKi/DcXNzEqFLxFxI379Wllou0BDQN3IiJOytdaJ0oMd+ZNkfR2PyR856gw8YI2O+r3TYpkduuYxb47S6x2eruy2E5SEtmsxDIZSWazEkmnJZJOS8IP0e6Jx4vh3X2JhDzx+uvFMO5C+4NDQ7Kzt1e3R4WEt6xdKw9v2VIMB9/Z1yedsdhxLHeBHR9d58TjJfp269bjadwtW3Q5MKDx1IW2BYZ6165S3YEDJba6p6fEVO/erbHXXV1KKRf6JRJy/y23yLn19TLy6qvF/s7HPiZ1dfWyatUrPnM9KGPGNMvzz2+WaFRky5Y9MjKiQ+7YcUgaGsbL66+/I0NDpQj0HTv0FFKpUij5+vVKxEcix7Pb8bjWFT7S9u0inZ2l9cJHcvNOiYEeioi8ul0kldb1WFJkb7tIvhT6LanMcaHgkreVqfZDvCWXU1Z7KFIMN5dcXvuN0nYX/7I5DS9PpUWyWclHYxI7elSZ42RSw7f7+yXV3y/Rw4cl1dcn2XhcsiMjqpkeHi6Ghg+9847Ejh1ThjqRkHwqJdlYTKLt7ZLq65NUf7/s++UvZePNN0t6aEh11q++Krl4XDLDw9LtrxfGzcXjMrJvn6SOHtFw8PZ9x4eHx6PKJvd06PYff1/SZrfvU+a555i26Tis7QptC2Okku/aTvz1MTI+813QfMdGxLFzYufSGo7th4Z3vvmC5DMJcfJZObbjOdnd+j3JJIal443nZbB9h2QSw/Ltb90pZ58+Vfa1rRU7l5GWq6+WHz14t9i5jOzcukGaGhvljdc3ST6TkFtu+ap865srJJ9Jyo6XfykzpkyQda3PSi4dl0xiWHLpeJFBj/e3K1Nd0ESnU+L2dotzYK8y0tmMstWjWexk0g8R7xIvm1UWexSb7WXSx9V5qaQewx9DtdXdJbY8GinpvdMpcWMRyWcTkkopm5xOj0gi0e+Heiu7nEwOyDPPfEZisS7JZKJ+GHmPHDiwTnp7d0o83iPxeI9kMlFJJPolmTw+3FsZ6l0+M94j2WxcUqkhicd7JJ0ekVRqSNaubZG77y6XQ4dekrjnSY8oi1zQPreKstBdIsVw8TdFpENElkqJ3U746wUm+qCIvC7KbhdCwxOjxtjut10qylj3+MulouHicb9fPGdLvCde1FinI+nidnIgKcn+pCQHk3/FbqeGUhLvicvgvsHj9g3sHZAtD2+Rwb2Dkk1kpXd3ifXOJrMS741LrCtWDA8vhKT37eqTbELPIR7PFkPCt2/vlng8e1wobEvLWnnnHdWVvvlmibVrbd0v3d0lRm50SPjWrV3S2rpfhoZS0tq6X7Zu7ZJPf/qrcvbZ58lVV/2b7NrVJy+9tEkmTpwtp512llx++VUyfvxZcvvtK2VkJC39/apVTaVysnnLFjn9zNNl37F9cmDogEQzUemJ98jBoYMSyUQ0lDsdKYZ3FzTYyWxSopmoJLNJebvvbWlZ2yJbu7ZK6/5W2dK5RfqT/dIT75Ht3duP01i37m8tst8FfXcyExFvNHOdi45isbf7DHVct39briHf2SFlq4fe8MPEB3zmeWdJU53qOl5fHX2nFCqeTyhLXWStE6r7LoSd2z5rXWSRVav8V4y1nS395VM+a/0u3bWde5f+Ol9iwAua7XxyVIi5z2Qfd/xkiX3ORv0w94Qy2Nm4SGZE6wvLXMLfH9W+xe3Y8eNkIvq5Cu0K4d7ZiEgupSx1+7pSfS5R1F5LalC3/xMlGs1Ia+t+GRhIHnftDwwk/XDujCST2eOY61QqJ9FoRmKxzHF9CiHio7d37eqTpUufKsouenriEomkJZez/1Pn999V+A+Y6xNu4SfKiXKi/F+UkDLW1S0w9g7NcQ0U2WeC6vyNAbgg6o7L8H3KaA/foy7ggQZlnyvm6n4vri7jGOAMqYt4cBoYft+KBXoscWHCg/4sdxl5z6A9GqU/leJQJMIXnn+ejlgMAwiaJrv7+/FEMA2DqmCQlrPOoj0S4drWVg5GIgA0hMOsamvDA474+zwRli9cyGUzZpScxDdupDoUYsWiRbTMnMkdixYR8pM3P3r55bR+8pOsWLgQ0zDUTnvZMmWoly9Xtnn5ck2hdccdap1dXQ233KJO4atWKSu9cqX2NU1NKN3drXmtPE/XH3lEGe+vflWp49Wri/26Ojq45f77iUYivO/v/o45V13FhZdcgvXkk/zyX3/F7353KwsWzOaqqy7mS1+6ifnzL6K3F1asWMb8+TOZN28Ol176cb7znUeYMeMMRkb0dCsr4bTTlNm2ba3r7IRZs5Q8P3ZM2erVqyEahZ4enfgvfKTVq5XpXr4cTjpJSfxnn/UvEU80jVZZCM6coQ2rw9DVB41+zmbXd1QPBZRhONgB2bwyDBhg+Y8z04SKMqgJK7MdDMKhDggGlBk/cEz75R1dWqauH+2BvIMRCuJms+QTCRDBs/3ULsBbjz4KQLq3l6G33y7mvRYRAuEwNVOnUjFuXNEF3nMcJVhMk8zwMIZlMXHBAs79+texysqwysqoP+UUEp2dDL/1FmPOOgvTspTtDmpal3BTE/lsFrniE8oiX/EJuOBiuPKT6hBuWlBRCYuvhjPPVVb79Vfhpadg2ulQUaXnM2Y81I0ttS2MYVmlMa/4hKbbuvzjo44R0u/4xbU67otrNTcrAAbiCZ7ngggTZ74P0woiUHT/tgIhJp5xMTUTT+HBhx/h9394jlf+8hoz5n6I4ZERfv+HP/C5L34VDIOZ517EhRfOZeNfNmBnU/zoR0/wj5/6B0A444LLuOLKD/Fq2ybcfIbBg1v0FEQwAiHKq8f52/514jgQDGJUVakz+PAgVIYhFsXr7gA7j/viHyAUwqjVXOHmlGlIOoVRU4tRU6f5qyc1Qlk5xqRGxFI22PAEr6cTY8JkjHAVRiCk7Lc5ykHYtPDKQmTzCf2eRPNdx+Ndyrgi5PNJTDPA4sUPkk4P09HRhufZBALljB8/i82b78OyQn6qLotgsJJAoIJFi5Yzc2YLixatQMRj48aVNDbORcRjePgA69ZdTyrV77NKFgsX3s7VVz+pKcEQwqhD+AqgBWWSY0ACWA2sQd3CA2iKrXbUDdzx/+Joaq46YAqavzpLiRB80B9jNcr53QsMAbf6P/eVKBue88cJ2a4yyo6Hk3NAIFQVInokygs3vkCyLwlCMdXWohWLsNM2665fR6IngZ2yS6m77lhE1cQqmhc0s+HODUTbowTLg4Qbwqy7YR3Rw1H6d/WTHkzj2R4I1EypYckTS6ibVkd6IO1fVsLq1ZuLqYc8Tygrs45zP25urvmrNELjxlUSj5fSFo1OUXT//a9x4YWNmKbB3LmNXHPN7Wzb9grTp3+Jp58+xMqVG2lqOoW+vr9n9uw7+cUvfkllZZZzzpnFyEiG7u44117byqFDEc4+aw6NkxvZumkrk6omAVAeKCccCrPspWUEzSCWaeGJR8bJ4HgOrufiisvmzs0cjhymoaqBZ/c/y2BqkAVTFjC2YiwVgQpCVoi+ZB/P7n+WVW2rcMRhXOU4LEPHA/DEI+nkkECVsskXPKb//HfuURZ772pNnSWuMs4Ln4TKRnj9emWyg1Xq9r39RkgeVtfxjjWwZ5Wy2oV1swyCdTClBc66Q8ezyjX39bYvaN+KCcqMlzdAbkTvd8kuyAwp4xuqVmbZCBZuW34mEz83daLTd/dG3b6jh3WJaLtYu26LB6EqHdsAqiaD46ezKh6v+13H71L2OnYMejb7Luau1rkZsDMQOwp/vE73RQ/DS5/XugKtHmuHl6/RusLzzk5B31ZN4SV+6q9Ur7Lm4sIrN8DTVyiznepXVtwMQOUETSkG2vc/KMGgSVNTDdu2dY9y+F4IOHzqUy2cd95ZzJt3Addf/wk++clJlJcH2Lbtdd73vouZP38uu3bdxXve47FixUICAZObbz6FWbPWsWvXXVxwwWweeuhbPPro5QwOprnpphcZHEwTCJjk8yfcwk8w1yfKifL/j8XNKWPtjTLGcBLq8F1w+Y63Hs8453tGsc9Jn5ne6Ruj9Y8yKduuY8RbS/rr47Tcb2id3S+S2SmJZLssfeopiWYysm9wUN7o6ZGIr7E+ODQkb/X1FbXYBRa7oI8+MDQkkUxGEtmsDKZSkvD10w9v2SL9iUTRrGy0OVoylysy3wX9dcFQbVdfnySyWfFiMWWmCwx0QdicTCqlG4uppjoW0/0DAyWad+dOdQdburSkw967969FzDt3KjM9mvFOpY4fZ5RmOx73pKdHjcYOHiyd2vr1WpdI6GG2by95oxUOUWCq313/zjulU3rnHd3f26t/Bw8qW10wMB/9VezcKfLiele8REqdwGM+2zyapU6kSst3DivDnPfZ6s6+Ejs9yklc4snStm3r+obXdV9hfc+hEps9mjHfc0jyyaSaivX3y9CePcc5fv/2nHMk2t4usY4OdfxOJtWobHBQjcp8M7OCm3gumZTYkSOS6u9XhtrfVzArG9m3T9JDQ9K1YYMM7d5drMslEjKyd+9x215B85zNKLvc1yVy7JBqqEcZkkmnz1x3tvv1KZHf/FAkMqya6kxaDcqG+kTe3q7MdSblj50WeecN7ZdMqCb7x/dq345R46YSqqXOJCTvm5o5+azk0nHpeON5NTbLZ8XOpdXR287JPXffJefMmS0DfV0S6zssqUifZJJRqa+vl5fWvyDx/iPS0b5XJk8YJ3968VmJ9R2WWWedJU888SOx81mJRUfknDmz5V9/9oQc2/GcDLbvKLqVp2P9YuezqqVOp4rmY14mI+7woDjbNos72C9eNqNa6q5jvqa6o8gwu0ODvklZRpyDe8VLq267qKPu7lDWurdbWex0Stx4VMfp69bjFRhxX5edTYxIb++bRcfuaLSzaDimGmh18M5konL48B+P00YXGOxC/76+XZLJxGRo6JDPSA8W+3d375BEor/oML516yPy1FNLJZ0ekaGhw8VxM5mI7G9/RRI+ex2Rkvb63cz1blFNdIe//bCUTMq6ROQNKZmUFeq3S0mL3SJqWNYjyk4XxhhtpJYUkWERSY5ij3vf7JVMLFM0Ibu7/G7Z37pfXcMPDRd11UOHhmTbD7fJ4N7BYt1o47PjWO5I5q9Y76JLeDIrsa5YSdu9U43Q4vESG7d7d5+MjKSLjPPRoxHp6orJ0qVPychIehRr1yetrfuP06COXt+9u8/XomZk1ap75Ywzzpbf/nbbcfvffPNAcawf/OAxmTPnHEkk1Gl88eIHiqzfm2/ukYbxDfKR73+kyC4XTM0KZmYj6RFZd2Cd7OrbVXT73t69XTqjndK6v1Wimai07m+Vnb07ZelTSyWSjshgarBY17q/VXb17ZJIOiLrDqyTRDYhA8kBad3fKju6d0gu5zuGF1zBu9eV3L6Hd4ike30n8aj+FdptbDneTXxjizLYG1u0f5G53qVMdGGMbEQkfvCv++aiynJ3tR6vky4wywX9dYFxLjLVdskxfHhfSUdd2M6nfBO0d23nR41TPF6idLx8+vjjZ6PKIqeHlaFO9Svz/G49dXroeI10oU2h7nCryMBOdQ8vMtUFVnrAZ6UHdHtgt/Yb2K3HjHdp34LhWTYmuXRGEvHMv8sS53J2MVqjru67RYfvRCIre/Z0ye9+97QMD6fkzTd75Qtf+Iacd95FcvXVa2T8+Enyhz88L11dMXnjjbdk8uQmGRiIyOBgSubNu0SWLfuOJJNZ6euLyJlnzpTf/e6Zv2LFk8n/3YZmJzTXJ8qJcqL81xQvo3monX7dHroTxtwCI/eP0l8/4Tf2GR7J+7PJJuBA33WltuPuAmuc6rS9uObGHr2/MFbftWRqV5CzTsE0DAzD4Gg0SkcsxtzGRgKmyXA6TUM4TDyXo668HBNoj0QoDwZpCIfJuy79iQQVwSAp22ZVWxvLFy1iel0djudx28svc9f73kdlMMimjg4unjqV9kikqNmeXldHZyLBS4cPs627m0evuIIa19cSe56yqQCJhAqbDx9WdvrBB2FgQGncO+5QNtpxlE3s76dIG593niaOPnKk1LaQlzkU0jFqa+H112HqVE067TjKhpeXQzwOpkk8PJGeHgPLgnBY9dAPPqiscllZ6bA1NZBOq066tlYPMzAA48dDNqtM9LZtSqBnMnDrrXDffcpuF/TXhY9b+HgrVsDYsXDbbXq8cBiqKlysw8eUpR5fX/qeRmviQNnmmipoqFMGO1RgToF4CirLIeDnI8078OY7UF8Lp05VdrqjF06Zqkx2Zx9Mb1LG2vWgvQuaJxb1267nYqfTiOdhBoMYIgzt3k3FxIlYoRDlY8YgIriZDJmhIfb/4hfM+drXCJSVgWGQjUYpr68Hz8PJ5dj5ve9x2qc/TfXUqYjnkRseZvcjj9Cxfj0nLVnCBd/8JgBOOk3Xn/9M5aRJNMyZg2fbmEHV/hmmQcAAwxr15bqOflGBoNZFhlRfHSr387MacOgdZavrx2m4QT4L1XUw3AfP/xY+fp2OYVrKWCO6FE/bA9h56O2A6Wfo/8M0ITqCO7ZB80QbJnYmxuChbTScfCFWsBzTtMC0ENdGROjtG+Ck6Sczffo0qqqqQCAYMGl79RX+0raV5cvvwHYcMskoH3n/HL50/bVMPusSdu56iy9/5Ssk4nFs2+Z9F53Nt795O+ExTfzdRz9Bd8dRxM1TU1vHY4//jHNnz+Hgjtf5zGc/y7DjUltZyc8e+QEz516I9/xT2HMX8rW77+Gll16kPFzF2aefzs8/+RHMKz8KsUhRW23Uj0PyOYxgEHf9s5hz52PUjQErgNd5BKOiEu+1vxS12YwZhzGxEXJZ/SHl8xjlFeQtl+dar2X//mf5+Md/T3PzfAqa61RqiIqKOkwz4N//vCK7XVU1ifr6GYg4tLZey549a5g5s4X3vOcuXDdHPN7Nb36zhE9+spVJk84lECjHcbIkEj1s3ryahQtvJxyeQFlZja/tDugLn2HhOBmkciy2Yag0dtTPzPW3Xf8n2AFMBWyUgb4Z+BWwF7gTZadHr7cAdwET/fYhSjrsdqASuBvNk30ZqufOA+F4jueveY49a/Yws2Um7/32ewmPD+O5HtlIFjttF/XUddPrEEcwLAPP8Xj+uudZ/NBiUkOpIkNtWAbR9igbV21k0TcWUT+tHifj0LW1i+rJ1Yw5eYzeZjwdR9zSsvXaVvas2cNN/V8j7XpEo1mmTKklGs0SDJr09iYpKwtw550bWLNmD5/5zGweeeRybFtUKixg2y5PP72Xiy+eSnNzDRs3dnD++ZOJxbKMH1/FsWMdnH32qZx00jSqqqoxDAgGQ/zlL5u4557v8Lvf/RYRwfPG8uyz/8aUKc2YpsEVV1zJ7t37mTixhnC4nK9+7SY+8tGPkMqnqAxV8stdv+SqM66iIlBBe6Sdezffy9cXfJ2+ZB/nTjqXY7FjDKYGmVE/g7GVYwkHw+S9PDeuu5GvzvsqU2unsrV7KxPCE6gtr2V8eDwBM6AeB+KSzCeL+u68m2dMMIQFkOqATBeMmwcEwMuqJtnJwM5b4fSvQfXJJe31zOVQfYrmvd6zUhnpqukljbL+c3SMfFSZ7GAtWBXw/BnwoQP+WKt0rECV7guE9c/JaQ7nULUyzsleqJqkLHbdDN1vGMpmOzlllwt5sN2css9VjXp8gPhR1Tibfg5qxL9HpjRvtZuDUI3+kHIJZaTLx+m9UtD94mp7UNZeXD23YJUy01tXwgceh/ixkm665iS9oBLHYOsquORRZaQnL4DGBfD6anjvQ8qQJzpg4oWQi4CT1b6pbgjV6rl5turXj74EfdvIv+8J9h2Ms3JlGytWLOL008cSCgUYXZLJHIlEHtf1eOutARoba1i5ciO3376Q8ePDLFv2Mj/4weVcd93zXHFFJddf/xnS6c9gmg8yMpIANGf7BRecyzXX3MzWrbX09/+EpqbTePTRe4lGo1x66Xv46U9/Tm3tNF+LrXruefOaqK39n6u7/o801yfA9Ylyopwo/zXFjUF6M5TPAQTcXrD7INjkG4/dAcHpaGChBV4SzLAu8cCoBKfTN0m7DaxJvqlZl+7PH9Yw8pH7YexyHbtyIdiHSDGVuG3hiVAZDLKlq4tZ48eTtG1qy8qoDoXwRLAMA8cPD+9PJknadtGArDIYZHw4zLWtrTy7fz9PXn0185qayLkufYkE927ezI+uvJJjsRjT6uq4trWVNXv20PrJT9JcW8vKjRtZNn8+k6urqQ6FCDsOhm3rA9YPK6YAtq+77m8blP3kJ3D0qALihgYFx319MGWKuoGdc46C6UKobnu7mqNdeGHJ9GzpUkW9IoqEDQN27IDZs0nUNuK6RvF0+vo0+twwFGg3NsL3vqfgt6ICNm+G5mb9y2Z1yGXLNBp98mSNaBdRIN7TA9/9roLo6dM1Wt22S6fV0gLf+lYJtK9cCT/4vkdDnYOBKCjOO1Ab1pMrGM2MBtquqzMAo01ojrsG/YmMwj5Pjg/VHd2uvQuaJui2ZSpgz+ahqx9n6kRc20Ych+G33qJi/HgClZW42Sx7nniCmddeS+XkyXjZrAJg0yQ3PEwgHCYQDuOk0ximWTQrc1IpKsaPZ8eqVdSfcQbjzjmHvT/7Ged9/ev68TwPIxAgUF6OeB6e4yiwN028fJ5QeRmG68DIgILogqnZFZ+AWgV9+r14CpR90KvXyDsKjE2Ly664gr7+fkzLorqqiu/ffz/nzDqLgwcO8k+f/QxD8QS19WP415/8mJnTpoIIJ519DmXlZVRUhsGxuX3+2Xz8m6twJzUpYAO633qZWO9+aiedxuSzLkE8FzubYvjIDiaefjFmMITn5LGzKZxcisq6iWAFECdPNj6IFaokVFmLnYkzeFhBeqiiBjuXwgqEyMQGyacjVNY3+mMuIp7KUBkyGDy0lc17h7jn3gfYuW0b7z//XD518hT+6VNLeXo4yer77uP13W/h3PdNvvb6HtzmaXz/gQcwDOj+5U+Y0HOUwK3fxl33dMmMbMnHcNc/i3X5hxHP+yvgPdq4zHzPZRjVNcjIEN7mDZiXfQjSaby2V2DxEobTncRinUyadO4o8Luc2tqpvnogQD6fOA4Yx+PdTJmyEMMwiUaPsHHjShYsuI2urm1Mn34J4fB4UqkBHCdHXd00wMN183R1bWHt2o9x2ml/x5VX/sgH7gaOk6W7eys1Nc2Y5bX0106hwzCYi4aHAxwGVgG3AzNG/eTa0fDu+4ByNIz7XGAQDe9+aNT6bcAk1MjM8ftvApqAsUA1am7mAWF/vwkEMjaxA8O0rWpj4fKF1E6pJdYRU0B9xyIC5QGykSypwRRTFk7BMFWOYAQMHmp6iM+/9nmMgEEoHCJQEdBw+EIb02D44DCb791cNELLJ/Mk+hLUNtYSqAioIZ4Bbs4FA7q3djP+wiZef7OXCy5oJBAwiMVyJJN5xo8PEwiYHDkSobMzzoUXNhEKWXzlKy9w/vmTueqqM6iqCtHW1kFTUw3TptUhAqZp4HlCe3uUVavU4KmhoZKbbnqRhx5azOBgugguZsyop78/SUVFkIqKIKZpYJoGyWSeaDRLXV051dUhCNq4ogZ+nuchCP2pfmrLatndv5tDI4e4+syrKQuUkbbT7OzbyQWTL6AsUIZlWEXAXB4opzPWycq2ldxy0S3Ul9eTdtKs2riK2xfezoTwBCzDImgFyTgZErkEE8ITqA4EMe04hlUO6c5RpmWTFTRu/WcN757SAuc9BGaFL5nxAaqb80F4WkH4aV+G7CCMuxDSvVB1EsQPaIj5Gcug5lQYeBUqp2hoeHmDXkWJg5Dth4aFCq6jhxVwFszGEAXRgTIFw4XJx4Iy9m+BYs8DL6egvfAcysdhZD9UjNFxxQXXVplMskcBuDUaoDf54NsPMY8ehu3fg/f9QO/TdhqC4ZKBG2Zp3QiMMkRz/B9LCGKHdMzNd8L+NfDZvTpuRQPsuB/m3q7Hnjxfz9k0/bD0wwrgL1gG4ckkvTo+f83zRTOxn/zkQ1RXF+R9kM877Ns3XATTJ59cT1dXgldeaefkk8dw0UXN5HJO8bfwta99kenTJ3Prrd/h0kvP4667VjJhwlzi8XY+85kPc8YZn2DXrulceeV4jhx5lJGRYSKRKDffvIxbb/06pmkgomDcdT3Ky4OUlx8P9v8nlf8IXJ/QXJ8oJ8qJ8l9TjBAEG/VGblZD8FQFv8HpMO47upQMpNvU6dtLqBbbqgGrVhns4HSY+CMINOqYktKxzGoITgJnUJ3D7S7o+Qj0fRWC03EpJ5bLEfSZzwVTptCfSnHnhg14IrRHo1zT2sqhSIS2jg6ORKNMqKrinrY21VG3tdEQDuOJ8MBll9H+5S9z7qRJfGX9egZTKU4dO5YVvra6obKS7T09PLR4MXtvuIFFU6eyetMm1uzZw+rNm6kMBknm8yXUmUgocxyPK4IFpYv37lX2uaDFvuMOZZsrKpTW7etTMDlxoj5wC4i1qwv+8hfI5ZQq/tSn9EWgMM5996nz+HXXqda7qkrBdyiEaequtjbF8N/8pgLd3l7F8vfco7rp3l7t3tCgp9PRoSbkvb0lXXVlpZ4OKFn33e+W5OKuWwLRoz9eY6POE6xcqW1vvsVUUGgYCm6rKlR7DSWAnMtDPKlA2bIUAB88pgDZ9SBv++suHO7U9rEkZHK+Fg3dV2zrKuCe0QzlZfoHJUZ8RjMiQrqnh+0rV1I+ZgyZgQHKx4xhzxNP0LF+Pem+PtI9Pez47ndxcznSvb28/aMf+desEKiowPBZbHwHYTud5uybbiqC9Qu+8Q2sigoF4eXlBCoqFKxaFmYopFpuH3TjeQqgGybDKWeVdNXrfgupONg5GOiBXzysy4NvQ18X5DJw8llFoL3m337J7tdfZ+evf8bNn/k0n7n2CzAyyBc+eTXXLv0kB37/W2675at85p+v0Ze/WATSSX738P3s3PoaO7/8KT4uUT0uYGdiOLl0UV/dcPKFGKYFhsnwkR1U1E3EzqVwsklcR929K+smko72YadjGFYQK1Spjt/iEgzXMfmsSwhV1pJLRRk4sBk7m6JyzGQy0T6C5WEmn3UJZiBEXV0dgVAFk2a+j3TWBgP6BwfZcayTpZ/8BObCS7jqvRfTFU9ysL2d9Iwz+Je/bGLlt7+FIR5exxEmX/FhjJlzEMNQ4DxzDuaiSxARzEs+iCSTGIaJ1/YnZM9OvLY/qSv5okuKbalQJs/bvAHZsxPyeby2V3T95RcYWzuDqVMvxrJCJJN9HDv2qu8IbmAYAURcDMMiFArT3LyAzZu/R2PjXEwzSDzeTU3NFJYseYKqqklMn/4BbDtDZ+dmwuEJ1NYqcIhGj7Ju3fXU1DRy9dVPsmjRHXR3b8PzXKLRdl544QbC4Qbi8U6C4QY6DIPxwDZUK+2iwLqgtfZG/XWiwNkDvoQ6ftcA41GW2kUZ6CeAU/19GRSEJ4B5KCgvgOlqoBZ9+Uyj+m3P9Yh3xZl38zyClUE816NtVRt71uwh1hHDSTu8dv9r1DTVYFgGuXiOzs2duBmXGw/cSHhimHBDmEB5ADtl4+QcIu0RWq9tJdoeJdmbZM+aPWxcuRFxhWBlkLKaMsyQiZNz6GjrwE7ZJHuTvHDDC9Q21xIMmpx11nhsW29yoZBFfX1F0R15+vR6mptrueGGdRw9GuXBBxezYMEUbrrpRQ4cGGbOnIlMm1bnz6dqqGgqlWfVqo08++x+OjtjhEIWCxY0H6fRXrWqDccRxo+vwjAMtmzp4siRKF/84vMA1NUpm2cYyiaLCIlcgoyTIetkuXPDnfQkepjfPJ+PnP4RuuJdbO7cTGWwkgXNCxB/ttLxHAz/JmtgMD48ngXNC/j+1u/TEG5g1cZVrNmzhnva7ikezzItehO9fHPDN0k7aWwng2HH9erYs/JdWmtPtdZTWnQZqNZ7CibsvMMHfj4z/MZNcPRXsPd+GDtXAW3VNH2G7l1dGldEAfSeu6H1VBjcBKmjsPc+qGzSMUUU1FaMUzbaCikYDVWP0lz7IQZFXTO6v6JB93meMr1J/3nt5hXwBsMw4Tx13bZCOkkQqlZgXdRXGwpuM0MKsgusdT4F2+6BSReVJtuDFceDaQpRSTkF1plhsJOjQkvyEJ4E4Ua4cAWc1qLM9KQLFVjvX+Mf40L9bq1gaaytK3X/66sBsAyHxx+/kqGhW3n88SsJBo+Hg/m8W7wm77mnjWzW4dixKJ/61NksWNDMkSNRvvrVF8lmHX7/+5+QTPZz7bXLOHRohO9972esWPE9brnlo/z2tz9l3rz5LF58Ci0tM2lo2ENLyyc4cOAob7+9n6efXstLL71cnEDyPCEQMP9HA+v/TDkBrk+UE+VE+a8pZgWETtEwbrsd+v4Z7COQflXZaS8OBHzAPQ0CE3Rb8oAFVpU/ox1Q07LsG9B+KmR3g1kDwVO0L4ay4VV/B2O/BOJiGVAdChG0LGxXXzgKBmSJfJ6VGzcWQfS4ykpWbtxYNCtrmTmT5YsWETAMtvf0MJROc9OLL9KTSDC3sZFVbW1kHYdpdXXkHIfb/vhHzhg3jsF0mjs3bOBoNMp9l15Ky8yZrFi0iFQ+z1sDAwriwmEFtzU1+h0dO6aIMxTS0PCuLjj5ZE2pNW0abN8OEyYoir37bn3Il5Vpn1RKgXpnp6LeG25QBPtv/6az011dcPPNepwCel25UgF7eTmUleE4WtXQUDIaW7VKAXPBc+2yy0r+aPfff3zb1avh0ksVKKfTCtLb22HTpuNBdDqtYLyjo/TxpkzRU/M8uP12bVs4XfKOMsmmoeHfIiXQXB6C2ipNx5XNK3gejirbbBgKovO2XheDEQ0BDwY0/NvxX1YMQ9sc7dHtnK0mZznfjCZg6XdoGmDbiOex58c/pmP9evb+678y9uyzMSyL8++4g/f+6Ec0nHceZjBIwznnYKfT7HniCcbNmaOpmfzohJE9ewiUl5MdHmbvT3+KFQoRKC/ngjvvJFBejmFZePk8gfJyzGAQO5kkMzCAnUxiGEZx28lkwLJ8htvVd8HRpmbllfr5XvhdCXDPOFNTZlVUguNPKGTS1A336Hc7/QxirocBDPz2J2xvP8anwg5MO52P/v3f09nVxaGjx9S8LJ+FzS9rv9HHFcE0gwTKKglW1tI46wOEKmsQ18HJpZg0833UNc0kWB7GKq8iEKrE8xx69vyJQFkFdiZRNHsbOKBGP3Y6Rs/br5BPx7ACIeL9hxlqfx0DmFQwSxPByasRz2f/+QtMm3Eqd6xYzk9+9AO6urqYNGkSZR/+OMaYsVhTZzBl6lQ6jhzhSNMMxowZw6rV93HBoot576c/yx//+ArWlR/FMC2M+nFYV1wFrof34nMagl+p3+1xwDuVgsow1hVXYdSNwQiGwDCLgJuy8hL4vuhiMAyi0SOsX/8VJk06hxtu2EsoVMW6dTcQiRzGMCySyV42bLiT5uaFXH75I1hWCBGX8vI6HCdDd/c2QqEawuEGqqsnMn78LPL5BMlkL/l8gni8iz171tDWdg9Tpiygru4kmprmYZoWwWAVV1zxGGPHnsrUqRfjpEdYJMIpwEIU+JqUzM3u0LsxXf7yXDS8uwoNC3+QUsh3Gk3bVeEvYyhYHgJm+z/t6/x2hWKjrHbCb28CRsiiprmWLQ9soaK+gu6t3Vx0y0XMbJlJ04VNbFy1kT1r9tC2qg1xhbKaMmoaa1h3wzqSvUlMyyTZl8TJOgQrg5iWWQTnG1dtpHFuY9HsTNAQ8KoJVcQ74rxwwwuEx4cJVgaxQhbNC5rZtHoTFlBZGSzesyoqAvT1JfnCF1ppb48iAp2dMW655SI6O2MYhlE0Nlu9ejPRaBbHERKJHDfcsI729ihVVSGWL1/Ek09eTVNTDddfv44FC5qZMCHMihUlozQlToWqqhCLFk3hsce28atfvcVNN71IR0eMm256EcfVdFiWaVEdqqYqVEVFsIKXDr/E6s2r8cQjkU/Qm+xlYtVEblh3A664BEwFLbZn43gOmXyGjJMhmovy0TM+yn2X3oft2qxYtIKWmS2sWLSCqlAVjuf4z9XVrNmzhkQugS2CVExWRrUApM+8TQ3InDRke2HuE37It6N/eDDnO3oxuDmd+Cv0PesbmsLL8+/LCJz7EJy0VEPHR3boFVNoP+5CDQ0vmJ8ZaKqpQJmGf5shiB7RMOnCc0C9BPW4tVP99Fnx0n7D0GdBoAxqp/vvNgGKqf2QkulZwVxsNJgXStuh6tJnFBfmLofTrtZhYkfg5Wt1nPSALrt9w7NUnxqcOWkN6U506nayA3Ix/R4rGmD+tzSdllWuYeRnLNUw8cKkhbjK5BuBEhi/cAUEyvGMEMeOxbj++nUcOxbDLRiG+iUUso67JsvLg8yf34zreti2x6pVG5k7t5F7772PRx75OQ888AsGB20aGsI89VSEaPRq7r//KX7xi1/S19fLwoXn8a1vvZe1a/+Vj3/8HwCYMGECl166mGeeeYEjRyIkEjmuvVZ/X/m8w//mciIs/EQ5UU6U/9rixqHvmpI2esIjCpa9JLh9YPdD5XwgoG7ghVzZoVMUoIPqt/MH/X13+I7hBmCA2BQ12mKAZMg7OYadsVQE9eXbdl16k0lWtbXx0OLF9CWTfHfTJpYvWkRXLEZzbS1TCoDX1x6mbZvyQIDrnn+eNXv20DJzJne95z3kXZeueJxFU6bgiZBxnL9q98SSJQCYhkHGcSizLNVcx+MQi2n8dGWlCpQNQ+uqqjTWOpVS9Lp8ueqlDQOuvRYWLNC/1atLsdYifo5PQ/XX5eWa29qydOytWzV0fHBQx1yxQqln38E6Fazl0CGjmOd61SrVQE+fjq/7UxzW3q77CjLwQ4dK2yedpKcxMACRiIaRP/ssPPkkLFyoX+kNN8CvfgWtrRpS3tkJ8+frMQYGFLAbhp52VYWLEUtAuEIrbFtPxPNKDuB5p6RdDwUUdBf2QWn7YEdJPx0K6l8hTHx0ePmhThgcgfNm6nijj9HRiz11EnYqiWFZGqotgpPJsPuhhzj7ppu0DjAtS9llPyzT8DX/nm3j2jaBykrEdxtP9/ez5/HHmXnNNVROnszr3/oWM6+7jqrGRsTzEM9jaM8eGs46CwwDJ51m5/33c/rnPkf9SVMxMinNM11Rqd+T5b/wxSMaGj7UqzrqKz8J4yb614oLkWEY6Vfn8ECQT3/2s/y5rQ0wWPfM0+QHe/mHz/0z+7dvgwZ1HZ67YCHfvfvbvH/m6Zw05zxqxk9ADJO5p5/Mdx94mIZJk3Atk3w6huMzy4jPiYnrT5Kh2XYNE0M8wPir8HHDtIr9DITUSA8dbzxHzYQZNM66FCeXwfNsQpW15NMx7EyC8JhGxHfbNgyT7rde5pe/+g1/2dnNqu+sYumnlrJ3507I5yBUxrz3X8I93/4WdfX1nD9/Af/6kx/z6X/4B97cvZvLrlzCW1u3MKG2BsqUEfRe/APmog9g1I9BRobxtm3GXLwEQwRxXbXCLy8Dx0ZiUXUTF4FQmRJM/n1KEjHk8H6cGdPpiOz22egAhmEh4hKJHCGV6qepaR6Ok2Pv3qeZPv1SwuEGbDtNIFCOYZj+57TI51XDGAyGlU33bF9L7WEYFi+88CXmzbuJ2tpmHCdLLpegunpy8SdSYMjdYAUxw6LKMArZe33Ft/4FUDba9H8yR1Dw3ICCbVCX70Lfrahj+DS/fRwN/R7v/9R+gTLkP/THKoSS96Ms+e3ABGBX3uHirE6U5pN5DMsgUBbADJhEDkfYuHIji+5YRP30ejzHK2qjZ7bMZMkTSzCsgo+H/kWPRot9qpurMTExAkbJ7sMp6as/2fpJaptr2bhyYzE3dqCmDMcTHKcEOq677vgw2vb2SDHv78kn1xdz+N522wImT66iuroMx/FwHI9t27qZP7+ZQMDwkz4keOmlw2zb1s2jj16BaRo4jsfwcJp02ubBB7fw4IOLsSzNRpDNOriusHNnH01NNZw0o5qEG6U30cvqzatZvnA548PjSeaTZJwMM+pnEM/FCZgBbnzhRhY0L+A9U9/DqrZVLF+4nK54F401jZxcfzL7h/ezevNqls1fxiljT0FEimHjIkLGyfD2wNvMbJiJYRjEcjEaqxupNMBKdULVFIo6ZP+3j5MeFVLt6b3KcyE/DGVjfKbWgEw3VDQqYLXKIHmkpMtOdykjXTVdr7aiR4t/nzEDkDhc0m2Hp+l+zynlkbbKSsxvQU5U0FkX9hd2GqOuodIvBz+uX4E4aJ7pUDVUjPWBM6VnjEHpWSV+fyejn73gZ4Gh7t/71yjgvfSJ0jhOCv78leP3vXxtafsDj+vnLuTvdrKw6Q5Y8B0F4vGjfl7rFVAzTc+3+Pk9/3sXYpkA117bWryen3hiyXEa53zeIZ22ESkR/aZpkMnYhMMhjhyJ8utfP8ETT/wLkUgLLS3n8+ijl7N1azdlZRlyuQqammr4/OfvIpN5jS1btgIG8+adzxe/eAP/9E+fJZlMcvHF7+Vzn/siZ5/9AaZPr+fMMx/7m2Hq/9PKCc31iXKinCj/3xYvD/l9o4DxDMAGpxfy3VB58fEPsSLw8Uq6osI45BSYGyF/3P3g9EDFQr3b918HY5dBcBp5zyLrmlimSTyXI+ybk7kivNXfzwWTJxefmUHTJGBZejjDwPE8LMPAE+FQJMI9bW2sWLSIaXV1auwTjXLquHFkHZ29zzkOPckk39u8mQcvez9jyk3ynoHrOYSDQQQXQwIYbx2A++8n/73vka+vL6YDQwTP8yg3DELXX0/+/PPJX3EF1uTJeP7TzBHRF91YjPK33oL588lbFq4IAcPAzOfxXBe3rAzLNHFtGysYLL0/+O1cz8PK5TAti3wghCkWQdcjhK3/BvH0uzRMxDQxHBvPDChjJy54glgWRgGsBQKI42JYlj9zr2GdYlp4ZpA/bwoxZ2YeO5ln7OQQr74W4pyZeeqq8gQND5sAARwMy0RcD6OsDNs1yWcFszyA7RhFUzQRsExBMIrvKwpglJAPWD6utoqZlxA/WjwY0Ehyx1Hi33EgaAmOZ2CZYOLiiQWGthOBcvK4tosTqiAUFEKWf016gus42Jk0ZdXVGAWGo1DerQGX0ouaiJBPJDACAbJ9faQHBhlz1kx+//7385ENGwhVVh738xHPw83lsEJlxI8dJTU8zOQLLsBzXbxcTrWkKLsirv9/8FwM01KA70sjxHUxLQvPXwognotpWgSO7uVfNmxhzVNPcde3v80/fvZzvP3GG8VQ9AXvfS9333knl1zyfnq6OpnSPAX7N4+zfOcR3tq/n+eeeUYZekMnGEykqIe3nRxWqAKcPF4+ixkqx/VcDCuAa2dx0wnCtRP0ZdIA13V0qszJEwiEsN08lhXC8DwM36zNKLyUil4LhvgSAddBTBPbzlE3fjJH9u3l1FlnM9jXQwBBTIumk6az4Vc/p37GqUyecTKZVAIrEIB8nnkXv5e7v/NtPvCBS0pvkIWw0MILNQKuh5FKIWVlGt0QCEEyoRdceXnxGhDX0TD+4v1NxzM8wfAEMTSyIZHuxwpVYGHh5JJUhMdhGQGkcC/0PAwrWLqkRl1PhW0x9HsQv764Lh6uOHhOnmAojCGoNKF4oQKGiSeixmUiGL50wRh1zb57/d3LvGlieh6WCJ5pYhXuBUDONKnwvH93zNHbGcOgTIScZWFYFpYnuAJkbcxwCEFBvQMEUeBfmAQowF5PIGAU3Tz0J/uun6YJ2J5g5V0s08AOmARMA8cfyxHAdsF2McMhSOVpP1wCz9On13P4cIR77lEDqClTavjCF0pg+9FHL+f113uYN6+JQMCkra2DxsZqOjvjNDbWMGGCarUdx2NgIMWqVW0sWzafyZOrAbjpphe5/faFjBtXwS23vMyyZfOZNKma3t4Eq1dv5vbbFzJhQpiqqhCeaSOWQ97Jk8wnGVs5tgiGLcMi5+YIWSFMTBxxCBgBbLHJu3k6Yh0MpgaZNX4W1WV67KHUEH8+9meWnLKE6lB1sU9Bz10YxzIsbM/GNEw88ai0AhhAwDAxxMEoaqkzvr6aEuAuTLqJwM6vw+y7tc6OQtlYH/T50zwFMI6hz32zTBlpozAVJKVQanFKgF58nZJZXuo/+r5cvPgonc+794+GRKMB898ag3e39Wd2Ciz36AndQmj5cd/Hu86/AOQLDDvo93EcgPf7u3kN+xZ/msv4W9+L/x2IO4p513YiLo5nccNX/sR1113AqaeOpaoqVPw4yWSOri6d0BszphzXFXp69FpcsWIhsdggF198Nk1NU0kmYfz4MNXVlTz33J/4/vfvZe3a39HfnySZrGHJkq/yxBNLGRhIceutv6S/fw22ncW281x66eVcccUXmTeviVzO5eabX+KOOxZx2mnjCIUs/qeWE5rrE+VEOVH+vyviARaEzoRJv4LQGRrmZYTUnKzyPfpQiB72Q1zdUQ+ddz3FzJBqrQloW0wdI3g+xLr07WniE6rtNsoJWRY1ZSbhUIixFRVYhsFQOs2uvj4umDyZymCQMsuiMhikMhSiKhQiHApRYTlUB/JUWlnCAZszx1by/cXvpzeRIGi6hK0cp4+rJWRZhANCVSBPOAjT6+r4wQcvod7sxDKEcsujKhjCwMXEAImTP/1k4o89Rr6+niPRKK91dakEGPAMg2HHIf2jH3Hgox/lL7ZNylWjlfZIhKFUCs8wkNpa8osWkTFNbM9je08PjghOKES+rIyvvPgihyIRBnI5bM/DFcH2PDK2TSyf5/oXXuBwNksuEKA3lcD0spS5aUzPwRANDTZsG8OxMeIxjLY2rGQcMxHDOHQII5/DdNV0zMjlMGwbM5fFOHrEr8tiDfYTyKUJOmkuXZBm/PA+mu78POVH93HZwhQNtTlClmA4NsF0DHNoECORwOztIZ91GI4HSORDxOIGg4MG8bjBgQMG11xjcOiwSSym6/G4AkvbVnbQcXVp2wZDQwbpNNiOwfXXG0RjcPiw7s9kDNraDA61G+RyBgcPGeQci7xjkLcNslmDgQGDLCHygQqCASFkOArwXA/jcCeWJ5TX1GKKAiUjb+s+0e8P0G1XGWxcD+NgB2bOpqymhlBZObVNzUy84AJCVVW0bN1GqLJSv39PMGJJjGweQyAYCmEe7qR2cpMCa8chH4+THhoin84wsGsXdjKJuC6e4+Bkczop4wMcESE7PEw+pe60nudhJ5Ns/87dJDo6sE86g49f3cKGTZsZX1dPX18fjusqg+66dHR0EHvuORIdnUxumqLhny3XcMONN7Jp0ybsZJLBXbtw02ks/xoyk3GMoUFCwQos18XK24Se+TddBsoJikl5WTVhx8T4xcMY/d0Yjr6wm54Q9AzM3/2YkBnC8jysVBJjqB/z14+BY+s1emgPZi5LbGSYnvZDGL9+DCObYd3z6xk7ZgwNEydyzjlz+NVvfgPBEE8+/TSTJjRw8sJFjG1q5H3vWcSvn1hNPh3lYPshjhw5wulnnI7n2uRTUbrfepl8OqYg1dTc1D1v/4l8PqW/Qy9H74FNCJ5Go1RUkM/EtV82rpMLuVQxEkHEw/AERobxOtohMoK88AdqQuOoCtZTThmVr27BiiUgncYUE9Ow1G0dQTwXiQzhtq5FIkOql/VcxLUxxENcGxAMT1/a/dgeLFTDbfi3VCm0wcDA+HeBdT6fx/M8WltbyeVyapLlTwRu2LDhuFt9yPMoqCKLwNrzcG2bCs/DcRxSqRSe55HP5+nq6sLzne7z+TypVAoRoUJ08i5jWfQaBgnLhIAJ4RCOYfA1wyBuGJiGUbxvWoaB49clDAPL1G3LMLANA/Hrk4ZBj98/bhjkLZP28gCxkMWQZapjuj+WbRokywIQDuEaOplXyE+9alUbrit0d8e5+eZ5TJwY5rXXurjllotoaZnJihWL2Lq1myuu+DXXXfc8XV1xrrji16xcqXmv77mnzXcbt4jFcsVxV6/eTHl5gFtvfbmobbUskxUrFnHSSXXE47liru3CGCLC0cRhlr20jMpgJWMrxwKQ9UOfHXEIWSE88fDwGEwNIigTXWaVMaZ8DM01zWpaZqfpTfYytnIsHzvjY5QFyvDwMA0F06Zh4ngOtmeTc3Mk8gksUwFP0AyS9TyChokhLoabBjtBUUttmCWm1M3C4Gbdjwfn3KvP/HwUrDBk+v2wcXvUO4A5KgqmMFXio107AW6aIgIt5LaHUcAaBeYFkCroe4Rr+7MtVqm++P4iHNfhb3GPowFz8dh+24JJ2nFtxA89j0G03Q8FP+SHgh8qhYZ7joanp3r99x1/3J7NEDmoYDmfKn0vpgXRDuhu09BzRNlsO12aZChMIhTXRccVwfjLrQQSh3ns++9n8uSqvwKyoZBFbW0ZNTVlxeu2cC2uXNlGKFTPvn2D7NjxNps3v84NN/yM00+/nY6OGO3tc3jzzbfZsGEHLS0r+da3PozrCqtWtfHyy2lOP/02nnrqTzz7bBtf+tIK5s1rorIyRE1NGT/+8Yf+xwPr/0w5Aa5PlBPlRPmvKZ5b+nNy+qAosJ1mBVh1/ptfUNNEGJY+TBM9um76nMPoB6V4Pgj3jakCkyFQWzIRIYTyDgaIr9cGQoEA4bIyThs7lkunNzOm3KMy4FITcggHIGT5N24vjWq+BZxBDGxCpsX4SovLpk2kzMhjZXYQwAY3juVFsPqvp1LaKQ8IFQEhEJoA9lEMyYF9CPquBfsgtoTZH0+zqb8fT4ST6uqY39yM54etG4ZBVSiEC4yvrmb2hAnYrosLTKmrY3xVFY7nMZhKkXUcBlMpco7D+ZMn6wuv/0L75blz6UkkaAiHMQ2DoVSKjOMgqA79wcWLCYdCZBxlCCsBo7NT47Nd19ca66PAKISQx+PKiE6bpprvLVvUVrysTEPO+/o0L1d7u+bhGjcOAspiGOJi3LcaLr4Yo6HBB6iuGrpZFkZlpfb1PLj7bhyjjJ4eg1tvBRGDCRM0gn7KFHj1VQ1Hj8dV8x0Oq1R92bJS1i7T90RLpeCGGwyOHVMNeSxm0N2t+u+hIZg9G3p7DcrLNVQ9EDAwTY3M/+pXC5J2BeGhgKiDuevqtVEdxujs03cny2dnMrkSm3isF8P1wHbUVC2T0/7VYejo1e8lb2u9afqA3DmemawJQ3kIwzJ9M7E4hq8J9zyP9OAgqe5uAuXljD/nHILhcPH4BaCND7ANwyBUXU2grAwRYXDXLpK5HBM//Wkyg4MgwlO/+Q3VwSDVpsk5c+bw69/8BoAH/vmfmTR+PJd85StkHIdINIqdUtXsmqeeYvbs2Vjl5Uw891zKK32DJxGoG4vRMAHDczGSCQV2LddilFVguA5GLKIguW4MnDJLNeGGiTHUB796BCMRhb//Jww7r4C0qhYjFIIZZ2BEhuDIPnU9DwaJ9fbw95/6NLNWPcaci9/Ho48/Qeua34Jl8ugPHuLxxx/nlJOns/q+7/HTn/wY185hiPDYo4/y2E9/zTnnzqXlH/6Ru79+LU2Nap44eHgbsd79DB7aCp5L91t/xM4mqaifhJ1JgAh2JsGYk+ZgZxOkRnpAPAYPbS32MwwYan8DTBPDADefxfA8JB7FbJyCJBKY8y5WF/iOdkgkMOctgqoasPN4He0+mH4SoiMajeCbqUkirtkDHJUveJ1HMTDB83Bf+D1i55F8DnEcn+Dy8LqPAYb+LwDyOcTTe0xBxjC6hEIhTNNkz549hEIhYrEYzz//PLFYjPe9733HtZVREzme5+F5Hi+88AKe5xGJRHjhhRdwHAfTNAkGgzQ3N/Piiy8yPDxcPFYBYHuWRY9hcLc/toWC6ABwL2qShl+XQ/XaoEx1DRqKnkMnLQN+fS2qE5+EmqhVoMz3fT4oL4Stu6gBW5nfJ20YWEDI4jjNaTBo0txcywMPbMF1haamGgYHUzzyyOVMmlRFc3NNEWjX1JQV14eG0ixfvpC6unJCQZOa6hC3376QlpaZ3HbbAgwDvva1+cXjVFWFOOmkWsrKFNwsW6b7li9fSH1dOVYQygJl3HvpvSTyCdJ2mrSdJpaL4YnqsD3/GXo0cpS7/nIXjueQc3IMpAaoKathfNV4vebTg9y54U46450A9Kf6cT23qNVO5BNs6drCsdgxKgOVlAfKQcA0TA0Z9/JgxzESB+HNW/WfUmBwPRsyfZpGKx+F+ln+fbNXwfHw6xCopIhE3ayGOxdkX6OZanEUQNr+f94M+uys9y5AjM8K+4ZkZrA0gY/ofdUM+hP6o0B04X0FPyKpEB7l5fW40XYf8Pqfz/PHNNBz9Ox3EQWuar2LkTA25GOaYuvoS2qMVjlel1M/6KcBszSsu6xWj5PqU7A8bhZkBpVsCIX978JPk1g3RQ3SBnbo9xcoh1dvhehB/d5iPpi302qM5mYVxIsLF92JsW0VluEyZkzl3wDXAcaOraCmJkQoZL7rWtTruqamDNcV0mmbTZs6ufXWBf71vgjLMpg8uZqHHlrMpElVvPVWP8uXl6772tpyamvLqa8vp6qqjMrKINXVCub/twNrOBEWfqKcKCfKf0XxXNX+FHRMhZnrQim8xBXbNPpaJ+Gv5vgKD7ZCSiEnW8ol+Vc6KSjO2Fpl+nDBBcnqGIalANqNgqT8lGArIDSjFKIlWU0JVji43V7SgQd9zZIXh4HbYOzX1KAtswkm/hiXECY5jL5r1cW87wuQfBYmP00y9F7+cqyT2RMmUOuHjhYAsWkYxfBu1w8VN4GkbVMVDOKIpg277eWXue7885lYXU3IsjSPN6VXCc8fw/YBe8A0CZgmyXye3f39zJowgYBhEPQnEwL5PFWAMTCgaPKee1Tr3dWlVt4nn6xO5PPnq1B65UpFstOmqTvZPfeoG1l3twqsr71W9weDiognTCi9ULiuJs2uqlIEXNCYb9tWyu8VjxOvbeL6Gy2++lXVd4PKrisqStG5IpoWbOFC1XP/4AelDGc+2c+mTbBkiWYiu/9+9YwLBuHgQU0TNneujnn0qM4R1NerRH3SJDVm27QJvv999Zybc7ZLyM6qKVrzxFJebdtRw7QZTarR7uyDKZP0BCvKKDqTpzKqyw34Tuimoe0LubhHpwcrMAqFOs8rsSB+vZ3LkRkZobyuTicoDKOo9cYwGHj7beqnTSNQVqaTIoVQXD9MXDyPo0eO8PGPfxwbDeWuLSvjO7fdxvwPfpB33nqL6266ieGREWpqanjk3ns5fcoU/vjAA9y9eTOeqNtx45gxPPTgg8w49VSCZSHVgYuoljAQpGgIVEgJ5jr+P8rXW2LA4XdUI15dC6Ey+OX31YjtgovhH7/s93PVBT1co1r6WAQyKXjxSbji45qOrGYMTGyEbEb9BmrqcENBPP8lWFwHEVeN1Fybvr2vMm7G+ZhmEDMQxDAtxHMxLP3f5lNRhtpfp+HkC7EzCY5tf4baSacxaeb7cHIpP4/3XIIVtfS89TITz3iP3tJy6WK/UEUNgrqo25kklfUTMcUP2y+EbZsmhusiVkC16P5343UexQhX4b32l1EpwdT8SNJJjHAVEhn2U4KpS7n3yjrMS5dgBIMUgIEgOr6h91DDc3XixXMhGMJFQ6FFBMuyiiDZtm1CIQ0LLdSlUil+8pOf8Pd///c0NzcTi8Voa2tj4cKF1NXV+bf2EvPtui6u6/Liiy+yZ88eZs6cyeWXX053dzeNjY2YpkkqlaKqquq4frlQiGsMg/cBn9I7OAZqkhZATdeOoHrt5cB0VNe9E7gABc55SmZpAXTa1Ub13s2oZrySkrlaP6oTH138IFocoDyeJTGYJjS2EitgYLiCaRnkXSHg66Bd39nYdT1NIeQIgaCJ6+rvxTJNXM8rOiFbrhTD2l1PsCzfo8ETTQfmuARCARxPME0FeXr/0+/JNDxsK+ev63OzN9FLQ7iBzngnD772IA8ufhBfPMFwepj1h9dz1RlXAfxVyPe1rdeyZs8aWj/ZSnNtMys3rmTFohU01zTTn+qnOlRNRaCCgfQATdVNJPIJBP1siXyCGdUTCGb74a07oWEBNH9UAfXe1SXNdPlEzXHt5hQ42wkIVvv3tpBvvuWVvn0vo+amkteIt1R7KZ91eDqkjpQ02ZVTVKOd7dfji62T7wWAa4ZGMcwcv45X/M2oj4n/HvLu9gJkBqB8rO8g3gM1U/XdIh/X9w6rjL8KMy+CcUtBre+ZgBXS8ypoxkeHbIunwNnL69jB6lGpukTzZBfaDuyEieeroRko6MYqpf0KVKpr+dEX4fRPgBHUNn3bNI1YzTSIt0Pdqepa/h+UfN4hn3dxXSEYNHEc8R29hXzeLbp827ZHMGgVfxO27Y36jejSLEzmGxAMWv8rwfQJzfWJcqKcKP/vFvH8hxOjZpFHMdDFh46luRYzQzDmDN9oxNCHDbwrPMt/8CAaMlU3w89dOQLjZ+sDuQCoDcPXaRe0SmlIb4LgZLDGw8BNaqrWf2PJZG3ij8AZUmBtVGj+bCzAhr7rRrV7Qo3YMCDxpILqcXfpQzw4w0d3MXB7INAMTp+OZ9WTtxPEZQJB0yRt2/SnUnxv82buu/RSKoNB1V4DqXyeskCAzliMlX7O7a54nKaaGqbU1jKUTpN1HLriceY3NwNgGQaxXI5EPk9tWRmpfJ6UbbOqrY1l8+czsaqKikCAjOPQl0yyevNmHlq8mIkFltF14cYbFXFedplSwrffDo8+qlRvZaUC50KC6sceg+uvL+XRfvRR/eyplKLYkREdo7dXDdiWL1fXsmXL4N57FViLKNgOhxXdlpWB45AK1SMYuK5mFyuA6oJO2jSVZE+lSvm2Bwf1MPfeq0bshcfY9ddrJrLC/vvu09PLZODrX9fTqagozSvccou2nT5dAX1zs6Yg+8XPXMqOHVX38YZ6OHVq6RrN5hTwHe3R/WedDFW+btp1Vexd1NyiacRqq3TbkxIzUrje40koC5XM2qA0QeEXx3HIJxLYiQTB6mqssjJyw8OUjRmjzHEggJvLMbx7N/Wnn07A/77dTEYDPnxTNnFdhnfvpnLSJMrq6njj3nuZee21hBsbSfX0kO7vp2HOHACy0ShOIkHlpElE9uxhzKxZquc2TdxMRllrKLE3UDLbK4DGRETZ1vpx/su0D/zzWTUQy2YhOqyu5Fd+EsY0wFA/1I+FYEgvAMOgqCd8/S8wZjxMPQWO7odTz9aUY/ERGDMBd8Kk420c/PvT5Vd8iJ7uDvAc6hsm8+AD93Ha1Akc6xnk2utvYnh4iJqaGn72058wc+ZMhoeGuHTx5cX35GQyztGjHbz5yq85c+HfI54DmPTtfZUxU2dTFq4DA9IjPQTKqwiWhcG0ENfGMoLqY9DdgVFTC/VjFfy6Dt4r6zEv+SBGqIyiIVx0RAG0n+bLe+k5zIWXYNSN0fDwAvBe/GEkEcOoH4s4NtLXizm5CTFNvBd+jzn/vVBbB74uX0wTA4M8EIlECAaDhEIhgkGdXDDedb1Z/mx/1BwAAQAASURBVIRcATQDrFu3jv3793PLLbfgui7d3d3U1NRQXV1NIBAogsBoNMrGjRtZtGgRwWAQy7KKL9Qvv/wyl156Kel0mo0bNzJ//nxqxo2jPRhkqmFwFE0LtgxN7eVDFL6ApgprAR736zyUjS5As4K/cJBS3u6vAfXAOEp6bBnVZzPKbnf6y+l+m/J0nsjBEbY8tIXFDyxWrwMRPNvDClkYpoHnepiWibiCIHRv7eZXH/wVM1tm8sHvf5DYsRiv3f8aC5cvpHpSNYneBJvv28yl911KoCKAaZl4jkd6JE3V+Co8xyMTyVAxpgLTVABvBnWJC3aZzeHIYe7bfB/3fuBeaspqimx13s2TcTKYhqkh4IEyAkagGN6dyqcQhOWvLGflJSsps8rIu3mWv7KcBxY/wHXPX8eaPWtomdnCE0ueYEvXFs4afxamYRLLxagtqy2Om3fzbOvextxJcxhnmRiZHnWlBgXa3c/Cwidh7AXKUI+bp8/o0Tmrq2b44NL/bxT02gXWeXgrjL0Qtt9QypU993HY9oVR209QKia4KQiNK71zFK+SAoh2FaCGakrHKgDiQgi1Z+v9ZvQ7hlWmgNfJQqhKj5WP+6mubCiroWhe5uZKANy0/AlXP2zbzeoxU/1KBJTVQ/8OzUldvCL9cxahqM1ODyjTXQTjFkSOQPUEBdfi+Sm3XBjcqW3Dk2HgDQhPhPrT9P1p2yo47xZlwhsX6XjB4z0/TpT/XDkBrk+UE+VE+X+3FNhlN+e7fY5il92szp5WNWq6iAL7XDu9FLY1GogYo5agDzkno4YmhZyRxWNMLoF2z/aP0wSmB4bjh5UFFRx72eOZ6+BUkJw6m5th8GJg1qimu+hgfofm3cZTwO6O+KB6KiWLHQvSm6F8pq6bNfz/2HvzOCnKc/37W1W9d88GzACzgYAiIoIaWQc1GheULCZmspioWUSNZlEjRDRHPRE0GI0mmigxmkWTCG5RBNcEZRwBQUBF9m32vfe1uup5/7iru4fk/Jbzfs55zznvh4dPU9tTT1XXVFc913Nd93VDDpRJTgXJ2q4i6/duRwcnVVfjNgx29vUxu16ey5ZS6EBfMskZjz3Gk5dcwhl1dcQyGUaHQkex3bZSDKRSZE2ThspKcpYlrLem8YNXXuH6mTMZX1mJ4XTMCrm+V+3cSe9NN1ENaPm8SJsLAC6dFmDn95fcv8BhD5Ni2KTrArpvvrmEXpctE0B+/PECqnI5kY9feil85jNwxx3w+uslx/MC4z1jhrTX1QU9PaTOWsC+AxrLl2s89lhJfe52bo1oVPB4Oi2nqGklM/UvfKGYLamYLjuXg+99T4DzpEnylQCefloY6l//Wk7jtdeERP/5zwWAu5x+3oEDMPE4i5CeFWZ6Qr2A6Uzu6GXLhkSqBJwLKcEKy9GEgO6Cq3nUAdEFFjyelGWvG2JJB6CrkkNb4ZjZHKbfgxmPYyaT+EaOxMrlJD+2242dz5Pu72fX448z44YbcAWDoOvY2SyDO3dSdeKJuINBEu3tUuemmyQPt2FgZSSG0+Xz0ff++1Qdfzxomhxn1ChSPT3s+u1vmfHDH+Ly+UDT0HSdfDKJr7wMrb9HLl55VYmt7u+BV1bBF74pacKUkt/z/p1QOUoY67b94l6eSsCu7TBjjsjEc1lhqEPl8hAoPA/yOXA7A2mDvfDynyUtWPVY2PsBHDdZbll/ADufA01H140iY+0aeTzVYxtQVp4X/voiP7lrOVs2v8unzruAK664nCu+8U2ee+YZVvzsfja2tsjjyM7Tu7uF0ZOb+Pkvfslb69/ir399AVCkwt24/WW4fWXYloluFKKPRQquu9yYmSSG4cGdSmNveBN9zlnyHT1eyGbkuiUSUDUComGHkT4HrTAQoYHd0YYWCKFVVYGmoyKD0tb8c9EqR6JsC5IJKCtHy+dRmTSaLyAx2ZqOcrkgPIS98W1huD0esgrWrFnDwoULxQXf+YF4PJ4iOM7n88TjcVpbWznvvPNwu91omkY4HCYWi1FRUcGGDRuYM2cOI0eOlAwNpskbb7zBvHnzcLlc+Hy+IuDO5XK88cYbzJ49m/b2diZOnEhLSwuzZs2isrISXdexnBCZhKbxHLAFeAiRbNtANwKWb0PcyRUlZ3ODo9nuEPBtBIyvceq3AU6OCjKUGO0GZzkPfITk7F4O/C6a4eVFa5j7o7lUja9C0zU0h02Od8bxlnvxhDzYeRvLtFCWwhPycOTtI9TPqsfwGrx87ct8+NSH4mj+6ELWXL2GxjMbmfbVaeguAdbpoTSBUQE0XcNMmwLcNQ1lKzkeyFSHjJFh0ZpFzGuYxxemfIG+RB91FXV4DA/9yX5CnhAhTwhLWfQn+8maWbxuL1W+KiKZCH63H4/hIWflWPLGEm6eezPjKsehlKI91s6yDctY2rSU6kA1AEFPUGK3lcRhe3QPaSvNpo5NjA6OptJXSUPZaDzO+1qzHRkRiqKplqIECu1syZxM9wCOpLrgT6+5Skz1lJugbLLksd65XNJvhSZA4mCJufbWiCP5wDslV3HDP6wvoSDaDhWNpT4FlIBwwexLWaW+iJVzgLkzqGfnhAAogO/hYDwXE6Be6Jt4yuT7ZCMlprtgPJZLlIDscAO2AoAugGOXH1K94K+R96SZkk+wRiTdXRuln1M5XpbzaXh7MZx+o7DRGhKnXTFRpOhb7/9nx/FzH4bebVA7W875WPl3l/8x4FrTtG8AjwOXKKVe+N/VPQauj5Vj5b9RsfMyKhqqlRHb9IDkeCyyzc5yxYQSA1V4O9mOJGo4wAbHiETJ6G5BElWoMLzNyonSqY8eGrbuOAHOdkJyZPtOBj0AeAQkA2g+pMtmgLkXBu8XNltlKI0g2yJLY9iLMPYXCH5K4sfTW52UYoXuneNhqzKATtLys3twiBWtrdw6fz6jAgFuePVVFs+dy/EjR5LM5eiOx+lOJJhVV4dL1xlIpUiaJl3xOHPq6zFtG59LALqtFDe++io3zJlTzLm9qbOT+vJyJlZVkbdtDkej3O2w35NGjCCWzdIVj7OitZVHL76YCstCi8cF2BYY5kL6L00TnfQZZ5TQasGC2zTlb1DI1TWc1X7sMdFat7XBrFmSqigYFFBumpLM+qmnSomtK5yYsrvugnvuIVpWR0uLRnU1nHSSpPKOxSQsu+AaLnlfZTddl1PI5UosdzYrhyqozxOJkgS8oHwfN04AemFcYPFiqK2VS/Hzn5dIe9uGkVUWXo862iTWLjAgiKuwp2BHbpXk3tncMCm54wVwqFNk5IV73LJLDPc/utkWNPCOkzaWLbJw0yR26BC7Hn+cqVdfTbC2FjuXIxeP43GoeyuTQTMMtt9/P1O+8Q1Svb1UTZ5MJhLB8HpJdHVRPX16kSG10mnCe/bgHz2aUJ2kk9J0HSubJReL4SkvJxeL0dPayqjTTiPd08PIadPQvd4Scx2PCAMdGYK/vwTNV4lEHBwGSsHh3XDcFOe7mwKSC7/lApudz0MyLqD6H/X+2TS0H4T648Djg0QU7rgWTm+Cr30XzJyA9FAFlteDZWblz2WZuLxBuTa5NC6vjMI88fjj/PKhh1m3dg0nnjSNvt5ulJkkl4pzwvQ5PLNyObPO/xK64cZ2YhtPmXE6d/3kTj77mU/Ts+ttRp84X6S5Lk/x75bPptFdLsnFDeSzSTwuP6rtkEi6kwn0cRNRg33YrevR534SbWQ1KBu77RD280+hf/7r6A3jiyyb0nWIDKGiTsy2yy1GZpoG8Rh4vaieLrSycmH6PR40RBourPgCB2MoiV8HcppOLpc7CkwPl3VrmlZkTQvx1F1dXYwZM6YIsl9++WV27drFNddcQyAQKLLe/5YbeC6XQynF7t27aWtr46yzzsLn8xWPb5omht9Pzgl3KMi2fUiu7Q5gnvxShj+Zi7HVhTdKHwKsRwGVlFhsDXhn2PoqJH1YjbOcQsD0LYhMfBECyg+lTfz7hqicUEkuniMby1JWW0Y+m6dzUyflDeVUNFZg5SxcXlcRAEcORthw1wbm3zqfQHWAnu09NM5rLF5PfVgKwQKATvQlyMayjJw00sF7JWCtbHn3aYZG3i3mYmgU2WpDM+hN9lLuLafcU46NXXQNt5RFykyx+PXF3Dz3ZkYFRnHjazeyZO4SAOrL68XETNmkzBSxbIwKXwU7enYwvnI8DeUNHAwfxO/2Ux2sxq256Yx3EnAH8Lq8aJrGpo5NXDBuLq7BzTBypgDnwc0QaIBUJ1TNcGKrnXeMGYPtS2DKEgHDyhLGWSEyaCszLKxMk08+7hijOn/t4Sm/CuB4201w+i8EXOezJVVcEUg7z9dCiqzoIemzGB6JTQ7VC8B1Owx8ARh7yodJYYar8lQJaGcdFlszjj6mbZYG/5XDavdsgprTpL8Sb4MxsyAbFpY8OMaRzOdloCGfLF27yD5476dwxi1QVivXonsTBMeKqVnlRPkOm5dLPu1if6sQl67BWzfBqd8VVj3WBiNOKCkHj5V/V/kfAa41TRsP/Am5TX96DFwfK8fK/6DybzHXZfWIEYldWi7GSWtOPHW+9BIq5GwsyLyHF931z8cqtKl7S1KuRKezTgc77DiNO0WZoHJirIYT04opzHZ+EJLvQMUXKAFlR6qmFKi0tGUeArMN3A1gtguwtjPQtxRqloPmFVCf+QgCc4iZLq5as+aonNmnrVzJC1/6ErPr64tx1nmlxKzMNBlfVVV08TU0jaxlkbMsbn79dX44dy6WbdOTSNBQUcGyDRu4ec4cGisr8RoGhqbx3XXr+N2OHcXc2y5dUu7IZVaUZbNo3d1w++0Cjocnop45U2hg2y4FO4fDYlZWYKbdbgHdiYSw2IsXS+LrDRtEBn7fffDAA/I39HiK0m8GBwXtgkzT6SJqTpWNJhrXiEY1KioUti2u36NGSbUPP5RTc7lKZHqBybZtAeMFabjLJadXqFtQsjc3w6OPSp1rrimte+QROTXHjw2Q060IWWj8G+9GhRz0cJcw2MX4OueeSqSEmfZ5j+6QKTh/wQJ6+nrRdZ2yUIhfrLiXU6tGs09luOKb32JgYICKqkp+99hjTPVVwHF1xVGF3zz+WxZ95zvcUF/PTU8+SWDMGFI9PQRGj2bXE08w46abinHYmUiEYG2tyMV1HSuTwXCMzQrx14CYapkm2VgMl9crjLdTpzCYZeVy6B4PVjqN7naTGRrCHQyiu924vV7Bwfk8HNwFlSOFwXZ75Hoc2i0S7pGjIZMStrZyZGm0JJ2El/4EX/hGKf9rPCr7J2Kw9i8OOz1GgLduSHy1PwDtB6B+gtQL94ucfKgfa8qMYooqHNCYGurC7Q9y1Xdu5K231gPw1+efxczl+NrlV7Dr44+wclkMj485885k+V0/4awz55GJDRCoGkPruxv54hebOXLoAC6Ph1wygsdfjmU6KceUTSrSg9tfhsvtp2f324yZciYAhuYWCXw2K+yyApSNigyhlZWjDJcwz16v/L5ME7vlTfSmc8DtQfP5UYYBgwPY765HbzoHFYuilVfINFQOlSMglUArq0BlMwJw3e5S6ivbllR6tigLclB07S7kZTdNsygPLwDe119/nblz5xKPx6mrq8OyLLLZLF7nXurp6aGiooJoNEp5eTlut5tgMFgE60opwuEwra2tNDU1EQqFSCaTBINB3G43uVyOeDzOxo0bOe+SS7AcP4kCuC5D4qoDSDz1e8AMhJUuDM8mnXkfwnBvQ4B42nmKuxEQroANCEsdQOKvHdjGtcBTiNx8JXAEie3+ZS6PfzCNJ+RhcO8gG3++kfPuPc95Ddm4vC4Mj4CrZH+S4CgBZcn+JI9Me4TJn5nMpx/7NLlEDmUrcokcwdFyfTRDKwLoXEJMC3OJHIHqQPE5o7sEhOeSOTwBGYiwfBb7w/uLuarHlo2lO95NR6yDWXWz8Ll8pPNpopkoQU+QaDZKmaeMF3a/wNttb3PHWXdw0q9OYs1X1nDa2NPoincVc2R3xDpY+OeFXDbtMh6+6GEnZtygN9FL0kzSk+hhbsNcbGUXU3sNJAeocPsZ5QuhFXwVdtwK039SiivWdBh4H0aeRlH+feTP4K+FqtPE4CzbK9JxzSPAssAoF/oKUFK6FbYVGF87JzHRwUZp3xUs3SAF47KCv4uyIXZElHTY0n/QnfOOdUB5fQm027mjVXHl46XPkugsxVwfFX9C6X0wHNCjOXJwBVgOo++oeQo5r82k5AX3j6KYZkvThcF2hxwZ+7ChJdsUYO2vke9eMRFCY4XFdocopuMquKWn+6QNd0iO4/IJQ34MWP+/Lv/tU3FpmqYDjwHfRQwfj5Vj5Vj5n1R0w4kfKgeXV0ZM81no+0AAd8UEeYkd5SDuvEALo7uekMjG4eiXlVIlY5DCsdx+GaU1HABjJgWclzU4YDvrgOgC14G8tPUyiqYpyjFX6blG2OyKS8GOSy5uVeBDEPAtejAxNwvME2DtqpZ9rW6ouQt0H5AXRjwwG5C46KVNTaz5yld4+KKLGBsK8VxzM2PLyli0Zg2HIhEA0vk8QY+H+spKTNsmmcuRddy+DV2nzOPh4YsuYnxFBSeOHElTYyMBl4tzxo9nQlUVHl2nN5Egb9s8cOGF9N50Ew9ccAG6ptHa3g7AkXCY3mRSEOTo0fDQQwKsZ80SsDtzpjDOsRjs3SvMdFuboM5C6e6Gq6+W7UoJ1TtxoqDdWbMEWK9aJei2txeuvRb27xcnMr9fKOMf/EDaTaUEEXd1oVJpfD5hrn0+jWBQmvzud2W3008Xt++M0z8pyMADATnMXXfJ+mBQ1hWk4z4f/PjHAqKXLoVDh+RUli6VsPEHHpDLkUrJ1zpwQNjveMxhlv+tcWcNkWtPqHMGHEyHYZVYZCpCcvAD7aUOnq3gQDurfv8HPti2je2bN3PjD27gymuvgYoQV19/PYuu+jZ7d3zAksuu5MpvfQuOq6XQGTzc3sbjv/89n5g+nZozzqD69NPR3W6qJk9m1xNPMHLaNNL9/Wz72c8wfD5CY8dipdNkhoZQloXh8xFrb2dw+/aiwRlOqig0Df/IkbgCAfKpFHY2W1wPYHi9YNuYySSp3l4SbW0YXi/p3l763t8KjtM3VaOgulZ+n0P98KeHoapaJNC6Joxz5QjpTBZs3n0B+PRXZd7Mwb6PRBbu9Quwfu9tMTBDE2Mzj0+OFw3DpJMFhFeMgIknlaaahpmKkBzqdOKiwVc+Crc3xG9+dT/v/PUR/uXWJfxoyRIHfOp0ffQ3DI9f0l7ZeQYObcUyMwSqxqCU4ne/+z1f+9ploPIoK4/bF6Jr59+wbRNl50lFeghUjkHXXaBrjJ7cJCEZu0VeTjwOfj9a3hI38GjYuRYywKEFJT5eC5Vjb9yAPvdstIoqCJUJKAaorEQbNxFcbrTRtdgbW9BG16JVjRBhTyQs5mwuFyon3ShNc9jnVLI0oOEoI3Rdl7RZllUE4YW0W5qm4fF4uOCCC3C73dTX12MYBvF4nPXr1xOPx/F6vTQ2NhKLxRg9ejTl5eV4PB7a29sJh8OsWbOGaDRKIpFg586dtLS04HK5cLlcuB3g73a7KS8vZ8GCBXKvOT+xIAKg40i89CGEaR6DgOgYMgSaAbYijLUBRIGZlDRE7UinMum0eyYSTz3SWS78PO9FgPVtTt12RI5enrN49Qevks/maV3RSt3MOuJdcV6/+XU8QQ8un8u5zhqBkQFyiRxrr1uLJ+jhewe/x3n3nUcukcMdcIvU29DIp/Pks3ls0yY5kCxud/vdBKuD6G4d3aUXWesCLR8+FKatpY28ynPBBRew6rpVnD37bD57/md5a+NbVAer+ea132TypMnUhGroPdBL0B2kvqyekCfEB7/7gJYbWjip5iTOC5zHrPpZGJpByBNi8dzF+Fw+mhqbuGzaZdx73r0ciR7h6pev5mDkIKNDo+mKdzGzbmbRdTyWi7GpYxNjg6MY5dLR0t3CSFspyV+NDokDEi9txmDkDIdhRqbjvgw1Z4m5WWYQRjVRHIzfdjPE91NkuguD8Jrh1HGcslUeMgPyjg46yqD+jRRjnCMHHSbZ6ScUDE4rJjgD+X65uJYMblAxTo4VPSBgWHPijBKdwjIrSwb1PU7Yj5URFZ1VgC2KUrorSudfOLaZEAfwglt3sZom0mwzKdLt6AHIDAlQ9pTLx0yWALlmQCYG/moBzWNnSd8n1ibSc9u5PnZO2rGcdlTBF2cY63+s/KeV/3JwDdwIvKOU2vq/qqBp2o2apnUUPolE4v/D0ztWjpVj5d8sw9NkaZqAZ9uWZcMDI44vxfNoCPD2lDv7Ov8VZLA4MthCSguFAPFCCo1/LAUGO3JAXp7eCmdUG9D80PNdiZ0uBW8jXS5HCq6XgR6Cmvth8CFZb3XBwO3OiLgpL29lShx2Ie5a2eCfBUP3iemZ2QvWoADtfDsFSThY6BpMqKpiVl0dmzo6aItGmdPQwLING1i1cyfLNmzAVIpt3d0SluawSCGPB0sp9g4OcvWaNRyMROhLJmmPxTBtm+5EglGBALPr67l27VoOR6PomkY6n6c7kcB0WKn+ZJJZdXXYStFYWUmVz0cyn0d1dEiwcQFYp9NibubkRGbFCgHJy5YJQ52R/KksWybrV6yQQOiuLmHkbr5ZpkuXCpL1eiV/1qpVsHw5569YwSnnnsuMs89m/qpVbPvhD6G8nH0ffMDcCy5gxtxTaWo6g2ee2YnLBdlshptv/hyvv34Cs2dP57zzzqOvbz+RiBDnui6gWNcl3PuBBwRU5xySIhYTR/H9+8Xk/NFHJa3XL34h0vDx4+HBB0uS8sLXWr5c2h072pGD25aA5+L9OqxomjiHH+4SibiGGJM5MdLU1ch07xFpoyxIZSwt+xoG0cFBtFyevlyaLVu38rWvfhV0nS9cdzXtnZ3sP3QIDAMb+PbVV/PA/fcTKCtj0pe+JId3ucgkk5xx++0c99nPUtbYyPTvfx8rm2XLsmVkw2FcPh+b77iDRHs7ZXV1VE2dip3LkWhvZ/Odd5Lo6MDKZimk7nL5/aQHBth8++0k2tsFqCYSbH/gAXyjRhEcO5aaM86QWG+/n+pp09BeeUbSapVXyTXx+gRof+27Mq0YAX3d8OQvJBb7KKM2BYFQ6XoeP03isXUNvnQN3PcnuOx62cfMwcGPoWGCANNCGIPHYZ7cXhngUAozncDl9dP10d8w07GiM7jbG6L25E/xjW8tYkPrJsaOraG7u4vBjo8BRd7M0nbkMOVGwkmrpZNKZ1j9zLN87cuX0re3FTOTRHd5CIyoY+DAFtA0XF4/3R+vx/D4yWdT9Ox+G8tMM+aks0SgnYhBIo617jm0YBmUlUMsgvXqX1GRIWfAUBgk/YJPy3YnXRuajvXayxCPo504FXv9q5BOSj1dQ4UHsV5+Fq1mDEQjWGufA49H0nIlYpA3wWHylZO+S1eSdzqdTmPbNu3t7SQSCfL5PO3t7dhOjmoAn89XXNfa2srOnTtpbW0t7ldfX4/P56Ozs5N4PE5tbS0tLS1FQN3Y2MjixYtZuHChPNtCoeK+pmmilCKZTKIDB4HrEFCdR4D0HESyPQq4BwHVbiR++nqEge5xnri1CCsNAtAHkM6lC2GtDzrbdOezBWHGgwi7Mx4B7F8DIkDUY9B023yy0SwXPXwRU788lWRfknOWn4Pu0sln87S1tDG4b5B8Oo/u0gWA98TJJXJ4Q1485cI4u7wugtVBPGUekb4PpAiMCICC1EBKcJhbE1Iybxc/uVgOT5mHqglVNDY14tbcrF61muaHm1m/aT1XX381K3+8kl9s+gWXf/lyXvnbKzQ2NhZDAxSKlJniws9cyN/X/53GxkZ+fOaP8Rt+fC4fFd4KJlRNoMInZmUPX/QwZZ4yyr3lPHLxI0yonICGRlNjEy7dha7pBNwBQp4Qcxrm4NUcM7Odd8nFdQUcpZklcdIjZ4p7+JbrHLBql1JqmXEI1EL1LHkW9G+Wd/+p90KwQUChlXXay8PgRgHqmotiDm1/jdTbvlSeE9Wz5Vk8HAQPT8WlOcvRwyX2u6CMK+yXHhBArZw48FBdiVEO1YO30gHaDuhOdDigVzu6D2NlpX+iAGwhD4K1Tj1HHWemJaOCsiDeLmZj8Q4IVAtrvf4HAsrTffDG1SJlR0FwNGTCUDfPiTHPC8FhpiTeOnoI3rhGQLm7TMgHl/Pr8JQJwLeyUv9Y+U8p/6XgWtO0k4EvQDG94b9ZlFL3K6XqC59QKPT/zQkeK8fKsfJvl0LKCCsrU6WcmCNdXhwunzzEo4elft4ZSVYOECmM8uq6gG4QMF3Id60hTPg/SsTBAeSWxHd7yuS4uvtoYO6fK+ZlKiex18oUWXfPIpkWJFZaEMbcJ+26T4Axv5b1+Tbo/Q7kD8u5pjYK+51+T+TfI2+DujUiDR9cJkB7cAXYEVAComwFhyIRrlu3jrrycgJuNy5N49b582meOpVb58+nP5mkNhSizOMhb9tk83nytk00m2VFa2sRhFf4fIx28l4bDrBY3tLCqp07ubulhVHBIAG3m7qyMkIeD+UeD9XBIIejURatWcPhSIT3urrwAVpbmwQ0b9pUcgl78UUJTg4EROpdoHsLruKpVAk8L1kicdNjx8rfYsUKuPNOQa4rVwpzXai7dCmrrrmGD/78Z7bv3MmNc+dy5ZEjkMtx9S23sOi229iyZTef+cwSfv3rK4nF5FDXXLOIPXv2sHnzDr761c+yZMm3i2m1Fy0SAB2PC4l+3XWC/7u64KqrxFn8F7+Q5XxeUmu1tooP23HHCQvudW45TYNbb5VTve02AdsZJ4ubgLbCgM2/8Rto6xa38LZuiY0uEyMxyoIiCy9sb++B0SPghHFcfuWVNBx3HD++8w7+uORfaN+yg7FjxuLyeMDjQosnaWxooK29HSyb++/+KfPmzuW0GTNQti2MdH8/3spKysaOFZZZ18lnMhg+H+n+fqpPPx3D58Pl93PakiUExo4VhlTXhXXu62PKlVeS7u0tmpQV0tHsXLmStldeYefKlSjLwuX3c+pNN2HncmSGhki0tbH5jjuw0mksW6G+ci3MPqd0TWzHjM3lpphKb+1fYPtGkW8jxyGfE+Bn5aXe4T3CSv/lEZF+JyIy399NMcRg0lQB0emUyMwLqb4sS6bO9wiOqGXg4NZi7ulIOExnR0eRtXnxr39l5MiR1NaN47TTTmdLl8Ry/vWlddQ3NDLt9HlUT5pFKtzF03/+M6ecMo2RrgjR7j0MHHwPlKKy7iTGTDkTXTfIZ9OMntyEpmnDcl5vFuZY09Drx2FveBO15yPw+dBcHrSyCvTzPo2KReU65KWDrekGmtvrXCcLUBjnXyz3YSaD2rkdu+VvjvTbg1Y5QlzBc1ns1vVoDePR3B65/iBMd6gcDJfEUjeOLzLUhbjnhoYGkslkcV7X9SLLbBgG48aNQ9M05s+fz9SpU5k/fz4Ao0ePZt26dQwODlJXV1c0Jps7d26xnq7rRem5PLoVXV1djB49ushgv/322+QRBvlGhLXOOj+5y4FHEMb5YSQXtRuJw74J6Edk4AcR128bAebvImB7LPADYDoCnuPARqfOTASMv4uw4XlgBCI/rwZ+7HFRMbGKYHWwaFg2ZsYYrKxFPpvHcBs0NjUyYuIIMvEMhsdg4vkT8Ya8mEmTtdevFeWxoWNbNsn+JPlMnkwkg5ky6djYgafMg7fCS1tLG+H9YdAgeiTKK99/hXwmjzvoLlLsdt7GGrI4bfxprFy4komVE8kkMmi6xiMXP8Lxpx3PXTvuIm/n0dCKua79bj/nffI8RteNxsbm7pa7ieViHIwc5Puvfp+2aBtbu7ZyMHyQ/mQ/ALFsjGtevoa9g3uJ5+JozgOwEMetUZD+m+L+Xd3kxEQbjjrFA6c9AGMugD0/h8k3ynvUygoYdAXBXQ6JI9C/QYzOauYKSLRzsr+7rAQIlYIRs2Qd8jsmFxGA7vLBjHsgnxCgDQKCfaNKDG0+IwA74gyxVBw3TG5ulVy9Q/UCpMuGycMNnyjlCiy44XGAdl2p7vCckboTe10A6naOInmgHBVeQfqeiwoDbuWkna33yTkoBZvvFgOyXBQ2LZP5TcuEnc7FoPoU2S+6XxjvfBpCY2DUyaV9Ny0rsfC6q9RvW3+DAP9sVPY7Vv7Dy381cz0feebt0zTtMDAbWKlp2rX/lSd1rBwrx8r/oRRMlwovEhz2WUmHUGKdbChvlE6v7i7FKQ03JysygsoxDnFecrblgPGCeG9YKYz8lo+TfXIJOV4+UwL3oYvFFTy9FYnz0oaB4GUUWeyCK6jKC9Pdc61MXbVicOaeKNt9pwCGI/m2wVUP7npItcDIpZK2a+QSYcQ1H6CwUEWW+u6WFkYGAhyKRPC7XDy0YAGdsRh+l4vjRowgb9ts7OigIxYDoMLrZfHcuTRPncrSpiY8hkHA5cJtGNSGQkXJefPUqdw2fz5uXS+6iSuliOVymJZVPP7ylhZOqq7G1jSYPx/q62H6dJFpp1LwzDOCMl0uOOEEAckTJwqoefttidE+7jhZf8IJUFkpubG/8x1Bq/fdV6KTDxyQbQ8/DLW1VE6YIMuBANHLLkPzeumLRtmyZQtfO+ssPC6bG2/8PN3d7fT07KeqysfcuRfx3nsahgFnnDGb9vbDKCUu36tWCbjWtBLJHo3K2ECBgdZ1OFPCXpk4Ec46S/BJKiXjCZomeOaddyRUfOVK+XqaBumsJkZSWVPY6eHFsuUDkt+6ukqmuibGZh6RBqP9w3ZNA8vmDyt/Q/uhQ9x1x50seeIRGDPq6Ns75C/OfrTrY55d9zK33fhDyVMM5OJxkp2dAlacv3U+mcTwejG8XnY9/jiNCxZgpdNsvuMOspEIusuFsm2ykQhmMom/poZdv/sdgdGjyQwNETt0CDMeRynF1KuuovHCC5l61VXF1F2FTqOnrIxdTzxB9amnons8uHxe0dEXQHF/t8P2O47ff3pYgPJFX4ZrbxUm+48PSv2Du8UEbf9Ocf+eOFUA4aSpss/Ljix83dNy/L5ukY0P9cFf/yD76rosP/WQMNu2nKtt5Rk14Qwqxk6metIshgb6+fylX2T69FM57RNncP+9y3n+2VXous6vfv0rfvu7P3LSSSdz730/5/HHH6f25HMx3D68ZaN44g9/5IqvfZXqSbOK7Ymy1UR3eVBouP0hena/jVKK6kkzi/XQNJQOGC70pnPRv3gFeLyoXEak2hpoY2pRmXTxmaYigyIdDw8ICx0exG47JN+vvAJt6gz0+Z9yXIRz0k5ZOZSVixv4lGmoRFwAe6hM4mBBXMULpoQO8C7kuLZtm7q6Oonptawia330I1ejsrKShQsXEggEWLduHYlEgrq6OhKJBLFYjM7OTgBGjhzJBRdcQFVVFbZtF8E8QCKRoLa2llQqxZo1a0gkEiI7V4qHEEMxG5F4pxHQ2wp0Iaz2ASR/9WlIx3Fu4WeDdCZtYAgB06OQDm6T8wbJImB6OjBI0Z+6CLK/i8Rbj3bqP5g2yUezDO4b5PWbXwcF7oCb0NgQLq8jCXfk2+V15Rgeg7K6MoI1wlBf8PMLnGuv6NzciSfoQXfphMaEqJpQRcPcBlDQ9V4XwZogsY4YylK0LG+hfo6Ectp5u/g30F06xggD0zZZ9M1FnDjxRO668y4eWvkQpm2yvGU5q3auIpKNkLEytLa3cih8iHfb38VWNnknTGL66OlEs1HubrmbVTtXcW/rvZwy+hSqg9WMDIwkk8+wbMMyVu1cxYrWFUQyEUnnhU5e5clZORQKXdPRdDdMvQUavyIgLrYP+ltKIDpQBzPuhbLj5a/jCsm04CQeGgdV02Fwi8jIUY6LuCMHL3w0lwOAncHzgc0Czl1lMOAMl7iGhZYZjpJFQ/bzFELWjqMYq13oWuilAQwM77CQM4cdlz9iCRgXwtQKoNvwlkJdbLMkvy4A9UIe73hbiVXu3iiMdCEO3PDApuUCiDcvl+fBrKXi7O2pgFm3yvysW+U83AFnEMNd2m/TMpGBa65S/Zk/gt4t4jQePQhvXicDEGeuEOY9Gy3J4o+V/9Dy38LQrFA0TVsPPHDM0OxYOVb+mxc7X3LkLOSYLqCEQlxPcbSWYesVR6XgKsjDocRSK+eFUzAUMTxHm5rhtK/skkt5YWQ2l3BGl91AFnL7wTVapOL59n9IsTUsthoNer4l4LtuDbgbxbzMPxNwBhDsuBO3bUG+h/PPP5uenj5073GUlY/mFw/cw6kzprBv716u+NaN9A8M4Q0Gqb/iCn7S3My4igqufOIJOn7/ew51dVFVWcnvnniCioYGfr5xIys+9Sk0TcPvdpM2TXRNw+dyybyu43e5sByjM6tgna1p5PJ5PIZBOp8nms1S5vEU922LRlne0sJt8+czoaoKr2liHDiAVkgS7fOVclgVHL2UkgBln0+Qp2EIO5hOl1zGb71VTNAWLhTa94EHZN9AQPJdXXqpAPb6eli+nMtTKf7+/vugFGt/+UtyTz7JVz/6iD1btpBzBchYLs46axZf/vI9XHONMKGGIafx/e9/nUmTRrBixYNFL7VQSE7pwAE5nQceKLmA33abyMBN82jj8tZW8W4bMwZ6eqRuIc/1vHkyjpDNytccW2Oh5cxheaed+9dWw1JoeUTy7TJKabPaugVM+xzH2ML7VR+OoIFcHv/IKg7v38/xU6Yw1NGFS9dRXjdjGxpo+dvfeP3pZ/nXlb/CqxvgMujp7SXk93PL977HrESCKd/8Jv7qagyvF81xWrZyOQyPh/f+9V85vGYNC9etw+XzFVN46YZBPpWi/Y03GNi+nclf/zqZwUFGTZ+ObVlFZts3ciSp3l52PvooU771LUL19eiGgZlKke7rY9fjjzPn9n/BUJYA6/fehjPOhK9/T2KifX7Y/i4c2FWSdv/xwVK9Cy6VeOoLLoWRNWJoZjlsjtsjQH3tXyT39cgaeOph+Pw3BBiaOeg6ApNOgj84bd7/F4gOYdWMoevj9fgrxxCqHofbV4ayLbo+epNRE05n4OBWAiPqqBh9vMildYN8LoXhuH6no30EKscAYGaT9O/fxKgJp+PxV4CmkQp34/IGcXkDGG6vgHnbItq9h9CocWhoGG4vlpnD8EoecN0WcKtpGiqfh1jEcQs/G8orJU46EkYLhrBe/Sv6nLOw332rmM9an30m9sa3MRZeCpaF3dWO3jgB8qak3gqG5LppWsmJvOlcyXGdTEAwJCNJTvov0+PDzOeLkmy3241pmsW0WyBpuQppt+rq6nC5XNi2XXQR//jjjykrK6Ourg7DMLAsC13XaW9vJxgMFvNeR6NRWlpaaGpqIhgM8uqrr9LU1EQsFuPPf/4z06dPZ8GCBVhuNzlNUgoeQWTfzpOXfcDPKOW4fgwB3T3ACuBWBJQXggWD8oTmu8DNCAhPICz33U798UAvJafwpcBbiKv4r5zjeqISDmPnbfIZAabecm/R4dtMmriDbqychaZr6C6dXCKH4TUw3AZm2sTtdx+VUsvO2+guncihCBuWbWDu4rmU1ZaRS+bwVfhwB9xkY1ncfjdm2qRnew8NcxuIHomyYdkGLvzDhcRzcQLuAIZm8Pvf/56/PvdXnv/r8xyIHGDZhmW03NDCk6ueJNgYpD/Zz/TR09E0jXguznmnn8fv/vw7Tpp2Ej6XD1vZeA0vmXyGcCZMla8Kr8vLwfBBlrcsZ8m8JdSGagl6guRtyZddYMRNy6TSE8Cdj6O5AmJMljgAvmrY92s49efOoJHzjrUyUmfPz51tChHtO8B1YJM4jBteaUNzCwAvDsgP90LRRSrtryk9U5UtLuWjP1l6XiscJtzxTilkJxj+TC/M8w/7DDf7sm3ZoBulgfxCyJttOn0gnNzXHmHTh59DPgWpfgiMKg0sgIDtUafI90l2wXsrxOm7clKpTrEf5ZAB+ZQw+pEDArLNlADyWbc6pmuOQ3mqR5h+TRefms53hNXWXLBhCXziZiEoXD75HCv/rvLf3tDsWDlWjpX/oUV3O2knrGFsNDKfS8jo9T+9wBwwPlzunYuXXD0L7Wi61Iu3C4hXpRH84nZNL8m3Csf0OIZSmnMszwTQg6BS4Gp02OgJSHBb2nmBOZ36kbc6Uu954BoDgTNFCl40/9BEZp47DK7RrHp2Ix98sIvt72/lxhu+w5Xfug40H1dft5RF3/4K2z/6iB8tWULfk08yrrISSykGnn6acy+9lJb33+emH/6Q719zDQOpFL9csIAyr7coHQ+43fjdbrL5PIau49Z1YtksA8mkAGxdRwFHIhG++8ortEWj+FwuRvh8lDvtuHWd0cEgD1xwAeMqKjAti2wmI8D6hhsECOu6xFr39AgaBUGtxx0HVVVC7R46JMA7Gi1RxStWQFOTgO3f/lbQ7nAE+8wzEtN9770wbx5/uPde2nfv5q4f/Ygl118v2m7TJNeyib0HDfr6NHQdpk6Vfkxrqxz2iSeW09+/n8HBu2lrk1OLRoW5TiYFKD/6qHijjRsn7t/HHSfA3O0W77ZCezNnigLe6y3FWd93X8mJPBqVXNiBQuCmZ9iATuF21TUI+p00WkjjBSY7m4NwVKZQumd1jUg4Qld7h4BxpXhh7cuMHDmSmpEjOW3GqTy5+mnweXj26VXUj6pm0sSJXHvLYroPHOLwnr3s//AjZs2cya9++UtmJRK0vfIKux5/HDORoBAznejoYMtdd5Ho6GDGTTfReOGF+EeOJN3fT6KtDSuTwUwkyMXj1J97LjN++EOCtbVUn3oqtmUVzc781dXobjeGz8dpixdT5uRjH/jwQ1w+H7sef5y2V14hE4uhfAFhps84U4CwrsMrq+WCzToHvnqdrMtlYcGXSvVG1khc9pgGkXqbZklGnklJXPVXvwMVVfLcuPRbDlPdD888Jq7juiFtzT6nZG6mG4ydeg6VdVNweYLF51HtyZ/CG6yi9uRPUTF2MmY2SffHf8fMxMglY2i6gW64CVSNpWfX25jZJGY67kjBt6LpBl0fvcmRLc8zcPA9NF0nl4qSHOpEAyprT8TlCWB4fBJ/7QscPa6oaSjLQnO50UbWYCy4BJVKoRminFGxCMq20ZvOlZRdTec4LPW5qFSyyFZbr78sMm9lFyXfyknbhbKxW9c70vE3ZSzo7TcgGpFtb78BiNGi2+3GMAxisRg+n4/W1lZmz56Nrut0d3cTiUSK7t+dnZ3kcjlM0ySbzWKaJlOnTqW+vp7Ozk7C4TBr165laGiImpoaEokEGSd/eiH+urW1FU3TmDNnThGwT506lQsuuIBwOIxl26Q08edvQ2TZ1zvzk4HfAGuBHwMmIu/+OSIJ9yId2RBHO4kX4rVBAPfdCEBfhoDvReefz1mnnMKqGTP41Pz5zNi2jUeBJd/7HtPGj8df6Wfr5q2kBlK4g248IQ/7D+7n7PPP5uRTT+asBWexY+sOUv0p8uk86KC7dZSlULbCHXBjWzaJngS5RI5cIkfHxg7svM2GZRvYuWonrStayUQyBKuDAtRNi2RfkrXXr8Xlc1H7idqj6isUvcleWttbiefifPlrX2bDWxsYGBygOlDNnWffiaEbuHQXVb4qZtXNosxbRsgTYmxoLDo6AVeAck85lm0RToeJ5+J4XV5qgjUoFFkry/jK8Ty68FGOH3E8Zd4ycQjXXSgUeTuPS3fhcXnoiPcJg6wZ4B8rJmWuSjjlLmFIC0ZnZkwG5FOdpW1WtvSe1lxQMx/8o0XOjeEA6wKYLtRzVHIK8I4YpnxzyqjZRy9rlPobmu6w30pC0Jxng/Q5nIaKP1gHRNuW1C2YhBW2FbxjCim2CiZo7uAwJtg5jpWVfcwkdLaWSAOAuvlCBLQslWOf+7AA6+ghSa8VPQx//15poDbZDfFO6TO5AxL/HRoLn/q15LiOHIA3vyOO6LmkHNNTLheidh603iGge8xMhyHXjwHr/6Ty3wpcK6XO/j+x1sfKsXKs/HcoTtex8DKyc05skXIe/EGRYRXYapBtdk7AeCFGyc5J3UIKLisn8iXLeQEVDEP+LYWNppfSSRie0guvIC3HBJUVd2+9fNhIufPy033yUs8PgXlYJOCBefLdtOEvHMcCRw9Jffd4sDNUVngBiQ+PRmNoKPr6+tmydRtf++rnAZh69tnsOnCATR98QCYS4eMdO/jWFVcwqaqKb3z1q/R1dZEfGKC1vZ1sPo9L07CUQndkvwG3m95Egtb2dgJuN0GPh+vXruVgOIxb14tx1+2xGJl8HtO2iWWzdCcSxHM5YZNiMa5as4Yj0Shejwd+/WvRShfyCZeXS0Jow5Cg5r4+Ybp8PgHQxx0nl6GiohSPfe+9Esz8/vslh/FrrhG0294uVLBSUq+pSSjmbJYrvvUt/h6JUD9pEt1DQ6SmzMDr0/H7Fe3tbeTzjcVmHnjgZ/z9788xadI6nnsuQHu7HPL222UsIBgURfrVV8Pu3Ud7r2UyQqAfOiSnXVMjpzp2rGx/7DHYs0cYb59Pvq7fL+MCR4miht92hXRbLkNSbtm2MNaGDtGEMNmnngTlIYp+AjkT9h4h2j/A55q/yLQZM5h+2mk89Mtfsub5F9B0g0dX/IxHH13JCVOmcM/PfsYTP/9l6XiGDj4PyhCzLs0wmPWv/8olb7/NaUuW4C4rQ/d4ULaN4fczetYsSZMVDDLz9ttRSrHnD3+gavLkYny15nLh8vlwB4OkBwfZfOedpHp6cPn9JNraeP+ee7DzeXxVVRh+P+//9KekurupmDCB/vffL0rH/SNGoFmWmIp95TsQHZLRjy8tEhnAwV3CRudNyVU9okZY7FGjSzHB6ST0dMBffg3hAZGEGy5xBjccKeihPbKcTsGrq4WpXvsX+aONqIGvXS/tD/WLs3kmRvfOvxfdwjXdQNl5MTjLxNANF4OHthKoqkXTXQRGjMXMxOn88HXMTJyayfPQdIPAiDoqa6cUJd5jTzqb48/6BmOnnIWuG5jpuBin7fwbZiYuKpJ0nDFTzsRMRen88HXsfElyqRkGdvshVHhAGOfRY6EQl13XiOrrBn8QvX4cWtUoYaorR0je62AIlc0WjcysNc+gBvtE7h0ewu5sA01Hn3+ugPKmc0DT0GfPx25dD9ksWl0DJOKo9sPkcjlSqRRjnR/EeeedR1lZGYZh0NjYSCgUIhQKUVFRwbhx43C73Xi9XrxebzFWGqCmpoaNGzcyb948qqqq8Pl8NDY24vP5MAyDiy++mJtuuokFCxaQSCR49913KS8vx+VyFU3OWlpawDDwO0/aWcB9lIBwEtiPpOEa5zy9y4GfAl9HZNxQircuxFRfjsRpu+QpzUrgNeABZ90fVq3i7Q8+oHn7dpbeeCPXXnklaeDSSy/lVceMLdmfJHwwTD6VR9M1rvvudXztC19j61tbuemGm/jOjd8h2h7FU+ZB5cW4THfrdGzsIJ/Joxs6miGsttvvpnF+I7pLZ/6t85naPJV5S+bhq/SRz+aFAdc0ysaWcfGvLkbTNbKxLFbOoumWJqY2T2UoPERyIMnchrmUecr4xe9/QXllOe6Qm2QuSSonBlWZfIbqQDUeQwzVjkSPcN3a67CxMW0TheLm128m6AkS8oSwlU02nyVv53mv8z3aom3FuG1b2TjJHDE0A4/hIZFLcP3a66nwOGEsBZm1nRdw7K4Q1jRQJ3Jtd7nEZNc0lZZdQYpmqMqSfdPd4gCePAibF0HioKw3YwLIC4o2O0sx1RcaJA459Q/J+RTMxPKZ0nN8GIYuGasWQPUw2beGwxBnpY/hKRtmcOZ8Vysr/RSlZN7jMMRo0nY+K/0gT8iRnech2QnVM5xlS/oSubhch6blctw3r5MY6vgRcQPfvBxmXC/HeuNqByyHHDY6JE7rtuVI1W2oOh7O/Jn0qXS35MaOODHZsSMw7y5xFj/pcjj7wWPA+j+x/LcC18fKsXKs/E8pilKeR6sEhsExItMhcrhoykMhDjve7sio9JKkfHhaiKJbp2NANOYMkTr9W8ZmhWIPY87tvCOL0kE5L23NJ+A5PyBgu5ArEife2lUj8dPYiEv4sFQfKk+x22YnINVamkdx+bduoWH8Sfz49rv4433jaD+0ibFjR+PSU+SVoiseZ8Jxx5EbGqKtvZ0xY8cypkIkpjnbpr6hgXB3N2eOG4fLMDBtmx+88goHwmEspYjncnhdLqqDQb67bh22Uiw75xw6YjEspYrmaLPq64lms7h1nZ5EgtvXr6crHsfvcnHfu+8W464NTRMUmk7LNevtleUzzhBg5PMJJfzOOwK4BwZKAyHl5WLPvXKlINFlywS1ulyCdOfNEyexpiZpP5slksvR9dFHIi+/7jpeePppRpaXU3PrrZx2/PE8s+55qqsVr7zyLHV19cydO4kzz4Rvf/t+tmz5My+99Dp33llJc7MQ4cuXi/daT4/cEh0dsrxihWB8XZfxgeuuk0N2dsqp19fDnDligla4VUY7vfK+PhkPeOcdOca4ccOEEoV0WwWwXGCqy4NyTxck4RUhYayHs92FffrDjMPN5vVv8+FvnmLH0y/wxquvMmPKSbC/jcknncS7615l7/YP2LJ5M9POmgu5vDiRO27lmq6z7rnnOH/WLMxEQuTFmoY7GCTR1saWu+7C5fcz7sILSbS3E29vJxMOo2kaM374QzKRCJvvvLPkIn7nnZJWy+MpsuAoxZ4//pFTFy9G0zQyQ0Okeno4/qtfZefKlZiJBC033ECqt5czfvzj0k8yEII//wpC5RID/fRKWT9hijDKui5Mswasfkwk3/s+EjBsuCA2BOd/QermshKr3dcl8dhmTuTNiYjkt77gi8J+X/RlqQsCsgvAW9cx0wkxGNMNsokwXR+9CQpGT27CTAvTP2bKmQSq6sQBPB3DTCeI9R5A193oLg+Gy4OyTMaefK5IywFN08klI+RN8XYIjKhDd3kZNeETkoYLyGdS6Ia7aGyma7o4eq95BjU0gFYzVvJTB0MQj2KtWQ2RQXC5HYDdhTJNVDyKMk0xjgoPYr/2EihbDM8CIbTG47A3bpB83m43ev04VDaNiscxLv4C2ohRogYoq0Bf8Dm0UBna1BmoZAK7ftxRabVcLhcej6coD1+7di3xeBygKAcvpOwCsCyLSCRCPp/H5/Nx4YUXEgqFWLduHWHnnivksV63bh2xWIx8Po/b7WbOnDmUlZUVJelKKZqamrCRWOqCG/itiAT8Vmdd77CndhAB1xUIs70JYbM1p848BDxrzpRhT/uZzr42UFZZSSMCuolG6dY0uoC5Z55JnaPWSA+mqZ9dj6fcQ1dHF1u2bOFzn/oc7oCbz1zwGTo6O8jWZFG2XBtlK3S3Tv3sejKRDLlEDjNpsu76dUQ7ojIebSsqJ1SycOVCRpwwApfPRc+2HvKpPGbKRPfoDO4fZM2iNZgJk1wqR3ljOQsfXUg6lub73/g+cz8xlzlnzOGt1W9x+6O349JdLFuyjE/P/DRdnV00f7aZU6eeSleii3Q+zY++/yNevuZluju7+cJnvsApJ53CAxc+gM/l43D4MP3JfrwuL2WeMmbVzaIr3kXKTAkwjxyhP9mP5YDLzZ2bUSiWnbOMKl8ZWmK/ANvUYQHAA++W3sMq77hSxyRNlxmTumZMzMjS3TK1HL+UncvAUylO422rYNe9Eu7lKgPdGYA3xIBQnMMNeV/vXCb1dy6TP3ihH2Hl5Pg5h0GOHnBUcpasKzzECn2QQnqtQlxzIYa64BdjW3I+w/spnnLwjSw99DWcmHO3MNAFmXbdfPCGSuA8Fyvlr3YHINkHh18Tt/DaeeCrgpm3QsV4Adl7VolRmb9aZOGGT+YL7t/J7pIK0B0Ux/Hq6bDlXtk30SHXLd4BXe/Is7cwYHCs/IeX/1Yx1/+35VjM9bFyrPwXlwKg1Zz5glwrF3dipB1myjZl1DdULy+UoV1i8lExkX8KdCrEYyc6RO6te0tyXDRH0mX/A4vt7FcYeS7Irzx+MHeDazyFFD2oFGR2gLsOzE7HnMyD8Bw4oNoF6XfBPwfyR8RxfORSMDtkP2MU9N0EI2+RvNfmfhhcwe/XncTTTz/NT26s46s/OMyene+RtPwcCIf54gUXcN9Pf0pZeTnfvvJKWrdtozsepz0W41+++lVu/8lP+ERTE7Fslgqvl+54nJ+2tvLwRRcxkExSV15OZzxOMpdDB7oSCWbV1eF3u7GVwnauR8o08blcXPPyy6zauZPLpk3j1xdfTNay2NTRQWN5OScHg2j790NdnbCL/f0CridNkmtgWYIyZ86U7aYJ770n5mfBYGlQJJcT3bXDsGPb8tE0oZeXL4dbbuGI18sXL7uM9MGD6MEg1ZMm8bMvfYkZs2ezJ5fjyu99j4FwhFConIceeoJTTpnGkSMdTJvWwLhxEygvl7g2j8fL229v4sABSZPthHJz662C8ysrBeNrmjDZq1YJwb5ypQBnr1fGAQq+M5omX9Xlkmnh9Pv7ZQyhZpSFrim0dFbcvic2lK6P4QBqyxIQ3N4jcdZuVyn2Optz3MM12NcGDWNk+4F2qev1lOLxzLyA9EKaKl2TFF79YTFEO2EcZi5H7NAhdj3+OFO++U0CY8aQi0bxV1fz/j33cMr3v48rEJB8xfk8A7t3UzNtmtzWto2dy5Hs7iYzMECosZGXFy6k8cILmXn77Wy+805O+va3KRs3DmVZ5NNptt93H1O+8Q2MQADfiBHYpolmGGxdtowTr7iC0LhxGJqGPtQvQE4puZiZlLDSmk5R2ZLPOamyNOjvgnWrJNbaH4TySrnwL/wBPne5U6cb3loHC78idQqx2AVzIqXEFO21Z+GL35b0X+kURMNY9ePIpSKY6RSBkbVOYgKFUjapcC+BqhrQDOx8lp5dbxPt3kPF2MnUnnwOqXAP/ooazEySgYPvUT1xJu5ABelwFy5fiIED7zH6xPniuu3ykEtFMdNJAlVjKIiRlZ0nHe3D7S+jf/8m6k86F3vNM6gDuzG+/QORdDvnZLcfxl71BNrkk4Wldp5TKpfBfmMt+uwz0UZWo5Qtt4qmSdx0Lic3tMdX+n6WKfdjIgFVIySXuVKOZNyWVFyGgWbb5BS8tHYtO3fuZOrUqXz6058ml8uRzWbxeDwkEglGjhwpZnkOKC7kvy5M5bAK0zR58803OeeccyTllMtVdAhXShGJRHj33Xc5//zzSSaTRSCfzWaLIFvTNCyPh/1Ap6YxGwHYcecJvx0xLjuMyLxvAxqct0YLIv/WnKf4ZqARyYldANhpp42xQDfCgEeBMuD7l1/Oxr//HQXcv3Ytr0ybxgPOcU8ZN44/PfYnTj39VAy3wZatW/jGVd/g3XXvEhobIhfL8cmFn+Su2+/izHlnort1rKyF7tLRDR2FfLd131vH2FPHMu2yaUUWG0BZCs2lYSZMkYP3Jtn80GYu+PkF4rCuaxKv7dJkNADIe/LEcjEMzcBtuHE779mDkYP8/N2fc/8F96NrOoZmsG9wH/e03sOSuUs4fuTxWKo0QGIrG13TyeQzGLpBd7yb5S3LubXpViZUTcBSFray6U/249JcVIeqsZSFoRkoFPFsnJAnRLkO2uZFAmwbm2HaHZCPQ9mJkDwkIHnKYvCPcZjaIXj5JLikF1Lt4jQ+ZTEE6gUsJo+IEZqVkn1Pc/4a6S6pO3UpeKvh/RvgpFugbBKYUUn3tWsFnHwblE8R5jjRITmtowfFlyXRJYDYP0ok1HZW1oXqRWVXGPxPD8DoM4QhT3SKK7jhkxhvwyfAtdCvKasX1V0+U6rr8jlS8YOl44Wc0FzlmLMVYskLhmZWDpK9ch7/GEOt6dKvykXF3KwAyO08dG2Esjr5Pp1vS6qvquNLDuCGR/bvbIUxp0N6UJa9lXJsw+M4sxdioY6V/9vyf4q5Pgauj5Vj5Vj59xc77wBsSx7OlvMyC9VKqgeXTx7ckYMysuofKQ/1bExeILqHouN4AZR7yih2ohUOWHb4iALILrw0y8fLORTnzaNfhFhI1lIX0u0qyMGNkhStINxRprzwUu84ALoKtICk4kq8CLXPScotOyUvxAPjIPQZGPMo9FwtJmhlzfgn/ZXDu1/i+GlfYKh3Jymtmt5EgqaTT+a1v/2NUFkZp06dSlt3N4OZDAOpFAtPP53X1q/HrqxkRWsrS+bO5YSRI8nk83hdrqOMywzHDTxnWWzu7KShooLG8nKJv1aKlGkS8Hg4Eolw14YNPHCBuNUamobbMNA1jfJsFi2bFYba6XgXi8OCceCAUL6zZ5fq5HIl8zNdF8a7qkr01z6f1PF4ZFowNPvMZwTdZrOllFZ9fVBbK6x4WxvMmkXCN5J8Xv7AbrcQkQWPtVhMmozHRd6dTAojvWiRAOg1a0TKvWyZAO3jjhMpeHu7sNBer5xqMiks99y5xaxGvPcezJhx9Ne/4Qb45S9sqoMZNJ9jWGbZ4BfzKsy8IwU3ZFtbj+S09nuH/TaUAORcXk7e7YKBsKTnKg/+71UYOPd+gSF3mPBcJsOWn/yEUTNm0HD++bj8fonhNQzsfJ5Udzc7V64smpy5QyFZ39XFzt/8hqlXXYXh92Ol0wRqa3nvzjuZumgRoYaGYjuJ9vZiG4MffCDx2KefjrJtMoODuEMh3MFg8TQ1M4fgBA0O7YYR1cJGV1ULi71qJVz8VWGeCxJvZZeuj6aJ+ZmZEydxMycg2R8Ar1+k3kqJVNwflD9cLCJmaYYh8yOq5X5Mp8AwsPwBkkOdBKrGomyrBJQnzcLtC9H10ZtUT5qFbriwLZP+/ZupnjQLT6BCwCigLMm/nIkNEBwhsunOD98gUFVLoKqu2J6ZjhOoEkm5mU4IyNYN9rz5GxpPvVhk5woID0JFlTh3O0DffvUl9NnzUbEIWkUlVI5EUzYqmYBsFtVxBG3iCWihMlR4CNxutGAIpenY614QeXjeBI9XgLMDvDWvH5VzPCpyORl48HjRbEsc8OMx7LIK0rkcmqZhGAa6rjM4OEhraytNTU1UVFQQjUaLBmfDzcwKoFnXdeLxeBGMA8X94/E4Y8aMKd4nLpekAevo6KChoaHoSh6Px2lpaWH+/Pn4ampo0TTqgE6EYfYihmMB5yexCJF17wH8ztM8h4DkAwjwvglJpxWkBKBxpiYC2g8gObMXAycAh4Df//73fPD00zy3di15IAx8ctw4frvit0SeizB38Vz29e3j29d/mw+2foCmS3qxprObWHLNEngDzr//fFIDKVqWtzB38VxCY0JoulaUjFs5C90jwDufzZMJZ/BV+XD5XeRiOV79wavMXTwXw2MQbYtSN7MO3S3vKDNpkuhNUDZVvpGlLAaSAwQ9QQLuAH3JPip9lZi2yeLXF3Pz3JsJuAOc8NAJrPnKGhorGmmLtjG3YS6ZfIbtPds5o/YMfC5fkZGOZqL43X66492saF3BivNW4Hf58egeYrkYfpcfTdNwaS5ytoQ7lBlujOQBtJ3LYeqtAnzD70tqrn8E3f4xYsb1/o0w8xHYfE1p+8xHZDDdTDgpPT0UDb3S3fDh7Ue39fJJzn4rJYf2yJkw5jwxRNMdqXOhH2FlHSbZe/TAffRACfxWTnTk1U4/omLiP2+PHHDA+qGj+zQg24bXVY5Sr3A8hcizk10iDc/FnJzXUDR/VQVWvBMOvwo9mwVge6sE2L+3As55yGHr89C9GUZNKwFjMyEgP58S5/CZS+X4wVqJ4y64tFtpyZFtpmGzU2/ECRJid6z8X5djhmbHyrFyrPznlGIqLobJpLrkxVNgrismyAsnlyg5bBbiq3XdidPWREqOI+OOHCq1b+eHxU85L8n0QElaVXAKL8ZGdTlA3EQeb3lQOVBpkYWbh0ElnXzXB0XenX5X5OL+WcJoF6L0Ri6F2mfAN6NUV/PAxCNEjO/T1TUgJmhlzbzwzlxGjhxBTXUVp516Ck/+6UVcmuLFF17ADAapaWgg4XYzbsoU/vjkk4wOhfj47bepr69nwoQJrGht5cU9eyjzeslYFpFMhrxti4M08G57OwcGB9E1DZeuM6e+nu54nJ5kkkQux+FolO+/+ir7BgdpKC9n5cKFhDwebKVoj8W45uWXaYtGsVwulN8vL39dF/l2KkUxp3MmI8B6+vQSKnVYsGJAs20LDWwY4v515Iik5Dp4UIB1fb0Ymt12m9Tv6YEhAQjU1AjDFgjI/HvvFdNi5XKlJjIZOUwgILvffrt4p9XUiFK9kJt65sySOdmyZULc1dfL57rrBGiPHi3AurBvAVhPny4+bIFAafrii2BmFVo2B+msSLM1ByhnTVlX6FC53TCpATxuh8V25OMFF3y3q8T0+7wSi61pwmxHEwKeC3HcMCy0wYm1HuZUruk6p996K+MvvhjD68XKZOjfvh0zmUTTdXyjRlHziU+w5w9/wEylnJ+PTqixkU/cdhuZgYFiKi3d5WLWT35CsK4OgP6PPsLKZtm5ciWdf/87mYEBxl98MVVTprDlJz8h1dVFoq2NdF8fKEW6v1/MtzwelO6Mgkw4SWKu6ycIc20Yktva7S4ZvqEEEILz21diQlZRJeA7MgQv/lGmmqNUiUWE7TYc2eZgjwBvt0divQtMtj8ocdlQdPu28jkGDr5XzHcNOHHWBi5vELe/grppn8LtDZJLRchn0xJu6cjCAyNqUWgoTad60kxC1eMZOPgesd4DmOk4wRFOW54ggaqxoBloCiafcxX+yjGgadjYApwBlctgvfJXyJsY512MisfQx01Eq6iCXAbrlRfB40GrrEI75TTIm5x/4YXMOPdTnHbW2cw/dQbb3l6PPnMu+/fto+n8Cznx5GnMbJrPxzs/luuibNa+9hqfmDefUz9xBqfMns3vH/011svPCsj3+8G2ijmsNU3Dtm28Xi8TJ04s5qqurKzkwgsvPApYF6Thuq5j2zaRSASAESNGkEgk2LNnDy0tLdTU1BCPx+np6Sky2QVgnc/naW9vx7ZtysvLmTt3LoZh4EJirTuBGiCCAOetiPQ7h8RP70WAtSZPaPxyV9ED/Bo4HmGoeyml7apA4rZdTt0JwCcRAA7CZt90xRVs+Pvf6RscBCSNF8C2324rGo9Vl1XT29fL0MEh1ly1hoE9A7S1tzHuuHHsXLWTXDxHy/KWYv2C63f4QJg1V68h3h1Hd+tEDkbo3NQpcvHr1hE5EMEdcNN0SxOV4yuJtkUJVgdFSn4kiq7r5OI5Et0JdHQsW/JMjw6NpsxThmVbhDwhbnj1Brrj3cysm8nyluVUB6tpntrMrHqRec+pn4OtbEKeELPrZ2Mj8dQpM0XKTPG5hZ9j3hnzuOScSzhw3wEOfnwQXdO56cabmH3ybKoCVWzdthVTmXh0D5lMhs9f+hUmz/wC07+zk/O++AP2t/ULsNZdArYbm+GkJeCpchjScgHEuqe0/eTbJITLygmznc/Ie1/ZTmxxhbDbjc2yj7uyNK+7ZVv/Ow4bXBictwpiEulveMtlUL9yYkkRNzyntUL6ES4nvRbDthdY58qJ0mDFcY4MXHPMzqx/aMs5cCGtV4Gp3rxcwPBwc9Z8VozLYodEqh05ICC8bh6ceS+UNYrT96ZlYkKWT0NkL7xxDQRHCyA2k2JSpumyrpATe8u9kgu7vFGAd6pf9u/eJOx4or2U+utYOq7/8HKMuT5WjpVj5d9f/lfMdVEmVWCy60vxRwVX7+L6nIy66gUDMkciZecA/ej9i3LyCeKgWXGc1C+4dSY6hLXW3U57GcCC1EZwjxVTM3e9MNLGCAHZekjSdOX2wdDPBCi7Jzhf0KIY5ZfvRhjvJAzeDSOXcqTL4Itf/ALprI6uK6qrx/CzFcuYMTXIns3/wpWLu+gfjKJ5vfzrAw9wUVMTCti/dy/fWbSIocFBysrLeWTlSqZMnUrSNNne00NteTnLN2xgaVMTHbEY9eXlBN1uRgYCuHSdRC7Hza+/zg/nzmViVRV7Bwcp83gkD63PRySTYZRjd51xUnP9tKWF62fOZEJVFZW2LbLw5cth6VJBnXV1MGGCXMdUSlBmIiH6aNsWue/Bg3DXXWJoNmaMgKNQSLZfd52g3PPPF+n4LbfAQw8JsEqnYdMmoYzTaaGiKyqgrAy6u8nV1LP7iI9lyzRuvVWa1jTYvFkY6eOOg2uvLTVfIMQ0TfBWKgXd3fJ1brsNRjm94h/84GhpuGlCOCxkezgsMnKfr8Ryz5wpp/vuu3D2mRY+t422v60kzZ7UKCm4gv4S0IslRN7t8wjo7uiVev+YfkshMvFCmq5szmlHl23DU3vZjkGPrsu8ZYNhYFr5IrM89aqrSPX2UjV5MtlolF2PP86MG2/E5XfOTSny6TS6YaC73WSGhrDyeUJjxogjuGGQ6Ohg129/y4ybbsIVCIhMOZ8nl0jgragoyooTnZ3sfuIJTrjsMvY+9RSn33oryknZ5TI0tL4uWPs0XPxlqK6VOOhUQuTeluXcAyn5+Pzyh8tm5A/idkNZRSk1zu9/XkrVdfn3BXwf2AlllSIBv+jLwooP9kJ0UHJjm1l45rfwqUugcgRWIFgaq7Al3ZRtmRguD5pL1DIacomVrej5eD1jpn5SZNVAJtYvrDeaU0+YWgl9kRAIy8xiePzFiIiej9czcsLpuH1lxbRemqZjZpMYmoErlUHFomJMphTKNLHfeFlScQWD2K++KPOFR+vGDZKz2uMhEg5TWTUCa90LPP+Xp/jJxu3s+HgX5150EV+/7Gtc+fWvsfq557j3nnvYvGkTStMZVVvLm3/4HaeMHkVb+UimTJ9O35EjlJWFwHCRA8LhcJFhLki0LcsinU7j8/lwuVzk83k6OzspLy/H7Xbj8/nQdR3TNHnttdc4//zz0TSNbDZLMBhEKYXh/DaKcm/LOkpOXvgMrxOPx/GOHClx/ghjXYAfBxDWOYm4fT+AOIJnkVjrBmAiJTOzQly2C9EtFWTi4xGZeQwB29lIhLdTKS6qrcUP/OWFF/iX669nZ3s7OU3DD5w8bhyP3/s44WfDzFsyj9CYEBc3X8y03DRq3qshNifGm7E32diykTVXrzmKuS7UdwfdrFm0hp2rdjK1eSoLVy5kzaI1zLlpDu/e925p/aMLSfYnCY0NYWUs1l639qh9cokchseAcrCwSOaSzqNFsaNnB/Ma5pG1skQzUar8VeSsHCFPSNy9rTxew0s6n2ZT5yYayxsZUzYGv8uPQhUl4kPhISorK9HQWPPiGpbftZzn//48LW+3cMqUU7jkgkv4/V9+z2mnnoau6aTTaTa99RYLT/ejVU3jod+s5pnn/8r6119yUln5IZ+Q307kQwgdJ47iySMi4Z5xr8QOa84gu+6V+soWQH2UAxkUU1GBSM91P6Q6IHUERs4SoJnqhVBj0T2/OPg/vD/iclRGhd/08LC02BFx37ZMkV8XnL0L/jKFAX7DKwxz+bhSG7bpqPU6oKK+pLYrZEKJ7Jf60QOllFuJDombTvdL/2br/XD6jTI97zeyr+GWPk/hvFtvF1A8uVnqRPZJe2cshqoTRC24eTmc/YBcj813w8xbIFAD62+A02+S442ZCX+7XvJpV54gIP5Y+b8ux5jrY+VYOVb+c4qmO7kgHXl35UR56cDRhh+GWxhlw3P0em9ZCXDbudLL0/D/g2FIWWlUGA0qj/tnt870gLzsCkwWhpiPuUcLsHaNkrhplQFs8EwCY7Sk48oPiLTbbJcRZvMApFqEzQbQK8BVKy7hox8B11jGjWtg8+YtfPjq6exY/x3eePk+Zpw8EgbvZvLJn+Ld9Y/y4Y7XeeaNNyhvbCRlmhwaGqKiro7X169nywcfcM/TTzPxxBPpTSYZSKWY19jI8g0biuZjowIBuuJxgh4PvckksWwWn8vFsnPOodMxNKstK6O2rIyQx8NQOk21E3db6MBWeL38csECJo4YIQ7k+bxQwPfdJ1Tu9Onws5+VmOxAoMRIHzgg+usDByRx9E03CY0cj0sC6UKcrZNui9tvh8FBuOceidsuWHDPmiVtdneXKGiAVIpczxArVmjMmyen4/fLacyZI9Vt++jm02kZD8hmBbsFg2J8vnKlyMVDIfnccosA61tvlUP7/bLd5SoB9GxW5mtq4PrrhYCfNw8MDclL2zhWgHWjSIOpCDkx1VkB1mXBUhB3e48sZ3OQt0rA2nZ8CbImTKgXNroiJCeVNWF/m4DMbE7qaXrJidy0SqZmts3OlStpe+UV9v75z1SffjquYBB/dTVj5s7F8PmKhmu2aeLy+dA9Hvq3b8fKZAjW1GAmk2QGBrDzeYK1tZy2ZAmGz4eVTpNPp3n/nnuwMhl0lwtsm8zQEJphMOOHPyQbDjPjpptIdnUx+MEHWNmsnGN4wDEj80J/jwDrUIXIAw7tFqm32wMv/1kk4LpeknjnMvCnX0mctrLhS1dLWq2LvyLg2zDguBMFWBccwlFigFY/AWJhuQcnThEzs3TKeRZpxbho3eUhl4zJ48pJu5PPJrHMHMrOM2L8DFTexMrnQIG/ckwxLlUVOujOs05ZFnkzg+HxY2ZidH74BmYmxojxMzDTccxMTAzSMkk0w4Wuu3B7AmJgVjdOclR3tAmpdc4CVCwCmQzqwG7w+tBGVKNVjUSfcya4XCjbprJqBCiFvuBzxMaORy+vpG9wiC3vb+OySz+P3X6YSz/zWdp7+9j30YeQN9GAmMeLdvIMIvt2M3LECLx+H1gWKpcBJ0VWgWEeGhoiHA7T0dGBaZpFY7LOzk6CwWDR6GzdunVEo8Kk7ty5sygNHxoaIhqNsnbtWrLZLOFwmDVr1hAOh0mn00Sj0WLarzVr1jA4OEgul8OyLHI5YcwU0IUw0QcRCfhhBDhXU0qjZSAy7k2IdNwvT3MSCJi2EeCtIaz1fKDOeV0FnX27gVQ0yk8/9zkmTZvGrOnTefKhh/jzmjW8q2l85+qrmeykGfvKdV9h8ebFjDh+BJ5yDw//4mE2ZTfxaOhR3oi8wSO/eATdo7PwkYV4yjxUjq/k4kcupnJCJe6g5LguOH3PXzof3S1O4cn+JE1LnfXOsr9KwI3hM4pu4vNvm4+ma3jLvehlOrFcjHg2jqEZBNwByjxlnNl4Jsr5F/KEyDksZIHlNnSDvJL0WdNHT2dM2Rg8Tg5nW9nFwQ9/mb8YUx2LxtA0jepgNZ9f8Hnq6+vJ23nubb2XlJnCVjYBf4AFFy2AEaeDq4LZsz7B4SNtznvcIyxppp/zP/kJTjn/e8yYfynzz1nAtn0J+MTDfG/xvzL+hFPQPOVsf+tPkNgPW78P2X7Ov+jTnHLaLGac9gnmf2IC21rXOmE5MYmxxlHMpI5Ay6UiDbfzkh+7UAqDdv/YHylItguKNytbMh7zhErqu6OKKg3iG26nXxKSfaKHSum2bEuA9XC1ne6RO7NykpzzeytKjLF/FGy9D8bOkvObtdSZFlRfm+R6Jjok1ttTLiB6cjPMuo3zL/4cp8w+lxlXr2L+OReybds2qJzI99ZVMn7qbLTRp7L9b6sEYGejsGcV42d8kskXfp8Zc85lxtKdPP3K1qPZ9GPlP6QcY66PlWPlWPn3FzvvjAZ3OiyyVhqpLcQ5FZjsfNaJs/YevV4fFqdaiI/S/o39DW+J2S4cZ3iMU8G0pKweiV2y5Xh2DHpvgjEPluKsVU6Y6MFlMHIxGGMlD3bPIhj9sLSf3gy+aQKqizyIjbDZhZHzTmc7oAcElKsMWH2g+WHgp8RGPsSGtk5m1tWhlCKRzVIVCGArJWZQus53Xn6ZH86dS3c8TlNjY9F8rKGigs5YjPmNjZi2jWlZ5B3W7QevvsrSpiYmVFWRyOX42iWX0N3TQ8ayqCwv58pbbuHsOXOwBga49tvfpruvj4rych557DHmnHgiWizG9264gRdfeokjqRTbXnuNGbNnC41bCF4ePx6uuuqfA5tvuUXstAsS8Q8+kNjsvj6hgyMRQbf9/SIvnzOnFAJw7bXw1FMlOrmlhVzTOQymfHR1afT0lIzKbrlFPNYyGcFhhTDubdtgxIgSW710qdTbs0dU7LNnl8K7s1kJAy+Eix86JAB6OEtdVyenuW+fMOP19ZBN24yosiVetnBP20oY5lBAvotlwaFOMSrzeWQ7CvKO1LvAUuu6AHIzXzI5K0gX/8G0rGiEVh6S7ZYtsdrxFPnxY8nF45jxOAFndKAQK61sG2XbRTZ66qJFpHp68NXUUNbQIIZWLhdWNsvgBx9QNWWK3MLJJN6RI7FzOXS3m3wyieHzkR4YINXbS/Wpp8q+huGwtzb9H37IqJNPBqXw+H3Q14W29i8CiCuqpONZiB0EYZ7rJzomcK7S7xsgHoFgmXRwD+4SR/HqsaX0XV6f/AEGegScX/wVic3WdDE9iw4K+DYMqTNyNJbXW0x/pbk8xXhkMxnBzCRw+0MSH13pqC80XeoAhXzhtm0J85yJ079/E9WTZuIOVJJLhJ1465mY6QRHtjxPZe0Uxp58LhqQHOqk7f2XqBw7mTEnn+OAedCVEsWAk2tXAcSjYgjgcjsOxEbJdMzxolAoNNvm8m99i/VvbwBgzTOryEUifO3a69i98yOUYYBpMvvsT3L3XXfxyTNO54033+Sr376KYHkF4ViMZ578I5/6xGnYrevRL/gMpttLJBolEAjw6quvMmfOHN59993itGB0Nnv2bDZu3MjChQtZs2ZNcf3FF1/Myy+/XJwO3++6665j/fr1xboLFixg3bp1/9TGWWedRXl5eTHW+4IvfIG8puFCWGoPApJDiCFZL9ABNCES8TTwIXAGArD3OHVmILHW5U6dgPPEdh4JJIEdTjvXATcgMnGQQKICWNcBdzRzFOt80a8uIp/J4y33ovJiNGZbNq/e8CpnXHsGyf4kdWfU0fleJ8HqIMn+JFXHVxGqCRUHOzVdc6KfCgM4ivRQGsNrYCZMvBVelK3o/aCX+tn1xZhrbMi6smTsDG7DTd5JM+dz+bCVzcaOjZwy+hT6Un0s37CcpU1LGVcxjrRjbHXz6zdzw+wbmFA1gUw+U4yfNjQDS1m4NBd5lefab13L6397Hbfh5rm/PseJJ50oA1WazpTjp3DF3VfQfG4zy1vkGCePOA4jn4B0L1+/7g5GjBrLgz/7V4cVBlxlRMKDVFZVgW3x/IvruOMny9mxpZW3397AhAnH0TTvDF7486PMcL0EnS9C0zNE3FOprBoJ713L86uf4o6XKtjx8ZESc504KM7gU5cKex1ogECjMNWG449RCM+B/0V/gn/uS5Q1yAOqIB23LYi1Q8U4R1WXLzHXhRRb2agse8ok/M1bJuA9G5Hlygkiw052QfQIhMbApuUCpOMdIv2umCB9qUA1RYOzlqUw7ydiYhY9AFt+BvN/KhJ3Ow+ZISI5D5VaGDYt4/mBOdzxs0fl2rZsZML4RprOOZ8XfjiVGV+5T77f+h8w/jstvPDsamZMOU6e1QMfQu1c8Dr9mWPl/6ocY66PlWPlWPnPKYXR20KPuSB/QpXimwrxTgVgXYhD0r0U82KjRMpkZSim7irW80gMtuWY9EQP/HOME5q8FDVXKU0GQL4LRv8c7CTkDwiAzncLQx1fBYMrwI5K3TErQfMCBgTmg17mpN7aiIBq24nddlJXGGMEVOuOc6cVkX3cE8BVD6N/jqG5OHXsWAbTaSylGB0Kkc7n6U+lSOfzGMCvLr6YhvJymhobSeRymJbF/MZGJlZWMrehgbwDrN2Ggd/lQte0IrNtK4VL13n8ySf561tvseqNN1hw+eX8culSlm3YwHe/8x0u/+Y3+dW6dVxx3XVceeWVKMuCaJRL+/poSaUYFwiUDMmGBy/bdon+nTWrtO3uu0vgcvt20Vlns6LPvv56mZaXC2JtaxM0u2iRINt775X2CrHY9fV4rruKYEDR0yOgd/x4ePRRkYNblhCY111XCuOuqBBMUmCzvV451fJyySZmmkKYa1rJCXzLFmG8GxqEpb7hBlmePbuUkrvAjB88KBiQTA72HZEGMjlhmD1uuTf3HRGwXGCqC9tzeWGm27oFNLd1iwu4ZUk9t1vqZYUl/SdmPJuTY+w7Im0mUlBRBhMbUMOM55RSmMkkViZTBG2p7m4yg4NUn3oquttN5eTJBEePxjZNMuEwifZ23r/nHqpOPBFXIIDL7yfe0UGqpwczlRKjolAIzeUSI7MZM8in02xZtoxEZyearqMZBtXTp6O73QK4LQst3A8XflHyTRtu+Y0ePlAyyps4VUCy4ZI/SlxYZDRNTM/CA/DkL6C8CiIDFA30juyD3i5htd0eyaPt8ZQAus8v+/zpYRjsg5raElOlQDPcRdCs8jl0w43L68dMJ3B5/XR/vN559IhsXIC1AGQzHUfZecx03InX3oym1LD47c0EqsZSMXay5LROxxwTtTEcP/9yxpx0NmYqIrm2iyOGgG0LG25baF5xFNZ0Q+Tq0TB2xxEID2KtfR5lW2iWhd1xhN8/8ght+/bykzvu4Ee3/QsqJT4IdscRkeE7bap8jryus+y++1nV/GkO/u013lj7Mlcsupq+19aidm6XfNfJBIFAAJfLxfz580kmkzQ1NRWnU6dOZf78+aRSKebPnw9w1HpN07j44ovRdf2f9vN4PEfVzWQyxX3mz5/P1KlTmTdvHj6fD6UUra2t7Ny5k3QshkspDiNx1gU2+rAzfxwCnB2LKyqAWgQgH0CA9SwETBcExTXOvqazPYOA7FnIcOkvnTaWOMuFoV5nWAjN0I5il10+F+mBNC99+yUibRHMtMnLV7/Mjt/t4N373qVupnDk5fXlvHvfu5TXl1NeW47hNsglcth5W1KQ9SaJHomyZtEaokeiBEcHSfYmWX/7euJdcdxBt+TWzuSx8zZmwgQNXIYLv9tPR7SDaCaKx/AUgheYWTeTkCdEwAhw//n3M75yPC7dxQe9HxTjsFe0rsDQDXwuH6ZtkrWyZPIZdE3HVCZ9yT5uue8WDhw+wOLbFrP0lqUcjh5m0ZpF7B3ci6ZpXDjpQpa3LGfVzlV0xDrQUGDGWf7wavYf7ubun9wmyjN3SN6lZpzKkEsYac1FtO8AWroTEgc586yzqG9oAM8I8I0WZ/Cm5yBQT+XeJZKzesYKov4z0PyjHZWbE4qWaocpNwmwrp4ncnNNoxhQYOVKg/WFuOuKCZK5IJ9xHhLOjTK8L2F4SsBaIcesHO8MiBrSrynEb9umuIt7yoRVjh6U/W3LWV8uMnCFnISnXKTY5RPgU49AxSSoaxJy4o2r4YnJEkutu+Dtm6HmVJF1v3ktBEbDJx8smb6m+uDQK1S6c2LoevYDRE03muECzcWZs6ZTXzdGznn6tRIj7vLBeStlXbwL1v9A2q+eAVph+OlY+Y8qx8D1sXKsHCv/L4omD3V/jbzscnHHxEwrjRjb1lEhU+huAclZp4NteJyXliYvGMPjvEBtaa/wUqoY5xhuaGJgZiZLL0vDAenZiKzXnPNSSsCypgmAHlzhAOpl4J8JZc0wcgnoVXIudsL5Wi4xL+tZBFYv+M8Ac18JmKOEES+AdXO/yM/1QGk/8wBobhTgd7moDgTwuaTL5ne5GOHz4XO5iOVyWLaN24lTDLjdJHM52iIRiSF0DM38brdIvZ06zVOncuv8+bh0na54nMUtLSRNkwqfjzEuF5ZSXHPiiXywbRuXffWrzKqrY/L8+Qz29tK6axeqooIz772X+uZmYZt1XZBowSVs6VIxIJs0qZTTeunSEjBOpUQiXlsr4NrjERp51SqZ5vMCyD/72dL6Zcuk3qOPSnw3yLannsKVS1Ffr7j+ejER7+8XTN7SIqd1ww0Cppua5NDDleh33SXYtbJSYql1vWSM1toqy7Nni4FZW5sQ7DNnCvPd2lpSrP/853KanZ0Q9CsuuOB8Tvn0hcw44wzmn3UW21o3QnsP+3bvZW7zJZww7WTO+OxF7Gw/XATT519wPqeceiozvnwJ82+8lm3hXpGIG4YA8Y6eEuhWSsD0CeOE+VZInfZhddwOUNegmO4MYayz4TDbfvYz8skkyrLwV1dTfeqpHPfZz5Lo7sYVCGB4veiGgbeqitTAACOnTSMTDvP+3XejlKL61FMJ1dfjHzWK/g8/xEqnsbJZ8skk6f5+UIpRM2aQ6u7GTCaJHT7Mlp/8BDOZLKoR1IjREms9vNSNdzq1Wik3+IGPJVba44E/Pgi9nSIZjwzA8dOgcoRM8yYk4mKQVlMrwLxiBLTtg1ClMNZ/eFBAZSxckoubJoU0fZpL2PN8VuTmmsuDyxcgn80QGFGH21/B2KnnFOPKM7E+zEyM5FAXLq9fZOP5LIGqsYz7xCXUnnwuaBrVk2ZRMXYy1ZNmoWk6ddM+hW64MdNxXF4/qXAPhseHpusMHnyfmsnzSsbweVNAMYgMN5dF8/qL8fkqEUeva4SycowFnwPAem0NWs1YYTqTCS7/UjPr33mHxhmn093dheX1CcMdj9PW3s64xnFs37WH7qEwZz/4KFp5Jaf1HKZ+zBh2VNZgXP8jcR8Phnj11Vf58MMPKS8vp66uDrfbTV1dHWVlZSxcuJBQKERDQwNVVVVEo1FisRgLFiygqkqelwWDM7fbTTAYxOPxsHDhQrxeLyNGjGDhwoVUVVURDAaprKzk9ddfx7ZtFi5cyIgRI/B6vUcBbpXJoCFGYtOBHyAscxvCJnchLDYIE60Q47IXgRWI/NtAOrQpSrHXIQRY3+60EXDW7weucdbdjgD5HgS85yiB+MCoAGfdeRblDeXYeZtoR5Q9L+6hZXkLLq/rKPm2O+jG8BpFU7OW5S0oS6FsRWowRTqcBiVtbli2gT0v7iHWGUNZikRPgj0v7qF1RSuapjH98unkkjmibVFe+f4r5BI5ctkclrLwuX0kzSSL1iziQPgAKTPFNS9fw8HwQSr8FQykBli0ZhH7w/s5o/YMuhPdnDfhPJbMW4KGRlu0jc2dm+mOdxPOhDkYPsjVa64maSbxuYUJv/DSC2nd0Mod6+5g1c5VrGhdge1Ih2+df6sYpdXNIq8UP/v1Kp776zrWvfBnAsGyksRYdzupq8q5/KEMDROn8ON/vZs/LkpBulP6DZl+qWs679+apmKO68u/8hkaTvgEP/79Ef74xEpIHC7FQAfqYdd9MtXd4ii+eRHE9jo3yTBVHFA0WvCEnGwiGudfsECe1zPnMv8z32LbBx+Dgu99//uMnzAJzeVm+7b3ZeA/74SI5UXu/cQTv0Pzhnjh+eeEcVbWMNm5dXSYmpWR47vLAEtSZpkpAed2Xp4BRan3rbJ85r1w4peFNDjnl45JrGPJl4vLNTjpa5BPcvmCU2iYfCo/vnMZf7yqVq5luh/e/I6TrutdeOsGSfXlDMZc/r1/YdrNW/nWd2+hv/MQRWf2Y+U/riil/sd96urq1LFyrBwr/4XFtpTKJpRKDSqVN51PTj65pDNvOnWGlLJM+eRNpcyM7JdNKDW4p7RfYV1hv8HdpWNkEyqdiKnPfnqhOv74SeqUU6apT517rtq3e5dSuaTa/G6rmjtnjjpl2slq+imnqDdf+YtS+bBS+YTau/Nt9alzZqpTplSok6ZMUH956jGl8hGl8nGl8gml8jFnOSHTjmaldiFTs/+flzO7jl6X2vjP6/IRlcik1bbubtW8erXa3t2twqmUal69Wm3p7FRdsZiKZTJqKJUqfnb396uuWExF0mm1vbtbrdmzR3XFYqojGlVdsZiKptMqkcmoSDqtuuNxlchkVDidVkOplPpsc7Oqq6tTdXV16u1Nm9Rbra1q0vHHq0Q2qxKZjIpmMmraqaeqdS+8oFRvr1LRqFKRiBpXX6+2LVig1PbtSsViSkUiSsXjMl2zRimfT6ndu2V+40bZ97LLJHq1uVmpoSGlEgnZv7lZpnv3KrVjh7SzZYus37FD2u/tVaqrS6m+vuI+0YitmptLTfb2yuE2bSo12dVVWvfaa3L6zc1KPfigbF+zRqlt2+TUurqUGhwsfkUVi8nntdeU6u9XateuUluF+rGYTONxpbKZvBpq71Rq536lMln13FN/VqeccKJS8aT65Flnqyfu+qlS8aRa/Ze/qE+cfrpSsYRSO/ercHunUqaplGmq51avVqdMm6ZUNifrcqZS8aS0GU8qlcnKx6lf/AyvMxCWac5UuWRSDXz0kdpw441qaNcu1bF+vdrzpz+pZE+Pihw4oJK9vaqjpUUle3pULpFQ2Xhc5ZJJlUsmi/OZcFh1rF+vBnbuVEN79qiO9etVenBQZRMJlY3FVCYWU6mBAZWJRFQmHFaZSESlBgZUenBQRQ4cUBtuvFHt/uMfVbK3Vw189JFKHjmsVE+HUuFBpZJxpVIJpTJppRIxpbrbZZqIKxULK3Vkv1I7NirVdUSpaz4t8/GoUumUUm0HlPr9g0qlkqU2UgmlkgmlPtikVPtB2ZZOKRUZVGqwT9bHIko9skypw/uUCg8olU6pfC6jcul48RPrPaDMbErlzazKm7ItFelVZiap8rmMMnMZlUvFVLTnkMqmYiodH5R16bjKm1mVivapI1tfUqlorzJzGZXPZVTezCrT2RbtOaDMbFJFew4W98+l48rMpovb7UxGWdGwsuIxZaeSys6klZVJK6u7Q+X37FR2Ii7LA33K6u5Q5uo/KKu7Qw0eOaw6Dh5UdjqlrIE+9exvf6Pq6uqUlU6rs+bMUb+9+y5lp5Lq6QfvV6efMk1ZA32q64NtKuTzqY/e26TsTFrt3bFdVVVVqcN79ig7k1F2Jq1ymYzq6elR8XhcpVIptXfvXrVp0ybV39+vMpmMSqfTKpPJHDU/fF3G2X/16tWqu7tb7d27V6VSqaM+3d3dxe2JROKo+qlU6qi20um0Spmm+sC21RqlVJ9SaqtSaq1SKqyUijmfiLPc4Xy6lFL7nG1DTv2tzvx2pVSzUmqHUmqNko5js9NGn7Nuk7NP3Fm3VinV6bTbpZRKR9Jqz5o9KtIeUT3be9Tq5tWqe3u32rt2r4p1xVRyMKkysYxKDaVUNpFV6UhaZRIZ1bND6nZt7VKx7pjKxDOybdi0e3u32rNmj+re3l1sd8+aParngx6VjqRVtCOqYp0xNbB3QHVs6lDJgaTatW6XimViKpwOq+bVzYo7UM2rm9XHfR8X5/9xW3+yX/Un+lU8E1fxTFxF0hHVvLpZberYpJpXN6u+RJ/UX4L69KOfVuF0WMUyMfXbP/1Wjakdo97vel81r25WW7u2qvrGevX2u2+rV/a9osLpsEpkE2rFT5ep006doYZ6DiuVjSiViymVSzjzcaWyMWddTKlsVP3usYfVgvPOUmpou1LvXKZUJqzGNTaoba/+QqmBrVJvaIdSG5qVCn+gVDaifvfre9SCC86TNrNDUuedy5R6CqmXjcj0KWR9sS9iHv0Z3qfImyrc2+Esx9Vzq59Wp5wyTam8qd76299U+4Hdcl5b3lMqn5U+TN5UKp9Vh/btVnNmz1KzZ81Uz//hYenP5E3pp+QSsjy4W+aH94P6dij1UrNSXZvkuvRuk+XeHUpl40ol+5Q6uFapeJcsZyJSLx2Wz/D18S45xkvNSv0MpV5qVr9b+ZBaMO8kpTJRpQZ3KbX1QTWuJqi2tb4hbWdiSvV9oI789mKl+j5QuURYLb7p+3JtzfR/Sjfx/88F6FD/G5x6jLk+Vo6VY+XfXwpGYoZbRpMLpiAgI8m5uGPyoQkjnY05bDIy6uotd9jn8Y7c+5C0ZWUpmBJJzuxsab2VY9Fln2bPzg/Z8d67fPa8OXx70VUodC659FLuvP02dmzdxKo/P8WVV/2QdFrk3Fd++0a+1Pwldnx4hPVvvsriH91G5/4XHHMzEMl3VhhpXMX0Woy8zVle7CzfKst62dHr8gMSfz3yltI6ZZJXcHdLS1HGnVeKVTt3sqK1lYgTs9wWjdLa3s6RaJR/Wb+erngcXdNY3tJCdTCIoWn0p1L84NVX2Tc0hGnbHIlG+f4rr7A/HKY/maQtGsX7xS/y3q5dXLN4Mc3XXENnLEY6nyeWzWIDhyMROmMxXE6MJvG4fPWhIVi3Tqhgx/AJy5G+n3km7NghuawaGuD++2Xb4sUlFjuTEWp5wgRhuWtrZb9ly+Q4tbXwq1+Jm9i114oO27ZFij5hAjz0ELpm88gjwjw/9phsmj8ffvELYZPvvVfI85oa8UubNUtuj1tukTjp5cul+bvvLrHS774rDHZfH+zfL6ddyHHd0CBt3HefhIT7nLSojmk2LgOqRlfD8Y2ga0TTSTSfh76OTra8v5Wv3fQ98Hn4wuc/T3t7O/s72uCEcVSOrhFpOBCNRiXOsmBsZprgdcO4WojE4WCHxGL/Y/F54HiHzQ4FIOrUtW12Pf44ba+8ws7f/IaRp5xCw/nnkx4Y4MOHHybd3y+x0EC8vZ3Nt9+OmUhgJhKk+/owk0mUbVM1ZQpljY0YPh9VkyeLSVcyyZa77iLV1YXL78dyTKZ0lwuX34/mcuEuK+O0xYsZv3AhmmGw5w9/IJdMoiqqnNhoJG1WOilS775O+TsnomJkFhmQ+OjyKrjnd9A4Cf7yiMRKe7zwhW+Ki3je0fWbpuS5rjsOhvrkudHfLfvEozBhikgYLv+Bw3D7pb6mYWaS9Ox6G0038I+oF6bYtgENTTdwBypEPomwyLrbS3DEWDQ0BvZvRlkmuiEyyYEDIgXXdTdmOkpyqFvUokrh9gbp/OgNLDNLYEQt+WyK/n0bUU7sdoHRLhbbkrAM24nLLytHr2vE7myDyJDksY5F0eecBW4P0XicSz5/CdMmn8CpZ5/Dr/74FC899xwa8Mijj/Kb5/7K5FOms+J3f+Q3l38Zzeenxu/n0Ud+zZev/CYzzpjJ5796Gb+4/z4aascWGUVbKSorK0WinExSX19PY2Mj69evJxwO86lPfYpTTz2VmTNncu655/Lee++haRp79uzhrLPO4uSTT2bevHn8/e9/p6WlhYaGBl577TXmzZvHzJkzOeuss3jyySfZuXMnLS0tGIZBKBRiwYIFlJWVoes6Sils22bdunVEIhGyQJumUQ1cj7DSM5C46eG/kgzCPgcRRjsI7ANakfhrJ0iIAPBDoB2RgTcDt8qbBQ9wGjAIzEZcxG9wjulHYrZtQHNplNeXo7t03rn3HRrmNeDyumic30iyL8naa9cSPhhG9+hkY1kSPQls06ZyfCULVy6k8rhKkYTHc3Rs7CAXz0nH21JUTapi3JnjcHldNMxroPXeVhqbGqk8rhJlK9wBN+6Am3wqz6ZfbEIzNKrqRDVgaAZLm5bSPLWZW+ffSqWvkuapzSydv5SclStuW9q0FJfmwm24ORQ+RG+iF5fmYmnTUvqT/SxtWkokE2Fp01IuHncxB399kHmfmMfsT8zmdyt/x6rnVnFc5XEEXgnw6TM+TXdnN5d85hK+9smvcf3a6zl45CCLl9xKJBLmk+ddxIzTZzNr3jkUpdl2XvwR0J0czHGuuPQc/r5hE4OduyU3deoI5AYlVVemV/YLjoMzHgVPNWQHuOKb1/D3tzYw2L5DcmM7cvFiOi4opfWacS+l3NF2SRaucbSpmQaVrkSRYY5Gw44nApx51nzqx02Ucy8YlhkecCJWvn31tfzygZ/j9fok9ZWdl3A1w/GV0XRR1enekr+GykO8UxjpqhPknFO9UHcmuDxyZ/ZukVRdIM7iry+C8F4xhsun5RoW1qf6pH8069Yi433FFVfy960HGTy8TRzF6+aBbwSkB8UVPHYI4m00hl+GeBvuVBs/OOUgG1reke9wrPzHlv8d8v7v+jnGXB8rx8p/cbEtGZUd3C0ju4O7lYp3OqPDe2Vbga0uLA//FNlt55ONOetMmZqZo6eFY3W0yPLgbvXey4+pcQ21qr/riPJ4PDKq64xET5t2snr26ceUyhxQwWBQdR75UCkzrFQ+rj598XnqvhU/VqrjMqXSO5SKrVUqvV2Y7PQOpTJ7hfWOvaJU6n2l8lFhtHOdSmX2O0x3zGHGI8NY75hS5oAzDatkNqO2F5jrnp4ic721q0t1O0x08+rValNHh2pevVpxxx2qefVqFR3GXA85+xS2DSSTRy33JhLF5V39/TLvcqnP/OY3KlRWproiETWQTKovrlqlCAbV9i1bhG0Oh5VKJNS42lq17bzzhLbdsUOptWtlvrdXaN9wuETtxmJKDQzIuqGhEov94IMlhnrbNqGF339faOB/ZMGbm5X6+GNpIxJRqrlZJYfSqqvLVl1dJaa5cIoFZnn7dqWuvLK0W1+f1InF5LTXrJE6w1npwuns3Sv7FU47HheyfceOEpG+bZvU37JFKdvMKxVLqK83f0nV19er+vp69cHzL6stj/5BnTD+OGGcHUb6jNNPV2/+9o/CXmey6uuXXVba5/33lUqmhX0uMNjDmekCW53LKZVM/TObHU8qteugUqap8smkGtq9W5jr3btVJhpV2VhMbbjxRvXUSSepDTfeqLLRaJFhfuqkk1RqYKDIdg989NHR7Pfu3SrZ01PctvuPf1QbbrxR5RKJ4nEGPvpIJXt7VTaRULG2tqOOn+zpEeY6kxLWOBoWtjmdkk8sIqx2LCLMdTIujHR4QKmuNqWGBpRq2y/r06nS9nSq1E4yIetjEZl/ZJlS37pAWO+2A7Lctt9pP6FUZFDlcxkV7TlUZJnNXEbYaIdJPrL1pSKrXWSZcxlhpyO9KhnuVslwj8NW9ykzm1aZ+KAw3wXWOpdR+Vz6KDZcjntAZZNRlU3FVNv7LwvbnU4I8xyPCXvd2SbMdE+nsmJRme84Igy2w2YXt8djylz9B5Xf+LayOttUfs/O0vbONmVFwiq/92Nhxns6lZWIyfQfGHArky4dt7tDmQ5z3NnZqVavXq0SiYR69tln1aZNm1Q8HlddXV1FNvqpp55S06ZNU+l0Wp155pnqkUceUZlMRv3mN79REydOVD09Paqnp0dVVVWptWvXqlQqpd544w01efJktXr1atXT06Oy2axKJBLCUDus9t69e4vLAwMDKpbLqX7bVs1KOnm9StjpAlu9VSl1mRJGeUgJ8/yBU2+fs67X2d6rhM0OO8txpdSuf2gv5qzfN6xuXCkVVcJgdyil0tGMGtg7oDKxjIp1xVTn1k61Z80elexPqoG9A+ou313q2cueVZmYMNKJvoRKhVMq0ZdQA3sHVKJfpp1bO1VyMKlinTEV7Yiq/l39KhVOFRnuzi2dKtYVU9lkVvV80KP2rNmjEv0JlYln1LOXPas2PbRJRTuiKhVOqWQmqbpiXSqWialIOqIS2YSKZ+KqK9alwqmwGkoNqb5EX5FZjqQjqjfRq/YO7FXbu7er7li32juwV/Ul+orTSDqiwumw6kv0qcp7KlXz6uYiw11gwGOZmNrevV01r25WWzq3qK5Yl4qkI8rKRoRJTffJp8BUO8x1uPeI6jy0S6lUr1IDW9Tzy+apurE1ys5ElIrsUuqdy9S42hFq29vPCdM99IEKf7xKdR7aKe0ku9Tz93xS1dWNVfbbXzyarS4cJxtzWPKIUtmo9DnMjFJm9h+Y6/gwRlnY5K83f1bV19ep+vo69cH2949S2I0bN05tW/+8Uh2twkpbprp3xU/Vv9x2m1JmVp111pnq+WdXl/olRTVeiR0/ajkdVio1MIyVjivVu13Y574dDhu9Sz4vNSv1gE+Y7ExU6mciSq27UqmtDyo1uEuFe46ozv07lUoPKZVNqOdXPanq6mqVvf8l2felZmHfHzyvyG4n+g+p8J8/p1SqX6mXmtV9n0bNnzpKjnGs/LsKx5jrY+VYOVb+w4smTruE6mXUsxB/rbuhvLHkeGlbEk+tDRtCLrDZRStmTUxQAHHq9EisUiEGu1A3VCfGI5oBoXoe/N2LfPazlzCqppaxY8ey6rkXIVTLe2+/yp49ezl8aBe4ajj9tOk8+adVoBkc3Ps2ra1vcfjQXvDPAbMTAnPANVaO4aqT+Gk08M8CTUHPVWAeAS3gbLMd1lsDXGKQ1vNNidvOd0LPtaDS2CrPhKoqHl24kImVlRi6zsqFCzl+xAh8Lhe2UixtaqI/mWRpU1MxljqZyzEqEGBuQwMeXefW+fNpnjqVJfPmYWhase7S+fNp7+3l25Mm0Tx1KhVeL7Pjcfzl5dx58cVMmz6dzy5dStayOCMapWr0aKZOnozKZMRaO5eTeOA77hDaNhCQwGafT9jD666TNFwFc6p9+2DjRtnmdgudvHix0McrVpQMz2bNknhtKKXzKjiSLVkiAdK5XDHO23J56e/XSCadu8ExI3O54Ne/lsMsXw7f+54wy4XDDw2Jl9rEiXLaEyaI+/esWRIK/tBDQpzX1Eh9TRNC9NAhmTY2Stsej8Rav/iixF6jgJzJHx77Le3bP+KuO+9kya8fhKpyOSmFGJMpJJ1WNC6x0nmLPzz+BO0HDnLXbT9myY9uEYMzn0fSaUUTEkc9rlZyWmdy4hieNeVeyplH/8Z8HpjUIE7kiRSBsWP5xK234vL70Q0DzTCYumgRjRdeyNRFi9Adhvmkq66i8cILMdzuItu96/HHUZZVYr9XrsRMJovbxsydy8lXX41Sqpjya9fjj2MmEijTRDeM4vqdK1fiCgTwVlej0CQNl2FAJCwGZFbeiTOvFAOyaAT++Athnt0ecQj3eJ1Yba3EcBdY3f0fC6O9/yMxK/M4DNCXroaf/AYmnQyvPiPx1q8+K8e38mKCBgRGjEVDYdsWyjLR0DAzsaJBGZowp4DDMiNGZQc24wlUMHDwPWK9B9ALMY5o5FKREmsN5HNpsokwlumkktI03P4QPbvfJp9N4a8cw+DB9yW1kSZmcORy2K3rUTu3Y294EzJpmX/3LfQ6MT6yW/5W3K4ZBvrcs9EmTsZuXY8WDJW2t66HXBa9tgGViEHlCDTDJfv5/KV6LX9DU6p03Ja//T/s/Xe8XGW9942/V5m2Z3bLzi7ZJZ0aQkJLICSAQiiCXXNU7AJRQcVC0IBSJEFCEwVRQFTOUTEQQAwdBCEJJARIAiGkl93r9Lba9fzxXTOzN577Ofe5f96v+/k9z75er/2amVWuNbNm9lrX5/qUL7gOnueVw8S6u7tZvHgxRx55JKlUivXr11NdLaWIsv4/5f79+3nrrbf4+Mc/jud5fP7znyeTyXDo0CH27NlDOBzm9NNPJ5lMMnnyZHp6epg0aRL19fUoJfWvSyUC6+rqaG9vx7IsnnrqKRzHwdU04prGjxCWOYJ4oC9BfNfVwAq58vItJKwsjISQTQQGkOAyEGZ6F7DUX66Qclwx//mIv50LtCDMeCm/ykWY7hjCXNsFm0x/hkBVgGx/luY5zeSGcgRjQZY8soTFNy8msT/B2kvW4jkeTt4hP5wnGA3S83oPdtYm05uRz25qBKoCRJujaJrGKyteYfvq7WxYtQEjaOAWXVJdKZrnNJMfymOlLc678zzmfHEOwViQ/HAeV7lEzAiWa2FoBo7n8LW/fY3W21pZ+sRS+jJ9NN3SxNK1S3E8B0MzCBkhJsUmMaVuCrFgjPpIPZt7NhMyQgSNIJ7yeLXzVTQ0zj/sfO445w4A7v3wvTz5uSf58aIf4ymPmzfczKkdpxINRokFY2SsDJpmgJsTZtbws9Y9x1/mkYwP8rFPX8jskz7AnA98iTufsVl700I0XWfp92+ifcmLdPUnOecTX2XmEUeDESZpVfGxDy1i9pzjmDP/LO58xmPtI39BO+kuOH0tHPNjGQNk9ovPOru/Mo7QRkEarfSt+l+wEZaQVHTxRRshHvjzw3QePMAN11/PlT9cPjZFHGTM0TQHjBDvvPoUa9as4eqrlo86jiYs9YSjxBddZse7K7kTwWp5H6kD0LdJVH3ZPnkPm1ZKWa6NK6Q7KyvhZWfcDh95BBrnSB3r5y6RGtxn3CaM9IZrSHZt52Of+QKzT1zInBNP5s5f/Zq1f7wTrfkElm78AO2XvERXdw/n3PAWM++aDGf8nP7+QT7ws70cO+8MZl/xJv8YaOWBP/y7hJ2Nt39t+79D3v9P/RtnrsfbePs/3ErMtePP9JZnaNP+rLHvO7ILlXV2Qdb7s8Ayw1wc648a/To37PuZiqNmooURX3H9terkk+erbCqplJVVWzZvUuecfZaaO2eOuvBzn1Uf/MAZ6o5bf6xUfqva/+r56hMfPVPNmTNbfeTsVrXkXNR3Lz5cKbtPGOuuJUrl31LK6hHW2h5UKrVWqfw2eRzloxbGOjNqvy2yzw583/WFSuU2K2UPqGJuf9kjnSoU1HA2q9KFgnqju1sY7O5utbm7W+0YGFBJ33+dLhTU83v3qng+r+L5vBrIZFTc92T3pdMqXSioJ3ftUm/09Khssai2vfeeOuHEE9XRs2apo485Rs095RT1woYNKlUoqA//4heK9nZVPWmSmnPcceql115Tbiql1BtvqEs+8xnV1tqqDMNQTY2Nasa0aUr19la802+8ITTujh1C75b82N3dQidv3SrPUykxN5eo35K3uuSrHm2mjsdl23Ra1vvsdzLpqV27KofevFmpri7ZJJORzbdskcfSYbq7Zf2OHRWvdDxeIcvfbwEf/bq/X7zXJda7tHztWjmuXXCEaS55nrN5FQ6HVV9Xl6qurlZ236BS+YLyLEs1Nzer3U+9UGauy6xz0VLhcFgNbdg8dnmhqFRXnzDV2/co9dLr8mjZcrySP7tQVOrdveXjW6m0eu0nP1GFREIV02lVSCbL3urcwIAqxOMqNzSkipmMLE+llD2K7Y7v3Dnm9ciOHSo7MFBeZ2WzKjswoHrWry9vM7x9u8oODCgrk1HZvj41vGNHed9iKqUK8RHlde5T6u3Nwhzns8I+ZzPit/7DHcJUp5NKPf+YUm9vkuUlVrtzn1L33qTUyKB4s3NZ8WqPDCnV3y3bJuPS3ztvVNjqzr3S769XiN+7tHzfe8opFsqsdDGXEr+1zyrbxaw6+MbflGMXVDbeJ8sKWeXYRZXs21f2ZueS/SrZt3eM37qQHhHG2hbW2rYKyi7mlFXIqHx6SDlWQR168wk1uO8NYcQLGWUXc8otFJSbSio3l5XHMnPdo9xUovzcKxbKDHR5fS7r+6RluTDX/vqeTuWmkpX9Uklhx9/PXPd1/xNzXfDZ4pIPuq+vT+XzeZVOp1U6nVaZTEZ99rOfLWc4PP/88+pnP/uZmjlzpurr61M7d+5UmUxGnXjiieqvf/2r6u7uVvX19ervf/+7WrNmjfrTn/6kAPXggw+qXC6nMpmM2rlzp+rr6xtz3O7ubrVx40Y1NDSkspalejxPxZWwywmlyiz2WlXxUG9WSt0xatlapdRbo9b1KaWGRu17oVIqo5QaVBW2u+SxLr3u8bff4m9bOlaZjR7JldnpZFdS7X56t8on8uKfTgm7fC3XqnR/WnVv7i6z0YlDCfXQkoeEhc4UVCEtDPjgjkGVG6kw1z1v9pT7L6QLqvuNSh+FVEFlBjLiz97Wq9KFtNrSu0Wt3blWDWYHVaqQUtv6tqklDy1RW3q3qJ5Uj1ry0BK1tW+rGswMqkQ+oVKFlOpJ9agL11yotvZuVZlCptzHW71vlffNFDMqVUiprX1bxzDU6UJapQopNZIbUV3JLnXhmgvVtr5tKlPIKM9nl1VheJTXOqVUcq9S2S7fIy2MtEruUqoYl+1G3hYGemSLUl1rlRra5K9PyOPQJlme2FHxYa+/UI5VYqhH+67zAxX2enS2i1OsjFFG57649tjxi2PL9bq/T8YoVlaY682vl8cpv1p5hWppblRTpkxRU6ZMVqFQSDU2TlS/uvmaf2aqR497Skx16a+YUSo7KIxzulupJy4UBruYUqpvc4XJLqYqLLbPPKtCYuzrfFxY53y8sm/fZvFXl7zaJa93/xalUp2V/vMjSg29K4y5U/wXDxD/39/4L5jr/+NA+X/lbxxcj7fx9n+4uU4FLNvFsQC4dAPr2iivrazcRKysH4D2nwSflfYphZEM76wA9dINyrWVsnLq5ptuUieccLyKD3TL8vJ+/ntwbXXkkUeo55/56z+FjKn8FnXO6S3qvruv/U/Cy/qUyr+lFp/WrGYfM1PNmT1NLTx1vnrz6cVK5bepb136NTVlSrsC1FvPLFbqvbBSqbVqqH+fmjN7mppz7NFqzrFHq8NmTlaGoamu3s5yQNnWvj615KGH1Na+PrV2586yrPvdgQG1ra9P9aZSau3OnWogk1GpQkHFczk1lM2qlA/Ok4WCShUKKlMoqMFMRvVnMuU+N3d3q0Q+ry5cs0bd8dprasfgoEoXCmprX5+6cM0a1ZNKqZFcTq3duVMVRkaU2r1bQG5Pj/w9+aSgTF+mraCisy4B5p6eCvK9445KmFkJeI8OQxse/md99rZtglxHP+/tVSoeV5m0q+LxsTj83Xflr6RML6nLS9v091eU6Js3V9Zt2aL+qa/+/rGvS32O7q+0PJFQ6q+PDauugwfLgPjR1Q+pttZW5RWK6vTTTlO/u+8+CTS77ZfqhOOOU8q2VXxwUHUfPFiWfT/6pwdVW1ub8pJpAcvvB8yjA85GA/MSqE9llOrsk+1tW9n5vCpmMio/MlIOJcsODKjUwYMq29v7T3Lv9cuWqWx/v8jHk0ll53ISbJbJqNzAgNr98MMqefCgKqZSEnqWTKpXvvc99dDJJ6vkoUPlELTSfuuXLVPZ3l6VGxhQ2b4+9ery5crNpESSnc/KXzYjALmvS+TaI4PyurQ8n1Oqc79S/V0V+XcuK9v1d5Wl3SqXVSrtA/BsprL/vTeJLPzXK3w5ud9nOil9bNuoHLtYlnUXc6kxALks7fbBdjbeU5Z/W/n0+4LL8urgG39T29beUgbkVj49RjJeSI/I9kWRiL9/vW0XlZvPKXewX7lDA2Wg7OVzys3nlLP7PeV2HhDQnE6NCTjzioXyMnvNHwVoZ9LST2l9UfryCgXldneKRDyfU14+Xz6OVywot3xcWV7MZlRvb68aGhoaE1iWy+VUMplUa9asUb29vSqVSql7771XnXPOOeoPf/iDmjFjRlnenclk1Ny5c9VPfvIT1dfXp55++mm1cOFCNXfuXHXxxRerI444Qj344IMqlUqphx56SHV1dZVB+UMPPaSuvfZa9dBDD6l0Oq36+vrUjr171VZfFr5ZiUx7qxKQO6gqYHmJUurdUcs2vm/diL/vZv91z6h+Niqldr3v9Vq/v9L+o0F9ISNgON2fFlD83mA5wCzZlVS7ntylsoNZlYvn1JoL16jcSE49tOQhdS3XqoeWPKRSPSnVt61PFdKFssw7M5BRu57cpZJdybLcPNmdLAeb9W0VWXipj3wyr/72zb+pro1damjXkErkEmrtzrXlQLKtfVvL4LkEpBP5hEoX02okN6IS+YTIxwuZMetHh5qVpN+lbd8flvZ+wH3Ha3eotTvXqq19W1WxEFeqMFIB1al9Y+Xar13sA+bdSmW7BSxnewQMZw6IXDzTqVTXkwK0RwPukbcqfXetle2zXQKqR7ZKP6XgM9sH9vnBURP3hbH2tFHgOt6zT3Uf3Fceszy65mG5Xpek5HZBTZkyWWThpXGIlfUl5WKDO/20herRBx8YRQAURwH6YkUuXpKFp3v8ULKMyLL3rlVqYJsPkBPyOBo4l7YvA+5tSmX7BZjvXSsAee9aH0wnBKS/eadsUwpDK6ZkeanPoXdFMr53rUjU37hD1hdT//Ih4v/b2zi4Hm/jbbz969to1tkujE0EH80+j/ZOj07OHO1Len+SuF0QMD78nuxbukE5trr15lXq+OOPUyMDfWNunD2dB8XbXUyre359tzrhhOOVZ4uHuu+tjyg3+5ZS9oh6+m/3q46ONpWLvy0sdH5rhYF2RpRKrVXxnueFsbYH1SMP/0kde+wxSjkJ9Y+//1V17tukpkzpUG9teqbi1S7tb3Ur5aTUzTdeoS44b5FKFQqqK5lUA6N80Useeqj8eltfnwDmYlEl8nn1uu+9judyaktvr3py166yZ3urv226UBA2+31gOlkoqJ5USm32WfEtfX0q7QPyEgjf0turUomE8np6BJFeeKFQwCMjQu+Wli9ZItTu+9Hu6OfbtgmtXDIxf/nLAsLjcemzq0vY77Vrpa9MRqmLL5b+S4bqv/9dqVRKpVPemMDxN96oMNOZjGza1SXAt7TNyMjYtzc0JDh+7VrB+SWG+z9jrrNZsYR3dY0NMy+llG/etE+ddOKJ6phZs9Sxs2erMz/4QfXW668rZdvqvXfeUSfPn68OmzJVnXD4UWrbo08oZdvqwJ49ss9hh6tjZxymzjx5gXpr06YKEz3GX52vvM7kBESXWPLte5RKZuR1JqdUoaBUOqusVLrihd62TXW99JJK7N2rismkyvkM9IPHHad61q9XViajrPd5tN//OnnwoBopMdE7d6r88LDKj4yo5MGDKtvfLwnkAwPlxPCR996TdHEf3Ge6u5WbzymvlPCdzwnL7Kd2q62vyfL4kFL331pZnk0LIz0yVEkUz/lM94Hdvo96rwDr0Sx36RiZZCVRPD6k1P5dss/BPUrFhUEugeJ8engsQPY901Y+rexCdsy6fHqo/LwElivAfEA5vnd79D6lPqx8WsD7+wG5VVB2PiPM8Shm2V7zR2Gd/fPnFQT02mv+qKxrv6fshx4QAO17sq1rv6fcwf7yc/uhB5SXz5eBdylN3MvnlJdKKjeVVM6ud0dtmxNwnpX3Usjn1c6dO8uAN5/P/xObvHPnTpXNZlUul1PhcFgdPHhQVVdXq87OznLq98SJE9W3vvWtsm+7lP594MABFY1G1YYNG1Q+n1c33HCDWrNmTRnIZ7PZMpOdz+fVQw89pPYNDKglSqk6JQA4roRhflcJUC6B5S2q4pF+S41ltbf5y/eM2iauxoLv978eVGOZ66yqgO98ulAGwd2bu8eme7/VqxKdwkyXAHQ+kVepnpRac+Ga8rJcPKdSvSmVT+bLIDzRmSing2cGMyqfyI8B5ZnBjFpz4RqV6kmVWfM1F65R+XheJTNJNZgZ/CdQnCwk1dO7ny4D7a5kV5l1LoHq/ky/GsgMlMHyaOZ6W9+2MnPdk+pROwZ3qK5kl+pN9apkPlkG9Gt3rlU7Bnaoway8B7uYFKDb/WQlybswolQhPiYlvAy4u54UgFxKBB/aLKC7mKwkfr+yRKnB13xvddxnvrdUtn/vjorvekxCeVyOO3pMUcpxKU/eC3g+sG+POumkE9Uxx8xSxx47W5155gfVW2+8rpRjq0suvki1tfmqron1asa0ydLPaNa7mFGnn7ZIPfrw6lFZL5lRqeKjxjlWxk8H36LUyC4ByXvXSoL3yC4B2sVMJQW8xGSnOpUa2S37lljvvjcrzHMh6aeAJ4WpTvcoleqqpJD3bZZl+bgw4KXn+5+u+LtTXfJ8PC38v93+K3CtyTb//9Xa29tVV1fX/+m3Md7G2/93m+f6NRpd8T+BeIpibeK79peffe6H6OvtQjdDVNfU8Iuf385x02r49g+u5vG/b+LgwUO8tfl15h43t+x3KhaLfP8HP+CZ554jHA4z59hj+Y8HHqCru4uOKdOYPrWD6lpJTg0FTDau/wfXrbiJP/7pzyjP4aijj+GuX95OR4c46u777f38bNXPMQyd1kmT+OVtP+KYOSdTqYzq4puypG718EpoWA6BGfz+9w/w81/cwZYn50LTz8EdYOphC3js4fuZe+KHoO8iqZ9dvQRa7gN7H0fNXsSNK67jgx/5Bj2ZDHtHRmirqeHGdev40cKFTKmtpeBIOueWvj5ObG0loOsM5XKcdN99dF5+OY5SGJrGukOH+Nwjj/AfH/84J7e3o2sapq7j+hfw/fE4N23YwFWLFjG5poalTzzB6u3bWTJrFr+54AI04JK1a8vL/nT22Rh9feKJnThR6hDreiWhWSkxIruuFJW+4grxSU+cCJdfLgnhU6aINzaXk6Twq66CadMq3mzDqNRlzuUgFqskkB84IL7s22+H6mrwPLJmDamURiwmu/hlv7FtOdwNN0g3gQBEoxXP9Z49Ekp+9dWVt7d8udi9lR96blnQ1VUpra2UBJYHAtLvvHmweLEkiCslfuxZR7kYniseaMMQ3/Q//f4VpLPinS7VqdYQH/WhXpg8SZaPbqVtSo+j+6mOymMgIB+8OlpJGk9msE2N11eupGH2bFoWLCDS2IiTzxOIRgHIdHWRGxhg4pw55a43XXcdh55+msnnnsu8665j0zXXVF5fey2brr2WQ08/zem/+hVVzc1sv/deZl1yCaG6Ot5ctYqjvvpVqidPZnDbNibOno0G6IEA6YMH2X7vvZy68ga0fA7yOQhXiXkd3zBvFWH/e1DbIB+4pl7SxJPDMGOWLEsnIRyBzr1QN1HWVddBQ7N4swf7YaSvsj34tbMN8Vi7Lqy5Hz74YdlH13GDQaxcksE9G5l09Bk4Vp7BPRtpnDmfYFUtynPp3f4iDdOOR9N1BvdsonHmfMxghN53X6JxxjyMYIT+916h5cjT0AwT18pjhKpQro1dyDK073UaZ85H1008VxKgdTNIIBwrH7t0PM+xMLUAKj6EFq3GfeavaB1T0aZMx1v3d/QFZ0Csuuzh9J5bi774ArRAAKVpaI6D130IraUN8lm8V15AX3QmWl0DKpNCi1SBYaKsIqSTeBteQl/4QbS6CbhrH0ZfdBZa/QTUyBAqk0brmIqHhuW6dHV1EY1Gqamp4ZlnnmH79u1MnTqVBQsWUF1dzbp168hkMlx11VXs2LGDCy64gNmzZ9PU1EQqleLFF1/k6quvZvHixQwNDTFx4kSKxSJLly5lx44dXH/99Zx33nl0d3czadIkTNPEcRyKxSKhUAjTNNF1nUQiQTyTwZ4+nRZNw/SvygawD6ljfTOSAB5AvNXDiC87BbQiXmzTfyzVqY4jXut9wErgamAGUuN6xajXyt8+4N8J/KsY4UwRK2URiAZYe8laTvn+Kbx666tsX72dWUtmcfq1p/Oro3/FZ9d+ltqOWl5Z8QqLrlpE3bQ6dFPHcz3ie+OsW7mOhVctpH5aPYV4ASNsUEwXqZpQhWu7BCIB4vtku0XLFxFrjWGGTRL7E+U+aybXoGkaTljuG3sTe1n5ykqWL1pOV7KLtpo2ptZOxdRNXOWi+7+n/Yn9rHhlBT9a+CNaoi3ouk7QCGJqJhk7QywQw1Uupm6Ss3OEzXB5n6sWXcWk2CTCZpiiUyReiFMfridiRnCVS9bO0hyMoBeHITyRSiy35/+eNcjsg+0r4KhlEGmRs60F4Y1vwaHVkvA9+1qItEL2oGw7aznkemDCXDCqwCvCm9+DA3+sbK8cqPKzXTRdxiCe4+e5RGX8gSb3ttHX3vL125Mk8HI9bOW/9q/ZpfFNpqsyptEMqYyiByrbuhakO8VnHZkonu7Rx1LIe3GL0P0KtMwT33WkCfIDMGm+eNWT+2DjDZL+XTsNrAysWw4LV0IgWkkuf/7r4tE+Ygmc9WtZpgco+82zPZIUXtrmA7+AXB9sXAnzlkNVEwRrwMnJ+4hOgvrD5L0Gqxlv//NN07RupVT7/3CD/zvk/f/Uv3HmeryNt//DrSQLL7HSdlFmWMv+aZGDx/dtUqrrNaWsrHrk4YfUscceq1Qxo/7xwjOq8+B+39e0acys8OXf/ra67NJvikTLLqrers5RdbD92pll9jvle7OLY2eWC/tGJXmn/aTvXb5fusRWb614qEvp36m1Sr0XVl/45BTV3t6q2ttb1bbnzh7lqV6iprT6svBygvgOpawupZy4Wv/YB1XzRJR94FNl5jgxqj51Ip9XX370UbWxq0ut3bmznBS+pbdXpQoFtWtoqMxWl+phl5ZduGaNiudyajCTUU/u2qV6UinVk0qpO157TV24Zo0ayGTGMNelOtnb/OeD2axyslnlpVJKvf22yMPT6UrcdulxcLBSq7ok937ySaGLR0ak7nVXl1J9fZX62KXtnn22sl9vr9DQyaTQz6lUpUb2KBo6lfLU1q2VVO9SkndJQZ7JyOFSKVk/MFDprqREv/BCCSNfu3ZsbesSg71tm+xTCkOPx8ceoyQ7T6clLXzxmWeq2cdIzfSFp56q3ty0SeXTafXRj3xEHTZjpopVValYNKqOPOKI8vqD+/appsZGFQgEVCgUUiccd5zavWVbOR18xU9/qg6feZjSNE09+qcHKz7rUpJ40VJqKFFhukcli9uZrCokkyo/PKySBw6o/MiIyMSHh9XI7t1S0zqTkfrVL788JvV7xPdUl6Tjw9u3j1lfKEnNS4z4vn3lBPJCPK6yvb1qeMcO9ery5aqYTpfTyL18bqzsO5MSWXc2I3LxVELk3rmsSLdHL8ukZFkmJXWr771J2OjOfcJ6lxLC9+/0fdb7KvuU5OClY3buLe9TSfMem+xdSMeVXcwq2yqobKJPPNb+dlIPe5+fAF5Qqf59anD/m37N67zKxntU51tPlRntUt+OVVB2Mf++dPGcyqeHVDGXKh/fy+dF7p3PKbe3+59YaHegT7kDfSLb9rcZkwze1z1KUi4suLN7R1kq7vmstLNzu7JuWFZmtr2S9DyVFEa7UFBeJq3sTLrMMqdSqfLj4OCgeuedd9QJJ5ygOjo6VHNzs5o9e7basGGDyuVyatu2beqEE05QkyZNUscee6x6+eWXy6z3mWeeqWbMmKGmTp2qPvGJT6jf//73ZY/16BrZpYTy7u5ulcvlVCqVUrlcTuXzeZX1PBX3PDWiKr7oPUqk2qPrXGdURb59h6qw2puVsNCjWetSKnhi1H6lx/SobUb845WWjyilCmnxSRdShbJcuyzf3tanUj0p9dCSh1R2MDuGeS7Vu84n8mrNhWvUa3e8plI9qQqrvbWyb++W3jFp40O7hlTXZqlrPbrP3EhODe4YVIlcouyBTuQTaiAzoDZ3bVZ7h/eqZD45hql+v8Q7kU+orb1byx7rrmSXeqP7DbVnaE95v9I+4RvCau3OtSqRT6ieVI/68qNfVt2pbjWUHSr7t7f0bVGulVHeyFalXv3yWHm4lRYmezQbnXhX/oojFeZ6+A2lsr0+452QdXbW91lvEzl4flD6LsnBi0lZPrxVmOqS37vU52g/9fv91qNVcqO917nhf1bR/ac+bbGmlcc8JWtcWYln/XP+jJX1s2YGK4z13rVS77rEQu9dO9ZX/dSXReJdUvCVpOMlZntgq7DV2QGl4nsr6ePpnlHM9Rviq36/1Hx0ve29a2VfO/evHR/+f6AxzlyPt/E23v7lzXPAKcjMbbBm7ExtaepWuZXZZM3g9w/8Oz//xS/Z8uYbQhOiMXXGTB575GHmzpkLGmTTaSZ1TKHr0AFqqmvGzkArEF5Bl5ne/KDMFtfO8I9lS0pnrN2nP23IbYBAm6SAl2bU+77us80XQsvdstzLQWELRE4CNy41r/Va/vCn5/jL6kd5cvV3IXwsuMNMPWIxj615kLnHzQMvLZ9XjwI6X7toKQ21BVb97Fqy2uHYnkdA19mbSLBq/XpuXryYWDCI5boEdJ31nZ1MrKqiLhymKRpF1zS+8cQT/PHtt1kyaxbXnn46rdXVXPrkk3z35JOZUlvLxu5u2qqraYxG+d6zz7JswQJaq6upCgSkpq9SbOjs5HOPPMLmiy6iJRYj77ok8nmmBwLomlapaa1pcPHF8P3vw+CgFIy+9VYpIt3dLTHcUGGj9+4V5nnZMjjySKGRDUNYRM1PfvZZeTZuhOOPl2LTK1cKw93YKBTzPffI47e+RWrmcWiaVia+PU9IUNsWIrfU3YED8POfS/3r0ra5HGSz8tfVJaHkK1fK258yRUhU15W3qGnyfGBAAssTCUkVD4UglZLS37W10NLokhwepq5hAgCPPvYY115/PRtfepm/r3+F86YfRXJ/J//x6ks8vO4lvvOtb3Ht9dczd84cHMfhP373ezY//hRnX/JlZs88jJdvvRsa69mU6GdiushXr/wBl3/tYj72jYvkN207UvO69EZL9a93HYTBODTWY0+dRKarCyMUIlhTg5VOE54g768wMkK4vh40jcE33qD+iCMopFKYoVB5uVMsgutiZ7MEYjHQNIxQiMLQEJHmZrKdncJcX3wxVa2tvH7ddcxaupRYezvKdfFsG8+2MaNRMl1dvHvvvZy6cgWaYwuTXPotPfhrWHKxfEH734MJTRCrgUN7oL5RUr4/+w1hnLIZqIoJS13ISbL4gZ1S29oMyGvPkcTwSFR+ECP9Ui9b12UbpaQ2tm6Aa+OGI/4lSIHyyCX6CERiBMLVKM9F8+tX2/kUg3s20nrMmfS88wJV9a1U1beVWWkjEKZvxz9onDkfO5/GyiXGrA9W1aA8D03T6X77OZK9O6mddARNh5/C7n/8ntpJR9A2ezHnnnc+/f396BpUV0X5+e23cfSRR/KZz36OHdu2EKmfQGNzM7+67TZmzpiOFggK43zK6bxwz92c+9ObWPWlz/K9X96NCgTRFCjXBseFfA6VTqHV1AijvfCDqFQSrbYe6urRPA90A5UY9teficqkcdqn+EnKpbR0jUQiwSuvvMKiRYuIxWKk02nWrVvHKaecQkNDAyA1wUv7OI5DOp1mwoQJpNNp9u7dS3d3N6eddhqhUIiAfy0q7aeU1LV+4okn2LlzJ5/+9KeZPHlyeRsbIBhkr6YRBRrkqo/uX/FLgo9BpNZ1M9CLpIVfA6xGUsZ/jiSLF4CNwGRgqv+6D7gB+BHQDXQA0/3+PYQpB9iPMNsPZIvE98TZdNcmzrn1HJSn0EwN5Sg0QwOFLDM0Evt8lvnqRdRPr0ehfDLUw87ZPH/l85z83ZPpXN9J5/rOMutdYsBdy6V6UjVG2EDTNZSrsHM2z13xHKdeeSqRhgjPfvdZzrzjTIL1QRzlYLkWAT2AoRtj2OapdVPR/Bvy6OUz6mdQdIocSB6gJljDpNgkHOWgazoaGo7nENAD2J4tAhTNZH3nehqrGuXzAKs2rOLKBVeiUESDUQ6rmYSx6RI46kdQPaNSY1rzk/ZLzPXRV0K4Re6/gWphhrVR33C+D0ITZb1Sfl379RBugsIANMyXtG/85a98DBY+DFXtsH0lnHgXbL5U2PDP2GNVQjB2fFJinzWtsr600v894rmSzh1rK49fRKHnd1zqz7Wkukm5cw2sFIzshgmHCRusaWBn5Zy4+Qrz/cKlFYb5zDvhhct85nqGMPMg11HdkP11Q/bVA3LerKQczwyDW4BArPIelCvHy/VLOvmmldJ3zVR47mLY+zh8+GFJHndt6WOcuf5vtf+KuR4H1+NtvI23/37zHCimfMmSIRfzkkRcM/wbmwxwv/iVr/HiSy+B5/Lk3x5j9pzj5QYMTJ15OI89/BBz584BO8u2Hfv4yCc+xWc+9VGef/EVIpEqrr36h5x55gdFhlW+XCm5aZRuXu+TZ7k10ykUPVxXYegaAbMI+U1Y5ikEjSwUt2CZp2IYHp5n4Lg6pqmhqTyuiqCUwjQVSulMnFjHzp17aZxYjetozJo9iz/+xwMcd9x8AnoK183j0EI6neaII6bx0kvrOfKII2TcgEIZnqikUQR0A0956JqOqzw0NLK2hac08rZNUzSCrmls6OxmVlMjVQGTgC6CR08pCo5L0XV5Z2CI41ua0XWImIFynxmriFIaIdOk6NpUB0PldaUWMjx0bDTll1PDk+/DM2CgB+JpqI9BUxvovr7aNGSblzbAhz8BH/mI1LrauhlOOxk8DVJZCFRB1OTs8z9KX/8AuqZTrRS/uOZqjvvouXz7u1fy+N+eEjvA6+uYe/QsVChA3jV56ulnWHHddViWRaSqitt/+UvmzJmDjo6jPJQL2bRBfMgkHLNpbHExNQ1HKUyttI3GoQM6k6d6aIZCVwb5nEaoyhUFvDLYv8ckFJX9Nc/ANDQ8zcX1wNT9UktKYWoaAdflTw/8Oz//1V1sWbdOgKDngeey+a23+NTnP8+1V13Fz++6iz379rFn61Za2trAcZl14okMxUfof+lV6GiRzosWZ5x/Ppd/8xt87CMfEZBk+P8vjiNIHyoyeh9wK6XIxuPo4TB2Nku0pRHNLZJPZAhPmIChy8SR0gw0ZZf/J10bMAwMzfVBsAvoOEUbM2SglIam63iOg6YbaJpX+X/WdFzHwxoZQo9Uo4ejbL7+ek5YvhwzZKJrMkBWGGSLEUzNJZLoIl8zCcsLEAx4GHYBS4UIuhmCj90L046Aw2fDkw/Ch/4N4kMCuie2wO63YeYxWCqA5ZoENSlzZbkGRkDHdTUM3cOzbFQghKc0woZFMDOEVd2E7Rq4SiMU9DAooOsBNF8W6joW+dQQsQmt/+nlTHke2UQ3B994nJrmGWNAcusxH8SxCgzt2UTDtOMJV00oX9+UpuE5RTzHQTcD6GZApP4aKA0S8REm1NTj5nM8+sij/PT221n/4ou89MrLnHPWYjTD4Fe//jWPPPooLzz9NJ5SIpUeHOS8T3yCZk1x5kc+yreWXYlyHNB1AfW6DraFHgiishlUNFZeXl6vKmBB2TYaCj0YxNN0lONgmgZ4Lko3OdTVSSwcob5hAgYKdIOiAlPzQafn/35Kj6XfpT/LpaGkX03D8MeUtmXhaBq9A4O0traKPLypkQBgBIPoqvSb1VDKwzUDDJsy+bEcuMlzqfVclG6QAXKeS0Q3yOkGbY6Npjz/9wc5FKZmEPQnY13fVlPCWJr/XSU1nVrlCTbyz4+n6QwbJvWebwfxm6YUKA3d81CliYLSOfX705TC0zT00eca+Qko28MwlD/RW5rM1Mf0owDXcjFMmUD2PFCOhxHUBCD7xxm9jwvYSv73dKSsXMEt0J3qprWmlSqzqjxpIh+z8txVLoZv4yotLz32pftorG4kY2WImlEMTcqnuZ6LoRsiGw+E0ZSG0hR5O080EEUZGpZuYmpgo2FQwZ4OJfOV8kudaRgoXBQ6emmqHAUYCOPnahoBz8HVdAwnj2dGcDUNAx0Hkf+X+jb9z1SyCxhoKE3HsFx0x5WJkNKEiKmh6xqeo9BNDc/2wNDk9qcUmq6h4+B5Bhiyj26C8jQ0Q7Y3gjqaDq6tUK5CD+h4jifnVwflKIyAJttYCl138TwDIwBmZg9oYQg0yH3EtgELlA4hv4yZ7cmH6t8AsQ6obpPrse3Kp3U9mVg0dHlemjE2TbHKmLpM1ipbjmEoUAGxOJmazFbnU+J/CEQg0w9VNRCtA7NUDnW8/c+0/wpcj9e5Hm/jbbz9LzS/fqNyfZuVLeDWn/XGKQq77Dk88Pvf07n1BW644mtceeWyyv6e7fu2HXkdiOLYBQ4ePMjRRx/N5nXP84uf38a/ff7L9Pf1QWKveJeEMhBgn9wnx9ID5TrYqrqdTMZm3744r7xyiFzeIVcIkNNOpbsnT9GtpWCcTjrjkUiC7WhcccWzKAXD8SLd3d1s3NiN5+msWfMo9fUTqKmpx3GDKC2A43hc/9NNvLdzBMurxfKa0TR49NGHOeaY2cyceThokM4Uybl5CraFpkE6n8bxXLFhKYXt2igUsUCQ2lCA6qDOyufv58BIL/PaJpHOJ1jx3H1krRydiQFWPn8/nmdTHQywaHI7iXyc9/r3krXkGFkrz8//8e8k83Ect0hQ1+hM9HP9s/fSnRgAfGBt70bru9QfDFr++XflRjypFY6aAY2A7oDmCbD2vzI+sBAGDsG/3wv1QTjjFFADYGShoQZqdNBdVt/RwrZNf2bLm6/yvWt+yJevvwE0+NQnPsK6l55kSnsU3IMQMsg7Ogf7+vnal7/MXffcw2ubN3P9ihVc8pWvAODhoWugdI+aepfJMwu0TPLI2zYpy6LouqSsIn2ZDEr3mDLDJesWsVwXT3OJxlwc5eJ4Hp7mMvWwIrGJBfqzGXTTw1I2qWKR7z7zFArIOw7rDh3iM5//PNMOP5wf3/BT/v3uu8XAbRV9gKGz5AtfYHh4mB//9Kf88uabsW2blokTZdDkOmSyGWYffTS0TQRNQTzuTyop2LFDVAD4zGs+L0x/sSjHASgUYMMGSCbRHIfohAmEYxGqm2sxdA9jaDPRhlqM7EG0/KAQLF4Rrec1NCuN5jkYAR3DTct6z0FzLTTlYgY8tO516KmDkjZgaOi6joZCUwrNyaNZGQwvR9WW5YTcXkwTOp97DsPU0NN70Z67GC2+C81KEg3lcZRBsnoKRS/Iaxt1snkDOxClbzhAijryS76DdcKZZKghf9bnyGi1WK2HkzerSVoRctNPIKuqSOUD9PbrFFSInQdC/GN9gGxex1U6lmugghFcT2dgQGPPwSC5WCtF18TxdIpFDUMHwwyh+8BaAwwzSGxCa9kVWv5zBRzqaMSqmjn6rG/SevQHCIRiHHH6RbTPXoyOQSAUpe2YswgbMbRUBq1goe0+hFawMIwQQT2EYQbRXIW+rxvNAx2dCfUT8YD0wCBDIyOCybNZFp/xAQojI9jZLLMnT+bAgQO4rotyHFzHYenSpXz34ouZcOTRuKEwnuviKUWms5NN11xDprMTAkE8QEVjY5crhZ3NojwPz7ax02nyw8PYlo1jO3iWRSBgCtj2PPRCnqltbTROqMfwXLQHfwMDPYQ0MBwbLZ9FU6B5rkzAeK6Ad8dGL+bRB3vRUgl0z8VQSrbv6yK4+jdEXJupLc3orsP0tlaqksME1/wW3XWkT9dBy2cxbAvTtWl0LBqcInc5NrHMCP3bnsWw8kQyI9QNd1PvOrTbRTR/llUphXIsGO5Gy8bJDXdj5xIMvPMCyrEE9I5qdT549mwLu5jFtYtgF6h3bEzXLv9eBJCDFh9CZdMCbD0Xlcv4zKwGVgGvcz9aYhiVTYPyBEJaBQwNjFwc1X0QPBcfKvv9ejIhMjwIKMyAjqbrwtTrYGBBsYDyXLnWoCAxjLv2IVyrQN6yyGZyIrjyPLLZLIZnMKV6ClVmFa7r0t3dXT4/o0F2CVhbloVty+f1PA/P83BTLgYGNYEaTN0sr1OeIh6PM9Q7hGM5vuRVIxqI4hkGCSOA0nU8NHRNw9U0UctomkxwaBo2GilN5zuaPHqagdI0CppGyt82iUZCN+jRdBJ6gD7dJBuIYesmRX97pWl4/vZFTcPWNJS/3tFNPN3AtV10y8WzPJRSY9hpz1FYWYtCogi6AGjlKdyiAHEPUyY9HAH6xZRNZiBDMVkU4G952Hm38rro0vVqF8VUsbxPIWnh2tD5aheFtEe6J0M+YeOFJ4M5ERxPgLFhcvbHP8Oxp57O3BPnseiDZ/PW8y9AIsPZX1vFsR/4DHNPOo1FHziXt7a+C65HwbL42Gc/y+HHzmHOggUsvuAC9mzeLPcMwxRwjg62JpPltgGOgnxRZh8KLuSAjVtg30G4/Cewv8cH7+PtX9nGwfV4G2/j7X+hlQKGfOCV6RbWONPtv+7yX3fJtrF2vvTFL/Diuk0MDw/LDH6mWwYquQFfeqUxeYKE3Fz44UUQrOa4445j2rSpvP36P0b1R4UpH71MD0LtdDBCRKsUzc3VNDVFueyypzh4MEk+77BnzwiO45HNWmzZ0kcgoGMYOjfdtBjb9ujpGeSjH/0Y3/nORzjllJO4//57eOihR7Esl29965sceeR0ent7eO656zjjjONxXYXjeDiOxx/+8Hs+/enPk8vZuC5U1wYIBYKYhoHnedRX1eJ6LslcCoCAEUADXM8lU8yjlOKYSTP4/et/w1Me9218jJf2bkbXNIKGyZdOvIBoMFIeLEXMADMndjCYibPqxT8wnEvyndM+S39mBAWYhslAZoQvnng+oUCArJVHw0YbXgmReWDvg9xroAoID+ADP80Es8VnMC3wMmDvh75LwN4LVVUCxCmC0wnWAdBrKUv2NZO6I+6GwGSw95M8dAcaFng5TltwOO0dHWBMAKMF0HDR2bx9O244THV7OwqYt2ABnZ2dvPHGG6SKRRzPEzk7MJDNsjce5zvPPEN/NkuVadKTTvOTl17iYDLJukOHqAmF6EunAWGhg35KWkkpWNp+fzzOUC5H0DC47ZxzKLouG7u7aYpG+fqKFbyzezdX/eQnXPmjHwlo3rABdu1i5Q030NzcTP9773HD1Vdz3TXXVKT2wMrLLyeTTvPJc86BV16pMNF798KuXTBhgpxH/3dPPA6nnirs9bp1kqymFCxYIFp1XUcLaGhaEb1vI5qVhkknC9gxw6IYcB1h8ybNk0/5wjfRErvQAjGRFT6/FLK9oAfQ0KFxDsSaRQGS7RU5Y34EUvvhxe9AfkD2PelKtNgkNBw+tf4lDFOhmRE48QeQ7UMrJtGUTbGoMTiooZTGggXw+usa+/drTJwIQ0MaRS/Izs4oX/vBRHZlpvCPrRMZtuvYPTiRDRs0HM/AcTQSCY1cDnp6NA4d0mhshEsv1Th4UCYBHAdee02sAG1tGq4Hriu/jfo6F0NTZeZs9KMGkMxI6JzlyOO+LjTf0qDpOroCwwihF12CRYVWdNH3dKEX5fvTdA2iEejsg8E42qFemaPyPLRdB9EsG9qaBCx5Cs1y+NJXvsKshQtZcfvt3L1qFWYkwvC772JGIgSiUX778MN85MMfxi0UeOPGG/nz735HpL6eTyxZgvI8nFwO5bpowPZ77uHQ00+z/Z57UL7MPz8wMGa55zigFJuuvZZcfz9G2JfTeh66aRIIBuT9+uFwWijkS8jlHPC5b6I1NMs50w1hwKyC/P4dRyaDfEk8wTCEwmAX0fZsR7MtkfA//yhMOwItMYLxH78gGB9EVwqtpg7+ban/XcTlnAbDeOEIrvKwMnEKw90EPYdgKErrMWeim0HCVbVEJ7T6E4JKJg5KYNgMEq5pRNMNwjWNDO3dTKR+kgArn10e/SjnIYARCPv7BzBUhYFXnisWAqWgrgEtKjYKdN1/7qsCgmG0ydNEhl8VxX36cYgPyzlRHiqZQGuaJLcrq4DKpAUwo6HFYtDQCPER3CcfQRXzfoiWC4EgWjAEjo3K5wSY107A+NAncYNhlFJUVVWhaRo9PT3EYjECgQCBgLD+SilaW1uxLAvHETBcvmv7ftBgMIjhK2J6enpwHIfW1lY8z8O2bVHKZLMkk0lM0ySdTtPW1oZpjg13dA0Bvb2ArWlk5K6AQwVceMCQf+1eBYSBASohchGErDVKDD0Q1jSa/T7x94GxKu8QwooPAl2axjBCyIZtl8T+BE996ymcvCPyfMdDubL3wNsDBKoC5Q41Q8MMm6MuEtJ0Q8cMm8SaYihPYWdtMn0ZAEI1IXRDR9M1Ok7tIFQbQtM1NE0jGBOZePvJ7aR70rx0zUvoniP/LwcPwqZNcgDbZvU997Bt/Xq2bNzI9y6+mC9/9aswMMjqB/6dbc89x5aHHuJ7l10myy+5BPbt45Ivf5mdb77J1j/+kY+mUlx05ZUwPCz3lnXr5P80kRAfFfJ7F8Y6D+vXC8s9fz7cfDOsXg03rhLAP97+pW0cXI+38Tbe/hdaAfD9QCA+58hEqG6XO2CsnYQVpCfli750l8de2kZDQwMTJtRX9tF0qGr2QYbOxCmzOfO0k3nm1fcAjf3797F//wGOOm5hpX+oyM9HL1MOKA8t9yqG4VBVZXLYYQ3ceed5TJoUIxIJcMop7XieIhw2mT27iY0bu3Ecr4xxjj76MDZt2sSmTW+ybt0m1q59imOOOZaqqgB33HEXu3btY8uWHpYs+T0bNmwll7PZvLkHTdN44YV/8JWvfIVt2/opFh00TaPoWLg+05O3i2StHHVVNeV1nudh6AZVwTCGrrNgyrF8Zd6HMTSdi+Z/jFs/8j3i2TSGrtNa14SrPBK5FK7nMiFaT9gM8fvX/8YzO1/l/o1/JRIIc3zbkUSDYQxNpyU2kXg+TXUoSjQQxlMGqvk3UPtF0CIQni3fo3LBy1MZYZTcjgHQq2B4hfjUzVZJVO+7BJxeMJuh6hQqoxIdsEEV+eKXLqLjsHP58W09/Psffgd6DZiNsq2b8BlzGcjNPuooAsUifTt2oAHPPPEEmXSans5OosEgBcfhimefxfE8GqNRZtTX88MFC7jjtddwlWLVhg2s3r6dG9etY2JVFa5ShAMBDiYSbOjsFLmtJuyRpxRDuRx3f+hDTKmrY1IsRsAwMHWdVD7PnOZmDpswgYWTJxPQdb70pS/x4saNDOdysGgRt/z1rzzyzDM8tXo1VdXVfOlzn2P91q2Ypknf0BC33HEHj2zdytTGRg478kgByCBgurpaoslrayVF/fLLxTje0CCm72uugUWLYPJk2b4E2AM6pPah9b0uPrlgTFQcdhqizaLiSHdCIS6TI8FqOO0WyA7I97hppfj7Nq4Qz6FblKwEM+qz6Zp49iINss3O1ZIwq1z5/9KDaG4RPX0QLTeICsTkGE3HQbQFNJNwWCz1ui7juYULYepU+eiTJoFpakyerHH33TAwoDFnDkSjGm1tGvPnw969GuvWiR++qgpefVXGgLfeKmPAFStkfAhw8smSHA+glMarr8q4VdcQoOi6lZG46/nnEaiNQcCUBPjOPklltxzYc0iklpom14LOPggE0IoWtLcIWHZ9FYdhwMzJ0NwAMzrkGEULhhPSZyQkJ0ApMHR+d889HDxwgOt+/GOuXbWK/PAwE485BiMU4saf/Yy9+/Zxw/XXY0YitF9yCSt/9jNuv+UWPNfFtSzMaBTluhRGRph18cVMPvdcjlm6tAyiI42NzLrkEiafey6zli7FCAYJxGKceNVVRCZOJNffz9t33UV+aEgunZqG5olnm+QIFPPypfV1wwN3iDVk73bIZ+XabZjyWVxHEt9LHvtSq2uAQEgk/4d2y7rPXQqnnAnPPASvv4z25IOy/4O/lv5tS37/ygPXlq9K0wmEo4RrGkEpAfb+/cXKJel++znsXJJcvBfliSfVcyzwPFw7j5VNoOsGk2Z9kNpJR6CbQSo/AlUBZrp8z7puYARCaGjY+RTdbz+PlUvJhJUuoJH4EO6Tj6KsokjLPQ81PIh3aB+a64Dn4XUeQPM89HM+LPkCiWHctQ+j1dSiBYNyvHQKNTIEyQTu2oeEtbaKqHQS/eRFaIaJ13VI3mAyjrv2YZk9qoqi4kN4nQfKl1hN08jlcliWRXt7O57nlVPYLctC13V0XS8D6RJDrWkC/mzbxrIsuru7GRkZobVVrBKl7Ur9VFVVUVNTA8DkyZPL/QI8/fTTDA8PoxAve6nuRrX/OICAbAX0Ix76KsCvJ0Czv53vHkZHQHY/kuZeqt8RpXJHcqnclUr7aH7fHUA98DpyyUp2Jjlz5ZlloKubAoSVp2g/2R+jKMreeKUUdl4+v/JU2feum/J59YBOpj9D4kCiIgH3FK7lYqUtPMfDKTgcWneIxIFE+bvasGoDOx/fian7VoSpU+XC6Mhvp66pSS50+/eTtCy0piZoa6Ouulr+P7q7SSYSaAMDsHo14dtu40NnnIGWy8GKFZz81lsc2LFDymVUVUn5i40b5ULZ0uJ7tnVfgg7Mng2XXSYBJXfeKQqqn/9cJtDG27+0jXuux9t4G2///eblwNpdKVtlTpZQLyUOOJwUB7uLfPrfLiSfz6LrNo21KW655RfMPf5Uln7jCp54+mX6+vppaJhAdXWUPTu3gnLYd2CAr120lKGhHnTN5SfLL+OTn/wUmJPEyFgumKKDyouPSTngDYMeQRFEESSbNypv11MYhsb+/XFuumkDq1YtJhoNkMkUCQZNgkED09RIJIpceeXzXHHFAnp60syd20IwaGAYGp6nCAYNHEc81KGQwT/+cZC2tmoikQCNjVFMU2PfvjgrVqzjdw+cj+O5uL5cMGAEMNDIOUXCpn/T1zQ8fxBUdCyqghFQilQxh+VaTKiqJZ5LEg6EyRRzNETr6E8Nc+/GR/na/I/RUddMV7Kf+157jItO/jgD6REaqmppq23E8P3dObvAnqFOJkbrmTmhAcPZC8M/h+bbKYfK2PsFQLfcJ0y12wt2L0Tmy/m198PwDdByjwDrzOPQ+jBULaRSBMePBXL6QSXBnA4qzx8e+At/eegRnvzbX+R3o1cx9bD5PPbQfcw9djo5rYM98QTfuftuUs88g1socNL8+ax7+WWu/elPOeGMM0gVizTHYkT9oCRd09DxvdG6Tt5x2NjVRUdtLZ3JJKdNmYKrFOsPHWJOczMD2Sy9mQzz29uJGAaOD7YLjlMqHkNXMsn0+np6h4bI5XJEGxqoDYX4x9NP84PLLqPzrLO4feZMHnj0Uf50770c7df3euz557ns8ss5q76e3rY2hoaHWXXDDXzxkks4sG0bgZKP2h/onHHeeVz+jW/wsbPPFjnfwAD09VVAeOmebBgiDTdNiOjQuwFa5gsgKcYhVCdA2iiVvvOHnMqRiaeXr4Q5S0XNkdhbCbWpnizlWQLVEKqV43mW5BbYWbAzsOlG2daMgJ2DzTfDaTdL7oERhPhueP0mOGkZqv5wHC/AUDyMKapK3nhDgLGmyccrFiVgrrtb5hUikcrH27RJ5hsiESHwb71VSqpNnSpv7eDBSh5eJCLjxkhEwug2bhTg3tQEb78N5y52y5JhQIB1Jgexqsqy0mtdl3O5t0tAdmOdL9f0PbKuku+ss0/AtHw5Fe+shrDfRQtqYpXv2NBFhtnVD9PbcDwPK53GzmRomTWLHa+9Ruu0adx+5508+Kc/8cdVq5h64olohsEzf/87Sy+9lEgkguc4jCQSBINBLvrKV7j2yisxq+RzaL4SQ7kuQ++8Q8OsWVKqqVBgyy23cNRXvkKuv5+qlhYijY1ku7spJhI0nnACpqaERSt5NT3/t5NKCMMVCgOanBvHFj9oaQJGw1+noFiAh++Dcz8tnvnEMNRPpJS1ge5nODz5IJz/Waith2VfhLknS6hdMu6v+xxuS6vv3xa/t3LEGqGbUmbILmTIDB4gn+ij9ZgP+nJf/3vQdXLD3ZihMMP736LlqNPQjQBKKaxcEqeYo8q3BCj//8tzbZTrYARDKM+j992XyqF0bbPPknkRTwlI7piK1jENQiG0aAyl6WM82wpQPYfQJjZJ6bYnH0Ft34I2ay7GBZ+Sn8Wh/ehtk/F6uiA+jDb9MAhH0AJBcBwUHpphApqA79L+H/qEsNexahD9D8ViURjSYBDLsnjhhRf44Ac/SDAY/KfQuUwmQyqVGsM6j5aKd3V10d7eLhJn1xVriA/CS9sqPweghBXK/m3XxYlE6Nc0ssCNiFd+EhI21wXMR0qi5fzlLgKiS1OxB6mURZuOlFEz/O3DQBYB2H48Kbq/TZXf1+gQuhuAXwPhvA1FB+VWguey/VlCtaEyY63pGsVUkUBU7idWxsLO29hZW0qnXb2Qusl1aIZW6ccDK2th5axyGTXlKoLVQay0hRkxxaNuueimjm7qxPfFyfRlmLGwFWxLVDJB+c5LZcK++I1v8OI//gGuy5O//S2zjz8eqqr44tKlvLhuHSjFk7fdxuxHHpG6k1OnyoV1716+8NGPMmHBAu749a/l2nPZZfDtb8vFsVCAcLhyoWxvF8Dd0gJr18pFd8UKSf+cOVPA/Hj7n27jgWbjbbyNt399c5MCsso1nn8DuY0QaIXAVJ9FzpdTt9FM0ALCjg5cAQ1XgN0FgRYwZ8i2pab7A+HcBpEva0EBfCgBboE20HxRmL3XB/hXQWAaOANgTqSrJ8vwiM706fX+7L1HIKCjFFiWSyCg09+fpaYmRCRiYlkukUgAz1Ps3Rvnttte5cYbz2RgIEtfX4b29hq6ulLlx/nz2wiHTQoFh3i8QDZrc+ON67jqqoW0tFRz4ECCWXMm0JUcYCAzQlNsAr/d+Bhfm/8xBjIjNMbqaa1ppDsxwFAuwTEtMzB0A1M36Ez0l7ftqGsGoOhYvNO3l+ZYA4PZEToT/Zx1+HyqAiFAw1MehmbQOdLPYH6EwxunMJxJUhUKUV9Vi6HpbO3ZyckdU9H6LoEJy+Q7sbsEQKMgtRpqPy/ntTR0yb0q31FgOuUIGXuP/921gxYFY6JvD/BkPY7IybWI9ItHJNZC156naGg5AexdTD3sNB579CnmzjmMpFvPJWvX8vjOnbz99a/THIuRzec5YupUnn35ZQ4/7DBe6+pi0eTJpC2LZLFIdTBINBDAU4qADzQ8pQjoOlnbZktfHwva28k7DkP5PHtHRmiMRvnFxo3cvHgxAGHTpDOZZNWGDeVl1cEg+w4c4Iuf+xwHhoZoikZpa2nh9ssvZ+KUKXTMncvk9nYGh4fLwVELjj2WWy68EDV7Nsd/4AOYmoYRDNI+aRINDQ1s/Mc/wHG44dZb+fVvf8vg0BDV0Shhw+CtF1+kcdIkGSwdOAA33STIsqsL2tqguRnefBNOPA7qYpDcLyB53nJhmqMtEl6TGxbWWTcEJLuWrM92Q7RN/p+UK9aJUrK+EZRHOwevXAknXiF9DG6V+qt6QPrp2wTJA9B6isjHJ80XhvyBY2HGR+Cs39DVa6CHqhkehkOHZJ7ANCvEu64LwN64EVpb4fDDKzbz5mYB3E1Nomr81KckL++ee+DSSyu1yNvbK32UwHhjo5AynifjyJqoKwPY0cnrSgkI7uyTYLlwsPJ68iRhsjWgaEvwT+2oQWYyC/mCsNRAOahxT6f0pfsgtdR3MCDH3HWQhHLJBXQa2yaROnCA3yxfzp0bN3Jgzx7uuPNO/vyXv7D24YeZ2Cz/49nubrbfcw+zLrlEUto9j68tXcrMCRO47JvfJNLQQKC6GrdYxEqlCNbUCMNrmijXRXke8ffeo27GDDTDwAiH8SyL/PAwud5eGo49Fj0YJGDoMNSLFh+Cjhl+nfIIBEPCKAeCZeAo+QJmBVSXJiRKiiXHFoDrOZL+HgoLaE6NSH1yX4ZNNikTSSMDUDsBJk6CbErqnysPNxDAyiXQ9QBmSAK5+t59iaYjTsW1Cwzu2cjE6ScRCEfRjAAaCtex6X/vFSbOOIlApIaet58rp747xTxVDa3CNgNWNoFTzFJV34JrFfFcm0CkBsfKYQYj2IVMuT65nU8TiMQIhWolcC9WIyAYRO6tafJZigWIxuQnoRtojo0q5MG2pIb5wjOhrl5+H+lkZVltnZyr6ho5ra6Lch1UXy96xxRUIo637gX0RWfJ/p6wnsq2sEMR4vE4gUCAaDQqEyqOg+d5/ynI7u7upq2trQyoLcvCsqzyvkBZAh6LxfB8u0AJFziOw3PPPcd5550nt33XxShZbDQNzzRxDYNuTeMlYDFQqnjtIJLtagQsN/p3FoeKJNys3FWwgNeQ2uSdQDuS9p5DwHQp0d0A9iJg/ipgmr9vHqgDAtki8d1x1t1YqS9u523MkClg2U97V54ksvdv66dtXht6QBcfu+uVGWsJ3vbBNWClZdLnmcufYcEPF9Aws8H/WYwNTlOuP4Hhz+gENRttzx6ptLF8ubDMuZzMGi5fDtOn84f77+cvTzzBk3/5iwBjw4BAgD/8+c/85U9/4sm//lV+d1dcAcuWsXLNGv72xBO88Oc/U3XddXDllWI3CoclGHP9erm43nhjpRrIggXiqVmwQC6mDz0kzPmvfgW+SmG8/c+1cXA93sbbePvXtzJz/fNRDKgPsHKvQtUCX/brCTguFVTpu7gCyCd8H0bug5bbKIEwAW/7BZjpVeAOjGLHWwUQejnpUwuOAvgXQvOtgIHSIhQtjaKlYxgaBw/GCYcDNDfHcF3F4GCWfN4mEgnQ1BT1B/+lgUZpvKwwTY102sJxPH74wxf49rfnMziYpbExyi9+sZGbbxb2W9c1urvTPPPMXg47bAJtbTWsWPEK9/3hQ9z4wv1857TPYmgGrnLZM9RJXbiGRCHFcW1HYLsuBafIHS//mS+d9GE6apu49tl7eGbnq5x/1EKuXvw1SQm3LTzlYTmWyMrRKDhFIoEwXYkB7tv4KBfN/zjtdU14yqPoWOSsPDnb4g+v/43vnn4h4UCIqKnQlO0PrHQq8/8l1nkAVAbszgprnXsFIidC/2XQcK14qcsAOkiZLVUFABK7v08u9mNa29oBh8dW38ZlP7iHzgPb0PQQ9C1l6rzVPPb4K8ydFSWrHc3eRIKtu3dz1pw59KTTfOnb32aKbXPff/wHQJmxThWLZCyL1upqio5DvFAgFgwSCwbx/IRvD2i65RY+M2sWd553HinLwtR1NnV3c0xTE6auc+Xzz7NswQKqAgFqw2GChsFgNkvetulKp1nQ0YHlumzu6eHUjg5qLEsGPMFgpT6YP8gsM4COI4Mf06zUEiu1vj5hDDo74YYb4Ic/hMMOk30GB6XvQ4fgggvgwgtlQJTNCuvQ2Smeug8skJyCA89C/WEw6WRIHaqA7ZopkNzL2eeeT589AR2PajXML355J0cdO4/PfO5zvLt/kEgkTNPEBu6+/UZmTm4GM8xXvnkF61/dSKQqQixs8vPbbuOkIxpEGj7vKqid4gOtgJST8VwY3AKxNtxQM+8drKd9clAS2fWxFdo2bBBgHA6L5Fsp6O+X0/D978tHHD3O7OursN5KwXe/K+r5ww6T17Ytp7m3t7LPlClyGmdOc9HyBegegBntlEvrWI4kA5e+s2QG3tsHR06vgGnXq6TwWj7Qro6K1rxgCXDWR5kyLUeA+e6D5ZJpTGmFkLBjBw8e5NMf/wQ516E4NETr9OncctttTJw4kemHH860adOojknKdzgc5rbTT+fQ008z+dxzOemaa8j19vK5T3yCheefz5fPP59YRweRxkY5tq7z1qpVzL7sMoyQyNC1QAAnlyM/MMCO++8XkN7RISnjmkYhkSBcX4+pa+h7t8PMYwT47tsh0u6mVl/F4MG+96B9KmRSAoinHSmlz4b74Yk/w78t9dOITcoBX4W8+I3toqgp7KIA0NoJ0m86ATX+D8AwBZijgevgRiLiR9YgF5fyacrz0M0gA7s2lFnl1mPOwi6ksfNpqupasPIphve/SesxZ2LlfUk3GmaoCs+18RwHMxQpM8wlxll5LnYxw/C+N2k5+nSRoPtj4WI+SShSi+7JXUlTfjCWrpdTx/E8VNdBtJZWASnRGJrjoDwFoaBgKtcPftN0VCaF2rsTJkxEq65FpRLobVNQpll5T1YR7+9Po595nkyY5PNoVVWoRNzffjJFwySbzWLbNps2beKcc84pA+dSMFl3dzexWIzq6mqCwSDxeJx0Ok1Hh1gYbNumr6+P9nbBBdlslmg0SiqVYv369SxevBjDMMoS8G3btjF58mTS6TTt7e3ouo5lWfT19dE2bRp7DINVmsYvR91JSud6IzDPX55FWOtSmrga9VgR75eNRXwfuBnxVsOYqVt530Ct/3q0bDyULODaLkbQGJPirenyPNOXKfuotdL/s5I3pmyRemu6hhExysMW5QpoFgeVYtsftzHjnBkEo0HSfWkmTJ+A8kRG7jkeXa91Ud1aTe2UWuysTXVMoW3YILLsSETuD+vWwec+J9KdeplEiUyZQtfOnTTU1sr/4ZVXwnXXEZk+na733qMhGIRHHuGW3/6WB5Xi+cceoy4YlAttKFS58EZEAcfGjSIZnzatUo9y/36ZvB2tlAqH5W+8/U+3cXA93sbbePvXN88ScIUm7LSXFIZar5GgrMA0eRxeIayyOWmUvNhfplWJZ1e5gA35TQLcAr4EU7nQ/41R7LgvSW65D+yDEOgY9YYqLLZquApHP4xcXkpvSLUKRTZrs2zZcyxbtoBp08T3vX9/ghUrXmHZsgW0tMTQdY1YLFj2jdq2S9EPM3rzzV7mz2/j0kuf4tRTOzj11A5WrdrA8uUL6epK0dIS47DDGli//hCzZjUysTmEozz6UkPct/ExLpr/Mdprm/BQaGhkrTx7hg5xbOvh2K7Djv59zG09AkcJe6ABuqaPAs8fo72uCdeTwazhl/NK5FJ88g9XcMfHfsCslpnl0lumpnPts/dwQvuRfGDmSWStPFPr6tDsPZUJi8DUirxSYtAg9zKYDTByq68ImCoAu+dTMLOPypDIl+WjyXfrZUELcfBQJ5/+t6+IHcAboHHSLG752U+Ye/zJLP3Gd3jiiSfo6x+koWEisViMxze8SlMsxg++9S1eXb+eomUx6/jjWXbDDdy9fTvLFizgiIYGXP9eNRoEn9zejqnrZCyLLX19nNTaSsQ0SVsWYdMsS8hL97n1nZ00R6Os6+xkRn09HbW1rHjlFa5csIBp9fV4SsKwDiQS3LRhA8sXLmRmXR3RTEYGL6XSJ0pVAHUJHDc3C+Lr6hLPdIlaNQwZ5JxwguyXy4n32nUFNNfVyY8tFBI6NxYTBLl5M5x0khwzoIt6o1zrNCgTGs9dMqpW6q/gxe+QiB5D3byLoTDCo48+yrU3/5qN61/i769s5LxzzkbrfY0717zOw48/zUvPPwPK4fG/PcGHTpuDWTWBtc+t57LLv8eBu06ReqhffBuqmsDJiUfbt2QoDTylY7sBLCeI48i8A/jVynzMlcvJctP0g9T9uQiQ3J3GRiFZGhvlVJ5+OuzbJ3MK8+fLaQTpa88eUTJedZWsv+ACWLIE7r0XMhmY1OSi7T4I09vkN53OQihYMYIXLQHMmiYla0Yvc1wB16U64yBAG2SZ54+VdG3s8pI0fDQQP9QrrHg4iG1ZlfJYUH7uWZYANsPAzeXQQyE8y8KMSCnATddcUwbbJ151FZ7/u4vv2EHDscdKf7qOWyhIInokQn5ggLfvuqu837xrrxWQ54dXoRSBYACtmEdLxiE5LMC5zFb7/9qeL48v1RDfux3qm2SCobqeknwb1/FLAPlfPJqw357/PxLyvzzXhmRSQrz+eCd84Vtyvn12zw0ExD+t6WiGWQaxyi7i+Mx144yTCFbVyvkzjDI6U4oy065pGlYu6bPQ8zCDVeSTA0TrW31Q7OLaRYxgGNcqYATDaH45MM0vDVYC3wYGyvInCKqFxVapJHrbZDADqEIB8hlUOoXeMU3SxF1J91b9vbJMKZTy8J57Ev2MxRJUpjzfPeWz1+XrL6A8vO5O9LYOKZ8WCJTZf6+7E6djavmnWQLV2WyWUCiEaZpjpNul552dnWX2ulAoUFVVha7rY1hopRS5XI49e/YwefJkNmzYwFlnnVVmwUcz36PBvIpGucw0+S4i6zaRNJZNiA+6HWGoSx5qP8WjDKZL/ulS/fK2yt28XMYLf/8hIIYA9JLnOo8A+ClIPXMHiOQsEnvjJA8l6VjQgVNweO6K51iwbAH10+rxHA806N7YzaTjJ2GGzXK98hIzrZu6gHMffJfYbCstsvBYU6ycRO45Hpqh4RZcAtUBlC1S+nw8T7RRgiGCuoOWSsms4o03wrJlJKJRckNDtFZXQ08Pj42McNmyZby9YQP5QoHWmhrwPB5bvZrLrrqKzg0b0KJRbnvwQf64Zg3Pr11LfTQqF1XblmtcCSCX7k2BgNybSv6ZSZNk0nbCBLkQb9ok96pp08Zl4f/NNg6ux9t4G2//+uZlKNXMxd4Fw6ugYRkEDhcGUwtCbp0EWDmDIu/uX+az3MofGJmVvrwk6DEovC0BWV5WwLq9B4Zv9EHedEjeL2FcygKCoxhzd4xM3W26l3wxJHWuDY3vfe8ZbrppMbqulVlq11WsX3+IxsYog4NZZsyoRyloaooSDBrs2xfn5ps3cPPNi6mqCpT3y2QsgkGDTZu6OfroxrKs/O23B1iwoINczmbLlj5O/2AHjnK54bn7/omJ1jW9DIK7Ev3ct/ExrvjAF4nnU+Kfnv8xwoEgBdtmMDtCly8DD5lBclaB3UOHmBit57cbH+Oikz/GQHqE49uPpCsxQH9mhGNaZhAygziei6kbOJ5LMp+mvSaCNvp7qTpdJkfcftBifuBYAJxuyD4tEx4td1GJkjFEhqyVfNYmqCKllPAKf+Az4l4a9IjsQ1C+e2cEzCZAkXEMXjnUw+ymJgxdJ2Ka9GeztMRiXPrkk6zZsYOHP/1pTp082Z9sEI+67bp0pVLc8uqr3HTWWVQFxGO5sbubtupqIoEAecehM5lkflsbAcMg4w8M847DhEiEgGHwzSee4I9vv83az36W9poaVq5bx/KFC+lKpbjgz39myaxZ3HvBBdQUi5UBS4mSNU2R2DU0yMCkuVlMxbGYgGelKsB7+vSKDvr44yv/R9GorI9EpO9Nm4TdKA2UNE2YsdpIpWxdMSGSb+WJd/r1VTD/x1A7Vf4n7Ry8fAWctIzfP7aen995N1ue/w8JKjtpGVRNYvObW/jUhV/hwHtbRB6uB6BnPVQ1M2TXMmnakeQPbcTM90LT8XIsOw3BWgHZ4Qmgmyh08sUAe/YHWbFCWOTJkwX4jrbzleYjslmRgBcKFcKkRJYuWwbXXSenz7LkdL39tswvKCWnqFiUfbNZOd0bNsj6cBh27oTj5rjorivA+VAvtLfIwLM6KkA7EICuvjLwJZmRZT0DMNOfrPNUBZQXLXkMmBWvtmVXJOVhXy5c8naXQPpb78JxR+PikersJDcwwMQ5c1COg5VO4xaL5Pv7mThnjgBfINvVxfZ77uGor36VWEcHud5ett9zD8csXUq0rQ00TZLDHYctt99e3i7T1UWuv5+mE04op4fvuP9+2a+9HbdQQC+BNE3DcB2MbFqY/GhN2bc8Ru6tFAz1whMPwoc+A42TKoDbL0WHZcH+92BCk3iuS2XqSmPKqigM9Po1zT8DdRPkWBtfhCPmyg/BCMgEgaHjOha6YfrMdIaq+hY03axI1P33VRqxilJdGyVh9yRg692XCNe3UNd6lMwV+MBZKVnXMP34ivwccIs5jHBUAL1SuFYeIxAScF3MS6K6YfjMuiGJ4obh38aUnIdMCm/DSxUpuKcgFfel4B+Uc5HLyutFZ6LVNaCUhN5pmi7P4yN4G14srx8tzVe5LASCOKEwrs9Q9/T00NLSgmmadHZ2UlNTQ21t7RiwXWKfR3uqS/7pElgGeOaZZ1i0aBHRaJRnn32WU045hdraWvL5POFwGMMwcF23fMxSMrltGGT8oIWg3DlYj0jDB4DTEQn3SsSPXYUA5DAChDchALzJX54BkggjXYMME9L+smbEx90F+JzrmETynH+Mu5MF3KIw12UG2w8z0wytvK7MXGsCkAGpZR0w0AyNp779FOfcdg7J7iTVzdWYEd+zPkomLgso9z36ued46P5EXdCrlI9D02BwUJQtV1xBfu9e9PZ2GidO5JYVK6h3HD596aXkXRfdNGmMxbhl0SLmnnkmXQ0NdJx0EtOnTqU6FIKBAUJTp7LxxRcr9yXDkNnJUkDFqlXws5/Jcl0XSfr+/XKRnjdPZjibm8dl4f/NNg6ux9t4G2//+ublRRZuNMLA5aPY5Xt9BjMMzkEfGC8Xljr7FFSd6gPx5RCYAbgyqHMHBFzrtciwyUZY1I1QdTwQEECtCsKOl7ZxBoU9DUzzmesbUQ1XU1AzKBY1bFtYYMPQ6OxMsmKF+KKnTxfmet++ON3daU4+uR3T1HFdz98HXn+9hxNPbCUYNHjttS6OPbaZaFR82Z6nKBZdrrjiOb773ZNpba0G4PLLn2H58kVMn15H3i4QqTIpOFY5jKzEYpe818e0zODGF37HMztf5a9fuZXO5AD1kWri+TSzWqazo38/x7UdgacUXckB7t/4V746/6PUR6q59aX/4Jmdr3LOEafwk7MvRtd08k6RgfQIv9v0ePkYTbEJDGRGaI5N4LCGieCl0DRDPPAEfTm3K+nfwzdD080CiDEpi/a8LAxcA82rKIegqTw4fRUlQun7LA9/Dek7v1FUBoHpArZBtim8hRU+nYJnsnt4hKFcjnltbXhKSmc5nofteZIq6zMspqbJEZTCcl3WvPsuJ7W1scpnmRsiEbYPDnJyezvrDh2iMRrl1ldfZfnChUz3mWmlFEXXpSogpdAcn60ugfnHP/MZ5rW1lUt/6UDUssYM4ikWBThPnSpMdXu7rC8NbpQS2V9rq7AFrivMXSwmTHWJ8c5khDU4eFD6mT9fGOyeHhnsbNkiZuRjDhe/daYbWk8WMFwqoRWokuT95L4ygP7i177BixvfgWAtTz7+CLOPmgFOHobehaa5fOGrX2dCYwt33LwC+jZCdJKw04Nb+fG9L7Htne389ZGHxZPtFiWJ/PVVcPptApCsFESahDlE44WXq1h8TpAlS8QrfcklkvB94YVw991jvdcHDogC/vjjhejv75cqZKX1pZCz446TX4ppyikpyclLp6W9XbzXhYLMUeTzUB11CYcU2u5DAnQn1AjbajmSEG7ZMJIS8Dxzsi9XzlbY7FLSeMAUgKT7DHfJvw2w66Akgx89QyTlyaxIwUMB2TYQKCc22akMG1f8lOOvuAJ0HTuTIRCLoQcC6IaBa9sox8GMRNh03XVjGGdN18usM5pGprOzDL6H3nqLwbfeYt5116EcBz0YFNbUr5dcel6IxwnX14NSIguvrWX47W20HH+8pKqXGHlNA8eS1G/wgbYu/8qOLcx0KfhM18aC5sYWX9HhSxVKQWhmEP50F8w4Ck5YJJ5u5Y3SAPvH9cG1XcxiBiPk4v1U1TcLi+2D57Kku8TIei75ZB/hmiY03ZT0cE1HN0aD8dIk7mggVJGED+7ZxMTpwobbhRSDezbROHM+ZjBCPjlAdV2bgOtMBpVNo0+eJgA+nxMZuP85VCaF99Izo0LMPg1IGNroYLMxr8//FAo/WM6X1Y/d/tPgWCjDLId/Kd3ABuLxOOvWrWPx4sXouk6xWCQQCGCaJqZp4nkCFEsg2rZtHMchEqmUcXz/NsPDw4TDYWKxWBl4u65bZqgNw8C27TLILhaLhEIh3EgE3TTJ+u+xFDS2EThJ7tqsQ/zWg/4ykFTwCAKYocJgp4Arge8ChzNKSMHY0kYewmTXIrLxXv8YAFXZIvH9caqbqjFCBpqp4eRETD6ajS61+P44qc4UbfPb0E2drle7aD2pFbfoEqoOyTVuFBBXbkViXvZY+z7u4X3DhCIhoo1RtIBWlqMHdQdt716ZcVy2TO4LsVhl1tF1K+xyS4vMHtbUyAWvNGs5fbrcN2y7IvsuZXUcOiT3jtKEbpuvAbjkErm4nnqqgOxSPy+/LFKhUnrkYYcJ6B5v/9PtvwLX+v9oxXgbb+NtvP2Pm+uXZ3pEgHL1hdD0c6Q8VxW4gwKsM49L+JXZCDWfAXtAvNZaFdgHhN3GFT+1Xpqrdn1W3IOqk8ErgL1TJOLuICI93At9l0lCudkm+wWmQ/NdEJhBT08epcBxPJYvfx5Ng2nT6rnnnguYPLkOx/EoFl06O0XO/fWvP8GuXcPk8w7hsEkgYHDSSa1s2tTN3r0jnHRSK/39WV555RAHDyb5xjeepKcnzbx5baxatYFEokAiUWD16u2sXPkKnqdQroau6f74TiSL9218jGd2vspvNz7GzIkdBI0AF83/GOcccQoTonU0xSbwwOYnaIpNIGyGOK7tCLoSAwxm4ty/8a/lklu6pvM1f7+L5n+MkVyKzkQ/qXyG3216vHyMukh1+fG+jY/hKQ8NT5hkpQEW5DfL+TaaYMJ3hcXuWyrn2EuJT94dgKZrBFCXSnZpoUqJruEVCBehwBkSX7y9F/ovle/e7vT3zfqTKFGInELQ6wEFNaFQWeI9nMuRsSw2dXfjeh6mL2ntz2SwPfE/GppG0DC48Nhjuf2111i9fTsr163D0HVO7egga9vMa2vj1ldfLa9zPI+cbZN3HL7/7LOkikX2xuMsXbuWg8kkNy9ezMOf/jTNsRiXrF3LruFhMpZVDh1CKQHDl18ur9vbK2DatoUtGBiQAZCmyWCnqUmQX1WVDHiqq6Xk1mWXyQCqulpATEcHnHaa9JPJyIDJ88QX19EhA/BMpwSYPf91SOyBgTcF7ARr5fsrldB6fRUP/OEPdL6zjhuu/DpXLr9awPHLyyDWysrbfsWeQ73cuOwr8PdLIdLo17lO8x8vHWL1mr9yz29+I6DdjAiQf32V9G0EINsD6UN+0JWGphmcschi7Vq46y45HVddJcD6zjvldKTTEk62f7/MGzQ3yymZNk3Gffv2CQtdUjLOmSOnJhKplBd3HLEmmqbs09EhpzkcplzKNRhESmZNb4O6ajjQ4/ulzYqUu3mCAGuRQkjSdyl8yLJln6ItTHTRroSUeUpA+uRJAqxDQQHaoYBso5DHUWN3PRxk1te/TqCmBjMc9uXMCs9xcG0bIxDACIdRmlYuszVr6VKcfJ6NP/kJ2d5e3GIR5brlWtY77r+flgULOGbpUqnNHQhI0rbPbKNpchzPI9IggUuebROsrkYzTeqPOFKkzo5VYZl1rSLtLs2ElMCyYQqL/e+/gCHfFhIIwmGzITHky+U1X2WRh2RC9tGQVPB5ZwiwBp/Z9sTHveZ++e0P9qLt3o4ZrELTdKoaWoUlVgrlOjjFHHZeUr8pAT+7SKS2RcLNNNCMgC+3Vv5HUCjPTwX3wbnnWDjFLBgmwao62mYvJhitA13HDEpN7UA4hmYE/HJgwuRr1TVobVNQw0O4z/zNDzHzGWUNtFgN+sIPos2ai77oTJQfeqYvOrOyTNMrr0/9AErXyqw6ugGajnHBpzCuvEESxjUNAiHxgpdk68jE4Lp169i+fXu5TnUoFBojCy+x1ZZlsXbt2jHPh4eHy6FlXV1dIu1WioaGBqJ+bTvXdcvbAGNqW7uui1KKl19+GdM0Cfo+9CFkKhak3NZpVALLFiHBZKciQDiCSMgbqUjFB5ESXCAe7VX+89HUnzZqmUKAfEliPsl/vhIBvHUddegBHafo4NkeZsREN+V1MVWUuteeAh3qptQx5fQpmEET3dDpWNBBz+s9aLrvYx9VA9qzPTo3dEoftr/OD0HzHI8JUycQmxSrBKfp/mSQ4whT/IMfVMolyMmV5ZdeKveK6mqZSWxpkcfOTgmm6OoShURJ5QRy/7AsuQA2Nws41zQJoPA8AdnLl8PZZwuwXr1aQiqKxbE1DleuHJsPMt7+JW0cXI+38Tbe/hdaUNjK/KvCGjffCm6fD8oOCqPdsEzKNQXaBQgrV0o3mR0CsLSwAK/+S8WLjSYScXs39H9TPNteCrSIsN3p1eIVxpL+m24S9jX/mhwTA/Kvg72X9rYIhqHjeYprrjmDXM4hlSqyf3+CpUvXcuhQilDIYP78dn72s/WsXr29DJKVgoMHk1x66VM0Nkbp7c3geXDjjetobIyycuW68vaLF0/nyitPpa4uTF1dmCVLZnH11YsYGsoRCps+gSKDoo+e/2H+euWv6f3VK/x9xR/Z++4u8naR26+7ib986zZqIzFW/vnOMjAuOhZPPvkUi05ZyBkLTuPRK+6ircvgopM/jlKKSCDIjxdfRDyfYmK0jrbaRppiE/ja/I+WQXciny4/Xnzyx9E1JedMr/FpARsiJ/iS/C3idx++sXKuvVTluR4DFAz8yE9vN0SpcFgKmn8jwLnvUplc0SMyqZJ5XLzbpURyvUqk/s6AAEOzGVPXKNg2A9ksrlI0x2L0pdOc1NqKpxSW46CACf6gwlMK2/O4/OmnOZhIcPf55zN0xRX85vzzqQ4GcZVi2XPPYeo6Vy1axJJZs7h60SKChkEkECAWDHLTWWeRtSxWrlvH4zt30plMUhUIcMaUKUytq+PO885jKJcjWShgKyXITSlhG267TQY4AwOCFpub8WdvBP2tXy9oUdcFaebzgg4zGQHj4bAMaLq7Zd8DB+Ab34C9e2WbQEDQYywmfUQi4OnQugBe/5mA3E03So33TTdKjWvNlNJZRyyRcLNYO0Qn8aXPf4YXX17P8As/hZ2rueWHX+SRRx7lqb8+RNXbt0tfb9wKLfP4y9qXue7GW3nu+edpbu2opI4boUrfJaDdMl+Y8ueWQnIfhqFx2mmV0zRjhjDWhw7B178uIWXz5gkJc/LJIh0/cAC+9S0ZI06bVgmyLZ26TEb2BRlrbtwoTPdll8lpz2aFmDlwQLYt4WMyOTnvh3olaOxQr3RiOxXgDBVgqVEZuXf2VfYJmPJYGuGnsyL51nVhrN/fv+MKkE9myldJIxgk1tZGprOTwa1bCTc0YEajGMEguYEBBt96S4K7DIOq1lbmXXstsdZWttx6K4eefppcXx+e6+Lkchz11a+Wa1xXtbQQrKvjrVtvHVO/2ayqwnMcUgcPUojHcYtFCiMjeK5LcWQEO5slFIuKRDWX843xCEB27ArjqxuQSfrnSEFDC3z+W5VSW7UTYP4Zkjb+73fAYK//ezfld+t5sPsdSdsunWvP9zTbNsQH4cOfEwBrBqCmHuU62MUseB66ITL2XKIfz7MJhGLoZgCnmEV5LmaoquKPLhHgRsBPaNYqknEf9GtKoekmZqiqEiCmaSjXBs8jn5RJ2xKgNMwgStMhk8br7RJfdCiE/sFz0TwprSgqAZ+pr5+I8eElaLUTBBCjQaQK/fSzoSoGI4NodRMwPvxptPoGYcBz2cp7KX2H2qhCcuXfp4aGJl5zTeP888/nhz/8IaZpEgqFKBaLKKVIJBKsXbuWRCKB4zgEAgF27tzpK7cMOjo6yGazJJNJOjs76ejooFQzO5lMjgHfIF7t0U3X9fIxzzvvPAk28zx0TWMyApqhol0aQpjo3cB3kLJb64B9/vJ1CKC+BJF0tyES8MVIaa5SXx7laVschKXOIzJyG2HBC/72PwE0U8PO2WQHshgBA93QJWwsoGOGTUI1IZyCQ+eGTuJ74xxadwin4IBOuVZ1rDVGMBbEcwRM21kbK22RHcwyeeHkcv3sns09OEWH/HCe5KEk2f4sVtqimCqS6fevAwoB0e3tcMstcuF69VVIpeR+sGKFgNyBAfmf/OY35QIXCMg+t95aSYQc7Yvu6ZFtczkB7I2NAtL37pX/xYYGuRC3tcls55IlArYDAQHuy5fLsiuvrAQ9jrd/WRuXhY+38Tbe/vvNs8AdEaCmhYWV7L90bPhYyafbdwlEToXqTwoAH14FDT8SGXHfRWP3cXph6JrKsonXCqtt76nIyY2JPhBsF9A34fu+r/tkSP0R8ptwm35FrhDC8xS6rpHP25imzje+8SSrV29nyZJZ3HPPBZimxt69Emp25ZWnMmmS3Lwuv/yZ8nZ33nkegYDOoUMpOjuTtLfXsHLlOq66SuTfo1up5JdluZhhRGrue+vi8TiR6iiZYo5Xn3+Z66//Kff+7Y+k9vQxffoMPnjGGdz9wH1syO7mopM/TsgIMHfm0fxhzZ95LbeHT01dxIIT5nOou4uqmJSrMXQd/HA0DY1wIDjGzy0luuQ9aECV6fkDwjy4cTDq5VHlwZggrLTK+1Lv5cJmD1w+KpQuiHjclQBsLTJKJl6A1J996f/t0LQK9GrGiPqcHn/bbNkykOQIiq5L2DDI+jPoWcuiORYjVSzSl8lw56ZN3H7OOeXBb9a26UunqQ6FyNk2K9et46qFC5lWX19mrwxNw/IHihqQdxy29PVxYmsrAV3H0HX2x+NEAgHqw2HihQL14TCGrvOtp55i2amnMrmmhlCxSKQk225vF1ndRReJoXjatLFy8I0bBWAPDsKiRTJIWrlS0sGbmuB736uUYqmvF6r14otlcLVkCfz61zL48WW9pFJy3upr5Hxne3yP9VXCRsfaRc7tM8yJ+BC5vEVrXQCqJvLYX//GZZd/n843Huf2qy/ij69bPP/0k9Q3Nkut6o0rYP7VrH5uC1ddcx3PP/8CU9ongeMPV3vWQ6wDaqcJWx2sgfyQ+LtHhampxffQH6/FMOQjmaZ8hJ4eePZZkXlfdZXgqmmiri0rFk87rVKhZvp0UUI6fiTws88KA/7aa6KYvOkmePxxePhhWLhQTpFtyykrFiEUcIkZRbRSua1SsFjAhL2dlVTvw6ZUNKdFq5IEPnqfkt+65KuGsaFm+WLFe10KNEtnIRrxJeTyW7WKBQbfeIP6I44QoGSaGIEAnuOQ7e2lMDREw7HHSuq3z2rnenvZfu+9nHj11RRTKUI1NRihUDkMrfxYCisbVUJJ03UG3niDqsZGdvzud5xw1VUo12V42zYikyZRP7kDrVR+SynIJIQBa5xUqUtd8lmXPM0lP7ZVkM+l6xJcFo5UpNejPdrxQaiuE4B+2GwB7srzGW0BxRgGDPbAEw/ifvX7FLMJDDOIGfblqb6q2y3mMMNRlOehlCceZc9P4h4FnnOJHsxQjEBVrf8/r/zoSHy/tF4Br57r15WmDG6Va5eZ4ny8l1hNC17nfrSmSWAYaGagLHtXtoXq60Fv7ZDyW1VRNE/hdR9Ei9WUFSnqnS3oR8+RY1rFcr3q0oyAsgqo/l605lZREwSDEAj6AB1KIXNe1yG0phbsYKgMfkuBZCUgvXbtWrZv386sWbO44IILyp5q05SE8WAwSCgUwrIsgsGg370qh5kVCgWy2Sz19fXU1NRQKBTK2+VyOWzbZt26dSxcuJDa2locx4FIhH2GwUpNYzninb4c8T5PB7qBa4DVwBLge8BtwLUIkL511Lo7qbDdJUY7g4DnG4FlCEP9FjAXGEZqZP8IaEWAeA9wTLoon80vj+XmXYyQUVk2ShZeej360XO9MuvctbGLaHOUiUdMxCk4mGGzIg33S271vNHDpLmT0E0B8QBWxsIMS+mvbH+WhpYAWqmu4DnnCOAtKZwOHJB7xF13CTgu3QtG+2uWLBEZUDBYkYOPXveb38DSpWNfK38C7eqrpX/TlAvxwoWyXCmxKtXXS8BZcNR1brz9l21cFj7extt4+9/QLN8/60m6NKYAsOol0HC1yIL7viEX8IarIHq2bF9moG+UfRuWV/ZxBsVz3bDMX7ZcXntZGWVNvFZY8oGrITxbgHV69Shm1IDaL6Ga7wRNalCvW3eIffviBIMGxaLLsmULyuyy4YeSTJtWxz33XMBhh02gujrI44/vLG931VWLME0ZlLW0RJk9u4loNMA991xAU1MV+byD6yofXymCQd1/NDANnayVZygTp+BY1NXX897AAT72u+/TM9iHoWvMbTuChYsW0dHRjq7pxHMplp/1VRqqaqkOVaGhUczlWX7WVynkCtTV12FrLlt7dtGXGqaEECKBECEzgOd5ZK08OauA7ToUbIu8I4MND7BcD2UfkEkRs0kejXqR6WsBURIEpsPE60SyX9gm6eyByYjvvUjZBadXV56ji0y85jMCrCPzBHh7GX8fx5eeN8sxRrHjpqbheh67R0a4/Jln6M9mafa9f2nLYtWGDVw2bx6Hkkk2dHaiIaW5Dm9ooDEaZeW6dazevp3OVIr9iQQXr13L7pERUpaFrmnsi8e57KmnUMDJ7e1s6u7mUDIJwIz6evKOw8bubrK2zaVPPcWhZJJ5bW2seOUVYX00DX7+cylpsnKloMbVqwURGoYMjr75TXk86SRhGubNk99+V5fI+np6RBu9erUsy2ZFXu55FVbh6qtlgOM4wmIcOCAgvKYGdE9CyrrXwynXQu10CRrrXifLAZL7SO56kY996jPMXng+c+Ycy52//DlrH32I7pTB93+7lUQizgfO/QhzTzyF+edfBGffBxOO4MIvfZVCochHP/Jh5h5/AnNPOpXhwUGYOBvSB0E54tnWdMh0ye9u3nIB1vOXk80HJTCqT96658nbv+YaAdA33ywy7smT5a2apsxNnH22nMaSOrGrS4j+tjYB01/6kowHOzqEhFm+XIB1e7uMLffuFRJo/354/XX4xCfPZc4JxzP3hBNYdM5i3koMUHAdPvbpT3H4R85lziVfYPFlF7Nn9y6RdBctvnLpNzjW3+ek0xfxwqE9AqhrYxVgrZRIxpXvwwaIhASkl2ThjisA2/STrFMZKFrohiHp3n4IVK6/n8G33gJNo3ryZBpmz8ZKpUT+DWimSbS9nfk//SlmOExVY6MEkpXeB6AcBzuTYfMNN5A5dAiA1MGDDL7xBm6xSNPxx7Pjd7+jYfZscj09bLnlFibOnUt1yYsZDArg3fOOAOsJTRJI9uSD8PrL8ujYfrks5DefzwnA/tNdMDLoe6gRqXh8SIB1ad9YLTy7RmpdD/VKQnhiRH7bxbxvpShW9lGKYKTaDxnTsLJJut9+DjufwgxHsXJJet55HpSHXUjT++6L2AVhBq1sgu53nscMRbELGZxixpeR57HzSXreeQE0DbuQpvvt57CyCZFuK4WVS5SPo+kmjpXHcywidc0i7Z48HS0UktJY2TQqPoS79mHIZtGaJuE+8zgEffm2YaBPmeEHEeoiWT/qWLy+bpkIiFWjRgNrRH6vdUyV9ZEImt+X8lyfwfYnCFrb0Xx5djKZ5KmnniqD7FK42MKFC5k1axYLFy5E1/WyVxogkUiUH5955hni8Tie52HbUpYxFouxceNGampqqKmpQSlVLuP1xBNPEA6Hy3L0devWoWkagUAAzwfWqxFJdgLKz13EE70MAc9XIWz2D5F61IMICF8C/AAJN9OArwPv+XeVJAKsVyNS8SQSlpZGgPXqs8/mjGOP5cy5c/nwokX86K23QIfzLjiPE+adwEknn8Tijyxmy7YtZbSzZ88ezjjrDI457hhO/cCpvPveu2OTwg0dMyogesqiKUw8ciLKUxJo5gNrACtl0fN6D20ntpUBu6ZraIZGqDZULgVW3VYtk0p3383Zjz3GsR//OHNPOYVFH/oQb23dCtOnc3ZXF8eecQZzt25l0cSJvPXJT8rv5Ec/4tszZzL1lVfQmprY8sYbvlXDGHvfMM0KE718uVxES5Kh446Te42mVapYNDTIfaWtbRxY/29q48z1eBtv4+2/37w8WLtGMcfDIi/WQoABfd+CCd+G4MxR+2TA7fEZ6KsF0GWfgOhi8U3vnQKT/iTScTwBZamHRHo+8SqRMAemIeIw0y/1tVL6CsyQxHEf6HlaNemsia5rDAxkqK2NcPnlTzNvXhtf+MIcCgWbK654jiuuWEBXV4q2thq6u1N0dNTS25tm/vy2chBaybv92mtdNDdHmTSpmurqII4jksnXX+9h1qwm0ukizc1R8nmh3WobTDLFPFkrTzQYoSoY5qKvfI0nn3uamlCUP675C0cdfRSGrhMwAsw+4mh+96cHOObY2eiaTlUwzN+ff4EvffGLRKNRRkbifGjZF7j24h8wIVrL7sFDHNk0leFckvs3/pUvn/RhGmP1RIMRQJVTyR1PwHhzrIGZDbUyxlA2Qg05UA43M0U5YDSBpiC3AcLH+7XGb4bmX1IuGZPbICFlZruoEfRaX03QJpJ9zZDfgvLAOQB2T6VuNpqvRFgJDctJcTg9mSw3vPwy89raOHvGDNqqq3mtq4tjmproSaeZWlfH5p4eTunoKDPTOdumJhhkTzzOynXruOu884gXCtSFwyQKBTzPo6W6mkvWruXUjg5O7ehg1YYNfP+UUxjMZsse795MhlggwI6hIU6YNKlcvutQIsGhVIrTOjqodl3RHpek4RddJIOYqVPHMgi//rUgxJYWAcZ79owtxrx0aYWhOPVU+OQnZZDjukK/2rYUdl6xQqR7oZAgx/ZmsHulpvVJV0oAmRmBv18GJy4TZtnOSIq4ZyEax6wA4kijPL58hew74QhJCB/dnDzE9/iJ4wpsP6IoEKNSCx05hl+ySAVrQDlk80EOOypCKbA2mxV8cc01Y4mUfF7s54YhHzWXkzHhvn2V8lquK6RfXZ2IAFpb5bQVi7I8mZS+v/nNSt+rVknfTU1QzA/TMrEaTdd59M8Pcu3117PxHy/z9zdf57xzzkFzXO685zc8/OijvPTCC6AgkUxQF66CosVbe3dx5rnnMtTXV/au/lN7X6ktkhlJEdd933FF1wupLHYkiHIcNMMgNzBA5tAhwhMmUBgZoaq5mVx/P1UtLeQHBpjop7iVg8gQubeTy2FEIuAK6CqmUoRra0EpXNvGDIcZ2LKF+hkz0AIBjEAADANl2wxt3Uq4sZHIxInkBwepmzIZIz4oIPjsT0I2Jeyy5wlQfvJBOP+zElSGBvksPPxbOOdTkgr++j9g3un+RINfjqtYhNQIPP2Qz1wPwYRGaGiCB+4QAH3SafCZrwvIbm6FXW9DfSM8+SDuV3+A51q4jkUgVEX328+Pqm19Jj3vvECydyeHnf6V99W9rqwrvUbTUa6DZpj0vvMCkboW6lqPpGf738vbNR1+CoFQjO63nxtTQ9uxcpihqGRkuAoSw1J+q2OqnAsNVKGAGuxHa2n1Aa8m8RXplEw4hEKiWfDBrySwCw2vlAe5HFo0itJ0fzsXpRt+SS5QVhEtGEZZBV+OEQIzgPfEGtwLPs3f1q6lo6ODjo4ONmzYwMKFC0mn0zQ1NaHrOoGAyOPj8TgbNmxg8eLFZQbasix27NhBfX091dXVBAIBolH5vCMjI9TW1pbDyz7ykY8wMDCAruvEYjGuv/56BgYGeOCBB9izZw+madLa0cF3776b/5g5k6uA7tdf5wuXX05DJkNI07jxtts47YMfLNeozgGbgeMQGXlp2SaknFYn8AngYcS3PZq5vhJhrt8EjkfSyK9NJLi2ro5JwNpHH+Vn117L2+s2se/NfZg5k45TO3jsscdYefNKNr6yEeUqPvSJD3HhZy/k8//2edY8uobb77ydDa9sqASV+R7qrte6aJnbUv63D8aCZbVLOR3cB9t21i6z38HqIJ4t3312OEv1pGqCykFzbBLJJHUNkgT/6F//yrU33cTWF18kkclQF4tBIMCjf/ubLL/zTjjuOF5+5RWmH3YYC886i8d++1vmOo54a0xTJsZ0XS6mfX2VbI/16wVADw7KrKRlyWMpmGK8/f/cxpnr8Tbextv/huYK4IqcKv7dqgXCVOLJuqaVYLZIma6+i8RTrdcIGGtaJX5cowby65EUcE/Y7UA75dJOTi/kXxYm2+yopFE7Q+Kx1qqh5TfCtGJD4R1wh3wAKDe3TMaioaGKUMjg5psXc/bZMzBNjSuueI4//vFtVq5cx8SJVdxxx2uccko7bW3VLFzY4VsEFd3dadJpC8fxOOWUDtrba31g7eH6AUmnnNJOIKCzZ88IBw8mefPNXnp6JBV7KJvg7g0PM5xNoms69//ufvq6e/jxtT9h5TU/JRIME9BNLJ8higTDxEJVRINhHMfmpytu4Nd/uI/tO3ew9ukneeyW3/OrF/6Moekc0zKTTDHH/Rv/ykt7NzOcSxIJhHA8l0wxT9Gx/FJcOrNaZhAOBNAw5dz1XypJ33qsAoK9DFj7QeXA6RdgrVcLCI7MA6dLzj2GfN+BDnA6Rcbv9vrgOSh9On1iB3AOISW+mkV+jiPfTWCG/93NRNd0akMhbjrrLD551FFMisXwlGJWYyN5y+LwhgZChsGpHR3sj8e5ZO1a9icShE0TD5hZX889F1xAxDSJBYMM5/PEgkFaa2rKvuuzZ8xg1YYNrN6+nVtffZX5bW2ETZODySTXvPQSuq5zUmsrBddlIJtFKUVHXR0nTJpEqK9PKNLvfAeGhmQwc889gvx0XYDzhRcKu20YggZL8r0pU4TJjvmhWffdJ8zBXXfBV75S8dAVCpVSRzfcQDn1NZ2WAZNuClt9yrXQ8yoMbJGB3lm/hroZkiSuG5Ls3fuaL+GulbJZzy+F/CCcdTfUH/bPwNq1RAaeG1XDXDcgNyQvn1sKiV2yfHCbfA4rhebK/61hwrnnynzCpEkVm9+PfiTg96qrBPxefjns3l2xGup65ePdeadk9+i6APDXXxf14syZfvi2Jttu2wZ//KME7pb6DgTk6/E8aGysE8Bi2yQOSOK0AAEAAElEQVTtIlo0Qrh5Ih865xwBLyMpTj7xJA4cOCiy7t0HBVjrOkQjJH1FA64HezorQNm3HgMiAR/tta6JiQy8lEpdtGD3QSjauLEImc5O3rzpJjzXJTJxIk0nnUTN9Ok0nnACscmTaTzuOIxIhHBTE4WRETRNI1xfj5PLsfmnPyXT2YmdzZLt7qYQj6NpGpEJE/BsW17rEprYOGcORiRCbmCAoa1by1aFiccdR83UqZiRCNFJk2TS4JmH4fDZ0NAMM46WbfduFyn3F78jy3e/I2x1KAyLPy77aBrM/wBlk7rjwL4dkE1DSwd84TvQ1AozZ/1f7P1pmBT1vf8Pv2rrfaZnYYbZWd2CiDHKOqMmigTFJCdRsniO2RQX9CRq1AgaNRE0uGAMalySGLOYkJgYBRS3qAyDgLuiAWFYhlmYtbun99ruB5/qbkjOfe7/73+fnN+T+V5XXz3dXVUzU9VdXe/vexNgragCtk85VQC77pNubccRtry6Fi64AnAxsyn6d3VgWyY1U2cRrT+GmimnkM+MFh9ruq/02tRZgELNlJnFx4qq4domfR+9iplJUH/8GVQ2TQNNP2I9I1AGivIP2wLdFyxK4RVc3HgMpbYe18yLDB5FmOzmCTJ5MTyIveHPRcm34pfJw0LAnCSue7JzS2TnSjgsCoWCCiGTRvGC3lzHEfk5wOgozmsvgguKqkngmaKwYMECpk+fTiqVoqWlBV3XaWlpwTAMfD5fMQHcMAwWLlyIz+cjl8sxNDTECy+8wHHHHUdLSwsVFRX4fD4OHjyI67pUVVXR3d3N0NAQmqbxu9/9ji1btnDLLbdw0UUXcfXVV9PW1saCBQu488472bp1K+d87nOsuugiHgamuC4X/du/8fNbb+Xtd99l5dq1LP7GN/gokyENXOKd/U+k5MnegwDrWUhPdRMCrJuAy7xv8WbgASQ9POot+w4iQX+sooIJCGOej8cJeNYILalRO72W4Y+H2bRmEwDx/XGe+NYTvPnmm3zlS19h/aXrOeOkMziw9wBvvfyW+KUTeYY+HmL9peuJ1EUwQgapQyk2fncjAPnRPEO7hli3ZB2xzhiO6TD88TAbv7uR9EAaI2gQ64yx/tL1xPfHCZYHGdk9gjezIgDassCyiHd1SWJ/4flYDBSFeCIhn66TT4Z8nlNVlaYyaSPB75eT7KWXyqzksKcGCYflxFtorWhtle+apia5tbSMAev/5TEGrsfG2Bgb/y+GBnU/FR/14G1gHhDZr9Xv+fNCwl4OrT4yTdrqg/7rBETDkeB4/E/lZ8UAHAHgVVcLaHctSZ9ObxYZsz5ebmiyXVQIzQS9AVfx8fLfeti3L04k4isyUAMDaW6++RX27YuxZs1CEonv8/DDi5g2rYY1axaiaSqaJvVd2axFJmPR2TlCMKjT0zPKVVc9V5R9a5rK0FBamnxGpT957txmwmGDmpoQq1Z14Dguj21/ho07tzCYjpHKZ0jmM+wb7mXP+AyvvvoKr36wlUOjw6TNjPgLHQfLtjAdm/fefY+h/gFOP+103uv9mBmfnMG0qcdysm8iYV8Qv25QG6nipvkXsXHJGo6tnchAcoSclSeg++gfHSGRGcV1QVc1KoLlgC3J3VXXCIvsJIVFPnS5MNShOZLkrUYpoom6R6Rb3GgBfRyl9CdNgPPoWjCHPFm5N9NvHioFoek1YEzw1tUoTHxgHZJaMCwCuk7U7yfi85E2TTq6uvBpGjWRCLbrcuWzz2K7Lj2jo9x15plMqaxEVRRUYG8sxpJ169gTi+G4Lje/8go9ozK5sXdkhK54nPpI5IhwM0PTyNs2KzZtYu2OHYzmcuiqStgwqC8rwwW2dHUxkE6XAsjWrpWErt27hXm2LAElEycKWC4vLwU3vf66AGZNK6WF9/bKOnv2CC3b2SnbSSZlmQLTVV4uyxcQYyhUSuvyV8BRX4TaGdCzVaqycARg60EB4TUnClBWkDCyhnnw5mrPG56X2+HDNqUbu34uxPaIlzrZC5HxsuzOtd76jtSAaUEIVMLoAZQXLyWQ+ZiHHswXa1ZB2OspU2QOYvJkmX9Yu1ZYZlWV68ieHvn3AgF44w1JCB8/XhjquXNLGTu7d8u8RqGya9s2Ae+Fbeu6rLd0qZDHF37jGzQfNZWbbrmFX//yl8Is5z0T9/hqfvLgA3z+3EVw8FARJH//lh8w5RPH8cUvf5knf/s7OWdMapB1XBeyOfFsu4hc/JTjhbnmsI9DYfgMmNwEuTyOZaEFApx0/fUomoadz+PaNo5tyz/vSYTtfJ5QTQ16IICZTJIZGEALBDj5ppsI19cTHDeOYE2NsNme11oLBAhUVaHqOjgOTj6PbZqUNTZSc9JJ2LkcdiYDQLKrizduuw1F13FUFfeCK2D2Z4RpzefES90wseQVd12YerycA357v0y2nHeRvA8zKbmZXgDaUdOhssqrCcrJmyAZl+04tvRbf22pMNm2CZOO9YLPovJm8CYWBzu3E+/dyaG/b8IXitI4fT66P4ymGRjBchqnz0fRDKxchsbpZ+ILRUWeHIpSe/QcdF+Q1FCPHOZjWjH8YVzbxHFsFNfB8LZphKK4jk1qqBvNCBS3ZWYS2Ga2eDgdVUVtmiBMtOETYOLYOAcPCJhWVPAH0M5YCCicNXsWMz51EiedcgqnnTmft97YTiYe4wvnncexx0/nk3PncdbChXz8/ntFlnrb9u3M/ezZnDRnDp/45Encefc9OF37cGNDuMkEStMEAUWWiXNgL+RzxfTulpYWWlpaCAaDAig1rZj+rShKkZEeGRnB5/PR0dFBU1MTuq5jWVbRh93U1OS9zV1aWlqo9hLmX3/9dUZHR2lsbOTNN99EURR8Ph/Nzc2ceeaZBAIBPjV7Ngf27UMBBoaGGBwY4NNnnokJ/Proo0lXVPC9Z59FRULNkkjKdxJ4GZF4T0FSxE1gEsJY+4E5wHvescgj3/ImsBQ4G/F2O8CJF17IMc3NXH3TTfzs179G0RSaZjWxZOkSTmg7gd9s/w2PPvAo7Svb2fb0NsrUMjRFY8faHWy+fTONDY08d/dzBKIBcokcHas65LU7NoML7be3s2PtDlzbJRcvvb5pxSZcyy0+br+9HYBNKzYVH2s+jfaV8jzZLBgGF156Kc3Tp3PTmjX8+uGH5fPi83HhjTfSfNxx3HTttfz6lltkFnLpUgHTgYAsl8vJhOw118j3QjotCY/e57x4vrJtkQ4VbEyh0Biw/l8eY+B6bIyNsfF/Npy8dFz3XSqS4OBMAdfWfhj8gdyn24V5rv2x559eLid9YwrU/UwAs9UrPmuzEw5dIWFXrumFZqnCjA7fI2C6AAoLDKjilXA4o+Lvdj3g7lqAj737kvT1jeI4Ll6ALKtWbeb55/cwfnzE6/F02Lat2+utpthAk8lYvPVWL729oxx/fC2O47JyZTtXXjmTdNqitzdJMplHVRUOHIgTCOh0dSW49NL1pNMWlZVBli9vQ1XUYs1Wc6Cakf4hgj4/EX+QdU8/jREO0FLfRH9qmKARwHEFXPWPjhDLJKipG09Pby9vvPMWx9dN5eOPd7N/7z7mfPIU0vksuNJ9/aMXHmUgGcMFHuz4EwPJEZHy+QNUhqI4uJi2Sc7KA5pMbAzfLQy1ooHZV6pHc1ICuB3v4rhYjYa3nwuXOUiVml4rxzc0V45j3yVyH5pb8tJjyLHuu1QmSKx+uR/8Adg9qIqOoaqM5mWSImQYnNrSgqFpFGKhVp5xBnnbpqGsjKxts3dkhPYDB8hYFrWRCE/v3MmKTZtI5HKs3bGDVR0dOK7L/nicmnCYjq4uJlVU8PCiRVQFgyzdsIG0aRYB9/hwmNF8nmQ+z8dDQ1y6fj11kQgH4nFyPl/JzzZrllywzJwp6HDzZjEXL1kiKLC9XS50xo8XqjaZFADhOIICFUUo3vHjxYh89dUl8FywaO3bJ8xETY1cWGtaaZ9nBuCV78qy4Tro3eaxqpbcv3IVZIehoVVY7EAVfOJC+Mwamfyys5AZKgFs0/vs+MoBB96400sjXynA3M5LSvipd0qAWnpAgJZqiPd6z9MoW1egkWPvXvn3CyT/3r3iv85mYfVq+MY3JGi9UJ11222iZIxG4cQTBTy//bYw1L29pSy3lhYB1T/5ieymBx4oXVdeeaVcOxYqvWwbHr/pR3Tt6eS2m2/h+htukICxnLCOK29bwe7du7l95Uo4qgVmnwBHT+COlSvZ8/e/s/Z3v+O6m24kb1nyzvMYaPImNNbKdnbt92YFfKV08MPddaoivuuyMIqqYmezDO7YITYTv78YRFZI83Zdl2BVFaphSIUW4ItEUDSNVE8PA+++K5vVdRT9sN7jYo2WsOaqz4cRDHop2DZmJlNkttN9fcz4zndkGwBDh4SZNvPigQYIhIRZLiSG27ZUbk06RqTifj9nnbOIE1pP48TTz6Bt4dm8/c67ZEeG+cLir3D0iZ9kxtxW5i9YwO6+fgonXlczuOXWWzn6hBOZPqeVTy/6XDGoi2xGgrwUhfpPnM6xZ15Gw/GfkdONbaLoPvFh2yap4R5wbYIV43Fsi1xypOiXdiyTvo9eI1Q5HkVRyY4OYuZS4nsGYZIdCyuXKU5ihSrryCaGcbzaLyMQQdUMbDOHY5syMaDpAqJRcHM57GefQolEwHVxuvaCz4drmqDrrF2/gXc6OnjzyT9w1ZVX8K3Lr0AxfFz87W/xUUc7b299nc997lyWXHMtbjoNls0lS5dyw7Xf480tW9j0t5e5+85VfNTdgxuPoTa2oHziBIjHcLoPoDa2YPv8WJZFOp0mn89TWVlZ9FUfXp8FYFkWrutSUVGBoigsWrSIGTNmFFO/C9VbL7/8cjHYrDAURWHhwoVcddVVfOlLX+Kpp57il7/8JRUVFZxzzjn4fD7y+TwP3Xcf8z//eVKAMW4ctfX1/GHtWjTg89u3o+7cyWf27aMPuAuRgLd791/1zu1pJEH8Uu8+iYSgfQEJKrsc8WcrclXAvYgn+2fe4y2PP84FXV0su+02br3+enBAC2g8+rNHeW/Te/zHzP/gph/eROuyViafOZlQVQhFU5i2eBpty9pwTIcTLjiBbDyLv9zP3Ovmyms3tqH6VNqWtzFt8bSil/rw1xVd+f+6fNuyNuy8Teuy1tK5fc8eHv/Rj+j64ANuu/FGrv/BD4rA+fH77qPrjTe4bcUKrr/vPlE4fe97AqZzOfn+KNRuFWq7JkyQWcbDFVCbN8skcDQqfuxgcAxY/18YY57rsTE2xsb/2XCS0PttL9H7AqnhUvyQ3iLAKnyGsJ/9N0Dd/YAD+X0wfB+MXyUAbfQpMCaKv7pvyWHp4LeKb7cwl+0UUq1rAAvsmLDiTkLYVSUAmQ5ZZ+h2qL4O1ziaVEak24cOpTz2Wi46ksk86bTppX23MnlyJabpkE6bXH/9i1x77VwmTKhg585B7rnnde69dwHBoE4mYxGJ+DywrhTUfjiOi6YpXHnlszz22LssXjyN++8/m9/97n3O/twk+t1eTmg4ioMHurjgq19jZDSBTzcYV1PNtT9YRtXEOn65cg0bNmxgsH+AquoqIpEytr77Bqtf/S0V+01+seZhUGAoFefa667jmxd+nbAviOM6/PD5R9i4cwsLjpnD5XPPo2P/e8yZcALjy6qxHKERTdvE9mYOakI6SnqTsMnWAIROFaA7dBfU3unt2yRkPxQWG1uWc0fBOMqbzIh7+97zVTtpWe/w41j3sKzrKnLcDl1Rer/U3e9J/+UiPmVHi6pb8YnLsXr94EHGh8OS5h0MEtA0Nnd1MbupqbhMKp/HBd7p66O+rIzx4TDf3biR5W1tTK6oYDQvIDLs+RABLlu/nvUff8yuK67Ap2nFlOXepAQk3fzKK6zdsYPF06Zx/8KFlCsKvp4ekeBVVh5pKr7mmlJf6OLFApaj0VKS17x5QteuXi0y74L/ur5ewEt/v3i0GxtLkdmhEBx9dMnDLUcRQgFJC9/3PExcIF3XNZ+EdK+XIL5M/K/+cpGD6xEICguFogmwtvPSX616ICq2W0Bz3UwBzFZGwPusZRA9So4hCGud7pfaL9cFc1Rk5wPv4EYasMuP4RvfDvCf/1naHevWlf6t5csFACeTcO21Yivfvh3OOEOuE1VVAPW4cbB/v8xbzJ0r14qF5adMEUB96JBcS9bUyLxDNitsdkMDzJhuo9q2x8BCsKyMg3v2UF1by11338Pv//AHXnz6GSqCIUkCz+WFiS4M2+HYE6bz28d+xadOPhk63pF08aktsr8+3i9sd22VgHPbkXduMuNtz4SogBbyFnnHYuDNNxn3yU9iZ7MomiZ+aG8yxQXsbBYjLEDcdV3sbJah998nVF+P5vej+/1kYzH0YBA9GCQzPEy4trYIxguJ4VY6jWoYpPv7yR46RPWMGUcmiTsOjmXh9/tQOj+EicfKDiykgT/xoPRSDw8cmRg+MiCezbpGYn19VNSOF8/o2ie4ZdXdbH35RV5+ci0L/+ObKJrGmgcf5E9/fYZXntsAisJP7n+AVzdv5vf33IUvHKIvlaWuMio91wvOg6oabMOH45iY2RSDndtFuh2KgmOTHukjWF6DounY+Yykibtg5dLs3vxbymomitfa8y27jk0+E8cXjAo4LtRuFWTZCqRHegiU16LqvuJxwDsj2VaeQ3/fROMnzhBGfzSB0/EKausZuPv34Hbtk4otnx9So7jJUZTyKE77y6itn4FgmMcevJ/7fvM73rjl+6itn8FNxFHqG3lj82YWX/h1Ot97B8rK+dTsOfzn6fP4+vIfcDCZYe5Jn+T1u1fS+LVv4ery/zgH9qKEIzhbXsU+dzFDQ0NFSbjjOBw8eJCysjISiQSRSITKykri8Xgx2busrIzR0dGi/9owDFzXJZVKUVZWVmS6C1hAURS6urqIRCIkEgmi0Sh//etf+cMf/sBTTz3Fxo0bOffcc7n55pt5+dVXWfvSS5SFQviBd959l1uuv57+Q4c4bto0DvX2svDzn+f4//xPzgM+RykxfA1wBXA/sBXpvR5AmOzjgI84Mmn8YUT3lPWWb0Y82k2IX1sHxgWDdO7cQ2V5Jap3DnBdl8rxlbz32nvoIZ0Zs2fQu78XVVFRNIWJR03k5Y0vM7F5oqSKe55qM23y0rKXOGPlGRgBA0VXionihVTwQkK4a7tYeQvXdsmn8mSHswSqAoRrwqi6imFlpf5O1z2FhwmWRXDSJA5+9BHVniIFxwFVJVhby8EPP6S6qkremLrOxOOO46mf/pQTW1rkZApF1rtoKRodlefef19OoLouqqix8T8+xjzXY2NsjI3/4eGD6h/A1EMClBTv4jTUBmX/Blq1+KvrfiYMs3kAhu+Aqsshs02AcfgzIjNWfIeljF8PagXyNZkHDAHp+jjEeOb3mOtez+fbI6AhMENAdnAeDK3GdUXWDfCjH71GX1+yCK5ra8PceWcHp57aQktLFNt2MU0BEHPmNLHSk3ANDqa58cY2/H6NkZEMkUhp5ldVJeAsm7Xo70+RzVrcd99CvvGNGfzkJwvw+zUuvHAGdbXlTB3XQsbMUV1fy5PPP8Pb77zN9je389zGjcxvPZ0ZDUdz3/0/5Y/tG+geOcQr777Oeff+J0PpOMfXT2GwWWX7W2/wuTsupeGKUxlsVkjm0uSsPMPpON/2mPGLZv8bVeEKTmw4hgc7/kQqn6EvMchtLzzKodFhcCVRPG+DazSDNYAbnAWoMPQTqLoKFN3rn/YLsHYSwjirYfG3H54MrpaVwuvUkEyY1N4Lkz6Se1RwcmAfgswbXir8BTB+jWxDCcqxV6Qd1XZdLK+7es/ICMl8nllNTYQMg3GhEIaqYrsuc5ubyVkWluNgOQ6GphHx+Zjb3EzES8194OyzqQmFSJsmh1IpvrtxIx8PD5P0mOk7589n20UX0TM6Kv7tkREAon4/ZT4f182dW5SPh3Qd36uvCiq8++5SKldjowDhgYEjU1oHBwVcL18uUdirVgnSTCRK0vKVK+WCqCA3r6k5MjK7pqZkKLYsLzU8KGFiKHDcfwhr3dgmIHf7KmGbt66E6AQI1cDoQQiN84LMrgPHEq+1PyrScRxhsstaoGYG9L0hy/jKJEE8OgXMhLB3+aSw4MFxwnCnD0HHzQL0G1pR9BBWzuTOO4/cHbNmlf6tFStkDqG3V4ByOCw29UympIyvrRXM2dQk5Mzrr8s8w+rVMgehKLIbIxGZ37jkElHWb9smu8x1Y3R393i1RyZP/eUvVFdWUVUW5Z7Vq3niD7/nhY3PUZHIeN1deUyfzu4PPhQ2Optn2/Zt9Pf3M3nyZEFax08VYK16svyWegHbk5sEWBd08OVhqfsqDwvLbdtg6Ki6TvUJJ6DqOnoggGtZDOzYUQQyqqZJBZei4JgmjmXh2jY1J50ksu/KSsx0mg8feQRfWRmKplHWIEFaBda7MDSfD1XXiTQ0UH3CCUeAJdd1UTQNVddxVRV36vFg5eFQt/RUDw+Ir9p1BVi/87qAaseRTutoJTguFdHy4jrx4REUXSdQXsHZ31yC0rUbUJg9ew77DuwXVry/lztXruCOq/8TX10DlFVQV10p7+Mpx8nvcl1wbWwrX5SGm5lRzLQkfQfKx2Hl06RHelB1A9vMY+ZSqLrB1HkXFL3WZiH5O5fEF6mWBG8PbHPYfnJsi0BZDYqq4ViyLcfKy7KeeihYWS/S7VwOp+MV3B3v4LS/hDL5aNS2MyEQRFFVnI5XBPi2v4y74x0u/PKXmfCJadx83/388psXeOu9jBIKQy7HT1au4NzJzfKcpvPIhV/hll8/wcTjT+CY6dP50de/RsPnzpP3Uj6HOzKM2jQBZ8uruDvewXVdkskktbW1DA0NsX79+iIIDoVCJJPJYpL3nDlzSCQSaJpGe3s7jY2NjI6OcuDAgSLLPTIyQiqVIp/Pk8/nsSwLx3Fobm4mGo3S1NTEli1bWLx4MR0dHQwPD9PS0sI999zDunXr+PP69fhDIUC0NTUzZvDr557jtbffZuVvfsOBnh6enTat6KVeDlQhgDoOPI34pZuA+5CgsnpgFzAeYakvQMLMHCQlfBCYAVixGM09PRz0rhYee+op1OpqVEVl5xs7OdAuKfpPP/M01VXVlPnLMPeZzDhhBr/74+8AeOTHj9DQ0IDeraMaKkM7h3jmomeI7YvR+1YvO36/g3wqD5rUa+USOfLJPOuWrCN+II5jO5gZk+E9wzx35XOM9owSrgmz5e4t+MI+YntjPP2tp0HXiCWT9HR1CeA1DJ565RWqKytRXZeeQsUC8NS6dVRXVlJVUSEXGyAnPseRkLKCF0ZR4K23SkGbjiMnxqEhmdR13dL6Y+N/fYwx12NjbIyN//PhpCG/R8Cu4vPYzaznn86LvNu1BWS7KSR19g0BwmoY8etqoAZFZu5m5bHEb1JKKHY9CbgEvgDQd/FhLOjPZN3MVjDqQavHVsr4eHeWaNTPn//8Ea+9doCf/ewcMhmTsrJS9/XoaJ7rrnuBq66aTV1dBF1XcRyXUMhgdDRHLmdRUxMBXBzHpbNzhB//uIObbmpl0qRKHEeYa9O06etLMnFiBaOjeXp7R+ntTTJrViOhclUsUK6D7djoqoaqqPz45cf42kkLCfn8VIaiKMBgcoQHOv5UZKIvm3selmPTGK2lO9ZPX3KI4+umoKsa8cwo27p2cMZRszA0nZyVR1c1bn/pl6z/qJ2nvnk3D/7DtsZFKtHcFCElBlqFTHQYE8UPXdzfJqRfF+m4VgX9V0ugnHG07HtztyS7e6C41GGteOntK2SyxDfVO46OHDdF945tVp6z+sHcT8Z/Bh8Px+hKJJjV2EjOtrn+xRdZ3tZGU3k5yXyeoK4XAYLuhTcVGO5kPk/YMOhPpUhbFnWRCH5NY8m6ddw5fz7XvvBCkYW+5bTTUBSFxrIyHNdlIJWiKhTC5wH3vG2TsywiPh8uwpzPra8nWlMDf/6zMAGHj5xUnKEopXJn05SLm9raUh/VypUSdtbff2Ry+MCAoMuuriMp3smT4cMP5fWZMwWN/vxBCRVL9Um3dfIg1M8C1Q/5BPi8CS5F/JjkPU21L+Ltf807Hqrcu67IwQ+9AfVzxLvdtw3KmqXX2kqX2GktAIlO8V2feqdsd9cfZflT78RRDF7cVM6nTvEVsabfL9d1nZ3yL994o5D+mYzcCungXV1yu+ACwaMDHklaUMSn03D99cJeH3WUpIUHg2IznDlT5i/CYQlPu+GG/XzzG+eRyWRQFZWamnHcdfsdjEvlaT6jjcmTJlFWVgaui9/wsXXLFtKJBPPPOZv46Ci6phGOlPGjZcv5zNx5ElTmOLC/FyY3/vM5MJMTIF1gvvOWyMEtGzQFTBu6+7Gaaxnt6mLHww9z3Le+RdmECVjZLJphFCu2XNclMzCAEQ5jZTKYySTBmhqMcBjXsrCy2aIsHMdBMYxiAnmBlc6OjKCHQuiFne9K57WZTqNqmjDdioKZyRAMB1FMU4LI/v4O1DTA5GNlvWwaDnZC02QJNAuGIDEiIFtRufDbF/G3zZtBVdnw5JNMn9AkoWeBEAz28R+Lz6Nqxin85J57SLyzleq2M1m5fBl/elZCoa6+4nK+vPjLJWm4qmGrCo5dYq4bpn2mmO5dSAgfN/lTGMEoZmaUwc7tjJt8Cv5IZRE4F5K/J5z8RYLRGmwrj6oZwk47NulYH0YwgqoaaIZffN+2Jc8HIuj+EH0fvcb4Y9vQDB+qjSR2F5jrtjNRyqK42TRKWKThbnxEQs8KzHXbGRCK8KsH1rD2+Rd55rJvoradgRuPccdvf8+69evZeNVlRM48GyJlfPWCf2fRhAYuWHYTnQPDfPqzn+XZp5/mExOaUQJBXE2TXu+RIZz2l+Csz5HXDdLpNK+88kqx13rhwoVks9kjuqgTiQTl5eVUVFQQi8XQdZ3h4WHC4TBbtmwpLtPY2IjrujiOQzKZpKOjg+nTp9Pf389RRx1FNBrlL3/5C1deeSV79+7lnnvu4fHHH2fDhg00Hn00u1SVPoRJHu3tZVp9PQbwyCOP8MOHHmJk+3YWKwoPI9Pme5AarWWI/7oWWALM8259CNheSakvu/Atswup5LoBMPfv57Pnn09VJkNAVamuqeHyu+5ihhbk/PPOx9ZsNFWjuqqaH9/+Y2acMIPY3hi/v/73/Lrn1wwNDlFeUc7DDzzMjBNngALrLl7HjrU7mLZ4GgvvX0j31m7qT6pntGeUjlUdtN7QSuWUSvnMeonhjumw/tL1xfUWPbyoyHCvWyLb+0HyexzYs4fzv/lNOT9ls9TU1nJXeTmVV1/N+TfcQGbvXtTaWmoaG7nrsss4MRyGmTO55NprWf/CC/QdOkR1NEpZPs/uXbvkO8fnkxNnQc6jKOKtmTtXVFT33Sfy8bHxPz7+fzHXY+B6bIyNsfF/Puy410sd9mTC5XJh79qSFo1DERy7Oci8LT7cQviYawnQ0qoR4GyWnrc6YejHwnaaB8V77TtWpKxOHvJ/FxBXey/YA/Jz1TXCxoZasWyNf/+P57juurk0NZUTChlF+fbhUnGAJ5/8iM2bu7jlltNoaipn794YK1Zs4p57ziIclotRy3IwDJVcziaTMamsFGCZzVps29ZNS0uUQECnpiZMX1+S/ftjnHJKA4ZfIetmcV2XdD5DVViSjFVFxfHSQ3NWnoyZoyJYhqZqHBju4xfb/8rFs/+NxmgtAAOjQyiqSt608Bk6lcFyNFWjOzbAYHqYaXVTcVwHVVHJWXnu/NvjXPvpCxnJJHj09af41szP0RitlZAb3UVxEt4xi8jEiGsLS63VeuDMESbaHoa9x5YmMbDlWBZT4XUkYsZbJ70Zer4Ikc95snC85UPez4VJkGbZhhMjrkyj/cBBasJh7tu6lTvnzyfi8+G4LrqikHecImutKwqW66IpCmnLQlUURjIZRnM56srKeLu3l1MaG4lns2Qsi5Cuk7YsVmzaxPXz5lEfiRD0EsLry8roHR1lZXs7y1pbCRsGYZ+PsM+H7TgMpdOkLYujQyECF10k4BhEetfbKzRsU1MJLE+dWgoy++gj+I//kJ9nzBCU+NZbQuUWPJGH+2ULDINlCTCPRgU93nijAG3HAcOBnnaRb+dikI1D5hA0zJVjFu8Uv/Spd4rs20zBwLsQbgIjIHVcTh5ShyR1PJ+AfByCtQLUt6+CtjuE1TbKBGxnBoS1rpgikvBQDaBAz2YIjYdwPS4qBweiDMYCTJwoEm2PyOK735V/Y/Jk+bevukpuwSCMjJTmDny+0hzEDTeIvPvQIbENzpwp96tXw4MPCmg3zVKWlqLItWXh95aFbVTbEl94wX6azYv8uyAD9xnily7UZuXy/1ytVahFK494WmEHOg9KJZrPENm5K7uDeFK2begSetZSDz4ddndhhwPYlWVsu/VW+jo6OOuPfyRYVYVr26AoJVbZ82EXJLoDb71F1fHHkx0aIt3bS/UJJ6D5/SS7utj5+ON88vrrpS7Kk4XnYjH8FRXi2fZC0vB8tIqqkuzpIdPbyzhPKq7rGkp/jzDHi5dAMiE/LzhfAsiCYejtgo1/lOfGN8p7tLDO2V/mV395hj889RQbvnyWLFPXxMqvfJ5ndh3gpSfXEnptHcNzF1B9wsncevV3+cF132Pfnj3M/cKXePbXjzFj37vw5UtgNA5/W4f9lUtkfyoi+XZsi4HdW6n/xOlY+QxmZpRwVcMRNV2N0+fLMVYU8ukYA7u30TB9PvlUjMHO7dQddxq2mcXMjBKqkLBFM5cUgO3zY+dzaIYf28yhGj5c20bVDVzbRld0XM/3Xew3L1wu2xauokg/dcGvnEqCP4Di94NlEaoex4F336a6uYW7772XP/zpSV7YsIGKaDmuojB06BBNRx1NNh7DTSWxH72Xrz71AvPP/zJLll5BsfIORJ6ey+GURbGRSq2C1LutrY1oNIrruqxfv74IuGfPns3rr7/OokWLignitm2zYcOGfwLloVCIVCpVBOy1tbU89NBDDA8PU1FRQSQS4aSTTuKKK67guOOOo7KyUjqxKyro8ft5Z+tWQsCdt97K2t/+FsV1Ofq447jq/vvJNzczCzF6WcCVwEzgLKDR+ybZ571+M3ANcDclOfhDiHz8p4gv+2mEBZ/trRdBvNmFKw4jnce1HMyUia/ch2sJCHYtl3WXlMDz7Gtmkx5I0zKvBcVQSB1KYSZNNq3YRNuNbVROrsSxHJK9SV65+ZXieuc+ci6x/THiB+I0zmxED+nEOmNsuu2w9WwHRVXk+RWb+NLPP4uyZ4/4XWbPlvOLl+ZfzOU45hj43e8k6btwYivMNk6YIN8P+bxso6VFzk+GUQrOPGxSjS1b5ER6zDFjfut/0RgD12NjbIyN//nhpOXL3814jPQJHqjWKfo0ceWxonhBY4qANsVHsasalWJ9l+sKAMu+J6nTvonI16UtAEL1vEMFphv3SJ/v+DWAi0OQN99O0N+f4vTTJ5BI5EkkcjQ0lJHL2TiOi8+noWkKvb0JwmE/4bCBrqtceul6fvvb9zl06Bp8Pg3Lcti6tZv6+gj19WUkk3nGjQuRzVqkUnnGjQuTz9v4fBoDAynCYYOyMj+jo3kiFRqK6mI5NqO5FEEjIBdhikIqlybsCxL2BbFdpxgdpnudqCW2WyTQuqoxmkuRM038hkFlsFykpI5D3+ggP9/6V7496/M0V9TRPzpEVbgCXVWLXdcHY/0cSg7ROmGqgGvF8GTduhwLa0h82KUDLPs+vQlCs8HJSo91aK4HDPOeosA7fm4BNHrHBQf6r/e6sZH1+6+V7nNrAELzIL2FjP80UqbL0mefZV5zM1867jj6kklWdXRwo+ebtl2XlCmJwpqq0jc6yqTKSjKmSdAwMG0by3FQFYVYNkvE5yNoGKiKQn8qRWUwiKGqxX182fr1rF6wgCuefbbIaj+8aBGqouAU6nE8ZjzgOPgKaXeWJe/lSy75Z6/1gw/KRc+kSXLRMzAgFz3NzXKhczjr7ThywbN7t4SarVkjCHLFCqFpJ08ueeksS+hbKwvBFCS7hLF2HYjvhzfvEn90skeAcnmLMMrhegjVihRck3ogL9lJWOxc/AjfNLFOmPqFI58L14vHOlwv4L3gzVY06NsKDXNxUYglA+zdLxdwP/6xMNITJ4pCsadHlPHXXSdzDWedJQz29u0SYhYOy/Vgdzds3CgS7/vvF5K/okIeNzcLk11ZKbtD0yRtPB4XUkZRhLQZGIBJLTZqLidgubmuBITTOTkuZWHYfaAEpEEqtxprIeD33qsujKZk3a4+2U7AV9qH4EnCHQHRIAA74Ic3dohs/KgJIjvP57Fcm+zgoMi8x43DSqUkt8HvBzw8qetkhoaws1kijY1FH7WdzaL5fLiOI/VF779PoLKSYE2NbMPnwzFNNMMgm0hImngBrB/Ghhvh8BFgW1dclEL/9I8egad/Xeqi/ty/Q0X1kf3UX75UWPnf3l967quXExxXw8HFbVS3ncldw/D7J57gxbVPUPHq08Xlyr53O+9efwmTv3Mj/O4Bzv/rayyoDnKRP1P83c5Rx5P71CwG9ojf2heKeucTB8StCq6Domrk03EGdm+V5YLlxW8aiksqRRb7qNO+ST4VQ/cHGex8k5qps1BVHccxGdi9jZqpMzEzSYLRWqx8xtvuTIxQBartyeoPn6xQFBgZFA/1YWx1DI1MKklDYyOg8NRTT3Hl5ZfReeU3+MnePn7/zg6e/9NaqppbBDAP9WNufpX6JVfyxyee4NPz5tL/5BPMXP5Dnvjtb5hz3DE4m15CbTsDpaK6OGGS91RUlmVJQJ6moaoqQ0NDJJNJysvLaW9vp62tjXg8TjgcJpVKUV9fj67rqKpKLBZj06ZNtLW1UVlZWZSI/yNgj8fjRKNRdF3HNE0SiQQTJkxgaGiouEy4thZXUbARv3QW6a+u9r7hXaAXYaGXI37qBNCDMNDLEWba09Swl5KPurBOC/B7BIwnD3v9Tu/mAwzv91cBwXgWRVc80ZSLlbPQDA1VV4ntFbDbuqwVI2Rgpk3aV7bTtryN8pZyVF0teq5dx8U2bVzbLTLXbTe2EW2JcqD9QFH+3ba8jYpJFbiOi6qrOJZDajBFqCqEaqi4toufHEp7u0zINjTIub0g2bZtkfOk0yL7LtQkFGRAui7fJVu3yslw0iS47DI52ZaXl1oHCuy1qsqJscBsj41/yRjzXI+NsTE2/gVDl+7qzDYInizspDWIgDKP0nHSwkjbcfHuurYHrKF06nEoir4KHcmh2SJVtgYFrKXbId8p4WYgDLZW/g9+7Rvlbzp0NYq1l5GRUZqayouhY9GoH9t2GBpKY9sOW7Z00dk5QmNjOaqq0NeXYnQ0z513zmfx4mkEgwb798dZuvRZamrC9PaKbzuVMrn00vUEAjqZjMnQUIpQSPdCoCN8/PEwigLBoI6qKGQ9ufa4cAVBw0/EFyTiC1ATqSTiD9GXGOK2Fx6lJzHAuz27SOUzpPJZDoz08W7PLkAp1m5VBsupjkQp84d5p2cXffEhDE2nOlzBzWctob5cwHHOsshaefYN9/LD5x/hYPwQh5JDVAYPk4dZXbJfzd0yQeGm8ZCFTIT0fVdk3oETId0BakAk/X1LJQ3eNb307/1ynBRXJlr6vydqAjUiNWrWAS9VvkdS5Yfvlj5sDAjNI+jsJKSbxS7q0Xy+2Ed9IB4nkc/z8fAw3924kUOpFEFdpyuRIJnPYzoOu4eGGM5kCBoGPk1jfCTCoVSKJevWFT3Wl61fT+fICK/u38+ekRFWzZ9PLJtlWWsri6dNY1lbG5qi0Dkywnefe67IHiqKwpBtk/ekuEWf20MPyUXOvfeKnnn5cmENCh2jmiay8Pp6Wf6EE+TCqa9PtqMoghInTZIIbNeVBPGf/Uxeu+IKuSjq7JQ4bIDaamGkG+YK4HBsiE6UFHA9Iv7ryqkCpuvnQKRBQLLqO+y4Ir5q1xXvdbhOPNYNc+ET/36kl3rc8bDtdmG8XRt073frAWGFG9tEnpzqocI/xLRj81RUSHBtY6P8G4FAyXK+ahWcd57shqVL5d91HLj4YkkX371bCJs1a+TacNw4qeeqrRXgXVYmBM+rrwpG7umRzLi+PtndhXUAAdYDIwKMQZjrg33CLqsKTGgQljnueRWnNAuQNk0BzKoiILyrT7aTNyWo7OP9IgUvlHQbeunzFI2A3xCPdqGiK+BDDfjRAgH8lZUEqqpQgMzgIMN//3sxuXvw3XdJdnXhj0YJVlfjWFZR2aAFAsU0cIBar7PaCIXQfD5hoQMBAPzl5cJ+H7a+4nm6HcvCdRwB66oqCd0LvywgORiCc74iP3/2fAh6F+iH91MbBrHeHno+9Wl57uyv8NSfn6S6ehxVrWdwT3eKJ9au5YXnn6di4uQj1v3q+efxHGWQTjE897Nse+ddTlh8Yel3n/0V3OknM7BH/NYDu7d6XmmHfGaUng9eEgZZUbCyqWItl+4P43gp4mYmQXq4mw+fvx8rlzmiFztUWc9g55vFbev+IAO7t3mPt6H7gthWnoHdW4vPFTqoyWe9SSkBtwqAbqCMb8Dp8HzQ8Rjxrv184ayzOOHEEznx5JO5/6GHeHrt7+mpn8B1jz9BLJHgjPMW88lZs5nd2orT8Qp6ywR+/+D9XHv5ZXxy9mw+8+N7+c53vsPcWbNwNr0kfu1NL4FlYm/4MzYQi8XYuHEjuq6jaRrpdBqA6urqYtf1vHnzqKyspLGxkVQqRTQaLfZfO45DRUUFixYtoqKionius20bn89HdXU1ixYtorKystih/eijj9Le3k5LSwsAlZWVLFy4kITXx5wEDiG1Wo2IZ1pBvNQKcBBho7sQwB1CgPVaRB5eMCQVXpuLBJT9EJGaa0iy+HikqmseArzneFcaA4gXuxo4ACi6Qj6RJzeaw7EdjKCBasj1RsXkChY9vIiqo6oI14ZpXyk1W5tXbUbVJJwsn8yzYekGEgcS5BI59IBO9dHVLHp4EZG6CIqq0DirkS13bylVctkuXR1d5BI5FE0hPC6Maqjk4jlSQynQDdy2NvmOsCzJ5ihUL7qunODGjSsFnjlOyUMzOiqzka2tcnIFmDNH7nftkoqG/fvhBz+QE2IBtOfzchsb/1fGGHM9NsbG2Pg/H04SUq9KFZM17Em+QeTBr4PRICFj+jj5BrT7RTquFpJ5PebatT02yPNbYyMrHP6YEuOtRf/h78gDOWFO+y6F0d9C2WJ2DN/OD297i0cfPZddu4ZYtaqDG25opbs7QV1dhNraMN/73gtHvH7ddXM55phqr5LL5eKL17F27Q4WL57GmjULCQT0orzctt1iSFouZ3lkpIZhKOzdG+NHP9rEo4+djYuAKfsw9jpkBFCUkm94/YftvN29k6+e9FkiPpGcH4z3Uxks4/E31nPRrC/QVFELKDiug+04qKqKaZsMJeP8cvvTXHXaBSgouLiEfUEOjQ4d4bm+4Yxv8kHfHuZNmIxqeYFwVdcI2B1dC5N2CcAeWgnVN8hxGV4F4+8TAD18t3iv05shsxnG3QJ7PwGN645Iai++Pn6NqA36Lj0sCf4WOY7GREhvk17yviXkA2cy5PsyYZ+fVD5Pz+goqzo6uP/ssxlMp7nttdeY09TEF487ruiH7h0dlXeJohD2+ej11lne1kZXPM6//+Uv7PvOd4rd4W/09HBKYyOWbRMyDGzXLUBODFXFchyWrFvHdXPnoqsqK9vbuaG1lQnRKAYQGR2Vi5YCe9DVJRdKkyeX3osFmZ5lCfVaXl6qSNm1S7TNP/2pgLOtW2X92lpZJpOR9XVd1m1pkXqvefPgS1+C8hBkD4qEu8H7rJlpYZjrZwuzPfAe1M+U/d7TLt7p8gkyWVKQ+9t5AdjpfqnbmrlMtlk2AcLyHiMXAyMCmX4IN0h/doG5jjTJerOWSxhaug+MMiw9SsaKkEjIbgqHhWzZvx/uuksU7s3NQvo//TT86U+ijvztb4WdvvJKud486aQS2/3978vPra2ynRUrpJnm2GMFcD//vKz7s5/J9Wc8DkdNsdG8lPxCYjgfH4D+4VLCd4HFLg8LS62pApoPHhJvdaGw27RLaeJeOjCWp7DxG0eeh1zAtEos0sFDMLkJ27awLYttt97KSdddhx4OM/D224w74YRiTZfruozs3Mm46dNRfT6SXV2k+/okCM0wGD1wgI9+/nOmLVlCpLkZM5UCx8FMpwlUV0uj1cgIgcpKrFyOd+66i2MuvLDk2XZdrHQaXBczlaK8bjzK7+6HL30bsin4+7viuZ5yLCiq+Kt9AQG++Rzs3QnRKvbHk5z/rW+TSUmYWM24au5auYJxPoPmk2eJpz0SgZFB/JEIW19+ESrHMTQwyDcvu4zO3btBUbl8yUVcftnlEnimG6CqOArksqMlRjokMmerEDaGgpVLYQQjDO55g7rjTuXsRZ+n79AhVEXFr9nc/9CjRO1err3jMT788EOCgQC1tbWsuX8NExrGMbB7G19acjOmaeG4Nrn0KLv2HGDzy+s5Zc6pWPm0x2bL71dtFxe3xFyj4MaGhFFu/QyEIzgbn0Y7+4vYG/6Mu+MdlGknop52FkpZuexLKDHe+SwKCvj8uLEh0HScVzbKetM/hXbOl0pS8MLvaTtT6tByGczKcTyzbh0TJ05k+vTpR0wC5vN5jMP8+67rFqXghfvC8oVlCj/HYjHi8Tjl5eVFD7bqAbREIvFPLDfAhg0bmD17NmX19exRFCZ5HwMVAdvvICB7ElK1FQeiQBklGfgKhJmup6RhgxLQVr2b6T3u9dZZjQDqegSwrwKuA44CLgZ+Fc8CYJs22ZEsgYpAEVyP7BkR7/SyVsoaynAsh1wiR1lDGXbOpnt7N+NPGI9jOfR/0E/z3GaRd++PkehK0DirkWwsS2R8hFhnjM13bmb+nfOL+9Rf7sfKWvRs76HuxDp85T6pBsNGSyVQQiE5PxTyOQos9d69ctK7807xtziOvB4MliZkC1JxENA8MiKzkjNnykxkZ6fULzQ1yfZuu00mfo89dozB/heMMVn42BgbY+N/fjh58elm3jwSWBfvvRCyouy7EFSmCPNpHpQaLteVRGk1IuAbS1jRwwOz3Jzn5S7z2O3/4ovCyePm/44ytAKnajmJ7ERQfOj6kTVZV189u1ix1d+fZtKkCi6++JkiiH744UUEgzqmabN79wgrV7Zz441tXmWXjevC/v1xbr+9nWXLWpkwIcrAQJrKygBbt3bT3FxOMGhw9NFrGBm9Bp9PL/qhC/eHV2QZWuki/f3ejzm6ZgJAMZxs484tnHNcK8vP/Da265A1c9z72u+48JRFVIei7BrYT2WwnPrycXzQt4dxoQomVNaRzGcYTMV4bPszXDT732gsr8HFxae6GCRQ7B7ptzaaBFDXPSQd1UWJ/f2iNjCa/guAbIpXvv9qWe7Q0n8G0GYPBE8C65AXcnajgGqrT9LF1TKZoLEHSLjNbOoaZPr48VR6LFwyny+yRY7rMpBOc3t7O9fNnUtDWRlBXSdlmoR9PvqSySPqs9YsXIivcNECRam36TiYts1gOs3K9naWt7UxpaICy5vk6BwZoam8nMs3bChVcZ19Nj5FoXzXLjEFX3ON6I/HjZPS5jVrBOEV/Nc33CCA+aqrRAs9ZYpcFBWA8mmnHbmdAjjPZku+bRCadnBQGHGA2gqIvSnJ3npYPheKJgnim74Pn/4paIY3WeVdlqb6wUrC6AGomwW5EUkPL58ALy0ViffEBcJOgySCv3YtnHwtVEyV3+F4do7MoKSFK4rXke1C8hBsuw1OuQ47egxpM0JnZ8lWqOslO3nh+jCbFUl3IdTsuutEJfnWW3KNODQkjHRBbV9gsi+/vFTv1dx85LqRiMxdrFoFj/3CJuDmUHJ5YZ8VRVj+zm5J/XY9ybffJ1LvvDchYlrCRCsU63Bkn3h/uFrQgx82bAeSaYiESv7Jw5d1wcznsLJZMgMDwmBHo6iGgZVOkxkY4KNf/IJPXHwxkaam4u8dePNNAlVVfPTYY0xbsoR0Xx+vXn45LZ/9LDNvuQU7nyfd10d2cJDQ+PGkDx0iNH48Ox55hOO+9S0G336bgbffZvrSpQRrajj785/n0KFDYNuoySSP/v4Jjp86ma9efCkf7viAYD5L7eQpPHj//UytHQeRKKcvWMD+roNEnTykU3z9M21cdd+D8n/dtARmfwb+/QoYGYIP3xIA/tXLIRWXoL8NvxfGe1xdsS+66Nc+56tQOQ4G+sTTfc5XsMc34Xjd66pmyFxFJlGUaRdCyNKxPvKZOKGKBva8+zemzPg0vlCUP/3x99z+43vo2PwaL//tVU5oVEn07eIvr33MS69/yIsbN6BqBlYujeYLoKgaf/rTn7jttpW88/YboKg4Vh7byqHpfhzLxGeEcB1bQKgiXlZ73R+LIFo7+4ugKLiqhmJbOAf3C6iOlIvv2uUwkHwGlFeILzscEa824MaG5fUFn4d0UvqtmybI/nId6cM2DBTDwFZUhmKxIuPsuiIP9/l8JJNJfD7fEbLuioqK4lu1IAVfsGABqVSK0dFRmpqaUFWVAwcOFD3Xh4edFcB0MpkkGo0yPDxMIpGgpaUF0zRJpVIEampQNK0YOAZFIxcdQCulELLrgaMpMdU2ApwBRoAMpaCzg0Ad4qUOIQBdRyTgNiX/9hKOrOpKA1WpnDDX8Rz+cj997/ZR1lBG5aRKnrn4mZJ3+tFzj5CJJw4mKGsoI1wb5vmrn6d1WSuVUyvBha7NXdRMq8FMmYRrw957AgHe3jYW3LuA9EBaPNueVLxgI/G5+aKjpHh+GRyEqqrSZF7hnF9fL+f9wvOFe1UVb80nPymg2zTFThQMlgI0r75avnu6u+Hjj8WH09RUmuQdG/9jY0wWPjbGxtj4nx+qTzzQoXkCksxdnsy4y/NXFxcEa0T6kRVPVquEJWXc6gcsyO+WRc29AuRcS0CCm/WWUYUFx/E8vf/136P4jsWpewRbO4oDXWkuuWQde/aMsHr1Ai64YDr33ruACROiPPTQOYRCBpMnV2AYKsuXt7F48TSWL2+jo6OLv/99CFVVqa0NF9exbRfbFr/b7be3s3btDlaubMd1IZUy+e53NzJjxnhaWqLU1obp7/8ePp/Owdgh3u3ZRTqf9apxXC8xXCFoBBhMjHDbC4/Slxjkk43HFH3Yft3gIq9m66rTLqA73s9tLzzKYCrG8fVT+MXWv5LMpZnRcDSaB8Qrg2UMpmOYjsVQKk5zZR3XfvpCqoLlXk6QQt5RsJQornGMTG4YU73wMZ9Xl7VY7pUgGJP+4fnloNVLIrxa5oWcuYdJ85cL6NZqxYOPXwB13cPSU953mbDjSphicpExBU0N01RezvuHDpGzbRRgIJVCU1UCuk7E5yNsGFw7Zw7lfj8+TUNTVcr9fgxFIer3c89ZZ/HR0qX8ZMECQp4Pu/3AAfbFYgB0dHXRMzqK4bHSa3fsYMWmTaQti/5UCtt1mVxZiV/TSnLx1lZ0RREZbaFG6+67BQUODgodGwwKtVp4/fbbhUJdu1aY6gLIv/deWLBAlnv6aQHW8+aJPvrll0u6595e0U7n8wK2Gxsl4CwYFIDsr5CLLE3qm/BXQENr0RNa/My5ljDRqR4B5NlB8U8nu+WYfWYNHPtVAeh2Tlhq15FtpftLE2EF9s0IS5BZfL/UdqmG1H41ngpvrkbFxnEEWM+YIfa/REKuCTs7YdMmwVzxeKmjet482UWhEJx6qsjI6+tlzuKCC2T3gqz3/e+X6r1WrChJzT0rMatWyW7VVARYG4aA6IJM/6gWYaF3HyjWcGE73gocKfFWVEn+LrDaruvVa3kTH7ZdukCORuS1fT0CqvNmsdYLBVRNRzUMwg0NhGpqipJvM5nko1/8ggPPPceHjzwCwOCOHQBUn3ACHz32GAeee44dDz9M9fTptHz2s0y75BJUXUczDD76xS8IVFWx45FHivcHnnuOj37xC+rmzuUT3/42RlkZiqryxG9+w5tbtvDgOefwGUXhG9/8FiRHWbLwTHZ+8AHv7trN5//ti1y09Ephqn9zH1gWq++6k3c6NvPOyu9z1V33ilw8GBY593kXwWCfeLWnfALO+7bs57IKqG2AC78jHdm5jKdcsuXx16+C6lp5v774F/Flr/894KIoqgBrT35dkGmbmSSOY9Gz42WMYIRo/TEMdm6HZDeDndtRFIV0VjzI/kCQhZ9dQO1RIgv/zMIvsX//fjLxfgB0fwgUlXw6zoM/vZsL//3LpIZ7yKdjOJbJx68+Ru+Hr0iXNoBllWT2ioK64PNoS69HXfB53ELY2MgQ9oY/o0QrUKpqcPv7cIcHwcwdIe9WFAWlLAqWidO1X2wVFdVoCz6PYvgkdTwcERY8NoTnL0Lx+UFR0eAIwFxglwECgQC5XI6Ojg527NjBpk2bsL2APMdxiMfj7Ny5k1wuV+zDXr9+PUNDQ9TV1REIBGhsbGTLli3s2LGD9vb2YgBaPp/HdV3C4TDjx4/n4MGDGIZBIpEgOTJC2nXJIsA2TylxpVnONEUJeC/QiQDi3ZTiMAeBMNDtLbcSkZivQqTlIKFlQWA/cBmSOK4hzPdi4EY56zEARc90pD6CETZoaW3BiEi399zr5/K1DV/jnJ+dg+u4bFqxiR1rd9C+sp3QuBCb79hMLpFjx9oddNzZ4TUWujS3NuML+whUBrCyFlbewkybR2wjF8+xacUmdj69k3hXXLqwXVm/GGRZULYUugcdR06Uvb1yPpk82QsO7JeZyIJMPJeT2+zZkhS5Z49sLxiUcIslS0Tec8UVcoKcO1dOsDffLCfgMXn4//oYY67HxtgYG//vhx0XNjK/Wzy1is8LJksLoNbGexf+jjDWStgLzvKeK8hV0QSkYwlwM/d7jOcNYPaK91f1JFVq6L9mr70Rj2dZsqQk6X7ooUXoukI2a7F1azctLcIuV1eH0HUVXVfJ5206OrrYvz/GF794HIGAXpR9+3w64JJOm//AXLcxZUolr766j+OPr6W8XFjGQqWX6ne4/aVfcP1nvoHruozmUlSGyovstYIEdO0d7qHMH6IqFGU4HSdvWlSGy+hPjhS92j98/pGixPvyuecR9ofw6z50VeW2F37O+o/ai/JvXdWwXYcdfXvoih1iVsvxjC+rpjvWzy+3P821p3+VioAPxdxbqs4yJlHyyxterdZtwjjrzeKptobEe+0kQY2CkxJVgTFRjpvrQuL3kGmHugfB3OPJxZfLpEv3IgHhdY/KNhQfoJGw/Gw60EVNOMzdW7awrLWVcaEQ5X4/nSMjHPRqukayWTKmSVciQXM0Wgw70xSFzliMFZs2sbytjZpQiO9u3Mg1c+YwkEoxq6mJPcPD3PP66/zsnHPoSiRYsWkTN7a10RKNsi8WK6aGT6msRAFM18Xw5JQ+28b38ccCjH/wA0lutW258CkwzXv3ykXNsmVy0fTd7wqgHhg4Uu6XTsM77wjlunKlyPbq6uS1XbskpOa660TKl0jItsvKwFDkGORHxVetGtC7BcadIF5sRZeEb9cuBY6F6yUZfGSnpIGf8n2oPNqbvHLhlaugdYUnEb8dTrlO+q1HD8Dba+C0u+EITsrzeqOIekE1vIvHLK6vgmRW1Cajo3IrK5Pbpk0Cpu++W3bPuHGyC2bOFJxrGLIbLUuImULmz7ZtYi3MZOT6MRqVP7u3V3bt6tVyatG0UtBZOGijOo7It3WtxFL7fZDwUsADvsPYZe/CN5svJYb7DpN8K4r8cYWk8KBfjn3eEk92S70A9Q92w9wTxZc9MCLea4/RNh0bpyDDdV2pzAoGyfT389EvfsHxl1yCFgjQ89prjDv5ZMqamkh1d7Pj4Yc5/pJLiDQ341gWqqYVt1OQjv8jcz2twIKrKtnBQYyyMvF2axrJri7u/M532NDTwzsvPCvVWl4H9BvbtnLe17/FvuWXwjuvc/obB/nu967jC1/4AtiWTDg4juzkwnv+14cFnn39Khjo9ZLEvwLV42Xb6SSEy0tKgMG+0jJlUfjDQ3DO17DrGnCsPIoq+RVWPoNjS+hYw/Fn0LvjbwQr6ojUTMQIRIqhZjfc+TivtW/BdR3++JtHOWXuaaBo5FMxfOEKvvGNb1IW8nPP3avwhaIoqoZrW2x/4Xd8+ouXsGX9Lzn6pM8wuPdNGqefSff7L/6DLBwU18FVVDHdxIaPZJcdG3v9kyVp99n/BraN030AZcJkGBnGaRd5t1JRJZ3bqoZimbJMeQVEK6ST2zKxn/3LP8jEXVwFFC9MMa/pjIyMFOu2KisrcV2XVCpFKBTCcRy6u7uJRqNUVFQcsWwikaC+vh5VVXn22WeLieGnnXYaZWVlKIpSZLhbW1uJRqMkEgk2b97M/Pnz0fXSBFR3dzeNjY3YgQCmouBQYpVd72fP+FWs3rofWEqJaX6UI1ntoxCAHUVk5eMR5joMfOz9/J3D1v8RIg33rh5wEfY7msyBC1bOontrN5H6CGX1ZfijfhzTwUyb9L3TR/PcZsy0iaIpaIZGeiiNlbUIVYfY+N2NLLh3QTE+Rg/qpA6lCNdKqGohqExRFUY6R2hf2V5kruNdccqbymlf2V5kv32uiVLwrhRSGL1aQDo75YTn98t3yuiofMZ27IBTTpFlDMNT+dlyMrz1VjmhggD1P/9ZgjPvvVdOkAVbUUEC9OijY5Vc/8NjTBY+NsbG2PjXDScDTg6sfR6QulGYTTcNuJ6825a0aDWIBJ2lZF0lCNYeGFoD41d7oVgIO519ywNjF4jvV/Eu6F1TfNdF7/Y/j0zGZNeuIVauFAB81FGVfPzxCCtXbuKaa+ZQWRkgnTZZubKd666bS0NDGRUVAWKxLIGATldXnK6uBDNnNmIYKqGQgc+nk89bRWl4wXOtKLBnzwj33vs6q1cv8BJcFXI5m2CZSiqfIZYepT81zIyGowEOk4gruC6807OTT4yfXEwDryuvJm+b2I5DLDNKwPCRMfP8fOtTLJn9RRqiNeSsPB/07aEuUk1FqIw7//Y4F8/+N5qi47FdYSw0L3nctG1M22LnwD66Y92cf1wzil4nVVupl+R4heZSSv7Ow6ErSlLvuocoXr6YH8PQaqj9cSkd3klIYNnQKpkM0WpE4m91Q+p5Cb0bf6/IxwtA3tzlLb+MlHIMGdth6WFy7DULFzKUybBneLgIum9obaU7kWBcKMQ9r7/O/QsXsvTZZ1mzcOERyd+3nHYan3jggeJ2DFVlc1cXzdEoUyorSeRyxLJZKgIBQobBknXrjkgNV0B6s02TqZWVhArBMrGYIL9CeXOhr3rLFkGBiuKxylqpK+ryy0Wm19Ii61dWCkV76aViOF68GB54QC6qNE18dB98IGx4Z6dUfrW2ShWXplFM+8bxGNakSLkL/dOqJqBX0eCly+GM++GFJbBzLXxrl/i0D6/sUlSp5/p9Gyx4FBpbobsdak4UKfi2lZJGXjZBfNfpQ9AwT94Ldl6k6Ip42IcTEQKBkkT7uuvg6KOFcFm6tHSdd999ombs7xeCRVHkenF0VGzq774r15SmKbuzvFyIlyVLxHPd3y+7u6vryMOwZw+Mr7FpbHBRCvVbZWEB2j79nyu5ysIlkL3rMFBceD162Dmmb0jA+dETSkz1wIgkg09tEUb8qAkeAD1MEJi3sBQX2zQlF0tRcC2LoQ8+oOKoo1A1DT0UKiZ7Jw8epPKYYySIzPNJWtksuC4jH31EqK6OdH8/tSedVKzgMsrK0Px+7FyOoffeI1Rfj+49jjQ1YWWzXHTFFbzy6qvgOGx45mlOmDatpNV3Xf7j4oupKivjJzdcC4lhTr/kO/Tt3YNRUcUnjp/O7T+4kcmTJolHur9HGLPD5d9VtUeC7a8thd/dLyB6ZACi1cJcH77Mhd8pvmdtTcU2cyLb1n0ew6yUrCFWvtiBXTNlJka4ohg65rouj//616xd+0f++OufEayoB0Xljjt+zLp169j47Doi5VHv/ObiWHl+9KMf8da2zfzxyb9gZkYxgmWSUH6YN1l1wB0ZxOl4FXX+OSi6gZtOQTaLs+WVktQ7HhMAveDzkBrFHU2gNk+U77rCxLIqKdRwmFR8zmm4qSRqyyRAEca+IC+vb4J00vN3n4FSWQUu5IB169YVgfGiRYuK3mnHcejp6aGhoaHoxX722Wd59913i8sW/NcFED1v3jwinmTY573fEokEnZ2dTJkyhVdeeYXm5maOO+44eTvn84TDYeLxuPizjzqKjxWFu5Dk7pCcGdARFls97GYj7Pa13m0iJVn3OoTpXoGw0JO85QcRFttCpOB7EGa7sEwnJSl5LeLtnpjM4VpOMaBM0RRwIbY3xuZV4pE2Qga2aeOYTikJfHkblVMqMdMmml8DF/LJPIfeO0RZfRntt7fTekMro72j1J1YhxEyjkgldx2XzEiGUHWomCaeGkjR0tqCXzVREglvBjDsve9VmRUssNMFdrswoVeYvC1MaolMTu4jkZLSqbdXJD2FwM1MRk6au3fLhO+NN45Vcv0Lxhi4HhtjY2z8a4edgL6LBYw1bhCW2YmDJr2ipcAyPHDmdVgbUzwWNAy4EoZlNHosqi2PAyeBPQjmAWHG0T15uf+/Za8zGbNYkZVKmSxduoGnn97Jn/50Pq2tLQwMpAgEdIJBA8PQivWQluXQ0dFFTU2Yu+/ewrJlrUyZUgmApgnDXVhX11UiER/d3aNEIj4URWF0NMf48WEyGYtQVEXTFN7u3snRNS0MpeIMpePURqr47Zsb+N7p/4GqqqiKimlbmLZFxswQDZaTNXNoqsqPX/4V3zr58zRW1RY7sntigzy89UkuPPkcRjKjzGg4WnaxoqD9g7c7a+ZI5TNE/CGChp90bpBa5f1SCFntPbJ/h1Z6x2SysJ/WXhi6w5N610iNVt39Iv0PHC/Hof96qL4W9Ho4dOVhYPxRkfgPrZCQM62h5KcviAEP83cnxz2OC3SOjBS90F3xOHtGRvjq8ccfAZzXLFzItu5umqNRuuJxFj3xBLuuuIK0aRbXLTDXN7a1MamiAtOr6frjhx/S1tLCDw7zZz+0aBH7C8x1WxthXSfk8xHUJe0dIJrNwvCwXJyUlR3JCDzwQIk+LVwAOY6gQcuzRwwMCBiprCwFotXUCLtd6K3KZmX7pinrRSKyjUxGno8GPd+nxyIWQHbRY62UWGs7J/dWRoD2aBdsvwPmPwQvXCJS7qO+KD3XRpmsr2qQ7C0Bb19EgPvuv4pHu3EOpAck3CzdLynj/kphyCPNuBVTSGTCqKqE11ZXi3+6tbXUNHPttSLvnjBB/jVdh44OqeQC2UWKIs+3t4tEfOrUUhNN4TqzcM15ySWlw3D//QLgb7nJ5rjJeQko+8eu6sP7q8PeLysA4QJzXQDKR084ks0O+EQmfpifmkRS2OnDwXThcuowi7aZz5Ps6uKjX/yCTy1bhmoYJA8eLPZXA2h+P67jSIWWZZGNxbAzGXY8/DDHfetbAqp7esgODxOoriY7NET19OmkenvZ+fjjfOqGG1B9PlzLQtH1YpUXIJ3arsvA22/z1KZNrN+0iQ1/+J23sw1W/ngVz2x8npee3UAoGARcuu69leY97+Ge3Mb96QAPPPIIH775pgd2KXqQi35qVYH+3hLY9vkhm4Haeu/Easp7bHigtEykHP7yK/jqZdiailPwN6PgOhaKquPYJqqmo6gaZjZJcmAfmVgf9dNOp+eDl6U2K1BOeqSH8ROnsffjjwgZLg/+4nf8Ye1afnXvDUw98TPogTBWLo0vFKX7vRc4/UtXsOanP+Gs+Wd6/mcP3HrgGkBzXFzbQtF9R3in3XgM54mfi+960XmlfQE4BzpRxjdAahSn45VSlVbx/eHiHOjE+eOvUI6bIb5tWRPXNHFeWI8673SUimrsZ9bi7ngH9avfRolW4Gx6CefcxQx7bHSh31rxKhkPHjxIWVkZ4XCYjRs3Ftnn9evXFz3Y/1WoWWH9Que6aZq89NJLLFiwgEQigaZpBAIBEokEHR0dtLa2YhgG2WyWcH09W1SVmQiA3oZ0WNuUNC8xhH2OI6x0xPsmGEbCz1ZyJKu9jlLV1ipvXbzt/SNoP9xzfQvwAnBJKodjOsT3x4s1WxWTKnjmomdontdM87zmIpgO14V57srnij7sRQ8tQtEU8knxbPvKfLiuywvXvFBcZv5d80n1p4rbqJhU2q+5UfF5j+wZKTLXVVOrMJy81MQVFE9ezz0DA6JaKjDa5eUloF1QCnifX1xXlq+vL6lHXn9dvlfuvlu+S7ZsEZvRo48KE57Lyf0YsP4fH2Oe67ExNsbGv3YogZLvNjRPWMzBm+U1NyNMaCHsTG+G2rvl3rWE9Sx0YIfmgt7g+T2B0OkiAVdCUgOFW7poze/0ksL/6xEMGkSjAWzbYevWg1xzzRz+9KfzaWkpZ3AwTU1NmGg0QDyeIZ3OY3udpj6fyqxZTdx995air9q2XdJpi1gsS29vknHjQgwOZnjzzV46O0fo7BwhFDIoK/NRWRlE04TtNjT5cjy+bgrpfJbHtj9DZbCMn299iq98cgF9o0O83/sxlmNL2JhuEDAC3PbCo8QyowSNADec8U1aqsfTEx/gh88/QlfsEFWRMjbu3MLjb6zn+LopclEEqCik8hlWvvgLDsYOoasahqZzMN7PYDKGqiiMC4/DDc0VYD26VqT7Qyvl56GVgAWHrhI5f93Dnr+6XGTeIJMd/cvB7pPJjqGVoBgCoouVaIjkOzhPWG41JO8B1wXyIi+vvRcmfQS19+K4Lh1dXUyurOTeBQtoLiujPhJhW3c3hqqyvK2NxdOmcWNbG0Fdp7WlhSmVlTSXl7N42jQqAwFJGD/zTOrCYcp8Ph5etIgD8Tg1d93FpevXA/C5Y46h3O8/YnsZ02RiRQUPLVpESNf52969uK7LIY+5NhRFKNLa2lK42P33S7LW8uXCQhtGKXTGtsWPbRhysRQKSbhMOCzPz5ghj0Mh6a2aOFGo2EOHYPPmklxw1y5hvVVVmAnbEUm4Y3lSRR1iBwRI/+PIxiCxXwCw5hPf9WfWCDicuQyOOV/AOXDW57/GCbPP4MQ5Z9D26TN5O9YArsNZZ83nhOnHceKFP6Xt32/h7S0vgxFhKJbkxDMv4MTTv8iJcz7N0Qu+g95wEsNDA3R0CPvc0CDXeg0NQq5ccUVpt02YIM9t2yYAe9Ys2RWuK8zzkiVCuNTUCOniOPD3v4u0fP9+qXfdvVuuOwuH4aab5NCsWQPhiIJrGMI665pIvAsVWpGQPBeNCJu9p8ur1nIEPB89QUBioUqrUOmVywvQ3n1A7m1bthkJSRBa/rCMCQU5TxVAtufTDlRV8akbbhAW1jQJ1dURqqvjjdtuI9MvfmA7k8FMpXAsC19ZGVowyPhZswjV1aH5/RjRKNUnnEB2aIhAVRVvrFiBqut8avlyFO9CPBuLYSaTjHZ1MfjOO+C6KJqGouvUfPKT/Ntpp/G3115jKDEKhp+77lvDn9et59m/PkUo7E1yKirN/34pnHIqyqKvccXSy+ncu4+hWEz2jyY2GVRVmGwrD5m0yLw/9x8SVlYWFW/1oR7py47HZL3qWrjwu8JiZzLwhQuLCchWLkXPBy9hZhMoiipCEMMPXrd1/64OQpWN1B13Kr37PyaRN1BUHVSVZ198jYryMOWRID977Pf8Ye0f+dXqGyDZzcCebbi2zcDurbiOzQcHM1i2xdxPfYJ8Jk5quAcXFzMdJzXcXfxsuIUkPtvC2fwKSvNE0HTUlkko0z+F2namLCNL4+J6cnENfH6Ulsm4iURpe7Eh7HV/RCmPop7/ddT5i3DjwxKSNjwkx6qxWeq3XLfk754wBTQdpXkirmkWq7AK/dNDQ0OsX7+eSCRCIpEgm82yc+dOqcpSFM4991wqK2WC2HEc8vk8+Xye559/vvhcQRK+YcMGAD772c+iqioVFRVEIhEMw+D1118v+rEL/dkGMMd18SFgotX7CDhAHwKYQ0A/0mEd8PaWjsi+pwAPITLye4ELgFkI4J6J+LSXIoy36A5Kvdb2YevcCFQg4L7gbirUbG1asQnHcmi7sY1pX5mGL+yjeV4zm1dtRjM05l43l2mLp9F2Y5uw3MBozyiv3PwKyb4kvoiP1mWtssyyNlRdpWNVxxE1XIWAM1/Yh2u7xd/dvrIdx3Lkc7N3r0yuFgC268L48TKRWl8vwFpVvc/VYax1R4d8B+m6WIigZGeZN0+kQGvXygnz1FOFqS4A6kLf9dj4Xx9jzPXYGBtj4///UazEcoXFTj0PUw5SLNVwM8I2u66womafAPHiV7EqcnE1JBcjh64QVlQJefJjV27OqPh9s+9AuFX82f/NyOctdu4c4sCBOPPmCWOdyVh0dcWZObORYFAnm7XZuvUg9fUR6urKKC/30dkZY8WKTdx0UxvNzVEAksk811//IqtXL+CKK57l2mvnMGFCBT6fhqoqWJaDYYjfWlEU0G3e69vF8XVTydsmA8kRRjIJjq6ZQMDw8V7Px5zYcAwOLqo3a6AApz+4hDOPmsWyM79F1swT8vmP8FXfNP8ifvTCo0UZeCqfBhQChk9Cy2wTn2bg4vJ+78dMrm5CUzRCPj9BzUJxLemfHlopINce8Fjm60VtYPWCb4pI/vuvhdo7ZRmzSwC1m5djpdd6TGpQjqGT9PzynUey1tn3wKgXRYKbkWNaXGYZKeVYTMdB8ySLihdoZHl1WZqiYLsuuqqSNk38mkbasoh4lVq6qpLI5XBcl9F8nqjfT7nPxx7Ph31jWxuTKyuxHAfNY21sLyHcchx0VSXpVYA1l5fTlUiwqqOD6+bO5aiqKgKvvYbvpJNEsp1KSWjZ8uUSPlNIc92zRzTKBZ91V5cgx0BALpA+/riklZ46VZYJh4WxKC8XMA6COmfNKumoP/pIQmkef1Rk2dtWijc63FBil/FYDXNUuq31APR0SGWXWkgQ1wSYq4Ycq5FdsH0VsaMvo2LCp0BR+cuf/8QtK1bx7qtPEUskqKhtAT3AX377MLf86DbeffcD8JfL59POgWJw170/5dX2Dp7+y5P0DoYJhWSO4Lzz4HOfg1tugRdekGu+22+Xf3/yZNi3D+64o7Qbczlpk6mpEQDu9wuYbm6WLuxrrhHA/vTT8N57JRFAS4vUhRd2/4P3O1QGsigFxrngh66plH5rnyedLMjAayql59q0jmSp4Z/Z7MLyExrgjR1wyjT5xDpOSW5e2IYHzOx0mkR8BC0QIFhVBYqC67FO226+mQPPPScp4LfeKqy1bWNls7xz110c9+1vE25owMnnGXr/fUL19USamqSvOpPBtW1Uvx/NJ+xaIYHaymQY/vBDKo85hpRlkRgaor62FjOV4rnXXuOa5cvp+uBdVv/kPn771F958f57qJx2IviDYFtYts3Q0Ajj68aDqvDk737H1bf8kP27dsp+KcicUUopxo4DybgEnhk+sE1QJfGarX+DaSeVZORnf0VSxPfsgMmfkM+jodP9/gvEe3cSrT+GxunzAVe8zq5LaribA289Q/n4KTROn8++ffv4yle/RiaTQdN0yoIq3/n3z9Ay9QRmn/1NJk+aRKQsgmtb+ANBOjZvAtdB1Qz+/cKvM3XqVG7+wU0i1ffOu6nhbnR/kMHON6mZOouAvxx3aEDM/o4Lo3Fho1vPQIlWgKqVPNmpJPh8KL4A7siQyMTPOldY7VwW/AEJi8tmDpOCg73uT0dUeMl3qYNSWYU7MiT+7sYW3GwGcjnM6hpc1yWZTBIMBslkMrzyyivs3LmT888/n5aWFlzXLbLYh3uz8/k8uVwOv9+PoihHVHeByM2bm5tpbm6mo6ODBQsWkE6ni1VcoVCoyIhXVlYyMjJCuLaWpKrSg4DpJgQYL0dqshYBHyFy7gbgDqQ2qwEJKFMRafftiLR7sncsOhEQfTPSaz0PYbGXI4C84ONeDsUasKy3TiDpMdcHSsy1r8xHqDZEbI8ke8+9bi5lDeLDdm3PCqApuJb4qNdftp73f/u+sNkPL0LVVRzLEa+15RLbJ9tpu6mNiokVRf+1mTExgkYxQbzAbPucLEp7u5ywxo8vpYEX8NfhbQO2LdkcmYxIgAoTOAV5uG3LZ8myZGZSUeSxz1cC5z7fGKj+F48x5npsjI2x8a8fqs+ryvJY7AnbhZV20vK6a0HfUi/ULAKB6ZRqujwPaUEermjClBoTRHLsJIWps/uEEbd7BJgr/v9Hf9q4cSGmTKlC0xRqasJ0dcWpqQmzbVs3nZ0jbN16kJkzGykr85NIZMlmbcaPD/Pww4tobCxnz55hOjq6KCvzsXr1AuLxLDfe2EZLSwW9vaO0tx8gl7PQdfWI/mvVVTmmZgKmYxH2BZhYVc+JDUczkknwo+cf5eiaCWRM8VO6uBLk4zr85Avf4/tnfBPTtviofy/dsQGuOu0CFhwzh4tn/Ru6qvGDsy6mvnwcLg5D6QSr/vYr0vks3fF+bn/pl+wf6SWdz/KJ8VOIZZLsGtiP7XqXkW5a9mvdz4SVNibD+AdAnyTH0DdV2OUCOw1gdot6wB6iKMoz94uP2vzYC6NzAFtA8+ha8VSrIVEkGBNkHcUPmPJaUI6hqoDuXUA4SA3XaF6qS9Kmye6hIXK2jeU4hHSd/bEY33nuOfaMjNB+4ADxXI7IYZVcPaOj2K5LUNdZs3AhAV0nY5oA3j4AVVHYG4tx6fr17B0ZwVBVplZVETQMVr/+Omt37GBVRwcp0yTb2ioXQRUVghALLIFtl2TchbTweLzEdG/dKnpmVZX0raefhr4+2Z9VVcJI33ZbSQ+9bZusNzIiRuLFi+XCfvlyASnbVop3evsqyMVlO0ZYbgCv3yYstaJJ37Xq86q08JLAtgpAR5F1Gk+lwsjgmQaJJ0YFoEXqqaibAlpAnreCKIbnP84lBFhrwij+/OeP8u3zPwu4BINiL29qkh7r5cuFkLnwQmGxr79eSBpNE6C8dq3sqs5OIekbGgQoDwwIAz5pksxNLF8uzy1bJttNp2XuoaZGvNu2XerGroy6AqwHRgToloUFEDfXCWt9aFjk4S31pedVtcRSH+j1JJgcyWY318nyLfWynZpKj6HUZR3DOHIbugYHenEUBc3vxx+NFoG1oigoqsq0JUto+exnOf6SS8QL6zhkYzGyIyNUT59OureXVE8PQ++/T/X06Wh+P1Ymg5XJYCaT6JGIhJxZVlH67bouWiBAzYknoofDxEZG+PLXv87JbW18atYsHnjoIZ7585N0//0jrrn1R8RGRvj0ZVdxYttpzGptg9E4uVyOc847j+mnzGTGKbN44PHf8PTaP8h7dLBPmOgBbz+pni96NCZJ4ZouAWhPPgbZtOzHOWfKayMDcNaX5N5xYMo0GDokPmygZspMovXHUDN1lvwuRcVMx+l+/wWMYISWk86lZsop2FaeiZMm8eqLG+h4eT1vvrGNVzZ1sGDxFZww7xwsM8cH72zlmV+uZGvHq2zZ0kHfh69g5TO4isJjjzzALTf/ADMj2zYzcVAUQpX1DHa+SeLQHszMqOzPZELArq7jdLwiyd/tL4Hj4CYTAqxtywMy4q922iUhHFUTQP7KRvn8WiYEgqgtk2Sq2MyLbHzaiajzPg2BIEp5BUpFFTgubiKOMr4BN5MGnw83NQpIrdZrr72Gqqr4/X7mzp3L+eefT3l5OevWrSvWZbW3txcZ7EJ112uvvcbo6CiGYeA4DiMjIwAoikJbWxtTpkwpJo7ncjk2bdpUTB83DINFixZx8OBBTNOkvb0d03GII8C3FgHWa73HbQiwrkPY6DsOey0m3/T0IsB6rbeuBVwJ1ACNCHg+i1Li+ApvmRWHPXYolX924UUJqAoVEytYcO8CguOChGpDuGYp2btjVQdGyMAxneL/H9sTY92SdcT2xph/5/wj2GzXcXEsR1hoBaITopz76LlUTKwg1llaz7Ec1l+2ntC4EOf87BwqJlXg2A7oBm5bm8wW2raczAoWIhD10uiofJ8UPNWVleKtKSyjqvJ9MjBQUkZlMnIyLNRyXXwx7Nwp640lhP9fHWPgemyMjbHxPzdUH/iOkqot+xD0fxfM3V51031IWnidxzg7YA0KG+1kkIsTy0uhtqUj2bVkW0oQzH5IPi3A7HDp5X8z8nmb7353I8cddz+XXbYew1CKsm8B2glqasJcccWzpNMWdXURdF28Z7oufrSmpijTp9fy8cfDXHfdC4wbF6KlJUoopNPbm6SmJszISJbOzhE6OrqwLIds1iKTtRhOJ1j18q84GO8HhIF99PWn2LhzC6qi4NN9WI7N29072T/cR87KM6PhaPoSg8V6rb7kEEHDz03zL6KpYjymY5POZz35dz/9yWE27txCKp/h0a2y7ce2P0Mqn8HFpT85THU4yo+ef0T2m1rugVzP02V2wqHLweoSkNy3BNwU6E0QPksmPUJz5XgWJjf0Ghi60wPIAUo95dph1Vw3Upw4QZHJlr6lEm5Xe6dMkAzeLKRQPs+uoSEuWbeO/nQaTVHQFIWgYXBUdTWqotDR1UUin6elooK758+nZ3SU8aEQ5T4fjuuyqqOjCIpNxyGezRaDyxK5XNFDrSAge8WmTazdsYOuRIKeZJIl69bROTLCnfPns3jaNJa3tQGgaZpI8oJBQXqLF4v0TtNKCa+Hg+FZs+RiqaZGLnz27BHk96c/CfJcskSCynp7JZkrmy1JxisrZb2pU0U2HgjIhZaiwqzlcMxiSf2ONApwzo9KZ3VmQHqrt3ufDS0k91ZGbooKjfOgvEWOeaoXPnEhNMzlwm9dQvOUY7jp1hX8+uF7ZQ9ZGS781hKap0zjph+u5NdP/FGYcj0EqJDup2PzJkZGcyyaNxXHdshm4T//U4DuqaeK4j2TEVm4acpu6uyUa8sHH4QNG0rVWs8/L4SOosi8Q0EV6fNJcPqpp8JRRx3ZelZoRcvlxLcd9PISi8C5pV7A39ETJOUbjuy4PnoCBLznDwfPiZQw0fGkyMZdZP2jJ1AMZ5jSXPJat9TLP3j477VsaKlHdV2C1eK5TXZ1se3mm0ns24eZTKIFApx8442EGxuJ79/PwJtv4otEiDQ0MOnzn6f25JMJjhtHYNw43vrxj9FDIbQCUw1Y6TTZWIx0Xx/bf/hDkgcPFj20ePcTJ06k45VXePjcc/lhbS0r5s7lxBOm0/TeJtxvL2DPskt5Z0sH72xuZ+uTv4enf004HOaNp5/k/Sd+wbtbX+elX/+CGe/+TYLMhvtL9VmW6bFoGWGsHUcYa8eB8y8SJlxBvNejCaisgeeflPuCLHbD72V78RGMcAWN0+dLsJj0KRXruAZ2byNc1YgvVIGqipd8aO+bBMrHYWYT9Hzw8hGhZAO7txZBsgLUT/s0vmA5Ci75dBzXsRnYva247c8uPJtPfmomi77xfZbc+ht27NpLKt4nMu9cjl/cuxrj/At5OmWLHBz41tIrOOa44/jk7Lm0nfVZtr/3HiiqAObpn0IxDJGHN0/0QgYMMPPY6/4EsWEwfFLFteh88WX7fLgjg5I+7jrCbqeSuMODKKqG2jK5yFqfffbZKIqCz+ejurq6CKYLQNhxHNra2oqge9asWcyePZvvf//7nHHGGbz99tsoikJlZSWxWIzVq1dTV1fH3/72N9ra2pg2bRp+v5+2tjYcx+HLX/4yP/zhD4nFYkyaNAld12ltbWWgq4uo63IPkva9HPE/3wnsQ5jn/QhLXXjteqASYZnrEcZ6MfB97zv7FsSLvR8By/UcWbmlH7bO8sO+63VgAjKnEd8fZ92SdSS6Ephpk3wij6IptC1vK4Jm1RClVAE0F4D3phWbMEIGix5eROWUSq9KS0LLCr3W65asY6RzBFyOWM8X9rH3pb28cN0L2HnP3uYCroOSkjA8IhGR7ViWAOVcTs77rls6v4B8Rqqr5dySzcpnbft2UU91dIh1yHHkJDg6emRHYSwm2x0b/9fGmCx8bIyNsfE/Pw4POZv0sQA0RRN/rqtAZgsETxaJcKHGyc0I061XIfPQnnnKzYFrAqrIwQMz5Gct8t+mhoPIwv/+9yFWrNjEjTe2ccwx4zBNiz17YnR1xZk1q5GlS58t1nY9/PAidF38fvm8w+BginDYRyhkkMtZmKbD4GDaSyKXsLNvf/sZ1qxZyBVXPMvdd89H01QSiRyNE0L88IVShdYPzroYxwLTdNjR/zGfmnAsB+P9/HzrU3z95EWUGREq/FFcF947tJNr1t/F6VNO5oYzvskHfXs4pmYCscwoj259im+e8jkcGwJqgIv//T/4oPMjasuqCISCTPvKadzw1cu5/GsXcehQP5qqoPh17ly1mtmfmkXA57Do3HPoOzSAqiqUhRzuu3Y3n5x5Pvmqn5JP9+JTD+Irn4VcsihICNmSUmjZ+AdEHm73ks8MktdOFSWaniFvh8jndXw+G1wb09RwlVK9keO4GIaDnc/iy60lF7kQ21TY3LuP8578PZ875hgePfdc9sZidMXjNJWXs7K9ne/Pm0dtOMzVzz/P8rY2WsrLJdXXk3fvj8e5vb39CBm4oihsPXiQ2U1N7PVk4staW6kvK6M3mWTlpk3F1PHDE8Mtx8HQNBTAr7j4hkYE6BZkdyAAujwkNwsvKdyzOZjAJZdLIvgFFwiaLPjnDnTCgjPEd5rKCX27ahXccIMgzELQ2YQJciEVDssche7KlSOK1G71vA7h8dCzBaIToX629xlTIJ8Cf5QCKy0BZ1nIxSBY7bHaeejdBjUngC/Crx7/DX/401/Y8PSf5XMX3wd6gF89+SJ/+NNTbHjq9/K7X74CTr6Wb199G9U1dfz4x7cTT/owbR+hUCnHraND2OhXX4WzzhLL4YwZEC3LEzDyWI4Py/Xx97+LMj6dljmHlhYoD+dprM+D6kP3l+SNmYwo7AshuIGAgOpwWH5vwLCJRFxMyyVvOvgMFZ9+WLpY8cRgFiu38ocvm0rBh3tgXCX5CY3kMya+kA+f7kmf/1E+ns2DzyDvUNqGJlLxvKuQNx001UVzLTL9/fR1dDD0/vtMu+QSzGSSv//qV5xy000Mvvsugaoqdv7mN5x4zTUoioIe9qEZ4Ngq8c4ucF0++sUvmHbxxWQGBqg4+mj0UIhtt9zCgeeeY+KiRcz64U0oqo3rGth5RwLODINUdzfZgR5qT5qOqgfh0CGU9U9IsFhNnUwG/OY+Abr3roX9u0Sy7bqlhO95Z5H52lLyjoNPVQnmM6LUqK4B1yWt6Ziui+7ZOAzv3qco+GxLtvPO6+Qvu4n80dPxKeAb6IX1T2B/82rcQlpyIXTLS1ZXFFUAdSGICxfHsYuhZ1Y+jWtZ6LofPSAqDtvKk44fwgiGGdi9jZqpszD8YQlNAxzbwnEsBnZvpWbqLDJ5hcqKClxc/vKXP3PT8ht47cW/UDX+WPbv28cFX/86rm1z3fe+J/VkwF9/+ShnL1yI+ubrbLB0/vPaa+l86w0IhVFQIJfF7euWRPHKKhRFwd7wF5S6BtSJU6GiCnc0BpEyFE0HRcUdjQsg9/nFn9+1F7W6Rt74oTBmMITtOMXKrfLy8mLFViqVoqOjg8985rOoagDDcFAUi3Xr1vHGG29w8sknc9ppp7Fu3TpWr17N9u3bcV2X/fv38/Wvfx2Aq666lnPO+SKOA4bhEI/HOOechYwfX8uxxx5Na2trEdjLudzBCQSkr1pRCCO+ahd4w3FoclwOqgqnqCq6fNNjAtW2jeqCLVZlVBccBT7SNH6EgOYW4LfAQqAK8Vj7KKa3FOu/MggTXgcYjoNhOex7dT9De4Y59vPH4ov4ZL4wa6EZMjFTSBAvegKgJOW+UVLDXcstMv5WxpJwM9tl3ZJ1pQC0hxcR3x8vSsDLW8pRpLStmFbuui4BzZI6tcKMoWVJSGah67rwnVLwv1iWnBCvv16SIA8elInZqiqpTLj6arjnHvHdgJxAh4bkxHj99XLiraoak4b/C8dYWvjYGBtj439/OCnpvh5a6fUaJ0RmPLTKS6CuErbaTXtJ1deBPrnkBa5eBto46L+6VO+k6J5fd0+pP9l37H+bGg4CsHM5G79fx+fTyOcthoYyxONZGhvL2bs3dgT4tm3nsCqvVlpaolx66fpibddbb/WyaNETRTC+f3+cYFAnnTaZMCHKnj0jrFrVwb0/PQvd7+LDh+axXAUv9/LlbUyZWoFpOWiKvJZM5unpGWXVqg55fUoFLmBbLlk7S8gIeGnJCpYlvdvXXvsCl1w6jZNOmohpOWxY9wy3334bmzdvY2RkhBUrtrNq1Xyeeeav3H77Cu6++8+cckojuVySaFQuip9Z9xQrV97K5s3veE0eCgMDLhMmFCxgCgG/hc/9CIbuIVP5AKYZoHC9m8nA1q0KEya4TJ7sYlkKIOy/XDMoxesHyxL1c12dy513KqxZI8ukUuJ+fCexl8aKMM3l5Vy6fj3XzJnD3Vu2/FPN1rqvfpXmaJQVmzZx3dy51BXqZDSNbd3dNJWXczCRoLG8nAnRKLbjHAGgf7pwIdu7u5nZ2EhA19kzMsLt7e1cP28e48NhFEXh7d5emqNRjqqsIKjk5ULMdkTy69ryfnQ9UaLipeG7Jgy+DsFGMFpE9jq+QUB3YR07I0ndwfHyXDoPXfthcATmzgbFKSWAFzIJXEVYateBdF+ptzrVA+NPhlQfJA9CpEnk42f+TMB0qkeWnbVMWGcz7S3XKN3WM2+QNPB4J2xfRfD8v3Lw729SXd8i2zRTsO12ef6D16gu88PBV0kaDdTP+Trb7zyVY877MW75VBQvX8FFQcHCwSCdUQgH8jK54jq4rorqplFzI7j+ShwtTDavEdDzvLLJx/HToTJqYiQ7UZIHcOtm4ephVF/wsM+zEDmKlxHU0gJ2Po9fzxIIaJjoxOJ54vEc0aif8jIftiN96KptYapasTLPdV0yGamuCwT0Ug2TCnv3xrj77i3Fij2foaKpCvm8gw8bDB3TcrFdF8dxOXQoRXm5n2i5T6IlbJeBgRS5nMVRk4JYsX4UfwTXVkFRGPn736k+/hh8ET+OpZCLjRAcVw6uLsylux9laAV29HpcbSrbblnB+JknMXHRAlRdQYSHCmCT7o+h+YP4An2oWgRXry6+XmDcMDtRhlbgVi3D1Y7CtME0TXyugy8QJGM75HExNB3HddEcB9syUf0BTNvC0HTi+TzxXI6o30/UZ+CiYHlA2vT2XUGr4nqhS4W/1PKAtwPFfvrDn9dw8WulLuXCKEyNuIDiSPd0MbX9H5b7x2WSwz0Ey8eh6f/8HeF679R/XP+xX/2Kn9x3H2+/+SaO7bBg4We54+ab+d6NN/KdpUv5wsKFJebdccB1GRwZoeGoo0gfOoTu90M+L6ntxV/mlvyyqoriOOK9N4TNxrYlYV31PvOFiiYv1EpxXVzvcVYLkzcVVM3CcSTiS1VtXFcrdr6bpoKmuV47k0Nf30HGj2/BdeGJJx7j/vt/Qnv724DD5z63gB/96A6WLfsel1/+Hc4++9+8OUSXiy66kHPPPZ/16//M8cfP4Morl+L3KwwPD1NRUYFlGwQMt3g48grENI1xlo1q2yi2jatpWIZOTFW5DnjUsuUskbdwffoR+57DjocL5BTwu4c/KyOriJTb57hHvmbL5ImrqVg5m2cuWc/sq2ZT1lCGqqk4dql6q/WGViqnVDLSOcJoj9RrZWNZAhUB9KDOyJ4RWW5ZK9GWKImuxBEd1m3L2tDDOr6Qj2xc1sOFjVdtpG15G6Ea6cuee91c6o+Jouz+WMIsm5oELJ90UsnPUphYdRxRMa1cKQEVmzfLrQCm771XJnUPHhTPTUODp2xS5AvWNOV9ZhhjwPpfPMY812NjbIyN/wvDAK1WArMKQWRDqzwv7gp5rFUcllS9CvHrriwlVzsJ7+fb5WfFJ9sqJF0PrUCaP//74fPplJX58fm04uPq6iCNjeX4/TrHHlvNo4+eyzHHjPPAt83Kle1HpIWvXbuDVas6iMWyzJzZyOLF01i2rK24fl1dhKOOEnZi1aoO1q7dwXtv99O7P8uSJevZuXMIx4EVKzaxdu0OVqzYhGW6ZFIWu3YNkUwKGCisu2LFJjIZC9eBgYEUTk5j165h2tsPsHv3CEuWrKOnZ5SZMxtZ89P3sUwXTVHp7x8mn7e5+OJ1xOMqN998Ovv3x/npTzdh2y7Tp9eydOkGhoZcFMXERWVkRFJl+/oUEgkFnw8aGxUsS2H3boWLL4a/79TJK8eSqXqEXR8HuGGZyE4tS8EwFBoaoLZWwbYVXFfBtqGvTx7v3StK6M5OuV6cOxcmTlR48EHQNAE5wSBEIgrzGiYyIRrl9YMHuWbOHAZSKW5obS3KtCsCARZPm8bMxsairHtVRweJXI6ArnPFs8+y6IknWNnezrhQiNvb27Fdl63d3VwzZ04xJXx7dzeLnniCK559Vrqzg0FuOe002g8c4PoXXySezTIuFGLFpk3kHRdQwUoIxWImIOt5p50cDHTIc64tILhiBqS7hVYZXwmK7XmfPapEC0BgnLDPmT7wWTChAmYdD+m9sG0JJHZJQBl427UEkJujApZ3rpV6rfpZEmC2bSUEa0q+bNeR5QvLbl0pTHZxuduJvbOWnmd/INvfvoqnnlxLdVhFtUbp6e6GkCxXeL6qboKsP2E+f2g/yIyWEMemn0PZugLFTqG8cDFKfA+qmUB5aSmqmycSNFGtNKoZR8NCUy1UHDDTKC8vRTVjhJQhNDfNZ05NUVudx6dZKBWToGEuSt92lPhu6dQufp6F2Q77khx/bJpoMEFVaIhIYguOouC4EAoZ1NdHiER8ZLI2mzYdIJbIEcs4RdWl67pYlkswqKHrKpbl0NeXAsCyXCZMqODOO+fjupDLWeRNh5zpcGggSdpWyJouuztHuPzyDaTTFuXlIjF3AdNy6e9PkcmYTJ1ShqHuJ1S2k0BUJ1gdJljlo2HuSfjLgyJ48GmEastRs6+jOHvRdA1laBUET0ULNKH5XOasvJHJnz8LTU2hWL0oro1idqL0LSFUGccfDaH6J4FeI685o3JTQcFF0Ztg/IMoei2morAzMcqlL77EkKKRRCGrKAxksqQtCxvYk0hg+/ykbZvXe3rJOw4hw0D3WEvThUQ+z+sHD2K5AmgLwLqwHxTAchxMx5H97brYjkPesrAcBwfIWZaw4ZoukRseYCrcCkNxEVZbVcB2UBznn5ZTHFeWsSywHSJVDeiaT5a1nSOXLUBr20HJ5Ljwwq/TMmkSP7jlFn792GMowOqf3Mu8OXM5+eSTBbil0yi2LYDXq+5SgPvWrOHss87CyOdREgmUoSGwhK1UEgmUnh6537IFxTSLIFBSn1WUkRhKNit/lbdNxfs/lMMmKbJamJypYtmqfMfiQ1UVVFXDdeXcm04rXqufwr59CoqiUlPTwiWXfJ3jjmvhhz/8AatX/5pNmxRuvXU1xx8/j+nTT5bTmaPgiQZ48sknAZVZsz6HbcPevQp79xq4rkF1dTW2beDTXNRcDmXXPpRsDp/jUlsEzybs60HJm+iOyzbgfttGzeZQdu0HTZVj4p0WlUwOJT7qHVcXFZeA66K6Lopty/Oui+LYBCwbv+N425LfreABbVXiQXW/xsTTW+hY1UE2lkXzaeTiuWLSd/vt7cVk71C1AOEHPvEAG7+7Edd2S8utlOU2rdjEH8/7I4mDCRY9tIj4wTjZkSwbryqtl41nixLxbCxb9HdjW5LXUVMjwLmmRlQfq1aJlPv220XKHQ6XfC+rVsH8+aJiGhwUqU5ZmViG2tqku7qqSsB1OCwSnvJy+XkMWP9fH/88TTg2xsbYGBv//w7VB1Qj4FeThO/q6+S16htBrQA7Jgw1SFI1urDRIPdquefdXQZqpfiuUQ9b5sb/x6Fm/zh8Ph2fTz/icelnjWXLWgFYtqwNXVdYvHga118/j8rKAOGwwcMPL8Lv1wkE9CPWz+ctli8Xr+7MmY1ceul61q7dAcC99y4obvf66+ehqkoRUN9993zKynxcd91cAJYvb2Pr1m5aW1uoqQnT25tk1aoOrrlmThH4A9xyy2m0trZw6aXf5rXXXsVxXE444eri64ryF55+eiOZjMlZZ/2A0dH8Ea9t2vQaAL/+9Qb27JHJcFUVZfKNN0oY6TXXiHJ50iQDcPH7Fe64Q6zEK1aI3XjqVCFfOjsVVq6U53p6RPVWsIKB2IgPHICvf/0sstk+dF1F18sYN+4+7rzzk1x99Wfp7uvGVRT0QIAHfvpTJjY3c+vppxP1+4n4fJzQ00NtJMLqX/4Spk3j+nnzqAwE8Gta0Se9rLWVg4kEy1pb0RWlmAK+ZuFCwl5KbgFoRwMB3urtpam8nM1dXVw/bx4VgQCdIyMsb2vDn+uVyZ3QRJFlu4a8D20vDKxmtrDEb30XTrhNGOLaNgHOgXGeFcIGOwWqF1420A6hFmGvVZ/0Tad7YMcKOODtrFMeguRueb72VEkCdx1JCweYdaN4q/NxeS7VJ1VbIEy6L3rYssslBG3mMmGuZ95AvD/F+T/ZS+bOU1FdixqjlnVr7yOR0zj/q18gY2tHPK/kE/I7y5r5+eNPcPGlV8LkHTBrGUrfNgHxAKffC3UzUaxMkTlXZt4A4XqUZDdEJ0OoFhrmoaia+HRtB8WxgSy8di2c/D1IdkO4AWX0gLDrdl4YfUdCf9T25bitK6Q/Vg9w1kV30NP3PUzTZWTE4Te/eZhZs07mrLPOYnR0iGDQRyQSYdWqezjxxBMxTZcNGzZwxx0/BKTf9xvfWMq3v/0NsQ/bAqD8fhVdVzl0KEk6bVJTE0bT1eIk3Lx5zfT2iuJk9eoF7N49wsqV7dxwQyuRiIGhOyg0gjERxUmKusFJeQGODjijKGpUjllgRolNrbufAv+hWL2etSYMKBJICBJGWPcwipvDdUZle3YfDK2B8as9UKbIZGb2PQjNAVzytsOqzZu5avZsAoZBPJfj+hdf5Lq5cv6pDoWYUFlJMp/nnb4+5jY3oyoKedtmXCjkiTgcynw+5jQ1CduPFy7lMdEoCo7r4lNVEl4a/5pt21i9YAF+rzrMcV38uk7eA5tKLg9dfTC5qZRCvrcbJjXIZ8+TzypHdIu70NkNExs8H7wCe7tRJjWUEt+b68Rfn81DLo9yWLK74tNB03j84Ucgl+dXf3mS65ctY9Xtt/Pkn//Ma3/7mzCBqioZCx7zXJCp/+aPf2TtX//Ka889JzaOQEAAjmnKeqGQRNyffLJkLKRSxV5jJRQSb+y4cZDJyHaTSXk9Gi35JbZtg5YWnEnHk04rhMMChOU7BwIBpViFrGlinWhokNyDxP+HvX+Pk6Mq9/3xd1X1bbrnmmQmk5nM5A5yTbglkGSQu1tFZSuO7s3e6nZrQALbABIkiYJKBhkM9wgEdetRvATZIoaAooiQBBJCSIIhkGRymft9pu+3qlq/P56qrp6AZ5/fOcftOefbz+vVr+6uWrWquqtnzfqsz+f5PDFp953v/DdWr4YFC37EXXfdwsqV7bzwwpM89thLDA/LV5nNylc+ONhPe/sdPPvsi1RXS5+zZkE4rJHNQkWFj2RSEfI7BoIj4zB1Mloo4Cmtu/rF4A/ghJk047DQbvsTZogLeywhPgiGAZWuMRwQS6AF/GIaqBvig5DNQUUEzb39rokgSH8AtiXjiWFw+j+dzrQzGwlVh7ByFsGqIIud/7FLVy1FMzSWrlpKrDvGUud/s7vdbdeyugXNJ/naAJXTK1EoKhsrifXEWHqrHNeypoVQdUhyuld7r5fcsgRb96GvWoXW3S3/HLu7xdxspTM+r1olhpl+v7wG+Qfc1CQr0rNmlepV/18WJVl4KUpRir9+2Glh31CghxwNmAO8VV6e9YBD7mVkoqkUBcmt5neYa7yyX1rQ2/a/OdLpPLmcSMnFpNPCMDT8fqPAgP+lyOVMMhkLXfdk4LfcsoSGhnJCITFBq6kJUVbmJ5XK09sbZ3AwyYIF9ei6RiBgMDKSIpXKM2tWDeBJxvv7E0yfXklb2xZWr25h6tQISiksS+H3G/zsZz9m48YnmD79S6xZ00IoJHL1ZcvuIBDYz8aNT7FixW9ZvbqF2bOrSaWC/PSnP+Lpp3/Bj360ma98RdK4Tj5ZagjPmOGVePb7RYb7zW/KYvrAgLSLRGSfaQpDvXGjeHtt2IAjr/VAuFu9anx8nHC4mrIyePrpX7F27e2sW7eHk08eo3qqlPb6za9/w11r1/Lqa6+J9FTXOXLkCJ//7GdRSvHlG7/Mhz56BT5d+DLTBr+uF8pzZcwcGgpD1zE0n7PdyRVUMrGXtwpbafg0kbgajhmUadsEdY2QSkJuFEJTIZ+AfBT8lWCmBGD7yiBYK8AvH4Pdt8CCuyE7CPva4JRVEJwCY7shPB323w0Lvg2+cjEb230znLQSymeDsrnsQx+hv38I3fBREQnwwL3f4Yyzl3DZB/6O/oEBdF2norycB+75NmecfR7YebKZNDetvJXfPv8CoVCQ+aefzk9+9H2H9VbO35Ml5ZFs03lvOn9zjrTdzc12Fw58YY81dyXwjks4ZhaUibLzaJkxkZvvaINzboHqOWKYBrDtNgHdJ7Y6tbadhOyXboazboDqE+RciV7YdT+8/x6hKNMjUq/79e94x+UT3nkW3goVMyB+DHZ+B85vZzyZRwtNZfnyzSxYMMa///t9tLc/SThscuaZs8nnLe6//4f8x388wrZtr/Hyy8e46qpzefzxX3PWWWfw1lsH+fCHF/P446+wePFcAKLRLBUVMsZomkYymcM0bRoaKhgcTJJK5QkGfdx224ts3LiP/fuXc9ddW/i3f1vE7Nk1lIUUfn3cYdQiMra5rvkqLSaCI+2y8Og/EfLviHFjaIE37uGjUK6wUO1XieeByomhoMqI/4TKQfpV8DUJwhlZK4uR/lkUyuUN3kJuyjpSdiWmbbO9p6dQV/7jJ59MwDAYSiZJZLNMrajAtm0ypkkkEMDQNII+H7qm8Wp3N2c3NACe2z9AzrIIGkbBmd+V2m/p7GRaeTmGrhP2+6kJhXitt5dzp08npOuEDENYzPdIkZca8kqAFs5XYNueqZwb7vZc3jOxEymBHBtNyGDV3e+VVps3Q84ZTUBlOWhQVlHBmlWreOi73yXo1Lfv7+2lsqqKb9x4I1/69KehtpZfPPEEa9au5Q8/+AHNZ5yBk7fjOTy774vNqxoaKNDDhiF5NZomg2xx++Jax47RVVyrQNO0giLdMKQAgasodi0h3MN8PgHa3/kO3H234HxdhylTyrj55jV873sPEQwGUQoGBvopK6vkq1/9BmVlzdx+++epqChD02BkZBi/P8DnP/8lvvWttYTDctl+w8JQllQZ0HCtulHaRDk/aOR9BoZloaezsojiLnBMr5eFiKpyGZhNS1JvdA0Odoq/QcAvINy9d8WeB8UeCLYN2bwA+6Z6VFmQfNZGMzTsnF1w/lauAsL5u7ZNG8NvYJkWmq6h6VqhRJeu62i6hm3bUnLL0Jx7oFC25Fa7Zbo0TcPOy3nEGsNGN3SMgIFh5WQlxP1n6fc7v2unDJdParaTy8nnCIVKYPr/4CjlXJeiFKUoxd8gcjmTXM4in7fJ5SwsyyYU8jEwkHRys0fp7o6zeHETIPJvkbAHGBhIUFUVwufTCYV8JBI5DENzwL7U1NZ1mWT5fDqvvNLF2Wc3EAjoTJlSzVtvHeLAgTSf/vST/PSnH2fx4ibq62vYv7+DbDYguaFVQSwrgG1DfX0ZO3d2Y9uTmTJFmOv16x0DYMsjUsJhqfQxNATvf7/MESzLmwMcPiyqNrd+8cCAHBMOe2U9b7pJHKRnzZL+f/azH/Lgg/fx+9+/QWWVIqdFSeVT/OYXv2H9Q+t5YdsLhHwhcmaOSy69hK98/Ss80vYIV3zuCnZU7mDV0lV0x7o5On6UK953BfFcnKpgFWW+soLxDoChGXzkwx+hv7+fgeQA86bN41vt3+K8c87j8g9eztDgED7DR2VFOQ/c8x3OnH8yWGlmnrSQYLCMsrIgoHHrNZfzqdZPQuVcWeixcscBZAe8Dm2Dl6+Axo/Cad+EUC2gwMpAehD2fxtOukUurnw2bvmh8b6DVFcEIDiZX/30YW5/4Ffs2f0G4wNdVE+eAolefvWHXdz+rTvZ88Yu0OCGG27CzKV44L570ewc/aNJ6usddrOQ0OgAtOPBizMhnjAbtnNSE9vKCdNdMV2AtUKMziqb5BhlOTWvDckJR4OAUwkgFxeQ/Vq7MN6hyfCnG4RN79kKvVvh0g1yzueXwdkrBbjvuFMY9vJpwsZXzYbfXwMX3Ctmau9shJOugkseFnY7l5Tv7rW7SF3wQ6Jxk8ce+wH33nsvv/vdVmbMqCYU8pFM5njyyZ/y4IMPsmDB7dxyy2IuueRUfvrTjdTWnszXv/5zXn/9O+zZs59QKMjhw6P09iZYuLARv9+gvz9OfX0F6XSeXbv6aGysYO7cSZimzbFjUdratnDffR+grMxHOm0SjWaZNzeIYR6GfLeUtdNCDiB21A9mPxhVYgDpmyrmja7SAROsqIByO+pUWNAdBY+z8IgLwB1TyIEbYPKXBUwXGxDWbxCzSGyIP0XOOIkR/Rxi2Sy14TAAfsNAKUXGsgg4Zn798Tg20FBRgV1Uxs59Nm2bV7u7OaexkTLDKDDXSikGkkkqgkHKfD62dXXRWFnJ7JoatnZ2Mr++nmQ2S0NFBaZSVPp8aA6rTDBQYCgxHfDhAuUJA6xjEFVc0zzgl4ehO2sQzvz2+BztTA66B2BOE+PRcVKpFA2TpkBnH0/t2cl1N99E15EjIjMHMHQuuPBCVnz+81xx5ZVg22z82c9Yfcst/P7ll5kxYwaFhGfDWXyV5GcZHN38apDfqmuf7yJk0xS0+uc/wznneDm04JiZhcGySPoqsW3PwwI8Lwu3THIxHgcYHR1nYCDF9OkNrFwJZ5zxFPfccx3PPNPFnXdqrFwpeP+yyy7gM59ZwUc+cgUdHaJcfvhhqSJ47bWfY9asBXzqUyuYPdv7OLpmEzBsIfGtv7DYkTfB79SX1zUB0Civ1nzdJJjXPBEoZ/MQ9MsDB6nbamK9+RNmFA9u3vkOHitqM1OAeilK8b85/jNwXZKFl6IUpSjFXyECAR+ZjFWQhl911Wk89NAHqa0NY1mKe+55lTPOmMasWTU0NVWQSuUxTcXNNz8/wb3cthUrVvyWJUuaWLKkifb2bdx661Lq6iKsWPEUt966iLPPbsI0bTZv/g2TJk1G0zTq6mxeeeVfqaoK8uSTv0LTwgwPK37/+91s23aYH//4M9g23HffU9TUTKa5eRJOeh/f/37Be4cDByZ6rsycKelemubNXS0LXn8dzjpLGGvXu2fqVHlOpcT09Oab4bbbZL74xS9+hpdf/iNKwZo1mxkY0IiU21xz9TVsfWkrCsXjTz6OT/dh2ib333c/l114GYvOWcTDPEzEH+HRyx/Fr/mZWT2T82ecz8GRg9y17S5WLV3FnJo5ZMwM23u201TZRG2klmu+fQ0XnXQROSvHz5/4OVd/4Wp2vbGLR3/0KMeyxzh3+rn8/je/4V++sIw9O7dJfjQav3j831lw6hxHdxmE7AgkjkCqCyYvhBNvEIl2okPY6pNWQvXpsPSXEG6CsgZIHvaYbH+5yL9nfQ6mnCdA1ZGNV9fPcZhlm6jWIAsESlFdN10Aa3kD0diLBeYlmYjz/X//d7o7j6IZAdAU9ZOcmvHFiNl2AJjuSFwVjsmaPrGthrRBA19QmGjbgvHDYoRWPhViR6HCAdixY7B9rQDiyhkiPw9UyGesPkFk4kYI+l+Fs24SwDzjMmi6wGPEL3pIFACJXmG/w1OFOa+cKec45xZxOndl7+ffDdEj3nkT3fDORr7wozx/2raDsbEMPt8/M2NGNcGgwTXXfJ4//elPAHzta4/ypS/tBODhh3/IVVd9CsMIkU7H+clPfs6uXYNMn15JRUWQ+fMjjIykqaoKUl9fTiCg88or/Vx55RN84hMnsW7dZRiGxsyZ1Xzvex9xmC6Nvr44d921jZ89fpkAa18dpHdK+TnNj3gfG+I7gQ2+yfJ9WyPiVaEyDqCuEkBuGE4KjMNe5zuE8a67W/4QU1vA3wR1d4gEHKMoDcepkw4C0Ks+Q84MYGezTI1EUMBIKkVVKIRP1wnoOv2JBFXBII2VlQLjlSJjmuzu72d6RQUhv5/aSAS/rtNQXs6K557j7ksvJewASEPXqS8vx3Acwy+YMQPTySVuaW7m4MgI06uqyNm2x3oH/MI+ggBsl23G5zHS7mDj9zmADZjbLCDc7xPAPHu69zvOWwL4LNfvwAFaoQDMbQLLJhqN8slPf5p0Oo1uK2qn1bPpqadETp9wSrcZDkDOZHD111ddfz31U6fysauuKkjE//DUU0yurfVoYxdY27aUSyorkz7KygpmaOTzTuWBSjGksG1hL91jIxGIxcAwUIaoxl3PKpcAdzE6eK9d/D44GOXqqz9JLpcmn9c5cqSWn/98E5GIxu9+J8fcfruXrjt1qoDta68VH610Wr7yigpJG1JKPsLRozB7hiIYsgU0Hw+sQe6hbQvgbZ4m98jnVDxodhb/3PtVLPGe2yxl80DGqoDD6rrHNE/zmH/bFuDtAvfiNu9hfFeKUvxXRIm5LkUpSlGKv1IUlwK7774PMDiYdFzIW5gxoxLD0LFtmZCDzB86Ojz38tmzawrMWCBgFOSnra2nsH79h3j11T/z1a9eTT6fBTTGxw0eeOAeTj21mU996lN0d48wdWoFU6ZM4etfv4Ozzz6Lvr5u/vmf/4FcLouuG0yeXEtr63dYsmQBbW1SyWP2bG/uEo/Df/wHvPKKMBkuO33ffTJHdBlpTfMqiAwOQmOjzA+Hh2XS5s41QSZsiYSkGv7iFz/il7/8BStWbKalRfHa8AucNe0sfv74z3n8Z4/z1Ye/SmW0khuuu4HHfvkYc+vm8qFLP8Q1y6/h4g9fTMQfIWflCBpBLGVhaAaWskjn09z6h1v51oXfwtANyvxldIx0UBmqpDZSy09//FPWP7CeP7zyB8r95VjKQtd0fvrffszDDz3C7p2vCHM97xSeevxBFsyJQKgeKuYBNgxtFTZ6/zoBzOWz4fV/g3nXQflMSVnQ8L6cwS2w5ePCZC98FHZcDQsfAzMJ6T7Juw7UQG6Mzyy7kT/+8Q/gq2Tzr37KaWcsBD3EZz73Of744osAbP6Pn3Pa/DPYu+8dPvr3H+fTrZ/k9y+8QFmojNu//nUuvuQikW+7LuK+oEfyTNRsFkk6HcsnjYnHahoMvgFlU4RJtrICwO0c/O4LnvT7kkcc2bkGfduholmOySfBH5H88EAVBCopsE7RQ2K4tnAV+MPvdjRftBqq54oMX9kiZdd0eP6LHot98Xch2Usu2EAq7+ehhx7jxRef4YknnnIc7U1uvvl5Tjihm61bN1Nd/QVuumkRX/7yP/K1r93GwoXn8eMfP8vatct54YVX6OmxaGlpJp+3yedFfVJZGZzg6H/PPZcxNJSkp0fUJz6fjmUpDEO+XKWgPJxHJ0PBjNEtSJTaCaGTnbxrC1Kvgr8R8j1Qdp4sOrgAHEtY58GbYfKNUlUBW2TlWgDSOyQHO+D8LjGKbqwDSPOdAtJ9teTsIDlbJ2/bpPJ51rzwAm0XX0wkECiUHlr5/PPcfuGFRPx+Erkcfx4cZGFjo5NuYZK3bXyaht8w0DWNaDaLX9dJ5fNMCYfxaRrxfB6lFMlcjnQ+T5kDyN30C13TsGybtGlSX1YmebKuRDaRgvLwu0ufuX9L7m9Xw2OwXWAOwqIe6YFZjTKounm9fp/0XRHxgJfLcP8lIJZzmNcX/iA1hQWxSr6MaUoJpOpqkXUnEjIoum7ibhJ0sU47l5vIWisl6NUdcKNRkQTncrIauXKlDMhKEaecWEwjHPaUw+7hhgHHjokE/N57J2LPbNZrCzIm19Y6vxAH40vVBk+lBAK483m5FE2TPtxhYmgIZjZZGLp6b9baDZehLpbgF1YFnAtSSpQHEyTeyls0mXBrnPHJXU04PorBtv4XrqkUpfhfjJIsvBSlKEUp/obhlgJTCr74xd8UwPEPfvAROjrG6OtLsHhxUwFki2rQ5tVXu2lsrGDWrBoSiRxlZT66umJ0dkZZtGg6waCB7eSPGYZOOp0nnTZ5660hFi9uYsuWTurqIsyYUY3fr5NK5bnllt9z882LmTGjCsMwyGQC+MTPh2RSJmlBKbHK+Lg3f/T7vblgIgFPPgn/9E8e8RKPw+TJMpfRNJl7ut4+dXXS7oYb4MtflmokTU3ycMt+1tWV8bvfdXPGGTXgT2ErGxubqdVT2bRzE1+9/6t0Pt1JOBTGtE36B/qpqqxi9ddW84+f/0d8uq/wODp+lDtevoPVLatRtmJKZEpBKh72h1n2+WW88McX8Bt+HvjJAzwx/ASrW1bTdmMbL/7xRXy6weann+T0WWHY387Mf/gTlZUVKNtm4WyTbz/yW2rrpor8OzME+XHIDEPdUidvWfeYQs3n5Sy7QEeZAoqUCWiQ7hUWvGa+tDOCYni25Up+tPd0fvF6JZuf2Sx9Kgs0gx/96Ef84olfsvlXP2fXmwc4a9F5/Ojfv89n/vFTvLHtd1x65RfYt3cvU0MJSA87oHgWBVn4BFBtCaANVHg/Wg2RhGfHIZeA6tnyXvdPBDfKgrEDEO+E+oWyMTkAr90FLd8WBj5QIdvHDjglxFZC9TzoeRnqF8GLK+TYmZdBZBr0bIP6symgp+w4ROrle7Gy8gww+rYw1+9fJznaO9pg0RpiwXlkMhbNzVP4yEce4b77/p5wWPwNDENj1qw6du16m5/85E/8/OffYvfuP5PPWwBcfHELt932TS655BInr1XAcj5v4/PpbNnSyckn11JVJXmqr77azWmn1VFRIddkGBqW5S2WlQUtDEOhqTwFsJzeDv4G8M8Uhjq9wwPWodNBq3CAs8NWu3M0zQHnynLk3yscVrwWAicKAC8+xhoQU0i9QuTnehg0H0mrilgu57HMmoYCOkZG6EkkWNTYSNDnI2Oa7OjpYUF9PUOpFPe/+ir3fOAD6JqGoWnEsll0TSMSCJBzpORHx8bojsdZUF+P4YBvv66TtSxylsXegQEWNjZO+An6dJ1yw0BLZyVXuiLisM4mpLMQKfOA0n8PxLm/SdtyBl4nv79nEOZMx1s0srzBzO0v55QwcnO6LdtDrLrz9zwyIgxyQ4NXzH1oSAY4l9F2VxtNUx7j41BTI9uuv14Sn8vKvIHTtsXtuTgne8YMJ6HZMbkYGIAFC8C2iVU0FHKu3T9Dt3pTVZWXtm3bsHOneKg53nF0dIgptZuyA/IRh4bk8mfM8D5GICCnT6flI9fVeQqkZFIWRf1+8Bk2AZ/tOZ/HU1AZce6F+/d7HGieMMgU37ii+O/dZ4XDlJfk3qX420WpFFcpSlGKUvwNwy0FFgoZrF7dQmvrKaxZ04JpKrq6Ypx2Wh3xeI5s1sQ0vVJBdXUR2tu3YVmKXbv6OHhwlLIyH2eeOc2pdS0AXCkwTRu/3yCTMVmwoB6fT+PMM6cxfXollmVz/fXP0t8v+aNtbVuccyiuu07cu5NJybPWNHH5Xr5ctsXj8NprRXNRC/bsgaVLPaZkxw5pu22bzBGVEmlhfb3MK4eGZH56332ug+04e/f20tMDo6Pw9NNPMWnSZCIRne7uXvJ2HktZ/PqpXzN58mQe2/8Yu6bv4qL1F7H77d0svXcpdoPNyZ8/mS9c/QUqAhX0Jfq45plrODx2mM5oJxv3bWTty2uZWTOT8kA5Ps2HX/ejazrffOCbvPH2G6z++mquv/H6QtuHNjzE3oN7+ebta/jq6q8LiFtwFy89/zR7n7ubXS/8hCknfIDPfuFaMeEa2irPmUGoWSCGW1ZKbl7ymJTUShwSQJiPyaQwcRh2XCPycTMpk3Z/lQBzfwVk+uS48HRY+ks+e/P3+OOftjAyOjrhN/XZf/k8f/zTy4zE8zRPr0fXda761JVgZTljXh2zmhp4880/C8s86SRhn9Ek3zsb8+a1tmNiFih3jAKdMLMQ7xKGuXKGOHofD6ztnCwQVM8RifgL14nk2wXaqQEBztEOATyFEmLtwmTXnwPYcNGDMO8T8OodAvIrGr2+slHIOwaHVk7uieHIdGvmwcXrQTMYf+F2endshO13EPIrnn/+GcrLq/ja195Pf38fr77azfBwiiuv/BaVldVUVdXwD/+wlIGBfl5/fS9DQymOHj3M0aNHmDNnHpomJoLZrEk+bxMI6HzsYx/mK1/5OBdddB5/93cXs3//XlpamvnMZz7BkiXn0NKyiPPPfz+f/OSDHDkyDsBvf/cc5yxq4fQzlnDukg+wZ8+bUHaOk3uddVjnqaBFHMl4hSPTt8HshtS2Qi4+5ohjiKZE/q0FBYyPPgCuV7fZJRJx8xgMf0u2YYGv3snVFiAd8vn46Ic+xHlnn83ihQv5wEUXkejqYv7UqeIErhTf/8EPuPzEE3n+mWe4c8sWrl+4kK6+Pi7/0IeYf8opnL9wIT96+mkOj41x7ebNHB4bI+z3s6S5mfJAgJDPV5B820pR7jiL+3QdQ9fx6TqDySSWK/c2DC/PGk1k4pXljrmVM1U1HIDtYjH3dSYn5le2A4gNQ/K0DUPk326es0L6P9orgDrg80C0bYupmXLO43dyt4sxoEvp+v2CWl1zskhEQHIx4EskZBD0++XR3i7AGuRagkE5TilZjZwyRWogu/1rmpRhOP98ybmuqpqQZ+3WeV+2TMbfYmA9NCSp27ou4DidloXOJUugr0/G6UOHvGNDIcH1110n+7duFTBu28Jw5/MC4MNhucyBAenXZyj57g8cE7Y44JfXaVFSoSGA+oQZ8pyTEmneIKJkDMyZcnw04Rzr3OBMTva5aQGW7amBTMt7uL+hUpTi/5RwZUD/Nz0aGxtVKUpRilL83xbZbF7FYhmVzZoqmcyqoaGEisUyKh7PqKGhpNq06R21Z0+f2rTpHbV7d5/q7Y2peDyjEomMGh9Pq1gso7q7o2rnzh7V2vqEeuMNabN58wHV0xNT+/cPqe7uqIrHM+qNN/pUa+sTaufOHnX//a+q1tYn1FtvDao9e/rV2FhKRaMZBUpddZVSY2NKdXXJ8+bNSoVCSrW2yvs33pBtPT1K7d+vVG+vUgMDSsVicuz27Uo995xSo6NKDQ/L89iYUnv2SB+7dyvV3e293rPnqDrzzHPUSSedqk466XR17rkXq9/97g21b99RdeZZ56iTTj5JnXLqKWrBeQvUS6+8pHb37VatT7Sqvf17VSKbUL2xXnXO4nPU9x//vhpLjanx9Lja9M4mFbojpFqfaFWDiUF11ZNXqd5YrxpLj6lYJqZimZj63K8+p3b37Vab3tmkuqPdqjfWq4KhoPrYDz6m9vTvUYOJQTWeHlf5bFyFQkE1vOljSo3uVqp7k1LDO5SKHlC9R99W5eURpbZepdTwdtk3tF2pzLhS6SF5nx5U6uVWpR5HnsffUmrkDaWyo8dt36/UwQ1KZWOyLzuqxjZfoXoecvZnhtSvNv5ENTY2qNHhQdVz5IBSI+8olc+oXz35S9XY2KhsM6dUakRdevGF6plfP6mUlVeH39qlJk+epLqPHZH22YRSZl6pXFIeZv64h/RRaGfllRp5W6nuLfJsZqVNNiHtzJz3yCWVykSV+k2rUt9BnlNDSo3sn7gtOajU4B55PbBbqXivUqMH5PVvWpXq36nUroek/9+0KnVfSKmOTUqlx5RKDig1+KZSHZuVSo8qlY3LNeVTSmViSmXG1dF9O9Q5p5+gTj3lJHX6aaeqCy64UP3iF8+rH/zgBXXGGWepk046WVVXz1C6Pls9+OBTKhqVv6fvf/9H6qSTTlYnn3yqOvnkU9RDD31PXXXVk2rPnn41Opoq/J3t3t2ndu7sUKOjKdXTE1Pnn79SnXzyqWrPnn51xRU/VLt396lYLKMWL/6KgqmqtfUJdfRor5o0aZJ6c88OpcxR9dIfN6tTTjlJKTMqj8whpcxReZ3rVar7KqXSe5QyY0pl9isV26RUepdsz4/KdnNMntN7lOpuVSr9hhxrjiuVeVuOyQ/K88hDSqV3Ou32KJUfUyrXq6KZtIpmMmrfsWOqOxpVO3t61PkrV6qTTj1VjafTqjcWU//+wgvqnEWL1FkLF6of//znam9/v4pnMuof/vmf1T9cd53a29enfvm736lpDQ3qqT//WYXuuEN97le/UolMRo2n02oslVKDiYQaT6dVIpNRsUxGvd7To1qfeEK90denemIx1RuLqdYnnlC7+/pUJptVdiarVCarVC4vj7zzyOVlez7/3o9cXqlsTql0Rtq91aFULOHtK27rnqOrX6nhsb/cn9tPPOn0n5WBzR0AYzGlxseVisdlsIvFvG3d3TIw9vZ6j3hc9g0OKpVIKDU0JIPm2Jhsd4+PxSYOnO62sTGlRkdVImEXuhofl2Ygz2730ag83G727PH2jY/L6d/r2FjMG7vd/t3thw7J5WzaJM/u5dl5U6l9h5R6aad8R9ms3IdkWr674THvfmYy3n3MOG1zx33f7j3MHXcvhsfkHudy733PMlml8qZSlvVf/B+9FP9fDaBb/Xdw6t8cKP/PPErguhSlKMX/C5FMZlVvb0zt3i1AePv2brVp0zvq1Ve7VGvrE2p8PK3Gx9NqbCyl3n57SI2Pp9X+/UOqtfUJBbcXAHNX13gBCOzc2aNisYy66qon1f33v6r27x9S/f1x9eab/SoWy6jNmw+o11+XNocOyeSpt1epnTu9SdOmTUrt3etNwrq6ZP9VV8nccWxMjhkbU6qvz5svusfFYhMnb/v3K3X//fI8Pq7U5z4nx4+OKnXggEz84nFbdQx2qtHUqBpLjamu8S713MHnVDwTV4OJQbX5wGY1mhpVe/r3qNYnWtXuvt2qO9pdeL3pnU1qT/8elcgmVDQTndAumo6qfcf2qb0H96rx9LiKZWLq71b9naqqrVKvHHhF7e/Yr3pjvWr/0H71xMYfq8baMmW//aBKDB1SYwNHlYoeVGr0TbWu7VbVsvQ8pbJRpbqfEyCdHvCAtQPC1ehuAcgjryv19v0OWB7zto/uUSozqlTPZqVG98qx2XF1dM8z6pyTJqlTT5qrTj/tVHXxRReoN7a/qI4ePqTOOesMdeopp6jTTz9NXXzRReqNnTsECGcTqmPf6+qC97eoU0+ap04/7VT1y42/kH1mTqmRg97rAkB2gHU2IQA6G5Pt1nHbc0WAOzUi7Ubelv1WXoBvZlypWLdSz1ylVP/rsi/Rr1SsR0B2vFdeH94sQDwTFVCcGlbq2c8p9fr90mcmJuDZAcwqE1Pq8HNKDe4VIN6/ywPi6THpt3+nbIv3FsB7drxfDQ0l1ebNB1RX17jav39I9fbGVCyWUaOjKRWLZVQsllFjY2mVSMjC1p49/e9aiBodTU34OxsYSKjNmw+o8fG0Wr9+gzr11NMn7B8fT6tvfvM+VV09Q+3d269efHGrmjt3rrLzYwJ+zZiqqKhQr+94WSkzXthWAM75QaUyB2W7e0x+QLbnxwRoxzYJwO5uVWo/8uwCbjOmVHq3B6bNcQHpI/cLQHfOl8pmVNwBvOPptDo8MqLu+e531amnn64ODg+r7vFxdcGFF6rn/vQndd7SpepnGzeqkWRS7envV75gUG3etUsdGB5Wu/v71aQ5c9Qjv/iF2vTOO2oslVJjqZQaTaUK/V/15JNqd1+fimUy6sDwsNre3a02vfOO2j84qN4eHFSv9/aq8XRa2XkHfCVTDgDOeMCsGCRnc7I9npTX2ZxSw+PvBtHZ7ETg5YKzfF6p/YcFpGWLHsNjE4FbLi8AfN8h2Z7Le6iyu3siAB4bEzSbSAiIdkG2OygeODARkfb2ykA6OiqvXcDuot6ODm+l0wXwDsCOx+3C6Ypx+N69XrO/BJ7dS4rFpG3xJcXjsoja2irjvLt+4LZ1+9u+fWK/+YypbBdEZ7KyqJFMT7wXybQHjF1w7X6nf2nBpPhY9xj3HMX3KHfc9kxWKdP8r/0nXor/T0YJXJeiFKUoxd8wstm8isczKpvNF7alUjk1Pp5W8XhG9fXFJ0zSBwcTatOmd9Tevf0qHhcw7LLZ3d1R1dsbKwDpvXv7VU9PTPX2xt410XcBxIEDw+rNN6Wv8fG0qq7+dhFwl4na/v3vnoyNjgq54s4HW1sFILsgfM8e2V7MZmzfLu/HxrxtLtgeHPTAdzTqETxvvCHb9+yxVSKVU33xPjWaGlWjqdEC69wX71PxTFyNp8dV6xOtittRrU+0qrcG3yq8Hk+Pq0Q2oRKZxHu22/P2HnXmWWeqk085WZ1y2inqggsvUE+98JR69c1X1VlnnyXbTz1FXXjhBWrX9peUSg+pjt1/UAvmn6ZOO/UUdeopJ6uPXv4hdWT/awKMs+NK5RNKJXuVSg0I+xw9KIA7Myb7k73Cco/tVSoXUyrZLUx2skepXFzaFB4xaZMdl+OT3UoN7xQwXgyM8xkP8LosswuOi0Gyy1K77cy8UqnRIkDt9FdgqHMek51Leuz0yAE5pwuw472yP5/22OjB3QKo3X3pUYedPuh8lkGl9jw2kamO9wqATg4KSE8OOWz2HgHqsW7pxwXwHZuE0X4vdrzodby3Q23a9I4aH0+r7u6o2r9/SMViGbVnT1+BhR4bE+Dc2xtT4+Np1dr6hAqF7lCbNr2jhoeTqrc3phKJrNq9u7/wd3bw4LD6xCc+paZNa1T19Q3qlVd2FtQml19+pWpsnK4aGxvVSy9tV/F4Rh092q8mTZqktv7paaXMMfXrX/1cAerJJ/6bUrk+Ac3muFJmQoBxrs8B2cMCpvNjRczzbqUyB5RKbZfnAoje7QDpuFL5IQ90xzYVsds7HXY7ppQZV4lMRo2lUiqWyahP/eM/qsbGRjW1oUF96J57VG8spr7V1qZuvvVW1RePq6UtLeonv/iFimUy6sof/lBhGOqqJ59UsUxGDSeT6oqPf1y13X+/Gk+nVTyTUbv7+grs9FgqpXb29Ki3h4ZUIpNRQ8mk2vTOO+rNvj4Vd4B9LJNRh4aHBVzHEsJeZjLvZp2PZ66LGc1Cm8xEhtPdn8l4YM5lUI8H7cV9FDPW7nM+L4NZKCSynf37lXroIZH0DA977HI8PpEyLkam7uDa2ysDYDHCfeMND8kev9q5Z08B6cbjturpkbHTXdR0QXNHh4fXDx589/jrXmZvr+D94mOPv8S33lKF/w0uOX88c71jh/x/sPPmRAWBe29iCVmciCffDbjdtvGk1+b4e3G8YiGbm7g/m1OXXnKJOu3UU9X8009XS5csUbt27HD2C4v9gx/8QAHqV7/6VeF/7/vf/341c+ZMNX/+fDV//nx1zz33/NdMBErx/1SUwHUpSlGKUvyNIpvNq97emHr77aGCFDuREAZtYCCuenpiE5izvXv7VSKRLTBs77wzpEZHU2psLFUAx4mEMG/RaFr198fUc88dVLGYJyt/881+lUxmC4B8aCihBgYSqrc3Vni9d2+/SibzhclV8Vxu715vwtXdLROoWEwmVceD8LfeejebMTjosR7DwxPnmy74Hh2Vh8uGv/qqA+qjlhpMDKo9fXsKUvCx1JgaiA+o0dSoimfiBUZ6b/9e1RvrVa1PtKo9/XvUWGpMxTNx9dzB51QsE1Nv9L1R2Ncd7VaJTKIA2t8eeluNpcZUb6xXxTIxNZYaU4OJQbXpnU1qONar7NE9DsO8W4D0yG5P8p0ZFXBczEAnu0XmnewVwJ0eUirW4YDlUaV6fyeg2ZWFd2+SY3s2y/7MmPTZvVm2pwakP7d9dlwk3mbOA8rFcu1cciJodgG1VQSo3WNH3laqe5sHwlMjHkPtAut8xtme9IC1+zobd5jm4+TgmXFpUwDce6Tt6EEBzpnxie2H3xKQ3LHJAdYHBXDHe4UBj3V775/9nPc61v0XmOvdBeZ6795+FY1mimTd/WrTpncU3K6uuupJFY1mVFfXeOHvae/efnXgwLAaGko4z8kCw+0qR6LRjBoYiKudO3vUTTfdpZYuvUi1tj6h9uyRv9nx8bR69NHH1EUXXVpIyfjD85vU+UvPUmcumKuWX7tMnXzy+9Svf/VzB1CPK5Xp8Fhnc9xhtMc8qffxDHX3VUrluoTRzh1VKvY7jwXPDwj47m6dCLS7W4tY8CEVc8D1Gw4Q3tPXpx549FF1wSWXqN+/8op634IF6rXOTnXVk0+q85YuVd//6U9Vbyym/nzkiNJ9PtUbi6k9/f3qqiefVJdfcYV64OGHC3LwzQcOqIe2b1f7h4ZU3DnPqMNof/HXv1Zd4+NqzJGebz5wQA0mEiqWyQi43ndI2OJMxmOxXYD79pGJwKqYif4fYUEzWaVGxicCtUzWY8qLWXKXMT0edO/dqwpSH1cv7VLBxUz18auUicREijmRkByb0dF3y3t6e+WY91rtjEbV+LitxsflNAcPShfFl/Pcc9K1S6K7xPfxQLqIDH+XGv311+UyenrkHMWqdffYwUFZV+jtdcB1MUh2v7ORcZF5Z4tY5eLv273nL77mKASOWzBxGfHjQXUR+B579Y3COf9j4xPq9NNOK9y/I39+S5133nnq3HPPfRe4Ln5filL8z8R/Bq5LbuGlKEUpSvFXimQyy/h4Fl3XKCsT21ZN09A0jXg8Szjsp7tbHMAXLmzE59O5/vpnaW+/lKGhJHffvY27776UcNiPbSsGB5NUVgbZu3eA00+fSiTiR9c1Dh+W8l2rV7cwbVo5gYDBli2d1NZGWLfuFVavbmHOnBri8SxKQVVViHzeX/Dx0XXxiHF9YY4dg7VrYdUqcZH1+71qMW4prtWrxexm1y7x4XG3zZ4N/f1ilNPWBo88AtdcAxs3QmsrrF8v5jv9/WKiM326GO4AVFYqTCNG1sry9DtP8/fv+3sCRoBYNsafB//M6VNPx9AM/IYfn+5jKDnE5PBkDM1AobCVTSqfwtANwr4wlrLw6T4G44PE8jG6Y900Vjby2M7HuOvSuwqluwDydh6/7qdMszB2rfBKaulBGHwFak4SYy0jAmgQfwf81VDmOIdnRyE4SRy/h7ZJnWtNc9rbgC6GZm+1wdnrYeR1mLJQ9mkBr83QFqg91zHL1qVvIyLndt2VrKIyWUYQKWl1uMgZfA7vqrvlWjRbWc91e0IftjSy8065K+dwBeRiUkpLN8QQzcpAsBrGD4lj9zlfFTdyTYPnl00szRXrFCfvC+6D1BAke6BhsfM5chA9Cq9/By64V7blYlKuywhBekCM3pKDEKkT07jwVPleDL8YWCkbfCGnjrdFzvKRs6Qs1rZtXXz84xv56EdP5KGHPsh11z3Lffd9gLIyH0qBzycOUW4JvK6uKI2NlfT0xDjzzGmFslu33rqUOXOkLN411zzDQw99kGnTarCsG2htPYcNGy7n1Ve7Of30qcyeXccHPvBdfv3rTnKZL+NnGHy1ZLN56hvn8tqrf2Du3BPwakm55Yickl0qB+YA+GdB/h2pZz15Dfhng8oDZpHj+DzHcXw7+JvFHA1NzMsKx64CLQxGDWATMyvJ2zZffu45FjY28smTTwagacoUlq1YwZM/+hEJ2yZkGCTGxtCCQW677TauvfZaGiZP5o19+ziYy3Ha1Kl87KKLuGH1aj72oQ8Valon83lWPv88K5csYXZ1NZZSGJpG3rY5PDZG+7Zt3Lp0KVPKyvjqH/7A3ZdeSn1ZGVomJy7QPrc8VZGjt+vinTMdgzNNDMzmNr970HUHNNsZsIrLMUUTTj3toDfYua7UCnEof1fpJ8ScLJ/3alHl8zIoun0nk1IIGsQJbO1aGQy7uqQsQn29WHDn8+IGNmOGtD1yRNquWSNOYbbtDba9vWKCtmYNzJoFlkXSV0ksphGLiWkkiK9aIiFjqlsBTNcn+rQpJYZkyaR4qpWXi+lZJCKnNQyvlKJbHSyTkUtRSp7j8YmVwQBCAQsDG+1Qp1du6wTns2XewyU8Z3r3UuE5iTfVyz0p/t7dex1PemXUOrrew3VczvXD+x/ivl/8hN27dmHbNpd98IPc1XYnN92ykhUrVnDFFVcAcMEFF0x4X4pS/M9EyS28FKUoRSn+RqEUDA4mMAwdTdPw+XRM08aybDRNwzB0Ojuj1NVFiEYzaJrGt799MT6fxt13b+O886YXym35/Tr19eWUlwdYsqSJUMhHJiNuxmvXvszGjftYu/ZlfD4dXddYtKiRoaEkN910Hl1dUXI5i/FxAdemabNli0ygBgeltil4Zrc9PfD00wKOXTNctzRrJCKAeeZMmagtXiymths2yBywv19KtnR3C6DO52VC1toq88SyMnj1VXESb2qS+eeKFTLntBUMJYewbIuFjQvZ2bsTW9lUBitZ0rSE/ng/1z93PUfGjqCjU1NWg67pWErK7+iaTsgXKgBrpRSWbVFXXkfIF2L+1Pl8Z9t3uOPiOzg8dphtXdvI23kUCr/uR6FQmoE6416pW605NYPrzvMAruY4CJfPhuAUAXd2HoJ1OEVcoXYx+MJghBHwrEsJpdAUOOsBAbO15wpIHd4JZkIALzbUtQCGV77LthxQpRW6x8pCeYNzjAPSyqcLsK4o/n9fdIwbRhCClQKs08PyrAHoAnbll+vUno3JdQcrZfP4YTk+NBni3QKoz7td2seOQs8WqVd9Yiss/Kp8X4lu6HgatqySkl61C6S8V7JPAPGk98H5dwt4T/aLazhKrmm8Q1zHJ82D1CCEauQ6rIw4juuGd23ZKLlUkpGxHO+8M8KyZZtoaKjgl7/8JF/7WgvhsJ8NGy6nsjKArmu4xIKug2kq1q59mdraCHfeuYXa2gjRaJb29m1s3LiPb3zjt/T09KDrGuvXf4g//GEzkydP4YorTuILX5jL0FCSc8+dzosvPsekSZP5xjc+SGvrKfT1jaBUGlI7+NYdd3HRheczd+6JzldsQf4w9F8Ldhw0P5jDAqx9UwEL/CdC/QZ5r3LOvR9zHMbL5fiBFRCaD74mcRB3a2n7T4D6RwVY2+MwsBzMfnRNIxWPs2r+fD5x0knc/Pzz/PSJJyivqmL47LPZffAghzo6OHL0KGedcw5r772Xv/v0p9nS2clH/v7v+eH3vkdTZSX/+vDD9Pf1cfLChWzp7OTQ2BjLNm2iLx5nYWMja19+GVMpVjz3HB1jY+iaRvu2bWzct487t2whkc9z3vTphNxaUbouwFfX5e8lnfXAbi7vrf4d6hTgNn2q99sufui6Vwc5Z4p7dcb5XVc5jt5uqa9EasKfCgEHnbou1W5EIgKOYzEppdDbKwNnJiP7A04N7sOHZUB76CEB0P/0TzLg6bqgWU3z6lrZNsyZ4w2cFRXiRh4IyOsTT4RHHxUk6ywEKFt21ddTKKFoWeLinc0KAN66VS6zv18uKZeTS62qkkupqpLxvqxMxumhIelDKRgb8yq/BQLS/+Cg9BcKSZnvtWulTSIBhgaaaQngra2RZzc6+wRwd/Z563wusO7oFmAd9MOMBtmWyXr3yi66136/tDUtr7+i+MznPkfTvDl87f51/Pib3wbgnnvvZcn7TuGsU07lveKrX/0qp512Gp/61Kc4fPjwe7YpRSn+V6LEXJeiFKUoxV8pYrEsg4MJIpEA0WiWqqog4bCfZDJPOOzHMDQOHx4rMNRAod41UKixW1kZxDRt8nkLv18QsGlK7d1AQKejw2Oup0wpwzB0ysv9HDo0RlvbFlatWsqMGVXkcjbBoIHPpzE2FiSZhMZGj+WIRgUAt7V5n6GqyqnYpHkTL3ee607u3DIt4bB3XC4npV3uu0+YkkxGaq+ee67sz+dlApdOwxNPSEmv9ett8r5R/IafbV3baKhooDvWzcLGhfh1P8OpYeY9NI9N/7CJpqomuqJdTK+czt3b7uauS+6iPFCOoRnk7TwjqRGqQlX4dB8ZM8Pu/t3Mr59PVaAKU5nomk7GzBDPxpkcnoyuyVpzUOUJGAFhmVNdMHmhA3SdsNKAgnxcymiN7Yaa0yE7ImA6VCvt3HrXLkAH571PgFKB6fbLfmVCZgSsJOy/Gxbc7RCbNgSnOmx1j5TXOp65dglQZUI+DcEKh7lzavYcR5IWFgQS3QLGzZxT4srtSwmjXNnstOuB8kZhlXNxqGiG7Jiw11ZWPlNqEHxB8JcL6FW2MNX5NCQ6BVT7grI93lVU8/oE6HlJ+ox3CqBuXCL7z/oKhKohXOd85n5hvmsXQC4qDHfZZFkUSHSTyAbojlZy220vFurJP/ro5RiGRjZrsX17N2eeKQBA06C8PIBlKYaGkiSTebq7Y0yfXkl3d4wzzphGX58w15///ExWrfoSsVgC01Q0N0+jre0uIpFKPvvZfySXy2IYOlOm1HLTTV/n7LPPIhrN8p27b2LLy3/EtP2cd+7ZPHj/OqqrK5B61XmwhqXEGT4YvAUm3yIMNArMIdDL5X7ZUdCrILNbGGvfNAHSqS2QPwoVV4A1CL7pTsktiwLIxgcq5fzONFJWiJf2vsk//cM/MCUQQNM0gpWV3H7HHSw65xzCfj+6ppExTS666CL+9Zpr+PBHP8pYJsPaZ59l8Cc/4djRo/SlUvxwwwY2myY3nXce6155hY379tF6yinc/v73k7Ms5tTUkLdtXu3upqW5mY6xMdq2bGFVSwszKisxdB1bKSp9PjTLFkY6mxcANb1eBomqcq/u8YFj72ZIXcY5UPQ36v7ODxa1nzfDGbQcTsllRt0BDd5dW7mjGxrrhCk9dkyoX9MUwKuU1L5OpYRhvvtuOSYUEjDtrkbatgyGmiZAEWR/fz9Mmyb9uYOhYQhKdlnyXE4oaYeOThoVHDqkcd998MADHklvmtJ9NusR3+PjMuZ2d0sJLtOcSOKDAOtUSsb7W2+FefPk1Pm8AOrJk6UvXZdL6+mR9zNnSt9VFRY+Qzl1rpm4iPdezHVxm5yzcGI7NcWP9k68t8X3em6zfAfHM9eW8wVkc/zogfX84k+/p/2ONr64/Fpeeu63+PtHuOBLn2fFDTcUmOquri6amppQSrF+/Xq++93v8tZbb1GKUvz/E/8Zc10C16UoRSlK8VeKdDqPadocODBCe/s2Vq5czLx5kzl4cIQTTpjsyO/ylJWJ7NswNCxLwLWmgWXJ+NzZGeWOO17mnnsuc6TgOkop8nmLfN7GMDT8foNAwMA07UI/y5ZtKoCMRx65nEwmXwD55eVBbFsmKbouTEQoJErFqVOFBamvl8nZsWOwaJGwHS6LoWkyfzRNebYsmaitWiWTtXC4qCyykpqqS5bA+98v+1eulLmlz+fOKxXoJl949p9Y07KGWdWzSOQSBIwAWStLZaASU5kMJYeoLqtme/d2FjYuZEfPDo6OH2VJ8xLu3HInq5eupr6inoARIGflGIgPUFdeR5m/rJAPtfL5lXzjwm8Q9ofRNR0NTSTkmg+/Bn7NRjMTIglXplPj2Q92VkBrqgv2t8NJKyE0VWTUesBbgdANkTDvvllAMojMWdOkH2UiTHESfOXCYqIJ8MyOgOETwLr7FjjxBqiZLyyyPwy6TwCoKwGvnuOACed/uVY0w1XObPZ4mas67o2yHUDsgOryBgHbmjbxXBVN0t79XsYOOLLwWwT0o6RtPiVS8IW3CiNdViv7+ndAwxKHcXdqM+sBGH1HJOD1CyEzKnLzcJ3U2NZ06H9NADXIAkDsKLx2l4DzmhPlM+Zi5EyNkVQZvX1J2tu3sWZNC2VlPlIpk7VrX+amm87jxBMnc/ToON3dMRYtamRsLEMqlSMSCVBbGymoS3w+nWQyj9+vEwwa5HI2W7dOTLVoaqpE17VCf25qx44dPdTVhTn1lBp8ho2WPywMsm8KE0FvHsjJbyJ3RAC0HnbAdKU8lLOYowXkO0tth9CpjorCL9vMfunPN9W5ubb3/cqXBqmtEF5ILF/GFzdtYklTE0uammjfto1VS5cyp6aGeC5HwDDw6zpbu7qYEg4zmEyypLmZqzdtKoDnBz/4QV7r6WFxUxM+XUcBR8fHWfvyy6xpaaGpqgqfrmPaduGnp2sag8kko5kMNcEgU8vLMW2bnb29XDJjBprtpCUUS4znzXg3YOvqh9nTHem37dW+tiwHHGveNoAjPTCrcaL8+/i/BxC2VNPk7/tIrxyj6xBLCMBPJgXsmqYw1/feK4BaBmoZxAIBGQRBVhQTiYkDYioFqRSXffGL9Pf3oxsGFeXlPHDXXZxRXy95NpkM//7zn/P5G2/kV9/7Hld85CMQDPIv117La3vexLJ0ysr8fPOb36al5eKCjNu2ZSzt6BCs394ul+DuGxyEykr485+lBrY7fsdicvn79sn4bNuefLyzU5jqW28VdZI7pGSz8hwuswmTQevq9wCwaU1c6ADvXhy/eOHuM/R3g/H3AufH3y/5YRXua1llBWtuvZWHvvswwZAsSvQPDFBZWck3vvENvvSlL72rm1AoRE9PD5MnT36PH0UpSvHeUZKFl6IUpSjF3yByOZODB0fJ562CvLS9fRtKKcrLA2gaJBJZ/H6DbFYkiB0d4yxbtokjR8ZxDSdTKWHUnn76HSorgxiGjmXZ7NjRg8+nEw77CQQM/H69IHVVSljv1atbaG09hTVrWggGdfr64tx224v09sYBRSolKscDB+Sa/X5RKpaXe8C5qUmk3y4RU1EhrzVNHm+84eXqhcPCqJSXi8w7mfRYj1Wr4LLLZD56/vnCmFdUyDHpNCQSGprycemsS5kSnkI8F+crz3+FrlgXhm7QMdbBls4tVIeqKTPKaGluwbRNzpx2Jp88+ZNU+iv5/ke+z4zqGZT5ylj5u5X0xfsI+UNE/BGSuaQYjWga937gXioCkiOpoRHPxdnWtY20mUYpGxJHBRxrTg7yzuuFydYCkuu7vx06N8qzC46TR2HncgHMyhYG98QbheH2lQsoRqMAeDQEWIIASBCAW1YvjLivEureL+cAB1R2ys0tloArJYxyoVMcFtuWx3tFAVw4gEJzcqmVDVUzZDHBysm24nPpDphTluzfvlbyq5N9cm292wRI72iT7TvulPd2Tj5jwxKRgoN8H3ZevudQNUxbJFL6yDQ55677BeigQcNSudaXboZEl5zvnY3Cbtt5eOE68JURKCtjck2QE0+czGOPfYR58yYxeXK4kDaxbt0rAPT2xpk/fyrDw2kikQANDZXU1kYwDI2OjlGWLdvEoUOjRCI+/H6d5cs3o+uwcGEj69a9UkjBcBUm3d0x6uoi7NjRg2XZLFnSxKxZNQwNm4BZBKxdwKs72w3ZhwaBE8FXC3oEjEnyjJLvWllgjsj78GIB4CoP/ddD/hgYUx3puCk52OaQ9I8uKgkUhM8FcxRd01i5eDEfmDOH4VSK737oQ8yorkYDhpNJdvT0oIDFTU2cMHkyS5ub8WkaX2tpofWUU1jd0kLQMGiZMYOMaWLZNkop5lRXs+Hyy5ldU4OOjF26pmEULfZMjUSYN2kSU8JhDo6McM0zz1AXichaj6ZLfm2xxFhDkN9BRwoeCsC8ZgFjeVMe4IHqnEPPZnIi+dY0mNskz9GEbM+bHhhPF0mRlRIgbRhyjHuOYEAGvmXLoK9P9re3i0a6txe+/GWR7uzYIeB5cFDyXA4ckOOuu07aLVsm78NhNn796+w97TR2/+Qn3HjRRXzuC1+Agwfh2DGOPvssj/3wh5x7zjny2bq6YNky7vrat/jZz/Zwzz27eeCBDfzzP38Sy7JRShZEly0TYN3VJZemlLzPZr3U8/5+WSRNpz2fi3BY1EmLFwtjbRgyfmuaMNQvvQR33iljvKt8X75cvoqAT6FlczCnSe5VPOnlstvKA8CG/t7AunDvkHt7wgx5Vs77eTM8YF3cHzAei9Lb3yfbFDz19K+ZPHkyq1beQt+xYxw91MHRI0c499xz2bBhA1/60pcwTZOBgYFCH08++SRTp04tAetS/G+PErguRSlKUYq/QuRyFmvXvsyxY9ECyF29uoV0Os/hw2PE4zkqKoLoulaQere1ebnTuZyFUhAK+WhpaaazcwW2rQTv2YpzzpFctb6+BMlk3pn4jLFlSyeZjImmQW1tmNtvfz9TpoSxLEVFRZCbbjqP/v4ElqXo7YXzzpP5YDgskyfpX96//rpnkOOa3liWN9EyTZnIARw9KnNMd241daqX92eaAtqnTZN0xJYW6TuTkQnd7t0CxpWCD5/wYXb17cKn+7jh3Bu4e9vdBIwAXbEuaiO1rPjtCmK5GJay2NW3i8HkIBF/hNryWsmZdmjZ2y64jfU71tNQ3oClLCoCFSTzSbJmFhsbS1ns6NlB3s4T9odZ0ryE1/tex8BCS/VCsBbQBeievR7CzU5eZwBOWQMXbIaFjwggNsIQmQVnPyS52btWQOwAlE2Th5mQ9zuWCZh0FWOaAwqACdrtzIAc0/xpOHWN7E70OkyuJkC7arbDXAKBSpFrW1nnBigBsZqTX2q7udtKnq2cw5YjzLSVkT40XfKh7bwjYw3LuarnOIy7ElCsGcJsL1ot+dX1CwX0ltUJc33xevj7TbBojfST7JN8bBDW+Q/XigHbwOuQ7BWTMqW83PLIVLjwfmnfv0OuzygTkJ3ohennw9W9cMH9sr/uDOmvZwsBEpSHJJUiFPLj9+vceuvSwt+fYWgsWdLM4GCSjo5RIhE/pmmzfPlmDh8eY9q0CtrbL2HatHInZ9Xi+usXOcZOOqtWeX2BgMhFi6YzPJwqAPZ4PIeu68TjWYRRngQq6ygWnD8QlfW29V8H+Q7Jt1ZZIACpHXKP9DKRh7t515iAIdvq2kUGrvkBy7nfIQHpOCZ5Wsg5x3JQCQzSNFRUMLW8nNOnTuXY+DhbOztJmybN1dWcVldHx+goQ8kktlJkTZN4LkdjZSWPfeQjzKiqQilFPJslYBjomsZQMknaNNE1TdhqTcN2VCLxXK7QlwKGEgkAGioqWNLUxN3btjmLQUqArK4LyPL7BFTnTKiIeLm2mZwAYtv2GE73vZtPnc3JSqGbnx1Perm7PieXxbKFBS/O442UeTnXbp+6LgPVxo1C4/r9Iru57DIB2Rs3CjM9ZYrk1bS1ybb2dqGFZ8702sXjEI1S/fDDheOiuo42NARTpmC3tfGFhx/mwbo6gm7OjHNsmAC9vRpLlsD4eBSlRFEE0NwMjz0m5pAXXACf/awA5MpKAcFXXy24v7FRPl5lpTDTOF+75QwFpikPEMn4sWOwZ48sjLrmaO7iaH29k/kSDMj3nM7K9xdwxiR39fW9ws2rPj6U84glnP3KW1gp5CTJIzo2xhWf+ASnnXkG8886k4e++102PfUUms/4i0A+m83y4Q9/mNNOO4358+fz3e9+l6effvq9r7EUpfhfiJIsvBSlKEUp/gqRy5m8/fYIwaBBTU2IkZE0zz9/mB07erjzzovRdY3+/gTt7dtYtWop4bCfVCpPW9sW1qxpYfbsGmxbYTmSuq6uKJ2dnpQ1EgkwMpIqOI2Xlfl4+eVOJk8OF2SrAwMJTj65lkgkgN+vYZqKbNZicDCOZU2mrc3PAw8IsO3pEfYCZD7p5vIpJXO8cHiiC20mI2RNU5OkIPb1STuXOfH7vbmV2377dpkIui61LnBXSgige++zIBgnb+XZ0bODpsomaiO1+HQfGhorfruCG8+7kVnVs8hbeXJWjqyZpa68DqXELVxU0Bq6pqOjc3TsKAF/gNpILX7Nz3h2HIBELkFDRQMaGnk7j0/3YdomFT4/BhqashwWGsmrLpsmEnBwDMjSsG8tnHQLVMwTyfjIdgHhwUnCWAcmga/M+1Eoh7VUFqQ6BTCGpsg5soPCVoMjJ79LGO/MIJQ1CmusbDlWMzzgXCxzdV9bOQ8IK0uAcOFfvRIgbgREqt6/HSadJCDaykKg3FEWOznZlTMFqE9wFse7Ftsxi7Ly0lekAV77Nixa5biWAy9cD0u+BYEKAdlltZAekufX18GlG8SgbGiPHL+jTSTfkWlyjSg5r3LM4cYPw461Au7LaiX/erzD62/R10iXn0AuZ+P36+RyFj6fXki5ANiyxftbWblyMbt29dLaKgZI2axFPm8xPJwqeBZMm1ZOMOhzwIjNzp29LFzYiK5rGIaGbcPBg176xwknTEbX8oR9nWj+RrnvhRtUJAtXjimdHgHc/Hxb9uePwMi3oe4uYatdwIwt4Dt0qoBvOw2Dq6CuzWl3HEOOX+Tl6V0kAxdIDy5wzmaZEomQyucpcyQpOctCB17r7eX0qVMpDwTQNY1ELsfu/n7OaWjA0HWuf/ZZvrJ4MXWRCMlcjnQ+T1csxqLGRny6zg2//S33fuADGLouP0uHzU7kcsSyWeoiEQCq/X604+XaxTm3Mxrk9xwKvDvvuvi9KyO31UR5+fSp0D0g0mXTlY8rAe5d/cKSBwOeC/jxudoacNVVYkgxZ46X5OyWTli1SvJnzjxTUOnatXDLLdDQICi3o0Pa3XeffLbeXj7ziU/wx0wGLIvNDz/MaWVlfOcPfyDe3883vvpVLli+nBX/8i9cMX8+tLeTu++7fPXudp544pcMDo7x0ENP0tp6IUePyqndig3upUyfLpf6r/8qOH7TJhmr3SoQrkq9ON/aNTp3U3aSSfFfc1PG3bQg25aF0xPnWpT3HPW+qzlNHrAtyOyLJPu6k+NePG6549LxOLzYWdy2pZ2hT2z/l451j7dtCIfenWxeilL8L0Yp57oUpShFKf5GkcuZ5HIW8XiO3t449977KnfffSmhkI983uLGG3/Hk0/u55e//CTnnNMIyDxg+/Yepk0rZ+rUcqd0FyQSOcbHMwwOJlm0qBG/32BoKElVVYidO3tZsKCecNjPli2dXHnlE3ziEyfx6KMfJp022b69h6amSurrK+jrizNtWgXBoA/DCBY8d2xbALDP53noDAx4eXrnnusZm7kg27KEgXb3uc7jAwOelNyN4pJfhiGTNMMoBuEKw29yNPE23bFuzp1+Lhoahm5gKpOAFiDmyJ/dclxAwbBsZ+9Ozqg/g/JAeYG9FmmqXijTZWgGthLWOmtlKfeXF8pxaWiYyqTSMNDycQou30ZEmL/dX4UF7c7FavDGV6D6VGhuBT0EmSEpy1Vw2h4RV203x1rZkkN92jdEMg4eWMwnBAjrAQHNnRth2gec84fF6Ky82WNv0Dy5sGZ4z8UgWNMc2bkzi3UnoNmYSNtd9tmd5Nq2LBAkeuV4Kwuj+4UVjncJIz3pJMmhds8HjkQ864B/S8Dzb66EOR+VUlxmRhYYYkfFFC3R6+RjrxJm3MwIoNcDEKwSUB89Am88CC3fnihtf+lmOPtm+Yy/utwr92XlZOL+h+XwzkbS/3yYA31lBWA8d26Np1a1FT6fLDS5z7mcRSjkI5GQhQK3xN011zzD44+/SWvrKTz22EdIJnNEo1kqKsRx3LYVe/cOcO650/H5dLZs6SyU/tqw4XLKwzkMXYGdAqvXKY21WthmlYKRNqi7F9AdUKzktTkCRrXzWzOAPAXArABrCIy6ov0OILdTnulZvhvKFom7uErJ+9CZJOxJBWOx+z7wAQB643H6EwmmV1aK4djSpfTG48yfOpWKYFCk34BP14lns8RyOaqCQf5j/35e6uzk9ve/nynhMDt6eqiNRHhg+3buvvRSfLqO38nJdrGQX9fJ2zYjqRRTIhE08AzNihnHv5Rz+z+am1u8PZsT8PxeubtuKEd2XGyqVtxnNCoa67IyL2HZYaKZOlUGz0gEXnnFW120bXl/+umCZg1DViADTp9+Pz/60Y/4xVNP0f71r/PFG27gpc2b8WcyXPDhD7Ni5Uqu+OhHJXd7YIDorPksW6axcePvqam5lXfe2cp11wW46SZYt84rd3jjjXDPPWJEfvSoAOj160XO7bZ58EG4/nrv/YYNIi13399+uwBs1+hyzx4B53V1YpZ2223w8HqLSRXOPwK/z1tNLQbGIG7vLqPtgm6lRFFQHp54312jMzeOB86ZnNzPyvJ37z8+Dztnynld47pSlOJ/U5RyrktRilKU4m8UgYCP8vIg1dUh5s6dxKOPfpjh4RTXXPMM/f0JHnzwgxw+/G+ceeY0brzxt/T1Jdi+vYfLL/8Zd921jVgsSzSaYXw8Q21thOHhFA0NFSxf/izHjkWJRALccMNvWbSokVDIRzZrcuaZ03jqqU/x0EMfpKNjnOXLn6WuLsK0aRWUlfmYObOacNhHLucjk/HwWjAoc0O3RAtIuaxQSKTjbl5fPO4oeJXMHxcv9valUpK/V1srta0PHxaSJ5EQZjsWk+NdUzQXWBsG+HwatqUT9oWZP3U+A8kBkvkk8VwcFMRzcSoCFdjKpjvWzavdr2LoApYBFjctpiJQUSjLBTCaGgUoAGvTNhlKDWEpi3g2TsdYB9u6tgn4xhZQXgCOmjC8aAIcz/iOdJoZEMB3xt0w618E/GqaSKLNJKT7hNX2hWFoq7zODIoJ2oK7vJrM+QRYKenLX+mwzEreN38K0CHv5EGXOQ7kFEktNUOuSzcEmCprYnktI+BMPB1YoxxgFqjwmG/bEsn1eIcjBTe84wMVcl7dLxL0SSc50nHDyR9Hzjl+SHKtxzukxnV5E3xmr0jDdb98Xs2Q/OvYsaJ87DYITZJc7tAkAdZmRvrS/HDhA3KsPwxDu0VaXr9QjqtfKMB60Rpp/72ZkBmDRWvIffRZcsFpBZ+CtjaRoycSOQ4dGmFoKDkBWBuG5pSvg8HBJCtW/JaOjlGUgvXrP8SBA9exZk0Ltm3T1xeno2OUQMCgoiLAn/88SH19Oddc8wwHDoywYEE9v/zlJwvyc9PyOfnEhpTKqmuHfB/46kALQtkS0Hwi3cYFADr4aoRpNoecHOpRZ7+zsJM7AuYxaUse7BikXhX2O7xUzhWaL2W6VFrcxcNLQC/HVoq2LVvYuG8f0WyWaDZL+7Zt1EYihe1tW7Zwal2dKHSzWTrGxrjmmWdI5HIMplLc9uKL9MbjXHnyyaxaupTqUIjxTIZFjY2se+UVFjY20huPc92zz3IsGiWg6xyLRrnmmWc4NDaGX9dJ5vNcvWkTR8fHnY/tsJLuKkjAJ4z1eFykwa4pVnFuLgh4ct/bDhvtArC5zbK9qtzL5XVzuC1bHrm8PGua5Glb9rvPYVoitbnhBm+F0LIkt/qkk2Sw8/tlIJvhpG50dMAXvyj66cpKYcVffnmibXc2y2c/8AH++NJL/PrZZzna2cm8s85i5uLFvPrOOyxbsYKHv/c9YcPvvBOfrli1ClpbL6GqKs6BA2+yapXslu3yPDzsPTc3S0WvYHBim2h04nvDkNLcra1CuldXy7abbpIxu7ZWWO2eHvk4K1dCKgPKLaGmaRBNijzc75N7EE04Y45fvteDnfJ9a4iyIFImee3RhHfvbNuT9r8XcM7moLxMvk+U97sAD1S7+fUBn7etFKX4L4wSc12KUpSiFH/FSKfzJJN5tm/vprm5iu7uGAcPjvLJT54MwM03P88NN5zL1q1dbN3axfr1H2T79p6C87CbP11RIeW4ih3AN2y4vMCguQ7hhiGTiUzGZMWK37JwYSOXXTaHxsYKDh4c4a67trF6dQuzZk0ikfBTVuYx1JmMzCHd9EXXaVbXZaK2ebOUbnXrp/r9QsLccIPk9c2cKaA5kRCQbtvSZnxcJmgVFQLgLUvaFcsQGxoU5ZV5LD3FseixQgmukC9EIpcgmo1SFazC0Axe632N+VPnM5gcpCJYQU2oBhubgBHA0IwJbDRA3s4XWHDLttB1cQjPW3kAslYWW9nEc3FOqJqOjpIcaX+lSLPTfQKqa5dQkNtqGgXTsDduFFfv4GSRkE9eKGy2GRW5c8ityeuXvFnlAF47Lyyy0mD4FZh8tkjFC4x0Xo4pOEM74dKA0aNQ2eSxyFbWkXZXSCPLdTPyy7n0onxIt6a1y0q7zuPjHY55mVOWy8x68nAoKs01XRj555fBWTfBGw8I6D3hk9LupZvhrBtE5h2o8Bjo2FExQlu0Wpj91AC8fo/UuvaVUcgXT/Y5TuQrJSd7aI+AfDPt5JvrsoAwdlCcw1vuImfU8PahGGvXCmPd2xsvKDqyWZN4PEs47LGXq1b9gba2iykr8xXqv2ezJhUVQQxDK8jJlYJ4PMuePQMT3MJnzarmC1/4TeHv8fbb3099fTnptMmePf0sXtxEZbmFpvJAHtI7oew8wIT0dvBPk3rUKLAlF1nk4S4gcOTfZefIMdY4+CYjkvKM83tCADqWfMfmERh5BOrXUZCX2zEYvAPqv03CDHDYcfb+i8x1Swt14TDRbBaA2158kY379rF/+fLC69ZTTmHD5ZdjOHnWadOkMhCgY3ycgGG8q92yIrfx49///Ior0I5noF3g68q2QwFvQCqWc/t9786xnSAVb5bfu9t/U72Ar7oaByQ7jLlhvJvtDvg9xvUz/yyy8JkzBXHedZcMZNu3C6BubpbVRcOQQXHZMnj6afjlL2HpUgGDPh/jiQSpt96i4fvfh9WreWrnTq5btYqut99G8/sLg+IFhw+zYvlyrvjEJ8jn8xzr6KCxcQ5mRQ2vvfYaV175d+zd20F5eQ1KySndyg2mKYD7nHMkNXzDBvmoW7cKG33CCQ7Z7C9cFtu2yTpBJCLbTVPG9RtvlP8Ju3aJ1DwUkkXTU0+F6dMsNMuS368raSoOpSCWlMWN4yOdle/dzdUu1Ha0PdbbXWxx+9WK+01BRVjAc8Et3pAFEveDVVWUWOtS/FWixFyXohSlKMXfKHI5k46OUaLRNOefP4Pm5irOP7+ZK688iWg0i20rzjtvOu3t27j00tmsWdNCOOynqamK6657lu7uGJWVQacer7jyrly5uOAArusapmmzYsVzdHSImVlHxxiaJtLyb3/7YpYsaeK2217k8OGxgqFZV1cU27YIhWQ+UlsrwHfyZM+HxjW5cWPKFLjiCpF+u6x1Pi+TsHXrZMK2e7eXkwdSBjYel7TD6dO9etdf+Yq0q60VYF1ejiwSWD78up/+RD+1kVpWPr8SgLA/TGNFIyGfOH8vbV5KRbCCSaFJ1JfX4zf8hH1hhhJDJHIJXul6hSNjR9DQsJVNxsyQNtPo6KTMVGG73/Cjazphf5j+RD+3vXgbtp0XAJkZFOduX5mYmk1ZJPnFmVEH+DqSbs2AM+6RXGtfOdSdL4Ba08BXAeHGiU7hmTFhszVdwPOuG+V93VIBv/m4uI4nOiAzLOy1m6etjrspVTPlOXpYgLQRFCCbizu51kEBoGhyndEjHqh22evyxiLncRzzMp/nQO6y4e75Ez3e+3xKwG96SMBx4xJ4cYWYlNUvFDdvDQHLVg56twqgvuQRkZf7IwKUL3xQWOp8UvKzNc1zIn+tXT7PtEVSCqzmBLkuX0ge1XPg4ochM0wu2s/atVvYuHEfbW1bWLq0mbIyH5qmUVbmp7Y2Qnl5AJ9PZ2AgznXXLcS2FR0dY1x//bOYpk0kEiCbtchkTF55pZtDh0ZJpfIEgz4WLWqkpibEQw99kPr6cmxbce+9H+Cqq07jlluWUF0dQtc13nijjylTwoyMJAElLPPAdRA6zXm9XEzH8kPOjXSMxzJ/RmpUI4C4fzn464R9Hlgu8m5zGDApGKGpJNhxybvWfOCfB/V3C1jvv1l+Y3oY6tsBEw2oDYcLwPrPg4MFV/B5kyax/oMfJOzzEfb7qQoGqQgEWLl4Ma2nnEJVMMhqxzV8TUsLQ8kkR8bH0TQNn67zUmcnteEwjRUVhXarW1r4+OWX88bXv071v/87B+++m31797Jq6VJaTzmFVS0t/PsPf4hWEeGpfW8ImM3kaPvWtzjx7DPRT53HU88+I4BY095tRGYe9zcBEx3HXUSmawLycnmYOtkxljAmgq+AX9huXYe3OuQ8piXvH33Uq1V4223i9rV8uWilm5okQTkS8QwrvvY1AdbTp3tO4z6fGHF99auc9vLLzG9t5aEf/5hNDz6ItnWrDKg9PTKg+v1CNycS5Ht6+Ox113HWJedz9tln0Np6A21tv6Sysoarr4ZJk+Dzn5eP4ALsVEqA9Zo1Ml4PD0sK+D33yJicTnsKJNMUufdNN0n5Lbck9z33yEfz+WSsDoelj4YGGcNlHHH/2Zme87ply+tsXr7zdFbun2V7Du2aJt93Vbmw10d75W/FBdwHjskCRyLl/UMpGM0pCPodd3JHyn+sT+5tpAy6+8UErxSl+BtFibkuRSlKUYq/UiSTWTIZC8PQSCbz6LpGZWXAyXEWcyXLUnR3R5k1qwa/3yCXM9m6tYuzz27A59MxDK1gouTz6eTzdsFEaevWLqZNK2fy5DB+v47fb/Dqq90sXtxEZ2eUKVPCrFjx2wlMdyolbG1VVQjb9mNZHjFg2zLZ8vm8iZebX+1uB6/0lmP8W3Aa9/ng0CEp3bJypRiddXdLSmIgIGxKJiOst66Le23x9pmzLA4n/sycmjn862/+lZWLV+LTfbRtaWPV0lVMq5hGX7yv8H5G1Qw6xjpo39Ze2N8V7aIuUsfegb2cOe1MeuO9tG9r59altzKnZg62sjk6fpS2LW2sXLyShooGKgIV/Otv/pWN+zby+6s2c1HTeWhWGtK98M69UqvaF5acZL0Mkodh/92e6Zib95wZlnb+CnmfHQIzJcA7O+zkYPtEjp0ZkNxrIyxAG10AkltDengX1J3rgOSww1C6uYRxAc66I8e0MmIoZgQF/FbOcOpWIwsCup9Cnrame/1MiAIt5LmJu31aWZGEo+R1okfMxv74ZVhwnVO+KyAu4PULYeZlEKyB1CBUzZLrfelmOGMFVDU7knWfZ0y2cJV8F6FJznU7k+mU8x1pugBpMy3XYQTkYeVg9G15ve02clPP523/R2n/zmvcffelVFYGME1VWIQCCAT0ghzcrSO/c2cvZ545rSAPN03FyEiKQMDAMORv0K1FX1yDPpezGBiIM2NGTWGfKE00Xnuth4svmo7fl0fr/yLEN8Ks/TB8m7yuaIX674tLuJt7bQ3J68krwaiH+JOQ3gpTbocjJ0PjJvA3wsid0ia1FSo/DWavt82YBpk3pJ1R6/R5J0xeBfluov6L2dLZycLGRsYzGcp8PobTae7csoXVLS3URyL8fN8+3ujr496/+zsRSThO325prYxpsr2nh7pIhMFkkkWNjWzv6WFhY2Mhrzqg65iOadrGnTv553PPBeCZp5/ma7fdxs5du1DAnrffZvW116KU4pav3MwVH/sYKMWOrduYUlnF52/8Miu+sIwrPnYFhIOODNhlnB1g/F51kt2wlceAu/Wx8478OJsTEKYV/W258uNDncJyB/xgmfAv/yL66TlzZEAsTlD+7ncFCLvGZatXe8ZnW7bAlVcK0G5qEsfHRYsEqMfjnsQnlfLytnt7xSV89WqYNUvONzBArP4EvrhMm3Danh5R/6xeLeMtSHPbFkVSVZUsXtq2jNc+n5iRFZufLVo0MR97wwaHRLY8BZNbpkspWTStqYHqSgtNKbR8XsBxsQHdzn0TTeem14NPn9jONYtzlQbnnCIfoLjN9KmyAFJsNHfOKY783C9AunmapA/EEmKqljed34BWYq5L8VeJEnNdilKUohR/g8jlTI4cGWd0NA1oVFYGSaVyxGI5DhwYYdmyTXR0jJFO55kzZxKRSABQ2DYsWtQ4ARAkEjlyOQvLUvj9Oum0lN5avLiJGTOqqa4O0t+f4JprnqGhoQK/X+fEEydTURGYUOva59MJBAxCIR+WZaNpXvkVV33nSgLBA9suAHfNX6UutcwPV6wQQO0yIXfe6VWiceXfbjmYZFLez5ghTLllyUTPzfU2TWjb0oapTFYtXcXM6pm0bWlj476NtG1pI2AEJry3lEX7tvbCe7/hp31bOz7dx6Lpi4hmo4X9d265s1AH3O2jfVs745lxLGWxqmUVrae0MrWiST5oPio1pqecB9giDbctmQymumH+neLurUzvppdNdUB4XsBzYIrHXPsikB5wmGglINFXKbnYQ1vEgTzZ5dTKzkLtQsnL3nmdnEPTBUxGDzuGZJqcJxcXR+1ApYDegCPBNDPCPivlMdsgr82s9GVlpV/dMSNyGWaX1Tb8AsyNIEQ7ZJ/LFut+WNomx/W/Jv1c9CDM+wTsuEsAcmUz9GyV1xfcC5NOkO/wD9eJ/Nxf5uVfR+rku7WywoTHOmHb12XBItkHL90i320xg++C/7KpcMmjBOZ+gPfNDPDIwx+ivDxQ+P26sW1bF4cPjxWY6S1bOkml8tTWRrjmmmc4fHiMfN4mlcozZUqYSCTAqlV/wLJUIfVCKeUsJGkEAgYzZtSQSOTo60sQi2UxTZtQyGDJkmZ0zUTDEBOzilbQq7zXk9cAloDp+EZhqt3XI+3yPnKptNOr5ZiyRQKU3TaRS0UaXrzNjkpN7ZE7RWJe2NcGvin4NZszp03D0DSmlZcTCQS408m1Xvvyy4xlMvzz6adz39/9HT5NY0dPD4+/+SYZ0ySdz2MqxfJnn+Xyn/2M77zyCosaG/EbBkubm/EbBiHD4NXubg6Pj5PK53mtt5dPn3MOSin6EwkefOklspbFQDJJNp/n1i9/mQfuu49gwHWDB5RiYX0Ts090VArhkABrmOg6Dd7KYGefx2YrnPxqW1jNzj6HyXRRou4Ndoc6hWEFLydY1wQUlgWl7c03eyW33MHQTVBetcobKINBqVMVDsuAuGWLAOpf/lIQbFeXUMDLlwsQTySEKn7lFRkY6+pE0uOW7mpvdz6zyIsMw8uTXrNGFiZnzRIwPGeOtyDqmkam07B3r/dV+f1y6W61sLY2UawHAhM/jlt20e3ryBH40peErPf5ZBz/0pdgbFyT+2UYE9UCPqNIOYAsUrjovKne25fJCuPtHmsY726TN71FlOJ2FREB1u49r6mU/YYuiyaZ3H/+T7oUpfgrRQlcl6IUpSjFXyFyOYtg0Ecymefqqzdx+PAYdXXlRKNZ2tu3sXHjPu68cwvRaAbLsonFsoyMpLn22mfo7IyRTptce+1m4nGZJOTzNn19CeLxHMlkDsuyOXx4zAHp43R1xQpyWMtSBTO1efMmsX79B5kxowrTtAkEDHw+vQCsAwFPRui6hqfTXhkuyxKFo1vfWtNkAjYwIHMcdw44Pi7t77sP9u8XSaErJ2xogO99TyaCDQ0yyauvF9B9223yPHWqYiTXx6qWVaBgWvk0DN1g1VIBvataVpGzcoX3q1tWY2gGKxevLLw3LZM1LWuoCFRQ5iujKlg1Yf9rva/h03yFPm5ZcgvVoWqUUnRHu1n/wfXMqpklrGqoHhZugFmfldzrsmkOI62g7v3yWtOcfFfFhJrVug8CNVJua/hVkXq7eYk+xxTMKJPmZfWSk+2C+ckLBcjvWCbM+eSF4jyOKjIs63WY26wAYBc8V86AYLXDOucEaFtZSI97QDpQISBc90G820OfyskBj3d55maJPjmm2CjNNdUy/CLrTvbBlNPE2Oz310CqX9jsZK/kY0emSh8vXAfjBwVAucZkZbWOMdkquYZYp7TLJ6Vu9jsbYXubSPNb7hJDtOeXwegBkaRHOwSAxztFcp5PEgiLw34ikSMWyzIwkCikVMyfP5WyMj99fQmWL3+W2toIhqHR0xNj3bpLmTGj2vnb8Fjte+75AH6/zrZtXSQSuYJC1VWTgNS/7ugYZWAgga5r5PNyPtt2FgH8s6F+g4Br/xx57Z8FGMIovwt43wJ6jRiTGVMgsxfqH5XfgNt+8mrwTQcCxx1XLdLxyWsAf1H7VWAOY2E4VY10LKXw6/oECXddJELGNFFKYSnF4unTaWluZldfHz7DwKdpBUn36pYWfLqOoWnomuYQwBpLmpuZEg5T5vdTH4kwlslwzRe+wEULFnDsqadY9/DD3Pbii3xn3TouPP98zjrrLCe/35ET5/ITa1u74ZpkZXPCbrrmWJY9Edxp3s8UhWyrqxEg5x4X8AmTWlkurDbA7EbJ4XbNt1yAdvfdHqL1+eCb35Qc6w0bYO5cWRl05eJXXCGD6fLlMvh1dQmCDYUEYLu23m1tQisXA+6jR0Xmc889Mog+9JCw2wcOwJe+hGVaNDTIaWfOlEvTNBmv3RQdy4LrrhPsPm+eGE4ePSo4X9cF969Z430cXRflkGt8NmOGpP7EYrLwaZrCjLtlvi3Lex/0KzTlSLmDAc8EztC9WuXRhCxSVJXL9rJgUTvDW9WdN0M+UCItbebN8MzodF3upWs0Z+iyAFJ8z4N+2X+wE/586N2/nVKU4r8wSrLwUpSiFKX4K0QuZ5JKmVx9tWdA9uijl5NO5+ntjdPevo3Vq5cya1YN2azF9u3dNDSUY9sQiQSoqQkxc+b9vPHG1UyaFKKrKzahhm4mY3Lddc8W+n7wwQ9y/fXPsmZNCyeeOIVAQFb7E4ksf/rTMZqbqwo1sUVCrmOawQLxk897njS6LnO6PXvEFCcY9Fy+q6oo5GprmrAYxWW2Bgc9qSHIvDPnzFEHB8U4bfdukYR3dcHll8tE77HHFCoQQ9e8Nd9j48cI+UKFWtembRYMy3y6r+AUbisbv+4nb+cL+xWqUO/atE1e7X6V6ZXTaa5qZjg1zOTwZAzNkPMpMJWJrunYyqbS0NHyCQG8oakiu9aQslx2RhhoIyQAeuQ1qFkgrKoLsF35tZWGxFGIzBSGen87nHmfsNpv3Qkn3yr96wZoAcmPVUoM0o4+DrM/B2fc6zC2SphlTSuqW+2w0q4hWdVsCojCyk0sy6UccF7e6NXMxhbgqunS93iH11dFE2THHadyzWmvBJRbGQHmFdNFqm2bIhF/Z6OA5Yu/KxJx9/15t8MPT3b2rRf2OjUAVXPlM7thZeGdJ6DvFWG6X7hOJOPVcz3zNLfPSzdMfH/2VyA4iXRwOrm8KqRTFJv9/fdKcIVCPnRdQ9c1slmzYGTmysh9Ps2R20p/mgbxeI6KigC5nEUqlefNNwc599zpDnvtIxK20OwomuY4pktBK6T2tPtel/dKQfp1CJ8l+5QF5GDgemGeGzeBf7o4f1sjkHwe0jug/rtyf+yE/IY01wxKSY62nRImGz+QI2GGBcc6NactpfBrGqYzF7SVQgOOjI3Rm0iwaPp0bKU4Nj7Od155hdUtLZT5fFSHQnRGo1QFg0QCAQaTSXrjcc6dPh2frjOYSBAOBCgPBKRPTcO2bX7++ON847vfpf/cc5n8+9/z9uuvM7msjAsvvpgVV/4DV5x+NtRNEgm3pnHBpZew4t/+jSs++jGRBU+vF8ZyZBxOniPgy1beymDAL+9Na2I5KPDkx6fOlRJQbv1lNHkuNsZyayq72RLJpADr4tqF4JlUbNkiIHnmTHEBe/xxGdgeekgQanm5PHd2eprscFj01a4m+6qr4JFHRB6+fbsg3qlT4bXXoLaW1ElnkbN0fD6tsCZm23JZuZzItVMpOfTTn/Yu0b20desmKtZ9PgHWNTUyfg8MyDg/d66X+qNpsm7g1seePdt7/7OfWOjZ7Lvl+MXmcQH/u79Ly4bD3bJf1+VeufJuv0/u0aQqxxHTJ3nXrrO4a2SXzb27jFfxuZunQShYkoWX4q8SJVl4KUpRilL8DSIQ8BEI6KxatZTW1lNYtaoFv1+nsjLICSdMZsOGy5kzZxJHjoyzfPlmx2wpiM+nc9ttL9Lfn+CXv/wkVVVB/H6D/v4EN910Hv39CSxLsWNHDzfddF5B8h2NZli//oPMmze5AKzlOgwWLZpOZ2eU2toI110nZbxsG3bs8PLz3JrTyiFYKyqEcPE5iuFIRJxmw2Fhu912ZWWyLxJx1HoVoox062W7kziQ51BI+u3pEQAuDIrCNlIcGj3Eq92vAgKYZ1XPEmCtCbBO5pNc88w1HBo9RCwbQ0Nj//B+lm1axqGxQxOcwn0OyEjn02honDHtDGbXzEbXdJL5JFdvupqj40cLwNp1F++MdsrFpnvhzdsESGYH4fUVED8owNAIgZUUCXfNabJ/xzJxGM/HReYdOyBtAzXC8u5vl/rV+agA686N8pwfFxY7dUwk4Jl+yfFubhVgnToG6X5hc90862zMkXlr4uJdd4Y8K4U4RGue8ZhblqvAPvcImDcCHrAGeS6fLiW3qmbLeUJT5DzRDsndBgHSZlb6iveI3N1fISD4xFZxATcCRe/XCJv+95u88lzKhqo5sjCQGhQH8eeXCWs+9wrHOTwCi78h5xt7B3q2CcPtnkPzy7PLfNecQDo4HdMqJuMlD9oNr9a1q+L1OWyen66uGMuXbyYWy2I4E/aRkRSHD48xPJx0JLKqkG8t0ludWCzH4GAKXddZsqSJQEAWrgA08mh62Dm7c2GuUVn+kCwY2DHAB1Y/+CY5oDiHKB3KJI+64ioInSlst1YmCxLprcJUY4A5CNYgDFwrYDp/DAauBqsPkpuh/2oxReu/Hg3IO3WrAQxNI22aDCWTpPJ5YaA1jdmTJjE1EmH55s30JxIMJpMF6fhoOs11zz5L2O9nSiRCNJulOxajvryc6599llg2y6RwmPJAgEQuR38igWXbaJrGp6+6irH9+zl1bAwtGuWs005j1ty5vLp9O8u++TUe/sNmAdZ5UyTbbg60hicvbp4mwDoY8Jhun+E5e+takeO0ovBhXabTNTZD84A0yDaX2QY5l1vqKZv1pDtunWtXxgxiXPbAAzKgPvggbNokkp9QSLTZliWg2zQlWXruXLm2bNbTet99t1hxu6x3Z6cMto2NsG4dFrIQkC9aj1JK0nKuuUbwf1eXAGsQ3GoYEwnztWvlYw0Py9+Ba2IJMr67edsgjPeXviRtHnlELtm2BZw/+qjzd+bK8V32HwT4jozLNve7zebkXqWz8tt2lQkB30R5t6ELsA745Hhdk7b2cUZ2Lug+PorLqL2XtUQpSvFfECVwXYpSlKIUf6UIhwMFIH3iiZOJRAJEIgEqKoJUVYWwLMXatS+zceM+1q17hdraCG1tE92Oa2rKCAYNpk+vZN26V5g+vRK/X6e5uYqhoSTr13+QOXNqmDq1nMrKEKHQRLYmEPBRVmbQ0jKDysogS5Y0cffd27BtxTnnCNOxbZtMxDIZmXS5k7dYTNgQl8xJpWQuWJzL2tMjzEgmI/PASZNExXj11TJPzGbleXhYWO9t2+DgQViwQID6974Hs+bmGEh3076tnUXTF3Fk7AjDqeEC6D08fphlm5bRF+9jYePCCbnS615Zx8Z9G1n78lrydp5UXiZclrIYSg6hazqGblDmKyOWjbGjZwezq2ez4fINzK6ZTcd4B8s2LePw+GEUir5Yp4CeYjC8r01e728XMByqhX0OQM4n3r0/OKXo9SRhE09ZLYDZXyWMdXMrnLIK/NUCXN0+9q0VpnrhBpn17muD3k0iwbayXs61lZXJo254bGUBRSBGYmW1wlQrJcC54AquigycLM/53Bdy8quPyDbdyfNOjwood/OdAxUC6KtnOyy6Kdd3ycNQOUv6rZ4rruChybIwUNEEf1guffvDcq2JHrmm7W1FzuAx6SsXleMCESnVFZ4qCwiXPCry91xMAPiljwoDjoat4MiRMcelWyTKbo60W6LOje3buzlyZIxYLIfPpzFzZjXr13+Iyspgwe+gvr6cxsZK6urKC1JvXdcYHEyQSOSIRHz09cW57bYX6euLO+ysgG7bVli2H4UOZif0XwNmB2BD2UIY+Y6w2XqZAOzhO7xc9/QOUBlp65sF9Y9IO3NAnMH9s0Qm7qsHTKmb7ZvmSM/LYGTtxLzsybcAPqi7GwV0R6PkLEsY6vFxlj/7LEnTpDwQIFmE3OZNnsyFM2YQcHKqrzrtNFa3tDCprIz1H/oQDRUVGJpGfSTC0uZmGisquPHccxlIJLj+2WexbJtULMZQfz+WbTOYTPKjn/+cyZMn88fvfY+jXV3sffttjhw6xLkLF7Lh4Uf40tdXCcByQVs26/2sy4LCVrpy4eI8678UmpMXbNuedBk8UJ0rAtAueHOBosu6ggyCW7Y4gNuSQe6LX5TBzU1kXrhQzMiuuUZyrWc5fwvnnSfnu+ceeb72WtFtT5sm4HvuXEGr4bCnuV63TlCxz1cwslC2wu/3FittWz5ecQ71kiVyOYmEXKKbzr16tRDj990nx9TXHzcMFI3p7trBjBmyTlBR4fjA5b3xHyCd1VDugsXs6Z6bdzAgix9zmrz7kM2J6iCXF/m/myMNx7m7433nc5sdOZUmK79zm0V10DzNWb0NeA7lxeHWMP+/T5hbiv9HoiQLL0UpSlGKv1Ekk1nefnvEkYi3MHduDYcOjbF27csT5N2JRJZ//Vevnu73vvcRgkGDbFbyuouZ6veKdDrPwYOjrF37MitXLqahoYJ0OkxlpUEwCNGogOhitWIi4ckDdd2rWe1OrF55BU4/3XOiVUpy/yoq5NhAQCZi5eUyJ502TeaIN90kUsTZs4XsqaiAnJljJD1Cb7yXuZPmsqVzC9OrptP2sriCd8e6ufxnl9N6Siu3v/920maahvIGfLqPnkQPbS+3saZlDVPCU/DpPkK+ELYSMDSaHiWRS9AV62JR4yKCviAHRw5y17a7WP/B9Sx/djkb922k9ZRWNly+gSB5QqOvQVmDANuz7oPMkIDek2+R7f4KiHfItuP3h6bB2C7J0Q5NE7frxBGRhU9eJKw3jlOQpssjF4N0jwDyU9dAZBYF2iVxSJzJF/17kQS81pGAK8853AgKy57o8aTfmuFI0/sFkNpZMQFzQbTryg2OS7eS3OlAhRikWTl5becdsO0ygz4xTCuWnZspKTMWrBawb2Uk59s1gXv+6oky8WC19KVsMTDbcSecc4tXF/v3V0tu9omfkjapQU/WvuNOYcarZkLvNpgyHwIRoplgQertuncnk3nCYSnHFYtlqaoKFiTiO3b0cvbZDYDIvYeGkiQSWWbOrMGV1w8OJqmri6BpWoEFt21FMpmjokKMBKurQ4W/QZ9PIxbLEY1mqagI0FAPWuplKb1ljkDZmYg03BDQPbLWc/52ncH1CrCGYeR+mHpvEQJKgl4pDuP5bpGJj7RJPrV/NsKX2JA/7GxfDf6ZeDyKSTQfImtZWLaNT9e57tlnJ9SftpXiWDTKnVu2sGrpUpqrqrjmmWdYtXQps2tq5CeZyxHLZqmLRPDpOkecutm3Ll3KnJoaLNsmmc8TNAw6Ozv57D/+I10jI0ytqKBh6lRWfetbzF+wgJBhkLdtJgUCXHjRxay4/jqu+Pu/B+COb36LRzY8ytDYGBUVFYRCId547TVqa2u932wm57mAF8uDLRuO9MCsBu93TeGWClgDYVG7+oURLwu+t+O4K2dOp4tqMVueC/hHPypJ0MeOyaB3xx0Csi+7TBjnTEYkQk1NglZdl/FNm0T23dkpIFopr9TX2rWSEO06kx89Cr29JJdehmlqjqO9l8KTSMgYXlXllUgsK5MxeskSkYwrJduKFedu3nYsJm0mTfL6tCzPwNJdWPX75VFcYaK8zEJz/wF0dHku3yfMmPh9+n2yv3magOK/xCq7dcfd7z6f96T+8aQcG/DLPSyuZ+4umrgpAZYFZaGSLLwUf5X4z2ThJXBdilKUohR/o8jlTEZG0oyPZ6ipCTFpkjB6x4PmXM7k7bdH3gW6/0cjkcjS359g8uSwpOwaOhBk2zYxGGtqEqbZLcXy4IMy4YpEvEmbYciE6rXXPFCtlMwNu7pkPhkKyTzwjjvg1luF1W5uFgKnuxt+9zuZZ957r8x9XMfwUAjQc+SsHBoaaTM9AfQ+9MGHuO7Z61jTsoZZ1cIGaZqGpSz8up+clcOn+chaWfyGH1vZBQY77A+zpXMLtZFa1r2yjtUtq+mKdnHlE1dybMUx+hJ9AuJbVhHxRZgWmUI43YUWaUYk1g4AVrawxd3/AeE5UHeeyHPNtHzJmu6U5dJEymxnBVj6y2H7F4SVnnkVnP1dRIuegt03w0k3C2A3Qg6D7ABiNGebAuXQRUaZmIxVueDbmdTmkxCslNJWgXIP4BaczJW8jx0VcGoEneu0xESsstlxYNYEFKMJePZHnPxxh1FVVtG5OoTRnnKy444+JiZjO9oc4DsbYoeFlX7/PeL6vd3ZVzZZGO/MGLz6LZh2Hsz7uIBqwwE16RFhrwNVch3PfxHOugleXzcRpAcqpO2ONlIX/jeisRy2rQiFfASDBolEDstShTJ4lqVIJoWdrawMEHPax+M5qqqCGIZOX1+ctrYtrFq1lGnTKgiFDFKpPKGQr8BKS342dHSM0dUVo7m5klDIXzBJ+7d/e5YVK87ltFMr0FQaLb0d/E1SHmtwBUxdL7Wr4xtF9j11nfzW8p2gl8Pw12HSVx3jM0vyqV3Jf/+1MOnfYHRdUVmvR0BpnsGe2xYdj8JTpC0/OVsja5oEDINjsRhtL7/MmpYWZlVXo4B0Ps9/7N/PYzfcQCYalZ93KMQjDz3EGQsWcMLcucQti4ZJkwgYBpGLLuLV6mpaTzmFW973Pq794hfpGxwkrmn84PvfZ/HZZ6MB45kMdZEIAD4nz1vXNMoNA614Kpo3i2TdSImlYMCpmxzx2rk1jv9SGS6loKNbyjllc9JHKOAB5oOdIjmeVCmAzd2uEEn69Kkeez00JINgX9/EOlbTp8sgWlbm1Sw8fBjuukvo4kgEpkzxUGtHh4Dn9esF5RYnQzc3e9ftStD9fjAMcvEsB0cnUVurEQwKceum9HR2TizHFY/L5d1zj7QZG5NLyGTE+Pzf/s1b4EylZOFT06Tyw8qV8nHKy+VS77zTqwiWTovJ2dq10u59J9qEQzZaznFgz1sT70M04aH9UHBieS74y/cN5NjysHxnWafddCctIFImoLk4d7v4+ExOjqmqKIHrUvxVogSuS1GKUpTi/+DI5cz/IQb6f7Tde0UqlePQoVG6umIFQzPD8KOUj61bxVH22DFx/f72t2UOWVkpE69oVCrEKCXAeNEimdC5tanLygQclzu40jDEOfzNN2Xe2Nzs1bJOJESOWFkpc6SODq+c67wTLCwtTcAIYNomh8YOsfbltaxauormymZsbIJGEIUinU9jKYvJZZMJ+AKkcqlC+9Utq5lRNYMtnVs4Y9oZaGj4dB/XPXtdAaw/evmjDCWHyJgZOqOdnNN4DtFMlLH0GA/seIB1l3ybulAF2o5lAoqbW2Hho5DshFQPTDnXMSxLyUTcTAoItPNgxmHv1z0wfc7DAspHtkPNmZKfva8NTloJw1thaKv0rZS4i6e6heHGYXTLZwqIzwxDoFpk5MqSc7nMMprHBNkWxLqk9rSmOfucnS5TrRC23AhQQBSJ3on1sWEiE26EJPe6Yrq8NjPyuZMD4tZdvwiyY/D4QvjQT6BxKfRsgd9cKeW53r9OGPN8CoZ2Q/05UtN7/CC8dpfkT1fPdRhyA8YOwuv3irGZ5oBEKy3u5NvbhOVGk4UGTYNslKiqJZu16O1N0NcXZ/78emKxLJWVQcJhf8FM8N57X6W9/VIiEWHiOzpGuesuzyzwC18QlcimTf/AmWdOmwC+lYIbbvhtQQGya1cfU6dGmDdvMkrB0FCSTCZPLmczMhLj0vPzaPleCJ+LmJg5MnzyYPYLc113n1OPeq3DQs9FTM988jsAyB9x9q8WgJ7ZJWA93yUlurQyaassGFgJdbcJy40t580fcupdf42UPo9oNkeZz4ffqUetO2W33jdlCmG/fC8Dw8Pc8dpr3HXJJbyweTPtbW1s2bGDhuZmUh//OK2XXMKGyy/nyPg4d27ZwpqWFq771Kf41FVX8aeaGjZu3MipBw/yk2efpc1hwudOmlTIvx5OJqkpK6PK70dzpdmu+VUsIcA24JP3ybQ4e2dzXn1ql4EuZjDnzXD00nj0ajQhgMzNj1YOKLdsrwa2a5LlAvB0FnoGBbgF/eL2FQqJpLu4ILSbg+0y1C4bffnlwk43NU1Evm6ZBp9P0GpxgelHHvHkP+DRxqZJYiBJqqaxgO3d7rLZd1+SrgsT3d0tj8ZGAckrV8LWrfJYv95Z1MTD8a6JmQvch4bgxRfh7//eK9H4pS9553r8xxY+d1XEHX+Ue936RPAcDIghXTGQPv6+Hc9muwZzxXWvj2fEQwFxgfcZck9V0f0t1bkuxV8pSoZmpShFKUrxf3AEAj4qKoL/KWD+H233XpHP23R1xSYYmqVSFkePimwwGBQF4vr1wlKHw26pIWE8QCZs550npjkrV8r2piZhPaqrvTlmPC5kzYIFUgqmr09Kw0QiMu+scKpZ5XKybckSAdjZnOJPx/7EOyPv4NN9vG/y+3js8seYVTOLHb07yFk5uuPdxLIx8nYeW9nkrBw5M0fWyrL25bWF3GvTNpk/dT4+zUcylyTkC7G6ZTWtp7SypmUNhmZQEaigN95Lx1gHo+lR6iJ1jKRHuHnJzezs30NGKdQpq7zcaD0A5bOhbqnHDuYTkB2W3N9dN8i24BQvp3rB3SIJ37kcwk3CYu9rg56nxbhs5lXiHq4ZIrlO9UPNfOnTtkT+nY+JoZkv4jiSaxRKbRl+R7JtCdgd7xDWvLJJ9o93yHa3YK3ttIt2OKW8ck5JMB3Kp0lf2ZjccA1ne4NT+xoBv74yAb++kLyOd8p1vrBc2PirdkB5kwDr+kXwmb3COCsHxA/tltJd6WH5/qrnwPntkoc9fhi6/ySLEdvXwoJ/k+/UNuUzZhNyrks3CKiOTBXXcWWDEcDv0/H7De68cwunnVY3IR/aMLRCGbyFCxvp64uzbNkmjh2L0teXYOPGfbS3b0MpVagNv2jRdAxDo78/wW23vUhvr/Tjth0fz7BwYSPNzdUcPTrO1VdvIpnMEwr5mTGjmvOX1qPluyF0OrjFl1VOzNi0gJc7rYeL8qTbAFPyq2XlBrAlf7psiRynl0N4iZT18jcJA5538rkBpt4lfRZqgltF9a6/haUg5HOk8rkcw0nJUT+noYGqYBBN0wjoOo11daz/0IcI+/30DQ+DpuHTNKqCQS6dM4c1LS1kTZOZVVVsuPxyIrkcb+zaxT/84z9y3wc+wFvr1zPY18fXn3ySjfv20bZlC6Zt85Xf/Y5YNkttJILhAmBd9+TAGpJTXRZ00J5T1xgEAEfKvAUjcEptTZIcXw3pR3NyWSxLQLnhyMM1PFBu6O82yXLzt8uCMLdJzq2UrAj6fF5BaLcsl2unfd11ngnZwoWS4NzSIiuL7iBnWTLwuQnMweDE/oJBGSDd3JvhYWHBt24lMLWaYFARiQgGd9O5DePdl5RIyGna2uSSnJRt2tvh0kulXTgslwPeVxl0BC1KySVOmQIf/rCA93h8ovfaLbc4t8tdyHDD/f5hYk68hmc0VnzfisunFUfOlN+/3/funOzjc+0DvqIFROUdnylKEC9FKf4Lo8Rcl6IUpSjF/+ORTudJJnMsX+6V7mpv/wgrVwZ57DEBzL29IvmbPl0mZbfeKuA3nfZkgNOmCVOdSgmrceedYpAzNOS1aWiQ43p65PWyZTK3dOeXq1dLLvfBg3IeOUaxK/o8tRXVAFNchwABAABJREFUDCWHOH/G+VQEhb1J59Pk7TwHRw7Svq2dlYtXMr1yOqPpURorGzEwiOai9MX7aN/WzqqWVXRHu6kvr+d9k9/HobFD3L3tbu6+9O7C97G7fzcNlQ3MqZ7DOyPv0L6tndUtq5ldPRuf7iNv5wn6ggSUJWZjmg6xQ7D/27Do+5DoEJB8yq1SnkuZ0P88TFkC79wroNoXAZS4iBfY7w0QPyTAOjzd6WOVOJOXNQp4j70judcnrYTKE497f4L0a+XlmqKHBWTapjhtu2W0qucUZNv5mnnkfRH8ztwzb+YwUFho+P1l+O38hNzprNLJKwu/ZqBrGnkndz1gGPgNv+cuDgK6czExKisukdWzRUDw6+uEka6aIwsB4CwCHIQ3HsJcei82BnpmAF+kGvq2y3HpIShvxqyYg21ZaNjodgojVA6/+wJc+higYWXi2MpA8wdRpgn+MMq2iSYsTKWTS6aZXBNgZCxHTV0lAd1Gs8WdL53Kk8vmSecU06ZGSCWy+EN+8lkTI+BH6QaGoZPLWVxzzTM8/fQ7PPXkJ3h/y3QyWZtwmSEGZpaNrRl88ZpnefLJ/Tz15Ce4oGU6umGgbAvd0FGWha7rko5hWwLu7AwQBN1JNzACch8JOOxtPxARpt/f4Byni0u97pT2sh2W3y0p5Tpcac55NB0wQbfA7oJsP4SWoGyF0g3S+TwZBVWBgPhQKxvl3l+lUJrG5z7/eV78058AeOLJJ1lw6qm87+STqaysxFYKq6GB/3jkEU5saOD1N97gnz77Wfa/+Sa2UrzY1cUNra2su/NOLrnwQjSnTxOFgYbuOmoZBlpx+aaQIwH/S+Wcjs/ltWwBWMXbszmP+TYM2eeaRxTOE/QkxxOO8YsTdTCACgWwlIllW6BMNM3AVhaa5kM57+XrstA0HdCd7eLsjVIobDTNcNrIs6H58EeTcu9iMfJNDVi6jab5IBlH94ewA3IO4+BR/DPnkA0YWIZBXvOjcjpa0NFCaPKcy0M2DhVByAFaCPy67M8lZU2wzA+WLu3dgnBuAgGAppz+bIgPQvkk2N8BM6eJ1YK/vLiYnMKXs9BMC2UqNF1DNzQ028ZyelSWQnPMBHVdw3bc393tmq6hbCUSf0Pz1qBshe6WHLMUul+fcKyui1khhibnNjSwFEZAx5dKOWkEJWl4Kf46UWKuS1GKUpTi/+NRVuYnHPYXGLnVq1t46y0fa9bIvDMaFeBbW+s5z955p7DYrnlte7u0sywBzy4bEo1ObDM+LuRBTY1ICVetEm+f9vaJpWDc87S3A/4kVz75Mda9sq5gOla4dn8ZAO3b2tm4byPt29oJGAFqQjWEfCEsLFY+v5KtXVtZ/6H1dEe7ufKJK2nf1o6pTNq2tPH4m4+z4rcr6Ix2suK3K5hUNom2l9uwlFXod+3La1EoQv4QFcEKAoVSVYZIwfd/W0CyMoucve8U53B/NdRfJiD46OOwa4UDcgwBxc2tYnZmZUUKPuXcoj7aIDBJDNGU5bmU729/j/digpZVkDDzpMtnkDBN0hikyptJTDmDVHkzedsmX95MYsrp5H0RUvksacvm6PgQr/cd5mg8yu2//yFHxvrIm2lpY5lkMIjl0gwlxonl0uRsm6OjfXzjd49xdGyAjJknkU2RNXPkLZOkaZHVIljn3w8nXSVlt4wgTFvk5UZvXwsIs1zIp36tHfO064n3DDD0xm7sUD05K0S+/gKs1Chs/ifMsmnEO7vYcdvtxI51k80a5E1dzuULYdoG2ZwP0zSw8aO0APl4nOzo/4+9Pw+Tq6y3/uHPvYeaq7t6THd6SCCEACEJYQwhcWAKGRCcUERRQIIMKiCIAkIQCIKiOKCHABFQUUERJSTEgKBpQhLmISBDQtLd6e70VPO0p/v3x72rOtHz/M7zvO855zm+b63rgqratfddu6urc9Xaa33XGqc+qtFcr9NSB6/ddgt1zjhhQ+IVcpRGR3DzOcIBeOcHt1Bnj+PksuT//hrWYD9v3Hojxf5eArrqmw+FDH78w5MY7L2Eo6frYFtEgqquyi2VGH3pRUqD/dz7b6cwNvhlFh7VhHRspKcSoTzboTieJLurF7dQgEwaiiUYScEDP4LhUXhvBxQdKKP+gAploAOsMOSDUCyAVVa3D66G4T3q/rtvwMggbN/mpyNLX+y290pKNsA1QUyHwHEwMgyOCqEKAw0qzxwhPfWH6bkIz0X27kAkR7lvxbXsemsbN664nm9ffz1BXeOZDX/mlee38tJzz3Hq7NlcfuGF+CZcBc9Fsy2O7+wgrOsT6wv1nAGI5Cgyn1XnCv9Q6ST2fey4fq273Hff3kEVXuW4ilnuvd30q5wcb+IYQ993XctW+3VOUoQ+FFQW8h39VRVbSNDQkNL2ed/E/HqFKIOkWEyqrdLBdS3Gxnagsg4qX7MFQmh4nk2hMErJylCuj1KqD2N1T2Yss5O1ay/GsjJ44RCuKZDSY/fu53EOmErJ9HDNII4eoKhrEJLqWoumOKktwA1AuBFEFEoR32CjqVF8MwrBEOzQYFgoAl0U4AjIC8j697MalAXYGtS1wc4A3H4IuAmwY+oYT6g1XdtFWC5WxlKp/J5UKflCIF2JlbXo39yPdCXSlXhS3SJRZFgqouw5HlbeBg+srMXYO2OsWb6G8feSeLbHY8vXUEqX8WyP5PYkvT292GUHNPU6dsHGylr0bupj7N0kTjCkfs97jw7UUMN/I2rKdQ011FDD/5/AshxKJRddN3BdvTpzNzb2z8p1JTW8olxfddWEcm2aqlt15cp9leurrlJqdcVBGQgoldt1lbtx5UplSZw+XdXEqFBcSXP3OJduuIhrF17L9KbphIzQvuftWPx97O/cvPFmrl14LdMapmHoBgE9sM9z3z/5+4wWRlnZs7K637vj77KyZ2VV0e6s66Q/0093fTfTG6fzzvg71XVnNM9QpHpvuBZYY1AYUAT3qLtU93RFdY4f6KuIFuR2KJJ86LUQn6GOL4+pSq5AgyIHL126b8L4zKvVnHWkEyJT1Nx1ZY3YNKV077VmWcLO8UHu3fIo5x/zMToSzbhSIj2P7z3zCz57xBLa6prZkx0jaJjEg1HeGNpOW6yJodwYDeE4D7zwOOvffo5FM45lxaLl5K0SuXKBeDBCQDdJFtI0xxqRSMYLac765TWsXPplJsUauWfLo5x/zEfpSLRiuTaa0AiioUuJETAUgXaKamZ6y82KcDfOwPUEnmWhGTp65l2sYCcjL79Gw4wZoGk4+TzBpiaEEAjhgTB4ceVKmubMofvkk9FME8/zKA4NEevuxrNtsrt28dbq1cw8/3wKe/bQfNhhFAYH2Xb33cw8/3wi7e24pRJ6MIgWCJDZtYu37rmHg889l/iUKfzumGPoPuUUZl18MU4+z1v33UfvE0/QfcopHH3DtwnEojjFItJT6j0AnocUwlemPYSmKXXS8ygnkwQSCYSm4RaLaMEgSInQdUrj44Tr6zBNE9JJePxB2G8GHHK4Yj2GCeMj8OQf4BPngRmE99+GaQf7YXr+YKxuqs+RrinCDWpfz4NcGkpFqEtAMOxbYn2C59v8pQCZSoJhIqIxpNAQUtFGr38XYlI7IhCcSLOvqMuuQ6Spmb733qWpuaVqsR4cHGLGrFmkd+5gJJNj+pw5jPX1oYdCyHKJjukH8rc/PsL+/TvQFp4AiUaERBFr28Lr+Qva6WciShbi31OUu9qQFeW6ZCE0Tb3veyvXuYIKv/Lnp2V3O2IvFVrudew+ynWlF3t7n7KU286+KnYwgAwGcPFwvbLfcy7o79/M5MlHIqVLqZQmEmn2lWrI5Yax7SINDVP8/fV9lGzPc9C0SugcuK6NEBpSuqTTu0gk9sPzXHTf6SGEgedZeHqQjBkmJERlih5QCpkLjAONKFUZqQiwDpSAF4FjqE78I4ECkAXqgVeAScAMlOJdAG4Abttr3xjqI/QcMAuIAoFcWeXT2x52webJq57kuK8fR6QlwlNXP8XiHy2uBsRJT31e3LKLbuoIQxFjoQlSu1Kkd6XpPKYTzdTIj+aJNESUsm0oZVq9F4L+Lf20H9GOHtCrToaKCi5diWu56AEd3RCYIWNizr6GGv4TUQs0q6GGGmqo4f8VlqX+8zxFim17ItSm0jyjaRPhtYGAIt2Wpeb0PF/00nX1XCDwv14/FFLPW5aa4QsGAU3NTQeN4D+T28oazv96H8uxKLkldKGjCQ3Hc6r7Fe0ilmth6iaO66BrOq7nEjJDVXL+H702rqXIM56y5Fbs4lpQzR7vs19Zba+sVdkmTD+9+x/XMHzLr672gX3X+Ic1c+UCK59czezJ01l68AKEELw68A4t0QYcz+WXL67l6hPPpWRbSCQ/+Ouv+Mzhp5AsZjm0bRpvDG2nNdaoyPm8j9JR38rO8QHue/4xzj3mNJoi9RTtEkXb4t4tj3LeMacTNgPUBWOsfGo1699+jp987Koq0T7vmNPoSrRBKkMgHscIhyd+brcMehDHkbiFAqOvvUZ08mTi3V1Iz8MplZGeR2FoaIIkj4zQcOCBmLFYldCWUinCjY1I162SK+m6PH/jjVUyfNDnP0+8u5sXb7mFliOOoHvxYoQfBFAaGcGIRHBKJdYsXqzI84oVbF2xgpkXXEAwkcApFgnU1TH+xhs0HHwweiikXktKvHKZsddfJ9LeTmFwkEhbG8GGBhzLUuflz3Xmh4aItrfj5HIYfkddOZnEyucJNzcTcC2MUAgCfjL8yBCsfxgWfwpa2uGBO+CAmeq/9Bjsd5D/h+cnTVcC6TIpiMTADCjSXQmt0zWlYDuW2md8GKbNBLsMf7gfTj8bGY5OhGK7DmQzYAb2Itp+hd0ff0/pqPl0dExGCo0//vGPfPnyy3nr1VdwbJv6eAxclx98/wc8+tBv+etf/gKmyfGnf5SzzziDL3zhC/zusce47Xu3s/nqy5DbXkHMPAx92SeQ+RwiFMZd9wfktlfwrroJ0zD/l+1MErBdF10INKHtM279v9pfVH5IwPU/R/p/dOC/g5KVQfOD/6RvB1f3Pd8Sru5L6aFphr9dw3XLSKnaBgYGnqet7TAMI0Rf3ybq6rqor+8imdzBpk23sWDBNZhmhGi0dR8yXiiMEAo14Lo2XqQJqemV/gJ80znuXo89/78C8BowG0Wog/7zGeAq4OtAE3C5f78VeBNFwF0ggLJ9l1DE+yggiSLjU4HdQAjoLtp4ZQeBqCrRVsFCaIJMf4aG/RvUWISnSHQFucEckdYI0pPopq4Isiex/RR/I2yQ35MnOimKpmt4jkf/5n7qOutI7J+oKt5CU2MZu7fspv2IdkrJEnbRJtOXoa6zjqYDmzDD5v/x77yGGv4j1Mh1DTXUUEMNNfz/AGzXUXZsq8hYIc3qLX/kC0edSlO0nndGepnVfgCO6zBezHDP5kf5wlGn8srA27yy+x2+ecI52K5DwDAJ6gFc6WJoOo7n8u0/311Vsi+c/wnqw3G+89TPq9u+ddIXSRazFO0y9255lKtPOLdKtBfNOJbrTjofPV9EN010n1x7lgVCIHSd7K5dbLvrLg7+whcoZTK0zp2L9Dw0XcezbbbecEOVJM+98kqEEJSSSd68+24OPu886qZORToOrm0jXZdAPI6Vy1EaG+PNu+9m5vLlFIaGaJ47t6pUu+UyQtfRTZNSKoWdy1E3ZQpbrruOQy+4gFhXlyLrpol0XXJ9fWxbtYqZy5cTaW9n9NVXaTnsMPIDA2r7BRcQrqT7AZppInQdt1xm7LXXiLS1EZ08uUrIAdxSCS0QAM/Dc12MYBDT0NXFFAT84ofw/N/gqA/A2V/dd57dcWDn27C/r1yPjyiFO1avrmLZlrJDh8Pq+WpKsn8VLD0GsYRfBxeoFhdLTUcmR5VivOB4aGhWlm3wX1+F3+3s7eNTZ55JsVRC03Vampq47ZaV1EUifOK0j+CFI0hNZ/+pU/nBddcwpakJraObt995m3POO4+xVJq6ujj3rrqbWR1t6vUWngDRuDrfQAj883CXfVJZ6D0Pz/MYHByko6PDdzEIcrkc0ajqGq+ox5VbgGQySU9PD4sWLSKfz2OaJqFQiN27d1NXV0dDQ8M/HeftFXT11FNPccIJJ6D5vzu1roXnKZI7MV+tIaWHbRfYsOFKTjrpu+Tze+jpuYWFC68hHG7CtgtEoy2AwLYLlMtpAoE6QPLnP1/OscdeQSiUIBptwXVtNE1H08yqop1M7qCnZyWLFt1BoTBKJtNPV9dxeEYQqQcoCkEKRY5N1CRBGYioTxRlFDn28/VxUCT6q0AL8Bhwgn9/O/ATYCUQ9x9HgAYUmW7w1/gKcAWwBziOCUJv5svYGUsRWAFCE+SGczhFh0R3AjRIbk+y9c6tLLp9kSLZusAu2Oimjud4aIaGZlTm/KkS7cJoATNiYoQMCqMFQg0hSskSsfYYVtZC6AIjaCjSrsGGr2/gg9d8EAR4jsdT33yKJXcuIVS/rwuqhhr+M1Aj1zXUUEMNNdTwL46yY1GwyuTLeRKRun8ixIlwnJARxJX/TJYdz6WzfhJ9qT0kiykObZuOh0QXGmWnzEgupeze8z5KIhzfR7n+4jGnEzKDfOL+K7n9I5czZ/KBGJpOf3oP92xWz3fGm9FKFpphIHS9SlQPPvdcwq2tOIUCdiZDaXyc1qOOItfbW7Vux6dMIdvbWyW2ocZGrGyW1++8k94nnuCDq1bRPGuWIlo+cazYtN1iET0QQA8GFVkPBHDLyirt5PMUR0eVIu6T75YjjlCkIxhENycULTufZ8t1101YwlesqBKxrStWqPP46U+JtLWp8/Rt6JG2NvRwmFB9vbJ6SInQNOx8nuLICKWxMVrmzq1eGAjEYhiCCTI8tgfW/gaWngn1DYDwe5TKfmwz8NBdsOTTkGiE1DikRqFrmpq5DkeU/VvbK8DMdZQLwvOUYl0uQayuavOWuoG79hFE135os+dWg8uEZSEDAUiOITNptI5upGEge99HxOsmyHiiEffWa9Ev+QYEAgjDrNrNvfVr0D50IiIYBs/F292HmNRWtZlLKSGfU8cFw8hcBhGNYfkXFaSU5PN5wuEwmUyGnp4eFixYQENDA57noWkaruui6zq2baugvUBgH+IM/BP59jyP9evXM2/ePLLZLN3d3Xieh+u6/7RGNpslGo2iaR6eZwMSTTOw7TyGEaGSuGVZeSwrzzPPfItt2x5i1qyzWLr0ZzhOmd27t9DefjiGEfZbFNRs9muv/YpDDvk4phlFShcpYf36y5g376vU109F00zA8xVv6O/fTEvLTIrFMfRwI0N1nYSFoIkJpXoMpVS3AJcC30RZvCv3D/DPuBJaJoD3UaT6dqpFbbjAMIpQm0y0o2soBVuiSLsGDKJs4c3ZMlbWIhBXLh3pqd9xYbRAtEWlu6+9eC2Lf7xY/aEJ0Aytat9GwO4tu6nrrKN+Sn01J0BoE0FnQggkkoHnB+g4uqNK0JO7kmR7s3TN76oeM7Z9jGA0SLQlqizluiAQ+V+4kWqo4f8L1Mh1DTXUUEMNNfwLw3YdUsUsAvVF8+3hnbT6tuxzjj6VlmgjkUAI13PRNb1q8/7ivI/SFKnH9VyEELwzsou5HQfhSQ/X89A1DU1oeP6XeYGg7FqYmoHuq9qmZtCfGubuLY9w/ryPMrmuhZJTxtRU/Y2pGWjFEp7jYIRCSCkpjY8rMj02RuOhh1IaHa2qv7HOTqTjID0PK5cjVFEVNQ2h60jXRToOTqnEK7ffzlHXXUdu924Kg4M0zZ6NFgioL9z+vLP0CZJumipZ3N9WHBlh21130TRrFm3z5xNubWXs9dcJNzUR328/dNPEtW08y5pQ11et4tALLiDa2alU7b0uFBx17bU8f9NNEwr7176GFghgRCLVfT3XxS2VEJqm7OUzZlAcG+Ot1as55PzziXd3Y2qomeugr6gV8xCOTqjLulEl6kgPXtgI770JZ14IyVGIJxQpf+IhOGO5OlZ6E9VTmqbmrgVqFlvX1WsEgoBA6gbSKqkZ73QSmcuide03sUbl1iorruN5eE+vRzt6PiLRCLqBzKYR8fp/3ld6ymLu2/Gl56m56j8/hrboNED6ZFxUX0vaNnYgiGVZlMtlgsEggUCAbDaLZVnU1dWh6zr5fJ5oNKouqrguTz31FIsWLVJBWlLi+d3Zuq6jaRNkvaJSJ5NJNm3axEknnVQl0/pe87iVfXO5HLZt09AQw7IygMAwwkjpoesBP8AMX8WWCKFhWVkMI0wm08ezz97KCSd8h2Awjm0XGBp6hcmTj8QwQlhWjnI5TTBYz/DwG0yefCRCCPL5EWKxdjzPwfOcqo3cNCM4TpnBwRdp2e/DbDFC+1i38yg+mkeR4l8BW4FrgENQZNlBWbgrU97C3x5CEeWwv80AiigLecV67rexY/rHWv72NGq+O5wpKeVYKrW4OF4k3BhWBFoqEmxlLAojBZ697VlOvPVEzIiJZ3tkh7L03NzDsVccS6ghpMi4gPxInkhTBM2v86qQ6epctU+4K7PWAP2b+5k0Z1JVQe97to94R5yGaQ0EoxPhmDXU8J+FGrmuoYYaaqihhn9hFKxSlTB/4ahTeX3wXTrqW5k9+UAMTcOTEtt1yJXzNETqEQhc6fHawLtc/qfb+dC0I7lw/idoiTUgEHjSI1nMULJt2uqaKDsWI7kkv3xxLZd98CxCRsB3GUv0vWzOAN99+gE+PXcRzdGEIudomCWbYDiMdBxK6TTB+vp9lObCnj0MPfss7R/6EMG6ugkSCLjFIsIw0E1ThZb5w/vCf33hh51J1yX5/vu0zpkDoNRrz2P8jTdoOvRQhGHg2XZ1DWEY1Rlep1hUpH9sDD0QINLWpizdhQJjb7xBYsYMNeNdIeyex9gbb1C/336Y8TjSLwTe2yIe24uAe46jVEHDQDoOwjBwSyXKqVRVge8+5RSOWbECUxN7hSxJNSPtOYpYp8YhMw7dB6j76x9WqnVjq1KhK2p133b46U3wg98qe3ghp55/4ncTYWj5DETrJmzirqtUbc9FhmMTnc9+4pSU0n8okFYZLAsRCoNhKJKcTuJt+ivaSUsRZmBiPltoKl1c01RQmQDhV4Sp2WcV9oauV+3nXt9ORLwemUkh6uqxG5oZGxtj06ZNnHzyyRSLRdLpNHV1dVX12jRNbNsmm83S2dlZVafz+TzBYBDDMKoEeunSpaTTaXK5HF1dStmUUmLbNoFAAMdx2L17N+3t7RiGgeM4KmgOqmRc0xzGxt4lGIwTCjVQKiX92xSRSDOe51AqpYhGW/E8B103/Xlrg4r6LIRGqZRmw4avsWjRHeTzw2Qy/XR0HI1hRHCcIrt3b6GurouGhmkkk9vJ5Qbp7JyHEBq53B5su0giMYWduzfTuf9JvC8E3f6npxJmVqnVMqq/TQXP35YBBoAfAN9FhZNJ/9gCE7VBV6Ms4pVjNX/timJdUbIFav66MV/GylhkB7LkhnLUddcRiASINKswMgRIR5IfzRNOhBGaYPfW3UyaPQkEZHdniU+OV2esA7EAZsTEKTkYIUOdiP9H7JQcAtGAItl+GFo1dVyoULWBFwaYfORkhCZUcFpQr9nCa/gvQY1c11BDDTXUUMO/MPLlIi/v/jsHNHdRF4zi4hMWITA0DcfzSBezhMygIhxWUSV/GwHG8imigTBCCKKBMHmrSK5cIBaMULJLxEMxkoUMP9v0O47oPIjFBx2HKz3eGNpOe6yZ9vpmXOlhuzaulDz97lZe7P87F87/BE3Rel4deJfDJk3D6R+kMDxM6+GHq3PTtH9SmIWuY+dy2LkcZiyGGYthZ7MYUWUhrYaVeR5usYidz2PG4yT//ndCjY3Ep0zBKRYpDg/z1urVHP6Nb6jjhFCzzUBhcJDC0BANBx8MUlat4YdfdRUIgZ3NEmpuxrUspdiFw/tYzSvp2MJXREffeIOG6dOx83lCTU0ITVOz4r5KjpR4jsPLt93G7K9+FSEEyz75SYZHRxFANBjk/EMO4WPf+hbxrk50q8TPf/1bzr3wIuYcfBBeJolWrxRh17YwTJNSscQ5s6bRMrqbcze+wR8e+i2nL10Krs3zf32GS2++lVwmjdANvn/zTRy/8Djo3wF1DdDcrizijgO/uwc+fi7ksyrcbL+DkGYAadvKLl5JHjQDkE7h9TyFNv9D0NA08XjhCYhEE17f+2hdU335U1TfJ2mVkEODaJM7kboOqXFlIV/6cVWzVS5DNKY+C66D0A1FyC0VZuc9tRZnycdYs2YN27Zt4+KLL+aZZ57h2GOP5bnnnmPbtm3MmjWLJUuWVK3gTz75JPPnz6e+vr5KjCuW7h07djBnzhwsyyKwV7Li3tbx/v5+wuEw9fX1VVK9t8qt1pTk83uqxNq2C2za9F0WL/4xnudSKiUJBKJks4N+KNnVZDL91NV1Eok0o+smuh5ECAPHKWAYITxPZXUXCmOEQglKpSSlUopCYZTu7gVYVg6Q7NnzOp2d8/zPdoXOSkqBGGUhqoQ6yERqeGUO2kUp2UNMkOkoiiy/jwov2/u5EMpa3oQi4h5qbtv2H0eZIOIjQA5oQxF0M10iN5jjmeuf4divKQXaLtvEW+PoQR2hC/qf66f10FYCsUBVffYcD9d21cy03xXv2i5m2KyGnzllh4HnB5g0exLBuuA+CraUksJYgVB9CCNkYGUt9TGOmkhXsu7L65h/5XwapzfWbOE1/JegRq5rqKGGGmqo4V8YZcciU8qjaRpB3awq07rQcKWnVFMh0BD0JYcJBwM0hOvQhMatf7mPzx25lI76VjzpIRA4noOhGUgk2l5rSCkZzIxxz5Y/cPaRS6kLRSnZlrKfH/UROupbVPq2XUYTGkWnRLFYZErDJEa3PF+t1dIDAbRAoJqiLT1vgrQCIy+/TKilhbopU5Sttb+ft1av5rCvfQ0jHEb4ym7leDuX4+XvfpejV6ygODLC63feydCmTXzkySdVNRZKATdCIV64+WYOu+wy9FBInYPr4hSL6OEw0rYZ37aNpjlzqkS+Uqk1+sorhCZNItbRodb0PDRDqWeer0bjeVWlujw2hhGLKXJeUeI9j1IyyejQEB0HH4xbLvP4k09y48qVvLxlCzqSnbt28plzzkNKySUfPZWzzl8O4Qj7HTwTmc+y85UXGdcCHDhrNp0dHYTDYa76yiWcfvyHkKEIXYfO5r5Vd3HiCSfwzrbXOfG0j/H21ucIN7VUQ8vQhN977ale7ZHdyk7+598jP38ZcnwUb9MzikjX+dVhax+ZSPRe8jH1+O030M44R5HqiqKtCUWQ8zmITISMyd29aJO7kMUCctd2tEMOU8c4lkokj9cp18TuXkRdvXqs6aDpWFC1hUejUTKZzD7KdSWobNOmTZx44onVeWnbtqvqdEXFtm2baDTK0NAQ3d3dVdJsWYqADQ0NEY/Hq7PXoGayC4UCoVAIwzB85VrieRaapldVaJB4nlslx7pusnbtxbz++q+YOfMM5s27nM2bv8+pp96DZeX8mWslvaZSvUSjTWzY8HVOOum7ABhGCNctY5oxwMN1bXQ9gOc5JJM7yeeH6Oych6YZlMsZ9PhklZzurzkMTEaR5ptRyd+TUcT3i6jwsQ8At+z1nA582X/uOFTd1jXA/sAOf51rgGlMqOEZlFLdzr4z2qGChZUukx3IUhgt0HVc1wT5HS8Qa4n57hNRldM916smgEtPqkotlP3bylkMvzFM57GdauZ6Lyt4/3P9SvH2YYQMHv/S4yy8ZiGR5giDLw/ScXQHmqnx+q9ep/dvvSxbtaymXNfwX4Iaua6hhhpqqKGGf2EUrBK5cpFkMVMNGetMTMKVirQWbRXiJYQgZAYRQMlWZMKTHmEziATSxSwl22YoN8qhbdPIlvOUbJs9uTGaIvW0xBr4+/BOLnnk1mpK+I0b7qnWb1UqvL54zOl0NbTheR4GAmE7gK/++YnV1f5n39oN4JbLVcJaSdUWQjD80kvk+/tpnjuXN+++m0MuuIBYR8c+1vCK3Vo6Dk6xiGPbVYu5MM1qmJjnOEjXRTMMnFIJO5vFjMcxIhG8UgnNNEHX1XpCqDX9rjnPslQKeCVN2rdKC8OYSBO/4AIibW2URkcxYzEQguSbbxKZNEmFtC1fTrilBT0YxCkUePCRR/jxnXfyyt+exvM8Tj7to9z67Rv42reu49JLLuH0Dy6AUIQpcw5DSknvu++y6923mXHkMfzxos9yywvvcOlFX+L04z/EaLFMx4yDKQ8P+nVektnHzGPFtdfwsaVLlEJd3zhB9l1XzW9bZXj/7xBPICd17kukl35cWbrZS42m4saVyNQ43sanVJhZNA5IvPV/Usp0OllNAReJJmQ+i4hEVfJ37/uIaBzicXUuuaxa59gPQigMjo333Ea0RafiajrjqRTpdJqOjg4AdF2vElNQ5DuXyyGlZPPmzZx00knouo6u69W08Ip9PBgM4rou+XyeXC5HXZ3qF987cbzyea1YySvHVua9m5rq/HfBq85WqyCzHAB79rzGpEmzMYwQu3dvpaPjGAA0bWKO2/Mc+vs3E493YJoRgsE4jlNC0wyGh99g0qTZgCAQULPkfX3PEo93UF/f7c+NCywrj5QuwWA9TiCKt1fPtd9iznLgIeAMYAVKWS6h7NwX/cNzk1Hqcx741l7PrfqHde5CKdVlVP2Wy4Sy7QGjQIvlIMaKSpX2lF0bb2JO2spalDNloq1RNYddqeTSwCk6Ksysq45oc5T1l61nwTcXUNddhxACp6T+TQnEfcXbV7g1U/MD7ZUt3Ck7GAGDsXfHeO57z7Hg6gXE2mLkh/I0zWiasJfXUMN/Iv4jcq39r56ooYYaaqihhhr+70NKSdAwuXfLo6x/+znu2fIorudyy5OrGciMEDIC6JqmZqWlpGCVeHtkJ7qmEQ2EKdplxvMp6sNxOhItzO2YQdAI0BipZ3J9M4d3HER3QxvRQIgjOg/itJkfZPm8j2HoBt884RweO+8HHDb5QIZz4zyz/QXu2fIonvQIaQbFXb28cOONylbtOJSSSTU3jSLTpbEx3HJ5Yn66VGL0tddUEJnnYedyNM+Zw9SlSynu2cPwiy8Sa29XBNGf28719bH1hhvI9fYy8vLLlP3e68LAAKOvvkq+v5+RF19UndmDg7xw0004fiVXqLERIxIBKdFDIWXn9ivCKip0JbhLCwR46ZZbyOzciVsq4ZbL6nX7+igMDdH7xBMU9uzBLZUqvxiEphFqbkaPRDj6uuuIdnQgDIPPfuYzTJ02jetvvJHVd9+NEwjz/du/z3H1AY7Yr9snnGnO/tjpdB06m1KpjOM4dE8/kAMOP4pTZk5n0bKPKGv18AAEQzQ3JGhva+OhPzwK5SLP3/wN3n7nHXbu3KnmqesaoFSATHJCwQZFsKfNVOFnSLSFJ6B95nz0pR8HTVed0IAUQlnKPRdZVkX23sanVBd1z1/898xAdE1FSInX8xf13MankJkUWGW83veRYyOI1nZobEKYQYQRgGgc0b0/3vPPIWJ1oBtox5+iLmpISTqdJhqNsm7dOnK53D7EuoJEIkFdXR0nnngimqaxe/duLMsiGo3S1dXFpk2biEajVdIdj8fp7u4mHo9j2zb5fB6gWvElhKCpqYmlS5cSCASIxWIEAgEaGxupDvuqd8YPG3PZs+c1DCNEZ+c8AoEYjlOmq+tYNE3HcdTnwvPcao1Xd/cCEokpxGKTMIwQ4XAjgUCMrq4FaJrJ0NDLlMsZpHTp6DgG04z5arl6zaefvo5gsA5PD5AB3gU2sW+/9TUoQnwVUL/Xmev/znMFlNW7A7gDeMu/tVDp4mcA16Js4Q3AlH3eBaVgX4lfBWa5KnhM7LWDRlV1DsQC9HynB6fokNyVxLVcpCfBg3K2TPeCbuo66hCGYPuft5MdzKLpGpqpEYgFCMQCOCWH3p5eUrtSqrJLMpEi7vdk20Wb/HCebQ9to2dlD0bIoG5KXY3h1PB/DTXluoYaaqihhhr+B8N2HWzHpje9h9Vb/sg5R3+EzvpWclaR90b7mNV+AKZmsDs9zH3PP8ZlHzyLsKlScj1/jthyHcJmkIH0qK9cH4Ch61UVb7yQJmKGqrPZuqaRKeWrCeXvjuzi0Pbp1e/RmtAwJLx4/QqaZs2i9cgjKYyNqdos/HCvvQLChBAUx8ZwSiVCiQTJd9+l9bDDqmnP0nGqVV52Lkfy3XerFVyVOqzuU07hoM9/nr/ffz9H33ADY9u20TRzJkB1vnvrihUMbdrEaU89pZTzvVRcoet+qrWs2r4r5+aUSiplfHSUt+69l1kXXwzA46eeSvcpp3Dktdfy0ne+w1HXXz/Rue04mLEYbrmM57pKJY9GQdNI/v3vNBx4IA/+/vc8+MAD3HjNNXztphvZ+Mc/YNYl+NApp3DpxRdz+pLF4Dgc84EPUvZcfvnxk/ncI08ymkyx/sFfcNE3r+HSSy/l9GXLIJfm1Vde5qrLLmMPBjPbWxnM5jltyWK+0hZS4WexOqVU21Z1zhokpFOQHIH9D0Yafv6zPz8t81kIRxCexNu9C1GXgFjcJ97ehJW7vmHifdR0SI0pNfq4DyN730f27USb90FkMY/WvX9VCaeSEVD5PVUquYIhMAxcwPIk69atY9u2bZx55pnVsDEA27axbZtQKFTtwAb+3VTwSle1bdts2LCBefPm0dDQ8A8d1uyTTl4JS6uEom3evJmlSxdVq7hA+K+l9GIpPRynjJQulpUnFEqgaQbr1l3CvHmX09Q0HdctUyymicVakVKp34VCkkikwa/nMlm69FT27BlG0zRisRi33/4d5s49nAMPPBjHSdPQ0I6mGVx55dc49czPkHFg+ac/zXtvvkkoHKa5tZUVP/sZRx5wQHUOGyYCzYqoNPBKsJnDRHp4RYG29noMilSnUXVelTUFE6nhDoqz9gLTijbCUT+bnVcX1CoqtucolVnN2vtKds6fjY6YCE2Q3JFk03c3cdJ3T6oq1KDIs2ZopHam2HjTRhZcvYCGaQ0TxFrby9GQs1R1ly4YfHGQznkq7C43nCM2KUYwXksLr+E/HzVbeA011FBDDTX8i6Nkl3E8l5FckmggjKkbZMt54sEYQcPEkx7jhTT14TimZuB4LoZvLXU9l1QxQ9hUxwEkC2miwQi6phHQTUq2hZSSaCCk0nelpGCVueNvv+Lso5bRGK7je8/8gis+9Dn15dUPRYtrAWSxxMu33cYRV18NQqg5ZimVDdw08SwL6XlqDtp/rtIHLTQN3TRV1U86TTCRmJi5rtRh9fez7a67qn3VkfZ2oh0dVeW4sh9AZudOom1tqvvadRl99VXCkyZR2LOH5jlz1MWBvWzrI6+8QrChgXBzM3owqIijp2bQ0XVKw8MYsZgizVKqc6l0eDc3Y0SjVdt6hXALw6jWkknHIdHezhWXXMI9v/gFwaD6sj80NERdPM4NX/8anzzzLDoOmI6mCa49YgY/eXs3mXyBUDhMPp9X+y1awIW33K4I8j3fhWt+CPEEBx9+BD859UOckNwJR30APvJZRbCLBYjVK3LruZDLQKmIDEeRvoItEGCaqufa81SKdzSOzGfRpuyvZqzLZQiGEIGgUrPNgAp78xPdVU+2psYBRNVM7nd1axMXNGAiJG3B8chMGhGLI5pasLIZckLHcRzS6XR1FjqVSpFIJABFym3bxjRNHEdZhnX/s1Sp6aqo0a7vTqgcv/f2Sv1WJZ18/vz5NDU1VYn5448/zrx582hqilerswKBuF+LVSKbHfADzL5JNNoKwFNPXcOiRT8AvKpqDRAIxPA8F00zkNJFCAPPs8nnh4lGW8lkMtTX1yOEzq9+dQ+33fZDXnzxeQ455Ah++ct/Y9Ikj+7u49SagRh/tz1effppPrl4MUII/u0nP+FPv/sdf3rmGUCp0m8AxzKR7F0hzZU56YraXQBSKHU6hLJ/B5kg1Fn2rely/O0Ff58IEMyXsTMW2aEswZjfL20KUttTbLx5IwuvWUhiWgLpTFjGPVd1vGuGhpW3yO7O0rB/A07RqSrgG67cwHFfP47sYJaxt8eYdvI04p1xPMc/1tSqSeRC9w/y68A8x0M39VrPdQ3/pajZwmuooYYaaqjhXxwhM4iu6TTHGgiZQf4+/D5Fu8wtT62mP7UHTWiEzZD6kik9Xh98l92pEfJWkTeG3qMp2kDQDJAp5bBcm6ZogpAZJGQEKFglinaJkBkAIegd38O3/3w3yWKGwztmEDGDhANBrvjQ56qJ5Hdv/gMjuSSephTjw664Qs0rowLA3HIZPRDALZd5+bvfpTQ+DkBm1y5GXn4Z6XmY0Si6aVJOp9WMdKHA1hUrsHM5sr29bF2xglxfH7HOTo5esYJ4dzctRxxBrNP/TlMJTHNd7Hwe6XnEOjtVFZavJjfPnUuso4PWI45QXdqGUSXkAC1z56r+6VisStArs9hCCLJDQ+o1fJv6W6tX0/vEE7y1erUi45pGbmCAUiqFEQqRs22GUynsQoHc7t388ic/obGhgWuuvZa+999n51tvsvOtNznyiMP5zk03ceHFl9BgFwkIiEVjXL3+WV5/4QWa6utYs3oV82bNZNVPfsKFq34JwRCD0WZYuRqCIe6+dSXRSJjjb7gd5h0PS8/0rd+AVYIH74RyERCQaIINj0BdQpHgfA53wxqkbSmyrOlo3ftBIoHWMQUQqpM6FFbBaKC6sh27WrsFwg+pk/jDtqgPoKd6tDMp3Md/D+mUmofv2ctiHonibXpG2fUDqtu6vr6e9vZ21q5dSzqdpqGhgVQqxdq1a7Esqxo2VkE+nyedTvPMM8+QTqdxXZdkMlk9PpFIVNVtgFKpRDKZRErJpk2b2LZtG5s2bUJKWSXsS5YsoampCRBkswM888z15HJDaJpOuZxm06bb2LbtIXp6bqFUSlMqpTn66EtIp3eybt1X8DwH04wwOPiSnw4OyeR7rFmznGTyPQDGx9/FcYq47oi/fTu2raHrJuvXXwp4aJpBe/vhaJqJrgdwkNSHwyxZskSp9MAx8+axa+dOBPAl1Iz0UcB2VNhZZSb7BSZUawelQgeBZv/5HajZ7O0oy3mWibquEZQCXkbNce+thONCOV0mGAti523WXLAGz/LYePNGtj20jY03b0Takt6eXpI7ktXKLM/2SO1MMfTyEA37N6AZGkbYoJwpIz1J14Iu0n1pOud1MufzcxCGwC0pC3p+OE/l47Y3oR57Z4z+zf14jkduKIeVs5QFvYYa/i+gRq5rqKGGGmqo4X84yo5Fb3KI7/7lfgDmTD6QyXUtXPGhzxE2A3hSpWbf+pf76E0OcUBzF8P5cUJGgFnt0wFln22K1BMNhNCEViUqsWCY+nCcVwfeoT81TCQYZP3bz3HvlkdZdNB8wmaIsVyKkBnko8tO4/j5H+BP37yLU048mZdffgUjGMSMRrHzee6+6y5CiQSPP/kkAHowyJzLL+f7993HoUccwQc+9jHOuvpqpOuS6e2llEwSTCSQnse2VavofeIJ7FyON+++m94nnmDbqlVqlnt8HKdUqlq6hRDgq9/lTIbS+LiqyfKJtdA0pV5XrOGVmi0UUfYcR821Ok6VpAs/8Xvs9dfVdilpmTVLqdY+jrz2Wj58113VGjDpecQmTybc3IyUknQmwyc+9SmO/tCH+NAnPsGvnnqK3//yl0q9lxWLuoNjO9zyve8x65hjOfwjH2f6jBm0NDVy2Lx5fOCUxVx66aUce+yxEIqoHuxsCsJRVq2+lwMPPZTpRx7DY5u28IdPnoQY2wOf+zK0tKugM8OE8RH46BfUz/zrn8LIAJx1cVVN9nr+guj0J2o9T9m/+3aqZG/TQFpllQjuecq+DUrpDoRUuJeYUAxBIIWGzGWV2o2qkJK5LPLtN/B6lEVfW3gCYuZhaAtPQBby6lZoEAxRKBRYu3YtUkqOP/540uk0Ukp6enro6Oggm83S29sLKDt4sVgkEomQSCQ49dRTaWhoQNd1AoEAxx13HHV1dWiaRjKZpK+vDyklkUikWr21cOFCZs6cycKFCxFCVGu7bNvGsiykdKtEetOm25DSIxisZ/78rzNz5hksWHA1oVADoVCCRGIqPT230NFxNNnsAGvWLCcabfGt6C49Pbf4hHwlUjpEoy1Von7jjQ9x6KHHcuONt3HuufvR0XE0nufymc98kqOPXsjy5RcyPDzM0K6/0SIlERQZXg7c9sMfsvi00zBQQWS3+L+OGCqwbDmwEzjGv70IZefWUbPbXwIGgT7/+JXAoSje+o7/fB5I+vtd7L92HfAesCekE22LEm2Nkh3M0v2BbjRDY+E1C5l5xkwWXrMQ13aJtkQxwyapHSnWXbKO3FAOI2QQa4vx+JceZ+ydMZyiw/h74+SGcsz69CzqOutYs3wN6Z1pYpNiat5aQKQ5olRrTyqHBOpiWG4oR+us1iqhlp6c8MfXUMN/M2q28BpqqKGGGmr4H46CVWRPdrzaWT2SS3Lf84/xxWM+SltdE+OFNI3hOvJ2Cdu1qQvFCOgGAyk1Yz178oEqRdyxiJgh8naJglWkJdqAROJ6HrqmYbsOpm5guTYhPYDn13V50sOTkj0jwxiRALFghD8//gTfuWklT/zkJzTNnk3vwABnn3MOAJdddBFdb73Fweedx+o//IG//e1vPPirX2HqOr1vv033gQdW079HX32VxEEHUR4bY9vdd3P4N75BaWyMN+++m0MvuIBoZ+e+89t7JZEr27Miy7pvua7u46OaNO55OIUCr9x+Owefey6xrq5q73aouRm3XMbJ5Qi1toLrIkFVbkUi6KEQhaEh3n7gAeZeddU+gVtC16tKuJSSwp49qvN77tzqhQDPTzA3NaEUXgm4dlVFJhoD3fQDyVKQHoP9D1LbUuMQDsPu92H/QyaU5Ad/Cpv/ouzgZ38VxobVnPW0Q9Tt2t/Cok/C9jfhvW3wua8iNU0Fl6XGVfp3LqMSv+d/CKJx5PCgmpd2bDVr3d6hCLV6Y9V77tiKtBfyyEwarWuqUrNdV63tOHhPrUNbdGqViEsAx5roufZc0HRkchQ7Wsdj69fT1dVVDSZbsGABDQ0NJJPJ6ix0a2srpmmiaRp9fX3E4/F9UsArPdiGYZDP56vz1JUZ7CeffJLjjjuORCKBZVnV4LPq50RKisUihmEQCEAyuZ2enltYuPBaGhr29/eZSA/fO3k8mdyOYQR55pnr2bbtIWbOPINly1apCy7pnf46V1NXN4W+vmdpbz+8ajFfuPAa1qzZzIMP/oLf/vZuHn74CoaHH2fGjE/w/PMdbNv2Jvff/z1irbNwhFCp3itX0vTYY7z01FPURyIsRwWRdfk/ywX8vyeB7/38T4BZJ59M3dAQpqYRjsdp/NGP2DB3LpGpU2kPBhkLh0kB8775TZ741KdYDoyceBIjg0Nouj8z/p3bmXvYXNB9y7Y/G/34hY+z5M4lrFm+hm0PbWPmGTNZdtcy1lww8fiDKz5IOVNm8/c3s2zVsn33XbUMoNqNXQk0q5Bs13LRDA3NUBVf+eE8gViAYH2QYKw2c13Dfz5qM9c11FBDDTXU8C8M23V4f3w3921VYWVBI0CqmCFbKhAPRSjbNndv+QPnH/NRQqZJQ6QeDVElxrlygR1j/cxqn+53Wwsc1+Wt4R0c2jYdIcDxVG+2h8RyLFwpCRkBLMdGIvnxxt9wxYfPxvVc3hjaTnMkwd8e28CdP/4JW595hlI6zcfOOYebb7iBiz/3OS678kqWHH88kUmTmD5nDmt//3sO2H9/NNNU9nFfdU6+8w4tc+Yo9dQnwJXu6YoVGyH+ab5aui6l8XFc2yY2efJEjZSvUAuf0Dn5PI5lEW5snCDk+L3Y0ahKLQeVAO55vP7TnzL361+v1oB5llVNFh958UVCLUqR3Hb33cw8/3yiHR04xSJ2LocZi6GHQpR9Nb4wNDQxn93SghmLYUpPKdGaAXYZ+rZDQ7NSmvc7CHQDtm9T89J//r0KKUuNQuf+yqJdLsHv7oVFn4B4Pfz2LmUHb2lXxNx1VZjZo/fD83+bmMN2HEioFGwZ8Lt/pcRd+wiisxvt4NnK9i2lsu/2vo+IxKC5FTxXzWQP9CPaJiMCQUW08zkolSFRrxLBK6j8Lqwy3oY1aPMWql7rQAiZy6h+7MoFkkIeWzdJ+qRWCEEoFKJUKhEOh/chv5XarBNPPJGg70qodFibfoVaJSBv/fr1zJs3j/r6evL5PIFAgL///e/09vaybNkyXNfFMIx91qj0bCsruYtlpQEwjDD5/DDx+GRAkkq9z8aNN7NgwTU0NOy3Vw821ecWLryWRGIq1VIzWZm9lrhuGSH0aod2ZSY7kZjE9u1voWlpenpWsnDhNWQyktmzj2R4uBcv1gZCcMP3vsd9v/kNf3zySWYlEgRQIWQusA1YgFKWVwJXA9NRSnXl8f4oZfo2FCHfDxhLpWhJJHCBh//wB76zYgVzX32VjVOn8rNHH2XqYYex0t9/mr9eW/8eEvUJpCf50+N/4qaVN/H8luerg96Veq7KzHXyvSQ9K3tYeM1CGqY1kNyeZOPNGznuquOItccYfGmQ+q56EvslSO7Yd1/P8VTntSsnUsl1UZ27roSh2QWbDVduYN5l82ia0VQj1zX8l6BGrmuooYYaaqjhXxgFq8RNG+7h7COX0ZWYVCXI4/kUjZEELpKiVcLUDYKGsohX1Oa9VeeSXSZvFYkFI0TMENIPtepL7mGkkKQ11sj9zz/GpR/4DOGACuSyHJuQqeayU8Uc92z5A39/4Bk29zxHQDf4/a8f5OApU/npAw+QzeW4/uqrOXHxYr588cWctmwZI319TD3sMG649loeXbMGpOSic87hM5/7nCLJUuIUCqouC2XNdgqFKkl2SiXCTU2KrHkenm2jBQJVso2UeK6LWyxixuMTNm9fuRZ7hZdl+/p40++ijnZ0TMxe+4FkaEqN3Ef19pXn0vg4ZjyOHgioY4SgNDZGuKVFVY/5hFLo+gRxdF2cYpHkO+8Q6+wk3NxM4MEfK8IcDCvlWNPAscBQP1PlvPnljydU6U+er9Ts9Q//gxL9FUWme9+DqQdCxa6taaq+a+1vFPFungQIRbqLeWQwgvTPsZLmTbkM0RjCdZBmcJ+AMhxHpYjH66CxBVEh1o49kSoOSP8WV3WNEwggX30RGhrVPHclndwqgWGqWW8hcDyPsicJBAL7kNy9Q8iEEOTzeSKRSNU1sHf6d+X+0qVL2bNnD0II4vE4t99+O3PnzuXAAw8kEAgQDAbRdZ0rrriCk046iZ6eHp588kkef/xx+vv72bRpE4cffjjlcgEhSgQCMcbG3vFDzK4mFmvniSe+zNtv/4kvfel1YrFJ+5Br0JDS+XfI9jUkEvv55+qRTmfI5XJEoxabNn2XUunDXHnlt3j99ZfI51OEQpK6ug4uuODDPP30S9x++xks/vhvWPGDH7DuV7/i8SefpLmhQf16gF0oe/fR/lmEUWQblCV8mr/fGPAX4JNMNGh57Jsi/uv77uOnd9zBxldeYfbUqdz/6KMcedhhuKiO7BtQxDycK1e7rB956hHu/NmdbN20VSnKfkJ4NXjMV7Gzg1miLar3Wv19qf2EECph3NAYf38cM2gSagihmzpIyI/ksS2beGscPaACyzzHI78nT3SS+qz09vRS11nHrr/uou/ZPpatWkaoPvS//w9tDTX8b6JGrmuooYYaaqjhXxi265AqZgkagapy3BZroiPRSl9qD/f79VvRQAjH88gUsyQidYBKGX93tJdZ7dPRhMCTipgjwfIcNKGRKWYwjUC1imuCmAteG3iH/Zu6CJlBMsUsWatIe10zAd3kFw88wB9+93tu+faNXHjJJax/9FHeuvNOvv7MM3zlK1/htFNPZWx0lPYpU7jummu45utfZ8f27Xx48WIeuOUWDj/6aMKtrVU7d6XCy7NtXMviI5/+NEODg+iGQSwa5TvXX8+8hQuraeP3P/AA5194IQ//+tec9pGPADB/4UIsv2fbcRzefOstXti8mVkHH8zWG26oVnod8Y1vKLuwrzibsRi5vr4JpXnv89IUaXWLRYxwGISo7jtz+XKinZ14llWtEvMcp1oNpplmVW0Xnodx6ScUYf7MxVDIKfVZ01VPtRCKIINK+M6kIBwB04Rf/mRfJdp1Va/1r38Kp3wS9ADU1ysbue6vByq1u287JJoV2f7MxUo9fXItonMK2pwjkeWimpE2jImqrUIeAgFl/U6n0Dq6kYaJ8FxFnHVdEXDdQHquT641GBvF2/Q02oITEA1NE1by5Dgyl0HrnILUDUiOKjv6guOxE0309vXR3d1NuVyuEuYNGzYwf/58stks3d3dOI7DwMBA9f7u3btpb28nn8+zefNmFi1aVE0I1zSNX/3qV3z7299m8+bNHHPMMTz88MMcfPDBmKaJ53msXbuWbdu2MXfuXBKJBGeddRZf+cpXOPvss4nHg+ze/Rzd3cdhWXneeusRBgZe4OSTv6dm55FomoltF/jLX67lhBNuJhCIV4m2so979PVtIhptIZ8fobNzHkIotXrHjnf5/Oe/RLFYQNM0mpubOf30VhYtWsGZZ34W13WQEjo7W/nIR6J8/OMrSVsNzOjupmv//amPx7GBkWCQp7dsIYxK/pYoot2ACiwTKJK9FWgDWoBXgfmo0CUHFX42Cfjs2Wfzl6efpg64bu1aTps1i/lTpxKrqwMpOfzoo8l85zv8qaWFM4AHsmXO+vRZPLv1WfSAziO/eYQ5c+fglBzwUCTYmFCVKwqz9CTp3jQ9K3uY//X5NOzfUH288FsL+cwln2F4RFWUhcwQn2z7JBfcewGHzjuUYCBIyM8AuPLyK/nYqR+rkm3pSh749QNccOEFPPTgQ5x22mm1tPAa/kvwH5Fr47/zZGqooYYaaqihhv8zmLpBNBCmL7WHe7c8ytlHLmUoN0Z7fTP3bnmUIzoPIqiblB2bN4a2c1DrVAp2GV0IAkaAOZNn4EoPx/NIF7MkwnF0TSdTyJCIJkhE6hEIXOlbw6WHhiBvlThk0jQAxvIpmqIJLNvxlXCPz3zus3z1y1/h0T/9kV29vcw59lgAhvbs4aJLLmFoaIgvfu5zxGIxzvzUpxC6zv4HHMD8+fN5L5fjkPFxYh0daIaBXSio+irfDm6Ewzx4//3U19dTGB7mya1bufjKK3lxyxY8y6J3927u/fnPOeaoo6pWYCEEPU8/rd40z+MPa9Zw0y23MHvWLJCSmcuXAzBz+XKMSAQ7lwMhVPCZ/5pzr7gCIxpF8zuWqyT6/PMp7NlDpK2NaHt7NXwN4OgVKyju2aOs4suXE+vqwi2XGX/jDRIzZlTtyoFYVJHjJZ8Gw7eFv7cNps1UqvIf7ofTz1ahZJrfMGz65GDJp9Xt0jOhsUXdLxZg8aegdbJS63VdWcMtoO89RaiTIxBPKGL9/N/g2BPgwNloJy4By/I/YColvqK2ev29SqUOhlRl1iR/fauMNzyI1jlVkWbPVRcB0km8XA6tawo0Nqne63xWzZGXSyoQLRhEJKaC5jenmwFE936IaBxNCNra2tT7nctVK7I6Ojro6enhpJNOIpVKsXHjxn3uH3vssep33tPD/PnzSafTPPvss9V57RdffJFSqURPT4//kfCq1nMhBAsWLADgwx/+MLquUy6X2b59Oxs3buTUUxfT2XksIDDNCHPmnM2cOWeTTL6PaYZxnAIbN65k/vyvc8wxX8YwKsVVChXhqq6ug56eW1iw4GqkdMlk+ujpuYX587/Os88+TTq9y1/nKhoa9sPzXJ599kk0zUDTDH9N9fmOBOO8JSV/BT6NIsY7gR+gwsduAH4GdPjnsAk4EvVF/yjgOWAqcBgqnOwKoBW4DjV3HX3gAYrArPvv5+GrruLMtWtZ97e/0d7djbRtbrz2WnZ+/vOcsXYt1/g/46djn+aBtx/ggV88wHU3XsejDz+KETKqndTIvRwGkmpFVmJqgiU/XcLQK0NopkbDfg0s/belaIbGg794EKNsYJdt/vryX7n5Ozfz5diXwYNf/vyXzJ41e8JuromqUr5r9y7uvedeDjvoMFy7otvXUMN/P2pp4TXUUEMNNdTwPxxSSu7d8ijr336OB154nEPbpqEJjfOOOZ0TDzyGwewYtzz1cxrDdUTNECEjgKkZ1a/7UkoMTac+HK8+bow1YDk2yUIaD/W8lBLHc3GkRzQQxtB1EAJT08llsrj5MkE9QKqYZc0f/0RTUxNXfPMb7Nq+nbdffZV333qLI+fM4dL58zlr8WL0UIgzPvEJNjz1FFJKxpNJXnjhBWYfeigthx+O5yol1AiH/S/gslpxlWhowC2ViLW1kc5kqoqmY1l86aKL+MH3vlftja4kfmu6TmFggNFt2/j5/fdzzuc/r+zknkekvZ25X/saut9BjRCEW1qqVu5QczOanyZdSRgPNTZy+JVXUhgZIdjYyLZVq0DXmbl8Od2nnMLMCy5AMwxCLS3MveIKwq2t1fNomjMHpOTF73yH4siICiv/7FcgGFQKdTyhAsqyKUVwP3EeIGDHm8pyrQlIjqp9m9uUDbxpEnhSzVCHozCpQxFqx1ZENxhSSnfHfopQ73eQWn/JpxWxb5yk1isU8P72pBoN8CTSdVTNViGPNrkTTBOh+/Vc/vsuTBPROZVqDLOmIzQdEY0jOrqQY6PIfA7R0FQl4AAYBiIaB9dRieSOA7E4YtbhoOt4UlIul7Fte5+KrP3335+FCxeiaRobN25k27Zt2LZdvf/cc8+h6zoLFiwgkUjQ09PDtm3b+NSnPsW0adN49NFHufLKK6uJ4Oeddx5HHXUUy5cvZ2xsjIaGBpYtW0YgEEDTNILBINOmTWPhwoUoZVr3lWjdV6shkZhCJNLMxo0rq0niDQ3T/AsTEs9z/G5rk3x+eJ+kcKD6eNOm2wDBs89+l+7uD5BITEHTdJQxW9DXt4lkcicgSSZ3sHP3Znai6rI+jvrybgAHAD8GDkIFlQlUWngMpU6/gLKLB4BOVLDZAMo+/j1UcvjXUJ3XVwNnAY9+/vNsfvppsmNjdHR3Y/i/+wsvvZRXNm5kFcpm7oUMFl6zEN3UOeuTZ/HXv/2VV9e+ipW1GHtnjDXL12BlLTJ9GXp7epWiLSH1foo1y9eQ2pmi5ZAWPMcjuSNZTQ4Pa2ECkQCJzgRDO4bI7M6oKi8NrIKFXbDxbA+7aCM9ied47OrZxfnnns8d37+DaCLKS6teIvleEsdy/vf/ka2hhv8k1Mh1DTXUUEMNNfwPR8Aw+eK801k041jOn/dRQkaQvFWiJZYgaASqxDtVylKwSwhUZZGuaeStIuliFsuxcTynSpbGckkkkvpwHWP5FKA6sjOlHHsyYwDsGh/ijcF3aYzWk0qlOPOMT3H0EUey+AMncuedd/KLh36N7ndUe74dWw8EmPaxjxHzU75vWrGC9X/+M3OPPpoTTjmFKy6/nKOOOgpRUY1RXdW5gQFGX3lFzT/7atfyr36V/WfM4IYbb2T1qlV4jsOd997LvKOPZvZBB6lztiw1N+0HoEXa2ii3tLDx2Wc584wzqnPUAjDr6zEiEYrDwxjRKPnBQcrj49W0byMSqc5p5/r7FTEeG6Nhxgzqp03j8G98AwEEEwlmXXIJkbY2VevlOLx6xx0Uh4exczlGX38dTdcxolEOOe883n3wQZ/QA3WNMDoED9+j5q3jdSrILBBU5Hj6LOh7X5HvRJOaodY0wJ+nrhBp/5wxg4qcu3ttC0fgUxcooj39UKVun/1VaGoFJBiGChpLjeMN9KqLE54HgQDeQB8iHFFKuARME1kuKQVSKmeBdJwqoawkhNPYhIjGwLbVXHUwhAiGwLFx1z4C+SyitV2tr4q9kMUi+FVYUkoWLFhQrciqq6ujoaEBIQTHHXccM2fOJBgM7lOjpet6tYarcuxDDz3Ejh07uOGGG9iwYQMNDQ38+c9/ZvPmzWzevJmmpibOOeccPH+e3nEcXNdFCMHChQtJJBKAIJV6nzVrlpNK7cDzbDxPETVNC7BgwdXMnHkGCxdegxAa+fwIyeQO1q69iHR6JyCJRiexcGFlv2spl7P7HOe6Fied9F26uxfQ378Zx7HQtADr119KNNqCaYZwnDI9PSsJ1nXSKwStwBaUai2BPaje6qJ/66hPCe+jiPRkYDfKGr4S+BPKBv4F4E4Ulf9eKsWugQEOQCnfv330UURTEwOhEKlUChcYBx7+9a+ZNXcuOvBSKsUfBwaItESQnuQPj/yBiBahY/8Oyukym27bxLaHtlHOlEn3pom2RFl3yTpSO1Kke9Nse2gbm27bRClVQrqSnlt6qtvKmTLnXXgeB8w8gBu/cyNLUkvoWancB8svXs6Rxx7Jeeecx0MXPMT4e+M4RYeHn3uYSdlJzJ09F+lKep/tZePNG3HLNQW7hv9+1Gaua6ihhhpqqOFfALbrYLk2Ad3E1I3qY0PT6U0OMZQdY27HDDwpGcyMcu+WR/nCUafSmZhUXaOiTntINASup0iFrmn7zGPbnoupG7ieH95ll/nBX3/FF446lZAZIB6Mki3nyZdLTGlog3QWp1QiEI8z/sYbNM2Zg+ZXbQnDmEj5lpJ8fz96OEyosXEiHbzyXUSIalI3QpDt66M0NsYT27bx8O9/zy033siXLrqI395+O5OPOIKTlizhkgsvZOmJJ2JGo+T6+9FDIb5/9928sW0bP7ryShIHHIARDFJKJlWtVjBYne+Wrkt+zx7CTU3VFHPpq+Bbr7++OqM96+KLlcrtz1+/dOutzLroIsxYrDojXhofJ9zUpMLZhKiGpTmFAnowiG6aGJWua6kUSjVbnYaGJr+L21PKcrmo6rLWP6ys4A3NijgblZlqd6LKywwqcusr/2ga/Oonaha7aRL4AWJk08hEEzKdxNv4FNqCE5CZlLJ9C5RNPBrza45UxZmapxbIUhFsC29zj1+xJVSoWbkMsZja3zAhOa4s4NG4eg/yWUQwhMykkPkcWtd+ft+4UsuFbmD5neuOP6tesW47jkOpVMK2bTKZDB0dHdVqrYrV2HEcPM8jm81SX1+P7n+WNmzYwIc//GFaW1t59913CYfDhEIhNE3jpZdeYtGiRdx3332cfPLJ1TUPPvhgfvvb3zJ79mw0zWHNmvP3qdUSQmP9+q/x4Q/fQCAQxfNc+vs3E493kEhMYc2a5dX9Tz31HlKp90mn++joOBpNM31lWuA4RQYGXqCtbS6mqZLIS6UUzz33PRYsuJre3h4Sial0dy/wn0uSLaVo3v8knheCWahgsTqg4N//IcoeXnGq7F29tQqlcnsoAh5AkfARFCn/465d/OKTn8QsFhGaxkhLC8Pf+x5L6uro+/jHcVwXpKRr//35+g9/yOFTp/K5XbvY+fFPYI9mCMaCNDU08c0Lv8nU+qm0H95OdiDLpts2seiOReimztqL11artRbfuZh1F69TKeGTYxghg/TOND239KhtbTEQEKwP8m+3/xv3/fQ+1j2xjrSe5rUbX+PIrx7Jpedeyra3t3HLGbfQelYrV3z7Ch75t0domdHCiYtO5FjtWL72s6/RPKMZPTCROF9DDf8ZqAWa1VBDDTXUUMO/OGzXwXYdNbtrKHK9N8qOxa7kIPdsfpTzjjmd4dw4lzxyK4tmHMuKRcvpTw0zkk8yq306rucikZiaga7puNKjZJd5e3gnM9umEdBNHJ90lx0LTQhM3WQgPUwsEKrOaEsktmtj6iZBl31qsoRfp1WdBXbdatVWaXwcIxRSFvBQCOm6WNksoYYGJJDr7+ft++/nsCuuwAgGEYYBUlLX3Mw3v/51fnbXXQT8xPA9IyPUxeNcd801LD/vPEApegfPns2P77iDk086aaLSy/MQfrXTP3VhV3q0XRfXtjFCoeq89SHnnUeopUUlkvt1W5X93VKJsW3baJ4zB+m6jL32Gg0HHYQeDquLC/57gZSYQiriLKWat/ZVYTxXBZGBquFqaIHGVmXnjkTVdlfNNpMeU1bvQg5sG+oT6ljPVYp2pabrndehpU2tlRxR5Hztb5Gf/TLuukeR215BzDwMffFHFSmuJIDbllLBbQuZzSDaJk8kifvEXSnYfpiZ9CCbAUBEY8pGrZsTFwlAJY1P7qp2XmOVfWO5RA4P4XVOxWPf9G/LshgaGmLy5Mn7VGY5jkMulyMWi1VTxG3bxrIsLMuiWCxSV1dHOBxmzZo1XH755bz44otYlkWpVCIej3Pvvffy4IMPsmHDBhobG6sz8TNmzODhhx9m9uzZCGGTTO7wK7GuJZHYD89zsO08udweCoURurrmI6WL69rouoltFxkaeoWOjqPQ9SC9vT1EIk3k8yM0NEwjHm9HCAPPs9E0fa8k8avJZAYYH3+XadNOJhZrw7aLlMtpgsF6bLtAJNKMG6zDFYIsynYaQdm6B1BBZaDIcxjYgVKqrwG6/b+J94FbUXVak/z9PP+5XuBm4N/8+5XarS6qzVfkga/7a4wBiaJNS9lBurJKYKUn0QwN6cmJPmoNUjtSbLx5Iwuv9au1bK+aEu7aLlrlc6X7IwhCkB3JEmuOkWhJsOPtHTQ2NZLaniLdl6YYLDJv8Tx2bNnBbzb8htt+cFt1RGRozxDxWJzrrr2OL1/65f/4H9caavg/RI1c11BDDTXUUMO/MGzXoWiXcT2XbDlPPBglbAbxpMTUDUzdoGCVWLH+Lta//RxLD17A1SeeS9mxMHUTQ9MZzo7REKlnJJuiMRbH1AySxQxl22E4P1Yl3W/u2cGBLVPQhCBshgA5oWijSEjeLhHSzWqPtqHp6CWrGgIGe5HVf1CuKzVbeiik1GOfjEspefnWW5lx9tnooRDvbNhAaPp0Dpg1C800+dPatVx6+eVs//vfVQ+xEDjFIictXsxpBxzApffcA4DnOPzl6ae54JJLePfNN6squNA0VeNlGFV1Wvhf6NUJy4kLAr567vlWYSEEnufhlkrqooCmMfLyy0RaWykMDdEwYwbldJq3Vq/msMsvx4zHJ8i7XxWmGQaaEOj4pNMqK0Icjiqy7XkTM8q5jLKDF/Mq3AwmwspcF/74C/jo5xUpFkIpzn6CMlYJ+nfA1BnqmN/cBad9TgWLvfkSclIHsrldJXUvPAHqG5Q1vKJIa+pCgLe7F9HeqWzgpSIiFFbz2X5lmHRtSKchHld2ds+voxJ+45aUyh6OhEBIrQOKvFuWWs+f53c9j7F0hp6enqot2/O8CcLlk1/XVSRM05TS3d/fTzwep6GhAcuyeO+99/jiF79IuVyuJnB/5zvfIR6P8+lPfxrHcchms8yaNYvvf//7dHZ2snv3bm688UaeeuophoeHaWpqIhQK8c47b/ofCwdNM3CcEq5rEwjEcJwChhHep4LLsvIYRohMprdavRWJtLB+/aUsWPBN6uun+j/HxDEVxTqfH6a7W4WrCaE0ZjW7baPrAYQwSaV2EG4+CF03KaJIcRD1Xo+h1OuVKPI7GUW6KznZlwGXAv3AMlQHdivKKj6Cyr8LoOauD/KPqdjLnwcORRFxHcj4+zcDgXxZkWQhVLCYNlG7JT1Jb08v0ZYoW360hZO+exJmxEQzNVzL/7vS1X5CE3i2hx7Q2fnyTp657RlOu/k0Evsl+OMf/8hlX7+Ml599GU94ZN7IEGmJ8PNHf876Z9bz1J+fUkR8T5ZyukzD1AZOXnoyF33xIj7+6Y/X0sJr+C9BjVzXUEMNNdRQw78wClaJvFUkVy4QC0Yo2SUKtrVPBZcnJWXbomAXSUTq0fz+6gdeXMPlHzwLUzfRNQ1NCMqOwxtD7zEp1kjIDBAwAmSKeYZzY8zpmIEuNBzPxRAajvRwfYt4hWCDxJUSy7HwpFTBZ5ZTVYIr88tOuYwRCEyQVr9HGtiHfDrFoiLcwaD/pVtn165dfPqssyjkctipFJ0HHcRtK1cyWUoaDjoIMxJBSslJixfz5Usu4bRly0AI7FyOcy68kOnTp3P9t76FUyohXRc9GMS1LGU7DofVOUBVUa+ck5QSt1xW+/hd20LT1L6Vn8Hft5ROE4zHq8TdLZUwYjFy/f28de+9HHL++YQaGlQgXCwGroP523+DEz8KiUZFrB1bvaeVfuqK4iuEei45AuMjE2q1VVZp4UJALg3ROl8N9yCbVtVeuqFs5YHQRJd1elwRcCGQlgV1CXXhQ9dxH/892vwPqdnvbAZv80a0k5apWrS+nYi6eqVmR6IqGdyv0CJeB4UCoi6BTI0pq/n8DymLe2W/pR/f95iGZkSlN7s+gUg0UXZd1vi1WDNnzmTZsmUA2LZdreNq8DudYSKJ27IshoeH6erqqm6rfL4q/die51EoFLBtm/r6ejKZDIlEYp/E8Xw+T3d3d3UG27IsQiFl4fY8C9su8OSTV/mJ3vtjWRmy2QE2bbqt2l9tWTkMI8Tjj3+pag1fuvTfSKXexzSjxOMdpFLvYxgqaTyT2U1b22FVdToQiJHNDhCNTlKdzb091NV1kcn0UVfXiWlGMOu7yBsh0kA98AowB0WML2bCBn4XSml+FqVQ96CquO4EhlDBZi5KiQZFmgdR5PxqFHF+E5iHIvEasBmVMh4GSsCLwIdyZaychR7QVR810L+5n8lHTUbTNBzLYd3F66p28CU/XUJmIEN9Vz19z/bRcUwHRnDvC3KSn5/1c256/CZiU2IYQQM9pfP9H32f1qmtnL38bKyiRW44xyFzD+GHP/4hzeFmyqky8clxNENDMzROXnYyF557IR8/4+ME48H/nX9ia6jh/wg1cl1DDTXUUEMN/8IoWCVy5QKa0AiZATQhuGnDvRzaPo0Tpx/DeD5DJBikIVyHJjRu/ct9nHXEEsJmgJ73X+HwzoN54Pk1XPrBswgZAV4deIfGcB3jxQyHTT6w+joSeG3gHVpjTYRMk6Jtce+WR/niMR8lbJo0ROp9i6hgJDdOJBgBKYkFwiQ3b6Vp9myErvPizTdz2Ne+RjmVojA4SNOsWWg+cZY+gSmNj+OUy8QmT8YpFNScMr613Fcs957H3lttVjvK6nakxHMcNNPEs211XEWhlhLpumimiZ3PIwDdV5/zu3fz9v33M/eqq/aZta6+pn++6uUkr9x+O7MuuQQjGFTKdXs7wUQCp1gk1NhYnceunKdn24ow+6+v6Tq6507MTPt2cTzXn0NGEWVdV9uEBpnxCQLtr4/nqqqu6oy2UAnimjahgOcyikwXCyrcrG87xBugrRMpNJXc3b8L0TUV0klFkAt5vGfWI7qmIrqm4m16Bu3YD6pZ6Y5upTKvfWTCUr7sE0jbRpgB3DUPT2xf8rHqfsaV367e1848D1GfUCS8sm73/thCMJ5MVpXruro6+vv7mTx5clW91nUdy68OM/1E970t5FJKNE2rzmvncrlq+vhJJ50EUA1Nc12XdevWVcn84sWLMQyjqmwrIq+UYyldhNBIpXZSX68SvXO5QZ555vp9SHQ+v4dodBKZTF9Vua6r68ZxilhWnmhUtU4LoZHN7iYSaSWV2smmTbcyf/7XaWw8gDVrlrNgwTfJZHZXu7EjkWa2bv0xS5f+DDsQ420huA24ClWrJVFEeQC4BUWO+1Gd1pOA14EjUKT4fZT1+xpU2nfWPz4GfAW4xF8z4K/poMLTpqAIedH/d+IVVLVXPFsm+X6STF+GjqM70Az1t+mUHMpZRXj/0Q7ulBz0gM7om6M8d/tzLLxmIYn9EuqanQepnWr/JXcu2WdOe9mqZdgFGwQEogGErtRuYQjWX7ae4288nvxIHiNoEG2JKnu5gGCsRq5r+M9HjVzXUEMNNdRQw78wClYJx3PRhKiqx47nYrs22VIeXdMImaGqsj2aS/GLFx/nmhPPw/YcXh98j4H0MLPbD2S8mGb25APR/JlpTQikBMu1eXPPDqY3K0t40Axwy5OrefytHn7ysas4qHWqIjA+wZegZqaFpuzhqSzCMNBNU4WKhcPkhoZo8TumK8Feqb//neY5c6pqdn5ggG2rVnH4N74BgNA01XftE2e3VMLKZgnU1U3MaO9Fsiu2c89xVF92Po8RClXJ8sgrrxCZNIlYZyfZvj6KQ0M0zZqFMAxGX32VUGMjmmEoS/fXvoYRDuOUSqTeeYfm2bMBKCWTuMUiwUSC4ugob61ezcFf+AKl8XGaDz+cwu7dbLv7bo66/noKg4P79mJPmlTtx67r7kKvBJpVoqe8SsCZUsnJpSBar57W9gpiquxXwd4k292LsFdQ2bdC0qUE10YGwsjUGDKTQevs3udcpFVS89OBIN4z6/eZy5al4r7K9cITEA1N+B8DqCjXx31YqfL/jnKtL/4Y7rq9yPnij4FpYHkSx1eaKxZwy7KwbZtAIEC5XCYYDFbJsZSSfD5PMBiskmkpJZ7nUSqViEbVnLq7l61/bwu5lJJ0Os3GjRurZH7dunXMnz+feDyOYRiATTK5nVxuiK6u46okG8CysmSzQ+Ryg3R2HoOuh1i//nKOPPJLNDUdiOfZ2HaBv/zlWhYv/pGvqnsIYZBK7WDjxptZsOBqMpl+fv3rZT5B/xm2XSQQiCKEgW0XMIwgrmtV+66tUB0XC42jgU/6v+YrUUR7EooU2yhlOeg/Fijl2eOfQ84c/zmTic7s76E6rw1/rconsDJ3DcqC/grw4UyZvmd7aZ3Vip23iU6KKuU/bxGIKjt2pY+6MFrAKlkkOhMArFm+Zl/inLexihax1hjSVan66V1pNt68keOuOo7G6Y0kdyTpWdmjCPm0BNKW6t8wXcNzPQqjBQKRAOVMmWB9kEBdgGC0Rq5r+M/Hf0Sua1VcNdRQQw011PA/HMOZccYLaVxfSXVcm4ARoDXeSFO0gagZojFST1A36WqYxDdOOIehzBiZUo7DJh/IqYd8gFQpwwHNXRStEr3JIV7e/TZlx8aVHm/u2cEBzV2MF9Pc9vT9DKRHuOyDZ3Hnx65ibscMIqayFL8zsgvPJ9VlxyZvl9CFhhmPU9izh6033IAwDMKtrYpYo8ipZ1mY0Sih5ma23nADmV27VI+yadIyd64iy56HZprKVl5RnAMBgg0NCE1DD4Ww83ncchnputj5PC/deit2NovmB5WVxsbYumIFmZ07cQoFGqZPpzA4iPQ8ikNDhBobeeHmmykMDNAydy6xjg62rVpF06xZFEdG2LpiBXgeienTyfb2snXFCtxikcLQEEYkwlurV9P7xBO8dd99SqkHtt19N71PPAGex7ZVq+h94gm23X03wYaGidtVq/DKZfjFj2BkSDHSkQH4xQ9hZFCR4F/8UKnU48P+fgPqlz8yOLGflOA6MLwb3n0Dhv01hgdUANrYnonHrqNmrffsVttS4yq4LJ1CxGK46x+r9nkDiEAI0dSKiNejLTgeMfMwtIUnqs7rUFjNojc0oy/7hCLWnqfO23MRdQn0ZZ9ENLaArvv7fVLNcPvHYBqKlPvrSsNAjo4Aklwux9q1a6ukWghBLBbDMAxCoZBPeKmS5XA4jGma+8zEl0olIv64gOM4GIah5vOBzs5O4vE4lmUxPj5OOp1m8eLFxONx1q1bx+uvv05PTw96JfBOuphmhM7OeXieQy43RLmcwfNcAoE4TU0HUl/fxdq1F5NK7WDRotvZuvXHSKnquv7858tpb5+LZeWwrCy53DBSumzceHO197qj45hqTZeuhwgE4th2CZB+vdcw2ewAjz/+JdLpXehS8hPgTJSlO4RKCQ+j7N4XoOzdJSZSwyvQUIr1Gf5thXCDIs468FNUWFnlWBulYGeBUSoN3ErpXgBIU6P7uG6EEFVi7ZQdzIhKX/ccD89SoxbRliiJzoQKMdMEC69ZyMwzZrLwmoUIXRCoCxCbFFMz2IY6g8R+CZb+21IS+yWQnqRnparr2njzRjXbbYhqeJqma8QmxcgOZnnm+mfIDmQnfsAaavhvRo1c11BDDTXUUMP/YHjSI2gahM0QlqvIsKGbjOWS5C3VP1x2bd4Yeg/LdXA9D00IWusaKdkWN264h770MHMmH4ih6QQMk2gwRGO4jlue+jmDmVGmNXdRsEqs3vJH1r/9HPdueZRoIMSM1qmM5JLkrSJRM8TsydOxXNVnHTQDREylMuf6+iiNjND7xBMUBgfJ9/ez9frrye7ahREKMfbaa+T6+igOD9P7xBOURkbI9fXx+p130jx3rlKbDYPC4CAjL79Mfvdutq5YgVMoUBgc5Plvf5tcXx96IEBhaIitK1ZQGhtj+mc+A0Bm506k5/GmT3TfWr0aO5/HLhRomj0bKSVNs2fz1n33VckvgBYIMHP5ctrmz68SZzufx87lqo+3rVpF0+zZaIbBzOXL6T7lFA694AJ1zrrOzPPPp/uUU0DTqs/PXL6ccjJZvT30ggvQet+D5/8Ga3+jCO3a3+77+Pm/+dt/42//rSKw1ce/UZbvyrHxxL7PhaMTj9f9Vu1XKqo6r8o+gNYxBZnLop/yETU/ns+Co8LHpFXG692B3LUD7UOLVBq55yF1vaJvq/+7rkorF5rvEnDV3PWu7VAuIS3/v2y6anv3du2ASBR90WngjwEQCIDr8dxzz3HiiSdimiaWZWEYhgqRc91quJllWYyNjbFmzRo8z8O2bXK5XDUJ3LZt+vr6SKfT7Nmzp2rt1zSNDRs2kMvlEEKwadMmfv3rX7Nu3Tpc12X+/PlccsklLFu2rDpzLYSB4xTp7e3B8xxisTYCgSiaZpDNDu5DlDduvBkpPV+lBs9zWLjwWmbO/DSmGSEQiCGE7vd4T/Rem2aYxYvvxDBCuG4Z286xYcMVJJM72L17C6FQgp6elVUyLoSGiSLVBeBLKLU5ikoOvx3oQJHfl5hQmzPA11Cp4auA/VAEfNBfYweKNH/XX2uz/3wY1W9dh5rDFijCraFIt+sq9mpGJi5y6KaOpmukd6VZe9Fa0r1pNFPDylvkBnNYWQvP9Ujsn2DZqmXUT1Xz11bWwrM9ent6Sb6fxLVcPMdDaIpAC02w4OoFipBfu5DCWAEkSFeSH8mT3JkEjWq/9qbbNlU+qjXU8N+OGrmuoYYaaqihhv/BMHWDpmgDETOEqZu8uvtt9mTG2J0ZIaib2K5DrpznsMkzCJsTNkgpJSP5JM9sf4Hh3LifLm6SKmYJmyFSpWyVSOtCY1KsketOPp/nvnIf1518PiAI6iY/3/onAAq2Ury//8wvyVtFP0CtBEJU1d/uU06hefbsqoL71urV2LlcVb1tmj2b7lNOoWnWrH32kVKimybbVq0i1NhYVYPtXG5CDV61CqSskt43776bWEcHdj7PW6tXI/Yit4ecdx5mLEYgHkfoOqOvvaaIcIX8XnABnm3jWRbBhgYikyZVnwvE45jxOAefe+4+RDo7NIQeDnP0ihVEOzsZfuklMr29RLu6OHrFCnTTJNbVxdE33EC8u5uWI44g3tVFy+GHE+3ogI794KgPwJJPK1v3kk/t9VhT94WmHle26//wuDJ3veRTSqne+7lift/HQkAoDIs+qbYtPVMRXcNA65qqPiOFfLWTGssCIdAmdyH7dkIwCKkk7prfQSqpLNljI7hr/6DC1gJBn8AIZU83A2hT9keYQZUQHghCLI7wPBWMFomr1zAMhGGqcDahoRsGixYtolAo0NvbSyQSwXEc1q1bRyaTIRgMIqXENE1eeukl5s+fj2maGIbBpk2blDIajZLJZIhGo5imSVtbG729vYyNjQFw8sknYxgGuq4zf/58Zs2axaJFizBNk4aGBgKBALlcDs/zyOfz2HaJdLqPaLSFUilJKrWTtWsvwbKyxGKtCKH7BPoMFi68ZiJ1HolhhEkk9iefH2Lt2ouxrBzRaDOOU8A0oyxe/BPS6V6SyfcBj1AoQV/fJrLZITo6jmbTpu8yadIchNBZtOgOZs06i4ULrwUUufVQs9MPAbf5rxoF9gAXAcPALBQx9lDk+FZgF8oavgNF0CtrrPTXHUTNVc9CpYu7qIqv7XsdJ/zHzwFaQAcBmb4Ma5avIfl+Uu0gFOFe/JPFxNvj4EJ2YEJR1nQN6ararT9f8WdaZraABNd26V7QTcPUBoyQwe6tu5VdPGuRHcrSMK2BZauWkdgvQbQ1ivTUex6IBjDDJtKRE4r4tQsxQvvWFdZQw38XajPXNdRQQw011PA/GLbrkCpmGculiQZDNETqEPgdsZ6L47kEdBOV76TmsXWhKYVb0ynYSt1+Z2QXzdEE9275I+cc9RGmNLaxJztOLBghGgiTt4oEdBPLtfnBX3/F5486lc76VnYlB4mYQeKhqP86ava76Fi4rkssEMba1Uesq0vVTuk62d7efTqik2++SbS9nVhnp0pl1rRqj/ShF1xAtFONr+X6+igMDRGZNIltd9/N4VddRTmZrO4Xbmsj19fHW6tXc+gFFxDr7MTK5ykOD1O3336K5FSCznw8f8MNzPjsZ3n7l7+kadYs2ubPJ9zSQn5wkG133cXB555LpLUVMxbDKZUYe+ONfRLJq/PdewWVebZdTR2vhJjhq3fVmi//1s7lADBjsYmua1GZuf6HcDIp1WPPU8Ta8ybSwDUdJdex78x1dfa6UqAEaIJ9zMGeqzqqha4U5mefQTtxCcKfn/fWPYo2/4PK7l0JSAO83h2qvzqfQ+ucgrv2EUT3/og5RyAcF1kqqFqtyvudHIdgEBGJ+j+XquASrupWJ5dFplNoHd1Iw4TkKN6mv+Is+Rh9fX20trZWZ63z+Tz19fW4rotlWUSj0aqyvPfjvWu54vE4uVyOZ599lhNOOIGQP7/vOKojvkLU90ZF4bYsqzrXLYRTeVb9Ddp5stkBpJRs2nQb8+dfRVPTDKR0qnPRUrpICbpu+kq1QzK5CyndanBZNDqJDRu+xrZtD/GZz6ytJoabZozR0bfo6DjaD1B7vxqMpjq2XdxQPY5fE7cTRYq/hQohc1C1WkcDS4GfMTFT7aFmqC8EfoWyht+BIuGVPuv9/f0q6eDvoTquBYqwPwSchbKOO6g5bWk5BIrOvvPTdy1DmALP8nBtF+lKzIj5TzPWucEcwfogRsj4p1ouAM/xsIs2wXiwGoIGVGu+XNtl4PkB2ua0YUZNhC7QdA2hC9yyq5LGA3tlFtRQw38iaoFmNdRQQw011PAvjIJVYk92DF3TKPoVXJd+4DPEgmE8Kasz0AASScm2kEh0TcP1PApWkeZoAx6SZCHNWb+8hpVLv8ykWCP3bHmULx5zOp2JSewcH+C+5x/jC0edyptD2zl6yqE0RurR/C7ikmOp+UwhMHUTpKTkWMSCYUhl0UMhxl5/nZbDDlOE03FwbRvNNBF+oNkrt9/OweeeS6yrS52vnw6e3b2bd+6/nyOuvlr1Ufuz10LXFfmzLOx8Xs1f+wRW0zQK4+OEGhoUjawQVr9+Su5F4gvDwzTMmIGdy2HGYhihEFtvuIHeJ56g+5RTOPqGGwB44cYbFQE/7jgikyZV080rP48wDDUP7nmIynyuPwcvNK1aQ+Y5DlYmg1suE508WdV7mSam7pPe7dugsRXaOlVftWPvW8s1MgiP/1op0M1t+waUVQj1Az9Udu+jPgCf+4qa035lM1x4jeq5LuaVdXt8D+x/kDpvoeE+8Uc/EXw/ZC6jbOKaUN3UuqF+HsdWynIgAOWyUrEDQSiXEIEg0raRw4OIyV1+Yrt6/72+9xGxOjBNiEQRUiKFgEJerRmLI3TD78AGObQb75FfIi+9Ds8nuZV5afWr/Pd7risEOxaLVf9OKvVb2Wy2SrwryeGVkLMKia4Eoe1d9xWPx9F13Sf3GpaVQUoP04wgpYemGaxZs5xt2x7izDPXUF/ftVendSuWlSUUamBg4Hna2uYAwq/eKvHWW7+noWF/Ojvn4TglnnrqahYv/jGOU6RUShEKJTCMCMnkdgwj8E9p5EJo2ME63heCCKqnOo+ygO9gokZrKooc54A0SrV+FWUXb0Ep0lcDTajQMwNFlF0mKreOYiIp/HAmSPgdKAJfSRw/MFNG6JDavlci+P4NOEWH3c/vZtKcSSrZ2xD/tI90K2n/As/19qrok9XUcelJ7OJeQWf+nHVlllp6EulJ+jf303FUB3pYRzoSPaBjhs3/+B/WGmr4/xA1cl1DDTXUUEMN/8IoOxaZUp6QEeCWp37OZ49YQmdiEiW7zB1/e5AvHHUqnYlJ5K0iI7kk9z3/GOcecxrdiTZ2jg+QLGY4sGUKAkHIDGC5NhoaK59azfq3n2PRjGO57uTzWfnkag5tn8axU2YzKdZIf3qE+57/E5d98CzCplL8inYZgLxVJBaMqGRxI4AnbQLCxEvnoD6KLR0MoVPYPUi4qQkZNNCFhm2V0VwwQyEcIfGkhyY0NMDxE5k1NKxinmAwjCskBjrOaBKzpRFL2hjCoFzMY4TD1dRz17GJiBB2LqdqvTwP6c/bVkh3RSmfuXw5sa6ufZTzSHt7teO6ODxMaXS0qp7PXL6cSHs7o6+/TvOsWUjXxcpklOXcMBh9/XUapk/HCIUoJZPVZPPi6Ch6MFit6dJcGz2ThA1/gE9/CUyVAg3AUB88/htl4U40Qu978KPrFXE++6uqZ3po9wRRNoMTBHzpmdDSrkLMkiPQ0ALrfwefOE8Rd6sMj/wcFn0CGQwhPcAwkOOjiGhMWcdtC0wDEQ2BFgDNBNdFjg2rSq75H0Y0tUxUeMXqoKlZrZ3NqH0WnoBoaAC3DHoAnLL6+XRNqe8VVLq88Uk5DkXLY2DPKJ2+g0Glgms4jsQwBPl8nlAogut6GIbAMHznhgu2LTFNQSWbTVV3CVxXEXPVeOaQz5cIBMIEArpf3yUwDNOv8RK+6gy27WGakkKhn3i8HVMXCCGZiP5yAAPPK1G2Sjh2nki0Hc9z0TUPTQtUftCJ3y+uOkZKNKHuK6XbpmxZ7NnzGlO6j8aTAsvKEwzGcJ0iQgth6BMKbMkNYHkSQ9NwPE/dStU772oaASnR/VcrA7auE/fDAXX/YoMjpZoJ1TQ8z8PTdUYNgzbHwXNdDMDx688wTXCc6kUjGzXv/bquc3zZRbguui4Rmq7eI+mB0JHSo5SxMSMBDGOv7nbXRWo6wnOVKUPXQbo4jsAwtYk1Kin4mobrCTzHQ9oOZlBTYwWoC1ye1Bl5L8mWO7aw9EcnoWsS1xNgBGoEu4b/MtTSwmuooYYaaqjhXxiu5/HOyC50TeOyD56FrunctOEeRvMpDm2fxj1bHsWTHrlygfuef4z1bz/H6i1/xPVc7nv+MQ5o7mKsoFLAe5NDuJ5HyAzwxXkfZdGMYzl/3kcxdYPLPngWh02ewc82/Y7+9DB7cmMc2j6NkVySb//5bgYzo4TNIKP5FD/b9DtGcklCRhBNgOO5WDjI+ihpK0PRLiKBUEcbblCn6JSwPIeScNDCIcoo263t2rjSxUVScsoIBI50MMJhMk4eD4mFg97SQNEr40lJ2srw5b9czo7kDmzP4e2xd1i+7sKqmpzfvZutN9xAYWAAz3HwbBu3XN5ndls6DtHOTo689lryg4M4fiK4AN5avXqfue9tq1YhXZfmQw+lMDDA2Guv4RaL1dTx5kMPpTgywsjLL6vtN91EcWQEPRjELZXYumIFuf5+1TsdCsNJp4PuQeZ98MqKdEzqgPOugEmTVeXVjDkw73hFnM2g4mihINQ1wK/uVEnirZPh85dBW5dau70Lph+qgsumHazUbl1XoWRnf1kpyfUJhKmrRPDOKVDIIKIBRDyKcPcgBjeBtMEtgLChkEV0T0HUhcEq4P55DVrbJERjHQILYWqIoIaYMgURi4CTRww9B1ZaWXy9ImLgWYRTVOO4TgmxeyMitR08C7ARbomw7jC1qw3blpTL4Hka772X4vzz1/DeeykikSi7dqUZGSniOALXFZTLEsvyKBRsLMvDtj1KJYdy2fXNCwLPk35DmUEgEGF4uIBleeh6ACF0cjmLQsGu1oyrfQWuq9OQ6CRgeAghEV7OHye2ENICezv68FcJBzTq4m3omoYp+9BLzyOQCFw1uiEdhJdFeAVAEWuhLiWh4aIPX0E4AFMnT0YrbsbQdMKhGDoeAZHGEP77hqDkBii7Hp6U2K7L5v5+io6D53kkCwUM10V6HlnLYnNfH6bnUee6eI7Dnnxe/b15nrKKS4nwPMbyeVzLYnK5TK5YxHFdMpbFxWvXsnNsDFEu4zoOGlByHMZzOeqkZL7joBkS0yuiC4mQrjpPoSGkchiE6wyMgLKxC9dBOPbEfc9FN9RFC026mEFFrIX0FFGXEmUYEejCxdRdgrlhtF/9CFHKI1wHzXPRsWnsirHsB8djaBLNsTB0MLS9aulqqOG/GTVyXUMNNdRQQw3/g2HqBi2xRr739C8Im0Hu3fIo699+jvuef4xjp8zmi/M+ii50YsEIXzjq1CphNjSdL847HV3o1RTw+55/jFy5gCs99muczPWLljO1cTJBQyV/V8j5PVse5dA2pWLvvQ2oPr7v+ceQSGzPxtRNleDs2YSNMNFAFFcqgrG5fzOudNmV3sVXnvgK76Xew3ItXOliGiaj+VEczyFiRnCliy50HM8hFohhuzab+jaRtjIIITA0g4gZ4dYTb+WOzXeAgNs23caf3v4TQteqoWh7B6AhJWOvvcbBX/hCNczMtW2kbfPCTTfx14suUsFpd91F7/r1HHzuuZTGx6sp4DOXL2fstdcQQrDt7rv3Jd53340Q4t8l5CE/xK3y2HMcaGiGyd1KyYt1KJUYlFJn55Qw6hZAuPD5ryriLMtgZZUi3bkfnHMZNLWquepg0B+s9buuzQAs/QwcdxJEY8rWbWUBV5HsfJ8i0oqBINqbEIVB0CUi1wfNsxCpdxEbzkek3kO0NaAddjjCTkPQRF+yBDQLkX4XsXsjZHYgnrscbWoCZBHxl4vVGoU98OQF6rZ5FgxthdR2+MvFEG6BXL8iT64FRoQScfIlA9eFSy99gmLR4eabN/LQQ9u4+eaNOI4kGDTI522efbaX995Lcv75a9i5M81LLw1SLDr09qa55JJ1OI5HNmuxfXuS5cvX8M47Y2QyFrqu0dqqbOSeJ9E0jT178nz1q+t5550xHMdjxw51jKFbaM67iKGLEV4OtAhIpTgjAghzGrT9GKFFoPAswn4fIcIQmQ84UNgE9g4QJrh7oPQSwt6OcIZBlhGFTSBLMOk2hNAR9hBEjgNchCyDsxusHQgtRCWf25NQcBxG8qrbfl5nJ8likZLjkLNtvrxuHXnbJmKaHN3Rge26amRE02gKh5Eogux6Ho5PwhvDYcYKBWzPI2QYbO7vZzCb5eiODlrjcd5LJrl47VoylkVA12mKRMhaFkO5HLqUCDMAEoRjq5l/6WcCSKkIsuNANq0u9NgWpMcRdlllCUgQngeOq/aVKrcAx4ZSQa3l+RcpbFtdmDr544hQRK2VTSOAgGZhCEet+/A9iOEBNRLh2P9t/0bXUMPe+L9KroUQISHEo0KId4QQrwohNgghDvi/eU411FBDDTXU8D8Jpm6wX+Nkvvbhz2HqBl+cd3qVQE+KNzGloY1wIEgiHGdq42SuP1kR5nAgxH6NHUQCoeox5xx9KvGgCiYzdYNoIIypq/nWgGHuo2aHzSCT4o37vN4/vr4m8EPVHCQSUzPRNR1XuozkR8haWeZ3zSdiRljZs5KHtj3Eyo0rCegBHM/B9VwmxSah+bZhTWhIJJrQEAg86bGgewEhI4Tt2jjSwXItomaUO065A0MYfGvBt9h16S4Mw0UzjX0SwSvp2pG2Nkrj4xx57bWEm5vVl3tNqxJoMx5XJPr111VH99y56OEwR157LUYoRHTyZIRfxbU38T70ggvQTPPf324YHLJX4rhmmkqBlihSrQd8e7RUKm6gTm0zo5DbDbqhCLTj26zT25XSrWlg+FZrz4NyFjzHt9MKaO9Ux7oWpHeAbqr70oXiqFpbCAQeIj8Am65H2AVk+zGK4D9/G7z9EGy9BVFOIaQL0VZE6n1EbgBhpdU+4RbE1pXw9kOILTcjyil1nJ2DrbdU18DKKkLt78uLt0P7/8Pem4fJUZbr/5+3qnqffcskk8kKBAiQhCUhGyAQFkGPoiAKBxckIKAEMEGSKKgkkYRNFgXEBVzQAIqshoggCQNJ2DWyZSbJzGT2yUxP713b74+nunsinnP0qF/x/OrONVd1V9X7VnV3da6+636e+54D6GBEyFgBLE9oDAQ0brnlFOLxHCtWLOSss6azYsVCdF1RXx9jzZrN1NfHWL16M+vXb2fNms3U1UWJx3PFdfF4jng8x5o18nzt2haGh7M4jktfX7L4vXIcd599HMctzmHoFmpwNURmg90FPYtBGeAkwcmIuu963t2ROaDCoMXAfAd6vgjhGRCYBFgQmCzPVQz0ashskzF2H/ReCla3kHI3D+nnweoBowECjR5J3wHpzThATyJBVSRCzrLY3N5O2iPTnfE4q44/HoBLnniCjGXRlUzS0tFBMp+nP50mmc/zanc37fE4tusSDUjZdNfICO0jI1z0+OOMr6hgMJPhpClTiBgGIcPg8qOPpieRYHN7OyBq8rc2b5aCdzMvpFo35G+wH5LxUmm3Y4lDvGlKzvojP5ZlIEixDj8Q8Iz7PD8CTYNQRDLaTY8gB72qjdoxsi8KBrrBcYTgP3CPzDt5Gmx4AJVJgWXhw8e/Av/SnmulVBg4HnjSdV1XKXUp8HHXdY/778b5Pdc+fPjw4eP/rzBti7xtFgnyXz3GMlFKEdCN/3LcX5r7z9eZtkXOkt7rjJUmno3TEGvAciyCehCXUi+1QpG1sjg4dCe7Wb1pNSsXrqQuWsfSjUv57mnfxXHF0Eh5/amO65CzctiuTdgI0z7UzpTaKcVzdFyHtJnmmmeu4fpF1wshd13KdQ1d6di5BI6lUMHyQiozoHBtId+ulUfTTHAsHK0M13bRDB3XscHKoIIxz7jbQVNiWKYZwOAWnOq5uK70cru2iTb8Anp5M3awCSfVhyobh2vm0eJboXoWjlYOjoMWMNCVJcS2rEl6ms0U6CHpUQ6Wy4vLJ2SdZggpBlGl421CjCN1UDGZYoiva4PyenJHdpXmVrqQ8cKYyilCeEZ2Qfl4MCKctOhEelpfQcvHKa+u59s/eJhZB09m8kFHEHKTRKrGghbg6i9/iU+c8SEGezs54T/OlXNzLNKpJG0dvfT9+HRqTvw6hOvg91fgHncLKtMHW1bDnBVCrPtegbLxQrDnrITKybBnE5SNJxU9gLa2IRobywkGdTRNYVkOwWCh51rzjM1gx44hOjtHGD++gtWrN7N8+UI6O+McfvhY+vvTrFq1iVtuORmA3t4Ua9Zs5qqr5jNuXBnl5SF6ehIkEiZr1mzmlltOLo656qr5TJ5cRXt7nNWrN/OjH55MOJBEqSDYe8EZhuBB4MTBSYBWCTjQdxU0rPOU7Rz0XiGEvPzjYHfD4FqoXQ7GRHAz0LcEGm4UIt5zESTWQ/lZ0Hg3WP2gV4IdB2OMqNdaGfR9BWq+xIg6jE3t7YyvrGT1pk1cOXcug+k0CydMIGtZDGWzVIXD5G2bylAI03HQNY3WwUG+1dLCVfPmMamqCl3T0JQia1mEPMPAxY89xvrt2zlr+nTuPv10FFI63pdK0RCL4bguadPkK08/zeVHHw3A4TXVQmLjQ5KlftrZUFkDtgOGIX94SrTrctKcI+np6UGLlVE+YTK33ngDsw48kJzSuHLpl9nwu2cIGwYzqsv4yW+fJWtanP2f5/Gnt94iEg7TUF/Pd2+5mf0mT/LIvA7Dg0LA334ddmyHD58rPgCVtVBW4Z2DDx//WPxbGZoppY4EHnRdd9J/t59Prn348OHDh49/HRK5BLZjgwJDGbi4WI6FQpG20rza/Sqzm2YT0AIMpgepj9WDp3IH9SCX/+ZyLjzyQiZWTWRL5xbGlo1lbPlYyoJlKBS2axfJeeGxhoblWkWV23IsMlaGZRuXsXTeUg6qmUJAgXJsUcE8cyWpP/XirEAemwkIVJTIqZMHLQSuJeTRdSDbD6EaIauuK/tqhpDhQuGfckXRdL0gI9uUfXBBLwPHBCMsynGio0R2y5tlvmQXVEwShS/ZCWXjZI5QhTcPQq6trLe9CfSwHM/JjyLrQejdVppb89TqZKeQaT1E0VxLKVAaw4N9VDk9sGUVvxqYy7U3fZ/Xf/8rJs08nod/cR8zZx3hlemm5ZyCFZDqglgjADfccCO/f34rj/7yftnumBCIeudnQaITOp+DCSdCtE7eZzsn57V5Ocz/JgQriWcD5HI2mgbbtnUxY0Yj0aiB68LgYJpkMsfUqbXFU7dtIdyW5RAIaJimg2FoZDImgYBeJOOuK+q0riuyWYve3gQTJ1aTSOSxbYe33x7k6KObsCzZpzCfZblEwzaG24oyO3AD40XFrl0Bei30rYQxN8nnjiOfRWYrRI4AdFGkcWHgmhJ5HnMH2P2w82DYrxdUVMrGB1cJ+dYbZEzf5dBwi5Bq+fDl2su8QDp4HGnbZduePRxcX0/EMIgGAmRtmy2dnYyvqCAWCDCmrMwzTvMcuIGfvfEGJ02ZQkNZGabnbp+1LMqC0pawc3iYVZs2cdX8+YwtK0PXNLoTCaKBANXhMFv27GFcWRkOEAsGGVdeTsy20C0TUknIZ8WIL+TF0zmOkF/PCA2lGG57h6rNT8Bpn+RXzz3PtWuu5/WtL3L50mVYf3qNW390HyoxRE+0hsbGMWTzJr/73e84dd5sVEUNt3/nuzz4ywd59hc/85z0PyGO+8kR+Y7YNtTUy/dbN6QlwoePfwL+3QzNLgN+/ecrlVJXKKU6C3/JZPIvDPXhw4cPHz58/L+AhkbGypC3pHdaQ0NTGgEtQCwQ45iJx2A5Flkry5iyMSilSOfTZC3J3L7x5Bs5oPYALNtixpgZ9KZ6iQQiaGh/kVg7roOLW8woth2bwfQgAS3AlXOvpKm8SbRcj/CjjJJDcXZAyJ7rgp0BFATKhdzmBoRop7sg04WUaDsyT6hW9smPQN8msFKQH4Zsn8yjvLLXvs1CQAH2bpNt6T2Q64Vktyec60KCI3WyVLoQ0vLxco7JTq9ku0tUbMcu3QzQdAhEoGqqEPXCzYLknn3KvPeZO58EIyRjlAHDbWBni8QaoKq2AWoOhJPuIe6USaRWuAqye0tl5KluSOyR81BKyL/rwMbFfP/Wb3L+LO/3WCDq3QxQQrLRZN+DzhFiDZDqKeV4z/s6BCvBtQgYip6eJJdc8iSNjWVEIgZtbUO0tHRQVRVm6tRaLEveCyHSQoQLjuD5vE0mYxIOG7S3x3n22V1kMha27dDS0sHbbw9img7jx1dhmjKusjLMkUeOw3XBshzhrxmLjo4E6bSJrluowVVg1KMG10FkPqigvJc1X5R+afMdKRe39ni91l5ZszFOlO3aZUKsa1eCCsn6/eNSHu4kwGgUxTowFbKvScl5zVUesS7kTeVE8Y4uwEER1nUWTphAZSgkxNqy2LZnDzPHjGFiVRVjvGiynmSSkVwOy3GwHYdzDzuMWi+OrKBclweD7Boe5guPP05tJMKdp53GmFiMkVyOiGHQlUiQNk227NnD7KYm9qutZb+aGsaXl8sr1b1qj2hUFOv2HaUy8WS86PYNgJWnatJU+NQlMDRAPJFEKUh1d/H9+37Mqp8+gKqqhf0OoXHsWHAhHAzywVNOQZVVQn83Rw+2squ9A/b2SQTdhofkWiqvEpLdMM77rgR9Yu3jX4r3DblWSi0H9gOu/vNtruve5Lru+MLf6FxDHz58+PDhw8f/Wzg4hI0wPckeBlIDOAj5LSw1NKKBKOXBcmxX1KvXe19nIDVQLBsHiAVjlIfKWThhIQEVIGNlaOlowXZsnALB8ODiFvNwA1qA+lg9YSPM/jX7EzbCBFWhsFwBnrKb2AlGVAgjgB6hGJGkNAjVgVEGkQYIVgsRL5BXgIGtomDXzZF5jAoI14s6ayVhcCvUHy3PM31QPUNMrIwohOqhclJJHTfCQnb1sJCAYJmQTTQpmY7UCdm2czCyG0ZXFhYeu6MeF8aUeQJKYW7XKZWZg8yV6YdEl2cSZQl5B8777OdpnnowX73m6/z4Rz+U8eEazrvoCg6dMZPzL1lG/0hebjA4nipvhGkJn8MQdZy+9H55L62MlLErXY7vWvI6Rh2LSC3khiHZAwN/8PrHAziJHtaufZ7585uJRALouhiNNTTE2LJlD7mchWk67Nw5xFVXbfTa5QtRWxAM6gQCOqbp0NhYRkNDjEsvfZKOjjjz509g2rRaotEAhiHu4dFogF27xListXWIvXsztLUN4bpwzTXP4jguubyGO+YuCE6Dxu9CxX/K63QdCO4HzgiYPVBzpfRHmzuh92Kwdsl+WjkYU6HxLum9NncKETd3yLWpAtJ7be6C9CYIzwSjCYJT5b3quU6WKgRahVy6SmE5Dq1DQ7zQ2YnpOAQNgzlNTQxms1z42GOM5HK0DQ3xtWefpT+dJmtZtHR00Do0xEAq5V0+cpPKchzqolEWNDeTMU00pYgFAuwaHiZn2yycMIGYZ47mAjuHhtjc3k4in+edwUHS+bxko6dTcmE2TYadb8nNqfIqMHOQzUByWCLhdIPzzv88zad+lK9+8zp+fM89tA4OUVNVxerPncORCxay8PgTePrhh6D1T0VfBDQNwhG+/cvH+Y/9J8DkAyWi7uPnw0AP/PjbEkPn7eeXgvv4V+N9URaulPoycDZwouu6w//T/n5ZuA8fPnz48PGvQzInimVBWQbYumcrh489nIAWKBJoXelFcl3Yzy10QrtiXNaX6qMyVEnICPGFx7/At074FmXBMizXYigzRFW4iqgRxXKt4nx/rmwDlGkKZSaEW+tRIZK5vaJAe2r2Sad+iJ7ePjRNo7y8jFtvup5Zsw5n0v4HEQqGiESkrPXqL1/CJz72YdBD5PImVy77KhueeopwKMCM8Xl+8otfQ2wqJN6Ed78Ls27ylHK9pDgPbIPGY+U88gkxKtN0T13XSiXSekhUYT3otVJ7pcCaUczoxsyIul0xSUhusgsqJsr2zIAo1ZWTkdr7nKjZFRPleIU58czTCn3dhkfygXt/+H1+8Yuf88Qvf0b7K48x4YDDMY0KVl69lD/sjvPEg/eJOh+R8u7zP38BtZk/svaHT8nrMlPw3FI4cimUT4CnL4LZK6BiAqR7pAQ/WC7nUSintk2w8+RVlMG4S3dPit7eFEcfPR7D0OjtTTI0lOWGG14o9lbPnNlILBaQSoi0mF2l03mi0SDxeI7KyhCGIddDOCwky7IcBgfTZDImnZ0J5s9vxnHgpz99gxde6OSmm07mi198kmuvPZaDD/4Ob755Cc1NAaLhNMqJiwqtIqIg43hkVwGW3ERQIVnvJKFvNTR+C5yUmJwVDOvcPOyaDc0bhYzjALrM6eZFzXaznjoelM/KGZE/fQwonaQVxIV9Sr4tx0EBL3R2csb69ey+7DIAsrZN3rKojkTImCZ/6OtjXnMzadNk6caNXH700YwrLyeVzzOmrAzLcdibyVAXjaKA5zs6GF9RQV00ypING1i+cCFdIyMc2tBAJBBgKJNhSiyK1rsH4oNCeAMByKSlJDu+VyLhPni2lGqPDAvxVQp0nXvv/wW/ePBBrlv+FY74wInce9Nazjv/Al7d/icWfehDbH9+M2OqKyBSBjvfYvVPH+DRp5/h6ft/THTCZE8V1yGXkcd7dsL+h8oxfPj4J+N933OtlLoCOAch1kN/zRifXPvw4cOHDx//OqRyKVqHWukY6WB202yiRhTTNYumZAXC67gOhjLoSnRRF6tDU1qRIBvKkEzrUcucnUPXdInj8sj06FLxgvlZof8aoGO4g9pYLY3hMlSiFd66AWZeL+qxCoI5AtYIhMYwHI9TVV0HrsWvfv0E135zNa+/tJlJBxzGww/cz8xDpoAWlhepFLgul3/5Kizb5dZbbkBl++j5xRE0fvDn0LDAU3ODok5n+6X0Wg9BsEoUcccp9UprAVGRC6S3gNyI5+htegRUlVzFceU8httEfW6YtW/vduUUMTsrHy+u4sEyiO+UeYIVQt4DMc+92XMrdyw5b9eV4zrSLx6prKfz+6dQ+4HlcqzKKXTHbQ6YMZdEf4eo088tJXnghYydcSrbnriXAw+YJM7hRy2DPc9D1/Nwwh1wdzOc9waEqiE3JEvNgN9dCkctLZqfMXs5VE1hJBugry9FbW0UTROFWSkYGEizd2+W/v4Us2c3EQ4bJJN5HMclkchTURGivDzIu+8O0tubYt68ZjRNjerNVsWeaqXAslwcx+Wqqzby9a9/gGg0gKYprz/b4dJLn2TdukU0NoAy3/EMya4Wgtt3HTReL59ZsV96hbiBu4XeYh32qbhQ4gAeGF9yD3ey0LcUaq8AY4p3A8UAs1WO13C9R+A9Ao5L3sowmBfiGM/lKA8GqQiF9iHa8n2T51/ZuJGVxx4LQMQw6BgZ4bpNm7h6wQKeb2/nufZ2bj3lFIK6XIeGpklsl1LY3vIFr4/78Lvv5sEzz2TBhAl8+IMf5I3WVsaUl1NfWcGtX7+GWXPmkBvay5WrrmfD008TDoWYMamZn0wtgwuW8aXv/ohHHn+c3e3tvNryPDMPmgbZDJHJ+7PrT9sZt9/+5If2ousaWCZHnbCINd/4BicedhA8/nNu2D3Mz3/9KL/d+FuqamslZkvznPIzGen1LjiPh8J/1/9rPnz8NXhf91wrpcYDNwJVwDNKqdeUUlv+lefkw4cPHz58+PjvYbkWHSMd1MfqeaX7FUzHxHaEMBeQzCdp6WghY2VoKGugI95BS0dLUdEebU4GUmpecBsHGEoPFY81WvUeTawBJlVPojxYLj+ws/1w1HeF2KoA4Eip85++BXaGquoaT23UiceHpMw82+uVWhf+gNRu2LqYVP9bfP/en7HqPwZQyZ0QqqPx0x1QP09IarZferaz/UKoY81gxCC/V4hWsZd6jxCwoGdyNtzqGaMpIcK2KSS4YDqWG/HKqk1RuiunCLHWgqJeR+q9fm2tVA5uhOScysZDqEqOGYjJHIkOOb5jQnaI4V0v0/Xzc2FoBzh5Hv7149TW1hI+5TsM9++BxtkQqub+Bx9l1mHTpcQ+EIUT7uAXT73GjEMP5cDZi+DlmyVea9tamLgI5iyX1/2hB4WM92wRYo0j53b45bBtnZSZv71e3MMdi0C2m3Ta4sUXO0mlTPr6Uui6RlVVhP7+FM3NFUSjAVxXiHJPT5JrrnmW7u4EAN3dScaOLaOlpQOQ3ux83mbnziEGBlL7VNgbhsY11xxHb2+qWBou82rccccHKS8PyvmaPVDzZVGVVRAa1wK2/A2uErOywbUUb4AUrjerH0yvTx0XogtBlYmybfXKPpG5YPaKcu2kZU4VlfXgqdZp6c22ushbSXSlcLwXUhEKkczn6fU8iArrB1Ipdg0N8a1Fi4pRWxnLImIYLJ03j3Hl5Zx72GHcedppRAMB9sTjaN68hWXaNEnk88wbP56KUIgHzzyT8RUVLH7sMb5+xx1c98ADPPb737Pkssv4zJeWQDrFV66/AWXleefVl/nDtq3ccNsd8K17oXkqHz92AY9/5iM0jW30HL738vDPf0ZtVRUNiQFOmD+PDT/+AeztZ+ftq9nZtpODpk2Dx3/OTT+4j/t/+lM2PvUUVTXV8t607wAjKNFbmtq3NDyf+2v++/Lh45+Kf7ly/b+Br1z78OHDhw8f/zqkcils1yZrZQkZoWI01tpFa0GB7sVDJXIJEvkEY2Jj9lkPFPuuNaXRm+ylNlpbVL6VUkVFW1c6ClXMuA5oAWzXRlc6uqcAO65DhW7IaNeSfl7HFvUajWI5smtx3ue+wDO/fw6AJ379EIceOp1J+x9MRXkFrplk9pGz+NayM6nfcSVvNN/Ph888j7PP/Di//d0zRMJhrl2+hBMWzIBAJQy9BtWHiTHam+tg5jo5pp0DIwKuVir5BuHu+VFKdajSW++WyK/SRpWII2p4QYFWSl6PAukBdr0ydLfkUl5Yb+fkOPso2TnI9LP74S9z5rWPk4lMRAuVU18V44ZPNFDxga/zsU99Btu2cV2XKZMn8u0b1jCpqR6eWwZHXMm8j1zEBZ/7DJ8971NyLqkumTtQVlLucaGrBeoOldzrYCX0vwaxJikVx4XuF6F+FihIpuH8Szdz442L6O1N0dOTpLm5go6OEWbPbsJ1IRIxpJVAUySTeR566E1eeKGTO+74IKbpsGVLJzNmjKG3N8XatS2sWLGQxsYybNuhvDyIaTqYpo1tu1RUBOnsTJBM5ikrCzJmTBkdHcO0t48wZ04TtdUKnDhKi5YuerNd/iLzweqQsm+jQd6DYiSaXTKwc5IS3aVVihJtvuUp4VdBYAqgewr4ajE/M6Z6n6sh80CRkOe1ceSo5p3BQda2tLBi4UJqIxHKglIqnrdtQp4KnbdtLMehO5GgN5Xi6PHjCWgayXxevm+aRlDXCSiF5bqYto0DxXXdiQRjysv3UcW/8PjjPPTmmzx45pnMnzABQyl+8aMfctvNN/H8I79i7JFz6Xz3bSoqK717VI4sdR1+chu7Nz/DAfc/zYTxzUSjUerr67lh1SpmzjiMtpuu4fzHNzHQvhstm+JrH/8QH7vle3Tu6aJ5/wOYMnky5WXiTxCKRNjyy19AeSX8/E741MXws++IwdlRx8B5l0Ek9jf+b+bDx9+G931Z+P8GPrn24cOHDx8+/nVI5VKYjonpmAxnh6kOV6NrOu3xdm558RZuPvlmdE3HcZ0iIXZxCWgBFAoHZ5+ebE1pDKQHqInUlMq/vf0MZWC7NgqFUgrHdTAdk5AeAvAykBVlmoZK7hCSe8TtXr9roccXStnQYlh2730/5RcPPMQTjz5E+zuvMmHqQZi2xsqvXcMftr/DE48+xCuvvMIRRx/HvffcxnnnnsOrL29j0YfPZvvTtzPmoFMRIoT0zRZI1uAWCI+FsslglJdIc3KPqMp60CsnD3hk2asBt4X8CDEbtb+dKynQdl6IrEJuHozsFlduLSDkulBu7tj7vl7XlYxrIyz7pvtENT7+diHgGy+EI6+CqsmlCLBClFmyS5RyMykRYa4DZho2XSXl4EYEwtVyU8F1SuNcG4bfLZWNRxug/w2JCtuyCo67RY6Tj5MPjuWttgz19TGWLNnAlVfOpb9fTM36+qTcO5u1SKXyVFWF2bati5kzGwmHjWJvdSplMjCQ5pprnmX9+u2cddZ07r77dHI5i56elJdnPY/Jk0UBHRhIk06bXl72AqLRAMPDWfr6UnzwlHEo1wRrNwyukfJvo7H0WQFY3R4xXuGRZRNc04tsG02mrxZH8PRmMHdDxdmgvM+k9wujsq7vkuvI6ilFdAWmADZ5J0jG1lj82GM88vbb/PKss5jX3IyuFMl8nrBhkLEsdKUI6DqGppEyTcmxdl2Cuk7CI9cASzduZJ2nbmteKXh/KkXWNGksL6crkWBdSwvXn3gi0UCg2Nc9rryc//jEJ8ju2IGhFE88/CuwHT581lmcfej+/HbPAJFIlGuXX80JExth8gGes/0Ik46cw8Of/ggzr14DQwPi+j11undGjuRVP/h9OOVMcf92XSn/HuyVfScfCMFQKeKrvwsCIVGrC/3dY8b7TuE+/ul4X5eF+/Dhw4cPHz7+/eDgsDu+m8s3XE4sGMN0THRNpyvRxdpFa9E1nayVZSA1QNSIFmO6XNx9DM4KJeCWY1EdrsZ27H3U64yZwXTEuKpQEu64DhFd+k8d1yFrZUnmk6JYb18NdV5pbUFFLJR8F4zGXAdck0+fexbPPPM7BttfYcLk/WDwFQKGzpIvfZFNz78AKCaMH4umaZxzximAYtZRc5k8aRJ/6Pacvq2EuIYPvAjpdo9Y10O2GzEmsyg6kwfLSyZmBeRGpHzadYWQ6l7/djFmq1PGKVVSr+2sjFMalI2V9QXjrMLrs7NSem7lxMAMV0rLA2VCkKv2k97oXBzQpZy7ej8v09uROCXblHFlY4W0h6s89d8VIr1gtZTAR+pL2eCuC10viPmZ0qFyKpzwHUgPyNixc4RYv71e5kx1Qcs1BFOtHLh/FeXlQVasWEh/f4o5c5ro60tRXx/joosep7c3RTQaZMmSDcyZ00QgoNHS0sGOHXuxbYdo1KCyMsSyZfM466zprFy5kEBAIxDQWbVqE+vXb6e7O0l7e5yLLnqcVMqks3OE9eu3s3r1ZurrY8XjiXLsCLFOrAezQ0q6M1uRyoEoDK4rbTPboOciUbRxAEuIdWK9zOEkIXo0VHwCrHZvjoAQ8/KzZOmaQqzNDm/eLk+57iHvCPldvmABvzzrLGY2NpI2TUbyeb68cSPtIyOEDQPTcchZFrbjkMhmMbzYLdNxeKO3l95UCk0pZjc10Z1IkLNtcpbFCx0dlAWDjKuoIGwYrGtpYXZTEz3JJBc9/jjtIyMs8NzDX/3Nb2hta+Mb117LV5YtxXrkPna3t3Pwf5zJS8/9nlsvu4hPfPoz9OZt+OkdQqSrar0ItpPkGqlpgP0OEWfvvX3wk9slvus/vwS1DUKqd++Qm0Q1DTDlYCHe/d3Sa+260NAkEWAN40Sx9om1j/cJfHLtw4cPHz58+Pib4OKyevNqZjfNpifRwyvdr0gaT0UTlz55KTuHdxIxItTF6nAQAmy7tkRsuU6xJDyRS5C380XyPZgexHRMLyrIIhqQstxdw7sYSA+I8Zlm4OCQyCXIWTkCeoCwERbydvgtMOlcj+x5mcpKIpSG9/bR1b6j6Oj98CO/obaunrAzwHB/J9QdBekO7v/BOmbNOAQci7oKgxOOP5YNm14Hpdi5s52du3Zz0LSpQqRzA17f82HS91w3F4xKqF8A6LLNMcHKCgktlGa7rpRrB2IeoXZLzt6jM7ELfdVKF1JcIOAF4zMjInPmE17MlpePnegskfOC6h1vlZJtPQzBmIyLNSLEe7/Sh2umhZxrhpD43IiQ4HzSU89zcq6214ed2A1PXyrl7jjSr52LQ3wH/PZCUczrD5NzNqRvmy/0esZvFbDrKdh2PUEtj65rTJxYyTHHTCQaDTBnznhuvPEF1q/fzpo1m4nHs8ye3URHxwiXXPIk9fUx2tvjdHSM0No6RFVVmGnTavne9z7EtGl1RKNBQiGdFSsWctZZ05k9u4nVqzcX55s9u2kfIl443tCwjYsu6nHTYxCd75WBj5EILRxovAOanoDInH17sJ0RQJOx5WfJEhvSLbIMTJF+aqsLjAnQeA/o9XIjxhgL0QUw+V2vV9uAfCtBJSR4XHk585qbiQYCpPJ5AprGbaeeSlN5OUFNYyCZJJnPo5RibHk5yXyeFzo7sR2HBc3NNFdUEAsEOGXqVPrTaYKahlKK+RMmANCfTpPM51m3aBEnTZ3K2pYWHnn7bTricRzXJRYM8lJXFy7w2XM+yTMtL9J07he8G1AfhQe/z6xFp8oNqJe3wUkfk9zp/m5IjghpDngEWNPken3i51LW/fjPS7FtSsHUAyXCSyFO5IvOgOEBydK2zFEtEfjZ1j7eV/DLwn348OHDhw8ffxPyVp63Bt8iqAdp3dtKfayeilAF1zx7DY+8/QgPnvkgCyYsYOuerRw17ig0pZG20sQC0g9p2qY4h3ul44XfIo7rENADWI6FrulFpTrv5OlOdHPdputYsXAFk6smFxXugvN4VHPEdCzdLbnU2OL87ZqQG2R3d4ozz/ksmUwGLddDfdMB3HDdciqqG/jYOYuxbQfXtZkyeRLfXvcNJk09EBybtp3tnH/RJQz096FpBl9buYyPLaiDyHghi+EG+ZGf7ZfHTlaOqzTJ1c4npPQ62eWVhYfE4btsrBDd0dFYuREhvqP7qkHIebJTxislCjOU3MoVMnZ03NfIbihvAi0khmS5YSHIVVNL5HjvW2J2VjZeysRnLxfCHKqW87HSct5b18i2ioletJanpgfLvWgxrxe8kBHuenFjubjcDNCCso+ZltguMwWv3ALH3QyaTt7WyZoaqZTJ8uVPc911x1NREcJxJJP58ss3cMUVc6mri6Lrir17szz1VCtbt+7h5ptP5v77/8jzz3dwzz0forw89N7rNW+RzdrouqK1dYhVqzaxcuVCpk6twbYddF1hmg6BgEZr6xC33baF79x+PLquwGxFFcq0VRS0iHwuKub1WXskr+jabYCbE7MyLQqEABPw+rC1mGzPbBEXcb1B3MPH3OZVnZte9Je3jzEGgvuRtqB1OEdPMsnc8eOLrt6JfJ6lGzeydN48JlVVsWt4mHUtLaxdtIhYoezbERJ6+YYNLDn6aParrsYFdgwNsWbzZlYsWEBzZSWmbRPQdYKahuXlYYNUkQwPD5PLZGgcOxalFE/9+mEuu2wJHU/9mpMvX86SSy/hgyedxM533+ao4xfx+m8eoymkSTl3Osmk/Q/g4XvuZObpHxWiHSuX2C4rD21vQc0YqGuA9ffAh8+R3unCtWXbQrRdF7JpifyKRKGzDcZPgWBYVPDgez97Hz7+0fB7rn348OHDhw8f/3DkrTx5O0/WznLJE5cwv3k+H5j0AaKBKCkzxapNq4pEuG2ojdWbV7Ni4QqmVE3ZJwd7y54tHFx/MGEjzGB6kFgwRjwXZ0xsDB0jHcV5YoEYIT1EJBAhpIdwXAdNSUyX67pU6grV3yIRWQBWyivdTkuptqdgF/uB7bS4io+8C2/f5JmRRQAN+p+H8BgomwJ2RsioFqKUY11wFW+H7dfB9OUQGStj80My9/bVcMStEKyV/e0sJPugaqKMdRHSqwUoxW+5EN8lfdRGWMag/ix+a2opy7qQbQ37tAMXHxeW8V1Q1ljK1HZsmTvdD5FaIelvPyCl4XWHigodrBSivXGxlHFPOwsW3SWRW7FxUL2/zNG9BepnCpkOlMHITrnpEKn1VHetVDJupsQxfeNiOHIZlI0lr1UxGLeJx3OeUzdEo3LzoK8vVYzb0jTNI8kWgYBOMCj95Zbl8MUvPslVV81n2rS64vr/8rrNW+RyNqGQQTCok89bvPXWIKtWbWLFioVEIgZ792ZoHBNkwngN1XvJe/uiKcSapaHvKmhY573vXpYzOkKojVFEullcw416pHTcACyKNyVQ0setN8gc6a0QOcIr+dcZMQ2ytkNI14t51UvnzWNKdTU/fO01Xu3u5rZTTyVn22Qti75kkvJQiFgwiALKgkFMx+Glrq4iOc/ZNu3xOFWhEHXRKLrmufK7rkRzaRo5y2Iom2W4p4cLzjuPXDaLrus01tVyw8qrmTl3Pm07d3H+hRcysLMVraqWry2/mo+dcBxkUlx43rk8/m4HPf391FZXUa5cdry8TfKvzXyJKOs6xONQXSOku7+71Etd11hSulHStqCUvG0DPbDhATjtbGhsFhLuw8c/EX7PtQ8fPnz48OHjH46gEaQsVEYsEGPFwhVs3bOVyVWTqY/VE9JDLJu3rEiCV29ezfrt61m1aRW2K6Xh/al+dg7tZHbTbPpSfbR0tFAbraUsWEZ9tB5NaazatIpH3n6EPSN7aIg1UBGqIKyHaRtu44LHLqBtuA3TNiWaSxm4dXNLplpmUohruGEUKUbWA+LWnJT4rCO/I4TQyQNKorbK95fxRljI50uXSOxWsk0eW2kZe/iNoMcg0yul4sFq0KOw5xGvxzonSjUaVE6UPujhnYBbchGP7yoRh4oJXkyXK/vmhvctE8f1zM7Gyv6uLfNbWXns2qJKu3bpNVdNEpJm5yG7F4behqcv8TKwXVHYDz4Pxi2AVA+8eJ13I0KD2VcLsZ6zQsaPnSukvvA+j5svJeteCT9lTTLv774oryufEDIdby0ZuM1eIeQ8WI7p6HR3J2ht3UsopBOLBdi6dQ+ZjEV1dbhoWGbbDoah0dub4uKLn+DddweLqvOdd5723xLrfN4imcyRz1sEgwbl5aHivvm8XezJXrv2ecaMiVFZGWbc2BDKHoIxt0uZduOdgCHqtdUpZd4qCDWXlxRsa5dnXNYK6RcR8mxAeIbEcxkN8rkUHOyBfe6E5HeLiVq6BaJHyvyOfK660uhOJFj82GN0JRLMbmpi9ebN2K7LoilTuPnkk2kdGuLiJ55gIJ2mLBSiPhajN5Xisg0b2DE0REtHB4c0NNA6NMTm9na6PeOytGWhaxqJfJ53Bge54LHHyFgWbUNDXPLkk6RMkwOmTuXxZ57hJxs3Mv1rX+M3TzzBjAP2h9a3mDJpEs9s3Mgf3n6H15/4NR9L7BajsZEh7jqghs5rv4g1Eqf3uivY8eGjhDTrhsRpPfJjWQaCUFkp74PjlMrFn/i5lIP3dUk5eKF0HESt3vBAqazcKkX0+fDxr4JPrn348OHDhw8f/2tEAhEOrD2QO0+7E9u1SeaT7BrexdjysYAYl61YuIKzpp/FyoUr0ZWOi8uYsjFMqp4EQFmgjBljZuC4Dsl8kle6X0FTGneffjcDXx5gXvM8NMQAzXItVm1aVSTrAT3gOYc7KDsD2T7pVQ3Xlxy5kztKhNiIePsoUa4dC5K7ZJ3mkd3+lzxyKqQdPQoNxwqJioyDw2/29ntBFO1QnRDUcL0cx87AqW9AdJwcp3KyLBWiHldNlvG5EVlWThQCnx8p9Ve7yDLSIOXjlVNLynPlZEATwuqYogYXsrTxor+URlHVdl15bVpA5nj5Zlh4vfdeDMLwDjl2fkRKvResknFdLWKEtuhuCNfJ+boOdD0vYxxbHsfb5BjD78DTF0O6V0h4slOO13QMpPpGnf9EUbFzI9iOQ0VFiAULJmCaDpmMxVFHjcN1XfbsGWFwMI1tu2ga2LZLWVmAG29cxMSJVWQyFhdf/ARtbcOUZPt9UVCmzz//Ud56a5B8fl8CFgyWerLXrVvE7t1xWlv3olQA101D76XgpoQsO3E5TmASROeBHYfARCHcTkLMy4wGKRmPzvOIcdp7vgAh1K5ndOfIZ+ha0LNECHl0DpidEGgU5do1QQXIuyEs12X15s2s376dtS0tLJoyheULF6IrxfiKCpRSxe2rN2+mPhbDchzWeOvWbN5MXTRKPJcrbi/sv2rTJmzXZSSXY21LC+u3by/uVxjrAol8vrjdtS1UZTXsd3DpGlMaPPmLEimefKBEZH3wbNA1OPlMeX7aJ+U6Gtkrfdkje4VQ64Yo1DvfkTGFfWsaoLpOyr+H+uGnt4sRmlKiWBf281VrH+8D+GXhPnz48OHDh4+/C3krz2BmkHguTnmwnIgRYdfwLnpTvRw9/mgMzSBtpgnpITJWprhfZaiymFkdz8W54qkruOmkm1BK4bouutIpD5YX8677kn00lDWwc3gnnSOdxbkVijNO/zA9PX1omqK8vJxbb1zFrJmzmDRtBqGARiQcBGVw9dIv8YmzzwEnx6QDZhIKhYhEwoAm2846y1O68+Bq8mPf9SK9HFNilGwvcingRW0VlHHXBSsu240ohOpL6nXBhMzO/jexXFDKwg55WdWhP4vt8uDkoe91Kb+umFTabuf27c92Xe95k8zlWkKKHctT6jXpCXcs7+aCK48LzuXpAYjUyDbXklLybBzCFRCukXNzTLkBkOyEXRugZysce6Oo4C+tgw94/cTFHnFVLM/PWAGGR2y6uhKsXdvC1VcvYOrUarq7E4wZU4brirrc25ugszPBggUTSm+BI7nX2axFMKgTiRgEgwajkUzmOP/8R4vxXPfc8yFCIZ183iYY1AkGDTIZk1Qqj2k6JJMS9xUJZSlLXAaRuVBxJqgQJcV59BLeU+btJMHu8qK4VkBgMrhZyLwk82GJMVp4hvRgg5D36DxvOq8320mCMkjZlThA29AQqzdvZsXChUypqioeuTuRQFOKlGmyZvNmlo/avnN4mFWbNrF8wQI6R0Y4fOxY+lIpOkdGGF9RwerNm1m5cCGTqqpI5PN0JxKsbWnhlpNPpi+VKm6fWl1NPJejy9t+/4dOR2VSqPiQkOOp00FTUqb9+M+F7AbD4gKeHIGpB4OZk77ofA7yechlSqXf9Y0wNCgl4q4r+zkOpJMQLZOlmRdSfes1pVzrQFAUayMgSrYPH/9k+D3XPnz48OHDh49/KpK5JO8MvkN3spvZTbOJGBF6kj1UhivZumcrY8vG0hBroCpcheVa9Kf6aSxrJJlPoiudSCCC4zr85I2fcOKUE6kOV9Od7CYaiFIdrubl7peZ0zSnmHO9N72XlCV93cvmLWNc+TjCWYfqihhoBr96+GGu/eb1vL5tE5MOOIyHrz2QmZ+4V05W9/pilcak/Q/h4Qd+xsyZM0sqtWvJj/vcgCjRaGCnRL0ulGEXyCFQNLRycqPKeF3AkX5r1xHn7XyypNwWCblbMijLJ4TQFvfx5nZMWW+NJul4pe+p0vOCMZqdg71vev3Zk8WVPLMXGmbIceycxHSluqRXWtNlfWZQyrnTvZ6B2Qrp0y4QST0sxwNRygsquelVAyhdthfMzAr92uPmQ/Ox8PItcNxNXtyXVxrt2iTzITq7Uu/Jp9Y0RVvbEOvWtbBu3SIikQCaprBtKafetWuIrq5kMQN76dKNLFs2nwMPrN2HYI/uqV65ciH77VfDu+/uLfZYH3hgLaZp09GRoLw8yMBAhtWrN3Hrt0+goTaLwgG7p0SUVRSMWqSfupAn7iDu8DoS4xUATHBSkP0TBMZ6inaIfYzNgGJGujIoloq7eXEn9wj8iKnzkdM/TG9vL0opKsrLufb662meNo3qQICrly3j6Y0biUQizJgxgx/dey+O67L9rbf40kUXMTgwQGVlJXfcfTdjJk2iLhbDcV00pehKJKgIhYgYBoameel1kh0P4LguhqYxkssVHwd1nSoclGmKS3fR7d4VQpzPyesIBKDtTSHeCrkuHBt+9h346GfgwXtE5T7qGInhav0TjJ8K4bC8rWZOzMx++UNRuIcHRA3/2R1CyBuaIOSbmPn4fwu/59qHDx8+fPjw8U+F7dpUhio5ZuIxBHTJs66L1qEpjYUTF7J/7f6Uh4QE6kqnsawR13UJG2FMx+SdwXe45IlL+OhBH6WxrJFIIEJXoouUmeKSJy/hqHFHkbEydCe7yVgZqiPVxdLwtS1rKQuWUVVVKSeTbCXe+TJKednRSkH3xlJfrJ324rBG9bw6JmQHvDJczct1rpV1uEIsC6TYzkC2R8YU87M1KQ/XdMmtDpRJyXmBQMd3lWK3lA7Jbo+QBDy1WEkslR6WU8qNeGZmHgquyYGY7KuUHCtU4W03vQzsnMzTMEvUbMeSsu6xR8mx4rvkNby0DhrnyHnqISF20Xohza98WwzMkh2iPOeGSuS//zXpQc8nJX5rZJc8N1NSEv7sZZDp97K5denTnnQSbFkNMy8tnavjlWaPdBLMd78nn1rXFY7jcsstL3L99ScSiQQwDKlmME2HPXvilJWFihnY3d0JLr/8aM+gbFRPLhAMGhx4YC333CPxXLbtFHusV63aRDZr09o6zDXXPEswqLN6tWy78svPiNu3kyhlVpsdUiLecxGY73qE2AZ7r1Q0uF62Ohagg1YmarTRIGZlhX7svi97Z+fKNSeyPlh9JWJttkHPYjB3ElZZfviTnzD7m9/k3t/8hou/9CW+dNFFHH/ffXzh8ssJ6Drb33yTra+8wupvfQvTcdjU3s7Syy7jtLPP5og1azj7oou4ePFihnM5Pv/oo+yKx3lu924OvOMOlmzYQN62aRse5vOPPsrO4WEsxyFtmhhKYdo2ZcEgFaEQIcMga5q4mo5bUI0tU0iwUmJMFgyK8qxpkmftumCa4vSt6fDx82W/0aXfAJMPKhn7KSXKd7QMzv2imJodcJjMe95lPrH28b6FT659+PDhw4cPH38XAlqAaDDKO4PvcOFjF7JzeCcZK8PFT1zMruFdJPIJFj+2mNahVizH4p3Bd7jgsQvoGOkgoAVY27KW2U2z6U50s/ixxewc3sn8CfNZs3kN67evx9ANuhJdXPPsNXQnugnoAZYvWM5Z08/iqvlXyUm4Nud97kKap5/IV2/4GT++oglSbQCc9+NJHHrUBzj/kqvoH8pJGbQt6tp5n7uAQ4+Yz/mXfZ3+jZ8XkzMzISQwXOcZgWWF4Gq6kMnkrn3Jrxrl+Byq8c7HknV2TkzKQAiq0qFqikdqR/0MK1R9u66XCe0RbSsr+xX7qD243h9KSJ7ShVjj/tkYJUZkdt5TooFj1nkK9juwZ7P0TG9cLCr3B26Fz74JTQulfN1MwW8vErfyxjmibLuOmJ8le0SVD5aJu/iup0T1dkzpb6+cDLEmOO4WqJ4qNxKsjBBwMwmVzQSj5VTFLKZNq+XOO0+jubmCj3zkdBYsOIqXXvoaZ5xxCtu3v45tuxx22DTmzp3JJz95Mh/72PG0tDzBsmXzGDeunLfffpH584/m8MNnMXv2HF5//fXiWxUMGl4puIWua6xcuXAfIl8g21u37in2X1911XwgAFol1C4Tt/DIHBhc7RHtbiHAvZdIX7U14BHsDPRcItusPnmuYmCMl5LwwVsgMlvUa/Nd6LvMMzHbLMQ9s1XGmp1edvYqgrpFXXU1t596KvvV1DAyMkJQ13n5M5/htw89RHz+fHbG46RNk2tffplkPs/+oRCvvfIKn//0pzlx0iQ+8pGPsKezk7179vCV+fMZX17OMRMn8ptzzuGOU08lZBis2rSp2LMNEA0EcIHd8ThfePxxRnI5adfQdVG3HVtIciBUcvN2HXHzzucgPiTrrLysKyjbwTCEo0KYz7tMlrZH0iMx7+aR5lWIFNztzVLGdS4nPdw+fLwP4Tcn+PDhw4cPHz7+LjiuQzwXZ23LWtZvXw/Atcde+xcf3/HBO/bZ787T7mTZvGXEgjGuefaa4vq7T7+bFQtXAFKmOnrM3affzX7V+3H36XejKx3btTFR3PvDe1A43HvvfVz1gzt5Yv91PPf0k0wYW41p5lj5zZv49Ocv4olfrwcjynMbH2PC3tswD1zOym/ewqdv6+aJRWWA5ZFXFynz1Tzl28tzrl/gkWcvj9q1QAXYx1SrUGIeiJXKwIMVo9yiPRRUOsf1CIVH1IfbJFc6VPHeDGvXIx+O5+itaZBLSCm2UiWSnRvxcqYDFHO/nbzMleryjM2+JUR33Hwh0wBbVonqPG4+bLxAlOyDz5NtL60TM7SDz/HO3xGiHqmD81vlcXavPLeyolKne+GlG4TUB2LSj14oI86NQKiJRDxPPJ6jsjLEz352P1VVVeRyNo899msuvPACXnxxG64LP/7xT5k+/TBc12XLlj3ousYXvvAQzzxzOV/4wndoawtw7rkVfOpT57B9+x8B3hO3tf/+NV7vtQG4rFixEIAxY2JEIgZ33306kUgApeveR14GjXeLylwr1ySR2WJ2llgPFedBoAl6VgoRj8wGs0eWyuvFVgH53Bu/TVGp7rtdxgPUXAGD34YxN8qYwCSY3ApGXfG6Ovvcc/ndM89QFQ5z609+wmd/9CPKKysZfOopjrvmGqY1NnL4Jz9JfzrN0vvvp7q+HlfTOPvQQ2kbGsIqK6Nt924OnjaNi594gltOPpk5TU3FzOwVCyTGbuXChQR1Hcd1sT0jtWMmyA2i3lSKxlgMTSnY2w8bHoSPfa7UX53NQN0YIdZ7+yTPOpcRAh6KlFomXFW67l1HeqYDmpDn9d+DEz8C9WPFJbzQl13o166sLvVZ+/DxPoN/28eHDx8+fPjw8XchqAepDFWybN6yoit4VbjqPY9XLFyBoYx99gvqQQ6oPYCm8qaiq/jyhcslmitSy92n301QD+7jOK6U4tndz9IebwdAKUXSzEBqJ2xdzKfPmMczW1sZnHA1E5qbQOkE7GGWLD6bTZufh0w3mCNMmDAeDr2GgB1nyaeOYNPzL4KVhMGXSuXh2X7I9soLTbZJb7Vrirt4sg3MEejfLEtzpDg3VpoiKS+UgytkzkIpeiHuCmTpFuRoJWowiOIcLJf9h1u9vlVTyHeBzBdINKXhooB7peaaXlKx9ZCozdFGOP42me/F66BpgajVekgyqAu93yfeBRcPwPhj4Y27hVgHy+Q4Q22Q9lzAAX5/pajS4VpIdQuxNiKiwh9+uez79CXSp+06oBT58DhMS8zJQJbRaDn5vI1S0NraDYBllban02bRVXzNms08/HALth3hvPNO5MtfnsuBBx5BR0c7W7ZsBfaN21q1ahOW5RTjuIJBg/33r+GOO06ltzdFLmcRiQRKsV5aFPRyJMM6CMGp0Pg96b2uXTFK0V7jKc1rIbYIovPFxMxJSEm4k/D6+U2EXLrQeCtMfhMabgFrL4y5GdycKNo9i0GLFMvDLdcl+olPsObxx1lxzTVcesUVPPXOO3R3dnLi7Nn8vqWFG266iZ9fey1v7drFuYcdhu04JHNSoREyDMpCIR7avh1NKa6cO5eyYJD2eJyLn3iCtuFhplZXc/fppzO5qgrLcbAdB10p7jj1VD4zYwZlwSDN5eXSj23bQqwXfVRI7s43oaxCjMmMAJRXQvNU2PU2RMqEGP/sDnH7TibkxlA2Iz3Zrit/mZSo08d/SAj1n0dyRWJejFfAJ9Y+3rfwDc18+PDhw4cPH3838laevJ0X929Nl4po1yagBXBcB9u10UaVNTuuQzqf5rXe15jROIOeRE/REG04O8zse2bzszN+xrzmeRjKQNM0TMcklU+xdONSvjTnS/Sn+pk/YT5tXW3UqjAT93wd2tfz8K75XHrHDt7+4yuYNlRVRGDrRdzUchgP/+ohnlu3P6kJX8QMT6CqqgL6n+emH2zk4Yd+ynO/2yjZ2K9cDgctg8hYsFJibpbtl57t7ath+tWSb+1aYCUgOgnSHfDmWhkXHS+GZkW2izzOJ0pkWRVMsLxto53DHS+2qUDKoaRyu96cilKmteaV5roUies+Jml2XlRlIwy5uLh+ByIQqReyG4yN+jQ1wBYFNb4Ltn3LU509J2c7K+pzoY+9QPJdR87LdUStjjQIkce7iZAegOywlIh75mhJpwrLgVTKJJHIU14epLIyxAUXfI5Nm36P68L69b9i+vRDmDHjQGKxcrq6Ehx33HxuvnktIyMG1167gWeeuZwHH/wls2bN5tFHH+Wznz2bG2/8PpdeKor7aFOzv5SJnc9b5HI2oZDxX+ZlvwdOHsgBOuR3wOAqzx18ovd+5MDqEMLdcBPYg94+y8CYCla793y5OIrjChEfuE5U74pzimXi6djnyTvyuRpKUVdVxcm33cZjF17I3kQCNA2lFMfNn8+13/gGBx9yCIcfcgg7u7rIuy5ffuopNnzhCzz1u9+h19UVXcDDhsFQNstgOs2CCRNwXJeUabJs40aWzZ/PpKoqXNdl1/DwPg7jPz39NPRsGpVMiHFZZaEdwrsGdr4J4yaJWp3PyiXy6vNQ2wBVdfDUQ9J7HQiJ4l1eNep74MDwoCjX+RzsfEviuAJBId8NTdLX7cPHvwC+oZkPHz58+PDh45+OoBFEef8SuQSWY5E203SMdGA6ZpFYm7ZJ4cb+0t8upTZay0huhOtbruf0+0/n0icvpSpcxU8++hPGlY9j8WOLeWvwLYazwwAs2bCEn/7hp9z4wo3MaZpDf6oflVOccea5HLr4FWZ8rZLbN5g89uCP6e3ZwweOP4HDjpjPoYtf4febNnPfFeOgfT29L67hAyedzmFHLODQk5fy+6ce4L7PDsCf1oAZh/b1QpTNuOcarsty+2rZtn2NPA9UCOnWA7J/YZweLJHfeKvXo62kzNsxKeYCFxyiwSvf9ph0sUQcKQUfbpO5HNsj13hl4brngK6VqtKVgvjuUu92oXdVDwrBzselPDtS75WrxwANzEyJ7JtZIecVzfCBb8s8mQHpmc7FhUQVnNUdS3pmC2ZrSpPoL00cwTHTMmekBmr2k3lbrgEjTDAAhqERDOq0tu4FoK1tGMf5KNu2vcmyZSu5+uqrSaVMHnjgCZ5/fhsvvfQShhHjwgs/zwEH1HLffWdz//0/52tf+ypz5szmySd/Q2PjZH75y7fJ5ez3mJr9V+RZDLL/BtFJC4JWLup28EBRtPUGSLfI9aICJTM0JyFEuqBuY496vlqeK6/Hu+F6Ub57L4bwTIbzh9HV1cnueJwLH3uMe372M2prarj77LOZe8wx/PhXv2LxY4+x+fXX2b1rF6ExY3g7m+WAQw7h1Kuuoi+V4rDBQRrHjWP//fdnXUsLj7z9NmHDoDoSoT+VYmZjI21DQyx+7DG6EwlmNzVJ/rUj1+efZ2Nf/NRGCIWFWIfCojpnUjDs9VlPPlD6ql1PoU7G4YgFsv7pX3ul5F51RHlVqWdbN6SPu65Rnu96W4h1/Vgh8I3NPrH28b6Gr1z78OHDhw8fPv5uFLKuHdchoAUI6FK2uTezl7poHbrSGcmPcO0z13L9ousxNAPHc+x2XIe0meaq317FVfOvYmrNVEzbpD/VT220FoUib+eJBqLsGNrBms1rWLlwJVOqpzCUGeLNgTc5pvlogkqhCv3N2X5RlPWIZ0zm9UQnd8L2VXDISiibWuqBTu4Q4nzISgjWwStL4OCrIDxWzLoKv5cK+01fDuX7ew7RXhRRorU0d2ySHDs34vVCS39vUbEulIaPynwu5kyPzryO7/KMyDwVWwuWyr4LZeV2vpRlrY0qly1WCngqt5UVYhyIlRTweBtsu156rI0YRBsoli1bGSnrjrfCtrUwZ7m8l/2vSY52ICY5244pRChYXno/rIyQ6mh9yZk93Q+xRpnfe815O8Bg3CYez1FWFqC8PEQ6bWLbDpWVYbJZiwkT6ti+fQcNDXXs3DnEdddtZvHi/fnIRxbQ3T2Armu0tu5l9+44s2c30dcXZ968g/nZz37DokVHAe4+udbvuXb/rCf7z+O8/iY4Gci/C4M3S9m3uVNIdMMtYPd7SvVVYEwRI7PB1VDzZdCqvLiugJSO9ywW4j35TXa/9mXOuKSHwUSCgK4Tq6ritptv5vaODs4eN44LFy+mv7+fykiEb69Zw0fPOAPLcXjg97/n9hUrSA4PU1FZyTdvuYWjZs0C4JXubsZXVrJ60yaunDuXSZWVfPE3v2H99u2cNX061x57LHnHoTMeZ2ZjIwPpNJ0jIzRVVEiW9oIFHFZVicKVvmnd8wOwTOm3LsRmFXrrbVNU6oKyncsKGY9Epdy7YBho29C6HSpqoKJKxna2iVN4OPK/+0x8+PgHws+59uHDhw8fPnz80zGSGyFrZjEdk55kD2tb1nLXaXeRsTLEc3EqQhWUB8uxHAuFwsVF13RS+RTxXJzKUCVlwTKUUmhICXjaTLN041KuOPoKplRPQVMaLi55O18sNw/oARSKmKZQReK7AsqmeNnTAemPttPwzu0w60ZGkztRfEc91wyPuHokvZA57VolVdc1xZDJzsDQa9DgGZw5Viley0pBoFqU4tHEd2SXPDbCnplXhRCLkXZx15YDeH+euZljjiLViApu56WnWiEKdu9rEKmE8mYh8gUlsFC6XYjASg+Iglx4fb3bOOkTX6Qn4aIZIcrLyrj15rXMOmgykw45mlAoQiQcAifP1R8ayye+/F3IJ3jiiSdY+e1f4Fh5LBVi6RWX8elzz5bXa3uRZkZYCLaZhOiYkqrtQiHaLGmGeffdQSorw9TXx9i7d4iRkSTjxzehaYonnniUL395Cc899zKmaWIYUfbf/3bOPz/Lq68+y377XcmKFQtJJAYIBKq48cYXqKx8nt7eXdx33/0EAhqtrUNcd91/TZyTyRznn/9oMWf7nns+RHn5/yLmycl7buEeMS4/B8bc7pX5pyH7BkSPll7skUcgdrxnWOaZnln9si04xSPoq4ukPKWmsWNoiHUtLaxbtIhYIEDKNEnl86Qti1WbNnH1ggVMrKwkbZqEDYO8bbN040bWLVpEbyrFms2bWTZvHgfU1uK4Losfe6xIpu887TQ6RkZYtWkTKxYuZEpVFWnT5Jdvvsnk6mrmNjfjui79qRRV4TBhwyCGi+rvgWAAyqrkdeayYmAWqxCXcNeFbFaIslJCvnVdzNB++zB86uKSi7jrmfplUkKo68dBrEz6q42AKN0+fPyL4ZNrHz58+PDhw8c/HalciryTpzfVW3T9jn8lzo7BHfSn+5nXPI+dwztZtWkVKxauoD5aj650OkY6WNuylmXzlnFA7QHkrBy6pmNoBpZjsXN4J73JXsaVj2NdyzquP/F6Krx8Z9M2CekhHBzKlIPK9kGwCnAh0wfbv1nqmx56HaoPk15hF8j1Q2ScZzBV6Av21OViXrHrVWlr4GTFbdtOS6+1wiuNtiG5G3I9UHc0RaKUHYRYsyjPmQFxzy5vhr7XoWbaqIxqR0iZFhjVw0yJqBcItevlCBccysEj5btLxN3Je1nZXm93wOujLvRt23k55+EdEpk1+2qo2o/hXS9TZSShcQ6/emg91669g9dffpFJ+0/n4fU/ZWb8xzDvWs/53MXtaqH2yHN49pH7OOzwuezavZsDZ82nf89OymNhOV8nL6p3PlFS0PtfgzFHyjmaScjHieuT6O9PUVcXRSnF7t27+exnzyGbzZLN2jQ3j+Wb31xDZWUF5557No7j0Nk5wty5h6LrH+Txx/s555xDMYzHeO65TSQSWQ499HC+8Y113HbbG6xYsZBIxGBoKEt/f4qFCydSUbEvSRutXP9XPdl/EU4eyANemXL+LcnCDowXYly7UnqplSGfm5uV68PcAeYeCM8Uo7SCgl27HIyxoEJgDYJRK+NQxE2Dlo4Ojhw3jqCu09LRwczGRiKGgaFpRcfvtGnSlUwWifTzHR2cNHUq1zz7bJFI33366ehK8fbgIGtbWli5cCGNZWUEdR0XMJTC8oh0NBBgIJ1m9ebNrFi4kMlVVehKEc/laDQ01Miw9EU/8XM45SxxCi/GaGmiRGsaDAxAUBMSrutCvAv5c/ksPPQDOPnj0DBWiHdZpYzb2y9zn/ZJaBzvG5n5+JfjfyLXfhSXDx8+fPjw4ePvRkAPYDpm0TUcwHVdelO9zGycie3arNq0qhinddfpd6FQxYitgBbgrtPuImgESeXF7KosWMaUqilMrZ7K5vbNrD5+NRWhimI/9xu9b3DUuKPEQM0I4oYbUQUjruhYqJ8Pb98sSnb9PHHwdh1Rs4PVQqxtU/o8leaZk6Vh6A1omDfKoMsGPeotY4AlrdKvXgGHrYbyyVA+RUrRg1WA4y2BikmemuyRtZppUj5t5YTshsqFtIOQZTPluXx7JKJA8h1LVOFQhazLe/FcFRPkPDVN5nGRfQOxkhpvZyHZDbEx8nrKxsHxt1NQyKvqmyBUCT3biKfyKM1T8wvGaMeug3xSnL6PXApj56KUYnjvAOAyksxQW1NNSOXB8ZzJdc/tPBCTmwuBGIybh9wcUFIqH4hhWIrGxjJPvHSZPHkSTz+9GcNQUk1sOwwMpKmqCrNmzQNMmFDJpElV6LoinbYYGspQVxfFME4rln4DJJN5PvCBONGoQVVVhHfeGaS5uQLHccjnrX3U69E92X+1oZmTFzJdMDELTpXHyUdg3IMS3aV5DuOlI3lRaJMhMEVUbjdbys4GGYcuJeJ4vfluhoCqZFx5OZdv2MD1J57I0ePHE9A0TMchY1kMZ7NURyKEDIM1Xl80wLXHHktlKMQtJ5/M1487jspQiK179jAmFmNKdTXXHnss48rLeWdwkBteeIG7TjuN1uFhVm/ezNULFtAQi3HFU0/xyNtvc95hhzG+ogJN0zA0DVfTobIaNTQI+02Hkb1yHf72YThrMWijysXr6qT3+md3wClnSh+1piRSSymYepCQ6PMuK7mLO3bJLRzg05f75NrH+x6+oZkPHz58+PDh4+9G0AgSDUQpD5YzrXYa3/vQ9wjqQRZOWEjYCGMoY584rYAWQFMat5x8C29e8ia3n3o7I/kR3h18lyUbltCb6sV2bNrj7RjK4PCxhxcVa01pVIYqmdM0hyUblpC1sgCoVBtsvRCSrUIq6xbAEbeJQl3Ij977EmCLeprdK+qqUtKLvXWxKNoN84VY5gblxRUUZTsnUV2OJfPPukkU4+yg7BOuF9dux5ae7QLRTXTIUuklxdrOCcEsoFBIOLpvuVBdqBQYoRKxBnmsdClj14OjfLhc6a1WhQxuW0h85UTZ3/TOPzsoNxYcGwIxzvv8xTQfewFfXXUDP777VinnVhrnfeazHHrYDM7/4lX0H/JVSHWhXItffO8mzvjsFUw88HAWHH8S9377awSDQZnv6Uvl/bMy0PW8zGWEYeNiOf5wqzyO78J1IJHIA6DrCsdxsSybRCKP47jousaYMWUEAjrHHjuRsrKAVBdbDpZlU18vincymWfr1j3kchYAS5du5MMfPpB02mLJkt8wY8YYJk2qRimFadrvvX6DRjGe669DfpQh2Sp5n2tXQNmHITDhLxBrD1pQbv6YbZKTrYKiWJefJcuCUZzZBj1fBDcFWhjL1egcGWHV8ccD8MUnnySRz5O1LAYzGWLBINv27CFtmly9YAFnTZ/OioULqYlEKAsG6U+nuebZZ+lPp6mLRlnb0oKhaTSWlaEpxUA6zXO7d2NoGuMrKlg2bx7ffvFFXODqBQt48MwzGV9RwQsdHewYGuKNrj0o10UN9MDj98Ph82HqdHH5/sh5QqqL16TnIB+OwLlfFHXbdUTVNgwxRJt7Apx2jvRdB4Ny/QaColgfdYwsfWLt498Aflm4Dx8+fPjw4eOfgoLJ2UhuhHHl4wAxL9OVjkLh4BRLxVcuXMmEygl0J7t5qvUptu7Zyh0fvAPbsQnpISzXElO03Aiv977OUeOOImSEuO/1+zhxyokcUNGI6t9cisyqnycEMlzLPmXfdgYGt4hRWWQsGGWybeticfqecBbMvhv6WyROK1QLry2DmddLSTkGpHZBugvq5gA24BEyJ+8pzgbsug8mnQvJnn3LwpXhlXerUf3Y42XdaLdw1/Z6wAsKtlNStQul4iAKth4sjdU83aRY1l6I7vJIt50VUm0mvagsz1wNUarv/ckv+MUDD/DEI7+ivaOLCWOrMHM5Vi7+IH8YquKJXz+IlYlz4hmf5RvXrOSYeUexbetWPnz2+fzh5RbqamvhrZ9D0zy5qdA4W0zUog2w9y2onATPXgFv/hTOeIKR2g+gaQrbdtG0Qr27vAzTdDEM2dbfnyKTMZk0qRrHKe0rJNvBMDQyGZNly37LsmXzMU2bSZOqeOmlLg45pIGysiCO43LFFRtYsuRoDjigVt4+T+3WdfXfmp69B/so1yshNM17z3NS1v2XiHVxbBK6z/cMy96SGC+jDqwBCB4AxjjAlOvKzUFmG6ng8Yzk8+hKEQkEyFoWQV2nbe9eupJJZjc1oSvFlU89xS2nnIILPN/ezscfeIDuK6/kwj/rr1aA5bo4rktQ19GVImNZdCcSrPYMy6ZUV3vfWRelFBc//jhfmjOHG194ge+ecDw1oRD84i4h06EwJOJgmhK3NdgrmdZTp8trTsahotqrsvCMy3RdXOYL4+obZV/dENIN0qNtWV7ftV9w6+NfDz+Ky4cPHz58+PDxL4Fpm4SNMI1ljTiug4aGpjRs18Z0TBzXKZaKt8fb2R3fzTXPXsP85vmsW7SOjJlhKDOE48VVKRSxYIyFExbyas+r7BzeyccP/jhjYmNwlY4bHQ9v3ihLZUCojqJTtvJioQZfhuoZUjauR0SJRpPS8QlnyVJpUH+01xs8ArWzpYc7Owg4EJsI9XOl/7qQfa0ZknO99SJI7YTmjwsBKxsPNQdB5ZRRGdamnFOyEzJ7S8Q6nxDCrRACogfl/AtCSLBcyPFwqxep5ZWG62HZv5BzXYDriGqN16utB+U1A4SrIdkOGy8Qx3CvDPzT//kpnvn9ZgZ3vsaE8Y2gNALRCpZ87SY2vbAVcsO89m4PXV1dHJO9DxIdHDX3WMaPrePVH3xOesAP+iSkumHsXHkvo2PEsO3lG2X9Metg2lkwbj66pmhrG2bx4sd4551BRkZyJBJ5RkbyPP98Ozt2DLF5czuplMmYMeXs3Cn7trYOkUjkueiix+nqStDS0kF3d5LZs5vo6IhjGBoXX/wEc+Y0MTCQZvHix9i9O86ll85m9erN5PM277wzWDzu4GCG889/lLfeGiSft/7ni1sLSvzW2HuEWKtgKZrrvyPW8kGKyl1+FmgVonRbeyG6AIwxng+ABzsO4RlSBOG6mF40VsAjxPvX1rJgwgSSuRwBXeeWU07B0DR0pZhQWcmDZ56JrhQ3n3wyb15yCbecfDJBTaN9ZIRLnniC7kQCXSkc1yVqGPQkk2zds4dJVVVCqoGMZZHK51m3aBH9qRRXL1hAOBzG1XX45BeEWNuWmI9VVsn1urcPmiZDf7e4f5dXlUzLbFtu8PR3w49vlZ7rQECqHkLhfUm0ERDF2yfWPv5N4JNrHz58+PDhw8ffjbyVJ5lLkrfyxecj+RH6Un24roumNBwcQrqizIBowEBXOssXLues6WcxZ/ycItFe27KWSCBCOp+mLlZXHJ938uSsHIl8gqPHH820msnUhcNEAwaua6PSnXDQlbJECdnNDpSioFwb6o4CNCGmIPFTCohNhtl3Qdlk+ZGPAeEGiDZD4wch1iR91P2bIbFD3MBx4Q/XQKZbHhdyrrevEiKb6gQ9JKTYKRAmJSTMRYh3wwzPjMz0eq1DXpRVVrKtXZu8bZDMBMlbupDVyqlSJh6s8JRnSqS6JP56Pdde3BaF6C4g3SMl8VtWM/zaerpaX4dEOzx9MQ/f/z1qa2sIl1UyPNAj6vNvL+L+hzcya9YRUNZM84T96O7t583nH4Zta9nR+i6tO9uZdtoKSPXIscfNL85JvE3O9+31sGW1lMMvuhuUhm1brFq1ifXrt7N2bQsjIzni8SzDw1nq6qKsWbOZurooq1dvJhTSi/uuWbOZeDzL+vXbWb1a9lm7toWTTprCcceMpzICxy5owrZdVq/eXBwzcWIVK1YsxDC04vrVqzczPCxzrVq1iVzuvWXjfxF/NZn24ORFtYYSMTdqpf86PFOMztLPSy+21QPOiGRoa+XYrksqn6cqFML2zMZ2Dw0BYDkO9bEYOcuiL5UiY5poQHNFBRMrK8laFgPpNNc9J73LpuvSEY/zyNtvs3rzZrKWxeLHHqNtaIj5zc28duGF6EqhlMJ2XcK6TtgwiAYCzG9uZmp1NXqhQsL2bkTYDqSTUsqtkOisYAhq6kS99tzhiyXiti0EfNtz8MQvoNyLu7NM9oFlSq/2n6/34eN9Cr8s3IcPHz58+PDxv4Pnlmy7OsPZYTJmnEigkqpwFco1ydo2Q5l+GsrGgmuha0GU2YYy23Ejc8QpGQcvmwnQcHFQOICOAzhODl0LA6YXMRREUxpK7K9RGLg4uGiodByVGcGNVKLCZRIJ5IZFMdMNL4vZgPww2BoEIpDuhXAZhKJgKrBsIQV2AjIjorq6GijH2zcGie1QMRMcAzp/ColXYcatYDnSXxxQMkd6iHygibytEwy6BA3PoCq5h3xkMqZtYDsQRrKn86ZGMCDxYPm8IqhnsVWYd3dorFqlWLHCZb/9PA5iiZhXWCollbW6Bppm47oatqMIGDampaFpCqUgEnI8/i2q5O7Wtzjz3M+SyaTRNJ36+npuuP56Kioq+NhZZ2HbNq7rMmXKFL59001Map4AwP0PrGf1t76Fpmk4jsPVV13Fpz75yb/5EnIRt+7ermFq6srQlYvSdalutx2UruE6DkorLR3LRjNKvdGF9YXHVibDazfcwEGf+xxlzc3kTQcrZxItC+E6UpZsK4N33hlk9erNrFixkPr6KEuWbPjb3ML/mtdnWZ5jtpJedycDmo0KVHm55oA9AlYXDFwDDTeC3Yeb64XQXNB1lGaTsiI4QNbMk8nnqYtFCXqu3Mp1cZXCcRws18WybaIeyVVuqTXAHbUvlLa5rkvetgnoOmrUPsXt3r6Fca7jYDgOSmnQt0fI8SculNcyvBc2PAAfPFu+A/mclIdX14s52clnQlWN5yiuicHZB8+WUvJf3C1KeCHP2jKhp1N6un23cB/vE/hRXD58+PDhw4ePfzxG9Zy6DbfgWL3oe2/AaViL0iKodAtuYDzK7JRlYCqum0VltkH4UFARXHSU1QaD10uZbGAyorCaoIK4ThLVtxS3dmlpHmOCOCzbXTC41hs3BRcTZRuwaSsceaQwTscplaK6rsQBjR1bigfK5WDbNph5GMTKvVxoT5ErMFddh2QSYjEZh5fFm0rDa6/BUUdCJAIjCejqgrVrYcVy2G8/8vEsb3WVs2ptkJUrXaZOlSlcRw7jOEJ4lXKlUtZW6LpLJgPXXKO48UYXx4FcTjFjBhxzDNxzj8vOnYpoFGprhVBHIuK0rZTyzL5cAgFFTw9ksy5jxiiCQSiP2ahsDtXeDc2NEA5BLi9/oSC0d8OEsRAOQjYvz5sbJcfYduTGRGH9hLEQMKC1A6Y2y3uWN6GjR7YV5gwHZSwu5K3S9rAQS9u2sS1LTMk6Oth+991MX7yYsmaZM9nRQbqnh+iYMWz/3veK21yvD3j0mFBNDa9861sc9LnPMfDqq/S/+ipzvvENkp2dxX0i9fWgFEY4jIlBPm8TChne5WD/9W7hfwVcy8Id7MOND6PGNkFiBKflWbQFH0DV1aKMSOm7ZA/KNa2Pw02/hpuZhrP5ebSFJ6Cqa3EcB3Qd17FID/cSqaxHM4JCml0X17FQRhDXqxxRRhDluli5DJphoDSpekjv7SIQjhGIVpYqOlDF8WZ6GDOTJBApY6D1JcZOP96Lepd0emmvcMGx0WwX9eNvi/r8ze/JVI/8WJ4fdQx88mK4/ztw0sfgqYdK6z98LlTUyHes8J36xd2w6KPQ2FwqAc9m4N6bS+M+fXmJePvw8S+C33Ptw4cPHz58+PhfwbYtbDOHbf+lHtSSW7Jy4uh710BkNprdjeq5CIx6lNkJRh1qcDVgozJbIDoP7F7ovRhl7QazW4ydzA4pmTXboPdiMN8RBTsyW8YX53HAiQuxLowz2+SYThvMPRz6+mBkBN55BxYvhnQasln5IZ9IQEsLtLUJ8T70UOjthwsugPYOSKVg82bYsUPGtrXJmGxWiHZ7B1ywGHp7Zewll0Jrm5DvtWth/XpYtRpMi/xIllVrg6xfD+3tingc3nlHsWWrGJq5XlIRSAnuSy/B7t2KSERx002yXtOESL/1FvzgB0LIp0yB+noZGwjArl2wZIkSngJFs6/6emhuVlgWdHd7reft3dA/JCQXV4hyICDL/iFZupSed/SImh8whCSP3s+y5bHcGZB9C9sChizlQpKxo7e7wLvtOLZNqqcH17bZfvfdtP/mN2y/+25c28Z1HLbffTfhmhq2f+97+2zDdYvbC+vNRIL23/yGN3/wAxrnzWP6hRe+Z16UYvCPfySfTKLbOaIBh4Du/i/cwv+qLxDOpqdRsTLI5XBansXd/hrO5mfAHlW/rwVBr4XANNDKIDQPZ/Pzsu+mp8G20UwTlc2ilE60ZhxKM3Bti9TeLlzbQtM9QuppZq6Vp3v7M2iGgaYZpIe6yaeGCVfUCbEGXEfKtEX1V+A4BMIVxGqaCEQqGXPgQlzHwnEcFPJ+Fw+gG0L2P3i2EN9IDCJRUaYL7t6ZlKjSiWFZHnWMxHBFykrtC8GQ/H3yC/sSa5DHvlu4j38z+O4APnz48OHDh4994Dg2rmOTTw/Tv2Mr9fvNJhirQddH/2zwTJkAtErc2hUoFZTSVi+z1x1zOyqzVSKGAALNEjNUIMYAY24XY6fIHLAHYHBNaVvdtRBbBNFjweyUeVQQtEqolSxtInOg95LSmIY7oaoKBgdLZPe226CjQ54vWwaHHAJf/jLceSfs3Qtr1sh+ANdeK6x09WpZd9550NQEK1fC8uXQ2bnvvoXHd98NV18tj5fL69XH1LB8uZS8z54Ng4OKtWvhe9+DnTvllObNE97+xhswd67w/UBARPNCW2siIdx9dLGh6wnomgYTJ8KqVSUhMJ8X7t/eDnPmQJkXOe0CTBgrvKa5EVAllXnCWNlpwliZvPC8uREMvUSGRu9n6FBfXbhD4M3Je+fUvSiz0dsVsP8E3GyWssZGUIrpixcDcMiFF6LpOq7rMn3xYtI9PUy/4ILSNsPANk00Xd9nTKC8nAmnnMIhF15ItLGxaKpe2Gf6hReiBwI0HHEErm2THRzETKeJ1NURiMXQAgH0wD+QwOk62sITRLmuqEKbdxwOoC088b0GXVoQ8MrE3TzawhNk3wXH45p5nKceRZt3HOjVuBpoRgDX0YjVNoHjYOWzGMEIKhDAyqaxrTw1k2biui5mPk24oh5N01FFEu5iWxaa4aW12Xl0I4jSDMxcCk0PSCWEZpBPxxlo28bYg4/DTCXR9ABGKIKtKfSGcbjnXYbSA/Juh6OSVa15+daaAXWNcqGed5l3Uat9HcHhLxNnIyCl4IV8a9/UzMe/AfyycB8+fPjw4ePfGAUirDQdTfv7VTfHsckn92JEKz1jL4HSdHTjz4ybnLTnbBxAIqlcMHeV4okCE8CVMlWsbumxNhrB3DlqnykU46ycEVG1B9dA7VWgjxUlz83KvFafOCoXC+8cOba5w5tvucw3koGsXSrTvvNOuOgiIcJnnQW33CLq9rhxwmL7+4WdrlwJdXXwyiswfrwQ7DvugEsuKY29/Xa49NLSvkuWwIoVMGGC1GgHPBKQSJBU5fQky6ishHhcdjdNCIdFHK+thRtvFE4+YYKQ7GgUr1S8FAMsn4sI8MuXy6kWyHZfn9wL0DTZvnSp/I0dKyQ7mYTKSq+C/QiH2kpLlMrRxmeFlvfi5+r9NtRGr/znwMzncSwLzXuhruOg6bqopaN6fDVdx7EsHNuWMudCL7C3Xek6ruPgWha2afLGLbdw2Je+RMC7s+A6Dq7rkhsZIVxdDd4YxzRB09C8nm4tEBCF1nXRgsG/m2wXe64LkWiuCwGjRHL/q3GmCfkcruviPPUo7h9eRk2fiXbaGTi6Vnjl5NMjBCPlxZ50QIzi8hn0UJR8apiBtm3U7zebQLgCxzaxcmmsXIpo9VjQdJTrFMu+XaVhZ5MoPYDSNJTS6Prj04z0tjLt+AtQuiHl5vk0jm0SjFbJ+2YE/iH///jw8X6H33Ptw4cPHz58/B9FgQjnMwmi1WNRegBdN/4uwm1bOaxsGj0UFXLjuriAa5toRgi9oDA5Gci/A2aXOB07cVGUVRjsHokYwoW+K6HxLui5FCKzIXYyGOMBi2KOb9FtuaA1OvI4/bzMbfePIuOTvX1dIdtaVEi7G4fsnyA4BbQxkA+Ueq51Xcq7CwR68mQhPI4DmQz84Q8wezYEg6WooECgRJZ37CiNnTBBerVffhlmzpQxhpTIks1KD/dhh0E0Sj5tMkgt5ZU6XiUzy5bB178uJHrzZvj4x+HDHxY1u0Co+/uFFDc2Sj91W5usmzdPTlnTpHo9FisZmb34IowZI3M+/zzcc49UxRfE+jFjoKHWJphOyGvq6iv1Shfe9pFkqU8apL+60Dvd0QNTmkoqdfEidCGRgrKIqJWK0kn+d/CYsZmXmy+u4xTJoVIKpeuYqRTDb71FzSGHoIdCxf2UZ8KF4xQJtxEKCUkPBEDTsFIpjIj05w688QZV+++PEQ6jDAMznSYQiVD4DWxls+iBAE4+jxGL4VoW2aEh7HyeikmT/iEE2x3sw9n0tPRQ1zag/goVtkDM3eHB4liqa3GwSQ95fde6IdZ0rnxn0kM9BCJRgtFKcCG1t4twRR2aLn3Xjm2RGe7FCIWxchkCkTI0LYgRinhG3i6Z4W4ilWPkBoBnZOZaJko3MDNxBlpfovGgY1CaLr3cnonAe26++fDxfxA+ufbhw4cPHz7+j8K28qQGOzFCEQbaXqZ+vzkEY9WYqSH6dmyhYb85BMtq/mqC7Tg2dj7jGSU5RfKhNE2ULbdgaOSgaVlUz2JxN0aBk5BYIi0G+XdBqwKjDpws6JWS14sjfdXGOBlTUKzxoq8KhBsokWzd29catY9H3Jyk7OekJR8Yz7ws40IyK+wzm4VQSMhewaDs+efhjDPg1VfhmmvgAx+AT3xCmKquC+EOBKS0PJGASZNknooKIY62Lew3lxOWPDIi7DWTkWPlciJVV1aSKm9kR6ti9WpRnSdMkNPYuhWam6U0fMIE4futrSKWX321lHKXl8t0BbXbsuSU0mkhzbfdJm+Dacq211+XUzVNmDJFKtifekqOdfvtYmimKyGlReM205TXbDvSQ22aUFkmj1MZKI+Veq4VQqZHK9p/DZH+b2Dm85ipFGYiQbi2lvTAAJHqarRgEKVpmMkkr914Iwedfz7RxkYc00QPBFCGUSTaKCXE3HHIxuOiTAPZvXsxk0kidXXgugy98w4Nhx8uZmiaJr3bSnqNlWEU+7gHt2+n/tBD0HUdV2koXd+HDBfV6D9b/1/BzeWwH12Pu/011PSZ6B86C+XdLPhrxjrtbaiGsXLOwRC2a6GMgDh4Ozau66A0A6VJL3+B7LoAXla16zl/K8BViszebiI1Y2UO16XnT89SO+VwAuEKXNtEBUKyDTAzca89ZA5mJkE+O0LV2GlSAeHKfEppf9Y24sPH/034hmY+fPjw4cPH/1UojVhNE1Yuw0hvK/07toBj07djC/Hut+nbscUzLfrr4Dq29E66rhfUJD+a8YKv5Me64/2g13Brl4Mqk1LufKuoyE4G9n4b3DSkW0R1xhAlW6vwSDBCxl1XZnUy8twaALw8WyclpBkbyCM/WSxvjCWNolpEjqnXSul4ejNYHUKElywRyde2xZgsmSzJvHPnwmOPSS/1978Pn/ykkOlt2/ZVrWMx6OmRv/LyErHO54XtNjSIpLxjh7DbAuEuCBeOg+MKQZ4/H8+9WwjyjBmwZw8sWCDl4rZdavNes0a4eqFEPByW6bZuFdI9YQJ897simA8NyaEjEVi4UAj75Mly+jt3yvzr1gl/zufBtZ3S+SnECVzXxAncNIVMg5DoUFCItaGLqp3xXpvtjCod//t/Smb6+th+113Y+TyxMWPQw+HiOQbKyjhy5UrKxo+XsDbDIOP1Shf2cR0HK53mpVWrMMJhkp2dbL3mGuxMhmx/P2YyiTIMqvffn2RnJ6+sWYNjWUUyXSzZBpSuM2bWLDTHxk0mIJ/FNfNCqCmp0Paj68UJ3FPe/1t4vddq+kyv3/pvqCbRdVRjE6QS2Bt+DcODaJqBch2sXBozl0QZQRzbLKr/rve6FGBmRtjzh42y3TYxcylcK0+kuhEzPUzXH5/GdSwaDzpG+qw1reRCjlwigWgVycEOzEyCWM04qpoOLrqGO44tDuVF53EfPv7/DV+59uHDhw8fPt7nGF3mDZ7Lr9KKCnX9frMlPiccIxCpxMwm6P8blWvbtsCxcYH03i6i1WOL89RNOYpgtBKlKe8HvI1jmQQjIRSmkFqjHvbeKEZj6echsxUa1ghJDjSDY4LSKanRSCk5eKq3OBiTfQUCTV7f9XLQGyD7hriMy854vtfec016tUGIttUPWh2MeA7WrgsPPgjnnivkuK9PiHJlpbBSr7yYUGhfZbu+XhhuZWVRpSSRkOblceMoStHRqDDcW28VOTkWE5J91VXkr7+ZQa2OkRFFQ4PwUG8TV1wBBxwgU/f1iQebZcmUq1fLNI4jZDzm8V3XlXLwSET4oKbJ+N27hUCvWyenUxDpDUPmrquT8To2ZTFXiHGBNGvKi8pCSPZoxJNQMcrZ+Z+AfDZL/8svU7X//mLGlckQLC8H10UPhfZRmXNDQ1jZLOnubqKNjUTHjiW5Zw+BaJRwTU2x71ppGok9e9jx858z64orij3ZViZDPh4nUFYmBN5T3ZWug20X1fBAIICby4oqPUqNVaHQvkpyMOh9ELo8/m9QVLsN/X/st37P2FwW+9EHisq3dtoZdL75TPF7H6tpwnFsNE0vfn8DkRjBaBVdf/gtkapGqscfLNUnhRsJSmFmkzhWHiMUw7FNjFAM5bo4rlMky91/elb6tUNlXrWD6/Vpj8rPdp2/7Mngw8f/Qfhl4T58+PDhw8e/MQql2raVxwhKH3Thh/SeP2wk3v02lWOnMe6QExje8ybZeB9jDzke4K/uubZti3xqqEikjVAUzQjS5c0/8ciPEqlswMymxBxp6mxCZeUoLJQyxNTM6oLUU0Kq61ZIWTiuEF+tUkrGi+Xdo0q/zR2ifhv1SNm3KfONPACZl2DM9aBC7FsSPtqBy5F1Vh8YtTJ33oG32kRZjsUkq+qGG4T8FthnwTXMskoW3Y4j6m0wKAR77lyp245EOGnxYnr6+tA0jfKyMm5ds4ZZ06aRMwyu/Oxn2bBlC+GaGmYccAA/+elPwbaZOGMmwWCIcDiCUvD5z1/Nxz72CWxbOLumldq6C9XVBWIMUta9a5e0gxfU68J+hXbyYBAuvFD2KajjBS+2q6+WMvHBQa9/O2SjFTK+i6UIjHrslhTpQq713wrbKZL0k049lZ6eHnnPysu59eabmTVrFrlcjiuXLmXDxo2EQiEOnT6dH911F3tHRjjl9NOLU6XTaXbu2kVnWxu1dXW4to1jWST37CE3OEj94YfjmCaqYHDmugy++Sb1hx5aJNnJzk7evvdeZl11lRBLTSuq1P2vv071tGnSi+0ZgilNw9B1XFwpi1YK8jlUKIIKBnFNEzdbUs3J5yFWJhUeuo76R7qNe/jznu2Um2HXyw8Xv/dK03Edm/RQN0YohhGKkh3pF9Jtm5jZlBiY1TRhZuJY2STR6nFSOu44mJkRzKxkW/fv2Fr8P6DwnuhG0Cu9t6QM3CPeSg9g59I4jkUwWumTax//v4BPrn348OHDh49/Y9hWnlxyCCuXKv74bTzoWDQ9gJkdKUZl6YEIPW/+XvquIxUo3fire61tM7cPUW84YC6BUBn5zAj9O7YwbvrxWGaWvndaiHe/zaSjPkxZRRZltuNG5qBUSPqftaiXERXgpJM/TE9PO5ozQHnVZG799u3MmnUQuWyeK5d9lQ1PPU04HGbGIfvxkx9+Q4zRokcDBj/80X187vOX8quHfsZHPngIDF4nsV8qAnoV4k4OuBlAiaM4tpShB5rEMTxDSXFOJuVxNCoNy2+8AUcdJYw1m4UtW0SNLhid5fNSf+04Uubd08Pw229Tdcop4Lr86sEHufbGG3n917/m8q99DSsc5tabbkKlUvTE4zRWV5NP5Zl87LF85SsPc/bZMzEMIdGMOq0CUS7w3YIjeMHxe9IkMSWrrhYRvXA6pin3BVIp2VZQqFtbxfQsnYZf/hJeeEGM0Qtea431tqc4eh/8aHL9d12kTqmcftRcw8PDVFVVAfCrhx/m2m98g9dfeYXLr7wSy7K49ZZbsEyTjrY2xo0dW+yzdmyb7N693Pmzn/Hcc8+Ry+Xo7e8v3ti46YYbmHHIIWSSSa6+9lo2/u53hEMhDjv0UO79wQ9wHYcnf/Mbrr3uOhzHIZ/J8MXzz2fm0BAzr7xSSp8DUgJtZbMMvfUW0fp6tn/vexz+la8QrqiAoQEIBFFlFUWlt6Bcu4k4hCMwEsdNjqA1TcDNZsDMi1nZP4FgO5Y01rsKcpkRzwF8DsFoJfl03LsxdgRWLkMwVokRjFLIT9/zh43UTTmCUKyG1N49BMIxBtpeZsyBC9GNAFYug9INHNvEsfLy/4emgdJwrLzMo+lY+bQQaBe633yWuilHEQjHyMT7iNU0oQf+uj5yHz7+nfE/kWvfecCHDx8+fPh4X8NlcKf8EHZsk2j1OJSmk0/HCcaqaDp0EY5tkon3M2768dhWXpQlxxb35r8Gmk79fnMAqJ96FLoRAqUIRCtpOnQRKIXuBqmbchQAZTUNKLsPAk2o3kukfNvshMBYMKaAa7P+5/dSlf0KJH7Kr145lc987rO8/uRMvvItHUWId7ZvQunl9PR0Sblp5EhIv8iunlq+d88POXrOkYADRjPUXAV6vZxr5iWIHCVE29oNg6tLsV/F0nEbWneVSrc7O0XO7ewUh++ZM/eNRpoxQ4g3wMCAKN6plGyLxSAapWruXCGQpkk8lUJpGqmyMr7/6KN0vvqqlBb39NC4di3cdBP5ygYsC2pqpFd6zhxRmTMZ4fKHHy7l3cmk+KFVVsoh43ERzDs7hVxPnCinUFCzNa3Ui93XJy/x5puFfI8bJ6f4xhvSa33GGUK8C3+AuH8XHMDbuyVzOqBDa6e4h5vWvtsL64r7GtDaIZnVwYAnv3tjHHefsVUTxkppeVmU+MAgKm+RGhnh+z/8IZ2/fQ6VM0GDxvp6HNvGzWbRPYdvpWl8//vf56rPfpYTTj6ZmoYG7FyOh9av5/OLF7OtpYWvrV6Npmlsf/VVcF3+9Oyz2LkcWjDIZy+4gI1PPsmh06ezu7OTQ2fNYk9rq7iBm6ZEblkWejBI3WGHkdu7l4PPPx8jEhHFOhCEaEzKoz3HeTeXk9cbCkuMV3IEFSvDfvJXkkc9EkdV1ZbuovwDoRkBHE0DxyZUVi3fS00H16bf81gAGDf9+GKZdgH1+81G0+ScojVNZIb2MObABeI07oIRiuK6Lpqmc+pHz6K3pxelKcrLy7n5phuorwjyH5/4rFcC7pLJ5ti5cyftbW9THykjaeqcefqHaWtrIxQK8Z3vfIdjjjnmH/4e+PDx7wCfXPvw4cOHDx/vYyjNoPGgY8AFPRCmqulglKYRjJTvE4sTqxkLKPRA2Bun/9WRXLpuEIxVF4m0Y+VJDe4hWjUGVykcy0IPhAiVBb19LDEmc7PQsFYisIwGUOWABektVMUmQMU6wCSeaUTZfaR61/P9Hxl0tr2I0qOAQ+PYZnEStwdxQkfx+QtP57brz+PKr/4c7CExRgseQNFZPLpAzMwKxDt6vBBrlPR3gxinFdzBAK68Up5fcYUQn+5uaVC+/nphtYUILpDnhiEsdbSibRicd8EFPLNpEwBP/PSntLa2UlNTw+rvfIffPvMMkVCIaz/zGU4IhwkO9RMOw6pV5+E4LhMnzubb3/4Wul5PQ4OoyYUK5YJpWTQKb78t8Vw9PRKvfeedQsi3bZN7ApFISfUuK4Prriu1jhdSwY4+et8Sc9cVEl8WQUjy+EZZ9g/Ja544Th5PGvfe7YV1f75v4XFQ7Tvmz+Y+75tf5ZlNz4Ft88Tqm2l9dwc15RWsvuVmfvvGK4Qrylm+dClHH3wwmZ4eag89FGUYvPrOOwz29HD6hz5EpKqKcE0NjmmSVYpMfz/pbJYf3XcfrX/6E04uhx4OM/3443npm99khqdODw8Po3SdkZERqisrCXhvnFYgv0qhGQZmKsWf7rmHw5YsKUZPiWLtuarbpvRMKwXBICockXnGT8T+za9RzZPACKBNmPy3mZX9jdA0/T03zBxHlW6M7TenWLFS+L7blkkwUonrunRvf4YxBy7ACJfT8+Zz1O83Bz0QpufN3zPukBMxcyl+8sN7qBvTiIvilw+s5/zPL2bLpt+y6amHiVY3ggs3fftWnvv9c5SFFFYuzYqV1zB37lw2bNjAtm3b+OhHP8rOnTsJ/BNuMvjw8X6H7xbuw4cPHz58vI+haTqaEcTFxcwkSA91ea7eBgOtLzHc9SaZeD+ObYkTsGMVDZPyyb3seeMp8sm9OP+Da7iuG/uUdYYr6uj+07OY2QRaIIjr2FjZlOc+7koZuNUFKiqKcfAgidhSBkTmgopy3ucup/no5/nqtdfz45/8mtbcbdTU1LN63U85cvZ8Fs7bn6c3Pibl5OjcdMsdzJ97JEfMPUPyr0d+jkQLWfIHgCPGaE5CzqPik0gPt+uVh3sRXsuXw1lnSTb1QQfBXXfB8LCQ63Xr4PLLhZ0W2Kfy6pm/+U3PeMoQ++0JE4TNui733XknHdu3c93SpVz1jW9gvfQSu9vbOXjiRF7asIFb167lE8uX07t4McRifO97v2fdujd45plXmDatjpNO+jR1dbDffiX1GSThC0SJPvZYIdrjxklpuOOUCHNZWSkFrKVFTNBiMXlZSknGdWurLBMJcQvv75e5o1GvCnzCWKkrnzAW6qtlaejyWNffu72w7s/3bW70iKTad8yfzX3f7d+ho7WN6679Olf98E4s12F31x4OPvRQXnpxCzffeCPnXXABKV2n/ogjUIEASil+9OMfc84nP0llczN2JsOH58xh6vTpfOuOO7hxyRK2v/gildEoq77+dWYdcgjHHnssT//ud8y47DICsRj33nUXnzjnHPY78EA+sGgRP/z+9wnHYmS9N8v1avFdxyEQizHzyivBdRl8/XVpQc/nSpUNwaBnmy3xV8Xs9EAQbdHpqOZJOM9uwI0PSU9yLld0F/9nQ9N0QmU1NB12EqGyGnQjWCLWtoVj5Yr/LzRMm+/daDOom3IkgVAM3QjSeNCxKKUIhGLU1NXh2HLuiUxOHMezKYxQhK4//g4zl+IHP/gh/3H8LIxQBDOT4IEHH+Siiy4C4KijjmLcuHH8/ve//3/y+n34eL/BJ9c+fPjw4cPH+x4ujm1i5Qo/cp8mn47TeNAxVI6dRrRmHGY2Rd87LZjZVDEu62+N5BKl2+GDp3+EI2bP49RzLueEk07j1VdeRSkNSxl88UuXccCBMzh01gmce/5qUGFwLU465cMcNnMWM2cdzsLjTuPV11u57zufpmPna1z3jZVcdfVXsfT92d3ezcEHH8BLj8zi1ltu4RPnfIHeng7++KcOHnrwF6xceY2YoakIVF8iRmhWO/ReNiq+C8nTVgFIvyCmaU7a6/sul+2dnRLu3NwMXV0i/y5YIMx13Tphr6Mcj1myRGy3r7vOi5uyhUQND8vjAgyDT3/mMzzT0kLTwQejaRrn/Od/QiTCrLFjmTxpEn/42MfIB8swzYnU18OSJQH+4z+WMDS0CdsWYtzWtm+KVTYronmh79qyhIS7bqmsu0C0AwEpM1+6VMZWVYnI3tAg8V4zZggRHz8eamvh3XcljQwXCAclxzochAMmylLX5LGuvXd7Yd2f7xsJyWP1Z3MWlvtPLD3XNT59/ud4ZtsWmpqb5T274osQDjJr1iwmNjfzygsv4DoOdjZL/65dPPjQQ1xwySVogQDbv/c9zlOKX3zqU3z9a1/j9g0beHv9ejp7eynr7ORrtbVc+4UvcO6nP83T3/gG8V27WPvtb/OzH/6Qd998k988+iif/fzn6e3uJlxVhWNZZPfuBSg6kQ/96U/guoTr66WtwnMCd1MJ3KG9EAyjHAenfSfu0CBuJi192MEQBENo845DRctwsxnsxx/662O6/gHQPKfu91SnuA5KaeRTcZSmY5tZuv74NI5joRshzFySPX/YiG1mSO3dg+s6WPk0Z3/8w0yaPIVrr72We++9l1jNOAbaXibe/TZPPvQjhoeGOXL/SgbaXibjBDBNk4aG+uJhJ02aRHt7+/+T1+7Dx/sNPrn24cOHDx8+3udQmoFuBIlWj2Nw56vFvmvNCDLu0EWA9GTK9pfBdVGaTsN+c8SgbL85+/Rg/ldwHRszO8L3v3Mjr77yEq+/8QeuvHIp53/+Arq3P8Pyr1yNbgR460+v88ZLP+eGr38YzJ2Q2cr6n/+IN17bxmsvP8cVnwnymc9fCuFDofcSPv3JuTzz+xdpGqOEWJ1zLjSsY9as6Uwe7/KH159j0/Nb2NWxl/0POoJJU6bx4pZtLL7oS3z3zu+BikFkNuCAm/LKwgGU12ftQt8SsLtkteNIU3OhTrqxUeThgppYUSF/Sol52Z49cOmlUjoeCAjTNU0ZW1fHcCpFV0eHjM3nefixx6itrqZhzhxOWLCADR/7GLS1sXN4mJ07d3KQaWLmExx44BA33giPPAJPP30/hx46C8cpZVw7jpR/L1kiqnUkIoZlr70mj/N5EUhHc/vOTiHSjiP3ATo6pGR83jyYNk3E9vJyUa4vvVS2l5fDl7886oPO5mFHx/984WXzpWV+lBJbiO6yndLjbB7e2S1Z2D2DDL/yR7o6OiXyy4WHH3qI2ppaGqpqOOH449nw1FMAtLW1sWvXLpxNm0h3d4PjcNuVVzL9gAM48IADyO7dy/QLLmDCKacwffFiPv3pT7NpyxYWfOELaJrGkhtuYMIpp3DsGWfQEArx4pNP8uvVq+nu7ubY444j1dGB88gjjK2v540//Ymt115LukuuEyuVYmTnTrZeey3hujqUYZDu6ZFS8KFB7MceBDPvZZyLC502YXKReBerHrxafXvDryERRzU142x6Gsw8rmn+z+/zPwGOY5NPx0kP9xCtHotSWrE3u3/HFvRgBCubpPHAY/4/9s48TK6yTN/3d7aqrqre00mnt4SELYRNlIQszR7W4DguKKKIooACCi4gCSOIJECUxV0WxQHn5xgUUUJCWINpmiSAgNKsWXtJupPuVHd1rWf7fn9851R3A44zzjiDeu7r6qtOna1OVS9XP+d53+fFjKXUPrqJ0Axu++63ePqBO/j6NVdzxeVfQaJKz6unHsBvHn+Bs88+i/qWg1QZuqaqZP4zN+8iIv4RiHquIyIiIiIi3uFomo404/hOkSkHtuOW8ti5YQwzrubw+h52bphEbTPVU/cv911aQbnof3YkF1KiaSZNM2apUCffY8crG0FKYg37c9e/3s3WN15B03yEn6RxnzMAAUYLNfGCKuXWkuzKzsMt/kg5zaMruf+hfurr65jcdBgnHH8Ma9c+xmmnnsi27bvY1usza/I6Tjzh63z2s58lHLl17PGLufQci/edfQIYjVB1NuCpsVx+Xrmw5XTyJIwG/dWNt4M0VT10IqHqpjMZlfgFY450Ljc2VLq1VdnIP/mJEkxVVUqdjo7CSy8xMmUKH/rkJykUCmj9/TTsvz+rrrwS8cYb/Oj66znv85/nio98BE3Xue3b36b5n/6JV7t3cebZZ1EsekyZInn66RnU1d1NT4/S+vOD7LVkUo3Q2rlT6bW+vrFte/eqQDTPU2O4QYWcNTery0yl1KXOmKHuBYRVzAMDSg9+8YtqXDfA5s0qb0wIEN27VFn3W77/KBG5tU9tL9nKfQ6jzF/foQLOws/RC8qj4S192SP5DB/60AcpZEbRYhYNdfWsWnkvImbyo+98l/MuvIArrrwSIQSXLVxI4amn6Kqs5JCLLuK+jg4+0N6OlJK8lBQ1jTlXX00pnebf77qL+ro6ph18MMcdcwydr73GKddcw/aeHnaXShz53vdy0DnncNlvf8urr7zC6MqVbPrtb9nc08P+M2fyzNKlALxn6VJKw8O88pOf0P3QQwDMufpq6g89VP3sV1ahL/4g0nMRhmqLwPdVP3ZChaL5PdvQmloRuoG3/jFk1wtqMNwxJyFapuH3daO1zfirBJz9OaTv4hRGMWIV5NM7SdQ20bDvHCDozdY01Xv96u/Kc+ydYDrApBlHUt24H+fMNrno4s8zuLufpOlTtc887rv/LJ7ufIqmA/ZD+h6lLb/DMHT6+wdoblE/G9u3b6etre1//T1HRLwTiMR1RERERETE3wLSp/+V3zHlgIVj5eFdj9Ow71w0zcCIVeCWcsSSNWj/hTCzCQgN3arAyQ/zsY9+hI0vvAYS7rplKT39e6mrq2XFt27l8SceoyJucs3SCznhxJOUs4zgnHM/zxNPrsd1XSbVN3HIez6AxnQaJvus+vW/IrxefvT1Os5bchNXXLkETdO47Yffpvld7w/CyEzAAXePEuqpfwanTyWF+yNqXrbQwds9NrpLmIAHzavBbFXi23aVm9jQoERhoaBUZThYetMmePe7lfW7Zw8sWwY336yUbmgVJ5PqmHnzmLZlC5v23VeJ8UmTlOhOJuHKK5lx00088cAD6nWSSfUaTz1Fy3uO5aijnueaa9RqKeHf/10ley9dOqbfAT7wASWGBwZUb3U2q1rFly9Xx+3dq1zslpaxdt+wmj2TUecvFNRyU9OYoJ46Fa6+Wr21+YHBL0AJZF2bOC6cYFnXYUYzbNsJM4JpM5ahhHV6BPRpY/tni2pbRUz1WU9vLs/GnrbPPmy6+xdKcDfUQssU6B0AYMa+M3ni0ccAieM4ZHt66Lr9dg6+4ALMykp+8tnPMvuCC5BSkslkOPtTn6JQKCCAmooKfn7HHfi2zfduvZULL76YK5cuxd67l+/edBOnvPe9aJbFD777Xc7+1KfA8yik09x03XW0TZvGQOCAO6OjmKkUsz71KQAOvuACNZ7LMNSH6/tI6aoUeED4Eqlrqh87n4OKBFrrdPURCg2t/QQlrNtPRFTVIF01f/uvGXD2HyNI1DSy6+V1TDmwXYUgJtR0ASBIBzdITGrFStYggM3PP8buHS8D0HzIIu677z5qqpJUJmIIAT+7524OnNnKzGlTEZpOPr2L+n3exfsWn8ptt93Gtd+4jmeeeYa+vj6OOeaY/6P3HRHxf0s05zoiIiIiIuJvAM91kL6LZxfRrRg7X3q8PJe6+ZATkX4wfidQXb7nMPBqRzByxxxTY0IoEa2/9f6659pI32PnS4+RGdhC2xFn8KtVj7Py3l/yL0u+woJjTuTHd97GJ889ixee62TRaR+h64UnmDJ1BkqZuYDBv979M36x8j5WP/D/QFioe/mBaPazqux26FaYckuQ6mWg0sBFMKu6EURKJZLjqdTmgS9C/SVg7q/CzYQMQs6EShXXa5WTrQWzrB1nzHGVUgWYXXIJ7Lefqr1Op9WQaN9XvdYHHqhU7a5d6mvu3LH5VU89pSK8//AHdczGjUrpTpqkVHKoeMN52lJix1LkzWp6egTxuBK8uj4mhgP9xp49atv45HBQ27ZvhxtuUJp+xoyxqvZt2+C731VCXQh1mcPD6vxhRpumqW2ZzNglphIempCIYjCOqyr11hnXYZm3pql9NE0JZj/4f1EIdUy4Xzav+qpBlYb39CtRrmtqn629Yy54+HoStX56E04QniU9TwlZKfEdB82yyPb2kh8YoPaAA3CyWczKSpASPRZD6DpeoYAM7PrC4CBGRQWJxkZ81wXfL4ejSc9DMww8x0EAmmniuy6aYSB9Hymlmq8drDN0HVkqQHYUmR1FVFUjRzNordODz2DcNyuYGy4B4fvK/F9zP9qCYxG1kxCW9V/8Tf+fwfc9/OBvhtAMpO8ipcQt5dWM7JlzMCuq1OcjBALJ5le7+PBHPoIrDXTdYNKkeq768gXMbEzRdPAJzD3yCN533KF84pyP03zoSdj5YfZs3oRfNZ3PfPYytm/fjmVZfO973+O44477P3nfERF/bf7cnOtIXEdERERERLzD8TwX3yniuTaGlUBoGnZ+hD2bN9Kw71ysiip8z6H/ld8xaeZ7cApZzHgK3aoou9ZC0/B9FXQmhEAz4xMEduh0S9/HKWbUOSpS7Nm8iQMWfIg/PvMkBxx2FLnREWIxgfBHOHLeGVy/7GpOPPFEFSomYspJljYVlS307niZ+vpJyoUubFTOsjkD+r8IjTeFrwx+AXZ/Geq/AkabGvGlVYGzBYaWQf2Vqs/a7Yf4Eaq32ukHswWGvqnGgYUqUVZD3lYiV9dVQ/Ls2WOK1vOUc33ooUqJ+j4MDY253GHKWKEw5mCXSvDss2oWFqhy88FBVWpeLI4d98wzqqG6shKEYMRLsmePIJlUh4XG+FjXjaIAALOQSURBVNat0N2tqtEbG5XJHl7u1q3KsV66VG2zbXWZuq4uKdRq4Tiu8HLDt6Zp6tJqapToDu8v+D5UJT0EUoleKccUPSgxDMr1N423im5bCVZiliodD0vCw+MkkMlCskIdG5aWx98kLm0nKCWXYLs4uiDb00O+v5/6Qw8Nbgx5GBUVeLaNEY9PEN4IoW4kCUFh716sVArNsnDzeYSmoZsmEnhu2TJmffKTpNrayHZ389o99/Cuyy9HhDPKPA8RiOvS8DB6LIaZTCI9D9M0kdkM/rq1aPOOQRYLiJbpKilcCKRdxH/iEbRFp6nzBfOfEQJGM3g/WIGYfTj64g8h4vH/4m/7/xyea6tww+D6hBDk07vo/v0DtB1xBmZFJU5hFLMihaabGDFVYuGWCnhuCSuhxLfvuWiGNeFvjmEl2PXyE2M3+A49Cd34v7mREBHxv8mfE9dRoFlERERERMQ7mFD0OsUcdm5E9VIWs5jxSpoPWYRVUYWUPkIzmHJgO1ZFFYm6Zsx4Ck038JwSCHBLBZxCUIcshBJI417Dzu5l5x8fJb13kMHhPMm6ZsxYio1vjKoe1/0P5Zj2BaxZvQopfbZt62Hb9m3M2q+O4eFBdvaPQuEZcLZz/28for6+jrq6WlSftKkCyYyp6nnjTYw53YBWAY0/UHOrZRGKf1D7Gc1QcTQMfQvMaVAxV5WHD60AowGGlqvzev1Q/L0aA6YHom9oSDnYc+cq9er7qg772WdVjXQioSzeJUtUY3MYxe0HjmwyqZZDK7m9XfXO/v73at5Vfb06n+MoVXvppaoOuzJIK3ccDF2tSiSUQA4zsBobYc4cNT47FlPrLrtMOdWJhBrLnUyqyw50OpmMevnQqR4vrMNcrfBbO2mSKiUPg9BCQx5Q7vKWHnBc0IL3Nj62XNdgc7cKJgMlom1HCe5YMJLKdtV2fdxxAqgMyuJ1HfZrU251+Jqv71CPhdKYwI5ZSN9Hr6ig4Ygj1E0fy0KPxXj2G9+guGcPTjbLpmuuIdvdDUKQ7e1lz3PP4ZVKxOvq0C0LIQRGRQWaYfD7G28k39/PAeecgx40qscbGjjiiivKNxNE8EFJz0NoGrGqKoxEAiebReg6UghIptDP+BCifjJay3RluLuOujllxdBPPgMh1Cgv76HfQmYYITSIVyBmH47WfsL/YUn4GEr0a7ilHDtfegyzIsV+7eeQrGtSZeF1zVgVVeimCjjzPQfdiqEbFk5xlL4/PoprF0BoWIlqmg9ZhFMYZaT/ddWb/V8ITIyI+Ecgcq4jIiIiIiLewXiuje/aFEZ2k6htCsq911O/z7uxUrXgu+TTAyRqpwKSfHoXZjyFWVGFa+fRDQvfVf8we3YJiY8ZS4JmlJ1rz7XJDfVixBLsGszw4Q9/mOxIGitRyaS6Wr5ywQc59vSz6O0f4pyPnslo0UXXfL625GI+8L6F7HjxKj500XYKRR9NEzQ0TOJb13+Rw49YoEq2ZUGN1pIFJYwn36icadWlGjzqqNJwDZDKtXZ2KkFN2AebDfq7HfCGg/PG1HZjMuCCFODq4KDUpWmqx1xOfaDxuLKHV6xQ9vA++yh1appKoYaqNZsdSxjXdSWkR0aUSn7lFSXQHUdZy0KoWO7qaqVsAQYHyTXOoFBQAjYMmC5/XwPhu3Gjav8ulVTVeVOTcq5vu01Vq4cu9syZYw50WIEehpyZ5tjlVVWpywjDzcK3s3Mn7D/TQ4yMqgMMvdwfPfGihOqTzmTVyC0ZNGaH5dwCVSLu+0qg9/SrfmvTUEL8zecEGMmCZUI8pk6ypRf2VeFXjm3j5HIUh4Z49a67OPyLX8SsrES6LqXhYXzf56H3v5+Ft9xCwxFHUEynMSwLPZFACAFC4DsOdiaDVVWF7zi4xSJWZSV2JkO8thYJFIeGMCsrMSsqlPOt63jFIlpwx8ItFDCTSZxslnh1NdglyGXxO9ehnXg6IhZXDrUQSpxLHyk0ROAM+2sfQD/lvUGpgARDRxj/+0FmoCpd8D0QGnZ+GDOeYlfXE1TUNFI9dX8ACiODJGobVcsFqO4Ku6Rm3esGQvr0/fHRtzjT4Y24PVueoXHW0Wi6WQ5QjIj4RyAqC4+IiIiIiPgbJuydJPinXgqBnU3jlvKYFSkGtzzD1NnHqd7JoJZXIANx5aMJDSkEbimHblgIzUBoOnrwj3/ojI8v+XQKo3T//gEOOP4zeE6R7J7tFEd203jQsYDEc3JYloPQUuD2Qe5hKGyCxh+Csx2cXhU2hsEE4ewOqvJxa3og1EIhFpQpFzZCxRGACd4QaDHVsy1MtS7sy3Z3g14zlhaOq0SCt1uJdlEJe0aVoK6vV/XUl1+uBkPPnKnmWT38sJpddfjhSnCHTcrhwOgZM9RxGzfCtGnqyw56kEM1G7JkiWqADi1ky8LWK3h1q0lPj6C1VWWmXX65evnubvV8yRJVjX7ZZWp5n33gM5+BlStVaffnPqeWX39dafqdO8fuCVRUqLfX16emjg0MwPXXw49+pN5GPq/c6nD/nh447WQPUSwpRzmVUEJZe1MRo+er8VlG4ECP75vWtIkl47YDezMwmhsLP9PExLsItqsEtyQoRRcTXst2bLxSCXtkBLdQINXSQn7XLl656y4O/9KXMBIJfNtGsyy8YhE9qEKQvs/gq68yadascn91uQcbSL/8MokpU1Q5+BVXlO8NAPiOo8rNg15rlVegPgfftrHicVUW3vEE2vEnI6yYEtWeB7qh3krPNkSqEr/jcbSFx0N1LSAQlhKb0nXLtf7CeJsbDn8lPM/Fzu1lz+ZN5bBDMb79w3MwrArlNEuffHonRjyFppn4voNTyKqxXJpe/pswed+5WKm6soD+i8ISIyL+TojKwiMiIiIiIv6G0TRdCQDPwSnlkK6NlagmUdfEns0bqaidqnqlgyRo37XZ1bVOHSs0pKYSjo1YEqeYU32p44S1nd2LU8xOmIGbqG2k7YgzcEs59ryxgarG/Zg6WwUUSSkxrBRo1Ug/q0q9qz8BjT9SF2w0Qfww1VftjwZjs1zVV63XK6Gc3xQI5sA1c/eqFPDEUeBllCNtTFIutdsL+Q3qXO4u9ajXA1rgugWl5bIA9tZg1nVg29bXK8GbTCrV2dqqRPF116n5VwsWjAWeheXg73mPqtveuhUuukgtT58+VjbueWO12S+8oI69+WYlRONxZVEPDWF7OsuWCRoalJBeuVIJXc8be758uXKbw2Uplcg+80x1unC5oUHtt2KF2nfZMuVOX3+9MspHRtTyypXqMj1PlZGP3z801OkdUAFketB7bLsT51jrGsRMQCjxjFTl3iVbnfyNYJa156vH6pQS1pqmjh2fyBY62YWScrltZ6w8XKrXEppGcXCQP37/+2i6jtB1uu64g/pDDqGwZw97nn9eiVMp0S0LpKSYTiN9n8mHHEJ+1y4GX3yRXG8ve7u60HQdPR4nXl/PK3fdxaGf/zzS89jz/PPkd+1C6Lpyq8chgxC68nJYFn7q+wJhranxXIU8cmgP2EVE63QwTETrdPzOJxFiorCWQ7vxHliJHNqthPb/Fr7Hns2bGNn1GoNbnsGIJ1WauRkrj/BTfy9UGUKirgUzlsKIJTDjVcSrGtjV9QR2fkSlix960gRhDepvkm5YkbCOiHgbIuc6IiIiIiLiHY7n2pSyaQa3PqNm0iZrVFCx54Gm47s2WtmdUh6d6gf1kNLHc23lWgtNudZmrHzevj88TKKumaop+yI9B91KKH0kNNxiVoUiIVTC8L5z0M0KiplBKidNRuBTFsighPTur0D9l1UAmdBU37SwlGutJYPQM0v1VheegYp5SljjBingJmAoR1yrUu62sABNOdZGHfjFsddx+oKgtH3UOfKdkGiH/Lh09M5O1fzc06OGRP/ud/D88/C976nrdl0llm1b9WrX1Kg08TlzVCO074/1Vr/wgqrd7u1V4WVhM3UYuJXLqbTwVC2vbotNcK6vuEIZ4qFzvXSpEs6XXqpGb02fri4nnBwWj49VtmcyY871VVepbfm8uowjjhibKHbbbeoc453rq65Sr3nayUGgmS+VO/3mEm6JEsGGrn6MNveoEVpW0Oy9uXtstNa0JiWmfV9tD48PF8KbFeOT10ay8PIWmFSrerIBu1hk09VX0/fEE+XSb7dQwMnnye7YQcPhhyOFILdrFy/ffjsHfeYzxOvqSL/yCvWHHoqdyeDkciQbG9EMg2I6jec4VNTVoRkGbqnEH269lUMvuQSh6xjJpEoFD+dzh73XwfdPSokRiG8h/XKAGrmgDt+2ISgRp1QM6v01REVFuQxclkpKWHe9oILNzjgTEdbw/5XxXCdI8d7I1IOOxbULEypSjFgFVqoeJ3ClG2cdg+cUcQqjJGoaQQjsfAbNMFUoYhRSFhExgagsPCIiIiIi4m8czynR98dHJvQ/+q49JpoNCxn0ZofiOLd3J2ZFJWa8EtfOo+lmWVSrUUI+ILDzw7jFUYx4ZfBP+Bw0zUQzTBAamqbhlgqMDm4nNWkaRiyBwEVjFCHigZYXqozbqFfzqndfBVO+qfqiteTYjGqk2m40oA4Mv3xUCXkwWqvcByoATTnXibnqeHcP6NVqfxGkTodl57KkRD2VUJQTQ8pCgTcwoJanTlWvEa73PFWffemlSrG2tqp9LGticlguB11dweBoxo03E0qAh69nGORI4DgC0xxr3Q4DusM2b8+bOLs6NDl9X710eFz4Ur6vjgsnjbmu2k9Kda7w5cMpUf/0Tyexe3c/UmrU1ab4zo0reNeBB1GKmXzp8q+w9pFHiMdiHHboofzs7rsBKI3m+NJXr2Dtww8TN00Oe8+71bZwhFdlUpV3+1KVhMessVTw8bOzw3FdYUK5aY593iV1LqdCjdzSYzGsqiqG/vAHEk1NpJqb8Uol9XzqVPRYDCebJdnUpOZRC4FXKqEF8eluoaBE9Be+gBGP45ZKvPCtb3HAOeeUf5ZKQ0NMOvxwFVoWOtRBaroIU8g1DV3XVc91qQiVVQgpOXnxGfQPDKBpGpWpFLdefRWHZdM47Sfw5X+5mocfe4x4PM5hhx3GPT/9KXJoN2u+cwtXr3oYW/okEkluu+02DjvssL/8D8F/As+11bdA+iA05VD7HoWRASpqppBP95Osa6bvj4+QGdjCAcd/ppwoPvDqehpnHT1BkMfe5FpHRPyjE4nriIiIiIiIv3HCkTq+7yv3WYgxDRMIBM+1GXh1fXkUlxGrwErWIQhH69jEUrXs/OOjwT55ErWN5VCoXS89zvCu12g74gySdc3KhPQ9PKeEEatQgtDOY8SS6KKEEBKcbTD0bWj8DuWeai0JWgqlsjRwXoehG6H+cjWjGij3YfsjKul76BaY/E31jkQ8EM0oIY5U62RelYRr1coh1+tRYlyqsLQwDM3PgKiColBCuq5Ojcv6yleUeG5qUqlfMOZYj1/esEFFdO/ZA21tyvKdM0dtKxbHQs40TdnJo6OqRruigrKKNgwKMsbwqE5FhSCoap6Q8P3mMVqhOA5N8FAgF4vKpQ4FeDiyK6xk3rtXVb8LMZbZVlk5Fpj28MPDHHhgDbW1sGnDr/j617/Oi8//nsu+9CXcoWG+88MfICyT/g2/p/Hdh4KmcdnlX8b1PL7zzZsQQH93D41trUpAF8O+8zeN6/KCgLNQfIfzsEPCUV7hdlDiWlc7ObkczugoZjKJZprludSaYaiSa8PAzeWQgFssEq+pUW4zlEWx9FS58+Af/0j9rFnkBgawkklitbX4jkN+925eD3uwNW1Cv7Xvuup1dF3NuR7ajcxlEY3NCGA4l6Omtg7pe9z/wCquufzLPP+Lf+NLd/4rTu8OvnPXT9EmTWFgcJDGxkb27tnDfgceyJNPPM7Bhx7G+vXr+exnP8tLL730F/wF+M8TOteD4wLH3vy3AiGCkMRBKqon4bk2mm6SGdhMatI0dr/eGY3Yioj4E0Q91xEREREREX/D+EHYWN8fHw3mULuq99pzyr2TvucghKCidip7Nm8iUdOIVVGNUxhh50uPoxkmVqIK6fuM9L+h9qmdglPM0PfHR7DzwzQedGww+zZFbu9OABVYZJjk9u4CfAwzjvQcJewAnIFAWAfok5QQdjaDOwC4YLSowLOhW1B90iXlREtXiXBzXxWEpiWg+EfVO63euUoH9wZVWbi3G+wd6hgjaCAuPAeY6vX6zwdn61gKuesq1Rk61fPmqRrp4WF1bCajHkMbOVS0Rx2lUseOPVaJ66OPVuO3enpUCfjmzUqog3re3KyWx4/x8n1cqbNnjyhXk4etyKHJbdtKOIdOdnnctD42rxqUsC4W1f6h4B7vdDc0jBnvqZT6chxVCb9lC8ybV0N3t9L9IyMjCE2QGx3lx3fdxbLv3IKIx0DTaHzXIVCyyZWK/PinP2XZdcsQceVIN+4/c8yZLtlj5eDh5+f5al3JVnOuQ/t9fC+3Zajy8XC7lOVRXABGLIZVXa2En+cx+OKLasyWrrPnxRfJ9vSw99VX1WdSU1Mu5y7PvvY8JaAHBmg47DCk51E1bRpuscima66hsHs3RkUF+519Nl6pRGFwcEKgmTY+dExK/A3rEc3TlPDe1Uu17yHtErguIyMjaKlK8o0t/OTf/o1rDz8A2fE4eB6NjY0AbN2xg/r6eg4+VDnV7e3tdHd38/vf//7P/cr/95A+Q1ufY8qB7eOEtUo5R0qk71HKpgFI1jcx3mSrnro/umHRsO/caMRWRMRfSCSuIyIiIiIi3sFI32NwyzMkapvQDROhm0Har6FG7eSG2fXyOtxSnuqp+9Ow71zywwPKgbMSTD34BIRmUBjehVMcpe2IM2jYdy5CCAa3PEuiVs27FZpGsq4ZTTPViB4R9G5rBhVVk8in+wO3z8BzXMBAxg8NQssyKrBMaEoIG21KaLu7AQtmbgsCz2wliOOHgAhKvKVECek8xA8OxPnrSizLPBiNgAvmTDXTOgxJExok5gEeDF0PoyvV3Gt8KAQqtFBQ4WX9/fDBD6rgscZG9ZqhHRyUBU+opQYlvi+6SAWbzZunorx9H/bdV51HyjFBXlU1ZhUPDATft7FR2mHl+HjXOh4f2x4GlYdfUo6VfcNY+fg44xEYe3lQ2t511WVfcol6m7t2KWP97rvP4YgjWvnaNVdzz09+wpYtW6irrWX5suW856i5tB97LI/98j6IWWzZtpW6SZNYfuMNvGfuXNqPPobHHnhQlYBLVICZ40I2r15YiLF512FQWne/EtqWqRxuydhnLYDtY6FzoWtcFrhSlgPJNl1zDaM7dlC7337oySST3/1uzKRyxYWmseeVV5R4DJ5rpkmysRE3HLElJRWTJtHf2clr99xDRUMDVdOnY1RUkGhoUBUg4+5shELbF6Cd+j6ElPh93YhkJTKb4RPnnce0A2fxta9/nbvvvoete4aoq5/Eja9s56hvfIujTziBxx57DID99tuPoaEhOjs7Afjtb3/L6Ogo27dv/5/60/D2CI3Gg47Fc4rk0zuDn5Vg0oCUSOljVVTiuSVA4pby7HljAwCaZqAZMWKpurcNMouIiPjzROI6IiIiIiLiHYzQdBpnHU2itpmdLz2O9Jxgg1JrQ9ueIzOwBaeYVf8cawaJuiZVLW1YSM/BtfPEKxtwClmSdc1YiRqk0MrnHXi9Ezs/TG7vTjTDRAglNlUZukAzYyRqm3BLBZxihoHXO5G+gxC6cpzRoPhC0PPsqNnW7g6w3wC3OxDRReVYxw8BrUIFj2kJ5VQ7m2H3peANqJLwoRVKLDs9KiG8/3w191qYoFWq0nM8pWBFDBrvgJk7YfKtgAm+pgZHj3esEwkVVvbFL44pWstSqrVYhN27laKVEjZtUiL5xhuVe63r6nwdHUq9uq76/EPFG8679jyYMgWkJG44TJmiRFt/v9rFdSeK5vFOdCiwQxPd88YMYMNQlz9+alZ4CTC2ftMm9Vpz5sANN6jHqVPhjjvu5vXXe7j2mmu5YskSXM9jR3c3Bx14IM92dvKdm2/mw5ddwkBPL26+wI4dOzho1iye3biR79x6Cx/+zHkMbNk2puQ1DaqSypl+ozsQz1IFlpUcaJ6s5l9rYsyWD9PEwznaQiiRHv6cG+oGj5FKIYCXf/xjuh96iNfuvhs9mSQelPLL4EOTnsfkgw9WAtl1cbJZBl94Ad91MSoq8D1PBZUZBietXMkRS5YgXVcJ+eD7JoOf71BUj3fAyQzjrbkPkUwhc6NozW3864/vZMerr/CNa7/OV6+6Ck/T2NHby+wz/plnfv8c3/nud/nwhz/MwMAA1dXV/PKXv+TKK6/k3e9+Nw8//DAHHXQQxl99LJdECIGVqKairhnfVVMGPKeE9Fw1ik83MGMpQODZeer3OQLNsPA9B98tIaWM0sAjIv5Cop7riIiIiIiIdziea+MUs/iujRAaTjEbJPtqgCr1BCiM7CFZp0o9XTuPYSUQQuCW8irMTDfQNB3pe+x66XEaZx3Nzq7Hy/2VjbOOwS3lcUs5EnXNOIVMOdhI0w18T83B3fHsrznguI9jarsQQ8uhfimY05WwJqhX7r8IJt+gnoMS3xXvAQwobFDLwlKCXMRQPdtpMCYHSeKboGKumn1tNATn9wA/6NNeAfVXBeuLKjxNrwUvBjt2jdVLa5pqRq6sVCI6TAlzHNUnHdrEuq62V1SMKdtdu+DWW9UM6/Gp1zBREYeqOGyYDvquszKBlKJcxh3+yxWa3qHGD0+n6yrlOxjlzIYNqkV8xowx0e04YwFm47PYDEPp/6efVpXttq0M9UxGjeqqroZkhc+UqUm2b95MU1sb9guvoE9vhooYRx5+BNd/cwWHz9yPKbP2x87nVbAXcORRR3H9smWceMIJE38wR7KqzFsINQu7eYq6wKqkEtswVhUQzsqOW+q46hT4Pk4geAVq/rQWj5ftea9QwKiowMnnSb/6Kg2HHYYwDCWag89eeh6+bSMMg1x/P0Y8TryuDiklz994Iweccw6p1lacXA4hhJqTHQh+oesTZlwjJb7rYpoG/ur7xtK+T32/cuDL3zyDRGUl27dvp6mpCdu2xz6rI4/k+uuv58QTT5zwUZVKJRobG3nmmWfYd999/+K/Bf8Rvu9Ryu5lcMszTDmwHd0wkUKD4O8DCKTv4pZUwKERq0CiboD4noPvOei6hWZaUZ91RMSfIOq5joiIiIiI+Bsm7Lne/XqnKn0N/ine2fU4TnEUNB1NNxGGRbxqEosWnci73v0e5i44lmOOPZa19/6IPYMDHPHu93DEEUdwxBHvZtZBBzP9PYvp3fYqDfvO4Z41L3Lihy8lnqzm/vt/jRGrCEp2dRJ1zSpN3KpQJeN1zex3zCcxrZgS1qMrVaCYsw0GPqccawxo/C6gqZFZ3m4llL20cp8T85QYdnrGju3/fOCC+4CE+BHqudmqnG801W8t4iCqYfJNahsSvJFAWKdBblPjo0LBlMmoGuzNm5Va3bZNNSSHtq/nqVSw7m74whfUfqWSUrjf/KYqK5dS1Vdfeilks2OWc1jzXSioc2az479xZXN7vI8RHhoyvtTbddXLbtmixPH8+TBtmtpvfE/2+Gr2sBo9k1GToubOVQ42wODgMDt37uS665QRv3rN/dTX1zN58mROOGoea9esAdth27ZtbOvfyaxZs5g0YxonHH88ax9+GHyfbZu3sG3bNmYdcOCYUx023VelYFufml9dmVTCujocTRZ8/pu7lUNdlVRuNqh9R7LlN5UfGKCYTpfnTxfTaXJ9fezt6sIrlTASCRoOP1wJ61AMB2nhoVsthCDV1IQX9Fjnd+5kv7PPJr97N6B6ukUo9IHiyEj5uLDv28lmeebaa7ELBbSFJyBmH47WfiLD+Rw7+weQ6SG8B+7l1z+7e+xzPP54Hlq1Cum66nPcto1Zs2YBsGvXrvL3+Rvf+AbHH3/8X01Yg2oh2bN5IxU1jbilvMpO8F08u4hTHC3//TCTNehWjNzenTiFkQklEZK/PdMtIuKdRORcR0REREREvIMJZ1GP7HqNmqZZNB1yIk4xS3bPdgrD/UydfSw7X3qchn3nYCZq2LtngOrKJHo8xa9W/jvf+MZ1rPl/t1I//V0MbnuO5kNP4pZbv8O6dev4zf33gZRseuZZJk2axKc/cz6fv+Ri3rv4VAD6X/kdUw5sx3MKDG55lqmzj0fVm2vomgc4CFlSDnT/BUpoN69SondomUoIzz+l+qXNFnB2Qvxw9ca0pHKcw2MrjobKf1Y91frkIN7YCtK/YyDt4BhbHeNsh6Hr1GvoU6H4PJjNau51bAE88pQap7XPPmPK1HXhmWegthZuugmWLFFjt5qboa8PFi+Gs89W20IHNRxKffnl6hyGAcuXq+dNTSpBrK9P2cTV1WOx37pOliSuq9LCQ3c5NMlhzK1++mk4+OCxlO9QNI9vAYexSVah823bY+XmFRXKeL/0UnX5g4Nw1VU72LbtQ6TTBYpFjSPeNYlv3XADh7/rXWzdupXzzj+fwcFBNNfja9dcwwc++AEAte0z5zM4NIimaXxt6VI+8M/vV0K5KgUNNUGIma5KvEdzsG9bMJaNiSnh48vCJaoXu3sXzGgBQ8cuFvFtG80w1KFBiveJxxzDYCaDEYtRmUpx87e+RVtLCycvXlw+dT6fZ9v27fRt20Z1KoUwDK674Qb+/Re/QJeSxuZm1q5aVU4Bl56nZlwHIh4h8Eslhv74RxJTp5JsbuaXc+YwffFijrr2WoTr4Pd1053J8uHPfo78wACaXaRh8mS+deddHH7EEWz5/TN8+lPnMeRJNNPka1dfzQc+oD7Hz3zmM6xfvx7XdZk3bx7f/e53qamp+e/+SfiThM610HTs3DBGrILBrc+pvw2xFE4py57Nm8rj9jy3iFsqkKxvoZRNM7j1GSbNOJJYqjZyriMi/gR/zrn+azd+RERERERERPw3EJrO5H3nAtA462js/Ah7Nm9k0owjqZ66P/l0PyO7XgOg+dCTqEzEKOWGSVgVZHMFNMOicdbRFEZ2q/MIjR//+E6WXXedCjjyHN79rkPRdBNVYu7S/8rvqN/n3aoXUzfQtBRNB58AAtxSEStugVQl6lIkEHgw5Tao+pSaR51/CrK/BUyYcpMSx/mnIH4YatZ1BuVQa8rJbrxdLRPMtZYFGFgKk5er/mx0EIZKD9/9Faj/CoiEeo2qc8CYDhXzwNsDiYXwRKcqC6+oUE51KI6bmmDBAjjvPFi5Un3AX/wiXH89fO97cOaZqs+6v18J6KVLVUp4uO8PfgCf+9zY8+98RwWeLV8OV16p1PH45/seVp7ONX7sVjifOkwKnzNnrGw8LBfXdeVGV1ePjd+CsVJw34d0WpV8T56shLcQSlhblrrUa6+dxowZm8rXUJX01Pzjos2M+sk88eij6qQSVTr8RjfMaGFGUwtP/PDH0DZVzbAOxfL+gY1eKCkXurURGmqhsX7cD2zwaLvBuK6gbD4sBY9bY+fxgjFYnkdpeFiFlQFoGr/8zW+oqa5Geh6//s1v+PQFF/Dcxo08u2FD2b2+6dZbWd/RQW1tLUIIvvuDH/DHl17ihWefxTQMBnbvxrNttOADH3rpJWoPPBDNMCim08Tr6hCaRu2BB5J+/XWSU6fSdsopHHTeeQgk3ppfI7teoHX24WzseAo5PIS//jG09hMRkxrA9ZjevZlHPnSqKh8/40xELFb+KO64446/5Ff+L0bTdGIpNS7MsCrY1fXEWGChbmDEUjTOOlptjyXQXBMrWQdSMrj1mbG/I4eciO97Uc91RMRfQORcR0REREREvMPxfS/oq5b0/eGRsRm0hyzCLowEbtRcrIoqCsU8n7nwIn637gmE0PjNr1Zy+BHvCUSOxpO/W8dZHzmbNza/RtzQ6X/lSRr2nYNhJTh64TwuvexLnDD/UKxEDWZFisEtz1J/YDuOFFi6jikEngDH97A0geW9oVK665eAMQ0GLoD6K5WDHD8C6e1BDC1T280ZwdzrFcHc6wOQztZg++WgN0Hx92A2Bg6orpLA6y8HXY04YvRXUHgKGm8LXPHmYJ8l4PQqh/zuDvjd08jbbw9CzwTs3o0o2SpGe8cOWLECefPNUJmCN4uIMNhMCKVa8zmVKCZR5yuVlLMtgn7uX/0K9pkO7e3BsYAmkIaJC/hShUyFyDc9H78ufFn1XMPzJFKCYWiAP26/t57DcZQ7Pnb82Pbx7eJqJrhEShchjOBRQ/MAXcfHAwRSeircjvGvrZfXq0cdXWpI18UzJLowMbcNwD7NOLj4eEjpI0To5/jlc2vCRAZtAJ5m4usWvhDolJsDEK7LPffcw4++8x2eev55RHD1upS8Z/Zsrl6+nNPe9z40KTmwrY0HHn6Y/WfMwPN9tHgcGZzPC+5YaI6Dq+vouo4A7EIBo1Qibppouo7veeixGJoQyKHdE8W0JChB0BG6gXTdt+wj9HeGb+V5Lr5TxCnmGNz6DFMPOlYlg2/ZNGG5Yd+5mPFKnOKoyleYOaecuRC51xERbyXquY6IiIiIiPgbx/UlBU/iojE5mEHbsO9cCqUCrlVFw8GL8GJV5DzJKAbxD53Js6+8ytKvfY2lV38DoRvohoXt+fzkp/fwobPOIic1XKExsus19mzehOeWcO0inmYQa5qNrG7CM1PUzDqWEgaDRRtHCopSkHcl67t38treUezSwLgxWG6wfD1UzEVqFUo4B9sl/lgS+NAKwBu3fQX4w2qG9dAKMKeNG7G1Ihj3lYHkIiWkMZGJhRPHcBmT1Ot84izkHXeAAOm5eA/9BhmPIadPR8bjyP33R/74x8iK+IS6a4lEpofwd3Yjcxn8nd3gushEElwXv2cb0nUDYR0I14o48pyPw8KFqltV05CGjtQ0PN8jPTzMqlWrGBoaAmB43HPbtvF9n6GhIbq7u0mn03R37yCdTrNq1SrS6b0UCln1ueKXj1X7dTMczOy2bZuhoSEeeugBpPTHHZ8uvzchZLBvAfBJpzfT3d1BOr2ZVavOZ3h4K74OfiB+h4e3smrV+aTTWwEZPP9McNx6hoe34nklhobewBMeQ9ltrFp1PkPpN7Db6rFxKdojDA29Hpx/C77vUCplGBp6TZ17eDMABa9EybAoaBrrhWCbEHhCcMEnPsGsGTNYfvXV3H733fiBCy6FoHPDBtLpNIvOOIMhIchks+weGGD1gw9y7DHHcPxxx/Gze+9lIDzGNNE0DWlZCMPAFQJHCDYmEmyrrsazLIyKCqxUCt00VXp5/WTlRgeiWRgGIhYrC+i32+edgq4baIZZdqQ912bPlk1vWd6zeaOaCKAZNM0+HqeYxYinovnWERF/IZG4joiIiIiIeAdjuy6vDg1x3gMP8NrQXkSihuZDT0KrqGFrtsinV61iuGSTsW2KrkvKsrj55JPxETw1qYF1Tz7JwJ5BbNflxd5efrFyJce9//3KGRQGzQvPZdKsY9GNGPHqKUhN9aNKQGo6PhqO55EwTTwpcXwfXdOY39pKwjQpxhZA5ZnI+iVIjGD5KkqOjuvqyPqlwbqleP7Yc+qXIjHGPb8CqdWAO4isvwop4kpEB9vQqpFaLRgtIBJIZzu2zbjjl5SP9bU4Eon34K8gO4pobsXvUPOHZXoIb9W9yGEldr3V9yGHdiPtIvg+MjOsxi9lRhDJFH7fDkgP4q35NWLyVMhl8Vb9EpkeQtpF9RrpISWs00N4q++DkTRC0/GExvr16+nq6iKbzeK6bvl5Z2cnxWIRKSWdnZ0kk0k6OjrKj11dXeXnuq4jpSwf29HRQSKRYP369UgpKZVKdHZ20tXVhZRywvFSSmzbpq+vDyklpqmc546O5SSTDXR0LKerayXr1y/H99VoLCk91q9fRlfXSjo6liOly/r1y8vPE4lJrF+/DBDEYqny+cLtvibx/BKl0gidnSuC8y9DShfbHn3TOg+px+kWGhcDDUBYWH3F3XezqKeHpdddx9e++lV2A9uBHPCtH/+YU885h4sMg2zwe+K6LtlCgdUbN3LXL37BtZddxp4XX2QrcD6wGXCFwAd2oyrYjwJ6NQ037MMex5vF9Nvxn9nn/wqhGeWbcbph0TBzzluWG/adC5qO9F3yw/0kaqdiJWujkvCIiL+Qd95fgoiIiIiIiIgytuexbP16VnZ1AXDnGWcQi8UolEos6+hgZVcX3z3lFBzfJ5/NMpDL0e37tFRVEd+8GS2RIFldje15XPLNb+I2NLBy924WahpbhodZtn49S9vbOaC+TpU5C4FgrHVWE4KYYaAH60dsm12jo6zo7GRpezuNWhLZeDuZ0RKGIamYcgfbtu/k33/xA2bNmsWpp5xALFjXOFUw0G8xfdrtSDR6e3bR0jIDrfF2QEciKGpHsqtvL21tGsKYAZN/hKaZ+FKSzRaoqgSpTyYzapPLZykV1flAp+RNZVffXpqmQgyJ7HpBdXYfcxJi+kw1cqjjsQnrJ+yTNBDNbfh93WjN0/DW3Ic27xj8jseRXS/AsSf/yeP1xR/EC/YLnwuh0d7eDkBzczN9fX3MmzcPgPb2duLxOEII5s+fTzabZeHChWQyGRYuXFjeZ3xpd3iucL9weywWY/78+QAIISYcn8/nqaiooKUlrGJUfe0LFy4hk+ll4cIlwTmXoGmBIys02tuXBuu/Si43yMKFVwbnvArDqODUU78HQCrVCIjyedrbl6BpJlJ6xGLVzJ9/efk4IQwsq/JN63Q0K8FyIOhk5zZU6ff1wOWA/olPcMmFF9I3NERzfT27slmeWrmSo595hoeCY26vqyORSvHHj30MC5DTp2MsWMDaZ57hY4cdVj73HcA2oBcoBK+xREqMN5XY/z2gaTpWqo7mQ08CBJZh0XzIIhBaeVkE4/lEqg4zUY3Q9EhYR0T8N4h6riMiIiIiIt7BhM71svXruaq9nQMmTcLSdQqOw+tDQyzv6OBHp5+O43k898orfOyss6g1DDygcfJkvnj11fzTscfieh7HHn00Z597Lmd//OPEDYO841BwXf7l61/nsXvvZc+ePSRTKSricW6+7z6OOeggEqZJyXXxpKTKsnClxPV9tg8P871Nm/j2Kafw8KpVdHV1MXv2bBYvXszw8DAdHR0sWLCAVCqFYRiMjIxgmiaO45BMJlm7dm35mGOOOYYf/OAH5WXf96murmbVuPOedtppjI6OYhgGlmWhaRpr1qwpbz/11FNZs2YN7e3t1FVVqb7dB3+pemFr6tSIoVwWbBu/Q/XIkkjir/0N2oLjIFUFhgp1E66LtCxI71VOdlWNOubkf4JcVi0vPB6SKfy1v0VrPwGqa2F4L37H42jtJyBq6yn5Es/zVH+vEAwPDzMyMkJzczNm4JSG/4eN76XWNA3f99+2T3v8dk3TsG17wrleffVVWltbSSaTeMGcLk3Txh3jUiplsKwUINE0C9ctoGkGvb0bmDLlEHQ9hhA6rlvANBNIKcnnB4nHqzGMOMPDOzCMGInEJBwnz7p1X+fkk29CSo9cbg+lUpba2n1w3QKGUVEuO1ZvdaznOjynrKhnsxAsB5YC9cPDZPJ5Sk1NtAL/dP/9PHXxxXyop4fbheDOH/+Yu+66i//X0cFy4MtAC7Dw/PPZevjhDH7uc5y3dy+/ede7OOHee/nlnDlcACwBpqNc7C8BN6EE/ZnAnUDlX+uXOCIi4u+GP9dzHYnriIiIiIiIdzi261LyPGKGgRXERmdLJZ7csYOGZJJ9amowNI0LH3yQlV1dnDl7Nt8/9VQqTBNT1/F8n9eHhujNZGipqmJ5Rwe3nnwyA7kc13d0sGThQmbW1vLkjh00V1VxfUcHX12wgCmpFJetXcvl8+fTmEpRE4uxOZ1meUcHVy5cyPTqamK6TiadZv369bS3t1NTU1MWjH8qtAtU73F4TCKRYO3ateXjQ9LpNB0dHbS3t1NdXU06nSaVSmFZ1lvOUVtbWxacJnIsfEyM8+GlCuUilwUrBrEYQsrAsQfp+SCCvYWG9DyE5yKtGEL6SMdBDuxCa25VIWiCcfHdYRKZj9Q0hC9xhFCXMe59h8s9PT1MnToVgNHRUTo7O1m0aBGmaZb3Dd9POp2esF1Kie/7ZdH+dp/xmx9936dYLJJImAwNvUZn5wrmz7+c+voDGB7ewlNPfZMTT1yBZSXHncsnl9tNLFaFEDqZTA81NdPp7d1AVVUznZ3f4sQTb8T3XQyjgnXrvs7RRy/BspIIYfLII5czefJBHHzwWei6heeV8DybRx75CgsWfIV4vJ7HHvsqJ/zzPewWgnrABJ7bsYMvfehDFAsFNE0j2dBA1be+xTcPP5z9gOPmz+ecz3yGT37yk+SBjcC7gdeHhjjrk5+kautWHKD6c5/jJ5/7HPsBDmPlmluAHpQgXw5cBRwARPFdERERf45IXEdERERERPwdMt7R/pf2dvaprWVLOl12uPerryduGNiuS8F1OX/VKr40bx43Pf00K7u6eOWii7h63bqyGL998WIc3+ei1avL66455hgO+sEPystNlZWcv2rVhGOE52FqmpolLETZSfU8DyEEuq7j+/7bisE3i87QXe3r66OpqUkFUAX7jBfatbW1lEolDMNASonrujz66KPMnz+f2tpaLM9FFvJqJpUVDwT0RIEtXBcZDKAWphmkg2sgffzeHYgpTQjTKg+blqj0bqREagLhOMhiAZGqRClzH5nLqiTx2jr1WQgljE3TJBmMmXqzyP5Tj2/+fEKh/R/t9x8J6zGX22fVqvPp6lrJ7Nlnsnjx7axadT6trQuYNu1oMpk+qqqaGR3dRWPj4WXnWQiDoaHXyWZ30tw8lzVrLqK1dQGtrQvo7FzBwoVLqK2dSTq9hY6O5eXntj0KgGVVAj6+7+E4eWw7Szxew6uv/pZZ7/40mfC9oErBL0MJ3lEgjioTj1Ee4MYo0AXMC7ZpQAklzo3gPOH6zwOXApOBrwA3ADpQFZwvRiSsIyIi/nNE4joiIiIiIuLvENt1KXoeGmAFjvabHe5QgFcEJeB/yrle2t5OW1UVhqaxNejDvqq9nUmJBJeuXcsVCxbQlEphaBp9o6Ms7+hgSXs7M2pqEChB8+bRT+Hz8e5yKpWaUKLsOA62bVNZWTnB0W1paUFKVVJtGMaE84Zl1uPFpud5/OhHP2LatGksXrwYy3UQhqHcZ7uI7N+F1tSKNHQYzUAsDppQrrOUkM0qFzuZQgpNudShw50MkpOlr5xsTZs4ukv6SKEhd/WiNTYFAl2J+ZKcWBYe3nBwXbdcyv2nSr//I6EN8Nhjj3HcccdNENzhfqBc/bAMP5PJ0NLSEpRnq6Twjo7ltLdfRW3tDByngJQ+jz56Bccd9w0cJ0siMTkQ5i59fZuoqmqlpmYaf/jDz5g582RcN4eux/jd766jpWUes2a9H8tK0d3dwcqV72fWrA9w+uk/wvcdQKBpOlL6OE4egP7+F6isbKK2dga2lSIjBGbws7QNuBn4Pkoww5hoLgAVKFGso0Q0jIluO3h0g2NMlEN9EnANcBCqDPz7KHEdieqIiIj/CpG4joiIiIiI+DtjvGu9tL2dA+vrsYy3ZpRmSyXOe+ABHt6yhU2f/jSTkkmcwGm2dB1fSnwp0YXA9X325HI0VlbiS0nBcXhxYIA5zc2Ymsb67m4+9dvf8rtzz6UhmWQwlyNpWSRME81xALAsCyllWex5nkdfXx/JZJJcLkdbW9tbxGIoOIGy+71mzRpOOOEEcrkcnZ2dnHjiicRisQnudVg+/uZS8/qaGnQISsIDp1n6yL5uRKpS9UTPPxZRPxnp2AhNQ0oftMBVFwLpOgiEcqs1vTxvWYZCX4wbthKI64nuuEQKgcOY4xxe6+LFixkYGEAIQWVlJTfffDMtLS2cdtppOI6DaZrk83m2bdtGd3c39fX15ff4xBNPcPrpp3PDDTfw+c9//k+612EVgJSSXC5HsVgkl8vR3NyMrrt0d3eQSEyioqIO182zfr1ymqur2xgZ2UFHx/W0t19FVVUruVw/ppliz54uWlvnofql/WDOtRLLudxuMplempvnYBhxPM9G1y1sO8tjjy3h5JNvRtMMfN+lt3cDlZVNVFTUMzj4Ci0t83GsBDJI8dZQjnMB1QMdOtehw6wmdCtnezmQCtaFtx0EY+J6D1AMji+gksgvRZWB7xesj4iIiPivEInriIiIiIiIvzNC0RyWZ995xhlUxmJv2W+8CF/S3k7vyAgt1dXMqKlhSzpd7rfuz2aZ09wMKHEigYLrIoAKw8D2PHZls2XHet/aWuxApOvAyNuI3pBQEC9cuJDa2tq3rMtkMkydOrUspMf3HWezWbZt28b++++PYRisXr26HGB2xhlnlF3xhQsXUl1drcrQheD000+nf2AATRNUpiq59cYbaJsxg0UnnQx2Cek4FAyTrdu20b9tC/UNk/nk+RfQ2dlJRSJBKpnk5m99iyNnTkdmRtCa25C6jvB9VQqerCwLaAFlp5rgsxNBz7f9NsJ3ZGSkfK2/+c1vuO6669i0adMEp/qWW25h/fr13HPPPZimia7r7N27l+OOO459992X4447ji984QsThHtIKK5d12VgYIDW1tbyegAhfHzfRkoPXY8zOtrL1q2PUle3L62t8/F9D9sexTDi6HoMx8ljGLFyArgQGrncHmw7R13dDHzfJZfbTTxew65dv6e5eW5wk0RTn4R0EcLAdYuAH/Re22iahaap9TJRz2jwWYYd3xpjfdLqSCWGc8H2AWBfxsR2IdjWEDwfQInzfLBOZ0y4R2XgERERfyl/TlxHc64jIiIiIiL+xrB0naXt7Zw5ezZXtbcTexvXGlS5+IH19dx5xhkcUFfH0dOmcUBdHb6U9GUyfGnePHozGY5samLHyAgXPvggO0ZGsDSNTKlETNfJBa709Joa7jzjDFKGQaZUYiCXY9S2kVCeq7x+/Xps28b3/bLIe/PMZYCamhpOP/10qqqqaGlpoVQq0dHRUR4Xlc1mKZVKWJbFIYccAoCu67S3tzN79mza29vfMvcZYNWqVewdHub//du/8cJT63n26q9y6Xmf5FOf/Sz1lZU8d99Knn/+eZ5/9VU+c+4nOOWE46mrqUHmsvzz4tN56cUXeeHpTq645GI+/NGPQu0kRLJKCWrPQ+pGWViHI8skEnwPGXwpsc2Yiw0ThHN1dTWgHO2RkZGyWz9egP/0pz9l8eLFmKaJZVkIIbj88stZunQpkyZNKrvV4x3x8FGVfmuYpklra2s5/Gznzp0TfjZ0PYaULpWVzRx22Dm0tByF77uk01t55JEv4/suw8Pb6O9/HiHUbGzPU6I8mZxCbe10fN9FCB3LSrF27WU0NR2J6xbIZndh26PY9ijd3U+VhTVoeJ4q3NY0E88rUiymVegbMAxkUK5zBiWQXdQNnwqUMNZRIntGsE0G21NAAuhAzcL+GrALmIIS0uH2SiJhHRER8dcjcq4jIiIiIiL+Bnm7BPE3b7c9D0vX31IynrdtRkolRkolqmMxKi2LvOOgaxqmrrN93PzrfWpqeH1oqDzXemZNDcOlEqO2TaVlURWLkX9TavfevXvp6OjgpJNOIp/PTwgiGz9ianxf9fiE8bcL5HIcB9d1SSQS5ZLnN6eFO45DsVgklUhgOiXk66/xrxs28Z077uD3m56BYgEcG2JxZr/nSJZdtZR/PvPD5cAyhvdCZRVD6WGa9plBbvsWjHiFOqayCgzrLeXfb7sMIH1soULEwnL58H1/6lOf4sknnwTg/vvvL99AkFKyYcMGPvKRj7B582ZM0ySdTnPvvfeyceNGfvzjH/PpT3+aWbNmcdlll5V71/P5PPF4nL6+Pqqqqqiurn7bXmy17BB2KisnWmd4eAfr13+D7363m/7+fjKZHeyzzxxWrLiWGTP255RTFpdd63y+yPbtO+jp2UJ1dSWnnPJPdHf3kEzGMIwYH/vYWVxyyecQQi+/hnLSCzzyyFeYP/8rmGYCxymQyfTQ3DwXP1HP60KwAhVmdgAwAmRRIWQS5QaFn64EhoB6lLNto3qrw3LwUHDvQbnWGtGYrYiIiP8ZIuc6IiIiIiLi7xDLMKiMxf6ksH51aIjzHniAV4eGsF13wnYpJTtHR7l63ToGcjlc38fxfXYMD5OzbZatX8/Kri6WrV+PLyUrOjvLz10pSVkWLZWVJIJQrtCJzmQypNNpKisrOf3004nFYtTW1rJ48eIJwjoU0qEYtm2bvXv3snr1amzbLl9nmDLe19en3pdt09PTU57fXF1dXT63lBJd10mlUghd59zPXsT0932Aq2+4kZ8uvw7sEsJS6d9Pb9pEemSExe97H4S+qZRQOwlGM9y6fBmnnXwSxqQpyqmuqUPoJvie+gKk7+E9vArpe4GwBkLDQkqk6yKlxLIsbNsmm82W38Ntt93Gli1buOaaa7jqqqvK71cIwU9/+lM++tGPlkdulUol7rzzTm666aax730w5zvsrbYsi76+Ppqbm6msrHxLqvhEJL7v4bpFens34vse1dUtzJ9/Bbfc8mVefPF5XnrpNT796Y9w4YWfp7o6xRNP/JoNG9bzzDMb+OQnz+akk04kmTTI53cjpcc3v3k9zz23iU2bnuLss09h1arzGR7eSqk0wurVF+G6eQwjzlFHXUZn5zeJx6vJZHpIJhvo69uIBFagZk6vYCykrDZ4DHuq88CGYLmBsRaG8DfARZWGX4wKRUui/tF9a8NERERExF+HSFxHRERERET8nWF7Hj0jI3xp3jx6RkYoBWI0xANWdHby8JYtpIL+5ppYjOk1NcR0nSULF3Lm7NksbW/H0LRyCfrSoBw77zj4UmJoGgJVxi2EYMqUKRiGUU4Ef7MbHZLNZsuObjKZRAjBhg0baG5uZnR0lJ6enrIQd123PJYrmUwyZcoUent7SafTrF69uux+l0olVq9eTTqdRkrJv95xOzveeJ1rr/4aS777fTAM0DREMsWP77mHj3/0o5hWTOlq14Wgx/xnv/4Nv3z0MX70zRWQHsLv2aYcU98DNxjx5apSee3kxeq9CZB2SYWoASARpoUWuMajo6OsW7eu/J6NoJLgYx/7GE8++SSDg4Pl/X71q1/xsY99rCyOn3/+efr7+5kzZw77778/v/71r1m2bBlLly5l1apVpNNpLMtiypQpFAoFDMPAtm2coJw/xPf9CTcudN2ktXU+IOnt3Uh9/X4cdNCJuK6NZaVwHB1NM9B1k2RyMrpuYttZ7r773zn33I9jmgk2bPhuUDKu3reUHnV1M5g+/USSyUYsK8m8eV9kdLSfNWsuobKyiVNP/S4Azc1zyeX20Nw8ByF9lqBSvK9CieYEyo3ew1igWQo4FCWyw39gQzd7vGs9D7geVWbuE5WBR0RE/O8RlYVHRERERET8nVFwHF4fGlIBZAsXsn99PRWBywy8ZURXfzbL3OZmPCnRhMDQNLwgRdwP1oVievPevSzv6ODy+fNpqqwkZVlg2zz22GOccMIJ5TCyPzVOCsbGT705kCzs09Z1HcdxyiJU07RyCNr8+fNJJpMMDAwwZcqUck8yKFf48ccf55RTTsFyHdB1cF2Sk6fQ/cor1E9tJDc6StM+M9j48EMcePDByIFdiMlTEZbFL375K/7lmmt45JcraZs5E2wbKpIIXVd91Zqm1gmBCEvZw97rcYnhUvoIKbGFhkT1gnd1dXHhhReya9cuEokEVVVV3HzzzfzsZz/jD3/4A67r8vWvf53nnnuORx99lIcffpiFCxeSSCQwTZNMJsP69etZuXIlRxxxBBdffDE33XRTOdxtaGiIzs5O2tvbqaiowHEcHMcpB8dVVlYyMjJCfX0Vvq9kqErw9pDSx3ULCKFx4YVf5Mkn1wOSn//8NvbbbxqZTDfNzXN55pkX+fCHP8qWLS9jmhZS+px00ukMDOzGNE0OOGBfrr76Sg44YDZDQ6+zYcMtLFr0TVSwmYeuW/T1baK6eho1NfsEYWc6jpVEClHuqfZQpd4DQDcwl7EZ1wawGyW4U8G6UGAXUX3WjUA/qqS8ligVPCIi4n+OqCw8IiIiIiLiHwzP91ne0cHKri6Wd3Tg+v6E7WHQ2eRkkuUdHRzZ1FQuxQ1HGQnAl5Lu4WE+/cAD7BgZQUrJNzs7WdDaStKyyqJbSsnxxx+PpmnkcjnS6TTd3d2k02lyudwE1zrsoYaxcvLKykoymQwPPfRQOQzNtm1GRkZ48MEHGR4eZnR0lLa2NqqqqojFYkydOpXHHnuMTCaD4zh0d3ej6zrz5s1joL+fU/7pfRw+Zy4zDz4E3/PYsbOPvXv2cNAhh+D7Hh/91HkceNi7iB14MOmREX7xox9y/mc/i64J3nfWR5nbfjSPb3oWdA1cB7+vB3wfYZqg63gPP1h+PwD4Hn7vDuVqCwGaBkLgOE45iG14eJgPfvCDvPe97+Woo47il7/8JZdddhkVFRV0dHSwatUqjjzySEqlUjmorVQqTQhv2717N67rouv6hHC3zs7OcqhcqVQiHo9PCJPTdZ3Ozs7y90FKPxDZoOsW+fwe1q69lB/+8Fs8++yDvO99LVxzzY3U1LTR1rYQw4hz11138d73tiNlCdsexXVL/PjHP+QPf/g9zz77NAsXLuDDH/4EILCsJEcddRmjo7tYu/YL5PNDFIsjtLUtpLq6FQhbBHxV/YAS1VlgEOU2T0cFkl0EbEWFlW1BlYQnxv08i+DLA3pRYnomUEMkrCMiIv53iZzriIiIiIiIvzPGj+C6qr2dAyZNetve7ILjMFwskjDNskg2dR0BfHHtWr5+3HFUmCZ3v/gim/r6+P5pp5F3HHaOjrKis5MlCxeyb20tupQ4joNt2ySTSTzPY3h4mHg8juM4ZDIZmoNRX0DZkQ77qadMmYKu6wwPD5NKpbBtm1gsxsDAAENDQ8ycOZPKysqySO/p6aGyspIdO3bQ09PDKaecgud5OI7DwMAA5557LrlMBjNm0VA/iVOOOpJ7fruK53/3JAtPX8x5Z5/NJ885h5u+9z2e7HiK+y84l4oPfYzJDQ00TJoEnkc+vZfd+QJDvT2wqw/R0obwJf7ObkRjE8Iw1Q2J9F5kPofWMk251oAIZl/bbxMolk6nyWQyVFVVlYPeDMMou8yh8xw618lkEsMwys71ggULSKVSxGKx8iiuN4e7JRKJcml4eM5UKkU2m6WmJkk6vZmOjutZuPBKamv3RUqPVavOp6trJRdd9Arr1l1NV9dKbrghxnPPreXll3/Au971BQ499ETWrPkZc+acgG1nyWb76excQXv7Uioq6nn44S/ysY/dz6uv/p5nn72WhQuXkMn08vOfL+ass1Yxdeq7GB3dRWfnivJcbSE0nFhVOdDsRygHegSoRpWAPwicgnKkx4ebeage7AZgKipR3A0eTaJy8IiIiP95ojnXERERERER/4D8uTRxUOI65ziMFAokLQsJJIOybtf3yTsOfxgY4D1NTZiahqHrOJ7HhQ8+WJ6xffvpp6MHid9CCGzbLi8LIeju7iaRSBCPx8v91eNnMYfBXfl8vrx9dHQUy7KIxWIMDQ0Ri8VIpVJlgep5Hn19fdTU1OD7PjU1NeWy6Pnz51NfX49pl8AwEK7LT//93/n2977P8xs3IHNZsFTE1ez3HMnyb1zL+977XqRdwn90Ndr8Y6Gykic7nuIDHzmLgQ1PYbS0IQ0DHEeVgzs2/hOPoC06bayfPJ9HpIIxXfhIx8GxlG8qpSSXy1EsFpk0aVI5iCwUx+OD3kKxPL6cfvxnFn6utm2j6zqapuG6LsVikXg8TrFYxLIsTNN8y2uox0JZSM+efSaLF9+OEAY7djzPunUr+MhHfkg+P8jNN1/Ev/3bNm69dQEvv3wv/f3v4bnnbC6//EAWL76NbLafxx77F5599pfMnXsmxxxzDRdffBCPP57g5Zef5Qc/OIjZs8/k1FO/z5o1F3Haad8nnx8sC/ezzlpFVVULHR3LWfT+f2OTZjAn+LnUUeXdk1AiOQw0ywEvAEcG+1wCfBnoQ43mmooqH6/4H/1NioiIiBgjEtcRERERERERZcIRXbqm8cbevSxbv55bTz6Z3bnchF5qXdOwdB1NCL6wZg2XzZvHPjU1DGSz1CcSOJ6HJyXVloVbKvHoo48yf/58RkdHaWxsBCiL7DeXhYf91GF/Nah+6f7+/nKJeHNzM4ZhkM1mSSQSE44f7waHwrG7u5tkMkkul2NaSwtmJs0nvvQV1q17EoRg1a/v49DZs5FCgKbT2fkUHzzrLHq2bEEP5kULIfjqVf/CL++7j/TwMPf+/Occd+hs/KeeQFt4AiQSyIF+tJY20LTyyCcQ5cRwv7cb0TAFYcWwA6c67Hs2TbN8A+HtRnT9R8vj1725pz2XyxGPjxVAF4tFXNclk8nQ2NiIEKLsjluWIJ3eQkfHctrbl1Bbux9SeuzY0c1HP3oOxWIRTdOYNKmeG2+8ntbWBB0dy7nxxld5//uP41OfOo/a2pmUSiMMDGzh5JPfi2XVYxgmMMS3v/19jjxyAWvXXkp7+1XU1s7A9100zaBUyjA6upPOzhVl0d3VtZLPXtaLVdmEIwSbgDZUObgJFFDjub4E7Ivqsd6NcrefAJ4CvodyrKuZWC4eERER8T9NJK4jIiIiIiIigInl4t8/7TS+8vDDXDJ3LjODUVbbh4dpqqwkFgSd5WybSckkUkq+uHYt3z31VLak0xNEeGZggKmTJ+P7Prt372bKlCnkcjk6OzvLQVqhkA7FoOd5jI6OlgPKUqkUMFYurut6uS9b0zRGR0dJJpO4rkupVCKZTJbLpNvb26mpqZkgYuvr6jDC/298j5/+2/9j5c//Hw989pNoC49H1E7ivPPPp87UWXHttVBbB64L0keYqpj44V/8O1fd+h3Wr3kQ/fabEYe8G+20f0Z4Hn5fNyJVFcy+NmAkjcyMoDUHDvfwXkhVYusmPT09TJ48uTw+K+w5D0vEa2pqAMrJ6Lqul5fHp64LIcjlciSD74cSyhPF+fDwMCMjI7S0tJRvWoSO99q1aznqqKOorU0F673y9nAytOsWcJw8icQkhDDwfRspfTTNKIefeZ6LYViMzcr2EUIrL2uaiZQ+UnpomoGUIKWD59kYRgIIHXid4eEtrF+/jJM/8HOyQkNHCWoX5VzfAtyMuoGho/qxvxJ8JVETu12Ua60T9VdHRET89YkCzSIiIiIiIiIANaIrnGG9sbeXW04+GV0Izl+1iq3pNDPr6tCEoKO7m8FcjvpEgv5slqLrcsvJJ+NDOShtRWcnw8UitZMmkc1mefTRR6mqqiIej2NZFieddBI1NTUYhoHv++XxWatWrWJ0dBTTNOnq6qKzs5NSqYSmaXieRz6fB8aCz1zXLYvNXC7H3r178X2fVCrFvHnzyGQyACSTSRYtWsTo6GhZmCN9pKZz7tkfZV3n06RnHY6orSc7muHeX/2ST338HIjFlDgN0tRlegjvwV+x6OSTGM1keGnbdrSzzkM/9X3gOHiPPIiY0oSorUOYJkLTEVU1iJbpQXK4QNTUq/VC0NjYWC7fBsrC2vd9amtry+8VmODihyPNxovnZDJZHqkV3oDIZrPlELiRkRGSySSrV69meHgY3/fLY82OP/74INBMMDy8nVxuDwCaptPXt4l0ejuWVUUiUU8uN4jvO4GoNnGcAj09nQghytcIobAeE/FC6Pi+g+87OE4hGNGl1ut6DNse5cEHP8vw8DZ6ejqoqmpj8eLbAYGPEssOKhE8CVyHEtuSsTFbc4DlqD7rVmC/YN9IWEdERLwTiJzriIiIiIiIfwBs16XoeeRsm6888ghLFiygraaGkudRdN1yr3UpKBu3DAMNSBeL1MTjVAS920OFAiOlEpVBWnhSCB5+6CG6uro466yzqK6uxjAMXNdlZGSE5ubmskhcvXo1XV1dzJ49m8WLF5ed2NDRtm2bPXv20NTUNKG3GJQA3blzJ8lkkqeffpqFCxeSzWZpbW0tu+Ew5nQ7uRxNUxuRQnD/b37D57/4JbrfeAOhCe68+Sb+9de/4XdrHlRJ4OsfwzvqaHYMpZnxxh+Rr73Eswe8i9PP/xxvvPwytcJHZjJBObgelIAL/N4diMlTELqB1I0gyEyoVHEpsXVjTOgH1xaK5VBA9/X10draCoDneXhB//qbhfX45fHnHHOka3FdlzVr1kz4jEulEq7rlnvWoUQutxvHydPZ+U1OPPFGTDOBEGGvtxqZNR4log2kdOnr28TkyQdjGHHy+SGSyQaE0PE8OzgudLS9svBW701td92iCs4zE+V9SlaSohCEk7lzqP5pH+VIPxU8b0M52gVgf9QoroiIiIj/TaKy8IiIiIiIiH9wxpeDL21vZ0ZNDZoQvBHMrF66cCFt1dUgBIYQeEEp8dO9vUytrOT6jg6uCo4reB4be3tpq65m39patHFJ1aeddhoPP/wwp556alkMhu6zZVmk0+kJfcfAhP1gbKZ1Z2cnixYtQtd1PM/Dsiw8z6NQKJBIJMpO8PjjQ5G9a9cuPvbhM8nvHUKvqqahYTLfvH45h82eDdJn4aKT+fQnzuGTnzoP7BLS98lnRjj5zI8wkhnBMEySiQTXXn01xx97TJAKPhT0Xh+PHM2oxHBTlWXjezCaAdNCJFMgNHBK2GaMdDpdHiMWutZvnv9t23b55kIsFptQ7h0+9vb20tjYOKHE/s3vX9O0CanhYcm57/vlsWhtbVOR0qWn52mamt6Drlv09m6gtXV+uTd6vJhWAlkGLjQMD/eQSNSye/dLNDfPRdP0YFv4vsbKxMP51kIYgI+UPvn8EBUVteXXGR7ejpaYhBn0XDtAJUqil1COdRx4GlgQrJNAHVEaeERExP8+kbiOiIiIiIj4BydbKnHeAw+UE77vPOMMfCnp6O6mIZmkNh7Hdl0aUiksXWdPLkfJdamJx/nSI4+wsquLVWedRUt1NcvXr+dL8+axJ5fj6GnTqIzFcF0Xz/PKydVhb7RlKfkjhMCyrLII9H0fXddxXZe+vj6qqqpIJpPs2rWLlpYWCoUCW7ZsoaWlZUIC+PheY6CcOC6lxLIsRkdHy+JUf2AlonU6YtYhkM+N9URrGmiaCiKTEum5ynmWEtm/E62pVa1HwvBe/I7H0RYeD6aF3PI64qBDVWK4lAgpQTcm7F8W3rpBSVM3BsI+6vB/rjARPZlMlh1q27Z5/PHHOfnkk4GJLvebH8Nzhp9BedZ2wNutC519XVfZ22Go2fz5l5NKTcU0E4HgnSiGw2vu7X2a1tYFhGXeb95P9VBvZf36ZSxcuITa2hnYdhbbzpFMqh5u284Ckv7+F8rCftWq85l7zDeoadgfH1USbjNWIg5KbJdQ5d8eKhE8EtYRERH/F0TiOiIiIiIi4h+ct5t77XremHPd3s606mp8KdGEQA/ca0MIbN9nQ28v72lqYlNfHw3JJHtyOeY2N1MVj08Y8xWK7PFjsaqqqoC3JoePF5qhGBwaGuLpp5+mvb2d6urqslAfHBykubn5bZOyx7vja9euHRvFlR4EI+ijHt6LaGpDCEDTx2ZR57LgOMjMMKKqBmrry6KbwIX1broGccDB6GecifQ9hO8jkQjdBN9Dei7+Yw+hnXAKwoqhksN9pOfhGGbZUQ/7xsOUcDMswy+VePzxxznhhBMm3DR4s7v95vCz0Kl+s0h/s6MdPu7cuTNIDncAn2y2ny1bHqavbxMnnXQTuh5D08Lv5ZjjrNxrg3AgVuhqO042OMYgdLbfPOIrvI5cbg+VlY3BOU2kdIP3oTE8vI1E/YFs0036hEDJdxVeBkpsx1FiOhqxFRER8X9NJK4jIiIiIiIi3jL3Olsq8eSOHUxOJpkWlIn7UhLTdXwpcYJ9hRDkbJtKy2JzOs23Ojv55qJFJC2LuK6jQdlJ9TyvXJo9PDxMPp+nra0N13XL5cyh2xyWiYcJ39XV1RMENzCulLkNKSWFQoGKiory9t7eXioqKqitrUUIwYsvvkhfXx+nnXYasVBk2iWEFUPaRSiVIBYHJP7a35YdaQp5lRju+zCawe9ch9Z+AtTUI3dsQVTXIGrqkekh/I7HymO5/IcfUOfwfUhVqnONpJXbffJ7caw4tm2XR2GNF7thT3oqlSKbzVJZWamu90+UhwMTSuffToD/qb7s8ePLwCWd3kIm00Nz85xAHIsg5dsNSroFtj2qfm7sHJaVxDAqyiXgYam4ek2/fEzoXLe3LyWRmEx///O0tByFplllQT083ItpxrCsJKVShmRyCna8mg4hOAwYAFYAV6L6rENRHQWWRUREvBOI0sIjIiIiIiIisAyDylis7DTrmkZLVRW7czl2jY5y0erV9I+OUgrKh01dpz+bJWvb+FIiges7OpjT3MzO0VE+88ADvDo0RNFxcIIvUKLOMAyqqqpoaWnBtu1ywjWMlYgDZDIZ5s2bN6F8fHwadU1NDc3NzZRKJXzfJ5FITHC/W1paiAVp347jMGvWLBYtWoQhQPqecpitmDrZaAZ/3VoYHQGhIbtewO94HJFMIfM5hG5AqYTfuU5tW/8YQvpobftAbT1Iid/xWHDcY1AqjZ2jpg5sGyElfsfjyK4XlJBHCd5sNlu+8TA+Gby+vh5N06ipqSmX0Yfl85ZllRPSXVcJ097e3nIYWl9f34Tvb6lUKieH+75PPp+fIKrHKgZcTDPJtGlHo+smmhaW6zs89NClDA29ge87GEYFlpUimWzANNX06HR6K6tXX4Rtj5Z7sNWjhpQuqdRUFi++jdramVhWktbW+UGpedi7DbW100kmG7CsFKnUFDTNxEQyV0qyKGG9ErieSFhHRET87RGJ64iIiIiIiH9APN8nZZocM20a02tq+OFpp5E0TQazWTQh0ISgpbKSCsPA0DR8KVna3s5JM2eyorOTlV1dLFu/Hg8lkvP5fLmHOhwVFc5p7u/vLzvXYWk0QFVVFblcjng8jqZp5HI5bNsuHxf2ZoczokOBGKZqA+VwNMMwME1TidO+HvUmh/fiPbASpD8mmjvXIXQdMftw5U5rmhLQmgaxGNr8Y4NtJ6r+bAlCAkKgLTxh7LhYrLwfhgGxOFIINUd79uHqeeBCh+PBXNctO8qhi2+aJpqmUVlZie/79PX1lWdZA6RSqfLYrebmZrLZLJZl0dzcDMC6desAsCyLysrK8iztcHZ4eONh9erVpNNphDBIpSbjuiW6u58ind5KLjeIphmccsqtVFe34rpFQOK6RXK53cFYLhPDiDNv3heR0sf3veAnSaD6sDU0zUAInWJxmKGhLXheKdgOIMlmB7BtNTpNCfWLse0MXnaACiTVUnI5cCZwFZGwjoiI+NsjKguPiIiIiIj4ByRv29iex/aREa7v6GDJwoVMq67G1DQcKVWomeMwvbYWT0oEkHccKi2rnBg+rbqatmSS/p07qaqqoqOjg0WLFlEoFMrl3qZpkkgo5zMsHw+Fcvil63pZTDqOg2EYOI5TdnDDIDPHccru9fhS89DN7unpoaqqirqqSpV6vuqXyK4X0M4+H1FZib/+MbT2ExFhCXggnmUuC6Y55nJLCVogCj1PFUD7HsKwVD81Qem6pOzg4joIwwxGdalzexIKQY81MCHM7U+VcmuaxtDQENXV1eX9HMcpfz62beM4DplMhubmZgzDwLZtSqUSlZWVEz7HgYEBpkyZgmmq3u9CoUAqZeH73rjwsrFwslxuN4lEPaqHOhzLFQOUmC4U9pJINIxLBR9LEnecPP39L9DcfCS6Hp/Qsw2UE8TD49asuYQ5cy6murqNvr5NpFJNVE86AGnG8YVW7rOOiIiIeCcRlYVHREREREREvAXH9/Gk5FudnSxobSVmGJiaxpZ0mgtWrSLnOEyurGTb8DCdPcoJrjBN1NAlWNDayszaWkxdp62tjVQqRVtbG47j0NHRQVdXF9lslkQigZQSTdPIZrP09vaWR0+9uQw8TP0WQhCLxTBNFUgmhCiP8MrlcgBlYZ3L5RgaGkIIQWtrK9XV1XhCA6GhtSunWVRWIWrr0Rd/EFFTC76PdBy81fcjSwVERQVYMfDc8EqQEnBc/J7t4DqQHcV7YCVyeC/ksuC6IARC05RwtOJqBJe6YpBqRnMsuDkQvo/wxkH4fnO5HKVSiXQ6TWgc1NXVlXu0bdvGNM2yK59KpaipqWHatGkMDAzg+355ffgaoJzs1tZWTNMkl8vheV6wjwZI0umt9PZuIOydBkgk6ib0U4fzrtX3zySRmFQ+v5qLPTaCy7JStLW1o2nqe+a6JXzfxvNswiA033cDx1ty6qnfo7p6Gn19m0gmJ5PN7kTzSlT4LlVEwjoiIuJvk8i5joiIiIiI+Aek4DiUXJd8MMrK1DRMXWcon+eQH/2I9x5wALcvXkxHdzeHTZnCQC7HLRs28M1FiwAlv6oti2wwV3n+/PmkUilM0ySTyWAYRrlku7e3l8mTJ6PretmlDgPKQie6p6eHKVOmkM/nMQyDeDxOsVgklUr9yZFUfX19TJ06teyE9/T0UFlZSV1tLYZdRFjxcnK3QCANY2wElxAI31NOs++VXWzC4K8wMdzzEJpQI7sMk7E0cBcRJI/jeQjTUueVvhLfldV4QDEokQ/fd3j9w8PDjI6O0tLS8h+O3QLKiePjHX4YS1qXUvLII49w7LHHEovF8DwPIQQjIyMTHG7V1y3xfZedO5+ltXX+hHFbYTm4Ku8W6HoFY6O2wt5pFV7m+y5r117GnDmXUFu7TyC2w2TwqYDE82w8z8EwYsG54ZFHvsL8+V8mmZzC2rWXMm/el8jl9tDcPJdYLIVhRIXgERER71yitPCIiIiIiIiIt6XgOLi+T6ZUoj+bZUVnJ0vb2+kZGaGlupr9amvJuy6D+TxXr1vHgtZWFrS2sqKzk8vnz2f/+nrWPvAAXV1dzJ49m2OOOYbKyspy2XZfXx+pVIra2lpGRkbKpeKjo6PlFPFwznVtbe2E0VqhmAzDuUKxnUgk0LSwxHjM+Q1F+MDAAG1tbcQ8F7+vG5GqgvpJiEBQUyopUYpUIWSpqrKQRvoq7IxghrV4U4FfsJ/fux0xeepYGfm4bUC5jNzR9AmjuPr6+kgkEuXeaMMwyu8j7EfXNK2cvB66+m9XBr9r1y6mTp1aPv7NwWWO42Dbdtkpj8ViGIaBpoW90jIQzYKxEVvq/fq+h5Q+um4ipU9PTyeVlc2MjvYxZcqhWFaqXE4O4HkOxWKaeLwWXTdxnDyWlZpwTtctoOsWtp3j8cevYsGCK9i69WFmzjyJVKoJXTcxzWjYVkRExDubqCw8IiIiIiIi4m2pME0kMGrbrOjs5LevvUbPyAgL29qYWVND3+goMV2nOhbj8vnzOXnmTPqzWb40bx792SxSStrb25k9ezYLFiwgHo8jhGB4eJg1a9aQTCbJBvuFpeKdnZ3lMC5d15k2bRo1NTW4rktvb2+57zh0aTVNI5VKsXPnThzHYc2aNRPGTCUSCWKxGKVSCdu2aW5uRtc0MEy0aTOgvkEJa89DSJUe7vf3QS4HqSolqKWP9D018xrU/rmsWhembPseuDYg0Vqmg2GodarxeoKwFqETHhAGtLW0tBCPx9F1HcMwyiFnPT09uK5b7o3uCcrwQ1ENTBDWwFuEddjPvXr1aoaHhzEMg1QqNUF0q5sSasxWqZTBcfLB2xNBybYbXK9RdqgB2toWkMsN0Nw8d4KwDp1pJagL9PVtxPcdLKsqCEzrYGjoDUqlDL7v0d39FPn8ICeffAupVCOtrQtYt+5qRka2l9PEIyIiIv6WiZzriIiIiIiIf1Bs12WoUCBuGLi+z3CxSMFxWNbRwZULF9KXydCYSnFgfb0SjcDmdJrlQQDa/nV1uMHIKdM0y0JudHSULVu2sGvXLk455RRAOamPPPIIixYtKo+ZKhaLxOPxtwSTSSlJp9N0dnaycOFCkskkvu/zyCOP0NbWxiGHHILv+29xsk8//XQGBgbQPY/Kmmq+fcuttLU0c+Kpp6nSb88j73ps3baNgZ4e6mqqmXvUPOygd9h1XbpeeYUXNm3k0EMPC4S3BE1D+r4q/zaMiY72OGE9YRmwUbO6N2zYwMknn1wu/87n8+Ue6tChfrP77HneWwT12y2Pf/Q8j0wmQy6Xo7W19S2fKYAQdnB1InCYk7huCV0P+9vDqgAPEHieje+r8V1S+kF5t89jjy3lhBOWA2AYFcHYLx0p3fB+xLj+bOWMl0pZHnvsq5x22vcRQvDAA5+hq2sls2efyRln3EksVvnf+XGOiIiI+Kvz55xr43/zYiIiIiIiIiLeOdiexwv9/TSmUtzw1FOqJDyTYWVXFwBfPOooVnR2csfixWhC4AG9mQxfmjeP3kyGfWpqeHjtWl577TUuvPBCkskkjuOQTqc5+OCDOfzwwxkOerLb29s5/fTTAZUaHpaDx+Nx0ul0uWS8srKS0dFRstksXcF1HHPMMaRSKU4//XQ0TcO2bXbv3k1TU9OEfuV77rmHmpoaDE3jt7+5n09+6pP8/v5f8fymjYAAIfjWzTfzu44OauvqANi4caPqrZY+v7rv11y7fDkH11Uj7aKaVR2LKdEcq1DCU6jRUxKBCHuv9UBwC8ql5QSzwTs6Opg/fz5u0Ntu2zaVlUpESinxfR/P87Btu9x/Hgaf/UeEbnWhUCCZTJbXf+QjH2Hv3r1lx/+mm26ira2tfJNDCMjlcmzfvoPNL3YwuXkanc88zdKl3yCTGcaykqxYcQPz578L2x4lFqvGMOKcfvp72b17DyCpqqrmpptuxLJS/OY393L99d8pu/Bf+MLnOOusDxATcQZ39fPJz13Mlm3b0DSXG2+8hkWLvolhxACN9valALS3XxWsi4iIiPjbJnKuIyIiIiIi/kGxXZeMbXPR6tWs7OrizNmz+f6pp3LRmjUsaW+nd2SEtupqGhIJvrB2Lbedfjo7RkYmONeZdBrT1Egm4+UxS8WixyOPPEJ7ezuZTIa9e/cwc+Z0KitrkNJBCA3Pg1KpREWFVXY4XdfHMExGR4dJparp6+ujuXlK4KZqQaCWgQrZkkipBSO7fCwrhuc5CGGgaRZ333U33/v+d3lmwzNICdKTCF1w2LsP4xvXfIMzTj8jeN3Akxfw3n9+L4tOWMQll1wCro/W342Y3Iinx0AXSFciNIHQQXogPQ/N1PFdiTAE+ATuto7veGgxnb2ZNFVVVfi+j+M7+MLHMi00oWE7NpquYWhGKNdxpYsh1HNPeujjyqUlEl/6mMLEkx62YxO34rjSRQsc59HhUZLVSTSh8cCvH2D5suU8tekpTM3EQ/VS/+Dm79Lx0MOsamvDu/EGps2Zy10/+AEnHn88r21+g5Pe+0+8+txz6DGBhQmmyfCeQarrahGaxq9/81u+vnw5z3d2Mmn6NJ5YvZpDZx/M9m3bmDVnDru3bKGyqorzPvtZWlta+NqSr7Lx989y5kfP4Y1Xu6ioqg2+3zaeV8IwYuVk8oiIiIh3MlHPdURERERERMTbYhkGSdNkaXs7Z86ezVXt7aQsizvPOIMD6uo4eto0ZtTW8uVHHmFlVxcDuRzLOzpY2dXF8o4OXCmpq6umosLEdYvkcrtx3SLxuMFrr73G+vXraW1tYtq0JHv3Pk86vZnu7g5ct4iug2E4ZLM7KZUylEoZNE0yPLyFvXufx/cLNDVN5qGHLsX33aBMWaIULKhUa0ksZmKaOrY9ykMPXcI553yUmTNn8vVrv85t374d6UN6W5rujm46ftfB8PAw8w+cz0NfeAjf8wkqwtn66lbWd6znwx/8MNJVYWbulDaG+opkd+ewMzbZ/iy+6+M7EnvUpnfjTjxbCX07Y1PKlHjggtXs3ZomN1jAzXvUVdWq2d6mhmZpWJaFj6/EtCHYnd9Nxs4gkTi+mu3tSheJpD/bz6g9WhbaoBxrRzq40sXGJmNn6OzppOgWcX2XRFWCXdldZEoZhjPDONLhojUXMWKP4Eufolvip/96N5/2fZg3j7TjsmdwkEUHHYQoFjlw+j7UJJM8tHo1ljQRm54B26G2uhpN0xGuR2Z4GLFzJ2LLFgSCkb6diK1bGf3d76ivrSU+MoLIZll5//189uCD0bd3M++Ag2gqlej493vBVqXphmERi1VGwjoiIuLvhkhcR0RERERE/ANTYZocWF+vBPWkScRNk8pYrPxoahqXL1jAmbNnUxWLTRDilibwfYeRkR2sWXMxjpOjr28jw8NbuPDCz3DaaScCHh0dy0kmG8hkekgmG1iz5mKGh7chpc+6dVeTzfajaQZSeoyMdJNMNrB69UWMjOxgzpyLcd0ie/e+QXf3U9h2lqGh11m16nzS6a3YdoZVqy4IArfm8OEPJ9i8uYsvX/BlPnf25xjeOowZN0k2JFl28TI+cNoHyO3MMefiOYzsGGHV+auQvuQnP/4Jh086HDNr0t3RzdAbQ7gFFyNmkGxIMrpzlHVfW8fIjhG6O7qRUpKakuLBCx8kvSWN9CWaodG1sotMTwYn5/DQpQ+RzxYoyRIj9giD+UFcX7nMju+wsXcjKStFwkwAoGs629LbOH/V+Wwb3kZdRR3xYDTVntweRu1RRkuj9Gf7EYQBapJDJh/CZWsvQyDQhMa/XPIvHHnQkSy/djk/vPOHfPuUbyORXPrQpTz99NMMD49w+v33wyc+waRUiqkNDaz89a/h4ot5Zs0aXtu2je3d3aq/fM4c9bhnD+ecey6t++7Lv1x3Hff8+teInTv5xR138P5Pf5ppixax8Ior+NcDDsCqqWHotddwCgUa998fenoQwyNM37uXnjvuUOX2EREREX+HROI6IiIiIiLiHxzLMKiMxbD0tyY2W4ZRFt/1iUR5ef+6Wob3voZtZ+noWE5X10o6Oq4nkZjE+vXLSCYtCoU9OE6O+fMvL88yfvrpm+jqWsn69csolTJ0da2ks3MFum4hhE5Ly9g+HR3LqamZRqk0QmfnCpLJhvJyuL1YHCm/9owZi2hvX4KmmbS83MIf+//I6qtXk2xI8vgNj/PUtqfYv39/muc2UzO9ho7lHXSt7MLO2tx9z93M7J1Jx/UdJCYl6FzRSXG4SLIhiZN36FzRSdfKrvJ2e9Sm43p1fOeKTkqZErqlM/vM2bTMbaHj+g6aFjaxw93BFx76AikrxeTk5LHZ1dJnTvMcJJLOnk5c38WXPss7lrOyayXL1i9DIOjs6eT1oddJWAmSZpL+bD9fW/c1to9s5/e7fs+u0V2Yusmc5jkU3AKe9PjJT3/CK5tf4aprruLci89l+/B2pJRcPOdi7rvnXj5+6qmYGzcit2yBiy7iNzfdxE9+8QvetXIl377jDhbOmYNhWbB5M5x/PmzZAsDdX/0qPa+9xnUXXMAVH/kIbmMj1916K/fdeSc7Xn6Zx+bP5+NPPsngjh1w663g+3DTTTB3LrKmBlpa4IwzVB97RERExN8hkbiOiIiIiIiI+A8ZL77DZXw1gimb3cXChVcye/aZtLcvIZ8fpL19KT09T+M4Ofr7X6Cn5ylqa2diGBW0ty8N9r2KeLymvKzrFrpuomnmhH0Mo4JYrLos0MNltX1p+RyHHvp5slmDmpoZSOmTnZelqqKKU689Fc3UGDx0kH0m7cNHVnwEs8JEj+ksXLKQ2WfO5smOJzErTc740Bm0L2knP5hnwRULiNfE0Uz1r9LCK9W+4fZYdYz2pe3MPnO22rc2jmZoLL59MUaFQfvSdvY7cz+Wdy7nkjmX4PkeRbfIntweSm6JvYW9dI90U2lV0pRqYjA/CMCdZ9zJaxe9xq0n34qhGRw65VBu2XALI8URJJIVnStY2bWS6zuuZ1JiEis6V2DpFifNPImEmaDoFnl96HXOX3U+88+Yz+6u3dzwyA0YmsEUawr3/fo3nDcwAA0NiOXLYeVKDrvvPh566CGeP/NMfnbvvezcuZPZBxwA118PK1fC8uVQXQ0rVoAQfOLll3miv5/nrriCnbt2cfRJJ0FFBUf+/Oe07Lcfz3d3U3/ttRi6Tv+FF0IigaipYfvkybQdeSRYURl4RETE3ydRoFlERERERETEfwnXtRkaepX165cxf/5Xqa/fNwgz0xgd3YllpXj11fvp7X2a0077PtnsLmKxGuJxFewlpYfjFLHtLMnkpPJMZSldQCCEVj6fIkjoln5QPu6Xw9NAjY3q7u7l7LPPoVAoomkak+obuP7a6zn88MPxXZ/jTz2eT378k5x77rmM7h4lXhnHqDCQjuTc889l5oyZXHXFVeiWju/6CE3gez6PLX2ME5adgKZr5dJv3/XRDPVc+kHImVD7C03gFl2MuIFruWxOb2Zm7Ux86ZNzcgD8YeAPHDrlUCqtynJImZSSgdwAVbEqdE1HQ2O4OEzeydNa3YpAYOomBbfAxt6NtFa30jPSQ3NVMykzxZTUFPam97JjcAe3v347c5rnoL2mcf2S69nYtZGhwhAXXHsB+guCjh/+CNHbq5zk5cvZdf75TJ03DxyHO+6+m9vuvJNnnngC0d0N11/P8MUXkxeCpupqmDGD+++4g4uXLOG51avZ94wz2PTEE8wyTTZfeSVznnqKFzo6aNt3X8799KeZPmMG13zjGzzzzDO8733vY/v27Zim+X/xYxsRERHx3+bPBZpF4joiIiIiIiLiv0SplGXHjidJJhuIx+uwrCSlUoZkcjKl0ih79nQxdeq70XUVdPbII19hwYLLSSQa6O9/gba2BSgx7QfJ4coFD5/ncoMkk5OC5yodfHh4G+vXL6O9fSnV1dNwnDwDA3+guXlOWXBPEOMlU43o0gT9L/TT+K5GlRhuCJCo5G9dqL7qCjX2Svrqf6LhnmE23LSBk28+uSyihSbI7smSqFX90SM9I2R6MrTMbUGv0HHzLn2b+qieXk1NWw3Sk9hxGzWQCzShsWt0F6lYirgeL5eHG5qBL300oeH5Xnn/zp5OWqtamVo5lbgRV4FmEvbm9zIpNUm9ByR7cnuojlcDMNA7wCc+9gmKhSJCE5gpkyXfWMIpC0/h0w98mk3XbuKy8y/hkk98BuF5YJqQz/P1m2/m3+69Fyklsw44gO/ffDOtzc1qbpfnsWPXLj509tkUikU0IWhoaOBb117L4Ycfzs/vuIPld96JtnMn/sgIV86dy0fvugtaWhjI5/n4xz/Otm3bsCyL733vexx33HH/Oz+kEREREX8FInEdERERERER8T+K4xQYGnqdjo7ltLcvpaKinocf/iILF15JJtPH1KlHkM/vCZzty+npeYqenqc45ZTvoGkmmqYc51xuD45TwDQTJJMNgI8QZnnklnrUkdJl1aoL6OpayezZZ7J48e2Bi61j2zlyuQE6Oq5n/vzLqaxswrIqwTbL47fQlJgGNVta0zXsrI2UklhlTDnRpqb218b2f8uyACfvYFaYZSGe25MjXhNHN3WEJpQQ1wVO3kFUCzJ2Bl3omLqJ67tYQTK2LnRG7VHiRhxd09V1CY3t6e10Z7qZ0zwHS7fwpY+hGdieTUyP4UkPX/p8ce0XuWzeZTQkGrh07aUsWbiEpJlkUmISQgjyTh4k5J08k1OTAdXnXWmD9rmLYN48OOcc8DzQwvndqJne4bLvq22ZDLz0Ehx6KKRSaj1APg+6DhUVsG0bLFsGV1wBTU1QVxeVf0dERPzdEYnriIiIiIiIiP9RSqUsDzxwHl1dKznkkLM56aSbcd0ChlGB59k4To51677Ga6/9ljPPvI/W1nlBCbc2TjD7gXsrkNILSsElIMeVe7vjnOvtgXN9FTU103nkka9ywgnLEEKVkReLI+ze/UdqavahsnIqwo2PiWUgO5DFKTjU7lOL7/h4jof01P9AZsIsC2cjZqg+a6mcbCklfRv7mPruqRgVBqXhEkIISpkSseoYVqVVFvHSk7glF+lJVRaecMmUMiTMBL70sXQL13fZ0LuBwxsPJ2WlANia3sryjuUsbV/K1NRUDM3A0ixc6aILnaJbZGPfRlqrWukb7eOwxsNImklc38XUTe558R6e7n2a75/2faRUI72e3fks72p8FxVmBbrQ8aTHYH6QfazJaI47JqB7eiCRgMn/v707j5OrrPM9/nlOnarq7uo1S2ftLICKExlxIQjpoKNGRNHxjmPUcd8Cl01AAUlyBUYSIIigF0ZF5l4XZjGjXAYzICpjNE0Tg0AUMypk7066s3S6q6t6qapzznP/eE5VdRgWoYFO5Pt+vfpV26mqk6ReSX3z+z2/p9WF5kTCPbZjhxs8NnWqu89aGBqCmhp3XCpVDd/5vAvYnueOTSYVrEXkz5LCtYiIiDyvxq65Pv30mwAoFLKkUg0YY/D9WgYHu8hmu2hsnM2mTbdw+uk3jgnWbs/mUmkYgAMH/otZs06OQ3ai0uJdvl0q5UkkarA2xPP8yppsay1DQ/tIpxtJpeqJoiB+PIEdTVSqyABREGEjS1gM+fkVP2fJdUvcWuk4fJePwYCX8AhGA0azo9RNrsPzPfL78tQ215JIJ+h7vI+NX9nIGf/7DGzoAngilXChO1cgWZfEeIZiuuj2rY4CSmGJVCKF57n/RIisq/4aYzhr3Vms3bKWpQuWcuuZt5IwCaLKfz64inOukCPhJWhINRDasNJGboyJ968eJZPKsKN/B6s7VnPDkhtIxB0CFsuW/Vt4w+w3kAk9THYQk826IWWJhAvXYeiuBwH4vgvTUK1slx8zBvbvd1XrVavg8sthzx6YNQuOO85VtkVE/kwpXIuIiMjzrlQaIQyLGOPT1/dHNm78Cm9963WkUhmMSeB5PlEUkMvtIZOZRjbbTSqVoa5ucrw22q2PLgfu8sCy6nWLMVAsDlMqFchkJlcq3FEUEkUlPM8nDEtYG+D7dQwN9ZJON5FKNWBH/Uq7t/EM4WjIaHaUTGum2rqdLxGFEenGNEEhqLZ2l78bWdxgs3iAWW5vjnRjmuJQET/lk2pMVY7r3thNZlqGlvktZHdn6Vjdwem3nc6O4R3c+MCNfO2Mr1XWVo+URkj7aXzjExGxY2AHqzasYuXilRzTcgyRjSo/4NZlB1FAKSrRm+tlTecarnvrdTSmGyvD0DzPhe3Ork6m1U/j+MnHE9qwUrVOmASlqERz4LsdsqPIhegwdIG5XLUuFl3lOV5vjedVHwsCF7pHRuCRR+DMM2HpUrj4YvjKV+Bb34LGxhf5kygi8uJ5pnCtrbhERETkWQmCIocOPc66dcsYGNhGPt9DW1s7yWRdHHxDrLWEYSFu64aWlvmVYG1thAvQYyvZY0JtPB0cEqRS9dTVNQOWIChUJob7vhsKlkgk8f1astldrF9/BbncXgCK+SI/+fxPKA2ViEoRIwMj1E6qBeMCsw0tyUySVL0LyCP9I66iHEQM7RsiLLrqermajYG6qXWu3bsQEJZc1dhLeAwfGqZ+Zj35njw2smy8aSOLLl+E9S11fh03vf0mDNUqdF2yDosltCEbuzfS1tjGrWfeWgnWo8EoHbs76Mp2cXD4INv7t3PxvReT8lLMbZ7L19/5dRrTjQwWBjn37nPZld2FwdA33Mfsxtlc33k92/q3sX9oP9v7t7N/aD+jwSgbuze6sLx9O3R0uP2rN2yAQgEOHHBrqwsF1+ady7nrYegq1Tt2wMGDMDoKmQy0t8OHPgTLl7v7V650LeMiIi9hCtciIiLyrIRhkQ0bVrFly1ruv38Nc+Ys5oQTPkgQjLBnzyaiKCAMi+zd+xCpVIahof1EUYkoCg97nSAYBaqB2rVBW6KoRBCMxI/ZSqt4MpkZczyV6eCel6Kz83q2bFlLZ+carA1JN6Y54+YzSNYl8VIedZPr6N7YTXGw6AJz+ddSdGuvG6Y3EIwEDO0fom6KC9HggrjBTRj/2Rd+RjAa0DSridrJtQSFgCiIqJ9WT8vcFuaeNheTMJx+4+nUT6snYRKMlEY4MHSgMgXcYgmigGJQxDMeC2ctxGC48McXMjA6wI6BHVx070W8etqrmdM0h9ZMK3tze7lg4QWMBCP05HvIFXMEUQDAwlkLWd2xGmstUzNTub7zeha1LaLGr2F6/XRmNc5iWmYaA6MDnDTzJFd97u6GhQvdOunWVrjwQheYa2th82b3G9PQ4NZc+z5MmeKGlE2b5h7r6XFt4d/4hmsFX7wYXvEKrbMWkZc8tYWLiIjIs/LENdfDwwe4//41nHHG/8aYBFEUkIinYrtW7vLkb/+wNvAwLJJIpCtrq7u7H2Dq1L8gnW4kDIuEYdFN/h7TMl4+tnxfed02wL33XsjixStoaTkWW/QJRgOw4PkeYSkkCiLSDWmK+SKFbIFUQ4p0Y7qyRVcURITFsDINPCgEJGuTRKEL417CTRQfOjBEKuN+feXBZr2be2mY2UDz/ObK2ms7yVIICyQ9tz/1o/seZeGshfiej8FQikqVCeK+8QlsQDEsUggKNNc0H7a2OuklCWzAcGnYTf1ON7BncI/784gC6pP1TMlMqYTu/UP7aUw34ns+tX5tpTU8ExgYHLPm+re/ha1b4T3vcQHbmOr08LGTxKPI/ezaBatXw6WXukCtNdYi8hKitnARERF5Xvl+ismTj+dd7/pHksk6stkuZs8+hSAYpVjMHdb67a4HruU6KuFCsWsDTyRSY4aYhcye/QbS6WasjUgkUm7tdDz8bGjoIP39OytV8HLreLGYZ2ioj1SqkTPPvNUFa2sp5ovce+G95Pbm6OrsYrB7sBKabWQZ2DVAqj6FtZauB7ooDhYJRgKiUkTfY32sW7aOoZ4hivki3Q90u2Adr9Wun15PqjGFl/Q4tO0QuZ4crSe0Mtg96ArrHiRrk/jGpzffy/n3nE+tX8vrZryOjd0bCaKA0WCUIAoqP6EN2bRnE0kvSUO6AYBiWCS0odsLG7deO51I05BqwMNjRv0MZjbMJJPMMDkzOV6nbkh5KabVT6Mh1UCd7/bljmzkgncUYcpbaUURnHoqvO99bqiZtdVW8F27XKt4FLlwXS7G7N0La9fCmjXVLblERARQ5VpERESegyAoMjLSR6GQjYeI1cfV5XJ12mPsNluOC8RhWIor1sGYx6rK08JdDSA6bNBZFAWVn0JhkEymtbKNV3VyeCPRiEdUcsO+wmLIoccPMfOkmZUqtS25CnQhXyAzNUO6IY0xbp/qoYNDjPaPMrR/iJmvn0lYCvESHiZhSCQTeL7HwO4B/LRPZmqmsg1XabhUqWB3rO7gLbe+hfPvO5+LT7mY+c3zMRiSXpKIiFJYohSWqEu59ddj12R7xqsMKntw74OcPOtkLG4fbINxgdv47BrYxY7sDk6edTI1fg0jwQjZ0SyZVIZsIUtTuonGVCMREcWwSCksMY0M5rHH4MYb4brr3ACyKHLhubyeGqrbbPX0uBbxzZtda/j8+fCZz7g11moFF5GXGFWuRURE5HkXhiVyuR4OHdqG79cQReUQHVHds7rMxJVsU2kZH7vfNXhEUcDhX0tcxRsMe/f+uhKoPS+B79eQStXjeSk8L4kxHsYYamsnkcv1AhHBSMC9F93LYNcgnucxc+FMirl4vXUEJmHITMswaf4k0vVpSsMlCrkC+d48qUyKmkk1zFk8h2RdknRDGr/GZ3DvIMMHh7GhpXluMzXNNezu2E3/tn52d+xmaN8QrSe00rG6gy1rt7DvgX1cv+R6jmk+BmNMpbUb4ODwQdJ+GsBVnHFbapXCUuV3IOEl3JpsYxgpjQCwo38HHbs7GAlGaGtuozXTyrn3nMu2gW1s2rOJulQd+4b2ccX6K7BYItzU8ZpEDZlUBmzkqs4LF7o3GRx066crf1RxC3ix6KrYxriA/apXuXZwgNtuU7AWEXkSqlyLiIjIs1YoDLJ79/20tp5AqTREQ8PMyj7T5Qp1uU0ZiKvVLoyVt9EqV6Td7RTg2oytDbEW9u59kNbWV5FM1lEqDXPffct585uvJpmsi7f6CuPXCSuV8nz+gNu2ayRJIVcgLITUTnL7U/dv76dzTSdvve6tpOpTlIZL/PSSn7LoskU0z2smGA3Y++u9zH6DK0p4SQ8srpU83u6qmC/S+5teZp40EyIY6Bqgua2ZRCrh1mLXpxjaP0Tn9e59ElMSDBYHqfVrsVj6hvtormmmf7SfTCrDweGDZPwM0+qnUYpKrgXcRpUttIDK9fLWXZGNKAQFQhvyu/2/Y3LdZI5pOYaESeDhEdjArdNOJAmjEAz4xsdiSZUiUju7MG1t1W22yt8FR0fdELNCwU3+3rfPVa1/8xs48UQ3FVyhWkRewlS5FhERkeedMT5tbadijKGj41qKxXwlMJfbt4NgtFKR9rxE+ZmH7XMdRUE8YbxIucJtjIfnJZk1ayGpVD3d3RvJ5Xp585uvJpFIMTzcVwnyrqJdnkJuqa93beJRGBEWQkojJX782R9TzBXJTM1wysWnAJDvzePX+Lxl9Vvwa3wGdg8wmh2l7dQ2vJTbGxsLfVvd+uvsrmwlZNdPr+eec+8h35Onua2Z3P4cYTEk05oh1ZiiYWYD7/z6OxnpGyEioiHVgDGGIAqYUjcF3/OZXj+dhlQDc5vmMq1+WmW7rTAKXQU7KrFpzyaGS8OUopJr645KlW26evO9RDbi1NmnkjAJLv3Jpa76TVRpIY9sxEgwwoqfrahMK/cjXLAuB+ryumlrq1tp5fNuqrjnQW8vLFrkQraCtYjI01K4FhERkWclCIoUClny+V6SyTpOP/0rpFL1caAuxME3he+n8bzkmMqyxVWn3XCzMCwClra2RZXHu7s30t+/g2JxkHXrltHX9zizZi2kuXkOxnj09Dwcb++1j2JxEM9L4HkurLtg79rPRw6NUDeljqY5TZx+4+lYa+nd3EvjnEa3PZfvvgLVTKoh05qheV4zdZPr3PZa8VrtKIhomt3EH+/6Ixtv2ojxDan6FC3HtDD3r+bywE0P4Nf6tMxtwUt6dHV20b+tH7/GJ7c3x+CeQTw8RoNROrs6CaKAhJdgNBgF3Prqsvkt87np7TdVJol7xuOU2adQ49ewsXsjvfleRoIRzrvnPFozrdQma6nxa4iIuL7zeq540xXkijke63uMi358UeX1a/warn7L1eSLebcFWAKs50Ei4SrUQeBav5NJdx+4rbcuuQSGhlxLOLip4ArWIiJPS23hIiIi8qwUCkMUCgMY4+H7tYRhgWQyc9jk7/IlVPejdhVmi+cl4pbxsYPOosPuszbkv/7rBxx//P/A85J0dz9Aa+sJpFIZjPHI5/dTVzcJa0NGRrLU1U2uvK/n+UTDbvBY/85+BncPMuvkWRjPMNI/Qn1rPTayYKE0UmLfb/cx7S+nuXXRmWTl13nPBfdwykWnkO3K0raojeyuLB2rO2i/vJ2muU1gIBgJ8Gt8jDGYhCEYDUikEpiEIfRCsmGWbCFLa11rpXptsdT5dZXtsQByxRwADakGQhuysXsjfzntLzEYMqkMYRSS8BI8dvAx2prb8IzHg3se5DXTX0NtsrYy7CxfzBPakIPDB7m+83rWLFlDQ6qhMiBt/9B+XlYzE5PLuTCdTrsKdRhX/4tFF7SHh+Gyy+Cmm9zQMwVrEZFnbAtXuBYREZFnpVDI09f3R4aG9jN9+omAIZXK4CrTiSfsaT22Sc7wxH2qy9fLqgHbAoYwLMZhPCIIRrn33gs59dTLaGk5BrAMD/eRyUwFDF1d99PQMNNtxzXql5d+Y4whLIWYhHFbalk32dtP+xjPVKZ9Dx0YopArUN9aj/FclRqobMF1z/n38Jtv/4YFSxfwjlvegZd07eNBIWDvg3uZ/urp+LU+wweHqWmuwTZaBguD1KXqKiF67DRwY4yrUsfrpMeus7ZYEibBpj2beN2M11WCeDEq0pPrYXXHam5YcgN9o32s3rCaS0+9lBkNM3ik5xHmNs2ltb4V3/PdELUoIOkl3YAzG9EY+phy23dPj5sQXlfnKtiJRLWaPTICLS3VdnERkZc4rbkWERGR51lEZ+caWltPwPdrSCZrcMH5vx9pbVRZE10sDpLP91As5iDeeso5fKuu6nRxN9RsYGAnQTCKMR5btqwln+8hm+0iikpkMlMYGtrPoUPbaG09gcHBbhfgE27NdFgMKQ4V8XwPL+HexxhDsrbaGh6VIoxnyEzNMOmYSXhJj2RdkiiMKAwWyPfkKeaKnH7j6SxYuoD25e0Y31QGnvlpn7ZT20g1pNizaQ+l4RJ7f70XgAMjB7joxxcRREFlUFk5YFtr8fAq66SDKGC4NMxwaZjz7j6P7f3bOXnWyezM7uScu89hZ3YndX4ddck6bj7jZppqmqhL1HHpqZdSn6rHNz6vnvZqZjTMIIxCLrjnAnb07yDlxf9JYC31ke8mhPf2ut/y1lYXrJNxxX7bNjj7bLfPdWOjgrWIyLOgcC0iIiLPSiJRw+LFK6ipaSIIRimVRoiigFJpmCgqkc/3UiwOEoYFwjFbS+VyPaxffwW+X0N//zbWrVtGf/82oqhEoTBIX98f4/u2EoYF+vu3MnPmSQwOdjM6miWZrOPcc3/PnDntJJO15HI9rFt3FqXSEOl0PcVijlmzFuKZJMXBIvmePFEQkWpIURoqURgsUBgs0Pd4H12dXUSBC9VREFV+rLUka5Nuy67Y+ivWk+vJ4fke77rtXTTPd9PBw4KbxN2/w23FFRQC2ha1UT+tnjmL5hDZiIyf4aa330TSS1IMi5VgDa46XR40Vl6HDa66fd1br2N+y3wiG3Fsy7H8n3f9H45tOZbIRkyvn06N70Jvc20zvufzxfVfZP/QfppqmgCo8Wtob2una7CLUlRix8AO7u+6Hy+MML291VbwcrW6vK/1l78Ma9e6bbeC4AX/LImI/DlRuBYREZFnxfdTTJr0MgByub309DxMNruTnp6HyGZ3sn79Fxka2kcUhdxzz7lks7sA6Oxcw5Yta7E2oqNjNVu2rKWjYzXWBhSLucrjHR2rSSSSdHRcA0TMmrWQ+vrpDAzsYP36K8hmd1FfP23Ma1xDJjOVmpoWt/a7kMCv9ambWodf4wOQSCfwkh5e0qN5XjNz2ucQjAYUBgt4SY/s7ix3n3M3g7sHKeaLdG/sJgoi0o1pdv1yF02zm7ChG3L2k8//hEK2AAaiIKJhRgPTXj2tsu2Yl/LAuC20hkpDLFu3jG3920h6SUIbEkQBg4VBV50e2M5gYZDP/viz7Mru4uGeh6lL1uEZj8f7Hucz6z5DvphnsDjIY32P8Zl1n2Fb/zYGC4MMFgYJooDuwW7WbllL2k+zvX8759x9Druyu/jACR/g5Nkn43keU+qmcPKsk7FR5IaTDQ3BWWe5tdU7dsBnPgM7d7o9sJcuheXL3XpsERH5kylci4iIyLMWRSHWhnR2riGTmVoJuB0d11QC7+jowJgAbVm8eAULFizFmATt7ctZsGApixevwBifVKqBU0+9tHJfGAa0ty/HGJ9ksg5jDBs2rGLLlrVs2LAKa6Mxr7Ecz0vheW7PbBKQ3Z3lJ5//iWv9tuD5HsnaJEP7h7j7f95N/7Z+eh7uYbhvGC/p0Ti7kVMvPZVf3fwrkrVJ5rTPISpFFPNFzv7N2eR6c+zu2E0URpx+w+n4NT6loRLdG7sxxpDKpNj7670Uc0USSbe+OrABqztWs3bLWlZ3rMbzPHZnd3P2f5xNb76XhbMWsmrDKgYLg5VjptRNIbIR2UKWNZ1rWLtlLdlC9rDb13RcUwnXA6MDLJy1kKULljI1M7Xyftd0XIPBUJuoZefATi6890K6BrvoLh7ETp3q1lqvWePWW+/dC3fdBatWudu33uq23VJLuIjIs6KBZiIiIvKsBUGRMBylv38Hg4PdNDbOrlx2dKxm8eKV1NVN4d57L2Tx4pU0N8/DDTGz8RAzg7Vur2qgssba2gjPSxJFpcpjYVjEGI9sdhcbNqyivX05TU1z4321QzzPp6urk/r6VlpajqP/D3myXVnqp9fTMLOB3N4cnWs6aV/eTrIuyc0vv5kFSxfwhovfQO2kWkrDJTqv72TJmiUkM0k3pGw0YHRglJqWGvxan2KuSBREbLhmA0uuXeKGnPkGW3KD0ErFEi1zW7Chraz3DlIBW/u3srpjNSsWr2Bu01yWrVvG2i1rWbpgKVe+8UqCKGBS7SQu/snFrFi8gq5sF4vaFjESjLA3t5c1nWu46fSbACq3l7cvZ2pmKgAeHo3pRkIbYq1lqDTEJT+9hEsWXULGz9Bc08y595xbec+bz7iZSbYGb9t2zOrVcOmlMHMmPPwwzJmjvaxFRJ6GpoWLiIjIC6JUGon3tS4xOjpAXd0UyhPBfb8Ga20l/FobxdPBPcoDy8pt1Pl8D3V1rYCbFD52Oy83MXy0MnU8n++lpqaZVKoegCgKABO/R4AxSe49/z7esuotGM8wfGCY9VesZ8vaLZzwoRN459ffSW5PjnRTmt7NvbSd0sa6s9bRtqiNtkVtDO0fYvqJ0ylkCyw9ayn7D+zH8zxSpLjxhhs55uXHcMaZZ5DryZGZmmEoP0TXvi52b91NQ7qBBzY8wMrrV1IYKTAajPLhj36YCy6+AN/zwcK2gW2s2rCKlYtXMr95fmXNdXmid2hDhkvD+J7v9rGO12iXJ4lba90wtDET1vPFfCV4r1i8gvnN811l/LaF3P4/bqetqY1VG1axvH05x7YcS2Y0xCxb5tZWL10KV17pAnY6rWq1iMjT0LRwEREReUEkk7V4nse9917E1q33xJPBXZW5VBohn+8hDItjpoibyqUxrkpdLOYxJoExBs9zE6ujKCCf30cUBVgbVKaNG+OxfftP2bfvtwAEQYGurk6y2d0UiznWrTuL/v6tnP7VN5OsS5JIJ0g3pTn10lNZsHQBS65fwsCOAdZfsZ7hA8PMWTQHkzS0L2/n2LcdS+eaTlpPaCW3N8f6K9bz7a9/m/v+9T6+uOCLnPOJczjnonN44AsP8OPv/ph/vfJfufLEK/nQez/Eia0nMnnyZHJ7cyw7axnnfvhc7v/P+/nJz3/CjV+5kUd/96jbZxrL/Ob53HrmrbQ1tvGrPb9yv14bkfSSRHH1/sJ7L2THwA4+/aNP03xdM7/c9Uu29m/l0z/6NNsHtvOLXb+g8dpGPv2jT1MIC4e1jK/asIrIRgyXhnnbsW9jbtNcjm05llvOuIUZ9TM4/57zCT0Dt9wC69bBF77gttvavx9K1eFzIiLy7PkTfQIiIiJy9Eokaliy5HqsjRgePkAmM51stovBwd3MmnUyiUQSiOLKtaVUGiGVaoir2hbfr2Vo6AD/+Z/LaW9fQXPzXIwxNDTMwFWtC1gbAklKpWFOPPGTWBsSRSE//eklnHTS/2RwsItEIsmWLWsBOPPMW+nfeojmuc0k0gkmv3wyZ956JhjYcOEGtqzd4o679UxK2RLN85oxnmHxisV4CY/ONZ1sWbuFN131JtavclXv/Tv2YyNbee4br3wj8944j8vOvIz/dcn/wlpL55pOCgMFfv3Pv2bpR5eSz+bxfI+pk10LdykqsbF7I9Mz05nfMp+TZ5182L7WFleVvrz9cvYM7mF5+3IAFs5ayHn3nMfa+Nd38xk3s3TBUi5bdBm+8WlKN3HpqZcCsHLxShImwbEtx3LzGTcDMFIaYWB0gGn10/jym1bj5fOQHYTXvhYaGtx+1sWiBpiJiIyT2sJFRERkXAqFIawtMTR0gFJplGSyjtraFhKJZLzG2sRroqfT1DSXwcFufL+GTGYqxiTI5/fxjW+8iqVL72D69BMxJoHvpyut4ODFLd+upTwMi3iejzFepRU8ikoMDfWSTjeRTjcRjXgYz5Dfl6c0VKJjdQdv+8rbGD44TMfqDhavXEzLMS2MDozi1/iVPauNZxjYMcCGVRs4/abT+eSyT/Lz+35OujHND//5h3R/s5vFKxfTPK+ZjQ9u5P0ffD/bH99OwkswsH2A737+u3z1d1/FS3gcOHiAr938NT7w4Q9Ufh+CKCCIAmritvlyRTvpJenJ9TC9YToeHsPBMAOjAzTXNFMKSxwYPlBZuz2/eT5BFLhWc6i0jpcvO7s6mVE/g+kN09mb28s1HdfwuVM+R99wH6fPaMf742NumNmll7o11ta6YK211iIiT0trrkVEROR5VyqNxCE3yaFD2+jouJr29stJJjPU18+gWMyRy+2ls3MN7e2XU1fXSqk0RCYzlTAsksv10tGxivb2y2lqmhdXvVsxJkEYjjIy0k9NTTO+X0uxmCeRSMVVcAiCUfx4n2e3dtut0Q4CV+W2wzWY0CfVkMJGlqH9Q4wOjDJ8cJgZr5uBn/bd0DED/dv7Gdw9yKyFs/CSHsOHhqlvrceGlq7OLvq39zP/zfP591/+Oz/44Q+4/ebbybRmMMaw7OxlNDU0sea6NW77rQg+/PEP864z38X7//b9bO3eytuWvI07fnQHf/EXfwG4/ax78720NbYxVBoC3JrpaRm3lVd5bfXYwWdfe/vXSCfSlRA+HAzTm+tlVYdbRz2naY77fYkCNu3ZxKyGWezJ7aF9Tvthr3PzGTczOUjhjV1v/a1vQWPjBHyCRESOPlpzLSIiIs+rUmmEvr7HWLduGYcOPU4yWXPYftPWhhQK2TH7Vl+D5yUIgmHWrTuLfH4fyWQtp5zyOQYH9+B5HkEwwrp1y+jv30Z3968olYbo6XkYsCSTNYyM9NHXt5UoCuJhaRFRFDA0dLBS1TbG4Ps1pJt9Uo0uWAPUT69n8ssn07aojWQmycDuAbru78IGlpZ5Lcx941wSqQRewqO+tZ6o5NY+N8xoYPcvdxMFER/98Ef5xYZfMJoYpTRUYuDQAP9v3f/jM2d/BuO56eAHDhzgrnV38f6/fT8Ac46Zw0kLT2Jj50ZMvN681q9lduNsfM8nGa8xn1I3Bd/z8YxXaRNf3r6cpQuWsnLxSuqSdezM7uTs/zibP/b9kTAKqUvWccOSG2jNtJL0knRluzjvnvOYmpnKntweTp51Mr7ns2LxCpYuWMqKxSvYnd3NL3o3YlescMF65UoNMBMReR5NeOXaGPMy4DvAFCALfNxau+XpnqPKtYiIyMQZHc2ybt0ytmxZy4IFSznzzG+ybt1ZLF68nEmTXh4fM0Au18PQ0D7a2hYBluHhgyQSSVKpRjwvQRgWSSTSWBsyNLSf225byCte8R7e9rYbAEsiUUMQjNDT8xCzZi2sTBKH8pRwCxiGh/vIZKZSiivBqVQDlJKEhZBEOgEWikNFsODX+tjQEhZDejf3MvsNswlGA4pDRTJTMm57rdDSt7+PD3ziAwz0D4CFUljiUP8hdm/fzY/v+TEXfO4C+vr6mDd3HhedfxEf+chHCMOQltYWpk6ZyqRJk0jVpNi9eze3f/92Fp2yiMAGeKZa1yh/BytP/vaNTyEsUAgLNKQaCG2IZzyGS8Nc8OMLDqtkRzY6bEJ4V7aLM//lTJYuWMotZ9xC2k+TL+Z5uOfhStA+757z+MKiL/DK5mNJFAO1gouIPEtHfFu4MeY/ge9aa79tjPlb4DJr7UlP9xyFaxERkYlTrly7/ayXM2nSywjDEr6frrRrl0ojRFFYaQ/P53sre2C3t19OJjONe++9kPb25ZX9sV1L+TSCoMDo6ACJRAtQTyoFiUSJIPAIwzS+D8Viid7e+5k16y9IJusoFvOc8c6/Jpst4HkJMrUZbrjhRv7yDSdxz3/8B1de/AUSKY8gDDjn4+fw8fOXEdb4fOWaa/jn732XbY8/zj/d9k+86/3vpWjhQE8X7//b9xKEAcZLYKOI0WKBzX/4A21TptA2ezZnXfBZ/uotb+a1r3wlu3r2kWlu5NovfYkf3XknNgg41N/P0FCeTds305LM4HsJGlL1eMZVuoeCYUaDAqUoYPl9y7n5jP9NrZ8GDKENKYQFahLpeG15RITFwxDaiJ3Z3Xxx/RcrgfuWM27hwnsv5Kun30RDKkO2kCPCMv2G6SxdsJRvvetbGAxpP00qoUAtIvJcHNHh2hjTCmwFJllrA+M2vOwB2q21W5/qeQrXIiIiE6u85npsoH6ikZEiQeBRLI7iecP8/OcX8/vf/5D3vncdM2a8CSjheR5R5FEo7KOmZiaeB2EYkUgYdu407NljWLTIYi1EEXieIZ+3XHGFYc0aizHgeRbjGfoODjCptYXeWvjVHXdw7VVXcf/mzcydPJl///nPef2rTmDHjh28/lULeHT/fuobG3lk0yb+z5Qp7P3kJzn3s5/lze95D0PGMMVaksBOIG0MP/2//5d/+OpX6XzkEeZOmcL37riD173xjez87W/5mzPOYMv27XjpNB4wBGAtQwcPcvzMmWwfHqY1kSBlIwwWijlIZsAksJQr1waDxUQl8JJYDMaGgMF6nmsqt+WjPSIsb3/7GfT09uB5CRobGvjqTTfx2te8hnvu/g9WfvEKwihiZ/8uLvn8JVx67qWkEik+8YlP8NBDD+F5HslkkmuvvZa3vOUtL/jnRUTkz8GRvua6Deix1gYA1iX93cCcsQcZYy42xnSXf/L5/AScqoiIiJQlk7XU1DQ9ZbAuFmFgIMljj/mcc049XV1TWbLku3z2s3mKxTezbFmCrVtryOVS7N/v09Mzkw0bDFu3GpYtS7B9u0c6bTjpJMjlDI89Zli2zLBtG1hruOIK2LXL3Tc46LFtq+HSS1vY8Tg0j8D2wUH2GEMOwBiuymbZ5hnyw0NMmjyZvpoaLgSmLVzI5cccQwH4ujHUGMMQcJYxbDWGqz72MU5ra+OqL36Rmd/7HtuM4XPf/z4ffu97ed3cuby1vZ2Xf+c77E6n2Q9sAz4L7DOGm7/2NVrf8Q72J5OUTLzquhysoxIUBzFhAS+7HS8sYIo5MAnK+4DjJcCUgzWAcbcNeMbwb//6r/xu82/4zYMP8LllH+STn/wkRCEf/tgn+PY/3sbmhx/m/p/ez9WXXk1huADAjTfeyG9/+1s2b97Mrbfeyvve9z6iKHoBPykiIi8dR8U+19barwBfKd+ePXv20TfiXERE5CVkdBSyWcOaNW4wNRhuuslQWwurVpXvgyuvhMmTYeVKw+c+B9dcU33sm9+EMIRsljGv454zYwZcfLG776qrYPVqd/1Xv/ooQfBzDhkYuftu8sZw4ve/z8//5m84JZPB6+/ne3fcwY2pFPHLcQvQBRwAImA1VB771ne/Sw/wse98h59cdhmNd93Ftquv5jV33MG/nnYaH3rwQX727ndzxaOPcuuUKayMn7vr9tvZt3Yte3/5S9YAt7rfAkg1uAq08SBVD9kdMHLQvVnTfHc/xGE6fk65y9BGQALCAiYs0Nzc5A7Jd5Pt68HYAGyAMTCQzWIMRIWIyZMnk473sG5ubq78GWWz2XH8CYuIyBNNdLjuAmYYY/wxbeFzcNVrEREROUolEtDQ4LZSBlixwgXl+++H5cvdfZddBs3NLjwvXw7d3XD55e6xlSsh6YZp09RUfZ3ly6GlxT1Wfp2Ghur1FSu+yzHHwI0//A7/cNll1N51F/mrr+av7riDr552Gn0PPsgH3v1uvv/ooxCH4Rrcl4+XAwkgfimWA0mgCfjmxz7G688+m79+6CEu27uXb592Glng+pNO4s2zZ/P2Rx4hu2QJlwO7v/999l51FT+47z6+PG0aK+PXcd3fbmo4xgc8qJ8NtVNd6MZUQzXuJkEB8t3uOM+HqAhhwVW/sXz045/g5+vXQxRy94/uxBQH+f63buBv3vd+MpkM/f393HHHHaTGDC77whe+wL/927/R39/PD3/4QzxvohsZRUT+PBwJA83WA98eM9DsC9ba1z/dc7TmWkRE5MhWLEJfH3ie2+3JGDjnHPjhD+GOO+DUU10A7+11lWvfd2uqfd+F8EQCgsDdtpbKmutEAoaH3ZDrsccC5HLusqkJbB1Mqa1l7fr1XPCRj7D5scfwgH3A+046iStWr+aNS5ZQAmqBd7zpTZx94YW85z3vwQL7BwaIhoeZNnMmAOvuvJPPn3ceGx56iFcfdxzrN23iuFe+kl1bt/LGhQt5YPNmZsyZw7+vXctVK1bwo5/9jLlz51KKfz8S1tLQ/zg0zoUoiAPzLEjUuLCc3+Me8xJjAraF7HZX2a6dCo3zgMgF87Aw5jXSfOe73+X7a/+Nu9Z+l7ee+V7+/qq/57Q3/RUPPvgg7373u3n00UeZMmXKYX9GP/vZz7j88su5//77DwvfIiLy5J5pzfVEV64BzgK+bYxZDgwCn5jg8xEREZFxSqVcaC4U3I5PYeiqz6USzJ7t7vM8GBlxIblQcBXs1tZqkAYXsMvh2fPc83M599qlUrUQ3Nc3wO23D/P738/kllvg7jvvpHHyZG6bN4/9PT1s+/3vmffKV7J/61a2btvGy1/xCnxcjg2BABjAtYVHwGg2y0fe9z5GRkYwnsfUqVP59rp1fGnaNK699VY+unRpPIwt4ss338yMOXPwgU996ENMmz6d9//1X7uObuDf77uP1kmTYOQANMx2QTrV4FrADfHtercOe3Cnq1InXBs39bPcZeNc93g5hCeS7jXye6FpHh/70FLOPudcHvrd4+zt2cdpb/orAE466SRmz57NI488wpIlSw77M3rrW9/Keeedx6OPPsrrXve6F+BTICLy0jLhlevnQpVrERGRo0+xWA3bqZS7PTzsAnYmUw3Vhw7BlCkuTPf2wvTp5Unh1ep1GMLBgzA4CNOmQU/PLpYtex+joyN4nsfkaVP54pe/zGtOPJHv/8u/8LXVqzHxC1x0+eV84O/+jhJw3dVX871vfIODBw5Q39BATU0NHY88wqSpU/FxodviKt6NuOBdT3UirIl/AlxLObiwbuJj9wENQJO1ZPofi6vPuKAcFuN28Ph2riuuUk+BpmPGvIObJk5UdAPPjMfA/m6GCwEzZ88Bk+DOH/wL533uch7a9CuOe8XxbNq0iVe+8pVs3bqVhQsXsnnzZmbMmMGuXbs47rjjANi0aRNvf/vb2bZtGy0tLS/In7mIyJ+TI3orrudK4VpEROTol8+7cB0ELlh7ngvZbjsud3nggAvaY1vGh4fdmutk0gVtY9xrlJ/np+D8OrgRF00BSsCDwInxfTW4MBzBYSE6gQvHjHk8woXpcqAeAtJj7ssDw8CUMa9Vfp0DQA44zloabFjJyYRFsKGrPNfPBj9dXV/dMBu8tDuj8vAziG9HMLiLXX0l3vfBjzBSKOJ5HlOnTOXL136JE4+dzL/8Ryer13ylUlm//LLL+LsP/R3DI6MsWbKEbDaL7/tkMhm+9KUv8eY3v/l5/XMVEflzpXAtIiIiR6RiEYaGqu3e/f0uSI+Owu9+B6ecUg3Z5XXX5ar18DBs3gwnnQS1tdVwXW4TD+tdKC6vqY6oVpnzuGpyCTgE1AHZ+L66+BiPati2VAP2KPAwcDLVpdEpqiHcB/bHr5WkmqWNtTRG4Zi10rPd9UO/d5Xq5mPjIB3/Ag77ehbfKOYgkYLioLvedIxbv20j10ae3e7ay9PN7rYxEIxALg7sfu2YoC4iIs/Wkb7PtYiIiLxEpVKuRby87nr6dDcEra/PDTwLAtf6HYbVzAkugzY0wOLF1Yni4KrbQVA9NoWrMFvgINWKdIZqcJ6Ca/Muv3wKV4XOxZflHaD3xc9PAqfGx8fzvitCXGCfFL+OBX4F7KTaMo4x8VrpeN117RQXfMNS9RdXGHTBO7vNVbfDogvOiaS7nm52z4n3vSbf7U6ocS6kGl17eTjqXivX7VrNc93VLb1EROQFoXAtIiIiL7pi0bWFlyvSvb1uUNm0adDW5u4bHXWDy8qTwzs7Yft2t53Xjh3VIF3OjImE+4kilzVLuIDr4UL0r3GhuSwHnAtsB7YCvbgwncEF7oYxx86KXyfB4eutAYpjHiuH6AgXxN+Aq4YH4IJyMOoCcHlqeNMxrgXchq4aDdXwPXIwDtcFqJ/pAniqwU0LN/FMWmNc0DaemzRefl6u2/3qG2ZXA/zY/6EQEZHnndrCRURE5EVVLMIf/wi7d7sKNbi28Nra6uAycFXrlpZqgC53TVvrqt7lSeLWwsaN8JrXuEq48aCUcZXlcjv4fmAy1dZwcIE4GHOfxQXi7cB1wPXxcTXx44n4MqQasMuV7fIAs/JxIdX11561JIC6sOgOHtzp2sCDEbcVl4n3tw6fsKf14K54sJmNW8LT8RTxyAXzRMq9o4kr2Db6723gUP2NU0u4iMi4qC1cREREXnDlSnSx+PTHjYy4n+nTXVu3MdX2cGOqE8EBpk517eLgQrTvu7XW5anixlTXZC9c6B7P513GLAfnXtwAsjrgbGAE1+5doFpdLgfrEVy1ewpwcfx4FrfOOhG/3lgmfp1hXJjeBXTGr1E+/gCw05jqEmqTcIHZAniQ3QFRGKfypKtq5/e4KnTzMXF7eLklvBCn+HgCHMYdVw7NxnOBuvk4F9rLBZSxx4iIyAtGf9OKiIjIuBSL8Ic/wKc+5S6fKmAPD7utuA4ccGulw9AdG0XVynQQuGPK66xHR2H/fncfuOo2uEBdLLpW8cFBd1/5NcqlaR+YiQvWTcDNuHbvetyQM6iuvU7Ex/nx5cvi58zAVa5D3PCziGqreYhrIY/i52dw67FHcS3nB4BmYBpjgnk5LIcF8JLQNN/dH4xCMR9vwzW/ugY7H6+Zzu91LeHl36ywwBOmnjkmnuoWjsLAVlfJttF/P05ERJ53CtciIiIyLsUirFoFa9e6y3IQHmtkBB5/HM47r7qn9caNLkSPbQVPJqvTw7dvhwsvhPp6F7rzeVedLh/r+9De7oablSvZdXXx68XvG+HWRIe4IWPgHitP9i7HzvLQsxzV6eDl4F2IL6dRHVo2OOb168c87uHCeT0wNX68PAjNbb1VDsvd1fHm5aFliWQcvIsueFtci3h5zbS1bj/s8lC0SoP7E2iQmYjIhFC4FhERkXFJpWDFCli6FFaudC3eT1QswvXXw8UXQ02NC8+LF7sq9rJlbkBZeZ/qdNodM3cufP7z1Yp0Y6MLzuV11nD4emzPi/e+9tx2W48BF+Iqz+Vqc7ldvLyHNVS3y5pOdXJ4X/xYCfhN/JxS/BPghp15VNdYj127XQ7vCdy08nogwrqW8PrZUDsVGueNefNEPMRsbzV4m/hBY1wbuUlCVHQV60SqOsDsyZSHnGmQmYjIi0oDzURERGTcikVXsU6nXdh+opERGBhwLd6rV8M3vuHC8MaN8PrXV9dUl9dTl/ezLl9C9Xp53+tCwb3X8DBccon7mTYNGhohqKsOH9sb/5zC4YPGyqG4HJLLx48dSFbCVZ3Lbd1DQCPV6nYCt9XWLmAh1eFn5cf7cEH/WGvJlNdWP3F4WSL+34gnDjQrDcVrrUtu/+rsjni9tnXB+qnCNbhWcA0yExF5XmmgmYiIiLzgUinXnv1kwRrcWulMxlWvFy1yATmRgJNPds8Zu6VWsehawpctc5eeV20VHzvMrLcXOjpctfof/gFmzHBt4aWSy6/l6d+zcVtiweFV5hxuivjYSd8e1ZXM5ZbycgCPqAbrENcuPgrMA9rj9wqpBmtwa7v38IRhaIbD28OfWKVOpFywTmbiqnajG3pWbg23pWeuRpcr2wrWIiIvGlWuRURE5EVRLEJfH+zdC2vWwE03VddTl0ouJPt+NTwHgbsvitz95XAN1cng6bRrLS+3jHseNDVBWOeqzj6HB+0i1bXW5cp0uUU8Ed8exrVyEx9TXoft49Zt+7hQXQSuANbg8nG5Il5+z3IVPLKWJJba0oirTqcaq1Xqhtmu5dvEW2qNXYAehW47rvpZcXV7TCVaoVlE5EWnyrWIiIgcEVIpV71es8YNP0sk3Frriy92j5Uz5aZN1WnhYeiC9LZtcNZZ0NXlAveOHfDww26v7C9+0QX2hoa4wh2XiQNcAC7vT11edw3V6rQZc1/5ehOHr8+ux1Ws07jgXQ7mDcAN8TH7gR24CeHlIWYbcXtme8YQYOKtthrcu/tpt9e1l4ZSvH+YJd6vunxCCaif4bbmMsSt4L6CtYjIEUp/O4uIiMiLpqamOvwsmXRB++qrXZX6wAFXmT75ZBeoy+3iUeSuL1rkjg9DN5V86lS45hoX1Nescc9Np8FPuCyaxrVlj9mdq6JcXSa+7OO/t3QHVKveFrfeOh0fV55ADtWhZW3AZNwk8Y24Nd6zAGst6ShwW22N3RarfALpxjHrp211ergNwUtB41xVq0VEjgL6W1pEREReNKkUHH883HabC9rXXw8HD8K557r10kNDLkxDtWq9c6erXH/wg3Dzza7ivWKFC+PLl1enlPu+e5611TXO5W2zyvtSjx1eNlZrfPkrXIiOcK3fF8XPLwfvC3DV6x5gGW4ieQ4X4oeB8+PXfkN8/2dxFW2M59rBAbI7Xcs38cGVheTEbd9x0Daeu6610yIiRwWtuRYREZEJMzgIn/kM3HWXG1AWRa6iHQRujXY67YaWTZ0KN9zgQvW8eS5gl9dkl0rutbq7YdKkeN/rehd2a6gOMQtwa6bLMTUEDuGqzQmqVetyEC+vySa+PzXmeUVgN64N/LW4va1DXBs4wFeA6+L3/B1wWligISy5/aujoqtIRyVXoU5m3HUv7o23uKp1acittfZrnn4yuIiIvCi05lpERESOWOU28R/8AHbtcltz5XKwb5+bMO77rk38hhtc+/eqVdVCL7gAvmmTuz1nTnWv7MeBzwMj8fuM4oJuJ67aPIgL1DlcBXor1Qng+fh6hGvv7oovc7jwfBauct0EzMS1hT8W35+IH1sI9AKXArOtxQ8Dt3bahpCocZf5PW4dtg3jyrSttoMbz4XuvIoJIiJHC4VrERERmTDlNvH2dtcWfuqpbvL39OmuQ3pw0FWpy+3fK1ZUB2v39rqg/apXuTA+OBhPFk+6Cd4LcQH5MeBCYB/wKtxj5Vbv1cBa4Bpc+K6NjzsHF9BPwIXrKfFzysevxoXr1fHrrBlz/0LgbWPvM4bAr3HbbHnJaut3/Sy3h7VJuO23ohLkutwl8S+yYfYzb7slIiJHBIVrERERmVCplGvvzmSgp8eF5M5Ot866rg7OPx9+8Qu3ddfUqXDOOdX9r8PQVb+vvtqFbc9z7eKX4gJujmrIvQbX6n0ZLhgngOXA0vjSxwXla+Lj18TPXwgcjJ8z9vgssAL3ZerS+P4VuHbxlvj6UmCltaRtBNntrjJtPFex9mviYWbxYvGwCPUz42Nwoduv1XprEZGjhP62FhERkQkXhi5Y79jhwnJ7u9tey1q46CK4/34XwC+8EP7pn9yWXENDbhDa7t2wcKGbGJ5KATXwctyk7iaqwXclbvusl8eXB4A5wK3AcbilzkWqofgyXEjOAO3x5bHx8S8HpsXPHwZmA9+Ib9+Iq34fB9xmLa+wEansTrcNlzHuF2U8F6o9P15Pbdz66vzeeE9ro0FmIiJHGQ00ExERkQlVLMLICOzf7wLzl78M113nqtbptAve5UFnW7e6dde33OKC9dq1rl38yitdxXr2y2BjjVsLfX38U49rD7e4Ndj1wC+BM3Eh+krc8cuAu4BduAp2CDyKC9Zp3HrsNNXBZuDCeDF+/Rqqw87S8W3ATQaPguoAs1RDHK7HDCmLQhjYCiMHoXYKNB+nIWYiIkcYDTQTERGRI1axCH/4AyxbBsPDrnp90UWuAl1uDfd91+5tjGsLv+oqF7rL+2WvXOmGmc1/BZxf46Z/rwb+CXgYN6BsK27g2L74fRdyeHU6iatYvxsXkA8An8NVpMuBuoHDgzXx7XqgMb5ei6uW14w9yIu30wqLrh08ux2C0cP3vAa3JnvSK7XOWkTkKKXKtYiIiEyYfB4+9alqBfpb33Kt4atXw+c+5/ayPu00t70WuDBeKLhwDdXrqZSrGP8BN4BsNi5g34JbL30Fbh31Ulxbd3l9dQIXrFO455er0/DklernzEauOp3d/t+r0zaCYARy3VA/W1tviYgcoZ6pcu2/mCcjIiIiMlYq5SrQ4CrQ4IL12rXu+i23VIN0+fhU6vDblevA8cB83Bec23DhubzuOolrEzfx9cwTz4XDg/TzEqrLjAfGuvAMh1enrXXBeuSgu9183PP5ziIi8iJR5VpEREQm1BOr0X/4g1tXvXIlvOxlbsDZuF4//gG3T/UqXAv48Tz7AF1+rScG8T+ZjeKBZqY6rGxs5bphtiaEi4gcoZ6pcq1wLSIiIkeUsWE79TyWj/PAp6i2h9+GW0f9J58Xru38qcL5uIL3k4VuERE5omigmYiIiBxVUim3xvr5DNbgAm9l72mqa6v/VEVcsF4bXxae8NgfcOH9D1Qr5X+y8vRwBWsRkaOW1lyLiIjIS0J5TfZtPLdBZeVwDv89nI8N3sTv8Tz/34CIiBzhFK5FRETkJeM5r5Xm6cP50wVvERF5aVC4FhEREfkTPVU4H29VXEREjn4K1yIiIiLPg/FUxUVE5OinqRkiIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi46RwLSIiIiIiIjJOCtciIiIiIiIi42SstRN9Ds+aMaYAHJjo8/gT1AP5iT4JOWrp8yPjoc+PPFf67Mh46PMj46HPjzxXL9ZnZ6q1Nv1UDx6V4fpoYYzpttbOnujzkKOTPj8yHvr8yHOlz46Mhz4/Mh76/MhzdaR8dtQWLiIiIiIiIjJOCtciIiIiIiIi46Rw/cL6ykSfgBzV9PmR8dDnR54rfXZkPPT5kfHQ50eeqyPis6M11yIiIiIiIiLjpMq1iIiIiIiIyDgpXIuIiIiIiIiMk8L1C8QY8zJjTKcx5jFjzIPGmAUTfU5y5DPG1Bhj7ow/N78xxvzUGHPcRJ+XHH2MMZ8wxlhjzHsm+lzk6GGMSRtjbjbGPG6MedQYc/tEn5McHYwx7zDGPGyM2WyM+Z0x5mMTfU5y5DLGfM0YszP+d+rEMffr+7M8oyf7/Bwp36EVrl843wRutda+HLgO+PbEno4cRW4FXmGtfTXw78BtE3w+cpQxxswDPgNsnOBTkaPPtYAFXm6tPQH4/ASfjxwFjDEGuB34uLX2ROBM4JvGmIYJPTE5kv0AaAd2PeF+fX+WP8VTfX4m/Du0wvULwBjTCrwe9w8NwA+BNlUg5ZlYa0ettXfb6qTBjcC8CTwlOcoYYzzcPybnA4UJPh05ihhjMsCngBXlv4Ostb0Te1ZyFLFAc3y9EehDfwfJU7DW/tJa2z32Pn1/lj/Vk31+jpTv0ArXL4w2oMdaGwDEf8i7gTkTelZyNPos7n/eRP5UFwP3W2sfmugTkaPOscAhYLkx5tfGmA3GmLdM9EnJkS/+nvN+4A5jzC6gA/iYtbY4sWcmRxl9f5bn04R8h/Zf7DcUkT+NMWY5cBygL7fyJzHGvAp4L3DaRJ+LHJV8YC7wX9baLxhjXgP81BizwFq7b4LPTY5gxhgfWAn8jbX2l8aYk4C7jDEnWGsPTvDpichLzER+h1bl+oXRBcyI/7Epr0Wag/vfN5FnZIz5PPA3wBnW2uGJPh85aizGtUA9bozZCbwBuNUY8z8n8qTkqLEbiIB/ArDWPgLsAE6YyJOSo8KJwExr7S8BrLUPAt3AaybypOSoo+/PMm4T/R1a4foFYK3dDzwMfDi+671At7V268SdlRwtjDEXAx8EllhrByb4dOQoYq39urV2hrV2nrV2Hm690TJr7dcn+NTkKBBXGO8DTgcwxswH5gO/n8jzkqNCORS9EiBeI3ss8McJPSs5quj7s4zXkfAd2lTXfMvzyRjzCtyEw8nAIPAJa+2jE3pScsQzxszGfUnZDuTiuwvW2pMn7qzkaGWMWQ/cZK29c4JPRY4SxphjgH8EpuCq2H9vrf3hxJ6VHA2MMR8EluM+Nx5wjbX2nyf2rORIZYz5JvBOYDpu+F3OWnucvj/Ln+LJPj/AmzgCvkMrXIuIiIiIiIiMk9rCRURERERERMZJ4VpERERERERknBSuRURERERERMZJ4VpERERERERknBSuRURERERERMZJ4VpERERERERknBSuRURERERERMZJ4VpEROQoZIyxxpjm+PrdxphXPMVxPzDGfPzFPDcREZGXIn+iT0BERETGx1r7jok+BxERkZc6Va5FREReRMaYVxhjuo0xx8S3P2+M+bEx5kn/TTbGrDTG/N4Yszn+mfskx+w0xpwYXz/eGNNpjNlijLkTaBxzXIMx5lvGmE3GmN8aY241xqSe5lznGWMGjDFfMsY8bIx53BizyBhzY3wuvzPGvCo+9k3x7a/Hr/2oMeYvjTHfjq//yhgza1y/eSIiIkcwhWsREZEXkbX2j8AlwFpjzJuAc4GPWGujJx5rjGkBPg+81lp7InAqsO8Z3uJ7wD9aaxcA/wt445jHbgA2WGsXAq/GfQ/47DO8XhPwkLX2tcC1wL3AXfH5fAe4YsyxxwO3WWv/ErgT+E/gWmvtCcCvgQuf4b1ERESOWgrXIiIiLzJr7b8AD+OC6kestQee4tBB4HHgdmPMWcAka+3oU72uMaYROBH4dvw+jwIdYw55D3CJMWYz8AiwGDjuGU531Fp7Z3z910DeWvvz+PYm4GVjjt1qrX1ozLFbrbV/eIpjRURE/qxozbWIiMiLzBjjA68CDgFP2SptrQ2NMW/AVazfBGw0xnzQWrvhWbydHfvWwHuttY89i+cXxlwPgdEn3B77XeKJjz3dsSIiIn9WVLkWERF58V0L/BFXOf6yMeZJq8fGmAZgmrV2g7X2S7gq9Gue6kWttYO4ivRH4+cvANrHHHIncFkc7jHGtDzVe4uIiMizo3AtIiLyIjLGnAm8HTjXWrsVuBi3/rrmSQ5vAu6IB4L9Fkji1jk/nY8Cy4wxvwOuBn455rGLgBFgc/x69wHzxvPrEREREcdYa5/5KBERERERERF5Sqpci4iIiIiIiIyTBouIiIhMMGPMp4HznuSh85/l8LLn+v53AXOecHe/tfavXuj3FhER+XOhtnARERERERGRcVJbuIiIiIiIiMg4KVyLiIiIiIiIjJPCtYiIiIiIiMg4KVyLiIiIiIiIjJPCtYiIiIiIiMg4/X8PpBqlkOn3ewAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "plt.figure(figsize=(15, 15), dpi=80)\n", + "# import numpy as np\n", + "# import matplotlib.pyplot as plt\n", + "# plt.figure(figsize=(15, 15), dpi=80)\n", "\n", - "np.random.seed(20)\n", - "color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", - "recorded_fov = []\n", - "for i in range(len(fov_ids_lst_health)):\n", - " fov_id = fov_ids_lst_health[i]\n", - " X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", - " Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", + "# np.random.seed(20)\n", + "# color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", + "# recorded_fov = []\n", + "# for i in range(len(fov_ids_lst_health)):\n", + "# fov_id = fov_ids_lst_health[i]\n", + "# X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", + "# Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", " \n", - "# plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.legend()\n", + "# # plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.legend()\n", " \n", - " if fov_id not in recorded_fov:\n", - " plt.annotate(str(fov_id), (X[0], Y[0]))\n", + "# if fov_id not in recorded_fov:\n", + "# plt.annotate(str(fov_id), (X[0], Y[0]))\n", "\n", - "plt.title('Slide 1: Normal Liver')\n", - "plt.xlabel('x_slide_mm') \n", - "plt.ylabel('y_slide_mm') \n", - "plt.savefig('slide_1.png') \n", - "plt.show()\n" + "# plt.title('Slide 1: Normal Liver')\n", + "# plt.xlabel('x_slide_mm') \n", + "# plt.ylabel('y_slide_mm') \n", + "# plt.savefig('slide_1.png') \n", + "# plt.show()\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# import numpy as np\n", + "# import matplotlib.pyplot as plt\n", + "# plt.figure(figsize=(15, 15), dpi=80)\n", + "\n", + "# np.random.seed(20)\n", + "# color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", + "# recorded_fov = []\n", + "# for i in range(len(fov_ids_lst_health)):\n", + "# fov_id = fov_ids_lst_health[i]\n", + "# X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", + "# Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", + "# # import ipdb\n", + "# # ipdb.set_trace()\n", + "\n", + "# # plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.legend()\n", + " \n", + "# if fov_id not in recorded_fov:\n", + "# # plt.annotate(str(fov_id), (X[50], Y[50]), size=20)\n", + "# plt.annotate(str(fov_id), ((max(X) - min(X))/2.0 + min(X), (max(Y) - min(Y))/2.0 + min(Y)), size=10)\n", + "# # if i > 10:\n", + "# # break\n", + "\n", + "# plt.xticks(fontsize=20)\n", + "# plt.yticks(fontsize=20)\n", + "# plt.title('FOV Layout in Hepatocellular Carcinoma',fontsize=22)\n", + "# plt.xlabel('X(mm)', fontsize=20) \n", + "# plt.ylabel('Y(mm)', fontsize=20) \n", + "# plt.savefig(\"../../FOV_layout/cancer_liver.png\", format=\"png\", bbox_inches=\"tight\")\n", + "# plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Benchmark Generation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. spot_fov_cellId_mapping.csv" + ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, + "outputs": [], + "source": [ + "def get_spot_fov_cellId_mapping(data_result, cell_boundary_fov_11):\n", + " x_min, x_max = cell_boundary_fov_11[\"x_FOV_px\"].min(), cell_boundary_fov_11[\"x_FOV_px\"].max()\n", + " y_min, y_max = cell_boundary_fov_11[\"y_FOV_px\"].min(), cell_boundary_fov_11[\"y_FOV_px\"].max()\n", + "\n", + " x_diff, y_diff = (x_max - x_min) / 3, (y_max - y_min) / 3\n", + "\n", + " # Calculate spot_id using vectorized operations\n", + " cell_boundary_fov_11['spot_id'] = (\n", + " 3 * ((cell_boundary_fov_11[\"x_FOV_px\"] - x_min) // x_diff) +\n", + " ((cell_boundary_fov_11[\"y_FOV_px\"] - y_min) // y_diff) + 1\n", + " ).clip(1, 10).astype(int)\n", + "\n", + " # Filter out invalid spot_ids\n", + " valid_data = cell_boundary_fov_11[(cell_boundary_fov_11['spot_id'] >= 1) & (cell_boundary_fov_11['spot_id'] <= 10)]\n", + "\n", + " # Create a DataFrame with the required columns\n", + " result_df = valid_data[['spot_id', 'fov', 'cell_single_id']].copy()\n", + " # Concatenate the result DataFrame with the existing data_result\n", + " data_result = pd.concat([data_result, result_df], ignore_index=True)\n", + "\n", + " return data_result\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + "fov_ids_lst: [100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", + " 117 118 119 11 120 121 122 123 125 126 127 128 129 12 130 131 132 133\n", + " 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 148 149 14\n", + " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 164 165 166 167\n", + " 168 169 16 170 172 173 175 176 177 178 17 180 181 182 183 184 185 187\n", + " 189 18 190 191 192 193 194 195 196 197 198 199 19 200 202 203 204 205\n", + " 206 207 208 209 20 210 211 212 213 214 215 216 218 219 220 221 222 223\n", + " 224 225 226 227 228 229 22 230 231 232 234 235 236 237 238 239 23 240\n", + " 241 242 243 244 245 246 247 248 249 24 250 251 252 253 254 255 256 257\n", + " 258 259 25 260 261 262 263 264 265 266 267 268 269 26 270 271 272 273\n", + " 274 275 276 277 278 279 27 280 281 282 283 284 285 286 287 288 289 28\n", + " 290 291 292 294 295 296 297 298 29 300 301 302 303 304 305 306 307 308\n", + " 309 30 310 311 312 313 314 315 317 318 319 31 321 323 324 325 326 327\n", + " 328 329 32 330 331 335 336 337 338 339 33 340 341 343 344 345 347 349\n", + " 34 350 351 352 353 354 355 356 357 358 359 35 360 361 365 366 367 368\n", + " 36 370 373 374 375 376 378 379 37 383 38 39 3 40 41 42 43 44\n", + " 45 46 47 48 49 4 50 51 52 53 54 55 56 57 58 59 60 61\n", + " 62 64 65 66 67 68 69 6 70 71 72 73 74 75 76 77 78 79\n", + " 7 80 81 82 83 84 85 87 88 89 8 90 91 92 93 94 95 96\n", + " 97 98 99 9 124 163 171 174 179 186 1 201 217 21 233 293 2 316\n", + " 320 332 334 342 348 362 363 369 372 377 382 63 86 188 299 322 333 346\n", + " 364 371 380 381 5]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + " 0%| | 0/383 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" } ], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "plt.figure(figsize=(15, 15), dpi=80)\n", - "\n", - "np.random.seed(20)\n", - "color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", - "recorded_fov = []\n", - "for i in range(len(fov_ids_lst_health)):\n", - " fov_id = fov_ids_lst_health[i]\n", - " X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", - " Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", - "# import ipdb\n", - "# ipdb.set_trace()\n", - "\n", - "# plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.legend()\n", - " \n", - " if fov_id not in recorded_fov:\n", - "# plt.annotate(str(fov_id), (X[50], Y[50]), size=20)\n", - " plt.annotate(str(fov_id), ((max(X) - min(X))/2.0 + min(X), (max(Y) - min(Y))/2.0 + min(Y)), size=10)\n", - "# if i > 10:\n", - "# break\n", + "fov_ids_lst = cell_boundary_health['fov'].unique()\n", + "data_final_result = pd.DataFrame(columns = [ 'fov', 'spot_id', 'cell_single_id'])\n", + "print(\"fov_ids_lst:\", fov_ids_lst)\n", "\n", - "plt.xticks(fontsize=20)\n", - "plt.yticks(fontsize=20)\n", - "plt.title('FOV Layout in Hepatocellular Carcinoma',fontsize=22)\n", - "plt.xlabel('X(mm)', fontsize=20) \n", - "plt.ylabel('Y(mm)', fontsize=20) \n", - "plt.savefig(\"../../FOV_layout/cancer_liver.png\", format=\"png\", bbox_inches=\"tight\")\n", - "plt.show()\n" + "for fov_id in tqdm(fov_ids_lst):\n", + " cell_boundary_health_fov = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", + " # print(\"cell_boundary_health_fov_without_spot_id:\", cell_boundary_health_fov.shape)\n", + " data_final_result = get_spot_fov_cellId_mapping(data_final_result, cell_boundary_health_fov)" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "data_final_result.dropna(inplace=True, axis=1)\n", + "data_final_result.rename(columns={'cell_single_id': 'cell_ID'}, inplace=True)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "data_final_result['cell_ID'] = data_final_result['cell_ID'].astype(int)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# data_final_result.to_csv('./cancer/new/spot_fov_cellId_mapping.csv')" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KxFgQPBxonWH", - "scrolled": true - }, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(data_final_result['spot_id'].unique())" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [] + "source": [ + "## 2. spot_gene_expression.csv" + ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Benchmark Generation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. spot_fov_cellId_mapping.csv" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_fov_cellId_mapping(data_result, cell_boundary_fov_11):\n", - " x_min = cell_boundary_fov_11[\"x_FOV_px\"].min()\n", - " x_max = cell_boundary_fov_11[\"x_FOV_px\"].max()\n", - " y_min = cell_boundary_fov_11[\"y_FOV_px\"].min()\n", - " y_max = cell_boundary_fov_11[\"y_FOV_px\"].max()\n", - " \n", - "# print(\"x:\", x_min, x_max)\n", - "# print(\"y:\", y_min, y_max)\n", - " # x: 12 4245\n", - " # y: 24 4236\n", - "# import ipdb\n", - "# ipdb.set_trace()\n", - " x_diff = (x_max - x_min) / 3.0\n", - " y_diff = (y_max - y_min) / 3.0\n", - " \n", - " new_col_val = cell_boundary_fov_11.shape[0]* [0]\n", - " cell_boundary_fov_11.insert(loc=0, column='spot_id', value=new_col_val)\n", - "\n", - " for i in range(cell_boundary_fov_11.shape[0]):\n", - " one_row_sample = cell_boundary_fov_11.iloc[i]\n", - " if one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 1:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 1\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 2\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 3\n", - " \n", - "\n", - " elif one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 2:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 4\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 5\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 6\n", - " \n", - "\n", - " elif one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 3:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 7\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 8\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 9\n", - "\n", - " else:\n", - " print(\"Wrong x_FOV_px, y_FOV_px:\", one_row_sample[\"x_FOV_px\"], one_row_sample[\"y_FOV_px\"])\n", - "# data_result = data_result.append({'spot_id' : spot_id, 'fov' : one_row_sample[\"fov\"], 'cell_ID' : one_row_sample[\"cell_single_id\"]}, ignore_index = True)\n", - " \n", - " df1 = pd.DataFrame({'spot_id' : [spot_id], 'fov' : [one_row_sample[\"fov\"]], 'cell_ID' : [one_row_sample[\"cell_single_id\"]]})\n", - " data_result = pd.concat([data_result, df1])\n", - " \n", - " return data_result\n", - "\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idcell_ID
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, cell_ID]\n", - "Index: []" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_final_result = pd.DataFrame(columns = [ 'fov', 'spot_id', 'cell_ID'])\n", - "data_final_result" - ] - }, - { - "cell_type": "code", - "execution_count": 20, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -3801,71 +2636,47 @@ " \n", " \n", " \n", - " Unnamed: 0\n", - " cell_ID\n", - " x_FOV_px\n", - " y_FOV_px\n", - " x_slide_mm\n", - " y_slide_mm\n", " fov\n", " cell_single_id\n", + " cell_ID\n", + " cellType\n", " \n", " \n", " \n", " \n", - " 993\n", - " c_2_100_733\n", - " c_2_100_733\n", - " 443\n", - " 1605\n", - " 6.70816\n", - " 9.03340\n", + " 0\n", " 100\n", - " 733\n", + " 10\n", + " c_1_100_10\n", + " Hep.3\n", " \n", " \n", - " 994\n", - " c_2_101_240\n", - " c_2_101_240\n", - " 2777\n", - " 3037\n", - " 7.50024\n", - " 8.86156\n", - " 101\n", - " 240\n", + " 1\n", + " 100\n", + " 1078\n", + " c_1_100_1078\n", + " Hep.4\n", " \n", " \n", - " 995\n", - " c_2_101_339\n", - " c_2_101_339\n", - " 3655\n", - " 4083\n", - " 7.60560\n", - " 8.73604\n", - " 101\n", - " 339\n", + " 2\n", + " 100\n", + " 1135\n", + " c_1_100_1135\n", + " Inflammatory.macrophages\n", " \n", " \n", - " 996\n", - " c_2_101_452\n", - " c_2_101_452\n", - " 3857\n", - " 445\n", - " 7.62984\n", - " 9.17260\n", - " 101\n", - " 452\n", + " 3\n", + " 100\n", + " 267\n", + " c_1_100_267\n", + " Hep.5\n", " \n", " \n", - " 997\n", - " c_2_102_179\n", - " c_2_102_179\n", - " 1577\n", - " 1936\n", - " 7.86824\n", - " 8.99368\n", - " 102\n", - " 179\n", + " 4\n", + " 100\n", + " 732\n", + " c_1_100_732\n", + " Central.venous.LSECs\n", " \n", " \n", " ...\n", @@ -3873,1020 +2684,130 @@ " ...\n", " ...\n", " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", " \n", " \n", " 793313\n", - " c_2_9_945\n", - " c_2_9_945\n", - " 2710\n", - " 4230\n", - " 5.44420\n", - " 11.27840\n", " 9\n", " 945\n", + " c_2_9_945\n", + " Inflammatory.macrophages\n", " \n", " \n", " 793314\n", - " c_2_9_947\n", - " c_2_9_947\n", - " 2786\n", - " 4233\n", - " 5.45332\n", - " 11.27804\n", " 9\n", " 947\n", + " c_2_9_947\n", + " Non.inflammatory.macrophages\n", " \n", " \n", " 793315\n", - " c_2_9_948\n", - " c_2_9_948\n", - " 1732\n", - " 4234\n", - " 5.32684\n", - " 11.27792\n", " 9\n", " 948\n", + " c_2_9_948\n", + " tumor_1\n", " \n", " \n", " 793316\n", - " c_2_9_949\n", - " c_2_9_949\n", - " 1446\n", - " 4239\n", - " 5.29252\n", - " 11.27732\n", " 9\n", " 949\n", + " c_2_9_949\n", + " tumor_1\n", " \n", " \n", " 793317\n", - " c_2_9_95\n", - " c_2_9_95\n", - " 4211\n", - " 649\n", - " 5.62432\n", - " 11.70812\n", " 9\n", " 95\n", + " c_2_9_95\n", + " tumor_1\n", " \n", " \n", "\n", - "

460441 rows × 8 columns

\n", + "

793318 rows × 4 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 cell_ID x_FOV_px y_FOV_px x_slide_mm y_slide_mm \\\n", - "993 c_2_100_733 c_2_100_733 443 1605 6.70816 9.03340 \n", - "994 c_2_101_240 c_2_101_240 2777 3037 7.50024 8.86156 \n", - "995 c_2_101_339 c_2_101_339 3655 4083 7.60560 8.73604 \n", - "996 c_2_101_452 c_2_101_452 3857 445 7.62984 9.17260 \n", - "997 c_2_102_179 c_2_102_179 1577 1936 7.86824 8.99368 \n", - "... ... ... ... ... ... ... \n", - "793313 c_2_9_945 c_2_9_945 2710 4230 5.44420 11.27840 \n", - "793314 c_2_9_947 c_2_9_947 2786 4233 5.45332 11.27804 \n", - "793315 c_2_9_948 c_2_9_948 1732 4234 5.32684 11.27792 \n", - "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 11.27732 \n", - "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 11.70812 \n", - "\n", - " fov cell_single_id \n", - "993 100 733 \n", - "994 101 240 \n", - "995 101 339 \n", - "996 101 452 \n", - "997 102 179 \n", - "... ... ... \n", - "793313 9 945 \n", - "793314 9 947 \n", - "793315 9 948 \n", - "793316 9 949 \n", - "793317 9 95 \n", + " fov cell_single_id cell_ID cellType\n", + "0 100 10 c_1_100_10 Hep.3\n", + "1 100 1078 c_1_100_1078 Hep.4\n", + "2 100 1135 c_1_100_1135 Inflammatory.macrophages\n", + "3 100 267 c_1_100_267 Hep.5\n", + "4 100 732 c_1_100_732 Central.venous.LSECs\n", + "... ... ... ... ...\n", + "793313 9 945 c_2_9_945 Inflammatory.macrophages\n", + "793314 9 947 c_2_9_947 Non.inflammatory.macrophages\n", + "793315 9 948 c_2_9_948 tumor_1\n", + "793316 9 949 c_2_9_949 tumor_1\n", + "793317 9 95 c_2_9_95 tumor_1\n", "\n", - "[460441 rows x 8 columns]" + "[793318 rows x 4 columns]" ] }, - "execution_count": 20, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary_health" + "gene_expression_cell_type = pd.concat([cell_boundary.iloc[:,-2:], CosMx_cell_type.iloc[:,-2:]], axis=1)\n", + "gene_expression_cell_type" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "pandas.core.frame.DataFrame" + "AnnData object with n_obs × n_vars = 793318 × 1000\n", + " obs: 'RNA_pca_cluster_default', 'RNA_pca_cluster_default.1', 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'nCount_negprobes', 'nFeature_negprobes', 'nCount_falsecode', 'nFeature_falsecode', 'fov', 'Area', 'AspectRatio', 'Width', 'Height', 'Mean.PanCK', 'Max.PanCK', 'Mean.CK8.18', 'Max.CK8.18', 'Mean.Membrane', 'Max.Membrane', 'Mean.CD45', 'Max.CD45', 'Mean.DAPI', 'Max.DAPI', 'cell_id', 'assay_type', 'Run_name', 'slide_ID_numeric', 'Run_Tissue_name', 'Panel', 'Mean.Yellow', 'Max.Yellow', 'Mean.CD298_B2M', 'Max.CD298_B2M', 'cell_ID', 'x_FOV_px', 'y_FOV_px', 'x_slide_mm', 'y_slide_mm', 'propNegative', 'complexity', 'errorCtEstimate', 'percOfDataFromError', 'qcFlagsRNACounts', 'qcFlagsCellCounts', 'qcFlagsCellPropNeg', 'qcFlagsCellComplex', 'qcFlagsCellArea', 'median_negprobes', 'negprobes_quantile_0.9', 'median_RNA', 'RNA_quantile_0.9', 'nCell', 'nCount', 'nCountPerCell', 'nFeaturePerCell', 'propNegativeCellAvg', 'complexityCellAvg', 'errorCtPerCellEstimate', 'percOfDataFromErrorPerCell', 'qcFlagsFOV', 'cellType', 'niche'\n", + " var: 'I', 'pval', 'padj'" ] }, - "execution_count": 21, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(cell_boundary_health)" + "import anndata as ad\n", + "liver_anndata = ad.read_h5ad(\"./cosmx_Liver.h5ad\")\n", + "liver_anndata" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 10, 110, 111,\n", - " 112, 113, 114, 115, 116, 117, 118, 119, 11, 120, 121, 122, 123,\n", - " 125, 126, 127, 128, 129, 12, 130, 131, 132, 133, 134, 135, 136,\n", - " 137, 138, 139, 13, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n", - " 149, 14, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 15,\n", - " 160, 161, 162, 164, 165, 166, 167, 168, 169, 16, 170, 172, 173,\n", - " 175, 176, 177, 178, 17, 180, 181, 182, 183, 184, 185, 187, 189,\n", - " 18, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 19, 200,\n", - " 202, 203, 204, 205, 206, 207, 208, 209, 20, 210, 211, 212, 213,\n", - " 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,\n", - " 228, 229, 22, 230, 231, 232, 234, 235, 236, 237, 238, 239, 23,\n", - " 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 24, 250, 251,\n", - " 252, 253, 254, 255, 256, 257, 258, 259, 25, 260, 261, 262, 263,\n", - " 264, 265, 266, 267, 268, 269, 26, 270, 271, 272, 273, 274, 275,\n", - " 276, 277, 278, 279, 27, 280, 281, 282, 283, 284, 285, 286, 287,\n", - " 288, 289, 28, 290, 291, 292, 294, 295, 296, 297, 298, 29, 300,\n", - " 301, 302, 303, 304, 305, 306, 307, 308, 309, 30, 310, 311, 312,\n", - " 313, 314, 315, 317, 318, 319, 31, 321, 323, 324, 325, 326, 327,\n", - " 328, 329, 32, 330, 331, 335, 336, 337, 338, 339, 33, 340, 341,\n", - " 343, 344, 345, 347, 349, 34, 350, 351, 352, 353, 354, 355, 356,\n", - " 357, 358, 359, 35, 360, 361, 365, 366, 367, 368, 36, 370, 373,\n", - " 374, 375, 376, 378, 379, 37, 383, 38, 39, 3, 40, 41, 42,\n", - " 43, 44, 45, 46, 47, 48, 49, 4, 50, 51, 52, 53, 54,\n", - " 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68,\n", - " 69, 6, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 7,\n", - " 80, 81, 82, 83, 84, 85, 87, 88, 89, 8, 90, 91, 92,\n", - " 93, 94, 95, 96, 97, 98, 99, 9, 124, 163, 171, 174, 179,\n", - " 186, 1, 201, 217, 21, 233, 293, 2, 316, 320, 332, 334, 342,\n", - " 348, 362, 363, 369, 372, 377, 382, 63, 86, 188, 299, 322, 333,\n", - " 346, 364, 371, 380, 381, 5])" + "array([[0., 0., 0., ..., 0., 0., 0.],\n", + " [1., 2., 0., ..., 0., 4., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " ...,\n", + " [0., 0., 0., ..., 0., 0., 1.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 1., 0., ..., 0., 0., 2.]])" ] }, - "execution_count": 22, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fov_ids_lst = cell_boundary_health['fov'].unique()\n", - "fov_ids_lst" + "liver_raw = liver_anndata.raw.X.toarray()\n", + "liver_raw" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_ids_lst: [100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", - " 117 118 119 11 120 121 122 123 125 126 127 128 129 12 130 131 132 133\n", - " 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 148 149 14\n", - " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 164 165 166 167\n", - " 168 169 16 170 172 173 175 176 177 178 17 180 181 182 183 184 185 187\n", - " 189 18 190 191 192 193 194 195 196 197 198 199 19 200 202 203 204 205\n", - " 206 207 208 209 20 210 211 212 213 214 215 216 218 219 220 221 222 223\n", - " 224 225 226 227 228 229 22 230 231 232 234 235 236 237 238 239 23 240\n", - " 241 242 243 244 245 246 247 248 249 24 250 251 252 253 254 255 256 257\n", - " 258 259 25 260 261 262 263 264 265 266 267 268 269 26 270 271 272 273\n", - " 274 275 276 277 278 279 27 280 281 282 283 284 285 286 287 288 289 28\n", - " 290 291 292 294 295 296 297 298 29 300 301 302 303 304 305 306 307 308\n", - " 309 30 310 311 312 313 314 315 317 318 319 31 321 323 324 325 326 327\n", - " 328 329 32 330 331 335 336 337 338 339 33 340 341 343 344 345 347 349\n", - " 34 350 351 352 353 354 355 356 357 358 359 35 360 361 365 366 367 368\n", - " 36 370 373 374 375 376 378 379 37 383 38 39 3 40 41 42 43 44\n", - " 45 46 47 48 49 4 50 51 52 53 54 55 56 57 58 59 60 61\n", - " 62 64 65 66 67 68 69 6 70 71 72 73 74 75 76 77 78 79\n", - " 7 80 81 82 83 84 85 87 88 89 8 90 91 92 93 94 95 96\n", - " 97 98 99 9 124 163 171 174 179 186 1 201 217 21 233 293 2 316\n", - " 320 332 334 342 348 362 363 369 372 377 382 63 86 188 299 322 333 346\n", - " 364 371 380 381 5]\n", - "fov_id: 100\n", - "cell_boundary_health_fov_without_spot_id: (1151, 8)\n", - "fov_id: 101\n", - "cell_boundary_health_fov_without_spot_id: (1040, 8)\n", - "fov_id: 102\n", - "cell_boundary_health_fov_without_spot_id: (1277, 8)\n", - "fov_id: 103\n", - "cell_boundary_health_fov_without_spot_id: (1444, 8)\n", - "fov_id: 104\n", - "cell_boundary_health_fov_without_spot_id: (1179, 8)\n", - "fov_id: 105\n", - "cell_boundary_health_fov_without_spot_id: (1179, 8)\n", - "fov_id: 106\n", - "cell_boundary_health_fov_without_spot_id: (859, 8)\n", - "fov_id: 107\n", - "cell_boundary_health_fov_without_spot_id: (1473, 8)\n", - "fov_id: 108\n", - "cell_boundary_health_fov_without_spot_id: (1462, 8)\n", - "fov_id: 109\n", - "cell_boundary_health_fov_without_spot_id: (1278, 8)\n", - "fov_id: 10\n", - "cell_boundary_health_fov_without_spot_id: (969, 8)\n", - "fov_id: 110\n", - "cell_boundary_health_fov_without_spot_id: (1379, 8)\n", - "fov_id: 111\n", - "cell_boundary_health_fov_without_spot_id: (1278, 8)\n", - "fov_id: 112\n", - "cell_boundary_health_fov_without_spot_id: (1403, 8)\n", - "fov_id: 113\n", - "cell_boundary_health_fov_without_spot_id: (1236, 8)\n", - "fov_id: 114\n", - "cell_boundary_health_fov_without_spot_id: (1183, 8)\n", - "fov_id: 115\n", - "cell_boundary_health_fov_without_spot_id: (1155, 8)\n", - "fov_id: 116\n", - "cell_boundary_health_fov_without_spot_id: (1108, 8)\n", - "fov_id: 117\n", - "cell_boundary_health_fov_without_spot_id: (1202, 8)\n", - "fov_id: 118\n", - "cell_boundary_health_fov_without_spot_id: (1034, 8)\n", - "fov_id: 119\n", - "cell_boundary_health_fov_without_spot_id: (1152, 8)\n", - "fov_id: 11\n", - "cell_boundary_health_fov_without_spot_id: (877, 8)\n", - "fov_id: 120\n", - "cell_boundary_health_fov_without_spot_id: (1099, 8)\n", - "fov_id: 121\n", - "cell_boundary_health_fov_without_spot_id: (1151, 8)\n", - "fov_id: 122\n", - "cell_boundary_health_fov_without_spot_id: (1195, 8)\n", - "fov_id: 123\n", - "cell_boundary_health_fov_without_spot_id: (1195, 8)\n", - "fov_id: 125\n", - "cell_boundary_health_fov_without_spot_id: (1383, 8)\n", - "fov_id: 126\n", - "cell_boundary_health_fov_without_spot_id: (1183, 8)\n", - "fov_id: 127\n", - "cell_boundary_health_fov_without_spot_id: (578, 8)\n", - "fov_id: 128\n", - "cell_boundary_health_fov_without_spot_id: (1274, 8)\n", - "fov_id: 129\n", - "cell_boundary_health_fov_without_spot_id: (1245, 8)\n", - "fov_id: 12\n", - "cell_boundary_health_fov_without_spot_id: (969, 8)\n", - "fov_id: 130\n", - "cell_boundary_health_fov_without_spot_id: (1336, 8)\n", - "fov_id: 131\n", - "cell_boundary_health_fov_without_spot_id: (1417, 8)\n", - "fov_id: 132\n", - "cell_boundary_health_fov_without_spot_id: (1274, 8)\n", - "fov_id: 133\n", - "cell_boundary_health_fov_without_spot_id: (1263, 8)\n", - "fov_id: 134\n", - "cell_boundary_health_fov_without_spot_id: (1290, 8)\n", - "fov_id: 135\n", - "cell_boundary_health_fov_without_spot_id: (1290, 8)\n", - "fov_id: 136\n", - "cell_boundary_health_fov_without_spot_id: (1230, 8)\n", - "fov_id: 137\n", - "cell_boundary_health_fov_without_spot_id: (1285, 8)\n", - "fov_id: 138\n", - "cell_boundary_health_fov_without_spot_id: (1176, 8)\n", - "fov_id: 139\n", - "cell_boundary_health_fov_without_spot_id: (1116, 8)\n", - "fov_id: 13\n", - "cell_boundary_health_fov_without_spot_id: (985, 8)\n", - "fov_id: 140\n", - "cell_boundary_health_fov_without_spot_id: (1270, 8)\n", - "fov_id: 141\n", - "cell_boundary_health_fov_without_spot_id: (1255, 8)\n", - "fov_id: 142\n", - "cell_boundary_health_fov_without_spot_id: (1240, 8)\n", - "fov_id: 143\n", - "cell_boundary_health_fov_without_spot_id: (1179, 8)\n", - "fov_id: 144\n", - "cell_boundary_health_fov_without_spot_id: (1267, 8)\n", - "fov_id: 145\n", - "cell_boundary_health_fov_without_spot_id: (1273, 8)\n", - "fov_id: 146\n", - "cell_boundary_health_fov_without_spot_id: (1261, 8)\n", - "fov_id: 147\n", - "cell_boundary_health_fov_without_spot_id: (1126, 8)\n", - "fov_id: 148\n", - "cell_boundary_health_fov_without_spot_id: (1063, 8)\n", - "fov_id: 149\n", - "cell_boundary_health_fov_without_spot_id: (1182, 8)\n", - "fov_id: 14\n", - "cell_boundary_health_fov_without_spot_id: (1021, 8)\n", - "fov_id: 150\n", - "cell_boundary_health_fov_without_spot_id: (1235, 8)\n", - "fov_id: 151\n", - "cell_boundary_health_fov_without_spot_id: (1464, 8)\n", - "fov_id: 152\n", - "cell_boundary_health_fov_without_spot_id: (1375, 8)\n", - "fov_id: 153\n", - "cell_boundary_health_fov_without_spot_id: (1178, 8)\n", - "fov_id: 154\n", - "cell_boundary_health_fov_without_spot_id: (1320, 8)\n", - "fov_id: 155\n", - "cell_boundary_health_fov_without_spot_id: (1466, 8)\n", - "fov_id: 156\n", - "cell_boundary_health_fov_without_spot_id: (1391, 8)\n", - "fov_id: 157\n", - "cell_boundary_health_fov_without_spot_id: (1389, 8)\n", - "fov_id: 158\n", - "cell_boundary_health_fov_without_spot_id: (1355, 8)\n", - "fov_id: 159\n", - "cell_boundary_health_fov_without_spot_id: (1140, 8)\n", - "fov_id: 15\n", - "cell_boundary_health_fov_without_spot_id: (593, 8)\n", - "fov_id: 160\n", - "cell_boundary_health_fov_without_spot_id: (1131, 8)\n", - "fov_id: 161\n", - "cell_boundary_health_fov_without_spot_id: (1267, 8)\n", - "fov_id: 162\n", - "cell_boundary_health_fov_without_spot_id: (991, 8)\n", - "fov_id: 164\n", - "cell_boundary_health_fov_without_spot_id: (1262, 8)\n", - "fov_id: 165\n", - "cell_boundary_health_fov_without_spot_id: (1332, 8)\n", - "fov_id: 166\n", - "cell_boundary_health_fov_without_spot_id: (1444, 8)\n", - "fov_id: 167\n", - "cell_boundary_health_fov_without_spot_id: (1273, 8)\n", - "fov_id: 168\n", - "cell_boundary_health_fov_without_spot_id: (1179, 8)\n", - "fov_id: 169\n", - "cell_boundary_health_fov_without_spot_id: (1141, 8)\n", - "fov_id: 16\n", - "cell_boundary_health_fov_without_spot_id: (1537, 8)\n", - "fov_id: 170\n", - "cell_boundary_health_fov_without_spot_id: (1103, 8)\n", - "fov_id: 172\n", - "cell_boundary_health_fov_without_spot_id: (1274, 8)\n", - "fov_id: 173\n", - "cell_boundary_health_fov_without_spot_id: (1408, 8)\n", - "fov_id: 175\n", - "cell_boundary_health_fov_without_spot_id: (1492, 8)\n", - "fov_id: 176\n", - "cell_boundary_health_fov_without_spot_id: (1220, 8)\n", - "fov_id: 177\n", - "cell_boundary_health_fov_without_spot_id: (1468, 8)\n", - "fov_id: 178\n", - "cell_boundary_health_fov_without_spot_id: (1311, 8)\n", - "fov_id: 17\n", - "cell_boundary_health_fov_without_spot_id: (1476, 8)\n", - "fov_id: 180\n", - "cell_boundary_health_fov_without_spot_id: (1379, 8)\n", - "fov_id: 181\n", - "cell_boundary_health_fov_without_spot_id: (1379, 8)\n", - "fov_id: 182\n", - "cell_boundary_health_fov_without_spot_id: (1278, 8)\n", - "fov_id: 183\n", - "cell_boundary_health_fov_without_spot_id: (1204, 8)\n", - "fov_id: 184\n", - "cell_boundary_health_fov_without_spot_id: (1187, 8)\n", - "fov_id: 185\n", - "cell_boundary_health_fov_without_spot_id: (869, 8)\n", - "fov_id: 187\n", - "cell_boundary_health_fov_without_spot_id: (721, 8)\n", - "fov_id: 189\n", - "cell_boundary_health_fov_without_spot_id: (1400, 8)\n", - "fov_id: 18\n", - "cell_boundary_health_fov_without_spot_id: (1029, 8)\n", - "fov_id: 190\n", - "cell_boundary_health_fov_without_spot_id: (1316, 8)\n", - "fov_id: 191\n", - "cell_boundary_health_fov_without_spot_id: (1134, 8)\n", - "fov_id: 192\n", - "cell_boundary_health_fov_without_spot_id: (1131, 8)\n", - "fov_id: 193\n", - "cell_boundary_health_fov_without_spot_id: (1151, 8)\n", - "fov_id: 194\n", - "cell_boundary_health_fov_without_spot_id: (1011, 8)\n", - "fov_id: 195\n", - "cell_boundary_health_fov_without_spot_id: (1129, 8)\n", - "fov_id: 196\n", - "cell_boundary_health_fov_without_spot_id: (1490, 8)\n", - "fov_id: 197\n", - "cell_boundary_health_fov_without_spot_id: (1518, 8)\n", - "fov_id: 198\n", - "cell_boundary_health_fov_without_spot_id: (1514, 8)\n", - "fov_id: 199\n", - "cell_boundary_health_fov_without_spot_id: (1234, 8)\n", - "fov_id: 19\n", - "cell_boundary_health_fov_without_spot_id: (1009, 8)\n", - "fov_id: 200\n", - "cell_boundary_health_fov_without_spot_id: (1349, 8)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 202\n", - "cell_boundary_health_fov_without_spot_id: (1456, 8)\n", - "fov_id: 203\n", - "cell_boundary_health_fov_without_spot_id: (1490, 8)\n", - "fov_id: 204\n", - "cell_boundary_health_fov_without_spot_id: (1327, 8)\n", - "fov_id: 205\n", - "cell_boundary_health_fov_without_spot_id: (1281, 8)\n", - "fov_id: 206\n", - "cell_boundary_health_fov_without_spot_id: (1319, 8)\n", - "fov_id: 207\n", - "cell_boundary_health_fov_without_spot_id: (1073, 8)\n", - "fov_id: 208\n", - "cell_boundary_health_fov_without_spot_id: (1058, 8)\n", - "fov_id: 209\n", - "cell_boundary_health_fov_without_spot_id: (1127, 8)\n", - "fov_id: 20\n", - "cell_boundary_health_fov_without_spot_id: (1130, 8)\n", - "fov_id: 210\n", - "cell_boundary_health_fov_without_spot_id: (1248, 8)\n", - "fov_id: 211\n", - "cell_boundary_health_fov_without_spot_id: (1177, 8)\n", - "fov_id: 212\n", - "cell_boundary_health_fov_without_spot_id: (1033, 8)\n", - "fov_id: 213\n", - "cell_boundary_health_fov_without_spot_id: (1188, 8)\n", - "fov_id: 214\n", - "cell_boundary_health_fov_without_spot_id: (1241, 8)\n", - "fov_id: 215\n", - "cell_boundary_health_fov_without_spot_id: (1079, 8)\n", - "fov_id: 216\n", - "cell_boundary_health_fov_without_spot_id: (896, 8)\n", - "fov_id: 218\n", - "cell_boundary_health_fov_without_spot_id: (731, 8)\n", - "fov_id: 219\n", - "cell_boundary_health_fov_without_spot_id: (1264, 8)\n", - "fov_id: 220\n", - "cell_boundary_health_fov_without_spot_id: (1459, 8)\n", - "fov_id: 221\n", - "cell_boundary_health_fov_without_spot_id: (1448, 8)\n", - "fov_id: 222\n", - "cell_boundary_health_fov_without_spot_id: (1392, 8)\n", - "fov_id: 223\n", - "cell_boundary_health_fov_without_spot_id: (1601, 8)\n", - "fov_id: 224\n", - "cell_boundary_health_fov_without_spot_id: (1506, 8)\n", - "fov_id: 225\n", - "cell_boundary_health_fov_without_spot_id: (1534, 8)\n", - "fov_id: 226\n", - "cell_boundary_health_fov_without_spot_id: (1341, 8)\n", - "fov_id: 227\n", - "cell_boundary_health_fov_without_spot_id: (1243, 8)\n", - "fov_id: 228\n", - "cell_boundary_health_fov_without_spot_id: (1309, 8)\n", - "fov_id: 229\n", - "cell_boundary_health_fov_without_spot_id: (1146, 8)\n", - "fov_id: 22\n", - "cell_boundary_health_fov_without_spot_id: (1228, 8)\n", - "fov_id: 230\n", - "cell_boundary_health_fov_without_spot_id: (1115, 8)\n", - "fov_id: 231\n", - "cell_boundary_health_fov_without_spot_id: (1157, 8)\n", - "fov_id: 232\n", - "cell_boundary_health_fov_without_spot_id: (1183, 8)\n", - "fov_id: 234\n", - "cell_boundary_health_fov_without_spot_id: (1009, 8)\n", - "fov_id: 235\n", - "cell_boundary_health_fov_without_spot_id: (766, 8)\n", - "fov_id: 236\n", - "cell_boundary_health_fov_without_spot_id: (1288, 8)\n", - "fov_id: 237\n", - "cell_boundary_health_fov_without_spot_id: (1238, 8)\n", - "fov_id: 238\n", - "cell_boundary_health_fov_without_spot_id: (1250, 8)\n", - "fov_id: 239\n", - "cell_boundary_health_fov_without_spot_id: (1161, 8)\n", - "fov_id: 23\n", - "cell_boundary_health_fov_without_spot_id: (807, 8)\n", - "fov_id: 240\n", - "cell_boundary_health_fov_without_spot_id: (1118, 8)\n", - "fov_id: 241\n", - "cell_boundary_health_fov_without_spot_id: (1405, 8)\n", - "fov_id: 242\n", - "cell_boundary_health_fov_without_spot_id: (1643, 8)\n", - "fov_id: 243\n", - "cell_boundary_health_fov_without_spot_id: (1394, 8)\n", - "fov_id: 244\n", - "cell_boundary_health_fov_without_spot_id: (1773, 8)\n", - "fov_id: 245\n", - "cell_boundary_health_fov_without_spot_id: (1513, 8)\n", - "fov_id: 246\n", - "cell_boundary_health_fov_without_spot_id: (1517, 8)\n", - "fov_id: 247\n", - "cell_boundary_health_fov_without_spot_id: (1218, 8)\n", - "fov_id: 248\n", - "cell_boundary_health_fov_without_spot_id: (1138, 8)\n", - "fov_id: 249\n", - "cell_boundary_health_fov_without_spot_id: (1156, 8)\n", - "fov_id: 24\n", - "cell_boundary_health_fov_without_spot_id: (970, 8)\n", - "fov_id: 250\n", - "cell_boundary_health_fov_without_spot_id: (1219, 8)\n", - "fov_id: 251\n", - "cell_boundary_health_fov_without_spot_id: (1364, 8)\n", - "fov_id: 252\n", - "cell_boundary_health_fov_without_spot_id: (1254, 8)\n", - "fov_id: 253\n", - "cell_boundary_health_fov_without_spot_id: (1043, 8)\n", - "fov_id: 254\n", - "cell_boundary_health_fov_without_spot_id: (1068, 8)\n", - "fov_id: 255\n", - "cell_boundary_health_fov_without_spot_id: (1208, 8)\n", - "fov_id: 256\n", - "cell_boundary_health_fov_without_spot_id: (805, 8)\n", - "fov_id: 257\n", - "cell_boundary_health_fov_without_spot_id: (1491, 8)\n", - "fov_id: 258\n", - "cell_boundary_health_fov_without_spot_id: (1397, 8)\n", - "fov_id: 259\n", - "cell_boundary_health_fov_without_spot_id: (1138, 8)\n", - "fov_id: 25\n", - "cell_boundary_health_fov_without_spot_id: (947, 8)\n", - "fov_id: 260\n", - "cell_boundary_health_fov_without_spot_id: (1367, 8)\n", - "fov_id: 261\n", - "cell_boundary_health_fov_without_spot_id: (1289, 8)\n", - "fov_id: 262\n", - "cell_boundary_health_fov_without_spot_id: (1092, 8)\n", - "fov_id: 263\n", - "cell_boundary_health_fov_without_spot_id: (1337, 8)\n", - "fov_id: 264\n", - "cell_boundary_health_fov_without_spot_id: (1420, 8)\n", - "fov_id: 265\n", - "cell_boundary_health_fov_without_spot_id: (1106, 8)\n", - "fov_id: 266\n", - "cell_boundary_health_fov_without_spot_id: (1167, 8)\n", - "fov_id: 267\n", - "cell_boundary_health_fov_without_spot_id: (1093, 8)\n", - "fov_id: 268\n", - "cell_boundary_health_fov_without_spot_id: (1020, 8)\n", - "fov_id: 269\n", - "cell_boundary_health_fov_without_spot_id: (1395, 8)\n", - "fov_id: 26\n", - "cell_boundary_health_fov_without_spot_id: (973, 8)\n", - "fov_id: 270\n", - "cell_boundary_health_fov_without_spot_id: (1728, 8)\n", - "fov_id: 271\n", - "cell_boundary_health_fov_without_spot_id: (1178, 8)\n", - "fov_id: 272\n", - "cell_boundary_health_fov_without_spot_id: (1029, 8)\n", - "fov_id: 273\n", - "cell_boundary_health_fov_without_spot_id: (1208, 8)\n", - "fov_id: 274\n", - "cell_boundary_health_fov_without_spot_id: (1570, 8)\n", - "fov_id: 275\n", - "cell_boundary_health_fov_without_spot_id: (1138, 8)\n", - "fov_id: 276\n", - "cell_boundary_health_fov_without_spot_id: (1293, 8)\n", - "fov_id: 277\n", - "cell_boundary_health_fov_without_spot_id: (1481, 8)\n", - "fov_id: 278\n", - "cell_boundary_health_fov_without_spot_id: (1200, 8)\n", - "fov_id: 279\n", - "cell_boundary_health_fov_without_spot_id: (805, 8)\n", - "fov_id: 27\n", - "cell_boundary_health_fov_without_spot_id: (1017, 8)\n", - "fov_id: 280\n", - "cell_boundary_health_fov_without_spot_id: (1657, 8)\n", - "fov_id: 281\n", - "cell_boundary_health_fov_without_spot_id: (1064, 8)\n", - "fov_id: 282\n", - "cell_boundary_health_fov_without_spot_id: (1222, 8)\n", - "fov_id: 283\n", - "cell_boundary_health_fov_without_spot_id: (1149, 8)\n", - "fov_id: 284\n", - "cell_boundary_health_fov_without_spot_id: (1079, 8)\n", - "fov_id: 285\n", - "cell_boundary_health_fov_without_spot_id: (896, 8)\n", - "fov_id: 286\n", - "cell_boundary_health_fov_without_spot_id: (999, 8)\n", - "fov_id: 287\n", - "cell_boundary_health_fov_without_spot_id: (1210, 8)\n", - "fov_id: 288\n", - "cell_boundary_health_fov_without_spot_id: (1307, 8)\n", - "fov_id: 289\n", - "cell_boundary_health_fov_without_spot_id: (1119, 8)\n", - "fov_id: 28\n", - "cell_boundary_health_fov_without_spot_id: (1108, 8)\n", - "fov_id: 290\n", - "cell_boundary_health_fov_without_spot_id: (994, 8)\n", - "fov_id: 291\n", - "cell_boundary_health_fov_without_spot_id: (1258, 8)\n", - "fov_id: 292\n", - "cell_boundary_health_fov_without_spot_id: (1457, 8)\n", - "fov_id: 294\n", - "cell_boundary_health_fov_without_spot_id: (1006, 8)\n", - "fov_id: 295\n", - "cell_boundary_health_fov_without_spot_id: (1224, 8)\n", - "fov_id: 296\n", - "cell_boundary_health_fov_without_spot_id: (1175, 8)\n", - "fov_id: 297\n", - "cell_boundary_health_fov_without_spot_id: (1378, 8)\n", - "fov_id: 298\n", - "cell_boundary_health_fov_without_spot_id: (1331, 8)\n", - "fov_id: 29\n", - "cell_boundary_health_fov_without_spot_id: (1192, 8)\n", - "fov_id: 300\n", - "cell_boundary_health_fov_without_spot_id: (1268, 8)\n", - "fov_id: 301\n", - "cell_boundary_health_fov_without_spot_id: (1175, 8)\n", - "fov_id: 302\n", - "cell_boundary_health_fov_without_spot_id: (1215, 8)\n", - "fov_id: 303\n", - "cell_boundary_health_fov_without_spot_id: (1201, 8)\n", - "fov_id: 304\n", - "cell_boundary_health_fov_without_spot_id: (1327, 8)\n", - "fov_id: 305\n", - "cell_boundary_health_fov_without_spot_id: (1217, 8)\n", - "fov_id: 306\n", - "cell_boundary_health_fov_without_spot_id: (960, 8)\n", - "fov_id: 307\n", - "cell_boundary_health_fov_without_spot_id: (1142, 8)\n", - "fov_id: 308\n", - "cell_boundary_health_fov_without_spot_id: (1237, 8)\n", - "fov_id: 309\n", - "cell_boundary_health_fov_without_spot_id: (1348, 8)\n", - "fov_id: 30\n", - "cell_boundary_health_fov_without_spot_id: (754, 8)\n", - "fov_id: 310\n", - "cell_boundary_health_fov_without_spot_id: (1196, 8)\n", - "fov_id: 311\n", - "cell_boundary_health_fov_without_spot_id: (1488, 8)\n", - "fov_id: 312\n", - "cell_boundary_health_fov_without_spot_id: (1455, 8)\n", - "fov_id: 313\n", - "cell_boundary_health_fov_without_spot_id: (1816, 8)\n", - "fov_id: 314\n", - "cell_boundary_health_fov_without_spot_id: (1793, 8)\n", - "fov_id: 315\n", - "cell_boundary_health_fov_without_spot_id: (1384, 8)\n", - "fov_id: 317\n", - "cell_boundary_health_fov_without_spot_id: (880, 8)\n", - "fov_id: 318\n", - "cell_boundary_health_fov_without_spot_id: (1023, 8)\n", - "fov_id: 319\n", - "cell_boundary_health_fov_without_spot_id: (1250, 8)\n", - "fov_id: 31\n", - "cell_boundary_health_fov_without_spot_id: (1159, 8)\n", - "fov_id: 321\n", - "cell_boundary_health_fov_without_spot_id: (1280, 8)\n", - "fov_id: 323\n", - "cell_boundary_health_fov_without_spot_id: (684, 8)\n", - "fov_id: 324\n", - "cell_boundary_health_fov_without_spot_id: (1089, 8)\n", - "fov_id: 325\n", - "cell_boundary_health_fov_without_spot_id: (1277, 8)\n", - "fov_id: 326\n", - "cell_boundary_health_fov_without_spot_id: (1454, 8)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 327\n", - "cell_boundary_health_fov_without_spot_id: (1233, 8)\n", - "fov_id: 328\n", - "cell_boundary_health_fov_without_spot_id: (1456, 8)\n", - "fov_id: 329\n", - "cell_boundary_health_fov_without_spot_id: (1440, 8)\n", - "fov_id: 32\n", - "cell_boundary_health_fov_without_spot_id: (1621, 8)\n", - "fov_id: 330\n", - "cell_boundary_health_fov_without_spot_id: (1695, 8)\n", - "fov_id: 331\n", - "cell_boundary_health_fov_without_spot_id: (1731, 8)\n", - "fov_id: 335\n", - "cell_boundary_health_fov_without_spot_id: (1169, 8)\n", - "fov_id: 336\n", - "cell_boundary_health_fov_without_spot_id: (1106, 8)\n", - "fov_id: 337\n", - "cell_boundary_health_fov_without_spot_id: (805, 8)\n", - "fov_id: 338\n", - "cell_boundary_health_fov_without_spot_id: (425, 8)\n", - "fov_id: 339\n", - "cell_boundary_health_fov_without_spot_id: (1025, 8)\n", - "fov_id: 33\n", - "cell_boundary_health_fov_without_spot_id: (1370, 8)\n", - "fov_id: 340\n", - "cell_boundary_health_fov_without_spot_id: (1334, 8)\n", - "fov_id: 341\n", - "cell_boundary_health_fov_without_spot_id: (1459, 8)\n", - "fov_id: 343\n", - "cell_boundary_health_fov_without_spot_id: (1505, 8)\n", - "fov_id: 344\n", - "cell_boundary_health_fov_without_spot_id: (1542, 8)\n", - "fov_id: 345\n", - "cell_boundary_health_fov_without_spot_id: (1356, 8)\n", - "fov_id: 347\n", - "cell_boundary_health_fov_without_spot_id: (1208, 8)\n", - "fov_id: 349\n", - "cell_boundary_health_fov_without_spot_id: (1051, 8)\n", - "fov_id: 34\n", - "cell_boundary_health_fov_without_spot_id: (1143, 8)\n", - "fov_id: 350\n", - "cell_boundary_health_fov_without_spot_id: (1206, 8)\n", - "fov_id: 351\n", - "cell_boundary_health_fov_without_spot_id: (1672, 8)\n", - "fov_id: 352\n", - "cell_boundary_health_fov_without_spot_id: (1588, 8)\n", - "fov_id: 353\n", - "cell_boundary_health_fov_without_spot_id: (1781, 8)\n", - "fov_id: 354\n", - "cell_boundary_health_fov_without_spot_id: (1487, 8)\n", - "fov_id: 355\n", - "cell_boundary_health_fov_without_spot_id: (1251, 8)\n", - "fov_id: 356\n", - "cell_boundary_health_fov_without_spot_id: (1260, 8)\n", - "fov_id: 357\n", - "cell_boundary_health_fov_without_spot_id: (739, 8)\n", - "fov_id: 358\n", - "cell_boundary_health_fov_without_spot_id: (963, 8)\n", - "fov_id: 359\n", - "cell_boundary_health_fov_without_spot_id: (814, 8)\n", - "fov_id: 35\n", - "cell_boundary_health_fov_without_spot_id: (1028, 8)\n", - "fov_id: 360\n", - "cell_boundary_health_fov_without_spot_id: (1070, 8)\n", - "fov_id: 361\n", - "cell_boundary_health_fov_without_spot_id: (1525, 8)\n", - "fov_id: 365\n", - "cell_boundary_health_fov_without_spot_id: (1028, 8)\n", - "fov_id: 366\n", - "cell_boundary_health_fov_without_spot_id: (1883, 8)\n", - "fov_id: 367\n", - "cell_boundary_health_fov_without_spot_id: (2788, 8)\n", - "fov_id: 368\n", - "cell_boundary_health_fov_without_spot_id: (2290, 8)\n", - "fov_id: 36\n", - "cell_boundary_health_fov_without_spot_id: (1613, 8)\n", - "fov_id: 370\n", - "cell_boundary_health_fov_without_spot_id: (674, 8)\n", - "fov_id: 373\n", - "cell_boundary_health_fov_without_spot_id: (1417, 8)\n", - "fov_id: 374\n", - "cell_boundary_health_fov_without_spot_id: (2398, 8)\n", - "fov_id: 375\n", - "cell_boundary_health_fov_without_spot_id: (1992, 8)\n", - "fov_id: 376\n", - "cell_boundary_health_fov_without_spot_id: (525, 8)\n", - "fov_id: 378\n", - "cell_boundary_health_fov_without_spot_id: (1280, 8)\n", - "fov_id: 379\n", - "cell_boundary_health_fov_without_spot_id: (1212, 8)\n", - "fov_id: 37\n", - "cell_boundary_health_fov_without_spot_id: (1302, 8)\n", - "fov_id: 383\n", - "cell_boundary_health_fov_without_spot_id: (377, 8)\n", - "fov_id: 38\n", - "cell_boundary_health_fov_without_spot_id: (1101, 8)\n", - "fov_id: 39\n", - "cell_boundary_health_fov_without_spot_id: (1007, 8)\n", - "fov_id: 3\n", - "cell_boundary_health_fov_without_spot_id: (1180, 8)\n", - "fov_id: 40\n", - "cell_boundary_health_fov_without_spot_id: (994, 8)\n", - "fov_id: 41\n", - "cell_boundary_health_fov_without_spot_id: (1130, 8)\n", - "fov_id: 42\n", - "cell_boundary_health_fov_without_spot_id: (1026, 8)\n", - "fov_id: 43\n", - "cell_boundary_health_fov_without_spot_id: (1056, 8)\n", - "fov_id: 44\n", - "cell_boundary_health_fov_without_spot_id: (1200, 8)\n", - "fov_id: 45\n", - "cell_boundary_health_fov_without_spot_id: (1045, 8)\n", - "fov_id: 46\n", - "cell_boundary_health_fov_without_spot_id: (1098, 8)\n", - "fov_id: 47\n", - "cell_boundary_health_fov_without_spot_id: (795, 8)\n", - "fov_id: 48\n", - "cell_boundary_health_fov_without_spot_id: (1027, 8)\n", - "fov_id: 49\n", - "cell_boundary_health_fov_without_spot_id: (1365, 8)\n", - "fov_id: 4\n", - "cell_boundary_health_fov_without_spot_id: (1058, 8)\n", - "fov_id: 50\n", - "cell_boundary_health_fov_without_spot_id: (1460, 8)\n", - "fov_id: 51\n", - "cell_boundary_health_fov_without_spot_id: (1303, 8)\n", - "fov_id: 52\n", - "cell_boundary_health_fov_without_spot_id: (1208, 8)\n", - "fov_id: 53\n", - "cell_boundary_health_fov_without_spot_id: (1311, 8)\n", - "fov_id: 54\n", - "cell_boundary_health_fov_without_spot_id: (1685, 8)\n", - "fov_id: 55\n", - "cell_boundary_health_fov_without_spot_id: (1399, 8)\n", - "fov_id: 56\n", - "cell_boundary_health_fov_without_spot_id: (1034, 8)\n", - "fov_id: 57\n", - "cell_boundary_health_fov_without_spot_id: (1120, 8)\n", - "fov_id: 58\n", - "cell_boundary_health_fov_without_spot_id: (1046, 8)\n", - "fov_id: 59\n", - "cell_boundary_health_fov_without_spot_id: (1146, 8)\n", - "fov_id: 60\n", - "cell_boundary_health_fov_without_spot_id: (1101, 8)\n", - "fov_id: 61\n", - "cell_boundary_health_fov_without_spot_id: (1093, 8)\n", - "fov_id: 62\n", - "cell_boundary_health_fov_without_spot_id: (1103, 8)\n", - "fov_id: 64\n", - "cell_boundary_health_fov_without_spot_id: (1104, 8)\n", - "fov_id: 65\n", - "cell_boundary_health_fov_without_spot_id: (1123, 8)\n", - "fov_id: 66\n", - "cell_boundary_health_fov_without_spot_id: (1145, 8)\n", - "fov_id: 67\n", - "cell_boundary_health_fov_without_spot_id: (1453, 8)\n", - "fov_id: 68\n", - "cell_boundary_health_fov_without_spot_id: (1549, 8)\n", - "fov_id: 69\n", - "cell_boundary_health_fov_without_spot_id: (1294, 8)\n", - "fov_id: 6\n", - "cell_boundary_health_fov_without_spot_id: (1047, 8)\n", - "fov_id: 70\n", - "cell_boundary_health_fov_without_spot_id: (1456, 8)\n", - "fov_id: 71\n", - "cell_boundary_health_fov_without_spot_id: (1150, 8)\n", - "fov_id: 72\n", - "cell_boundary_health_fov_without_spot_id: (1330, 8)\n", - "fov_id: 73\n", - "cell_boundary_health_fov_without_spot_id: (1604, 8)\n", - "fov_id: 74\n", - "cell_boundary_health_fov_without_spot_id: (1334, 8)\n", - "fov_id: 75\n", - "cell_boundary_health_fov_without_spot_id: (1093, 8)\n", - "fov_id: 76\n", - "cell_boundary_health_fov_without_spot_id: (1137, 8)\n", - "fov_id: 77\n", - "cell_boundary_health_fov_without_spot_id: (1091, 8)\n", - "fov_id: 78\n", - "cell_boundary_health_fov_without_spot_id: (1033, 8)\n", - "fov_id: 79\n", - "cell_boundary_health_fov_without_spot_id: (1085, 8)\n", - "fov_id: 7\n", - "cell_boundary_health_fov_without_spot_id: (1189, 8)\n", - "fov_id: 80\n", - "cell_boundary_health_fov_without_spot_id: (1143, 8)\n", - "fov_id: 81\n", - "cell_boundary_health_fov_without_spot_id: (759, 8)\n", - "fov_id: 82\n", - "cell_boundary_health_fov_without_spot_id: (1180, 8)\n", - "fov_id: 83\n", - "cell_boundary_health_fov_without_spot_id: (1341, 8)\n", - "fov_id: 84\n", - "cell_boundary_health_fov_without_spot_id: (1234, 8)\n", - "fov_id: 85\n", - "cell_boundary_health_fov_without_spot_id: (1273, 8)\n", - "fov_id: 87\n", - "cell_boundary_health_fov_without_spot_id: (1554, 8)\n", - "fov_id: 88\n", - "cell_boundary_health_fov_without_spot_id: (1404, 8)\n", - "fov_id: 89\n", - "cell_boundary_health_fov_without_spot_id: (1302, 8)\n", - "fov_id: 8\n", - "cell_boundary_health_fov_without_spot_id: (880, 8)\n", - "fov_id: 90\n", - "cell_boundary_health_fov_without_spot_id: (1333, 8)\n", - "fov_id: 91\n", - "cell_boundary_health_fov_without_spot_id: (1236, 8)\n", - "fov_id: 92\n", - "cell_boundary_health_fov_without_spot_id: (1498, 8)\n", - "fov_id: 93\n", - "cell_boundary_health_fov_without_spot_id: (1372, 8)\n", - "fov_id: 94\n", - "cell_boundary_health_fov_without_spot_id: (1392, 8)\n", - "fov_id: 95\n", - "cell_boundary_health_fov_without_spot_id: (1129, 8)\n", - "fov_id: 96\n", - "cell_boundary_health_fov_without_spot_id: (1070, 8)\n", - "fov_id: 97\n", - "cell_boundary_health_fov_without_spot_id: (1163, 8)\n", - "fov_id: 98\n", - "cell_boundary_health_fov_without_spot_id: (1040, 8)\n", - "fov_id: 99\n", - "cell_boundary_health_fov_without_spot_id: (1242, 8)\n", - "fov_id: 9\n", - "cell_boundary_health_fov_without_spot_id: (947, 8)\n", - "fov_id: 124\n", - "cell_boundary_health_fov_without_spot_id: (1295, 8)\n", - "fov_id: 163\n", - "cell_boundary_health_fov_without_spot_id: (1097, 8)\n", - "fov_id: 171\n", - "cell_boundary_health_fov_without_spot_id: (526, 8)\n", - "fov_id: 174\n", - "cell_boundary_health_fov_without_spot_id: (1314, 8)\n", - "fov_id: 179\n", - "cell_boundary_health_fov_without_spot_id: (1298, 8)\n", - "fov_id: 186\n", - "cell_boundary_health_fov_without_spot_id: (704, 8)\n", - "fov_id: 1\n", - "cell_boundary_health_fov_without_spot_id: (861, 8)\n", - "fov_id: 201\n", - "cell_boundary_health_fov_without_spot_id: (1232, 8)\n", - "fov_id: 217\n", - "cell_boundary_health_fov_without_spot_id: (813, 8)\n", - "fov_id: 21\n", - "cell_boundary_health_fov_without_spot_id: (1421, 8)\n", - "fov_id: 233\n", - "cell_boundary_health_fov_without_spot_id: (1080, 8)\n", - "fov_id: 293\n", - "cell_boundary_health_fov_without_spot_id: (1197, 8)\n", - "fov_id: 2\n", - "cell_boundary_health_fov_without_spot_id: (1366, 8)\n", - "fov_id: 316\n", - "cell_boundary_health_fov_without_spot_id: (684, 8)\n", - "fov_id: 320\n", - "cell_boundary_health_fov_without_spot_id: (1155, 8)\n", - "fov_id: 332\n", - "cell_boundary_health_fov_without_spot_id: (994, 8)\n", - "fov_id: 334\n", - "cell_boundary_health_fov_without_spot_id: (979, 8)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 342\n", - "cell_boundary_health_fov_without_spot_id: (1582, 8)\n", - "fov_id: 348\n", - "cell_boundary_health_fov_without_spot_id: (1289, 8)\n", - "fov_id: 362\n", - "cell_boundary_health_fov_without_spot_id: (984, 8)\n", - "fov_id: 363\n", - "cell_boundary_health_fov_without_spot_id: (360, 8)\n", - "fov_id: 369\n", - "cell_boundary_health_fov_without_spot_id: (218, 8)\n", - "fov_id: 372\n", - "cell_boundary_health_fov_without_spot_id: (874, 8)\n", - "fov_id: 377\n", - "cell_boundary_health_fov_without_spot_id: (1309, 8)\n", - "fov_id: 382\n", - "cell_boundary_health_fov_without_spot_id: (1041, 8)\n", - "fov_id: 63\n", - "cell_boundary_health_fov_without_spot_id: (836, 8)\n", - "fov_id: 86\n", - "cell_boundary_health_fov_without_spot_id: (467, 8)\n", - "fov_id: 188\n", - "cell_boundary_health_fov_without_spot_id: (1249, 8)\n", - "fov_id: 299\n", - "cell_boundary_health_fov_without_spot_id: (793, 8)\n", - "fov_id: 322\n", - "cell_boundary_health_fov_without_spot_id: (966, 8)\n", - "fov_id: 333\n", - "cell_boundary_health_fov_without_spot_id: (533, 8)\n", - "fov_id: 346\n", - "cell_boundary_health_fov_without_spot_id: (675, 8)\n", - "fov_id: 364\n", - "cell_boundary_health_fov_without_spot_id: (774, 8)\n", - "fov_id: 371\n", - "cell_boundary_health_fov_without_spot_id: (272, 8)\n", - "fov_id: 380\n", - "cell_boundary_health_fov_without_spot_id: (346, 8)\n", - "fov_id: 381\n", - "cell_boundary_health_fov_without_spot_id: (603, 8)\n", - "fov_id: 5\n", - "cell_boundary_health_fov_without_spot_id: (700, 8)\n" - ] - }, { "data": { "text/html": [ @@ -4908,41 +2829,41 @@ " \n", " \n", " \n", - " fov\n", - " spot_id\n", - " cell_ID\n", + " I\n", + " pval\n", + " padj\n", " \n", " \n", " \n", " \n", - " 0\n", - " 100\n", - " 2\n", - " 733\n", + " AATK\n", + " 0.009963\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 8\n", - " 101\n", + " ABL1\n", + " 0.014579\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 7\n", - " 25\n", + " ABL2\n", + " 0.006918\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 8\n", - " 102\n", + " ACACB\n", + " 0.026519\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 3\n", - " 1135\n", + " ACE\n", + " 0.018274\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " ...\n", @@ -4951,80 +2872,69 @@ " ...\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 92\n", + " XKR4\n", + " 0.008696\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 94\n", + " YBX3\n", + " 0.172319\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 5\n", - " 95\n", + " YES1\n", + " 0.010316\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 8\n", - " 96\n", + " ZBTB16\n", + " 0.094404\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 98\n", + " ZFP36\n", + " 0.158102\n", + " 0.0\n", + " 0.0\n", " \n", " \n", "\n", - "

460441 rows × 3 columns

\n", + "

1000 rows × 3 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 2 733\n", - "0 100 8 101\n", - "0 100 7 25\n", - "0 100 8 102\n", - "0 100 3 1135\n", - ".. ... ... ...\n", - "0 5 2 92\n", - "0 5 2 94\n", - "0 5 5 95\n", - "0 5 8 96\n", - "0 5 2 98\n", + " I pval padj\n", + "AATK 0.009963 0.0 0.0\n", + "ABL1 0.014579 0.0 0.0\n", + "ABL2 0.006918 0.0 0.0\n", + "ACACB 0.026519 0.0 0.0\n", + "ACE 0.018274 0.0 0.0\n", + "... ... ... ...\n", + "XKR4 0.008696 0.0 0.0\n", + "YBX3 0.172319 0.0 0.0\n", + "YES1 0.010316 0.0 0.0\n", + "ZBTB16 0.094404 0.0 0.0\n", + "ZFP36 0.158102 0.0 0.0\n", "\n", - "[460441 rows x 3 columns]" + "[1000 rows x 3 columns]" ] }, - "execution_count": 29, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fov_ids_lst = cell_boundary_health['fov'].unique()\n", - "print(\"fov_ids_lst:\", fov_ids_lst)\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " print(\"fov_id:\", fov_id)\n", - " cell_boundary_health_fov = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", - " print(\"cell_boundary_health_fov_without_spot_id:\", cell_boundary_health_fov.shape)\n", - " data_final_result = get_spot_fov_cellId_mapping(data_final_result, cell_boundary_health_fov)\n", - "# print(data_final_result)\n", - "# break\n", - "\n", - "data_final_result" + "liver_anndata.var" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -5048,112 +2958,342 @@ " \n", " \n", " \n", - " fov\n", - " spot_id\n", - " cell_ID\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ACKR3\n", + " ACKR4\n", + " ACP5\n", + " ACTA2\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", - " 100\n", - " 2\n", - " 733\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 8\n", - " 101\n", + " 1\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 7\n", - " 25\n", + " 2\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 8\n", - " 102\n", + " 3\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 2.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 3\n", - " 1135\n", + " 4\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 92\n", - " \n", - " \n", - " 0\n", - " 5\n", - " 2\n", - " 94\n", + " 793313\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 5\n", - " 95\n", + " 793314\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 8\n", - " 96\n", + " 793315\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 98\n", + " 793316\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 793317\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", " \n", " \n", "\n", - "

460441 rows × 3 columns

\n", + "

793318 rows × 1000 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 2 733\n", - "0 100 8 101\n", - "0 100 7 25\n", - "0 100 8 102\n", - "0 100 3 1135\n", - ".. ... ... ...\n", - "0 5 2 92\n", - "0 5 2 94\n", - "0 5 5 95\n", - "0 5 8 96\n", - "0 5 2 98\n", + " AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ACP5 ACTA2 ... \\\n", + "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "1 1.0 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 2.0 ... \n", + "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ... \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793315 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... \n", + "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793317 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", "\n", - "[460441 rows x 3 columns]" + " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0 \n", + "\n", + "[793318 rows x 1000 columns]" ] }, - "execution_count": 30, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_final_result" + "individual_cell_gene_expression = pd.DataFrame(liver_raw, columns = list(liver_anndata.var.index))\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -5178,121 +3318,354 @@ " \n", " \n", " fov\n", - " spot_id\n", + " cell_single_id\n", " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", - " 8\n", - " 2\n", - " 201\n", + " 100\n", + " 10\n", + " c_1_100_10\n", + " Hep.3\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", - " 8\n", - " 291\n", + " 1\n", + " 100\n", + " 1078\n", + " c_1_100_1078\n", + " Hep.4\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", - " 2\n", - " 351\n", + " 2\n", + " 100\n", + " 1135\n", + " c_1_100_1135\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", - " 4\n", - " 41\n", + " 3\n", + " 100\n", + " 267\n", + " c_1_100_267\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", - " 9\n", - " 438\n", + " 4\n", + " 100\n", + " 732\n", + " c_1_100_732\n", + " Central.venous.LSECs\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 0\n", - " 8\n", - " 6\n", - " 879\n", - " \n", - " \n", - " 0\n", - " 8\n", - " 3\n", - " 880\n", + " 793313\n", + " 9\n", + " 945\n", + " c_2_9_945\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", + " 793314\n", " 9\n", - " 882\n", + " 947\n", + " c_2_9_947\n", + " Non.inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 0\n", - " 8\n", + " 793315\n", " 9\n", - " 884\n", + " 948\n", + " c_2_9_948\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 0\n", - " 8\n", - " 3\n", - " 885\n", + " 793316\n", + " 9\n", + " 949\n", + " c_2_9_949\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 793317\n", + " 9\n", + " 95\n", + " c_2_9_95\n", + " tumor_1\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", " \n", " \n", "\n", - "

880 rows × 3 columns

\n", + "

793318 rows × 1004 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "0 8 2 201\n", - "0 8 8 291\n", - "0 8 2 351\n", - "0 8 4 41\n", - "0 8 9 438\n", - ".. .. ... ...\n", - "0 8 6 879\n", - "0 8 3 880\n", - "0 8 9 882\n", - "0 8 9 884\n", - "0 8 3 885\n", + " fov cell_single_id cell_ID cellType AATK \\\n", + "0 100 10 c_1_100_10 Hep.3 0.0 \n", + "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", + "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", + "3 100 267 c_1_100_267 Hep.5 0.0 \n", + "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", + "... ... ... ... ... ... \n", + "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", + "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", + "793315 9 948 c_2_9_948 tumor_1 0.0 \n", + "793316 9 949 c_2_9_949 tumor_1 0.0 \n", + "793317 9 95 c_2_9_95 tumor_1 0.0 \n", + "\n", + " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", + "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", + "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "\n", + " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 1.0 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 1.0 0.0 0.0 0.0 \n", + "4 0.0 1.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 1.0 0.0 0.0 2.0 \n", "\n", - "[880 rows x 3 columns]" + "[793318 rows x 1004 columns]" ] }, - "execution_count": 31, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_final_result_sample = data_final_result[(data_final_result['fov']==8)]\n", - "data_final_result_sample" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_final_result.to_csv('../cancer/new/spot_fov_cellId_mapping.csv')" + "individual_cell_gene_expression = pd.concat([gene_expression_cell_type, individual_cell_gene_expression], axis=1)\n", + "individual_cell_gene_expression\n" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -5317,206 +3690,148 @@ " \n", " \n", " fov\n", - " spot_id\n", + " cell_single_id\n", " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", - " 0\n", + " 993\n", " 100\n", - " 2\n", " 733\n", + " c_2_100_733\n", + " tumor_2\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 8\n", + " 994\n", " 101\n", + " 240\n", + " c_2_101_240\n", + " tumor_1\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 12.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 9.0\n", + " 1.0\n", " \n", " \n", - " 0\n", - " 100\n", - " 7\n", - " 25\n", - " \n", - " \n", - " 0\n", - " 100\n", - " 8\n", - " 102\n", - " \n", - " \n", - " 0\n", - " 100\n", - " 3\n", - " 1135\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", + " 995\n", + " 101\n", + " 339\n", + " c_2_101_339\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 0.0\n", " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 5.0\n", + " 0.0\n", + " 0.0\n", + " 3.0\n", + " 1.0\n", + " 2.0\n", + " 9.0\n", " \n", " \n", - " 0\n", - " 5\n", - " 2\n", - " 92\n", - " \n", - " \n", - " 0\n", - " 5\n", - " 2\n", - " 94\n", - " \n", - " \n", - " 0\n", - " 5\n", - " 5\n", - " 95\n", - " \n", - " \n", - " 0\n", - " 5\n", - " 8\n", - " 96\n", - " \n", - " \n", - " 0\n", - " 5\n", - " 2\n", - " 98\n", - " \n", - " \n", - "\n", - "

460441 rows × 3 columns

\n", - "" - ], - "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 2 733\n", - "0 100 8 101\n", - "0 100 7 25\n", - "0 100 8 102\n", - "0 100 3 1135\n", - ".. ... ... ...\n", - "0 5 2 92\n", - "0 5 2 94\n", - "0 5 5 95\n", - "0 5 8 96\n", - "0 5 2 98\n", - "\n", - "[460441 rows x 3 columns]" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_final_result" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. spot_gene_expression.csv" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -5528,109 +3843,202 @@ " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", " \n", " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
Unnamed: 0cell_IDx_FOV_pxy_FOV_pxx_slide_mmy_slide_mmfovcell_single_id
0c_1_100_10c_1_100_102737259.031449.7350010010
1c_1_100_1078c_1_100_107859539988.774409.258241001078
2c_1_100_1135c_1_100_1135146941998.879289.234121001135
3c_1_100_267c_1_100_267348610589.121329.61104100267996101452c_2_101_452tumor_11.00.00.00.00.00.0...0.00.00.01.00.00.07.00.02.01.0
4c_1_100_732c_1_100_732317827719.084369.40548100732997102179c_2_102_179tumor_12.01.00.00.00.00.0...1.00.00.04.03.00.011.00.08.021.0
...................................................
793313c_2_9_945c_2_9_945271042305.4442011.278409945c_2_9_945Inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793314c_2_9_947c_2_9_947278642335.4533211.278049947c_2_9_947Non.inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793315c_2_9_948c_2_9_948173242345.3268411.277929948c_2_9_948tumor_10.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.01.0
793316c_2_9_949c_2_9_949144642395.2925211.277329949c_2_9_949tumor_10.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793317c_2_9_95c_2_9_9542116495.6243211.70812995c_2_9_95tumor_10.01.00.00.00.00.0...0.01.00.00.00.00.01.00.00.02.0
\n", - "

793318 rows × 8 columns

\n", + "

460441 rows × 1004 columns

\n", "
" ], "text/plain": [ - " Unnamed: 0 cell_ID x_FOV_px y_FOV_px x_slide_mm \\\n", - "0 c_1_100_10 c_1_100_10 2737 25 9.03144 \n", - "1 c_1_100_1078 c_1_100_1078 595 3998 8.77440 \n", - "2 c_1_100_1135 c_1_100_1135 1469 4199 8.87928 \n", - "3 c_1_100_267 c_1_100_267 3486 1058 9.12132 \n", - "4 c_1_100_732 c_1_100_732 3178 2771 9.08436 \n", - "... ... ... ... ... ... \n", - "793313 c_2_9_945 c_2_9_945 2710 4230 5.44420 \n", - "793314 c_2_9_947 c_2_9_947 2786 4233 5.45332 \n", - "793315 c_2_9_948 c_2_9_948 1732 4234 5.32684 \n", - "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 \n", - "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 \n", + " fov cell_single_id cell_ID cellType AATK \\\n", + "993 100 733 c_2_100_733 tumor_2 0.0 \n", + "994 101 240 c_2_101_240 tumor_1 0.0 \n", + "995 101 339 c_2_101_339 tumor_1 0.0 \n", + "996 101 452 c_2_101_452 tumor_1 1.0 \n", + "997 102 179 c_2_102_179 tumor_1 2.0 \n", + "... ... ... ... ... ... \n", + "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", + "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", + "793315 9 948 c_2_9_948 tumor_1 0.0 \n", + "793316 9 949 c_2_9_949 tumor_1 0.0 \n", + "793317 9 95 c_2_9_95 tumor_1 0.0 \n", "\n", - " y_slide_mm fov cell_single_id \n", - "0 9.73500 100 10 \n", - "1 9.25824 100 1078 \n", - "2 9.23412 100 1135 \n", - "3 9.61104 100 267 \n", - "4 9.40548 100 732 \n", - "... ... ... ... \n", - "793313 11.27840 9 945 \n", - "793314 11.27804 9 947 \n", - "793315 11.27792 9 948 \n", - "793316 11.27732 9 949 \n", - "793317 11.70812 9 95 \n", + " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", + "993 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", + "994 2.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 1.0 12.0 1.0 \n", + "995 0.0 1.0 2.0 1.0 0.0 ... 0.0 0.0 0.0 5.0 0.0 \n", + "996 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", + "997 1.0 0.0 0.0 0.0 0.0 ... 1.0 0.0 0.0 4.0 3.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", "\n", - "[793318 rows x 8 columns]" + " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "993 0.0 0.0 0.0 0.0 1.0 \n", + "994 0.0 4.0 4.0 9.0 1.0 \n", + "995 0.0 3.0 1.0 2.0 9.0 \n", + "996 0.0 7.0 0.0 2.0 1.0 \n", + "997 0.0 11.0 0.0 8.0 21.0 \n", + "... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 1.0 0.0 0.0 2.0 \n", + "\n", + "[460441 rows x 1004 columns]" ] }, - "execution_count": 35, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary" + "sample_1_rows = individual_cell_gene_expression[\"cell_ID\"].str.startswith(\"c_2_\")\n", + "individual_cell_gene_expression = individual_cell_gene_expression.loc[sample_1_rows, :]\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -5654,112 +4062,357 @@ " \n", " \n", " \n", - " Unnamed: 0\n", + " fov\n", " cell_ID\n", " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ACKR3\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", - " 0\n", - " c_1_100_10\n", - " c_1_100_10\n", - " Hep.3\n", - " \n", - " \n", - " 1\n", - " c_1_100_1078\n", - " c_1_100_1078\n", - " Hep.4\n", - " \n", - " \n", - " 2\n", - " c_1_100_1135\n", - " c_1_100_1135\n", - " Inflammatory.macrophages\n", + " 993\n", + " 100\n", + " 733\n", + " tumor_2\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 3\n", - " c_1_100_267\n", - " c_1_100_267\n", - " Hep.5\n", + " 994\n", + " 101\n", + " 240\n", + " tumor_1\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 12.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 4.0\n", + " 9.0\n", + " 1.0\n", " \n", " \n", - " 4\n", - " c_1_100_732\n", - " c_1_100_732\n", - " Central.venous.LSECs\n", + " 995\n", + " 101\n", + " 339\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 5.0\n", + " 0.0\n", + " 0.0\n", + " 3.0\n", + " 1.0\n", + " 2.0\n", + " 9.0\n", + " \n", + " \n", + " 996\n", + " 101\n", + " 452\n", + " tumor_1\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 7.0\n", + " 0.0\n", + " 2.0\n", + " 1.0\n", + " \n", + " \n", + " 997\n", + " 102\n", + " 179\n", + " tumor_1\n", + " 2.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " ...\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 3.0\n", + " 0.0\n", + " 11.0\n", + " 0.0\n", + " 8.0\n", + " 21.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", " 793313\n", - " c_2_9_945\n", - " c_2_9_945\n", + " 9\n", + " 945\n", " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 793314\n", - " c_2_9_947\n", - " c_2_9_947\n", + " 9\n", + " 947\n", " Non.inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 793315\n", - " c_2_9_948\n", - " c_2_9_948\n", + " 9\n", + " 948\n", " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", " 793316\n", - " c_2_9_949\n", - " c_2_9_949\n", + " 9\n", + " 949\n", " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 793317\n", - " c_2_9_95\n", - " c_2_9_95\n", + " 9\n", + " 95\n", " tumor_1\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", " \n", " \n", "\n", - "

793318 rows × 3 columns

\n", + "

460441 rows × 1003 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 cell_ID cellType\n", - "0 c_1_100_10 c_1_100_10 Hep.3\n", - "1 c_1_100_1078 c_1_100_1078 Hep.4\n", - "2 c_1_100_1135 c_1_100_1135 Inflammatory.macrophages\n", - "3 c_1_100_267 c_1_100_267 Hep.5\n", - "4 c_1_100_732 c_1_100_732 Central.venous.LSECs\n", - "... ... ... ...\n", - "793313 c_2_9_945 c_2_9_945 Inflammatory.macrophages\n", - "793314 c_2_9_947 c_2_9_947 Non.inflammatory.macrophages\n", - "793315 c_2_9_948 c_2_9_948 tumor_1\n", - "793316 c_2_9_949 c_2_9_949 tumor_1\n", - "793317 c_2_9_95 c_2_9_95 tumor_1\n", + " fov cell_ID cellType AATK ABL1 ABL2 ACACB \\\n", + "993 100 733 tumor_2 0.0 0.0 0.0 1.0 \n", + "994 101 240 tumor_1 0.0 2.0 0.0 1.0 \n", + "995 101 339 tumor_1 0.0 0.0 1.0 2.0 \n", + "996 101 452 tumor_1 1.0 0.0 0.0 0.0 \n", + "997 102 179 tumor_1 2.0 1.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... \n", + "793313 9 945 Inflammatory.macrophages 0.0 0.0 0.0 0.0 \n", + "793314 9 947 Non.inflammatory.macrophages 0.0 0.0 0.0 0.0 \n", + "793315 9 948 tumor_1 0.0 0.0 0.0 0.0 \n", + "793316 9 949 tumor_1 0.0 0.0 0.0 0.0 \n", + "793317 9 95 tumor_1 0.0 1.0 0.0 0.0 \n", "\n", - "[793318 rows x 3 columns]" + " ACE ACKR1 ACKR3 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 \\\n", + "993 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "994 0.0 0.0 2.0 ... 0.0 0.0 1.0 12.0 1.0 0.0 4.0 \n", + "995 1.0 0.0 1.0 ... 0.0 0.0 0.0 5.0 0.0 0.0 3.0 \n", + "996 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 7.0 \n", + "997 0.0 0.0 1.0 ... 1.0 0.0 0.0 4.0 3.0 0.0 11.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", + "793316 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 1.0 \n", + "\n", + " YES1 ZBTB16 ZFP36 \n", + "993 0.0 0.0 1.0 \n", + "994 4.0 9.0 1.0 \n", + "995 1.0 2.0 9.0 \n", + "996 0.0 2.0 1.0 \n", + "997 0.0 8.0 21.0 \n", + "... ... ... ... \n", + "793313 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 \n", + "793315 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 \n", + "793317 0.0 0.0 2.0 \n", + "\n", + "[460441 rows x 1003 columns]" ] }, - "execution_count": 36, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "CosMx_cell_type" + "del individual_cell_gene_expression['cell_ID']\n", + "individual_cell_gene_expression = individual_cell_gene_expression.rename(columns={'cell_single_id': 'cell_ID'})\n", + "individual_cell_gene_expression['cell_ID'] = individual_cell_gene_expression['cell_ID'].astype('int')\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -5784,230 +4437,112 @@ " \n", " \n", " fov\n", - " cell_single_id\n", + " spot_id\n", " cell_ID\n", - " cellType\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 10\n", - " c_1_100_10\n", - " Hep.3\n", + " 2\n", + " 733\n", " \n", " \n", " 1\n", " 100\n", - " 1078\n", - " c_1_100_1078\n", - " Hep.4\n", + " 8\n", + " 101\n", " \n", " \n", " 2\n", " 100\n", - " 1135\n", - " c_1_100_1135\n", - " Inflammatory.macrophages\n", + " 7\n", + " 25\n", " \n", " \n", " 3\n", " 100\n", - " 267\n", - " c_1_100_267\n", - " Hep.5\n", + " 8\n", + " 102\n", " \n", " \n", " 4\n", " 100\n", - " 732\n", - " c_1_100_732\n", - " Central.venous.LSECs\n", + " 3\n", + " 1135\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", - " ...\n", " \n", " \n", - " 793313\n", - " 9\n", - " 945\n", - " c_2_9_945\n", - " Inflammatory.macrophages\n", + " 460436\n", + " 5\n", + " 2\n", + " 92\n", " \n", " \n", - " 793314\n", - " 9\n", - " 947\n", - " c_2_9_947\n", - " Non.inflammatory.macrophages\n", + " 460437\n", + " 5\n", + " 2\n", + " 94\n", " \n", " \n", - " 793315\n", - " 9\n", - " 948\n", - " c_2_9_948\n", - " tumor_1\n", + " 460438\n", + " 5\n", + " 5\n", + " 95\n", " \n", " \n", - " 793316\n", - " 9\n", - " 949\n", - " c_2_9_949\n", - " tumor_1\n", + " 460439\n", + " 5\n", + " 8\n", + " 96\n", " \n", " \n", - " 793317\n", - " 9\n", - " 95\n", - " c_2_9_95\n", - " tumor_1\n", + " 460440\n", + " 5\n", + " 2\n", + " 98\n", " \n", " \n", "\n", - "

793318 rows × 4 columns

\n", + "

460441 rows × 3 columns

\n", "" ], "text/plain": [ - " fov cell_single_id cell_ID cellType\n", - "0 100 10 c_1_100_10 Hep.3\n", - "1 100 1078 c_1_100_1078 Hep.4\n", - "2 100 1135 c_1_100_1135 Inflammatory.macrophages\n", - "3 100 267 c_1_100_267 Hep.5\n", - "4 100 732 c_1_100_732 Central.venous.LSECs\n", - "... ... ... ... ...\n", - "793313 9 945 c_2_9_945 Inflammatory.macrophages\n", - "793314 9 947 c_2_9_947 Non.inflammatory.macrophages\n", - "793315 9 948 c_2_9_948 tumor_1\n", - "793316 9 949 c_2_9_949 tumor_1\n", - "793317 9 95 c_2_9_95 tumor_1\n", + " fov spot_id cell_ID\n", + "0 100 2 733\n", + "1 100 8 101\n", + "2 100 7 25\n", + "3 100 8 102\n", + "4 100 3 1135\n", + "... ... ... ...\n", + "460436 5 2 92\n", + "460437 5 2 94\n", + "460438 5 5 95\n", + "460439 5 8 96\n", + "460440 5 2 98\n", "\n", - "[793318 rows x 4 columns]" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gene_expression_cell_type = pd.concat([cell_boundary.iloc[:,-2:], CosMx_cell_type.iloc[:,-2:]], axis=1)\n", - "gene_expression_cell_type" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 793318 × 1000\n", - " obs: 'RNA_pca_cluster_default', 'RNA_pca_cluster_default.1', 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'nCount_negprobes', 'nFeature_negprobes', 'nCount_falsecode', 'nFeature_falsecode', 'fov', 'Area', 'AspectRatio', 'Width', 'Height', 'Mean.PanCK', 'Max.PanCK', 'Mean.CK8.18', 'Max.CK8.18', 'Mean.Membrane', 'Max.Membrane', 'Mean.CD45', 'Max.CD45', 'Mean.DAPI', 'Max.DAPI', 'cell_id', 'assay_type', 'Run_name', 'slide_ID_numeric', 'Run_Tissue_name', 'Panel', 'Mean.Yellow', 'Max.Yellow', 'Mean.CD298_B2M', 'Max.CD298_B2M', 'cell_ID', 'x_FOV_px', 'y_FOV_px', 'x_slide_mm', 'y_slide_mm', 'propNegative', 'complexity', 'errorCtEstimate', 'percOfDataFromError', 'qcFlagsRNACounts', 'qcFlagsCellCounts', 'qcFlagsCellPropNeg', 'qcFlagsCellComplex', 'qcFlagsCellArea', 'median_negprobes', 'negprobes_quantile_0.9', 'median_RNA', 'RNA_quantile_0.9', 'nCell', 'nCount', 'nCountPerCell', 'nFeaturePerCell', 'propNegativeCellAvg', 'complexityCellAvg', 'errorCtPerCellEstimate', 'percOfDataFromErrorPerCell', 'qcFlagsFOV', 'cellType', 'niche'\n", - " var: 'I', 'pval', 'padj'" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import anndata as ad\n", - "liver_anndata = ad.read_h5ad(\"../cosmx_Liver.h5ad\")\n", - "liver_anndata" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 0., ..., 0., 0., 0.],\n", - " [1., 2., 0., ..., 0., 4., 0.],\n", - " [0., 0., 0., ..., 0., 0., 0.],\n", - " ...,\n", - " [0., 0., 0., ..., 0., 0., 1.],\n", - " [0., 0., 0., ..., 0., 0., 0.],\n", - " [0., 1., 0., ..., 0., 0., 2.]])" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "liver_raw = liver_anndata.raw.X.toarray()\n", - "liver_raw" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(793318, 1000)" + "[460441 rows x 3 columns]" ] }, - "execution_count": 40, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "liver_raw.shape" + "# data_final_result = pd.read_csv('../cancer/new/spot_fov_cellId_mapping.csv')\n", + "data_final_result" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -6031,41506 +4566,4730 @@ " \n", " \n", " \n", - " I\n", - " pval\n", - " padj\n", + " fov\n", + " spot_id\n", + " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", - " AATK\n", - " 0.009963\n", + " 0\n", + " 100\n", + " 2\n", + " 733\n", + " tumor_2\n", " 0.0\n", " 0.0\n", - " \n", - " \n", - " ABL1\n", - " 0.014579\n", " 0.0\n", + " 1.0\n", " 0.0\n", - " \n", - " \n", - " ABL2\n", - " 0.006918\n", " 0.0\n", + " ...\n", " 0.0\n", - " \n", - " \n", - " ACACB\n", - " 0.026519\n", " 0.0\n", " 0.0\n", - " \n", - " \n", - " ACE\n", - " 0.018274\n", + " 1.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", + " 1\n", + " 100\n", + " 8\n", + " 101\n", + " tumor_1\n", + " 1.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", + " 0.0\n", + " 9.0\n", + " 3.0\n", + " 2.0\n", + " 12.0\n", " \n", " \n", - " XKR4\n", - " 0.008696\n", + " 2\n", + " 100\n", + " 7\n", + " 25\n", + " tumor_2\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", " 0.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", " 0.0\n", + " 5.0\n", + " 1.0\n", + " 8.0\n", + " 2.0\n", " \n", " \n", - " YBX3\n", - " 0.172319\n", + " 3\n", + " 100\n", + " 8\n", + " 102\n", + " tumor_1\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 3.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 3.0\n", " 0.0\n", " 0.0\n", + " 5.0\n", + " 1.0\n", + " 15.0\n", + " 5.0\n", " \n", " \n", - " YES1\n", - " 0.010316\n", + " 4\n", + " 100\n", + " 3\n", + " 1135\n", + " tumor_2\n", + " 0.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 3.0\n", + " 1.0\n", " \n", " \n", - " ZBTB16\n", - " 0.094404\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 460436\n", + " 5\n", + " 2\n", + " 92\n", + " tumor_2\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 1.0\n", + " 1.0\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 2.0\n", + " 5.0\n", " \n", " \n", - " ZFP36\n", - " 0.158102\n", + " 460437\n", + " 5\n", + " 2\n", + " 94\n", + " tumor_1\n", + " 1.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " \n", + " \n", + " 460438\n", + " 5\n", + " 5\n", + " 95\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 2.0\n", + " \n", + " \n", + " 460439\n", + " 5\n", + " 8\n", + " 96\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " \n", + " \n", + " 460440\n", + " 5\n", + " 2\n", + " 98\n", + " tumor_1\n", + " 3.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", "\n", - "

1000 rows × 3 columns

\n", + "

460441 rows × 1004 columns

\n", "" ], "text/plain": [ - " I pval padj\n", - "AATK 0.009963 0.0 0.0\n", - "ABL1 0.014579 0.0 0.0\n", - "ABL2 0.006918 0.0 0.0\n", - "ACACB 0.026519 0.0 0.0\n", - "ACE 0.018274 0.0 0.0\n", - "... ... ... ...\n", - "XKR4 0.008696 0.0 0.0\n", - "YBX3 0.172319 0.0 0.0\n", - "YES1 0.010316 0.0 0.0\n", - "ZBTB16 0.094404 0.0 0.0\n", - "ZFP36 0.158102 0.0 0.0\n", + " fov spot_id cell_ID cellType AATK ABL1 ABL2 \\\n", + "0 100 2 733 tumor_2 0.0 0.0 0.0 \n", + "1 100 8 101 tumor_1 1.0 1.0 0.0 \n", + "2 100 7 25 tumor_2 0.0 2.0 0.0 \n", + "3 100 8 102 tumor_1 2.0 0.0 0.0 \n", + "4 100 3 1135 tumor_2 0.0 1.0 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "460436 5 2 92 tumor_2 0.0 1.0 0.0 \n", + "460437 5 2 94 tumor_1 1.0 1.0 0.0 \n", + "460438 5 5 95 Inflammatory.macrophages 0.0 1.0 0.0 \n", + "460439 5 8 96 tumor_1 0.0 0.0 0.0 \n", + "460440 5 2 98 tumor_1 3.0 1.0 0.0 \n", "\n", - "[1000 rows x 3 columns]" + " ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 \\\n", + "0 1.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "1 1.0 0.0 0.0 ... 0.0 0.0 0.0 4.0 0.0 0.0 9.0 \n", + "2 0.0 1.0 0.0 ... 1.0 0.0 0.0 0.0 2.0 0.0 5.0 \n", + "3 3.0 1.0 0.0 ... 0.0 2.0 0.0 3.0 0.0 0.0 5.0 \n", + "4 2.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 1.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "460436 0.0 0.0 0.0 ... 1.0 0.0 1.0 1.0 1.0 0.0 1.0 \n", + "460437 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", + "460438 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "460439 1.0 0.0 0.0 ... 0.0 2.0 0.0 0.0 0.0 0.0 0.0 \n", + "460440 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "\n", + " YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 1.0 \n", + "1 3.0 2.0 12.0 \n", + "2 1.0 8.0 2.0 \n", + "3 1.0 15.0 5.0 \n", + "4 0.0 3.0 1.0 \n", + "... ... ... ... \n", + "460436 0.0 2.0 5.0 \n", + "460437 0.0 2.0 0.0 \n", + "460438 0.0 1.0 2.0 \n", + "460439 0.0 1.0 0.0 \n", + "460440 0.0 1.0 0.0 \n", + "\n", + "[460441 rows x 1004 columns]" ] }, - "execution_count": 41, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "liver_anndata.var" + "individual_cell_gene_expression = pd.merge(data_final_result, individual_cell_gene_expression, on=['fov', 'cell_ID'])\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "['AATK',\n", - " 'ABL1',\n", - " 'ABL2',\n", - " 'ACACB',\n", - " 'ACE',\n", - " 'ACKR1',\n", - " 'ACKR3',\n", - " 'ACKR4',\n", - " 'ACP5',\n", - " 'ACTA2',\n", - " 'ACTG2',\n", - " 'ACVR1',\n", - " 'ACVR1B',\n", - " 'ACVR2A',\n", - " 'ACVRL1',\n", - " 'ADGRA2',\n", - " 'ADGRA3',\n", - " 'ADGRE2',\n", - " 'ADGRE5',\n", - " 'ADGRF1',\n", - " 'ADGRF3',\n", - " 'ADGRF5',\n", - " 'ADGRG1',\n", - " 'ADGRG3',\n", - " 'ADGRG5',\n", - " 'ADGRG6',\n", - " 'ADGRL1',\n", - " 'ADGRL2',\n", - " 'ADGRL4',\n", - " 'ADGRV1',\n", - " 'ADIPOQ',\n", - " 'ADIRF',\n", - " 'ADM2',\n", - " 'AGR2',\n", - " 'AHI1',\n", - " 'AHR',\n", - " 'AIF1',\n", - " 'AKT1',\n", - " 'ALCAM',\n", - " 'ALOX5AP',\n", - " 'ANGPT1',\n", - " 'ANGPT2',\n", - " 'ANGPTL1',\n", - " 'ANKRD1',\n", - " 'ANXA1',\n", - " 'ANXA2',\n", - " 'ANXA4',\n", - " 'APOA1',\n", - " 'APOC1',\n", - " 'APOD',\n", - " 'APOE',\n", - " 'APP',\n", - " 'AQP3',\n", - " 'AR',\n", - " 'AREG',\n", - " 'ARF1',\n", - " 'ARG1',\n", - " 'ARHGDIB',\n", - " 'ARID5B',\n", - " 'ATF3',\n", - " 'ATG10',\n", - " 'ATG12',\n", - " 'ATG5',\n", - " 'ATM',\n", - " 'ATP5F1B',\n", - " 'ATP5F1E',\n", - " 'ATR',\n", - " 'AXL',\n", - " 'AZGP1',\n", - " 'AZU1',\n", - " 'B2M',\n", - " 'B3GNT7',\n", - " 'BAG3',\n", - " 'BASP1',\n", - " 'BAX',\n", - " 'BBLN',\n", - " 'BCL2',\n", - " 'BCL2L1',\n", - " 'BECN1',\n", - " 'BEST1',\n", - " 'BGN',\n", - " 'BID',\n", - " 'BIRC3',\n", - " 'BIRC5',\n", - " 'BMP1',\n", - " 'BMP2',\n", - " 'BMP3',\n", - " 'BMP4',\n", - " 'BMP5',\n", - " 'BMP7',\n", - " 'BMPR1A',\n", - " 'BMPR2',\n", - " 'BRAF',\n", - " 'BRCA1',\n", - " 'BST1',\n", - " 'BST2',\n", - " 'BTF3',\n", - " 'BTG1',\n", - " 'BTK',\n", - " 'C11orf96',\n", - " 'C1QA',\n", - " 'C1QB',\n", - " 'C1QC',\n", - " 'C5AR2',\n", - " 'CACNA1C',\n", - " 'CALB1',\n", - " 'CALD1',\n", - " 'CALM1',\n", - " 'CALM2',\n", - " 'CALM3',\n", - " 'CAMP',\n", - " 'CARMN',\n", - " 'CASP3',\n", - " 'CASP8',\n", - " 'CASR',\n", - " 'CAV1',\n", - " 'CCDC80',\n", - " 'CCL11',\n", - " 'CCL13',\n", - " 'CCL15',\n", - " 'CCL17',\n", - " 'CCL18',\n", - " 'CCL19',\n", - " 'CCL2',\n", - " 'CCL20',\n", - " 'CCL21',\n", - " 'CCL22',\n", - " 'CCL26',\n", - " 'CCL28',\n", - " 'CCL3',\n", - " 'CCL4',\n", - " 'CCL5',\n", - " 'CCL8',\n", - " 'CCND1',\n", - " 'CCR1',\n", - " 'CCR10',\n", - " 'CCR2',\n", - " 'CCR5',\n", - " 'CCR7',\n", - " 'CCRL2',\n", - " 'CD14',\n", - " 'CD163',\n", - " 'CD164',\n", - " 'CD19',\n", - " 'CD1C',\n", - " 'CD2',\n", - " 'CD209',\n", - " 'CD22',\n", - " 'CD24',\n", - " 'CD27',\n", - " 'CD274',\n", - " 'CD276',\n", - " 'CD28',\n", - " 'CD300A',\n", - " 'CD33',\n", - " 'CD34',\n", - " 'CD36',\n", - " 'CD37',\n", - " 'CD38',\n", - " 'CD3D',\n", - " 'CD3E',\n", - " 'CD3G',\n", - " 'CD4',\n", - " 'CD40',\n", - " 'CD40LG',\n", - " 'CD44',\n", - " 'CD47',\n", - " 'CD48',\n", - " 'CD52',\n", - " 'CD53',\n", - " 'CD55',\n", - " 'CD58',\n", - " 'CD59',\n", - " 'CD5L',\n", - " 'CD63',\n", - " 'CD68',\n", - " 'CD69',\n", - " 'CD70',\n", - " 'CD74',\n", - " 'CD79A',\n", - " 'CD80',\n", - " 'CD81',\n", - " 'CD83',\n", - " 'CD84',\n", - " 'CD86',\n", - " 'CD8A',\n", - " 'CD8B',\n", - " 'CD9',\n", - " 'CD93',\n", - " 'CDH1',\n", - " 'CDH11',\n", - " 'CDH19',\n", - " 'CDH5',\n", - " 'CDKN1A',\n", - " 'CDKN3',\n", - " 'CEACAM1',\n", - " 'CEACAM6',\n", - " 'CELSR1',\n", - " 'CELSR2',\n", - " 'CENPF',\n", - " 'CFD',\n", - " 'CFLAR',\n", - " 'CHEK1',\n", - " 'CHEK2',\n", - " 'CHI3L1',\n", - " 'CIDEA',\n", - " 'CIITA',\n", - " 'CLCF1',\n", - " 'CLDN4',\n", - " 'CLEC10A',\n", - " 'CLEC12A',\n", - " 'CLEC14A',\n", - " 'CLEC1A',\n", - " 'CLEC2B',\n", - " 'CLEC2D',\n", - " 'CLEC4A',\n", - " 'CLEC4D',\n", - " 'CLEC4E',\n", - " 'CLEC5A',\n", - " 'CLEC7A',\n", - " 'CLOCK',\n", - " 'CLU',\n", - " 'CMKLR1',\n", - " 'CNTFR',\n", - " 'COL11A1',\n", - " 'COL12A1',\n", - " 'COL14A1',\n", - " 'COL15A1',\n", - " 'COL16A1',\n", - " 'COL17A1',\n", - " 'COL18A1',\n", - " 'COL1A1',\n", - " 'COL1A2',\n", - " 'COL21A1',\n", - " 'COL27A1',\n", - " 'COL3A1',\n", - " 'COL4A1',\n", - " 'COL4A2',\n", - " 'COL4A5',\n", - " 'COL5A1',\n", - " 'COL5A2',\n", - " 'COL5A3',\n", - " 'COL6A1',\n", - " 'COL6A2',\n", - " 'COL6A3',\n", - " 'COL8A1',\n", - " 'COL9A2',\n", - " 'COL9A3',\n", - " 'COTL1',\n", - " 'COX4I2',\n", - " 'CPA3',\n", - " 'CPB1',\n", - " 'CRIP1',\n", - " 'CRP',\n", - " 'CRYAB',\n", - " 'CSF1',\n", - " 'CSF1R',\n", - " 'CSF2',\n", - " 'CSF2RA',\n", - " 'CSF2RB',\n", - " 'CSF3',\n", - " 'CSF3R',\n", - " 'CSHL1',\n", - " 'CSK',\n", - " 'CSPG4',\n", - " 'CST7',\n", - " 'CSTB',\n", - " 'CTLA4',\n", - " 'CTNNB1',\n", - " 'CTSD',\n", - " 'CTSG',\n", - " 'CTSW',\n", - " 'CUZD1',\n", - " 'CX3CL1',\n", - " 'CX3CR1',\n", - " 'CXCL1',\n", - " 'CXCL10',\n", - " 'CXCL12',\n", - " 'CXCL13',\n", - " 'CXCL14',\n", - " 'CXCL16',\n", - " 'CXCL17',\n", - " 'CXCL5',\n", - " 'CXCL8',\n", - " 'CXCL9',\n", - " 'CXCR1',\n", - " 'CXCR2',\n", - " 'CXCR3',\n", - " 'CXCR4',\n", - " 'CXCR5',\n", - " 'CXCR6',\n", - " 'CYP1B1',\n", - " 'CYP2U1',\n", - " 'CYSTM1',\n", - " 'CYTOR',\n", - " 'DCN',\n", - " 'DDC',\n", - " 'DDIT3',\n", - " 'DDR1',\n", - " 'DDR2',\n", - " 'DDX58',\n", - " 'DHRS2',\n", - " 'DLL1',\n", - " 'DLL4',\n", - " 'DMBT1',\n", - " 'DNMT1',\n", - " 'DNMT3A',\n", - " 'DPP4',\n", - " 'DPT',\n", - " 'DST',\n", - " 'DUSP1',\n", - " 'DUSP2',\n", - " 'DUSP4',\n", - " 'DUSP5',\n", - " 'DUSP6',\n", - " 'EFNA1',\n", - " 'EFNA4',\n", - " 'EFNA5',\n", - " 'EFNB1',\n", - " 'EFNB2',\n", - " 'EGF',\n", - " 'EGFR',\n", - " 'EIF5A',\n", - " 'ELANE',\n", - " 'EMP3',\n", - " 'ENG',\n", - " 'ENO1',\n", - " 'ENTPD1',\n", - " 'EOMES',\n", - " 'EPCAM',\n", - " 'EPHA2',\n", - " 'EPHA3',\n", - " 'EPHA4',\n", - " 'EPHA7',\n", - " 'EPHB2',\n", - " 'EPHB3',\n", - " 'EPHB4',\n", - " 'EPHB6',\n", - " 'EPOR',\n", - " 'ERBB2',\n", - " 'ERBB3',\n", - " 'ESAM',\n", - " 'ESR1',\n", - " 'ETS1',\n", - " 'ETV4',\n", - " 'ETV5',\n", - " 'EZH2',\n", - " 'EZR',\n", - " 'FABP4',\n", - " 'FABP5',\n", - " 'FAM30A',\n", - " 'FAP',\n", - " 'FAS',\n", - " 'FASLG',\n", - " 'FASN',\n", - " 'FAU',\n", - " 'FCER1G',\n", - " 'FCGBP',\n", - " 'FCGR3A',\n", - " 'FCRLA',\n", - " 'FES',\n", - " 'FFAR2',\n", - " 'FFAR3',\n", - " 'FFAR4',\n", - " 'FGF1',\n", - " 'FGF12',\n", - " 'FGF13',\n", - " 'FGF18',\n", - " 'FGF2',\n", - " 'FGF7',\n", - " 'FGF9',\n", - " 'FGFR1',\n", - " 'FGFR2',\n", - " 'FGFR3',\n", - " 'FGG',\n", - " 'FGR',\n", - " 'FHIT',\n", - " 'FKBP11',\n", - " 'FKBP5',\n", - " 'FLT1',\n", - " 'FLT3LG',\n", - " 'FN1',\n", - " 'FOS',\n", - " 'FOXF1',\n", - " 'FOXP3',\n", - " 'FPR1',\n", - " 'FYB1',\n", - " 'FYN',\n", - " 'FZD1',\n", - " 'FZD3',\n", - " 'FZD4',\n", - " 'FZD5',\n", - " 'FZD6',\n", - " 'FZD7',\n", - " 'FZD8',\n", - " 'G0S2',\n", - " 'G6PD',\n", - " 'GADD45B',\n", - " 'GAS6',\n", - " 'GATA3',\n", - " 'GC',\n", - " 'GCG',\n", - " 'GDF15',\n", - " 'GLUD1',\n", - " 'GLUL',\n", - " 'GNLY',\n", - " 'GPBAR1',\n", - " 'GPER1',\n", - " 'GPNMB',\n", - " 'GPR183',\n", - " 'GPX1',\n", - " 'GPX3',\n", - " 'GSK3B',\n", - " 'GSN',\n", - " 'GSTP1',\n", - " 'GZMA',\n", - " 'GZMB',\n", - " 'GZMH',\n", - " 'GZMK',\n", - " 'H2AZ1',\n", - " 'H4C3',\n", - " 'HAVCR2',\n", - " 'HBA1',\n", - " 'HBB',\n", - " 'HCAR2',\n", - " 'HCK',\n", - " 'HCST',\n", - " 'HDAC1',\n", - " 'HDAC11',\n", - " 'HDAC3',\n", - " 'HDAC4',\n", - " 'HDAC5',\n", - " 'HEXB',\n", - " 'HEY1',\n", - " 'HGF',\n", - " 'HIF1A',\n", - " 'HILPDA',\n", - " 'HLA-A',\n", - " 'HLA-DPA1',\n", - " 'HLA-DPB1',\n", - " 'HLA-DQA1',\n", - " 'HLA-DQB1',\n", - " 'HLA-DRA',\n", - " 'HLA-DRB1',\n", - " 'HMGB2',\n", - " 'HMGCS1',\n", - " 'HMGN2',\n", - " 'HPGDS',\n", - " 'HSD17B2',\n", - " 'HSP90AA1',\n", - " 'HSP90AB1',\n", - " 'HSP90B1',\n", - " 'HSPA1A',\n", - " 'HSPB1',\n", - " 'HSPG2',\n", - " 'HTT',\n", - " 'IAPP',\n", - " 'ICA1',\n", - " 'ICAM1',\n", - " 'ICAM2',\n", - " 'ICAM3',\n", - " 'ICOS',\n", - " 'ICOSLG',\n", - " 'IDO1',\n", - " 'IER3',\n", - " 'IFI27',\n", - " 'IFI44L',\n", - " 'IFI6',\n", - " 'IFIH1',\n", - " 'IFIT1',\n", - " 'IFIT3',\n", - " 'IFITM1',\n", - " 'IFITM3',\n", - " 'IFNA1',\n", - " 'IFNAR1',\n", - " 'IFNAR2',\n", - " 'IFNG',\n", - " 'IFNGR1',\n", - " 'IFNGR2',\n", - " 'IFNL3',\n", - " 'IGF1',\n", - " 'IGF1R',\n", - " 'IGF2',\n", - " 'IGF2R',\n", - " 'IGFBP3',\n", - " 'IGFBP5',\n", - " 'IGFBP6',\n", - " 'IGFBP7',\n", - " 'IGHA1',\n", - " 'IGHD',\n", - " 'IGHG1',\n", - " 'IGHG2',\n", - " 'IGHM',\n", - " 'IGKC',\n", - " 'IKZF3',\n", - " 'IL10',\n", - " 'IL10RA',\n", - " 'IL10RB',\n", - " 'IL11',\n", - " 'IL11RA',\n", - " 'IL12A',\n", - " 'IL12B',\n", - " 'IL12RB1',\n", - " 'IL12RB2',\n", - " 'IL13RA1',\n", - " 'IL15',\n", - " 'IL15RA',\n", - " 'IL16',\n", - " 'IL17A',\n", - " 'IL17B',\n", - " 'IL17D',\n", - " 'IL17RA',\n", - " 'IL17RB',\n", - " 'IL17RE',\n", - " 'IL18',\n", - " 'IL18R1',\n", - " 'IL1A',\n", - " 'IL1B',\n", - " 'IL1R1',\n", - " 'IL1R2',\n", - " 'IL1RAP',\n", - " 'IL1RL1',\n", - " 'IL1RN',\n", - " 'IL2',\n", - " 'IL20',\n", - " 'IL20RA',\n", - " 'IL22RA1',\n", - " 'IL23A',\n", - " 'IL24',\n", - " 'IL27RA',\n", - " 'IL2RA',\n", - " 'IL2RB',\n", - " 'IL2RG',\n", - " 'IL32',\n", - " 'IL33',\n", - " 'IL34',\n", - " 'IL36G',\n", - " 'IL3RA',\n", - " 'IL4R',\n", - " 'IL6',\n", - " 'IL6R',\n", - " 'IL6ST',\n", - " 'IL7',\n", - " 'IL7R',\n", - " 'INHA',\n", - " 'INHBA',\n", - " 'INHBB',\n", - " 'INS',\n", - " 'INSIG1',\n", - " 'INSR',\n", - " 'IRF3',\n", - " 'IRF4',\n", - " 'ISG15',\n", - " 'ITGA1',\n", - " 'ITGA2',\n", - " 'ITGA3',\n", - " 'ITGA5',\n", - " 'ITGA6',\n", - " 'ITGA8',\n", - " 'ITGA9',\n", - " 'ITGAE',\n", - " 'ITGAL',\n", - " 'ITGAM',\n", - " 'ITGAV',\n", - " 'ITGAX',\n", - " 'ITGB1',\n", - " 'ITGB2',\n", - " 'ITGB4',\n", - " 'ITGB5',\n", - " 'ITGB6',\n", - " 'ITGB8',\n", - " 'ITK',\n", - " 'ITM2A',\n", - " 'ITM2B',\n", - " 'JAG1',\n", - " 'JAK1',\n", - " 'JAK2',\n", - " 'JCHAIN',\n", - " 'JUN',\n", - " 'JUNB',\n", - " 'KDR',\n", - " 'KIT',\n", - " 'KITLG',\n", - " 'KLF2',\n", - " 'KLK3',\n", - " 'KLRB1',\n", - " 'KLRF1',\n", - " 'KLRK1',\n", - " 'KRAS',\n", - " 'KRT1',\n", - " 'KRT10',\n", - " 'KRT13',\n", - " 'KRT14',\n", - " 'KRT15',\n", - " 'KRT16',\n", - " 'KRT17',\n", - " 'KRT18',\n", - " 'KRT19',\n", - " 'KRT20',\n", - " 'KRT23',\n", - " 'KRT4',\n", - " 'KRT5',\n", - " 'KRT6A',\n", - " 'KRT7',\n", - " 'KRT8',\n", - " 'KRT80',\n", - " 'KRT86',\n", - " 'LAG3',\n", - " 'LAIR1',\n", - " 'LAMA4',\n", - " 'LAMP2',\n", - " 'LAMP3',\n", - " 'LCN2',\n", - " 'LDB2',\n", - " 'LDHA',\n", - " 'LDLR',\n", - " 'LEFTY1',\n", - " 'LEP',\n", - " 'LGALS1',\n", - " 'LGALS3',\n", - " 'LGALS3BP',\n", - " 'LGALS9',\n", - " 'LGR5',\n", - " 'LIF',\n", - " 'LIFR',\n", - " 'LINC01781',\n", - " 'LINC01857',\n", - " 'LINC02446',\n", - " 'LMNA',\n", - " 'LPAR5',\n", - " 'LTB',\n", - " 'LTBR',\n", - " 'LTF',\n", - " 'LUM',\n", - " 'LY6D',\n", - " 'LY75',\n", - " 'LYN',\n", - " 'LYVE1',\n", - " 'LYZ',\n", - " 'MAF',\n", - " 'MALAT1',\n", - " 'MAML2',\n", - " 'MAP1LC3B',\n", - " 'MAP2K1',\n", - " 'MAPK13',\n", - " 'MAPK14',\n", - " 'MARCKSL1',\n", - " 'MARCO',\n", - " 'MB',\n", - " 'MECOM',\n", - " 'MEG3',\n", - " 'MERTK',\n", - " 'MET',\n", - " 'MFAP5',\n", - " 'MGP',\n", - " 'MIF',\n", - " 'MIR4435-2HG',\n", - " 'MKI67',\n", - " 'MMP1',\n", - " 'MMP12',\n", - " 'MMP14',\n", - " 'MMP19',\n", - " 'MMP2',\n", - " 'MMP7',\n", - " 'MMP9',\n", - " 'MPO',\n", - " 'MRC1',\n", - " 'MRC2',\n", - " 'MS4A1',\n", - " 'MS4A4A',\n", - " 'MS4A6A',\n", - " 'MSMB',\n", - " 'MSR1',\n", - " 'MST1R',\n", - " 'MT1X',\n", - " 'MT2A',\n", - " 'MTOR',\n", - " 'MX1',\n", - " 'MXRA8',\n", - " 'MYC',\n", - " 'MYH11',\n", - " 'MYH6',\n", - " 'MYL12A',\n", - " 'MYL4',\n", - " 'MYL7',\n", - " 'MYL9',\n", - " 'MZB1',\n", - " 'MZT2A',\n", - " 'NACA',\n", - " 'NANOG',\n", - " 'NCAM1',\n", - " 'NCR1',\n", - " 'NDRG1',\n", - " 'NDUFA4L2',\n", - " 'NEAT1',\n", - " 'NELL2',\n", - " 'NFKB1',\n", - " 'NFKBIA',\n", - " 'NGFR',\n", - " 'NKG7',\n", - " 'NLRC4',\n", - " 'NLRC5',\n", - " 'NLRP1',\n", - " 'NLRP2',\n", - " 'NLRP3',\n", - " 'NOD2',\n", - " 'NOSIP',\n", - " 'NOTCH1',\n", - " 'NOTCH2',\n", - " 'NOTCH3',\n", - " 'NPPC',\n", - " 'NPR1',\n", - " 'NPR2',\n", - " 'NPR3',\n", - " 'NR1H2',\n", - " 'NR1H3',\n", - " 'NR2F2',\n", - " 'NR3C1',\n", - " 'NRG1',\n", - " 'NRXN1',\n", - " 'NRXN3',\n", - " 'NTRK2',\n", - " 'NUPR1',\n", - " 'NUSAP1',\n", - " 'OAS1',\n", - " 'OAS2',\n", - " 'OAS3',\n", - " 'OASL',\n", - " 'OLFM4',\n", - " 'OLR1',\n", - " 'OSM',\n", - " 'OSMR',\n", - " 'P2RX5',\n", - " 'PARP1',\n", - " 'PCNA',\n", - " 'PDCD1',\n", - " 'PDCD1LG2',\n", - " 'PDGFA',\n", - " 'PDGFB',\n", - " 'PDGFC',\n", - " 'PDGFD',\n", - " 'PDGFRA',\n", - " 'PDGFRB',\n", - " 'PDS5A',\n", - " 'PECAM1',\n", - " 'PF4',\n", - " 'PFN1',\n", - " 'PGF',\n", - " 'PGK1',\n", - " 'PGR',\n", - " 'PHLDA2',\n", - " 'PIGR',\n", - " 'PLAC8',\n", - " 'PLAC9',\n", - " 'PLCG1',\n", - " 'PLD3',\n", - " 'PNOC',\n", - " 'POU5F1',\n", - " 'PPARA',\n", - " 'PPARD',\n", - " 'PPARG',\n", - " 'PPIA',\n", - " 'PRF1',\n", - " 'PROX1',\n", - " 'PRSS2',\n", - " 'PRTN3',\n", - " 'PSAP',\n", - " 'PSCA',\n", - " 'PSD3',\n", - " 'PTEN',\n", - " 'PTGDR2',\n", - " 'PTGDS',\n", - " 'PTGES',\n", - " 'PTGES2',\n", - " 'PTGES3',\n", - " 'PTGIS',\n", - " 'PTGS1',\n", - " 'PTGS2',\n", - " 'PTK2',\n", - " 'PTK6',\n", - " 'PTPRC',\n", - " 'PTPRCAP',\n", - " 'PTTG1',\n", - " 'PXDN',\n", - " 'QRFPR',\n", - " 'RAC1',\n", - " 'RAC2',\n", - " 'RACK1',\n", - " 'RAG1',\n", - " 'RAMP1',\n", - " 'RAMP2',\n", - " 'RAMP3',\n", - " 'RARA',\n", - " 'RARB',\n", - " 'RARG',\n", - " 'RARRES1',\n", - " 'RARRES2',\n", - " 'RB1',\n", - " 'RBM47',\n", - " 'RBPJ',\n", - " 'REG1A',\n", - " 'RELA',\n", - " 'RELT',\n", - " 'RGCC',\n", - " 'RGS1',\n", - " 'RGS13',\n", - " 'RGS2',\n", - " 'RGS5',\n", - " 'RNF43',\n", - " 'ROR1',\n", - " 'RORA',\n", - " 'RPL21',\n", - " 'RPL22',\n", - " 'RPL32',\n", - " 'RPL34',\n", - " 'RPL37',\n", - " 'RPS4Y1',\n", - " 'RSPO3',\n", - " 'RUNX3',\n", - " 'RXRA',\n", - " 'RXRB',\n", - " 'RYK',\n", - " 'RYR2',\n", - " 'S100A10',\n", - " 'S100A2',\n", - " 'S100A4',\n", - " 'S100A6',\n", - " 'S100A8',\n", - " 'S100A9',\n", - " 'S100B',\n", - " 'S100P',\n", - " 'SAA1',\n", - " 'SAT1',\n", - " 'SCG5',\n", - " 'SCGB3A1',\n", - " 'SEC23A',\n", - " 'SEC61G',\n", - " 'SELENOP',\n", - " 'SELL',\n", - " 'SELPLG',\n", - " 'SERPINA1',\n", - " 'SERPINA3',\n", - " 'SERPINB5',\n", - " 'SERPINH1',\n", - " 'SFN',\n", - " 'SH3BGRL3',\n", - " 'SIGIRR',\n", - " 'SLA',\n", - " 'SLC2A1',\n", - " 'SLC40A1',\n", - " 'SLCO2B1',\n", - " 'SLPI',\n", - " 'SMAD2',\n", - " 'SMAD3',\n", - " 'SMAD4',\n", - " 'SMARCB1',\n", - " 'SMO',\n", - " 'SNAI1',\n", - " 'SNAI2',\n", - " 'SOD1',\n", - " 'SOD2',\n", - " 'SORBS1',\n", - " 'SOSTDC1',\n", - " 'SOX2',\n", - " 'SOX4',\n", - " 'SOX9',\n", - " 'SPARCL1',\n", - " 'SPINK1',\n", - " 'SPOCK2',\n", - " 'SPP1',\n", - " 'SPRY2',\n", - " 'SPRY4',\n", - " 'SQLE',\n", - " 'SQSTM1',\n", - " 'SRC',\n", - " 'SREBF1',\n", - " 'SRGN',\n", - " 'SRSF2',\n", - " 'SST',\n", - " 'ST6GAL1',\n", - " 'ST6GALNAC3',\n", - " 'STAT1',\n", - " 'STAT3',\n", - " 'STAT4',\n", - " 'STAT5A',\n", - " 'STAT5B',\n", - " 'STAT6',\n", - " 'STMN1',\n", - " 'SYK',\n", - " 'TACSTD2',\n", - " 'TAGLN',\n", - " 'TAP1',\n", - " 'TAP2',\n", - " 'TBX21',\n", - " 'TCAP',\n", - " 'TCF7',\n", - " 'TCL1A',\n", - " 'TEK',\n", - " 'TFEB',\n", - " 'TGFB1',\n", - " 'TGFB2',\n", - " 'TGFB3',\n", - " 'TGFBI',\n", - " 'TGFBR1',\n", - " 'TGFBR2',\n", - " 'THBS1',\n", - " 'THBS2',\n", - " 'THSD4',\n", - " 'TIE1',\n", - " 'TIGIT',\n", - " 'TIMP1',\n", - " 'TLR1',\n", - " 'TLR2',\n", - " 'TLR3',\n", - " 'TLR4',\n", - " 'TLR5',\n", - " 'TLR7',\n", - " 'TLR8',\n", - " 'TM4SF1',\n", - " 'TNF',\n", - " 'TNFAIP6',\n", - " 'TNFRSF10A',\n", - " 'TNFRSF10B',\n", - " 'TNFRSF10D',\n", - " 'TNFRSF11A',\n", - " 'TNFRSF11B',\n", - " 'TNFRSF12A',\n", - " 'TNFRSF13B',\n", - " 'TNFRSF14',\n", - " 'TNFRSF17',\n", - " 'TNFRSF18',\n", - " 'TNFRSF19',\n", - " 'TNFRSF1A',\n", - " 'TNFRSF1B',\n", - " 'TNFRSF21',\n", - " 'TNFRSF4',\n", - " 'TNFRSF9',\n", - " 'TNFSF10',\n", - " 'TNFSF12',\n", - " 'TNFSF13B',\n", - " 'TNFSF14',\n", - " 'TNFSF15',\n", - " 'TNFSF4',\n", - " 'TNFSF8',\n", - " 'TNFSF9',\n", - " 'TNNC1',\n", - " 'TNNT2',\n", - " 'TNXB',\n", - " 'TOP2A',\n", - " 'TOX',\n", - " 'TP53',\n", - " 'TPI1',\n", - " 'TPM1',\n", - " 'TPM2',\n", - " 'TPSAB1',\n", - " 'TPT1',\n", - " 'TSC22D1',\n", - " 'TSHZ2',\n", - " 'TTN',\n", - " 'TTR',\n", - " 'TUBB',\n", - " 'TUBB4B',\n", - " 'TWIST1',\n", - " 'TWIST2',\n", - " 'TXK',\n", - " 'TYK2',\n", - " 'TYMS',\n", - " 'TYROBP',\n", - " 'UBA52',\n", - " 'UBE2C',\n", - " 'UPK3A',\n", - " 'VCAM1',\n", - " 'VCAN',\n", - " 'VEGFA',\n", - " 'VEGFB',\n", - " 'VEGFC',\n", - " 'VEGFD',\n", - " 'VHL',\n", - " 'VIM',\n", - " 'VPREB3',\n", - " 'VSIR',\n", - " 'VTN',\n", - " 'VWA1',\n", - " 'VWF',\n", - " 'WIF1',\n", - " 'WNT10B',\n", - " 'WNT11',\n", - " 'WNT3',\n", - " 'WNT5A',\n", - " 'WNT5B',\n", - " 'WNT7A',\n", - " 'WNT7B',\n", - " 'WNT9A',\n", - " 'XBP1',\n", - " 'XCL1',\n", - " 'XKR4',\n", - " 'YBX3',\n", - " 'YES1',\n", - " 'ZBTB16',\n", - " 'ZFP36']" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(liver_anndata.var.index)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AATKABL1ABL2ACACBACEACKR1ACKR3ACKR4ACP5ACTA2...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
00.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
11.02.00.02.00.00.00.00.00.00.0...0.00.00.01.00.00.01.00.04.00.0
20.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
30.00.00.01.00.00.00.01.00.02.0...0.00.00.02.00.00.01.00.00.00.0
40.00.00.00.00.00.00.00.00.01.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
7933130.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933140.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933150.00.00.00.00.00.00.00.01.00.0...0.01.00.00.00.00.00.00.00.01.0
7933160.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933170.01.00.00.00.00.00.00.00.00.0...0.01.00.00.00.00.01.00.00.02.0
\n", - "

793318 rows × 1000 columns

\n", - "
" - ], - "text/plain": [ - " AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ACP5 ACTA2 ... \\\n", - "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "1 1.0 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 2.0 ... \n", - "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793315 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... \n", - "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793317 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0 \n", - "\n", - "[793318 rows x 1000 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression = pd.DataFrame(liver_raw, columns = list(liver_anndata.var.index))\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovcell_single_idcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
010010c_1_100_10Hep.30.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
11001078c_1_100_1078Hep.41.02.00.02.00.00.0...0.00.00.01.00.00.01.00.04.00.0
21001135c_1_100_1135Inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3100267c_1_100_267Hep.50.00.00.01.00.00.0...0.00.00.02.00.00.01.00.00.00.0
4100732c_1_100_732Central.venous.LSECs0.00.00.00.00.00.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
7933139945c_2_9_945Inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933149947c_2_9_947Non.inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933159948c_2_9_948tumor_10.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.01.0
7933169949c_2_9_949tumor_10.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793317995c_2_9_95tumor_10.01.00.00.00.00.0...0.01.00.00.00.00.01.00.00.02.0
\n", - "

793318 rows × 1004 columns

\n", - "
" - ], - "text/plain": [ - " fov cell_single_id cell_ID cellType AATK \\\n", - "0 100 10 c_1_100_10 Hep.3 0.0 \n", - "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", - "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", - "3 100 267 c_1_100_267 Hep.5 0.0 \n", - "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", - "... ... ... ... ... ... \n", - "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", - "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", - "793315 9 948 c_2_9_948 tumor_1 0.0 \n", - "793316 9 949 c_2_9_949 tumor_1 0.0 \n", - "793317 9 95 c_2_9_95 tumor_1 0.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "\n", - " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 1.0 0.0 0.0 0.0 \n", - "4 0.0 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 1.0 0.0 0.0 2.0 \n", - "\n", - "[793318 rows x 1004 columns]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression = pd.concat([gene_expression_cell_type, individual_cell_gene_expression], axis=1)\n", - "individual_cell_gene_expression\n" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovcell_single_idcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
993100733c_2_100_733tumor_20.00.00.01.00.00.0...0.00.00.01.00.00.00.00.00.01.0
994101240c_2_101_240tumor_10.02.00.01.00.00.0...0.00.01.012.01.00.04.04.09.01.0
995101339c_2_101_339tumor_10.00.01.02.01.00.0...0.00.00.05.00.00.03.01.02.09.0
996101452c_2_101_452tumor_11.00.00.00.00.00.0...0.00.00.01.00.00.07.00.02.01.0
997102179c_2_102_179tumor_12.01.00.00.00.00.0...1.00.00.04.03.00.011.00.08.021.0
..................................................................
7933139945c_2_9_945Inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933149947c_2_9_947Non.inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933159948c_2_9_948tumor_10.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.01.0
7933169949c_2_9_949tumor_10.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793317995c_2_9_95tumor_10.01.00.00.00.00.0...0.01.00.00.00.00.01.00.00.02.0
\n", - "

460441 rows × 1004 columns

\n", - "
" - ], - "text/plain": [ - " fov cell_single_id cell_ID cellType AATK \\\n", - "993 100 733 c_2_100_733 tumor_2 0.0 \n", - "994 101 240 c_2_101_240 tumor_1 0.0 \n", - "995 101 339 c_2_101_339 tumor_1 0.0 \n", - "996 101 452 c_2_101_452 tumor_1 1.0 \n", - "997 102 179 c_2_102_179 tumor_1 2.0 \n", - "... ... ... ... ... ... \n", - "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", - "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", - "793315 9 948 c_2_9_948 tumor_1 0.0 \n", - "793316 9 949 c_2_9_949 tumor_1 0.0 \n", - "793317 9 95 c_2_9_95 tumor_1 0.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", - "993 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", - "994 2.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 1.0 12.0 1.0 \n", - "995 0.0 1.0 2.0 1.0 0.0 ... 0.0 0.0 0.0 5.0 0.0 \n", - "996 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", - "997 1.0 0.0 0.0 0.0 0.0 ... 1.0 0.0 0.0 4.0 3.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "\n", - " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "993 0.0 0.0 0.0 0.0 1.0 \n", - "994 0.0 4.0 4.0 9.0 1.0 \n", - "995 0.0 3.0 1.0 2.0 9.0 \n", - "996 0.0 7.0 0.0 2.0 1.0 \n", - "997 0.0 11.0 0.0 8.0 21.0 \n", - "... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 1.0 0.0 0.0 2.0 \n", - "\n", - "[460441 rows x 1004 columns]" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sample_1_rows = individual_cell_gene_expression[\"cell_ID\"].str.startswith(\"c_2_\")\n", - "individual_cell_gene_expression = individual_cell_gene_expression.loc[sample_1_rows, :]\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1ACKR3...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
993100733tumor_20.00.00.01.00.00.00.0...0.00.00.01.00.00.00.00.00.01.0
994101240tumor_10.02.00.01.00.00.02.0...0.00.01.012.01.00.04.04.09.01.0
995101339tumor_10.00.01.02.01.00.01.0...0.00.00.05.00.00.03.01.02.09.0
996101452tumor_11.00.00.00.00.00.00.0...0.00.00.01.00.00.07.00.02.01.0
997102179tumor_12.01.00.00.00.00.01.0...1.00.00.04.03.00.011.00.08.021.0
..................................................................
7933139945Inflammatory.macrophages0.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933149947Non.inflammatory.macrophages0.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
7933159948tumor_10.00.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.01.0
7933169949tumor_10.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
793317995tumor_10.01.00.00.00.00.00.0...0.01.00.00.00.00.01.00.00.02.0
\n", - "

460441 rows × 1003 columns

\n", - "
" - ], - "text/plain": [ - " fov cell_ID cellType AATK ABL1 ABL2 ACACB \\\n", - "993 100 733 tumor_2 0.0 0.0 0.0 1.0 \n", - "994 101 240 tumor_1 0.0 2.0 0.0 1.0 \n", - "995 101 339 tumor_1 0.0 0.0 1.0 2.0 \n", - "996 101 452 tumor_1 1.0 0.0 0.0 0.0 \n", - "997 102 179 tumor_1 2.0 1.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... \n", - "793313 9 945 Inflammatory.macrophages 0.0 0.0 0.0 0.0 \n", - "793314 9 947 Non.inflammatory.macrophages 0.0 0.0 0.0 0.0 \n", - "793315 9 948 tumor_1 0.0 0.0 0.0 0.0 \n", - "793316 9 949 tumor_1 0.0 0.0 0.0 0.0 \n", - "793317 9 95 tumor_1 0.0 1.0 0.0 0.0 \n", - "\n", - " ACE ACKR1 ACKR3 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 \\\n", - "993 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", - "994 0.0 0.0 2.0 ... 0.0 0.0 1.0 12.0 1.0 0.0 4.0 \n", - "995 1.0 0.0 1.0 ... 0.0 0.0 0.0 5.0 0.0 0.0 3.0 \n", - "996 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 7.0 \n", - "997 0.0 0.0 1.0 ... 1.0 0.0 0.0 4.0 3.0 0.0 11.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", - "793316 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 1.0 \n", - "\n", - " YES1 ZBTB16 ZFP36 \n", - "993 0.0 0.0 1.0 \n", - "994 4.0 9.0 1.0 \n", - "995 1.0 2.0 9.0 \n", - "996 0.0 2.0 1.0 \n", - "997 0.0 8.0 21.0 \n", - "... ... ... ... \n", - "793313 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 \n", - "793315 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 \n", - "793317 0.0 0.0 2.0 \n", - "\n", - "[460441 rows x 1003 columns]" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "del individual_cell_gene_expression['cell_ID']\n", - "individual_cell_gene_expression = individual_cell_gene_expression.rename(columns={'cell_single_id': 'cell_ID'})\n", - "individual_cell_gene_expression['cell_ID'] = individual_cell_gene_expression['cell_ID'].astype('int')\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "# type(individual_cell_gene_expression[\"cell_ID\"][0])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_ID
001002733
101008101
20100725
301008102
4010031135
...............
46043605292
46043705294
46043805595
46043905896
46044005298
\n", - "

460441 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID\n", - "0 0 100 2 733\n", - "1 0 100 8 101\n", - "2 0 100 7 25\n", - "3 0 100 8 102\n", - "4 0 100 3 1135\n", - "... ... ... ... ...\n", - "460436 0 5 2 92\n", - "460437 0 5 2 94\n", - "460438 0 5 5 95\n", - "460439 0 5 8 96\n", - "460440 0 5 2 98\n", - "\n", - "[460441 rows x 4 columns]" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_final_result = pd.read_csv('../cancer/new/spot_fov_cellId_mapping.csv')\n", - "data_final_result" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
001002733tumor_20.00.00.01.00.0...0.00.00.01.00.00.00.00.00.01.0
101008101tumor_11.01.00.01.00.0...0.00.00.04.00.00.09.03.02.012.0
20100725tumor_20.02.00.00.01.0...1.00.00.00.02.00.05.01.08.02.0
301008102tumor_12.00.00.03.01.0...0.02.00.03.00.00.05.01.015.05.0
4010031135tumor_20.01.01.02.01.0...0.00.00.00.01.00.01.00.03.01.0
..................................................................
46043605292tumor_20.01.00.00.00.0...1.00.01.01.01.00.01.00.02.05.0
46043705294tumor_11.01.00.00.00.0...0.01.00.00.00.00.00.00.02.00.0
46043805595Inflammatory.macrophages0.01.00.00.00.0...0.00.00.00.00.00.00.00.01.02.0
46043905896tumor_10.00.00.01.00.0...0.02.00.00.00.00.00.00.01.00.0
46044005298tumor_13.01.00.00.01.0...0.00.00.00.00.00.01.00.01.00.0
\n", - "

460441 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK \\\n", - "0 0 100 2 733 tumor_2 0.0 \n", - "1 0 100 8 101 tumor_1 1.0 \n", - "2 0 100 7 25 tumor_2 0.0 \n", - "3 0 100 8 102 tumor_1 2.0 \n", - "4 0 100 3 1135 tumor_2 0.0 \n", - "... ... ... ... ... ... ... \n", - "460436 0 5 2 92 tumor_2 0.0 \n", - "460437 0 5 2 94 tumor_1 1.0 \n", - "460438 0 5 5 95 Inflammatory.macrophages 0.0 \n", - "460439 0 5 8 96 tumor_1 0.0 \n", - "460440 0 5 2 98 tumor_1 3.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 \\\n", - "0 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "1 1.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 4.0 0.0 0.0 \n", - "2 2.0 0.0 0.0 1.0 ... 1.0 0.0 0.0 0.0 2.0 0.0 \n", - "3 0.0 0.0 3.0 1.0 ... 0.0 2.0 0.0 3.0 0.0 0.0 \n", - "4 1.0 1.0 2.0 1.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "460436 1.0 0.0 0.0 0.0 ... 1.0 0.0 1.0 1.0 1.0 0.0 \n", - "460437 1.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 \n", - "460438 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "460439 0.0 0.0 1.0 0.0 ... 0.0 2.0 0.0 0.0 0.0 0.0 \n", - "460440 1.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 1.0 \n", - "1 9.0 3.0 2.0 12.0 \n", - "2 5.0 1.0 8.0 2.0 \n", - "3 5.0 1.0 15.0 5.0 \n", - "4 1.0 0.0 3.0 1.0 \n", - "... ... ... ... ... \n", - "460436 1.0 0.0 2.0 5.0 \n", - "460437 0.0 0.0 2.0 0.0 \n", - "460438 0.0 0.0 1.0 2.0 \n", - "460439 0.0 0.0 1.0 0.0 \n", - "460440 1.0 0.0 1.0 0.0 \n", - "\n", - "[460441 rows x 1005 columns]" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression = pd.merge(data_final_result, individual_cell_gene_expression, on=['fov', 'cell_ID'])\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot-id=1, spot-id=2, spot-id=3, spot-id=4, spot-id=5, spot-id=6, spot-id=7, spot-id=8, spot-id=9]\n", - "Index: []" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_cells_stats = pd.DataFrame(columns = ['fov', 'spot-id=1', 'spot-id=2', 'spot-id=3','spot-id=4', 'spot-id=5', 'spot-id=6', 'spot-id=7', 'spot-id=8', 'spot-id=9'])\n", - "fov_spot_cells_stats\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'fov': 0,\n", - " 'spot-id=1': 0,\n", - " 'spot-id=2': 0,\n", - " 'spot-id=3': 0,\n", - " 'spot-id=4': 0,\n", - " 'spot-id=5': 0,\n", - " 'spot-id=6': 0,\n", - " 'spot-id=7': 0,\n", - " 'spot-id=8': 0,\n", - " 'spot-id=9': 0}" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "names = ['fov', 'spot-id=1', 'spot-id=2', 'spot-id=3','spot-id=4', 'spot-id=5', 'spot-id=6', 'spot-id=7', 'spot-id=8', 'spot-id=9']\n", - "fov_dic = {}\n", - "for i in names:\n", - " fov_dic[i] = 0\n", - "fov_dic\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_31546/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
0100146144134146129106115122109
1101133115129517280163136161
210218513216011875136227115129
3103255147122146146152155165156
410418515011213412114711599116
.................................
37836442756115781861187777
3793711200301513867343
380380908632942701700
381381780731024115214377
38259085133655861585595
\n", - "

383 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", - "0 100 146 144 134 146 129 106 \n", - "1 101 133 115 129 51 72 80 \n", - "2 102 185 132 160 118 75 136 \n", - "3 103 255 147 122 146 146 152 \n", - "4 104 185 150 112 134 121 147 \n", - ".. ... ... ... ... ... ... ... \n", - "378 364 42 75 61 157 81 86 \n", - "379 371 12 0 0 30 15 13 \n", - "380 380 90 86 32 94 27 0 \n", - "381 381 7 8 0 73 102 41 \n", - "382 5 90 85 133 65 58 61 \n", - "\n", - " spot-id=7 spot-id=8 spot-id=9 \n", - "0 115 122 109 \n", - "1 163 136 161 \n", - "2 227 115 129 \n", - "3 155 165 156 \n", - "4 115 99 116 \n", - ".. ... ... ... \n", - "378 118 77 77 \n", - "379 86 73 43 \n", - "380 17 0 0 \n", - "381 152 143 77 \n", - "382 58 55 95 \n", - "\n", - "[383 rows x 10 columns]" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", - " \n", - " fov_dic_sample = fov_dic\n", - " fov_dic_sample[\"fov\"] = fov_id\n", - " \n", - " for i in spot_id_lst:\n", - " spot_id_data = fov_data[(fov_data['spot_id']==i)]\n", - " spot_id_num = \"spot-id=\" + str(i)\n", - " fov_dic_sample[spot_id_num] = spot_id_data.shape[0]\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "\n", - "fov_spot_cells_stats" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
0100146144134146129106115122109
1101133115129517280163136161
210218513216011875136227115129
3103255147122146146152155165156
410418515011213412114711599116
.................................
37836442756115781861187777
3793711200301513867343
380380908632942701700
381381780731024115214377
38259085133655861585595
\n", - "

383 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", - "0 100 146 144 134 146 129 106 \n", - "1 101 133 115 129 51 72 80 \n", - "2 102 185 132 160 118 75 136 \n", - "3 103 255 147 122 146 146 152 \n", - "4 104 185 150 112 134 121 147 \n", - ".. ... ... ... ... ... ... ... \n", - "378 364 42 75 61 157 81 86 \n", - "379 371 12 0 0 30 15 13 \n", - "380 380 90 86 32 94 27 0 \n", - "381 381 7 8 0 73 102 41 \n", - "382 5 90 85 133 65 58 61 \n", - "\n", - " spot-id=7 spot-id=8 spot-id=9 \n", - "0 115 122 109 \n", - "1 163 136 161 \n", - "2 227 115 129 \n", - "3 155 165 156 \n", - "4 115 99 116 \n", - ".. ... ... ... \n", - "378 118 77 77 \n", - "379 86 73 43 \n", - "380 17 0 0 \n", - "381 152 143 77 \n", - "382 58 55 95 \n", - "\n", - "[383 rows x 10 columns]" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_cells_stats.to_csv('../cancer/new/fov_new_spot_cell_stats.csv')\n", - "fov_spot_cells_stats" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['fov',\n", - " 'spot_id',\n", - " 'AATK',\n", - " 'ABL1',\n", - " 'ABL2',\n", - " 'ACACB',\n", - " 'ACE',\n", - " 'ACKR1',\n", - " 'ACKR3',\n", - " 'ACKR4',\n", - " 'ACP5',\n", - " 'ACTA2',\n", - " 'ACTG2',\n", - " 'ACVR1',\n", - " 'ACVR1B',\n", - " 'ACVR2A',\n", - " 'ACVRL1',\n", - " 'ADGRA2',\n", - " 'ADGRA3',\n", - " 'ADGRE2',\n", - " 'ADGRE5',\n", - " 'ADGRF1',\n", - " 'ADGRF3',\n", - " 'ADGRF5',\n", - " 'ADGRG1',\n", - " 'ADGRG3',\n", - " 'ADGRG5',\n", - " 'ADGRG6',\n", - " 'ADGRL1',\n", - " 'ADGRL2',\n", - " 'ADGRL4',\n", - " 'ADGRV1',\n", - " 'ADIPOQ',\n", - " 'ADIRF',\n", - " 'ADM2',\n", - " 'AGR2',\n", - " 'AHI1',\n", - " 'AHR',\n", - " 'AIF1',\n", - " 'AKT1',\n", - " 'ALCAM',\n", - " 'ALOX5AP',\n", - " 'ANGPT1',\n", - " 'ANGPT2',\n", - " 'ANGPTL1',\n", - " 'ANKRD1',\n", - " 'ANXA1',\n", - " 'ANXA2',\n", - " 'ANXA4',\n", - " 'APOA1',\n", - " 'APOC1',\n", - " 'APOD',\n", - " 'APOE',\n", - " 'APP',\n", - " 'AQP3',\n", - " 'AR',\n", - " 'AREG',\n", - " 'ARF1',\n", - " 'ARG1',\n", - " 'ARHGDIB',\n", - " 'ARID5B',\n", - " 'ATF3',\n", - " 'ATG10',\n", - " 'ATG12',\n", - " 'ATG5',\n", - " 'ATM',\n", - " 'ATP5F1B',\n", - " 'ATP5F1E',\n", - " 'ATR',\n", - " 'AXL',\n", - " 'AZGP1',\n", - " 'AZU1',\n", - " 'B2M',\n", - " 'B3GNT7',\n", - " 'BAG3',\n", - " 'BASP1',\n", - " 'BAX',\n", - " 'BBLN',\n", - " 'BCL2',\n", - " 'BCL2L1',\n", - " 'BECN1',\n", - " 'BEST1',\n", - " 'BGN',\n", - " 'BID',\n", - " 'BIRC3',\n", - " 'BIRC5',\n", - " 'BMP1',\n", - " 'BMP2',\n", - " 'BMP3',\n", - " 'BMP4',\n", - " 'BMP5',\n", - " 'BMP7',\n", - " 'BMPR1A',\n", - " 'BMPR2',\n", - " 'BRAF',\n", - " 'BRCA1',\n", - " 'BST1',\n", - " 'BST2',\n", - " 'BTF3',\n", - " 'BTG1',\n", - " 'BTK',\n", - " 'C11orf96',\n", - " 'C1QA',\n", - " 'C1QB',\n", - " 'C1QC',\n", - " 'C5AR2',\n", - " 'CACNA1C',\n", - " 'CALB1',\n", - " 'CALD1',\n", - " 'CALM1',\n", - " 'CALM2',\n", - " 'CALM3',\n", - " 'CAMP',\n", - " 'CARMN',\n", - " 'CASP3',\n", - " 'CASP8',\n", - " 'CASR',\n", - " 'CAV1',\n", - " 'CCDC80',\n", - " 'CCL11',\n", - " 'CCL13',\n", - " 'CCL15',\n", - " 'CCL17',\n", - " 'CCL18',\n", - " 'CCL19',\n", - " 'CCL2',\n", - " 'CCL20',\n", - " 'CCL21',\n", - " 'CCL22',\n", - " 'CCL26',\n", - " 'CCL28',\n", - " 'CCL3',\n", - " 'CCL4',\n", - " 'CCL5',\n", - " 'CCL8',\n", - " 'CCND1',\n", - " 'CCR1',\n", - " 'CCR10',\n", - " 'CCR2',\n", - " 'CCR5',\n", - " 'CCR7',\n", - " 'CCRL2',\n", - " 'CD14',\n", - " 'CD163',\n", - " 'CD164',\n", - " 'CD19',\n", - " 'CD1C',\n", - " 'CD2',\n", - " 'CD209',\n", - " 'CD22',\n", - " 'CD24',\n", - " 'CD27',\n", - " 'CD274',\n", - " 'CD276',\n", - " 'CD28',\n", - " 'CD300A',\n", - " 'CD33',\n", - " 'CD34',\n", - " 'CD36',\n", - " 'CD37',\n", - " 'CD38',\n", - " 'CD3D',\n", - " 'CD3E',\n", - " 'CD3G',\n", - " 'CD4',\n", - " 'CD40',\n", - " 'CD40LG',\n", - " 'CD44',\n", - " 'CD47',\n", - " 'CD48',\n", - " 'CD52',\n", - " 'CD53',\n", - " 'CD55',\n", - " 'CD58',\n", - " 'CD59',\n", - " 'CD5L',\n", - " 'CD63',\n", - " 'CD68',\n", - " 'CD69',\n", - " 'CD70',\n", - " 'CD74',\n", - " 'CD79A',\n", - " 'CD80',\n", - " 'CD81',\n", - " 'CD83',\n", - " 'CD84',\n", - " 'CD86',\n", - " 'CD8A',\n", - " 'CD8B',\n", - " 'CD9',\n", - " 'CD93',\n", - " 'CDH1',\n", - " 'CDH11',\n", - " 'CDH19',\n", - " 'CDH5',\n", - " 'CDKN1A',\n", - " 'CDKN3',\n", - " 'CEACAM1',\n", - " 'CEACAM6',\n", - " 'CELSR1',\n", - " 'CELSR2',\n", - " 'CENPF',\n", - " 'CFD',\n", - " 'CFLAR',\n", - " 'CHEK1',\n", - " 'CHEK2',\n", - " 'CHI3L1',\n", - " 'CIDEA',\n", - " 'CIITA',\n", - " 'CLCF1',\n", - " 'CLDN4',\n", - " 'CLEC10A',\n", - " 'CLEC12A',\n", - " 'CLEC14A',\n", - " 'CLEC1A',\n", - " 'CLEC2B',\n", - " 'CLEC2D',\n", - " 'CLEC4A',\n", - " 'CLEC4D',\n", - " 'CLEC4E',\n", - " 'CLEC5A',\n", - " 'CLEC7A',\n", - " 'CLOCK',\n", - " 'CLU',\n", - " 'CMKLR1',\n", - " 'CNTFR',\n", - " 'COL11A1',\n", - " 'COL12A1',\n", - " 'COL14A1',\n", - " 'COL15A1',\n", - " 'COL16A1',\n", - " 'COL17A1',\n", - " 'COL18A1',\n", - " 'COL1A1',\n", - " 'COL1A2',\n", - " 'COL21A1',\n", - " 'COL27A1',\n", - " 'COL3A1',\n", - " 'COL4A1',\n", - " 'COL4A2',\n", - " 'COL4A5',\n", - " 'COL5A1',\n", - " 'COL5A2',\n", - " 'COL5A3',\n", - " 'COL6A1',\n", - " 'COL6A2',\n", - " 'COL6A3',\n", - " 'COL8A1',\n", - " 'COL9A2',\n", - " 'COL9A3',\n", - " 'COTL1',\n", - " 'COX4I2',\n", - " 'CPA3',\n", - " 'CPB1',\n", - " 'CRIP1',\n", - " 'CRP',\n", - " 'CRYAB',\n", - " 'CSF1',\n", - " 'CSF1R',\n", - " 'CSF2',\n", - " 'CSF2RA',\n", - " 'CSF2RB',\n", - " 'CSF3',\n", - " 'CSF3R',\n", - " 'CSHL1',\n", - " 'CSK',\n", - " 'CSPG4',\n", - " 'CST7',\n", - " 'CSTB',\n", - " 'CTLA4',\n", - " 'CTNNB1',\n", - " 'CTSD',\n", - " 'CTSG',\n", - " 'CTSW',\n", - " 'CUZD1',\n", - " 'CX3CL1',\n", - " 'CX3CR1',\n", - " 'CXCL1',\n", - " 'CXCL10',\n", - " 'CXCL12',\n", - " 'CXCL13',\n", - " 'CXCL14',\n", - " 'CXCL16',\n", - " 'CXCL17',\n", - " 'CXCL5',\n", - " 'CXCL8',\n", - " 'CXCL9',\n", - " 'CXCR1',\n", - " 'CXCR2',\n", - " 'CXCR3',\n", - " 'CXCR4',\n", - " 'CXCR5',\n", - " 'CXCR6',\n", - " 'CYP1B1',\n", - " 'CYP2U1',\n", - " 'CYSTM1',\n", - " 'CYTOR',\n", - " 'DCN',\n", - " 'DDC',\n", - " 'DDIT3',\n", - " 'DDR1',\n", - " 'DDR2',\n", - " 'DDX58',\n", - " 'DHRS2',\n", - " 'DLL1',\n", - " 'DLL4',\n", - " 'DMBT1',\n", - " 'DNMT1',\n", - " 'DNMT3A',\n", - " 'DPP4',\n", - " 'DPT',\n", - " 'DST',\n", - " 'DUSP1',\n", - " 'DUSP2',\n", - " 'DUSP4',\n", - " 'DUSP5',\n", - " 'DUSP6',\n", - " 'EFNA1',\n", - " 'EFNA4',\n", - " 'EFNA5',\n", - " 'EFNB1',\n", - " 'EFNB2',\n", - " 'EGF',\n", - " 'EGFR',\n", - " 'EIF5A',\n", - " 'ELANE',\n", - " 'EMP3',\n", - " 'ENG',\n", - " 'ENO1',\n", - " 'ENTPD1',\n", - " 'EOMES',\n", - " 'EPCAM',\n", - " 'EPHA2',\n", - " 'EPHA3',\n", - " 'EPHA4',\n", - " 'EPHA7',\n", - " 'EPHB2',\n", - " 'EPHB3',\n", - " 'EPHB4',\n", - " 'EPHB6',\n", - " 'EPOR',\n", - " 'ERBB2',\n", - " 'ERBB3',\n", - " 'ESAM',\n", - " 'ESR1',\n", - " 'ETS1',\n", - " 'ETV4',\n", - " 'ETV5',\n", - " 'EZH2',\n", - " 'EZR',\n", - " 'FABP4',\n", - " 'FABP5',\n", - " 'FAM30A',\n", - " 'FAP',\n", - " 'FAS',\n", - " 'FASLG',\n", - " 'FASN',\n", - " 'FAU',\n", - " 'FCER1G',\n", - " 'FCGBP',\n", - " 'FCGR3A',\n", - " 'FCRLA',\n", - " 'FES',\n", - " 'FFAR2',\n", - " 'FFAR3',\n", - " 'FFAR4',\n", - " 'FGF1',\n", - " 'FGF12',\n", - " 'FGF13',\n", - " 'FGF18',\n", - " 'FGF2',\n", - " 'FGF7',\n", - " 'FGF9',\n", - " 'FGFR1',\n", - " 'FGFR2',\n", - " 'FGFR3',\n", - " 'FGG',\n", - " 'FGR',\n", - " 'FHIT',\n", - " 'FKBP11',\n", - " 'FKBP5',\n", - " 'FLT1',\n", - " 'FLT3LG',\n", - " 'FN1',\n", - " 'FOS',\n", - " 'FOXF1',\n", - " 'FOXP3',\n", - " 'FPR1',\n", - " 'FYB1',\n", - " 'FYN',\n", - " 'FZD1',\n", - " 'FZD3',\n", - " 'FZD4',\n", - " 'FZD5',\n", - " 'FZD6',\n", - " 'FZD7',\n", - " 'FZD8',\n", - " 'G0S2',\n", - " 'G6PD',\n", - " 'GADD45B',\n", - " 'GAS6',\n", - " 'GATA3',\n", - " 'GC',\n", - " 'GCG',\n", - " 'GDF15',\n", - " 'GLUD1',\n", - " 'GLUL',\n", - " 'GNLY',\n", - " 'GPBAR1',\n", - " 'GPER1',\n", - " 'GPNMB',\n", - " 'GPR183',\n", - " 'GPX1',\n", - " 'GPX3',\n", - " 'GSK3B',\n", - " 'GSN',\n", - " 'GSTP1',\n", - " 'GZMA',\n", - " 'GZMB',\n", - " 'GZMH',\n", - " 'GZMK',\n", - " 'H2AZ1',\n", - " 'H4C3',\n", - " 'HAVCR2',\n", - " 'HBA1',\n", - " 'HBB',\n", - " 'HCAR2',\n", - " 'HCK',\n", - " 'HCST',\n", - " 'HDAC1',\n", - " 'HDAC11',\n", - " 'HDAC3',\n", - " 'HDAC4',\n", - " 'HDAC5',\n", - " 'HEXB',\n", - " 'HEY1',\n", - " 'HGF',\n", - " 'HIF1A',\n", - " 'HILPDA',\n", - " 'HLA-A',\n", - " 'HLA-DPA1',\n", - " 'HLA-DPB1',\n", - " 'HLA-DQA1',\n", - " 'HLA-DQB1',\n", - " 'HLA-DRA',\n", - " 'HLA-DRB1',\n", - " 'HMGB2',\n", - " 'HMGCS1',\n", - " 'HMGN2',\n", - " 'HPGDS',\n", - " 'HSD17B2',\n", - " 'HSP90AA1',\n", - " 'HSP90AB1',\n", - " 'HSP90B1',\n", - " 'HSPA1A',\n", - " 'HSPB1',\n", - " 'HSPG2',\n", - " 'HTT',\n", - " 'IAPP',\n", - " 'ICA1',\n", - " 'ICAM1',\n", - " 'ICAM2',\n", - " 'ICAM3',\n", - " 'ICOS',\n", - " 'ICOSLG',\n", - " 'IDO1',\n", - " 'IER3',\n", - " 'IFI27',\n", - " 'IFI44L',\n", - " 'IFI6',\n", - " 'IFIH1',\n", - " 'IFIT1',\n", - " 'IFIT3',\n", - " 'IFITM1',\n", - " 'IFITM3',\n", - " 'IFNA1',\n", - " 'IFNAR1',\n", - " 'IFNAR2',\n", - " 'IFNG',\n", - " 'IFNGR1',\n", - " 'IFNGR2',\n", - " 'IFNL3',\n", - " 'IGF1',\n", - " 'IGF1R',\n", - " 'IGF2',\n", - " 'IGF2R',\n", - " 'IGFBP3',\n", - " 'IGFBP5',\n", - " 'IGFBP6',\n", - " 'IGFBP7',\n", - " 'IGHA1',\n", - " 'IGHD',\n", - " 'IGHG1',\n", - " 'IGHG2',\n", - " 'IGHM',\n", - " 'IGKC',\n", - " 'IKZF3',\n", - " 'IL10',\n", - " 'IL10RA',\n", - " 'IL10RB',\n", - " 'IL11',\n", - " 'IL11RA',\n", - " 'IL12A',\n", - " 'IL12B',\n", - " 'IL12RB1',\n", - " 'IL12RB2',\n", - " 'IL13RA1',\n", - " 'IL15',\n", - " 'IL15RA',\n", - " 'IL16',\n", - " 'IL17A',\n", - " 'IL17B',\n", - " 'IL17D',\n", - " 'IL17RA',\n", - " 'IL17RB',\n", - " 'IL17RE',\n", - " 'IL18',\n", - " 'IL18R1',\n", - " 'IL1A',\n", - " 'IL1B',\n", - " 'IL1R1',\n", - " 'IL1R2',\n", - " 'IL1RAP',\n", - " 'IL1RL1',\n", - " 'IL1RN',\n", - " 'IL2',\n", - " 'IL20',\n", - " 'IL20RA',\n", - " 'IL22RA1',\n", - " 'IL23A',\n", - " 'IL24',\n", - " 'IL27RA',\n", - " 'IL2RA',\n", - " 'IL2RB',\n", - " 'IL2RG',\n", - " 'IL32',\n", - " 'IL33',\n", - " 'IL34',\n", - " 'IL36G',\n", - " 'IL3RA',\n", - " 'IL4R',\n", - " 'IL6',\n", - " 'IL6R',\n", - " 'IL6ST',\n", - " 'IL7',\n", - " 'IL7R',\n", - " 'INHA',\n", - " 'INHBA',\n", - " 'INHBB',\n", - " 'INS',\n", - " 'INSIG1',\n", - " 'INSR',\n", - " 'IRF3',\n", - " 'IRF4',\n", - " 'ISG15',\n", - " 'ITGA1',\n", - " 'ITGA2',\n", - " 'ITGA3',\n", - " 'ITGA5',\n", - " 'ITGA6',\n", - " 'ITGA8',\n", - " 'ITGA9',\n", - " 'ITGAE',\n", - " 'ITGAL',\n", - " 'ITGAM',\n", - " 'ITGAV',\n", - " 'ITGAX',\n", - " 'ITGB1',\n", - " 'ITGB2',\n", - " 'ITGB4',\n", - " 'ITGB5',\n", - " 'ITGB6',\n", - " 'ITGB8',\n", - " 'ITK',\n", - " 'ITM2A',\n", - " 'ITM2B',\n", - " 'JAG1',\n", - " 'JAK1',\n", - " 'JAK2',\n", - " 'JCHAIN',\n", - " 'JUN',\n", - " 'JUNB',\n", - " 'KDR',\n", - " 'KIT',\n", - " 'KITLG',\n", - " 'KLF2',\n", - " 'KLK3',\n", - " 'KLRB1',\n", - " 'KLRF1',\n", - " 'KLRK1',\n", - " 'KRAS',\n", - " 'KRT1',\n", - " 'KRT10',\n", - " 'KRT13',\n", - " 'KRT14',\n", - " 'KRT15',\n", - " 'KRT16',\n", - " 'KRT17',\n", - " 'KRT18',\n", - " 'KRT19',\n", - " 'KRT20',\n", - " 'KRT23',\n", - " 'KRT4',\n", - " 'KRT5',\n", - " 'KRT6A',\n", - " 'KRT7',\n", - " 'KRT8',\n", - " 'KRT80',\n", - " 'KRT86',\n", - " 'LAG3',\n", - " 'LAIR1',\n", - " 'LAMA4',\n", - " 'LAMP2',\n", - " 'LAMP3',\n", - " 'LCN2',\n", - " 'LDB2',\n", - " 'LDHA',\n", - " 'LDLR',\n", - " 'LEFTY1',\n", - " 'LEP',\n", - " 'LGALS1',\n", - " 'LGALS3',\n", - " 'LGALS3BP',\n", - " 'LGALS9',\n", - " 'LGR5',\n", - " 'LIF',\n", - " 'LIFR',\n", - " 'LINC01781',\n", - " 'LINC01857',\n", - " 'LINC02446',\n", - " 'LMNA',\n", - " 'LPAR5',\n", - " 'LTB',\n", - " 'LTBR',\n", - " 'LTF',\n", - " 'LUM',\n", - " 'LY6D',\n", - " 'LY75',\n", - " 'LYN',\n", - " 'LYVE1',\n", - " 'LYZ',\n", - " 'MAF',\n", - " 'MALAT1',\n", - " 'MAML2',\n", - " 'MAP1LC3B',\n", - " 'MAP2K1',\n", - " 'MAPK13',\n", - " 'MAPK14',\n", - " 'MARCKSL1',\n", - " 'MARCO',\n", - " 'MB',\n", - " 'MECOM',\n", - " 'MEG3',\n", - " 'MERTK',\n", - " 'MET',\n", - " 'MFAP5',\n", - " 'MGP',\n", - " 'MIF',\n", - " 'MIR4435-2HG',\n", - " 'MKI67',\n", - " 'MMP1',\n", - " 'MMP12',\n", - " 'MMP14',\n", - " 'MMP19',\n", - " 'MMP2',\n", - " 'MMP7',\n", - " 'MMP9',\n", - " 'MPO',\n", - " 'MRC1',\n", - " 'MRC2',\n", - " 'MS4A1',\n", - " 'MS4A4A',\n", - " 'MS4A6A',\n", - " 'MSMB',\n", - " 'MSR1',\n", - " 'MST1R',\n", - " 'MT1X',\n", - " 'MT2A',\n", - " 'MTOR',\n", - " 'MX1',\n", - " 'MXRA8',\n", - " 'MYC',\n", - " 'MYH11',\n", - " 'MYH6',\n", - " 'MYL12A',\n", - " 'MYL4',\n", - " 'MYL7',\n", - " 'MYL9',\n", - " 'MZB1',\n", - " 'MZT2A',\n", - " 'NACA',\n", - " 'NANOG',\n", - " 'NCAM1',\n", - " 'NCR1',\n", - " 'NDRG1',\n", - " 'NDUFA4L2',\n", - " 'NEAT1',\n", - " 'NELL2',\n", - " 'NFKB1',\n", - " 'NFKBIA',\n", - " 'NGFR',\n", - " 'NKG7',\n", - " 'NLRC4',\n", - " 'NLRC5',\n", - " 'NLRP1',\n", - " 'NLRP2',\n", - " 'NLRP3',\n", - " 'NOD2',\n", - " 'NOSIP',\n", - " 'NOTCH1',\n", - " 'NOTCH2',\n", - " 'NOTCH3',\n", - " 'NPPC',\n", - " 'NPR1',\n", - " 'NPR2',\n", - " 'NPR3',\n", - " 'NR1H2',\n", - " 'NR1H3',\n", - " 'NR2F2',\n", - " 'NR3C1',\n", - " 'NRG1',\n", - " 'NRXN1',\n", - " 'NRXN3',\n", - " 'NTRK2',\n", - " 'NUPR1',\n", - " 'NUSAP1',\n", - " 'OAS1',\n", - " 'OAS2',\n", - " 'OAS3',\n", - " 'OASL',\n", - " 'OLFM4',\n", - " 'OLR1',\n", - " 'OSM',\n", - " 'OSMR',\n", - " 'P2RX5',\n", - " 'PARP1',\n", - " 'PCNA',\n", - " 'PDCD1',\n", - " 'PDCD1LG2',\n", - " 'PDGFA',\n", - " 'PDGFB',\n", - " 'PDGFC',\n", - " 'PDGFD',\n", - " 'PDGFRA',\n", - " 'PDGFRB',\n", - " 'PDS5A',\n", - " 'PECAM1',\n", - " 'PF4',\n", - " 'PFN1',\n", - " 'PGF',\n", - " 'PGK1',\n", - " 'PGR',\n", - " 'PHLDA2',\n", - " 'PIGR',\n", - " 'PLAC8',\n", - " 'PLAC9',\n", - " 'PLCG1',\n", - " 'PLD3',\n", - " 'PNOC',\n", - " 'POU5F1',\n", - " 'PPARA',\n", - " 'PPARD',\n", - " 'PPARG',\n", - " 'PPIA',\n", - " 'PRF1',\n", - " 'PROX1',\n", - " 'PRSS2',\n", - " 'PRTN3',\n", - " 'PSAP',\n", - " 'PSCA',\n", - " 'PSD3',\n", - " 'PTEN',\n", - " 'PTGDR2',\n", - " 'PTGDS',\n", - " 'PTGES',\n", - " 'PTGES2',\n", - " 'PTGES3',\n", - " 'PTGIS',\n", - " 'PTGS1',\n", - " 'PTGS2',\n", - " 'PTK2',\n", - " 'PTK6',\n", - " 'PTPRC',\n", - " 'PTPRCAP',\n", - " 'PTTG1',\n", - " 'PXDN',\n", - " 'QRFPR',\n", - " 'RAC1',\n", - " 'RAC2',\n", - " 'RACK1',\n", - " 'RAG1',\n", - " 'RAMP1',\n", - " 'RAMP2',\n", - " 'RAMP3',\n", - " 'RARA',\n", - " 'RARB',\n", - " 'RARG',\n", - " 'RARRES1',\n", - " 'RARRES2',\n", - " 'RB1',\n", - " 'RBM47',\n", - " 'RBPJ',\n", - " 'REG1A',\n", - " 'RELA',\n", - " 'RELT',\n", - " 'RGCC',\n", - " 'RGS1',\n", - " 'RGS13',\n", - " 'RGS2',\n", - " 'RGS5',\n", - " 'RNF43',\n", - " 'ROR1',\n", - " 'RORA',\n", - " 'RPL21',\n", - " 'RPL22',\n", - " 'RPL32',\n", - " 'RPL34',\n", - " 'RPL37',\n", - " 'RPS4Y1',\n", - " 'RSPO3',\n", - " 'RUNX3',\n", - " 'RXRA',\n", - " 'RXRB',\n", - " 'RYK',\n", - " 'RYR2',\n", - " 'S100A10',\n", - " 'S100A2',\n", - " 'S100A4',\n", - " 'S100A6',\n", - " 'S100A8',\n", - " 'S100A9',\n", - " 'S100B',\n", - " 'S100P',\n", - " 'SAA1',\n", - " 'SAT1',\n", - " 'SCG5',\n", - " 'SCGB3A1',\n", - " 'SEC23A',\n", - " 'SEC61G',\n", - " 'SELENOP',\n", - " 'SELL',\n", - " 'SELPLG',\n", - " 'SERPINA1',\n", - " 'SERPINA3',\n", - " 'SERPINB5',\n", - " 'SERPINH1',\n", - " 'SFN',\n", - " 'SH3BGRL3',\n", - " 'SIGIRR',\n", - " 'SLA',\n", - " 'SLC2A1',\n", - " 'SLC40A1',\n", - " 'SLCO2B1',\n", - " 'SLPI',\n", - " 'SMAD2',\n", - " 'SMAD3',\n", - " 'SMAD4',\n", - " 'SMARCB1',\n", - " 'SMO',\n", - " 'SNAI1',\n", - " 'SNAI2',\n", - " 'SOD1',\n", - " 'SOD2',\n", - " 'SORBS1',\n", - " 'SOSTDC1',\n", - " 'SOX2',\n", - " 'SOX4',\n", - " 'SOX9',\n", - " 'SPARCL1',\n", - " 'SPINK1',\n", - " 'SPOCK2',\n", - " 'SPP1',\n", - " 'SPRY2',\n", - " 'SPRY4',\n", - " 'SQLE',\n", - " 'SQSTM1',\n", - " 'SRC',\n", - " 'SREBF1',\n", - " 'SRGN',\n", - " 'SRSF2',\n", - " 'SST',\n", - " 'ST6GAL1',\n", - " 'ST6GALNAC3',\n", - " 'STAT1',\n", - " 'STAT3',\n", - " 'STAT4',\n", - " 'STAT5A',\n", - " 'STAT5B',\n", - " 'STAT6',\n", - " 'STMN1',\n", - " 'SYK',\n", - " 'TACSTD2',\n", - " 'TAGLN',\n", - " 'TAP1',\n", - " 'TAP2',\n", - " 'TBX21',\n", - " 'TCAP',\n", - " 'TCF7',\n", - " 'TCL1A',\n", - " 'TEK',\n", - " 'TFEB',\n", - " 'TGFB1',\n", - " 'TGFB2',\n", - " 'TGFB3',\n", - " 'TGFBI',\n", - " 'TGFBR1',\n", - " 'TGFBR2',\n", - " 'THBS1',\n", - " 'THBS2',\n", - " 'THSD4',\n", - " 'TIE1',\n", - " 'TIGIT',\n", - " 'TIMP1',\n", - " 'TLR1',\n", - " 'TLR2',\n", - " 'TLR3',\n", - " 'TLR4',\n", - " 'TLR5',\n", - " 'TLR7',\n", - " 'TLR8',\n", - " 'TM4SF1',\n", - " 'TNF',\n", - " 'TNFAIP6',\n", - " 'TNFRSF10A',\n", - " 'TNFRSF10B',\n", - " 'TNFRSF10D',\n", - " 'TNFRSF11A',\n", - " 'TNFRSF11B',\n", - " 'TNFRSF12A',\n", - " 'TNFRSF13B',\n", - " 'TNFRSF14',\n", - " 'TNFRSF17',\n", - " 'TNFRSF18',\n", - " 'TNFRSF19',\n", - " 'TNFRSF1A',\n", - " 'TNFRSF1B',\n", - " 'TNFRSF21',\n", - " 'TNFRSF4',\n", - " 'TNFRSF9',\n", - " 'TNFSF10',\n", - " 'TNFSF12',\n", - " 'TNFSF13B',\n", - " 'TNFSF14',\n", - " 'TNFSF15',\n", - " 'TNFSF4',\n", - " 'TNFSF8',\n", - " 'TNFSF9',\n", - " 'TNNC1',\n", - " 'TNNT2',\n", - " 'TNXB',\n", - " 'TOP2A',\n", - " 'TOX',\n", - " 'TP53',\n", - " 'TPI1',\n", - " 'TPM1',\n", - " 'TPM2',\n", - " 'TPSAB1',\n", - " 'TPT1',\n", - " 'TSC22D1',\n", - " 'TSHZ2',\n", - " 'TTN',\n", - " 'TTR',\n", - " 'TUBB',\n", - " 'TUBB4B',\n", - " 'TWIST1',\n", - " 'TWIST2',\n", - " 'TXK',\n", - " 'TYK2',\n", - " 'TYMS',\n", - " 'TYROBP',\n", - " 'UBA52',\n", - " 'UBE2C',\n", - " 'UPK3A',\n", - " 'VCAM1',\n", - " 'VCAN',\n", - " 'VEGFA',\n", - " 'VEGFB',\n", - " 'VEGFC',\n", - " 'VEGFD',\n", - " 'VHL',\n", - " 'VIM',\n", - " 'VPREB3',\n", - " 'VSIR',\n", - " 'VTN',\n", - " 'VWA1',\n", - " 'VWF',\n", - " 'WIF1',\n", - " 'WNT10B',\n", - " 'WNT11',\n", - " 'WNT3',\n", - " 'WNT5A',\n", - " 'WNT5B',\n", - " 'WNT7A',\n", - " 'WNT7B',\n", - " 'WNT9A',\n", - " 'XBP1',\n", - " 'XCL1',\n", - " 'XKR4',\n", - " 'YBX3',\n", - " 'YES1',\n", - " ...]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression = [\"fov\", \"spot_id\"]\n", - "genes_name_lst = (individual_cell_gene_expression.columns)[5:].tolist()\n", - "spot_gene_expression = spot_gene_expression + genes_name_lst\n", - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
\n", - "

0 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, AATK, ABL1, ABL2, ACACB, ACE, ACKR1, ACKR3, ACKR4, ACP5, ACTA2, ACTG2, ACVR1, ACVR1B, ACVR2A, ACVRL1, ADGRA2, ADGRA3, ADGRE2, ADGRE5, ADGRF1, ADGRF3, ADGRF5, ADGRG1, ADGRG3, ADGRG5, ADGRG6, ADGRL1, ADGRL2, ADGRL4, ADGRV1, ADIPOQ, ADIRF, ADM2, AGR2, AHI1, AHR, AIF1, AKT1, ALCAM, ALOX5AP, ANGPT1, ANGPT2, ANGPTL1, ANKRD1, ANXA1, ANXA2, ANXA4, APOA1, APOC1, APOD, APOE, APP, AQP3, AR, AREG, ARF1, ARG1, ARHGDIB, ARID5B, ATF3, ATG10, ATG12, ATG5, ATM, ATP5F1B, ATP5F1E, ATR, AXL, AZGP1, AZU1, B2M, B3GNT7, BAG3, BASP1, BAX, BBLN, BCL2, BCL2L1, BECN1, BEST1, BGN, BID, BIRC3, BIRC5, BMP1, BMP2, BMP3, BMP4, BMP5, BMP7, BMPR1A, BMPR2, BRAF, BRCA1, BST1, BST2, BTF3, BTG1, ...]\n", - "Index: []\n", - "\n", - "[0 rows x 1002 columns]" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression = pd.DataFrame(columns = spot_gene_expression)\n", - "spot_gene_expression\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_gene_expression(fov_expression, spot_id):\n", - " genes_lst = (fov_expression.columns)[5:].tolist()\n", - " assert len(genes_lst) == 1000\n", - " \n", - " cell_id_lst = fov_expression[(fov_expression['spot_id']==spot_id)][\"cell_ID\"].tolist()\n", - " \n", - " cell_gene_expression_total = len(genes_lst)*[0]\n", - " for cell_id in cell_id_lst:\n", - " cell_gene_expression = fov_expression[(fov_expression['cell_ID'] == cell_id)]\n", - " \n", - " cell_gene_expression = cell_gene_expression.values.tolist()[0][5:]\n", - " cell_gene_expression_total = np.sum([cell_gene_expression_total, cell_gene_expression], axis=0).tolist()\n", - "\n", - " return cell_gene_expression_total\n", - " \n", - " \n" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 100\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 101\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 102\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 103\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 104\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 105\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 106\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 107\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 108\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 109\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 10\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 110\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 111\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 112\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 113\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 114\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 116\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 117\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 118\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 119\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 120\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 121\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 122\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 123\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 125\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 126\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 127\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 128\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 129\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 12\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 130\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 131\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 132\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 133\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 134\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 135\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 136\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 137\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 138\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 139\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 13\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 140\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 141\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 142\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 143\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 144\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 145\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 146\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 147\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 148\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 149\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 14\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 150\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 151\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 152\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 153\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 154\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 155\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 156\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 157\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 158\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 159\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 15\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 160\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 161\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 162\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 164\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 165\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 166\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 167\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 168\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 169\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 16\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 170\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 172\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 173\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 175\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 176\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 177\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 178\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 17\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 180\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 181\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 182\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 183\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 184\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 185\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 187\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 189\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 18\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 190\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 191\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 192\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 193\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 194\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 195\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 196\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 197\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 198\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 199\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 200\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 202\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 203\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 204\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 205\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 206\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 207\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 208\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 209\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 20\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 210\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 211\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 212\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 213\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 214\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 215\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 216\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 218\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 219\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 220\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 221\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 222\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 223\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 224\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 225\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 226\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 227\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 228\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 229\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 22\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 230\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 231\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 232\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 234\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 235\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 236\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 237\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 238\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 239\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 23\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 240\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 241\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 242\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 243\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 244\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 245\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 246\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 247\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 248\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 249\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 24\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 250\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 251\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 252\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 253\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 254\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 255\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 256\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 257\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 258\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 259\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 25\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 260\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 261\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 262\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 263\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 264\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 265\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 266\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 267\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 268\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 269\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 26\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 270\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 271\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 272\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 273\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 274\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 275\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 276\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 277\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 278\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 279\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 27\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 280\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 281\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 282\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 283\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 284\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 285\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 286\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 287\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 288\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 289\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 28\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 290\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 291\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 292\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 294\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 295\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 296\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 297\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 298\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 29\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 300\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 301\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 302\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 303\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 304\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 305\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 306\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 307\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 308\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 309\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 30\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 310\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 311\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 312\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 313\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 314\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 315\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 317\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 318\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 319\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 31\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 321\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 323\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 324\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 325\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 326\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 327\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 328\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 329\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 32\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 330\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 331\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 335\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 336\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 337\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 338\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 339\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 33\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 340\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 341\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 343\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 344\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 345\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 347\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 349\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 34\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 350\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 351\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 352\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 353\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 354\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 355\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 356\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 357\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 358\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 359\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 35\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 360\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 361\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 365\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 366\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 367\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 368\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 36\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 370\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 373\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 374\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 375\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 376\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 378\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 379\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 37\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 383\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 38\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 39\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 3\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 40\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 41\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 42\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 43\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 44\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 45\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 46\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 47\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 48\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 49\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 4\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 50\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 51\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 52\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 53\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 54\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 55\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 56\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 57\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 58\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 61\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 62\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 64\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 65\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 66\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 67\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 68\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 69\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 6\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 70\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 71\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 72\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 73\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 74\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 75\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 76\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 77\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 78\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 79\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 7\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 80\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 81\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 82\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 83\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 84\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 85\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 87\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 88\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 89\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 8\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 90\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 91\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 92\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 93\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 94\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 95\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 96\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 97\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 98\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 99\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 124\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 163\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 171\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 174\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 179\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 186\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 201\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 217\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 21\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 233\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 293\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 316\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 320\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 332\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 334\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 342\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 348\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 362\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 363\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 369\n", - "fov_id: 372\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 377\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 382\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 63\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 86\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 188\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 299\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 322\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 333\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 346\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 364\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 371\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 380\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 381\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_31546/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_gene_expression = individual_cell_gene_expression[(individual_cell_gene_expression['fov'] == fov_id)]\n", - " print(\"fov_id:\", fov_id)\n", - " \n", - " \n", - " for spot_id in spot_id_lst:\n", - " to_append = [fov_id, spot_id]\n", - " spot_gene_express = get_spot_gene_expression(fov_gene_expression, spot_id)\n", - " \n", - " to_append = to_append + spot_gene_express\n", - " a_series = pd.Series(to_append, index = spot_gene_expression.columns)\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - " \n", - "# print(spot_gene_express, len(spot_gene_express))\n", - "\n", - "\n", - "\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
0100.01.019.035.023.036.019.010.021.018.0...10.012.025.0124.034.04.0157.018.0225.0121.0
1100.02.025.020.014.029.026.014.015.016.0...2.010.021.079.028.02.0187.014.0202.0124.0
2100.03.025.046.034.055.039.018.019.020.0...5.017.019.0156.054.05.0215.015.0317.0162.0
3100.04.018.032.026.056.018.017.021.028.0...9.035.019.0114.033.05.0356.033.0251.0229.0
4100.05.015.033.020.048.034.015.028.022.0...10.016.033.0110.040.07.0251.018.0256.0205.0
..................................................................
34425.05.06.09.06.09.04.06.010.01.0...0.01.07.04.08.04.06.09.08.011.0
34435.06.06.05.03.05.06.04.08.06.0...3.05.01.06.07.02.09.04.07.016.0
34445.07.08.05.04.04.02.04.05.02.0...3.08.02.04.06.02.05.01.014.024.0
34455.08.05.04.04.06.06.04.06.06.0...3.04.07.06.04.02.07.03.08.09.0
34465.09.011.010.013.010.021.09.011.09.0...8.010.011.020.021.03.070.07.039.043.0
\n", - "

3447 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", - "0 100.0 1.0 19.0 35.0 23.0 36.0 19.0 10.0 21.0 18.0 ... \n", - "1 100.0 2.0 25.0 20.0 14.0 29.0 26.0 14.0 15.0 16.0 ... \n", - "2 100.0 3.0 25.0 46.0 34.0 55.0 39.0 18.0 19.0 20.0 ... \n", - "3 100.0 4.0 18.0 32.0 26.0 56.0 18.0 17.0 21.0 28.0 ... \n", - "4 100.0 5.0 15.0 33.0 20.0 48.0 34.0 15.0 28.0 22.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "3442 5.0 5.0 6.0 9.0 6.0 9.0 4.0 6.0 10.0 1.0 ... \n", - "3443 5.0 6.0 6.0 5.0 3.0 5.0 6.0 4.0 8.0 6.0 ... \n", - "3444 5.0 7.0 8.0 5.0 4.0 4.0 2.0 4.0 5.0 2.0 ... \n", - "3445 5.0 8.0 5.0 4.0 4.0 6.0 6.0 4.0 6.0 6.0 ... \n", - "3446 5.0 9.0 11.0 10.0 13.0 10.0 21.0 9.0 11.0 9.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 10.0 12.0 25.0 124.0 34.0 4.0 157.0 18.0 225.0 121.0 \n", - "1 2.0 10.0 21.0 79.0 28.0 2.0 187.0 14.0 202.0 124.0 \n", - "2 5.0 17.0 19.0 156.0 54.0 5.0 215.0 15.0 317.0 162.0 \n", - "3 9.0 35.0 19.0 114.0 33.0 5.0 356.0 33.0 251.0 229.0 \n", - "4 10.0 16.0 33.0 110.0 40.0 7.0 251.0 18.0 256.0 205.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "3442 0.0 1.0 7.0 4.0 8.0 4.0 6.0 9.0 8.0 11.0 \n", - "3443 3.0 5.0 1.0 6.0 7.0 2.0 9.0 4.0 7.0 16.0 \n", - "3444 3.0 8.0 2.0 4.0 6.0 2.0 5.0 1.0 14.0 24.0 \n", - "3445 3.0 4.0 7.0 6.0 4.0 2.0 7.0 3.0 8.0 9.0 \n", - "3446 8.0 10.0 11.0 20.0 21.0 3.0 70.0 7.0 39.0 43.0 \n", - "\n", - "[3447 rows x 1002 columns]" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
0100.01.019.035.023.036.019.010.021.018.0...10.012.025.0124.034.04.0157.018.0225.0121.0
1100.02.025.020.014.029.026.014.015.016.0...2.010.021.079.028.02.0187.014.0202.0124.0
2100.03.025.046.034.055.039.018.019.020.0...5.017.019.0156.054.05.0215.015.0317.0162.0
3100.04.018.032.026.056.018.017.021.028.0...9.035.019.0114.033.05.0356.033.0251.0229.0
4100.05.015.033.020.048.034.015.028.022.0...10.016.033.0110.040.07.0251.018.0256.0205.0
..................................................................
34425.05.06.09.06.09.04.06.010.01.0...0.01.07.04.08.04.06.09.08.011.0
34435.06.06.05.03.05.06.04.08.06.0...3.05.01.06.07.02.09.04.07.016.0
34445.07.08.05.04.04.02.04.05.02.0...3.08.02.04.06.02.05.01.014.024.0
34455.08.05.04.04.06.06.04.06.06.0...3.04.07.06.04.02.07.03.08.09.0
34465.09.011.010.013.010.021.09.011.09.0...8.010.011.020.021.03.070.07.039.043.0
\n", - "

3447 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", - "0 100.0 1.0 19.0 35.0 23.0 36.0 19.0 10.0 21.0 18.0 ... \n", - "1 100.0 2.0 25.0 20.0 14.0 29.0 26.0 14.0 15.0 16.0 ... \n", - "2 100.0 3.0 25.0 46.0 34.0 55.0 39.0 18.0 19.0 20.0 ... \n", - "3 100.0 4.0 18.0 32.0 26.0 56.0 18.0 17.0 21.0 28.0 ... \n", - "4 100.0 5.0 15.0 33.0 20.0 48.0 34.0 15.0 28.0 22.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "3442 5.0 5.0 6.0 9.0 6.0 9.0 4.0 6.0 10.0 1.0 ... \n", - "3443 5.0 6.0 6.0 5.0 3.0 5.0 6.0 4.0 8.0 6.0 ... \n", - "3444 5.0 7.0 8.0 5.0 4.0 4.0 2.0 4.0 5.0 2.0 ... \n", - "3445 5.0 8.0 5.0 4.0 4.0 6.0 6.0 4.0 6.0 6.0 ... \n", - "3446 5.0 9.0 11.0 10.0 13.0 10.0 21.0 9.0 11.0 9.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 10.0 12.0 25.0 124.0 34.0 4.0 157.0 18.0 225.0 121.0 \n", - "1 2.0 10.0 21.0 79.0 28.0 2.0 187.0 14.0 202.0 124.0 \n", - "2 5.0 17.0 19.0 156.0 54.0 5.0 215.0 15.0 317.0 162.0 \n", - "3 9.0 35.0 19.0 114.0 33.0 5.0 356.0 33.0 251.0 229.0 \n", - "4 10.0 16.0 33.0 110.0 40.0 7.0 251.0 18.0 256.0 205.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "3442 0.0 1.0 7.0 4.0 8.0 4.0 6.0 9.0 8.0 11.0 \n", - "3443 3.0 5.0 1.0 6.0 7.0 2.0 9.0 4.0 7.0 16.0 \n", - "3444 3.0 8.0 2.0 4.0 6.0 2.0 5.0 1.0 14.0 24.0 \n", - "3445 3.0 4.0 7.0 6.0 4.0 2.0 7.0 3.0 8.0 9.0 \n", - "3446 8.0 10.0 11.0 20.0 21.0 3.0 70.0 7.0 39.0 43.0 \n", - "\n", - "[3447 rows x 1002 columns]" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "spot_gene_expression.to_csv('../cancer/new/spot_gene_expression.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Ground Truth" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
001002733tumor_20.00.00.01.00.0...0.00.00.01.00.00.00.00.00.01.0
101008101tumor_11.01.00.01.00.0...0.00.00.04.00.00.09.03.02.012.0
20100725tumor_20.02.00.00.01.0...1.00.00.00.02.00.05.01.08.02.0
301008102tumor_12.00.00.03.01.0...0.02.00.03.00.00.05.01.015.05.0
4010031135tumor_20.01.01.02.01.0...0.00.00.00.01.00.01.00.03.01.0
..................................................................
46043605292tumor_20.01.00.00.00.0...1.00.01.01.01.00.01.00.02.05.0
46043705294tumor_11.01.00.00.00.0...0.01.00.00.00.00.00.00.02.00.0
46043805595Inflammatory.macrophages0.01.00.00.00.0...0.00.00.00.00.00.00.00.01.02.0
46043905896tumor_10.00.00.01.00.0...0.02.00.00.00.00.00.00.01.00.0
46044005298tumor_13.01.00.00.01.0...0.00.00.00.00.00.01.00.01.00.0
\n", - "

460441 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK \\\n", - "0 0 100 2 733 tumor_2 0.0 \n", - "1 0 100 8 101 tumor_1 1.0 \n", - "2 0 100 7 25 tumor_2 0.0 \n", - "3 0 100 8 102 tumor_1 2.0 \n", - "4 0 100 3 1135 tumor_2 0.0 \n", - "... ... ... ... ... ... ... \n", - "460436 0 5 2 92 tumor_2 0.0 \n", - "460437 0 5 2 94 tumor_1 1.0 \n", - "460438 0 5 5 95 Inflammatory.macrophages 0.0 \n", - "460439 0 5 8 96 tumor_1 0.0 \n", - "460440 0 5 2 98 tumor_1 3.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 \\\n", - "0 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "1 1.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 4.0 0.0 0.0 \n", - "2 2.0 0.0 0.0 1.0 ... 1.0 0.0 0.0 0.0 2.0 0.0 \n", - "3 0.0 0.0 3.0 1.0 ... 0.0 2.0 0.0 3.0 0.0 0.0 \n", - "4 1.0 1.0 2.0 1.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "460436 1.0 0.0 0.0 0.0 ... 1.0 0.0 1.0 1.0 1.0 0.0 \n", - "460437 1.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 \n", - "460438 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "460439 0.0 0.0 1.0 0.0 ... 0.0 2.0 0.0 0.0 0.0 0.0 \n", - "460440 1.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 1.0 \n", - "1 9.0 3.0 2.0 12.0 \n", - "2 5.0 1.0 8.0 2.0 \n", - "3 5.0 1.0 15.0 5.0 \n", - "4 1.0 0.0 3.0 1.0 \n", - "... ... ... ... ... \n", - "460436 1.0 0.0 2.0 5.0 \n", - "460437 0.0 0.0 2.0 0.0 \n", - "460438 0.0 0.0 1.0 2.0 \n", - "460439 0.0 0.0 1.0 0.0 \n", - "460440 1.0 0.0 1.0 0.0 \n", - "\n", - "[460441 rows x 1005 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1,\n", - " 2,\n", - " 3,\n", - " 4,\n", - " 5,\n", - " 6,\n", - " 7,\n", - " 8,\n", - " 9,\n", - " 10,\n", - " 11,\n", - " 12,\n", - " 13,\n", - " 14,\n", - " 15,\n", - " 16,\n", - " 17,\n", - " 18,\n", - " 19,\n", - " 20,\n", - " 21,\n", - " 22,\n", - " 23,\n", - " 24,\n", - " 25,\n", - " 26,\n", - " 27,\n", - " 28,\n", - " 29,\n", - " 30,\n", - " 31,\n", - " 32,\n", - " 33,\n", - " 34,\n", - " 35,\n", - " 36,\n", - " 37,\n", - " 38,\n", - " 39,\n", - " 40,\n", - " 41,\n", - " 42,\n", - " 43,\n", - " 44,\n", - " 45,\n", - " 46,\n", - " 47,\n", - " 48,\n", - " 49,\n", - " 50,\n", - " 51,\n", - " 52,\n", - " 53,\n", - " 54,\n", - " 55,\n", - " 56,\n", - " 57,\n", - " 58,\n", - " 59,\n", - " 60,\n", - " 61,\n", - " 62,\n", - " 63,\n", - " 64,\n", - " 65,\n", - " 66,\n", - " 67,\n", - " 68,\n", - " 69,\n", - " 70,\n", - " 71,\n", - " 72,\n", - " 73,\n", - " 74,\n", - " 75,\n", - " 76,\n", - " 77,\n", - " 78,\n", - " 79,\n", - " 80,\n", - " 81,\n", - " 82,\n", - " 83,\n", - " 84,\n", - " 85,\n", - " 86,\n", - " 87,\n", - " 88,\n", - " 89,\n", - " 90,\n", - " 91,\n", - " 92,\n", - " 93,\n", - " 94,\n", - " 95,\n", - " 96,\n", - " 97,\n", - " 98,\n", - " 99,\n", - " 100,\n", - " 101,\n", - " 102,\n", - " 103,\n", - " 104,\n", - " 105,\n", - " 106,\n", - " 107,\n", - " 108,\n", - " 109,\n", - " 110,\n", - " 111,\n", - " 112,\n", - " 113,\n", - " 114,\n", - " 115,\n", - " 116,\n", - " 117,\n", - " 118,\n", - " 119,\n", - " 120,\n", - " 121,\n", - " 122,\n", - " 123,\n", - " 124,\n", - " 125,\n", - " 126,\n", - " 127,\n", - " 128,\n", - " 129,\n", - " 130,\n", - " 131,\n", - " 132,\n", - " 133,\n", - " 134,\n", - " 135,\n", - " 136,\n", - " 137,\n", - " 138,\n", - " 139,\n", - " 140,\n", - " 141,\n", - " 142,\n", - " 143,\n", - " 144,\n", - " 145,\n", - " 146,\n", - " 147,\n", - " 148,\n", - " 149,\n", - " 150,\n", - " 151,\n", - " 152,\n", - " 153,\n", - " 154,\n", - " 155,\n", - " 156,\n", - " 157,\n", - " 158,\n", - " 159,\n", - " 160,\n", - " 161,\n", - " 162,\n", - " 163,\n", - " 164,\n", - " 165,\n", - " 166,\n", - " 167,\n", - " 168,\n", - " 169,\n", - " 170,\n", - " 171,\n", - " 172,\n", - " 173,\n", - " 174,\n", - " 175,\n", - " 176,\n", - " 177,\n", - " 178,\n", - " 179,\n", - " 180,\n", - " 181,\n", - " 182,\n", - " 183,\n", - " 184,\n", - " 185,\n", - " 186,\n", - " 187,\n", - " 188,\n", - " 189,\n", - " 190,\n", - " 191,\n", - " 192,\n", - " 193,\n", - " 194,\n", - " 195,\n", - " 196,\n", - " 197,\n", - " 198,\n", - " 199,\n", - " 200,\n", - " 201,\n", - " 202,\n", - " 203,\n", - " 204,\n", - " 205,\n", - " 206,\n", - " 207,\n", - " 208,\n", - " 209,\n", - " 210,\n", - " 211,\n", - " 212,\n", - " 213,\n", - " 214,\n", - " 215,\n", - " 216,\n", - " 217,\n", - " 218,\n", - " 219,\n", - " 220,\n", - " 221,\n", - " 222,\n", - " 223,\n", - " 224,\n", - " 225,\n", - " 226,\n", - " 227,\n", - " 228,\n", - " 229,\n", - " 230,\n", - " 231,\n", - " 232,\n", - " 233,\n", - " 234,\n", - " 235,\n", - " 236,\n", - " 237,\n", - " 238,\n", - " 239,\n", - " 240,\n", - " 241,\n", - " 242,\n", - " 243,\n", - " 244,\n", - " 245,\n", - " 246,\n", - " 247,\n", - " 248,\n", - " 249,\n", - " 250,\n", - " 251,\n", - " 252,\n", - " 253,\n", - " 254,\n", - " 255,\n", - " 256,\n", - " 257,\n", - " 258,\n", - " 259,\n", - " 260,\n", - " 261,\n", - " 262,\n", - " 263,\n", - " 264,\n", - " 265,\n", - " 266,\n", - " 267,\n", - " 268,\n", - " 269,\n", - " 270,\n", - " 271,\n", - " 272,\n", - " 273,\n", - " 274,\n", - " 275,\n", - " 276,\n", - " 277,\n", - " 278,\n", - " 279,\n", - " 280,\n", - " 281,\n", - " 282,\n", - " 283,\n", - " 284,\n", - " 285,\n", - " 286,\n", - " 287,\n", - " 288,\n", - " 289,\n", - " 290,\n", - " 291,\n", - " 292,\n", - " 293,\n", - " 294,\n", - " 295,\n", - " 296,\n", - " 297,\n", - " 298,\n", - " 299,\n", - " 300,\n", - " 301,\n", - " 302,\n", - " 303,\n", - " 304,\n", - " 305,\n", - " 306,\n", - " 307,\n", - " 308,\n", - " 309,\n", - " 310,\n", - " 311,\n", - " 312,\n", - " 313,\n", - " 314,\n", - " 315,\n", - " 316,\n", - " 317,\n", - " 318,\n", - " 319,\n", - " 320,\n", - " 321,\n", - " 322,\n", - " 323,\n", - " 324,\n", - " 325,\n", - " 326,\n", - " 327,\n", - " 328,\n", - " 329,\n", - " 330,\n", - " 331,\n", - " 332,\n", - " 333,\n", - " 334,\n", - " 335,\n", - " 336,\n", - " 337,\n", - " 338,\n", - " 339,\n", - " 340,\n", - " 341,\n", - " 342,\n", - " 343,\n", - " 344,\n", - " 345,\n", - " 346,\n", - " 347,\n", - " 348,\n", - " 349,\n", - " 350,\n", - " 351,\n", - " 352,\n", - " 353,\n", - " 354,\n", - " 355,\n", - " 356,\n", - " 357,\n", - " 358,\n", - " 359,\n", - " 360,\n", - " 361,\n", - " 362,\n", - " 363,\n", - " 364,\n", - " 365,\n", - " 366,\n", - " 367,\n", - " 368,\n", - " 369,\n", - " 370,\n", - " 371,\n", - " 372,\n", - " 373,\n", - " 374,\n", - " 375,\n", - " 376,\n", - " 377,\n", - " 378,\n", - " 379,\n", - " 380,\n", - " 381,\n", - " 382,\n", - " 383}" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "set(individual_cell_gene_expression[\"fov\"].tolist())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'tumor_2': 35385,\n", - " 'tumor_1': 347988,\n", - " 'Inflammatory.macrophages': 14797,\n", - " 'Periportal.LSECs': 11893,\n", - " 'CD3+.alpha.beta.T.cells': 20083,\n", - " 'Non.inflammatory.macrophages': 9076,\n", - " 'Portal.endothelial.cells': 1060,\n", - " 'Stellate.cells': 7798,\n", - " 'Central.venous.LSECs': 2138,\n", - " 'NK.like.cells': 705,\n", - " 'Mature.B.cells': 4974,\n", - " 'Cholangiocytes': 1411,\n", - " 'gamma.delta.T.cells.1': 549,\n", - " 'Antibody.secreting.B.cells': 1236,\n", - " 'Erthyroid.cells': 139,\n", - " 'NotDet': 5,\n", - " 'Hep': 1204}" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sample_1_dic = {}\n", - "for key in individual_cell_gene_expression[\"cellType\"].tolist():\n", - " if key not in sample_1_dic:\n", - " sample_1_dic[key] = 1\n", - " else:\n", - " sample_1_dic[key] = sample_1_dic[key] + 1\n", - "\n", - "sample_1_dic\n" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
412252082201tumor_10.01.01.02.00.0...0.00.00.04.01.00.02.00.02.02.0
412253088291tumor_10.01.01.00.00.0...0.00.01.07.01.00.03.00.01.04.0
412254082351tumor_20.00.00.01.00.0...0.00.00.05.00.00.08.00.06.04.0
41225508441tumor_10.01.02.02.01.0...0.01.01.05.00.01.01.01.07.03.0
412256089438tumor_10.00.00.00.02.0...0.00.00.07.01.00.08.01.04.05.0
..................................................................
413127086879tumor_10.01.00.00.02.0...0.00.00.00.00.00.01.00.00.00.0
413128083880tumor_10.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
413129089882tumor_10.00.00.00.01.0...0.00.00.00.00.00.00.00.03.00.0
413130089884tumor_10.00.00.00.00.0...0.00.00.00.00.00.00.00.01.01.0
413131083885tumor_10.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

880 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK ABL1 ABL2 ACACB \\\n", - "412252 0 8 2 201 tumor_1 0.0 1.0 1.0 2.0 \n", - "412253 0 8 8 291 tumor_1 0.0 1.0 1.0 0.0 \n", - "412254 0 8 2 351 tumor_2 0.0 0.0 0.0 1.0 \n", - "412255 0 8 4 41 tumor_1 0.0 1.0 2.0 2.0 \n", - "412256 0 8 9 438 tumor_1 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... \n", - "413127 0 8 6 879 tumor_1 0.0 1.0 0.0 0.0 \n", - "413128 0 8 3 880 tumor_1 0.0 0.0 0.0 0.0 \n", - "413129 0 8 9 882 tumor_1 0.0 0.0 0.0 0.0 \n", - "413130 0 8 9 884 tumor_1 0.0 0.0 0.0 0.0 \n", - "413131 0 8 3 885 tumor_1 0.0 0.0 0.0 0.0 \n", - "\n", - " ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 \\\n", - "412252 0.0 ... 0.0 0.0 0.0 4.0 1.0 0.0 2.0 0.0 2.0 \n", - "412253 0.0 ... 0.0 0.0 1.0 7.0 1.0 0.0 3.0 0.0 1.0 \n", - "412254 0.0 ... 0.0 0.0 0.0 5.0 0.0 0.0 8.0 0.0 6.0 \n", - "412255 1.0 ... 0.0 1.0 1.0 5.0 0.0 1.0 1.0 1.0 7.0 \n", - "412256 2.0 ... 0.0 0.0 0.0 7.0 1.0 0.0 8.0 1.0 4.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "413127 2.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "413128 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "413129 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 \n", - "413130 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", - "413131 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " ZFP36 \n", - "412252 2.0 \n", - "412253 4.0 \n", - "412254 4.0 \n", - "412255 3.0 \n", - "412256 5.0 \n", - "... ... \n", - "413127 0.0 \n", - "413128 0.0 \n", - "413129 0.0 \n", - "413130 1.0 \n", - "413131 0.0 \n", - "\n", - "[880 rows x 1005 columns]" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "CosMx_cell_type_sample_1_fov_1 = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==8)]\n", - "CosMx_cell_type_sample_1_fov_1" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "17\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Antibody.secreting.B.cells',\n", - " 'CD3+.alpha.beta.T.cells',\n", - " 'Central.venous.LSECs',\n", - " 'Cholangiocytes',\n", - " 'Erthyroid.cells',\n", - " 'Hep',\n", - " 'Inflammatory.macrophages',\n", - " 'Mature.B.cells',\n", - " 'NK.like.cells',\n", - " 'Non.inflammatory.macrophages',\n", - " 'NotDet',\n", - " 'Periportal.LSECs',\n", - " 'Portal.endothelial.cells',\n", - " 'Stellate.cells',\n", - " 'gamma.delta.T.cells.1',\n", - " 'tumor_1',\n", - " 'tumor_2'}" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cell_type_lst = set(individual_cell_gene_expression['cellType'].tolist())\n", - "print(len(cell_type_lst))\n", - "cell_type_lst" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Antibody.secreting.B.cells',\n", - " 'CD3+.alpha.beta.T.cells',\n", - " 'Central.venous.LSECs',\n", - " 'Cholangiocytes',\n", - " 'Erthyroid.cells',\n", - " 'Hep',\n", - " 'Inflammatory.macrophages',\n", - " 'Mature.B.cells',\n", - " 'NK.like.cells',\n", - " 'Non.inflammatory.macrophages',\n", - " 'NotDet',\n", - " 'Periportal.LSECs',\n", - " 'Portal.endothelial.cells',\n", - " 'Stellate.cells',\n", - " 'gamma.delta.T.cells.1',\n", - " 'tumor_1',\n", - " 'tumor_2']" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sorted(cell_type_lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAntibody.secreting.B.cellsCD3+.alpha.beta.T.cellsCentral.venous.LSECsCholangiocytesErthyroid.cellsHepInflammatory.macrophagesMature.B.cellsNK.like.cellsNon.inflammatory.macrophagesNotDetPeriportal.LSECsPortal.endothelial.cellsStellate.cellsgamma.delta.T.cells.1tumor_1tumor_2
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, Antibody.secreting.B.cells, CD3+.alpha.beta.T.cells, Central.venous.LSECs, Cholangiocytes, Erthyroid.cells, Hep, Inflammatory.macrophages, Mature.B.cells, NK.like.cells, Non.inflammatory.macrophages, NotDet, Periportal.LSECs, Portal.endothelial.cells, Stellate.cells, gamma.delta.T.cells.1, tumor_1, tumor_2]\n", - "Index: []" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# list(CosMx_cell_type.columns)\n", - "column_name_lst = ['fov', 'spot_id'] + sorted(cell_type_lst)\n", - "ground_truth_table = pd.DataFrame(columns = column_name_lst)\n", - "ground_truth_table\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "460441" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cell_id_lst = individual_cell_gene_expression[\"cell_ID\"].tolist()\n", - "len(cell_id_lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_cell_type_dic(CosMx_cell_type, cell_type_dic):\n", - " one_spot_cell_lst = (spot_id_data['cell_ID'].unique()) # all cell ids for one specific spot\n", - "\n", - " for cell_id in one_spot_cell_lst:\n", - " one_cell_sample = CosMx_cell_type[(CosMx_cell_type['cell_ID']==cell_id)]\n", - " cell_type = one_cell_sample[\"cellType\"].values[0]\n", - " cell_type_dic[cell_type] = cell_type_dic[cell_type] + 1\n", - " \n", - " return cell_type_dic\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", - " 117 118 119 11 120 121 122 123 125 126 127 128 129 12 130 131 132 133\n", - " 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 148 149 14\n", - " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 164 165 166 167\n", - " 168 169 16 170 172 173 175 176 177 178 17 180 181 182 183 184 185 187\n", - " 189 18 190 191 192 193 194 195 196 197 198 199 19 200 202 203 204 205\n", - " 206 207 208 209 20 210 211 212 213 214 215 216 218 219 220 221 222 223\n", - " 224 225 226 227 228 229 22 230 231 232 234 235 236 237 238 239 23 240\n", - " 241 242 243 244 245 246 247 248 249 24 250 251 252 253 254 255 256 257\n", - " 258 259 25 260 261 262 263 264 265 266 267 268 269 26 270 271 272 273\n", - " 274 275 276 277 278 279 27 280 281 282 283 284 285 286 287 288 289 28\n", - " 290 291 292 294 295 296 297 298 29 300 301 302 303 304 305 306 307 308\n", - " 309 30 310 311 312 313 314 315 317 318 319 31 321 323 324 325 326 327\n", - " 328 329 32 330 331 335 336 337 338 339 33 340 341 343 344 345 347 349\n", - " 34 350 351 352 353 354 355 356 357 358 359 35 360 361 365 366 367 368\n", - " 36 370 373 374 375 376 378 379 37 383 38 39 3 40 41 42 43 44\n", - " 45 46 47 48 49 4 50 51 52 53 54 55 56 57 58 59 60 61\n", - " 62 64 65 66 67 68 69 6 70 71 72 73 74 75 76 77 78 79\n", - " 7 80 81 82 83 84 85 87 88 89 8 90 91 92 93 94 95 96\n", - " 97 98 99 9 124 163 171 174 179 186 1 201 217 21 233 293 2 316\n", - " 320 332 334 342 348 362 363 369 372 377 382 63 86 188 299 322 333 346\n", - " 364 371 380 381 5]\n", - "fov: (861, 1005)\n", - "spot: (13, 1005)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "print(fov_ids_lst)\n", - "fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==1)]\n", - "print(\"fov:\", fov_data.shape)\n", - "spot_id_data = fov_data[(fov_data['spot_id']==1)]\n", - "print(\"spot:\", spot_id_data.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "100\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "101\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "102\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "103\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "104\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "105\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "106\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "107\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "108\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "109\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "110\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "111\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "112\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "113\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "114\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "116\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "117\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "118\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "119\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "120\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "121\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "122\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "123\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "125\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "126\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "127\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "128\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "129\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "130\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "131\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "132\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "133\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "134\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "135\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "136\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "137\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "138\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "139\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "140\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "141\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "142\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "143\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "144\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "145\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "146\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "147\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "148\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "149\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "14\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "150\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "152\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "153\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "154\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "155\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "156\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "157\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "158\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "159\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "15\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "160\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "161\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "162\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "164\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "165\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "166\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "167\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "168\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "169\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "16\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "170\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "172\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "173\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "175\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "176\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "177\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "178\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "17\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "180\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "181\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "182\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "183\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "184\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "185\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "187\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "189\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "190\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "191\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "192\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "193\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "194\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "195\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "196\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "197\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "198\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "199\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "202\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "203\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "204\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "205\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "206\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "207\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "208\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "209\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "210\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "211\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "212\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "213\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "214\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "215\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "216\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "218\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "219\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "220\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "221\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "222\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "223\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "224\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "225\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "226\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "227\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "228\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "229\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "22\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "230\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "231\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "232\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "234\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "235\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "236\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "237\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "238\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "239\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "23\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "240\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "241\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "242\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "243\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "244\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "245\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "246\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "247\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "248\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "249\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "24\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "250\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "251\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "252\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "253\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "254\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "255\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "256\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "257\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "258\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "259\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "25\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "260\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "261\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "262\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "263\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "264\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "265\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "266\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "267\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "268\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "269\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "26\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "270\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "271\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "272\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "273\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "274\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "275\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "276\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "277\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "278\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "279\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "27\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "280\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "281\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "282\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "283\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "284\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "285\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "286\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "287\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "288\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "289\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "28\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "290\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "291\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "292\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "294\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "295\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "296\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "297\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "298\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "29\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "300\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "301\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "302\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "303\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "304\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "305\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "306\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "307\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "308\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "309\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "30\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "310\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "311\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "312\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "313\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "314\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "315\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "317\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "318\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "319\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "31\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "321\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "323\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "324\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "325\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "326\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "327\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "328\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "329\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "32\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "330\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "331\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "335\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "336\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "337\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "338\n", - "339\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "33\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "340\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "341\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "343\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "344\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "345\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "347\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "349\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "34\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "350\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "351\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "352\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "353\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "354\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "355\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "356\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "357\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "358\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "359\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "35\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "360\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "361\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "365\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "366\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "367\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "368\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "36\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "370\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "373\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "374\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "375\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "376\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "378\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "379\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "37\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "383\n", - "38\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "39\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "40\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "41\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "42\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "43\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "44\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "45\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "46\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "47\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "48\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "49\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "50\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "51\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "52\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "53\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "54\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "55\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "56\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "57\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "58\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "64\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "65\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "66\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "67\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "68\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "6\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "70\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "71\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "72\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "73\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "74\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "75\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "76\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "77\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "78\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "79\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "80\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "81\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "82\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "83\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "84\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "85\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "87\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "88\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "89\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "8\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "90\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "91\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "92\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "93\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "94\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "95\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "96\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "97\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "98\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "99\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "124\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "163\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "171\n", - "174\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "179\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "186\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "201\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "217\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "21\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "233\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "293\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "316\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "320\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "332\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "334\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "342\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "348\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "362\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "363\n", - "369\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "372\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "377\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "382\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "63\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "86\n", - "188\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "299\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "322\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "333\n", - "346\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "364\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "371\n", - "380\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "381\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_31546/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", - " print(fov_id)\n", - " for spot_id in spot_id_lst:\n", - " sample_dic = {}\n", - " for i in column_name_lst:\n", - " sample_dic[i] = 0\n", - " \n", - " spot_id_data = fov_data[(fov_data['spot_id']==spot_id)]\n", - " \n", - " sample_dic = get_spot_cell_type_dic(spot_id_data, sample_dic)\n", - " \n", - " sample_dic[\"fov\"] = fov_id\n", - " sample_dic[\"spot_id\"] = spot_id\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "\n", - "\n", - "\n", - "\n", - "# cell id not found in groud truth!!! xxx cells not found\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAntibody.secreting.B.cellsCD3+.alpha.beta.T.cellsCentral.venous.LSECsCholangiocytesErthyroid.cellsHepInflammatory.macrophagesMature.B.cellsNK.like.cellsNon.inflammatory.macrophagesNotDetPeriportal.LSECsPortal.endothelial.cellsStellate.cellsgamma.delta.T.cells.1tumor_1tumor_2
010010301000100010009842
110020100006113020003298
210030010002001020109433
310040500002100000505875
410050101002101013105464
............................................................
34425501401001851000113050
34435602701001720002011100
3444570150100159430207011
34455801210001751301012030
344659024100016401001071310
\n", - "

3447 rows × 19 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id Antibody.secreting.B.cells CD3+.alpha.beta.T.cells \\\n", - "0 100 1 0 3 \n", - "1 100 2 0 1 \n", - "2 100 3 0 0 \n", - "3 100 4 0 5 \n", - "4 100 5 0 1 \n", - "... ... ... ... ... \n", - "3442 5 5 0 14 \n", - "3443 5 6 0 27 \n", - "3444 5 7 0 15 \n", - "3445 5 8 0 12 \n", - "3446 5 9 0 24 \n", - "\n", - " Central.venous.LSECs Cholangiocytes Erthyroid.cells Hep \\\n", - "0 0 1 0 0 \n", - "1 0 0 0 0 \n", - "2 1 0 0 0 \n", - "3 0 0 0 0 \n", - "4 0 1 0 0 \n", - "... ... ... ... .. \n", - "3442 0 1 0 0 \n", - "3443 0 1 0 0 \n", - "3444 0 1 0 0 \n", - "3445 1 0 0 0 \n", - "3446 1 0 0 0 \n", - "\n", - " Inflammatory.macrophages Mature.B.cells NK.like.cells \\\n", - "0 0 1 0 \n", - "1 6 1 1 \n", - "2 2 0 0 \n", - "3 2 1 0 \n", - "4 2 1 0 \n", - "... ... ... ... \n", - "3442 18 5 1 \n", - "3443 17 2 0 \n", - "3444 15 9 4 \n", - "3445 17 5 1 \n", - "3446 16 4 0 \n", - "\n", - " Non.inflammatory.macrophages NotDet Periportal.LSECs \\\n", - "0 0 0 1 \n", - "1 3 0 2 \n", - "2 1 0 2 \n", - "3 0 0 0 \n", - "4 1 0 1 \n", - "... ... ... ... \n", - "3442 0 0 0 \n", - "3443 0 0 2 \n", - "3444 3 0 2 \n", - "3445 3 0 1 \n", - "3446 10 0 1 \n", - "\n", - " Portal.endothelial.cells Stellate.cells gamma.delta.T.cells.1 tumor_1 \\\n", - "0 0 0 0 98 \n", - "1 0 0 0 32 \n", - "2 0 1 0 94 \n", - "3 0 5 0 58 \n", - "4 3 1 0 54 \n", - "... ... ... ... ... \n", - "3442 1 13 0 5 \n", - "3443 0 11 1 0 \n", - "3444 0 7 0 1 \n", - "3445 0 12 0 3 \n", - "3446 0 7 1 31 \n", - "\n", - " tumor_2 \n", - "0 42 \n", - "1 98 \n", - "2 33 \n", - "3 75 \n", - "4 64 \n", - "... ... \n", - "3442 0 \n", - "3443 0 \n", - "3444 1 \n", - "3445 0 \n", - "3446 0 \n", - "\n", - "[3447 rows x 19 columns]" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ground_truth_table" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3447, 19)" - ] - }, - "execution_count": 76, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ground_truth_table.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "# lung13_ground_truth = pd.read_csv('../Lung13/Lung13-Flat_files_and_images/new/ground_truth.csv')\n", - "# lung13_ground_truth" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "# coumn_names = lung13_ground_truth.columns.values.tolist()[3:]\n", - "# coumn_names" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "# first_n_column = ground_truth_table.iloc[: , :2]\n", - "# first_n_column" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [], - "source": [ - "ground_truth_table.to_csv('../cancer/new/ground_truth.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Generate spot x, y coordiates" - ] - }, - { - "cell_type": "code", - "execution_count": 212, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, x, y]\n", - "Index: []" - ] - }, - "execution_count": 212, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def get_spot_x_y_range(x_global_px, y_global_px, fov_id, fov_spot_coordinates):\n", - " x_l = x_global_px\n", - " y_l = y_global_px\n", - " \n", - " # ---------\n", - " spot_id = 1\n", - " x = x_l \n", - " y = y_l\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 2\n", - " x = x_l + 1\n", - " y = y_l \n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 3\n", - " x = x_l + 2\n", - " y = y_l \n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " # ---------\n", - " spot_id = 4\n", - " x = x_l \n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - "\n", - " spot_id = 5\n", - " x = x_l + 1\n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 6\n", - " x = x_l + 2\n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " # ---------\n", - " spot_id = 7\n", - " x = x_l\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " spot_id = 8\n", - " x = x_l + 1\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " spot_id = 9\n", - " x = x_l + 2\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " \n", - " \n", - " fov_spot_coordinates['x'] = fov_spot_coordinates['x'] \n", - " fov_spot_coordinates['y'] = fov_spot_coordinates['y'] \n", - " \n", - "# fov_spot_coordinates['x'] = fov_spot_coordinates['x'] * 0.18 *1e-4\n", - "# fov_spot_coordinates['y'] = fov_spot_coordinates['y'] * 0.18 *1e-4\n", - " \n", - " \n", - " return fov_spot_coordinates\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov: 1 (1, 3)\n", - "fov: 2 (1, 4)\n", - "fov: 3 (1, 5)\n", - "fov: 4 (1, 6)\n", - "fov: 5 (1, 7)\n", - "fov: 6 (1, 8)\n", - "fov: 7 (1, 9)\n", - "fov: 8 (1, 10)\n", - "fov: 9 (1, 11)\n", - "fov: 10 (1, 12)\n", - "fov: 11 (1, 13)\n", - "fov: 12 (1, 14)\n", - "fov: 13 (1, 15)\n", - "fov: 14 (1, 16)\n", - "fov: 15 (1, 17)\n", - "fov: 16 (2, 3)\n", - "fov: 17 (2, 4)\n", - "fov: 18 (2, 5)\n", - "fov: 19 (2, 6)\n", - "fov: 20 (2, 7)\n", - "fov: 21 (2, 8)\n", - "fov: 22 (2, 9)\n", - "fov: 23 (2, 10)\n", - "fov: 24 (2, 11)\n", - "fov: 25 (2, 12)\n", - "fov: 26 (2, 13)\n", - "fov: 27 (2, 14)\n", - "fov: 28 (2, 15)\n", - "fov: 29 (2, 16)\n", - "fov: 30 (2, 17)\n", - "fov: 31 (3, 2)\n", - "fov: 32 (3, 3)\n", - "fov: 33 (3, 4)\n", - "fov: 34 (3, 5)\n", - "fov: 35 (3, 6)\n", - "fov: 36 (3, 7)\n", - "fov: 37 (3, 8)\n", - "fov: 38 (3, 9)\n", - "fov: 39 (3, 10)\n", - "fov: 40 (3, 11)\n", - "fov: 41 (3, 12)\n", - "fov: 42 (3, 13)\n", - "fov: 43 (3, 14)\n", - "fov: 44 (3, 15)\n", - "fov: 45 (3, 16)\n", - "fov: 46 (3, 17)\n", - "fov: 47 (3, 18)\n", - "fov: 48 (4, 1)\n", - "fov: 49 (4, 2)\n", - "fov: 50 (4, 3)\n", - "fov: 51 (4, 4)\n", - "fov: 52 (4, 5)\n", - "fov: 53 (4, 6)\n", - "fov: 54 (4, 7)\n", - "fov: 55 (4, 8)\n", - "fov: 56 (4, 9)\n", - "fov: 57 (4, 10)\n", - "fov: 58 (4, 11)\n", - "fov: 59 (4, 12)\n", - "fov: 60 (4, 13)\n", - "fov: 61 (4, 14)\n", - "fov: 62 (4, 15)\n", - "fov: 63 (4, 16)\n", - "fov: 64 (4, 17)\n", - "fov: 65 (4, 18)\n", - "fov: 66 (4, 19)\n", - "fov: 67 (5, 1)\n", - "fov: 68 (5, 2)\n", - "fov: 69 (5, 3)\n", - "fov: 70 (5, 4)\n", - "fov: 71 (5, 5)\n", - "fov: 72 (5, 6)\n", - "fov: 73 (5, 7)\n", - "fov: 74 (5, 8)\n", - "fov: 75 (5, 9)\n", - "fov: 76 (5, 10)\n", - "fov: 77 (5, 11)\n", - "fov: 78 (5, 12)\n", - "fov: 79 (5, 13)\n", - "fov: 80 (5, 14)\n", - "fov: 81 (5, 15)\n", - "fov: 82 (5, 16)\n", - "fov: 83 (5, 17)\n", - "fov: 84 (5, 18)\n", - "fov: 85 (5, 19)\n", - "fov: 86 (5, 20)\n", - "fov: 87 (6, 1)\n", - "fov: 88 (6, 2)\n", - "fov: 89 (6, 3)\n", - "fov: 90 (6, 4)\n", - "fov: 91 (6, 5)\n", - "fov: 92 (6, 6)\n", - "fov: 93 (6, 7)\n", - "fov: 94 (6, 8)\n", - "fov: 95 (6, 9)\n", - "fov: 96 (6, 10)\n", - "fov: 97 (6, 11)\n", - "fov: 98 (6, 12)\n", - "fov: 99 (6, 13)\n", - "fov: 100 (6, 14)\n", - "fov: 101 (6, 15)\n", - "fov: 102 (6, 16)\n", - "fov: 103 (6, 17)\n", - "fov: 104 (6, 18)\n", - "fov: 105 (6, 19)\n", - "fov: 106 (6, 20)\n", - "fov: 107 (7, 1)\n", - "fov: 108 (7, 2)\n", - "fov: 109 (7, 3)\n", - "fov: 110 (7, 4)\n", - "fov: 111 (7, 5)\n", - "fov: 112 (7, 6)\n", - "fov: 113 (7, 7)\n", - "fov: 114 (7, 8)\n", - "fov: 115 (7, 9)\n", - "fov: 116 (7, 10)\n", - "fov: 117 (7, 11)\n", - "fov: 118 (7, 12)\n", - "fov: 119 (7, 13)\n", - "fov: 120 (7, 14)\n", - "fov: 121 (7, 15)\n", - "fov: 122 (7, 16)\n", - "fov: 123 (7, 17)\n", - "fov: 124 (7, 18)\n", - "fov: 125 (7, 19)\n", - "fov: 126 (7, 20)\n", - "fov: 127 (7, 21)\n", - "fov: 128 (8, 1)\n", - "fov: 129 (8, 2)\n", - "fov: 130 (8, 3)\n", - "fov: 131 (8, 4)\n", - "fov: 132 (8, 5)\n", - "fov: 133 (8, 6)\n", - "fov: 134 (8, 7)\n", - "fov: 135 (8, 8)\n", - "fov: 136 (8, 9)\n", - "fov: 137 (8, 10)\n", - "fov: 138 (8, 11)\n", - "fov: 139 (8, 12)\n", - "fov: 140 (8, 13)\n", - "fov: 141 (8, 14)\n", - "fov: 142 (8, 15)\n", - "fov: 143 (8, 16)\n", - "fov: 144 (8, 17)\n", - "fov: 145 (8, 18)\n", - "fov: 146 (8, 19)\n", - "fov: 147 (8, 20)\n", - "fov: 148 (8, 21)\n", - "fov: 149 (9, 1)\n", - "fov: 150 (9, 2)\n", - "fov: 151 (9, 3)\n", - "fov: 152 (9, 4)\n", - "fov: 153 (9, 5)\n", - "fov: 154 (9, 6)\n", - "fov: 155 (9, 7)\n", - "fov: 156 (9, 8)\n", - "fov: 157 (9, 9)\n", - "fov: 158 (9, 10)\n", - "fov: 159 (9, 11)\n", - "fov: 160 (9, 12)\n", - "fov: 161 (9, 13)\n", - "fov: 162 (9, 14)\n", - "fov: 163 (9, 15)\n", - "fov: 164 (9, 16)\n", - "fov: 165 (9, 17)\n", - "fov: 166 (9, 18)\n", - "fov: 167 (9, 19)\n", - "fov: 168 (9, 20)\n", - "fov: 169 (9, 21)\n", - "fov: 170 (9, 22)\n", - "fov: 171 (9, 23)\n", - "fov: 172 (10, 1)\n", - "fov: 173 (10, 2)\n", - "fov: 174 (10, 3)\n", - "fov: 175 (10, 4)\n", - "fov: 176 (10, 5)\n", - "fov: 177 (10, 6)\n", - "fov: 178 (10, 7)\n", - "fov: 179 (10, 8)\n", - "fov: 180 (10, 9)\n", - "fov: 181 (10, 10)\n", - "fov: 182 (10, 11)\n", - "fov: 183 (10, 12)\n", - "fov: 184 (10, 13)\n", - "fov: 185 (10, 14)\n", - "fov: 186 (10, 15)\n", - "fov: 187 (10, 16)\n", - "fov: 188 (10, 17)\n", - "fov: 189 (10, 18)\n", - "fov: 190 (10, 19)\n", - "fov: 191 (10, 20)\n", - "fov: 192 (10, 21)\n", - "fov: 193 (10, 22)\n", - "fov: 194 (10, 23)\n", - "fov: 195 (11, 1)\n", - "fov: 196 (11, 2)\n", - "fov: 197 (11, 3)\n", - "fov: 198 (11, 4)\n", - "fov: 199 (11, 5)\n", - "fov: 200 (11, 6)\n", - "fov: 201 (11, 7)\n", - "fov: 202 (11, 8)\n", - "fov: 203 (11, 9)\n", - "fov: 204 (11, 10)\n", - "fov: 205 (11, 11)\n", - "fov: 206 (11, 12)\n", - "fov: 207 (11, 13)\n", - "fov: 208 (11, 14)\n", - "fov: 209 (11, 15)\n", - "fov: 210 (11, 16)\n", - "fov: 211 (11, 17)\n", - "fov: 212 (11, 18)\n", - "fov: 213 (11, 19)\n", - "fov: 214 (11, 20)\n", - "fov: 215 (11, 21)\n", - "fov: 216 (11, 22)\n", - "fov: 217 (11, 23)\n", - "fov: 218 (12, 1)\n", - "fov: 219 (12, 2)\n", - "fov: 220 (12, 3)\n", - "fov: 221 (12, 4)\n", - "fov: 222 (12, 5)\n", - "fov: 223 (12, 6)\n", - "fov: 224 (12, 7)\n", - "fov: 225 (12, 8)\n", - "fov: 226 (12, 9)\n", - "fov: 227 (12, 10)\n", - "fov: 228 (12, 11)\n", - "fov: 229 (12, 12)\n", - "fov: 230 (12, 13)\n", - "fov: 231 (12, 14)\n", - "fov: 232 (12, 15)\n", - "fov: 233 (12, 16)\n", - "fov: 234 (12, 17)\n", - "fov: 235 (12, 18)\n", - "fov: 236 (12, 19)\n", - "fov: 237 (12, 20)\n", - "fov: 238 (12, 21)\n", - "fov: 239 (12, 22)\n", - "fov: 240 (12, 23)\n", - "fov: 241 (13, 3)\n", - "fov: 242 (13, 4)\n", - "fov: 243 (13, 5)\n", - "fov: 244 (13, 6)\n", - "fov: 245 (13, 7)\n", - "fov: 246 (13, 8)\n", - "fov: 247 (13, 9)\n", - "fov: 248 (13, 10)\n", - "fov: 249 (13, 11)\n", - "fov: 250 (13, 12)\n", - "fov: 251 (13, 13)\n", - "fov: 252 (13, 14)\n", - "fov: 253 (13, 15)\n", - "fov: 254 (13, 16)\n", - "fov: 255 (13, 17)\n", - "fov: 256 (13, 18)\n", - "fov: 257 (13, 19)\n", - "fov: 258 (13, 20)\n", - "fov: 259 (13, 21)\n", - "fov: 260 (13, 22)\n", - "fov: 261 (13, 23)\n", - "fov: 262 (14, 5)\n", - "fov: 263 (14, 6)\n", - "fov: 264 (14, 7)\n", - "fov: 265 (14, 8)\n", - "fov: 266 (14, 9)\n", - "fov: 267 (14, 10)\n", - "fov: 268 (14, 11)\n", - "fov: 269 (14, 12)\n", - "fov: 270 (14, 13)\n", - "fov: 271 (14, 14)\n", - "fov: 272 (14, 15)\n", - "fov: 273 (14, 16)\n", - "fov: 274 (14, 17)\n", - "fov: 275 (14, 18)\n", - "fov: 276 (14, 19)\n", - "fov: 277 (14, 20)\n", - "fov: 278 (14, 21)\n", - "fov: 279 (14, 22)\n", - "fov: 280 (14, 23)\n", - "fov: 281 (15, 6)\n", - "fov: 282 (15, 7)\n", - "fov: 283 (15, 8)\n", - "fov: 284 (15, 9)\n", - "fov: 285 (15, 10)\n", - "fov: 286 (15, 11)\n", - "fov: 287 (15, 12)\n", - "fov: 288 (15, 13)\n", - "fov: 289 (15, 14)\n", - "fov: 290 (15, 15)\n", - "fov: 291 (15, 16)\n", - "fov: 292 (15, 17)\n", - "fov: 293 (15, 18)\n", - "fov: 294 (15, 19)\n", - "fov: 295 (15, 20)\n", - "fov: 296 (15, 21)\n", - "fov: 297 (15, 22)\n", - "fov: 298 (15, 23)\n", - "fov: 299 (16, 6)\n", - "fov: 300 (16, 7)\n", - "fov: 301 (16, 8)\n", - "fov: 302 (16, 9)\n", - "fov: 303 (16, 10)\n", - "fov: 304 (16, 11)\n", - "fov: 305 (16, 12)\n", - "fov: 306 (16, 13)\n", - "fov: 307 (16, 14)\n", - "fov: 308 (16, 15)\n", - "fov: 309 (16, 16)\n", - "fov: 310 (16, 17)\n", - "fov: 311 (16, 18)\n", - "fov: 312 (16, 19)\n", - "fov: 313 (16, 20)\n", - "fov: 314 (16, 21)\n", - "fov: 315 (16, 22)\n", - "fov: 316 (17, 6)\n", - "fov: 317 (17, 7)\n", - "fov: 318 (17, 8)\n", - "fov: 319 (17, 9)\n", - "fov: 320 (17, 10)\n", - "fov: 321 (17, 11)\n", - "fov: 322 (17, 12)\n", - "fov: 323 (17, 13)\n", - "fov: 324 (17, 14)\n", - "fov: 325 (17, 15)\n", - "fov: 326 (17, 16)\n", - "fov: 327 (17, 17)\n", - "fov: 328 (17, 18)\n", - "fov: 329 (17, 19)\n", - "fov: 330 (17, 20)\n", - "fov: 331 (17, 21)\n", - "fov: 332 (17, 22)\n", - "fov: 333 (18, 8)\n", - "fov: 334 (18, 9)\n", - "fov: 335 (18, 10)\n", - "fov: 336 (18, 11)\n", - "fov: 337 (18, 12)\n", - "fov: 338 (18, 13)\n", - "fov: 339 (18, 14)\n", - "fov: 340 (18, 15)\n", - "fov: 341 (18, 16)\n", - "fov: 342 (18, 17)\n", - "fov: 343 (18, 18)\n", - "fov: 344 (18, 19)\n", - "fov: 345 (18, 20)\n", - "fov: 346 (19, 12)\n", - "fov: 347 (19, 13)\n", - "fov: 348 (19, 14)\n", - "fov: 349 (19, 15)\n", - "fov: 350 (19, 16)\n", - "fov: 351 (19, 17)\n", - "fov: 352 (19, 18)\n", - "fov: 353 (19, 19)\n", - "fov: 354 (19, 20)\n", - "fov: 355 (20, 13)\n", - "fov: 356 (20, 14)\n", - "fov: 357 (20, 15)\n", - "fov: 358 (20, 16)\n", - "fov: 359 (20, 17)\n", - "fov: 360 (20, 18)\n", - "fov: 361 (20, 19)\n", - "fov: 362 (20, 20)\n", - "fov: 363 (21, 12)\n", - "fov: 364 (21, 13)\n", - "fov: 365 (21, 14)\n", - "fov: 366 (21, 15)\n", - "fov: 367 (21, 16)\n", - "fov: 368 (21, 17)\n", - "fov: 369 (21, 18)\n", - "fov: 370 (21, 19)\n", - "fov: 371 (22, 12)\n", - "fov: 372 (22, 13)\n", - "fov: 373 (22, 14)\n", - "fov: 374 (22, 15)\n", - "fov: 375 (22, 16)\n", - "fov: 376 (22, 17)\n", - "fov: 377 (23, 13)\n", - "fov: 378 (23, 14)\n", - "fov: 379 (23, 15)\n", - "fov: 380 (23, 16)\n", - "fov: 381 (24, 13)\n", - "fov: 382 (24, 14)\n", - "fov: 383 (24, 15)\n" - ] - } - ], - "source": [ - "fov_dic = {}\n", - "\n", - "fov = 1\n", - "for row in range(1, 2):\n", - " for col in range(3, 18):\n", - "# print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - "\n", - "for row in range(2, 3):\n", - " for col in range(3, 18):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - "\n", - "for row in range(3, 4):\n", - " for col in range(2, 19):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - " \n", - "for row in range(4, 5):\n", - " for col in range(1, 20):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(5, 6):\n", - " for col in range(1, 21):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(6, 7):\n", - " for col in range(1, 21):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - " \n", - "for row in range(7, 8):\n", - " for col in range(1, 22):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(8, 9):\n", - " for col in range(1, 22):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "\n", - "for row in range(9, 13):\n", - " for col in range(1, 24):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(13, 14):\n", - " for col in range(3, 24):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "\n", - "for row in range(14, 15):\n", - " for col in range(5, 24):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(15, 16):\n", - " for col in range(6, 24):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(16, 17):\n", - " for col in range(6, 23):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(17, 18):\n", - " for col in range(6, 23):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(18, 19):\n", - " for col in range(8, 21):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "for row in range(19, 20):\n", - " for col in range(12, 21):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(20, 21):\n", - " for col in range(13, 21):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(21, 22):\n", - " for col in range(12, 20):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - " \n", - "for row in range(22, 23):\n", - " for col in range(12, 18):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - " \n", - "for row in range(23, 24):\n", - " for col in range(13, 17):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - " \n", - "for row in range(24, 25):\n", - " for col in range(13, 16):\n", - " print(\"fov:\", fov, (row, col))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1 \n", - "\n", - "\n", - "# fov_dic[302] = (16, 3)\n", - "# fov_dic[303] = (16, 5)\n", - " \n" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "({1: (4, 10),\n", - " 2: (4, 13),\n", - " 3: (4, 16),\n", - " 4: (4, 19),\n", - " 5: (4, 22),\n", - " 6: (4, 25),\n", - " 7: (4, 28),\n", - " 8: (4, 31),\n", - " 9: (4, 34),\n", - " 10: (4, 37),\n", - " 11: (4, 40),\n", - " 12: (4, 43),\n", - " 13: (4, 46),\n", - " 14: (4, 49),\n", - " 15: (4, 52),\n", - " 16: (7, 10),\n", - " 17: (7, 13),\n", - " 18: (7, 16),\n", - " 19: (7, 19),\n", - " 20: (7, 22),\n", - " 21: (7, 25),\n", - " 22: (7, 28),\n", - " 23: (7, 31),\n", - " 24: (7, 34),\n", - " 25: (7, 37),\n", - " 26: (7, 40),\n", - " 27: (7, 43),\n", - " 28: (7, 46),\n", - " 29: (7, 49),\n", - " 30: (7, 52),\n", - " 31: (10, 7),\n", - " 32: (10, 10),\n", - " 33: (10, 13),\n", - " 34: (10, 16),\n", - " 35: (10, 19),\n", - " 36: (10, 22),\n", - " 37: (10, 25),\n", - " 38: (10, 28),\n", - " 39: (10, 31),\n", - " 40: (10, 34),\n", - " 41: (10, 37),\n", - " 42: (10, 40),\n", - " 43: (10, 43),\n", - " 44: (10, 46),\n", - " 45: (10, 49),\n", - " 46: (10, 52),\n", - " 47: (10, 55),\n", - " 48: (13, 4),\n", - " 49: (13, 7),\n", - " 50: (13, 10),\n", - " 51: (13, 13),\n", - " 52: (13, 16),\n", - " 53: (13, 19),\n", - " 54: (13, 22),\n", - " 55: (13, 25),\n", - " 56: (13, 28),\n", - " 57: (13, 31),\n", - " 58: (13, 34),\n", - " 59: (13, 37),\n", - " 60: (13, 40),\n", - " 61: (13, 43),\n", - " 62: (13, 46),\n", - " 63: (13, 49),\n", - " 64: (13, 52),\n", - " 65: (13, 55),\n", - " 66: (13, 58),\n", - " 67: (16, 4),\n", - " 68: (16, 7),\n", - " 69: (16, 10),\n", - " 70: (16, 13),\n", - " 71: (16, 16),\n", - " 72: (16, 19),\n", - " 73: (16, 22),\n", - " 74: (16, 25),\n", - " 75: (16, 28),\n", - " 76: (16, 31),\n", - " 77: (16, 34),\n", - " 78: (16, 37),\n", - " 79: (16, 40),\n", - " 80: (16, 43),\n", - " 81: (16, 46),\n", - " 82: (16, 49),\n", - " 83: (16, 52),\n", - " 84: (16, 55),\n", - " 85: (16, 58),\n", - " 86: (16, 61),\n", - " 87: (19, 4),\n", - " 88: (19, 7),\n", - " 89: (19, 10),\n", - " 90: (19, 13),\n", - " 91: (19, 16),\n", - " 92: (19, 19),\n", - " 93: (19, 22),\n", - " 94: (19, 25),\n", - " 95: (19, 28),\n", - " 96: (19, 31),\n", - " 97: (19, 34),\n", - " 98: (19, 37),\n", - " 99: (19, 40),\n", - " 100: (19, 43),\n", - " 101: (19, 46),\n", - " 102: (19, 49),\n", - " 103: (19, 52),\n", - " 104: (19, 55),\n", - " 105: (19, 58),\n", - " 106: (19, 61),\n", - " 107: (22, 4),\n", - " 108: (22, 7),\n", - " 109: (22, 10),\n", - " 110: (22, 13),\n", - " 111: (22, 16),\n", - " 112: (22, 19),\n", - " 113: (22, 22),\n", - " 114: (22, 25),\n", - " 115: (22, 28),\n", - " 116: (22, 31),\n", - " 117: (22, 34),\n", - " 118: (22, 37),\n", - " 119: (22, 40),\n", - " 120: (22, 43),\n", - " 121: (22, 46),\n", - " 122: (22, 49),\n", - " 123: (22, 52),\n", - " 124: (22, 55),\n", - " 125: (22, 58),\n", - " 126: (22, 61),\n", - " 127: (22, 64),\n", - " 128: (25, 4),\n", - " 129: (25, 7),\n", - " 130: (25, 10),\n", - " 131: (25, 13),\n", - " 132: (25, 16),\n", - " 133: (25, 19),\n", - " 134: (25, 22),\n", - " 135: (25, 25),\n", - " 136: (25, 28),\n", - " 137: (25, 31),\n", - " 138: (25, 34),\n", - " 139: (25, 37),\n", - " 140: (25, 40),\n", - " 141: (25, 43),\n", - " 142: (25, 46),\n", - " 143: (25, 49),\n", - " 144: (25, 52),\n", - " 145: (25, 55),\n", - " 146: (25, 58),\n", - " 147: (25, 61),\n", - " 148: (25, 64),\n", - " 149: (28, 4),\n", - " 150: (28, 7),\n", - " 151: (28, 10),\n", - " 152: (28, 13),\n", - " 153: (28, 16),\n", - " 154: (28, 19),\n", - " 155: (28, 22),\n", - " 156: (28, 25),\n", - " 157: (28, 28),\n", - " 158: (28, 31),\n", - " 159: (28, 34),\n", - " 160: (28, 37),\n", - " 161: (28, 40),\n", - " 162: (28, 43),\n", - " 163: (28, 46),\n", - " 164: (28, 49),\n", - " 165: (28, 52),\n", - " 166: (28, 55),\n", - " 167: (28, 58),\n", - " 168: (28, 61),\n", - " 169: (28, 64),\n", - " 170: (28, 67),\n", - " 171: (28, 70),\n", - " 172: (31, 4),\n", - " 173: (31, 7),\n", - " 174: (31, 10),\n", - " 175: (31, 13),\n", - " 176: (31, 16),\n", - " 177: (31, 19),\n", - " 178: (31, 22),\n", - " 179: (31, 25),\n", - " 180: (31, 28),\n", - " 181: (31, 31),\n", - " 182: (31, 34),\n", - " 183: (31, 37),\n", - " 184: (31, 40),\n", - " 185: (31, 43),\n", - " 186: (31, 46),\n", - " 187: (31, 49),\n", - " 188: (31, 52),\n", - " 189: (31, 55),\n", - " 190: (31, 58),\n", - " 191: (31, 61),\n", - " 192: (31, 64),\n", - " 193: (31, 67),\n", - " 194: (31, 70),\n", - " 195: (34, 4),\n", - " 196: (34, 7),\n", - " 197: (34, 10),\n", - " 198: (34, 13),\n", - " 199: (34, 16),\n", - " 200: (34, 19),\n", - " 201: (34, 22),\n", - " 202: (34, 25),\n", - " 203: (34, 28),\n", - " 204: (34, 31),\n", - " 205: (34, 34),\n", - " 206: (34, 37),\n", - " 207: (34, 40),\n", - " 208: (34, 43),\n", - " 209: (34, 46),\n", - " 210: (34, 49),\n", - " 211: (34, 52),\n", - " 212: (34, 55),\n", - " 213: (34, 58),\n", - " 214: (34, 61),\n", - " 215: (34, 64),\n", - " 216: (34, 67),\n", - " 217: (34, 70),\n", - " 218: (37, 4),\n", - " 219: (37, 7),\n", - " 220: (37, 10),\n", - " 221: (37, 13),\n", - " 222: (37, 16),\n", - " 223: (37, 19),\n", - " 224: (37, 22),\n", - " 225: (37, 25),\n", - " 226: (37, 28),\n", - " 227: (37, 31),\n", - " 228: (37, 34),\n", - " 229: (37, 37),\n", - " 230: (37, 40),\n", - " 231: (37, 43),\n", - " 232: (37, 46),\n", - " 233: (37, 49),\n", - " 234: (37, 52),\n", - " 235: (37, 55),\n", - " 236: (37, 58),\n", - " 237: (37, 61),\n", - " 238: (37, 64),\n", - " 239: (37, 67),\n", - " 240: (37, 70),\n", - " 241: (40, 10),\n", - " 242: (40, 13),\n", - " 243: (40, 16),\n", - " 244: (40, 19),\n", - " 245: (40, 22),\n", - " 246: (40, 25),\n", - " 247: (40, 28),\n", - " 248: (40, 31),\n", - " 249: (40, 34),\n", - " 250: (40, 37),\n", - " 251: (40, 40),\n", - " 252: (40, 43),\n", - " 253: (40, 46),\n", - " 254: (40, 49),\n", - " 255: (40, 52),\n", - " 256: (40, 55),\n", - " 257: (40, 58),\n", - " 258: (40, 61),\n", - " 259: (40, 64),\n", - " 260: (40, 67),\n", - " 261: (40, 70),\n", - " 262: (43, 16),\n", - " 263: (43, 19),\n", - " 264: (43, 22),\n", - " 265: (43, 25),\n", - " 266: (43, 28),\n", - " 267: (43, 31),\n", - " 268: (43, 34),\n", - " 269: (43, 37),\n", - " 270: (43, 40),\n", - " 271: (43, 43),\n", - " 272: (43, 46),\n", - " 273: (43, 49),\n", - " 274: (43, 52),\n", - " 275: (43, 55),\n", - " 276: (43, 58),\n", - " 277: (43, 61),\n", - " 278: (43, 64),\n", - " 279: (43, 67),\n", - " 280: (43, 70),\n", - " 281: (46, 19),\n", - " 282: (46, 22),\n", - " 283: (46, 25),\n", - " 284: (46, 28),\n", - " 285: (46, 31),\n", - " 286: (46, 34),\n", - " 287: (46, 37),\n", - " 288: (46, 40),\n", - " 289: (46, 43),\n", - " 290: (46, 46),\n", - " 291: (46, 49),\n", - " 292: (46, 52),\n", - " 293: (46, 55),\n", - " 294: (46, 58),\n", - " 295: (46, 61),\n", - " 296: (46, 64),\n", - " 297: (46, 67),\n", - " 298: (46, 70),\n", - " 299: (49, 19),\n", - " 300: (49, 22),\n", - " 301: (49, 25),\n", - " 302: (49, 28),\n", - " 303: (49, 31),\n", - " 304: (49, 34),\n", - " 305: (49, 37),\n", - " 306: (49, 40),\n", - " 307: (49, 43),\n", - " 308: (49, 46),\n", - " 309: (49, 49),\n", - " 310: (49, 52),\n", - " 311: (49, 55),\n", - " 312: (49, 58),\n", - " 313: (49, 61),\n", - " 314: (49, 64),\n", - " 315: (49, 67),\n", - " 316: (52, 19),\n", - " 317: (52, 22),\n", - " 318: (52, 25),\n", - " 319: (52, 28),\n", - " 320: (52, 31),\n", - " 321: (52, 34),\n", - " 322: (52, 37),\n", - " 323: (52, 40),\n", - " 324: (52, 43),\n", - " 325: (52, 46),\n", - " 326: (52, 49),\n", - " 327: (52, 52),\n", - " 328: (52, 55),\n", - " 329: (52, 58),\n", - " 330: (52, 61),\n", - " 331: (52, 64),\n", - " 332: (52, 67),\n", - " 333: (55, 25),\n", - " 334: (55, 28),\n", - " 335: (55, 31),\n", - " 336: (55, 34),\n", - " 337: (55, 37),\n", - " 338: (55, 40),\n", - " 339: (55, 43),\n", - " 340: (55, 46),\n", - " 341: (55, 49),\n", - " 342: (55, 52),\n", - " 343: (55, 55),\n", - " 344: (55, 58),\n", - " 345: (55, 61),\n", - " 346: (58, 37),\n", - " 347: (58, 40),\n", - " 348: (58, 43),\n", - " 349: (58, 46),\n", - " 350: (58, 49),\n", - " 351: (58, 52),\n", - " 352: (58, 55),\n", - " 353: (58, 58),\n", - " 354: (58, 61),\n", - " 355: (61, 40),\n", - " 356: (61, 43),\n", - " 357: (61, 46),\n", - " 358: (61, 49),\n", - " 359: (61, 52),\n", - " 360: (61, 55),\n", - " 361: (61, 58),\n", - " 362: (61, 61),\n", - " 363: (64, 37),\n", - " 364: (64, 40),\n", - " 365: (64, 43),\n", - " 366: (64, 46),\n", - " 367: (64, 49),\n", - " 368: (64, 52),\n", - " 369: (64, 55),\n", - " 370: (64, 58),\n", - " 371: (67, 37),\n", - " 372: (67, 40),\n", - " 373: (67, 43),\n", - " 374: (67, 46),\n", - " 375: (67, 49),\n", - " 376: (67, 52),\n", - " 377: (70, 40),\n", - " 378: (70, 43),\n", - " 379: (70, 46),\n", - " 380: (70, 49),\n", - " 381: (73, 40),\n", - " 382: (73, 43),\n", - " 383: (73, 46)},\n", - " 383)" - ] - }, - "execution_count": 122, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_dic, len(fov_dic.keys())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, x, y]\n", - "Index: []" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_coordinates = pd.DataFrame(columns = ['fov', 'spot_id', 'x', 'y'])\n", - "fov_spot_coordinates " - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1,\n", - " 2,\n", - " 3,\n", - " 4,\n", - " 5,\n", - " 6,\n", - " 7,\n", - " 8,\n", - " 9,\n", - " 10,\n", - " 11,\n", - " 12,\n", - " 13,\n", - " 14,\n", - " 15,\n", - " 16,\n", - " 17,\n", - " 18,\n", - " 19,\n", - " 20,\n", - " 21,\n", - " 22,\n", - " 23,\n", - " 24,\n", - " 25,\n", - " 26,\n", - " 27,\n", - " 28,\n", - " 29,\n", - " 30,\n", - " 31,\n", - " 32,\n", - " 33,\n", - " 34,\n", - " 35,\n", - " 36,\n", - " 37,\n", - " 38,\n", - " 39,\n", - " 40,\n", - " 41,\n", - " 42,\n", - " 43,\n", - " 44,\n", - " 45,\n", - " 46,\n", - " 47,\n", - " 48,\n", - " 49,\n", - " 50,\n", - " 51,\n", - " 52,\n", - " 53,\n", - " 54,\n", - " 55,\n", - " 56,\n", - " 57,\n", - " 58,\n", - " 59,\n", - " 60,\n", - " 61,\n", - " 62,\n", - " 63,\n", - " 64,\n", - " 65,\n", - " 66,\n", - " 67,\n", - " 68,\n", - " 69,\n", - " 70,\n", - " 71,\n", - " 72,\n", - " 73,\n", - " 74,\n", - " 75,\n", - " 76,\n", - " 77,\n", - " 78,\n", - " 79,\n", - " 80,\n", - " 81,\n", - " 82,\n", - " 83,\n", - " 84,\n", - " 85,\n", - " 86,\n", - " 87,\n", - " 88,\n", - " 89,\n", - " 90,\n", - " 91,\n", - " 92,\n", - " 93,\n", - " 94,\n", - " 95,\n", - " 96,\n", - " 97,\n", - " 98,\n", - " 99,\n", - " 100,\n", - " 101,\n", - " 102,\n", - " 103,\n", - " 104,\n", - " 105,\n", - " 106,\n", - " 107,\n", - " 108,\n", - " 109,\n", - " 110,\n", - " 111,\n", - " 112,\n", - " 113,\n", - " 114,\n", - " 115,\n", - " 116,\n", - " 117,\n", - " 118,\n", - " 119,\n", - " 120,\n", - " 121,\n", - " 122,\n", - " 123,\n", - " 124,\n", - " 125,\n", - " 126,\n", - " 127,\n", - " 128,\n", - " 129,\n", - " 130,\n", - " 131,\n", - " 132,\n", - " 133,\n", - " 134,\n", - " 135,\n", - " 136,\n", - " 137,\n", - " 138,\n", - " 139,\n", - " 140,\n", - " 141,\n", - " 142,\n", - " 143,\n", - " 144,\n", - " 145,\n", - " 146,\n", - " 147,\n", - " 148,\n", - " 149,\n", - " 150,\n", - " 151,\n", - " 152,\n", - " 153,\n", - " 154,\n", - " 155,\n", - " 156,\n", - " 157,\n", - " 158,\n", - " 159,\n", - " 160,\n", - " 161,\n", - " 162,\n", - " 163,\n", - " 164,\n", - " 165,\n", - " 166,\n", - " 167,\n", - " 168,\n", - " 169,\n", - " 170,\n", - " 171,\n", - " 172,\n", - " 173,\n", - " 174,\n", - " 175,\n", - " 176,\n", - " 177,\n", - " 178,\n", - " 179,\n", - " 180,\n", - " 181,\n", - " 182,\n", - " 183,\n", - " 184,\n", - " 185,\n", - " 186,\n", - " 187,\n", - " 188,\n", - " 189,\n", - " 190,\n", - " 191,\n", - " 192,\n", - " 193,\n", - " 194,\n", - " 195,\n", - " 196,\n", - " 197,\n", - " 198,\n", - " 199,\n", - " 200,\n", - " 201,\n", - " 202,\n", - " 203,\n", - " 204,\n", - " 205,\n", - " 206,\n", - " 207,\n", - " 208,\n", - " 209,\n", - " 210,\n", - " 211,\n", - " 212,\n", - " 213,\n", - " 214,\n", - " 215,\n", - " 216,\n", - " 217,\n", - " 218,\n", - " 219,\n", - " 220,\n", - " 221,\n", - " 222,\n", - " 223,\n", - " 224,\n", - " 225,\n", - " 226,\n", - " 227,\n", - " 228,\n", - " 229,\n", - " 230,\n", - " 231,\n", - " 232,\n", - " 233,\n", - " 234,\n", - " 235,\n", - " 236,\n", - " 237,\n", - " 238,\n", - " 239,\n", - " 240,\n", - " 241,\n", - " 242,\n", - " 243,\n", - " 244,\n", - " 245,\n", - " 246,\n", - " 247,\n", - " 248,\n", - " 249,\n", - " 250,\n", - " 251,\n", - " 252,\n", - " 253,\n", - " 254,\n", - " 255,\n", - " 256,\n", - " 257,\n", - " 258,\n", - " 259,\n", - " 260,\n", - " 261,\n", - " 262,\n", - " 263,\n", - " 264,\n", - " 265,\n", - " 266,\n", - " 267,\n", - " 268,\n", - " 269,\n", - " 270,\n", - " 271,\n", - " 272,\n", - " 273,\n", - " 274,\n", - " 275,\n", - " 276,\n", - " 277,\n", - " 278,\n", - " 279,\n", - " 280,\n", - " 281,\n", - " 282,\n", - " 283,\n", - " 284,\n", - " 285,\n", - " 286,\n", - " 287,\n", - " 288,\n", - " 289,\n", - " 290,\n", - " 291,\n", - " 292,\n", - " 293,\n", - " 294,\n", - " 295,\n", - " 296,\n", - " 297,\n", - " 298,\n", - " 299,\n", - " 300,\n", - " 301,\n", - " 302,\n", - " 303,\n", - " 304,\n", - " 305,\n", - " 306,\n", - " 307,\n", - " 308,\n", - " 309,\n", - " 310,\n", - " 311,\n", - " 312,\n", - " 313,\n", - " 314,\n", - " 315,\n", - " 316,\n", - " 317,\n", - " 318,\n", - " 319,\n", - " 320,\n", - " 321,\n", - " 322,\n", - " 323,\n", - " 324,\n", - " 325,\n", - " 326,\n", - " 327,\n", - " 328,\n", - " 329,\n", - " 330,\n", - " 331,\n", - " 332,\n", - " 333,\n", - " 334,\n", - " 335,\n", - " 336,\n", - " 337,\n", - " 338,\n", - " 339,\n", - " 340,\n", - " 341,\n", - " 342,\n", - " 343,\n", - " 344,\n", - " 345,\n", - " 346,\n", - " 347,\n", - " 348,\n", - " 349,\n", - " 350,\n", - " 351,\n", - " 352,\n", - " 353,\n", - " 354,\n", - " 355,\n", - " 356,\n", - " 357,\n", - " 358,\n", - " 359,\n", - " 360,\n", - " 361,\n", - " 362,\n", - " 363,\n", - " 364,\n", - " 365,\n", - " 366,\n", - " 367,\n", - " 368,\n", - " 369,\n", - " 370,\n", - " 371,\n", - " 372,\n", - " 373,\n", - " 374,\n", - " 375,\n", - " 376,\n", - " 377,\n", - " 378,\n", - " 379,\n", - " 380,\n", - " 381,\n", - " 382,\n", - " 383]" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_lst = list(fov_dic.keys())\n", - "fov_lst" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_31546/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
011410
112510
213610
314411
415511
...............
344238357447
344338367547
344438377348
344538387448
344638397548
\n", - "

3447 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id x y\n", - "0 1 1 4 10\n", - "1 1 2 5 10\n", - "2 1 3 6 10\n", - "3 1 4 4 11\n", - "4 1 5 5 11\n", - "... ... ... .. ..\n", - "3442 383 5 74 47\n", - "3443 383 6 75 47\n", - "3444 383 7 73 48\n", - "3445 383 8 74 48\n", - "3446 383 9 75 48\n", - "\n", - "[3447 rows x 4 columns]" - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for fov_id in fov_lst:\n", - " x_px = fov_dic[fov_id][0]\n", - " y_px = fov_dic[fov_id][1]\n", - " fov_spot_coordinates = get_spot_x_y_range(x_px, y_px, fov_id, fov_spot_coordinates)\n", - "fov_spot_coordinates\n" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
011410
112510
213610
314411
415511
...............
344238357447
344338367547
344438377348
344538387448
344638397548
\n", - "

3447 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id x y\n", - "0 1 1 4 10\n", - "1 1 2 5 10\n", - "2 1 3 6 10\n", - "3 1 4 4 11\n", - "4 1 5 5 11\n", - "... ... ... .. ..\n", - "3442 383 5 74 47\n", - "3443 383 6 75 47\n", - "3444 383 7 73 48\n", - "3445 383 8 74 48\n", - "3446 383 9 75 48\n", - "\n", - "[3447 rows x 4 columns]" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_coordinates" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [], - "source": [ - "fov_spot_coordinates.to_csv('../cancer/new/spot_location.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 210, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [fov, spot-id=1, spot-id=2, spot-id=3, spot-id=4, spot-id=5, spot-id=6, spot-id=7, spot-id=8, spot-id=9]\n", + "Index: []" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "names = ['fov'] + ['spot-id=' + str(i) for i in range(1, 10)]\n", + "fov_spot_cells_stats = pd.DataFrame(columns = names)\n", + "\n", + "fov_spot_cells_stats" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "fov_dic = {}\n", + "for i in names:\n", + " fov_dic[i] = 0\n", + "# fov_dic\n", + "\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/383 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
0100146144134146129106115122109
1101133115129517280163135161
210218513216011875136226116128
3103255147122146146152155165156
410418415011213412114711698116
.................................
37836442756015881861187777
3793711200301513867243
380380898631962701600
381381780731024115214277
38259084132655962575494
\n", + "

383 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", + "0 100 146 144 134 146 129 106 \n", + "1 101 133 115 129 51 72 80 \n", + "2 102 185 132 160 118 75 136 \n", + "3 103 255 147 122 146 146 152 \n", + "4 104 184 150 112 134 121 147 \n", + ".. ... ... ... ... ... ... ... \n", + "378 364 42 75 60 158 81 86 \n", + "379 371 12 0 0 30 15 13 \n", + "380 380 89 86 31 96 27 0 \n", + "381 381 7 8 0 73 102 41 \n", + "382 5 90 84 132 65 59 62 \n", + "\n", + " spot-id=7 spot-id=8 spot-id=9 \n", + "0 115 122 109 \n", + "1 163 135 161 \n", + "2 226 116 128 \n", + "3 155 165 156 \n", + "4 116 98 116 \n", + ".. ... ... ... \n", + "378 118 77 77 \n", + "379 86 72 43 \n", + "380 16 0 0 \n", + "381 152 142 77 \n", + "382 57 54 94 \n", + "\n", + "[383 rows x 10 columns]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", + "spot_id_lst = [i for i in range(1, 10)]\n", + "\n", + "for fov_id in tqdm(fov_ids_lst):\n", + " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", + " \n", + " fov_dic_sample = fov_dic\n", + " fov_dic_sample[\"fov\"] = fov_id\n", + " \n", + " for i in spot_id_lst:\n", + " spot_id_data = fov_data[(fov_data['spot_id']==i)]\n", + " spot_id_num = \"spot-id=\" + str(i)\n", + " fov_dic_sample[spot_id_num] = spot_id_data.shape[0]\n", + " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", + "\n", + "fov_spot_cells_stats" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "spot_gene_expression = [\"fov\", \"spot_id\"]\n", + "genes_name_lst = (individual_cell_gene_expression.columns)[4:].tolist()\n", + "spot_gene_expression = spot_gene_expression + genes_name_lst\n", + "# spot_gene_expression" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "1002" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(spot_gene_expression)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def get_spot_gene_expression(fov_expression, spot_id):\n", + " genes_lst = (fov_expression.columns)[4:].tolist()\n", + " assert len(genes_lst) == 1000\n", + " \n", + " cell_id_lst = fov_expression[(fov_expression['spot_id']==spot_id)][\"cell_ID\"].tolist()\n", + " \n", + " cell_gene_expression_total = len(genes_lst)*[0]\n", + " for cell_id in cell_id_lst:\n", + " cell_gene_expression = fov_expression[(fov_expression['cell_ID'] == cell_id)]\n", + " \n", + " cell_gene_expression = cell_gene_expression.values.tolist()[0][4:]\n", + " cell_gene_expression_total = np.sum([cell_gene_expression_total, cell_gene_expression], axis=0).tolist()\n", + "\n", + " return cell_gene_expression_total\n", + " \n", + " \n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "['fov',\n", + " 'spot_id',\n", + " 'AATK',\n", + " 'ABL1',\n", + " 'ABL2',\n", + " 'ACACB',\n", + " 'ACE',\n", + " 'ACKR1',\n", + " 'ACKR3',\n", + " 'ACKR4',\n", + " 'ACP5',\n", + " 'ACTA2',\n", + " 'ACTG2',\n", + " 'ACVR1',\n", + " 'ACVR1B',\n", + " 'ACVR2A',\n", + " 'ACVRL1',\n", + " 'ADGRA2',\n", + " 'ADGRA3',\n", + " 'ADGRE2',\n", + " 'ADGRE5',\n", + " 'ADGRF1',\n", + " 'ADGRF3',\n", + " 'ADGRF5',\n", + " 'ADGRG1',\n", + " 'ADGRG3',\n", + " 'ADGRG5',\n", + " 'ADGRG6',\n", + " 'ADGRL1',\n", + " 'ADGRL2',\n", + " 'ADGRL4',\n", + " 'ADGRV1',\n", + " 'ADIPOQ',\n", + " 'ADIRF',\n", + " 'ADM2',\n", + " 'AGR2',\n", + " 'AHI1',\n", + " 'AHR',\n", + " 'AIF1',\n", + " 'AKT1',\n", + " 'ALCAM',\n", + " 'ALOX5AP',\n", + " 'ANGPT1',\n", + " 'ANGPT2',\n", + " 'ANGPTL1',\n", + " 'ANKRD1',\n", + " 'ANXA1',\n", + " 'ANXA2',\n", + " 'ANXA4',\n", + " 'APOA1',\n", + " 'APOC1',\n", + " 'APOD',\n", + " 'APOE',\n", + " 'APP',\n", + " 'AQP3',\n", + " 'AR',\n", + " 'AREG',\n", + " 'ARF1',\n", + " 'ARG1',\n", + " 'ARHGDIB',\n", + " 'ARID5B',\n", + " 'ATF3',\n", + " 'ATG10',\n", + " 'ATG12',\n", + " 'ATG5',\n", + " 'ATM',\n", + " 'ATP5F1B',\n", + " 'ATP5F1E',\n", + " 'ATR',\n", + " 'AXL',\n", + " 'AZGP1',\n", + " 'AZU1',\n", + " 'B2M',\n", + " 'B3GNT7',\n", + " 'BAG3',\n", + " 'BASP1',\n", + " 'BAX',\n", + " 'BBLN',\n", + " 'BCL2',\n", + " 'BCL2L1',\n", + " 'BECN1',\n", + " 'BEST1',\n", + " 'BGN',\n", + " 'BID',\n", + " 'BIRC3',\n", + " 'BIRC5',\n", + " 'BMP1',\n", + " 'BMP2',\n", + " 'BMP3',\n", + " 'BMP4',\n", + " 'BMP5',\n", + " 'BMP7',\n", + " 'BMPR1A',\n", + " 'BMPR2',\n", + " 'BRAF',\n", + " 'BRCA1',\n", + " 'BST1',\n", + " 'BST2',\n", + " 'BTF3',\n", + " 'BTG1',\n", + " 'BTK',\n", + " 'C11orf96',\n", + " 'C1QA',\n", + " 'C1QB',\n", + " 'C1QC',\n", + " 'C5AR2',\n", + " 'CACNA1C',\n", + " 'CALB1',\n", + " 'CALD1',\n", + " 'CALM1',\n", + " 'CALM2',\n", + " 'CALM3',\n", + " 'CAMP',\n", + " 'CARMN',\n", + " 'CASP3',\n", + " 'CASP8',\n", + " 'CASR',\n", + " 'CAV1',\n", + " 'CCDC80',\n", + " 'CCL11',\n", + " 'CCL13',\n", + " 'CCL15',\n", + " 'CCL17',\n", + " 'CCL18',\n", + " 'CCL19',\n", + " 'CCL2',\n", + " 'CCL20',\n", + " 'CCL21',\n", + " 'CCL22',\n", + " 'CCL26',\n", + " 'CCL28',\n", + " 'CCL3',\n", + " 'CCL4',\n", + " 'CCL5',\n", + " 'CCL8',\n", + " 'CCND1',\n", + " 'CCR1',\n", + " 'CCR10',\n", + " 'CCR2',\n", + " 'CCR5',\n", + " 'CCR7',\n", + " 'CCRL2',\n", + " 'CD14',\n", + " 'CD163',\n", + " 'CD164',\n", + " 'CD19',\n", + " 'CD1C',\n", + " 'CD2',\n", + " 'CD209',\n", + " 'CD22',\n", + " 'CD24',\n", + " 'CD27',\n", + " 'CD274',\n", + " 'CD276',\n", + " 'CD28',\n", + " 'CD300A',\n", + " 'CD33',\n", + " 'CD34',\n", + " 'CD36',\n", + " 'CD37',\n", + " 'CD38',\n", + " 'CD3D',\n", + " 'CD3E',\n", + " 'CD3G',\n", + " 'CD4',\n", + " 'CD40',\n", + " 'CD40LG',\n", + " 'CD44',\n", + " 'CD47',\n", + " 'CD48',\n", + " 'CD52',\n", + " 'CD53',\n", + " 'CD55',\n", + " 'CD58',\n", + " 'CD59',\n", + " 'CD5L',\n", + " 'CD63',\n", + " 'CD68',\n", + " 'CD69',\n", + " 'CD70',\n", + " 'CD74',\n", + " 'CD79A',\n", + " 'CD80',\n", + " 'CD81',\n", + " 'CD83',\n", + " 'CD84',\n", + " 'CD86',\n", + " 'CD8A',\n", + " 'CD8B',\n", + " 'CD9',\n", + " 'CD93',\n", + " 'CDH1',\n", + " 'CDH11',\n", + " 'CDH19',\n", + " 'CDH5',\n", + " 'CDKN1A',\n", + " 'CDKN3',\n", + " 'CEACAM1',\n", + " 'CEACAM6',\n", + " 'CELSR1',\n", + " 'CELSR2',\n", + " 'CENPF',\n", + " 'CFD',\n", + " 'CFLAR',\n", + " 'CHEK1',\n", + " 'CHEK2',\n", + " 'CHI3L1',\n", + " 'CIDEA',\n", + " 'CIITA',\n", + " 'CLCF1',\n", + " 'CLDN4',\n", + " 'CLEC10A',\n", + " 'CLEC12A',\n", + " 'CLEC14A',\n", + " 'CLEC1A',\n", + " 'CLEC2B',\n", + " 'CLEC2D',\n", + " 'CLEC4A',\n", + " 'CLEC4D',\n", + " 'CLEC4E',\n", + " 'CLEC5A',\n", + " 'CLEC7A',\n", + " 'CLOCK',\n", + " 'CLU',\n", + " 'CMKLR1',\n", + " 'CNTFR',\n", + " 'COL11A1',\n", + " 'COL12A1',\n", + " 'COL14A1',\n", + " 'COL15A1',\n", + " 'COL16A1',\n", + " 'COL17A1',\n", + " 'COL18A1',\n", + " 'COL1A1',\n", + " 'COL1A2',\n", + " 'COL21A1',\n", + " 'COL27A1',\n", + " 'COL3A1',\n", + " 'COL4A1',\n", + " 'COL4A2',\n", + " 'COL4A5',\n", + " 'COL5A1',\n", + " 'COL5A2',\n", + " 'COL5A3',\n", + " 'COL6A1',\n", + " 'COL6A2',\n", + " 'COL6A3',\n", + " 'COL8A1',\n", + " 'COL9A2',\n", + " 'COL9A3',\n", + " 'COTL1',\n", + " 'COX4I2',\n", + " 'CPA3',\n", + " 'CPB1',\n", + " 'CRIP1',\n", + " 'CRP',\n", + " 'CRYAB',\n", + " 'CSF1',\n", + " 'CSF1R',\n", + " 'CSF2',\n", + " 'CSF2RA',\n", + " 'CSF2RB',\n", + " 'CSF3',\n", + " 'CSF3R',\n", + " 'CSHL1',\n", + " 'CSK',\n", + " 'CSPG4',\n", + " 'CST7',\n", + " 'CSTB',\n", + " 'CTLA4',\n", + " 'CTNNB1',\n", + " 'CTSD',\n", + " 'CTSG',\n", + " 'CTSW',\n", + " 'CUZD1',\n", + " 'CX3CL1',\n", + " 'CX3CR1',\n", + " 'CXCL1',\n", + " 'CXCL10',\n", + " 'CXCL12',\n", + " 'CXCL13',\n", + " 'CXCL14',\n", + " 'CXCL16',\n", + " 'CXCL17',\n", + " 'CXCL5',\n", + " 'CXCL8',\n", + " 'CXCL9',\n", + " 'CXCR1',\n", + " 'CXCR2',\n", + " 'CXCR3',\n", + " 'CXCR4',\n", + " 'CXCR5',\n", + " 'CXCR6',\n", + " 'CYP1B1',\n", + " 'CYP2U1',\n", + " 'CYSTM1',\n", + " 'CYTOR',\n", + " 'DCN',\n", + " 'DDC',\n", + " 'DDIT3',\n", + " 'DDR1',\n", + " 'DDR2',\n", + " 'DDX58',\n", + " 'DHRS2',\n", + " 'DLL1',\n", + " 'DLL4',\n", + " 'DMBT1',\n", + " 'DNMT1',\n", + " 'DNMT3A',\n", + " 'DPP4',\n", + " 'DPT',\n", + " 'DST',\n", + " 'DUSP1',\n", + " 'DUSP2',\n", + " 'DUSP4',\n", + " 'DUSP5',\n", + " 'DUSP6',\n", + " 'EFNA1',\n", + " 'EFNA4',\n", + " 'EFNA5',\n", + " 'EFNB1',\n", + " 'EFNB2',\n", + " 'EGF',\n", + " 'EGFR',\n", + " 'EIF5A',\n", + " 'ELANE',\n", + " 'EMP3',\n", + " 'ENG',\n", + " 'ENO1',\n", + " 'ENTPD1',\n", + " 'EOMES',\n", + " 'EPCAM',\n", + " 'EPHA2',\n", + " 'EPHA3',\n", + " 'EPHA4',\n", + " 'EPHA7',\n", + " 'EPHB2',\n", + " 'EPHB3',\n", + " 'EPHB4',\n", + " 'EPHB6',\n", + " 'EPOR',\n", + " 'ERBB2',\n", + " 'ERBB3',\n", + " 'ESAM',\n", + " 'ESR1',\n", + " 'ETS1',\n", + " 'ETV4',\n", + " 'ETV5',\n", + " 'EZH2',\n", + " 'EZR',\n", + " 'FABP4',\n", + " 'FABP5',\n", + " 'FAM30A',\n", + " 'FAP',\n", + " 'FAS',\n", + " 'FASLG',\n", + " 'FASN',\n", + " 'FAU',\n", + " 'FCER1G',\n", + " 'FCGBP',\n", + " 'FCGR3A',\n", + " 'FCRLA',\n", + " 'FES',\n", + " 'FFAR2',\n", + " 'FFAR3',\n", + " 'FFAR4',\n", + " 'FGF1',\n", + " 'FGF12',\n", + " 'FGF13',\n", + " 'FGF18',\n", + " 'FGF2',\n", + " 'FGF7',\n", + " 'FGF9',\n", + " 'FGFR1',\n", + " 'FGFR2',\n", + " 'FGFR3',\n", + " 'FGG',\n", + " 'FGR',\n", + " 'FHIT',\n", + " 'FKBP11',\n", + " 'FKBP5',\n", + " 'FLT1',\n", + " 'FLT3LG',\n", + " 'FN1',\n", + " 'FOS',\n", + " 'FOXF1',\n", + " 'FOXP3',\n", + " 'FPR1',\n", + " 'FYB1',\n", + " 'FYN',\n", + " 'FZD1',\n", + " 'FZD3',\n", + " 'FZD4',\n", + " 'FZD5',\n", + " 'FZD6',\n", + " 'FZD7',\n", + " 'FZD8',\n", + " 'G0S2',\n", + " 'G6PD',\n", + " 'GADD45B',\n", + " 'GAS6',\n", + " 'GATA3',\n", + " 'GC',\n", + " 'GCG',\n", + " 'GDF15',\n", + " 'GLUD1',\n", + " 'GLUL',\n", + " 'GNLY',\n", + " 'GPBAR1',\n", + " 'GPER1',\n", + " 'GPNMB',\n", + " 'GPR183',\n", + " 'GPX1',\n", + " 'GPX3',\n", + " 'GSK3B',\n", + " 'GSN',\n", + " 'GSTP1',\n", + " 'GZMA',\n", + " 'GZMB',\n", + " 'GZMH',\n", + " 'GZMK',\n", + " 'H2AZ1',\n", + " 'H4C3',\n", + " 'HAVCR2',\n", + " 'HBA1',\n", + " 'HBB',\n", + " 'HCAR2',\n", + " 'HCK',\n", + " 'HCST',\n", + " 'HDAC1',\n", + " 'HDAC11',\n", + " 'HDAC3',\n", + " 'HDAC4',\n", + " 'HDAC5',\n", + " 'HEXB',\n", + " 'HEY1',\n", + " 'HGF',\n", + " 'HIF1A',\n", + " 'HILPDA',\n", + " 'HLA-A',\n", + " 'HLA-DPA1',\n", + " 'HLA-DPB1',\n", + " 'HLA-DQA1',\n", + " 'HLA-DQB1',\n", + " 'HLA-DRA',\n", + " 'HLA-DRB1',\n", + " 'HMGB2',\n", + " 'HMGCS1',\n", + " 'HMGN2',\n", + " 'HPGDS',\n", + " 'HSD17B2',\n", + " 'HSP90AA1',\n", + " 'HSP90AB1',\n", + " 'HSP90B1',\n", + " 'HSPA1A',\n", + " 'HSPB1',\n", + " 'HSPG2',\n", + " 'HTT',\n", + " 'IAPP',\n", + " 'ICA1',\n", + " 'ICAM1',\n", + " 'ICAM2',\n", + " 'ICAM3',\n", + " 'ICOS',\n", + " 'ICOSLG',\n", + " 'IDO1',\n", + " 'IER3',\n", + " 'IFI27',\n", + " 'IFI44L',\n", + " 'IFI6',\n", + " 'IFIH1',\n", + " 'IFIT1',\n", + " 'IFIT3',\n", + " 'IFITM1',\n", + " 'IFITM3',\n", + " 'IFNA1',\n", + " 'IFNAR1',\n", + " 'IFNAR2',\n", + " 'IFNG',\n", + " 'IFNGR1',\n", + " 'IFNGR2',\n", + " 'IFNL3',\n", + " 'IGF1',\n", + " 'IGF1R',\n", + " 'IGF2',\n", + " 'IGF2R',\n", + " 'IGFBP3',\n", + " 'IGFBP5',\n", + " 'IGFBP6',\n", + " 'IGFBP7',\n", + " 'IGHA1',\n", + " 'IGHD',\n", + " 'IGHG1',\n", + " 'IGHG2',\n", + " 'IGHM',\n", + " 'IGKC',\n", + " 'IKZF3',\n", + " 'IL10',\n", + " 'IL10RA',\n", + " 'IL10RB',\n", + " 'IL11',\n", + " 'IL11RA',\n", + " 'IL12A',\n", + " 'IL12B',\n", + " 'IL12RB1',\n", + " 'IL12RB2',\n", + " 'IL13RA1',\n", + " 'IL15',\n", + " 'IL15RA',\n", + " 'IL16',\n", + " 'IL17A',\n", + " 'IL17B',\n", + " 'IL17D',\n", + " 'IL17RA',\n", + " 'IL17RB',\n", + " 'IL17RE',\n", + " 'IL18',\n", + " 'IL18R1',\n", + " 'IL1A',\n", + " 'IL1B',\n", + " 'IL1R1',\n", + " 'IL1R2',\n", + " 'IL1RAP',\n", + " 'IL1RL1',\n", + " 'IL1RN',\n", + " 'IL2',\n", + " 'IL20',\n", + " 'IL20RA',\n", + " 'IL22RA1',\n", + " 'IL23A',\n", + " 'IL24',\n", + " 'IL27RA',\n", + " 'IL2RA',\n", + " 'IL2RB',\n", + " 'IL2RG',\n", + " 'IL32',\n", + " 'IL33',\n", + " 'IL34',\n", + " 'IL36G',\n", + " 'IL3RA',\n", + " 'IL4R',\n", + " 'IL6',\n", + " 'IL6R',\n", + " 'IL6ST',\n", + " 'IL7',\n", + " 'IL7R',\n", + " 'INHA',\n", + " 'INHBA',\n", + " 'INHBB',\n", + " 'INS',\n", + " 'INSIG1',\n", + " 'INSR',\n", + " 'IRF3',\n", + " 'IRF4',\n", + " 'ISG15',\n", + " 'ITGA1',\n", + " 'ITGA2',\n", + " 'ITGA3',\n", + " 'ITGA5',\n", + " 'ITGA6',\n", + " 'ITGA8',\n", + " 'ITGA9',\n", + " 'ITGAE',\n", + " 'ITGAL',\n", + " 'ITGAM',\n", + " 'ITGAV',\n", + " 'ITGAX',\n", + " 'ITGB1',\n", + " 'ITGB2',\n", + " 'ITGB4',\n", + " 'ITGB5',\n", + " 'ITGB6',\n", + " 'ITGB8',\n", + " 'ITK',\n", + " 'ITM2A',\n", + " 'ITM2B',\n", + " 'JAG1',\n", + " 'JAK1',\n", + " 'JAK2',\n", + " 'JCHAIN',\n", + " 'JUN',\n", + " 'JUNB',\n", + " 'KDR',\n", + " 'KIT',\n", + " 'KITLG',\n", + " 'KLF2',\n", + " 'KLK3',\n", + " 'KLRB1',\n", + " 'KLRF1',\n", + " 'KLRK1',\n", + " 'KRAS',\n", + " 'KRT1',\n", + " 'KRT10',\n", + " 'KRT13',\n", + " 'KRT14',\n", + " 'KRT15',\n", + " 'KRT16',\n", + " 'KRT17',\n", + " 'KRT18',\n", + " 'KRT19',\n", + " 'KRT20',\n", + " 'KRT23',\n", + " 'KRT4',\n", + " 'KRT5',\n", + " 'KRT6A',\n", + " 'KRT7',\n", + " 'KRT8',\n", + " 'KRT80',\n", + " 'KRT86',\n", + " 'LAG3',\n", + " 'LAIR1',\n", + " 'LAMA4',\n", + " 'LAMP2',\n", + " 'LAMP3',\n", + " 'LCN2',\n", + " 'LDB2',\n", + " 'LDHA',\n", + " 'LDLR',\n", + " 'LEFTY1',\n", + " 'LEP',\n", + " 'LGALS1',\n", + " 'LGALS3',\n", + " 'LGALS3BP',\n", + " 'LGALS9',\n", + " 'LGR5',\n", + " 'LIF',\n", + " 'LIFR',\n", + " 'LINC01781',\n", + " 'LINC01857',\n", + " 'LINC02446',\n", + " 'LMNA',\n", + " 'LPAR5',\n", + " 'LTB',\n", + " 'LTBR',\n", + " 'LTF',\n", + " 'LUM',\n", + " 'LY6D',\n", + " 'LY75',\n", + " 'LYN',\n", + " 'LYVE1',\n", + " 'LYZ',\n", + " 'MAF',\n", + " 'MALAT1',\n", + " 'MAML2',\n", + " 'MAP1LC3B',\n", + " 'MAP2K1',\n", + " 'MAPK13',\n", + " 'MAPK14',\n", + " 'MARCKSL1',\n", + " 'MARCO',\n", + " 'MB',\n", + " 'MECOM',\n", + " 'MEG3',\n", + " 'MERTK',\n", + " 'MET',\n", + " 'MFAP5',\n", + " 'MGP',\n", + " 'MIF',\n", + " 'MIR4435-2HG',\n", + " 'MKI67',\n", + " 'MMP1',\n", + " 'MMP12',\n", + " 'MMP14',\n", + " 'MMP19',\n", + " 'MMP2',\n", + " 'MMP7',\n", + " 'MMP9',\n", + " 'MPO',\n", + " 'MRC1',\n", + " 'MRC2',\n", + " 'MS4A1',\n", + " 'MS4A4A',\n", + " 'MS4A6A',\n", + " 'MSMB',\n", + " 'MSR1',\n", + " 'MST1R',\n", + " 'MT1X',\n", + " 'MT2A',\n", + " 'MTOR',\n", + " 'MX1',\n", + " 'MXRA8',\n", + " 'MYC',\n", + " 'MYH11',\n", + " 'MYH6',\n", + " 'MYL12A',\n", + " 'MYL4',\n", + " 'MYL7',\n", + " 'MYL9',\n", + " 'MZB1',\n", + " 'MZT2A',\n", + " 'NACA',\n", + " 'NANOG',\n", + " 'NCAM1',\n", + " 'NCR1',\n", + " 'NDRG1',\n", + " 'NDUFA4L2',\n", + " 'NEAT1',\n", + " 'NELL2',\n", + " 'NFKB1',\n", + " 'NFKBIA',\n", + " 'NGFR',\n", + " 'NKG7',\n", + " 'NLRC4',\n", + " 'NLRC5',\n", + " 'NLRP1',\n", + " 'NLRP2',\n", + " 'NLRP3',\n", + " 'NOD2',\n", + " 'NOSIP',\n", + " 'NOTCH1',\n", + " 'NOTCH2',\n", + " 'NOTCH3',\n", + " 'NPPC',\n", + " 'NPR1',\n", + " 'NPR2',\n", + " 'NPR3',\n", + " 'NR1H2',\n", + " 'NR1H3',\n", + " 'NR2F2',\n", + " 'NR3C1',\n", + " 'NRG1',\n", + " 'NRXN1',\n", + " 'NRXN3',\n", + " 'NTRK2',\n", + " 'NUPR1',\n", + " 'NUSAP1',\n", + " 'OAS1',\n", + " 'OAS2',\n", + " 'OAS3',\n", + " 'OASL',\n", + " 'OLFM4',\n", + " 'OLR1',\n", + " 'OSM',\n", + " 'OSMR',\n", + " 'P2RX5',\n", + " 'PARP1',\n", + " 'PCNA',\n", + " 'PDCD1',\n", + " 'PDCD1LG2',\n", + " 'PDGFA',\n", + " 'PDGFB',\n", + " 'PDGFC',\n", + " 'PDGFD',\n", + " 'PDGFRA',\n", + " 'PDGFRB',\n", + " 'PDS5A',\n", + " 'PECAM1',\n", + " 'PF4',\n", + " 'PFN1',\n", + " 'PGF',\n", + " 'PGK1',\n", + " 'PGR',\n", + " 'PHLDA2',\n", + " 'PIGR',\n", + " 'PLAC8',\n", + " 'PLAC9',\n", + " 'PLCG1',\n", + " 'PLD3',\n", + " 'PNOC',\n", + " 'POU5F1',\n", + " 'PPARA',\n", + " 'PPARD',\n", + " 'PPARG',\n", + " 'PPIA',\n", + " 'PRF1',\n", + " 'PROX1',\n", + " 'PRSS2',\n", + " 'PRTN3',\n", + " 'PSAP',\n", + " 'PSCA',\n", + " 'PSD3',\n", + " 'PTEN',\n", + " 'PTGDR2',\n", + " 'PTGDS',\n", + " 'PTGES',\n", + " 'PTGES2',\n", + " 'PTGES3',\n", + " 'PTGIS',\n", + " 'PTGS1',\n", + " 'PTGS2',\n", + " 'PTK2',\n", + " 'PTK6',\n", + " 'PTPRC',\n", + " 'PTPRCAP',\n", + " 'PTTG1',\n", + " 'PXDN',\n", + " 'QRFPR',\n", + " 'RAC1',\n", + " 'RAC2',\n", + " 'RACK1',\n", + " 'RAG1',\n", + " 'RAMP1',\n", + " 'RAMP2',\n", + " 'RAMP3',\n", + " 'RARA',\n", + " 'RARB',\n", + " 'RARG',\n", + " 'RARRES1',\n", + " 'RARRES2',\n", + " 'RB1',\n", + " 'RBM47',\n", + " 'RBPJ',\n", + " 'REG1A',\n", + " 'RELA',\n", + " 'RELT',\n", + " 'RGCC',\n", + " 'RGS1',\n", + " 'RGS13',\n", + " 'RGS2',\n", + " 'RGS5',\n", + " 'RNF43',\n", + " 'ROR1',\n", + " 'RORA',\n", + " 'RPL21',\n", + " 'RPL22',\n", + " 'RPL32',\n", + " 'RPL34',\n", + " 'RPL37',\n", + " 'RPS4Y1',\n", + " 'RSPO3',\n", + " 'RUNX3',\n", + " 'RXRA',\n", + " 'RXRB',\n", + " 'RYK',\n", + " 'RYR2',\n", + " 'S100A10',\n", + " 'S100A2',\n", + " 'S100A4',\n", + " 'S100A6',\n", + " 'S100A8',\n", + " 'S100A9',\n", + " 'S100B',\n", + " 'S100P',\n", + " 'SAA1',\n", + " 'SAT1',\n", + " 'SCG5',\n", + " 'SCGB3A1',\n", + " 'SEC23A',\n", + " 'SEC61G',\n", + " 'SELENOP',\n", + " 'SELL',\n", + " 'SELPLG',\n", + " 'SERPINA1',\n", + " 'SERPINA3',\n", + " 'SERPINB5',\n", + " 'SERPINH1',\n", + " 'SFN',\n", + " 'SH3BGRL3',\n", + " 'SIGIRR',\n", + " 'SLA',\n", + " 'SLC2A1',\n", + " 'SLC40A1',\n", + " 'SLCO2B1',\n", + " 'SLPI',\n", + " 'SMAD2',\n", + " 'SMAD3',\n", + " 'SMAD4',\n", + " 'SMARCB1',\n", + " 'SMO',\n", + " 'SNAI1',\n", + " 'SNAI2',\n", + " 'SOD1',\n", + " 'SOD2',\n", + " 'SORBS1',\n", + " 'SOSTDC1',\n", + " 'SOX2',\n", + " 'SOX4',\n", + " 'SOX9',\n", + " 'SPARCL1',\n", + " 'SPINK1',\n", + " 'SPOCK2',\n", + " 'SPP1',\n", + " 'SPRY2',\n", + " 'SPRY4',\n", + " 'SQLE',\n", + " 'SQSTM1',\n", + " 'SRC',\n", + " 'SREBF1',\n", + " 'SRGN',\n", + " 'SRSF2',\n", + " 'SST',\n", + " 'ST6GAL1',\n", + " 'ST6GALNAC3',\n", + " 'STAT1',\n", + " 'STAT3',\n", + " 'STAT4',\n", + " 'STAT5A',\n", + " 'STAT5B',\n", + " 'STAT6',\n", + " 'STMN1',\n", + " 'SYK',\n", + " 'TACSTD2',\n", + " 'TAGLN',\n", + " 'TAP1',\n", + " 'TAP2',\n", + " 'TBX21',\n", + " 'TCAP',\n", + " 'TCF7',\n", + " 'TCL1A',\n", + " 'TEK',\n", + " 'TFEB',\n", + " 'TGFB1',\n", + " 'TGFB2',\n", + " 'TGFB3',\n", + " 'TGFBI',\n", + " 'TGFBR1',\n", + " 'TGFBR2',\n", + " 'THBS1',\n", + " 'THBS2',\n", + " 'THSD4',\n", + " 'TIE1',\n", + " 'TIGIT',\n", + " 'TIMP1',\n", + " 'TLR1',\n", + " 'TLR2',\n", + " 'TLR3',\n", + " 'TLR4',\n", + " 'TLR5',\n", + " 'TLR7',\n", + " 'TLR8',\n", + " 'TM4SF1',\n", + " 'TNF',\n", + " 'TNFAIP6',\n", + " 'TNFRSF10A',\n", + " 'TNFRSF10B',\n", + " 'TNFRSF10D',\n", + " 'TNFRSF11A',\n", + " 'TNFRSF11B',\n", + " 'TNFRSF12A',\n", + " 'TNFRSF13B',\n", + " 'TNFRSF14',\n", + " 'TNFRSF17',\n", + " 'TNFRSF18',\n", + " 'TNFRSF19',\n", + " 'TNFRSF1A',\n", + " 'TNFRSF1B',\n", + " 'TNFRSF21',\n", + " 'TNFRSF4',\n", + " 'TNFRSF9',\n", + " 'TNFSF10',\n", + " 'TNFSF12',\n", + " 'TNFSF13B',\n", + " 'TNFSF14',\n", + " 'TNFSF15',\n", + " 'TNFSF4',\n", + " 'TNFSF8',\n", + " 'TNFSF9',\n", + " 'TNNC1',\n", + " 'TNNT2',\n", + " 'TNXB',\n", + " 'TOP2A',\n", + " 'TOX',\n", + " 'TP53',\n", + " 'TPI1',\n", + " 'TPM1',\n", + " 'TPM2',\n", + " 'TPSAB1',\n", + " 'TPT1',\n", + " 'TSC22D1',\n", + " 'TSHZ2',\n", + " 'TTN',\n", + " 'TTR',\n", + " 'TUBB',\n", + " 'TUBB4B',\n", + " 'TWIST1',\n", + " 'TWIST2',\n", + " 'TXK',\n", + " 'TYK2',\n", + " 'TYMS',\n", + " 'TYROBP',\n", + " 'UBA52',\n", + " 'UBE2C',\n", + " 'UPK3A',\n", + " 'VCAM1',\n", + " 'VCAN',\n", + " 'VEGFA',\n", + " 'VEGFB',\n", + " 'VEGFC',\n", + " 'VEGFD',\n", + " 'VHL',\n", + " 'VIM',\n", + " 'VPREB3',\n", + " 'VSIR',\n", + " 'VTN',\n", + " 'VWA1',\n", + " 'VWF',\n", + " 'WIF1',\n", + " 'WNT10B',\n", + " 'WNT11',\n", + " 'WNT3',\n", + " 'WNT5A',\n", + " 'WNT5B',\n", + " 'WNT7A',\n", + " 'WNT7B',\n", + " 'WNT9A',\n", + " 'XBP1',\n", + " 'XCL1',\n", + " 'XKR4',\n", + " 'YBX3',\n", + " 'YES1',\n", + " ...]" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spot_gene_expression" + ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "execution_count": 47, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/383 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
0100.01.019.035.023.036.019.010.021.018.0...10.012.025.0124.034.04.0157.018.0225.0121.0
1100.02.025.020.014.029.026.014.015.016.0...2.010.021.079.028.02.0187.014.0202.0124.0
2100.03.025.046.034.055.039.018.019.020.0...5.017.019.0156.054.05.0215.015.0317.0162.0
3100.04.018.032.026.056.018.017.021.028.0...9.035.019.0114.033.05.0356.033.0251.0229.0
4100.05.015.033.020.048.034.015.028.022.0...10.016.033.0110.040.07.0251.018.0256.0205.0
..................................................................
34425.05.06.09.06.09.04.06.010.01.0...0.01.07.04.08.04.06.09.08.012.0
34435.06.06.05.03.05.06.04.08.06.0...3.05.01.06.07.02.09.04.07.016.0
34445.07.08.05.04.04.02.04.05.02.0...3.08.02.04.06.02.05.01.014.024.0
34455.08.05.04.04.06.06.04.06.06.0...3.04.07.06.04.02.07.03.08.09.0
34465.09.011.010.013.010.021.09.011.09.0...8.010.011.020.021.03.070.07.039.043.0
\n", + "

3447 rows × 1002 columns

\n", + "" + ], + "text/plain": [ + " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", + "0 100.0 1.0 19.0 35.0 23.0 36.0 19.0 10.0 21.0 18.0 ... \n", + "1 100.0 2.0 25.0 20.0 14.0 29.0 26.0 14.0 15.0 16.0 ... \n", + "2 100.0 3.0 25.0 46.0 34.0 55.0 39.0 18.0 19.0 20.0 ... \n", + "3 100.0 4.0 18.0 32.0 26.0 56.0 18.0 17.0 21.0 28.0 ... \n", + "4 100.0 5.0 15.0 33.0 20.0 48.0 34.0 15.0 28.0 22.0 ... \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "3442 5.0 5.0 6.0 9.0 6.0 9.0 4.0 6.0 10.0 1.0 ... \n", + "3443 5.0 6.0 6.0 5.0 3.0 5.0 6.0 4.0 8.0 6.0 ... \n", + "3444 5.0 7.0 8.0 5.0 4.0 4.0 2.0 4.0 5.0 2.0 ... \n", + "3445 5.0 8.0 5.0 4.0 4.0 6.0 6.0 4.0 6.0 6.0 ... \n", + "3446 5.0 9.0 11.0 10.0 13.0 10.0 21.0 9.0 11.0 9.0 ... \n", + "\n", + " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 10.0 12.0 25.0 124.0 34.0 4.0 157.0 18.0 225.0 121.0 \n", + "1 2.0 10.0 21.0 79.0 28.0 2.0 187.0 14.0 202.0 124.0 \n", + "2 5.0 17.0 19.0 156.0 54.0 5.0 215.0 15.0 317.0 162.0 \n", + "3 9.0 35.0 19.0 114.0 33.0 5.0 356.0 33.0 251.0 229.0 \n", + "4 10.0 16.0 33.0 110.0 40.0 7.0 251.0 18.0 256.0 205.0 \n", + "... ... ... ... ... ... ... ... ... ... ... \n", + "3442 0.0 1.0 7.0 4.0 8.0 4.0 6.0 9.0 8.0 12.0 \n", + "3443 3.0 5.0 1.0 6.0 7.0 2.0 9.0 4.0 7.0 16.0 \n", + "3444 3.0 8.0 2.0 4.0 6.0 2.0 5.0 1.0 14.0 24.0 \n", + "3445 3.0 4.0 7.0 6.0 4.0 2.0 7.0 3.0 8.0 9.0 \n", + "3446 8.0 10.0 11.0 20.0 21.0 3.0 70.0 7.0 39.0 43.0 \n", + "\n", + "[3447 rows x 1002 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spot_gene_expression" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# spot_gene_expression.to_csv('./cancer/new/spot_gene_expression.csv')" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## 3. Ground Truth" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
01002733tumor_20.00.00.01.00.00.0...0.00.00.01.00.00.00.00.00.01.0
11008101tumor_11.01.00.01.00.00.0...0.00.00.04.00.00.09.03.02.012.0
2100725tumor_20.02.00.00.01.00.0...1.00.00.00.02.00.05.01.08.02.0
31008102tumor_12.00.00.03.01.00.0...0.02.00.03.00.00.05.01.015.05.0
410031135tumor_20.01.01.02.01.00.0...0.00.00.00.01.00.01.00.03.01.0
..................................................................
4604365292tumor_20.01.00.00.00.00.0...1.00.01.01.01.00.01.00.02.05.0
4604375294tumor_11.01.00.00.00.00.0...0.01.00.00.00.00.00.00.02.00.0
4604385595Inflammatory.macrophages0.01.00.00.00.00.0...0.00.00.00.00.00.00.00.01.02.0
4604395896tumor_10.00.00.01.00.00.0...0.02.00.00.00.00.00.00.01.00.0
4604405298tumor_13.01.00.00.01.00.0...0.00.00.00.00.00.01.00.01.00.0
\n", + "

460441 rows × 1004 columns

\n", + "
" + ], + "text/plain": [ + " fov spot_id cell_ID cellType AATK ABL1 ABL2 \\\n", + "0 100 2 733 tumor_2 0.0 0.0 0.0 \n", + "1 100 8 101 tumor_1 1.0 1.0 0.0 \n", + "2 100 7 25 tumor_2 0.0 2.0 0.0 \n", + "3 100 8 102 tumor_1 2.0 0.0 0.0 \n", + "4 100 3 1135 tumor_2 0.0 1.0 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "460436 5 2 92 tumor_2 0.0 1.0 0.0 \n", + "460437 5 2 94 tumor_1 1.0 1.0 0.0 \n", + "460438 5 5 95 Inflammatory.macrophages 0.0 1.0 0.0 \n", + "460439 5 8 96 tumor_1 0.0 0.0 0.0 \n", + "460440 5 2 98 tumor_1 3.0 1.0 0.0 \n", + "\n", + " ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 \\\n", + "0 1.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "1 1.0 0.0 0.0 ... 0.0 0.0 0.0 4.0 0.0 0.0 9.0 \n", + "2 0.0 1.0 0.0 ... 1.0 0.0 0.0 0.0 2.0 0.0 5.0 \n", + "3 3.0 1.0 0.0 ... 0.0 2.0 0.0 3.0 0.0 0.0 5.0 \n", + "4 2.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 1.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "460436 0.0 0.0 0.0 ... 1.0 0.0 1.0 1.0 1.0 0.0 1.0 \n", + "460437 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", + "460438 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "460439 1.0 0.0 0.0 ... 0.0 2.0 0.0 0.0 0.0 0.0 0.0 \n", + "460440 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "\n", + " YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 1.0 \n", + "1 3.0 2.0 12.0 \n", + "2 1.0 8.0 2.0 \n", + "3 1.0 15.0 5.0 \n", + "4 0.0 3.0 1.0 \n", + "... ... ... ... \n", + "460436 0.0 2.0 5.0 \n", + "460437 0.0 2.0 0.0 \n", + "460438 0.0 1.0 2.0 \n", + "460439 0.0 1.0 0.0 \n", + "460440 0.0 1.0 0.0 \n", + "\n", + "[460441 rows x 1004 columns]" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "individual_cell_gene_expression" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "{1,\n", + " 2,\n", + " 3,\n", + " 4,\n", + " 5,\n", + " 6,\n", + " 7,\n", + " 8,\n", + " 9,\n", + " 10,\n", + " 11,\n", + " 12,\n", + " 13,\n", + " 14,\n", + " 15,\n", + " 16,\n", + " 17,\n", + " 18,\n", + " 19,\n", + " 20,\n", + " 21,\n", + " 22,\n", + " 23,\n", + " 24,\n", + " 25,\n", + " 26,\n", + " 27,\n", + " 28,\n", + " 29,\n", + " 30,\n", + " 31,\n", + " 32,\n", + " 33,\n", + " 34,\n", + " 35,\n", + " 36,\n", + " 37,\n", + " 38,\n", + " 39,\n", + " 40,\n", + " 41,\n", + " 42,\n", + " 43,\n", + " 44,\n", + " 45,\n", + " 46,\n", + " 47,\n", + " 48,\n", + " 49,\n", + " 50,\n", + " 51,\n", + " 52,\n", + " 53,\n", + " 54,\n", + " 55,\n", + " 56,\n", + " 57,\n", + " 58,\n", + " 59,\n", + " 60,\n", + " 61,\n", + " 62,\n", + " 63,\n", + " 64,\n", + " 65,\n", + " 66,\n", + " 67,\n", + " 68,\n", + " 69,\n", + " 70,\n", + " 71,\n", + " 72,\n", + " 73,\n", + " 74,\n", + " 75,\n", + " 76,\n", + " 77,\n", + " 78,\n", + " 79,\n", + " 80,\n", + " 81,\n", + " 82,\n", + " 83,\n", + " 84,\n", + " 85,\n", + " 86,\n", + " 87,\n", + " 88,\n", + " 89,\n", + " 90,\n", + " 91,\n", + " 92,\n", + " 93,\n", + " 94,\n", + " 95,\n", + " 96,\n", + " 97,\n", + " 98,\n", + " 99,\n", + " 100,\n", + " 101,\n", + " 102,\n", + " 103,\n", + " 104,\n", + " 105,\n", + " 106,\n", + " 107,\n", + " 108,\n", + " 109,\n", + " 110,\n", + " 111,\n", + " 112,\n", + " 113,\n", + " 114,\n", + " 115,\n", + " 116,\n", + " 117,\n", + " 118,\n", + " 119,\n", + " 120,\n", + " 121,\n", + " 122,\n", + " 123,\n", + " 124,\n", + " 125,\n", + " 126,\n", + " 127,\n", + " 128,\n", + " 129,\n", + " 130,\n", + " 131,\n", + " 132,\n", + " 133,\n", + " 134,\n", + " 135,\n", + " 136,\n", + " 137,\n", + " 138,\n", + " 139,\n", + " 140,\n", + " 141,\n", + " 142,\n", + " 143,\n", + " 144,\n", + " 145,\n", + " 146,\n", + " 147,\n", + " 148,\n", + " 149,\n", + " 150,\n", + " 151,\n", + " 152,\n", + " 153,\n", + " 154,\n", + " 155,\n", + " 156,\n", + " 157,\n", + " 158,\n", + " 159,\n", + " 160,\n", + " 161,\n", + " 162,\n", + " 163,\n", + " 164,\n", + " 165,\n", + " 166,\n", + " 167,\n", + " 168,\n", + " 169,\n", + " 170,\n", + " 171,\n", + " 172,\n", + " 173,\n", + " 174,\n", + " 175,\n", + " 176,\n", + " 177,\n", + " 178,\n", + " 179,\n", + " 180,\n", + " 181,\n", + " 182,\n", + " 183,\n", + " 184,\n", + " 185,\n", + " 186,\n", + " 187,\n", + " 188,\n", + " 189,\n", + " 190,\n", + " 191,\n", + " 192,\n", + " 193,\n", + " 194,\n", + " 195,\n", + " 196,\n", + " 197,\n", + " 198,\n", + " 199,\n", + " 200,\n", + " 201,\n", + " 202,\n", + " 203,\n", + " 204,\n", + " 205,\n", + " 206,\n", + " 207,\n", + " 208,\n", + " 209,\n", + " 210,\n", + " 211,\n", + " 212,\n", + " 213,\n", + " 214,\n", + " 215,\n", + " 216,\n", + " 217,\n", + " 218,\n", + " 219,\n", + " 220,\n", + " 221,\n", + " 222,\n", + " 223,\n", + " 224,\n", + " 225,\n", + " 226,\n", + " 227,\n", + " 228,\n", + " 229,\n", + " 230,\n", + " 231,\n", + " 232,\n", + " 233,\n", + " 234,\n", + " 235,\n", + " 236,\n", + " 237,\n", + " 238,\n", + " 239,\n", + " 240,\n", + " 241,\n", + " 242,\n", + " 243,\n", + " 244,\n", + " 245,\n", + " 246,\n", + " 247,\n", + " 248,\n", + " 249,\n", + " 250,\n", + " 251,\n", + " 252,\n", + " 253,\n", + " 254,\n", + " 255,\n", + " 256,\n", + " 257,\n", + " 258,\n", + " 259,\n", + " 260,\n", + " 261,\n", + " 262,\n", + " 263,\n", + " 264,\n", + " 265,\n", + " 266,\n", + " 267,\n", + " 268,\n", + " 269,\n", + " 270,\n", + " 271,\n", + " 272,\n", + " 273,\n", + " 274,\n", + " 275,\n", + " 276,\n", + " 277,\n", + " 278,\n", + " 279,\n", + " 280,\n", + " 281,\n", + " 282,\n", + " 283,\n", + " 284,\n", + " 285,\n", + " 286,\n", + " 287,\n", + " 288,\n", + " 289,\n", + " 290,\n", + " 291,\n", + " 292,\n", + " 293,\n", + " 294,\n", + " 295,\n", + " 296,\n", + " 297,\n", + " 298,\n", + " 299,\n", + " 300,\n", + " 301,\n", + " 302,\n", + " 303,\n", + " 304,\n", + " 305,\n", + " 306,\n", + " 307,\n", + " 308,\n", + " 309,\n", + " 310,\n", + " 311,\n", + " 312,\n", + " 313,\n", + " 314,\n", + " 315,\n", + " 316,\n", + " 317,\n", + " 318,\n", + " 319,\n", + " 320,\n", + " 321,\n", + " 322,\n", + " 323,\n", + " 324,\n", + " 325,\n", + " 326,\n", + " 327,\n", + " 328,\n", + " 329,\n", + " 330,\n", + " 331,\n", + " 332,\n", + " 333,\n", + " 334,\n", + " 335,\n", + " 336,\n", + " 337,\n", + " 338,\n", + " 339,\n", + " 340,\n", + " 341,\n", + " 342,\n", + " 343,\n", + " 344,\n", + " 345,\n", + " 346,\n", + " 347,\n", + " 348,\n", + " 349,\n", + " 350,\n", + " 351,\n", + " 352,\n", + " 353,\n", + " 354,\n", + " 355,\n", + " 356,\n", + " 357,\n", + " 358,\n", + " 359,\n", + " 360,\n", + " 361,\n", + " 362,\n", + " 363,\n", + " 364,\n", + " 365,\n", + " 366,\n", + " 367,\n", + " 368,\n", + " 369,\n", + " 370,\n", + " 371,\n", + " 372,\n", + " 373,\n", + " 374,\n", + " 375,\n", + " 376,\n", + " 377,\n", + " 378,\n", + " 379,\n", + " 380,\n", + " 381,\n", + " 382,\n", + " 383}" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "set(individual_cell_gene_expression[\"fov\"].tolist())" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "{'tumor_2': 35385,\n", + " 'tumor_1': 347988,\n", + " 'Inflammatory.macrophages': 14797,\n", + " 'Periportal.LSECs': 11893,\n", + " 'CD3+.alpha.beta.T.cells': 20083,\n", + " 'Non.inflammatory.macrophages': 9076,\n", + " 'Portal.endothelial.cells': 1060,\n", + " 'Stellate.cells': 7798,\n", + " 'Central.venous.LSECs': 2138,\n", + " 'NK.like.cells': 705,\n", + " 'Mature.B.cells': 4974,\n", + " 'Cholangiocytes': 1411,\n", + " 'gamma.delta.T.cells.1': 549,\n", + " 'Antibody.secreting.B.cells': 1236,\n", + " 'Erthyroid.cells': 139,\n", + " 'NotDet': 5,\n", + " 'Hep': 1204}" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_1_dic = {}\n", + "for key in individual_cell_gene_expression[\"cellType\"].tolist():\n", + " if key not in sample_1_dic:\n", + " sample_1_dic[key] = 1\n", + " else:\n", + " sample_1_dic[key] = sample_1_dic[key] + 1\n", + "\n", + "sample_1_dic\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
41225282201tumor_10.01.01.02.00.00.0...0.00.00.04.01.00.02.00.02.02.0
41225388291tumor_10.01.01.00.00.00.0...0.00.01.07.01.00.03.00.01.04.0
41225482351tumor_20.00.00.01.00.00.0...0.00.00.05.00.00.08.00.06.04.0
4122558441tumor_10.01.02.02.01.00.0...0.01.01.05.00.01.01.01.07.03.0
41225689438tumor_10.00.00.00.02.00.0...0.00.00.07.01.00.08.01.04.05.0
..................................................................
41312786879tumor_10.01.00.00.02.01.0...0.00.00.00.00.00.01.00.00.00.0
41312883880tumor_10.00.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
41312989882tumor_10.00.00.00.01.00.0...0.00.00.00.00.00.00.00.03.00.0
41313089884tumor_10.00.00.00.00.01.0...0.00.00.00.00.00.00.00.01.01.0
41313183885tumor_10.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

880 rows × 1004 columns

\n", + "
" + ], + "text/plain": [ + " fov spot_id cell_ID cellType AATK ABL1 ABL2 ACACB ACE ACKR1 \\\n", + "412252 8 2 201 tumor_1 0.0 1.0 1.0 2.0 0.0 0.0 \n", + "412253 8 8 291 tumor_1 0.0 1.0 1.0 0.0 0.0 0.0 \n", + "412254 8 2 351 tumor_2 0.0 0.0 0.0 1.0 0.0 0.0 \n", + "412255 8 4 41 tumor_1 0.0 1.0 2.0 2.0 1.0 0.0 \n", + "412256 8 9 438 tumor_1 0.0 0.0 0.0 0.0 2.0 0.0 \n", + "... .. ... ... ... ... ... ... ... ... ... \n", + "413127 8 6 879 tumor_1 0.0 1.0 0.0 0.0 2.0 1.0 \n", + "413128 8 3 880 tumor_1 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "413129 8 9 882 tumor_1 0.0 0.0 0.0 0.0 1.0 0.0 \n", + "413130 8 9 884 tumor_1 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "413131 8 3 885 tumor_1 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "412252 ... 0.0 0.0 0.0 4.0 1.0 0.0 2.0 0.0 2.0 2.0 \n", + "412253 ... 0.0 0.0 1.0 7.0 1.0 0.0 3.0 0.0 1.0 4.0 \n", + "412254 ... 0.0 0.0 0.0 5.0 0.0 0.0 8.0 0.0 6.0 4.0 \n", + "412255 ... 0.0 1.0 1.0 5.0 0.0 1.0 1.0 1.0 7.0 3.0 \n", + "412256 ... 0.0 0.0 0.0 7.0 1.0 0.0 8.0 1.0 4.0 5.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "413127 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "413128 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "413129 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 \n", + "413130 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 \n", + "413131 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[880 rows x 1004 columns]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "CosMx_cell_type_sample_1_fov_1 = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==8)]\n", + "CosMx_cell_type_sample_1_fov_1" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "cell_type_lst = set(individual_cell_gene_expression['cellType'].tolist())" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "cell_id_lst = individual_cell_gene_expression[\"cell_ID\"].tolist()" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def get_spot_cell_type_dic(CosMx_cell_type, cell_type_dic):\n", + " one_spot_cell_lst = (spot_id_data['cell_ID'].unique()) # all cell ids for one specific spot\n", + "\n", + " for cell_id in one_spot_cell_lst:\n", + " one_cell_sample = CosMx_cell_type[(CosMx_cell_type['cell_ID']==cell_id)]\n", + " cell_type = one_cell_sample[\"cellType\"].values[0]\n", + " cell_type_dic[cell_type] = cell_type_dic[cell_type] + 1\n", + " \n", + " return cell_type_dic\n", + "\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", + " 117 118 119 11 120 121 122 123 125 126 127 128 129 12 130 131 132 133 134\n", + " 135 136 137 138 139 13 140 141 142 143 144 145 146 147 148 149 14 150 151\n", + " 152 153 154 155 156 157 158 159 15 160 161 162 164 165 166 167 168 169 16\n", + " 170 172 173 175 176 177 178 17 180 181 182 183 184 185 187 189 18 190 191\n", + " 192 193 194 195 196 197 198 199 19 200 202 203 204 205 206 207 208 209 20\n", + " 210 211 212 213 214 215 216 218 219 220 221 222 223 224 225 226 227 228\n", + " 229 22 230 231 232 234 235 236 237 238 239 23 240 241 242 243 244 245 246\n", + " 247 248 249 24 250 251 252 253 254 255 256 257 258 259 25 260 261 262 263\n", + " 264 265 266 267 268 269 26 270 271 272 273 274 275 276 277 278 279 27 280\n", + " 281 282 283 284 285 286 287 288 289 28 290 291 292 294 295 296 297 298 29\n", + " 300 301 302 303 304 305 306 307 308 309 30 310 311 312 313 314 315 317\n", + " 318 319 31 321 323 324 325 326 327 328 329 32 330 331 335 336 337 338 339\n", + " 33 340 341 343 344 345 347 349 34 350 351 352 353 354 355 356 357 358 359\n", + " 35 360 361 365 366 367 368 36 370 373 374 375 376 378 379 37 383 38 39 3\n", + " 40 41 42 43 44 45 46 47 48 49 4 50 51 52 53 54 55 56 57 58 59 60 61 62 64\n", + " 65 66 67 68 69 6 70 71 72 73 74 75 76 77 78 79 7 80 81 82 83 84 85 87 88\n", + " 89 8 90 91 92 93 94 95 96 97 98 99 9 124 163 171 174 179 186 1 201 217 21\n", + " 233 293 2 316 320 332 334 342 348 362 363 369 372 377 382 63 86 188 299\n", + " 322 333 346 364 371 380 381 5]\n", + "fov: (861, 1004)\n", + "spot: (13, 1004)\n" + ] + } + ], + "source": [ + "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", + "print(fov_ids_lst)\n", + "fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==1)]\n", + "print(\"fov:\", fov_data.shape)\n", + "spot_id_data = fov_data[(fov_data['spot_id']==1)]\n", + "print(\"spot:\", spot_id_data.shape)" + ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "execution_count": 58, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/383 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idAntibody.secreting.B.cellsCD3+.alpha.beta.T.cellsCentral.venous.LSECsCholangiocytesErthyroid.cellsHepInflammatory.macrophagesMature.B.cellsNK.like.cellsNon.inflammatory.macrophagesNotDetPeriportal.LSECsPortal.endothelial.cellsStellate.cellsgamma.delta.T.cells.1tumor_1tumor_2
010010301000100010009842
110020100006113020003298
210030010002001020109433
310040500002100000505875
410050101002101013105464
............................................................
34425501401001851100113050
34435602701001820002011100
3444570150100149430207011
34455801210001751201012030
344659024100016401001071300
\n", + "

3447 rows × 19 columns

\n", + "" + ], + "text/plain": [ + " fov spot_id Antibody.secreting.B.cells CD3+.alpha.beta.T.cells \\\n", + "0 100 1 0 3 \n", + "1 100 2 0 1 \n", + "2 100 3 0 0 \n", + "3 100 4 0 5 \n", + "4 100 5 0 1 \n", + "... ... ... ... ... \n", + "3442 5 5 0 14 \n", + "3443 5 6 0 27 \n", + "3444 5 7 0 15 \n", + "3445 5 8 0 12 \n", + "3446 5 9 0 24 \n", + "\n", + " Central.venous.LSECs Cholangiocytes Erthyroid.cells Hep \\\n", + "0 0 1 0 0 \n", + "1 0 0 0 0 \n", + "2 1 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 1 0 0 \n", + "... ... ... ... .. \n", + "3442 0 1 0 0 \n", + "3443 0 1 0 0 \n", + "3444 0 1 0 0 \n", + "3445 1 0 0 0 \n", + "3446 1 0 0 0 \n", + "\n", + " Inflammatory.macrophages Mature.B.cells NK.like.cells \\\n", + "0 0 1 0 \n", + "1 6 1 1 \n", + "2 2 0 0 \n", + "3 2 1 0 \n", + "4 2 1 0 \n", + "... ... ... ... \n", + "3442 18 5 1 \n", + "3443 18 2 0 \n", + "3444 14 9 4 \n", + "3445 17 5 1 \n", + "3446 16 4 0 \n", + "\n", + " Non.inflammatory.macrophages NotDet Periportal.LSECs \\\n", + "0 0 0 1 \n", + "1 3 0 2 \n", + "2 1 0 2 \n", + "3 0 0 0 \n", + "4 1 0 1 \n", + "... ... ... ... \n", + "3442 1 0 0 \n", + "3443 0 0 2 \n", + "3444 3 0 2 \n", + "3445 2 0 1 \n", + "3446 10 0 1 \n", + "\n", + " Portal.endothelial.cells Stellate.cells gamma.delta.T.cells.1 tumor_1 \\\n", + "0 0 0 0 98 \n", + "1 0 0 0 32 \n", + "2 0 1 0 94 \n", + "3 0 5 0 58 \n", + "4 3 1 0 54 \n", + "... ... ... ... ... \n", + "3442 1 13 0 5 \n", + "3443 0 11 1 0 \n", + "3444 0 7 0 1 \n", + "3445 0 12 0 3 \n", + "3446 0 7 1 30 \n", + "\n", + " tumor_2 \n", + "0 42 \n", + "1 98 \n", + "2 33 \n", + "3 75 \n", + "4 64 \n", + "... ... \n", + "3442 0 \n", + "3443 0 \n", + "3444 1 \n", + "3445 0 \n", + "3446 0 \n", + "\n", + "[3447 rows x 19 columns]" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ground_truth_table" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "(3447, 19)" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ground_truth_table.shape" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# ground_truth_table.to_csv('./cancer/new/ground_truth.csv')" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## 4. Generate spot x, y coordiates" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def get_spot_x_y_range(x_global_px, y_global_px, fov_id, fov_spot_coordinates):\n", + " x_l = x_global_px\n", + " y_l = y_global_px\n", + " \n", + " spot_coordinates = []\n", + "\n", + " for spot_id in range(1, 10):\n", + " x = x_l + (spot_id - 1) % 3\n", + " y = y_l + (spot_id - 1) // 3\n", + " spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y})\n", + "\n", + " fov_spot_coordinates = fov_spot_coordinates.append(spot_coordinates, ignore_index=True)\n", + " \n", + "# fov_spot_coordinates['x'] = fov_spot_coordinates['x'] * 0.18 *1e-4\n", + "# fov_spot_coordinates['y'] = fov_spot_coordinates['y'] * 0.18 *1e-4\n", + "\n", + " return fov_spot_coordinates\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fov: 1 (1, 3)\n", + "fov: 2 (1, 4)\n", + "fov: 3 (1, 5)\n", + "fov: 4 (1, 6)\n", + "fov: 5 (1, 7)\n", + "fov: 6 (1, 8)\n", + "fov: 7 (1, 9)\n", + "fov: 8 (1, 10)\n", + "fov: 9 (1, 11)\n", + "fov: 10 (1, 12)\n", + "fov: 11 (1, 13)\n", + "fov: 12 (1, 14)\n", + "fov: 13 (1, 15)\n", + "fov: 14 (1, 16)\n", + "fov: 15 (1, 17)\n", + "fov: 16 (2, 3)\n", + "fov: 17 (2, 4)\n", + "fov: 18 (2, 5)\n", + "fov: 19 (2, 6)\n", + "fov: 20 (2, 7)\n", + "fov: 21 (2, 8)\n", + "fov: 22 (2, 9)\n", + "fov: 23 (2, 10)\n", + "fov: 24 (2, 11)\n", + "fov: 25 (2, 12)\n", + "fov: 26 (2, 13)\n", + "fov: 27 (2, 14)\n", + "fov: 28 (2, 15)\n", + "fov: 29 (2, 16)\n", + "fov: 30 (2, 17)\n", + "fov: 31 (3, 2)\n", + "fov: 32 (3, 3)\n", + "fov: 33 (3, 4)\n", + "fov: 34 (3, 5)\n", + "fov: 35 (3, 6)\n", + "fov: 36 (3, 7)\n", + "fov: 37 (3, 8)\n", + "fov: 38 (3, 9)\n", + "fov: 39 (3, 10)\n", + "fov: 40 (3, 11)\n", + "fov: 41 (3, 12)\n", + "fov: 42 (3, 13)\n", + "fov: 43 (3, 14)\n", + "fov: 44 (3, 15)\n", + "fov: 45 (3, 16)\n", + "fov: 46 (3, 17)\n", + "fov: 47 (3, 18)\n", + "fov: 48 (4, 1)\n", + "fov: 49 (4, 2)\n", + "fov: 50 (4, 3)\n", + "fov: 51 (4, 4)\n", + "fov: 52 (4, 5)\n", + "fov: 53 (4, 6)\n", + "fov: 54 (4, 7)\n", + "fov: 55 (4, 8)\n", + "fov: 56 (4, 9)\n", + "fov: 57 (4, 10)\n", + "fov: 58 (4, 11)\n", + "fov: 59 (4, 12)\n", + "fov: 60 (4, 13)\n", + "fov: 61 (4, 14)\n", + "fov: 62 (4, 15)\n", + "fov: 63 (4, 16)\n", + "fov: 64 (4, 17)\n", + "fov: 65 (4, 18)\n", + "fov: 66 (4, 19)\n", + "fov: 67 (5, 1)\n", + "fov: 68 (5, 2)\n", + "fov: 69 (5, 3)\n", + "fov: 70 (5, 4)\n", + "fov: 71 (5, 5)\n", + "fov: 72 (5, 6)\n", + "fov: 73 (5, 7)\n", + "fov: 74 (5, 8)\n", + "fov: 75 (5, 9)\n", + "fov: 76 (5, 10)\n", + "fov: 77 (5, 11)\n", + "fov: 78 (5, 12)\n", + "fov: 79 (5, 13)\n", + "fov: 80 (5, 14)\n", + "fov: 81 (5, 15)\n", + "fov: 82 (5, 16)\n", + "fov: 83 (5, 17)\n", + "fov: 84 (5, 18)\n", + "fov: 85 (5, 19)\n", + "fov: 86 (5, 20)\n", + "fov: 87 (6, 1)\n", + "fov: 88 (6, 2)\n", + "fov: 89 (6, 3)\n", + "fov: 90 (6, 4)\n", + "fov: 91 (6, 5)\n", + "fov: 92 (6, 6)\n", + "fov: 93 (6, 7)\n", + "fov: 94 (6, 8)\n", + "fov: 95 (6, 9)\n", + "fov: 96 (6, 10)\n", + "fov: 97 (6, 11)\n", + "fov: 98 (6, 12)\n", + "fov: 99 (6, 13)\n", + "fov: 100 (6, 14)\n", + "fov: 101 (6, 15)\n", + "fov: 102 (6, 16)\n", + "fov: 103 (6, 17)\n", + "fov: 104 (6, 18)\n", + "fov: 105 (6, 19)\n", + "fov: 106 (6, 20)\n", + "fov: 107 (7, 1)\n", + "fov: 108 (7, 2)\n", + "fov: 109 (7, 3)\n", + "fov: 110 (7, 4)\n", + "fov: 111 (7, 5)\n", + "fov: 112 (7, 6)\n", + "fov: 113 (7, 7)\n", + "fov: 114 (7, 8)\n", + "fov: 115 (7, 9)\n", + "fov: 116 (7, 10)\n", + "fov: 117 (7, 11)\n", + "fov: 118 (7, 12)\n", + "fov: 119 (7, 13)\n", + "fov: 120 (7, 14)\n", + "fov: 121 (7, 15)\n", + "fov: 122 (7, 16)\n", + "fov: 123 (7, 17)\n", + "fov: 124 (7, 18)\n", + "fov: 125 (7, 19)\n", + "fov: 126 (7, 20)\n", + "fov: 127 (7, 21)\n", + "fov: 128 (8, 1)\n", + "fov: 129 (8, 2)\n", + "fov: 130 (8, 3)\n", + "fov: 131 (8, 4)\n", + "fov: 132 (8, 5)\n", + "fov: 133 (8, 6)\n", + "fov: 134 (8, 7)\n", + "fov: 135 (8, 8)\n", + "fov: 136 (8, 9)\n", + "fov: 137 (8, 10)\n", + "fov: 138 (8, 11)\n", + "fov: 139 (8, 12)\n", + "fov: 140 (8, 13)\n", + "fov: 141 (8, 14)\n", + "fov: 142 (8, 15)\n", + "fov: 143 (8, 16)\n", + "fov: 144 (8, 17)\n", + "fov: 145 (8, 18)\n", + "fov: 146 (8, 19)\n", + "fov: 147 (8, 20)\n", + "fov: 148 (8, 21)\n", + "fov: 149 (9, 1)\n", + "fov: 150 (9, 2)\n", + "fov: 151 (9, 3)\n", + "fov: 152 (9, 4)\n", + "fov: 153 (9, 5)\n", + "fov: 154 (9, 6)\n", + "fov: 155 (9, 7)\n", + "fov: 156 (9, 8)\n", + "fov: 157 (9, 9)\n", + "fov: 158 (9, 10)\n", + "fov: 159 (9, 11)\n", + "fov: 160 (9, 12)\n", + "fov: 161 (9, 13)\n", + "fov: 162 (9, 14)\n", + "fov: 163 (9, 15)\n", + "fov: 164 (9, 16)\n", + "fov: 165 (9, 17)\n", + "fov: 166 (9, 18)\n", + "fov: 167 (9, 19)\n", + "fov: 168 (9, 20)\n", + "fov: 169 (9, 21)\n", + "fov: 170 (9, 22)\n", + "fov: 171 (9, 23)\n", + "fov: 172 (10, 1)\n", + "fov: 173 (10, 2)\n", + "fov: 174 (10, 3)\n", + "fov: 175 (10, 4)\n", + "fov: 176 (10, 5)\n", + "fov: 177 (10, 6)\n", + "fov: 178 (10, 7)\n", + "fov: 179 (10, 8)\n", + "fov: 180 (10, 9)\n", + "fov: 181 (10, 10)\n", + "fov: 182 (10, 11)\n", + "fov: 183 (10, 12)\n", + "fov: 184 (10, 13)\n", + "fov: 185 (10, 14)\n", + "fov: 186 (10, 15)\n", + "fov: 187 (10, 16)\n", + "fov: 188 (10, 17)\n", + "fov: 189 (10, 18)\n", + "fov: 190 (10, 19)\n", + "fov: 191 (10, 20)\n", + "fov: 192 (10, 21)\n", + "fov: 193 (10, 22)\n", + "fov: 194 (10, 23)\n", + "fov: 195 (11, 1)\n", + "fov: 196 (11, 2)\n", + "fov: 197 (11, 3)\n", + "fov: 198 (11, 4)\n", + "fov: 199 (11, 5)\n", + "fov: 200 (11, 6)\n", + "fov: 201 (11, 7)\n", + "fov: 202 (11, 8)\n", + "fov: 203 (11, 9)\n", + "fov: 204 (11, 10)\n", + "fov: 205 (11, 11)\n", + "fov: 206 (11, 12)\n", + "fov: 207 (11, 13)\n", + "fov: 208 (11, 14)\n", + "fov: 209 (11, 15)\n", + "fov: 210 (11, 16)\n", + "fov: 211 (11, 17)\n", + "fov: 212 (11, 18)\n", + "fov: 213 (11, 19)\n", + "fov: 214 (11, 20)\n", + "fov: 215 (11, 21)\n", + "fov: 216 (11, 22)\n", + "fov: 217 (11, 23)\n", + "fov: 218 (12, 1)\n", + "fov: 219 (12, 2)\n", + "fov: 220 (12, 3)\n", + "fov: 221 (12, 4)\n", + "fov: 222 (12, 5)\n", + "fov: 223 (12, 6)\n", + "fov: 224 (12, 7)\n", + "fov: 225 (12, 8)\n", + "fov: 226 (12, 9)\n", + "fov: 227 (12, 10)\n", + "fov: 228 (12, 11)\n", + "fov: 229 (12, 12)\n", + "fov: 230 (12, 13)\n", + "fov: 231 (12, 14)\n", + "fov: 232 (12, 15)\n", + "fov: 233 (12, 16)\n", + "fov: 234 (12, 17)\n", + "fov: 235 (12, 18)\n", + "fov: 236 (12, 19)\n", + "fov: 237 (12, 20)\n", + "fov: 238 (12, 21)\n", + "fov: 239 (12, 22)\n", + "fov: 240 (12, 23)\n", + "fov: 241 (13, 3)\n", + "fov: 242 (13, 4)\n", + "fov: 243 (13, 5)\n", + "fov: 244 (13, 6)\n", + "fov: 245 (13, 7)\n", + "fov: 246 (13, 8)\n", + "fov: 247 (13, 9)\n", + "fov: 248 (13, 10)\n", + "fov: 249 (13, 11)\n", + "fov: 250 (13, 12)\n", + "fov: 251 (13, 13)\n", + "fov: 252 (13, 14)\n", + "fov: 253 (13, 15)\n", + "fov: 254 (13, 16)\n", + "fov: 255 (13, 17)\n", + "fov: 256 (13, 18)\n", + "fov: 257 (13, 19)\n", + "fov: 258 (13, 20)\n", + "fov: 259 (13, 21)\n", + "fov: 260 (13, 22)\n", + "fov: 261 (13, 23)\n", + "fov: 262 (14, 5)\n", + "fov: 263 (14, 6)\n", + "fov: 264 (14, 7)\n", + "fov: 265 (14, 8)\n", + "fov: 266 (14, 9)\n", + "fov: 267 (14, 10)\n", + "fov: 268 (14, 11)\n", + "fov: 269 (14, 12)\n", + "fov: 270 (14, 13)\n", + "fov: 271 (14, 14)\n", + "fov: 272 (14, 15)\n", + "fov: 273 (14, 16)\n", + "fov: 274 (14, 17)\n", + "fov: 275 (14, 18)\n", + "fov: 276 (14, 19)\n", + "fov: 277 (14, 20)\n", + "fov: 278 (14, 21)\n", + "fov: 279 (14, 22)\n", + "fov: 280 (14, 23)\n", + "fov: 281 (15, 6)\n", + "fov: 282 (15, 7)\n", + "fov: 283 (15, 8)\n", + "fov: 284 (15, 9)\n", + "fov: 285 (15, 10)\n", + "fov: 286 (15, 11)\n", + "fov: 287 (15, 12)\n", + "fov: 288 (15, 13)\n", + "fov: 289 (15, 14)\n", + "fov: 290 (15, 15)\n", + "fov: 291 (15, 16)\n", + "fov: 292 (15, 17)\n", + "fov: 293 (15, 18)\n", + "fov: 294 (15, 19)\n", + "fov: 295 (15, 20)\n", + "fov: 296 (15, 21)\n", + "fov: 297 (15, 22)\n", + "fov: 298 (15, 23)\n", + "fov: 299 (16, 6)\n", + "fov: 300 (16, 7)\n", + "fov: 301 (16, 8)\n", + "fov: 302 (16, 9)\n", + "fov: 303 (16, 10)\n", + "fov: 304 (16, 11)\n", + "fov: 305 (16, 12)\n", + "fov: 306 (16, 13)\n", + "fov: 307 (16, 14)\n", + "fov: 308 (16, 15)\n", + "fov: 309 (16, 16)\n", + "fov: 310 (16, 17)\n", + "fov: 311 (16, 18)\n", + "fov: 312 (16, 19)\n", + "fov: 313 (16, 20)\n", + "fov: 314 (16, 21)\n", + "fov: 315 (16, 22)\n", + "fov: 316 (17, 6)\n", + "fov: 317 (17, 7)\n", + "fov: 318 (17, 8)\n", + "fov: 319 (17, 9)\n", + "fov: 320 (17, 10)\n", + "fov: 321 (17, 11)\n", + "fov: 322 (17, 12)\n", + "fov: 323 (17, 13)\n", + "fov: 324 (17, 14)\n", + "fov: 325 (17, 15)\n", + "fov: 326 (17, 16)\n", + "fov: 327 (17, 17)\n", + "fov: 328 (17, 18)\n", + "fov: 329 (17, 19)\n", + "fov: 330 (17, 20)\n", + "fov: 331 (17, 21)\n", + "fov: 332 (17, 22)\n", + "fov: 333 (18, 8)\n", + "fov: 334 (18, 9)\n", + "fov: 335 (18, 10)\n", + "fov: 336 (18, 11)\n", + "fov: 337 (18, 12)\n", + "fov: 338 (18, 13)\n", + "fov: 339 (18, 14)\n", + "fov: 340 (18, 15)\n", + "fov: 341 (18, 16)\n", + "fov: 342 (18, 17)\n", + "fov: 343 (18, 18)\n", + "fov: 344 (18, 19)\n", + "fov: 345 (18, 20)\n", + "fov: 346 (19, 12)\n", + "fov: 347 (19, 13)\n", + "fov: 348 (19, 14)\n", + "fov: 349 (19, 15)\n", + "fov: 350 (19, 16)\n", + "fov: 351 (19, 17)\n", + "fov: 352 (19, 18)\n", + "fov: 353 (19, 19)\n", + "fov: 354 (19, 20)\n", + "fov: 355 (20, 13)\n", + "fov: 356 (20, 14)\n", + "fov: 357 (20, 15)\n", + "fov: 358 (20, 16)\n", + "fov: 359 (20, 17)\n", + "fov: 360 (20, 18)\n", + "fov: 361 (20, 19)\n", + "fov: 362 (20, 20)\n", + "fov: 363 (21, 12)\n", + "fov: 364 (21, 13)\n", + "fov: 365 (21, 14)\n", + "fov: 366 (21, 15)\n", + "fov: 367 (21, 16)\n", + "fov: 368 (21, 17)\n", + "fov: 369 (21, 18)\n", + "fov: 370 (21, 19)\n", + "fov: 371 (22, 12)\n", + "fov: 372 (22, 13)\n", + "fov: 373 (22, 14)\n", + "fov: 374 (22, 15)\n", + "fov: 375 (22, 16)\n", + "fov: 376 (22, 17)\n", + "fov: 377 (23, 13)\n", + "fov: 378 (23, 14)\n", + "fov: 379 (23, 15)\n", + "fov: 380 (23, 16)\n", + "fov: 381 (24, 13)\n", + "fov: 382 (24, 14)\n", + "fov: 383 (24, 15)\n" + ] + } + ], + "source": [ + "fov_dic = {}\n", + "\n", + "fov = 1\n", + "for row in range(1, 2):\n", + " for col in range(3, 18):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + "\n", + "for row in range(2, 3):\n", + " for col in range(3, 18):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + "\n", + "for row in range(3, 4):\n", + " for col in range(2, 19):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + " \n", + "for row in range(4, 5):\n", + " for col in range(1, 20):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(5, 6):\n", + " for col in range(1, 21):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(6, 7):\n", + " for col in range(1, 21):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + " \n", + "for row in range(7, 8):\n", + " for col in range(1, 22):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(8, 9):\n", + " for col in range(1, 22):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "\n", + "for row in range(9, 13):\n", + " for col in range(1, 24):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(13, 14):\n", + " for col in range(3, 24):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "\n", + "for row in range(14, 15):\n", + " for col in range(5, 24):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(15, 16):\n", + " for col in range(6, 24):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(16, 17):\n", + " for col in range(6, 23):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(17, 18):\n", + " for col in range(6, 23):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(18, 19):\n", + " for col in range(8, 21):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + "for row in range(19, 20):\n", + " for col in range(12, 21):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(20, 21):\n", + " for col in range(13, 21):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(21, 22):\n", + " for col in range(12, 20):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + " \n", + "for row in range(22, 23):\n", + " for col in range(12, 18):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + "\n", + " \n", + "for row in range(23, 24):\n", + " for col in range(13, 17):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n", + " \n", + "for row in range(24, 25):\n", + " for col in range(13, 16):\n", + " print(\"fov:\", fov, (row, col))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1 \n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# fov_dic, len(fov_dic.keys())" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idxy
010011943
110022043
210032143
310041944
410052044
...............
344255523
344356623
344457424
344558524
344659624
\n", + "

3447 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " fov spot_id x y\n", + "0 100 1 19 43\n", + "1 100 2 20 43\n", + "2 100 3 21 43\n", + "3 100 4 19 44\n", + "4 100 5 20 44\n", + "... ... ... .. ..\n", + "3442 5 5 5 23\n", + "3443 5 6 6 23\n", + "3444 5 7 4 24\n", + "3445 5 8 5 24\n", + "3446 5 9 6 24\n", + "\n", + "[3447 rows x 4 columns]" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fov_spot_coordinates = pd.DataFrame(columns = ['fov', 'spot_id', 'x', 'y'])\n", + "fov_lst = list(individual_cell_gene_expression['fov'].unique())\n", + "\n", + "for fov_id in fov_lst:\n", + " x_px = fov_dic[fov_id][0]\n", + " y_px = fov_dic[fov_id][1]\n", + " fov_spot_coordinates = get_spot_x_y_range(x_px, y_px, fov_id, fov_spot_coordinates)\n", + "fov_spot_coordinates\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# fov_spot_coordinates.to_csv('./cancer/new/spot_location.csv')" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "spot_gene_expression = spot_gene_expression.drop(columns = [\"fov\", \"spot_id\"])\n", + "ground_truth_table = ground_truth_table.drop(columns = [\"fov\", \"spot_id\"])\n", + "fov_spot_coordinates = fov_spot_coordinates.drop(columns = [\"fov\", \"spot_id\"])\n", + "\n", + "\n", + "\n", + "import anndata as ad\n", + "st_adata = ad.AnnData(X = spot_gene_expression.values, obs = ground_truth_table, var = pd.DataFrame(index = list(spot_gene_expression.columns)), dtype=int)\n", + "st_adata.obsm[\"spatial\"] = fov_spot_coordinates.values\n", + "\n", + "spot_sums = np.sum(st_adata.X, axis=1)\n", + "mask = spot_sums > 100\n", + "filtered_data = st_adata[mask]\n", + "\n", + "\n", + "# file_path = \"/home/luqiaolin/projects/Benchmarking_paper_code/pseudo_spot_generation/cosmx_liver/Cancer.h5ad\"\n", + "# filtered_data.write_h5ad(file_path)\n", + "\n", + "\n", + "\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "ArrayView([[55, 127],\n", + " [56, 127],\n", + " [57, 127],\n", + " ...,\n", + " [16, 72],\n", + " [17, 72],\n", + " [18, 72]], dtype=object)" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# filtered_data.obs.columns = filtered_data.obs.columns.str.replace('.', '_')\n", + "filtered_data.obsm['spatial']" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "filtered_data.obsm['spatial'] = filtered_data.obsm['spatial'].astype(float)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "filtered_data.obs = filtered_data.obs.astype(float)\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "file_path = \"/home/luqiaolin/projects/Benchmarking_paper_code/pseudo_spot_generation/cosmx_liver/Cancer.h5ad\"\n", + "filtered_data.write_h5ad(file_path)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 30272 × 1000\n", + " obs: 'Antibody.secreting.B.cells', 'CD3+.alpha.beta.T.cells', 'Central.venous.LSECs', 'Cholangiocytes', 'Erthyroid.cells', 'Hep', 'Inflammatory.macrophages', 'Mature.B.cells', 'NK.like.cells', 'Non.inflammatory.macrophages', 'NotDet', 'Periportal.LSECs', 'Portal.endothelial.cells', 'Stellate.cells', 'gamma.delta.T.cells.1', 'tumor_1', 'tumor_2'\n", + " obsm: 'spatial'" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filtered_data" + ] }, { "cell_type": "code", @@ -47547,9 +9306,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "test", + "display_name": "baseline_code", "language": "python", - "name": "test" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -47561,7 +9320,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.8.16" } }, "nbformat": 4, diff --git a/pseudo_spot_generation/liver/health.ipynb b/pseudo_spot_generation/liver/health.ipynb index 3cd4cd5..c6256a5 100644 --- a/pseudo_spot_generation/liver/health.ipynb +++ b/pseudo_spot_generation/liver/health.ipynb @@ -6,54 +6,33 @@ "metadata": { "id": "dhyUyNf2chI2" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/luqiaolin/anaconda3/envs/baseline_code/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], "source": [ "import numpy as np\n", "import torch\n", "import sys\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.optim as optim\n", "import os\n", "import pandas as pd\n", - "\n", - "from torch.utils.data import DataLoader, Dataset, TensorDataset\n", - "\n", + "from tqdm import tqdm\n", "import time\n", "import matplotlib.pyplot as plt\n", - "from scipy.stats import pearsonr" + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "os.chdir(\"/home/luqiaolin/projects/Benchmarking_paper_code/cosmx_spot_data/pretrain/liver\")\n" ] }, { "cell_type": "code", "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "executionInfo": { - "elapsed": 309, - "status": "ok", - "timestamp": 1613202649015, - "user": { - "displayName": "jiayuan ding", - "photoUrl": "", - "userId": "00368278201421210170" - }, - "user_tz": 480 - }, - "id": "FTLDiSDmdu8K", - "outputId": "1a0d775a-27c1-41c8-eb82-0ceaaa06e42b" - }, - "outputs": [], - "source": [ - "# from google.colab import drive\n", - "# drive.mount('/content/gdrive')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -77,81 +56,46 @@ "name": "stdout", "output_type": "stream", "text": [ - "cancer.ipynb health.ipynb slide_1.png\n", - "/mnt/ufs18/home-144/dingjia5/projects/CosMx_liver/benchmark_generation_scripts\n" + "cancer\t\t liver_cell_positions_file.csv NormalLiver_cellType.txt\n", + "cosmx_Liver.h5ad liver_cellType.csv\t\t processed\n", + "health\t\t liver_metadata.csv\t\t pseudo_spot\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/luqiaolin/projects/Benchmarking_paper_code/cosmx_spot_data/pretrain/liver\n" ] } ], "source": [ "!ls\n", - "\n", "!pwd" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "04C_9R1Ucjsp" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ALj58_AZdKGJ" - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'\\nGeoMx: spot region area\\n1. mean: 37456.28 μm2\\n2. median: 24168.74 μm2\\n\\nCosMx lung, kidney: \\n1. All FOVs are the same dimension, 5472 x 3648 pixels\\n2. multiply the pixel value by 0.18 um per pixel\\n3. FOV area: 5472 x 3648 pixels -> 984.96um x 656.64um = 646,764.134 um2 \\n\\nNew Benchamrk from CosMx\\n1. length: 5472 pixels, width: 3648 pixels\\n2. simulated spot: \\n length: 5472 pixels / 5 = 1094.4 pixel = 196.992 um\\n width: 3648 pixels / 4 = 912 pixel = 164.16 um\\n one spot area: 196.992 um * 164.16 um = 32338.2067 um2\\n3. In total: 20 spots / FOV\\n\\n\\nCosMx liver:\\n1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\\n2. simulated spot: \\n 4236 / 3.0 = 1412 pixels = 169.44 um\\n 169.44 um * 169.44 um = 28709.9136 um2\\n\\n'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "\"\"\"\n", "GeoMx: spot region area\n", "1. mean: 37456.28 μm2\n", "2. median: 24168.74 μm2\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", + "\n", "CosMx lung, kidney: \n", "1. All FOVs are the same dimension, 5472 x 3648 pixels\n", "2. multiply the pixel value by 0.18 um per pixel\n", @@ -165,91 +109,19 @@ " one spot area: 196.992 um * 164.16 um = 32338.2067 um2\n", "3. In total: 20 spots / FOV\n", "\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\nCosMx liver:\\n1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\\n2. simulated spot: \\n 4236 / 3.0 = 1412 pixels = 169.44 um\\n 169.44 um * 169.44 um = 28709.9136 um2\\n'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\"\"\"\n", + "\n", "CosMx liver:\n", "1. All FOVs are the same dimension: 4236 * 4236 pixels, 0.12um per pixel\n", "2. simulated spot: \n", " 4236 / 3.0 = 1412 pixels = 169.44 um\n", " 169.44 um * 169.44 um = 28709.9136 um2\n", + "\n", "\"\"\"" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Transcript Data" - ] - }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "id": "_xOAWdcpojDI" - }, - "outputs": [], - "source": [ - "\n", - "import numpy as np\n", - "import torch\n", - "import sys\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "import torch.optim as optim\n", - "import os\n", - "import pandas as pd\n", - "\n", - "from torch.utils.data import DataLoader, Dataset, TensorDataset\n", - "\n", - "import time\n", - "import matplotlib.pyplot as plt\n", - "from scipy.stats import pearsonr\n", - "import pandas as pd\n", - "from collections import Counter" - ] - }, - { - "cell_type": "code", - "execution_count": 5, "metadata": {}, "outputs": [ { @@ -367,19 +239,19 @@ "[793318 rows x 3 columns]" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "CosMx_cell_type = pd.read_csv('../liver_cellType.csv')\n", + "CosMx_cell_type = pd.read_csv('./liver_cellType.csv')\n", "CosMx_cell_type" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -403,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -444,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -467,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -476,7 +348,7 @@ "(301, 383)" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -487,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -605,7 +477,7 @@ "[332877 rows x 3 columns]" ] }, - "execution_count": 10, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -618,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -645,7 +517,7 @@ " 'NotDet': 4}" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -664,14 +536,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "cell_boundary = pd.read_csv('./liver_cell_positions_file.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "cell_boundary['cell_single_id'] = cell_boundary['cell_ID'].apply(lambda x: x.split('_')[-1])" + ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -702,6 +585,7 @@ " x_slide_mm\n", " y_slide_mm\n", " fov\n", + " cell_single_id\n", " \n", " \n", " \n", @@ -714,6 +598,7 @@ " 9.03144\n", " 9.73500\n", " 100\n", + " 10\n", " \n", " \n", " 1\n", @@ -724,6 +609,7 @@ " 8.77440\n", " 9.25824\n", " 100\n", + " 1078\n", " \n", " \n", " 2\n", @@ -734,6 +620,7 @@ " 8.87928\n", " 9.23412\n", " 100\n", + " 1135\n", " \n", " \n", " 3\n", @@ -744,6 +631,7 @@ " 9.12132\n", " 9.61104\n", " 100\n", + " 267\n", " \n", " \n", " 4\n", @@ -754,6 +642,7 @@ " 9.08436\n", " 9.40548\n", " 100\n", + " 732\n", " \n", " \n", " ...\n", @@ -764,6 +653,7 @@ " ...\n", " ...\n", " ...\n", + " ...\n", " \n", " \n", " 793313\n", @@ -774,6 +664,7 @@ " 5.44420\n", " 11.27840\n", " 9\n", + " 945\n", " \n", " \n", " 793314\n", @@ -784,6 +675,7 @@ " 5.45332\n", " 11.27804\n", " 9\n", + " 947\n", " \n", " \n", " 793315\n", @@ -794,6 +686,7 @@ " 5.32684\n", " 11.27792\n", " 9\n", + " 948\n", " \n", " \n", " 793316\n", @@ -804,6 +697,7 @@ " 5.29252\n", " 11.27732\n", " 9\n", + " 949\n", " \n", " \n", " 793317\n", @@ -814,10 +708,11 @@ " 5.62432\n", " 11.70812\n", " 9\n", + " 95\n", " \n", " \n", "\n", - "

793318 rows × 7 columns

\n", + "

793318 rows × 8 columns

\n", "" ], "text/plain": [ @@ -834,459 +729,53 @@ "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 \n", "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 \n", "\n", - " y_slide_mm fov \n", - "0 9.73500 100 \n", - "1 9.25824 100 \n", - "2 9.23412 100 \n", - "3 9.61104 100 \n", - "4 9.40548 100 \n", - "... ... ... \n", - "793313 11.27840 9 \n", - "793314 11.27804 9 \n", - "793315 11.27792 9 \n", - "793316 11.27732 9 \n", - "793317 11.70812 9 \n", + " y_slide_mm fov cell_single_id \n", + "0 9.73500 100 10 \n", + "1 9.25824 100 1078 \n", + "2 9.23412 100 1135 \n", + "3 9.61104 100 267 \n", + "4 9.40548 100 732 \n", + "... ... ... ... \n", + "793313 11.27840 9 945 \n", + "793314 11.27804 9 947 \n", + "793315 11.27792 9 948 \n", + "793316 11.27732 9 949 \n", + "793317 11.70812 9 95 \n", "\n", - "[793318 rows x 7 columns]" + "[793318 rows x 8 columns]" ] }, - "execution_count": 12, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary = pd.read_csv('../liver_cell_positions_file.csv')\n", "cell_boundary" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "cell_boundary['cell_single_id'] = cell_boundary['cell_ID'].apply(lambda x: x.split('_')[-1])" + "sample_1_rows = cell_boundary[\"cell_ID\"].str.startswith(\"c_1_\")\n", + "cell_boundary_health = cell_boundary.loc[sample_1_rows, :]" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0cell_IDx_FOV_pxy_FOV_pxx_slide_mmy_slide_mmfovcell_single_id
0c_1_100_10c_1_100_102737259.031449.7350010010
1c_1_100_1078c_1_100_107859539988.774409.258241001078
2c_1_100_1135c_1_100_1135146941998.879289.234121001135
3c_1_100_267c_1_100_267348610589.121329.61104100267
4c_1_100_732c_1_100_732317827719.084369.40548100732
...........................
793313c_2_9_945c_2_9_945271042305.4442011.278409945
793314c_2_9_947c_2_9_947278642335.4533211.278049947
793315c_2_9_948c_2_9_948173242345.3268411.277929948
793316c_2_9_949c_2_9_949144642395.2925211.277329949
793317c_2_9_95c_2_9_9542116495.6243211.70812995
\n", - "

793318 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 cell_ID x_FOV_px y_FOV_px x_slide_mm \\\n", - "0 c_1_100_10 c_1_100_10 2737 25 9.03144 \n", - "1 c_1_100_1078 c_1_100_1078 595 3998 8.77440 \n", - "2 c_1_100_1135 c_1_100_1135 1469 4199 8.87928 \n", - "3 c_1_100_267 c_1_100_267 3486 1058 9.12132 \n", - "4 c_1_100_732 c_1_100_732 3178 2771 9.08436 \n", - "... ... ... ... ... ... \n", - "793313 c_2_9_945 c_2_9_945 2710 4230 5.44420 \n", - "793314 c_2_9_947 c_2_9_947 2786 4233 5.45332 \n", - "793315 c_2_9_948 c_2_9_948 1732 4234 5.32684 \n", - "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 \n", - "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 \n", - "\n", - " y_slide_mm fov cell_single_id \n", - "0 9.73500 100 10 \n", - "1 9.25824 100 1078 \n", - "2 9.23412 100 1135 \n", - "3 9.61104 100 267 \n", - "4 9.40548 100 732 \n", - "... ... ... ... \n", - "793313 11.27840 9 945 \n", - "793314 11.27804 9 947 \n", - "793315 11.27792 9 948 \n", - "793316 11.27732 9 949 \n", - "793317 11.70812 9 95 \n", - "\n", - "[793318 rows x 8 columns]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cell_boundary" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0cell_IDx_FOV_pxy_FOV_pxx_slide_mmy_slide_mmfovcell_single_id
0c_1_100_10c_1_100_102737259.031449.7350010010
1c_1_100_1078c_1_100_107859539988.774409.258241001078
2c_1_100_1135c_1_100_1135146941998.879289.234121001135
3c_1_100_267c_1_100_267348610589.121329.61104100267
4c_1_100_732c_1_100_732317827719.084369.40548100732
...........................
566002c_1_9_981c_1_9_981242634995.4101211.366129981
566003c_1_9_982c_1_9_98230534745.1556011.369129982
566004c_1_9_985c_1_9_98570635045.2037211.365529985
566005c_1_9_987c_1_9_987162335175.3137611.363969987
566006c_1_9_995c_1_9_995380835945.5759611.354729995
\n", - "

332877 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 cell_ID x_FOV_px y_FOV_px x_slide_mm \\\n", - "0 c_1_100_10 c_1_100_10 2737 25 9.03144 \n", - "1 c_1_100_1078 c_1_100_1078 595 3998 8.77440 \n", - "2 c_1_100_1135 c_1_100_1135 1469 4199 8.87928 \n", - "3 c_1_100_267 c_1_100_267 3486 1058 9.12132 \n", - "4 c_1_100_732 c_1_100_732 3178 2771 9.08436 \n", - "... ... ... ... ... ... \n", - "566002 c_1_9_981 c_1_9_981 2426 3499 5.41012 \n", - "566003 c_1_9_982 c_1_9_982 305 3474 5.15560 \n", - "566004 c_1_9_985 c_1_9_985 706 3504 5.20372 \n", - "566005 c_1_9_987 c_1_9_987 1623 3517 5.31376 \n", - "566006 c_1_9_995 c_1_9_995 3808 3594 5.57596 \n", - "\n", - " y_slide_mm fov cell_single_id \n", - "0 9.73500 100 10 \n", - "1 9.25824 100 1078 \n", - "2 9.23412 100 1135 \n", - "3 9.61104 100 267 \n", - "4 9.40548 100 732 \n", - "... ... ... ... \n", - "566002 11.36612 9 981 \n", - "566003 11.36912 9 982 \n", - "566004 11.36552 9 985 \n", - "566005 11.36396 9 987 \n", - "566006 11.35472 9 995 \n", - "\n", - "[332877 rows x 8 columns]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sample_1_rows = cell_boundary[\"cell_ID\"].str.startswith(\"c_1_\")\n", - "cell_boundary_health = cell_boundary.loc[sample_1_rows, :]\n", - "cell_boundary_health" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "mapping = {\"Sample_1\": [2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183], \"Sample_2\": [11, 12, 13, 14, 26, 27, 28, 29, 30, 42, 43, 44, 45, 46, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 99, 100, 101, 102, 103, 104, 105, 106, 119, 120, 121, 122, 123, 124, 125, 126, 140, 141, 142, 143, 144, 145, 146, 147, 148, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194], \"Sample_3\": [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 262, 263, 264, 265, 266, 267, 268, 269, 281, 282, 283, 284, 285, 286, 287, 299, 300, 301, 302, 303, 304, 305, 316, 317, 318, 319, 320, 321, 322, 333, 334, 335, 336, 337, 346], \"Sample_4\": [207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 323, 324, 325, 326, 327, 328, 329, 330, 331, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 365, 366, 367, 368, 372, 373, 374, 375, 377, 378, 379]}" - ] - }, - { - "cell_type": "code", - "execution_count": 17, + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "mapping = {\"Sample_1\": [2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183], \"Sample_2\": [11, 12, 13, 14, 26, 27, 28, 29, 30, 42, 43, 44, 45, 46, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 99, 100, 101, 102, 103, 104, 105, 106, 119, 120, 121, 122, 123, 124, 125, 126, 140, 141, 142, 143, 144, 145, 146, 147, 148, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194], \"Sample_3\": [195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 262, 263, 264, 265, 266, 267, 268, 269, 281, 282, 283, 284, 285, 286, 287, 299, 300, 301, 302, 303, 304, 305, 316, 317, 318, 319, 320, 321, 322, 333, 334, 335, 336, 337, 346], \"Sample_4\": [207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 323, 324, 325, 326, 327, 328, 329, 330, 331, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 365, 366, 367, 368, 372, 373, 374, 375, 377, 378, 379]}" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1647,7 +1136,7 @@ " 379]" ] }, - "execution_count": 17, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1659,7 +1148,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1668,7 +1157,7 @@ "353" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1679,7 +1168,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1870,7 +1359,7 @@ "[312691 rows x 8 columns]" ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1881,110 +1370,283 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "text/plain": [ + "301" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(cell_boundary_health['fov'].unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "fov_ids_lst_health = cell_boundary_health['fov'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# for fov_id in fov_ids_lst_health:\n", + "# print(\"fov_id:\", fov_id, cell_boundary_health[(cell_boundary_health['fov']==fov_id)].shape)\n", + "# fov_whole = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", + "# print(fov_whole[\"x_FOV_px\"].max(), fov_whole[\"x_FOV_px\"].min())\n", + "# print(fov_whole[\"y_FOV_px\"].max(), fov_whole[\"y_FOV_px\"].min())\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# import numpy as np\n", + "# import matplotlib.pyplot as plt\n", + "# plt.figure(figsize=(15, 15), dpi=80)\n", + "\n", + "# np.random.seed(20)\n", + "# color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", + "# recorded_fov = []\n", + "# for i in range(len(fov_ids_lst_health)):\n", + "# fov_id = fov_ids_lst_health[i]\n", + "# X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", + "# Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", + " \n", + "# # plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.legend()\n", + " \n", + "# if fov_id not in recorded_fov:\n", + "# plt.annotate(str(fov_id), (X[0], Y[0]))\n", + "\n", + "# plt.title('Slide 1: Normal Liver')\n", + "# plt.xlabel('x_slide_mm') \n", + "# plt.ylabel('y_slide_mm') \n", + "# plt.savefig('slide_1.png') \n", + "# plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# import numpy as np\n", + "# import matplotlib.pyplot as plt\n", + "# plt.figure(figsize=(15, 15), dpi=80)\n", + "\n", + "# np.random.seed(20)\n", + "# color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", + "# recorded_fov = []\n", + "# for i in range(len(fov_ids_lst_health)):\n", + "# fov_id = fov_ids_lst_health[i]\n", + "# X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", + "# Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", + "# # import ipdb\n", + "# # ipdb.set_trace()\n", + "\n", + "# # plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", + "# plt.legend()\n", + " \n", + "# if fov_id not in recorded_fov:\n", + "# # plt.annotate(str(fov_id), (X[50], Y[50]), size=20)\n", + "# plt.annotate(str(fov_id), ((max(X) - min(X))/2.0 + min(X), (max(Y) - min(Y))/2.0 + min(Y)), size=10)\n", + "# # if i > 10:\n", + "# # break\n", + "\n", + "# plt.xticks(fontsize=20)\n", + "# plt.yticks(fontsize=20)\n", + "# plt.title('FOV Layout in Normal Liver',fontsize=22)\n", + "# plt.xlabel('X(mm)', fontsize=20) \n", + "# plt.ylabel('Y(mm)', fontsize=20) \n", + "# plt.savefig(\"../../FOV_layout/normal_liver.png\", format=\"png\", bbox_inches=\"tight\")\n", + "# plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Benchmark Generation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. spot_fov_cellId_mapping.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "def get_spot_fov_cellId_mapping(data_result, cell_boundary_fov_11):\n", + " x_min, x_max = cell_boundary_fov_11[\"x_FOV_px\"].min(), cell_boundary_fov_11[\"x_FOV_px\"].max()\n", + " y_min, y_max = cell_boundary_fov_11[\"y_FOV_px\"].min(), cell_boundary_fov_11[\"y_FOV_px\"].max()\n", + "\n", + " x_diff, y_diff = (x_max - x_min) / 3, (y_max - y_min) / 3\n", + "\n", + " # Calculate spot_id using vectorized operations\n", + " cell_boundary_fov_11['spot_id'] = (\n", + " 3 * ((cell_boundary_fov_11[\"x_FOV_px\"] - x_min) // x_diff) +\n", + " ((cell_boundary_fov_11[\"y_FOV_px\"] - y_min) // y_diff) + 1\n", + " ).clip(1, 10).astype(int)\n", + "\n", + " # Filter out invalid spot_ids\n", + " valid_data = cell_boundary_fov_11[(cell_boundary_fov_11['spot_id'] >= 1) & (cell_boundary_fov_11['spot_id'] <= 10)]\n", + "\n", + " # Create a DataFrame with the required columns\n", + " result_df = valid_data[['spot_id', 'fov', 'cell_single_id']].copy()\n", + " # Concatenate the result DataFrame with the existing data_result\n", + " data_result = pd.concat([data_result, result_df], ignore_index=True)\n", + "\n", + " return data_result\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "
Unnamed: 0cell_IDx_FOV_pxy_FOV_pxx_slide_mmy_slide_mmfovcell_single_id
0c_1_100_10c_1_100_102737259.031449.7350010010
1c_1_100_1078c_1_100_107859539988.774409.258241001078
2c_1_100_1135c_1_100_1135146941998.879289.234121001135
3c_1_100_267c_1_100_267348610589.121329.61104100267
4c_1_100_732c_1_100_732317827719.084369.40548100732
...........................
566002c_1_9_981
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2072,7 +1734,7 @@ "[332877 rows x 8 columns]" ] }, - "execution_count": 20, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -2083,21 +1745,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 21, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -2129,19 +1777,19 @@ " 84, 21])" ] }, - "execution_count": 21, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fov_ids_lst_health = cell_boundary_health['fov'].unique()\n", - "fov_ids_lst_health" + "fov_ids_lst = cell_boundary_health['fov'].unique()\n", + "fov_ids_lst" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 29, "metadata": { "scrolled": true }, @@ -2150,1950 +1798,90 @@ "name": "stdout", "output_type": "stream", "text": [ - "fov_id: 100 (1239, 8)\n", - "4245 12\n", - "4236 24\n", - "fov_id: 101 (1224, 8)\n", - "4243 16\n", - "4242 18\n", - "fov_id: 102 (1196, 8)\n", - "4237 19\n", - "4237 17\n", - "fov_id: 103 (1140, 8)\n", - "4240 26\n", - "4237 20\n", - "fov_id: 104 (1271, 8)\n", - "4234 18\n", - "4241 15\n", - "fov_id: 105 (131, 8)\n", - "2167 16\n", - "4235 65\n", - "fov_id: 106 (259, 8)\n", - "4240 898\n", - "4232 28\n", - "fov_id: 107 (1187, 8)\n", - "4241 14\n", - "4236 16\n", - "fov_id: 108 (1138, 8)\n", - "4230 16\n", - "4241 14\n", - "fov_id: 109 (1353, 8)\n", - "4237 20\n", - "4233 19\n", - "fov_id: 10 (1388, 8)\n", - "4241 19\n", - "4242 18\n", - "fov_id: 110 (1243, 8)\n", - "4237 16\n", - "4239 20\n", - "fov_id: 111 (1379, 8)\n", - "4244 20\n", - "4238 16\n", - "fov_id: 112 (1365, 8)\n", - "4234 21\n", - "4235 16\n", - "fov_id: 113 (1152, 8)\n", - "4241 15\n", - "4241 17\n", - "fov_id: 114 (1184, 8)\n", - "4245 16\n", - "4240 17\n", - "fov_id: 115 (1111, 8)\n", - "4243 19\n", - "4244 17\n", - "fov_id: 116 (622, 8)\n", - "4234 15\n", - "2977 19\n", - "fov_id: 117 (802, 8)\n", - "4239 14\n", - "4107 21\n", - "fov_id: 118 (1357, 8)\n", - "4240 22\n", - "4242 17\n", - "fov_id: 119 (1289, 8)\n", - "4237 19\n", - "4240 19\n", - "fov_id: 11 (1250, 8)\n", - "4238 18\n", - "4242 14\n", - "fov_id: 120 (1230, 8)\n", - "4236 13\n", - "4238 16\n", - "fov_id: 121 (1269, 8)\n", - "4235 20\n", - "4239 14\n", - "fov_id: 122 (1162, 8)\n", - "4233 16\n", - "4235 13\n", - "fov_id: 123 (1132, 8)\n", - "4242 20\n", - "4239 18\n", - "fov_id: 124 (1358, 8)\n", - "4242 16\n", - "4235 18\n", - "fov_id: 125 (1203, 8)\n", - "4242 19\n", - "4243 14\n", - "fov_id: 126 (151, 8)\n", - "2321 20\n", - "4223 23\n", - "fov_id: 127 (133, 8)\n", - "4237 122\n", - "4030 52\n", - "fov_id: 128 (1058, 8)\n", - "4235 14\n", - "4237 18\n", - "fov_id: 129 (1173, 8)\n", - "4238 21\n", - "4234 16\n", - "fov_id: 12 (1294, 8)\n", - "4237 16\n", - "4242 19\n", - "fov_id: 130 (1410, 8)\n", - "4240 20\n", - "4238 15\n", - "fov_id: 131 (1293, 8)\n", - "4243 20\n", - "4239 20\n", - "fov_id: 132 (1391, 8)\n", - "4237 15\n", - "4238 15\n", - "fov_id: 133 (1393, 8)\n", - "4243 20\n", - "4236 20\n", - "fov_id: 134 (1358, 8)\n", - "4235 18\n", - "4242 22\n", - "fov_id: 135 (1347, 8)\n", - "4234 11\n", - "4237 15\n", - "fov_id: 136 (793, 8)\n", - "4232 21\n", - "4240 20\n", - "fov_id: 137 (288, 8)\n", - "4229 13\n", - "4221 2997\n", - "fov_id: 138 (469, 8)\n", - "4244 27\n", - "4242 116\n", - "fov_id: 139 (1242, 8)\n", - "4245 22\n", - "4244 12\n", - "fov_id: 13 (1027, 8)\n", - "4239 15\n", - "4238 24\n", - "fov_id: 140 (1290, 8)\n", - "4234 20\n", - "4232 13\n", - "fov_id: 141 (1190, 8)\n", - "4239 19\n", - "4236 13\n", - "fov_id: 142 (1316, 8)\n", - "4241 19\n", - "4236 20\n", - "fov_id: 143 (1137, 8)\n", - "4237 9\n", - "4237 18\n", - "fov_id: 144 (1245, 8)\n", - "4228 19\n", - "4240 15\n", - "fov_id: 145 (1249, 8)\n", - "4242 31\n", - "4238 14\n", - "fov_id: 146 (1306, 8)\n", - "4240 26\n", - "4232 18\n", - "fov_id: 147 (419, 8)\n", - "2189 13\n", - "4230 32\n", - "fov_id: 149 (1262, 8)\n", - "4244 37\n", - "4237 24\n", - "fov_id: 14 (1237, 8)\n", - "4240 15\n", - "4237 15\n", - "fov_id: 150 (1370, 8)\n", - "4240 15\n", - "4243 17\n", - "fov_id: 151 (1255, 8)\n", - "4242 15\n", - "4240 20\n", - "fov_id: 152 (1160, 8)\n", - "4240 16\n", - "4241 16\n", - "fov_id: 153 (1254, 8)\n", - "4242 19\n", - "4236 14\n", - "fov_id: 154 (1305, 8)\n", - "4234 18\n", - "4221 16\n", - "fov_id: 155 (1168, 8)\n", - "4230 26\n", - "4234 17\n", - "fov_id: 156 (1280, 8)\n", - "4238 23\n", - "4242 18\n", - "fov_id: 157 (1324, 8)\n", - "4243 14\n", - "4241 17\n", - "fov_id: 158 (1343, 8)\n", - "4244 22\n", - "4236 18\n", - "fov_id: 159 (1250, 8)\n", - "4242 12\n", - "4236 19\n", - "fov_id: 15 (1402, 8)\n", - "4239 27\n", - "4241 23\n", - "fov_id: 160 (1297, 8)\n", - "4243 17\n", - "4234 17\n", - "fov_id: 161 (1299, 8)\n", - "4242 13\n", - "4234 15\n", - "fov_id: 162 (1237, 8)\n", - "4240 24\n", - "4239 12\n", - "fov_id: 163 (1341, 8)\n", - "4237 15\n", - "4232 17\n", - "fov_id: 164 (1060, 8)\n", - "4227 10\n", - "4237 17\n", - "fov_id: 165 (971, 8)\n", - "4240 20\n", - "4234 11\n", - "fov_id: 166 (1198, 8)\n", - "4243 21\n", - "4241 14\n", - "fov_id: 167 (1420, 8)\n", - "4240 23\n", - "4238 18\n", - "fov_id: 169 (20, 8)\n", - "4103 529\n", - "3974 44\n", - "fov_id: 16 (1192, 8)\n", - "4241 18\n", - "4240 13\n", - "fov_id: 170 (1069, 8)\n", - "4232 83\n", - "4237 15\n", - "fov_id: 171 (1309, 8)\n", - "4240 30\n", - "4242 21\n", - "fov_id: 172 (1309, 8)\n", - "4237 15\n", - "4233 16\n", - "fov_id: 173 (1284, 8)\n", - "4242 15\n", - "4239 18\n", - "fov_id: 174 (1446, 8)\n", - "4242 22\n", - "4235 14\n", - "fov_id: 176 (1295, 8)\n", - "4240 17\n", - "4238 23\n", - "fov_id: 177 (1334, 8)\n", - "4242 15\n", - "4243 21\n", - "fov_id: 178 (1345, 8)\n", - "4229 16\n", - "4241 17\n", - "fov_id: 179 (1277, 8)\n", - "4241 15\n", - "4236 11\n", - "fov_id: 17 (1044, 8)\n", - "4246 18\n", - "4233 16\n", - "fov_id: 182 (1120, 8)\n", - "4228 20\n", - "4235 16\n", - "fov_id: 184 (1229, 8)\n", - "4229 14\n", - "4238 18\n", - "fov_id: 185 (1121, 8)\n", - "4236 12\n", - "4236 17\n", - "fov_id: 186 (1175, 8)\n", - "4243 34\n", - "4237 13\n", - "fov_id: 187 (1262, 8)\n", - "4233 27\n", - "4238 23\n", - "fov_id: 188 (1170, 8)\n", - "4242 17\n", - "4237 22\n", - "fov_id: 189 (769, 8)\n", - "4028 13\n", - "4237 18\n", - "fov_id: 18 (1241, 8)\n", - "4239 17\n", - "4239 16\n", - "fov_id: 190 (1159, 8)\n", - "4238 97\n", - "4243 20\n", - "fov_id: 191 (1329, 8)\n", - "4233 14\n", - "4235 16\n", - "fov_id: 192 (1220, 8)\n", - "4240 17\n", - "4244 27\n", - "fov_id: 193 (1308, 8)\n", - "4236 21\n", - "4241 16\n", - "fov_id: 194 (1421, 8)\n", - "4232 29\n", - "4236 16\n", - "fov_id: 195 (1304, 8)\n", - "4240 22\n", - "4235 21\n", - "fov_id: 197 (1389, 8)\n", - "4236 20\n", - "4234 15\n", - "fov_id: 198 (1140, 8)\n", - "4236 12\n", - "4228 20\n", - "fov_id: 199 (1097, 8)\n", - "4236 22\n", - "4235 19\n", - "fov_id: 19 (1218, 8)\n", - "4238 22\n", - "4241 20\n", - "fov_id: 1 (459, 8)\n", - "4235 185\n", - "4226 11\n", - "fov_id: 200 (1183, 8)\n", - "4238 24\n", - "4237 14\n", - "fov_id: 201 (1302, 8)\n", - "4240 15\n", - "4238 22\n", - "fov_id: 202 (1349, 8)\n", - "4233 16\n", - "4231 19\n", - "fov_id: 203 (1271, 8)\n", - "4230 14\n", - "4238 15\n", - "fov_id: 204 (1155, 8)\n", - "4232 21\n", - "4235 19\n", - "fov_id: 205 (1174, 8)\n", - "4235 17\n", - "4240 17\n", - "fov_id: 207 (1280, 8)\n", - "4232 32\n", - "4241 15\n", - "fov_id: 208 (1274, 8)\n", - "4236 17\n", - "4241 16\n", - "fov_id: 209 (977, 8)\n", - "3134 15\n", - "4236 11\n", - "fov_id: 20 (869, 8)\n", - "4169 23\n", - "4235 23\n", - "fov_id: 210 (1048, 8)\n", - "4241 77\n", - "4241 14\n", - "fov_id: 211 (1123, 8)\n", - "4241 14\n", - "4235 21\n", - "fov_id: 212 (1271, 8)\n", - "4242 14\n", - "4238 29\n", - "fov_id: 214 (1257, 8)\n", - "4233 18\n", - "4234 9\n", - "fov_id: 215 (1326, 8)\n", - "4238 15\n", - "4235 13\n", - "fov_id: 216 (1294, 8)\n", - "4240 17\n", - "4232 19\n", - "fov_id: 217 (1216, 8)\n", - "4228 14\n", - "4238 17\n", - "fov_id: 219 (1233, 8)\n", - "4238 24\n", - "4238 17\n", - "fov_id: 220 (1187, 8)\n", - "4232 9\n", - "4236 15\n", - "fov_id: 221 (1273, 8)\n", - "4236 13\n", - "4238 16\n", - "fov_id: 223 (1125, 8)\n", - "4241 14\n", - "4240 15\n", - "fov_id: 224 (1136, 8)\n", - "4240 23\n", - "4241 19\n", - "fov_id: 225 (1096, 8)\n", - "4236 17\n", - "4236 10\n", - "fov_id: 226 (1172, 8)\n", - "4239 20\n", - "4241 16\n", - "fov_id: 227 (1244, 8)\n", - "4236 20\n", - "4237 16\n", - "fov_id: 228 (1265, 8)\n", - "4241 27\n", - "4241 12\n", - "fov_id: 229 (968, 8)\n", - "2824 13\n", - "4240 26\n", - "fov_id: 22 (416, 8)\n", - "4242 33\n", - "4233 18\n", - "fov_id: 230 (998, 8)\n", - "4242 77\n", - "4240 24\n", - "fov_id: 231 (1328, 8)\n", - "4241 14\n", - "4238 18\n", - "fov_id: 234 (1274, 8)\n", - "4242 20\n", - "4233 11\n", - "fov_id: 235 (1367, 8)\n", - "4233 17\n", - "4237 20\n", - "fov_id: 236 (1251, 8)\n", - "4238 14\n", - "4231 19\n", - "fov_id: 237 (1223, 8)\n", - "4239 18\n", - "4238 18\n", - "fov_id: 238 (1344, 8)\n", - "4239 21\n", - "4236 16\n", - "fov_id: 239 (1368, 8)\n", - "4242 16\n", - "4241 21\n", - "fov_id: 23 (1248, 8)\n", - "4241 20\n", - "4239 19\n", - "fov_id: 240 (1270, 8)\n", - "4235 17\n", - "4236 20\n", - "fov_id: 241 (1200, 8)\n", - "4237 14\n", - "4237 22\n", - "fov_id: 242 (1106, 8)\n", - "4237 16\n", - "4240 16\n", - "fov_id: 243 (1121, 8)\n", - "4237 20\n", - "4235 11\n", - "fov_id: 244 (1406, 8)\n", - "4238 17\n", - "4236 14\n", - "fov_id: 245 (1294, 8)\n", - "4237 17\n", - "4229 15\n", - "fov_id: 246 (897, 8)\n", - "4236 15\n", - "4232 25\n", - "fov_id: 247 (1264, 8)\n", - "4238 22\n", - "4238 14\n", - "fov_id: 248 (1315, 8)\n", - "4242 16\n", - "4242 14\n", - "fov_id: 249 (831, 8)\n", - "3769 10\n", - "4234 14\n", - "fov_id: 24 (1120, 8)\n", - "4241 19\n", - "4241 20\n", - "fov_id: 250 (1088, 8)\n", - "4244 59\n", - "4241 14\n", - "fov_id: 251 (1259, 8)\n", - "4239 18\n", - "4234 16\n", - "fov_id: 253 (1328, 8)\n", - "4225 17\n", - "4237 13\n", - "fov_id: 254 (1323, 8)\n", - "4240 19\n", - "4241 18\n", - "fov_id: 255 (1217, 8)\n", - "4238 15\n", - "4240 19\n", - "fov_id: 256 (1402, 8)\n", - "4234 20\n", - "4227 17\n", - "fov_id: 257 (1176, 8)\n", - "4237 19\n", - "4236 15\n", - "fov_id: 258 (1288, 8)\n", - "4242 20\n", - "4236 24\n", - "fov_id: 259 (1302, 8)\n", - "4242 16\n", - "4238 23\n", - "fov_id: 25 (1307, 8)\n", - "4238 17\n", - "4236 32\n", - "fov_id: 260 (1045, 8)\n", - "4237 19\n", - "4236 22\n", - "fov_id: 261 (1103, 8)\n", - "4244 18\n", - "4238 17\n", - "fov_id: 262 (1303, 8)\n", - "4227 18\n", - "4240 19\n", - "fov_id: 263 (1168, 8)\n", - "4238 23\n", - "4241 17\n", - "fov_id: 264 (1290, 8)\n", - "4242 17\n", - "4236 15\n", - "fov_id: 265 (1234, 8)\n", - "4239 11\n", - "4242 15\n", - "fov_id: 266 (1180, 8)\n", - "4236 17\n", - "4238 20\n", - "fov_id: 269 (96, 8)\n", - "2626 24\n", - "1000 15\n", - "fov_id: 26 (1484, 8)\n", - "4237 16\n", - "4238 17\n", - "fov_id: 270 (745, 8)\n", - "4240 79\n", - "4229 21\n", - "fov_id: 271 (1205, 8)\n", - "4234 13\n", - "4235 17\n", - "fov_id: 272 (1232, 8)\n", - "4236 13\n", - "4241 18\n", - "fov_id: 273 (1341, 8)\n", - "4244 16\n", - "4239 17\n", - "fov_id: 274 (1318, 8)\n", - "4235 15\n", - "4235 26\n", - "fov_id: 275 (1179, 8)\n", - "4241 16\n", - "4233 20\n", - "fov_id: 276 (1248, 8)\n", - "4244 22\n", - "4238 21\n", - "fov_id: 277 (1279, 8)\n", - "4231 14\n", - "4233 15\n", - "fov_id: 278 (1211, 8)\n", - "4241 23\n", - "4230 12\n", - "fov_id: 279 (1284, 8)\n", - "4241 20\n", - "4233 16\n", - "fov_id: 27 (1389, 8)\n", - "4234 23\n", - "4236 19\n", - "fov_id: 280 (1351, 8)\n", - "4237 13\n", - "4240 14\n", - "fov_id: 281 (1296, 8)\n", - "4240 16\n", - "4236 22\n", - "fov_id: 282 (1169, 8)\n", - "4242 16\n", - "4244 16\n", - "fov_id: 284 (1014, 8)\n", - "4237 17\n", - "4235 17\n", - "fov_id: 286 (358, 8)\n", - "4129 13\n", - "2236 14\n", - "fov_id: 288 (820, 8)\n", - "4229 28\n", - "4228 21\n", - "fov_id: 289 (773, 8)\n", - "4229 20\n", - "4175 18\n", - "fov_id: 28 (1309, 8)\n", - "4237 20\n", - "4231 16\n", - "fov_id: 290 (1202, 8)\n", - "4241 21\n", - "4239 13\n", - "fov_id: 291 (577, 8)\n", - "4238 27\n", - "4085 16\n", - "fov_id: 293 (426, 8)\n", - "4239 20\n", - "2901 21\n", - "fov_id: 294 (614, 8)\n", - "4211 18\n", - "3587 17\n", - "fov_id: 295 (167, 8)\n", - "4230 26\n", - "4208 19\n", - "fov_id: 29 (1266, 8)\n", - "4241 26\n", - "4234 19\n", - "fov_id: 2 (1323, 8)\n", - "4236 15\n", - "4239 14\n", - "fov_id: 30 (1318, 8)\n", - "4243 19\n", - "4240 16\n", - "fov_id: 31 (1225, 8)\n", - "4238 17\n", - "4242 19\n", - "fov_id: 32 (1247, 8)\n", - "4235 18\n", - "4235 19\n", - "fov_id: 33 (1171, 8)\n", - "4240 16\n", - "4240 17\n", - "fov_id: 34 (1249, 8)\n", - "4236 11\n", - "4240 15\n", - "fov_id: 35 (1194, 8)\n", - "4240 12\n", - "4241 26\n", - "fov_id: 36 (1264, 8)\n", - "4242 26\n", - "4240 19\n", - "fov_id: 37 (1301, 8)\n", - "4236 21\n", - "4238 20\n", - "fov_id: 38 (1044, 8)\n", - "4240 9\n", - "4241 21\n", - "fov_id: 39 (918, 8)\n", - "4235 23\n", - "3558 21\n", - "fov_id: 3 (1421, 8)\n", - "4241 15\n", - "4238 14\n", - "fov_id: 40 (1376, 8)\n", - "4241 20\n", - "4238 14\n", - "fov_id: 41 (903, 8)\n", - "3966 18\n", - "4240 16\n", - "fov_id: 44 (938, 8)\n", - "4237 15\n", - "4236 11\n", - "fov_id: 45 (1306, 8)\n", - "4239 21\n", - "4237 11\n", - "fov_id: 46 (1217, 8)\n", - "4242 18\n", - "4237 17\n", - "fov_id: 47 (1158, 8)\n", - "4238 18\n", - "4234 15\n", - "fov_id: 48 (1272, 8)\n", - "4238 17\n", - "4238 22\n", - "fov_id: 49 (1222, 8)\n", - "4242 21\n", - "4236 14\n", - "fov_id: 4 (1295, 8)\n", - "4238 18\n", - "4242 19\n", - "fov_id: 50 (1310, 8)\n", - "4237 19\n", - "4233 14\n", - "fov_id: 51 (1367, 8)\n", - "4240 15\n", - "4237 17\n", - "fov_id: 52 (1269, 8)\n", - "4243 22\n", - "4241 17\n", - "fov_id: 53 (1253, 8)\n", - "4241 23\n", - "4240 21\n", - "fov_id: 54 (1355, 8)\n", - "4233 21\n", - "4242 20\n", - "fov_id: 55 (1237, 8)\n", - "4238 27\n", - "4237 14\n", - "fov_id: 56 (1276, 8)\n", - "4240 18\n", - "4238 16\n", - "fov_id: 57 (1335, 8)\n", - "4241 18\n", - "4241 14\n", - "fov_id: 58 (1353, 8)\n", - "4228 15\n", - "4237 17\n", - "fov_id: 59 (381, 8)\n", - "4240 17\n", - "4237 17\n", - "fov_id: 5 (1330, 8)\n", - "4241 18\n", - "4234 16\n", - "fov_id: 60 (592, 8)\n", - "4242 17\n", - "4243 407\n", - "fov_id: 61 (1297, 8)\n", - "4245 18\n", - "4242 19\n", - "fov_id: 62 (930, 8)\n", - "4200 16\n", - "4235 14\n", - "fov_id: 64 (313, 8)\n", - "4242 162\n", - "4224 28\n", - "fov_id: 65 (1355, 8)\n", - "4240 22\n", - "4240 18\n", - "fov_id: 66 (1263, 8)\n", - "4245 17\n", - "4240 17\n", - "fov_id: 67 (1353, 8)\n", - "4236 23\n", - "4239 20\n", - "fov_id: 68 (1155, 8)\n", - "4236 20\n", - "4231 21\n", - "fov_id: 69 (1365, 8)\n", - "4235 22\n", - "4236 11\n", - "fov_id: 6 (1224, 8)\n", - "4229 22\n", - "4236 15\n", - "fov_id: 70 (1320, 8)\n", - "4232 22\n", - "4240 25\n", - "fov_id: 71 (1230, 8)\n", - "4237 20\n", - "4242 23\n", - "fov_id: 72 (1176, 8)\n", - "4233 18\n", - "4235 20\n", - "fov_id: 73 (1167, 8)\n", - "4242 18\n", - "4231 14\n", - "fov_id: 74 (1326, 8)\n", - "4241 15\n", - "4242 13\n", - "fov_id: 75 (1284, 8)\n", - "4239 19\n", - "4235 16\n", - "fov_id: 76 (1267, 8)\n", - "4236 19\n", - "4233 22\n", - "fov_id: 77 (1332, 8)\n", - "4237 18\n", - "4233 15\n", - "fov_id: 78 (1433, 8)\n", - "4243 19\n", - "4243 16\n", - "fov_id: 79 (1256, 8)\n", - "4240 13\n", - "4238 15\n", - "fov_id: 7 (1323, 8)\n", - "4241 17\n", - "4234 20\n", - "fov_id: 80 (1099, 8)\n", - "4232 15\n", - "4235 15\n", - "fov_id: 81 (1219, 8)\n", - "4237 16\n", - "4235 19\n", - "fov_id: 82 (1247, 8)\n", - "4241 20\n", - "4236 15\n", - "fov_id: 83 (1173, 8)\n", - "4221 16\n", - "4239 13\n", - "fov_id: 85 (410, 8)\n", - "4244 35\n", - "4223 18\n", - "fov_id: 86 (1247, 8)\n", - "4234 12\n", - "4237 22\n", - "fov_id: 87 (1241, 8)\n", - "4231 15\n", - "4235 17\n", - "fov_id: 89 (1333, 8)\n", - "4240 26\n", - "4235 18\n", - "fov_id: 8 (1308, 8)\n", - "4236 22\n", - "4227 20\n", - "fov_id: 90 (1530, 8)\n", - "4238 16\n", - "4240 14\n", - "fov_id: 92 (1294, 8)\n", - "4240 20\n", - "4234 19\n", - "fov_id: 93 (1282, 8)\n", - "4233 17\n", - "4233 22\n", - "fov_id: 94 (1163, 8)\n", - "4243 14\n", - "4240 13\n", - "fov_id: 95 (1253, 8)\n", - "4242 17\n", - "4241 13\n", - "fov_id: 96 (1313, 8)\n", - "4237 19\n", - "4237 20\n", - "fov_id: 97 (1245, 8)\n", - "4236 15\n", - "4238 22\n", - "fov_id: 98 (1312, 8)\n", - "4232 18\n", - "4233 26\n", - "fov_id: 99 (1380, 8)\n", - "4237 23\n", - "4243 21\n", - "fov_id: 9 (1288, 8)\n", - "4238 17\n", - "4240 23\n", - "fov_id: 168 (679, 8)\n", - "2871 26\n", - "4234 23\n", - "fov_id: 183 (1005, 8)\n", - "4233 17\n", - "4238 18\n", - "fov_id: 196 (1289, 8)\n", - "4237 14\n", - "4230 18\n", - "fov_id: 213 (1147, 8)\n", - "4232 15\n", - "4226 16\n", - "fov_id: 218 (1195, 8)\n", - "4238 17\n", - "4238 19\n", - "fov_id: 232 (1229, 8)\n", - "4240 17\n", - "4240 14\n", - "fov_id: 252 (1215, 8)\n", - "4236 17\n", - "4232 16\n", - "fov_id: 267 (575, 8)\n", - "4230 17\n", - "4179 17\n", - "fov_id: 283 (1049, 8)\n", - "4240 13\n", - "4231 16\n", - "fov_id: 285 (592, 8)\n", - "4234 22\n", - "3137 16\n", - "fov_id: 296 (343, 8)\n", - "4219 27\n", - "4011 16\n", - "fov_id: 43 (352, 8)\n", - "4228 72\n", - "4236 31\n", - "fov_id: 88 (794, 8)\n", - "4238 27\n", - "4240 21\n", - "fov_id: 148 (51, 8)\n", - "4218 544\n", - "4203 146\n", - "fov_id: 175 (1133, 8)\n", - "4237 16\n", - "4232 23\n", - "fov_id: 180 (1247, 8)\n", - "4242 13\n", - "4233 18\n", - "fov_id: 181 (1144, 8)\n", - "4239 15\n", - "4228 17\n", - "fov_id: 206 (1160, 8)\n", - "4244 29\n", - "4240 15\n", - "fov_id: 222 (1329, 8)\n", - "4237 18\n", - "4237 18\n", - "fov_id: 233 (1144, 8)\n", - "4235 21\n", - "4235 23\n", - "fov_id: 268 (208, 8)\n", - "4224 19\n", - "2011 19\n", - "fov_id: 292 (356, 8)\n", - "4232 30\n", - "3875 18\n", - "fov_id: 297 (190, 8)\n", - "4230 71\n", - "3821 12\n", - "fov_id: 298 (215, 8)\n", - "4238 36\n", - "4112 20\n", - "fov_id: 299 (94, 8)\n", - "3751 36\n", - "3665 22\n", - "fov_id: 302 (54, 8)\n", - "3133 313\n", - "1214 25\n", - "fov_id: 91 (1352, 8)\n", - "4241 22\n", - "4238 20\n", - "fov_id: 287 (123, 8)\n", - "4224 67\n", - "4150 17\n", - "fov_id: 304 (296, 8)\n", - "4228 66\n", - "3817 24\n", - "fov_id: 301 (3, 8)\n", - "2770 1208\n", - "2184 87\n", - "fov_id: 42 (2, 8)\n", - "1661 1030\n", - "1083 395\n", - "fov_id: 84 (16, 8)\n", - "3919 39\n", - "3940 239\n", - "fov_id: 21 (1, 8)\n", - "3606 3606\n", - "1771 1771\n" + "fov_ids_lst: [100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", + " 117 118 119 11 120 121 122 123 124 125 126 127 128 129 12 130 131 132\n", + " 133 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 149 14\n", + " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 163 164 165 166\n", + " 167 169 16 170 171 172 173 174 176 177 178 179 17 182 184 185 186 187\n", + " 188 189 18 190 191 192 193 194 195 197 198 199 19 1 200 201 202 203\n", + " 204 205 207 208 209 20 210 211 212 214 215 216 217 219 220 221 223 224\n", + " 225 226 227 228 229 22 230 231 234 235 236 237 238 239 23 240 241 242\n", + " 243 244 245 246 247 248 249 24 250 251 253 254 255 256 257 258 259 25\n", + " 260 261 262 263 264 265 266 269 26 270 271 272 273 274 275 276 277 278\n", + " 279 27 280 281 282 284 286 288 289 28 290 291 293 294 295 29 2 30\n", + " 31 32 33 34 35 36 37 38 39 3 40 41 44 45 46 47 48 49\n", + " 4 50 51 52 53 54 55 56 57 58 59 5 60 61 62 64 65 66\n", + " 67 68 69 6 70 71 72 73 74 75 76 77 78 79 7 80 81 82\n", + " 83 85 86 87 89 8 90 92 93 94 95 96 97 98 99 9 168 183\n", + " 196 213 218 232 252 267 283 285 296 43 88 148 175 180 181 206 222 233\n", + " 268 292 297 298 299 302 91 287 304 301 42 84 21]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 301/301 [00:43<00:00, 6.84it/s]\n" ] } ], "source": [ - "for fov_id in fov_ids_lst_health:\n", - " print(\"fov_id:\", fov_id, cell_boundary_health[(cell_boundary_health['fov']==fov_id)].shape)\n", - " fov_whole = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", - "# print(fov_whole)\n", - "# print(fov_whole[\"x_FOV_px\"].max() - fov_whole[\"x_FOV_px\"].min(), fov_whole[\"y_FOV_px\"].max() - fov_whole[\"y_FOV_px\"].min())\n", - " print(fov_whole[\"x_FOV_px\"].max(), fov_whole[\"x_FOV_px\"].min())\n", - " print(fov_whole[\"y_FOV_px\"].max(), fov_whole[\"y_FOV_px\"].min())\n", - " " + "fov_ids_lst = cell_boundary_health['fov'].unique()\n", + "data_final_result = pd.DataFrame(columns = [ 'fov', 'spot_id', 'cell_ID'])\n", + "print(\"fov_ids_lst:\", fov_ids_lst)\n", + "\n", + "for fov_id in tqdm(fov_ids_lst):\n", + " # print(\"fov_id:\", fov_id)\n", + " cell_boundary_health_fov = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", + " # print(\"cell_boundary_health_fov_without_spot_id:\", cell_boundary_health_fov.shape)\n", + " if len(cell_boundary_health_fov) >1:\n", + " data_final_result = get_spot_fov_cellId_mapping(data_final_result, cell_boundary_health_fov)\n", + "\n", + "# data_final_result" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 30, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAPLCAYAAABVY3rJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOy9eZwdVZ33/z5Vd+u7dXc6vaWXbCBoiCBKQpJuUCFksqCowMhP55mZR8BocEQQkMC4zJgAQYRRQESdxUdniYpLNkJgJtKdTgI6IpiRhGy9L8ntu2+1/v44dW93Aqgjjst43q/Xfd2uqlOn6tatvnU+57sJ13VRKBQKhUKhUCgUCoVC8euj/a5PQKFQKBQKhUKhUCgUij90lLhWKBQKhUKhUCgUCoXiNaLEtUKhUCgUCoVCoVAoFK8RJa4VCoVCoVAoFAqFQqF4jShxrVAoFAqFQqFQKBQKxWtEiWuFQqFQKBQKhUKhUCheI0pcKxQKhUKhUCgUCoVC8RpR4lqhUCgUf7QIId4qhHCFED5veb0Q4olf0N7ntX/rb+sc/7cghPi0EKL319y3UwiRE0LM+02fl0KhUCgUvymUuFYoFArF/1qEEHOFEP8ihBjxxNmIEGK7EKL1ldq7rrvRdd3L/ofP6b1CiB4hRGa6sP9v9vFpb9/7Tlt/rRDi+G/sZH+L/CLx7brugOu6Udd1j/62z0uhUCgUil8VJa4VCoVC8b+Z7UAWOMd13SjwJuDfAPd3eE5J4GHgxtfYTwK4QQjxutd8Rh5CCF0I8Uc3Nvhj/dwKhUKh+M2iHiQKhUKh+F+JEKIBOBt4xHXdSQDXdcdd1/0n13XHXmWfU6ynQogmIcRjQoiUEOIo8KevsM9iIcRuIURCCNEvhPjbX2SNdl13p+u6/wK8Vivsi8C3gM+/WgNPNN4ihDgkhEgLIX4khFg5bXvFLf69QohDQAFoEkIc967FTs/i/5IQ4u1e++eFEFkhxJNCiJZpfa0TQvzMs8iPCSH+nxBi5mv8jJW+53jneYYQolYIURBCdJ/W5gtCiB9MW/4/Qoifep/7gBDivb/sc/8mzlWhUCgUf7woca1QKBSK/5W4rpsAXgC+LIT4SyHEG38N6+Q3gDAwD3gLcM30jUKIs4CngEeAZuAi4B3Aba/l3D0B+4lfoeltwFuFECteZfuNwEeB9wINwOeA7wshzj+t3Z8CS4A4cMJb95fArUAt8APgm8BfAZcAs5DX5TPT+hgD3g3UAYuB1wFf/BU+w38L13XTwLeBD1TWCSFCwPuBr3rLfwF81mtTD3wQeFQI0XVad6/0uRUKhUKh+LVQ4lqhUCgU/5t5G7AD+BDwDHBSCPE5IUTwl+0ohGgDlgO3uK476Vm/bz+t2Tpgi+u6/+q6ruW6bj+wCSlMf21c132j67p3/wrthoF7gPtfxVp+PXCv67r/6Z3fvyKvx/WntfuE67oJ13XLruva3rqvuq77U2/560CL19cJ13WzwHeARdPO5Tuu6x5yXdfxrsPdwP9U/PpXgauEEHFv+T1ACdjmLd8EbHBd90fe+fQiwwH+4rR+XulzKxQKhULxa6HEtUKhUCj+1+IJp0+6rrsIaYH9v8B1vFwkvxLt3vuxaeuOndbmTOBdntt4SgiRAr6EFKK/Le5FWpHXvcK2DuDIaesOA52nrTv9cwGMTvs7/yrrYpUFIcS7hRB9QogJIUQG+H/ADCGE/ss/wn8P13WfBoaY8iS4FvjHaQL5TOC+076Xa5AW9+m80udWKBQKheLXQolrhUKhUPxR4Fknvwc8CZzuFv1KDHnvc6atm3NamzHgn13XrZv2invJ034ruK5bAm4BPgWcHuM8CMw/bd18YOC0dc5rOQchRDsy/vuLQKfrunHgzyqbX0vfv4CvAdcKIc5AuuN/bdq2MeDDp30vUdd1V53Wx2v63AqFQqFQTEeJa4VCoVD8r0QIUS+EuNuLtQ56yb0uQbqKP/3L9vdcrp8CNnl91QMbT2v2MHClEOIqIUTAO8YZQog/+QXnpXsxwgFvVVAIEXot2apd1/0WMr785tM2fRX4uBDiPCFrdF8NrPLW/yaJIscUJ13XLQkhzuRX8w44HeFdi+mvV0sO90/AucD9wA9d151uoX8A+GshxAVCCM37/i8QQrz51zgnhUKhUCh+JZS4VigUCsX/VgykJfdbwElk6aq/Q8Yo3/cL9pvO+71+jgP/iYzbreK67rPIuOzrgGHvGN8GZv+CPv8MKAI7veWct3xRpYGX3Xr9r3iOFT4KzDht3eeBh7xzmkQmQHu367o/+m/2/QtxXfdFpJj+uhAiixS+3/g1ulqKvBbTX59+lWOOA1uBNZw2WeC67t95+z2C/NzDSPf5yK9xTgqFQqFQ/EoI1/1dlvpUKBQKhUKhUCgUCoXiDx9luVYoFAqFQqFQKBQKheI1osS1QqFQKBQKhUKhUCgUrxElrhUKhUKhUCgUCoVCoXiNKHGtUCgUCoVCoVAoFArFa0SJa4VCoVAoFAqFQqFQKF4jr1Y78veaYDDoNjY2/q5PQ6FQKBQKhUKhUCgUfyQMDw8brusGX237H6S4bmxsZGho6Hd9GgqFQqFQKBQKhUKh+CNBCHHiF21XbuEKhUKhUCgUCoVCoVC8RpS4VigUCoVCoVAoFAqF4jXyB+kWrlAoFAqFQqFQKBQKxWvBcRxc160uCyHQtF/f/qzEtUKhUCgUCoVCoVAo/mhwHIf+/n5KpdLLtum6TmNjI/X19f/tfpW4VigUCoVCoVAoFArFHw0TExNomsaZZ56JEKK63nVdSqUSw8PDAP9tga1irhUKhUKhUCgUCoVC8UeB67qkUimam5vx+Xzoul59+Xw+otEobW1tnDjxCxODvyJKXCsUCoVCoVAoFAqF4o8C13VxXRe/3/+qbUKhELZt4zjOf6tvJa4VCoVCoVAoFAqFQvFHwfQEZq9GxVX8V2k7HSWuFQqFQqFQKBQKhUKheI0oca1QKBQKhUKhUCgUCsVrRIlrhUKhUCgUCoVCoVD8UfCruHxXtk3PJP6roEpxKRQKhUKhUCgUCoXijwJN0/D7/SQSCRoaGl4moE3TZHx8nFAohKb992zRSlwrFAqFQqFQKBQKheKPhs7OTgYGBpicnHzZNiEEdXV1NDU1/bf7VeJaoVAoFAqFQqFQKBR/NAQCAc444wwcxznFPVwIUX39OvxWYq6FEF8QQhwXQrhCiPO8dSEhxPeEEIeEED8VQuwSQpzx2zgfhUKhUCgUCoVCoVD8caNpGrquV1+apv3awhp+ewnNvg10Af2nrX8UOMt13XOB7wNf/S2dj0KhUCgUCoVCoVAoFL8xfivi2nXdp13XHTptXcl13e3ulB1+HzDnt3E+CoVCoVAoFAqFQqFQ/Cb5fSrF9VGk9fplCCFuEkIMVV65XO63fGoKhUKhUCgUCoVCoVC8Or8X4loIsR44A7j9lba7rvt513XbK69oNPrbPUGFQqFQKBQKhUKhUCh+Ab/zbOFCiI8D7wYudV238Ls+H4VCoVAoFAqFQqFQKP67/E7FtRDiJuAapLBO/S7PRaFQKBQKhUKhUCgUil+X31Ypri8LIYaAdmCnEOKwEKIduA+oA/5DCPGcEGL/b+N8FAqFQqFQKBQKhUKh+E3yW7Fcu677wVfZ9OsXEVMoFAqFQqFQKBQKheL3hN+LhGYKhUKhUCgUCoVCoVD8IaPEtUKhUCgUCoVCoVAoFK8RJa4VCoVCoVAoFAqFQqF4jShxrVAoFAqFQqFQKBQKxWtEiWuFQqFQKBQKhUKhUCheI0pcKxQKhUKhUCgUCoVC8RpR4lqhUCgUCoVCoVAoFIrXiBLXCoVCoVAoFAqFQqFQvEaUuFYoFAqFQqFQKBQKheI1osS1QqFQKBQKhUKhUCgUrxElrhUKhUKh+APnr/7qr5gzZw5CCJ577rlful6hUCgUCsVvHiWuFQqFQqH4A+fKK6+kt7eX2bNn/0rrFQqFQqFQ/OZR4lqhUCgUij9wLrroItrb23/l9QqF4n+GV/MWKZfL3HDDDZx55pksXLiQ97///b+7k1QoFP9jKHGtUCgUCoVCofit8Gric86cOZx11lmcd955nHfeefzbv/3b7+4kXwOv5i3yiU98AiEEhw4d4oUXXuBzn/vc7+gMFQrF/yS+3/UJKH5zWJaBbRtomo7j2Ke9O4CNnE8RgI2uh/D5AriWBbYNmgaOLbfrOsInb4/q9ldZB7xse4VX2vfl2y3vnFzQfQifD9c0p/bz+2VjxwAM+RlcE4Rf7uNWPpfjrXPAdact29P28Xnb8Lbr3r42EAAtII/jluS2aj+6PE61P/2UfSzLwrZtdF3H5/Odsiwvz8v/9p12PV5pn1fjV91f13UcwLBtArpOwOfDsKxTlitMX89p+1S2m7aNDYSm9VVZpwP+0/YFKNn2KdtO7+N0Kt9y5QpPf6/cxf5XWBeS38bL9g94/ZqA921W204/XmDaul8Vw5AvxwG/H2pqTt1WuY1DIQgEptoHAr94Wdflvrou+630V2n3aliGhW3aYIMe8u4Dw0YP6PgCvlPb/XfXm7a8gAJcy0Xza7iWCzpomoZjOy/b7/Tr9Ms+93/8x+N85jN3YhgG4XCYL3/5y5x77rm/9DswTfmv6jhT1/rVjv3L1r/seho2mi4/X+VdD0xd21O2mU71p0jzv0pbx5GdO4A71W5635Vr+GrfB44Djlv92fyFVNoCWLZchpfvf3pfleXT3zXhPSte4Ryq2+yplUKTLwDX+20WYmrdK62vLE818E6AV98Xd9pxXuEY1cth43rnJzQfmqafsl5oenXdy/bxzu2V2rwWXunYhmFhGDa6rmHbDgHvPiqVbHTvf862HXRdwzQd77dCJzDtPqn0EQhMrTcMi1LJRtPkJTp9n0ob07SxbfD7p45faXf68+70dfDyZx54vxOOwxVXXMFHP/pRLrnkEgzDoFwuo2karuvyzW9+k7e85S3V/srl8is+V09//skLaQCm96wOeSunLWuBV2inA37v2V8E1wARAK1m2pjjFZ4m0/t0pj1FtAAXXXSR7AtHvjsG+aLJ1772NYaGhhBC3sszZ86gXM69bMym6wF8vqkfpdPHdpXtlfWvtCyv+8v/fnm/JtPHg6+GaVuYtoXjOmhCQ9c0LNtGCIGuadiOU3336z78+su/n0ofp2+fvr6yXDnOq/VVuReAl90flfvslba5rlu9137VcVSlv9Pbv9q4b/pxfxUMy3rZOKlk29XReuX408dDrzZ+Uvx+oCzXf2BYlkG5nMOyjJetTyReZMuWD5BIHMKyikxOvlRdNow0W7ZcRyp1BMPI0N/fg2FkcIwybmICp/8IbmICe8u3cFMJsG3cclm+EhPYWzbjJibkcqkEtoUzcBS3WHj5dtOU74YBRhk3lwHbwi2Vpvosl6Ztz+ImT8pjV49RAKcMooBr58DOg/EimKNgvARj14OdBuMwjF0H5lF5IVwLHBPMI3K9cQicwrR9MuBkwTwIYx+WbZ085H8IxkF5HDvhDdgswAZrAoyjUOiRbZ0C2CkwRzAtm1KphG3bmKZJsVjEMAwSiQRbtmwhkUhQLBbZsmULxWLxlPXlchnDMCiVSpTLZUzTxDRNbNsmkUiQy+VwXRfHcSiXy5TLZRKJBP39/RiGUR2UVF6GYZDL5ar7Dw4OYtg2edOkYJokikUKhkGiWGQomyVRLJIvl8mUy9X1BdOkbNsULQvbdTFsm2y5TKZUomCaHEwkuG7LFl5MJMiXyxi2je26mLaNAxQti4Jp0jMwQMm2SRSLlEwTy3Up2zaGbZMxDPKGQcm2yZfLFB2HDJAHCtNeh4C1QAooy2+Cw8B13rYfAi8BaW/di95+L3rbDgEfmLY+BRz02h701mWABLAHKAE5b13eey8CeQMyOSgWIZ+HXA4yGSgUIJGAgwfhwx+GVEquz+Vku2IR0mnYs0euz+dl27Vr5X75vHwVCvKVyUC5LMW4bcOzz0rxVyzK7Xv3Th0/n5/qs5izKGXKlPNlioki5VQZs2RiFS3ssk1uPIddsillSpTzsl3ixQTb1m6jmCjK9bmp/bPDWcyCSSnttc/J9Y7h4NouRtpgsG+QycOTDOwZwLVcSqkS29ZuI/FignK+jFk0KefkezFnkUi4DA/Lz5HLyc8/NDR1HRIJOHAgyZ//+fv40pf+id7e5/nsZ+/lmmveVxXBOe87qHzuSl/5vNz+0kvyWleuazot3w8dmrrmle8tm4UXX4QPfEC+Z7MuhZyDUTAoZ+RnLmVKmAWT7HCWUqqEVbSYPDTJlg9sIfFigmKiSP8P+0kcSlTft1y3heThJP09/Uy+NAmOFNWJFxNs+cAWuc4FI2NU20++NAkCJl+arH4n5UwZo2BU90scSuBYlhTHlg2FEhgmFMuQzkKpDIeOQ7HkPRDsU9seOi4Fp2mB7ciXYcjt6ayc4LRs+bvneC/bkdssTyi7rlwulKb6fanf268yyemAY8mXbUzNeFTWmUVIHZbvju2tt+VyOe2ts8Eqgl329regnAGrBKkjYJtT+zmW7N915bnbplxvl6f+9o7t2Ca2WcaxTMq5JMPP76Kcm8RxbBzHxshNMvz8E5Rzk9iWiW0Z8t0s4zg2+cQIRj5JYXIIw9vvteA49tQxjCJmKYdRMslkyuTzZRKJItmsQSpVYu3abbz4YoJEosh1120hkzE4fHiS0dEchw5Nct11W6rbczm5fz5fJpMxGB3NkckYp6zbs2eAdLqMYTiUyza5XJl0ulRtYxg2hw8nue66LRw6lKCnZ4BEokixKJ81tm1XX5XnUOXZVHn+VJ5zpmmybdu26nOxv7+fN7zhDfzkJz/Btm0cx2Hbtm1MTk56YxmLcrn8is/LyvGKxWL1uVd5fjp2ST67jRe9Z/+LUihXxgjGi/L57njPeOMlb/0R+Ux38nK8MHa9fK+MOfI/lMuja72xQVE+/8c+LLc7XrvRD3jLBbmvW5b3pDkIToEjL/2MGTPq+exnP8Ob3/wmli1byhNP7MC2pcAdGOghkXiJ/v4fkkgcxDSLlMsZyuU8icRBbyz3Eq5rY5p5DKMwbf2LXjs5BiwWE6/4d6VdqST7ndp2nbctR8kokisXKBglCkaRgrdcNMsMpSb4yfBBHNehf3KUzzzxKLlygf7JUT6988v0T47yn0M/5/jkKGXLIF8uUjBK5MtFimaZY4lhPrvrq6SL2WnHKJErF/jx0M85PjlCySyTKxc4kUuSN4qULYOSWa62KxtT452BgQEMwzjlnhkcHMSyLJLJ5MvunWQyydatW0kmk1iWVd02/ZVIJNi2bRumaVbHVJVjmKb5srY7duzANE1KpVJ1u+m65C2LXLlcHWNV3oumSb5cJl0qkffGXi9OG1cVTLO6fDiZJGMYOI7DkVSKnv5+Xkomq20Ny3pNv0GK/zmUuP4DQYrq/Ck/ktMFtm2X6OnZwIEDm+nt3Yiu+09ZLpXSHDiwmZ6ejfj9YWbPvgifCCJcELFaRPscnH29uAeew+l5ClwHN3kSN5vG6XkK98BzuOkUbiqBvfVbuMkEWscc8Ptx9uye2s+2pGD29re3PwaBAG7S288o46YSOP1HcSdPYG9/DBGqwc2k0ZZcjJtOASCEDeI4Yvx6hHkEcCCxAfQ6SGyE7GZw0lN/JzaANQzmMWldqK7fKGehq/tk5Ey1iMCMj4E1AOPrwNcI5oA8Dg5YR2BsnXxQ+hrBPxtC58L4jXK22h7FpJHEZJqBgQGSySSPP/44hUIB13XJZDIsX76ccDiMEIKDBw8C0NPTw4EDB+jp6cF1XcrlMoODgySTSbZt20Ymk8EwDHw+H6ZpsnXrVtLpNIFAAJ/PRzAYpLm5mUKhUP2BrwxcdF0nHA5jmiaZTIbmWbNIGwbj+Tym4+C4Lq7r4tM0jiWThHw+irbNnoEB0uUyYb8fv67zUiLBuu3bKZimtPR6wthyXWLBID84eJANPT1YrovlOFWBXbYsegcGGMxkOLelhZJp4rgug5kM12/dypFkEstxmMjnuXHnTl5KJDCF4CUhuA457/8S8EHkD9O9wMeACeDDSKG7Edjsvc8ENiHdbzYBLUjr9AagcVrbDUhhnvXabQYGvGNdB5wAlnlt0sBHkcLaBMqGFMQ9P4RSSeqRQ4ekmLYsaanetAkWLYKREbjuOjhyRLbr64MTJ2DhQli3Do4ehc5OeOghCIelwNu3T1qPdF1qhFxOtj1yBC68UIrs3l4YGIBzzpEi8fBhKRw//GGwTQsrW8TMG+CCP+wnGA/ir/HjWA6O5RBtimKVLQZ6BjAyBlbRomdDD22L2siOZNl63VaSh5PS4cNxSR5Nku5PM9A7gFW0pEFQF6QH0my9fivZ0SxNC5vIDGaItkTlupEsbYva6NnQg12yMfIGVsHCyBuYFoyPCw4fhv5+KW5HRuBTn5Lvrgujo7B37xHq6xs488wF7NkD553XzcDAAP/xH/9ZFcKHDsnvwXHk9T9yRF6TgQGIRqG1FU6elCJ8YkK+NzXBkiXyWD09UoQPD8OGDbB5s3wfGhK8dERQNgRWySJ5OMlAzwDp42l2f3I3+Yk8vpCPno09HPzBQTLDGfw1fjq7OsmOZIk0Rejd2MuBzQfovauX8MwwPRt6MPIGru3Ss6GHA5sP0LOhB9d2KafL9G3qm1pnuad8J1uu24JVsKr7hWJBRMmQIrlUltZhnw4Do9K1YWAUTiRhcEw+EPpH5M3julPbKgL0pX55YxfLUqBHaqSQFkDZ9MQ0kM1DwC+PZXguGPEIBAOAK/uIReQ2y5SeQakjU4I2OzT1AHNsKbZzQ1A8Kd9dR4pm1wXdD/4IpI9JEY3wxPwROQHqj8h9AlG5bBuemDakqLdLYOQ8S7WYOrZjgevgOC62WcYs5wHwh6KE62eROPpjXMfGtS2E5mPmvDdjFrO4jvztw7WxjAKuZRBpmIU/FKWmtpUTR571rN+/HtPFvOs6mKU8+XSKQ4dTXHfdFizLZWQky4037mRkJMuSJe0MDqYJhXxcdFEnQsDAQJq6uhAbN/awefMBNm3qA8A0HUzT4ciRJOvWbSefN9m/f8gT5HLdwoVNnDxZoK9vkHLZwjQd1q3bzpEjKUzTwbZdmpoi3HffckZGsixY0IgQruew4GAYBo8//nhVnABEIhHi8TimaaLrOh0dHezZswfHcWhra6NcLtPb20skEqG3t5cDBw5QLpdxXZe2tjbS6TSO4/Cnf/qnnH/++XzkIx9hYGCAgwcPkk6nT5lMrlARP47jSCHtZMAcgxk3S1GLDebQtGXDmzQHEndNjR2EkPfv9HEDptzma5TLNYvAHvEm6cfl+EEE5H3oa4GaiyBxvzcxX4TCHqTXWxCwsMwS/f0DdHTUc/vtr+PTn/4r/uzP/pLnntuObZdpa1uM3x+mre0CfL4azzhyHanUYdLpAQ4c2EwuN0o63c+2bWtJJg+TyQzR0bHMs0477NmziQMHNlMup6vjv+l/9/RswHEMHMfEdS3K5TR9fZumtiEYTJ3gJ8MHKVsGrgv9k2P8zRNfYSxzkpDfT31NjBO5JF/d/z12H/kRmtD4x2e3cF7b6/DrPt7UdjYhn78qvodS4yQKKUpmma/u/x7ntM7nZCHN3zzxFQZSY+SNInc99Q/U18QYyybQhMbJfIov9X2bE7mk9LN0HCzHJlXIYpSN6nirra0NXdcZGBggkUgA0NHRgeM49PX10dHRQTgcxjAMstls9b7r6ekBIJ1Ok8lkSCQSVYNFT09P9X58/PHHCQQCOI5TfbmuW22byWRYtGgR6XSarVu3YlkWejBI1jQpWxYuYDgOewYGOJJM0tPfT6pU4nAyyfVbt3I4maRs22zo6WHzgQNs6utDCFFdvqu3l5Dfj+W61Ph8NEci3NXby+YDB9jQ0yMNFp6IV0L79wvhnuJ69YdBe3u7OzQ09Msb/i+hYpXW9QC7d3+KAwc2s2DB1Vx++VcJBmMAVeHd17eJ7u478PlqKJWS7N17H93dd1JbO5uBgR5isVnMmHEGqVQ/jXVnQvIkTu+/o3W9HWrrcXZ8D235Guma7dhgOVDK4/Q8hb7yXdg7vot74DnEgvPQLr5MDprCEZxd29AuXY3w+3ELeQgEEYDzXz9FzD8LZ/dO3APPoa+7DWf3TrQlb8XNZxGRKNTVQzZTPQ9RPxOcHGLyw/JBF7saWh4F8ziIMLgF+bBregDsE/IB2HAbFPaCfw6El8rZ5IlPQMOt4J8nLdvmIIQvllbtxEZoWC8fvMNr5DGavwj4wJ6Ak5+CmmUQvkg+hBtuBb0Fst+B2FVQ+k9K/kvYvn07l1xyCaZpcuTIEYaHh1m9ejWGYVR/hIPBIGNjY3R0dFR/lIPBIOPj4zQ3N+Pz+XAcB03TEEJgWRY+n4+tW7dy4MABFixYwMqVKxkeHqajowPLsnjqqad4+9vfTiAQYHJykmg0Si6Xo6+vj66uLurq6jCF4FAiwf379nHPpZcSDQQomCa37NrF3ZdcQqJYZGNvL59YtoymSITbnnySe5cvB2Akm6UlGmUsl2NTXx93dHdT4/NRtCwG02lmxePMra2lP51mKJOhPR5nY28vNy9Zwol8nnn19YT9foqWxWeffppFbW1cNn8+s2IxPrxtG9984QXet3AhD19xBSOaxhPA+5Ai+gfA80jxrAE3Am8C3guMIkXzemAIOB84iRTLi5Du3se9beciRXItEAUs7/UMsNjrdxFwlfd/dgtSzFfYBDyYg2d+CI2NcN99sH69tLgeOQJXXjnluRoKSaF85ZXwnvdIAe04UmDPnw9vehM8/zzMnCnbT0xAPA7BoLRWA9xyC3zsY9L6euaZcN550tLa2CiP4/fDP/8zzJ4txfzx4/CGM8tYOQNf2AcuDO0bouXcFvIn8vRu7GXF/SsonCzQs6GHJTcvId4Rx8gZhOpCCE2w/cPbObD5AAuuXsBb/+atBKIB/GE/hZMFSqkSez+3l+47u6mbW0d2KMvRp45SP6+e9gvbEbrc/4VvvsCCqxdw8WcuJlQbwh/2IzSBXbYZfnaYpqVn0NsrWLQInnlGTjbccgv84Afw2GOwdKn8fCMjaS68cB7/+q9buOiipXznOz/gL/7inXz9699h69Z3s3kzvO998OCDUlibJtx4oxTIV18Njz4qhXVjo7RYAzz3HLS1QUsLfOQjcPPN8ntctky+7r8f7rlH9vezn8HSxTY1fpOt129lyc1L2Hvf3ur1Wf3IaqySVZ046NnQw9LbllI/rx6AdH+a3o29dK/vJj2UprazlvDMMP6wn9SxFL139dJ9ZzfR5iiO5ZAdzdK3qY/uO7qJd8RJDaSon1OPYzmk+lOEakMEa4OUkiVmzKlFvNQPiRS8YT7URj2va7fq8v3BP/tztu15mrHxcRritcTq6zj8X//FBz/0IbZt387YyZM01NURC9ZweNduaG+G4Qk4o1NeLAGkc1I8D47B3LapWZ+jQ9DRAqGAPF42L9uFAlJcB/1gZKRI1oKQOS6FcKBWWpED8jklhYfniit0ef62AbkRqJ0j2zgm6AFIHZV9BOuk661dBs0vhRDCO15QviqhQJl+iLaBkYbQTOmumxvFjs+mnEui+wLogSC2UUb3B0HTMYsZzGKWcH3LlPe55sO1DGzLQPcFELofI5/i5NFnaTxjMb5ADXqg5td2Dbctg5EXnqSmroX69jdQSI5g+2ayZ+8YTU0Rzj57JsWiSalkYxgWM2dGcF2XiYk8sViQeDxAsWjxzDPDNDZGuO++vdx5ZzezZ9cyMZGnqSmCaTr867/+jL17h/irv1rEnDl18msWglCo4srtkEgUqKsL0d+f5v779/Hww6s5dizJxo293HbbUubNq0cIQTAoSKdTZDIZ2tvbcV2X4eFh6urqiEajWJbF6OgosViMPXv2sHTpUiKRCOPj49TX1xMMBikWi/h8PgKBAOVymTe/+c184QtfYOnSpYTDYb7+9a9z/vnn09LSwkc/+lGy2Sxf+tKXaG9vr4obIQR+vx8hBIlEgn379rF8+XKCAYFftxDWce+ZvR7880993vs6obgPwsvAfAkSm+TYwf86wPYs2GnQakGLeuOGIfC3yUn1k5+SY5K2reBvh8S90LRJupC73j+RNeCNST7BnLP+hO899m3OO/ccTp6cpLntdfzsZ98lHm8hnz/Be997B7feei0+Xw9dXeuJRJrYtesWVq16mFxujEAggs8XQtcD7NjxV/zJnzzA1q3XV8eAq1c/QjJ5lL6+TdX9d+68kRUrHsDnq6m6P5tmkaeeup1LLtmIzxdicLCPlpbzEEIjmx3xxo1/TaRuLpOFDNFghFw5TzwYJVPOceU/3cqlZy7mzks/wHhukqJZRkMjHAxSVxNHFxqGbfKzsSM0RWfQGp/J3U/9A+e0zmfJ7DcyM1qPZZsI5Bhnw5NfY+fBvaw4awkfWnolV/zDzaw4awm3X/KX+HUff/PEV6rb/3r5tQymxvnHZ7fw15d8gHKhxNNPP82FF16Iruv09PSwZMkS8vk89fX1RCIRisUigUCAbDZLX18fS5curf7v9fX1VdtXRHQgECAUCqFpGplMBp/Px+7du+no6KCjo6M6rqqvr8eyLIaHh4nH49TV1eE4DkNDQ0QiERoaGjCFwPJc0gumyW1PPsnHlywhGgjQGIngAnsHB3n35s2846yz+Nrll3MkmWRjby/ru7o4o76eFxOJ6rirMRzmxp07Wd/VxZy6OkzbZv/wMLNra5lXX8/hZJINPT3c0d3N2Q0NylX8t4QQYth13VfNFKos138A2LZBT88Gjhx5gqVLb2XBgqvp7r4Tny9YbaPrfmKxWaxY8QD19fMxzTINDWexZs2XicfbefzxjxKPt1NXNxfXdQj5IgjXmbIYZ9IydmbVuyCfxd72HchmIBhA1DWgXXwZbjqJtvStUlgvexvu0UM4PU8hfH70lVdM7WeZCL8fZ3QIMXs+xOJSNC84D4IhtO5LoK4Ora0TN5+DXBY3k8Y9+DPcbEZ+IF8NbsMdUvQ23CFnpf2doDdKsdzyqGxnDkPLI1L4+ufJB97YWrBPQsuXwNeGNL2F5QPSGj51drpmkXeMOwFNxlRrtVJMRy6bNru9Sc6KR5YDAmoWI4TD8uXLKRaL1R/iSgyZEIJcLsfu3bvJZrN0dnYihKBQKPD0008D0Nraiuu6DA0Nkc1m2bZtG6lUCr8XZLtixQoWLlxId3c3AG1tbQwODpLNZlm0aBG5XI6BgQFqa2vx+/3s27ePAwcO0NvbixACx3G4f98+PnbhhQR0nd6BAUazWRa1tZEzTTZ6M6B379lDplxmUVsbI9ksN+7ciU/T8Gsam/r6qrOktaEQg+k0XZ2dzK2tRQjBUCZDUyRS7esL+/fT3dlJSzSKadvUBoPcc+mldHV0cGRyEsO2eXDlSt63cCH3rFhBvxAcAa4BgsAdwLeRLttrkUL577ztWWAe8CgwBymQw0hh3QjcABz1ti1FWqQ/hbR8yywDUlh3esf6otfvfyJF+yKkoJ4H3I+0ZrsBWLxYCrLNm+Hee6GrS4o8n08KsokJaUVub5di8QtfkON/x4HubinuXngB6uula3LJ89yNRqes1T6fFNb33w/Ll0vhNzICn/wkDA5K4f7SS/COd0jR/eEPy300Aa7rkjySZNvabURbogifqFpRy5ly1fq59769BKIBzILJjht2YBs2Xbd3seDqBXTf0U0gGiA3lmPb2m1YBYv8RJ6DPziIL+TDLtlMHpnk7CvOJtYWY7BvEMdwWPngSs79i3NZ8cAKYq1SQA32DZI8mmT7uu00LWzC55sS0OefLycVHnhAXqtZs+D66+VkRWtrLZ/73Le57bbbWbTozXz2s08wb94bCAR83HknbN0KX/yitEbfeKM0pK5fL4X1bbdJi3hDg7xON94I4+PS2r9pk/QweOghmDMH7rhDivxZs+CRR+QEx89+Bh0dLoGgdOPuWt9F/kServXy+nSt72Kwb5D8RJ5wQ7h6TXOjOdL9aXbcsINIU4RVD68iPjtO6/mtxDviCCEQQlA/v541j66hdnYtml8jEAvQ8LoG1jy6hro5ddhlmxlnzCB1PMX2D28n1hLDzJsM7x+WruljOdzOVimsgwE41C8t2I4LuQKYFl/+5//H0LHjWKkM43ue5fDBg6DpfPnRRxkaHMIqlRg/1i+FdWervIHO6JQW6ExOioPa6JRF2rSkldsw5XLZgJIBhwfkTI+myeXjI95DKChdsYWA2rlSFNtlKbjTx2QboUnLtGN6Ty4hLdLRFimyjawU0C4Qnw2BOGQHvX6Ccr/0UWmp9kc8i6NnKRcaxDtl22CdXM4Ny75dF6ucx3FMCslx9GAYoWky5rgmTri+FddxcV2H0QO7MQtphCechaYjAKucJzN+hBOH96Pp/tcUcy00nZbXX0S85UwcxyFcP4tAKEh7e5zPfW4vuZzByEiOW27ZRT5vcuJEnv7+NH/7t0/jui627RIK+ejsjHPiRJ4HH1xJR0ecPXsGCYcDvPTSJB/96OO8612v54tfXMmcOfXYtsvISI4bbtjBoUMJslmDvr5Bz7I9jM+nce+9y71nUoabb15CLBZkYCDN9ddvBVx8Ph+zZs1icHCQVCpFS0sL8bi8z3Vdp62tjb1799LR0UEgECAQCFBbW0s8HicYDFJXV0cgECCfz7N7924cx2HmzJnU1NSQTqd55zvfyfz583n22Wc544wz6Ovro7Ozk1KphN/vp1AosHPnTiYnJ6tW67a2NrLZLAODYzKnit4MTfeBOSJ/9avP+3sBE0LnABr4z5QT9HqrbGedlM9/44ictC88I8V5uAv8Z4CvVbaPvQ9qFk+zZo9BoU/2IXxyrJDdDIm7Pau1D+wkM+sKvO1tF3PgQIZgsBbH6WRgYJALLriEZcs+wb59D1AqpWhrW0QqddQbL5xk+/YPk0weZeXKLyCEXh0DLlt2G5rmr1qee3ulcL744k8TCESxrCKJxEts3Xo9hcIEK1d+kULhBNu2rSUSaWR8/HmE0GhoeB1r1jxKbW0HOBYl0+DA2BFKpsELY4eJBSN858/v5ROX/CVl22QoPYFA0FHfTMk0+OnIIYbSE1Xr80RuEtM2+djF7+O8WWfxpb5vUzTLnMil2PjU32PYJv938TtZcdYSrr3wCqLBsPf3uwj5Ariuy7WLr2DFWUu47sJ3YdoW//jsFnYe3MtPR18iEomwfPlyamtrq56Ae/fupa2tjVAohK7rRCIRAoFAdUzU19eH3+8nFouxevVq8vk8tbW11Zjo3bt3k8/n0XWduro6YrEYXV1dzJ8/n76+Pg4cOEAmkyGVSrFjxw4ikQjZbBYhBJqm0drayv79+zFN+bs2kE6zdts2xnI5FrW1MZzNEgkEODw5yQe3bqUtHuf5tWu5o6sL03EYymS46cILGcpkyBgGs2IxPn3xxcytq+OWXbvYfOAAG3t7cYF1O3bQUVtLR20tpuNUrdwVS7bi9wMlrv8A0PUA3d13MDz8DLHYLC6//CvMmHEGlmVUXcN9vgCBQBxd99Pf/zS1tW2YZoFcbgzTLNDWtphsdsQb7OnEo7NwhUDEa3H2/hARr8X1XOqc3n/HPfAc+AOQmsTpPyJjrPf1QDSOvuZKiMZxhwfRui/FFQKEwNnzH1X3cDebQURi4A8gXBdRPxN95bvAKCPqGiCXxd7xXUQkiptOobV1ol3154iWNi/++nvgm4fb8oh0uXJNsBJI26PHxI0wvArGPiKtIOEl0x6kd8mkZOMfBSfnuX0PS4t2w+1Tol1EoPkhEDVV9y2cgpzJ9rXJNrGr5ey2Vu+JdQdEAA0bv99fdTXq6+s7JVFG5Ue5r68P13PJ7u3trQ4GduzYQS6Xo6mpqdpH5Qd869atFAoFVq9eTV1dHblcrvqjnsvlqusikQg7duwgk8lw6aWXsmDBArq7u3Fdl7HhYe5dvhyfpnHDjh00RiKM5nIsnzeP2mCQO7q7uXrBAu7s7qYuFOKy+fOrYnpjby9+XWd9VxdXL1jAx5cs4dnhYRa3taEJwRHPrak9HqcuFKq2u3f5co57D5a8aRINBIgEAozmcjRGIqzbvp2BTIaHV68mUlPDgBBVYXwEKWwvZMqlewgpsG9gKh76em9dEOhDiuz7mHIXzyGF9PQ+jgLrkCJ8wNs+4PXbiBTXy4E7kcnSNiHF9W0BCIalILv6aimu+/uluB0dla7bd98thffGjVJ4l8vSBfzDH5ZCL5eDSES6e4fDUvR98pOyTTIpraw33CC1zr33QkeHvL03bZrqd+ZMuZxOy9juynrXASNrVF2M99y9B92vV0VhsDZI9x3dUkDf2Y1t2lXhveuWXdQ01HDxpy8m0hzBF/RNuSpv7KFtcRtXffsqrILF9nXbiTRG0PwamcEMkcYI29dtJ9OfYeXfraRwolB1D29a2FQ9hggEqq7bg4NyMqFclu7yXV3yM2zeLD+bbcNTT72Nr33thyxc+GMOH76PwcERzjjjDcybJ6/L2rVy0mHRIvjEJ2DePPj0p6Xr/C23SAt05brddZe8pvfcI6/1unXyO6upkZMY4fDU+sZGGBwUWLYgNZDCH/bTuawTf9jPmi+vITOU4bvv/y6ZoQyaT6te07ZFbfRu7OWFb77Azht3oukahRMFHNshfTzN4x99HCNvkDySZOv1W0kdS8nJhyNJHNvBzJskXkrw+EcfxzXdl02KRBqlu3kpUwa/D+LRU13ALVuuHxiVIrhkSFfuMzulq3epLIV42QshCgWkoK64lQvktoBfCuliGaJhaKqX/VeOUx+XArty7KGxqeOeSHqZ+ypC+qgUynpAWqxzI9ICbRtym+6Xf+NZsaPtoIdO278sf9Nzw1Nu5IJpbuXDcl89IAW3VZJ9ZvqlCK8krvL6FmaOcH0LZjFHKD4Ts5hm+IUnMQppAFzHZvxFGarT+oa34g/FcB0bI5/GLGUZfmEX/poonedfTuMZixGvkGDpV6WSvEzzkkeZxSzDLzyJabps3NjL5s0HSKfL3HWX/Hvjxl5qa0PcdVcvixa1MTaW4/rrt3L0aJK5c+uZN6+ectnmhht20NAQJpMps2lTH4sWtTE6mmXt2m2MjeXQdVHtc9OmPtLpEjNnhtm4sbf6Hg770TRBe3uc++7bS6FgMTiYYfPmA4D0qpr+HBJCVJ9XqVQK27ZZvnw5HR0d7N69m0wmQ11dHalUii1btlTzh0x3C/f5fFWxbds2sViM7u5uTpw4wXnnnYfrutTU1FSfn5VnaqlUoq2tjfnz55PL5WhpbpBW6okbpdt26DxA857h74PmB+WyU5IW6UKPN5ke8+Kjs16IWJMcD4TfIvOzjK2T/RZ6pVdb831yrND8EMTfC+a4HF+Mr5P9Nt3LBz87j/ZFuxkaGmHFqndyxoJLwRzgi198gC984WEuuuhyrr76Gu6+ez0/+cmnEUJj5covEI22sGDBe8lmR4lEGslkhjh48Af09m4kkxkilTpGff18Lr7400SjrVhWgRUrHmDdup+zYsUDFAoJDCMHCHQ9QC43xsGDP/Dcwc2qe/jevfcxa9ZbcF0XITRc10EIDYTOV/d/j/qaGOO5SeprYtz11D9QNMuULaMqoE8WUri41bZf2/89dh7cy9d/tI1zWubjuC41/mBVFOfLBb7qtbn/h9+kribGh5ZeSXu8iZJZ4v+8ZTXj2QSWY/P86EvU1cS4c/m1tNc2Yzk2f3HB5aw4awlNsYZq7sRSqURXV1d1zOP3+wkEAtW46lQqxfLly6vbY7EYY2NjWJZFZ2cntbW1uK5bHael0+lTYrIrHhnd3d0sWLCA9vb2U8R8R0dHtX02m62GPhimyVAmw8eXLCEeDPK+hQvpnj2bTLl8irGiLhSivbaWZ4aHObe5mdpQiPNbWwn5fIT9ftrjcTTglqVLuXrBAtZ3d3Myn6/u77gufk07ZRwX/BWs1sqN/LeD8h/4A8DnC9DQcDarV38Jny+I60Ii8SJ79mxi+fJ7CQQiaJqfVOoY6XQ/bW2L0DQf2ewofX33sHTprSxc+F5SqX4GBnqJx9tojM9HFIpVIe0A+porcU0TbelbcQARiWJv/TbuwZ+hXfXn6CvfhQu4kwncXAZ9xTvA78dNJnDSKbSut+MAWtfbcY8egvoGhE/H3roDresSiMUQoRowytU4bgdkv7qO1jkXN5edEverViI4KmeCmz4Pbh7G75APS1+nFMkgha+IgDUKDZ/w1t0JxWem4qQm7oeme6WrF660dheekZZwEQB9hrRMO1nQ4jJmavw2mPERz0qugXUCtDBoYS77kysYHTsBQDgc5sorr6S7uxufz1edzaxYnLu7u9E0jWw2S1dXV9Xl6MCBA4C0UHd1dQHSOr1jx47qtlWrVlEoFKo/6gArV67E5/O9rO2aNWtYvXp11XWuubkZ4fdXrcoAD61ciV/X6Rsc5LyWFh5ZvZp9Q0O0x+OE/X7We+dx27JlCGB+fT0PrlzJM8PDdNbW4gK261YfEgBfXrOGE/k8D65cSUDXqzOpAA+sWIHtOCxua2Pdjh3V9Y+uWYPPcVgsBOuEYLN3rz+KFLfeN8tipCiubP/0tL8fARYwZfEGKY5rgL1I1/FX6uNBeQdUxTfAQ8gfwxIyudmFeALbgJeOQHuLtLaGQlOxuiBdke/wDn7nnV6YaFoKu0qbT39avm/eDJ/5zKnbvvhFud/0/sbHpQW20m/FFf2226T123Wl0F+/HvDpBGuDLL1Vur1139mN5tOon1vP6kdWowd0/BE/Kx5YgR7S0XWd7jvkfbnslmWMPz9OrDWG67j4or7qtu47u8GFzmWdbP3gVg5slt/b6kdW07a4jR3rdlTXrXl0TdWSC7DigRV0rZf3kesPsGGDOOVahMPyGj76KNzufdG33SaF8PXXj3LiRCu33w4vvPC3zJr1diYmzmD+/FOv+6c/DW97mxTrhiFd6e+4Q3ox33rr1PdRUyNd6ysiHqT4/tjHpHv59D4ffBA04ZIfy1PXWUf+RJ5SsoTQBLWdtbzrG+8i3h5n24e2cek9l7L6kdVoPo2u2+Vn7V7fzcCeAWrba4m2RNl18y4ObD7AWz/zVnrv6q1en0s3XYoe0NF8Gv6wv+oh8LbPvq163SqTIunBNF13dNF4VkMlV7a0OoN00/bpUkB3tsoPXyxLdwa/T85WVAQywOtmI91WveRlx4dhfocUzYcHptrNniXdvCvH6WyVyy6nrhPeOQD4/NJqlz4qxS9A3Xx5vGi7tDBnB6e21c6T764lxbBACvHp+9fOky7eALF2efzKcrTNcyvHs07PmhLeIC3nQqv2rflCuJqPyIw2XNdh7OfPkB6VeTBmnXMJruvS8vqLcB2H0f/aTcPcN+MLhgnFZzL28x9W27YtXI7Qfb+21boSaz1xeD+NZyzGXxNHs03C9bPQNYf13vdfWxvkdu++uuOObtLpEuvXdxEM+vjUp3Z7YhcefngVhuHw05+OccstSxkaytDREefWW5cSiQROafvII6urfd522zLq6kIcPZpk/fpuhobSrF/fzcREnvr6UFXkAzz44EquvnoBruu+7Dmkadop61avXo0QoipYQD6X0uk0S5YsoVAoEAwG+d73vseOHTtIp9O84x3vIBKJsHXrVi6//HIsb9A/Z84cHn74YRzHqVoYK8/UZcuWEQqFKJVKBAIB2tvbsYwUIuNNrgPM/DRoIem11vIlmY8lsUGOG0RkShA33AH+uVNeavH/Iw0LY9dLD7aaRXLSfsZNXjjafWAd8lzK75Au5mPXTR236QG+/A//Dvhg4jZouEV61bll5s0L8K//+kX27buflSu/yLZtazlwYLN3PR9ix451dHevp6XlPLZu/SBdXeu56qpvE4vNwjQL3lhPJxabRT4/QX//D5k16y309t7FihUPYJp58vkJdD1Ab+9Gurpu56qrvk1tbQeuC0uX3updxzvx+8PVSX/TLFAonEDzx/nA4iuYyE1yTst87nrqH9h5cC8AH1p6ZfXv2y/5SwCuXXwF47lJPrD4CgCu86zPRbPM8yMv8X8XvQOAWDDMtV6bv7jgcl46MUBLrAEHl6Jp8PUfbePaxVfw3Mgh6mtiHDzRT3ttEzMjdUQDNYQDIT592fXYroNhG+hohEKh6n1YKpVkNm3brk7AVO69iy++mGAwyPbt23nhhRe45pprqlbvFStWnOIZePp4anh4mFmzZrF69Wo0TauO0yr7TD/WxRdfTCAQQOg67fE4Q5kMAV3nzv/4D9Z3dzM7HudWzz19fVcXLqALwdKODo4lk2zo7T3FDfy2pUs5s6GBOXV1fOXyy6X3jOOw9Zpr6KytxXIcNCE4u6GBr15+OUGfr1qh5dUwLIsXEwnlRv5bQMVc/wFSLufYsuUDdHQso6Nj2avEWd9BOj3Iv/zLGhYsuJo1ax5l69brWbLkZvbuvY+Ll91JQ7RTxjr37UbrvgRR14C943uI1lmIea9DxOtwkydx+n4o47D9fhDaVJv5ZyFitXJ5VjviDW+UM/qahptNI2K1uNk07pGDMGOmtJL3PIV22TugkMfpfQqt+1JE3Qxco+SVcHEhLwW2fsU7EOPXQ+4HML8f7EnIPyFFc9O9VIsxaRHAlTHVviaZ0VOrla7hIjAVPx17j3ThSmyS8Vf6TCm2nYJ3ZR2YuMmL036dtHjbozJDec1i2Zd5GBKfJxW4k5r4XAzDYMuWLdx999089thjTE5OMm/ePCKRCJqmVeNzotEokUgEn8+HruukUil6e3vp7u6mrq4OwJtFlpaAnp6e6jbHcUgmk/T19VUFvGVZ1NbWkk6n6enpYdmyZUSjUQzDwDRNstkszR0duMDxVIqN3g/3/Pp6bti+nX/86U+5esECPn3xxbzh4Yf5+bp1fPbpp7n7kkvIGga7jh7lmeFhvrhyJX5Nw/IygvenUtSGQhQ8t/L13d2EfT5e9+CDvG/hQh5ctYqBdLr6490Zj/OxnTu5f8UKBjIZNvT0sL67m5FMhjc2N1MXi3EE2CAEdyBduieAJvmN4iIt2puQAroBuAkpojuQluebkBZvF2nJbkWK6xVAHTJLeAGZ2OwOr62NtH5v9PqqrNvjHeME0A6EcnD4h9JSaprw059Kd+KNG6V46+yUlmnN8wF6/nl44xulQL7rLikaW1ulCLzpJinQT5yQom79eik0CwXZ3/r10ipbSWSWTEJdnbR6V0pNVajEYCdPWsysM6seE0IXGFmDsefGmHXBLHwhH7mxHGbepHdjL113dhFrjklx59dwLDkRgwaO5ZWDshyG9g0RbY0SiATkvl68cN1cea+mjqTo2djDstuW0fC6Bk4ePCnjh+/spm5OHWgyI7aoCXJ0wM+GDaJ6LZ57Tl7DxkYYG5PrIhGpDdetu46+vh4sy+KCC5bwiU98kcbGOqJRmbRswwZ53WfPlsnJmpuhtlYmLevrk7HV8+bJa1qpxqTr8jiVaz5njvy+XBeOHZv6LufPd3FtB90xEZogeSxJ74ZeutZ3UdtZi+u4DO0bItIYIX8iT/vidhlTvrCJQCTA0L4hHvv/HuPd//xuOrs6q9ex5bwW8uP56jWsnV2LXbJBg+H9w8Q74/hDfmrqa9D8mpeYW36XZt4kMrMG4TgI05JieZ4XCz29PFYmNxUDnc7JJGVCSGv24JgUw6EAvDQgBbGmeWWzxJR798Co3FZJYlbJueHTQdfkvrGItGIH/XB4UFq5m2d45ce8mzQ3JMWw8HvJx8oQjEvrcm5YbtOCMh5a80+LuZ4r21b2twzwh0Hz4r6Fl+RM06ZKf+F6mcENKaQr+07vH/lYsa0ytmXgC4QxSxlOHH6GxvkX4K+pBaCQHCUUn4mm6V73MkO6ZRRk2zMWE4jUo78Gq7VtGQw//wTp0YPMfst7ZJy3d7RCSdDTM8A55zQRjwcxTRu/XycY1DEMB9O0CQZ9HD+eYsOGHtav76KhIcxPfzrG4sVt+P1yYO3zaTheHP7RozJ2+o47umltjRIK+XAcF12X4Qqm6eD3axiGw8mTedLpIrW1NRSLVvUYZ5wxA9N0qKkRJJPJ6nOrvr5ehqRMW5dOp2ltbSWfz5/SbnJykkwmQ1tbW1UoV4SdEIJ8Pk8wGMTv9+M4Dvl8nsnJSSKRCPv372f58uX4fD4KhQLhcBiQ5YmSySR+v59oNIomDHzOUURio5xw11vltdUi8h+lIoBjV0PLl2Hsg6fldOmX4rv5ISm6K9tmflqGpZlDMuzMP/vUfZsfBGvEi+u+Q+Z9cUswfhPkvgOzHpN5YPBRNg36B/poajqHYDBOMnmMvr576O6+k3R6oDpeu/jiT/Poo+dz1VXfprOzCyE0EolD1djq+vr5pFLH0HV/NQ/PunU/Z/fuT1XHeAcObGbhwvexevWXcByLYnGSmpoGHMekVEphmiUymQE6O5eRy42xe/enWLzkdtxwM9FgmJAvyFBqnK/u/x7XXfgu6mpi3PsfX+faC6+gNTaTkmXw4sRxzpv1Okwvud+BsSO0RBtoq2tiJHWC5toG+T/k2Ph1n5dQVcdybJLFLGXTJOj3UV8TJ1nMkC0XSBYynNd2lic+NfJetvJoMEyNP0iqkKUhFEfTtGqSu0gkUr2PSqUSe/furY6fKpVXKoK6kr+mEpvd0dFRvQ8TiUR1nJVOp2lpaaFQKNDX18fy5curyc2Ghoaq2ypjtdraWiYnJwnX1fHB7du5eckS7tu7l80HDnD1ggU8umYNmhePbTkOI9lsNc467Pfzxkce4dtXXcWF7e1884UXOHPGDGbF42zs6anmxbnpiSdY393NrGiUkM+H47oEdJ0av/9VS6xOJ1cu84EtW6rn9NXLLycWDL5iW8Uv5pfFXCtx/XvO6XUMK+teKcHZmjVfZuvWD1aXKzOh8sd4HsnkEbLZUWKxWYR9cSLJElrnXHAcnKEBRCyOqJ+B038UUVsnXbs75srxm1GGcgmCsoissCyc4QFEbR3E6yCZkCJ9xTuhkJMx3C2zpA9oIIAIBKUV/MBziIVvRrvscoSuy7Jd4yNoszpwNQ0KeZnkzHEg6CIqicj87d7D61bQZ0lXrkIP+Bpg8j4veckZnvv4wJQrufCDNSaFMUKW5fA1yQek8KwxeO0QcLgVou+Alq8ArnQF8zXJclw1i5GujCVAxzQtJrMh/uZv/oYf/vCHPPvss9XyDcFgEF3X2b59OwcPHuSqq66ivb0dXdfJZrPVeDSAwcFBYrFYNVlGqVSqJtfYsWMHy5Yto66uDtd1GRgY4Fvf+hZXXXVVNWYoEolgmibj4+O0t7dXHzD+UIgx02Qwk2FRm7T4TORytMXjFC2LiN/POWedhaPr1MdiCOCGm27i3Vdeyf7hYdrjcebU1VEwTTLlMs2RiCzR5Ti8MDHBjJoaThYKLGpr44YdO/j8ZZehCYEuBH5dJ1EokCmX6R0c5JnhYb60erXMPG5ZDGUyCGBuUxNFn48A0mI9gRTEDnK8nkK6gnfIbwcvdREuslzW94Cngc8AM5AZxWuYqka6BxgE3umt83vrOry+AkiL9W3ArUhxfx0yqdq3gYuLkE1Ja3QsBlu2SGG3dKmnb1z40Ifgox+VybQWLZI1k217SthZlnT9DgTgRz+S4jsclrG+pikttpYlXZuPH59yl775ZmmpLhaltbUSy61pU+IwIMoYmTJCE+DCrlt3sfTjS6mZWcOum3fRfYcUxFuu3cLBHxxk7fNrCdWHGN4/TG1HLXVz6zByBq7jkhvL0bepj671XTiWQyASINoapXCyQM2MKeFXrXXtDeBdx5XHRw6Y8yfyxFpi1fW25qdsiGpt17ExGW/+wgtS6BaLUmwHg/I6PPOMFN4nTsBFF8l47PFxGftu2/I65vMy43clQ3glKZxlnZrk7AtfkP0Eg7JPkFbrG2+UExlLlsjv4JlnpNv5/Hkuuz7yfZZ8bAnpwTT/suZfqsnagrEgelCXgrgjTv38epKHkzKJmTep4NhyssLIGTx525MsvdVLeObK62QWTXZ9fBdLb1lKZki614dmhAhEApTTZYK1QXw1PvLjeYQmMAsmTa+fiWaZMrb5RBIa66XFuWzC8LgU2y6QL0q3cdeFI4Mys3dzg/zQhiUvXjoHNUEpxKeLaVx5s9qO7Mux5fGmJ1CzpyU2q9S5HhyTLuiCqRtjek3q9DEIRKBm5tQ24d1HRmYqbrriBq4Fpv334wlnLyGaY3ptdHl+mX5pscb1kpqJqTYIL/GBCVoA23Uo55KcPPosM+ddQDBa72X7FlXRLoTAsU3Gfv40DXPfjD8U8Vy3hYy/0PTXJKxBWq7LuUlOHN7PrDdedkrSNMP289JLSUIhH5/97NMsWtTGihXzaWuLUS7bGIbN+vVP8dnPvp1w2I/fr/GRj+zgTW9q5aqr3gDAc8+NMWtWjKGhDIsXt1FT48M0XU6ezBOJBIhGAziOW80QHg77GRrKMDCQZvHiNoJBH+WyRTJZoq4uRCjk46WXEtxzTx9f//rl1WzJuq5XRUZTUxOBQIBCoUCpVKJQKNDa2koqlaJQKNDZ2cng4CBNTU1o3izk2NgYs2bNqsZS+/1+NE2rCqHW1lb8fn+1DFJl4tjv9zMxMcGsWbPw+Xzkcjksy2LPnj288/JL0J0TckzgmoBfPqu1qPREswanrM3+udKFuyqI54I1Dr6ZgG9aErTb5bgCWyY6Kx2QMdjT9xVheQytRk7IT9wmxym+TsCQHnVeW1ObT2LyML29G6tWZL8/QjzejmWVGB7eT21tJ+HwTEZH/5N4vJ3e3o3Vsdz0sZ2u+xFCI5k8Sm/vRlaseIB8fpxMZph4vK1qzc7nJ+jt3Uh393rq6uaTzY4Qi7UAAtd1KBRO4veHyefH0fxxUraP8VyCN7WdxWQhTTQY5r/GjnFW02wAdh3ax89Gj/DBC99F3izTXteMT9O4+6l/5PsHfsiKs5bwycuuY7KQpmQajOcmaYrW87X93+faxVdQH45z7398nT9/yxpioTAzwrVoQqsK+WsXX8GMcJyfTxznTW1nMZw+wdf2f4+/uOBymmMzCOshkpOTNDQ0VCd2urq6yGQyxONx/H5/Nfa6kv+mVCoRj8erXhGVzOErVqwgn8+TzWbp8OKxTNPE5/PxwgsvcM4551AsFtF1HU3TePLJJ7nwwgsZHBxkxowZtLS0UCqVqglq6+rqCMXjHEkmGZ6W6PXO7m7m1ddz6ORJosEgTZEI12/dWhW5X16zhj0DA9X2ty5dyrz6etZu21ZtUzGEVNrnDYPnx8e5oK2NsM/3KyU2m265vrO7m7Nmzvyl1m7FK6MSmv0Bc2rt6hdPia9uaDibWKyd7u47qgnONC1QXe7qWo+m+Viz5lGi0RYSiSPU1s6mo2MptbWzCUcbpfh1XVzbluJ4X490C2+fDdE4pNJgerF62TTO7p2Qz4Jh4AwPoLV1gs8vs4L37Zau3OWSTHLW1Cqt4rt3Qi4LQkPruqSaDA3XBcvCHRtGhCPYO74L6RT4/Nhbv4117ychm8P1dcqHWTWWepM8H/OYdMeavO/U0hmY0uVLhGV2T9cEXwf4ZslEJ/520OoATSYhcYty1nlsrSzFNevb8oHp5GSbmsVSWFdcyKwxzyIS5S+uW895553Hd7/7Xe66665qErOnn366OgDp7u7m6quvprW1tVqj8+mnnz4lVi0cDuP3+0mlUgwPD1fd3XK5HC+88EK1bNfAwACRSISrrrqKzs5OfD5f1YpdcRPfvn07lmVRKBQQPh+b+vo4kkySKBYJ6DpBn4+BTIZbdu0ia8jv9h/+3//jLZ/5DI/39nLV1Vfz7MgI57e20hGPowvBaDbL3z79NAXvwaRrGkva26sxQplSiU2XXko8GGQkm+Ujjz/O0WSSoM/HPX19LJ83j9uWLUMDTNvm2ZER/JpGW20tQtd5DlnHOo9MUHYjMAYkkUJ7PvAjpEh+GjiGLNd1ArgSKYxbvH1u9doVve2LkUnLnkPGXvcAb0EK6zqv3W3IZGbeMJo7gHcgLdeVsr8V3vteaVkuFGT877FjMk66rk4mGjt+HK69VsZla5oUjnv2yERmzzwDq1ZJC/bYmBSEpglPPy3bnn++7H9oSGbSvu8+KQg3bJCifXBQHvP4cenqfN11XhjqWI6dN+4kO57l0nsuJd4RJxgNcuSJI/Rs6MGxHJbeupSrH7uaQDRAMVGkfUk74aawrKiUKWPkDHJjOZbcvAR/xE9slkxOZhZMwjPDpAfS5EZzGDmDcrZcrYWdP5nHKlrkRnOYBRMzbzJ5aJLksaRMemY5WBZ85COCXE5+7ieegL/+a5m0rb1dZlP3+eQ1CwTkdfjCF+Q215UeAAsWSJG9b598/+hHpRY8fFheD8uSormSuGzrVulyHg5LF/uaGhnXfuSIzNy+cSPMmCG/nxtugDVr5HW2bFh0w6JqWaxKMrNoSxShCVzHpWNpB/6wH8dwqjHS6YE0Rm4qtrpwokDbojYygxlSx1L0P92PY8qKAIs/upjMUIZwY5i99+0l2hwlO5Jl96d2kx3JoukaoboQ0eYovqC0Tri6LkVtY720QmuaFNbtzVKs5otSMAukNbqjBUKeRSKdgx8feOXY6UrcdkVUmxbkC/LidrRMJVBL56QIPbNTupynMjJW+8zOarZyXK+MoetMxU3XzoWapilLs216taq9hGQgS2ihTSUuE5p8dwx5zEBUJjqruIHb3jMpEJUWby0o9zGyMPGCl41cTFnS08fAdTl59FnSowexynmMQpqRnz2FWcp64tohPzkCLjSf1YVVzmNbcsZG9/nR/cHXLKwBNE0nEKln1jmXyK9K9yEQmKU8tu0Sifhpbo7wpS+t5pprzkHTBKWSxeRkkdHRLG96Uys33fQE4+M5HAc+//kVvOc9r+e558bw+TQWL25j1qwYXV2dhEI+DMNh795BQiEfrist2b29AwghCIf96LrGwECaxsYI69bt4OjRJPv3D5NOl7wS5S7xeJC3v30OAMlkku3bt5NMJhkcHCQcDjM+Po6maZimyd69e4nFYui6zr59+6pxrR0dHeTzecbGxvD5fNUEn9FoFCEEO3bsIJVKkcvl+Na3voVhGKTTaXbv3k0sFqNQKFSTTnV0dFSTfkYiETKZDD//+c/pHxjD9TVJkWwOgnUMJm6Rz3IRBP9Z0kJdEdIiLCuEiBrAkiFfYzdI4eyfKy3SIiLHGmPrAB3CF07d480PyuO4BU/A21B6Dmb8lVwvBKeUAU1swHEtens3cuDAZvr6NuH3hwmFapmcfIkdO9ZRW9tBPN5BIBCjs3MZfX330tGxDNd16Opaz4IFV7NkyccZHt5PNjtCIvES9fXzWbPmUQyjQG3tbNrbL6S+fj6rVz+Crgerx+vp2YhlFeXkn5EnkTjE1q3XYxg5NE2nrm4e4UgTIb+fpmg9zw0fJBaMcPdT/8i6x+7m3v/4Oj5N57nhQ/zloncwMzoDn6bz05FDlC2T297+F6x+fRfXXfgudKERC0amxWR/n50H9/KPz25BE4L/85bVxEJhyqbJ3zzxFYZS44znJtl5cC9f3f89XKiW/KrEc3/jx9vRNVlhIBgMnuIC3tvbSzgcpre3l1AoxPDwcDU8rmKAqCR5FUKcEvOfyWRoamqqJsiT/6ca7e3tbN++HdM0mZiYqCbP6+vrY968ebS1tbFz504efvhhnnjiCWbNmkXci5NujkSYX1/P7NpaHl61io54HMtxiAaDpEolJvL5ap6a9d3d+ITgwvZ2Nvb28oODBxnL5fCdFk9dFwpx9YIF3NHdzYl8nrDfz7nNzdz4+OMULOtXSmwW8PmqbuRKWP/PoizXv8dU3L9fqfRWBWnZLuPzBXEcG8sqVS3dtl3G74+SSBwinx8nFpvlzZjeRvOMsxHplHTTXvpWiMrkY5gmGGXPQh2EZELGXu/8/lQJrj+5AtJJnL0/9DJ/N3iW7H5E8ywo5hGR2Cn76KvfI0V8sYCI14Jh4Oo+hOti73hsqt2Kd+Lmczi9T6FfcQXCOiITkfnbvPIat0lrcnEPND8M1pA3K/zX4GuXiUx8bd7M8gavXNeEzBTa8kUpqP1tkPgcNN0tH4qFPTBypWexfoRqfLVeR9UKM75OuqfPeV7ObjtFDCfMZLLEhg0bOHjwID/4wQ+wLItMRmY8r5QICQQC1ZIhl156aTWG7IknnuCFF15gwYIFrFmzpiqe8/n8y6zcwWCwmmTDNM1TXKEMw+DJJ59k6dKl9Pf3Mzg4yJo1azBdl5xlMZrNMprLsbitjRqfj6FslpxhIICLzjuPxx57jMVveQuO67JvaIjWaJTGaaW5BDLOOqDrpEol6kMhfJrG3qEhLmhrI6jr5AyDaCDAh6aV2XrQi8lzXRddCI6lUny2p4eblyxhRihEJBAgEomAppFFJiJrQmYFLyNduStu23OR4jgKHADORlqow0h3boEs4/UdpMV5mbf/rUxZpHu8/ieQorsGaSOzvNePgPO89dVHTg4OHZSW489/Xmqa6Vbsjg5padY0aQn927+VQviqq6SgK5Xke6VE1MiI3LfiRn7jjdJCPXOmtMYODUnx7hl5EUIK+XBYCsjjx+HLX5bHGRiABWeW2f7BLRzYfIAbXrrhFAuoUTAIhKXgyg5naTizgXK2jD/ir5btirfHibfHAa+U1F29dN/RTU1DDU/c9ARLb11Kw+sa2Pahbax6aFX1dyd/Ik+oNoQv7MMqWJTSJcINYTSfRild4sSBEzQtbMLIGoRn1WHYOpYl2L9fWprnzZPC1nFkve/aWhnPPjEhXbwrsdTRqPzMM2fKa/Xxj0+1qauT+/34x/DmN8trHYvJnzC/Xwr1YhGefVZ6C1TKbc2fL/sOh+V3omny2jsOxGMuWrlIdjRL/bx6bNPGyBqE6kOU0+Wqdb/7jm7q5tWRPJokM5ihc1knlmHxxE1P8MI3X2Dh+xZy2X2X4Qv6yJ+UNbI1XX7pu26Rlmt/2I9VsqjtrGXr9TKufeH7FrLywZUYOYPSZImeDT103dlF8+tlDbdTDMQwVRar4gaua3BkCOa3n1oyq5LAzPMwqFqh25ul5Vr3tjmuV0TchoBvqq02zSV7OiVDiuw6T1xUymyVEjJJWcVVO9omXbTNPEz+HGoaIT5n6kZ3TCinpNCumyfrXwei08prtYJeI0V5blj2p8uYS1x7qgRXxXU8NyyzjXvLNmAUMtJifM4ljPzsKdKjB6ltPYtZ57ydQnKMcP0s+XGNApovgNB8CN33GxHV03G8utqObTL+Yi/NZ3chNJ2yqXH4cJKhoQzt7XE2buzl9tu7GB3Ncu65LZ7XimB0NMv8+TMol2327x+ivT1OQ0MNP/3pOF1dnbiuy/h4nng8SD5vkMsZzJ1bj2U5JJNFQiEfuZxJbW2QaDRAuWyzbt12Nm8+4MVWb6ev70mGhwdZvnwT//RPa5mYyNPREeHf/30n3/jGN/j+97/PN77xDVasWEEsFjvFq+r1r389q1evpjK2fOKJJ7jkkksYGRmhubn5lPKUkUiEaDTKz3/+cwYHB1m5ciU7duxg1apV1TrGCxcuZGhoiG9961ucddZZXH755dW6xZVnLEBNSEe3jyDMATkpbich/xTELvcm2g0pfmsu8JZLUNwvJ84n75PW5sIeObZoekB+WVoICvtk3LXQ5N/+Nun6Pd3NvOkBKdKt/mllv2ZDca9MrOaV9yo7NSQSR05x73Zd+5TyWqtWPSzdp31BDCNHNjvCvn33s3z5vfj9NeTzJwiF6kinB6qx24ODfbS2nl+1Und13U40Ogu/P+zl4hmgvX0xruug6wEsy+CJJ27ihRe+WfV63L79Bt526b3gi3LXU3/P3uM/5fsfuJ+TuRT/+OwWbrr4fYT8wWr966A/QLKQJhqM8PPxo5zVOJuQP4gmBM+PHOINLWcwljnJiXyS1zXOJlcu0BCpYyIzyWjuJOe0zCdbznPlP93KW+e/hdsv+UvueuofuPbCdzErPpONT/4973/zKlrjM/nZ2BHObprDZCFDS3QGPlerevgNDw9XQ+Qq3nyVsDmg6jWRz+fJ5/N0dnZWQ+9WrFhRHaNU6rdXxltbtmzhwIEDLFy4sFpuNRQKVTON27ZdTdBXCWkQQlByHNbt2FEtP9oUDnM8leKevj7Wd3czlE7z/u9+l2euvZamSATDtqsef9NLm97b11ctodo3OMjRZJK3z53LrFiMQ4kEf7d/P/dceimW42DYNkVPYCuL9G8H5Rb+B0jFFVzTdCYnD9PT81m6u+9k5syz0PXAq+6TSLxIT88Gli+/j2LxJL29d9HVtR7HsZgxY37VZfyaa7ZyRufbcSpu2l7NahGvw02cwM1lqlZpe9t3EO2diM65sg5196WIeC32tu/gHngO7ZoPIGrrpEjvvgSicYSug9BkorNeuV7UN4BX6oR0SrqQL1+D8AdwTQNn11a0pRcj6htwEQjXAb+JGLtOitpZ35YW7Krb1U1QfBbCb5cPR3TPlcurbynC4CTlQ3D8Jsh+U9amrFkshXLNMmn5rsRfm0Pg75CJzSZu9lzF5kvLNo7nWl4Der18aOt1lKwoAwPyh7u1tZVHHnmE5cuXE4vFGB0d5V/+5V+qwnnr1q10dnZy9tlnVwcXlSyplfhs13VfFjOUTqeJx+PV+DaAyclJgsFg9cESjUYZHBxkcHCQiy++GMdxqKuro+y5OuYMg6CuYzgOIV3HsO2q2/bihQtpmjED07Zh1iy++5Wv0NbSQkDXsV23KrjbYjEGMxna4nGGMxnOb21lLJfj7j17WN/VxZC3rTkS4cadO3lgxQoAHNclaxjUBoM8NzbGqn/+Z963cCGPrF6N7bq4mobP76coRFXcVngOeDey5nU98Ky3PYSMrT4PWeP6Xu8VQorkINIK7iKt2WFgFmAA+5HZwe9DJjybjcwavsl71Xh91iNdyEVGxvY2NsJZZ0nL5z33yFjqM8+U1udkUrpvB4PSojw2Jl/t7dJCeuut0u0ZpEC84w4pLj/yEWlFvewyWa6rr0/WgM5mpXgEuW72bNlXsShjkzVNZrkeHIQL3mzhTiTo2dDD5V+9nMShBH2b+qQoPquB1NFUtR5zw1kNOIaDWTB58rYnWXLzErIjWTq7ZJ3j6QLvsvsuI92fppAoVOOHrZLFU+ufYsXnV1TjgQEpGr344WhrlFhLjEBtANeSMZWu7ied00mnRdUdfOlSee0GB0+duMhkZBy1TNoor0OlrFmhIC3cPp+XnNqW8dvnnSfbBoNTwvymm6Ys2TNnymt3660yo/j8+bLPirjXNNi/Hzo7XebNcfBhYRZNHNOhkCiQGczQvrgdza+xfd12fv6dn3PVt6+is6sTu2yTG8uxZ9Melt+7HF/Ix2DfIK3nt5KfkLXGT5+sGNwzyOCeQVY9tArbtAlEA6SOye9pxQMrKJwooAd0dn9qNwc2H+DPnng/cy/qQOjalJitjcobxLCkJXl6LWrXlYLZtqdiCISQgrwSW12Jwa5cAEC6SHv/OBVT8/T2Qb9crsRw+32yDJjfD+GgzMJcEb5aQB4zfRSKkzDjLK/WtbcuPtsrnyWk6HbManw0iKnY62ibdB83sjJBWuqITFo24/WnCncjI8V2MC6FuV2SZbxsAwIx+Vvj2DI0QWg4loFjGeiBMGgawtvuug62ZchSW7ofoWnovld+5v46VNzCE0d/TMsbLkYIISs7/LyH2nkXMzKSpbExzMmTBbJZg2g0QGNjmP7+FCMjORYvbqemRqdYlMK6uTlCXV2IxkbpBXDiRJ66ulA1RD0U8tHXN8gb39hMOl2mpSVCf3+ajRt7ufXWpZx5ZgO5XJkTJ4ps3NjD+vXd7Nz5FO94x2Iuu+ztPPLIN3jLW97ET34yxoUXzuLQoQN88IMfxO/3c9NNN3HJJZdUhXIsFiOTyZwSc93V1UVdXV31OTc5OVmtOxyJRNi1axcXX3wxALZtV/OPVCaNTxfQALonGoaGhkilUrS3t5PL5ThzfjOi0DtNLK+Xz3/z8FRSVIR8aRGk46Z16uT6zM94Na7DU1+a64J1FBKflzWtEZ6luizFub8D9CZppR7/0KmCG1vmgPFczC3bpei0UCqliEZbyWQGSacHqu7fslZ1Izt3fsyrVR2qJj2rGFhSqWP09Gygq2s9tbWzGRl5lsnJI7zxje/DMPLkciP4/VGi0SYcx8LnC5NMHsXnCxIK1TM8vJ94vINwuIEnnriJ7u47qaubi2FkcfQQNhoCQbacxzAtAn4fM8K1jKRP8NX93+P/vGU1yWKWN7e/vurKffNb30+ymOXv93+fv7jgchoitRw+Oci5s17nhYIZ5I0iM8LSk6Fklfm7p/+Fv7jgcsZzkzTHGuiobcZ2bZ4bPkRDuJaZ0TpO5JL847NbuHbxFbTXNfHjoRd5c+tZFAtFTNM8Ja7ftm2Ghoaq9adLpRKWZVFTU1P1fDh48CBXX301nZ2dOI5TDVMAZKbvaeK64nJecR2vHCsej7Njxw6WL19+Ssx1JXTPEgLTcRhIp6u5bjrjcXKGQdmymBmRNes1TZPefJ413XVdEoUCMyMRPrh1Kz84eJBvX3UVXZ3y+Xwyn6cxGsV1XU4WCsSDQQJectr2WIz5M2Zgu+6vlNhM8dpRbuF/YFiWQbGYIJsdolRKMWPGGVx++Vd/obAGsO1StcyCaebo7b2rWvtQZoWk6lbU1rYY0yrJ2tML34x22TsQMWm9cvNZaane8V3cVALtklW4QwNQWy+zemfSuCAF84Lz0NpnVzN/u5m0HKyZpnSbqm9AX3OlFNaWJfsWAjeTQrTPhmwae+u3oJBDX/1u2Q4hXdSH+sHVcFu+BmeMSDFceAay35HJzPRWGdPk5qUrF9a0mtQbpdV58j4Z79R0r3zY+TukQG5Y79Ww3jTVPtwlxbQWheYvee5gR73yGgMyRtsT1qnkGCM//QCakLWqd+zYwYwZM1i+fDn79u2rlgiplIDI5/MsW7aMN7zhDeRyOSYnJ6uzq08//TSWZVVLOlRcujs6OtB1nebmZnK5XDXhhuu6VWFdOU4wGGTevHl0d3dTU1NDXV0dhmGge8IaoGzb/GR0FMtx8Os6+4aGqKup4Ye7d/PDffv47r//O11nn82Na9cyUSiQNQxyhsFHduzg3OZmGiMRzm1uZjSb5YK2NnQhmMjnuffSS5lTV8fSjg5Gs1lAZgIP+/3onlVKACGfj6UdHWy95hruXb6crGFweHKSZ0dGyMpvjy7kkP4WYARZq/oxpLU6gczgHfL+7vLWjwBLkKW0+rxj2UhhHkAmKvss0pXc4eVlu2xkorMl3rHHgQhSyPcjwzvb26WLdn+/LOW0ebN8P3ZMWkUjEWmZzuVkDef774dzz5Vi7+1vl9bVmhr5euIJKSZdVwrK97xHivVcTlqsa2qkkNd16QLd1CQtusWiFJ62Lf+9amrktnwO4p1xVj64Etd26dvUx8EfHCQ3lsO1XdKDabk8miN1VJaB0gM6F950IfmJPJ1dnQhd4FgOKx5YwcL3LWT5vctxHZd4Z5zO7s5q7LQv5OPtn307Vsli8qVJdt64k/xEHsd22LFO1nkOxoL4w37Pc9LFKlpYtsBx5L2gaVOW/poaee2WLZP6rFLX+/hxOamQz8vPe+iQrIVdiZ3u65Px1qGQvGa6LgV5fb1sAzJxXGurXNfXJyc7Fi2Skx22LSdJnn1W/n3ypPy+hoYEtqNRzpXJDGcIxoLE2+K0L2mXid90waqHVrH2hbXEO+MM9A7I61Ljo6OrA9dxyY/naT2/lUAkUHUZ79nQQzlbZvbbZjPjjBmc++fnsvqR1aQH05QzZVzHJdoaZc2ja/DV+Ii0RKhpqOGyz1/G+x5/H3PfNlsmMzPMqbJZ6Zy8YXVNZvqeXou6JugJZjGVGODwwJQwP5GUgrnyhZQMmazMtqXlOp2V60BarONRKagRU9nHB0aldTsWmSrpZRtSNGsBaeWrZAqfcZYUwhVX8bp58h+rIqyNrDzHau1rppXgGpY1qyvZwuNzoPkCKaKFkMt6CMJN0s28nJEivqbJS3Lmh/RxAK+k1pMYhRRC96MHarzYcYv85DBmOYfQdCYO9WGVCwhNVGtd/6ZwHYsTh/czY855uI6NWS7gOjYz5i2hvz+JpslKE83NUWbNilFfH0IIwbx5M1i0qA3HcclkDE6eLHDuuc3U1YUoFi16ewdwHJdIJMCNN+5kdDTLj340Qi5nsHRpB6GQj0BAQ9c15syp4ytfuZy2thhCwIYNTzNvXh2PPrqGM8+s50Mfeg+1tU1YlsMDD+zDtl1aW2Ps3z/Ebbfdxt133w1QFSyVMkQ+n4/Zs2dXY6iXL18uPZOAmpoahBCn1B3WNK2a9TsWi1UtfxVhXalTXClduWvXLkAK7+HhYVpbW3njG99YLUnpupp8jmtxOV5IPABoMkdL031epRAhrchOVr4KeyF0PswfknlWfB1enpYTMtGpNSon2M1xr/LIqLR+OzmZMDV0vhyHaFEQPimo5/58yvLt5E4pD+rzRQgG4sRis9A0nT177uFb37qSTGaINWu+TH39fHbtupUDBzZTLqcZHOxj2bJPVEP/QJZmlYls78VxTGbNuoBzzvlTLKvE6OiPEcLvlddyEcJHuZzG5wthmnl27FjnlfgaJBCIsmbNV4jH28lmR/D7w5SLKWzHIV3KUVcTpy4cI+gLcNITuee1vY5IoIbz287GcZ1qea2CUeLvp7l+F4wSb2ieR8EoownBiVySh/d8i9HMCZ4ffYnJfIb3v3kVft3Hm9rOoi4UxXIsXOCNs84kHAgS8gdJFNKyTFdukrxR4pwWOTMaiUSqrt09PT1kMhmSySSTk5PVZeG103WdYDDI0qVLueqqq4jFYmzZsoV0Og3IUAeAXC7H7t27yeVyOI6D4zisXLkSXddPOVYlXK9cLlcz5afT6WqYn+s42I5TrdKyoaeH0VyO8XyecCBA78AAR5JJsuUypuNQsiyOTE6ydts2sobBCc9l/NtXXUV7PM71W7dyLJWiIRzmcCLBRD5PbTDIM8PDHJmcZGFTEwOZDLbrEvMEt+J3jxLXv2fYtkk2O8Lu3Z8imx3BcWyCwdgvFNYSna6u21mw4GqCwdpTYrFrazuwrGK1PmI63Y+m6xCJoa+8Aop57O3fxTXKaJ3zEPE6aanesxvh96OvvEKOnXZ8F+efv4Kz43uIuhnShVsItKVvlSK9cx5C03BGh3AnE2CUcAaO4U6exC0WwDRwBo6htXUi3ni+jPH26mLjuripSdxsWlq729tAuAi3BIU+XGtAxjtFLpMfV9TIB6kIwYyPyQdhw61eTeo7ZUbxaiw20oXc3+ldqiZpoa7WsL4D0OQM99gN0l3MN1P2nfuBF8PVL4W2myedOMwVf7mF89/8ZpYuXcrDDz/MjTfeiKZpXHrppYRCIXw+H6tXryYej2OaJoFAAJ/PRzAYJBKJsG3btlNqI2YyGZYsWUI6naajo6NaJ1QOtKTALntZmyzLYufOnQQCAVzXJRqNEovFqKurQ9d1z6XMhwOMZrP85+gofk1jcVsbN+7cyUA6zcKmJm58/HEaWlvx6zoD2Sw33ngj+/r6+NTu3Yxks/g0jUVtbYzmcty4cyeaptEWi/Hs8LCMHW1r48CJExxLpfjIjh2c19JC2O9nIp8nZxiE/X4Cus7hyUkG02km8nkWt7cTCwTIlMvcv28fizo7cYUggxTYNcDHkOWyBFJEh5Bu2gPAWqRVOocsr3Ue8H6kiO6mapdgITJ2uwj8HdIdPIQU2HcAVyNjrXVv+f1IMX4Eae0+Bym6LXuqjFMl9vnqq2VyrQ0bpKW54vxTic3etGnKGPiOd0jL6djYlIvyvfdKYb52rVx/ww1SrFeEYSVZ2eLFMDkpM2D7fDK+eGBgKuHXmWdCa6NNfizPzo/tJHk8ycqHVrL2+Snx17a4jbXPr6V9cTvpgTSRxgg7P7aT+nn1zHrzLAZ6B0geSTL8zDAAqx5aRSAWID+RZ+dHd5I8kmSgd6Ban7mYKCJ0Ua2H3buxl1KqxIHNB8hP5LEKFoN7BzFyBvnxvMxfpWuMjcGnPiU/Z6EgJwqOHZMi95prpMiORqXQ/tzn5OcbGpL6aWxMxqBv2iSv4aJF0tI/NCSFs98vXb6ffVb2vW+fvI7BoKwJvmiRnPT40z+V5bZcV/a1cKEU9J/6lEyYtnQpCOFSPFmkfk49iZcSDO0bIjOY4YmPP4GRMTALJoFIgFhLjLZFbQztH8IqWbzxfW9ED+hMHpkkO5oFQbXWePed3cTb4iy8ZiEI6Y5vlSzq5tRRU1+DbdoMPzNMqj8FLmSGMgw/M4w/7KdjaQeu7UoxaztSzBqe3/vhAcCFuW3eDEODFMLFstyme0nHNCHbVCzeFyyQCdEqDIxO9ftSv+dT75dCu1iW+5zhJS2b3y6PM7/DyyruuRUYphTQmX4ZK+3asr0elEK4Wp96SH4BtuHFQx+VArjizl0R4PHZMglarF2KFuGjak13DLl/RcTbJSmqheaV8zrmJUGLy5jsqLTmm8UcM+e9GX8wiln0Yq4LKQrJMXzBGsyijLdMjx7k5NFnZaLp37C4BkHjGYsIRGcghIaRT8l4a/wEg37yeZMPfnArx4+nCIV8DA5mWLt2G/39Ke+e1olGA9TVBb1yi9FqzPTatdsYHc1y001LaGqKVOOuDx1KsHbtNrJZg0ymzPXXb+XYsSQ//vEox4+nuOee5ZTLMp/G4cOTDA9nSafLpNNldu06QjpdZsOGHvbs2cySJUtYsmQJwWCQYrHIkSNHCAaDuK7L5OQkyWSSfD5PIBAgn8+zc+dOUqkUQ0NDJJNJVq5cyU033cTll1+O3++nvr6+mtgzGo1W3Wx37dpFKpVi5cqVLFy4kFwuR3t7O9lslsHBwWoM99atW4nH47Isk9BwzX5ZHSS8DJrvl+LWycjJ8grGMWll1mogtFDeV/aJqbbjN0rLthYC44gU1OGlEFkB5thU3PXJe+S7ALChsF/2c/JT8r30PDh5GZs99xA0P4Qp2phMHmbr1utJpY6xatVDXH31Y7S2vgnTLAJw4YU3Vcdx8XgnM2acwZo1XyYabSaZPMrTT3+W17/+Paxc+UVKpRSappNOD7Bjxw1EIo34/VJIb9u2lmTyCK7rEI02Vw0u+/d/gc5OWUpKCJ1k8hi7d/81hpEjEm06RQgfPHEcITQaovXccekHWHn2MnRNw7BNDNvkusXv5sF330ZDpI47l1/L9//v5/n4W/+MaDCMT9MJ+vyUTKNa7/pr+79PXU2MyWKaxmg9AEWzjE/XGcmc5G+f+AqjmZMMpMZxXZezm+YQCdRwdtMcWe9cD2KbFoZhsHTpUq655hpWrlyJYRjs27eP+fPnc9lll1Xj9Cs1q/1+PzNmzKCjo+OUOO1K7fRSqVQtH9fX1wfAM888I63LmsZll13GwoUL6e7uJhQKsWDBAoLBIF1dXZx77rnMnj2bWCzG0qVLq3llPrFsmYyp7uri348dY1NfH6lSiZnhMJv6+siUyzheyNysWIz7li9nLJejLhTCdl2WdnRUBfpdvb1y8j+fJ2+arNuxg8ZIhNFcjqxhsLit7Veqca347aHE9e8dNn19m6oJL6Qc+OXoup9IpJkVKx7A749QVzePlSsfJJ0eIJk8RiAQBVxCoToCgSi68MtBlBAyAVlbB7gObmICe+f3EZ1z0S5dLeOkhcAt5KWl20tI5vQfxc2kcHZ8D3fwONpll+OmEtg7vouIRHFzGSiVEOEITu+/I0I1MoO4ZxUnnURbvlqK8hXvBIRMjubzo112OfhAmMek21XNIoSoAWzvwTUuB1vmMbksfPJBVtgjy2b450ordUU4a1EZm13YI2ehtZiX4GSenGH2dcrrbA5BzRL5MB27XiYqqZTRSGyozj7PPmsNz+x4Hz/+0X+yd+9evvvd73LxxRefkgU8l8tVXb0rWcBPt0wHAgEWLFhAJBIhHo/z7LPPVjNWBoNB+vv78fv9+Hw+QqFQdWY/EomwZMkS6V5VKmEYBoODgxiGQSaTYWBggHQ6jW3bjOfznNvczMlikbJt09XRwVAmQ43fz9o3vpFDQ0Os3baNpkiEbY89xsJzz+W+5cuZyOcJ6Dor5s9nLJfj40uWEPH7qxbsGx9/nH5PpN/V28uitjZGslmu37qVZKlE0TQ5mkrxsZ07Obe5mbZ4nEggwC1PPEHWMGiLxXho1So0IRgFPom0FPchs3ffjxTRh5gS1ENIi/O9XpsNyOH2jUiRfAz4KFJQxwBv6MNxr81xpIBuB74KvM7bPhcZn/0xpMv4qNf/l5FGsTvukIL6zjtlnO5DD0mX5ltvlYJwOq4rhZzfL8VjKCTXzZghNUhz81Sd582bpcibPVuKznxeCu6jR2VbXZeCL5uVLs5NTXLfxYuliLzhBkgXdCItEWlttl12rNuBVbTwh/xEGiPVZddxaVvcxt779tK2qI10f5rt67YTaYyQGcrQdE4T2ZEsW6/fSupoSrqLX9RJtDVKx9IOsqNZwo1hejb0oPt1lt66VArHv+4m2hpl3c/XMbt7Nnvu3UPTQtnX05992otlkwL55punErlls9IlvLFRThYcOSInD665RgrgGTOkx8AHPyiF9GOPyZrgmibbj4/La9vYKK/Z6Ki8Li0t0mJ9/fXy+jc0yAmKmTNlDPYzz8gJinvvldd306ap7wFA06UlWghBbixHpClC78Ze2ha1kR3NsvPGndXM6sPPDNO2qI1oc5TU8RQ7bthBpDFCbjSH67jEWmOs+fIaajtrSR1PsX3ddoysQduiNnwhH0P7hsiOZqXVvzFCdlgmM4vNitG+pB2rbEkPadvFnd8xlaAsFoGhMU8QWzKZma5Jl4aK0K2I5UqiskrCM9uRWcBNa+qG7WyFpnrp9j2vXVqiDVMKdL8Xj1024FA/mDac4Qlz0+u/bMjs3VUBPcJUULgnpONzoOlN8t3ISvGdG5ZiWOigB6ZZq4ekZbt2nizHVTop+xPCaxuUwtrITInsStIz2/ASnQ3JU4jPAZ+MR/fXRNF9IYSm4w9GCTe0IzQfoXgjiWM/IVzfCghqW8+i8YzFsqzkbxwXf00trmXgug7hGW3ovgABv6ClJcqsWVEefHAlra1RdF3jwQefYdmyDhobI1iWQ1/fIEePSmEcDOoIAYsXt/OFL+xn2bIOWltjzJtXh64LLMvB59M4ebLAffctp709TiwW5KKLOrn33j4aG8OEQj5KJZtksuSV2/Kze/cxmpsjNDTU8IUvrKS2Nsif/ulMHn98K2vXrmXnzp1YlkV9fT3XXnstgUCAYrFIc3Mz2WyWUEha2wOBAB0dHfT19VWTdrquy9jYWLVkpOu6pFIpBgYGSCaT7NixA4BLLrmEqOcCW3H1fcMb3kAwGKTNq3zh8/no6Ohg3759MjEaNsIchBk3SxEsdMCRlmy3KJOS2eNSUI/fID3StFqqSQxEjRTcMz7mjQE+AqFzpeUbXVYgCZ0v465FAJo+K/sb+6Aci9ScL8cJuR/IhGbhC+U+xR/JscT4OmzHmpZgbAPZ7Cjt7Uu88RkYRpa6ujlcfPGnAUF9/TwMI0cuN4auB+nru5e2tkXkcmNs27bWE+QCny/E0qW3EgzWEo220Nd3LwcObGbfvvvRNB+u67BixQMsXPg+li+/l3T6uCfwDxMMxliy5GbGx5/HRVStxRO5JPNndnAyl+S54YMMpSe466l/oGiW+dnYEU7mUrTUNnBOy3xSxQxjmQSP7n0MIQQ1/iBly8Sv+wjoPm6/5C958N23cd3id5EqZjl31us4kUvypb5vczKXIuQLEtB9nNf2Ov7p2S3U1cQwHava5kQuSTRQA65LuVzmySefRAhRddHWNI3ly5cTj8cpFotYlkU0GuXSSy8l63nUbd26leeff56uri4WLFjAkiVLyOfzdHd3MzExUV3f3d2NpmmsXLmSTCbD1q1bKRQKrFq1qjoZtGbNmuq460/+5E+qif5isRia63JeSwtNkQgPrFjB3Lo6VsyfzyeWLaMuFGKyWOTzl11GSzRKUNeZyOf5z9FRgj4fS9rbCfl8jOdyCOB2L+nZHd3d+DSNrs5OPtfXx+YDB7hv714WtbVRHwoRVRbr3ztUzPXvGdNjp39ZnPXplMt5XNeqlrzJZkcxzTyxWDs+XxDXdchkhtiz5x7eufpRRCqFm07JclreQMLZvXMqudjKd2Hv2oa+8grc5EncTFrGYvv9uOVyNTzP2bUVfcU7pCv5tH1dTZNDLCGqlglnsB8RDuPmc7IMmNCmlfkKgmEgQmEI2YhCz6nxU75WONz8ynUqmx+UD8yG26R7tyy8Ou3CToCTku/Vsl63y7bVshreMcY/cmqcN9q0Nnd6/VuUrWC1/vTKlStxHIfh4WHi8TjxeJx/+qd/4sMf/jD/9m//xqpVq8hkMgQCAWKxWLXkSMWdbtu2bVx44YVomlaNVYvFYuRyOXp6erjssssQQlAulwkEAtUsmBUrgeu6mKbJ5OQkbW1tlEolNJ8PPRjkpclJ7t+3r5oco2Ca3LJrF9e0tfFXf/mXHE0kmF1Xx9y5c6m94goe+v/+v6rV2fViptPlcjVuuikSYY9XXuvBlSuxHAfHdbnpiSf45gsvVEtF3LB9Ox+78EI6a2t5ZniY1mgUF5hXX09/Os1dvb08+p730CsEjcjs3pWEY13IpGY/AV4P1HpfYyXWegLp1n2rt342Mp76HKZKa92CTGR2PVKUb/f2TQPNSLH+Wa+PFmQytD3AQ0gr9xFgzIDFBalBfD7pvl1JaBaXkRQcPSqtqIsXS8GXzcrY3rvvlrpE16ULdEUwj43JZFwyzncqudf+/VIsVspvbdggBXxLC3znO9JSfd55U8cfH4fZ7RbWiQS1bbVs/eBUzPTqL63GLJpYRYsT/3WC8MwwoboQVsFCD07F8y64egErH1yJYzmM/ucokaYIoboQkaaILB1VMDGyhkyQljewihbxjnj1N0b4BKljqWpSr0rt2uH9w7Se34oe0LG0AEeOCjZuFNxxh0trq8Dnm3IFnzlTJhizLPjEJ+RnnjtXljhbtEjGpLe3S7F8zz3yutbWyut54gRccAF84xuyTTAoLdGbN8uM4e3t8rtpa5NZx2++We7T1SW/u+PHp+pct7eD3+eSPzYhE4nd3oU/4scsmPhCPiYPTxJpjFA7p5axn4zRuKARM2cSrA0y9twY/7zqn+X1fGglekDHzJvV5HJjz42RPJrk7CvOrl5PPahTmChw5IkjDD8zzKqHVpEeSJMdydKxrAPXkrWuNV1UPa/xkqJRMqTVuFiW1mrHhqPDMkFZTVBenMqj/egQtDVLMRwKwo8OyKzjr5sta1XPnQWIU2tilw342WHZ7szZ0qJdKQP2utnyuINjMsa7Jij71h0pauNzZDx1bki6hevBaYnI2kHzycRm/oh0BZ++PnN8qk61QH4uoUnRPN2NXA/IvysJ1CrvZh58Ifm30GR4UqYfOzYbq1xA8/mrpa+EplNIjhKua5lqKzTAlW7j/wPi2nFsXMfCMU2p53QZZ27bMJk0GB/Pc9ddMh561qwY0WiAUsniRz8a4Y1vbK7WvwY4caJAPB4kHg9gGA6FgsnPfjbBokVtWJZDKlWivr6GYFCv1ru+9daltLREiUT82LaLYdg899wYra0x7rprqh62ELBgwVl84xv/xoUXvoWvfOXLbNp0F44jK14UCgVqa2v55Cc/yXve855qHPWMGTO8z2OfUlKyUCgQCASqzy+Qic66urqqpZNGRkaIRCLMmDED05QhAuPj4zQ2NqJpGoFAoJqIqlJ6KRqNVievo2GBMA9P5V3xzwfzICTuh6Z7AAtK/yVFsGsCupxod9LI8YILE7dCwy1yot088gp5WdpAn+nlZfHWjVx5ak6Y0vPgb/XO41ZZpWTiE1CziHLk/5JMHqnGV7uuTTTaSjY74iU5u53a2jk4jomm+dE0nXI5g6b50XU/IMjnx9m9+5PV/Dm1tR1eDPbtZDLD1NZ2EA43smvXLaxc+UWE0DHNPMD/z96fx8lV1/n++PNstVf1ll6ruwMJghBCUDFJd7pFhRCyODozwr0MM86iIhpUEAENjMyMECCIoILb6HecxfFeBh0HO2liADOk01nAZYCoAbL1vqS79vVsvz/ep053y/zune935t653ofn8ehHdVWfpfrUcj6vz2tD18MA7N79oSUVrhKS1oBqxBhJT/PNI9/n/eveQ0diGZ/d9w3ed9lW/uaF3ew9fohNF/TwB5dtJV3K0Rpr5BtHvs/7172bs4U0DeEEnfUSmlGr8QroAeYKaWLBCFEjxEx+nqZYA/c9/f9wcftKrrqgh4BmMF9IEwmIfeCXM6dZ03E+9+z7hn/MO6/8EwxVR3Hw/dKDg4NLQmFrXdeRSMS3FwAEAgHK5TI/+tGP2LRpkz9Wq6ur873StTRxgEKhQDweZ/fu3f7+t27diqqqS+pSQTIALMviF7/4BRdeeCHoOqbnn26ORimZJiFdR1NVHNdFVxRKtu13VCvAq3NzPHjoEHf29bGioQHbez4Vy0LzxtGf2LuXW3p6aI5EuHnvXr/ey9C03wDr/4TlN57rX7OlVrP1b/FZ1xbLqlKpZKlWs4yNHQY00unT7N//GRRFw3FMBgZuIJMZIZMZIZlci2OZoBsCluubUGJxCAZF4r3qUtS+d+LaFuoVm8F1cIaexfnON4V1tm0o5rH3/hMU88JaZ1Kove9Ave79aFt+x9dquqk56bdOzckXWDyBc+ifJTG8pp31a77yEAhgD34PyjZueN3Sqi3F8PxMnwe0RbLuTwO6sNZai6SCmqcESJunPRa6JL7p0BpJDvdYaNyKeLMab5e0cSUibHbH9wSEWzOyjhIRAG+cA5ieF8thaGiIZDJJJpNhcHDQrwYZHR3lW9/6Fm9+85t54YUXyOfzxONx5ufnSafTvjy8VkGyefNmGhsbyeVyS2q2NE2jq6vLZ8Fri2EYflVJPp8n4CVvJxIJxsfHCYfDBHQdF9g1PMzaZJKpfJ4bBgaYyOVYm0zynfFxfvKTn/CLY8d48cUXSd5wA+9805uYyue5cfduTszPowC6qnJifp7JXI6LW1rY5dVrPbhxIyPZLNsHB5kqFHhw40a/NkJXFL68ZQu6qnLT4CCdiQQrGhp4Q1MTjusyns1ya08PquvSifigOxGQ3IkAYhu4BGGVCwiwTiJe6zHgVkTCvRyp7UoiQHkaYaFrcvJHgQEkQXwCuBuRmI8gfdZT3rr/BZGQ13zbDwKrTAHPhw8L+IvFhFWNRASYlUrCKK9ZI7LkclkA9ic+IevGYvJRyGZh+3bZVygkv3d2yu/j4wK+160T4Fcuy/4fekiC0AxDAOaGDYKZ6usF2L/hDRDUbWItMVBg69e2sv2X2wUse33LMy/PEE/GCdWHMEsm9SvribZF6buzj+sGrmPLY1vQIzqBeIBEZ4LCTAGzaDJwwwCZEfGkPXfPc7iOS7Q5SqIrQWm+ROqkVE6lT6TRgzotq1uYe3WOgRsGyI5kab2klb237KWar2I7CpGIwqOPQlubwtSUyLlPnZL/RVVlQuLsWWHovbE3Dz4o//Pddy+ct3vvFWB98qSw04WCsNHr1sn6hYIw36+8ItuOjcnrc999ArgfemiB+S8WZeLiG9+Q28OH5fxmx7N0v60bPaQTa40RiAeIJ+MkuhIUZqV/uquvi8JMwa/P6trQJUz+nf2omoqiKqi6KuBYV+nu6+aiay4iP5Vn/937KUwXsCs2z93zHBf+7oVseWwLiqqQ6ErQtaELq7wgr9cMVTzX+aJItV1Ekh0whKHO5oXBjkdhbNr7hlC8lG9VmGbTXPBH1+q8QMC47ch3+mI/dTwKLY0i/1aQ29YmYbZBgHgqI7d4z0fVoW6lsM52RYLMagzyr7LSwYTcLn5cUSFxrgBrAKuM31ltV35FRq7KjxYQgJ4bldtAYkEuXs3JY7F2FAX0UBSzXGDmlWHMcgFUDT0YZuLYs5jlnASaORaK+r8mIdy2qvId7oKiG5Qys5jFDK5tUi6bZDIV7rtviCefPM7UVJ5w2CCfr3LLLXtpa4sRiRi8+uochw6N4TguqqowM1Mgm61y4427mZ7O09PThW07vPDCBNFoANO0yeerTEzkePzxY+zaNYyuq4yMZPnIR/YwMZFj9eoW7rtviMcfP8boaIbJyTzbtw+iaQrBoMarr85xwQVXc/r0aV588UWOHj3KunXrePTRR/ngBz9IPp/3peIArutSKpWIRCI4juOziLlczr9eqarKsWPHyGazWJbF4OAg8XichoYG5ufn2bt3L4VCgY6OjiXy8kwmw7Fjxzh8+DCdnZ3U19ejqqpnh7KlBSS8QZRpuAKsw2vBnhLgbCTlWq4ExTvtWt7vP5F1Gm+R+5E+iF4tDHjjrQKi9WYZMzi5hTFJeJ0Aa6NTxhn2WQ+Q1/JfdgGa5L5ENgA2DQ0rPH/1CuLxDiqVDIcPP0xX1wZ0PYSqauh6eMnYL5sdY3R0GNe1iMc76eu7i+uuG6C7ewOZzCjHjz/J0NB9RCLLOHhwF4FAnC1bHgMUqtUclUoGcFFVjWLxLP39Ozzb4A5GRg5imgUmJp7Hdm2/+uqbR76Poih8YN17SJVyvH/de9h0QQ8fWPce0qUcF7et9D3X3zzyT6zpOB9N1bhn3zeYzJ1lPDvr0xtjmRnO5tPYrkNjtA4NhVsuv543d1xIsVoSkUk4RqqQ8zzdF6AqCre9431svbCPD6x/DxWrys/GXyGTyTA+Po7rur5tYMOGDViW5SsiakqIyclJf+xULpfZvHkziqKgaRrLly+noaHBz7txHAfbtkmlUjz33HNUq1U2b97MTTfdxJYtW1BVdcmkEUhf9siIVNtdcskl6LqOjYSUtcZiOK7LT6emKFkWJ1MpbhgY4EQ6TUjTJGTWsiiaJt319dza00PEMMhVq0zm89iOw2Qux4d37+ZkKsWb2tu598ABAL60eTMhXcd2nP8rgHW5XOY973kP559/PmvWrGHjxo289tprAOzcuZMLLrgAVVX5/ve//5/7RP9fLL8B1/8HLroe+Df6rBd3YX+QQmGajo63YllFP9zsT/7kvVx88VquueZx/vZvbyOZXMfKlVfhYINZFbCcOiuJqYEQSlOLeKlHTuE8vQfFkIGM2n+FAOfNvy1pqwf3o3SdA5qOous4R4ehoRGlrh57z/dwU3MiOR+W/mtn6FkU18UZ9rbTDY/2tnHzOdzjL+MMPQvlsoSjzUzJRa5phwegd0gabc3PhCvy77avgRIT2ZXe6QWLBESWpdXLBbAm00ID1IWAs6Y7RBrW9kUB3qXDwlCrcZGCKxFfzoWTEh83jvi7tRZQVLZu3cqaNWuor69n+fLlHDlyhPb2dj784Q+zc+dOyuUyIyMjvq8nEolw4MABotEohw4d8sMwavKjtrY2uru7/S/3YDDIhRdeiGEYSwI3Fnc1Dg8P+0EwuVyO1tZWFEWCcbBt7uzv56qVK9k1POx3KF6/ejVf2boVRVFoiURQgce2bOEP16whFgiwoauLyXyebLXKXKnEmtZWZotF4oEAj23eTFciQdgwGM1kePL4ce49cICApvH1bds4p76eE6kUE/k8Dw4Ps6Gri6CuU7FtitUqhqrS393NXLGIhQSIfQVhmcPAIwgQrlVl3YNItWs+aIA3AwnvNoyke9+HMNQ1WfdrCPt8E9Alrzy7WAgzW4fUdiWRGi8HYcQ/gkjUHwVitjDEa9YI6HUcAbuqKvLi8XFJAD97Vjy827fLepom/danTgmQDASENY1EBHDffruEbtXXC/g7cUK2bW4WEBmNynFvvnkheVxRBHx//OMCHi0LXFXFsSQBXFEVFE0hO5rFKlm+TDk7miXaEqWuu04sgopCw7kNdG3oojhXpJwqYxZNhh8cpnVNK7H2GBsf3IgRNdBDOutvWU9+Os/ADQOkTqSINkc5eP9BP6wr2hxFC2gkuhJcuetKsuNZypkyybVJirNFVGxKJZejR+W8tbbK+ezoEEx3000Cijs6RB1w991yPmKxBTl5OLyQ+F1TCjz5pDDfbW3ymnzlK/J7Ta5fKkln9jnniJR/zx4554Yhr0MoJLf5vKSNX3qpi1ut0nZpGxf+9oUAVAtVwo1hXFtk3l29ElxWzVYJJoL03NpDfkrCxTY9solwYxjHcrDL4qM2i6b4qU+mMcLGglf9PvGq187Rnu17qGQrqLqKa7tUMhVa17Sih3Rcy5NeGwacGF3wUYN8D0bDAnKbG8Qb7SJAtBZ2Vq5CLCLb5IuyjqoK+xwKSOr363q0FemwVhQJTzMtAemWLfLwYADedJHcvjoiT8UsgF2SRG8tKEFmtSCyWKd4qGOdwkanT8htLCnJ33UrvFCzCmROCJi2q/L/ubbIx2uyc9uUdas5L9QttJAMriDrZ04LM+5LyAtLuq7PnnwexXU5e/LHcv/E8yiajuPJtW3b+p9ee/+ti+PYVPPzTLz0NI5ZxvH2HW3swAjFsK0KhuZQVxfk05/u44knriGZTPChDw0wMZFj7dok999/ENt2mZzM+53UxaJJJGIQCGhs2NDF9HSB06fTbN8+SFubSKp/8pNJDEOlv7+bPXt+j09/esOSbR5++DCapvLII5uYmPgEb3vbcj71qY/zwx9uZ2Zmkve+99289739rFnTysxMjng87ndUq6qKoig+SKn5rGuTvplMhmq16icyJxIJNm/eTCKRwDAMtm/fTnd3t583ks1mcV3X974ODQ2hKIp//+DBg3R3d3Prrbdy9dVXo2kati1M+sTEBP61PdInXmm3IhPi0U0L4aXmqBdUepPIwy0vS0VvASUBgfNFKu6UpNIz0g/G+TIeMM6Vyk+1fiHbRQl6YHrnoowXVyb8a+uoEW9cEgVUUqkTDAx8iFTqJIYRJx5PsmXLY1x44e/y3HP3kE6fwnEsXFfS66vVHPn8JNFoM3v2bCedPkFDwwrq6roYGPgQiUQn11zzBH19OygWz7Jx44Ok0yd9QsUwIvJN4U3OR6MtJBLdbNv2NbLZCdLp0+h6iGRyHQrwR299F5su6OGD634b07boqGvmLZ1vpLOuhbs2foDO+hbe0vlGgrrBn6x7t6y7/rcBFgHzf2Llsi5wXaqWyaXJC4gFQ+SqRe7Z900qtknYCBINBgkbIc4WJEitOVGP5dhUbYtUMUtQD3DXxvfTWdfCo0OP0xCSRPpoNMqePXvIZDJs2bKF+vp6crkcmqaRyWR8kmMxgZHJZHBd1++zrlZlsuvw4cN0d3f7kzTDw8N+iN7Y2JivtHBdl/HxcUzTZGJiAsdxSCQStLa2MjEx4YN0XVGwHYdX5ua4cfdu2uNxwrq+JODMcl0qloWhacQCAYJee8uySATDIzNGMxlGs9klY7bPX3UV3/vFL/jo4CD1oRAoCiXTpGpZ5CsVqtZ/3PfW/+7lhhtu4Pjx4/zLv/wL7373u/nABz4AwJVXXsng4CBve9vb/pOf4f+75Tey8P8NS61aS9MC6P+BtR4gUvBcbmyJ/LtYPItp5jlwYCe6fjUXXHAxl1/+dr7znb+iv38rrutguBrOgNRpKavfgrb1d2TAoqhgmTjjIyh19VKNdXYW6upQFBVn7AxKu8de5DJSqdV3BUpDo/SJLqr30rb+rtRxDe9H7XsnNDSheO83Z/Q0SjyBm8uitHWgoPgqRmffANq7fwvFfAXMSa9jMgxTN0qlVvxaaP3a0k5JY4Ww1eY4hNeLD9utCmNdfgmMDmGsWx7wUkM1hIFOic/Kycjj5Zcg0iP+bKNTZq71ZcJYKzVGZRy0Rip2nFQq7cu4a72KjzzyCPPz89x1111s3ryZvr4+PvGJTxCNRpmamqK1tZVAIIBpmuzbt4+rr776dZ2emUyGCy64gGq16vdZ13pEL7jgAumx9vqua4EyU1NTdHd3+xePQqFAe3c3+WqVaCDA6XSakUyG7kSCkOef1hSFjw0OcvP69UQMg6JpsnNoiNt7e7mgqYnjc3Ovk5T/bGqKjnicsWyWdckkqXKZsmnSVVfHVKFAeyzG8OgoFzU3UxcMcjKV4oHhYR6+6ipmi0V2Dg1xR28v59TXEwyHyQIZRSGB1GY5iG9a9e6fAD6PMMkuAsbziPT7FgQ4B7xtsghYngCWIVLzvcBRRO59BgHYD3r7URBW/J+A3wbmgR8Cb/D2M1mFDVUBzLWO5vZ2AXuWJYFZzc0LFcB///fwO78jPt9a7VRTkwC/L35R/MZHjkg/9rnneh85RSTQ3/0uPPGESJYrFWG/v/1tuP56+PKXZd3hYQGXV1whYFRzKuROpxi6b4je23uJt8eZ/OkkDSsa+PJFX/ZlypVMBSNikJvIMbxrmL4dfX64Wa3L2vH8ubWqrt7beslN5Gi7tA09rFPJVDj7y7N09QqzOn50nHgyTuMbGpdUfPXe1kvd8jrsqo3ruDjhGDMzCvX18MIL0NMj5652PoeGZCLi61+XyYOmJgHZIOsdPiyy7tFR2LZNzsdjjwnzHA7LJMfoqEjIdV0mNFxXUtu/9CUB8DUJ/rJlUt+1YcNCEF0+L8y5SP0dDKfK/Gvzcp4+3Ue0NcrUz6Zou7SNSqZCIB7AiBhkR7MiH7+zj4aVDVgli3K6TCAq3/FGxKAwW6A0X+LwQ4fZ8uUtZMeyUs91Vz+JrgSqqlItVnFtl2AiiOvIk3IdF1VX2f3h3Vz10EaiDSGUE6PCNIc82Xe+KAyzgryJFtdmLU4VzxWEcdZksg3bEUBde9NmClDnBT7ZHtdUq/0amYTONmG8dU3A+mJ5eCYv4F7XQPGY5dJZAdL1KwVAm0WvhgsBvmZB2GfblMft6oKE3K6IhDxYL6AYR4ByrH2h3qsmE3edRdVfIq8me1ru+z5aYbdt26aYmhT2upQTf7Wq4VpVbKuKHohglnPMvnaE5pVrCUTrUVTtPyTQzLaqWOUCWiDs91vroYiEeLqAquJaVUzHwHHEYz8zUyCdLjMzU2DlSumoXr68Htt2OXu2QCCgkUgEKZUsbrttH7fcsp7zzmvkhhsGePzxY1x//WoefXQLpmnzwgsTXHppm58YfvJkmnvuOeBLz+PxALlclUymQjweIBo1KBYtpqZyTE7mWbcuiaaphEJitXIch4mJCb/OyDRNnn76aXp7e2loaCCXy3HixAkaGxuX1HPlcjmGh4fp6+sjGo0yOTn5utquhoYG5ubm/PqtmuXJsiy/gstxHMrlsl/F1NfXRyKRwHUqRMLqv1LHtcILK8uA3gFTH4fwmyBxPdjzYhdT6+X6b08syMD15dJGYk95j90pANnJyGS8EgLzFRkjGB3eWORPBYTjgZziUQivkSrPuV2Umx7zO62vu26A9vY3L5GEnznzHKOjB9m27aseS5omEIiiqjqDgzct6sJ+jD17ti+Sdn/d81aLZeAHP/igf4xazVdv7+00NKz05NJ5DCOKZRXJ5Sb93u1IvJOKq2JoOo7rMpuf55tH/onb3vE+UsUs3zjyff7ore+iOdbA8ZnTjKSn6F1+CS3xRhzXpWRW+NKB/8ZH+/8rYSNI0azwyD9/mz94y1aS9S3eV5WC6mUoOK5DsVrm0aH/zk19/4VIIETJrPDK7BmWRRv45qLjARyfPs2b2i9gcM8ejh07xqpVq7j88stJJBLMzc3576+a1WBwcNBfb/PmzaiqSiqV4vDhw1x55ZW+xW6xvS+bzaJpGvv372fjxo2USiWGhobo7e2lvr4e27bRNI10Ou1b+xRF4amnnuKll17iY7fdxnSxyN379/P4sWNcu2oVX9+2jdPpNDuHhtjR18dKT/p9tlCgORrFdBxUz2p1tlikPhQiXS5THwpxdHyczkRCar36+ogGAjSGwxiqSt40iRoGFdvmyNgY3XV1XNDURODXPNzshRde4L3vfS+nT5/2H3v729/OzTffzHve857/tOe1ePmNLPw/eVlglt/P3Nwvsazqf+i+0+kTr5N/m2aRRGI5mzY9wpYt19LV1U0o1EA+P4NpFtm9+8M4Cqibfgvt1j9D2/LbuNUqzuhp3NRZCSWrq4e6BtxKRYyMuSz2nu9JWNnUBIphLGKlnwHLkiTwviv80DMXBaWpGW3bNdCwDMWycAt5sG2U7nNRonG5VTWcyTEo5kFV0K5+twzC5j4vvid7DpkNvn2BxXZzvzJbbEuYSGi1sM3mKzD9Ebl4RvoFGDfeIgEkxSHZ79SNcvFUQshALCoz1CgQfqtIwSK9AtSnPyIz3igSkIKO67Jk1l1VVY4cOcJf/dVf8bGPfQzLstB1ncsuu4yGhgZ0Xae9vZ1iscjo6CiGYfhyo40bN9LV1cVTTz1Fe3s7q1evBqQmoiZXSiaT3HjjjfT19fnMwfz8PMVikZmZGTKZjB8kEwwGWdbSQq5aJV2pkK1UWFFfT193N+c2NLAsEhHm2HF45Oqr/bCyMW+mdNfwMJbrvk5SPpnLsS6ZpKUWbLZ3LyXLYkVDAwXPJ+d4gR4ly6JkWUwXCjx+7BjZapWdQ0M8efw48WAQx3VxgAlF4R784TABBFT/DDiJJIF/CWGqA8AQIv3uQZjmADJVEkIY6xwSaFYBPov4tx+VdwjdiAQdb71XgR8Dv4sw4Ir3+waEJX8NOHFSGOQ1awQMqqoQfYYhLGw+L+zryZOSDm7bcM89sl5vrwDGj31M1qvVPkUiAgI/+EHZ7tFHpeqrs1MYbNsWYDgwIHLn06fl8Z4eSb0+cULYXlWBofuG/PotLajR3ddNqD7kJ1UbYYNIU4RKprI05TtbpmtDlw8GrZIlCd9AZ08nww8O++FbuGCVLbp6u8AFx3Jof3M7jSsbqWarfl/z1V+4GiMqwXuu7VItVDF0KJVcXnhBJg5cVyT0LS0SRLZxI+zYIeczGpWJDMuCV1+VsLK2tgXwfP31cq5MU0ByqSTAe80akZSPjsL558t+brlFGO7nn5fjdnQsyO8rFQH1xaK8PnffLSw5KCiqhJn13Nrjs/C1kLb9d+8nP5VH1VQO3HuA408exwgb2CWb8SPjBCKStL7vtn1U81WizVGa39jMpkc2oRkaDSsa2PzYZhKdCTmPtiMTH1GD1ClPau8ls6dPpUmuTTL5kyl5oc/rFqY4m5dPS8BLDK940uyRyQVZt6GLzLshASskAArbM/3rusjLK6bHQnsqoqq1kI8Bso8VnXKyDV1Aeucidttx5fmcHPOi8hVhoBsvFKDs4gFpfYGNRvH6qSeFWVY8yXcgLr8HEvJjlb1vBFX2qYkMk8zpBbm412EtoNuTj5fmBXBrIe8nQK30OdzQTiBShxGOM/HyM7hWFata9GTiOQKROpatfCtzp36C67HNjmP/m67F/+NFwXFMJl5+GqtaRAuEqeTTTLz8rMjQXRfHMlFxOXUqzdDQCA0NIerrQ3R1JejqStDaGuPkyRQf+tAAhYLJsWOzFAomoZDOLbes5+GHD3vVWcJAf+UrWymVTG6/fR/r1iUxDAk2K5VswmGdt72tm2g0QCwmn/1QSKexUc6xqqpksxUmJ/O0tER5/vkJDEOVeRhPktvR0YHjOIyNjaFpGldeeSXRaNT3rF544YW+vam1tZVKpeLLx7PZrK/iqlQqGIbB5s2bMQwD0zRpampi69atAMzNzTE2NuaHeQI888wzvg2qFpimKAoTk2cBXexk1uyCnNstgT0jqjfzjCjV6v5QXho1BtZZqdlUIyIj98cUloByXxo+KhPtequXLp6Vv5ljAuDbvub1ap8Qibh5SsYRSkRY8JYHUBTNr0Tt7FxHpZLxA2yHhu5jxYqN9PXtwDTLTEw8j66H0LQguh6mv/9OVq++nk2bHsF1Xa666vOsXn09/f13YRhhAoEowWACRdGXHKMWoCbhZpKjYhgRVNXAMKKLjr8TVQsS0gPoqkZIM/jr5wfYe/wQ+UrRl4B/6/kfkK8UWdW2kq76Nhqj9VIF7tgE9QCfuuKPSJWy/MUP/5Kz+RQXt6/kbDHNZPYsn933DUZT0yJadB3KpoyHr3vT1ZwtpL1t0lzcdp4fcPZ3P95DvlIkoBtc0HoOuq7R39/PqlWr/Cq3xYqHWsCdpmm+srC/v9//NNaY6Xw+z8DAAOl02m9uKRQK1NfXE4vFuOqqq/yWl1o6fTabZe/evWSzWRobG+nu7qZcLpPNZtm4cSOrV68moGnUBYN8/qqr+MX27TyyaROu67KyoYFHNm2iO5HgVa9SqzESoVAqcf211/LWSy6h561v5YPXXsurr75KLBAgPz/PwzfdRN+b3sQ/bN/Oy88/T10oxNlikZOpFB9/6ilOplIcGRujORplJJOhYv9HfGf95y5f+MIXePe73/2f/TT+XctvwPX/4sW2q75E+8CBe7Htyv+SfQ8N7aRSyXL8+JNkMiO4rs3Pf/4PnDnzHIXCNOVyilishcnJn7B+/S0IrFEgm8YeeAIKOZSWdpyhZxfqsXJZyEnCt//4oX9G7ZTgIr+Ca9O7wXFQ4gmUBq+ia/Q0zuA/euyIAuk5nPGRRVL0OQHUKXlcicYkXA1JJnfPjOHWfEpn75YLlXGuVGrpy6WOpea5bvykXEyb7hKG28l5XqsNoDXL/bP3CEg2Jz3vlCcXV0KADdXXwBrxgPdpOcGhN+GniNcurlgSWOKWUVVJqzx06BAJL93q29/+NpOTk/T09PDmN7+Zo0ePctNNN3H//ffz0ksveQOXLC0tLT7DXKvqWixH2rNnD4Zh0NHRQblcBsSXYlkWkUiEVCrF3r17aW1tJR6P09XVxcUXX8zc3JyfSq6HQkzkctzz3HNEDIOSbfsdi4fHxogYBmXLomCaRAMBPjQwQGciwRPXXMNd/f1oisJjmzfzX1etYqZQ4NaeHuLBIGPZLDfv3ct0ocDaZJJdBw+KDVTT0DxJVEjXuee555jI5djQ1cW1q1ZRFwxyZ38/T1xzDUXLYvvgIA7ieb5X3o0MA2XgLNCBsMeW9/gJpH96DdAOXI/4s2cRID2HpH3XgPkkAsDj3j4OIWDdRELN8ghg7/OOnUfA+JT3+doBXFmFnfcKqFUUCRMLBgXs3nCDyLNBgN/nPifYJRoV1hSEaV63TgCfrgsonpkRUF5LDJ/yDhgICOju6xO58403CtgOhwU03n+/sLRHjsjxIhEBiX07+rjmiWtIJBPs+cge0qfT6CGdbV/fRmRZhIEPDVAtSIhW7x29vtc60ZlgzR+uIVgXxLEd30Ocn8pz0XsvYuODG8mOZRkdHiUzmkFRBTCjwMzLMwK6AT2kk58U2Xh2LEusLYZjOQRiAQKRAJWiRTissH69eM8/+lGZpKivFwa5u1uk244jYPu22wRgt7fD294m56fGND/2mJyLI0ek49p1xXMdDArTH4nItidOCFgPhUSu/9pr8JGPCBgfHZXJkFqfeM2PvWsXOI78f4muBIceOkSiM0GsLYaqqf7ExPCuYVzXpf/Ofq554hqsksX48+N09XYRiAfEg93XhaIqmEVJRNbDOlbVwrEc9ICOVbYYOzxG5kyG/Z/ZT+ZMhuxo1peMR5ZJMvuKq1bQvaFb3iCV6kKCt6Is9Ui7COCtAV/Tktugl/ZtWiIpL3neZYWl2+PJyC1rgQU/MSrbxSLerJchQLsmK8fbRyLmseJlqcEyoqAH5Ts6EBMgHUgIW62qAqZj7cIqV7KyfrhFPNu4Ar6NqMi+ReMu+/X8036HdiAB4WZ5vtWs/L0mRa/5tNMnvP5sBbOUwSrnmX3tCJnJ49hWldnXjpKZPM7sa0fAdQmE62i76O04tsXMa0dw/yPAtetw9sQLRBqT6MEoiqpihKI0nfsWzEqBiZefQdUNTFtA7tq1SVKpMg0NIdra4pim+KsffHCYxx8/xs6dQ6xe3QKAadqsWNHAV76yFcOQ1+S22/bx6qtzhEI6u3ZtpFKxufnmvRQKJkeOjFEsWrznPW/k7rv3k89XOXkyzY037mZ0NAvI6ayrC7J2bZKZmQKrV7eQy1U9UGb4gZmO45BMJpmYmKBYLFKtVnEcx5/wrVar7N+/n1KpRDweX3KtTCQS1NXVEY/HMU2TwcFBTNP0E8UBv5+4o6ODVCrFyMgIjuOwceNGcrkck5OTXHzxxX4XcVtbG+CiKIakes9/UdRnSlhUa+ENEkbm2jJRXjoq4DqyHuy0hJy1fgni13v1nJrYv4xOGV+E1yE1JoGlFV1113qA+kNya44uZLooujw2/RHxY7sW8Xg727Z9HU0LEQwm6O293a9NjcXaiUSamJr6GS0tF1MoTLNnz4dJpU5SX38uW7Y8CsDevbdQLJ5l69avLsnmsayqx0ZPsHHjQ2hagK1bv8rv/d4eNm58EMexcRyT0dFhUqkTFAozPhDv69uBpmpMZs/yFz/8S8YyM9xy+fVsuqCHWDDCBzzP9R+vfRexYISgZtASayRdyjKWmWHn0/8Pk9lZQGE6N8/7LtvKXDFD7/JLuLhtJWEjwKeu+GPaEk0AqCgYmk7ICNLV0MpcMcOh0/9CNBjCcR3GMjO8qeON3Py23yMWjJIt5QkZQVwX6uvrede73uXbESzLoq+vj9WrV7N582Zfop3JZNi8eTN1dXXourRA9Pf3s3LlSg4fPkxXVxeaptHd3U1XVxepVMoflxmGqGHm5+fp6uryJ4u6urowDIN0Os2ePXsIBAI0NDRgGAZbt27Fdl0ihsFcsciJ+XkMVUVTVSzXJWoYzBSLTOTzFEyT4dFRRjIZipdcwhPPPcdzhw+zcfNmbtm+HV1V+dO77uKta9dy8Gc/46HHHuOWD32IDz/5JEXTJGwY3NrTw1g2S0skwmyhwIbubnT11xvW7dy5k9dee4377rvvP/up/LuW38jC/xcv/57073/bvo+TyYzQ2bkOTQt7aeEapln00iVBVQ3OP/8innjiv3PxxReSyZwmrCdIBJdh7xtASXahrLzAA7gpnOF/Rr1yK4rj4No2SlQCk5yRUxJ8FkuAqkhViaLipudwDjwjIWi5HEpbu4BkbxCnGEHsgX9A7bkc58iQfzyMAM4ze1DXbsA5/JwkjJdL8jzSKZTmKMrUDQuJ4G1fg6lboOlmmSlGRaTdsyIBN7plpnlxSriTEw917vtQek48WHZaZqrtlMxqz90r4NmalZnp+c9LOJpbBOMCuTjW0sX1c2T/bomKU8/IyAQtLS1+mmkqlSKbzZJIJMhms/zRH/2RLwuvyeNqARvZbHZJYni1WkXTNMbGxkin03R3d/uyt8X77OrqYnBwkPXr11NXV+cHbNRSx1966SWuu+46Wru6GB4bY20yiaooHB4bY1kkwoxXz6UoCrlqlXgggK6qnPOFL/C9a6+lt6vLT84sWxaRQADHcbhpcJDbNmxgLJNh23e+w7WrVvHnl19OayyG7bqkSyWigQAKEAsEsF2XkmkSCQSwHUfSMh0HFxgeHaU5GmXFsmWMBwLsVBQ+j4zhc0hquAsYCOOsebe1aq0HgLuQ1O8QIu3G+/sngE8h0vDLEJZ7FFiLgOpl3v4c7xgF75gJ4B+B5xDp+MvA5SXIpQXgFgpwxx0C/sbGFiTKDz0kwDkQEGxSLMKLL0qKdSAg96NRYaPzeZGKb9gg+wORj+dyUvm1c6cAxMXy71pSdmur7CMYFLY1kYBo2CKoifx6dHiU1MkUK65YQTwZx67YjB0ZI9ocpThXpKu3C0WTdO/MSIbkuiSqpjL40UFfAj7/6jwrN60knozj2i4jQyOSIN4QEqCclfRrPaSz+8bd9N7RS8MKkUT//B9+TtMFTbRe0gpAICqSzuzZKpP5OA8+qPDAA/I/hEKCs55/XhLQAwHBjOXygmf9xRcFQJfLwlJfdpmsNzws0vEvflHYfcsSgN3dLXL7Q4dk3Zpkv9ax/fjj8MtfCtBubpZz2NsrioH77oO77nLpbq+imlVfBj/781k613ei6irpU2kO7jrIxs9txAgbKKoCCuSn84QSIcaPjhNrjxFvj2NEDEkLz3oy8qhBdkRk5L239xLzPLH7bt23JLV98KZB+nb0kR3LUtddR11XHS4uoZiBUjVhPisM8nndArZrMvAao52I4dc4mJbItVVFfNEz8wK+l3cIUC5XFtLBQ4GFBPBfTQuvre/YEkLmugvR97Xqr5ABuVPCJAcSCwngmmelcW3pwI51eOnhi6TgWkCAcG0bu/L6JPFqxpOK19LCg95+Kt5+OvArvWoSGLsKlTRU89jx5RTmx4nUt+G6DqXMLJHGDsxS1peJKx6rpygKhbkJAuEogVjjv1sablsmjlXxiHgVVdNwHQcFhfGXnybS0EGi7Q1Yts6rJ7KMjWVIJhNMTua49NI2MpkKdXVBwmGd6ekCra1R7/vZ5fTpFLFYkIaGEM8/L4nitu0SCulMTeW5916Rfx88OMrBg6N84hPr+dKXjvL5z19FuWzT2Bgin68yOZknmYwTCOhomsLZswUaGyOoqkKpZJLJlOnujlOtVqlUKkSjUWzb9sGwbdu+7PuKK65AVVUMw/BtSwDFYhFN0zAMA9u2mZqaIplM+rLv2jV0dHTUZ7uDwaAPnjRNo1Ao+AFpABMTE7S1tUllpeag2a+hzO1amg4e6ZPfnSLM3CFp4EpE7GD2tCfr7hJQHF4nYBxHwLZigDUNWp2A8dp6eotIyfVmuZoUh0BvWgDh09s9Sfo5wmJ7Yxiz+ZvMzZ9gePhBNm580PNDu5TLOWy7QihUx/j4UQmddSz27r35X5F33wG4BAJR4vFOgsGY/16rVApUq1k0LYhllQCp9woG6wgE4n5SeU/PrRSLc7S0rEZVNQIBUR3Yis5f7PvmkoRuVVGxHJuKZRIJhNAUSa8u2VWypTzLvOTv3b8YYtMFPfzZVTcwmpnxE8e76lpAURhdlELeWdfCmdQkf/fjPdxy+fWeLdClbJYpmVW+ceT7/OFl24iHIjRG6lBQmMjO8ldHn+RPr/iALy+vpYFPT0/T0tLiW+RGRkaIRqOEQiEsy+LAgQP09/cTiUSoVqvEYjGq1ar/nu3v7yeTyfh5NYqiYBgGhULBH18tTrsPBAIMDAzQ1dUlCeGI4kPXdRxFoeI4/hjnoUOH2NHfT3ssRkDTJC3csrhpcJBP9vTwuUOHfPn4n7/97Zx8+WU+8Ad/QP/DD/ODP/xDXvz5z2lta8NyHM5bvZr53l4G7rqLzro6dh44wI6+PtrjcSZzOZGO9/fzxl8TaXi1alGt2gQCGoGAzuc+9zn+23/7bzz99NPU19cvWfc3svDfLEuW/y/p3/+jRZLB81hWFV0P0Nh4Hu3tb/aBNciXqWFEGB0dJpsdI5+f8gIyHBQFhobuo1LN4uKiXrkFpescqeDKplEalqFt/V0oFnBmJsGsYA/8A+7cLEpbUuq09g2goOCMnJIk8QPP+KFlanOrSMj3/hMUclA1cc2qAO9CXrqtveNRKqBu3CYd2v1X4uqG9GKPnoa6enA1XD8R/A4JGWm8aSE0xHxNZovdklz0rAmYuU2AtJoQr9TZu+U28V652CmhhZAytyQX0hqwDq8ViVjTDtDaQEsCziL5+X2yL0UBxUDFoa2tbUmaaV1dHcuXL/flcLXe6aGhIbq7u5menvY9O4VCgdbWVkqlEo7joOs64+PjtLe3c8kllyxJDm9tbfWZbZCQB1VV/YCNvXv3+umW1113naznOFza1sbpdJqPDg6yprWVzkSCvu5uYoEAU/k8d+/fz3Q+T9QwOPmxj9HT2el3LLqA6jHRLnDL+vU8ePAga5NJXrnpJr62bRtdiQTj2Sw3P/UUTZEIYV3H0DRP9uXy48lJTqVSDI+OYjkOh8bGUBWF3q4uUqUShmGwU1F4HAHSk0jn9QjCRFeAKsJmeyJRzgG+zILX+jWkdqvmx77du70cAd5hBIQfBeoRYP0qsN37TAXxareA9wJ3Aj9HJOSuV/d08KAAuwceEGDY1ycBWV/6kuCLj39cALCqClhev36B3PvpTwXQua4kXff2Ci45e1aAejYr4P2ee4S5veEGAZx9fcLAlssCrGtZJeUyfPazsq6hQ/pUmoEbBmhb00Z3XzfzJ+axKzZaUCO5LklhtkA8GQdF/NSRZRFa17Sy9+a9ZEYyrL9lPXpQp7uvm65+AeCO6WBVLNrf1E6oIUSsNUZuMuenY6uaSteGLuLtcaySxfSL01zyB5f4svFndjxDJScqndCyODt3KvT0yPM3DAHYN98s7HQoJFVcIOd4xw45N+vWCVEaiYjs+4UX5H5/vwDrnh45F3Nz8vdwWD6a69eL5725WSY92tvh85+XiZDWVpmseOghr3rLELn4V78KXV0KqqGjh3RSJ1I8ffvTxDviqLqKWTKJNEfY+uWtFGeKjAyNYJWFiQ5EAhIe1xIlmAj6MnvXdRl6YAiQgWBmNMPxJ48zvGtYwss0dUlquxEx2Pb1bdSfU09XbxfZsaxMRlVtYZJPT0BdTKTaCgKAO1vltmoKOC5XxAetIG/MWqDZik4Byl2ef1pBAPXKLrl1kaTxREzAeF0MLj5PQHwNiOdLHnB35bnU2G5NFYl4rFMAsF31wK4ioNqpvbgxAcsoizqxxzxpuLeNXRGG27WlL7smFw+3eGnhpxaCyhS8VPK0AGvVECbcLstEQG4MQk0iK1dUjHCMYnoKRVWJNLQzdexHGKG4LxOvFFK4tkjso00d/yHAWhap9lI0DUVRsc0qpfQkrqLQfN46Ys3n4NgmlVKRiYksfX3dtLZGWbcuyeRkjrvv3o/juJRKFolEEFVVmJ0tMDqaIR4PEo0GcByX3t4uIhGDctkkEFDp7k6wa9eVzMwUuOqqFezY0c/Zs0UefHAjtu1SLJpks1V++tMp2tpiTEzk+dCHBjh1Kk0oZHDDDQO88soctu3S3h7339PRaNR/T1uWxcjICLlcDsMwWL9+PcFgEE3TME2TmZkZv8e6BpQnJiYIBAJ0dnZSKgkADIVCVCoVqtUqHR0d5HI5nnvuOb/aT1VVvxWjrq6OfD7P4OCg34U9MDAAbhVl7l4vHXwayi+LLNu1pbPanoJwD5gT0j+txkHvkseM5cJQT98scm8ssZThCoAu/cTrvG6G0CUyTnCLHlt9EkKXisfb6BTg3vYNAdbuIoVd0w4c12ZoaCfJ5FpyuQmva/o0tl3GNAsMDt5EItGJrocJBOJs3vwY1103QDK5IO/O5ydRVZ39++8mnT7pWw1Ns4Rtl5ic/Am53ATBYAJNCzA/f4JcTtQptX0cOvQQXV0bKJXOsnfvzaRSp1BVjbHRA0sYatO20VSN2XyKz//z3zGZPYsClO0qc/k0Xxl+gonMrM9wf2DdezCdpYnjFdvEcR3/sb9+/gcoQNgI8vtv2cLZfJpdP/prZvMpmiL1vvx8vpSlbFZ9Fn0qN8clbeeRSacZGBjw08ALhQLNzc08/fTT/ieuvb2dI0eOYFmWnzB/4MAB/31Z676uSckPHDhAMpn0QTRAtVr1Q/p+Ne1eURQ2b97MqlWr/MA+X2Y+N0dAVVnX2clDHnDeeeAACnBwZEQIC13nq1u3ck59PTsWdVnHAwG+9uUvE1u9mseff55Ktcqy1laGRiQ08rKLLuKyWIx1nZ3sPHBA9j00REDTlgSm/TpIw6tVi1/+co73v/8H/PKXc+za9SDf+c532Ldv3+uA9a/j8htw/b9h+Z+lfy8GzP+j5V/zbzuO481+OlhWRcLKvHTI1tY1ZLNjlMvzVCoZD1yL5ycUqMPZtxvFcRe80weeAdvCzWVwhp5ZkIMffxk3n0PRNEjUo254u5ADiTrPZ/1O8Vn3X4Gr6wv7O/gjlGgUZ98AhKMoDU3irx7eL/vMZlAMQ/qu43W4Y2dwFQW1ewWK1zuqGCtECq61IlLA86UqyykuAr33glOQi2XTJ4WhxlpICJ3bJVIurUnWq21njsoF0r8oRkWGri8H6xTMfFzW95M/d8hsNQYoBo5jUalUlnxB1wIzanK4Q4cOce2117Jp0yYAX4bkOI4PnOfn58lkMoyOji4ZLNSSw2v72rhxI7quUyqVCAQCGIZBd3c3dXV1bPJ8PYODgwsSKE0jW6kwlc9z3xVXEA8G/e5qTVXZNTzM48eOMZnPczKd5ieTk5zOZHh1fp6TqRQfHRzE0DRsx+Fsscjyujoe3byZgKZRNE0+NDDAa6kUQV1nbTKJrqqczmT4yJ49nEylOOv1PI5ls2zo7iaoqlza1sZr8/PcuHs3HfE4mqL4VVkGC2neEwhANhHG+hYEYI8AH0aCyTzBKJ1I+reLSL9r4Pkk4s9uQALK1iJd2KcQEL/W2892RE4+iYDxFcB64Fykrnd0VIDa0aMC+j77WRnnv/WtwqJOTgrQC4cF/M3MyDYf/rD4hlevFl+wpi2kgmezAuo+8Qn5bE9PCxivqxOPdSwGy5fLfufmFuqpMhk5dl+f17Nt2773V9EVoi1RWte0Mv78OKmTKfbevJfWNa1Em6MomkJ+Ms++2/ahKArv3PlOjIhB48pG5k/Mkz6dJhgLYhZMdt+4m+yopPfGWuU9ObxrmONPHqd4tggqrPnDNai6ih7SaV3dyt5P7KWSraCHdd55zzspnpUUbEV1eeQRAbeRiPzvjiP/2/i4SN1vvlnOVakkkvexMZG8m6ac33BYQHKtzuzBB+Gaa2Q/jY2iDFi2TF6PM2fgM58RxcBrr8lkxfy8AGhYSBrfuVPA+Uc/KjL/Q4fAQRKQ81N5AcIPDst3eFBHD+u4jktmNEO0OcrgTYNkzohc/viTxwnVh8TbnqtQPFskEAuw+YubAdizfQ+JzgTXPHENG+7YQKguhKIpNKxsoP3N7RTPFimny8KcqqL66ezpRNVUtKCGUvEActBY6LqOR2X2IB4VANyYEJBtGAud1YkYBHTZ5vzlEoamqeK/fs2TfYOXBt4NrY3yRgUB2JYlJzkYkOPUksNXdnmg2IGRKQHsdkUArhYUYKwsAqaKKgA5cY7cT5wDLW8S4AvCdiua56EOyn7qVgg4zo0LQNIMkYWDAOhKVtZvfRNLarrsqlwrEp6cPnMSXBuzlJfqrZefxSxnCdW1YFWLvkz87InnsS2RzbuOLYysVf13+64VVUNRwCznmPr5flQ9QKShA7tSRA+E0YNRND1AMBzh0kvbyOclXKxSsZmdLbJhQxfRaIBQSCebrZDLVYlEAoyOZmn1Ppujo1luuGGAkZEMr746z5kzGQoFkzvvfJZLL22jvT1Oe3uMSy5pIRYLMDEhoH1yMsfFF7f4NWCPP36Me+89QDpd9qu70ukytu1iWaIIS6VSjI6Oksvl2LdvH52dndTV1RGLxWhqavJTlQuFAslkkmg0SmtrK3v37iWTydDR0UGlUsGyLB9sW5blt11omkYgEGD9+vXk83lfDq4o8rlwHIdMJkNPT49f69XT00O+UMVt2gHRqxbsX9PbJfi08Ra5vtddL0C45ou2RiVVHLxqrbUSalYcFg+2+SpMbZcsFzUq9V1oIgc3x8RaNrdTQtEWe7XNU97+Jzw722Ogd6Pac/T338nKlVct8VpHo80MDz/o1XEFcV2b+fnXGBzc7oHtkF+ftdhHLVbDMpZVZX7+Vfbs2U402oyuB0mnTzE4eBPRaDP5/CSu6yyq4LoLAdv3+bZC13Woj3fSWS+p4N317V6wmcNMXmTeM/l5bNchoBlML3osbAT5040fIGQEqdomn3zH+/j+Hz/E7e94H4amoyqKX+V1y+XXM56ZZSwzQ3tiGdFgiP0nXuDvfrwHFLhr4wd49sNf5U3JC/jW8z/wQfrFbSvpO2fNkpybSCTC0NCQn1uT9oB3oVCgp6fHl3yvXr2a/v5+NE1jaGiIkydPouu6T0b09/cL6+zl20xOTlIsFlEUhWQyieM4DA8Pc/z4cYLBIJZl+e9xwzCoVqt+e8vhw4exTJOAqvLIpk1cv3o1d/X3E9A0OuJxtg8O8po3PlIUhXPq6/nS5s2MZ7M8+tBDTI6M8LePPcZ7L7oIXVUpmSbrkklGMxmKpsnvr15NSNOWgHJclzv7+/0q1OCvBWttc++9B3j88WPceef3ueOO20mn07zjHe/g0ksvZd26dQDcc889dHZ2cujQIT7wgQ/Q2dnJ7Ozsf/Kz/58vv5GF/ycvS2Xjd9LU9EZ0PfCvJoxXKnl+8IP3+wmR73rXN70ahSDRaDOKovsVDoqioSgKN910C3v27GFm5ixNTY3EYjGOHt1LfawTJZUStjpRJ6xz/xWQqAezCvmcAOpE/dJ1+q6AOklStX/wOO7xl1Gv+UPU7nMlrEw3oFSUhPCN21ACEijjFgtgVgVQJ+r8W/+4dQ0CqHGlEzuXRV3RjVLzMBmdnjT7dtA6FrzSpSMiBzdWIM5aDawxAd+KJhfA8DpAlXUjG+TCN7dTLnjT2xdk562PyTbWtDDeucfFf9Vyn8jN9U7Ake5rvYOKpb9OWhSJRNi7d6+fULlt2zYA0un0Eol3a2sr5XKZAwcO0NPTQ7FYpKWlBdM0CYVCfOELX+BDH/oQ+/fvX7KvWrLl4oRy0zT92q5f/OIX1NfXU1dXRygWw1VVzmQyRAyDhlCI5ycmWNPWRtST800XCrTH43x8cJDPvuMd5E2TmGHw0swMq5qbSQSDlG2boKZh2jZBXS6UQyMj/M7jj/O7F17IV7ZupWrbBDSND+/ezXd/8QueuOYaNnR3M+ulYc4WCjSEQpwtlbh7/36ePH6cF7dvp1RXx72Kwp0ImD2BVGr9JQKQdyGp4C7CWM8DaYSBLiFe7R1I73UbwlDf6v3MIqB5FgHgDwL3yzuEGMKIH0bY6t9C0sRN4GZEct4N6CUJNZ6YWEj/vugiAbu33SZBZXNzSxOwu7oEDKbT4itubpbPum1L8vXp07L+5KSw2LWKqU9+UpjVn/xEAGYo5IU724J3XFdAuKRay/1S3iJMyc+g2nfbPtbfsp5oa5SZl2bouKwDLaAxdniMzp5OzIKJFtCwyhZmySRUH6KcKsttuky0OcrAhwZ8qfLlf345iWQC1xEGybVdtKBG6mSKoXuHfAlzrD1GrDWGFtAYPzpOXVcdmdEMqRMpLvqDN3NqVGd0VCGZFG/6Aw8IIFZV8UJ/97vwve/Jeakx/uWyTFI8/LCAaYB/+AeZ5KhNQGSzIvuurRMKCcB+73tFMVCTgw8MyOty773CjI+NCXM9MSGg/qqramF1LpPPvUpyXZJyqkwgJgFlww8Oc+UDV2JEDJHSf3yQ9je1s/IqkdCPDI2Q6EhwYOcBNj28ieJskQM7D/gJ7q7rood0tKCGa7sUzxYJN4ZRAypW0fIl5U3nN5E6mSI7miW5LgkuhOuCKNWqAOya7NtxRR4eDAhzHYssgO6q6f3u6U+q1oLcW9ckgKzmx669cfA+ZLCQkwECpoMB+TFNeXEcTxY+MilMOAiAV0yRZWdOCSvd+lbZqWt738WFBTk3LlTzHjON7M8xF6Tiqi7rB+IiH3FMAeyJ5R5o956sYy7se3HKeE1mnlgOCCBzUJh4+Rkyk8epa7+AlvN70PQgVrUkKeHnrSUQrvNPgwJYlSJaIISiGf+u7mvbrCyRpU//cojWN/YJ8FZV+SyXhZ0eHc2ya9cwt9/eywUXNHH8+BxTU3k6OxNMTORYv74TXVd9CXu1anP06DgnT6a48soVNDdHmJ0tUl8f4oknfs769Z3s2jXMpz/dR0dHjEBAo1SysG2Hl16a4dJL5TWcni5w331D3HlnP83NEW6+eS933LGBjo4Y4bBBMIhfB9nT08OhQ4fo7e1FVVX/ehSJRPjhD3/Ihg0bfPlsTUr7y1/+kpGREd71rnctSXYOh8NMT0+TTCb9iedSqeQz5I7jUCwWCQaDKIpCpVJZkhQejUbZu3cvfX19NDXG0TUXcFCsCSg8I2ODSA8UDwmwVsPSBjLxXoj9lljA1HoZNxjL5f2qRgR0T39CAHekb6G5BB2mPypjESUiEnFcAeRGl4xHpj64yM72dQlSM0epBPoBBdd1SKdPc/jwI2za9LAnRVaZm3uN4eH76e+/C10PUS6nKBRmSSbXMT5+hGRyLYYRoVxOU63mCATihEJ1uC5Lxobbtn2NgYEP+fc3b36Myckf09XVg2VVKJfTRKMtZDIjZDIjJJNr0fUQDhp5s0K+UiQWjPDK7Bne0LycVDHrS7rDRoCmSD1ji6TfzbEGbMcmYoRwkdTwh//52/zhW99Fe2IZVdskrAdxvU/XT8eP0xCO8zcv7OYD697DdH6eN7ac87pEcoCH//nb3HL59YSNIAbakvGPYRhYluU3tQwMDHDs2DGuu+46EokEQ0ND9Pf3U19fTz6fJxaLkUqlyOVyJBIJDhw4QF9fH/X19ViWRT6fX2JtCHiWuPHxcWKxGNlslrq6On/cVigU6O7uxjRNP/X+yquuYqRYZNfwMA9u3EjEG2vNFAr86aIE8S9t3swn9u7lwY0bAfjyF77AD773Pe78y7+k7/zziQUCtDQ0sPELX+Czv/VbtMdivGPDBm77zGd4S28vI9ksa5NJIoaB4Q0QKt4Y7deh+7rGXN977wHuuqufCy5YRiDwf/7zri3/M1n4b8D1f/LyesD8DVRVxzQLjI0doa6um6amC3zAvdi/XV+/nHx+GtMsMDR0H1u3fo1M5gxDQzvp6/s09fXnYppFdD2Eqhp+TUMmc4b6aCeGowo9FIvLrHAqBY1eXZaigCugWAlHsHd/16/YUi+/CiVeh5uZ973WSsMy3PScgOa2pLe9u1DX1X8FSkMTfgerAvbu7+G+9OMltV0EgqAoKPEIqCWU6Zuh5X4Bt4Ufiu+p9SGv2mLngq/JHJGfWujI9O3Q9pBcIEtHwGgHrV3k4k4OMEWu6Ba97daCnQEtjgiFTSi9IBfj2qLGPGB+LzTtoMwFFAoFIpEIqqoyOjrK/Pz8Eq90Td5S+9JftWoV69evJxQKvQ44p9NpstmsHxhT8/wcPHiQ/v5+GhoacBzH9xMVCgWWL1/uD1R6e3tJJBIoisLk5CQtnZ2+FDuZSPC54WF2XXklYcPgbLFIyTS5d2iIHf39rKivx3IcZgoFWqJRv2MxmUhwn1cfsSwS4WdTU6zzWOpDY2Nc2iYDs2ylQms0igvMFYtEa1QrcNu+fXx83TrOqa8noMmkT9myCITD3KSq9AHXeevmEQ90K3ADwmLvAS5lwUp6GyL9Hge2ANciPusvIangFgLAWxA2ul1eTcpIuviUt7+sd5ySd+wEAtL3Ikz3pYiqb/aXEmq2Y4ckXN98s4Dhw4cliKuvT1jSGthuaBBg2NYmILyGX2ZnhbkNh0UGrSgLALxaFQ92e7vgjGJRwOOpUwIIH35YWPNdu+SnxpL//CWLC5vnfC/v6MFRRg+OsvVrW7FKll8dpYd1cqM5DuxcqI5yLRe7apOblHquWre1WTDZd9s+em7tofG8RqyKJQC8QYC4WTLJjmb5zrbvsOraVay/dT3hhjDhhrB4vFuiFGYKJNclKZ0todQnOPrTgC+Vdxy5PXwYLrlEAPHZszLJcO+94mtfsULOz/CwTDh0dQmobm+X+9/9Llx7rZy/u+8WD3tfn0xYrFsHqZScv+lp8VM/9piw3k8+ubTuzLYFYO/aBXfe6XLeShczlWPmpRmSb02ihTR237ibzp5O3vieN1LNSTCcHtZJnUyRn8yTXJf0Pei/+O4v+PiZj8vXhab6KepWWWq6oi0CGMyiKax0QJQk1XyVmZdm6OrtojBT8Cc7zJJJpD5EIoqw01VTgLRtiyfA8YCw43gVW4bnh/bYadsWubjhhZGFgvDCMZF814A6eIEAJdl3jfWugfFfBdPhoIDu2j4TMZGfd7VCSF/wStetFMC7pC5L8ULNqgKKFU2+h1XDmz36MYQbIXGudF7nJ5ZWdIWalnqxFWVhv3bZSxBPeP+UK8A8OwKJbmwUHK96S9MDKIqGi4uiqt6qFlO/eI5lKy/DiNRjlws4jsnsa0dpPm8dwf8PMnHHsf1QtGoxzexrR1m2wpt0QOHsyedpPm8dRjhBtepSqboMD4/S3BxldrZAX183N9wwwK239jA7WyCZjDM5mae3twuAYtHkttv2cdttvSxbFqFYNCkWLXbuPMCOHX20t8d4/vkJmpujzM0V6e/vply2OXJkjPb2GO3tUsVVLlsYhvxvmiZvCstyqVYtwmGDSsUiGtWpVXHVqrBq1VsnT56koaGBZDLJSy+9xOTkJJs3b/YZvlgsRmNjI47joGmanw2yatUqNm3aRDabJRQKEQqFmJiYoLOzE0VRML0GiqmpKaLRqM+ML66lvPzyy/nyl7/M7/3e73HO8jZ0zUJxymIRa/qkqN5mboamT0lA2cwd0ocNMklfu7DYczIemLtXbGj6Cm8ixwZrHrR678vcgOqrMgYJXerVdz0s+1TDgAZuecGjbazwsl9CVCwV06ygaQHvvaRiWSXGx4+QSHRhGBFee20PF110DQD79t1Gb+9tGEaERx893x8jptOnOHDgXvr6dtDYeB6qaiwhaerqlpNOn2ZoaCf9/XcSi7WTy03S0HAuIyNDtLW9CcOIoCgatl3yx5rxhvM4Mz/F2WKai9tWen5ri2y5wKEzL/Ly5Ak+2v9fiRhBHnj2r7m4fSU9yy+hJdaI4zpMZs/64PhnE8fpqm+jJdboV2otb2iXvADXoWJVefqVI/zLxKt88h1/gKHqnC2k/eN8cP1v0xhJoKkaJQ/wt0YbeWrPIMlkkpUrVxKPx6lUKkxPT9Pd3e1bC2KxGHv27PHfYzViombJq6kDjx8/zjXXXON3t+/evZtkMumn0Pf39/vJ4zXlxK9u57ouxWLRr0wtuy43DAywoauLDV1d7Boe9sdPU/k8u4aHubO/n7AHgnVV5c/vv5+hgQHu/uY3eedFF5GtVFgWiXDp1VdzGrj2ppv4QEsL//Waa9j74x8zXSz6uTdf3bqVqGH8Wnisf3WpVi0qFZtgUP+1AtbwG3D9f/zyq4C5sfE85udf5cCBe+npuZVCYZbly99GMBj317ftiicdAssq+jOUt912lj17PrJk9nJ+/gTDw7vo77+TRKIbyyqhqjphLYazuJN62zW4iiLp3UPPCENd3wCZlKR4J+rl8Q3vgPpGGZOpmscqODhTE6hJT4ZXreA6DphV8XL7x3gvbjol++m/AiIxnL3/hNp/JURjOE99H7X3HRBPoAQdlMpB8TnZZ8Xv3HS7eKHViNd5vSjorHhwUbflnV7v9cmlYWXhy7znmxGQrdYh3u0TC0Bda5aajbmdsh+t2bsw3+nNSH/IP261+W+Yn08tmUHft28fW7dupVqVdNWnn36ajRs3+rOa/f39/iyr67oUCgXfi2bbtg/Sa4mqY2NjdHR0+EEdjuMsCZX51f7rrVu3+oEclvx3WK7LwZERRjMZ3nXBBeSqVRLBIMdmZmgMh33QeyqV8mdbAYKaRtW2sbxgs5ZYjBPz8zx06JA/I6srCkXL8rsYJ3I5Lm1rI+IlbTquy+l0mnggQH04zJGxMdpjMdrjcSKhEEVdJ6QonEEY6x14jDEi697JUhb7duAg4p/+CiIfrwHkGAKsa14XFwkzSyDp4UmE3TaAIhJY1oMAbxUB1vd4x3gDAsa1PHzk/cJ+Xnst/NmfCXN97bXi+52aEnnx7beLL/voUem0rlbl57bbpBKq1o09MiIAu6FhKcvd0CBYRfUCm194QWTnrisy6Hgc/vRPJT37Pe+RALREAhqjFUaGzhBtjlKYLdCwsgGn6lB/bj1zr8wxvGtYeqzf0MQPPvgDjj1+jJteuckHyMl1STRDw67aaAGN0eFRYu0xGlc0ggbVbJVKpkIwEaRarC5huvfespeND25EC8j2Uz+bouOyDsppAeJGWGbsLQJkcwsM6eJz4roijb/zzoUe64EBYZV37lyY0LjtNklL1zQ5F+PjArJLpQVVgarKREUt3KytTQC0psnf83mWPIfbb5fJkQMHFgLO1r+lSsCpkJ/JkxvP0bmuE0VXsKs22dHskvOZn84Tqpcgs0RXgmiz9GHX5Nw1tt8qWfL4+k6sksUzdz7Dpoc34VouY0fGJAStLU4gEcC1XcyiTG703taLETGIt8cwAipKriBAFlcAL8CpcTg3Kf/8oklRFHUBOC/uvw4G4NUzIhFf3Gm9eMkU4OevQVO9hJkFDQlES0RhWcMCcD85JmA7FJBjBHXInRZvdWiZPKdKFuaPC2CuW7mUUVY0SfmuVXK5HstdA8u4HmC2IBhfYNYdL6hMC3kS9Brbbcj/vTg8TTXAqeIoBrZlYZklzp54ngf+8gcM7NnDmTMjHDrwDJet7WHi5Wf4rx+4lVSuSjCSIBaPcf+ff4oG6wxdl24h2phE0fR/M8B2vDqvmdeO0HzeOsxSjjMv/CN17RfQcfEVS1j05OoryaYLWISYmMixc+cQd97Zx4oVDZRKFum0pIcfOTLOmjWtzMwUmJ4usH59J5qmUixWCYV0TNPhppsGefLJ43zve9fS29uFpgm7bRga+XyVHTue4bOffQeaphIOG15gmYSmRSIGp09n2LlTgtAAdF1l584hvvWtbViW6V97VC+gslgsEgqFUFXVD9psamrCtm3Gxsb8ieBkMsng4OAStrnGKp45c8ZnGjds2EB9fb3fPVybpK6FmdXYxlrIZ+26+1vvuhqNjDc2iUii9/znYdmdcOoiGSss+zMo7JN6Tj0pdjFrVibhjeUw9WGZaI9fI3ks1kmYe2BhLFD+iRd6Vgvqq0LpsDSMRNZ74WhJb7yyYyF41S2DEsS0LMrVErncBIXCDIlE8nVjvYV8HJWXX/7vnDnzI7Zt+xqFwizhcAOaFiSXm+DEib2Mjx9ly5bH0PUwrmtTrRYAF00zUBQD2y6jKKr3nlV8tUMqdRLDiGBZRQ4c2Okfv2P5O5awyr/ab70sWg9ANBCmaJaZzaf41vM/4APr3kNTtI4Hnv1r9h4/xNYL+7j17b9PQDP42cQr3Prk53n7ysu4+6obGMvMMJOf5+K2lQR1A8txsB0LUHh56gTLIvU0Rb0xEi66qjGdm+dbz/+A29/+hwTRlnSm53I5P9TONE327dvHhg0bSCQS/vjKMAwymQy6rvtMdyaTIZvN0tbWhqIofo96oVD4VxWDjuOgqiq2bVMqlZaoJ8LhMPv27aO/v59oIsGrqRThQGBJ1/VXt271g9gMVaVomhwZH0fNZtny1rfS1tVFPB5ntlCgs7GRAwcPcvSVV3jf+95HMJcjEAhwy1/8Bf+sqjy2eTPbBwf5VF8fU7kcfd3dxL3gwN8s/3uW34DrX4NlMWC2rOoSJnvz5se8JEd7iUS8tlSrRSqVDJVKlng8iWWVGR8/Ql1dFw0NK3nyyT/x97Vp0yMAFIszhPQEcSsozPOGd0AsgWIEJLxsMRhWVBTL9FOIXEUB0/SGPi7Ovt2o6/uhoUlQQY2p9uTjpOa8++9Eicax9/7Twv63/i5uPgexOFimUHexuNR6BTVwT6FoywTcLpZYuVWwJj3g/EmRdGkNwlDrzXKxjPQtSemk9VGZpXaywoJrLV6lCxKUhgXll8RLtXi7lkfEl2XNSpWHddq7cN5Jxe3kB7uffZ0EHMC2bQYHBzl27BirV69m69at/oXNqiVTgR9gViwWOXDgAL29vUSjUaanp+nqEnai5kGrVXLNz88TDAb9Wf42jz3WvZlL13XRNI0qcDKVYqfHPJ9TX8+J+XmmCwXWd3ZiqCqm43B0fJxLWlsJaJowyppGulz2me3be3t9f/QnfvhDblm/nu66Oj/w7PnxcVa3tKCpKkFNYzSb9Y8ZNQxaPB/54bExVjU3o6kqYcOgZJqEvUFaAfFWvwT0ImC3igSWOYi0Ow3UAY3e4xUghXiqHQRIjwDrfuX+WkSLUGSB+f4kAuJPIaC9Ji3fhjDhf+n9baIKa+YgmxE/tG3DrbcKGDz3XAFsti1y8XPPlXVmZxcYWNcV+XNDg4C855+X8K1sVgBfuSz7+NznFrquH3lEgLttC0BXVWF3a4nhY2MLDG08VCF1IkV2LOszqDWgnBvPUc1XCcQCxDvipE+nOfjAQbZ+ZaswdZ6/t5qv+sBYD+rSTR0xsCoWjulQzVeJd8SxKhbjR0TyXX9uPSBhagfuPcBVn7+KwkyBg/cfpH9HP7EOqeMqni0SWd7MK6+qPPywyMEtC15+GVaulPNTm6yoscuPPioAuQZ43/AGOYfRqJwP2xbveSIhf1+xYoHtv/tuAeGKInbkj31MgHxX10Iq+OLXpbNTJi9ELu6ycoWD7piYRRPHdvjRn/6IK3ZegRExKMwUKKfLFGYKLO9fTrVQRdEU9KAuPmnHRdEUqrkquKDoCprHBlYLVfbduo/e23tBgbgXEGVEDAqzBYLxIIXpgigQ7ugFF+IdXoiUZZNojy0FyaoqzHUNQFetBXZ5ZSeYtrDPK7xr/2xKZOQ1r7TCwv5WdgLKUsa6UhUgbugLYNq0FtjrgA6zaUkoX9klz0fFY5grS0FvLf1b1RYCx0JNS4F0jb2ugWrX8QByUiTi2dML7LdZEPm5FvLUR7YnNfe+z2uha47pdWBLYrdVLTH9yjCRhg5+8vMR6tQ01974Gb773e/ypksvoVrI8NrPnuWN67ZhVUv87dcf4dG//j7PHx7CsU3MUoFIY4cMkP8NINu2qoy/+EMfQNcAdfN56whE6qgWM54cfR1GKE61YlKsaGzfvofHHz/GwMB1dHUlGB3Nsm5dJ+Gw5k2ou74aRtg4h7m5IvX1YRzH5cyZNDMzBbq6EoTDhp8kvmZNK1EvbC+fr3LHHU/z4IMbmZ4u8LnPDfPAA1eSSAQpFKp897u/4NChMb7whas5enSc1atbaG4OMTc3RzAYJBKJYJom+/fvZ+PGjf6E7vz8vB/UWalUiEQifqp4LXm5UCjQ3t7ug6FqtUo4HGbPnj1LGMHF69dUW7quo2kauq5jGAYvvfQS5557LrFYjIBuopivLZqI71h4MWZulqpObZlMrqNJoGktIRxHksFdAGtpMvj4Nm8M8UVRuVlnBUijS0q40QF6u0jFG2+VCX5/vPINb5JfJu8rbiumrVIuzxOJNDM+fpRIpMmTfq9F18OkUq8xNHSfpz48h3R6hHi8DVApl9MEAlEqlQyBQBxFUZmc/Al1dV3U15/rKxkXp5G7roNpFsnnpxge3kVf3w6y2TGSybUMDt60ZKypGFEc12U2n+LQmRfpXX4JXx5+wk8Pv/ny3+Pk2THWJM9HU1Tuf+ZbvLH1HHqWX0JDJMFk5ix/9fyT3P6O9zHvgfL3r3sPM/l52uJNtMQaeXHyVRrDCeZLWS5uW0lAM5jIzvKXh/+R9122lVQpx5qO8+VrzZOTP/CsHKd3+SW0RZvYs2cPnZ2dXHTRRX7TytNPP8369esBiMflu/OZZ57hiiuuQNd1xsbG6Orq8ivfap+fWgd7jamuq6vzbXw15lpVVT9Pp/Z4JpPhO9/5DmvWrOHqq6/Gtm3K5bL0vSsKNjL+etAjLMKGgea1trTEYuw8cIBbe3qYLRToX76cqldP+uTx435ri+U4WF53vKooHB0fpz0e5w2NjZQ9UmN5XR3nL1v2ayEF/79p+Q24/jVbXs9kr2R+/rXXebJr69p2hWo178mMDAqFGcLhelRVvjzS6VMMDd3Hhg130NCwEtMssnfvzbyt59Msq1sJpaJ4rANBkXrPzeIM/wh1wztQ6pvAsXHGR1C7z8UeeAJ147ugkBPA3Pt23NHTuKOn0bb8Dm6xsJSp3vI7fl2LWyx6FVvzHnN9pdR+feebKKvfIgnlnlTOTZ2FQhqluxFFjS9ioD8pfufazLEvvVruXQhPL5KKnydhJHP3yUXVWAnYYL4iAWdNnwYlJiElTkbC0FCF0TZPeNKwOyWMxK0CGig6FP9ZALxxLqYdYi5VeJ33qzYbn06n/QqIWg92TVIXCAT82VJFUZZImC6//HIikQjZbBbDMPwv9xqzXaufmJqaorOzE8uymJqa8juxK5UKTU1NlF2XoZER3/Pc193N8Ogoa1pbxQcEHB0fZ3VrK2Fd96Xiu4aH2bVxIxFdJ1Op8PPZWc6trydsGOiqytli0QfPE7mchG0sAtRj2Szv/Yd/4MUbb2RZJELRNPnz/ft5YONGVEVhplAgFgjgAvFoFFdRKCoKtXlXA6nGUhBQXPYev837iXo/eO+Y272fbkRW/ilvvQgCvmeRZPFxBLhXWajkOgj8PvB3wAbvfjcC4m8D3laFDb+E+zxZeCwmwVmuKyz06Kj4ow1DwJxtC0Bcu1YCt0BY0ttuExDouuLxffRRSbBWPWdGpSJgcft2AYO6LsztnXcKA6uqwnBblgSmpdMS0nX5+qXMdaIzQXYsS6Ir4TPT5VQZq2xRv6Jezpnl4jouhZmCpFvHA9LV7DGw2dEsic4EDSsbXvd4tCVKqD7kB6SNDI0QaYpQd04dP/zED3np2y+x6tpVbHxwI2bJRFEVjJZGDgwpXHyx/F933bVQOaaqAoA/8Qk5P5Yl65RKC8z+ihXC1NdC4CoVkX3X1y9MOtQmM849V16Dxdt684HMzgrz/9xzMtmRSi3cXnIJ/NZvwde/7lIemeHAPSKzB3kj1uTfNVl8w4oGHNPBsRzKmTKBaABFEzCt6iqVrIQk1WTkiqrwhXO+wDVPXEN3XzdmwWT6pWmSa5OourDMgx8VH/dF11wELPjnNV2l5aJlKNk8RMMi1QaPeXblJCqKfBjKFZF+m5bIxRUgXxbWuSZ/rQHyV87AXBrWrfYYX28sYNkCnmtLuSog+8SogPRaPZeueUBdWfBp10jw9EkozUJ4mTDWrr3gvfaDzhb5pj0QjLvIi40rtVt6CGZ+Kp3WiXMWJkX9xV3wXsOCV7smFc9PYifOEZBRyqKoGjOvDJOZPM6WD+7iH//pSS5Y3kykvsNXAIy/tI+/+bu/5/Ef/oyf/vSnWJUiiqZjVYrMnfoxbRe+DVU3UNT//yDbti0cU5hDRfXOFS62WUVVNamydF2sahFF1bHNMo6aIJuTQLOOjjiHDo2yalUz+bxJMhknn6+SzcrfLMuhWDS5446nueOODbS2xlC9MLxQSCefFzZ7ZqZAc3OESsUmm63Q4lkTTp5MEYsF+Mxn9rNhQxe/+7tSKZTLVUkkgigKJBIBstkqjuPS0BCgVCoQCoX8eiJVVclkMktsULUJ5Jp0vAZGankktayQWgp4bdI5k8mQyWRIJBIMDw+z0VNQyXPKkc/nfb9rb28v8XjcT3TO5XIsawwSMA97E+xzEH7LAmBWFJlEdwpefZbq1XbaMqkefqs3pvBsZHqLN9ZYC9M3QdOfyjjDycv7rfwvooRD87Jcen1f9UI+zF0yLlmidvsm8/MnPLn2XSQSnRQKM0SjrfI+UVRyufElrHShMONb/zZtephCYYahofvo7b2dpqY3cPbscYrFs3R39+G6NiMjB0mnT9PZud4H09Foi1/rJUD6UcrlNKZZXPRcurBcl8n8AlPdWd/KeGaGvzr6JB9Y9x5CRoCSWeWbR77PB9a9h7bEMsbS03zr+R/wJ+veTUd8GSgKuqoynZvn0JkX+eX0aT71zj+iaFWI6EFs1yFdyhHQDXRVw9AMbMdmIjPrA+6gHmA8M8N0bo5LOs5HV1Us22a+mGFZtAHXlMDBfD7P4cOH2bhxI7ZtY9u2/57r7e313z/5fJ6uri4sy1oCuEGY6vn5+SUKC13X/fdlbRxXU0t85zvfYfXq1WzZsgXTNH1f9tjYGPF4nIaGBqqA5dWPKsDpdJqRTIZ1ySQBXecju3fz7Zde4tpVq3hs82ZCui71ZpZF6l8hNmKBgBAOjkPJNMlXq3TE4zhA6NfEY/1/2/KbKq5fs+VXq7scx+HAgXs5fvxJMplRLKtEpVLANEvMzR3HcWwKhWn27PkI8/OvEghEGBs7QiZzGkXRqKtbzpYtX6a+fgVjY4cBl76+HeQKk8IOhMIAAopTc9DQiHr5VRBLyNBHUSSsDMQ3raoLaeDD+1FWnC8p4ZoOwRBq79tRVr8FddO7QdVwUXBVDawq9p7vQTSGtu0aqG9ETXajXvd+1N7L5Vi2Da6DM/QsSiyIUv6ZMM1aszDWaoNc4HAXEj4jfV4IibkoPXwnYILxBpGMmxPebLUj1RuNd4jkS29lSSe2onrbnSvHM1YKsJ/+iDDWIBfL+YfAGsdBp6GhgW3bttHQ0MCPfvQjPzU8l8tx+vRpLr/8cn/AUQvGME0TXdfJZrPs3r2bTCbDxo0bWbVqFRs2bPA9PrFYjKGhIUzTxHEWklr37t1LoVCgpaWF3bt3S6JzLMbg4CCmafoScl1R6Ewk+OKRI7y5vR0FeFt3N2HDoGCafHRwkNZFrPKySIRzGxp4eNMmwrrOyVSK259+mo54nLZYjJ/PzhIxDL/yYefQEBe3tGC7rv/Yg8PD9HV3M3bLLbTGYhweG2M6n+fut7+dM5kMNwwMUDBNAdeqiq0ouIpCyHsJ5hFp9yzwY4TNziM+6VsQsN3KAkaII0FkbQiTPYNIvccQz/Wst34YSQDPI8C6HkkWfxOSGN6HgO43I8Fqv0DY7CuqAqwff1wCs1paBKiBSJObm+Gmm4QVdRzxCD/6KFx3nQSTTU0JWK4ptixL/L21bW64QVjocllA4v33i1T5wQcFCHZ3C3BPpyVp/IYbhKGdmRHZuOmoLO9fTt05dXT3dRNrj9G6ppXceE4SrbcPYhZMMiMZcCH1WoqRoREyIxlSJ1PoIR1cmHhhgmhLlOxolsiyCNmxLOlTacaPjpNcm8QIG0SaI34Kdn46j2M7dK7vpDBbID+dZ/Ojm/nExCfY9pfbCDWEiHfECTeE0TRh2atV8aAvrhw7dUrqzJYtE/C8OFG9uVkmL2q1yomEsPw33ywil6NHZfvRUXl9Jifl99q24+NyzmuhcK2t0nNdKsk6hYIoCWIxYa8//3k5vh7S6bm1h/xUnvrl9eQn80Rbokw8P0G0NUqiM+EDVNd1iSyLYEQMHNNh8KODpE+lCcQWFEau42JEDG588UaS65KMDo+ih3Xa39LO6PAoc6/OUc1V2fTwJrr6upj8ySSqrrL+lvUcfvgwalDzZpoCIsUue/T9yTFhg2s0pmnJOrUTdtKbgA4aIgUvVZZebLrb4aKVwnrXUsNzhaUycccRNns2JQz1W1cJ0x0wZJvXRoTlVhCPdPoEWBWRfYeXQfxXxh412bZrL8jY1YDct2XSEC0gcnEUCCbk7+FmT0peC2nzGPDFswWKKgBbMyQh3K54FV9tgINrm+jBKEYoSvN5a6nvuBDNCKGgEIw3M3HsWarFDH/4x++n97c+xFf/+4/45l9+mfGX9uE4Foqqcfbk84Qb2nFdF7NcwK6WXpco7jg2tlWV66sL1VKO8Zf2US2kcR1X/N6aDN4L8xM4VhVFUSjmcmRzFWZmCtx9935OnUqxYUMX09NyP5+vMj1d4LXX5jl1KsXhw2NEIgZf+MLVhMPSa33zzU9hWQ6W5ZDPVxkZyfCZz+xndDSL47h85jP7OXMmw+HDY3R0xGlri/HII5vYtGklhqEyNZXnnnukAisSMXAciEQMAgGNSsX2PdSmaTI4OEg2myUej9PT0+OzgdVqlYmJCUKhkP+3bDaLoij+76qqomkatm1TLBaxbZv6+nq6u7vJZrO8853vlB74ffvI5XI0NjbS3d1NJpPh+PHjDA8P+yxhjXlECeAanXJ9Dq0RT/TUjWCNAJqw1868BI+Zp+S+PSfA2E4LcLbPetvOi3RcCXljgRUyeT9zM9gzkh4+fZOEoEX65YU3zpXxiN4hDSd6pwD6ph0LVVyOTTY7Rk/Preh6iExmlP37P0Mmc5rR0YN+J/Ull/wBmzd/CVXVCYUa/FTvSiXr/z48vAvHsTl06HO0tV1KOn2KgYEPkUgkufDC3yGfn6Kn51ay2TEMI0Jv7+1+Uni5nKZUShOPd7Bt29eorz+XsbFDOOBXYX3r+R8AEAuE+fQVf0zICNIQTviVWt96/gfoqkpLrJFb3/77zBXS0vWsqoxlZvjK8BO8qeONfOqdf0TFNvnF9CnGMjO8OPkqISNIJBDGdhzuf+avmMmnmC9laYk14gJVyySkB7ik43xM2yRfKYGi0BStR1OkKz0YDFIsFunp6UFVVWZmZrAsi2w2y7FjxxgeHvaDzKLRKLt37yaXy7F27VpyuRyjo6M4jkM8HieRSHDo0CESiQSaJqFpIyMjMo7Sdf99m0wmWbVqFRs3biSTyTA5OUkqlWL37t3EYjHpcMcT8TgOB86coWJZjGQytESjHBkfp2rbPLp5M9evXs2d/f1EDINctcov5+bYPjhIybIYzWZ5/Ngxdg0Pky6XGctmeTWVomiaxINB/uK55ziZThPStN8A6/9Dl98w1/+HLzUmO5sdp63t0tfJgVpbV7Nv323+jOTll/8ZlUqWw4c/z9VXf4FcbpJDhx5i48ZdOI7FzMwxuro2iO8DA8V1sZd4r98LCBvhps4uSRFXXBc0HTc9J3Ly/itR6upxRk6hJOqhoVEk44YhDPVBLzHcCOAWctjfeATlDatQt/w2ZFLePq6A+kaYOyuM+aZ3QzEPuXmUc7tRzFc9pvl2MM6X2WQ1KBdCtU5CxmoA2TwNcw96YSWKPK5EhIlWNGGxWz7vebh3iuTbnl6QkRnnQ/E58UwZ5wH2Uol421c9ssWG0vNUg+9c4rmuq6tjcHCQjRs3+imWruv68rfFMrlAILAk1KXmlQYB0IcOHeLKK6/0ByDPPvusP9taqVSYnZ2lvr6eU6dOsWbNGknD9TxBlmWxb98+3rFpEzcODvrBGjOFApe2tZGtVGiJRlEVBRfQFIVT8/NEAgGaIhFML/m7bFnYrktI1wlqGpbroikKFcvi+YkJLm1rI+Qx3ulymc8dOsQjmzYxWyyy6+BBHrjySiJeeFpzNMqHBgZ8/9HXt23D1XVKuu5Pb+QQxjgKHECSvh8CPu09VkQ82I9462cQcF1bFG+dVgSgH0ZSwrsRX7WDgHMVCU3zomcoIR7uToTNjnvrakCxCpMec/35z0syeC1ULB4XgFbz/La3CwtqGMJUf/zjUqelqsKkdneLDLkmWf7oR+Fb35KKqsceE3DY1iZ/y+UE14BsH40uAOq/+zsJ8NI0sEsVNLtKbkJCyfo+3Ue0JYoRMxg5MEK0OUopVaKrtwvXcbErts9gakENs2jiui7BWBDHdlANFTNvYkQMRg+N0ryqGS2goRkajuWgh/UFNttjyaMtUeqX16Ooiu8hbljRQHYkS2q8gNl5LiMjCuvWCZ7SdTkH3/42nHeesMaZzEIK+nPPLUjC162TiYlXX5Xzs3btQvjbsmUyWREMSjhaT488XpPp9/bKREQt1Oz224X5/slPxNt97bXSd60ocr7r6iCRcHGyeZ7Z8YwvB1c0kc5rAY30mTT5ibyf5K3qKqqhYldsVF0ldTJFYaZA14YurLLF5I8nSa5N+vVae2/Zy7qPrSPWFmPvzXvpubVHvPIrGoi3xxk5KK/ZoYcO0XdnH3XddSiKQjCqo9iOnMBCSdjpVBbq4wJu455v2bSEUbZsSGWgpUmk2+WK/A5yP2BIMBkseJlPjMI5HbLt6BSsSHrgnQXZeU1qXuu2ri2aApkTkhIeXgZ153rg2WPVHXtB5q0FBUw75kIAmbvo74riBZ3V/u6x0AqL9tO+wILXmPPa9nYF5n/hPQ+p+rIdh0ohzdmTz7NsxVsJRBKAwso3nM9X7/8kl2/+LxRT4xRTE3RcfAUoKn/7N3/L3/zVV/nip6/zfdGVQgYjHMcs5bAqBSL1IisxSzmCsUYA32fdcfEVkkT+6mHC9W3UtZ+PouoLnnhcHNuinD1LpClJsWAxMVnk7rv38/jjx7j++tV85StbGR/P8cMfnmDTppV89rPPcf/9VxCPBzFNmyNHxunoiHHuueLNdhyXQEDzPdqOgy8TX7mygQsv/DLXXruKhx4SKXc+X6W1VbI7VFVheHiUyy7rQNcXJliKRZMdO57h0Uc3MTExRmdnJ7Zt8/Of/5yGhgYSiYTPOC/2oM7MzPiWJcNLTK5liNRYw5oKqyYN1zRtSaZIzeK02NtdW2r9wrVrnq6VCc59RK7X5/5iUeOHd+12yuKxVgIi5574HS8t/M+9qk97IfzUOF9CyOwJb/xx51KJ+LI/g9NvhnNeXLCkGV0CsGtXD7cMpZ9CZJ3/WMVSSKVqzPUOMpkxvvOdbaxadS0bN36OQmHGY5s/TTY7Tl1dJ/X1K0mlTpLNjtLV1Ytlldm37zY2bLiDbHaMv//7LWzf/gv27797SZNM7Ti10DPXdbDtKroeIpU6SSYzQmfnOlzXQVUNVFUjlz/LvK3xjSPf54/X/hbd9W24uL4POxGKUjarfOPI95dIv2vp3rFABNu1l6xfMU3+8siC5PsNzd3MFzJ86/kf+MFnPxt/hfddto1UKcuqtpUYmk7FrJCrFIkGwoT0ABXbJGaEsaqmn0Bf81IvDoINhUKMj4/7DLRlWb5Fb9WqVWzZsoVSqeSvV6surVkQurq6sG2bXC7HwYMHl/j7GxoaqGGmgYEBPzE8Go36JIqtaZxKp7n3wAE+3dfHufX1mLbNkfFxmqNRHjp0iB39/TSFQvzL9DTrOzuZLRaX+LNrnuo7NmygLRbjiZ//nIOjo/zZ5ZfTFovxty++yMHRUb7xrnf9xmv9n7T8hrn+NV9qTHZ3dx+53BSKohEIRAkEYiST65iZOUZ//52sWnUtGzbcQShUT7F41qtyCHPw4P0kk2vJ5SbZt+824vEOVFVHcVwZY1vW0p5qf7LFxc1lcY+/jHNwvyQlFgu41TJKfRPatvei1Ddg7/lHnO98U3qxHQcyKahWcQ48g5LsglwGe+AfwDLRbvqUgG3XxTnwjN+trbguzvCP5P6+AYjGUZYl5Wks7qrGAX0ZKFHxWasRWcccFR+UvhzaviyBZDMfB3tSBjHGOQKgc4/LBbPGcDtZqddoecjzZ7kw+fuyLh6z0vIInJeS2WsMSRBHh0gfjuP63YZDQ0MoisKWLVsoFAoMDAyQzWb9QYSu6wSDQWzbZt++faTTaa688kpWrVpFf3+/D45BJEydnZ3k83kGBwfJ5/O8853vRNd1TNPk2Wef9Wdb3/jGN1KpVEilUgwODpLJZKQjt7MTFdjR38+mlSuZyudZ39mJ47rcPzRE2bLEW1UoULEszm1spD4U4vDYGKbjiFJBVVEVhdlikVy1iqEonEil2D44SGciQVjXmfYk3svr6/natm3EAwGCmsYt69cznc9z4+7dFC0LQ1H8XsYd/f3oqoqrqmSRILIA4nF2kC+lPuBC4HNI4nczAqwfR0DvBHA34quuycQT3npZ4KMImx1CmOm0vKIUEfb6k95tDpgD1iDsuO6tp3j7nglAx0oJMrMskR+vXStvjVdekfqs9nZhtF0Xjh1bAIEzM8Jc15jU1laRkt90k4C5Rx6BPXuE6TZNYWxrTG0kIkBT6m8EULa1SY1Xf7+wr4WCYKxKpsLwrmGOPX6MofuGKGfKKIpCojPBoYcOEW+PU81XGbhhgNx0TsByUENRFRRNwQgbIms7PEbqRIqnPv4U6VNpujZ0oSgK2dEsu2/cjWM5pE+mGbxpkGhzlNxEjtY1rTS+oRHVUJn48QSta1qJt8dRVZWDuw7StKqdkRGF5mZhnC1LWPpCAd73Pli/XqTdDzwg50pRZALioYdkMqI2ll6xQsCybQsIr68XefjoqDDg7e2yz5tvFjB96aUyKZHNCoN9663yeqiqTEwMDIjkPhZb+K51JJsR13FZ+9G15CZyjA6PUs1VUVQFVVNpOq+J7r5ueaMqMDo8SupkirHDY8y/Nk+sLUZyXZLUyRTjR8Zpf4v0Mj9181NYRYuNuzaSm8hRzpQ59vgxjnzxiCgO2mIoukJybZIjXzxC14Yuos1RrJLFxNFxYatPjAp4jkWEjW5rkjCxRAxyRXnyhr4g664B61hEgsjKFWGwA8ZCl7XtLLDPyRaRdhs6nCd5D7w2IscO6OK3jkfFm11dxHRXPSlHrPP10u1qbgFkB2ISZqYg99WAPFbNCpAOxMSnrS1isjVDqr1cUTXJcTxgrXnqAMd7LrXtA/FFz0OhxmyfPfk8mcnjzJ36MSiqYH6zQv7sac6efJ5Y83Kaz1uHoqrYlSJ/8Ae/z+EfH8ONJGm/6O2gqASj9aiePFwPhpk49ixmKYtZyuHaliSDqxqRhg6KqSk0PUDrG/uJNCRxLFMmUFWNYmoSs5xH1Q0ijR2YxQyaCnV1QT796T6uvXYVDzxwJadOpbn7bpFtt7ZGefDBjaiqSrFoMjdXoqenk+7uekoli0KhSjCocfToOKWS6afy1/zXbW0xrr12FTt29BOLBZiayvtM9sxMActy2LChC01TqVRszpxJc8MNA0xPF7jpprWoqko8HmdwcBDHcVi9ejXd3d0cPHiQaDTK8PAw3d3dxGIxgsEgyWSSQqHA3r17mZ+fx7IsvzPYcRwqlQqViqgpIpEIjuP4TCHgd1/Pzc0xOjpKKBTyQ6fGx8fJZDKYpulf+0xTxW26E5IDokpreQTifyTX99q4pnRUQG+4Bzq+JwniapzahDmhNdIqgivjg7mHJWtFCULkbXDuL2W/aj10PCG+7dIRkY8rYdlPcViOYaekAsw8KdJw8yS4zqKO6p0kk2s9NnkHqqov6b6+//6/ZvXqXkKhOCMjeerqunnxxafYsGEjf/7nL3LVVddz9dUf5i/+QiGft9iw4VM+M+0uOs7Q0E5Ms8Tu3R/GtqXiNRZrpa6ui7GxI+Ryk+zefSPVaoFgIExnXQsf7n0vuFColrAdhzUd5xMLhAkbITrrpAc7ZASXsNz5ShHbtXFcl5ZYA3/zwm7KZpWp/Bx7jx/i73/yFG9KXkDECDFXzLD/xAt86/kf0LP8Ej6w7j0kQhFaY00cmzrhO1hqi6qqhPQAKtKFPj8/j6ZpqKpKLpfzLXmBQABd1+nq6mJiYoK5uTl0XWfTpk1s376dTZs2oWmaD7ij0agPwI8cOUJ7u6SZ67pOPB73iZJkMkk2m8V1XdLpNCMjI779r/Y+z+VyjI2N4bguo5kMt/b0MJ7NYjkOIV1nXWcnDx06JKq/AwcIGQZvbm/H0DTqgkE+7Y2P7tiwAV1V+eq2bbyhsRHXdfnp5CSPbNpEWyzGXLHIVStWcGd/P4b6Gwj3f+ryG+b612CxrCqWVcK2K+Ryk4tmI9/gd1rbdgXbNlFVSYiUEDSHbHYETQv8yqzmNzAwIDUv3ukrt6AYAdA03JTHSve+HeIJ3MlxlPZO8VkPPSuPJ+q9gZwhDPQidtvZ/d0F9lnTl3qwN/826AauWYVsWo694R0oTc2482dxsxnUzuUSmjZxSjzXPrN8l8i/rRnPJ531QslAIBHgWjJoKw4tdFi2fR1QFyq0FjPXrV+TiyOOV5VRB+WfSUCJcZ7IytTIotnrHQLgARSNqqVTqVpUKhWCwSDBYBDHcV7XtVib9azNrtq2TbVaJR6PL+oqrS5JwIzFYjz11FP+fhZ7zUZHRxkdHWXbtm1YloWqqoyNjS2pJonH41RBeg+9AcmhsTEubmkhFgjgeFLwjnicsWyWzkSCsWyWNa2tnC2V+NzwMI9u3oyqKBRME8d1SQSDfOAHP+DxY8fY83u/t4QFBzAdBxU4Mj5OVyLBaDbr10V8ecsWApqG4/U9hnWdYCCAEQpRUhQyCDiOIynhD3o/AcSDrSGgGQSMDwG/AzyB+KnvRWTcESTgbAQBx70Ig70BYbOryFtmFFjp3U8jMvGwd+xRJBRN945rl8AqCCtdLgtI1jSRJddqomqVWpomLPU55wig3r59IWn8618X2fjatcLeuu5CNdVNNy3UeJVKAhrXrVtoOzpyBN78Zvn/HWeBaY2GLZRSidxkjsK0MKa4oKgLfuhaivjX3/R1bj5zM6gI8HtzO4WZAkM7h+i7s49EZ4LibHFJCFpuIsf+z+zn2OPH2P6L7ey/W35fff1qtn5FQvrSJ9MM3TfEVQ9fRXGmyNB9Q/Tf2U+kOYIaCVIyDdJphWXL5PzMzkJTk+CegwchmZT7qrpQn5VKCesfCMj/n04vVHXdfruEnE1MSIDZk09KR/aGDbLdz38u3uvWVjlfIyOvTx5/8EGZwNA0mSR54AHZ7/lvcMi9OkXTG5o4c+AMXV7lUepUisOfPyx1ZTU2O1fFsR2sskUoEWL8+XEaVjYQbY4ydnhpJZldsclP5xl+YJi+HX3ULa9j8KZBNj+62U8NT3QlaFjRQDVXJTeZE5/32iSheADt1KgA28bEQt1WbfhpOx5YduHE2EKHtc8ce6vWfNheDgb5ouyzUoWxaXhD90LI2b8WWlbbvlQR+fnIJHS2CVMe0iWszKilISief5mF51mTgdvVRYnhKn6gGd66alBuFWXh//R92t46mdNQd47creYEaKuBpev6NWCdOGqASjHN7GtHaL/o7VjVElY5z8VvvZyv3v9J3r71Ogplm0I+R0NUJ1zXzPe++wSfuO3TnDlzSoCz6+LYpifrNph4aR+ZyePUd1xI+8VXeMS6ydQvnqNpxVswAlEU3RBLkGX6vmsFcBUFu1xAD4ZxFZXJl54m3PYmgrFGHMf1a39uuGGAxx8/xrXXruJrX5PAzGrVwjQd3xv9L/8yxSWXtHL2bJEHHxzm/vuvIBw2qFZtfvazKS67rAPXhWBQQ1UVeQlsl+3b97B2bZJrrrkI14VisUqhYPpJ5e3tcUoli0QigKapGIbLnj17WL9+PXV1dT7rF4lE/PyPmvqq1nixmBHs6Oggn8+Ty+X8sM7R0VHi8Th1dXVL0sGz2SyxWIympiby+bzv8675aWuMYWdnJ3v27PGDQ3/73ZtQzBMLQWVKWK7xdkom5p0SzNzuKdVW4E+lWjOgNy36+21yrXcLYE95KeCdC5kuri3jkdLhRS0lO0Qp5+Zl364pnu9F6rfKsm8uYq6lMmuxtSGTOePn6xw9+jIXXHAxGzdu4/HHv81557UTiTQBiufzd3n44Uc5cOA5vve9fyCfnyESacSyyqiqTi434TPkuh7htdcG6erasCTULBpt5siRL5JMrmXNmvdRrRaoWFVSlkpTtM5P6X7/unczk0+xLFJPZ30LlmOLLzo9w18e+Uf+eO27WBZtIGqEKFoVdj371+w/8QKf/61PcGnyAipWFUMzmM7N8VdHn+SWy69HQcHFJRoI47gOqqLy0uQrnNvYSSQQQkWhbFfFtqF7n20bxkZHiUajHDp0yA8gq70vGxoaME2Tp59+2vfla5qGaZq+19owDL9h5cILL/TbXWr5N4VCgXg8juM42LZ4u6enp2ltbfWD+b7xjW9w8803k06nyWQyPmteKpWoW7aME+m0X2G6vK6OW/bu5YubN/uM9o7+fsYyGbrq6uhKJDBtm5BhMJ7Nsu/kSY6Oj/Px9es562XlAAvb9vWxoqEBBbBdl4CmYTsOAU37tazj+nVdfhNo9mu0SEBZdUkq+K8GnOl62Out1ggEYgSD8dd1ZW/e/Ci6HsZxTMbHj9LZ2UMmc9rvRUwkOgkpYZxF3dXatveC676+zzoWB0VdmiJ+5Tac2SnpszYMuSwoKvbg93H/5SjKmrVom98DrotrVnH2DaCu68Mt5FG7zsU1Pe9fpSKeb133BntZXyquNMVQpj8OjTdBYAW4CkzfAi33iudp7j4JJTMnpWtSjUpYycxtcmE0x6Q6yzgHpj4GLTsFKLsVYb5rpU1uSdLAF0vPXVu8WFod2POAIh2Xdlou0KjgmlQsnVS67EvhGhoa/NeyFrRSrVb9L2Rd130p2759++jt7SWbzVJXV0c0GuWpp55akpZqmiZTU1N0dXW9rtczFAotqZ7o7e1dUkmheGmVr3pp4bf39nJufT1l22Yql2Myn2dtMkm6XCZVKvHFo0e574oriBgGh8fGOJ1O8zsXXojjuuSrVV9Gnq9WeXF6mt6uLhzXpWxZEiq2bx+39fYyls36AWrrkkm2Dw6yo7+fiK6TrVQ4v6mJV+bmOK+xkTOZDN3LlnFC09gF3AGcj7DLivcK/Qy4DAHNJuKhLgDnIHLuKBJC1oSA6hISXNbnbT/n/a3sbVcPHEGk4l0IW51AUsp7vHVsFkLRzqnC8V/CQ16g2cqVwjDv3LnQPV0DwqmUAMBzzpHbQEDAeCYjQLhWBzU9LengDzwgAK8mkT50SGq88vkFj7auCwBtbhZA6bryMzMj+0skIEDFB1COJQx026VtFGYLfqiZHtQZOzxGx1s7cG1X8Izl8NRHn+LY48e4buA6Ep0Jhh8c9uu1VENFURWskkU5U5YQM0Vh5OAIbZe2UZwtogU0H3DXwPfxJ49zzRPX0NXThRpQsZQA2aziS79VVaTZbW0CgAOBBel8Z6cA45mZBdl37fGxMXjve6WnurdXzk25LOfDMEQCfscdAp6XL1/AoNWqvB61RPcf/lCA+K5dUm/W0oLfOb6s3sKeSxPvjJM6mWLo3iH6dvSRm8gRbYlSt7yO8SMLkvhEZ4JoS5TJn0z659mxHRzTkUoyr6qrrquO7HiW+VfnWXnVSuJJMTSkT6U5uOsgV9x/Baqm+kqCal6A+8xLM6x45zmouChVU1jixf3UsCDPVhQ4+iK86aKFQLLa33IFAcSV6oIk3MX3Bfs+64wnIW9ILLDbtdAyZdHxXhsRH/bF5wkzrquLAssQ+XbNV10D0rXgr0oONF3Svn1gbLDQee0NpGuTA4uXatZLBvc0LvkxqdyqMdmOLb3WdecurewKxLFrHx7gA+//I/Y9+xxTU9M0NTUSjYQZ/MH3+L0/+BMqpoWqajTWx7nv3r9g7foNOI6DWcoxd+rHtL6xH02XADbHtgU0uw7F1CR6MAq4qHoAPRRDcaWOzXUsVF388ItHXHaliONY6IEwpZJJoayTyVRIJAKEwwbFokkuV6WuLojjuLz44jT9/d2cOJFi584hbr+9l9bWKIGARipVJhYLEAgIe33ppW3MzhaYnMyzYUMXpulQrdrE4wGqVRtVVTh5MsUDDwxz++29nHdeow/mJam8jl27DvLAA1cSiRhEIqrPOtfkt+VymXA47P8/Y2NjxGIxnxFUFIXx8XH/ulQoFKhWqxw8eJDe3l5fSlsDNTUgHolEOHz4MO9617v+1UCpVatWsXnzZnRdX5Lg3LIsglILKnPKct0uHRFgbI6B0Sa1ncYFXkq4jUyhumIRU+OQ+z6UDkHbV+R9VhySgLP5z0H+SWGsw+tFXu5WYHr7gvy8lhbe+qh4slu/4o0vxK5WtiOMjAwRiSwjHG70g8r6+nYQi7V79VglwCWfn+LgwV3ccss/8/jjf88ll6z2ws+aAVBVnYsvXsNv/3YHn/jEYzQ0rARgZOQAHR2XMT5+9P/H3p/H2VnXd//489rOfs7MmclsmSUrmyEkUMkyiygkxJBg663QUq3WDamJlkVAA1XbmqABhFbcENva+6u2gFUhCyFiIzOZJKCIYMRAFjL7TDJz9vXavn+8r3NNRr17f+/H43f37u9+cD0e8zjbtcy5znXOdb0+r41otIlQKEk02oRpln5vqFkkMg/TLPKTn9zNlVd+Hj2YxHJddFXll2OvsrixA03RsF2b42eHmRdN+oFmTbEkZatKQDMIGzJor6BgOzamYzFdyMyRjf9m6nWG0xOsnH8B//T8k9y9/sOMZ8/yLS9VvLO+hZH0FJP5aS5uXYKmanzhmX/kA5e/g/b6ZqpmBQP9d2TetUyb2nFp27Y/0LN//34/RRzwB3AMwyASifg2ulpTy/j4uG9x6O7u9pUYlmX57SyKooi/+rfqU3VdR49GuXHXLp44dozHr7uONR0dvJ5OowJj+Tyr29txkZCzqUKBVV4g7KL6eoYyGUayWVZ7KsPhdJpEKESzt86abPwbmzdTMk1uP+e6q7OujgsbG98A2P9J0xuy8P8/mQREH+P06Z9SrWYxzRIAtl2lv387R48+SiYzRCAQpVCYZN++m0mnT2FZAsZr0vC+vrtQVQPXtVFVnba2yygUzlBfv4hNm76OYUSx7SquqsyVgysKrm2j9l4lz3n1XLULK7Xvqtl5HRu1c6H4sl96ATefw81nUa96O9qWO1E3XIubnpYAM1y0a94J9UmURD2uqniSQA0lUYei6SiqhqJpc6TiuDpu8w65UJu4CawTEL7Uk2p5Eu/p+7zRaV1OmDgCvs0RiPRIbYb5ugB0JwOongf7pIxUYwvQnn5orvQchD0pHZGKDbckcnC9BTkR6yIhI0g2m/XDLkBA9fT0NPv375/jJ4tEIgQCAb9GpLOzk4GBASKRCP39/WiaRnd3N9dddx2JRIJdu3YB+PcTiQTXXXednzxeKBTYs2cPruty5ZVXksvl6Orq8i9oXNfFdBw/aGzn4CAOkKtUSASDdHd24rouTZEIFzY18ZVrrqEuGOQ5j3X+sxUriBgGk/k8J1Mpypblh2n0dnUxkc9TsixempzEdV0e2LCBtliMFS0t/P2RI6xubydVLnPbmjVEdJ36UIiJfB7LcWiNxXCB0WwWRVVJAA8hTLKLMNUZRNK9AvgZwiifRULKliIg+nZE2r0SAcotwAIkuKwmDS8gfuoYAqyf99Y531vH5xHZ+eXeNm5GGO9ViAydKvz9TgkXa2sTWfLYmLCluZyA495eYVebmkTKLHU58nf2rAR41TKmNE2A9apVArIHB2W+97xH2NRTp+DFF2XcaWpKtrF8uYDz06cFaJ8+DX/7t7Lt11+HYknBsSS5WlEVunq7CMQCJDoStKxoYd/N+0i/nqaju8MH37mRHEbUoPfuXm7YdQNdPV0YEYOrdlwFLjz9yaeFmTUFfJlFk1037mL6tWlaV7YSiAXo397PiadP0H1nNzfsuoFoS5RrH7mWW8dvZcFbFlA4WxDA78z6x0GA9IoVwljX1cn7sCx5bmxMZNyRiLzPLVsE/Eajsp/Hx+HSS8VjffKkMP7j47IfJyZkv+7YIfs5nZZ5Dh+WwYq1awXQX321DIz09MhnGghI8nos5mKEFA589gDpk2lyozm63iIhcZ3dncTnx9l3875ZSfwlLehBHSNsEG2W8Lj062lUQ0ULagRiAcZ+Nkb7qnb0iE5XXxcrP7iSWJto0V3HJTOc4crtV6IoCvtv309+LE81X2X8hXH0oE5XT5ewjSDguC42Gz4Gwlq7roDnShUuXy5MctUSEKwoIievlagnYgKsHVcY6Yopz9fWlYhBXVzYaU2V12rrth1hthWEHW9KCvNt2/IBez5iKtnZBPD8iMi1QYCvXQUjIq9lTors2/b0JAryvFPTl7hesJk7e9+ICrjWw/LeShkB1mpgVjae6JL5rbL4uQOJ2de8tX31ob9j8IlvkJsZ47WXDvPEV2+lrSnJc889xy+eP8LA/h/xzDPPcPnqHlwvy6IWZqagYFYK2GbV8xG42NUSkWQbgUiCQKQePRAGL7DMLGdxLJNqMc3oy/sxSxlwJWBNC4QwS3lUzUA1IoyP5zhxYgbD0DAMlUBA49SpFACaptDSEqNcttixY4AnnjjGxESeWCxIIKCRSARRVYVbJLreGAABAABJREFUbtlHU1MUw1CJRgOsWdOBbbvYtkMopGNZDkeOjGJZDh0dddx//3rmz4+jKAp33SWS9NWrO9i+vZ9Vq9qZmMgzODhMJlMlk8n6wZmjo6NYloWmaWSzWUZGRmhvb6eurs5XcY2NjdHZ2YlhGAwPD2NZFrlcjmPHjhEMBn0AlM/nCQQChEIh2tvbSSaT9PX14bou/f39vvWqvb2d5cuX+/Le4eFhwuEw11xzDY2NiXOCys7KYPrkFmGWzRHvdgIS75HgMWtImGcsuYY4+3lhqRPvltwW86SwzkaHhKk2PwiLT0LoMpj8S3kdRwb549eLL9s6Iyq70nNyTTF5mwSjtn4N7DOoSpW6uk4OH/4S4XCSbHbUDx0rlWZIp08CLqpq0N+/nY6OtQBYVgVwiUabARgZOcz+/T8gnU4RCh1kYGAHjmPiOCZdXX0oikpb26UUi9OYZpFduz4KQF/fXSxf/h6uvvpL6HqISGQeIyOHyecnWbVqKw4SRvb5/Y8wkp5iWetSpgsZdv77t0mX8qyYf/6cQDND0zFUHUPTGU2f4W+e/ianU+NUbLGK/NPzT7Ky/XzCRhBVUbi4dQlrF1zCPz3/JAdO/AxVUQhoOivbz+fbzz+J4zpM5qdJhuPc88w/Mp49y4r55xE0DCpWlV9Pnfq9Mm/XdX1lw969eykWi1SrVVRVZc2aNRw+fJj6+noGBwc5evQo2WwWy7IYHh725zk3JG9gYIBjx475x2W1WmXfvn00NzdTKBR46qmnSKVSjIyMMDMzQ3NzM5lMhmg0iuZZ4B6/7jo6Egk+tmcPuqYRCwZ592OP8fzYGJbjEA8GubStjUy5TJvnT2qLx1nd3s4RLwi2s76eomkyMDQ0a6vr7eXg0BCTHjDfMTDAvEiE7f39VOzZYMU3pv+z0xvM9X+RqVLJc/r0T4lGmzh06H6/dgvwmetrrvkKxeLZ35F4B4NxTzpeRlE0XNfCdR1SqVMMDn5R0sFzY7S2rsQwIiiKhuFKsqoCYFu4tgWehA3TlPTvrCf57r0SjABKKAyGgVupQKUM0ZhcAqkqVCtQyIu0u2sRztApSKdQOrpE/t13law/GsdPt3VdMKu4uEIvmdVZiXlAQ0mcMwpdfhkCi0S6bU/JSHDLQ0gn5fOzXZW1YBG9FY63iP+q1lcZXi3pn9bkrF9bjQIKTPwFNN4pANo1BYRbwyL9Kg6IF8uenA030ZqoOElSqfQc5jqXy3HgwAG6urq48MILqVarRKPC+NWY6FqgS01SVFdXJ/UNnjRp9+7dHD16lC1btnDgwIE5PdrFYtEfba0B+t9XMwGgBgIc95jrO3t6WFxfj6aquEDBA/6xQICyZfEzL6As4gXPVG1bmB74ne7qBXV1vhxJZbY+oj4UQldVypZFXTCI5bpYto2qKEwWCiSCQWIBUWTUaiUCoRAnFIVhRMJdQmq1bkcSv1sR0FxGWOqafLwm4V6CMN2/RACyjqSKf16ODH6FMNKVc5Z1EZb8iwiArzIrNW9E2PElCFO+uApmEU82OVsjFQjIH8yy0/PmCcj+2c8EKIbDAq6feQauvXZWyu264gU+cUIA+f33i/+3qws++lF5PDU16932Qnj56EfF4z01JYA7mZTvbkC3scrSQZ3oTFDXWUfqZEoCzrb14lgO8fY4ekinMFUgMi+CXbVF3qwqpE+myQxnfOZ63RfXoQU07KrNj+/8MT2395AZyfC9zd9j2fXLuOJzVxBrjWEWTb8DO306Taw5hhbSMAtyYTX50iQtl7SgxGJksgqqKqBZ1wX0jo0JwLVtkYoXi8I4f+97krZuWTJ4cPasBJGNjAhjDbLMJz4hjP/110uV15e/LPsuLLiGSgV+/nORnN9/vygPFiwQ4J3zrMDRqNwePiws+nlLHb5U97csu34Zmx/eTDVfJT+Rn92XtkPxTJHO7k5/oCLRkSAzJPvnT/f8Ka0rW6lkKkRbopglk2pW6rgC8QCpk6lZNUFIp5qrSuXWrWvAhUA0QKw1xvRr0xSmCiIV76ojEDNQylUBuecy15m8gG5dk6CzoCcD0LVZtjqdg4a6uc9Vql5/nOax1h4Qr1VyOY6A+OEJkYhrmnixs3kB1Koyq2Z1me24rjHJtineZ7vqrVcX0Jwf9fqqAzD5c2i4QBLBXYTprtVoOaYAYi2Ez2LXZObn1nr5kg3Tl4ALg+1Vc5kFCCawHZtqMcPZEz+j9aK3oKga6dFXKKUnaHvTWymmJwnXNYGioioqLi7F1ARGOMr0yRdoXfY2zFIWPRjFLOVmg9Fi9eDYlNIThBLNKJqBgksxNYYWiBKIJHAdG0UzGP/VM2QmXqPrsmuJNrTjOBaqKqnh40d/Qt3it9E/MExTU5T77z/Etm29jI3lWL26neHhrC/Xbm2Ne0qLMuWyydBQltWr22V8Q4Hh4QyTkwW6uzspFk1eemmSVavasSyHTKZMU5NI9wcHh1m5stW/BolGA2gamKZLtWozPp4jGNT57GcP8MlPrmXx4gQzMxM0NTX5wWKWZfky20gkwpEjR1i/fv2cQV7btn0ANDo6yvz5831JeY2RzuVydHR0+I0adXV1fpJ4rTWjJgEG/Nqu9vZ2/xwYDtokCrfMssjzPgen3uR1VD8kyjO3OBt6qgRk4Lx8FCKr5HgrvSA+6Vrms5OG8q8EjJunvOuIVUg9pyqBqtakMORK2DvraF4N6BcEaCsheX1yK5XEHbjGUhzHQtNCuK6N45hoWhDXtSkUzngsc4FcbpxEopNly/6Af/qnv+fNb16D6zo8/fSt9PR8ik984lN0dl7IX//1p/w+6717P0539+1ksyMkEh0kk4u9aq+nmZz8FRs2fAkAxzExzSI//vGdrF17G7ncGB0dq6k4cM+/f8fvtd627oPs+PE/+I8/c/VHGMuc4ZEjP+S2t76XVCnHPxz5ER9Z/U6ChkG2XCBVytFZ10zACKArGtOFDGeLaS5uXYKu6WgoDGUmOZNP0RprZOIcllpVFEzb4p5n/tHf5p1Xvt9nwD+w6h0srp9PKpXybXaqqrJ3715fCfi9733Pt+SdW5MaCASwLMsPllUUxVc91OYBfOa6Zuc7l8EOBAK+LHzJkiWsWbOGYrEoGTeqKjV0rovpWWDODXF9aONGnhsdpberixMzM0wWCqzp6ED36rqKloXtOGQqFWKGwctTU3R3djIwNERzNEp9KERTNMrBoSHe/dhjvOOCC/jcFVdQdRxGMhm66uq44I2+6/+06Q1Z+P/h6fdJvf9H81WrWfbs2fJ7gbNtl3EcB8sqksuNMzi4k76+u5k37wI0L9ilUimQTh/n4MF7Wb/+XgB+/evHGB19jquuusdPotyw4QFCehxdNbxea+msVhqbcG0HsmnQddyZs9JNXcijNrfhWqbXhT2Fm8+hJOp8nzSajjN0EiUSwy3kUNu7cDUNd/g0SiQi62hfIMy1WZWLuFxGtt17JSSSKLYFgSDO0EnU+fNQtDHP43SHBI7VgkdcF6iKJ3p6J7T8PT6wrvVTRnqEzY70eCdCRdjn0EoB1k5R/NXhNwM1SWIWpu6G5s97KeQqvnTcnobqca9D8wyELqPiJHnyyV1zwK9pmuRyOf/H+VwPWSKRIJFIUCwWCQaDBAIB31tW814Dfpe1rutkMhm/8/NcGfiaNWv8ns9a0FnAQ3u1ShTTCyNrjETQvXXbrkuhWvVTKsuWxe379/OFq65iulRix8AAn+ruZmljo++PLpsmI7kcJ1Mp/uTiiwlqGnnTJGoYVCyLI6OjdCQSjOVyPkB3XJdTqRRfHBz0u6/bYjEWNzRInpGiMJXP09TQwJSiUI8w1JfIJ0wFYZrTSIK3AbwKfAkBxTEEVN/uPT6DyMFXe8tOADsRH/YSBFjnEE+3Dvwr8K5z5rsLCUO72VtmMfAs0FOCoddmvb61aefO2fTw0VFhVS1LQFpbm4DmW28VQLdwIRw/LsvccQecfz7e91Ukz01Nsp5Vq2ajDM6eFSD+3HMCCBctEmlzzYNdCysK6xVyQyny43k/EVzRFIYPDhNuCFO/oB49ouOYDqquYpsilzu349osmmiGRmmmRDARRAtoDA8OE22JMjwwzPDBYTY+tJG9W/fS86ke6hfVo6BQLVaZ/OUk7Ze3S2etofpMtx7W5X9RFUwCHD+h+FL4WGx2fO3UKRmsuPtuGVyQ4392MCMUElxX9TDa6dMCylevFpC+davIwEdG/gee9Ch85CPie3/Pe0R2X1MQZDLCdu/cCZ/6lKy3t9dl/43fp++uPuoW1pEfzzNzfIZoU5TidJGu3i4cS1hQ27RnU9RDunjV4wEqmQrVfJVoSxRcCT2LtcXEx/3saaLNUYpni74/PnUiReFMgZZLWqhkKgTrgqi6imbIAEd6NM385S0otVN1tgCxkCezduVxDXBXLQHLti1guMYI2w68PiYJ4DVAemJkNrjMRZjlfGkWPFdNj732LtZODENHi8jKVUXWeWpU/Ng4kDsFpZlZwFxbbw2AZ06e03292JOEB8/xX3vbcaoiEwcBPNkhYaMVRX6PFQS0uy7oQbmfG5ak8oaLvHWOeMnkIVDAtm1GX95PJDmfSLKdsyefp2nJKoxwAsVj7m2zglUpymtLV2OEYtjVEoomScq2WUEPRSW0TFHBsXE9RlzR5P+tFtKzKeKAWcljlvJEkq2gaLgeozfxyrPMW3I5RjgBro1j21iOQbHkcPPNT7FqVTtXX72EpqYIjuOydeteX67d0VHHjh393HVXH+GwTipV9sB4H2NjWdau7fDZ6fnzYyxZ0ki1anHkyChdXQlCIYP6+hCapqBpKqdOpbnnHpGYz58f58UXJzh5MsW73nURsViAU6fShMM67e0xLKvmjWeOlNYwDPbs2cPatWt9e1RNKltTWgWDQf/cBMyxOq1fv55SqeT7qYvFIm1tbX5oVQ2kZ7NZGhoaqFarOI7DM888Q09PD5lMho72eYS1YZRax7Q2T1jsxrtAa5TrB7fsHZC6DNKrXt/E1C2ztjAn7/0QReVawi1KCnjx2bn+6prMXJsv1xTmacl1afy057mueIC+5Hu/TSdC2RYQp+thMpnTPhDOZkdob1+NrofYu/fjtLVdysqVH2Dp0gt46KFPs27dn6BpBi+99B2am9ewfPlb2bv3O0xMfIfu7juIxVp55ZXvMzx8kDVrbiMcThIKJRkdPUIs1kYyuQjLKlMsTtHfv4Pu7jsYHj7I8PBBNm78CroewkJhJDMr026NN1KxqhSqJWLBCLqqEdAMHO+4f+Cn3+HdK9bRUd+CpqicLaSIBMIE9QAvjb3GJfPP45djr5IMx/nnn+3mQ6v/kIgRImQEMTSdl8eP0xBOkCpl/T5r14WiWeaBn36HD6x6B22JefzN099k37FDbLqol8+u+wiO4/h96q7r8pvf/Ia6ujq6urr89O6hoSF+8IMf8M53vpOuri4qlQrPPPOMD8Jr12g1m8HmzZvnDAipquoTHVu3bvX9/rVmmFreDUjAXltbG4VCgWw+T3N7O5qq+v3WqzwpeFDT0BSFiXye+lBoDinhui6n0ml2Dg5yR3c35zU0oCgKJz2C5K6+PhbV12M5Drfu28eta9eyqL4eXVUxHYfgG33X/6nTG7Lw/4NTzS/95JMfYnr6N3NOTL896XoAXY/Q27vtnPRIw38NVPbu3corr/yARKKDzZsfngOsZbL9BMpcbox9+26ms7OH9evvnZNEWalkcWy5Qj+3sxrHwR0dQqmrR4nXoSTqcA79VEB0MIhzYB84tvRbR2O42QxKNIa9599w09OonQtxCzl5bu8PpJYrnvDXgaGDbaPoBigKzuF+3KMv4mYzkEtj7/sRbnoapWOBsCt+b/VOGUF2yyLTsoYkvXN6JzTcwu8A67DX+WN0CRBGFZmW0SbzTtwoLLTfVXladl8NbNtnZB7zVQHcSlCqOkKXgpoQWZgaR1Wgt7fXT/yu1YY0Njai6zqDg4McO3bMH2E1DINsNsuBAwfI5XKYpsnJkydJpVLs2bMHy7KwLIvp6WnGx8dxXZf6+no/gXxoaMiXMBUKBb8LuwbKDcOgVCr5sj3d80h/dNcustUqJ1IpBoaGCGgaPV1dTBUKOK7LrWvXEjYMIobBJ9eupb2ujtdTKQaHh5kXibAgmaSvq4s/XraMmVKJk6kUPx8bo2JZpMtlVrS00ByNsrq9nYlcjoGhIWxP9vTEsWO+bGk8n/e7rl+bniYSCKC6LkXXZSuwHAHJLyPAeat3exgBxm0IKz0J3IjIuW9B2OcoIhm/GQHQnYjU3Mt9ZRJhs/Hm/xNEUr4TSSDfKUcJtyGM+RjwXoCqAOtHHxUp8XnnCWDr6RFv9OioAL1yWaTJbW3COOu6JFTXxgAnJuTxxIQs99prwrBedpn4pteulXXdcouA6MZGAdbNzQIws1kB3MWigMNQSMC8pkBuNEf7qnasssXQwBCpUyk6uztJdCTQwzqpkymKZ4tYFYuRQyNkhjOSfm3Iz7+iKBTPFqkWquy7ZR/VfJWONR3UddSx8s9XsunrmzAiBpu+sYnkYrlwNksmwXiQjjUd2JaNHhSf175b9uHYDqkTKfZs2SPeYUfe2/btgo+2bJH3XyjI/nn0UdkXxaLsHxAw/fOfi5/dsoTZrlRESr5qlfRTl0pSYbZwoTwXDgtonpiQoLPxcQHq3/ym7Luan33LFmHODUOA9aOPSr/46tUuhu6y4cENJLqETY23x+nq6yLRmaB1ZSvVfJW9H9+LVbYEWHuDFpVshWe2PYNjOQTiAYJ1Ypq3KhYdaztILk7iOi4LrlhAojNB++p2Zo7PsOvGXSiaQmdPp4THffYAuJAby7Hro7vITeRoPn+eJ8n20r6DnsTbNAFFpOIgLLahy2uGIa+VK/DakLy+uGPWL10xPVCMnzeGqkE0LGnjLgKiUeamiVeqArpfPS237c3esqqwxs0rhHmuZEWWfW5/df1iaL5UgLXrCgC3Kx5wVgVUu7aw3CDg2zG9nmokFby2PtXwvNcIU51YKMC6ts5AfLbyK30KFIWmpauJNS30U8PPnHhOsinMCnhhZf5rx494v6sKqibAWtF0qsUMY796RjqrPYAx/usD8tgLO/NTxCsFVNWQx7/6CWYpQykzhVkuEK5vlW3gYlcrWDZksya6rvL1r2/iz/7sEk6fTlOt2miawte+dg2/+c0W+voWcO+9B3niiWMMD2dobo4yPV3kLW/pIhjUWL26naGhDFu27KW5OUp7uzC9pumwYkULkYhBNBpgZqaEqsp5Y3Q0yxNPHGPnzkEymTJ9fV1cf/0yfvGLCXK5Kl1ddbS2xgCXXC7Hvn37yOVyrFmzxu/2VRSF9eul3mt4eBjXdf3k8Ewm45/zat7YoaEhEokEf/zHf8ymTZt84L1gwQKCwSBdXV1+nWW1WqVQKOA4DrFYjGq1yjPPPIOiKH49ZVdXF6GgjqK3Qes3RLmmxiTQVGuE8kuSyWINy7WANSSD5YohwLjwNJhTcn2getVvri0hZ0pYng+vBmvaaxdpkcRxJTabCzC9XTzZ5ji+lcHJg9Yk/4+xCEdr9q/NasA6Gm3yb/fu3UI6fZKrrtrB8PBBHMfCdW0aGy+gVJrGNEtceOEf8cUv3sSb3rSU5mbN77yuVLKsWPE+rr32mx6QLrJ37xai0Sby+XH/OqG/f4e/zOLF6+nruxvDCLN378epVrJ01ksaeFu8kVwlT7qU42uDjzNTzBLUA1Rtk1+OvUrZqvLJt72PtsQ8fjn2KqOZMwylhZHWVZULmhfgui4Xty7hn3+2mwMnfsZUPkV9JEHECGE7Nhe3LqGtbh4r5p9PupQlXylhuw5BPcC2dR+kJd6AaVt8+qoP8NB/u5PbrvgzqtUqmUzGb2RxXZfly5f7FjrTNP3j68Mf/rD/fKFQYM2aNei6TktLC4ODg35vdV9fnx8sW7M6qKrKhg0bWLFiBbFYzLfzDQ4OSq86opio1X4ZhsHg4CANTU2c9K61uurquKytjZ+NjTGey3Hjrl2cTKeJBgJs2buXgmnys7ExypaFpqpM5PM8cewYOwcHAahYlm/t297fz0g2y1Amw5c3bqQjIQOYIcMgHgy+Aaz/i01vgOv/jdO5fun+/u3YduU/nN91HXK5Mdavv49IpBmnVjECaFqAnp47GBk5hOs63gjbb69Bo7v7DpYsudoH0oODOzGMMLoe9n3ZwWAdhh7CLRbn+K7RNJREQkLNUtO42YwA74GfiOT76Is4o8OoG/4QJVGP2rUY58jArE8aUDsW4Bz6Ke7RF6FSxhl4ZnYdLpDPiRc7n5OU8mUrZRnPb+1m0pBN454ekVqN+PUi11brBUD73mgNWr8sfibXEtmWmjwnIbQinmu34PmumsVfrYSg4Q6ZRzHkZDi9A3Ag0gd175PXwj1Sw6GokiSueCwRyLxI5UQkEuGKK67wuz737NlDKpVCURT6+vp8D/Xo6CjhcBjDMDh27BiDg4NomsaSJUt8H1ClUkFRFOLxOC0tLTz11FNkMhkA6urq/HqJeDxOPB5nZGQE27YxDINnn33W73tcs2aN9IXaNhHD4KGNG4kaBjHDYFV7O0dGR3k9leL4zAwAuqJweGSEZCjE+Y2N2I5DSzxOezzO4PAwVS+0bKZUYl4kwuJkkt6uLtLlsgBkVUXzQmk66upojkbZsncvRcvi8euuY1tfH2eLRVZ3dLCjv9/3gGfLZRxFYURRuA1JBr+PubVbO4A3IWD3ZoR1nkTSv9sQVvoswmSfRbzSeQR4P4dHciGg/RZvGwMIY92CMOG/Ab4mRxTTwGWIHP1VBKNs2ybS43vvFZny5z8P73qX+Hf7+gQgbt0qDPToqADviQmRInd2CtBevVoAYleXgONIRPDFxISwt64rr916qzxXSxWvrxe5ci0Ze3JS5OivvSY92tmiRmdPF1ZZRvAXvGUB9Z31OLZDJSsMqhExMAsm+27eR8uKFhLtCQLRAPtv3+/XTMXaYiQ6Eqy9dS35yTwjh0ckjKxiCTAvWeDCni17yJzOMP7COJVshexwln1/uY/p16axShZrblmDFtAwYgZv/7u3o4d03GqVyy5zKZXkfa5dK6A2nZb3eP318h4dR6TuJ0/O1peFQpL2XXvvti37urVV5h8cFMCuqgK2IxHZ5zt3CnNteT+h1aoMUDiObHP7dvls77xTarm+8hUIBhWqZZdAPIBruRSmClRzVWZem2H/7fvBBSNssObWNbiOi1W2UAMqhakCAKs+sUp+9yu2+NUth2quSnYki1kwKZwp4Jjii7crNoXJgtSn7RjAtV2/Tq2SrTB47yCdPZ1S0QUotg2jUyLRDgbkyB6ZmpWHmxbEwrUuMXleQUYb4hKyhevJHTpaBCTXlq1URe7tuiIT1zVZn+MKc72oXeYJBWbTxTu8/yMUFMa7anpg1v09XmpNkrvTJ+T1ag6ciifTiHqhao6A8VovdjU3uw4tLCC79rpqeBVftmzbcWQbNVBfq+LKnJLlEiKJ0I0weiBC09LV1LVdQNOSy3FsE1XTsb3sknmLL5fXlq4WibhuUExNogWCqJrOmeNHyIwf4+zJ57GtCrZVmfNYD4Y5e/LnPkCf+/g59EB4Tu2X4ziouoHtGkxMFjh4cIjjx1PcdNNuWlpiOI7LoUMjOI6LqiqcPp3m3nvX82//dj2XXdbG+HietWs7+G//7SL5KCs2o6M5Hn30KFNTBWzb4bXXprn55n2cPVuipSXG+HiOv/3bZymVLCzLoa+vi5dfvolPfaqH1tYYJ0+m2bp1L62tsv0bb9zFiRNpQMDE2rVrCQaDxONxstksu3btIp1OEwgEiEajtLS0sG/fPiqVCqqq+ue8WphZsVikpaXFtzPV1mGaJhdeeCEHDhygWq2SSqXYv38/gN95vX//fgqFAldffTXFYpH9+/djmiaFQgEXFdea8PJXvC+AdRZQvaosTcBweO0sOLZnJCF8wfPSEjKxRQbUcWUw35qZDTFVghBZI+ud+iRYI/J8LYel5SHpvTbaPRJgWEC1kxdJOQq47jl1W0KEFApnaG9fzaFD9/vXioYR4amnIixdejETE9O88503cPHFl5PLjWEYUXbt+hlvfrPhV3nValiHhg6SSp1EVXUfRB86dD/t7avFDmhE6e6+w8/nSSQ6qa9fiGWVueqqHRiBGEPpST6//xHGc9M0ROoxPE/02UKKkfQk9zzzjzRG6wlqBsPe42Q4zmR+mvpwnH96/kkc1yVVzPLy+Gvoms7tb3sfD/zhbTTHGvjbp7/JSGaKM/k0QT2A7ThMFzPUhxOEAyF+OfYqk9kZsWe4oKkamXKeC5sXEtWDVCqVOZ7omgUhl8v5+TeRSIRcLueH6y1cuJBgMEhDQwPBYBBVVVm3bh2qqrJ58+Y5VXC14zGVSqHrOm9/+9v9mtSLLrqIdevWcfLkSSqViu+zrtWgrl+/Ht0Du23xODfu2sVYLsfy5uY5IDldLvPo0aPcMzDgh5edKRTo6eri9M038xkP7KfLZbb19fkVXftPnmTHwACW63Lrvn21hKA3pv+C0xvg+n/jNDdo7G50Pfg/nb+1dSWFwpQXWHbSZ7trfdebNn2dYvEMu3d/jFJpmnJ5NvxM0wzi8fmEQkl6e+/ihht2cc01X0FRNCyrRH39IjZvfphqtYDt2ijhsMi617xFQK1l4WbSqGuvwM2mUdu7qJz3Jt71yHe4cE03f/CPj7Hhxps4/quXhWXOzEhvtReA5laroOl+KBrB0DlBaOs8T3UNbD+DEgiibX43bqmEuvaKOUDb/pd/BrpwW78OeruAYqNLwHbzFwTwus4sy+HkRcalhAAb1LAA7um/g/BbwDhPTnSKBoHzoHpSvFLzHxfZWHFQfFKuLXKyuvdDy5fFe614aaj2BJz9rNwi6bhPP/00Dz/8MLZt+yPouVwOx3GIx+N0dHSQy+VoaWnx/dKf+MQn/CCOeDxOX18fy5cvJx6XUJmJiQkUReHKK6/0JeO1oI4aU1C7iBkdHcVxHD+Qo7Oz06+RCGgaRdNk6969vJ5OEwkE2Lp3L03RKMPZLPMiEXLVKqO5HCtaWpgulXBdl5CuE9V1mqNRVrS0cPO+fZxMpTiRkhFpx3UpmibRQIC49xfQdc4Wi0zm80wVCn6XY09XF0vq6+nt6iKs69x1zomiNRZDdRw6XRdPX8BDQAPwFWAXItcOI2C4xip3I+D6BaTD+jgCunsRRjoGdCDBZXcgPu41CBCf8Z6P4OUnId7tk8AWhD0/lxl3bAG9X/2qyJl37hRwNjEh/conTwq7+uijAqZXe6KJkRHxR7e2Cuh7/nnxYc+fL/jm9GkhHs87D84/f5o3v3klq1ev5P3vX8l1153PH/6hzr//+wyVisy/cKFIyv/u7wRg1hjXW2/XURQJx9IMzfcIWyWL9OtpcmM5Yi0xsqNZrtpxFYFoQPzWUYMrP38lhakCo8+NUs1WKU4VibXFKJ4p0r66XeTPLoSSUjNllS2u3HElRsSgfVU7qqFy6IFDdL2li/j8uF/fNfrcKIFogPTraXbftBs1qDM+rnDihAwMvOc98OlPC8sfDMIjj8z+BgYC8vxb3iJMc2urzNPTI0Fw6fQs06zr4j1/7TX42Mdk8KLW9lStCriu+aszGXle12H9epGhG4bs/54evHoiMIIq6VNpRo6MEEqGMCIGhx84TPuqdnLjOfZs3UNycRIjYmBEDDJDGQ585gDFM0UalzZilSz23bIPs2AyemQUs2CSHc6i6ipmwWT3TbvJjmTRQzqd3Z3csOsG+v6qD0VV6Lurj+XvWU60NcrGL2/koncJYHIAV9NgSYf8o9m8HLyL24XRfm1oVuuueuDUcTz2WZc+bE2TnXN8SBjpYEDY53JV7kfD4scuV+VWU2e1+zUvt6KIHLzWs11bX9XyWG5XJN6BuPc7m/DC0hTIj4lsOz8ioDnvyQoUVUCzc45H2zGFgVaD3rr4rc5rR9Z9roy8mpXtGFEB3iB92HbVY7wdStkpqsUUqqrTvnwdWiDC5G8GAKjkzqKoGsFYkvbl61E1A9e2UFSdUGIeE79+FhR1DjDX9CCaHpzzeM48HkA/97FVLXmS8ziBSB2TxwaxKkVcF+67b5AVK1oIhXR6ejq5775BVFWhqSnKli17KRRMRkayxGIBurs7icUCNDdH0HWVWCxAW1uMWCxAX18X73nPclav7iCbrTAxkee229YyPp7zcgYC3HLLGqamCnzsY3s4fnyGefMiLF6cRNNUdu4UZnxsLOf/L/feexBVVXyJd22g+PDhwxw7dgxd17Ftm/HxcfL5PFdeeaUfOGZZFtdddx2dnZ1+JkmhUKDTC9XMZDIcO3aMgYEByuUyx44d87uGN27c6KeM5/N52tvbGRiQz2xgYMAPOguFQuCaKOawSLcnt0jgmJYURZoSAGtc2GprGMo/l9vqcbmG0Fth+kFRwimGsNxqVAblnYoM4JunJFzVnhCwbg7PDt6bx8V2psaEqa4NzjsZWbfeTi3XYFadeBeGEaGrqwddD80JpR0eHuSBB7bzwgtPkc9P87WvreMv/iLP4OBOFEXhgQeu5zOfeQTDiLB588M0NCxlYuJFHnvs3QwM3INtV39nO5VKDscxSSaX8Na3/g2JRBeu61Cp5CiV0gS87+2ZfIr3vXkTYUOqtr42+Dgr51/Aivnn+73W//1nu1FV1Q8j++4LT3Fx6xLqQlE+fdUHUBWVsBHkTa1LSBUz6KrGpe0X8O3nn2TfsUNM5WdojNYBLrqqMZyeZCJ7lpfGXuX8pi6a40kK1RK/mjjORPYsw+lJdFVDURWCwSC9vb0+cbFnzx6/2vTQoUMkEgmSySStra1MT0+zb98+Ojo6iEQiVKtVv1s96FVymKbpA3RVVTl8+LAfepbJZHzVxMzMDPl8nmAwyJIlS4hGo7S3t3Po0CGOHj1Kf38/uq6jKQrJUIh7zgmT1VR1TiBZIhiU+319HBoeJmIYFEyTj+7axXguxyKvaqtomoxkMjy0cSOL6+t5bnSUbb29uK7LjquuIvRGMvh/2ekNz/X/5kn80hV0PfhbEu7fP1UqWZ588iO/47uefV1qtzo7e+Z0FjY2nu/1XVdxXUkMTKdfZ2BAvDXJ5BIsq4TrOmhaAKuUI64kwKpK/VXP2yAag2LBDzFTGuZRzud5Zs9u3r76crTOhTz00Fd4/J/+gZ986xsoSy4QD3Y2jXvyVdzRYbT1m3FzGZT6Bq/MFw8EyziOm5rGGXhmNuAsEsW1LNyJUdT5nbi2LZVczw2iXXsNijXmAec46PNlNFkJCjNdq2OpVW3orcho9bjn1b4LdC85VuGcDstbZOS6/EsvNXRKZOfWDES6xaOtBJBwkoCMZKthmPjobFhK6zeoWCFSqfSc4ItaMMa+fft8b46iKMzMzPyO/7quro69e/eybt06gsGg/8Nf806bpunXnYRCIf+HPpFI0N/fz9VXX02hUODgwYNzQjump6cJBoPo0Shb9uxhVXs7G5YsoSUW47Xpab/+4bnRUS5rayMeCGC7LpbjULVtCtUq9aEQR0ZHaYvFODQywsL6etZ2dqICBdMkV62SCAapOyc0bVtfH20xYdq27t3LnT09HBoeZmF9Pd2dnaiKQqZSIemF4diuS1lV+XkgQBPw90i3dQTxTdtIAJnFrLQ77v19GPgk4suuR1hqz3LLGCLz/rS3Dpj1VbfJJ4qCVHi1IHLy2xCm/BXgs97964FH8vDqMZGE79wp0mNVFXC9b59Itx94QOTc994rQNAwhI0eHpYKqR07xNPb3CzM9Je+JEDwnnsEZI6PC/AOBgUUbtp0H7HYT/nud58kEBDQl83K8qoX4JzNzvqKk5EyVsXCCBtUshUUVfG7mHOjOeIdcarZ6u/4eRVNYXhwmKZlTRQmCxx+4DDrvriOQEx82Ptv30/3Hd0YYYPIvAhWyWLilxPE58f9yi4jYuA6wvIGYnLcuq6LWTBJnUzR9KYm1PoEk1Mq9fWyv7q6ZLAgn5+tKYvH5T1ls3IfRH4/NCQs8513wuLFs+Fjl14qn0WlIvv0+9+Hl14S5juVEon5jh0SFNfYKAnsNek4yH5WVfmJOn589rM4b6mL7sqAZrVQ9Qhfl2quyrOff5a1t64Vz7knqXVdl5e/8zIjh0bou6sPs2gyfHCY0edGueqeqzALJrH5Yt3IjeY4+cxJlr59KeGGMLZp49ougUQA13ZxHdfvwz63Qm36+DQtF81D01UBsoYu3wjT8gzppjDIIM8Zuuwoy2N1a73VtXkUZJmZrADprjaPRdbh5IjIx2ujDbXE8BqLDfJ8zZtdk4knY7OssU+Ju7PBYucqf6o5AcGOdY7f2gtTq6Vy1dLGFQR8a0FvOW9YzPdha7NMfTU/W+uVfd0LN5P37LgujpfQ7bouk7/pZ96SN2OEEiJVrvVTL/oDApEEZinL2ZM/p/WitwjQBlzbxLGlNktGtFwJK/P6q3Fdxl/pp+V8qf1RNcPfFa7jYpsl9EAYx7Y8z/Wb0YwwldwZAol2ZlJVpqYKjI3lWLOmA11XURT4+Mf3cumlbVx99RI6OuK8/nqaUEinuTlKoWASCukMD2fYvn3WNx2JGJw4McOiRUlOn85wzz0DPPjgBs6cKbJ9ez/btvUyMpJl8+bvebVbCYaHJRgtFNKxbRdNUzh4cJiWlghLljRiGC5DQ0NzOobD4TATExN+ONnatWsJhUJYluU/LhQKdHmBCrt2SUbJDTfcMCfQrFZJGYlE/ECpWsZI7bxqGIaXOyMqHZBapb6+PnRdJxEPoKsVlMmbBfxGr5a2j+pJCCwBa0zA79SnoOETYhnzPdTetYJ1WrzUoUvleLW9XJeax3p082xYmtY0t4ar+T4vbHWnlxPTKmq52jrDqzGdIOVKnnI5TShUT7VaIBCIUCicJZsdpr19Faqq8/LL32Xx4qs4cOCz9PTciaJofjd2LFYzOynk8xNkMkO0tV1KLjdBoTBJR8caVFXyFiyr5NdtWVaJ/fvvoLv7kySTS/2+7d7ebdTVdZHJDJFInsdw5gzffv5Jv4v66VcP8avxE3zqqg9QsarkK0Uao/VMZqf55pEf8OeXX0tzLEkkEGY4Pcm3jvyQ29/2PtLFHFOFGVbMPx/bcTBti4CmM13M0BRLUrGqUvVZKRIJhNj68a0c/veDjAwN874HP8mdf/wXNEbreGrvU3zpnnsll8CyuO3W23jve98L4B+PdXV1PP3007zyyit+lallWTz99NO8/PLLLFu2jGuvvZbp6WkGBwfp7u6msbGRF198kYaGBuLxuJ9to+s6xWKRaDRKoVCY061eO7ZrYXq1YNr+/n4/cK9gmhweH6c9keC+wUF2rl9PxDBQFYXxXI5kKETA69R2XZd/+dWvuG7ZMg6PjNAUjZIqlejp7MT2Mm9WPfIIm847j69t2uRn5vz1gQPcd/XVJLxrqTem//zpDc/1/+FJ1wMEg3EvvTb/H/quATQt9B+y3TU2fK70+14cx8KySn63NUAuN0ZX11sIBKKoqkqlkmNy8iUURUMPxsCsgB5A2/QuAdZVSev2ZdymifGTPVxz5dtQW9txC3lWr1nD6VwB9eJLcWfO4qamIRDEHX5d2GtvJM0ZOY1bKeNOT2Hvehw3dRa3Woa6erR1m6EuCZaJvfv7UMyjdizAdWycnzwF8Tq0TdfKSPHZv5UTpBr35NkhAduuKSxz6XlP8hURQKwYc73aig7YwkzXRpynd8q6wqtlp7pFmPk7Ada4sxeC1rQXRhKC4hE5wcavl1trGo0syWSSrq4uBgcHfY+ZYRh0dXVx+PBhP/CidoGh6zodHR3+SH9HR4fvhTp3oCsQCPh1JzWAraoqXV1dRCIR1q9fj6qq/qjpwMAAuq77jHkkEkFTFHauX0+vB2wt22aqUKAzkSCgabxlwQKiHrB2XJezxSIAEc8P1ByNEg8Gec8ll9DT2cmZgshfp4tFTszMYHjvLaTr9HR2cu/Bgyje44c3b5YAs2SSjkSCs8Uipm3z8uQkr6fT5KtVzhQKRA2DPgRE34LItweQa9IQUqlVY7XbEG+1ijDSCxBwbDHLRge8dX0SYZ7P85bpQQLPxhGGOoew2XFE1LcNAdN1CAh/D/Agcq1fA8+GITLk06cFkNW6kgMBYVknJ+Ev/mKWzW5qEoBXY1pzOVkmFBL5+BNPCKi7+GIB2B/7mID2XO5bfOQjH6KuTgC340j11tCQJIVbluCdz39evMS1bmTXkVC8Z7Y9I4ndLkRboriWHFfPfv5Z8fOO5xg6OIRVsejs7SQQDZCfyNOxtsOXhAdiAa556BribXEC0QCFqQJ6WKdjTYdf2eU6LsODw2SGMqROpjAihoSkeQz2/Mvnc/Y3Z9E0KBZdXzo/5FmAx8bkPTiO4DXXlcAzEGCtabKfbrtNAPfwMNx0E6xcKfv6xhtlf335y7LPYzHxabe0SAjc/ffL8oYh2926VQY9LAtfEQCy72+7Tea1bOn/rmQr7P/kfgl+qwsSa4ux8aGNKLoMSKRPpdl14y4yr2e48I8uZN0X13Fy/0kOP3CYZX+8jI1f3oiqqTz7+WcxCybp19OkTqW45L2XEG2KMvrcKI4pQWg4kB/PYxZMbNMmN5qjZUULpekSju0Qb4vzl7fewsKlS1GiYV48eEg806+P8dorv6H76nWcf9FFXH7pZRw9+isv0a0grHUtXTzsSbazeWGnSxXxai9uh1RWUsEVRYB2DbC/PgamLcA6XxSWvGrKjgsYs8njdTGPJU94wLgqMnDXkaAx8CTcpsc6e40RtZoux/Qk3N48mZOefNzzbaue99uIerJxTXqsa73YjgmZ172aLm/orDQj3utzWqXNUpbxXx/AqhRpXPwHBMIJFFURgKyoXn+1AYrK2ZM/J1zfilUpUpgZBS/x27EqjL68H8eqUi1mKKYnvfFjG8c2aei6mPFfH0BRVKxKkWoxS2F6FFwH25QQLtuqEm6Yj6oG0PQAkYYONNUlGjUYGcnS2hrjppt289pr01iWw4MPvp33v38Fp06lOHUqTXNzjMbGCLlcldtv38/wcIZw2OCTn1xLIiG1XABnzsjv+X33DdLT00kgoBEO63zyk2sZGcmyalU711+/jFWrJI28qSlKKlXmxImUJwVPsXZtJwsXNpDPV5mYKNLe3jGHqQsEAnR1dfl1WYcOHSIajc553N7ezpD3pa9llHR0dMyp2Orq6vKD0Go1laFQaA47HY1GSSQSxGIxnnvuOeLxOJs2bSKZTBKNRnHcACgR3Navib1La5DrhMBS71risxJM2vIQ6J1iA5v5+3OuFTS51oh0y3WDYgg4DvdIwnh41Wzllt4h1xzND8KiV+RWiZ8z/wPi5VZcmS+8CkpHcJwK4+MvUK3mGB9/gXI5RaWSZWBgO9/73mb27t1KPj/BokVXEY22snHjVygUzlBXt4DNmx+mvn4R+fwUui6DTP39n+exx97NxMQvaWw8n0Sinb17Py65Oo4JuJTLaXbvvolcboI1a24lFpuP69rkcmMcO/YEg4P3oqoauh7EcV2+deSHXNy2hDP5FDv//dusnH8BN7/lT8F1mSlm+drg40xkzzKRn+bAiZ8xXcwQNIKA6zPT+UqRqcIMF7cuxbQtMuUcmqqhqdJQUzIrhI0QZ/Ipvjb4ONOFDB967wfY/fReEs1JDr3+Ev/0/JOE9CB/+dEtXPqBDfzr0z/ivz/6PbZu3corr7zi+/qLxSL5fJ7169fPqTLN5/OsW7duTiZOzYI3ODiI4zgMDw8zf/58v+Ytl8uxe/du37dda2U599g+VwqeTqeJxWJs3ryZhOeBDgYCtMVixAyDr23axJlCgY/u2sXJVIpEMEjIkME6x3WZLBR4x4UXEtQ0OhIJ7j90iEtaWjiRSnHjrl0UTZPnPvxhvrhuHflqlQnP6/3Xb3sbBdOkWvM9vTH9l5veYK7/E6ZasFl//3a/Yut/lhz+H7HdtQTy2sjjhg0PUihM+aOQ0Wgz4+Mv0N6+GlXVGBk5THv75WhamGo1S6WSpT7eieogo/bDpyE9g3rxStxsWpjsvnW42TTMnJ1lqKtl3veRG2mIxfnS268Q+Xghj9rW4dFAIhW0dz2GuvatUFcP5ZLUdAWCEAqj1I63QBA3l8E9cUwY72veKYnZrourKCiGhTL5ETlRRXpmR4ONC8A8Jiev5p3CKBcHpW7LWCqss3VC5m9+UMLJprdDw20yUh1YLIBZmy8nU3MIZnaKdDzxHp+B8JNprSmvtssUeZjeLNsLX45l5jFpmfPZ1KpEatIk27YZGRnxkyRro/C16pFawIumaVSrVT8JvLGxkXw+TygU8tcXj8fRdZ1qteqni+u67iexVqtVqtWq3xdqAWgaA0NDtCcS3DMwwG1r13KmUKCvq4uCaTKWyzGRz9ORSLBjYIA7urvpSCRovf9+dt1wAx11dYxkMv7y23p7iRgGqXKZM4XCnOVaolF+OTnJ0oYG5sfjctHpur93+2+eP5/TmQyL5s1jPBBgp6JwLwKOS8CnEAC9CF+fgAMMAu0IsHblU+E54FIEkGfB/0RqQcVbgVsRoD2KdF8rSMr4NmbrvIa89Ya8bRWBX1Xh4mlhmoeHhf1Mp4Udvf9+ePDBWQ/1TTfNplJ/5SvCnoKwppdfLkA5m5WvSjQqIWhTU8JuT0xIZdfChYN88IP/jZdeGsFxdG6/XYD9wYOwZIkEet1zj0jEDx+GjVdbNMVKFKYKc2q0VF3FLJrkJ/Pkx/O0r24nO5Ql3iG0cG40x8EvHKTvrj70iE6kMYKqq+Sn8sSaYlhVCxzQAhqKrrD343tZc/Ma4m1xUKGcLhP1Kn2KZ4voYamVijZHJSHcY77X//0mKk6ALVsUnngCHn9cBhg0Taq0tm4VJvu550QOXvt5eOABUQJEIgKEbVv24zXXwG9+I4Mbzc0ColVVUtc7OsRvfeqUDHp8+tMCtCMRAeKPPgp79gg4z2QEsEejMliyY4d465cuddn7we/TfUc3wweHSS5JUtdRx8F7D7L+3vXyHbcdpl6eItIYoXCmQHJJklhLjL0f38v6e9dTPFOkf3u/v44lVy9h5sQM8flxDn7hIN13dFO/qJ7sUJbceM6v7grEAxhRqUebOT5DMB4klAxh5qr88tjzLGlvp/faTfzwscdYufg8MAyuvHYT73vfn/Hn7/0zHn/0Ub74dw/y/OHDMkpQOCf52/GYbF2TW8sSlrsWhvbbU9WS+UxTZOCqOjdNHASkm6asQ+GcKq4OAcSK4qWDN8u3sZoT8KuFPLBtyTy1pO/mS2fvh+dJpVd+DOKdspxVnq3y0kICrBWPNbYr8q2u1XHZFQH7AK6NbZsUM1MEY/NQ9QCuYzH5mwFa33QFAHa1jOOYnDn+nC/b9vwWOLblMd2XY5ZyDL3wJBdc+RFwHRRVo1rMziaEazpmMYMRjKKoGlaliKLpXqd1BEWBwswY4UQzllnCLOVkOVWjXIFSyfqtZPAEO3YII93SEqVUsiiVLLZv7+dTn+qmuVmk4KqqUC5bBIMapulgGCqqqpDJVDyrUY54PEgyGSKVKpNMhtA0lXLZIh4PUC7bbNmyh4ce2uhvf8+eP2XlylYymYq3bZOGhiCZjDB1PT09fj1RjRHs6+ujvr5+zmNd17Esi0QigaqqftJzJpPxGb/6+npc1/X/0uk0wWDQZw37+vpIJpMMDQ3R1NREtVolFAqhe4P5mUyGYiHDooUdKG5ptpLTHBZVW411rlVzTm+XQXKtGcoveIo1BayTMP1Fv25T0sbv8BLBY3JmcPIwdacw1TUbmhIUVZ2dktotDO/5gMjTp3dAw22Y6kLKVdFTGUYU2y6jqgFc12Jk5Ajx+HxisVYMI0w6fdpjq7eh6xHP2reEoaFnmT//zZTLaUyzwMDAPfT13U1dXSe7dn2Urq63cOGFf0S1miMYrGNi4kW++91r+NM/3UNHx1qfgEkkOsnlRunoWOtvf35nL2O5NIam87XBx/06rJuv+FOqlslXDz7mp3ZvW/dByl6V6gM//Q5/fvm11Ifj3Hfgv3P7295H2AgymjnjJY//IVP5FM2xBpGER+pY2NDGz0d+QzIcJ1XKsXL++WiKyoXnX8DXv/0IvWt6UICu+Z08+K2vsHjFhbhnCvzJO6/n5ZdfxnVdAoGAT1QEAgFcd1ZdUbMe1CZVVf3qrdrxZFmWfw3muu4cprtWs1VLID+31SWXy3Hy5EmSyaRvb0ilUgwODrJuwwZKQMRLxh84pzrr4c2bGUqnCRsGLbEYjnfC0xSFm3bv5jsvv8wrW7bw2QMH/AqvhzdvRlMUbM+O57guiWCQgaEheru6iAf/Y7vpG9P/nukN5vq/wPS/GmxWY7trwNqyqnNYb3k9RmPj+Wze/DCGEWFgYIcfkqFpATo7u700U4VYrJU9e7aQTp/AdR0OHPiM1LqkprF3PY4Sj6O8ablsPFGP+tYNkKhHaW1H6VyIc2Afbnqae770ICdOnODzb1sj7Pahn0rllqLg2hbO0EnARd3wh9A4D/I53JmzoKqSNJ7PCajWddzUWZwD+1A6F6Ku34yrqJBJS9hZJgUYEmgWvVqAsh9kZgmwrnmjioMCeM1hoCoXdYELoPWbAoprCZ7WGQHpugfC1bh4rq0Jqc5IXOftfQdhrSe8pM8GeayEZmXnkV5QwthqG5ZlUfAYXZBKhlo1STqdZs+ePf5jXdfp7u5G13Xa29v9JFTbrp1sDa655hqCwaB/4ti/fz8tLS3U19ej6zqVSoX9+/dTLBb9NFU5JnR/ZD8aFaWC4tU+rO7o8P0/9x86xGqvFiJTqbBzcJCmaNQP29g5OEhA07h+2TI/gKwpGvWX3zEwQFM0yv2HDv3Ocpqq0lVXR0ciQb5a5eDQEEXTZFV7+5ztr2pvJ6Bp3H/oEGgaOxWFWxDf9GFgCgHDC5gNJ8t695cjAFmTI4EM4rWOIqAYBJwXgJsQT/ZaZvut64D5iMS8Fpg24m2jzlvnq4jnehLpvY5EZpnorVsFNCeT4tvVNGGuDx8WMLdnjwBrRRGZcjgsgHjLFgF9igI33yw+YduWiq1aYFdPD/zLv3yLDRvexyc+oTM1JcA6GoU/+RMJTwuFZL4HHoB3vxvmJW0qmQoDOwZoX9VOfiLP3q17yQxn+MngT7jm/dfwrjvexUVLL+Kx3Y/h2i7lmTIHv3CQo48eJTOc8b3A069OE2uJkT6VppwqkxuXxOrUiRSrtq4iO5IlP55n75a9BCIBn72tseQzx2fInM6w68Zd5MYkwdx2NZ5/XuHTnxZg3dEhfd0nTsh7qNVpNTUJg7xw4ayvfXJS9ptpyvvu65OBi5YWWU+tC7wWfjYyIuC85ke/5x4ZCAGRh19/vey7WjjcxIRgxpq6YMcOqFYcjj56lMGdgyxev5iO1R307+gXz/VYjn0376M0XaJ1ZSuH7j9EoiNBrDWGFtDY+OWNoED/9v456wjEA3Ss7vD3+eDOQXBg4J4Bmpc3+ynh+Yk8qie9rjHZe7fsJdoU4YrLV9GxYKEAYtOCRIypTIqf/eIF3vsnN4Dt8K7rr2d4eITjr74mIDoR84Cnx2TrNY+yA5HQLLC2bfFtl6uzRK+hg656wNnzecMsYw0ScJaICnBXmPVba57/OvO6BIvVgHWNWVaQ31E9KNLvWIeAaUWbvR/vkK7sxEKZB87xbY/OAmvH9OTgIW9d8wVYB71vvFMVtlsLEEpISKjjScMbFq7ELOcY+9Uz0vtbypMZP4ZZ8t6r64LromoGLRf0ChBOttF12TuEibaquI4t7HOyDVQNxXUJROpAUbEqBbRgBFXV8HxJWJUSelC8JWYpN5ssXsrKLg3p3H13H7t23UBPTxdjYzne9rYFdHYmiMWCtLbGeOCBQ/T0dNLVVY+qKmzZsodXXxWWO583OXx4hErFxvIq4xKJAG1tcaLRAD//+TjRaIDp6RKKItsrlSxCIY1t2/rIZMo8+OAGXnllC319XYyP5/jsZw9QLlucOVOkVDKpr69nw4YNDA8Ps3//fkqlErFYjGuuuYZoNMrw8DDRaJQNGzaQTCaJRCJEIhH27duH4zg+YxiJRLjmmmuoq6vDcRxGRkYwTRNN02hoaCAcDpNMJn1W0HEcOjs7UVWVU6dOsX//ft8nG4vFWLSwHcU8cU6AaURAs94m5+z4e0StNr3du564VwBzpNtTwpXAnPQSv4cFGNdYaEwoiteb8ouQ/74M7Fuvw+THwDwhgN4tiPfaLck6Qbzc4R5QEziEAZdKJYvr2mhaEMsqMTr6PO3tq2loOJ/JyZeYmTnuX9P198s1naYFcByTSKRJrH1WBcOIsnnzN6ivX8grr/yAvr67eNObatcyEpLb1dXLli2/oavrLYAMXrS0rCCXG6Wrq5dsdpiRkSO0t6/CdSw66ltoiiX55Nvex48++CXuXv9hAqpBQ6SOj6x5pwe238NY9gw7//3bnMmnWDH/PCbzMwSNAHde+X6igTAu8C3Po/2tIz+iPhznW0d+6Ieeua5Lc6yB777wFBc2LxQFn6fiCwfCVKwqL42/xpe+8WX+4v0f4U+u2Mzm9dfwtYe/TqVS4cCBAxSLRWzbZt++faTTaRRFcgFq3uta93QtxX5oaIi3vvWtJJNJUqkUIyMjZDIZ9u7dS6FQYP369Sxbtoze3l7C4bDPggcCAVKplM9mK4rChRdeSDweZ9euXWQyGfL5PMeOHePs5CSJQMBvRulIJHj8uuu4u68PTVEIGQaRQIBXp6e5cdcuTqXT5KpVHtq4kcnbbqMtFuPBDRt4z/Ll3NXXh6GqOMDr6TQ379vHdKmEClw+fz5aLRfjjem/3PQGuP5PmP5Xg83Onf6jOi/DCBMK1aFpgXPCK+7Gtk2Ghwf9H5WDB7/gA/tKJcuxY09IR2c+h7r2CjACkuK9+/uQmsY9cQxn7w9QDMOv6rrv9tv4wY9+xO7vf5/Y2zb4IWWuYaAYARTdQGmej1ssQDEP+ZyElkVj50jNnwHXRbGs2ecGD0iup2X+VrK4KyPHWoOMItfkWNY0NN8rsq3JrV7v9JTIrqwz4qtGAy0h4LvlK16CZ6d4ps0TXjptQU664cvBWCAnYmsIioflxCjCHdmOGvdCTrIw8TEZifZOnLWAlkwm419U1HoWa7K3QqHg15GoqsrMzAzZbBbDMCgWi+zbt8//4a6lru7atYtcLseqVasolUrs2rWL6elpAD/UpTaCWtt+LXijlrRaLhTIVasYquoHid3d14euqgwOD1MXDHJHdzdnCgU/bOPTvb1MF4t8Y/NmgprGtt7eOa9v6+1FUxTu6uub8/zdfX1EDIOhTIZjZ8/iuC5vamri9v37Gcpk/Pnu6utjJJvFchzu6usjWyjwNddlKQKOuxGQex7y4xQCTiGAW69U+NzWrXz8vPO4dPlyLn/ve4nKp8QAApJVBKRHgScQ8Pxu7/FrSOJ4LW38euBO4GnE692KMOcT3nOjwGLv67Z6tTDVNRCWTAowNgwBiJdcIo/b24Ulfe01CdtSlNkqr+3bhTF99NHZtGzLmn39b/4mzw9+8ChnznyQRx8VsKjrs0CwUJgF4ffeK4Bz8IiGkQjS++lelly9xE+czgxl+MCHP8Cfzf8z9v3zPv7uL/+OT37uk5wdPcuJp0/QfUc3y65fRsfqDgZ2DPigzzEd+nf0E6oP+c8P7BigfkG9DzRridYD98jr/dv7qWQrRJui/nM1YKlrDitXurS0wJo1s0D2nnvkK157XAuDCwSEQb76apmnFh53000CyL/6VdmnO3bMld3Xltc0YfWvv17Wk0zKPly0SJatJbTXatEcZzYNfts2CARVll2/jL67+0h0JHBdl767+ubs24EdA5TTZf8+rvizzaKJETbo3dY7Zx0120ffXX0su34ZPXf2oOgSYKZqqr/ewZ2Dfjd4x+oOf18OHxrBjUdllEHX5KBzHIZfPU5baxt6MACGjmLbdHV1MjQ64sk6LO93VBW2OVcQWXfA8H7eXK8XW5NaroAXUla1RE5eqgjgPj4k21QUWd7wALbiMeK5gqwvsUDY4mpeAG3dQvnyVHOzIWcuwoDjQvqkMNh6EOqXyOtaAOJdXphZgtmKLlek4OFmAdyKF5SmBgRIu64HosOen9ue9W17xmezXODMa4flnKwbBKJJrHKeeYv/AKucJ9LQznlXfIBIYztmOcf40Z/MNnM4NuG6ZhRFJdoove5nXjuMWS6gh6LCfllVqekqpmUbgQgKLqXMBI5jUkzJraaHUFWNSEM706d+QXbyBGYp553vHVpbY6xe3c6hQ8OsXNnKDTcsxzQdbrnlKfL5Kg8++Hbe9a6LeO65UXRd5ZZb1vDAA4dJp8tomgSgbd26l9OnM0Sj0lP9wgvjGIbK2rWdTEzkOH58htOnMwwODovAoGTR1ZWgrS2GYWicOpUil6vS1hbnLW/pQtMUFi8Wj/CTTz5JoVCgvr6enp4eHMfBMAw/GTwWi/mp3iDquH379tHW1uYDmVq4lG3b5PN5LMuis7MTwzCoVCp+nZdlWdi2jeM4mKbp11QuW7aMjRs3+qyjfMec2cF0NemFkZXlXO0UofWrwizX7F3NXwTzdRmgR5EB9Ei3hJwaHQKaIz1yveFUJQW8OCAAfeHLcmxP3+OB8RG5ljBHpeLTHpNEcScPrQ9C/F1w9vPeNcM4Bw58hkzmNENDAxQKkzQ3L/dquE7Q3r6aYDDJhg0PsmXLK2zY8CDBYIIDBz5LJnOaQmGSTOZ1dD1IuZxi166Pkk6f4k1vejf19UswjDD5/AQHDnwWgHT6FKnUSarVLIXCJI5joigKnZ09VKt5MpkhrwZsK66iYbsOqqKSLmb56sHHGM+e5ZWpU4xlz9CeaOKv1n+YiBFkMjfD+968ielihnXnr6Y51sD2/d/ibCGN5dhoiupXaH1k9TtJl3J8ePUfkS7l+Miad2J7EvQV88+T71M+heXY2K7D//Pz3VLj1byEb33563z/+4/z61ePsfup3dz0kY/y4x//mO7ubt+bv2DBAjSviurw4cN0dnb6qoZ0Os2uXbuIxWLU19f7pER/fz/RaJRsNsvatWvJZDLous5b3/pW3/9fsyVUKhWy2awvBzdNE1VV/WVrdat//Md/zPzOTkq2zXavGWWHlwjeFIngAq2xGFHDoDOR4M6eHsK6TiwQQFUUxvJ5bty1izPFIl/ftInF9fVkKhUc1/WJjOFMhhPpNFv27uV4KvWGNPy/6PQGuP5PmGpJ39de+8jv6ab+jyfbrpLJDLN27W1kMsO/l/U2jLDPYieTi5iY+IX/Y2maxTkplKFQPddd9ziOgt9jjWXiZtKzYHfx+eKfdl3U7rfy4Mlx/vWXR9m360mSLS0oyUa0ze+W0DLbxp0+I4xzqYASiUqt1oljqN1vFdl47zmJ4aqCC7MVYL1X4uZFKzs731WgmCjlF0S2rbdKX6XeJqBZjYjM6lxGWglIMufkFqi+JiC7elweuyUZic49KsspirDWdkou7qwpwJZ5ImsAV06E9gSgyAnSmvI8VjvAHANFnePhGRgYIBKJ+B4z27ZZu3bt7/WX1X60YW7iae35crns+4Lq6+v9eQYHB6lUKixevPh3PEQ1j1qlUqFarTI4OIiq64zlcmzZs4emSISHN29mYX09h0ZGmBeJUKhWWdrQwGVtbSxOJnl482ba43HqQyFwXUqmSVddHas7OlicTPLghg389PRpbtu3j666Onq7ulicTPKNzZtZnExy+9NPcyKVIhIIoKsqYV3n9u5uHjh8mOZolIc3b6YpEuH+Q4cI6jqN4TDzolHyiATbQkB0RD4NXkXY51YkAfyTn/oUP1UU/u3VV9nz8ss8et99OMDHkfquMAKipxH2+oeIbzqEMN0PIGz1PfIJ8zDi434OAdengL9EJObHkYA0UxNmOZWaBWF33imAzTTFg10qwfS0MNo1oLxzpwDpYlGA3PXXC3taXz+7jvp6WU+NVb3kkn/l4otX8PnPX8j11wtYrIHH7dtnk7J37hQ23bahY4GOEQ2QXJIk3h73AVzH6g6sssWvnv4VgzsHSV6apHFeI4mmBKPPjRKfH2fzNzejh/U5oA8Ferf1Uk6XZ0Hitj70sC7zbpN5g3UC6GsgMlQfonCmMLvMXX3E58dRTJNoBF54QfbTpz89+/4VZfa933WXyOYPH54dpKiB7BoTvWOH+KJVVeY/c2Z2fXfdNfuZnH8+PPzwrMw8m4Vnn5X7qiqs9/33y61hSFDaww9LkrtlwVv/+q2Ek2GGBoZAgboFdcTaYr/zfpddv4y1n1zL8OCwBMSpCvmJPHVddWx+eDOJzgS5sRwooIU06hfXs/nhzTSc14BjOdQvqicQC/j7v+8uSQ2vZCqohuo/37qydTalG8QfDVK9hesBVkfAMAgwNi0B4ucmgBuGvKZ61pdcYdbwfnxIgHNNOl7ryh4ahzMpGJkQ8FoD+YYhy+DOMuCKdk6q90m5X2Os7SpkTghIkZnFbw184uMfZ+HCBSi6wYvPD0IlRblU5I/e+U7Ov+A8VvzBatZfvZ7jx16B+kUiJ8+eng0+S5/wGOyseL1r/4vryjbtMrguZ08+TzjZBoDrOChAONmOVakSrp+PAuhGCMV1MEs5wsk2zHKBwsyosM2IpNu1LVRNJ9wwH00P4Do2hZkx8XIv+gOMUBzFY8xcxyFc34YeiBJKNGEEY+jBCK5jg+vQdvFVXPC2DxNJetvXVcbG8mzZspe2NgkmGxgYYnIyz9atqxgby3HjjbsAaG2NsXXrXnRd5YtfXEcyGSIQ0DhzpsBtt61lbCyHpinMmxdhxYoW7rhjP4WCAOYVK1oYG8v5SeRjYznOni1y/HiKLVv2sHx5M5OTBW6+eR89PV0EAhqq6v6OT7q+vp5IRI7Lp556inQ6TS6X88GN67oMDw+zdu1alixZ4p/LDh06RCwWm5MeXq1W2b17txzasRhjY2NoXvBTDcAnEgkSiQR79+4lmxW237IsrypJFeA8/9+k8cOtiOTbPivHrjUGhWdAXyDXE2odUru5yuu+HgV0T5kWgeKzYE4IQ623CHCuJZG7xXO2VwPjH5dbJSYqu/AqAdkTN/p5L65rn1PFdQ+RyDwGB+9D0wz/Gs9xLGKxFgqFSZ599vOAi6rqrFu3k1xujEikmUxmhGi0mULhDMeOPUF//3ZyuVGq1Qyu6zA4uJNjx55AVQ2i0VZfyfjss58nn59AVXUcx+SVV/5tTg1YuZSibFao2qafDF5jm//hyI+wXId7nvlHHI91/uef7aY51kBID85hqQG/tqsl1kB7XROddc20JaTTOmTINfCHVv8R685fzdlCmq8NPs549iyO47Bknqht9x/8d3594hiLV1zIS+Ov0by0i/nt7TQ2NhKPx/1jrlbhlk6n2bBhA52dnRw4cADbtudcY3V1dUmyPLBhwwZCoRBtbW0Eg0Ha2tpQVZVIJIJlWRSLRTZs2MCWLVv8ZPBCoeCD6drxWGPJaz3YVcsiVSrNISQqXp2p7Tic9PzUpuOgKQqfOXCAk6kUBdP0FX7b+/spWZafh6N7hMb1y5axur3dB+7b+/up2LXY1jem/0rTG+D6P2n6ban3/9dJVTUSiQ4OHbqfRKLDS4H83anGYqtqgPb2y/0fy/37byeR6GLz5oeJRlvJ5cbp6uqlVDgzyx73P4Pa3uWDXcIRlEQ97tGXGSmWueOfv0c6l+eqjRu5dNVq1lxxBW4mhf3ko5BJ4+azs8y0ogqoHh2GeAK1azFKQyPapndJb/bMNKgKSn0D2oY/lGAzRcHe+0OIRGS+TFoujkKXiWzLtQVEo3ie6rPCYs//N5nHmpCRaeuMB6C3y3y+/Gv7OWEkd4s/KrBUTpj2mIBw15V1uYpss/UrYJ5FEkPHJFjNLQGG9GOap1EU6Ovr8wMzisUifX19GIaBoiiEQiE2btyI67p+kMu589W6sM99vre3l1Ao5EuTYDYEpqenh1Ao5P+QV6vVOestl8sEg0ECgQDd3d0oqsrOwUG+8/LL3L5/v5/h255IcN+hQxKIYduEdJ18tcrg8LCA8b17Gc5miRoGluOQKpUoWxbxQIC3L1nC/Rs24LoumqLguC6mbVMyTe7fsIHezk4+e+AAE/k8YcMgahh8eeNGYoEAz42OEgsE+Mo116AAv5qaQtU0xhTFr9X6DJL2rSIJ348CXwAihQL/8q1vcXz7doYVhSJwX2srE0i39f0IwB5H0r7HEHZ6gtlarS8ibPXdCPjegrDeX0ZA+XZvXePAx7zXdFNCty65RJjkhx+GCy6Q+7Uu6khEQF8wOBeAJ+XQ5swZkYrPny/7/+tflwqocFhk342N8I1vwK5d36Kn50Ocd55sx3Vnwefdd88C823bZL2GAZ3tFtnTaXb/xW6q+Sr1C+vZ/I3NaAGNf/jyP/D9wPe5uf9m3vG+d/Ctb36LmV/PsOrjqxh/YRy7apMbz1G3UMBgcnESzdBILk4SbYqSXJxk09c3kTwvycypGU4/e5q6RTKvaqjULxKwGGmKUC1W6erpomFpAxse3EC4MUzhTAEtoKHr0NHh8qlPiaT74YfFP64osu++/GXZF6Ojsj9ff10k383NUsVV2we1fVooyLzd3bB0qfje+/tlX4ZCghVvvFG2dfPNghObmkQ+XqnMlYGbpjDY1SoYhouugx7WmfjlBPMvny8E6+k0I4dHiDRF2PwNGZDQQzobH9pIYapA3YI6VENFNVRSJ1OYRVPSxF1InUz5fdlPfuhJpl+VPnAFBatk4ToumeEMa25dQ2Y4g+uILjs/kSfRmWDzw5sJxgNi47FtAb/RMFRNOusaGJ+YwHrlBFRN3EiIoaEhulq89O8a41ypisx7ZEKA8LlsdKUKliMAulKdXc5xBGR3tcHFS2FplxDAqiIAe2TCA9q2VHq5yG9lIP67tVuuLfdrkm7Xlg8/WA+uzbs39jDw/YdY0DkfAlEINYJrceN7ruXYgf+HXx54nD+8djMfvvHD8gWqrevc+37FV239zN2mAm1veivJ9otQNR3HsT1WGiKNbbiOhVkp4Loi3Y4kW6lvfxNWpUQo0YRZKaKoOpFkm4SYOTbJ+Reh6gal9DiR+lYC4ThGKCrhZlaV8aP/LiBeUShlJrFN6el2bBNUAf9mKcP4r/8ds5zFsh1M02bHjn4effQo99wz4APg8fE8CxfWs3PnII8+epRcrsoXvnCQRx89yo4dA8RiAUIhHV1X6ehIcP/9h1i5spVTp9LcfPM+JicLPjivdV739HRy//2H/HXU1YXYsWOARx89Sj5vcs89A/7/YVku1artn69q56Zqteozz1dffbUPMC666CKeffZZ0uk0LS0tvmf13PPdbwdMKYrC2rVrpeIpEKCjowPXdXEcxwfq5XLZDw+tgfpajRIgoDrSIwndNWWbOSKD71orxK+VTJaJG4W11lvkbBNe69nLjstrbhEW/VLA8sRWGWCPdItyLvwWWR+OWMwivbOD/eaIHNst35AMF3NCnp/eCdH1qIo2h+wIhxvYuPHLuK7DkSN/TyLRQbmcxnVtBgbuEam26zI9/So//vEdxOPzSSYX0NZ2Gfn8OG1tl3H99f9GT8+nCATiqKpBsXiWvr67ue66x3FdG8cxyefHURSFjo61HD78AIYRQVE0GhqWouth+vpE+RiNNXMmn+Ll8eN8aPUfseGCtT7b/IFV11I2K1zctoSZYuYcMP1DSmaZD9fmX/NHqIrig/NHjvwQ23WYF0uKmhKoC8WxHZv2uiYCeoB/8oLQvnXkhxiawYq28ylUS/z7xEtkplPsfPwb1Ifj/OLlFzl54gRDQ0PkcjlfxVcjJPr7+1EUxT+uRkZG5lwjKYri2/Vqx2RtgCeXy/nX04FAgEAgQKFQ4MCBA2SzWe644w6uuuoqOjo6OHPmjN+J/eSTT9LT08Nll11GX18fv/jZz2iJRmmLxdi5bh3z43GCmka+WsVyHCKGwRPHjpGrVn02esfAAJbjcGd3N7tuuIGHNm4kXS6jesf1q9PTDGcyfGXjRhzgtrVrfcVg8I06rv+S0xuBZv/Fp1r11v+omuu3J8uqYppFstnT9PfXAs5aAJd9+26mu/sOGhsvxKrmCROGShmCIQgEUBwHZ/h1lHgCpaFJpOO1gLPut0K8TiTV1ar4sI++iLJsJdrGd+KMDknit6YLiHMlIMLZ9yTqqm6IxXF/cxTqk6hdi3CGTqFEEygNDbiFvASbjY+hbbhWpIYhB8V81Qsy+7QEj0zdMhtC4hTkxOhkJflbjYOa8LxOtoBtN+9Vct0tVRx+8AiSGqqGRAYeWu4tawOWjGIbHbIdNQ7Fn0LoYkCXIJPGO0CJUKHTr8+KRr1wp2JxTgiLrus88sgjfPjDH/ZTv2sXBTXZvuu6c4JeQC5aAJ555hmuuuoqH7DPfs4W+/bto729nSVLlpBIJLBtG1VVsW1b1quqHE+n2XnwIH//9reLP01RuHHXLh49epT3LF/O1zZtYjSXIx4IENZ1LMehbFmEDYPxfJ7t/f18ureX0WyWzkSCsGGQDIUIehc7BVPk8cVqlYhXIfbYr3/NL8bH+eK6dQLKg0GmCgWaIhE5WSgKmiIKBjcQ4EZF4TYEID+KAOCHEfZ4JwKG8y+9xLve8Q7q/uRPCP74x4yGw5z93Oe4/qqr+Jx8aiwCPvRb67jxtx5bSNTMx4DveM//NdAJnEBk4Z9ltparoQBmWpK+43FhR2se6+XLRVEbiwmAKxaFrW5slPmmpgQ8ptOQSMhfqSTLq6qA7nnzhC01DEkL/853BEj+/d8L8FPVuXVVtVTtW28VMLmovcL+v9zNmlvWUNdVRzldJpQMgQYb37GRv/rUX9Hb08vPf/FzrrvhOn78Lz/mla+9Qt9dfcTaYuTGcgzsGKB3Wy+u7RJtiaIaKvnxvP98/cJ6hgaGiDZFOXT/Ifru6qN+Ub2fGJefymOEDT/QTNVlzNaxHEwLqkqILVsUHn1U3ttXviIDEaOjsu9efhne/OZZQvS554S5roHtSGQ2Id22Jbzs7W+XdX396xIMl8nMdoprmnixd+yQQYmOjtmwuV27JPRs+3YB7ZGIVILdc48MWixe7LLvw9+nd1sv8flx0q+nKZ4t0tXbhVWxGD0ySrQ5Ks/1dWGVLMrpMmbRZGDHAH3b+qhfXC/f4bwED07+cpL6hfV89U1f5U/3/Kkw0QiINwsm+Yk8gzsH6d3WS92COjKnM+TGcnR2d0oSfECTpirHYeH55/HDf/lXVtY1QUcrb113JX9+5dv58/e9j8d/+TxfuO9efnbosADkMyloSgowriV7hwIChs99zXXhxLDcP3e58xYISC1XhcHuapN+a0WR51RFEsXPpKD7Ei8ZWZsNNot3gFU5p3ZrRMLIVEPOI6out44J+VEWXnY1P/z+91m5YrnHcHsBZfEOfnbkMO9+7wd5/cSJ2fXXLRZG/Nxt1aq4zv0/Yu3YaoBqMcOZ40doe9Nbsaolzhw/wrzFl2OEoiiagV0poAWjEoBWraAFQqBqVPMprEoBIxwT+XhSMiuKM+NEki2iYrLld1BRNaxqCVUzsCoSnTh96ue0XNiHqgdQcLGqJb8T266WsK0yVqWMHp9PJlNlcrLAPfcMcOedPQwMDHHw4DBf+cpGQiGdEydS7Ngxt1brrrv6WLIk6Xusb7xxF48+epRXXtnCZz97gEcfPcr11y/jq1+9ho99bI//+Otf38zQUIYdO/rZtq2PSESnWDR/7/q7uhJevoTqhzoBv1NtZJ0jUa1ZlWqBT5ZlEQgEyGaznDp1iqVLl2KaJgcPHmTjxo04jsPY2BgdHR1ks1n6+/vZsGGDHwTa19eH4zg0NDTguq6fVVILTAsFTLSpj4qMe+r22Yqslq8AmjDZTkYG0/UmMBbKwPz0drnGMJbCxIe85d4DrV+bre9SAnJdELoM7EmRgzd+GoxF8mbN1wVY18LTjA7v2mOb97gLjEVULBvQcBwTVdVJp0/R37+d7u47GB4+yPDwQTZt+jqqqlOt5j2ftc3TT9/Kyy9/x78GnJ5+jXx+nPb2Vei6KFhSqZNzqrVc18FxbLLZYQYHd9LdfQeJRAeu61AsniWTGaKjYzWaFiKfnyAUqsPVo+z48T9wafsFvP3Cbv9zPptPUTQrRIwg8VDUG3TP8g9HfsRH1ryTjrpmbNehZFZQUAhoOiOZKf7p+Sf58Jp3MpmbpimSpDPZgoMMzA+npjhbTHHp/AsYyU5x3Z/dwORLpzg7dYaGxgaisRh7D/2E23d+hld3P4eNQ1A1WLduHQ0NDSxbtowrrrgCx3F8T39PTw/JZJJ0Ou0fM/X19f41keM47N27l6NHj7Js2TI2b97s18MtW7aMTZs2MTIy4ofNnvtaXV0dJ0+e5HOf+xzf/va3yWazXHzxxaxdu5Yf/vCHrFmzhoGBAbZ+/OP85MgRspUK8+NxKrbNkZERuhIJWuJxAppG1bYxbZuzxaJfYzqWzbK2o4OhbJbt/f1s6+1laTJJ2bY5PDLih6I9tHEjz42Osrq9nVgw+EbX9f+h6X8WaPYGuP4vPs1NGr/7fyorr1TyDA3109y8HMMIo6o6llWZ8+N8zTVfxdBCaOkMbiYtoWRega7iedfc9DRo+hwQrV5xNQDuqeMoFy4TuicYQgkGpb+6/xnUDe+AQkG6rHuvwh06iTt0SpYNR3wvtrr2CgiFwTJnwXuyETwwr/3RO1BKA56n+oyA49cvFQlWpNu7sNcBSwCy0eKlhVcAHczTsqyTBbUetMbZYBynANXfzPZXas1yAnXyiI8v6gHtisjDammfjXdA8SAYSyB0GWU7yZ49e3yAW+uirlWV1Hxhe/fu5ZprrmFkZITm5mZUVWVycpLW1lZc16Varfren1p6aq3WAWBkZIRYLEY0GuXHP/4x69ev9wM2zj2B7N27l1WrVpFIJNA0TRIwdd1PmSxUqzRHo5xKp9kxMMCDGzZwpliUH/K+PhbX10slV6FAQyTCTbt3+4mVO9etw7JtmqJR8AYEHK+HMR4MEvcCOh44fJgvrltHIhjEchwsT355xOvUPlMssvPgQb64bh0Rw8AIhTipKAwDHYhH+m6gi9mE8Cpw9IUXeNsf/AFf+fa3ef/73seuX/yC961fz76jR/mDlhZs+dQ5iTDQdwMLEan3diQV/NyE8Ung84jn+jxEhl5E5OMT3v/xIBAuwelXZzuTlyypsZwCuDMZAc2KItLnWpp4LCYsag3UXX+9eH5LJQFz7e1yOzYmsue77hJ29eabReq8YIGA8+PH5fkzZ2Tdzz0nt7We5mjYQilJWnh2JEuiI0F2JMtkcJIP3vRBDu0+RLQ5ilW2eMvVb+Fv/+ZvWfe2dQwfGibRkSAzlOF7m7/HsuuXsenrmzCLJnpIp5QuEU6GUTUVRReWde+WvRx99CjLrl/Ghgc3zPZaOy5m0WTixQk61nSg6ipW2WL0uVGaVy/m4BHdTznftk0Y/IkJkdvXwLNtC1n6/PMihx8bg6efFoa/vV320Re/KPPqOgwMSAJ7OCygfHpamG6QfaNpsk7DkPsnTgigvvtuAeGBgKzHsmTfplKyv3t7XR6s/xuRfN+2lkP3H2LzNzeTeT1D//Z+1t62luJ0kc5uSaEdGhgi2hzl0H2H/H1zxeeuwK6IKqB1RStG1MB1XUaPjNLZ3YljORSni4TqQ5TTZU7sO8GiKxcRiAfQAhqu7aIFRQ6bGcqQXFTPJ27ewu6nnmJialIkkbEYx5/7OcdOv86ff/ADTOfzJOoS/OM3H2H5JcvnAuLQb50v/ldfOxeMn79ABj9r1w2mJfNfsEDk1/kx8V6r2mxcv3+J4c56o2uTU/X7rBcuXsoPv/8YK1eulAUV/FCxP/vzD9CQrOfvHviS9xutSq+2FvC6rBV8aQ6I59osivRcUbBtm2JqjHB9K4qi4gLpsVcozYxJYrj3fgRkF/2AMyMcR1V1NGM2J6WYnkAPRglEEriOjVkuMH2q1omtU5gZk9djSVzbQlFUFFVAaXFmgkiyRYLIFTnfWpWiMOAVlUOHx7j88vkoiqR/3377fu68s4dFi5IUi1V+/vNxGhrCpNNlurs7sW2XM2cKlMsmQ0NZVq5sZXq6xPbt/XzpS1dz9myRHTsGuPvuPhYtqvfB+bZtvTQ2RiiVTJqbo6iqQj5fJRzWmZgoUFcXpFCoUlcXQlFErh4MKigKPnDZtGnTnJyRrq4uhoeHaW31Bo880FupVDAMg6mpKTo7O/3le3t7qaur8weER0ZGiMfjJJOz59VLLrmE3bt3c/ToUZYvX86mTZuwLIuJiQmf2VYUBcuyCAYUNDIoSljyU6a3y8C6sViYaCUgZxXHC6xTo94xWQU77THXr0vQWctDgCXPu8VzAPhisZQ5abGKRXrFuqaEvCaRAbmd+btzurbbve/KCSw3hq22MD39msdSz3Dy5DMkk4tpb1+FZZUJBhMMDw8Si7X6YDkSmcfTT9/qpYJ3MTw8SHPzckwzTzBYRyAQ4/TpZ4lGmwmF6olE5pFOn6K+fhG7d9/kkzObNz8sv1tDA56sfIr29tUoisro6BHaO3uxULEdm19NnKA50kBnQwuO66CgkCpmiAYjuLjoXlK/rqiMZc7y8JF/48/ffC2tdY0Ymk6pWqFolokHo2z85lYef/9OSmaVbx35IR9e/Ue0e4DcUDWmi2nqwwl+MXqM2574Eg/84W1c0LSAgC5eZE1RZV5FIzUz97oHoFKpUKlU/AR5VVWxLIvR0VFisRiNjY2YHhGQz+f95ROJBJlMZs76auF6LS0tlEqlOYn2qVSKVatW8fGPf5xisUgoFOKRRx7hpZdeIpVKkUgkaJs/n68/9hh7CwXuXb8eEDl4PBjEtG2eHxtjZWsrUa/7eiyXozkaxXZddFX1yY/rly3j65s28fG9e7m9u5uIYZAMhwlrGrbrEjIMAp7P/I3pP396A1z/XzD9z6q5zp1Ms8T09GteEmSPd/JRqVbzTEy8yPz5l6PrAXRHg+HTEjh26KeovVdBNIaz70dy3zCkQkRTcSfGUed3CAAHFM8/4uzfhdp9BUqyEfvJx3CPvoh+62ex9/1oltW+5r+B6+KqqrS17P7+7Gub3y0d2EdfRFn+ByIJ9+q51AvOh9AESm30V18ApYOzI8OhS8Ee9wDyp8QHHen1As1cOXFOfGR29LrtEWGhAezs3NeaHxRwbZ7wRqTvEAkZqjxffPYckL9UvN+uSdUOYzvKnB/nuro6v2Kkp6fH//GvMdO1+7WQlmw2y+DgIJs2bfIvImojqrZto2katm0zPj5Oa2urX7/lOI6/zuHhYT9N9dz6iWyhwIRl8cChQ/z9xo3YHnCOBgIENO13fsgf3LDB90q7wMlUSkZVe3tpjkaJecy047qcKRQomSZD2SxtsRjnNzaSq1YJaBqqovB6KsVEoUBPZyeSWS/T4PAwb2pqQldV/vrAAe679lrKikIAYZRN77a2jItXv3X2LCtaWpioVpnQNIaAuy+/nL+95x661q1jO+KpVoA0UI94t3WgjDDSIInjIGnitXmK3nIfQ0LQHkck5XkgloePfmiW9ezoEKD94IOSZl2rxVqyBF59Vby8UukkXt8aeL77bvESm6ZIk8NhYVc/+9lZ8P3ww/K668rrliUAdHhYAGcwKCztc88J+zo+Dn3dFoplUjxbJNoUxa7apIfTnH7lNBtu2sDTjz3NxSsv5sTJE7xt09s40n+Erq4uZo7PcPiBw2x4cANjz4/R1dOFi0s1X8UsmcSaYyJRdkHRBbikT6Tp397vM9fVXJXceI7BnYP0besj1BjCKlmEkiGf4TXqo0yW62htVXxPtHcYoSgCihsbZzunHUfe/+SkDFDEYiLx7umB3l55z7V9MTEhQNm2BSjncl7Fc06YfteFX/xidv7RUZGKl0qz+zedFql5KiXPL17s8vRNP5DaLe8ANCIGu27cxbEnjnHd49fR1dvlV411396NETWwipa/b8INYSZfnqR9dTuqJpVoeljYBcd0GH1ulERnguxwlrrOOvSwTjgZxnVcHFs6tqMtEpK168ZdbHro7YRVT95Qq8bS/geOrkxevNfNSdmpVUsYZtMSr3aNfT4XjLqu9GZXqrP+adcVEK2q8nwNcFeqswy4X1koP5WkT8zWaNUvESa5Vs1lV2aBcI1tjrXPAmNg4ZKl/PCx77FyxSVeX7ULqOy45ws8uetJntn/NJGwV+OlGnPft+t4PmsbH3yfc2ljuw6OVcUsF6Q2K9kKioZrVVGNANVCBrOcl1osRaWYmiCUaETVDBQFiqkJD5gjIDk1SSTZIgz4a4dpXHQZgXDCA95hCS3TJTjOtqvogbD/f5nFNGdP/IzWi94i3wNVZM2lQhFHDfPaazM88MBhdu5c7+/eF1+cYP78OPPmRbj11qd58MENnD1bZGgow6pV7aTTZdLpEg0NYVpaYpTLNkNDac6cKbJqVQfPPTfC6tUd6LqCbbsUiya3376f22/vJhIxyGalbutTn3qGVavaufrqJUSjBp/+9DN85SvXcOLEDMlkkPnzY1SrVTRNQ9M0f4C3t7eX+vp6X3E1MTFBV1eXD6S7u7tpaGiYo65yXRfDMPwgqWg06iu5FEWhUqmgqqoPhq6++mpKpRKHDh1iw4YNKN6gCcg5tVLJUxe1UJws6PMBU2TcWpMo2pyMnNdr92uea3tC7qtx71h0PCZ6SMLLcL1Be03mt4ZmK76MJaJs05tg5n65VlEicv1hT4A57q1DB/ssFiEsN06hMEUoVO9VYnUQjTazb9/N9PXdTX39QhzHZHj4EI899m4uuOAdPih2XQfbrmAYMaanX2Vw8IueGvECUqkTZLMjJBIdHij/NMnkEp8d7+u7i/p6Ydotq8zo6HNEo00cOnQ/vb3bpEO7cJaUrTOZn+aS+eehqzoj6UkeOfJD/vzya2mKJfnN1Otc2LyQmWLWq9n6I6byM2z9ty/y5IceoGRW+fbzT3LLFe8hbARRUDhT8Gq4ctM8P/xr1p2/Cl3VSZeyRIwwQUNAdKFa5oGffofb3/Y+fjVxgmQ4Tqac5/ymBeQrRVoiSUaGR4hEIhSLRZLJJIlEwq9wK5VK0nnuXRf94Ac/4J3vfCddXV2YpskzzzzDlVdeSSAQQFEU9u7dS1tbG4sXLyaRSPiZNbVjsXY8uq5LoVBgZmaGdevW8Q//8A+k02lWrFjBmjVr+Nd//VdWr17NU089xfXXX0/3Jz/JH7/73fR0drJzcJAvXX01qqKQqVRIBAK4wIsTE6xub6di2xSqVebH5fr0ZDrN9v5+7uzpoTUaZTyf91+7ff9+7ujuZkkyieW6BDSNsPFbv4W/NVUti6ptE9A0Am+w3P8/m96o4vq/YPr/6teu9V8bRpjm5uVMTx9naGgAy6oQCMRIJDrYu3cLqdTruIqL2rEA58gASudCuTo1DC893ADLxP7xLkBBSSSw9/4AMmmwLOx9P4JcBqW900/2VvskjAwjgNr91tmwMtv2l3Udx59P7bsKV1VRN7wDbcudqBv/CDc97ddzEQ0JsD43hCzSLfdrjLRf0fWF2RNY+RdgTwHKOSnjns+6NimhuQnkalTY7Ol7Ziu/nKyMToOcRGful1u9A8xTMPkxXO+isBaY0d/fj23b6LrO5s2baWxsBPBTUzOZDLt37yaVSqFpGrquEwwGWb9+Paqq/o7/upZ26bquX0FSLpdJpVIMDw9jWRaqqhKNRsnlcjQ2NjJ//nwKhQK2bROKRtne38/WVas4lUpxaHiYxkiEWCCAoaqcLRbnpHiHNA3Lcch5/uuF9fU8vHkzS5JJwrqO7Ti8Nj3NzU89xbxIhK76eq5YsICljY2YjsNLk5OUPVng4oYG1nR0kDdNtu7Zw/GZGYqmycrWVu76yU8AuN/zXtfiOE4AHwV+g8i3TfkUWQM0zJvHiquu4sf79tECmKdO8fqpUyy46CK2IzLuLJIG/ibvtuit8zCQ8+7fjLDWIeCIt40gwlh/GngHwqAXEVCuBmY9v6tWzfp1MxkB1k88ISCv5q1+4gmZx7Lg9tuln/rBB0X+ffCggGPXFTa1rm422fquu2QdNdB9003yeHhYGNlasngoJCBzwQLxHCuOjWM6mCWToYNDkrGztJEFFy7gb7b8DR+57SP0XN3Dez/yXr70hS/R3tbu+4Q3PrQRPaDTsbYDq2JRmBSPdKw5RupUiqGBIVFW5Krs3bqXSFOEa756DYmuBK7jYkQN4u1x1t+/Hj2qE4wFCUQD7Lt5H9GmKIWpAtGkwZIlLqGQIJ3adcDzzwv+SSbFu/7aa8LkVyoCchMJAdaaJgMTV18t+6W5WWThlYrsv1OnZqu9YjH5LD77WZk3HpfPLJWS+QsF+YyiUQHkP/uZ3Nd1+XwiEQHnNS/1vr/cR2GyIJkJ23q5/t+up+2yNvLjeVzHpWOtJK3HWmJEmiJc8bkriDRFMMsmHWs6pK/6xAz7bt6HVbKwShal6RItK1owIgbtl7ejR3QC8QC2aaNHdIyIIcBald+WDQ9uIJAI4gYD4nMOBgRYl6sCnGte7Konx62LQVM9HB+WeQxd3tTwhLDPQ+PyrXJdAeLlqmfg18XLXavkqiWDZ/OyzfMWCLD+9QlvHczKw18bktGwWAc0XCRybReRdJ/rh1ZUWUZRoJT2vNAeeqz1XsMsAM+c4r57d/JvP/wBe5/8AZGIWG/IeQPrdnU2OE3R8NG0UxWgXwv/rGapVWdZlSKhRJOMC+CiGkHxPpcLhBJN4osGoo0SVoaiUJiZ8ILQHIqpMVzHJtrQBoqKpgdoubAPRVUppieI1Lei6SEJQFNUzEoBxRulKabGMIsZVNWg5cJeFFVDUTVvG2Oouu5VyQ3yne+8zC237KNatbn99v00NIR9b/Ujj1xLJGIQDuusWNHCzEyJpqYIF17YRHNzjBMn0mzZsgfXhUsuacEwFFavbqdUMhkdFV/pzTfv4zvfeZkdOwaYNy/C1FQBTVN56KGNvP/9K6irC6Lr8th1oaOjjqamqG+DqoGOgYEBjh07Rjab9cFyzS9dCyHr7u4m6HXxqqrqn58mJiSYT9d1TNNk165dpFIpv/VCURQmJyf9Oq5AIOADa9UbjVNVlf3795PJZKiLh1HsMTj7GVGbFQ95jLXu5aZ8VrzYOFA9IbYwtwRnvyjP4aXY48wy0ZNbRBqOIlJztyRMdKRXBvSxhaGeuX+23ktvkWsKvcMLSzsC1jDordhuGNuuEg4nPXDbTDY7Qrmc5ujRR8lkhkinT7F791+QSHRw3XWP09PzKVxXzpKmWeTppz9JOn2CQmGSzs4eAgFh4A0jSldXD4YR4fTpZ8lmR3Fdh/r6RWza9DVisTZSqdO4roOuh+jomA0yGxjYATiEos1M5KdpjNbz+f3fomJVfe/0Pz3/JPlKkfpwnEKlyFRe0sKn8jNc3LqETRf1Mi9ST2OkjjuufD9BzaBsVbFdGTEtVEuM586y4cJuQCFVylIXTuDgsuPH/8DpmQmCeoBt6z6Ii8vFrUv47gtPcXHrUnRVYyx7BhuXuro6isUi7e3txGIyGJhOp9m9ezemafrMc3t7O1u3bvXrtGrtKzWPvuu6rFmzhuHhYb/nOp/Pz2lfSaVSjI6O+nVvnZ2dVCoVwuEwmzdvZsGCBXz3u9/lr/7qr1i5ciX79+/nwosu4rqLL+bqJUt44PBhejo7iQYCOK7LlwYHCRsGsUCAtR0d3L5/P2dLJU6kUliOw8l0muFMhoc2bkQBiqbJgro6XhgfZzyXY1V7O2HD4LgXivbq9DQlj5H/fVPVsvjN9DQfevJJfjM9/Uay+H/i9AZz/X/JVJOPHzy4k40bv0yhMMnMzAl/ZLKv7y6y2VG++91ruOGGXSzpepvI1c6R6bnpaZGJdyyQEdJHHkT76CdRHAc3PYPzwvOo6zai2DYuwoi7nvZSUVRJHdcNqFYEdgaDYFm4KCi4uLaNOzmO2t4pskEQObknIZeAnTLU1aMENLCPo0xvFwCsRLxwktc95voyOWFO7/TAcwjcnEi8y7+ESJ88R0WAtRLwfHymF3ijS0UHqoxKKwEBzdM7oPFOj7lWJJl84sZZlrv1G1LplXuUyqI8lYpNsVhkcHCQ9evX+95o0zR9L3UtjKUmAbcsC8uyOHjwoL9MzUNWYwRs28ayrDkjrbUR/ZGREZqamvwLDNM0iUQivjwOpG+7ua2NEhA2DBTgdCbje3kWJ5M+M2x7aZS1XwLFe65q2+iq6odqaIqC5bqoisIpj9W+q6+PRfX1vrRpOJPxfdnPj41xSUsLIV3HtG3ChiFclKLwejpNIBxmfiLBSSTp+zPM+qMfAn4GrPT+pxjw7MmTfOBDH6Lu7FlCqsrtn/kM73zXuziB1GZ1I4D4dkTuvUg+fQLIZdMh4IPAs0Cz997vQDzXNZa7dupxvHUVq9BcEVCcTouv+t574aGHBOymUvLayIhUTfm5Opq8fviw+Im3bhVWW1WFWW1ulsPddb3sKF3Wo2nC5k5PS3AayDYBXnxRmPNQSKTihgGKY6HaFoWzBSKNEWzTxrVdqsUqRtirx4nOjmznp/KE6kKUU2WsikX9QmGgK5kKwboggVgAx3YozhTRAzpG2EALaFSyFaZ+NUXHmg5cx8Uqy56afGmSjrUd4MLoc6PMf/N8VE3FNm1UQ8Wu2GgBDVsPUq0qeO6TOZL4bdsE5FqWSMBrvnJdl/s15ZvjyP7NZuGv/koGMWpAuTbwkM/LstGoLHfmjDyfy4kcvba+iYlZxjyfl7C0O+6AxYsclEppjgR+88ObUXQF15KarGq+iuu4qLpKYapAfH6cPR/bw9FHj3LDrhtItCcYvG+Q9feuRw/rOKaDHtZxbfmG1ZY1SyZ6UEfRJPwsfcpTBtwtygDXFrl9MKITsCpe75sGgf+AfbAdeVNT0zAvKUDcdgQo15jrUGA2gMy0vXm827NpCAUFpGfyArh1T+L9/7L35uFxlGe696+qeu9Wa7NkWS3JxmYJMXsSrxImgHFsDFkmaJJDJpNMggMYEpZggu0kMMFyMHsCYZ3JJCerHUIGZBljTAiS5QUDXjAg2/IiqdWttbur9+6qer8/3lLLTmbOOdc5Z77zzXdS19VXddW7VHV11VvP/T7Pc9+5/Ol9gOxXUyc1tIVpj6/2tn5C5kOr7tPLhA1kVLftdVaZMWsWf/jZj7io5WqI9/LI40/wy399nde2v0FleVCOTIpqe65tZnJhSj1st51GYxYg2X+6B12AJUxMo4iiObFsOUtF1VBVFaGoIASWUcAyixJUC4h88AZTZn4Cl7/C/mkyrETRHAjLRNHkc6VId7YcSwsZ6aWeeKda0pNuFDKomlNqXisKZiGH5nJjFvIomgPV4SKbFQwNp6mo8LJ79wCNjUFmzqxECCgWTfJ5k0DARSpVKHmahYDR0QyVlR7cbgeFgnlaXvVzzy0vAQmAnTsHWLCgkePH46xb18natS3MnCnztR0OBV0vEIkkiURSLFjQWJLpAvB4FLJZHbfbXeIYicfj6LpOMBg8LbS2UCgwPDxMIBA4Lax2Ivda0+xrb7/Tkskkx44dK6VXyTFUpkaMjY2Vws5PDQM/tY5hGPg8BkrpXX091K6X3CuOkGQCT2+VedO1D8o3gpWS3mpjSPIFFKN/mSsdXi7f+1PuhfQ28F1qR7fdDY6Z9v+s2alj98soOHPE9mw3yrV3jrzXjShFy8d4MkNn5zrmz/82Hk8Ffr+c7BkY2Elj43z6+nawadPnOffcv+Hqq3+CYeRRVQfp9DAuV4APP/wDfX1vsnz5sxQKKQqFJG53OQ6Hl3R6CL9/qp0OmGNw8C3q6i5kIjqkUEhTKCTZufNhli59Al3vJ5HoIxSaK6W9Chkszcv67T9l54n9vPS1xwB4L9rLtLIp1JfXkDfyODUZ0pwp5BEIvE43hmUynBrnF3s7uPvyr9h2hIWmStk8U1hoiko4PkI0NUptoJJfvr2Fb1/2dwgFTMvEsgkdPU4XqqKSLmTleyufocpXzlBynKmBSlSTEtfNn+dGT0i0maaJ0+k8rWz58uWkUin8fn/Jfpq4pyzLOi0FYdmyZaXn+9QIjblz5/LjH/+YJUuWUCwWcTgcZDIZ3G43pmkyffp0Nv/xj5x55pmYQjCYTLKhu5s1tt1l2jaUEIJkocDa11/noauuQlNVdvb3cywW44qZM6kLBOhPJOhLJJgTkjwPmqL8RcThs8uXU24/M3/upU7l83zt5ZdLdZ+/5hrK3Kc4mv66/E8vfw0L/79kmSA+mz79k3zs4i+hKJI4Q08OUciPoyeHqQ8tYMuWW7lm+U/QhEtqWusJlGkhFFXDCvdNhom3XCGZvOPjWF2vSxbxyikQGy1tCz2BEiwHfwARjaA0NIEeh0CZDClMJ0t1Sn3YodFW9xsyJ1uPY/36n1C/+DWU8gqZf918ObgdKAELxYrLnGlMyB0Ez0V27pQGFEBxgjCgtwkC18qXoFZj61yf4um3CghzTM5sj21AVK9GKYH0EQnSax+UYBpNHi/TDZ4LJPnZ2Dr5QnWeVcrBzlf/lL7+MLW1tWiaVgpfW7BgAYFAoBTCHYvF6O7uprm5uQSCI5EIsViMxsZGUqlUyTiZCH3r7OxkwYIFgJydn+i3rKwMl8tVIpJZsmQJmUyGzs5Ompub8fv9bN26lfnz5+P0eIgaBl6Hg0qPh5VbtpQG2XsXLaJgmvicTrKGwbrOTlYtWMDMykr6TyHUGNB1QsEgYV2nIRhkQNeZEwpxyyl9PbF0Kbds2cLq5mZ8TmdJUuI7Cxcyo6KCY7EYG7q7S+UT57Jwxgz+/mMfY4WisMq+6uuR+dE+JOAetfc9iWT3PhV838JkzvREbvUaZG51F5KkrA7JHD7R7zQkG3gb0lNdg8yx3mCXDwAhJFgPAdNTcMetEhhrtrqPaUqP8vr10uPs9UqA9sMfynzpGTOkJ3Uil/qMM+DYMeltnth/zz0SAGYyEphPhJuvXi3rfeMb0uM9MiJzhVetmgxpTqcn2z74IPzT0wXix2J0rutkwaoFBOoCuMvdxI7G6FrfVdoHoKgKkXciBENBnH4ngakBxo6M0b2hmwWrFhBsCJKKpqg8s1K2b5PtK2dVovfpdK7rpPmeZvSwTjAUJNgUJH48PknI1VRO7FhMhoqvacFX4yP8zjCFxpmsW6dwzz0S5I6Pnx4S//TT2Lmd8hq1tU1eS5AM4hMh+NOmSc/0xHriOldXy2uSyUy2nzVL9jeR7z1xrWfMkF7viT537JCfZ58VGGPj+GpcCMVA05wIy0IoopQeLAGSTCgWlomiqFhFSI8mKaupYPONrxCaE+LcvzmX1FCK9GiSxpZ65JSNipkRWAUFoRgoTguXz4MQJn1vDrLpsy/Q+vtW6j5Wg+IUOH02kBYCzVQoev2YioJpPy+qaWIpKqoChqIgzVhQLUumRtvh4xbgsQQoUBCgFYuYTicuBVzpLISHyZ7VhKHKfGRnvoDpcsqR0K5vuV2l4zotC1c2T6FYJFceRFPAKQRqvoBpCBAKqlPFKsoZEdWhoGCdXmYIFE3h5ltu5pWtrxAdilJdVU1ZWYA3tm2hcdY5zDzjDAKBMlDA7XLRuf1PaE45qWuamnSIK2AaCqoGlinQHEAxjYkfNAUME82tISiiak7JFG6ZGPkMo8feoubMubh85eRTMbI5HWd5DS7VydHXn6fpkmvwltdSzKVPKxt5/0/SY60op5U5VCeGMHApDqxsyu5/DsVsGmdFDUVhoioqlrBQi0U0YeH0lFEw8hQVhYwuuOvO17nrrgXMnFmJrueJRlNs2NDNmjUtfOScIGYhR2f3EFPrKvD5nGSzRSrLVUJ1boTiQFgGllDt+Q7BWMxk/4FhmudNxeFyYRQLDI0U8AX8eDwO8tks+UyGqilluF1gGCZxXXDHt//It7+9gHBYp64uwFlnlVMs5vB63GiahtPhwBKCQtGgo6OjBGAmSMimVMswcMs0iUSHmFpXx7Zt27h62VIc9oRNIpkkl8uX3n0OTcMoFnA4nRSKRYL2e3RiEfakUCqdJmADq1Pz+hUxDkN3Q+2jIFRpGyiqBNBawI5SU0CxwMrb/CoWWKO2fJftuQZ7Qj5lP1BuabtY4zIPW6sAJQeFAfDYHDCaPfFTHLKj6/KynTEivdkyy4YxPY4lPPh8FZimwLJyKEoRh8ODro/i8/kZGXmHurqLME0V03SgaQZvvPEdFi1aj6oGUVUTIRwoikEyOUZZWTWWpZLPj+B216KqGoaRwen0YJoKkMWyVDweF1u23MAHH7zA5z//MqFQix1F0M3UqRdgmhreQICCKUP/DdPgg6FjnD/tLJsQVcWwTIqWgdchvbG26wSA/YOHqfKWMyUgJ1JURcXn8mBYJgcGD1MbqMbjdJLMZYhldS6oPxtVUTgYOcLsujNRFYVcsYAlLDxOtw3gcxwZ7eOjU2ciELg0J0a+yMjQMGVlZaRSKaaGQhi2k6Bgk8rGdZ1pjY0IO0e/rr4eh6ry2tatXLlkCXYCibTT7LEzHo+XiPRUlwvDVkUxDQPF5rG58Nxz+e1vf8vs2bNJJpMcPXaMCy6+GBX43po17Nq1i9f+9CccponLMDBs4O5WVbAsiopC0rLwu1xyXHU6OazrDCUSXFZfjyoEGdMkryhoqorbNBktFqlxuRgqFCgvK+NkIlEiQjunuhqPw1HyUq/r7GRNSwsfsSMnJ/atbWnhnClT/pqn/b9p+WtY+P8li6a5aGlZy8cuvh7F6EWJrkAp9hIsm0rNlI8w84xL8bg0PnPtUziskyiiiNX1Ooo/APm8ZPsONWHt/FNJnkuBSbmurtdRhHX6ts8vw8JzORSvF9IprM7tEI9BPlfq/7Q2FVVY3W+UpLtKEmChJqmPXerbiTJ8Gxz/KAzfJhnBHdXyOxYMfQOOToXojRJgB66F6rsRaiWW4j8dWAOWyKNYiVIouTLWBo4pMvdqbB0kfyn7NuxQr+gKCC+T7ODOMyRoz3SBEZEz2lV3oIkhQqH6Uljan+tR53K5v9Cintg/QYLW3d2N3+8vtS0UCiUt0X9L5/rP+8zn86dpj05IUuzcubMUFl7h8bA7HC7JN9y9cCHbjh2jrauLco+npJm4obsbS4jSdltXF1N8Ptbb64ntPeEwq23NxdXNzewJh0v1a/z+klbjD3fswBKCDd3dpfJy+1zuaW5mT18fZrHIGiEIIAHtHUiAW8kk2N6IDOFejQTWa5Da1BuR8loFKIWGr0OC6eX2d+cpfbQhQ8DbmNS79jMp+dUGTLH3T6wLLvjm7bBzp7StTpyQgHf9+kn96ZoaCaw3bpT7DWNSm3ndOtluYAA75HOyXnm5BIE1NafLQxnGZOj5qbrZmibrrl8vZbna2iS7eCQs6FzXyaGNh+je0E1ezyNMQdf6rtP25fU8uXgO3xQfXeu78Nf4KaQLdG/oLtUzcgZdbV0IQ9DVNtlemJPH6FrfVeoDi1L7rrYuhClK253rOsnFc7hrgqxbp5R+dzZ7ekj86tWShExR5MTFxLWYuJamOXm9J/TDp0+XHuxTr7OuT16Xifantm1rk+HfbW3yvzi1z8WLJUDXNItAyINBCosiBSNJwUySzkSwtAyKCoViknxeZ2ysh/bNK4jFj4HDRAlmwWGw7LkruPBrs3FVC6pnl9PQUkvRSNGxZSXjsSOoPgtnpcBVoVIgRixxlPaOGyi/uMAdo7fS9MkQjoBAOHL2cY5wPLyLtM+PoSgcUxRWKgq6opDXNDKaylFF4QZFoUdRKCoKcVUl7tBI2PtuUBTGVIUPFYU/aSqH3S6+pql8qChknQ7SZ00nrqoctusecbuI2Ntf01SOuF2YikKnonBYUcioKmm/l3xFEEuV5yLyJqapYOQthIDxozFevqGdscNj5OJ5TFNBWAqWJRg7PM7mmzZjFkyeeOwJPnjrA/p29/HUVU/xbtc+plQ3kU/n6P7DTr577nd59b++Suf2Tvp2hMnGixhFlf7ufnKJIrYjmvGjcV7+ejtjRxIULR+FdJGCXqCvO0whZWIVHWT1uAS3ZpFcXqfs7LmYbg9pI4fw+gmT4YbN3+BwvJfpi/4eR0UdGUyE14ezopa0kSVW0Kn8aAt5FbJYCG+AsJKls38HR2JHubljJbGCTtHjoeqjl5LXNBwVNRyJH+OG9hUcjfWyo7+bJEUKLjc5YZIws0TTUcqCgh892kx1hYrflWfqFIWpNQ7+8Xuf4CNn+XCqBl63wuLL6qmuVAlN8zD7HD8NwQjqaBdq+iiOvStwiRRq+jjqnhuY4urnikX1eBhFyxzBs+8bNJZHKGTT+N0m1c4+QgO34ykeRzV0XPtuYUowx48fbWbWDC9Lr5zK2bP8+FwGleVleD1u3KqFqh9DE0WcDo1PX7uc2771TT597TW4XE4qK8olMHA68LpUzpjRhMfllMBa01CMHEqil3Kfi9qaKXzm09dQ5vfhdQqC1jBep0J5wIdaTKIIU36sAiomqqpQVhZAtROzFCFQ7O9CqZTs4CYy5z+8ExL9kNeAIOSzMl3AArJpqcMuBJg+yKegkIb4cdku3guvfQv0YbAcIDRI5WBkHNQ6UJrA0wLxE7BtBeRSEO+D178nj5lNQ7xfbheyoJ+kGH4Ht2cabncFhiG47bat9PXl0bRycjmNd9816OsThEKXI0QlmYyHvXtjKEo5n/zkk+RyPlaufIVjx9Lk8xb5vMq77xY4fjzNyEiOaNTLihUdHDsWw+n0kctZdHX1cfJknu7uIY4e1Vmy5J+45ZYYoVALhw+PsWJFB/n8eWhaOQI3/fEobdv/mUhilGQ+zXnTzkIAo+l4yZNsmiapfJaRVIxMMcfByBEyhRwX1J/N9KppeJ1ufC4P2WKW/vgQ9297nlpb73qKv4LpVdOYXTeLeFanaBpcMO1sAMKJETb88WcoikI0Oco/vvoc8WySs6Y08V60l5FUnH989TmimXFqptaQSCapa2zkWCLBjR0dHEsk8AQCeIJBpjY0kDUMNJeL8ro6btm6lWOJBFcuXUpOCLr6+zmeSGABecvCBNxlZXzqmmtQXS5643FWtLfTMzZGxrK4+eabqW9sJBwOc+2nP81FF11EWXU1jz/9NE1nn815553H0PAwv33xRVymifvoUdTOTlzJJB7LQjl2DGXFClxHjlCVzeLWdZzDw7gKBWaXlXHFtGk4jh1DveEGAseOUeVwUH7iBN4bb6QhEsFTKNCkqqSTSc6srOTZ5ctLwBqgYJp/oX/tcjj4SHU1z19zzV+B9f/Ly1+z2/+zL1YBKOBQXdRMORNFpCdzlQFl6pNgDKJoNTJnqO4nKNoUTKHJvOdEHCVYjhIIInJZ1JYrpH+l5QoZwtt8udxuvgKhqJPbdlt14SfB40XExlDKK0veaCVYXvJuT7a5UuZZN9vHWPhJhKpJ0jPNcfqxM0WoXi1fmNVrQa1AKRyTjJ1mXHqeQYZviSKi7mnASb+eRS/onF3tPI28wRQOFLUcpXoVAKJ6DUqxHzxNsg+QnmlVzrgq9j5RfTeKMMhlY3zhvzzA+72P4/Vq1FboPPXU80w/s4KWlhYSiQQA9913H/feey9LliyR119RSh7oCQ1rkHlmgUCA5uZmdF0v6Ya63W5aWloAqaGtaVppe0LnWghR2ndq/VM1sltaWsA0Wd3cTDyXozEYpF/Xefrqq8kZBnvCYda0tJDI5Vhjt7974UI0RSltr25pYSCRKHmw17S00J9IUF9WxsyKCp5cupSY3fdE3ramKKy2f8tae3uV/ftX28drCAbxOZ08umQJu0+eZP6MGWgOBzlFoQ0Joh32Z41NmtSIZBC/F2iw97UiPdcasNret1YIKuyy1cgw73vse2CNEOQVpVR3NdLbttr2jKwWggG7fMDuy3IpRD8CC2YIHKokKhNCAjFQWL1aUCgorFkj7G1wOASrVsk+16wRUo+6EXbtkuUAq1cLEgml5E09db/DodDaKgHoRL9r1kAgIFBVecx4fLIvb1CjZY19j9y9EE+lp5QnXNpXLu87FKm93LKmpURoNVGvZU0LI++P0LKmBdWhntanoiml7ZbVLSQGErSsaUFxKCxYJf/flrV/ue2p8DB2bJg1q6eUrs/778P8+XDWWYLHHlNsQmhBKqWQzcprcOq1BOnxBhm+XVEBHo+gvFxhlXycWbtW5mnH46deSzkhIf8r2e/AgFLSCZ+ot3at9ILnchaGMYbT6SWZHMTl8uPxVJFMDpakbKqrzyKfl896d/cGDh2S4+zSpU/g81UxNn6E7u4NNDevLpELJZOD+P1TmTfvdsrKpmEYWbZtu4t5826nsnImmzev4dChjaiqk6uuegRhqWiaF4eiYBhZHL5q8nUXsUJRS9EVc5ARGI8qCg8CNYrCQmREx+OAy/Zux5icPLpPUVgH3Ak8aNd3Kwqm24VQFLzAMJLUD0XhKWCtorDR3n4MmU4RQIYnTnAiZAF/waAQz5EeTpckyRIDCQ5tPITqVFn6xFJJjqcqYEHlGZV86vFPYWQNUCCv5+ne0E3jwkaSg5Ikb9mTy0oTOgDLfrKMhnnSUWDkDZqamyikCvR391P/ifrT6i5/ZrmUMfM6qf94PQO7Bwg2BQlMD5C2CmhON1ZZJbsHdtMUbMLj9FDjryGcHOTSpktxaS5MBY7HjhJOhrmo7iIGk4Ns6N7APc33EHAF6I31EtbDzA3NZV3nOu6cfydtXW0sbFxYqru6ZTUzymdQFCZ1/joubbqUx3c9zsNXPYymamSKGbwOL8PpYYaSA5yl5ggUBqicOlfmhJtpQlO9KHVeBAZKMQv7VqGcczuhKfWAjpJLwKE2OPdOlENt0LcRzr8PDq2Dvo3yMT//XnDXoOxfA30bUYH6Oc8CRZRT633sMbhwHSoWlb2rERe0oeAi4CqgvHMXYs4/oaCWNMQVbw0ODZTUAMFAA4qZRjj9YJkoBd3On8+jaALNzKNqbhTLLOXjK4BSMQtVFCXD+yn7KWuUufoo0s5JhW0pNw1lIkcEIQGy5gZFQdFcCFOCbTQX1C+wZeAGwcxKL3VyEN7aAHPXgKfKTlEAirbO8Vsb4GN3wp426JHPN5c/MSknVzdPMuNH90BZk9zXsxEW3Cfb1i+U5+ObCttvssv+EZIDFKdeiVm0ME05ln/zm3MYGNBRFIV16zq588759PfrNDVVMDKSxudzcv75taRSBZLJAmVlLubPb6CtrYtnnlnOzp39zJkTQtdzTJnip6urjzvvnI/P5+T48Tj33z/Z55QpPvr6ElgWJfm1SCTFRvuZuffeRUwNeRlJjHP7ousJuLxE9DEOxo9wds10av2VWEhvtNcpr7fP5cGyLD46dRbhxDD/8sbL7Hj4BaLRCC6Hi6qKCu75wfe4KHQ23336Ad7//Q4KhTxl/gD3P/JDzjjnLJ7o2sjX532GurIpJe3smxZ8nud3ye8ANy34PFXeICMpeW5+lw9QqW9qQgAP2hP4QEmqqiEYLBGyNpWXM7+hgX5dRygKbZ2d3Dl/PgN2RF7BNMkiCcOeWLoUw3YyvNTTw5cvuIAZFRU8/KMfMf/GG5nf0EAklWJuKIQlBN7PfY7kWWfxzi234He5SOTzKMUiyrp1cOedk7IUE7O+gHLvvTKESwiUbFYq9SiKDEWbqPPss6XZYwXgiSdQVq6kfs0arPJyNNuWnFhcmlay3U7Vv3Y5HH8lMvs/sPw1LPw/82IVZMjyBPOlFpQkG8Im56pebUtHDMowJv134FsIY+vJT/k5RqGA1+mwJbiwWb0VmWNth7CgqlL/WlFBWFhCoAqB4nDIfGsUFE1FGAZoGgoKRqGAIQQet8uOnlSwTANLUdEUKUGCZWKYFg6nE1VYFEwL0zBwaCoOW3MbBwiK5CwHY5k0oTIXCg4EBoal4VRNwEm6mCFnOnhrcIS6QIDBZJJLp08/Lbcklc/jUE1cqgVYWMKBQhFTqDhUSW4zGcihMkFuUjBVnJogn8uz/fU/snjJElyawhNPPs0LL7xE++ubOSE8BMbjXHf11dTU1nLZJz/JN7/5TTkgKgrYZBmKomAoSmlGyxBiIgAdS1UZtSymqCqqZaEJgaJOBpYIm+AlY4cwuSb6nMgbssuFfbwJJnFTUSjYklhOTUMIQdE0cTscOFS1lFdt2eFPE/l5E7IQhh3GD8j6loVDUbCElOIyhcCjaRRtyS2nqmIhGcUdqkrRNNHs/gFyuRxf+/KX+fCDD/B6vUypqeGRDY8yo3Emwutgw0Pr+d2vf43b7aayspotW7ch3A5U246yAIclEJqCgQTWCFBMi4JhoZoWml+GrzoEmAqoAkwEat5EH8tQXhfA1FQcAqycgWFZqB4nasEkGctSMTVAfChFxdQApioB+q4TJ6j3+ZheXo6qKFhFDcNQcbvAMhUKoohDONA0BU2T+wxLoKgmitNEtRykMhYBjwPLBKGaZAuCoMeJYcj3b74gEKqB2+HENEDVBIYwUSwNTVPImgWcOHA51FKbibWGCaaBoirkklG85VMRliINTW0yrNIsZlA1j52yaqK5nQgLhCnzgC3DQnOppMcjeIN19j2moKjy/jULBpYooCoeVE1FKPJPEZbAsvJoTq8MfxRCpiOqCoVsAcXlpmhouFzy3IUo4HK5KBYlAFYUi0LBQFWdqKqFZWk4HHK/YQgURcOyJvOvVVVgWcppOesTTOMT+e6aJoG5okyylE9oaReLp+d0Z7Npjh79FYODb7Js2ZMUixmEsHC5AvT1dZVYe5cufQLTlK7SVCpKd/cGWlq+S0XFDBnafUrdefPuYNeuR7jyyg0MD79HMNhAd/eDXHnlAzgcHkyzgMsVIBY7TlfXOpYseYx0egRd77f1Z90IYZF3+tilOfmEPTI5kIR7dyBB9kIkgF4FzAL67O0HkekVabvswVNeHV6kbN0DyEmoKXZ/E+C9idOl7O5GAuv99vGcyOfCssseTeVRCiYdN3VMsqovbKJvRx/TLpnGp7/waUZGR1BUhYA/wAP3PcBF51/Ep7/4aYZHh1GRhEGPPvIo53/kfIycgepUSUfTMg99dQvB6UH6d0gJue4Hu7nygStx+iZlznzVvpIOu7/Oj+aUN0tmLIPD48BR7UA3dBL5BOXucvZF91Htq6bSU0m6mGZ913rWtKyhMdjIrVtuZdXCVTQFmyhaRcaz4xyLHeP82vPxOr24NBddfV1M8U2hwlNBpphhMDnIRXUX4dJc3NxxMxsPbaR1ditPX/00RbOIcyJHG4WskWUwOcijux7lwcUP4nV48akWrvwYuCpgbA/4GsE9BTQfZPokWD53FYzukOUXPyy1ws0c5Mcg0w++Bgm0L3kU8sNwaD3MXiv5RfwzJ/v56N3gmQaaF9LH4f0fwnlrwTUF3rlNHmdi+WDD5HFnrUCC3aIEu+UzJancRI57cLrMqS8kJTCekGbTT06uXWXgCp4Clp2TufgT/QYa5G8rpmXdxJ8x0YMdpl2U9bCJ8sw8JI5L0rv6eZRixl+7ES7dAEYWur8vAe9n2+Vx9j4Il/94Un89cWzyHPa0wce/DZlhmDZPgmYjB9G3oOZ8ec5OH2xfCZc+KI+VjpwC3qvhT3fAFU9Dso+U7yMcPRpj/fou7rmnmTPPrCSXM1i5ckspT/6JJ5ayZ0+YUChIfb1M5+nv19mwoZtVqxbQ0BAkHE5y9tlVHD06TjicpLm5CVVV6O2Vfa9e3cLAQILly399Wp9z5zawcuVkTv6TTy5l5cot3H33Qnbu7Odv/8u5jBfHef4UFvCza5oIuHwMJIZL7ODTglO4f9vzJQZxv8vLvVufYWvPThaFLuSGy64jnk1y4M093HffP/KvW9q5esEVfOeZNkY9eVpcZ3H3Hd9m+Q+/wdaenSw5Zz53X/73jKbj/NPuf+XOy75ELJvkn3f/K1+f91kqvWVkizkKRYPKQAXhpJQQvdtOZRNIJZKm8nIGdJ3za2vRVBXTsjg0MsK8hoaSMuDKjg5+efBgKaUtnstR4fHg0jR6x8eZWVXFaDqNz+nE7XDg1jRSxSIe+aJiNJ3G43Dg0jSc9gvp1i1beOrqq9HzeVKFAmd5vSjZrLRjnU7J2llTI/PL1qyRpCtlZVJrs61NhnHV10uCkImXlG3LMTIic8JME37zGxlG99RTsv2fLQXDIG/bd3/hpS4U5MflmpTs+OvyP738NSz8/9dLcZIF0xy0LctKKIah6g4Zvizykj3TiELZ5yToTr0kDZJIhGS+QFFAXghSxSLpfIGCojI8HuP37ZvJmxYvtG/m/h/+kBfbNxNPpRlNpjBQiKUz7D1wgN6TfYwmU/zr5g7ylkUsk6Hj1VcZiScoqirpYpHxdIZ3Dx7k2EAYAzBUDVNVMYA8CrFkko5t28gLGInFebFjCylT5eBohq++1EEkXWBL7xB6UeOLL25j33CCnliRL7zYQdkDT7Jyy2tUeb38cMcO5oZCuO0clHQ+j56XBGsfjul88cVXODiSIWtqJA035Rt+xJbeCAdHs3zhxVc4MJIiY2gki04SBScZU+NYvEBvyuScBZezb1jnlWNRzrloLsdP9nNMLeMHDhe33Hknt3/3uwRqasg6HMRcLt5zufiy08n7bjcDHg8FtxvD5WLc5eJ1l4uC203M7WbA7ebrTicz7bXhdvOhx8OX7T6ecbk44fHwZbebKpeLN51OPnS7+aPHw7jLxXGXi5jHw+tuNwdcLnSPh5MuF3mHg6xp0t3fz/F4nB19fQylUkTT6ZIsRDSVIl0oMJZOE8/lMG3A3NXXx/sjI3T19VEwTfKmSc4wyBaLEowqCsdiMVZ2dNAbizGayZAqFIjn8xweG2NFezu9sRimEGSLRVZ2dFDxwAOs7Ojgur/7O37zxhtceO+9XLPsGr71zVvYfusr/F3V3/DOazt5Z8dedm/fyZqr7yb6xglcyTzWYJJXv/wimQNDDGw9SvLAEG49j5bI4UjmIZ7DkzPwWOBMFjB6x2EsQ7TjCOlDw3jSRcR4FleygJYqkDs0zODWo7hMC0/RYnhbL8kPRyhTFRwFg6qACyWZpxBPc+Pvf8+y//pfaevqkpMPgOayGDHG+el7eyloWQazMW59/V9Jk0Y306RIUdAypESW7v5+ChRw+gxMLQ/uAgUlz+979/GNrS+CO8/R1DA3bf89BTXP0eQQK7a9wPH0CA6XRV92mK+/8gInUqOMGXGKag7ceXQrhebO4dTSCHOc4aOvYRpxvBVVqJpFPj2I5jZwuMHhgXx6EJQcmluQT0cQSpLoh9uwLB3NbRDteRWhJFEcgkBNLSgZVKchnUKqAUoRh0fB5XOjaLIfzaXg8CqMHPsjvd3/xNDhbWhui2IugmXqqE4FzasxGDlBJhNly5YXyGaHcLstVDWPoiR59dUXSSSGOHx4H9u2/Z5EIophjKMoWQYGeslkRhEiydDQETQth6bliMejvPLKC2Qyw3g8BSBDJHKETGYIh6PA9u0vcujQW+RyYwiRJp0epKPjBR577B8ZGDiCqqZIJCK8+uoLWFYC0zzGwMB2Fi68GyEsnE4fmuamr6+LYLCR6677HS0ta4hE3kFRVNzuINXVZ7F8+bNUVJxBLNZLe/uKEsNvS8tqMplRWlrW4PFU0NAwl66uNkKhOQDoej9bt95ma9FO5+qrn8bp9KLr/fj9NQwM7CYWO8Yrr9yGU1FYIAQOpJc4iSTpexC4iknP9Aak8bgOCboHgRVI3oKnkB7nESRj/kmk53siHUI/5XszkpuggCQFvM/u12WXOe3z6EaS/j0IODQVRVVoXt3Mdb+7jmBDkPZvtFPeWI6rzMXPn/852369jd/98HfceuOtrLxzJYqm8PPnfs6eN/fQ9WoX37z1m/zDP/wDHTd3kBnNEHk7gm+Kjys3XEliIEEqmsJf60cf0Ll83eUAbLl1C3q/Tt2FdaRH0ix/djneai+RtyMkTibYfONmiukiWpmGoRgMJge5/837sYTFvIZ5jKRHqPHXsL5rPRsPbWRd5zoMy2BOaA7rOtcRSUVwa25q/bXMa5iHx+Fh18Aujo4dZX7DfGZWzmSqfyrTAtNobmpmJDPCroFdrG5eTevsVta2rAWgX+/n1i23kjNyKIqCpmgMp4dZd/k6PA4Px2LHGM6MI8wM7L0FPDUSLBcT0sjO9MO5d0IuCnVL4GM/lsBudA+ggr8Jai+FwCyY8ww4ysA/HT7xDARmQOAMGN8N7hrpnRYCirrMC/afAXOelvVj+yD8kgTUgRly3bdRrusW24yC/aB5JMhVFAmQvVMkcR2KBKeaW55fcIYkDw3OkOcZCEEhJYFs+RmSyb2Yts8nPdlvCVjLfHvKZ0om+rIGm4WzIIG1otjkqEKCamFKT3LNhZAZsvtGAt2xD8FXJ73Qn22HaXMleJ42X9YxshDeIT3O0+bJ87j8CXBXyLqa2/ZY7wb/NPlb37hNThhc/oQE5g6vBNY9G2H3Ouk9v+wx+RtSA5imYP36LjZuPMT69V2YpsDtdvDII1exYMEbHDx4L5dfvoBvfauV1at/gdOp0dm5na9+dRn79n2fK6+cx+9//xtqa/0kkwXC4SS1tdJjfWrfbW2dzJkTorV1NmvWtOD3O7nkkml4vQ5Wr26mtXU2d9+9EIdD5emnr6a+PkBr62xUh5TNuvOyL1HtK+fi0DloioaFVfIq//LtDhyqyneu+CoBt5dMPoMlLL4+9zMsOWc+t1zxX4hnk5xXN4vN+/5EMp/hqY5fUFVdTSoguOuTX2bRokX09w+wwHsmV5/bzF2f/DJOzUlNoJJ7rvgqR0f7qfIGWbv4a9QFqvA43UzxV1IVqEBVHKXw50gqxclEghs3b6ahvJwzKiq4qK6OsWyW27ZuZSidZm4oxIlEgm+0t3MykeDBxYtLkXYA8VyOW7Zs4WQiwbSyMr7R3o7f5WIkm2XXwABHYzG+9cornEwk2Nnfj9/lkprVlsWtW7bQr+s8aZOfRVMpBkZHUXp7UVaulKQghgFNTRIkP/mkJAJxuyXL5oQ3e8MGGXblcEzKhfT1SZmL730PTp6U7KgLF0rv9r9DSuZyOChzu/9tYP3hh/C1r8m1LZn31+U/bvkruP7PvAjzFDmqDdh+PVs66hHJVokF3kslE6bqk2yW9b9HVQTBYJBt27YRj8fp6+vjkUceYevWrSWJjUOHDjEwMHCaRFQgEKCiooJ8Pk8sFuO8886jqamJ8vJyrrrqKt577z10XWf58uUkEglisRhOpxPLsqioqCAQCPDyyy8zNjZWKu/o6MDv97N8+XIAOjs7qQuFMCyLAV3nzvnzGbEHSYA1LS2MpNOUu92sbm6m/Ytf5MmlS6nyevluSwsBt5RXGctm+XBsjBtefpmsaRK2+xrQdcK6Tl8iwe+uu465oVBpsB5MJilaFqYQpItFbt2yhXSxyMlEgkqPh0d27SIUDPLPTz/N0muvZZqicPXvfkdQVbnm2mtxIo3QBJNG7w+RmsoT/kMfUl7KhTR4pyHziCfyiWEyT3gDsBgoP6XOHKQRfD7SgP6+vT4PeBjplcogjV+3ptEQDPLwzp00BIM0BoM0BYPkDGNS5hao8vnQVFUSIikKcxsaeGjnTpb/+tfsCYeJpFLc3NHBSDpd8nSfmktd4/eTKhZJFgql/es6OxlOpzGF4NsLFtA6ezbfveIKrvrUp3hw505+efAgZ370PE72n6RlTQtvl7/N9+/+Pq/e8ip6v85lKy6jrL6M9hXtpKIpQnNCMt+3xoc+oANgZA06VnaQHEzS391P/HgcVDDSBltu2YK/1o/D40BYgmK2iKvMhYKC3q+z8XMbSYaTbL5xM79a9it2PbJLsmUbFoqmoDpUXF4n95wiV9bd38/JREIS+ZgmO/r7URSFtq4u5oRCDCaT3LZ1K4PJJD6nk/3RaCnsbPfAAH26zor2dvp1nc985CM8uHgxmWKRAVt+w+90lnLW13V2yhx4e/vhnTuZ4vcTTadZ0d5O/SOPEMtIqZ+Ro3tIRHow8mnMYo7BQ6/jCU7ByGcIH9xGIZPAW16Dkc+iKAq+yhBjx98lEelh5OhuTCNf+j7B3qy5fVKRKR0n8v4bGPkMiuYgE4timQXCB1+jkI4jLEH9eZcz/eOfY9pHLwMgn4lLTeFsAsw8DQ0N7Ny5k0OHDqHrOrqu097eTiqVIhQK0d3dzcyZM2lpacHr9WIYRmlc0HW9JDm3efNmLMsqcQ50dnYihGDLli38+te/pqurCyEEixcvprGxkTfeeINUKoXH46G5uZnZs2fT0NBAPp8v9fHHP75JRcUsGyjPoFjMEI+fYMuWlfj9Neh6P01NzVRUzKSxcQFOp89+chSKxQyGkaGrq60kadPQMJeKipmEQnPQ9TDFYgZVdXHNNc8xe/YXcDg8dHc/RGPjQr7whZv4xCcWMnduM83NzYyPB3G7gzz88AtccMFCPvvZf+HdfftJKQpHmJSSU4Eye+x4BvgKsNbev4bTQfc6JFA2meQmaLPHkYkxJ3jK92F7PNkFXHvVVfzNBRfwpYsuYklLC9e9+y4f5HL83Wc+w61nn81VF17IZxcv5sjhI5gFE98UHw3zGkr5+p3rOhGmoHpKNXq/jr/GT9dPurCKFk6/E0fWUQLTyWSS9HC6lL/vrfKy9fatFDNFypvK8ZR78FR4CDYEeW3Va5NjQlsXTp+TaZdMA+DVO17FV+0rcQ50tXVhqAaZYoYN3RuYE5pDNBXlxs030hBswKW6WNOyhtbZrdw1/y7iuTjXn389jy15jLyRZzQzikN10JfoY+WWldT4awi4A5xMnOTmjps5kTiBS3NhCYt1nev4/KbPM6AP8OSyJ5nim0LOyJWOO5gcZEX7CqLpKBfWXciq11bRl+gjkorg11yTYd09P4KaZvBKPW58DfDBw3Lta5Bge+9KqDwfckOw5xuQOiZDlxWH9EaPdIOZAf2I/F55CRgp6QkHOPg9CdY1p2y7+wbw1UPz76S3W3HBx5+ERe1w3nfBVS1Dp8unS9vDyEH82CRQ1twSaGbHJ3XNQQJoRZMs9ppbAmRFlSzvhaQNoBVwBWRdy2aDd9qa60Z+ErCrbmnTKNKLiBAyN9oqyvaKKkPBXWXgrQGHT0b4lZ8hAXLyJLx+ix1y7pGg+5zrINkn93urYfgd+VbMROW1NLLSMx3vhchu8NaCyy9nLOsXSjAN8jpmx2DOGgner3hSHkNYkgkx0IBDtUrgds2aFhwOyUGgqgqh0D/wm99s5w9/+CM33ngrJ0/+DIdD4R/+4StMm/Z3/Pa32/nTn17l9ttvoVDI4PU6aGmZzuhohpoaPzt29JX6Xr26hUQix7PPLicUKiOVKjA6msGyBDNnVnLvvYvYubOfnTsHsCxBWZkLl0sjNprj7JrpjKUTbPjjzxhMjOBzuVFRueuTX2b7jU/znSu+gmFZ6NkkXqeHmjJJnOVxurjniq/SWDGVR+9Zx/lnf5R3N73BF+5Zwbeu/QpjY2Ms8n4EgN/+biOpZBJ9ZJzVV/4DXqebg5EjjKUSuDQn59XNIuDy4lAdRJKj/ODV5xiID+HUXGSKxdI7eU4oRJv9fmyz84x9Tmdp34bubgwhaDslFxlk6Pi0QAAFeGjnzlJZPJdj46FDJPJ52jo7T+OQaevq4rzaWgaTSVa0txNNpZhj245AySa6uKpKhoRPEH0cPy490gsWSLD8jW9I4hHLkqybra0y36myEjtmf5JIJB4/jTDkpytWoNTX84eODgDa2to455xzUFWVP/zhD/y7S6EwSeCybp08j/+VRVjyORXWf7/u/6XLX8H1f+blNL3mtfKFk90t9RXrngXnLHnzB/8LOOslSZc5BL5mhDGMruvMnz+fRCJBKBQqAWhVVVm6dClf/OIXCQaDJd1mh8PB+Pg4L7/8Mul0mtraWsLhMLFYrGQoV1RUUFdXR7FYJBaLsWPHDoQQVFRU0NTUVALtu3btoqqqCofDQSgUYtu2bSSTSd5//30WLFjAjFmzMCyLuaEQI+k0jcEgTk1jIJFgVkUFc0Ih0oUCsyoruWTaNEazWQIuF7OqqiRzommSyOfZ0N3NSz09WEKU+moIBkkXi6zr7GRhUxMeh6M0WC9sairNhE4Mnm1dXcy19QWfWb6c3z3zDL29vdxz333EIxHW3X8/2ccfp/eUv6YMGYrZijR6J8IwVwAnkKGdHwJfR3qRZgHPItmrR5kk71qLNKCx68jMclmucbrXyoE0jotI47naNEkXi5Mvn64ucqZZkty6betWPvqTn3Db1q0ULYt90Sh6oUAkmcRt5++0zp7N3IaG0suprauLnGEwkk6fppHtVFXK3W7KXC5W2UB6bUsL1V5vKYT8vssuY0Z5OX6ns9T3r372z1zVchWm32QsMcbT332a2zbexqKrFrHpd5tOI9WauXgmLatb8FZ6pWdsRTvJwWTJwPZN8dHZ1okwBJ1tMv8yPZzGyBj0dfXh8rtID6Vp/0Y7ZfVlXPe763CXu2lZ08Ls1tksfnAx8eNx2m9oJ94bJzWUQkVhqt/PvYsWUe31ciwWY11nJ0X7Jf7M8uX4HA5WNzdz1axZpYmFDd3dFEyTOaEQMyoqSBcK1NoEcxPlej6Pz+lEz+fpjcW4fetWFDtnfeK6OlT1L67zqde42u9HUTVqzpxD+bRz8FVOY+TobhKRHiyzyEjvHhs07wFFweH2MvjedgpZnbpzL6V82jnUnDkXzeEufTcLORCmBOpGgdFjb8k+eveAEPIYvW+VwHwxpxM++JoE74Usg+9tx18Zwl9dXwLuiqKcBm5PJe2bANVlZWU4HA78fn+pfOfOnYRCITRNK4HzcDhc6utUfoKJ7XQ6jdPpPI1I0OfzlfRyJ/TlFyxYwOzZs1m8+JMUCjqpVBTLMnG5/Oj6AD09L7Fz58OEQnPo6+uiUEgSjx+jvX0FY2OHKRRSOJ0+Bgf3Mn/+ncye3UpLyxree++3FItZstkx/P5a0ukh2ttvYGzsCEKYKIrG0qVPMH36Ir7ylVq2bfsl3d1/pLV1AV/72td5443v86lPLeTNN9+gqakJC4GOBL0PI8O1FWRY9pD9LD9m75+QpQsBzyFB8mP2WJG1v19vjx/Y/TUgJ++eRnqzvfY4dCFQs3EjfzpwgBf27SN4xx28/5Wv0AQsX7GCS3p6+OX+/Vz+6U9z/TdvQnNqvHrHqxz85UEWrFrA7NbZNK9upr+7HxS49+f3cuFlF/KLt37BV2d8VZLutXXxg40/4Lz553Hfuvv46bM/ZXbrbFpWt5AZzdCypoVgQ5BgQ5ChA0P4a/3/5pjQt6OP9HCaQrpA8+pm0iNpmlc3y77WtuAQDhCwunk1V826ig3dG9h4aCNtXW2ki2nOqDiDJ5Y+QbmnnEwxw80dNzOcHmZW1Sy8Ti/pYpq2rjY2HtrIwzsfpsZfU9pe17kOYeeirm5ezbXnXMu0smn86uCvuG3rbfidflYtWHXacdd1riORS5TOYU5oDk6HBz56DzS1wsUPQvok7LkRUr2QGZCg+1CbZMC286QppuD99aeU2VKTh9ZJ73dRh1xEft97iwTbijbpkT7UJoHp+6ds1yyUoDD5gQTwvgbwTYdsRAJpRbEl0AoQmGaHdNumZHA6VJ0jgXAJ9JbZoetyQhTVJUE1wg7xtkFy4oQNtDXbaLcDee38blID8sYvpGS/muuUsrDMn06cgHC3zRKuyTxrp18CdMuA3W2TXmUjKz3iqmsyv/rthyUIz8chG5PnvXudLNvTJj302WEwMrD9ZggtlOHggzsgHZXHqjhDTiBsXynD2d3l8nz2tOE8/EtmzqzkmWeWU1cX4OjRGCtWtDM4mKS5+WzWreukqspLODyCoijk8ya5nMGrr77HQw91k0qlqKysQtOc3HLLFk6ciLNwYRMPP7yTz39+EwMDOs8+u5yBgQTbtx/n+PE4N9/cQSSSxut1MDiY5MiRcQoFkxkzKqivL2PPnjC6XkAImDLVSyqf4V/eermkbZ0t5lEUiGV1NvzxZ/TFh8gbBfoTwwhbv3okFcPtcJEuZDCFxc9//nMOHzvK9+/9PoOb93FGfROPPvcE3//u97iy5ZN0vvEnPnLuR8gUC/zjq8/RF4ty5pRGoqkxTGER0cd4J/whlrAYTsV4o3cvz+/+A5YQvDc8TFMwyLOnvHsnyFV3DQyQKRZL9sXdCxfiOOWdevfChWx6/31u2bIFp6bhPaX9mpYWKjweWmfPptztLjlx7vmz9/Gp7/jFM2eypqWFTLFId38/q5ubcTmdUurjgw/kOpGQpB6KIqUstm+XHuqkneP/k5/A2WdLAL5rlyQDaW2F73xHEonYrJ8nPviA5yyLeZ/4hAwdB6688kq2bNnCpZdeyn9zcblkOHprqyQZ+V+R4xKWfHbiR+X6rwD7314m9Hf/M31CoZD46yKEMPNCGAkhzKQQVl4IMyNEYVCI7F4h9HYhsvuEGGiVa71diA8QYuB6IYoxUchnRSQSEZs2bRLRaFRks1mRSqVEKpUS0WhUbNq0SUQiEZHP58Xw8LDI5XIilUqJTZs2iXvvvVds2rRJ6Lou4vG4GBkZEeFwWIyMjIhcLldqHw6Hha7rIpfLiWw2K0ZHR0vH1HVd6LouRkZGRCKRELqui0wmU+ojlcuJfdGoaN20SeweGBDtPT1iKJUSh0dHRSybFbFMRnwwPCz0XE7sDYdF66ZNYm84LJK5nBBCiHyxKGKZjBi22+z/s74+GBkRB6JRkc7nxXgmI9p7esTJWEzouZz4cGREDCQSYjSdFrFsVrwXjYpkPi/0XE587/77xUcvuEB85l/+RQwXCuI37e3CXVsrmD5d+KZPF16/XwQrK8Xtq1eLmBAiLoRI2et2IYRHCHG9EEIXQgwKIfqFEEeEEKN2nV4hRNIuHxdCdAgh9gghXrHL43ZZwl7vF0K0CiEO2NupU/a3F4simcuJfZGIaN20SeyPRkUilxOJbFYMp1KiPx4XQ8lk6TqNZzJiIJEQ17/wgnjbvpbjmYyIZ7OlPg5Eo+LI6KiIZ7MiYZcfGR0ViWxWDOq6iCaTQs/lRDybFUPJpHhqzx7RcfiwvJZ2Xyn7HL7zve+JOZ+YI/b9bp84tu+YAMRdN90lNrVuErtf3i3q6urE9o3bxabWTSJ6ICqyiaxIDadENp4Vm1o3iXu5V2xq3SSG3x8W0X1R0dPeIwb2DIjRw6Misi8iNrVuEumRtNjUukkM7B4QIx+MnNYuM54ROT0ncsmcyMazf9FvZjwjxsaS4voXXhCP79olPhgZEdFkUhyMRkU8mxVx+z68+eWXhZ7LCf2Ue3ZfJCKe2L1btG7aJD4cGSnVnbgP3x4cFIO6LgZ1vXTvDup6qd8R+74dSafFUCpVum9H0mnxxO7dIppMivFMRmRzGVEs5ESxkBOFbFIU8xmRSQyLk2+/LArZZOl7JjEsjEJWnHz7ZXGg/SFx8u2XhVHIyU8xLwq5tChOfAo5kYgeEyPH3hb5jC7SsWipj9GTB0SxkCv1W8ylS31mk2On9T9xLtlMWhw+fFjE43ExPDwsMplMaYyIRqMil8uJZDIpXnjhBXH//feL0dFRsWjRItHU1CRmz54tFixYILZu3SoikYj40Y9+JD7+8Y+LM888U1xyySWio6PjtDEml8uVvp96jIkyXddFOBwWo6Ojp7TRRSYzLtLpUZHJjIsjR14Rkci7oqenXUSjB8To6GFx//0eMTLygdi0qVXcey9i06ZWMTz8vkilhkUiMSB6etpFKjUiMplxcfhwh4hE9olNm1pFKjX8F22SySGRyYyftj+bjYsf/ahNTJ9eUdqXyYyLpqZG0bnzTRGzLBEWQgzY40bCHh+OCCHetceAffYY87hdb6+9f/CUOu+eMhbFT6mz3x53Tq271+6r3d7/yE9/Ks6+8ELxgV2Ovd741luievp0kdNzIjWSEkdeOSIysYzIxrNi9PCo+GHFD8UL178gsvGsiO6PipVzVorLF14usvGsCO8Ni02tm0RkX0Q8seEJsWTxEpGNZUU+nRep4ZQ43HFYJAYSIhuTdRMDiVKb6IGoyCVzIhPLiOEPhoU+qIvEQEKkhlKlcSI9mhajR0ZFvD8ukrmkiGViIpFLiP3R/aJ1U6vYF9knhpJDIpqMiv54vxhNj4rWTa2CexGtm1rF+8Pvi73hvWIgMSD2RfaJ1k2t4kD0gEjlU+LdyLuidVOr2B/dL46MHhH//PY/Cz2ni3g2Lgb1QXH9C9eLPQN7xHBqWCSyCRHLxErH3R/dLwb1wdP6KxaSwsrFhMiNCJGPC9HZKsQvkevssFyP7xeikBRifJ/cTg/KfZ2tQozuEUI/Mlk+0C7LJ9pO9JWPT7Yf3y/LJ/oY3ydELvaXbTKDQhx+SgijKIRRkJ98SoixD4Uo5oTIJ+X3fEoIsyi/D3TJtVEQopAWwsgLkRmTdU5tn0/J/cnwn/WVlMebqFew2xVzsv6fl+USQvS2CxF9V4hjHULk4vKTT8qy8cNCDO8T4uVWISJ7ZN1cXIjM+OT+4f1C5HQh0sNCpIdk2+H9dtk+2SYzIrcfQq6Tg0I85pHfJ455ankuLvsc3ifE1htEKpkTo6NpMTaWFl/5yosC7hWtrZvE++8Pi6uv/ryorw+J+vqQ2LHjLRGLZcTTT/9WuFxlIhRqFH5/QCxa9F2xd29YPP74LtHauknE41mxf39UtLZuEvv3R0UqlRf790fF4KAuWls3lfqPx7MiHs+KWCxjf7KitXWT6O+Pi717w6K1dZMYHEqIVC4j9GxKnBwfFMPJcdEzdEIcGx0Qd730mLjgwb8Vd730mNCzKaHn0iKdz4ohfUzc0/5jMaSPiZ7hE+Kulx4ThyK9YkgfE2PpuHB73OLlva+L8XRCpHMZcSjSK25/4SERLA+KX23/Q6nPY6MDYjydEHouJd7sfUe8Hz0m7nrpMfHh0AnxZu87omf4pEjlcmJQ10s234FoVIxnMiKWzYqOw4fFE7t3iw9HRkTStkH0XE4cHR0tvVsHdV185cUXxUAiUSofz2TEeCYjhk6xXZL2+3zi+6l2zsQ7/EA0KvRcTqTyeXH9Cy8Iz/33i8Ojo6KYSglr/34hWluF2LdPiFRKrie2h4Ymt999V4hwWIivfEWI8XEhxsZkeSwmREeHEIODQoyPCzMSEVcsWiT2vvKKWFRbK1589FEh8vkSFFi0aJF48cUX/9t4IZ8XQtdPa/c/tZjG6c+3afyv9fefdAEGxH8Dp/4fB8r/M5+/gmshgXV2vw2e98ttMylEcUiI3IdCFEeFyH0gxNjjNqAelnULA0Jk94lcZuw0oJxKpcTo6KhIp9Oip6dHDAwMiJ6eHqHruohEIiVjdMJgHRwcFJlMpgSWI5GIOHz4sNB1XaTTaZFOp0UymRS5XO7fBPGZTEaEw+ESCD+173Q6LUZ1XbT39JwGrI/Yg+QHIyMirOtyYMvlRCybFQOJhHitt1fouZxI5HIiUyiIg9FoCZAcGR0VT+zeLT4YGRGJbFbEslkxnsmIZC4nXj16VIQTidK+D0dGxKCui47Dh8W+SESkbMD9/bY2ceHFF4u3jh4Vw6mU0E1TxCxLDAtpgO4XQsz9+78XNzz6qBgVEuTGhTSCvyImjd9BMQmK37W3J4zjlBBixK73tpDGbavd175T6iXt8na7/4iQQHxESIM7Yh87kc2K9p4ecSIWE4O6XgLOE0B3Akzvj0TEkdFRMZ7JiNF0WnQcPlyauPjKiy+WQHYqnz/t5fZuJCIGdV2kTnkZpXI5cTAaFR2HD4vxTEbouZw4MjoqDkQi8v9IpcT3160TF158sYiGo0If1MXIByMi4A+I9w++XwK6n2r+lPjRgz8S+qAukkNJCYRTOZFNZEvgOXogKrKxrMjpOZGNSWM++l5U5PScyIxnSgZ9T3uP0Af104x5fVAXuVRORA9ExeGOwyKn50R0f1Rsat0kBt8eFImBhEhncqXJh/aeHnEgGhWpfF7st3/LcColBhIJsT8SEde/8ELpJR7LZMQrR46I4VRKJOwJjony0XS6NLFx/QsvCO69V7Ru2iRi2ax4as+e0mTP7oEBCdTt+3h/NCpidtkE6C4W8qcA6CFRzGeFUcwLoyDXuWRMFHNpkUvGhFE8vW4hl5b74kMiEe0VmcRQCUQXsknR/+6W0/or5rOimM+IQjYp+7OB+b8H5ov5rCjm0iKflyA2m82KeDwujhw5Upqs6+npEfF4vAR6e3p6RCQSEW+99VZpnPjlL38pZs+eLXK5nFi0aJF45plnxMjIiPjZz34mLrzwQpHJZEQ2my1Nzk1M1k2A50wmI44cOSLS6XQJYKfT6dLxcrmUiETeFZs2tYpI5F2RTo+VAG8ulxTR6AGxaVOr0PWwiEYlaB4cfFskEv2ip6ddZLNxkcmMi6NHXxWDg2+LbDYmDh/uELt3PyGSySERje4vtdH1iMhkxkUyOSTC4b1i06ZW8fnPXy1CoZAIhULij3/8ndi0qVVEo/tFIjEgamp84s3u14VuWSJmP+sfCgmeY/YzfirQjQkhhuw619vjx+if1ZkYf/687cRYdeq+94UQy//u70R9Q4Oob2gQVx04IB4Xk6B8nxDib770JbHippWlZ0sf1EvPtD6oi9RwSqRH0iKXyol8Ki9SIynhdrnF8feOC31QF+mRtOhp7xH3e+4XTs0pBo4NiGw8K164/gUR3hsWqeGU6GnvEZEDETF6dLQ0PoweGRXRg/LZnpgQmzheT3uPiJ2IlcaAZCIp9Jwu3g6/LToOd4hENiHGs+NiUB8UHYc7xEhqRAylhsSgPlgC0fsi+0R/ol+097SLkfSIaO9pF7v6d4mOwx0ilolJsJ6NieHUsBjPjJcA9dvht0UsExPjmXF5rFxCDOqDoj/eL/ScLoZTw6LjcIcI62ExnhkX7T3tYn9kv8jnYkKM7rVB88Ak4I0dkOAxHxeimBKioAuRTwiRHxdi8FUJhvNxe78ugXF2WIh8zK6fPAU87xciO2LXjcu2BV1+MoNCHH5aiIFX/rJNelCI8CsS2BqF0wF0If1nxvafA+JTtvO6BMb/HgD/t/qa+BhF+/inbE98L2RskD4iQXR2XAh9QIjeDrkvnxRi6IAsSw9LkDz8ngS+6eHJ/XpYiCEbaA/tEyIbk/1mY7I8Oy6/R/fagPuABNcToDufEmL86GQfw/sksB7aL0Rvu8ikM2Lfvohobd0k9u2LiPHxTAkUR6NJEQ7rYnBQFz/60TOiuflyEQ7HRXNzi2hvf1XE41lx5ZXrBQTEpz/9T+L994fF/v1RceTIqBgYSIjx8Yw4fHhUvPNOWMRiGaHruRJofvvtQRGPZ0vHnQDYe/eGTwPhvcdHxIdDJ8R3O34iEtmUSObS4uT4oNj47qviUKRX3PXSY6Jn+IQYTo6Le9p/LIaT40LPpcWhSK84PhYWt/6qTZy79toSWP7Vxt+ImrpaEUmMiF3vvS30XFrc9dJjovaKj4qz5l8gxtMJcddLj4n3o71iODkuTo5HRDgxXNp/KphP56QN8sHIiGjdtKn03pywMU61S/ZHo6WJ6wkbcjSdLk2CH7Dtk0Q2KxK2HTRh77Vu2iQGdf00p0TKBtgT7SfsgbfDYaHnciXAPZJOi0IsJoEzyHU8/t/efv99IfbulUB7AoCn0xJgp1JCvPKKePDWW8X3PvpRIfbuFYs+9jHx4k9/KvuxgfL/ELj+37D88z//swDEi5t+LcTYh+IrX/6SOOuss8QFF1wgFixYIPbs2fMffg7/X1n+e+D6r2Hh/2mXgq3PvFGuySOj/O2PMSCJznyLYOoTgBOm/kTmXY+1AcVSaOX8+fMJh8P4/X40TSMYDLJz506CwSCpVAqn04lhGPT19VFRUcGiRYvo6+sjnU6Xwry7urqora0FIJPJYBgGls007XA4aGxsZMeOHZimiWrLDuzatYvGxkZcNnPhjh07OHToENlsFpfDcVquMECtzQT+/TfeIGKH1PTGYuzo68OtacwJhThs51gfGR/H7XBQ4/ezsqODjGHwmY98hPvffJN0sYgQgl0DAyQLBeY1NDCazbKjr4+TiQTfe+MNBpNJFjQ2Ek2lMIRg1/vvc9/q1ejxONd/+tOcPXs2n5w/n7SiMAZcgiT/KUOGWI4zGQbeB9yP1Fi+FJlz3Y+UxAkj87M3Ill6e5F5lRciw8H/FvguMpu+za5nc5LSgMyzLiJZfM9HhpT77LsgYxiYQtAQDJI1DG7bupVfHjxYIgGZyBtqbmykrqyMKX4/qqKgqSrNTU0ogN/l4pY5czgRi9HV10e2WJQyWrt2sfHQIdZ3daEqCnqhgJ7PkzcMCpZFY3k5H6+vZ9fAAHo+T7XPx9SyMmr9fq68+WY2/uY3bPzXf6W8rIJkJMl47zif/9zn2bZtGwC//vtfs7NrJ5nXMjj9Tsm0njOIH4uTHk5TObOSq5++Gn1Ap5ApEOuN0f6NdoyMQTAk75fYsRgdKzvw1fhoWtiE0+ek+uxqlv1kGX1dfWy7axvCECT6EtSeX0tez+Ov83P101eDAq/d/RpY0Kfr3LJlCzV+P32JBIZl0a/r1Pr97AmHcTsceJ1OXvjgA+7atg3FZl2/YOpUbt+6leOxGAO6zi8PHuS2rVuxhODObdsoWharFi7k+vPP57ElS0AIpldUoABzGxp42M4Fa7PTF2ZVVjKWzRIKBlnZ0YFpWVjCYuTobvShXorZFIqiYBkFBt97nUImjubyMHjodSyrgAAcLi+1Z8/H4fKhaA4QgmIuhcPtLeVtjxzdjaKoTD23hWIuSfjAq1imQTGnk4lFUTQnDreXTCxMIZNAVR1MmflxFEXF5SsndP6VGLkUhUwCoTrI5wsUi0WKxSLbt28nEJC5lBN50tu3b8fpdFJdXU1TUxO6rrN161a2bNkCQDqdBuAXv/gF77zzDsuWLePNN9/k05/+NNFolJ6eHjo6OkgkEoyPj5fGrIl0lUQiQU1NDQMDA8RiMSKRCEIIysvL8fv9CGHQ1bWeQ4c20t39EJrmZOnSJ0mnh4nHTxAMNnLZZffhcpVRUTGT5cufpbJyFkNDBykvb0JRNAwjS03NR/H7p5JKRWlomE9TUzOvvnoHPl8Ny5c/Q1lZCGGH0AlhUlk5k2XLnuTnP/8Fb7zxT6xadSPr1z/F8uXPUFl5Jg6HB7e7HMUVIKkoZJEEYsfssQQkr8JECskaZNSsE6gHfgx80R6LTk0zmeB5SDKZurLaHlO0U+qutsezG3/+c/b19/Od++8nc/fdnAWcBfwE+G1bG/1Hj7L+ez+ge0M3PS/14PQ5UR0q473jCEsQPhzm7Y63MbIGAsHmrZuprq5GEQonj51EdaoEQ0ESH0swpXoKZe4y0iNplv54KWX1ZWxfs52G+Q1UNFUQmBogvCdMIVXAV+3D4XYQmhMqhX+7Ai4UVaFxQSNGTsp8JfoSFM0ihmUQSUWo9lVzQ/sN9CX6SBVSVPuqWbllJdFUlHQhza6BXTy9/Gmml0/HpbpobmrGq3lpbmrmjIozmN8wn6yR5fDYYXb07ZAKGZaBx+Hh8U89zlB6iGgqiqqoNDc1czJ+knci7+B2uFFQWLVtFcdix3AoDlRF5cKpFxJJRXAqCvQ8KonJNA8EZkpyMl+jDL3Ojcic5GQv7LkBksfAVQXpE7BnhdxvpGT4dzYCuVFbqlOcQnTmlWXDb0LyqCwrpiATljfA1CtgysdkOLWvQRKdeevAWQZTPykJwsy8DPEONMgwaUU7ndRMYOdWN9qh4OKU8O1BGfoNk+3LGmRYuOr6y77kwyI/BV2GdgO2xIEdkqpMhqurbpmrbRUly3igXuZJmzmZK25Z8tpOmwsOF+gn4I3b5XWxDJm3vffByTBwxSZoG9wxeRwzB8EzJFFZcAYUM/Kct6+ExFHJHu70weJnZc63mYM96+DF5RQKgra2CdKxLlRV4dlnlzNrViWWJbAsiwMHhvjsZ/+WvXu7+fDDA0QiERobz6e7u5+HHvoKlZVTWbYsQChURn9/glgsx4EDQxQKJuXlHgYHUwAkkwXq6gLce+8ipk0L0N3dXzpusWiRz5vs2NGP1+tgzZoWWltnU1Pn4592/4EvXLyEqD7Ku+Eeytx+PnXuQpoq61i7+Os0lE/l8MhJLqw/i5FUjB+8+hyaqlHlK+czZ19K7Lf7+MOqn7D8siU89ZOn+NeX/pXxjM6KO1ZyyfkX8ttvPsoU08cvf/Zfcaga37vqBhor6jg8cpKCYWCaJm6Hq0SQ9vV5n5F/OaBgUe52n5Z6ljMMbtq8GY/DcRrfy0T+9MM7dzInFGI8m6U3FiOcTNKXSHB+bS1Hxse5ob2d0WyW86dO5bFdu1i1YAFepxOf08mrvb2s6+ykYKuhKMjc6j3hMJ/ftIlHdu1CANPLy3n+mmvQFAWHpkn274kQbIdjMtR7zZrTt9euldqSM2bA+vWT+dWFgszN7u3lvUCAF371K9a+/74kPvN4JHP4ypX/r5KTnThxgueee4558+bJlIyKM/ns5/6G999/n/3793PPPfdw3XXX/b9yLv8Zlr9Kcf1HLrYGNbjki+N/d9+FDyWwrl4LrjOhcEQSm9U9CUYE0q9Cdg9MfQwUL1g65PaBs56iVYGh1GJZFuFwmPLycioqKigUCmzdupVDhw4xe/Zsrr76agA2b95MT08PN954Ix6Ph3A4zLRpMhtYURQ0TUNVVcbGxuju7mbBggVUVVURj8fp6upiwYIF+P1+hoaGqKys5Pjx45x77rkkk0m6u7tLREavvvoqS5cuJZHNcvsbb7Dx0CFaZ8/myWXLcKoqK9rbS/ueW75cUrgpCqliEbemcePmzaXyZ5Yv5xun1L930SK2HTvGwsZGntizh8eXLi1JRH2jvZ07588vAZrW2bN5dvlyVEWhq6+Pj9fXA1JLcOIcEt/9LkdUlUeRkjYBJKi9CXgUuAUJhtuRQLgNabBOQ+Y2tiEN4jOQuZEhJNhOIQfxB+xygcynLAK7kUAeJOBOIsF8GdDDpCTP2UA2n6doE1f4nU76dJ11nZ08sXQpt2zZctp1yto5PF6Hg6F0mqDbjdfh4BubN7O6uRmf00ksl+PhnTtZ29JCQzDIkE0q53E4KJomTk3DsCz2Dg5yUV0dIAnV8nb+e7nbzfZ9+/i7Sy+lccYMgmVlaCiQhze3v0k8Fefm22/mxMkTmAWTlvIWHml/BIB8Io+73E0hXaCYKtK1vosFqxbQv6OfWVfN4s373yQ0J8Ssq2bhr/OjKAp9XX34a/x4Kj0Uc0X0Pp3QnBAOr4NkOIk76Mbpk/I4CCikC7x292vMu30ewYYg6eE0nlnlrOiYvIeeWLoUr03Qly4WMS2L72zfzqqFC/E6HEzx+cgaBqu2beP2efPY0d/Pjv5+nly6lJVbtrC6uZnp5eVEUynqAgGbOVghWSiUrpHX4UBRFE4kErR1drK6uZn6sjK8Dgc5w2Cl/d99sHIlZ5QFsPJJVNWB5nKTiUVxuP2AQHW4cLj9JAY/JDh1FqrDRXpskEI2RnndWQBEP3iTKbM+jqo6sawiI0f3UHPmXIxcCm9FHYPvbScR6eGsRV9FQcHh9iGAzPggTo+PYi6Nr7IOs5BHdTgxjQKaw4UQUrrLUpynjQn9/f309/ezbNkyTNM8bewoFArk83n8fj+GYXDDDTfQ2dmJoij8+te/JpVK8a1vfYu3334bTdMwDIPm5mbWr1/PxRdfzK5du5gzZw7ZbJampiYKhQIffPBBiZSxUCiQTqfx+/3s3r2bxYsX43A4UFVBLHaErq42lix5jExmhM7OdcyffyceTyVebxWJRB8VFWcghFmSyCoWJeh3uYKkUhECgamMjR0+Tef6179ezuzZrVx22X08+eS5zJ7dyrJlT5LLJSgWU3R2ttHcvJpw+C1mzPgkDQ3n0dv7AVVVlYTDe7j88q/x6z/8K9MvvhgnElSrQJc9XnQDVyJzpDV7jMgBfrteHgm2bQjCLuQknN9uewy4wu7ruD1+PICcoFOQk3VTkHwOBjDN62XrwABPVlcTeugh/vib3/Dr116j0e0ndXQch8eBkTNI9CUIzQmhuTR2vbiL2x68jfHwOGVTyyj3lvOP9/wjU6ZO4et3fJ2RYyO4/C6mNU3joYcfojJRWZLVWnD3AirPqMQyLQbfGqTuojqcPifFdJFtq7ax8K6FVMyswMybZONZiqkielgnGArStb6L5jXNOL1OHA0OdoV3Ma9hHtFUlFQhRcAVIFQWIpwMs7V3K+9G3uWxTz1GNBUlVBZCIDAsg10Du6gvq2cwOciFdRfidUiipVQhhWmZHBw+SKgsRL/ez5zQHByqQz4rqgNTmAynh4nn4jy08yFWN69mevl00sU0I5kR1net5+4FdzO7+ixcZsqWhETmSnumSuKyDzbARQ9IoCYUePsWOPFLmZv9iSfhrZUyX7qpVepZb/6oJCHzNcr21XMlMde7t8MFP7AlrwzYfw98/CdgJGXOtOaX/3puEBzBSYmrsd2yL/90SYaWODZJGCYtAEqDaGnb1sXTT8q8ZjMvAXZZg01KdkpVgQTKxbTMWUaR5Ge2FCiG3TZQL0nQXGXyHAIhCZQniM2MrA24hSQXEyaEuyQBWW5Uko9JsXV47Sa4+Jsyx7p+ocydfmsDzF0rJwUyUQnSHV6I7JK/NTsiJwTeeQwWPSLPbYLw7PWVEpCf0ypBt8NrS4MVweEusaGnlSqOHJmQy2pm1qxKOjv7OO+8IMlkipMnLS66qI7f/OZ3rFnzbf7wh9f53OeaeeihjZhmNRde6OTqqy/ntdd2MD7uoqdnjKuumkUoVMaxYzHa2qTE16xZlXzzm1u45ZY5TJ9egdfr4PjxGD/4QSd33TWf8nJPiWV87twGdu8eoKbGz7nnVTGYGmZqWRUHI0ep9JaRyKU4u2Y66XyGKn8FBVM6J1RF4YHXf1aS0lq7+Ou8FznKBfVnkTeKvHZ4F/sHj3DPlf/AD159jq09O/n07EV854qvUrQMVEVBQUFVVAzLxBIWLs1BupBjNBXH7/ZQ5vbzXrSXc2qmE88m+cXbHay6/B8QULLdbnvlFf5l/34O33ILGZtjZk1LCzU+H7dt3cralhY8DgeJXI6hdJrzamup8HiIplJ87xQb8+nly0EITiYSrLf1sX1OJ8lCgal+P0G3m2OxWEk7e0DXuWTaNEYyUhZsdXMzMysrCRiGlOCyLJlj/d57MH++BMSFgmQD7++HOVI5ApdL6kH29kpgvXq1BNsVFXD99Tz18Y/zj+vW4c5koLyc6OgowUCA+668kpsUBZ5/nsuuuYbbbruNz3zmM/xHLJZlcdVVV/HAAw9w5513/pvHGh0dZdq0aWSzWRz/F+hq/1WK6//UMgF+I1+Ta+t/8+yS6gLXR2Da8+A+BzAl0PbOgeJx22vdDFN/hDSNJHjCcz4oPixNgh9N05g+fTo+n4/NmzcjhDiNLCiTyQCwZMkSWltbKRaLbNmyhfLy8tIDpOs6mzdvJh6Pk0qlSkRFQMmz3d3djdvtJhQKEQgEqKqqOo10qLOzE6fTyaJFi1BVFZ/NBD5BVKEA2inEFGtbWqTOsiW1t9+NRMgZxmnkFAqUiC3WtLRQ6fHwhdmz8btc3H/55ZyIxfhGeztZm33yVJKu1c3NpAsFTMuiLhDgli1biKRSFEyzVMdCGqNzgCjSS30caZzGmfQAzWXS69xm/32DSDKhJqRt0Yc0XmuRxGUjTDL9TkeSoK0EGpEgXrOPOcEULjid3MxCGtWpQoFMsUjRsvA5HDx99dWnkXisbWlBUxQGk0neiUQ4cYrnXlVVNh46xIPd3dQFAjQFgzy1bBn1ZWWlWVwAw7LwOZ04VRWHqjKvoQFLCG7bupW8aTKUTvN9u89Pz5nD3nCY+Q8+yKtdXezZsYc9b+1BURScGSeP3vIob735Fvv37eexrY/h8Eqmb5BayoGpgRIL8AShkbvczeIHF9O4sJE3vv8GiZMJFIdCsCHIzod3YuQMKmdU0tTchBCCQrJA7FiM9FAaIQTFTFEyiQdczLtjHnue2IPT56S8qfw0MpQJQjHDNDmeSJSkPuaEQvQnEmQNgxs3byaSTDInFCoRnqxtaUEATy5dyplVVSiKQkMwSNGyGE6nyZkmHoeD+998k8FkUrK2Kwr1gQBPX3010wIBivYEhdvhYE1LC+1f/CJT/X40VcXpK8eyDCKH3sATrMHlC+L0BBg5sgthFvFVTiPy/hvkUzF8VdOomHYO2cQwxVwab0UdI0f34HB7cXqC1J69AIfLi7eyHhS1RJTmcPmwLEMyj6fj+CrrcLj9+KpCWJaFw+NnYqJWUTXMYo7I+28ghGDPnj0sWLCAiooKLrroIpYuXYpmS4Xous6WLVsoFAolwsREIkGhUOCnP/0pH374IZ/73Of4wQ9+QNCOYAFQVRW3243T6aRQKFBWVsbixYvxer3U1dUxNjbG1q1baWpqYvHixXg8HtLpNKFQqESSJoSgWCxiWRaVlTNZvvwZXK4AO3Zs4NChjezc+bAti7ULVXVgGBkGBnYRi/XS0XEzlmXicHgRwsDl8lMopOnu3lBiDQ+F5tgkZ2spK2tg1aoY11zzHA6HF59vCq+8ci87d26ku/tBzjvvb9m+fRfV1VVUVpZjmnnq6i6W972wSmC3CwmIz0dGv3wWmGo//xn5FiAFHEVOvDnssaBgvwHORxKjDQPzgS8hgTXICcAfIonPLCAVj3N8cJBvICNqOv7wByqrq3miqoqNjzzCv/z61zy1bRuiogLFtKiYUUGgLoBvio+pF05l6+1bSZxMMO9z81h73lq+kf8GLz7yItu2bePiSy7mIxd/hB1v7mD3m7tZ37yeTc9sYlbNLOo/Uc/uH+2m6dImKmZUoDql/nrTwiacfifFjDTu598xH82jSSWATBF/jZ9kRBIc6mGdnpd60Pt1jKyBYiksaFxA0SqiKioO1cH33vgex2LH0BSNv7/w73nsU4+hKArHYsdIFpL0xnq5dcutXDj1Qmr9tcwNzUUIwVB6iFQhxb7oPobSQ5xfez79ej81/hpu2XILfYk+HKqDnrEeVrSvIGNkGE4Pl8jLFEUhWUiW5L8iqQjCyqPsu0t6fLMROPh9qUmd6YfqOZCNSnKzTB9ctEEC6fO+C6pXepc/NyRlt3wN8DejtvfbJwH62G5JqHXB/ZKM6+3bpC72RQ9IAJgbkftSx6Tn+8D3JAO5ZUhCM08NZCKyPyEkwPRMsRmDbQI1iZDlXSpMSSxmGVAxU964iiIZu428BNqIU0jOhAT87uBkX0YO9OOT9U/1eheSkyRmCHkcMycZxhVNTgoYOdmufqH0WE+bJ9ttXykluz75YyifIYHwR78sAXXoUgnikyelFnZ2VIL3+oUSWHtrpTf7oltknW0rJKmTw2uzjrfCnNXSaz0BrPMxScAWPyJluyyL6dPLefLJZUyfXs7QUIrzz69l//6TtLQs4ZvfvJarrlrIhg2Pcsstj9HUFOKhh37Ej370bX7yk69xww1f4oEHHmH69CYWLGikpaWR48dj8vltCPLww4uJRJKkUgXa2q5AUeCtt8IYhkVjYznPPrucigoPmUyRFSvaaWwsx+vVaGoqp6rKg6ooNJTXlhi7f753M2dOaWQkFaM/MUxEH2HD6z9jJBXD63Tz9XkT3uXPYlomF9TLSVtLWOwfPMJX5lwLQvA12wt9a8sXSBeyjKcT5IoymmogPsT9255nMDGCEJDOZxjNxAm4/STzaap8QTRV5Rdvd/C3F3+KpB0lF0mlJJi+4gpaZ8+mwuNhQNe5Y948wrpOwOXi3kWLMCyLTLFIucdDQzDIqtde42QiwVS/v+QBX9PSglNRcKgqHoeDhY2NPNjdTY3fT1dfH3e/9hqWEKeRwy5obMTndJZIStu6uhjQdXKWhTh+XILod96B8nIpgXXihATb69bB8uVwyy3yeVqxQpbNnCmluqZPl/VaW+HBB7npiiuIdHdzIhzmxHPPMc8wePajH+Wm++77Xycn+x9cHnnkERYuXMjHPvaxf7fO448/zrJly/6vANb/I8tfPdf/UYuVksA6uVGyeU97HtS/FH3/n+v73/CIWwUo9IA2BYbvAu98CH5BymlYOgzfDdXfBscMwCBvlhGLxejq6qKlpQWHw8HTTz/NueeeW/JWTxif27ZtY+HChVRUVPDyyy/T09PDddddR1NTE4Zh8Oqrr3Lw4EFmz57N0qVL2bJlCy0tLVRWVlIsFgmHwwSDQfx+P1u3bqW5uRm/308kEiEYDNLV1cX8+fPxeDz4/X76+/sJNTWRKBTwOJ3kikXu2raNJ5cto6uvjyk+H7Nra+kdH+fB7m4euPJKfE4nY5kMUwMBDMvCsCyKloXX4cAUAoei4FRVemMx+nWduQ0NxLJZLnj6af7m3HNZf8UVpAsFGoNB+pNJXu3t5d1IhMeXLmXQ3t4TDvPokiV47D6dLhe6ouBSFHYBnweuRYLbHDI0M8skU/ipnusJc0RHep0ngOrtwD1IgP11ZBhnExJYz0FK7ISQQPxGJJhuRTKN99mfuUhg7TAMLNOU18I0cagqedNEVRT8TiemEGRsj/83X3mFH15xBalisfTbf7R0KeFkkjq/n35d54EdO9iweDFuTaNgmtxle2fPqa7GsCxOnDLjO72igl8eOMD1F1xAwTDY9P777BwY4Mlly1jZ0cGcUIjrzz8fv6WBKUhFUyiqgqfCQ3hPmPKmcvQBnaaFTRh5g8G9g0y9YCqugPSKpofSuINuXEEXxWQR1aUy+NYgNbNrUDUVV8DF5ps288ELH3DjgRvxVHpAgObSUFR5tfu6+mha2EQhVUBxKDi9ToQlUFSF2PEYXeu6uPK5ZSguVf6+eJwn9uzh0U996i8iIqb4fOwJh6nx+xlJp5lVWUnRsphRUUHRNOXzBBRMk33RKPXBIAOJBA3BIAO6ztxQiJOJBI/u2sWDixczmEwyq7KSk7rOgzt28ODixSj2/zYho7Y7HGZu/TQq3S7S44P4KupAUcjGB3G4A2guL4qqkUsM4Q5UozpcCMsg+sGbVJ9xMUY+h7eiFgUFRXMwePA14oMfUD7tHGrPnk9qrJ+K+nNREFimSTYxhMPtRXN4TvNyO92Ssdw0Cgz37GDqR5oBSEQO4/RV4grWkUgk6Orqorm5GafTicfjIZvNMj4+Tm1tLaqq8tprrzF37lwqKioACIfDpRDyWbNm8d5773HxxRdz+PBhysvLATjjjDN45ZVXmDlzJm63uwTwU6kUvb29hMNhFi9ebLPsVqIoCoVCAU3TSmkrTieMjfWUPM5+fy3btt3F4sUPyqHVMjGMHF5vJcViluHhg9TUzMbrrcQwcgwO7qWu7iJU1YFlGWzbdhcLF66isnIWlmWgKBr9/Tvw+WooK6sDFCKRd0gkFL74xb/D7a4FLCoqfDz88I+4+OILWbnyW3R0vMLw8AhV1dV4ysp45uhR5p0yVmA/573ISbjVSI9zBumZnooEycIeh+5CRrVMt+skkFEvAeAIknl8HhKQ54DIyZN88rrrGM9mKVdVLqqpYd1DD5GZMoWrGhtpmDmTYJl8p/mdLra/tJ30cBp9QEaIJPoS7Hp0F8ueXEYxU8ThlYzd4T1hpl4wtfQbXGUuhCno7+7n9//l93x9z9dxBSSz/67Hd7HkkSUAqA619FwueXQJ6RF5rGBDkK62LlrWtOCr8bH1tq00r24mOZikaWETlmUhvIKj8aP0J/qZG5pLPBfntWOv8YXzviAjLITFcHqYMncZlmXh0lzc/drd3H/5/fhdfkbSI+SNPJXeSu5+7W4euPIBfE4f3f3dXDLtEpyqk93h3dT4axhJj9Dc1MzKjpXMb5jPdR+9DrfDza6BXVww9QJ8Th+WsOhL9NHW1cYTS5/gveg7XDbtAhSHT4LC/k0wuhMueVQC4YPfl97pGdfDJ56y5fIckDoqGb7PvVuGkStCym55G8BTa2tAKzC2Z9KT/aflEpzPeVb+AaPdUP5RCdQR8NIMCF076QVvaoW5z4PqkQzhZl4CYSMntyfCvBPHpXdZc9ue6IwMzZ64YfO6bOupll7fCY+1flJ6oc28bKu5Jct2dlSGh5fPlJ7qCa/3n3vBhSXBrJGzJcKyMmxVdcpwbn8IUv1Sm1oIKaPlnwaRPTDlPCgkZNg7yLDwbSsmvdCXPyEluiZAczEjj/vHb0HdHJhxlewfIc/BMuzQdUXqYQcaJbgvZkCYFPImGUctpilwuTTyecMOBxc4nRqmaeFyaWSzBpFIkqGhNAsXNtrjkODYsRgPPNDNPfc0M3Wqn1SqgNfrYGgozYYNcn9trR+fT0Y/DQ+nmTLFRyZTZO3a12lruwKfz8nwcJp4PMfoaIbm5iZMU06OmKrBB6NHOb/+LFRFJZoYpdIXZMMff8aXP341P9+7ueSp/t5VN5At5knlM0zxV6CpGnmjwHvRXmoDVZR7AzhVB4+/+StWNreSKeSoCVTSHxtiNBPnvLpZuB0u7t/2PK8d2c3D197BxaFzUFAYSAwxnIpRG6jiZ2+9zO2LrsfrdGNYCgXTpF/X2dDdzaoFCzjbtj8UReFkPE5bVxffbWmh1pba2js4yPyGBlCU097bjy1ZQsDlomCapfdyKBhkXWcnqxYsKEWLfWPzZta2tNAYDNIbi7Ghu5u1LS1M8flIFQpUejzsDodpDAap8vmoMAwCO3fCeedJ7/PKlfDCC/C730md6mwW7rpLym95vTA+LjWwm5slqDZNyOWgqkreU93d0ssdj0M8zmVXX81ta9bwma99jfsffpinn3uOkZERysrK8Hg8vPvuu9TUTESV/K8v7733HjfccANvvvkmTqeTyy677C8817/4xS/4wQ9+wJtvvsnUqVP//c7+f7T89zzXfwXX/1HLn4dtu8+RQPd/a79rpPe6BLCzYMYBC8wRGFsP1atAq4PkC5DdAXVPQ2YXeecnebm9vRT+vXTpUsLhMGVlZVRVVZWA96mhnEuWLCGdTqPregkUNzc34/P5eO2111i8eHEpP1vTtNMM6srKSjZv3szBgwc5//zzueqqq0gkEiVAbRgGQgjcbjf5fB7hdNLZ18ecUIhbtmzhpZ4eDt10E16nk0Q+T6isjJs2b2ZOKMTCxkY2dHezuqWFmbZhXjBNTFsnO2JLankdDnb09zO7poZUsUi5282BoSEuOGUwyNpazW1dXTxy1VWoikIin6fM5UJVFMpcLgzL4vatW3nsmms4rmmsRxq2A0jvzyBwEdLQ7UYarBMhIvaUCCCN4geQBm8DMjfyo0yCZQsZxnmRXX8QCdzXIMH3qUZ1LZPe7HXIsHTVMBgeGzstZCll5+eUuVzkTZObOzq4fMYMrj3nHDwOB5Yd7qUA/bYW+NyGBuLZLLo9+RDP5ajweOizweCTy5ZhWBY3d3TwUk8Pv29tZUFjIwqwc2CA82pr8TmdKMiw+kQ+z2AyyaO7dvH8lcvo39FPw7wG9D6dHQ/u4IofXlECyPHjcTrXdbLwOwvx1/qJ7otOGtNrWwg2BklH07jL3bgCLoycIcH59HKCoaDMuwSGDgwx9YKp5BN5XGWuUji46lLJx2XofGooRXooTcO8BlDg4C8PMuPqWQx5inicTmr8fjRFWooT4WFrW1o4w77nipbFroEBQmVlzLSBXO/4uJzMCYWI5XIk83lq/X4ODg+zoLFxwtdDd38/obIyavzSA6wXCtSXlXHzn93jjy1ZUgpD+/b8+Zw/pRqHaodFTiyKgpnPILDQHG6MQpaRo7uZMvMTONw+9OgRMrFB6s9fTDGrM3J0twTJnjKMQgbNIe/QbGIEf9U0CdyrQhSziRKgLmaTnNz7ItM//lmc3jKK2RS+qnoQAsssMvRhJ9VnfAynx4+Jg46ODkKhELNmzSIQCJTCs4UQpNNpXC4XH374YQlYDw0Ncckll5DL5Xj99df55je/yRtvvMFXv/pVrr32Wr7yla/w8MMPs337dv70pz+VfnokEiEUCpHL5XA6nTidTvuSKBSLRRRFIZ1O09nZWRqXLCtHf38Xfn8N6fQITU3NKIpKLHaMrq42WlpWU1FxBqnUMH5/DYriQAgDRVFJJqOUlU0lFjtu111DRcUZGEaOZHIIXT9JKDQHRdHIZsfxeitRVY2xsaN4POX4fFNQVQfJZJiysnpAwTDyhMO7KS9vwuutQpRNo0tRqUd6llchJ+7eQUay9APL7XHjx8BbyNSRIWC9Xb/O3p6GBNMG0nsdQGpcpwAP0rvtRoJvOyiY3UhAPh3pDd8PfBwJ7DV7bNP0PKlI8rQJsmBjEH+Nn0K6gMvvIjmYpHtDN82rmylvKic9lMZV5sIVkPebVbQY2D1AWUMZVTOrSA4m8df6sUyLyNsRQnNDqJqKkZPvitfufo1P/uCTFFNFjm0/RtWZVTTOb8TIG6hOFVVTsUyLxEAC75leuvq6qPHX8PDOh3lsyWMIBJFkhA3dG1jdvJoBfYC6QB0NwQZ8tpa5YRmMZ8ep8lahqRrZYpbfvf875jXMK7VrDDaiqRon4ido62pjTfMazqg8A8POD84UMyQLScrdckLotq23cc/Ce5hVNQtLWDgUBw4sXJnjKIfWwbmrbH1rFRy21nPqmATRlzwCuWF4/4cwe80kWF7ULr3Wh9rg3G+Ds0J6nAXSC+30Q+wgVH9CerKr54LmBcv2DO+7C865Hbz1ENsHlRdJHeeRbhkO7pMAD9OUIdeaV+ZAa07pUQ40SJDqrpCgtpCcBMqIST1r+TSeIrUF5MZkeaAeUhHp4T41tFzRJvvQ3HZutZ1jjQ2qUwPyHBASiO9eB59YBb6pMLLfltAalXX2tMGce6CsSXrH39og6wYa5G9OnJRgfNpcyMXg5xfArGvhymcm9bULSUgPToaS+6faT4KQnnOrKCcejJyU7dq9Dj5xN4Wyj/Dh0STr1nWyZk0Ls2ZV0NsbZ926TlatWkBdXQBVVQgEXLz55kkuvHAqw8NpIpEUc+eGsCw4eTLO8HCaWbMqqasrIxpN8f3vv8HGjYdobZ3NY48twedzomkKx47Jvu+5p5nGxiC5nMGBA0PU15fR1tbFo48uYXQ0w7p1naxe3czMM8sZTA/zT7v/wNfnfoZpwSkl0JzMp8kVizy/+0VumPc5QuU1DCXHyBbzTPFXEMsm+afdf+DLH7+aWDZJQ3ktfpeXWFZnNB3n/GlnoSgK8UwCl8NFtpinyiefiXhWL/V9zxVf5b1oL7PrZvHD7T/lotDZXFR/Dr94u4O7r/gHLKGU0v+uP/98nrr6aiwh0BQFUwiZ8q8opXf0GtsuNIUopVrdvXAh0wIB9kWjnF9bS6pYJOB08p3t2/nlwYOltEAhBKYQuDSN72zbxj9ccgnTKypwaxpDqRTlHg+JXI5qnw+HqtLd388VdXVovb0obW0yx7qmRnqwGxomw77r6qTHua9PerJXr4Yzz5Sh4Rs2wIMPQiBgR5bkYPduaGyUYLyyUj4XbreU6vqPXITFUz95in+8/37ctoc8Go0SDAa57777uOmmm/jtb3/L2rVr2b59O01NTf+x5/P/oeWvYeH/p5Y/D9v+3wGsgX+byGxiMaXXGkMC6+RGmYNt6eBfLMG4MWaHhlt/QWjW2NhIRUUFlmWdFs49c+ZMFi5cSCqVwu/3M3369NM0ZJ1OJ1dffTXpdJr29nbS6TSqqtLd3U1jY2MpTGTevHl88YtfLNXduXMnRZtc7JVXXiGdTpeMbVUI5jY0sHdwkNXNzfzuuuvwOp2lrK5UocCDixdz1axZPLprFwsbG3HboaYgc329TiczKytZ0NjI3sFBjsfjLGxsZCid5v4338QSgnkN8tnYF43i1DRq/H6G02mevvpqgm53Ka8HIOByceuWLWQNg0eWLAFVJYwkJhsAmpEeo/ORhuwKJDDut79nkOC3G2k6TEcSnD2KBNwVTBIJTejSng/sQ3q/NwAv2f0V7X1PIPOx99l9rkN6s3UA0zwtZClvGOyLRrHsF5BDVXlsyRLOrKoi6HKRMwyZO20TztUFAky1CeH8LheaorAnHCZdLHL71q3Ul5XxlB3l4NK00v9UX1bGyo6OElmcz+lkOJ0maxOsTeiRb7jySlAU/FP9GHmDHQ/uYN4d83CXuXF4HViGhcPnoOelHnb8cIckHKuROrc9L/Xg8DpQVAV3uRz0C6kCW2/fytQLp1LeUI6iKRTSBVSHSuPCRlSHiqIpOH3OEgi3CpYE5n4X7qCbwLQAm2/cTKw3xkc+8xHcNT5J9ubzUTAMUoUCOcNgVmUlz19zDU3l5RQtiyNjY3T39/Px+nq8Tid50yRrGKimyRN33smF553Hpy+7jNu+9CVGw2Euqqujc+dOLmtu5tJ587jtmmv43fPPU+Zy4dI0esfHORmPl+7xCb12TVFwaRqXNjVR6fHg0OQQXswlGXzvNQqZBJZRQHN5cbgDqA4nDpcXf3UjRj6Dqjkor5d61lhmSRN75OhuEBbDh7sxClkUVcNfNQ0jn8XpDaAgGDm6xyZOS+KvCjHjE5/FVxXC4fbjDU6hkI6TiQ2iqhrVZ1yCWUijapKMbvHixTQ2NvLmm28ihMDv91MsFjEMo5R3fcEFFzB9+nSEENx+++1ccsklXHrppTz11FPccccdBAIB/vZv/5ZNmzZxySWX8Oqrr/LUU08RiURIJpM4nU6mTp1KNpvF5/PhdDrp7+9H13UZimuTIGqaRmNjI93d3QghyGTyBIMN7Nz5MMFgA+n0CJZl0NXVxqFDG+nsbEMIgcvl55VXbqNQ0LFs71QgUItlmafUXYcQFprmorJyOqHQHHK5uB1WnmVwcC+gMGXKOfh8NaiqHBsDAenRLhRShMO7CYXm4HB4UFUHajHHXCH4IZNpH3FkLvQGe9wZROpag4xcSSCB9Uv2mFOGBMu3ISflssD37DKQ4BokYI7aY0vErn8JEsR32WVHkBE2eSRI14GcBv5aP0bGYMstW/DX+NH7dRweBw6Xg3wiT/eGbg5tPIQ+oJPoTzDeOy4jSRwKiZMJOlZ2UN5YTtXMKklYVuOTIeFFS3q6BYwdGSO8J4yqqiz98VIcHgfjveM0tTRJErOCfK5jx2Lk9TxG1qCisQJN0ZgbmstIeoRvz/82PqcPt+YmmoryUs9LPNj9IBdMvYCAK0DAGcCwDPS8zp7wHmp8NdLItkxcmosvXfAlntjzBAsbF+JxeNBU+d6ZFpjG3QvvptZfS6qQ4tYtt5IzcoxkRvj+G98nkozgdXr59vxvUx+sRyDIFDMUrAIqhgTWfRtljnUxKYG1MOXI7p8hw74dPsgOwrl3ToaML2q3tal9NrCulG2zUalrnToG2SFZR3VKYF2ISf3st26SYejn3M7/w96fx8lVFvj++PustS/dnV6rqzsLewhElCS9gQIhExK8qJC5XGeccUSIBpU1SMDBGUmARAQVZBFHxzvq9wIzOpiFEIIZ0ukkgIpgdELoLL0v6e7at7N9/3hOnU505s7c1+935zr3y3m9+lVdVafOqe6qeur5PJ8NNSQAfX0XlCeEDD2YFOcGAagVnwDTVlmw0rmR2Q5qvxtuZhsCzMsas6BYF3+HVRGsdNUmJynCzxybLyTYsfnidqskmHDbFEA8fRSmfyvO41jiOnBaWJqZF+eu9lK/vlmcu3mJuL956Wyf9WsPCOCSH4P33y4uFR0OPwfhJmi4CIpT4rndOAxXfmeWmXYcwWLnx6D/BXF+2xLntk145XOQHXRftyZxjEsfBj1KyYDBwTS3397B4GAaw3C862NjObLZMqlUiVyuwtKlCXI5g8nJAh0drSiKjK7LfOtbr5NMRkkkosgyNDWFuOuuTtasWcg99/QQiegUiwaW5bBx416effYQDzwgwtOCQY2lSxNs2dLHs88eIpMpe/ts2tSLIzl85+BP2Hl4P88c/AkVy2AoNc4Du79L0ajQGqvnL6/8NInoHIZS4zzR9zyarBLWA+iKyuLEWfzwFy9yftMCGsI1+DUfNYEo5zTMpWxWmMqnqA3GkSUZx3EomxXeHj1Cyagwnpti5+H9ZMt5GsK1HBrr51NLr6Gj/QK+9/pPOb95AWOpSXRZ9ux+W5Yv51gqxY1bt9I/M4MqSRiWdZqEe+PevZguadAei/Gdq6/mrNpaAqrK4qYmThaL3LdnDyeLRbYsX87HFy3ia1deCUDeMPjCiy/SPzPDxssvB/DCRPOmyc07dpB3O67fmZpiYX09imUhbdkiWGpdFyC5q0sA62pg2fHjMDYmgPULL8DQEJgmBIPwxBPirZ3Nip+TJ+HCC2F4WAB1RRHA2u/nf+vm9ll/5vorGB14l+PHjnL8+HGWLVvG008/zWc+8xmeffZZ7r33Xl5++eX/TwHrf8/2HnP9n22zi1B5RyR+120A/Wwh14JZVtsYBK3V3ecuUJoFuLdmQJ0jAkIr6d8LNKupqWFmZoZ0Ou0x0z09PR6bVA0m6unpIRgMsnPnTnp6egiHwyiKcho7FYlEqFQqXmBZleEuFAqoqsqePXs81vyDH/wg/f393uOy2Sz+UAgTKLqMdlDXkRCM9GvDwzSHw8yvqUGRZSzbpmiaXiBUWNfJlMvIrpd4c18fX+zqYiSbpbutjRu3bqUrmfTYwHu6u5lbU4Nl22iyACtVBrdomqed7/tvvcUl7e080NvLU//lv3BCVdkkSdyNALkFxGTzPsRE+Le/8/sxxOTXAl5DMNYNCAbJdl9i2f1dcfcrICbH7yICz6rhaLcjvNndzIad1SO83I8CkXKZ/lMY1uZwWLDSkkTBMLj3lVd4ZMUKL1SrZJrYiPAKTVHQFQXbcTjn8cf51U03MV0qeau7SxIJPnbuuYzlcp6UOahpXgDcefX1qLLMW+PjNEciPHCKEqD6mtzT08OZ4Tiym7ZUyVY86ahRMBh/a5zExQmKM0XMskm0NYpjOciaTH4iL9iw0Sy50RyJpQkUVfFYsvxknnKuTKQxIkLQigZaUCPUEMLIG6h+lfRAmr4tfSzfvNyTLo6/Nc7U4SkWXLkAf40fOa7Rn0oxkE6zJJFAlWU0WSZbqTCazTKay7E0kcAGTqRSfHX/fu5x2WzLcZjJZvm7f/xH1v23/4amKHxx0yZ++cor7Ni1i84lS7j2s5/lY9dcw28GBvjcqlVs37WLrx89yueXLmWqUKCrTfjEFUnI4cquHP+hK65gqljk3JoY2CalzAS+8BwkRUWSZRxLfG7McoGTR1+n/owlqHqQsd++StO5lyCrOjg2tmUy/s+9p0m5i6kxWs6/HNsykFQd2ygjazpGIYNRzKIFwoKprmkCZMyKyGWQkFA0H4XUGIFYg8eYNy5cjuM4DAwM0NDQgM/nY2ZmhgMHDrBy5Ups22ZkZISmpiZ0Xcj+q20D4+PjtLa2YpqmNwSOjY3R5AbmlctlNE1jYmKCtrY2b4zq7u4mk8kQCoUoFAq0tbVhGAaKonhMuSRJ6LqOaRbZseMmDh16lkWLPs4f/dHXkWUVwyh4Em9VDeD3C9bZti1KpRkMo0gmM0gy2Ylplti16046Om4jHG6mUskTCjW4snAJSZIZGOglGk3Q1/dVrrjiITQtiCzrzMz009u7ke7uDdTULKBUSmEYOXy+GLoeJl1MEYq10i9JbATuQjDQv0AA30nEolqV0Y4gGOZxd7xIIFjp6ji0BvgysyqZpxCZDtV9T1Xi9ANdCBBfHW/mI9huGQHiI4BaNIhVLC9EMD+ZJ7E0QWmm5KX9V5nrqx6/iuHXh2lY1ICRM/DFfIy9OcYPr/ohC9cs5Opnrmamf0YEkt3dLQLKWqPULKjBqlgomoJRNFB0BbNkikU4n5DBVo8rKzKSLOHYDlpAI5POEGoKUTSLvD7yOoubFgPg4PD2+NssTSzFtE0ODh8kGU0ymBlkcdNior4olmNxMn+SkB7y3oMBNUD/TD9juTFao61s6t3E1678GrIkIyER0kNUrAqqrFI0ipi2ScksUTSLDKQHuKj5IkayIx77fWbNXAKF40iHNsF5d0Fonuu5HpplpBfeI1K/c/2zQWWKD3InoHDCBc0p8M0RINnKu+FefsF2B1sFaDfSoEUFk507DG3XCRL5rQ1wwSYB4Cd7ofda6H5+9vxL/wayQ6fItRe4Eu1hiLYLCbptQWZQ+JklBJh2LOE/9kUhdVRIr31xQUBYLnOuR1z/ti1AuWPNPk6PzKaDS4oIPlN94u+q+rOtipvkXRTsd25IyLZlTRwXhDd65rAA3Us2QPwM4Zl+bZO4HpsPo33CY20WoZwCX43wTRsFccyGi6Aw4R5/qbgv2CiOkx8V57QqIoE92ChA9sH7BTMeaiFPDe/2p9i0SQSazZ9f4wWRVa9blk2pZBKJ6GQyFcJhnf7+2RC0trYYhmExNpb3GPD58+OYppB25/MGmiYTCGjese+9t4e2thi9vQO0tcWYMyfILbfs5Gtfu5KTJwvePs2JEFPmFN85+BM+ueRq4oEoj/zTDzwp+J0f+gSqrKApKn/thpQ99tG7aAzX8szBn/DnF19NQ7gGRVa49nt38j8+8RCbf/a33P7BP2Eqn+Z7r/+UG5ZeQzwQ4at7/jt/fvHVtMTq2fzK33LHhz7Bg7u/y4bL/4K3x96lNhAl4g8yJxRnKDWBpqjIskqmglDUJRLoisKnT5F6P+WGkimyzFG3pWNpayuaLHMilWKja1tbUFPjETXDp9j+Hr/qKuRTWO/1nZ1eKOnTq1efZml7bXiY8+rrCagqFcvii7t3c09PD+f4/UiZjADPmzcLVrq9HU6cmGWuh4bgfSJTA0kSjPT4OEQiAoyXSgJA53JCPn7rrXDmmbB3r2C9zz5b7Pe/c7Mt8b6uft7jZ4CsnCYL1zSNpqYm6urqvIft3r37tOv/t27vMdf/t2x2Rfi4scEYgdrbwBjCCyqrbmobBDtBOwOangJtgbi9+Bo4eRi7CcwBbGUOw8PDqKpKW1sb8Xgc0zRJp9P8+Mc/JpPJsGrVKi/ozDTN08LHQDDR6XQaEPVbVXZqz549pFIpdF1H13WPJVJVld7eXvr7++ns7GThwoUe6K4+bmZmxk0Zlrh1505UWWb9yy+Tr1Q4kU57lUijuZyXGClLEqPZLP3T06iyLOpoZBldURjL5Xjh8GEe3LePJQkR3XN3d/dpjHdrNIpt28iurKgaYArwi9FRGtzzSZLEf124kK+6dQ/jxSKbJIlnERPSMcR8IoGQbq9BeBpP/b0LwTzfjADCQ8xWZ51AMNxHEZLNd93rE+5zGQUuZjYc7WFm/dV+BLs0CTyJAOsO0BaL8fhVV9EajXqe64l8nqCm8egf/REOcLJQ4GgqxbodO7Bsm/FCgc9u3847U1MUDIN3br6ZgKZRHwwS1nW+uXIlf3bhhfhVlajPx6bLL8d2HNZt386xmRk6WlspmSZBTWNpayuj2Swfam8n4vMR0DTifj8PL19OWzSK7IBt2diGLWTdRZMdn9tBYbJAw6IGXrzlRfSwTiwZwyyavPiFF5k+Mo0e0pEUifx4nsYLGymeLCIpEoWpAltv2opRMIi1xtCCGuGmMFpII1gXxCpbjP5ilPRgmuxIlmW3LUMLaSg+BT2sk+xKcsGfXkDqRArFp2DaDo3hMF1tbaRKJYbSaeGVL5eJ+HwsSSR4fWQEy7ZFWEpnJw2uF+vm7dvRfT4+9cd/zEShQKZc5qPLlzM4MCDeT0ANENQ0FtXUoOk6ejhMR2sr3zh4kO62Niru69U/M8Nntm/3AtSylQqb9+3DQUKSVVR/hLF/fhWjmMWxTJBkJFlBVjXmzP+AYEglibp5FyHJKpZRZuTXr2BWijQt/CBmpUgxPUG85Ryazxcr9MX0BEYhjWOZ2EYFzR8hVJtAljWC8SYKM2MYpQyyoqH5Qig+EeQTrE0gKypmKUuwNgGOAJiJRALLsrBtm1gsxuWXX45pmuzcuZNwOIyqql59ViaTASCZFHJUWZYZHR31gLKu62SzWfbs2UM+n6fNXYSora1l5cqVxGIx2traKBQKJJNJUqkUL7744u/VdYkx0MeqVU9x550nWbXqCSyrQi43CjhcddXjxOPzKJVSjIy8jmmWKBZPoushdD1EJNLCtm1rKRQmWbXqWyLwavwtdD3I9PQRtm//DOn0APn8BInEUjQtzKpV30LXwxSL01hWEU0LcPjwC/T2bgJEyjrg1nZJ6OF6hiWJMMIuchYC3HYilDJVtUqV0TYRC3Pz3PHmAeAlTq/dijNbzYW7T717+aw7xixFZDxs/p3xJumefwQB2MeAiGUjySJEsAqsVZ+KP+5HD+leDd7Vz1yN4lNIdiXJj+fZc98esiNZkp1JFn18ESseXYFjO14gWe8DvQTrg2hBDatkMbR/iKkjUyiaQvpEml137BJjgSQxdHCIcLNI4N915y4BrIMakiIRaYhwNHWU10deZ1nrMsJ6mHwljyZrdCe7GcoM8frI63S3dZOIJriw8ULCephjM8fYN7CPuqCYLG7YvQHbEf7OifyEF3b28PKHCethJvITfGHnF3hn6h1kSWYgPcDPR3+OT/UxJzhHJI43Xoiu6Kex5hYyVmg+zpKnITRfTLj9zTCnA4LtIrRMCYpgMiUgGOupg5A7LgC2v16Ej1kiwR4zK76NtKgbFlbr1l1pbuiXBg1dMKdbhJkVR+DMm8XlazdCMCGAdd0SAawHnoWyK6uuPddlmF2fcdxlm8sZAepjc8V123Zl1IoLkB0h+Q7UzwaOSRIoGlde8UEuuGgJiy/upOeDl/PLN9+G3ChlE27+/Bc489yFLHrfEv7kzz4pQHpVHo4kQLbiE8DatoTcO9IqvNLZAQFw99wqnm+oBTq+DMEGcX6Pyd4k5ljNnYJZH39DsO+lk+IyPyIARiUtfq+/UMjZA/XiuHoEAo0CkCs+AUqyg+L8h5+Fnz8CkoJlw9BQhttv72BoKINlOWzZ0kdXVxKfT6VYNBgczBAIaNg2+P0qtu3wwAOz9V2SJDE9XfIY540b9zI4mOGdd6aoVES+x+Bghs9/fgft7SLEbO7cOAcODNHQEGJgIE0wqPHkk6tQVZkFC2p46qnV+P0qpmlTG4xy54c+QSLWiCar3PmhT7Dq3G4+tfQabMdmy8++j4TkhZSd37SAZw7+hD39bzBVSOPXfBiWydL2RdiOzQ1LP4Jf9fG913/qMeL5SpGdh/fzvdd/iixJ3HLJf0OTFe654i/QFJXGcC3TxQwRn0iPP5lPUROMEg9EuX/vXq597jkODg/jAI+uWMHHFy1iQ08PqiRxIpPhM9u20RaLkYzFWLd9O8fTaQYzGU/FV3KzaI7OzHDfnj2CaFm+nN6BgdNY72oo6Ybubo7NzLB5+XK6kkmmi0VaIhHWv/wyg5kMsizz0BVXUOP34ygKTjgsgHWVqS4WhSz8r/5KMNQLFgiW+uRJIQPntdEAAQAASURBVBk/fhz+8i8FIFcUkUnQ2ysAd0eHuN1xBIM9MSHsGf+7N0kSn6NqLZ77vbRnzx7Pb20YBoODg7z55pvez/8XgPW/Z3uPuf7PsP2uz1qph4lbft/LbefdOi7Xa60ucIM+JkCJw/jNXsCa2fBdDFMinU6TzWZpamqiXC7j8/kYGxsjEokQiUTYsWOHV8EVCAQYGhoiFosRCAQ8n3U1+VeWZbZu3crhw4dZs2aNV4dTreXRdZ2ZmRn6+vo8f7bhVkDt3LnTO49pmqQyGRpbW5EkyQO9p4ZRPL5yJalSifpQiIJh8IvRUepDIa8qKhmNMuZWSv1qbIzWaJSAqvLy0aN8+JxzUCQJ23E89rEzmaTkyqZbIhEePXDAY3VlScJxHPYPDdEciXgVD49edRUTgQCbJIm7EL5GmdkanIL78unM5rUriKqubcAbnF5zcwC4BhGK9k3gc8wyTY+5+/yCWeb6XkTfrJ/ZgCLNPY8OKOUyx6emaInF8CkKqiRxZGqKB/r6eGTFCibyeR7o7eXJVas8D9Nv163jod5ebl6yhLmut6gaDgdCbp93XzNFlvGfcn00m2U8n6clEmFTby93d3cz7NZVOMCYe3+X26FtOw5+UyJ1NMW+zfu44qErRM1OwUDWZFRdZeboDA4OB752gCseugLVryIpkhvCJQZ7z2edjJEZzjBzdIZFH18kurHLJoomQswkRaKSq2CbNhNvT5DsTIr3pixhFky0sIZjOlgVC2RQfSqGCllTSBhDmkbJsgi43nSRHJwnous44AWiPOCueB8YGuJPLriAimWRdt+rN/3FXxCrqeG2v/orxt99lz9ZswbHcZg8eZKLPv1pvrVhA83hMLbjMFkoMOiu0FeZ8Qk3LC3mSsJiuopPlhh++2XSo4e9MDLNH3Y7qDWvoksLRFD1AGO/fZXGc3oAB8eyUH0BzHIJRa+mjkru/kE0fxRJlkXPdTGLourYtul6uN/vhZsZxdzpjLYDRjmHogUoZk5SIuj5nKuf+2qmw9DQEPF4nLa2NgYGBvjxj3/MRz/6UZLJpFhos22GhoYIBoMekAYYHBykoaEBTdOwLIvx8XEaGxu9cezUcefUIMZEIsHw8DBtbW0ukDWpVDKUyxlCIZG9PTjYRzjcQl3dGTiOTT4/gaoGyOcn8fnChEL1gMzWrZ/m0KFnWbhwDatWPYlhFPD5RNr30NABnnvuWs4992NcfvmD+P1xKpUs2ezIaXVdsVgr6bS4jMcXUC6nkSQZTQsiSQrHhg8Sab+UmKJSQgDoalyNgmCXN3E6o70EsYC33t3nq8AWxEKe62BllNmshqPMZkZUx5b5CAXNMQSAvxcB2PcC5wN3IGTnzwMfqpjIRdNjrvc/vJ/ue7uJt8XBwVOShBvCyJqwnQy/NkyoPkRhqiCS/C0Ho2iw685ddK7vRAtoIojQhtxYjn2bT8ljCOns+MIOlty8hFh7jNJMCX/cTylVwrZsjr50lGRXktxYjuaLmjGDJn3jfV71VrUy67Xh17ig8QJCuvD/V4PNor4oYT3Mqyde9Xza6zvXU90eOfAIW5Zvwa/6TwsqO1k4yQVPXsCHz/4w37rqWxwYOuA9fkP3BubXzKd/pp8Heh9gQ/cGglqQOcE5lMwSG3Zv4G9WPQa5d10G+24hyc71i/7rxVuEdNuxhWzb34RXLTXZB3uvEUFkS74tpOC/eQAWbhDsdyAhksPfvFOkjUuSeBPMvAm9HxVAur4LJvcJxjrxYVHzhSoY9EMbBXN9aqBYOCFAeuaEYK4lRcxVHGeWjYbZ5GxZFaxulemWJPHcU0dJjR0lPm8JKD5+/P98ly9/9Sl+9UYft955N6bl8I1HHkZyTMb636Rpwftc37U+G5aW6ofiNNQsEOD21FCyK54U+8g6DL8K/lrBxiV6hLz8ja/CJVtma8B2fwZ6HoTC+KwfO36GqPVquEjs5zHVLnttlmZ912MHBdD2xwT4HtkH9YuhNEUhcAZH+jMeU93SEvEAtLCoGPzqV+NcdFEzY2N5Nm3ayxNPXMXgYPUxPYRCKul0mba2GK+9Nuwx0b/4xSidnUnGx/Pcd98eurqSfOxj5zI2lmPz5j6++MUuRkayLF2aQNcVtwKsAV1X2LBhN1/5yoeI1Kps3P0MF7Wew+LE2fzNwX/khqXXkIjVIyHxy5HDDKXGufLsDn491k88ECHmD1E0KkzkpmkI13p+7bpQDE3RPLJiJDXJZGGGRU1noCkqk/kZwnoAxWXCZUnGsi2mCmkGU+PUBCJ8/41t3LD0GpqicxhOTdAQrWM4W2Q4k2FxU9NpakXLtnEQ+SX1oRBt0Shf2LnztBrNm906TNMNG/3s9u2nebdLpklAVT3FX9WvbTsOB4eHWdbaynA2S1jT+NLPfsb7mpu5csECavx+/KpKwTCImCbhUglGRgTAvvdekQRuGJDPCyb6rrtE3dbIiJB6l8uzQWalkpB8NzbO1tHlciIE7dZboaVFMN0+n7j837k51dwD97P63uZt7wWa/d+w/W7yeNO33Te773Qvt5WBsU+fst+TMPY5IQ3X2sA4AVMbKYXu4I8/8df85rf/jGEYzJs3j/vvv5/R0VGee+45fvGLX+Dz+YhEIjzwwAO0traeNmmtVCr09/dz3nnneeFAnZ2d1NXVYZompVKJYDDoSc6j0Sg1NTUAXprv4OAgkUiEeDwuQi5SKdLpNIlEQkhEEwlyp/Qj5ysVcobBA+6AF1RVQrruARvbcegbHOSjzz7L89ddJ1K/MxkvyCxXqeB35Ts+VfXCL/oGB1nU0EDeMGgICdlf3+AgiXBYSMVPCfj6H4cO0RqN0pFMIgOarmPLMrZ7/6mMt41gkfPMyiyDCK9jPbMy8DKiS7YeAYglZtN+q5PaOxDsdbd7f1Uu7mc2HA1EWFoFIQn1A5TLGKbJaDbrdTM2RyK0P/ooJ77wBaZLJXYfPeoBwFSpxBw3mKMqi3p0hUjqrb4OfrcHu/qFVk0i1xQF2ZWXf27HDt7X3MyKBQuoD4peZMtN86xKzY/NzDCez/PBhiTbbtxKsitJsjvpSbxVn0p2RHRRGwUDX1T4sB3LoZKveODYNm2GDgwRnBMkP5GnrVukfwMCoPuEL9ssmSAhJuE1flS/Crbotj41aKmaPpwZyhBLxgieHSdbqXhBZLIrqc9XKuRNU4SjdHYyv7YWw7Us/MmPf8zffeQjdLW1UXST7u/s7ORH3/oWO3fs4Ilnn+WRn/+c9N/9Hauvvpq9sRh/mkzypx/+MN0bNvDDtWuxbJvJQoF0qUTM7z8tkXS+K2mzHIdMIU/cyBCIzsGyDBRFBP3IikZ+engW8MabsIwyDja5yRMEaxKeXFwAYwG8R3+zh/ozlqD5I4z8ejcNZ3XgWBZ6KMbI27tpPKcH2zLITR735OPDb+9izvz3Y5ZL+KNzsC1DgHDTQNH9mDZs377jtECzF198kebmZu96KpXywg8jkdNbFapBi7quEwqFyOfzhMNhbNvGMAxeeeUVLr/8cjRN8zIbQiHRdW6apnd7lTWvdmlXGWJJMpiaeodcboxoNEFv7wNex7VpFtm7d1ayDY4LnA/S3HwRhcIEe/eKIDNVDRIM1gHSKceWsW2LdPoE0WgrhcIkr756P62tHZx77kfRtCCDg30kk51I7uRlZuYo2ewIra3LXE+2hKkFKEoyByWJi9zxoAqC5zJrIwHhiZ5AAG0fQgFzvjtWbADuZzZVfBz4GrPAewLBapuIdPHbEIBadseVL7q3tyCY6yogH6+YdEwVkVWZHTfv4NCzh7j5yM3oIV101Ed9VAoVbMMm3BRGkiUsw6I0UyI4J4hZMtm9YTeX3X+ZF3DmOA47b91Jx60dZIYzhBpCxNpiXptANBklfSJN76ZZ+XisNUa0PUp+PM/M0RmSnUmhHNZMSpS8RO8q2E1GkxTNImO5sdMk3nd13sVZdWdhOib7BvZx7XPXeoD5s9s/S1eyi65kF5v7NvPFri/SEGrgtpduY0PPBobSQzRHmpkXn4ciK4xkR9hzbA9XzL+C+lA9E/kJljyzhL/7yN+RjCXZvG8zD13xEKZt0hqIopzsE0nfWo1gpK2yAMhIontZrxGeaaskgG/dEjfJ25WBa2FRqeVYQvrtq4N/fhgW/ZXwJYfahHxcjwvWd6JXMNVVqXllRpwz3O4Gj7mbrAswXZV2++e4qd+O2C8zANE2MQl37NkUcPWUqqByRviVkU7ZXxHhaHoE0sf43rPbePTJ77Hvn35Gc2sbQ8eOEI3XifCx4knBnGshIffODUN0rvA654bF+UCA7WoomewTgPni9QLs7rlFhJCpQcFggwDZ1aCzoBtwuucWAdDP/bgA6I4lFgcU3e3Prhc92UvuFs/HLAq/9/tvB3+NuJ51n4Pih+G9ZGo/xKdv3OqFj33nO1fT3y+k2+vXd9LcHCES0TEMm/37B7n22uf4r/91Id/85kpM08EwLEzTZmQky+bNfZ6UvLd3gLq6APPm1Xj3h0Lic3Rq2Nnjj68kENDcui6DBx4Q561uk1M53t9RT1D3M5GbZv+Jt/jn8ePcedmfcTI3Q9gXRJYkfjN+zAO/n172ERojdUgSfOWlZ9h5eD+rzu3m3uU3eOnhc4Jx6kIxZorZ00H4smuoCUTZ8rPv86ml15CMN+A4ULEMHtj93dM6tO/f9Qw/H/wN//ipb+AA70xN8ciBAzx0xRWEdZ3egQE6k0kG0mk29fby1KpVnHB/39DTwxk1NZi2LTI9du7kkRUrvPtPDQqtzi/9qkpA09AVhYl8ntpAgJJpcueuXdzR2cncWMxLD68Gxt7w05/y/csvx/e5z8Ftt8G8eaKOwrJEInixKCTi4+MCMD/44KxMvKlJgPCTJyEUElVeVVn5nDkicXzfPvjyl8X8f84cEWim//8rz+m97X9le08W/n/FpgvGOrJGsNWyX9R6/W5ImuR39/s4NHxN3FZ7K0hBsAugNgnArS3gLz71Sfbv38+hQ4e4+uqruemmmzh06BDz58/nzTff5ODBg/z5n/85f/qnf0oymfQkmNlslnA4zHnnnYeqqmQyGQ4fPkwul2NmZoadO3eiux/24eFhQqGQJ/GsSj6np6cJh8OnTXCDwSCtra2USiUikQimbTOSzXr9yH5VJaRpPL16NWfU1NDk+k0yp3QeLm5q4h/WrGFpIkFA01iSSPDa8DBHZ2bIVioUTZPBTMYLv5jI572As6+8+ipF06RkmlzU3MyZdXUcT6f57PbtnEinUWWZa887j2Q0yme2beNEOo0ty+QkiQIC9B4HPo2Y3KoIJtuPkGZuQcjCNyIklccQwWYaompLRwDtLAKgTwJ1CIl3HBF+5nMfG3Ivf3dI1RET7KD7u64oBFQV3ym9jT5F4fnrrmMsl6N/epo/ueACT25fNAxOFgqULYugpnkBWiPZLPe/+ip+d1GiKg+3bBsJ8Kkqmix7SeuPrFjBx849FwcoWxapYhGfquJTFCbzeSzbJurzsTSRQFYlujd0s2DFAnwRH4klwqc5c2yGPX+5R3TY5g0RUvTuDNvXbRc90ctacWxH1Ppc2Ei0NUr7Je3i/+BOznMjObbeuJVypkx2NMvwwWH8NX5KMyVSx1Mggx7SibRE6LqrC9Wv0nhhI7mxHMnOJPG5cbFg4jhEfT4USWIyn2cyn6cxHMbnBovFfD5kScK0bS5qbub1G26gNRrlpq1bGXE7rz+xfj07tm7luZ/8hBnT5J6LLuJnO3aw5o//mEva2jhjwQK6Ozu51F3YuHnHDsK6zllz5tAUDmM6Dh2trd4CUNk00SSJOaEwwZpmTKMkwsiMkqjccmwhz65KuFNj2LaJqocI18/l5NHX3SCz11D1AEYxh6RoNJ1zCWZJWCCaz70UVQui+oI4DjQvvAzLKFHJp4R8fOFlOED9GUswy0WCtS2Y5YJ4HuUCsqox8uvdSJJ8WqCZYRisXLmSCy64wMt4yGQyHDp0iEwmQy6XY8eOHWSzWUqlEolEgmg0immaDAwM4Pf7PTZbURQuu+wystks+Xwe213EsW2bfD5PPp+nUqmwdetW77Y9e/aQTqcZGBhwAxVtcrkxEoklZDLDHD78gtdxvXfvRq+32nEsKpUclmXQ1taNpgWJx+exYsWjRKNthMONOI6D7AY55fMTpFLHkWWFbHaEVOo4Pl+UlSu/ycKFf+weq0Jrawf5/Els28JxbDKZIcLhJrZtW8vMTD+GJNEvSRyUJJYgwsaq1pD73c/+CeBTCAb6TERDwQIEwE4gFvVuAd6HkHF/DvHl34xgue90j1Nwb38TkUzezmwi+BeBH7jn1t1xpsu93lCx2HXnLtKDaVY8uoJ1v11HuClMdjTLq/e7IXb1IcLNYWRVJn0izcjrIyIfYSKP6ldZvnk5WlBj+ug0A70D2KbNZfdfxr7N+0h2JpE1meHXhkksSQgFiyTRt6WPtkvaCLeEaetuI9QcQlZkwo1hmhY3Md0/zcC+AWzJxsbmkvZLSEaTXNJ2CVv6tiBJEpqskYwm6Ux2MpId4YXDLzCaG+Vo6ig3bb2J1mgrz1/3PBu6N6DKKvf03MOVC65kc99mnj30LA/ue5BMOSN6rPduoiPZwfz4fHRZ51jqGPe/ej8fv+DjhPQQo7lRwnqYd25+h662LgbTg3S0djCWG+OeV+5BkjWcuqUi7dsqCIl2YRACzaLySa8RcnCrIACbv17UbOWPwfTPRdq1bYGREd9KczogsgAuelQw3bIKb9wsgPjUa4LhbugW5/Ck5UXXn50T588fP2XV2BKss79OsNSpo24VliKAsm0IoGobEG4WaeK2JfazLcEqZ06I+6tAvJIBxccn/vyTJC+8jC9tfJj//u3H6T96jNq6OjZ95T4+sKyDng9/kt2vHXEl5i7QDbfMerCjSXEsxxChZOGE22t9VHihD24U/5+OvxKA3B8TINkxTw86E18is93Vl2wRUvFdN4oAN2TBWBcnBZDODUOwfjZI7ecPC+CdHRQMdmlGnCNxCbIssX69CB+7664uLMth0yYh+d68uY90uoRp2nzmM9tobY3y/PPXcdttHciyxPR0AUWRCQY1Nm/u82Titu2QSER5+OEDjI3lCARUWlujJBIRmppCPPnkKsbHb+epp1ahaQq27VBXF/Sk5ps399HeHueRRw7Q1BQmqPspGCUArjhzKXd+6BMMpyd4ou95TuZSBDQ/F7acxfzahAg3izWQKWax7dk+61su+W9eEFpNIMLJQgpd1fjOwZ9QE4jMhqYd+Am5coGdh/fznYM/wbJtfjn8z2jKrBz9hqXXoEgyNyy9hvtWrOVYKoXlOGzu6xMVW8BoLseFjY0YlsWWvj66kkksx/F6r0cyGfJuU4oDfPXKK9EUhfZYjCdXrSLk9lW/cPgww5kM9aEQUZ+P14aHyZTL5CoV1m7b5n2fP9DbC5LEZtciuKm3F9tx2NDdjaSqcMcdQgZeKsG774ou63xeSMElSbDVIyMizGzTJrj4YiH3VlVxXyZzuqw8k4HlywXQjsWE3/rgQcF4v7f9QW7vgev/DNu/J3m82n2tzYfGx8A6CWNrRRem2gjWCIx/Doyj+P0aK1euwufzUSwWef/73082m2XhwoVs2LCBXC7H8PAwf/RHf8TY2BimaXre6epkNZPJsHXrViKRiCe1zGQyXHbZZYJx2LmTxsZGotGo54c8NYE8Go2yc+dOZmZmACELf/vtt/H7/WSzWWRVZSyX4/aODsZyOcK6TsEwuHHrVt6dmfHUYCF3ZbF/eprRbJautjZ8qkrBTXKsD4VEV3M4jN895guHD7Opt5eY348NbO7rY0kiwWg2yy07dzKazeIAfheUfrWvz6tjaAiF6EomefTAAUAwP7cgJrUDzHofLWYTeD+GANdpBHNkInzXTYhJbgYxqa1GNsmIkKA3ERPhBoTP8t/KhiwC7yB82u+6tx1LpTxP0Zbly9Fkme62NgYzGRpCIcqmiU9RhFc4FCKs67w+PExNIMBba9eiub71jZddJhYQUikODA1RNk1UWcawbfoGB8m6X1x+VUWRZSYLBe7bs0f4u3WdG7duJVupUDAMDg4PEw8EhNzedMiOZIk0R9DDOsWpovBohjSWP7wcPawTagrR2tGKGlBZdusy8pN5BnoHsCoWyY4khckCY2+OUclVyI3lRKVb1EeoKUTXF7vwRXzE2+K0X9KOrMoE5wQJN4axTVvU9igy0bYo0+9OIysykZYIg32DmGXxikwWCmzYvRvLcagPhZhXU0PZNOmfnqa7rY26YJAjU1PcuWuXAJuhEEOZDC8cPswjBw4w88or8Pbb/HT7dvD7ubCpiZKmgabxjzt3cs055/Bmfz+/fOMNFl9wASFNY9Pll3sLGJlymV+OjmI7DgFNI1upkC6VyFQqiNx3x0v9NopZKoU0I7/ejWMZ2LbJyKFXUH0B4ce2TVRfiPozlhJvOZfm8z6IL1xLqC4h0sKPHMAfbQAkJEWjUsww+ps9GMUMSBJGMYc/Wo9plHBsk+LMGFogSqg2IYLxXI+3pKhIisqc+R9wk7Z1amtrWbVqFZqmUS6X2bFjB+Fw2FOsXH/99bS1tZFOpzl8+DDZbBZd1ykWi8iyTCQSobGxkZ07d5JOp2loaGDHjh0Ui0V8Ph+GYVAqlQiFQti2TTAY9BjvK664QoAxNzeir6+PxsZGFEXBsiAabWXHjpuJRlu57rrn6em5F1nW6O7ewMKFa+jqugtJUsjnJxkbexPHsZEkmVxuglxuAllWqFRygIPjWAwO7scwCqiqH9Ms0dbWQzw+F12PYZplz7c9MvIG6fQJwuEGhob2MzNznNbWpezb96AL6h/AlFUGJZl6hNS76DjcjbCL3INgrTciJNoBREd1L0IuPgG8ivD238Osh3oJgnm+hdnFv6pixo/wc0cR1pWse44ngO3A3QiFTAHYjwhPTOoKXXd1ecn9IAIK8+N5WjvEBDg3msMsmtiWzb7N+0S1liYz/e406YE0I2+MYJZM4m1xGi9sZOctOylOFVn5zZUAaAGNUGOIkTdGCM4JIskSKx9byTnXnENmKMNA7wCSLGFbNkhQTpfJjeYINYaQHSE5fWfqHW7ZeQtdbV1sWb4FXdbRFR2f6qNklljctJh/WPMPLG1dysa9GwVg7t3E0talzAnOoWAUaI+1k4gk2NC9gTUL13Bvz73E/XHWLFzDhp4N7B/cz2BmENMxBdhu7UBCIqgFifli+FU/Y7kxD7hfd951PHLgEb7YcRtS7hjS1EEBopUgNH4Igi2ih7k4LsCvvx4KI6KuKzgX6jsF+K5bIjzChQHIvisYW4DpNwSolBXxuOEX4NADIvjskOs1ru8GNSqk4b91v8HUgKj+UvyzbLRRmO3Ozo0IEGobAtRKsvgpTgvgi+wmfrtAW5IFI1693zYF8FU0sMp8/3vfY/DEce7/67/mrr/ciGmUOHFigPPet4w3Dh7gG49+nT/+9B2Mj08IBl3xuX5yt47ItsRztCpu0NuwC36HoH0FfPBR8bwDdWLh4Ge3iDRvB8Fqn/txsU+VWY+2w2XfdBPIXfD9xhaxki6rQiL+y2+4FWASfOB2AcaX3ivub14qALyRh103Qepd9PIoLS0RvvzlS2luDqOqEhs2dHtgu6bGj2navPDCYTZt6qWrq42hoQzpdJm6uiCSBLlcxQPo997bg6rKnHFGDU8/vZp58+Ls3z/EwECaUslkYCDD2rXbMAybEyfS3HjjVt55ZwpJgnvv7WHr1ut5/PGr8PsVnnhiFQvOrMHBYTI3wxN9zzOVT6PICn5F488vvpr6SA35SpG3R48wmB7nr1/6NgOpMWpDMcayU0zkpvni5Z8kqPt5xgXQ339jG+c3LUBXNG5Yeg0zxawHwj+97COEfUFWnN3BDUuvQZIk4oEIf/3St5kqpPn8JdcznpumbBnMCce5MHEuA+k0+XKZDT09XHfeeYzlcty3Zw/j+TwBTWOL64s+MDREazTK1w4c4ILGRsbyeW7cupUT6TS6a3fbNzjIkelp9g4McPcpbSc3bt3KkelpFjU0oMnyv+jBnszn2dDdzZqFC9nQ3Y3jOMyvqUF1HME8+3yCVX7ggVmQ3NAAx47BTTcJ8P388wIwv/668FMfPw6VigDQ69fDmjWiziseh+ZmwWyHQvD224IBd6sm39v+8Lb3wPX/6a0aVFatpvjd69XbqACuDPxfekzln4V03DgKkiOSwrPPiktMUclVrebCxnEgm80yPT3Nk08+ydVXX82ll16KZVmk02lCoRC33347V155Jblcjj179pBMJmlra6NcLp9WxdXW1oaqqiQSCSYnJwFYvny5CJbZtYtUKoXjOHR1dbFw4UJ6enoYHh72Hl+pVFixYgULFixAVVUhC7UsLmpuZm4sRmcyiSLLbHFXCTfu3YvlOER0/fdCzizbxrRtNrkVVA/v309nMkn/zAxrt22jNRrl+euuY0NPD68PD1M0DJ5atYpPXHghyViM9Z2dtMZilCwLRZK4/vzzeWzlSiSgf2aGL+zcSVcyySMrVmDz+wFAH0dMNkFMSO9HAOQwUIuQUyruvg8iJrnVyptRBOOtI5LElyAmxTpiwpx33wX/2lZhltHaBJinVHFt7usjpGlULAsHuLS9nbnxOJqikIhEOKO2FsVNwu5uayNVLFITCKDLMksTCX4zOUnRNElEo1zY2MjrIyP0uwxrs7twkSqXReK449ASDrP5iisYyWZJl0o8e+gQ2UqF4WyWCxsbmSoIR7qkSjQtbsKxHRzb8VguPaiTH8+z9cat5EZzWGWLmaMz1MyvoWZuDa0drRRniiBBfG5ceDYdR/iwHTGx33XHLmRFppKvMLh/EMcW/uqhA0PkxsREf8fNOzxWO9QY8sLTmt7XxM5bd2JZNl/t6+P+yy7DchcScpUKhm3T0dpKYyiELMs8cuAAHa2tOI7DaC7HRc3N/MOaNdx63nl8ecMG+kdHufKKK/joZZfx4csvZ0FdHd/7wQ/YfN99XNnVxYY//VPmXHYZ577vfeRdKfnRmRn6BgcBaAqHWbdjB8dTKWzHocH1ZasSFGbGaD73Us689JMEaxOc7BestGVWmHz3IJnxfqxK0QXACsWZUfRgjJZFV2BWioz8ejeWUUaSZJrOu1R4/2ZGkCTQgzHvmI5lEKxLCCCZT2GU8gRqmzGKWfLTw1QKKSqFFL5QHNUXwrFMpo79AkmSmJmZIZ/Pe+xzoVBg2bJlRCIR2traUBSFWCzGwMAAiUSCW265hWRSeOKr7Pb27dvJ5/MkEglv3GhrayMUChEKhdA0DV3XmZ6eZnR01HtMKpXCsizy+TwrV67ktttuY9WqVciyzIsvvgg4XpVWb+8m2tq6UNUAhlGkpmYBq1c/DUg4jommBWlsvJB8fpxyOUMwWEdt7Tz3E+hQKExSqWRpaFhEJjPkerMdZmb6efHFL2DbBrKsMj3dTzY7RkPD+S4rbhMKNbB//xYkSaWn5x4WLlxDd/cGVNtkiWPzsPvZvlOSmO+OM23uOHM3wvtcANYhbCaD7uVriEXAFmbDFqsgu7oYGHTHl3oEKL8RsWC4zL1vHWLhbjFChi65Y8xR99i/AuLz4oTmhLzPcXYkS7IryXnXnUduLOeFl8mKzPIty8kMZTwmOtIcoXVZK6pfpXCyINQpHa2kB9NkBjNsvXErZsHEH/MTbhJ1eVNHpgChPvFFfIQaQuxYt4P0QFqEmCUitF/STt0ZddiyTbqc9tjmB3ofIKgFsbEpmkX6p/t5c+xNQlqIzmQnASXAPd33CMDcvYETqRPc9tJt+FU/k/lJymaZoBbkmyu/SUANENJDPLnqSeqD9VzUfBFzgnM4WTjJ4ysf508u+BOylSzvTr/LLTtvYSA9wFBmyKvyqh7n3LoFSIWBUxjkgvA+//wWwTArflHBVZoUINjICcb5tbWiTquSEqA80CRk5b+4Rbwta94vPNmZI1BzIax8Cz7wOOh18P6viwV4swCH7oc5XbD4ITfJuwjI4tx2WYBjLegCZ0eAT1/cBbOaAMqOA7Vni5ouSRIsswe0jwrQ23ChAMRWGYqp2SRxd/uzT3yCn+3ZQ6K1HVmW+fgfXwtIvO99i5nXnuTtX/3SDULzuf7u3/lWzA6KRO9wq2CRw60ikAnEcxh7TYDzi24V9xfGYXifqMsqTgo2O/WuYL1tS/wty78NH90uWOxKDgpjAsg3dwjW23EEG778KXG55zaxuBGsF2y4G5qmGxPEgiZNTUJ5t379LhYsEMD4zDNryecrSJLEW2+t5d57RS7GkSPTjIxkufHGrZimzb33vgLA449fxbx5cW6+eTtHjkzT2zsAQHNzhImJPJKEF3qWzVZOY8gnJvLMmxdn6dJWDh4cIputUC6bFIoVLNv2wsdOFlIMpcYZTE+gyDKbX/lbJnMznDEnyd++vpXFibPwKQLg/e3rP+Xmf3iIB3d/F9kNPFt1bjd3fugTaIoKjsNkfobaQJT6cA1fXnEjzdE5hPQAX1p+Ay2xegzL4vtvbGPn4f38zcF/RJFkmiNzMC2TB3d/D7BZ2trKWxMT1AcC6Krq1VRO5PPYbtXnRD7Pn/z4xwxlMjy1ejURXWfzvn10JZP4VRXHtQQuTSR4eP9+rn3uOYYzGbra2k4D0tlKBc2tGV2zcCH39PRQFwjQHosR9/tpiUR4ctUqFtTWcnRmhs/v2IGtqjiFgmCrKxW4+24Bku+6S7xPNm6cBdvd3UISfu21gp2+/36RBJ7Pw1lnwVNPCRAuSeKnWBT3LV4sGO4jR8Q53tv+4Lb3PNf/J7ffDSrTz3QDyarXzxH7/Zv7VGB0LQQ6IPJRIRk3+t0qrntP81uL6/MpGzK5fIHHH3+crVu38tOf/pRgMMjo6CiJRIK7776bH/7wh7z66qv85je/8WqzVq9eTaVSIZfLebVcsVjM80wuX76cYrHohRUNDg4yODjIBz/4QSH3dit1stmsV/UVCAQoFAr09vZy1VVXMTw8TFNbG5lymbFczqttmhMMcuvOndzV1cXZdXVYjsN4Lkfc7ydVKlHj9/M/Dh1ibjxOWyzGkDtYVgfSjz77LB8++2yeXr2a3oEBrn3uOX69di1BXfc8xW+Nj3NBYyM+RUFTFCouyLYcxwu/WLNwIU+vXo2s6xyTZS/sZz6Csc4zW1HzEwRz9BRiJcvNciWKmMTqnF6R86R7jAlmvZQWQiaeRbDdcQRD9btblbnehGDI55smx6am2Lh3r/if1dbybjWoo7ubtlgMy3HQZFn0UBsGA5kMSxMJFFlmqlAgbxginKyri/Z4fDbAy3G4fdcunj10iK3XX09rNOr5uufX1FAyTdKlEnWuh7t3YIDFTU2ENI0j09Ns7uvj7u5u5gYilE/kvEAz1a8iKzJmxeSl217i7R+8zaKPL+Kqx64SvlnDQgtomGWTUqokPJ2ZMqEGIZeWVZnsSBY9rJMbz6EHdSKJCNP90+z/6n4vNM02bCRFInU8hR4WacZmxUQPzh6vnC1TsS30xiCm43BwaIhEJOKF6FV90G2xGLWBAJosM5jJsLmvj7s6OznLfY9W32vPX3cdFzU3M5LN8siBA2xevpyAK6lfu20bf//b33pe+Go1yOeWLCHm93Pfnj1e8MrDV16J3+2Or5gGUQUR+mdWUFShahn9zR6azxMp4EYxRyBWj2VWvN5pACQZyyhhmxU0XxjLEvfLiopRynpebWQFCQcHCaOY8cLMzHKJUF0Co5RDVjRKmWmCNQ2nD3GmgS3rWJbl1WCVSiXi8TiyLGMYBi+//DJdXV2oqkqpVKJQKHgBi9Vqrl27dnmBZK2trViWher+D06tEwyFQrz44ot0dHRw8OBBWltbPQuLZVnkcjn27dvHFVdcgc/nczMi8pjmGHv3bqSr6y7C4WZs22J8/FckEktRVT+OY2MYeVQ1QDo9QDY77Hmiy+UMmhZiZqafvr7NdHauJxptRZJkVDWA45hs3XoTyWQX7e2X0tu7iY6O28nnJ13f9klqa890u7Ntl+02qFQyKIoPWZax9TDvSgobJckLMiwjFuQkd2ypB27i90MQw4gFvgpigS/njiP9iMXBu4CzEQoaHfgsp1d2VYB/Ava511vccamAYLkPAJfkyuT7Z+jd1Evn+k4G9w0yuG+Q1U+vBhBBZw0h/HE/oYYQkiwx0DtAsC7IwW8cZPmW5Si6glW22LV+F8tuXUa0NYqkSGLh65THDvYNkjqRYuF1C5E1mcF9g0QTUdKDaX60+kdcv/V6mi9qxrHF3EbWZOSwTEUSSg/DMrAcizfH3mRZ6zIm8hPIkuwx03e9fBd3dN5Be6ydbDlL2SpTG6ilYlWI6BEsx2IyP0lQD5ItZ2kMNWI5FhWrwlvjb3FR80WiH9v1dt/Tcw9NoSZue+k2liSWcOWCK0lEEmTKGUJaCAeHqcIUC6KNSFZJyLYHnoW2NbDoy7DtPNFl7VVybYDwfOHprUzD2EsQPhOCzYKRXniPAN3549D6Ubd6Kyz817UXQWlMHOeiR6E8KcLKzl0PUwdEgFp9t/Bmv7leAO3SBPzmQVj2ffGhrlZiSYobNOII0OpV9ixwWeRT9qtkBACXFOFZrlZnOQ6p6UkKk/20nPl+sMr8ZMcr3Pz5Wxg8epgVq67hls99hqtWXc2x/iNc3HkJv/r56yQSLYJBrx4HxAJBftytNqqHl2+a9Uxf/gTgesMlCQqTYmFA8QnJ9kifYJpHDwoJ+dhrkD4OiS4Bjt0qLfQIlNPib5E1sTBhl8Vxc2PwxmboeUgcUw2IH7MsQs4iScgNk5/zQSom9PUNcv75DdTWBiiXTQ4eHKa+PsTDD+/36rUcByoVi5mZIn6/SiCgoesKpZLJa68Nk0xGqa0N8KtfjVNfH6StLcYXvrCT22/vYHIy7x3v0UdXMD6e54EHernnnh4WLBAVYAMDaZYsEQFnACg2FcpMFdJ8//WtbLjiL5jMzRDU/Xz91R/x8pGDPPzh27iw5SwAhlMTfPf1F7hh2TW0ROv55fBhmiJzaI014CCIjpJR5tFXf8ifX3w18UCER1/9Ifdc8SmG0xM844aftcYbsBwHRZIZSo/zzIGf8MklH2ZOKE5ID/CLod8SD0Rojs5BU3xULJt1O3ZwSVsbXW1tDGcyp+XsaLLM/qEhWqJRhtJpL1R11K0Bvbu7m4NDQ3zk3HORJYmDQ0O0x2LMjce9MLO7urpoCYcJuTbHimV59q9qPetZdXVe5s+NW7dySVsbnzrrLPy33go33yxCy/x+AaCjURFAls+L/upIRDDUR48KwP3II8KXvWnTbAhaKjVb6XXPPcLDXQ1L+6d/Eh7sZ54Rx3pv+w/d3vNc/0FvFQF4s8+KS+d3rlP+d+6jQ8MWCHaJFHHjsKjkavwWKHNg7BaRMN7wqLiOhWxP8OSTT/L3f//3rFu3zpNutre38+Mf/5itW7fyla98hWQySXd3t8c4y7KMpmnU1tayevVqrwO7KvmupgBXpZfz58+nq6uLUEiksY6MjGCaJqFQiOXLl5PJZFBVlb6+PpLJJJZl0dbWhu2CvpCui5qEffsIqCpfvvRSWsJhNDf9usbv5zWXgfarKvvdQXJBTQ2Lm5o4MjXFjVu3kohEeGvtWh5buZKKZdEWi/Hhs8+mIRw+rcarI5lkNJtl/9AQR2dm+Kxb4+BTFO7p6eHjixbx6IoVFE0TJIkk8C1EPc04Yq7hR3iqx4FrEcBbuDDFpPRO4DBi4tvEbFXXvQggbbjHS7v73YgA5WHxSp/GYFcQk+IqaF8API5IIR9TVebF43z50kt5bWgI85SKicFMhhOup/zI9DRBXSegaYJVLhaREPLm5nCYS9raGM3lGEinuW/PHk+mf093N1uvv56utjZPBj2UyXAslSJVKhH3++kbHOTI1BSLm5oIu+FzE/k8Dy9fTjIaxS8p7N24l8QSEUSTOp5i+83bcSyHld9cyfVbr2f5luWkB9MM9g0iyQIYFqeKBOtEiNnM0RnMoolZMqnkKrz6lVcpnCxQM1+E6FVyFRGUtiRBbizHYN8g2dEs2z+73evDVQOq8IiOZNnzl3tIn0gz8fYEekBnIJNh3fbtnsVAlWXyhsEtO3dyYWMjiUiEmM+HT1VJRqN8qL2dmN+PYduUXQ//22vXsrS1FUWSCOk6t3V04DgOhmVh2DaPrVzJP6xZw2gux/2vvsrHzj2Xb65cSW0gQMzn496eHrZefz3fXLnSqz07kU7zi7FxJEXHKOWZeKcPo5RHUjQSi5Yjqzp6IEKwLoFRznte6OoquFnKMvFOH5o/fPqwJMkYxRyqL0AhNYZRTDP89ssYxYybBt6CrPoI1iWw3SR1CYlgXTNGKUthRtRYIcmMHxbVMdlslq1bt2IYBvF4nFwux+DgIIqisGzZMvbt20coFGL//v00NDR4GQ+5XA5d1+nu7ua6664jGo26bLNoJzBN0eedTCbRNA1N01i5ciV+v5/ly5ezaJFIjc/n80iShKqq3r6maTIyMoKuB4jH53HppV9mYKCXXbvuRFE0QqF6hocPUqlkmZ5+l9HRX2DbJpFIE+FwM9u2rWVq6h0AbNugr28zhw49S1/fZhRFR1VFD69lGXR3b2DBgis9hnz//odJJJai6xHmzDkbTfPj84Xx+aIoio6iaBQKk26V1yA+x+YcSeIZBBD2IxbYYu64EEeA39uZlYsPuGON444zZyJyHJoQ6plGZsFyNT3cOmU8uhuxCNgOfBKx8NfkvkVmEEGMX0B0bWu2Q9+WPpJdSfSQzsI/XkjPvT0YBQOrYpFYmiA/kccoGgz0DjDTL8LG9j+8n9YOkZ9QmCzgOA6tHa30be5D0RWwEfVeE3mMgsHWG7cSaYlwzofPYftntzN9ZJqGRQ2kB9MkliZYuGYhrUtbKafLyJosqrgkidx4joH0AGu3rWUwM4iDw9GZoxwYOkBjqJGCWWDttrWM5cZYkljCV/u+SsWqEPWL1PAvvPgFxvPjZCtZZEmmMdzIWHaMd6ffxbRNLMdClVW6k93oik5nspOH9z/Ms4eeZePejWiKxkNXPERXsov79tzHsdQxglqQ/pl+1m5bS97IY9iWyFP5wOMCTJ//JeG9bltzeiXWIZcpLY3C2/eJOq2GHlHRdd5dgvluuBTm/on4xjl0v5CU13cKYFs9jpEWwHrgWZFG3v5xsY9VFu+IOR2iF/s3D4p9cIREOjs42x1d5WbCp1T2wO/vp/gEQ+04ItTMcYRkHId0rsA1f/YFFi2+iAuXfpDHHnucrc//AAl48usPseVr32DR4vdxzUc/ylOPf51EMulKzCvi73FscR5Zg1AzGEXBQC/d4HqmNwuWv5IVjLNREAz82EGxKPDyWvG8FZ/4O165WVyefd0s6/z6ZlGzVf2DLUMw3kYOxl4XEvn8sGDDFR1O/losMFRyQqrfcBFE26k0XkomZyLLEq2tUdavf5ljx2ZwHFi6NMHDD+932eV9AJTLFgcODFEoGEiSxIEDQxw9OsPNN++gvj7E4GCGbLZCa2uUs86qw+9XuffeHqamCrzvfc3MnSuquN56a5yDB4f41reuYu7cOKZp09ISobu7jTfeGGFgIE2hYFCuGHxz7/+DbdtsuOIvGMlM8u0DP0aSZL54+Sd5/s820xiu4/5dzzCWOcnJQsrzTpeMMuc0zKUpWoeDw1B6gvt3PcPJfIrzm0VdV0D3c+8Vn8KwTE82/ozrtX5r5B1y5QKJaANfWn4DEvDIP/0A27FpCNfy/Te2MZVP4+DgU1UeX7mS+TU11AeDdLe1zariikWKpkl3WxtD6TTXPvccd+7aRUjTPI/0A729rFm4kNFslnXbt9MajTI3Hmckm2Ukm2XzFVeQiEQI6zr5SsWbCw6k07w2PMzqH/2Ih1y7YKZcpmgYPLpiBR8991wmKhWcb3xDyLYPHID+fkgkROXWsWMisOy++8QlCMD82GPwq18JNvqpp0RSeG+v8GhXvdcbNwqQPjIigPeZZ8KXviTk5+9tf3Dbe8z1f+Tmybt1Ibs6jbm+12Wl35m97jtbjOWn7XPGKcz1KVVcv5sUPufLoNQJn3X1ttrbYPpr0PQkm7/6ND/44Q955plnaGlpIZ/P09zczI9+9CM2b97M9u3bvaqaXC5HsVgkEAh44Lm7u5tQKMTo6CjJZBLTNNm9ezcrVqzAcRyvsisajSLLMqlUyqviicVi5PN5dF33qnIqlQrZbNZjwyPxOEfcFcT1nZ00RyLkKxUaQiE0WVS5HJmeZuPevdze0cFkPk93WxuyJKG5XuCKZXFgaMhjDZOxGBv37mVDdzftsRhF0ySs6+QqFUK6juGy1FPFIlGfT9R7BYO0u5VU1U/KsVSKjXv38szHPkbOZQGr8KSEkGEmgGFEwreDkGgOIKTegwjgvQS8lHHTfVwrAhjnEJJwEIz0b4AOhGy8CtIVBJu9gdkE4Co77iAAfahS8WqjFEmi4oaQqbJMtlLhH377W/YPDXFPTw+t0SjvTE156Zcj2SwXNDYS1DSPXf3B2297zH3ZsrBs22P93xwb4+JEQjC8biXVHR0dxP1+agMBfIripa+XTZODw8Nc0dzO1DtT6G6y6Z779ojk8K4kfZv76Lmnh/j8OJVsBdsSFVqRlohICHbTvRsvbCQ/kfcAdHogTeFkgcYLGimny+gRXXhB3XRw27L52Zd+RssHWjj3o+eih3UGegdIXJxg+7rtHHr2EAvXLGTZbcuQG/z80pimPhRiMp/3WP2127bRlUyKhR/3/zWUydAUDjO/pobBTIaNe/eyvrOTpnCYsK6jStJpyoF5LsP/xsgIi5uaCGoak/k8Na4ffapQIO73E1BVTMehYBhs2L2bTZdfjirLvDEywqVtSXQJCjMjqL4AeiAGkkRhZtRNCs+7QWP5UxK+L8NB8m6LtZyDY1vYloGsaCiaD8e2GPn1bubMfz8nj/7cq/lqWbScSj7lJo0vRfOHsSpFFD2AJMmY5QKWWWLq2C9pOvcSHNvGlnUGBwepr6/H7z89OcBy+zplWca2bWzbRlVVBgcHee655zj77LNZvXq1V6u1fft2Ojo6POa7mhguy7JXCbhz504vPdwwDK9aMJPJ0NraiqIozMzMnKa0icdDpFL99PY+QE/PPUSjSbZtW0tHxx3EYu04joVtW+ze/UW6utaTTg/yox+tZuHCNVx66ZcJBOrI5Ubp7d1ET8+91NTMxzCKZLMjBIN16HrYlccfPeUcbeh6EEX5FzI0ANOsYFllVNX3r+5T/UYBsaA3gLCcqAh/dpWV/pceXUEszfqYbRlwgLfdY1QrujYhgHYjwr5SreQqIMauClCTK2Omy+TGcqd9bnPjOfSAUINoYY2JtycI1AY48LUDXPWtq8gOZwk1hcgMZjjwiKjb00M6RtHAKBoEa4NsvWkrHbd3sP/h/Rx+4TDXPX8drctaefsHbzP82jA99/YQaYlgG8JrXV0wQxL2kHK6jJbU6B3upSHUQNwfpzZQi2mbTOQnSEQSfGb7Z3j20LOsWbiGL1/6ZeL+OBP5CTb1buKLnV+kIdyAX/XjU8RE1rAN+gb7TmOnA2qAmkANM8UZr/N6U+8mr4ILYDg7zO6ju5lfM5+OZAeT+UnSpTQxf4x5kSaU/DGkQxsF+xxoFtJsvUYAtfwxAXQX3gvhuaKT2sgJT7aDqNk6d72QhSOL1G+9BvIn4Mhj8P5vCDbZLELqLQGkHVP0NfvrRJ1U6k2o/YDLyFYAW8jQD22Eju8LNvdUhtpBgFtZngXaEm411in7lTPCn13JuR5rY9bbbORna7twQXe4ReyjaAK4hluFj1l2GdZyFhTVZYZLLoPtfjuO9MGcRadUgcmzyd3Vaq1wqwhW+/nDp1R2PTXLdp+9BpY/LYB4JS0875LsBsYZpx8r2AiTv4JEt9j/1TvhfZ8X8vjUu+5+d0HNWeQrGhVDhC7edJNIDf/4xxfxxBOrADh6VCSHP/roCiYnC2zcuJfbb+9gaqrARRc1I8sSb7wxwokTKT760XPx+VT6+2f45jcP8uCDV6AoMoGAQj5vMDKS44EHern33h5aW6OUSkI1uGHDbjZtuhzAqwA7dGiSpUtbkVUHVBvLtrAdm4f3/B3nNy9gccvZfO/1n3LD0msYz01z8z88xIqzO7j78k/ywO7vcsOya2iM1DGcmuB7r//Uu72a9v2ZzmsxLBO/5iPiC6IqKiPpCb7jVn35NR81wSgS8KuRd6gP1VIXijJVyNASncNfv/Rt71j3XbmWfncOVq3KMm0bVZYpmqbHKp9RV0e+UvHmJ6osM5LLsWnvXjb09NAcCvG5F1/0FGGPrVyJAxRNk1+NjXFxSwt+VcVyWenfrfS6p6eHtmjUSwy/u7ubM2tqkCsV/MeOIW3cCLffLtjozk4YGBAs9l/+pQDLa9bA448L33S5LECybYNrmWN8XDDShYJgs++6SwDufftEX7ZhiL5s2xbe7vdSw/9Dt/equP5Qtt+TgJ8zC7Apz9Zq/e716mP/zX0KUHnXPf5doDQLX7ZTAGMIAkvBmgGnxNBwiuQZlzBv3jyCwSC5XI7a2lr27dtHNBqlsbGR2tpastkswWCQbdu2EYlECIVCDA4OMjMzw/z58z2Z98jICE1NTd5kdteuXXR1dREOh3nsscf41Kc+xauvvkoikeC8884DYNeuXSxbtoyamhqvLqfakb127Vq0UIhPnzKgVasS5sXjHnO47hSZ9mMrVxLWdQ8cj7sdzhu6uwlqGvWhEPtcee6Hzz6bL196Ka8cO0ZPWxtNkYjX1+xXVYZdVndpays+RWEkmyXq8xFxgXi1OzH9pS9hyTI2AtSWEJPP2xEy7qUIgFtNAZ+DmJAGmAXb1X1uQST5XokA1cOIJN8RhCdyA6fLxF8HLmC2UmfM3a8qT68AqmFgmSaKLAQq1UWB6mLFr8bGuLCpiYiuY7vg+1QA/dXly5nI539Pll/9ParrFE3TY6kDqorpet5v2bmTJYkE17mv9527dnFXZyeNkQi6K7cfSKU4PzoHx7RFD7UsUc4IxsmxHGxLBI7pQR1JkVA0BcdxePHzL/L2D95m4ZqFrHx8JbIqFlusisXIGyM0LW5CC2ngwGDfII0XNKKFhBS8lHKruHwqM8dmyAxmSCxJICkiXE2SJYYODhFri6EGVALJsLfIs6G7mzPcGqyjqRQ+ReHd6Wkaw2HaYjF0Nw29NhDgCy++yJJEwuvArIaR3bR1Ky8cPsxba9dSEwgwUywyJxikaJqs37WL9Z2dJGMxr+4s74bAVeVuFctiPJfjIRfQL6wTE2+jnDut01p0VxfxR+uxKkVOHn2DxnN6UFQNR5LBNimmxvBF6gWYtkwKqTFUXwhfuEaw6sUMRjF7Sn91M5KsMPL2y6RGfkv7Bz7qyc0VVaeYniRY08jIr18hWNNCsCaBWc7jiyeYmZkhk8kQjUbRNA2/3+/V9FWrt1RVpVKpeJV/VVDsOA6RSARVVb16rVKphN/vR3X9c6dWcNm27fVet7S0iE7l4WGCwSD79++np6fHk6DHYjFeeukl2tpaWbjwLCRJ1Gg5jkM6fcL1Xhfo7d1EZ+d6Bgf3MTi4j5UrH2fHjnWujLwFXQ9j2yb5/Bi6HnEXDSP89Kc3sHr100iSQip1jHR6gERiKZoWRFHUfxU0/69uFXf8kRDAWmEWOP9bZ6gA/4wIRVuPYMB/CXwDMQ7tdseUJYi08DMR3uvq2HQ30Fw0iJZMdnxuB4klCRZcuYBQk0junnpnahY4h3WssoUkS6LvWpZwLIftN29n2a3LiLXFKKVLwubhiH5so2CQGRQVedmRLE2Lm7xFMwAtpJE5kSE9lCbaGvWk6ZGWCI7t8NJtL7HimRUczR9lKDNEMppkMDPI0talBNQA+Uoey7FIl9PEfDFP+n3j1ht54fALnLjlBDIyB4cP0hZtY37NfLKVLAEtQN9gH3XBOmr8NRSMAlv6trB5+WZkZPyanyMnjxAPxGkINVAwCmzYvYGvrfgalm15x2uMNOJX/ARlG3Vyn/BLh9oBWSSDB9tE+NjML0RVlqwJyfehTbDwbigMiyTwk/uEPLxm8axc+831cO6dEGyHwnH47Vfh/d90gShC/u04AmzXLRFge+o1cc7wPAHGAbBBCQnAmxsSTK9ZEQDZNt3ea5f9dWwxR8kNz95mlU/pt3YBciVzeqXWqftWe7I9uXk9xOeL51rJisdJslDhpPoFGEcSz0WSxT4gmHc9JmTxu244vft6pE+c87VNguWOznXBdAYCDWLBwMjDq+sFiFaD4kcLCLb7VFCeOSGOc/F64d8e2SfAebVv+yNbIdJKPnA27/anCAY1amr8HDw4zEUXNTM5WWDz5n08+ODlKIpMOKwzPJzlpZf6ee21Yb71ravI5w3S6TJNTSEKBZPRUVHHdffd3bS3xzh+PMWDD+7jnnu6mTevhmLRoFSyCARURkdzbNy497Tarc2b+1i/vpPW1ijhsEaxaJLOlrBCOZ45KGTZdcEYiiyTKeXZf+Itfj3az50f+gQP7P4uf3bxaiK+EDUBMX6XTYPNP/tbdh7ez2MfvYvGcC3PHPwJn172EVqi9diOTcEo8fVXf8RfXPxfqA1HUWUVWZIwLJNfj/VTH6yhOTYHwzIJaj6KZoWAqnN8ZtQD9/FgDZ978SVv7vfU6tUcHBqiORJh8759PHj55SiyTFjXOZ5Kcb9LqMyNxzlZKDAnGKR3YIDjqRTLWlvZ3NfH1668kpOFwu/VclVtbpZtc+vOnXxu6VLPkigxKwc/9bmEikW0tWtnAfRjjwkArQrfOceOCRb6jjtEQviCBQIoz58v/NOf+xx0dAgftt8vHmea4rG33gq33AJtbaAoIgBt40YhGT/nnPcA9n/g9gcBriVJ+gbwYYTC7H2O47z5P7v939r+c4Lr3+mqbn5GeKP/1f0rgOH6lqpszyms9+/uW3lHgG21HjG1ksApCvDt+a03gLYAnBJlQ6ZiauzcuZNDhw6xaNEirrrqKizLYnh4mHA4zNDQEPF4nLa2Ng80L1++nHw+77HXmUzG66uuTm4rlQrj4+MkEgnhn25q8qShBw4c4IorrsC2bSYmJkgkEsjyrDuh2mk7k05TiUbZ6PZaz3Pl57I78f2nEyeoD4V4eP9+7u3p8dLAZaDkMtZ/8uMf89oNN1ATCHBwaMjz5LRGozSEQgTdpEVFkjBs22MKbUCVJBz3voPDw8wJBjmrrg7A64D+zsc+RkaSyCDkk0Hg+wiA3IKY5Frgge9qxVa9+3v1NsndJwe8BVzs3jfB6X7sLUAKMeFd5h6/iJhA9yIk6M8jJOUbgWfKZSzbFiy2LDOczbLT9fLe09NDWNeRJYmxXI5HDhxgy/LlHpNf3W5xFxI+vmgRT6xahe0yz7lKhYl8nqFMxmOpq/2QtYEAZcvCdhxyrtogWy7j1zTGs1mGslm6kklsIGBJVDIVz+csyeL1zY/nhRc6pGEWTLKjWY8RC9YH2XnLTrrv6aZmfg22YWOWTMbfGiexJIGsyuTGc/hjAkQjIcLMJOEczk/kCcQDOLaDWTExcga+mA89rJMdzuKL+fBFfZQzZcygzNpdO7z/wdfcCg/Nfc/2nwK8h9z31oKaGrKVipCXuSC4PRZDkiSOp1IMZTIkYzECqur5tpvDYXoHB1lQU0MyGmU4m6UzmQRgMp9nplTiq/v3s6Gnh6F0mtU/+hFrFi7kb65ejV+WMMuF3wPWwZpmQMKsFLDNCqovhCQrQk5dLmJbFbRgXIwxDkiyjIPobLfMCqXMSYLxRsEQ2RbF1Cj+aAOyopKfHiFYm/BY7DnzL0YPRnFsMRm3zAqVfArVF0DSI2zbLnzQ+XyeaDRKJpMhkUh4IHnnzp2sXLnSq9GSXXWKN8S5vurGRtFBWwXVlmWxa9cuOjs7PZBeXexTVZVCoeCB8G3btvH2229z/fXXE4vF2LdvH8uXL3f3yxIM6phmkXI5jc8Xd9lwH1u33sihQ896LLVpFonH5+M4FoZRZGLibZLJzt/bLxJpJp0+QV3d2a6P+t9mov9nWxVAK4gFOf2U2w8zq4zREGNR9T6d/znAziFqvJ5FBDI+jEgNLwEHEeNJm3ssDTHujCIqBxsQkvRErkxxLIce0nFsh0q2gi8muum33bTNU6PkxnJEW6P0benj8gcvRwtqKJqCbdnYps3wwWGiySjBuiAv3fYSXV/sQo/ohBuFNsixHSq5Ci/f9TLLbl1G3Vl1Hji//MHLMXIG/S/1C0b7nh4AvnXet7jx2I3c+Ys7efDyB1FkBcu2+OLuL7K+az1z43MZSA3gU33Uh+qRkLAdm5JZ4s2xN0lEE2zcu5E7Ou6gPd6OLMkcHDrIRc0XAXigvFApEA/EkSWZA0MHSEQSBLQABaPApt5NrO9cL967ssqm3k3c3nE7Nf4awnoYB4cGXwTFzCFJYh4tvXknnP15N8Csc5ZNlnXRTe2fI2TjelwA4vAZoq/aKorr/mY42QuT+2DJ0yIk7exbITJffPFYBQE+tagAtYVh8VPfifAnA6Vxcb8aFPVevkYBaCtZmD4swsmyg7/vtwaEjMBltO2KGGcUdy5jG+LvkBCs9vRhkeIdnXs6C+4B7ah4fOaEANKyJn6PzRPnAeG5Ht0PzcvEYzx2WbDGWCXhqY60u7VdWcF8y7oIQAs1in1KM0Ja7vmnLXE8XxzG3oDWHgH6D24UdV3RdgGi+1+Aq593z+8y6dlhIRdPdMHwftJ1H6K3d+A0b/W8eXFuuOGnXhf100+v5vjxlNd93dISIRzWeeedKR555ABbtiwnENDYt2+Aa699jg9/+Gyeemq1x4Rv3Xo9F13UzOholtHRHEuXtjIzU+SCC57kYx87l299axUjI7PA/YknVpHLVUinyzQnA7w1/g61wSgRX5DaYIyiUeaRf/oBf/r+VbTE6gHQZIVfjhymKTzHA8Oaonq91i2RempCUXC/UU7mUnz74I/55MUfFu/1cC0ODu9MnmBOqIbvHPwJn/jAKqL+EEWjIjqwl15Dc3QOiiwLPzYSb468wxlz2hnNl4QCrKeH5nAY9XfUZNX5jK4o/D+//jX7h4a495JLyFcqLKip4Xg6zdcPHOCRFSu875kqSD68bh1HpmfVamfW1lIyTQGyqwu5hsFYLsdYLuflzXypp4d5NTUETBPpyBGkU73TU1MCOBeLAjDH4/DGGyKYLBQSQNkwxGUVfG/YIB77zjtCGn733VBXB2+9BUuWiEFiehpeegleew2eeOI97/V/4PaH4rl+HqGQPfHvvP3/ju20VG/99K5q6X/ik7ArYE0Jpnvs07O/j35KXJ6aJA5ARQBoewbGbgLjmLi5eg7Po70J7CwYAyiKWLnu7Ozk+uuvZ+XKlTiOQ7FYpLGxkXw+z3nnnUc0GmXr1q1ks1kSiQTlctnzVPf29nrMd9VHDTA5OUlzczOSJNHe3i66RDWNvr4+EokEuVyOl19+mWg06rFRVdlnMplk3759/P1zz5EMh/nypZey5/hxPrNtG2XTRJYkbOD9zc3U+v08tXo1jeEwE7kciiTRn0rxWddD89oNN1AwTe586SU6WltJxmJc2t7Ogtpaoj4fx1Mpr9rrwNAQIV33+ph1ReGNkRFOpNNc3NLC5r4+bDcYbX5NDU+vXo2DYIz7EZNODfFmvg/xhrYQ7FEfwhdtITyPOUT6bgZ3joMAyTFEBc7r7uNiCFnnduDb7vUgArj34bntuQXhezzqnn8YwZ4DDKTTHBgawrBtmiMR/uzCC/nmypXE/X4iuk7E56MlEuG2jg5s1z+UdrsTw7rOoytW8Nt163hs5UqOzcxw49atHEulUCSJR92E7GQ0yvrOTh7Zv5+Y38/rIyNEdJ2wros0bUki6vOhyzLtNTV0JpNkKxXWv/QSOJAdzTJzdEYkfQOSLILGAMEkqhIHHjnAoWcPsXfjXhRdYeVjK6lZUOPV/ah+lcZFjeTH81SyFfSgzo6bd1DJV5g5NsNA7wBm2USSJMKNYSzDQtZlZEUGCdSAimM7hJvDqH7VSx73+dXT/gdj+Txrt22jf2YGBxjKZLi9o4MR1+/lU1Wvxu3UDkwHMCyLkWyW7rY26oNB5gSDTBWLXNjYyHg+z/L581na2kpA01jW2ortOIzlcoR0nZOFgjjW3r0sSSRYs3AhX+rp8Xq4bdtk5NevnAasJVnBKGWZPHIAPRhHccPMbNtG9QXQ/BGMYobCzLgI7CoXcCwDs1zALBeoFGaE59qt9qqCc6NcIBBrQJIkry/bLOcxSjlGf7MHs1JA9bv92+USiqKxYsUKampqaG9vJxKJeAtv1YDDyy67DIDp6WmGhoY8uXi5XKZcLnsp4fl8nl27dmGaJpZlCY9ua6vXjz0yMuJ5qi3LQtd1RkZGSKVSrFy5knXr1tHe3s6+fftIJBJks1kKhQLhcNAFNTavvno/+fw4quonn5/w6rh6eu4lGm0lFGpk585bcRybXbtuJxptQZZnE767uu7C748jy5oHrAFUVcfni/wvA2vTrFCwLTKOwwTCQlJEKFZAgOAh4EJmF+vKwBSwFsFK/+43xqmbjvBZfxwRghZAjGm3uMdMuPsZCDtLDqGqaUUsANYARV1BC+kiSPCUZHBJcnvsr1xA3+Y+QvUhejf1klgiPNhD+4e8yruR10dILEmgBTTK2TKHnj3E/of3e7V55UyZF295EUmS+KOv/xGRlgg4YBQNlm9ZTvFk0bOVXPHQFfhr/PjjfhZ9fBGx5hhblm9hqjjFL0Z/gU/1ceuyW9m8bzO2Y+NTfeSNPDdtvYnjqeMYlvAKV7uob++4nbg/znhunHXb11Efqhdp446NhIRf9TMnNAdd0TEsgwsbL2Q4O0xDqIFNvZt44fALjOXGWFC7gKHMEC8cfoGH9z9MfageRVIYy44hAxI2VNLick4H/PZhwSjbhgB4Jw9A7hhXfuJBLuhew+Ku1fQsXcgvT2gQaGLuGedx9gXLWHzV3Sy+7M/4H69H4AOPiRdw8RYBSif7xJtECQqgjOMCzEGoWSRqvN642ZWkRxFLv5KQmEuukUnRhexZ1gUgDtQLNttxhHRbVsRxU0fF8zZLLikgib9FUgSQTfULYF97tgCpuOnfVcZc9Yn70/3icXpYsNySJEC2Y4vjpPsFYx1shOE+8Xe+vlmwxvlRcf/udYKpjs0VDHVhHHZ/VtwXqJvdx8hDblAEmxXGxfMJNgpWvGExXk3Xh74BQ3vF+ZZuEMA63CqOWRgXLL8eEv+XXTdBpAVVkejpaSMa9dHVlWTz5n3YtsOGDd18/OOL+PrXVwDQ3BzmQx9qZ2Iij9+vYhgWjzxygCVLEoyMZLnppq0kEqIH+557epAkuOeeHtasWcjSpa2k02XGx/NceGEjtm3T1BRmePhWnnhiFZWKRX//NN3dSbZsWS4+eyNZ7r//VRRZpiFcy9++vpWiUeGXw4eZzM1wfvMCThZSjGen2PjydxjKTPC+xNnUR2rIVYo89Mr3GEyN8+uxfhrDtdSEhMT7wd3fE77tgz/20scVWWHzz2ZTx79zSmVXTSA624F98Ccosky+UuJkboacUWJh0wICeoA5wSBfvvRS6ly7mSLLrO/s5MoFC7xq1ZFsls9u305XWxtbli8nEYlwVl0d4/k89cEg31y5koFMhhu3bqVgGNzT08OahQtpiURojUZ5eP9+WqNR6kMhBjMZjrrzxRPpNJoss7mvj2ufe46hTIanV6+mNRrl8MmTFIpFpKEhuO02AaT7++HOO4W82++HSy4RQWWdneLzsm+f2GffPiEPnzcPvvlN4beuVGY911/9qmCmly4Vl2Njwrvd1QVbtrznvf4D2/5DZeGSJB0Hrvldhvpfu/1f2/5TMNf/kgwc+D0597/42DzYJRj/rADF834LJ+/711lvuwJ2BsbXne65dsqgtgtpuJ0FOQZyEAp9mPpFFCtBdF0k+Q4NDXmMUjgcpq6uDsdxGBgY8LyPl156KT73A1z1SudyOcLhsOd9fOWVVzy/YzVsqAqg0+k0iqKwZ88eDh06xPXXX09zc7Pnta76uEH4Jq9YsYIBV55zb08PC2predf1Wd/T00N9MMgtrkz5jJoaKpbFTdu2nZbofePWrazv7ESRZU8m3u6mZJ+a/v1Vl7UdTKcZdBOzdVVl38AAy1pbGcxkaAwG0dx+RJ+qgs/HhCQRR/TBLnZfjn8AViAYnRmEHLyE6K2+GMH8/ADBPk+4j6vKN3MI1sjC0x+QZVaCeQ9i8ptCBAotQ6yQ5RBAfIt7zE3A0+UyBwYHWZIQ02PVZVtN20aXZUzHwXYcbtu5k1uWLRNJmdPTjOZyLEkkCKqqSD93mew3x8a46oc/9FhsmGXx7+7uZm4sxslCgcZwmJzr9QbBmmuKgirLHJma4mtuUnZU1lAqjpBuXyiAcd/mPrrv7ibaFiUzkKH3AeGtDs4RTFb3hm4GegeIzxW91VXJ6fIty9GCmveRkGSJ6SPTxNpjFKeLlNIlCpMF2rrbBEP22jCJpYlZtqwtSqQxAjIMHxwm1hYjmoxi6hJHM4JtXtraykyxyAVPPsmHzz6bZ66+2vv7H10hJkVVf5ciy6If3H3vzo3HGc/l8KsqJ4tFhl2We8iVewfc5GuA/lRK+MJcS0Pc78evqnx+xw42XX45IU3zFpn8EsiOhWmUyE0ep5SeoGnhhwSXI0F+agR/pA5Z1bEqBRRfCGyLQmoMLRDBKGbxRwUbUfVcy6rOyNu7aDirA1UPMvLr3aRHD9P+gY+gBcJMvvuaYKpDcRzTwLIEKz76692kRn5LrPlsms69BFlWcRwbW9I8RczvMsoAuVzO67pWFIVUKkU2m6W1tdVTtViWhSzLWJaFaYpFkqrs+1QWW1EUJEmi4r5nq5Jx0zQJBAJedsSpIWfBoI9M5ih79248Tfr9wQ/+FeVyFr+/hlBoDiBhWWUURUeSFOExN0tIkoIsq+Tz4/h8UVTVhySp6LrgjwVjXfFAtWVVkGUF27bc4DPd3cfAcUxkWcNxbHcfA1vxc0TR2CxJbEHkOxjueFFVxVTtItXshiRCDvYu8Aiio/pf4zRcjRQOwrfdCEwjshsk4CGELWUOcBtCOn4WogWhHsF0bwDOypTBtsmP5T32+KrHr/KUI+kTaU/WregKjuWABMOvCbY6UBtg1+276NnQQ7QtytCBIVGxZzuYZVN4qgFf1Idt2gwdGCLSEhGVX51JkUheH6IwVfAeJ8mSCFULWxTsArlKjrg/zhsjb7C4aTF+1Y9pm/hVPyPZEXKVHGE9TGO4EcMyCKpB3p15V3inezYwlB7i2ueu5fnrnqe7rRvbsSmbZRwc3hx7kw+0fABVVikYBSKuPcC0TSQkimaRO3fdyZ2ddzKUGaI91s68+DxMR3xPxlQFKfOO6Jk+d71IBy+NC3l27ij8dgssfhCUAKl0nnhYhre+xI/fWciXv/pdfrVjM3M7buQnf/8/WLxwPqR+BbUXz75LFL+YK0iKSLiW/eAYghGXVLGfY0H5pMsqK/DmXYLtDi8QgWngeqzdiM6qRLvqhXbcRO6qj9oqQW5UgFHbEP7pqjS8khH3++ICrMOsf1qP4DHSdkWEiVVybmCaIwA3iH2rzHndQthzq/A715wh/OHZAZc13gc/vRYWfFjIuHFg9IDwZkuKAO3DvcJ7XpwUwBpHsPCqX/jAX38IPviIuP/gJliywZXIt0FsvnieL6+dZbAT3QLwv/wZ+O0P4Ow1FD/4HY4czXsS7ZaWCIGAiqqKca5Usjh4cIjm5jBNTREkCW65ZScbNnTT0BAinS5z3317PJb7qadW8/rrwyxZkkBRJLLZCuGwjmnaaJqM4X5mjh2bYXQ0R2trlE2bernjjg7icT8NDSEkSWLfvgHOO6+e2kadr+ya9Tf/6QdW8d/f2MZnOq+lJhBl0+6/8e774uWf5MHd3+XPL76aN0cO8+bwO97+d1/+SXyqxlBqgvHcNI3hOsZzUyxuOYu3Ro8wkp7ksjMvRld1Si4z/sklH6Y11shgauy0FPGB1Dh/c/Af+Yul/4VkrBEbocKrNmp8/Y/+iOcOHeLqs89GlWXG83l0RfEaNqpzwZP5PEHXOlhVn1VtcKcq84Dfk3qblsW6HTtOuy1fqXDXyy+zvquLplCI6VKJ/ulpPlBfT8PAgGCuH3tMAOl4XFzOmSMWhk6cED7q9etFeFmxKPZ57TUh+R4ZgaYmwVwfPSr2feQREYI2OCgA9swMXHABfPjD8OSTggF/Txb+H7b9oTDX/z9tkiTdJknSUPUnl8v9n35K/46t8vup3rIuQPH/FFhXoNIPxQNQd7cAynJMsN2JrdD4OKCc3nMt6yCHTmHG74L8Lph6ADDAmhDg3JoEZAh2Y5lFKpUKqVSK7du3EwqFyGQyHhOdSqUYHBwkmUxyxx13sGrVKs8vWSgU2LVrF+Vy2fM45vMir3rJkiXk83m2bt1KJpPBcRyvcicUChGJRLz08SoTfmpndqlUQtM0rrrqKvrfeQc9k+Hbq1dz9pw52Lbt9TZv3LuXlNufvHHvXgxXSrq+s5M1CxdyV1cXqixzjwtsHnBTsjf19mI6DiXT9LoLN3R3o8oytuMwmMlQHwqxbscOjqVSdCaTaIpCMhIhV6lQtiyGMhn6BgdREAzSa8AHEAm+dwJdCIA8g2B1+hCAdxGCsR4CPoHwLnYiphDTiIlxADiOqNQ55t4XQrDVlyAAdr17vCYEM/Wu+9bpEO8MfO5zKANdySQD6TRrt20jW6lwLJVi7bZtvDszQ+/AAAPpNPdfdhk+VfUY5iWJBKlSiUylwpGpKW7ZuZPxfJ6uZJI1Cxfy4OWXc3RmhuFsli19fV53pCLLNIbDSEBQ04i6CzGDmQyf27GDXKXC/JoaHnFD78olg+HXhmnrbkMLaOTGchx+4TC9D/SCDb0P9HL4hcNkhjLoYZ2rv301sfYY5//X82nracMyLHJjOS7beJnnz7QMi/xEHtu0CTeHefELL2IWTeJtcVqXtVLOlNnxuR0iYfhEmp237KTxwkaiLVFkXaY4VaTxwkbUgIqEhGXbHit9slAgrOv8w5o13NXVJfrU3feVIkmMZLPct2cPI9ksfkVhQTzurWh/fscOCoZB1O+nKRTikvZ2Wt3O8PW7dpGtVDBtG8txGDkleT1vGNy8YwdHUykevvJKAPKGgWHb9E9NUTRNLwk8WJOg6bwPYhTT5KeHcWybYE0zpew0jm0ia37BTBsl/NF6z0ctKxpmpcDEO31YRhEkifozlqLqQZBkWs6/nLkXf4RgbQJJVgnWtDB9/JcASKom6r8ch+aFl9H+gY9Qf8ZSSpkpl8HSSKVSDA0NeUC4CqyHh4fJ5XKoqkooFGJ4eBjbtonH47S0tDA4OMjU1JTnoTYMA9u22b17N5qm0dLSQqlU8jq0AQYHBz1gDSIoTdd1TNNkaGgIv99PsVj07CzhcBiw2Lt3o5f0PX/+cnp67iUUasTnixION2IYRWzbQpZ1crlxKpWcC4BVVNWHLCsEArUoio5tW643vEK5nKFYnGJwcB+WVcI0i+RyY0xNHeGnP/0UU1P/TKVSwLLKmGaRgYFepqffxTSLTE8f4ac//TRlbAYliU0IYF12xxbDHR8c93NvuWNRAyLTwUaEmbnfGGT4fQa7gmC4q0vVjQjJ933Myr+fRSzWZZjtxbYRKpmquqYR8XKnB9JM909z/vXns/KxlSLh+9NbmT4yjRbWaOtpQ9EUitNFsuNZr+daC2hUchWhTtm0F1mVaVrcxNQ7U6LrfiQnkr9lial3pti2dhvh5jBaSKOtuw1JkWjrbiM+L07LxS3Ylk3hZAHHdtBCGoqpEFADhPUw08VplrUuI6gFkZC8kLKYL0ZzpJkHex+kaBTRZI2KXSGkhXjh8Ats2ruJJYklvLX2LZYmljKRn2AwPcjPR3+OJmssTSzl1p23MpAeQJXFgvKx1DHWblvL0Zmj+FU/Gy/bKDqu27poj7dzZOYI67avI2/kBSgtjbld1mMCcPrq3TeyT4Dc0hS8/lniyknhgX7/N0hXAoLprlvi+pkdEcAVvxCmXwdkAYatEpSnXGl5QASdnXxNHN8xRTjaGzcLebXlzlcWPyT8ylXwbBsCsFrlWWANAoTalji3pLh+6WPi3LF5s7VZ4WbXE50RANlfJ8CxWXZlF7IAunZ1uceB7JBg0KPt4jkpvlnZuKxBOCEk6Yom2ORIUgDlcKv4fffNIq37U0fhg48KubZjC/l2YQL23CKea/2F8MtviH0VXfw9r94JmQHBfh9+Vjzvg5u83mpaOmdDzswSXPo1cZ6GiwQLnj4qpOVnr4Gl92JZktc9vXlzH36/iqK4FqP+FOvWbae+PsToaI5MpoQsS9x+ewdDQxkAQiGNu+8WLPfXvnYljuOwbFkrhYKBoshEIjqlksnUVIFstsL4eJ5SyWR8XNRybdnSR1dXktbWKPX1QcbGcuTzFRYvbmL9+pfBgT+/+GpWnN3BDUuvIVXMcsOyj1AfriFTzvGppdeI+5ZdQ65c4M8uXk3YF+Aqt886U8pxw7KPYNoW9+/6DjXBKBc0n0EiVk9juJav7HqGs+rbufSMDzCeneYrL32bmUKGL1xyPRO5aYpGkfpwDX955adJxhuxHYe/OfiPXu81yBxLpbhvzx66kkm2LF+OLEn0Dg4KIkeWmR+P0xwOc/cp3dS9AwPMCYW8Od7abds4mkrx4OWXs2bhQtZ3dTGWy3EslaJsWWzo7vaaYWSEEu1el9ne0NPDvoEBpotFnly1itZIRMx9QiG629pIWxbWggU4Tz0lmOpwWMjCw2Hhnx4bE2D52WcFKx2LCVb75ptFWvjAgADPQ0MirOyMM0TwWTAogHV9PaxbJx7z/PPCb93XJ1jv97Y/mO0/Bbh2HOdrjuO0Vn/EhOgPfftfkIGftrmgfORaMIah6WlQ60RKuJaE4kGRFv67EnE5APoCt26rCYqvCY+1pMHUg7Mg3xwC4ziy1ozf72fv3r0cOnSI/fv3k0gkKBQKtLa2kk6nPd91pVIhn89Tdj+8fX19LFu2DEVRGBgYIJ1OMz09TS6Xo66u7rQqrnK57LFHpVKJSqVCLBbj0ksvRZZlfD4fV155JevWrWPVqlWc+touXLiQmmgUvyyju1LtaiXR41ddRXM4zMcXLWKDO3jiODRHIvzVBz/I/Hgcw7aZ7wageUC6pwefojCRyxHSNJ5evZozamu9MLSetjaiPp8YuPeJOozPbd/OsVSKxnAYXVGI+HwsamjAQgDcLma90LchgHAQMRG+BTHZDSKAcxcChOcQnsV1iHlCHcKPbSD8jXe4+2cQ4PlN4L8hGCgNEYT2ILOT3QzCc12dGHcDQVnGARpCIR5evhxVknhk/34uaWujwQV4c+NxIdmWBJCsD4XwqSrN4TBBTWMin+el/n6GMxkc4DtXX03E52Mok2HPsWN8c+VKLm1v5749eziWSgGQqVQYzeXIVSqEdZ3NfX10tLbiV1UM2+aNkRGCmobPr9F4QSNGwaAwWaD5fc388U/+mBWPrkDWZFY9tYrPH/08zRc1s33ddmaOicqtagWPoipEW6O8cs8rqAEVf9wPNvhr/BROFpBVmSseuoJgfRBZl8lPCAC27LZlqD6VzFCGZHdSSM8VyZ0XSqh+leCcIEMHh9Blha62NsbzeQ84d7W10TswwGvDw55kPOD+r27v6GAsl8N2HN51ZWRHZ2Z4X3Mzg5kMx1Mp7nDBdMWyCOk6m13VhGHb9A0OsripidHbbuOS9naaQiEumzuXkUwGRZbxqyqZcpmSaZKIxQioCif7X3frsTQkWUaWNYK1CRzbwrFNgjWNGCXxtxulPJNHDgAQqm1BkmUkWcYq55kz//0YxRzYFpo/Ao4jwHilSCDegoSDqvmpaT2PpvMvw7EMKvkUo7/Zg1HKUJgZQQuE0QJRgnUJcGxM0yCdThMKhdixYwfpdBpd19mxYwehUMgD1n6/n1AoxNDQEKlUip07d9LY2Eg8Hsc0TXbt2kU2K2TGiUSCdDrNjh07MAzDC1LcsWMHDQ0N5PN5du7cSTabRdM0ZFkmGAzS2NjIzp07MQzD68iuLv51dq4/TfodibRQZc4qlRyq6qdQmMA0C6TTA173tWWVsW2D6ekjbNu2llTqOIXCSUyzRLE4xY4dXwAcWluXARK2bRIMzkHTQnR03E46PYjjWKRSxxgZeZ1kspNYrA1F0T3AX8mf5CLHIeSOFa+744nLNSK5Y8Q6Zhfeqonh/YgqvyPAXoREPI+QlGfc8UZzH3/cHXP8CHbaD/Qg5OL3IpQ4a9zfcR8ru48vVEwc0yEzmCFUH2LnrTsxiyZI0Lm+E1/UR7gxTOpoiu3rtmPkDSKNERJLEgy/NoxZMokmotw+fjurnhSqmHKmTN/mPg49e4jeB3pxLIdyRiSSd9zegR7WCc4J4tgOtmGTG8thmyK0EEQzwEDvAGbRRJM1NFnDr/ppDDVSMkvc8uIt5I08jovUfjn2S8ayY9y85GZsxyZv5CmZJRrCDby99m0vEbxgFli3Yx0Fo0BTpIkliSUcHD7IUGaIJYklbOnbQlALYtkWg+lBXup/iYgvgmVb/Hri1ySjSTRJI2/keaD3AZYkljBZmMRwEGz14W9AzUVChmzmBegFCLSIhPCBZ6E0yic+eSPJuWfypXvW89+feVwAU+ATf3ETi963jE+t+yKTRitM/1wA5vKUCEZz3A7qUBIausHMCT92aVwA9MIgWHnh2y6fhLf+EnLHxPFzw4Ilzg0JMOtY4h3o9VnnBIh3bAGSrbIA1aljAiCrAcFu6+FZiXm03e2MxmXVTfdYWXGc2NxZJt2xZmXj5Yw4vuIXXm9kyByHiZ8L1liWhS+6aQnkRwSIBgF4d3/2dNB8cKPor25aIm4b7hUg/KJb4Y0t4vaz14hwtCV3e2AZ2xDAXnJTz6tgPT8iHnNwkwDqlz8O0bnouuTJt++9twdVlbEsB9uGLVv28eyzh3j44f0sWZKgqSnM2FiOhx/e74aO6fzlX/6MuXNjPPHEKoJBjQMHhjh+PMVbb41jWTZHj6a4+eYd5PMGtu1w3317GBnJ0tmZZHIyz5Yty/nYx84FoFAw+cpXXmV0NEsgoHH77R1MjBWoD9ew/kOfoDk6h2SsgZboHDa9/Ddc+7frmchN86XlN5CMNVIyKp58/O3Rd5kpZFjYtICW6BzemTzBy0cOsuVn30eWZGzHRlNUFifOIl8uUCgXmCqk+cQHVjGem6ZYKXF2fTsn82ke2P1dhtOTGLbolf6Lpf+FFWd38MklV2M4swTL5r4+/KqKKss8ftVVFE0TB9g7MEC2XGZuLMbTq1fTFApxPJXCsm2ylYpn19q4dy+KLPP4ypUEVZWAquJXVV44fJjmSIQnVq1islDg01u30p9KMS8e56nVq716r4F0mqOpFJ/Zvp3jqRQSMJhO06DrKEePIt10k/BP27aQb4+MiPf+Sy8JxnrNGuGrzudnwfbDDws/dbkMyaR4D5umAOnForjv4YfFvps2CUn4ggUCjJ+ifntv+z+/vScL/9+5/Uup3v+ex5xavVWt2qoGotXeDtMP/75E3K6IDuxTi5oc90vKODYrT1fqgP+XvT+Pk6o88P3x99lqX3qh94XNHVFjFOgtGBUJgrlZlDuOs2QmEUkwiRuoYKK5EYwQ4hKNxphMZnEWyOJo0wRRQ+ymaXAJkRAFWbu7eu+ufT2nzvn98Zw6Dcnc3N/9/eY7M/d7Pa9Xv4o+dc6porrqqefzfDaFvFlGf/8A1dXVDqt8ZlJuKYDM5/MRi8Xo7e2ltbWVyspKB2z39PQ4IUU+n4++vj5WrFhBLBajp6fHSQx3uVxMTk6edY2S/FyWZQqFAooigpYGBgYIBoNomoY3EEC3U6xdioJLVcnqOh9MTbF57162LFmCT9PIF4sUDIOA2w2WRd5OVI7YQMiyLArFIpqi4FYUdNPk1pdfZtvhw8Tuvdf5/4IITBtNpUjm89QGg44UuvPmm2kKh53H9WoaqtvNcZtRuh8BqoucnaL7BqJ7uhEh2X4UEX5WRMi63QgQPoaQbWYRE+c4ghWy+QJcCPCdQgB6H2Iukrb/4j772BRClj4HaMvnSRcKKJLkMNMgpNxDySSX1dYSz+cJulz4NY3+RILNe/fy6LXX4tM0JjIZsrqOV9PI6PpZ4WXr29vx25LlM+VSz99wAx9MTjrScq+qcnRyksZQiOFUik09PWxdsoSpbJbhVIqrapuYPDrp1GipPpXo8Sg9G4UcPDmUpOaSGkzDZOy3Y5TPLed7F36PeSvncf33rqfrS100tTUxc/FMerf0smTLEhSXgiRLpMfSuEMiVMnIGOxet5vWe1rx1/inA9Fml2MaQjqXHk/jr/ZjFS0Ul4JpmKQn0riaAmcl1z+7fDl9g4N0NDdjImTzXlWlPx5no/3azCkv5w07dG88nWZueTkz/H7ejERY0NCALEkYdi1aNJej3OMhmsvhVVX8trQro+tCdtbaSnM4TM4wcKsqY+k0QbdbeGv1Ag0+N3ouzcSJN6m76CokWQVJwirqwk6paaQnh/BV1GMVdVHLpmiYlollFpE1cS0BxouYho6FieYJkk9FUVQXsqqdlQquef1o3jBDh3aTGD1O8+U34CurJRMbwVdWh55PMn7sADUXfIwiKl1dXU5w4nXXXUc8Hsfj8WAYBt3d3U6Cd4nRjsViNDY2kkqlHDDd19fHsmXLSKfTRKNRqqur8Xg8jiTcMAw8Hg/9/f387Gc/49Of/vRZYYyLFi1iYGCAiooKGhsbMU2ToaEhmptryecTSJKMyxVkcvIIqdQIoVADPT2P0Nq6jsrK82z2WsftDhKNniSZHKKpqQ0w6ey8jcOHt3HzzZ3Oee3tGwiHmzBNg1KEYSSyn1CoiXC4mR07bqO9fT3l5XNJpYbxeMqIRA4QCNRRXj6HePw0PT2bWPqZFzguqzwBfAcBaFUEOE7Y404EeAWR8v3E9DcAX0RYUFYiFv6+g+irHrDPaUCEH96PqNfSEax4BsFWb7D3S4gU8TKgAmFzKbUdmIA7lUfJ6KgeldRQikK6ABKkhlNOgnfHAx2oHlUk9pd58Ff56d/bj7/aj6fMIwIFh5Jn2Tws0zrrcywrMrETMbo3dTvhhsPvDBNqCNH77V4nkVySJPr39uOr9LFv6z6uffJa+ulnY/dG1rWuozZQy2hqlNpgLcl8kmp/NbIkO4stOT3HSGoEr+alyl+FJmkYloEiKaT0FEPJIeoCdQCs3b2Wryz8CuPpceaUz6HMUwZMB50psoIsyUSzUco8ZVhYKJLCTZ+8idGRURRFwR/w8/Rjj3K58RycfxcE5/I3f/Mj/nr1Xfx8+z/yqeVXCRm3JE8b64t5+PVd/G23xL+8HqHrxRfo7x+kOTCBHrqUB77xKIcOHaLrpe2QOiXYcF8DHH4E5q2HzBCUXyLCypInIW+Da0mDt74kwtTe2wqRl6D9J1C7xE5ak8S7sBSuBmeHjRULgu2WZFtaYS8BFQvTqeLFvGCgZVWcF5p5BjtuiseQpOkwNFmzr5Gzk8Ub7FCzU4KdVlzCRx3phroWcZzmF9dW3KISy1slgPqeuxyZNlc/JXqtF24QLLqeFD5wb5Wo6VqwHnzV095zPS2k7apPsPBDveCvFyz2NU8LtvrINrjwFli81VbvuAXY1oIwdZjMjI+RL4jvnBMnomze3OvIvu+4YxcbNnQwZ04ZlgWpVIFi0eTQoTFaW5uQJEildCcp/L772hzwrCgyt946HYz20EOLufzy5/jJT26ivb3ZtujJZLMGBw5EqKsL0NMzwNy55TQ1hdm8eS9btiwhXKnZdocCrx7dT0O4mmpb1j2/9hxkSSKaTfD03u1/IB//2pIvEMsmCXuDJVE/iiwzGBvj+f0v8rkrb6DBzusYTozzw/3/yucXfoqmshqKlskjr/6Ii+vm0jrzEioD5UiIOdlYcore0+8ys7yBoK+Gjd3d3Nfezogd/Nk7MEBDKMTssjJSdv1Wjd/PYCLBw3ZDynmVlRimeN31YpGiZeF3uRhNpfDadq1H7OrXUn3mqt9rrDEti7F0mm/t3cvT119/VmPN09dfTyybZY6qIq9aNZ0W/tBDcNFF4t/PPSeY6xo7GLCnRyR+L1okWOwHHoBZs4TkuxSA9uijIqxsaEiw3xMTAlhv2AB1dTA8/GFi+H/C9l8iLfyMJ3OK/5vA9f+vW6kP2zJFUviZndj6AGiNIpzszC7s4iQiDGQYJjdPJ4PrH4DaIAC6pQvAbcbJM9sByaWKnNLtmUngJSl4KdXX7/djWRY7d+7k0KFDTsq4rosAmBI41zQRnlRiiTo7Ozl8+DDz5s1jxYoVTE5OUlFR4YDagYEB/H4/fr+f0dFRGmfOJG7LO32ahmVZ+DSNQrHI519++ayO4ceXLmUsnWYomWRRYyOqzdhKQCKfd3wx55SX43O5KBgGRyYnGUwkaG1qckBn0TRRZBnDTg6v8vuFbLq7m6eXLeOOXbu4c9EimsNhDkQitJ97LqskyUnzfg4R+CMhJqEx8RehFsEoB5iuzroXISE/kcvx5J/8Cad+9zt8Xi811dV885lnmHvOOdx01VX0nz5NKBzGAP77X/4lf3bnnQQRYLvkr2xGeCyPI/yVmxFSctlWGhQti/F0mpS9YPDO8LATovVYXx+PXnstAZfrD+op7m9vJ5JI0N7czKrOTu5uaeHJ/fudiqmGYFDIrXw+xtJpFjY24lEUkoUCRdPka7/8JZuuuQaf7RHuHRjgwqoqys/oOtbyIhncU+YhckB4nRODCaInolx000WobpVCqsDYb8ecJPD+nn4CtQHKZpdhZA0Ul0LkQETsm1WGrMhOKrgn7EHRFKZOTDHQM8DA3gEWP7SY5y5/jtXvrsZb7iUbzTr1XGIOWETRFIy8QTqRw1Xn43Q87qSTzikrI2m/N89MBB9KJvlgaorr5s6lMRjkRDTqgO1zyssBweqblkWyUHCqtspsYJ3VdWaXlzsd4M2hEBU+H35NwwInzT6ay5HK5zmnspKcYVCmKQz/9lXiw0e44NovgmWKkLOijqK4kDUXlmmCZVLU8w5Qlu2AM0lWKWTidnf1AjRvWCxS5fPcfPOf8v6Ro3i8HqpmVPLUk09w7vkXsL+3h7X3P0AqJZjuRx/5JvMa3M75pQ7tXHyMqgs/7vTcL7W96WfWbW3bto3Vq1c72Q2lcSQSiVBXV+f8bhgGbrcby7KIRqN/UOn1+3kRpfHHNE3ef/99+vv7Wbx4MaFQyKnzEuOZARiYpo6iaHR23kZLy93s27fVSf++/vrvIdv1RZKkUigkUBQ3sdhp3O4AhpGhu3uTU9FVAtrhcBPd3Rtpb19PIjGI319te7iryOeTjI0dorm53WbHvc54aJoGiuLBsooU3AH2SjKtiKDEjQjQOwsBckvZzKUFNt3+Ke1fi1jY8zLdUrDmjOssAG4649h7EMB7hT2uPWRfrwqhoGlHLOIVgfvssay+YBDIFynmiwzuHyTUFHJY7H1b93F422Fu7ryZcFOY+ECchoUN5KI5crEcmQnhkS4Wigz2DRI7FaNxUaPIX7AX2GovqxWZChJ0famL9376ntN3rWd1fvm1X7Lg9gWEm8POOBKeGabrS100tjRy/ufOZ9XOVWw7vI1b5t/C1uu24tN8GKbBZGaSjJ5hY48A3vXBegKuACOpEYddfqD9AWaVz6JoFZlIT+B3CTm0aZmMpcZoCDXgVt2okophGaQKKe599V7Wtq5lZngmWSOLhcW63etY27aWocQQsz2zqa2qJatnefYfnuXFZ37Gb/peAeDUkbf501vXYikB7l17F59qKRN91plBwW5nBkUtl6QAMt6yWgbf/DGVcz4mZMq5SYajOuddvIDk5KBgoN0VImRrYDtM7INLH4HcmPB4X/445Mfseq/14K4W1V+lx/I1gH+OeIelBgW4VdwCMJdqs0r+6vAcu3rrDCCt+QWYyE4IdjtQJ0BqsEn4qT2Vv1fJ5bLnP3Z0up62Aa5lXyMpgHKxMP08JEkw9LIt6bbsRS3VJ44vxAXzDIJdXrgewnOn2feSpN0yBRg+9QqMHICrv2vL3vWzO6/H3pkG4Ue2wWe6oOoycYyvVsjdk/3itTrwCFy5jkLoQhJpmJzMUF7uoVi0HPC8YEEDsiyRTuu43cpZ9Vn19UHCYTfZrEGxaJ513hVX1OP1arhcMu+/P+mAZI9HZWIiQy6n09+fYOHCBlRVZt++Qa64oh7LAkWR0DSFL31pBy0tjdzy5xejy3lS+Qx+l9f5nvaoLkaSkzy//0U+v/BTNIarKRR1fjtynNpAJSOpSWoCFXg0l5P2/bkrb6AqUI5HdTGRjrHv9Lu8P3qKtR//C5AkDkaOsH7Hd9m0/MtcVn8ehlnEMIuMp6JMZuJUBypEaviiT1HuDbHll3/HPR//S4qWQiyXI+R2I0sS7wwPO4vYH5s5k6OTk8538mAi4TRrPH/DDWfVkdYHgwRdLk7EYlT5fGddZ351NR5VZSCRYHNvL/e2tVHt83Hfa6/x1LJlKLLspIYfHBnhCrsTG8Cv68jHjsEjjwiwPGOGqM964AEh6f7qVwVjXV8vmO0nnxSBZD6fSAs/fnwaPA8MiN8XL57uup49W/xRJiaEj/vb354G8j/4AYRCfLj9P7/9l/BcS5L0fUmSBhEE3i5Jko79sf0fbkDhhEgKL0m/ZZcIRfN/DFznCca6xGpTADMuQs0mN08ng1MEfQiMIZEibgwBpvB0I+psenp68Pv99Pb2UlNTg6qqNDU10dvbi8/nI5FIYBgG+/btQ9d1RwZ+7bXXMn/+fJYtW4ZpmgwPD5NOp9Hsequuri6i0ShDQ0Pouk5HRwfz5s2jo0PUo5SVlTmBaVNTU1RXV5NKpSgUCjQ0NFAERtNp7ti1i2NTU2QNg0KxiEtR2NDR4aRCvnTkCIokUe33c2lNDV/euZOjk5Mk83kSNrhc0NDAxu5u8sUi6XyeomUxMxzmstpa1nR1CS9yNMregQHyhoFqe4dL/p3vr1iBIst8d9kyZtrAusbvR0EwPisRgT4qggmqQgDrPNNJuzMQH7YvIxLGFyCYoUrg6lWrePvIEd74zW9Y/t/+G/d94QtOivg3HnuMvQcP8vrBg9x6553UIICzggDXlyLAu4Rguu9GyDTH7H0nolFus9MwG+wu5vbmZgJ2mvej116LS1EEOG5o4C8uvZSAy8W61la8qkpHczMAGzo6KPd4+O6yZXz2wgt5tKeHVKFAa1MT58+YweV1ddzxi19wPBrlneFhRtNpbl+wgKFkklWdnaQKBS6pqSGj646/+IPJSbJWEVfAhWmYNLc3E6gN0NTaxPw/nU9iMEHnqk4n4XvH6h1MHp2k9rJaKs6rQFZkVI9K5ECE2stqkRVZHHNsEqto4av0Od68cGOYOZ+Yw9LHlxKoDbD63dVCYm5LVIfeHKKQKmDqJoP7BomejDL05hDuGh+FYtGR1vtUFcNe6Cm9bh9rbsZjv1Y3X3wxx6emOBmL4dU0XjpyhE09PSQKBYqA1/58PPzGGwwnk9QEAhimSV0gQHNZGUW7J7y9uZmaYBBZkkjrOmPpNDN8PiRJosbvpyEcJlUoMJXNIsky9fOu5rzFf40sK0hneKgNPesMKUU9h+LyYuTt+/IZJy24lPo9fuyAAKXZBJHfvsZffe7POHz4EG/t72XF8mWs/tLtWJbJyj/9c27/8+Xs73mdf9m2jS/cupqx/veQZQ0sk0I6hq+8gZoL2pEkCIVCLF++HJfLhSzLTE1NkUwmaWpq4qabbsLlcmGaJqZpMjAwQDwed1LABwcHMU0Tl8tFV1cXhmGQSCTQdd1mnpspLy+nqamJcDhMNBqls7OTaDSKogg27KKLLqK9vZ1gMEgsFmNoaAif/XqCCEEbGnoLkFi+/Fk8ngra2zcwf/4tLF36OLKsUiik6OpaQzR6jOHhd0gkBgmHG/B4ylBVH8uWPY2meZ108YaGBY60u6dnE35/FR5PGYaRobNzFdnsJI2NLYCEqnowTZ10eoxiUUeWVUyzgK6nsQpp6i0LAwGIS1YQCaF8sezxx0SA7Ul7vw+hhrGzojkB9NnnPYNYAHwW+HNEBaBpXz9ij0+3AI/bY9dM+3otiIDFuH2dFgSDXQSip2IMvT3EzI/NpKxZBA5mo1na17czb+U8Ghc2Eh+I46/ys3PNTvS0LoB1R7MA5X0ClF/yZ5fg8rtoamuid0sv1fOrsUyL1HAKPaVzzbeuYeXPVlJ3eR2Z8QyyLLP0saXILplcPCe81zPLkGSJZd9dxoWfvpD8WJ4NHRtYOW8lj177KG7FjWEa6EUdv8tPJBlxEr1digsLiyp/FY/0PMJLR16iJliDZVlgQZVf+KDX7l7LeGac2eWz0U2drC4AtGGK9POWxhaGkkNkDfEZ9Gt+Hr32Uer8dbQ2tRIKh9g3sA9N1mjU6pAsHRQvpqTyhTs38d1H78ddOC0Y5/L5NqBeQCzvY0ifKxbLizlefPGnVAYlPDUfITZ6DMb7QPXzT//8L3zk0nkiHdxIwYHV4hoz/xSu+C6oQTjymJCZ63EBrPu3iVvVIyq5gudAVTtkh4X8upgX6eCKS7wDJElIvAtJ8Q0XmjnNqgfqp4G1qQtQ7a0SHuyibtduuUSlmFU8W3JeShWPn7J92HYVV/ykAPKhmTghbZIkHsc0pn+XZSHzTo2JN39mQgBn1SuuteR5EUSWHhH362nBOheSgg3vfVAEoX1si3guqt3fXdpcAeGrDs8SrPf5KwWwzoyJc5OnBbD2VglgfWQbvP0YOV0mGs1SXe1nZCTNHXfsYnQ0zWWX1aIoEpmMzm9+M4IkcZY3OxbLkc8XcbmUPzjP61UxTfFFN3duGVu3Ci/26GiaQMCF16tRVeVnzZqdnD4dZ/78ag4ciDAykqSvb5BCochTTy3jppsuwuWWGE9Feab3J0ykY3ZftJeiZfL8/hfZc/wtvJrLAdZ1wRk0llXzkYbz8WguUvmsk/b94zdfBmA4McEzvT/hsvrzWfvxv2A4McE3X/kBNYEKum79LpfWn8dkJo5hFvFpHn785suUe4PTqeF9L+LR3Nx/zV9hIXHHrl1c9L3vcdcrYiHqxu3b2bpvHwsaGjBM86yWjoUNDXTefDNPLVsGwOa9ex1JeSyXI2cY1AYCBF0umkIhxu15UNjjwaNp1AeDPLR4MXWBAIfGxri3rQ2Ao5OT3NrZyXgmw2W1tdxuZ/RIIJQXkYhgoisr4eBBEWw2e7ao02prE8neHo9gqL/7XcFIAxSL0xLxjRuFDPy666b3PfooJBKiC7usTADsxx8X7PXzz4trpNOC9f5w+0/d/kPAtWVZt9l+adWyrBrLss75Y/s/3Ap/GIYG04Fosvf3gtFcdhJ4CCrXTfu80cC7UASblQC3pIoubDPNwMCAI+tesmQJ2WyWPXv20NTUxJIlS8hkMjQ0NJBIJFiyZAl+v5+amhp6e3txuVwsX76cRCJxViCaZVkMDw/z3nvvOVVdu3fvpqysjKVLl+Lz+RgYGCCVSjE4OEhDQwNut9sB1R6Ph1wuh2EYTghZaSA0AZeqckFlJY3BIBs6OvjJTTcxnEpxx65djhR5c28vCRtcJ/J5lsyZw/r2djK6jm5ZzsA4lEyyoKGBRD5/VpDZiZJ3OJ/HBLK6joSoXVqzcyfVfj/NZWVYiEnnDxAsEogJ7F5EkNlMBAC2EAzzGGIyOsL0xDXt8XDn9deTkyTGgcsXLeLUqVMkmPYzWojJr6hqERPZIkISGkaw4msQk+Am+7EyCMa6FLg1lExSNE3GMxkyuk7WMPj6nj1MZDLEcjnSus7+SIST0SjHpqaYGQ4j273MGV1nblkZ5R4Pk5kMPk3jyWXL8KgqBbvPOuhy8cg11zjhX36Xi3MrK3msr4+XjhzBp2mosszxqSlGkkkUWWY4lcItK6RH0+y6YxeFVIHkUJLOVZ3E++OkhlMc3naYfDJPIpKg5e4W0mNpNK+GWRDVPLvuEoFkmlcjEUkw8+MzxcRakZBkCcWjoGd1zKJJqCGErMkM9A5gZA3iA3ERmBZJ0LioEcu02Pnlnfir/CQGElTPr0aVZEbSadbu3o3f5aLa7yer62R0nQORCJfW1tLe3Ox0pVuWxaU1NXhVlSq/n0OrV/PYddfh0zTxtzNNfJpGe1MTw3aAyld37eJ4NEqhKDxmmg0IXbLsLIKE3G6yhsGBSIQPpqZwyTJj6TQeWcIyCiJcS9UY+u1r6NkEiuJixpyPCrb1jEmhZRrouTTJ8VNC7i2rICvUXriYC679Ig3zlwAWei5NITbAR+cE7V7sDOfWuDh16hSTk1NMjI8zv9nL+LH9nHvOXCpmVPH+VADTNBg+/Es8oSo0jx9JVp3e6mKxSKFQOKvuzzRNGhoa0DTNkWnX1NQ4ndWapuH3+9m1axeFQoGrrrqKXC7nAO/q6moKhQKTk5Ps2LGDVCpFIpFwAhItm4FXVZVEIoFpmk6exI4dO4hGo0ARyzJpbFxEsVhgYKAXXc/g81Vy3XXfIZMZp7NzFanUCA0NC+jp2URTUyvl5bNQVS+K4iIQqEOWFSzLIhCoswG5Qnv7/Vx66edYvvz7VFaeTyBQRzI5TEvLPWiaqP+yzaaoqhu/vxqwiMVOs3PnlwGQXH62SBIuBFD+AAGOTXts8CPk3kUE6K0p/a3t8UdiusKvzT4uaY8ZxxCBi/Pt8SUILEaA86cR1pXbEX7sXvuYUq5DaRxrA5RCkUR/nPor64kej9J5WyfRE1EaFzUSnhnmhudvQNZkmjua2f/kfg5vO0zvt3sFsM4VyUazNCxoIFgb/INQNE/Yg+JSmDo+RXIkiSvgormjGVmVnX2yIqN5NPS0TueqTqKnoqKq2bRwBV0Uk0Wa3E08vvRxQu4Qp+OnWb1jNQOJAUzLpLWp1Qkq6xvs41T0FBISjy99nBNfOYFLdpEsJDkePc6qzlWMpkdZ0LCAR3oeQZZlISnHwrRMotkoE5kJbrzoRjqaO9BkjXeG3+FU7BR+zc9AYoA1XWuQJIm/e+jvuPT8S/kf33iYv3/sK1DM8J2tW2hr6+CjrUtAC8Pgi6AEBIv81u3EYzE+9ZkbmX/xhVy6YDFPff/HdD53O6MTST5+w+e4ZOldzL+ig1+9vou/+9FzAiR76+Dy70BwtpgD5MbFm+SK78LiTsHGXv4YfHoIFv5Q/KUlddr/7K2H7Mg0UI6ftEPPNHGM5rd/t6XdrqA4T/OL22JBeLTjJ8V45A5NJ4ab+nQwWcWFgk2WEKA61CyOj5/4wyquYs72jyOuJ9vP1zLFtX1VUDZT/B6sF8/l9dvFYyZOCkm3nhKg2jKhfaN4/m9uFonf6RHQfHa4ml0/FjsuarYs+xO25y6xSNDykHj8A3bY2f5NwnOdHRfS8gtvgaufQlEkcjldrEm4FNramnjssT5isZzdXKDR1tZMNJrjvvvaWLlyHvff30ZjYwhZljBNi8ce23cW6DYMi717+5mczFIsgs+nMTyccvzWNTUBtm4V52za1EMyWaCqyk8kknSqukqPXbQsfvzmyw441hRRLVk0Te6+6s944lP34NU8xHMpLqk7l5pgBUXL5DdDR8npOgG3ly/YoWd/teAGvJrbAeWTmThIEs+fUbWVLxbIGwUnl6domfzlFSsIefzOdT6/8FNIwJZf/h2TqaiTc1Jq6Pjk+eezvr2dRC7n+K87b76Zr3V04FZVmsJhEQoajbJlyRIn8Lbc40FTFIaSSSLJpDMHvGPXLjK6Tsa2e1X7/YykUswuKxOtH+n0Wb7teC5HW1MTLkXh7//2b1HCYV4cHYVAgLFf/pJPrFjBuXPmcPGCBbzxyU/CZz8rPiOplKjjymYFYM5khEqj5Md+4AEBwMvLBdNd8mj/9rfimEIBWlpgfBzuuUdcL50WbHapV/vD7T9t+w+Vhf97bf9XyMIL7wsWunqLSAIvycP/2Dno9kTagMwB8FwCcgD0E9Mycq0RRlZjeK5l0vikEygEgm1uaGhg7ty5BINBp0fWNE2SySQHDhxg6dKljjc7mUw6tVrz5s1j2bJlZ0k0S5Jyr9eLoigYhsHOnTsdQO/3+9m3bx8dHR2EQiFHUh6Px4mnUuSDQTZ2d3NvWxv1gQAVPh8uRSGr6xybmqI/HqetuZnbzvDFPLR4MVl7NRJwkh5fOHSIfYODPH399Wf5aB5avJgyjwdNls/yDj+9bBn5YpGRVOosidGN27fz7urVlHu9uD0ekGXyiJChyxBy7SxwCMFaDyBYIAXYj+ijHmHazzjH/vPl7Puf+fM/p6aigs888QQPXXUVIyMjBDWNCy66iLWPPIJ7zhxGERNaHZH2exAx4V5sX/duhD97caHA8akptvT28uzy5Q44qw8EmF1RwdHJScbTaa5saHC8wLFcjlguxxP797N5yRIn+XsgHsetqpR7POyPRGgMhagLBhmxv5QWNjQ40uYZfj932hVpVT4f6UKB6kCAdKGAW1GcIC/TstDy0LWqk8PbDrPmvTW88fAbNCxoYO51cwnUBeha08Wyp5YRPx2nZ5PwYfur/YwcHKFxUSOyIhM9HUXzaPir/EiqRHIoib/Kj5EznDoezS/8m4P7Bqm/op5cPIe/2o+eFnaG19a/xtUPX41pmIz/bpym1iYA8qrFqp07aGtq4qaLLnIk3SG3G9M0Sek6J6PRs/zrPk1jMJGgPx6ntakJCaHCCLndHBwZoT4YZI4tE0/b4W+zy8qQJIlUocC7o6NcWV/vVKcdj0YdmX6l18s9u3fzveuvp29wkCWzZmJkYhj5NL6yWgrZBEY+i+YNIMsqistNsSBCt86s0CrmM5imzsTxt0RtlqJhGjqjR3qoPr8NRdUw8llkVUNWNNJTQ3xh9e1U1TXyxBNPMvecc7n3izfzV1+6m4O/PcpVH7+Gh7/5P7jtL2/CExQBP2NH9lJ70VWYSKKhx7IoFAq8+uqrLFq0yLGFFItFisUiu3fv5pprrsHlcp2Vg1DaSsFmra2tlNmvV6l+q3R86fusq6uL1tZWwuEwhmGcdU3DMIhEIvj9frLZLI2N1fa5RdLpcXK5OB5PGJ9vBrKssmPHFzl06AXmzVvJ4sUPYZo6ZWWzKRRSJJND9PZudmTfoVAj5eVzME2DdHqcYLAOkIhGjwv/9NLHyWQmUFUvPl8lIAm2HxPTNIhEDlBTcwkAyeQQsqziLp8L7gBFe4xoRki9ckxLwXMItUwV0/7oekTeg2G/fiUNw1qE/9pCgOlaphPH8/aYeQDRZT2AkIffgvByywiQ/WfAPyLaDvJAMKtjpguoHpVivkjsVIwDTx1gyaNLiLwZIdwUpnvj2T7pptYmkBCBY36N9Fgab5mXyJsRqudXo6d1/DV+sGCgdwB/tX+a6c4J+bm/2k96LE1ze7PTGOApE2Bcz+jk43ncYTeyKmO6TfJKHlVWuX3n7bxw6AVWzlvJNxZ/g8ZQI7lijjcjbzK/ej6KrBB0BTkZO8mjex9ly5IteDUv4+lxYrkYY+kx5pbPxTANZpXNImfk2B/ZT12gjrpgHelCmtpALSdiJ9jYvZG7W+5mMjNJW3MbQ8kh536AZCHJGy/+khd/+nM2b/g8t65ewxuv70TTx7hq5de54ytr+NRnboJMBEZegdqlcPibwh9de50A3Xpc+IW1sKjMmtgHMxYKwKvHQQuJd4aRgmJmWv6t+ER/teIRdV+ZAXG9w5tEHZi3XgDOg/fCR79r28sMIeVWPLYkOy/Y4FJ0vePFtuzaLkWAhvgJAbodCfiQzXTbHm4JIb8uebdlTTDKiksA4kJSyMhLvdyWZXvQizbYLojHSA4IafmBTYJV9s4QFV1XrhOVXLOuE+zyR+8W6eCX3ylA/Mhbosda9QgGXc+Kvuv6VpEE/sZaUfOVHResdT4GP74IPt0pKsKSQwLE798EC78mWG2rOB3qlpskoc1ldDxPJqOzaVMP69a1UlsbQFEkgkE3x49H2bixmw0b2vH5BOOsKBLHj0fZtKmH9evbaW4Os3r1Du69t426ugAHD46wcGEDpmmxf3+E1tYmVq/ewUsvHXH81pmMztq1u7nvPgHUs1mDYNBFPJ5nZCTF5s293H9/O7PmhFBcIuJPlWWMYpHh5CR/++bL3LH4Fnyam0whx1M9/8KXO/4ECQmXIuxUsWyScm/I8VyrskLRNBmMjzKRjlEdqMBry8b/9s2XuXPxLXjt6z3+xj/yZx+9npnldUxmYuR1nZHUJPNq56LKMvFsEo/mwbRgNFNgo11VWR8MOrkltYGAU425oaODmeEwpmWxescOXjpyhJ/cdBOtTU2YloVhL3KbluXY4VbOm8ftO3eeZTlc19rKORUV5G3lZM4w8LtcDCeTokHFzvRJFQqs+cd/5NQPf4hXkrj35pv5VF8ff53P0+zz8dD99/Pm4CCf/sIXOLl3L9p778EVV4DXK0C1rgtwXF0tVBemCX190NAg6riKRRFy5rLf9729IvBs5kxYtUqw4W1tgi1ftw4aG4XMPPg/K2D8cPv/d/svIQv/cPvf3EoS8LpnRX3WmfLwP3aOZYARgZHVoB+B4hCMfFGEmFU/DtpsO5p6PagzCYVCjtTbsiyWLVtGU1MTU1NTzqQVcOqyFixYQDwedySXLpeL1tZWR+6dy+XYvn07PT09NDc3EwwGMQyDrq4uYrEYqqrS3t5OJpOhubkZt9tNU1MTe/fuxbIsYrEYsixjmiaVZWWcU1bGs8uX02APEEXTdJKSH+7uZsU//RN7+/vZYFckPNDRQVMoxHkVFYRskGMiqqDe6O9nXVsbiiQ5x69vb6chGCTkduPVNGf/ho4OPKpKqlBgJJXi7pYWp4/4JzfdRMYwuOMXvwBJ4gSCAZqP8Ft/FTFHWISYtC5ATFQHmU4KH0J0wzYgJr4nEKnib2zaxMixYzzwyCNcCjzz93/Pvvff5yPvvsv5HR18bsUKGhET2iKiW1tDeCD/BME2fQwhC20D8nZ6+rPLl5MrFnlneJiWxkZmV1SAZfHMm2/SFAo58m9FkqgNBDi3ooJHr70WTZY5ODJCRtepCwYJuFy8PTxMe3MzjaEQPntV99KaGu7YtYu0rjOQSBC3K9I2791L0OWiyu8XlWIuFy77PVU0TfrjcXpHBunY0MG8lfNwBV0s2bKEprYm9jy4h3h/nOXPLBcLOUNJmj/WjOpW0bwagTohE4+eilLWXIaRMQRbdjwqOtX742g+jcx4hl137GLqgykAAnUBIgci+CpFynA+kUf1qCzZLAKUFJdCc3szekana00Xsgnr29u5bu5cFEliJJXiwT17GEkmCXs81Pj9dDQ3M2zXcI2mUmiyzAyfj5bGRvJ2gqmEWORpbWpiZlj4/gzTxKtpzCkvR5VliqZJ2O1mUWMjbw8PkzUMFFmmIRjk3rY2vKpK0OXi/rY2XIpIMTctEyOfRnV7GTr8OpIs46uoR88mMU2dop5HdfvQvGF8M5ooFtJIgOrxM3niHSpnX44kyaSnIuj5NBWzLsPIZ4gcehVZFRJ2I5/myef+nv7hCb629ivo2QQ//9nP+Ndf/pqFLYv57neforVlofDveQOMvP8GRj5DxazLsEwDy4JYLEZnZ6cTUNbb24skSUSjUQYHB5FlmUWLFuF2u4nH40QiETGsndFzXaroCwQCZ3VZFwoFurq6mJycdAD58uXLqaioQJZlVFV1jolGo6iqSl1dHW63m5qaGiRJIRo9QWfnbeh6Go8njMdTxo4dq4lGT7BkyRY7SXwDgUAdZWWzMU2DfD5Ob+9mR/bt882gp2cThUIK0yzi9ZZhmgaWVaSnZxOHD28jn0+gql78/moMIwdYWHbPcQlYq6qH4eF3kGUXmuZDlWQGLMtJA/ciwHQp7NBCWFL8CNl30R4TZtr/vhMBrCV7/NmECFWsR9hS0gjAfOKM81sQLPnHEOz1M/a49WXEAuGAPQ6NI2TkZtFEdasYOYPBvkFkVUi1c4kcTa1NdG/sFjVbG7txBVyEGkPs/PJOJ1G8ZOOQNZmmVpHg3/OtHoyMgZE3aGxpJNQYormjmdhJkTheCkJrbmsmM5FB0iT0rM7QW0OCsQ64iJ6MYpkWuqVzPHGc/ZH9GJbBU8ue4pb5t3Bv270OCF7TtYb51fOZyE5wx647OBE7QX+8nwUNCxhKDrG3fy8ZPcMT+5/g8rrLaQg10BxuJlVI8ebQmyxoWEDIHcKreqn0VVK0imzeu5lth7exdd9WWptaORU7xYN7HkSVVULuEBOZCR7c8yCf+e+f4pd7uvnXl7s4NSFz7pWfZVbravrePsSqL9/LM997GtInYebNwv98xdMw+y9FireeFEz04YcB26dc3SHY2+ywOEb1C++xp1r0ZfdvExLxYlokhZeAtadqWh7+3mbQY1DMwke+41hIAAGQXSHBRmt+wUibxem5SDEnwLATwCYJRtpbLd6JRV2Az1I6eCkFXJKn08GRxPVTEdGFHWy0U8NVW4ZuP5cSk26ZIvXbWzXNIL+5WTzGR+8WTPTM6+zE7/UCJH9si2CcX78d/LXiGq+uFmA6UCvY56E+m9neBJ5yqG8T8nJ3Gcz7nPg9NAvqWyA4E675nniu0SOwe5XwoWsB2L8JRbYoL/ewaVOPwz4HAi58Po1EIu9IwTdu7KGqyk9v7wC6bjrHb9rUgyRJPPfcCs49t4KDB0c4cSLKwECCNWt2UlXlZ3IywwMPdPDuu6tZuLCBnp5+JiYyfO97y5k5s8zxWieTBTRNZvPmXl566QiRSAKXS2YoMcHDu59nMDaGIitU+sL82UevZzIV43+88gMm0jFub//vqLJCRs8ynJzk4d0/JKcX0M2iA6wH46M88tqPqPSFuazhfH64/0WSuQxjqSm+8rGbmczEnetdXDeXH7/5MhYWFb4wP9j/c27/2aN867W/wbQsyn1hvJqbVCHnpIVv6ulBlWW8qkq510uqUGBTTw8vHTnCQDyOYZqijrW9nZ/cdBONoRCrd+zgVCyGJsscj0ZZ09XFR+rq+OyFFzp1WyXL4bbDh3msr08EgMoyiizjt5Vk51ZWclltLR9MTrKqs5PRVIr3fvhD/ur++3G5XII5vvtutu3axeoHH4RZs7iyro76fJ5f9fWJALMDB0Tftd8vfmprRf1WqWbroosE+D5xQuwzDPE56uuDG28UsnFJEt7s664TwLpU7+VyCen5h9t/2vYhuP6vupVY6n9LHv4/2yRbHl65DvzX2f7rF2DsbpEACqLzWplB0SO8z6FQiObmZgYHB0kkErjdbvx+/1mA2O12O2xRqWarp6cHVVUJBoMsX74cVVXRdZ3zzz+fjo4OZFlGURQSiQTNzc0oioKu6053tiRJuN1uLrzwQq699lokSaK8vFyERKTTgs0CVu/YQe3Wrbw9PMwHU1Pc+vLLZA3DAcJNoRC1gQBPLVsmqhGiUX51+jTHolFUSWIkmaQ/HuepZcuYXVZGRteZbfcPzykvJ18sktF1TNuH/f0VK2gOhbBAeFtDIbbu2yfApKbR3tzMpu5u4e+xLEYQE88gIrCsHcFMr0bIJ99C+KIbEJNbGcFwjyEmsgZispz+9rd5+Wc/o2nnTjw+HwoQsFnPVknixO23c/rECd6fnKQXMbFehGDMTyEmxA8Cn0JMmm8DCopYOT4Zi7F/cJCP1tUhSRK3d3VxKh7n9gULGEgkSBUKpHSdsUyGRD5P1jCQJYnbd+5kfnU1Y+k0ByIR/JrGosZGUoUCsWwW07JwKQphj4fvLV9ObSAg6qMCATpvvplHr72WE7EYa7q6SOTznDE1I2sYDCWTVPt9lM0uY/mzy5FVGc2n0fdYH01tTfhm+CikCnSt6aL2slqa25od0J2MJDm87TCJgQSmbtK9qdvpxPZX+UnYvaClruz0WBpZkQk3h2lsacTIGaSmUvzJ5/6ES664hIUdC/nE9Z+gr7OPyaOTfPz6j3PfnvtYtPBK/tvHPsaFVVV88N57hNxu7mlpIeh2c8ruDD8RixF0u7nb3n8yFuOd4WEGEgkn3E2SJAbicdZ0dZExDCc0L2NLzBOFAl+xPet9g4PMr6nBp2kk8nnu2b0bVZJEwrhlcW5FBUU7Ad9EwlfZiNtfTv3F16BnM0JtUF6HLGuYRZ3Iod3o2ThldRegeoJEDu2mkIlTe9FVSLLM0OHXUd1ejHwaly/M5Mm3RbWXomJZFt/82lp+9rOf8a8/+RdmNMxF8wS55JKL2fHyi7zzm9/ww+9/l6GhIS6ePx/VHaD2go9RLIhrYScwd3d3c+TIETKZDJdddhkrVqwAIBAIUFNTw9DQEOFwGEmSKCsro7m5mUwmg2EYyLJMKpWiv7/fWfQzTZN0Ok1XVxfJZNKxl0SjUbq6uigUCpimST6fZ+fOnaTTaQfUA2f5vi3LcMBvT88j+P1VRCIHHNCsaT5WrHgOVfXZ3dNfQNczuFyhMyq8NpDJTNDevh7LKjI8/Day7LJVPjJLlz7O/Pm34PfX4PPNACwUxYVh5Bgc7MOyijQ1taJpfgYH+/D7q9E0D4aRIZmLstEOTtyKkH2bCLC7BmEPkezxZz4CAB9FgOY0QtY9hFj460eoXSrtMUtHAO6FTC8G7kcEp21FAO6vIgLM6hFA3YMIT+xF1AzOBpHifSpGZL/dW+3TnKwEI2dw3XeuY817a1j6+FIKqQI9m3poWNBAcijJrq/uIn46TmYiQ+yUAM4ASzYvwbIsdt+zm0R/guF3hokdjxHvj3N422HSY2mMjEHX7V0obgVMCDWEaFzUiJEXqpXmtmZcfhdFpYjf6xe1WYP7GUgM8MzyZzi34lyQwKW4aGtqI6NniCQi3N1yNwPxARY0LOC6udexuXczVf4qNvWIrmvTMjk6eZQvdX0JC4tFjYuI5+JU+auQZZloJoosyTx9/dMc+/Ixnlj6BIBTzXU0cpThoWFml8/m2eXP8sudr1JZEWb9vXcy/JOPc+rXL3Hqg8MsWrCA5+66iC/e+ueit9oyBJh+aw0kjwkvthoQtVqXPQrZMTiwClLHBcOVGxUMtlmA8R7RbX3ZFph1C1R1iATyqjbhva7qAF+TCDebdQtcdC9oZRD/nQC9znIO04yx7S8nUGuD3BNiv+KxfdL2iF+SURcS4lZxCQ92iYWG6f7pQmo6LVxSBFBVXKILe+RN4YkuycpLz6UkQ1+wXnSBX/U4/NV7Ig08MypCxwKNNkBXBQCvbxWybweIf0s8vyPbhF86PWKD7jqxMCFrAiS/frtg111B0audOC1AdOKUAOySAkZWAPtSHzYWXLmOoqGzf3+Eu+9uceq4MhmdW2/tpFg0uf/+dlaunMeGDWJ+VpKDP/30Mj744HZ+8IMbbHw1iGla1NcHueaaOQ743rp1H2VlHubOLSebNRzA3d8ft5PGRfe1rpuYpoXXq/Gd71zHiRNf4fLL6ygUDcfrPJqaIhIfY/Mv/xZVVojlEnzuyhuoD1cRcHt57FcvEHD7p73R+1/Epah4NQHqnu97kR3v9fDtPX+PIkl8YdGnmMomqA5UkNPzTn/1j998mZaZl3Drok8LW0UmwRcWfcrp2j40fIyh+DgyEkGX16lVvbetjZxhkCgUuOMXv8CtKDy9bBnvrl5NYyjEl7q6OBGN4tU0rmxocCxym+2F3Ud6eljQ0MBwMslXd+3iRDTKrLIy6gMB1tvzyy1LlnA6HudLXV0MJZN47cYawzSJ5/MOCP+r++7j2sWL+avly7EkCWvOHCb9fnTTpLa+XniiIxFmLVpEfyQiPNNVVeLn2DG47TaRGu7xCJ/1yIhgoDMZEWq2YIG4xqpVIgjtJz+BtWsFmz1zpmCqH3hgWk7u9X6YGv6fvH0oC/+P3kpJ4Lj+1zJvKwdmGsbWQuW9ZwSY/bHrp+2UzFIF18OigkubI36XPKBWUyh6yOcL5PN5RzI5OjpKc3PzWcney5cvR7aTEUtMU09PDx0dHZSXl3P69Gmi0SizZ88mGAySz+edpPB0Ou2k+77yyiu0t7ejaRoul4tkMklvby/t7e2Ul5djmibRaNTZp2kavkCAD+x0x6evv547fvELWhob+cyFFxJ0uShaFr0DA8zw+fj2vn1sO3yYW+bP55FrriGt6zQEg3xxxw5++t57vLt6NTV232HEThVXZJlUoUCmUKDS5wPgVDTKUCrFwoYG3KrKF3fs4IVDh1g5bx7fuOoqQi4X45kMblVFc7moDAbJSJLjf/YhemW3IYLOtiIAdRIxEYVpaWWlfX/Td77Dqy+8wPdffZX95eX8CXDSMNg0OcnXa2poBF746U957K67ePb0aS5FsOSbEWm9Qwh5+eWISfEU8BpwHrAonyf1e+ndrjOk2ZYlJGCWXTFRbVey5Q2DWU88wa9vu42T0SgLGxooWhYHIhE+UleHBAwnkwynUrQ2NZEzDNbu3s3a1lYGEwmawmFml5XxBTvZ/bMXXohP08SXUi5Hpc+HJstoOhg5g8j+CP5qP2UzyzCLJsnhJOnRtOOFllWZ1GiKQrKAK+ASkvEvdbH0saVEDkQcFstT7iGyP0KoKUT53HIxGR+IU/eROpLDybMSiGdcNoNf7vklF4cvpu4jdXz/R9/nxc4X+Zuv/41IJldkTFXihZ9vY/OmTVz+zW869oCmcBifquJSVco8HmQgVShgAQdHRpjh81Hm8Tgy+qZQCK8dgqbKMg+8/jrfWbqUomkSzeUo83jEItCBA2y97jqKlkXM3l8oFvHbn6lShdeUnWbvVWSMbIzxYwdEUrcnRFHPomgieTo9FUF1eykWsvgqGtBzIsU7Gxuh/uJriBzaTXz4COG686m/+BokWcG0PXBmUefJp7/PC//wd7z0k3+kuq4BPZvCV1bL8MgoYQ9o3gB/87cv8MMf/x37en6Fkc8IiXp5HcgKllHAlBQKBTEJd7lcGEZJqIxjI/F6vRiGga7rTltBOBxmYGCAhoYGcrkcgUDA8ebJssyOHTscG0vAtoGk02m8Xq+TNl5dXY1pmoyNjVFeXo7njKT6UoiaLFtEo8dIJAZobFyIorjJ55MUCgnc7jCjo+9SU3MJmuajv7+H7dtv5MILP8t11221g8gMJElxgHR/fw8NDQspFvPk83FcrqBd8xUAZDuoLMOrr97Ltdc+SiYz7lR+BQK19lj8G5qb2+jsvI3G2dfi/chfs0lWeAAhCy/5ntvsn82I1O7ZCOBdEN8ATCHY7i8BLyGyG8oREnK//Tr4mW53SiMW6g4hmOk1CEDdjFDgNCHyJUYRGQ8Z4LfAx1J5Bn512kkH71jfQXhWWCiRcwapoRQ9j/TQsaGDUHOI6PEoLr+LPQ/u4fC2w8xbOY9l313Gzi/vpPljzVzwqQvEZz3oIjWawuVzoQU0xg8Ly4ZZFAtWg32D+Kp8lM8uR8/o6FldNA/sjxBqDOGv9rN77W6W/mApxxLH2NS9ibtb7nZqs+oCdZyOn2ZTzybWta7jvMrzOBE9waaeTaxvX09dsA634uZk7CSRRITGUCMe1UO5p5xoLkrAFcCluIjlYmT1LBt7NnJ/+/3MCs/iRPQEw6lhFjYuxK24SRfSBFwBilaRSH+EP7/lz8lmRQhaXXUNWx95kI8Ufzgt93aVc9WSFdzxpx/hU5/fIqo2Jw+Apw4m94F/lggbMzLw7nq4ZJOQaadOCg+1t14AXSMDB9eKaq3cuDhHkkU9V6ZfPJ7sEcz44Y0wbwMEZgvGWvVDegC8DUJuXswJhrkUMFaScCseMWcp9V1jngGsizgd1aVKLbNgh5gNCdbX1KevCwLkan5bUo4A3aY+nUCu2KxcKZU8NEv8OzMmvNZIMLQXAk0ijCwXFcC3bpF4t7//LyLVvKFVPM/M6PRjv7FWsM/pITj9GsxaKljqkf2idssyweUX/8YSwLpUv3XtM+J6likAdimhfOJdiB6jcN5fcOREhv7+OAsWNKBpMoVCkX/+58P8+tfDPP74JzBNi8nJDDU1ASQJTpyIMTAQ5/LL6zBNi1SqQE2NH9O0cLkUDMPk9Ok4mzb1sGFDB+eeW0GxaPL5z4tarltumc/TT1+PLEsYhklf3yA1NX4aGkL4fBqpVIFEIk91tR/VDcOpcUZTk1xWfx4Hh45y90vf4aq5V/DQ0lUMxEad+qyiWWQyE6cmUMHz+1/k1kWfZlZFPZqiohcNTk4N8Xzfz539AIWijiLJGGaRrJ7nsV+9wOeuvIGmslqKVtHpxJYliaJpnvX4dy6+BaOoU+arIJJMktV1agMB/C4Xx6amsCyLzb29PGArD6O5HOPpNAsaGjgQiTg1og90dDCrrIwT0ShuVeXBPXscO+D3rr8eVZZRJIl8sYgqy2fZCJ9bscKxHqV1nZFUig3//M8M/+M/smfPHgbSab58443c+ZnP0PGrX1Hf1UX+9Gkh856YYOXtt/OJG2/kr2+8UcjAa2sFYC6lfT/7LIyOil7s0r6nnhJM+Jn7vv994akeHhZhZ+vXw7nnCvm42/0hsP4P2P5LVXH9e23/x4JrswCFI6D3i6Ax2S/CyUr3lUA3nNF1vQFccwSo/p8B6xIQRwYzaYPxe0AKglqNmC7JYOVFYvjkJvIz/o7JyUlHpqkoiiO9jEajxONxGhoaUFWVYrFIJBKhtrbWAc6pVIoTJ044bFDJNx2NRkmlUk6lV2trK6FQiN/97ndceOGFDpBPpVIcP36cSCTCkiVLnEqwf/qnf3L82x6Ph6LdW10KjMroOmt37+bORYuot+Xi7wwP0xgKsamnh8eXLmU0neYR23dTqlhoCodpDoXIGkKCue7VV7lz0SLmlJeTsyf7fk0jZ3dmp3SdsC2ruWPXLu5ta6Onv58DkQjPLF8uXnZNQ5JlPmB6cnse0/7pJsSkNC1efSxgnX3cLAQoPj44yPKmJmbOmYMSDOIFvG43619/nfWLF5PN5wnKMhUzZvDod77DhZdeioxgvY8C1yJYcR0h3yz1z7YCqmGQymYdL/BoKkVNIMBIKsVjfX1sWbIEj6oyYTOom3p6nPqtxlCIwUSCy+vqCLpc5Ox6qBq/n3MrK0WidLFIVtf52i9/ycNXX43L9r4WikXue+01nr7+ek7H47gVhdpAAL1YdHzZG+3HOt9bRmYsjZ7W6XlEeKrDM8MM7B0gWB9k77f20rqulWB9kEK6gMvnIp/M46+xe9lliXwyj+pWKRaK7F67m4VfWUh6XPgwM5MZ/DP8FPUi2aksuViO9FiamktryE5m6dnUw5KtS8hOZPnbtX/LU4ef4ndv/Y7hXw8TagohBzVuWf2nzP7oR7l1zRrKPR6q/H4M06RQLDoLCs3hsOOr9msaY+k0WcNgIB5nQUODEwpT+lsAuBWFaC7nvPYb2tudKq5S93Usl2OGz4dhg/BSH3bA5cICqj0uMjaAVlQPqtuHZZmMvNdN7byr0DOxaV+1KnzVpYUySXWBaVAs5FFcHsyiQT45ha+8lqJR4MSRd7nwI+3MmTObQCAIWLjdHl59eRvffuoH/PM/b8OyLC648AKefOw7NDY1gmUhyTJGIYvqEoFdhikRi8VIJBLU1taSz+fx+/0YhuEA37KyMnw+Hzt37uTIkSPcdNNNNDc3O2Fksiyj6zqjo6PU19ejqiIoTdd1Xn31VVpbW0kmk9TW1jr3KYri1HEpiuJIzEsLhK2trQQCATTNQpYVYrETdHdv5LrrvkM2O2lXaN2PZZlYFqTTo06vteQweSbFYh5F8dj/NlAUoRKyLJOBgV78/loqKmYDErqe4bXX1nP11Q+jKC5U1U1//162bfsM55//SRYvfggAn6/Kvo6EISskNR8xSaLMsgjai3njCF/0FKLj+lyEKmbY/lmIUMUY9viTsr8u1iOk4R57HLkEwXqn7fHpHgRIL9V65RA+7a8iEsarEaB6PSJd3A9oWR0rXWDnmp3TYPmpZZi6CB48E0SveG4Fkizk+7GTYvGrcWEjsiZT1IuOvDxyQCyShZvDpEfSuMOi6xoLTMMkF8vhLfeiuBWRs1DtJz4Qp2djDy13t5CZzFB3eR1GzkCaIbFq5ypeOvISP1v5M9qb28kZOTRZO8t//f0V3+e2ztvYdngbK+et5OllTxPLxaj0VaLKKqYlQP3p6Gn6E/0sbFhINBclo2cYTAxy4/Yb+dnKn9Ha1CoWqCyTQrGAhUVGzxB2h9kf2U9zuJkKbwV3vXIX69vXM5Qc4qrmFjzFLFJ2GHLDAvQWYsIvbZm2dzoA0cOCjbYMKETBVTZtGdOT4vjob+zqriHRZV3yKCseAVhLVVWyZvdKI4C3HoXchAhBA4Rm35aaKz4hx1Y0AYoDDQIEl7zXkjTttXZK3/6NrdRbbVlg5kUPtJ4S7HSpw7rk5S5VcxULgmUuBaaVVoPyCZj6AGo+YjPnx4Tn+cp14KsR8m7NPw1yXUHxuEO9UDVfPP8S+J1xyXT3drEgwHTVZWIhopAQ1yux6XpKXMcVmn7Mqx4XXu1kP9QunJabX7lOMOVj71CovIK8XMbgYILdu09w4ECEDRsEe11fHyQQmJ7jpVIFVFXm9tt3cvfdLcyaFWZgIMHERIYFC4THWpYlXnzxPdrbZ1JV5cflkvH5XGSzOrFYjng8T22tWEbTdTGOuVwKhUIRTZNRVZkPPpgkGHRTXu4hkchR2+gnbxT47chxaux+6xn+MhrD1Xxz9/PsOf4WWz95F5c1nEfeDjErWiYuRUNTVOf560WDQlE/a/+ZoPuvF/43yrxBCoZOXi/wg/0/d2q+DLMoFkhjY0xkYsyvPYdEPk3B0KkPVxPPFxhLp9lk91LPKS9n9Y4dbDt8mM6bb6YxHGaT7cs+p6KCSDyO3+3Go6q4VZW7fvELHrzqKgIuFydjMQd0z/D5uGPXLta3t1MbCBBJJlEkiU09Pdzb1sacsjKnhkuSJCzg+e9/n82bNuFyu5nMZikmEoQ8Hr5x223c88QTHH/nHWpraqCvjwXr1rGpqoprn3hCSMAvv1wEkm3cON1xDYLFfvhhIfn2egWjPTUluq4XLQJVFZ/bM4H5c8+BbTn7cPt/fvvQc/1faisIYK1WwegaKHwgvmhKAWbDnxe36L8nB7f+OLAuTgrQbMYBE7wLREK4UibCzEZuE4w2kgg2S24DSyedTlNTU0M2m3UmoCVPYjgcJhKJODLLEmvU2dlJLBbD5/Mxe/ZsysrKWL58OeFwGFmW6evrw+/3O/Lx3t5eNE2jubmZ3bt3k8/nnYGplEpuWRaJRIKGhgbHv11ivIvFIhJwLBpllV19cHdLC4/19RHL5fDZUuU55eV87/rr8WsakUSCu1taiCQSBFwu2pub8aoq/fH4H6SKK3YndjyfJ1ko4JJlJrJZHtyzh6FkkoDLxXMrVlAXCHAgEmFdWxumZdn5vuLHj2CPRhEyyv2Iia3dCsoIwlM9jJBd9iOk3DKwoLGRTsviX48f51cHD/LowYPs3L+fj/v9fPStt/jXQ4fY9ZvfsP211zjn0ksZQ0x2FwF/al/jJIIJL0dIRqsR0lCKRYZsL/BIKsU5lZUkCwU29/ayoKGBoWSS1Tt2kNZ1BhMJth0+zCM9Pczw+djU00Nbc7PTA7lm506q/H7CHg8ZXeeDyUm+1NXFRDbL7QsWMJ7JcPvOnQwkEsiyzJYlS+gbHKQpFKIhGOR0PM6anTsdX/ZLR44QSSSQFQlPmYeeR3o4vO0wPZt6yMfzjmS05e4WUiMpEUBW5Sc5nGTP1/cQPxWnv6ef2KmY4622TIvGlkb2bd1Hw8IGJEXCW+ElejLKYN8gekZn37f3EWoM4Qq46NkkJOOKS0H1qOyJ7eGS0CXOYyUGEoxmJtjb3c1XVq3i3IoKqvx+0oUCbw0N4VFVnvjEJ/DbgW8P7tnDcDKJbFfDRRIJLq0RFT5u22t+Mhp1er9LqaQ+TeOelhZqg0Hhn1UU6gIBdNN06rdU2+9VSi0vdb+DYI+NfBbTtCXguSS1F34MyTKZOP6W8FXLKkW9wOj7PUhIyKoLPRNj6LevY5o6megwRT2LJ1RJ5NBuAOaefwnZ5CTvH36Xt9/cz/69e+j51Wv4ymv42vr7OfhmD+/0vsKLP/sJzbNEKm82Pg6SjOb2YZkGQ7993QkpbGxsdDqqTdOkUCg440AgEEBRFFasWMEdd9xBKBSis7OTbDaLaZrs2LEDgJoakW5rWRaZTMZZHOzp6aG6uppkMsnAwADJZNLJhiidH7NbAHp6ejhy5AipVMoG7iqWVXRqswqFFPH4AC0td5NIRAiHZ5JKDVNdPZ9Y7CSdnbcRjZ4EBIBWFA+FQpJCIUUmM0Y+n7C91ibNze1UVJQCzsaQZZWlS7+DoriJRA4wOXmM2trLuOmmn9DWdj+hUCPBYD2q6sGyLKamjpHIRXlHkkgC70gSeXvcmWWPOceBmxGWlIQ9zlQBUUQa+Cp7XEox7Zs2xbcM7Qj/dVZ8y9ACPGKPK6UkcRV4FLFYGECw2aXrWNghaLoJJlz/9PXcfvR2lj21jFwsRy6R4/grx2ld18q8lfPoWN8hKhh7+sGC8MwwdZfXMfT2EHpGx9RNCqkCQ28NTaeHn46z58E9JIeSyKpMvD/O0FtDuPwuMhMZCqkCkiJhFk00r8aRl46w/8n9NLc3IykSxUIR1VJ5oP0B3l39LosaF2GYBlPZKbJGlkevfZSV81ayvn096UKa9e3rWTlvJQ90PIBP85E20vQO9HIieoJVnas4FTtFTbCGBQ0LeHPoTfwuPzPDM2lvbufQ6kM0BBvEcfFT5Io53h5+G4/qodJbyWR2kpbGFmb4ZuDX/Fw962pq/DW0N7djWgjw7KuD8kvhnTtt9jggQrZcFeIvX90m/NGT+0UYWanLWfGJY1Sv8Fz7Z0J1u6jcKoikZiybUU6fEqFnliECzib7hI86cC7MWCTY7uywHYCWFZJyq2D3Wet2zVZBMLquoA2sNXs+UpiWfIMAyYWEuI3bcnVTnw41M3UBUlNDdhWXyFuYruYaEo9RCkbL29eKHRdguHq+eCyrKEBuyWtdSAkftaxCzPZkm4YAxvWtkB4WwWbpIai5Utz+8isiRM3UoepSAczTQxA7Jlj6SI/49y+/aqeGm6JKrOUh8Tcq1W+9vkYcX7tA+MA1HzS0U8ikBVGe0dm7d4C77mph9+4TbN4s7CqRSIJcTnRZu1wKBw5EuO++NsbH02iawubNvVx5ZT3ZrMH4eIZs1uDGG+eRShXI5XRUVaiEYrEcAOGwG0WRyWYN7rxzF8PDSfbu7Wd4OOkw2aOjafx+FxMTWSpmeBmMjfLIa39DuTfoMNgz/GUYZpHPL/wUWz95F9WBCr75yvNMZeMosoLf5T0LWANoivoH+wuGzvN9P2fXkX38aP+/ki3kCLn9/GC/2PfD/S+KHBHbbtAQruKC6llEswm8mpvGsmp8LrGAfabMu1AsOlbBhY2NbDrDl53VdaptUqEkFf/Gxz+OR1VZ09XFG6dP89DixcwqK2Pt7t3OeS5F4bv79zO7vJyHFi92eq1LbTMnYzFGUym+sGoVO955h2d272bvu++y8Moree7BB/niqVPcdN11PPt3fwduN2+6XEROnmTxr34leq0vEcGVNDfD974n5N2jo5DLCUb7+efFvkAAvv518e+GBli9Go4eFeC6lCK+YQPYNZ/TL3ZBsOMfpob/p2wfguv/0M0lGOuprb/noy6cDaatomCsS5Va0h8LJtDtgI/jUBwV/w7eBLU/tGu36qFirR1u8iZU3A3BlShSlubmZtLpNHv27CGZTCJJEt3d3eRyObq7u88CyXv37iWfz3P48GG6u7sxTZOenh7HV12ayJYqvJYuXcqaNWtYunQplmXR09NDQ0MDqVSKHTt2oOu6M7l99dVXCYVCqKrq1HWZNjN4NBplMJl0Qiw2dnczu7ycLUuWUO7xIEsSk2k7pMmW8zSHQjy5fz8tjY2ctD2/ATtYq62picf6+lgyZw73trU58uaH33gDQKyW2uDvsb4+iqYpUnVdLr57/fXUBQKctJ/TWDLJScs6S55Za9+WOmcBHmO6m3YJAnh7mJZntiPSf4PARxAMdBb4FiIITUFoDyQEeH4LAc6nEEB6FtCBCDIr2ucvsJ9DyRO0ubcXy7IIu92sa209K7Sj5D1aOW8e6zs6mMhk2NDRgSJJFC3Lee237ttHld9/ltfokZ4eZpaVnVWbFs+J//nJaJSMrpMvFp1rlB6rFDAynEmhelSnC7djfQfjvxtH9aiEGkPs27qPUEOIQG0A0zDp3dwrQPgjPfhm+Ij3x53Jd2okxUU3XkTHAx3Iqui8Ng2Tnk09+Kv89GyaBvCSJNGxvoObfnITqeEUX7npK4zlx/jRjh/hKfOQHk/TsLCBF374Yz5x/fWUV1RwIhqld2AAr6bR2tTEZCaDaVnM8Pnwu1xsWbKE8yorMS0LVZJob24m6HajKQojKcEbzq+uZiKTwatpPHrttYyl0yIgpaICt6KQyufZPziIaVlOJ/ZIKiUqlzSNxz/xCbyq6lyvUCwyfuwAqtvL+LEDZ3RVA5JM3byrcflCZKJDGPkM1ee3Idkr77KsMmPOFUiyiidUhZFLIckKvvJ6JFlBP6MP2zINxj/osz8jMpKqoXkCeIJVZKLDQrqvaPgq6iikY6SnhpAk2Q5MkwiFQgwMDKBpGjU1NezatQtdF0ntnZ2dGIbhhJ4lk0k0TXOyHXK5HEeOHMHlcuFyuVBV4QX3+Xy43W7mz5/P0qVLnftramro6+ujqanJYb1nzZqFz7Z+LF26lJUrVxIKhfjFL36BaRoYRt7xT/v9NYRCjezbt5VQqBFV9dDQsBBZVs7wZm/CsgxeeWUthpFFkhSSyWH27HmQTGYcw8g5gWi6nqGraw26niYSOUA8PkAuF6WhYQFud5BcLk5zcxsVFecSjZ6gq2sN+XwcoRQIUswlaLIsxu2xw23/KAgQfSmCcU7Z4087Igei2j6uDdiCsK1sBkp9lxqC1U4Av7aPvQX4mj12+O1xJI6YKMTs/S2/d50BwFQgOZRkcL9YxNp5+070jE6oIcS8P5lHxTkV3PCDG1D9QmFSPb+ayQ8m6VzVSXo0Tf2V9SSHk4wcHEHzazS1NpFL5FC9Kv4aP233tuEKuMDC6b5OjiSZOj6FrMn4Kn3sXrsbV8DFV05+heXPLKeYL5KL5XAFXJhJkznlc6gJ1GBaJjkjx6nYKTyqh5A7xJOfeJI55XMYS40xkhrh+RuepzncTNEqElADtDe3U+Ov4d62e6nyVeGShQJrUeMigq6gA7yzRhav5uXulruJJCIokkJLY4u9QKaiSoL9VmQFC4tPnv9J7tl9D8ejx9EkkPSkAMJIMKNFgOjUCdFVXWKPsQQjPaNFAFrFCxMHBAjODok+69QJwUSX6qpUH0y9BZLNKit2uNmB1eKv6qkVj2HZ84ncGBx6UABsSRZgX7Il3YrbDunyT/ddy9p0pZasnVG7VRT/LgFwV1CAZlkVcm6n19oSyeHeGYK5xg5Aq10IZbPtJHHTlmQHzz5XcdmBaDlY+IBI7776KZtZTwoPdtWl4s366m0CFEtMe6Lf3CyeW3pE1HFZppCGZ0YFoH/7MXF+oE6A8tQwnHrFXgQwBevd/7pgyRs6RAJ5yWs9cwksuE8A/UgPLp8fWYY5c8p5/vkbmD27jOuvP4ennlqGx6MSDgvbimFYTE1laW4OMTKSoq2tGcMwWb++HU1TGB5O8uCDexgeTgJw3nmV+HxCNVAoFFEUidHRNOvXv4ZhmPh8Go8+ei1PP32ASy6pwe0WgPfAgQhtbc3O9YoUnaqsv3trBxfXzgUgq+eYSMXwai4+YoeTlTqoC0Wd/282vWiQ0XN87sobWHp+C7cu+jQ1wUo8movPL/wUyy9sZ+3H/0K0QJgm33rtb8gXdSYzcZ7p/QnjqSiGWUQvGiiSxP1neK8ty2J2WRmPL12KKkmOL/uelhbeHBpywsjamprYvHevYLAVhXVtbewdGEA3RV3l2tZWJ+xWAp5ctgzLstBNE7/L5ZATpdC0Kr8fJInH+vr4s5//XNi3AH76U9i2jUclid7ubs699FI+9+Uv8w9PPonW2TndbV2q4MrnobtbdFfHYiK87ORJwUyPjoou62JRMNyl0LLRUZEk/txzMHeuSBkvbYUCvP8+fP7z4vZDgP0fvn0oC/+P3sysYKwnNwrg7D5fLPA6MvAz9pEXwPqPsdal8yruBmMcfK2ACvpxwV5Xrgd9UFRwKdVgpkApw9BTGFLdWf7qFStWOPLNM+u0ent7WbJkCaqqMjg4SG2tqBCxLAuXy4Wu6468s6mpCcMwSKVSjndS0zQMw0BRlD+o7srlcjz77LPcdNNNNDY2cujQIc455xx0XUfz+zkwMsKChgYGEwlHmnNORYV4bEURcvFikawtWy55W3ceO8bNF1/8b1Yr1AeDjjTXAiLJJOlCAQl49Izarcvr6hzp0YaODmoDATRZZvUOUc108+WXc7umOf7qHyJYpE0IyaQPAZJnIHyLGxBAOIdgswcQk2UFwQJtQTBRjyAmy3MRHuq5CBbpEaYl5RbCRPAuQgJuIDyRFyPYJQkw83n6bc/6+vZ2GoNB3KrqhIqdtO/b0NHBOXa4mybLZA3DkSNLTFdBPdDRwZzycuL5PMPJpLNvdnk5J6LRs2rTPKrqJDePp9Okbelz6RqGabKqs5MNV7ZwblhUMmGBpEgUUqLSZ8fqHX8gJY2djIlKn/UdxAeFnLRrTdfZxykS/d39+Cp9eMo96BmdxGCCUGOInk3C95kcTlJzSQ2qR+W2q27j1Xdf5ZFPPcLKH60EELJVGS6YfyGPPfVdrlmyBKMopGpj6TRBtxuvqpIzDAIuF6lCgfWvvcbGa67BZ//fJWAsnabMlnIn83nOrazkeDQqbAvt7cwtL8ewx+CJTIYKrxdVlkWwnK5T5vHw5tAQl9XW4lIUXIpCqlDg4MgIV9TXE9RUrFwCze0Xcux8FtM0cHlDwp9sGhSNArKiYRUNJwEcIJcYw1tWa8vCvTaxJSSgkqyAZZJPx5k69WtmnHMlqfHT+MobMPIZvOEqkGTR7QxkpoZQ3T4RYoaFWTTIJSbwV9RhFKF/YIDq6mp0XcflcvH+++/T39/P4sWL+d73vseaNWvOGhtWrFhBZ2cnHR0d+Hw+hoeHqaurc9j6QqGA3+8nkUjQ3d3tHLd7926WLFmCpmlO7VfJdnKmFNztdpNMJikUCpSXBzGMFJZlks8nCAbr6e/vwe+vIp0ep7m5HUlSsKyiI+u+5ppNdk+1jK5n0TQvup7FMLJMTh6loeFKikUdsJAkhUOHXiASOcCCBV+lvHwmiuIinRYgPBRqIpOZwO+vorNzFU1NbTQ1tdHbu5mOjg24Ky9gn+pivv3ZtuzPu4oAvaUWcxkh1y6pafII9roMAaQn7THJZx/fz3SLgYVgqRsRUvIZ9tizCbE4OHbGuNRo/z4TwWA/CDyRyNNz68u03N3Cvq37OPLSEW76yU0ieT+ts3vdbhbduYhgfRBXwIWe1clFcxRSIkMhWB9koHeA+ivrsYoWkQMR6i6vAwvyCVGnNfruqPOZlVWZQrqAaZi8dt9rtK5txTSEvDk9mqaprQlTN1FcimC2/RJJKclQcojNvZvZ0L6BpnATo+lRgq6gCF9zBbj15VtZ17oOVVbZ1LOJ+1rv49zKczEsg/H0ODk9h0fz4Hf5GU4O81jfY2xZsgWX4uKff/vPnFNxDpfUXEI8HyfsDhNyhTgePc5AYoCFDQtxq26+uOOLrG1dy2BikLpAHRYWfpef88INyImjIqX7wnWiEkvxikRvqwixQ1BxpZBhI4nQssMb7cqsOgGKp94UoNk/U/ioi2m7Z80rPNW/+xZceC8ESiWQRXGeZUExBQfvgwvXiiTxX62A5pWw8HlInoDQeTihZhLinES/qLGSZAFKE6cFqC3mBdh1hWwvdVCA75In+ywPdb3Yp7im5d4l37JkA4ZCUtwvawLwGvkz/Neu6evBNCsuu6Z9z1pQAPrnZ8ENP4GGdtAzAkRfuU4A+dgxAYhLlV1De+Ha7wsWH/s56SlbHm4bvSxrWib+xlqu23yckYk4cmaYYPVsnnzicZrrq7lmcSsU4lgVFxGLZxgYOMWePb+lrq6aTEZny5ZetmxZgs+nkcnorF//Gt/85scJBNwoioQsS5w8KVLB29ubGRpKkkoVCARc1NUFKRREeFnJc53LGaxevYN161pRFJlHHhE1XnPmlHP8eNT5febMMLIsceutnWzbdpgdO/+Ecy738Pz+F/nCok9RF5yBIivkjQKPvPY37Dqyj6c+c++/6bP+X22ZQo6Hdz/PxXVzaZl5CTXBSnwusZiQNwoUzSKD8TGe73uRz115AweHjtAy8xKe6f2JI0W/tP48VFlBkhSniUOTZQzLQgZkSWLvwABX1NcjS5IIB62uZjKbdSTk9cEgB0dGaG9uJlUo4NM0UoUCD7z+Og9ffTWGafLbsTHmlpdjAbppMresDN00nSDWkVTKsSKW7IepQoGMYTAVi3FVPo+0caNglmfOtJUdsgDEqZTwSl92mXhhfD5x33vvwdatcP/9Qh6+d68IPBsfF+C5rk6ki2/cCPfeK35/5x3BctfXi9otO3uEVEoA65Jk/PnnP6zl+nfePvRc/1fczAJ/AJz/rX3/y+ukhJQ8uU2w3DVPg+wTAH70S9P7K+6Cqe9A7XNCBjb6VfLl3yaVFaC3NDktKytzJJelEDMQIUF/9md/xrvvvkt5eTk1NTV8+tOfZuXKldx99910d3cTCATweDw8/PDDXH311ezYsYNDhw45ILrENum6zu7du2lra3NCiEqhRqXJb2VlpZCMulwcj0bZ0tvLo9dei6+0Kgi4VRWvppHVddK6zv7BQWps2XK13dtdNE3yxSKJfJ6vnxFa8ezy5fQNDtLW1ERa14nn84TtDuLPbNvGz1aupLWpCVmSyOo623/3O6cjW5YkPpicZDSdpn32bE4qChsliQ2IyeYaBNtzHcIPeQfwJAIIexDJvV9CTE6r7Pu22Pd7Ef2zLyAYpGcQ4NyNmPh+BvgJQp5ZAuYuBKAfQUjFVaAHwWCdq+sk7d7qMo8Hr6pyIhpl2A5s0xQBjHQ7uKPUq5zVdSLJJN/au5cN7e00hcMYpul0ZM+trEQCipbFZCbDDLvL2utyodkd6KeiUf5Hdzf3trYyq6wMTVEwLQvZBtypQoGhZJJK1U2NywcWFPUiliF61Ud/MzodjvRAB6GmEPGBOJpXwz/Dj+ySMQsmknIG4H6gg7LZZSBB9FhU9GJvaKd8bjmWIfquk0NJEZI0ksLld/Gjn/6If/iHf+Cu8+9i2TeWoXpV8qk8ledW8vrrr7NqzSr6fvtbRtNp0WvZ1AR2n7IkSezt76fW72eWvWDgsQF3PJej2u8XiyC2tSFq7+vp76fa72dWWRkeVaVoWSh2x3XJk11amPiNPQkA0Yl9JqPdOzDAzHCYCyrL0TMx9GwaX0W9XRerIykahXSMyZNvU3NBB4rqomgUGH2/m5oLOigWMowff5O6i67CKGQZP7afGXOuRPP4RajW+91OB3ZJUpqJDuEOVonPVyHLxIm3qLmgQxxjmViWSdEooCguLMQ1ai76OBYyk5OT9Pb2OjkM6XQan8/Hrl27WLp0qQOA29vb8fl85PN5QqEQ/f39NDY2kk6n8Xg8JBIJJ/jwzJyGxYsXc+LECZqampzHGRgYYO7cuWcB90984hOk02m6u7tpb2/H79fQNNsTaKeAG0aWXC6Kx1OOqnqIxU7S3f0wHR0bKCubTTR6Ek3z4veL8CRdz5BMDpNOj9Lc3I5pGmQyk3g8ZYBJPB6hvHy2SJKOnqSnZxMdHesJBOpQFLft4YZCIYWmeQGJfD6OYRRQvOVI3gpSksSI/Vk/cwwwEYqVM73Wqj3W3GPvuwwBqjPAQeBKBOA27X33Anfb177YPrYPuBHBaj+MYKxvssejUhf2RxHy8lTBwPv+JImBOKGmEJpXc8IFA3UBBnoGiByIcN3W61A94rsgPZYWffR5AyxwBV0UkgXy8TxaQMMT9mDkDHKxHJ4yD6pbZfLYJKnhFKGmEMlIkqbWJoqFopCRX9lA5M2IsIRIEkW9iObVMA0T3aOTK+aYyk3xyvFXOLfiXOqD9Wzp3cKj1z6K3+UHS6R5zyyfyVByiFeOv8L151xPWk+zpXcLm5dsxq24UWWVvJFnKjdFupBGQuLR3ke5v/1+zik/hyOTR9jcu9kJSHvj9BtU+at4cv+TDhAvFAWYODQmZOQDiQGun9WONN4j6rDykyK92zKFbFvxC39yITrdS/3majj1ggDA8x8SYDx1QgDj8ssFi33kMbhsswgmy42Jai2tHNwzBIttZESH9QX3iMfNjohjvfXw1pdsID5LyMO1CvHla+rT3ugSGi79XkgIljZcAu/2VkiCKzB9vuzirF5sy5oGyyWJuehomw5E09NCeq3Y8yOrhMSZvm7sA8FEdzwqHk9PQ88GaHtY/J4ZAz0HqX6oWyhY+FKF2Ku3wfGXBPiuWyTk76pnOqDNNEUau68aEgOiA7t24RnhajliR/dQduF1YJn8/MV/5aFN3+Y3b/XZ1WGQMMvo6LiNd9/dz8qVG/nud5fx5S/vpK2tiba2JjZv7mXdOuF3PxMUz5wZRtdNPB6VkydFwFljY4jBwYTdcQ0zZz7OJz95Ps8/fwOKIpHJGLhcCl/96k4+8pE6rrtuLg0NQb74xR288MIhVq6cx7PPLkfXi4yMpNm4sZuvfa2DOeeFKRR1huLj/POvd3HvNZ9DlRVOTw3z/P4XWbXoMzSV12CYxT/wWf+x7d8KOTvz3Ewhx0O7vs+uI/tYen4LX2y9kaDbx1Q2wWhyiupABT+0QX99qJZEoUDijLlbtd/P3PJysobhzOl8mkZG17lj166zQslORKM0hULcsWsXjy1dyp27drGgoYHr5s6l3ONhKJl08mnq7dA0gLFUijJ7AXxNV5dzTmMwiG6afHnnTu5dsICLFQUpFhNMtGXBnXcK6fasWfClL8GTT4r30/79AiTPni3k3meC4ePH4ZFHBECfO9e2U9hLqYoimO7PfAY++Ul46CEhGQ+VAgFt5rrk5T7//A9Dzv6dtw/B9f+btzOZ68oHwHUuTnCZfgImt0D1lunj5RCYogpDt8oo6JZTa1PyW5cmt+Xl5RSLRbq6uvjIRz7CD3/4Q1wuFxdffDHHjh3j2Wef5dvf/jaXXXYZL7zwAjfffDOnT5/m05/+NEePHiUYDJ7FIpVAdWtrK+Xl5c7EugQiSmD85ptvJhwOs3fvXq5Ztow1O3eeNeh5VJWJdJrqQAC3ovD+5CQbu7u5u6WFco+HjGEwGI/TGAqxpbeXLUuWOAPs2t27nb5gj6oScLtJFwq8OzrKFfX1eFWVpC2fKTGDqiyTseWrsu19LbG7yXye+ooKipKEJUmOzBKENLsKMXfIIAKB7kWwPjkEs7QXuAgxEb7XPqYaAcgft68zhJBgbkCA7yoEEHfbj6XZj6Ej5JszmGazrHye215++awvlb7BQeZVVaHYQPrd0VEWNDSgyTJFyxK1UL+3GPH9FSu47fcSMwH6Bge5xK6MKtj+7k09PaxvbyfgcrHjgw+46aKL8KoqaV0nWSgQtkNFvmz/XW+96DLiJwQQbl3XSqA2gObXMLIGkiKhaAqlHtyuL3XR1NbEhZ+9kNRIir7H+liyZQmq12bJJRjYO0DDlQ1/wGYbeQNFU4idjJEaTRGsD3L04FEWf24xs5pmEQwF0TM6Xr+X7te7kVWZv/z8XzL7/HO4e8N6irZvOmsYjGcyPGKvgtf4/WQNg4ztWy+tZj+2dCljdrBeSQnRGA5zTnk5x6am/s3wvRk+H3fu2sW61lYa7S9J3WbLR1IpNvf2sr6jg9nhMN02QJ/IZFgye6aYIEoypg2eZ8y5Apc/THoygic4AySJ0fe7qZz9UTLRCIGqWYx/0Ie3rJayhgvJRIfpf+dlQjVzqT6vBUXzYBWLSJLMyPtvMGPuFWjuAJKsiKqRokFRzyErGrKs2H3aXkzDYOT9N6ic/VE0b4D48FGCdRc5eQ1nMtOlz74TsCZJmHZtWTKZxO12O/VamqahaRqqqrJjx46z1C87d+50mOt8Pn8WkF68eDEej4dMJkN3dzdtbW2UlZWddY0VK5YhSaJvWpIUCoUUIyMHCQbr6Ol5hI6OB1BVD7lclHR6nMbGRViWCImMRPYTCjVRVjaTdHqcQKAG0zQYHOwjGGxE07wEAtVYlomuZ8nnE+zZ83UOH97GvHkrWbbsKRTFZYP6IMVijmw2iq5nnfTybDaGHG5iVHXzIAIEj9tjwVZ7bJhpjzOlpO8rEczzYwjGecweR9YjgHmp1HEtQlXTh1DEtCOCzTYgWGvscYczxrJv2NeyIQd99rh2TlbHKhSRNZnosSjdG7tpubuF9Hia8jnluENuMhMZseh1fzuaX3OCDFvXtVJ5fiX5eB5Zk1HdKpIs0d/TT7A+SGIwQbgpTCKSoHp+Ne6AG0kR75+B3gEC9QHKZ5djFS30jM7utbtpvaeVsjllIgDNY1KwQ79UWaVoFR0f9aLGRYLN7tjA3LK5HI8dZ/PezTx67aMEXAHG0mO4VTeKpPDA6w+w6ZpNeFQPvQO9NIWaGEgMsOKfVrBy3kqeW/EcvQO9zK+ejyIrBF1BilaRvJFHN3VC7hCGaYjcA0lGkRQMy0CWZPyyhKwn7eCysGCbU8cFkz1vvQDNvkbbW10u2NO3vyKYa0+1AMWZiPBt62k4/E04/07wNwtJeNlldh+kV0jIdZvRHXwRxt6Ajz4JuRHRcz1vg0gjz42J6+pxAbItWSzQ52M2iJ4t5N+ugPBfSyp24pxgr0uMtWUJ5lhPT4eK2Z9/JEn4qBXNZrWt6QTwM4G8Ukr6t+esljkNvGUbfEd6YMZ88f/KjonXIj0qFhLe3AwLNwhPei4q6rkWbhALAVZRMNnjB0UK+IFN4r5gs/CJv7lZ1HyVFgA0H+RiovfaXysk4SP7xfHhOVDM8eN/+Gcef/IpDu57XTzfPXeQXvw3XHb5R/jqVzfw2c9+GkWRkWUwTYu77nrFAb3f+971fOlLXWzbdtgBwZomUyxarFnTxbe+dQ2KIlMsmtx332usW9eG16uSzxvMnVvBBx9MsXFjNw880MGsWWXkcgYHDkRobg5TWenjzjt3sWFDB1VVPtau3c2jj15LIODCkk1GMmP86MC/8rkrb6A6UE7YG3QSwH8/oOx/d/tj1xDgO8LzfYIRbwhVMZVNUOELY1om/+OVHzjA++vXrebI5KSjRqz2+7ln925+cMMNfHDG/nMrK7Esi1OxmDM3mVVWhiJJZHQdw7LwquJ5ZHSde199lXVtbcwqK0MCTkSjDuNdGwgIe4ck8ebQEJfW1DCaTrO5t5cNHR3MLisjWShQbhh4S0D5llsEG336tGCgFy06W6Lt84n9odB08vcDD0BTk6jnKoHtb3wD0mkBsk+fFmFojY3i+HvvFex1OCz6sktboSDk5qX08EJB/LhcHwLtf4ftw0Cz/zdvsgtcF0Dd80JKLttfPvppkHxQ+wwUx2HsDuHHNhPii1UOYloyqj2oFIti5ba3t9fxOZbCxFpbWykWi3zlK1/h4osvpr29nZaWFjKZDO3t7TQ0NLBmzRqam5vZt28fpmmSSCRQVZXly5eTTqcdH2UpeMgwDPx+P/F4nJdffploNMr111/Pn/7pnzqd2IsWLUIGtixZQltTkxPK5VRIATnDOMsPXO3341YULq6uZtMZHYY9/f1oisKzy5fTHA5TEwgwmc1yW2cnALWBALfv3MnxaJR3hocxLcsJMCuaJiG3G6+mcXBkRAROyTJeTaMmHCYpSQxLEhmEd3EVQsLtQ0x08wjG+lHEZDiHmOCmEXLuMELq+SiC6Q4Cz9m3CtNhaREEi73Xvm4aMcEuxcbo9mMeOOPtoYDjPVrf3k5W12ltamI0nWb9a6/hUVUWNTai2sC6VMuV0XXHz3RfezuTtgd75bx5PNAh+jdNy6KlqQkLGE6lUGXZCRjZZIeiffbCC4nn8yiyzGgqxcNvvCH8yLLM3S0t7B0YwDJNkkNJlmxd4khGSxLxV+56hXi/6L8tFoosfWwp82+Zj6zJ9D3WR2OLqOlKj6TRMzoDewfwVfqwTOssD7ckSyQGEuxYvQNZlWlubyY5lGTuxXOZ+GCC9w69x9fnfZ0/OfknrL9ovePXfnzD43z9aw8ynEpxx65dDCQSaLJ8lr88WShQ5fezqafHud12+DCJfN45rvR6bOruxjBN55j4Gcds7O4mnss513Uk4PaiRMnjvqm7m0gySZXfz1g6zeLmJvRMnOHDv8S05d+Vsy9n4sRbgIQ3XI1ph8N4y+uYPPk24frz0dw+6uZdTaj2XIxCFm+4mnM7/oL6eVejugMY+TSjR3qwsKg5vx3NHUDPp0hPRcA0kGSFQjpOUc+SiY0iqxp6PoOFhbe8jokTbyLLCsHa84jFYgwODtLR0eEEFg4ODjrNArFYjJdffpmpqSnS6TTRaJQ9e/aQyWSwLIuysjL8fj8ulwtZls+6Ti6XY9myZZSXlyNJEj6fj/b2duf+UCiEy+UiEAiwYsUKKioqyGQytLS0OMeIisHjdHbexuTkUSzLpKrqInp6HuHw4W3E4/0YRsbxYCuKm1RqlEhkPw0NCxx5uM9XST6fYOfOLxMI1KJpXny+SgwjT3//XtLpcVyuAMuWPc3NN3fS0rKOXC4mZPyuALHYSX7xiztwufyEQg3U1FzKK6+sxeXyo5kGYctinf25X2jf3o0Av/0IoOxHKFhMRC/1U/b4MoJIFPfZ96WYDioLIJQylyNYbgthUxkG3rF/zyJUNdjnWMAH9nhXA3gLBtEPpuhc1YmRMejeKHrnM5MZZn5sJsH6IO6wm0BdgGs3X0tyOIknPB1k2PeY8PNrPg1TN+la00X0eJTq+dUkBhP4qnzEB+I0tTbhCrgwCgamYWIaJtXzqwnWBDFyBv09/SSHkzQsaKDnkR70tC6C0jA5HT/NbTtu43j0OPlinivrr+QvLv0LAq4AbU1tbN67Gd3S2di9kQUNCxhJjdDT30NWz3Jo9BAuxcXDVz/McHKY1TtWU+WvYiAhurBXzlvJ1zq+hizJLGpchCRJHBw5yPHocVZ1rmIwMYhf82OYBr0DvZyMnkSWZLJGlp7+Hk5ETyCyh0vJ3B5xq4XgwnsEsHZXidtiWvRcZwbgiu/ZzHJaVGulToIaAm8tXPGMkIcX4jCjVfiuowcFsM6NCeAuu2DmLTDvAbvL2Q3VHxMgHUtcJzss/NdmUeyTVfBWQ9kchDd6jghDSw7arLQi2FxXUDC2liWANpIA0IWkrYQpgWSmfdySIo4J1IvFA0me/ncpEK1YENcqScZLt7ImgO/EIUieht6vQ2YEys+Z9lfv3ygCxzwVojYrNFs8n9fWiKquhnYBrI+/BMmIeJ7BJmj4GLy1RZybGhTstaccvJXTwNpbDf4a/uKv/pqmcy/ha9/YxN//+IeC/Va9cPwlDrzxC6LRKL/6lZuJiQwul2wz0hpPPbWMrq4/5emnr8flUnjggQ5uuWU+3/nOdciyhGXB+HiaLVuWMDGR5Y47djE6mmbBggY2buymvNzDnDnlFApFNm7sZtu2w/T3xzl5Msbtt5/dd33XXYuorfWzdu1uXnjhEHfd9QoAY+MpfnRgun/aq3kcEPxvBZT9725/7BqaojK7ooGvX3crdaEZ/HroCDm9gKaouFUXX1j0acer/ft5MqosO97rM/cXTZM1XV1U+/384IYbaA6HGU+nORGNctcrr4jA1miU1Tt2MJJK0dLYyEA8TtE0MUyTQTscdySVIpnPE8/lcKsqzeEwiiwzkkpxT0sLXluB5lYU9o6NYTz2mEj2LlVrbd0qwLDLJaTbo6Nwxx2i49rvF/vPOUdUbDU3w8TE2WFl6TQ89pj4zGzZAjfeCGNjguGeO1dIvuXfg3Mul9hfAtYferD/Q7cPmev/E7c/1pVtpiD9K5FILodg4sGzZeO25DxvuCkUCk7fdIn52bVrl9Nh3dnZSUNDA3PmzCEUConkbkni85//PGVlZWzdupV4PM4Xv/hFDh48SDwe50c/+hGLFi1yGPDfl22W6r4CgQC6rmMYBuPj45SVlREIBDBNk6GhIeHrdrkomiZ7Bwa4cft2Pnn++Ty3YgUZW8pd4/fTH487Xt5SjcJ3rruOyWwWl6JwfGqKKr+frfv2saGjgzllZRQty+kufG/NGh5+4w2HHffbLPcx+7zxdNphI9fbHtnj9mrmDz7zGZKyjIyYtFoIgPxJhNzbjQC9MaYrshYgwHYpeMyLSOuFaYnmWoRUvMQYKQjCYS9i4gwCXP8GAdBPI5ikLUz7KXuBFl0Hw8CwLBTgwNAQixobWdXZybrWVjR7kSBjGE5tRXM4jGzLnkdSKYK2tKpUVxawQz3W2SqAxlDIkXqX1AF3tbRwfkUFH5S8xR0dDNuAcHZZGbLd12xaFq6ihGwKZhpJSMN/X0q6/Jnl6Fmd9Eia7o3dtK9vxzfDhyvgolgoEjkgjvdX+xk7NEZzezNm0aSQKFDUi/hm+Ohc1TnNZD+7QszNVInoySiJ/rP92GWzyzj4NweJHIhwzfPXn9Vz+ezy5ZyOx3nE9v/XBwKE3G6ORaMM2IqJ32el13d0MBiPUxcMcq4djPb7x5z5/t3Q0UFzKIQqyyRtKbjDXLe386vTp9k7MMDTy5ZR5lIZOrQbX0UDoZpzMIs6iio+47LqIp+KniEL14RtMJdk/Nh+6i66SsjxiwKUy6qLoUO7qTpnIXo2SSETw1fewOTJt215uIqFRGZqCM0bQPME7MotL4VMgokTbwpZuTeAkc+guf0Ukdmxo4tFixZRWVmJacvaotEo6XSapqYm+vv72b59O+effz7Lly8/i1W+6qqr8PtLVTI64+PjTup4JpPh+PHjXHDBBQC89tprXH311U7TgADNURKJBI2NjSiKwsDAAIFAwGkn0DQN08zaHutqPJ4yvN4Ku5qrn56ejVx//dN0da3h8OFtzJ9/C8uXP0OhkMI0i/zyl1/jmms2oaoeBgZ6CQTqAROXy08w2Eg0epJkcpDGxkXIskKhkGZk5CANDVciyxqx2Gl6ejbS0bEBVfWiKC5kWWV09F3q66+gWCyQSo2h+qtwhxrE5wYBjLNMV/5FEKqXmfa+egQTDcJrXYlQuegIxYuE8GOX2+OOB9E6sIVpwD1mj13fRnitS9tj9nEA2xELes+l8nR9/mUObzvMzZ03E24Ki375y+tIDol++Y4HOgg1hijqRRRNERkKp2P0bOxh6eNLyUxkiPfHaVjQQGIgQXo8TVNLk6Nc0bM6hXQBX6UPPaPz6r2v0rqulfLZ5RTzRbLRLJ4yD7lYDrNoYmQM/NXCQlIMFVnVucqp2Hpq2VPcvvN21revZzAxSG2glvpgPalCirSexqN6eHDPg04ndpW/iq37trK+Yz2D8UGHqX562dN4NS+6qaNKKidiJ9jYvZF1reuY4ZvBulfXse3wNjpv7qQx1MimHtGzXe4pJ2tk2di90XmM62d/DMk07L+ILELKfLU2Y90kgK7ssiuzYgIgV7XCW1+Gyx8THdjll0J29Gy2u/wj4tj3v21LxH3T13jv2zZLPRvSJwRrfdEG0XNtFcS3z8R+6PkUfDZqM9KF6aosV0h881mmCA5TPOAOCSCeOC1CwM70UzubidO3UZKHW0W79io5Xe11Vj+2JULM3GVnB6iVmHHLECC541vCA33qFRg5ANc8LZ7L/o1wxT1QcQHETggQveB+CM6E9/5eeKyXPCeOTUVEDVfJrw3iuekpwXAf2GRXb42JhPKP3m33aC+A4QMQbORvN63iXw5pdD13vwDoyQH+/MFtvPlmjCNHLqez82YaG0Ns2tTDunWtzJ1bzsBAwunA9vlUUimdYtEikcgTDIoQPa9Xo69vkKoqP+PjaebOLSefL+LzaWSzhiMZ37Sph6efXsaaNTsdBvzpp5dRKBS5885XePzxpYyPZxyG+9xzK4glskzqk/ztOy/9b/mp/723/1mNV2mfZeGoFku5L/a7iQ9sZdgDHR3MLS9HN01UWea4nQtTqhtd8U//xNBdd7F2925n/lcbCIicmp4enl2+3Jlf3t/ezsxw2JkHeVUVJInTZzDipZweV7FIRTaLFI9DTc3Zcu9nn50GwfE4HD4sJOFVVQLwer0iuKyU/F0sQl+fuE5trWC6LUv0XtfWimTxaFTIzzVN3H8mK11iqyVJMOEvvPChB/vfaftfMdeCrfo/7KehocH6v3Yr5i0r+xvLGlwpbov5P7xfHxf3Tz5hWdm3po/VRy1Lj1qWkbBy2bQ1Pj5ubd++3XrooYes7du3W9ls1spkMs7PyMiItX37diuRSDj/vv/++62FCxdaJ06csBKJhLV9+3arr6/PikQi1te+9jXr0ksvtQ4dOuRcM5VKWdu3b7dGRkasbDZrTUxMWJlMxkokElYkErG2b99uDQ8PW/F43BoeHrYmJiasXC5nRRMJ6+DwsHXLT39qRRIJaziRsKKZjBXLZq3BeNy65ac/td6JRKxULmfFslkrlc9bv/jgA6vsW9+yfvHBB1Yyl7MSuZw1nk5bK7dvt3joIWvl9u3WVCZjHZuYsIYSCev98XErkctZU5mMNZXJWO+Pj1sR+3HiuZz13vi4NRCLWZ/7+c+tp/bvt0aTSSuWzVpdR49anocftqKGYf3asqyVlmW9ZVnWkGVZnZZlvW1ZVsKyrIP2fb+2LOsDy7IGLMuasI+7xb4/YVnWoH3+LZZlRSzLOmXvH7Is6z37/iHLsqJnHDdkWdaUZVmjlmV9zn7MuL1/0H6seC5nHRwetrqOHrXi2awVy2atZC5n/WZ42JpIp62uo0etqUzGeX06jxyxDg4PWyu3b7cODg9bb0Ui1i0//akVy2atoxMT1lgq5dy+FYlYXUePWtFMxvr1GefEcznnsc583WPZ7Fl/z6j9mudSOSszlbGSo0krMZSwjnYdtQYPDFoTRyes9ETayiVyVno8bSWGEtb2lduth3jI2r5yu5WNZa2R34xYP73lp1ZsIGYlhhJWLpGzMtGMlRpLWRNHJ6zUeMrKJXJWfDBuDf962Nq+crs19PaQlYlmrMRwwspEM1Z6Im29+dybVmosZWVjWSuXyFn/euu/WpG3IlZ8MG6lcjnrNyMjzv+v9L6KZbPi/ZVKWUOJhDWaTFpTmYyVzuetqP1+jJ9x3FAiYT3R12cdHR+3YtmsNZFOW8l83rnWUCJhJXI563djY9YTfX1W19Gj1rsjI1bX0aPONWLZrDWcSFi3/PSn1rsjI1Yqn7cKhbyViY9ZhVzaSkdHrNNvv2yloyOWoecto5CzTr/9sjV+4m3nvkx8zIqPHLfe7fz2H5yj57PWu53ftk6//bKl5zNWNjnpnJ+JjTrH5TMJK5ecsjLxsT+45um3X7aMQs7KJaesdHTIig4ftxKJhJXJZKxUKmUdOXLEGh4etnK5nDU8POx8/o8cOWINDQ1ZuVzOGhkZsY4cOWKlUilnXNi+fbsVj8etRCJhJRIJK5fLWblczspms9bRo0etSCTi/Pz85z+3MpmMlc1mnWM++OAD53lks1nnR4w3SWt4+KB15EinNTx80PrpT2+xEokhK5uNW7lc3L7/N9ZPf3qLlclErdT/h703j7OrKtP9v3s486kplZpSlcrEIIHIoCSQVFBBZHRsTdvS7dBIQEGZJEhCI3aTQsOoggMi2npxSNCmIQTCoEgqcwgJECBJVSWpea4zD3tavz/efU4laN97u/t29739Y38+57PP3mvYu06ds/Z61vu8z5MZVfv3r1f9/btVMtmnMpkRtX//etXXt0ONjR1Qg4N71Lp1y9TQ0Ksqkxkul/f3v6xSqX6VzY6r0dE3VSo1oA4c2KDuuCOsxsYOqGx2VB04sEGlUgOqUEipVGpApVIDanjysNrjuWq9P2aU9suUUtuVUhv88WLUL9vhjzcDR72e8ceLlL8/6Pex4aixZb1S6oG3jTEDSqnv+Mdj/jW/49c5etxLFG01uHdIfmN7BlQhXVD5RF6lh9Pqnz7/T2r7A9tVbjKn8om8SvYl1W8v+60a2jukCulC+Xw+kVcDrwyodcvWqcE9gyo3mVPJvqTqf7lf7V+/v/x7Ht0/qnIT8jvPTeZUaiClfnvZb9XgK4Nq//r9amjPkCpkCuXxpJAqqFQqpfYM7lHL1i1Te4f2qvX71ytuRy1bt0xt692mlq1bpiZyE+qhnQ+pg2MHVaqQKtcbzYyqZeuWleuXjvcO7VWpQko92/msSuaTKpFPHFNvKD1UvuZIZuSYssn85DHHI5kR5VlppSZeUWrTMtkXxuX96Dal+tYrNbHXL9vjH+9RqphSKvGGUoVJpfKjSiXelDqPMtW2dO6t7yg1tuvYPkr1ipNT7ZIHpLx0H1ZK6joFpcb3K2UXlHIspRxb3o/vV6qYnjq2srJP98t7x1IqN65UMSN1imk5dqypMseWV25c/iYrq5R7dP8Zvy//XG782GvZRXmfHlBq+BWlnlym1NAuOU4NSPvciFJd6+WzenKZUncj+9yoUmNvKDX0stTPTypVSEr7Uj+ZIaUKCaVyY1Ntx9/803661is1sL18Phw01NjrG5V6cplKj/aqeDyuHn98k1q2bJ0aHc2qZcvWKbhdLVu2To2NZdX69fvV9u19atmydWrv3iGVThfUyy/3q/Xr96uRkYxKpQoqkcirgYGUuuyy36o9ewZVKlVQBw6MlfsLh+9Qk5M5NTaWValUQe3dO1Tub3Iyp15+uV+98caIymSKqli0VSpVUMWio5RSqli0VTZXUOlCTlmO/S/NQv+v2Iq2rVKFgio6TvlcslBQB8fG1EQup4bTaTWQSqnOsTGVzOfVm6Oj6jvbtqnLfvtbNZLJqGXr1qmBVEoNpFJqV3+/WrZunXp1aEgdGBtT2/v61GAq9SdzmHShoN4aHVXj2Wy5j1L59t5edXBsTLnptFK7dim1bJlSfX1K7dkj7/fuVWpyUqkNG5R65ZWpc6mUUomEUpnMVN09e5Q6cED6+c535NzIyFS/AwNTdV95Ran16+U4nT7qAypK/6XrDAzI+1dflbJ3tn/XBvSp/wlOfSdy/f/a5mXB7oXss5DfAU0/AP2oFSjPAi8HzpGpnGs9KhHtkZuh9mtgNOLkXscOLiGZTNLR0cHSpUtJJpPEYjHC4TCxWAzNj2CC2OU89NBDdHV1sXnzZqp8s/pUKnWMCvhDDz3Eb37zG4aGhmhra6O6uhrgT3Ku0+n0MbmRF198cflanueRLha5/sUXOae1lSWtreXc1YF0mgY/kjW3pgZD18laFq4vlpWxLGLBIIPpNA/s2MF3L7qIousymc9TE4kQ9kW8DicS9CSTLGpuxkPsuEq5NSfW1tLtK2mXVixzts1QJsN927Zx1/nnAxCNxViu66xFaJX3MBWV1oEroVz2Q/98SaDMQRbrIwj98iAiJFTKvz5aOfxmRDEchGZuI0JmO4BmJFpV8PsZZkr9VysW2dzTw6LmZlyl2OWrTpd8ljUgVSwymsvR3tHBgxdfzNUbNpSjtA9cdFHZ3sxTCst1GcxkZKV26VLmVVdTdF2+fFSbH116KVt7ezmtsfEYpfW51dXlvOSGeJzhTIbZ8SoCWY9iskiwwldv9xTDrw5TNbOqHKVO9aVoOLWB/Fiejjs7RLhsdjVHXjpC4nCClrNa2LJmCxfcfwHZkSzpgTSNpzYeozJcd3IduqFjBA2cgiNRr5sWE4gGiE6P4hSccp6m54rl14cf/jBWUD4jXdOOUQW/49xziQYCBHSdA+Pj3LttG2vOP5+IaWJ7HjoiYFYdDhMwDGzXZUd/P22trai3f5Y+YyBn2+V87gcuuohrnn76mDz3EkPAO+q77tgWTZUVaErR/9pzJAf3U9V0Is0LxD/eLqTRdIORA1vKZTNOOZeB139P84IP0v/a80e1keO64xah6yZGKIqdT/1J+/oTziYQih9zvRmnnMfA6y9Qd9wiAuEKQDHw+gukhrs4/tyrynoOZ599NtlsltbW1mNysC+++OLy+BMMBkkmkySTSZqbm8uOAtdee205Iq2UKrNulixZQiaTobW1FcuyCAaDJBKJcvuSOGMqlWLbtm1ccMEFb8v3tunp2URz80L6+3eQSBymtXUJW7bczQc/+G0CgSieZ2OaESYnu+noaKetbSXV1bPLeeKgyOXGicWm09OzmVisnurq2b5ftYem6ThOXoTeFGSzwwSDcYLBCnp7N9PYeBrFYpJotB7XLch3xMoQi9Vjhyq5Qje40R9jvoawXub740cUiTrf4ZdVI1HsjD92fNuv38eUAJqORK4jSIS6JIQWQEQZzwY+BqSRFJUYUwFGF8mz/mvgfyB52hkgmi0StiVn3s7ZDO0ZYsaZMzBDJsVUkcxQhi1rttB2SxtHXjoirJTvX4JjOfRv76eytZJAOEBhskB2NEvLohZyYzkmDwk9XDck4jO0Z4iK5gpSvSmaFzajmzqv/fI1el7q4awbzyI3mhOPa1PDszx0U6d/Rz8NbQ04yiGgB+ia7OKOTXeUI9Ezq2YSMSPUhGsImSEG04M0VTThKQ9TM+lKdLF602pWLV3FnOo5eMpD13QcT/rLO3mShSRZO0t7R3u5noaGq1wMzShHtW9deivzaubROdlZPn7XtHmYykbbsRx61opI2cIfQrZHos+1i4QKXip71w3w1r2w8CGJIJsx+c/aGREyOyZyfQYUhiWq/No3pvp47wOw6xo45VZRD0/76uMLfwQ7rjzqPh6Sh8/ELpjedmw+NZpEjJU3FZ22UvLeCEu9kiK4a0tUu5gSG68ytVtB8rCvOv52JXFfJM0I+9Rx/5wR8tXENcrZjSWV8OeuEAr4icskEg2iap7ugxlnSfS/pAy+aKVErgHefBQGt4qdV6QWfn/NVD8f/KFEyZWCZPdRketRiYgvWkXCjpIbP8KMWAEqWnj8/qu55qcH6d30E7TKmfzksd/zk1+sY8OGF3BdRTBocPhwgjvu2MTNNy9h7txqHMfj6quf5okn9vPYY5+ira2VkZEsiUSBkZFsOSJ9882LUQpisSDNzRUUCg7hsMnhwwl6epK8732z6OqaLKuQA7iu4rXXhpk9W65z4onTCQZ99ff/Jlu2WMRRis6JiXLe9QlHOXSU1MIrQyHytk2qUKAuHqc/nebZri6OnzaNGZWVtG/axP0XXMBoLleOjs+tqSFv22zv76elspK5vktKaT4UNU1yjsM80yS+bRvU10NNjUSdHQd27IBTTpH86kwGfvc7sdJqbhZrrR/8APr74dlnpe4DDwg9vKZGos+GAV/5ikTB33oLurthwQI577rw9a+LX3ZJ1OztiuE//rH8Xko52O9s/67tHUGz/06blxdwnd8OgSYwmsCsPVZd3MuAPSTnlSUPIL0CnH5pazaBXoHj5MhbEUzfNuhoauZFF11UVvBOpVI0NTVx991384tf/IKnn36aGTNmsHHjRhYtWkQ6nWbevHkkEgkeeeQR1qxZw65du8p2XZ7noes6Tz/99DFiRrZtk06n2bZt25+Inp133nkoXedQOk1jRcUxSo9rPvhBXh8Z4YymJuLBIK5SjGaz5G2bhnicaCCAq8Qiw1OK3lSKgXSa0xobSRaLVIdCVASDWL4q+teff55vfuADAKx74w129PfzwMUXs7mnp0wLb2ttpeg4uErsvwqOw83PP8/dF17ISCTCGk3je8ikcztCDZ+L0MBXI+JkEQQU72BK6bcRoW/GEcXvktXNZkRt/BsION+AqP0aCDDPIwq+70Vom3VITmUX4nk7jNDEf1wsCn3WF2R7OzisDIXwfKXqtGURMU2O+DSoEjU57zi8OjzM2S0tKPgTinRA1+lOJFizeTN3nX8+EV/Rvei6uD4FOGKaDPt+zrqmEQ0EKDoOFSrA5EFR/21e2IwRMLDzNkbAOEaQ7INrPohTcKiYUYFrubiWK0D4psXEm+IMvjxYFjnq3dpL/YJ6ssNZtqzZwuIVi5l23DTcogs6Zcp539Y+5n1oHuEaoZFGa6Pohi6UVd++B8CtMNg62M+C+nrioRBj2Sxh06QqHC6D3NLfq2saRccRGr3/95dUSyuDQboTCRricYKGiPZc8/TTPPraayw7+WS+f/HFfO3ZZ7nnQx9CAUHDKFul3bp0KbOrq8sgPxYIoGkajudhahA1NBQadj7FaOf2MsBVykPXDdA0rFyyXBaMVpVtbqxcgtHOHUedl+dBMTuJbgYxw3FQCjuflHrzzsQMxdDN4LFtI5V4ri2WX764Wol+Xj//g8cA6Ysuughd10mlUmzevLn8+z9a0CybzVIoFNi6dWt54W/WrFkUi0WCwSCZTOZPrLuSySSpVIqZM2eWx55cLkcoFCIYDNLT00NDQwOBQADXdVFKrAQ9z8JxMhSLSUKhKjTN4JlnvnKMJVZb2y3U1Mylp2cz9fULCIcrfWCuUyymeP75m1myZAU1NfMoFlMABINxHKfAwMAuGhtPIxCI+guIimx2hGAwTigktNrx8U6y2WGfPm5SLKZ8aviZuHqAI+FKwppGDVNWXEkE+OpIbvSlwHpEXKwdAdYgftS2P2685o857Yho2ZzSY4Op3Gr8sabXH0fu9a9hICD87VaDvfjpLnmb7IHxsmBZZHqE5258jqWrlhJrjPHMV54pW3S1nNWCETRwiy592/uI1ccI14QJxoIUk7IoFowH8RwPTRd7vuFXh5nx3hlohkb/9n6itVG23rOVtlVtVLdW4zkeylOkh9J0rJZ7SPWLEFpsdoy0lsZTHhEzQsgI4SgHUzfLyt0Fp0A8GEeh2Na3jRkVM4gGouRt8a6uDlezo38HrZWtzK6ZTcEpHAuo21Yxt2YutmcTNILknTzb+7YzIz6D2TWzMXWTjJUhbIo2SvnYCFNhaJiaLnZZ+9oFGFf4TuJ2Coy4X7b6KHGzmZLLG6gRUDqxC6afJQrgXkGAZmg6x+QnZ7qnBMvic4RyDdLGyUFQFs3JDxx1H8f7quV5uRaeb0uVnaKHB2JT4mKaTpnuXUzBxH6ITBPxM69E8WbKuxrlp7qVVMdbpijhpb5A6rkFyAxJXyUlcT0gVPWS8Fmyqwx4iTUKMM+NQrRWvsV2VhYhItMlf3xgM8Sa5LN0iuK3bWfE53rHnQK2K2fDH74Kbe1yH8WkUOJDVWL3NbSDI4kAn7ryFvLZNLoGdQ1N3P3tb3Hau+eD8lh8xrv4m6/8A4sXf6RMBT/xxFps28M0dbZs6aW+PkZjo6+qDuzZM8SZZzYzOZknmSwwPJylvj7GrFnV6Dps3y4iZZbl8qMf7eK++y4gn3fxPO8YgbQbbjiLe+/dxoMPXkQkEiAQMP7bAWsAy3GwXJei61JwHDKWxYyKCr701FPlZ+1Dl16KBlyxfj0/uPhien2b15IA2hW+COxlCxbw/YsvFp0dTaPLfx7fePbZx8wLg6bJqG+5ec3TT3P7okW8a2ICrb1d8qb7+kQRvKFBaNsg+dIl66wrroAlS+B97xOBshUrxForm5VXX58InM2bJwriq1dLbnY+L3nda9bIderrobZ2Cji/oxj+H7q9A67/u2x/1tN6KRiVb6uXA6tTotuRhYACZwjG74OG+0Q1U8FDj6zjyiuvZMWKFdx+++184QtfYOvWrVRUVBAIBGhvb6etrQ3P81i7di3Lly9n1qxZVFVVkUqlsG2bp556iiuuuIKhoaGy6NBtt91GW1tb2YfW8zz6+vqIxWLliXJNTY1E1Wy7PMku5UAmk0l27NjBhRdeiKdpuDDlC+yDDPzoVdH3tm6prKSpooKQYZTzfq8/6yzm1tRw1VNPcc/556P5kb4G3x5pS28vLZWVTI9GGc5kGM5my+JeJZXI1X5U8biaGg4lEoRMk7pYDEPTePTVV5lVW8tpc+YQ0bQykC4p+Z6FTGjDyKS0G5mUlsqnI5PW25HJ7nIo+2XfjkSfRv0+f4xEkIaYUvyt9ftaiUS100jUe5wpUH7QtmnwvGNWbRv9qPGcmhpA1KgDhjxkbc8rA2KgDKo1P3Jt+A+Yu3wgHQ0EMDUN2wdEhxIJ7vTzkxpiMXYPDh6jqLli8WLmTZtGbzJJc0UF5F3GdwxRv6AeO2sTaxC2hGZqJLoTbLpD7LWi06NsvG4jbSvbqJlTw5FNR2QyXh0mVi+2UZPdk2z59hbaVrZRNauKp64Uj+wFly3gkh9egluYmsTnxnLMPHumAB0NnLxTBuuBqFgI6aZMRh0DMoi35Ug2y2mNjURMk55UquwfPtf/LEt2ZafU1xMPBsnaNiv87+IJtbUMZzLEgsEy4Aa4buNGVvqR/RKLoN/P3QqbZtkOLuz7k2/xWQHjuRz96TRLZs4kaupoShaLXCuPGRJmh1IeQ29uouHExWjGlI0diFXX8Fsd1J+4BE3T0M0gnm2BrpcBefnZ4C8glBV+lUL54FxDlb2x7XwKu5AlWtPkqwMbvmWbxsTERJkhU1lZSX9/Pw0NDZimWfaqvuCCC8qq3iVAXdJrKNn5FYtF/5a0Y/QiqqurcRwHx3HKyuMAQ0NDzJgxA8MwUEosBi3LKi8qAjhOnlSqmy1b1rB48Qpqa08gkejGMEK89NIdNDcvZN68D1FR0YJlpVHKI5cbPSayPTnZzY4dD3DRRd/zbbwS2Haejo7VLFnydeLxBjZuvJ62tpVUVbXiujaGEUD3c0ktK4NSiuHhvcyY8V5MM8zERLfka885F9cMU9Q0tgOtwDTE475kv+fh6ywgi3OfRGz7zvDL0oi2QxgB5gVkwS/IlM7D9Uwt9mlMeWaHEbHGDHAbU2ycHyDKHyayaNiWKvLUFU+WF8Xed/v7+P7878tv8AeXlG217IJNqidF86JmCskCkZqIfAeDOk7OEQ2FGXFqj6/FLbjkE3lZ/AroWGlZ9ArEAqy/Yj37n9jPVa9eRaQmQt/2Pqpaq4g1xNj3630MvjLIB/7hAxhBA6/SQ6E4nDhMe0d7Ode6pbKFeDBOQ6wB1weao9lRqsJVKBRBI8jW3q0sqF9Axs5M2XhVzqB9UzsPXvQgVz99dTmX+4eX/JBtfds4c8aZTBYmSRQS1IRriAVjpIop6mP1AGzr28ZpjacRDUTRNR0TRVjX0BRACTDaUBwTsTBMscOykxBu9OsEBWzaSRE7QxO7rhIwPuVWCE4Tq63T1ojKuO9fD0jetZuBfXf6XtkNMPka1CyAQPVUDvTuG+G4L0H1At+/uhS1RiLOVbPl2qVIsi9IKRFnP3f67dowqpSTPWPKu7oExKedKGDds32P7Eq/vu+prfug0CkcC8bzYwJ6077Nlh6C7ICof6e6JTd64S1QPU9yrs0QbPnGVHT6vAf9aHsB/nAdNC6E2R8S4O1akO6FihYoTEzlc5/7PVFLD0Qh1iw/mESX3FdFi1zzzBUQbcRKjZIKHX9MDvRDD11KsShjlmW5vP76CI2NcdrbO7j33g8xOpqlvz/NokUtBAI6uZxNMlmkqirEnj1D1NZGGR3NMnduDTU1YcbGcoRCJnV1MQxD46tffZrrrjubvr4kra1VHH98LeHwf34O9X/WlrdtDoyPl507So4xYdNkS28vrVVV1EWjxIJBDicSzK6uJmNZhAyjLJb71tgYd2/dyq1LlzKzshLL8wgZxjGBhQcvuggAy/OIB4McHB8ve18fFwgQ+/KXpyLGN9wgEejWVgHYJYExTZMc63Razh3d5qGH4Fe/go4OsePKZgVwa5pEqTUNhoZEEK3khb106VTUurS9XTH8ne3/2PYOuP6v3v5n4mP/qn4ykN0E4fmgRUALizr42z2x3STkOkTQbOIeETEbvhqmrZCV4PE7OZz5HH/1+b+nUCjyta99jU984hMkk0mqq6vRdZ1XXnmFiy66iC1bttDc3HyM/2wgECAYDFIsFonFYseID1188cUA5YmsUor+/n7i8XhZxKxE6zQMg/Hxcaqqqsp1BwYGaGpqQtd1dF3HMAxspSg6Tjma5/nf10NvW0Vc0trKlb5Q17a+PmZXV7N01iwOJxK0VlbSNTlZHvwG0mnOamlBAwxdp6Onh8Z4nG9t3szNixcL/cdx+N2bbzK3pobFM2eWI7EalD0PHdPkK4ZBOzI5LYHjBxD69l7gHGQye9VR5Q8yFeFuQia9XQiQXolEvX1dVkqktwGmQHMJgM/33z/k19GQSfQAAsIfLBYxleKaDRs4u6WFT5x0ErFgEB3KlmMxP9J/w8aNtJ93nnyFPI+C41Drr7LmbLtMSc5aFg3xeNmTuSoUEgaB53HlU0+VHz7ffP/7qY1EcDyP6zZu5In9+3nsU5+S1V7XJaDrGC6EPJ3xg+NlumiqP0VVaxXVc6pRrkIzNDLDGR5+78N8/H98nNY2oVU7eYdALEB2JIudtwlEAphBk1CVgNYSLbXlrBacgsMLK1/gA//wgbIauQBREVYCSBxOUNVadUxUvOa4Goq6ouA6BA0DQ9fxlCiqv92azFOKMd/zO+847PWt3HqSSe7bto0HLr4YQ9M4cJRNyAm1tbJo4dOWPZ+FURUOl4FtbypVFjKb5SuUgiyKADiuQ01Ax3UszFBMqLuaBv6ChwI8x6KQGida0yhe1YkhAuE42cl+QtEqojXNx4Bp5doCRA1T/Jf/TORbea6AZ//zKFGGrewEY90vi1gaABouBj09PUSjUXK5HC0t8jzK5/PEYjHWr1/P/v37ufbaaykUCnR1ddHf388FF1xQttkqLciVxo9jhjzXxXVdgsEgtm2TSqXKYmkA2WyWSCRSHnMymQyVlZWk02n/Xiyeemr5MYJlpah0CUxrmkEwGEcpF8cp8uyzN9DcvJCZM9vIZAZpbl6EaYZIJA6TSvUxc+YSPM8mmTxCIBAjHm9gfLyT6upZGEYQTdOx7bwfzZYoutDGQ7hukWAwhuMUcZwiekUjh3WTMMJSOfqv34KodTf5n/9eBHCXxo3S0z2PgOZSykoWiTyPIuA5jDylSoKIpl/XRqjiGlPWf47fRw8StV6MRK2tROEY8bLSotgF919AbjQnXvSrlmJGTAqTBbbes7WcytHR3lFOAYnVSRTbyTske5NlscHS+FDZXEnNvBoS3QmSfUmqWqrY1H6s7Zeds6mZV4OTc0gPpqk4qYKiKh4DhG846wbu3XYvD136EAW7QMAIEDSCuMpF13SKTpFEIUFDvAHHc9jWt43GWCPH1x5P2krjei4hM8RAeoD2jnZuXXorc2vmYrkWhu4v5mg6nvLIWln2Du/lzBln4uER8KO3RadINBBlLDvGnMp6XzEcP6JsTAHqQJUofW/9DFywy/ep1kVQy8359O/IoVw/AAEAAElEQVRTJfpanBBrLuULjWUPi2q4cmB8F9ScJv9QIwqjWwS8F0Zh+hL/J6tJlFoP+f/4nIBOs9IXGwtAZkBArRH0o8Y+XVsPQOrw1Hvlvs1ayzmW7m2l/Yi2M6UqXrLvcgpHXevtntotUnfiTYlAV82V+3xuuYDlT2yYEiSLNsDzV8n5ky6D834gfWm6AOPtd0iUu7LVtxJDqN/bVwv1uxzBXimK4CO7BXgbYVFpN47ywlbKj7j793l4I4y8Aku/Rcat4I+b+qivjzEykmXRohZCIYODB8e5995t3HXX+VRUBHEcj2zWpqIihG275PM2f/d3f6C9/Tyi0QDFooNty2LqjTc+V45GO44smti2y/bt/cycWcncuTWYpiiSh0Lmf8to9dFbslBg+fr1fO3ssxnJZllQX09FKMRINkulz1p0lCLgC0N6peeJUmz2Ay5h06Q6HMbUdcZzObJH2buWWH3zamrwlOLQ5CSxQID6eLwcgIg5Dlpnp0ShV60SAF0SLPOf28RiU2r5miaR7Gx2qk1jo9C9DUOst0pR8JLftW2DacKhQ1Nlxx13rBXXO9t/6PYOuP6v3I7xoV4ltln/VoDt5QVgezkB1coDo/bPqIXn/MS4MXBTEDzOz2PSwB3Ac5J86NIv8a1v3cPXblrBVVddzYUXXYppGqRSRaqqYvzxj3/ksss+yeHDA7iuTiSio2kOnmfiOAa6Do4jVCalwHU9AgEdx5Hfu+OIIKLUU2haEU1zSKfTpFJ5GhtnEQ7r6LpDLievaNQkGAyQSOSJRk1iMfG1zRaLvDU+zn3btvGdD32ImnC4PJHfPz7Omq1bWXP++SQKBd79wx/yz3/5l5zbOgtbeUzk8jRWxMv1dSBj25i6TtAwjvGhG8xmqQ2HhbILZG0HU9fKwKfkA12wHcIBk4LrETRNNNfBcxxs08RxHCKaBoaB57oYnoem63iAbRjlcmUYKMfB9PdWIIADRG0bLxAgpesELYtoKS/Uv8dEIMDXAwHW2DZxy2LENKl1HFQwyJcCAW4G5tg2QdsWcKXrElU0DHQUBdsir6AyFEY5NmPFIo3RKAYKFw1LKUwg4LfbNDDIKfV1VJsmedclGAigKyV9KZjIZAiGQlSFw5ieh47CVpB2XeKBILgOtqbRnUrTm0oxs7KS6oBJSyyK5kc6lGaw/qvPMuM9TZzy6ZMwIwE810N5kB/PEamNohsadt7FczycXJHI9Bie7eIWPQLRAJoBdtZh+NVhWttmSiqCpuM5LrnxApHaMHbWIRANYAR16d+F8YOTbLt3G5f84CKMoI6dt9FNAydvYedc4g1RPAW6oaF5HkWlcB0H3QzQ6dPnb16yhKZ4HNuymBGLyeRY05goWuwbHeGc5mbQdPkfKsVgNkvUNImHggQQf3SUoqA8PNclEggCCuUp0HWG0imSlk1VMEBDRSV4HpO2zWvDwyyZMYOAaaJwJOqmFIXUGOHqBpRyJQqm6z49PIDn2eApNMMQVXEjhKccNO2oOq5FITlKrKoJx86jNIUeCKFpOsnhTuI1zXKsZEjRfLqpaxXQzQCaZpAaOkhF43HSr+eg6SaW5dA/OkFjaysh/2+2dB3N89CU3JOraWBZeLpOUNdxfSV+17LQAwFZAPA8lK6Lgr7r4mkalutiOA6hYBDXX9jzNA1dBic0pSgqVe7TAAZ7emiaMQNME0/TUIVJXnz2a1zwwe+Aa6IbhizuBDQmUwdIJweZOWOp/K5NA+VqsvCTG8IMBDEIY+phNENHuR5Kd3xPYI1ccYRwcBqGaeA6Lv1DW4hXNlBbfSK4GpaVR+kWgXCIVKqP5GQ/zQ1nYwaFFu0FDYqGSdCzsbAxNYOCrqN5LoYRZLsZZDYSzXYdC90tEMPAw0U3wqQAw7UI6wZ5zwUjyB7gvf45z3PxdAPN81C4OJpJwLMxjCBfDUS4A2HE9CIaD3fie2s7FrprA0qwmuthei5OUScQC6Jh4bniV50bTnBgw2H6do5w6fc/RG44wcGNPcz/5Hx0w8UwdfSAjqZ5pIeKROvi5EYShKdVgGuhmyau42HnFaNvjDKrrRHQcV2Dvi29NJ5aSzBmogcCKNfBLngEIiE8xyI7ZhGrD5JRFkdSg7R3tLPp+k3oAZ3qeDWmbnDjTTfy8U9+jFNOfDfBUJCw/5xZcfMKPvHJj7G5dyunNZxKRagCTykm8mMEjTCVoQpM3UApKDh5iq5NRaiCgGaUV0FKhI9jVqEAV7kU3CIx01/SUI6ohStXgKMR9EEbflTYBGWDFvCjzz6lujgmEeLCCOy/D97zPcCcomkrR27glevh9HukzMkKEC8BeA1RxfZ8LXk3PxXFNcI+JbxS5hvJbshPYFWcQIE4uiZLaLqmsD0Dw9BwHIVpaui6hmsVMXQPW4UwdA3XdQgY4Cqp67pg6B6u4xAMhwnqNpZrYNkQVBlw89iBOhxXETRcIsnXIVItgDp5CCsyE9uVMdZzXQJmARWI4CmP0OA2aHgPtoLAyE68piXYII4YnoupywK+rmnoTgFXD6D5vwldMzA0cDOD6IEIjhkjoJvoVhLLjKHpAVAOum7iKIWOho7CU66c8/sI+LnwFgYOUcIBRcBwcFwN09CZWvKS6xYKFqFQGE3zxLrSkNmL58HQSJ7G+pA825WBY1sEgkFsy2LzliFOPbWRUNAll9fZ/coYZ589059b/feNVh+9ZYtFUnmXEEF0Q+G6OgFDYzSfZnokLmOy5uJ5OhgO2/r7eG/9TMyAJ1jXNQmY8jx0XAgGdCzbQ2mKoKHjeRq6ptg22MMp9fXEjDDK0zAMSBdtwiFFRIGuyVxY15AJ8dgYNDQKuHYdCEcglYRXXoGzF0PAnGJ9ZLMCnnM5AcvZnNDJ43Fpe/CggPG2Nhgdg43PwIUXCi3cMN6JUP8nbe/4XP+XbhboVdD4iOwp/jv60sEzIVMAL+hHrP9cfwa4HmTyEDhefoyJbnlI6g3c+8DTLFm8lPeevgA0CIUMXCdMJhPkvPPaede7TuCyyz7Jww//llwuxFe/GuTgQQPHCdHZabBpk0ZXl8aVVxqk0xqHDmls3mzQ2amxfLlGZyeMjmo4jkY+r9HRoXPkSBhNixCJ1FIozOHKK00OHNBwHJNDh0Jcf30luVyYzk6T66+v5NChEI4jMxMXmMznefiSS5gWCqMnM2gFCz2Z4V2xCr5/0UVUh0LMjMc5ePXVnN84A7Ozh7Dt0hyLobseuudhKNAsh3ggQNgwMFwPLV9EO3AEzfVoMgKEuvrQChaaUsRMk7CmY6IRtBy0ZAYDjXgwgAnETAPDKpI9dIidt92GfegQ2V27yPb0QLGISqfJj4xgZzLgONiHD/PG3/89biaDXiwysXs3djqNchxCros6dIgd3/gGXjJJoLub12+7jfShQzjpNG42i+Z51BQKPJTLYXR38/Jtt1F5+DBBIJTPc3+hwHG5HMFCAeU4FEZHsTMZrMkJAsUcZiFHPJtmumkQHBsg/Oj3aM6lMAEtMYkJRKwCwWIebagP/Rff4ZzpNUxLjmP84jvEXZtAIYc53I/+8+8QGR+mZegwdcolmM9ijAygHXydoOswzTQJjg0S+h/fJTo+zCk11Vw0s5m58RgzDQ09n0Mb6kN79EGw8lzy4IWc/OlZjHS9iF1IUkgN4rlpItN0jIBEr4Mxg1CFRqwxiudmGO1+ESNSxAhpFNJDhKqDzFzciFVIMPTmC9hWCj1kEKpxGD7we0KVOrrpYuUTDL31Ap7KUH9KLZf+6CJ008XzLAJRE8/LMN67iVCNg+vk0bHRx0eh5xARzyNmFTEnxzmppppHP3wp8ysrqdB1ZsZj6LaFbtvoSlEbCnJOPIq3/jGYHENXHprrMCMYoFpTmBNjuOvXweQ4qqebsGMTNQw0q4g2PgpPPYaeGGdGJMxJFTGao1FMwHRspoeCnDujiUD/EZSVY3yym0x2GKVBuLqByclDZLOjoBs4TpHe3i0Ui0lsO4fSFInEIXr7tjIx2UlPTweTk92sX7+cyclOevu2kvcyeDrooQip7KBf1k1Vw/G4uPT2bmEyeYSeng4cpwBoYGj09G7GsjN4kQA9PZtwnALZ3Cjj4wfRozEa5szBMk0Kuk6nYbBc1zlommCapHVd/OKDQWx/gWlA07D9cyldJ6VpHDQMlmsa3f4iVtEw2BYM0huJ4BoGtqZR1HU6NI1uXQfTxAkEMEIhHNNkzDAoGAZNs2fjBoMUDIMOXac3Mo0LL/whqe4cudE8VtoiM5jBSlrUxE+gpX4pygFdM0l0p1i/fD2TXZPEo40EqcYgDGgoT+E5Cl0LkjyU5qnlG3CGIphGCA2TwrhNc+1SplWciFfU8BwojnsEtCo0O0J19Hiaqhaz8SsvMNmZpLejH3fSQk9kSFsJRjODuJ5FyLVQdo5ifpw2O0+TYxErZhkdf4trn7yCrsmDdBzZRCY/zvj4W1z75OUcHj/A7iN/ZGT8LdpcC+XkKFpZRjKDGK7NkUQnY5lhBiYOcuX65XSPH+B7xSzxYorGYpaz7TzzilkeKiSZW8ySy4+TKiZwPBsDl2Chm8CrXyEcyWEYDobKYWppDN2isibFez4/h4/86HyMQieVfddzxqcihCs1QhEwAx56rhttx3IqKoYwDIfKaXkCziGCr38Z0z5MKKIRmx5i9hlF9J3L0bNdmAGX2UsbiOg9GJOb0TKd6LuWEwrm0HIHMRObqawcwpzYTJWuc1Lt8Tz6sZ8TNII8ue5xXntlD3te3sVff/ozxM0IKI+1j/4P9u7ezd7dL/OZZZ8i4lqcN/v91AZjhJw8YRTNboHp4SqCegADHQNFPDfMtECEgGagodCcIloxhe4W0RJdaG4RzbVkr1xM5RLTDLSkX1aYFFqznZ8Cvq4jdGm3KIv1mikR32SXRGlTPRBukFzo2DzxtrYLkDgAz18JqUMSoXUdOP27lI0dNUOukzggFOjsiB9JMyTy/Ptrpe+hV4T6XcyAk8eyPVLmLLJVZ3Cgx2HTpiPkCw6Wo5FIexSLLl1dCZYvX08qZXHw4CSXL9/IwUMFRkdzpNIWtqNhewImDnYm+ONLRzjQmeTy5Rt5a/8EWctg/8EEV33pKcazQfL6dDwFxaJD0dFJVZxKOjCbbMEjH5nNeMIhkSxy4MA4pyw4iXeffhbvOeM9zD3pBB587k26R8aZc8opvOejN/LeM8/i3ScvoDJawdd/912OJEawHAuloCeT4pWBg/QlRvj7535CX3KEtFXk5USSvBHDUgobOFSw+ObzP6U3OYLSTHoSI/z9sz+mLzmCpRR3vPCPHEmM8MrAQY5MDmGhk9Ej7B7pRekFgqoLfXg5QdWNrtLo+Q50imiai+l1EU9/GVN1YuoOQXUQfXg5utOFaUDz9CHM0eUYThcGScKTV6I7Bwm7W/nAOZXUTjOoiEH9dJ3zz5vB2FiWYtH9d8w7/9/alGcwciTCl640OdJtsmOrQTqlMz1USS5jsGWzxqEuk6uW6/R2B1jaPIfURABTBek7FORLVxpk0hqHDxl86UqDrk6NrZsNrJxJd5fO8is0urt1zmqaRZiInFuu0dmpsXub9IEZwFQuejaPsl0o2FBbB919grhDYQHcFZVwzvugd9hPddAglQUzKPTunAvxCqGDx+ICwMNhETH7wLnSb1MTfOavIevIvP//wWDpf9ftHXD9H7qFgemQ7JN92bn437IZ4CpfdVOBFgct9OfrabpQq5Qr1KT8GGT6ef21V/ntP/2OW1d+XX6ETh7Ntamu9ohENK699ls8/HAX3/72Wq64YgVHjtgsXAirV2vYtsbq1Rp1dcJCWbtWbPpWr+aYc+3tGtOnQ08PXH21lPX0aBQKBsPDIe68U2ft2qk+BwYMnngCUimd1as11q6Fb33LwLZlxT5mGJzX0iJTV9uGypgMMrEIWu8QYcMgULAId/XRHIuj9QzC6CRa7xDoGlophA4QNMteiBi6vCrjEt3y29EzKIyxg0fAsiXiULQgGJBz+aJE/zwPr2Dxxk9/St3pp6MHg1SfeCJv/fSncs3SphSarmOEw7xn5UqMUIjd3/42NccfT3Figp3/8A+4xSL7fvxjep55BjuTYd9DD9HzzDO8+cgjaH4OeLa/nx23345bKPCGX77voYfwikVGX3mFaCqFymRQroum66T7+siPjRGtqUEr5ajFKtA0He2pX8POl9A2/BocWz4Hx0bL56CQh43rpDyfkzo7X4J8TspLZRt+DfEqqZPPQXIcKqrhlw+ijQ2hTYzAzpfQN/wa3XHQrSIxXT/mGt7cd2G5BTzPQTNMojUzGOvaRbhiOnY+i+fZ5CaHfNEaHbuYxbUL2Pk00+e+BzuflpzQyukoz0UzDMa6dpIc3M9o53Y0IBipIlY7E8+1cF2Lse6pclBohotmBtB1A+U5jHZu98t3YJQitOkUWiyO+/Q/gWMTmFZLwPPQi0WChRzRTBJl25BN4278Z9TEGFgWKplA7duD1/F76QMNigWJzm550S97Ab2+CS0gdHWKhamyTS9IrrRu4PX3oKyC/B+tIqqQR29uxQ0YxCsasO2cD4K7qKhoIBiUPOD+/u20tIg7+tDQHjRNI5nsJRarp6OjnVisjo6OdvbtW8umTaupq5vP1m33AAql3HJZR0c7SjmYZpjm5kUEAtGyuvbkZDd9fduJxerQNINksodYrI6nn74a284Rr5lDl25ylabRCxQ0jbCmcSOiI4CmMYikRpiaRgwY0jS6/N9qUtNIIykPa5DUiNVA3s9BXgiENQ3P1z64Cck9ngsSldY0uoGrNI0skh+c0TR6NY0dfvuIpqE5EK2LEW+IY4ZN0MAMmyQOJXjqqqdI9iRRnmLT6k3sW7uPVF+KRPdRZUoxcXCCDV/egFNw6GjvYN/afWxavQnXclGeIjY9RiFZINmTLot1VTRW4OQdejf34hRczHCAlrNb2HLXFhre3YAZMtFjOoOZQTonOnE9l5HsCIOZQaKBKJrnYroWnnJpijXywEUPMCM+g1MbTiVdTNOb7OXGs2+kP9XHgvoFhI0QoAgZIUzdJBaMkbNztG9qpzpcTXtHO2v3raW9ox1H2Vz91JcZnOwk6Ll0T3ayfP1yuiY7iQfjBPQAPckeJrJDGG/dDSdeL2Ns6gC8cpOATE1BpgsND83Lo725BurPQYs0oSlX/svKlTzhnrVo+1ajuVkITUfbt1pUq/e1g6bQlDN17o070XL9aLkjUBiEcF25D+w02pt3Qc2paOE62U++QkAzMH1VaU15aG4BrDSaW5SIrM8WKp/XdAhWSh6/WwQjgJbpg6AwojTlgmfJMyUYR8v0y3tNE/qzEZB9fkz2uil75YJuomX6p57VvtYBui4RZM+RRfFgpXxGA1uExmxGYNfdMGPJlEJ3olvAtFMQKvTONUKD3r5aaNtD2+Xve+FqEesqMd7K9drBygiI394+1Xb6fKFEh6qw+nbx1oFJrrhiPZ1dk4RCJvX1MXbs6Md1PSorZQxbvXoTa9fuI5kslt+vXr2J6dOjBAI6O3b0k04XcV3F6tWbqKuL0d7eUa5nWR59fSmuv/4sAgGdjo4eDh4cJxAw6OlJccUV6zl4cBzL8rAsD8PQyGQshkbSeHj8+B9/woY/Psf9jz3MyAwIxsPc99iPeey5J7lo9eV8/m+/wKL3LebKDyxjODNBwAhguw4Pb3+cedNn8vD2x9m4fysPb3+cgGFQE6ng9aEuxjJJCrbFw9uk/CfbH8dT3jH1Hc/llKZ5/GT749REKomHwuTsAol8mhPrZhELaGjjqyG9FsbvlP+BWQfDV6OpopxLr0UbbwdcGF9zVF33mLaal5iqGz4FXVNoXgrcUTSVxdBSTKsxCIX+/xG1BvAcg/Z2jSeegL4+jbPk0cfVV2sMDAguvftu0Q8LBjVcVyMaBdfVaGzUuOsuYXEHg1Lnrrtg+nSZ607NcaW+aWjMmCF6YoODkk7d0KCBp8TZoCqOVrSgIiZzyKq4zLVQcGQQLBGaLZd39kAo6M9XNZjTLPVtf47mupDMQMGvGwjIA7J3yJ+7Dknk+p3t/4rtHVr4f+TmOSJukR+TvKDqefJw/Tf15fp5ST7VSzf+tC/liQjK0aqdpXyoihZ+8KNH+PvVqwmFwuDZDI2MUVkR5/bbv8llf30NnicLa1/8Iqxb9y7uv/9RPvvZ95Sf993dU8KFq1fD/ffD8LC4BzQ3i+7CqlUwe7YIIJa0GR58ELZvh8OH4WMfE/2Gqip4/XU480yFUhqmqThyBP7hHzRWrpSBato0COp+9rGnwHFFXbRnEFqbBGSDrNhNJqGhVgae0kD29k0hZaX2PmgmEpJ2R59/vRPqauCEWXLtzh4YT8D8eQLIUbiWTTGXJT8ywpuPPML8K64gPG0agViM1OHDvPnII5z0t39L5Zw5ZPr6yA0OUvvud+NZFnY+T+bIEX730kt89bbb+M0vfsGSmTOpnj+fv//mN/nlo49SUVdHfWMjzz3zDDu/+U16n3uOix9/nEBFBeOvvkp0xgzyQ0OEqqvl/dgY+aEhahcsEKD56qs0nHYahmmgFXKQnIR0AqprYcOv4UOflOPj5kM6CYGgTO6SkwKi//IqKd/wa1i2XMoSE7BxHeqSv0KbGIVW3yTMMOGXDwoQP/Mc+MzVcnzJX0GsEtb+CP7mWrAKvp3JJG4sRtYrEqmcjusrTWuaJorTmkZufIBwZW1ZcGvgteepnXMGmq77KtULCUSr0JTCc2w8VyjbrmNhmDJ5zCdHiU6bIWxMpbDySca6dvq5w6L4rFynnLOMcslNDhGIVBCIVIJjYWCgclm0cARlGJCcxNv0AnrbuWg101HpJFpFJcq20RwHb3QYrboGLRrD6+9Bb25FJSdR2QxaY7P8TjNpvC0voi/9IEQiqOFBtJZZsqKdTvpl50FlDar3EHrrHFRiUsB423lQMw3NtnACJq6yWb9ecoZPPnkZl176EJnMEJqmEw5X09+/g8rKmVRWtuB5DoYRwPMc0ulB0ul+GhtPpVhME4vV+/noIvIVCERJJA7T0dHO0qUrqa6eSzrdTyzWSCrVy6ZNd3D22TeSy41TX38Ktp2loqIZ1y3yzDPX0dy8kPnzP4UXa6BD16lHhPrq/J/jMKJ2XQG85J//LmJDF2RK3fo0hAALU6J+tyJLl5OIPdVKYDYiDLgCyUEefFvdhH/9an8oeAU4Gck/bs3bpA5OiP3bLW3E6mNsvH4jbavaCEQCFJIFqlurMUIGmq5JHm9jBU99+Slee/Q1Ee36/iWkB9J0PdvFtOOnUTGjopxLXDWrismuSclHXrmUeFOc9GCajvYOFq9YTM3cGhKHE2z+1mbaVrYRb4yjPCWq93dv4bwfn8dIbqSsWN1S2UJfqk/UqV27rFKds3O8OvwqZ844k5AZwlMeOTvHTc/dxE2Lb6K1qpUtvVtoqWyhvaOdmxffzJyaOZi6SfdkN9FAVIB2Rzsrl65kbvVcDowfIBaM0RRvYvn65eWc5YcufQhPeVz11FXctmQF86uafKqsAmtCqMdo8Oa34aQbITrbF+SaDpiiaF3KATb8heLCqNCPzagvzjXoq1bfKurYniVAuqR4HZ0JxRGIzBB6sx6Rfs2YPDOzR+Ctu+C0b0OoQf7zVprZJ5xMZfV0lPJYeOaZfOubK6lrbGL2CQuorBBtkIULF/Kt22+hrrHZp2mHJI/Ys30Kpyn9lZ63Jc53SYirpKRdspCqaPEp3bZP8fbbebY8z11HotK5IQG9JZuo9BEBvO+5UayfmtvkOagcKCYgXAOFSfj5u+HDj0H9GSLktXONr3Q9SyLiL31NAHnzEil7/32QGxHwvHCl2E+N7oVIHbx8j+QhRxtEadsMkaGeP24Zpr4+RnV1uJw7nEgUuPvuraxatZRIxCzbRi1ePJN83mHFiue46abF1NfHuOmm5/judy/E8xRKweBght7eZNliauXKNubOrQEgk7FIJovE4wFee22EM89s5uqrN/DEE/t57bWrqK2NYtsurqsIh02U4XLy/BN48B9/zLZcJ58/88PUxWvkN2AV+MGWx3ixaxeJH+7gtm9+g1lnnkRjfDrN1XV4yiNvixvDcHqCn+18ki8s/DCzamZwx3MP85kzLmQyn+aEulbGs0l+tvNJ/nbRR4kGQgK4tz/OZ8+8lMlcipaqemzXIRwIMi1aRe/kMGO5BKc0zqM6ZKDZnTDeDrW3QmAWDF0hgLl5A4RPAy8pTEctDE63AOzaWyEwG+xuv+0qMOpg5DqoXQlGvXyXnF4Rr63/NugxFCaa8WfmQv9NNsuSVzAor3weDh5U9PZqtLRMiW9v3iyv++/H/95NiWzPnj2VxqyU6IStXj0l2r17N5xxhmiGrV4tbUos7cFBeS1aJJphxSJUxl0CmoumC9DGdQUIFy0BwnOb/QU0JaDZsuHwgADkuho4rlXGl5K4bHcftDTIPNVTkM7CG11QWw3Hzzp2Thsw5XV0gOed7T9keyfn+r9y81xf0dJ/sBrhKaXLf0tfx4Br80/78lyxhShZUphhOVcG24Y87P0JwvvP/QDXXncDl1z6Mf7qsj5uu+045s6F3/1uB9dccyEbNnTxwAM1rFgh7JPKyqn8sXxeVvNiMdk3Nsp5w4BNm8QR4J57xAHguONE1LCvTwar9na45ZYpkcM775QBa+5cqVNRIQNVZYVH0FSSx+p5MiPO5GRgmT/vWADtenCoH+bNlDnO0WC8aAkg1oCDPbJSOK1SBqBsXlYLSyuMunYs0A77K/x/Bty7AQPXthl9+WXC06ZRmJig7j3vAaXYdccd1C5YQOPixUQbGhjZvZtwTQ3FyUmmn3oqmmnS+cYb/M3nP49mmnx81iy+tGYNjzz+OC889RRrf/tbdKV44ZvfpO2rXyU0bRqTb7xBtLGRfQ89xMlXXEF0xgzcfJ7Jt96i7vTTGd27l5rjj8fO5QjE45jRKMpxCAZMtNQkPPELeNepsPADErE+tB+m1UNltYBj5YEp6sW4HmSTEK+WqPRbe6GuSYB4sSBAPJ+FgR6YN1/+8SMDAsQv+ksIR4X2pBtQyMHLm+HkM4QSpUtekKfreJqG51hlGycjECpbOaFp2NkEo107qJu3EDMUFb9gu4DnWGU/5UJqhEhVo/wNriOCXZEKdMPECIRBKVy7iBEIgWGWla8dKyflmo7yXJxipgzadT2AGY6BKyJ2TI7jdfweve1cCARRnW+hzz9V8vyeW4+++P0QjeI9+6SA36pqAAH+fUfQ4pX+56EJk6Ck2qvpqHQSovL91AClG6L+7bpgGGUBK6/3CN7an6J/6nNoVdV4m17AvfRjeMohmTxCR8edLF26kpqa43Fdi1TqCJs2tXP22TcSDtcQDMZJpwfJZAZpaVmEYYglkPgqi/txf/92qqpaiUSm8fvf38oFF9wrbAfNxHFyZaCeSvXyq19dWgbzicQhOjrupK1tJTU1c7GsDOn0AFu2rOHCT/yKLl2njymbqFsQ8PtuptSpv4xEkZcgoHgF4qc8F/FSdv2XhQByDxHvexaJRj8IHEHygkeZEgAs2VMdff1ViMp+DshYDk0Fl4wPjPt39LP01qV0P9vN/E/NB3xv5aPAciAWIBgLYoZNerf00nRGE7mxHMmepHgvB2Ryo1wR37NyFhMHJ4jVxciOZmlta2X98vVlZe2Lv38xG748ZT936UOXggbrr1hP6zmtnPyFk0m5KVLFFHXROizXIhKI8KvXfsV5c88j7+RZvWk1K9tWMrNyJtv7t5cVq9PFNB29HWzu3cw33/9NUsUU393+XRY2L+RT8z8FwMoXVtJ+XjuRQATbtTF1E18jnp5kD6s7VnP/Bfczmhtl9abV3LzkZmbEZ1ARrCDv5qnQNUKaIf8h14I9N8FJN4nQ1h8vFb/kRQ+LFVTJRirXC3VtIrj15l1w2l1TOcm6KYJaypYoq/LkVRwVZWwNAaXoML4doq2idl06DjdBpAkmd0OmC+Ze7muRiGBWz5EjtLbOxHY8br3tNl577XU2PPo9ehKK1tlzsC2bW1fdzGv73mLDP/1aItCaMQWuS5Fft3Ds8xZ81euD0HC6AODy8/dfmPSWcrHtnIDioxWsz39oSqSrrGgdhWSnqFfHm6fEttJ9ooxdOVs+Pw2ZMwzuEPXskh/1SzdD/ekw+wJp7xblfza6R47T/VN+0MqRe08cJh+dw4GudBkEDwykOe00sdxct+4Nduzo5/77L2ByskAu59DevomVK9uYNasKTdPYsqWXBQvqGR/PH9M2Gg2g66KWbRgaw8NZGhpiKAVbtvTS1BRn3rxpKKXo6UkRiZjU1ETYvr2PpqY4DQ1xKitDGAF414knUNAdQkaAs886izXfWsOgM8mCpuMZTI7x2u49fOlzV/DrTeupr5hGRThK3rb4yfbHuXzRx2isqMVyRcAzYJRE5yzeGjnMKY3zuOsPP+eUpnmcPevdVIbjjGeTtFTXUXRsXh/qorGilqbK6diug2mYFG2LN0cOMS1SyUQ+Rdus4yS6jA56FFlkSgmgNhp8cOxr9ATm+F8QPydbeTL6qTwU3oLoYvnyaEHAkd/K0Fdg2vUQaIX8DtkHT/z3ien+X7od7TS1ahUcf7w4Vc2cKfPUa66BhQvhQx8Sq+jRUZg1S6Zwy5fDE0/AY49J6rJSEihqahLR7kcflcDQAw/A+LicN00B4Js3S3pzRYVcr65O5rolHbK6aS6aZYFpQNEWQF0K2uSLUFcNljN1PhycmnO2NEq7o+etKLDfFljSdakHMDoB1ZUQCkhku6piqg/PTwB/B2z/H9/eybn+r9x0Qx641fOmgLXyfMDr/a/bH7P5K+LpXn9S8ecWRXwFzPgMyr6WqSOiVpk67CuE+tYYZgjMCJoewLYt9uz5HOeccwqLF5/G979/Pb/85WPU1wuwjsenfOoPHYKrrpIA2/TpMsA0NYlew2mnCeg+6yw44QTxrD/uOKHZnHgiLF48Ra25807p9847p6g2xSLMnw9794KOR9D0BFgr/FwSJYD6rFNlbzkyKB04ArYD8ah8rgVLVvdMQyLTwcBULsrcFmmbL8qAUxWXQe71TolOl641b6asAB5Nwzl6wAuYeL7yY7ShgTd/9jOiDQ1lRePTvvY1pp9+Oq89+CCZvj7qTjuNwvg44dpadnzzmyS6uvjyDTfwnXvuwRkfZ2z3bvY99BD33n8/5w0M4KbT7P72t0m/+CL7HnoIMxym7owzypTxfT/+MYWxMcxolLrTT8dzXepOP538+DivPfgg+dFRoRn7NkmqshouXAanLxEQfOgtmHMiTJsORw7AxDD8+ocChHMZXzFWQTEv//jaeph1PKBBcgJ++X2wilBT5385HAHfn7kaEuP+Sm0BBnul3+PmQ2UN/OZHcMOn4R/vR7eETukUc4wc2AKAlUsy8PoLWNkEyrF8a6cZaIaJZgSwi1msbAJN1xl84w8opTBDMXKJIexcgoF9v8cMRbDzacxQFLuQJpcYwvNsBt94EeVYKM/DKebwXJuB11/AzqcAGOvaJdfSTYxwDM+x0DxXhLM6fl+meGvxSrSZs3GfWw/Kwzj3IlQqIbn2PtVb03VIJnA3/A4tFkdlUmjBEKTTeL2HUZNjuOsfQ02OCY08nQDHwes9DH4ZmRQohZqQY62iEv1Tn0NvbsXb9AJq3x6wi2zceAOe53LxxQ9SU3McnmejaRqbNgmle+vWe4jF6igWk2Qyg8RidWzYcDWJRDeWlaavbzvp9CBPP301sVgdyWQPxWKKvXt/xlNPXYWmaSQSXTz99DXEYnWkUr00Ny/k5JOXsXTpKkDR0XFnmT5uWRlMM8yWLWvYt28tRSdPOxKZbkcA753AKUgkejlwCAHUH2KK+r0GOBcBxCV16i8jwHkYAdJdwF8hCv0gvs0hoAoB58uARf51j75+r9/2GqDBdkl0T/LSHS9x0l+cxEXfu4jK5kpmts1k43UbSQ+kqV9QX6Z5d7R3EKuLkR5M07etj1lLZxGIBjAjJrH6GE9f8zSp3hSer+hrBA1i9TEqmyvZes9WKlsq0UyNtpVtnLzsZJbcvATN0Fi6aiknLzuZpauWoukamq7Rdksb8z81Hw+PgfQAnROd9KR6uHbjtRxJHuGDcz9ITbiG/lQ/95x/D/WxegJGgKZ4E1c/fTVZO8tgZpDz557PqqWrqApVMZod5a7z72LJzCVct/E6BtIDnN50OtdtvA5DM3A8h+7Jbq586kp6Uj30pnpZu28tK1+QSPaDFz+IUoq9w3vpmuxie992DD2Eyh2BnV8WK6jahRJdrl0owPrkVTI272sX+nauV/alyHTtQmn38nWAJ6AwfRDGtgkg37EcckfkXKZb1PTyA7DraunHCEtfpePCINgJqF0EjR+aWlg2ApDsprWlCTSDgO5x3ec/wqaODqiaReusOeC5BHK9XPfVr7Jp8xahbeshPyKfFuDqWfI8zQxIuRGU53qiW56x046X55VSUkeV/JxdYbN5nngqJ7rkvoopucdoA7zvXlG1XvR3cu68B+Hj6+XYCEtEf/tqiTDvuHOK1j1jCVQfJ4Af5VPFr4JovXg7v3A1ZIckYt28BLbcJlRxIwSBOMxYDFXzJDLuFGDyLQH2yW6I12O7epm+3d7ewSmn1DMwkOa66zayZMlM7rrrfJSC2too7e2byvVAwzA0ZsyoIJOxaW/vYMGCqbadnRPkcjbBoEFX1yS33fYihw8n2bKll7q6GIODGQBMU6e1tZJ83uHqqzeUy1Ip0Z6ZHC/y3AvPse+111n/h40cyY/yuc9/jlNnnIiuaTRW1vLLnz/KrCWnUFdRw0Q+RU2kkp9sn6J5265NLBhhPJvkjucepi8xTDQQ4vTmEwmZQT535ofZ038Ax3MJmQGGM+NYjoOnPFqq6tnZu4/25x/B1A0mc0lAcUrjPP9aFbieA4U94PSJqwsuuKMw9g1wesRCNb1WADYeOMP+XE9J+fBXRKw2slDaelmmXOh1aHhA2BHD1wjd3O7h36f18y9slgWZjOz/M9q9rb2Vd8nnhTV5zjkSjHFdAb2WJQD4W98Savc3viHAefZssYXu7JSo9GOPQUuLuF0dPgy33SbszDVrBFivWgU7dkzdqmXJVKelRfTEqqoEvN9zD36qo8x1RbrAZ472Dct8UddkrjmtUgIX/SMws1ECOyAA+/hZEA5A0JR5ZjwiaN7zJMJ91NwTQ5eItlIUK6Jc87UbOP5d72LB+9r46899lkIux8c+8lFOOO44Tj31VM7/4Afp7Oz8t33m72z/pu0dcP0fvZXo2yVg7eQh0Sn7EsBW/mTifwW6j8qf/pNN+Q/rdC+gy8PRKQolLDJdIuclYRQ0cIq8+LuH+OilFxIKx3j55c289NLrPPvsHn7/+83Mnn0uvh4Qt90mVBmQAeTRR+G66wR//fGPQvOurRXhQ8eBr3xFVvSy2akUkBJtZ9UqWL9eVgQNY4pa/sMfygB52WVCsamuUmgFS8Ct75krUVAf6LquDDLBgKz2FS2oqZQBrWgJuOvsEcpNxKccJjMCqC17qrxgCeCuq5F+Uhnp09AlSh4IyGphKR+7Ki6vrl7p0/PK+dL7fvxjvEKBzOAgZiTCm488Us6NVq5L7bvfzRs/+Qk9zzzD7ddcw8LTTuOMM84g1tTE9DPOoPWyyxgZG6Nrxgw++MlPcu3zz3NwzhzmX345Tj6PZhjMv+IKWi+8kPmXX06wshLdNCmMj9PzzDMo1y1f881HHkHXNILZBNovvgOTo9DQLH/Pc7+D0SHIpOVvmH0iTI7BvJOE9r3uYRgfhuoa6OuG6Y0S4T70FtgW1DbCJ78I1dOlv5EB+MV3YWxIPt+6JghFZKUlNQEf+gtIjAEKLv600MYv/nRZQreUB+25djnneax7J65TJDptBtGaZkYObBEf5XwaMxRhtHPHVJuuncecG+t+2fdahtHOHeWySHUjdiHLwOvP43k2dj5zTH5240nnTF0rlwRNJ5scQmmaUMBPPk2o2krhbXkRrXkmZNK4z69Hq6yCeIVf54Myj+4QAOxt/SN6cytYRQHesfixYD0aw9v0AhTyx5ZtekEi30fnZ7fOkXxr/34MDM4++3q2bFmD69pMTBxk/frlWFaGpUtX+QD4VkAnFKqiuXkhW7feU86xLhQSx+Rdb916D83NiwiHq8ttlVJs2rT6qPKFmGaYSy/9EdXVc9A0o3yttraVBINxPM+mre0WTj55GUHNYKVSjCIR62UIjdtkCki3I6C4GYkql+q0IHTvLUgE+0cI5XsaArbrEIDcg0Sy+5Hc7Dhwgl8/5Pc16u+XIRHy1f61Cy503NlB88JmMkMZnrrqKRKHEmQGM+xbu48ta7agG3oZDC9duRTP8cgMZqhfUM/4wXHWL1+Pk3PIjmTZt3YfyZ4kmYEMT1/9NJnBDLqh03HnFDj3LI/q2dVc+tClTDt+GrquUz1XjqN1UZ760lOMHxinanYVZsjE9VzWbFlDXayOOzvuZO2+tazetJq6WB2ThUlObTyV4eww1228jkOJQ/Sn+1m7by13dtzJouZFTItMY2bFTBSKeTXziAairNmyhrX71rJmyxrOn3s+X2/7OgAaGvdtu48lM5cQNIIsbV3KZQsu445z76A70c3VG64G4OyZZ9Ob6qU+Vk/BzqCV8p3fXAON58PJKyXKuvCHEKqV5878W4T6XbsI3rwHhp4Vj+XGD0k7P18aOynHR+dR77tTLKjeXCNjx747/evdc2y9N+8RsB6olmhxtNnXIamEzADZ8V4S/W/44LiPX/1mLacveBfZXI5EzyuyeB2M86tfPMzpp53uP5t9KrgRkLxn5S/6Vs6SfpOHyu3I9Ang1gwB3VVzpuyaNEMArH/tci62EZRo9PNXQWEcPvgDaVfKk66YKVHl/k3Sx6KVQhFfuFIi2otulTmFm/cZbQp2tAvw3vktoZuX8qg17dicbM8RKrpry68oO/CnedtGCE3XuOWWNpYtO5mVK5dimjpr1mxh7dp9rFmzhWDQwDR1gkGdlSul3q23LpVHruXS3t7Bs892sWLFYgzjT9t6niqfu/PODqZPj3LPPVtZuLCZfN4mnbYoFJxyHneprKYmjOcpMhmLlpkziQRCPLrnGdInx9m6ZSuO55K1CmSyWZ54/J9JHhfi57ue4pTGeZi6wd8u+igXnHg2V5z1cSKB8DF51D/b+SSeUrzSv5+eiSGaKmq59fzLaayoZTKX5LQZJ6D7TiJ5u8jrg11c/77L0DSN2mg1hm4QMoOc0jiPn+96ClfpEFkEerUPkJVo50SWwPhdcq5imdDAMUGPgTMi3zej3q93H+DA0JXgDgA2WAdhaDk4R6YA+sQ9cq0/q83z79hKIePLL5f9/y5Q/re2e1t7649beOuAxvLlEtBpa5M5aleXzCGTSQG9FRUClEvA13UFWOu6OFq1tUlQp65uKshz553Sx4MPSp2lS4UCfuSIBJV6eiRg1NYm5yMRmdMuWyYsTc+DgWE/9KUhFO+6asmxLlj+3NKAeS3yOzx4RM6Dn3fdK8el4NHhAdnDsXNPy4bmerBsvn7NV9EUHNi2k9e27eDuu+4CT7H80o+x/2dr2fubx/nohz/CF7/4xX/d5/3O9u/bSpG2/5dezc3N6v/JzXWUGn9Lqb4O2buOUp6rlJWR42JaKbsg596+HV3PyvxpnXLfW5TKjSvlFJWyskq5trycolLF1NS5o+4jnbJVIqHUyIhSqZRSiYRS69fL8bJlSoHsDx9WatcupS67TKmBAak3MSFt9u6VOrt2KfWd70idoSGpUywqlcvJ+1RKqWRSqQ0blNqzR6nJyWP7nJxUKpNRyrMdpcYmlUpmlNrXqVQ6q5Rty/veIaVSGSlPZ2VftKS89CoWlcoXlMrmpc6+Tukrm5e6+zqVenGn7G1bzpXKLFupN7qk3dHtj76HF3cqK5lUxUxGTbz1ltp0ww1qfN8+lR0eVvnxcZUdHlZjr7+uNt1wg5rcv18VUylVTKXUxFtvqX/87GfVe089VSX6+1VubEwtbWtTa3/5SzXU06MAdct116n9v/ylenP3btVYX68ev+MOtXnFCpUbGVHjb76piqmUsrJZlR8fL1977PXXVSGZLB9P7N+vvGxGqR+uVuryC2SfTSuVzyo1OabUoQNK7d2mVE+XlPV0KZWcPLZ+Ji2vXEbqdr81VTefVerVHUqlJqXsqg/718hIm8kxpTIppXo6p9oM9yuVnJDybFq5hbyyi3mVS46oIy8/qax8uvw+lxhSVj6lHKugjrz8pHp1/d3qyMtPKruQVcmhLpVLDh/VZviYc7nkiLKLeVVIT6pccqRclk+PH9tXMXtMfSufPqbcKeZVdnJIObmMcnNZ5WVl746PKXewX7mjw8pe93Nl3X6Dstf9XHn5nPLyeeUV8lJvqF/Z636u3KEB5Y6NKnegV7mD/crZv0+5g31+mX88NKDcVNIv89sN9ks//T3lum4hL9cpFpSXzyk7k1Cp1IAqFJIqn0+o/fvXqzvuCKsDBzaoVGpAjYy8oZLJPpXPJ1QuN6kKhbQaGtqr1q1bpgYH96hUakDt379eDQ7uUevWLVNDQ3tVsZhR6fSwyuUmVCYzolKpwaPKX1XFYkYNDb2q1q1bppLJPpVKDah8PlG+xsGDz6hsdtQ/nlBJz1PPKKVGlFIZpVTC36eUUnuVUsuUUnuUUpNKqQGl1LBSasJ/P+GfT/nHG/w2B5RSo35b/P2Iv39ZKZX22yWOej/ytvN7/PqpnKWG9g6p0TdH1bpl69Tt3K7WLVunMiMZtW7ZOjW0d0ilh9OqkCqo/GReFbNFVUgVVHY0+y+2Ke1L5/OTeTW0d6jcX7IvqdYtW6f6d/WrfCKv1i1bpwb3DKrUQOqYdumhtEon02ogNaD2Du1V6/evV3sG96hl65apPYN7VKaYUaPZUfXm6Jtq2bplittRy9YtU6OZUbVs3TL16tCr6sDYARW+I3xMnfX716s9Q3vKdVKFlBpOD6tMIaMGUgOqL9mndvXvUsvWLVN7h/aqVCGlJnITx1wjkU+o0eyoWr9/vcrmx5U3sUepTcuUmtirVGFMqdQBeb/5MqWy/UrlBpWy0koVJ2U/sccvG1CqmJS6m5YplRuQc2O7lOpbL/U2LZN96dhKT9WffFWeiaV6k68qZaWUKiaUyg/Le8eWZ2sxrbpefk6dduq71YIFp6hTTp6vPnLhuerQgX2q66196rSTj1cL5p8g5y+9RB068KZSfdvkmfq256Y8V61jz1lZuRfHlveOJc/d3Lhc3y7Is9ixlSoe9TwvJJR6cplSdyP78TeVyo4cey49oNTAdqWeukze5yek70JC5g6FpJzv2iDnRvZKu5FX5fyTy+TcxAGlhl/xj/f4x3uU6t4gfRRTSqX7lRraNdW+mFXZdE5NTubU2FhWZTJFlUoV1N69Q2rZsnVq794hlUjk1fr1+9Xu3f1qcjKnEom8GhhIqcsu+61KJPLqlVcG1WWX/Vb19SVVKlVQe/ZMtd2zZ1CNjmbK/e3ZM6TWr9+vXn11SGUyRZXJFNTgYEr19yfVnj2DatmydeWyVKqgnn22U/UNjKhdB15VRyYG1P7hw+r9f/tR9Z6zzlTDqXE1lplU3//h99UZC9+rbnrifrV/5IjKFnLq7zZ8X42kJ1Qyn1Ej6QnV0f2KGklPqH2DXVJv+LB6qWu3em3goHqpa7fqHutTA8lR1dH9ikrlMypbzKtUIavShazKFnIqkUup/cOH1S3rv6dG0hMqXSor5tX+4cPKtiaUsoeVyu9VKrVeKXtUqcIBNau1SZ1w/Fx16rvnq1Pf/S7161/+TCknoZ7+5++q95x+nFpwyvFq0enT1J7tv1TKGpC2b6JU3zKlnITsS8f2iOzzryrl5v/V09T/5ZZOHzsxTKX+Y9u9rX16+z61bJlS4bBSw8NKvfmmUg88oNQzz0iV0VGZvw4MKPXKK3KpPXvk3I4dSh04oMrz3dL5PXuk3quvyhx0clL6npiQPi+7TG57/fqpue7evVKWSEzNW4eHlbILb5u7pjIyZ93XqVShKO+PmkeW56ClNmOTf1pu2X/2XGbnq6oiGlPJ7a/I3HVsUinbUcp1j5m37ty+Xc2aNetf93m/s/1PN6BP/U9w6js51/+ZWylynfZzsE2fQ5LonBI9q5jpC6f8mdxs5U0lPWv6n+8bbSovTClZFY+3TAmruEUIxKQ80w8VLTiEyWQNrrxScqFjMclR2b792HyS/n5ZKYzHZZWwlCvd2iqreiUBs9tvl/zs8XFps3ixr9/gTWk0ZLNC/160SFTFlyyR15o1cq2TT3LFvshxhd7t+JHqoiW0GcedypkOBKBvaCoXpeTpWMo3OXBkSizi+FmyoljKcZnZOBXZVkxFrpMZeX/8LKGcm4ZvWjjV1pndRLokVLZgAdnBQfb//Oe899Zb/yTnOj8+jpvPkx8Z4bc7d9K+Zg2mplGYmCCtFBUVFdzwuc/R/uMfs6Ojg8lf/pLTvvY1/upv/oZ3eR63PPAAkcZGoQm7LlYmQ3jaNJTjcOTppxnbs4f33nqrfDeUQjdNDF1DG+mHDb+RSHFtPfzmIfjLK+EX35GI8rO/nRIh++y1MDYsedMXfxqCIcmRhj8VLCuJk+VzEIkKBTwaF0p5PgvPPw4f/zw89vCxbYp5/38U5ic//zlfvOpLPLZuLR/9yKWcvXgJxUIB3QjgOA773niDXdu3MP/EeZJ3fdwiAuEKHCsr+db+IJZPDBGtaUKh+T7T4BRyuE4Bp5gnWtOEpov/sZ1P+nnViwhGq3ymiFZOsrDzKUY7t5evpSnQPQ+v97DQu7MZ9JmzxT/atkV8bPMfJFpdWYX39OPoS94P1dMADc1zUbohFPp0Stq3tJYFjBQamuv43pQaODaqkBfxNNdFjQ6jt8xCPMF1P/f7BYmgV0/DVhaOW8AwgmSzo9h2gVSqp6zkHYvVkc2O0tq6hN7ercycebb8vcrzHwLiley6RZLJI4RC1cf0YZphMpkRgsEIhUKScLiaYLCCJ5+8nP37n+DGG4f8fG3IZkeJxeoBRW/vFpqaziCbHSZWvwDHH89ywM2IovdcIIMIjVUBMaCTqXzrd/nH7f7xDCQK7SC51jG/v3ZEtKwPOAh8CvFl6Ebyuo/Os671r3+X394FvEwRhjLE6mIkDiXouLODpbcupXpONZ7t0betj7WfWMtVr15FMB4kPZBm233buOiBi3DyDumBNFvWbKFtZRs1c2vwHA/d1El0J9jUvomlq5YSrYsytGeIlrNa0AM6vZt7+c3HfsOJHzmRC+6/gHtn3MvJy07m/LvPJz+ep+PODpZ8fQnTjptGnjw7R3ayuGUxtrLL1O2AEaB7optIIEI8GGcgPcCaLWtYtXQVrZWtuMolaAQ5NHnoT3KmV7WtIhqIEjACVIWqyDt5bnruJu46/y7iwTie8o4RL/vRpT/C0AwOJQ5J+6WrmFM9B9dzcTyHQmGclkKnRJaLYxCfJ+/Ht0P1KRJBfvVWeHe779/sazxomnzvPcsfgHWYeFkiz5oBeEeJiAVErAxd8pitSQhW+1RpS/opjECgSv6zk3uh5gzpI1QnatjByqm87pJSua5P5WOX9FH0kM8os6eemSVq+dHiZJr+Z9q5YmNV2Voej8Vv2pP7LOVol1K0FHJ+8qBEmxetFNE3IyA07u2rfWGy2fDcF6HrCREuazpryoN6cCfUvVsi51YWNq+CtnYIREVlPNENredCeBr8/DT49EtCF3dLUbOEzEdyI5AbFoq5pvk529sgPotsZB6JZBHdfw6uXPkCd9xxLvG4qIRv3tzD9OlRRkayzJ1bQ319jG3b+qirizFtWpj6+jgDA2myWYuKiiDTp0eFaW+5ZLMWuZxNb2+KhQubiUQCuK6MUStWPMc3v/kBgkGDUMggmSySShWprAxRWRmSAODBcWw1yl//zV8S0E1Qitlz5nDDbV/nj2OvcfO5n+fc932AT/31X3LhX3yYyXyaBU3HseHNDl4f7OKW877APzz3MJ997yX8cvcznNI0j4tPauO1wU5ufOJe3j/vvdxy3hdwPY+QGaDgWBTsItOiVfQnR3h4++N8cdHHaamuJ2cVMA0Dy7HpHOvh+LpZaGgEzQDxgIeOA7ktQtueuAdqb2H2iRfw+O8e47TGH0HtzRCYyeT4EMedeBovvfh7Tj75RDa9+E986ZqbeP31TnD6/dzsWyE4F6y3fOGzmyFwgv+7Cfv52P+Ht6OTnW+9VXL+/ne8lf+t7d7W3uodYv/MDxKO6NTUwOSkzFdDIUlbXL0abrxR5p+LFwuzeudOoXx/4hPS1Z49IsLb2ytR7rDvjjUxIX1pmthM33yzUMhra+GGG4Rxec01U3Pd+++XCHYmMzXfvfB8F83z/lQEt0TvPtgjEe2jhciOzrv+l47hT869uutlPvIXf8Gn//Ivef7FF4lEI9x+222c98EPSn1/Dvw3n/sc06ZN4zvf+c6/4h/9zvY/294RNPu/bXs7QD4acMebZSJhBP4UPP/vbEcLqMV92olyhe5lBCT3Kz4DMoNCZ1MuygjiODrLr9T52c9kwLjxRhlgCgWhwSxaJPjVtoUG47qSu/Lss5KTcs89QpspCZjNmuU7kfiM7hUr4PrrJTf7lVckZ6WxUdgxoZBcRykZvEpCEg8+CLXVLiiFpnwxM8P/TBRCjWlpkEEnmZEbNA0B1goBxCU18eJRQDooIiW43hRgVv5n190vfVq25G8XbYiG/BUBTeq6nj8ZU1jFIjtu/wY9zzxD64UXsuDqq1GOQ6ylBTublRT3SATdMPAchx23387Qli186De/ITxtGpqmMbpnD5+++WY+d+GFfOyjH+ULl13GOR//ONeuWMFAVxeLzzuPX/3yl5y1aBGaaZLp7SU3NETNSSeJKFcuR6i21teucciPjbHvRz9i/hVXUNM6E63zdYhXSf5uXRO8sRvOWCKK4KkJyZkugemKaug5KDTxfFZe0+oFMFdUwcSo1L3kr2B6Awz1i6r4BZ+C+hkC2Eug3CoKFb3U/4Wfgqpp8tn/5kccXtDGZ66/CU+D67/6ZRafVEfDu5ZimEEUsO43v2L1t+5iz8s78TwXz7UwzBCaLzKDUuQTA0Sqm0A3sHOiAt540jlouommgVPM07n5UY5bchlGMIxrFTBCUT/PO4/nWYx376bx5A+goVAl6TDliXBaMYeBjm4GITFRFjTTaqYL2LVtsIpo4Qhefw9avBLVewjVexjj0k+ijlEVr8V9ch3azNloM2fjbduEfv6laIaBsm28P2xEP+8i+T++sRfV34tx4UflGvmsXHvpeahkAu9XPxFK+Ic/hY3DxGQ36XQ/M2cuATw0TYCsZWUoFpOEQlXouimq63pA/K6Vh2VliMUaxIZMebiuhaZpvq1WPdnsSFn47KmnruK11x7l5JOXccklP2Ri4iC53DiNjaeVBjaGhvZSUTGDVKqP5uaFGEaQvr5tNM07nxQahqYRQPKr70XypK8EngB+ByxGsgPXAVsRgbLlCHX7Mr++jtC/xxFF8cqjh1a/7wEkz3oSSCL52Q1Aq98mC4wgKuPfBmKWQ7jgkhlME4wHMYIG/Tv6iTfFqWiswIyaZIeyVDRXkB5I8+JtL7Jv7T4WXLaAix+8GE3XsDIWmaEMsfoYVsYi1hBD13WUUuimTmogRTA61XflzEpSvSmqWquI1kXZeO1Glq5cSmogRcOpDRgBAyNokOxJEpsbw9EdelI9rN60mhWLV9AYb6QyVMkXn/wiT+x/gt8t+x1trW1YrkXBKVCwC9TH6/GUx1hurGy7FQ/GsT2b8dw4sWCsDMhXLF4BQEWwghkVMwDomuwS1fC2ldTH6slaWdnbWVmZ1zReHX6Vhc0L8dwC1bqHoelgxHzxLD/VyU5CoALyfv7om2vgjHsFhO9rF/p4rg+iLUIjN0JgVkhusR4GN+trloREEVwpUSIPVkl/pbztk1bA2GYY3QwLbpe68RNAWSLopPsLhWV1b3yq9lFfoBLwtlIQOvrbha9f4X8DSylcmX55lmq6D94rBCiXgHtmQMp1YwpEFxNSt6JFFhqconxW/VvE+ipULVopL98n+dEaotgdiMsivBmGUI30E4jJvQWicn+D26DxvQLud98H535P+tpxp6h/R+pgZLfMDwJR6WdouyzqxxphaCdE6iE/IiJohUl4dCFctoNMoJUDB8YZHMywcGEzPT1JRkayNDdX0t+f4qyzWmRao2nkcjbhsEmh4JBMFqmqClFZGSSVshgYSHPffdtYs+Z8olETw9DxPEVHRw91dTFqasLk8zarV3ewYsXi8se/Zs0WVq5so68vxaWX/oply07m/vsvYHQ0x5w51eiGQjOVUMCLOeKhKGEzSNGxGM+l+MedTwpl2x/tO8d6mFc7k3AgREA36EkMM5KZoCE+jeHMBKc3n8hAapSHtz3OFWd9nOaqehzPxXJtooEwSilc5bF34AA3PnEv93zkBhri03h4++N8/swPMz1WTdAMMJAc5Wc7n+TzZ36YE6bXYaqMLC4NXyP07YplzF6ylcd/+ytOO/UEyO+CyNnsenkPn/mbL3LgzVfAGQC9gsraE3nxmR9xxpnvEyE0vRqManAT4CVAr5Hj0nf9P2qzLBHJCYX+9QD539KutOXzWI5OQQXJZjWyWQnUtLdLoKevDy69dEqMzLKEHp7Nypz1vvvg298WQLxlC3zyk/CRj8h8s1iUPOpCQQB7dbXMf++7T8pLukO5HNx0k8xX6+tlTmxZoipeVwfzT3SJRz2ZPxYtyasuAeJQ8KjFPR8HlOaqB48KAp0wS/7e8qq/MzW3tWyZuxo6u3fv5j2LFvGPDz3MZ//mr3ll927O/8iH2bf7FRpamkHXaW9v58knn+SFF14gGo3+6z/zd7Y/u70jaPZ/26bpvp+lPnVsRkT0zIz824E1AGoqj8stTompGCGZRFS0CNCuaBaBE18sbHBIwO/69TKI1NTIYDF7tqzqbd8OBw7IgPPQQz+lqkrjyisf5y/+Ar73PRmoRkZ+z2OPGfz61/eTTssK4k03yS2sXi0526mUiKC1t8u4Go3KgLZjh+Rd33WXDIpf+xpk0x4UimidPX6+kS7ANpmRwWnezCk/wMq4KCUGTKnjeXBkQAY22xEAfsIsiUR390nU23FE9KxgyaBmOaIW3jskexBgDVLW1XsUsPagqxdN1zh5+XJaL7yQk6+4gkh9PZGmJvITExQnJnj5W98i3dODa9sAnHHzzVy6YQOR2lrwPDzHofqEEwConDcPMxZj1TXX8OwLL3DamWdy8ac/zYoVK1jQ2sqOb34Tt1jkzUceoebEEwnEYpiRSNnia/SVV8iPjpIbHKTnmWd466c/xfU8VOtxkjM9b76ogs9/j59H3QDzTpbI9GeuFnCcz0ku9tqHJAodiUFqEkb65TOtniZ1A0F5yvie12xcJ2B650uw8TEB0bUNcMICAfQf+WvofAMe+4kAxR1/5ItfvJzv3XcvoVCI9FAntXPeg2EERClcefzj//gVn/+by1DKQ9M0sdpyLJTnYGUTgCJcUYdj5UX4LJ8hUt2IUgorl6T/tefxPIfjllyG5zkMvP4CnmfjFnMSrQ2GGOvaxbTZp2Hnpb6dT+IWc9iFNNmJAXQzgB4MS96znwetUklUYhyv5xCaYaDFK/EG+qZEy+aegH72+/3vrClAessfIZ9HX/x+tHknCrA+aymarqPyObRQCOOij6KZJt7wINpJ78a46GPSPhiUa+5/XYB6c6vkdbedK7nfnkMgEKGl5SwsK82GDdeQSByS0aCs3yD1nnnmOmw7RzAYJxiME483oOsmjlOkp6eDdHoQw4jQ0iI5183NC+nr204icYjzz7/Lz8Feia6bVFXNprW1DaU8isUUpin3EAhEicUa6O/fgefZNDcvwlMKz/e4/gqSM/09RILnZuAxJNdapI/gM0hkWUeizev9+iCR7CuRiPer/v4wAsJ7/X4WAtsRK69WJHI9jESxr0SAeTOScw2wG7CzFqHKEMGKIIVUgcThBMFokEA0gJN3CFWFQEHFjAoWf30xf7X+r7jw/gvL/tUAFc0VZIYyvHjbiySPJDmy6QiJQwmKqSITBybIjeV4+pqnidXFSPWmaD6zmVRfCs/xuPB7F1I1u4rWtlY0TWPj9RtRniLVl8LFxVUuqzet5on9TzCUGSLsK1OvalvFR078CDMqZ6Cj05fqY8/QHqLBKAfGD7B8/XKydhZN07h247V0TnZScAo0xhv/JO+6taqVgxMHSVtpDo4fJBqI8qNLf8Rx045DQyMajHLtM9fiei4hM0QsGGPxzMX0J/sxdRO9OA6v3ARO2s83jgoQzB4SYF1xHBSGxJZLC8D++6H+HFH2rjsHYnMgXA+mD2qtpERl0Xxhs054+VooDEuO9fgOAc1GFE76mvTd+CE45e+kz/hccHNi92WEKaNozZzKf9aYWpROdskeJcDac0WnpCQ85tkCjl1bFsE1TSLFqSNSFohOAXU9KMA53iRlJeEypyDR88pZcn3PnWKV1Z/mR/SVaKcsvt0XIrtGQO7IHsnDDsQlLzvaIPcxslv61zQByL+/RnRezrnLZ7B58P77oWqutG1uk3mCnYXfXy2AO90rfTUuFGAdqZNcbycHl+2EQBzP8xgczFBXF+Oaa57GNHUWL55JJGJy5pkzGB/PoRToukY0GiAQ0DFNna6uCQYH0ziOIhIJsGbNFhYubGZwMM2VVz5FV9ckuq5xxhlNVFWFqKuLUl8fY8mSmdx33zZmzaou52LfddcWli5t5c03r+b++y9g/fr99PYm8TyFbSl/3JvaG7pOOBDiJ9sf55SmeYxlErw5cghTN5hXOxOA8WyCjJVnRuV0zmg+kRlVdbyrfjb3vvg/aKyYzm0fuoLmqjoACo5FupDF8Vz6kiPc8dzD1Mencc9HbuCUxnnH5GpnrTy6pvOznU+Wz+maByM3idBY7Uo/v3oVoPHZL1zJglOO5/IvfZPRwVc4vvI7jI+Ps+Wl38HYbTzxz78mnc5wuHccRm6AQ/PFigsHjFoItIA57T8eWINM4Coq/vUA+V/brmRLk8+DZWElcrx1QOPaazXCYQGzR/tPL1w4lf9smhJ5PnJELrdmjZQPDQnTsqVFRM1WrpTIdjQqwHr7dgHQO3ZIzOaBB2S6mEoJy3J0VM7V18Nrr8k6AUyJm/3y1xquoyBooqriMg9taZS5Y9ESJmXRkmDNwSPw8r6p/OxTjpMgUGnTkPHA86RdoQiTqfJ8tLW5GV3Xueyzfw22w+nV9cxpncVrr78OnuLuu+/md7/7HU8//fQ7wPo/eXsncv3faTs6cl01V8RQjvbYVshkRTPlQYoH6EwkNCYmDXK5KR+/1lYZC5Yvn6LArFp1mM997jP09io+9rGb+dKXPsaaNfD3f5/kL/7ifCYmGvjLvzyPW265jq985Viq9y23CFjfvFn6bmyUlcS77hJVR8MQunmhIIPaee93CR85LMC5Ki6rdSWrrHxx6thxBXgb+rFUb4CwP+qlMlN2WyX18ExO2nf2TK0WzprhC9UoUXks+QZ29vDTp5/kb792Pf/03R/wsS98lvdffCFHenqorJSJ4N9cdhlf/fKXKSQSBGMxxvfto+b44zEiEdC0slK4WyyWfbFPXr6ceIswDDJ9fez70Y844+abKU5OHmO3Nf7aa6QPHaL1ootQnjAf8qOj4q19+eXkR0cJ1dRw4NFHee/f/R1uPo8ZlUiG6VpoiQl4/p9EhCwU8iP/+6CqViZe1bXyNz/2E/jgx+W4xBLIZSEaE9uumjqJRjfPhsE+qKo5Nur9mx9OeWNvfAw+eblYco0NwlOlelXcfflfkz7uFL6xaiUfuPQjfOXqL/PRj34Yz7EwghH6+vqYf8qpdB14g+qKKHYhQyASFzr3vDNFQXxaM1Y2wVj3TqbPPZNgrBqnmAVg5MAWkoP7qZ5xEjMWnIddyJIZPUwwOo1I1fRjfLA13WBw3x+IVDdSUTcbIxxHORaaEcBzLLAsTDMovtSbX8S45BNgWSjDlIh+LA7JRNl/WqupFbq364pF11lLoaIKNTSA1jgDLRhCWaLeqgEEg/I/nZxAZVLoM2fLYnU2A6GQtKuoRKXES5vqWjQUXl8PWutsHFyKVopiMUkwWMFbbz1OX99WLrnkhzhOnoGBXTQ0vJtgMMbERDc1NSJA5jg5AoFYefGiUEgxMvIazc1nYhghEoluNm++i/PO+xa6bpRFyjTNxPMs+vt30tq6FMfJU6Lzio3XTEwzQqEwydat99DWtpJIwwKGNJ1OYAFiozWCRJ0jCDV7GyJOdg8iOjbXH9J0RNV7NQK0I0hEetzvK45Yc/UhtPEwUGCK8m0AXwK+6ve9FgHrM/0+VwAnZItkOydJ9aVoXtiMGTaZ7J6ko72DC+6/AIBiskiwIoimawQrgyS6EuKJvbKNVF+KqpYqqudW89SXnqJ5YTPzPjSPQCzAC7e8wNJVS7HSFlvv2Vq22rrowYsoJAoEYxLNdi2XoT1DNJ/ZjBExULZC0zWUUjiagxNw6En2EA1EqY3WYrs2QSOIrulomsZIZoTpseksX7+cG8++kepQNZqmUR2uRqEwNIPDicPEg3Gqw9Xomk6ikCBn57hry13H0MEB8nYex3N4beQ1miua6U/3c1bLWRi6wZHJI/SkeljYvJCAHsD2bGoDQfRdV8OJ10NsllC23byogtcuBCsBkUZR+i5Fq6OzJCoNApCVI/WCNQI8x7ZBuEFAsrJhYreA6tgsiWLbCaln+tFityge2cqR8awwIvU1BKhH/CCDcgUQx5vFNcO1hDkWjMuzUim/fIY8J1OHp56jVXN8S8xSytVR9G7PFcAarJDrJA9PUcPdotyzpgvgNQJTkWzl+fTugvhRm1Hxtt5xJ5x5s1wrGJdrKd+Sx/MXz1+6CU7/qoibNS0SQFyy7frgD2HAj2RrhgD0QNS/XhBevB6azobjPyGgWz4cuacXrhb6+Ud+J2BceeTdMLajGBjI8OyzXezY0c8PfnBJ2Y+6qirEnj1DNDTEOP74WopFl+3b+8p+2EuWtJLP2wwMpInHg3R2TlBXF2N0NMs558zi4MFxKipC1NSEmZwsUF0dFv9qpfA8xfBwlhkzKsr9trZW0thYgabB9u39vOfMRiqrA2SKebJWnlgwQiwYRgH9yVGChklfcoSaSAU/3/UUN33gs4znkjyy/Z/5/JkfZva0GfQmhvmJH3kGMHSDkcwEpzTOw9ANCnaRu1/8BZcv+hgjmQmu+d23ueDEs7ntQ1ego9GTHOaR7f/MFxZ+mLrYNKLBEL2JEX6y/XG+eNbHOX7aNDQvLVFncwaoIuS30zMYoHXe2djFSW697R94bfd6Nnx/iD8c+Rm3f+MmMulRzj7zOP6w0+TO1bfxkUsvBGxfrMwQ+vd/N7utXE6AtWEIyg0GyaQVV30tzre/LVOZycljGZalKPKuXULlnjVLKN+plMw3YzFRDz/ahmtkBF54Ac4+WwD6jTcKgJ4+XVxw/pxf9gMPyDXOOktA/LZt4nRTUSEMz6pKF0PzE85K3tSlOejrnVMpikXrX45uH00BP7rdvJky//VZmB+68EKuu/56Lj5uPof2vcGZX/oCe19+md+sXcejv/4Vzz//PDU1Nf+1/8v/hts7kev/v2zKE2DtFmUCoJRQv6adJOqkSnJRhV4XkHrJQ+AWqapSNDTI6t6SJQJ4h4cFXD/4oES0V670uOaaL3Lnnd9j1qwQp502pcR4003XUF19K4ODtbz4ooyDq1aJv+B990mf4bCMkW1tQt05fFiuc/31Mkju3i05MYGAWCtouoZqbRLrgrere5cG267eKVsCkAFobosMOpGQrPIdPCLHRUtAeiQk9aviAsxbGmXAam2ain73j8DcZqnnuBxWFj9e92vOOvV0iIQF4Gsa9935bV7eupVd27Zx+cc/zuju3QTjcfRAgJoTTyQ/Ps7Ov/97cgMDZHp6yA0OYoTDmJEIdaefzpuPPEJueFio3sPD1J1+OkYwSG5oiP4//IF9P/4xynGoO+00pp9+OnvvvZdANIoRDFIYG6P/D3/gjZ/8hNp3v5tgVRXvXbUKJ59n7/33Y2ezGIYunsqhMJz/CUCJGngxD81zoKZW8rALecmpPv/jAsKDwSllXKsoedotcyXyfdwpEhVpmSPR7suukcleX7e8D4UEWJ//cenz4GsCyv/6q1A1jdcPdPLbvnFuXbkSZZRosyZ2IUvRj0j/9Kc/5aILzmd6XT2jXTuOUQIf7dpJtLoRDcoq42PdO9EAMxjFMINMn3sm1TNOounkc1Geh4ZGdcvJxKY1oZRi9OA27EIW3Qyi6UZZJbyYTYDn4Dm2Hx0H17PFBqx6GsYlf4FKTOAN9fvKuoDjoNISWSYQEGCdz6HpOvpZS/F2bEELhtCbZ4oVl/LQgkE0Xccb6kcViwKyp9WiVVbhPvVboexr4oettc4BM4A+ay6q9wje0/8Emo4+c5ZcG0U6PcCLL36DTGaI+fM/yUUXPYDrFigUErS0nIWmaWzYcA0VFU04ToGJiU4GBl7GcYpksyOMj3ei6zozZy4mkThCOj3Apk3tNDcvJJsdZuPG60gkDqFpBradJZcbp6XlLDzPplBI4nku+fwYDQ2nkkr1l/O8zz77RtLpAXQltOxmJNe6B3nwmEe9FjEFftsRYHwIiUavZso+K+fXOw0B2FcCNgKir/Xr6EwBaxeJes9GaObPAO/z7+VeBOAHXAhEAzQvbGZg14DQuutjtJ7TSiAaQDd1JromyIxmCMaDKEdhRk1mfWAWZsik4d0NbL5rM1bG4qIHLuKUvzqFia4J8hN5zr/rfMLVYbKj2Sm18VuXYoZNgrEgudEcG768gexwlvoF9Wy4egOJrgTZ0Sye66EZGqnuFIYymFU9i1gwxlee/gq9qV5yTo5NPZs4lDhEbawWXdNZsXgF47lxZlTMoCZcw47+HQynhzF1k1lVs+ic6GQ0OwpAdbiaWCDGDy75AQAHxg/Q0dPB4cRhvvbc19A0jbNazqKxopEzZ5zJWG4My7ForW5lYfNCdvTvIO8ICEcz4D0PCPAd3y7AOtIoPtbKATOOpNaEoG6J+FpriDK4FhAQPr7DB9YBAZrVC8RSq1Q2faFEpMd2SLkRg4k9EtHe+SUojoCdmrLtClULGC1MSDu3KNFpz5aIcinfWQ/IYnS4VgBxSfXbtYRlVjlbIrnxGULnNoJHMcQseSW6ZDwwgr6auAdVPrXTyvhq4X5uuW5KRFxJ2pPkPStpY2dkIcGMwHtXQKxJrpvslmv0dwjw/sO1ourduBBevkf2euhY2y5Nh8YzYWiH3G+0ThYZNt0stPFz7hJLrhevg8QBocI7BfnlvP9+uLxbwPfkQRjYgucqDh1K8I1vvFi23gIYHEzT1TWBaeosWtTM8HCW7u5E2S5rZCTLokXNGIbGypUvANDcXEFLSyXf/e52zjijCc9TtLRU0dAQQ9M04vEg11+/ke7uSUZGsuTzjqxnZCx27uynri5GOBxgcDDD1Vc/TX19jHBUxy2JupQ3jd5JoXvXxWvKqt0b928lU8zxyPZ/LkeVXc/lH/8/9v47zK6ybvvGP6vtPnt6L6kQQggpkEmbgFKliJ1bRAELAQ0oEIoQFAsJkBBBBJVi1xtFREWKASmaMKkUgYAhfeqePruX1d4/vmvPnqj38/ze43eXx+dlHccca++1V5tdrus6r/P8nufOPzC/+WiChp+2ygaG02NUBsu47bkf0Z8YRlPVidiu4xpmTLiMv9m/j7SZo62igZtP/xx1kWqPQVdoKq/luvdeRGUggoPqKX1dcFKQ3Qm959IW/gFYPRjqOFdddQObdyag7Hzee8pp/PnFZ3n5mfPZ+O1f0tfXz7FTU+DmRCoeWwnmHrBHPN+B/0uWQkHGFYGAoNUrr4QDB/CFDTZscBkeFhZ5bAzq6yXbetUq2LtXuuHjjpPTbNsmpHdZmcTDNjfL2PSxx2DBAujvF1Lnwx8WAP344wKsly+HqioB7EVmfP16OP10YcXHx4UguvxyUXUed1yp9lrFQXNsFMcWtaNlQTgoY9CycGm8qSCqymjkyEQaELXk5G2TjwORiB/sBcvm+3ffw4b165n7sfP44DfWcP+378FNpFh9/XWMj4/z3ve+l/nz57N48eL/iU/y/7PLu+D6/5alOJM+ukc6c1WVGfXiLHoxY7OQlEGGnZ+IAVEVMSi75ZYSuG5okNiCVatk5u6JJ77F4sXLWbr0BEIhmRVcswaWLn2UQEDl3nvPY+pUaXwUBaZPl+Puuw8+9SmpczlwQG5z/nyZUbz3Xlnv2CESm54eOTafh+dfVBnNBXB9PmlYemKlhsbQoXdA6qNdb2YQBDDrmrDSuYKA8qJkvNybmXfcUna1pkrDPbNNGrlsXo6d2QqmDQd6cCyLz33xCr7z7W/jLy+DcEDiERwXR4VCJoOdy5Hp7ydQVcWuW28l3deHomnkRkdZeN11BGpqqJk/n0BVFXYux+7776dm4UJOWLMGPRAgE4tRu2ABNQsW8PJtt1E5ezbnbdrEwuuvp5AWZidUV8fRF15IsqeHnd/8JqH6ejruuovjLrsMVdfRQyFyIyNoPh/zV68GIDs6ghsfhcd/NlEnzuM/E/AWCArQ/uX9Ar4dW+TcH/2sdGwH/ibfmad+KRFdiiIsdiEHZk5AdCEPB96W97V5Gmx/ASxTzqFqYoAWKRcJ+c/vgWs+zua713Ho0CGOOn4+M+Ycz46du7j886v4wY9/ju4Pkh7t52c/f5hPX/wpVFWldmY7mh6g6bhTmHLih6iduVgmDBSF2hntlDfOonbmYjJjfYz3vY3ruhjBiMdYJ+l78zlU3cC1TEyP2Q5WNQnL7bpkRnvFQC2fRvcH6XvzeRzHxMqncewCvlAFbnwM+8nHPMZHR2meInnVf/kTuA5q61S0y68Fy8TpOSxmZLgo5VWoZ31Q8qt7DuOOj4iJ2Pgo9tO/RamTDtZNp8A0cZOJUjxXICjGZpblDcod1LkLUE87B3Bx0ykUXUyhUqkYS5euJpWKYRghEokunnpqFaaZpru7k2Syn+bmdvL5+BFZ108/LfukUv3kcnEAduy4F78/SkfHTcyYccZEVvVLL61HUTTS6UFefPGrxOOH6enZhs8XxjBCBALiIdDWtgJQaGxcyPbt90hNtp1HcV16gdUIqxxGwLEXBoeOMNYXAncj445u4DmEXb4EAcUt3vMkAsKfQdjr4vYQJfn3AUQafrm3bTtwPMKEf8G7fh2AoWJlLJ6+4mkiDRFcx2XTVZtoW96GmTFFyl0XpmpaFVbeomtLF2bG5JjzjmF0/yh6UOes75xFKpYi3hWnd0cvze3NlDWWYYQMfFEfbR1tVE6v5Kx7zyLeFWd03ygAm9dulniu27ZQSBYkxqs7jpk2JRLswDh6VGf/2H5WPrGSvmQf7c3trO9cTzwXpyZUw9rNa6UGGoWmsiaWtS4jZ+cYy43R3txOW0UbpmOyvXc7deE6AnoAy7EYyUrdtYpK0AjSWt5Ke3M7PYkelrYsJZaK0dndSSwZYyw3RmWgkrHcGF3jXezo3UF7czshI0TICAlDY2eljrpynjDRjg3J/cI46wFhfP1VMO1iWPQ9UVAF6z0jrV6RhI9sF3CpBQSQVy+GTJcw0LuulDapdonsl+mGyrmTIrk2CKCcvVqAt2PLbydYL9tTvaVMatUnbLWdl991EXT7IrJfoEb6z/H9ct/l02VCTffUUOXTZeLaVybXKJ9WkppHvAGwY8naVybnLvbT8QMycYlSkpYXPCl9qB5SMTE5jU4RsJ3uh5q5YnYWrJP7O+FakZfPvhBOu1/u1UzBn6+DuoXCmJsZGHhZ8qvL2uR64SY48Vqpx9YDsOtOMS8zwgL6NUPWIEDcyorBWc1cbMeeyLm+665thMO+CVDc3t7M+HgOx3Hp6GgjFkuyfv1pTJ1azsknT8EwNHI5i7vvfh8zZ1aRyQiDvXbtKTiOS2dnN7btkEwWGBoSefnSpS2sW7fFy7M+EsDfc892amvDE7Fcg4NpshkHVVEZTo/zvc5HGU6Poyjw8Kt/pC4ifh9+3cdnF3+Qc2Z3UB0q58ZTP829H76Bzy7+IGPZJFeffCHzm2bxvc5H6UsMMa/p6Akw/oPtv8PQjAlA7dd9XPfei6gIltE9PsCGF36K5dj8te8dYolhNE3FcmxcxyGTzxD2BVGxUew+ybW2+yHUQbruFcb964XJVkI8/PDDLJg/Dxrup38gDcZ0qP8e37zjl5yyNMrMWfPAicPIbV4m9nqpt/6vyLP+n1gKBaGjk0kB1bGYaK67uvClRimLyPBj+XK45x7hAtauLUVpmaYA3f5+kY2vWiVjz1hMTjtjhhzb3y9j3r4+YbxvvLGUfX3ZZUKcBwKi5CxKzVtaZGxbWSmKyyLoHh8Xzqe/HwzdlfZQVeUvm5fyxPKIEDNHTSnlW79zWCYRZrTCojmyTqRkzNTWKIC6tUGA+ZQmGcse6vPivFrBZzC9pYUX/riJN/7yEn999RU+8r6zaZkyFXf3Pvb/9Q1ee+UVXnvtNbZv3/4/+rH+f215F1z/qy3uJDOVyYuiSE111SzpaPOJUv2XnSvlcBrhUg5nsEakZpRy/tavlwZFUaR+ZPlyOHz4TX7/+99w4403c/iwNCSxGLzxRoxU6lY2bPg2M2eKM2NdnTR2rittY3+/zBxeeaWA9iLpnEzK9uFhmDdP1osXS4O2apWA923bVVJZMW6YaGiKM35Fhtp1pcHKebUs2TxEgiWmuqFa/plifmAyLTeQL0jDV5Sau8h1fJ5cz5s1/NZdd7G8fTEnlNUIMLdsAfmOw41f+QrtJ5/MJz/zGZKVlez5+c8ncq31QIDKWbNAUSgkEtiFAmY2i6ppzLroInIjI2T6+3l140ZC9fUoqkpueJj5V19NzqvXzo+P4y8vJ3H4MKNvvUWosRE9ECDW2SlM98KFBGpqJmpy3vz+98n09zPyxhtkh4fxl0VRNj0KM+eAbsib/9o2qZFGgfERcQ73BYTN9gUEaGuqSMOTcamxXnyKAPInH5ZrRT1jsmwKps0SoO7zeznaPjlHfExqrgMh2XbOBbDoJD5/253073mbQ2+/xf539tB+4kLW3nApn/vMRfiC5Wz/6ztYtsUZZ52Di4IRLEfVDaxCjlBlE76gN5h1HYxQOXVHL8MIlKEHIkRqppBLDGFmE7i2zfB+YbZRVNwJZxCoaJ5NqLIBK58hWNGIC4Sqmhk5+KqXe72DUEUDui8s9dabn0NpmYJrFiAQFINjvx+ldZq8j6aJEimTnOtwVECxiLfFLdx1UOqbRNqtKDibJf8aTYNkAufFTZCMo7ZOncjJdnNZMAuec3gIp/sQ7tioZ4SoiHlaoQCKSjTawtatG4lGRaFUzKTesuU2QqEaOjvXM3366fj95f+Qdb1ly200N7cTCFSQTg/xvvfdjd9fRnl5G2VlzRP51aeddgeWlZvIw96y5Tbq6o4jnR7giSdWkkj04PdHse3cRP12EdAnsyOgKCwGKoEKRN59K2I+piLAtwVhlwFWec+nU6rRLoJiHZGA3we8g7DZQ95+9d45NyLAWQNOQuTiSxFDsx7ERK3XO9a0HeI9cZauXkqyL0k+mZd86zs7UVSFpauXEqgIEO+Ks+mqTdTPq6dyaiVG2GDKSVPIxXO4tkvl9EpS/Snq59Xj2A6qT8XKW4ztG+OpVU9RSBXQDI3xQ+NsvXMrRthgxZoVE2x2pDHCJ576BG3L20j0Jtjz+B5eWv8SgcYAd26/k5PaTqI12spF8y7irjPuojHSSFt5G52rOznx+BNZ1r6MMzvO5P6f3M/2nu1c9OGLOOrYo2g/sZ2TTzqZ0YOjDKYHqY/U05/sZ//ofkJGiEQhwRVPXUF/sp/x3Dgt0RY+duzHWN+5nrpwHSEjRH24HsuxqAnV0BRtYl79PK7edDVd8S7PdR7I9sEbt0h9dbBejMxy/QKMd1wubLJjCrNsJuUvNyj9We0yyaUO1MGuVQKoVU36surFko09by3gCsgO1EK2F7QInHgfnPwELLhT+kU9CnpY9h3eJlJ03P84k9q1vYnmPgHV5dOlb7DzwhorivQ5vqjcj+t6x3ttkaJ5QNr1EjvUI31TXEdqmm1Pup4d9eq2VQH5hZQnE/cmA1LdwpQ/v0pk5ul+ucZ77oaK6QKec8MCnp/7gkjY+16S65y0XtbPfWECFPP8lXIe1xJjtOhUOPVeYexP+Q4c9RHYdqtkXas6Eyx68d6bO8AIEzAHWbOmgwsvnMu9955FoWAxOJgmFkuyY0cv6bTJqlVPc/DgOMcfX8+bbw6iqoqQ87aDYajEYilSqQKW5TJvXgNvvTVEKGTQ0dFGKGQwMJBi//5RDEPloovm8eCDIs+ORv3U1Umtd3d3gg0bTscwFNasWcH5589h8eIWbrn5RRzXPaLG2XYcvnzqJTRGa3itdw/pQpaqUJTV7/kkseQItz33I+ojVQQNHwXTxKcZE8c/tO13uK7L5xZ/cAJQG6rm1WDXceuzD3Ha9z/Phhd+yhmzlnDpkg+jqxrH1E2lvqwa23G4/bkf0ZsYoipcQW98CHAEDCcfAbMfzIMM/O1m3nvamRw/bz5zTziLP2/exk+/txKcFF/96hqOOXYBM485gcNdPfzgh/8O1hCo5VB9o1ezfYMYmf1n51n/TyxFR/FLLxXU295eoowXL6agBThw4EgiSNNKCsuvfEXGn5lMqQb6kUfExTsSERLZtuWnd9ddpTGv4xyZfV2s4TZN2f7974tM/POfl9vz+0v51jfcIOZnrivn0r25KWxbThAJyk0WtyU8U0aAsbiw26YloNm0vP3VI5WYPQMlA7QZLSWvoHxBzHcDvpJX0N+TUY779+/yu8t/w/JuzfW/0vLPorz+vhN3HQHWRXfwv6+9Lp8mAwPVDx7kcFyV1/6qsX49fPnL0qaddJJIXPr6YOXK79HV9Q1CIT/Dw2BZMSKRKDfccAt33vkNMpkg5eUQjw9jGD4+97nPc8sta8lmhZVubISZM6UBsywxjGhtLcUbXH89HHWUNEqplIDut96CRYsk0svnQ0BtviBmDkV22fZkNz7jyLit4gxfrlCS4riOuIE310lDVYxCKALqbF7MzNoa5XnB5M3n/sylt32dv9z/Y4zxFO+5bhVXXXcdH5yzgG6/QmNtLYm+Xr75hS/wVFcXr27dymt33sn81avRg0FQVZx8npE33iDY0ECgspJX7riDOZdeSrilhR23lJzGF3/jG6R6egjU1FCIxxnYvp1wSwu18+eTGx3FTCZ5+0c/Ys5llxGsqUH1+XAtC9s0ee3OO5l18cXguujBIHooxPjevVTPPgZ/MCCxEAf/BlUNYoepGSXrSzMvjW/ROKN7P0w7RiTdQ30QHxVwvv8tAdU1DcJe/+aHcOZHYXwYWmd4kV2KMNcH/yYu4+Gy0vlAAH7RktexsXHoOHkFn7/0Yi64+DIUVecTn/gE06e0cOu62z3zPxVsjwFSIDMWwwhGMLNpguW1qJoYCzlWAUU3wLG9fcrQfUH633qR5uNPJ5+S+uzaGe3o/hDZ+OBEHXfN9EUYAemY+t96cSKmy3UcFNdFGRuFSBQ0DcVxxBm8vEJqzosu4sveI47qhTz4fCiaDp4TOI4tt++Tmkt3bBg3EUdtm4bTfQjGRlCmHy011Z6UEAVhwZtaUVxxMnf7ulDKK1ECQdB13HQK06/yh02r2L37EebMOZ9zz32A0dH9pFL9tLQsRlWlLkvqrLNomsyYm2aGZ5+9juXLb6CycjpdXVsoK2smGm3BcSySyV46Ozdw+ukb0DSfF9dVQFV1urs7iUZbCIVq2LTpKvbseZzLL3+DUKga2zax7QKDg29QUTGVQKACAhUc0AOsUxRuREBtC/Bn4CXgQcSYzEUY6SjwW+AvwP0ImLYQNrpYMz0FieWqRQB0J7AQYa4TCMBeTyl+6zVKkVw3IQB7BRLdVZU1Cb4zwpZ1W+i4qYPyKeV0v9RN67JWrJw1UQudHc+ST+apPqoaK2fRu11cv8O1YTZdtUniu6ZXYGUscQRviRJpjPDHK/9I6/JWWpe3SmTXjR2UTy1HURQUTcG1XNJDaXwRkYlvXruZjhs7SPQmaFzYCBFIkZpgnHf07mBh48KJWK3NV2/mpntv4t9O+zdGs6PsG91He3M7z7/9PJdsuoTzZp3HwrGF3Lb2Nvbt3oehGWzp2kJduI7hzDBLWpbguA5j2TFqwjW81PUSHW0dHBw/SNgIT8R83bXtLjacvgEAx3UYSg8xvWo6rusSUV20HZdB7+PQ8agnB3eFhd51hTDLbeeLi/eTx8KHBsQhPNcv4Hlyjfafz5V9F30XUgcheoxMEI/uhIrjS9FbegRSh2D3rTBnjWdglhUJeaARQs0C6I1KCDUJ+IjvPzL2ElcY9MRh6RvB6x99AnbNdCnCsrj2lZUGuo5ZAtd2XgC7652jWJOt+gQM+ys8MJ0oKcoKSWHS7YKsXVfqqSfXTp96n/zP4wcEeDe0y72k+0sO5eEGuf7gaxLRhSPtiOsKA61oIgdfdL2w2K4t19xyEyy/VYD38JteBJcm7/fALqidLwx33zaom8+UOUvw+fxomsRvXXfd9Zx77ofZt2+Aiy/+Avv27aS8PMxppy3j+us3MjSUpqUlSk9PYmLd3t6MYWjk8xa27ZBISDRXWZmPgYE0FRUBdu3qY+nSFlRVIZ0W1v+112Kcffa/T4B703QIBATJOI6LZkDWzjKSlTrqlUs+TFN5LXnLJJlPEfGHSeXTVIfEh+AbzzzIi/t3cdcHVrOgeRambdOfGMJ14Uc7H+fSJR+ipbweFwfHdVEVlb/27aE6VEljeQ05M0/KY6QVRSHsEyOxQ6P9/HjnH/j0ovNwcQkafurLqni1dw8Lm6YRUDMoTlyY6tgXIPkLAclV18Dot6DhAfn8Mp2g14kjuF4rddW4YCdAjcg+riVlFIrvv8fI7L9yKRRk8LdlS8nG+2tfE4Da1ga6Tsr089nLjQkfoIceElZ6wwb5K5rk3nCDRGbpuoDkBx+U/e68s+QWDkL6XHed1GKn07I9kym5j8+cKbdkGDJ2PXxYZOMnnigkVKEgf0VTs2wWoiGbcNAWt/DimNLvk//D0GVcOnmsCUd6/0wXHx5Axmg+Q8a5LnCwp8RkF2uwj57CRIysYQjQLpileu1QwDP/fXf5z1zerbn+v2lxXQHW2WFZT54YKUZ8gXS2qT7Zr5CU2utgjQBy1xX3U0SepuApVY6S2blYTIAvSEOzfj288srnOeWUfrZtO8S+fYdob1/CzTc/wMsvr+KZZwb4858PsXnzIT7wgY9y/fVf5atfXYtlST11XZ3Uu7iuNDxXXSVSne5uMZkozhyCNFKGIbOAS5bI9SdMJRVE8l0VhWnNpf9b92YEJ0toig2WqpZqtU1bGi3T8vKwvcbLk3jTHTuy5sXvY3PXPg4dPsxR553J1E98kG2v/5WVX/g833vuKVqntOGqCm89+CCLBgY4dOgQ8XSaE26+GVXXyY2NYWUy5ONxaubPJ9zUhB4IUL94MZmhIXBdFn75y0w991yOu+wyrGyWzOAgrm2jKApTzjmH2nnzGHrlFex8ntzYGLULFhCorETRdZJdXbx8220AnHjTTYQbGlANgzfuu498PE7dCSeIfHp0CH51v9RMV1VLY/3v98FQv3xnMml5b1VVAHdZhbw+MiCsc8t06VVmzBEw+fB3hZWeNksk49OOEXn5vt3CfqcScszY0JHni48KyIyPeXJNFUXV+cvml/j4RSuxPSfwn/34B3zj1rVYZg4AMxOnb/fzmPkUmbEYuj+ImU0RiNZg5tL0vvEshUwcRVExMwn63nze20cEx01zTwcXjGAZoapmhg/swrbyR9RxDx/YiW3lUTVjggkHUBRFgL3hE+BuWdibHhdn8Pi4zEck4qhLTxZpt8coK7qBm82A66LoBoo/IMw+YG/6A1RWozZPkezslimoc+aXOlOYYKnVlqmSe51Jg22itk6DgFcqoaookTI0X2iCXV6xYg3d3Z1EIvWUl7fQ27sT08yQSvVTKCTQ9QDx+GGeeGIl6fQAp556G/F4F45ToLHxBOLxw4yNCcu3Zcs63njjFzz77HVomo/x8YM89dQXGB3dR0PDfCorp2MYYVasuImPfexRLCtLd3cniqLg84VpbV1ONNrCwMDruJqPdYrCI8BtQA0Cck9H8qkVBBSHvMcu8FHvtWGkbnoIuBE4H6nPDiDS8mKV4RJgFyIFBwHWjyD12gkEhG8AliOg/CTvOncBQdsh0ZNg6eqlJHoSqJpK48JG0gNp9IAuAPmqP+IL+6iaXoXruOTGczS3N2MEDXKJHK3LWwnVhCgkCmy6epM4gvcksHIWZ3zrDOZfMp+ypjKmvHcKyf4kCgrpoTTjB8d56oqn0IM6RtAg3h1nz+N76LyzkykrpmCEDAqFAhFfBNux2dG7g7pwHZqisXbzWh7Z/QjxfJw5dXMYz41TFaxiQeMCrt50Nce0HMOjH3uUNSvWQB5ao634dT+qorK4ZTGD6UEaIg1c/uTl9CR6qAnVEEvFWNi4kOH0MC91vUR9pB6f5mMwPcjqpasJ6AE0RUNRFKZWTGXvyF5WPbUKBw13zho463WPaR6Ugb8WhIV3wzlvy9qICnDWjBKrvWuVGJtluuXYtvMFLKs+cQZPHRAZeNWJwkqnDsPLVwmw1oKwcCOE26Q9K8TFQM2IijFY5Ghhw/FSHib3haqPiSFQxXQBm3GvdskRVYjkYiuenNwQ5VchWQLWxckwOy+vF1nxIghX1NJ5kt3e9mjpWsV0ECMkx/Z1CnA+7fvwoack31o1BLwXGe3YDqkNL0rHw/VyvtgOqJlTkpIXkuL2PfyGsNgLr5bjrWypZnv+FcJY/+V6eW+KBm6xHR5Id4X5DjdMqOYeeugn/OEPf+bhh59l06Yg/f1JfvKTb7FixRR6ew/S1bWX22+/Y0K6vW7dFurqwoRCBu3tzezY0Ut3d5xwWGqmb7nlRWKxlBfhZXHFFU8zd24d2axFMilmaa7LhEv4d75zFocOjXPFFU9z4MAYqVSBlSufoGBZ3PWXX/DX3j3ccMrFNESrSReybHjhJ2TNPG8PHCBoBHBxcVyXTy86j7s+sJq5jUeRt0xe79+Loqg0V9Rx8+mfJZYcIZlP0zU2wKu9e8hbBeY1zaIxWk3ezDOWSfC9zkcZycTZM3iIdCGH47r8/OWnWNhyDE3ltbRVNqCrKnnLZEHzLHbHDoI9JLJw8xDUbfDY55vAGhYW2kkBurh/W4PgZiB2GRT2yfdVKdpA6gKs1cD/HcB6ZESkjgsXSlH0zTdDU5MMFru6wLLwkWfNGpfzzxfwW4zham8vEkFyirVrhZmuqSkx07fddqRbeFeXMNsNHudQPE9jI9x/vwDuREJA9KFD8IUvyL6NjfJ4/36J8/rVr+TxZZeJV5HuV3AVVQDuZJfwQ30CuAtmaaypKEIcTVZmFpnmIptdLGE80A3DYyVV5nEzSzXYjiPbegdg++uyz2T5+bvLf/vyLrj+V1qK0u/i4KA4IC8y2uP7PJZMKQ0idL901hUzSjP0ms/bp0k6YFymTBFp9pIlUn+S8so+ivUmN9wgjdbQkFzSMESWc+edUjddXy/bTdMzdVAFXA8Py0zgypXS+C1dWjKMaGyECy8sxSZ0dUn7qihSGxOPS5s78b+bljDMiiL3r2lyoYJZitsK+qWhKZilmupiQ6aqEA2LGYRllwB1Mi2NVF2VAHDP/O3zn/4s/c9t4dDutzl0+BBL2hfzwLfu5tJPXczA3gOgqsy59FIOTJ9OXX091bW1E7LsgKcTSvX0YOfzpLq62PH1r1Mzbx6Vs2ax42tfIz86yqKvfpVQczOaz0fdwoVkh4Z48/vfx87lsAsFqdWurKTuhBOYcvbZjL71Fpn+fnJDQ1TPnUt2aIih119H9fkINzRw7KWXEm5sxLUsVFyUp34pQDgxDj+7R4DwjNki1VZUcQI3fN6fH577fSlSq6JKAPb4iGRYj4/KuTb9Go5dIFJvTRfWetpsAc6P/0yuNWOODByf+Y1I0Q2ffC6DvQK8972JOjKIqvuw8hkG3+nEzKXRA2FUVUORjBxUVSdU1Yyi6gSitYwcfJVQZSOKojBy8GVClU1i/KXpWLkkNdNPwMpnCXmxXMJk9+I69oTJmab7sfJZamculprtGYvQdL9Etxh+FK8+3VUUFM0HPj+uZaLoOurSk3C2b0FtniIcfLQcZ/sWlJYpklmdzwqADoXlHJaJm89JTXU6jVJfD2Oj2E8/JjXXlgWOgxIpwy3ksZ/6LUokIj8w10UxfLhjI1JHAZBKilv5yBD2E4+ijo1RGWnjrLPuo6JiGs3Ni/D7y3jppQ3U1c2dMDtLJmXSaLJkvFBIEY22oCg6Tz+9iocfPpdt276FrgdZvXorP/5xM1/72qssWrSU22+/jD17Hmf37lc544wPMmfOPJYvfw99fQXa2jqIx7sIh2vZtOlqrGKcESotLUukntp1OR9hjUeRuupGYBpwGAHPNhK1NYAA7S6kZlpHqgkjwEMIsK5DXMcNhH1eCTR4x4SA7yMZ1w941xlDpOUXIEx3Hun81gOVmkq0JcrWjVuJtkZBAT2gE6gKYOUsUv0pmtubSQ+kRd6dLBCpj4hzeMRHtClK6/JWNl21iWRfkub2ZrZu3DoBvo2QQT6Z59nrnuWY846hrKmMJy57AjNtkuhJsOTqJeh+na6Xuoi2RvnYox/j9A2nU0gXSPWnCIQCpAophrPDzKufx3BmGEMzuKnjJs6fcz4V/gquXHklZ3eczeL3L+atQ2/R3tzOui3r+NnXf8bZJ5zNPbffw+fXfZ5EPoHjOvg1PydPOZmQEeKktpOI+CK4uDSEG4j4ItRF6jh/zvkUrAI7enewpGUJreWtbOvZhumYBPUghmoQ8UW4Zuk14FoowQYxJMOR9ch2MRjLD4pcPD8ERjm03w+uCrUrQC+XfGotKM9VA068V567FtSdLAC8ch68crXEehllXl11EPw1AixGtgsbG6wX0Bz0OiQ7DUOdknmtqHL+ihnSJ4LIoCeMxSbJwIsscrGcxC4IS6xoAo4LydIxRfBdnNBO9cg+gWqvf/ZY4uyotz8lkF2MybTzclzDIibMSevmi4T7haukf29YLBFczR0Sp1k7DwZ2QvywZFU3tMs5VV3OqflE3RasFXAdaZLJB9cRo7Kd68V0bed6Ycl3rBPGWg9KnXYxJnTFHeIm7ouCqqGqKg0NEe68U+KxbrvteR5++Kd84xu3EgoZ2LZDTU0dGzacztBQmptu6qCyMkAk4mNkJMu8efX09SVxXWhqKmPjxtMpL/fjOC49PXEef3wPqZSJpikTMvFgUCeZLHDrrX+huztBb2+SRx7Zzbp1Wxgfz/HII7vZtaOfq0++kFOPkvi/dX/6IUOpMY5rnMEPtv+eGTWtDKXG+MYzD9KXGMLFZV7T0eStAuPZJEfXtjGcHgPg9ud+zBWP3UG6kGVokqlZ9/gAOauAX/dhaDrzm4/mZ7ueZE7DDFzXwXVdqdtunsXaP/2ArrEYASPAm7H99IwPMr95GorZDVWrweyW727d3WDMBN8MyGyBwRvALcDIOmGsR9Z5tdVr5bdlHRawbe4rsdb/6otpygCxWATd0THBVrN8uTAy4+P4NIejplk88IBLOCyM8d13w5lnlgx2162TMex998mQb80auUTRZHfyfpom5wgExAPo5z+XY156SbpgxxEmvCgVTyRK9d3r18ttXnyxEFI33OC5lZsqKAqu3yfybMcpAWJDLwHjloaJkj7yBVFT+ryLaqoQQNGIjFNBaqzb54oMfG+XAOeiQnO/V/Y4vQWqK+S1XF6IpXdl4f8jy7uy8P8TlyILrSjSwRXl3hNF1JReAwHU4/uk866aJRmddsHr1E15nk/IrLviScVUbcKl1FEC7D+oUVlZkmzPmCHg+I47Sr4Mti2N0cGD0sBcf71MLEajpaiDYuxWY6PMEE6bJuUzRRnPPffI9nXrZL/p04WdLhSkQVuyRP4l0xTcEY1KrQyWDfGktHimKY1Hz4A0OMW3xSMRJiTerQ0Ctt85fCSjDSItnxx/EPA6qL+PP8jmoa4SVJX3nHoqV33xi5z+3lM4+fTTyOVyKK5LTW0t62+7jXlz5zL02mtUHnUUimGgGQau65IbGyPd3U35jBmonn6o57nnaDn1VDS/Hyub5fW772bhjTdiZ7OoPh/pgQGy/f1UH388uC7Z4WEy/f1Uz51LIZnEV1bmgUcH1ecj1dvL2z/4AXNWrsRfUcFr3/oWi25egx4fQYlWQjoJb70ikVrnXyoNuJfFjKYLM1L8Th3cI7nYjiPM7eF3xJgsOQ61zRAMCRObz0EqXorjGhuCe26BRSfBp74k7+fIgGyvrJX9zviInCdSDs8+hv3pq+nzorDKG4/2vs4mmuHHLuTRPKlddjxGqKKoOChOKklZQ3asj2BFo3Ronou3ovswM+MT8V2aL8TA3zbTMPukCSl58RzFGm4UBRdFZNgS2Ipqux4jn8TpfBG141SJ3zIMFNvG3vS4ZFaXV+H0daHUNwnIdpxSFFekDFQNRRMjNvuJR3H3vIm2+mvyn5im5yzr4v5tN8qMo1GCIZGFR6JyPctECZdNkotZuJYp9d6BIKbmYjl5enq2U14+xau/dunu7uTXv/4os2adx7nnPkA8fpjNm9fS0fFlIpEmdD2AomiMjx9g8+a1nHnm3aTTAxx//HIefvjHdHS8j0Ihheu6mGaGj3zkM/zbv32I+vqXGR2dz3e/+3OeffbXBAKVPP30KtraTuKYYz6Irgew7QLPPnsdp5z3ECN6gDpErKojDHMXwkJ71k443k94FJFyv4OYjnVMOs5BJOKjCBstEF7A825gEVLPXdxvG+IMPp2SeVoYAdfFCkVfIs8Tl/6B3Y/s5oInLqC8rZxET4KWJS2ohopru1h5i2eueYbm9mZmf2Q2qVhKJN43dVA5o5Jkb5JCqoAv4hN38ME05W3lxA/HJyK7HMvBF/Hx4ldfnIjkOveBcxk/NM6WdVtYeq3UdofrwiiawsjeEVJ9KZpOa2LPyB7Wd67n+mXXc1TVUaiqiuIqODgcOnyIhuYGvvTkl3j4nodpyDTw/KbnsRyLqRVTOTB2gM+v/TzBPUEe/f2jDGeGqQnVoKAwkB6gLlxHzsoRz8cp8+TKISNEV7yLdVvW8eXlX6Yh0sAr/a+wrHUZWStLppChIlDBeG6c6lA1Ud2HmtqHUozZyvQIKA5NhVevETa54QyRalsZYZVTB8XIrHKegHCjXEBcNga+CpF3h1qF0Q40yqcdapIP/fWbYMFdAsALYwLmVb8HorVS1JWiyrfLtUQWnuqRiediP1h8rholxrko/zbCXh20Jmt10jfVdWWb5k0aKor0pymvZEvze7GYfcIuq1ppv0JSzu2YYk4WnerFexW9VFwvU9uSiYTxvbJ/pEUk5ek+AcTtN5Wk7aoO/dug5njPsM2AzKCAcj0gRmkFr87dKJP9MwNSNlZICug2PKm6ospzX1TqugMV4LoUXD8zjplLKBRBVWH+/BPIZE7mi188lksu+Tjnnfdhtmx5EcPwc/31azjjjNNIpQqEQgY+n8bevSPEYmmWLWv1PBolXisS8aGqCq+80j8hHV+4sJFIxIdtO7gujIxkKC8PUCjYGIaK36/T2dlNa2uU6uoQqVSBpuYwvekBHtr2uyMk2dFAmNF0gspQlPUv/IRNe7Zy5qylfH7ZR6mLVJEuZAkafhRFQfXGVJlClj1Dh5nXdDSmbXHbcz9i056tnDO7gxtP/TSWY/NmbD81oQpqIxWEfEFe7f0b1aEKasIV/3CdVCHLw6/8kW++7zOoTlxk4Wo5OGk4eBRMe0cY6pF1wmIb08E8KADcaAGzB4KL5Tsc+3xJSt7wAGjl/MsvicSRA8UHHpDB5oEDMti8+25hZdavJ/udB0nbCldccS1PPrmJhoYACxfOY82an7Nt214efPBihoeHqaws57vf/TGzZs0BhLipqREF5euvC0tdHM/W1QmZU14uSssDB4Qwb28vET/33Qff+pYQPzt3yljVtsWxvKZGtr/2GrznZIeAbqNMlnofPeXIqNii1FvXSj5ARdm4aZXGpq0NEimrIPsf7IVpXhuYzgpQn1wSefSUI99XFxkzFWu+313+05Z3ZeH/Jy3/kRnZ3+9TZKGtrJddnRXXUit7JAgqLn9vZja+3wMNmlcfBozuFblXUaZmF0DRcFU/LjIxWIw16O4WYLtxozxeuVIam61b5XLFyK677hLpjOPItlhMogxuu00amnXr5DbWrBGzifvuE6n3hg0lZ0eQWcNAQM7Z1SWSne7uI1XvKJSMGgxDGp7mOu89m7QPlBjpyTN+xQguKEVxBXwinQn4JPrApRR/0B2Tfeqr5Ub2dvHiM8/ywTPPIhwbZdeLf+G1l1/mL7/9Ld888USml5fjui51J5yAHgqhGgZ2oYCiaYTq6gjW1/Pqxo1kYjFUw6D5Pe8hE4ux65vfBNdl/urVWNksr955J5n+fnS/n0BVFa/cfjuObROqq6Ny1ixGd+/GF42iBQLkRkZ4+fbbJ5jsopmamU5TM3++/K+1jSLJfvxnApg/+jlhkVVNALKiSOZ1fExANYjU27EFBDu21FQ/8xsByFU1kBoXJjsVF+C88y8lifiSUyTrGlfqj8eHJb7rqV/Kfs/8RvZLJeCcC1BQJ6Kw+t96UTJNbZPMWAzHMel78znMXIpgRQNmISOg1SqQT43R9+ZzuJYpoFtRKKTH6X/rRax8RqK69u8iVNWM7g+j6j7qj1mBoqhY+Qy4cp7+3S/gWAUcW6JeXKvguYq7KK7UXFMo4KbTaKedCxWVKIYPxasH187+EJSVYz/7BEqzsNdOXw+4DtopZ+GmkpDPoxgi/3RdF3XZe1E/drGA6tFh7GefkDJrnx913ong82M/84QA9Qqvxtrnx/7j73GdIsvmKVR8PqxcmrH4QZ56ahXhcC267ieR6OLJJy8nGm3hYx97lBUrvgIolJdP4dxzH8QwylAUDdvOY9t5KipmcO65D+DzRejsvJNCIUMqFWN8/CDPPnsdiqKQSjns2rWLc85ZTnNzO5WVr9Lb20dv7yiaZnDWWfdx/PGfJJMZpqdnG6qqs2TJahTbpMF1yQNbEGOyegQcrwIOIaz1fsTZO40w1kMIWC7KwgsIYB5E2Omkd74DSMRXMwKsC4gU/EqEtS6KKF2EOU8iQN1GDNIUBZZdv4w558+hub2ZRE+C+nn1WDkLx3RIxVK4tsvpG05nxhkzKKQKpGIpll67lLLGMuycjaIqqLrKi199cUJOPvLOSMkNfN0WytvKCdeHWXHzCi544gLOvu9sFE1BD+i0Lm8lM5zBylg8sfIJxg6MUd5cTnN7M5Zpsb5zPY/veZxYKoaLy+bDm0kUEhwaP0QXXSiKwnff/10+/OkPk3gnQUu0hdZoKwW7QNgI8/vbf0/n5k729ewjY2bo7O7kcPww+0b3eU2oy7c6v0XICBHxRTBUg7u33c0jux/h9pduR1VUasO1XPn0lQT1IBWBCsZyY6TNNJc/eTkFKyPAuusRybH218De7wmIPvE+mPopePsOkXhrAQGPb6+HmsUCBBXNM9NSpW561xUi59aCUL3IA4QGvHod4MD89bLfK1cJOz2yU8CpHpA67+Ft8hwV0ocEdBfjs1I9Xp3zJKZaVQXoFiegiw7fyW4vl9pTe7m2F9dlyT2PH2BiVlfzC1hVdOnH7YIAa8ectJ8r10CR62WH5ZypXrlu8jD86XK5bnHiT9Wh86siIzdCMgGx6AYB1qoOsV3Cqjd6M9N/vlYAc7DaA9Z1cp5MDDpvkbUR8mrMXdknftiTr0fk3nfc4SkDKiQfW1EwXT/f//6jLFr0TZ5++i80NNSRzf4av1+hp6eLuXOP409/2sIll9zI5ZdfwtDQIIqisHNnH6bpcNRR1Sxb1ko6XWDr1h5UVaGmRopfi4/XrdvC8uVtRCI+LMshnTbZtq2HioqAcAKqQnd3gpUrn6CpqYypUyuIRn1ksybpXIGHtv2OTXu2MpwZR1O1Cdl2c0UdAcPHZxZ/YMKcrDZS6YngFLrHB/jGMw/SMz7AcHqM0UyCo2unsP75n+DTjAlTs6tO+gSxxAhvxvYzp2EGYX9A8q+tPMfWT+eHO37PM+9snbjOp9vfT8QfYjyb5KqTL8R1rUlu4X2g18O0t2Vt9gmjrYTkO663QrAd9EYB2AOrBHBPlpL/q5uYFQoidTQMkTAWbbmHhgT1dnfLoBJg7VoK7cvZ2+Vn9eobefllhVTqHRYufIMrrriT6dPhpz+9jA9/eCWvvvoOX/ziDVx++SUoiigoUymRbg8NwfHHyzhz715RXg4MlEhzx5HL1tZK3XZXl5BAd90l8u+rrhIFZhFYZ7MiDzcMMeUdHXFRLFuY6ONmyvgThKwZGZexpWWDoQnwLTLcfp8g+bJwaRxaMOW4dw4L6J7RIr/TdLYk+W5tKJVEgoBwKJmeZfPyT727/Lcu74Lr/67l70HzfwSw/76umknPU70lCdvkpSjf8kcn5W/mmYj9sPPQcILMkIM89wYNinfJoSGRb5eXy2yd6wpALkpg1q2DuXOlQamthU9/Gr7zndLM3xe+IDEFb74pk45VVVK3AsKCF3MIDxyQCINiGxrwSoWKtdWTMwUTCa9NcBxpIIq1KaYp66BfGp59XSXDB5cj61cKloBpF9lHU490Fi82OrpWqseurZSc61xBTCIUVWK/bPuIRs+1LHY/8AC9L7xAbnhYOA3Lwi4UsHM5xt5+G6dQwHVdApWV1C5YwJ6f/hQcBzOV4u0f/nBC2r1r7Vqyg4NUz53L7gcfJOC5j8+66CJUTWP4r38FRaFi1izyY2OY6TSZgQF6X3iBzNAQdSeeyIdefJGFN96IEYnQesYZaIqCYhYgPgIXXgl1jcI6owjAHhuGQ3sE/FbVytoswIG3BDQP9gqr7fOLtPupX8p78OQv/zmgNnxw4SrpZX71ACTGYLBfTM7O+jdhtM+5QF6vbYRIFDWfRdUMhg/sJDGwXyTengTcyqVpOOYkjEAZrmNTSCdAUVE1A1+wjOppCzHzadJjfQJmdR/JoUOYOXHjbJxzCmEPtJsZcerOxqVu23XBdV2qps5HUTVUTffmrDQK6ThmLkl6tA9HBcIRlLIozmA/jI9iP/Fr3LERXNPE6ToomdZnvl+cxXu7RNYN2H96AiVaLvngto3TdQDi41BRhdo6FfI5nM4XUZpbIZ0SRntkEFwH9ZQzUfx+sG1cxxZJ+ilner9fC7eQFybc8OGEAxNy7+3b7yESaUDTfLS2LqezcwNtbcupqJiCbRfo6tpCPH4Yny9Mb+92QEXTAoyP7+eJJ1YyNraf00/fgM8XYs2a79PefhK//nWSkZFxXn75aerrawmHK5k790LOPvs+mprq+M1vbmB8/BC9vdtxHJNEomdCIl5RdywZX4R9isIqBFB3I6zxEAKKm5COaAbwXkSqrVIC31mEbc55j7+JRGuFEVa7DjgFAdxZpE7bD9yDSMmziGy8H7gCkZ13IuD6amBAVylrKuPkb5yMHtRpXdaKv8yP5tdQDRV/1I8ekJrospYyIg0Rppw0haqjqtDDusxxRHwk+5LseXwPyf4kkcYI1UdVc8795zDvknksvXYpvTt6wYWKqRVEW6L0bO9hbP8YL371RVqXt9K2vG3CtdwIG6g+FVVX8Wt+bl5xM69f/jqLm6VW+sSmEwkZIcjDcdHjUFHRVI0TR05k3vx5xMfjbH97Ozt6dxD2hXnkN49QWVXJrNZZtERbmFc/j75kH7XhWi5/8nJiyRh3nH4HtmOzpWsLB8YOcNeZd3H+nPO5ecXN+DQfG7dupL25ne54N9t7t1MbrqUv2cd7p7wXV/VJzXXb+cJc50dh4T0iMx7qlPX89cJo2xkByid8x6uTHhegPLpL5LChNqg7SUzA7Ay8co2Yl4XaYOFd0n6N7BJgOetqePtOycS2s+JUroWgYr6AbFzJ2/ZVeaVStaV+0AhDqt9joSkB4aKzt6J6rLNPXo8fODIjWz54OZfjKcUUD4DjAXTFczyPTmKUFE3OHWmROC/VJ6DcdYTpPnmjRGaphpxr+1qRbSe7pKwrfkDyr7ODAqJr5sp5ezsFKL/3bnn+/JWiEpDGTv7fpuXw8l3y/xRSMPaOgPmaucJ0926RiYTlt8pnVkwY+fN12I7DT396mPb2Znw+H+9734Vs2bKZ2tpGVFVlyZKzuOKKp1m+vJ22tilceukPAKivj3D55U+yf79kVvt8GsuXt5LP22zb1sPISIZw2GDmzCoefPD96LrCwYNjXH75kwwNZZg7t46rrtqEbTsEgwbRqJ9rr11KT0+CfN7GNF16e5OEggaXLv4wT3z2Lk5oOYaGsmoWtR7Lz3c9he3YmLZFW0UDXz3jUiqDUXJmgUwhTzqfKTmEb/8d5cEyfrzzD6TyGY6pn0rXWIyB1Cg3nvppQr4AsdQIlcEybn/uR+TMArqq4zguft3Hjad+mqmVTTRHa/nqGZcypaIRv+5jfvMs1OLkTNEtfORe+Z5otbIOLRHXbzcj+dXWAcAQAG32TJKSh4Wx9s361661zmZlkPfnP0vu6/TpwsB0dQlq7eqSweijj8r+119P4Yz38/VvZPnVr37AQw+t5cILFb71LZg/v4FYbJC//nUXc+d+kkOH4KmnPkJPTzeHDu2jokLInMcfF+BcJIjuvVfm1Yrkzl13yZBw8eKS0/i6dSUz3mJd9uHDMp5Np0UKXlsroDufl8eu48i4NCKTRxRMeXzsDAHBugYDoyXjsZFxGcv6dAHcM1ph0XGl+K6iPNxFmO4iOQQyDp7SNEmZ6YoUfHJO9rvS8P/25V1Z+H/lMlne7bqedHtYaqErZgp7+M8k4JMdwbWAdHLJovOoUTJB+WfXKx5blHtpRkka7ngSt8mOqeXTMC2VsbjOzp3SwKiq1FcfOCCAOp0WRlvXZeaur08kMYoi7eNrr8GHPyxSm6K0vKlJJOFFFWssBps2iXv4t78t/3IkUgLXIOfau1cA/Q03yDmqqsCn2vDOIYktWHCsNEDFZX8PTG0UlO8i/6OmiXGErknj5dNLwFrTJOe6KMOJhDx2QJF9FErOisX9eiY5PuY9ac/MNsxCnmRPD9mBAUINDWiBAL5olJHXX6dy9mwAzFQKIxJhbM8eAlVVBGtr0QIB7FyO7NAQejDIG/fdN+EaPnfVKux8nrIpU0T2bNsM//Wv+CsriUyZQqqri7d/+ENmf+YzlE2ZQm5khEBlpUjL77mH46+6Cj0YlLph20I3DHELL+Tg0R+Iw3dFlXwv9r0p5mOJcamjPuvfxPHadQVkh8LCZlfVQbRSehh/oOQIXlkLtZPqhoYH4I+PiETcseGPvy6BbjMP2TQEw+Ig/u2vwqKTcC65Btu1MHNpicYqr8WxCmi+kKfWdlBUFReRbpvZJMMHdlF/zAo03ScfuVVg4G+bqZmxCFXVcRyT4f27aJh9kpi6gQBUTcfMxBnav5Oa6YvQ/SFUw4+ZGWd4f/GcIuUX87QAo4f+SvMxJ0t989L34KaTYmiWTqE2tuAmxiVzOlou5mbNbRKjVYwjCwTFlCwhUVs4jnS8miYTW2YBCgWcLS+gti9DqajC1XRh/ZNxnG2bUU8/R6K9fD4Uy8bNZSaytB1dJVtI4LoOhUKScLgBy8qiKBqaJp2tquqMjR0kkeimubmdXG4cny9CItHN1q0bOfvs+3jqqZLj+Jln3k1//whtba0UCnluueXr/PnPv2Pt2tv40pe+webNvyUe76KlZTEdHafyuc+dzPnnfwHDCDM4+CbNzYt46qlVtLYuZ9YJK4npAW4F2oEzEDZZR+qri4C423tdR0B0AGGe24GLEDb7ZiS+ywJMxBjNBHYArQgYT00632IEZKeAX3v7fdtbz/WuFQHUgoWWt0GBsf1jE67hiZ4E0eYoRtjAzJiyfU0HZY1lqLqKbdq4tkshXcBMm1ROrxRpeJnvCDfxymmVpGIpAhUBcEHzaXS91EW4LszWO7dOSMTf/9D7mTlrJnbKpqa1Bsd2+NwHP8cl11zCpz73KV7f/TqaodHS1MKa29dw/OzjGege4OP/9nFiiRg1oRpmTJ/B+o3rURSFiy+8mHwuj6qqVFVXcettt1LWVkZfqo/FzYsJ6kF6k70kC0may5pxcbnu2ev40uIvURmopDZci6ZongGUQ8bMkMgnODB2gLl1c0mbaerD9SiKQlDVMFxLfm+uI/2TmfLk2xsFVGd6oXY5FB26zYTEdRlRAYFWEt66HWZ/GcpmAo44Z9t5zxn8IOz5FszfIIx4fkjiu1S/7Gul4PWbRS6uuOCqoDjgKl7/ahzpAu4rk7411V8yOCv2jVWzBRSnegUYK5p33woTbuCKyoSztqJ6ddoI0FYNr/+dJDF3rEkO4h5bD6X70QOQj5dk34vXCIiOH4RX74FTvyuvBesEZKf7POfwgNxb/ADsuE0cwUMNsPc3EtF1ynfkf9yxTl4LN8r95sclgquhXfKyc2NyD5rPq0lXoW+LSMpdlyFlCn97Z4Ta2moUBX784+/x4ot/5Oabf8TatSs544wL+frX+/jAB+rYvPlmfvKTTbS3H8M11zzDL37xBk88cQHNzVFuu20La9Z0EAwaVFTIAMCyHOLxPGVlJYn4Rz/6ax577HyWLm3FcRy6uxMTruPr1m3hpps6aG0tZ2QkQ319GBMTRXewHYeh1Bg/3vkHPrv4gzRGa4glh3lo2+/43OIPMpweZ2ZNK2FfkHQhS8DwYzs2bw0cYFbtVPyGD9d1yVsFUvkM3+t8dEISfvPpn8N2bF7re4fVj3+L98w4ka+ecSlZM89wapzhzDjHNcxAUzV2x/Yxs6aNVD5DxB8iZAQI6jaquV/k3/X3S/10UQquhECrFIY6+Ygn+35QfiuFvd5+N4I+FdSQZ8j3L7oUDczicRkIvvGG0MGXXVaSht93X8mGu68PUikKrdN5/C9dXHLJB7jkko/T2fknDCPIJZd8jcceq2Dv3k/w17/umTAcD4Xa+dGPbqej4xS6u6GnR0igdeukrHH6dAHbk8scy8pKzuDr1onysrsbVqwQIsnvF5b78ccF93d0iMH5oUMyLj5mpk2477Aw0A2eiezBPpFzF+XZLgK+iya7+UJpfFke+cfyRJ9RkpKrXntWMEuu4wGfl/qiyLg2mz9y7Br0vysN/09e/ney8HfB9X/V8r8CycUYLfjn0Vr/b2uu//66xc/Uyk2qMVNLsjkrX3IzRcFxFTY9q3HiiSLbTqfl9wmCM/1++Z2CtIm6LjKYhgaYOlX2GRwUcLx2LVx7rUhtVLVUw93dLfs3eOaJFRUy4/f3SzYr19A0mV306Y40GrYFqeykWuuWSfWnzj82NLGRUmSX48psn8+QRmZyw+X3SeNm6CXgXIxIUBUB2D6jVPcCngzdxbIsCqkURiiEY9uomoZjWQJsVZXk4cO8/YMfMPsznyFQXc2rGzbQ/rWvYeVy2Lkc/spKFFUl2dXFWw8+yJzLLiPc0ICi65jpNNmhIXIjI9QuWCCmV5rG4CuvsOVLX6L5ve+l/etfJ93by+4HHmD2Zz4z8b0oHqNpKurIAMrooDDMo4Pw/B/ggs/LhIuiCVCeXI99zsclcsvMQzYjILH3oERwBcOSfT02JOdTVQGBuaww4pNAMxdeIcx4dZ1MIv3kLmG7F50k2dn/fh+ccwF2fSOZsX6C5fUomo7r2NiFLJovJIBY1XAdS76LukHv688SqmwiXNXC0P4dEyDZymcwAhFU3cCxCpi5NIqiMLR/B7Uz2zGzKYxgGaqqY1s5rHwWX7gcwx+h783nqJ62EF8wim16dd6qhmuZqIqK4rgojouLI7nUW55H7TgFpbIG+w+PTLiFK+EIztY/o644FUIR3P4e1JYpuK4jqov0pLrtUAjnmT+grjhVALXjQHxs4txU1oDrCABXFBTbFhWBbeHaFu5ADLW5lYJi0d2zlbq6uR64FrBTKKR4/vmbOfXUdfh8EcDFcWx6erYRjTZTUTGdP/zhs16M1usEg5X09GynrKyJSKQBVdVwHJt8Ps7oaIYFC5bx3HM/4owzLuPw4d2oqsLAwOusWPFpNm16jAMHvseyZddRXj4FRVEwzQz5fILh+GHKp5+OqyjEEPZ4MQKeXwKWITLuLPBl4HqkProo404jNdlF8WMKeB2Ri+sIE/1FhAU/0Ttvxjv+ywgz3oOYnTUhJmjFn7Dj/cVTeSI9SUK1IZ76wlPseXwPH3v0YzQvaqZ3Z+/EOlwbJlAVwBf2kU/kCdeF5XtpqDiWKGcyIxnMjEnn+k5Ovf1UVE3FV+Zj/MD4RO11oidBtCWKETIwsybJ3qTUd+sqM2bO4IPjH+Rrr38NRVUI14WJ7Ymx49AO5r53LvXheu646w5+/PCPeaXzFSK+CIPpQeK5OBWBCmrDtSgobO3ZyvH1xxM0gqiobO/dzqKmRaCA4zi8GnuVExpPEBGLYpA0kziOw0BqgGmV09BUDdM2URSFg2MH+da2b7Hh9A2EjBC6omO5FpZjYagGOTtHjRFEdS28L2zJxyB1EMKtwjTXLPZqk02RHDt5kXNXHi/g2c5LVnZkmle6lPOk4jpgeVJsr6zJsaQ/HNk+qS7bk0WqOmT6jqzl9teUaqKL4DZxyKu31sUoTAuUAHX59BIbrfpK/XAxmqsIulWtVJbkFCYBnkl12aou+yQOgy8sWdqeaeJElJeigZUWl+/OW0oxXKfcB/kxkXabGRh6TUzPVMMrMzNlIlPVhKne/zi8/1GRiDsWpAcg2irs9J5HBESfci8TUnYzLTLxneslRxuP5daM0gSAVyP/17cOc8GFF6IoIhFraZnCJz5xHeedt5jDhw9y5ZWf5403DtHcHOUzn/kSO3ZUcNNNHdTVhbnqqk3cd99Z7NzZx9y5dQSDBoWCzU03Pce6dacSCEgNdWNjhObmKJqmsH17L62tUbq7Eyxe3MzYWI7x8Rx33rmVRx7Zzfnnz+Huu89keDhNa2sFndsOs+I9LRRsk0QuzdbDr/Nm/35uPPXTfPPZhyZqoK86+RPsH+5hXtPRaIpK1syRKmSpDVdSsE3ejO2nIVJNwPDh0w3i2RQPbf8d177nU6ieYiFg+BjLxMlZJo3RGoZSY/TEB6kMlvHTXU/y2cUfpKGsmt74ID/e+QcuWfR+plY1EtRMlMxm0GvAdzTELi8B6frvQHYnGK1iXlb9FTE5c01wc5D4NWS3Qs3NYDSDWmzN/gWXdFqkkpOzWvN5Qa8bN4qsccYMD5geFCnj+vUQDvPS63vpOGkR99//E/7t3y5i165XOeec0/nCF57kt7+9iG3b9jAwIGPOG25oZ9262zGMU1i6VC5dxO8XXgjf+55kYD/zjNzKd74jis3rrhOG+vTTheA55hh4+WUhjxRFSPXu7hJQv+km+Td27oSzzrBRi7+j4rgT/pHkcSmNPRVkrBkJym9576Q66pZ6GfMePUXGspaMhzjUV9rnqDbPVVyT8zm2jJfLwjL28BmlZJ13l/+U5d2a6/+p5R/k3Qh4rpg5CUT/3T5FUKyo8gMrgmdF9RxAFRlw/K+k5cVjcY+sMVO8Gi+Qx5q/JBlXXIoluvv3C8BWVTETGxiAL35Rfs9e+SmplDDakYg0MitXSoMUCkm7eNRRwkiPj0sDVZTNrF8vgPmmm0rtw98vwaBI0yMRD1hncsJam7ZIY/IFme3Dm7kDaYALpmwvSmXqq0RaU3RSDAdLjdzk2C3HkUZPQdbTW0oO5O8cFmbb57HctiMyc0cmOlzXRfP7MTMZ7GyWZHc3O7/xDZLd3bi2TaSpiYXXXUdudBRV05hz2WUAGOEwWiBAdnAQM5VCD4dp/9rXiLSUJgzMTAYjHKb2+OOx0ml2rV1LsqeHmnnzOG/TJk748pfBcY6QpZe1tRFuaKD2+OMFrFmmAOtoJRx6B2oaPWBtiRzLdUS6/fjPJMv6gs8LsNZ1AdGqKszr0ceDBzgZHy7Fa40Oyfv5+M88F/I5R0q/x4aFzVYQQP3Fr8truPCpL4o03HbQAxH6dj9PIT2O69gMvNOJmUuQjQ9460HMXBpQqJ3RTqR2KkP7SzFaiqpiBMLYVh7HKpCND2MEwuj+EKHKJob370L3STyX41gMH3gZIxhB90l9ZdPcU/GHK7CtPJrPD66LmRmn/60XxLU8Pob99GOQSuIm4rh73sRNxMF1Uc/8AG4mLdFaW/+Mu/s1nM3PgaKg1Dd5zLtYkrrplADxxDjk8xP7usNDMiETiUpdtxfbpRTbkULeA+gmruugGD5hwS3xX2htXYamGSiKiuNYpNPyubzvfXdjGCJLy+eTPP30lUQiDcTj3biuORGjZZoZnnpqFeXlrVRVHcXY2DAjI0MTTuO/+MXPWbBgIfPnn828ecfxwAN3oesBdu4cpKzMoq4uQHNzO8lkH5aVJZXqByASqaci3ECZ61CGMNZLEZOyJAKsc4jp2ChwDVI3DQK2QZhlC5GHF5nuBu95l3fMVEQeHkLA+E3ee7cWybueh0jIg951be+c13nXr/Fp+Mr9aD6Njps6+NijHyPaEuXpK58m2hJF82tEW6Jsv2c7kYYIqq4yum+UeHcc27RxLIf4oThPXv4kZsbECBqcsvYUFEXh2eueZXz/OPHu+ETtdagmxJZ1WwjXhilrKCPaHOXJy59kZO8Iml/jgicuoKypDCsrTuW58RyzVszia3/+Gt2JbhqPacQasYilYqx8YiVZM0tbRRsVgQq2dG1h3+g+FjUtYjA9yGVPXMbe0b2c2HQiWStLLBUjZ+dY3LyYrngXQ+khslaWZD6JT/Mxs3omaTNNIp+gYBcwVIOZ1TP5zlnfIWSE6OzuJFFIkDbTDGWGSJtpbMfGxRWAu+Nyqat2PRVQ9GgB1rXL5PVdV4JryScwstOrufbDcKdsj0yBoS0CirN9cr70AZGIi6wIhnZ4BmCWyMfD0yRXO9wKZUfB2xugci5k+0su5Uf0h31yrkiT1/+pUEgLu6z7JZYLVyanKYJ5r68xwtKPRorsb8KTgbslGbed8yK5vLrsYjxX+TRhnXHlOBBWsugWrqjgK4eTvwWfH5A4Lj0oNdbpfjmuZi7EdgrQzgzIRIXryDkWXS/AOtIi5maq5qWEqAKcZ18IJ22YVNfdBf7ykly8kJBxhi8qkwSOKbXYf74WzDRHzTqahx9+huOOu4Wf/ewZHn30MT70oSXkcha1tS088sgTdHe/Q2fnTo455iRWrxbpdihk8MAD5xII6Cxd2oLfr7Njh4xF1q8/Hcdx2bath/b2ZsrK/Ph8Grqu0tHRRnd3gtraMKtWPU0mY1FZGeDuu8/k7bdXcdddZ6JpCtOmVaJpCm0tFWiKykg6zoPbfstpRy3my6d+GtOx+dziD3HO7A6ufc+niPrDzGs6mtFMHNt1GMkk+O5Lv6YnPsibsf1UBsuIpUaoCJaxd6iLpvJaPr/so/h0g+FMnPUv/GTCBbwuUsUb/XupCpVzQvMxNJTV8On28/DrBrqq8fOXn2LTnq38eOcfsBwH2wUC88XMDB2q15Tqp+04GE1iZtbwABjThLGOXQpWN5R9EOruALXiX7vWulCQgeYVV8jAsL9fxlf9/YJe77tPBpD798vYzu8XZ13DgM5O2lqbUVWVRYsuZOVKqKlZwLHHTuPoow8zNNRPPm/R2wtLl7oMDHTh97exbJkQN1u3lhJw7rhDcPstt4hic8MGqc0GYbF37BASyOeTx8mk1Gm/846MUzs6hAm/9loZ+/r9kiJm2ZTKFQ1DxpJBv4wdD/WV/H0cpwSE4ylhrAuWlCLOaIVFc2RdLFeEkjmZppVqrdsaAa9223EEmJu2nE9BwLyC3Ni7tdf/bcu74Pq/avmPYrP+3+4z2QTtf5Vz/ffHgMzQF2vMVB3KZ8iPWjWOAN62LY3D4cMyG5fNSkPhOBK1dc01pYn2116TBsgwpF0s1kh3dYm5WTgs7aHjyDmvuEImKCsrRepdrFvx/2/6hkIBbMs90mBMUaTBKP7fRZmLYUjDcqBHwHQ8JbJwBTm+LCwN1IEeAchFo4nWhiPrsfOm7KNr0ji2eK8XTK9R9CTmpuVFHMj7rBkGiq7ztx/9iK4//pHcyAh2Po9j2+ihEDXz5qGHw4QaGrDzeblnx2H3/feTHR4mWF0NiIR81623kurqIlRbix4KkR0ZAaBm/nyysRiZvj5evv12cqOjOJbFnEsvpeOuuwg1NJAbG0P1+SaIFMu0cacdIwC6vEqMy8yCvKgqJSe6o+eKVNwsSI71YJ/3PA/735YPLRSR/Y+aC9X1YowWH5PP4IyPQHJMviSf+pJIxX/1INzzVQHjg/0CxitrJSt7ZFBysW0bbIuhfdtJDOzHyqdQNZ2G2SdjZtMeIE4RqmhA02XSxBcqxwhEqJ25WKK1Zp+Mquq4rsvQ3m2YuTShqkYBmpZJRdMxNB53KkYwSqi6BcMfpmnOKRihChRFJkhsU+riNV8I28x7YD1KqKoZHAdny/MTQFhtbkP92MUo0XLspx6Tt7J1Kq6uo53zEbTVX0M98wOegRng2JKB7brCYqdTKNEKiJShzJkvLHdFhby3joMzPIgSDJWANQjYdlzJznYcOZ9l4qoKKhrj4wfp7d2BaaZ5+ulVmGYawwgxOrqfrq4tWFYewwjR2tpBMtlHW9tyXFchkZDHW7asY/fuR9i8eS2WlSWddnj/+y/gjDM+xVe/+ld27Hid73//blKpfu69925+85s/c/zxJ7Jx47f5yU8eJpWKMX36GbS2LiOZ7Gd0dL8nz3cE3CsqSSQCqwcByQYCcnch0u8pQBsCsvcDLyMRXVchoPheYKZ3jo3A4972ad65BhDAHESk4wMIC16s577VO9ZATNC6gTvwjNF8OkZFgPHD4xghg7aONras2yL1033JCQZ56TVLGTswxtNXPC051t0JsiNZHNMh0Ss52UbQwMpa/On6P5GKpWhZ2kK8J07b8jYueOICOtZ0kBnOsOIrK0gPpUFhIts61Z/CsRw+cf4nWNi+kOtuu45YX4ymFU1s2LqB5a3LCegBtv1mGx/90EeJpWI8s/8ZYacVFQeH5W3LmVE1A1VV6Un08Mz+Z4ilYvK663DrX26lP9mPi0vICFEfrsd0TCK+CDv7dnJg/AARX4ShzBDXPnstpmOCCzkrR6qQYm7dXEJGiP5kP7e8eAuxZIwyX5kwNW+vF9l3qFEA5q4rBWhXzhcgvHuduIZnY1KHXbtEPp3CCFTMA1wB04FakXAXDdIyfaCHIT8s561ZJPnXL39JQHj6IOxYCeluYX9PuFf2N6Iw+1qpwXYKpXjKYm11qs+TPytQMa0Elq18ydG7+LrltduqJqy2FvBk395kbvxQ6XVFhey49LGuXfJAsfMyoQ2lOK9ia110NzcicnyyWwBwfL/059tulfbAVwbNK0qssubzsrhV6d9bThKWu3Ye/Pk6AcxmRq5x6ve8vG6/gOlUrwD/8f1wzAUyXtD8cs+ZARl3GEGRjaf7cBL9rFu3hUce2U1/f4pUqsDevaNcddUmhoYyqKpCLmcxNJRm4cJGolE/Cxc2ousKjuPiutDdHWfXrj6WLWslHDZ45ZV+FEVhyZIWduzoJZu1yGZNrrjiaRRFYfHiZjZu3OrFbm2mvj4CyFAgGNTx+TRs2yWft2ibGsXBxdB0PnnC2Yyk49z67EMMp8Zpqajjy6d+moDhJ2cWyFsFHtj6GP2JYQZTo2zas5UfbP8dFR7zfFzDDF7re4e6SBWqolKwLSzb5ofbf8+mPVv5+ctPoSoKiqJwfOPRFGyTQ2P9vD14EFVR+e5Lv6YvPsSXT/00v/v0Rq5770U4roPtKLj2SCnn2pjqAemZUnut1ct3wjXBTU+qz14PTgLUCOhV/MvFb2WzIgEvShOLZj4bNwoD88tfyra6OmFlxscFYHd1wTe/KWMLy4LFi6mqquWkk07lmms2sXw5DA0d5PDhg0ydupxQaCE//OHPWbYMNmz4Dc3NLcybNxNVlfHoSSeJ2vL++6XLXb9egHU4LHLwigoZ406ZAt/9rlchZ8pt9fSIFHzjRiGA8nlhrgcHj4ybdWxK49beARmzgowfi4ZmCqVxJAj5A8JQ5/KljGvTktfyhVLddCoj47egX9jsgAeqVeVI4shFjtE0kYm/c0jIqncB9n/L8q4s/L9ymSzvBk8CPklOVmSmJ0vA//74/520/D86xvLqvCZnaE6u9ZrY1oKj+klndWIxYaCnT5cGRdfl1iZHb9XXw1//CsuWCS7bu1eMIoqTjZYl4DsclsbsJz+BV1+VOuuxMXjrLWnMotH/+G0rluMEfA4VvhxK74DIu+FISbeqChBWFcn9Gxz9RxmN7ch+iZQ0MOWRkny8mAWoeUx/UWaz6DgB1cXssVQG3txXijqIpyAcxHIdkl1d7H7gAeZcdpkA3OFhQvX1OJaFa9uMvPEGocZGIi0tmKkUiqZNRHR1bdpE/ZIlBKqqsLNZXNel57nnGNy1i8Xf+AaJQ4fY89OfMn/1avRQCEVRsPN50v395IaHqZ4rRjaqYZAbHSVQXU2qp2dCYq4FApTV1Yqk3MzLAC4Zh2i5fP8KOdB9pe+n68JwDJ59TJjm5LiA6kxK1sVa9KGY1Gif/XGp0e7aJ6y1mS/VdZeVw6/uF4OzX9wnhmifXyMM+b7dUFWHU1OPo6oTsm+A2Nt/oXraCRiBMIqiYuZTDO3bQeOx78HKZ0TmPaMdI1gm5mOZOEP7tlMzfRGZ8T7KaqaKrNt1pVbbBdexyMaHCVc3eqpH19s2RKiyAVCIvfUiDceeDBTrrYX51lWfRHEVCiKRL+RRIlHcZFwk8Sg4nS+IlNvwSS20qoqc3ZN1S8enCijO5XDTSWGeEck38bFSTTbgdB9GafBmqvN5ua7r4Mb6BMgDpFNQFsV08xzu2jJRS53LjZNOD9LSspienu2Ew7Vs3bqRjo6bqKiYwvj4YbZsWceyZdfT3f0SlZUzKC9vZfPmtSxdei3p9CBTppyE49ji1t63i4aG+eh6gExmmFCoBgDbNtE0A8eT5+p6ENe1SKcHyeXG2br1Ts48824ymSGCNceQ1HyUITJsDWGYvUpRTAQAbwdaEMBbgdRGNyFMdRyIUqrRTiNGZmnve5P2jhmjVHN9LnA+8DXgWcQsLYjUZhcFcgeAXuCUVB4zY2JlLRzLwQgZ6EEdRVFQVIVCugAuFDIFdL8ucu+Ij9xYDj2o41gOiqagGRrZ0Sz7/riP6adOJ9IQYbxrnER3gpbFEu1lF2w0nzYRwVWUije3N/PTT/+UhWcspGFxA1d95ioyTRke++1jJNwEsWSMn3/352x+djOP//FxAoEAjuugKiq2a1OwC1z37HVcv+x6GsoaUBHAHUvG6E32sqx1GQW7wCv9r7C8dTmmY5IxM7w+8DqLmhahKiIfX9a6jC1dWzg0fogPz/4w/cl++lP9LG5ejK7pKCisfGIlj+x+hHeueIeMmWFGtJEIlrDFb6+H2TfIADLYKJJvVHAL8s7nBsEcF7m2r1IMzQK18oEc+jkMb4UTvwPpLgHY7Q9Ccq933uuFDd/+Oeh9HM47LMepmgBmNSDGZooiANtFvnWuA3pZqbQnnyj5kfjKJknGm0rbigZUxfpsKIFuxWPRvQg/mQS3JtVoq6VJ7sQhAeTxA3IeX1SAffk0Jm7IKcjxdk765/5t8NQn4eyfi8Q7fsibFO+WvOvivRfikqddlK8Xz6XqYliWGYCddwirXTlL7mHnesmu9kXExCw3LuZokRa5r0gT7NoAJ62X/9XOw4vXUKjr4G++D7F+/Uvcd9/ZWJbDjh29HDgwxqmnTqe5uYwtW7qYO7cORVFIJgvU14fp6Ulw662bWbNmBcGgTipV4PbbX+L665fR2BjBdeGaa55h9eqlDA2lmTmzirIyH+GwD0VRSKcLE/LxYNAgnS7w+usDNDaWefXbK5g+vQLFcOiOD/DD7b/ns4s/yGBqlCseu4N7P3wD9ZEqHtr+Oz67+AMMpsaoCVUAUFdWiV/38VrvHuoj1cRSIzSUVePXfXz0J9fxnhkncvPpn6NgmRiazkByZEIiPp5N8tB2qeOuDpez8cWf86WTLkBTNPk9WgVypsmD23/Lde+9iLFMkmmVZRi5TsmvVitF7j1yK1RfD1qTgOdiBFewHdBh4EqovkZe/1cF1u+8U9JPH3WUGJitXSvy76lTBZVGozLe6u8v7dvTIwz28uWChNesIdE2h0cfO8yPfvRZRkaGyWZVrrzyq8ye/RG2bNnDk09eQio1Qjgc5Xvf+xFHHTWX/n5hmzOZI2Xctl2KkF2zRsoWDx8WcF0sWyyOf4u309oqr1VWiqnZ6tUl87Pzz4fvf9ehwp9D6eovMc+T66f9PgHEe7uE+Kmt8OTiXq9k20dKvotu48W0m8mRXkG/jGt7BkqqS9OScbFlexJ09e/iuqa+KxH/T1jelYX/Ty6T5d1F1tkX8aI59gsIhiOB9uTl/xdp+X90zOieklxtgqXulW2O6THZ0yfk5tu2SRlMUY2zdavIYCyrNMm4fr1sW7xYmGfblnbywQelsSkqfcJhOU9np5hK3H233JplieGDpokqOZUSzPL3S6EgDd6VX1IZygRwZ3r1JEVnxaExbybPc2TMeVLxokRmsozGtEQm4/dJXvXkmT0F6B0UaY5hCKO96Dhhpyez1eWRSfIb5FzpLK7tkInFmH3JJWh+P5lYjDfuuw8zk5GYrbVrCVRVkRkYkI8uEMC1LHatXUsmFqPtrLPQg0GShw9PsNGtZ5zBnJUrcV13wk08PzbGrm9+EzOVQtV1wo2NhBobUQ0D1TBwTBM7nyc7OMhbDz5I1x//SGZgAN1zi1NsCw7vhfEhmYgwC1InrXmlBvt3w+iArFVVWGlNE0CNK+tD78hxqir11R9bKS7YPr/Izh/2pnk/dInUZBt+OO+T8h095+MCrCtr4Wf3iKx8dBBXQeTOgG0JexysbGT4wE5sS9ywVVWnZvqJnqO3Qc30EzFzKaxCRkx29m0n3r+HkYMvU9E8G8exyIzJZ+s6MqhWNINQVSOFTJz0aK9sU3UC0Rr6d7+A61g0HPseUFQyYwPo/iBWPo1jF+T9yWRwXtwktemFPO7YsDxXNSgvRzvrQ1AWBbOAvenxiRoKRVFwzYJEaI0Oy2xUIIA6ZQYoCk5fj5SoJuIozVMo5narLW0iw08m5TrJOPj8UtPdc1jk/qEwCgqqohONttLbu4NAoJKKiim0ta1A0wK0tXUQCFSxf/8zbNmyDlDo7NxAa+tyfL4wc+b8G+Xlbeh6kLPOuo+Kiqm0tCwGIB7vord3B01NJ3rAepRwuB7LymFZOQwjSCYziqb5vRrvBN3dnVhWhkxmmLa2k/D5wkSjbSiqDogku4AwzJq3HkZY5jGEwQ4joHkEWIiw1f0Im214fyHEzGwfwmy73nGOtz3knet8YA0iR78EYcbrEKfw/ZSY7vkFi0KyQKI7wfNrnscIGfgiPnDBLojsW1EFBIWqQ6QH0xRSBay8xcAbA6RiKfSAjmM6pAfSGCGDYz54DC/e8iLx7jhlDWU0tzfTs72HeFec3HiO0b2jdG7opHV5K7pfZ8pJU9D9Oh9e92FmnDGDnd/ayec+/jle6nyJZ698lpAR4vc//j3PPfUc1333OvwBP5Zjsb13O1kri6ZqBPQAHa0ddCe66U/1s+rpVcRSMYJGkLl1c0kVUoxkRzi+/nhcXLb1bAOgMdLIzr6d6JrOstZlDGeGWda6jIvnXUzQCNJa3kp7czvbe7fTHe9GV3RuWnET5885n9pwLRs6N5C3TVw9KAC46xHI9QtIfPkqYZdT+4WVTu4V0BtuE2CNI+DQSsGuVVCzHBZsEKAYmQ7t35c29+31AqZzMQGtC++Gjt/JfpohoPTVawVY54dg7FVhyxUgN1RiZO2Cx8iGxeSrCJTtvLDNRfNPuyCscdEtO35Qruv3WGLHlvuaqJ2WEg2ibUfKyBVPmu26Alr9FdIPFyOv7Jywy67rjRc84NS0DC49JAxzblQY6vIpEG4WIzIUuYYeknFE/zb5f80UvPAlKR1TVAHzJ6yGdIwJ5/GGdqmzfm6VMOVlLcJ079oANceK8VlDuxzTu0XOc8q9MPV91NWF+N73ziGTMRkayjB/fgMf/OAx3HLLixw8OM7y5W1EowFisRS33voXcjmLKVMqeOCBc2lri9LYGCEUMli+vJW77tpGPJ4nkcjzyCO72bhxK4sXN9PcXIaiKPT3p0gmRTHwne+cxdBQhiuueAqAJUta6O1N8Pjje+jujnPgwDimVWKWf7D9dxzXMIMzZy3luIYZPLT9d97231MRLGM4M05NpIKB5CjfeOZB6iJVNFfUMb/paBqjNQQNP7/61O1c/96LyFsF1r/wE/rjwzSX1/GVMy4l4g8e4TBuaAZXnfQJxrMp1r/wE0bScQKGOItv2rOVVD7DUHoUXTUkVmt0I7gZMLsmMdPj8ntQggKsszvA6oGG73rMdsW/HrAGGdAVJY7r1glzUxw4traKc+6+fTIG0/VSVuu6dTLYPOMMGXw+8gh0d2NQ4KyzpnHvvS8wd+4b/OpXf2XWrI+wbBl85COzWLt2K9u2vcOf/7yL7363BKxra0vsc1E9GYnILaxfL2TQwICoNWMx+Wk7jhx77bVybEeHGPXW1gq5vnGjHH/33VLDffPNoOoqjs8vMa+qIsA3GpHH5REZuxbHrA3VntIlL2NNTZUyxMmJN5oqN7PXG+uqqoxVg578s2AKSC+YMtZ1HKn1tu2SQnHy+dR/opB9d/lPX94F1/9dS1ECXuxc/3fS7snHTJaNKyoT7uP/tOZa8eRvVQKcHbMU+VE+XTrvInutKLiKNhE90N8v8pf16+W5YQgLXaxRueEGkc24rih8+voEJBtGqTTmmmvkt2yawm4rSimCKxQSwJ3NSiO2f78w1JMBdqEgx65fD7/5jTiQAwKAbadUZ1IWLtVf+3RpgIoSmckxBUeAabXUyBQzAWe2ygCsWCNTlMxoqjSIPQKMJ86Nt6/nwh1qaCA3OirZ034/sc5OiWby+Zj92c8SbmqidsECTK9uOusxzm//8IeoqopmGOSGh+l94QXeevBBNJ8PPRjEtW3mrFxJw7Jl7H7ggYnc6uzICIquE6qvx8rlGHr9dVSfj1BdHXYux+zPfpa2972P2gULMIIBYaKLcVvVDQJsfQHJqP7FvSIBb54mYHjmcQKYgyH5QBVF3vNDe2Dq0eAPyvZopbxnj/1Y2NvKGjj9Q+I6/tsfQ9tM+W6+9So88qBcd8acf8i6VhwXVdMwc2kG3+nEymcobzya2hmL0H1hCpkE+fQ4vlBUZNW6gar7CJbXofvCWIUMNdNPEHn4nFNQUDCCUcJVzaDqKKoqIB0BukawnFBl08TPRDV8BKuasPIZ+t78E4X0OKHKBpGEV7dg+GUA7Gx5TmThW55HKa8UlnnpyaIjSyawn/4tJBPCXDe3inFZ1wEB2T4/2vs+gFJWLq7pPj9uPoubSqI0tYCiorZOk1gtywKzIAB6fEScyVunCrBWVNxMBrVlCoBIxC0TxzYxjCDNze1eFJaNaaYZGdnDE0+sxDQzXHHFHs466z4KhRSnnXYHs2d/BFDQND9lZU3s3/8M/f0v4zgWti2gIJnsJRyu5emnr8Cycvh8IUZH97Jp01Wk0wO4ru1t20dv7w4MI0xr6zISiT5aW5dzzDEfJJ9PMja2n4KZIYKAXgPJqbYQ6XcYYafDSCxWGMm9vgUB1QqlWu1RhOUu1mM3ItLvEMKCm965axDQ/AAiG88iDPVKBJAvRkC27q19BZt8PE/n+k6a25txHZeRvSN0d3aDIiZljumgB3RUQ6ViSgXh+jB9O/sI14WJd8VRtVJX6jouqq6y5/E96AEdRVXo3dFLuC5MoidBpCFCxbQKzvrOWcz+yGxp95IFxobGoBLKmstYsWYFr6RfoS3URt2JdXzn7u/wyK8e4airjuLU2adiOzbjuXGWty4nZITY2r2VrngXH5/7cRa3LGbd5nU8svsR1m5eS224Fp8nX64KVBHQZdJtWesyov4o06ums6x1Ga7r0tndSbqQZiQzQqKQIGfmMFSDsewYS1uWUhuqxXItwnqY+8+9H13RWX/6eqK+EIpjSqb1yU9A9WJhnXsfZ8Klu3Y57LmrBE5dU9a7rhSpeHU7vHWbyLiT+4WdTncJ033sl6HjUQi1CAgHqFsGiiuxX3oITvi29GvBRqhZKn2fnQd/Nf841FGOrJvW/FC/QFjlYulUpMmbwFZKkVtFc9Fktyf1LpQ8TFxXJNjFfrk4+Z1PlIzLVJ/0x/4KAbupPgHvqucHkjgMsR3ec0WAsxGRyXTHhHSvZFSP74UXrxJmWg8KOHZMMSw94RqJ21JUMSN7eWPJ1LT9Jph6hrDXntybF6+S8chJG+Rci26AYz4u44WmZdC/E6wsBaOWV1+NAdDXl+SWW16kvz9JOOxj9eqldHfH6etLYNsO69d3snRpC4GAlOxkMibZrIVlObgufOQjs7njjtNobIzQ0BDhiScu4CtfWYGmqWQyJs6k6KBg0MCyXHp7E6xevZRQyMA0bRYubOSxx85n8eIW1q7dTCZtTeRRX7zoXJL5DF85/XMk82kuOvEczpndwXXvvYjGshoWNM+aiOB6cf8uBlKj2K7Da33vkDMLjGUSfK/zUcYySbJmjotPPJe6aCWmbfFa7x66xwf50kkXTGRm245NxB/Ep+nMbz6an7/8FKl8huMaZvCBOSdTF6liXtPRgAMjGyC4XOqmQyug7EKovkFqqUFA98AVwm6bXUg9f4B/2ditotHO+efLenBQJI+qN5bt6RG0umqVPN6wQfZds0Ym+auq5PH558PixTgFm1BImcDrRWV5oSBj2GIsVtFgNxiUx5ddJjLuRx+V29B1IXi6u0WVmcmICt3D8OzfL+PVSES6+oULS+RyNitj5UBAZOQg6s3p0+GVXQ5uNi9qSRcZY5ZHhKzJFQRId/WXYmH3dQlhUzQ529slY80ZrXKT8ZR0hDNaZeypawKei5Gy/4w4MjyCKG9Koo6hCWMdCpQUiO8u/6XLu7Lw/86lKBP/30m7/9kx/6uoLjhSVl6s0XbMUieNW3rumPK616Gnsjr7D2jU1Ykyp+CNFwqCIbEs+Y3rukQOLF8ubeP69dIozZolE4+33SaNVlubNFSplDRAyaQkLZx4okhuNm6EG28Ul8bp06XBK/NUd+m0/PX1wfCQw6nv8aS1xXiXyZNuk+UxAf+Rbt9F+Y2hi6y7zGMoFLyYLlVMH7pjnkEa0jAF/WJiZnuSGpRSI1g8tyfpMVtqGXzlFQJVVbz94x8z57LLCNbUoOr6RN1zqqeHvb/4BQtuuAFcl/z4OK7r4guHyY2OiqR85Uq0YJBAVRWuB2pVTZPHqoqVzYrE2XMiV/1+8iMj6OEweigkdbgg1/WiqwAUs4B+eI/EbXnyY/70W/joZ706XkfMzfwBz6wtBz0HBUirKjz8PZF4h8uEtQ57EvFIhfxzhZw3EFUEnCfHxXV82jEiGz/zY1BRLWDddWGoXwD2OZ+QuuxcBjsUJjPWiz9Sg2r45eP1ZJbp0T50f5DhAy9PyMInYrgMGcy6rutNMdtyDVXD9QCi4n1fMmMDhCobwXXIxmMEonUTXyFFM+h741ni/XuYcuKHMIKRiRgvUFBVHWVsROqtO06BymoYG8HZ8jza2R/Gfuox3D1von7sYtS2abiWhRvrRaltkM/B8OEqCPj2BzyDkzyoGoqu45om7kDfBGgGkYorhcIEEHee3yQ52o6L03tYsrPLKyUbuyzC6PheXnppA6eeejt+fwTLKtDf/zKhUDWBQCWWlWPz5ltZtux6qqtnkc/HKRSS+P1RBgbeoK7uOPz+KI5j0dOzjbKyJioqptLVtYVwuI7q6qMnXvv1rz/KrFnncc4538O2LVRVQ9N85PMJBgZep6lpEboeIJnsIxCowHVtlGA1BzSDbkWhGbgNuAFhpfOI/LsRqYU+AwHWjyOu4JUIq50B1iFmZSFvu4MA8HXA3QgD3gsskNaOJFCOsOQ3IM7i073WcDsiN78b+H7WxMlbOKaD67rkxnKM7hslXBtm68atnHnXmaQH02y5TaK4jKBBoCKAoin07eyjZWmLSMZTBf50w59YcvUSqo+u5vBfDlPeUs7mdZtZunop6aE0bR1tmBkTzaeh+WSk9vQXn6b9inZG7BE++ZlPYuZNFF1h6pSpfO2LX0MpV1jUsYhwfZiKaAXlgXL8Pj/PbX5uwsl7/WkSvxXxRdAUjbydx7RNCnYBv+4noAewHHH43tG7gynlU5hSMQXLK8kYTA9SF65DV3VM28Sn+chaWcZz41QGKnFw6E/2s27LOm5ecTOt0VZi6Rjl/nLKfGUEFBfNSqGYCdxAvaimXe/NVjRhlFE8gOC15VZaAGbP72DwLzD3a95k8HTY/llhwNvOF8A+sl3A+dBLkmltVAKWZ+hly7l85eJCnjog5mmhFgH4C+8Gf630u3ahJPmeKI1qElM1RSnVUU8Gu5NdwSccwT0ZuOuWEjkmIrdMJmK6XLt0ronym+IP3WO/i/s7JvR1iuxbNYSJ7t8BtccLoAbZzy4Im50fh8wwtKzw+nRE3u2LyrhAVYV5/sNHYcZ5cPoD8ry5o+R6Pll+3tzBhBO7lRMTtfQANC0BVadgaeRtqXF+6aUuPvrRX/Poox+jtbWc9etfYsOG0wkEdC+i00LTFGzbpb8/SX9/isWLm9F1lSuueJqrr17CrFnVJJMFksk8jY1lXl22i6ap7N07wh13dHLjjR3U14vb+F13ncnwcIb161/ijjtOIxQyMAwVRYF9+8YZGEqwfEULjuswlk2QyueI+APkTZNYaoQFzbPoiw9NSLkbojX0jA8wlk1wdO0UUvkMIV8ATdFY/8JP2LRn64SkfCA1Sl2kih9s/x0XnXgOY9kkx9RNRVc1dFVDVVR644M8tP13XLLo/dSEpY8M+vxoikr3+CA/2fkHbn3fxahOAuyYsNXVa8S4DMAaEHZ6chRX/X2gRf81GevJS7HWenBQkPAZZwjdGwjIWGvVqkm66u/LdzefF7bmN7+RgePICIVoNSNqLcGg/JYGBmTMGgyK2nLRIgHWV18t49AdO0ppNeeeK6e//37BsY5TusQvfiGv3XuvqC/vu09uaeNGuUZxrHv00QK6e3tLTuEbNwoJddttMgcw+2gbI508MgorXyiVFh7V5sW+KmK2W5Rrz2wTKffON8UTqCwsIDocFAXm5HJGONJR/Ogp/5iCo3BkueTRUz0m25X1uyD7/6/lXVn4/0lLUSb+z6Tdk43L/tkxk+uzi1JxKy+d4N+7h6ua/GnegMG1PVmbK4MH15UO2rXBtQmHXGKxUjvneHi+p0fcEfv7vcl5TdhoKKl01q+XY267TeQ2PT1MmEeAtKm7d0tDVHQTf+QR2X/xYqlb8ftLfhemKTXdM2bAKe91UfIFaUTyptxYPCWNCEhjE42U3BD/fuauOyav+X3SiDmODEB07z3tjkl9tqIIAC+PeI6NZsnVsWh4li+UpD0ggFzTqD3hBPRwmNoFC8gMDJAdGmLH179OqrsbO5cjNzTEUZ/4BJm+PnZ+4xvYuRyhujr0cJi3f/hDkXDHYujBIFY6Tc4zMEv19rLj618nefgwAHowSHZ4mNG33iLT18fr994Lrkva2y/T34+ZSrHjlltIdXUBkIvHxdBMNwTYVdV6wDpQUkBkMiIRP/i2AO6pR0uG9dgwTJsFmx4Vx/BIuTTKvoDUIP/s28J+K8Avvy8MuD8AJ6wQAD9zjjwPBARU731D6rDP+6QA1IFeOc4FPVBGLjmMmY3T+8azFDJxXMchXNWEpgeomX4iKCpmLk39rA5UTaeQHic92geKguK6ZMdjIjF3XRzLRNV0FE3DLuQJVTbiOhb9b72I7g/jui79b704EddVO3MxUxd9iHBVM7o/QvW0hZi5NP1vvYBrFyAURjv7wxCOoJgFMTjb8yZuNoN29ofRrroZtbkNp+sgpJKordMgm8be9HvcQg7GRnFHh1FUVQA/QGIc+4lHIZOSOupCHvup307kXrv5HG4+B4YP7fRz5BjHRm2bJhL0+Dju2AiOYxKP93iRW2FMM+uZly0jEKgiGKxE1wPs2fM4nZ3rAZdUKsaLL95CMtlPU9MiAEZG9tLd3UlT0yLKyqT8obFxIYFAJbZtehFerXzpS4c555z7hUl3bfr6duG6Dn5/lJaWJfT3v0yhkCQSqUfTfCiKhqPp9CoKyxCW+gZvnaZkaFYGnIkA3gcR47MIsBMB0iEEcPcgQHsnwla3ILXUmvd8HsJ++xDpd8w79m5gFuIOnkWivDYgRmc4DvHDcZ6+4mnSsTTh+jDN7c1sv2c7rctb0fwayf4kU0+ZSrQ5Kqz1rj4SvQlaO1pRUDAzMqHT2tFKKpbCdVymrJjC1ru30rq8FX/UT9uKNhRNQTVUsqNZrJwA2zO/dSbR1ihHzz6aHVt38PLOl/ntnb/lgW8+wPSjpnPsgmPpS/Tx0msv8corr/CzP/6Mb/77N7EdmzJ/GUtblhJLxXgt9hqO62C5Ftt6ttGT6EFTNQzVwHEdDNVAUzQ62jqoi9SRKqTIWTmyVpbbt9wOQN7KM5IdIWfliOfiRHwRTMfEdmzCRpjVS1cT0AN0x7vZP7ofQzWwHEvUIdk+SO1DyRyCHZdBpksk2XYOVK+vs1LetjyMviwu4K0fhTlrJFKr7ChAgTk3CwN+4n0CFGs7QNHFdVwLIuYJjvShekjY6deuBzMJoTbZL9vnMecaYHsy6Yj0gUWDseyop+Ly5N1GWPpGFNlePt2r5/b6UNWQazuWPFYND3wbnrGYN8mt+f6ubzelv84nvOMnXcMueO2xLjLwYgxZXyeEG2T/3i0lSbtrg79SxgB18+Xc2WHZHqgU9lpRRNZdtxA+8DtxC3ddOT+KvG+5MQHylx6SdW+n1GkXxxzZIWHEMwOe+RqkUgWyWZMVK9p4443LJ1jj9vZmBgbSXH75kxw4MEYwqOP362iawtBQhnnz6jFNB1VVuOaaJdx11zZcF/r7kyiKwoED46xc+QT794+RShXo70/x+ON76O1N4PNpLF/eSiqVp7s7ztq1pwBwzTWbSCYLWJbLtGkVdCxvozcxyDeffYicWfCAtUV9tJqWcplQHUiNctGJ5zCQGkUBWisbWNB8DAHdh6aqjKWThHyBCQa8KCmvDJbxA09a/u+v/JEFzbPw6z76E8NseOGnOLgT5x7JxAn5AgQMH5ve7hQfOs9krWC7uGpoklHZWiRmLoVob/RJDuI3Sw32vzqwBkG/Pp8M9M44Q2SQkYig3rGxErN97bVCFxeZnWuvhfPOk0GmaWIaIfr6FC67TFhmVZXdDENKDv1+Ib51vWRG3t0teL6ovty/X0rAV66Use0dd8hrN98sJY0PPCC3WyTO/9lYd7KZbyol2x55RJhyFHDLwgKsi+PRsnBJll0kyzS1ZK7b1ijAWtdkP79PxpplYRm3/n3CjcI/qjB9upzP0P95uSSU0nfeNTb7L1/eBdf/E8s/AGaPjf5fRWxNHDtJKu4rK9VT/zOJuZ2Dcc+dNNpWmllXFG8goIFqYDvKhAzcdaVByeVkxq7YqOi64LAtW4SJLqp0br5ZfqM33ihym5YWabQOHxY2u78fjjtOGiLHKR23Zo2cs6xMAHWxsTt8WEC3bXsk9WS3cMsu5VGDNCST5TZ/X3ddZKRVRUB0wfTcGT0Ge2abvBfJtDRiRc1PsSErmHLeYs12bUXpWpo6AW53338/raefLgA7FqP3hRd4+4c/xEylqJ47l0hzM7u9WujdDzxAJhYj1dXF/NWraXvf+6g5/ngUVSU7MkLKi/HS/P7SeZJJXNtmz09/SuWsWQRqa1mwejWKrk8A9N0PPICZTlO7YAGqTzpjM5fHsh3c+KjUOtsWpBKw703Jt1Y1mfFwXZh6jLDTqQS0zhAJ8+L3Sl61bUs99thw6Quy8y/w5C8hm5bHm34tj3UdPvJZmHGsRHQND8i5ps6CfE7+LBOe/pUc59gM7duO7g8ycuAVaqafiC9YBopKejSG45gMH9iFlU8TLK9lYM8WXMfGF4oSqm4Gx8bKZwhW1KNoMvBVdYPMWJ+8j74gmbEYrutSP6sDMye11MUYL1wXI1SOHiij783ncB0bf6QSXyhKw+yTURUdNyazS4pugOFHPeP96F9cAz4fbjaDgoKby6G2TkWprBJGPZVCaZsmx5SVCfju7cIdHwFVw+l8UaTmL72Ia5oomo562tkohk+k6H/5E2TSAmJzWYiPC1gfleOVcASlbRqqahCNtvDcczdhWTk0zUehkOCpp1Zhmhmy2TGCwUouv/wNzjzz7gkgvHTpdfj95aiqht9fTkXFFOrr59Hf/zKqKoZ7uh7A5wuTzY7Q0rLUq8/2o6oargu6LhFcruuQzye8qK96XNfxXMozOI6JhsISZOhoIQD6Swjz3IDIwSPeYw1hs7chc1oNSOxWBngUkXT3AHOBvcAXgPMQEH2rd7yDsOH1SLRXDpGL57zXw976XqS2O20zUf+s+TRUTUUP6py+4XRaO1rp3dFL67JWjrvgOHp39DK6f5Tmxc1UTqnEtYRtG3h9AEVVmHvBXBoXNtLd2Y1VsDjrnrNo7WjlL7f+BTMt7KKiKPgiPvp29WHlLTLDGRI9CQqpAo7lkBnJ0LiwEX+ZH1/Eh2ZrRHwRplVOI2gEmV4pMu7x3DiVwUo+efwnKQ+Us6RlCXkrTzKfZHHzYhrLGgkaQXoSPQymB8lZObb2bGX/6H58qg8Xl3g+juu6XNl+JV3xLnb27STsC+O4DrVhMRlLF9LiLB6pp8JfQcQXob6sno62DkzHJGtlxS0850m7M70CajO9YmbmWvJp5sfk07HTIu0O1EK2R8BzuE3ApZ0HOwORqSItxxEmemgLpPZJ3Xa2X0D68DZ5bbhT2vOFd3vXMwW0Vy2Cs16XmuzsoAey8Zhdv6yrZsl2p8AEpeyLMgHeodSvRttKz1UfE4qwRHfpWDyQnk8IGLZyTNRSK0oJ3CtaiTkywp5CzS4xx7EdEtuV6pF9a+dJFreVFYD9/CqJ5coMiKu4mZb3NxWT8YBjyXgi3S+AOjsIf7pM4rccG/q2yTHPrxKztIGdcg09ICZniirHZWLiVK4FMR2NwcE0r70Ww3WhtjZMIKDxla+s4OKL5zF1agXf/e7ZVFT4J1y/g0GDZctaUVWVm256jmSywLRpldx771nyuxlIU1cXxu/XJuqwx8dztLc38+ijH6OlJcoXvvAUy5e30thYxsKFjQSDOqGQwa23nsLgYJqVK59g794RTNfioW2/m6iDrghGaSqvoWCZhHwBVBTqIpX8dNeTNERq0FT5PliOzYYXfkrWzBPy+7Ecm4pgGTed9pkJSflYNslnPcB99ckX0hcf4tZnHwLgihUf985dxU93PUldpJLRTBxQaCqvJWPmAKiNVOI4BRRUid4qRnDhAzUEepN8T3zHQOND4J/1ryEFL+az/jMDncn77N9fsuGeNk3GFUXk29MjlPLgoLjm7tghv5f6emGyAXp7sf0hYjExESsalK1aJaf2+UTx6POVyrbvuQdWrJBtP/iBXLa1Fe66q1TWHYnIJUIhYbJVVUzMurtlWxH333yzDH1uuEFIoeL28vIjx8Oqinh0TAbOqiLssqGLTBv3SEm4zyg5fh89pcROK/yT2C2EkTb0ktlZrgD7umXMmsrA6LjcSLFc0hDfk4nxdFd/yX383eW/ZHlXFv5/wuLY0hFmhwU0V8wU4PMfLUWpOPxziXmxLiyf8EA0HlPtSh124pBXgyVRRKl8ANCwbRgaEmDd0iK/zS1bpNZkaEhA9u23HwmKFUUamZtukkZq5UphsB99VCQ6O3fK8bGYtJOvviptaVeXNHDf+Y60KV/4QkkV9MADMnl55mk2aj5fkn77DM9VUZWG2fAapKExAcgzvcHPZElirnCk9LuYjV2U2KiqgPaifCfgk2vYtlxvX7fIxKuicr1sXmYXfTqFXI4dt9xC7YIF1CxYwNs//CFzLr2UzNAQlbNmoQcCIv11HKxMhvE9e6iaM4d0fz97fvpTTrz5ZnBdFM+W3bFtFNclH49jlJVRSCbRAwExJvPq7F1Eav72D37AnJUr8VdVMfbWW1Qffzyqz4eVSmGm0xhlZYy98w61R83A99sfCpD95oMw1Cd116k4tM6U98jwSwNumaVZVVUTMK4owmSHoyL7rm2ULOyf3yOZ1ZEodO+XmuqiAwgu/Pt3Ydvzkm1dWSty8LM/LtFc02fLfof2YM+ah+OZ/yi6T/7Hoqxb1eh78zni/Xsob5xF3dFLSQ13UV5/FLZdQNN9OJaJ45gM7dtB7cx2zGxaHMBdl8x4DCMYwQiUUcgkGDn4Mg2zT0LVfThWwbuGmLpZ+TSOVUD3h7HyGax8GiMYQVN09HQOp/NFAb8+v0jRPbduxbJxcxmZmCi6heeyKKGwDLdtG0XTcDPpI5zCXbNQkoYXCrgD/ahNLQKkDR+K4+AM9qNUVqOURXFTSdyD+1GOPQ5Fk7IDxXUpYPKHJ1fS2rqc1tbldHauP8IJPBptZsuW2zzn7mHi8S6amwW0JJMxtmxZS0fHjSST/bS0LCGR6CYe76a5uR1dD4hBXGYYny9MOj1IZ+ednHbaHfh8ES9X2+bpp69gyZKr6e5+id7eHZxxxkYURUXTfOQck+5gNT2KAGyP92MMYZqvQZjr5QhAbkFk3quR/OorgUcQc7L7Kbl824i0ex/wcUpguhVhw+cidddFsO1DZOJBJOJrHWJ21g20ZU1merLw3h29RFujlLeW4zou2dEsgYoAvTt6iTRGCNeFsXIWoZoQjuWQG88Rqg6h6iqu69L9UjdlTWUEq4M89+XnOH3D6SiKgubXUFRxHk/GkpQ1lOE6Lo7liIN4zkb36lMVRWFk3widd3TScWMHlTMqiY/ECTYGAbAci9HsKFXBKjRVQ0EhVUhx03M3cesptxLxRciYGXEOX349QT1IxszQk+ihvbmd8f+HvT8Ps6Ms8//xV9XZl97Se3rJBgQI2YCks6IgkQHUwUGjThxcUIIEZROQhBFUkkAiAyqoIC7DjH40QQchJERAkCxkJQuEkKU7SS+n9z77Wqfq+f1x1zmnG53vfH7fmfEz389FXde56lTVU0/V6T7nqfv93O/7/c5EqA/WE8/G0TUdv8uPU3MSz8UJuAPkrXyRbr5+yXq8Ti87u3bSUt6Cz+UjaSSZWDGRjnBHUUW82u1FS7QLDXvaSkh1Q+1iSJyW55LX1mhXFlhZsNIQfUcAsJUT2yw0ET5z+GwV8bCs960QS63MgPSTGYTgFMjH5L1vPLzzoCiUByfLt8PMwuFVMGONZLYdAXlWJkK2mrcDe6ZDAHCix3bTcJfKTApLQRkcm/nlLhtbWlXIQhco50rJuGrlS3XVwWZ59hpJG7wjQmYOT2m/wyNq3oluqXUuZMfRbEutOLjKBIyHj0PFROjbD75qyTI3zBEP7GAT7FkrQmbpQQHJoR1iy5kelFrrfBqG3irtK2Sok31y/r7vlmqwjSRoOjGrim3bOpk5s57+/iTr1u1k1arFTJhQwenTEdav38lDD11OMOgmlTK4886XuO22eTQ0BIt/SrfbwZ49PbS0lNPaWoGu6yQSOWKxLGVlbnRds1lyOm63g+3bO6mrC1BV5aW+PohlKRKJHHff/TJ3370Qr9dJOJxhcDDJoktaGEgP0pcYZlrDFACGExF+svvf+Pycj9JS1cDal3/GBY1TuPq8xeRMg0f+9Es+N+cjmJbFL/Y+zz8u+RKHQidoqqgl6PETTsXpTwxzQcMUXA4npmXicjhJ5bK8fGI3h0MnbC/tPPFMklQug9/loSZYha7Jd+b0SC+/2Ps8n5/zUc6qacClGWip7eCsgfwQ+BdC33IB2u6zSyNWQdzuf/KSy8G770rKdtUqOPdcQbI5YWBhT/STTgtwTibHcqpXrpR0cV2d/M4sqxSEtrZKYFiwqtmwgfSJLo4nm1izRmPlSgHTJ07AJz8pl7nzTkl219cLPfzRR+Wy69fLa/Ry663wj/8oYDuVkp/tXXdJH42NsHGj0MDnzSuFm/m8hEqnTkkM29ZWYnzqusTEVeUmWjozNsY0TSk5LKh2z5k2VhH8rFaJYSuCpfjT5bTjPsaWQ57sgv5hqBsnFHOF1He/0w7VlaU4GKTPgjq5ppXqvVsb36+//k8u/xEt/H1w/T9heW8d9X9Uh/3ec/9STTaaPJiLFiPNNmgaXS8mD36z/CzePuJgzRrJQI8fX3JDWLVK6qKvv15qrRcuFKA8emxsbZWxsOCi0N1dOr5qlVC883mZFfzd72TysiBAcfiwUGwcjlJ/kycLRbyxzsShqdLnLNRcF5QVPW7JYhfqqU0LOrpk4CjM1LV3CZ17tAVXNifA2euR/qKjBqb31q543TLDV6DsQFG13JjYiJFM4nC5GDp0iO233UbTpZfS9u1vCwD+2c+YdccdaJqGbquJH3niCc774hfx1dURefddfLW1BJqbUZaFyufJxeOY2Syp3t4iYFb5PJrDweCBA/jr6kj19fGnm26i9W/+hjn33YeZzWLE47jKysCyOPz97zP7rrtwut3oVh4tPCRZ5ynnlyYmCoN2PCJgW0P+Qf/2C/j45wRwdxyFlsng9SNUxsL3zB7pTUMCw2xavoPRsGSwr/6MiJzFIiV/7WCFXKt5suzfuhE+tRxLd5DFwEjH8VXUYWSSAoLPvQTd6cIyDfqOvk7NlDm4vGXyb84b9L+7jepJF+EOVJIO9+Apq0F3yANEmQaZ2AC+igZMI4vT46PnrZfxV42nvOHsInj2VzWA7hRFbxuso+n0HvkjNZMvwsylCZY3Ym7+N/R5i9EqqrB6OqXmeRSQLgBr3G4BvqaJ9dIm9AUfBL8f6w/Poy/6EJSVoTmcoOuobBbiUaxd29CvvAZN08AwUE4nRMNY2/8oNd7+AKSSWDv/hH7136Hl8/Y9VKJVjcPEYjhyEofDzWuv3ceRIxuYNm0pH/jA/QQCtWzevIJjx57jllvO4HC40XUHuVwSp9OLUhaGkSKfz+D3V6NpOt3du6itnYZhJPB4KujvP0x9/QxcLj/5fFYy0Q4PPT27CQYbKStrJB7vpby8GafTbYsddrJr1yNcccUjGJ4ytukOmpB66AUILXsVAnCDCFB+A7HI6rfXw8AiJIu9GwHaE+RbSN4+XomA568CdyLiZG/a1wDJVPsQhXIPJZqWAiLAEeBiwJ/MkuiIEO2M0jS3SQBzjR/dIbZZ3bu7CdQFSA4kqZpcRXlzOeGOMPFQnIZZDUULLkB807OmgOieOOUt5QLYW8tx+VwE6gLiDIUi2hll1yO7uOKfrkDTNZSleOnul7j0W5cCcPR3R6maXEXT3CYsl0Vci2Mpi3guToWngoN9B6kL1NEQFFpgX6IPDY3+ZH/RdmtfaB/zW+azo3MHtYFaHn7jYVYuXsmUyim0h9vpjnXT1tSGx+khFA8RdAfRNZ2DfQepD9YzqXJSsXb7yOCRYnbc45RJpkQuwVsDb3HFhAXo+1ZI5rrhwwJ4sWwKeBKOfhdmrRegC+Jz7W8CT43Quef8UP5DBaGz4d1SM+0IyDlOvxwf3CHn+VvF99pXL+DWTAtINlNwZLVYdhWWTB80XA7RMyJiVvSo9oDTI84dhYntismlIF/T5RkZO2PXZRfqsE+Pep6OAr8OVwlIF45ZBmSj4KkogSWNUSwzZX8z7ed2akDuw0jB0GEBzA4fhI+JpdYH/kky2LtXC9U7PQC714hQWeGzGXYt+/ARaJwv1zBSMHgYGufaEwuaZKwT3XZNtUuUxq08bPuGnHfWNfKZbPp7IuvEUhqGYbJrVzef+MRGPvaxqTzxxEe4+ebN3H77PKZMGVcUJHv++WO0tFQwb14zbreDbNZk9+5u6uoCDA2lmD+/GU3TimD59tvncc451ViWCKAFAm6y2Tx794aYP7+ZfN4iHM5QVeXlzJkoQ0MpZsyox+HQ8Plsto0XeiID9NmAOJFNsuP0YdpaL6A+OI68sjAtk3f6Ozi7phVTWZwc6mJ641kMxEdoqawnmzdwO11Fm7tsPsfbfe2cWzcRBQwlwvxi7/Nc33YNjeU16JpG2shybOA00xqmEM8myRoG1YFynA4XD7z0FFuPvcHV5y3iW1d8EadmoqkspHeDqwU0H5yeAeOfEaCd2gGuVnBP/Z8NsHO5EmiORGS9eLGg0GRSMivz50vwt3cv2KKs5HJFsFzMpliWqN6O9sTSdeF5F2xsBgZI1E/h+hscPPecxJKLFinyeXG7qa+XZNCOHdJlLiehzi23iL/1NdcI67KsTF65nGS/T56U2POuu+TcHTvg/vullruQLyhQz4eHBYh3dYkTzjPPlEolOzokNr7ywyb6idPiaX3+lFLtdEWwFFu+16LL7SwB3UyupBn0l9oWdITK7UkrwyhZxrpdAuIL12lukONlgVL8+n7N9X/J8n7N9f8XFk3/jy22/p/O/TPPbFeJtlZQJk90Sx2YMsHKozQH6B5UsJm8WVJe/O53ZcDxeARIP/KIdPv44/DpT8v26HqTNWvkNxoKiTBETY3YFRSO9/SIonhvr/zGP/UpaGqCXbtksGprEwXyiRPFmWHCBBmLXS77t68hJ2YNWYMoeBcaFAaubA6SqRLlpfC3aG2UrPPompWKoAQ/J87IIFQelEGwtbFUX91sD+6mPXnhchYtlsjmpC+lyI6MsPc738FfX8+iRx7hguXLUabJkSefpHr6dNKDg+x/8EFSoRCp/n5R8fb7cQUCVJx1Fg6fD03TSIVCvPnQQzh9Pvx1dVSdey65RKI0cWJZ1MyYQWpggOrp0/nAD3/InHvvRXc6SQ8O8tbjj5MeGEBzOpnxta8JoNcU2lC/1FJXVgsdPJ2CgV54+nswMiDK30rZf1sFH/qYgOT2I6MUwvNC745HKPq6DvXD//qx0LzdXgHg8bD4WY8MwMig0MJH+oVm/offSgbbHxBgvfd1SKdQ2RRGOo6/sgE0neFT+/FVNmBkk4TefgWAxgs+hNsnTzrLlIxSwbILwFteh2XmsUzJJukOF77KRimv98jvqfasuQRrJ6LpDptSXpjQyKFQDBzfiZFJojsc1Eyeg8Ppxektw7JM9CVXg+7A3PJvaIFgEUgrpdD8AQHawXIRGNv8O4jH0OctFoqH7kBrnSyA3LKkrjo8DG4P1q5toi6ez6NGhrF6u9EsBWXl6Es+KgDa40MLlKHPvwQiI6PuwYUKj6B1nqGqcgrB4HgWL17JtGlLWbz4XsrLW3A6fSxatJJPfvIZlCqoiB+nt3c/0egZXnzxa+i6jt9fTVfXTiKR07S0LBCgDyhlMX78HJLJfjZtuoFEoheXK4BlGbS2LsLjKUfTdMrKGonFuti0aTmx2BlisS7mzv0q+XwKPZ+lTSkCSIa6QPdeh2SuTwI7kBros5HM88PALOAUYrV1IZLRziNU8GEESBsIgF4EhJDa6ksoeWnbcIxeRCm8Y1QfdyKUcS+gmRDrjlE/s570SBp/rR/NId7WL976IoFaAdZNc5vwVnlRlmL7mu3UTa9DWYpYV4wXbnyBWFcMM2uy9datKEuhOTS23LyFQG0Al8+Fv9qPMlWRWePyu5j71blEO6N0bu/EMi2WPLSEeG+crbdupXVhKw0zG+jZ0wMe8Lv8BN1BzkTOYCmLec3z6Ev0kcgmcOpOpoybQktFCwtaJNrbF9pHc1kzLt3FwtaFDCYHee7Yc6zZtoa8yhOKh5hZP5Ph9DCmZVLrr8Xv8uNz+VjcupjW8lZ2de/CsAwqvBXFfg3LYMXmFZyOnibgDjCzfiYmOuqix2DS50RYLJ+Uf7S3Fo6sFdCd6Yc9N0D8JFRNF9ExTYPz7xFKuLIgdXoUZTwk4Dk7DINvyB+tdoGoiesOsfSKt8PemyDdL9upLhFCO7oOghNk7a0VWnn5BHkuKlWqj1ZKMrUFNw00mTS0DMkiQ8leq6gcXiagU3MIQFWmbdHlkGs4PHKdAv3bXWaXbdnZ8GysNI4qGFPD7QpKBlnThPbdu1smDtxl0P6cZK93r4ZjG8Tjeu96yUw7PTIBETtdUhFvaJPtV2+VfhvbJBaItAuQDtZDw8WQHpbJgWxE7veS9TDVTgXGu6X228ygaRqnT0e46abNNDWV88wzn2TlykU4HBqPPXYlZ58twPjgwT6GhlJ8+tPTaWoSWndHR5jdu7uprQ0wMJBkwYIWzpyJcsMNm+jrSzB3bhO9vQk6OsJs29aJ0+nANC3uvPMl2tqa0HUNw7AIBt3s3RvC6dRZuLAFy1IYhsXx48PcdNNmLGXRlximylfG2ld+jtflZVbTVH608xl6ooMARNJxLmg4CzSNjJHl3LqJuB0umivq6IkMsuaVn9EV6edAzzG6Iv283dfOzb97iEQ2RSqbYjgV5bqLr8bvcpPL5xhMhPE4XNQGxvF2XztlngBNFbW4nW6i6Thfbvs4V0ydz+0fWIZGHs1oF9EyVwu4poDKwsTD4GsTYO2ss1XCs++N9v7PLwUKeDotGevt2wVtfve7Etg5HIJWd++WlC8IOi0g0DvvlOdigUe9cqXs1/VScfPq1fL9371bUsT790vsVVmJOxVh1T0mzzwDM2fC8eMaN94oWLy/X+LLxx+X27jtNok/77lHMtt9fXDffbIudJ/JSKz63HOyf9ky+Kd/gj/+UYB4sVKwS/SHUimJjxculMRQS4vsz+fl9uvq5D2tjRJTBv2yI2hPKmZzUqJoWpK4GU0VL2gJ6RqUB+x1UGYIRtO5CzpCJ85If4VkU4UNti1Vat/dV4qRLSV/Z6fjfWD9V1je/wv/T1neC5L/3yzKzkhbOfHoNLPysC8GDkjQEO9CswyUrpOzfMRierF+ZP16GTsrKuBzn5OalVOnpK6lr0+ODw6W6k1Giz788pcCsHVdZgGXLpVBKBSSQa3fxsS1tTIw7t8v51ZXS4xTZCTrUFVpg9qCdYGmleqdCx5/Dr1UL10A2qPrUpJpGcDe6xsIYwcrlAxiXrfMEAb9InrmcpYAdlH8QRV9rwte1IU659qLLsJdVUUmEuG8L36RiX/7twSbmjjvi1/k2L/8S5E+fvixx0h0daG73XhralCWhcPno/aii0gPDTF06JAcs9XDVT7P0KFDmLkctbNn4/B6qZ4xg6G338ZIJvHX1lI7ezYnfvUrnD4fTp/PtnVQ8NLvRNDM6YbJ58v72EgJBA/1CcV7ZFDa146X482Tpf46mxY/7MpqoYAb9nRwRSVMOQ9iYRE36+8REP2VVaIWXrDdGl2XvfnXAsav/ozQxcuroGIcLl+QVKQPTdNonHYpwdqJDHXsxVfZgFIKIxUln02BlScd7cfMpcWy66w28ZK2s0AaGsoySY70oGkamqZjZFNY+RwuXwUuTwCURTrSC1YeK2+Qz6bQnS7GT7sMd6AShYY7UInT42e4Q76gmu0xrV91LVpFJVqwXGqpLRNzy7NCpwesnX9Ca5mIVlYOZRVY218FpdBnXCie204Xjqs+LvXSgOPKa9CmzZJ67rJytOaJEoA7XWhuOwtvifiANq4WrawCrXUS1u7taIEgKhZB8wdRWCQSvZSVtXD11U9QXt5MV9cOstkYVVWTaW1dhKY5yOUS7Ny5jkCglp071zNv3m0kk4Ns2fJV6utnEgjUARqJxAAjI+04HG4cDjfxeC/z59+By+UnGu1k69ZbGRk5id9fg8vlx+XykUwOcOzYc2zbtoamprlUV5+DrrvIxkP4gLRS7AHmIdjyNoSS3YSA7t32tg/4OgKMPXa7Ajg27Pd+SgBZAcvsfncigHwPQgG37Gt5EdDdhzzwzkLEzHqQrPmAS6dlYQvJgSSarmHlLTq3dRLvjdM0t4k3Hn6DprYmHG4HnjIPmq6xeOVidIeO7tIZd9Y4PvqTj1LWXIbm0Gi9pBWH20GsO8ax547xxsNvEKwPEu2OkhpOFenhwbog1edUEw/FCdQG2LJiC7GuGIneBEc2HGHnd3fi8rsYv3g8HeEObth0Ax0jHSxoWVAUGmtraqOpvIn+RD87OncQioe4YdMNnBw5yfS66fhcPmJZsdS6ZMIl9N7ey1MffQoNjUtaL2EoOcTJkZPkrTzD6WG6ol0MJgdpD7dz69ZbmVk/k3JPuQilWXnSRpoKTwWPXPEI/Yl+XLqLodSQqMKbaQHO+28VIK07BDRf+ChM+jwEWuDCh4XebSQEcCukvjp+Quy4HAGY+6TQvmsXyZDrrYGaNojbtdfuSvlPOtyQtuu7CxZftQtFCO2Cb4oC+MWPibJ45YxSzXXh+VjIHmt6SeW7UPec6ClZdaGXstCaJlTq6Bk5t2KCrLMxO4uty3M32m6LmtnP9GCjnJ8rlGrptnCaKtl0KUussXY9YE8AlAld+9VbJat93WHw18PlT8DykHhef+hHcP4/gN8WNSprFXCcGqIorLbwAZkECO0QIbSyJjmW7IPXbpPP7vQJ6E722ZMHHqkPD46Xe+jfj2kp1q3bwcKFLXi9Ti65ZAI1NX5MU+F06mQyeXbu7KKxMUh3dwxNg7Vrt7NhwxHWrNlOTY2/6GWdy5msWbOd5547Rl9fgmXLprN4cSs9PXFqawPceuuLpNN51q1bgsvlKMYGXq+TefOa6e6OYZqKeDxHIpFjYCDJ9x+7Al3TuKBhCk/ve6HoL/2z3b/ntfZ9eFwuTMukOzrAQHwElOJHO59hKBEBIK8s3C4nn5vzEQYSI4zzVTCQGGHW+HN4/vpHqA1WURscR71dW+11eRlKRfnRzmfojQ/jd7s5p7YV07JIGhnWvPwz0kaWCl+Quy/7HF6XR7QJhteOFTNztYhwmTkE3plCFfe1geb5S1He/7klnZZMyZ/+JNnk1avHZlrWrhUgWbDW2rVLzuvtlXrBgQHJvBw+LFmUJ56Q4G/FCkGto+26QOiNPp+kpHfvBl3H7bSYPEVj3jy5lQIef/BBiTX7+0s12OvXS6liT4/EnY88Im0CAQlh5s6VJNLKlSW9oJtuEuXvyZMlBna5BGSPstkmlRJbr3Ratp97ThL3q1ZJoiiW0DAdThvsKonFClaNbpfEmJYlFPFMruRmU7CbTWclmXQ6JH247Pi1blypxnp0/OpylixjvR5hWTaPqtHOmyX1cJBr5833Bc3+m5f3aeH/Ny2WXWuWz8jMumnIjLpSY224Bg6JD3blFNJZJ9lsCdQW6kYGBwVkNzTAm2+WbAx+8pPSpJdpStd798qM3Zo1IugQCsnk5ac/LZOUN9wgA9OmTTLTt3q1zCa2tgpwf+QRGbx8PrssJA31tSa6ZYngQ3NDSXnxgrNKdJnWRpmF6+i2qTU2bU/XhOrtcglIPtMrg1dVeWnWLpsr1WKP8qgtLjl7ANRtkG1ZcKoHJo0vTmfmDYNcIkF6YKBYb+2trcXh8WDlcqQHB0n19VE9YwYOjwdlWQwdOMC2W26hZckSLv7mN0l2d4sd15e/jL+pCWUY6E4nVj6P7naTDIWEIj59OprDwdDbb1N19tloDgcOt5t8JsPB736XqZ//POUTJqBMk8zICE6fD13X8Dh1tFhEap2Ltc+fstXAz4VfPS7Ad95lsPTLkpXVdAHLL26ApTdAMibtW6ZI5tvnl0y1ZUH7O/DD78CseaIEXlEtf8/ebslQX/VpUQn/zRPwN5+E9ndh2oViR7X515jX3UIy1o/T4yOfTYtllu5AGTmpVVYKy8jicHtIhftwenySVfb4BVRrmoBcIyv2XLoDK5/DMg0cTjfp6CD+qgaMTJyh9n00TrsUNL1Y1y0123kGT+6mZvIcXN4AmtONhhLtNgtULis+1LqOSibAyInXdVMrKhpBJRPoLRPkfsIjst0sYnnKyGG99AL65VdRUCTWNE3YBHb2SuVyqL4QWllZkQ6uYlG0hvGQSmFtFxswFY+hNYxHc7pQugNNWeSTMUaMPrZtX2PXVQ+ybdtqFi9eRWXlJPL5DD09e6ioaKW8vBnDSOF0enHYvsfxeIhcLgFo7Nr1TyxZsh6Hw41hpHn11X/kiiseIRbrZMeOdSxZIkVr77yzkZ6ePVx11eOMjLSTSPTS1NRGJhMmn89SVTWJfD4t6u3oGL4qdugO6hBhsbkIkK4AxiGgOYfURetIPXYaWI1Yb3UDHwE2I7XZBqUa60mI2NndSJ12CJhhX6cPyYT3INntPJI5b0JAfBVSA64lsngsyCVzoKDvUB/jLx5PJpLBMi2snEXFhAoebniY5QeW8/oDr9M0t4mZn5uJUop8Kk+8N86uR3axZP0SnF4n3bu6aZjVUBxO3GXuIl08fCrMrn8qtdVdOl07uqg5twanz4nT42Tzis0sWb+E1GAKM2hy25u3seHIBo7ffJy0kaYr1kVbUxsuhwvDMoikI3idXpJGkkQuQZm7jLpgHRoaSSPJXS/dxe3zbuec6nPI5DPs7tlNS3kLDWUN5PI5kkaSukAdmXwGv8vPis0rmNs0l2vPu1a+JzYVPZVLURuoxUIoszo62zq3saR1Hk7LACMswNkZBG+91Dmj5GXEpGYYTbLPKBjaI37VqR5pj2bTwvcI9dtTA+E3S+JmyTNCMZ+2Svrw1kl7dMlaH1ktNd/BKVK/fXS90NE91fYzMi8e1UV9kymlZyfaqMltOy4qAN9ClttI2lZe2FZePZL5dnjsZ6wdxFpm6ZxYp539tsF9IWtdsP1yeOV6+ZSogtdMl79TekAyzsl+AedOn2Sk3eUweBBqZpQo4nPukgn02Bmpt25bJZMAr90q7wMNco9GSu7BFYSXviRZ76aF4nt90ddlskDTRUncSMOe1TD3HihrJZ13EUmIx3Wh3rq21s+tt25l5cpFdHfHqK0NMDiYpK2tiUgkQzJpsGbNdlauXEwoFGPWrAaCQTemqUinDQ4e7GP8+DLWrNnOqlWLmTixkptueoHbbptHa2sF0WiGmho/hmEVa7W7umI0NZUzZUoViUQOr9dJZ2eU8a0BcOXxOFz0xof56e5nufPS6xhKRhhKRqgPjuOpUVZazRV1fOpfvsEzn1tHmSdg07nz9CWGuKBhCk6Hk97oEP2J4aIN15farqE/McLNv3uI33/hYbqiA4zzlVPm9TPOX0Eql+HR13/FZy+6ird6TzC+oo5ZTVNRSjGSijKhogzNOG7bcN0NzmahhVsxsOKgl8lLc//PEjMbXVv99a8LONZ1UfouGErffbegUk2TjPbMmULnHm2z9cQTUqzc1SW0xXBYUO6vfiXINxwWgO73S21gRYUA+ZERCUpbWkhOmkYs4Shiw3hcmvn9pVhz6VLRTfN4pDvDkHUoVGKeT5lSqpCzrLHnFuy6CrTwfF7mCubMKX2cZcskS56yf1IHDwoLfmgIJraYOBwKbbRdrNtmW2qUaq8LNlrprMSjLQ0Sb3Z0jz1eWAolipY11nY26B9LHS9kqKH0AR0OiY1Tmffrrv8Llvdp4f83L++17yrUeTk8UvvlCsjxQoBQoKk1XATlE1FKw+mw6OqSsdCyE7SmKfTu8nKZkSvYGNx7b2km79gxGYxOnxal7+5uqXOZMkUA+eTJpZKcRx+VgaitTQa2hQtlIPR4hA7+0EMy43jjjaIW7vMhaad4UgYbwyhlnssCJdp2NiczfQWLLMuSQQlkxs8wYCQmNJyYTbEuAGmvW8QgoGTvNXrtdNj11pacq2kCrA1TjpuWqFG7XGSGhjjvC1/A4fOhOxzk02kcXi/++npqL7yQXCKBYYPwynPPZdEPfsBFq1ahaRqBxkbO//KXSYfDaJqGZZrsW72a9MCAeH56PFRPn87wW2+R6uuj5oILRPQrnyczNITD42HmLbcQqK8n0dXFvgceKGavc6k0yuUWYD1pKoQHJWO9+Tdw1gUCpP9+hWSRr/2i1EKfeFuy016ftM2kJfvcNEno4oMhyWQXaqxbJsO3fiT9lI8TCjka1I2HT90o9dzZDPzDLXK84yj4g6XMdjKGv6qRfDaDt7yWfC4NlkXeSBN6+xXy2SS600Xo7T/i9Phw+ypwuL2kwj0o2wIoFRFV8VSkXzLFukMy17oT/7jxoDtwuv00nn8poJFLRuh95zXy2RRObwBNd+CvGs/wqf2Y+SyaskiNhIoAnGQcq/uM/DCCZULXbp6ISqegugZ9fIvYcEUj4PGg1TeikglULitguqmlZB6fSojqd3hIgLptIq/X1ovF15GDWNv/iOYP2tRXJ1rrJFQ8Jl7YSmH1dKHZvt5WwEc01s38+XfgdPrYsWMdR45sIBrtIhI5xZYtNxMI1BKNdqLrTtLpYTZvvonh4ePkcgk0TaeiYgIVFc186ENrUMrixRdvIZnsZ+7cr4oYl8PD5Zc/hK47yeWSzJjxD1x99Y9QSpFM9hMI1LJlywry+TSVla1kszFSqSEsyySTieDSdNqUogoBuS5gCpKB/ioCtHUki7wXAc0fmTiR16ZO5dJZs7h71izm/eY3zAZu/NrXaJ04kas0jeGDB/mqPRQW6rcXIrZejyG2XLWIwnjeHlIWIeA6gFDOTwMeh074VFjo3EoJPXw4jTvoprypnMqJlSilOO/a8/BUeFiyfglTrpgiGWg0NKfGnsf2MO+2eehOna6dXQTHB3F6nWgODZffBRb07Okh2h3FU+bhstWXoSzFlq9uIdIRoX5GPS/f9TKxrhhGyuDqH16Ny+dix7odWHGLVYtWsXTaUmoDtfTEe5hZPxPDMkgZKW598VZS+RS6rnNy5CQO3cGJkRN0RjrZ2bWTgCvAI1c8QktFCxlTgHVdoI6uWBc+p4/+ZD/ffO2bnIme4c3eNzkdOc36Jeu5YsoVBN1B3A437SPtWMrC7/ZzcuQkOzp3kMvnyFt55jXPI23mUZk+yVwHJkiGVOWlXrggHlZYCmB1/1ehagYkTsGRB+TZpdkUpqqZIoqm6ULr3rdCMtuZIclOe2sFMMfbRTVcmeBrEOGzVLcA7iNrJDueDkH/qxRVviunQN1s0TexzNKtWTmhgisbaBfBsi6gXHOMVRLX3VA+UZ63ypIsPcq220L60BxQMalUv11QJbeMkh812M9opwiZucuFCr7rOyI2FmyEgTeF4r3zm5LdrpkuE+gONzRdYit822Vgp/8ga1cALnsMyifJPeYSkYHUngABAABJREFU8PqdAtBRUrN93jLJVrc/J2A+2S9UdE8VuHyyf89awMLCSTDoJhBws3BhC+vW7SASybBhwxHWr9/JjBn1lJd7WLy4Fb/fRU2Nn7POquKppz7KxIkVLFjQglKK48eHWb58E4ODKRYtamXNGslur169DaUUjz12JRMmVLBnTw/pdB6A4eE0M2fW25ltPz09MXI5E5/Pha5rrFmznWzW4Afbfk1PbJDG8hruv+IGlFIMJyPMaprKU++x0qoJVvHKjT/G5/IW1cI9LidVvjLWv/o0GSPLOH8559S28s97ny+qkF/QMIUrps5nXKCSc+smUl9eTaWvnKFEGIALm6YynIpy5XmLOLduIodDx+mNDfLDHRtRaOCcAvU/BOck+Y2ggx4AHGAO2Nv/g4A1yPOrELw1N8uz8NZbJcCbMkWCvAkTBAivWCFtgkEBy/fcU6I56rqkkmfOFBQaDMK+fVKPHQpJNqa+vpRVtSzZfvhhyeAEAih0PB7JEo+MCCtyYECwY4FtfvfdoqUWjwvjMp+XOuvRzPN02s4PtEv8W0ic3323XLoggJ7JyK3OmSNzBYV2Dz1UAtZ+P8yYIe8DAbuKRCEx6nCk5HaTzkijgvp3wUarULbYZXPWRzMtFbbImVWylC1Qyr1uiXUdeulahWx2oVzStCQ7DmMp4+8rhv+3Lu+D67/28u/5Wf/vtBu9zzLllY3aNWLyEJIHbLfMzBcChHiX/TC3Z9ytvAgQ5qI4STN5ksXMmTIx2NEh1JgzZ2RMK1BjfvITmDpVxtRotDRIrV0Ll10mWehC5rm1Vdg/hcSv1ytWBwUPwmuvFTZQLCZiE4UxtlDDrWlgmBrK4xb6d3kQXA6YOF5AtMctmWyPGzyukh1X3hTaTCYnVgVBvwxQXg+cbQ9Eyv47mpatHK4g4LMHJJcMRi5XySewYKQYT8qI6XbZQhIKzVJoLhe1s2fjb2zE6fMx9NZbYFkkurrYv3Yt+VQKb0UFDo+HI088QXpggLrZszGzWWKnTrHnW99CczionTkTlc/jsOnlR37yEzRNw8xmGX7rLaqnT8fh9QpodIqKpCsYRNN1zHye9NAQqYEBpl53nWS+DQN3WRl5I49qPVv+GWddAOueFnsthwMyKUjGRejM6xOwXV4l2excVijePr9knx0OaTPpXEglbCsvOzOTzcIzP5W/pcMpx37zhNRouz1CCzcN8b1edrNQ06/+DMy5BMqqQNPxVzeJ2FYygpGJYaTjRHuPMXhyN2Y+S6y/HYft32rmMvgqGtAcLvLZFP6qRlzeMhtI62i6A4fbTzrSZ/9OLDKxQaFf6xoOp5v44Gl0hwtlmeSSEfxVTTScuxiHUxgGvspGNN2m1peVo7dOEvGynF0Hp4Hm8UIui/nSJrT68UL3DpYXKd0kElJzPfkccHvQHI6iR3ZBEM3q6RTPaq8XfdFl6H//ZRxXX4tWWyeTKOFh9Gmz0JonCAUd0IJBzC3PoowcuuaksfFCPJ5y8vk0l1/+ENOmLaWpaS7btq3myJENvPHGwzQ1zcWyTBwONy0tC9m16xGhzRtJenp2E4/38tJLd5JI9NHUNJddux6huvocTNNA0xxomk46PYzbHaC7exfDw8fJ59O0tCwgmRxk/vw7iEa7AMmGb9/+EE6nl0CgFgvwaBo1CMBNIvZa/UgWex0QRR5G05E67Cyw8Te/4czBg7x68CAvfupT+ICZn/gE5vbt+CdMIIHQxt3AW0j99SACpL+P1GbfimSznaOGVjcCrn8ANAKWabF9zXaObDiC7tKLYEtZYrP1/JefJ3omytVPXI076CY1JNTufDZP545OEn0JrvinKygbX0Z6OE39zHrKx5dLH3nF5hWbGT4xTN30OlxeF/lUnj+u+iMAl62+jGhXlEw0I1TwdTvJRDIoS5EcTHLlD66koraChmwDT37kSVyai4UtC+lP9nPr1lsJxUPMbZrL6m2riWai1AZqWbt9LbWBWrpiXUyvm87JkZPcvOVmQvEQe3v2MrN+Js3lzSxqFdp10B3k7oV30xBoYFHrIoKuIEF3kIZgAykjxW1bb6M2UFv0yW4ub2Z2w2yG0kOk82lcuouA043m8AmYzYWlBnp4t4BcZ0C237pPAHJB1Kzrt2BEJdtcM19stfbcKBloNAHRDreIop13h+yvXQgt10q9sZmRDK+3DnIRAST+Zqi6UDJ/Fz8GrZ8WQF45rQTyszEbaHsk06tMeZm5kt1WtMNmfOXkXgr+1mZGKNZQyvhET9vRtFZ6zmq67Q1tZ+3f+yzWHKXSrVxMjkc7pL7ZMmRSonG+ANtstGSTNX4hHHhM6trRhcrdtBga5wkwHr8Qrj8p5xpJyWwbCUgNCsC+8HZI9Jbu69VbRIDto89ITXa8s5TxdgXh+g4B4Q4fStPp6Ihw332vsXBhC+vXL6Gy0suLLy7j8cevorLSy7hxPnI5k2zWJJ3OC+HrlHhYnz4dxenUWbduZxFMW5Zi1apFbNr0GR5//Cp0XaOrK8aKFVtsqy/JSre3j+DxOFm8uJVx43zFWu7TpyMArFq1mLcPD/HVxZ9GKcUDLz1Fd3SAoMfHzKZz0NH4/JyPcvV5i0Td28xzsOcY3RGZxL6gcQo/3f17qnzlPL3vBS5onMJgIsy6V/+ZcDrObR9YxhVT5/OltmvwOj3c86EvoIG0+eM/0xsbpCs6wFAywhXnLqAuOI4HXnqKwUSYs2pa+Onu37P12Bvyncqfgf6bIN8JejkYJ0UtXCVBC9qj5P+AJZcTsByLyfO/ELxFoxJPzJ8vKDWXE3R7yy1y3po1gjYLVlrBoNjCdHVJfwX+9n33CaCur5fz77tPglAYWyANRc51rrqBU6fhjTcEHHu9Qstes0aA9KRJgvPfsP/UhZLEUEi2R9tp794tXa9dK+JkBTewyZMl5Csrk3h3zx4B0bt3S3w8ZYokksrL5WPceqskmQIBud3qcbbLTcHC9fwpAqKdDskUgwiYTRgv8aRCkkUF2rdDHwueszkB1TlDkksFUFwYWkxL4t3CtVob7XoojySCTnXbor9IzDYauOsFrvj7y3/18j64/msu/7t+1n+p3eh9piHU72hHqVYs0i40LjR5WI47z+Z5u+Vhb9qZM5v2pgG4AmiJbkZGFP39f14+Y5oygHg8Je9rh0My0489JjTvgpXBlCmSKD5xQjLQhaUgBNHRIbSasjIZd02zND6vWSPXHp0dz+V1GRxMyxbb0uQAjBUcAxl0CjN2GrIuC8j+9i5pX6hxydqAOWfXtOTy8qFaG0uqigUKemEG0DAEgBcKw092Qi6P0nWS3d3sW70alc/j9HrFs9rpRHe7mXX77ehuN5lwGGVZTL3uOo49/TTKNDHi8aJHtcPtJtHZyd7vfIdUXx8Trr5abLqAVH8/3nHj2Ld6NWYmg+Z04vR6yYyMsP/BB4mfOYPT6yXV2yu13w5HMfM9fPgwLo8HLRaGX/9Y6qtNS7LHRlbA9KZfSe11IWPtC8CHr5Us91kXyN/d4xFgbeTg9DFbXVwTsTOPTxTBl94g/4tYWNp96GOw9RkZvKtq5B/+q8eFbp5NQ3U9fParNnVSJotSEaF9G+kk/nFNnP2BL9B4/gfRnW5aL/wolpWn98ir6E6XgFYNdKcbZZmkwn2gLIxUhORIDygT37jxmEYGNA1fZT1mLi3+zB4/Uz/4RSwrT+jtV2yquRvd5RHAbddla5qO0jWIx7A6T6F5/eB0ibe1ZQldXHegX3YFJBNYfT2oXEbU3f0BqKhAczgk0+32oHQH+uIPoX/yc5A3iuJkKhaRWe6qGvSmFqzuM6hsFs3pRGuagLn1OYhGihlwa/sf5X0ijmVkicf70DQHLpcPj6eSD3zg2+i6i8WLVxUFzpxOP9HoGV5//QHOO+9arrzyB7hcfhKJflpbFxEI1LFw4d243UGmTfsUS5asJxI5RU/PbrzeStzuIKChlEVr60IqKyficvnQNAdNTW14vVW2xZdOeXkTV175fXTdhWVP5KXtl10ZxiKErr0MeAQBuV4E+JYj9dZhBDB7Eep3H7D8kks43dzMOKAaAc03IxlqHwKaLfs1AaGLjwcSdn95IIbUZ5tIFr3f7WDRqsVMWzoNl89Foj/BSPsIDrcwII49d4zta7YL/bsnTrQzipE02LJCxMpiXTGx4rIU3nFePGUerLzF1tslE37Z6stI9CXIpXIEG4OUNZdx+UOXkxhI8MdVf6TxwkbKm8q5PXQ7H37kwwQbgqCB0+ekZ08PTp8Tf4OfRC5BT7wHXdMJuoNc0noJA8kBlk1fxqNXPEqlt5LB5CArF61kMDlIW1MbCSPBup3r2HBkA2u2r2F63fSiYF1hXeGpoDHYyNdf+jonR05S7a+mI9wxJus9nBrG5/LRm+gFoDfRy32v3UdvvFey95pDqODZYQHTvgYB2iN7hQ7ubxRgfOwRAbLJM7DoGQGJFz4KEz8rILsgRmbE7eeVU0TM3DVSg63ZlPKjD5UEzzIDAtjjJ2HkzVL505u3iVJ4TRu4KmwgG5daYt0lz4ryCXI/DnfJb1q3hckK7hrKhOgp+xmqlwTOzJx8mYMN8r4AyHNx6cfhln2FdmbOznS7ZVxNj9hCo/b9JrpLftZmRrLKH3pcaOfpEXnGn/sZuPT7JeGy2plyP/mMZLpjp6F3l6083g8775O1yw99u6FyEtTNgldWSMb6wttEDK1pEWQiArD3Pyx2XcmQXMOOSSxLsWbNNjZsOMK6dTtxux0Eg24aG8tYsWIzsVgWl0snHM7Q3R3F53NhmoqenhiXXNKKx+PA53Nx990LWLp0GqtWLWbnzi5aWytoba1g9+5ustk8Xq+T5547xsMPv0FtbYCGhjIWLmwlEslw+nSE+vpgsZZ77drt9PUlaG0tZ35bKz6Xh18Ussy7niWZy5DIphlJRWmurOOeD32B/tgwa1/5OVW+MoZSEZK5NPMnzOBL865BKcWX2q5h/oQZxX5+tvv3uB1Orrv4avoTIxhWnrWv/JxELl0UNxtIhKnylfOLvc+jaRo/tbPkv9j7PLqm88sV6+l69I9cePECZl30QX7zmw0wvIbNm7dw4ZwPMuvyDVww6wP8869epuS7/n9wSafllc+LfPbJkxK8jQa9n/iEoFWHo6Ro63bLZHsmI+ngXE4Cxttvl9rCO++U30ghO7NuncQG7w08Rx/P5yVjU1dHznTS2alRW1sq1X7mGcHeXi985SuC0ydOlMs89pjo/0ycKB+rr0+AcWWldAlyriiPl9jTuZxcdnhYkux9fZKZdrtlfuDMGWm7dq3cZne3sN3b28GlgzaaXVkRLGkE5ewkmO4YSxP3eUpMytGAeXSmuatPShsLukFKCauy4KntthNNXrckmtxOEfOd3ExRPFHXBeCfM/F9Svh/8/L+X/avuSgl6pvpIVs99N+hZPyldqP3KbOUnVbmWEVwZcnD0l1ug3clM9EOj8zYm7kxs+emvxm3RytSZ0ZrSrhcMtBEIlJu8+UvC3hOp+HmmwVUNzcLeD5xQiY4V6+WwSaZHCsEsXq10MI7OqR9lyS5iuOzyyWDXkODDJhul33vRRBslAQZCplry5KZuaAf5k4viT38JYXwvFl6r3gPDcfu0+cpzexdcJYMWBo2xTw/dvbQznoXVcGHhxk8cEDEybxe3MEgaBpvPvggZiZDLpGgrLWVOd/8JprDga+mhjnf/CZXb9qEr6aGoz//OZ0vvkiqr49kTw/Dhw9jGQZ1F13EsX/9VzpffJEjTz5Jur8fZVm8+/OfUzt7Nk6fTzLfF10ECBjv27mT1OAgtRdeKH/DLb8RCvaW38jfp3kyxGMyafDhvxPbrcnnS210eZV4WRdsu7pOihiaYUBFlXhUZ9MC1gvq4eEh8c22LBjoEbp47Xj4xPWiKn7mhGS0l/ydKIo7XQLuDcl+G5nEKJDrJTBuPMo0GDyxS2yzMin845pwun00nn8pml1XnU2U6N3e8hoAdN2Fv2o8aA40pXC4/SjTwMxlxdorn8PIJsWGKp0g2nuMfDaN7nSRTYRJhXvQHU7845qwzLyA6FgULRDE3PI7oX673VihLlEMT6ckC101Dr1loi0YF8XqOm2Dc1uoyMhBLgNON/qEKeBworVMxNq9Hb2pVTLuBZutpgmS5e46DbEIWstEcLnQZ14MZRU4PvpJ9JkXo1Ip0BQeTxDDSLJp03LC4ZOUlwsLIBbrYd6824lGO1Eqz/btIjaWSPSxZctXyeUSNDfPI5dL0Nd3EE1z8Prr30EpC5fLT0VFK62ti3A6BQwEg/V4POVYlkUqNYRhpMnl4jYArwIswuFT9PYewLLygCKdjqApCz8ChNuReuhlCF3bROjhDiTL3IcA5Cxwz3XXsXD6dG66/npSg4M0IBTy/cjP0okIk21AFMbrEUq4z+4XpCZ7t/wKqEfAejmiTr6bkl1XeWs5V/3wKtBh3ORxNMxuYOttW4mcivDJZz7JopWL6NnTQ/sf2mma28T2tZLp3v393bQuakVZCpffRaw7xuYVm0HBknVLcPldOH1OWhe1Ut5YTi6eo2dPDw6Pg4qmCubfPh+n14mVt2Qeq8wDGiT6EngrvDRe1EhqSCh9fYk+ToycoD3czjdf+ybXnHsN48vGc9PmmxhIDhB0B5kzfg5TqqawsHUhXqeXCk8Fdy+4m81/v5kfX/1jKr2V+F1+DvcfJpFLkLfyHOg7gKUs1ly2hnJPOWiiTD69bjonRk5w85abGV82HoDuWDdOh5O+RB/PHXuO3kQv7ZF2DCsvYPet++Svne4VcFs5UzKgjgBM+ge46DHJpB5ZLWDZVSH/qHxCaqU/uBnm/lgy0IXJZ6UJTTkzCLETQpk++2YB6iCgXXOKiJq3zs6Y52HWQ5Kd1p3yjTGzAmSjp+UelRIgo7vl2WhrIhDpkH4dbjurjFC7CwJloyfFNYfUQpvZsWC5UL/tLpPns8aojHZCnr/jpgo1XXPIa/xCOc9Tabd1AHZGvLxVgPRrt0HslGSYG+aK0ndoh3zGxQ/JvdTOkPves1ZUxfd9VyYfGuZCaJfc/6LVcg3dY38mJWJpDi+0rYSJH5Y67GMbBJhHT+HA5J57FrF06TTuvnsh6XSeRCLHunU7uO22ebjdDoaGUlRVeWltrSSft9ixo5OmpjKuueZc7rvvNU6dijB58jiefPIj9PTE+Lu/20BfX5LOzqgtZLaVYNBNR8fXePTRK3C5NEzToq8vQSDgxut1ks9brFq1uHgfiUSO06dFeVxZ8Pk5H+WKqfP54tyPEXD7CLp9eF0eHnzlF/TGhvC4XLxx+hCRdJzZTVOps0XKKrxBHn39VzSW11AbrOLeJV/i9194mDsvvY6cmedXb77IuXUT0TWNOy+9jrxpUGeLm9UFx1Hu9XN92zUoBV9qu4Yrps7n+rZr8Lk8OHUHv/n1b3hz/04O7n+ZT31qKWrcXXz2c8v5xc+e5ODLS9n0+//F8q/cRvzEFyH37l8fYFs5sBLyfD9xQtBrIiGq315vSRK7AHq9XqGC33KL0LpdLslq19VJCnnmTEnrtrdL+wLnWqkSVdxOInDPPVI7+Oijsv3II7K9ciXs3CmBo9OJw+OgrU3x8MMlpuPChRJPnjolJYzr14v1Foggr9MpbMyODolBBwYkhm1qkmx0S4skeSxLbs00hW5+5ozMKRSccwoU9FBIrqfrpY/R1ib76uqkclCNZlcWFtOCMyFhRBZi+phdimjYoNvIS8a7EGfGk2MzzS67XBHkWNAn4mexhP0/VNJfR7fsLyiJF47D+4rhf6Xl/b/uX3PRNHmY+mrsh+q/Q8n4S+1G79McY98HR7VFG1XeVshUa/LAd5eX1okQSoNw3Mcdd+g0N8sgctZZpdrpO+8UkDyaBr56tYDtwvveXlEJX7NG2D+FmhfLEkr5XXeVxkylSuqK69YJGPd6JZOdy8kYWlAm11GSzXPoQsPu7rdVu98zk1cesCm4qdIA9ZcUwp2O0nsj/+fqi5YF4Ric7JLzPe4SNRxkgGpusFP31VARRHM4mHbDDTQsWEBmcFAyzA88QLKri5F33iE9NMTU667DO24cTq+XfQ88QOz0aYxEgsEDB0j19pLo7CTR3c2sO+6g9W/+huoZM0j19hb7SnR1MevrX6f1b/6GC5Yvx1dfj6brzPr616mZPZu3Hn8cZVkke3rYc999+Ovr+fCvf03V1KnkUymZIb3600LBvvozQvN2uWVgdXugxqYGKcu23TKEKq4s+d5MmSaq4b98TECzZQq9+9ovwsvP2g+IEdmXjAtIr20AlPQfHpRM968el2u2TIHTJ+QefMIGGDy5u0j7dri9JEd6MDJJfJUNDLbvweULYqRj9L7zGrl0DGWZ6E43utNFzeSL0R1OdKcbTXfg9PgwjTTKNLAsUyzJnG4c3gC6Q8jBgyd2YWSS+MeNZ8LFf0eguhnd4cThdOP0BEiOhMilIvS+8yo/e/pfcE6dxrO//z36/A+w5623WPChJVz8yc8wbU4b63/0YwBU3kAl4hKAeDxogTKs7jNolik+2q9skV9kIIjKZbFefxmtZSL6ko+gnC4w81g9Z9DqGiEWwQp1obdOQiuvQJ9xIRg5zE3PQHgYlctibv43tKYWdKeHQKCWWKyH+fPvIB4PAQrTNGhomMWbb/6UlpaFaJrOokUrmTLlw+zcuY6mprnE4710dm7H4XDT1NTGrl2PMm/ebei6E9PMYpoGnZ3byWbjRCKn6OzcQT6fRdedaJoDXXfidpfR1DSXTCZs23LVEww2smXLV8lmY/j943BoGh1KcTNiodWEgOcwdjYasckq1F+7gZdef51fHj7M+jffpKqmhus/9zkUIlA2HxhBhM7WA5uAx5GHWQI4DnwFOIMImM1EQHceyYAnEMr4fGxgbZjkkwaaQ0PlFflcHhS0LGoh1hOjdVErVZOqaLywkd4DvegunUUrFzFt6TSWrF+CkTJI9CbIZ/Ik+8WyK94Xp2dPD5Zp4XA5ePHWF8klcrj8LloWtBDaG8IyLTSnRmooRawzxtZbtpKNZYmeifL6d14nl8ihaRrBxiCWshhIDrCgZQETKyfy2JWPUeYpIxQPib3W9jV0x7rpS/YRz8XZ0bmDjJkh6A4yedxkmsqb2Nm1k5Phk9z4wo00BBvwOX1k8hkWtCzA7/JjmAb1gXpMy6Q+WE+Zp4xHdj1SzHoDXNh4IYPJQRa2LGTg6wMsal1EwBVAqbxknDs32DTkHrjoe+CyJ3mVCW/eDqlOmeg9/277WZUXavjhe0XAzNcEg7sk253ulb4KQmC+BiibIkCxfKoIlSU6YM9yyVDXLRYhs5r5kkFHh8RpOwvusIFuSDLXliEZZjNbYoBp9nOyfEIpM10AuYV2YGcWbWq3MiWj7PCMBcuFh7C3WoB54Xmci9tio1kRG3V4bFEzl1wzPShU7VxMrvfKVwTsWzmZpLj0ByJO1rQIzv20ZJd9dWKj5fAIsy09IkC5bRVMXSrq4fEu6Nsjvtnucsl0u4IQrBP6+MvLS/XmFZPBO05A9tSlcusuHy6nYvLkKu6//wO88UYXb73VTzDoZv36JTidOnv29JBKGYTDGQxDPK3r6wP4fC68Xid33bUAj8dBIpFlcDDJnDnjeeaZT1JR4aGtrYmHH36DuXObCIXi3HrrVgYGkja1N859971Gb2+c+vogw8MpJkyo4KmnPkpjY5Bg0M3ataI8nsuY1AaruPuyz9FUWU8yl+ZQ6DhO3cE/XHw1g0nJMP/++keoD1bz7T/8hDPhXpJGhmw+x+0f/CwZ214rm8/RExsknIqRMbKsvPyLhFMxvv2HnzCcilLtryxmqP957/OM81cwvqIWTYPmynpWLPgEpmUylIyAAr/LSyybQzknQ/0PUc7JaBpEogY0/IhYahzV1ZV4Gm4Bo4v/VisuKwdmDKykDapzkDsGyR2SbV29WpBqX1/Jg2p0UfOqVRKwtbfD7NkSzNXXS8B4ww2CSgMB6aNQ6/eTnwiidTolwPzhDwXZplKy/fjjgny3b5cU8RNPSJ+nTwv/ur0dM9RPOKyNKePesUOS4g89BEuWCLju6JDbOHVKwPDChSUGZjQqZd9uN1x0kXwMkMzzLbfI7dTUyO3PnCnZ63hc+tmwQcq/C1nupiYpeSzYc1VWSjilvbeu+fgowFwAtfGkTEi4XRKfmtafZ6mDfmFPThgva02XmLS9S9iUBdW1QiljzijVXmdzcj2Hw7af/e/7Or2//Pnyvlr4X2tR1thM9SiK9l9uW5gd1wQgje6jAMoL/WWjdnCglwIZ3SUPclegRDMq0OV0F2gaCohGdX75K5033pCxLh6X36nLJYPM4cMlrYl162SisaZGJiTvvVfo3Pv3y8yd0ykgufDx3DaG0zRhCRVmCbu6oLERxo+Xsdjvl3PdbgHWv/wldHeajK/KyiBVUFosdAz2rJ2/pJDYbAufeT0y6rldMlg5HTKo/HsTGYXa664+e2bQrs5s7xqr1pjJyWA1Sqnc0BRGMokzEADLYujgQRLd3dS3teH0+4mcOIG/rk4Uw6dPxzIM8qkUrvJykqEQ7/7iF5z7uc/x7j//M3P+8R/RXa6irdTggQN4KyvJjIxQM3MmaBq600m8u5sTv/oVs++8kz333UfPq6/ysZdeAqWk1to0cXq9WJaFQ9NwRAbRwkOScXY6RO1b0yTDOtQviuBXfVqAcC4r4mctU6SNy34ahYdkNruyWr5zz/wUrvgE1DSUvoeDvRAdFjBuZEttquvFquvgLrjpXjh7ukwNO3QwLUynTi6bxEjHcfnKbNXui8hn07gDFTicQtXOZ1OY+Qz5bBpfZT35bAojncBXUYuVz+Fw+wFIR0L4KseDpmGkowy176P+3MU4nC7y2TRmPkcq3EMqHGL89CX2DLJFKtKHy1eGkY7j9PgY6tjP0cN7uP/HW0HBnTfewN8unM9Fn/g099+7io9deSUjnWc4f8FC/vjyy5zf0iRK3ws+iFZdh0rEijXVWrCcQt1lUUlcKQHQLZMgbwPrQDlUV6MZBqpQu67ropqeTqFOHkObfLaIqmUzKN2BgSGZdCsPiP2YUhZbt97Ghz60BpcrYO/LC3UXHaVMwMK0Bdt6evZQXt5CRUUr+Xwap9MHKLq7d+H311BRMYFsNorXW0kmEyUYrMey8qRSIwSDtcICMNL09R2kvLyJWKyHQKCOiopWenr2UH/2ldyg6WxAgHAr0IlkrsOIuvfHgJ8gAmNd9jELAcjf6e3l1XPOYXs8zhrgHuCqiRO54Nln+e2sWZxClMVXAQ0ISN8ALAW+i4DuPqS2+1GEmr7W7icAtCayWIaFpmsYKQOnzynaBg4Ny7Do3tVNoD5AWUMZ7nI3uUSORCiBM+CkvKmcfDpPz54ego1Bxk0ZR6JXaOWBOtsfu60JM2uSGkqxc/1OLn/oclx+F5qukRxMEqgJ0Lmjk42f2Mjyg8sZOTlC3fQ6PGUe8lkB+ulcml5PL+t3rmf9kvX4nD4UCqfuJJFLYCmLZ999ltc7X+f7f/N9zkTP8P3d32f9kvX4XX4GkgNUeivZ07OHT2z8BM988hlaylvoinUxt2kuXqe32E88F6fcU46GhqUsbv/D7dy7+F4mVk4kk8+wL7SP+c3zyVt59ob2MqthFrXeMhyJdrQja2DOE6PGah1UDnCIcNnRB8VqC0voz74GAb9YApr33Ch2Xel+Aetzfiy11qkuUQzXnDC0G2rny/Mun5Da7aE34MJHRGW8uk3qvo2EgHFNA81lg+ScbMe7xGYqERIA7a22qdmhEriGEog2kjByFOrnyLO0oBKuu6F/b0l5XH7mJXp4QQ082mH7bDtGTX4j44KypH/dCS99WbLFXzgqlO725+DLZ+Tv2L9XaqmtvFC8yyZAxUQB6rpLRM08FRIPBOplolQXfQ7yaRGbNOICvAvX1l3w8o1w9Jcw7fNw2Q8Yk9W3cvIZo+3kogPkGhbT3h6muztGc3M569fv5LHHrmT58he48875tLZW4nY7GBxMkk7nmDRpHPm8xa5d3YwfX0Z3d4wLLxRaazSapaLCg8fjYGQkTTKZx+NxcN99r7FhwxGWLp3Gk09+hBtu2FTcfuqpj3LqVJiurhhtbU34fE4Mw6KzM4Y/6KC6wY3H6aY70s8v9j7PNy77PFnTIJFNUebx43a6GU5GCHr8HB88w02/fZArps7nKws+QZVfdBJ6o0MMpSJc0DAFXdN5u+8k59VPxqU7GE5F2Xn6EG/3tnPbB5YRTsV4avez3HXpdYTTcfriw1zQMAWH7sCh6eRMg7f72vnMBz9GZUUlGSPNJW0X8NAdippzvsMrfzzAp6+7jYDfQzg8xO9+8xiXL24GVzO4zwbd/5fjlv/MYuUkMz68GqrvAUeDWIFZcbDKIJ0XpOl2S6q2IKH97W8LetQ0CfrOnIG/+7sSajXNvyy5DRKTpdOSCa+slGCwtVX42omEBIG9vQLW6+qkTVVVKWicNAn6+kg3TOLkaQednRpz50py5tQpmQtYubJE/x59G08+KVh/3TrJNPf0wOLFgtlXr4Y77oBzzxVm5sKF8iooildXC6P9rrsk8XTDDZIoGhiQOYNVq6RGu6ND+lq1Cs4/18SZy45V7s6bEn8VnGc6uqGpXvYVlL8nN0u7wnmFDPXxMwKWz58iIFlRjFtIpEv7MlmJqwqxL5RsvgoK4+9Twf/LlvfVwv8nLGPqpTN/GViPFikr1FRH2qV9UQ1cp+iFXXyvlequox1jlcHd5SVgXqjz0t3F+gvNzFFRZvDFL1g89lgJfxbqpIeHZVKyogLOPltm6GpqxHLgscdksrGiQsa+gregYcgYefPNMqCZpgw8K1YIEO/qklm/s8+WMTWTkVm/4WEB8+vXy4BYX2fP/g1HBPw6dHkV6DQFhURdk8x2T78MIuFYyfPP6RAQDkKPKfgKgtDJoVR/XajZLmy3jBKYUJSEzkbX0ihF+OhR4h0d7Ln/fnx1dTRfdhlvPf442Uik5Ek9fTq5REKsnJRCWRbuykou/MY3KGttZe63vgW6TsLOPidDIWpmzsTf0EDtRRcV67YBnG4302+6iXwqxXlf/CKLHnmEzNAQ+9euJdHTg8rnMVIpzExGaoJHBsSfuv2IfI7IiFC6RwYFDBf8p30BWTdNEtXwQo12OglbNgiQdrnldfY0aRsZFtCt61BdJ6C846hNAf+41FxrSMb8/h9JVjuThlPvyuDv0NHQcfkrCIxrwkjHi8DaX9WI0xMkn0vT89ZLWJaB21dBYNx4dIeL4Y79eMtr5O8JKCuPmUvjq2oq1ZTqTqonXWj/vCycHj9ufwUV46dSe9ZcqdHOxEhF+vGPa8LlDeIf10Q+m6F68sWs/dkrfP+RR/G43aLo3dSKhiIajYHLRWJ4CLc/wLhx47B2/kmUvne+Jt+r0TXVyThada14Wdc3ihhZZAStqZWf/eyn6MEgv997ALwe9r72KgvnXMzseW1cuPgSXt22Dau7E4wc2rnTUCNDEBnB6u+1a/s9tir4VzGMpA2cYe7cr5JM9tPZuY1w+KRNGW/HsgwikQ42bVpOIhEik4kQCNQRi3Wh6w6UsgiH23nhhRsJBhtIJgdwuXzk8ylCoX34/dXk8xlSqSHcbj/DwyfYtGk5yeQAdXUXsGPHOlpbF1NRMYGenj0EAnU4lGKlUixFQHMnUiO9AskkP4NYboEA62AyyZcjEfoQCvnz/+t/ccHs2axBQPNahBL+ZSQbvdrevxqpob4LAdar7HZxBFhvQITT1o7qp8LuAw2UpXD6nOTTeck0x3LkM3nqZ9aT7E+iOTRy8RzZaJbKSZWUjy9HmaqoMJ7sl7GmrKmM5rZmkgNJArUBtt66FU3XqJhQwVWPX4XL7yI1nMIyLPw1frre6KKprYkbD99IoD5AeXM5A28NED0TZestW0n2J/HUeOiOdbP6stV4nV46wh3c+MKNdIQ7ONh3EF3Tufa8a3n0ikdxO9wMp4Z55IpH8Lv85MwcVd4q9vTsoaW8hWc++QxtzW34XX4WtS7CtExMy8Tv8uN3+WkINBBwBQi6RdjsqY8+RUtFCxoapmUys34m6Xya3T27mdc8D4WiP96L5muEuU/Isyl1Rjypkx2w9yZInYbys+GCe21xME1qszVdhLpcFfLfuvhxcFZI/XbdJfIs89ZJNloZ0r5uIWDKs86IQvPfCd1cc5Sy1s6AiJ3lk0ycMpWp501j1uwLmTV3Ab955llhe5kGBJv5+a+fQ3N5efb5LQJWQfouLJpDsszjzrOfu26bJm4Hqg1zoWJKqX3eznI7XHa9tVXKlmdjjEHXuXiJPq5ppWyzuwLmrhShsWS/gOnGeRJH9O8XVfHyVjn/1Vvs7Lsf/nizxAORU9D7hlzfMu0MuZ0dz6cEzKf65fxL1ss1P/iIbIePQ882iVdevlGE1+JdZCouoL8/QV1dgMWLJ+D1OrnttnkYhsW99y7m7LOr0XXYsaOTVMqgoaGcU6fC7NzZxZw542lsLGPOnCb8fhe9vZKNDoXi6LpGIOBm8uRKmpvLePzxK9m06TOsWrUIp1MvUsBXrVqMZSm6usTya8WKLbS3R0in8/j9TsbVeMVOK58TVe/GKei6zmAiLH7WqSjZfI7u6ABO3cHspqlcfd4ivjD3owQ9fhyaTt40GUpFqPKVsfaVn9MfH+ac2gkc6WsnFBvihzs2Mmv8VG77wDK8TrdNH78et9NNX3y4eF42n6MnOlCs7X70V0+wc+8bHNy/g9raOj53dxLTdPHAQ0/yuw0/5cwbl/DKz3X+4Yv3MJScDEY3WKn/Hmq4ygiwjm8Qz23dI/usJBhKgLXfLxmQgtXL3XdLsGdZkvqdNw8+9SkpNt65U7Iy2ezYusI33pAAMJuVbPTAgPS7YoUAaK/XBnw2dbG+XjLdQ0OSNh4aktRxT4/cdyqFGeqjtVVjwQIJx/J5AdTf+pbYb69YIU1HJ9hHl3ivXSuJIKVKJYwPP0xR7OzDHx7L0ozFSix4kASU11sqEV+9WmLeQl9dXbKtCtlmj1s+o2HI+mSndHRWq8SnbmcpW32qx3axmSDrgnPNlBYpeywPyt8zk7X70YQWns4KlVzTZF8hs40SoB1Plmjg76uD/9WW98H1X2P5j2qtxwiYZZCiu57/uDYbSiC7WHfdI+cXlMHlAvKwHa2KqkzIZ9Asg7yp6LR/8++tk/b75eW144hbb4WrrhLwbBjyWy8MLIUynMLAU9CqGD2ItbVJP6+/Li4NbrdMgBZqWXw+EZa0LATgnj9FBqjRwLi9SzouzM7VVpZEG+JJmNwkGe2TnXKuppVo3dmc1KIEfLaq+Blpc9E0GfCUsinTLhGYKNTAeNzg9wiANwwI+tGdTqpnzCAzMiJWXF4vDo+H2tmzOf4v/4Km67jLy8nF43grK0GpomK4r7oa3ekkG41i2en+1OAgdRdfjL+hwbaS0sknk1j5PP7aWpRSeGpqcPh8OHw+ylpaqLv44qIw2rGnnxbBM49H7Lj8fqmdrm2UjLGyhMJ9cJeA40nnir/1p26Uz/yp5XaR/ZCImkWGJNP9oY9JzXA0LOu2S6VtsFzAdjolWRFfQK53+pgA7E98CTrelex1Lgv/+n0RPJs0Vdrb6ttGKko+m8LlC9rAugE0HSufZfDkbqK9x9B1F0Y2Qc9bL5NLRWg4/wNCDbcVxpVSONw+sEzy2RQoEw0Nt78Sh8OFZZmkwj2gLBH/8lWgaRouTxB/VSNWPkfvkVcx0jH848bz+JO/YPElH+SiWTPkO2aamFv+jZ/+08N88/77mHj2OZx3xVU8cNvXaAj40a+8Bscd9+P4yCfkFxePo004Cyqq0FsmoXIFarjCcdmVqEScM51d/PSnP6Pt7ClSjx0o49rPf5H7v/UtDu7dy2/+5Wm+cP2XyJRXFkXRtPomcLnRm1qxus9gWSbbtq0u1lK/8MKNRKNnqK4+i+3b1xII1LJ9+1qOHNnA9u1r7dpr2d62bQ1ebwXJ5ABNTXMwzRy5XJydO8XOa8eOB2lqakMpxbZta6irm0402smWLTdjGEk0zVFsu337GnTdyeWXP0Qk0sGWLSsIBGpJJgcwNZ2ApvFjRKisDamR3oBYaC0CzkYeRm3Auv5+nr30Ui6ZMYM7p09n/J/+xBNPP81KYPLy5bzW3Eyou5sVV1zBtLPO4g5KYNoDnAP8EMmQBxEAXQDcFXa7pQigjyIAPJ8WSreRNFCW4rIHLsMVcBWHz5YFLbgCLnSnzsjJEaJdUbKxLJtu2EQilEDTNFoWttC9q5tsLIvD46B1USup4RTN85tRlsJIGuQSOZL9SdwBN+lIGhTUz6xn661byWfy6E4dp8/JhMUTqJxYyVU/vApXmQuXw0VLeQtvD7yNaZmUecr4Q/sf6I51M695Hpay+PpLX2cgOYBLdzG+bDw3b7mZRC5BKB5ixZYVRRuvSyZcglN3UuOvIZFLEMlGSOfT7OzaSVe0C4WiN9FLIpfAoTmKbBpLWSRyCdwON0F3kPnN8wEoc5cxzl+DSvcKRRtTbLC8tbLu3ABH1sozJzBBnj+ZYfnDxk/Cvq9KNtbKiuo3Crw1MOHvIdkJ4QM2ZTsofVt5OV+Zcn5mQOqwh96QMa5Ay/bW2lnnGL/57mc4eOBNDv7xt3zqk9eKLomnnNNdvfzkp//MvLY26Td6yn6uOihORudiNo06IP1aOWlnP0NFtCxra5pk7frroVJWXCmpozZzds13R0klvCCihp0pLp8ES54UynZZi3hQFxS8X75R2gbq5X3khGw3zpfnvsMjtly6A/y1do32rRJbGCn5fP56uadUP+x6QM53+eHDT8l5uZjUWvvqpH78ojsky9/YhsNbXlTwPnUqTEdHGKdT5667XmLixEoMw2L37h7q6gJ0d8eKAmZz5zaxd28I07QwTYtUyqC83MMdd8ynr09+O/39SXbu7CIezzE0lGb27Eb8fhe5nElrazn33/8BXnvtNDt3dtHW1szDD79RVBwHqK0NkDcUZZ4gR/raub7tb5k/YQYZIzdGmAwoAuDuyACrLr+eCZWNeF1udE3H7/ZyQcMUnt73QtF6K5FNUeUrGyNSBtAXG8bjdGNaFtF0fMx5iWyqaP319L4XuOzCRUQzCfzeILd87Sa2bX+DA2+dIdQ7wCUfXALVq5hzxe9obmrkwKs3gqsJzDD/5dRwKycguvouKFsGdY/K/vRuyZJbloBZr1eyHYGAZFXOOkvel5dLBvrGGwWEl5UJ0LYsOHRI0rhPPil86blzbQ2DiLz3+UpotWAR09sr9MV9+wSo+/2SOu7tlaCwvx8WLJCYa80a3C9vRtcVliVDwq5dkoGuqBB6+J13SteF25g8WViRBcy/apVcIpuFb3yjVPat63I7TU0lYL5ypSTQC22GhmDjRmk72vJL02QO4uhRyYiPDIPW0Q2RmK214Cw50hT0ek6cKdmNFcoXWxoE/Bb265rEoQW9n6zNuunut+1nbVpoz4Bsu53yyuYgHJVjHpt2frJT+n2fGv5XW94H13+N5T+qtVY2l6wofqIJ5ew/qs0u9q+/p3/731oE0patcGpnseP2TKC7HMwcRlaxevXYOunCgOK2mSlut8wU/vjHMt49+qjsc7tLA82998qYPHpwGu0LuGqVDHT9/TLWVlaOVShft84u4Y2BhYbyeiRDPdq/ryBMVgDMBcVvXZcPcHarAMRC1jtrA/KgX7LbHjc49VKbwXBJTbxQs+IR2jyWGlu/kskJeC8LgEMX22yPB399PUd//nPMdJqhQ4eomT2b2XffTaK7W4B1dTUKcHq9nPu5z3HiV79CWRaapuGtriaXTKLpOrUzZzLhqqswMxkyQ0NoTieuYFBsu86cYXD/flQ+j+4U2qplGFimycWrVvGBH/6QWXfcQWZoiD3f+hbxM/ZM5sig1EsPD0jC5KxpYsd19Wfln7dsBaDglA2IvX5oPbsElCvGQV2TAOsX/leJOeCyZ2QdTvAHZG3m5dhZF4g4mtst11eW9HPOdHjl93a2ygVuL0qnaLel6y78lQ2kwn0Y6Ri600PN5DlUNE7F6fEzeHKPbc+1B013oEyDvCH+2LrLA1iYhgiX5XMZURUHjFwK3eHE6QmQivRRoD2G3v4jRjaBmUuj6w7qz12Mrjs4cuQIv/vdv7Fq5T22GBKQSqLP/wAPPfIoq7/1LU7v3c2h7z7APz76A97p7kHTpSRDJeJSE97cijZjNsSimJs2QjyGftkVaA4n1kAvKljGl7/yFR751MfxBMvA4WBoaJDBcJglf3sNCjh7fCOV46rY8sdXUeFhzM3/BrqGFpAHq946GV13jamlLgBdpRSLF68imRxk0aJ7mDZtKYsWrUTTnCxatJJp05Yyf/7X6enZS1NTG5lMlHw+i8dTwYIFdxVVxkURXGPx4lXouoPt29cUgbrD4RrT1u0O4nYH3mMB1oYLRb1SaIhiuBcBtgWAO4BksBWSeV47eTJLDxzgT4cP86e33uLA739P78SJTAH2P/EEx7q7+Yd8njf7+3nx5EkGkZrrKYgS+JeAGqSWO4dQv88BnrDfTwaeBM5CasBBstaFxVPuweV3kUvk6DvYh8PjQHNqRDoibL1tK/Uz6wnUBXAH3Mz/+nwS/QncQTcoxG7L7yKfydO1s4uGWQ3MWDYD3aXjDrpFgdyh4fQ6cQfcdO/qxuFycOUPrqS8uRwrb6E7dPI5sfmKnIng9rtJJ9N0xbqoDdRy69ZbCbqDnPzqSS5svJDbt94OwOrLVhOKh1AovE4vdy24C6/TS3esm+eOPcf3d3+fRa2LyOazvNH1BiDAuMJTgaUsptdNx+fyYVomp8KnUChMZZIwErzR9QZZM0u1v5q9ob2YlklXrKuYPXfrOtrR9VB/KeAU6nfZebYS+DIRK1PA4A7QlIA3zSmiZFNvk9rrkb2ScUZR9JoOtELNvBL4HtwpFHGnX7yvvbWQ7maMH7Zps5X2rZB+PONEcVxZUDFBjlkWlmXxpeXL+cH3HsXj8UAmXKqxHu1L7S4rMb+gNJFdFBON2IFsuV0PVTZKAwUZQxzuUs13ekTAtTtYeiYL/Uao7Em71jwzIuNp02I48H2hixtxESprf07Uvp1eURWvu1Du5/zPSqa64GfdMFdAc6pfgHbkhAiquctE1EzTRDk8fFz2++thzl3grZTs/v6HZe3woTRRz7csRXd3jAsuqKW7O8Z3vnMpHR1hVqzYTG1tgIGBJHPnNuF06qRSeW6+eQuNjUG8XiexWJZg0E1lpY/BwSQtLeU4HBqBgIu2tmYsS/HAA68X66vzeYtMJk8+bzFlShVz5ozH53OwapUIq91772J8PidnzkQ4sK8fj9PFzKaptFTWU+4NYCnFF9v+Vmy05n0cn8szBjibyiKdz5LOZbFQJHNpFKooSPbleR8n4PYRTse53t73pbZrUEoxLlBOT3SAt/vaqfCV4Xa4iueVefx8aZ68Xzb9CnoGeilzB0CZ/Pp//TOzp/lpbdTp7e3j6LEucJ/LydB42ttPMrX+dckoO6pA8/x5vPf/71IQKrNyMiIO3AmpHVD/MJiD0HcjOGtBD4AzIQjR6xVqYTYr6WEQkbPu7lK2ZM0aCeJ27hRqeFubtLnhBgHomYyA8GSy5GfV0CDB4MKFJZ+s3l644AJ44AG51nvVxEHUxFauhMlTOHVKBMpOnoTp0yVb7HZLUsbvF3ZlPC7Hr79emJN+v9C7fT5hWN5+uzDNH39c5ghOnIAXXhC18QkT4P77Jdl+8KD029AgfcyZIx934sRSm927xUHsvvuEol5ZpaHOaoW66pJKmkO3dX6qSjpCXX0SY3rdktjJ5kosTdOSGNXnEXBcSAxpuiSPKoK28FkezmoRcJ41JAnlccOc6XaJij5W2FfJ2Fekib+//Lct74Prv8ai6aLiWXmWrEdTwpUl1O94l4DdQr2X0yc1XH+p/Xv9rzVdKGqVU2StAaN9NcGelW+XfcEGm0bejnJ4SKU1Vq2S33JZGZxzjoDoBruMOZcTwBuNwle/KuOrz1eqrz73XNGqqKmRjHZtrZw/YYKMr42NMhC99powhRIJuO02mSkszPotWybg3OGQMXjHdmQwiSYEzF40bawwmabLDF5FUAYfjZLVgaWESjM66z3aI1B3lETNaqtK+wsDEEj7Qub7/CnS5j0e2MoyUZaF7nZTO3s2R3/+czxVVRz92c/QNI1Uby9Or5d8Mkmiq6voaT377rtJhkIMHTqEZRh4x40j3tnJvu98BzOXw+n1Eu/sJNXfj2VZOD0egi0t+OrqiiJnmZERdLcbTdcZeustqs4/H6ffT3pggPq2NvwNDfI9CQ9KFrqiUrLHsYgEe9XVMoCfPCKDf8HfOp2U7PLvnxaLrpNvl+qpJ00VkH3ibanD7jxZ8lTT7dqh9iMC5DOSlWP6HPjNkwK8514Kn75RAPfJt8HMo7m81J7VhttXjtPjQwHe8lqMdAINcHkD1J2zADSNxvM/yLmXf4Wm6ZfL117T0dDEPiufo/fIa1iWgVKKwRO7xKcaZXtnx9EdbpweH6G3X8HIxKiedBEubxkOjx/TyGIaafqP72Tb669z+vRpzj5rCpPOOZtde/dy433f5jvrv8uzL7/Css9+FhWLMCkyQNuM6ez402sowxDLrtdfllpp+4ejknHUkYOoRAzSqSJV/J++/30WzJ/P3JtvQwuWobnc1NTW0lhXx69X3Q25LPvePsKxEyc509WJSsRxXHYloDBffA6VN0BZWCpPWdl4ysqaxlhvpVLDVFRMpLV1EZWVk/jIR56kqmoyuu6gqmoKV175GMnkABUVrThtUTSn04NhZKiuPoePfORJ/P4am05+isrKKbjdwTHXcDjcdtsnsCyL4eGTJJND77EA86LQ6NA0liP1zilKALcMERUzEKGxWxGLrR8h/tRupPa6DQHKGuJtfbF9bCKS+d4PROz+CpnpVQhYzyDUb2Vf284TcrO9DaLO/dp9rwEQORXhhRtfACDYEGTLii1E2iNEu6I0zW0i2Z9k6y1biZyJFGuqI6cjbLphE6nBFPlMni03byHYEERZik3LN6FMRfRMlC03b8FIGnTt7EJZSvq/eQvRzihdO7vIp/K4/C7SQ+ki1TwTyaDlNNqa2hhODfO9v/keXqeXPT176I33cvPcm+lL9HHXy3cxvmw8iVyCjnAHk6sm43a4WdCygLdufIv1S9ZzKnKKFVtW0BAUvYQTIye486U70TSNMk8ZDcEGnA4nl7ReQsAVYDg1TJm7jPkt84lmomTyGeY1z8OpO2kMNvLYlY8xuWoyOaWhLnoMJnwG8nEBtskO8Wue8yPwTxC6duVMAZYgz7YLvy/j0Zu3yjGn16aTd8t/KdEhgDodKoHpVLeA0vPuEAXx6rb3+GF3CwitnivnZYe5bvldTJ81m+u/fAODQyOg6fzTw99l4fz5XDR7unwrAnXyDI62l56vhck1q/AN0kTwa9x5Qm+vmAz1s2UMzcZKlPeKKUK3lQLs0qRksBnqZtpuHggg1uzyLpQA6+gpyWj7a0XdO3paqNsf3yTg94OPwt8+C3WzRQAtn5bnfrwLXrqhBKr3roMJS+SeCsrhe9fZ1PA0DL0txy68DfY/IqJomgaVZ4O/DvaskXP2rJHJDyCRyDE4mOLCCxuprBS/6UTCYM0ascZ6+OE3aGsT6nc+bxWtu3p64nR2Rjl5cmQMEO/qipHPSzZ7+fJN9PUlmDu3iXXrdpJI5AiF4gQCbiZOrKSlpYIVK7bw7rvDTJ5cxRNPfITW1goyGZOurhgXzKihO9LPd/7wExLZNJZSOHSN1sp67rz0Og71HCOcihYB8JfaruFQ6LgIjgHf+cNPUEoxEA8zkBjh3iVfoqmijqDHz6zx51AbrOIbH/oCXpcHp8OJgiIV/IGXnqIz3Eelr4xvfOgLpI0s43wV3Hnpdehpk89es5RFbQuYOXs+f/rjBp5ePUS986c8+ePvsXTpUmbOnsPHP/EPPPbot2iduhSq75U6aM3Nf2op1Ff3Xi9rHJK1Tu+Q98PrwLdQ/LbRwcoIGt29W0DxzTcLtVCpUpb5kUckTfvoowLCx48XPvapU5I5KaiHOZ0lE+qampKw2ZNP/jmAdjpLKeREYqyauMslWfPJk8kt+CCrV2ts2CC34XKJMrhlwYEDwiwHiS2nTJE41O+XpNG4cSU2+gsviFbbihVw7bVZvvnNm3n00bPZv38611//WWprYevWr/GlL02kvl7j7bcPAnKr1dWSJc9kZH3RRWPnG9xuOykTS9ixuc2C8bolPj0dkrh1cnOpbPFkJ7x9spQMojR0oGlFtqTEuY6xgBkkDhvtgKNrEg9rjBX2BUhl4PhpWb8PsP/blvfB9V9rGV0vPXoZTRlP9Eib4sv558A6n7ZrsQ154BdrtfN2fVUe0ORHZeZEtKVgQ1IQYCkA9nQELdFNY4PQZ+JxAdCJhPyWNU3GvIINV38/PPigAPAzZ2SC8t135XetlFDGf/ELWeu6jMOmKbOKNTUy2M2ZI3Uvc+fKxOUNN8is32OPCRgv1MKMb1SSDSyodluWvNd1qUnRkNm+mioRh0hni3W8nOwU8FwR/MsegQVvQJcTJo4v2W+NVg/XdRn8vG7pR9f+3ANb00h0d/PW449TM3s2s77+dbLhMBcsX47mcFA9YwZGIoGRTHL0Zz+j59VXSfX1oWkaDo8Hb3W1qIv39OAKBJh5yy2gFIOHDlE9fTq+mhpSfX1i8ZXP4/T7i32Y6TR77r+f+JkzVJ59NlgW+77zHSrPPZcJV16J7nSilIYaVw/+oNARXS74w+9EcCyXlXrppkmiEl45Tryq3V4RLlt2swDu5slSOz3pXDj/Qti6UdS/w4NyLBYZ/WWWuuvKcaIevsF+iH7iejm84UlbGG2cZMUt+eK4/RUY2SQ9b72MkY4D4B83Xv4NDicOV2n23kjHi2reqUgflmUQevvlkrr4yT1YZg5fZQNGJl60+DLSiaJQWbT3mIB3XSf09ivkkhF0p6tozfWlL17Hns0/ZfNP7uLt3a8y78IL+dEXlrHy63cQ8Pt5ee230corGPnQx9hz5B3Oz8TFRmvna+I/HY9hbv09xKPoLRPRps1Cb56Ate0V1JGDHP7NL/m3V19n1VduQKWSoBQqPAyREX73+Pf4xc7dXDR/IY9+814WzbkYp9OFVl6B+fImyYDPXQDJBOamZ9A0nXg8xAsvfAW/v4aPfOQJKisnks3G2LTpy0SjpxkZOcnmzSsYHHyH55//ErFYN/l8lsbGC/H5qsjn05hmnp6ePfZ2FlD09r5JW9vXcLl8RCLt9jVqufrqHxMMNmBZJrlcAsNIU1bWSCIRIpdLEI12ceWVj1FVNQWlTPKIqvdCxHPapKTmXY9QuQ8ioPd++30WmIUInH0dyXhnETD8feA6u5+QvW86YrFlUgLuk4BBe1/Gfn0dOGH391Uki64s2LluJ0c2HCEXz7Ft9bbi+x0P7uDIhiNsW72NprlNTPnwlGLb7Wu246/xo0zF9jXbi/sykQxHNhxhx4M7yMayHNlwhGw0W+x3+1o5b3T/hb40p0Y8FOe1+14j2Z+kZUEL3kov+Uwej9PDrIZZnI6cLip+9yZ6mVg5cYyXta7pzGueB0DeynP71ttJ5VME3UG6ol3cMf8O+hJ96LpOwB3gtnm30RfvYyA5QEe4g+WblnMyfJKB5AA+l49TkVMs37ScpJHE6/Sys2sn8VycrlgXN2+5mY5wB3kzK0rge24Qle/quUIJx35G6Q6heqPBga+LpZaVl//6kTU2EO4VQTNvLWR65T/3ztqx9PKjD4v1VqZP3vub7eeZW94X9nkboOHDcHQdr9+T4vAbL/Dm7p3UVJXxuc9/nrd3beG3//Z77r3zqyXgi1byoi48gwtWWJr9LNaQiWmHRz5X9JT9bHeN8rWW3w+mTRm3TGwkLe2Usie67UxUwX9b2eC6ZrpkmF+6QZTBE122snez0MHTA2LblewV0bNkSO61YJ21Z62A6rkr7We+q1TLPeduuc94l1DN/3hzycarQF0feVcA/9yVck7bvfL5gd7eOO3tIzidOpoG3/3uTv7wh3buuqvkXe10SsySShnF/W1tzaxZs53a2sCfAXFN04r71q3byZIlk1m5chG/+91R1qzZjmkqQqE4q1eXPLZNU5FOGySTOYJBF21tTSTTuSIV+/jgGcKpGA+/9q8kcxk8TjcN5TWkcjmaK+v5xw9/mdpgFWte+imDiTBel4c7PvhZHLrO0/s20RnpozvSz/7uo3RF+vnOS08Rig5wpK+dMo+fI33tuHTnGCr4z/c+h9vp4sFXfk40k+DowCn648P8y8mX2fiH59j35j4OHtzPs7/fwsRzBUB/5u8/y1tvvcWhQ4d46623+fvrbofGp8AzFXQv/6nFyoFKi/J44jkB0soEVws0/ARwQt1D4F8IQ/eBcQpUjaSC584VMH3JJQKUdV3eNzdL7fR995U8rR58sIQs58+Ha6+1r2+JgfSqVYJsH39cgOGKFfCv/zqW0miDZ/J54VpbliDj+nqhlXu9cPw47u2vsGqVYulSUQe3LDh+XOYAGhtlO5uVGLa9vZQ49/slaXPDDbLes0cA+D33wN/8zTcoK9OYP/84b7zxFjfd9F1WrICPf/wTbN68nZaWCcXKzLvuEn2g+fPldp96SsKqwke5+24hRmrZnNRDK6sksaAYG4/qugBmEEr4BWdJrAkSb2Zt+njBK1vTJNmk+HPA7HBIH7VVErdmcqVSSo+7pDYOYxNJ79dg//ctSqn/z72amprU/zWLZSqVSyg1/K6sLXPsMTNf2mfmpV28R6lsvHSOaZS2s3HZNvNKZe1+jYy8cklZp4blWC6prFxCZTOmGhlRavNmpQ4eVKqvT6lIRKl0Wql4XKmlSyX6WLpUqXfeUWpwcOy+wUGlNm1S6vBhpY4fVyocViqRUOrNN0t9Ll0q60hEqVBIqaEhabtnj5wbDss6FJJ2XWfyysrmlDpyUqnX9so6kVIqZyhlGEplc0oNhZWKJZTq6isdT6Sk/TvtSuVypXbxpJyXyco5OUOpZFqpaELWht1vPCl9Fdq/d3tUf9l4XG27/Xb1y/PPV9tuv11l43GVjcVUemhIJQcGVC6ZVMmBAZXs61NDb7+tul97TY0cPaq23X67Gnn3XdX92mvql+efL/vffVdtu/12NXz0qEr29hbbRE+fVkOHD485Jz0yMua6kfZ2FWlvV+/+y7+oobfflrZHj6rc8JBSfd1KhYeUCnXKemRQqVPHlfrxalkn40p1tsv2mZNKJWLyikWUOrRLqa7TSqWSSqUSSmXS0kd/j2wnE0rFwkp1dcj5XR1ybmRYjhX6eWufvE/GZf3WHqW6OpQ5EFK5dFwZmaQ6s/95dXjTd9WZ/c+rdHxI5XMZlYoOqDP7n1fZVEzlcxmVjg+rM/ufV8lwaMx69Hmp6IDKpePFtoVjRjal8ka22KeRTf3ZuUZW7iOXjqtUpF+d2f+8MlMJdcn556qNn/qYMjY+rbZu3KBmN9ap6RNa1Hnnnqu++9BDyuztUfnjR5XZ26PMwX5lbHxa5e6/XRkbn1ZWOqWsZEJZ2Ywy+3qUsfFp9diDa1RDQ72a0DReTWhuVh6XS9VWV6vH7vtHZSXiY/o4t6lRvbT5hbF9JhPF7XRyRB07tkl1d+9Wx45tUsnkoEqnw2rjxqXq/vtRGzcuVel0WKVSYTU0dEIlk4PF9729B9WxY5tUb+8hdfz4ZpVOR4qvTCahensPqo0bl6q+Pmk3ur9MJqai0W51/PhmlUgMqkwm8ReuG5HjpqlClqW6lVLvKqVGlFJnlFLHlVKHlVJLlVJvKqW6lVKblFKDSqmEUipiH/ueUmqf/f6AUiqslIqN2rdPKRVXSh0cdX5cKdWvlOoZtX/Avka/3Ufcvn46nlG9B3vVxqUbVSwUU6E3Q8X3fQf71MalG1XfoT6VCqdUKpxSfYfsfQf71LFNx1RqJFU8v+9Qn4qFYvL+cOl9LBRTvQd6x5wXC8X+Yl8bl25U93O/2rh0o0pH0ip0MKRiqZgKp8Pq6OBRtXTjUsX9qKUbl6qBxICKZ+LqYO9BtXTjUnWo75CKZ+LqQO8BtXTjUnWg94Da17NPLd24VMUysWK7UCykDvUdUks3LlUHew+qTcc2qYHEwJi++xP9f3a9weSg2t29+8/2m9mwUtuWKvVLZB15R6mRg0plwkrl4kplI0p1b1Zq5JBS735Pqe4XlcrGlMrFZF/k6Njz0wNy7vABpbo3SV/blioVPqxUNvqeax1VKj04dl82Iu0K59nP2NDp4yoY8KsfrrlDNdTXqgkTWtWElvHK4/Go2tpa9cMffF+pfK707MwmSs9LI1Pal0vKq/AsziXlWPd2Wedzf/6sLjyb39suNSx/i0xEqdSgUsNHlXp+qVLfRdbJAaXSI2P3ZcLv2Y4o1bdP3g8cUioTlfsMn5Q+s3Fpkxl1nfeeP3JCqdSAUu2b7PNjSqXDSo0cV6r/sIpG02rTpmNq9+5utXTpRnXoUJ8KhWJq2bLfqlAopsLhtIpE0urEiSE1OJhQy5b9Vu3b16MGBhLqxIkhdfBgr9q06Zg6eLC3eP7x40OquzuqDh3qU0uXblSHD/epWCyjenqi6sUXT6hoNKMikbQKh1NjzuvujqqlSzeqAwd6VSyWUcePD6lQX1Qd6z+t7nzuUTWSjKo7n3tU/XL/ZnWkt13d+dyj6lj/aZXMptXx/jPqzuceVe/2n1bDyUjxnCO97WogPqIG4iOqY6hb3fnco+rt0En1evub6q3QCfV6+5tqJBlVyWxaDcRHVDSdGHP+8YFOlcym1UgyqoaTkeI9zFj/qeI95fKGUmZWKTOmlJX9T4eP/+5iZpVKH1Kqe6lS6YNKxTYplQuN2ndIqdhmpXKnZftdr7RJxUsBWyik1IED8v7AAdmORscGf6dPl9rs3y+BXGF73z6lYjF5HTokwWA0Ktu9vRIkDg1Ju89/XqmREaVefFHO7++X/jZtUmpgQALRzZuV2rNHxWMSr0YiSh09OvZ2BgbkNt+7PxL58+0TJ5Q6eTKhgsEytWFDVHV1/XlsGw4r1dQ0QW3YcEAlEmM/zrJlSnV3S18DA9I2FlMqn8sryzCUymQk1izEj7nc2HgymyvFlLlcKTYdCsu+ZFqp1/eV4td32pVKZ0rnjI5tCzFszo5xR8fNmaz0c+SkUkZ+7D2Y5r/zBXp/+Y8WoFv9P+DU/+NA+f/N6/8qcK3Un4Powr73gu7Cvvc+yE1DqeFj8iDPJW1wbZQe2vn3gO9CkGAayjIyKpMxVSgkg1J/vwwQyaRS2ayMhaGQDCT79yv1ve/JeHfokAw+hw/Lttcr5xYGtlBIBq/du8cOVtGojN3LlqniNUMhpU6eVKqrS8bceFwpM5eXgSM6anDKZEuDRzIlA81QWLazOTmWM+RYzvjzgSyeLA1GhfMKr6MdpfddfTKQGUZpkCqcNwpo55LJIigOHzumcsmkykSjatc3v1kE17lEQmXjcVnHYmNAcQEk/yWwXATs0ehYAB+LKWPUdYePHFGpgQGVHBhQkfb2MW2NeFxZmVQJKHe2C0CORwVk93bJdm+XUi8/q9RPHhIgXQDbHe8KeC5sd7UrlR7V3+kTArYP7VLqxo8KkI9FlDq8+z0AvV3aFfpIJZWKDKt8Nq0y8WEV7WtXqUifOrP/eZWK9AngzmVU55svqMObvqtymaTKpmIql46rZLhP2kf7i+sz+59XqeiAyucyysgkVd7IjAHSqeiAbEf6VSY+ovK59xy3r5k3smP7yGWUmc0os7dbGRufVmZfSJmxiP2+R5nxmDJjEWVm0spKJZWVzSgrky6CaLMvpMzhQWWmknI8k1HmQJ/K73pd5Y8fVVZCQPIlE5rVM3feoqxEQnWfOiXt+nrUj5Z/QV00Y4bKp1Oj7qGneNzY+LTKZuJFENzbe1BlswmVycRGAeNDamjohA2Yo2po6IQNhuM2MB5QQ0PHVSTSpaLRbhWP99ttY+q3v11WBMqJxMCo/o6rnp79KpUaUaHQAbv/qMpkYqqv71CxXSoVVsnksIpYloorAbeblVIhpVSvEoAbVgK0TyoB0xG7zWElAHpQCRj+vBKQ/a4aC7yx12ElAHq3vX1ICXgO223DSsB8SAlAX2a/jymlMomMSoVTKh1Jq1gopo5vPq4SgwmVCqfk/UBCpUbkfaQroqLdUTV4bFBlE1mVDqdVaiSlUiMplRxMqlQ4pYZODqmuXV3qxIsnVDqcVulIWg2dGFJ7f7xXxUIxlQqnVCwUU9lEVmXiGZUaSalsIltcjwbqqXBKHd1yVB3qPaTCqbDqjnYXwfLhvsNqIDGgQrGQimfiKpKOqM3HN6twOvxngPhg70E1khop7v8z0JwYVMeHjhfB98G+g+r40PGxILzvoAqnwmrTsU0qFAsV7+Ng30GVz8aUNRoA52ICqjNhpXYsU2pon1LJLgHYqT4Bv8mQUm98XqlkTwlkjz4/E5Z1NqKUkVAqG1Yq9KKcV2g7clCpY48p1bN51L5DRUCfGOlV4f7TRcD88IPfUYsXLSg9V1PDSuUS6gOXXKL+beOv5flZAMaF52s2ZrdPjn3mFias/9KEdz73l0G3aYwC7nFpV7heAfzGQ2OBcqxbQO7AQXvfYdnuP1DaTg7K+fGQUrEupTo2CyCPdQlYHjgk6+SgUiMn5ToDh0rXGDkh5xZAdTYh28NHpY9TL6p4LKOi0Yw6enRQfe97u9SyZb9VIyPpIqjet69bbd58XEUiaRWNZlQoFFNDQ0m1adMxVVn5oNq06ZiKRNIqFsuokZGUOnFiSHm9D6hly36rIpG0GhpKqs2bj6sf/WiPCofTKhSKqX37eoqgOx6X8/r742rZst8quF8tXbpRRSJpG9ynVDKTUvFMUiWzaXWs/3QRJBcAbjyTVNs7DozZHn08koqpZFb6iKUTKpKKq4H4iLpn0w/Usf4zKplNq8FEuLjv3f7T6sxIyAbUJXB/rP/MGOD9dq+A9EQ29Z8OF/+3FjMuoPkoss5H5BXbpFRqt6yNAVkXwHf6gFKR3lLA9l6EGgpJcDg6W/Lii7JvZESAcm+vBHff+56cX0Cjvb1KDQ8LGu3uVurddwWNhkKlfUNDsg6F5Njx44JaR2ddli4tguvCqfv2lWLRgQEBuz09pf2HDklsOvq2BwaUeustpXbuPKRaWiaoFSvuVtOmXaTOP3+Reuyxl4vnbdqkVGPjBPXKKwdULCZ9vvuu4PzCtV58Ue4lEpHbPnjQjl+TKYkXCwC5AH4TqT9L1Mh2VkByAVgXALRhJ4LSGQHhyZQdA9v7MtlScqhwjUKsGkuU2mZzSuXzAqiN/PvA+j+5/Efg+n2f6/+pi2XaCqQRERqpnGJ7ZNoCCWZG6ORlzVJvZeVtn84eW4DEQ1EdfLRPp69GbEQsQ/pJ9GCWn0U84SCdllrqfF6YQAX/wIKXXzwuaozf+IZQvA1DmC3xuGhRrFsn+4aGpJ+gzXDp7BQKz/r1Qs/Zvl2YRx/9aMlT2+GQUp/x44VGXh4w0bNZocSUBYQmU6B9p7NCq2lpEMGHTE4oLlNaSr7XrY1ybjoL48qlLvtEp3gLdvcJdcbIl2qxlSX1MIV+3S65VqHvs1qFbj4YFvqOx41h5Rk4cEA8rPN5Dj78MOd94Qt4qqpA00gPDZEZHKR6xgwRIdN1Et3dHHnySS5YvpxgczOWaaI5HCS6ujjy5JNMW74cT1UVbz74IOdffz1lEycWj12wfDmB5mbMTAbd7S7RGXUdK5fDMgyykUixbXlrC1omhZZJQ7BC6tVNS+yyqmqlDtvhEpq407Zp0XWIjpRqr8+6QHyq974OX/uWnLf51+Jh7QsIdVwpKVNAE6XwyecJPyuVEEp6KiHb//jlUh9bn8H83C0oZWFkEuQzcfxV40HTSY2EcHoDON0+et95jabpl9P7zus0TPugyAkoJRQpZdnCcHrR5gzAzKZwuL2gFLl0DIfLg9PtL1nQahpYFqaRxunyyd8vnyMdHcRfWV8UEMylYjg1B47+AbRgGYyrAcNAc7pQRhbr5c3ol18FqRTW9lfQF39IPKgdTlvsTcSKVHhEjl99LUQj8n7hpdJfZIRLL/sQt9x5Jx//+2V86zsP8Ktf/xqlFOdNncoPHnmElvFC/dIcDrHlioTRpp6P5nSS002e3/RljhzZwLRpS7nqqh+ilCKTCeP1VuJ0ehkZaeeNN77LlVf+gFisi23bVrN48Ur8/lq2br2NxYtXUlExkVwuQSo1yPbta1m8eJV9/FYWL15FVdVkLMtEKWVbdplomoNEYgC/fxwAhpHC4XDjcLhIJgcxjDRVVZMwnD46dAfrNI3vI/Tv3cBsRMxsLSJsFkI8r4P2/ykJHAbmI0y4BHA3ovzdCPQi9lsrgQlIXfUKSh7XT9j9pBBV8Aq7768h9daTkbooZyKLFcuRjWcJ1AXQdCmrSQ4k8VZ4cfqcJPoSBGoCYuTQnyBQG8AyLXp291DeUo7L5+LHM37MJ5/5JK0LW0kOJwnWyQBoGiZm1qTvYB9Nc5ro3t1N/cx6NE0j0Zdg57qdLLpnEb5qH7pLp3d/L/4aP6mhFK2LWsm5cnx585d5eMnDBNwBdE0nZaTQ0Qm6g+RVHl3TsZTFmcgZ/C4/SSPJmu1rWLl4JWdVnUU0E8WpO+lL9rF622oeveJRBlODrN62mlWLVzGhYgIKhUt3kbfyuHQXhmWgoeHQHBjKYCg5RMAdwOv0Mpwapi5Qh0Lh0B0EMNGyg+CplZrp7Z+Apo/B9PvhhfOhdam89zVB8jQcWQ3n3QVDO0TkbM7jtiWQJc+9VDcEmoUC7fDYyt9OW6QzBc4yaeOqgPBBqJol9d3kpZ94B7yzho7A57j2C/dgmiZKweTJk/jew+uYOPms4tiJgg9+YCG3rljONZ9cZlO1c6KWXdYs1lpOj1w/dlr26aOEpsysPHcLPtZQooIWj9t96e7SdUe3M7N2iZctzqlsGrnmFIr4gR/AB/+Jonf4q7dIzfWEJeCrFtXy1+8UWvjUpfChxyn6esfOSG22r1aE0S5ZLwrhmi5xRO8eCDRJzfnrd9kU8XIROdu7TgTOqs4habiJxXI4HBoul6Oos5pO5wkE3KIBatNMh4dT+Hyuopf1wYN9NDWV09JSTiaTJxBw4XBoJJMGLpcDXddQStHZGWP16m08/vhVDA2l/szzutD/6dNhQqEEbW3NeL0OOjoirF69jUe/v4SKKjc9kUG8LjfV/gq6owM8tftZvtR2DY3lNWiaxrf/8BO+1HYNzRV1dMcGeGrXs1xvbyeNDCcGz1ATqOKnu5/l83M+ysHQMVoqG6gPjuOpUfsO9hznH5d8iXA6TpWvjO+89BRbj73BFVPnc93FHyGcjjFr/DkcDB2nsayGCeMacTmc/KeXgjgZbvlO/aXtopf1KnBNBJWFfAiG10D1StlXlJHMQ98NUP5DUaZeu3asofPKlVK3d/PNEuh5PPICCQAtS9YNDUIVD4Wk3cqVUuh8550SAAaDEmDu2iXBXne38LnPOUf2OxyiGDZ/voj67N4t50+YIII/zz1Hsi9KHjcrVkizT3yi5OrV1SW12A8/LHGlZcmlPv95ETN3u6UMMRYTC9m33nqTyy+/iG9/+5/54hev49ixA1x77RJ27DiCy1XPjBmg6xN59tlnmTdvFqGQ3A5IrGsYEut2dsqfbOVKGFdp0dxkoZkFdQ/7h9LRLbGlxyWU70JsmzdtW1ldbrjgTQ0Sn46OZz1uWQd90m/OkJi1tRG89v8jkxXVcMMUxfKqipItrcf9vtf1f9HyH/lcvw+u/ycuhdrqeHepZqrgUVlYinVcmi0mlZda7PSQDaCnlMC1XlC/tn/sukPOVKCUSVfIRVmZjtMptSp33inj6ooVUkqzdKmUywQCJeBtmlLLsnu3jHuTJpVEzyoqZLDr75f3yaSInJ0+XRqnJ06Ua/X1yRi8apWMy7290uYXPzPxOk20vCkDQyIlA4PXFigbDEt9yTkTSttzpolYxOhjBSDe2ig1J4V+Cu9dLgHbhcHr7ZOlc9+7vAdom+U+sh4XTq/3/8fen4fZVdbp3vhnTXuuKTWPGRmLhDBlrAIFQkyC3TgQRVq7WyBEgi2KgCRpQCQBgwgqIINTt2hrpNWGDIRJJEWRgUlCgJBUhprnPU9r/P3x3bUrUbv7nPP+ruuc876s66qr9l7Ds/aw9rOe+7nv732z54476H7mGVo+9jHm3XEHjmlipdP4IhHG9u0jVF+PFggQqKgAQFFVXMfByeWIHjxIxcknY6VSBCorUTWNzNAQdjaLYhhkBwaonD0bRdfxbBsUBVXXwfNQdB07kymam9nZLFYyiRGJECwtQRnshed/J3XPhh8Ovyt10f6gXBOOI07hTdPA5y+45B4Hln3+yfx1rVAvmM/KegkHljY0HdJx0H0Cpg2f1GZbeblM/YHCgBFp2zJxg2E8XS9cxR52PovrWKSjfYVM68Yi0PUKxhuea+PYJpruw7UtFE3HsbKMHNpD9ax5ErGFR3q8HyNYghEsLfqCeI6Fa1uouiFtaAbZxBjhygZc28TzPIbe30nVzHMxgmX073uOcEUDFVWzUAz5DU24vHvpFEogiKdpuM88hfenPWjXf0PeV8eLqG0XolRUyWtOxvG6DqDMPAUUBSUULvxuFfnvOniahmJZuH3dKPWNkE7jdr6EuuRSFMPA7TmGUlICYcnDVQrA3VFcxuKHC4B5HRUVs3AcE89zyWajhMNVdHd3EI/3cMYZn2Hr1tVFIH7BBXfw8MOn09q6smBK5rBt23UnAHUB0rBjx1dZsOAGEoleSksbSSYHqKs7E8MIY1kZBgffoqHhPHTdTzLZTyhUjePk8flKyPlCrFFUvobUQVtI/JWBAOankNisBUgt9DrgLiBU2Oe4ilWOIqZl5YiBWSUC1t8AFgFdCOBeD9Qh9dzJwl9J4c9BsrbvBR4Egqk8+XgeM2kSrg2T6E2w866dLPz6QgIVAcLVYQHCwykC5QE0QyN+NM7OjTtZeONCMmMCgh3LQfNp4IoiTFEVooejdGzsoG1tGxUzKwr9O3iuV2wzF82RHk5Tf3Y9elAnfixOx8YO2te1E6oO0fenPsy5JiEjRGWoktVbV7N5/2Y+uP4DMlaGjR0buXmRmJmV+EqwvUlwPJIeIWflqApX8dbgWyxsWojlWrwx8AaLmhfheA4j6RGyVpaQESLsk0Fd2BAQb7s2judw3bbr2Lx/MytbV/LA0geY8f0ZvL36bSqCFcSyMWaW1kPqEEqmF0KNEr11xnrwVYlZ2enfgPB0+T3/Ofh2TYnoUg15nBuVaK1AtbhmOxnQwhCsLQDQvPRH2QE4+AM45/uTBmQjnVB5npifdW8WUD+v4P2gBSbduc2kAGYK9dJ/DSAfvzhWwQNFmTQis9JiTFYYOxfzgVCOMyorXLgT92onJ47hpVNl+0Qc1/G112ZCgDBIn5sekjppRRMTsoZFkDgiwPd4oBw/CrvvkvrqkhY5XtEKNeI+aTs9KGZlVlLM0Z5fPQnIL35EIrs0n3wmz187ue2SH5HM+0gk8gwOpti0qZN169ppaSnl+uu38/WvL6K2NswNN+zgllsWcdJJlXzwwRibNnVy882LOPnkSgCSSZObb36Or399EdOmldHVFWXTpk7Wrm1j6lSJR1RV+UCPP9f69e1UVYW44YYdrFvXzsyZ5XR1xejpiTN/fiPRaI55837EwcPXEQhpbHrxX7jlwn/A9Qrfiedhuw66Ko7nqqLQPT7E5j89y9c/+nnSZg7Xc/ney//G352znMpwGfe99EQRKH9p0acpL0R4Tay7btGnifjD+HWDjJXD0HRGU3F+tPt3XD3/MkbSUU6pnkrA8KMqKoam//8PWB8PnH0ngXkQxu6H2vspRtGhAbbkZQ+vhboHwB6A9LOQ3QM1G2D4Zqj9QWHSagjs6ZDMSJ1zRYUM+iZMr4aHYc4c2LdPEGa6YMYVCok196ZN8N3vyvPVq08cPB47JgO8iQHfN74hALyqStiYpiYZ+K1bJ4PJI0cma79jMdkvm8UsqeT9Iz56epTiIf/8zzIGNc3JaK6FC2UsOX+++AZdf72A7uuvl5e1ZYuA69tuG+Xpp2t5912T0lKNeBw++9nzuPPOu5k27WI2bICOjmn85je/JxKZS0+PHNfXJwlkeqFLWL0afvELMeb9+c8cFKcAmF1PQK3PkHrpREo8gxKpE8eeAZ+QPzMaJ0me4wmd6gpoqpXYremNMgnhujIRUhzvTpvsh1RFzj3hCj4B5EGAtap8CLD/Hy4fguv/GxfXkczrCaBcPnPStRROBN8lBUMXOHGdVgBFKHLjdc3Czb7Q8ZpJ8JXgAaatMT6uEij4Zxw+LP1oY+Mkcz11qvyefT6Zrevqkm033ih9cF2dxBkMDExGGvb1yURlMChjmz17pO2LL5a283lJWIjFpH9ta5NJT0WBKWUOWtcx6RAmmOeJZQLkttRPzvZ1DwgbbTuT2/4ciJ80tcAoFjoV1zux85rozCaOjackMgFPWO4/ew2265AcHEDz+3FyuSLzrPv92Pk8/ooK3vrOd5j71a+iRyIS/1IAx2Yiga+0FNUwxCPHdYuZ1oHKSqx0Gs0wGP3Tn+j46ldp/OhHmb1mDcHqalzTRDUMXNsmOzqK5vfjKy3Fc13e3LSJo1u20PKxj7H4W3ei/PIhWPIJmFIjoDdSOjl4dCdY7Ephk0GuF6cwgzzBEFumHGNMsOWurHvyx3DFl6SdbBrCpfLZJqLyeIK9DkcEdI8OiFP4BPv9sZU4Dc2Y2biA45nnYYTK5fNwLIbe76D21DZAQdUNPE+cv0cP76Vqxnn4IhUonkd6vI/uN56mtHYmDWdcSCY6SKi8DjQdxXMF06sqiucVWWvPE5CsKMJ4e66Dohvy3kGivjwXJ5/HyGRwd76AuugjkxFj0bEiiKaiEpIJlEgpzpbf4O1/C6V1Ltqln8aLRYWpXvQRqKhEcT3cvmMoJaXg86MEggKoS8vwEnGUcASltBxnx3+gNE9DaZ4mILv9IiirkNfrOiiui4eHoumYioNt59A0A8ex6O/fS13dXAwjRDo9TCBQga77yeeTBWZ6I+3t6yktbaa391UaGs5F14OASzR6pLi9vHwalpVF0wz5LBwLTfPhuja67kdRJhhsFcex6OvbTUlJI8lkH01NC1BVHVCwfGE8ReEIsAn4NmI+ZgPjwBQEbA8jEVru5JUo1wJwBPguAogDQCdwJsI8JxAgnS1ssxHgXYGA6w8K570ZieSaaN8tnNdXANeqoaIZGpmxDI/MFha6bGoZul8vMtpmysQIGWxZtYX9m/fTurKVFY+swM7JdeOL+DCTJkP7hmha0PQX+wG4tkvfnj7qz6onPZIW8L2ujYoZFQK8Ha8I2J654Rn2/2o/17x7Db56H6/2vEpdpI57XrmHRy99lGu3XFsEvXdccAcNJQ0y+eN5rNqyqrjtkRWPkDbTpK0093Tcw10X3kXEF0EtTNhajoVP85Gzc8RyMarD0h9oioaLy9HY0SLLPaN8BkOpIaoj1bieKwy66qGO7IKq8ybvM05WJn01nzC9qS4xJmtdC5l+mDIXtJDc2ybAauxtqJoHaOJQragw8qrEcSkIyPUsOU5R5TyeKwBc9Rc+NxXSx4Qdb10PkWlieHYCmNUmLzLn+Hsjk/u4diEyq5QTlwJQlo5KXrvmk9UT99mJ5c/VZK5JMWYs1SeGo1pQ1rkW5OOTedr9u8TQrGx64bUqBbBsT97HE0dh9waYvxZKZ4CdkkkEJw9GiXwHuZgAateS4xLdYpLW2Cas9u4NYlpW2iLgeuQtqJ4LmWFxCp+3FsqmEc/5GRhIncAmP/LICpLJPKbpUFUVxnFcNE1BURRWrdpyAuucyVi4rsfTTx9g6tRyFi0S89B4PI9p2mSzFr29SRYsaELXVWzbRdOkf1YUhVde6eZzn/stv/zlJ2lra8F1PTRNwbblv+eBHvCK+6fNLKl8hog/hK6qgIJf95Gzcvh1Py4eKgpeQT6w8fmf8PzB3dz3N1/jzIaTydsm9//xF3xx3mU0lFaCouB6LpZjo6Dg0w36YiMMpkY5o24mmqqhFn57KAoaSpEVv3rBJ5g+peF/HVwfz0xjivt36iloeBJCbWAPg1YO6GAfgbFvFxjr6eDl5Pdk9xYA+c2gNUj0lpuUfOvMLggtErnQdWtkEPeFL8iA7Kab5G/WLAHUE4PAPXsEaU6fDi+/LBTyW2/J2CEUEralrEzWNTQIQ/3lLwu6vfJKAd22Le11dMDnPidGZ21tQi8HAnK+2oKaTFVJ2QGuWm3w1FPw5JMSge3zycvcvRtaWuQvk5E5/298Q0zIZsyYJIRuvlnIoxtukLf5619fwo033kB7+3LeeecIn/70eXR2/omamkaGh+GSS6bxxBO/J5GYS22tpI9VVspHYBSGhIYhb0XXIRwogGuQk6oqpLPCLE+oVnTtL8eeeVP2SaSEfa4qTMYWGW9fob9y4UifKDXzpgDxGU1FpRyOc6KCU1VlXGxZ0sbE+g8Z7P9Hy4fg+v/G5a+B5z9nrU8A37NOlIwXJLPCOB53c1cLsrY/e+xpfqy0iaNojA+7+CM6lmtQU5FHdW0sV8OxPVxVR9dAw+bFl3X+9pMGf/M38Oij4NctnJyNaqi4lkMorArLp8kQ2XMc1AKodT0FxXPJ5FQ0Q0FTPHTVRVEVPE8hk3EJBDU0xcFTNbn5qYq8L9MWyYvnyehY8VAKgxnPtSV+SVHwXGey43BdUFQ0ywXbwdUVPF1F8RRUSyIM3BmNeJoy+fmd8H0UBlOeC7YLhlacDcf1UAq/IU9RcDMZbMtm/MABIk1NePk8pVNFcpkbGydQWVk41GP4rT9RcfLJ+MIhef7Gm5SddBIoCrmxMd59/HFaV63CCIcJVk6RG7eiQgH0KbqOOsFg5vM4poUWCGBGo2jhEEYwhKoqOIqCU/gMsExUn68grxMVA46NqunC6qaTuCVlaGYe/bc/xf7kP+JMsNwTn2VBgq0AquvipuKokTLcwi6qquJOoAPPQ03GcEMR2VdR0I4cgNFBnNPPQq2oIhPtRtH96L4AmhEgGxvCHyxDDQQLIFgGRqDg2nlsM4PuD6FqRoGJ9sl3X5hI8jwbz3ZQdQPXdWS75+JaOTTfiW1OgMNcbBh/WVVhPdi5FHogAqjgKOBqeI4n17ProXg2bt5GCfjRXAtvaAC3bipoCuRNVJ+G66pyfSbG8MLlwu5rCjhescxByafxjCCqlUEzczipFG7DdDTXBFURAQEuimPhBcQxVFNcvL5u3LqWwiy0h4WJpyuYZhqf5sNx8niKhqoZ4Np4ioKh+SeBpediKBoOnoBmRSWZHqGspA7Hc9AUDdPKoup+9AKD6ToWiuegei45K4s/VImuGrjIteB4Lpqi4rg2A727KC9ppLTyJPKuRUjRUBQPFxdVMdA9B8VzQNFJ45BTA0QAzzXpVH3MBcrdHA4auudgKxqOohDwHGzPw1INAp6Fgobr2ZiqD0/R8LkWKqB4NmnVIOTZZNDoUVSaPYswGp5n46oGec/GjwauSmbUIljhR9VEUWBnbfSggee4Apb3DzOtvaXYJTimQ3okQ7gqhOqTiSjPle9VmYhVQiE7nuW5W17gknuXECj3kYvleeaGZ5n/T/Mpm1bG8NtD1J9Viy/iQ9HEgTnRn0L3awTKRR3i5G30gI6juJhWloCqgefgqDoHxo8wkOymvXEeuhZAlU8YDbnGLddBV3Ucx8RGxacqeIqGbefo6N/LWbVzqfCF8JCJJpGEaziujYOKoah4ngOqXvi+5NwWKkkzSS6fwO8roSpYjmkrWI4GnkwWGoaK69g4ripS4vGX8e35DOZ5/4Y55QJUVcWyPXRdwbEtDM3DcnU0xcNxPQxDx7IlTknFxHFVXERC7DgTx3kYhktw3w2Yp99Fzg2h6QaO42KoDo6r4HNGIFiH7YGnuvicLBgRLM/Fm/h8Jq5dz8UDfKowviaqZDt7HmqBlXY9F11RcZ08qh7Adp2iLF8mKwTg6aqK7djSpygqnuei4+CgYeBCPoYVqCy2beBh5KMyY6RpArI9B9AkIqlvD0RaIDAFRt+C5sXQtxvCtVA+FZSCDnb8EOz9NsxbB/4wRGoQOUWhT7ZyMqGg+0TNVJzIKEQGeQ5kxiBcPXl+xcXxDCwHco7C6HCG8ilB/Lomn5kCtuniC2hoilKcFHNc+f4mfhGu56EpCrbpkrMc/IaG5Tj4/ToKCo7tMjqepr6uBMcT8OsWwLKmgF043nU9PIXCd1I4t0/F9jzCrotmWXi6jjIhNfY8clYewxdAcxw8XWckEaWypFyeqyp5Fd4ePcKZU6ah246owWwbdFHvmJ5LPBXDFwrzfrSX0yqaKEHHUxXGskmqQ2XgOOQ8B1XTMTwYySXIZNMM5ZPMmdZK2Bf8z0Z9//nimuDECwqOEGgRYaqtHjCawOqHwLkykaJXyZjP7ga1AvQaJkOBPHATcp0ooYlvpLApAfhkfS6PbdtyXfr9UrrmuqiqiuY4ONksbjKJGgqBaeLW1IDjoFgWXjAIroviOHgjIyg1NaK2Mwy8wgS3ks/j+v0ynsnl8Px+UWJ5nowZ83mUQADPccA0UQwDzzRR/H48Q/rkvKkTDIKKSzRl8M4+aF9kyzDFdUnnNFRdIZtySed0whHwaw4Bv4vpGaLC9mxQFY4dPcw1X/oSwyNjpNMpXE+horyEnp4ePCCZTGLoOo7rctqppxIJh/n8332XT37yXCpKpIxDcR1kmtFFMzQ8BTx1cjypII89Jsbnha/ENFE0HdUFV1PwcCeJDZgcdx033j0BEHseiqKi5qwTSaWD3bilIbyqMmnP8eQysBy0N98XqfjJ0wTkf7j8Ly3/Hbj+cNri/8Tlv8rFBvnBlTQJsC5pmvwBHhf35U1I11J9hZivXnn+Vx4rePiOvUMg3k9j+m2mBDPUTcmh2nmUZAzDyxPMjxNyE/jGe9CfuJ+LW3v5YH+ef3ksS0kwTyDWR6T/bYJajkjIQx3tR3viAdThflTHRrPzKK6L4nloo/2oP3+ASKafgO7gi8pzZbAXNZ8m0rcPbawPT1VxFQ8Pl/R4H/lUFE9XMTNx+vY9h5lPYFtZPM/BcfIMvPdHXM8ln4nR987zmJk4nueRifXjOiaOoeD4dfJ2mv79L+J4Fo5fwzmpGcezyKei0m4mjuc6OFZ+cl02jm1mcVUXxzZxrLzcREwTxbIEaKKguQ7+gJ/6886lpKGB0opS3O2/QwFClVNQrDzutt+hxKPUnn0WPjuPu+VJlHiM2rPm4ouECUTClNTXcd6t36BsaguhslKU6Bhu9xGIjuJueRItm0HTZJLB3fY7tGwaXziMhkcwFMAXiaA4FjZguR4uCslUChOFnGnR3duLaTuMjY3x9LbtjEWjpHJ5xlyFp7duYyyTw7r4E4xl8zy9ZQvRaBQA07YZGxtjy5YtRGMxco7D0y+/Qs5xiMYTPL11G+OxeCH3eIynt2xh3FWwURhLZzjWP0B22ilkz72ApObHdixyZBka34+DQzLVjxaOoAZCxGJH2LJlFWNjBwEPx8nS0/cq6fw4Pb2vEo0eprd/N6aZxPUcXDxi8aNs2boaG4tYopuevlex7Rzgoeg+otHDbNmyCtd1iEa72LJlFaaZIke6cK4P5LmdkqipbAo3D9GuKNvWbMNMmDiWSz7jse1rLzJ2KIqj+xnPl9Pd2YOZMLEchbHDCZ5etYXokTheWTVjhxMc29lN9FCUp6/ZQuxwDCvvkHf8EouthrDLa3AbpmOmLRzNz9jRDE9ft4NoT5a842frddvIJ/LYjkKutIHtN+zAtV1M18LRPFzPZc/gm6ScPFk8Did6WLV1NUeT/bzat5eEmcL1XBL5BGu2reFQ7DC2axf7jZKSOrpiR7hmy7UkzBTd6QFWbVlFV+wIqqoL0PaVoPhLGbQzrNq6moSZJGkmOTD2gewbPUxn7y7K6uYSLG/BtPNg5/DZCXzJQwR2X4ORPIjqOSgjnShWgohrU+nk8SfeJ7j7Ki5MvM+U/Bja7mvwpbpQc0P4nAwB10HxbAw3R9BOow7vREl1oY12EkgeJOjk0T0b1YqjjHYSTh5E3X0NkcT7nGrGiKCguBbqyC605EHCu69BT7yP5sSI1ATRfaCpNqoK/rAuBINPJTglwLT2FhQzgeLItaT7FEobQuh+mTRQPRMtfYTY+Ahnn3M2Z581h7PPOZuz2s7m0z//NFk3wVVf+CwLPrqA2167jWWfX8autzqZ/tGpBEsUtPQRFDePYiYorQ8SqgyiKTYqJj6rG9XLo3sOIcVDc220zBC6maB1ygyWlDcTHHoN3UqhpQfQrRTqwC6UfAKfoqF6DoZnE3CyaJkRtNhhAoN7uai5jSm5EdTnVqHFD6O6Nj47ixL9AL2/E5+dQY19gPb8tajxw6iZYdTYYdS+DnyJI1QqCk3JI1QFSjEthfGYg2W5ZHM2r3T2kjddEimX/oE0sbjJmLGQ9McGyZRdgOMqxBMma9Zs49ChKLm8wgddaYaHMxw6nGBnRx8fHIxyzTVbOHgoSt7W6TqS5JVXekgkTAYHU1iWi+tB3lRIt/6AnFeG62kcOhRl584ePuhKcdU123m/J4iNQk9yiG8++zhHUilM1yVvW7zRf5Du2DCjmTgJM8vR6CDffPZxYvkMRxJjvNF3gJ7YEHc++zjdsSHSZpa8bWK6wlZ3Rwd587h9emNDpPJZ3ug7wNHoEN987sd0x4dJm1nGMnEyjsfrfQc4mhjH9FfSGxtm4/M/IZXPknU93FA5aKMw9hWwusAZAfswjFwP9Y1QUgehMmhpAy8LTYsgosDQarAOyaTdlKmw4FaoaIJwpbQzuArsg+ClwReCYAkYBaBndcHQtWB9IKoALyvA2josecj2YRhche0kORiNMZLNUF4dIGplyeOACmPZDP25JKu2bKErGsUFuqJRrt26hUQ+T9I0+WBsjFVbtnA4FkPzqSS9vBCtmscNO54hbZvoPpXq2ghJ02RXby9H4jFWbd1C2jLpisVYtWULSdPkaCLOqi1b+GBsjEQ+j6JDVyxGMpFAO3gQZdUqlEOHUHbtQrFtFNclqPvQXBdlZATl8GFqI2Vohw+jrFqF+sEHBBIp5lXPwn/kKPrq1ShdXQL0EklUz8PvuNQmspRnTBZUz6LsWB/aqlXoiSQ1jop64ADqqlWEunvxo6B5HrWD48y4+TbmZw0CE5Mb/7OL50HOB4dt+e+p4DtVGOuxByB4IXjl4NaAa4DtB+0U0OpkX8eRv6wJSQ3yeiGmyUImVjSgArwQxNPYqkpycJCRt98m2d3NnjvuIDU4iKuqWD4fdiiEXVGBW1GBXVVF8tgxXt+0CTcYxHNdHMvCtCyyuo6jKLiGQWpggD23306iuxvTdRl54w3MTIbk6Ki039srSryRESzPw3FdbNOEcBjb8xh+7z0cRSHV3c3YW28Q0dLowz2oP3+AKfkezl+QQ82lUQZ7UX7+PSKpPoJuisrx/TTX5pkSzhNRU+i/epCgI+NY4/Db6GaaWSGDP3x+Bfte+SOJZIKnf/Mr/vTcdt744x/IZrNEjxzi11d/lswH+/nTq69w65dWcc+3P0N1MIGRiaI7OfR0FJ+dQXdNvHwGxzHJp6L0v/OClJzhkc/GSY/34Tk2Hh5mNk7fgZcw8wkcn0Y+n6Bv/wuYmRjp8b7CONSdHIPmE0ISFMafE+vzmRhOQMeZXo+bzwPgzmgkH1Hp2/8CnuvgehauY+EZGs68M3BmNeIq//cRq/83LR+C6/9Tl/8sF3ti238FvgHXcfAUTWq2g1V4JU3y/M8eE2kSuUjjdBSfD2aeLvW8IwMov3oE/AGZVYyUofgCKDuehL0vo27/N5qqcwR+dT+alZea1IoqlF88JNLa6Ahc8imIjQqD/qtHYLhfZta3/UoMsrb+CsU77vmO3wAKTD8FxefH01TAJRMbRPcH0XQfiqJgZZMkhroYObQbzQjQv/9FPM+jrvWjgIeVTVI14xysbBI7n0L3h/E8r9hBWdlkIQc5XQDTMQBGD+8lPnCAkUO7C5+hdcI6zfDj2Caq7kNVNeFm00mcHf+BNz6KZ+YhFIZMWgC06+Al4mgf+1uZye/thlQKpWkqGD4UFJRQBKVlOu6unSiajgZ4PUfRsmkMvw/FsiCfkwzlcAS340W8/W/hdryAl4xDPIZ60XKRFGsqJBN446MoKLgejMfi9Pb2YtsiW9V1HcMwaGhoIJ/P09nZyf79++no6CAUCtHR0cH+/fvZ+corONX1xBMJDhw4QGdnJwCGYVBRUcGSJUtIJpPkcjn2799PPp+fPHbnToBi2zt37kTTNMrLy2lsbETXdZLJJC+99BLgsHPnBmpqZpNMDjA+3lWQE3u88som9u/fTCo1QCx2mG3b1hAOV5NI9BAKVZNI9NLUtADPc+nr24Pr2kQitSxc+HUURUPXgzQ2zqOvbzfxeDfg0dGxkf37N+N5TvFxPh9n584N7N+/mc7OTQCEw9WoqgqOqAN0v87Cry3E8zxcx0UPyPP0UBon57Bzw05qZteQHEiSG88Vc48775XPzRf2UXNGTXH9zg07yY5lSQ+lcR2X3t195JMmYwfHGXhjADtvn5CLnIvlaJzXSGooRU9nD0bIYOl3l+L5PY6mj9LR3YHlWCxuWYymaPg0/wnZx6dXn47ruQymBgkZITZeuJG+RB+6quPhkcgnyFpZ/JqfmxfdjE/z0Rvv5akDT7Fh5wZs1y6A5y6yVraYlwyQyCdOONf8pvm4nktnz6scjR8lnYuiaH7JLO7ejLJ/gzBlVfOltnP0VQGW+zcUtysKcNrXIVgHvgoYfw3FTiFCbhVlbDcEaiDTA2WtKFoQxc1DfhT0MFQtQilmI29CsWIimc10Q/VCFNUveckHH0RRVBRNKaoWlEL9ruI5EDuM4uRRXLNQ9ypMJmZqcn+QCcvsKJVTynnrD7/hrWd+xFt/+A2rrr6aZUsvobKyivt/8EPefvMN9u1/i5898TgrP/tZ8RIoHKukesEIobgWSrxL2OLCNuwMSuwQSn8nJI9B522o6QEUXJTdG6BqNkp6AGJdKKoO9QvlRhDvghfWgGOhGBEIVaNE6qHuXBQnizKRjfzadwrKoLjU8garUSYeH9gs5wjVSH1vsBpl9wZ5/1WzUaIfkM/m0DSF7u4411+/nYaGEgxDRddVurrGGRpKoWkipbZtl46ObgYGksyb18jGjR34/Rr19ZFiDvLxech33y1Zx6GQwaJFzQSDOvfc08HRo3FeeaWbTMYmkTQ5dGiMbNb+i+M3bNiJ7Tn8y96nmdt4clGa6+Ext/EU6korqQiVkSkA4C+cuwJVURhOjtNaN5PhVJSXul7jX/duQVVEWqwqChkrz492/56KYAk/LuQr/2j37/HrBq11M4vrfrL7P/BpOlNCZTiuy8nVLQynxvHw+NHu33NG/UxG0zH2D7yH4mXFcCq5GcbuFqnv8c91RX471iEYvgFwwOqFKV8HJQK4YmhVMQswC2U9AzDlRrAGC+qlw5DpEIMr1AJAWwxKofZ7+OuybWwj6NXF81t2mu5EirRlsWb7dtKWxe7eXo7F41SGQmzs6GDz/v1s7OjA9Ty+09nJ5v37SZsmIcNgWnk5tyxezEAyiek4RHw+LEdMEu+68EJChiGAfMsWhtJpzq6vZ8POnWzev594Pv9XH2/q7CSg69iex4adO6n3+VA2boTNm+X//PnC3OXzkEyKXLeyEqWuDmwbZcMGkSlv2oQSi4lhZWGdsmHDpCuW46AcOwa33YYyPCyT6hPHJpMo8bjUEm/eDBs2oPT2wrFjKD09sHkz6saNaKb13w77/uriaeKRMqMJTE+eqz4gDLWPQ86R2ltNle/b0OWxZU0aa6qamF8ZxolZyxMd2ET9rmHgOg77H3+cQGUl+x9/nO5nnmH/Y4+RGRoiceQIjmli53IFNaJGdnyck6+8knRPD3vuuAPXtsmPj/POI4/g5HIowP7HHqP7mWd47yc/QQ8GqZo7F0VVyQ4Ncdo//AOa309mcJB9Dz1EdngYRVUZf/ddUj09vHbXXQSmTJF2Hn+cUGWlKBSnVMOnr0bxB6Qv0nTxl9n7Mmz/tRi5zmpFGR9GeeL7EI/K2DKbQdn2KygpR8lmZNw5/RSURBTFzBE/2gWRUhKD/VQGfPizaf7mE59AT4zD+AgLRg7RNzCAoxuQz0npnT8AyRh4Ll4+i+NY2Pk0tae0SYmZ66CqOro/SP/+F7GyMg6NDxxguGsPeC4jh3YXxpp70H1BRg+/hqKcOC5VVA3HNk8Ym4527ZVSBF3FLQ3h4OGpMNK1h/jAAVBU7HyGgXdfwsrG8TyXdHQAMx3FdZ3//LpzTDFTdsz/tev2/+PLh+D6/9blvwLfyGSnbdq4ioHlayCftvDQ8Mpm4ik+QIGyGYgDK+LqHIpAKgGOjWL44JTZ0qlDoc4L+Nwa+Mq38FZ8DuXIAXhrl7yOUAS2/Vo6tkwKWmZBIAQtJwEeXH4N1NRLp7/8s3De+bDiCjl2+Wfk+fLPyr6/fgy3tBwzEy/Wz/qCZbiuTd++5zCCEVrO/jjVs+bjmDlqT2kDwM6nwfMIVdRh57MYwQiubTHStRfXMYsdVKiinrKGU1F1g1BFA6Nde1E0g6oZ51FWfwrVs+aLjFz3nbDOsfLiOu1Y2FYOxUPA7oF38NJpFMOQjjQZR2maKjKouga82DjO9t+j1NajlJSizDkbfH68sWGprW2Zjrr043ixMZxtv0UJRwQso+BpOvgDqJd8HMoqUNsuQmmdKzW4fj9eIgZmHqW0DFDwUgmUcAQcG8fMs7Ojg5qamiKYjcfjdHd347oufr+fRYsW0draSnt7O6qq0tbWVnze3d1NaWkpq1evZtmyZZimybZt24hGoyiKQl1dHZFIhNbWVvx+/wnHAic8T6fTuK5LLpcDYNeuXTQ3N6OqKosW3YyqaqRSA4TD1Wzffj2x2BGWLLmX1taVNDbOY+fOjRw48BSZzBhTp55PVdXJ1NefTV/fHgwjREtLG7lcjGRykFdf/Q7p9CA+X5i+vj00Ns5D14MoisKKFY9w441DaJqPtra1tLauxO8vKz5ub1+PYYTp7n6FWOwYvkCI2NEYL9/1MpH6CL6ID9dy2f7l7SiaQsviFnp397LwxoWomkrnpk66nu1i0c2LaF3ZykX3XET0cJSXbn8JVVdpW9tG68pW2ta2cfi5w0XgHK4Ok4/n6dzUSbg6TN/uPhbeuJDWla20r2snUB5g5iUzSQ2kqJldw3jXOD2dPdiKTW+ylzNrz8T1XBzXIWyE0RSNtW1rWdm6kvXt6ykPlDOYGuS2l26jO9FN3snTWNJIykyxeutqAPpT/dz20m1oqsau3l00lTbx25W/5YGlD6AqKjcvupmAHiBkhGhvaae5tJmgHqTMX8bNi24unktTNEJGiAVNCxhIDhDyRfBQpda2ZSW0rpPBYaZHjKcC1WBGofVW2X7GeumT3vuOmFaN7YZAndSSpg9PHpMbhsp5Ar6dLIztFdlkdhBQ5TwT5wvUyTmzfeJWve92qFoMZ30XTw+j2HmIHz6uXtaTx2XTpH5V1WWQ4XliHKkZFCvCzaTUzk45Tc5ROk0MqUqa+PFPf8pVX7gCPJfygn+DgkciNl4o43GKE6CUNMnrnlAbmSmZ/AxWyXvfvUHa3XO3AOK9m2Qi4CMPiITYVyKmX4N7RErqiwhorpsnbyn2ATy3Ci/dL/sk+8QZ+pSVYoxlZaRO97ybxV3aVyaPT1kpJllmWs4TmCLn1AMy4fD6/ai6QTBo4PfrLF7cTH9/kq6uGNdfv52amjAlJX78fp1EwuSGG3ZQXR1mYCDFkiUzWLu2Dc/zsG2PfN5m7do2RkbSrF3bxsqVraxf347fr1FdHSKfl0nC7353KcGgzpw5tSSTeRKJPCUlfkIhg1tvPfH4deva0TyVb1z0jyw7dTG98WEyVo6RVIy3+g5gF1zwq8IV1EQq+NfXtuJ6HjWRKXznD//KqTXT2Hb1D/jGRf/IeDohLHZ0EEPVuWr+ZUSzSa6a/7csPWUhVy+4DNOx2T/YxVXzL2PpKQu5ZsEnMDSDjJnju398gng2xVmNp6AqKjd99AssP62NiD/IWQ0zUBQDah+Cxi1SM6v4xNm5ZKX8d6IIoB4UwIwi0mB7WFjpwVUi/bW6YPgrYB2FwFwYvw+MRpH9KkEIzoPsbrCOiAlWaDGM3i7PJ7ZVrgN7BCpvhZKV+PQwi5qb+U5nJ4ubmwnoOnNqa7m3sxNdVVnb1sbK1lZuWbyYjGWxackSrpw9m4aSEo7GYly3bRuaojCntpbrtm2jP5mU4glFYSybZSCV4u4CQL+7owO/rnPLokVsueIKGiIR1rW3s7K1lTK/v/j4lsWLMR2HgKaxrr1dJvnXrpWa3gcemHSxDgahtFQktZYlBbIAt94qplvr10N9vZR43XyzrLvlFnHJGhyU4wqgnY0bZf2NN8p+ZWXyN3HcunVQUiLnXLxY3LP++Z8n3bX/RxZXStiEdXbFXfpIH0RC8p3bzoTuXsBySaFOP5eHg8fElyabL6wzZZ3fJzLgmc1i/jqrWbbFUwLKm2qhbwhVN2i95hqMkhJar7mGlo99jNOvuorBzk7e+8lPsJJJ/GVl7PnmN0kcPUrFKacQaWoqAnErleLAv/4rc7/2NfRAANe2i+20rlrFyBtvkBkcRA+FCNXW8t7PfoaTy5EZHCwCcCebJTBlyiQo/9nPUDSN1lWrCDU0SNnf+Aj87mdirmoVTA4/9cXJsWX5FPGGOZ68Of0sCIbgYyshGcMLhmDp5XD62SjPbObX7a188qprmHpaK21/+0n+ZeEp+P7wH3Lc9FNh26/43hO/Yvnps9A1DXY8CbNaJW3F5xc1oy+A7gthBCPyOgs+KapuYOdzk+PQ8rri2NJTFBpmL+HUi66l/vSPYJs56k47H9exqZ45T/abeR6uY6H7pCRuYmxad+r5WNk4/e+8iGubTEj960//COUNp6EwCbRHDgmQD5RWMXxot7y+v7Y4Joy/D89eJf8/BNj/08uHNdf/L17MVIo9t99O3x/+wLLf/55ARQWKqkr4gq6hjAxAbBxmniqdazwqndH4sBhgVdfLTcixC8YtHmx+TEBwTQNkM2BmIVIus3aZFDz77/CFr8DwAMTHpEPSDchlpP0J52pNl7Z//y9w2RcExGsq/PwHMP0UnEUX4akqVj7NyKHdVM+aj5VNcuy131FWfwqNs5eAomBmYowc2kPVjPPQ/SEcK4eVTRIqr8Ox8niIWdVErFP1rPkY/nCx3aoZ52H4QyiaIRE8HmIYpWrY+QyKpou7qO6TWUlFxUxFGT28l8bWi1BiUbx4DKW0HC8RQ21swVNFiqWoUndOLgtmHlBwd71cdID20inQDRRVBZ8ft/swSiiMl06hNraAbuCNjchN2bZwX3kJdckKiYJShaXG74dkErfzD2hL/xZUFWf771BmnIR30umMJVOESkrYsWMH+/fvp7W1lQULFrBnzx6WL1+ObdtomoZlWfh8Prq7u2lsbKSvr4/f/OY3XH755ZSVlfHKK69w8cUX47ouw8PDVBRcz0tKSgCpsdQ0rRDVpJLP5/H5fDiOg6ZpjI+P88orr9DW1oZhGIRCIVzXRdddTDOJouioqsq2bWvYv38zs2dfyYoVDxfMaXSi0S4SiR7q68/G8+SYcLiWeLybjo6NLFp0MyUl9QwMvMm//dultLauZOnSB3BdB8tKEQ7XFWKo7irs24CuB0mlBohE6rHtLLlcjECgnMHBtwiFKkmnR2iqOZ9t1+6geXEzzYub2XX/Li7+9sW4tsvwO8O0tLUQOxYj0ZOgpb2F+LE4id4ETQuaUHUVM2Wy44Yd7N+8n9lXzmbFD1fgmA6O6fDcTc+x+JbFBKcEGXxrkPqz60n2J0kNpihtKcUIGOJUrSt4trhP23lbDNgcYdAH3x+kvr2eZD7JYGqQTZ2beGDpA4xmRumOdzOvcR6GaojB0HEGVz9Y9gNe73+ds+vP5lj8GNPKpvG1Z7/Gv7/37zx5+ZOc13ger/e/TluLAB/LtTAdk5ueu4l7l9zLUHqIuzvu5ta2W5lVMQvbs7Eci9f6X2NB0wIc12F3324W1J/NFMMQ0KC4BYBqS5TSnmsmHZ3PfRDMmABlLQB7V8PRX8C0K+HMu8FOQ7ABXrtO1reshHMfAj1UqBHtEybbyVJ0vI/9CaacC1Zc3Kb1ggnWcAe8+jlY+ARUt4nRVPyYANra8wSYTvhUOHnZPpG4ED8M2XGYcorEFR1/+/QcMYiKNILmp7Ozk09++lP0dnej6zq4Ft9Ydzu/+fffEo1G+fcnHuWjC+YWnKML9Xl4UjPpmCc6Uds5iB4Qt+dIkxhNzV8HpdPF+dlMCBi20pAbh9fvk+3BKtkGsOsuAdrTLhGQvPNWuPAHsk1RheGuXwgnf7rA0uuTr0fziZmYa4taykoJy+0rA88lrVTSdTjOpk2v8O1vX0wk4mN4OE0slqO8PEAuZ9PdHWfevEZM0yGVMqmvj+AWXNM9z6OrK8r99+/i29++mFDIKK7P5Wxuuuk5brppEVVVId56a5CmplI2buxg7do2ZsyowLZdursT3HvvK9xzz0WEwz4syy1WTAVCKoPpEQZTY7TWzcRQNd4eOEhZIMK/vraVq+d/gqbyGoZT42StPM3lteQsk5F0FDz46d6nig7Qx6IDLJw6h9JAmKDuZzg1TsbKEzL81JRUMpwa57Xu/Vx08nz8moGDx77+g1SHp1AWDJOxclSFy1EVBdO2SeZTVITKCOkeitWFMrbhuKgkINMJgdNBKZusi7a6hFGuewQGVwvQHr9PGO7p7wlQTm4WUF51Bxw5XR7X/QjcFLhxUCOQ2ydGVoOrTtzfTYMxC5xBeayGMZV6xvIqrucxmEqxqbOTW9vaqA6FKPH7yVkWY9kszx0+zJ6+Ph5avhxNUXA8j1VbtrB5/35WtrZyxwUXcPrDD7OytZVNF19M1ra5/aWXWNzczOLmZu7ftYt7lywhZBioisKRaJRNnZ18++KLsV2Xd0dGaGtpoTeR4LnDh3lzYIDvL1tG2rKoBVF7KYq4XL31Fpx3nphjHTwI99wjgLq6etIJ23HEnKulRcy5kklxWS0rE2AdCokhVyo1adIF8MYbk3bUpinn8Dxx05owAevtFSfsk06Sdv6rxXXFZFVBgPFEDa1Ph65eAb/BAkD3Ciarhi7A26fLbziRgne7oLJcmG7X/csElT83hLWdSddqQ8d2HFzHRlFVht94g/KZM1F0nbfuu49T//7vCVRVoWgavzv/fFo+9jFmr1lDqK6OVHc3+x9/nLO/8Q1hovv72V/wjQlWV6MaBiNvvFE0aJ13xx0npKycu349Y2+/TdWcOah+PyNvvkmwwJ6fce21BOvqUFwHQ1dRkgl46ucCbGeeLsB56eVQ1yRj2KMfyPpD70hqybP/LoC7shbyOejpgmknCyAuYCB7oIeLl36MO++6i/NXfJy9Lz7P3/zdF9i38yWqps0En48nHnuEb228m5e3b6X2tDNkDHz8uFZRcAEvGCId7SdYVoOVSzN6eC/VM+dhhMoYeOcF6k47H1UzxGDV8/Aca3K/WfPxBcVEsf+dF6g9tR3XMUmNHCMbG6ThjIsKpaCelAU6Dq5tovnEG2fC9LV61nx8oTLsXAbXtQrj3XOx8xmCZTU4ZhZfZArqX0tHMFMCrI9LC8BX8l9fv/8fWz6suf7/8KL5/bSuWkXb/ffj5HKMvPEGTqEmA8cREF1WDv/6PRjqFyfpylrplHx+GBmEVFxuHv6gyIv2viwzgePDgCeg8effkw4tFBFmGwRYl5TDLx+C0UEB0zt+A7tehF8/Kp3D5kfhlWcFsE84my/9NJx+dsEIguOkMgXGuTCD59gyk2ZlU1TNOAc7n0bVdKxssii9cV0b3R9C9wVRNIOakxehGWKJPtHu6OG9AqTNDKDgKQpWPkXfvudwXYtcYgSgUOf9PFYmjp1PEx84gJNLC5vcMgMvEUMJR3C2/w7iMWH+NR1SSdyXdkj8WSqB0tgMyTjOlicLNpdpkZXHxlDqGnBf/aOw0LohHWfnHyCXxd35At6+13F3PCWTEtFxaTeZQKmYgtp+USGuyBNWu6QMFY8pUyowDOMEFjmTybB48WJUVUXXdWzb5vnnn8eyLOrr63Fdl/r6ek477TSamprYuXMnjY2NpFIpXnzxRerr6ykpKSESiaCqKuPj42zbto2xsTGR7VsWqqpi2zbZbBbbtvH5fHR1dZFMJolEIsWBM6j4fCXoug9NC9Levo7W1pUsWXIvsdjRQh30+4RClbS0tBWylQd56aXbicd7MIwQCxfeSCo1SC6XoLFxXpGB9vlKSKeHCvseIx7vLkq/c7k4jpPHNFMoikI+n+DIkRcLkVLnkE6P0Ng4H82n0b6+ndbPtuIL+1jw1QWkhlI8f/PzlDaVohoqFTMqaF7UjOd4GCGD0sZStq7eyvihcYygQfu6dlpXtrLopkV4roeds1E0hWU/WEaoOoQRMqiYWYEv4qPylEqaFzVTMaMCO2uz5dotRLuiUrOVlFiz1ECKHTfsID2cpqSyBDxImsmiNDuej3PXzru49N8u5frt1zOQGiBv51nXvo6VrSv5+sKvs7dvL4ubFzOYGuS+V+9jIDXAvUvu5cnLn6SptIkvb/8yDSUNOK7DwfGDXLftOobSQ8xrnEc8H+fujrvZvH8zd3fcje3Z2I7N9duv5+D4Qbrj3azZvobqcDU+FRQzCpljsGe1/I++JX3HBJN9xnoBvr5yYamtpGQgt6yEufdCfkyY5vRRmPvtyWPwBOAlu2R7pjDh+voNwngnD8IbXwXfFJGKOxmwEpKJfMkeCDXBnlXSRuk0yQ0umE/hKxGArRki257IHo40CbA2wsI840m8UrxLQKgvIvvj8eOf/pQvfP4LRWCNanDPxg10vfc2m390Hzffdg9moG6yw3YtAeeaX9p3cpBPFAC8IvGK9fNFcXTxoxK3pADpAei8HdL9Eq/0+n0yKNq9QdqJNAoIbv82NC6WfbNjwlYrOrz/a8iMCEvd97K4RE8Aayst544ehBe+BJlB6bvT/ZPn9JfhOB4bNuxk3rxGBgdTdHR0k8lYfOc7r5LN2tTWRpg3r5E9e/oYG8ty6NA4R4/GyWZt1qzZhqIo3H//LubNaySZNNF1FcdxyeVsbrhhB7/4xT42buxAVRVqa8P09ia48caF9PYmyOdtVFVh48ad/OIX+7jxxucAUFWFPXv66OtLMjCUZDA1RkWwhHte+CkDiVHObDiZf31tKzsOvMpQaoze2BAPv/IbNEUlY+Z4b/gIdSWVhP0BXup6jR/t/j1nNpzM3IZT+GHnk4yl49iuQ86x+Nnepwn7Q8U2zp95DrbrcDQ6wLeefZyKUCl+QyeWTfLwK7+hLz5C2syx8YWfEDACWE4WxcugWD0FCXcv2INyzQXmCmM9URftJmV7crPUSFfeWmCYCwy3WlJ4fCXUPAB6XYEJ/+fC9dov4NsZEsYaXVjqkpXyX28Aewi8DHgmjG8CL4/p2Nz03HPYrsumguT77o4OfJrGSCqFX9dpKCnhpClTuGXxYpkwiUYZTqeLrPa69nbKA4Hi4/dHR6kNh3lo2TJOmjKFhpISfrhiBSOZTLE+uyeR4Bf79vG1Z58lY1k0lgrwMB2HV3p62HjRRRyJxfjKM8/I53X4MFx7rUSezJ8vANOyBOSef76A4IkMpeFhyWe69FK46y4BwyBgegIM33675DspijyecLKeMUPu4ddfL7FRx47J+eNxsaG+916JkNq4UcZbf205nqG2jiMx8iaMxUS6rariJu0zJK7JcQRQH+0XoBzwidHroW5htufNFnZa00QGPrMZzpglbYC0ORIVgO3TC59NHeRNHM8l2VOos+7poXruXGJdXaCqnLt+PcHaWrl3uy4XPPww565bJ2BbUYi0tDD/zjvRg0FUTeO9n/60KClXdR3P8whUVdH40Y9yxrXXomgap33xi7R87GOcce21qLpOqK6OvXfdRaq7m8o5cyhpaeHc9esJVFby+oYNZPv6UA6/L+xzgXFmx28mmelcVsasFVXy/qfUCPHzuTUiI1cU+e5mni7fnZmHD96G0SHeOniIfk/j/I9fBkcOcF77BTTNOpk3e/rBMPj1L3/JNx/4Ac+9+AdqNYRA8gWKsnJi4/CrR/B8YqAaqqjHsc1JWXdB/t0w+yJsM0vfvuewMjFJRC3slxjqwsomATHIrZp5Lp5jo/uC+ELlVM08j0y0HzMdw3M9MaLUDVzXov+d57GycTTdN1ne6Hm4roWq6TSccSF2PoMRLEHVff85sAaZTJ2/Dk67UlRKnvche/0/uXwIrv9fvGiGQcm0aVSffTaZoSEqTjmFfCyGncngKSre9FNhx7/L7F/5FJFo2xZ0vSu1w4YBZg5+/n0ByL7ApHz7/T/J/pohxz/zGwHTRz+Q+qYZp8ps4QQY1zTpDCckO4YxKQ9f/lm52Y30S6122RTQDTLRQapnnlcE1KBQf/pHSI/3MfT+TsDDCEYYPfw6RjCComqEKuoZPfz6cZ0LhQGzgqrpeI4YOFXPmleU5CiaXshNNlE8l5FDkxKa8JRGVM34qyBfC4TBsvDMPGrjVNxX/1ish8Z18JJxqY0urFMbW1BmnoLb+RLe/rcgn5+sod75AuRyhX1fZCK3VW2/SJjsCTn44o+C4Ztst/MluWGUV4LPJwx8SRlqywxp3/VIpVKEQiEuvfRSIpEIzc3NlJeXk0gkyOfzqKrK8uXL8fl8ZDIZduzYQTqd5pJLLkHTNNrb25k5cyadnZ00NjaSTCbZtm2bOIq6Lul0mpaWFkpKSjBNkx07dhTrsS3LYvv27di2zdVXX01dXR3RaJQtW7aQSCQAr2Asdi3R6CHKy6ezYsUjGEbohDpowwhhmik0zaCzU2qxE4kebDvDq6/eR2lpI5GIAJVlyx6irKwFz3OK+3Z0bKSxcT6trStZvPgWIpE6UqlB0ulhYrGjvPTSbZx66mWUlDSwffuXKS1tQteDmGaS8mnlpAfTvHzXy5Q0lFBSX0Lz4mY67+3EtVw8x0PVVdIjafyl/mKt9Cv3vIJjO5TPLOfSRy+ltKWU3l29ZMYy9O/tFzOypImiKpTUl4ACscMxtq7eSqwrRrwnLjXXGztQFAV/qR/NrxXrtlMDKUINIdL59AnS7BJfCd9Y/A1Wtq5kXfs6ygPl/Obd3xDUg9w5704+c/FnuPGTN7J4/mLazm5j88rN3L79dn54/w+54dIbmNswl81PSv204zlF0H53x90smbGEMn8Zt7bdysrWlaxtW8vu3t0E9ADr2tdxycxL2Nixkc37N3Pfq/eh6yE8X4XEInVvhvfug8r5crPO9sO8RwUU58fgrZsL8m8fRGYKm635irXa7N8gIHzeYxBqmcwdPn67lSjWWVO3RMC5kxeg/foNkBuR/iBQI7FQ3Zsh/o4wsnausG+PsMalU4WtLWkqGOtast1fKo/jR2TA4ZgFc8g+8JdDSROpVIrNv3mSL37hSmG7PU/k44U2Lp5/Msl4lH3735XBs6IIqC6bTtGx2TEnQTaevMZcVJh/gMyQ9BMTddN7NwGuDIpOWSnxTIoOz38JDv5W2prYd8/dhfgoB6ZeJA7SehCWPAolzdDfKVnKL90gn0d6YBKwe86J5/QcVMXlgQeWcuWVsxkcTFFTM1nz3NMTZ3AwxfXXb6e6OkxfX4I5c2rx+zWCQYONGy/EdT3uvXcJixc3c/vtL3H4cBTHkT5w3bp2Vq5s5ZZbFgPQ0lJOU1Mp9933Ko2NpUSjOfJ5m1tvnZSBKwrEYlnmz2/i7rs72LH9MGfUzSyC6R/t/j2e53F1Qbo9u24WPzqublpTVSoKucY5y+S+v/kaf3/epTiuy8/2Pl3cbzyboKW8lrUXfxFd1YptTMRATez70z1PUREsLW7/8e7fk8pn2HHgVVL5DKaVRnFiIt0ev0+k3nq9SL1RpN46uRnGNgnrHGoThhofGDPAN1OuhdpHhZE2ZkDdD8EZFmbbaAKjGXCkjYm28GDwetCqoe4x0Fuk3to3A5K/A6sP6h4FvR5Ni3DzokWYjsPagix7XXs7AV0n5POxZts2Do2PM7eujunl5aiqSk04zEtHjhA2DB699FJaSkvRVZUHly1jalkZi5qbydk2o9ksc+vqGEgm6U8mizXVG3fuZF5jIytbW1nf3k5TaSnVoRA37thBS1kZj116KSHDKO7vuu5k7XNvr4xFenokiHhgQOKeyspEsq3rkiG6du2kDPyFF4SRBhmzfPe7xTpqYrHJx4ODcPrpsHOnMNSRCHR3Cwjv6oIrroAHH5Ss0fXr/7ok3HUhk4MPjgpTrakCkj8oSLhPnym5xxOybsuG0vCkFPz4uukJabhpSe20ZUv7B4/Jdr9PwHfOlDarKyTeaWJb7yD4fbi2XZRi73/8cbIjI4RqajBCIemjXBctGETVdSrnzGFs3z4yg4M4loWVTJI4epQ9t99OqreXuTfeWJSC27kco/v2UTptGvNuv53M0BCpvj4iLS3M++Y3iTSJMe/x51YAz/N445576HnhBU774hfJjI/jTakR8qe2UUD0iuPKDINBifqsrJH3FimDqSfJeFNVRUE52CeE0PAAHHlfxq3REZpPPo2BwUHee+89mH4qh7p76DpyhFNmncTmzZtZv2Ejz2/bSouTgdEheQ269pcgP53E89y/WlpoZmSy1M4lqTv1fHR/RMZ5BZl3y9kfxwhGBHinYxihclzXpv+dFzGCEYxABM0XFEWlqmKmY38xZtX9wcnyRsAXKkcz/OBBqKIOK5vEzMT/G/DggymnwsWPSInQc9d8KA//n1z+F0P3Plz+T1ocy5LsY58PbSJ4r7Dofj82UH3WWSR7evCFw+iBAI7noek+uOJLKBN5xJoG2RTMOF3kRiVl8PN/kQ4DRO7991+VmdNzBQATCsOCC2HBRXJzaJgKPYdg1hmFGmqk01NU6QyvvL4gRbIhEJQ2xeUGthZqYxZcCH9/A0Ywgu6PUHPyIlzbLEQwhcnGBmVGz/WKnQogUnFVo3qW1BhWz5pPJtqPEYig+0MMvvcy1bPmo3ouVjZF3anno+o+8gWZd/XMefjC5VTNOE+On3keKGIOVzXzvGKbiqrRcMZFqJ6Cl8/hxcaheRpq+0W4gNp+sURKhMKobRPrLsLTdQgEi/vhD6C2XVg8hkCwUE99MZ6Zx31xB+rSj6OWVUhHvfyTEoPl2Cecy+3tRikpgdJyPMsUiZrfj6OoxBIJ4okEpaWlWJaFZVkkCs87OjpYtGgRlZWVHDt2jMbGRnbu3Mn+/fvla1uxgvHxcXw+H5FIhPb2djRN46WXXqK5uZlkMklnZydLly6lpCA9X7RoEY2NjXR0dLBs2TL+8Ic/FNu79NJLSaVSReMzWbeEZHKAiy/eVMhaVojFjpFM9tHWthaA9va1gMLzz9/CwoVfK65vbJzP9u0iIwdYvvxhHnzwZGbOvIQLLvgmpaWNtLevK7SxDk0zWLHiEVTVKBqaLVx4Y9HY7CMf+Wbxsby2x1A8H67tsnPDTpoXN5PsT9K5qZNFNy/i9MtPx8pYPHfTcyy5dwmhyhCaT6PtVvEAaF/bjhE0GH1/tHhMdWs1Q38aIlwdZvv122lfK/XpVsZCD+hFYA6w7MFltK5sZfEti7HSFp4nzHjbWmm/aX4TsUSMO3bfwe0fuZ2TK0/msUsfI2NlGEwN8uCyBwkWas0vP/1yDM1ADau8+eabxSzYb979TX619VfcufxOYodifOryT3HVVVcRaAkU66dvXnQzAOvb19NU2oSiKIR9YR679DFMx6SxtBFFUZhRPgMPj3WFz3x9+3pcRRcQ3CrfGa3rBMR5FLKLDZF7x/bBWfcLu5wbAaMMcAUcFo9dKwBTLfhEeJYw0q3rJts2yieZ7VBzIRVhQMB2t3yvzHtEgMhEu9VtED8qddMTBmIA5TOFiZ4onZrYVnfeZF00CJNcTG4Qeeavf/1zzpwzh1ObwpAdxbIsjo3ZzKoLQtkM9rzbz/BYjBnTphbYriMC5lWtMCGoCXvuWmBnBNwme4WFfvWbwjoHq6RfnV94//PXSTZy1Rlw/qZJCf7598LLN8GsywRwg2QXOxZY4xCqlj54/CDs3ggXfBcaFsBzqwRAA1z44GTt9cS5jvuvqDojIzE2bNjJ2rVthEIGawvX6fz5TaxZs43Nhev6sccu5ciRGHffLbLu3t4EjY2lzJxZwaZNnSfsl8lY1NWFueOOC3jxxSPMmFHBokXNReAO8NBDy+jujjMwkOKhh5bj82lcd91Wtm49yIED17NuXTubNr3CVdfM5er5lwFw9fzL8PCojJRz2yXXoCrq5LZCjfQEEAf45yVXE80mydsmX5z/t8X9aiJTANAUFU2bbKPEH8ID/uG8jwNwzYJPYLkOVxW2X7PgE0T8IZaespCIP0SJT8NTTZSh9QJ8AWoflhppXGGiASpvERdo61ghs3idAGmtDjQT7GMiF69cK+B8wgwNBDx7ynFtrRfJefJnQEZqvdFB8YPeLLJwo0HW2cdwnAxTy+s4FovRm0jw4LJlGKrKl7Zu5asLFjCvsZH7d+3iwWXLsFyXjGVxy/PP8/VFiwj7fGiKIiaRioLpOByLxaiLROhPJtnU2cktixYxY8oUVGBtwbdj4v8jK8RkznZd0qbJz/ftI2PbPLR8OR3d3dy4cCGGqooZ67qJa3M+jI5Ogm25qISxTKWEmc5mJX/5kUcEPJaWShjyqlUCuu+9V5jdb3xDthXqs8d8Pi5qbRWJueeRyWY5fPQow088QVcuxw2nnUaqshLF7+e7997LhbNnc8IyIQFX1SJrjP84szGAk1qkL+junVw3sxnwRMINJ/5XlUkJOMDUBnk8reHEdk+eKu1MRDodv21aPa2rVgEU66xH3nyT2ddfjxEK4TkOWkDUf2Nvv02gspLMwAChmhqsdJr3fvITup95BoDz/vmfOe+220BReOu++5i9Zg2e6zLy5ptFafj8O+/EymTIjY2RHRqi9ZprAGi99lpG3niDUH0956xbJ0Gcuk5gyhTccFiSWUcHpeb5ii8JM51JiUzb84TBDoYEAOfz8MSD8JlrZfsECAZY8kkhgf7un6gdH+axzyxn5ec+J3GljsuD376bFjPBzKtXUVdby98uuViIDNfhhS9+ksrPXC3jWhCQD1BagedYOPk0ui+IP1IuY1Ok5NAD9EAJg++/LGWJgTCq4cen+/CHy+nb99xxY9qLi8QOQMMZF4lc/4NOqmfNF58hvBPGvCgqjbOXkIn2A+ALlQEqKND/zvPEBw5IaeWcS+R+858tmk/uIbs3TN4HLvmRrP9w+W+XD2uu/zcv/xUwdiwL17LwXBfVMND/yuynY1kkjxzhnUcf5Yxrr6Vk+vS/aAek/to1TZHnFHIodcNAsfIomZQYQmz9lXRAAIkYVNXB2JAwzxN11lYe0ilxR/Q8kT7Hxyf3iY7IbGJFDRx+V0D2of3ww7tg7gL4uy+LaVq4pFA3okDXfgH00WExRVtxBVTV4uiFuR/PxbEtht7fSdXM8zACJXiujWtbhVqSPcX6kvRYH4HSKlRNxzFzOHYOO5/FFy7j4B9/VqjXvph8Oo6qy+c0/EHnZIczewmuhAtLTQzgORaKqhfq9xTS4/24qs7af76L5557nkAwyJxTTuZf774Lq6qWG9et59kdz+B3bM5csJAnHn0Ud3gApaIS78ghlFNbBQCHS1AkFFZm0VHAzMs5B/tgfBSleRrurp2oFy9HMXx4mTRKpBSR9zmF2nULd6APtXmaPO7rRomUYk2pYuu2bVx00UVYloVhGLzwwgvMnz+fQCBAKBQqyrPHx8cpLy8nmUzS0dFBe3s75eXlpFIpcrkce/fuZenSpaiqSiwWK4Ls/fv3s2bNmuLj1tZWLrjggkI9tY5lWSe0Z5om6XSajo4OFi9ezJQppUSjhwp107dQUTED287y/vv/wYwZFxMOV5JOjxIO1zI+fpBdu+5nyZJ75bLwXDKZUTo6NtLWtpaysqn09LxCSUk9nuehaT50PUg4XI2iaLiuRW/vLhob56GqGrHYMRKJXkpLm+jo2MjSpQ+QTg/T0bGR9va16HqYiK+ZfCJPajCFL+zjpdtfYv/m/bSubGXFIyvY/uXtNM5rFCZ7Uydt69owggbZ8SyZ0QzNi5rZunpr8ZilDyxFD+gnrFvxyAri3VKrXdpYSsfdHbSvayfSEEEzNFRNZfTQKIGSAKGqUFFa7ivxkc1k8SIeWSeLrugYmoFP9dGT7OHZrmfZ07eHh5c/zKHxQ5T4S6gIVLC7bzdz6+YSNsLMP2s+t915G0uWL8HxJPP3k8s+yerrV3Pp31xayA6nkNur09Hdweza2YxmRtn0yibuXXIvPs2Hpmgcjh7mu7u+y72F7wcg4osQzwzT6A8Vy8R46yY49esQqAUjIte9ZwnQTnUJo3zaLVB6srC2qh9yAxBshNRheO/bwkgbEXEAV4OIu6BTkDPbgCYg3EpK+9l+AdhnrAdfpcidg3WAI7mxTiH7V/MLiI40ijnZ0F4xESubIS/eTArodUzZr6RJXt/Ee3NyoAVY1NbONVdfxT9+/gpI9ZLRprDkY5cSTyTRdYNwOMy3bl/LheedLGx1dgQClTIZoGiFP+Q9OTlhkhsWCcg20/Le9myE824pGFMq0NcBT38aTvqUgGHXhsHdEGmG8glG3EMMb1SpT0eFwb1QM7dQS50WwG6ERKK+ewPMXy/n8GzZ30oVPr+qYq14Iu/nmlVb2bx5PytXtvLoo5eiaQq2LXnXhw8L8F6/vp2pU8u45potxX2/9rUFfPe7u3jkkRUcPhxl06ZO1q1rp6WllFdf7eXw4SiXXXYqmqbg9+uoqsKxY3E2bNhZ3M80HYaH01RXh/H7Nbq7E/T1JTjzzDrCYQPPAz3o8mbfAcqDJZQFIuQtk8d3/46r5l/GeCbGnPqTcT1XPDYUld7YED/a/XuuXvAJgoaPiC+ErumoKOLl4XnsGzjIGfUnkbdNfvjKb7jh/M8VMplV8o6FTzNwPRdN1XBch1g2ia7p+DWDgOHHdh10VSOgmqhOQYo9tlGArzFV6p2H10LNRlBDcl3jnFgjXfOA/NgUHwxdN7m+9kGw+4T1ngDh9iCogcLvIyIGZhM13nqL5COP3Qs1m0ANiyxc8cHgKrJl6zH1k06on/7mBRfw7OHDXDJzJhWBAI7rMprNsmHnTm5ta+OV7m5e7u5m08UX8+7ICA0lJWzs6GBdezs98Thn1NRw8/PP89SBA7y9ejUVwSB7+/o4s7aWsM9HR3c3ZxakyEOpFAOpFPObmnALcU0AA8kkA6kUFzY2Ejh6FKWpUAap61Ij3d8vAHv9eqmr7uiA5maRdR84INvWroWZM+WeumqVgPGVK+Hhh2Xd66/D3LkCyEdHpS777rvluFCI7/zyl/xx926e+pd/oXnqVH6WzXLxypV8cMstXHzZZRw4cIBgcMIc1hVmeWI53CsssqEJc90zOJlXDJM10s11xZrrbVu3sf6O23FdF9txuOlLa/j7q77I8MAAX/j8F+ga7Mfv9/PwLes5/zOfkvMdX2dt6IV6c1f+F7ZZBbztFVzcc2NjGOEwvS+8wPBrr3HO2rXkRkfZ/9hjnPYP/0BufJzKOXNQNA0nmyU7Osp7P/kJrddeS6SxUTxnAFSVdF8f+x99lNZVq9ACAXwlJVKbPTzMvgcfpO8Pf6Dt/vupOvNMXMfhqSVLaLv/fkJ1dbz3k58UDdJ0w0DFk3rqH26A2x6S+utLPiVljeMjkzXYU6pgfFTUmNV1YrQbG5ftyz8L0VGRi5dXwS9+IKD7n74pcvLxYfEMUlT41Q+lZPHgfjhnsaTfvLUL7vihlENmUlI6mU3hVNWSL9Q9V804D3+kAs91sHIpRg7tpqH1Qvr3v1gcc9acvFCMcl0HVfdhZuIFn6F5+ELlk89nnocvNAm+y+pPofGMixl4v4O609qLTL+YANdgZhOMH32LutaPYufT6L4QVi7JyKHd1Myajz9UijLhp/GfAeYJY7OJ+8CUUz4E14Xlv6u5/hBc/29c/itg7FgWjmnimiZjb79NqK6OkmnT/gJgW+k0u2+7rWgKMf/OOzHC4b84l53PYyYSWMkkRiSCm88RVhyUiQ4kk4I7viQdFcDoAEw/rRBo78oM1+gQbP2luHtXN8h+nitS8juug5PPkJnA534Ln10tnVpto0RwTXRmVXWQz4rcPBQB3SdSHV9AzuU6Ej3Vfwz3pFY5hSOsXWLoEJnxvqKZmec6oGrimKsIo2vl02JoVtmEVTA7q541DyNQSv87zwtzrRoomibg2bX/0khCUY7r4OZLhEIgfJx52jncdMs6FNXHA1/7ClrzdPp+/ji1/Uf5+t79OM3TeeCG61EjJQwcPUL9yafKDSwUlsFoLovXdQCvrwdt+SfwYuN4ibiYoSkqXt8x1IZmPE1DcV0824JUCrfzD6hLhTVRAAyp7XF3PI269OPSuU5kWuoaruti6T5c16Wvr4/S0lLC4TCqqhZBdFtbG2VlZfT09NDS0kJ3dzc1NTWoqsrzzz/P4sWLicfjRKNRmpubSafTNDc3oygK0WiUjo4Oli5dWgTM7e3tlJaWMtGvZLNZcrkc6XSaqVOn4rouqqoWmVPPy7Flyyr279/MFVdsKQLdSy757gnAuaJiBp4ndWsClO2Cw/gwgUApoKBpBsqE4Q8ujmOhaQau6+A4Fp7noOtB0ulB/P5SLCtLKFSFoqjYdo5cLk44XAN49PR0Eo/3csbJn6fnlR4a5zWi+TSiXdEi+NWDujDOfp2X73qZxnmNzLxkJpH6CNvWbGPRTYuomFlB9FCUzu90suTeJfgicmM6vp3y6eV0d3QTOxbjtE+ehmZocq7DUXbetZNFNy+iYkYFR/cdZflly0VCrkIymqRnsIeuni7yZp7VV6/m/YPvEwqEuPeBe/HN8DG/aT5+zU9nTydzaucAEDJCaIrGb5/9LV/54ld479B7JO0kISOEqqj87cf+lmvXXMvyjy9HUzVUVPb272VO7RxCRghd1claWRRFwXRM1r+4no0XbcSnSbwcgKZqjKRHqAhWgJ2mMrVf5OB7vzRpYnbOA2Js5uSkH1FUcQLvewqWvS3mZmZMJNxC54qhWdVCmPo5AXtjeyDYJEBZD0HioADxynmgBQVcK1qBLS+cw8lJu05WAPe8HzOZulBwwPLE5XWiVrro7D0BfD0XcMHKCrs9sZ9ryXbXgtSAuI0X5JTFyUQnK9tKmuR9qT6K6NxMCsDX/BRBsGtCPi4y8D13C+uc6oXfXSo1cRfcNzngyQxL3XWyB/Z+G9rvkddjRARsOzlx+XYtMUfbvQHO+4bEbI28JQAexODNF5aJBUWDgU4I1Qmgn3erAOs/3ijMddlM0nmNg13CRq9f386MGRXEYjkAUimT2towngejoxkiER9DQ+kCc91Ob2+cpqYywmFxE58+vRzLkszs0lI/uZzN4GCK3t4E7e0t2LaLpqnYthiW7d3bzxln1BAKGTzxxNu89lo/3/veMrmPOi627ZJI5aipD9CfGOXHu3/PrRf9I+8NHeb0upnoqoaqKOIR5dr4NAO7UPtqOhYBw4/jurwzeIjqcIUA7oIBmuu55CwTt2BGZ2g6yXya8mApedvkg5FjVIXL+Ze9W/jqBVcSMPxkzRwfjBxjTsPJ5G2T+//4C2766BWUq4MoRkvhe9cg8woYdZD5IxgzwWiRWutQ23GgeD0Y0wFH6q69VAFMF5hrJw56pTDW2T0QPEfqt72sXM9qBPSayet56DqJ5QotFtl45VoB5dYR0sosEqZTZJrXt7fTXFpKV8FwbF17O9PLy7n66aeL4PuBpUsZyWToiceZ39TEmm3bitseXLaM1/r7aSgpoTeRoKmsjI07d3LjwoWMpNMsaGqiL5GgOhwmns/TNT5OdTjMfa++ytr2dmaWl7N661bmNTZyycyZnOzzoQ4Pi1FZJDIZQ+V5kzXPQ0Oyfd8+WLRIgPRTT8Hbb4sR2YQB2caNAsanTpVjysulHVUVifeXvgS/+IU4gTc2ctr553P3nXfSdtllNJ58MvlPfEKOnzGDOQsWcMc3vsEnP/lJeR2BgMjAewYFMMdTYkR20tRJA0PXE4l3z6AYk6nCPGLaeKpCZUM9L/3+KeYsmM/R7mOcesYZjBzr5iu33ExLSwt33HYbe//wMp/4h89z5N33McIFYO8hr+FInxikBXzyvlwP0lnsoJ9kTzfZ0VHKTz5ZxoslJai6jgKofj97v/lNjm7ZUjQh0/x+PNsuftaebeOYJtEDBwjV1JAZHKRyzhysZJIdn/kMl/zqVzj5PJmBASrnzEHz+3HyecbefptgTQ2BqioA3rjnHs5dt443vv1tTvnCFwjX12OnkjJuPZ7MaZklhI3PJxJvy4LXd0LXe/CJv4cnfwx/8wUoLZM+XdMKLuyFCQ5Ng8PvQdMMYbZLK4TwmTBCW/5Z+GCfkERXXi8qy9gYJKPQPFOOCYbEJO17t+F8bzN9B14+gbDxXKcIqKee+wmMYEkRMOv+MNn4MLo/LEAcUDxXvPGiQ4Sm1KHg4dgWnmPjunZxbHr8eFVRNRQUNMNPJjZYkJGX4rm2RMhqhsjDARUPJXqgAJrXiQT8vwLYE8aeHwLr4vKhodn/wYtrmrzz6KN0P/MM7zz6KE4uh2MJa+paFune3mLGX2ZwENf8y3oH1efjjGuvnTSF8Pmk/iWdLrY1wYBrPsmJxvMIVU4RYD1hOmbm4br10rGUVxbiBXS56eZzEB0TYL33ZWGXPU9qpP/1ezITeMfDwnpX1sBnVsssXjohx1fXw9/9k8jMu94TIB0phyMHpJbbHxQA/rPvSsf160fxGqfhORZmOsbAuy/hmFnK6k+meuY80uN9eK6NDFRtPM8VB2XPRfeFCFc2/UUdiqIoNJxxIaqq47omg+/9ESuXRNEMfKEykYirBmY2UZxhnDCX0P0hPNfFyqapmnEO8fFxfv5vT3LXnd9CbZqKZ5k0fPyTZGaexk//+Ap3fetO1LJy3Ff/SP3MWRAukWgtnw/SYnCmNE9DXXKpvAfDh9rYgtvXDYkYavM0PE0Dy8TLpGVQ7vdLnbaiSLb2c1vwTMmQVJd+HMX18DIZFE1DCQRQdB+uZZNIJOjr66OxsRHDMDAMA03TitLsjo4OPM+jsVGkvWVlZdi2zbPPPsu+ffuKZmYzZ84s1m5v2bKFaDRKaWkpF1xwASD51wsWLCAej+O6bjFb2zRNXn31VcoKDqvRaJSnn36aWCyGaZooilaMwWpsnFeUZZtmsvi4o2MjpplibOwg6fQIsdhReno6sW2TUKiKgYE3cV2bVGoQ00ziujZjYwfp7d1FNCr7KoqCzxchHu/mpZduJ5kcKALpZLKP/v7X0PUAqVQ/lpWhtnYOp576tyiaS93cOhzTwXM9QtUhPnLnR6iYWUG4JkzFzAoi9RGWPbiM0z51GiAS72UPLiNcHQYPwrVhlj+4HD2gk0/k2f5P2wnVhFj+8HJC1SG2fmkrpY2lnPq3p/LMl58h3h3Hczzi3XEW3riQ9HAaVVOprqnmlede4ZmfP8Ntp9/GVf9wFZdccglTpkzh5m/czFDFEL9/5fesuWsN1191PXWhOtZsW0NXtIvFzYvx8NAUDddzsV2bHU/u4Mq/u5LXh14nY2WI+CL0J/s5GjtKLBcj4ougKgKs5zcKSB/NjJK38wSNIOPZcRRF4cvzvsxQeohdvbvoSfTwau+rWI5FVaiKrzzzFRxFw6tcKNfu2d8VB/DWtQVptysmZppf/p92I7T9FvTIZGa1nYSRDgGZ53wfmi+XvOo3vgoVZ0KwRoA1QGSqyLzHXoPUEXEef/NrYnqGCqmjAsh9FRCeKnXdiiaDh/jhQn0zhXWmgNSJOrNkj/x38sLeKjr4S+Q3rGgCjFWjAMBViNTJvvnEJHh3zUJc11QZqKj+Qj+WF2m4ES4MYAo11p4jQNiMT0Zw7dkI9fPgk9vgoh/K/tkxSPRA522Sg53sLmRdK3KslZJ67ewIPL9aPosJud/ee4QJD1bLtkQPlDRI/Xj/KyKZrz0PdD80LJZ4LzN5XA22jarYTJtWxoMPLqO3N0EikSdSmEj61rdepqsrimk6BIM6waDOzJkVPPDAUqZOLWXevEbq68NUV4c56aQpKIpCPJ5neDglvpYKdHfHmT27BsfxyGZtPvhgjNWrt3LsWJz585sIBHTyeZtPfvI0fvCDZQVCXZzG33hjgJq6IPFckoayam675Br8uo+TqqfSHx/hzmcfpzcm8Vz7B7tIm1lMW0wZDc1g4/M/YTA5xqyq5mLN9Eh6HNt1sByb94aPEMsmURSFu1/4KVkrz/7BQ/g1gzkNJxM0/JzdeAojqSjfevZxACrD5dz13I8YTcX4u3OWE8/mxB3cTYE9IHXVgVYB0+ElEJwPVjcY9ZJRbUwr1Eg3g90vvyO9UszI6h4VFloJg1YBmd1y7YUWyISUVg16o9Rpa9UUJ64Un0jDSz8LY/cX6rI3AjYY07E9lbUvvADAQ8uXM72iAkVRiuZmG3buJGWa3HpcJFeJz8eM8nIWNDXh17SisdnatjZ6EwkWNTcztayMBU1NbCzUTd/36qvMa2wka9sEDYOQYVDm9zOvsZH7Xn21WIttuS43LVrEnr4+6sJh8rqOV1cn7HIyCWvWSP0zCIDq6oLbbhOwvHixgLB16+DJJ6GiQgD1pz8tTPdjjwmznU4LUPe8SRM0xxG5+JVXQns7ne+9RxS4dM8eqsrKqK+vZ/PSpRAMsnfXLg588AFHX3pJ2spk5PVMmIr1DEJF6aS8O2dKzTWIVLyxthDFVVjvOBTERMTSaTjUTWJ0jMrKSvwDY2x+8klWf/ZKyJmcd34bDbV1/PHlPwqAn6jdth2Y3ijg3QMOFWq0I8Ke7n/sMcpnziQ7PMy+hx4C1+Wp3/yG2aeeytnnnMPVTz3F/uZmzrj2Wr7z/e9zemsrgbIyNv/0p4y8/jqpnh7e+Pa3CZSXkxkcJDBlCq/ddRd2Nsslv/oVvtJSMgMDxfWp7u4igRQuqA70UIh5d9yBFghw7j//M6qu89qGDQTLylCiI8JSR0dEGRkIik9PuEy+U02DeR+FK66DgR5RQk6pEkb7lw9BNi0KTMcWQK6oMLNVjNCe+rlsm/5nnkGnnyXxXbYlZY9dBVVmPCrjYE2Hk2bDggtRbPs4T5950r1b+eI6I1iCESylcfYSfOFycolRzOykktJKx8Q8N5sgUDqF/n3PYWaT5BIjuK6FESqjofVCqZ3OxnFtU8apRgBVNxh49yV0f1BIpIIyceTgLux84dpTVGGsJ/r/3Rvk/vOfLZpP1FofAuv/qeVDcP2/cTkeGE/k/yWPHBFQ7HknZPxVzpmD6vvLi1szDEqmT2f+nXdSMn06AMkjR9h9220kjxzBzudJHj1KbnwcRdPwV1RglJTgoeLNOkOyqGe1Su3KSbNlhnR0EA6+I/8P7Zfa6kBAOpfzzocVn5PeXfdNHmv4pXP61SPizpjLiqmZZUIiKh1WPicA+5cPCXs94zQoq5AbV2JcZDZHDwhID4b+wmlRVXWRt/hDZKJDcqNTVBxTOgYrl2bg3T9gZmLY+ewJpmWe69L/zosc3PmvWNmUdGyhsoLzpcwGav4go117SY0cpWrmn5lL5JIEy6oZPfw6/WNJKirK2XjP3cxb3Mb58+fxwp7XOHrKHCrKy7nw4iWEWqZR9vlVLPnMFYyNDHPOZZ/irHPP46z5Cznt2n/C1zyNaCoFgBIpwR3oQ6ltkIxqRUFRVEgmcF9+HjwPJVyC+rlrJMdTN1AXtEMqhbP13yEexctlwCfxXp7rguvghsIkEglqa2txXbfo0q0oygnu4Zqm4TgOO3bsoLy8nEgkcsL2XC5HSUkJLS0tpNNpDhw4QEdHB+l0mocffpgdO3YQCATYtWsXZWVl6LpOS0sLiqKQSqVYtmwZFRUVeJ5HZ2dnEdTncjlyuRwVFTP4+Md/hKb5Wbr0AWbPvhLDiNDWdmvB+XsdPl+YQKCccLgaXQ8QDtewffsa4vFjNDScRzLZz8sv31VkxP3+Uhob52EYIWprzySbHcM0Uye4i3uei6Jo+P1lNDcvIp0eKrTh4vNFMIwweBrp4TQDbwzgmA7+Uj+RugiO5WBlLcykyTM3PIOdtTFCBuNd4yQHkqiaWmSpFU0h1h2jp7MHzacx7/p5PH/z86iayo4bdvDev79HvCeO5tOKRmkoUH92Pf5SP00Lmoh1xxjvGqdsahn+Ej8HnjrAE795giv//krSZpqtv9vKuy3v8v3d3+eqS6+irqGOQ28c4vyW8/neru8BENSDWK7Frt5dJFNJnvrtU6xYuYKFTQupCdegKirD6WGaS5upDFWSd/Ls7dvLmbVnYmgGtmtTF6lD13Qc1+GejnsYSA4wq3IWd3fcTXW4mt5EL9XhatZsX8Ox+DHmNc5j39DbAob3rJZs6rPuE2n2WzeBkxZm2vMgUC/11jVtklWt6AKajVIB0WN7CyAiLNLWU75GETy6TgFAjohUvGK2GKUpKpy5UY7BldcRqJa27EwhE7sQERZpKABpV/q3VJ8Ym2kFwOwThQSaIYONCdOxCUbbLy7GeI6Yo6m+SedvMyH72jl5TRN52gUyGycPkXqKUUsosq9rSTsTmdOt/yBO4aoPGtokc7u/U4CwEYSup6Ruun4+nHK5uHtPuHqHq8WArGGxtHvxo/CP74sbrOabdBlP98nnqRrQ2AZlLfJZdN4ubuPn3wvhejn24kcBBcfVGBxMc/312zl8OIrregwMSP+2cGET99+/i3DYIBz2kU5bfOlLWxkcTDE6msG2XcbHc3iex5EjUa69dgvptEVJiV+6eEXhggumUlLiR1UVNE2cxTdv3k9vb4KjR2OsXr2Vnp4Enge27fLBB2OsWbMNgHnzGsFVyJh5vvXs4/TEhnA99wTDsZ/tfRpVUYpg+MDIUXqjwyiKws0X/j2VoTKCRoD1S67mj2se56zGU3Fdl3cGu5gSLGUoNVY0KPvx7v/g9NqZ5B2LsXSM8mApHzttMbUlUzin6VQyZpaf7nmKHQdeZTQTQ1M1Hu58Uq47XFDLhFFWIwKq9WZhm4PzxGBMr4TB6+Q3o6igVRaul2G59ihM7nhZOS60QLa7qcK158l6Nyky8MwrBZVGCpxRaaPm3slsbXsMUNEVhY0XXQTAmm3bOBKNoisKDy1bxpYrrmBdm8T2NUQiPLJiBXWRCJbr0hWNct22bXwwNsb0igoeWr6cmRUVfH/3blKmSda20VWVR1asYOjGG3lg6VJ64nG+8fzzlAcCjKTTYpqm66wvGKmtbW8nZ9tMKy/nkRUrRMoPAqrzeWGnH34YamtlTHO80dmmTfLZzZ4tQLytTZ4/8AC8+SYsXCgg+P334YYbJtnu7m647joxLSspgR/+EI4e5cfr1vGFyy5Dv+8+6OzkP77zHX7yxBOcdemlfO+LX6TtvPPQKypg924Zs1i2gOnqCvnvNwoMcgFENxWMxiIh0FXxssmbRTCuqBq//sUv+eTnrmDqhW20XXwR//LoYyQ1sCyLuhnTii7j02bMoPtP74ih10RtdfeAAHa/T4D2BMjXVFRP6p21QKBYP22mUlz9T//EFyMRfrh8Ob994gnue+kl3JISPnr++Wy48EJODYXofu45KufMwSgrY97ttxOZOpXqc87hwBNPFF3DA1OmoGgalXPmcOCJJ6g+6yxUn4/yU07hvZ/8hOSRI0TffZd0b684lnd34+TzxbFwLpHAq6gW4FtRLWPNbEaY5Ce+LwDaMoV5Hh8WV/BwyWTe9XGu3sTG5f2PDcr2CXPe3/2LgO7jDXfLq2Qs/OSPYdop8th1BdhPP0WM0UYH4XPXoXoe/r7+whizXIQBroWVTdFwxkUYgRIG3nkBMxPHcz0CpVWU1s4CEKCcSxfHvK5jFo10dV9QcqoLLPix134nxJGqYQQjDLz7Ep7nUXtqG75gGZovQHq8T6K3yusYPbwXz3Uw01E81TjO+HJ9QSn1P7g4pkR1fWhu9l8uH4Lr/43LBDCed8cdZAYH6fjqV3nn0UeLNditq1YVGWk9GPyrNdcT7RjhMJph/AUb7pom6f5+9ECAZHc3+XgcJ5/HNvNSTz2RFXjFlwqteTIL2DRDZgYnmO1UAqpq4fP/JLUrjiud1tmL4VNflBnVCUOybb+SWV5VlQ7sqZ/L/7IKeGazdEbxKDzxA1l/6B3pKO/4ITQXJD6W9RdOiygKoYoGNN1fcD1M0P/O87iujaIwCcQP7UHRNHR/hMbZSzACETzPpf70j1BWdxJGsAQ7n8FzbDzHxjazmOkYeC71rR8lFx/GFywjPKXxOPZ7N46dJz5wADOfpbu7h9NOOZndv/4l33v0Ma74xy+SGR+ju7eXKZVTSMdivPwfv+PN11/HTsZ5443XebPzFd7ct49rLl3Ox5YsoUIBZ9tv8fI51MZmmcA4bnH3dKIuOB/F5wfLRKlrmKxhKinDSyeL7uJKOCJg/KUdEI/i9hxFVRSam5vJZrMMDAxg2yKDsiyr6B4eCoXYunUrqVSKj370o3iexzPPPIPruixfvpzy8nJCoRC2bdPd3U1paSmXX3457e3tBAKBEwD4smXLcByH7u5uXNfF5/PR0tKCpmnkcjl6e3tPAO2BQADbdnFdh2j0MFu2XEM6PcyKFT9keHgf4XAdK1Y8QiLRB6jYdoYtW67FtjOk08McOPAUiURvQR4+SFPTQlKpQbZsWYVlZcnl4kQiNfj9JcRix9D1AMFgOen0CKWlzXieR3d3B7oeQFFUdu26n8bGeaRSQ/T0dOK6Jp7rkehNFA3IooejpIfTxI/G2fGVHST7k8y7fh7J/iRbV28lXB0mNZDCcz3QIHY0BkC4OkztmbXs+OoOVF1lyb1LUA2VtrVtXP7k5ZQ2lbLtum00L25myb1L8ByPZH+Sl25/iXhPnEhNhMZ5jfTt7sPO2sz81kxisRgrVqxgbGwM1VOJ3RXjoeUPoSgKlXWVfOeZ77C4ZTH3L72fw7HDrN66mpHMCLNrZvOdx77DrNNm8bO+n9Gd6OaNgTc4EjvC3Lq5mK5JNBtlzbY1zK6ZLeN218avS/8zlBoiY2f48rwvs6lzE57ncWvbrYykR5jfOJ/7Xr2Ppw48RW+ilytnX8n5zQtQMn1w9n0i39YCwhCf84DUS+dGZXAfrIfIDBlkGhExNxvpKEiZywR0e5Y4giu67KuHJGoLBLjvu70AzA2oXiTs9Zs3SVtuHqoXCwCvmI2AaAVQZXDhWIUsz8JtsWy6PI8fFcARrC6AkIKc0LWEzXZtChawwj7DJNCOH5H9jHBBWmcU3MMdsPMCju3c5HlNcdDHNQtZ0wUncZAorgt/ILXQL6yRyYTy6QKA83GRal87ABc9IuBbD4pM/OizIgH3XKnFbmyfrK32FV6nogrI/sf3ofF8kY5baTlP4qg8n3AHNyLCjMcOyWvp24mm2JSV+XnkkRX83d/NoazMT3m5XC+f/vTp/OAHy8jlHDo7exgaSjFvXiP33PMKtbUR+vuTfPvbHQBMnVrO449/nIaGCPX1kYIEXCGRMFmzZhtdXVEcx+Pb376YK6+cTXv7VPx+jZtvXkQk4iMUMgCFwcEUbW3NuK5HPm+jaB4j6Sg3fuTvqA5XoAARf4ivf+Tz/Mc/3se6i69CUzT+1HeAjJljdv0sakorAND/zPTH9Vzytsm+wUNUBssoCYSY23AyleFy/rb1Am766BfQCqUvP9n9H+RtE8d18es+lp26mMpwOVfPv4wVp7VxVuMp+DSduY0nF3zzlEJttSqPFb+AYDUs13SoHewo1H6vUG6QFLm33Q3moYLngCqGZ0NrxG080ylAe8LbwB6abE8JCmjHAyUgTLYakddQ9yORhOvVYA9hqA4hw2AwleLGhQsJ6DqHYzFu2LGDs+rraSkvR1EUvvbss3TH4wwkkwyn02zs6GDz/v1s6uzEcV1ueOYZkqbJAx/7GMPpNBnL4lg8zpe3b8dyXQK6Tqnfzy2LF+PTNNK2zeqtWzkcizG9vJxHL72UmeXljKbTrNqyha5olI7ubjTHQQkERLatquJr8vrrEs0Fk67g69cLmP7RjybNywxDYrluv11AtKZNgvG77xZF3d13n/jcdUndcQebjxzhiyMjco6rr+bMuXN55ne/482nn+aJRIL+gQFa9+yRbO1MRkzHdE1Mxfy+SbbaFPaY3kFhlfFkX9OCskgRjNvZHHdt3MBv/+1XHHuxgxe2bufz11yNHSqMDyeiuyYm7qYUGN0JQN9cB9GEgGxdg5opMLOpOJYsaWrCse3i+NMoKUEPBDjpK1/h3PXriScSlBgG/kCAs04/nYu+9jX8U6YwdelS8DycbJY93/wmqd5ePNfl3HXruODhhzlj9WrsXI7XN2xAUVXmfv3rVJ19NqmeHjS/n3PWrSMfj1M5Z84JruFuPl+M7AqUlook/K1dMj4NhYU1jo0Km52MSgnjzNNlHKsAfUdln89cC/M/OknkPP87+axKygvj13+T4y77gnxekVL4m89LTbbryrj3Yyul/c+sljFuSblsa54pr6dgqOZNPxnPc0mP9YLnYGVT6P4gmegAtpkm1v8eI12iqFR1H6qqYaZjWLk0oSkNxTGvpvuLj20zO2mo23ohU8/9RJE4Gu16jcrpZ6OqGrnEKFY+RSY6gO4PYufTRKqnUj1rPq4jknIXRaTgl/xYVFT/o8tEDfazV33oHv7fLB+C6//Ni2YYaIEA4fr6Yv7fhLlZ6YwZRUZa/zPg9Z8tf00mXjVnDlYqRW5kBCeb5bW77kJXFZHXLL1cZNuaLrXPsXGRy6gFqczx0piC4RbD/ZOzhACGD9LxyZm+CfnMBCM90emhwOe/AosvgZp6OOVMYb0jZdJ+KCIdVnQEdB3XtvCHy2mccwlGsBQzEyvkT9ugqIx27SVU0YCiCttTPWv+ZLyWojJYmMkDyMaHsM0sDbMvRlV1HDtH//4XQVEms7HfeQErl6T2tHYURSE93kfVjHP+oqObNm06qqry2ZWfQqmr5+x585g+dSqHesQH4N++cAVKMs7caS3MKCvh7ddeg9g4zo7/gEyKn+5+nav+/gu4HS9I7nUqJUZlto07NCAA2nNRl10GFVPAcfDMfOF9gtv5Mug6avM0tOu/IbnWrouXSqIuvAAvmUCpbZD6a0Sy3djYSF9fH9FolP7+fjIFedpzzz1HY2MjPp8PX0EZsXTpUgC2bdtGLBYjnU7zqU99iqVLl3LBBRdw++23U1payo4dO9iwYQNLlixh8eLF/PSnP6WyspLS0lK2bduGaZrF2K1MJsP4+DiJRIIVK1ZQVlZWcCEXU7VEopcDB56io2MjnufQ0HAefn8J27d/mV/+cjmOk2fnTpGJ79y5kcbGeVx++ZOUljaxbdsa6uvPZs6cK/H7S1m06CZKSuoJh6vxPA/HMWlqWoCqGuRyCZqbF1FWJsx6KFTF1q2ricWOsGTJvbS2fpbS0iZKSurZseNrKLpC0/wmXr3v1WIsVqAsQMfdEofVuamT8mnldG7q5MBTB0iPpGlZ3IJjOthZGz2goygKA28MkB5O0zivkY6NHegBne6Obsqnl9O8qJlEb4JFNy2irLkMI2Sg6Ap7HtzDgacOYAQNFFWhb08f4Zow8Z44z7z1DFdcfgWqrpK1sgBYjkVHdwdHokfQNZ3X+l7j7o67URSFDTs38NSBp+hL9BE0grzy1CsE5gWKEVtVoSquvOFKzjrlLD546wPu/PqdPHvdsyTGE4SNMFk7y3hmHM/zKPVLTf2sylk8sPQBKSsoaaStpY2gHmR9+3qevPxJmkub2dW7C0Ux8CrmQnZI4rDSx4RJ3rtGmOQp54CdBqNEALaiC5sdrBPTs9euFzbaSgpLjSdS8EwPjHROgs9sv9RzH7h/UiaeHYCa8wXQa0HIDkPVYqn11iOQPDrJHBthClr1Qg2qUgCghZpqM1HotAsKIkWVfGzNL69BK8i9leMcv4vy7wKzrfqFIVc0YYZ9JZDql/ZOAN8FVtLzBOQOvwHRD2Sf1+6Fs/9/7P13nFz1fe+PP0+bPtv77K4aTSySEGXVVmADQhYCEmwsF+zEDRkjHDo2xWDHSIAwFnbAptjE8XULxnGCVRBCNoZFjWLZIIhAq7K9T6+n/f54n52VnNx7c3/fe/P1zdfn8djH7M6cMjM7c87n9Xm1m+T5Wl4omb/Sq886JpMRO66W9evPhM8chKZFArRdC6IxCSxLvCdVW1O91npAgtxcC/KT8py6Nsh7GWqAKzbDoq/IxEC4SfzZmUEINuDYFpGIj97eJGvXbubw4TjpdAm/XyMSMejrS7Fu3Vbq68MMDWVYsWI2X/mKJEGHwz7uvfeCE7YNBg16ehLcdNN2XBfCYYMHHriIkZEMPp9GRYWf7353NUeOxDl8OE5zc1Ta3fImu3f3EYtV8LGPzfPOfxqqonJK/Qzi2bTkBaAQNPyoispAaoz+5Cgbdj5FXbiagO5jIptEV3WKVone+DDf/O2PKFolSpaJ7Ti8PXKY6mCUaCBI0Agwnk1QsEp8+cJPEc+n+Nvnn2Qim+S6ro+gqxp/GHqPvvgIRdtEVVRaqxq4+X2fYCA5ypN7fslFJy8Sy5YaBRxwUh4oLnqAWZFwMVwILZV1ct3CNAfmTYPk/Guyrd4uoWTmkHiqFc0D7cD4vdJ1rYQESNsT8jlzC3IMJwPD68D0QKmThew2yHWjKQqxigoe2r2bvGXRm0zSGYsxlE7z+c2bGUyn6YzF2NDdTcgwqPD7yzLxu5YvZyKXo6utDcd1GcpkaIpEqAuFWO9Vbo1kMuzq66MqGGRWVRVAWS7em0zSE4/zeQ9Q96fTLGtrw6/rzG9slGv91Lng8GGRhdfXC1geHpbO6SeekOCyiQnpou7vh5tvlm02bJiu2jIMuO02AeN33injkilwfscdwmzmcvxjRwcL6uo47YEHBGT9/vcMFYsC1KurefKuuwhHIlzwrW/JMWtrBdyqqjDYpnkio2zZ0m9dLMk5Y3arB7QRT3bAx/79+xns6+e8978P5rRx7tIltMZi/GH/79F1neHdr8v2wNGjR2mfPVvAecAngN4wIJ0VsK0ocgzTFum4quI6DlYuh7+6mnnr1qEAP/nRj1h7zz3MnDGDiy67jL9/6ikMw2D/N7/J+O9+RzgWw18tk1HvPPUUDeecQ6SlBUVVGfv97wk1NxOOxdj/jW9wdPNmXt+wAd3vpzA2VpaH54aGqOnoOIFY6li7lmRPD8GGBjq/9jVcw4e7+mNCxMw6TayFKc/7/Pwv5DYVF9m2osh5eM5c+T2Tgh8/IkTOF+6EKz8nbPPPHpNQ3lmnSjaQPyjvvaJAOCLj3B99W7arb5SgXscWefnooKfWTMp42fDhDByhVMww+NZOdL80YxxfGav7wuV6WRco5ZIMHvh1GQgr4IWcBVF0nxBE/jCBijpvHCzrT8nLVU2nueMCFFUt78fMZ9B9QcYPv06ougkjEMUXrEBVNRo8gA7IteZ/pWbr+PTw/5mc/P/jy58Dzf5Elv9Ravh/5PHjF6tYxDHFM6YYBq5t45imRPi/8Qbd11/Ppc/+C6FICMXn98ZxqpwokhNy0tK8k0uxILNxgZA3E6rIyeTVlwRIX/4Jmb1LTEynK06Owq9/BR+/VsD4kX/1QieSwm6v/LCw2FMXwt4eSRiPjwuLDtiKQsnMlAPJdH+EfGLYOwHlCVU3ewmM02FkRrACxyqiqDrDb79IsLqZyqaTy2EOrm2JfxoYemsnicF3mHHOFYSqmxl8a2c5gKLljAsAtezrVnQDxXUlQE3TUVyXD1yymuvXrWP1hRdypL+fzmVd/Gjd1Vzx4LdYvWwJR44eRa2q4d2DBznw+/00OxbEJ9g9nuDKz3yWvkOH0Dw/uzs5jlJRKaFm7bNwk3Gcl3eidl0A1bVyAXZd+V/4A6DrKI6DM9iH0tSCYsjg3i0VRBIXrYBSCUdRMDWdVCrFK6+8woUXXoiqqjiOw+joKK2trbiuSyKRIJPJlOu5urq6SKVS/PSnP6Wjo4MXXniB3/3ud9xyyy1ccsklTExM4PP5OO2009i2bRsnn3wyw8PDnH322Rw5coRoNMo777zD6aefTqFQoFQq4fP5CAQCZLNZotEoAwMDNDXVk80eK4eWpVL9VFa2UV09x/PRO5hmjh07bmX16u8Sjx/2krzvpKpqNuBiesFaqqpjWeKXHR7eT0vLuYCDqgqTlc2O4PfYxKGhN7zEcIP+/t385CeX0NGxhksvfYxEohdd9/Pii/ewdOmXqYmcJmFALmTHslgFAcxmzqR7QzfL71pO1ewqEocSJPuTVLRW0L2hm67bu4jGomSGMry8/mXxTo9lqZ5djWM6VLRXiERfV8CB+OG4bHdHl6SGt1VQPauaUkYueDtu3cGiv1lEdixLZUclc86Yw9YfbOWcS87B0Rwaaxp5/PnHOW3maVQGKvnoyo/ywes+yF+s+gtqgjX4NB/xQpy8mWfjro1sXLGRoB5kT/8ezmw6k6AexEUSwQ/HD7OhewPfvPibTOQnWP/yer558TcJG2FMx2TfwD7aKtqYUz2Hdyff5f5X7ueOrjvoT/XTFGnilFpJXe7u7aY+XE8sWElMc4VVngozm/dV2HK6/N75uIDX/LDHaucFONcuAhz4lxlw+TG57+AmOPMBAcaFUTAT8M43xMMdngVjLwtjbRVEdn7mg1AYkS7sjjtACx23/04Bu5oHOqYSw43wtNQbvFsvXOyE0DGfDE4qZnphYcXp+izXkddy/PpToTCqLmxwJCYAe+oYCrJdfkK2qZotzHbIA0fZQZmAMEJeHZknZ0eBYkLAsarLcePviSKgeYmA5aG9EGn1Es7bBBz/+osySLpis9ynhzwJe1Jk6Lgw+jvZ7rUHRQ5ueKyqXYDhfRBth3AjKUsk84ODaZ5/vodTT61l3rxG0ukijY1hCgWLp59+m337Bnj44ZUEAjrDwxnS6RL33/8Kd9yxnMHBFO+9N8nFF88hFovyN3+zjXvvvQC/X+PVVwc588wmQiGDYtHCslz8fo3rr3+Ob3/7A9i2y2uvDTJ/fiOhkMH4eI6GhjDZrMltt+3gW99ZQcpMoakqQSPAWCbOD179FZ9bdAWN0RpM28LQpJ3CtC0Ojh3l9MbZ6KrGg7/5IR876wPEKhswbbPMQk/mkjRGa8kUc+TMAjXBClRV5XcDB7n52W/y0OU30RSpZSQzwfyWk1FQKNkmuqqhqRqO63Lvju9xdutpvP/kTuqDBgqOgFn5QMLozV4auAv2EJijEDhTHlZDEmKm1R1XwfVl0GeCdXg6kExvlpRws8+TlvfC5CbpwTbfEwAeXARokN8DwXOm12ncJJ99e5KMGyNjKly/ffsJoWQT+Tz3vPhi+b6vnn8+JdtmVlUVU6NLx3XZNzDA/MZGIj4fh+Nx+lMpFsViBHSdgmXhuC6vDw1RGwrx0O7d3Ll8OTMqK8mWSqRKJVoiEa7dupUfv/kmazo6ePLSSzk0OSkJ4rEYta6Lkk4L8N2zR/zTl18ufdO9vcJEP/GEPNbSIsnhR48KqH74YRgbE2A9lRyey0lV19tvw7nnCiNeLArQ1jQYHGTpmjVc/ZGP8Ol16wQwHznC1x54gB93d+PG48xdvJhHN22iraFBtgkE5Pk5rvROV0QE+E4lhBs6ZHLCaE8lhPsMr6O5CAOjjER8nDT3NPZ1dzN39kkc6jtGZ1cX+/e9yt233MbM6lq++o2NvPruO/zllVdy9L1DGJom8vJCSfblm2pi8SYkSpaw2OksZtCHa9vs++pX6X3uOVouvph7XnuND7e0UPPWW2TPPJO7d+7k1ZdfJuw4HPzhD7ntpZf44rXX8peXX45r21iFAvsfeohT/+qvCNbWEj94kJrTT6cwOcmBJ57g9M99jnBrK65l8dq995YDeTvvvhvHtillMgRqRJFkF4u4joMRDmPlcui6jm5oKK6XFXD0XyUl/Ctr4etPCmCu8FSSl3xUxqZVtULafPseGbd+8m8EeP/o29P1r2uulvdGN6QDOzEuvur/9q3p8e5fXS/kU9qbaH32vwkL/oU74eQzAAVbVRg4sPO4QLOLGHjzhRMCzsAVpYrrlIPOqlrm0nzGhRLMW0hjBCuwitlyeJlmBHBss9xuMxWMNt7zKk1zzwMgOfQu+cQwzR3vxy4V0HwBUDXMbJyxHi+0N1yNpuki7X7+s3INOHWN1Gz5ov9DbPHn9PDp5c+BZv+XLMdLu/94mUoVn/JR26b5b0LLpharUMAxTex8nlImg5XPkz52jH1f/Sqpo0epPvVUVv3yl4Rqa1EMn6jBFOQkm5yYloFPjsnJR9MlsCGdgP4jArI/vk7qClatgWBEmOvnfi4nrp88Kt2CV/y1gPWfPCr7VLVp2fgLv5QLjW7ILOFJHQKu208SaaYqvrA/DiQ7fvYPRUXV9OOk4HvFm6xKkm/T3POojs0thzkAOI4l/ul8iuYzLmTuimsJVbeA657Ieqv69HtvFXGtEtnJIXkNjkV2coBvfWMDDz38MPOXLOWKj3yU73zmE9SMDlAoFjnQ10/JFyCZSuEqoPx2B0pTC+q8hTz11FN88kNXoBXzku4YrUSdMRslHBW2OZPGeeVFlLaZ4IF6ANIpAeG6DpaFvf1ZlIZmyGZweg/LCV83cOOTKLYtA4Bfb0dVlHIoWTabZfv27aiqSjQaZcuWLaRSKTKZDOFw+ISQs1gsRkdHB2eddRY/+clPWLduHeeddx5+v5/GxkZefvllVFVlaGiIF198keHhYWpraymVSuzYsYN58+ZhGAZ+v59oNEoikcB1XaLRKLZt09bWRrGYOyG0rLV1ERUVbTiOhePYZDLDgMsllzyKbZcwjDCXXvoElZXtAJRKaVKpPrZtu45kspehoTfIZkdoaJjHwMBe0ukhtmy5hmTyKJOTh0inBzEMqebavv1GLCtPW9tSbr55hIsv/iaKotHdvYGenudZuvQ2amtPRlFF2r3585sxcyZVM6vIJ/JEm6OsenQVyd4kiSMJKtoraF3cSvcGYbS77+tGMzSSfckysI4tihFtiVI1swpVk1Ova7mYeZNdD+4qM+OhhhDRJrnIaT4N13Vp62ors+K/3PpL5nfMpzncjGM5HEkcYenKpby59U1OqTuFQ28e4ljfMT5zxWeYWTWTsdwY67atI2/lCRpB1l+wHtd1+eK2LxKriBHUg/TEe/jiti+SKWVoCDewrG0ZmVKG9S+v5+kDT2OoBseSx7hu23XUh+vpS/VhuiaD6UFuXnKzeK1D9WzctZGSXSJTyrAotohv7/028WIW16iEubdNd1BP9VF33AFjrwjDnOsFX5UwzLWdEnCWH/ECzoLCdp96o9y3b63XiT0qgP3ABvmehFrF250flFRxRRMG/NzvChseaIDcgPiuX7sOskdEKosrAwdfxXT4GFAOO5uSguN64S4yaUM+IbeaT7YtpY9jne0TJeFGmHJieH7SY6wVr2v0OFm5LyqMt4sAW82TaIMAYKsgrPTOdfK8FEUSwhVNwLBjQaAK6heIfHvnOpG0Z/pFOr53vYD6c78kwDq2TOTtoXqp+kr0CEjXQ7IPPQDLH5D7cp4nV1EFuIdF5q9pCtlsCUWBT35yPosXy8Td4cNxjh5Ncv3121m2rI0HH1yB60I6XaKyMsD997/C88/3EArpLF3axqc/fSaqKgnj3/72Kvx+nb17B2hujuC6sHbtZs9b7aJpCn/3d6twHJdEosA557QQChlMTOSorg7Q3d3L2FiW+++/kPh4kYg/RF2oCkPTifpD3Py+T3jA2qRgFtBUFdO2cHE5qa6N+3b+PUOpcW553yepC1cxkU1gOw4Bw4+uatSFq7DL1V2SZWHaJqc1zGTnNY+xMHYqQZ+PU+pnMJFNkjeL0jWvCpNetEp86tzLuOiURUQMTSTe5nswegPYIyLbzjzrTbz4wRwWlhpXAs+cjCfv1gRANzwIStTz9Q7LthMbZNspZttOSMVX4yNI2v2QyL5H1glzbTTByHXCljfcL+srAdBb8WkGAV0ve6zvWr4cv67TFA5zZ1cXmz/2MR695BKao1G6e3u5dutWSrZNd28vh+Nx6kIhBtNpBtJp+r0U8L0DA/TE46zbto3hbJZl7e2MZbPcvGQJfckkRctiLJfjnhdf5GgyyYMrVpQ91wBDmQz14TDrtm0T5npwUHzRra0SVHbHHZBIiGf6rrsEQJ91FsycKUzzFFt9660SYPbII8JmHz4sUuHbbhPGe+9eub++Hl55RR6/+252PfUUn/70p6FQEKn4+vXcc/31vLt4Me/dey/P3ncfbX/7tzA0JMB8arzmusIYB/3yc4qw0mjqNNie8kJbtmznM2B2K41NjTzx6HdYc9VVLFi2hCvWrOGR+x6gfeYMHvjmN9jVe5iTF53Lpz79GX705Pcw8sXp6i+fIa/73WMCtB1HgLXjCNg3DE91o9Bx9dXMvPRS9EsuYXBoiM98+9vMvPRSrrz7blqam3nmrrvw19Rw9p134hSLpHp6yPT1se9rXyM/NkbtvHkc/OEPUQyD+oUL0UIhws3NdH7ta+jhMK5lofn90yz11VdjlUq8tn49us+Hlc9j5/No3u+ubaOHQugBv4Tx/vgRqW896QwIhgX8BsOS5fPc09OKy5Z2z299mqes/LCQPpnkdI7QlZ8Tq+KPH4WxYSExWmfLue4jnxfwvfpj8j/M5SQdPBgSougLd0p113tviWJT1U7M+3HdE/7OTg5QyqdwXQfbLJYl3k1zz8PMpxh6+zcoqoqiaqLOrImh+8NouoFjmWWrZKi6ibFDewlWNXl5Qy8Sqo7RNPc8FFUaVYYO/AbXKqH7w4SqWxjv8XJLZHDxv+671nyenPx7/58G1v+R5c/M9f8Fy7+p2/r618n29/P297/PwltuQQ+FUH0+XMehlEqRHx3lnaee4vSrrybS2sprX/86tfPm0bR0KYH6enJDQ1S0NKPFx+Sks/LD4idRVC9F0ZaAB7MkPpSLPyTg+qQzpEJL1QR067qcUKpqxZ/yj49L2Fl9kxcwZE5XInzsWmG0t/4M1qyVAcBUhQHItlNVXePD2DV1OJoqIFoV3+HgmztJDr9H+1mXEa7x/MeKQi4+hBEIo/lCaIYf13Ux8ymp5KpqopRPoeq+E/qsW864gMG3fk39SZ24joum+9B8AdlXMIIRrKR0XFehL1SB69hlFryQGidS1QLxCdxMGqWxmfHBAZpPP4NiMommC+t17hlnsOHer7PisstJvfsOrcvfz94Xnue0mTOEqW6dgasoUqd1wUoUTcdVVYhPSvVW1wUoFVXSXd3QLAoDw8CdnACfTwB3OIKz+7dS05VJ4ex+CXXFpTg+H6bj4jiSpj40NEQoFKKysrKcBt7R0cGqVavKVV3H12llMhmOHDnChz/8Yf7iL/6C7u5uQqEQd999NwsWLGDv3r184hOfQFVVLMvi6aefZtGiRei6js/nwzRNSqUSfr8fTdPK6eFTEnTTLJDL9fLyy+tZtuxLZQn/rl0b6eq6nXR6iMbG+fh8EQl4QwD1jh23sWzZbYTDTQwNvU59fQeBQCUAllVE133YtkmhkKBQSBIIVBIIVDIw8Crt7V309nbT0HAGmmawY8dtLF58E9XVs2RwbObZufMOLrxwA4YRwi0YbPn81nIn9aWPX8rmz2/mkkcv4bkbnpP6rZVziMai4AgQf3n9yyy/aznVs6uZfG+S7vuEka45qQbXcTGzUi03vH+YlnNaUHUVM2fy/E3Ps/yO5USaIzi2Q3owzZ5Ne1jx4AqMkIHrSr/1RZdexLnGuaz/+XrcCpdXhl/BX/DziU9+Al/KRzgYZsM3NnDGojOoDlaTyCfY3rOdD879IAB37LyDey+4F8uxeGv0LRa1LmJv/17OaDgDXdX50gtf4ubFN3Ny7clYrsVYdoy6UB3XbLmGZw8+yz+t+Se62rtwvJT+kewIFf4KsqUsWTPLzKqZ3Pr8rXxz5TdJl9LoONRpqvwPNZ/4gc2sF564F7qvhNjlcM6jgCNA+8AGmHsLGNUQbBT2tTghoLyUgOHt0HihyMhfWye92JGZIh93bYi/CTVnCWt9YD103A5aWFLCtQC8eg0c/bEkl3d+j3I6eKZfAK1dlOeqByTt2wgLULZLx7HTrpcOrnjstBdghgeuHRsBzx5Yd91p4O2Uplnr42u8Rn8PwRrxe0+taxchflD8zhc8Ivt3HAkwQ4Gh3VB7hrDKrivd1o3nygTAznXwzo9lAHXhIzD8mkjFfVEZZJlZGN0PTefKBIZTkn28/GU4b6MA9WJC2HN5EWDm4KVb4ZxbyzL4jOkjmSyiqgqBgM7oaJZIxIfrutx88w6effYg//RPa+jqasdxXPbs6eeMMxpQVQWfT6NUstm/f5hzz23BcaYaj3QymZLHRGeJRv0cPZpkYiLH2Wc34/eL5WJ0NENVVYB4vEA+b1JXF+bGG7dz881LGBvLMnt2NaWSzclzq+hPjvC9Pf/M5xb9JVXBKA+/9BO+fOGnASiYRR5+6Sf81bmXUh+uYtWTX+Shy29iYexUHMeh5FiEvCob23XJlwo80v2PfOmCT1GyLdLFDFF/GJ9mkC3lyZbyRPwh/JrBZC5JTagSVVWJ55JUhyqxHYfB1BixygZCuoVuD8H4PdM91U2PiTTcaPNY50UCdM13YeIBqL1NKro8MIST8z5PWdCqBJzjAoZIvM1eMGIw8Q0PiPtlHWsQstshvBLG7z6uJ/vx4xjx2ylpp/KvkynWv/xyuXZrT38/i2IxALKmya07dnDr0qX0p1I0hMOMZrPUhUJ8c88eHlu9mmu2bGFZWxsfO+MMbty+nfsvvJCsaZIplYj4fMSiUQ7H46zv7ub2ri7aKirY099PfTjMmAe+AUzbxnIcdFXlum3bePrAAUrXX4/x+c9Pd1Q//rgA4RkzBEwPDUE8Dg89JKB7irm+/36Rfjc0wPXXT2//xBPyXRgbk7FMm1i4CIdlvYULYeVKiMVkzKSqkkg+MCDg3u8XD/fU/r76VWj3Js16h0SiDbKtYYiUe6qL2tChp+9E5lqB8pejUJL1o2FQPflzKiNM+NR+WpvkeRs69I/AzBbJypkC7g01AvAVRWTi+SLUVFBybN647z5O/vjHic6YwcCxY8xftIju3/yGuXPn0nPkCEuXLePFZ55h9mmn4a+uZtHpp3PTLbcwq7e3PE6dt24dRiRCMR7nwBNP0HH11eRGRqg+/XSKHoPdsXYtoeZmCuPjBBsaGP/d7/BXVRGZOZPs4CBvP/EEcz/zGYINDeihENn+fqpaYyhTjPMUC10sCKmjexaKKcVkdZ2w2rYtj5slyRr69a/gys/KOHbqvPaPT0D7HOg4W7ab2kdNo8jBbUek5cGQ7Mur68N1RYYerYKd/4L9yS+STQyh+4JYpTy+cCW6L4SiqGQnB+h941dUNM6hZd4KzHzSU2cuwheqZOAPz5fHqM2nv8+7bLhYxZwoNOd0YoQqp4obcawSqqaTiw+V9xubtwLXdRh8ayehmhgVjSfh2CaqJunhqhEQ5hr+XLP1/2D5c8/1f4Hlj/uww7EYe+++m/qFC6lbuJB3nnpK7m9tJTc8zJuPPsrAb35D16ZN1J91Fq7rkunv553vf5+OtWvJjY7StGAe2k+/M32C+ti14o+ekm1X1UDvIWGjF18gbPXUyX18ZFpyM9X/9/F1wkZrunhR8jlJUgQ5eQdDcp9uyM9wv/hbVn5YahJu+ph3orweeg5gn7YAxzIxi9Oyb90Ikk+NYgQjmPmMMNk9r8lMnaJimyX0QAhcB6uYx7YKnoS8CRRtGnBXN2OXCrz38g/lJHfGhR4rbVPKJZk89geaTz+fgTd3TEt55q+gmDkObIer0GwXp/cwamMzrqri7NjCqm89zvXXreMDSpFjHWezqGs5v3vheZp73ubvjw7xg5/+jO5XXsHpPYISjuJm06ixGbi2Sfmi4A/gDg/g/OR7KAs60Vb9hdhApzqtO5dK6rouEnV76z/hHtiPtu5LuJPjqA3NuH4/pqJSLJUolUqEve7z/v5+mpqa0HWdXC5HMBhE07Qy6D2+hxpg//79LFmyhHvuuYf58+cTi8VYvXo1+/fv5+Mf/zh33nknXV1dvP7666xZs4a9e/dSKpVobW0t92tHIhFqa2uxLKv8d1VVFfl8nkgkgOuamGaeYjHFiy/ezcGDz7JmzT/R3t6F6zpYVhFNM1BVA9e1KZUy/PrXd7Fq1bcplTLl78mUHFxVdbZtu46lS2/DMIIEAtUUCnFMU5LJLSvP4OCrNDbO97qvA2Qyw7z88nq6um6nqmoWqqpjmnl0N0opLdJsX9iHoinYJalDMbPCQpTSJfyVfkb+MELDGQ34PFCBC1uu2VIG5qsfX03yWJLuDd1c/M2LyY5m2f3Q7jJ4VlQFRVUkDM2FUrYk4Wi4ZEeyNJ3ZBIo8D7tko+oqlmpRUAus27aOZw8+yx+u+QPVwWri+Tg5M8eDux7kkVWPYDkW8UKcqkAVJbvEaGaU4ewwy9qWARLSlLfyhIwQmVKGgB5AU7QycI74IhxOHGYwNciS1iWYjslrg69xZtOZ+DQfuqqjKRqWY5WTxYt2EUM1MJwCkcQbwhYXxqBusVzUtQDlrupQuxdmZsK+zwsbff5mqD5LWOjCMITahHWuXwa4ML4LgjGp1FJ0yPRIb/WZDwjrqhjTILp9DZzzd/DaF6HjLtlXYQSCLZ6/zgfJHmGUa049LugLypVhUwofMzv9uGuLz3kq6VvR5L4p0O3YAkZ9Ue/86a1fMWNaSq75TwT1ul9ej+KFWlk58cUdfBo+8674rPeul/TwUJOA4nSvVGSd96BMCAzugugM6dK2Ch5r7r2gUlok5q9vkoC0qUA2VAHmkVZhuPMTkOkTv7YekNdl5uX5lTIiDQ81gJkj49aQTAm4dl247bYd3HjjYubMqebYsSSDg2mWLGnFNB327Rugvb2SmTOrOHw4zoMP7mLjxhUEgzqm6aCqsHfvAG1tFfT1pWhqijBnTjW9vSnWr3+ZTZtWMj6eY/36l7nttqU0N0fJZktUVwvAtm2HJUue4tVXP0d9vZz3JiayNMVCjGQm2df7Fm1VTZzRfBKO62DaFn/38s+4rusj2K5Dz3gfC2OnkTeLuLi8O3aMhnANw5kJzmiag6ao3P/rH/DX515GdTCKTzNIecA6XcxSMi0aotVM5JLUhioZSU8ynJmgIVLN9/f+C7e+/6+YyCV5au+/8JlFf0FbZSOmnaPSKKLYQzCxEbf2KyjGLMDyBvAZKByAUKfYVFI/Fn91098BpgDr0bugYYMk6VvjUsNlx4WR1pvkM+WaUu+lIKy10eqB59tAnyPBZ04KtEb5/Oa6YfBKiFxOpu4pPvurbSdIwv26zpF4nA3d3dy2dCmv9PXxSl8fj196Ka/09tJeWUlA16kOBvFrGke8Tuy/W7UKBbAch70DA7RWVJS7rvuTSS796U9F+n3ZZeX939HVxezqaj73q19xx/LlDHoA3lBV+lIpVrW0oPb0CBt9550i7TZNGB8XxrlUguuumwa7Dz8sQHlK6WXb3mvOTQ++brhBgPjs2fDuuyItv/NOmDVL2GqfbxqAFwpy/9T+HAeOHJFtHnxQJOGBoHRMj8VhyXwomgJ8T24Xb/VkSoDuye0nDgJdBGzHGiDgFyBtGBJ+1t4sgNowIGBItdYUeD65XUDh1KIocpwpcG9axwF6DQ4PYM1owvJ6p+vPPhsrm+Xn//zPbHz4YUoTE/jq6rjhM59h7tAQ22ybf/j5zxkbGyMcDBIIBnn8iivouvFGws3i6d53zz1lwD33U59CD4d589FHp6Xg99xDfnycYGMj2b4+Djz5pIxTh4f57bXXloF6sK6O19av5+xbb8FXyAh7Pes0UQz84vsyhlVVSf/e8rMTyBriY+KZniKTqmplTDo2OL1uTb2w1tt/Ln/7/BKYBsJqb/np9P2lglTSlteLiErzpA6cs5dj++X8r3iA1vUqY61iDrOQIVTVBKrG8IHfEKhsIFI/EyMQppRLicz7tOW4uKi6H1ynDJ6lwSaKVUgTqmoBRSE7OYgRDHtj4iiqqqPqBlYpjxGsAMcmlxhG94fxhavAdVA0448AdsmbHP4zwP6PLn+Whf+/vPz35Nv/K8sf121NhZY1LV3KO089xcBvfkN2SIKwAnV1zP3sZ+n61reonjuX/NgYdrFIYWKiXIdQv3AhpWIJ9yOfh2/+TDqodWNatr395wKQp2Q0V35OTiaJSZn5S8fhlHmSxrjkQklOzGVESm7b01LyVEIAt+FHwoE88OjYIg2fOpZmTMt1QIIhHAfbLp0g+1Y1nXBNC2OH9qH7pZYgWN0sM3tmAVXXsc0iA29KgrimB7ygsl9j5lMY/jBGMMrgWztxHIvTLrqGljMuEim5Y5GLD6GoKk2nn49jmzTPfR8nn/9pmUF0p9PIxw+/KuNkxRWvtGWjGD601R/kO/fcxUN/9wgL71rPB9d8hMe+9TDNPW/jHtjPU08+yWevXourqKixGRAIeP3Wx2QgnctI2nc6hdo+G23dl1BX/QVufAJ7888hGUftXIqz60Uo5MUHriioyy9E6TgTwhGUikrsFzZDMgFeFdaLL75IMpmkv7+fWCyGqqr09fVhmiYDAwNlYA2UQbVt2/T19dHU1ISqqtxyyy2sWrWKM888kxkzZvCjH/2IoaEhZs2aRTqdpqWlhVgsxptvvklrayuWZbFt2zbC4TB+v59EIlHu266srETTNEKhkKgMzDy6HiQSaWLlyodZs+afaGo6k3j8ML293RL0g0KplGLz5rXkcuOsXLkJEK91qZTF54vQ1HQm+fwEABdcIMyzzxchnx/H5wtjGEESicMMDOylpeUcDCPEzp13kMkMkUz2efL0+0inB3EcC10PgAK58RxDbwxhFS1s00Y1VOyCjb/ST2Y0w2TPJKqu0rasTQLMNMkSUFSFlQ+v5ONbP86qR1ehampZ/l1Kl3jl/leIdcZID6bZvHYz8cNx0kNpHNvBKloM7x8m0hwh2hwltihGdjTL9uu3M/HuBIqqkDiWYKh7iKAe5I6uO3jmw8+Qs3Ks27qOrJmlP9XPktYl5C3xpTeGG0kWkvh1P7HKGPMa5pEupRnMDJK38uwf3s+hyUOoiirg3JJBZkAPADCzcibntZ+H5VjsG9jHvIZ5jGZHuXbrtfRM9mA5FoqiUPKCUfyanz39ewgZEZFrF8bER60YAhhzfSLNDrV6rGkBxnZLqvjqd6B+uSd5DUsVV25AUr7ThyRFvOYckZDjSBL4gfUiJ88PizQ8c1g81+1rBFCXktKjrQXk2JlDIgt3ShJWFmn1gLXnO3NtSBwWwDsVjjMVTOba08ngFe1iZ9F8wj5bnnc7cZjpQDSPEVY0WX/qfOivkFtfxXF/G7Ke410zVF1kex/cKjLsYD20XQD5cXmuqgaZIZFpZwelqzpYLyA43Qvdt3ud2Y7HtmuSHt61Xp7r6Bsey+5ISJkRBl9YKrnqF4h327EkNf2lW6bTzY2IMOO5MVBgeDjDDTdsZ2goTWdnjI0bpV9+9uxqli5tI5+3eO21QTo7YwQCOo7jsmFDN52dMYaG0lxzzRaGhtLs3TtAfX2YgYE08+c3Eon40HWVpqYwDz54EeGw8W8SwnM5kxtu2E4k4qO5OUpv7w3k8xZr126mp2eShqYw/clRvrvrGd5/0rnUeT3Tg8kxXNflowtXMp5NsOm3P6YhUkPOLPDN3/4I13WZ13wSdZFKFrScLEnhtsmClpOZzCUIGH5QoCpYwbtjRwkaAeqj1RRtkyf3/JKh9ASj2UlOqW/HpxmcGTuFXDHHWCbOX52zmrFMHBeXjb/5KWlTB70VGr6BYsxgGlhnAVUk4cPXgNUD0b8UP7STlgouJQSNG+V/mNsj20ylhSsB8VzndsnnzncyaM0QWAATD3p91hs9lcQYlA6D4vlZQ8th5ptQexc+VePO5cu5at48Nq1ciSZl4jzo9Vxv3LWLFbNnc8fy5eiKwqJYjNnV1eRMU6q7EgnaKiv5yvLlGKoo0kzHYUFjI2HD4NxYjH4vIG0qAA3XLaeNb+jupmTb5Z7rc1ta2LRnD+2VlbRVVvLi4CDuSSdNh5b19MDnPy+J4OPjAq7vvHM6lAzg6quhr89T0uXh0CEB1GNj8Ic/SB+23y/jmuFhuOUWCAblb9cV5nvqGIGAVIEdOSL3ZTLCan/3u3L8a66BbGY6tVtRhUWOhoWJPjookvDZogTAcaeTxIslAdZ9wwLao2GZOJjdKv7pcFD+VlUJPju3QxLDCyUB5aYlknNFmQ42U9U/ClNzsMMB0n19vHH//VSffrqMP4NB1nzoQ/xu3z72vPgiu7ZsYe7QEL3PPcdqv5/3/vAH0hMTjAwOcuzwYZZ+8YtoXrONoqqcc9ddnP+d79Dx+c/jq6jAqKg4oQln/Pe/57krr8S1LA48+SQDv/kNueFh6s86i/O/8x1O/9zn8EWjoGl0fuUrGIUMSmW1gOWfPCrj0Y99QRh8RYHnnpmWhDuOhOa2zpYx7kkdMvYEUWlOjokyMzEh49bqWvjw1dMWyUxa/tfxsel9BsMCrKf+rqgSgH3JR+H0s2DgCFYpz9DbL1LKJnDMEoqmk0+OeSFkEXKJYXBsmjreT6g6xui7uyjlUqiqTsu8C7HMAsPvvISZT5bVlO1nXUaoutkL4A0z8NYLFLMJAhV1mHkB7GY+je1ta4QqpVHHCznTdB9mPsngWzspZeM4jv2nlf79X6zi68/g+v/g8u95pf//XY73ZE+B7VBTEx1r19K1aROhxkb23XOPSL5nzqTh7LPJj43x5qOPkh8dpX7hwvLJDCBx8KAMFuPjkn6oqrD6o9MgNxiWWdmPrxP/yfGVWiedAWcuEZ9vMg5T9V3xcZHcTPmskxMCnDVVwPZUqqLryn6/+TMB5ppXbVBZKyDesVF63ilXcc045wpaOi7AKuVxUWieez5GICrVWs2nYhVzjL67C7OQRVHV6V5Av6QlTv2tqCpmPk3d7LMx82msYgbXsSR98a3plEUFKKRGsUpZRt/d5R2X4+oPOqUj2XUhWoESCOBmM2BZzFl2Hr9+fjv7f/XP/G7XK3zoyitRL74MZc6h0G0AAQAASURBVN7ZvPLSS3zqw1fKQFbTwOfHGepHbZ8lwXPpNO7Bt3AzKdzEhADtxCQYPrSLLoVIBUptPerFl6NEhTlzB/pQqmrRLr1SfDrhKOqKy3C993nXrl0cPHiQVCpFa2truc86HA6TTqeJxWLouo7jOExMTJTBdj6fp7GxkcbGRs477zx27NiBoii8++67HD58mIsuuojBwUHS6TTRaJRiscjhw4cZGBggmUxiGAYHDhxg9+7dhMNhkskk4XCYQqFQPl4ulxPM4jrE4z1l4NzevhyfL0x19Sza2pYyOPgayWQviqKV/dmqqlEqpXEci3C4AVBIpwd58cW7SSaPYdtFQqFawCUeP4KqGkQiTaRS/YTD9WWfdizW6aWPn1vu1A4EqrDtEuDiWg7J3mS5isvKWyQOJ3ju+ueIH45TGaukvasdzdAopUsM7BvAKoi/beu6reTGc7QuaSU/nqeUKXHRAxfRsaYDf6Wf5XcuZ87Fc9j3yD6W3raUitYKIk0Rkv1JBvYN0HJOC3pAZ8etO0j1pUj1p8oJ5a7jkupLEaoNUcqVaAg3sLRtKRte3lBOBV/WvoxPzP8E49lx4nkZxDdGGknmk4xkRoj6owxnhrnnxXsYTA8yr2Eew5lhfJqPxkgjw+lhvv7S1wEoWkW6e7vpifewd2Av9eF6fJqPDd0bePrA0wxlhjiWPMbazWs5ljxGd283x5LHOLPpTCzHlM7pQL1IuLNH5PcD66f90kaVhIs1LBcwHWgGbA88K4Aqj2lBCfUKNAgwt3MCRu0inH47NK0UlnvuLbKuHoJF34dwu4SgHfy2BJppAQHiWkiArOYTttlfIRf3ZI+AW19E9u06lOXYLjIwjjTJOqlj0341RZ32WFfOmvZYqx7DNSWrdkw5buKw5wuvF9A61YNtF8UHbRdk28rZIueOvysJ382LoalTEr93rIVoi/Rav7pRGO7XH5J97l0PZ14nIHtwlxxfC0jXtVWQ19W8RJhp25SQslCDvN+x5QKcE0dku4oZklKeHYIXPg+5EdnWCOE4LsPDGW65ZQkVFX6uumoeDz+8Ett2effdCdau3czISJZ58xrYt2+A6uogmqZw111dfPSjHYTDPs+TvYu6uhAPPbSbpUvbmJjIc+jQJOl0ib6+FG++OcqxYwkOHZpkxoxKVFWhry9Jf3+KJUuERMjlxHbR2BjhlluWEI36KdkW39v7z7zY8xqaquLTDT7deTmNFbWEfAFm1rTQEKnh052X49cNArqPLy7/KABvDh1iLJPg/p0/KIeZXTK3iwUtp2I7Nm8OHWIkNcG85lPKyeDjmQRnNM/h+3v/mQUtp5DIZ+hPjrLqtGXUR2uZ2zCLpmgdC2Onoioqnzr3cnRVx7WGZaLIyYA15AFrRcLLFD/U3AZKxFM2aJL6PX63VHHZSVkv1CXe64ZvgDHLSwsPyu3IdSIRL7whSeMNGyF61XRomhIEo1lAvPnedA2YMROcBPWhIA9dfDFj2Sxf2LqVw4kE9194YRkMR30++pNJbNfld8PDOK6LX9dZ1tbGxldeYSSTIeL340F3FEBTVcI+H1/cto1YRQWmbfPwypXMqqrCcV1uW7qUNR0d3Ll8OT5N47mrruJ7l12GoWk8tno1juuy/uWX6ZmcFEC9dq0A5Y0bp8Fxg2draGqaBt+33jqdDl4sQjIJmzbJNj4fLF0qHdj33CPbtrbCN74hzPYrr8g6GzbAs8+K5LyhASIR+Tn/fDlXjI0JyO7vl2P97ncSVnZS+3TfdU3FdL91yZSxge0IWDwe/AZ800njqiL7OTIg5xVdkxqvZEb2dXRQboslkYqrXnhscQqsm/+2b1vXcKoiHHjiCWrnzSM/OsrY66+TGxzk9fvuI93bS7CujkBtLR2f/zznf+c7nHPnnbiOw9j+/djFIo5lYUQiUsf1VempnvjDHwg1NqL5/fhrajBCIfxVVcxbtw5fdTV1Cxey6pe/RNE0Tl+7llX//M/Un302dqFAdUcH0Rkz0IJBrEyG0uQE6pafwsSoAN6LPyS5PfFx+OG3hKX+2Bck2GzNWnnNV35W5NxbfirVsR+7Vsam2YwA9Od/IUx2ISdj1FRCiKWJEdnGdYXw+Zuvie1RYboZZ/XHRJL+374tasLqWtzZpzLWs69MxNh20QsoExZcVQ1CNTEJbbVNrGJO1u15FUXTwXXFI10TY7zntXK/dai6BdssiNe6Z5rocewSoepmcolhYbVLBZpOOw/FdTDzaVIjPYwffh3dHzqhWtadAtd/Cunff0og/3/T8mdw/X9w+fc6p/97i22amLncf5jl1gwDIxSiYvZs6s8+mwNPPllmpqd8IO889RS9zz3HO089BcCir3+dcCyGqus0LlyIUsjJSSY2C0YGID4hLHZ9M/xulxe+4Q0Ip7oBt/9cBmT+oMwEjg16ABvpCNzqsd/P/2I6OTwxOc2Kpzz2Ozkp4BxXfNvphASjGT5hVlpnoaga/ki1sM0Hfo3jmCiKglXKU0iNomo6qqZjFXOkRnqYOPI6iqqX2WbXcaaDyuacC4p6QiiaY5komoEvGKXljAuxikVC1SJlClW3eDUGLei+ILgutlkgWNmAEazELKRxXBcyaextvwSzhFvIQ3wce/MzKJEI6DpuJg2Kirb6QyjRChRPnu1mUoArwWW2jZvNora2o9/yNdQZc1AqqtBWXAqRKEowhGsLKzjlM7c3P4ObmERplNR0p+8Y7lTdVzYtAWqKwvLly/nwhz9MRUUFW7ZsKQPqvXv30t4udVS2V9kVjUaJxWKk02leeukljzGGu+66i02bNnH22Wdz1VVX8Z3vfIdZs2axceNGrrjiCjo7O/ngBz/Ivffey2WXXYauixfy4x//OJdccgkA7e3tVFRUEAqFyh7wUCiEbVuUSml27drIwYPPousBHMfEcWwmJg6xZcs1RKPNRCJNGEaYdev+lZUrH/a+BS7FYpJSKY3rOuzatZEDB54mlerHNLNs2XKNN8heQD4/QamUpq1tKbt3P8TBg8+STg9y5pmfYvXqxwCFVasepbp6Dprmx3EsSqUMNgVii2LlKq5iqkhqIMVFD15E9axqNL9GKVNi63VbyY5maZjXwLZ120geSxLrjJHsTZLsTZbZbX/Uz2Xfuww9oKOHdCLNEVZuWomqqWy9divxnjjRhijh+jDbb9yOVbC4cMOFGCGD9mXtfGzzx1j25WUoqkJsUYy9395Lpi9DyJBKsykGu7Wilc9v/jy9yV7aq9qpClQxmh2lYBWoDdXSnxJbzcZdG3n6wNNs2rOJykAli2KL2NO/hyOJIwxlhuiMddKb7GXdtnXUh+sZSA8wv3E+Ff4KgobUbq3pWENnrLMMtKeqvda/vJ6AHsBRNNzaRfDOQ8eFj7kSZjYVcKYFhR2dYlhxYGwfZA8Lw4wrTPSr13pBZuMiD1dFNkfyLQjF5Kd+KYRnir96rFu6rgujwgCfepMAal+1yNH1MKSPyGNTQWZ2cTpwLFDnscka5c7pUsqT0QUhMyDreiweXmJ9GWAXU3JbSgmgTh6WCUe7CCgei81x95dk8JYZ8ILTfMKSu5Yw71Pged8Guf/1TQKUNb+w/4vu8gJq7hT5euftUDlTZOd18wSM77xWpOVTbLmZFeCt+QUsJw6JDD15WCYXppLFzaz0avui0POsyNDnXgWBKgzV5qyzmmltrSAS8XH99c8xOppFVWHjxl08/fQB7ruvG8PQqK8Pc8MNz5FOl2hvr8Ln06iq8vPXf72ARx5ZxeRknrvuWo7rwsBAis7OGJqmsGnTnjKj3doaJZEo0NAQZubMKs47bwaf+MR8Rkez3HDDdt57bxLbdqiqClBdHcRQNT636C955q83MplN0Z8YIVbZQFD347gulmNTMPOoikpvYoSh1ASHxvswNJ0zmk7iB6/+ijOa5zCeTXDvju8xlB4nW8pz386/pzoYxW8Y9CdGePA3P+SU+nbqI9WsPHUJaxd/ENtxCBo+Oprm8PbIYSzHRlNV3hk9Qn98FMuxaYzWEDQ0FCUEeqMkg5d6xK6gRsVznd8jn8Pxu4WJBgkuq7lFAs20KmGtnRToNQLGnZz86A0CkBseAq1BWGtzSIBz02PCWA+vBTcHShhqbpZ9O2lwEoBFycpzw/bnOZZMltnk+7q70VSVR1etoq2igi/v3ElLNIqqKCxpbaVo22iKwsfOOINHVq2iKRJBVRRSxSLvTkxw/fbtjGSzqIrCswcPMpBKETQMgrrOQDpN1pRr/lfPP5+mcBgFmN/YyLsTE+WOa0MTRn1VezvK+vUCYvfuFSn2smUCjo8ckc/6F78o7LTrCgs9VbV17BhEo/DAAyduMzQk+xsZmQ4/27BBQs7GxoQBf+YZSR9fu1ak4+EwfOxjAr6PHJFjLV0q+1h+npyvLEsYUb9PPNV+n0i8/b5pCTgI6D3jJK+3WpHwM8cREN43DK2Ncl4qecGGFeFpT3XvkDDhlRHxUzuuAPOKCOheYvhUJ3bAkwPrOh1XX11WRQZqaspjy3eeegozI+RDsK6OUFMT+772NQqTk9TNn08xkcAuFAjW1pIbGWHupz5FbmQEv7cPX0UFY2+8gV0s8sbGjWy57DLeuP9+8mNjBGprcV2XcHMzejBIureXybffRtUk0NMuFDAiEfx19biXfFTInylgXCrKOHP/Hhk/Oo6MS7MZLxndLwTRFZ+S1/jT78htRdX0eHXrz0StuX+PjFEVVcD7nLkyvv1v3/KquJqmH1vxQUklf+b78Ho39PUACoqqnTDu1HQfmbFjEsyraqi6QSmbYOjtF7GKuXKvddPc87DNPANvvoCZT1PReBLNHRfgC1cTm3cRKAqqJqqmE/fvR1FUwjUxfKFKwrUxsa0VcwQrG2g/63IvWM05IViNqQyU/9VQs/8Ty58KyP/fuPzZc/1/cPljr3R01qz/bhp4KZEg5wWRdaxdS8Xs2f/Tyq3/0XEAUocPc+CJJzjjC18g0tKC44Eox7LQDQNNcQVAWRY8/QTs+fW0vzoZFy/08aEOhiG9f6ouJ7Pnfg4f/LTHwgYENE+Oiezmys/KCS2dEFl4JiUnsE9eD8U8FPLiP9I0OX6xICESAJaJrevkUiOEamI4Vonk8Hvk40O0nHEh2ckBjEAYs5AV74qikosPEaysl/fDKqFpPlJjhzH8EULVzTi2haKoDL39m+lQMy9QYsq3LScuxfPLOoBCKZfEF4yiqKrn4y7hj1STnegnUtmE23sUJRzBzWZQY+2S4h1rQz19gQRO7NiMuvR8CEfl94suQTF8uI6NgoKr61Lr4PfjDg+iNLXIe5BO4ex5GXXFpSiahqsocrHwBwRcP/RVlI4zUc+/GCUgMjX719tQYm0oc06FaCWmZWG6LoZhkE6n6enpYWhoiIsuuqgcMDYyMkJrqzA+lmWhaRLE5jgOtm0zMjJCS0sLqqrS399PNBrFMAwikQiu6/LWW2/R29tLZ2cn+XyepqYmgLLMvLe3l4aGBgqFAslkkvb2dkzTZHh4mJaWFnRdoVRKkk4Pks2O0tR0JoqioWkGudwE3/veuXzwgz+hrW0piqJhmhk0LSDy41KGkZE/0NJyDroexHFMbNvEMAJs2XIt77zzC26+WQahIj2Xi5Bp5hge3k9T05mk04Ps2rXRq/eaRamUplhM4fdXYBhhCeGyfCR6JKhsyjedHkzTtKCJYrpIuCFMMV1k9M1RqudU852536FjTQfnf/V8QvUhBvYOEK4Ps/uh3Sy/czmh+hDbb9jOkpuXkJvI0ba0jc1rN0+Hpj1xKVvXbWXxjYupbK+kkCwQqg15nlmkwktVQIV8Ns8x6xgbdm3gjq47aIm24NN8rN28lud7nufgdQfxaT5KdomR9Ai9qV4WtS4iqEn11uHEYda/vJ6HvQkLTdHKnmlDMyhZJW56/iZ+8c4veObDz9DV3kXWzHLnzjvZcOEGQkYIVVFRUMr7unP5nQT1IEWrSEAPMDvaiOqacsHcfyuc/iXxWBdGvYAxDyArmjC1E3tFKh5qg9f/BhbcLxJkuwT5AQkx0yPiHx3fA1ULJOws1yuy81IS/LUibXVdKMbBTsOB++Csh6E47q3bKeBlch80vF+e3/HeZyMsYD/T/0d1W8f5sack4FNVW2UvtuPVbTWLZLtihoDhYkKkb5VeEu1U5VdhQhhlf4UMDqdqCkvp6edRSglrnB2C5kWeZ13O6QzugnCL7BdHjv/Sl2Dp1wQMWwUB71PvcykNY3+ApnMElFt5KCYhWCsv7J0fS1DaBY8IS92yTFLFX98kvm6Q/4lThEKcrN7Kv74bZ9OmPTzwwEVYlsNbb43S1dXOsWMJ+vpSLFrUit+v8YUvbKGzM8ayZW0MD2fK3urOzhiGoXohZVnq60McPZrkvvu6ueOOLurqQuzfP8zSpW2Mj+fI5UwefHAXDzxwERUVfu97bnP0aJJo1KC5OYpluUxMZGloCZIopIj4Q7w9cpiT69pRFRUXl4OjR+lomoNf95EzCziOQ9EqEvaHOTDcQ3OkjoaKGhzX4a2hQwynxnn/yediaAaDyVHqwtWEfAFyZoGxTBxc+PtXn+Vzi/6S1qpGALKlPJlijppQJSXbRFUUArpfQgEB07Go9uso5iEUvVWAtF4Pkw9B7Z0CrvUG8VIHOkDx7ANOinKauOvK/97qEx91g3ynxUPdMJ0fMHKTSMoVVb5DiiHS8qPzIHK5JImPXAe1t4M+QzzbaiV5W+O9yTghwyBnWax/+WXuWr6c2dXVuK6LC/SnUlT4/SiKwlg2S38qRayigvu6u7lz+XJmVlUxmE4DnFDf9djq1ezp7+fMpiaSxSKVfj+aomB6oWUD6TSzq6qwXJdxLz38+G0VwO84BA4fRunvh8WLxff8hS/Aj388HSh2+uny+3e+I+x2Og1VVSIBnz8fQiEByVO+7Ecflb7sP67q6u+XkLQZM2T88sor4useG4NzzhEgvXEjfPvb8n3euxeam6GjQzqliyUB0n3D037reEr81BURGJmAmsrpyqySB8anKrWmFtOSfcz+I+vnVBha0C8suOsKy93WJN7qnn4B7sm0sN0nz4BDvZTaGihMTBCoqSE7OEhudJTqU09F0TQ0wxCqxbbJDgzwzt//Pb3PPcf5jz1G9WmnoRkGqiFjqKmMnzNvvhnN58MxTax8nq1/+ZeitGxqKldyBWpqyoG8uC6ldBpFVUUKLhc8SqkUdqFAbnyclrPPkkthMS/EjS8g1a49B6CqzvNVXwm1omjj6EFoO4lyZtD+3RKy+4kvyntqe2npuAKQ2+ZMh+2qmoDx46u4UISM2v5zSRLPJGXc234SJCaxo1GccARAKmBdl1x8mFBNc/krmJscpPeNZ6czf7ymm+Nzfpo73g+ui1nIYhWnx7qoKq4lRJ2qiyLKsU2G33mJujnn/nd91nYpj+YLyRi5lEcPhNF0359GqNn/hRVffw40+395+Y/0U5vZLLmRkRNCHhb97d9ieCznf/g4Xh/y1LFs08QuFlFUlUxvrwRFXH01WjCILxzCX8igxMdw53TIyerwO8I2u56fSDNEwqxqIhmcCnVY7c3KBiPiU+k5ILN6VXVglWSm0LY9UN4gP+DpwFQJM3vhl/ChzwjALhag7zDMPEXY8OQkdm09jm1O91jP6UT3h7yqLdc7cYjsu/6kTnyhKlzXPSHh2whGsYpZfKEKshMDBCrqsUt5xnq8dMZgBQNv7iBU3UKoOiaziNXNmIXUcYBbx7Et78R1DqpqSFe2a6O6iqR6d/9aOqmj3sA4ncLZ9SLq0veLtTJSIcneE+PCRCsKLi7Oji2oS8/HTadQGltQ/OJtxXVwc1kUVcNVVdyRQdSWNmHGi0WU2jrsX/0cddn7ZX++gAfWwTVNWb9tJrZtY+tGGSg7joNhGGXZdjgcFiWAZTE4OEhjYyOG9xndtm0bS5cuJRgMsmPHDrq6uggGg1iWVQbWU4y3qqoMDAzQ1tZ2QmjZ1HqapjE4OEg4HGbv3r2sWLECXdfp6+ujtbWBfH6CSEQ+I8ViikxmhGx2hNbWxZ78O8vw8H6i0WZ27foGK1bI4F7XAyQSx3jllfvo6rqDdHqQxsb5GEao7MXW9QCmmUNRVHy+CLZdQlFU73UXef75m3jnnV/w4Q8/Q3t7lwTjeeuoqo5jumAZWHkLRVXQAzq93b00LmgkO5KVNO+NK8rA1xfxkR5I46/044v4cCwHx3bYtm5bGTyf/9XzeeKsJ1jzT2to72ov+9z7XumjorWC6tnV2CUbqyC+62hLlF0P7uKiBy7CCBnkxnOYeZPKtkrMgMnVW67m2YPP8syHn2FZ+zIUpBLIwWE4PczGXRt5cMWDBI0gjuMwlhsrh5TZjo2Li+ElV7u4mLaJqqhS3eX1X5uOiYrK3oG9tERaaIg04NN87BvYRywaYygzRFd7FwWrwL6BfbRXtjOrahaKaxHK96IcWD/dRW1lBWSfer3IwQP1gAbZY5A7JqC3lBDW2FU81jYuUvDsMS+07EEZDCga0ruclfX+8BVYuGl6G1+1MMxjLwngDs0EMyU9zqWEPG5UyMnJMWXi0LGmL+yO5+fWvHDGcm+1bzrt2zsnCaA+BpEWjwGYGkop5e81U82/Ux3aJyzudHI4iKc70uyx+iVPSq6LZH3veui8Q4B/uAWq5kwHqQ3tloT1ypkegHIoV4NN1YoZUWGos4MQaZPkcX+1BJqFm6XaywjL83QtOfaLN4kUPbZMPNuRVmHQO28n5T+Vq9duYdmyNrq62hgayrBokXirXReKRYu9eweYMaOS1lbpgzZNG11XGR/PesngJpWVfoJBg0ymRDQqwYCO41Iq2YTDPizLQdNUHMfluuu2cuONi5k9uxqAI0fi5eMahsaxYwk2btzFI4+sQjNA0V1+P/guC2OnUrRM3hru4dT6GfIv9ID2pt/+mE+dexlNFXXcv/Pv+fhZH6AiEKZglvjBq7/ixvOvImD4pZnDtggYPkq2yUQmWQ480zUdy6v08mkGqqJwbHKYv3/1Wa5edAUtU5PArkOqkKYiEMV2bCKGjVHYBYH5oFbC8LWQ/rGX3P2I1GK5uRMDyMrJ9MeFcBXegIFL4aQRD2hvFKBsDkiAmWuB3gL2qISbBTvFl+144ZCF/TBwyXRiuTUBbpaU24arhMqf6JJts29ggOZIhOZolICuczgeZ2ZVVbk+6+YlS3ho9+4TgHDuOGVeulSiyu8Xqb6mkSmV+NILL3DT4sWcUluL7bri7UYS2rt7e1nY1MRQJsPGXbu4c/lyZldV0Z9Oc+9LL/F373sfVf39wmDfcYdItW+4Qdjp+nr5/a67BBRfffWJILpQkJ/KSti3T9LE29spd0Hv2SPAWddFRm7b4rWurBSAfeutwobPmQOf+5ww4OefL0z3zTcL8H7/+yHvSbVTGWGUq6InpoQf7veYagQYH+6floN7LSTlhPD3jsm+6qtkXU0VAF7+LJSm+7JBWHJNheEJCU5rb5ZzXEAYcdO2yPT1kR8fp/7MM2XSxHFOCMQNt7ZiFwoUxsc58MQTdH7ta2QHBjgwlexdX4+VzzO8axetF1yAlcvhr60Vu108jq+iQkC4IxNLuaEhAdqf/SzhWAxF03BMk1Img79SkrEVXSc/MYHh9xPweR3XxYJIsS0Z9xIIwT9sEiD8N1+bDjD78NVC7mz7x+kAXccV4qcccFYjrLemCbCeIn+CYamUff4Xkj00dUoPBOW4ipfirmqi/Hz2h9ifvonBA78mWN1MZdPJqLpMHJj5FGM9+2RsGgiTT45iBKPo/hDJoXeJ1s/EsS3ptZ5zLr5QJWYxRymbOGGsa/gjuI6Navgp5ZIntOJYxTxGMMLYob3UzT4bq5gnXNtKKZcs92VbhTR6IIIvXDMdavansPwpgPz/heXPgWb/Ly//o/7qqUX1+fBFo8z9zGfKvmjVN/3h+o9KxjN9fey9+25SR45gFYs4pRJWPo9TKk3Lxp98El80ipPLSc/17LkoxbzMvp3UISdtVfcAtQXZtNyqmpx8Lv6Q3JZK4q0eHRRZ+eTotLR7YnTadz05Kuw3lMeVvPBLmHWqgPUffktOjJU1EopmmXIhsyxsSwLNUiM9mIWMMMsAmk6ouvk4P/U+mfnjxNAxVdVkFg+FcE0M17bQ/SFi8y7CF6zAVRTqT+okUj+T8cOvEqioA9c5ISjNLOZwXZfaWWeh+yMCrL3hheIqUqe15HzcVFJAm+HH2fUi7oH9Iv1WVOwdm3FLJZSaOlDA3rEZ0mnUxculyzo2AxTEA2OZOL1HoFQSKbimocRmYG9/VqTnmRS4Ltpla1Cq61B8AsgVxwPk3vpO/zFQVRKJBNu2bSsDa1VVMQwD0zTp7e0lHo+zbds2IhGZaRUftMLq1aupqKjA7/fT09PDrl278Pl8RCIR4vE4mzdvJp1OUygUsCyL1tZWSqVS2c+dzWbLxzIMg9bWVnbv3k1rq/TfZrNZWltb0TQDnzebKlLsNJnMEJFIE1u2XMPExHu4rkNDwzxSqQEuvHADuh6gWEwDClVVM7noogfx+SK0tS3F54uQy01SKmUoFpOoqoam+SiVMjiOiaYZgEs2O0YmM8xFFz3ANdf8gVhsEbZdpFTKkMuNA6JgUBwDu2Sj+TU0v0ZmOEPbsjYClQGisSgXPXAR2fEsO27dIdjIclA0BdWYPrVqhsbKh1dy3XvXcenjl1LRWsFH/vkjNJ3ZRLwnzuarNzP53iRNZzZRNauKYqpIdiSL67g0zGsg1Z/igvUXALDti9swsyapvhSO5YADt3fdfoIU/GjiKK8Ovort2NSH63ngogfQVZ3x7DgFu0B1oLocUnY4fphrtlzD4cRhTMfkvYn32N2/G8u10FSN3mQvu/p2oaISL8RpCDcQ9UdRFZWJ/AQLGhcwlBliSdsSAG7cfiOX/vRS7n35XhwcVNcUYF2Wgzvwxg2S4F0YFf/z2CsCYIMNJ3qpVZ88XpwAv6dqyQ+ItFs1YHy3VG9lD8PvbgEUOHOjbDPxuki+i+MCDIMxkaUXhuX+iX0CyF9bB2ZStnVdYZVVQ35PHPZOWqpIpKdY4nIXtgearYI87lheNZUHaKfWB08WXvKYBy9RPHnkj9ZJe6DbA+q+iExqOqawytkh2Y8egrNvFmBcv0C83SDp3lah7IP2PpCy38QhCR+zTWGqFQV+923ZPhoTMD3yuvwdbhZgbeUh8a4EpGVHhMWeexVkR73+az/EzoPMEJqmcvvtXVx88RyGhjLU14dZt24bR44ksG0Hy3I477wZtLdXAXD0aJw9e/oplWwaGiJMTubp6ZnEMFR0XcHv1xgdzWJZ0iN9++07yWRKqKqC18zId7+7mhkzKtm1qw/LchgZybJgQSPj43lyOZNQyGD9+gvI5y3GxnLkzSLzmk7CcV1UReXM2KlE/CEMTSdn5tFVjU+cfQk/ePVXWI7NgpaTSRYy1IWrqAlV8slzVjOeSbB/4CDD6Qk2/uYf6I0Piw/bMKgORnlruIeh5DhvDfegoBDPpciWCrRWNXjAXNjxvvgIiXyKykAUXdWwHQdN9eEa7VD4A65bgqbvwqx/FQZaCUrit9YAjd8FLSYTLW4BzEMweocAZDUEofMh+ilhpCc2eoFl94FeJ8DcmOEx3mHxZ7uWAOvCfpGHB84UYF17h8jM9QZQ/GhqmKOJBJ/fvJmjiQTJQoGeeJyQz4eqKIxms8IgaxqxaJTvXXYZJ1VX8/DKlVw1bx53LV+O5ThEfD4q/X7G83ke6O4moOv4NI3RbJbRTIYlra1E/X4KlkV3by9HE4ny8OGs5mYOjI1xSm0tT1x6KbOrqhjNZKj0+7l58WIqNE2A9bPPCrscCIhPemhIwPDjjwtgLhYFfK9ZI2DbNIUwyGYlUby1VZjpXE4+bLouzPbgIIyOyrqhkLDf110n93d2wn33CVi94w64+OJpKflDD8njui6M9XvH5Lah+o9CxWwJK5vyRpdM+bt3SIA3CGBOZuQdOakdmmqF2T46KLeut47tTO+75I2revoE0NdXeWFohrDbCgLeLYvc8DBVc+aQOnqU177+dexikVB9PfVeM41TKhF/+23Czc0s+tu/xbVtcsPDzP30pzEiETSfj2BdHW0XX0x+YoJ0by+ubeNYFr6KCkqpFOneXgHRxaJs+6lPkR8bQ9V1rHyeYjxOoKaG3MgIhUQCXJdAdTWBSFjGPP6gMMtmSVptEpPy3kx5oWefNi35LhYEWE8F6Bo++T9MPT4V4Jvy7I3JuOQLJeNCLr33Fqy5Wsa3P3tMws9KBSGWJkfFbz0+BBWVcnxFofG05YSrYwy9/SLFTBwUhbGefaRGerCKQpyEa1sx/GFwXaqaT8WxLaxCWsan4SpQVHRfkHBNC3YpT6gmhqrqoOnYtuAAM5+R0N4Dv0ZRVUK1MRRVI1TdwuTR3xOqiQn77Xmvxw7tRTOC3pjZ4U9q0XzTVqj/Ast/CrhWFOXbiqIcVRTFVRTlzOPuP1lRlF2KoryrKMqriqJ0/Gc8nz+1RTMMfFVVVMyaxaKvfe0E+fiUZDzlBaOlDh/+dwG2Uypx4Ikn6H3uOXJDQ6SPHmXv3XdTnJxE9fnouPpq2j/wATrWrsVMp/HV1OCWivCjvxOm2ecXRvmH35ITx+SYMM+lggDlyTGRJB/vcXn1JQHKui7AvFSAVPLf+q4NQ0D4f/uWnISu/KykKr7wS0kdD4SkBsEfkL5rswiqWg40k/qBCANv7sAspL1GGZWWMy70AsYWeQyHTf2cKU9JJ45j4VglL7BsJ6puoGoGVjFPKZ8C28IIRDECYepPWoSiKOQSw9TNPvuEoDS7lMcXqsLMp+U55MVHPZUW7uz+raSGaxquWUJd+j6RbLfOwOneiRJrg3RSEr+zGZRYm4BkVcN56QWwLRRfQCTIioLaPkv8X2ZJ/NypRBmIq+2zRJoVn5AKLi8AzsVFCQRxBnohlUBpm4mtqLzyyissXrwYn89X7pmORCJ0d3cTDofp7u7mwIEDvPLKK+Vu6inQvXXrVhKJBJ/73OdYsWIFlmVh2zbpdJr29nZ0XScSiZBOp8tge/Hixfj9ftrb28lkMjz33HOUSiVUVWXlypWcfvrp5QTzVCpFqVRA03yYZh7LKhIONxKLdZJOD7JkyS34/RXoeoBAoJKKijZ27rwDy8oTCtWhqhqKonhJ4CG2bl3H5GQPoVAtPl+EUKiOUilDoZAgEKgil5vAcSxAtkmnB/D7K7CsAgMDe9E0P67r0N19P5aVxzSzKLpKZihD/+5+kseSTB6aFDbacth5+04UVSFcH2bxjYtJD6fZcs0WzKzJwN4BSpkSyd4km9duBqRCKzOcoZQp0dbVhhE0qJpVxapHVlE9pxpfWC4q6aE0L97zIpnhDIHKABVtFYy+NYrm01h842J2fWMXsc4YhWQBxVI4ufpklrUvK3ueH9z1IItiiwjoAYJ6kAp/BYZq0BRposJXgaIo7OrbxdHEUUayIyxrW4ZP86GpGhX+Cjpjnbw6IOA8VhFjSesSJvIThH1hqgPV1IfrcVyHe1+6t7z9WHaMI/EjPLjiQdZ0rOHO5Xfiui4v9+/DnfJWd9wJxTFJ7G5fA3WLJLV7KugsPyyAewqIu47UcGUOCaO9b62A5MhsAc3VC0CLiO/61BshPwJv3Ag4UL9YGN8peXWgHube5rHdKgQapU974UYv1Axv1twQoGyXBNy6trDDvsi0Z9ouHOfB1mQSwBcVjzaKV8Olnbi+EZb1p1LEASqFNZV1il5dlyqAWFFlssFXIc8hOwi77oHcqASO5cck4KwwAb++TgB0sFYk8MkjcrwdayHVK7/rATjrRgkh+/UXZf33Pyz7H94HiR5hpX2V8pysvEwCvLpR/NV6QEDY0B4B44oqz+ekv4RoKyoWjY1hmprCLFrUyre/vZdly9qoqwuRz1vccssO3n13gnRaJlpjsQoWLGjkxhu3c/hwgmDQKAPynp44yWSBSMSHaTpomsK9916A60pYWSpVYnw8h2U5OI7LggWNJJMFli1rQ1EUKiv9hMMGdXUh3n57jEBAp74xSN4sgKLguC6mY6F6kyOqolITqiRbzFEfqebLF36KbDHLJXO7mNd8MpZtkynlqAtXMZlPUh2M8r29/8z2g7v5wau/IlvMUReqIuIPMb/5ZGpCFZxS386Dv/khObOIXzPoT4xyaLyPiD9EQPfRUFFN1B9m/+C79CdG8WugUEIx+yGwAMU1BfCOf10YZlzAEo+0ostjbkHA9MQmqLlOQs1y3XJ/09/JJrW3TweW6e0eUPdL1ZYa9oD5DXKM0FKRn6shaHoCjJO9+47A+D1YxyV3P7hrF42RCH+9YAE1gQCO69IajXJybS2m42A5Dqlikb957jnGcjkeW72aWDSKX9exHBnUP7x7N9d1dnI0mWTt5s1kTZOI38+Vp59O3rLYOzBAZyxGQyTCEQ/Uj+VyzK2r46Vjx7C9/dRHIoQMgzOqq1FdV1jqZ54RgHzNNQKG588XIHzsmMi+BwYEHD/6qIDoSETAZX+/sMz9/QKSIxEB5em0rB8Miqd6eFiAdzAo4HnTJvjIR2R/pZIA+NZWeS5XXSWyci9B+wQwraj/JlTs3wScVVfIY64rf0+FlxVNONQrQLpkCoOtqfJZ6RuW9duaZN9TAH0sLo9ZjrzekQkB8QCpDKqmUzt/PmYuxztPPVUONnv9/vupW7iQhbfcgplOE6itZd/Xvkamvx9F1wk1NlKYmMAuFBj//e+xSyX0YFAk5rW1lFIpUBQm33oLPRgkVF8PioIWDFI9dy7FRILa+fNBUciPjXHg8cexcjnCjY34q6pIHTvGvnvuwXYcGfOMDk6Hj8VmyVjSdcVH/cnrxYr48XXCYAfD02G9qz/mkTfmNBCfCvANRuT87Q/IuDSdkL/rPdXA8WBcE+a9fN+Wn8l+65sBBU03Tgg1c22T+pMW0X7W5QQrG7BKeRyrBJouCkXXYezQXo6++ksG3nxB5ldtCUbNTg4RqGigqmUuU5PAui+IY5UI1bSUSSYzn8HMJSllE1S1nEZTx/sx8ykG3txRThuvP2kRVikv413131NP/Xn537X8ZzHXzwBdwLE/uv9x4AnXdU8BHgB+8J/0fP7klqmAMiMSOYHldkolSun0CeFkzr/HZCtKmfmunTevDLQPPPEEubExwm1tdH71q0Tb2/HX1KCpKspU2qKqyYVn+8/lRJHPS2DDrFNlRvCUeSLXVlUJfNj6s+marg99xgt8+LZczKOVJyYp+nySED617y0/kxm/cFRA9plLxL/y40e8lMZTBcg7toSNhasI18TKKYfjPa95b4xdrigwghLMoygqRrCC5o73o/tEauPYJuM9r1I76ywURcUq5tB8AQx/GEVVvRlVEyMQRVF1T0qeR1W1E1hzRVGwillJXux5VXyvrnsic+26ODu3yf/zkg+CpqN2XYgy59Qym+3s+q0A7xlzUMIR1ItWoxjCprqlAvZz/4KbmARH9u0e2C/J31EZ9LqmiaKox4H2NE7fUfFvF/Io4ahMZiQmUbIZVqxYQXV19b/5vHV1dZHNZunq6mLevHmsXLkSgHQ6TWNjIxUVFVx66aVl+biu66TTabZu3Uo0GmXevHn4vcGC3+/n4MGDZDIZVFVlcnIS27aJRqN84AMfQNd1pmwchmEQjUZpb29nz549+Hx+z0OtljurdT3EjBnnUV09G58vSj4fx7aLGEaIJUtuQlUN8nkByqaZ5bnnriebHeXCC++nsrIVVdVwHIuBgX1ks+OEQrU4jonPF2bbti8Sjx9G1wO0tS0FFHQ9SCzWSW9vN5nMCJ2d15FODzI8vB/HtOje0E24PkyqPyWp4eu2kexN0vnFTlzHpZgqUj2nmmhLlKW3LUUP6jTOb6SYKtK9oZuDzx7ECBmoukr8SNz7Xjtkx7IkehMM7BvAMUU+XkpLt/WBpw+wZ9MeAML1YRoXNLLjth1EW6Ks+rtVaD6NcEMYBYW8lWc8O84Tlz5B/LY43139XTRVQ0FBUzVsx2YkO4LpmNiuTbKQZEHjAupCdXS1d/GhuR9CQcFxHGpDteWarZHsCHv699CX6uPQ5CGCepCwL8y6resYzgzTGetk466NmI5JopBgID1AxBfhsdWPMbtqNpqi0VzRjhmaiXvOoxCeIV4xoxo6n5BBfm3ncUFn68Uz3b4G5t4qg6WpGq78kFejFRJmGhA5eE4Cy6InQ2QGnHaTgOyxXR6o9VhmLSR92OlDAuCjJ0PNuQJ2Vd0D015wmS8qgWL+Kvk70iq/ZwanAfBUn7VTkkFVqEHCvpQp3SCyXn5S9uXaMiN/AlA/cmIi+dREwPTJ30sqt08MMst4jLUegHQ/tHTJ+rlR6acO1cuxe56VOi0rD74qqD4Fqk6G922S9XeuE0a7aZEEqymKgG7wAHkIzv8mfH5IXp+iQ6xL7i+mxYetByDciG3ZaJpKb28Kx3F58MEVLFvWxg03bGdwcLqaS9dVjh1Lcu21WxkZydLZGWPDhpeprw/z0EO7efrpA2zY0E19fZiRkelwMunPdrnhhu24rksmY3LNNVvo60uhKAoNDWFUVWF8PMf+/cPYtoumqSxY0MjERA5NUSmYJd4ceo+iVSJdyJI1C2RLeda/8H1648P4DT+u63L/zh9QGazAcmyS+RRFW2Snfs1gQcspVATCXL3oClaeuoRPd15GTbiKrFkQW5Jtkjfz+DSDT5x9Cf/w6q9wcBnPJagJVvDWcA+WY6OrOm+PHKajaQ4BwyBkKCioEFoG9ogHeIeg5kZhq50MDN8kAWO4XuhZAsxeaHjAq9fygsrsBOBN0Gi10PSoJIOP3iD7Tv1EALiTFGAeXOZ5tgtgtMn3bnitAG/Hk6FnnkVX4I6uLtZ0dPDgihUcTiRYu3kzfakULpAqlXBcF9tx2NXXx2gmw42LF9MQCmE5DkXPmjSey5Euldi0ciUzq6q477hwtPpwmICu05dMUh8Oc922bQxnMvQmkzx94ADrX36ZoGFwVnMzmlfl9Z4XbmYXiyilkoSNLV48zRpv3CjAuKFhGjwPDIhM3O+fZrXjcanOeughAcaqKgFlX/iCeKg1DRobPaVdpeyzqQk+9Sl45BF5PB4XFnvXLpGYz5ghgHt0FF5+WRjy9mbpoJ7TJpN6AR/MbAG/N+4z/ijgzG/IOuMeMPbpAqKnAHixNB1cdnRQQPdUAFrAD6fMkN+nQHxbkwD0VEaA+5Rk3O9DK5TQAwGMSIS5n/nMCXWvhclJ9FAIf00NwcZGGhctIj86Co5DbmSEQF0dWiBA7bx5TPzhD2T6+6lfuFBAdz7Pa/feS6C2VpjUXA67WGTs9deFla6t5bV77yXT10dhbIy6M88ExyE/Pi5hZtEoC2+5BVVVUfJ5CR27+EMSyOsPSgJ4MQ//9AOZlC1nBTWIeqG6Hi7/pOT6OI6A6WgVfPQaaIzJPgIBSRsfG4TO90PbbCGWqusFrJ8A0JH9f+TzXjL55+XzMj4Mpfy/DdPFxQhWEK6NlW1grhc8PHTgNyiqTmzeRcxdsY6WeStAUTCLWQbf2slvdr3OuYuWctZZZ3H2oi7+/vtPMPjWTj7z2as566xzuPRTX+YTtz3Gnt/9q1fTFZSqL9dBVXVvzPoaoZoYvmCUcG0rvlAl6v8MXP8Xq8b6z17+Uz3XiqIcBf7Sdd39iqI0AIeAGtd1LUWiiYeALtd1D/2P9vN/k+f6/+nyx2FnZ3/5y7hA/o/CzwCsfB4cB8UwxAPz+OOc/tnPlr/M7zz1FHM/8xkqZs2CUhE9k0CZHBWgrHvs8nNPS2J4fEzY6anHUnFJRpzqStV08aUYhrDfU4EPV10n/qN8RmYCvbAtSgX4xVMyS1hdR1lSmfIkOFPbX/4JiFbiHH0X95R5DB74NbWzzkZRVcYO7aV57vuwzPwJnpJQdYucjPIpxnteLYeTWaVcWUpulXKY+YznR/E816FKcpP9aL6glxTeiOJ57xzLnD75KJBPDBOoEF+wouq4joWmGBAfL3uulWqRlbulIs4LW1GXvQ+lqlbuS0wKEG+bKUPv+CRuJiXM967fTgedmSWZ+Q4EJcl7+7Noqz8ElingOSAp7W58QhQDioISjsgFQ9On/ZW2RckFR5X5M8dxKBQKBAIBdF0XybOiiP/bdXEcp5wObpomO3bsYPHixUSjUXw+X1nKres6hmFg2/YJ6wwPD9Pe3k6pVMJxHHbu3MmKFSvk/VIUDMMofw77+/vL/m5FMUkkjqDrQQKBagqFOD5fhHR6kD17NrFixYPoeoD+/j20ti7xmGcHUBkY2Esk0gI4+HwRotEWqUg7AagHsaw8O3bcytKlt1JR0eb5PeW+ZctuIxSqZ3h4P62tiwEFVVXZtu16Lr74ITTCxN+Lk+pPEVsUO8E7fdmTlzFxaILMUIbYohiFeAEzZ5LqT1ERq6ByRqV47r0Asv49/TSf3YzruBTiBQLVAXS/SP3sko1dslFUWXfbddtY+bBMeCiaUl6vlCnxwpdeYNlty6iaXUXOzjFujRPxRXA8mZeiKOiKjqEZ6KrOkfgR1nev5/au2xlIDdBa0UpdqI79w/tZ2raUvJXnth23ccvSWxhIDVAfrmdm5UxeHXyVzlinqCJQ2Dewj+ZIM7v7dzOzaiaLWxejKRrpUpo/jPyB5e3LOZo4Sl+qj85YJwE9QKaUod4fRndtqeMKNgr4LQeK6XL/1N+qTwBnKS7A+cAGOGuTMN4HNgj77a+FN24SJjoyB+yM7POdjeLrzvULIC9MQL5fALvq9yq4DGGG88Nw4F7ouF1838HY9DkJEC+rcoJl2kvzkdTsKUZ5yuc8FTymaF6nteP5rqd24O1kCkSn+6SnOlgHFbPkNWcGpiXe5f15THbiPfFZn/slzwPKdLiYEZreN6qw14FqKMRF7p08DPvug3NvE8n36O8gEoP+l8SrPeWdft/DAtD3bZDjVJ0sbLWVh5dug7NvhFCT97y81zO4CyKt5P2tZEs+9u4doLMzhqoqXHvtVp5++gBr1nTw1a+eTz5vMWtWFddcs4Vnnz3IM898mMWLWz2pt4KmKaTTMpDz+bQTtv/a186nujrIsWNJZs6s5KabnufHP36zvO/m5iiO47B7dz8tLVHuv/8VbrttKbNnV9PXl6SpNcg3XvkBN7/vE0xkk/zg1V/xmXP/gvbqRgq2SaaYxXUcHGD3sT9wduvp/MOrv+LLF34a27HJFLMEjACZYo6IP0TYCGC5Drqq4bgOuVKBh1/6CX917qXUhip58Dc/5HOLrqC5olYYOkUhVypiaDrxfIqwL4jjOjz04o+4etEVzK6tQzUPoegxGLlWpNyxzeKRnvJYu8j3ZconjQ72hASfOTkYvRVqbwWtHkZvlCA0vUnk4q4JqZ9BfjfU3SXM9dQ8kJvzKrcqoPAmBBeCeRSsMZGNOxlAJe/WULQlbM92HK7dupWnDxzgqnnzeOjiiwkaBkcSCR7evZuHLr4YTVVRFYVdfX00eexy1jS5r7ub25Yu5RTPh9sTj7Ohu5s7li/n5OpqfnvsGOe0tHDdtm1lr/Yjq1Zx3bZt3Ll8OXOqquhJJFj/8svc0dVFfyrFpT/9Kb1f+AKtfj/KunVw441yfdywQSTajY3CMh89On3fSSeJPFyVkCiKRbjtNpF5z5wpwPuVV6C6WvzSZ50lTHZPj8i/v/QlmD1bvgu5nHiuN22SSq/6eqZaWzAMAdbnnCOBsD4PRE/5odubp9O6p5aSJRY9XfP8wVnZzqfjXVSErZ4C1iBS8UIR6rzJ9MP9kiYe8AvDXRGGhtrp89mUR9t1IZUt78fM5Rl98w/UnXGGBLkWCsT/9V+pPvVU8mNjvPPUU5x+9dWEm5vJDQ9z4Ikn6Lj6aoINDeTHx8kNDVE7bx6lTIZgba1Udb3xBt033kjs/e/n7DvuoDA2xoEnn2Tupz9NZMYMCmNjjL72Go2LFxOorgZVJd3byzvf+x5n3XYbxWSS/MgITeeeg+K6KLhewJsuoPqZ78NFV0z7n7f+TMB3OuGxycDbv5NGm+0/FwIoPgbfvmd63FlZA4cOCOh+/hfixe55W+775PXeZyQvAWo9B2Rs7Dhw9F0B4r4AHHoLu6aeUkUE3R9BVVUcxyY5/B7+YKXUaVklRv71ZWpnnY0vVEli4G3CNa2YBemqRtXk0uM4FLNJ2uaczuZf/IhzFi+nt7efM+Yv4MUf3UOk8WROW3w5iqLwxu/2s/IDqxgeGqCQGEb3BzyP9iLMfJpgRT2WWfDGzeL51nzB/z7APiFg7E6oOe2/jFz7f9fyp+y5bgOGXNe1AFwZefcC7X+8oqIoNymK0j/1k8lk/pOf6n/+YpsmZjYLcIJkXA+FUFQVPRg8wQMDEgzx6te/Tra/n2hbG5333EOgrg4jFDqB+bayWXSfIZ7rWafKDNzEiMzg/dX1cuKeHJWTzJF/ldm4f/4HuT10QJjlqYquI+9OM9WXfFQuaP/4GHxlLfS+B2ND8KNvQzYlwDs+Lp5sTZPws2gVfGDN9IxgRTUYPtQqkQ3VzTmXyaO/wwhEic1bgWoYjJc7/l4nVN2MXSp4AEajdtbZnlc6i6oZkqYIjB3ah+4PntDzZxbS6IEovnAN4ZpmUFSyk4OY+TQKIhE3ixmvAzuM67oMvf0irmNhlXK4Vgmn+9fCLqeSItXe/AxkMiLj1nRcsyRsc3UdSnMrU6mQ1NSixtqF8W6dAZmMeKYNn0xIuC6urqNecgV44ThTsm83PgHVtSiRCpRIFNcs4Qz2i1zKNIUBf34zqq6jqirJZJJt27ZhmiaFQqHsmY7H47iuSyKRYMuWLSQSCXp7e8lms8RiMXbt2uWlcpcwTZNwOEwgECCXy6HrOh/4wAeIRiWgrb29Hdu2GRoaKm+vKAq6rqNpGqVSia1btzI5OUlDQwOu69Lb24vruuh6iFCoDtd18PnCKIrGrl0by/LwLVuuIRJpwrLybNu2jnR6mEIhQVvbUmpr5xCNtpBIHKVUypDJDHsAHMDFtou4rsPKlZuorp6NphmYZgGAtrYuUqkBDCNEe3sXU6NNx5H1bbuIY1oYIYO2JW3oAZ2uO7uYd9U8Vj68Etd18Uf9hJvCFOIFwvVhos1RGhc0ogd0VJ9Ksi9Jb3cvVsGi5ZwWFFXBMR18YR/bb9hO/HCcYqrI1mulyssIGRhBg9WPrcYX8eE6LpnBDJvXbmbykPjKYp0xXl7/Mq7tYk6aVAeqSRaTpEtpDNUgqMvEzHhunKJdpCnaxC1LPOAcqmdD9wZ0VWdB4wIKVoGwEeaBix4gpIdY0rqESn8lISNEW0Ub+wb2MZQe4rpt11EfrmcoM8SVp19ZfszFJeqLclbzWSiKQl+qj/pwPddtu47DicO8MfQGqUIcnIIAaJRp8OtaHjM8G6rPEm+1lROwGmiUruuFD4IWBjUADeeJ51oLSA3Xe4/IQEoLCkM991ZhqOuXiVw8Pyhy8DduEG+2HhQ227HkOfQ+LQniaoByt/VUbZZdmgbTdkm8d07JY7YrZB3wpJppuU/V5H5Fm05ATx6jXC3m2uJT1nwCboN1EPUYMtWQADLXgeRRjyH3/NeKKingKx6XW19UmOymTpF571w37RXXDAkmK3gAW1GlMuvg07JNMSnHfe0bcOpHhH02QnD2LfL8M4Pi5/ZFJe18cJfs96ybIDcuLLuiwuAeOWZLF0RasAngOLB8ebsXOqZwxx1drFnTwV13LaetrYKTTqrB51N59NFLOHbsBpYvl0t9oWCxbt1WDh2K88YbQ4yP5wgENB599BLee+86nnjiUg88u0xM5FBVhUceWcVVV83jy19eRnNzBBCmevnyGTz00G6effagVwWm0N5eSTgY4OpFVxAyAgQNP2fGTiHs99OfHOPAcA9Rf5j6aC0Rf4glM+Z7/dQnU7RKJAsZakJVBA0/Ue86gALJfIpsKS8J4cCClpN5au+/kCnmeLHnNQKGgeXY7B84yEBiHFVVcFyH/sQIrusSNAKcGTuF8Vwc1zVRJtYLAK69XTzPwUUCrNNPi3famAHmoMdOTwrQ1qpECm4PCeCe2CCMdPppkXi7tvRVj1wP0StELq7HJOhs+Bphq+1xr/bLEDCNKsDaaAU0AfCF/ZiOwyt9fSQLBVRF4XaPxX7goosYyWQomCZ+TePeCy6gP5Vi7ebNvDsxwbyGBvpTKSoDgTJLvXHXLhwvYbw5GuWxSy8lrOsUbZtzYzFc4K7ly1nT0cGXli2jN5nk4ZUrqQ+F6E+n2fjKKyxra8Ov63S1t3PVvHnU+3wSdPXAA8IoNzRIp/VJJ8l4w3WFbb71Vrm1LAG+iiIscyAg4FjT4NprBUQvWiSJ32edJduAeLiffloY7ymZ+eAgLFkix2iUhHjyeQlBKxTksVRKwPKUjLtY8nzPx4VK2Y4Aa12DbF7WTWfleWqa9x3NybpTtVq2LcC6IiLA+nD/tFe7b1gua21N5dAy8kWRgpvWdFhbJFT2a6u2Q/Upp5Dp72ffV79KcXKS+oULMTOZ8jjy7SefBNedVkg++SSqYZAbGiJQW8vEm29Kto9t89q99xJqbKRr0ybOuOYa9EAA1eej4ZxzMCoqcC0JUatbuBB/VRX58XFc2ybS0iLHzeXK+7ULBckIGhkUtePYkJynV1whcu6GGGx/5kRbYjAi48olF4pPe+WVnjLzNGnH+cg10nOt6XLf87+Yln+fvlDGtYcOiG3S9sJ+W+fIOPgnj3qkk+vVddVBdW15nClvr0ZVy1z0gFgbrWKOYFUT44dflbe+fiZmYdo77dompWySXHwIRVVwHYtswUTVfSRTSWpr66ifcQandl6CWUiTnRwkmZgEXFzbJFQbQ9P91M0+x/N2x1B1g7FDe6e7t61iWXb+7wOQ0n+5aqz/7OX/ikAz13W/6bpu69TPVPjSf9Vlqlpr7913kz5yBKBccaCoqlQWAG0rVohUxuc7wXN94IkncCyLsTffRPP7CdTVcdaXv8z7HnuMc+68EzUQEOBXKsJPvjMdPObYwl4XC3DSGeKFbp0tsu8rPyfVBiedAYlxuTClk3DS6SJZvvyT4pu2LJHKLL5ATlTHe1IS4/Ctr8jt+BD8/HsCsBua4a9ugEilBKiNDYNhoORz+IIVNHW8H3DITg5QyiZpmnteuatPUTU0f5BSLsnou7tQPKZ29N1dmIVs+T2tm3MuVjF/XM9fJ5nxXlRVx7VNzGIWxyoRqKhDVXVUXSdUE8PMixR8rOdVHLtEcuigBK31vAaaJrLvjjNRY+04u15EaZuJEq0Q9v2lFySl8ji5p+tVPgiME8+2Mv8slKpqlHBUAPZUgIrrQmJSfNSOg5vPobTORKmoFJ91JoVbLIoXu1VSTSUsLYXauRTHkpOnruu0t7eTTqcJh8OkUikOHjxId3e3+GJffpmDBw+WvdThcJiOjg6WLVuGYRhks1l27NiBaZo4jsPk5CSWZZFKpdixY4ckinrsd2trK9FolI6OjnIy+fH92nv27EFVVXw+H42Njdi2i2Xl2LLlGlKpPlzXxTCCLF16G3PmXMyePZtobz+PSKQJny/MsmVfprKynVColv7+PUxMHMJ1HVpaziGdHiIeFz+rzxdB14MYRphcbpxt266jVErjOBaGEcDnizB//lVEozG2bl0n/nzHoq9vF8lkr+fn1kB1MHMm2/5mG6V0iaoZVax+bDXZsSy93b0Eq4PUnVJHoDpA3+4+VJ+KETCIH4lTSpWonlFdTgS3CtMXMyNscNEDFwkI11UOPnuQ7g3duI5LejiNY4tMXDVU9IBO27I29mzaQzFdpOMjHVzy6CUomoKv1oehGVT6K4n6ogSNIL3JXvYN7CNrZkXCnR6mKlDFotgiZlbP5CvLv0LYCBPQA2RLWRQUIr4IqqIykBrg0OQhCnaBoBGkIdxQ9nI/tPshFsUWETJC1IfrWdC4gJu230TWzBLQAygoLGpdxEO7H+LpA0+z4eUNLIotImebuFoIGs4XwNjgDeBLSbDSAihVAzI9Iv9WVEkUd03Pv6zIdq1/CcEW6bquWyap4JnDUsdl5+CdB+V27BXxaNcvE8l5bSfgQOpdeP0GkYU3dMEVI9D5mIBRuygp31O+68zgNAsytUxVhSUPC3ureiDaF5X7E4enZeOltLDRkSaPic/I/S7yvVYNYalV/zRwn1qnon06EG2q9zt5GHZ8HtLHhH1edBec9lF5zlMy719/UYB5MQ5mDob2yvO64BG4YqvcRloh2i6/u44cN1gnQNyxxU+dH5O/w43i+37xRqiaDU1nw0D3cf7siEwmDO9D0xVs2+HQoUn27x9GVRVmzariyScvZXAwTTJZRFHg8OEE8Xgew1BJp0vlPuwbb1xMIKAzf34jg4Ppsq86HPbhOC5DQxkCAZ3m5gjr1m3j2LEkjzyyipNPrsF1wTQdurt7OXYswYMPruCZZz5MS0uUtWs3k82a9LwXp8aoZig1zpN7fslFJy+iOlRJXaSSjqY5vDXcw0BilLAvSGOkhlve/1esmtuF67r0J0awXYecWeSbv/0R8XxalMHBKK7rMpAcxdB0LpnbxdrFHyTiD/HQ5TdRNE0ODPewoOVkYpV1BHQftutwSv1MAH4/+C6rTlvGgpZTsV0dt/YuMGYLiG58HNDEIz3rnelQsynZ+Pjd4oW24wKq9Vao8LzVWrNsE1oujLQ5DA3rAReGvyistBKUfmw1JCx2YAHYSXDzkH9V/tZbZRtzAALz0BSV1ooKbnvhBfqSSU6qruaJSy8l7PPRl0ox4CV2q4pCQzjMbUuXEvH50FSVzliMZKFQlpXftXw5hqoymskQ1HVGMhmSxSJH43H29vejKgqzq6p4bPVqGsNhNu3Zg6Fp3LB9O9t7enjgoov40Ny5AORMk++uXo3i8+Hm81BRIZ7oG26Y7rQeGhIWOpeT/utcDrq7pYe6WBRgffTotPT7oYdkH6oK998vsvC1awVwP/igBKF1dp4oPb/ySgFf774r646Owrx5UuWVz0MmI/spluT6HglJPZbrCoh+95i835oEixEOyrqGLnJyx5kOQlMVWc80AUXWTWXkXNnaCP0j05Jv25FtKj0gPtWDXSyJhHwKaGuq7CMYQPf7OfjDH1K/cCGqYaAARjhcth52XH01qOoJWT6FyUlq588vV3m9du+95AYHxab45JPUn3UW4ViMTH8/bz76KHULF6IHgyIXr6lB8/nIDQ6S6e0lNzjIq3/7t9QtXEigtpba+fN5+/vfxykWJc17yma47R/lNauaKCAnhsVueLwtMRCU98n0yJyGmNRm4YovO5OQrKHRQQk7O97WWF0vhNB375VjHqdmZMpWmZwQFeerL8HWf0TR/TSf/j4qm07BdSyGDvwaMy+p3lPgNlI/Q7qmUdADEcI1LVjFPKmRHi/I9zUCFfWomsH3/u4BPvqJTzNnzsm8/8IVfP/Jx5mx8AOouo+vfPVeFi69kDUfvYofPvkIiqJg5pKMeGPhUjZBKZf6NzJ1TffJ+/bfk37/qfRf/1+8/FkW/ie4mNkse+++e7qWy2Oj33r8cc768pcpTEzw9pNPliXeRihUlo+X0ml80ShGRQVmKlWW/+rhMK5lMf773xNsbKSqLYby3ltyskknBAhrmvT/ndQhTPbkqIDpUkFOHtFKprVkiBz8qutkBvGkjhMlN3VNsurYsADsVR+RsIl/fByuWgc/flS2OalDTk6zTpV9agYcegui1Tj5DM7JHVJhUJaBFwhVNwsAVRRcx8Z1XQrJYU/enccXruS93/6AyuZTic1bgWObKKouEmjPKw2Qiw8SrG6hlE1M9whqGmYudYJ8plyZ4AuST44RrmkBQHEQeVKpJH3VZkkY6GwatW0m2Lbngxa2xy16XtFMWqq6ll8oknufXyY0whFIJnBTCdTYDNB17C2/QL3wEsh623iVXwoKzkCvAO3KarBt6cM2TSgVUaKVWK7DRCJJKpUq12Tt2LGDpUuXEo1G0TQJBIvH46RSKZqbm0mn0+zZs4cVK1Z4sm2F3t5e6uvr8fv9ZLNZDMMo12s1NDSgaRo7d+7kggsuwDAMcrkcPp8PwzDo7e3l5z//OXPnzuXiiy8u92vv2LHD69u22bbtGg4ceJqOjjWcf/5XiUZbJNzNW1zXJpsdwzBCKIpKOj1EJjNELLYIcLxebL/Xge0vf0Ydx0LTDGy7xCOPnMr11x8lkThGKtVHLNbpdWOLbzuXm6S7+16WLLmZbHaM1tbFaJoPt6Cxee1W2pa10dbVRnYkS+viVlRNpZAqMPrmKNGWKN0bull2+zKqZlaRHc4SaghhF2zSQ2l2bdxF1+1dVM6oJNWX4uX1L7P0tqVEW6IM7x+m6cwm9KAOLgKqSw6KLlJwM2ey49YdLL5xMZGmCP4KP3bRpn9vPxVtFYRaQyhhhUwpg6qohI0wRbuIgsLNz9/MD37/AzZ/bDOxihj3dd/HncvvZHbVbAp2gb39e1nYvJCx7Bj9qX4WxRZhaAY5M3dC3/VIegS/4ac+XI+hGBxNHOVo8iidsU7pz86M8MCuB7hz+Z3MqZpDT6Kn3HfdHm2msjiIkuvHDbWiHNgAi74nQPedjXDWN4WxPrAe5t4ifuxgowA/Kwfx/VB7jrDL2AKcu6+E2OUCjPddI17sKd/2zKtgwX0CzkMxyBz1qq0UAeLV86QjW9EFvBcmINQi0supjmvVy5dwXQG3qj4tEXdKAnpRRMYdicn6ZlaArK/S20+LJHP7ol51lzH9N4p8RB1PVg7TPdTHr2MXPE+4ATs+JyzCqWtgxRPTXdiOKYFkkVYBvpUzhY3Oj4sf2sxKVZdThOFXJQQNhMWfYsXNKSZME2bbXyX7jM7wmHa/MPN2wWP/i/LcS0lPHu+QyVoMJCOoqkJdXYhczuSuu37Nhg0XEgwaaJpCqWQzOZknnzfLvda9vUlGR7O0tETZsEH6rOfMqSadLpFMFqmo8BMK6eTzFuGwweholnnzHuPyy0/l0UdX4ffrHDkSL+8vkShQVycM4zXXbOHppw9w8OA6VFWhsTXIfTuf4hNnX0JzRR3pYpaCafK9vb/kr85ZTbKQYUHLKQDkzSKbfvtjbjjv44D0VId9/z/2/jzMjrJe94c/VatqzWv1PK7uzgQkISMBEpJ0ghJCCEHEARRRRNkCEtAAMggoTgmYyKAgKjgg2zGibiEkhjBE0umMjCFgIJ2h57l7zUNN7x/f6tWJ+5x9zvs773t++5xtXVdfa3UNT9Wannru576/9x3g5cP7qC+ppiZczq9e3cwd512N7diMZpMEdB9+3YeqKJi2zZvd71EZKuUXe5/hKx/4DKPZJD/d829cs+BSGkuqi3L0nGHw5L5n+NaKq/GYR1GMdmGtlYCAXWsEPGXu5+UHpyDr7byAYzshABlL2GcUMLtF5q2GwWgTt/CK28X9O3SBtGeNSDtD66HmETk+uwf0mNRv998sx3jqQAmSMGx2dAxSHQpR6vdTGQyiqapba26xZutWbj7nHJpKStjb1UVDNEpnIkFDNMqUsjIyhlE0NNvb1cWixkaZdLRt9nR10RiNEtB1RnI5Hti1i7uXLGFCSQmqa0KnKQpHRkfpTCRY1NhIqlDgnpde4jvnnUfY68UBgoaB17YFMP/hD7Brl9Q8X3ut1Fo/8MB4/NYtt8CDD8KPfyzf/8FBkYCPZVLX1YmU3LJgeFjk3qWlIvku9g+2bPd65Xk+L+3++tdSi/3QQ+PS8EJBZOUFczweK54SA7Nj3QJ4F86W/U+M1Rp7Hk9JO4YhQDmbF6A8xkpn87ItEhLwjTtUS6Rku1eTfq5gyF9JWNp8pw0qSqUGPG9gmAb9B94UGfjQULH8MNzYOHZDxrFtHMdh6MABKmfNYuD119l1552s+P3v0SMRht56C395OfnRUcpOPx1FUfD4/Timyf61a6mYNYvaxYvxV1aSOn6c3NAQVWecwd5vfpPpV1/Nu08+WRz/zv/mN3Fsm0xvL3rATygSQhkdPnms+dTD4gf0xbtlzApyD7Esec/yuXHpeGn5uGQ/nzu5LPHKG8XsLJsGf0g+15EBIYcu+qSMgdsPw2mzpTZ78+8FhFfUyDjZ68PWNPLZ8TFkZqSLzEg39TPPo/vtl4oliWP51GYh45YqznejXgNyeZZJPp9h1SUf4xvf/AYLzpjJi8/+mi/c9l3eeP01SkJejGyKQEkV27Y9z9e/8R3+tv0lht5vId5ziNL66dRMW4JtGWiuK7miKNi2BY6NpukoI4f++9Lv/8Oisf53L/9pZeGO4/QDrwGfdld9DOj8HwHr/wqL6vUy87rrirFcOA5v/+QntP/1rxjJJO+4sVrv/vznRRYbIDc8zIEf/pDc8LBIx0NSG6fqutS9vPkm/spKMj0uO1RWKRKYsioBeI4j64yCyGROmy2DQK9fOpKRAak1GRkUCc2Vq+Xxwsvh9DPHTSZGBiS+K5cTNvtTqyE+LO1/+ktiDnHRJ8UxPD4kAP83j4l52uG3xYSishrn1BlgWwy27SNYVo+q+QhWxIpSGNssYBayMnngDzN45FX0QBjNGyoy245rdAZg5jMUUkN0HdhGIZsgWFaPYxmY+Qx+tybFMQ2MbIp4zyGGjr4KisR4eYMlKB6dYFkdjm2RHu525Z6K3GhtC8XrA58PpboOZ3hQnL4NidZyRodc2Whh3Nxs53aRdrvZMortQCSCEopgbf0LTiGPZ+WlKF4v9u4dRfk5qSR2VztqrEmytU0TEqMSvzV2Ty3ksE2zaFA2Vi+9bNkyIpFI0eF7ZGSEsrIyJkyYgNfrJRKJsHDhwqJ5WaFQoKGhoQi0fT5fsYY6FovR399PMplk/vz58h6bZtEAbfPmzUSjUS677DKWL19OOp0ustgNDQ2oqoqmeWluvpsrrtjEypWPEo024Dg2qVQvACMjR9i06ToMI43XGyafT+DzRYjF5tPVtYdkspdsdpiRkTb++tcvE493AA6mmcO2TTZvvpFkspcbbzwEgK4HqamZ49ZlJ+nq2oPXG6G0tJGmpqXs2fMDYrEFxOMdwoKr0HxXM1MumEKqJ0W4NsyWm7aQT+bxhrw0LW4qMsupnhTx43G237udRGcCPaTjDXmFdf7+blSPisfrKbLQudEc1TOrcWwHI22Q7k+jaip6SKThZl5kegtvXUikPoIv6hPwbds0Lmos7pc389y27TZM26RtpI0v//XL5K08D1/4MO/f+D5LJyylNlTLHYvvoCpYRbKQ5Lbnb2NOzRyCepCgHqQmVMOerj3Yjo1f82PYBv3pfnRVZ1LZJMr8Zexs30nbSBsNJQ3Mj81nb9dehrJD9KR62HhwI2t3rCVjZuiId/DoykcJaAF64sdQ3t0AZXNQVL/USTsWHHrIlW/7RdY9/TYxHAvUiFx8sBVyA+Io7pgi695/IwQboPlpmHEPOIq0lxuQWuuJV8KZj0p7qTYB1sEGkZcHaqHyHGFlB3YKUMwNiWGaogkgzg66wNEYn8k3s64sXBQnmDnESK0A2VGK0Vq+qORyp7qknTHzMxQBoB6fsN3xY26ttttvO9a41Pwf9/H4x+XmJ7IIiibrEu3Qux/qFwkLPuOz8jw7NJ5TPXpEjNN69kDlLJGRb18jDDiKGJptXyPrtaC83v7XoGEpRBshUAXD78q5+l6V113M/KbIwnvMODU1ITIZk+uvf47e3hQ33TTfzag2sW0Hj0chHPYSDIoz+I03bkHTVBYvbmLduhY2bjxId7cYqmmaSlvbMI7j0NGR4LXXesjnLSorg/zpT5dz991LGB2V8o6qqhBz5tRw++3bCIe9qKqC16tyzz1LuPzyGdTVRaisCeA4Dncu+xxNZbVFh/CgrjOvYRohb4AzYlPpjg/yreefYCA1wsy6KXhUlcH0KD9qfZrB9Cjnn7aAM2JTKQ+VcOeyq7EcmwM97+PXfXg1L8OZOKZto6kqZzZMI6B5mRs7jUwhy0/3/Bvb2/YT0L3kLYNMPkNFsJT6kkruOO9qPIolwFqrEpBrHIa+1VITbY24E0KmyLhR3YgsHQpHBCSDfKZFl/FuWTV037i0PPpxAdzWoDwqQWG1nRz03QWBhcKcqxEov01Yb1vUV7qq0xCN8r1du8gYBrs7O0kVCpi2jU/T2LB8OZqqcuOWLVSHQgR1nbNjMToTCTKGUXQF70wkmFsrJlrH43HWbN3KnJoaqkIhasNhfrBnT9G8DODIyAjXbtpEvFBgYmkpZ9fX09rRAcB619dj9ebNYnyVSglLbRhw6aViNKYoAqDLy8W9+/LLpeZ6cFBiuDwe2T+TEZa5qkraUFVhnA1D1kUi4hQ+MCBjG1WF9naRkB85Ikx1T4/I0i+/XID18eMiDU8kZDvKya7dZVEBzk11MPMUaRPgeA8Y1smeD+EgdPUJCw3jDPSY9NswBEgm0+NMeC4vx3l1AdaWLdFbY3Xa0TCcPkXO7+ZoKwE/FbNno51QTnjw8ccx02ls0xQjstdeI9PbS+WcOdimScXs2Vzwu9+hRyJ4fD6qzjyTYG0tpdOm4dg2+9euJdXZCYrCWXffTePy5aQ6O8l0d5MbGqJi9mxUXWfGddeRGx4eZ8S/8AXMbJbBN9/EMU2MXB5b9+HUuiWMVfI94hPXwf1PCiP9mx8KOQQi3X7q++NmuWOxW7mMMNrRUiF+imWNuoDwd16XfSxLZN+fWi0Ky1wWSirkfrD1j0IORUqkFru9DUwTB06SYI+x1FYhT+WkMzGySRzbopAZRVE1MRuraEAPlKD5gpiFbLH0cPumX9Pd3c3SJUsYPLKPieUONRVR3njjDQYO78EfrcTIpZkZ85JMJjn4zrtFhrp2+lKsQpZCehQcS55nE6geDY83gGIb/7H02+OVe5JV+Kep2f+D5X8Lc60oyk+AVUAtMAQkHcc5RVGUqYhDeAWQAD7nOM6B/1F7/zcw15ZhSK20C35PdAi3DAPblQGpriNz8uhR3v7JTzjzzjvJDQ9z8PHHmXnddcXYLiOTIdPbS29rK0MHDnD2178OikKyvb3IcgcqKhg5dIiKWbPQNRXPbx8bn7H7zJfl5MlRqV3JZqQ+paNNOpNwFDqPiHQ7FRcAPNwveYKaVwZZgy5LfdEnobreZZ9M6fRVRRwZbbdmxShIZ66o0hmOXcfyjxbbtyprSMd7BfjmMwwe2Vc0aDh53XyMbIrj+//sstXnu6y2gN9CJn7SsWP71c88H8c2UTw6hfQoQ0dfpWbaEjyal/RwF4FoFYqbiwwiyS9kRhk4vJfa6efiUTUU2xHXcEXB6WpHiURRoqU46RQYBZRwFHQdu+MYasMEMSwDmcUOhSExihMflfrrXFaMyxJxlFAYpaRMmO9AEEdRsLf8G54LP4zdeRwlFMbe04K6/GIUXcduP4pSUz/OcC/6AHZpBZbHU1Qv2LZNZ2cn0WgUTdPI5XKk02kmTJiA7U7SWJaFxz0GBCz39fXR0CATdOl0mlAoBEgmtt/vJ5fLFfOvE4kEsVgMVVU5cOAA7e3tXHzxxTiOw3PPPcehQ4e47LLLaGpqwjAMPB4TxzFRFIVsdgTDyNLSspbm5rsoK5vM8eOvEApVkU4P0NS0WLxXEsfZuXMDy5bdL1nmepCOjlaCwUpKSycAKrncKKFQFZZVIJdL4PUGyecTRCL1mGaerq49RKMNRKONjI4eKzLhmiZxXACpVC8hvYFMf45gZRDFo7D5hs00LGxg2qXTKCQL+Ep8FNIF/CV+NL/Gc198jgO/PsAVm66gpLGEnet3cv53z5f6acch3ZfGG5bBkS/qw7EdFI9CPp6n760+IrEIiY4EsfkxNL8mwDtj0PdWHw3nyGfg2A5bbtrC8g3LsUIWg8YgNWGp8+tKdhWl3t9t/S4Pr3iYvnQf97Xcx13Nd9GZ6KQ2XFvsa9a3rueuJXcR0kQm7vV4i0ZoPckeqkPVODi0drRSHapmMDPI4sbFZIwMIW+IglVAV3Vu2HwDty++nYAWYDQ3Spm/jJpwDR7HImBnUXJ9Ui8djIn0u3Su1ETneiHYKJFcVYvcbOU3ofws+d2daH6WbhdQftajgCJAwzaFwbML4KuC9DGRh8+9X0CrGoTUe3Do+zB3g5vx7BEArbp9ruIdB9S+qDyOuYErHjmXoiJ1045raBaRYxxHAHV0grsvci1jbHlxdOzeZ62cmLaNGaEVZ8Os8fPZBYrMeHSivEYceW/69gv77A27Ax4Vsv2ghwVEGBmReePI9dmWrNN88tp7dsOzH4dTPwbLHpPrMV2GPFglhmb+Cki2iwna/LsEuBtpGWhlB4QJx3Hr432gqqRyKqajs3NnO1VVIUZGsjQ3N2KaDrbtsHdvF2eeWYfHo6JpKv/yL88Wzcoef/xiMhmDeDxPQ0OEo0dHaG8XJtrr9bB7dyczZlSRShmUlPiKANowLNrbE6xdu4Pbb1+EokBNTZhkskBJic/NzPagaQqKbpN2J2IHUiP86tXNrDn3SgK6j6yR573+Y8yonUIyn+bjv7yd809dwK0f+DRezctIJk4yl2E0l+SM2DTyZoG3e9uoCZfTlxpmatUERrJJArqXiC/E271tVAZLqQyX8vf+Y1QES2goqaY3OURfarh43LTqiQykRnhy37Pc9sGrKPPreMihZPeI1NsaBXsU1FIB2EansMpD3zuZafbPATxSa61G3Pv4HyG7E2p/LI7iQ+vE4EyfBMZ7ArQrviqMd/8aqLgDtEnjbeqNIgfX60CbCNYgKWJc8+xzRZOx7y1fTn86zfrWVu5ZsoRJpaV0JpM839bG1IoKZtfUEM/nKfH5CHu9/Muzz/LMoUP86fLLaW5qwnbvMQXLomBZ3PHCC9y+eDGN0Sg50yTk9aIAX3zuOX594AB9t96K5TjE83miLlN9y/PPc/uiRezs6ODzp51G+OhRAbjz54vU27Jk/LF3rzh3T5okYxJVFZl2ICBS7VhMHMS3bpV9H3pItmWzsH8/zJ0rBmder7Q3NCQs9siIxHxdcgk88gjcdJPUeYOco6tLar+PHRPQ/dRTAprzhZMZZhg3OBtjtAM+txbaEJn3ZPFsIZ0VcPyPhmi2I8ZlDbXjQNswhLUecyJ3GJ8otGyZWPCMc2yWaZI4fpxMby9l06cXDcxmXH894VgMK59n6O23KTvtNBRVRfX7SR0/zru/+AUzvvAFPIEAWjBYNNw9/dprCdXXkzp+nFB9PSgKhWQSf2kpiqpiuX5BQwcOEKyrIxyL4ZgmjqKQGxpCDwYZee89KmbOJD8yQqark9ozzxQj3jHDXd0rY8+RAZgyQ4idY+8JmP71o8Jo3/A1mDLdvW/Y8r74/G7/WBBQrXvl+zIW1TXmNm5ZAsQL+fHxrc8vhFTCHS9HSqXdf3sK6xNfKI4Tiyw1UMiINDxYVoeierDNAormRXFsHBSMbLzIYOuBEroPbOPIO/u5+Lr17N61iykT69n38p+59Oo72L9/L5nEMFOnz6Dnne20bN/GDd/8OYfff59IyIfHG5S7ji3KqMxoL3ogjJFNESqP4dF9/2Badg+UT/33zPU/Tc3+u8v/iLn+3yoL///V8n86uLYMg8SRIxx8/HGmf/7zBKur8ZaW4tH1Yr312z/5yUngeQyMq175co899+g6Zj5P8tixf9eebRgnAe4Z112Hr6wMj8+HYlt4RgdQnvudyFrCUZFsf+bLUnvywp8lZsvrE8fEqnrZ5+gh6bSOHZJ8wXxOQLjqgY2Py7bT5wkDPtgLz/0WLvqEdFJt70JZhcwE/u7H0ul940cnd1ojgzB5KqRTWGWVFHIJNG+A3ndfIVBaS7hqopiLWQY972wn0ddG07wPESqPkR7uQvMF8Wg+bNsodlRGNkX7a88W98uMdOGPCHC2Cjk0fxAjlxIDNNXjdkQRvMESHNskMyIdkzdYSnqoE80XQA+U4EERkJzPy43Xo+N0HUepjaFoYlJid7aLLDwSERdITccp5FE8HmH9ASeXxenvRa1vkDpszSs11ZkMit8v6xRV6uQBxbGx249CPI4ydbpcg8+H4vW5UV1Sj2UpHowTlA3pdLqYZW2aJjt27KC5uZmysjJGRkZoaWmhubmZkpKS4r66rjM6OsrOnTtpbm5G13UMwyiC6Fwuh2malJaWkkql8Pv9dHd3U1tbi67r5PN5TNMkHA5j2zaZTAbDMNi9ezcrVqxAVR0KhTj5fByfL0pv75v85jcXMWPG5XzoQz9lZOQIra0bWL58A7oeQlEUnnvui8Ri82lsXHySo7htG4BKT8+rxGKSW25ZeVRVdx3Db2fRottIJDoJharx+8sJh2twHEvqq10peSYzhGFkaGlZy6oVPyV+JE3rhlaWb1herJE2cybd+7tpOKcB27Lp2tNFSVMJpRNKSfWlCFWF6NjVQbgmTLQxSm40h5E1xoFzUGOkbYSWtS0039VM2eQyyc82bFCge383tXNdEOyAN+zFzJt07e0i2hTFMRzKJpdh+SwSZgLbsRnMDLKuZV0RRF/824v5++q/c3j4MFWhKgbSA1QFq3hg9wM8dtFj3LD5Bp459AxPX/Y0zU3N2I7N0ZGj9KR6aIw2EtADlPnL2Ne9j1nVswjqQXSPuL73p/sp9ZcykhshZ+aYWDoRVVFJ5MXoK6AFSBtpUoUUp0ZrUQdaBCAP7YVdn4ZV78Drt42DYMeC0QPCLptZeON2N5c6AMaIyL5n3AX+ajEvsy2pnbbSrou4u234NSidBVoE8v2gRUVannofqpbCO/e5juK9UDmfYkzXGFC28uNO4InjIu/2+GR9Ma6Lccw82iZA2xt1ZeINroR8rC0X7MSPSS216hkHvGPbxj7kQtJlC/xirpYdhOozxFk8VANdO6Fyprz+xFFI90C4UeK26he5Nd2umibTD74SaQtbzvfKbXDWbZKZXbdQ9h9zEl9wl8R6RRrEvXzbF4TRmH4lLPuhfCYen7TrjUq72T6RwRsZCt4qDHwYhsPAQJpw2Et/f7oo9a6qCnLzzc9z113NTJ5cxpEjo6xbt4N77llCMKiTShXYsKGVDRuW4/V6yGYN7rzzRW6/fTGTJ5cSj+dRVYVgUEdVFfJ5E49H5aabtjB/fowLLphCQ0OE994b4sEHd/PIIyvxeFTSaRm8R8o8DKZHiPhDkvDm8aCiMJyJUx4soSsxwC/2PsO/LLiUvtQw06snMpJJ0psaYmbtFBwcNFUjbxZ46G+/5lPzLmQkm6Q0ECHsDdAZ76c6XMbP9vyFq85axUg2SWNJNX6vn2whR01EasMdHF7vOsSM2ik4js33X/kt02omctH0ZkKaja5qwlgPrYOKu1xA3SCPWhUMPyDRWcFzZZ/yr4B3GmBKmYNjCMMNgAeUsVpJG9AAA3pvFPA+Jg9vmwj1TwtjrfjkPE4BnDz0f0Xqv433yDpVvJ8I0JFIsKChAU1RuHHLFv747ru8df31lAUCjGSzlPr9BDWN94aG6E2nWeTKiTOGwVt9fSyIxfCoKpYrzd3T1UVNOMwrx48zpayMxpIS1u7YwR2LFjG5rAwHaO3oYOmECbw3NMT61lZuX7SIhmiU2gce4PIZM/jGuecy1etFbWkRMDs4CIsXy++wtVXiuUpLhZ1et04Y7MmTBWgPDgojDQI8XcUfiiIsdXW1bDMMqZXO5VwTsbhEcr3xBtTXi+FZJiNxX/PmybFr18q5amuho0PAfTR6MpAO+ATotnUIE11dLkD6BNAriSvmuFHZGCi3bHmeyEBJ6KTuBMNwTdDUk/ussfaOdMn5dU3O3VSHoTj0798vcVoHD5Lu7KRmwQKCtbXCNPf0UDV3LmY+zxsPPMD0z3+eTG8vLTffTPNDD1F1xhlYhsHr69dzbNMmzv3xjymbNk1O7ziMHDpEsLqag48/Li7go6Mybr36anLDw5Sffjq54WEyvb387YYbaLrwQs665x40vx/HcVDNAp6xEjzLgq5jApoPHxR/oGRcEmgmT3cl9aYAZcc5WRaue8WMd9JU2e/9A1BWLUrLob6T3cYnnCr99okk0AUfk31zWZGDb/2j1Hp7/VhevUho4Jr2GdkEerAE/mE8eSIIV1UNy8xh5rOEymPYloFlFnj6z89y/3c34FFVbNvmjttv48OXfpjl559PMp3B41Hxqjbf/vZ3uGDlxdhmASOXPol40nwBN1mnDsWj43HHnv+h9LuQguevGS9HuuCn/3DP+q+9/KeVhf9XXk40H3v35z+nkEwWHb/tQqEoAX/7Jz8prvfoOnoohMdluceeW4aBlcmc1J4WENleqqsLxeNh0iWXcPa99xKorMTj85E4doyBN98UFvqST0u9yNM/k47DyIt0ZtJUMTL71SMiG4+WCtCuqhNDstNmy2xeOCIg0eeHK74I8z8gEvLBXtn/tFnCbKse+Ol6qVHx+gVIzz1HOkmvT2Q3VXUis9F9cmNQwBuIoHg0aqcvJVgWE6OybALFo1F1ygKa5l1CoKQa27YIldfjDZf/gyv4XoKltTTN+xB6QNwaNX8EFIXut1/Atg0c28ajeVEUhZ53tqP5AqiqRiETJzPSS7C0FlUVBlsPiPzczKcll3RscspxUDyq1FprGti25E+HwwJ8PZoLuMUt3O48jjM0IA7ffj9KTZ3EqHl0HBxhvr26sNnJBHaXyJ0p5HFSSZS6GMqsuSd9rxyQuvJcFiwbC4jH43R2dmKa42Za4XC4aGKWcOvyx0zOEokE8XicV155BQBVVQmHwzQ1NdHa2orf70fXdZqamlAUhVAoRDgcxnEcgsEgjuPQ6A6mNm/eTDabJRgMMjQ0REdHB4FAAF3XOe+889xrslwjMonjampq5lOf2kxz890YRprW1g0sXHgLmuZnDPyuWvUj5sy5imi0kXPOuYVksofnnrueZLKHrq491NefTTx+nI6OVmzbwjRz6HqIc865hdbWDQSDlaTT/QSDFYyMHGbTpmsZGTkKKDiOTTBYSSrVw6FDz2AWCrSsayE2P0ayO0lHawcjR0bYevNWaua4bPGeLkLVIeLtcYysgZEx2HTdJmrn1KJ4JFbLSBvoAZ1QdYiuvV1YWYtIbYSFX1mIHtIppAoiC/eq2JZNbEEMHMjH82gBrZiHHZsfI1ITQdEUNl23iUKhQDwfJ1VI0Z3s5oHlD1AdqmZJ0xKunHUlNaEa5tXNI+qLMq9uHhWBCh5e8TCaqvHwioc5cP0BFsQW0J/ux7ItIr4I1aFqOhIdZIwMe7r2SOSW6mFP1x5yZg5VUSn1l7Knaw9ZM4tf82PaJrZjo6kar/W8JtnbmUGOjBzBxoMTbISh/VC1BC45KnXPZz4KuWEBxFoISudIxBYOzFknoDdQK8x29VJhpD1+yPQIW+2rgNBEOOuHImnWwiIDHz0gbHfqiNQdVzfDxM9KbfVZj0KgDqoXC4DO9YMxKmyyR3dl2UdcM7I6l7F2jV+8Ebm2fMJ1HbeEWQ5UuTLxYZGXq9q4MVr8qADekgny4xsVwz08XtedPEeRZdZDLmuOgPRAJcWcbcUjedSD78gxoTrJutaDUHeOgIKR9+HlNXK+YBXkRwXUd7UIoK6dLzFb9c0ClgEijXDuA5DqlfY8PgEV8++SAdXSDfIaXv6yTDaMHhYJuZWD1nsF4IdqsBQvhw+PcN11YiAWDOps2NDK4sWN+HwamqbywQ9OoLo65PZBGo8/fjETJpRQUxPC79e4+eZz6O1NsndvF5GIj0ceWUlTU9R13FW4664XSaXkfqjrHjRN5ZFHVtLc3Mh3vvMKyWSBCRNK+f73L0RR4PDhITcXW8bX1eFyVEXl3f6j9CWHUVUVVVWxHJtf7H2G7W376UsNMzd2GgHdz2BmhNOqmrBsG8u2uf/FXzCYGuXTZ15UlJEncikiviAza6fwsz1/YeuhXTy1/zlm1k6hKlyOz6PTnRggU8hh46AqKjNrp5DKp/EoHu5c9jlWTltMMpfCoyqA7RqaPQZGv7DSik9cvM0hAdyhC4rZ08Jq5yHTCqZLOCghMPvFmAy338+0Su01GlRvkPYKbYAHJr4lNd5atYDtzE4we6XtirtBcWD4ASwrQUDXiUWjrN68mfZEgg3Ll/P0ZZeRMU1Wb95M2jDY29VF2+goEZ+PBbEYBcsqyrgXNjTgUVUS+Tw3bt7M8Xics+vrua+lhQsmT2bJhAn4PB7uWLy4CKx3d3bSGI0CsL61teg27vV4uHzGDO5qbqYxGqWg6zgLFowbib3/vtRa19bKuqoqAdbPPCPrcrlxkzO/XwzQQKTe114rUu/ycpF0j+VdHzki7HVfH9x7r7iENzdLdNdYjvbHPy7HrF07bnbm9cKpp8pEPJwsDQcB0o21kkM9uUEMxt47LnXUluvx4PMKG324XcA5yH6GBWG3NjybFxCeL0gdd0HGUeQKYoaWKwgrXjAFpLf3gGnB0CioKorqoez003Esi6ozzqDpwgsJVFYCEKyupmzaNPavW0d2YECMyh5/nIrZs2n+/veF6R4cxLFt5t5yC00XXkjVGWeQ7e/n1fvvJzswQNmppxbHqkY6PT5uffJJkYZ7vcU2my68kBnXXYeqydhJDwZRfH6c4QE4/r4oIRsmw5G/C4Odz0lpYsNkAdiWq5rMpGWcduoM2a65zusTTpEyx74uIYpKSl0H9lI4dRa8+Bdp1xcQFvuCj40bnSXjMuCKlAiwXv4RGQe3HSyOBx3LJD3chZFNoKoaRibuJs8EZDzpOBjZFIm+NoysmK2OlTaOmeB6NC+fuOxj/PVX3+PV/Xt5/dW9XLJiCRoGLS07eG1PC6/t38+efa9z/gUXgmO7hmhuok6ba4ym+QiWxySpxt3Hti25D3kj/21G+p+mZv9Lyz+Z6/8XlhOZ69OvuYZAVdX/kLn+7y1GOk3//v34y8t598kni8fYhQLZwUGsbJZMXx/BmhoOPvEEM669lkxvL+GqSkpanxMQfdaS8Zm9j18jDtfRMkinoJCVzqW0Qk440CNAOp+T2b1VV4ihlqoJMH/6Z7DswyLtnjJD2m07KMz1yIBEGPj9cmPTNMikIBiWmcSBniKDbfv9WJEollnA49FRdB9mLkVq4BjZ0V4qJs3DzGcIVTRgGfmTZOO6P4KRS5wsy3Ecug5sI95ziJK6qVSftpD3//YkE876SDH7+kTzidis80kPd6P5AliFsSxtFTOXxjLzeDQfXj2IM9RflGErFTLD7YwMYbe8iLrwXJmAMA3sHS+irvgwZFLYO7ejnu+6m4Jka4/lZV/wIchkpM3zLxI2Op0Sdj9SIrXVJ5zPGerH3r0DdfkqFE0Xpry2DgWFgu6lvaODxsbGYqSW4zj4fL6ihDsajdLS0sKSJUuIRqMoisLmzZuJxWJMnz6dVCpFa2srzc3NhEIhN7fRJp1OF5nuUChUzLkek55HIhGOHz9OR0cHF110EZ2dnYRCIXbt2sWSJUsoLS0ln8/j9Tqk0wOEQlWuFF2m1zOZQdratjJt2qVkMoMkEp1EozFaW7/H8uUb8Hi8qKqGoqhYliG/K6vguoEH2Lz5BpYvf4BsdpDW1u9x/vnfRdeDgEJX1x4aGxfiODYdHbsYGTnCrFlXYprZIoPu9UYpFFJ4PVFGDifQvBrb793OwlsXsuuBXTQtbSpKw/WwTv+B/vGoLcvGyln4SnwYGQPbsjHzJuHqMFbBwsgavPy1l1m2bhkAWkAjfjxezMduuU/Y7GBlkN43egVo22AWTIyUUZSi54Zz6NU63hovHtVDqpDCdmwxNvOGUN2506yZZW/XXurD9ZxWcRpZK8uezj00RBuoDlXzWs9rRcOzu5bcRVALUuYvY0/XHqpCVTyw6wEevOBB+tP9dCe7aYg2sK5lHV9t/iohPUSpv5SAFiBn5djXJSx32BdmID1AupDmlGgtYSslYNgxoTAK3jJh2PKDYAzDoR/A3O8KSEaFgd1QNlvAcW7Q3V+FwX1Qdc44eB0zcHJcELF/9QlsuCMM+LSvCAi30tKGFhFgPSbfdhwB8mOy7NyQWwvuGzc5G8ustg3p6xxc4O2uUzwindZ8ck2qOg7Ci6x2TNy1/ZVu723La1WUk1lroXkYNz4zYeSwtB2oknP97VZY+l255p49wmCnOiSHWvW4ku6vCmDPDcOrD8LCbwioLj1VriPTJ+C4doG8JjMjedZLN8hxuGBv27Vw7Hm4cp+AdpDrHpsYSA8Q906ipaWTqqoQAwNpFi9uIps16O5Osn59K3ffvYTKyiA337yVO+5YxCmnVGBZNpqmYpo2e/d2MXt2DV6vZLxmsybJZIFo1EcgoBWzsFVV5hEMwxJmCBgaypBM5pkypZx02sDvF1bGNG1yOZPSUj+qx6Er1cdP9/wbnz3rYiL+IFF/GMMyyRk5skbBlWxX0Oey1T7NS/twL4OZEWbXn4bt2CRzKXKGSX96qGh+poqtJQXL5O3ew9RFKqkvqaJzVM536wc+zUg2yc/3/IVrFlxKQPeSNfL0p0aoDpfzsz3/Ni4LN9tQhtaJTFs/VYDzmKGZ4qoQcCTXOvcG6PUwtAGq7wcl7DKTHonn0mth6H7XlKwGcm+C9xQB0ZlWeTT7x83TjCMw9B0ov/WEjOts0RStkO8j519KdzLF821t7O3q4pGVK1EVhWs3bSrKxW855xwe2buXH69ahe04GLaN1+PhqJtNffuiRdSGw/zx3XfZ2dHBj1etojORYEJpKQXTLJqbVQSDvNHby/xYjNFcjqpQiPZ4vJhv3RSN0ptOs+3IEVZOmUJJIEAVoIxJwYeHYXRUgPWCBaLw6ukRF/DGRgG9998vQCsUEpfw118X0LxxI1x5JTz22L9v65xzpM56zBjtscek3VNOERC+di385CdSb71unZimhULSzmuvwbJlIuEGYZ1tx/2pOQJ0fbqA4pGESLqjYfnSe1QB3AMjAsJPmzA+ECzIPZBsXkDz4XYBzKdPEQl5wZS2DUOcxW1XEm6YMg5LZ8DnxVAckh0dvPPEE8y7/XY8AXdfVSUfj+MNh0l3d3PoqaeYcf316OEwHq8XVdexcjmGDh6kbOpUiYxVFBzHYe+99xbNyc68805yIyPCgJ9xBg6QHxpCC4exslm0QIDswADRSZNwLAtFVVFOKJt0shmU9w+MZ1GPmYzpPhl/ev2ivNz6B6nDToyKo/iKy6RmupAfN+c1DZmQ6D4mTLeDsNCdR2HiadKPqoo8GnkZDwfDMlFSKIj0/JQZUm+djMvY9bIvYEVLsM0ClllA9eg4lonmC5Ie7ioqKPVAxJWI12IV8ni8frrffvEkJeaJedhCyqjuOPVMPK5Sb2yMq+kBsol+GacCtmWIkZk3iJFNSIZ2WS2KSxoNHN5D9SkL8IbL//tZ1/BPU7P/YPknc/2fcPHoOtHJk1nwzW8SnTixCKzHtkUmTWLBt751kiTcSKexDOPftaV6vZSffjrB+nrm33sv4QkT8Og6iseDv7ycg088UXwcM6aomDULLRrFGWOaj78PqSR86gbppKrqZOZvoEsGiX95SqKzclmR1IRL3BiCjwuwRhEAHR8RsP78HwVYD/bCbx+TmcRIibDd6YQYTCRHhbEOhkVqblvjsV2bf4dTWoGRS9P/XqsYPJgF+t9rJVgWo3b6Usx8Bj0QKToujs/U7ZO85EAJsdkX4A3IjLcD1M84jwlnfUQ6I2+IU8/9HMHyGGYu5TqRp8cjEhSVYFkdZj6L5gvRdeAF8qkRPN4Auj+Mquk4toW9ewdK40R5LThgmdgtL4ph2a6/SW30DvmffA57x4uSa42Dk0oKcw/FvOwxwzP1nCUoHg0nnUYJhlDKK1F0HSedwjl+WCY4HBt8AQHqunR8Sk2dvCe9XaAoRCIROjo6KBQK5PP5Yu11aWkpTU1NJBIJ2traiMfjkg9uGCxfvpwZM2bg8/mIRCJF1trjkU54LL960aJFaJqGrutUV1eTz+dJp9M0NDQU47yWLFmCoijEYjF27drFwYMH2eEa1aRSKdLpPF5viEIhhWGkSaf7MM0s4XANp5/+MXy+EkKhahoaFhIK1XLhhd9H0wJYVsE1JUvR3b0Py8qRz4+iqh48Hi/NzXehqh5aWu6joWEhAKaZQ1VVGhsXMTp6nE2brqO2di5NTYuxrALJZDfbt98r7reFJPn8KAVrFG9dgUhDhJU/XIm/3M+Kh1Yw56o56EG96OrdtESMzay8RaIjwbbbtjF6fJRCqoDm1wjXhnFsB1VT8Ya8rHhwBd6wFz2ogwOR+gix+TH0sM7yB5YTqgnhi/poXNQox3mFZRv7MntDXvb8YA/h6jAdiQ7SBWHCBjIDrNm6hveH3idZSJIsJNnbtZf5sfnESmIcHT3Kvq59LGpcxISSCYS9YZqbmplYMpHlk5bTneimOlSN7tFPitVKFpLcv/N+qkKSk/3MoWckNztUhdfj5ejoUVZvXk1tuBZFUbhu03VkzSwhb4igHhIG2rEEWFsZyZ62smJgFp4CZ35f+pH9N0HyMFSeDbk+AdlaCPKDDPX3MPeirzD3rEXMnb+E06Y0oQVKGR7s53PXXMtpM85kzvVvsPiDF7PvV1dJbXflQsj1CIDVIgKAU0dgoEXOZxeE8bYNkV/bhoBfb1TAe3SiHGvlBQCrulu3aLjMc0Fqlm1D6rXHmF+rIAD1JJOzLhdYO3LexHE3pst1E1dUirnajguiHFscxDWfXPsL1wmTvOS70mf27hPGORKDhnOh7BRI9UDbMwKwA1Vy7gX3QKBivF7aSAq4rprjTg6ooEegeZ2c8+Uvg5GS79sHHhZgbaQFaCeOy7aXbpRzharQPQoNDVEeeGAXDQ1RdF3F5/Owfn0rGzceZO3aHcTjOTZuPEhPT4pjx0Zpbe2grW2E669/jtraMH6/RqFgoWkqwaDO8eOjRCLSr7W2dmCaNolEgffeG+JLX/oruZxJLmdSWRlk8mSRXafTBTo64rS2dqAokM+bJBJ5bMWmLzXMVWetIuIPkjcM1r3wcwZSI5QFS7AdR4zKglFOq2piw8tP0TnaR8jn47SqCQylRymYJuXBUmpLKphbP5WskWcgNULKyJExcmx4+ZdMq55ITbQCy7HxejTmxk4jW8jxc5fV/tmefyPsC/KzPX+hLBDhZ3v+ja2HdpHKZ8ApoAxtENm3p06MyfpuAzUkcm87KX+914ohWXCJsNrlN8t32WyD3uskoiu4WID1mJGZnRQpuBqWtgILBFhrVWKaZrRJbXZyoys9ny/fAzsJWKDVQ7CZY6Nx7t2+ncWNjWxYvpy9XV04jsNdbib13UuWUBEI8KNVq7Ach2ShwJf/+leOjIzQlUiwtKmJWCRCic/HVXPm8JNVq/AoChNLS0kXCqzZupWqUIiORAJNVakKhbhxyxYypolHUZjixn9NKi1lKJvFsCx2dnRQGQrRm0ySMk2cY8fERCyTge9/XyTaug4HDoh8u7lZAPD8+cJAr1kjNdFPPy0y77vvhk2bpIZ6zJW/pkbk442NAq7GjNHuuUdKwk47TUiDadPgZz+TY0IhMVSLRqV2e3gYPvjB8exqxxFQPJY1raoCrHMu61wSkZrrw+3jA74pjSIbb5L7PNm8MNFjtdORkLTdUCvAeqxm2yNmZURdVjSbl0e/V4B1SVjYbscpGuZ6gkEyPT1iJmZZ+EpKeO3++1E9HubeeivBmhryIyMMvvEGVj5PIZmk7NRTyQ0Ps/fee0kcO4Zj28y7805WPfssZ955J1owSKCqimBtLQOvv06mu5u3Hn2U3NCQjIN9PkINDcJUh8NowWBxbGwZBpZl4UyeNp5Fvfl3AqhtE955Td6Hyhq48DJ5z7f8XsoPE8Pyet1xEkZBXL8To+IuPtQPv/qBbIuWiQR8uF8mPDIpSCZkzJVJCQl09O8SK/u7H8v6sbGrJtc6Nna1CllUTafrwDb0QJimeZcQLI+heQP4o1X0vtsi5mKKSv2s5Uz94L8QKKmm++0XT8rD9gZLimrMwSOv/oM6cw+oiuRkv/0Cjm1iGTk3jjaJ6tHdbS8V677jPYfoP7ynWJP93wcr/wGz/c/lP1z+Ca7/X1o8uv7vOo+Ttp0g+z4x8/q/BbBzw8O8um4d6Z4eMYkwDKxsFsXNITzRfXHmddfh8XoJVlaiDA+Q/+X3ufF7P+DUpR9k1rwz+fR5zTLzN9wPkVJ+cc/tKNffzb+t/TpkU9IJgTDRqbgwHh6PK8UZhtPPEDbbtkQ+/pGrpVP7w0/H2x3LJ8xlRLpTVSuDu1VXwJq1RXM1q5CmdtpS9GAJqkdyp4ePvY6qeQlVNOANRDELWTyal8rJZxcdEs18qugmbrsGamM12nogjB6MYuSS9L/XimMZaP7ICU7jQYxsijEGNVgeY/DIq8R7DmHm0xi5BD3vbJcMbdUjhmKNk3CGB8Up8sTs6yXn4ygqnos/jufGOyEYxrPyIyiz541/eJowZ+qKD6NeeS1KOIJn1UelNl1RUMIRade2RTbeMAHP6juljtswpM4rm8ba9DTOyBBj2bxKbAI4Di0tLVRXV5NMJtm+fTvJZBJVVYnH42zevJm6ujrWrFlDY2MjXV1dJJNJvF4x3xoaGmLr1q00NTWxfPlyLEs6YkVRUFzgDmAYBj6fj1QqxcjIiMRuuKZomqYVwfjFF1/MjTfeSHOz5Mfu3buXQMCHrgfw+aLoegi/vxSv13UyRaVQEEmVqoqk3jRzmGaWnp7XGBp6z824PptksodXXvkOjmPjODZlZVPQ9SArVjzM6adfRiYzwNataxgaep9CIUU83s7BgxvJ5+O0tn4PVfXg9YZobFyMquokk91uew6hUA22YePYDt6QFy2oMfTeEB2tHRgZQ2TeOUuIRk3BG/ay6PZFhKpDeENetq7ZykjbCOn+NI4teddbbtrCSNsIRtpgy01bsE0bzacRqpJj8vE8hVSBzt2dJLoSqLoqYN6jkOxLoqgKsfkxCmaBzkQnXo+XgB4ouoKPZV4H9AALGxYynB3Gq3ppiDYwp3YOfek+smaWVCHF6s2ryZgZLptxGc1Nzezu3E3GyKCrOg+veJjNn9pMTaiGh1c8zFBmiLuX3M1b17/FgtgCdrbvpD3eTnu8nY0HN3L/zvtJ5BNsPLiRjngHGTOD5Vji3r1/tbDHmc7x7Olkm+RWp47Jb27qzeMO3vk+MTnTQpA6TkVFKW/sa+GNPS/zxtaHufZfPs/K5UspryjnI5es5J0XHubNvdv56h1f4bJvHxSztMaPu+ZpPZKprQWljttfLUC/GNPVJbJuq+DG7Fhu7rRHBhaq7sq8Xcn4WD21ogiIVk6I5gEB3IoqbZVMlrzocMN426ku121cEVA+dh7bkNpn+aWNZ18Hq+SYM28FPSCM+kurxQE8OyzstJkTCXikAa56S2qlVR1izRLRpQXHr9lbIus9fnEHjx8VwPzKbVKPPvdGYbW7WqSNUA3s3zDuLJuPS+SXa5Rmp/qLjt/r1rWQTBZQVYW77mrm8stncPfdSygt9XP11XNYunQCTU0lLF06gb6+FM88c4jOzgTt7XHWrNnK++8Pk8uZLFzYSC5nMjSUYfHiRjwehVBIarmbmxuxx9g/hOn2eBSqqkLU1UWoqQmxevUW0mm5X+ZzFtOqJxL2BSkNRCkLRpkbO41fvboZx3EYTI/QHR/gwb/9CgWFm5Z8Er/upSxYQtDrpzsxwGg2ScbI8e3nnyBj5BjOJMRFPDWCqih8+syL0FQPI5k4pmWhqipn1E+jPFTKF875CI9+9A6+uuxzgMIXFnyUqD/EV5d9jkc/egdhXxAUL07NoxC9QlhpHKh9UMB17i35vahRqF7vMs3HRNqtTxDQPPSQC6bXyrEVd0PkcmHB1TJQgrIfqqgrgkvBHBF5+dBaAdSRy6HiHmHJs/vFSK13NTgmOVtl7Y4dRVm2X9NYEItxZHSU6mCQn37oQ0woKSHk9fLe0BDXbtrEQCbD/FiMdS0tLGpsZHFTE1/Zto1EoYBl22RNkxs2b+b9oSH8msba885jKJNhSVMTfk1jIJ3mmUOHWLdjBznTFFNIw6A7lSLk9TKlrIyHV6woAvGQoqCsXTsuAZ8/X6TbY/Jwd4KYBx+EFSvEuGzxYgHMS5fKtlBIQHRrq7DPX/yiSMxnzRKTM9sWc7Qf/lCk3mGXzRxbjh6VY6urx9fbrhmiogqIHXPrHlssWyKzYDyTutN1vJ4Uk8/z/XZhmk9tElCsKALGs3lIZdz6alc+PhbXNQakT8yx9qiyz5i8PBx0Jc4h1EyeGdddx7mPPYYCBKqqpP76rbfI9PQUM6v1UAgrn8fj91M1bx6OaQpbrev8/Re/oMrNsEZRyI+OkuroQNFczxhVJdPbi7+iokj6vPPEEyjA/rVrJc3mhMXM5ymkUtiGQSGbA92Hc2IWdds7kjQzd5GMMX/9qPSzpeWw6pMSz1VWBe+/LePPvzwlRNApMwWIKwq8vMktSfRKgs0buwUwq6rs+9xv5fMLR8WBfNI0OOc8uPQquchPXCf/e6QkcIzsGWjbi2XmiyWKoYp6jKyMIc18hurTFmLkEnS//SKOZQAOjuNQMelMVE2npF5SbxTVQ9UpC5hw1kepn7UcUKidfi6l9dPdem1PcZxqmYWiW/nA4T1ovkBx28DhPQTL6kS96bb7z+X/P8s/ZeH/yZd/l3n9rW+her1FQzO7UPh321EUHNMsmmo5lgWqSq6/Hy0UQgsE0DUV5anvc/Mjj2NW1fGDTc+j/OoRev+2jdpzl8OnVnOs5SU+9bVv44wMcce3vsOll35EAHUoAumksM5jsm4XJMrg0XZjp/Iyw1dSIYYThw9KbfVvfihyHtuWjuyUmXJTcIChXnjud1hXraFgpDGyyaJsu2rKfHSXiQbE1dm2sC0TzR9ypZQOXQdeoHb6uagejaI7pKJimwVyyUGCZfV0v/0C8Z5DnHru5+h/r/UEufgiPJoXs5Bl4PAel+UO0PPOdupnnEf3wZeK+zacvgzFMLB7OoWh3vU31CXLUEorBNArCozJvVdcApm0yMOXLINAEKe3GyVaItubl0EojL31L6iLPghl5SimiePmaGMUcBJx1NgEHM0DQ4PYrS+jNi/DSYxi//ZnAujPvQAlWoJj21iqh1yhgKZpZDIZcrkcfr+fUChEe3s78XicmTNnYtt2cduY87dlWXR2dvLnP/+Zj370oydJy1988UWWLVuGpml0dHQQDoepqKgglUoRDAYxDIMXXniBRYsWUVpaiqqqDA8PF2XkwWAQ0zQJBLwkEkfYuXM9y5evR9MCZDKD+P2lUqNkZND1IKaZw3FsCoUUoVA1iqKQzyd58cWvsmTJ3YTDtWzZchPnnHMzJSVNdHXtJRptIJHopKSkkdLSSTz77L+clKUdDFaydevNrFz5KALaxfDsnHNupqLiNJ599l9obFzM9NMuJ9uhFLOpw7VhfBEfx3ccJzY/VvwujhmQaX6NzGAGI2PQuqGV8797PrZpYxkW3qAXRVPw6B5Gj46y68FdLLlnCUbaoGxyWdEVfCw3ewygm3kTb0gGaXpIx8pZqLpKuj+N7bUJ1gcxbAER/el+akI1WI5FwSrwRu8b1EXqim7hk8smkzNz7O/ez+ya2YS8IdqG24ru4rcvup1JpZPIWTmS+ST1kXryVr4oI2+INuD3+IvS8ppQDSX+EqpCVexs30lTSROVwUre6H2DRY2LyJt5Kr0B1GwX9D4vhmbzHpJsaxRIHXZNykrBX+Wamd0mzt75ATf/+nYITxK38Hfug3kPQ76f6fMv5r57b+HSya/C3PXihj3QymA2TN30ZWS796KVThWmfGivRHIFY8IuD+yUWu5sF9QsdyXhrhHZPxqZnWRUZrlZ1FHGTcjGJHOulHusH7THTNHcc47lYytjrkJjj+7AW/X8NwzS6scl7qOHpWZ6zHzszxfD5/4uA3ZfGeRHJKMaB9J9sOc7MP9uAeO+0nF39EyfMNiJowKUz7xVXMBLJsOTp0uN3bIfQs5tb8yhXPMLC+4vE5fwQkIYcG8JWbWc994fYd26Fu6+ewlNTVEsy2H37k4qK4MMD2c588w6gkGdI0fGc6l1XWXXrk7OPjvGmjV/LZqT1daG6eiI094eZ8GCGD6fRnd3kkhE6v4iES+5nMnoaI5s1mDtWjFOCwZ1ysr82DZMnfoov/nNR1m0qBHd73B8pJfhbJw59adh2TZ5s4CqKAR0P4oCmUIe27HRPVoxA/vJfc+wZumn8Ote4tkUQa8f07YI6H7e7nmfrvgAHzzlbIJeH7bjMJqJ49P9pPIZwr4gOSNHaSCKR1XpGh3gF/ue4eZzryTk9WPaNm91v0dNuIK6kkqCmo1qtEk9dfUDYA25xma3u1nTATCPCIiu3gCKF5ws9N/p7lMB/bcIqNYaZTvmuC+IeXzcIG1oA1R/V9z0HcOVnDuAKm2a/eIY3nuta6C2mLQynUTBKjqApwsFasJh3hsa4qHdu9mwfDlBXSdvmtzy/PP8+sABrpw1iwcuuACPouDTNL60ZQs3zZ/PlPJyMoaB7Tg8e+gQ50+eTEUwiGFZYnQGrNm6lbubmwnoOqV+P6O5HLXu+cZMzU6rqCBVKNCfTtOdTLKirg61rU1qn2MxAcOHDwvYLi8X4DxmRDZmQNbdLRLxu++GKVOkZO3LXxbJuKYJQM7npa329nGTslNOkTZOXFIp+NvfYM4cYcXXr4ef/lTk4g89BL/4hbChHnXcVKyhRkzNcD+CRErAr88rQPwfHcRLwgLGj3TKsV53nKOqAqK9rllVrjDuSg6uosaScdex7nHZeDRc7I4s08SyLNKdnWR6ewnW1pLp7aVi1iwKqVSR9FE8Hqx8Htuyxp3Bv/AFIo2NGJlMcd2Ma6/F4/djJBIc+tWvmHvrrUW5uJnPo/l8GKkUeliuoeP55xl4/fXxca5hkOro4N2f/5yz770XxzTRvTqK5X6vdV1M6VIJkYr/6/fHTcc+fZOoIk+ZIUa5Pj/86Rew+yX40jcFcI8Z6VbWCtmTz4nKUnHHox6P+A5NmgpTTh/P1q6uk+9EfNgtj/wklIsHi6VpFHKJfzd+rJx8Ft5gCd1vv1gcQ8ZmLafrwDaCZfUEy2IMHtlH7fRzsYxc8XjHthg+9ga1Mz4or9mxi+7fmk8+W0X14FgmlllA8waFvXZLKlXNSyE7dj3z0f1S/qd4tP9YEv7P5T9c/ikL/z98UTSNs++5h4s3b+bse+5B8Xgwczlsw8DMZkFRmHHttUVWWtE0Uh0d7P3mN0l1dGC7bOPA/v0YqRQj774rphMopD74YX52bIC1v96Ioulw4eXUnrcSLr8OW1X5l+9+n0e++XV89Y0SzdV2cLw+2iiIu7jPLx1RPiugeaBHBolj0plJU6Xu+PR5MsuYTYkxhNcHFdXQOEU6tFxWWOznXHlNOl6cdSvKX9r2oqgqRi5J99svSF4g4PEFwXFID3dhmQZVU+ajenSMXIqegy9h21Kfp2peAiXV4NhUnTKfkrqpeDQvVVPmF3OxPbof1aMxcHhP0WhC9ejUzzwfxaNRP3NZUVqOouJ4vahNk0Sufeht7B0vgmPjGHkUx8JJJlCXfwhF9+IkkyhNk2V2U/WghCJFObjduh0UBc/5F6OUlYNpYm3bBMkESigsJmYNE4vjcSUSRWmcKPXWTZPwrL4DddXHhOl2dxrzCbcsi2AwSEVFBX6/n3Q6TSwWY/bs2cTjcbq7u/F6vWSzWbxeL4VCgb/+9a/U1dVx0003UVtby/PPP49t2+i6zsqVK9E0rSgBH2OwvV4v6XS6aFiWSCSK508kEsX8bJ/PRygUQlFsdu5czznn3AIorslYJbZtuhJuzWWUw/h8UUIhuXkpiqxbtepHhMO1qKqX5cs3oKoaW7bcSChURTLZTU3NbDyunGnFioe59dY+Lr74caLRBjweL6tW/RhwsCzDNWJrJpXqxXEsVqx4iClTLkRTwuxYu4ODGw/Sur6VfDIPKsQWxMiN5hhzYW04pwEc2HrLVrwhL6HqEOd/93w8Xg8D7wzgDXnRQzoe3UO6P024LszyDcuJxqKUn1ourHjYS2xBjNYNrcXzqZpKuDaMqqsUUgWsvCUScU0l0hAhXBPm6OhRBjODWLbF4eHDHI8fZ2/XXmzH5pyGc+hJ9rC0aSnVoWpShRQ3b72ZWdWzGMgMcOPmG6mP1FMXqWNx42Ie2v0QmkdiuL6+/escGTnCvq59zKmZQ3WoGq/HS9tIG6s3r6Y6VE1TaRNlgTJ2dexiXt08asO1aKpGLBpj9ebVBDUdJX0UDtwLlYsFNCu6mIr5q8WA7N3vCQAe2CkM89RbhK32V8Hpd7gxUxr8/XvQvhGMBK2vbGMkmefiJVNE+p3thYFWqJjP9x/fyEXnL0Ir9Ahj/trNUDYHgnXSLipUnyvtl84Rhts2xfwLBGRqfvkdKaqAXSsvA5tUzwmOqY6w1qoujPfY8Yoi9da2IZFZqS73e2K5ddoIKHcsqVseOw5Ehu4rlfbGgLXHKzXle9e5zPE6qJsvIDhYI7XSvXtEtr39ZgH1wSo463Z51ENSS23K/YJgjfQO+9YL++yLCovtK4WPboblT4jBW6BKGPHaBeIS/sL14jres0eAOQjjrYewbWhqKuGxxy6isVEmQH/3u7epqwszOJjh7LNjBAI6jiO51AsXNjAyIqZqixY14vd7eOSRlXzmM7MpLfWjaQqTJpXS3Nwk40nHoaYmTCTiJRLxkkoV2L+/m7IyP4GAXmS/02mD1au30NubYu/ef6G+PkJ/fxrDshnMjHJKZSPtI72sfeFnDGcTBL0B0oUsx4d7OTRwjKDXj6qoBHQ/A+lhZtZNYTA9yv0vPlnMslZQONh7mDn1U1kxbRF/7z/K8eFeMoUc0UCUoUycH7U+zXAmQUkgSt71hKiOlLtAXYD4gZ73qQyV0ZsawnYcckZWwHRyI9hpMLqFpdYaBQQrGuhTZB02WAPyHQ0sFOZZDbvRW11gtks+de+1Er2FLW1rVfIYWOh+hW0B7XYKMrtlP8UHWo3UdVfc7hqoPYTj1pa733yqQiEsx2F9ayvzYzG6k0mu3bSJnlSK755/PpfPmMGG5cvpS6dZvWULR0dHeWjFCuoiEQ4PD7Nm61YGMhk+OWsWWdOktaMDRVHwaxqqorDx4EE6Eglypsneri7K/H4U4KHdu4vsuWnbBHSdDa2tLKmtRTl6VID1okViMlZbCw0N8MADAqxPNCJTVZFy9/bCrbeKm3c2K4DqkUdk26uvyvo33pBtVVXCdK9f74K6lEx+jy2qKvXdqZTss3EjpNPyfOHC8XdvrEY6EpLnli0M8+F2MSfTNekzxrKsO/ugpkL2j6fGXcM7esF067HzBTjWNW52li9IfbWiuLXdkkSBZQtYP32KAPhEygVtjkRyWhbv/vznlE2dir+8nLKpU3ntu99FCwTIDQ0x8PrrWPk8iqbh8fsJVlcz77bbyA4MSJ20onDoqaeoPussApWV+CsqCE+cKK7fgQBGNouqaQQqKsiPjnLghz8kNzjI6KFD1C5axMzrr0fxeLANA8ey0IJBpn3uc6Q6Ohh68w23/8zLe93fI+C3kJfP7RPXwbefkEfbEoY5lxHmOZUQT6Gzl0qE7AlliCiKSMT7u+Q3VchLSeNAjxxz+jwB1mP7m26t+lgbz/1OiKKvfQGw0YMl1M9chplLoXh06meeh5nPgKIWVZZVp8wHRaHqlPmEqyYyeGQfib42FNWDonqonHw2mjeAN1RGzbRm12NCgPWYKZqqaqgeHUVRMQtZVwou4y4pqcyQGenGo/upPm0hui9Cz8GXQFGKwHrz5s3MmzePuXPnMnPmTH75y19y4vLSSy/h8Xh4+OGH+V9arIIosf6LZGb/k7n+T7ycaG42NgPoLy/HzGYlBuFznyMYi2HncmiBAKrP9++Y7LPuuQdV07BNk0IigTcaxS4U0H1e3n3vPS657DI+uewDvLD/dQKRKN+466ssW7qE733jayRt+ObnruQDq29lzccu4dIPf1hqXVZdIQBbc417/vhziThoe0fY6c98yWW4o+5MqSVgupCXmm6zMG6gtuLjIt/RXJmTa2pmf/J68op1MnN9ygK8gUjRaMzMZ/GGStB9MutpWwZ9f2+hZlozqkcnPdyFP1qJ6vFiFjKoHmFuVM2Llc+g+QIit1Y9riQHicFyHIxMHNWj4/H63OiESHEGsuqUBeiBKKqNvKZ8Dny+IhPtxEdRoiUoZZXiBp5MSB31kmXiRJlOyaREIQ9G4SRmu5h5rao4B17HaT+C56KPSgzXGAvefJ5kYYcjIh83TYHTbk02wRCK41DwaOTzebe2OV108TYMo8g+A3g8HkzTpFAo4PV6UVWVgwcP0tjYSGtrK4sWLSIcDpPJZGhpaWHRokVEIhEKhQKGYZxkiJZOp/H5fBQKBfx+P5qrnjgxA1vT5LpUFRwnja4HKRRSKIqKroewLHFU1bQgtl1wrzlDKtVHKtVDQ8MCHMcmmewjkWgnFpuPpgV47rnrOXDg18yYcTkXX/w4hpEmn0/g85WgaQEMI02hkMTni6JpQRKJDuLxseP9OI6NYWTYtu02Fi26nbKyyWDojBwZOSl7evTYKPH2+EnmY8nuJDWza/B4PRLVlTfBgb63+mhc1CgxW6YMbrr3dVMzu6aYfT1yZIS9j+xlxYMrUFRFpN9dSXxRH96Il9Ejo+xYu4PmrzaT6EoQbYxSNqUMK2uRVbIMM1w0IKsOVdOf7mdm9UyGMkP0pHpY1LiIrJnl9m23c/M5N7O7czeXnX4ZI7kRwt4wXo+3yGQH9SCaqvHF577IH9/9I09f9jSLGheRMTLc89I9rFu2Dq/HS9bI4tN8aKqGYRmYtqgsbnn+Fn648oes2bqGm8+5mTkVU9BevVFk4LUXCHOc6YGD3xJH8NdvE8A8+Wo44wHpAxRd6rELo/J4cC3MuEeY5lwfBGNc84XrqAjmWf+9R4Sxzg2AMcqvHr6Jb/+ul1e2/JaahlNheJ9kZqte2cfKuO3dLfJwbynoJQISvZFx5+8xIzNFGZeO2wUBxKor3051S7616jLLVg4x+soLqLZdkzXFI8/H2hozRUOVNhWPgO4iC+4y5mNGMmZarrWQEOl2oFrOqSgCqF/+srDPrz4gYDm2GF59CJaup6jcSfeB4gigXnC3xG0ZSblul33GG3WzsY1xtnpMEm/lIN4O/hIB4flRea8cG5IdpPyncOj9OOvXt3L77Ys47bQKvvjF53j00ZXFLOqHH17BwECGjo44sViUrq4EsViU++4T1jkU0gmFvMTjeWIxybtev17iufx+jdbWDhobozQ2lqCqCul0gQMH+lm4sBHDsPD5PGQyBj6fJnFbmsItt2xlw4YLUDwOlmowmk3yo9an2XpoF6umN3PP+ddQsE0SuRQ+zctwOsFgZrRoaFawDA70HKYr3s/sulN5ct+zXLPgUhpKqilYBm/3tlEVKmMoM8q06on4NC95s8AL7+2hobSGqlAZP93zb1yz4MNupnaBX+57tsiGj2aTRHwhDMsklYszqdSPYidAi4GTc3Os58p3BVt+G4pb9993E1TcDFoDmH0CvHs/L+A8ciXUPADGcdec7Fy3rrpTGGl9gjDW2T1iiqafApgCqPvvEFBtdIHxPkQ/AY5Nyi7n0D+wxgrQNjKCT9O4d/v2oqnZj1etknvtP5idPX7xxfSmUhweHqY6FKLU76c6FGIgncavaaQMo5iL/cXnnuOxVatIuxLyO198kdsXL6YqGBRW283WBkgVClTaNvq11wqgvfpqAciWJZLwjRvh3XfHzcouv1zyqPv7BTR3dAgotm1hqI8eFYb6K1+RCK/KSmG533oLzjpLGNNsVuq1xxhvyxIgHQrJ80wG7rgDvvc9OU9tLZSVCfjt6BWA69Xld2yaAq5DAQHAR7tFDu5Ri4IYGRS6Kpd0VszObFvaAInTOtHEDMZN0jSPPNq2MNsO0nY8NW5wpusYRgEjmQQgNzLCO088wfTPf57B11+ndtEiUh0d+CsqyA0NUTF7NorHw+vf/S6zv/QlkYGPye5tW4iQVIq3fvADZn/5y2h+P4qmSVb2W28RrKsj09dH6vhxahctIlhTI3FbbkkZjKsucRysfB7VMvBFogKY/UExILMs6DoqDt+DvSL9njJDTMg6jog52XA/bPszXLl6nJHu7x5nriuqZfzaMFnOp/vEZ+j5P8EVN8i6wd5xE9+quvFzZzMSR+v1gVHACoaw3fGkqunY5ri5mANSrmgV8Gg+8e5BQXG9g7LxATePOlnMpQ6WStmkY5suAz5maGYycHgPlZPPRveHyMb7Ob7/zycZ9pbUTaV+5jKyo71oviC6P4Lj2ALIPWIIW1FRwfbt25k9ezbHjh1j2rRpDAwMEIlEiMfjLF++nJqaGpYtW8aaMUf9/2+X/wszs//JXP8ftPyjcdmJsVyZ3l6sbJa93/jGeAzCE0+AbfP6974HqiqxXYrC9GuuOSnGIN3TUwTWQ2+9RT4eR/P7MbNpjrd3cPpZ89n/65/xgw3r+cRVn+Vv257nj6+0cs9VV0iUFgrUT5Bcv8u+MM5cP/1TcUn8+DUik1m8HD5xvewfCEtnNTIoN4NcVgwkhvvFBGJ0WFjtzb8r5j1jGiLPuerLEAiheQMESqrxBkuJzVqONxDFgWIclshiwoBDerhbStRO/wC2aeAoCnogTO+7r2DkEhTSo5j5DIqq4lgGtm2SHu6mkI3TfWAbf3/xJ2Tj/RiZOD1vv4geiGLbZjE6wcgmT6id2QOOI/e7ZBx7+1ZIJlCbJoOmC9OciMvAM5/Hbt2Oc/ANnPgoxEfd/QUcK2WVeC7+OIruE1AeCmNtfQZME3X2PHEY92gyq9zyEs6ht115eBP4/JJ/rWkiQXcclLBIfpxsFhyHQqFQZKoty6K9vZ10Os15551XrIf2eDx4PJ7ic13XmTNnDj6fj7a2NlpbW/F6vbS0tHDo0KFiBnYoFCKZTHLo0CHi8fhJEV7BYJCuri5GR0cBSCQShEIhtmzZwujoKLquk8sV0PUQjuMUa6KTyUFuuukmTjllMnPnzuWqq67Gti3+9rc9XHzx5/nYx+7gAx9YydtvHyISqSUUqmbLlhsZHW1j+fINXHHFJi666Icoioaq6gwPt5FM9qKqOroexO8vlxu4qhKPtxMKVdPVtRfTzJNO95NM9hCLzSeV6sF2wVHZlDJKmkro2tslrt+1YRoXNVIysYSLfnQRZZPLaFzUiC8q0j7F40rKgPqz64v12cnuJFtWbyFSH0EP6nS0dmCbNr6Ij/lfmo+ZNcVd3BzTHAAOeLweGhc30vq9VoJVQfSALsB6NEsgHCBrZtnTtYf5sfmU+ctobmqm1F/K5LLJzKmZwy1bb8FxHNaet5beVC8fP/3j9KR6ODZ6jJAeQlVUFjctZigzxE1bbiJVSPHIykdoX9POosZFGJZBUA+yfvl6HBy+/NcvoygKpm3Sn+5H9+gE9AAhb4hnDj3Dnq49bFi+AU3VeKl9J87cDcJaH7hXzMSC9RLDpZfA2T+BVYfgzEfk9zLQKvsM7XXrszsEfGc6BWh7o6RGetm4cSOfv+pTgC2Mt7eM3z+zk2/+dC/bvnsGNU0zBASXzhXmOnlY3Mr9VTD9Dgg2ibnYyGvSX41FahXrrwfH2epCkuIHiipgWPVKHbOiSq1z/AhF5+9iBJfjglPPycDacWS7O4kkrPkROc7Ky0A61eXWcituvvSAy6JHBei+/GVhAbQALPuxRGp94GGYuEIAdO18SPdKPbXHC+VTRQp+7gPCvoPrCA7s/o7UV49dS+9eqeXO9LvncY3cSprAyMl2X5lrhKZAySRsR+Whh3azeHEjIbeE4dFHV6IoCmvX7mDjxoPE43nWrt1BVVWI++5robo6RFdXgltvXUhnZ4KqqhDd3UnuvXc7R46MFqXjPT1JWls7mD8/Rm1thM5OMSwLBHQWLWrEsmwMw8I0bXRdBvfZrEEyWeCBB1bgOA6pVAGP6iHsC3L12R9ixdSF3HzulXTG+1n3ws/JGQU01cNgZpSyQIT7XvwFnaP9JHIpZtZOYdX0Zn73+lbmxk6jIlSC5dgks0nmxaZRX1LFGbFp+DQvOaOAZTusnLbYNUgr4ezG0xlKj1IZLKU+WsltH7wKUHi75zClgShej87hwXZiJZVg9cPgt8VIzDEkiksNu39RAdaZ3WB2SI300HqRf3sqAEuiuiKXi2zc7BVzMr1Bvr9KEAJnC7A2jkPfGmlfaxLmuvcmsHrddtdC4CzI7hSJuBrCdlnqMdbYchyypkldOEwsEuGJiy+m+5ZbeHjFCjKGQV86jQPc1dzMlbNm8fCKFdInRiI0RKMMZjKEvV56Uikqg0GGslnu3b6dbhfc/WjVKo6OjLBm61b60mnmx2Ks37mToK7zk4svZkpZGelCge5kkojXS97jwbnnHti0CeehhyCZlNrnu+4SMD1mVnb55fJYKAhwDgSkNntkREAUjNdiNzRITfVNN0lu9axZcOONAsbTaQHfgYCAY9uWfQsFOe/QEPzoR8KAT5okxmeWNc5Gd/SOZ1B7dal9PtYt55/cIGzziRFaDnK8ogh49unjcnJVFbOzc+bINtsWIA7jwFrzyH7qCcP+krD8n83LMbbNGw8+iGNZJ9VON61ciR4KUTF7Nrl4nMq5c4tu/ad++tNkXUYby8LMZNj/ne+QOH4cj9/P3FtvBcdh4M03SbW3s/8738FfXk6mr4/qM89kwkUXicy8UMAuFLAtS8xVUymsXA4znWb/t79NprcXNSAAFa9PynNyWRmPnjJT7h+6VwzJfvUD6WfHzMlUj4xTTUNe70CvtPGZLwm582qLAPJkXPyB8lmoqBVgbbmTpOGoRNeGou77a8n+z/yrPBYKcqyiYOTS9L77CpYhjuGq5hXZfT6Nmc+geYOomsjebSOPkU/LuKm8XlzE3fhXzReg++BLwkYrygmGZkGMbLJoxGuZeYJltUVG3KP5KK2fTt3pH0BRVAJl9XiDpSgeTdjsoXYoJHFMMbk9cZxWUVGBzyffqxtvvJF77rmHiooK/pcWqyDAesyzY+ze93/x8k9w/Z9kGYvn2vP1r5M4ehTTzUM88847mXzppVSdeSaq10vVGWdw6KmnqF20iBnXXkshHueMr3yFVEcHe77+dVIdHUQmTOCsu+8m09ODbVlkenqwstnxTs01jGiKhFAVhStXnA9TZnDG3LlMaqjnrY1Pcex4O6de+kkmTp3G7r17ufaG1fxow/0infH5x43JfH7pWP71B9DbhUiectKhRUpFKpPLSOc26QQpztY/wOlnkD//o9y45mZOnTmLWWfM49NXfgpUD5NPPY1p06ZxxrwzmTfvTH6/8Q8CHhUVRdUIltUz2LYfHJuuAy8QiFZiGtlidjVw0n6aN8DgkX2oqkc6O1Urst9jEvFgaS0Dh/cw2v0uZiFTNIUYPPIqwbJaPJpPOq8pZ8uNxbGLwNlu3S4fpGmIS3i01K2F9KMu+iDqFdeIfDwxKvLx1u1g21jPbsSJj+DgoMaasPe0iFO4qmJ3HJM2XTdRtfk81MuvRqmLuTPQXuxO2UdRFHF+NA3s9qMya+vGbjU2NmJZFtlslpqaGnRdR1EU0uk0Ho+H0dFRurq68Pv9eDweRkZG2Lx5M16vl5tuuolVLguxYsUKLr/8cmpraxkaGmLTpk1EIhEuv/xyJkyYgKZpnHPOOSSTSZ577jlCoRDxeJxCoUAsFiOdTrNw4UI0TSMejzM8PIzjiK66peU+Dh7cyNe+9k16el7luutS/OUvD/O1r93EH//4RT772X/h8cd/yN69O/jqV6/nM5/5tEgI/aUcOvQMO3asQ9MCNDYuRlE82LbBtm23EwpV4fOFGR1tY8uWm7Btw43kUonFFpBO9xMKVbFly+qiW/mMGZ+goeEc+S4rFlbWItGZoGZOjZizBTTMvABhj9eDmTdpb2ln6PCQOIYXLHrf6AUHVI9KqjdFqDpEy7oWDm48SMu6FhRVIVwbZsvqLZgZk4pTK0j2JOl5rYf4sTjbv76ddF+aQqrAK995hekfm87KR1ZSNrEMM2uyefVmjLRBNpUloAWYH5vP3q69hLwh2uPttLS3YNgGIW+Im+bfRG+ql9tfuJ2GaANBPciG1g0sbFzI8cRxbth8A8dGjlEbqWXteWuxHZubttxEd7Kb1o5WOhOiEjJtMRRa2LAQXdXpTnbz9e1f53j8OK0drXTEO8TorGEBIW+IDa0b+PDGj2OqXjj0EFQtllpdkBzqvddC5rgMFscMz/zVEotVuQj89VDVDBOvlGOz3fDqGn7/26eYM3sG06afDp4Q+GvY+OT3uGftD3hh20s0XfgopI/C3i/IMRXz4d31Iq0efk2cy1NtsPd68NdSBM62GMpQMhnKp487huuhcaBcrJ12BIi6fg5EJ47XXo/VZI/VVjvubzh+xGW48657eKcw2KlO10zNEIm2gzDiICDe44NQtezb/5oA4bk3Snb1tmsh2S7rswNS373gLph4gewXqBJX79HD0P8aQ52HmPvhW5g7fxFzzzqH085YgnbJbxnuek+ur28fL71n4SmdwMOPPAZ1C8Xg7IXrpT3d77a5WkB6dghw0HWVRx9dyRVXzKStbZjXX29jyZIFLFmygLff/hYTJjzFzJm13HTTTK655qO0tNzCVVddyC23fJRrr72bhgaZFBxzF3/44V0sXTqBq66aQ0ODZGHfeOMW+vpS1NREOOuselpbO0gk8rS3x/nyl7eSzYp7eFvbMK+91oOuq1iWg2HYeLzwds/76B6NprJavnHBtQR0H0/ue5a5sdPQPRp+zcfM2imMZJNcddYqArqXgO5nNJskZxa447yrWTltMe/2HaU3MUg4EKYz3s93tv2Ut478nUVnn8Pps2dw7sLFzJt9BtFghG8+8xhLp5zJn5/4LbNnzuKcs+bzoQtXoSgws/YUhtKjpAtZTq2agNdjSwxXYD5Y3dC/RlzBHUck3sb7EqEVOEuk3KELBEzHfyNsMwpoE6D2cVAjIisvv1XYamyJ8+q7CQqHXPC8UI6xBmR7+S2ghISprvianKPyW8KMOwU8isLdJ7iCa4rC/u5uNFUlVSjwviv1BopAuT0eZ0pZGT9y7yF508S0bUK6zqzqarqTSe7dvp3j8TidiUQRuKcKBXKmybqWluK65ZMns2H5co6OjnLdpk0k8nn60mkODw9j2LZMdk+aBPPmofT2yj3y+HGRif/4xxCJQFcX3HKLPPp8wkBXVQk4DoXGncN/8AP47GfdfsEWSfd99wlgf+YZAdQVFWJsFg4LmM5khPFevVra7OiQc/f2jtc6a5o4fVeVySMIcH7vuEi9Y9USm3W4HfKGSLsHRuTxxOxqkP1yBWGs867U9v3j407gHtdkMZmW56ZrambZYoBmO9LXHOmEqEzkqQ7M/cpXUHWdM+++m8p584qybatQQNE0qs84g0xPD/u+/W0y3d1EJ0wgNzCAv7ycvd/8Jtn+firnzkUPhXBsm6EDB8gOD1Pp5lhXnXEGh371K6rOOINURwf7167FyuUoJARA2obhlvFpDL/zDtnBQSpmzeLQU09hFtwJveEB+PUPZax59O/CKr//tqgBEyMyxszlZPx5wcck3WZs4tM0YLgPvvFFGbeiwOF3ZJJjy++F9ImPCEAf7pc0HduGjY/D166FjT+R/7PZ8dQcr08+2+UfAcdh8Mg+AqW1mPkMXQe2YeYz2KZB33ut7qSEjNcUTcfMZxh4fzeO46AoCqHyerLxXmzbxKP5qZx8JkY2haJ6iuWLuOSRmc8SLKtF80dQFA/1M8/HowewTYO6mcswCxnSw11Sqmhb4Nj4/GHCagb1hetQRt/j97/5FR/96EeZMGECzc3N/PKXv8Tr9fL000+jqiqXXHLJ/wSC+R8s/wUzs/8pC/9PspxoXHbuY48RrK3l4OOPM+O66wg3NBSlNP6qKoJVVWihkMvCSk31iVLw+d/4Bnu/8Q26Xn6Zj/ztbwAMvPYaLTffTOyDH+Sse+7B5/eiPPV9LvjWg6z5yCouWv9Djh49xtnNzby5+VliM2fJYM4y+cBFq1hz2aVc+qEPwbY/yexduEQA9Ge+JB3UvlfELfHyL0g0gmWK6VnAlUj5XelRITcuB6+q5eYvfxmzkOcHC6airPg4vakMtaUlTFx8Ln/4w++ZMXWKm189HyObKkplNF/IlcIMUMiOUho7XcCuZeJY5n9TMqMHIuiuAYTj2C5QF1bJAbBtV1q+Q1zHTzA10wNRqThT1GInqNgOjAy5JmXno5SUYW36A87BN1BmzMVz8ceLNZbOqLvfmKS7pAxCYZx33oLyStSGJmm7kId0SnKyl38IsmmRgi/6IFRUoqDgDA3gpBIiH9c0GBmW/cfaDoWlBrymnqyi4vX5ME2Trq6uovnY0NAQqVSKWExMuUZHR9m1a1cxk7q6uhqfexxQlJHruo5pmjz//PMcOHCAWbNmsWrVqqIBWiwWY8uWLRw8eJAZM2awcuVKLMvC4/GQTCZpbW1l+fLlRbm4aWbwen3YtkEiMcqpp87m1Ve38uab3+eii37I5s2rSaUa+da3/sD3vrekmHFdWzuRr399CZ/5zH3E42PGZVMwzSzd3fuorZ2Dqup0de2lqWkxmzZdR2PjYhobF9Paup4lS+6mtHQKlpVl8+bVHDy4kVmzrnTrsG0KhTSaFoCCTmYgR7gmXJR2e3weDNeFGKDntR5i82N4vB5sw6ZzTyeRWIRQVYjnb3me5q82o4f1ogu4Htbxhr2YWRPbshk4OEDjokYKqQLesBcjLdnYml/D4/VguZm+nbs7iTZEibfH+e3Fv2XG5TO44IkLOJY9Rleii0WNiwAouDVN8VycimAFmqrR0t7CRzd+lEumXsKPV/2YnJkjpIfoTnXzfNvznFp+KrFojLU71nL7otvZ3bmbiaUTOTt2NolcgpBXfjdBPYiqqNiOTd7M84d3/sD+7v1864PfQlPlM71t2218ZeFXmFA6gb50H43hWoJ2FiXbLSB77gYZyLT/wTU4exCGX4WS00ErEYb6rbtg9nfc3GsNYahbYNenWbRhEl+45mo+t2qKMNAeP3rFdGqryqioqgFUyHby4lO3UTH9I5KR7djjdc9GGg58XRjxczdBzfmuzNs1LhuTY6saJI5ByRTX2KxzPPN6zABNcWWbhcQ4+B4zwykk3HZ0qVHODkKgUsC7bYzL4sby3YtmajFx4S4WuJpiLlaIS/350EEBvUZarsPMCSjv3SeycLsg9bmKKoA7PyosdKBKpOMf/IGw2nvX8b19dfxt3zs8+/RvID9CvOBl+UUfpkYbZNmHPsWa2+6WfQspkbqH6uHFL8L7fxRH8kAlACkjwJGjcdau3cGtty5kYCAtRmK6Si5ncccd3+Tw4dd57rlnufDC5dxww0186EOX0NLSTmVlkNJSP9XVomLJ5UxCISmZ2Lmzg4aGCDU1EY4fH2XChFJUVWHPnk5qakKcemoFvb0pUqkCEyeWYlk2b77Zx5ln1sl8iEeSDXQ/mI6FZVu83dtGTbgcvwueHcchU8hSHipFVRSyRp6H/vZrrj77Q5QGIrw3cJw5sakowJvd71HqjzCaS3JG/VT6UsPsOv4Wb/e0cft5n2Xzuy0snDCb3zzxS37559/yjR+tp/2lt9jV0sqT//oUHl3jvWOHOW3iKQAMZ+IEdT8B3UdQA9U8jKL4YPDecXl37WPCYlsjoPqFZVZLBEA7JvTdKEw1yO/ETsp2gP67oOYhd6JHpZib7WRAqwPHYGignWUrrwUMMPvIFKIcOdpFf88RVq76KPl8Esx+CtTx7jvv8vLu3aTLymiMRmkqKSFnWYzmckVZ+N9Xr+bw8DBVrtx7cVMTHkUhkc8T9fmwHAePomDZNtc99xwbDx7kylmzeOyii8iZJj5Nw7JthrNZMobB2pYW7l6yhIkl8pp2tLdTFQoxsaSEV3t6qAgGeWDXLn574YWoti3O3uvXw+23C/Pc3S2u3mOs786dMHeuRGu1t4scfGREgHNLi0i8582T7OqeHtnu84mBlabJcaWlckxpqZsTnZY66xNl548+KmZoqiqAvb1dHMoty1WzuB/ZidnVpzbB4Q6ppy6PCqN9uANOaRRQPZwQsHxK0zhw1nVxBw8HBZBrHhlrdfTC5JhIoP/RPM12jw0HKRo5WjaWRyFx7JiMPa+9lkxvL3+74QaaLryQs7/+dRSX9R544w0yPT00LFuGx2U5B15/HX9pKbnRUSrnzsUZK0WMRFB1Hds0TxrDqrrOvm9/e3zMW1PDwSeeYMa11+IrL+e1++9n+tVXkxseJtzUhN8tQ9B1D8rhgxCbNP7a/vQLOO8SGZ+OmeZ++ksCfkcGhJVWkM/w6Z/Cio+JqrK0UgzMfH7pb0cGRCn43G8FZJ8+T7Z1H4eS8nEZeUm57DfcD1ufFlbcfR+tQIBCLoXi0f7BLHchqYHjlNSdBkDvu69QOeVsjGySQmaUaO2pmPmMjHennI3q8aJquhiTaV4Uj45jm1Le6DiY+QyWmWPwyKv/bnys+0N49ACObeHRfVhGHo/Xh1XIo+sq6rZr4dBGzFM+zvkP9vKtb69l6dKl7Nu3j0suuYR9+/Zx8cUXs337dkpLS7n66quZO3fu/3NZOPxfl5n9T1n4/ymLojD985+n6cILRfL9+OMiB+/pkdk9l3XODQxIfbWui3mEC1LOvPNOJl58MTOvuw5V15lx7bU0P/QQ6e5u9n7jGwRramh+6KHidhQVVn6CH3/xaja8dohZ88/h0is+xU/uX0fsrR0i2247KDOEALWNYghx4WUCmD0ekW97PNLZnL0UPvZ56XAGusVkIp+TGT2vT2qp//X7wnJf/gV47wDpN/fxs9/+nrVzJqLs3wHP/5HaKadKB+Y4qKqHoaOvEiyrR1E1/NGqk1hoRfWIFKb2VArpUbrffrGYKziW5Te2X6g8hjdYguPY9LyzHUXVpMY2n8Y2CjhmgcxIN6pHo27mMhRVwxuIUu9mZTuWUcwJxHHIp0ZwTAOCIdRzL4BgECedRG0+z43hWoZjGFjPbhRHczfr2m55CbVpEgRD2M8/izJtBkokgrX5zziFHIquF3Oyx+qxhRl/GVypuZMSkzNry59RTGs8V7vlJZRgSFzLY00o/T34db3ITMdisaLcp6KigqamJlRVxbZtMpkMBw8eJJvNUldXV6zD3rZtG8lkkvnz55NMJmlvb0dRFFatWsXq1atZuXIlhUIB27aLNd1LliwpZlzLV1sGuIlEoihHHxkZ4bnnnkPTvIyOHnHrpfdQVlbK44//kXXrDnH++Rfj832MFStWMzIywvBwDclkN9/85odJJlOYZh07dqyjsXEhmhZ02enVhMO1OI7Dli03Eo02oKpeliy5mxkzPlmM29q5cz2OY+LxBFiy5B6uuGITK1c+gm2bDA0dZuvWNSQS7aiagjfkZei9ITp3d6LqKlbeoue1HtL9afSATqgqRNfeLkaPj9K5p5PY/Bhlk8rwhiSSa/f3dxOuCZMZyLD93u2oqoqZNckn8nhDXnEdV5DMa6D3zV4yQxk6d3dSSBVItCd47vrnCNeGibfHiS2IccWmK7johxdhqzZdiS4WxBZQsAq0drRi2ia6R6c6VM3uzt28P/Q+c2vn8vRlT/OVhV9hd+duwl4xQmsbbuOKmVewtGkpPo+PpU1L6U/3c+XsK5lXN49btt5CyBuiP93Pmq1rODx8mFQhRX+6H0VR+NSsT/HQiocYyg6xZusaupPdzI/NpyvZRUeig3u330vOzIpB2LvrhUV2GeiiwRlAoB5ev10YZWw49UYxKdt7PaSPCLAONsAFe2n96y/43Ok7XZbbD/5qjKF36TiwmTd+OIM3tv+KNw60UXHqBSJFd2xxHn91DeQG5bjpdwiwrlosfWExisutl7byAlyzwzIoU3UomSSPCm7O9THxkwA34kqVc9mWAFw95IJrdVx2HmkAlPG8bAf53zbl+HCd1HKfuNiGsNSt94rTd/1iAf2v3CbHBiokGivcKGDatoTN7tklYDzcALElImM/+065plQnnPkVfvbbZ7nmc58VMG/muPH6z3HPV2+n4rQl8prGMrBVDVq/LpMESzcIsPaXQXcrJDqwbVi7dgfPPHOIgYE0ixc3oWkqR4+OsG9fFzt2/IXrr/8Ctg2GYWEY8r7NnVvLqaeWU10dIp83yWZN3nyzj0Qij2U5LFgQIxjUsSybhoYolmWzZs1fqaoKUVLi5/jxOIcPD6NpKrt3d6KqCosWNaBpKoWCVTRDc3DoSQyy4eWnOK2qifJgCRXBUkJePwBhv0we5YwCIa+f2z54FYPpUQK6j9n1p1EwpY+bVXcKEX+QOfWn0Rnv50etTzO3fio3n3sluqoxt34qT+z+M7/8xZN86yv3MK9hOmvvv48b7liDgcWb3e8xpWkSpm3Smxjk8V1/Kk7u7u9qk7ppLQbVD8Okd6HmUVfCfYMAYhQB3la3fHkUDWp/KHFdikdk3WPbFRWqvwOYkGmR6C5rRBhs/RRhpq1eKpyHeWPPr3ij5QHe+FOOa68+n5UXLqO8VGfPrm280fIgb+zfyj333M70GTP4ZU8PteEwsWgUTVUJ6zolPh8PXnAB765eXZR9/2DPHubV1WG58XRRn49UoUBvKkWqUEBXVe5esoQrZ83i0ZUrsRwHw7ZZvXkz7YkEIa+XSW6udVM0SrJQQFEUGqJRHti1i55UisVNTTywaxcbDx7EGZNmh0Ii6X7oIQG3kyYJo9zSIuDqnHOEee7sFFfvwUE5ZmAAPvEJOdbjEfOzqiphoo8cgT17hK3MZGRdOg379wtDGolITfWYBP1rXxM5eF+fgK6qKmG/C4YA63xB6p3HzMWqy0XWrSgCnKtK5bdv2QKsx7KvSyMCwBVENh4JjQNrVZXnHlUM0RpqhN1+77g8jpmnjeVsR0LjjLaqCrlQMMj09jL96quLLuFNF17I6ddcIyWG7niybOpUYh/4AJneXvZ/+9uY2SxVc+YIsJ4zRz4Lx8FfUYFjWZi5HEPvvEPZtGmE6+vRgnK9YyWMFbNnF2O53v35z1FUtQisK2bPJlhTQ6a3l9zIiHjkNE4RFeUffirXfsUNkmKz8hPy/1Vflr54ZAAmTRey5/BB+c185GohgE6dKbXTiVEhiAZ7RfJdUg5XfBHmNctnoKqiuqyokfWRUhnTKoq0f+oMmZzIZsAXQEFFD0TRfKGTzHI1b5BgWawY5Rooq8PIJgmV11NSPw3bMk6I8NqH5g+O1567hI6qerCMPN1vvyjGr/lsMeZL8wYwsilC5TH0QAmOY2HbJpnRXmxbxq+2beDgwZl/F0y9nNeDH6O7p5elbgzd2WefTUNDA6+++io9PT3MnTuXiRMn8vTTT/Otb32Lu++++38Kzvw3l/9imdn/BNf/SRZV1wlWVzNr9WoUTSs6gFfOnl0E2u8++aSYSOj6SdnX/fv3kxse5ux77yUyaRKKx4OvvJzKOXOKxx584gmqzjiDYF0dHdu2yUmjpUy+5ku8/NwmDrz0PG/u3sXHFp45nvEXLoGtf2D7H37LpZd8CE45XTojTZeOCwWyOaiul87MH5BOZvPvx10VLVMkNqODUq8dLRXzsqOHaEukKS8rZd17/Zy17QBLfvZnXnx5u8w8qh6u/vy/sPIzt3PbNx6mp70NVfVQN+M8zEKu6NatuOzR0NFXT8oVHK8/WSAMv+PQfeAF6dRKa4t1Mf3vtWLk0yiaTrC0lsxID0Y2gWObpIe7MDKjpIe7UBSVmmlL0H0hFEXBKqRRFAV76zNYj63H3voMZLM4ibjUUJeWY7+4RdzBVY9EdM2Yi9p8Higq9rZNKA0TUHx+lGAY9fxVEqcAxX3x+cePW/xB8AdwCgXU2ATsXX8TQN11fHyfJctwMmnJ1wbU+iZsF9TW1NSQzWYJh8PYtk0+n+evf/0rpmmiaRpNTU2sXr2acDhMMplk69atJJNJGhoaSKfTVFRUUFpaSkNDA9lslkKhwMjISPF4RVHo7OzEtm1KSkpYtWoVJSUlKIpSNEmrq6srMuHRaJRFixahKDY7dqzl4MGNvPbaz2lv72TatFO5666pfPGLH+Czn72O555bw09/+iBPPrmL5ublvPzyThoaosRi81i8+A4MI0swWFFsZ+fO+8nnExw8uJGWlnXYdoHS0smk071s334vjY2LWb58A+l0P6aZpbR0IiUljTz33PXE48dJpXo4eHAjO3asxTIs8vE8retbqZ5VTfx4nC03biFUFSLRKa6cux7YJf93JMaB9rFRNl23CdWjsuKhFSfVTiuaQrI7yfDhYeLH43S0djDSNsKmazcx9N4Q1bOqSXQkCFYGycfztNwncvKd9+8UIG5DSUMJm1dvhjQsblxM3spj2RbNTc2EvWF2dezi8PBhZlXPoi/dh6qoNDc1M6F0AmfXnw1Ad7Kb6lA1e7v2kjWzqIrKpdMupT5Sz3WbrisC5Xg+zobWDSxuXEzYGybsDVPmL2M0N4plW2iqxvdav8fGgxt5aPdDfGLGJ1jctJiOeAfPHHqGbD6BkhuEGV+F2hXizj39K6BHhZlWA/DuBuh6RrZ5/BA5FXL9MP1Wqbf2VcHBdQKMM52yXi8DLSwmZf4a+b/rGQHxqibO4NVLx2ukq5eKIZqqQWQKlM2DgT3Sl4UbpC7Z4xPQrIdkEFB7tivLLUidtF0Q8GoVXNMyA+Jt8r/HyzgdhYAbKw+jR+T/0skii1eQc8aPuCZozngdtuqF0knjBmnxNnm+b73Uq+1bL0B8z1qpqx6TbBtpSHWMswJ773Prpvtg+xoYfV+uu+w0F3TNo3XnK4yMxrnY+28QP8rTz21H1UNcMq/ELUXRhA03MqAH4cyvuFnZYWGse/aJuZoeRPUoPPTQCo4c+RKLFzeSyxmuw3eEvr536ejoZfLkBaRSBXTdwze/+TXmz5/HDTd8jldeeYOWlnZUVcHv1zj77Hr6+lLs3t2JoijU1ITp709z223bsG2HdevOo7xcmO4JE0pYtKiRcNjLnDk1eL0apulgWQ533fUiHR0JslmTdEaMxD5z5ipC3gAAWSMPKOgezZV6D5ExsnSM9nHfi7+gMlRKzizwnW0/ZSA9St4yuP/FJwnoAsj7UsPsOvYmQ5k4Ad2HosCvXt2Mtz/P8MgIZy49hx+9/HtSIwnue/xhVp53Aas/fjWf/cZNDKZG6Uu5buSpEe5/8RfMqp3o1lpnRao9eK+4fhvtkkVtdIDil2isoYcAW0zKeq8Vd3FFlxrs5Ea3FjsosvKx2mp9AmiVkN0HxhFXxdE7Lh0PLID6p/nZv77MNR9JuwBek5rt4Qd48slf86mrruKRlSuZUFLC7s5OjoyMYNg26UKBoWyW77zyCo7j4NM0bj7nHHqSSW7YvJmjo6MoUJSBdyeT2MDk0lJ+tGoVHYkErR0deD0ebnGP87rmWK0dHdQ9+CC3PP88luPQmUhw68KFdCYSOI7DXc3NXD5jBo6m4Rw/Luzx4sWwYYOAa0URoFtdLfXS7e0CnhcvHncP7+2F5mZZv3OnrG9uhmh0vK3KSonxWr9e1vn94yZoPT0Cuisr4bHHBNC//778tbVJtFdHh4B7kHgtXYejXfL/qU3yeLhjvO/I5scl4B29EpmlawK4328XkGxasn4sAjUaFtB9pFNed8EYr+8ui0qNta6JiVkyPQ7a8wVhyT0qwZoa3n3ySYI1NXj8fs7+2tcINTTgWFZxPGmkUhipFO/+/OdUzp0Ltk12cJDK2bOx8nnyo6NC/Ng2w++8Q254mMqZM8mNjLDv298mcewYVj5PZMIE5n/jG3h8PubdeSernn2WM+++m9zwcBFYq5qGlcvh8fnwRsUkV8lmpLRw0lQhgn71A/EBipQIgaN6RP49ZYYA4N/8UJhuEOm4zy9ge7BXpOP7XpHHVFz2BVEkDHRLe0Ze1rvleOSyQj5NmgYLzhOA/penYLAX9f0DMkbMp/F4A9TPXIY3WIKiqEXwPHhkHyV1pxEoqcbIZ8Cx0bzBE5zEFwAKZj5D/3utWIUstlmg++2XAKiZ2iy12W5m9VjSjbSXxrFNPN7geM512/4iSYWiyETvwm/ROPVsenp6effA6/L1O3yYtrY2zjjjDPr6+jh27BjHjh3j4x//OF//+tdZu3bt/yyk+S+//BNc/ydZPLqOt7SUYE0NWiBAdPJkFnzrW3iCQWZed10xaksLBnFMs2h0dvCJJ/CVlXHw8cfBcfDoutSsgIB099gZ116L4pqb1S9dKp2ExyMAeszx+l+/D2WV8MW7hY0uMtXhcUfcsb+2d8VtEdvNqx6RG4KiwEWfECb7ok+6Rg9ZidxKjIqZ2XAffPpGzHCJGKrNO5P9hw7zg4e/zyc+cxV9P/4uL7+4jb07X+IvP/sOFZUVXL/mTtfYIUmooh7dF8LIJug68AJmPkXNtCUnmTkoqkZs1vl4dD/poW5wbGqmLUHVdErqReI31tGZ+TRGJkH3wZPNy+R5Cs0XEFmNpmPbFt1vv4jmlxvaOGhehpNJoZSU4SgyC6yu+BDKtJniGF5SJjLxsgocs4B64aWos87Ayeewe7sgk8La8me5UYQjsq/XW3yulFei+HwoXi9o42BdCUVA0/Gs+jhESlEbJqCUlqPYNo6qgKLQ1NRUBMAjIyN0dnbi9XpZsWKFy/BucZnhYUZHR0mlUhw8eJDdu3cza9YsGhoasG3bnTlVCYfDRUDu9XoxTbNYz+04Du3t7YDMtlpu2cLY/4qiYNs23d3dRCIyM9vcfBczZlzORRfdgaqqXHHFFTQ3f5WVK6+mvFzhlVeewXG28cILW2htfZmbb/4YyaTDGWcspL29hRdeuANV1ViyRNpZsuQe/P5S9/ndqKqOaeaK4Lu1dT26HkDTAjiOjeOMA/yWlnXEYvOLxyqag6/Ex6LbF6F61GLd9K4HdhFbEEP1qiy5ewnpgTSxBbEi0C7WV9/XIoYhx0bZfu92Ghc3ogd0Wte3yn73tZy0f+v6VvLxPLH5MTKDGXwlPpq/2syMy2ew5J4l5EZzjB4fZcc6iQd76daXUBWVvnQfX976Zd4beo9EPsGs6ln0pHpIFVI0NzUT0AJYtoVX9TKUHSJVSLGkaQkN0Qbm1MxhzdY1pI00uqqzrmXdSUC5JlTDoysf5WPTP4aDQ6qQYl/3PtJGmj1dezgyeoQNyzdw+YzL2bB8A33pPq7bdB0N0Qb+dPmfqInU4/iqIDRR2Odgkxu/lRUAbefF0Kz5T7J9cLeA2MqFUBiBqkUQnSbmZzgCinND4HdNVt66V4CCvwo+0i9maUZKtk34lJwj1QYTPwUVCyBxWJhwVYfqxS741mRWPdUp4BEEMDvWCXXVEwT4Kx6pqfZXnlBv7c7GK/9wS/XocpyiSjyXlT85pssSE8pxh3FDsq6tgvxlBwVkf+Bh+GIfLP+pvAfn/ximXymS7bZnBEzXzZfX0LMb5t8l15nqEifxdK9cQ/wwbPsCpLv52TP7uGpJJdrhp+nd+v9h78/D7KjKvW/8U8Meex7TSXc6I2EICSFK5ggqiEj0iEMr4iOoEFHwiCAgSQQ8koBBERQ8TIp6Ho+YiCKEBEQ0kE7ICJ2EDJ2kO0mPu6c9D7WHqvv3x6renYbznOd63/e63t9z3mNd1+6qWuteq2pX76pa33Xf9/f7fe77yVM88sgjSpbLGlGh6LXnK6+5pxSqzlLSXtk4/O2bUNIA2TCUNGC4j/5AQDF1798/QCKRIxAwee21P3L99V/mnHPqKSnx8PDDT3DxxQ/y6qs7WLJkKbfeeh319SXcdNMWurtjeL0GU6dWsnhxE4ODKRKJHKWlHh555KOUl/soL1fAemgoRT5vMzycJp3OU1Li5cSJEVpbu7Bth/vu+xC9vXG8XgOv6eHbF19DbWklXZEQ6//+a0bSMVK5DPe/9gxVgTIGkiOU+kr4xa4/80r7mzy963mS2TSvtL/JL3f9mWQ2zfkTZzCUjPAvf3mK+tJqfvvFtdSXVvMvf3mKnugg3774Gg6/tofpy+ayp/cwn5t7GTjC3PqZ/H3b6yz+xj+x5YkNrHv2Mc5vmMHiKXP51Z4XOX/iDLwGaHaf8i7ne10ZrgYILoOp70BQRQJRca3yaONR+dDVd8DgPWq/ZrUiNKtZo97NIw+7etZlgAbp3eCZqAC7RhE442kCzceONpNIuJ8VH29REmA4YE6kOzyH1m2tXH311XRGo9y0ZQt1JSV0x+PYIoQtix+8/DJ7vvc9lixYwMeWL+dTy5dzUXMzG/bs4dZf/pIPLl/OpUuXsuHrX+crd96JLUJHJEIyl6MrFqOupISbt2xhYlkZ8xoaGEqnSeZyLJ08mT+2tPDQRz6C5wzPdVN5OTnb5vXTp7n34ovRHAdt3ToVlr1+vfJOx+MK+JaWQjisQLEbvUWhMCaX1d+vvNuRiLKZOlUB4Y4OWL5chXg3Nyvv9IMPwqc/rX7wPp96T3d0KIBeWgrf+IbS1h4aUt7qpiYVoh4KKQAbT0JTg/IyT2tU/ZyZc50907Pssm+f1aykuJLpMRmubE55nt3IAMX8n1ch300TFMiuKFVe8eaJigDNdom4NBTAzubUuYwyjtsOh556it6//530wABi2wzv3086FMIpFJh9ww00f/SjeMrK8JSVMf+OO5jq5tOn+vvRDAMzEMBfU4NtWexduxZ/dTWZwUF008Q4gzdI03VS3d3svvde8qkU2XCYg489Rrq/H8PrxV9dzd777iPV318E1iMHDqiJhEAQPtoCF12sgPJMF0Qn4wrkDvVBb5dy7ozy/JgeNb564d/UunGaCumeeb6S7zrrfOUEuuq6ManZskrVbyY1BuT//efqGTz93LF873hYnYPpwZl+Lrl0lIFjO7DzGdKRfnJpRag7yu9TN3NhUUIrl4qStxShmbe0isa5H8EbVBOcdi5FfKCj6DQazeMOHX0DT6AURJg0+0N4fCWY/hLyVopcKqqIbjWN2hkXUchmmXj+h6lqOg/T40cXG+31b0M+SYM/wZM3nk9LSwsXzJ3LVVddxaOPPkpzc/P/Jfzyj+W9yz/A9f9Bi+Hx4CkpwfB4itumz0fZtGks/Jd/oWzaNEyfD93rLXq2Z69cSTYSUeHeXi92Pk+yu5t9DzxA4vRpghMmcOFtt5EOhYifPInh949JJsTCgKgHSFHz7/fqYVMzQXmqG5rUy2Ogd4xI4kyyskxKzRC6s3aYHqhvVJ7s+knqYe8LqJCZUZ3Al54Fx6G5aTK6rnNNfgCG+rnw/POYVh7k4N9epXlyE0MndpEe7uCmr9/A9u1vnsHUDWh6kXBs6MRuDNPrMopXKM9wIYegYcXDBKuUp1o3PGhoaJqudDpnLlREZlUT30VeNhHD9BXJIgrZDI6Td4F8mkBlA0MndivPeUU1+kc/qXSnJ01Gq6yG6Aj2S89BPIrmUfkxhIexN/0BImE006vSc1zgqdVPRBIJpXFdUaXCnpIJxT7pbovjINmsChMSQauswVjxWSTtXn9dQxvNN+8+BR6P0ktE5VNv2bKFfD6Px+MpMod3d3eTTqdpamoqymTFYjEaGxuZM2cOV1xxBTKqfekueZdsBMBxHBVyKcIbb7xBMpnE6/UyYcIECoVCUd6rUCgUw8nz+XwxRN0wIJUawOMp4corH2fGjPfxwQ9ezJ//vIGqqukMD+eJRISlS1cwa9ZKNM2gsnIq+/ZNZOHCOUyb1kx393aWLr0D0KisnM6KFU8SDNYSCrVxxRWPUlU1Hccp0Nu7i8WLbyuCb1334PWWEI/3YtvZccDc4wly+eUP0939Jul0GG+Zl+qZ1XhLvCxfvVwB3dXL8QSVTFesO6ZkugJmEWgvW+UC4lXL0QxtnFa2OMKyVcuKdmfaL71zKf4qP54SD83LmvGV+6iaXsWKJ1dQOa2SYF2QiikVY/bfXYojDve33s+GQxtYv2M98WycRC7BgsYFNJQ2kMwlOR4+ztc3f53TsdOcCJ/AEYfOaCe3vHILA6kBFjQu4P7W+/EYHlYtW1UEyqFkiBtfupFMIcNQeoh7tt5DX6KP8+vP5/7W+6kN1rJ2m5rNfuyKxyjxlLB221o2HNrAutZ1LGtehqFpaHZahXnn40pWqmsDpHuVdznrAsj65RCcosB0PqaeNzWLYWgnJE+pH6CTU97T+mWqPNMPc+5RBGl7b4JCws0vFTh0nyo3fAp4775REah5ypTudXZYyVAhKsx6lBAsUD8GuGHM862ZCmzHTqo2mjaW25xLQCE7FjKe6BmL7tEMN8faZQM3PAr0+mvVuUU71DpQT1FXO9mr1qPEaqAIz6LHFLAtWAp818+HT/xRkZhZUSW59eJn3EmCMuWR3/djN487qDSy2zeQbF3Phj+9xFfWPANXbWKf/5P09/Uyb94cpp51Ln94+U3+5aEnWf0vP1Jh6OIoL/qrK9V1algAex5QddEOnFwaxxE6OiLceONLNDSUUl7uY2QkynPPbeSSS64ilcozNJRixoypPPzwR9E0jf37p9DdfZrOzl6WLp1MXV0JiUSOXbt6KRQcqqsD+P0m9fWl6LpGMpkjFEpi20Imk2fXrl6qqvwEgyYej860aVUsXtzE7be/yshIhnnzGti5swePV8Pv8ZHMpvnVnhd5pf1NfnEGeP7N3pc4v2EGyWyKry78Jy4/ezE3LLqKUl+Qy89ezFcXfpJSX7AIhkfbVwXK+cWu58fAeDLJlj+/xPdvW8U7/R2cNXkapaWlfPlLX8LUDW77xFeZfv7ZnGWriaGg189XFv4Ti6fMJVfIQn4QzHoILgXrMBR61PtDDypCs4FvQP6k8m47McjsVL+vCS5hn/csaHhKeakLQzDhIeW9Dt2kvOLBRYq0LLAQMMZ0tUfWQaGXXzzxfb70P76MWfVpKPSpdpLnV39M89GPfYya2lrWbtvGhkOH+PGbb7KgsRFD0xhKpfjppz7FhtdeY/bdd/PsX//KpZ/5DJd+5CO0XHQRPb/9LbffeSev79zJP61fT/eWLfx91y7WtbZScBwWNjYWw7sNTRvn4bYKBRrLy9E1Dcu2iyRn61pb8RgG27u7ydm28lw//LCS3Hr4YXV/9vWN6VovXao+99yjwrxNc4w9fDSvOpVSnuvOzjFistJS5e2+/XYVFh4MqvvxBz/gn2+4gannn4+2YgVt27cr7/WGDRy/6y6W3H03sy68kIsWL+ZQJqM84ZrO8YF+llx+KbMWL+CipUs49LfXx7SsA74xz3JnjwLPoABxR7fSwPZ6VH52RakC2mcSmp3qG3s2nepTnumzmsfqEZc13FDrshLwuxODBXtcSmFwwgT23nef0ruuqsLw+TCCQd6/ejW6YeApKSEbizG8fz9mMEjdvHkUUilG2trUvE1JCe+76y48FRXUXXgh+XSaVG8vUz72Md5/990YXi/pgQFCO3ag6Tq6x1ME3oHaWsySEurf/34Mvx87l1P52jU1xVBp6icpUPvCv8GM8xS4PVN3evosde+Mpi0a5tgY9JWN6hp86iswMqD6GB5QTqA/PD2mZvOX55R32h8c07ouest/psbBo9JfM86DF/4N0WCoQ2lWj0pp5TNJ7EKWfCZF41ylfOMUcvQf3uoS66ZBU5JcIlIM/Tb9ZTTP/7jyTJu+oh726LgXTScTC7n/WqGQTY0xjKdjeIOVlNRMIp+JKUUdDUQzVVh4xVTYfT9XN+zk4IPz2b9nGwcPHuQLX/jCe7DJr371q/9n+db/DZd/gOv/AsuZoHt0v2zqVN6/Zg2m30/N3LmUTpmivNa53FgY+S9/qbyNPh8lkyZRMnEipt9P/NQp9bCORgBtfN70lVcr0rF/ewQG+9UsaCyiWBRte+zhNfrQcWfPmDkbXt6oZvz6u5UnPJ1UoU8V1Wqm8fLPjh0jm6XW1Pjw2dN55fk/weZnOXniGCfjKc69+ENEY/HiLN8fnvsz8+ZdUJzxc+w8mWhfERyPsic6jk02FSUTDRVn7oI1E8lbCfreeY28FcfwBtR2Jo43WEHjnMvQdGNcX5puKKbxygYQXPC9uxjOU1o3hbqZC3ByFpJKQDKO09eDNjrLbHrQF1+spLc0TT3EvT60yVNdlnBb6VG7+Zqa349WVo79101ILAKFPBIeVmFVhQLOG3+FWFTl+cSi2Jv+oEjNxEGfPEVJSZyxaPUNiF3ABgqFAtu2baO9vZ1EIkFJSQm6rhMKhWhqaqKqqoq5c+fS3NyMZVk0Njbi8Xi48sori8AZIJ1OF6W6sm5oWywWo6urC8MwWLRoETt37iyykPf396PrOsFgkFAoxJQpU/B4PFRVVTFhwgReeeUVNM3E5yvH769gy5ZvIuLw8MM/5LHHfsH8+Yv47Gc/z6OPPsKXvvQbHnrol8yY0ch5511AX98gv/rVv2MYHlaseILy8mZ6e3cVv7/XW8bkyYux7SybN38TEaGiYgp+fxUrVjxBRUUz+XwaXTeprJyC4xRIJEKsWPEElZXTitJgp079jYC3GjtrkxpKISJUTqtUQHd6JXbWZtsPtvG7Fb9jy81bkIKqb1rURNVMBYjNEpNsLFsEw8tWLUPTNTxBD6UTSqmcWknzsmaqZij76lnVeAIestEsmqFhRS0cxyHWFSMZShZJriqmVLDiiRWUnVWGIw6rl6+mZXYLdy69kwp/BVX+KvymH03TiGVjrN+xvgh4a4O1JHKJIghev2M9l02/jDXL12DqJlMqpvDkiicJeAJFL3YsGxsH4E3dZNXyVQynh1m9fDV9iT5uf/V2HMbOZfXy1aTyqTHCLgAcCEyA5haV7zzG2qXCne0UZAYUY7g1pLzatQshOBE0UaGvVkiB4qo5YPUrgH5onZvP3a9YyDP9av/QOgWsj/xYAfojDyq2cN2nvNmZfjeccqrSbzb87k2EOh+n4J6b68UGKG1QwHZUoktkPDv4qJdbMyiGiete1bevXJWXNSkPjOHl5e2HeP+ipcydN49Fi5ew/+hply1cA8PH317dglHRxMM/e/QMma0+Fe6d6lOe5pJJKge6pAHO+jSUNStAv1uBaXbfr851ocq1+31oARecN5Nzeh+GsiauvPJjDDxzKafuSHPq58v5zMcv4+7bbnDDAEVd79HQ9N33w5TLFOur2LB7HXY+SyKRK7J99/TE6eyM8tnP3stZZ83G72/AMDRisQzXXfdbTpwIu/dqO6ZZxhVXzGXp0snccssrDAykmDOnnl27eunrS3DjjS9x7NgImgYDAynuuWcrXV0x/H4PdXXK411TEywC+66uODffvIC1a7eh6xp1dSUUbCGTsyjxBopSXGeC5xsWXYXf9FEdrGBy5QS+d9n1BDw+3uh4i9WXfoXJFfWUeANMKK3m+oWf5PKzF3P9wk9i6gZfOQOMb37+Rc6fM4fSidVcPf+jHB08xWdaPsOfN73ISCqC3zZId4dZvmAJw8koj7zxO2qDFdSXVuE1A4hnEoRuVEDaPwfy/YCtgHQx5Pt+cKKgecGsU/uapu4ZDJWjnd4OZo36LRYZyPtVCLmkVb41jEl31awhmTbZ8PwevvKVaxUQH7kfAguQQj/P/PKnXHfdFzF0nVUuY/ia5csJmCa6prG0uZmAx1MEvj9+8022Pf88X/7yl3lyxQo8hkHXwABTKypYs2gRAZ+P2VOm8PTHP47PNPGZZpGJ3GMY4yS/vKZJdyxG3LKwCoViGPiq5cvx6Do//9jHmFldjWbbaKNh3gMD6v76yU/gAx+ASZPUfTo4qNi+161T45kZM5Tetc+nvNITJigQ3Nen7H78YwWw165Vcl19fUo3OxSCBQv4TChE69NPMyUYhPPPV/+Hlha+NjTEymuv5djPf86dX/4y133lK8qbret87RvfYOV1X+bYwXe487bbuO77axRYnt6kwHAy7eb5TlLgeTRnepRJvKMb8iq9qijr1dUPBUdt247aHy3P5lWIOah+s/kxea9ESh2jYIOhY2gapZMnUzd/PkeeeYazv/QldK+XfCaDOA7+6mryqRS6qeRBSxobqb3gArLRKCKCWVJC9dy5ZEZGyKdSaKaJt6yMobffxvD5qD7/fPUWyOWKYd8rXnoJcSfwJ192GRfeeSfJnh4OPvYYtfPn46usJBuJUHX22XjKy9FE1PhSRIHoUbBs22Pj2I99XtWnkkpC9vM3qu9+5jg3EFCh/UXH0rPKWXSGmg1XXq3Gxz2dahx75efHQHZxHHy2eka6ZdrJY9TNXEjz/I/jCZSSjoYIVjXgDZQTqKgr6l5rhoeaafMJn9pPsKYRxCEd6cUpKPmummnzGe7YQ0l1I7ruQTc8ePwl47zfdi6Dv7weTTco5DIEqyYycvJtNwTccFVtpBiB2X9oK7bj4FTMRAx/MfeahatVJFcuqd5t/1j+ny+jA+j/Sp/Gxkb577gUcjnJJZNSyOWK27lUSgq53Dib8NGjsu3WWyV89Kj0bN0q4aNHJXbqlGTCYYl2dEjP1q1ip1LidHWIPL5W5NRxkWRcZDgkEouIPPVDka9erurSSZFMWiSZEEklRE6fUOXdnSJWRiQyrOxPHhMJD6nP42tF+k6rT+dRkb5ukYN7RBIx1V8qKfLrR0ROHZeObX+XS2ZNk/PPniVzZ50lf/j1M9LxzgGZd8EFcv75s2X27PNkxYqPycE9r0s+m5ZCzpKut16SoZNvSTYdl0xiWHKZhBTyWSnkLLESYUlF+uT0vhclHRuUQs6S0/telAObfiSn970o+WxaDmz6kcRCnZLLJCSXSUg+Z0neSkk2HZNsOi7xgU7JZzNSyGcln01LNh2XdGxwXJ+5TEKy8RFxkgkptB8Su69bCu2HxEmnxI7HJP/cb8Xu7xHbssSOx8QeGhA7FlHb6ZSyTSbEzqTFsSyxhwaksPMNyf/pWVWWTomdiIsdi0hhV6vkn/utskvExYmExU4mxA71Sn7jb1Sf/e62e0wnkxYrk5Fjx45JNBqVeDwu8Xhc/vSnP0ksFpN0Oi2WZUkymZTh4WHJZDKSce1DoZBYliWJRELS6bSkUimxLEvi8bgMDQ1JPB4Xy7KKdX/+858lHo9LJpMp9plMJuXYsWOSTqclHo9Lb2+vPPfcc+PaWpYllpV0P3EJhfbLxo0t0t/fJu3tmyQU2i+WFZOhoaPS3r5JIpFTEov1yHPPXSOh0H7JZGKSTA5IOh0Wy4pLMjkkx45tllisR9LpsAwPH5Ndux6VWKxnXP+h0H5JJgelv3/seJYVE8uKSyYTFcuKi2UlJJUaEStlSTqSlnhfXNLhtGSiGclEM3Js8zGJ98Wl760+2diyUUIHQpIOp+XY5mPS39YvG1s2Sv/+fund2ytDR4ckE1Ht0pG0DLUPSTqcltRISqy4JcnBpAwfG5b+/f3y3DXPSawnJulwWqykJfHeuKSGU9K+qb3Yb+/eXon1xMSKWRK34rK/f79sPrZZIpmIJKyExKyYRNIRiVkxiVkx6Yv3yd7evdKysUX2h/bLpvZN0hfvk/2h/dKysUUOhA5I3IpLT6xHrnnuGtkf2i8JKyHHh49LW3+btGxseY/9QGJA9vbulSODRySSjshgclDiVlx6Y73SE+uRw4OHpS/eJ+F0WJxcQiQzKNKzSWR4n0guLpKNqvXwXpHt14ikelSZFRaJHRXJxkUyQyLx46o81SfS+7JIuE1kW4vIyNsi6QGRbEwklxDJhtX+9mtEfouyiR4WiRxQNqPt0n0i4f1qe3iXSM9mkXxapJATKeTdT04kPSKSTYrks2o9clQkm1D1dn78upATKWTVdt4aa5tLufXZM8oTaruQF8kmJdyxS6qrq+Wd/W0iuZS88fIfZfY5ZxXPJ3pyr1z0vvmy4qOXyk/uv1cktFdk5IjIiy0iP0Kt08MiA21qe3C/iBUXyUREIifU/ostIoMH1DlZUZFMWBYvvEh++a2LxvqId4kMvK22Q/vk2hUL5CfXz1P9WDGRRJ869mhfVlwkExZJR0QG2iR77BXp64vL3r290tKyUYaGUtLSslGgSS666BsyOJiUcDgtn/rUvwlMlIqKyXL22efJwoXL5fe/f02Gh0ft75WWlo1y+PCg7NrVM65srE+1H4lkivvvbj80lJIDB0ISDqelpWWj9AyE5a5NP5PD/Z0St1IymAhLPJOUeCYpsUxSuiL9cnTglCSslJwO98nh/k5JWCl5o+MtOTpwSm5/4WE5OnBKWjvfloH4iPTGBuWNjrcknknKcDIiCSslqWxG3r/gIvnpvz4q7W6b9sHT0t3XI5d+9CNy7nnnyjnnniMPPPSg7DjZJoOJsETTcUlYKYmmE2LnIyI9LSJHUGvrsEh+UCQfEcn1iWT2qvJMm0iuV5VZx9S+nXEHADGR+CaRzFsi8c0ihbiqt46M7zvXp2zyYZFCWKQQlaeffFSWLlkkUkiq/jNvi1hH5K/PXiyTJyKR5JC0Dw1JNJORcDotA4mEdEej8vLx4xJKJCRuWbI/FJKWjRvl1y++KPX19XL1hg3SFgrJ83//uzQ0NkqwpkZ8fr/84Kc/lWuee056YjEJp9OStCzpjcXk8OCgRNJpaevvl5aNG2V/KCQvHz8uffG4RDMZ6YnFZDCZlEgmI8eGh2V/f79E0mnpicXEjkZFWlpUbFdLi0g0KtLXJ/L222p/7161v2mTyP79IsePi7S1qf1YTJW92+7AAZFUStkdOTK+/8OHi+2nTJokb7/wgkg8LgPbtkmZzyf5I0dEhobE+exnZUJ1tRy/4goZ6OmVsrIyye8/KhJPipPLyYQJE+T4/oMiGUtkOKLWqbSIlVX7W/eIHO4QyedFstkxu2xOJJESOXRCrUftc3m1ncqoNvm8iOX2mcurTzY31tdo34mUFAaGJDU4KFYkIrlkUlIDA9LT2iqpwUGJdnSIFY1K+Ngx6dm6VTLhsFixmPS88YakBgYkFQpJtKNDtXnjDRk5ckRSg4Oy7dZbJdXfPzYuPXJEYqdOFcenmXBYrGhUtt9xhwy/847kkknp2bpVhg8cUHbt7dKzdatkYzFJDQ5KqrtLnMiwGmuePDY2hj11XI1fUwk1Zj11XNWdPCYyMqjqknGReFQkHhFJuOvRcXB3pxrPjm6nEiLplLKJR9XYNTKixsJntsmkVL/u2LiQSUk+Z/2H49F8zpJ0dEBO73tRUpGQGn9mM2Pjy2hIsum4az+gxqE5S/JuX/lsSvL5rOSzKYmFOtTY1O0vHRt06zKSt1T9WFlKTu97UYY690kqEiraO7mUeifkUme8K/ard9Y/lv90AXrkP8Gp//Bc/xdZ7Hy+SGIW7+wkF42y6+67Sb1LkszweCidPJmLvvc90qEQrd/+NoeefJJcLMbIgQN4ysqomTMHa2QYbXTG7uUNShswl1U5Kp/5Kjz0rJIySMRUuHdyNEyzHr74TSivUjlLv38Cdv5Nzdp5XcmCL34TKmqgqg7qJyrP6rSzYWQQfvOICsP59Jehoorp89/P398+yMG2t9m/Zzefbqph+owZ7H1zO9v/+gJt+/bw2Pe/jgzsUWzg+Sw1095Hae0UQkde5/jrvyITG8Ip5MhnU+imh0LWItbfTj6TwLHz40giNE1XoeDVkyhk0/Qf3kouFVVeYNOHphuYviB97/yVXDoKms7A0W14AuU0zrkUj0/JxeiGB483iBgG+pQZaFU1Ssc6nVIhTos+gCSTym+ViOFsfQWSCTSvF03Xlad6y58gFkEcG4lG0Oe+D+OKT4LIeM/23PkYV35KedgMAwxD6WC7DORkrTHG8B2vFymVdE2joaGBTCbDq6++iohw2WWXAdDb21tk+fZ6vWzevJlwOEx9fT2maRKNRnn55ZeJxWJkMpmiB7u1tRXTNCkUCnR3dxOPx7nkkktIpVJs2rSJkZGRIgP5hAlKFzqbzbJz504WLVqEaZpks1leeeUVcrkcIORycWw7Ny7vORisZdu2teRyKUpKJlBePpnBwXcwDC+LFn2b7dvXk0j0kkj0k04PE4l0FpnCAbq7dxAIVDF37hfRdc+4vOpt29ZiGB4SiV4OHdpAPN5DLpciEulk06aVjIwcI5eLYxgenHwBO2fjLfES746zaeUmwifCNFzQQC6Vo3JaJVc8egWxrhiRkxHq59Sz48EdNH+gmYrmCqqmV6EZGnbBRjM1IicjRDoiaIbKXwfQPTrB2iAl9SUs+vYikoNJenb24OQcvOVedFNnyvIp7Hx4J5OXTsZbosrEDdnvjndTE6xBQ+P4yHG2nd5G3smjoTGcHKbMW8asmlk8ueJJplRMYWHjQtpCbdQF63j48oepDdaSyqW48693sqBxAV7DiyDUldQxs2omT654kkw+Q3N5M0+seIJpVdMIJUOs37GevJPHwSnmcZu6yZ1/vZNXO18llo1RYngg2Ql7b1YeZKsfCklInVaeBbMEzv628lYPtaqw7QN3K4bwXAQKKdcT3Qc171ee6K4NcPh+FUpdSEG8XYV8WyHFPt7cArNXQbARAi4Db3AKLHhceawPrXW92D922cJN1xPt5kTHTrqEZh7l7RhlCjf8KC+2rcLYs3GKnvfYKZecDNVW05S3WmyXVTyvypO9rowXkOylo2eEmppqZp93DiR6WP7By+jqDfHWru0A3Lz6x6y5605qqqvVuVTOcrWsVyuPw4JVUMiMeah3rVXhwQgEG5SM2IceVezh0RMuOVueHf9+D1++89Exr8XwOxCcAJc9CSUT+dXXz+KWdb9Wns/0kJtzPUvV+2vg7/+siM50DSqm4528gPIyL7Nm1fDEEyuIxy1WrVpGS8tPePrpuwkGPXi9OvfccxktLT/lb3/bxdatO/nrX1+lpKSJZ599hzvuWEJLy2zWrFlOZaWfoaGU28ds7rxzKaapsXr18qKN16sX93VdK9quWrWcQMBk+vQqPB6dVauW4/eaXHfRx/F7vPzgL0/x6rGddEcH+MGrT9MTHcBjePjFrudxRAh4/JT6VATD+xrP4dd7XmRrx16GUxHmTpqFrun4DA/1JVUoQjQPuqYhIry29W98ouUqGsprWXPZ9QwkRvCVBfn5b57iiRd/y469u7j5Gzcxd+IsvIaHnF1g3V9/yUBiBE3zIMWc6TtBr1KkZJoBTgY8s5SGtWe68jw7SSWn5ZlGMQhRM5SXeuQB1/N9QoWBm41n5GOvVsRo+ZBiF0cDJ8kvfvkMX73248pLrpcVmct/8ccAX/7ceXjMEsrcfOXOSIRvvvwyA6kUSyZPJpRM8vWXXmJKRQX3Xnwxm3//e2oWL+Z3hw+zbts2fv3YY0z59KdJf/ObvLhtG+u+/32aXebwb27ZQtxlAs8UCliFAjOqqnj8yivpjcc5GYngiNCfVDwKhqYRSibZcuIE63fsQNd1htJpurNZZDTMe9UqFcIdCCh96tE87GhUhYDX1CivZTCoPNL5vPJOn2m3bJnKs85mYfp0mDhxLIx8zRqVSz1zpmIfNwyoroZcju5Uiol1dZhNTRAIoK1ZQ3NNDV1XXUX36VNMrKnFjCSgO4SmaTRPnkxXn0tAVlGqvNKjetYVpXDRbMUgbjvK69zZAz6XqC2bU3V+rwohLytR7XVd7Y8Sn6G5+tdqk4KtbEzDlfUCukM4wQDWyAj77r+ffDKJp6SEugsuwHDHLWgawbo6aufNIxeNYmez1M6di+lX90uqtxfdNKmdO5ejzzxDPpmk7sILMfx+DL+fc7/8ZdIDA3jLykiHQsW86nR/P7Xz5mENDyMiVJ17LseffRYzGKRk0iTq5s1T+daOg7+yQkmoWpa6BtfcDA2NUNugNKlHFW5e3jA+BNwwleJKOqkuQudRFZXp9SkS3bqJagz7uRuhtNyVRoyodqar7pDNwEhItfkf31Je8d89rkLKq+vVuZgG+UyM3oOvjmP0Hu7Y496iJsGqSYyc3IddyKJp2liKY8ceHDvnjl+T5K0EvQdfJZ+OYfiC2LksUsgBOv6yWpVqZyVdLewE2AUVqXkGfxCODbpJ3cyF7wor34WDAb4K/vmW25h6/mK0j2+g7XffUe9B4Pjx4yxZsoRZs2Zx0UUXcejQoSLWmDp1KmeffTbz5s1j3rx5/P73v//foJj/Xss/wPV/kcXJ59FMk7oLL+TIL39JLpGg6+WXeeeJJ3By48M4NF0HXadmzhyueP55FtxzD2VTp1I9ezaFUdbFqipkNERmlLSsqg6CJeDxqgeKXVAPkciQKj9xyJXaCsHvfq7A+JVnhNmYpgoPDw+psPKhfkV8NtCrwsVHWRk3P+s+6KJKAmGwT7EverzQeQTQwDTxBEqx89lxIdu66cUbLMf0lzJp9oeY8v5PEaxpRNN08mkVmvT6rgN88a5nWP6RT3L++efzy6cfp37WYi6+9GPMf/9FfOLLq5k3bz7Bygns2fF3hjv3YBeyIA523iJvpdyHVbJIhKbhEvjm1QBaxEHQIJ9DRoZwuk6qsKRgCU5fN5SVo5WVgV3A2bEVaX9HAWY0FUmaTCLt7+Bse02970pLcXpOq/+fCBIehnRKXf98HhkZxuk+pcJ8DAM5g4Ecnx99mUusdtkKJDqCvekPOCJ4PB5aW1tpbGxU+YBbtpBMJpk0aRKJRKIYvj0a1p3L5SgpKSmGkns8Hvx+P11dXUVJrlgsxpYtWygpKSEej+P1emltbeXQoUMkk0lisRivvPIKyWQScc/h0ksvRdd1XnrpJZLJZFHaC0DXTURsrrjiMa6+ehPLl68mnR5m+fLVeDxBNE0nkehlwoQLyGRGKCubxGWXPUihYFFaOpGSknoSiT7a219g+/YH0HWTCRMuIJ0ecY+vcuQuv/xh5sy5psgwPnnyEubMuYbm5mUYhhePJ8jixd8hnR7G4ylREy4eE7EFcWRc3jQalNSWoHt0MuEM0VNRUgMpvCVernj0Cs656hxip2K8dONL5FN5rKiFnbGpnl5N06Im8qk8m2/eTKQzgm7oKgLYY1Azq4bKKZVMuGACPTt7iJxQLOLRk1Eu/8nlTF46ma33bCUZSqKbOh7dw9LJS5lRNUNF9VQ0Mn/ifApOQQHk0jpi2RjHRo6xctNKumJd+E0/i5oWYeomQffalHnLePAyxQh+z9Z7OBk9iaZp5JwcjjhU+is5FTvFzZtvJpFNMLVqKk+ueJIZVTOKkluDqUGCniA/vPSHfPrcT1Phq8DARjsTzNYsgO4/QrobUqeUVJZuKtDtr4ND9yvbQ+vAWzEGpo+sV0Dv3DsUeD7vTgUk8jFV17VBgWbTD3PuVezh6IBAohOGt7tyV6ZiLW9ugfPXUNTDSva4udA9Z7CAn3Rltdxt2xrLo7Zzyj7WOcYcXgTOLvljrGOMuCzpclaUNrr1QPkUzjp3LiPDQ+zYvg28pbyw8d9IJBKc6hvkDxufRTcMPnHlRyC0G7bfDa9er0L3yqcpoBush+GDsGA1XLUJPvyY6nvrrWqyQArwt5vhTysUAJeCmiwoa4bMiCJGK5+mQsu9ZercPCVKbitQr4B1oFp9r2xcAepCGi7+kZI1e3UlxDvJOR46OqNcf/2LdHSE2bLlBH19CR5//EqmT6+iUHDI5x2mTavk8cevZNasaoJBD+l0gaamCt58s4dJk8p48skV1NQESKdzLFvWzMyZ1Tz55ApmzKhi165e6uqCPPnkCqZNq8JxhGnTKnn44csBYcaMKp54YgUlJSYnT0ZwHKFQcJgypZxA0KShrIa60iq+uvCT43Knf7XnRQxN54ZFV+HRDXymF7/Hz7/85Sm6Y4Pc+aHreO3GxxWwRsNrevCbPiZXNWAVsoykoiSzGWzHJmvnKfWpe0oDbnvhIZLZNKHECNWBct4JdWCLQypvcbD/OKZucMsHvoDXUFrumlGjZLg8M5S8liiiI8xa9+0uUAipXOzcMcUWnt4GuaMqdQEPRWIzrVSB8NRmCP0zmM2KCE0LQOEkBJeAXqlCyNHZ8cYLfPnaT1GcMJIchL7Ov//qPr7/4FY8uk2ZV+XnhpJJXmhvZ/2OHTgirGtt5bcHD9La1UU0HueFP/6RdbfdRsvs2aw85xxeeuEFnli1ipbZszn/7LNZtngx/v5+1u/YwYLGRvoSCd7q78fQNL71yiu0j4xgFQosbmriU+eeSyiZ5L433ijKOp6MRPj0uefysyuuQAN+tGMHQ/k8+WnTFFt3XZ2S1zKMMUB8551Kl9qyoK1NMYGPEp15vePtqqrU/ZpOwze/CceOqXu6thbuvVetMxn12b3bnbRyVF8iCriPkpxNm6akuiZOVJfWNFUYePNEFeYNCjh3dCsgPMrwPSqbNcrmrTEWBt4dUs8ij0eFdsNYmLfjqLDvXH6M2EzXVR53JqvCzB2X2OzY6bG+pzcBwlE3HNwMBkl0d7P7nntIh0IkTp8m3ddHNhYj3d/PgUcfxRoZwc7lGHr7bcxAgMqzz+atH/6QdCjEhd/5Dv6aGmovvJA9P/gBdiaDNTJCcMIEAGrmzuVrX/oSV/3sZ1Sfey7hiRNVnvcPfsCJjg5uefVVLli8mMXLl9P6pz/hr6vDsiz+6dOfZda8C7ngkg9y2ZdXcuJYO/T3KMbw8io1XgUFmP/5+3DlF5SSjWEoR08+D6eOqRzp6jolv+XYiheo8/CYfKxhqpxqw1AOpn9/TJGn1U1S4LvziJp4+cQXFQh3x2YIxTTCoRO7iso1Ded+gHwmxuCxHQSrGmk4ZzmG6UMc2x3LXlXMrX43F9BQx27EzmN4fWjupK/h8aGZXjyBUoY79+EJlKIZ5nv4g9KRfnLJCJ5gBYbH/550SoDPfOYztP7leabUB+H8G9TENfC1r32NlStXcuzYMe68806uu+66cVjj97//PW1tbbS1tfG5z33uP0Au/32Xf4Dr/wLLKEnZwcceo/bCC7nwO9/BW1ZWZBDX3RfeqG0ukSDV18fIoUOYgQBiF/CYBqbfh6+iAsdx0HVdkW/9j3+GCY3qhfA/f6Ye8uEh9aCKDCvAO2O26ry8Sj2EquvUg8vnU4D8E/9DPWyOHxyfl735WZh6tpod9gUUUdq3fqCAuJ1XzIyXf0blY5sedaN/8ZvqQZaz0HUPhi+Ix1/mkpWVk470I45NPh1TuSzVk8inY+5MnfIqf+naa3nmmV+wb99eXtq8he+suZ+MVWBH6zbe2reXfXt3873vrWb27PNYcf09TJzzYTw+lTtuevwEqyahmz6Vt6Lp6KZXEU6gBtaO2NhOHgcbPF60mlq08krXEx1Fa5yC5vGo66sb6Fd+GvOfV6M1TUFGhrA3bUQrK0f/7LXoyy9Vs6pl5Wj1k5DICPbmP6KVlCKJOJqmK1K0igr0pinKg2zbkLMUCdqVn0YzPVBRqbY9njGPtgi5XI4lS5YwY8YMduzYwaFDh9ixYweapikSkmnT6A6F0HWdSy+9FL/fj23bLFu2jM9+9rMUCoUikE4mk1RWVhaB9JtvvkljYyO6rhe1rRsbG4v1O3bsAGBwcHAcAN+xYweVlZUkk3EikU4sK0oy2c+WLTdRUdFEaWkDjY0LqKychuMU0DSd5ualpFKDDIc7KOgmpreM6uqZmKaPfD5NQ8M8brzxHT7+8acwzQA+XxmaZqLrHqLRDjZtWkk6PcSVV/4rVVUzGBg4AMAVVzxKPp8GoLR0IuXlk5k8eQnRaBenulrJalm0oEYulWPJHUuKrN3eMi+pkRS5eA5/lZ/zvzqfCR+ZgQRMdFPHW+ItSmi1rmslWBOkd4+S6HrpxpdI9CVoXNBI67pWxBFiXTF6d/eSS+ZwCg6egIfGBY3s+NEODm04xLZ129A0jR3rdxT7dAoODg6nYqf4xuZvcDp2mhKzhIHUALe8cgvHR46TzCXx6J5iznVXrIuOaAff3PJNPLqHvJ0nmUvSGenEa3iLdmu3rSVv54sM47qu0xvvZXHTYgZSA9zw4g2cCJ8ga2dZt21dMZ/bFpsKXwXhTJiDobfUJNT8h2HqNQrMah4YflOxdo+C7kPr1L41pDzOo57nfGz8vuaBwEQFngOT1DPJUzEGuEf799VBeB/EjyvgHqhXBGZvfVt5un0TVB/eajVAdfKK+Mt2177KMd1rcb3UZkDpT4utnlPeMrWfGVaA3Fc5BpxBtTcDygPgq1Q51pquvN/5lOsZECpK/fzhN49z16pVvO8DV/KX7W2cd+65JJNJ7rt/PY+sW62eD7Xnw9wblBfaW67Y0FMh8JSQm7CcpP8scjUXwd9vUV7qi38E4pCzDZLLniL3T6+QW/4zkvkScuKDiunQuIycbZDKmcQtk1w25xKlWYqQLZ9Qx/nbN9U5e4Lqe/sr1XXY86DrLV+HVTDo6Yty+10LGRhKcOml01i8uAmAWMwqalA7jqBpkEjk2L69m1AoQTBo8uijH6OszEeh4JBK5fH5TBxHSKfz7NzZg4iwaFETZWU+NE1j27bTnDwZLaa5d3ZG+epXX+TUqSibN5/gBz/YRi5nYxhKrtERIe8UEBGaKuqpLaks5k7fsOgqSrwBAh4fqZyFpmkEPX7e13QOw6kIOTtPJp8lm8+Rzls88NozdEUUiZCpG/TEBgmn4piGic/0YjsOP/r7b7AKOTZf/zPqS6uZN2kW5f4SZtU1kyvkKfH4mVU3hQf//huimSSG7k4EDd4KHZNUbjQFKHRD6OuAruSzQl9TgFvzK8A9ss5drwVxIyc0XYHzQpeS8wouhfp1IEnI7AYnAiMPqT41HwQWg16qJPEwVS43GmBAzXcUyM/sBidBIpcjnc+zvLmZ07fcwlMf/zgCPHz55VwzZw6Ty8t569VXmXvBBVy2YAEPX345hxMJ8Ho5sXcvj11xBblEgiNtbSydP5/Hr7yS6+bNo8LnY0FjIxPLynj0iiso9/mIu57JoMfDT3buZHFTEyLCYCrF0uZmfIbBju5uTkejPHrFFZxbUYHn1CkFcMvKFPv317+ugPYTT8BZZ6nr893vQmOjApx9fXD33co2GByz8/kUg7iIYvz+yU+UfTwOr76qwHl/P9xyi/KE67oC7XV1TJ4xg/6BAQrd3ZBKIa+/Tld3N81NTUye3ET/QIjCtEmQzSFth1Wd7hvLkS4rUeC7rGR87rSmK03s0fzsXAF6QsqLLYzJe422yeXHiM2yOQWy/6Mc7S6XWwfQ01nmfec76IZBZmiIw6729KEnn1SqNE89hbesrKhJffipp9B0HX91Nbu//30yQ0PUzJmj1GuAQirFkV/+cryyzVNPoZsmutfLl2+7jSeuu47JjY0YXi+HnnqKmjlzuOmWW/jchz7E7k2b+GRTE7f96EekQyHy6TRfuuoq2ndsY//ePfzTFZdz/c3/PJYD/fIGNV4d6ldguKoOqmrU2HagV41fa+oV03fnUeVxHg31Q1Rbu6CcQhmXL8R24K/Pw2VXgccHVhp+96+KbTwZg96TMHWWar/xF2iO8x4On8Y5l6IbnnHcPbrpRTM85LNJ+g79DU+gTEm96gaTZn8IO2edkV+9ABEhdPgNRXzmToBpImcA+d0gDrUzxkfx3RF2AAEAAElEQVRq9hx4hUI2pZw2jo3h8VM/azGmK0kI8IEPfpim8y9WEosVU8HwMjg4yN69e/niF78IwKc//Wm6u7s5ceLE/w6y/GMBtNFwz/9KS1NTk/S8Kxz6/8tLPpVi19130/XyyzR/9KMs/P730X0+nFwO3estEp2N2qYHBjj42GPMv/12vKUl6MkEkoijNzUr9mnULKumGxRQkBFAHEd5ve1CsT8dDScRQS+rwtHcGVCXsRpEhQAX3DAkTUfXlJddTydxXDCuo+EYBuKCehHFZqnbNk4hj256cOyCAvKaBnYBzTBduwIFK4HpL0Uc2yVpMHDsnAoNEmHo6A68VfVUNMzCcQo0NU3n97//d5YvX8rBgwf5xCc+Q3v7QbxeHyJKUuoTn/g0H/zgMq6/vgWfrwKvtxTQELHRNAMQZYtWnN0T20YzPIjkse08punDQMNAXG9UocgoLCkLrSQI2GPERlJw7Wz1osQAyauXnIOaLS1kFXGTAB6/ss1nQQw31AsFrnVTvSxxQFx2ZN2j+sPVeDQNTvWE8JRWUFZbi+44JDIZygIBpR0JpFzCi2Auh+b1ogO2ZeHx+chrGprjcGT/fvq7urjsyisRt51u2zi6jgfIFQpoponHcVTEmfs/1nQd9wzRbZsCEDp9mqrSUsrq6shr7rWz8ziFDFY2TmToCHV1sxHdwGsGKNg5DNOHoZk4ODjikC1k8RpeTN3AFgfdPYahqeNmUoN4/BX4zAAOQsHOUchncAoW/pJarNQwvmANhu5BUPkxmqahAdl8Cr+njIKogfievj0sbF6GpvtwBEyEvKMi7oyC4NgOdsCDaJDRNIIi6FYBTdewvQaGI4g7uDdsh2zOwWPqoGuIqaM7DlrWVrJbk8owsgXix0dIjFhMumQqGBqaI9i6hmkLDiCOqLYiaJpDsmCh5VMcCrWxdPIS8oUMHk1D070YCHkMkrkkVi5GTekk3ux5k8WN78ej6YTSI9T6K8mLg9/wkBeIpAepDk7A1ISB9AgNwRocNGwBjwah9Ah1gSq8uuH+jjXyTgFTM9BwQDMo2Dk0O4158HvI3HVo3qqirZK2UvdY0dOLRjE8RKm0jw16pPhn7B7CtdUMtx1jxmKr+84pKG+ebYGvfuz4A9sgdQwmflQxhzt5GHd+osCvFFRd/y7l6a2YrvrWTVWumePu+XHloDzXu9Yq4q+KaRQlvZycOu/4abd+tepbN8laGRomT+PeNXexbv2PCfgDoMHw8Aher4evf6SZe554FYsyDMmieQKkMwV27eqleXI5M5o0RPdiaz48us2Jk0l+uP5NHn30Crq64qxdu401a5YzfVoltqN+95ZVYO/ePubNa6DEm8fj9ZC3NQyPR6kPiIahgy5ZHCNIoSCYporAsXMpPB4PjuGhJznAL3Y9z/ULrqKpql5N7hVscHS8Xg1bRCk3Iupe1QRd0yjYDrt29DFn7gQMU/B6PXg9GnnbYWTIoqbOj2no6tXgqD40A3RNxxH1/NvR2kNXd4zPfu48DAMKOTANnVyhQCxiMWFiiYrk0QXHTuMz/Tjo6JpT/D1qqGgkK5/DsoWCo1MZ8GNqKj3Hylvoug+dgnoHiYYtefyGiaBTcETtmyaOaOqx7uTQdS+xTIzKQAWGLrzV28HciTPxGYKgI6Kha7Z62zoJGFxNrvYB8lQi7hvaEY963KsnLF5dw2u9Dp5JSqPaMxm8M8jlU+QKSbzeekjvxPKcj6H70PUgdr4frxnAS5KcVoflmBgaCAaOCLoGGhq2k8KvF0Avx3LAQMNGMNAwbRszn0czDDTHwdY0QpkMtV4vHq8X3XFY+uEP85XrruPzn/88fl0nA+x4/XVW3X03Bdsmn8/zlWuv5dabb0bcccCo5JS4z2EKBTBNbMchD/gBHAcxDFK2TYmuI45DVtcJ5XJUGAZVrlQkhYICurfcosK8W1rgX/9VkZndc89Y2eOPw403ju3feitUVKjw7u5uFR5+xx0q/LtQgJERFTp+xx0KgN9wg2If/+xnmfq+9/H8XXcx7wMfgHXruKSzk+u+8hWua27mDwcO8MCDD7L373+HKVO55CMf4brPf4HrbrieP/zhDzzw6E/Zu/UNBXxHJbNyBcUKns0p8Ns8cYzVW9S1oKNbgeNRsF2wlb3Pq9rMbIYTXWM2Z00BKzt2HI+p+mieqNplslBRSl5sdn3/+9RdeCG1bqTk7K99jXR/P8GGBsXenclw6KmnOP9rXyPY0MDu73+/OD6dc9NNOLkcvpoaIocPE2xo4NCTTzJ75UrSoRCBujr8NTVEjh2jdt48pFDgrHPPZcO//ztnT5pEOB7nguXL6dy5k+P/839yessW/vn0ad544w2mNTcjVoYgBbTNz7L3rAV85rqvcOqN1xTAvvJqBZ5/84gC2xd9QHmWv7dSebGbZyqm71c2Kikvf0BFYG5+FlpWKimvzc+quvJK2PCkIkGrrlNOp83PKmLejsOK2GyoT3m3//KcsistxzF0bI8X286iuxKNVnyIYHUj+UyMoRO7qZtxEaavBID+w1uJ9bdTMfFsGudcSt7Vto4PdNA8/+OUVE8CNPreeY2aafPx+EspZNMMdeym4dyLsfMWQyd2UTdzIQUrSTYVobRuCh5fKblMHF03cZy8Ou7MBei6h2Ov/9I93mVohomuq/tv6tSpPP/888ybN499+/bxhS98gfb29iIeWLBgAQ888AAf+tCHmDp1KuXl5YhIsbyuro7/Loumab0i0vS/qv+H5/q/wKJ7veO0rnWf7z0M4gBSKGCaBiX1dbzvru8SqKzAMD1IIoZWWor90nNIZFg9mFNJCkDBcXAch2w2y2ZX7ziZsYjEE5zu6SUnQqG0koKmIZpGLpejq7ubSCxGV08v4WiM0719RGJxXty0iXA0RkHTsQKljITDvLh5C5ZtE4lE2PTSS4QjEU53dZHL5QgnErz4l1cJJxI4podEMqmkmwTCkQjJVJxcLoHuDeA4Bbp73iQSOUk2G6OrezuFgprZrjt3KeUTZjAK9n/zm1/y+c9fw1lnzeaDH/wI118/C8gSiXSwadMNHDr0Jtu2tfK5z13FG2/cRyLRB2hu/UpyuQTRqJt/Gz5OLpcEXEAkNt3db5JI9INjY8Q60V69AS3WocK7c3G0/jfRgl5wLLS+nWhOHk0KatAQ60R7dSVa7CTgoNk5tHS3eiHmY2jJTrS/fR0t3QNiq3633gSaBenTaH9diZbqBs1Bix5TfcVPojlZiB1Hc8M0NbHQercxdVI1E6rLSRsGYpqY5eUkTZO4pnFC03gL8Gga4vXyDbfM9Ps5oWns0DRsw+C8Cy/ksk98grhp0q5prNQ0TpomWV2noGmkvV76dZ2YYVAwDOK6TsIwiGsa7ZrGDZpGp2GgmSYN06cTrK/nhNtPwi4Qz4RJ5FKE82nKJ8xF95aSA2yEk/EetnW1Es/Fi6HNtthkChnaR47R2tVKZ/QUKzet5ESkg3gugSdYg2Z4sBHiuQRv9u7G8JZge0vY3v0m/fkUK1+6kUQuQWekkxs23UBHpINELsnOvn2ciJwohlAvmrIcx/TTaeisNHVOGDrbvQbHTIOcz6Az6GGlrtGlaSSBnKaB3+SU16BV08gbOgld4yZDp9NjEC71YvtNUl6Dm3SNDtNAgh5CzRWs9Bh0lnipmDeRxg9PwzZVjlvC0OnXNOKGBqaO7TUI6Rq2oSOagXhLcYL1LJ16CV6gNBvCF96NV/IY2SF86VPUeAM0meC3U3yweSkBJ4vp5GkkhX/fTZRmQ3g0k0Cmm8bDd+PPdOHRdBpJYe65Ea+dxp/pwhzeTqMviC91Em33SrREB1o+gVcz0B0LzRpES3bi2ft1zFwY3vdTNG+lAp05Ny3CfZEDY0DZzo7pO6MrsFqw3LIsY6DcowCq4K5tt40wGlmCY0O8BzCVZ9vrsibnEqqvCcuV/nXOUl46b6X7oDXVuY0y/MdPw2s3QaBOeYPtjNKIjp5QxyxkVH+5uPp+TgH6dqj9Qkaxa09aqrwBuQS89g3Vtu9NZb9rLbRvoH/LGkh0gxXhB3ffyYcWzuZb/+MKBt58hlNH93Hq6H4+s2QSd91xJ999ahcj6QB9/SniGYOCrR7nS5c20zylEttTSUELYGUdokkIlnh55BEle9XQUMIHPtBMT0+cEx0Rtm3rorMzwre//QoXXNCA328yGBGOn0xxw9deJh7P0XEywQ0rN3OiM46tBzlxIsLKlZtUXWeUG77+N451pkhaWX6950XmNc6itqyCVC7DqUg/6/72C/JallTeYjgVwXKyvDNwnL7EIJFMjN7YIO8MHGfJ8kZKK0yORTsZTA+TzGU4GDpGIZDkQOgY6bzFqXA/bX3t9CWHXF3pASLpOA4Oyz7QRMvV59IXH+Bf/vIUg5khHN1GjAK1DUGSOYuUFcFrdxAYuRm90ImhOehOEj2zA91JoBX60J04QSNLhSdHhc+DR2LoTlyVm4LPOYl36Ot47FN4DZ2gdKMPrMSQJF4tRVBOoYdWYhZO4tNSBEduwuecZII/i9c5jWkPclHTDHxaCi10E3r+GIbE0QqDaJIlRzWp2scZyQXJOQ62GHRE09ywaRMnIlFi2Sx5RydV0Mj4PqhCvf3zwTOVnK3THsnxem8ByzY5as3hhs2tHA1niGZzhKwyLKkgLo2MZDXe7Okj52h0RiJs6+rCKtjkHIdvbNnKSC7A0XCMG17cREc0SrZgk8lk8MRiGNksemcn2rZtmIUCjbaN/+ab0Ts60AoFdvz613z16qsp7erCXLmS0q4uLl++nH3PPsv+bds4/Pe/851rr0UvFDBOnULLZhXTtwustXgcrb8fLR7H1HX8ySTasWNoK1eid3ZSquvogDE0RCCbZVogQHWhgN7aCsePK2BdUqJA8GiYt64rb/aqVWNlmja2v2oVDA8rG49nTP96/XoV4l1aOj4nWwRWr+Zr27fTdOGF9IRCXH7PPcxctgw2bOCJ2lqeeOYZZv3zP/PAgw/yTCSiGMozGZ7413/lid/8mlnz5/HAoz/lmbvvg1gSpkxSANpxwDTUnHk2p0K7szmVby2okO+hyJgXu3kipDLg8yDlpeDzImdNUc+0UZvJDQpYB3wwY7I7iQkya4o6ptcNL/ea6D4fs1euZOTgQQL19Vz0ve8htk3plCmUTZ6Mt7wcIxDg/WvW4K+rQzPNov717BtuIFhfj6+2FsPvp+7CCymdPJn3r1lDyaRJlDY3M/TWW7Q99BA1s2ejibD3vvuwwmHaf/MbfJWVDCQSTJo0iUI8zuwbbmDKFVcwdcYMevr7iRw9iq+8rMgX9MjqO/inj6+A6lrFFRQZBk0fS3m88moIlKjtaeeMl4R9eQOUVYxFWlqZse2XNygPtRuBKZo+VjfKJB4ogennKGA9GqnpCyBZi/4jWzn++q8IHXkdx84RrGwgHe7DG6ygftZiUuFeQkfeQETGcQKJ42CYXmqnX0T5hBl4AmU4doFCNk3tjIvwBiuwCzmGOpS3euDoNkxfkMY5l+INlGP6S0hH+tTEUyrC0IldmL7gOO+26QtQMfFsHnjyz0yfMQPDMHnrrX3FV/Lp06dZsmQJV111FadPnx6XZz26PPPMM5w+fZp/+Zd/4a233qK2tpZrr732/wa6+f/u8g9w/V9gMTweyqdOZcna+yifOnUcoAYFqiWbRUYGsV/ciC6Cz84ryaZYGL15OpKIq7zfeAxiUSQyggPE4/FiHuxoSG8wGCQej1NSUsKWLVuUFFAsxqZNm0ilUjQ3N1NSUkJjYyPbt2+npKSkGPK7bds2ALxeL16vl8mTJ5PNZov1o/0DbNu2rdhmNJfK4/FgGAZlZWWUlpZgmopEqFDIMnnyEjyeIF5vCWVlk+jr24vj2BQKWbq6WhkZOU46HeOBB9bz7LO/5dixgzzzzA944ol3GBkJ09q6jkOHNrB+/a189KOXUl/fwOLFt5JKDSJiF3NuNc0gHu9j8eLbSCaVrNdoaHE4fJz6+jnE490YOGjjiIREhX1OuAgtfhrttZugdg7Eu1Ruojho7oCaXWvRRqV+Et0KgOdiY3I3u9aiia3CS993mxp0jLbd+6AC6kVpnHWge9FcDVtt11r1wwjUob12E2b0ODk7R1bT8AIlmoYBTAQuAG4BTmsaC4D7gbym0a1pTAR2AgVNw9E0SjWNMuAOoB6wAUtTAUoa4HftylGZf0lgPbABWOvaiaaR0jTWahovAIadJ+hR4Un3vXEfA6kBMoUMb/W/RcGxKfOVUV9SX5STeqH9BYDifl1JXVEu6v7W+9E1HatgkSvkKDgFyrxlNJQ2cONLNzKQGmDJ5CX0Jfr4QPMH8Bre4rbf9KNrOg0lDQQ9QR694lEayhpA95DXNNa53+NBTeMDwAwUsU5Q0/gOEADSwLeBpKbRpGk0Ajvca/FDoF7TKAG+CfQBi4F+wHGvx+h1ymkqWqILyLi29wB9moYNdAOdqIe3o2m0AUOaRkH3oFFQOtI1C2BkF9hptHQXmuQh2YGmm+q3kwlBLozm5jRrR9YDgqZ7oW6pu+8U68nHVe60vw7tzDznw/erf36qU4VdmyUqd7puqbJJ9ypgO5rLK7YCyaN60bZLtqNpY3JWGqo+2TsWdj3qxbZdwO2cwTOhm6oPp6DArp09o5177FFCMdsl9SmGdPcqT7MxllqjvN1ZFdZ96i9KJ3riQuXBHr3XAQb2KO1o3aNyonMJmLhIhU8P7IHlD0Dj0jHJrIYFSsYqUAuhPXDJw/DlI9z9tzLOWfxxZl6wlNM9IX7x1JOQ6lWg/rWbINFNoX4hgyN5MpkCjhvC6TiuJqrtMDCQRNc1stkCg4MpNE0r6kP39MRpbVU681/4whyWLWtm3bpW6upKWLeulQULGhkYSDA8nKa2toQpUyq5447FBAIe1q1rZcOGQ6xb14ptS3E/Fsuydu22Yl3A6+W7H/oyV5yzFJ/hxWOYjKRjvHlqP37TWwyfHk5GmVE7mYFkmKpAOX6Pl5m1k+mKhPjBX56ipqSSgeQIXtPD7IYZ/GrPi8ysnVzUp64KlI3Tla4MlLG/7xinwyGyhRwj6WixTtM0BhJhfvCXpzA1m/rSMjTNC4GlMPKgirLQg0rz2e6D4fvc31MQwyjDa4Cml6qwaAA7gnaGLrQmWSVXldgATgxtnFzWOjTNA4GlaCMPglmHZk4ASaGFVqLZ/VD9bdBK1DlIhlw+ztFwlO5EAkPT6IrFSOfzrHN1pe9vbUV335Migi0a8YKfnKNCuXOORl/SUuHTUNSjXr9jB1HLoiYYJJHL0ZdMIsBFkyZRcBy643HqSkq4acsWumIxvr1oEV7DKLZfu20bXsPAL4LuuKSa3d0q3PrGG9H6+mDBArSuLjh9Gu65B+30aRVm/cILqryrS3mNT59WJGOJhOpnyhQVgu2mO2mgwq1HtakLBbRYbAzsrl2Lls0qABoMokUicOIE2qgmdX8/xGKqftIklR89aZLKc66oUNJb//qvMHWqAtH19fD976vzWLZMgWhdH09cNrqMlq1erWxmzOCJp5+m5+23KezZw8C//RsnWluhpYWzf/hD3ty6lWP797P3739nziiAb3ubWVOa2bFnN+8cOMq2N3Zz/ocvhrjiJxE0HN3ERkVGiM+r9K+9HsQ0EE1Dmie6QNgDMyYjPi/5YBkOOr39GoePamTzGraVh1wemTUF8XpUP7ajCM+6Q0i+gKAhtgNeE5onImjoukFZczPzv/td7HSa9MAAh59+GnG5fUy/H391Nabfj26aaJqGr6aGOTfdhL+mBk3X8ZaWouu6SlkUwTRMRcLq5mef99WvYroRdLNXrsQMBJj+yU8SbW8nH4+jezzUv+99lDU3s+Dee9FdQrVgfT1DBw4iV3yOdcMOJ3Kw7t57IDwMf/gFUlWLiJDWTHJXfQW7qg7xB5EvfQvxeJEzJGHlyqsRwyzKc0mgBHE5hOTKqxEXlIsrxzUK2OXKq6GyFvH5EY9vrPxjn0cMA80XoG40NHvGRRimDzufxRMoVYFVjkM60kftjIuw4sN4/CVMPO8SPP4yNN1AN7z4SquKqZBOIY/h9eMNVoBuYJhe6maocPHa6e8DETVXooHHV0rjnMvw+MsIn2pTedUwTr4LTadxzqV84opL+cXaG2iaWI/YdvFnft9997Fy5Ur27t2LrutF0CwidHV1oes6Tz31FIsWLQLA4/Fwyy23FMf+/1jU8o+w8P9DFykU3PBfXeki53I4r25CX3oJWk09mmm6NgX10MtaOFtfQQ61Ydx0Z3Fbmz0P/eKPKLt4DL2xGaevG2mcQg7YvHkz7e3tfPazn6WpqQnbtvH5fOTzebZs2cKhQ4e46aabeOONN2hqamLOnDkA9PT0UF5eTnl5efGce3p6CAaD+P1+8vk8ra2tLFmyhKqqKmKxGK2trSxfvpxYLEZzczPhcJgdO3awdOlSampqcByHaDRKa2srl19+Kel0F7FYN+XlTbS2rmPJkjsoK5uE11tKd/cOJk9egm1n6e3dQ339HHTd4O23D/DVr36DgwffAiAaPcmyZR/ixz/+OYsWzSYaPc1HP3ozjzzyIwqF51my5HZKSup55ZVbWLZsFfF4DxMnzieVGqS1dR3Llt1FVdUMXnzxeg4d2sDs2S1cfPG9BIN1mLqBN9mlQO3C1Wownregcpoa2J/6C0z9qAoPrZ2jCJrinbBrnWL5DbqhqpquBvf5tBqE71kPC76r8j+TfbD3QfjQz5R3a9daNSiHMduFaxSRkxVRQGDhaqXb++oNCgyc3ULhsqe4xlfOKmA6CpytQwHl7cBu4MeoqHMfkAV2AZOAB1y7SW697tZNBGYCx4EQ0HRGn5NQoXydKIC9BpiMAoulwEmgu5CjaeQo67at5Y4ld7C9ezvbu7fz8OUP0xPvYTA1yMKmhTjiYDs2fYk+QskQ8yfOxxGHUDJEKBmiqbyJda3rWLVsFTOqZpB38hScArt7d7OwcSG7endRV1LHUGqIGVUzyNpZaoO13PnXO3n0ikcpOAV29e5icvlkplROIZ1PE8/GmVQ2CfGWMqBpVAJ7gUWoSYU9wFwgCOTda+IAlnuNPMBo5qK43/t2FPje7n5+6l63njOu3RpgmtuuFbjIvdadwIeBRrd8DjCIAucLgChQJUK5U8Cbjylg7a8Ha1DlM+ei6jcymnPsZCCtIjZofwje9zMFQu20YtTWUF5dsZX2tO6HdI+aPDJLFXv3kfUwezWUzYCdX1GAutYF1efeofSkQeVAj87jiq08wqWTlIfXV6lYtXG/tGO7+b0lChAne1W+suFzvcXWGBv3KGFZLqHuH92j2nrLFNHYaDsRxdhdOlGd/2iedbJH2ZgBNyQc5XEOH1MTVgtWKaBcyCjSr/hJdf+9/zuQHoS6uWCF1f188Y8VWN99v7r/Am543NZbivcgi+9VwD3RA3UXQmZwzN4MKqKwXWthwV0qTNy9f3P/9ApW/cX09SVobCzj2LER1q/fwR13LOHss2s4dmyE/v4kCxc24jjuK8NdBwImiUSOQsHhe9/7O+vWfZhg0EMymcOyClRXB/B4dAoFIZPJs2rVa6xb92ECAQ8gnDwZoa9P9R0ImBw/HuH++1t5+OHLGRpKF8PMJzWVMJIfYSAZZkJpNU/vep6vLvwnAh4f2XyewVSYuZNm4TgOpm7QGxvi6V1/4oaFV9FQXsNwKsqbpw/wTn8Ht3/wS7wT6mB+4zmkcpni+2U4FWUkHaO+tFqFny/8pAvSy4hkEjRV1FNTUsF9r/6CGxZdRVWgnPV//zWvtL/Jmzc/RpAelaNccyeY093fkKHu6MIgpF6D4EUKINfcpfKW8ydVPnPNHSr9xpygWLqNeqCg0nAG74D69eoHbPe57dcoW3GfDpqBaD600EoFvhs3gafJPZ/VoAVISj2vdw0wp76eqkCA3kSC+mCQrnic+1tbWbVsGdMqKzF0ncFkkppgkFQ+D0BNQE1Q5mybRC6nGLVTKdZu28adS5cyqbSUgMdDMpcjkctR5vVS6vXS2tXFgsZGbt6yhQ2HDtEyezaPXnEFUctSwL61ldXLlzO9spJgLocej7vkWCXwrW/BhRfCRz6iCMAMQ4ViL1igyiZOhB074KKL4KabxsKvn3xS9VEoKMKwO++E73xHgWNdh7feghUrlO3TT0MyqYD2+vUK2AYCKnTbthUR2fbt8JnPwCc+AY89poC0x1ME7AwNQSqlPMerVikysjvvhEcfVYRk0ag6fxF1/g89pM4jGlXa111d8OCD8LOfqXPevVvpYQ8MqO+6dy8sWaJ+pKO519Go+j5vvgmdnfDhD0NTE042RyRfyu63vbz//WoeYGKDg98r5G2N62/QWbAAPv1pFcVeV2PTOEmd2tY3NGrrdGZMc/CYUvyK+YLG0IiOz6cu07p18PDD4DEcMmkhWKpRWgL5nBAMqp+9Y8ORdo3+AZ35FzqUlQimm82iOwXIFbARHI3iWFN3HR9Y7wpVt3LY6TRO0I+uGxin+5Wn3O9V4e2GrgB9Nocd8OJYWXS/HwMNCja2lWHGRe/jDxs2cMHs2QxHIpw9ezbh/hCmI0hXPxM/tJTWTVuYNnc2di7Hj374AM9t2sQrm16iqqYaHShk0hRsB93nJ93Xx6GnnmL+nXeSjUQ48stfMu+22/CVlbrZdA7pSFR54Q0d27KwRcMTDKCJQz6bI3z4MMGKCtKRCNUXzENyWZxUCm91DXY6ST6bJ5/NYoX6qZ87F/F4ySUSBCrK1SSI+3oin1MKL9kseiKOExtBzjpv7J1j21DIozkO+oanVG53zQQ4eRRnyllINoNWWoHuCE4mgVTWuO9SKaYsEgur8HRNQ3NQnDxWCu3Ifjj3AqSqdmwCy7KwfR7y2TTDnXtYftU3+MOGZ3nfRQuZOnUaIyMjxGIxTNPkkksu4e2332bfvn20tbXxwAMPUFlZyb333st3v/tdvvOd7/DJT36Shx56iOeff5433niD/y7LP8LC/wsuUiggI4M4pzuK3mgSMbTGyTjbXgPbVjaZNJKIq8FiLoe+5BLFHu31jbFHL/0g0nkMp/Vv6M3TwPSgN0/D1jR6enpYvHgxn/3sZykvL2fz5s2kUik1ADLNIkmVz+fjsssu45xzziESifDSSy9RWlpalGQaLSsvL8fv9xMIBMaRV2maRlVVFVdeeSXBYJDq6mo0TaOsrIzLL7+c6upqFY6eTBbbgc22bWspKakrepx37FiPZUURcVzSqZNs3nwT9fVzyGSGeeWVW6iq8hAKDdLerkgXuruHGR62qazMUlk5jYMH+0kkhpg/fwqNjQtobV2HZUXHSUBls7HiMVtb70fEZvnyVcye3cLSpXfi91fh8QSUx6xiJnLpE2oQbgagbJIa7O/+IZz1aSiZAJNcJt58EsqmwAcfhvJm9WD0lChgMOopq5ylGHxTIVW/e53yeMVOQqofPvILdax8CgbeVkC7YpqSyrEiY+y/yJhcz8JVOJrBBhSAy7vrDcBPgM8BP0OBw32qJV5gOQpwb0ABZB0F5m4C6oABFB4qQXnAHzzDNgaYKPD9NNCM8uy2oQDodGCZnWPdtrVsOLSB9TvWc9n0y1izfA0l3hIGU4PUldRx0+abCCVDlHvLOav6LJZMXsLtr97O80efp6m8iWXNy5hRNYMnVzzJxNKJ2GLTFevi5i03U1dSh4NDU3kTP37zxzSWN5LKp1jXuo54Ns6CxgWcjp3mpi03UVdSR3e8G13T6Uv0cffWu+mMdKIjpIGbURMGlvv95wBDwI3uNYmiQLcHKEN5sjuBlcAp99oucK/NZSgQ7Xf/D59BgfTHgWq3zw4UeP86MA9YivJed7rbXtTkxmIgjJqwiGoaWWzYe5Mre+UCa1BAV/ep/6IU1G8RDUqnw0WPj3mLR/kDrBHIx5WM1r5blERWoEF5jiNtUDYT3v8oZHoVYJy9Gho+MubRPrIePOXur0YfC5/WdCifon7zwXoFrEclsLJueLVtqXMx/W4uss9Fi54x0J1LqnN18oq1286pNt4yNYionKH6jrre8dIGBdTBbeNVfRv+sUEOKNvRaJTd69Q5lk+F/h0KMF/2hDr/+vnqfNxoEfJJBZRHPdueoLonz7gHKZ2kQHTDAvCWjLcPVBfDxNl9v3qmu23zE5aTSuWoqPDhOML69TvYsOEQ69fvwLaF/v4kdXUl3HTTFvr7E0QiFv39CXbt6uXEiQjf+tYrDAykuPnmBfT1JVi5chOappFK5bnxxpc4cSLCm292IwLr11+G4wg337yZjo4I9fWlNDWVc9NNW+joiDJzZhX33nsxPp/JtGmVPPHEChoaSvEFdQaSYWY3zOBp17P8i11/pipQTig5wszayXRHQqz96y/oiw/h93i49qIV1JRWUHBsemKDXDjpHG69+BoS2TS3vfAQViGL3+Pj2NBpbHGYWj2JeZNmMamiju9ddj2TKuqYVddMQ1ktFzaeTYk3gKEZrLnsepoqJgDCdRd9nCvPXYbfNBWQTWyA/ABIxs2pT0DoJpA0VFyt5Kmqb4N8r7qjR9a6nuj1CgzbwzD8A0UeJgV1D034sWLwxgFzsiuXNRXshPJK66VgJ5RXtv5hKLsOgstB80P1HaD5wGzAcCI0lZdzcHCQk5EIJyMRDF1nZlUVD19+OVMqKlTygwhVgQAd4TBv9ffj0XXyrudJgFAiQTybZVplJU+uWMFZ1dWU+3zomsZAMklHOIzPMDA0jfkTJxKzLFYvX86mq6/msY99jKhlEbcsgh4P/3rllUwuL+fWV15R5x8KKQB68qQi+Vq6VHmZBwaUB3r9+rGykyeVNzgahdtuG/P6mqaqu/FG1d+CBUouKx4fk8ratEkB5VxOeZObmlTfvb1jQH5gQAHrhQvhwAHlZXZzt8nl4PXXFTN0dbUCxxs2KORZUqL6zmQU6K6thbffVu2efFLV33ILnHeeYgqfOlUxkI8uS5Yoia7585XtsmVuKok7q7V7N0Qi8LWvKa/51KnqfDIZ0mYFtu5l8WL1VTMZcEQnmTHIF3TuuEM113VFMl5RZRBPGWz5i8GVK3TWroVkWmdwxGD/OwZXf9HgncOKj8DjUZfpRz9Sl8NBJ1BqEI7oDI3onDhp0HHK4OBhgy98ySCbV0B+5y6d/e8YvPLX0XQdDXJ5DNHwdA1gFhw82QJGruDKgeVgJKrWANkcRvtpPLqBkcnCtEblCbcddT0MXQHt8lIM04On1E1nNA3oCWG0nwZNw9R1PNkCEyurmX/hhfzPZ38HAR/PHdxHU1MTM+fNxdB0fvroo/xh00ts/vMLBD0edt37fSKnu+jc/DL7HvghmqZR6nq8zWCQQ08+Sc2cOSBCtPMk21d/j2h3L2ZZueISQUc8PtB1bNvBRsfO5fFWVnHwmV/hr5+ABuy9/wFevOpTDLz1FvgCeKuraf/Vr4if7iI5ElaT6OEwqaEhNBGMUB/GMw9hhIcxREP/46+gqha9eSbG0YMYvacx2g9gaDqGbqIbpsr7rp2o0pLOmoMughEoVREjhRx6SQVGNouRSqrPrx7G6O/B8PgwUimMZAI9k0TXdYxUCr2yGt2yMH7xI4xQL0Yuh/6HpzH2bMNXUknjnEtBhPt+8AOam6fQ19dHNpvlnHPOAeCJJ57Atm0uueQSHnjgAS6++GKWLl3KpEmT2L9/P7fccgtz5szh9ddf5ze/+Q3/WM5Y/jMR7P9TP42Njf+XxL7/T1mcfF4cyxInn//P7SxL8ht/I3ZPlxTaD4ndc1qtB0Nih/rEKah+7N4uZdfbJXYiLnY8Jk4mI3Y6JU46JU4mLXY6JfbQgNjxqCrPpMXJZMRKxKW/v1/a29slk8nIxo0b5d5775WNGzdKKpWSUCgk7e3tkkwmJZ1OSyaTkaGhoXF2/6uydDot/f39snHjRunr65N4PC7pdFr+9Kc/SSwWk3Q6LZZliWVZ0t/fX+xj586d0tvb6/YTl97evdLevkn6+9tk48YW6evbJ/F4n8Tj/RKP98nGjS1y773I0NCR4vbGjS3yq189JeecM1OmTKmQc86ZKT/60Xekv79NLCshS5c2y8UXK7vBwcMSCh0o9hUKtUl7+yaJx/skFNrvlu0Xy0q4x+2TTCYqlhWX4eETkrcS4iT6RayYiBUVseIir9wgEtor0r9PJN4jMnJUlaeGRDo2iQy0iaRH3LojIok+1TYTUXZWXNmlh0SycZHBNmX30jWqTbGf/SKpAdV+tJ9sQmRwv7JN9Iqkh0XiXSKdmyVvxaRFRA6ISExE9otIi4j0nbHdIyK9IrLX3d/v1reIyD4RCbvbuOsz+3n7XbaRM+raRGST2/9bZ5Qdy2dlf2i/tGxskf2h/RJJRySWiUnCSshQakhaNrYI9yItG1sknA5LzIpJ3IoX27SF2iSZTcrmY5ulL94nkXREopnouHaRTGTc/pGhI7I/tF/64n1yZOjIuLqh5JDEMrHx7e3CuO982N0+8q5rEXWvQYt7/frc73xmu8NnXP+YiMTd69AiIkP/QZ//q2ONttv0rmPGHEeyiVMiv0VkW4tIZkgkFxdJD4iE94v0bBIJv63qwm+rfWtYJNzmlrWpsuG9Iqle1W5by1h/2cj4/ehhkeHdIr2bRbJRkXTojL72q2MP7xUpZNVvPht310l1X2QTInlLfc6sL+RV2Ui7si3kRey8WhfyIoWcW39MrQvZsTaFvEg+q+zzWdVnLqXKc25fiT7Vdy4lYhfGP3zzaXWPvtii7r1sQqRzs0i8W91PmYg69+L95tom+tS992KLWne+PGaTCat79aVrRH6Esskmxh/HiqvnxostIqF9IqG31P2eHpZEwpK2tn7ZvPmYxOOW7N8fkpaWjbJ/f0iSyawMDSWlpWWjwL3S0rJRBgbU/q5dPePKh4ZSxf0jR4bG1Z06FZG9e3ulpWWj7NvXK3v39sqRI0MSi1lyzTXPFe2i0Yzs3x+SSCQtbW390tKyUdra+iWVzUj7wCkZSUWlfeCU3P7Cw9I+cEqSVlrCqZicHO6RNzrekoN9x+V0uE+ODZyW2194WI4OnCqWv9HxliSslBwf7JLbX3hYhhJhSVrpok37wGk5He6TcComb3S8JccGTstAfEQda/CUpKy0hOLDxX66w32SymYkZaUlkhoWJ7NfpKdFpBATyexV25m9IiOPuOVxkUybW94mkh8QSe9y9w+IFKIiPdeIpPeK5AdF4ptEMvtUf9YRZTfyiOozvmmsr1zPGf3uFykk1LqnRSTztmu7XxJWUlo2bpRdPT2yqb1d3u7rk03t7TKYTErMsqStv19aNm6Utv5+iaTTcnx4WHb19Mg1zz0nffG4xDIZiVuWdAwPSzidlphlSTSTkaRlyV87OmQwmZRN7e2yq6dH9RMKSTidlmgmI9FMRobc+v39/TKQTBaPt7e3Vx7ZuVMK0ahIS4uiM21pEXn3/tDQe8vCYZG+PpFNm1R9PC4SiYy3OXxYpK1NpLdX2cbjar+lRa0TibH9/ftV+6NHVZ+7do3Z7d0rcs016piDg+Pr+vpUXV+fqt+0SWTfPpFTp957Lo88ovoaPd6Z57N/v+rjP6praxM5cUJ9z3dfp02bRB5/XFLxvLS1OdLSIvL22yLHjqmv09Agsnmz6i4cFjl+XG2//fZY15s2qXU4LHLkyPhDhEJjp7F3rzrFREL16ferrx6NvvffE42q0920SeStt0R6ugriWFmRbE7k0AmRrXvUOpZQ62RaJJ8XsbLqc7hDJJESGY6I5PJq+9AJkXhS1efPKBu1S6RUeT4vK7/8FWmcOEkMw5D6mhqZMW26SCojR/e9LYsumCdnzZgp75s/Xw689ZZIIiXdr20TQKZOniwz6+rk/LPPlvlz5ki0o0PSw8MSOX5crFhMoh0dkgqFxIpGJXz0qEQ7OiTa0SHbbr1VfnveebLt1lslG49LZmREMuGwxE6dKq5H2tslm0xKNpGQbDwuuWRSYqdPS/joUenZulXCR47ItltvlfDRo2LFYjJ86JD0bN0qmXBYMiMjkovHxIlHRR5fK/LVy9U6HhVJJUUSsfHlqYRIPCIyMqjquzpUeVeHSDol8ssfi5w8JhIZFtm/UyQ8NGZz8pjIX59X2x1H1LrvtPok46rvdPK9x+vulMJQnxRyGcnnLJkypVne3PaanN73omzf+qrMmjVr3Cvxoosuktdee00OHjwoixYtklwuJyIiF198sfzpT3+S/64L0CP/CU79/ztQ/r/z+a8Irp18XuxQrwLDod7/FGCP2trDg2L396g2/b3iZC1xCqqdY2Ukv/E3krv3Vslv/I04mYwC3WceJx4d2+7vETsWLZbnXYCbyWQkk8lIKBSSjRs3SigUEsuy5Pjx4xKNRiUej0smk5GRkRGJx+NF8Dtq9+6ybDYrQ0NDReDd29srQ0NDYlmW9Pb2Fm37+/slnU6PA9XPPfdc8XjpdELS6YhkMhHJZlOSToclnY6IZcUkmRyQaLRbenv3ysaNLRKP940D4Ol0eBzY7u7eKRs3tkgmE5VQqG0caLashKTTYRkaOuoeLyqWlZBYrEcGBw9LLNYrlpWQoaEjsnPnI/LnP98glpWUTCYqTjauBtujg+dEnxoQv3SNGjynBkXCx0QGDoh0bFZ2mYgLIsJqsJ4OK3D90jVjQNuKqgH94EG3/4hbHlPlfbsVwM6eOSDfq/ZfbBHZ98i4cifRJ1YhK0dEpF9EEqIAWlgUKBwFbkfkvUAuLCLDMgYIRwHzgXe1HQWY0TP6PrNu53/Q9y4RiVtJiWQiMpgclMHkYBEoJ6yEtIXapGVjixwIHZC4FZejQ0elJ9Yj4XRYTkVOyab2TRLNROXI4BGJW3Fp62+Tzcc2S1v/WLtUNlXc3x/aL3ErLslsUgYSAzKQGJC3+98u2iazSYmkI+MAfzyflTbHKX7n0QmEMycl2txr9G5gPHhGfZ97XWLu9mZRgDrhXrOkWz46sfHuY7XJe6/7rncdM2bnRDKDCtxGDojkUwo8j5YN7xoPjjOD7wXMQzvHgHM2LDLy9hn9JRVoHt3PxUXix0Qi7yhQ/qxfrbNRZZuNurbvuOA2NQaae1oVSM2lXPCbU2C4kHOBdkJNEI0cHSvLW6o8PTIGsLMJF6gnx/oYBe956wwgnxTJpdV6tP+8JeLY730A59NjE15brlPAeuBtd1LrbXVfDbyt7teOTeo+t+LqGZAJq0//PnUPnnlfJ/rU/sD+MfvYKXVPDx9V922ibwz8h4+JpIYkFknIpk3t0t0dlbfe6pXjx4clEslIMpmVeNyS48eHzwC6ITl2bFja2kKyaVO7vP12/zggPgrM+/rixe22tn4ZGEgUwfamTe3F/vbvD0lfX9wF3X3S1xeXEydGJBrNjAPnCSslI6moxDNJiVspiWeSEk7FJGmlJZXNSCyTlKMDJ4ug+42Ot2Tug5+T2194WA70HZfbX3hYwqmYDCbCkspmJJKOSyydkFgmKbe/8HARfI/2MbrfOdxT7Cecism2jrfkqAvqU9m0JKyUxK2UfG/zz8UuJBRALkQVsD2CWluHFfh9d3l+SMQ6Ngakc33qMwqU07tUeSHqAvP9YyB7FJQfYaxstN9CZPx+eqdIT4uksxlp6++XTe3tRaB7JhDe1N4u3HuvtGzcKJFMRhKWJdc895w8umuX9MRicmRoSPricUlaloTTaemJxeSa556T/S6I7hgZkaFUSlo2biz2M5hMSsKypC0UGgfsI5nMOLvDg4OSTyTE2b9fpKVFnAMHFJAcRX+7dyuE9m4gevy4QnCRyFjdKEoctUkkxn/C4fEIMBJRKHRgQK1HAfu7QWw4rD7xuPpcc814FDk8PHbcXbvUeZyJSg8cUP2+/LI6j0hEfd6NSA8fHn9u70ar8bj6Xi0tCsBHImq/v1+iUec9X20U65+J0ePx/xgIj5b39Y1d+n373nvJRm17ehQQHwXbkchYu/37RZJJ9S8avZThoYLIkc7/GBTHk+8F0N0hte2C5XGAfBSI/0cgPZdXAP4/avcf7VvZYlluJFIEye8Gu7lUSkbeeUftHzkiVjwu2URCcomEpAYHZditi7S3SzYeH2t75Ijq6+hR6X3jDcmEw8U+M+GwpPr7JZdKSTYWew9A79m6VYYPHJBtt94qqcFBsZNxBYQ7jypA290pEouIZNIiyYQCygf3qu1UQgHhROy9QDgeFTl1bAw0dx4ViY6Mt+k7rcD2/l3KNjKsPqEeddxMegyMd3eKnD4h9mCfpGODcnrfi5KODciUKc2yc/tWGercJ2/99bdSVlYmeRefOI4jEyZMkOPHj8vPf/5zaWhokClTpsiUKVPE5/NJXV2d/PznP3/vO/S/wfK/A9f/yLn+f2mRbBb7xQ3FPGjj4y1oPiXUPpo7DZrKzRjNpy4UsDdtRNrfUZrIzdPBNIv1MjKIs+019OWXotXWKfmqbBbndAdaSSlUVOH85UXk4D60Oe9D/8jHIRaByips3WTEzYNetmwZVVVVFAoFent7qaiooLy8nHw+Ty6Xw+fz4fF4SKVSlJSUFHWybdvGdBN1CoUC/f39TJw4kS1btnD55ZcDkEgk2LFjR/EYL774IocOHWL27NlceeWVxGIxduzYwRVXXIHjOPT29tLY2IhlWZSWqlxMEYdUahC/v5Le3t00NS3k5ZdvobFxAdOnX0Z5eROOU0DJaJlkMiPkcklaW9exfPkqYrEeKiqaKS+fTCYzQjBYi6bp5HJJXnttFR/60H04ToHBwXdobl6G4xR4+eVv0di4gPPO+yxA0c7nq3DPycanG2i5hPoHe4IUM29HZbnSQ5DPgCegwlj3PODK7sxQeZyhXSqvunKGyvMsnwwDe6F2rkuwJIogys4oMqWSSSok1c66x9PG5VVz6ROqX8ML/Tvhxc/AjE8glz3FCV85CWAKKnR5OzABld/bDawFHnZ/q32o8OXvutt1wAjwAVToc97tQwOOubarUWHKOipkeQBIocKeV6HyiuejQqnXnlG2LJtCxyGZSxLLxij3liMIa/62hp9c/hPQIG/n6U/0s37Hen546Q8p8ZaQLWQZTg3j9/gJZ8KcW3suybzSdDZ1E0EwNAOrYBG1olT5q/CZPvoSfZT7ygmYAVL5FEFPEABTN+kY6aA/1c/SyUsRBFM3cTwqSc0GhlEh8EEgARxE5UQH1H+dk+53uxMVQl4GFNR/UZG/uXW3o/LPC6ic69E2rgorBfcaxt39ElRmaN7dH0GRxZ2Zq71ahFm2hd+2wBpQetCFtNKK9jeosO50DwSblK707NUqJByB5EmlOT17lbIJTAT/RBXWrB5QKv/azkAuoti1R/Wqg01QOlX9Jkd2QXAKBCer4xlBla+dDUP1ApXjXNqowqnjp8a2wc33zro2k5TmtEtmiOZRV1gclXNteBQXQWmTahM+okjCyiar3360Q+U/11+oeAoyw6q+fIrK966c4R5THx8SPrrYORWq/tpN6t768hHYcQ+87zbFaXBmDvWvzoOrNqlz2b0OLrpDbeumYgeftFSRmu1Zr+79smb1PZLdKqT8ojvUfe0phfSA0pA2Aup7xzpg1zpyyx4mXijHcQTbVi/uO+74K9/+9iImTSoDoLTUi20L+bwKDw4GTdLpAtGoRVWVH8PQufXWV1i37sOAIkOrqPCRzzsYhroGp05FWbt2G4899jFuumkzGzYcoqVlNo8/fiWhUJJXX+1k9+5eHnnko+RyNgMDKe6/v5XVq5cz85wKeqKDBDxeKgJlReZngIP9x5ndMJP7Xn2aV9rf5PKzF/PdD3+ZB157ppg3PaGsGttxCKdjzJ14Fm19xzi/YQaHQh3Ul1YzkAxzfsMM7n/tmWIfd334y+TtAj/a+m98ZeE/MZSMUBko49/2vsQ3ln6W2pJKdFcRNm+nqfDk0HQ/pHeCZ6IiI6tZo0K4R8O87UE3D3qNCvHWNAjdAoELoeRyMBuUBnViA5S1wITH1O9T8mBHwKyH/GnId4/lVNc/pMLJR/O9PTMg1w7hH0PNKldKayJJ7Vz6k2kq/H4CpknWtrlp8+ZiLvRjV1zBTVu2sGb5cqZUVrr/R4ecbdMTj9OfTLKwsRFT17l5yxa+vWgR27u72d7dzZMrVtAVi+E3TdKFAuu2bWPVsmUEPR5qg0FufOmlccdxgP5EgnVurvfUykpK83mMZFLFM7vHxzBU3vPQEGSziiBs3z4VUh0IqFBxV+6RfF7lXr/wAvzxjyq82jBUiPh99yl270mTFGN3Z6di5161CmbOVCzg998Pd92lZLByOZX/PJpkvHo11NQoOa277lI50aDCu9esUaHfsZgKV//LX2DPHmUzSk5QKKi4atsey2VNp1Ufpjl2nNG+brlF5YlXViq7detUHvf06aq916tyr0+dgl/+En74QxAhpZdy4oRWTP8e5VozTRUinsnA4cPq0iSTKmp+NNW8rk6loy9cqC5bPq8ur+EKHJw4MZZWPm2aKjt5UrV/8EGK+dbbt6tI+eFhFdne06O+RiYD06fYlPoLkHdlvcpcMr9RokmAY6fH5L2muAnhXlM9S0elwyY3KMI1Qx+foz0qFTaaj22OhvHn35PH/R4JMrfMnjqReHc3h558kvevWcPe++4ryoAtuPdedt97b3H//WvWYPh8xE+dwhoZoe7CC0GE4bY2qs8/f1zbc669lqO//jUL7r0XKxxmy1VX0fjBD7LgnntI9vVROmkSVjSqZMiefJLZX/sapU1N2NlssZ8rX3yR0vo6jJEBiI0ohnKvF46/A03TFVt5eaXKw86kIaDGH/zhF3D118fkvj7yGUhEFRv5yABUVEPWgtLyMZsrr4baCRCPQkmZq3SBe2/koe+U0u22Mur/51N8I7Zp0vvOX4n1tzPl/VcxZ8El/PaXP2fRsg+BpvPhyy7n2muv5Stf+YqSinvgAfbu3fue1+Qll1zCLbfcwic/+cn3vkP/Gyz/u5zrf4Dr/5eW/yUYdnOnyVrqJtR0tEBwHICWWBStvBKn9TX05R9+F6GZDaaBZiiQK/m8Ok7r39CXfRhKShUR2hWfRHMEp/c0WkUluYpqNm3aVAS6K1asYPPmzTQ2NjJjxgzKysoYGRkpsoibptKdzufzOI7D0NAQjY2N6LpOLpdTMzWaRn9/P7/73e+YM2cOH/vYx95zjFHCslESs1wuR6FQwDAMXnnlFQ4dOsTVV1/NlClNOC4jsKZp5PNpXn31dhYvvo2qqunEYl3EYl00NS1E1z3EYl1s23Yfy5evoqJiKradwzC82K5MT2/vHsrLmygvn0w0epIdO9azbNldOI4ajKr9VVRVzQSEXC6B0sTW8XiCrhyXhscTJBY7RWvr/Xz640+jxTrVoHpUqxbU4H73OkVM5ClRuZp//ZoalF+1SYGAXWvVYD0zBI3LFJnZ1lvGEyMtuAuCE1T5+24Df5WyO/N47gCchWtUbugo6dKCVQqA1M1FPEGSpp+sGSCKAoPl4MpdKbBoofKG6xlVUlVM4U0oEO5xbdpQwDGEIvcyUORnXsZI0JqBWuAtVJ6xy5PCKMf9KAEYgF7IgZ3l2MgxfrLzJ0Xw3BHuQEPjoZ0Psf6y9ejo2GJT6i0lnVeDnnJvOR3RDrpj3UVSszuW3EFDaQO6C5pueeUWblt8G1X+KtL5dNFmRtUMTN0kU8iwt28vFzZcSMATQNd0BpOD1ARrKEgBX6CGpKYRc69Zxv1uo+fvuN8v6n4/n3v9BoEKVF71KOi+w72mHwGq3La3As8BfwRcShzibn3Ovb47UfnXo8cLuP8fy902UcB/gjiUW0NuvnJQkZdFD0D1+xUhWaIdSprdHOYcZPoVm3fVBSq/2j9hjCAFDYZ2KADub1Dg4UyStNIZauJHN9XsQdvtisQsOBmyg3Dgbjj3O5AdhgkfVpwBoyC3coYrBXPGgG30vhm1qZiu6sUlOPOWU9SHj3WOt4t1KqBuuAP5ggvSy6cqBvEiqPeq72H4x8uBvXvJxqF3O5Q0qAmxSx5W92miewxEL1yjjr/1FvjwY2NA/OwWxXugm+r7mH4FzEfrPvSYyvk+k+jssieUPFfJpDGAXjlTKQy0b4DZ15H+wON0dETp6YmzZMlkcjmbvXv7mDatksbGck6eVMD4ttsWMzSUYunSZkxTw7YFXddobe3iU5/awCc+cTa33rqIhx7ayZNPruDkySj339/KY499DMdxsG3B5zPp6opx//2trFmznEDAJJXKs26d2p86tZJMJl8E5YahYQaEt3vbmVBag9/jocxXwjsuMK4MlJIt5LDyOZfo7JNMrpyA7diKgMe97JF0jEw+z9O7/sS171/BxIpaTN3EcPWsDd2gJzrA07ue54ZFV9FUMQERBwchbxfQ0HBw0NAwdANTN3DEwRGh1GOji6Xu0kIveKagiMyGQJJg1MLg3dDwM3V3CTDwbaj5FphTVE62kwCjAQqnxwC4FlD525ofjEqVZ23WnfFkKIw9LQq9oKvJWay3FEu5Nno3G2RsD8fDEbrjcRY2NREwDDqiUdZu28bq5cuZUVVFwXEQEQZTKepLSjB0HUeEnJtzHbUsqvx+TsdiPLp7Nw9ceimGruM3DG586SWeO3KEAzfeSKXfz96+PuY1NBD0eDgZjXK/S14WME2yhQJTKyvJOw6IsLuvj8vq6tBXrhwjJnv6aYXeRkHw9OkKETqOyofu71dIcBSM79qlEOKPf6wYt0QU4vva18b6HGX31nXVFyibM497JiHaKGEaKFBfU6OA/owZ6lijqPXttxVi7epSoNrjGSNTu+MOZXvLLarvdHqMQO2uuxRSHRxUbOP79sHixQrZ7t4NjY0qp3p0HN3drT5NTWOA+6yz1MTDnj0kl32Ugq1RKChQbFkqpfzdnG3Tpqn9ZFKldTc2qksaiahTWbhQAetTp9S8xCiuz2TUnMbofMauXerymKb6t4zOG9x8s2pTWwttberSaBr4vA5e00GLJdU1yueVHnbPAMyaojrIvgsI2w509ijJsIBv7DkqAif7VA72mc95Qelrj0qMlboAs2CPgW3bUf/ffAEqShWwdsG+7TgUcooxXjNNkj09HH7qKWbfcAOlkyeT7O7m0FNPMfv66zGDQXzV1Qy3tZHs6WHCwoV4Kyp44bLL+MBPf4q/rm6cBnewoQHT76dgWWQGBwlMmECgpoa969Zx3g03UNrURCGVIp9K4SktxVNSgp3Nkhka4tCTTzL/u98lUFqCls24QLoKCjk1ITwyoCS+rrwaqmoVKPYH1A9hzxtw1vkKAJdVKGdbLAp17iSR46h330DvGGg3TNX36I/JF4ChfgW8r/gc1E9S+KDj0JgW95Wfx57QSDYV5YavXsvruw4SCg1QXV1F0OfhyKH9dHaF+Or11xMORygvL+eZZ54pEhmfufwDXP+D0Oz/iEUzTbSaeuWxdoE1oH78iRjO1lcg+f9j78/DpKrPdW/8s1bVqrmr53lgUlGxAVGZulvjgARFdxKjiTExMxpB44gKJmoUUJBgVKKiJ8PONtkh7sStCOIQiTQNDaJERWVohp7nrnlea71/PKuqINnZe//Odc51zvv+XNfVV3dVrblqVa/P976f+wnLN5z1jzK7jNowEaP1Lcz9+3KBZrnXnU6J908mBbYNA6P1zzJv61somobt8qsgFEDf8kdRtO0aNtOkubmZKVOm0NLSgq7rzJs3j/r6erZt20YgEMDpdObacaVSKQKBAFu3biUej1NfX49pmqRSKVKpVK71lt/vp7GxkXnz5gEwf/58GhsbaWlpQVEUCgsLWbhwIcXFxTn7hM1mw+Fw5ALUCgoKAANFUQgGj7Np0yLC4V5qa2eyY8cjRCJ9+P31FBbWs3nzYoLB4wSDnezfv5Ht21cCEIsNMzoqoWZbttzM7363kNbWlYBJW9vqXFhZUdG4Ex6vxDTl3DocXmKxIbZuvZXR0cMoiorT6bfahXnp6Hgdw0jnw4/aV1hhTMkTApFWCVirWj7YqGpmPrho71qonimfg2Tg74ORdq/KP793razrxO1FusFVCvM2SHCanjghFGkl1MyG2CDKmzfiGztEVE9h6d0cQhLCXQhgB4Ax4PtIaNYIAnsTrHkSyO1iI6KYViLBXkHkS0SxlplmvR5EQrksPwYJoIe8+mqcsHzGyNAf6WfFRSsAWLJ5CXbVzkB0gNtm34amauzt24uqqBwLHGNf/z68mhcTkwZ/A3Pq5tAf6eeOOXfQH+knnAwTSAQIJAK8fOBlhqJDVHgr6A518/KBl1ndthqbaiOcCjMSH2FW7SwGY4Ms2rSIgyMH8Tjkn31al73tRcLE+q3j1k84hl0IDPuQMDgQxd6FJIMfQZwBGxGF/8tIsNti63w8CryIDFi0Wctq1nkbQhTqOdZz71nrTyIhZpr1M2Bt32aaooomR2BohwB20TRpkRU9Kj2f432we5Gkfce65PPz3m3w6hmw50Z5N6PHZR5PjSjTseN/E5I2U4A7OQLv3yVn4pyfgadWFGi7T5TxxCAUTZdPgK/OUpfrRJXOTqYh0bUmJ88DAtOmLjcmwaOW0vw361IUgfVsCnjgqBU0OEHWoWr511X1vwZrPSUwXzFNrqk5D8jz/gnSjqtwolxv/vHiHrnkGRmsyAWX3Sfb/PMt0P0OeKpOeG25pLabugD05GvgvLtlm64yuZ7PuUOSyBWbDJBNvobUnEeJxTJ0dgZpbKzg8OFRrrpqJXfe+WWuuuoiLrywhbvu+g0bN+7niivmc9NNl9LSMpO5c2eybt06enrCTJ9exR//eA3LlrUwPBxj+fIWdu3qZtKkYp5//go0TcXt1vB4NOx2lUmTinn88fnU1/spL/cycWIxGzYsZPz4IsLhFF1dIW66aTO9vWFSKQPFVDmrahJD0VHcmotAPMxp5Q14NQdeh5sSTyF1RZX8aN73qCuswDRNEpkUw5Ex4ukkf+09SDydYiAywtYDOxmNhxiJBAnEQ+imAOVwZJTawgp+NO97OO0OegKDRNMJRmNBAD7sP8xIJCggrqhkDF1AW1El6TvbI10bLyng/TeAMQbpXsAOletEwY7tBDMKFQ9IsJliB70fhu8XsLaPk2AyrQFUt4C56hUYNyOSJh5rhfRh+W0m5RpQCwWmFSe4psr+GCGZr/+76EaSnnCYmoICFm/eTMfYGG67nacWLGBicTGhZFK+X9JpOsbGyBgGGcPg1tdey/3tdTjY29dHTUEBj3/+8ximya2vvUbH2Bhr5s3jysmTKXK5WLJlC4dGR+kNh1m8eTOVXi/PLlxITyjEW0eOUOf3kzYMRmIxMqbJrNpauYH/6U/hk08EjiORfO/nNWsEplwu8PuFBMvLRamORIQK6+sFfNevF3W6r09UthN7TxcVyXr6+4UIIxEB02wbrGXLZD90XaBixgwBXodD0snXrhWwraqS50Be/9KXZF/Gj5d1nximtmKFEOnSpUKnNpsQ7fnnyz6apqx7bEwU9Pb2/LYnWN8zo6PyXbRihRz3mjUS7FZdLcdw661QVoahG9xwQ66LWW5yOGR3Xn9ddiWZlK+rhgY5lLY2MQXU1cG0aflMuc5OOf2PPirL+3yya62t8tqsWbKucBg6OmSbnZ3yFtTXS/BZc7N0SNuxQ25B5bvYA3bV+m0XkAaBXVWFUxrkdxaUh8dEfQYB40OdAsTVZQLFqQwYpvTzNgyYVCfQ7nXLe3mkG8ZC+Q45Drtsy2m9h8mUwD5gGDqRri72rlpFJhrNtevyNTSQjkSIDw1x7vLl+MaNQ/P7Gdq3j6LTT2f85ZcT6eoiMTJC87p1lEydirO4mMYlS/BUV1Pa2Eisv59kKMT+DRsomzYNb00NiqYx45578NbWAjB28CAD7e2kI9I+LT46is3tZuYDDzD26afoGWtwzl8MY0Nw/JD8jywpg/lfBs0h/bhf/o04STUnnDlDoFlzyHO6DsWl8nmMxSAl1z5v/BGeuB9+/6z1/0wTII/HpC93YFhAfcvv5Twf+URAPNuL+7UXUXQdzenlVy/8G8ePHSURj9J55ADvvrOJ4Y49TBpfw9uvv8InH3/Eu++++x+CNcC2bdv+/xas/zvTZ8r1/8YppyxbVu//cJ5kAv2VP4hdvPEcbJd/SV6w2XPL/CPV++9fuxiluAxzdNhSuS9BKS7BDAVPas1lW/hlMt2dZGobUBQlpz4ripJrv5VVmrPK8+LFi9m2bVtOWfb7/YRCIRoaGjBNk2g0itPpxOHIWrnluXQ6TXFxMalUiv7+fmpra7HZbEQiETRNIxaL5Vp2lZaW5paFFIaRZvPmm9i/fyONjddx6aVrURSVYLATh8PHtm0/zrXHWrDgKbZsWUJLy30UFY0nk0nQ2/suDQ3NBAJH2L59JS0t9+H315NOR0mlwjidhTgcBYyNHaa1dRXNzcsoKZmEqjpIp6O8+uqNuW1ffvnTZDJJEokxXK5iwMSjuVGyKvWs5fmU7uBR67llUHiKNWCSEhUNQ5LA21fkl0lHBAyG9kFti1hm21ewOdTCfaufxQh1k3GWctedS/nmlbPZ/ZvbueWFQZIZg0Q8zre/eiVLZ/bC59bJjfnuVZaSPe4k23j80ucJOwoYRcB3GgJmWVt3DwKDVyMKrIqAZBSxQfsRlTuDKNRnIdpMArGOR+XoKLB+H0GStOeSV73PQ0DeiyizvmSIschgLsX7xJZczy18jqOBo6xsXckdc+5gfOF4QskQlb5KDFMUqh1dO6gtqKWhsIEbXr2Be5vvZVzhuJx6pZs6dsVO2LLv7+vfR01BDROLJ3Jo5BB9kT5m1c4imAgSTAUZVzgOp83J0cBRHt7+MBuu+ldaFYVyRE1OAA8jKnSVdaxRyCnbAH+1jjmFtO86F0kbX47Y8hcBryPtvMoRdXoASQoHUb395Ft6dVvbvAOYjAB39v1QkD7lS4HJpoEvMQyjewSEP1kravLILl7bPcJ96/5EKhbAkznOs8vnMe2rL/DtRTezY+ce3C47Po+bxx9fx3lnVkH/6zCyWxLB310iQF11KbhrBE6NNOy+Qdpv1V8FiSHpeX3GUplHKxAbeRa2TVOgUtUsWQVyad+qJteHnpS0b+nJJZ9ABWte6+kTFW8TsW9nl8m+bqQFsFMReU1PWep1nSjJivIf28EBUlHZD5sGb/4APnnhZNv3iW6S85YKPGte65xkpDWXu0wcJu/cJap2KmJBnUfOR3RQSkWSAWlFpvnyA3ND+6RXdiYhkO8uI5Jy0jcQo7zcSyqVYfHiP/Liizcyf/4KNmz4Djt2bOdHP7qTc855mK6un3HNNd/l3Xf9PPXUAjIZgz17epk6tTJXZgOgqgqdnQHGjSvi8GFpr7VsWTO9vWGmTq3E49Gw2VSOHRvD7dYoLnbR3t5Dfb2fqiofN9/8Ghs37mfz5q8xfbq0XCss1QCTZCbNR/0dVPpKqS0sJ6XnH1f5SxmJBij1FtEXGuZ/tL/Et867ghJvIT/d9i/ce/G3+ai/g+k1pzEWD5FIpxiIjFLhK2Y4GuC08nFEU3GK3X7SeganXaMvNMzz7S/xzXMXUuDyUOwpJJFOsu4vL/D1cy6jzFtEsduBXVGk37sCxHZA75fBd2Xe2m1YNmDVI9/HAzdD6Z1i4469I4p0ZgQ8c+TzZmZkucyQOEPIQOJjcM+Qz64eACMAo49Juy1tgoC3EQS1QGDbTEJ8F/R+mVTVK0QdTbR1dVHu9TIUjVLu8bB21y6ev+IKOsbGWNXayk8vvRQFCKVSFDqd9IfDVPh8RFIpKrxeVMt9MhSNUuhy0Wmp2E8sWIBhmqhWn+yMYfCDE2znGxYuJGL1MgZy69nX38/sujp8hoH9yBHpW52ltoEBIbvHH5eFgkGB64ICSfZ+/XVReNevl9ezYKwoAq4+n/yYpjyfba917JjYwJctkx7UIPRYVSXLRiJi0V65UpRtOFndfuYZ2db3vy/qc0+P0GR9vRDmxo1w3XUC4zabgHMsJop3OCzHUVgopJuVgwcG8vvb1gaNjfK8wyH7vXOnwHRPj4B3VopeulTIddIkUjNm8+lQCStWKCxfLmpzR4ccxr33CtPHYmLVrq3NnwJdF8bt6RGVOZUSi/icObKZggJZ9vhxWdcdd8g4xqxZYv/O2sbLy+X5U04RAT8bcv6DH8i2igp0CrymDHjqhgBw1s2k69b3nJG7r8Wmynyq9V2dtXqbhjzv0ASofR55XbHmiyehqz+vfpvINiNxAeoTlXETgWvLUp42Mgy+/z7FkyeTCARyqnVsYABXWRnD77+Pr74eT1WVqMl33ZWb74xvfYtkIED5jBmYpsnQ3r203nYbtRdeyHk/+hGxgYGcgu2rr2dw714qZswgHY2SHB3NtfdKjI7y8XPPceb3voenshLD6tFuAnbNjoaBYtcEbrOq8WVfFdguLpffT9wP550P1/8w/39tsBe2/kF6cVfVCVQHRgSWF3xFLOW/fxa+ciNEggLjHh8c/RQKS6G8Gg5/JECtZ2S0RDsBwP3FkE6he7ygKpiGQToRZuhwO2UTz0Nzegj2HyI21ktt4zxs2glOhM+mk6bPlOv/Q1O+VVZQfmcy//GMNrtA8ZTpqPMWYgZGBbZHBnPL/EPVG0DXMbafoGqbJhSXyLwFfsxkErw+1LkXyjZaLsFUVYyaOssGqNPZ2YnNZjup/VZLSwuqqtLS0sK1115LQUFB7rXa2lpCoRBer5fOzk6CwSDbtm0jHBaAGRsbY9OmTaTTaTRNy+1qRUUFr732GmNjY3g8HjRNIxQKceDAASKRCIZh5JY1TQVFsbFgwVNce+0m5s1bQzQ6wJYtSwDweitobpb2WM3Ny0gkAixY8BRFRRMZGTlET89uamrOAxRCoV5mz76dUKgbVdVQTrix7uvbS2HhOBYu3EBJySmAgt3uwG530dKynClTruGSSx4lEDiWA+uennYikX7AlBvpOQ+I1Tt0DN7+odRVXvK03HRjqYl2p7Taig6IvfSipwSss2ocgK9e6jTd5ZgXrefrS37Mr557mn37D7HppZe4YfHNhPsOsOjXAyxbejvvr5rOjk2/4rGn/5mPC74IQ3/N70/hBAHtmffC5GswZ91H0ubEjaiv5yOW4n7gZcS2PBf4AqLULkLU7Wzf6yzoaYgFfAYCiyDAfQiBvCHySnWfta0RRFmdi6i7HjkrxAEHNgpdhaxsXXlSS657mu5BVVScdifnN5zPWHwMp91Jpa8yp3Trps7sutm4NTcZM8P5DedT46tBVVRsqo2MkSGVSRFOhYmmomiqRktDC+MKx2GYBqeWSmuvvX17KfWUMqFoArqhE06F6Q330lTfhGrq1JkmTyMgXAf8FIFqqxrtJGW7ALHLRxDlusaa71nEBQBS2/6u9Xw/MlhRhqj6OnDYOncm0Gn9bETaoqnWMg9br7uR1lzrAANToLC8RVTqM+4GTz1jhQu57oeP8+s7xvHB3h2sefqPXLf6ONhcfPGK+Xy86yX+2v429967nKu/ej1EOqCsBc55QrZ47nqo/7JV+2zdeCl2mLkBJlwPNp98tsub4MA6SAcEpN9dIvXcKFLrbOryt2lYqrSRuw5RFNn3rBXcyMi2dOtm39TFrq2npBQik5DXbQ6xhetJeU1RxP5tZPLQrSetOu6k/GTiJ287O2VrreNDcowXr4cfDEDdBQLUF6yVdnjJkNRSa175ycSlzZeJgPQbi2Qdlzwt2x/aJ9f8G4tkX70VMPiebCsdkVKOt34gNddljfDmjbJ/qTD8eQk2G8RiaZYs2Yyum/zgBxOpqanksce+RiqV4XOfu4CBgV5uuqkWVVV48cWPmTmzls7OIO3tPZx7bg0ej8bixZs5dixAa2snR48GqK3109MTZtWqVjZu3M+aNW3MmlWLz+cgmcxgGAa1tX68Xge33rqVigovbreG02nnpz+9lEOHljB3bj0ul50P9/cTTcXpDgyy6q1fUuwuwK1pxNKJnIpd7itEt9pu9YdGGIyMsvXATn615xVsisq3Z16Jy+6k0lfCqrd+iVtzUeIp5LTyBn69ZxOnlNXn3E4pPc2BoWP0h0ZwaQ6uP/dyClwekuk0D73+HEORMabVnMpILIjDrqFiSPV15rgo1lod1LxoWbstP48+AIN3CQArQMWjYK8BDHA3gb1BWmihCIgP/FBUZ1upAHniI9BqLTBfIlbyzKDVymuF9Rnrg1SHqNeYUovtOhtq/ojumoWmqtT5/azduZM6v59it5v7WlowTJOeUIg75szB53DQH4lw/7Zt9IbDnFpaSn8kwuHRUTqDQRZt2sTh0VE8Dgfv9vbmVOxIKsXizZs5MjaGbpokdZ2lc+dyXWMjj1sZKYVOJ5qq0h+JcOvWrQxEozRWVHDzli2QyaC4XKL2trfDyIhYnn/+cwHO3l6paR4cFPi9/35Rb9esEWJctEhIMpkU2fXwYSG9RYuEChMJaX2VyQjpZVtnKYoAXW2tWK4XLZLlHntMnl+8WH5nFfA77xT4TadlHatWyX5kITyrgq9ZI8C8eLHAdXe33D/19cl+apoApNstzx85Isdmt8Ps2bJfP/yhzBuPC8lOmCBSsNcrYP3yyzIocN110NIC8RgTJshYg9sth7pypezmY4/J2IHLJdDsdudP37hxcuiNjXLaliwRjo9G5TSPjMiuZte1dq3sjt0u4J1VvbPAXVsrCvaiRTKO8dRTMibi9ojJA0UVAE6mBY4TqRNqetNwrDevVKczcOi4ALdhQDhqDV4qAtiFPlAVWdeh47KuVFraeamqKNqhiIC51y1gPTQmv7NTMiXr0ewoqoqnspJ0LManv/wl5Wefjep0UjZ9OprHQ8OCBZROncr+DRvofO010rEYHz/3HD1vv01idJSy6dNJx2K8+9BDeCoraV63jimLFmFzOPDV1VHa2Ii7vBxT16k45xwZiIpG2f/cc7K+SCS3vvjgIKrDAYbB2Kefotrt2B0OlGQC7FpeNd63S4B6/GT5PeF0mH2RQDLIB0FBwHrPO/Dmn+QzZ9dEjd63SwAbBa5bIlB9Ilj7i0X5VlWB99+ul97XZZXgK4RwUJTydBJDgVQ8aAG9ydDhdoJ9Bxg+sgfVrhEP9FN+yqyTOeOz6f/n6TO4/t81nWj3DgdzVu7sZGYyAr6QB2eH42RQ1vNAnrWA/90H3mbLw3nLJfJcKiX9sTf/EaJhFFVFKS3HtvDLKEUlKCaoNjuRSIQtW7ZQUFBAJpPJ9apesGABwWCQ0dFRCgsLKSwspLOzE7/fzxVXXIGqqtTW1tLe3k5lZSV2u536+np27dqFaZpomsaCBQvQNA2fz8fY2Bhbt24lGo3mwDwYDOa2d/XVV1NbW4tpmrS2tnLgwAHAZGzsCD09u6mtnYXDUcCOHatz/a4BHI4CFi7cgKZ5eP75mWzZsgTTzBCJ9OH1lrNly2ICgQ4qKhrZteun+P01GEaacLiXbdvuJxzupbr6HILBTjZtWsTo6OFc6ZSmuSkpOZUrrngeh8NHMNhJOh2jp6ed2tqZ2O0uTEOHv9wuoUaxAWh/GPb/Ct66USDa7pWb6de/C2OHZMV7HpVazMSI/HMOdAiQx4cl5OiTF0QVw5SXx0ahr51Q76eUFvlwbrkGxdQJtD8Nn7xAdLADh2anpPO3UrOZiYsKhiI3/r4asa4WTiJucxABbkbgLwWcjQRzrUcA2oUo2K8jyqiJQJ8PAcIORGW1I/AYQVTb1QgAPmZ9LN1AM1CEwPRB8v2hrSEHHgUyNg2X3cX6y9az6dpN3Nd8H/X+eiYWTyRjZLBh45vTvsmsulkMRgcJJUN0Bbs4PHoY3dAZjg2TyCRw29x8rfFrpI00bV1tHBk7wo2v3khXqAsTE4/DQ3tPO2kjTTwTZ1f3LsKpMGk9zey62cQzcW7fejtpI43L7qKpvonm+mZ6IwOsVBSWIP2qb0Tqmw8h0GuccOx9SH31jQgAzyTfVzx6wjkAgWkDeMhabxv5sLhpyCCF3Xo/LgA+RaBct7Y3x1pPHPgm8BQQQyWluiB6DD5+BApOBZuDjk/eo7SkmClf/iXYvbSc4aSzq5v33t/HlZfPs0IJDWbPnEFPby+ZwhngrQNUMJIw1CqfJz0idvHIUUshTslP7Dh89BDUXy0g7qoWNXrKMlFl9bi4KFTHCeCMqLimKRCpamLZzvbCVjV53jQFpo20fJ4j3da10iPriPRAfDQP1VlwV2x56HYUyGPNK6+Fu/M1kidOuqV4KyqEOgWGI72yH4N7paa7eo5cU6de9R8sn4Bob75sI9wty1bPygehZctH3OWw96eSoxDuEjt4pEeU85omUdgdPmheSToDa9a0cdtts7HbVUZHPcTjQXp7P6aqysdrr71KJBLm+PFjAPT3v8RTT32bJUu+Qyo1zJIlW+jsDDJzZi0rV7ZSVuZhxYrt9PVF2Lq1g6VL53LddY089dQCFEUhEknx/vv9ZDJSg+31aqxbN5/iYhfxeIZFizahqgqxWJrW1k503WDW3BoiyRjPt7/Eto53CcTDFHsKcWtOekNDKCgMRQI58B6IjHBW1STmT57D92Z/AY/mkjpsU+f59pc4q3oSQ5ExVr/9a8biYW674Do8mit3qk3TZFJZPYOWDd3rcOPWXAxG88B+yWmzOL1iPGOxECldwUTP97oeWQOe88XajS6f9XQfVKwU2M4MguKFTJ9YuzPHIbHXsnAvEhB3zzyhZ7YBngtkfYoNoq9LUJmnCWo3Qek9csWn+yT0TB+z7OKqDFp5zidlakTSaVa2trJx/35WtrZS7HYzoagIBZhVW8tQNEpnMEhfJMLG/ftZ3daGbpqsbmujwuulNxxm7bx51BQUYFcUGisq6AuHae3sxK6q3DZ7Nmva2gC464032NHVxdpLL2UoFmPRpk0cCQRwaxqr29p4+cABekIh3JrGbbNnk1FVzFhMyK68XGgvkRAZ1TAEJrMwGwjI36tXC9Tu2ydyane3FAuvXCnrOBGiQyGB0RNBeflyAfMf/EDgNuuDXrVKQDdr7U4khDaffVas5ePHC1lmreQOhwBvNCpe6wcflOccDrF/j4wIySrKyZb2I0dkmRtvFPItKJD9HBiQD+KcOfnjHRgQ8o3FZD1Ll8KLLwrV3nQTHD1KuryGTEahvV14fufO/KGuWSObO3xYTu1DD8FVV8GTT8opa2kRAK6pkV1evVo2+/LLMr9hiGv/uutE1A8EBLh9PmGu7u6TD6urS05lZ6f8LF5smXoSKQHkAq8sqNkFdA1D/nF39QsYZ+E6mYKiAqvu1yGA3GHtEJYV3MRyCATzoHzOFJnncKcMZKTSsgMN1RKW1lAty4Io3/EkdHRhAvufe47+tjam3347ZTNmoKgqpmEQ6e7GNAxUm40Zd9/NxC98AVdZGefedx8L/vQnPFVV7H7gAeKDg5Q2NrL/ueconzEDu8tFuKcHQ9dJhcPEh4YYeu899GQSFAVnSQlnfPe7XPDzn+MuK2PGPffQ/LOf4amqYmjvXuxuN0WTJzPy0UegKJhZpVhR4Cs3wE33QUkFHDtghZw54etLJLTsn38mIGwi6vZ558OXvwtDvQLJDafAI7+Cr98sQD0yIKq10wWRkASlRYJwylkyKOxwiv08OGqVXOlSh73nHYjHMFMJVJsleikq5afMpLB6MuWnzALFRk3jJTh9Jaj/WfnUZ9N/OX1mC//fNJ1k954yHdsVV6M45ebg76zc2YCyZFKeb9uG2nQhSmk5iuM/tmWcaDkHcsFmZHTQMxjdxzH+8GuUyWdhu+IazLERsYo3XwTeAtIovGIFiE2ZMoULLriAn//85yxevJh33nnnpGCzzs5OPB4P7e3tzJs3D5vNhs1mwzAMglbi+Ny5cykoKMDhcJDJZOjt7aWqqgpN0+js7OQPf/gDkydP5oILLsDj8ZxkP7/ssssIBAIUFxcTDAYJhULU11fS1dWK11tBLDZMQ0MTpmnS1dWG319PUdE4AoGjbN++gpaWZdjtXhwOH5rmQlHshMM9dHRspadnN5///M9QVRudnTuorGzkjTfuytnJFy7cwKZNi0567HIVksmkiMdHCIf7cDoLcLuL6e5ux+stZ+fOtbS0LKO0aCJqsAN19yrMzz2OEhuwgsiWSZ2nkRYVKhdctEHsotHefHpwuAv+tBDOuA4u/rlYQTUvoPDmK7/jq9+5Ga+/hLFgmD9u/C2XfK6JfR9+yj99+SuYiTGGwgbP/mAq19fuzocjxYZFacuGrc28F73oFD5w+JiAwLAdSah+FKnf7QRmkTPjYiC3nAZ5C7KBWJ5rgVVI4vc4BPB6Eeh7HLE1d1vrcyE1xjqieKvW6z4E0qsyKYZGPmXl9hUsa15GmacsF0bm1bwk9AT94X5Wt61m9bzVeDUvKT2Fy+4iY0iI0UhshGgmyuod+TTxVCbFHz7+Azu7d7K8ZTkl7hKOB4+zdudals5dyoSiCSiWYyCtp9Fsmijdeor7/nwfKy9eCUBfbJiqiil4FJUdSM30lUgQ2TPAk9axmdax7QRORwYXHNbzdusc3Y4Ad7N17LOtc7obGXQYQCD5pye8B6NIMNoYYktPW+ev2jrnqxBLeA0C8JWmQUHvG1A6Q27akwMEozDxrDm88vDZzL1mNS//+a/80zXf5d9+/y986eLTRW2evpofPfw4H3y4n39/4Qmp17a7JNTMVSEp4Htvhs6NcMGmk1PHbW4BT3uB1FlrfgGMdAjclVKTnHWLZGHaUSA3HsmQKNZ6Oh9aFjpuBZDZ89eDoshZyarPWVXatCymWYU60pMPLxvYAyVnyL5lbeE2pwwY2N0n7JMh2x87COFOqJollu1jW2HcxWL9TkfygK7YJIl94F2BbSMjyf/earnue1olWyHUCfueggufgNARK3jQKhVJhfLrCnTIwFrVLDnnY4fkO6JqFiTHiNprCYQyqKpCMJikosLDH/+4hWXLfkRZmcbMmbN4++23efDBhxk37nQmT56Iz6exYcMzPPPM09xyyz+ze3cPy5e3kE7rls3bjcNho68vTGWlF7tdzSWRmyYcPx6gpyfMjBnV9PaGWb26jeXLW+jqCrJw4e/49NPFqKpCUZGL3bt7OOe8KmweHdM0cWtOVCuEzARsiopuGnzQe5D+0DAXnnoeTrsDFYXhyChlBaXohk4gHqbQXYBhGNhUlZFogLbjH/BRXwf3XvxtbKqNZCZFOBmlwOnFYdNQFAXd0BmLh4gnU9SXVDAYGaPUU4hNVekMDPCL9n/n3ouuo8iRRtF7YWS11EzrQ6Ioly4F+6QTgsrulVprrU7qsV2NomarPhi8B8IvSFJ42YNgr0W8J3b5HdslyykuUa5HVkoiuJmBzDC4z4F4uyjcI6tO2FY9UWUyKcOgKxRixfbt3N3URLXPh9/hIJRKYVMUNJuN0XicMo+H/kiEyhNCzRRFwTAMOsbGWN3WxvKWFhr8fnZYNvM7f/5zRjZtwtB1fF4vd61cyb+NjfHdigqu/d73GA2HKbDZuO3GG/nS975HdyhEnd/PytZWljc3c7rLhePE8LEnn5TU7YkTJUgsG229Zo3Ir8PDUFwsEmwodLJl/OjRk4O/li+XdC27XYA3a093OoX6XnhBqHH9elGWCwrgpZfgnXckBK2uTuzcoZDYuf1+mW9kRPajqUnWNzIisG8YIuNmE8iztdiFhQLh3/9+/jgffFDs7ZdeKts5eFCs8EuXyuP+fpGG//AHsX8/+KCAeDwux/LDH8oAwKWXEqqejGmleyWTYvOuqJDdztZWz5wpTvquLrjiCjmsrIX7xBDz7BSJyGlubxdFurpaTvlvfyvGgpkz80Fmra1Sfn7llaJWL1kip/TWW+G22+DsqTpqyLIS9wzAxDpLXdZF0o7GxOqdSuft25PqRb3OpYTbYSggavSkelGsuy0LuKpaVnLr3jUSg48OC0yf0iAKd3YKRuDjDjjnTHnc2Q+1FaRtCpHOTg785jecs2wZhmEQ6+1l/4YNnPn97+OtriYxMoJWUIDm8ZCOxdj32GOc8Z3vEBscJHL8OFVz5+IoLCQxOord4WDzF79I/bx5nPfjH2MaBonRUdLhMJ/88pdMWbQIT2UliqYR7e6W7Xzve/jq6xnauxdXSQmf/OpXnPn97+MqKoJUgntWruLlTa9yvKeH9995m+nnngehAIc+3s83v/d9hk2VwqJifnVFC1N6DsB553PpC5vpHx5BtWsUFBTwxMXncvYFF8EpU/IhZrGIpH9X1kJ/98kW8myY2Yn284pqCIyKvXzzv8JXbkB3uUmlogwdbqf8lJloniIU0wRFxWbX+Gz6702f2cL/T00n2r1bLpF/Gtnpb63cWVXbZoOCQtQLLpXIfdvfjxyJ4p2QZVJJSRqHfLBZYAR98x9R/IXSvqvlYjANzFAAdc4FmKGgXJyGngs0a25uxufzsXjxYrxe798Fm9XX17Nz505qa2sJh8P09PTk2nFpmsacOXOIRCI4HA4CgQBbtmyhoqKCaDTKpk2bcup0c3Mzbrcbu91+0rYzmQy7du0ik8lQXFzMuHHj0HWF2tpZuFxF1NXNJpkMs3nzYvz+WoqKxpFKRdmxYzX19U3YbE58vkrAJBLpJ5UKMzZ2hPr6Ji655FErMVzB769laOgT5s9/nMWLP+Xyy5/FMHTmz19HY+N1NDcvQ1FspFIxMpk4imIjFhvCbndjszmpq5vFzp1rc8FpGdPAKJyEOe85FIdfrNgXPQmeCgGI3jZRpLJBR+mY2Fj3rhN1yuaQGuszroPz14g9dNutEDhEJh7g4cee5I9fT3H8ned5a9Mf+Ma3v89w90EeWb2aVQ/cS2dXL/vf28Xy3x/nY/d8gXVsYk3V42JFr2mCdx/DNA0KEMiLW5+lOxAVeTwCfQHy6qkLsTj7ELhzW4/PRxTal4E1sjV8wCnA89bfXiR1fDEC5v2IZbzL2vaPredOARQ9wcrtK3i943W8mhe/04/L7mJf/z46RjtwqA5q/bX87PM/wzRN2rraUBSFjJHh5i03czx4nApfBV3BLubUzWEoNsSSzUtIG2m+1vg1nlzwJMWuYhw2B0PRIe6ccyd+px+bKm26bt5yM90hGajTVA2fw8fjn38cwzRY9tYyJhRNYBiFGxBL+IvIoMIwYsXusI4ziri6ZgIfW+ewE1GxDyGg/STwVWSg4lxErT4OTLfOWz8yQBG31hlHnAGLkQGKwAnvlxv4GWIJ9yJf5IWmid00oHwujLwLsWPwwY8pdER48YXnuPeXnZxzybd5/c+7OPOM07HbVPhkNZTO5F9+8ys2/sszbFj9QwFrTBjeJevynSowOuU+aLgGSmdJy64z7hCw1uPw12Xy22ENw9hcEpaWDgm8ZpIC0iDzBI/Kcw4LxB0+AU4jDb5q607SglkjLfPrSYFjm1MGjrIqePCoVbOdEhVbT8lNXNUscPoF3h1+S+02Zd8UNR+mZuiybrtLoLi/XbZb2yRJ35m4rHfwPZnPSMvfVbMEmpJjspyjQNZbUAd/XiIfiKaH5ZjdFXDBY5abpUOu83RUzlm0B8qnQWI4P/DgLoc/L4Z0DI04fr+T3t4w99+/ja6uENXVjQwNfYXGxh9x220/JhgcoqiojmeeOURfXxhFUbj00ms5evQoU6Z4WbNmHnV1fqqrC/D5HKTTOtFoikceaQWENWKxNPF4xiqHjVBZ6cXj0Zg0qYTnnruCigovzc0NXHddI5WVXmKxDEuWbKGiwks0nMbrcOPSnNJ6ztDpDgzy8BvP0xMc5K+9B6nwlXDp5DnohsFwNEDGNCjxFRNNxflr70F8Ti82RSUQD5HIpOgJDXF2zekWWEtAWSQZI5FOseqtX9ITHCRj6Kz7ywsUuf3UFpeTMQx6red1w+C3e7cwvfY0vJoNJfEB2CdA1Qaxcae7oOQOSA9a5TlOsX+P/MwKHHOCp9n6lkOusorVAtal94G9zgpGuxHSHRBrA61KFGt7lQB2yVL5rdXnQ8w8LTDymKWgrwJ7mewLBqqiMBCJ8Mzll3NqSQl+h4OMaeJzONBNk5u3bCGaThNLp/nxtm3EMxmOjI3R2tlJKpPBpqqs27WLjfv3s2L7dhRFYVZtLaveeIPt69ZR/61v0bZnDw8+/DD3LVnC81dcwR0338zahx7iuvXr2fzmm/z8iScIdHVx/rhx9IbD3DFnDm5NIwyY990Hmzbla6iz4WGJhPz++c9Fwb3xRoHLQEA+XC6XAHV/v9XzaaLYp+vq4Lnn8kSo60J8vb1CnKoq9dybNgm0HzsmPujhYVnHsmWiRIPA9P33y7LygRYpt65OoPf4cQH4u+462Xq+apVYyB9+OB+p/fjjAvPLlwvZNjXJ6+GwSMdLl4ok7PHIvns8QsTLlsl56OyUomiHIx9udv/92Gwmx4+LHburS2bdt09KtNPpfLj6rFmy+YEBOaTOTjnEw4cFhE8s/47HZfyhvFxg3WaT16+9VjqidXTIWMHBgzB9uoSYrV8vu/bsszJ+8eijcov6l3cUzAKvwHCBVyA6ZGVGqIoAdSotynPWvq3r+b+7+iFjCCyfOk5AOm1ZwDv7BLxTaVGhFUXWc94UmVdVTg5D83mgtMiq7bbBpDp0zYaZyRAbGKDx5ptJx2KY6XTOAh63aqYjXV2oNpsMettsTL7+ej75xS8onz6dsrPP5sP160kMD2N3OskkEjSvW8fZd95JpLub3Q88gJ5IkBgZofO119i/YQNGOg26TmxwkBl33YW7rAxFUSidOpVPfvUrOl97jU9/+UsUTUNxubnqi1+k9ZbrGVdbK3b6Qx9BOsUNdy9jUa2fg8t+wN2338q3XtkOtzwIl1/Lxhde4IOtr7Jv8Ve5/Vtf51t/fCsfdOYvFvu3xycJ44Yh1vHTGqGkXP6XFZbI460vihV887/Kuff4BLbnfQm6j4LNlrOCDx3eDXqG6Kj1v/Gz6X/Z9Blc/2+a/tM66b+1cqtq3iLu9qD4i1A8nr+zgOcU7+NHMMeG0bf+O0TDeTg/Edpb/4xaPx4zJDZLxV+IsfMvKP5C8BWgZtIUFhayYMECCgoKCIVCbNu2jWAwiM1mo62tjQMHDhAMBgFJ/Z40aRLRaJTKykp0XccwjJyi7fdLnNP27ds5cOAANpstB+rhcJiGhgZCoRDRaJTOzk6OHz/O5z73OYqKitA0jcsvvxyASCRCIBCgv38Qu92N211MLDaMzeZg9uzb2LFjNbqexOHwMm/eGurrm9i27X4CgaOYppGze1dUnEVb22oMI8Mbb9wFmIRCPZSXTyEaHWTbth8TDB6np6cdgMsuW09x8URMU/plR6NDRCID1NfPJRod4NVXf4DN5qSlJV/nbZqGFfpiAob0lo725/sDe6ul9vLi9eBvkNrLTBxaHs3fuAePimJtc4iydWAj7F3Hvg8/pnckzvkrDkJtE+fNnktdVRlv/487+NMrW/jaV74M6RgTSxVmTzuFHealVvsiAwpqINwn669twjx/DQM2B1WIvtKBwGEV0u86iajZleRTqTvIW8IjCBgvRpKxZwMfIHAdseZdhNQKg9Qmn0EevrO26VXWdjZaz5mADxvLmpex+3u78Tq8HBw5yM1bbmZa5TQaihqIZ+L88LUfcjxwHI/mYXbdbNq72+kOdnP77Nup9lUDMLd+Ll+f+nUea3uMOXVimh6IDpDIJPA5fGSMDPX+egajgxS7ihmMDtIf7ue22bdRXVCNgsKRsSMs2rSIY4FjeDSPtABzeOhSFO5A1PgmZFBgLnkb/aOI9T2EpIefhwC005p/AIHorF3ci6jVM5EBi5D1vsxCrPcmUgNvt87hRkSlLrXeq1bESv4EcC15q35AUcgk+iF6BIobpc3WGXdAop8LL76Uv7z2B/aun8ralffQ29fHmWecAWcu5/e7XTy4+lne+PXtVAZ/JzdSdg+UzpbPL6ZApG+81Fnb3OBpkBAzRzG4q2DaSpnv/bvkQxA9BrtvhHg/uR7W2dRvU5frIds7VXXIgJBNk79t7nz/a9Um++Oryc+vKPIYRWzbWRXc4ZeU72yIGaZlKz8mz/nHWbZxU6A8eyNtpOV5zSflGuXTZLvZ1P5UUJRld7lAc6hTFGvTgMSYDJr9eYlc2ygC/zVNMojm9Mug2Tt3ASp4yqXFV92F1rHZZd7YgFyv0V5xncSH4Nw7wVeNw25iGiarV7exceN+Vq5sZdw4G9dd18jjj8/nN795kvPP/xx/+lM/jY0evF4HAEuWPIZhePjlLw/i9TrIZAxcLjuGYbJvXz92u8rDD19EPJ7h0KERbr11K4ODUWw2lblz6zn11FJisTSJRBpdNwiFEpimyfr1l2G3q1RWeli7dh4lJS5KK9yAiW4YuYRvr9PFto53+dWeVzitvIESbyF2mx2X5qQ7MMBAaITRWBCn3cHU6lMJJsLopoHP5cVp05hacxrjiiXAKpKM89jb/4xLc1LiKWR67Wn8as8rZAydG+d+mf7QMO/3HEA3dKbVTCaYiJDIpLjzc9/gklNnYWLHdE0VC3d2cs2AzBh4Zsv7hgaF34CqJ+TqHn5YFGt9QP7GlFTwquclcRxdINp9odi93eeJ0u1pgvQxSB2Wll+2YgFs1QdGHIyoBenXiYJuHweeC1AxiKXTlLjd3Pjqq0RSKToCARZt2sTBkREM0+S22bNx2GyoisLrHR3YFIVqn08Sxrds4ejYGE8tWMAnixfz+Pz57O7pkX7ZkyZRU1nJL7/3PVRFQRk/nr6eHjb95S90h0J0Dwyw/rLL8CkKqt3O2n37OBoIMK2qiqFolGK3G5uqisI7a5Yo1roujxMJgcq+PrkOs9Da1SXQefBg3lbd1yeqqGkKKd50k3iUMxmptzYMSdzu6RFaPHZM/NNNTaJWP/54Pp28uVlqnEMh2RevV+Zbt07WU1Ul9OjxiDzc2yuQ9vjjJ6eU33efgPHMmQL/ixaJ5fzpp6XYWVFEkZ85U9bxwx/Keg4fFnJNp+XvbEJZ9hgWLpTjhZxlXo/E6OoSh3x/v4j5c+fCRx/JIaTTchjZNPC+vrxrPpORQ2tqkrEKXZdTnw1sz9ZZm6YAejIpAN3TI9bx1atlrCIL48eOyRhFJiNCv88H556HQG5DNZT4BYQ1TazbqbSo1gVeqZM+bRzMnirPndIAZ52S72+drcOOJ8Hvg5mNAtAg5y67zoQIHxiGZTM3pUWXqgiYn2YBuk2yaYxMhpEPPsBTVUUmkcDmcqHa7Zz34x8z8QtfoGzqVGwuF6VWwrWRSjGyfz/uigrOXb4cxWbj0G9/K3XamobD7yc+OEj5jBnY3G4++cUvckBdOnUq4xcuZMY992Bzu1HsdoonTyY+MsLeRx4h0t2N6nAw4+67ufyVVzhn+XISIyMEDh3i/PPPp27RHXLCYzGYeCaDiRTvfnqQr19/PVz7A6668kq6Oo9zOBgDzUFRaVnOvh1sfQtFVSUxfMLpEBqTYLTfrhcV2mYT6/j0ORJ49s8/k/7X0+fI894CuG6xnGdVFUt6JCjrUpSTrOCKzY6nuJp/GPL52fQ/NX12Nv83Tv+oTvok8C4pwxwdQn9lI+bIoLz+H9VWQw6eFa/vhHZbfyY34mRBu3rtd7Et+BJmLCowbZr5+dv+gqLasLs92Awdu92Ooihs376d/fv309oqSsb8+fO55ZZbqK6uZvPmzcRiMQoKCmiwRolDoRCvvvoqwWCQ2tpaWltbMa32XldffTXRaDRXZ11VVYWiKIwbN46ioiKqqqro6enB6XTmaq8DgQCpVAqXy8X27dspLy9lbOwwmzcvJp2O0tOzG1W1M2/eGux2NwCa5sm10dq+fQXJZChXk62qdlpaljM09DHz5q0BFKqrZ2CzObDbndTXN9HWtoaKirMIh/vo7GxlbOwImzbdwMjIQRwOD5rmwjQN2tpW8+GHLxAO92G3e1iw4EkKCmrElhjoQHljkVg7K88TmzcmuEuh+DRRpm0egYfK82D7PQIqe1bnW2ZFesQCa4WP0fIo9bXV9PX380lnAGIjHO44QkdnLzNbFuB1KPx5+y7QvAy/8WPad+7grFPqRfWK9okSVzgud4Ov2F1UGRmOIKnV5QgoqtbfixE4PIoozNOQXtUR63EUgetmaz7DWs6HAKYbsSaPQ5TvOGKUjFuP1wDXIZbxKmATEoZ2FMioKuXeCqp8VXgdXiYVT+Lx+Y9T4CwAwOfw8cTnn2BiyURsio3dPbuZVjmNccXjmFQyCc2mcWjkELdvvV1u/C9bz/XTrmcwMsj92+6nN9wrvW8VBbfmZmbtTPb07sHn8DGpdBITiycSTUXJGBkKnAW8fOBlesO9JDIJRuOj2FCYgaj3c5Fb8ABi105ax69af/uteQLW4xLgG0ALonqvRerZs+f9NuscVlnna8Q69wAfWfM9ZZ27Jus9eNd6H+qt92eptUw5UGmaOHs3i13b5oPiGWD3Q/EM+vr6Jc27dCYPPbyCi6b5OKVaYeOrbdz34CO8uflFGppug3OeFGv37hsg1ilp1qYuqmrkqFVz3WEp0+XSoiveLzBr90hLLptPrOQz1sq6zHReofZVC8yGOuUxWGDrzdvHTd3KDTBF7TbNfH12MmQBuEteL5wg0Csrktew6q9TYdkvh0+uMUUREFbI1wNmt2Wk5NoJdFgWd4/0t/72J6I6n1g3HemS8MI/Lxb1OdItz4e7ZPAgcBTO/AZc/DQ52J5xu+yinpSBgzOuk1yGPy+R/ch+H+xdJ+egapYEEkb6oa8dm2rw+OPzGRi4g+efv4I1a1awe/e9zJo1lRdf3MnSpatZufICfvvbe5k9ewbnnjsDw9jNpZfex5o18zh6NMCNN77KoUMj+P1Ozj23hkAggdNpx+PRGB6OsXr1JYwbV4iuG/T3R3IW8UAgSTwutvRjx4K0tnbS0THGD38oMF5a6sHhUOgJDPHxQAclnkJURcWjuVj3T3dw2wXXEYhHWP3nX9MV6OfDvkOcVj6eKn8ppR6pJ07paUzTJJlJcWDwGH3hET7oPUg0ncAwDHxON3dd9E3cmpODQ8e45NRZ3HPxt4gmo/ic0upravWp6KZBLJ3gF+3/jmma2G02PA4XdtVAUT1WQnda6qgxQKvMK8+qB/pvlvZYqhtKbgMjLOBc+TN5PTMkV6sRgf7FkOkG/1cE0ON7RKFGEZh2z5TEcMUj34RGCAbvFFhXPFC1Xqzpgz+EdAdp02TZW28B8PPLLsOjaazYvj1XW21XVTRV5ejYGA6bjc5bb8VlOeLW7tzJxv376QqF6AyFuH/bNoZiMc6rqaE/EmH9kSPEg0G2btvGok2bOLRzJ5FwmKfeeIPA/PmseughTj/lFOZMn874q67ild5eVmzfjk1RKPd6Wbx5Mz5FQTl6VPzH554rhLd4sQDnnDlS1GsYedV31iwB32wt9iOP5FO2DEPo8uWX8zXLWbjN2q3tdtlGNCq9sDs6hC6zBcpHj4okaxh5RTubAGbVyuZ81I89JopzOCz7HI9LZPaGDQLEDQ1i+87Sq9Mp8/zLv8j2774bvvrVPMA/9pio4KtWCbyvWydkrCiikN97r+xnRYVc90uXwnXXoXmdzJhh4veLWl1bK+xTWSkgfeut8nvmTDltzc35zmd2uyjMlgjO0aNy2k4cI8jmxw4OClTfdJOcyhdfhHvukV11OmV3KirkcG6+Wd6maBScmmVad9jzIJ1OQ12V7KiqyI+iCDhHYgLIhztF1XY75fu1q1+g2mHtUDbsLBgRUHZq8npXv2zrxJYQDk3WfaKQqsuyql2jaPJkvLW1eCoqMDMZht5/n1h/P+csX47qdGL3eEgFg1JqmclQNnUqidFRdj/4IJGuLs5eujSnXuvpNO6KCnY/8ADRnh6m33knDZ//PGd+97soNhvn3HsvmCbxwUHS0SiKzXYSgOuJBInhYT5cv55YXx+xvj48xcUo6RQ4rIyIwBCMDdL1iyeoLi/D/o2bYWwY5dgBGsaNp3NwSNTlcIDr3/4r9Zs/4Edv7uQ3T6yzen9rAsVv/btYxO2a5DE5XNLrWnPI82/+SdpxudwC4C+sh0HrfrCoTGziv/s5GAaZRISqM85Hc/utf8E6RjqBYeh8Nv2vmT6ruf4/PJnJpIB1rjb7GrF4/0fzWsq1GQyIEt36579vzZVKYY4N5+q58RXIKGM0IjXX8/9J/t61HX3BF2QZ0ySZTPLWW28xd+5cioqKCAQChEIhamtrCQaD7Nq1i8suuwwQdXnbtm0cOHCAa665hvr6+lz9qmEIyPxtnbWiKGQyGUKhEH6/n8LCQhRFybX6yrb+0nWdcDiM16uxdetNuVro2bNvZ9eunzJ//uNomtSM2O1udD3JG2/cRVPT3Xg8ZWzdeivNzcvw+apRVTs2m5arzZ4//3EAkskgDkdBLjV869ZbmTPnjpzle8qUa7jgggcoKKgGFAwjTXd3O/X1TQSDx2ltXUlz8zIqihpQT6ypvtiyyjn8okRnJz0F8RG5YQ8fl5vwgjpRqs+7W4LI7C4LNgy5uQ508Ls1P2DlpmFUzYmRTnDv5WV8bekzvNl+gLvvf4RMJk06leJ7LQXc/tQ2CByUm/Tzlkp6uWKNWupJTJuLzU4/Xwf+BYE1OwJ7W4HPIwroTATqRhCg7ETsz+sQiM4gYVsJYCIC0AHyydkmAs4rINdQyYtAdjcS8LUcgfcUoCUjtB3/C2dXn43b7iZjZNjds5t6fz1uzY3P4aMv3MdQbIi59XOtHrY2Do0c4pG2R1jevByP5qHUU4pNsTEUHaLcW46JSTgZ5sPBD5ldNxtVUUkbacbiY5R5ygA4NnaM/mg/TfVNGBioikoyk8Rhc+TqvnH4OKQo9CHK8ph1zOXAXeRrrtuRuudTELDO1q5na6WDCGyrCJDvRJToevL12nuAqQhwh4F7EHieYK2vlXz7tHWI+q9Z5/FuYKlpcnq0E0cmDN5xEDootu8zlvL9u55ge+s7ZDIGc05TefKhGyg67QtoZY1UVZZTWlyYG7l+6+VfUlpgA/9pAr6KaoWQKZAJQvBjKJsjAP63Ndhn3guuSth3F0x/VD7zqsf6dCh5O3a2TtpIWSq15QBJheXaUTUBV4c/fx1l65SNtFVbXSeDUqHjokpn37MTa6/1lFxbpimQqydF7S4cT64lmJGyINuqno+PyOBYJiGK87l3iSskWzd98Xp4a7Fc92dcJ4+jfeJUiQ2BsxD6d8tjb7VYyCtmyLqjfQLQ56+RfT34ByieLIMO7SsE6OPDVu33TEgGwe4ibislmQJFUTh2LEB3d4hZs2oZG0swdeozXHnlZDZsWEhrayfl5V6GhqI0NTUQj6fx+Rz09IR5/fUOTj21hJoaP93dQWpr/axa1cry5S00NPhZsmQLjz56CcPDMdasaWPNmnl4PBq7dnVz1lkV+P1OIpEUum7w4YeDlJZ6KC52kUikGXdKAX/tO8hp5Q2MRIP8as8rfHfWF6gvkrZ5yUyKNw+289feQ9xy/rUE4xEGI6OcVTUp17O63wo5c9odfNB7gDMqJ2FTVXSrBjulp1FQcNg0dNPgr70HOb1iPIF4GJddo9hTKAMCkCsy1Q2dcDJKTYEfmxlC0YfEgu2eCYoD+m8F99ngnQ/2SuuzaZOwMVMXpdqI5q9oxQ1mQuA71QGZAdBqpLa65A6Bb3cTZDplO565YCQgsQ/c54KZEjC318jnIbZDarqxEzWKCaZS9IXDrG5r4/H58xmKxVi9YwePXnIJPoeDoWgUrya15l6r7WXGEMV7X38/TQ0N7Ozq4sjYGJdMnEhtQQG94TCRVIreDz9kxUMP0TM8jHfiRDh2jOUPPMCGX/+ayxcu5KbvfIcjR44w/5JLuP+557j6c5/DabPxg1df5YUPPyS8ZAm+XbtEUV67VqjuL38Ry/UTTwgYd3cLQGua0GAqJXB7991Cd1mlu71d2mJ1dQnYlpWJjHv//fla5w0b5H3cuVNisrPpXJ98Isu+957sy/jxcPvtUpedbcOVVcczmXzrrWuukfrsM8+Uv9evP3k/zj9fCpj7+uQn69H2ekU1P3JEZOKlSwXU33tPyHXiRDlGh0P6XZeU5MsADUPk4aIicDiImm4+PWRn9Wrh78pKAeply+TULVyY382iIlnFiaXqhnFyx7H16wWWEwl4912xfRcUyGHv2AFf/rLUV2/YIOvKhpfNmiWGgHBY6rAvvVTGLhZcqqMmkxI6VuDNW7Wz05FuUZYdmoC117Ioj4YkBG1SvQChw25Z3yyH0InrA2udZj6BXNfhSI+s2+XMtwLL1mU7HZIpdLSHdH0FmWSSxPAwn/ziF0y/7TYUmw27x4NpmoSPH+eTX/xCEsBdLhx+P6lQiC1f/CK1F17IzAceYPcDD9D52mtc/sorfLh+PZ2vvUbD5z/PzAcfJD44SH9bGyMffsi5P/pRbn1nfPe7+MePR08kGPnwQ7y1tXirqwW8YzHsHg/u8nLSgVE86Cijg4y/4mpe+t3vmP7xDvZu+hNf23WYA0eOwuH9UFDEzAsv5pFHHuGiK78IqYSEH2/+V34d1fj9lq1sfuGfBZQ1hwSYmaa82f5CqxbekGUKrP/f2c4zLzwFu/4s4Wjf+KGEm738GzhlCsa5LegOByYmqs0Opkks0I/m8uHwFqGoNkxDR1Ftn4Wa/SfTf1Vz/Rlc/x+e/rMe1v9ofontV6TmGstKnu2J/bewfvlVsqBqKT/pFPrWf8eYeyF6cSmGYdDT00NhYSFFRUU5OO7q6qKiooJ0Oo3XK+gUi8VyfazD4TCRSAS/339Sn+pMJkNPT0+uD3ZBQQE+n4+PP/6Yrq4uZs+eza5du5g9ezaxWIzCwkK2b99OS0sLPp8Pm81GZ2cndXVV6HqUZDKI01lIf/8+CgpqKCwch82mMTz8KW1tq2luvhe3u4xMJoHXKwqWhJ7V4vMJHPf0SBBZaelkRkc7aGt7lLlzl1JaeioAY2PH0DR3rs1WQUENPl8VmuYhGDxm9cheTlHReF555fs5AL/ysqfRIl0o2Z7WBePkRt7u+vs3LtvHV7VLeJJiy6ca2zT5e+yQ3GBf8ozcYDuLINtuqGcHvPJlmHQlzHs+H1Z23j2i3inqST2tueQZgQ4rYM0oOoWPHF7cSP3uSqR2uBsJxzoNsYDHsEANgeliBMI1BL67EMjUrHmzdvJOa513W48diPW5GjiVvIqtA/sRhTcJGOk4WiaBqqgoKETTUXRDZ//QfmbXzSZjZBiNj+LVvALMqTCFzkKiqSiNzzTywY0fUOwuZk/PHmbXzQYgnomz9I2l3Db7NmoKarCrdjJGBofNgaZq7OzeydTKqfLYpqEbOmk9jVtzk9ST7OnZw9TKqXg0D4rTzw7VRjmiPC9D1PsSxJqtIQMJd1jPea1j15DgsegJ57oCAfLV5BPTBxDFO3uObcAt1k+FtS0HcmufvcXpR1RrBbGkL0Xs/TuA5/UEBemQfK4SQzDwFvgmQtlcgUibS8K5MCAdBleV1P2mg9Kb2u6XwC9Vg+hx2L9CUr99kyB8WNTvKcug4BQIHxF1u7wJhnZA65eh9kpofAD634CyJglLm/VLcq2vssFkJ/a4NtLy3ZS1jiu2fLJ46LhYwG3OPAwr5IPRNJ91ZixV2iGOB+KD4hYpnEAO3E8MUMuuX3XIeUkGBXyjfflAM7tbXCbDH0kZRyqaD1czDNmGp1IGy9oflu8Ad4VVjz1T1mHoYit3FkkyeGJU1qMo0jngvKUyuObwSbq45pHtuctFKf/c4wBEzGLCkTRut4aqSp/itrYuamv9dHUFaWgoZOLEYuLxdK4ftcejUVbmIZMxaW/vprrax6RJJSxatIk77pjD2rU72bhxP9dcM4WnnlpAZ2eQ8eOLGB2N43LZ8fkcDA5GKShw4nbbOXp0jL6+CHPn1luhylH8fifRaIrKGjcZMgTiYZ5ue5GtB3by1JfuptJXwvNWL+sybxEuq29qIB4inIgRSISZVnMaiXQK3dTpGO5ias1pABimSV9omF/veYVbz/8aLs2Joigk00nCyZilSNv4eOAop1eMx2lBdzbwzKba+KjvEKeWj6PYpWLPtsGyl8PoWuk9bW+ATMcJIWeDVgjZUrBVgWplCJgpUaHNeD4EzVYjVu9MD0TfAm2i1QPbJmnj9jJp2aW4rLC0VbJNxW1Zxd2iZlsha/Gy50kYdm589VU27t/PdY2NrL/sMlRF4WggwIrt23l8/nwGo1HWtLXx6CWX4NE0FMCuqhyx5lnW3EyZx8Ptr7/O8uZmqgoK0FSVWDrN3W++yZ1z51LlcnH6+PE8/+KLXHf55QwGgxjWveDXvvpVzmtp4cjEiayZNw+X3U5bVxezKyooyWRQFi8+GVZTKQHcbO/nSESosbMzH1Y2YYLIqdGoAGq2EXNTk4BwICBA2t8vy9x3n0C33S6yqmEICRYW5ttjHTki8y5bJjJsllI9HgHcri7Zr85O2eby5QLj+/bJdg1rkK+tTVK+9u0Tis1C+9q1+X3/W6rdsEGod/9+kZePHpVtZPtyp1JS+JwlWcMAh4OQ4md7q5rrNz1pEpx9Nvzxj7KaaFTE+mz/6UxGTpvPJ7s2MCCnN9v/+pRThLVuukkO6aqr8rlyWWCvq5NTUlgobv7sod17r4whzJgh4wI2G9jQ8aatQLN0WmqiTwTfYERqsMfViPqcSJ0MzjKylT+3imoBYUrg2JEddDDzoJ3KyDaCEVG+/3abLodAus0Guz9EnzwO3e3k3YcfZvL11+OtriYVDuPw+1EdDt79yU84tmkTF/z853gqK/nkl79k+p13yn8BRcHh8ZBJJkmFQriKi8kkk7nAs4L6elKRCOlIBM3nw+7xsPv+++l87TVZX3U1sb4+SqdOxeZ0oieTOZt6tj92UX0dyuGPoKCI8efO5qUXfsP02XMYfG4tp/zkCUb7+7ErCmYqQfXkM2j9xdOccuF8OWcvPCWp3rMvwn3z/XQfPEDpWB88v0YSwwf7IDQKxWWw+fdw2VdgbDjfO9tfAkUlcl5//6yEm1XUQDwqwWZOF8bYIOapZwEmhp6h/5N3KJ1wNplkHG9JLel4iMHD7VScMgvHZ6nh/3D6LNDs//LpP63N/gfzoyjor2wk89MHMbb++8ltvk6s526+CBMw0ynpt51OYdrtqHM/h1laTjAYZMuWLXi9XoLBIKZpEo9LTVpDQwNOp9zMBINBurq6SCQSDAwM4HA4KCkpYdy4cbnabKfTia7r9Pb2UllZidfrZdy4cZSUyIVeUlLCZZddhtvtpqWlhVgsht/vp6ioiIULF2K32wkEAgD4/X4MQ7dqo+8nGh2kvn4umuYhk4mTycTZtWsd9fVN2O0unM4C0ukYmzYtIhjspKGhhYKCWux2sY7W18+lsHA86XSMaHQgZx03DJ1UKkZx8UQymRhbtiymsLCekpJTcTikbtpu9zBnzp0Eg12Yppnrfd3SsozO3j1kCsZhztsAhafKjfF/BNYggOwokBt2px8c3vxvm0NuwttXCBwbGYEGVZOf2LDc8F//Acz6sUBBNqxs71rAFJVv5jIrPG25LGd3WYFma1DMDF0IsK1E6nhXIi2h+oAjnNxCqgsBw8VIvbCOqNzTEAi38IiHEbDuJ6+yeoEHkHZRE8gnhN+KwORU8kFdTkOgK5aOcXj0MO/1vZdrhXU8cJybNt9ELBPD6/DSH+nPWb0rfZW8ePWLxDIxFm9eTGNFI13BLtq62tBUjdtm38a6XesIJAK47C4Go4Ps6t5FUk8yp35O7vHRsaPcvOVmMmYGkOTw6ZXT8Wge0noam5FmlmkyhAC0B1HtdyPK/XgEukeQQYVB4CbE8l6GWOXXkIfu26xzla2bfgip2+4DbrDeh4eRWuxhpIY7bW2z1XovDiMwPkA+0OwrwI9ME2d8AFQXRLtg/8Mw7mtQNlvAVbEGcTQLQB0l+ZHuyFFRmTMRGN0LKOBtEGt3rFeW+3gV9LwM8V75jPrGi/X83SXgqYcFH+RbcTV8VcK7Tr9d1qXY8gq4nhT7dNYWrjrI9bnWLdDOtuTyj5PrwzQgcESWzfa7dvjzsK5aoWjBo9ISy1Vq1Vhbg8d6Km/5trkF6MNd+YCyVFDqnrPBYprXOh9xUZ1jo7IeMyN27XAX7HpIXneXyXW2Z43sc7Y2OxOT+ur4sEB4tF/2wT9Ovgs6Xhanid0l50hPCVhXnWBBTwUhFUJRFDRNZceOTg4fHiESSdHYWEFXV5Dm5gYmTCiio2OU9vYeZs6spaqqgNJScQyMjMSYNq2SgYEoAPfe28zQUJRly1q45pop3HnnHAKBBHa7yq5d3cRiaT74YIDOziCHD4+iaSqapjI0JOtJJDK59GGXyy5K+WAMh02j1FvEvRd/m7dvepazayfj0hzsPPZX6WWtqvSHhnn4jedJpFMUuDycUlZPd3CQn/7lX3DbnZxVfSqGFXiWyqTwaA5ubvkqAB/0HsQ0TQzguV1/YiQaxGV3clbVJFx2x0lgHUlGSWZSNNacigns7e7AVAvBPUvAOvKyKMuKAul+eWwET2jVtU7q4TEEkAduk/RvxQ0ld4LiF/XaiEg9tqcZ3HNEyTZ1abeFAYkPROm2VYqine4TNVwfFrBWbAL2kZfRjRSqorCspYVrpkzh7qYm7IpCMpPJ2cNDySTdoRArLroIgJu3bOF4MCg5DdY8K1tbCSWTOZt4XyTCja++ykcdHcysrWVVaytrH3mEGU1N/H5kBJfHw/rf/57OYJDQ6CgfvvceO5JJ5tTVYZgmA9EoZ1dXY2iaQO3y5flQs+pqAdtUSujuxASu7m6B0RUrBBzKyoT6mpqEFJub80W/H3wAf/qTrOv55wWKQZaz2YQYs2FlLpfYvrNNnVeulHlvv122WVQkcm5NjTw/frwo6/X1AuvTp8OhQ2I1P3pUHr/0kmzb5ZL9euKJ/L5HIqJMZ63e990nQD40JMum0+QKqbO9srN9s6dNy14osHMnqk2hrk7gNpsF98EH0jY7FJIW3cePi5p88KA40w8flsMH2cWenvyhhkICxs88A9/8pmymvz+/K9n23vE47N0rnL927cntv7P5c0ePShcnM2sF1zQBXkUVyO0egGI/TKrL2701e771ViIlEIwi38fZvtaptIC1ZheoDkYEyC2rd+49riy1wNoaiM0GqiXTcNyqXZ/ZCIUFZJJJpt95J6rNxrsrVqAnEqRCIYxUinN//GMu37SJ8nPO4ZNf/pLSxkbig4PsfeQRkiMjpMJhRj74AD0eZ/eDD5IYGWHabbcR6+8XF2cgIIFodjtGOs2Me+7h8k2bqDjvPFwlJRRPnsx7jzxCpLOTkY8+onjyZFwlJRRNnswnv/gFBgpmtr91KgGtr4HTRcU3bmLG2WfzL7/+FYwM8G9Lb6auspJTmj5HYGSE3v4BadvVdCkv+eopLSmhZKxfWnE9tEHehzf/JLXXm38vEL759/nwMl+hvK6qYhm//lYorxL41hySMF5cinnKFFKxID0fvkk6EcVdVMXwkb1W3bXCYDbsrGMPpqGjZ1Kf2cX/J6bPlOv/F07/ldptplKQTpF7b0MBae8193MopRVgGiQ52ZK9YMECVFUlGAyiaRrpdJrW1laam5spKJCb8Z6eHsaNG8fY2Bitra20tLTg8Xjo6+vLKdDz5s1DVVWSySROpxNN03JW7+wy2d7XbrebTCbD9u3bmTNnDi6XK6eSQ4pNm/IqcdYOPjp6BJerEI9l7RWVuo5gsJPf/W4h1167icLC+pwNPBYbYvv2FcyduxSfrwqHw8emTYtoabmPoqIJRCIDuFyFbN16K7W1M5k06VI8ngoCgWO0tT1Kc/MyQqFu/P46iosnYhgZotEBvN4q64bXje1EC/j/7KSnYPRTAex5zwtcxPrl5nvmMqnrLKgH/wQJSGpfkVe9NB+8fQtMXyJ2V5tLIKP9IThvKaa3hqiziLjmxkTgLqtAjyG9qG9DoPpSRK22IfC7EbgG2IDof0fIt3+qQgCvDgHEKKLM3olA5XHyLbu8wOYT1h9A7OjXJ0MkUjECyQAdox2Ue8tZu3Mty1uW0xXsYuHvFnLNlGvYsHADizYtYuP+jVwz5RqeW/gcJmbuuU8Wf5Jb/on2J1gzbw0+hw/DFLt3W1cbU8qn5NTqsfgYRa4iVFXFptgwTINoKsqHgx8ys3ZmTu1WbE7smpu0opBGBhliiKofQiAY6/gUBIC/jli8s5XAbUj7si7rXPUirbei5NPVdyBtvq5Ceo5nl5uF6LLtyMDIIALtTwJPkwf9BmCSoeMJ7gffBOlNXXKu1DEP74SiRhnYGWqTMDJPHUSOiG18yjJwlsK+e6Tm2hJ6SQ6Kkm231GFFFbVWj4qifcbdsq2MBbt6QoB+ynJwlsN7t8q6/VPyVm3/OLnZ1JPkgDLbVgvrl27ZtPX0CW20auWasLkEoo1MzvqLaZ687lREgFUVy5vc6IVg9BCUnCqDWnrKgntFgFlP5RVpMy0AjpG3eds9onBnbe2JUUgEwV9/sgXc7jq5/d5FT0nSuK9GHAOmLrkL590lSnVBnVzDigJ97VB1nhxz6JjA+kVPkTIcHOgI53pVBwIJdN3ANKGszMPu3T3MmlVLe3sP5eVe1q7dyfLlzVRVFaCq0N7ek1OtVVX6WNtsCk6nHVVVSCQyaJqNnTu7aGysIBJJ4/Np7N8/xJQp5TgcNjTNhqapHDw4Ql9fhNpaPz09Ierq/HR3hzj/c/UkzQSjsRDPt7/Ed2d9gcHIKJW+Usp9hdhUO3ZV5f2eA9z272v53KRzuffib2NXbTz0xvPMrD+TS0+fm/s6fOztf+Zr5yyg1FPIur+8wD0XfQvdNPh44Ainlo1Ds8k167Y70THJ6BnCySiJdIrn21/irguvxwSiyRheh2R0lHuc1kcse6OoW62zagW0XTMs5XoNVFoFH/F2sX2bpoSTKZpYv1WPwLhaAOGXRLV2TZfPk+oVoI6/C+7Z1nr2SFq4WiAXV2YIbIUC6+mDkB4g5WwiYTqIpdISWqaq2BSFaCpFxjD40dtv88SCBWQMw8r1U4ikUmiqitNuJ5ZOc9cbb7C0qYlyj4f3+vpoamhgR2cnX/7DH6h++204fpxMJsPcOXNIzp/PS8eOcYGu0//SS/SHQlS53Xzr29/msm9+kyqvl65QiNVtbfz00ksZiccZDga5sLoaJZkUS3VDg6jUx4+LPfqEtlPU1MjjlSsFyu12gbasTXzNGpFls1Zym00KgNesEXBdt07SvlVV5ps5Ey6/XILGdF2I8a675KeiQhTnWbMErCEfWKhp4nnOqtdVVbKdE9X3urq8Ep5VuG+9VfazokLk4dLSfE/vvj7Zt/XrZb87OmS/V68WG7lh5G27WenZNAkV1JykXM+dK4ff2SmH19kph33zzbL6Bx4QgP7pT6Xu2uORU53teObxCPvffbechupqSwQO5kV+p1N2JXtKYjGZ9+675e07UZD/7W90bKp132giK4vGBXSzgZK6cXIrLYeWV52z7bkaqgWgs222Tht3ssqd0S23kg49g3BqQ171zqrUINs83Cn12YU+SKVJO+0Mvv8+5VOnsvsnP8mrypZ6XDp1au5/g+pwYKbTDP/1r+y85x7mPPIIZdOmoScS7Fu3jq433qB53TrKzz47d5JObK815YYb8FRVYSSTmKbJBz/7GVNvuQVT1wkcOkTR5MkkRkb45Be/kFZcJSVoPh+Lb7mFza++Sv/gIKUlxRT4Czn80QccOHSIb33nu4x0HcdvpPnlD75J450Pcnz/h1x97deIu7yoDgflfj+Pfe5spn//VvAXwcYNcPm1olhnrAHoF/+H9LMeG5bnAyMw8XR5k49+KiFm3gJZdv7VUFIGioructH70Vu4i6rwlY/HpjnJJGM4PGItT0fHGDzcTvWZnyOTijP0mYr9H06f2cL/Pzrl+lzbbX+fKp5MYpryDxjTRH/13/I28YVXY5oGadV2EiQbhkFBQQGJRAKfz8fmzZv55JNPuPHGG3MA3NzcTHFxMa+88koOyi+//HIURWHz5s3U1tYybdo0UqkUb775JrNnz84p1yfWYC9YsIAtW7Zw2WWXsXnz5pMAf8uWLRbQe4hEjrF9+wqam5fh9VawdeutzJ+/jlhshGCwk9ramSiKjXh8FK+3jK6undTXzyUS6aOj43UmTZrPtm0/5sCBl7n66hepq5uNzeawBh1Murt3UV4+BVW1YbM5yWTipFIRvN5KMpkE4XCP1Tvbw1tv3cuCBU+i6ynWrq1iypRruOKK53A6/X/33vxPT3pK6jxBUoPb7s/fpJ9zO+z9KVzyLLx5Q77e85KnRbW2OQWo9zwqyrW3CkJdAiK+GhKA4ShAR5TkOAJs4xB1OYVA4wdI2rUTUZeDSO11AVJvvQOBvCIEHm0I4L2LqNoZxO5dQb7V1Jes9UWRPtnnITB+EChMx/EkApiYaKrGki1LcgD91IKnWLJlCXc33c2pJadyNHCUFdtXcF/LfYwvGk88E0c3dILJIFXeKjJmhsWbF9NU38RVZ1zFQGSAvkgfs+pm4ba5SRkpYukYHwx8wOy62dhVOyk9hcPmQDd0FEVBVVRaO1upKaihwluB213KcbuDNeRTwR3WuXoXaaPlsR5nBxaywBy0zptpHXcZ0sP6Oci9D6p1nqoQ6J5jncN2YAaiXncjNvoMYh3fYW13CLGk34MMmDSlxvC/ezOc+7RYu0fawVUjCrNqF1Xa1OUz5ioT6I4cgcqLJfW760Uob5Y2W55a2L8KZqyD5IjYv0tniipu6lJ7rafFUh7rlPZcGBDtBK0QnCUQOSZg7psoZQyOgnxLLF+duCsUBJSz9nDFJj/ZOuhIn9WaqlTO1ol9sPVkXq12FIhanS21UGx5+3h2vbnXLCDPWs4VGwSskoyZy6CgQQawogNQM1teT0flx1kkrboKxgkYZ2vGE6Pymmq5A3p3QUGtHGv1HAH4RECOwzQEyGssmMwGtoWOCMSn4xKaVtsMoeNEMj7+8l4mB87LlkmNdDKZQVVVjh8PUFTkorjYxeLFW9i4cT+bNl1LXV0hK1du54475uRqsMPhBImETjyeYfXqHTz55AJsNoVoNJ3bldtu28qyZc2cckoxqZRBLJbm7rvfZOnSJrq6grn9yK63vNxLUZmGozBNV3CQEo+fAqcHX1ZBTqf55Z6XufX8r+F1uMkYOolMisPDnUyrOY3e0BDVBWX0hYYZsOqw03qGjpEuGqtPJa1n0A2DQ8PHmVp9Wq5ndqmniNqiCpKZFJFkDJ/TQzKTxKba8Tu9RFNxHn/nt9x6wXU4VINChw1FMeWCzByTZG+39blVnGL9NpOgFllw3C512No4UbHNtPwonhNs3ncLWKOIip34QFLDMSyniCIBZqo1DJf4q6SJY1qtu+pAawBUUpkoBwLQGQwxq7YWA+gPh1nR2sq9zc2cUlzMkUAgV4Pt0TTsqsrhkRH6o1Fm19VhV1UUYCASIZxOs6q1lWXNzfSGw0yvqsKjaaR0HbuqkshkuOuNN7irqYnuYJA6vx+PplHh9aIqCoZpsmjTJjbu388nixfz8DvvsOy88zhjbAzlb63dN9wAF14IX/mKKNG7dwu5NTRI2FjWn7xmjaRyZTIC3Hv3CrSeWMN96aWiUmdrtLPKZrZH9dCQgPK994plOxuQloXjpUtFpR4ZERieOBG+9708QT7zjMyb9U5XVMh6W1sFqkdGJKDNZsvbm6NRIdJbbpGm0uXW0Gl7u8zb2yvzKIocX9aeHovJsc+cCS4Xcd3OoU4XXV0Ks2aJ0rx9+8mnoKJCVpXdxNCQrKaiQkDa6xVWzzrRly6V+uodO8StfviwAPqjj8p8WaDO2sXvvVcg3OUSAb6sTPh/1iwoLNCxo6Ok0qIaF3jle/RwlySBuxyiPmfk3jP3WkO1KNOHO6UlV0WJAHMqbfnNVQFwTcv3vHY5TijzIT+lM3n7OEi4mVOTbWp29FQa3dBJjI7iKChg5MMPKZ06lVQohMMSglAURj7+mLLGRrkPttkw02n0VIp9a9dy+ne+g7e6OgfN+9auZfL11+Orr0dR1VzdtW/cODzl5ex/7jnO+M53crv0yS9+wZTvfx9PTQ3D77+Pq6SEZCBA+YwZGMkkjlgQZXRQgsjsGgz3i2174ulgd0A6BfEIeK0RkMP7pU/16dMlIfxfTqiZvvLr8KNF8MOfQP0kiMfA7QGXR05cOi3BZqYJo4OiYl96FYQDUF4ty553Pnz9FtAzGE4XupkhnYgyfGQP5afMwuEpxNAzYBqomssq4zLp+eANgn0HKKyeTO3US7HZ/xcISf8fmT6D6/8XTDlQttlytdP/ndf+0brMeAySCfD6JJxgbETCzFouxgyHUSqr0R1OEqlUbrlUKnUSRHu9Xhk5t9kwTZOPPvqIrq4u5s2bRywWO0ltdjgEWCORCG1tbcydO5euri6Ki4tztde1tbUkEolcL2tJojVJp9P09/dTW1tLPB7nmWeeYfLkyVx++eWoqo5hpFFVO6+++gM+/PAFFi/+FEVRcbmK6OnZjd9fj9dbbgWZLaewsIFotB+HowBN8xIKdRIMduH319LauoqWluV4POUWqOeV7ZaW5bjdpfT378PvryUU6skt09x8Lx5POYqi4nAU0Nm5Hb+/nrKy0/5z1Trbe9fmODng7L+asgFo0V5Rrmcty6tcdo/Ulu5eaYUfDQkUZOf500KB8c89LjbX3aswZy3HKD6VsJWy3oVYuWdCTsleAdyLAOAvNm/mj/fdh24YJDMZbr3rLr7xzW+yd88e7rn1VgYjERyKwoqf/pQLLrooF9qVBXIQtXodAvG9SJ3xMiTE66/kVXN3MkQiMki5txy7YkdHJ5oS+2qBo4BwKoxu6qTSKUo8JWTMDHbFzmhslHJfeQ64lzcvp76wHt3QMUyDscQYh0cPn6RkA7jsLjoDnVT7q1FRGUtIwFkik2Bf/z7OrTkXp91JLBXDpbkwNR832uw0IRbsfkR9XmP9eBDr9lRkgOIjpBf4QeuYl1rz2xBgrkfs5B3ka9QnIAMSBdb52oMo21kwVxEYz1YrZ6xz/APyzoJnTBMnBp5UCGJdlrJ8pwSbqZpYlPfdDWfcBc6KvKrsLIPAB2IdV+yiTLvKQI9B98tQ90XZuuqE5JAo2TaX1HO7q5F6VB3evwMm3yrJ+HpMws2m3CufwaqL8sFoqbAo3O4yy7JtFRdmleQTw8qyva5zz9VaEJ7K12VjWjcCijwf6QH/+Lz93FGQb7Vld0n5RRayEyOicnurTs4ruHg9DOyFypnkgqx0KZdh223Su95VLI4R0xBF2lOZV76NpPWaLsccPC5lHM5i6N8D5VOlhMRISxp44ThpF1Y0Udb31mKp2T7jOnjrJlJVF5I47VtEo+lcmNjcufXY7QrxeIaxsQTFxS7cbjvxuM6ePT00NTXQ2yshZu+/38fjj38ewzDJZCRTo71dQsoKC50cPTpGb2+EWbNqsdttVFev5cUXr6a+vpDVq3fw6KOX4HLZsdkUFEVhaChKLJamq0tC1RYv3sIFF9bzzW9PJaWnCSej+J0+TAwr00ACzdwOFwowFgvic3pRFZVPBo4wteY0DNPANE1i6QQ/e+d3fOu8K6jyl9EdGMiFo1UVlNIbHGI4FuCsqkmEk1FKPIV0jvXzqz2vcOfnvkEgEeb5XS/x7fOupLawHN000Gx2nGoGTT9mhZlZQJ0+DqOPQeky6U2t1YLiFft3NqBMLRbQTndbLbvs8nkwo1J/baStOuxHpb2W6rYA3GUFoSHA7TpL6rNNXcB+5KcyP4pc0WoBkcQY23szNFZUYFNVvA4Hg5EIjc88w5WTJ7Nh4UIWb97MbbNn01BYyLu9vUyvqsLrcKAbBru6u6n0eqkuKMDrcPD9V17h5QMHePHqq2luaMC0LN4FTid/7e+n1u9nfGGhfMcoCmldBhjtqophmqiWMn7XG2+wZt48NF2nJJ1G3b07D6Fz58p1HI+Lv7m6+u9rqm+4QR6vXSuPm5ryYDthgiR+b9woCeNr14rPOR4X6TUeF4t1cbHAeCZzstT6wANiA9c0Ad2sJNzUBP/8z0KcP/+5KMtr14ql2+2W9WXV0XhcAD2TEcm3qkqe6+3N02h5udCp1yvHeOutAvIul6jaWQX9xFSyJ588uch5+XIiFRPZ/r4vV5peWCgMvmiRBKe/+KK40k1T4Lm3Ny/GZ1t1maacoh074Otfl0Dz2bNlHMHhyNdfZ0/z8uVSBt7fL9v0+eQQh4bkMD0egXvTBL9Xx5ZJCdCeCMKBsCjTPs/JqrXTIVCtqnlVGwSmdUMC0OqrLKuyXWB7NAQlhfJd2dUvEG6YEojmdAh0x5PyWhbCE6mcIp5RwMAk2t3N/g0bmLJoEb76eiJdXfL4+98nNjBA2fTpxPr7c2p21uYd7esjMTqKp7KS2MAA5dOnY6TTjO7fT/GZZ2JazhCby4Vis7F3xQqKzziDqrlzcVdU8O5DD3Fs0yYaPv95Zv3kJ7Ld555jyqJFOIuLIRHDs+W3YtvOQm3HfrFzv/5vUgftcEpQ2eZ/FVW5qETegH/7BXz5e/J6Jp3vavH7ZyWYbLBXrN9XfQecbqlbP/wxjDtVAPu36/NQ/rXFkir++2ct1bscjh6ACZPRHRo9H54Azo3z6Nv/NiXjz8bpK8Zmd0jZZGT0s/rrfzB9Btf/l08nW7wvRimtyIeT/SevZV+XemsTbHZpPZBMYo4MYUZCqLUNYNcwUwkUmx2j+zgERlHqxpH2F5EywW63o6oquq7z+uuvM3PmTIqKirDZbKRSKZLJJA6HI5cGnm3dBdDV1UVNTQ1bt27loosu4s0338yp0BdccAFer5fu7m68Xi87d+6kpaUl1w97bGyMtrY25s+fn4P15uZmwuEwlZWVOJ12UqkgyWQQr7eSYLCL1tYVXH75M4RCnezYsYaLL34EVbWhKCo/+9l4rr76Rfz+OlpbV1qBZafJeTINNm1adJKCHQgco6hoPN3du/jDH77M5MlXcsEFD5BKhWlvf4KLL36EdDpCR8fr9PTs5qKLVjA09DH19XMwTbDbnWia+x+/sSfavGcth5LT88//d2A7C+amYYWgpaBvp7QwmnSlKHYgycepiDz2VsNbN0m6sbsU/nJHDhiMec+xxemnAakNVsgrr1mLcxooN03GlZayads2GqdO5fixY5x7+ul8OjRE8xln8PSvfsUFl1zCJwcP8sVLLuHpAweY6XYTQhTuGALoFpLQD/wYeBl4EVFgo+STsCcloxgYOft2KBni7jfvZuncpUwqnkQ8E6e9p51xheOo9dcyGB2kwlshn0XVjolJMpMknAzj1twEk0EKnYW47W4URaEv0kcsFaPSV4mmamg2jYyRIWMIopqY/LX/r5xXcx6qojIWH6PEU0JaT+OwObA5vERUOw5FYZd17gbIw+8gotJ3kg8um4iAb9ZmX2u9pRlEpZ6DpIWXI4MSCWv5rAVcs577gLxind12pXVeCxCA77O24wZ0U6cwOQapMdgyFZr/CMXT82Fl3S/B4DsSOPbqmdBwDZzzBMT7IN4j6rPNJSCZCoiarTrFBq46BRpt7rw93O6xAvmcVj21LhbswVZo/ZKEm818zlo2Y9m76+TznI6KPdvk5MTwVChfe511hZgWQOfSw818GFrWGn5SWJlTgFfzWqFlmiyTDdcx0haYyydA6rEPw7trJMVbs44rFZb98dbkP9FjB2TAoLaJnK09GZABr0i3FYY2Juqz5hYINw25TnevkgBCTwX85XZpvRfpkXW9tUS+J7IhhtE+qdH21ZEKDfFprJEVK7azdOlcqqsLsNtV+vsjuN12iotduRCzrq4Q9fWFlJd7uOuuN3j00Uvw+WTwM5HQ8fk0DMMkGk1z111vcNddc/F4NMbGEpadvIWuriCzZtXlANzvF5ttJmOwe3cP9fWFTJhQhGGYpFI6fX0RfH47BWUSSuiwa4zGgngdbkzT5MDQ8RwMx5JJaorKSWXSgIlHc5HSM4SSEQkhU1ReP7CTSn8Z02tP44PeQ3QFBpg9rpEKXzGxVBLNZmcsHsLrcON1uNjb/SnF7gKq/WWsb93Il6ddQl1RJTZFZSg6hkdzUea2ocZbTw4zS/dA+hB4LxUr9+C90h6rf5HUXRdcB1VPy3tvpi2LeD1oE/K2b9d06+Luk57XihMUh9RTD94NpXdaoWnHrF7Ys0TRTnXk670taI/rDtKGyZFAgMdOCCwbicVwaxo+axA7nskQTCbxOxy4NY0jY2OsbmvjnqYmesNhJhYXU1VQQFcwSFcwSK3fT08oRK3fz6rWVpbOnUuF18udb7zBswsXYvsPAtNWWvNV+3zYVFWC0yIRfKOjIquuWiU+5eHhfGiXyyXFu9nU7qeeEpBNJASQ43GhvxMTwZ99Vpbv6hJQz4LqmjWybpdLQDhrQZ8wQYLNsr2Ss9c+CIik03JP5PfDkiVSnFxWlreMa5r4qrP7kYX+DRuEPE8MTbv99rzFvaoqH4x27735nJvVq0+WjrMJ5NkQM5dLCPn112H3buJP/wpdsRGPKwQCMi6QzWbr6soHl2cXT6Vkt6qq5PmHH/77oLJYLO9mnzhRDsHhEPPAkSNw9dUC1tm8NY9HTqnLRW7q6JB1rH/SoLTYkFOayohanE5LgrdTE+hNpcWiDaJGF/oEfrM2+M4+q9+1XdZhU8U6ngXk+ioB9YPHxe5dXiznU1XFgl7ok9eGxvKW8kOdoqKX+EljoicSvPfoo5Q2NlI1dy6eykr2WEFmDZ//PKd/61v4J0xAj8cxdZ1969Zxxre/TWxgAE9lJd66OhIjI7iKisgkEuz76U854zvfwVdfT7izk48tpdpdUYHN6STS1ZVLIHeWlLDvsceYfued2F0uht57j9bbbqP2wgtpXLwYM5mg0OdC2fyvArVlVaJU/3Z9LqyMry2WBO+P3xPgvVxyJfj4fTj1LNjye/j8NVBWKf+3VEUGIA5/BLUT5Fz92y/EFl5QmA8vy/59+bWiWus6pJOSNH74Y6ibAPE4emkZqUSYocPtOeU6GRll5Oh71Jx1MTYreNIw9M+Sw//B9Fmg2f/tk9W72ty/D2P7WyeHk/0nr2UVanNkEP2VP0iLrkwGMDEjIRSvD33LnzADI3Ih2mwo/iKUiadhtG3D1HX6+voYHR0llUrR3d3NpZdeiqqqbN68mVQqRTQaZdu2bUQiERRFweFwEAwG2bRpE8FgkPr6ehKJBHPnzmVwcJDm5mamTJmSg2hVVRk3bhyxWIwDBw6wfft2IpGIlXTbxv79+0kmkyf12G5oaCAajZJOJwmHe9m27X7Gxo5QXDyRhQs3ALB9+0pqa2cSjQ6wdeutRCL9XHPNH2loaMn1sN61ax2GkSGZDNHZ2Upz87IcfHd370JV7XR376K2dhY33vgBLS0/xuerxu+vZ8GCp4jHRxkbO8q0ad/kssvWo2keCgpq2LTpBoLB4/91wIOeygeUta8QK+7oAXj9uwLdeuo/X97mEGB2+gVMendAWaPUZA7tywOHYhNY2fWQwMdFT0nboGyf3jOug5nLMBWVCvJwthtJ8nYhKmpWVTaQWr7BQIAoMBAKUVJayq54nOGhIS685BJ04MzTTqOwqIjgli1oSICXCwHrGHAzEthVjlihjyA255sRIL0NqMqkCKVCHBw5yKJNizgydgSP5mHFRSvwaB5CqRDD8WGmVU6jwleBbuhoioZdtaOpGpFUhMMjh9ndsxu/y4/P4UNBwTAN7KqdWDoGwKmlp+LRPGg2DQUFp92Jy+7ig4EPKHAUMLtuNnv79pLUk5R4StjVvSsH4bppMqAo3IQo0A3W77vIh4t1ItbtlxGV3kTqpr+BDDgo1nm1I7CsIip4dqCjknxQnI6AtGbNY41b04xAux2xm+uI4l2H9C4/YppoJpAcFit28x8lxTveCx/eL72o678MZ/1IAscu/wTOeVw+Z/Ee6Vk9skcSxJMjEkaWCoqVHFPU5vfvlMTwdERSsTFk/e8uhnQof5NbNgcWfCjhZjbLRq4nxYKdrbXWvHJNBDvIJX/rSXk+0mu13LIs7Kmw3GA4/DJPKizLBI9aZ8eUeTWvlcSvWGFnqiyvp6wabeS1bEJ41pNoc0LxqdKXOjYoynHWqh44LKpybFC27SwEX4Oo/EYaBt4VWPZUSBjatlvlOtTc8vutxbIf7z4moWeaR/bz3Dsty/hMwAYtj8LxN6T1l+YVx8rmr4PmJVXRxIoV29m4cT+rV7cRDCZwOGz09ITweh0MD8eZNq2Snp4wZWUeVq/egaoqrFhxEQBtbV0cPx7khz98jY6OMQYGomiaym23zWbNmrZc66677ppDVZWP5uYG3G4bM2ZUk0hksNtVdF3AuqLCS09PiFgsTTpt4PHYmTSpiPJKD0ORMQ4MHSOZSeFzeHBrTnxOD1OqJvFRfweJdAqP00lfaJjVb/+a4ViQaDpBOBmhzFOEXbWR0jPMP30up1eMJ5VJM7XmNC4+dSYbdv6RrsAgsXSc/vAwP9/xB4YiYwBU+koJxMNoNo07L7yeuqJKdEOnNzjEz3f8gZFoEBM75t+GmXnmQsFVEkimj0LlU/L5rVgnYF2xRqze6WMwsFhCyuxVYh2P7wbNcm4M3gr2aulZPfBDAWvVB1U/B3u9wLTil+UHFsv67NVgrxULeWYEMNAtx/qq1lZm1tbSbwWRxTIZFEVh0aZNxDMyKFjodOJ1ONBUlad27+b8hgaqfD7OHzeOap8PxTRpKCykZdw4Hmtro8LrpScU4o45c+iPRLCrKstaWtjR2UlS13NhaMFkkpWtrbne2sFkEpuiSLsvVcUoLhaw3rhRVN5saNfwsFDdmjUCzcuXC711dEhf6VhMyK+mRjzL2ebNo6MCzLNmiUc52+Q5GBSYjcUEVmfOlNpuXc8r2ImE3NukUjLvjTcKgRqG/DzyiKy7oEDAPZXKh495vQLJQ0PyW1FODk1zu09uKp0dAMgmgY0fn+/fvXo1zJsn69E0IeTFi2Vfjx+Xc3DttfDUUximwpEjCkuWyBhFFoCz7bO7ukTozi4+PCybP348H1DmdMLUqXKqy8vzuW6rV8symga7dkkP7S98QT7SVVX5cvBYTIT3cFj2AeStamqS8HOpVUfgOJ0WNdmpyYyptASYxZMCwE5rkDKZEpt4Zx+MBGQ+1SZQfbwvX2/t9wlsg6jSFcUy77FesYNnoX1SHZw3BU4dJ49PbYCqUkDBNAxS4TDnLlvG+CuuQFEU0rFYrkf1lEWLcPj9RHt62PvII8RHRihtbGT/c8/hLC5m/3PPiUPD4yE+MiL/sqZPZ/+GDZi6jubxcN6Pf4yvoQFFlQHZT37xC3refptYfz92l4vz7r+fxNgYQ++9R+nUqSz405+YcuONaD4f3soKlKISAeixYek9rWkCv+edD1/+LowMSGusSWeKCu32gcsLZ84QsN7zDgRHYHQIfvMzGOqXAZ+SCug5KlbzeV+ErS9KEvied0QFdzjh+h8KWMejAvShgPyfm3QmBMcw7CrpRAjNU0jNWReTjodJRsbQXD6qz7pY3jdrUlUbNrvjM7D+n5g+g+v/09OJ6d4tl8gX1H/nNV2HZEJA+ST4VlDHTQSnC6V+PMaObSgomMkEFJei+PyoV1yNzemkrq6OaDSKYRj4fD4URaG1tTUHvdm/d+3ahaZpmKaJpmnMmTOHYDAIgGEYGIZBTU0NRUVFXHHFFRQWFmIYBpFIhGQySVVVFVdffTVNTU24XC5sNhvNzc00Njbi9XqZP38+ixcvZv78+RiGwY4dO8hk0rlEcIfDy4lFOc3Ny5g06VLa2lZz4MDLhELd1NfPJZ2O8M47D1Nf38S8eWvQ9TSqqhEMduHzVdPQ0Exr60q83nJCoW683gp6etpxu4spLh5PKNTJ1q23Egp1omluKioaGR09zKZNi4hE+giFutm/fyOtrSsxs62F/uH76hAlavI10ss6HZWwsUueFvDVk//9z4iiWr2w3aJolTVKjehbi+VG3FMBM26T1/p2CvxkLbEXr4eCBhRgFKkXtiPW5Unkk7znILC4Q1FY+fvf89UvfYlzxo3jS83NPP3rXzO/ooLK6mp+v3Ej7cCOPXs4euAAR48d4zZEye0CFiGAORNRcrN1xUEEFO9AIHEiYOgpgskgq9tW8/KBl/FoHnRD56PBj/A6vAxEB7h/2/0MRAdw2pws3rKYcl85kVQE3ZRa675IH+Xectq72zk6dpTDo4dx2BwoKPSH+zk6dlR6Y6u2XDq4buioisrc+rkADEYHaaxsxDANbt5yM9MqpwGwp3cPimpjFfl0dSdiB29C1OI5yKBCM2IJn2t9Utus8xFBBi8WIe6ALqRWOmO9plvrURFgz6ri7Uiv68OICt6BKP4GUp9ts5ZZae3bCkVBN1IWSPdCRbPsySerpRf1J6sFdN11EDtuzTcgn4byFvCMh/K5sgXVLp9Rd5WsI2W9e2VzZD3pgABzOiwJ4qUzJWF7qFUgXLGJ+v3uYlHNVc1qYWWzflu105EeSdKOdIviHOkBFIFwFAvKU/ne1qaeB2ebJr2hc9eITW4KNK/AsGkZ6R1+KyHcIc8FjuT3MXjE2kZCUr8xpNyiaqbUY/95sSR/a25ZbzZFXPMI4MeHRakOdkr7LZtTrsP3fgaeKrGh154vtdYXPQmnXiXbDB0X2PbVSQ37X+6QrgFFp8KMW+V4Zi6Dy38L7jJsdpXly5vZtOlannpqAdXVPhwOlaamevr7wxw9OobX67BSw4t58skFGIbJAw9sA2D27Do8Ho0775yDx6MRi6VZvHgLmqby1FMLUBSYMaOaoaEY/f1h2tq6SKUMfD4HdrsEoGUBfng4Zm03wuLFm+noCKDrJrqh86s9r3BKWT2jsRCfDB4lrWcwTZNQIsJp5Q0MRccodvv5H+0vsfXATv55zya8mosSTxEZ0+DDvsOYmCiKIm21DJNkOoVbc/KNcy7n13tewef0MBgZ4/pzL2c0Jv+DKgtKmF47mWA8TDKTIhAPMRwJ0B8ZYeuBnYzGg5hkUBRN2m1NPCLhZf2LQe+XntfpbulN3b9IQs2q1gsgq16wVYD7fMiMWp+XYXBNA8Un9m93kwD1yEpZlz4MsVap4dZHRR1XvWIxr1gr61Pdkiw+sBjMKKnUCEcCAdq6ulje0sKlkyaxbtcugWavF4+mMW/iRHyWWh1JpTgyOko4leKJBQv4ypQpvNfXxyELFo4Hg9ywaRNHx8Z49JJLKHK5qPP7eaK9nRnV1Xg0DY/dztf/9Cfau7tZ1tLCdY2NVHm9rF+wgE3XXss9TU0UuVy4NQErt8eD4vFgLlsmAF1YeHJCeG+veI4ff1x8yOm0EGCWCA1DelZn5x8cFDo8elRosrxc4HrePFnPrFlClOXlokL39UlddDwuUHzrrZL6nckI/GYJM9u6KwvhhiFwE48LRTY0wEcfyT6ef34ubIzVq8Wb3d8vy/j9MhCQTQ2fOfPkgYPHH88PElRXC8in0zJvdvChszO//52d6Kaae3nVKhHVV6wQW3Y8Lpt44gk5ZQ6HJIO//LIAdNbqff/94shfs0bc7MuXy249+qiUt2dPZVeXvJ4V+D/6KG8Dz5aJ33KLsP/hw9DSAi0tJko6I+22DFNgVzuhHLHAK+eme0BAOdtOq9AnKvcpDXDOFIHubFJ4gVegu9AnP8f7xDLucliDI2kB8q5+y8lkQtr6/v7bemyHHdVuR4/HGdq3j1hfHx889RTxwUE0t5vGJUvwVFfjKi4m1t/PGd/6FonhYaqampiyaBHJsTGm3HADKArxwUH2P/ssAOMvv5xz7rkHxWYjE4ux5yc/IdbbK9ZwRWHG3XfT/LOf4amsZPcDDxDp6sLudOIqLWXkgw9w+P14rXR61eXBRIFjYsFGc8LhT8DnlwRvp0vqr/ftgq1/EHt39xHY1yYBZF+5AR56Dk45S9TtqxdJYJlpQmGxrPPYASgsFYAvKoNbH4ZrFlljzSb0d8vvSWfItrJiUHgM019MOhEBI0PvR29x/N0/MXxkD3omSSYZIR0d+ywd/H/B9Jkt/P+C6T8NJ/sHr+Vqq8NBSQJvuQSlpAwzYdUGJhPy7awoEsNvmhAcwwwFUfyFpH1+DJsd0zR57bXXcmFkgUCA1tbWk+za2b/tdjsulyvXx7q4uDjXF1vX9dzzJ6aNz507F7/fn7OTK4qCYRhEo9GcJT0ajeaC1YqKiggEAoRCY1RVFWKaBqlUGKezEIfDTzjcQyoVoaRkEoaRJh4fI52O09q6grlz7wZMHA4vBQW1bNlyC3Pm3IbbXcqbb97NggVPEQp1Yre78XrLiUaHSCQC7Nz5GAsWrGfLlsW5dPKFC58lEuln27b72b9/I42N13HZZT8nEunF6SwEwOUq+ntreNbOragCBJkEHHwRxs8XwN69Um6ci0+Vm/T/zpSKitKWSVi1mhkJRPJUSoJ4MiD1nMkxAfD4cL5GdfcqmLUco3ASYYeXGKJS/xQBuz3kreHDQHEmwz9dcgl3/+QntJx/Pjv37OG6K69k74cf0tPTwwN3383QwACTp0zhYF8fl/7TP/HVW27BivQhiPSxnoj0b/YgEPkB+aC0Q0g42LpMCk86hqIoZIwMNsVGIpPAbZ3TxZsX88KHL3DNlGt4fP7jTHxiIkN3DpE20thVO+FUGE3VWPrGUtZeuhZFkf6/97x5Dw9e+CAOm4NkJnlSArhhyuc1morisrtIZBIoKHgdXgzT4MjYESq8FYRTYfwOP35fBWHFRlBRKDRNPIqCiajMWVu9wzquY8gAxUzyAW4eJHX9BeBTBIiLkXrzOFLrvpR88noNEoZmIHXYexFHwRAyGGJa8wwhdvTjWJZy08SbjuB+uQGqLoWZG6TOGlNUZUch2AskrOzD+wW4x18H56wHxZB5Ax8JYJsZGN4FRdMlMXz/SjhjqSSMmxnLDu6Q9SYGrdpr5DVFAZtXnt/SCPVXSZ/rbFq4rzZf+2yk82nhWZs3Si5MJRdKZugn97vO1lgr2bFhy7KdrevOTZYibnPmVfFsjbaqCVTbXDJP1qoetVTztvulVdYVL0qwWCoCQx9A1bly/GMHJDxw5jK5JhNj8P4TeVt5OiYqdMujcj3uXinp/p5KgemOl+HKP4qabeqSsZCJg7/BsqRHBLhTESK6n/6hBNFompUrW1m+vIUJE4rQdZOdO7uori5g1apW7v1/2HvzMCnKe+3/U0vvPT0bsy9sKuqwqTADw6BxQYKSnKwkxiQnqxJBxY0oeELOGwGFEHBXzH6SkxxiEqOI4JIYGYfNXVFRhmX2fXpfq6t+f3yruyFn/50/3vdcl3Vdc3V39dNPVT1d1VP3c9/f+76jjaoqH6+91k91tT8/Cps2dbBmTRs9PSIZ93h0gsEkEyeWoKoKhw71MnNmFV6vg5GROLFYmo0bX2b16lamTCmlqytET0+Y5uY6vF4dw7Bob+/iy1/+I7/61adpbW3A5VOIpxO4HS5UFAwrS9aU7yliS75duny/3cFBfnLgCVZf/FWcupgJ5rOpFZW7//xzbrroagAUFNwOZz6DWbXVEW/2fUClr4wSbxGb//JLbv3YV8Q92zY2+2D4JOdUTebuF37O9y7/NmkjTqnbhWKlbHl3jQDgxEGo2iJy7vjL0Pc58H9S3MKtLLkMasrXgOMMqcfOBu0M6yQM3QblN4E+VWqvFacAajNo13PfIfJzzxz7VyFjs96NkOmC3qVQtIxo+aN8c+fzPNvZyaFvfYsKnw/LsohlMgBE0mmKbRfs2557jk2LFuHSNDRVpTsU4q69e7ll/nyGbWOzG3fvprmujsunTqWuqAjTsmjv6mJ6ZSW6qvLd55/nttZW+iIR6gMBJpWUAOTl4WsWLqQhEGA8HsfrdBJKpWhwu/EeO4bS3Q1z59oTXc5CDfTVV4sU/IMPBP0tXHi6O/jq1cJenyod37799ILjBQsEEeacuyzrNFk1118voD4nLf/a1wQAK0ohR7uqSoC1osArr0iQs63eY2hIMrBPlXhPnizbGxkp6K3/1jX81ltFw11ZKX1FozJJkAucnjxZ9jVnirZli4Buh0Mk8SUlEAoRqZpKOKzk1eexWEEa3t4uu5qbExgZkSHweKRrTRPz9fPOKyjVc7fvOU+39nb43Ofgk58UhXquJPzAAdn1nOm6ZZ1umH7LLULGV5RlUUKR0+utU2mbvXaeDnbNrIDknGHZ37qI55zCJ9bKBl1OAe0+j7RPpqWtUxdAbVmF2u2cnBxsOl6X3/yMQcY0OLBuHed87Wu89/Of07V7N40f/zgX3H47f/zYx06rhX7vZz9j9i23oHu9qKqKmc2STafBsnh140YqzjuPCeedl5d8++rqTs+1rq7mvZ/+VCTgHg/J0VEykQjJ0VEqzj+f4ddeKziLX3MN/vp6dAWUSFDAdM65u7TCzp9WCk7eY0PyWFwqGdS7fgtfWA7RIDz9WwHZIO/t+R0s+YI4h6eS0ncmA91HYdK0goJjhy0PHx8W9tpXBOFxGB+FKeeArosaTgUjlUBzebFy8ZcKZJIxVN2Jw+3/yLzsP1k+koX/L1gUXUdxuf7NjGtF1+UHyMjasu9TPuPx2hnZn0eZUFFwtoyEMF/cA9EIitMlj4DZ/mcUnx+z/c9YRpZ4PI6maSxYsIDu7m5CoRBFRUUsXboUl8tFcXFxPoNa13UymUw+FzscDhOJRDAMg2AweNp6t9udZ707OjrQNI3u7m5M02R8fJydO3eSyWTQNO00hnzv3r2YponH46GkpBynsygPcCORfsDE7S6hrGwqmUyc3btXYRhJHA4P8+ffgstVhKrqtpS8k9raOYRC3ei6m3nzbmJ8/Di67sEw4uzceS2GEScWG+Lw4R309h6grW0NTU3LWLDguyiKhstVzOWX/4gVK95jyZIHCIVO8uKL64hGBxgYeIPs30q7s2mRfvf8VW6u40PiOFw8SQycoj1ihhTtETDxX100W5KViUlEzwvXiQRV1QVk54C1kRBwfXCjMG4HN+Zl6aaVZQUCQzYhNb2rEFBnIg7UPmDXG2/wVl8fF1x4ociR585lUn09r7z+OqFZs9iyezfPvP46f/+rXxHq66OpqQkNqSGOU5Az19vP2+1DqEZA5nGkXvgWu33CSBBNR0ln0ySMBK8PvE46KzFymxdtZlnTMtYuXItH9/D45x/nWPAYy59eztHRo3h0Dx7dw31L7hNpWDZDKpvinkX3oKs6B3sPggLNdc3s79lPNC12a5Zl8dbgWwKqHT7cdjZ51sxS468h4ApQ4a2gyFWECQwpCp2AQ1FII+zzSgqy+mGEZa5EGGzDHlPFPsbNwNUIKC5FWOk4MqFxC1KXrtv9BRGGO4qA9lokR7sekY+XIEqDKHAjMMmyaAEOKApHHX7Sn+qB87fZLO0bkBwUMJ0cBSwBws0/hk/3w9yHxXzstZvFiGxCs0zcJIehfJ6cS5pXTNAcAQGiqPDK9RB5X+qvi6baNWFy4086LNt2l0vu9TmrBXTnWeo+W42tCsjOMc2qQ66fdLhgZJbLtFZUYamj/TKquczs3LagYB6GJetz8nHNUQDWOWMz1SHvYU+A5fKy02HZN3eZqE4+8biwy89dI9vwVUt+dc75/IJb5Hi81XKNf2yrjFFsQB4/tlXaOfwCuosa5HnzWsmsr5kn+/Hn6+Ux0iX7lI5IzbsFxAdxDu+jstJHZaWPLVsW0dsbpq8vDFi0tjbQ2xvmySePsHGjXG0zZ1bh8zk588xytm7dz44dh9m8uYOZM6uoqPDi9zu5994D9PdHOHCgh5oaP16vg2TSoKrKj9/v5Mknj7BpUwemaeH1OmhuruPgwV6OHRtneDjGwoWNHD9+I+efX8PNN+8By8KpCwiOZZLc/cLPGYqO887AURKZFO8MdNITHOKN3iO83vs+t138VbxOD1mzkE0NgKKw+pK/x+dwo6sa7w0dp3t8EIDByCiv9x4hkzWYXn0GQ7Exoqk4e47sQ1NVhqPjPNzxOMPRcWbVnkU0leCOS7+OZVkcHemGzHFb3l0h9c++RSL9NgZh4Fpx7q59XOqxFZd9nvmEtVZ8Ap6zQQHYA8sFeHvmS920ooDiEdZa9QvL7Vkg67wXCsNtJex4rhZxIfc0Q9EyKF+D0xpn2+LFvHvddficTlbt3k3CMPA75Qb3rpdeoi8SQVUUmuvq6I9EuG7XLrpCIbpCIXYcPsyWfftorqtDUxQ2L1pEW0MDnWNjpLJZNEWhPhBg9fPPMxCN0lxXx+aODtoaG5ng9RK1zU2dmsaChgY2v/wyQ7EYlX4/fZEI6158Ec0wxCV86VJBZiAgM8dkb94s1GggIPnPkYgA6YEBQXTr1wvS27xZgPi2bdLHtm3whz8IqN23Tz4XDAqo6uoSTfTXvy5o8ZxzBFX+wz/Arl0FAGuaAmrPOEMQpa4LYJg7Vyjca64Rera0VPbxVPrYNOEf/1GAf2trQWe9fr30df/9gkpTKek3ByB/+ENpt3lzoSTm/PMFvD/6qDDiHo9MLqxcCT4fmmKh5qKuEPC8YoWwxzNnymF3dooHXCwmXRw7Jor5dFp25aqrpE1Xlxy6YUiba66RIXz88QK5fuxYgckeGpLhCAZFSLBtm3wNa9cKsFZVwWsU+0FXRZrtcsprp4NcWiKWWYgagwJ7ramn12RXlAo4dzkKwLzIJ3XVpiV115oq9dTpjDy3rFOyr9WCZDyVEWDuEG+h82+/HW91NXPXrWPpzp1ccPvtWJCXhRuJBIcfe0wyroeHObhuHZGeHhRNQ3O50L1emq69lurW1tMk31gWc9etK+Rk//Sn+Zzs4VdfJZtI8OFvfsOE884DRaFy7lw+/O1v6dq9m8Pbt8vwgJiXjQ1L/XP9FGGes1k48YHNZjthapPUVDtcUpf99zeJrPvp34rMOxGXczUSFJOzknJwe8Drh853ZX3dZJF+jw3LeOXk4ZPPFqm57pT3AqViqjbUh/pP94GiouoO0rEg/e++iJFJomhOdJcPTRdvh2y2gDc+Wv77y0fg+v/yYhmGmJCdApxPXZczNcs+teOUumpZ8qDc5RZgrmkomlaQine8KL/I6ZQ4grZdghWLorZdgpo1MAyD7u5uAoEAV1xxBYFAAM3O19y5cyepVIpgMMjTTz+NYRiEw2EOHz7Mvn37qKur49ixY1K7ous0NDRw4MCBvCt4W1sbV111FVdccQWmaRIKhTBN87T6al3XcblctLa25mu1c8ZqDz30EOl0imh0IA+c0+ko4XA3O3deQyw2SF1dM6FQF4YRZ9++LbjdpbS3b7Cl2xs599zPEQjUs2vXdaiqA5fLj9tdQijUw5EjT9q12y00NS2jqKiW4uKJLF68ja6udvbsuQWn008iMcbYWCemaaDrbo4ceZKXX76b2to56Lrr9C8zmxbAUN0scT2ZeCFSR3XIjfqrW2wnZMd/XnedWzSnsG+uEjiwQQBzOgyRbgHRL90m4L2oUW7qL31QjJSa18C0ZVgtd/KS7uYmBLAdRIyw5iMSbjdS8xsGHm9oIN3fzwfvvccQ0Hn0KMc7O5k0bRqT+/upQiTJLz/2GCGfj09ecgkbECnzIALYI3ZfI3a/DuBuRL7cjQDL+4DybBqvw4tTc/Ja/2uYlkm1v5qVz6zkZOgkfqefR5c+So2/BlVVaWtsY/3e9Tx55En6on0oisJAdIATwRN0dHegKEqejT7Ye5A5tXPw6B6uf+Z6ZlTOAGAgOoBpmcyrnydfmZXFwiKcCvNq/6t5BjuYDBJNR7EUlR6kdnwVApwbkAkKP1Jr3WkfowepLY/a7SIIaC5CMqmjp4xJHwKUR4GFyMSG316H/bksIvt+0t6OirDhISQ//DzgmKKwwt6/LkUhlRoTtjk1BmVzpf56zgMSx2VlhVGOnRQgmmNuz7xe4rQOLhfJeORDeUwOC/g+sk36ycbJy8Pf3QRmolCjjSV12u4qOYDEsGRd+yZKfbK/Xs7RwEQBu6Fjhdg5f7U8Kor4DOTqrxVFwHHouNRJl0y2R8cSJYczUGB5TaPwnsMnn9ccdpRXQCTjmtuut87IdjRXwX08bdeW+6qFkSmeAvUXSsnFRVvsSLsaqcv21wlIfvNhqJxNPnbJNGRM9/9AgPLAQTlOh1eu0Ui3TICVTJXPxwU0UjMfDt0NNS3yOhfDl5uUqJ7DiRMhVq3aw+BgjFmzqvH7XXR2jnPNNTupqwvwhz8s40c/uhyv14Gmqdx110ucPBnkgQeW8N57K3jggSWMjyd47bV+dL1Qbz1hgpfeXsnQXrVqDx9+OIrP5+Txxz/Pd7+7AKdTIx43WLnyGSoqfLjdDrxeJx9+OMa11+5kcDDGypXNoCj0h4e567kfMxwdZ3rNVH5y4AlKPEX84tBOzqxoxKHpzKw9k4YSOUdi6QTBRBiPw000FWM4GuStvg/QVA0Ti2gqRlP1VHwuN6Zl4tYdzK6bhqqoODSNWbVnUe4r4cpz2nBoYqJ200VXUxUoR1VUyrwBoqkYfeFh5tRPQRldL0ZlY1tsgFsnedWKV0C2XiNAWG8g7wqODsVflnrpbBC0UmkffVIY7cDnBJQbQ3LVp49Ctl/itrxt0oeVEpYcExzVAvCNAemn+lGJ8tJrGI7Hue255zAti02LFuHWdQaiMiE4v76eBw4exOdw8NVZswi4XDzb2cn6vXtprqtjWVMTdy5ciNcu3/I6HAzGYsyqqmIkHieSTjMQjbKgoQGf08kXmpq4f8kSUobBa/39DMdiRNNp1r34ooDrRYuotxnvgWiUW+bPJ6MoBUn4nXeKvtjjEVD62GPyvK+vIBFX1dNrkm+7TVhct1vAp8MhVOvIiDDWGzbAjBki/+7sFNRYVSXA3DAE3GazAsAmTxYA398vMvD9+wWEG4YA+mPHBKD19QlIfvZZQbKqKuD/zjsLx6Hrso+GIe9v3y5y8wcekH189VXZh4kTC8i3v1902LlJhePHBd0OD4vWe2BAJgkMQ9jwW24BTSNrgWkqlJXJMPj9QnJXVsrwVVRI85wUPJuVTVVUCPt87JgQ+M3NBdyuKIX5gA0bCvMJ2WxhDmHLFlHZg+C1jg4ZjgcfhKlTC07kmg5WMi1jknNTtxAAnauzTtu/taZVAL6hqLzv8wggBjEiczkgFJPXOfdwv0fGORSVtvVVwkxnTejsljFP2fdG3QNibNbVL32bJlbWJDU+TiYex7KN0BRdx+Hz0bxuHfGBAbqfe45zvvGNPHju2r2beH8/0e5uDq5bR/jECXx1dXgqKzn/9ttZ8sQTlM+cyfBrr0m7ri5ifX1csHYtk5YuxeH354H6zBtuIN7fzys/+AGZaJTzb7+djz3yCOfffjuWaRIfHRWAvedxqYt2OOHYe3LeBkrhnx8Sp3As+OBtMTsDies6+k6hNtvjE7Z7yjnSh6bByKCA6aISCI7I93T5Z4Wp1hzyuSuvEkUJthJg8tmwe4d8ZtdvxU08lSBrpBk5dohQ/xGGjx4QBWo6Qf+7L5KOBTEzyY/k4f+D5SNw/X9xsTIZSKcwT3bmgfPfgun/0PDs1L7ykV062hWfQb3qm6htl0qms9OFuecpME3U+okopROwvD727t1LRUUFoVCIXbt2EQqFMAyDVCpFa2srqqqexirX1dUxY8YMFi9ejKZpTJ06lWg0yosvvkhDQwNLlixB0zR8Ph8lJSXU1NSwe/duIpEITU1N9Pb2Mn/+/DyQBokAKysrY+nSpQQCASzLyoNtXXcSCNRz4MB9dt60h1hsiMbGC9F1N01NX6Curpm9ezecwj6v5aqrduZNyDo6NnP48A7C4W4MI86ePTdRU3M+N9xwjMWLt6GqGlde+QhlZWeiaQ7i8RG6u1/m4ov/kWw2RSjUhc9XwTPPrMAw4nz+84+zcOGdOJ1+dJvxzC+qJjfPg68IoA5MlBv0+LDcwB+0gfHBDVKL+l8xNst/wabIv23AjLNYbsZf3QKzV4ps9vlrxYApOQ5GHKvkDKxFj5Eqm8bZmhMHImVuBc4EvoyYjN2IgL4qYF1VFQ9u3851y5axZNYsvvTpT3P3Aw9Q0tjIA9u3c8FZZzH/zDN59amn2PHHP6IrCncggLsXYWL9CHi/C5msdgHbEPa2BQGM8wFd1TgZOsnKZ1ZS4avAoTq4++W72XF4BxvaN2Dade0O1YGKiqIobFu8jT8s+wMNgQZe7nqZCb4JdIW6qPBVsPKZlXSFuvA4PFT6Knml7xUA7v34vRS5ihiIDHB07ChZM0s6m0ZRFDRFarFH4iPMq59HNB1lIDpAuaccr8MLmSQLLYsAcDMyEWEhRmVVSE74LERen0Lk8DnZdxzbbIyCqVmJ/dlW+2udgYDwEOL+favd1m2P24OI9LsFUQHE7c+vQZzINyNKgQCw0LJwZcIQ7xODMs0jYG/0oDwmh6UW2teAMKRBAdyBs+C9zSIVP7xR4rkOb5RzLN4HF9wrk0bBt2SnJ10t7LheJPXd0aMCxg9eI7nZIMx1NgHDHXLkmktAparJTUDxFAG7iib7CXYd9Al5X1FkUimbEVCrqMJiZ1MFt28rK+BVc0r7bMo2ItMKtdbFU+zrx7K/OZu5zksbbTY71gf775J1Dq9cx6ETAooV+yZT98l2Bl+V8cgx1X9ZBZGTUncd65PJtYMbZDLh4Ea5bo/sEJOyVEj2Q9Uh2CkA+6zPQcudsl+ZmLTrfFKOubqFdDr7rwzN3G6doaEYW7YsoqrKx8KFjYyNxWlv78LhULn55nl4vQ4sC8rK3CQSBl6vg8pKHwcP9jJxYjEPP3wlEycWs3DhRDZv7uDJJ48wMBDF6dS48MKJnHlmGdmsRU9P6LRM63A4xaZNHezYcZiNG9uZNKkEI5vN10KPxkO0TpzJt1o+RTgZ5fZLv45Lc9ATGqI/PMJ5ddNQFeU0prnEW8xgdJRyXwkbn/8p8XSSYk+AWCqG12axiz0B+kLD3PPnnxNLJ8mVtN256Fvoqkalv4ytf/01g+FRYukEr/cewe1wA4okBJV/F+p2QtWDwihnjkqNtRWD5NtgdIMZkYkSMva54hMncDMqQHxwhTDQk96G6kcEIOfiu05lxcnKoxUrrFccMHq3APxMN2SOiRTdSpI2rTxQHohGWfnMM5wMhTg6NsZANMrnzj2XrYsX0zk+zrU7dxLPZDj4rW+xZuFCgskkDy5ZglfXCadSaDYoamtsZCgWY92LL9IXidDa0MCChgbuaW8X929FYTyZpNrnw+Nw5Fnrrfv349Z1lj/9NKZlUR8IsGXfPhyWhdLTI0C0vl5qioeGBNxGInL/MTAgQHJgQG7wcwx1fb2wyn6/AOGjRwuUaleXfHbbNkF8gUDBJC1nXLZ8ecGMLEfjWpYAXNOULKqeHmmfY52HhgRUr14tiDSRKNRsT54sILqhQQqPEwnZj2uuEaDs84mk3DSFzc45YbtcMhGwebOg29w+d3fLcXs80s+6dTIGui6odngYslkUFLxe+RnZv1/Y6aIi6T6RkENuaZFUs7VrBU81Nws4ztVR50q4cyXkmYy8n2OhDx2Sw0qlBDzv3ClEv9cru+/xyHBFIjKUuX5iMfnfo6Tssc1mIZmS2umchHtKfSGD2sgWgK9DFyCcNYWdzoFtEIAdjspBT64VcP7hSQHRmiaseC71psgncvQiW8kytUGMzaY22L/xWSzLJN7fTzaRYPStt8gmErxy111Eu7sxDYPyGTPw1dfjqazEW1XFud/+No0f/zjlM2dyePt2unbvJjk8TMwG2qmxMXSPh1fuugt3WRnxoSFKpk3DXVoKQGp8HN3rxbIsSs4+G93n4/D27QVW/Pvfx1NZCcDB73+fTDyBaVlYn/um/C/KgWFNF5CbY5ezWVn/zw8KsB4bgofXQ3BUTMncHln/q/uEfc6kpc2hl+CFP8GZM4SZrqyBs2bKBMjf3wTlVXJ9qFohyuvKq4Tx/tIKuOEfUbJZNN3JhClzmTjn09ROvxQAVdOZMGUOqi7/g62PwPX/7+UjcP1/abEMA2tsmOyuP6D4/FjhkFxshoEVCmIdeUfANNa/b2p2al+jQwLSc30Wl0BRAMXhQCkqRr10idRrKApWNIymKCxcuBCXy0U4HGb+/PmEw2F0XScajRIIBHA6nSxZsoSrrrqKhQsXomkal156KbFYjJ07d57GZnd0dORrqbPZLF1dXUQiEerq6mhvb0dRFKqrq0kkEixdupTi4mK6u7tJJpP5z/T09KBpGuXl5SxZsgTLytLeLs7gkUgfO3deS1FRLWef/am8PFtVdRYv3saKFe/T0NBKSclEamrO59lnbyOdjnLllY+wevUYEydexL592/J97dmzCoBQqIvu7g4MI4llmZSUTGbJkgcA6Ok5YLuSDzN//i2EQj3U18+jtHQK2WyaTCZx+hdhZoWdmjBDbsyfv1ZuoHW33CjPXV0wODOz4iL+XzU2UzWpi432iCO47pEb++Y1IknNScAPbhBH4wMbUKwsGVcAQ3PiR1jjasRs6xgC1hyIc/e9CEA+E/jMVVex5e23+cObb/LC229T/6UvUQpsXLeOdz/4gEMffsjvnnyS+Q0NiFhfAPX5CPDL1QXfg9QcpxBW90GEOd8KfBWJeVi/dz07Du9gy74tODQHaxeuZVnTMu5ceCcpI0UsHeO5Z5+jubmZxrMaWfyxxQSCAbrD3WgJjU9e+Umuv+J6Fs1fxBO7n6An3IOCwsSSicytnctofBRVUVEVlbriOmZVzSJjZjBMg47uDlLZFC11LfRF+gDoi/RxdOwoXaEu2rvaQVGw592ZgjDIyxG2OowAY5WCCdlJ+7HUPvYnkbpqC5GP32iP/RC2Ss7+DtwIQN5gt91v951BGOxVSKSXB2GpvfaYb0LA9Tqk5hvfJInfygFdT5UYjo0eEIDtm2ifT05ho9+4TdjnOffDRTuhaa04jjetkXYT5gv4TI5A6QUiE39lpWRe5wzT3BVSl937pMjHc9nUmts2VrPl2qYJRkqYaMuU/Ql1FiTcUKg5VjRp47Tl6KETwkjnYuzS4QIDHe0rrFcd8jkrW2Cjc7XXeRNCpSADz7WPDdkybj/ERwSYFzXAxffK5/s6ZF+fXy510wDxAZlAmH29GJRVzJR9nPYFkZUnRuT6dJWIa/9FP5KJgnQEXloNlefJBJzDK8edjsl+N98h9diZOCRHcDp11q5p4+qrZ/CjH11OdbUfl0tj9uxqBgdjrFq1h+PHg1RVFdHcXEcwmGTy5FK8XgfXX/8M3d1hTNOiqsrP0JAA5EOH+ohG04RCKUzT5P77l3Dy5CpaWurYv7+HEyeCRKNphodj1NcH2LJlH/X1AZxOleJiF6tXt7JsWRNr1y7E5dLQFJWzKyfhc3o4u3ISlUXl1AQmMLPmTDEpHOikzBNgIDKKaVk4NAc/P/QUe47s4+eHnsI0s5xXNw2P7mTVhV/Coem82fcBboebkXiI//PsY/SHRxiKjjG9ZiqWZdEdHOSHf/klhp1tXxOYwNyGc/nt63tQFYWm6qmoisJYPEjGVLD0KcIyD66ATKeA38gOGN0M7pkCktUikY/HDwgAV702w22/57lQaqhz0vDMB/Jepk9k4GoAvAsFnHiapW3ZLWAMC7iu3AZnDAqrrXhEHp4N4lSzrF3YxuVTp7Kpo4Mdhw+zsb2dCq+XoVgsD4b7IhGe7eykJxym0uejxu8nlEpxqK+PCr8frx3Ndc3OnRwPBilyuXjyyBE2dXRgWhZb9+/nrksuIWUYvNzVRSKT4Yzycko9Hvb39NBms9Yd3d38+u2387FcOw4fZiSdxqqvL7h0Dw+fDiI1TVDd8LAgRFUVdAdSh33ttVKnPGNGgWrNUaoOhyDLjg4pQvb5JHfqVAY8Eimgy+XLhdJduVK2v3y5AHiXq8BIFxcLqK6tLVDDzc3CnieT8h0dOyZFzKFQYZ82bpRttrQISGlvF1Y8HpdJgRy43rdPjs00xZp7yxZpk3MVHx4W5Kso4iDm9QIWXV1w003SfS5KK5MpANwVK2T3pk4t+LLdeSfcddcNfOc7k2hpUdix4w16e6X9m29+yKc+1cr+/Wfxta/NpbLyMI2NsuttbTdwzTWTmDFD4U9/egNNk+1df71se84cYcSTSekrnkAk3apq/0YaAqhdTpEdxxJ2/boqoHn6GSL9zhgSsaVrAvJSaWGlFUWAd8AnEx8osn54XEB0Lvv6RJ9sKyclVxXymdldA/JoR3opqkr5zJnEBwcpnzGD+OAgvX/5i8iyFYVX1q/HW1WFw+fDNAyKGhtp/v730VwumpYv56KHHqLi/PNP+1wmEqFr927e+/nPqTjvPHEJB7LJJO888giJoSFUpxNV00BROOfrXz+NFX/vpz9FUVXO+drXiA8MoCoKitMtIPrQS5JvrekSuTXvEqmtdjgECH98mTDTZ0yH6+4UpjqVlDrp3Of3/E7cvyefXXAcT8YhnYRwSJ4fPQzD/ZBKFKTi6aRM5OZytf/5QSitQNVdqLoTl78Uh6eIvndeIB0PkooFUVSVdCyIkYr/jYfJR8t/Z/nI0Oz/0mKlUsJOH34DpWk22tLPY4XGJNO67RIxHisulVpqi3/X8OzUvtT5F2Hu+yvWkXdQl30NtXGKSMKdTjBNFNPE7O1CKS5BKSkjg0LWlmy3t7fT1tZGWVkZ4+PjhEIhAoFA3mhM13WcTie6rhOPx/OgOCcD9/lkpjEYDOJwOPD5fGSzWSzLQlVVEokEmUyGkpISQqEQL7/8MpdeeimqquJwOPKZ2bquY5om3d3dNDbWEAweQ9ddeWOxpqZlXHTR93nooXNt47HtBIPHCYd7T8u4BigtnYJhJEilwrhcxei6h1isYFK2YsV7jI114vNVcODAfSxatBmHw2cbY5n2vuuMj3fS3r6BtrY1lJZOPe11eflZBVOzXM1oNiORPHbGNB/bVjA5SgXlZjsTE3asbNp/nnkNAhSe/Wahz/nfBxQ4+Syc+1Vhrg9ugJY1YrhkJKF4ch50pBEwuAJhl4cRkLYFYUFtyEUGkY3XIUz0HAQw3gc8gMCkDHlrHg4C0xGQqABp++82xKjLg8RzJe113wUmIYDbMtL0j77P+r3rWbtwLVNL5abZsAwcqoN0Nk1wPMgFMy6g+c5m9oT3cLF6Mb3/3Ev7K+20frKVz8z7DN/73vf401/+xA1fu4E9h/YQ8AYodZdyqO8Qs6tn5zOvVUUlmo4ST8ep9FdiWiYHew8yvXI6XocXVVEZjA5S7C4GkFpsp4+wouJAQPAoAqQ/i5jCOZFJCcUej5w4OYgA7FzttQupa69AJjBsuClltcAbiOHbOAKqJyGGZxF7bJ8AXrK/AzdSu74JuB8B+zuAZcCPjQRF2RREPwBHqQDYw3fBObcI8E4MQLxbALfqtvfQhOSYgGSwzU1MkXNnomDEwFkiAN3bKCoM3QfuaulLc0smdnpcAHuiT0B3051QdIbcIWZTEiuXy6LWPNJPKijndmDiKQZnAXsUc6OXL/az90095X21YLKTDp9uXmZmbBO1epsFTxUM1HJLLvc6HRZXdEeRbN+ybwQVxa4vtCcMQidEcl8+XT5/aiZ2fDBvIEjxFLsOXCvse+i4TKjNXU0uBYxDm+z2k+0ILz/57G4jIdJyXx3pwNlkTIVEIsuBAz00NhZTVSUguaLCR1mZG5/PidOp4XCoDA3FKC5209UVYuvW/axdu5Da2iIymSwrVjzDli2LUBSFSCRNIOAiHk/nDdPuuKMNn89BNmsSiaS5994DNDfXcfnlU6mrK8rvXjSaZnAwSmNjMW6fQjSdIJZO4HN68Lu8xNNJLCyODJ3g3OqpRO3a6vcGjzOr9izimSTRVJwilw+v003ayGBioqDkwXh1oJx7/vwLXux8hS2fvJnZtWfJN2+ZhJJRAm4/Q5ExfnzgCb429xNM8Jfi1hwMREb5+aGnuOmiq/E4XMTTSSq8DhSjF2LP2kZmW2FwpQBeLGGttSpkOksVAJ3jH4bWQOVdArbRYeA7EP291Gh75pHPtlYc8meMiw9BdlRYak+L1F1jM0HxDgH6ilvY7dF7SVdsI2O5SRgGB3p7aSguxqPr+J1O+iIRNnV0sKatDa/DQTyToSccpj4QYEN7O2sXLqTC6yWUSrHuxRfZcfgwy5qaeGDJEl7p62NWdTVuTUNVFLrCYdbbBmilbtne+r17uXX+fErcbip9PuKZDGteeIGtixdjmCaH+vpYXFmJOjQkQFVR4Lrr4Pe/lyLftjYBXR0d0NQktdiBgIDusTEByvPnS+iyyyUI77bb4PbbpT+nU8BoMAj33ivgNZ0Wi+vWVgHPP/qRfHbFioITVy5XuqJCTNRaWwXEuVzymMlIn9XVAqQ3bBATs95eAeM9PYJiq6ulfTAo1t05U7U1a+AHPxDGHWTd22+fzmYPDEibXCZ2ba04jz3wgFzLOYCt64Sj8O0b/SxYIEPR1yd+bLmYrJwh2eOPn+6rNnkyvPjiS0ybNoVFi9r4yU+eYP782YTD8OlPX8IXvvBVvvjFr/HZzz5OKHQPmzYdoq4OfvrTl+jpmcKhQ2384hdPcMEFs9m/X4Z86lQB1NmsDP/NN8Njj2ZxWymUrn5hizPG6dnUFkIMHOuVdQ69YDxm/8wRjgoYdzsLv3O59U5HIeO6sUbahKICNDOZQhSXaUEkJu1zS/cANNaQxsRMpzENg0w0isPvZ/zIEbxVVcT7+2m/6SaW/PGPOAMBRt96C291NfGBAbzV1XgqKjCzWTKRyGmf81ZXkxwZwVlUhO71kolGMeJxXGVlGLEYoc5OJsyeTWJ4GEdREUYyiae8nGwqxdg771A+axbx/n4xP7vlFjxFkr7DUJ9Ea115FVRUw9H3YerZAoYTcSG8xkfg6d+cnlO9+PMywRAohWRC1qPY19OIfGEeH2QNMUgrLpc2v3sMPvll+IdrBIRfvVKAew5YH3oJ5l6I+ferSKVjKKrG0AcdhPqPUFwzjQmTL2Dk+Kv5x7qZl39kbPbvLB8Zmv2/uvxtzJZCQf7d/mfUxikoEypQNP0/NDw7ta9cPbW2/FbU+olYqQTZ53aK26BhkH3mj8KSh4JY4RCWYeSdunN10Lm6aJ/Pd5ok3G//c4nFYjidTuLxeN4FPJPJsHPnToLBICUlJWQyGbq6uuxd09i9ezfJZJJwOAxAKBTikksuQVEUXnjhBSzLoqioiGeeeYZgMIiqqtTU1AAKpaVTKCqqY/HiraxY8R6LF2/D5QrQ1LSMhQvvxDQN2ts34vNVEg73MH/+LUSjA5SUTERVHaiqg7GxTiKRflRVw+0uzUvHfb4qJk5cyIED9+UZ7a6uvYyPH2PnzmsIhbqwrGw+O7ujY3OeTc9Fcp1maqY57age3+kstcMHqCIbTYfl0VvxXwfWub5PjfZylQpD3fcyRHqEEbvkfghMEjmqu0xYNlt67kTYzrUIsG5BgPUOhC3VENfpg4jbtc9u40UY1ZsQsBdFQGQGYV9nImy1DdHQEPB3LwLQ/Ui2dZ/dbxfC3K4C3FaWCm8FD13xEJNLJmNZFp2jnQzHxBFcVVROHj9JWVkZP/vWz9j1pV3suGUHvT29vPvmu/Qf6Ofr3/o6aTPN3138d0ysn8ieF/bgc/ry+dhu3U3ciNMf7SeckvOv0l9J0kjS0d3B9Mrp+J1+AfWmQZW/CsM0cOtuDLuO14vcH3QgkwRvIaA2ixi55eqr99vHeZN93Ird5hWkVnq2PSYWMtFxFFEP5Greb7PHfYo9jrntAnwOkYwftLc3lcJkx1oEWN+ZTeJKDkn99JH7BOi6J0DlhVIXrboE1Lor4bWbBPyZGWGl3WV2TXa/1FYP74fwBwKcs3EYOyRO4r6J4J9qS/Tiwoxn48KAuypkYsfXCOf9ELwNdm13qgCYnUUy+ZRNyQSQMyDAUtWETXcGZISySQGj2bS8Dh075XlnQQKeTYk6JJu0Y76UQi12Ng2JMVF7KMrfxHrZrIiZljNXc4sxmSsg42DYNd+ottNPDP5yo+xnTSt54zTTtBn0IjEvvGiL1GSnIxKVFzpm15CnBUjXLhAAXTZNHmsXyARA6LjIzbNJ+2Y0K9d8xSwoqgXLIBxOMzISZ9asKnp6wng8DurqhFWOxw0sC268cTfZrEVJiZuDB3txOFTuuecySkrcdpSixrZti/H7nQwMRFm37kUGBiJUVflxuXQWLGjghz/soKTETXW1MN2bNi1iwYIG1q17kWPHxtm79yQnTgQJBJwoisoNN+wunKggao90gk1/+QWWZVHuK+HuF35GKpNB13TOqZqc9396bP8fGYuHiKUTbHjhpwxHg7wz0Empp4ixRBiH5uBb8z7F1r+7hbMrJ5EyMiSNNPf8+RckMmmyZpYfH3iCFztfYTQewqnp6JrGzw89xfSaqQxHx/k/zz6GQ7MkXzrdCYGrxA1ccUP1j+3ILQ+kj0kcV3bMPh5F3MCzfVC2UmK7BpaLnLtyswBrRx0MXidst+IVafnAcrCiArIz3SIJTxwQtnzgGnn0tIA2QXKzR38InvPAStAZHGfFM89QFwhQ7fdT4fMRSqXybPaG9nYqfT42tLdTYT/uOHyY9Xv3Ekwmebazk9WtrSxrauLW+fM52NtLW6NEMQ7F4yQMg95wmCePHGE4FqPS58Or6/zwsss4e8IEJni97LeJi20f/zhxw2DVnj3UBQLCTPt8whhHo5IjnUOBOTn1qdFc/f1CuxYXi3z7U58qmIsNDcFDDwnTrSjw8suiTx4bk7Yej/zlWO3t2wXgOhyF7Km1a6VNfb2wxrNmCcN83XUCpDVNmOtgUFDshg1SzNzbK4XJPT3Sf12dZFgdOCBoc/lyqbl2uwX1FhcL8Nu3T/qcN08mEaLRQl34qZnYJ06IXDyTkRrtjg5ppyi4rRRr11hcfrmQ5Zs2CSbv7z/dkKylpUCkd3fL4fzLv1xIRYXcy+d81SKRIV577RU+85kv4/XCv/zLZxka6mbChKP09sJ1113Igw/KZwYHBbw3NwtYP3pUjNBHRmQYN28WMlpJpaG+Wq6BXM1zOiPS8KNyX8fUhoI8PGvKXzojv4vFfgHNufZZ04428xXAcn1V4bnfC31D8pjrL1d7nc6A23Va9JeiqqhOJ4nhYd5+8EESw8NUnn9+PhqrbetWssnkv5J5qw4HmstV+NzICJUXXICvthZFVVEcDjSPR8pNFIV3HnmE+MAA2UyGsunTpbbbnmz1lJcT7e7mlbvuwlNZiaKqBan46ChGKi1xreWV8MmviLu3BUyWyUEsSwD12HBB6r3rtwK4z5oBZRUwQe6B2fnP0q7zMAz3yZfldAqwPnEEGqZKbbbLA1d+SUD33AsFrMciwmbHowLwb/hH+NIKLF1DUTVMI82EqXMprplGxRktGOlE/rHyjBaUj/Kt/38vH4Hr/0uLouu20/cyYac1/XSw7dD/fTB9ypKrtVbKKoSpLgqAkSH79O8hGkWdt1DkKIqC1fm+APDGyeByoWoqPp+Pyy+/nBkzZuQNxdra2ojFYrS1tdHU1ERbWxumaRKJRBgbG0NVVerq6ujo6MCyLNrb2zly5AiRiEg7i4uLqaqqoq+vD9M0mTdvXt7sDCAQCPD8888TjUZpbm7GNM1/5RhuWQbBYCdPPfUt0uko8fgIL764jlhMTIDEvbuLbDZNW9sduN0lBAL17Nu3hUCgHl33EAwep7f3IHV1zbhcRWSzae69dxIOh4fi4nqefno5weAJFi3anM/N9vkq8uA5HO4mGDzBiy+uy2dnK4rGkiUP8qUv7WLx4m3oioqVChdqp3WPyHB8tcIu++x6UUUBfwO8+iPb0Ez/rwNrkLalZ8Ki7VB6lu1C7IPLfyIsWWxQXIfNjDBoe78rtZ+aM79vXoQ1bUOY1DUIKFuLAONuhFldScHN+jhSO12LAEYP8LrdVkXYXCiUsFr2OgfCYGNvbwCpuV6I1Ak3A1nb0ExTNQajg0TSESaVTaLGX0MykySeiVPVWEX3QDeHDggLveMPO4hFY3R3dZPJZLjr9btIGkmOB49T31hPcaqYImcRuqIzGB3EoToYiAzQOdaJU3NS5CzCQnJ559XPw+/0Y1omFhZJQ+o4dVUnaSTRVR1QSCKAtg0xM6tC7ju89vGk7PGbYR/bTYgd0n5kAmI6ApZNpLY6YY9Pvz3ey+3nK+3x60RysXNj7ERA9wiiMFAQYH6t/f14gActizOzGZzOYkj0wrSb7XipKEz6EkxoEzbWVSG5y9NuktfpcRtMd0jd9Ds/kD2dME+M0RRNGO3yeQWTsWxCJOeqQ2Ti722GM1dC/ITI0RP9dltLDsh5CmBNRwr10A4f+ei6VLjAIINcM4lgYZuBiTbYVeTcVxQB44r9Otov+6o6Ci7izgBUzoKietkPlw3wI732NpSCA3o2KdeNhYxLJiKTAFZWQHK+lnqjjE+uhjubkBgtM2MbkikiB9fd0LZBykRAjuPi+6Hp72XyKx0R47O6BQKwc+aE/Qcki/u5awRwO3xgZsmkM/T1RVi37kUGB2O0tjZgmhYbN7azY8dh1q/fSyiUpLm5Lm9ONmtWFRUVPgIBFwMD0bwB2vBwHE1T83XT/f1Rjh8P0tk5xlVXTee++z7OK6/0kUgYNDfX4fM58m03b+5g1qwqamuLbL+oMPPny/iOxkL0hIZwqBpu3cn59Wfj1B2MxILsO/EmLocDI2vwzkAnJ8cGsCyL6TVT+fGBJ4im4rzY+QpD0TGaqqcynogwvXoqoWSEMk+A8+qmYVkWkVQMy7KYVXsmvzj0FJqqccelX+fxv99Elb+MDc//lJ7gEDdddDXzJ87MS89dqomS6RKgO7hSQLBlCNuc+UAAsaNaALLql5gt1QdlN8PoVnBMFFfwslvtNh4xPxv9oS0tXy/nxeimwmvFISB67D7JxdZroOoh0CeJydnQbQLKKzdD4IskrQC94QibLruMWr8ft6ZhmiYBl4vVra1cPWMG9y5ejAI89olPUO52s23xYt5bsYJtixdT4nZzsLeX2qIiHrnySoZiMeoDAbKmSX8kQufYGLqqsrCxkbeXL6elro72ri7imQzJbJbO8XGWP/00MyorGYzFuGbnTgYiEW6aNw+npsl8Q39/ATj7/QWJ9IUXCntsWQKcn3xSkKNpChLMAeNcbvSGDXL9xePCOM+aJaC3tVUA9vCwAAjTFLA6PFxwqPb5xECtsVHWbd4sfYbDBQev9esF/La0iBFZICC1148/LoD+0CF5z+ORY9m4UfY/h2j7+6V2+uBBQbYrVwq7bZoClufNw57NknaBgBxvbtsg6NfrFTRru5E5PRpnnAF1dRbFxZJQ9sUvyiHlhrKtTYj3Bx6Qeulc3Pf69TJkmYzs5vHj0NcnCj+HQ2fVKlBVhcbGRnp6umhpkUPN1XiPjhYU9SdPyiHmVPDZrMwlxJNguZy2bbgiudWVZYWs6iKfTDAqtqoHhLnOGAVzs9ySStu10/bdgWnB8V4Bzx63jF/OKXxyrfSXMzkr8hWYbAWRphf74USfgBbLykuyj/zylzJxGAjgKCqi4rzz8rXVOZl3Khjk7QcfJNrbi6+6mnO+/nUcPh/Rnh4OrltHtLcXd1kZZjpNcnQU1eFg2le/SnxkBN3jwTIMjFhMJOIjI1immd/G4e3bySYSnPO1r1G9YAFFNdXomCjplPwfK50g9dPD/fBP98Jgr8i0v7hcmOszpsONP7Azq8th9nxhs4++I5M5iz4Nzz8hruOaAzzegrHfGU2FnGyA8goB11+9UbaRSkhfukMcycsqMU9+QDoeIh0L4vQEcPpKqW26BFXV8ZZU4/QE8JXV4fSXoX4Erv9/Lx/Jwv8fWv6jvOt/r701OiRS8oWXopROgKxB9unfYx1+A/VL30KprpP6DZdbpCFOFygKpsPJaDDI3r17WbhwYb4GurKyEofDgWb/Y7csi56eHqqqqhgcHMTn8+Xl4Kqqoqoq4+PjhMPhvIy8tbWV0tJSyS82jLzxjMvlIpPJsGfPHhoaGpg+fTqqqubfzzmXl5SUEImMMj7+JhUV5+LxlNLV9TI7dnyGc875LFde+RCRSB+dnc/S3/86S5bch2WZ7Nx5zWk51V1dL+PzVXDo0MMsXrwVVdXIZjNompNIpJfOzj309h5kyZL7ZUYSFdPMkM2mee6521i8eNtp2def+MSPSdtxTk6nDw0FNR1GzUSwnMUo7hIB1yCSzmy6kHc75zaRkLpKBAA4vP89cJ2L+Yp0QW2rvY2U3Y+DfHSRqgt4skypCc3JTsvOzm8vDRzBzkdGwFkYAXwrKEiMHwKuQ2p6P4u4gfcjwNiJsNcHEAlzY243ESCZe55ThSXs9R4EZMqOxDkx9iEb2jewtm0tjcWNpLNpBmODdIW6aKlrwaE52PP8Hu69515i0RipmhTpzjQ33nwjt95wK/uO72NSySSyVpavXPUVxurHeOTOR6gpqiGWjlHpq2QoNkSJu4RgMsgE7wQSRoLVz61m86LNDMYG2di+kTVta+gJ9zC7ejaj8VG6w9201Lfg8pQTURQiyARDTvZ93B6LeoT5v4OClNtjH7uC5FTPtZ9HgTuRyQpb/MYqxPX7crv/pP1ZFwKsVUROXocAaw2R63/vlO/pfsRQbaFpEOjfA+UtMnkzsg+8tQKAc7JtZ6mw15mwmOo5AjD+phiQvbdFWO76T8lNgeaTPc/GREKeHBS2VfNC7AS8e7fUaPsny8EkBiEzDo4SAZ3vbYLZ94iDeDYtTLXmLORdq/Z5Gzp2Ong2M7acOifLzsiNRLSnIPEGu23aBtn2KtOUfbeyEO4q1HBbWWGfnUVybZyasZ1NwvgHEp1XMVvk4c4AjLwNE2bKNkbegeKpYKbkMRUSAO6pEmB8cL2UZLgnwPAbhYz55jVQcoZsz0gISD+0Seqqe14S5cmi7fL+Cysk3uvVLVL+cc7VcOlDYGYIp93sbe+losLH6Gic1tYGEokMlgVr1rzAhg2X4nbrZDJZbr75WZqb61iwoIGtW/ezefMiPB4HL79cyKZua2skHs9w223PsW3bxzlwoIeKCh9btuxj7do2GhuLyWRMXnmljwULGjh+PMSGDXvZtm0xQ0MxNmxo57vfbWXyZPmdx2Hw9uCHlHqK+OUrT3PbxV9lNB7ipwf+xDdbPoXH4SSVyTAYHWVm7ZkoKKSzGSLJGGkzS6mniPeHTlDpL+MnB57gmy2fosJfyse3r+BjU+ew7vJrODnez69e3cWqC7+Ez+nBxCKZSbH1r7/ma82foNxbzPMfHKChpIrZddMwLYuE/f7/Wfz36CQFWEd2SARW1YPya5Qdg9gLkmPtnSfnlTEEWrEt5TaR6bI0GKMiFx9dD+V3gl4P2UFQiwWUW8lCjrU2Qeq0zQj5IpDsoNR6e1ogcxLGtkL1w5A5Tkw5i6PjQTa0t7O6tZXaoiI0RcFp51krQDKbZTyRoMTtxq3rRNNpNEXBoWk4VBXDstAVhcFolGK3G4emYVkW+3p6mFFZSSyTocrnH1mKzwABAABJREFUwwJG4nFK3G6CySTFbjfXP/MMOw4f5r0VK7jrpZdorqvj8+eeC0i29s8vvRQ9l+M8PCwoUNeFggUBt0VFghQTth+JrguK6+4WlKhpUvCby7xOJIRZzoU9Z7PixOV2C/B2u+3floTIyG+6SWjX7m5hoxcskN+G/fulf8MQIDtxovz19grzHAgU3MDb20X6vWWLsN9TpwqN29cnDuShENTUiPz8hhukXU6Gft99gky3bJFjePll+du+XfrYtEkQ81k2Q/k3IdPptkt4/6SbTZsUNm+W4Tp2TIDz6tWC34uL4cgR6WrNGvGBC4dl6FwuOOusScTjT/D667Pp7X2Vb3zjS+zdewTLkjmMj32smTVr7ub88y/B65XDWbRoEv/8z0/wwAOz84fywAMyZ7B2reyepkFpIIuezRRY6VOXrEk+z/pYj8jCcxFb6Yysz7HRuffdTjE26xmEKXWyEQsB47rtq5EDcOEY+Nz2pKfN+6UN+U3/G/m44XWRjkbJRCK4J0wg1tfH+z/7meRR2+fM8Btv4KuuxltTw/Crr+IuK8NRXIzu8YgsvKiI8fff5692HXZePl5VxeHHHqPp29/G39hI+MQJksPDUt89MEBidJSK2bMxEgmCR45QPn06aBojb75J5QUXoKugJBPCQrs9cjxuL/zqfonhmrNQwO7okDh+T22CTAoe/wks/hwUlwkjXVQitdpXXiW12UamkJFdOgGGBwr51xU1AqQTcQHfqaTUW5eUQygo41ZULPjANDE0Bc3hIh4cwOEpIpOIko6P46+YhOZwoSgqqu78CFz/B8tHsvD/Rct/Kv/+2+VvncRN047cuhRlxgUiLdd1ucAtE8UvNVCKomBYVj4Wa+/evWQyGcbGxojFYuzatYvx8XFUVUXTNIqLizEMg8bGRkpKSqirq6O3tzcv83Y6nTQ2NubZ52g0SigUYufOnXmTNIfDQTabpb+/n49//ON5YG0YBl1dXQSDQaqrq/H7/Zimic9XRFFRLc8/v5rR0Q+prp7N5z//OIsWbSYYPMnYWCfTp1/F4sVbiUYHURQ1n1O9cOFaFEWnsXEBsdgwzc3XYxhxRkc/YNeu7zA+3snY2NE8G62qDjKZBGNjH7J7940AXHHFg+i6h4UL77T7XINpZonFBtmzZxWjox8K+IkPQMc6lFifLXc9hcFWNKm9fu/XUg+dHJOcXEX97wFrkH6jPSITtUzpe/h12x08KG2cRbJdT7kYMx3alM+5PtU4zQlMAy5EJN9ZRJKsUmCzv4sYZK1GgF+EAtN60H5vhf26HgGOH1BgU8OIZFqz+/Uj4P1D+3NxADNDT7iHW+bfgtfhJWEk0FQt7/694pkVxDNxps2ZRv2N9fz8mZ/z0wd/SndvN21tbTh0B+HRMPt79qMqKv09/byXfo+B6AAuzUW1vxpd0Sn1lAIwwTsBVVHx6B7uuewenJoTn8PHbfNvw+vw0lzXjEN15J8f6DkAWHl3cFskjIJI6ysRg7NbEMCrIPXRJ5BJiS7EFbwLYaKHkDptn/28GzF3uxAB3DF7jHIs9zDCirfY/ccRSX0VAuaX2d/XIfs70BRVWObXVgm4rZgnQDgbg1dWyOPoAYh2yhZix+V8qWyTeuw5D8LEL8tRpkMCSGMnYOxVYfkUVQC0ogmw7n1Saq7NtEi0dZ84iOt+iPcLO6665OY3J/mO9hXyrlFk0IptcG4acm7nIrrMjABvy7Kl5UUykWSZtgGa3W9OGm4kZZ2Zls/mIr5M+5p0+KQ/07D3xy99W5ZkU9fMk77DJ6VtbatMXjmLoW6hGJwFJsl+a84CaHd4xN37wAZhzU/NmD+4QbYfH5QxzV2TBzfCxEXQfDv07RcGvWWNRJjlEgEu3Cy59gMH0TWVlpY6hodj1NUVEYtluPHGPYyMxLn//iU4HBodHd0MDsbYvHkRl18+lU2bOmhurqOvL8K11+6kvj7AwYPfor4+kGewf/Sjy9E0hZaWOrZs2ceOHYfp7Y2QSBiMjiaYPbua4eEYU6aU8OijS/H5HGzY0J5nvLu6Qlx77U6wVKbbjPNX51yJqiiM2O7hQ9ExyrzFDNhu4He/8HMSmRQOzUFlUTkNxZV4HW5m1Z7FTw48wZ4j+/jJgSdQgC2fvJk1l34DRYHfvr6Hr8y5Eo/TjYXFW30fMBYPC/u9/wnCyRgXnzGX6TVnkjIyvN57hPF4mFs+9mUsFCzFLYC6bieU/wMoLvI56YEviamZ0S/rrAQkXqOwmGJKpvrEpCyyAzI9AqbzwDorQN2zQMC1astcVa9MdplRAdZ6hZiqKbqw1piQ6SVrQU84zC3z5zMQjRJKJhlLJEgYBqZlYZgmpmkyweslnEqRNU28DgcuXedgby8RO6s6Y5q4dJ0DvaLQ0FSV1oYGFEXhBy+9xIlQiNF4HJ9T8mwneL24NI01bW0sa2qi2OVi86JFLGhoYNWePfRFIuJinkphLVggYHTBAqFC02lBiDlGe3i4AIRB2OfGRmGmV60SUPzwwwKsc4xwLFZgiDVNAPaHHworfPKkgNe+PmGAN22S69XrLVher1ghYDiRkOf19RLcfOKEyLJz9byrVkn71lbZzyefFFSbSEh/M2YI675unWx30yY5xm3b4L335NHpLIDtrVvhC1+Qum9VhTPPlDa1taLB/tuQ6ZYW0paD/n6Fe++VTVpWgfDetEnWGUZh3YYNduWJKUO3YoXsws6dokavqGhgcLAfVTUIBKCz0+LEiS4mTmykulrmNjo7yUdzP/hgIR7c5YIf/1j2IRSSeQxNowCg/5Z3UxRhnzUVzmwUAK5QMB5zu+yGVoHpBpGW59y/EylxCjdNcRtHKTiSuxz2LHRcJOUfdtnGafa9ks2oZ30espkMqq6jaBpWNou3spJZN94IlsVrd9+NEY9TMWsWvtpazEyG0nPOIRUO4y4rQ3e7ifX2khgepuK885i0dCkVF1yA6nBQevbZxIeHxZhscBArmyU5PIy7rIxX1q9H0TRKp01j+LXX0N1uSs4+m1fvvpt4fz+V552HZZq2RG1cJNy6Q+6/s1m46jvCNP/2EZF5u9wCoH/zkIz1F64VEO1wCJv9wp9ELj42JK7hOdfx8WGZkHC5pb9nf2+z/vY2NV0AemjMztCuEmLtn+6TElGPF1V3YGSSuAMVqKqOr6yWQPWZDH+4HyMVI5tOfuQU/j9cPgLX/48v/1YOdn45rW77UvlhyqTBX4R25WewgqMiDw8H8x/Z9Yffc/6M6bS0tHDnnXcyPDzMggULuPLKK1m2bBmtra2sXLmSO+64A9M0yWaz+Trq7u5uTNMkkUhQVVVFOBzGMAy8Xm9eRj5jxgwaGxvRdZ3GxkZcLheKopDJZDAMg4aGBiKRCN3d3YyPj7Nnzx6qqqrw+cRILBgM0tPTg6JYeXl2R8cmkskgjY1tOBxewuEeqqpmkUiMYhgJdN1NJpOgqKiGpUsfpaRkCuPjnezceS2BQD3l5WeQSkXymdnhcA9ebwX792/F6fRjWQaKorF//1bq6+djWSbRaD+pVJBAoJ4rr3yEUKiHdDpMe/vG/D4J+BgQtik2UDApM+xZ+1PrpFvWCKhouVMko//dRXOKfDQxAi9cB8EPxZU81i+mUDnwnJPZqo5Ttn2nyHBPWZwIEHQiYO42hIWuQGKzapCa3mqENS1GGOstdpsNCHO6xe4vhBhs7bAffQiwVBHQGEZOz4lIPbYb0FQH59ecz9TSqVT5qyhyFuHQHLTUt7Bl3xZ2HN5BKBXiH576B3Yc3sHG9o387pHfsfCihUyeMpm/+8zfses3u2iua+avL/+V4YFhjvzwCPWBeq7bdR3RdJRjwWMc6DmAgoJhGpiWmQfQ44lxkpkkxe5iSt2lBJNS7z/BO4FX+l6hua4ZKLh852qkuxA2fwrikH4fAm5VhNnuReqjfae8vhg4g0Kdtg9hqnUELD9kj4lhP2aQCYmw3aYVmdzYan9fk4EfIzXen7O/DwNF2OfyZjEVO7hcmOrDG0+J2aoQQKz7ROqdHBIG1swK8FZMwLKzsDWpn65og9FDIh9P9sv7TWuh7XHw1sPIfrkWdL8Ynzn8ULkAiqaAEZXzMVcnHZgIZefYEVmWSKBzTHKkWx4dNmOuKOCvLdRROwNifpaL2jIz0ke+ztqe+lCd9gSWx+7XVjkpmvSXi/oy7QkDRYPK8wUAK4rkTucA/AsrZN/NLISOyut0WD7n8EmdtGcCLB+Cyx6RMhB3GVzyIHx6J7R8T65Fb6W4jM/9rjDSH9smbYsmiZzcykpOfcmZMjaXPSrA/sB60qWz6TwW4sCBXpqb66iuLsLl0liwoIGenjCdnUFWrNhFRYWPrq4QbrdOaambNWvauPzyqWzdup8FCxpwuXSqq/1s3tyRl5KrqkIyaTA+nuSOO9pYtqyJBQsaMU25szZNi4oKuTE+eTLI0FCMNWukXXNzXR5oZzJZnJqDSn8Zv3xFIpxyzyv9ZaiKwvTqqfzTK0/zlTlX4na4yGQzxNMJMmaWoegYlmXxzZZPceU5bdz6sa/g0h3Mqj2LdwaO0hsc5taLv4qmqPzg2cfoHh9kevUZVBeV88mmi7jzsm/idrjwOFwMhEfZ/JdfclZFI2XeYly6UyaXM8dgcBW4zwdHg5wr2X4YWSe11piF54ob3DNsyfg1Umed/lDqr72twnx7W4WJHlolddRWHNInBDTnzPfMiHze6AetUlzC1YAA8NHNogiJd4B3AZqi5GOv6gIBqvx+ilwudFVlKBYjbhhkTJNB2z08YRhcs3MnR8fGmFtby2AsxrU7d3IyFMLvcrGwUfRE4VSKFbt2MRCN0lxXJy7kPp84rofDLH/6aU6GQpxRWsqjS5eiKQpehyNf5711/36+0NREnc+HcuKE1DSfOCF0JwgaHBgQsLpxozDRzc0CKNvbbXlvsbzn8RTQYg5Bbtwo2dDr1wtrnStGzqHLCRMKWdnf/a6gy3hcHLi8XmGTvV5BhrfcIhrqnCS7slIQ6cmTBWfx9vZC3tXq1eIeXlEh/fb1SR+9vTJp0GqrxO66S47H4RA6OZdvPTgo/Xd2yiQAyHbLygrxXDn3dLcbTYeWFgvTlN04cUIOLZdYpksFH/feKyA4Z7bucIgg4KabyOdXHz8OEyZUMmvW+fziF78ilYI33vg9DQ31NDScQTgsaWLNzdKvacpXMW+e7NK3vy3KecuC731P9kV+JxFm+cOTAoZzIFtVClLuRM6TAgHAiZTIwKNxyGShulwk5aYl9dlV5fL9aKrIu1NpAec51/EzGwU8q5rkWfcMSl22oogRWjItExgOB2bWIJtKoSgK7vJy0pEIKArZTIbEyAhnfulLJEZGOPiP/0i0u5vRt94Cy6LkzDOJnDzJwe9/H3d5OcnhYbAs5n7ve8T6+oh2d6M6nUyYNYsjv/oV3qoqsJ3J3/v5z/MScEXT8mAb02TWjTdKbXY6jaKqWFYWQqOFmK3hAamXHhuW9bn66qJiAcZTz5ExN7PCNv/6QQHUV30HfvBjidlyOAVIv/AnYbpHBuDJf4Kp54pzuGUWtvkvj4ph2pRzpS47ky64ju/6LQCZZIxMPIimOdDdXmJjfRipOJ6SaoaPHkRzuvnIKfx/tnwkC/9/ePlXsu/ySmGi/6YNhoHZdUxMzILjWNEwauNksjsfz7uRqxddDv4iJlRU8txXPsOMrdv54OhR5syZw7Fjx7jqqqtYuXIlF154IXv37uXyyy8nHo/n3cJDoRBVVVXEYjGi0Sh1dXXouk46nUbXdd59912amppQFIV0Ok0qlcLn82EYBpFIhP3797No0SKcTifpdBrTNHnhhReor6/n7LPPJp1O43K5cDqdtsw8SHFxmr1717NgwXfx+6sBBYfDCyik0xHS6Sg+XyWKoqAoOuPjx2hvX8/ChWsJhbr5zW+WMmPG1Vx55cNYlkkmE+O551bT2nobDocXp9NPLDaUd/72eiegqg7C4W46OjbR2rrart92EwqdtB3J6/L7VFl2JmroBIrDLWyVqssNu2nIjbHDa4PdlNxgmxkBuf9d1jq3pMLw3LdPdwz3TJAfZU+ZtBl7X0CKvwGi3Vg1LZgOP1ndzb+11TQFiXgr8hs/iLCyIExqTuqtIPXA3RTk0GsRc60wAvQ2IeAce10lwr767McDSN1yI6CmYpwcP4bH4aHKX4VpmXlQezx4nPV717N18VZWLl/J8y8+T4mzhAXzF3D3j+4mUBygr7+Pld9eyZHOI3hcHr5/z/dZcvkSTMukK9jFmeVnksgkMEyD21+4ndtab8Pn8OF1eomkIlT5qlBVlayZZTQ+SiwTY0P7Bta0raHcU86bg2/SduYVrFAU5gOft8fDsMfiEGLoZgDvIoDbFn+C3SZlj5/bHuMNwO32uLyBsNIOBEwfQvK/Dfv5PLufOCIn34DUeWt2mxzD3QHUWxZTAW/wbQGXb68TQH3RTgHAhzdIvJbms/OakRulN1YLw+yfKg7jR+6DC+4n7/CaHBIHbUyRj5e3CBObTYKrnPyUQu68z4TFME3VC67ioW5hkTU3p+i3ZfvJUSmVMJKF8gbNKed0JibXS04OruZAcUaeg9Ql55zGc87gqi6Mr7/erg3MyQ5Pilw7V6+d+5KMJIwfEVb5oh+JwiTSJTXW4S54batEcr1wnUxw1S0otE0M29ttEAbbWyHfzF9ukEm34slgZSTrPpOE4okysJm4HJ9nguzfX2+B+evs3wZLFAXpGGARzRYxMJyivNwru64qDA3FCIdTnHFGGd/+9k6efPIIjz/+eRYsaGRkJMbzzx/j7/7ubIqKnEQiafr6Imza1MGaNQuprPSyatUe7rxzIVOmlBIOp+jvj9DfH6WlpQ6XSyccThGJpCkqclJc7CKbtUilsnKvG05RVubB4VDp7Bxn8+YOHv7xx0mbGcKJKPtOvkXrxJk81PE4e47sY/G0+axY8Hkq/GVYlkXWMgkmwhS5fGiqRspIs/kvv+Rrcz/BpLIaDFPOjaxl8s5AJxW+UoZj45xXN40Nz/+U6TVTufys+VhYbP3rr1l14ZcIJiL8+MATfKvlUwxGxxgMj3D5tPmYWKiKit+RRY3vFcCsFEF2SECuGQNzTFhp55nCLjvPkO/ASsHgd8VszLcYtArIDoNeK+8pOgxcC9EnxdzMu0Cuh8wxGN0I5WvBMRnS70n/3gulxnp0PZSvBq1WtneyGaYcJWy42NvVR4XPx3AsxoUTJ3JsfJwN7e3c0dbG5JISOsfGGI7HaW1oyLPZr/T1Mae2lut27cq7hP/4E5/geDDI1n37+NHixVjAaDyOaZokTZP6oiKG4/G8s/jVM2bw8JVXYloWqqKQMAz6IhE2trezbfFihuNxmlwutJdfLsjCL7xQIrZy+uWeHmGpJ0wQHbOqitw7GITS0gKDPD4ur10uAbOBALzxhhiLNTQIcAZhmYuL5b3aWpF567r0sXy5AGNdLxiTud2wd6/009gojPRrrxXstxcsKDiS//CHooeurhbWfcMGybtqaBAAXlws+7Bq1eny73/8R0G58biw5dddV3AJr6gQGXgkUjBJ6+oq7NuHHxKb3MTRk042bCjg7pzxeCwmm+7vl4/ouswHbN4s7T796WuJRp9mZGQA0yynpqaIZ545yu23H6G392uMjo5SUhJg+/afMWPGDCwLbrrpWnbvfpqhoQGKi8txuYp4662jjI/Lbh85IiXuL7wAixfDlIlZVCwB1sPjErUVsBU+kZgA4GBEHL9dzoKTuNtJXomUW0JRaZNjnkGAst9rm0Qatvzb/o+ZNgr11qpi/zM1BaDHEgLKQ1EyHieRri7efewxzvnGN/A3NGCmUqguF2Y6jeZ289rGjZRNn07DZZehud1k02nS4TBvP/AAvX/5C21bt1Jx/vnyL25khGhXF+6yMo786lfMvuUWLMMg+OGHlJ17LqrLRby/n8Pbt9O0fDn+2lrig4MYiQQoCu/95Cc0ffvbaB4P7rIyNE1DzWZQTnHnZtFn4M9PSl21kRF2WdcEeAdKpS46NCpRW2NDEB6HkgnCUpdWCChe/HkxLnM44FcPSN8LLocvfUfUA6oqcVw1jfL89z8VmbnTJYZmL/wJPvctsj4fRiqel4XrLh+6y0syPIzTV4xlmqiqju72feQU/h8s/5ks/CNw/f/w8q/iuj6xDMXl+tftbBCueP2Y/T3iCB6LogRKMNtfQF1wMfgDWJpGZX09j6+6jvmr/4GDBw/yxS9+kffff5+lS5fyxS9+kW984xsYhoGmaXR3d/O73/2OadOmsWTJkryM2zRNDMPA7XbT29tLcXExgUCA8fFxAoEApmnmwbKiKOzevZuGhgbOOeccotEoHR0dtLW15dnqcDhMR0cHra2tlJeX8/TTT9PQ0MDMmediWQaGkeTddx+np2cfixdvRdfdjI5+wP79W1m0aBO5X/SBgTf453++gqamZSxZ8iB79qxiyZIHUBSVTCaGZZkcOfIUxcUNNDa22fXk+/B6y4nFhmlsbAOgq6sdn6+CWGyYhoZWVNWBaRqoqoZlmXZ/cbwON2p8SG6SD24UNio+ZEdirRUDslwN9v90yabFOCnX/9zvimmaMyA/1JqzENd1at3mtGX0XP5jNGcRPgTk5X4u00iNcAciN74MAc1ZhG3WENCnISxqTiSUq6M2KdQFq/br3HsfIkxryyntxpGIqhIEMFamwuhGCqcm8sTB2CABVyBvMqbaM6cKClkri67qhFNh+iJ9bOrYlK+TrvBVUOYuw+v0Ek6FKXYVo6s6CgoHeg9Q66/FxMTv9FNXVEfCSHCw9yANgQbKveXc/OzNrG1bi8fhYTw5zmh8lPkN81FQUJ1+oqqGiZiyDSCTA70I+NWRyYgSpE66DwHO3Ui+9XcRllm3x7TPHssapL46hEw8hCjIzNdTmLRI259N2o8peztxe1822W0nAlgWxZFjIg2PnYDD66HpH8A/sXAeWab8jb0C5XPk+chBqJgv+dXTbhJH8HRQQLKcfPbWTfvbVaT2OFfDnR6XCSRvHXnG2YhC6B2ouNBm8pD1FtI22mvXWdvAN5sqgOhTwW86DGMfQuWMwgTVqfXX6ZCA80iPyLxdJbK9wVdtN35XQVKeTUrpRh6w10mf2ZTUPk+YIRJwMyOZ8sNvQ/XcU/bRrhnv3w9PfQ6+8jp0rIMLbrVBswoDh6BytgB8LIgOSD128x3Cmkf74ZXN4uxvZmHgAPgbJas+m4LBQ1L3rbtFpeIuJWEV8eHRIOvX72X16laqqyXm5fXX+/O107nlttue47bbWpkwwcvNNz/LmjULmTKlhG996yl27DjMsmVNPPTQFei6SjZr4nBo3HDDM8yZU8vnPncubreOqip88MEomzZ1sHp1K2edVU4iYdDfH2Hz5g42b16E262zf38PM2ZU4vc7cXoUekKD+Uis+pKqQi519VQyWcOOOBSwmwPGfz/3E0zwFXPJw8tZPG0+37v82ygo9ISG+MmBJ/jqnCvz5ma6quUnrjLZDFnTZDQWoqZ4Am/3H+WWJ3/Ex6bO4Y5Lv46uavSFh/nJgT/xrZZPMbW8AtUMoZghAdXJN8FRBQ4bUKs+QAMrDRiFumm9XhhpMyLy7+QbEqHlmAxkxPgs+QY4amF0g8jOB1eIbLxupzDko+uhfA04poLRa2/PLwZnmZMiL/fMJ5518eF4SKK12tqYUlpKj51rfbC3lweuuIJ93d3Mq6/Pg+pZ1dV4dB2nqpKw67FLPR48mkZPJILf6WQkHmdDeztr2to4o7SUvmgUj66jqWo+4mvb4sX5TOu1CxfSEAhwsLeX5ro6NEXh2zt38vAll1Da3Y2yYYOA6SlT4KWXCmB7wQKxnnY6BTxHo/ZvjgVvvilybbdb2uecuXKZ0w0N0i4eF7B9/LjQs2vXClBOpYQ5rqgQ8JpICIA9eFDk3NGoAOJsVrZ1/vkCoisqpOY5l2uVmwRYulTY5+3bhXlubpZsLJA2d90lIPqXv5RtrF0r26ypERRcUSEABmT/Dx6UbQ4OChO/Zo0w2OPjwqxv3gxOJ2G9hG9fo7Fjh7DVDz1U+GlMJITc1XXxTKuvF9X9pElSUv65z8FnPyts9sCAHH48LptPp+Xwg0Gpu85FfNmbJZ2WvhVF2OzZs0VEoKpigj5zpnxOVUy8bhMlF4VV7BfWOG9OZu+sQqEG2u0srDs1QsuhF2Tk6YzIw6fWC7Pd1V+I4sqBaMMUwGlkbR38QKFO+5Qlk05jxGJY2SzjH35IeVMTo4cPUzptmkRzFRWhuVzE+vryANxTWYnmchHt6cHh8+EMBEiHwzgDAVSnEzOd5rW772baV7+Kr6aG0bffxltdjb+hgaFXXyXe30/9xRej+3xyv60oKJZFMhjkmU99irqLL2bOnXeiuVzoioViZESCveu34to9PgKN9qRdcMyulV4mZmSBEvjwnUKN9RVfFHn4Pz8In/m61E+/+xocPyImaEYWIuPS95evF0Y8t52iYqnd/uw3ZAx7jwtgP/6+SM3HBsl6vKQdGsNHD1AxdS66uwiwUFRdxAgWmNkMmtPzUc31f7B8BK7/Fy+nM9eX5aO5/s22mYxIQLIm2Wf+gHXkHbTlt6J4fVjZrMjiNJ3nX/wrV33lK/h8XsbGg9x///0sWbKESy65hFQqhcvl4uyzz+aOO+5g2rRpDAwMUFRURFlZGYZh0NPTQyAQwOfzsWfPHubPn08sFqO+vp7du3dz5ZVXYhgGvb29+P1+ysvLGR0dxel04na7SSaTdHZ20tvbyxVXXAHAzp07OXz4ME1NTSxZsoRsNgtkice7iET6qK6eDYDD4SUWG8bnq2DXrhXMm3cTxcWN9PW9QlXVTJxOP11d7RQV1VJSInWchpEgEumjo2MTbW13UFIyiUxGsq99virAoru7g0CgkdLSSTbDHee5526jtfU2SkunyPhaJqHQSfbuXU9r62q6u19m9vQv4tKc8Py1AmS//p7cbOeY5csetR2VHf//2ercko5KtFbNfDjzM3b9qfP0frPpU5jreji4gXTLnbxfNo2M5swDsbPt5u8jQG4bYsKVY0J1CoZcUQqZ1TbnRhoBlPUIyMvVIfsomJV1IO7ZUURS/gYig/YiIHIYqMwkiCWDFDmLyFpZ0tk0DtVBV7grn309uWQykXQkD5q9Di/tXe1U+CoYjg1T6a1kKD5EW2MbpmWSNJL4nX6i6ShvDLzBnNo5WFgMRAZY376eNW1r6Iv0MaNyBn6nHxT49Vu/ZkrpFOoD9bh1NxW+ChyKA8MyUDQnWd1NRlHIIsA4Yx9zwn596hh5kHzrcURGfxDJ+Y4jEV5zEab61AmKhP3Z1fb4uCkYnuW+jyG7j24KbHcHUG6PZbNl4cPCmwnZn0Bu/NNBkWvr9vRIcljOE2+traRwgKXIeZoRDwUyYfDUAobsqJkUd2QzKUx0PsYqI/XY5c32zZUutd6jB6H0PHEbjw9CzaUCJHO5z1ZWShnc5aevyz+3pd7aKTdeiiIy7VzcVmJEromievlMTsJ2aptc1ZOVLbDWmktk3okRUZsUTxGGPRU63QTwY1shNgSxXpFta55CnbfDJ5NcDp/046uS7SfHC+D+rzeLWzjAB7+DodfhkvtkUiEdk/F+ZRMsvFsm4LJpMUKrmSdlJcNvQ8UMSIeJag381TYzGx6OMXVqKZYFFRVeLAv6+iJs2NDO6tWtvPxyNy+/3M33v38R5577EFdfPYOHH76SVCrLoUO9zJ5djc8nrP++fT3MnFmF260zOhrH55PfEr/fyXe+8zS//vXbeTDudGr09kaIxdKoKvT1RWluriMYTFJd7cdyGNz13I/zTPU8JnLX9/8PsUSCSDbBI488wmWtF5E00tyyZjV/2fksWcVC8Tp45+Ab3PXcj/Os86zas07rKweWQ8kI8XTqtExrBdj8l1/yzZZPMRIb58wJjXidblRF4a7nfsLT77XzwGe+y/zGqejGh+LmXb5aJNrJtwRAZ7rA0yxS8ByzXHaLmJd5F9r11wfBUSPsdfItAdijG6D8djFCG/jWKYC6vgC0EwekxlotlfrsTJfEd43+0K63RoA2JqGMxjU7d/PkkSO8tXw5pR4PB3p6qPH7qSkqotjlwrAsjtts9u0LFlDp83Hzs8+eln+dA9I94TD1xcX0hEIs/c1vWNbUxMNXXsnx8XG27t/P5kWL8Oi6/BYpCit37aK5ro7Lp06lrqhIDNQMA4emcXRsjBpFofa1104H011dBbMyl6uQJb12LZSXs/uqq7hzZIS0ZeH1enl0yxZmxWIcCoVYtWUL0UgEJZvlR9u2ccncuYLwcqZmv/udIL8HHhDwnAtj/v3vJWs659794YfCnq9eLYhUVQtZ2j4f9kUCzz4rIHjrVqGE16yR+vFIRN7PmZFVVcm2Dh4UMF1TU0CiqirtQyGRjauqsOMVFYKCr7++YH726KNw7bUyTm1t0N9P4sLFfHBMY8MGhW3bZBg3bYL775fDzs0HgABiwxBs6XDIc10XMP3GGwKQ+/tlN0pLZQ6hoUGG5dAhmD5d2t95p3wlbreA9lmzhK3u7pY5BZdLhre/H4JjJpfMT0rO9b+VQ51jq3MZ2N0D4uSdW7KnAGTLEpBt2fXVY2EoC4ir+GgQLmiStpHYv2bHU2mRmhf7C2ZoqkbWzBI+cYLD27dzzje/ib++HiwLRdMw02nG332XshkzUDSN5Ogoz37xi9ReeCHnrV6N5nSiqCqZeJzxDz6g9KyzUADN40FRVUzDQFFVsokEqlN+C1Vdx7JBtLu0FEwTM5MpZGXbpmjeqiqK6utJx2K4vB608SEB1FObCv/tVVVY62PvwcPrYfY8YbI1Xe7d//lBeGM/fGetAGFFKZiYFZcLCFcUW15vq7hUVcB3Jg19JyW+K50Q07Oc+VlFjfz/NS34zUNkr76OWHgI3eXBSCXwltZgmVkUVScdDzFy7BAVZ7Tg+sgt/D9cPgLX/8uXUx3EhfURZ4q/lYef1jZrYPacRK2fSHbXH/LMt7ngEi5f9gW+f8vNtKkmB8tr+OznPsf69et55513aG1tZenSpWzZsoWHH36YgwcPUl5ejmVZhEIhXn75ZS699FJUO+/vwQcf5NOf/jSNjY0oikIqlSIejxMOh6mrqyOZTObZaYDx8fG8m3hRURG6rqOqKsFgkHA4TGNjI5Zl2dLyKHv2XEdj44VMnLiQcLiXhgapf1IUHdNMYxhJXnhhDZdfvgXLMuntPUAg0IBpZjh48AGWLLmXbDZDT89+fve7z9lO449gGAl6ew8SCNQTDvfg81XgdpdiGIk8eO7p2U9JySQaG9uIx0dwuYpPcw6/6KLvU+KvQVc1lNAxYZM/tk2+iHRIGLDhN4Rd9laKydj/BGDngPOB9VJD/e9lZOdl6DqmaTCuuRjRnPwAAXuLEVBsIIAthIDtDALeEggLG0SAm46A6SAC/EIIWPYg0MWiIGmeTQFkWwh7vQkBjZUIuGygABBdqRggjvQmJprNEPZGenm281le73+d+5fcT8bMoKCgKAq6ohNOhwmnwtQW1UqMlmVx056buGneTXgdXsq95eiqTiQVYe2f17Lh0g0oKPRGevE7/VR4K/LnZCabwbAM/E4/SSOJisqB3gOcX3M+w/FhfK5SqorrSSoK4wiD7EHqpLMUJOBxe70TMX/DHjsXwli77c9ij8+wPZ4+u5/jFPLHM/Z4J5DJj9UI063b4xtEALyGZIjfZvdVaZkUv3xVwcH70Hdg2g3gnyYxWe9thtmbJIvaQuK03rtH5OK+yXITlI0JULSAt9bAzPU2+5uG8begdIbUaLurbNDtEkY3EwJHMQTfgpImAfPD+2BCiziSG0kxMQtMLLjDWlZB4p1Nn85mnwaInYUIr/z6WlsabrPoqrMAzhX7zLSsQtt0WGTproA9QxS2a7uR6yXWD+5SAcjpqDDJyTExC3z1h6erUuaulutac9sS9ONyXTbfUZCmm4ZdO7BJ2hdPFan5gfViWBbtERO2ugXw6lYxL3N4ZV+yGWGuwych1k+i+lI++DDIhg3t3HFHGxMnFtvljgqaphCLZXA4hIl2OoUx1zSV9vYuzjuv2jYsSlFcLKqnVav2sHp1K5Mnl5BMZgmH5T23W2dwMEYg4AIsbrrpWdauXcjkySUcOzbOhg3trFnThtfrYHw8yZYt+/LMeDqbxtQNoqk4RjxNy+w57Hl+D7/reZk/PPMk5vMn2d3+At9ZexNKb4xHfradCYEyhgeHqautwbQsxuNhvvSrNWy88noq/WUi8573aUzTZCQ2zuy6aYzFQ0RTCfwuDwG3n6yZ5fkPDtDSOJ3KonLSRoZIKkaxpwhNUXmj7wjnVk3B78jiGLpeQLRvsUi7yYpc2wzC2A+FXc70QN/nbJl3m22mNyjMtpkEvVyuvIHrIPJrKLpa3L6xRGKOaoNlQ56bUTBDNuv9DnguYPee57nze+tJp+N4HWM8+sgjzLrgcubOv4xIPCG/Tdks77/3Hr9+9llKJ02irbFR5pksi47ubj6zYwefnDaN7190Eec+9BDLmpq4f8kSDvX25mXlFV4vW/bv54ElS1j5zDOsWbgQn67jczpx63reLdxtA4hIOs1ANMqmjg7WLlxIpdfLq/391BUVMbWsDJ9hoBw9+m8z11u2yLq+PgG7l1/OuKJwxtln89LixTT99rfsfeIJvrNqFW+//TYNLS38/OGHuex3v+ODm2/msiuv5MjDD+NpaSkAVxDw4PfDd75T0EevXy/by+Vu790rtdUlJfKoqvLe3r2CMIeHhU1evVrk5bncalWF228X5HnNNQKKd+4ssNy33lroMzfhpyj/Gsyn08Jm56Tgd90liHbSJJlscLmkJruigmhJLf1KPcXFAnxvuEHmCyZPtoU9ljDYucQxEIX9O+8Iu5wbGsuSTWqa7F48LvMBqlroZ3BQhm5wUPrp7xcw7XbLZw1D5ijmzhXs3NEBH1uYxdN1QiThFaUCohVF8qrrq6FnQN6b2yTg1+exZ+ETBTl32hDWOicRT6YL8nGPS0BebonEpA/DZrPrq+W7yUV4GdmCYVo6Q8alc2DdOrp27xaH71OcveODg3irqnCVlfHaPffkpdq6x0NqfLwAyOvqUFQVI5HgjS1bmPbVr+aZ7WwiITnaLhepsTFcduqNoutEu7s5vH07599+O8nR0TwrXtTYyPBrr1E+cybjhw9TOXM62m8ekhrpqecKS/2FayESshnmLwjwLquUeKxMWgD22JDUVnv9BWA8NiSMdiQIdZOgr0scwPc8LjXZKFKnnZOAT6iWeuxdv4XLPyufq6gVRtsyQdXJupyk40FGOl+h+pwLUTUdy1acZZNRIsMnSAQHqJ1x2Uey8P9g+cgt/H/5knMQxwJrdEhk4qND/7bBmWXlgbUSKMZSVbQrPoN61TdRF1zMG2+8Tl9fPxctuRIWf4IZM2dSV1eH1+ultbWVBQsWAOQZ6z179pDNZlEUBU3TmDdvHrFYjOeeew7Lsrj++utpaGggGo3mZeA+n4+qqir27NmDYYgUMBKJyE1BRweHDx+mo6MjH+H19NNPEwgEqK6uZnR0lJ07d5JOpwGNtrY1TJlyKaFQN5WVMxgbO8rOndcwPn6U7u4OIpE+mptXEg730Nt7gLq6ZhwODw6Hj0sv3UAweIJdu64jEKhn+fK3WLLkftLpCM89t5qqqln4fJVUVc0iHh/F56skFOrmyJEn2b9/KzNnXk1dXQtdXe2k0zGSyXHmz78l70bu99egqQpKNik34pf/RG7+E8PCXseHxcBIdwszlYvm+u8s2bTc6BsJueEO2Nspmybvp2NSh53rN29mJu4lqmVRghiSbUZqgo/af9cggLAUkYQvtzcZQ+qiY/a6D5EfiUoEIB5H5N65tl12+zn2+7ci4NLidIMzHcmErgBmIRFUYBFNR4llYgKeUTgePM66F9fR1tDGfUvuI5lN0tHdwfHx45iWiWEZWFgcGz9GykiRyqYwTIMfLf4Rlb5KfE4f1z9zPR+MfoCFxfXN1+cl5meUnUFNUQ0OzUHSSHLznpvJmBk8ugcNydpetWcVs6pm4XV4aQw0UhmopVNRWGEfbxUCZD9AnNF7EDDsAkYRAB21j9+wx28VBWCtIWC60u4ni0i9z0LqrR0IQK9BJkHusL+/IrttGGHCcwLte+2+qiwLpxGzjcvWC+Cd8yA4ymzGxS2xWKpD2GvLkDrrygsFdOdAteqEsdckq/rMlZAYECZad0NlqxxZ9JhkYo+9KjuhucFZJm0qFgjgTg6LW7niKJyb+VgsS17nGHDLlP3y1xQcwkHaZ1NypE6/MMyKJtebogpIzxmXQcG4zDIF3IJ8LtorEVmaSwBtNmmz2zbIV1TwVIpku+N7dpzdmIBtd4k4gafDAogvuNUuxXAW6soPrC84gHsmCAAvniSguXaBbEvVBGh3PilxXPUXwrlfFXa8Zr4w/M9dU8jFVp0C+D0VZJLxvHHYxo3t6LrKiRMhXn65i2PHxrnxxt2cOBHE4dDo6QkxPBwnm7Voa2vE73fS1xfhrrteAsDrdfDww1dQW1uE06kxMFDIzk4mDdate5H+/gher4MHHlhCY2MA07Ty29+woT0f2SWv92IYJh6Pg/F4mIc7Huet996hpLSESWdO5Zstn+Jnt/6QkYEhPnz3fd7btZ9N99xDsS/Apj//AsurEU0l+D/PPkYyk+bXX15PU/VUSjxF3HbxVyn1FDESG6fCX8brvUdIZNKMJ8J4HG7G42FMy+LiM+bSHRqiOzjI2wNHiWdS3PXcjzk53s9ZFRNx6y6ylgOr6gEo/nuJyDKjMHCTLc+uLxiMeVpg0lvyaAwLa60GBBxrEySiy4wJ61y3E6rvt8+5FCRfEyBuhsXELB/BhVyx3vmMDx/m6i9/hV889j3eemUXm28e4+qvfhtQeGHvXl46cIB/ef55SpcsYeq0aTSffz6tDQ1yeqdS7O/pYUFDAz033cS9drb1sqYm1ixcCJA3RGsMBJg2YQKPLl2KW9d5dOlSzigtJWvKNWdZFgGXi3gmw/6eHjRFIeBy4XM6WdDQwKaXX8blcDC/oYFaG+gqhiHA+lQb65aWgnv2hg1SQLxgAaxbR+err1JeW0vTz34GisLCigq6UikO/fnPDA8OctmkSbB5M2dNnUpJMskzoZAgTk0TpOjzFUKaH3xQkOLEiSLlzmmfUymRY9fXy7oVK0RSns3COefIOo9H9mnrVun36FEB0x98ANOmieY65wi+cGEhN3toSJBue7sg0eFh2ZdcKPXWrbJ/o6PiMH7smFDHjz4qjzfcAH/9q9DK9jhpkRDxmMX118uub94sxHgyKV3ruijrb7xRds8OZGHuXAHHnZ1yCMXFAqonTJB+Xn1V1O6xmBxaV5f87DudkgpWXCxfjdMpLHUwKO/PmCGMt2kKEz46DtbUBgHPU22pPgiLrWtiUjb9DGGki3wClBXbpOxUgzPTFMY7Z0RWXy3fazItgDqdEcDucAggT6VPB9Y5kH6yX7bldIDPg2JaNF17LRc99BAV551HfHCQ3r/8hcOPPYartJTDjz1GJhoV87HHHpP4Lb8f1eGg4rzzSI6OEu/v5+D3v0/Cjtc68stfoqgqiqqieTyoDgeKrVKwTJPk+DjRnh7iAwP0/uUv0s7ppOK88zjyy1+STSYpPftsLMNgwnnnCVD+wnKYfymUVcBZM+zIuRH4/LdF8n3mdCgWJhyHDWAdTgHax98XKXdxKUyaJgB58tkCrCedJXXYn/6atP3NQ+ISPnmaAGrLLJiXPft7+ZzHKydWNit9WRbDRw/iKakmk4zR+/bzZBJhFCzS8SDe0jqqz7kQ5SPW+n+0fASu/7cs2SxoOkrDJMyXX5TXpyyWYWCNDZPd9QcUn18u1NC4vC4ugbIKGs+dTv/QEO++/RZZ0+S9997j2LFjzJw5k3POOQe/35937C4tLeWKK67Iv37xxRdRVZVoNEp9fT2WZRGPxzEMg/HxcSzLIhgMsmfPHmKxGPPmzcPr9WLa/8wzmQyLFi2iqamJhQsXomkaTqeTuro6YrEYO3fupK2tjZUrV9Lc3MzDD2+ntHQqPl81v/jFS5x/fhvz5l3KbbftoL19A17vBDo6NlFSMolwuBufr4JnnlmJYcRPMSHrZv78W3A4vBhGkmeeuR7LMlm0aBOKovDcc7eRSIxSXT2bnTuvIRCoZ9myP7BkyQOYpkEyOZ4H7G53CfH4KEuXbqe4eCKGkQBFxYr2yU1xsBOw5Eb7xLMCFAKNEpUV6YLeDmGec07i/9liJGz38bjkWYc6oXevAAPTEEMkIy7rxj6Q14lRAQC5nGszg5aJ48+mKUJk2W1I3e+TiEFWOcKOPokAOxcCfjcjwLgfAYYfIGC72l6nIOCwBwHMKxFG+iF7/SiFWK87KUR+5YzRbgaymHh0D0XOIlRFJWtl2bpvK6tbVzO51Jb1mwZtjW3UFdfRHepmxa4VeHQPc2rnYGLi1Jy4dFee9XbrbjZcsoGh2BAO1cHUsqkEXAEMy2DFrhV8OPoh4VQY0zJZ2bySwegg+3v2kzbTNAQauHnezYwmRrlm5zUcGz+GqSh5Z/SN9viEKUwcdNnjsQqRcisIAPfZx+pDJjU04IXdu1k0Zw4LZs7kY/Pm8dKbb5IFvrthA9OnTaNEVdn+xBO0IxMgY3ZfIQSoe+2/6+2xTtjfzSrghKKQ1Tww6Wo4f4uA52wKXBPkUdEAVdbrPnjjNnH/nvQlmPOwRHYBjL4GpbPAWwNFZ0q2tbtanMfDH0ib0hkQ75N22aT0rTpg+KCw2lYWPDXkXdEsBNiGT8q+pCMCHk91CAdZp7lEqq1ock47pR6MdFRu9Kxs4XkqzGkWcv6aAmCO9Ei/7gkiHc9ROjlXcVWzy8c1W3aOgOIjO+QaysTEGdyIwycel4kyfz0khmS//nIjZKKyv5c9Ap/eJT4LuUQAzSVsdN0CmWwLnYBLHoBvHhMwPf6hlJMU1cK0zxeiuw5tEiCPKXL0V7egWRlWr25l2bIm1q5diGlabNwoIDcHerdu3Y+mqdTUFOHzObnppt1Eo2myWYtAwMXGjZfgdusMDERJJrO89dYgkUiampoiFixo4Ic/7CAYTLJjx2E2bepAURQcDo1wOM3ISJw771yY334mk2XNGnl9663z2b+/BxOTH9sxWi+NHSY4HuT3u/9EdVE577S/SiQS4fA77zI8NMxTTz7FkosvZ8ftD3DrD79HLJ1gz5F9DMXG8DjcBBOi/VBQcGmOfERXqaeInxx4gjMmNDAcHefhjscZjo6jqSqlniJ+cegpzqpoxKXpfG3uJ/A63bh1J73BIcYTNkqx0pDYL8ZklXdBdkBAceAqqLpfJoO0UpFzq15pl3xNJN1yIovsXw2IpHxguUjJs0FbWu4RcO25UNhu1Qfp4wK6seh8fQPl5cU0NTWBXs3Ci6+mqy/Lawd3oWGiAuv37mXfk09yyWc+Q9wwWLFrF+FUCr/TSXNdHcfGxhhLJHA7HAScTrYvXcqk4mKcmsaG9nZ2HD6Mx5aID0Sj+SzsgUiE548fJ5RK4dA0BqJRVj//PJU+HxnT5EQwSOfYGFdNn879S5bgVBRStiz8RDCIqarC1i5bJvJpTZOa4jvukHVr156WI3XmE08wmkjQ8frr0N7Ok0ePEkkm6dm+nRrTZMdvfgNeL4fefJMj8Tgn3n5bpNixmMi2u7psqbCtBTp2TJDjyZOy7YGBgg32bbcV4rpsF+d8VvaxYwKG77mngDhz4HjRIqGEh4cFIJ84ITL0HND2eqXP8XFhsRVFwHtbmyBjRZHtLFggrxOJwt+GDfDFLwpz7fHAgw+SnXwmXp/CAw/IYfptNXQoJKA3GpWmt9wihxeJCMBWFGGsm5tliE6ckEPv6pIa6tZWKU3Xdbj4YnmeI9wNQ4Zh+XIZulx0eC4Xu6JC1OymCbXVoGSMghu4aSuA3M6C3DtXe23Z9dSRmA2ykcdoXCTjPo+A5pwjuFPPO37TPSBScN2W2hf5pP8csDYt+ezkOrnujvWAkcVSFXS3W7Kr33yTigsu4FN//jPn3347qVCI6cuX454wgSufeorzb78dRdPIplJEu7uZcP75VMyezeHHHqNr927e++lPqW5tZfYtt5AcGeHgunXE+/oYefNNor29uEpKSI2Po3s8xAcHKZ85k7atW0mOjPD2gw8y4bzzOO/WW9F9PpLBIOPvv4+VzaLqtt9GaFzk3rPnixFZw1QZ06F+qbEOjsE/3QsDPfI/qKhEGOb6KVI3nTMpO2O6nLN1k6Tf0gr4489l/D/9NQHPLRcLoI+EpPZ67oWSj+10gscujbAsGO5HyWapOKMZf8UkRo4dItR/hOGjB8gko+guH0Yqhqo5PpKE/w+Xj8D1/4LFMgys4Cjmi3tQGiahLloqP0SnLqdmXu/7K4rPn39thYKQTlHp0Hj4m1/hi1/5CnNbWvjGN77B1q1bqays5Ctf+QotLS3MmTOHf/qnf+Kpp56ipKQEwzDyedgdHR00NjYyc+ZMAF566SUikQiVlZWk0+l8u2g0iqqqPPfccxiGgcvlwrIsnE4nS5cupaSkJA/YJ06ciN/v57rrrmP79u088MAD/PGPf+R73/sePT1vc911F/P2229z8OBf2b//Bdas+QQLF64lHh9h4cK1qKpGXV0LBw7cR2PjhXi9lYCFaWYIBOrZt28LhhEnHO5h3ryb0DQnfX2vAHDppRtwOLxompOGhgV0dGymsbGNcLibnp4DuN2lJJMhnE6/3WY+mUycaLQfsFAsE+WVzcJO6SKlZO4dcPVBiebqPyCOw7oHJjQJ8M7E5OY8FSqw2eno6ax2Ni0AOT4ojLWiCgjxVEqfRlxAQXJMcq99VQK4Y32w/y6JQsqmxHgpfBIrm+EYAsKOIvLtxxHw60Bkx48jIHEdMIKA62WIlDxEAUzejUiXUwjz3YrEce1AQLqJRE3FkRrt+4BJCDjM2H9ehJlNa250VccwDSzLwrIsti7eiqZqdHR3cGz8GDfuvpHOsU6cqpPG4kYevOJBAJyaExWVfd37yJpSr/1q/6t0h7p5e+htZlXPYiA2wIpdKwinwnh0DzfPv5mR+Ag+p49iVzFnlJ1BQ3EDCxoWkDSSxDNxppROocpXxerW1dQW1aJZJmstKz9J4EBk8avt8WlBJimakTr06xC2Oo5MJqxDwHVyfJwbrr6atb/4BTPeeosVmzdz29VXswL42GWX8Q/PPMPsCy/k9wgzvRGZtOgDvgecRGLA+uxtbULk4eFTx17RYO7DkBqFV1dBsk9qoF9ZIVLw5KCsz7PSfQKaY8fFFdxMibFZLufaiAkT/e7dwogf2SrAQvdB5UJIjkh/kQ8FZE+Ya2/jRsnSHn5Zto8lgDUxIo+aQ86UaK+9rpe8C3g6wu7du5nT3MzM5ouY19rGm6+/Cs4ivn7Ndcw8bw6z532Mua0X8sLeV6TvXO675hZgamZsebl946aJ8gdVF2bZsuxc7JRcbw6vAPtLH5T4rJqWAtg9sAFq58vxRXvkenZ4pZ5ac8P4B+KFUFQn0u+6NnEI798nTH6OrdbdMrGRsRUCJWcI+I70yf61rJWIrot+BL5q+Q5UB3xsG47gYc46q5xHH11qm5nBmjULGR2Ns23bYt57bwX337+EkyeDXHfdLvr7I1x/fQumadHfH8Xvd5JOZ0kmDQIBFz6fgwULGtB1ldde66etrYHNmxdRU+PnvfdWsG3bYtLpLCdPBrnttueIxdJMmiQ511OmlADg8+k88shShoZiNDQEUFH5VsunxBn8kqt46Gfb+ad7f0zbvFYe+5df4KoKEEpGMQyD597t4NdPP87v/mUH+3+5mxNHOlk8bT6zas/Kg+aRWBCnLnWFb/Z9wNebP8l4IsI3Wz6Fpmj8/NBT7Dmyj58fegqHpjOeiHDTRVcznojQHRpCU1Ueevl39IdHcDp0Knx+FOMkDK4Gz3wxGlMDoBSDexZkRwEFMt0CrD3NAowVrzzPBuWK1sqlDzMsTLZngeReWzEYXAlWXCTn3gV2hNdRO9KrHzA5s3kbo+NpOvbuBCvFk4c+QSQS5cQ7D5G1YDyZ5OuTJ6N1dXHL8uV0h0Ksv+QSAFbs2kVXKERtcTETvF6ypknGNNEUBVVRyGSzrFm4kGVNTVT5/fRFIqx78UX6IhEsYILPx4LGRta9+CKpbDYPxDe0t4Oi0BUKUeHzsfKZZ0gaBuF0mnAqhQJUeL0yhVVbC9//vtCtIOivt1eY5alT5Xqzo6qK772Xxzdt4o6vfY0LbrmFZ597jnPPPhv9C1/gT/fdx0/37uW8SZO49557aJs/H/2FFwTpbdwozPH69QVNMwhYza23LGGrly8XFJrLwF60SLavqsKCmqZIwzdtEiSZsCe3P/vZAm3s9UoB8pNPymNXVwFo+3yCXidMEOQaiQjdW1Qkn4tERAaeA9d+v3zG75ftdHeLy/jRo7BqFapTw++3GB2VZopSiAjPybhLSwXr19dL+XdJSSF9bOVKGaJcVWRjowDrTEbAussFn/ykgGj7awVk3mHBgoKh+anJYlOnyrwDYP9O2mA3EpPx01RhnDu75bllFdppqoBkI2uvU+S10yETIMV+2xEcIYQcukjDz2iU9xKpApttmsJmJ+17IZdTXMIVVWK5egZRHQ5cJSXE+/sptaO1Dv3gB6TGx5kwcybe6mqyqRSHH32U1NgYmViM1+6+m9Jp0/BWVKCoKk3XXkvjxz/O9OXL8VZVoXu9uCdMoHLOHN772c9wlZaSGBgg3tfH2w8+mM/D1lwuKs4/n8Pbt+fBueZ2YxkGiYEB3OXlHPzHf7T/v4xJVFZoXJhsRZHMa02H5/8oQDrHMD//R3k/a8DJDwUgX/IJcQz/9QMw3C8zJG4P6E6RhE+eJhG7vcdFRh6LQDQk4LyiBr5yI5ROgA8Pw1Af/PJeGdPiUtRfPYDTXYzD7aPijBaKa6ZRMXUu0eGTDHcewltSXThx/ouLaWbJGmnMj7Kx88tH4Pp/w3IqcO54EcXp/NfGZqdlXl8mM2htl8jrukabtXFx1VVX8fr67/HaoUPs27ePz3zmM6TTadasWcNf/vIXXnnlFZ5++mlmzZoFgNPppK2tjaamJhYtWkQmkyFqu4DW19fnJd4ulyvfrr6+nvb2durq6ohEIuzZsyf/mVgsBoCu6zQ0NLB//34AVNt5c+nSpUQiEUpLS0kkBtm9u5frr/8sfn8ZZWVn8OUv/5KSksk0Nrah6x4efPAckslxFi3aTGPjAvbsWcXo6AeYZpZwuIcjR54kFOqhoaGVoqJa9uy5icrKGcTjwzz33G1kMnF6evbT0NDGkiX3Y1kmuu7G56vkmWdW5F3Gd+68hlCoG11343IV43QWCdA4jZ06DqVnSI11pAd89WLc5K2Q7NuLtgCKAOsXVgiAHntfHL7H3i/Iuo2EAIbQcZGfKprctJedJTf3A4eENcuxcJpTAPuhTXZ80DF4cZUAb28lYJ4m0Q4hEm15RxjteXAaQ+sGHkWA8Klg8k6Ehf0u9v9STmeodbuvnHTciQDADrutFwGofcDNuhPLZh1T2RT7evahKAob2zdS4atgQ/sGdhzewWBMbrAsLEzLZCg2RDwT51DfIWZUzqAr1MWB3gM01zXjdXiZVTULl+bCo3vYcMkGAK5/5np0RaelroVEJkE4HaajuwPDNOgc6ySajuJ1etFVqRU7s+xMYukYFgqTFYUHkJrqDMLCnwU8Zq9bC1xuj1tujIP2X+71sc5OysrL+X1TEzuAPQsX0tPVxY7XXmN3czOfnDKFDPBZZHJjDTIhkfveNiKgexOwyB7/Entf8t+LlRXAfHhDIdc6E5TnmTC8u1Gev7cJ/JPksWuH5F5nY+IWHjsh3+zb66QvRZEa7sZl/x97bx4mRXn2+3+q15melYEZBmZhFRcEFRVk07jgitneOFnMYqJBDUaNRn0DJJIokKAkmmhiNPHNZhZwixlA3IIyDILsijDADDBrz0zP9L531f374+7umTH5nXN+v3Ou65z3Panr6quqnnqep5buqn6+dd/f71fTyhNeBeRmYmR/6YDWzZUdWp2Nmic0Ul06EarO06i03a33QXGtioqVTszyGW34QxFu/NIX+e2vf8nB/ft4ZM0PuPErXwUzxU/WrOTg/r3s37uXp596ihs+9zmsTErvATOp6eT2LH8bYyi6bZl6HMETQ5oErpKsmJupL6lSIQX6VbMUNM9erkD78ichPqip7sW14N2l99o792lGSrQnC8JXZTNJmvT+rTpfQf7sZfDxF7MvvNKqvZAKq0/9O/cpKDdT+jLgil8MiaWJqfsBGD+XU6cC9PdHcbnsiMDEiWUsXFhPf3+UBx/cSkdHiPb2IK+80oLXG2HKlFEAPPzwO/T0hBk7thin00Y0qgNXEXA67SxYUE9pqZviYhft7aF8ingyadLZGeLee+fi8TiJRFJ4vRFCoRS7d3cTjaZJp00WLKinrq4MsQxGeUpZdsXX6I0M8kzna/xty0be2v42z/78aYik+fRVi3EWuvHV2/n1zpc5bcpUFsyfz4H9B/juolsARoBmA3AYNs6pOZ0Jo6o5s2oi40pG47DbuTkL5G+e80kMDM4dPw2X3cmzO/+ajXD/lS0tO/jVzpcZVVhKKpNUkbGKO9THOhdxdowFw03e4M5RpZ/eO1TJ21aUBc1RBd2Zdu3D7FZ/a898/QysUUuudKc+VdNduj6wVtPDC+eAWJSNqub53/073/nB85w/+xJee+1VzjrrDByVS7EbdsYWFfHWSy9x/fXXU11VxSUTJlDiclHqdvP41VfTHQ7jcTiIZzL0x2LEsvSwtkCAQocDj8PB04sXY4mwtrmZV1pa8EYiiAh2w2BiWRmPLFpEIB5neRaIPzBfPbbn1NaybscO1h86hN0w6A6HafP7iWUyBJJJDMtSJS2PR8OrInDaaXD++Yru3lHqARMmqGVVQQGXvv46b/f3s+ecc1j3y1/S3dPDWYWFnPOlL/FqbS37AgH+UFxMd08P02+9VVFlzkd62TINv5aUKLDNlT/wgAK1HNjOgeoVK5T3PGGCPk/CYQ0Fl5drqrbDoYjyxAk9hxwA9no1tfyDD9RerLJS52vXKoCsrlYQ39qqALC4WJHukiVD0fK1azUkLDKkbl1YqPurqlLgfc89mGKju9vg4Ye1K9Mcsgjv6dFDW7pUD6G7Ww+5oEAvb86Ce2BAA+e5iPTSpYrhQQ/X4dBLMG+evhdob9flf/s3/focDgXTEyZoVPzb3x6iths2hkCu0zmkiJ5MKcC12bIRakuj06Y1BMBbO4b40Tk1+NyU48EbqB1XMqWp4UWFCsiLCjWa3e9X7nUuVdzp1GMxDJhShz1tYjgcVM6ahb2ggITPR9ff/06sp4eY15tP9z7jK1+hoKICR2Ehp3/lK8T9/nxkubi2ltkrV1JUU0Okq0sj1l4vtZddxrnf/jZJv5/RM2eOiHADiGmSicU482tfo/7qq5m+ZAmGzaYR9FmzcBQWcubXvqbXY8sGBc5bNmRz/b0qZGYYypUuKlYxszu/rz7Vg33qT107WaPcVTWa1v3eO2rRNdgPv/+p9vOZm+GsWRAa1PqRELgLNF0cQyPhv38cBvpg/IQhEJ9IQGAArvgkGEImEcNVWErNzEW4POW4PBWMO+tjmg7+/8Hj2rJMUpFBug6+Rioy+C+AnZ3+Ba7/M0wfAc4MEzOTdBpJJPSG9hSrn3WhB4IBKC7Fft1nEIcDIuERkW8zy6VJJpM0NzfT0tJCMBjENE1EhEwmQzKZZOPGjRQVFbF48WJcLhfhcBi/34/T6eScc87h+uuvx+l04nK5KCkpYfHixdhsNhYvXsz06dN5991381FvEaG4uJhMJsPg4CB1dXVcc801WJbFM888w2c/+1mmTZvG5Zdfzq9//QxudyX9/T527jzJ/PmXMH/+xfzlL38mlYrQ2LiEdDrO0qVH8HjG4HIVU1Q0lmuv/QUlJTUYhp36+gXceWcb48bNoqOjGZvNwUUX3YPd7sLhKGTevPtxOAoYO3Ym0WgvwWA7jY1LyGTiFBSMYtGidRQVVWGzOWltfQ2Ho4BQqBOvdz+WldEBsN2loDY3wE6F9Q92/EXg8mik6vVbNa3bsKtXbrRbQXAqOMTXfG+tDr5TIR1c291QPQd6d2tq+etLNLW0d7eW57jcrlLA0EH5nBUw8WqNLF72BLjLwHcQgid53ExxI/ATNGpsg7waeAma7vwksAn4MUMPhm403Xkq8CtgMiqEdgdqBXU76ln9JJoiHsy2m4eCw90oAJzHkGc22eN4DgCDeCbOQHyAGVUzSJpJli1YRn+0n2ULltEwvYF5dfM4FTzFbRtvoz3Ujs2w0RPu4eyqs4mkI3SEOqgsquSOzXdQ5CpiID7AXa/eRbGrGJfdhcfpYfVlqyl0FtIebOfuLXfTE+5hRtUM7IadSRWTGFs0Fl/Ul4+WHxs8RoWnggyCmT2XCjQiHWWI8xxCXxjUoCC7AQW+o1DwmwO+p512GgMDA1zb3EwDMP+VV4iGw8w7eZIVaPp4Wfa7WYDacNmH9bkMBd3Ls/s6LVu/FHgamCSCYdgU0E5fpmD47BXgLNdlV9kQSJ6+TMFibn30HAXiOb52OjQEmsWEookw+2kVKcsB94GdQ+3PekAtuQznyH0kfcqHdhZl7a0SCiRzIDeXAm5lNJIsQuuxY4wuL2F6fSkYsPDcibR3dLF39y7KR49RAG0mCQYG9IcU7hgCzHGfiqa5SvQbykXJxRwWJe/Ue8ZVqsdhpfUYo936gizarSDZSiuYzqWG2x2aNl5YOZQ+vmu13senN+i9lwzqC63EgB6PvVD3N36e9rv1bvXNtjuHnhnhDgXoOWpJJgbvPqRzAHsBqWQat9tBNJrm1lsbOXkyQFOT8q0LC53ce+9cOjqCzJ5dw8GDtzFnTg39/VGKi1387GfXMHnyKMLhFO+91015eQF2u0EymclytgcZM8aDZQkdHQrO16xporjYSW1tKevW7SAWy1BQoP85IsKMGVWsXt1EYaGDkycDLFnSSCKtXtWbDjcx2lPGHbP+DV8kyLH+U/zxF7/hqkVXcubpZ/Kpf/s0dYFCbrnoU7xz6D127tpF9aRaOgN9+GOhfPT7los+hc2wEU0n8EX8RJJxTLE40HOMQCzEqMJSvnfl16krq8Jus5PIpLAZBrfM+WQ+wn3V6XP5+kWfwm6zY7e5kdHLwDlRgXB4vUap060fAc9e5VWH16tquBXU6LRRAAUzlZftnKCgObxe56Ce1uOfVyVw7xJVDB//IlT9WC23jOwLJUly6dW38/ZrT7Lnb2ezbu136e7u4awzpqrGYCrFX557joYbb2Tppk20+v3s6Ozk6MAAiUyGc6urMQCnzUbr4CDebFS6MxjEFKHI6cRhsxFLp1m2YAHP33ADtaWlLGls5EQgAEAsnabI5WJyeTlPXXcdUysqCCWTiEgecDvtdtY2NzOjqkpFRoG004mce64Cnt5eRXegINLh0Kh2DoS+9ho0N9Nzyy0KiFes4KHHH+eys89m6jXX0OP15sHyM6edRpHHw2Wf/7yiwPHjFfF5PFmF5YyiwHHjlBtdVaUIczgIr62Figr1nW7VZwljx2pfbW2q2n38uK7nwPLRo4pOjx/Pjp88Wnb33UORaJcLfvjDIRCfy9H+KLBftkwVwaJRrXP0qO5z/HgF9488AnY7YlqsXat43OtVfF5bqzbcc+ZoUH79eqWxz5+vYPu22xQgn3OOlp97rpZ/85t6mqtWDUWhRfSQ29q0XXW1Au9cpHvcOOVbu90qxN7To9Hw3l4F6SIouO33KzjO2WiVFmfF3E5BMq3g1+XQuZmV9pw0PguqM0Nq36al81CE/FSWjWzneNqnejTyPbkWqirUritXr7tP920zwAAzppkH0e5u3nvoITxjx7LgJz9h9MyZHH72WSrPOw9PZSUFlZUceOwxMrEYJXV1lNTVUX766exetYpIezv9e/cS6egg1tND19//TsLnw+524/R4qDjrLOxud57bfcGKFSQHB4n29JBJJimpr1dwPn48ZjJJ5TnnkEkk+OCpp7DZ7aRTaeS6YanZNtuQMNkfn1SudCqpy6Mq1Yd645+HotF/fgoGsiD6wouVN50DyJv+rPVHjVHBtFBAI+SBQVUmTyeHgP3mv0CBZyhNvLRc9xfygxjYHE7SyShWJk10sJvCsjFkUnG63n+dVNT/PwySxTLpO76TYE8Lfcd3Iv8C18C/wPV/islwODBGV6nP9TA7LkmnVeSscQMy2A+pJOazPwW7DaNiNCQTSNCPIWA1DYt8O135tA+Xy8W8efO44YYbKC0tZdOmTYTDYRwOB8lkkpqaGpLJJIZhYFkWkUiE4uJiNm7ciN/vJ5VK0djYiN/vx+Fw5CPbqVQKERnBs87xtzdv3kxRURFut5tAIMDJkyd59NFHueuuu9i1axcvvPACX/vaLfh8JzFNIZUyeeWVZ7j55jr+/d+/ywcfHObQofWEw12k0zGi0V5SqQipVJRQqJ0tW+5CxCQYPMWWLXcTjfZSVTWDzZvvoKRkHNGol61bv4fNZmdw8Djx+AD19fNpalrNoUPrCYW68HjG4HC4SaWi2O1O7r77FEVFY3E6PdTWXoRpprOpPElVAz69QaNUTo9yn20O8FQrV/OSdTroTwaHgPSERQp45izTthc/ogC8Z6cC8reW6sB7zIyskNK92kf1HMCC7uYhcJCOaiS7bJIqI6ejyucMtMLYCzHC7ZSaSZ5AgaCgomPfyS6baER2gCHF7yYUUFahKeD92d9iCjiJRrvHoSnKfWjKeRUKAL+Jgk4DjWJHgKUoP9nK9vsL4KZsn93hbh7c+iC90V4K7AVMrZjKgvoFTK2YytOLn8bAyEexV29bTVlBGT2RHhw2B2XuMubUzmHdjnWsP7SeYDLI6qbVzK6ZTXe4m7u23MWp4Cne73ufWCZGR6iD9YfWs7Z5LcWuYrxRL7c23sqxwWN4XJ4R2y2xyKQTtIuwN3s+BehLhCWoEFwBQ8rhk1GgOw0F4aAc9DHAwbIyHnn+eR79zndoOf989r32GvVnncVtDgfjsteE7PcRZ0hx/PE776Rp4kTONQxK9+9nQvY7uPHOOzl94kRKDYMb9u/nuGEQxCDUvYtPfvkBpn11D+dc/HkWLf4sx8vvUk518RQFycVTQNKqED77aX1J888A+fRlGoW1EvrNiQVnfUe3eSYM9VdymmZxSFrLc/uoXKDp6Da7glu7c2R6eI4rPazstLPOYSAQpvmDThB45e8HCIfDnOzuh0g3//7dh5hy+pl8uuELvPAfP8GWHMwC5hJN+S7JDszSMQXHZlpfahXXDG03GJmSjiiN4/x7dW53Q2mdUj3Gz9f71cro/R3v1/npDaoObncp57qkTrNEYr1ZkN6jz4fqOYBNI9fj56vHtc059MwYN2foBdvuR/VYL30cnCX6vRjgctmorCyiq0sjyZ2dISorPXR0hIjFMqxbt4Pa2lI8HifxeIalSzcTjaaJRtPcdttGWlv9iMCMGVXs3NlFIpHB709QVVVEcbGbU6eCLF26iVmzxtHTcw9PPXUddruNRx5pZv36Q6xapaJlDz64Fa9X08yXL1+IaQqdnSG+/e25uOwO7rv0y8ybeA615WP569N/YtHcS7jx8k9x4uQJpnxuHqcGe/j+Qz/A2RHj6vmX8ZnrPsFZi+dy9ceuwBcLEEpEKXC6+M7lX6U3PIAgI9LEHTY759WcTkVROUWuAnqCPla+9jRdgT7i6QRpy2Rc6Rjqy8cyrmQ0KxbdQoWnjGgqjtMuGOlOvYtHL4OSBo0mD6zKguQ14Bij64VzdPvoFWCv1si070FNHa96RHnVo7+TrfNA9vudBJ55Q8B9YLWqjZsD4L1Vo+QSh9576Onx5sH5Qw+v5bJLFzB1ogPI8NfNm/GFw0y98EJm19SwuqmJMR4Pa5ubCSWT2AyD1kCAOzZvprKoiJ5cFlkWQPvicSwRlr35JhnLYn59PZ2hEK+0tNAeDHIqGOTBrVuxRGgLBLht40aODQzgcTrpCoXoCoV4ZvFibIbBY1ddRXHWkqjU7WbQNDW82dMDDz2k91mOB93TowhuOOCsr+d7v/sdZ+zbx9RPfpJTp07x6z/9CQyDpz//eaZ9+tOc9t57/G3vXl76zW8wmpq0j0xG0WIuOtzWpgA+l6r6/vsKWKdOVXGzqiqNUN9zDzz3nO4/51tlWUNAePVqRZXDwXIwqCnfOXutLF+cNWs0ZJzJKJc8FzEfNUqPI1e2YoWi485ONaIOBkf2s3q1Hp/HA6tXY7fSLF8OV145ssr8+Xpow+nrOeCcy4QPBnU5GNT1HEC//34F3jmwfuqUfh3r1+upzp4Nr78+lMEfjQ5Fx3t6VNR8zRqtZ1moeNnZUxXcIgp+kyn95FK+MfTxbWW3p00tO96uneSizgZav7RIQXYwkuVnG3CsXYF7SZECertNgXUqA0dPaXr4lDo9jpPdkEhhFRVgpdPEvF7O/OpXsRcWUjlrFgDnfvvbTLz+emxOJ3aXi9O+9CVUATsBItjdbs74ylewuVyUn346sb4+KmfN4pqXX2bUWWeRyKaRd7zxBpl4nOLaWkbPnMnABx9gd7spGDWKwtGjySQSDLz/PhgGlmmye9Uq4n19jJ4xg0PPPIPDYccoq9DI9GA/JOIKkHOR6HhMwXQOLMejcPUNGo3OAeONWRB94x06z4H1az+nGQA+r77UGB4hN1Df7ByYvvoGVRIfU63Hkknp/kpHgVikE1H6jjaTTkQpKB0Dhg3DZsczajy+1vf+h0GyYbNTlU0vr5o6519CaLkpx3X8z/SpqamRf00iVjwu6Q2/k9TKeyT9wnNiJRJiRSNihgKSfuE5MXs6xfT1iRkOientkvSG34np7RYzFpN4PC4vvPCC7Ny5U8LhsMTjcdmwYYOsXLlSNmzYILFYTBKJhHR1dcmGDRvE6/WKz+eTSCQyol5fX19+eXj9rq6ufL+xWOyf7iO3vnHjRhk3btyIfc+adZ68/PKfpKjIIx9+uF9eeOFGWbkSueiiWnnyycfk6NFNkkiEJBYblKNHN0lX1x6JxwOyYUODrFyJ9Pcfzi9v2NAgfX0f/tPyjo53ZcOGBonH/dLTc2BEvz7fMYlE+iUS6ZVIpE8SiZB4vQdlw4YG6eraLWYiJBLqFIn7RRIBnYe79TN4XKTvgMjfGkS8u7Us7tf1voMiiZC2GTwmEh/Uz98aRLp36vxRdB73i/Tuz7bbr/3k6g0eHdrm3S2SzPY5vH2sX6xYnyTScQmLSL+IbBKRThHpE5FBEekWEb+I9IhIQEQi2fXAsPqD2eVGEekSkX0i0iAiu7N1c59GEXlCRPYMaxfK7m8gW+dIdp9hEQnGg9KwoUFYiTRsaJBAPCA9oR4JxoNy3HdcukPdEkqE5ID3gDRsaJBdnbuksaVR+iP9EkqEJBAPSDgRlv09+6VhQ4N0BjvlgPeAHO4/PKLfdzvelYYNDdIf6ZeGDQ1y0HtQAvHAiDof9n0ofZE+adjQIHu694g/5he/Zcqx7LXoyR5/MDsPZ88tkD3PPdlrsj9bdlREekXkRhH5RbYs9/m3REIoL5drjh3Lt599ySXy45dekobs9Q2JyKVvvy3f7+iQcRMmyJv79kkgW77x7bflcEeH1E2YIBv37ZNNInJYRPq8e2Tj2oVixXpFEj752UO3yiXzZokEj4oM7hfZ1qDzeJ9IKiQyeEBk+40i0W6RZEDLUqGh5YRft+24SSQxqOUJX7ZeWCTWo7+7wQPat2+3SLRTt/n2iqQjIumESDIsEhsQSUZEBo7oeiYtYqb/oeyt11+TixfMk1mzzpOlt94sZ515hvz1xeeH6qUi8vrmRrng/FmS7DkokooM9ZVO6nImNawsMXL78H2mIroc7hYZOKzzZPgf791o39B9ngjoerRXy0KdIq9/Q8tbG4fuzb6Duh7t1/s81KV1kiHdRyKgzwnvXt1X7tkR6tSPd7e27z0o0XBC+vsjcvSoT/r7I3LzzbdJXV29AOJyLZVNm45KIBCXJUtuz5dv27ZT9uzpkiNH+sXrDYvXG5BbbrlVJk2aImeccZZ8/OOfkUAgLo2NLfLEEzulszMonZ1BOXy4X7q7Q9LZGZSGhg1y8KBXNm06Ko8//q4cPtwvoVBCXn31mITDCdm/v0duvPEFiSRi0tJ7Uu575TE53HtCoomYfPHmm6S0apQA8sM/PSlNbfsknIjKbd+4Xerq6wSQl9/cJNFkXMKJqBw91SrTZ5wtVZNqpGBcuUyeMkUMm01++dZfpM3XKdFETI72npL7XnlMWnpPyjute2XmI5+Vd1r3SkvvSflO48+kLzwooURUosmYHOpplfteeUwO9bSKmQmLxPeIhF4VyYRFMgGRTEQkfkCks0Ekvl8k1CgSP6jl6T6R0CaRzKBuP4zOMwFtn+oWSXwokuoRSQ9m6waH+ovtEkn7RrZNfChyGLnlK1fJ6dMmypQJxfLFL/yb+H0nRDobJBgPyoQFC+Sqm2+Ww/394g2H5YDXK5uOHpXOYFCW3H671Nfrd8utt0rDhg3SH4nIkttvF09lpQCyaO1a8cfj0h0Kye6uLlm4bJmcNXOmTJw2Tc6/8EK58pFHhJUr5XB/vzRs2CCsXCkNGzaILxqVhg0b5PF335XdXV3SsGGD7O/pkXAiIZ3BoBzu75dwOCxWKCRy+LDI7t0ifX0iDQ0qldTQMLR+8KCI3y/S3a2fhgaRAwdEjh7VOqGQiM8nMjAgEg6LBAIix46JvPeeSGOjtgkEhvpubNT2DQ0i+/aJdHRoWX+/SCSidcNhkfffH9r/sWN6DH6/tmloENm/XyQaHeprzx7dV26fXV16Xg0NInv3arnfr+U+n+4jGNTj7uwU+fBDbRcKDe2js1PLcv0cOKBtIhGRAwck6EvJ0aN6yPv3Dx1uJCLy2mvadX+/Nn/11aFuDx4cupTd3drt4cNDl2j48j/7Km68Udv194+s19+vp5Xr7803TLHSaZFwVMTnF0mmREIRkQ9bRdJpXfb5dfuh47re6dWyVHZ7NK51U2mRRFLbhqNaHoxou3BUpGNYu1Ra26TTWn/re1ovldb51vdEfH7JxOOSikYl2tsrgdZWifb2SmdTk0T7+iQZDku0t1e233+/DB4+LKloVAaOHJHOrVslPjAgyUhEon19EvP5JBkMSiIYlO333y/Rvj4ZOHxYl71eSQaDkoxEZLClRbbdc49Ee3qGtuf209cn2++/X3wffCAtf/yjdG7dKgm/X6J9fZIJh0RCAZGnVoncfJXIMz8SiUVF2lu1bNA3tNzRJhL06/Z4VOTUcS0/eVTL4zGtc+Bd7TMaFgkMaJ03Xxmq394q4h8QeXadSCQkEglrH799XPvtbtf1k0fF7OuSTDIu7Xs3Sn/bHomHBySTTkos2Cen9vxNon6vpOJhMc3MfxuADJtMMyOZdPL/U5v/7BPQKf8NnPqvyPV/5sluH+JVL1qM+AcwN70I4RBGTR1W01uqHC4CDif2az6FMaoCDLAZBosWLWLy5MmICKZpsnDhQqZPn86CBQvo7OxEhtlnbdu2jYKCAhKJRL7ewoULKSgoyC8Pr9/c3IzdbscwDILBIMlkknQ6zbx580ZEshcsWEB5eTmhUIiysjIWLlxIa2srJ06cYPz4Ei66qJq//vUvXHPNE3zhCzvo6hLOOedcamvnkskk6Ohoprh4HJFID5aVYcGC7zB9egNudxkLFizLW2cVFJQzfXoDLlcJ8+f/e768sLCCa699klhsgLKyeqqrzyWZDJHJJHC5iujufo+co7NpJikuHsvcud8mEvGSTMcRw6ZRKmwaed56t6aA2p0jU76TAUBg7kqNoJlxTf8uHKPR5+53NRI2PDI2Z4W+4c2loe5crf20rIc960amqL63Nss1tQ1rvwwMB4aAw0oTRv2oL0Jfcn4LjSZn2YbsQVOej6Np3zE0oj0H6AL8qDhXCRqRnY+mjDuz7XcAs4Avo2Jm5wLvopHvUjTimo1Valp1JkUsHcunf69YuIJYOsZdW+7KR5Itsbhz851MKp/Ek9c8SV+0j/qyeuw2O7dvvJ0TgROYYlJVVMXKS1ZiM2xMKZ9CTUkNyxZqv8sWLsMX87Fi4QoKnYX8cvEvaQ+284eDf+A7C75Dw/QGHpj/AKMKRlHkLOKp655icvlkbIYNJzBGhBRwIHutTqI2XG3Zc4lnr+dk4Ak0oi9oxLowW3Y90NrTgzf7a6p46CFqLruMNVOnYkPF0OxoJPze7PVOAT+8+GI+V1uLI3udcw/suRdfTHVtraaIZq91tQhllo9rb/kpht0NhoOLrvg8J9s7wT16GBd7tUZP492aBn7yOdh7t3acjmi5iHKVDVEO8syHs/zkPoh1ws5bVLTMXqTf5qFVQ6nkhi2bTl6jEe3QKaU7OAo0Glw+Rfs0kxBo0yyPskl6TGJy6fzzeXvrVvbs2sW6R35Ed3c3Z51xmkaUy6eAzc0Vi64kHInyfkcs67Wd1EyNnPJ4Tqk8GdLjyemzGAYkwyP6Akvv4UCrHgtAuEsj2bE+jTpjQPd2CJ6CI3/WOpEezRCJ++DiH2Xld2v13szENGo/bq7us6hao9xdTaoUngpn1dxLNep+xVOa9ZIK6bPDUaCZLTULSBVN4Hirn7vv3kJxsQubzeAzn/k3Xn/9Lerq6tmw4TPU1JSwdOkmrr7647z22lvU1tYTj6epri6hrc2P223nBz/4LqYpbNu2h1279rJ69Y/o64syZ04NX/7yORQVufB4nJSVufPzZ55ZTE1NCXPn1rJgQR0PPriVtjY/c+bU5CPXCxbUYYnQGxnkyxdcR3/ET8rKkJlSwvivL6CsqoIFk85jxrjTiKUShOtd/OGV9dTX11NVPIrOYC8/eO0Z0i54q/kdPjj4Pm9s/zs333Izi65cxIIzL+AXzc/TGezDGxnIc6nPrp7CVafP5ezqKQzEAiy74msUON2kzTSWyAj+tiUgztOg8HyIvQ3pkxB7RwXKqp8G5xSNNDvq9GnWewd0XQux5qFI9+gV2Tswo0ri9krlUxuoKJr3Li2rfgoyPk0Fz7ddBrZyKGngmafWcuTQTo4fb+P3T91MeVkpjF6OHYsdmzax6gc/4MGtW+mNRpkyahQL6usZiMc5Vl3NMy+/TG19PYumTGH5woU4bDY+/qlPsWHTJjyVldx83nnEUikAHn7tNbb95CfU3XQT+w4c4J7vfY/WX/2KhunTKXO7WbZggdp4LViAy25n2YIFXDllCmubm/NCZwJ4IxEe3LqVAhGMnHL3+PEaQr33XrjxRk3Xdrk0ktzZqWJg+/drSuy992rkORaDb31Lo8w2m+Ylt7aq8lY0qn5Rs2fDiy9qivXy5dr3woVDCt+PPqoR0cpK9ZA6flzDsOGwqnv96lcaJS4v18j1t76lEb6c4FospqHaxx7TeXExXHSRzgsKtM7TT2vk/JxzNApbUjLkVf31r2vZ/v26z717lQw9dqz2mSMv19VpP/X1em6mCZMmYXc7iMU087y+fsi161vfggsu0K537tRu5sxRK/Gnn9bTjUZVyPzgQW1bUzOUGV9WNhT1XrFCL9fatXpokYheSrtdP8OD7m63nkZvr/Z3zjkMKXUP5ztPzmYEdXi1PJc63uGFMaNUfCwU0bonuzTqHIqMjEy7HEM+2e096qOda5dMDUWrJ9fqtvpxmmJeP07XS4qwZz2y4/39ebGxMWefTbyvj10PPpi31zr0zDOIaRLv61ObLNNUDQePB8Mw6N+3j5jXy5hzz81ba53+5S8THxhg1/e/T7Szk1hPD+2vvko6FuPDZ55h9IwZQ/vJRqoPP/ssdVdeiae6Gt+hQziLijT932YbijZf9RnlW1eOg49/EfY3K/f5i3eqVVc0ov+1VlYx/ONfhLLRGrEWCzb+CX76oHKybTYt/+ytKn5WOgq+fJf23XEcPvEl5Vr/4ac6CLnhFsiktV1FFVTVIGUVxAI9jJt+KeXjzyAdC2BlUjhchXhGjWfgxJ7/z2rhNpsdu8P1L4XxYdO/wPV/4slwOjVdfPFnMJzOkanfk6dhW3j5kPWEZSGWpfwpw5YHObnJ4XBQXl7O4sWLKSsro7q6GiAvUrZw4UIcDgcul2tEPafTmV8WkRHAOxaL5fnZBQUFvP7663R0dHDJJZdQXl4OwKhRo5g1axY/+9nPeOaZZ1i0aBGf+9zn+PGPH+HUqd9x/vltvPbam5x33gVcfvlVfOMbX+aCC87Ppnx/i7Fjz6G4eCz19Qux212MGjWVxYuf5vjxVwmHu1m8+JcUFo7B693Pddc9hWHYiES8XHPNk5SXTyGdjvHqq3fjdHqy9jMeIpHej6STLyUc7iEe9xMO97Bjx6OUltboYNlVmhcNI9o3LLW0YCjl+8J/h6JxOvj2jM1ecI+mrr51hz5YaxaosFPNxeqRu+hpBc9dzQqWz7wRPvaYDtI/1QhzvqtgZM7yISBuc0G0V1PDFz0NZVPBMBArg9gceFBg3Yc+d+eiKc5e1Kt6NgqcxwE/Q4EzKDiuQnnBvWgK9CPAl9CU6BQq3nURCg6PAXdl285D+dwZFLjbs21KgIyZYp93H5WeSr7/se8zsXwi971+Xz4tO5gM4rQ5WbtoLaZl4rQ7WVC/gEnlk/jm5m/y3PvPsaZpDZaopdf4kvF4nB7eaX+Hk4GTTCqfxM+v/TkTSicwZdQUxnjGYImF3bBTV1bHjs4djC0ayy8X/5JpFdModhUTTAYZjA9iGAY2w4YFnDIM7sheF1Bl7vXZuYk+ROPZazqIAmobQy8S7OjLhYe+9z0uPOMMpk+div/UKbb/+tdMAR5++GFm1dayZ8cOlt1yCx+rraW4vx83mmJeg47fE2i6fQQVirNn91GQ/TgB1+g5mpqdiULcy+M//Tmf+MSnsnzo7wyle4tonVya9/TlCizjPXDwe2rTFT0F/c1ZYGpTAO4qHwnSMdXrOce1PnuFcrMTvWC4soCzRsFk7opY2TaRTn2ZFDqpQDN0Emx2enyhfP2H1qzjsssuY8Kk0zh+7GjWH9tk185d9PX1MXniBD0+M6nCY7l0czG1D2eRDlCsYUI7ORArksXgVt5Tmrfu0HbFNXps4y7SFw5b79bt0S6Y+km99yOdqgS+a7Xuz0oNSyV/RFX8w+0qgpYKq7p65TmaOm7Y9Dnh3aVe2lZaNRWKqvXZ4d2lxx48QSrkY9XqJmbPrqG3N8rtt29i3LizqaoaD8Do0R5qa0u59965fOxjlzB6dDWplMngYBy73eDss6sYGAjy29/+B4HAfHy+OJFIih/8YC+xWBrL0gy2eDxNIpFh/34vra2DZDKW/kwyFvF4ht7eKK+80oLH4ySTEZqa2qmrK+VznzsbMw1VxRX8ce+rnFE1EYfNzk+/+X1umH8NZQWqcJ7KpClwuHjizoc4a8oZ2e8DnDYH59ZM4w97NhFNxihyFTCtcgK//vWvufHLX8qD5BygfuLTD7Ds8q/htju579Iv43a4mDluGt3Bfh567Rl8kQAi8hH+NhhWJEtdWABGsaZ/G4V6EBmvCpj13qoe2KOXKyh21oNjAlQ9pnxtMSHTC1ZMn/n2coi9q7+5qpVq2wW6j/QJFTgb+wQ46nVf1U9nud7tEN8FjtHK9XZOwrAV4nE68+B21bZttAeDJDIZVm3bxt9F+HVrKwawbMECdnR0cMfmzUw591yOmyblBQXUlpYSTqXoiUT4THU1xeXlrP3CF9je3s7NBw7Q3dnJN2pqKHG7mVhezs+uuQaP04kpwsTycsaXlORB94qFC/PCaOsPHcIS0dzj1lYFrtXValH1i1+oOXNTk/J0Z86Exx9X/rTXq0ThWExB9+zZivi++U1FcmPHwty5CmyrqxW4XX01nHeegt9f/hJSKd1nzv7K5VLhs9mztc+5c7XPr39dU8jHjh1KI7/7bkWZXV2a4u3KPpNA148dU5/rZFJ53O3tem4XXaTrt9+ufeY42a+8oudcW6vnVVOjYDoY1O05IF1QoGOvkyf1GI4dA9PETJt4PNoUFFS3tio/OpHQQ7r4YtWJMwwti8Vg3z7d7e7dqr1mt+ulzr0LOHhQRclXrtRDikT0VOfOHeq3oEAPLesKxsSJetksC0aP1vcU5aXKr6ekaCQQttn08V0/TnecA7z14zSdu71nJOhu71Fl8A4vjCrVevA/1s5m03TwApf2UeCCaSpSZ9oMxDQ5/OyzebExwzBGrFfPm8f0JUvAMNTb2u9nzw9/SOjkSTLRKAPvv09BRQWxnh7qrrwyb61ls9tJDAxQed556ot9/vlMXLwYV0kJ05csoXrevH/cz623Yne7FaiffTaR9nbee3gVYrMjY6rhc7fp723S6ZCI6e/s6PtQPlodf/p6oL9LOdl//Lk+R8pH6/wPP4NkAq75rIL0z9ys6eC/e1y51p+7Tb/kZDIr+DZdOdab/zKUKi6i4D2d5Xj7vGDYKCitJJ2I0H3oLRzuIkSEng+35j2uMYx/CZP9T07/Atf/ySfD6cQoKATDNkz07HKM0nKMUaORdApDwCgt09eUgUFyg9xwOMzWrVsJh8NYlkUqlWJwcJDOzk4cDgeGYTBq1Ciuu+46nE4noCA8l/ZgZr22DcMgnU6TyWTywDsYDPLUU0/R1NREUVERiUSCuXPn0tHRgZUF+e3t7QwODtLY2Mi1117Lrl272LFjB2+//Taf//yNLFy4nAsvbKCxcSMPP3w+N98cYurUVkQyNDWtpqZmNtGoAuFg8CSpVIS//e1mgsGTTJt2HaWlddhsLtzuEmprL8Jmc+BylVBfvwC73Uk6Hc73Ew53ZxXBTxGJ9HDo0HqamtaQSoWzy6spKCjL87KbmtbgtNmzKsP9OkAvqdXl6jk6gC+ug8t/DqOm6SD7zdt1QO706GA7J2wmlka937gVQicUKKRjOqgvHKP1L/+FRtHeuE3343Br1K+kTkF36UT9QRSP06gXKGAInsIQCyyTPjRS/T0UUH8GjUp3oOA5wJBl1jfRyOxeFFB7sm3aGFIJd2aX30Wj3M3ZvkpQ4CnZslbUIzuKglEvyim22V1cWHMh+7z78Dg8ANw37z4apjewfOFyaktqKXAWsLt7N+3BdqLpKEsalxBMBvP1Vixcgd1mV5VvwBfzcVHtRdSV1iEiOGwObt14K2f+/Ezu3nI3GSuDJRaTyifxi+t+QZGzCKfhxBT9LZe4SqgorMj7bgtDPter0Ih7TmRsRfYedKIvImwM8a9Poi8sLIbEz379zDMcPnKEA8eP88zvf8/K8nKOAv++YgWnOjvpTSa50ucj3tlJpLKSNmA7CqjT6AuNfvKxs3ww1oaC+jYgZS9U3q6zhNWP/5bjx46w5tMByISgaDLMfgo89eDbBcWTs7zpp3RuZbTszH9XgFw8QXnT/bv0LM7JfqvD+dk2p4LBokkw8yEorNODco/WeTowFCXOWWIZdn0RNJwHbaZ1ngzxvZUrOeO8uUw9/UxOtZ/i108/RTqT5itf+xpnzzyXc8+/kG/ddx/P/+UvjCor0Yiz3Q0Vp2c516o8rmr69uzHyAJz0XVXqQJay8yq8S/Ul1oXr1WOuLNIhcgwNHJ96eOq+D9+nu4r6lUQvaQLrvx19otwaf3T/g0u/dmQkNqYGXqP69NSX6Q5ClQhvGaBRvdtLv0mu5r0/q+ek+equwoLWb58IVdeOYU1a9TXurMzRCKRQQROnQpw++2bsNttJBIZ7rhjM3a7QV+fqos7HDY++KAFkUJeeulpLr10PosXL2L9+r/R2RnCNC2OHRvk7ru30Nsb5eyzq+jpiXDqVJAlSxrp6AhhWcK8eXU8//wNxGIZli7dRGVlER0dIQzDIJVO8+udL3P2uCn0R/z84LVnGIgFuf+yr6jKvyW4HE4cdjtOm4NISlUJTEuw22xcc8Z8ll9xM6OLykHgnW3v4PX1YUwp46YLr8+LkxU43IwtrmD1m8/SEezDZXciIlhI3mf7VztfxhSL2vKxedEzA9Rruu9utceyj4ZMF8R3gCRVNdw5Acb+Qi3p7JUw5vsayTbQSHWsCTKnIHVc+xJTAbLnIv3uEh8qYMem90u6Hbo/o1Fww6Yvm7BBwSxwTVOOdmZARdCwYQrKl86C2+ULFxJLp9nd3T2iDCBtWXzqzDN57OqrqS4u5rSKCuxZXZQfNjUxqbycS2bNwplM0nf4MHWlpZwfChGPRmlrayOUTBJLp3mvq4tRBQU4DYPeSAQbMK64mLVXXMGE8nJ8sVh+33aRkWbLJ04oejNNBaWVlRpF9vngpz/Vn3t3t6JFt1vB8VVXafj1Rz9SUGq3K5gdM0b7SSSUo9zfr2C5tVUVuBYsUHnr4mIFY3V1QwbPX/6y7jO3HxFoaVHUmEOfU6fqvsJhPfac4vlpp2nfuWOYNEmRqM2mQD5Hiu7p0X13durx5Xjca9aop1ZrqwLrnEd31hWFsWP1uJ54Amw2HA4oLhb6+tQV7OGHtfm0aXrK+/YNqYinUuRttBcs0EOdP1+7TSZhcHDoneG8eXDFFRqw9/v1vcB99+npjh6tEXDQ0xo3Ti+TZSn27+3Vy9PdnaW1p9IqMDYcCFuW3gdOOxR7hgBvgUs50v8MdOeizm6nguTjHTrPtYN/3s5AgXfu5ATlaiNYpomZSjF9yRK107r1VjCM/Pr0W2/FU11NSX09VjoNInw4TPU7HYngHjWKw7/5DaNnzsTuduettQ498wyV553HmPPO4/0nnyTa1cWF3/sezqIiiuvqKKyq4qyvf31oP2PHEu/tRSyL0TNnggiHnnmGMTNmYPi8GH94Qn+LFZV6/3edgjFj4Ut3QlX2mr7xkip+O92w6FP6+zds8NJvFZDH4xpxvvEOVQTPcbU3/0Xb/+VpvUCmqf8xyQRcdcMQPzuZ0HZON1z5mXw03LDZ6c+KkPW3vodlpgj2tGjU2uEik4hgpuL/Atj/E9O/wPV/lcluxyivwPaxq8C0kHBQb+xwCHPTi0gqa6XhcGYDOyaRSIS5c+cSiUQwDINkMpkXLOvo6MDv9/O3v/2NYDBIUVERqVSKzZs3EwgEiMVihMPhvJhZKpXK22mlUimKi4s5/fTTWbhwIZ2dnXg8HioqKvJRboC6ujq2b9+eVyq32+0kEgkKCwsB8HgqueSSlRiGnYULlzN9egPz5z+AzeZk4cLlTJlyJc3Nazl0aD3btq0ikQhkl1cDNhwON4mEn0DgJB0dzWQySUAYGDjGpk1LsdvdLFy47B/6qamZnU0bX5FPJ1+4cBmJRDCfar5gwTLsBhg5leFQuwoQVZ4DVhpJheHvdyKRTo1o5VLEd67KDvItHZyf8TkFz3lf3VU64I/16QA/3gfurIiKo2AoKlY4BjxjIGc5FO1ScJRTZe5qUoDuLIRUCBGLMobsttai0U43CrD7UPB7Gwp+Z2frjkFtoEzUXqs6WyfEEGiuRkH1mOw8hlp39QBnMWRR1YGC+wdRkBhxuCi0F1JbWsv7fe9zwn+CzlAnT1zzBPWl9Wxr30Yyk2R+/XwqiyqxG3ZeaXmFFW+tYPKoyfxy8S+ZWD6RWCpGKBXCF/MRTUe5beNtnAyexGbYMDDyqd/LFy7HwGDppqVEUhFOBE7w9cavc9x/nKb2Jo77j5OxMqStNKZlkrEyI6zGHkD/5ycxJFS2k6EodXP2/ByoR/UcFPA2oVFne/Z6N6O+1Xdkr1F7dlmG7WsOCuYrUQX2IPB69lpmhyW0oiJ0p9CXH+2GQRILdn2dR1d/lxdf3sjmF57FUzMP4l7Y9XWItmejd9XqQx1tU2utyDHob4LYKbXpipzQ7VZKva8TAxD4EGwFQ0Jm9kIIHlV1cclAwVgFhOmQ0heMYfH7TFJTtFHKKKmQAvMc6HaXap3BFp554sccObiX47s28rtnn6a8Ygwej4ftjb/lgzf+g/1/38D2d7Zy2WUfGymQluvDTOo9YSb1pZWZ1PtCZCgdO5hVFM6+VFHwa4DvA83+cHrgrW+qOKBk9FwKx+g9lVP0Dp1SP+tAbh8ZVfYHtf6K9qi1l6tMo9W5lwCWmRUkPJl1AWhV4ThnwVD0PNyh2S3FdZBJUFnpoaKigOXLF9LQMJ05c2oIBpNYlvCb3xzIC48FAgnWrz9EMJjk7LOrcDptFBU5KSiwEYv1M3v2ebz9djNr1jyKy/USkyY5CQaTrF2r4mVr1jThcNiYPbuG1asVyK9d20wolARgwYJ6Vq/exvr1h1i3bkdembyw0MVXL/w4V50+l7ElFXzrkhvxRfyaKYWBLxbg4dd/RUegD1Msfr59AxkxOe5rp9BZkH2ZZTEYDRBNJ3j5Ly/y2S98jsP9J6ksHsXKq5YwrnQMppj0R/18+YLrKHS6SJlpTvl72N/VklcIv2XOJ7FE6Ahounl7oBfJ2WNV3AvpPv0+7WM0nTu+G9JtqvKd6VQrLluhAmyJgfeOYX7VnVnhs0e1TuFsTR03+7N2W2mNanuXZhXDn9d0chGIbdffm61A08m93wRntR4XFgZw0u9nXEkJv1y8mHHFxdSXlXFRbS0Tysp4evFiJpSVkTRNfNEoBXY7SzdtIp7JUFNaykA8TkcoxB2zZ9MeDHLvO++w5qmnWLFiBV++9lrODAaZdsYZ/OHQIUQEj9PJOWPH8l53N/FMhvLCQtr8fr756qv4EwkMIJpK0RkK8cQ11yAOBzLcbLmgQAH2jh2aw7xu3RAYNU2NZNfUwCc/OeQbXVMDP/mJguFbbx3KW373XVXiuusu7XPsWFXqqqxUdBiJKPrMCrhRXa2p6c3NCkjmzVME+uCD2r6nR0Gyt0cBSigEt9yibc8+WxWbbYZ+3n1X67hdEMuqfbW1KbjetAl++RTU1iioHxzUUPL992vK+s9+qoDz4ouhvAyKi7JK54X6wnD/fj2uH/8YTp7ExIbdZjGuOsWoUSY2m75nCIc1kjxvnp5iczPcddedTJw4kYoKg/379+OwmxiE+OpXP8G5507jU5+aySc/eQXPP3+cZBKqqkzuv+8rXH31ND772XNoa5vLqZPN7Nlt5rH/jh2Kydra9DRnnWcyZXIKt8tk/vxsUL/Diwz6ERvI1DrEYUPCWSEyUzQDMh5HTBNJpZB0WgF0abFew4njdZ4F4WJaiFjIpPFITl08noRUGjFAigoQlxMmjkecDsTMaN+iStRiZpDiQsSysBk29bquqGDG0qW4yss5tXkz9oICLlixglhPD+HOTkzTVGcSp5Ppt93GxU89xayVKymoqiIZDCooBzKx2BAwX7IEMU0cZWXMWrkSW1ERmViMTCKBZRhYDgdFdXVc8OCDuKqqsGw2Rs+ahTidGC4X2GxMX7KECVcuwtj0Z5hyJhlMktFBMoYF9VPIxIIkrRQZM61fxGduJlPgJllSRKZyrP4e0ymNSk+dDq/8ToXIAoNkMimSX7yN9OpfkfzyN0g6IPmFJWRcTk0ZH+yHzlZo/RA+/iUyFaNJpsJk3C7t87XnIZ3CsjKYYjJm5iLqr7qDMdMvx+5wUzbudKrPWEgqFqQ3K3T2L+Xv///Tv8D1f5HJcDjISssCgrV1CxIYREJBjJo6BdmNzyv/wjAw7HZKS0vZsWMHpaWlGIaB2+2mpqaG7du3U1RURFNTE4cOHaKpqYlQKEQ4HKampoampiYKCgry20OhEOl0Og+8e3t78+nfpaWleDwegsEgp06dIhAI0NjYSCAQIBqNsmDBgrxSeWNjI+l0ms7OTjKZJFu23M3Pf34Wmzd/k/LyiVxyyUqKisYyONhKMNhBcfE4Fi4cArs5IDx37rfp6tpJPD5IKhUmGGynqKiSzZuXEgi0EYn0UFMzG7//BA6Hh+LicXmu9sKFywkG27nqqscoLa3DMGxcd91TFBePp7BwFGVldVx11WN4PKP1wZOz1Nm1WlO+Y72w9W4F3dWzMXauVjA9+zuavn3Bt7NpoiEFzNEeHWjneNIXPpCNeHVmB/SV4N2pA/Pm76mn9sWP6CB/690aEUcU4EfadZD+1h3aLtKhc3c5hmEnyBB4W6a/Fm5HwdkcRvo0L0IjtL7s3A7MEeGH2TphhoD6D7Ptfdn5RwH8dxgCjLlta9BIeUoyrG5aTWVRJauaVrH4T4u5Y/MdJM0koz2juWPzHZzwn2Bvz168ES/P3/A8D1/2MCcCJ9jevp1Wfyt3bbkLEaGisIJV21ax/tB61jStIWNl+Mamb1DlqeKp656iI9hBm7+N2TWzCSaD+bqrm1YzxjNG20gGj8PDyeBJvrHpG5gI44CVepVpA25BXxRE0Ij/EjQVfgaaEt6Kqqd3oBHtShSEn0RV0yvRdPwJDL3EWI++4OgE7kH57cvQlxBl2c8iNFruQnnxq9EXGb/JXss5Irj73uHHT63nT3/8Ha+/9EvKq6dA9ZVDntaHVmuU9NBqKKgc6YntHpNN9bYg3qnbd98B0RP64mjUDMiEIdQCu5ZAOgyJbo28xtq1LHRUf1nuCggfgz13D6Vt251ZK62UvjgKndSHl8iQNVdhhXKQs6DZiHRiieigr7hWAW5xrSryp8JDZdmoN4OHta3NNhJ42xxD1lzDy+3ZVxWhU0P3TbhdXw5Uz4aYV7NFwtl7a+vdes9Wz85ac43RfqI9qvBfWAmu4pHWXgbD0s6X6r7GzBipl5AM6PY964aeJ2JCpIOUvYK7797ChAmPU11dxGOPXUVBgYOyMjc2m8FNN51DQ8N0VqxYSHl5AQ0N0ykvd+Nw2MhkhO3bOxg3rgabzcbGjWuYNKkc0xzLlCmTOXToEGVlbu6/fx4NDdNZvnwhhYUOCgsdLFu2gIaG6TzwwHzKywtobu4gEknxne8syNd1ux3E42n6vFFqyquUex0e5CdvP0dVcUVe4fml9//OlpYd/HrnywBsadlBJBmjtnws/RE/q974NT2hfjqCfZzs7eTlF15kyc23cMfCzxJPJ+kM9PGD156hK9jPtMoJ/G73RhJptd/6zXt/495XfkxfZJAVi26hNzKI3Wbj19lI9q93vowldsRZC4PrFFCnT2oU2+xV0Dywesh+S+Kq8J05qXd94exhftWzlU9d9YhGpnvvAEelpnxnOrJ9dmfbrM7yuMdqvYIzNfLtvQ1Mb7bOD1WNPN2GKUJ3JEJ3OMytjY10hcPs6uqiIxTCbrNxKhhkSWMjdsPAF48TTadZf+gQwWSSVdu2EUul+M2BA0woL2d1UxPrDx3iLcPgP156ib9v387yhx/mREcH82bNwhuJ5NXFZ1RVsXTzZnoiETpCIdYfOsSapiZSpsmqpiYW/+lP3LF5M7ZMBiMXsV23ToHv6tWK1Oz2kdZY27fr9o4OBbY50B0O/6OCdzA41FdOGntgQPvcu1fBc3+/AufeXu1jcFCjyJWVCvbb2obUyletUrAvJry5Qf8rK0bBYz+G0RVQVqpR6xOHwczAwgVa5/ePQywE931bwXTFKFg4D1Jx/R0XF0HteAXRp02Fp38Jyaim7wb61V4pOgDTToPQIHd+ejETl3wd49xz2X/0CPT2YlgRbr55MeedM4k5c87lS1+8nAfu+5DKMSk8BUkef+whLrt0GtddZ2PKlNG88tet1NVNoMCdxmYN0nPoDW6+6XOcaDvI7nff5hMfv5bf/vZmSopSlBSl+eT1V/HBwb28f2An3/7WnXzhC5/n4gVxJk5IUzk6xRWXJzEzJv19Jo/9OMmosjQFjgh2W5oCdxJsJtbkGhhVgsSjyGC/BmfcDqWXOWxgmUgqgfh9mJteQBJhBdyWiWTSCqSTSQRRkBzwqaONf0C3Q3Y7SCSA1XESzDRit2m/4ZC2tTKQSWO1tyF+H2KZ2Axwut3YXC5sJcX4jx2javZs3JWVmIbB6PPPp2jCBALRKJvffBN/IICnvp6KWbOIp1JkDIMxF1yAs7ISHA5SqRSeCRO44OGHsXk8iN1O3OHg1ddfx1ZWhlFSglFURCqTYdOmTQTCYVIibHnrLSwgEA4TjcUQux3cboomTsT0FJG66S4Scy8mbjfZuH0FA4E2Upikigpp79lJ3IySsFskC92kDYtwvI+4GSVdXkYyFiAtGZKjykhf/W8knTZSoysYiHVyqmsHqaICIrF+/P5WUqkwacMi+bmvkRwzhuRpp5OeeT7JilEMRNo5FTxESpKkXQ44+gGpsjJMTExnITG7iyaHm1ZXASl3EWPOvZZEQRFpp5uHnn6FM2aej8PpZv/+/QAkEgk++clPMm3aNM455xwWLVrE8ePZl8kotWjlypVMmzaNGTNmcOmll/J/8/QvcP1fabLZMJwurOatyr3e9ia2mnqMKaePKEMsEBkBnkUEl8uFw+Fg4cKFeeA7ffp05s+fT1tbG83NzUyePJkFCxaQSCTy23OAOyd8Nn78+Hz6dy5VPJcePnyf8XicUChEfX39iHKPx0NXlzcfJZ479x4sy8I0UzgcBTQ1reJPf1rMpk1LKS+fnAXdlTgchVx33VNEo32UldURi/lwuUqoqZnDjh3r8lHtmprZ2Wj1j0gk/GzatJRTp97hkktWUl4+iXff/Ql2u5ONG29l3bpqNm68DTDIZJJ0dOzAZnPy2mv34vO3IVlQLHOW6595Dmxn7bZkzgpELAUTlz+hEemi8eAu1+9h52r422c0nXvuSo04b/t3teixu/65cJmjALY9MMxbO/TPBc/GzQGbE3EUYtmdVIkwQYTvowAvA3wb9ZwuYAh4LwfqgMkizAKqVFwUv2Hk65QMq78CjdZOQSOzufLvZNenAk9ll4enVJcDA3bXP/haL1uwDJfdlbfXyoHf1U2rmV8/n2JXMau2raKyqJI1TWtYf2g94VSYtJnm/nn35wXKUmaK595/jm+99i28ES+L/7SYHzX/iEWTF1HmLmP5wuUjBM+WLViGw3Bgipnv992Tb2OKkEQ55z9i6OVA5bCXDWvRFw6VDIHl1dn1dR8pXwfMFsENFIjkr0kxUCfCj1HgXg9suPVWLqitpa+zk31XXcXHp04lJMKKW29la20tRmcne666imunTqVYTPoGDO59DgIpD5defzPnXngxcxZ9caQntWRTuxP9QyneOV/q6dlXKaPnwOF1Q4C8oFJpCunwEFD/8Icwerb+TnMg/fBaSAcBc6herBtxlaiVXA7UGgaU1Gp0AgPTcGJl08cFA9OjKeMp9zhMU0imLcTuUl9sm0OBtcOt+y6bpMJkdvcQ0LaskcDbMvPWXDK8HDTinLu/9qxDxs3R+3PilcM87IfdW/l7e5mez7g5uj3XHkY+B8yUpnkPB86GfeQLNXe5ls0Z9jyJ9SPj5uDy7WD5v1/Ixz9+OqYp9PVF2batPf/YnzChnKefXkx3d5gXXzzMypWX5FPEDQMuvHA8q1btxbIm8ulPryYcTiHip7W1jfLyWoqLXUyZMoqnnrqOrq4QJ04EyGQsqqoUyJ92WgX793v59KfX88ADbzB58ihWrryErVtPcuedm6mrK6O0uBAbBpFkbARHOsdv/dSMS/NRZYfNzlWnz6XE7cFu2PP1f73zr5QXlvDdx1Zz9owZVNSN5bG3/0iJ25NP+f71zpeJJGP5/p12JzddeD0fm3IBY4srCMRDVBVXYMPg5jmfyO/TZpgYOQBthYZZcK3N/t6XZYXHlmuqd26bFYKiRWq5ZRsFRgG4pmjUOtfH4DoF2HmAvjbbZhlg0/+F0d/S/fxDnRWAwMBqXOYx5tTUsCYLjNdkbbhWbduGJcKqbdvyYPrsqiqAvDjZ8oUL8bhc3HzeeZptk03l/trUqZQXFDAQi/Hko49y8cc+xo0f+1ieR72mqYlwKqUCZtu2MbumJs+3thsG98+bp6JnCxcSBSQLoGX5csTh0Aju5Zcrh/rtt5XMm7OlWrdOU8hLS7XNihV6Xw4M5Pth+XLNZe7vHwLnDzyg3lFr1miqdjCoy9k07Dvvu4+J8+djLF7M/hUrYP16Eg89xCeffJJpxcWcs38/ixoaON5yWO2IHC76vF6uvvGLnHbmmZx92mTe2dyo9kjrn87aFY2Fqxs0R3t0GXS1KlgW0dTa3z8O/d1w/ENIxhX422xQVgGfuQWCfnC6tE+Asgo+860HaHr2KSbU1mof8+dhGBb/duUcdv79FXbvbGbxdddw6223ImaKmL+bj118IS+/8BcWLlzAmVPGMm92ETZDsBkWvtadJAdPcP7kEgwEu9PNhbPOpf3UScykn+4P3uDaa64gGeojnQhx3vTT6OruxjIMijxKUOo/8ncKHIN87JI0ZaUZFbd1FmDYDBz2bD56YABzyyvgcmEUlWC7aCGEQ1jtJxRsb34Ro6AQq+mtoTGlZSKppALuzS8iYiqYDgextmW1gJrexLAsJJ1C3A61jC0bha1uAlZXO2KZGDYbMujTnPhMBonHMGonYpSWQyaDueUVTMvCcjiweYoYff75FI4bRyAUYvMbb5DOPm/sdrtmRjY3K40RKCgooKurC38wiMPjIRiL0ReL4Q8EaNy4kYTLheF00tzcTE1NDdFolMbGRgYGBnIuRWxvbsZdUMBVV12FYRg4nE7S6XQ+g1MA00wy6G+lvb0Jm83BRRfdg8PpIWOz6Op+j9rai7DbnXR0NJPKaov4/W2IWJhiYpWWkTCjdPTtJVFRSspKYGKOCBKl01GcTg8uVzGhUDt/23gr/uAJ0pkkiQJVY8nV37RpKYPiJ7n6afyxTk527aTVsLHTMJgDjDUMMobBMcPgFsPGqYISFn/hi7y2fQf1EyaQHgYxlixZQktLCwcOHOATn/gEt+SyQYCf/vSnHDx4kA8++ID333+fP/3pT/xfPf23pMT/T/38y4rrn09WIiFmLCpmT852q0vMRFysRHykFVckLOlEQrxeb95mKx6Pi8/ny1twRaNRSSQSEo/HJRQKyQsvvCBer1cSiUS+PB6PSyAQkMRH+sptTyQSEsvafvX09EhLS4v09PTk67W0tOTr/7Nyn69XYrGAJBJhSSYjEov5JZEIS0/PftmwoUG83v2STEYlHvdLIhGScLhXYjG/xGKDMjBwPGufFZREIiJeb67NQUkmI5JIBMXrPSAtLY3D+jsgkUifxGKDEosNSk/Pvnx5MhmReDwgoVB31pLrgLz00k2SivnFSgQkmYpKOhkWM2vhY/UdFDMZkXcySYlkkmImgmIlI2IlAmIlw5JJhnU9Vz/cPbTcd1CsuF9k8JhYfftFWhvFylpu5bd5dw+tZ+25/mE5GZVk3C/RVEwCmbQc97dLT9Qng2ZGApYlr4pIt2VJwLIkYlnSbVnyoYj0WJYEzYyEzbQEzIwc85+Urkif7Mkk1V7LsiSc/QQsS/yWJTeJyEHLkmi2vE/Ulmtvtr+wZUnEMiVsmdJvWXJcJN8+mopJIB6QaDKat9aKJCJ5+6393v3S2NIoB70Hs9vCcsB7QBpbGvMWXN2hbukOdUtnsFM+7PtQekI90h3qzttuDV8OJ0ISSYYlkrXyiiQj+XlfpG+EtdcB7wGJZlL58z1gWdKQP1czv74ne56Rj9TJrTeKWnQ1DLtOAcuSmJmWcCYlwWz/UcvKL4ctS0KWJV4R8WfLI9n9Bob1EbZMSabjans13EYrt56KqDVWclAk6R+y0UoOqiVXMpC1pArox39ct+fstfwHta9ot9ps+XaPLE9FhuoO7FF7roQ/X8/yfyBmJi1W1v7KSkXEyqQlk05LKpmS99/3SkPDBjlwwCvJZFqSybT4+iPSfmpQIuGEvP++V44f90kikRIrkxbL1I+Z0Y/1zz5mbjklkoqJldG26VRKOjr8kk6lhuomI2pzN+y+TcUDYiVDI+/JEfdWWBKJkETDfZJODK93QKxk9CPterL38rCyREjMZDj/PDATIUklgmImQmIlgpKIB6XH1y7pRFisvoOSPLpZQv6gxCODEg4n5Kabvibjx48Xu90ulZVVMnnyZDlwoEcmT75CqqrGid1ul6rKKpk0aZJEIjE5cKBHrr32CTn//Hlyxhlnydlnz5Df/vaPEo0mJRRKSDAYl1g0LMFAWMLhhMSiSQmHYxIMxCQSSciBA968LddH18PhhH7icekND+YtsD77pS/I+JoaPcaqSpk0eZKE4hH52s03y9hx47LlVVI/ccIIe63zLpglT/zyF7Ll2FEJxaMSTcbzNl9H+05JX3gwvxxLxiWajEk4ofVC8agE41EZjIYlGI+IPxaSYDwsqXRUrJxNVqp7yDIruj9rzRVR2630oNpydTaodVcya1GXzt5PUZ9a0WUiw+odEMmEROL7susHdT3YK9LfLXKqVdtnQsOsvw7qfvt7REL92WO7SaKJmBzwetUKy+uVxpYWOej1Sr8/JZ++8UtSWFGRv26TJ08WfzwuX/nqLVJdrdd5TGWllFRXS3coJL5wXL5801fltGnTZOKkSdLw+c/LyU6vhBKJ/D4Oer3SHQrll6PJpPhjcYkkUhJKJCSUSEgwHpdIMimBeFwykYhYfr+Y4bCYkYhYoZB+svZWVnf30PKBAyLHjonV3S3mwICYkYik+vok0dEhKZ9PrEBArFwfueVAQKzubpEbbxRr/36RxsaRfR48KFtffFE6PvUpmVBXJ3v/8heRhgaJvfeeNL7wgpiBgEhPh/zs+9+TS06bJNJ+XOTAu/LVhs/Ig8u+I/LUKtn18YukprxUUoM+kTdeFjlxdMjOKBZV26O2I1o23FLpqVUiPq/IyWMi3k61OxrsV6ul9lYRv0+XI1krpoM7RfwDMqG+XvY1N4uE/JJJJSQZC0k6GZN0KiHN27ZKfX2drifjkggPSioeloUL5sv6P/9Rgt42qa+vk107miQVD0s8PCCpeFjSybiEelvlxi98Xr5x+xI5tedvcrDxUbVSGuyW9r0b5TsP3CfXL14s6VRCgt42iQV7s/uOSyal7VPxsKRiYYn6vXJqz9/EjEUkveF3knn3HTG72nXM2NMlpq9PrEhYrV272sWMhNT2NVtuJeJi9vfmrWFzy/+0n0RczFBAy194TsxQQKx4XKx4XDLHjogZ8OtYtqcz265TMi2HxOxql1RXh3j/yVjy6NGj8u67744Yr3Z1dUkwGBwxPu3s7JSWlhaJx+PS0tIikUhEWlpa5OGHH87bwIZCIQmHw9Lf3y9dXV3S39+fH+8mEgmJRCJy9OhRCYVC/2Avq3UD4vMdlUikT44e3SSxmF+i0X5paWmUQKAjP97MLbe0NObHnS+9dJMEg50Siw1KIhGUrq49smFDQ75suI1sJNL3Ty1ne3r25e1kh2/LWdWe6PtQjorkx2gHRO09G0QB1lFRq9TdIuKZMEH+sm+fJP8J3njvvfdkwoQJ+fWamhppaWn5Xwdo/g+f+O9YcRmSU078TzTV1tZKZ2fn/+7D+D9ukmQCc+OL2C6/FsPlRjJprNcbsc3/GDhU+EwcTvAPkC4fBYYtqx5usHnzZg4cOMD06dO55JJLaGtr48wzzyQSiRCJRKipqcHpdHLq1Ck8Hg/RaJTa2tp8e7vdjmmaeT52SUkJoVCI2lqNDtlsQ/uyLAvDMDBNExHB6VRRmnQ6jcPhIJPJ4Ha7CIW6cbkKs1zsAAUFo0gkQhQXVyJiYhh2VT4Xi0wmka1TjsNRSCDQxrZtq5g//wHKyyfR0dFMVdXZ2GwO3njjAebNux+ns5B43E9h4SiKiippb99OaWkdRUWVeL37qaqagdNZiGmmePPNZVx66UPYbEP7dLqKCdnd7HO4yEra4DZTWGaSXrubIrsLO5q6G0HFrgw01dcNjAIcZgqbmcS0u7EDmEkydjc+YJyZJGNzMGBlqLA5SFgZ9trdXAzYzBQJsUg6CigGUmaSpN3N+8DFZpKA3Y1lZugePIbb4ebBrQ9y79x7GYgNMKNqBi5XEU5XMQ6xOOFrYW3zWn545TrsTg8ew04sGSSYDFLmLqPIVcRdm+/im3PvZdKYM3CJRSYTJ2WmcNgcOJ1FmDY7kknwXkczZ487D7u9AJfLg2mm2NXexKSSWgQhkorQl/Bz9vgLKLO7KTMsDMtUa7JMCNxVWSsnITWwk0TFbOyGHTMTpcCw43IUgpUklfSTdJbjcHjIpEO4HQVgpUnZCrHEosAQGHiPZMUFuG1OiHtJpvy43RW4CquyN0wGEoMalcUiZaZJGk7cNjumGKQkg9vupkAsFaYqnUDK5iBp2HCLhUuElGRIZL87p5XBZaVJ2d0kDQO3CC4rQwohkf0tmBgUiOCSzJBqbTqqqdCgvxAzqdHd4hpSdhdJw447FcJlcw2lV9vcyofGUMpApCObqeDWVGTP2Ox1tJSq4CzWfRiWKof725RGMG62CpJl4prebXdCKqLZETaHXiOy/dhdOjfQaK/NqZGoTCxrV2XqPi1RznH2O0lKIbd94zVmzx7P4utOY+zYYo60DLBqVRPLly+koyPI4sV/oqFhOr/61fWUlLhJpTIkk8q727btFOedp2qzRlZi4P77X+f+++dTX19KKmXidNoZGIhhmhalpQUUFjqx2w127eykurqIHm+UOXM0Uh6NpigsVMHGSCRFSYmDYo+NRCLM5mO72dPdyrcv/RJOuwMnQiAywLsdLVw04SyqCotJY+NEYJCK4jJ8ET9/2LOJ+y/5PKVOJ3ELPug7yaxxU7FJmnDapKX/BOdWT8JhLyCTSbDXe4IxxZWUFRYTTcUpKShi7Vu/ZUvLDq46fS7Lrvgaq994li0tO7juzAU8fNXXMMwoRnIXuOpUeMu7RCOgJQ1Z66d+UmkHSasCt30Ql7tEI7DOWhh4hNSoH5PIlGK3gdPowWUPwcAjULUWbEX6HXvvhMLzoOhKcNRoerRRAOlWUpkyklY1blcGFydIZUpIyjjcjjCuwXuIjP45vdE0Y4uLMDSpE1NAsJFIp7DbwGW344sliKUzjPF4uHvLFp689lp2dXVQ5fFQUVhIpceDYdjpjURwOhyUud04DCDbZy7ZzhSTnZ3dXFhTi2lZ7OzqYlxxMaeNHk2b3093OMzC+jqUy2yQEaHYsLCbcdixF+bMBrcBlhOOtikn9omfgNueVQq0QOxgGhCOqz/SuHHKBQaNcLrteq9kDF1PxVSoKZSA9/artxJoxPWii5Rr/OMfgZGBfR/AGTPg/ffh4otJO50YthTxhB2xORG74LDZSKQs0nEHngI725ozzJ5rUuR2EIvY2blTdb0KC4dErM6ZlSEYMRlX5aDjpJ0f/Qge+XEGT4lJX4+D2efbefddOH4iw5ixJoP9DubNE7Cb2HGQSdpJpzVw+MADqmZ9+ulZYazSGAaCmUox+MEHlE+bhqOwkEQggKugAKfDQTqTwX/kCFXTp2MCDpsNy2YjnUphc7uJdnfz4TPPcNbNN9O/dy/9+/Zxxle+wpHf/pbZDz6IkZXBNjIZLMPAYbcjLhdWOo3NNLHsdgybDZtlMWnGDDb89rdMr6sjlUxi2WyMmjgBm1js/uvzfGbJNzj56ApY9GmKzzqH40eOUG0X2PRnZv/iL6x++CGuuPhiiIbhw71wogW+8A1NFf/jz2H/u7DyFxrB3vRnFYgqq4CTLTBqDGz6i4pHtX4Ixw+phdKH+2DaDK1/w9chGmbiuefz8u9/w7nzFmAWekglI/Qf30nl1Dnccts3cUuMJ3/5K9LxCIVlVWSSMa685uPc/a1v8YlPfYopk6fw/Ia/cO45M+k90sTY0xdgczhZvXo1f/vb33j9tVdx2gRf23tUTp1DOh7mxU1vsXr1D/nTzx/kzAuvxOUpBcOmqv3RIP2tu6icciFOTzkGgmVZBHtaKCgsx4Mb7A6lFh7aj+3zN2OUlefHkFZXuwrklpRiYCCJeHZs6YABHxIJYaufhAT9WDu2YbvqegzD0IyedArD4USiEaytWzDqJmJMmIzV9Ba2eR+D4lJUkyOV378x/VxsF12MtWs75rWf4lR7BzU1NXR1dbFhwwZOP/10rr/+egYGBmhubmbevHl0dHTQ0dHBddddRyaTYcuWLRw6dIjp06dzzTXXACroGwqFqKmpIZFIkEqlKCkpweFwEAwG2bZtGwsWLMCZjU5/tG55eTmZTAaA119/nXnz5mFZFhUVJQSDbWzbtpr58/+d4uJqtmy5m7lz76WsbCLd3e9RVFRJWdlEenr24PGMZseOdSxYsByPZzR2u4uurl2UlU3I6gYFKC+fiM3mIJ2O8cYbDzB//gMEg+34/a3U1c2nuXktCxcuxzTT7Nr1BFdc8UPsdheZTAKvdz81NRditxcQCLRhFIyip7SW1YbBvdnx6ALgpAirDYNforo7DwLrJ05k0csv88K555IboeSmL33pS1RUVPD4448TCoUYPXo0q1ev5vnnnwfgnnvu4bOf/ex/H7j8J50Mw+gSkdr/t+3/Sgv/3zhJOo0kEioI8b9isjuwzf8Y0tuNZNLgcGC/9lNIMID51KNYXe0QGEBCATBsef6z3+/nmmuu4b777uO6667Le1c7HA7cbjdFRUV0dXVhWVY+XaaoqIhNmzYRDofp7OzE7/eTe+FRV1dHMBjE4/GwceNGQqFQHjxblkUwGGTTpk2Ypondrr54mzZt4sc//jEbN27EsiwSiRgul5tYrJfu7t24XEXE4z5crkJNnzFTnDr1DslkiFQqgmVlcLmK6e7ejWkmKC+fzHXXPUVFxWlYVobS0lreems5hmHjmmt+htNZSDod591315HJxIlGfdTUzKakZBwuVwklJTX09b2PzebE6Szimmt+SiaTIBr1cejQX9iy5W5STg84XIxDebdH0TTnDlcJvXYXS1EhKx/Kkc2gtlYx4GC27Ct2F0dcJXTaXUTtLgZcJSyxu/DaXfhdJdzkKKTOVcJXHYX0ukqoyNbb4irmsLuUQbuLhN2FuEq42+7ifbuLD1wlvGt34bLSdIe7qfRU5lOv59fNpzfayzc33kZb70EwU6xqWsVz7z/Hva/eiTOTxCYm3eFuHtz6IN3hbgwMVl++mrGFo4hFeznS9z5N7U30hHto7mgmkQzR52+jzdfC0YGj7O3ciUsyxCO97Drxdy4Yew7VxdWUukvpi/ZRWzSWQjNDq++ICnsYNvVWPvg9FdTKCmu5wi2U7r6NokQXpWkfLmcRRE/CwE5c7nJKMgEKSVHiLMIVacM1+B7FsVZKdy/BFWnF5a6gJNqGa9fNuKwoJe5yXA6PCm6FjqqQlxlR4a5MDJfdQcnAdlzRExTaoCx2kgLDUKDrKgYrjSsZpMRM4coKfbgMO6WZOEVi4sIAmwuXWJRYCr5JR3FZJqWZBEViUWqZuDIxCJ5QkS2bXdOZg20KnGEYJ7gLFwYlgeO4Bj7MHkeJCuUYtizYzQxx699cqmrzxeMV8KajQ+JbMS8g8NqtKroVaYeXFsObd2QF8byqZu8/qmms3l2oWB4KoGN9WUEyI7vuUxAdOgl/vwv8LZCM6MDUSitgj/aBWGTSwurVl3PppZNxOB0kkiarVjXlRbguvLAmzxl2u1X13eVyUFLipqDAzpw5tTgcBiJCMJhERJg7t5aenjB2uw2Xy0E6bVFeXkhtbSk+X4xbb22ktdXPWdOr+MFDTUyfXsWJEwG+8Y2N2TfL5NW0DSf44nE6YzF2dh7lq7M/DgJ2w07UNPFnLJo7DhPOWMQMFyns/HHfZopdBdSPqmZg4wecM30W9oIy3t75LuWFZWSw8dWld3PmGWdz0eQLeOu9vYQzJt998/fc9uIjXDDjXC4670I+Nu9iLpt3MWO7Da46fS5fnX093cH+vEL2V2d/nJgJ4vBA0QJwjNMXHKO/C5OOqbUTTnCMw+UIUxK+FZc9DIYHCi9S/+axP8Flvkep60OKCoK4bP2anlw4G8weBerpE1D9U+X/+h5Uga/QBhXoSnfjsvsoCX8VFyfA8OCyD1DCVlyuQqj+GTbDQTST4ea/NXJkwE84ZdIXjZM2Te7a8hpVj/6EJY2b8cXiPLxtGx6nk6cXL8YfjzPGU8xjO9+jorAIMewkTZPRHg/xtPpVh1Jp0haYYiOcSnPbxk0cHwwy2lNERzDIzq4uZtfUUOp2AzCxvJy5tbV0hSMEkxn8iRR90Ti2pAVfvQMOtUBLG3zxVmhp1TTmO+6AeAZeb4JQBvxp2PK2bt+5U7m9PT3KHy4tVfGtm26Bk31wqhv+3gQnvHCyH/wROP98VbkGTZteuxaeew6+eQ/4YjCuXgXBZs2CTIa4P8ONXyqlamwRiZgLI+0mNOgkFXETCSngnTfHQaHdzfGjdpYuHaI0V1ZqVnVNDRQVOBg/xo0de94tCtNB81Y3sbCdP/xBD792nIOfrXNz7gw7maQDh+UmHLDT2qqXIud0tXatZgrv3w+W2Il0drL74YcpGK1uALu+/33MeJxUPI7pdGIvKmL0eefh/eADTr72Gv7ubt79wQ9IDA5i2O2U1NUx+/vfp6CykoH332f6kiUk/X7OuvlmTrzyCn179yI2G72HDhHu7qb5oYcIdXTQt38/f1m4kJ0/+AFRn49E1n7IKCggZZrYCgtJ+foxfF74/U95fMNf+cTHr4drP8dAZwdpgerKMaqW/MVvMnHKFNqPH4fgILzye5hyllodAcRjCqRvX65CUP5++MJSqBqv7SefocA6Z3d01nlw3eehsAjOmqXA+r13NBV805817bz5dYhHwWbLqzQ/uOxejh9v5bbPzKX/+C4crkLMTIp0IoJhszHYfhDJpMAw8LXtJp2IUjHxXNLJKN+773Zeevll/vTsYxjpKK6icmpmXIHLU8bGN5pZteqH/PaxZbhSfWSSKkyVigZIJ6L0t+4i2NNCOhElHQ/R9f4bpONhSsdOpbC8GjzFGCWlQ+4ztROQYADSKczNL2EUFWsKfCSMufklFcnqaofAIMboSozScqzOdoyyUdiv+aSOdSNhEMFwOPU/z+3GNu9jWcri2xh1E/XaulxaJ5XCduXHsS99ANtVn0DiMWyLFmMTKC0tZfPmzZSWlnLDDTcwf/58RITm5mYOHTqUpy/m7GAPHz7MvHnzRljKAoRCIYqKiti8eTOZTIaKigrsdns+WFRXV0dzczMFBQUj6qbTaVwuF8FgkC1bthCNRrnuuusoKiqitLQUsNi2TV1ltm//YV5od8eOdTidhZSW1rJjxzoikR7q6+fnKYuhUAfxuC9vMatj0WJiMR+RSDcbN95GNNrHlVeuo7x8EmVl9XR17WLUqClcc80TBIMdgMFVV/2EcFjrx2L9VFefS2fnTvz+NoLBDgpKxrHaMIYoaigQnGAY/Er/TagGnmBIU8b9EaixevVqjh8/zpo1awDIZDJkMhni8Tg7d+7kL3/5C9/61rc4cODA/yh6+S83/Qtc/2+aJJ1GBvpU6GGg738JwDYcDozRVdgmTMFwF2DY7Pq2srQM4/SzsdVOwNr2Jtaffo2YJtu2bePQoUM4nU78fj+bNm0iGAzidDqJRCJs2rSJdDpNNBqltLQ0b71VU1PDjh07RnCkc/Pm5mZM06S2tjZfZ9u2bVhZWwXDMGhqaqKmpoZIJMLGjRsJBAK89tprPPnkk9xwww188MEHvPXW29jtBWzY8B2++MXvcs45c7noonns3r0Nw7Cxfv0SLr54MfPnL+Kiiz7G6adPY9SoOpzOWuJxP5lMgo6OZgYGjuFwFFJWNoFrrvkZkUgfsdgARUVVlJRU5x9KTz01g82b78Bud2KaKUKhDqqqZjA4eIzGxq/j97fichUxatREurp2sXDhchxWBptI3vd4LSoslePZrkdVnjuzZUtRdeiO7PpwFe2cUnc3+rBbhz7khnOUayDvpVyLCmDF0IdfG2rVdCXK7V0M9NtdjC8Zz12v3kVVURUL6hdgYbG2eW3eS9oSK891XrFwBQ6bg2gq+g91PE4P4VSYcCrM2ua1VBZV0hHqoLKokqWblxJNR+mJ9HDZpMuoK6vDwKDYVUxNaQ13bL6D9lA7Ra4i5tXNY+qoqbgdbtY2r6Ut2KkRqbzg1jBhrepFygUurIGiiWAlVDgrJ7RlxlC50bS2L6jU9jnub/GEkUJeBVXKBx7OGz60GsrPVn/nXbdpH7EOBZgfrlEv6OIa5cRGupQ7Dxo1DrYqn9bmUsArpkZsg206F1Mtn+xuBbA5VWkzlQfPwAgwDR/hCmN8ZB3t00wqQDccGrHO8Xl3rtIfSbRnpPjWe2tVtGf8fD2emoXqnT57uUahCyvhknUKolMR9XcOnlCxPTGHouDBNlW4Tse0PKeC/95ajXSH2+HNb0DgmF4ruwebYdHXF+XBB7fS1xfF4bDlVa+XLVtIMJjgySev4bTTRuNy2Uc801wuB0VFTgoLnQCUlbkpLnZx440zmT+/jhMn/Gzf3o7NBpYltLUFaG8P5pWvPR4nTz+9mIICB6tWbWP27Bq83gjNzR2MGlVAIJAAA475TlFWWMzt8z5DeWEJ0VSMzkAfR3pPUFc+lu8uuoWasiq2HNnBwZ5j3Hfpl0mbJvu6Wpi76GKuXfk1aupqGFVURoWnlEf+/ju+8LnPsfXtt6mfUE+JuwiXw5n3Xi5xe/jVb/+D5zY/T/Oud/n6V27m/ku/zJiiUfx53xbGFJWzYtEtuB0u7JgY6TZVpTaywpXOSVkl6yWQzr4QsVdB4XwYeAwkSl6ZvXe5gnLnZAXdzmlQ9RMougoGfgKFF4OjWn97aZ+uG24o/QxgV8Cd6YfIKxrtdlSDo1aFwLx3ghUjLTa6QiHWLVrE+JIS7IbBuOJiHDYbv7j2Wr5+3nk8dtVV1JeV8YtrryWeTmM3DJKZDKMKCnjy2mux22wkMxkcNhsZEY4PDtIRDGK32chYFv3RKAUOB49ffTW+WIzTRo+muriYmtJS7ti8mUQ2ipSxLAQ4GQjgjUQoLyigOKvmy3e+A1deqagxJ341b55aMS1dCjNmqK3UcPQ6ZswQf7i8XOWchwtyTZigUe3Jk3UeiykHORYb8m/O8YlXrNBw84QJ2k/WWqqAJMuXWTz/vILZcFipxiIaLP/zn9UL2TT1kHOaYrNnq4j1nDnqLmWzabdtbVr/1CnVBKuo0EOdM0fvqylT1J66txe+8Q11krLbhy7LmjWwaJFGr222rAWUmcnbFn3461+TjkZpf/VVYl4vZiLBrpUrCZ08iVgWnupqxs6Zk/cFPvT002CaxH0+rHQah8fDed/+NiV1dVRdcAElEyZQf/XVjDrjDLDbGT1zJod/85t829EzZ3LJz3/OBStWYMbjHHz8cU2gSafxjB+Pq6yMqpkzMTb9mdXP/Ibj+/ew5vEnFBBPOl1P+sQRtX2KhnW9oHAICG/ZoJZFdjuUlMGYaph6Nmz8E/z0QfUITiVVvMywKfi+8GIF1RWVytm22aGoZGhbYRFc9zlwFcC8RVBYDAKVU2bz59cP8cb2gzS+8hLVk2ZQOXUOmVQcu8OFZ9Q40okwMX83ZiaFlU4S8Z3E1/YeLk8Za36wnJcaX+O3P/kONZOn4ywsxkB/K3/64x/43oMreXXLZs5deD1l407HU16NmUnha3uPSP9Jxky+UMtHjcsDfV+b2jEZIoi3WzsrLcf2sasQux1bTf0Qx3rH2xhFxcO41G9heIryej4SCmAUFWE2Po8k4xAMYG3dAkE/VsdJJDCgqRFFJQriFy3GqJuodQKDWJ2n9L6IR7UsFsFWP0n1hKKREfo8uezJVCo1AkCXlpZSXFyMy+Vi8uTJjBo1imuvvRaPx0MkEsFms40YowaDQQKBQN4lZ+vWrdTV1bFo0SISicQ/jHmH6weFQiH8fn8eaBuGkwULlrFz51S+9a0mqqrOwuNZxMKFy4nHY3z849dy663rueiiS7j22k9QU/NFpk9voLZ2Tl4TaMuWRoqLK/nxjx+lqmrGCLBuGLbsf2E91177ZDbz9A7+9KfFNDf/CMMw2L79hyNcdIqKKvNaRYmwlxUiNAJPono7x4Bb0QBRiiE3E0d2rOka9p/86KOP8uKLL7J582Y8Hg8AFRUVFBcX88UvfhGAiRMnMn/+fN577z3+r53+Wznj/6d+/itwrq14PM9PSW/4nVjx+P+6vtNpsRIJseIxMSMhMYN+5cckEnk+diIRz3NWPsob+eh6R0dHvvyll16Srq6ufNsclzrHle7p6ZFYLCaxWGxEnXfffVc2bNggiUQiz2MZvo/XX39djh07JhMmTJAdO3ZIKOSXYLBL5s27QH7xi5/Ihg0NcsMNyJQpo/Lc5/7+w3keyaJFyPnnj5NQqDvPle7s3CktLY0Siw1Kf/9hCQY7JRz2Snf3niyn+kCWG6N8GK/3A4lEeiUeD0gk0v9P+SzxeECiUZ8Egx1y/PhrEh3Gsd0jIj2i/JUcv7ZbRPpliM/SIENcl33Z9Y9u/1BEDmb7CYjIoIj4s59A9tMgIjs/0m4w2+ZAdr0znRR/zC+hLLc4EA9IMB4c4jL37Bd/zC/hRFi6Q90SSoTkxhdulCd2PjGiTneoW476juY5zbu7dktjS6P0R/qlYUODsBJp2NAg/ZF+CSfC4o/5xR/zSyAeGLH93Y53pWFDg3zY96EMRAfkgPeAJBOBkfzewf0inY26HvOKHHlcZPuNQzzieL/Wew6dx3pEBvYOa7c/288B5UgO7zfe94+84cEDIrHukX3G+0WSIW0TbhfJpEQyaZFkRCSTFElFRQaOiHQ26dxM6/aPlqei2tZMjyzPpLLbIyLppPabX09oX5mUSGxw5Homu5/h/UV7RRKhPGdY+g6KJAK6/Cg6932o5cO4+tJ3QCQRFEmGdflvDbot3KX9JQIirY0i3Tt1W+8+3dfwfuODw9ru0fWP7jful3DPCWlo2CCwUhoaNkgolJBkMi2hUELi8VR2PfNPn2XJZDrP6d23r0caGjbI7t1d0t0dkkAgLo2NLbJrV6c0NrZIf39Ujh71SW9vRBoaNsj+/V5pbGyRAwe8cvSoT3bu7JTDh/ulsbFFdu7slIaGDbJvX49EEjEZjAblvlcek5mPfFbue+UxGYgG5J3WvfJ+97E8H7g/7Jd3WvfKsb52iSaU5zu8XWnVKNm+s1m+u+nn8qG3Lc8THl9XI9t3NkskEZP+8KC0+Tqlrr5OmnfuyNdp6T0pvohfgrFwnj/siwRkw77XJBrvF0kcHcbx3a284dAmkYFfKJc33S8SalSecHowy/+9UetlAjrvvEkk1ZnlFvs/wjPeo/XTfu0rcXSoXuLI0P5S3fpJHNa+YntE4vskmhgUfywm+3t6pGHDBjmQ5fLe+MIL0h0KSTAel+5QSDYdPTqiTjiRyHOL9/f05OcNGzbIzs5OaWxpkUA8Lsd8PumPROSozyd7urrEH4uN4AuzcqUc9fnybff19EgokZDGlhYJJRLSOzgoVjgs0t0t4vWK7N8v0tAgcuCASCCgyyBy+PDQckODSF+fSGOj1guHRTZtEnniCZHdu4fa+/0ikYj2c+TIyPbBoPZx9KjI4KDWzfKH5eBB7TMQEAmFJBK2JBDQ1Vz3u3eLhEIiN96oh3zs2MjmoZDI17+up+Xzadv/t1PYv19k715d9vn0cIbXGxwc2m+ub69X+w4GRfx9URn44APZds894m9pkWhfn2y75x6JDw7KtnvukefOOku23XOPxPr6JBkMSioalcEjR2TbPffI4JEj0rl1qwwePqzzI0ck2tMjnVu3SrS3V3zZfgePHJFkJCKJYHCobUuLpCIRGTx8WLbdc48MHD4ssb4+mVBfL//xla9I1OuVRDAomVhM1i7/dzm/frz4398ncmCnSEebSCImHo9Hek60icRjIu2tcuGEGnn9xeeVK53jWx/cpbzpcFDnB3cpZ/upVdrPwV3K0e7uEEnERaJhkXhUJBoRCQwMca29nTpPxET8PplQVyf7djSLJGJiJuKydu2P5LzzzpXOE0ck1NsmmVRcMumkZFJxSSfjkk4lZOGCebLwonOlJqurMKaiXCZPmignT7QKIPU11TJjxnQ5Z+ZMufDCCyWdTko6ERWHwyE148fLOTNnysyZM2XmzBni7emSVFx51e17N0oqHs7vMxbsk1N7/iaxgFdS8bCYyewY8YXndNzoHxQzHBLT1z/EgfZ261jSO6Ttk2k5lNfzsSKRf+Be58a5ZsdJHe9Gwrre3fEPY2Gz4+Q/tMvxvdOhgHiHca1jsZj09/fnx6U5rSCfzyeJREJCoZD09/fntX9y8+PHj4/Q+olEInlO9kfHwjmu9XCO93AedzQaHdEmkYhKIhGW115rlGPHDkl9fb28++47Eon0id/fK3/4wxOyfv0N4vUelHXrfiQLFlwksdigJJMR6enZL62tu2TKlAqZNg256aZzs2PaIV0g1R4KSSTSLz7fUYnHVT9ow4YG6enZJ5FI3wiNoVCoO6stpOPigJmWvmHjxP3Z8ejwcWRuXOmZMEGa9u3L/x+vW7dOZs2aJYODg//wX/31r39dnnzySRERGRgYkPr6etm5c+f/O1D5Tz7x3+Fc/28Hyv9/Pv8lwHUqNexh1SVWOvW/rt+sqFnm6GGxYlEVkIhF9SGZiIsVj0kq++C55ZZbpL6+XgBZu3ateL1eSSaTsn37dpk2bZpMnjxZzj77bPn73/8uoVBIQqGQfPDBB3LbbbfJlClTZPr06dLQ0JAXgsiJmIVCIYlGo3nRh5wg2nDBiNzDabjYWX19vezYsUPi8aA8++y/SXFxkUQig+L1HpD162+QysrRcuDAzjwgDoW6xes9IDU1JfIf//ETSSSCHxF96B8BrhOJkASDXXL8+GsfEUc7IIlEWLzeA3Ls2KuSSIQlFOqWrq7d2YfWfgmFevLCZvF4QKLphPgtKw+Cw6Lg9n1RAJ0Dwn0yBLZz4hG+bP2AiERk6EGX2x4RFQPrFQXVgyLSKSKHs+sHREaIZO3PtusTBfTdIhJIhOWY71he7CsYD8px33HpDnVLIB6Q7lC33PjCjbK7a/cIEN4b7s0Dbl/UJ73hXukIdMhx33EJxoMSTATzAmA5EH7Qe1AiyYjs7dqbFwIbjA3K7q7d+fWcANkTO5+Q3nCvhBIhsVLhIWAc71NAnAzoPN6fBczvKyDefmNWPGv/EGBOhUQGsu2TgyqkFcuKEAWzwlzxPpHQUe0vFRaJ9Wq7WLcC81jvSPGu0HEF9qmwgtl0IguUs8A2nVBQmgPEOdA7vDyZBcqpmALj4QDazILlVEzLYwNDIDzX18ARBbrJcHZ7eiSIz/WXDIuEOhX4xge1PNSlYDgHtqO9Cqw/CrrjgyKRnn8ExImAvlyI9f8TMD0MxIe6RNpezdYPfwSo7xEJd4tE+yQWCsn+/T15wBuN/o8965LJdF44a3AwNgKgf/hhn4RCCenvj4wAy/v3eyUYjEsgEJfe3rDs29ctAwNRCYUSEgjEs22iI8F+XEHycKB7arDnHwB3f3hQoomYRJNxGYwGpaltnwTjkSEQXVsjb25/W4IxFdMaDrob/74lL9iVK5t+9nQZM2GcjLpwkiz9/cNyMAvkfRG/HO09Je+07pVgPCLpdFisdL8C6yMFCqLTviyoHibAFdup2zIBXR94XIF4DpDHdiuIDm1S4JwJ6XL8oEji+FBZuk/7DDUOE+nardsyoZF9ZoIinQ0SifXKYCyWB7oNGzZIfzQqu7u6ZHdXlzRs2CC7u7rEF42OqJNrs7Ozc8Q830ckIqFEQgZjsREA3BeNSmNLi3QEAvn+/fH4P/S9v6dHAvG4dHR1iQwMKEp94gmR3l5FoseOKXrMocru7iH0euCAIsxAQEFxDhjfeKMu51Drnj1ar7tbpLNzqK/9+0V6ekYA6BHgexhSTnb2yoEDljQ0iPT3jwS9OcDd1yfy7LO6mxzgPX5cT+fwYe3+1VdFurpGguS+PpFTp/SUh2P7zs5/xPl+v4LstjZdzp36G2+I9PakJBmJSHxwULreeUeivb2SDIUkGQoNAeHDhyXa2zsEiqNRSYZC0rl1q/z5vPNk2z33SP+BA7Ltnnsk0NoqvoMHJdDaOgKcJ0Mh6XznHYn29EigtVWifX2SCIUk0NoqR37/e9l+//2S8PulvrZWdm7blgfid15+ucw671wZ7OwQCfpF3npF5P1dIv4B+crnP6eCZomY7Fp2h4z3FEhqz3YF29GwAue3XhkSNztxVNcPvKvgOeRXwH3iqJbllnPAPBEfCdRDflnyta9KTXmp2A1DqkqKZcrkyXKq9fgQOD57usycOUMuvPACScXD0rFvs6z83nelpqZGXC6XjB5dITXjx0t3V4ckY0FJJ+MSDw9IOhmTTCohmVRC0smoBL1tKkwWD0syFpKgt03SybiKmwW8KmCWTkomrW10OakCahF/viydjEsqOPDPhchCQRUji8cUgGcBtRWL6pgyEpbM0cNiBgMjBXSDgRECu5mWQ2L2dKpgWZ9XMjubFLh/FKiHgiPLjreI2XFKMkc/zIuK5caMORDd1dU1AvzmAjk54TKfzyddXV15gJ375MatwwNEHxXnzQmk5frp6ekRn883Yj0HzkMhn/h8xyQU6pZQqFvq62vl5Zd/Jj09++Sll26SWMwv8bhfYjG/vPTSE1JfXyuhULfE40GJRPrk859vkN/+9nG55JKJ8v3vfzsvyhuPByQc7pWurj15IbSenv1y9OgmSSSC+XGpiqGFJB73Z4XS/PmgUCIRkrBljgDQwwM8+7Pjy08tWSKFWTHKqqoqmTJlinR0dAggkydPlnPOOUfOOeccmT17dv7/2ufzyfXXXy/Tp0+X6dOn54H2f9Xpvweu/yVo9r9xknRa87wcduWZ/M/2l8ko5zGTUdGJklKs7X9XoYiSMhU5CwwgwQCZukls3LyZvr4+5s2bx/XXX8+f//xnzj//fDKZDJdddhmf/exnuf322/njH//Io48+ysMPP8w111zD3XffTXt7O88++ywVFRV4vV4qKioASKVSpNNpwuEwtbW12Gw2DMMgk8lgmiZvvvkml19+OU6nMy9q1tnZmRemuPfee3n22Wc599wZ7NnzFkuXruDtt9cTjfZSW3sRF1+8iAcffIBU6q/MmXMnsdgAp05Z3HjjTbS1HcXhcGTFzFazcOEKRo2ajM/XQnPzj5g37wFGj1YOtopDxHnttXt4//3nmD69gWuv/Tmdne9SUjKeHTvWccUVP8LtLkXEAgxMM0lWzQmwYbpLiTpcWKgNU2l2617gYoZStX+I2iwJmv79PnABmo6Tq/NIdt2HWlR5UL52ErgfuA8YAzyA2kGVAmZ2fwHgQ2ASMA5NP58NfCUdxzDTtAXaWNO0hvvn3c+4knEc8B5gQf0C4uk48UycI74jzKubRzKT5L3u95g5diYepweHzUF3uJtiVzGGoWne205to7KoknU71rF8wXImjZpEIpNgV9cu6krr6Ap3cWzwGFdOuZKKggo6w53Ul9VT6CgkkUlgN+wkMgkE4YO+D7ii/iKMeLfaPDmKwTNebZMkAyk/uEapSNfeO6HtN/Cpbhjcq6njSR+MmQPvLYWuV+Djp/S7sbnUZspZqkJbcS+4ymFgF3gmQPFETes2k7D/Pjj3R4AN0gFwluvNFO+GkqlgL9Q07pwPc1bYDCMrfCSoFZo9awUFw8rD4PRouqBkU3SHM3EMlMfsKs6Wq0Uehl3Tyg0bZBJDqeiQTdG2a2NbdnsyqNevsArsDk3rjvZou6JqTfs2bBAf1DT3natgzvKh8wi2admFD6hNnKNARdCKxiuHe+cqmLNC+yuoGFIVg2y6uAne3ZpKjmS55C6tlwoTypSwbXs3Y8Z48PlizJlTQ2mpG5fL8d98noVCSb7xjY3Mnl3D5z43Ha83yqpV23jggfmMG1dMPJ5m7Ngi4nGTpUs3sX79IRoapvPkk9eQTlvs3dtDXV0Zq1ZtY9myBUyYUEZvb5Tx40toa/OzerUKqk09vZyuYC/eyABnV0/BZXdiionD5qAz0Muvdr7MV2d/nAmjxgFCMpPmA28rowvLKCkoZHRROdFUgrOmncHHv/NVHvv6d0mZaXrDg/zmvb/x3Dce4fd/fo5Zs2bhsjv44Zu/4dKx5zDn7PM44evia9+8lYKgRePGRuKpJAVONwe6jzKqsITf7d7IQ1d9CbcMaqp3uhOcNTCwRm2jnJPAe8uQuNnYJ9VzOX0EjCLlTw/fFt8JzvHqrzz6frCPBSuu4mUDa6HqR2ArhlgTOKpg8FFNBx//vHo2i6hnc/i5rJja02DFiFgVpC2L9mCQ1U1NrFi4kLFFRTjtdm7buJH1hw7RMH06v1y8mFOBAKubmli2YAETyso4FQrRGQxSW1pKZyhEbWkpq5uaWL5wIeOKNeXVn0gQSCToi0aZXVODw2bDtCzu3rKF2TU1LJo8mbrSUlr9fu174UIsy+KH27fzi2uvRVIpKux2jEhEudM9PZojXVCgKdznnafp4vX1kMlANKo/Qo9Hf8fRaNY+rkS322xw++3Ko25ogKef1lTyuXPhS1/S+i++CFOnwsyZmm7sdOonl/NdU5PvI3K4g5sfrGX9emhs1MzxVavUqaqrC6qqtCvTVAr4jBma/l1WphII99yjmedVVcqPnjdPvyqnU2nivb2a6r1ihZ6y36+p4kXZR0thodYpLR06xf+HvfeMkqs803avHSpXVyd1DoogQCggQKm7wQQhhARjG9AM4HHCljUWmByMGINtIUAyyYCJzuMxQzLGLQkRjIxarUAOMkgods6V467a7/nxVFVLM3POnB/fOt93ZrzXqlVhx+qu2vXe+36e6+7ulnb0RYvk7Tp0CzIx3lm7lq5XXqH5/POZ98MfEu/tJTk0xITZs9FMk6F336XjmmtoOOssTr31Vkyfj1w6zehHH+GtqyPR34+vrg5neTnBv/6V8hNPJDk8zKe/+AUnf+c7eGprUdksox9/jLuiAkcgQC6dZs8TT3DiN7/Jzffeyyuvv87g0BCVFRWUlJTwkyVL+NJjjzFl8mRKPG7IZXH5A+za3gFDfQw+8zT/+PJbHOrrw+l08sgN3+OsJUukd/qCfxCQViop/ddvvyVl3Rd9Rf7gpeVFyCb/+iicdzG4vccu+4/XCNjsqXth5fdh6gmyTi4Lzz4FX/oaADmXi95PtxLu38vE076Ew1PC8P5dTJhyOqbLi244UHaWgU/fonLyKWTTSXwVDdh2DisZJZuO4y2rRTNM7GxGTsGGA5W1SEWH8JTWgmGSHOvjyLt/5Li2r2I43SSC/Tg8fnTdgW46sFJxxg6/T+1JXxDYmJ0TZo+tYGwUzHGgmTbzVIxlX4ZcDrvniMRiORzy9yotlw9QKill82ioRAy9aXL+t0y2rYF8B2wbZSuBHuZyqIFetJIAOJxoPj9K19GyWZSuS797KiUfWKcLYlE0j5eMbvCn9nb27t3LpZdeSnNzM5qmsXHjRj799FNWrFhBU1NTEZ6byWR44403WLRo0TFwskAgQDQapampCYB4PI7b7cY0TaLRKC6XC6fTWeQEmabJ1q1bWbhwITt27CjeH30cPT09NDXVAwJ97e3dzTnnfJt//denGRz8NU1NLUUA2aJFN3PDDffi85mcf36ORYtu5o033uXFF5/lmWf+wJVXfptZs07mq1+9iI6Ou2htvY3S0mbi8SGCwYM0Ni4ANDKZGG+8cSuLF28gHh+ko+NuWltvIxrto7p6Jm53KaHQIbZtu4u2tjW4JpyAbjj5HGllvAU4HrCQ8u8o4MkPT4z8qMXJsaXhf5v+BjT7P3rSHA40t/t/ibAG5IcgI3AJvaEZe/ub0hPTuVVOfrks9rY3BEgBnHvuuVx00UXs27cP27aJRqOkUimGh4f561//yje+8Q0ALrnkEvr7+5kyZQqJRILf/e53nHbaaezYsQOlFFVVVfT395NIJPD7/fh8Pmpqati8eTOjo6Ok02lyuRz9/f3s2bOHTCaDpmmAUMRra2s58cQTaW1tBSAWi+HxePD5atE0jUCgEZ+vhmDwEMHgIRKJURobFxKPD9PUtJDf/vYZLrroTKLRLrq6OvB6qzjzzDvxeidgWQk6O+9l796XcblKyOXSxV5s285y7rn3MmPGClpb12AYTpqbW4hG+/j00xd49dXriUR6AEVX1zai0T5SqSCg09f3Nko38CInHQPpkfYgwtZG+qcfQDKhRxCgWRI4HQFE2Eh/9AuIINfy698MRJDeFwUszC8XyW97APgW0IX0XXsR2mOeY8sG4GIga+eEnG26aWlq4YGdDxBOhVnUtIhYJkZPpIdPhj5hXsM8YpkY1265llp/LQCrNq7iYPAg+8f2MxAbwNAMlFLMb5jPfTvu4+W9L9Md6Sancuzu3c0lz13CXR13sahpES1NLdyx9Q4G4gPU+GpYvWk1B4IHcBkuuiJdXLPlGmxlc0r1yRA7JCAz3YDYfhGJiW4YexvcE0SkoWDuT2H5Z5Iv622Gz+4HTx1gwtwH4aKDsqwVFtGsmSIS0aTXGgXlswW0FTsAb/8TpAbh9MdE1L93LWw8Se5NL3hq8yIWyWd2+GRw7fRD5IiI/2xahHWhr7owFQW3KQOsdCQ/oyCgc3kiMbJeJpbvoT4sr2n51zVTAGYqfxnFtiCav6ioH7XdxACE8n3ewX3Sa63pQgy3EgIde32V/G1LmuELD44D0EIH5f2e+ziUHVcEtxE6KL3pgcmyvLsSUiHpM39tpQhy3ZSLDn2d4K2W44z3jf9dev4Cuolh6MydW8fEiaWcccZEHA4Dy8r9Jyew8SmTyRKPZ7j33nNpaWni+utfparKy+OPL2fq1HLi8QyBgAulIBRKcttt0sN9440L2bWrl3A4xezZNTidBi0tTfT1RTlyJMwPfrCVzz8fpakpwIMPLqG5OYCVyzIYG2XahCZsZZPKptHQSGczuB1Ovn/ON2gsrSZr54hnUoSSUY6vaqbE7SFpZbhzy5OMJSKYusFFM84gmIxiK8UEXxk3nfVVTN0gmo6z7vVf0B0a4pazv85Jx03ng969TKps4Lc/eZK3d+6mNziM2+FC1zROaZjOv773Clv27iCYTKB0HxgTwLtIhHX0WclZxhaRXbJCMpM1r5xpzKlg1kPl98fzmzUPeOaLsC7mOEfzGc3roeI6yI1IH7ejEfQyyWquf16eD6yE7BEhjBf2hwm5IQAOBYP0RCI8vmwZE7xern/1VRKWxZq2tmJ2ciKToS8a5fFly5haXk4ml2NqWRnTKirI2jZz6+qYUl7OE8uXM7G0FIdhoIAJXi/HVVTQ1tyM1+HAoeu4TZOHly5lemUlZW43OaWoLymRdQMBfrprF7e1tvJufz9Oj2f8glBJCTQ2ikpNpYTivXu3KNX9++Hb3xZlGY/nc47T0rg8NCRKtaNDXnvkEbjiClHApgn33guXXirr+HzSg71woajf7m5pgj54UObfcQccOgQbNsCKFTgDLtasUVxxhTDOJk8Wve71wuWXSy90IgFOp/Q/Dw7KJvr6ZNcvvyyP/X5obZWhwPPPyzperwj0G24QnZJKCbCs0D6ey0nP9Q9+INuwbdFBNTUCObdt+PxzGOjLMPrRR5z49a/TfP75nPyd76ABe558kuiRI0S7u9n1z/+Mt7qapX/4A6fdfjuGx0Pk8GHeWbsWb20tvvp6Kk46CV9jIw6fj6pTT8X0+fA3NTHvzjvxNzWRzsPPvLW1fPqrX5FLpUj099P1yit8+otf8Nijj3Lgk0+IDQ/z3nPP8fbmzZx3552kRkfY/+H7fPD7X/LB5j+x69tfhqE+CI1QM3c+rz77ez5//132vPsOZ13+tXEo2aZnpP+6fIL0SJ9+hgjusglQUQ05G7IWHN4nr0dD4PEKKbzQd521oGkK3P4QlFXA55+IOAQhkLvc8htnOqmaNo+y+hPxVjRgunzUnnAGhukkZ6Xo++R1rFQcT1ktIwffxVteB5qGrhtk03FMl4e+PX/GzmbIZhIkw0Ng59BMB6bLR9+eP2MlwrhLKo8R1qbLg5WMYThc5LIZsuk4tSeegbKz9H3yBlY6jspmyCajqFgUraQU44Ivo1/+LfSlX4RsXlj7SkRYZy3sHX+R/nWlpDc6DyrTqmol77r9OVRwRPKpN76AGhkWR09D+qoTMfTmKahIGFJJcpv+IN8rXUfTdOzXNpJ78n5Ufy+aApwucq+2g6bR2trKpZdeSiAQYNOmTWQyGZYuXcqqVasoKSkp5lNbloWmaTQ2NhahZEffV1dXMzY2xqZNm3A4HNi2jWVZHDx4kHRaAKPZbJZIJILD4aC1tZV4PH7M/YknnkhdnaRZNDU1kclkyGSiJJOj1NTMRqkchuGitfU2pk49j87O9ezZ8yw33vh1Dh48xFlnpdmz51k2bvwh9957P4888jgAuVwGTTPo7FxPU1MLpulG1x34/bXU1s5h8+arCQYPoGkaDQ3zSKfDdHTczZ49z9LZuYGGhnmYpgvLSrJjxwM0NbVgGE6cmoGmFMcBDyIsn3wmCLn88CWRfxwB/gJ8hoxH/zb9v5/+Jq7/O035gYgWKEWlkuO0x5azwO1BZbPo510oVx51HZfLRSAQ4Nxzz0UpRUlJCa+//jo9PT3U1tbicDjo6uoimUwybdo0enp6+OSTT6isrCQej7N27Vq+8IUv8Nxzz9HQ0EBpaWlRRBfiu3bu3ImmaTgcDiZOnMjf//3f43Q6SafTjI6O0t7eTjKZZNmyZcRiMQBqa2sxDCgttenpOczY2CFKSuqIRvsYGBhjcPBlTjrpEgKBRp577pu88MKLXH3194lG+2hsnE8mEyeTidHf/x5KKVpbb+PSS58nm02wadNqfL4qYrF+0ukwTqef5cufpLx8CsHgQdrbv0Mg0MiKFS9y3nn34/fXomkmDQ3zcTi8uN3l9Pbuwu+vw7RzJJQiizjT7yEnJjdyImpAoBD7EQG8GzlpeRBHOg3cBjwPNAG7gFLkhOdGiOJO4ArgnxFHewkirm/IbyeR38dBoBM4DMXIBFM3OBI+wtq31nLxiRfz8NKHqfPXoWkaTsNJiauEal81qzauoi/ax7yGedyz/R4i6QjP7nmWdR3rmOCdwPrO9TgNJ7aycRgOHr3gUT5e9TFz6+aSyWZY1LSIj1d9zO1ttwMwEBvgxoU34jW9lLhKeGTpI9T6alEoHtjxAGc0n0GJq4QKlxft0/VQ1QK6G8pmCck70QNlsyE5lBeWBdc3L1Z9zXD6E1BynAheFIx9AInD8MmP5bm7QkRiLiX08XgvGL48sKxHnO6/3i3z0WHeU+KKz31IIqb0PITMtsThtS1xiT1VUDpZ1smlhdgdPiT7zEcGjQtuj7jXRv6aby4lQlrT82/JFpiZ4TiGSF4UzboOaHmXXBchG2iWeen8PlSe5N3QKvtxlgqYzFsj6+mGuPen3QymJ79dE4beg4MbhTTuKhWgmsrJ8W69Dnx1cvzxXnl99GMonyYXGepbxNkOH4LBt2XfRTc/H+flDEDVbEiNousaw8MJrrlmCwcOBOno6OLAgRCxWJpMJvufnsoymRw33fQa2azN+vWdvPDCp7z3Xj+aBsPDcdxuE9tWWJbNhAle6uv9PPHEcsrK3EyaVEptrZ+RkSRr177FxRefyKJFTfT0RHj55b3ce28n6bTEd2UyORymQY2/koOjPbhMJy7TiQLCySgu08lfBw+iaRqWnWU4FuSxzucZjYep9JYxGBvjq6ctYyg2htNwEExG2XXkY6n0cHnxOOSiy4sfv8mWvTv4+a6XiMaivHtgDwG3nx+++iRP//oXNB8/meFEkP7ICD969Sn6wsNcd+YVPPLlW6jylaDZYRi6HsL/eqxgtpNgdYsr7ZgCdgiy/eJEo4szXf0gGFUwcBVgHCXGbxEBjQk1j4CjWSji0Wfl3qySbXoWHPu67pPlra68470OW+W4t7OTS557DiuXw9A07jr7bD4ZGmJyWZkI3rIybn79dT4fG+NgMMiVf/oT3ZEI0UyGgMvF+s5OhvOOsalpHA6F2N7VRV80yqqNGzkQDBK3LJRSRDIZ9o6OsmrjRupLSvCYJv2xGOlslrF4HFPXeeD885lSXs6CxkbSySR2LCbqsrxcLNmqKnGbjxwRupfXeywtrKZG5l13HcyeLct7PGIPr14t4LOf/lRet22xfZ1OEeEHDsCcOfIddruPBaiFw/J4/XrZ3pNP4gx4mDY5x2OPKYaH4VvfEp3v88G//Ivod8gn32VhYEDE8sCA7PLFF0XHZ7Oi/7/3PUkCy2ZFKDc0yFsqMNYKbz2REEH+wAMi2n2+fBhAQsz9Vavkbfb3QzRmUn7SSXjr65l3xx348jCp0++4g+bzzy/CywqAs3fWriXe20tqeLgIJksODZEaGwOliHV1sfuOO4j39JBLpxn54AOi3d1EjxxB2TaG203vm28WgWZFQW8YJEdGGP3oIypnzsRwu3H4fDjcbrRDn8HkE+DVF8aF89QZQgN/+bcQDkrKwYE98PffgR8/Jff7/ypiOFAhjvW+j+F3j0B4FGIhcaqPOxlKyqD5OBHXNQ3w1WtElL/wCwiNyfyxIbn/10dhbFh+R7KWVGRhYyVj1JzQhspZWMkoA5+9VaymmzDlVHKZOKX106k/+Rw03cDOZVHKxlvRwNjhD/GW16PpBrruKIptKxnBSsUJ9+9leP8uNMOBnRfOpstDNp3CW9GApus43H48pdUMfPoWSinqTvoCpksuHkfHutGqa1GhUXKbXkSrbYBIiNyWP6LV1Asc1x/A3rFNCN+GKe70gc/yIDM/GAb2zg6Zb0q1hr7oC1BaKjAupQS6W1IKKDGCdvwFraEJomEBoYVG0Rcvw1h1I3rTpPH0m8XL0IDy8nKam5uLFZLRaJTu7m48Hg8Oh4Pm5macTidOpxPTNJk1axaBQID29nYCgQBut5uGhgYsy6Kzs7MI2O3v78cwDE488UTeeustgsEgpmlSV1eHZVmUlpYyceJEysrKqK+vp7S0lGXLlpFIJGhvbycUCmGaOtFoH2+9tTZPHndhml7KyiZRUtJAW9vtHDgwiz17bP74x+c599w7mDnzCsrKLmF4eIxFi85h6tRpvPzyK9x99wZ27KigqamFsbH9BIMHaG9fSTTaR0PDPHbufABdN5k58wp8vlpaW29jxowVLF68gWi0ly1brsO2s5x//oPMmvWPgEYOOKhpfBuJ4fIjFZUJBGx2LTAovwroSMXkXfnx6t+m//fT38T1f6NJM000jxetfIKc5ErLMZb8HZRWoAGayw3JBHa/uF+ZTAbbtslmsxiGgWEYtLS0oOs6tm2zZcsWampqikTARCLB2NgYXV1dWJbF5s2bufvuu4vI/VAoxKZNm/D5fMTj8WKmoFKKTZs2EQwGaWpqIp1Oo+s6TqeTpqYmtm/fjm3b1NbWYts2b731FrZt43QmmT17Fv/6r8+QSoV5++0hamrKWbHiHkzTTUfHOp5//g80NfmYPn069fWn0929A8tKEo8PEQg0Ypouyssn09i4gO3bN9DU1ILLFaC5uRW3uxxN08nlMiiVwzTd+ZKdDTQ3t5JMjrJx4ypCoYOYpidf5rOLhoZ5OJ0+bF2nT9OKJ6OZiMBNIS52L/Ayx7rLfYh7fRXiPNflX+/Or78PoX+nkDiE3chVxYIr3QDMR06KSYRE/iziVs9GohMARoGknaMn0sNdZ98FwNWbr+ZI+AjxTJydPTsp95RT5i7j5b0vs75zPYunLOYHbT+gMdDIyE0jPH3h00wsnciDSx7EoTsYS45xJHyE1ZtW43P6UCi6I92s2riKZDbJpLJJKBRz6+by0K6HiFtxoukoV22+ir5YH7FMjAeWPMAXT/gin49+TiKblpLsCa3iJhse8NSL2E72QyzvxqYGROC5J0A2Bu+slsguKwq7V8qy5TPh05/A9OvB9Ml6dg5G3xbn2tdIEala1QZ/dwROe1T2qbJgp6XcPD0MmbDsI35QSOQFYWs4RFAqWwbNTskOJdAs8wtRVa5Anhp+QARvLn/NVyuso40/D0wS0ri/Ud6f4cxnXqt8DNZR14udJeJE21Y+kitfOl41R8q3+3eK+E0MinsdOSR/g9B+Edmhz8V1//NV4mCv7B4X5Z4qOS7dhLnXQaJfyN+dd4h4r2/NE9IPwXEXQ/0iqQyYMFNee/078n4dXikRV1khrDvL8oTjbbz88l56eyOcfnoD3d1henoifPbZKMmkdYzQzmSy2DZs2LCYfftGWbOmjeefv5SmpgA7dnRTXe2npMSFZdns3NlDNqtwOHSuumoTyaRFc3MZhqFTU+Pj+usXMjgYY+XKdhobAzz//KWsWdOG3+/E5TLI5RQ528blcDCzbhqJTIoP+/aRs3Pouk4wHuWUBqENuw0nz7y/hTkNx4to1jRq/ZXcdv0t/H3bcnp7e7npG1dzw5e+xf1b/4VVq1Yxfepx9Pb2snHtrxh9eDvfP+cbjA6P8v2vX80l517I7697gJde+RNP/fxpTq6dys93vcSWvTv41dt/wutwc3LtVBKWQumlUsbtmCKCecKdIpjtmIjg5C4gJ9FaI3dArk9o4iBl3nYYPKfls68nQ83PwJwI2DCwCrJdkAtBxQ3jwl1lwI6AdUT2XXgdTUrDe5fLfitvw9BgTWsrH61ahcMwcBgGqWyWWTU15Gyb77S3E0mluGnRIs6bOpX1nZ08u2cPD+zcia5peB0Onr7wQqaWl2MrRU4pNnR2MrumBpdp0tLUxAM7dxJKpcgpRSSdLm6jKxzmSDjMHVu3MhiPU+33E8lkGIjFiGXk+5NOJDDWrJHv7a5dgtm+7z4RuRs2jCvKJ56Azz6DBx+Uc8W6dbLs4CBce60ozaEhWa+7W2433ST2bzotlnB5ubjWbreoW8uS7e7dK/eNjWIRP/KIbG/lSjh4EKXppNNaUd+vXy86/IwzBC5eEL4OB8WYrcZGEc+trXIdYNUqEdwLF4pbnf/pxusV8nd1tcDLR0fF7V63Tr72jzwCl10m1wS6u0XzHw1EnzcPpk7JkR4b491168imUsR6ehh+7z1ULofh8XDilVfSfP75TJg1iz1PPknvm2+SGBig6pRTOPNnP2PGqlU4S0txlZeTiUTY89RTRdFtxWKUTp1Kor8fd0UF76xdSy6VovWBBzj5O9/BcLmYd+edOMvKSA4OkhgcpHz6dDLhMO7KSnKZDInRUVRFjcREXb4avvdDcZU14PU/wLQZIvZ0DZqmQSwsgjsWzhPFlYjFQDmcfiZc9l2hWr/yvMRxWRl4/ml4d5v8T+2c3KPBOX8H0aCcj/+9uM9a8tsRGoNwEE9pNYbpAE1HNx14y+uxkhInmk0n8ZTVoekm2UwSZdtk03H697yJylnUzTiLsoYTyWaS6KaDbDpVFNTe8jrK6k+kLl/qbSWjRAYPiANeUY+VjBAf60Plsmi6QcWkOeQyybw4Fwe6tH66JM14/eiLLxThHIlgnL0UNMi9sRmVSWOcfxHarFPlw6UUxlW3ikjuOgSxqGRbN01CjY1AaAwVj+fTa0AlE6hMSr4zAKaJvuTv0GbMAadLyOE7tqE53WgeLyoRl7GtppNNpUhnMkVjpqSkhJNOOolYLFaMh81ms5xwwgls3bqVUChEMpnEtm1KSkpYuHAhkUgEj8dTjJotUMZLSkqora2lp6cHXddZuHAhnZ2dZLNZ4vE4Y2NjANi2TSwWQymFrutkMhlM02Tp0qWYpommwc6dD7BgwXUYhhOlbCKRbtrbVxIKHeTXv97Ixx/Dxo0vUVZWlo+NfYwzzpjDo4+exa5df+TFF3/A6afXcPPN1/LjH/+YnTsfoKZmNqbpoqmphd27H2HGjL9n6dKHUcrmlVeuIRLpoqxsEsuXP4nD4WXbtrtoaJhHLNZPe/tKwuEjjI3tL1ZMvpwfdxZc6zBSJv4skmSTzY9bR5C0mn8fx/W36b+Y/p8asv9Pvf13AJr9r56EEJ4USrhlKTuTEfhEIq5yvd1Cf4yElR0Jq1woqJJJgToUwBCNjY1q586dKplMqq6uLuXxeFRHR4fq7e1Vn332maqurlYffvihOnz4sNJ1XXV2dqrh4WGVSqXUnDlz1EsvvaReeOEFdc8996iRkZEimfHzzz9XsVhM9fb2qhdeeOE/kMR7e3tVJBJR3/jGN1R9nozp8/nU5MmTVH//B+rBB89Xp546U02bNlXNnXuK2rXrL3lYQ0hFIr1q+vQq9fjjj6hYbFjt27dJhULdKhLpV/H4qBoe/kylUpFj4BIFQNnAwId5OuOHau/e9iJ5sbf33TxcInQMGC2ZDKq9e9tVT8+u4vphO6falVC7N6lxmnf/UY8/VwIX+1QJkCyoBGb2jlLqMzUOQhvOL1OATHyqBFi2O7/tcH7dPqXUFUftM6yOhZwVoBSfK6XCmYT6sF9AYkOxIdUT7lGfDX+mgsmg2tWzS2jgAx+oTfs2FWnhoWRIBRNB9dnwZ6ov0qc+H/lcDceG1VBsqEj/dq91q8HooAomg2owOqge2fWI2rRvk/qg/wN1xQtXqJ5wjxqJj6i+SJ8ajA6qsnvKVPvedjUSH1GRVER9NvyZuuKFK9RHfe8qOz0mMLKRXeOQsnRYHse7lRp5Nw87G1YqOShwspF3BG4W+utR1PA+IYGngrJMOA8wS40q1btJgGXbrxAwWnpMqXREXb3yK2pic6MC1Pvb/iDLpoLq6u+uVBMbKuT1t3flSd1C+L561TfVxInN4/MKRPCjYWdWWm7Zwn0BVHYU2CwdOxaSVlh3dF+eEJ7Obys1DjBLjI7TyrMZuU9FlEqMCESsb5dSo5/+R0BZgfjdtztPAN8tELL4sDwf/FCgZ4N5WNngB0ISL2znQPs4qCzSfRQs7QNZr0AVP9CuVGxAQGejnxWBaYl4SgWDiSJU7NVX96u+vogaGorlKd9C9/7wwwGVSGSKELOPPhpQsVhKjY0lVDSaUpFIqriNV175XPX2RtR77/XlQWb96qGHdqr29r2qry+i3nmnV11xxQuqry+i+voi6pFHdqlNm/apUCipotFUEXgWCiVVLJlUewcPq++3P6wGo2MqnIyqtw68p/YOHlZdY31qKE/4HoqOqXAypvb0HzgKfNan9vQdUEfG+lQkGVPxdFKFkzEVTcXVYGRUfb/9YbV36LCKp5PHANOGomOyv8ioCidjRVBaYZmh6Jgaio6p4WhQDUXHVF+wV9nZqMDKIu3jYLMiQfwDgY31rFDqU/Lk7xG5FUnhvQIti7QrlfxQKWtQHhdAaAXieDYkJPCeKwRaZg3kqeN5erg1JOv3XJHfZkSFU0k1FIup4TxorAAee6e3Vw1Go+qRXbvUYDSqQsmkiqZS6sM81bsnHC4Svj/o7y/Sv4OJhOqLRNT7+Xnv9PaqnnBY9UciKpZOq75IpAgyG/53kLRIKnUMRC2SSqlYNKrsvj6hffX0CA1sbEzo34XX+/qECjYyIvfBoCw3OCgQswJhrEAcGxqS+4ceGqePf/CBLD88LITwDz8U6NnwsLx+NDytMA+Uam9XoZBdBJO3t8vmIxGBjV1xhRz22Ng4Pfxo4Nm/J38XgOhXXDEOPytA0d5/X95aX9/49gp/it275T4YlENub1fqk08Ehp6ORtX2m29W+/7t31Q6ElGpSESlQiEVOnhQxYeGhNodDKp0LHYMHXz7zTer+NCQSkciKhOLFSFn8cFB1fvWWyo5NqbS0ahKjIz8B/J4OhxW8cFB1dPRodJ5qNnIJ5+odCQyThjPE8jj/f0ql4gru+uAUk/dK9CxREygZf8eQJZMyOMrl8h9eGwcSBYckVt/txDAY1Gljnyu1GCPPB4bHt/+kf3j2wyOyOuxqDzu65L7v2wSAvlT96pct8DHrHSiCChLJyLKyqRUeOCAigf7hN4dHlSp2JgQxDMpZaXiKp2IqK73NqpEeFCFBw6qdCKislZaYGaJqLJScZXNpFQmET1quQMqER5SVjqhUtEx2VY6Kdu10qr7/c1q+OC7AkqzUspKRMZBYr1dRThu8Xlvl8r1dgvcLBYtAspykbAs03NEQGfJRP551/iy+/4qwLNkQpZ/4XeyvXBQ9pOIS6pNAZIWj6ncyJAA1fIwtVQyqaLRqBoeHlY7d+5Uf/jDH4rQsZGREdXT06P27t2rhoaG1J133lkElB0NKitA0D7//PMi+GxgYKA4Pi1AymKxmEokEkWA2tGvF+Bo0Wi0SBJ/4YUX8nC0uIpE+tRXvnKxqqjwKMMwVGVlmSovRz3++HIFqMmTJ6sZM45XEyeWqVNOOVmlUpF/l0zzqbr88hVq/fq7jhm/FsamqVREDQx8pJ57boXq7X1H7dz5kHruuRUqkRhTAwMfFVNwotFB9cILVxS32929S8WyGfWhbReBuFccNbZ856gxZGF8GVFKpY/SGun8mPXo1/4nTvwXQLO/Odf/DSaVzUpm9p+eQ40Oo3JZ1NgwufbnIRJCxSLjJTevtYOuoWs6lmWRTCapqalB0zRisRjt7e04HA5OPfVU3nvvPWKxGFu3bqWkpITJkydTUVHBWWedRW9vL263m0OHDtHd3c0JJ5zA4sWL+da3voVlWbS3txMOh2lqaqK3txdd11m8eDGapqFpGpFIhL1797Jz504BjDzyCG+++SY9PT289957fPzx+3R2bmDBgqW88sqzfPLJ+/zzP89GqQ8YHf2crq4OdN3Jhx8e4PLLv0wyOUpzs/Sl9Pe/SyTSUyyjcTp9OJ0lOBy+Yr/Ltm13YdsWkUg3Pl8VW7Zcm8+xnoLD4UXTdJYte5wbbhhkyZIHAY3m5hYSiVGam8/A663CsHM0KsV9wJz8/yKDACGyiGOdRHqr1yJXAbNIL8tE5GqhlV/PgTjVtyC51qVAG5IxOB8pLf9OfpsPAdOBRUg5z1rEBe9m3MWuBWw7V8yivm7LdeiaTsAVQEcnmAxy3+L7qPHWcEbzGbhNN5F0hNWbVnM4fJj9Y/uxlY3P6WMkOULWzmJoBvefdz+HvncIp+FkMDaIZVtcPvNyWptbqfHVcO+59+J1eEllU3ww8AG6rrP3qr00B5rZ3bubrJ2lvqSeh5c+TFZp2JhQOR8+vW88dxpb+qhNnzjOlfMEboYufdUlU+G0xwRY1rwCTv4BmAHpHdYMyIQEeKZJyRpVbeCuhbkPyB/7nashfpBLzjuZjvanmdjcKH3e+RLzS754Ph3btjOxuUmcayUZ7ZRO4ZIVV9Dx5utMnDhRXov2yPxcSpxrTZebnRkvAQdxTzRNbv76fOl5vp88e9S6pZPy62fHy7oNZ74EveCcK/5DufjpN0NyWMrCT79ZMqy/8KA44hUnSE91xfFQOx/cZRA+An9eLY51rFuOZfc6OPCy9JijYPFT8OVNsk4hz9qKwe6785na68T59zdKzra/Me+c90PnD8QlH3yXfMQ9qVSWjo4uamp82Lbiqqs209gYIBhM8eyze7jrrm1kMjm6u8PccMNC3G6TQ4dCdHZ2i8Ocs9m/f5SOji5OPbUOn8/BT3+6i5aWJlwuk7//+xnMn99IOJxm/fpO5s1roK8vyrXXbuGLXzyB+voSVq5sL5am53KKI0fC9A9EeHrXS5xcN5WRWJC1r/2cck8Jg7ExKr1lxVLw4VgQU9f51dt/YuuBdxiMjVHhLaW2tJKUlSGYjNATGuLDvn1kczn8Li83nfVV3Ka0VAzGxth64B2e3vUSsXSCk+umMhoP82HfPtI5ORMMx4P842nLcJtOhmNB1r/5a5RSuB0usA7k+6EboP5F8LZJHrWnRfKn7Zj0SJesgOoNkO2BwWvk+1SzXv6nA9eDe7a43ppXSsGzw9KLrbnlHk16sT3zJAdbc8u6iZ2gKalK0HxQ+1i+R/tbOLDoj8W49pVXmF1TQ7XPx+yaGobicVymyeUzZ9ITibCyvZ0DoRBTyst5cvly/E4n6zo6eHbPHtZ1dBBKpXh2zx6u27IFr8PB3fl56zs7JasauO6VV3CbJsdXVvLE8uV4DIPvt7ZyxcyZPLhkCbZSDMRivLx3L+s7O7GVImua2H6/uMmBgEDFrr5a6qVLSqTuuRAQvXOn9EPv2CHumscz3l99yy3y/M47xXW++WYBoRVs3p4esY7fflvKypubpaT82mtlH4Uw6Vdfle20tsK+fTB/Ps7RPubOVUyeLECzq66Sw+jqEud4YECc6aNatbntNtnkzp1w663jUdputxzSwoXyOJ2WVvH+fqivh2RSvpOmKea6pgm4rKJCDsmyxOBvboZJkwoGrc6pa9Yw8fzzyWUy5BIJcuk0sa4uUqOjoGm8/eMfE+/uxltfT9Xcuex56ikqZ84kOTTE7jvvxIrFiHV3s/vOOwEoO+EE0sEg2WQS0+NBMwxmfPvbNJ9/PjNWrpT+W8OgatYssskkn/7853gmTABNIzUyImXjTz2Fq7wcK5EgNTyMtuV5WPxlcLjkwHNZ6XmurodLviWl4QBf+R7c/4yUhRuO8cxr3RCX+Y+/Ecc6FobKWsmrPrRX7v9hlSx3tEOdTMDOP0tv9tFTZY38ky65ElVdh5WKS59zKkImHiKbTqBpGt5y6bOODB7ASsYwnR6y6SRWMkzfnj+TTSfwlNdhJWN4y+vQDZN0LEgyPIRmyG9BfKwPTdepnDyXkQPv4Kuox+EtBTQMpwc7myGTCBMf6wM7R+2Ms/CWNzC0rxMrEUFTjOdXd25FUwq7I/985za0yiq0snI0f4nkXzdNgpIAmmFI+2FpOXrzZFQmg77orHz1hkVu8x/QqusgEZNxaTSCvqBNQGW6Ia52OEhu04vi9IfG5LGVke+nlSHX/jy6UsRiMcbGxjj55JNZunQp2WyW7u5unE4ngUCAuro6/H4/M2bMoLGx8T/kUnd0dGDbNl6vF8uysG2bbdu20dDQQDgcJpVK4fP5ilWdAJqmkUqlcLvdpFIpLMvC5XJhGMJliUajnH322ZimSTabRtM0/u7vDL73vSTPPHMxR47s48knV/DFL65jZORzPv54N3feOYdvfCPEbbedRCYTK5Z0t7WtIRCo5/771zB58odkMlGczhLi8UG2bLmWsbH9ZDIxwuGufH/1eqZMkRxtXTcJh7tIpYJs3ryaeHyAxYs35Ld7Gx5PObamMUXTOANpP7w3Pw6NA8cBTyAVlk35+SWMw8wySP/1lfytD/u/mv5GC/9vMKl0mtyfnkXt+QD9sivRGyZKj0xDE9rU6XIijEWxt25Ba5qE1jQJK1DOaCTC1772NT755BOGh4fx+/3ous6TTz7JlClT+Kd/+ifGxsZwuVw88cQTzJw5k9dff51p06Zx1VVXMTwsgIo77riDL3/5y3IsStHV1VUsDS8vLyeTyRCPx5k4cSKjo6N0dnbS2tpKJBKhtraWZDLJtm3bWLhwIW63G5/Ph6YpMpkQ0WgfnZ3raW29DZ+vmnQ6zNjYAXy+KnbsuI8lSx48hpAYifTg81URjw/j9U5g5877OfPMOwEoKWkgHD7Etm3rWLjwRtzuMjyecl555VoWLLiO8vIpWFaCwcGPqK8/nVQqSDodo7x8MqDo7u6krm5ucX/n/N2v6HR4qELE7hGkN+X7SEl4Q/5+CvAacCZSxt2ICOD1SKlNBqGB3wRMQwS4gZSGv824cH8OKRNfg/S/9Oa3lUPKy/1AB1IePgq4sxnKMyKYW5paaGlqYX3neh5Y8gBe04tlW0XKd3ekm1p/LTt7djKlfAqLmhYBEM/E+XDwQ06rPw2v6SWSiRBOhwm4Anw48CF1JXVMKp3EweBB+mP9zG+YTzAVxOvwMhQf4p7t97CmbQ0e00M8E6c32su8hnk4dAe7endxZsNc3FYIcnHYczec/M/gmwy55DgtPBOU57587/PoLoGa+afky7ZNuU+P5mnftojT1JD0Vc9YA65KCH4gQj3eBXsfgOOvhs/uZ9IVnbz0zNPMmTNLgGnpQXBVM2n6bF564QXmzDxRBKzDV6R1T5p6HC89/wxzZs8USJptHUvxVnAMORuVp4f7xmnbVlzKxO2MlGNnYuPzi9c9jyKIhw9Ib7RnApRNlRrRXArevAZOuVpeQxung2eTcmwqK6Xa1YVPkoKRj2FsL0w6T/qrQcrT00ER+9EuqJ0nFwG0fEl5vF/KwbMpeOsmOP1WuRgQ64HDr8LAbjjnUQGeHXgZLnweak8nmislFssQDqfx+x18/PEQkyeX8cYbh/jyl0/E73fS0dFFc3OAyZPLSSQsgsEU5eUebFtx5EiIn/xkB2vWtFJbW4Kmwe7dvTQ3l9LUFODAgSDr13eyZk0btbV+cjmbvr4oPp+Te+/t4Kqr5jF1agWZTI6urhCDg3GqqryUlrrZv3+MljMasLQMDsPk4/793PDy/Xxh6ml8/5xv4DBM1r3+C06um8rCibOo9pdzZGwAv9tDictHLB2n3FuKUgpD0xlNhIikEvz6nXaunP9FPA4nKctiME8ij6bjpCyLUo+PRCZFT3ioSAX/1vwvUhuYwMf9nzO7/vjifi84sZWAw0YfXDlO/q59GqxDRxG+vZA5BNlB8C6QM8jAt0V4e1tkucqb5XOpkX+eh5zZIcgO5YW1IaJ8dG2eJl4PemC8xDz5jvRga8hndECOKdZ0iCs3v0NLUxMtTU2s7+zkttZWqn0+rt2yhdtaW+mJRFj++9+zYsYMfviFL+B3OChxuTgcDrNh+3Y2LF6M2zTp7O5mUmkpjaWlWLkcu3p7aQoEmFRezmAsxqsHDrCgsZH1nZ3csmgRx1dWklMKQ9OI5svAfQ4HQ/E4qWyWSWVlmLkcrnAYLRyWwTrASy+JcmxtFeU5bx6EQtKQnMmIEl23TgR0fb2IYaXk+21ZIqBnzpSm5SNHZNlHHxVVOnu2lJKvXw/f/z689RZs3w6PPy4CPhCQMvR160QhT51KUrkIxUx8Pq0IG9+xQyrUR0YEYPbss+NwcsuS3Y6MQF2dlHMXAOjRqFSeNzWNv40bbhBKeEE8ZzJyiGvXylusrZXS864uaQ2/4Qapcj/jDBH006ckSPR2s+fJJznxm9/EM2ECmmkS7+3ls1//mpmrV7PxwgtpPv98Zq5ejaOkhNTICIbLxZ4nnqBy5kwmLV/OyIcf0nHddVz02mskBgdJDQ8Xe6ffu/depq1Ygb+hAd3pxM5mx8nh1dV4KipIB4PseeopZnz72yQGB/HW1pIYGKDipJNw+X1o6aR8PJMJ6Y0G6NovvdEFOnhJKTz/c7j4myKW7ayI7o2/F9H9Lz8V0Xztj6XMW+VLxkcH4ZXnxtdDwe8fg/MvhYoq+O1P4avXwmAvbHlOoGe1+ZaknE3ONOj95HXC/XsprZvOhMmnMnr4fepnniOdQIVUCU0nMdaHw+PDSsY48s4fKK2bTt2Ms8im4wzv303VtHk4XAKnTYQGcHhKMBxuBj79C1XT5mE4PKhcFj0PzNVMJ5pSZNMJctkU2XQSb3kduUyKz7f9hkDNVBpOPhdtbBS7488ilismoBUo4XUNcvLQNDTTlLSbTBrN60NpGppSghLp7UZvaJKLDyhyG19EffwuxupbigRy/bIr0QJl2B1voLeeg1ZeiX3kQLGd0X59E1pdvYxfS0ohk0bZNpbDyZGenuL4MhAIEIlEaGhoQNd1Nm/ezIIFC6isrMzD0zSCwWCRDt7R0UFLSwslJSVomsZrr73G0qVLyWQyOJ3O4jqZTIbXXnuNRYsW4fP5GBgYKFLFC1NhucK0ZcsWWltbcTh0/H4PweBBOjrW0da2Br+/Ln/iLegtRSw2wLZtd9HScgugUVY2CaVyaJpJYbxZGMs2NS1i48ZV7NnzLDNmrCgCezdvvorW1lvx++sBcDi82Ha2uOzMmVdw/vkPAWCabpSyyTh9RDQdHQGW1SAmUA5JslmEjEHdgI9jpxgirJ9FTKCnGWf8/E+b/ita+N/E9X+DqeBc29vewFj6JYnhqqmHeBS7cyt669lCsAwHwTBRYyNkmybzp40b2bNnDzNmzGD58uWMjY3R2dlJW1sbZWVlZLNZTNMkGAzS0dHBokWL6O7uZurUqQCMjY1RUlLCjh07OPfcc3E4HMUelHQ6jcvlIhqNEovFaG5uRinF5s2b+fjjj5kxYwYXXHABmUyG119/nT179nDZZZdRWlrKtm3bWLLkXExTHXNCWbLkQZxOP7lcmk2bVrN378tcc80RUqkxDhx4ld7e3cyb9z0SiWGam1uIx4fJZGKUlU0inY7idpcW/2bd3Z0EAs2Ul08inY4Qjw/R0bGO8867n3h8iB077mPx4vUYhotcLsNrr93E/Pnfo7R0Eq++ej0NDfOYcepKoob0XvqQPuhXgHOBqvzzOuSKoAGMIQL4VoT63YII7JuB7cBURCyvQ0BnPYhQHkF6YG5GHOmXEMG+AIFOZIGd+XmTkVP4EHLibM4k0LIJbNvm+lev53cf/47BGwbpj/WzoXMD95xzDx6HB1M3GY4PM8E3ARQcDB7k3s57ua31Nio9ldz6xq08svQRqXiwLUzdJGfn+N4r3+Oh8x9iZ8/OYkTX91u/T72/nrf73qbKV8VwfJiW5haG48OUuct4p+8d5tTOwevwYmDjs1NCjzf9yAgjCyM7wdMo1G7dKQLPzkJ6SFxpAPT88+q8M2zKugUBMbwdOi6Bpovh1EdEgI/uFmHubcpHEMGkkxbw0u+fYs6cmQJWSw+Dq4pJx8/ipRdfZM7kgPRG25ZEcfkbmHT8ybz0wnPMmT1LHFp/Q54YXhDU+QQApY51rwsgM02TFzSkdy/SJUIVjhLkCBzN4ZOBSmG5QPN4vFcuk4etJeU13SF/B+y8wE6LYHaVidCO9wngzBUQRwdbjjuXEhq4t5riAKCvE3wNUJb/VIUPwNsb4IwNAl8r/Hb0bReAmq9OLhLE+kRw+xvhnQ3Ezvg5e/eOsn59JzffvIjjjqvAthWHD4e5++4Obr55EfX1JZSWuti/P0h3d5iGhgAPPbSTBx5YglJw6FCQsjI35eUeLCtHJpPj44+HWLCgkVWrNhZjuG68cSEVFR4mTPBimhrZrCIet7j55te46aZFeL0OEgkLr9dBVZWXI0fCNDT7GLFG+cWuP3Ll/C8yFBujpqQCt+miwhsgaaUZjgX51dt/4lvzv8gEfxmjsTAuh4MyTwCUYiwZocIr55dIMkI0k6IuMAGnYfJh3z4CLj9jyQgn107FZThI5TK4DSfpnMR6lXtKCCajnFw7laydY+/QYaZXT2I4FiSaCjGvaRqanY+H0n3yGRq8DiquEvc5uRscddKPrfkENJbrk8cja8WF9p0nBPHEdjArxbH2tuSfV8HYfSK4rW7ppy5ZITA0bHGoR9dB5a1g1ELqPXDPFVL46DqSE57i82CCWr+fsVSKVw8cYHdvL2va2jjpZz9jxYwZPLJ0KVdt3sztbW1MKisjmslQGH+Yus5gLEZ3JML8xkY8hsGBUIj1edHtdcj3yVYKXdNYvWkTv/v4Y9ovu4ym0lLu2raNB5csYSgeZ0NnJ/eeey5ehwOnrnMwFGKy04n/4EERuzffLM3KIHbwhg1yK8Rubd8ujrbHA8cfL2r2pz8VJXrXXSKGe3pkG16vqNSqKiGLGYbYxKOjQiSrrhYsd0WFLBcIjEd5dXRAZaUs29ZGVPmIRDQGB8eTwkxTeqxtWwTuXXeJQz1tmuxm1y65PuB0wtiYbM6Xvz5X6NHu6JDDGx6GM8+UvurCW3Y6JU1s926BplVVick+b54Y8vX1sp/du+Hs1jjv/ugHxRiumatX45kwgeH33y9Ga713zz2cdOWVDL/3HqMff8ypa9agGwYqlyObTPLB/fdz4je+QWJwkKpTTmH4/fdxV1Tw6a9+xYyVK/HW1UFe4GimiRWL8dFDDzHre98rOtvJ0VGsSITU6ChVc+eiGwZ2LkcmFMSn2WiV1ceK24oJMDo07jIXYrY++xDmLJQkFY8X0ikBkRmGUMY3PQNfuw5G+gVMNvkEOTe+s00eb3lOhHr5BHGrp540fvHlXx4WF/v0M+Br18o+kglylVVkUlGG9++iatp8rGQUT2k12UwCKxn7D9Fcqcgw3vJa+j75M1XT5uP0BOj75A08ZbWU1h0PQDI8jLeshpyVRmHz+V9+JUL8pC+gGQ6sRBjdcGA4XSSCIsIdLvlNUfmKmWR4GIfbi+H0YhpOtFwOpWkQCqIiIfSGiWCaqHS+5CGTkWoA00TLv2e7pwutpg7NNLG7D6P5A1ASkO/tlj+iL/m7/O+ghmY6UPEYpJKoeBR94lRUcEREfes5UFoGwVEhlwdKsTv/gr54GbbTTSaXpaenl4aGBlKpFKlUing8XnSed+7cydKlS9F1nVwuRzabRdM0TNMkHo/jcrnyX/0BfD7fMUK8p6eHqqoqXC4XSqni8rlcjng8XjSGSktLCQaDxed+v5/77ruvyBkyjCxdXR34fFVUVk7Hti2SySCpVJAdO+6jrW0NZWVTyeVSRSp4JNJDLNafp3x7CAYP0NGxjtbW24rA3Y6OdbS03ILfX4fLFcC2rfw4N47fX4PTGSCTiRRNKTGfholEumlsnI+mGSQMJzmnj+78+LNgBtUi5k4H0IwYRgXHujAVnOu7kD7sf79MJn9z/ifr/neb/hbF9T9g0kwTrbIa48IVYJhodY1ouo6KxzHOXQ7+gFzJNR1oJaVCfEwmaG1tZcaMGbS1taGUory8nOXLl+P1etm8eTO2baOUKpbTdHZ2MmXKFFwuFy6Xi4aGBnbs2MGCBQswDIPu7u6iS12gLFZWVlJXV8emTZsIh8Oce+65xX3mcjmGhoZoa2vjsssuo7m5mXA4zN69e4EcPT07Wbz4Plav/pQlSx7Mn3AOkkwGaWsTAngs1s9bb63lxBMvZunShykvn0Qg0ER7+3fIZhNUVBxHNpvCMBxYltDCJSNwIWVlTaTTERwOLx0d69iz51kymSjbt99DQ8M8otEBenp2ousm5557L6WlkzBNF8uWPcbJJ1+GrekM5oFm+4FK4KsIXTGNELwPIwK4EDykI671eUhM1xlI+c1X84/diOjekN9ODBHWzyInQi8irOuBVcABBKJWx3ikQkd+/9OyGfqC+1m9aTUDsQEeXvown63+DK/Di8f0cO+59+I23ezu3Y2tbMrcZWzv2k53uJsSVwk3LLyBnkgP8Uyc6xZch0IRzUTZ3bsbK2fhMBw8vPRh3Iab1uZWfn7Xz9l23TZOqTuF/X/dT1OgiZ/u+ikv3v8is6fP5vgJx/O1x7/GzOqZDMWH6Ojq4NCBQ7R8YSnHzziV0xeewZ4P35GybXedUMHRYLhT4GVaXjUnumFkl7jZjhK5H9mRh5hl8oCyjJSbL/1YhHWiW4R15Tzw1Mjzd68VIQ2SmT32noDSop9DoouiyPQ3ymg11ivOcS4j8+w86drpz4taROiqvEudy+Rd6pwcW+hAnk6uRBypnEReAZROlNeKwjo/31mSj8Y6IPelk/MXGvK11nq+NFzZEO2WyK3wQYGQhQ4K2Mzho5hHDVI+r5SsmwrKcm+sFhhZ+JA4z6EDUg4eaM6XxSsRzXUL5XnoIPRuk3L1+hYonSLr27aI9/Rz3BcAAQAASURBVMYzwHTB3OuwcznWr+/k2Wf3sH59Z378qfGTn3TS0tKE3+/E63VgWTa1tT5mz66hvz/K+vWLSSSy7NzZw+TJ5Xg8Dq6/fguWZePzOWltbebQoSA337yIK66YyYMPLmHKlHIqKz0kkxbhcIbOzm4cDp177z2X6moftbV+BgZi1Nb684OpCKmMxXAsWKR+z6k/noZANZXeUv46eACf043X6ebrp1+I0zBxm05GEkE8DjeZrEU6Z/HkjhfpjwyLkPYE0DW9GL01u/54xpIRyj0lbHjzN8StFKZu8l7vZzgNB9X+Cn7zzkaq/eVE03Fi6QTXv3w/Ghq/evtPnFBVj6byrFY7LCXbKgE198uFlMGrRBxb/QIv0zQYuk1EsNkgJeLeFgGd2XHJuR67T+K1cEh5uR7Il5evFyFeoIln+6QsvEgLv0cgZ2YVpD4AswlqHsHGoKm0lP5YjDu2bqWlqYkNixdT5nazYsYM/rmtDa/DIWXcpkkskylGat3y+uscCYfpjkSo8vlYvWkTB0IhusNh5jU00BeN0tHVxaFQiFUbN3IkHOaxZcv4/KqraGlupjsc5uW9ewmn06zr6GBeQwMDsRirNm5kfyhEVzhMxrL+I2K7UDtdAJblwWIsWiTCuqpKhPWtt4qIrqoSitjAgDjTdXUinidOlNeuukpKyx0OUaWNjQI/SyTgu9+V79y+fbKfQ4eEJn7ffbJsNIrK2USjIqyPBpnH43JYXq841pMmiT4fHZXYruZmYaiNjMjh9PXBNdfIrkzzWPjZ0Yy2wnIXXwwPPyzOtWkeCzc7ckTo4/Pnw9CIyYyVK2k+/3xOuvJKnCUloGlUzpqFv7ERh9fLqbfeiruykuCnnzLnxhsFrJVIMPLhh+gOB9O/+lU+/eUvqZo7l2w6TeWsWXz6q18VwWa6YZDLZEiOjGBFBbJ13OWXkwoG2f3DH2LFYuSSSfb+9reUn3gimq5jxeMopfCUlqKNDcpFyC3PiZB+/Q9SHl5RJeXfC84WyJnHB6e2QSQEw33iSpdWyHkul5Plv369nOsqaqCsEv7tCZk3/yyIjMGe96RsHGDSdBgZgN8+BMP9cMmV4zFdaFJm/vJvIZfF4QlQffwiHO4SPGU1aLopZeAuD8P7dxHu38vIwbexcxm85XVoukHDrMU4PQGUnaP2xDPwljcw8OlboMBbXkciNIBtZzGdPkrrplM1bR666UQDHG4/tm2RCA7gLavF4fKJgxkP0f/XrWTTCXyV9Ti8Zei6xDTlNr4Ao8NFAnhuyx9RmTSaywOJOGpsBC3fU5B7tR2VSaM3TURzuiCbRaupR8WjkEqimSbG8kvkw4US+nj7c2ClUXERz6BQkTD6wjNR0TCabqCVlKJPnAL+APqCM6QcY+MLmIZZzLH2er243W5qampIJpOUlJSwdOnSoqv8yiuvkEgkME1Tfsr9fpxOZ5EoXllZiW3bxONxstksjY2NaJpWBKZZllXMxu7s7CyWlSuljnluGEZxXOtwONA0k0CgkR077iOTiZHLZXC7y4jHh1m48AbC4W4ymQi5POzU4fDgcgVoaJhHb+9uQqFDRCI9xVgtgLKySVx44dOUlDRimh7Gxvbnx7lJKiqOAyAa7eGNN24D4IILfobT6Sca7cXnq2LTptWEw10kg4dxKXUMvGxCfjyqI4DdaYg4zuTHoAkEeJYDTkAc6/9MWP+tZHx8+pu4/m80qdConLQSMaEulgTIvd4ufdeWJSU3SmHv7EB5vDgcjiLhMJvNouvycejv76ehoQGlFJZlsWTJEi6//HIuuOACAoFA8WSjaRqLFy8uluNIObf0U/v9fjZu3Mjo6GgBQkdHRwdOp7Mo4AcGBmhoaKC8vJzS0tJiTMKqVatwOl3U1s5B13Xc7op8xp9JZ+cGHn98FqbppblZyN4LF15f7JPWdQcOh5e9e19m27Z1gCIa7WPLlmuL8QXbt9+DpsGRI9uIRvsBiesqxBksW/Y4c+Z8HZcrgM9XzebNV6FpOrFYH+3tKwkGD5FKhUF3FIVvP1Jasw/4LuIcn4xc4XMjPSx35JfzI0J4A3A5oskyiCDWgcuARxCxXoNEc12B9GM7kJOfCxHhP0Fccn9+PxbidrsBK5ehJ9zNDQtvwOPw0BPp4Qdbf8CB4AE+H/uckcQIu3p3MbN6Jt3hbnb17mJewzxqS2rxO/2UukppaWqhtqSWqeVT0dDwO/20NrcSToU5FDzEqo2r2B/cT2d3Jxd96SJeeeMVGpoasLFpCDRw/cLrWXjeQn702x/R1NzEP876R5yGk2pfNQsbF3LNVdex8ltfZ98nu7jlS36+/u2r4ITrwdckf5nR94UebnoBE9w1EqlVPlMo4WPv5XOp62HsXekB1h1yP/auiFndFBJ3+Wx47zpIDoqLe+INkOiVL4+7CqpawfDnBXid/Dfs1HgfdWASeKqllBtt3DX2VI9HaOkOcYKdfhGeaON90c6SvItdcK0NEaWaAZm4zCvEdhXmo0m5dmCiHDMqTxDPC/9cRsrLDYeI6IYzRAR7quT5Fx6Q+1RQHPbOH0jJd+82KfV2eCVuq75FjtvhgzN+IpnXhkP2kxgWB7xuIZz0FYnuKp0EjWeKYLficuvtENfHVyuZ3Z13gG7i0DLcdlsrK1bMYM2aNiwrh65rbNiwmJaWJn7wg60cORJieDiOw2FQWupmzpxabr75NTwek9NOq2d0NIHbbfLgg+cDcPXVmzl0KERjY4CpU8t5/PFlOBxC/85mbd59tx+lFLW1fq66ajMjIwnee6+ffftGmTWrhlgsw8qV7TQ1BSgt8RwlcCtQCt7r/YxMzuLk2uPoCQ/xs+3PYeoGhm6QtW1m109nNBFm/Zu/ZiQW4iunXoDTcHBcVTO2shk6KqLLVopTGqbjc3r4yqkXMBILsfa1p6nyV2Aru0gI//muP1Li8lPpLeXf/vEenKaDb8//EprmQmluIYFnDkkJuF4iwnp0g4jesftEFBeqCWruh9woJDrzgtsn4tmOHBurhS3l5SN3gLdVIrY0p5Sdm1Pyn31THOzJn8q9WZ/v0z4dBr8HkWfJKR0rl8NlmpzR3MxQPI7X4cDvdPLUhRfSVFpKJJ3mqk2biGUyuE2TgViMnFI8vHQpTYEAbc3N/HTXLp7ds4e7tm1jXkNDkSxe5fMV+6/v2raNhGURtyy+095OYyDA85deSonTyYNLlnDFzJnFnut1+e0kANXUJPbt/PkigHfuFBf6vPPg7rsFn93bK8rVn79I8eST4l4Xsq6Hh0V8+3xSW716tSjf7u7xTOuBARFhNTUiwv1+ifoKBERsv/yyWNCh0DiOW9dx2GlKSxXz5slubrhBDPJUSoRwTQ0cPgydnSJ6C7nUIG5zc7OYpk1NYtAPDclbOZr6ncuNv+UHHoDrrxfRblmyH4dDtpHNytupqhLB7nZDZXkWX3098+68k5KJE1FKYVsWox99RLS3VwqGDINsOs2p+eyw5PAwhtNJ2fTpqFyOkokTOXXNGrKpFKF9+6THOi/YZ3z726BpJIeG+PjRR0mOiIDzNzTw1zxZ3IrH2fPkk0yYMwfD5SKXTjP2178SHxgAhxM1+QQ4+BksXSHi9pJvwegAPPe0/KGuWA1VdUIUdzgk33raySLIc/nmc5ALj0N98JuHJFprQh186euyXiQEzdNgzUNQXgXPPA7ZDATKhEi+5XnpJf7qNTChRj4TkTE472K0WASUQtlZcpkk2XScvk9ex+HxY5hu6k76Ased+Q3qTjwTw3SRs9KkYyEyiTC9H7+GlY6h6Qajh96lcvJcNF0nEezHHajCdHrQdI3q4xdiODxkEiH6PnkDpWycngDuQBX9f92KlZbfmtFD7+aztr353yRA01FoGEu/BG4PekMzKhHHOP/v8qXgGVQ0IoJ74wsQDaPPkxYyZdvjfBJdk35slwuVyFfc5In69s5taM150dw0CRWNgm1LhGw8ht44EZVJk3utHTU6AoaBVl4hGdpNkyQmMRzmlVdeIZvNFsedBUMnm82yadMmotFocdwJsHnzZpRSBINBurq6io+7u7txu935Q8zhcDjYuXPnMUL6aKp4W1sbmqYd81zXdZYvX47f78e2bQpl3hde+BSapqNpJqbpKQpuSbLxkEgMs2XLtYRCh3A6fWzefBU+XxXhcJdUR+ZjtYLBQ3R1dZDLpXE4CuPsnvw49y5yuRT9/e/hcPg455x1AGza9F2CwYM0NbWwa9dP81nZkp6TRKojVyBthpPzY85DSFrN58h4tiCWP0dMm32IwP73fdix/NizINj/Ft31N3H932fK5cZBFNu3iojuGAdTkEqCZaGsNPqSC0HXi3FalmXhdDoJhUJ0dXXR0NDArFmziMVibNmyhXg8XowoKJyYXC4XyWQS0zSLzvaOHTswDIOJEydSUlLCueeeSzweJ51OM2XKFNra2iiU86fTacbGxujr6yOXy7Ft2zb27NlDJBIhm82Szdo4nX6UUkQi3cVIrMWLNzB9+kV4POV0dW3nnHPuwe+vI5tNYVlxNm++mmw2waWXPk9Lyy0oZRchZuPgh9vo6tpezLtOpSI4HD6WLXsM287S3d3J6Oh+nE4fbncZCxfegKYZ7N79MxYtupnS0ia83gnkMnFuQ4RvK3KyCQA3IiXdJnLi0pDelRbk6qCNlGz7kXLxAuQshJSQX4UAynyIOz2EnPiOz697CIGYXQw8ilxJnICA1MLIl7oGsHWDxkAj9+24j0Q2QVe4i2f3PMuGzg3MrplNta+a1uZWnIaT3mgvVb4qrtp8Ff2xfmxlczB4kGQ2ScJKYOgGiWyC1ZtWczB4kCpfFR6Hh5f3vsy6jnWcXH0yjTMb6aYbTdPoDnWzs2cnzYFmLlpyESdNPYmx5BgTvBNwGA5imRhDA7288867fGXJFNBdXPyd++nu7Wf/oV54+7viIFfNh/ghidyKH5TBvrsKHKVyc1eLyE70QNlMiHwuuda5tIhkwy2RXmPvSXb19Otk2VwCPn9MBDUKsgmIHRGI2uhu2WZmVP5DBXEM4hwXsrdNT96dRvbn8OWd65xoX1eAYq+1s0QEb7QHCrndBUc7E5H5ys7Heanx7WiIAI505/d7VIxXQbgbbumH7rwDpn0RSuqlVNuKS+xW6AB4KqXku74F3tkgfdtvr4d0WPqoG1pFgHurZX8qK8eSTcn7Gnw7D7Iy8q51h2z3zWvEJXcGpEe7f5c459EugZ7tXoeFm56eCNdfv4Du7jAOh5F3HRwEAi4eeWQpkyeXM2GCj9HRBNFoGq/XwU9/uhSAcDhFImFx9dWbicUyeL0OrrtuAevXb2d0NEkymeXQoRC7dvWg6xAMpqiu9uFw6Nxzz3aefXYP69Z1UF3tpbTUVXTKv//9FqqqfKCrY8SwpsHxVc088JffSba7bnJq4wl4HS7KvQEyWQtb2fzm7Xa2HngHn8tNXWACPeEhwsnYv3OjKzA0g77IMI91Po+hG4wkQsXMa4Ar53+RJdMX8q35X8RhGPTmlx2IjNBQVo1RuKhi9YOjVqKzrH0CMKt5ZFz0YkL2ECQ65Ixi1kr/tXUwL55bpGy8AD2rvE3OKAWxbfVLJNfAStk+Nmh++ZzlhvIRX8Py3LtIvhuVN4NjEqbGuGvd3Myc2lpWtrdzMBgkmk7T0dWFqetct2AB/bEYXeEwa996q/jz9V5/P13hMI8sXcpnq1fzxLJluAyDppISHr3gAsrdbta0trJixgxuaWkhlc0eA0Kb39jIYDzOYDzOdzdtKgruW1pa8JgmVU4nWnf3uCV88OC461xXJ43NL74o5eDf/a7Yx7ouYiuTkf7q6moRyocOicJ1OiUDe/16sYIvvVQccMPIZ9Qjy1dUiM2cSokwf/FFUbhlZeMEMqeTXDpHIqHh9Yr+Hx4WoVxRIauBiOl580Tb33ST6HXbhnvvhQkTxpO/kkkxxg0D7r8fPv1UxHRXlzjfjY3iUDc3y1vp6REBHYmIQSi/0XDjjfJ2s1lwug3ivb3svvNOYt3dmD4f7917L3/57ndJ9PUR7+nhnbvuIpenpRVEci6dJh0M8u499xA9coRcOk14716q5sxBg2JudklzMyqX49Nf/ILeN9+Ufm2nE93pZO6tt/Klt97CU1XF3Ftvpem880j09/POXXfhrqjAdLmIdHeTzSlU+QQIjUocl9MlJd1f+rpceHrmCUjG5TOctaS0eahPBPLYMHz+ifRVa9o44GxsSF7rPSSP//gbcaJLy2WZydPl+TOPS2n4JVeO//+1PIOjvApefQE9LbArh7cM0+XFSsaIDB5geP9uDJeXbCbB0L5OslYK3XSiGyZOTwnD+3cXQWeaplM342w0Xadvz59xByaQyyTp/+tWMokwuiHrDe/fjae8Ti6C5LLoppPKyadiJWPoukHdyedQVjedZHgY28qgFVz70Ci5zX8AK4MyHWi19ahQUEq9NQ29eQr2ro5x6FlZhVyMyGZRmTQqnZLIM00XJ9vpJLfpDxCLgs+Pfu4FaCfMgEgYu/swer30Z6tYNO94x0DZaE2TRVDbCrv7MDhdqHz8l2maxVbEgtFTXV1dFNBnn302sVisOO5MJBLFmFmfz1d0qAOBAI2Njdi2jW3bvPrqq1iWxdKlS7n88stZsmQJAE6nk8rKSpYvX47P50PX9eLz0tJScrkctm3nHfIcmUyYWKyfTCaOrhuYpgvbtooVkh0d69A0jW3b7ioCdlOpEHv2PMuOHffR0DCfVCrE0qUPYxjOIni3t/dtMpkIsVg/dXVzWbXqY5YufQTDcBIINPHGG7ficHiLY96OjnVAjsWLJYZ269Y7sHSduKYxBXgSaUfMN7HRz7g4zuTvn0VaFSfk7492pI92qw8ghtEK/hbdBX8T1/+/nVQ2i0qnUXmaIYaBvuTvMFbfgr70iygrg956NtqMOQKmcHtkMJCRExFWho6ODvbu3UskEkEphWma+Hw+Nm/eTCgUIhaLFa/eFQiKkUikuEzB7V6yZAmrV69myZIlxZ7rSCTC8PAwjY2NBAIBSkpK8Hg8+Hw+QqEQW7dupampiebmZjRN47zzzmPmzJnFvploNCGlS5noMYRvw3AWs/1KS5vzZS8FZ3qABQuux+erpbm5lbKySSQSo0dRGG8nEGggHO7huecuKZ7Ehof34PNVEQweZPPm1UXRDZDNJtix4z5isX6WLLkPXTfYuHEV4fBhyCaoVjaPIGJ4J1AOlCGl3n6kdyU/VuFi5ORjIrCybH7eTYiArmG8LHw9IpRbkJOUgVw9TCFO9UOIzOrk2CuEdwAD+XnOfM71DQtvoCfcw7yGeayYsYINizcwlhzjvf73yOQyeBweWptbmVo+lfsW30dvpJdoOsrM6pkMxge5dsu17Bvdh1KKhY0L6Yn0YNkWfqefT1Z9wlMXPkWZu4waXw2za2ZjK5uR5AhVviqu3XItOTvHcRXHUeGpKJah+51+IkNj1NVWY9YshNHdaIaL5olT6BpKwdz7RDyjRAwPvAqG96jSb1vKux0VMPiGCGkrKgTxqlbpr86lZBnDI/NHd0vJdXUb6G6+87SicfJ0enp6WfLlbzLttAvBCvGd256mcfpCeoYSLFn+JaZNPykviuE7//RPNE6aKussu5BpM+cdJaQpLld0stHyTne+pL0s71QXb3qeAp6/cOAsETFemJ+OyPZKJ8p9JjJedq5y+bLw/H5PvUG29fYGEfK714nATQyKSM6EJaP6jA1S3n76reMwM2dABLjKjYv45IiUlScGJc/6jdVynPFeqJotZd/1LdLHHTkkQt5TJc8bz4TvjsA5j6NpGnPm1FJW5mbRIoHCRCLyqS0vd7N7dy+HDgXZvr0Lr9fJ8HCySPXu7OwmHrfo7Y1y3XULcDoNRkYSTJxYysMPLyWZtHA6Ddxuk+pqH6tXbyYetxgaEhe84JjfdlsbEyeW4/M5iUTSpNNZJk4swzR1DF3nhOpJ+JweTqiehGVncRoOrmr9e3rDInTPmnY6LoeLruAA69/8NX3hEW495xts+tbDeBxuHvjL7zi+qplKbykoxa/zRPGh2BhZlWUwKqTwn+96iZNrp7Jk+kK+evpyrFyWodgY/3jaMgZjYyil+OXul9mydwdP73qJdDbDJ/2fSjm3Z76UZUeflfJtTZfe6sKkOcCcDO5TpEe60AZQJIo/AOTAqJaca6NaCOAFV9rbJtstbB8lrreyjhLg3SLWC9nYjqngbcVSWlHs3n0U9XtdRwemrlPl83HV5s2Yuk5Lc3OxfLs/GqWzu5t5DQ1U+/10RyL8YOtWusJhBuNxktkswWSSVDbL1IoKHl+2jBqfDyuX49GlS2m/7DJub2sjnc0eQxff0NnJGRMnMrW8HIU4K2r+fOmdPuMMUZVTpkjN9erVYvO2toqD/eyz4/TwAwek3nrhQhHiVVVSMj5vnjQiOxzjzcsOh6zn9cLnn0vN9ZEjIqx9PtlOLAZtbVLHbZoCQOvrA4cDo8SD16vYv18OqapKDPFkUirJo1ERzGNjMm/KFNHuq1fLpt97T5YdHhb4WcHVLsDQRkakJ7ujY1yAX3utbKu/X3SVYYjxfu21sn4hL9swgFx2PJv6qacgl2PODTdw5s9+RtXcuSQGBuh9800+/cUvQClMj4fq004TkrTDQdUpp7D3N7/BikapnDWLWE8Pu3/4QxJ9fSgg0tXFyAcfMGPlSlofeABvTQ3vrF2Lnc1iulyobJb37rlHhjsuF4nBQdnfr36Fu6KCPU88QaKvFy1QLu70229J1U95leRTh4Nw9oVyf2BP/tzsltLxAvHbXyr3ypZ+6tPPkP7qTc9IP/amf4MPdooTbSspNT/9TBHp02bIttweMTNCYwJVU0rKx8+7RJxvTQM7R3ysF4fHT/PcC6maNl++qrqJt7yekQNvk46NAZCz0lRNm8dxbV/FW15LfKwXKxUtCnNNN9CMwnrvSIa2blB/8tmUNc5A1w3srAV2Dqe3FG95HXbOQuUsEqEhvBX16IZJItiPoemocAh94RfA4URTttyXCQXc7utGhUbRFy+XsWXbueIsOxxoeS4CmiZ4ETuHisnoR19whvRn6waay4NmOqC0VLKx+7ryZeWT0Zzy99EME23W3Dxp/EU0nx/N6SKXd5u3bt1KIpEgk8kUDSDDMGhoaCAWi/H6668TCAQIBAKUlZXh8/koKysr8oAKTnchycYwDEzTZMmSJTgcDnp6eqitrSWRSNDe3k4wGMSyLCzLQuWJ5YVebsuyCIVCbNq0iWAwiKbZRKN9bN16B9FoH4bhor19JdlskpaWW4tjUaUUixbdXCSEu91lxXmm6cKykqRSYXTdQUPDPHbsuI/q6pnFbcfjQ3i9E0gmR8lkYkSjvXz88e/o7u6krW3NUfvRjhHcmfgIlUpxEHGj9yMmzhEEZrYCqZJUiDm0AnG5R/L3R4vmowX4XYgh9J+VjP9PnP4GNPv/4XQ0wExvO0cAHnDMayoShuAo+omz5IpfOoX9+kb0RWdCSSk5XWcsEiUcDhcpim1tbUQiEcbGxpg6dSp+v59NmzbR0tKC1+stlotv3ry5CEI7//zzicVixfXLysqIRqNF2Nn27dtZtGhRkURumibt7e3s2bOHyy+/nNra2iL8zFE4OQObNm3inHPOxOk0sG2L3t7dlJY2Ewg0YdsZYrHBPF3Rpr19JXv2PMtll7VTVzc3L8pj+Hzyd9F1B8lkEIfDhWG4sKw4r712My0tN1NaOhFN04/ZzowZK4pXA49+bfnyJ2lvX8mBA69y4MCFbNmyla6ubt56/31mzpmDDbz9+ef889e+xujICKWlpfzsV79i+owZDAMfbNrEXbffjm3bWNksq2+6ia987WuY+fdsIzTwSqSH2o241IMIvMxABok3A9chvddJRKw7EI1VBzyPiHuPlSQ5+jndkW7mN8zHYTiwcpbEaMUHKXOXEUqFKHeXY+gGV2++mhsX3UiNrwaP6SGZTXLtlmt5ds+zXDHzCu477z5cpouEleDm127mxkU3Mql0EnErzmBskMH4IC1NLZw8/WSeee4ZTjj5BBQKXdNJZVOcNuM0fvmvv+S0uafRHemm99NDXLfyWvb+cr6UaDsqmHf2pdzz49s5+5yzQWnSC+0sk79OckjKxW0Lxt6GstniNNuZfJ9yvq+40OdcgIpZMfjgJpj+PXCUi2ud6AFvo0R/nXijUMbd1TIQGtkB3jopP/c1S8m2I186VyB8a+Rd6zxoLdYrpduoPFAsL6btjGyzAPjKpaX82nAeBT5TFIngBTo45PeVZ3FmouP7VVJ2Ri4NsX6J9somYWAXlDSJKz30vuxv9zpY/CSE9otTffrNUvKdDsn2ot3iMhco4B23QcvafP+0JZFdySEonQr/cgpc9KK43IXyP2XLe+jdBu5KiQNrPFNc7Xc2wBkbSOgV7N8fxONxUF7uZteuXhobA1RX+7j22i3ccMNChofjTJggBO+1a99i3rwGzjtvapEuvmhRE4mExQcfDFBXV8Ldd3ewZk0blZUebrnldTZsWIzLZQjjLWfjdptI6q9CKQ1NE2BNOp3FsmwGBmJFwviU4wMkrCS6puN2ONHQSOUyOHSTcDLKxb++iX/7RxnUP9b5PFv27uCRL99Cjb+Cp3e9xNdPv7B43vrV23/iyvlfpMIb4LOhw9T4KxiMjXFy7VT5LqDjNB1k7SyhZIwyTwnpbIYH/vI7vnr6cmr8FQzHgjy96yW+teBLDEZHaQr4mJT+kVDBc2NgdUkJuOYRh3n03ryDfLx8lqzP8xTx+48Ckd0sPdgoSH0oJeADK8Fzhjy2evJxXE7I9ksPth4Aay9oJWCUQ3KXLDO4epxaXvMoaC7iWSf7g0HWdXRwW2srlV4vHw4MML+xEZdh8E8bN/K7jz9mxYwZPLV8OYdCIVymyYGxMap8Pu7bsYM1bW10h8Ms//3vab/sMhoCAe7u6OD7ra30R6MsamoiZ9s4DAMNyMo/GEPXsZXC1DQOhEJFuNlwIsFd27axpq2NWr+fKkDLZETUplIijhsb4S9/EYjZk0+KGL7rLhG9I1KSSiIh1u78+SKsDxyQZW68Udzn6mqxj3fvhlNPFTF98CCcdJIsX6i7tqzx3Ktrrx0Hox04AGedRaxqMgndz9iYJHXt3i2G+q5dsHy5mOKWlQ8jUMJlu+46OfTt26XEu7RUhPTLL8Pzz4+D0C+5BC66SK4tHDkiPdg33zy+7iOPyLUBpSTuq0Al/+lP5a319cGE0jSB7CEhda9ciel2454wgVhPD3uefLJI7y4/6SQ5fUWjuCsrSQwOsueJJzjxm9/E39QkTTGGwfAHH1A2dSqaYWB6vbz9ox/R/dprtD70ENVz55IYHCSbSuGpqsKKxXBXVKByOWzLOgaM5qurw9fQQKy3F6fHjbeyEi2TEkCZv1TI3x/shH9aIyXgOUuc7QI53B+A7gMw5QSIx2S9CTXSh23nL2AO94trXV4lQrmiWp5PnSHfqWhYBLZC/t+DfRAeFWHudIlbfhTQzEpG8ZbVkrPSmC4PaDqZRLgIM3O4fSTDQ3hKq9F0g1wmhW1n8/NPxTDdmC6J6hp//XSc3lI0DXJZi3R0GE9ZLblMGtu2sJKxPDwtWdw/ukEmHmLk4NtUTZuHy10KYyOoSFjKtCPhcar3oi+ArwQ11I/eOBFsG4WSiwzxmCxz3oWQSEjfdG29lD+43GgOJ3bXQbTaBkjE85Tws2X7NfWgaxCN5AG850ivd2mZOOCpJLg9aD4/GVux8ZVXaGhoKI5RR0dHicfjNDU1EY/H2bp1a3F82ZgHF+ZyOQzDIBwOF+niAJqmoZQqxmsVwL0+nw/DMHjllVeKY92C8AapvHzjjTdoaWnB5/Mds9zy5YuPGTcuWfIgf/3rc0yduoSSknqy2RSm6SUa7cGy4vj9dTgcXuLxYXy+CWiayebNVzN//tWUl0/NJ99UEg534fNVs2XLtcXxbiDQSEfHOhYtupmKiml0dXXQ2DgfXXeQy1mAIhQ6QllZc5FOvuRLvyNlmFwF3ADcxzj9+8n8ODINfIC0GOoI68dChLV7XIr8l4Cz/87T//G0cE3TzkeqXJ1I3/x3lFIf/j+t8z9eXB8VvaXNmCMgMyhGGah4DL2hmdzmP4hr7Q+g+nuwf/9zudp4wcVYuo6VzWIYBhs3bmTv3r1ceumlNDc3k8lkGBwcpKGhAcMwsG0bXdeLRMVQKMS2bdtobW2lrKysKJYLJyCg2IddeP3MM88EwO12E4/H6ejoKBLKC3RHkJNg4TNpWUksazDffzIfw3Bg21l03YGmScyDZSWIxfrp6FjHBRc8im3bR1EX55NKBclmU/j9tcRifWzbNk5fBA2lcmQyMQYHP6KkpJ7Ozg0sXrwh39eik80m6e3dTSDQRHn5ZILBgzgcXt56axvlVS6u+MoaZr/0Er+bMwcDuODss7nkq19l+te/zp7nn+fX997Lb99+mwGluKyykj9u3cqsWbPoOXyY0044gR3DwzSVlGAAVyMudg8wFzmZfYzAy+5hnBY+gFwhbMwvoyMi2404236E/uhNx0jF+ilzl0nkVmkTE0snYmgGqVyKYDJIwkqwrmMdt7XeRkdXB5PKJrGgcQFOQ7J5LdtiV88u5tTOYTQxSm+0lwWNC7CVze7e3ZzecDojiREOjB1gds1sdF1n/snz+fm//pzfDP6GGxfdyNTyqRwMHmTRrEU89S9PsfzM5Xz7T9/mR6fcwumz5jP2eBZz8grUvKeoaz6Ojj9vZtqURhFt2RR8dBvMWiegrAJJ3F0vwtdOC+E7NSiuteER8WxFRSwXCN3xQ+J8exvg7X8SoV3I1j5zE5TPASsiPd3FKCw7vz1L+phLJ1GM0QofgUA+biQdEZfcGRjvrS5Ec+l5+FhqdLwXW5F3L/LiukAUV/+eBo441YZLbgWyeEF02xYkR0Uox3pEINtZEe4KmW848+Xnadj7HPTvgLMfFvDZOY/CwNviSlsxgcOBuPDKlmOycyLcHX5ZxvQINTw+AP6m8X5tFPR2CjW9bLKUjdfOA00nllD8ZccIDQ0B7r67gxtvXEhZmZuKCg+HD4fw+53U15eQy9lSdqhrZLM2Q0Nxqqt99PSE6emJsmBBI6ap09HRxZe//CwXXTSdO+88kz//+RBf+tKJRCJpSkqc+fOPRjyeoazMg9ttsG1bF6edVo/bbZJMWsXc7FQqS32Tl5iVIp5O4HN5cZtOekNDjCRCnFw7lVg6QcAtALSUlebBt/6Vm8/6GnsGDzBtQhOGZuB2OPmwbx+lbj/BZJQ59cejaRof9u1j2oQmEpkUfpeXfcNHKPcEaCyrYSAyIiI6H8FVmAxNJ6dsQsko0VScSeUVeOlC09yAASqeF8y3iSgukL1rH5fvw9A1In4nfyql3LGXof558C6ExC7wnJr/IcmJmCZfqZALiRM+ehdU3g6OyQJPIwdDt+YF/BTJ2x5dBxU3SoSXdxHJLOTwFiOxhmMxItks6/Litsrr5dotW1jT1kZzIMBIIkFV3oFevXkzz+7ZcwxR/NELLmD1pk3F159avpzD4TB3bdvG9/MRX9flI76mlpfzlyNHmFtXh60UkXSaWr+fVRs38uyePVwxcyY/P/98nPv3ox1N+y4gtKdOFVXqdot61bTxGmmfT9RnAWa2Zo3YycuXQ3u7iPNCnNbkySLGLUvqr3t7pZ67QCCvqZGbaQo9bMWKcRF/4ADJhWexr9vDunVaMf2rtFSg43fdBU8/PV62XVIiYtvnk01ms3Ka8XjGYWeJxLFw86YmuR0tnn/4Q9lHQf+73fnCmIw893hEH42NwbZt8JV/SGIoCzt/kcBwOnn7Rz/icHs7k5Yv5/Qf/AClFNl4nNC+fVScfDKZSITNX/oSDWedxWm33847a9cy99ZbASkd//QXv2DGypW4yst57957mXvrraTHxtjz5JPMveUWUmNjJAcH8dbUsOeppzjxm99k5P33GX7/febdeac4nbqOrmnoowNoY0MilB0useMzKRHP5VUiiKfNEDGcjEMkCMfPEvG86RkR21V1cj4bHpD+6UuuFOGMOM5oGuzfI052NCTwswJN3OGUf0Q0JNvf8ry42yDiekI18bHeojD2ltdJ+TTQ+/FrxYiuhpmLUSpHLpPGcHnRgPhYL13v/YnmuRcWqeIF4viRd/7AxNO+VHy99sQzyWUSDB8Q0azrDgyHq0gIV0qRiozgLa8FpcgkIzh95ei2QnUdRm+UEn1yOew3NqE+fhdt5qno510opG8rgxrolZJu00Fu4wvHxG3piy8cT6tZdBZUVBYamvKU8JTAzHwBqJR5Kh4j9/SDaFNPQF9wJng8aB6vpN/U1qOhkTNNktlcMYUmEAjQ2dnJ4sWL8yAxGZ+Gw2Gam5uxLIuBgQHq6+vRdZ1EIkEqlWLXrl0sXboU27bp7e0tRnr9/ve/L45X/X4/4XD4GOOo4Hw7nU4+++wzurq6WLZsGZZlkclkcLlc6LqNbSdIp8O4XKWYpptg8CCdnetpa/tnysomo5RQvi0ric9XxZYt19LauoaSkjoMwwlo5HJpdN3kuutuoL19E729g+zc+RYnnTSNjRuv53e/C/Puu9uw7RjV1TU888wrVFbqbNt2F/fff4De3kFKS0uxrAT/8A8Xc9llX6C5uYW0M0CnrlOLsIAaGU+omYaI5fX559n846f5v4/cyiBi3MX/HGEN/7W4/t9aFq5pWjnwO+BrSqlZiLb43f/OY/o/bfoP5d8gJeBt54yX5eg66LpEFuz4C1qgDBwO9DPPQ3Udwn6tHb2hGf3yb2Msu1h+iLoPY+g6mqaxZMkSVqxYQSAQoL29HaDoWheAD8FgMO8CKXw+X7HfpbB+oSy8sIxpmlxwwQVcdtlltLS04Ha7OXjwIK+99hplZWVFsd3Z2VksBd+4cSORSATTNHE4HHi9bkzTnSco7iIcPkJPz05CoYNYVoxQ6ADpdISyskmceeYPyWbTmKYLl6skDyJbjWXFCYe7MAwH27aN97soZTM6upf29pUkEiP4/TXEYgMsW/YYicQIXV3byGZTpFIhSkubKS+fgm3nKCubjN9fx7nnXsApC1cQQq7uaUDP0BDvvfMOX/7KV1gA/OPFFzPU3U16/34WAGgaPw6FSAB7IxFKKyupcbkIIsPb65Cy8fn5f/MeoA3wMN6vbeZvdyAl5SmkrOcapKznXaT3ZT/gz/dJX7flOmbXzKbKW4Wu6RwOHWZXzy7K3eV4Hd5i3/QlJ11CU6CJ3b27AbCVzbt97zK3bi5+px+Pw0Odv45VG1dxJHSEhY0LcegOanw1zGuYR4mrBJ/Dh4aGx/Rw/YLr+UnnT8ipHOs61pHIJPjVh79CKcVtbbdRXdvI3FNm8y+fLYBTH+SFF1+isb6WaaWD0vO8exUk++C4qwAbIvvkNXetQMwS3QItU1kRgsl+gZcZHoGMgZSCawh9PHZIROapD0s5+WmPwpntAkxL9kFsPyQO5/u7D+UdaD3vOteKcA4dkPtAU14Qq3xJdbX0PjsDx0ZphQ6Ke+2ukN7lTIwijEx3iiNtWyKibUuEtWbIIK7Qi23kC7EKJeKGU8qzlRK4WLRLBHJov/RAZ2LyN0mNyv5fWykO9bQvSkm47hQ32/CIME4MSr92ckS2l01LH3U2Jfsw3bK9offkGN99QMrCvVVCFA8dyIvp08bL1xta8/+TUZxuJ2eeOZGmpgD3338eTU2l+P1OgsEkEyeWcvhwKP+J10inc6TTcq778Y/foqsrjNvtoLbWz6pVG9m3b5Q5c2p5/vlLuf32VhobA3zlK7PweEzuv78TgEDAhcfjoKrKx7XXvkI0mqG+voSrrhIIWi6nuOmm19A0jcpKLwoYiQV5rPN5RmMhKWP2lxf7rt0OF5qm8XH/5+iaxm3nfhOn6eD4qomMxgVq1hcZ5viqicU+66ydI2VlmF1/PKPxMI91Ps9ILMTJtdPwOFzompDAC+XfmqbRFxnmnjd+ScKSaDqvw0UoFcVtGmiaT0BiRplAzDwtUu7tbYWSK0QMYwjsrHKNiG29VB7XPy9k8IF/ElK45gLNLf3Tg9fkWwGyEvFl9ebLv7tERA9dC7lBccpH75IzlWOS9Hpnh8DRBDix8XIgGGRlezsHgkGq/X42bN9OS1MTTsPA73Ty+LJl9EYiHAwGqfL5GIzFsIHb2tpYMWMGt7e14TZNfvyFL+A2DB5csoRPV6/mwSVLUMBd27YVy87DR5WdW7ZNlc9HOJ3m+ldf5aSf/YzO7m7W5Le7YfFiDMtCW79eSsKrq8XSHR0VN7qhQWqhr75alGk2K6IsEBA7t61NHre0jPdXr1gh6/b0jJPHwmFRtKmUCOvZs0WZ5nKyv0BAlLHTKevfdpus09gILS3kMjY9PVoRaF7Iq25qEmFdCAhYu1auCdTVifDOZiW/OpcTE/zqq0V0V1XBLbeI+D7jDFneMMQNv+IKuU5QYLytXCliOhoVyvh3vyuV8oYhJeN33AEXLbNI9feAYZAcGuKdtWuJdncz58YbaT7/fObceCPR7m5233EHAO7KSt5Zu5ZcOs3SP/yB026/nUwkQu+bb2JFo1jRKJ/+4hdFUrjp9XLa7bejAYmhIebedBOm201qeBh3ZWWxJP3TX/yC2kWLmLFyJdlUCk3XiXV3kx4aFGFdUga/e1QEczQkFzOOnyUi+LiZAiRzeYQYXojX2vL8eGm4ylcPHd1P/ZuHJN7Lyogwnzxdor1KykRYl5TBoc9kn799CDJpEe5vvzV+odTrA03DW15LNp3EdHlIhvql11nTqD/5XE44959omHkuStlkMykMp5tMIkR8rBdveW2+NLyOkQNv4y2vR9MNvBUNlNWfiLe8tkgbt3MWwwfeJjJ4AF0XU6L/r1uL0VsaGu7ABBLBfqx0jNFD7+Uv8mpoJQHJtTZNNJcLfekXRVifuwxiUYHmxqNo1XXkNv9BysSXfhFj9S3SU912DpquY3duRe39RPqmNS1/QdlG85WA2y2U8MpKCI2Ra38erAzGt65Fbzsnf5XIIrfpRbTqOojHyG35I3pwDKfDQWdnJz6fj46ODhoaGohGo2zatIlUKkVpaSlNTU3EYjFM0yySxLPZLH6/nx07dhTHnAUQb4EeftVVV7F06VL8fj+GYVBWVsYFF1yAx+PBsiyi0Shbt24lFotx0kkn0dbWhmEYJJNJ3sozJEzTSSIxzNatd5BIDOdBvFKSbZougsH9bNp0FU6nj0CgAU3T2bv3ZSKRbmKxftrbV2JZcWKxfjZuXMWSJYvYuvXPNDbWMzDwAYbh4PzzH+Rb37qSd9/dxltvtfP1r1/LqlVXs3277Ccc7mLDhnt4882XeP/997n++usJhQ7z6qs347SzzFGKaqTfeiIinichZs0DjPdZ+/iv+6edHAs4+9sk0//unuupwKhSag+AUmob0Kxp2tz/vYf1f8ZUKP/O/elZ1OhQUWBrpolWUYWx9EuocBA1Ngx2DrvjzwKZ6HhDTpR2DtV9WNxrhwMtEJArjJkUWm092VyOWCwGQHNzcxFMlslk2L59e7Efu6GhoSikCyU0hmHg9XqxLItEIsHWrVuJx+PFHpRUKkUikaCuro6KigqUUvT29hahEiUlJeRyOZYuXcqMGTOIRqMsXLgQl8tFOBxm06ZNaJpBNps4iqDYjdc7gc7On+BwePB6a/D7a9A0Dbe7lFhsIN/bkiAeH8oL6btpaJhPLmfR0nIrM2dewZIlD6KUTSw2wN69L9PRsY5AoImmpkUolcM03fh8NfT27sLtLsc03SiVI5tNYllxMpkob7zxfYxsmjJgMSJsr+nuprquDsM0uRqwNY2G5ma6urq4StO469/+jR1f/jKnTZzIP7a28sNf/5rrnE4SQBA5yT2GiOcSRFhnELHcCtyLnOTWISe/MAJGG0JKe6qBhYiDPRtI2znWbVvHvIZ5xd7pg6GDuExXsR/a7/Rz6HuHeGLZE7hNNx6Hh5nVM9k3uo9VG1dR66/FbbpJZ9NM8E6gIdDAjQtvpMRVQle4i9WbVpPKpnAZLq5ZfQ0nTD2Bvt4+vnzhl7m49WI2LN7Aqu+s4s2r30SLary7/l3mzJhDc6AZr8PD4489xhNv5Dh+Viv33P1jfvnkT0Xs6m6oPgMyI1AyDcwS6cE+8UYRwu4qEdfuKnhnNeTikJI+eXLJvHOsQ+VCEZm6AybMh9F3Rbx6akRQlM+VH/3UgPRlJ/plv4XMashnWLtFZCdHpARcN2SebVEElIUP5cvRnXnn18i73Uf1WDvzvdmZqKzjLMmXijvy9PHsf+y/zqXH8641Q5ZLhuS4NV0cYisugvish8ZLuh0+cZb3Pisl4ZmICOVMRAS3ysoxvL1elon1yL7/vBqsfC+vrsv7yeVp4ZoB5zwmfw9LwDOUTRHX3HDJeScdgeDnkpPtKiNnaxw8GGRsLInLZfDuu30MD8eprPRi24oFCxqJxTJcd90r5HI2pmngcOg88MASfD4H1dU+/H4nN964kIGBGOFwivnzG2lsLCWdzjI0FCeXs7n33sUA7Ns3yne+087hwyHmzWsgHE6zbl1HPgpsO7qu8dBD5+P1Oti5s4dczmY0Eearpy3D53LTGxpm/Zu/ZjQe5h9OWcJwLMja155m2oQmRhJhfvTqU3SHBtE1rbjeYHSMeDpRBJX1hoe4/y//AlAU0SOJEIPRUZ7a+QeSVppbz/kGj3z5Fq6c/0WUUvxi1x85uW4qw7EgP371KUYSYebUTwfNRJk1Uu6NfVS01lqwE1D7qAjegRvBOiyOc+3TIrQ1vwjwownhypKIrdH1UHGdXERKvQe5AQGVlazI93evG++/9i0WoZ4dkvWTu8GcID3YWGSVKvZcb+jsxAYeveACvjZ7NpUej3yUNI3ZNTUMJxIooK6kBLdpMjEQ4PFly+iJRPh8dJRYJoNl2zh0nQNjY4wkEgzH43y/pYX2yy7j0aVLqfP7uWLmTG5va8Oh6zSXltJQUsIj+T7sSaWlTC0r48nly/E6HKRsW/Km/v7v4YMPpPd5wQJwuUQA33OPNBgrJYI3D+VCKUF0r107nlnl9cLjj8u8o3OuysvlNZ9vPM6rt1eIYem0uNUNDSKuH31UBPkrr8DevfCd72C4DRobFT/9KZxyiohpr1e+grGYbMLvl1UnTZLHs2cLa628XJZ96CEpFTdNWcc0x2O5sllxux0OKffu7RVBfddd4mSHw3Jbv16e33WXCPZ166TM3GlkSPT3obLZYr/zZ7/8JQ6fj3l33onhcvHZL39ZpHr/9ec/p/fNNzFcLpyBAKMffSRC+6WX8NbUCJzslluYtHy5kMKBTCSC7nRSPn06ydFRdv/wh3iqq3EEAsy95RaW/elPzL31Vry1tXjr6silhd3gq6tD93qFFv7GH+H4mSKm/aWSnjLcD7/9qcRlaZpcNfAHJF5reAAu/ia0nAdfuToPi0Qc55NOHY/12vKcuNFePyTi4nJHQyLQY2EpOQ+UiYDf8ry8fvoZ4mZHQwI8s6SVyFteh2G68ZTWEh/rJ2dJHzC2Td8nf8ZKRcnEQ6AU2VQc0+Vh4K9vYTg9AjQ7+Ry85Q0M7evESkaon3kummZQd9IXmHT6l3C4vNSd9AWa516E4XRhJaPUTG9FKcXAp29hpeNoup6P/xLwGYBm22LMFIjdr7wM2SzGBV9Cc7lEMO/5ALvjz5BJo/Z8gAqHIBLC3roFwiEwnSjbRl/yd5jfWwNeHyqdQo0Ok3vljygrjeb1SS83HDVu/bMk2pSUoXl9RUAvVmZ8mZ1vYWjQ1tZGPB6ntbWVqVOnFk2aeDxOe3s74XCYsbGxYl+0fJXl97ytrY2pU6cWx7uJRAKn01k0jgrLpdNpYrFYMSP7aIp4Z2cnpmkSDoexbZtt27YVE3ay2dQxoDKlckXuj89XRUfHunzUaz+bNn2XWGyASy99noaGecX10ulw8XEu9xqNjQ15aNsMenp2kU4Pcf75Sygrm0RpaRMTJ7o5cuQIS5c+zOWXb6Ky8jg0TcfrrSQUOsyWLdfS3NzCWWf9kEx8CK+yuR44EdiOtB+uRiogH0VaER9E2gv/J5V6/6+c/reWhWuaVorEAV+olOrUNO0i4I/AxUqpF49a7nrg+sLz0tLShlAo9P/14f5/Pv1n5d+ay/V/O0+FRvM91+eiTaiSXphCPIKmk9v8EurD3WgzTyW37GLS6TSZTKaY+xeJRNi2bRtLliwhkUgU+7EdDgdut/uY8plAIFCMQEilUsXtuN1uHA4Ho6OjxGKxYmn5Rx99xOTJkwkEAkUQWqHkplBKXui9HhgYYGxsmJkzj2fTptVH9UE/Sm/vLurq5hKPD9LRcTetrbcRjfbR2LiAzZuvpqFhHlOnnoffX8crr1zLOeeswzCc5HIWTqfkO1pWAgCns4RcLoNlJTBNZ7Enpa1tDYFAM5lMjDff/GfOOWcdDocXpex8X0wVmqZjmy6mTzuBZ156ico5c/jNu+/yzOWX8+HevRTqDM6cN4/b77mHgTPOYO2553Lfj37EuWecwWdvv83fX3QRv//4Y06aMIE8Dxgn0lftBrqRfonbkF5qD9KXrZCTXzUixAv7Uvnn25FSn0nZDLHkKE7Dyc6enVzy3CVcNP0inlj+BNu7tnNy9cmYuslHgx9xev3phFIhfE4fHoeH7V3bueS5S3hxxYssbFyIZVtSWh5oojvSTWNpI32RPqp91TSXNhNKhaj2VRPLxLj9z7ez9uy1BAqQL0AhFQ2ZXAaX6eJg8CDTAvX4yYtgwydi793vwYk3i6vqniDu6Qc3wZx7pf9674NwygN5YWlAog8GXoHg+zD3QdmZpkuJd+gjqDhdlnv3atmubxKQkz9Weigv2gMQOwCfbvi/2PvvMDnKO90f/lTqPN09eUY9M0qAACEkY6M4EjZIiCC8xjbatfHiRDLCNlFggY29RgIkkllwwHEdjr04saCACLaMRqNAkgEZBIqT83RO1VX1/vGt7tHYe/K53t3fOdR1zdUz3VVPVYeprvu5k3RiOyUojoOnWh7DnXUvy7RP9EFrXjcR9t/5+in7sh1HwGnFM43IyNO94osuM9Plx8rvZll6rijyYLkbW9FcttFxb11Kq5SdOC6/K4lXdXj+C/D+myS8zAhIMNlbv4Br+mD4dWG9VXVC+p3uh+hMGbt/H9SfOfGczAx4o/JJTPdPeMn3bYCzb5NqMRDvdT4Or9xPYulP6OjopqUlTE9PkvnzY0L4e1SOH0+wYUMH69a1U1cXwOvVKp7sQMAgl5MwsyVLWjFNm2LRwu/X3eBEi5de6mXu3KZKg46mKXzxi8/wxBMHWL16Nl//+jlEoz6Gh7OsX7+Thx+Wc01/f4r+/jQLFsTwhzR6koP80JVoD6bHuP5397Fy1iLWLf8cG57/EdsP7ubJzz7A9/f8njOaZ7Jo6pk0VtXSEx/kB3uf5PMLPkJzuI67n/sBVy28FJ/hIeQJoGs6/YlhfrD3Sdad9zk2vPAj5sVOYd6UWfzkpadFEl5Vy+v971IfqsGj6RVf98pZi1iz5DLaImEUTAkRq7kF9BZhlP1LXL90v+uX9oOTBzQoHYPRe0Q6XpFyl/+e5n5uCpICProBam6Weq1Au3iutUYodZ8gEZ8mknGnJGC8NOA+tg6MmWRLGu+OJ9jQ0THJ77yuvZ2pkQgZ0yRVLBLxevHrOoOZDI3u90ehVMK0bYbSaWLhMH7D4Ijr37550SKGMxmWtLWhKQpHXU/1HUuXMj0aJV8q0ZdKVbzePckkLZEIU8Nhrt+2jRsXLuSU2lq0YhH/0aMiC3/gAZFi33+/hJEFAsI4a5oA3sHBiXhuEH/09ddLCFrZpz19uny3XnPNhMb6Yff809cnCHXdOhl7fFz2uW6dhKKVE6TL3VfXXw+/+AXJ/jRXfTnIkiUTJPlXviKq9TKhXt59nesiCAQE+9977wQT3dUlgPgrXxEAvWrVhH+6v18y29atEwJf00QCnk4L9gcB3Pv2yaE2NsoYvb1wzpIC5uAxsgMD1J55JsVkEj0QQPN65bVQVax8nvG33qL+fe+jVCgw/vbbBBoaOPD445z2mc9ghMPogcAkOXiguVm2e/dd6ufOBdvGMk1e27hxQm5+111YhQKjr79O9emnT8jGXXm5mU7jq63F4/VALoPiOBJctv3XAoLHh+GRuwTsfuI6+OW35f5DB6C2QYCxpgl4ToxP9kubBan3itZCuFruK7+H5fO1bYtX+8l/gUs/LZJ0TYXxUenPPvQmVEWxGpopWgWMQARsq1KjZRVzDB/eR92MswEwfEEUzQDbQlE1V0oeQFFVhg/tq0i93/nTjybJwZtP/yClYk4k4zPn4wlGRN6tIBJzw4ttWziWie4LYZeK8tWjGeBYqI4G8VEJNYu14VglSKexO/+I2n4eRKLiSw+GBBj3dKG2TcNJJXEOH8Tp7UZb+WHsvh6UcNgdZyqOrgvjX5TJELtzhzDU0VqUkinS70gUwlHsLb9FXfl3kE3L9q3TcEol7Be2oa68BMutQ7QsqwKKy9efxWKRt956i56eHubPn080GiWZTNLZ2cnixYupra2tXGeW7Y2XXHIJhUKBbDZb8VxXVVVVar0AnnvuuUr20MDAAC0tLaiqSj6fx+fzUSqVKsSToth4PBaFQgKPpwpFkbTwdHqAcLiF8fEj6LqXHTvuqlzbXnTRYyiKSjLZw86d6zn//AfJZkfo6NjA0qV3EI3O5KSTTuaGG+Zx5ZWPo6qa26Zjk8kMcf316wiHAzz88MOoqsHy5eczODiEx+MlHE5x9tndLF26mosv/i7btn2Rcy/4Fl3+GtYrCo8hwHoJsAzpvV6L2BFreQ9Y/9eW/9SycMdxEsDHgXsURXkFOB/4CxN4obzeg47jtJR/QqHQf8DR/gcsfy3/1rW/eUz9xOfRLvqoyMJrGwSA19WjaLoEToyPYHcdhZKJeuHfibxn0TIA0uk0Y2NjaJqGqqoVufZbb71FMpmkra2NZDKJaZps376dxsZGgsEgjY2NdHZ2oiiK2+kHVVVVKIpSYcLT6XQlVTyRSBCNRrEsC9M00TSNTCZDZ2cnbW1teDwedF1nfHycVCpFa2srM2dOo6dnL4sW3VxJPTQMP7HY2Xg8QXTdR2ur9Fz7/TV0d3e6dQPtjI0dxrZNLrzwUTKZYbZuvY5UqhdwKJUKZDKD9Pe/6spzvkA+P4qm+SbNNqbT/WQyg8yffz2pVB9bt66hVMrh9VahqjqWZeKWV1BEmOvPtrYy0t9PsVTCBHKOQ09XF962Nubs309VXx+XLltGCKg9+2xKLS28+9prpBEgPYrIvF9B0se7gKcQac6JwDoHfNO9TSMYSnePIwXMQcB5GhjKDnPd1utoDbfy+rWv89hFj2EoBq3hVtY+vxaAplATa7atIWNmsB2bazZfQywc4zeX/YYlbUs4njjO9duupz5YT3eym7pAHRt2bmBx62J0Vef6bdeTMTN0dossd+OKjQSMAMlCsvKTKqToT/dTskuoqHxrz7fwaV7ID8MrN0hdlqLDrJtE8m1lJ2ThtfMF9GV7YN5GYaaHOwWgequh9WPw/kfk/8JBwKYRhtqFAroV4P3fEs915phsmz0Or39NpOTlRPK562Xs0ZeECX/1BhcYFyck2WU/cjEl/umyZ7qYZOJKywW98aMChDWPy1DnT5B2+yZY6/J2ZfBcBsxhN7wtcXQCQAOVPmzNMwHuFcVlqgdEHp7q4kvXfJppJ89GufgX7O/KC9teTPOlLSGmPdKCUjWF/f2aAOE/fhnihzj/gos487zLmff+s1n6/lN47ci47PvFW+U4/bXySdQ8EGqeSA2PLXMl8SWpASvlJAjt4BMY5Fm6tI2GhiBz5zaydu1zeDxiSWluDrFsWRt9fSlGR3Ps3dvL/PmxCmPd0BBkyZI2CgWLsbEchqFiGCrHjo2zZs1Wmpqkru+GG7bT15fC7zdYu3ZxpVO7pSVMKOTBcWy++92LCQQMEokC/f1p6uslXbxkW5Wu6R/sfZLZbpr31Qs/ikfT+dr5V/HCtd+lNhjlxnMu531TTqUnMUShVMRneCop4MVSkTtXXElTVS0RXxVvDhyme2yAulCUr664Eo+uc+WCj7Bo6pmTJOGj2QQ3PfUgQ+kx6kPVXFmu5lp4qduFXYLSqEix1ah8Bmq/AsHzBVjr9RIyZh4GLFAcAdKVLusSKEFo/GfQm4XtLh0Tv3VZYq6GJS08uw8yz8p7rLdB3TdAb5Uu7MEvSte24hWwXfd1Ae5OiYAa5+Saah5ftYqgx6hIuB/eswdDVQl6PGiKgu04HE8kODQ2xvFEgqs3b6Y7mURRFKZXV9OdTNLrguUnDhzggd27WRCLYagqluOw8QSpuWXbHIvHJ1Vy1QcC9CQSWI7D/FiMh/bswXIcvI4jwPqpp4Q59vmE4h0YkMQvw3CDqAZhzhzRW199tSDXhx4SA/ToqFDFfX3yo2mCaDdvFjo5FHIZ0dCEHrupSbZ76ilBvKYp+ztyREB1V5f0aK1ejRbyVyTbAwOyyT33yNudz4vvedEiAcXBoDyF8mGXwbiqTjDNvb1y/9atUsfl88l95UPxeIS4Hx0VObnjCGF/440yj9DaKvbyYNBV0Y+U0Hw+aufMqbDQRjBItq+Pl775TbJ9fRihEIGmJvZ94xsUxsaof9/7KhLvQFMT/ro6zEyG/MgIp33mM2QHBkQqrGnUnXkmtmky8uc/49g2Z3/ta1z6pz/xga99DatQoJhMUjtnDprPV5GTK6pKbmiIdJckTjPcL0xlPl/plmZ8eIJFvviTAqDL97+/XbzYP/uWVHKpmgDrssx7qE8k5tX10NgCvoC8UL94TJLA81mRix96U2QCH7lCwPkvvy1BXNEaeVNqGkRGrmqYuRRmNk52vJ9AtAlV9zBy5GUS/QcpFbIYviBWqYhTMnEcm743X8AfacAbrJ5U3aV7/USaZxGINmHmUtTNeD8oKqNHpL/a8Ln5HqpWCTXrO/AHLDNHIROnmI1jl0xUTcexTPoP7ADHroSMObmssMvVNWjLV8mHLRHHGR+FkomTSUtNV7GIvWM7Sus01BWrcPJ51LbpKFUR1KkzZW7asUVyHqmWnuvWaSiBEBQLWC88I39HpNJLW/VxqfAKhVEiUenTzqTRLvwINgpj8Tg9PT3ouo5t22QyGQBGR0fZvn07bW1trFixgmw2i6ZpdHZ2cvDgQdLpNLZtMzAwgOM4RKNRLr744kqPdTqdrlyPGoZBIpFg+/btpFIpWlpaSCQSGIZBU1MT27ZtY3x8nMHBwUrqeCaTIRgMEgz6yWSG3ETvYYrFNI5jc+TIc2zffjPV1TOoqoqd0GLzVTTNS6lUJBqdwTnnfIO3336SVKqPVau+RyBQR6mUxXEs5s+/HkVReO65WxkfP4yi6DzyyI84fPgo//RPX2Pbti8yPn6Iu+++mhdf/A379nVw0UV/z29/G3ZTyP1cfPF3qPJWcbILrMcRAud8BFg/wURbTdG9jizy3vI/u/xHy8JxHOePjuOc4zjO+5HwuikIwP5/flF0/W8B84mP1dSjNLfgZDM4eZGxKV7vxHqOg5NKyonScVAA7aKPotTUg1snEAwG2b59O8ViEcdx8Pl89PT0EA6HyWQyxGIxOjo6Kr2AhUIBVVUrARKaplVkM6FQCMMwsG2blpYWdu/ezYEDB9i5cydtbW0EAoFKj6DX62XFihWceuqpjI6OsmXLFkKhUAWch0IRIpE2MplhLrzwMaLRaeTz8cpJaGzsMK2t7axYsYl8Pk5z81kYRqDit966dQ3x+GGSye5Kx7V4wb10dNxDMNhAKtXPihWbCIenoigKK1Y8wCc/uZULL3wUrzdMVVWM2tpT8HojnHfeBhzHYXDwdYrFNLncCIai4iAnpEagrqGBU846i7t//nNU4Nnf/paWlhb0k06C1la6+vt5/q23UICvHjpE4fBhTpk1iwYkgCwD3IBIuusRKfjvEHB9GLgake+EgEcQ6bjtbvcO4rseRpLD6wGsIj2Jbm5edDN+Q9K/12xdw+H4YbqT3Txx4AnSxTR9qT6p60r2kC6kWdK6BJ/uY9nUZSgoeHUvS1qX8MjeR1gQW8BIdoQ7l96Jg0NPsodbFt1C0AiysGUhADduv5HuRDchTwif7iPsDePRPBweO0x/qh/LsXjkwkdQFeAv90io2Nv3C/ismimeal+DyLMPPgRNK+TvQAu8fL2El1XPERCsekEPCagrJ4WP7BHmWgFqPgCv3iRj+2oFYFfPFdl5/RIZ37Fl7PibwvTWLYC37hdQr+Cyzi5b7SCA2esy2jgCsD1lhlv+7+RD7FJBtvjcKp7sYlKONdAwUeFl5SFxzP3n1ibC0DQPhKe5PmzT9UHbclsG3cnjIvNOHpe+a389pHv4+EcupuMbc5na2iwe7oGXQFH4+Ir30/GNeUxtnSIy8XQfLNsIoSk88V9+xusvPsn+px7mpnXr+cyNd8tzX3qfPE/bhPQAPHeNG+6jCZM9+9Pgi0q42pTFUNUmqeHX9uNoAY4fT/Dqq/14vTp3330uuVyJ/v40pmnzkY+cytKlbdTXByrgu65OJOPlYLJEIk8mY3LDDdtJJovU1wdZtqyNoaEMVVVeNm5czshIFtt2mDmzhh/+8BJaW8MMDqYpFCymTAmjqhKWVlXlYf78GI88spclS1rRVJVbPviPPPnZB7j1Q1dgaBp3rriS2mCEdCFXqd8aSI7g0z0EvT5mN83kzYHDFEyTBz58E5+dfwm249CbGKI3Oczdz/2AumCUsVwCXdXRVJXe+DDDmXEaq2r4iisJv3LBpYS8AT448wM0VdWioFAXinL7eZ9hMDVKsWQyksngOBkYvB6cLKhVAmq1GmGsxx5wgfR69zOpSvhY1WqovU3OCE5GwHGpX96z0fuEiW78Zwh/AoqHwTwO/rNFcj54HZQOC9C2XJa6LBG3s1IN5pju/kqQf5WAfYCINo5PUyt+54dWruTQ+DjXbN5MxjQJeTwCgoPBCije2NlJIp+n5Dhs7OzkhSNHJvmt/YbBsfFxhjMZNq1YwZLWVu7asYOuZJJT6+oq+1q3dCnVfj8t4TDXbd3KktZW7lu+XBglVcVZt04itAcGBE1OnSp9VvPnSyT3kSOCRtPpCW30pk0CmgIBSf5SFFnHTRsmEBAUunfvhFf7yBEB2WU99rx50m398MOyzty5Mu4TT8h+QiH43vdwUBgaEr9zS4sc6m23yW76+uBrXxOwq2kyzJ490kGtqvCJT8B3viPrPvwwvPGGWMJ37ZKxVFXmCtraJC38e98TYA0T2W7XXjvRo93VJfMK990npL6qQmOTjpXPV7qls/39OJY1qZ7LsSwOPP54xUcNVCTer9x7L+meHvz19QQaG3nrJz8h0NiIYhjoPh/Zvj5evfdeorNmoft8mOk0r23aRKanBxxHpOVvvEG2v595N99M2wUXoBkGb/3oR/hqa9FUBeWZX0sSeKQa2k6CHVvkVtfh0zdCbb2Ek73wbwKYPb6JPuutv5KE8OmnChAOVwsAX/lxYastS8D00YOw5w8yE6FqAqBbZojEPJ10We8TvNrlpPGXXoRMkkB1M6pqEIg2kY0PYOaSNJ22jKkfuJRgjVyrDb+7B7OQAUWpdFWbhQz+SANtZ31YqrsUlSmzzwXA8IcoFXIoikLT7A8RbjyJYi5F35sv4JRMdK8fVTVIDR/DzKUJRJswvCE0j5fMWB9mPoM/2oRjW6htMyCXxRkbQbEdEVr9YZsA6mRcPNCppMjAUwlQFJyDb0pPtWGAYeCMj2Jt/Z2QO71dOGYRJRCUxoQVq1Bap2P390j+z4qLIDEuXu7xERzLcr9mNZxEHOfgm2J1xMGybRKJBA0NDYyNjbF161YMw8AwDNLpNAcPHqSjo6PioVYUhVWrVnHttdfS3NxMqVSq3A9QKpUq9Vqtra3Mnj2bsbGxSqp4WQJ++umn09zcTDqdxnEc2traKvuQfKAAO3fupFCQyfJksodFi27G4wlSKmXZuvU6WluX8MEP3kUuN8aWLV/g+PE/cc45Xycancb4+GG2b/8y4+OH8fkidHW9SDjc4rLefhRFQ9M87Nv3KOn0AC0ti0gme3nwwYd46qmtfOc7txEKhVm48EY6O+9n5szT6Oi4B1VV+cIXrmFkpIDjRDEMH15vFZrmwQ+E3WvXGUCMieqt25Dw3CNIh/XbvAew/2eX/3BwrShK8wl/fhX4g+M4h/6jjuc/21IOlTgRWFcW24ZUYuIkZ1mTH1dV1NZp4PGg6Lqc8Db/WgIoFKXiUTn33HNxHIetW7eSyWQ4//zzCQQClVCHlStXcvrpp5NOp9mxYwepVAqPx0M8Hqe3txfTNOnu7qZUKhEIBFAUBU3TaG9vZ/bs2SxZsqSS2vjWW28xMDBQOSEWi8VJM4tTp0ogkuOoRKMzmDp1GZpmUCoV8HhCmGaW7dtvqHRRlxnsbHb4b/zWO3euJxZbwOzZq2lvX4eq6jiO44L1qVRVxXjhhXWYZgbbLuHxhGhqmkdf38soioo77UswWI+u+9E0D62tSzCMALfffh+nTJ3OQE8PL69cyUUnnYQGPPq977Hre99j7imnsOnee/nOj3/MAuC7jY2UHn+cz6xezcK5c3nn0ktZ9+ij5NraMBF/9beQUDMv8CrChrcjFVw+RLZThQDs3UhCYxgB12Xf9TR3XQOoUjVawi08svcRQp4QbeE2Ni7fSG+yt9J53RhspDXcynBmmAWxBcTCMdpb27lrx12ki2mOxo9y1467WNK6hE0rNuHVvcysnkltoBZN0WgNtzKUGaLaV41pS83XTQtvImAEMG2TsdwYx8aP8XLfy7S3tTOjZgaqopIupvlT9x6c2XdA22qRfef7JEwsfQjGXoW6dpFp+6cI6M32Qe9TAsgV10NtF4T9LvdfKyrULQQ9LGFmjgVn3i0s6vAe8VrrQQksq1sq4yuqgOvqufDqjeLlnrcJmlYKePW4bLVd5ATdtuubZiKQzCoIM132Qmv+iXXLrHQx6crDVdeyUf5HV90wM/WELm8AVcAQLoNuBN11im5ieFHk5ec8IKA61i4e86YFLDP+QMvoZigk5D5/PRSTLNOfl/vtkkwEVE2BF9dCqodo/RQINkLDPBIv/xjFNt3ebRUG9gl4LyeE6345rqE/u8nkPmG2c6MTYxcSWLZDV1eC+vogN964nWDQwDBUDh8eY3AwTTDo4ejReAV8P/jgSkolm87Obnp6kti2Q319kP7+FA89tJJAwGD//gE+8pFTOfPMRt59d5S1a5+nubmKTMZk164uDh8e59prt5BOm+zd20N/f7oSlBYIGPh8Ops2rWDJklaGBjLEcym+0/kbxrNJeuJD3PvCjzE0nUwxx89f2cq82CkYmo6mahRMk3tf+DHV/ioG0qPMm3IKU6unANASacCnGXzm7EvwG17eFzsVXdWwHQef4eH0xhlkink2/fGnNIRqsB2bvFngq+dfSSzSgKIoKCjc+8JPuP539/HGwCGq/QGUEz3TmCeAW02k2VWrRTKe24coC6ZA4yPiv8aB0fslNdzsEea54UH53yl1C2jX6yXETFEmd10HV0wEo1Wtln2hiARdb5M0cWsEfHPBHAQ1iEf3cGptLd9ftQpNVfHqOktaW7m/s1O6U5cuZTiTYV17O6tnz+a2JUuI+nzoisLaxYs5qaZm0teYaVl4dZ14Pg/Axs5OnjhwgPU7d1KybXqTSR698ELq/H5q/P5JoD3k8aCrKknHIT9jBk57uyDU+nopiD52TDTQ5VJp0xQQvXataKk3bZKUr0OHRB4+MiJIs69PQHht7UTv9ciIgLgFCyaD53hcqN/h4YkxNm6U8cvodWAA2/U3P/GE3La3w8kny2li40ZhnMse7L17J8LHq6vlKRw9KrsAOayXXhIcX1cn2zz1lLDX/f1CmqdSAtTb26GmRuq/Nm6EFSsmnsKSJQLCbRvpuXaB81s/+Qm1c8ROMvvqqznn29/mA3feCYrC7Kuvpu2CCzjjmmvAcf5dpvpEQG4Xi5TyeVTDYNYVV5AbGWHf179ObmSE2jlzyA4MkBse5tV776V61ix8NTUYoRDz77oLRdeZf9ddVE2bBoYH56Ofk/Pmz74l4PbcS+T23TdhuE/AbnwMVlwqNU8AF6wWVvuC1fL+ebzwyTUiF69pkGCyYmFizBmnyfrhKCTGxEudjAug3vorAeennzXh1S7fd/YyAeyKim2XGHjrRQLVzXj8VSi6B3+kAdu2UDWD2unvZ+zYa6iaTnXL6ai6B033oqgawZopGN4gjm1LH7SqTYD18X7MXBJV96DqBrXTz8IsZMiM9aF5fMz64Ocw/CEssyDJ4baNL1yPpnuIxk4TebhVEt91rA0nn0WxHdSFS7F37UCNtaGoKk46hbroHAHUmoZ62adRwhEJJstlZPtF5wi5E5uKomo4uSyKbqAYHohEUIJhrG2/h2QcJ5mY8F3rBoyPYncdRY21oV17C2r7ueA4qPkcLa7V0OPxsHDhQlKpFJs3byYcDnPZZZexdOnSSmr45s2bGRsbIxAIkMlk2L59O2NjYxSLRfcSWaW/v594PE6xWKwEnCUSCWKxGLNnz2bp0qUYhjEpzGzOnDn4fD66urowTZPq6urKeoqiEg63sHfvI3g8IYLBBs4//0Gi0Wl4vRFGR99xq7NOJhyO4TgW6fQgbW3L0HUvHk+IlSsfJhCoA1SSyW62bv0Ctm3R0HAGe/Y8xJlnXs7vfvcqv/rVr9iy5UlOPnkJ27ffiKoarFjxMIWC380WcnjyyaeoqtJQlHFKpckQ2SNXGFyJAOhehLWOufevZ6LDusB7y//M8p+hiuv7CLbQEczwRcdx4v+tbf5fr+IqL04hj/X0r0/wXV+G4vWd8Lj8OzjFAophYG3+TWVd66KPUXIcUqlUxWfS3d1Nd3c3CxcuJJfLUVVVNamG4Omnnz6hy28VmzdvZtGiRRU5TJnpLvcJlqsL0ul0xcMCEI/HK7LzcgJjOp2mubmZVCqF1+slFPJTLCZIpfro7NxIe/s6kskeQqEmurt30du7j4suegzTzOHxBNm27UvEYgs444x/QFEUMplhSqUC4fAULKuIrvtQFI3R0Xfo7LyPpUvvIJHoZnz8sCsvl32EQk1YlinMtBHENLN0dGygvf0OotGpWJZJb+9eQqEpRJvmcEjR6FUUFiM9cusQn3SYSswVOjID2IUkgXuRdPBhIArEgWr3/jQCpg1gDJlVNN0fAznhOe56/4ScCF2uCldwXAHjFNLsOv4nzmg4g7A3zLHxYwxkBljSukQ+F64POlfKYdkWbwy9wdmxsxnPjXPmd8/ktWte464dd/HEgSdYPXs1j696nDVb1/Dbt37L71b/jsWti1EVlaPjR1nfsZ517evoSfZwVvNZDGeHWb9zPV9p/wohI0SNv4buZDcbOjbwlfavUB+o5+mDT3PV3MvRsORZDe8RRlrRJ3qrVe2EPmggNwh2HoJTJf072w31i4XJLWWkE9tMuJ3VNuRHBEzrPhnXMSE/LkCzHDpm5QSI+1tg+E/y+9nfkcdVn3sM1oTfGSB5TILOVA8kj0rXtKLJJIBdkuNVFDmuMhBGmWDXy/Oa5aotVRfmOTzVDdRxTcSOJfeHYhMha+U0cgUZv5iCTJ8Ek81fJ95q3SdMeLqbaR/6Ak/+5lfMO226W6V1BF66j2lrdvPkTx9hXuqXEmh26WYItXDFP/wdfzyYB6vA1h/fzZwP/oPLnBcFqAca3IkB0z0mRSYEUGHwJaifJ4y7aoBVIGOHyeVL7N3by5w5DYTDXvL5En6/wfBwhvr6IENDGaJRH/v29dLWFsbnM4hGfSQSecJhL16vjqLA0FCGSMSHpilomkqpZLNnTw+f+tTv+fnPL2XhwhZyOZPbb3+BX/ziDVavns1NNy3kwQf38MgjF9Dfn+aeezpYt24p06dHue66Ldx7/4d45KWfsuPwyzzw4ZuYN+UUUbm44NpxHEYy8YpH+kRP9lfO+yxvDhymIVRDa6SBjJlHQcHB4aE//YLPzL+EqK+Kg8PHJ/Vi7+87yP7ed7jt3E8zkonzw73/xucW/B21gQhBj5/uuHjAr1pwKdNq6tCdBIqdEKCrVrlnAQsGroeam8AzUxhlkIknxStS7tH1Aoy1egktM2Ku9/oOAd4DV/5VZ7Xf9WeXvdbT3c982duvuvkDJTnTmAcFhNeuBeNk+X9RxKVXLJUYzeVIFApUeTwEDQNVUVAUhf5UioZgUOqTVPlfENGHMGXvjI6ysbOzArZVReHF48eZ29jIaC7Hho4ObluyhKZgkP50mqDHQ7XPh0fT6EqI97vsy7YdB1VR8No2hm2jmKZQuuXy55tuEt30o48Kw9zWJoiz3EltWUITf+pTglgbGiCTEaSqafJ7NisA3TRFPmvbgmBvvln82SDm5t/9ThjzxYsloczvF3Z740Yyj/+Ctw/pbNwojPWsWaJutkVRSzwuEm1FkVvHkV3feit86UsCrOfPl93cdBPcfrsc6k03iXo9EJBDPHGxbUkFD4cFV3rdTEJNk1vbngg8jwSyFAa6OfD445xxzTWEWlowczl0v590d3el69pbXY2i62heL45tg+NgFQqY6TRGKISq6+SGhqQv+5pr0LxeSm4A2uyrriI7PEz6+HGaFi/GE4mgqCqjr79O9OSTUTSN1x95hDO//GU0jwerWGT/Aw8w64or8NfV4fV70X75bQG1C8+Fy68XJtvrg95jEmJWDiH7L4+J77qmXgClZsgTz2dF8u0PSI2XPyhs9XfWw7yFArw1TV6cX31XQPXpZ0EwBMmEjKcoEp629VcC2htj8jroGo5tUTLzqJqExFqlIpruQdE9YJXIxgcw/FUYPlct5dY/WmYOzRMQ6bbrxc6O9xOsiWFbJgNvvUjt9Peh6b5K93XZm22V8owceYX6kxZgeIMCkB0HqyhjmvkUqqrjMfw4JVOOxbFxFAVSSbeKDEn+dhBGuuMPqO3nodTUik9+6+9RYq2op8/F0XX5BlNUHMfG6e1CbW7F0bWJ8YoFrO/ej3rZp1HbpmN3HUUJR6X1puc4SjCEvftPYo2M1uKUTEglKUVrGIvH6ejooL29HcMw0HXJ4fB45NwjwWIl/vKXv9DT08MFF1zAM3/Vj51IJCogOp/PY9s23/72t5k9ezYXXnhhhfwxDAPHceju7uaJJ57gsssuIxKJsHPnzsr1b5kNFzxVYPPmq2ltXUJra3ulFlZ0hiq67ndPB8nK9e3SpXfg99fy7LM30d6+Dr+/lsHBP9PW1s4ll5zF3r1HyGQUampqCIfDPPPMk5xyylymTm3B7/dgGD48HoPt239NIjHGihUX4vHUouseYIT29iHOO281l1zyA7zeqknngCICrLuZqOW6E6nlepf/Nzus/0eW/9SeawDHca5yHOdUx3FOchznH/97wPq95YRF0//Kk/1X7LbmMl6OjVMsoC7+YGVdRdPQNA1d12ltbWXPnj3MmDGD9vZ2/H4/ra2tJJNJDh48yM6dO3Ecp8JEL126FFVVaW9vrwDqMsDetm1bpWfQtm10XScYDJJOp+nq6sKyLKqqqggGgzzzzDPouk5tbS1Tp07FMAxqa2sJBAIUizkKhUSlwqCzcxONjXMJh1uZO/cKLrzwURKJLrZv/zLx+FFWrnyQU0/9MOPjh9m6dQ0eT5BIpAVVNdxk8H6KxRSZzOAJrLaEn524D8MI4PEESaX6CQYb3NqtjRhGgESim97evcRi84lEYhTtEt2KQhMi2e5HgHUACQ1IufclEZAcQ2TfZZ90CAmOCCLguRxkZiKBZbUIS30t0keYd/dz2N3+LgTQ97vbhpEO7C+79zuqMMtvDr2JZVvEIjHmNMzh3bF3uWrzVRyLHyNrZrlh+w2M5EaY0zBHKrr81bx+7etEvBHuWHoHq2ev5tZFt1KwCjy88mFev/Z1YlUxrt58NUfjR/Eb/oqsvD5QT6KQYOOujSxrW8aU0BTqg/UYmoFP97GkdQn3d95PspDk0tMuRcEWVhUVGpYKEB5/TVhgKwvJd2Fkt/xtl+Tx4DT5fPvqhW1++YuALeuPvuQC6xKMdIp/uzAEw7tcRtic8AaXGe9iXCTgehDa/h4+8M/i8R7dMxFkpmoCzhWXSc6NiZxaUSEyU1hqRXNrsBwBsKWCy2AbbnWW5aaBH52cAK4Z8o56Qi4LnprwXVcSx11gXu7PLiYnJOLFpHit33+zBIypiiSHR6ZCw1myr1LBrYQpQfUsWP7dCZ/2/HVw6VZhvUPN/PSBW+n+/nLu/qdvcNsDv4T+PXLcICniL6xxsb8q+7GK8vxdxpys6+F2O2ENJ43fr3PWWc0YhkYuV+KWW57j0KExgkEPuq6Qy5XYt0/81o2NVYRCHkZHc9TVBRgczHD11ZtJpYpksyb79vVi2w6aJhMQixe38vLLV9LaGmbfvl7CYS+PPXYRW7d+kjvuWMrISJbbbltCoWBxzz2SGr5hw07Gx3Pcd99yVFRu/dAVbL3ynzm1YRr3vPBjBlKjZIs53hk+TsDjm+SRPsP1ZF+18FJShSw3P/Ug//LS06Ao6KrGW0NHpXareSY/2PMkmWKOan8VP3B93T956WkWTT2TqxZeilf3MJQe54oPXMxwepxMIYvt2Ixkxrnpg5+iOlC2DQxJZ7U1BNmdYB6Rz1nTPwuwNo9P1GYpPgk2q0i510tyeGDJCV7s9fLdUGGk7wQ1JMGCnlOh6fvgmSFAWfUDHhdk22AlYWCNnKlOZLmhAqxBGOf+VIrDY2MEDINcqcR1W7dyJB6nMRRiOJtFURRCHg8hj4egx0PI60UBgh4Py9raGMpksF1LU1s4zBtDQ0yvrubbF12EAiiKwpSqKu5+8UVsx6EnmSRgGDx64YV0JxIcHR+no6uLXDaLUSigHD4swHrBAnj9dUGdIyMT6PPSS0XmraoClI8dE512LCb0cDAolC8I8r3lFgHZdXXCZH/5y0Ihg/iwTzlF5MMDAzLe3/+9+Levvlr83WWkvGQJ6sgAU6ZIWvjMmdJpvW+fMM179wobDfDaa7JryxJ8N3++5KWdfbasn0wK+33vvRO/d3fLYXR0yDaZjJDouZwA61BILh9SKZlHMF0nS2enyMZtGzRDw1tTw5w1a/BEowy+9hpd27ZhF4tkBwbo/eMfOfD976PqOvnhYfbddRfp7m4UTSM3PMwbjz1GbngY1eMh2NrK+2+/naqWFjzhMH/54Q8rTHb9+95H3Vlnybaqiub1Emhq4rUHHiA3MsLJn/wkueFhXvrmN8kND1M7Zw5v/ehHmJkMjqrhXPQPwhJ//PNQELscXh9U14kcvO0ked1Pmi2p3qp2gk86K2Fkw33y/+Xxyfs683S49yfw99cKM6sownx//PPy2FM/E4Y7EoXbPy2gu6FZwD2O+L9HhLU3CxmG3unEMvMobuuEomqY2QR9B/6A7vVj5tIoqirtVaUiA2+9iOYJSMqL44iyzq3hchwbRROWevToa+he/wlVXTq6L4imewlUT8HMpStMtplPMfhOJ2Y+ieENYtsmZjErz6tkYncfg6IkeyuGgeLxwNgIOM5EenfnjooNSr3wIyit04XMARyziLX1d5CIo0xxWfBSCWd8DByp5NKuvaXCeCuRKFRV4VgWastU7N1/Erl5MinPWTcgWo1jWZWk72QyicfjqbDSxWKxwlgnk0lOPfVUli9f7tr+VtDa2sqOHTuwLItkMlmp6fJ4PIRCocr1ra6LylHTNEqlEplMhilTpnDDDTfQ1tZGIpHg4MGDlVovy7KwXOWoomgsXbqOmTPPJ53uJxisp7d3L6lUP9u2iV0RrEnXtzt3rqdQSFaqYiVfaD6KovKzn/2WH/1oNX19++npOU5n578BvWSzY7z11hu88spLPPPMz7j99lmUSllKpRGuuGKcb37zLPbt6+C5557lxhs3c9FFj6Gqf6uA9QCnImFmpyC1XLOQnJ9TT/j7PWD9P7f8hzPX/yvLe8z1xOKUfV669u9Kx51CHsc0JVzD40HRdJx8HjNUVUlLLKcjKoqCYRiV+9vb20kmk1RVVVFTU0M6ncbn85HP5ymHyjmOU5mx6+rq4te//jWnnXYaF110ESAXP6lUirGxsQq73dLSQi6X4/Dhw5x66qkVnzaApmnuicpEUXKVmb2VKx8GHFKpfvbseYgVKzYB8Je//LrCYqfTA4yNHaKxcS653AgdHfe4yd+t9PTsYcqUD6DrPrq7O4nF5rsnGoV4/Cg7d97t7gMKhQRebwRd9zM+friyP133E48fZffuB1ixYhNaoJ6SqtGnKDwLnIwA6G5gMRI4thaRep+CSG+WIFLvfmA+Mms4CDyIVG2FkPnNIQQsv450Vl+GnOzyTDDiAQS4pxC5eAToAZ4FVgIU0hzp2smchjmkzTQRb4SgJ8hgepB4Ps5QZoiTq08mZaaYFp2GV/OSK+V4tf9VFsQWVHxJRatIPB8na2bZ0LGBdUvXEdSDlequolVk/8B+zp5yNjY2lm3h033o7oncdmxURSVfElmnoRrkS3lJJldAyxxBObABZn8Fsr3gj0FwOlCCwhiYcfFAz74DAm0TsmsrJyxdKSWM2dgrwnznhsSXXb9Y1nMsQHGZ8TNl+zIj7bgM4MgeYa69dRJkdtaDkk5edQqgTrDWZkbY2ooPWzmBXZ4ibK2Zcau1TPFUxw8LGG98vwtKhYkQwGxPZrIdeyKFVkEAarJrov+68gBUWGyrKPtP9wi41f3y2vTvhVAL085exZOPrWXe/GWS6r1gHehBps07lyd//UvmzZs3aX0i0+T4VA1/pIGed9+gNmDJpET5uakeGNoPTWdTnpGnEHcnC1wm3rFEIm7myARO4dDhcTZs6GDt2sXs2tXNrl3dfOMb5zBlSphMpohl2Rw4MMzixa2USjajo1miUR+2DV1dcU4+uZZcroTHo6KqKqpKhfH2+3U6Oro5++wpFUbbMDR5KR2wLDm/HD+eYNOmTjZtWoHfb6BpCrv3djH1TA8//CtW+QuLP85Hfnwzj370NhpCNfxw75N8dv6HmVrdjGVb6KqGaVuYlomh6gymxvj+3t9zxQcuJpFPc2rDNDRFwiLf6H+X+mB1JVk8FqnHcRziuRRZs8AP3ftbo42UbEmCtxybVCFDSziAOnD1BMNccxOURqRjenS9BJ0NXj/xeNPjkO2QTuvRe8V3rTWDnRbvdZm59pwknyHHmmCc7SJgige7zHp7TgYrDlbfBEud3SVMtTFFpOq1d4J31iRwnSwU2Hn8OPXBIA/s3s3axYvZ1d3Nru5uHl65kqFMhlNqa/EbRmWbYqnE26OjrN+5kwfPP5+RbLbCQjeHQuiqimlZWI6D7Tjc9Oyz3LZ4MQ4wLRplT08PTcEgEZ+P2kAAzWXotEyGkKYJsK6vFzR6553CUssXmSDY979/omA6kZCC53Ia+OOPC43b3S366bVrJbBseFiSx9aulfFPPll81omEPH78uGis77tPkGw6LQz2jBkC2tevh9tuIz1zLhYax46JLHztWpF9v/GGZKyl0/J3LiegORKRU8XYmJDsjY3yt64LaX7bbYL5b7hBcP7evcJkDw1NMNyDgwLey+Fl5ZD0oSEB3I4Df/6zgP0ZLRmGX3kZX00N+bEx6t//flLHj0vq91VXkR0cJNDURDAWY99dd9H1zDO0XXAB8++6i33f+Ebl77O/+lWyQ0N4q6uJv/02dfPmUcrn2X///Zx+5ZUEmptF8uw4jL7xBpFZs9AMAyufp1Qs4quuZvjVV+m48UZiH/oQc66/HiMYRPf5MLweSQov0/2DvfD87wUEK4qw2IoqvuiZs+XJqgr8/FFhoGeeLnLu8z8mAWZDfQKMq+tg67/ChX8P9c1QKoJli4Q8FZdqrtS4APbDf4HWmVLPteVXsPIyaJwCP/0W1hVfovetHST6D7op36FJ6d9WSRK9dU8AB8iO9aF7A3gCooWzigVU3aiw3TjQ/9YO6macjeELAkiTiW1RKmQpFTIY/hAjh1+m8dSlaLqHUiGLZnjJxgfoevVpIk0nM2XOcsx8GkP3oSTi0jqz4hLIZbE7XkBd/EGoigjYDoUnmOvzPwy5jNtSc54Ac7OI3fkn1OUXodgO9vAgatt08Wzncyg+v5senpTU8VIJ+603oKYOtWVq5TvSKRZwBvqkd7vjBdTFH4LqGixVY8y9Rr3ooosqVbAHDhxgzZo1ld9nz57NOeecw4kByFu2bOHAgQN84hOfYOrUqYyOjk5KEi9fz2YyGQKBAADd3d1UVVVhGAamaVYY82QySSQSIRqNMjIywu7du1m6dCmRiJ9MZpBgsAHLMtm2bQ2LFt3M7t0PVNLBL774u5hmlnR6wGWu7yQQqGP79htYsuQ2QqFmPJ4wqVQvY2PvEgjUkc2O0Na2hK6uXVRVTWH37gdYvvw+DCNANjvK4cPbmTHjPEKhZrZuXcOSJWuJRKbiOA7JZFelCae29lSX0X5v+d9Z/tMz1+8t/3vLv+fJdkolnEJBgHcFQIDi9cuXjitz2blzZyWwoSyt+ev7p06dSnV1NQCmabJt2zZMd1p7fHyczZs3Mz4+TldXF+FwmNWrV3PhhRdi2zZdXV2Mj49TVVVFS0sL2WyWxsbGSq/gnDlzKpVcvb29Fe9MKpXCNC0MI0xt7SxWrXocwwhSKCTp7NzodgT2sX37DbS2LmH58vtQFI1gsJFwOIZppunouKcyIwgQCjWxbdv1FItpqqqa2bLlWkZH36FYTBGNTmPVqu/j8YRIpfrYseMuUqk+VFWdtL9MZoBdu+4lFptPJjNIoZQnoygowD8igLoJAc2dCIs8H5FuW0hv4BUICF+MwKQgkuB3IwKyr0bk4yoiJ28HPolIwlMII+5DJOQn/vMGgGMIq/0Jd8yw5mFJ25KKj9On+3Ach5AnxLf2fouWcAtTwlPQVI3rtl7HkfgRHBwWtiyshJ8djR/FwaEh2EBPskcY6kQP9cF6BjODXLf1OhwcmkPN7O3di6qohDwh8qU8qWKKd0bf4erNV3Nk/Aglu8T1266nO9lNladKQDe2AOuuJwRAR+cKM63YMPayhJUFWgXsBt0L4fzACdJr3U3stiSgzExL33X1HNfnXPY121C/qPwf4oI/m4oc3dcM2S4B8l1PgJmSBHHFYNJiBAXEllPDbdfD5AmJ91nRBFym+2VdEGa76WwX6DMxOQAuk32MCfO1A/EjE/5t25wIRisz1+X1iinZ3srLMfnrYWCvpIW/sEb+zvTJ6rWzZZ3DT8FLmyBQ7046IKz6C2uIF/30jbi6CkXhyX97mtpokBojLWM6ttR9vbhWfg82SSd2ul/k4P5aec5WQcZAAX8dRS2CA7S0hFm7djGPPrqPFStmcPvtS4jFwhSLFvv3D6BpKgsXtpBMFti3r5eGhiAej45hqEydGuX48Thf/vIzdHcn2b27G8tyiEZ97N3by5EjcZYsaUVVFUzTYs+eHg4dGiWVKpJOFyXQvWgxbVqU7373YoaGMpUu7EVLYvzLS08zL3YKfsPLylmLWPuhT1MbjPLoR2+jOVRHc7iOLyz+ODWBMH/uO4imquRLRd7ofxfLvZD3GgY7Dr/MT1/ewtwppzCaSbDhhR8xkBxh3pRZNIXruPVDVxCL1KMqKqPZBFW+IP/isuI/3Pskg6lR8maBgdQo97zwY3JmActmwlddu06AtX/BBDOd23fC43eKJNxoAz0mid7ZDhi6Few4KCHpwDamg1OETIf4t+28G1SWlL8rjPR6Wc9O/q0X24iBEhA5uefkScAawKdpLGhp4YHduyse6BUzZnDbkiVYts2mzk4s2yZdKFB0K2+KllVJGk8VixX/9PqdO9FVlXyphFfX8ek6uqqyrK2NmTU1zKiuxrJtzmpu5pS6OhqCQWxHbC+24+D1+XByuQma94knJLXr6NGJVPDZs8WHfeSIyLUDAUkKv/xyYbbLku+HHhIzcigkCNfvl78fekgMy0uWiCf7rrsEWPf1iTY7FJLv3/37RXa+ePFEyfTgIKrqoKoOXu/EcJoGS5eKXPvwYWGsh4Zk6L4+OcRYTFjt/v4JNvqxx2TewOuVOQFFkXFGRmRu4cYbBYg3N08kkM+dK6z18ePwzW/KexgKyaE2Ncl568QgMqCS2v3Wj39M/Vln4aupwXGciu969lVXoeg6Z91+u3RU33YbXc8+y4HvfQ9FVfFGo+z7+tcpjI1x9te+RigWw7FtnFKJ4f378dXXg+Pw0je/CYqClcux7+tfJ9DYSPtDDzH7mmsINDRQGB9n9M/7BQz/y0Ny6zgCrFd8VNhowwv1UwQcTz9NJN9mQda7/HpY8CEB0vv3SKAZCNCuigqw3r9H2Okya+31yfZeH7zwpABwx4GTzxDCY8uv3G3G5PT+qS+CplM/c76kfFc3MXxoH4n+g5i5NLZdYuTIy9iWSWasl2ImTqBmCt5gFFCk59obwMwL823mMyi6TtNpy/AEo6iajqobmIUMqqYzcuSliR7raBOlQpbMWB+qblAy85VwtKbTllHMJhh+dw8qitRfLTpHPjy6jtI6DXtfJyiKSLW7j0G4WoJ2PV4IVqEu+RBKICTAO51CXbRMHvN4pErLtrD7usEsis96fNS1TZk4hTzKnPehVFVhdx2BUgnHlu8mtXUqdof0XTvpJCTi2GaRQCDAOeecg6IoeL1eFi9ezOzZs/F6vaxcuZI1a9Zw8cUXEwqFKrYT27ZZtWoV119/PZFIBMdx2LNnD62trRU5eTabrfRdZzIZLMsiFotVwn/LSs9yr3YikcBxnEp4765du1AUlUIhRXd3J7ruZenSO8hkhivp4O3t6+jt3UcmM0hNzUwuueQHRCJteDxBzjnn63R1dfDcc7diWXm83ipCoSb27HmQSKSVTGaYWGw+6fQAF1zwLQwjQE/PHjyeIG1t0pRjWSYXX/xdAoF6FEUCh09swrGs99zT//9Y3mOu/y9bnFIJZ3SoMpOoRGtxRocqtQkUChAMYarapJ7rcu9fudu6XIlVrtcqM9Y/+MEPuPTSS2lra6sw1bNmzWLhwoXs2bOHSy65pMJ8l/0oZU9LKBT6m5lC27bZsmULixYtqpygyp5uVbUZGztEMtlNa+tiVFWnVMqjadJJffjwdpe1flSeu+OwZcu1rtdFfNSLFt1CJDKVvr6XCAbriUSm8eyzN/HWW7/lsst+Q0vLQjTNQ6kkVRXbt99QmV1ctep7jI0dxuMJsmPHXZVxPZ4Q4+NHaDppJe8qKlWIZzrORG2WCy3IIyx1CAkeO9HX8hWkq/pGxKsdAM5EEsLnIqx0BJF4NyAS8fVIkuMMJvzXnUCr++MAI+5xBACtkOad0XfoT/ezILaA8fw46UIaG5ugJ0isKsYXtnyBX7zxCzZ/YjMtkRY27drEfcvvw6NJh2TACGA5Flkzy63P3craxWuZXj2d3lQvzx5+lpUzV3Jo7BD1wXoe2fsIm1ZsEka7VOS1gdeYXT8bTdUIGAEShQRRXxQc2N2zmxVTl6BYeZRiHPxN4uMtZWH/bXDaLeCth/H9ArA1v3RPj+6VALJsz8StrwnCpwi4VnVXzqq5jLMq9Vv+KeCtFdl5oEV6refdJ9Lx/IiMbZsuc/2wgHYjImAx3ev6nn0SBKW6UbsV5lk5gVC2ZRvV47KCZdAhFo1JHmq76IJcVfYRnjqxnqqLzLzMkE8aw2WzbVN80JoH/nC9SMNfeQAOPsE1z81gy5t5BgYGqY1WURWp5tCBV7nm+pvYsm2b3F9TTVXQy6Hf3c5x3yIuu+JacrkMqgL1DU3cf+965s05Vaq1NA/kx+DYszDtAoi/KwA+NyyVXIomYN4TEZBdTIAnTEap5fDhcbq7kyxYEMPrnZgIPHYsTk9Pkvb2tklstcejk0oVGBxMu33ULYyP5zjzzO/ysY+dxiOPXIBtO+zdKyB8aCjDsmVTOXpU9jN/fox4PF9hrGOxMPl8yfV0R+jqSrBq1S/ZuvWTLGqPYSoFHMchU8xRG4wylByjPz3CGU0z8WgG49k40UCEvFkkYHjpTQwzkB5l7pSTyZdMHv7TL/jM2ZcwmB6jqaqW5nAd//Ts99l+cDcXn9bOnSs+X/H+gkJPfIgf7P09Vy74CFF/Fffv+BmfnX8Jr/e9y/JTFpDMZ9h9/HXe7D/Mzef8PdU+XdL10cEp/JWn+nbQp8vnfBIDXYTikYk+aiUg0m9sNwF8o1R6afWQfx1888BOSC0XDuT3T/RnY0/uytZqwc6B3iCy8b8C1uUlZ5q8OzZW6aZudEHv/oEB5jU1MZLN0pVIsKClhYA7uXvI7bh+eOVKhrJZNuzcyZ1LlzItGqUvlRIJuSF+VdXtyR7P5yUUTVVRgGOJBPd0dLB28WKmVFXR4Dho110nqFLXhRp+7DEB02Vm+utfh9NPl2qttjYB3wsWyPqZjLDOliXotaytbm6W+xxHkG9VlTx21VWTGe9/j45ub5fv4717KS49l9GMj6EhhZ4emQMwDNn1kSOCwW++GaZNgy9+cfLQ6bQoy4tFF/fpEz7qUEhYbdOUwwwGReVertuKx+XprF8/cWg338ykru077hDbuMdJ88r6b1I7Zw5NixcTaGwk3dNT6Zsud0+ffuWV6MEg/tpaN3RLk/W+971Kr7VInhWyg4MMdHYy+sYbnHXbbSiGQba3l7d+/GPm3XgjiqaBqvLUihVc8Jvf8MZjj00w4l//OsOvvoqvtpa3fvxj5nzus0R2b53wQEeqJ4zj2bR4oh1X+WN4RKa95ZfCLEdroOuQJIiPD0NNI9Q3SZBZNj0xsRKKuKC8CMGweLWtkrDXhgBNvD73M2FLnVekVsasrsfy+3HC1e5Xhkoxm2Dk8Es0n3EepUKG9PAxcvEBaqe9D83wYdtmhdl2bBtPIEqpmMUuFV1PtsPAWy9SN/MDmLm0eLX9YRzLnCRyskpFht/dQ/PsD8md5WosRcVRFPFZKyoqqiR2JxNuoFlOPqPVNQJsO15AXfIheb0S48JeL/4gVIWhWHRZaUOqt0CuOwNBUKVZBdMUpnp4ELV1qtSnFYsVD3aZ+SYYEuWcouLER7F3voB24aVY235PafklbH7+eQ4cOMCcOXO46KKLKJVK6LouHnbLore3l6ampkrOj6qqFIvFSsd1GUwXi0VSqVTFN30iHiqPVe7THh8fr7DW1dXVlVA0j8eDZVn09PTQ1NSE16tQLKbJ5xOEQk1ubIOJpp1gmTGzOI6NqhpomoFtl1BVg0TiOJ2dm1ixQiyKchwqxWKadHoAx4FIJIZtW6RS/a6fez6a5qG7u5NAoJbdux9wu7El60HqwFJuZ/ad1NXNmnQsJy7utwYe3pOB//eW/x5z/R64/r9scQoFrKefmAg5W3UZ1uZfi8Qnk8Lu3IG68u+wdJ3RRJJkMkksFkPXdbZs2cJbb73Ftddei8fjoVAoVDr/SmVmwQXj5ZPUwMAA4XAYXdfx+/1omlYZ57LLLqOtrY1MJsMPfvADvvjFL04KlQgGg8TjcRRFIZlMEg6HJwWoOU6eTGYIny9KPh/HNHMkk92Ewy10dGxg8eK1hEJNeL1hHMeiu3s3DQ1z0DQPuu5FUTRsu4SiKJhmlhdeWMd5521A131ksyMnhJV9BcMI4vGEAIdCIYnXG8HjCeE4FopiYFk5+vpeIRZbgKpqOI5NwROiU9UqQLgRAdN9CFv9Ffc+DTlRDSMBZvuATwE/BxYCv3Dve8i9XYqw1Ib7oyCs9teQ5MatwDykh7AcbeRBmPJuJkLT+oCmQpKh9CBRX5R9vftoCbcQMAJkzSybOjexacUmfLqPzu5O5sfms693H2c0nIGhGax9bi23Lr6VqZGpDGQGqPJU8eTbTzItOo3WSCvrd67ntsW3cXLtyViOxa6uXRyLH2Nhy0I2dm7kjqV30Bpu5cj4EYYyQ8xrmgdAwAigKipeRcHIHEPRvOKfRoNXvwQnXw8ju8QnPefrIvvOD0MgBgfugdNuFn9v9AwB4r568RKrbhqPaiBSZSY8yo4t0u/QNBnvrQek6qvlI8JSGxG3JisOpbRIxHFkzMRRYaZ9dROS7TLgjkyf8GXjvlknnlLL4NsquMFm4cn/sOVAM6sgDLQnfEISuOmmC7lBZqITZ2LqBpmMyMdlu8RhSHWLtPvlTbBskxy3VZT1k8fgpftg/lcEFB96UiTgsXa5ALUKYARk3VJGPOjYYGYnjvfFW6WWyxOS+4dfh+b5E0qAzIBMHJRyki4enELCd9pfBZZFmDYtSrFoYZoWgYBM4mSzwspnMkVyuRJtbRGyWROvV2N4OEs47GX//gHmzWvC79exLAfD0CiVLDweDctyGBnJ4vVqpNMmkYiXUMiDbcvYt976HF/60gKGhzPMnx/j+uu38f3vryKdLRCp9pAp5sgUc4S8IicGhQMDh2kM1WI5FoqiMJwe54ymmfxl8Agn1bWSLeYJevz88dBLvNLzNl9dcSUAf+57hwY3wOyWD/4j8VyqEmZWH6rm7aFjlVC0O1dcScFNcT04dKyyXXndd4aPM7uxlYhXR6nIwz8DTY8iWhZHgK4Wdf3RJyx2Ecl5NQSUl/rl/pG7JmTkdV+XkDRrSHqz/fMFiJtHYPRukYHrMxH9DeLnHrpN5OZ/JQX/95ZiqUTBsjBUFdO2K7cOTJKNr1u6lOZgEO8J2SE508QBQh4PClCwLFRFIe9+HwHsHxiguaqKezo6WNfezvTqaq56+mmeOHCA1bNn841zzmFGKITx7rsoGzeKPDsQEBR69KggyzvuEEr3RA11WT7+la9MlEZffz1861sCliMRQavJpFC/ZQ9CsSge64cekh9J4hPEfP75AuJjMUHN99wD69aRnnYGPf0ahw9P7PaOO0Q53tMDL7wgvy9eLLsYHBTwnMsJa+04Mtx998G6dbLNvHnSYX3iUzYMUbwPDQnWLz+1VasErD/8sLymHo+w2B//OHzsY1Lz5VWzlNIpciMjIgW/+mo0n49iIkGwuZmxv/xlQjJ+1lmke3v5ywmhZWYySX5sjNDUqfiqq3Fsm9HXX8dXX0+gvp7xt98mctJJ/Pnhh5l1xRUEm5spplJ4wmGKySS6309hfFyC0665hlAshm1Z2MUiqscDpRIe1UGJjwnj/PfXCuiNj4hMO5eVcLJCDgIhAc0HXoXT5gnwHh0SxvpTXxLJQC4jdjp/0A03KwhYbj0JMkmp15p+qgB1gJ//s8jPUwkJMrvoH4Ql/5eHpM4rlcA69UyKuaQbNrYAVdNRVL0CJBVX0SRBZc30vvE8if6DRJpnMWXOCsxcshJIVirksEpFsvE+PP5IpdorWDOF7HgfujfI8OGXJMQsEHEj3x2y4/3o3iCGL4hdMisAvm7G2fh8YZyuoxNhYu3nCtBumz4pEFe76KNStXXwzUogmaMoKLaNo6puaJmEXToDfagtbZJOXsxjP7dF8n+qa3EKOfl/CYYqDS12z3GUxuZKMCS6geJ+7zpmEWtogHxDM4VCgaqqKmzbxjRNVNcC8txzz7Fo0SKi0SimaVIsFgkGgyiKQnd3N8FgcJIEvFgsomka8XicTCZDU1NTpfEml8tVmm0ymQz5fJ5oNIqiKPT09BCJRAgEAjz33HOVelpFsQELx7GJx49VrjGTyV4ikRZ0PUgo1EihkCSdHiSd7qelZQH5fIJDh57h9NM/LteXrj3R46nCcSxKpQKGIed3yyqSy42RzyfIZAZpaVmApvno6tpJIFBLJjNMTc1JlEp5qqunV8C+zxfF4wmjacbfSMOLSLDZeqSS61TeA9j/reU9Wfj/hcsk2fdfL5o2OeRMVSXR8YT6BBQFO5PBMAxisRi9vb3E43FWrFjBrFmzCIVCldoBgEQiwfbt20mlUpXHyv7strY2otEoHo+HbDZLsVhk+fLlXHbZZYTDYTZv3oxpmqxZs+ZvQiUSiQQej4dIJFKRn69atQq/38/27dtRFB2PJ0QuN+qGjPUSDNbT0bGh0l1tGAFKpTzFYoampnmoqlQXbN58NcViikTiGJs3X00mM8S5595NKtXPli3XUiplSSZ73ACJewgG6/GUu4rB9VsfZfPmaxgfP0RPz14aG88EoFTKi+THsVniOPQj4WJdCJB+CAmHaEQYawuJwS+z260IiG5Bwsc+BjyGAOlzEBhVPpI9iHe7CfguAqyXIBAr4q5XhbDUDcAiYJSJ1HFVNciWsly/7Xoagg0EjEBF4r2oZRF9qT6u3XItrZFWfLqPBbEFvDn0JoOpQW5ceCMNwQZypRz3ddwHwOVnXs7SqUvZuGsjTx18irA3TMkuUSwVOav5LD515qcIeoIsaV3CQ7sfQlM1gp4gC2ILAEgWktiOje3YaFgCrK0M7LsGMkfg5C+K7Hva5XD294RhDs2E+qVw8FsCiAOt0NAuoDntSqhtE3ID5X8QFwDnJQwtfVxezfrFIv82amH+92Hap6Syy1c/0ZVdyoKnRnqy84PyboSnSke2XRT/tFWQC+bIjMnAuizlpvIxkgtuFEnv9riMoGNNMNZlGbWnSsC75pvo0FY9LisOlSovu3SCHF3CbQSQ58Rr3TQfojPhvMfACMnx/PHLkO6G7OBEhZYRgtM/BbGlsn/HgqFXRP5tpt1QtZJ4rF+8VbZVVBk/OyCyc80nPvLcqBsEYIukPX5EgLW/HjxVGLpCKOShVLJpb2/D79exbYdi0SIeL5DJiHT7hhu2Mzgo6eGNjSFM00bTVGzb4dChMfr7U7S3txEOy1hjYzmKxRKappLPl+js7CYQMNxqr3EAbNuhUChh2w6LFrXwwAO7WbAgRiBg8O1vXyRzFx7cELE43+n8DaPZBJZtc+8LP6bGH8ZvGEytbqIuEOWs2Kloqsb7YqcynpH6rpFMnOWnLOCWD/5j5aNQE4jQHK7jtnM/jdfwMJgeY8fhl/nJS0+TKWR5X2wW//bZB7hzxZWoioJP9+A3vMyLzWIoPcYVH7iY0WwCv+Hl9MYZpAomlqPjND4G09+Bpm8JkzxwNRTfkSRwOzNhUygvqkeAs+oTBrqcNl7pwb4T1KicLcx+qeQavF7GNrtOCCsz3e7rY6AEoenb/0PAGsCj61R5vfgMo3Lr1TQyxSLzY7GKbHzDzp0YmsaxeJyrN2/meDyO3zAIGgbmCTWTuqrSl0pxw/bt9KVSzGlo4B5XPr6howPbcfjKCTVfTaEQBxMJzOnTcR57TEDx+LhQvtOnw3e/KzSupsnvjiOM9SOPCKD2+URTXSxKNLemCahubBQt9te+Jlrqjg5hu8vd1488Ikbmjg7pyzp4UNBsc7Pso7dX+rE2bMCjWUTCTkW1/tRTojbP50UO/pGPCB7v6BAmuozjk0kh33M5GXbZMpGLn322AOneXpk7AGG8y4r3cuXXPfcI5l+9WkC518vfdG3fd59sl82BEQoRaGjgrFtvJTs0hCcc5u1/+RdUr3eyZFxR+Mv3v0/vH/+I5vXiCYfJj40RaGrC8PvJ9vdXqrUC9fXogQDRWbNIHDrEvFtuQdU0Rt94AyuX4+W778bK5zFCITS/n/l33YW3upr8+DiqpqG5hd0j774rDOjzvxfvs64LsJ5+mvRXD/cJ2Pb6JCnc64OTTpcwssS4AO6/v8Y9fysCkof73GJxE469I6y41ytMdFVUxhnulyC06bMEwG//jbt/Q96kiz8ptV7TTgFg+NBeEv0HGTn8Ero3iKYbEmiWS9H35vOY+RSB6mYcFOpPEgl5/UmSgWL4QjiOTd+bf8C2TTz+Kqpjp+GPNND/lx0Y/hAoKv7qGLqviqZTl1HKp8BxcOwSpWKuUr2lqBqaN8DI4ZfleI68hI2FGjsxTEyAtQOTrisdRUFtPxd19WdQmmM46ZTbIOFAsYD94vMyi+Pxok5pwe4+hjM6DI6D0jpdPpyOI/Vp8TFIxKUmdmwEZUobZNJY2/9NxlA1sCyRjGfS0DK14rMeHx8nm82SzWZ55plnSKVSxGIxdu3ahaqqlfrYRCJBV1cXoVCo0lVdruvavn07yWSSdDpNQ0NDhQHPZrP4fD50XWfr1q2YponP5yOdTrN169ZKZVc+nycWi5FKpdi6dSvFYvlc5dDRsYGDB58ileqnra2dQKCBUKgRx7EpFlOVwLOtW9dgmhlmzlyJYfgr9sRMZpBiMcXmzVeTTvdh25Yb2nsdpVIWny9S2b5YTFW82OFwCx5PCF2XCY7nnlvLt799Os89dyummaboWKQce1J3dZH3qrf+Ty7vgev/jy1l2bf19BMi9/4rgK3oOkptg/hh6urBtnGScRxNl4qD3X+CdAq1KkypVKr0+pVTF1etWgXAvn37aG1tRdf1Smp4Z2cnjuPg9XoxTbPitwZIpVK8+OKLOI6Dx+Nh6tSpdHZ2cuDAATo6OsjlciQSCQzDqNyfTCYplUps2bJlUspjOp3mQx/6EOCgqjpjY4dJpQZobV38V96VO7BdD+rQ0Jt4PCE0zUs6PcDBg09RKCRJpfpZseIBgsEGPJ7QCWnhG4jF5jN79mqWLr3TnTW1Kye1ROI4yWT3CUnlZ2IYfkqlHNu330hDwxxMt1apnPrtR0DuPyM+6aT7EwI+AIwjANuPAOENiCd7mIkU8BQSZnYEkYvPdcdMA19EAtM0d5tX3W063NtbEObchXAEgJxt0xBo4IEVD1DtqyZXynH15quJhWNcdvplbOzcyBMHnqA32Uu6mGYkN8Lcxrm0RFqYGpnK/oH92I7NxhUbCRgBBtODZIoZNq7YyG8u+w25Uo7O7k4UZcLTDfCx0z7GQysf4lj8GHe/eDeqouLTfTS5/uGRzAg528bxN4mk++zvSMp3+BSoPkuYaoDUYXjpOsgcg/c9JN3XY68KcNb8bnWXJsA6fQiyxyE/JNLtcgp4aKoAxfywAERfnbxC+REqjLBjyTp6SMbXfMJg591EX8cSpjo34kq+XZ+3VZZ1O1TSt0+832ULhD1mAiyDm0CuCZhWxOcsoNuZGFPzTISg2aYw0+UqrsRRuT9xGP54g4BmRRVg/MIakW3rAWhfD6kemLIYYksEQCePQ2+HHJfqgR03uB7tfhnDzMAfvijH0r5enrvmgWnnS+VX03w5loGXxL+NIyC76QNg+GWsVx6AYCOObTE4mOGGG7ZXEsI1TUHXVY4eHce2HYJBD0uWtPKtb+1BVRVUVWF8PMfAQIo1a7a5PddpAJLJIqZpEwx6eO21AanN0jXa29vw+XS++MVtzJnTwNCQpIx3d8uEx+WXn8ljj12E1yvy456eJCMjGbyGgaqoLrg9hZ++tJl0Icv2g7sZyyXxGT6OjfXz1tBRehJD3P3cD+iODxLweivp3z7dSyKXJp5LUrItRrMJBpKj2I7D+ud+SEOohgc+fBOfnX8JtcEovYlhuhND9CdHeK33IH3JEf7p2e+TMws0hGr46ctbaAjVoCoqfxk8Ql3Aj0ZO0oL1Ovn8mL3SXT32APjPhtxe/puXRKpH5NxaBIxZkgjuneXeVyUS8LEHJrzW/gUuAL9DfN1loK2ooIX/h4D1f20pWha3PvccXYkE65YuZfXs2dyxdCmGqlZ81t3JJFnT5NDYGHt7e7EdB01VsR2n0nW9sbMTTVUrndl3Ll2KpihMj0b59kUXcXJNjVR/xeMYR46gXH21gFy/Xz7bV14pyLSrS9Bnd7egU8OYKHq+6y5hqi1LgHNXl9x35IhQyMuWCdBub5fHjx2TmO1CQe5vaBAEPDAgYWddXeLzjsUEvd5xBx4rR+0bO/D7He64Q+7O5YRAnz9f5N39/eKLNk0ZNhiE+++Xx/v74dVXJYy8vV3k3h4PLFwIb74phzl/vgBtxxEJ+OWXC1Pt8cAPfiCHOTz8t13bgYC8FLquku7p4ZV77yU3Okr1rFloXi9z1qyhlMlM6q7GcZh9zTVc+Pvf4wmHGX3zTapPPRVfTQ16MEhudJSzbrsNo6pKPsrZLEYwSP1ZZ6H7fGQHByty7/r3vQ/VBWOG20VWymbRvF6Sx46x7+tfJ9vfT+OcM+R8+LHPSTDZLx4Vxnp8WEBwVVR+z2WkqiuXE/B9/sfkNlojIPzwAQHMXt8EgDaL0lH9X74NY8Nw8hzwBSYSx3MZOP19wnKfmCA+OiDy8sS4MOWKQtNp53DyOZ+lefaHsEtFzEIWx7bQdA91M96PmUuBYzNw4I8YgShT5qzA4w+7qeE7UVSN5tnnYnhDmIUMvW88j5nP4I+KhxscHMvEzKUYPNiBL9xQqbkzs3FUVUPz+Ok/8EfMXIKm05YJgJ95tsyR6jrqyr9D/9IdKK3TBDibJkRrpe41Uo2iaijVdahtMyCVFDBdcr0HuoF23oUyCVEsSL914xScTAoKBZQ588R7vfnXkBhHaZ024e3esxMFN4384JsyRnwUa+vvhE2vCmNaViUXqKOjA5/PV0kP37NnD7Nnz+biiy8GIJPJcPjwYVKpFG1tbYRCIaZOlZAv0zTZtWtXZZxYLIbH46lkAPl8vsp168KFCwmFQhXf9YoVKwiHw5Ux58yZQyaTYdGiRXg8GsViGtPMsXLlw6xe/TuamuYxNnaI7dtvIB4/iqKoeL1h2tra3dtlpFL9LvB2yGSGOHjwKTo67iGfj3Pw4FMkk70oCiSTvRw8+BQ7d24gGKyvBKUVCkmSyR4WLbq5EnK2Y8ddjI8fYcWKTcyevZrly+8DI8S7upcrFZW3HacCsD1I5dZmhOzREcCddm/fW/7nlvdk4f8fW/5G9n3JahR35vbfXb9YxBkbln7HcmK4blBUNZ7evHmSxznudgcuXbqUcDjM+Pg4nZ2dlS7Bsuy7nAweDAbx+XwEg0G6urqIx+O0tLRUtgkGgzz33HMsX74cTdPchF+VUqlEb28vLS0tbN26lYMHD/LlL3+ZfD7P4cOH6e3t5eKLLyAeP8TOnetZtOgWfL4owWADpVIBrdwPaRVJpQZJJrtobV0MyH2aZpDNjhII1FEqTSSOt7evIxqdztat17FixSZX9m2jKCqpVL8bdPaFih+7nMzY3HwWmcwgHR33sHjxWnp69nD66Zeh+Ks5pOpsUBTuAKa6r3k509mFRygIc90M3IP4q2cggk4FOXF1IdLvkxCWOouc7FQmOq6PIsD9EcTH3YQw2BrCbpf/I/4ZSR/XS0WOjr7Nxl0buW/5fQSMAKZtcjx+nKHMEItbF9OV6GJDxwYeX/U4h8YOsbFzIw+e/yCjuVHW71zP7UtupyHYwP6B/cTCMe7puIe1i9cys3omiqLQ2d1ZSSNvCjbRneimK9nF/Nh8AnqAjJlBURRKdomsmaXGX4NpmXg0D1YpR01pGOXAepi9DrSA+J4VDV75Ipz1ELx8vQSMta2G+Y8LQPbVS+2WowgDW2aCNR+VELORfRBoFBl5eWw9KMD7L/fAabdB1cnyLlimjDG+XwB+aJqM8fL1cMbXJDHcsQXUpnuFsS53O5/oxa5Iwh0BuJrH9VW70vRyR3Y5BdzMCOusIAyzEWSi49plpZWys16R4DFPlQSHKaqMYRWgdyfUnQGKDjtvg/ffCH17BAh7qye6p42A1GT5a2U8Mw07b4cP3Ao9f4K+XXDuoyLx7t8jAFpRZaxQDELNExJ7bDlmb8SVfzdLwJmZlR5s13OHopDMaezc1UdDQ5Bo1Ed9fZBczmT//gEWLhRVlWlaeL06qqqQThe59dbnuOWWxfT2Jvn4x3/Nb35zGUuWtGEYCtlsiZdf7mPu3EaCQQ+KAsPDGerqggCk00V8Pp09e3r4+Md/zYc/PKvi0U4kCkQiXjRN5Ytf3MYDD6xA1SGtxidJsR3H4f4dP+Mr532OeC7Jdzp/wxUfuJifvryF7Qd3s3LWIr664kq++dwPuGrhpTSH6xjLJqjyBnlz4DA1/jBjuSQtkQY+8uObWTlrEV87/yoALNvmvj/8hC8v+wTZYp6Ax8e3XvwlW97q4MnPPsB3On9T2cfXzr8K08oRVXtQzB4wWtx07rWSAJ5/TVLDFb/Ivr2n/K+DXjsHxXcnOq49J4NTlPe8WJaI3/k/zFj/t5ZyKvjGXbv4zsUXky+V2Nfby5LWVo67PdWPXXQRtm1jOQ5eTSNXKmGoKn7D4Gg8znrXi13usnbA9bRDR1cXp9fXo6sqrw8O8qH6enzlpPDhYYm/dhzxWPf1CSO9aJF0WZumoNP6eqGKP/Up+PnPBanmcuKXrquDaHSi83rtWjEyT5kijPj4uDDXmzbJE/71r6Un69FH4ZprJpumXb920VfFaM6PoqgEg7Lr2trJEvFDhwRQl2XeiiLA+dChiafW0iKy8FhM1r33XiFxfT5hvf1+eYqKIji/bC13HJkPGB2V7ct285ERAfI1wTQvfWMiBXzOmjV43OokxTDIj4yIZNv1VTulErZlYaZS+GprJ7quXUD96r33VlLG/Y2NVLW1kTx6tCI599fXo+o6pXye8YMHqT3jDBRN45X16zntc5/DV1PDa/ffT928ebQuX44vGJB5SMeBnz8iAPqb3xeQ+9KLUs/1yTXikf7X74n8e3xY5N0zZ0s42W9+COf9nTDcJ80WMD19loSdZVLCUJd7rI+8DdE6YaVxze62m/Hx83+GPX+Qff7jl+DQAaipx2qMVWThzad/kFIhi5lPE4g2gaphFTKougdVF6uMfFWY5JND+CNNoCiY+dSkhPF3d/6UtrMuIVDdDFBJC8/FB/FV1YKiMPj2ThpPXYpVzDJy5BWaTluGY9vkUyMEa2KAg+MoKKoCtoMyPoqTTEzk9Hg8KF6/5Pl07kBtPxcCQRSPF7vrKGpjM47H684DK0L6OI6A5lJJJqsUVWq6DAO7+xhKQzOKYUiXtmWhaJp8faoqimUJKPcFsHul8xqfHzNYxXH32rOczq3rOqZpTsoJ6u7upqGhodJEo6oqtm3T29tLOBzGMIyKVLzsnTbc1oLytqqqYhgGlmVh2zaO46CqaiX4t1w/m0wmK+06MmYJ285SLKYJBhslUFZR6OraxRNPfJRZsz7MhRc+iq773Kaa9bS3f4VIZCrj40cq16rJZA+RyFTC4RYcx0JVDXp6dtPYeKbble2gaR7Gxg7T2bmRiy/+DqVSgd7evUQirSQS3fzyl6vc/KDHAQdF0SkYPq5SdZ4AViNVW1XueTnHRLf1HUAbYjeMINWw78nEJ5b3PNf/ly2TA8uWo9TV/00FV6WeSxM5jVMyIZ3EScSFve78E1z4EUaTKXbu3OnWB0TYvHkzhw8f5sorr6ykJZYDzCKRSKW2q7a2tgKQy+FnTU1NGIYxKeRs1apVbg2AnHzOP/98stnsJJ/36Ogo6XSacDhMZ2cny5cvd30rJlu3XkdLyyLOOOMf0DTDrSBoIRJpIZMZxOuNUCxmyOfH2L37Adrb73ATFYcqJ7VSqcCzz97EG2/8YtJJRmYuszz//G0sXnwryWQP4XALwWADxWIan6+6cpKKRqfx9NNXVYLOLrjgERzHxgk2cpWq8gTwDsIa+wHXPYyDhJiVgfafEcY66t5mgf1M1HctQJLAjyJgW6YLZIwUcoLzIyfA8rIO6dYOI0C7PMNoAulCmneP/4k5DXOo8lYxlBki7A2zf2A/U6qmMDUyFV3VMW0TXdUrwWZvr3mbQ2OHaAw20hZtw6N5sG2bV/pf4bS609BUjZAnJJ81x+HdsXfZ2LmRde3rCBpS0aWpGn7dz9Hxo/Sl+1jcuph8Kc+6F9ax4bwNBIwAfiw8r34J6hbB1MtBcdxKrBgM7YDQyVA9D8yEhGTpVeIxdpDuam+jsL+2iVRypeUF01yQWsoKYEi8DXULhZkuV3sZ1QK2S0nwNrh41oFXviQ918OdAuIjZzKh8VYm12QVkjB2UMBqdIb7z4frozbEr+0qIkB1fdo9AlRVYwJsl33ZJ9ZyKSeO5QXdKxduIBMBquEC/pIw1PvugbPXChCOTBP5N5wgK3ckjMxXPfF6KQj7nR0UIF32hJc7thNHxKN99u0iBY8tnfBSV7WJXD47CN6oHKzqkdvEUdluwTpI95FtOJdDJwSaSWGBSi5n8uc/D7JwYQu5XIk77niBDRvOIxAwKJVs9u3r5QMfmMLLL/cxb15T5TN/663PsXHjCkZGsnR3JyohaclkAVVSv7j11ue49dbF9PQkaW6u4uSTa3jnnVE2buxk7drFnHJKLUePjlNfH0T12jyw6ycVQHvnis8D0gKgqRol2yJvFnh3pIu6YDU/3PskVy74CFPcOi1d1bEci5xZ4KE//YJPnnUB47kUZzTNxLRKPPzif+HGcy7Hb3gZyyYwNIOgx09/coQf7n2Szy34O2oDETb98afc+qErGM0m+NHef+Oz8y+hNdpEJj9MY3ot1Nw8wSyXvdL6FFC88h+veP+3QW/Fo/3XY/3X7v/fWHKmSdGy0BSFa7ds4RdvvMFn5s7lgfPPxwb8LqCO5/M0BIM4gO04DGcyNFdVkS+VeLmvj3lNTQQMA1VRKFoWHk2jZNuMZLNEfT66k0lODgQIHTuGUjYaz5wpSLOzUyTfZdl5Pi9p3mefLaoTVZXbwUFBoYsXT6wzZcpESNmePYJ+Fy2S792ODmG2Fy6cqO2aMkUAWG9vxWvNjBnCdHd1kVl2Ie8eVrnnHmkJmzZNcLplCZ5fvFgI7xPDxtatk6di2zJHEArBV78qad/ptOB+RREwXq7yrq+Xp6oo0hxWBvB33inAu74eslkZ++67Zf/hMChWHnvkuISWff7z+Orr0bxeMn19vPOzn3HWunUi+1UUbMtC1TSSx45x8Kc/Zd4tt6B7vQy/9pp4rBsbeWrFCtq/9S3q583DyufRAwFe+qd/4tjmzZzz7W8TaGqSfV11Fb5oVAD2mWeS7e8nNzpK/fveh2NZWMUiZjpNVXMTysgAiuER1jmXFbZ5fFiCyy7+hLDIjgO2e917+ICElD37Wwk2O/wXAcKfXCM1WyVTXtyjb0NNg/iriwVhqz/62Yl1innwh+DYQWHLDa+MXdMo3dcokEtjVdeRGevDF65D0w3XN52nVMhVarnqZpyNJ1QNtkV2vB9fuB6rmK34p81ciuMv/55I8yxic5aTGeubVOlVDjbTPX5yiSEC0SaKuRSGvwrLzGOXioDCyJGXqD9pPprhZ/DtnUyZcx6ObaNaNvaW303O6Vn8QZTaeqwtv0OJtaLMnAU+vyu9H5Ngs/bzIBjE3v6UhJxV10Iyjr1rh9RyGR4c1b0yKhaE8e7cgbryw/JeuGG7lEpQyMt7qCqyXscfUNvPxTI8jJkWiROuIcvguRw4tnjx4kr91rPPPsvKlSvd4QuV/CCPRyYv0uk0nZ2dFUKp/NiJY1VVVVXWByp91uXr32QyyS9/+ctK9VdVlY+xsXdIpweIRFrZuXM9ixffRnX1dEqlPOAwMPBnWlsXs3nz1ZXryosu+jZbt153QqDu46iqzvj4YXeMtUSj07GsPKlUfwWEh8OtaJoHx7Gx7RKaZmBZRVRVZ+vWNSxefCvBYAP9/a8SibQynh6gMH05G1SVOx2HWYpSAc1p4PNQAd6PAtcjysxZiArzvUWW9zzX/5ctfy37/veAtTM6hH38sJzAFAVF07B3viCyms4/oS5cBqpGNBrlggsuIBqNAnD++edz5ZVXViTfpmly5ZVX0tLSws6dOzl48GAlVbwsJzcMg5aWFhzHYevWrYTDYa699tpKz7Vt2+zatasiMTcMg8bGRnK5HMVikerqatra2kgmk5x77rkAyMSJxooVm2hrW8LWrdcxOvouDQ1zMAwfiUQ34+NHMYwAwWA92eyoK5vpJpHoYseOr5FIHKO7uxPHsbjwwn/mE5/YzNKlX0VRVBKJ42zZci3p9ACx2Hw6OjYQCNTR0bEBXRfpd2/vXmKx+ei6n1wuzuLFa5kz53JWrnwYXffh8YRQFUnu3oqA5alAHQJ+HQRSGUhydzUCnqe6j1+NBI7NQYB1PbAGkYP73PE6EXY7jADygDteP3CDu/317vv+LiInVxA/9yBQr2q0hlspWAUs2+LQ2CH6U/2c0XAGGzo2oKkaqWKKocwQlm3x2EWPMb52nClVUzir+SymRqeiojKcGcZ2bBa2LGQoM8QN22/gaPyowA8Fgp4gy9qWMZAeoD5YT8gTIllIkivlqPJWUR+s59ot19KX6uP6+dfTl+pjzdY1mKg48zZJqFj6MOy7FvzNIhOfdgXUL5Qnlz4qzLCZktqs7HF4/WtyayYFEJcB59h+CSxzTPn7z3dA9EyRlb90nTDe+SFhqLEn+6WtArxvkwDPQJuw5G4XOo4lIWqW63UuA9Gms4XJLnuOcT3QqhtCVvFJi4WA8DRX6u0Ca9xtyovtBlSVx/OG3UAzTtimvC8m2PT33yxhYqd8XALNnr9GxjGzIvUuuZ7s56+V6izNBefBZmheJHL3sgrAzMjY4WlwzgMCrKcsnqj+irWL3NyxhRkf2AfpQUkNty15/rFl8p5NWYJZcujuTlJfH2Tv3l76+1Nce+0WRkayLFnSRqFgUVXl4eGHL8BxYM2arRw7Fq8Ely1d2oauq7z6aj/9/SkWLWpB1xXq6wPMndvIDTdsJ50uMjyc5YYbttPfn+LGGxfi9eosWzaVmTOrsW2HjRs7eeKJA2zc2EmpZDNjRjVVVR6cksKVCz7CylmLuOLsVfy5793Ky9wVH+Du535APJdi3pRZxCL13LHi8zRH6nGARD5Nd3yAf3r2+xJ21jyTn768hTOaZpIqZPnjoZe4+YOfwqt7KNkWUX+YY2O9DCRHGEqPsf3gbn6099/waDp3rrgSr+6hxh/mtnM/TSzSSLaYx6MHMatvh9IwTqVy6zZQqyXATPWJj/r/BOgte7T/eqz/2v3/i0vRBc396TSpYpFNK1awevZsbli0iNFcDo+mcSQeZ29vL7WBAGnTZM3WrXQlEhweHyddLKIqCvNjMWzHobO7myPj41y3dStHxscp2TZZ0+T6bdvQFAUfCLAuG40tSwBxa6uAre5uuPZaAVJNTRJsZlkTMdtl1HnttYJi58yZ0E9v3CjJX/PmifQ7mZTfP/UpoXzLvVq6Lhrs1lZhrMsR311dUF+PVbS45x4ZsqdHwHEiIaeNefPkdXvsMfiHfxA2eePGibDy48dFqT4yIrsaGZG/dV0k4088IZi+tlZ22dEhmH7JkglreV2dHNINN8jLsHGjgPFcTn58Hgt/fT0L/umfqJo6Fd3nQ9V1dJ+PM7/0JTK9vbz8zW9iptMVBvPgT39K3bx5YNvkRkaonjWL/OgommHQ/tBDVM+aRaqri1fuvZd0Tw/zbrmFtgsuoPbMMznw+ON0PfMMb//4x2jBILVz5jD6+usouk71rFnsu+surGKR/NiYpIrbNsozvxaFnqa7EyOWhIp9co0A41wOBnrhZ9+C0UFhrJ/9rTDbz/9emOYrviwvXLEwAazD1cJw+4MC1i/9jEycHnsHPD75+dfvQWw6JOPCnFfXC5hHkePx+AAFf6SeUiFL7xvPY9slSoVcpTIr0X+QUiGDmU3Q9+YL6F4/iqoxfPilik87UBMTWfnpH8SxbQLRJsxcmroZ70dVDffvFCgKutdP34E/uIFgNkPvdLphaFkC1VNQVR3V8DLljHOxTZNcfABUHe3CS1E8HpxMGnXROTiZDKCgXfgRlNPm4IyPobgBbHbnn3AO7MfueAHyeZS2GRCOShJ5MonSMhXSKawtv4X4KAoKiqbjpFMi/VYkAM3esV2AdSYlv6cSKLpHJOIH9mN3/AEtJ4FiLS0tJBIJtm3bhqIopFIpOjs7K7VaqqpSKBQ4cOBA5fF4PF5RWhqGQbFYrFgUE4kEyWSS7du3E4/HKyx4OdC3bFkcGxurMODBYLAiN1+zZg0rV650Qb1dubYsV2Cl0/0kEl1s334DmcwQTU3vQ1X1isVRrIkaixevrdR1FYtpLKvIzp3rOXjwKTKZITTNwDACFdl4Z+cmN23cxDTT9PbupVQqkMuNkUh0cf75DxII1PLCC+tobJyLpnlIjr6L99gfedwucYpjV4C1TLkIYbMakYgbSH7QQ1QiYt9b/geX95jr/8sWp1DA7jqC0tAsPiGvT/oGSyYODooq0hsTRSoY3Pc/k8lUKgqefvrpSXLxcvBDIpEgFouxbds2Dh48yLXXXovf7yeXy+Hz+UgkEmQyGcLhMLt27TohPVGpMN3Nzc1kMplJ7DUwqebA7/fzwgsvcNFF57F589UcPPgUq1f/jtbWRSiKRjo9iK77yGQG2bPnIVasEOmdxxOkq2tXJS2xsXGuK8lR3cRFG0VRJkm/W1oWYllFBgb2Ew63Eo1OxTRz2HaJYjHpsuNZDMOH1xumWExXUhxzVgl/pIWCorAXCSirR5hm1xVZkXQrCBC+FZFvfxyp3Gp318sAvwVeRmTfZUn5GAKqcW9VZHaxD5lFbEYY8/L6axHgfTJAIc1Qup9qXzV7e/fSEGxgKDPEWc1n0Z/u5+Sak3ln9B0G0gO0hlvpTnYzPzYfn+7Ddl+rofQQUV+U8fw4+VIev+7H0Az8uh+/4ed4/DjHE8dZEFuAV/eSLqZxcLjjhTu4+9y7CXlCFEoFelO9NIWaKh3YmqqhoBDWNLQyyLXSED8AtQuEZR7dC/5WCLYIqNPcEJSRveKbNqLgrYH0MQHSB9aLlLwwDAc2wOw73J7oaSITz3ZBy4dFIo4KqXelE7uSQn6beL7BBcO6gORyMnh4qgtwHSbVYakalS7tSZJuzZWO97up4riBLym3XosT5OM+2a6Sbm5NgOnkMQHMmlfGOzF13MpLgFi6G5oWSHBaz05h02tPl5ouMwVGlcjOx98R9trMwb71MP8OeQ7ZQZHR4wjQNvOQ7hJGWzVkkiF+WJj3pvlyvMmjsHe9AHtftYDyfffABx+mIo0PNJK1/GRzJdas2cbNNy/ikUf2Mn9+jMsuOx0QlvnGGxfS1CTz4r/97Vvs2tXN179+DrW1fixL5NyhkMEbbwxx1lnNDAyk2bChg7VrF7NnTw+XXXY6luXg9cprVihYLnu9hGnTIqiqwpEj42zY0MHtt7czMJDiAx+YgmXZvP7mAEuWtmA7NuO5FH7Di88QiWO5TqssA8+ZBUYycX7y0tN8fsFHiEXqJ63zhcUfx7QtWiON9CQG+f6e3/P1lVfTHR/kh3v/jc8v+DuaqupY//wP+cp5n+WeF37MVQsvJRZpYCwTJxoIoyoqPfHBiky9NdqIT1fQlRKKYsjEkaK56oP/bwr1MoUCb4+O8tCePdy3fDkhjwdNUVBVlcNjY3g0DVVRiPp87OvtpTkUoqO7m13d3WxcvhxD00gWClS5lTol22bt889XEsIfX7WKqzdvrvz9kwsvxHf4MEo5Gby3V0B0X5+YkW+8UW4vvxzGxsTrqWl8acUKnkqlON7Tw2tPPsm8KVNgZIQvPfkkT23bxvHubl574gnmXXABvPMObNzI1sWLufNHP8IuFCjlctx6yy18+h//UYB6f//k+G6PC/jWrCHzwHeJK9WkUiLtfucdWW3tWmGnjx8XPH9isHmZENc0+NWvJpTnJyrg58+X+5ctEzJ9wwap2xoeFmK9WJSXoUywK4p4usuhaWXF+5xTs2BblHI5cBzMTAajqorxt98m0NiI5vWiGQaKprH/wQc57fOfJ9DUhKrJ/2Qpl8NxfdOp7m5Czc3kRkY48L3vTar3Ktd3Wfk8xXQaX3U1KAr5sTE8oRDFVArHcRjo6GDaqlUUEgmsYhHD6yEYDqGkk5MZ5o9/Xhhm24F0Av7tpxMy8Su+DCODku5dDjNzHDclPADdh4XZTsUlGRxHZjNUTfbhOCIPj00VIG544InHRRK+8FzpzzaLIou2bSxVwVZVLDNfqd1qnv1BsuMDFfZ5yhnn0vfmHyop4bE5yynmUhNS8mKukjaue8RGgAJWsTCpusvwR+h74zkS/QeJTjmNptPPwcwlKRXyBGpjYJXIxmW/Zi4tQWeqjlI0J5hjHJz+XtTYVBxVwd72JOryiyCTxkklUVum4miapIO79Vnla8pyAjogIWdvvQ7VtaKe3LUDdcXFMkHv8WBt+zeUKS2oc98vakvTxBkeQG2dDraF4yoxbRRGXSXk4sWLCQaDFbYZqIDs9vZ2IpEI27Zt4+KLL6ZYLKLr+iSrY3V1daWOtqqqii1btvDGG29UrnvHxsYqrHYikZjETns8HkzTpKqqqlLxFQwG3U7tEuPjhypqyI6ODVx44aNs23b9JJY6kxnF65WWGpHySx1XsZjirbd+R0/Pbs4//wHS6UEMw4/HE5pkcUwme2huPotsdpidO9dz/vkPAop73RpmYODPtLQspLu782+sjVVVU/D7q9F1n7w9SBCujrTQuOIWOoEpCNnznix88vKeLPz/sUUk4SWc0eEJOU9NHdbm31RqFZRwFLO6dlKv9YlgtwyEI5EI4bBcxHd3d1e6rcte60AggGVZOI5DsVisJCuWqw1KpRKDg4NUVVXR0dHBokWLiEQiFAoFfD5fZR/RaJSnn36agwcPctlll9HS0sKbb77JmWeehmUVyOfHMc0cHR3rKycGRdF45pkvTuq0XrnyYTKZYZLJbmKxBei6j/Hxw6RSfTQ1zUVRdDRNoG5Pz26qqqa43X8TnYClUgFd91Iq5ent3UcoNIXa2pPdSi6N0dF3Saf7iMXmo3iqeFf3skFRuAVhp8uS8AJyIrIR+bcfAcBFBCQPIycrHQHHCeD+L32JrU89Rffx42x/7TV+Om8em4CX3n2Xz3360wRHRqiNRPjnn/yE6bNn82cg+cwz3HvnnRwvFpkWCLD+e9/j/XPnMgD4zRzZsXfYsHMDtyy6hagvSn2wHl3ReXf0XabXTGcgPUDICPHG0BvUBmoZzgzTEm5hQ8cG1i5eS3NVM6/1v0YsHCNoBMmVcpUKrhnVM1zZbAkFBVVRGcoMkSwkUVGZWTtTUsEVDQeHwfQgAU9AZq5RqPGGMDJHUbJdEjym6AIWQbqmT7vZlW/LbLAEKQURJtmU9Yd3CTjOdsOfVsHFb0uwma8BglMBVUB69VkyrpkQoIkqdVO+eknazvVDcLpcNIE85jjC0FqW+JUVbXLndUXa7aakmhkBwIriPqZA/KiA13LQmOadqN46EbCf6Lsus9GhmDCGg69AzSxhscue7nKoWSkD2SGRZg++LCy0U4L+vSLd9tXAn26S+q1AowSXLVgnAWe/XwWXbhbgvm+DrJPpl85qTVJGyQ0LkPeEhBn3RgWwBxrkGN7+FfTvFq923y4JMquZJUDcrf1K660MjEEg4EFVIRj0kE4XSSYLNDQEKZVsNwhRx7JsSiUby7IJBAwMQyWblX7q5uYQJ50kAVV9fSnS6SKhkIfGxhDd3Qm6uhLEYmHuuaeDr3ylnRdfPF4B6aZpMX26MNilko1haJWLQMPncGy8n5+89DRXLvgI1YEwm/7400kVWlcv/ChTIvVYjs3+3oPc/NSDfHDmB1zgPCRS8YWX0hKWy5KSY1MoFUkXstSHqicB8DtXXMlAcoTWaBP5UoE3Bw7TEKoh4g/x7nAXc5pPYsPzP6qsf9f5VxP0+v9PfUX8p1iShQJXPf00y9ra+Mipp5IqFol4vYQ9HnYcP878WIySbbN/YIAPTJlCPJ/Hsm2Kts3USIR0sUiqWKTK40FX5QJ+IJ1mU2cnm1asIOTxcHh8nHs6OrhtyRLmhMPopoliWYIa//Vf4Y9/FCo4HhfKtq9PmOeWlorc+8VXX2VGLEb7ZZfx5I9+xLxQCM46ixefeYYZv/sd7a+8wpP/+q/Mmz0bvvQlnLPPpvauu9ixbRtnxuMcKxQ49WMfY3jnTqrmzJEAtX9P122a5Iwq3j2i0d2tsGCBYLXjxyW9u71dJOF/Xcm9ejV84xsSRu6T62RcEpddu8R3PXWqNI75fMJml8d49FH5/aMfFcv5/PmwcqU8/WwWXn4ZzjxTyMQ334TlHyqg2CZWoUB2cJD88DC1c+agaBojr79OoKGBt370I+bddJPItU0TPRCosNYHf/pT5t18M3ogQGFsDM0vn2nN48GxLMYOHCB66qlohoFVLDJ+8OCkMY1QSPzdmibe40yGUjqNt7ZWgGs+jz8SRinmweuH8VF50roBuTSEonKezefhyX8R9tnrlRcrGRd2WlHEk33sILTMlMmPw38RYO1xwXQuKy90YlzY7o9//gQZeIPk2/zr92D1NbK/+Ji73pVYwRC2VcQqFVHd7BhF1SkVM+iegIyvqpi5pAuSF2D4hBiwzByqapBPjeIL10nPu+7BLsl4uieAY1skBt7B448SrJmCbZkMvPUiTacto1TMUcqnCFTHcIDsWB+614em+9AML6gaqu1A5drxQ1BbL53Vpomj6yjFAo7Xh2KaOLaNM9SPUhV2rysjIt9e+XeQTYt1sf08kcVn0uD1ohgerK2/R124FCVSjd3Xg9I0RSTjioLi2DiZtExIRKonZOUrLpasoJLF09u3V64V29raJp1XNv9VjlCpVCKTyVQ80SdKuC+55JJJpJGqqvT09DBlypRKNW0ZbF944YVs27aNJUuWEI1GKZVKFUCdSCTo6OioyM8Nw6arq4NgsAGfr4ZQqEFshI7j2hnD6Lofx7Ho6dnD1KnLGB19pwKag8EGnnvuVpYvvw/DCLjA2ySbHWHHjrsmycYdx2bLlms5cOAJbr55kGSyp9J9resBHKeEomg4TonNm6/h4MGn3DyhdnTdX6njSiPXqRZC2hxBAndvRq5VlyIKyveWieU9Wfj/Y4ui63Lt3blDpDSdO+TEeGA/duefUBrF9+U4Djt37qwEMgSDQbZt28b4+Pgk0JvNZnEcp9IBGIvFKieXLVu2kExKEq/H4yGfz1Mqlejv7ycejwNUAHtrayt79+6teF56e3uJxWKEQiEcx2HlypWsXr2acDjMM888w5w5p5NIHGXbtjWUSjkMw8+iRTeTTg+QzycxDD8XXvgos2f/A3v2POSmJSZIJrsJBhvo7d2LZeUxjAANDXPQdb9brzCC45Roa1tKZ+cmDh58ikSi261GSNPX9xLj48fI5xO0tbVTW3syxWKK7u5OSqU8tbUn0da2hHw+galqbFAUnkAk2VkmUr+tE96TEO53OsJcH0ek4iMICI8jM4PzP/5x5nZ00Dx1Kj7gWwgQv/+aa/j61Vfz6jvv8IXbbuPDn/kMDjB1fJxrLr+ch/7lX3jj9df5xqZNXHv55QwiUvO4bbFh5waeOPAEQ5khcqUcu7t3Y9omJ9WeRM7McfeLdzOaG2Vp21LC3jBzG+fSl+rj5kU3M5AeIJlPUheo4/7O+2kKNeHVvNy25DamRaehqzolu8RodhTTNrEci4AnQJW3ipNqT+LI+BGu3nw1h8YPUbJLBDwBgkYQB4d4IY7imAKsffUSHpbtEhBqxiXE7OAj4G8SOTMKvHarSL4zR0UKXkqJdFzzC9s97XLwT5HfjagkiL+8RsbXAkwSNml+8VynDsErX54IDjOTkHxH7ssPiuRW80q6tlWUn9zIRPq3lRePsW1O1Go5jviVSwXxP9sl+Vsz/n/s/XeYXNWZ7g3/dqpc1TkHJbIQiKTYTTAIWQg8xsZyYMb2jEGSLTyAwcKWMOBjJNmSMcHGJjmMPU4S2Ay0JMuAEajVCgghghAtqVvqnLty3GG9f6zqaslzvnPeE+Y78/qwrquuXbX2Cruqunete93Pc995Gy8kA5zPW5fsc0c+XFyZVCVP9MnXpWfLa4h0yLbCyW9EZOV1GwGZT127UALrTFiyy/4qyWRfunpSSfzkn/PK4QslsK6ZK6/lkrskw149d1IJXdXzOdgCUCU7nY1IVtxMynDwsz+dF0EzJEh/8yH5WSUHoH0z7N+AS83i9+uMjCR5880Bslk7D4qlANmBA/309cUAac/ldmuMjaVZsWIrx4+HC+Jl06eXIIQULOvsDKPrKsePj2NZDlVVAebMqcPvN1i9ej51dUG+8IULeeaZG6iqCuDzGQW/69tv/xOdnWFSKZPly1swbYdfvPEiOzsOMJQYx9B0ZtedxY9af0+Zv4h7F91CZaCE3sgQ3/nz01QGSnj2Cxv55tX/BECpL8SXF9xEkcfPW/3tOAhylsmmV3/Jx39+F+OpKF/Kh53fMvfjgGAoMY7lWGx45efc9ofv8dN9z5POZagOluHSDG6ZJ9vfOu9GXLrxP/178J+1eDSNtc3NfOq88xhMJLh/507643EAGkIh9vf14dF1Lqyq4s4dO0hZFg2hEGeUlKAqSqHPYCKB3zBw6zqNRUX8OK8S3B+PM7WoiEcWL6YmEEB3HJSODukx1dkJN94ok4w9nknp7Y0bJd17Srj35Z/4BPX/8i8Sbf70pzJ2Ohrl8j/9ifqWFhm3bdvy/MaNsHAhSjpN5IMPYOFCYj/5CWWOg/sHP5Agbu1a6XW9ceOkJHc6DW1tmCb09ChUVEiV8IEBKUhWn1++3X03tLTI/YCaGkmy33OPvHzblvnVg4OTkexz50pyHOTb8/ngBz+Q/Sbe+jXXyIj3/KXT2Smj2sfGpDL5RFj4xReDY1rS/9cwyIyM4Ckt5cC6daQGB6m46CIOP/UUZbNmkR4d5a2HHsLOZFBUFTOZ5MjPfibPjYyw//77sdJpdK8Xw+8nNTTE2LvvUjpzJprLxei776LqOuUXXFDoB0hl8G9/m3hPD05eMEsIgZ3Nko3FcAUCMDoIW56RwmPBvAvD75+U+bzZtMyndnvgMyskyxwNSyDnD8hNl/FhGeo9Y6Zsl4jBmefLsO5YBFBkvaZDPCwBuuGSzPb08yBYJHOR/+GfJfOtG/JD/MxKWa+AmUkyfLQNK5tC1aVOheEJIhybgfd3YqbjGN4i6i6QKuF2Lo1w7MLDV1KDqmqko8M4Vg4rmyKXjGBmYqSjQxTXnI2vpIb+917ByqWpOf9qFM1Ad3nxBCtIjveDY+MrqUbTPTiORf/hv2CmYyBEYe0oEjGp9j0+Km2xohGcoQGZYz3QC8k4SmXNKetKQyp/ZzOIaETavhqG7Ldzh7TVUlS0626EsgopWFbfiKLrCNuE8Cj2tj9K8bRQMYqqgabLfG1Vw+k5ieY4LF68mNtvv71g9RqJRCRLDixevJhZs2bR3NxcYKt37dpFR0dHwTr2tttuo7m5Oe8yoVNXVweAqqo0NDQghMBxHJYsWcJnP/tZmpubMQyDG264gZKSElRVLVjVToSTnxp+DiqhUD179nwfl8tHONxJd3cr0WgXO3feRzI5hGmmUFWN+vq5COGwd+/DNDQsRNfduFwBli79Cen0GFu3riQa7SKdDmMYgULYeHPzWrq7WzHNFE1Na5g162YMw0swWENV1YVkMjFyuRiJxCCOI6Vzb7jhGe68s4+GhoUkEkNkHLNgx6UxmW5oIYH1ZuAhJrWAPiz/Y+VDcP03VoRlIcwcatNHJj0JAfVzt6JddyOKx4sSDKEoCk1NTQXAvG/fvkJedH19PVo+lMs0TbZt28a5556Ly+UinU7jOE7hhtLW1kYmk0FRFEzTLORiJ5PJggjE+Pg4DQ0NLFq0CCEE0Wi0AObj8Tjd3d0kk0kaGxsLlgiOY7J790YaGy/H56sgEKgmlRojFKonFKolEjnB9u23kUwOsWTJj1i16gh+fzX19XPzgmbS+2/CCzAa7aGvbz8eTwnpdJhI5ASLFm1i2bI/UFNzUZ6x9lBXNxfD8GKaKbq7W7GsDC5XiNraS+nr20c4fILu7t2YZgpDUVkjBMuAuULQg9zp8yHBdQeTYLsVCabvBNxIwF0C7EOC8gyw4/LLaamvx0aC7i6gZXiYtw4c4NN///fsBy795Ccxe3roPX6cgx0d+MvKuHDmTFTg983NjHZ3s/PgQZqAKZqLRxY/wtBdQzQ1NuHX/cyumk3GyuAIB4/uYX79fHpjvXRGOrl/5/2oqkpdsI6R5Ahz6+ZSF6pjPD3OpkWbOBk5iaqoNIYaGUuP0RHu4Kvbv4rf5cdyLDJWBp/hI22lcXCYUjSFJ5Y+QV2wDl3V8Rt+NEUKnblUF0IxEGVz4chDEkwfXi8BplEs1cFnb5I+1vtXSGa5bI4McT68Tj5PD8o8bTsFCLjkUQm8D6yS3tmpHjnukYfkwik9CO/eL4+qJlnsIxsn58aW40/Uvb9BAtJEbx7s9ubVusvl8VR7rgkg7Aqe3l5RTnndn++HBKLu4n8/Bqo85y2HYL3s7w6dMkZfHvjmr0s4klH2lMjnmbAM6SYPiDPjk+y4cOCWE1KYbGAPBKfITYbaBXkRtPlyvmxE5ipGjsPwwbwRtCltt9wl0nILoLYpnyOOBPWGDy69W1p01cyFs5fB3DW4Iu8SDHioqvJz0UXV3HHHnzh5MoIQMDSU5MILqwgG3XR3Rzl4cADLcvB4dF54oZ3161s5//xKFEUhmTQZGEggBMyaVUl/f5wLL6zCNG1s2+HOO3eQTps0NBTjdmukUmZe5AySSQmk+/vjzJlTx4YNrcRiGVavXoAqVG6deyPPfmEj51fP4N2B41xUew63NX0aR4i8UJbFM/ueZ0f7Hn6679/yquDHsR2HD4ZP8ulffYOHdv4r51VNR1UUXLrB3Vf+A0vPbcK0bBqKK/nWolupK6oknIxydsUUNFXlm1f/Iz/6xD0sn/cJqoJlTC2txefyMK20jvsXL2dqaS3GX+lq/C0Ul65zTlkZbl0/zVbLEoKeWIwKv5+vbt+OANZ95CP0RqOkLYtXT578d1ZcactiRUsLneEwKjAQj3N8fBzTcQi5XAQmGMcJQLtxo0SWU6dKoTI7r4ewZo2MlV6zRlK7a9dKtnJCCexLX5LJzEVFsm7ZMvlc1yUbalkomzbx+1yOT6xcyZSZM2navZt/ueIKXGvWSADe2CjD0Sf6r10rY7YrKlAVh6YmKR524YVSaHwCf+dy8nIbGqSrV3c3/OQn0tkL5CWcGoSo65LBrqqSbzEQgCNH5G3j8cflJSQSeSI2Lc/7/RQYc5j02YZ83cTmn6pScckltP/rv9L36qukhodRFIU5999P45IltP/yl9KS66mn0HQdw+/n3C99icYlS9C9Xiouuoj2X/4SQOYMV1VRPnt2Iby7/IILyEYi2LmczMFesgTd7yfQ0MBFd99NZmQERVVJj46S6OlB1XXcxcXkxkdRtv1OqntHw9B5RILgRTfK8HBNkznR2bQMGTez0PIbySwbeQZ7fDhvufW4FCkLFssQ8d8/KUG0bUv/a0WB6edC/0nZZ7gPwsPwuydgZFC2yaTk0eWR7dMyGmq0842Cr7RwHFJhaSeoaga1s67B8IYQtoljmfS/9wqOY5KNj2B4i9DcPsxMjP7Df5H52JqBoul4QhWY6WQhx9rMxPLWXPtkCH86Rjo6jKJq+EqqJYjPxNE9/kIet+EJgqpO+lnXT4FsZpKoaX0FxefHaf2LPLbtRFFV1CUflwB5fFR6WAdDk7avlimtYA8fArcbER7FbnkWwmOI8VGIhnF6TkIiLtnv+inyj9K2EbkMIjwm87MzaRR/EGGZpFIpMplMwX4rFosVcqKTySTXXXcdxcXFhfVnU1MTt9xyCy6XC8uy8Pv9FBcXF9IVM5kMjuMQDodpaWkpWMT29PRQVFSErutks9nC+XA4jNvtZv78+YWIz5kzZ6JpGolEAnAKlliKotHWtgm/v4LW1vUcPryZ1tYN+VTLrry/dYpFizbR0LCQnTvvJxI5gWmmiUZ7mD//LqLRHjyeYkZGDlNWdhbXX/8Uuu7jj3/8e15++R6KiqawdOkTWFaWgYGDJJPDBAKVeVvZ+4hGu0gmh/P+2F8mFuvGG6qn0/BKOy4k7bAJWIhcez4C3IzMuw7wYTj4/0z5EFz/rRXbxnmpBdHViXrFtSglpRJQV9fmGwhENoPa110QE9N1nSVLlnDuuecSDoeJxWKF3Jni4mLmz5+PYRjouo7P5ysw0Z/73OdYunRpwdpA13UaGxtJpVI0NDRgmiY7duzA7/eTSCTQNA3TNKmrq2PPnj0Ff0Gfz0draytOfldy1qxZZDImV1/9Pc499xNMqDU3NCwgGJTvw+eroLHxcmKxXqLRLl5//UEsS4ZNTZlyeUHkbPdumY/t91dQVXUhO3bcgWkmiUa7MQwfjY0L84rmPWzdupJ4vJdAoOo0Btyy0mQyEfz+SuLxPqqqLsDvr8BSFHoVha8BjqJQj9zpyweNsQG5+7cBmYPdiwwDvw8ZdrMPGUbeixQ5W40UknAjw3QGAKunB6Wmhn5d53zgu4rC1MZGBru7cZ15JomxMW5qa6Mf8L7wAql4nOKTJzkJvJm/DtMxGUoMURWowuvyksgl6BzvJGNluOm8m2hubMatuVm9YDVuzY3X8FLpr+SOHXeQyCWYVz+PgCtAua8cv8vPW4NvUemvZEbJDH645IcIITg0eAhd1dEVnYAhoxE0VcN0TCzHIpaNMZgYxHIsHOFQ6a8kaZsyd3fmGgmmZ64F8kzspT+SX/vh9XmAvBGqF8mQ7plrofra04Gx6pJs7uF1+boNEoA3LoPz75U/2BPtj2yUQNMIwrmrT5lbO73u/Hvl396pYBdF5k+DBKyBulOAsPrv29vmv+8fPSlZYdX1XxkDuRArmi7fT6RTAt2JMQJ1so/jyDohJAOeGJRh2e4SKGqUfYQl+2TGJNucGpFCZ5FjUD5LKpBHO6G/TX7uCGnB5S6RQNldJIE3jhREK58Ff1klzyEgchR23i6Z6tSwFE878P18frgXrnkSQlPJVTZj2Q4ej0Ew6Oauu+bT2xujuzvK/ffvZHAwQXV1gMbGIpqaGnEcQUWFj97eO3n66RsIBl0YhvypKi314PXqFBV5WLiwoeCfPQGa+/riuFwq2azNwYMDjI6mUFWV9etbeeGFdgYHE9x88yweeWQxDz/8ADfcMJdQwMdo10DBRuuJdY/wkUsXUhUq49133mX9yz9DIAps8i3zbuSnP/spl8+4mM9/558LHta3zLsRAfRGpBd2OB3n3kVfoipUStbKoSkKfdFhHm97FkVR6I0Ms+GVn1MVLKWhpAqfy1MA0oam43d5/yaB9URx6TpeXWdt3uf63uZmXJrG3Pp6Htqzhzl1dQwmEqx++WXqQyEcoMLvp7W7+zRf6/19faeB84FEggq/n9u2b+d4OEwsm6Unm0VMANo1a6Si14kTEjSvWCFRZE2NTEKePl0aQE+bJhlPn08qgTU2Ssnud96RFlxPPCEB2/r1kjbOZrFWr+bBigr+8PjjdH3jG7zy3HP8w+HDjP7pTzL2emBAztPXJ9HxlCly3JERFF0/TZhs06ZJ/D2Rnl1dDVddJbs7jtRkS6UkEAYJzHVdkoQDAxJAnzgh286bJ4+rVslQ76EhOdfQkLz8+++Xb3dkRD7PZCbbjIyAgkOip4f9999Psq+P2XffTdOjj1J+4YXY2Swjb71FZmysIEo2c8UKsvE4RjBIsLER4TgcfvJJyi+6iIvuuQcrnSbe1cUb/+W/kBoYINHbi+ZyoWia9MP2eDD8foTjYCWTJHp6eOv738dbVYWiqgTq66mYPZvx994jNTBALpVGXPcZOO9iiI5NelSrGtx0i4wc0g0JvH/3hATV086GHVvyquAWTD8H/rRZ1kfGpfBZNAwfuUG+/tfHJOg+8YH0u66bBuFR2T48Cof2yvztYLHsN9IvAb5uSKCdy1JxxlzpK33GXBCOtNASAiubxDazCNskHR0+zbvaV1ILjo0CmOkE8ZGTaLoHhEMuGUVBwV9ai6Z7CsJmxfUzqZt1DYqqoKo6vuJqUpFBzEx80hNbCKrPvZzi2nNAUXBwpJ/10k/mRdjcMrVw1iWoi/8OpagEdfHfIdIp1OZr8mrpltwcaJgqQ7+FmBQh2/UKal0jyszZBUFd6WttoFTVytc+/2S78y4AQGTlro5SWYPT143i8YLHg+MPFJjopqYmZs6cSV1d3Wm+1yA1fLZt24ZpmpSUlBQiJGOxWAEg53I5otEoHo+HbDZbAOsThJHP52PXrl2k0+nTzk+A7z179hTWvldeeWX+/y8EqDQ0LKS09EwMw8eSJT8ilRoriJctXPgNXK4guu6moWEhr7yyBsPwkkgMFsC0YXgJhRpIJkeoq5uLprloaFiIZWVJJofxeIq57bZ2PvrRR1BVjUikk+3bV+H3V5BIDCCETVvbRg4f3pwH95XouoeGhoXs3r0RU9VYp0inm3VItnoCXN+ODAV/AqkQ/iFr/T9XPgTXf2tF01AXXimFI/wBueB3HEjGZS6LEDKsyevHzuejCCGwLKug/B0MBguK4RMKi4qiEI1G2bZtWwF8h0Ihtm7dWtjVGx8fZ+bMmQX/6ng8XgDSdXV1aJrGSy+9RDQaLdwYm5ubSaVShWMikWDbtm1YlsDjCZFMDrFjx+2Ewx10d7fiOBbhcAc7dtxBY2MTjY3N6LqbefPuJJkcoaenDcexaGxsYuXKd1m0aBORyEkGBg4W2rW1fZ+6ustIJkcABV33kEgM0t7+Art2rUMIh7q6uaRSo1RVXUg6LT2zQ6H6/HxecrkkihDMRlpkGUyG0qxHstffRILlNUjWeu5ftSlHgvE5wPtI4YinkfgqkK//V6QN13okML+XyV3EjxQVcfGzz/KXb36TRZdcQurPf2bGeeeh6zrrgTI7h6ZoDCYGURSFjnAHK1pWkDSTBN1BVEXFo8vvtspfxfSS6dz957tJWSmGk8PMr5+PIxyGkkMkcgmSuSRe3cv5leezatsqOsIdjKXGCLqDzKufx4H+A8RzcbyGl5QptxjcmpuQK0TAFSDkDpG20tjCJmNlaOtpk2yLuxJmPQDucpn/rKgSdOuBU4D3veBrkKHc7nKZZz1z7SQwtrMSMJ9ap/vgsh+Dt/70c+ffKxdSmREpYDbnKQjOkKDVCOXrngD/VPllaC4JdtU8GB18Q4aCK5q8zqJpYOUmlcQ1t6xTXTJcWnfL/lZOss7FUydFy1Amx1Dy9JOW/4ZjJ2XOc6xLjlk8I++nLXMOpUWXR/pL+ypkvnVmTI6RGpG52o6dt9/K543XXwX+Whnu7a85vZ+VmQTQZkqGfv/lq3KDwPBJO7RL75HzGn45zhUPQbJfAvH96/Oh4OuBvOBbXxum0EinLQYHE8RiWaqrAyxY0EBvb4y77ppPMOgmHs9x8mSUVau2YZoOQsD4eJqODsmSu906Pp9BT0+MlSu3cvJkBFVVCARcrF69gGDQxec/fyELFjSQTlvceecOKir89PbGEEKwdm0zzz77KerrQ9x++58A+NjHbmTDhl9TU1vPcHyMDa/8nBJvkHmLmnnp1VdobGzk5Hg/uzoPcnSki/qiSr616BZy4wk2/+vvqDl7Cm/1tfPTfc9zUd3ZeA2Z/zvJcD9P1jLzSuIRnHw4+OcvXYqqKPzijRfZ0b6HZ/Y+jzVhs/Z/WZlgsJ+54QbOLi/Haxj4DYO1zc1cO2NGgaFe39qKS9N4bN8+TkYiVPr9PH3DDTSEQjQWFbFs5kzuWbiQE+Ewc+vqeGjPnkI/VVEYzuUkaH7ySYlU//7vYd06mW+9ebMM7/Z65f/O66/LRGfblijXl8+Fvf9+GTfd3g5vvinPj4/D9u0SYJeXcygapT8U4vIlS+DAAS6bO5f6+nreqq2VgL2mRsp9z56dFz1U5HU1NWHbCuvWTQqau1xSeMzrhY4OmXPd0wOf/rQUMVu+XDLTedchBgelyNmJE5OX298Pl14qzy1fLo9z5si3O6FMvmHD6R/DRP1ft1GEWVDwPvzUUyhAxezZpPr7ObBuHZ7SUlIDA+huN7NWrcJdUoK7pAQzmSQ9PAyOQ/ns2bT/8peomobuduOrrqby0ks58vOfU3zmmdjZLPGuLt7csEEKoFkWmseDmUpx5Gc/o/tPfyI1NIRjWQjLYuTQITzl5aQGB/FWVkJ5FfiDMkd6QgV82+/kh6nJMGN2bJH1O7bAeRdJiy6XS4Jvww0TAP3UdmVVk6+3/V6KnG37ncztLqmQftglFfDltbK/Y58O8If789ZSGrrLS815V+LyFWFmk6TC/ZiZGEP5UHEUBd3lZbTzDQIVU6g570pQVKnynUvhK6nm7Cv/SYZzv/cKnlA5Vi5F37sv4Tgmmu5B1Q1yyQh9775MLhVD1Q1SkaECQ11cfx61518N+bxtRVFwrBxONg2RMeytzyFyGVAUlLIKtCUfh2RchoenEqgNUxGxKCCkl7WiSAbaMhGKItnvWZegXvsx0A206z8FSp7lbpgmw8TTSfk6D9gxDJR8Cozz+ssQj3H7N9cw4+rFqIEghz5oR1UULr30Ur761a/S3NzMt7/9bZYuXVpgj5uamrj11lu55ppr+Na3vsWVV17Jjh07CrpAE+rgra2tZDIZ6urqyGQyuN3uwpp04cKFeDweUqkUTU1NpFIp3G43zc3N/1Uwb1kWtm2TTCZpbW1FUcCy0iSTQ+RyMm2ypuYSSkqms3TpE5SUTCcS6WTnzvtpaFjI1VevR1H0/JpzjJqaixHCwTC8+P2VbN++imi0i1wuTl/fPjyeEjKZMInEIL29Uh18QpV8z56HqKubg+MImpslmF+0aBNmfj127rmfZNGiTYhslG/aOZYh/axHkCB6IxQAt/n/h/v/33L5EFz/jRVF11FKK1CKirG3/QExPiJPGC4wczjdJ1AsC6ekFIHMlR4fH2fHjh1Eo1F6enpIJBKFsO/W1lY8Hg+O4xCPx1m0aBE+n6+wC3j48GFyuRzxeLxgsWVZFvX19bS1tTF9+vRCzkoikWDBggXs3bsXv9/P9ddfT3FxMaWlpfh8PjweD7t37+bw4cPs3r0bUAgEarnmmo3E4wP4fBVks1FaWzdw+PBmYrFeIpFOXn/9QYLBWkKhOqqqLmT79q8yNnYUl8ufF23wUFc3h76+/aiqwdKlP5YfieEjl0uQSo1QU3MRK1e+y3XXPZ73CNRoaFiAyyXzQi0rTS6XLAB7l8uPhmBMCO7ndAuDtUggPAN4CjgDuBgpajbRZgJw34vMv56HVAzPnfJdeoA1DQ3oAwN8w7IIAg1C0NPdTWNjo8zLvuoqlr32Gq+9+SaPPfQQo/39ZM47T94wNReGZrCxbSPFnmLWt8r86w2tG6gKVDGYGGQ4OUxnuJMVW1fQFe3itjm3sX7XeubUzeFT532KwcQg9++8n6GkFCObsNSaUzeH3lgvPpePo2NHWbl1JdWBanyGj6HkEAcHDtIR7mB5y3JiuRgnIie4Y8cdBduvVdtXUeGvwHKyksX11kowrAclSzrcCmYCAmfAnCcliEzkAa2ZkD7UgWkSGLvL4K2vyfP+abK9fyqkBvICMUaexa2GSx+XrKqqQvCMvKWVIjegEidg+HUZin7gq5O+0nZWgmrEJMscqDvlm1Ile6xoEmBHO+S8wpEAeiI/2+XPs8629K9WVLm4dsz883zotpO/pgLjXSfbWFnZbwKUg2wfPSHDt+Pd0HafBOOGF7yVkA3L6xvcJ8HzOZ+GXDS/+OuEV2+XYdyKKr8HI5C30XLJ7+OqRyWw7muTjHegWrLb0ZNyztQQVMyWgPsjj8ON26RauHDkNfhr8h688QJLraoKqqpQXx/ioYf2kEpZaJrCwECchx9eTCjkJpu1qajwMW1aKaqqsHdvL6qq4Pe7WLhQAvMTJyIcPz7OlClFFBd76e6OsHx5S8GKKxRy09zciBCCadOKaWpqZP36VubPr8dxBJdeOo+PfewyDF3lD+++ys6OA4TTcb748c8yfco0BIIyX4hf//06yv0lPLDjKfoiw6xa+RUefuRhplXU882r/5G7r/wHVEWlyBNEUzRumXtjIV/arRlcUn8Ov3trB6qiMrv2LEIeP+FknDuuuHkyr1r728ur/n9bXLpO0O3GlU9F8hoG55SVUR8Mns5qqyqbFi1iXn09d+zYQcf4OHt6e5lWXMzT119PTSDAY/v2oatqod/a5mZ8hsF4PC4R6ooVkqb913+Vicd1dTKRubJSAudVq2Tetc836W81MCAv9KWXpM/Vpz8tE5SFkGHhixZJehlo6O9nYHCQI089BY89xvGjR+k4fpyza2pkInVXF/zwhxK0790rqWLThFwOTRWFiPR775Wh4A89JMXKJkD3xo3y9jCRFr5unWSuLWsy6n3dOpk3PdFeVU+PiF+06PTI9rVrobh4Msr91Ij3U9sIxWDm8uWSlb71VpnvnMlw+Omn6Xv1VTLj41RcfDFoGrrXi5VPF1M1jURPD+mxMRquvZZL1q6VFlrhMIqiMOW665h9992omoaZSEzmZ4+OMvLWWwjLwldVxaVr13L9tm1UXHQRdibDwe99D09pKenhYcouuADD40GJRSA2DqmEBLmXXS6Pti3vSbo+Wb/0s1BcLtdGI4OSpR7plyJnxWWw9JR2hmvy9XWfkbnY131G3r+3/W4SxM+YCWWV8kv6a4AfLAJFYeD9nUQHjiJsi5Hj+06z4RrtfANV1bByGWrOvRLDE0TVDGwzy8DhnaiagXCkuKfhCVB97hUSHGs6vpJaRjsOoBlubCuHlU1SPv2Sgi2Xr6S64J1tpuOkwgM4Vo5cKkr/e39B1XR0w4uzeydK4zQpO+pySw1NRZEsc+N0uXkBkql3HIhGsLf/EcUfkKHdjoNSVIq29JMobjcil5Fr0bFhyXInYjKnOxaFWAT7pRY5nm1LgA5oH1mCSCa46ROf4PWtLzKlvl6qhQtBIBDgG9/4BgcPHmTPnj189KMf5a677uLKK6+kpKSE7373u7z22mu8+eab/PjHP+aLX/wiiUQCt9vNggULCiB8QoDX6/Wi6zolJSVcf/31lJaW4nK5qKmpwXEcSkpKcBwHwzC4/vrr0XW9ALQXLlyIbdsEAgGCwSDNzc0AxOMDjI93oKoGqmoUhMN27Pga2WwcTXPR2Hg5yeRwfh0a56WXvp5PS/Rjmil8vgpCoYYC26woKn5/FZlMGL9fpkr6fDK6cgJINzffi657SKWGCYWmcN11P8blCmEYPoLBWgzDh8sVwIXCWYrK40LgRVq9qsDjQAvwDWQE5qnr0Q/L/1j5UC38b7CIbBb7xc2Iw4dQZs5Gu+FTUqii52TBossOFpHLh/NkMhlyuVzB0++VV15h8eLF9PX1FTysJ1TA4/E4e/fuLdhsdXd3U11dXQDpbW1tLFiwgFAoRDKZpLi4uMCMHzlyhOLi4kLI+EsvvVSwUxgcHKS+vp5Y3mZh0aKrUdUM8fhAXv1wLuDgOHbBUmDJksfZvn3VaYrhCxaspqdnNz09u7niigfyody97Nq1nvnz7yKZHKGkZAYeT1EBXL/88j1cc833SKfHicV6aWxswnEsUqkxTDONYXjw+ytQFIN4vI9cLo4EP1W8HapjFpJpHkUy2CHgBPA9JHtdhQTWPfljBRJ855C7gy7yBCnQB1wzdSqPP/88NbNnMwW48cormfvFL3L3F7/Iy88+yyPf/S5/OnCAYeCtgQE+WlNDFPjRvfdy7MgR1j33HGcg8771XIqO8HG8umST17euZ03zGqYVTePWllv50ZIfcdv229h8eDPLZi7j8esepy/Wx7SSaQghWN6yvHDugSse4Lwfn1d4XuGrYDQ9yv077y+0efL6J1nRsoK75t/FQ3seYvPhzRxZdeS0NqeO8+uP/RQt2YmS6oGKBRIARg5B+by8PZfcPUf3S0BYAKG2zKvWfLB/uQz3blwmwTaKzMNWPfJTsHNw6Otw7t1SbdxKwPvflax4qhd89eCbAtlRMMOQHZfzg2yfi0lWQ3XLOgW5sI51QaBWgnczmc+nFoBg0pM6r+wthMyRPlVl3MlNstSn3YbFxCTyKBxwsnkG2c+kvUlcjvXKl6H5u/IacgkJ9AN18jwCXl8NF90BpfkEzQlgnhqGX18GN+/P+1X/lcL4lY/kmyt5sbac/A5iJ6Vw2SVfgzd/AFc9Jr2w962HuWvlhsDOO6UqeXKQWMkV7GrtprLST3Gxh8pKP4qicPvt27noohoWL55BfX2QdNqSAu26ms+jFiSTOYqKPLjdOl1dYbq7Y8yZU4fPpxOL5bBth2984xW+/vWF9PZGuemmLbzzzkpKSjzs29fHlClFlJR4SSRy1NYGOXZsjPr6EKYpE0tVVWHe/PP59e9/xwUXypDE77/6Sz53yRKuvexynvrVT7l8XhND8XH2dL3Dz3/8NLMrzuS+B+7no9dcS80V5/KTb2wknI7xzN7n+dLcj1MRKEZB4b3BDsp9xZT5i/C7vKTMDIlsioDbR8bMoGsGGTNLVbAMn+vD4Lv/WslZFlnbxq3ruPL2W7e++GLBYuvxJUsIuFwcGx+nOxplbl0duqoWBI50VUUIgTuTwWhtnfSnamqSE7S1SYA9bZpU8p6Q0n7ySdi9mxXPPMPWXbsYjEQo03WCNTUc/7d/Y8WNN7I1nWZweJiy4mKCwSDH33oLNI3fbt7M+oceQlUUHNPkm1/9Kp874wwZWj4x9/CwpIu//33JaI+MkKqehuUJkEwqKIrMgbasvGB1hwTN99wjie7u7snXlZUSD/b3S9B9771Sd+2OO+Tz6dPh+PHJc1VVk0RuIiHx0TvvQGmpJOIvuUTmYRcVTSqPaxoYqglWWipc5zdCEIJEby+pwUF8VVWkhobwVVVx+Omnmbl8Oe7SUg5+97uc+8Uvkhkfp/Kyy0j09BTaH376aWbeeiuBxkaZG5xKkR4eRvd6SfT04Ckt5cgvfsHMW28tjJ0aGsJTXs7oW28x8tZbXHrvvegeDzg2mmOjpBLSj1o3pPI3+QiBZEIyyapSUOXmNz+BK5dOguDLLodrPyktu86cJfsnY5AzYXxIAmbDmIw6cIQUUdv+ewm2jx2GmReDLyDnjYxLYH3dZ6CyBltRyWWiKKpOLhlBd3uxshm8RRXYVg5NdxVEzhzTxMwmGe18g4oZcxD5jWBNd6G5fQjbRAiBoiikoyN4QuVouqvwU2Kmo5jpBL6SajlfKsLI8f2UT7+koBAugMH3d+ItrsZfVo+ViuP3V0iv6da/oDZ9RIq95XLg8xd+laT6t7R5dbo6JLBOJVEbp4Nt4fR2oQRCUCLdHXAcKWDm9YGmI+JRlEAIe9sfUOoaUBqmSoXyhVeBP4AY7JfseH6u6Zdcxh9/9zvOP+sMLF+gcH8wTZPdu3fzhS98gY6OjgJ7PGG19eqrr/K5z32Ojo4OHMcphIdblkU8HicQCBRsvCaEdgOBAKGQ1CXavn07zc3NBAIB4vH4aWPHYjFOnDhBSUkJDQ0NKIpCLpc7RS28gmRypGDH1dS0hqKiKVhWimw2ht9fRTTak3fBuYdAoArD8GGaKYaG3iEYrMs738xBVQ1AkEqNYppJWls30NS0luLiKTJaQfMghIVtmziONGY1DD+KopHLxchmo7hcQRRFweUKkUgMoJdMo1XVqUAy1/XICMk1yDDxh4EfIsmfD3Ou/335UC38P3ERloXIZqV91v/OommTohTN18jdWlWTOTH5dbXjOGQyGRKJBIqiUFRUxPj4OOl0ugCci4qK2LZtW16kAbLZLHv37mXevHmoqkp3dzdFRUW43RJ0JBIJ2tvbaWtrK+wETghNJBIJLrjgAurr6/Pe0wpXX311AdA3NjbS399PKBRiyZIlqKpDNhvD7Q7mWed9JBLDuFwhiounccMNz6BpBosXP8KsWTcXwrr37n2YmTM/zZIlPyIQqMG2TXbtWn9ayIxpJonH+2lpWU4iMUhd3RxyuTixWC91dXOxrAyp1CgeTzHFxY2YZpru7t1YVhqvt4RgsJZgsAaP7mG2EAwDu5G7f6VIcYgh4HIkmPYhP/aG/PlOJKhOIQGwigTaX16xgivq6xno7eWWxYv5uzPOYAi4/8kn2fXkk1x+1ll857vf5Z6f/xwbyWz/5L77mHvOOVx7xhkc6+rC9dOfUoUE91krR9pKUR2opsJfwdTiqTx5/ZNMCU0BBdY2ryWSibCmaQ3LZi5jTfMavLqXKUVT2NOzByFE4dy9zfdS7CkuPK8P1eM1vBS5i1i9YDXLZi5jbfNaUmaKNU1rGEmO8M2mb7Js5jKK3EWF56eOs7Z5LSq2BNaeCskWax4JbG1TMqmZESkyNuH7bCUlWI0fgzfvACt1eri3qstPVfPLxY/ikt/IOV8D1QveGvm47CfgqYLy+fKoapLZDp4J5Qsk8B1pBZHLA9q8v7WiyG9M2BJM27l8OLlfgtkJb89cfJLxFkI+nxA1m7DeUg25mZCVStmTCFuRmwqOmc/BViExJOdQtUm22vBL0H/5JikypqhSvCzaKefXvfJxyV35PGxT5lfn8p+ntxxufkN+hjvvkBZc3nJ5XXWX51XaBQy9JVnzTFj2Kz0HFj0FJWfDFT+QGwT71kPHC5IF19xSjfyNTeSqLscRgvr6EMPDSdJpk7a2Hmzb4bHHlvDJT56Lpimk0xbhcIbBwTh79/ZiGBqBgAu/38Wdd+7g5MkIVVVB5sypY//+Pjo6whw6JNMd1q37CP39MZqaGuns/GcqKnyMjaW58MIqPB6d0dEU3/nO6yQSOWbMKMXrlRZfiqIQi2UByNkmY8kIWSvHZy/6KD/b928AhDwBeqPD/KTtWQJxldh7fXzhtlv5zp+fxnQsrphxCclsimf2ToaCG6peUAH/+RsvkMylURQYSYT5SduzjCTClPmKOT7ag+XYf9N51f+r5a9Z7QmV8Qk2O+B2YzkOD+7axfW//S2rtm+X4pq2zXAyybHxcXZ1d2OpKqK+XlLB9XmtguXLJQr1eiWCfOQR2LZNKn4ZBixcyJMbN9L76qtYIyMMDQ1JAO3z8eRrr9H7/vtYW7cy9O1vc7ytTV7wsWN89s9/5t1XXuHtX/+ad+fM4XOf+ITM1Z46VcpuDwzIWO6SEhn3rWnk+kY43u/nK19RsG0Jfm1bYvGJiPannpICZm+8IYd64AGZOv6Nb8jL7e2Fr31NHn0+2b68XLapqJCWXQ0NeZyZlPWGIR91dVJJvLZWzvvee/lbmQInT0otN2y5SeiYJsNvvEGirw87m8VfV0fFxRdz+Omn8ZSWcvjppwuh42Y8Tvef/sSRX/yCsgsukHnXTz11erunn0bYNumxMQyfj9DUqXgrKym74AKO/OIXhTbukpLC8cjPfkb1ggWcv2IFqmEQ7+sjNTYOLjfC7ZHgTzgSYKs6nDgqw7LHhuBfHoGhfmmp9fHPS6Xv6z4jfak/vQIqaqBhBvzrDyWjrbtg62/gsftliHd4FFDkud8/Ke23/uF22a+qDkLFktkOj0ow/+mV8tzIMDi2ZDJdPryhSuxcGl9pLVYuTS4ZQVGlRaBwBLadK4ifjXTsx+UrwsomUXWjYL+lIL8kT6gcO5em792XyCUjCNuU87i99L/3F3KpKFYmga+kFsNbVFAIt7JJqs+9nEDFVEaO76f77e0ohiE9rBfdgOIPyt8VXap+21ufk7nkiiKdaQClpg5nXytKdS0iMiYBsz8gd3yiEeyWZxGxiPSz3vYHRHgUER5HmDm0JR9HmTkbZ+8umaO9+1VQNZSqWmm7BoX/T2d4ACUQKoRhA7jdbn71q1/xqU99CpfLVdAD2rBhA2effTY33XQTTz/9NF6vF4/HQyKRIJPJoGkagUCAbDZbEDObEOOd0Aea0CKKRqMFJfBFixbh9/txHAePx8O5555LdXU1p5J9iiJVwPfseeivhMzWo6oa8fhAXiMog99fmbeXrUFRVLZv/yqJxCCVlbPyuj8VbN9+G9FoN6rqIhCoxu+vorHxcuLxPqJRKYoWDneSTI6gqjogeOWVNXkSyMlb0p4gkRgq2HKZZgoVhTnI1MQKTk9ZDCBzsLN8yF7/z5YPwfX/oSIsCzE2LBnmseH/rQBb0XWUskq0G5ahlFegaDqKyyXzdjQdFAVNVfF6vcRisdNUvmOxGIZhYNt2Ia9k165dOI6D2+3mmmuuQVXVQntd1wsAOhQK8alPfYrm5mZ6e3tPG2NCsCyVSuE4Do7j8Morr5DL5Ugmk4VQ8mg0iqqquFxe/P4qLCvF9u234fdXoOtuIpEOWlqWMzZ2lFxOgn4Z1n0xy5b9gUWLNpFMDrF9+23EYt24XEGam9cW7AtU1cDlCpwi9rCR6dMX4XYX0di4kFish+3bb8M0U2QyYRzHJBisLuS+JBKD6LqHbDaG7inGpyjMQAJpgbwZ7QXqgI8j/8FMpFWXmX8dRLLUChBDgnEX8OMnn6S9t5cuy+LdoSFeOH6cRmDu2Wfz5z17aD56lM0HDhCYNYsIkhH/4dNPc9kHH/DH48f5yq9+xfPFxUSRwFu1cwVV8LSZJp6NY9pSYGx3924qfBVU+iuZXjKdx697nCmhKQzFh+gMdzKzYibDyWFqgjU8ef2TTMv7gD9wxQOU+8pp7W6lfFM5hwYPcVbZWTx1/VNU+CpY+8paqvxVNDU2Ma14Gk9d/xRe3UttoJYnlj5BQ6iBgCvAA1c8wM6TO0lZWSk8duQheUz1yJBvzcgvjrySod6/ApKdMqRbUWTO9WU/ka8D02UouOaF+AkJIp0sjLZJltoIyRByd2meCVfl2GZczvfm7dJ+y4xT8JFGTHpvg1ygTeQ6K8h8al+FzF128gDbFZJzo4A7+F9XGQ9NkUA70iGBueaR/QpsNZOAWoh8u7yll6JOgvmi6RJoK7oE2YZvkn0unyXHi3bAyytlO8eGV++QVluaW4LsWLe063pjE1x8p6yfCPU+4+NS/EwImdP9l1V5H2+PDMtPDsjXiiofc9fCDc/KUPZXvgJ1C+HyTeRMqQi+fn0rFRV+enpiVFcHWLlyK0ePjuHzGSSTJqtWbSeZNPF4jNPOO45gzpw6enqiDA4muO227YVxzj+/ksHBBKtXv0xtbZBUyuTgwQFOnoxy3307GRpKUlUVoLc3xrp1H8FxBKtWbaOzM4zPZzAwEOe++3bmb8iCoNuP13AzpbSaW+beiIKCEBSA8w9/9wxdXV0svHgOj3xhDQffeJP/svpbPP+bZ09T/dZVjVvy1lv/OOcGAm4fjhCFHOtfvPEiDoKL68/5m1UD/48qf52j7ckz2hOA+1t5i53RdJpKv5/vt7VR5vMxHo+j9PZKMNvbK5W6Nm+WDHIqJYH2yIjMhXYcSd3u3i2PVVVyg9pxYM8eSSmPjsoQ85oamb+dSEiaORiEF16Qcdl9fZJeBhlubtuTCmGOI8cJhcC2yc27nHUbVObMkU2+/GUJao8dk5dw/LgcIh6Hs86SbUxTXuLq1RIg19dLgFxXJ6PNVVVqqJWUwJ13wp//LBnw226Tl1RdLcccHJTgfdMmSeAHg3IPYHBQXvJECLojkLZXkQglZ5+N5naTHh0lMzYGisLM5cvJjI8z89ZbC6HjRjBI40c/yvkrVqC73QghOPef/um0duevWIFjWXhKSxF50JTs7ycXi02GoS9fTjYcPu3orawkNTSElUrhr6yU7LXtoAikDZeqScXuzU9B/XQpvlVcCp9bJXcfVE3WTT0bSivgc1+RjPWvfyQZ50U3ypxqrx8+fwc8ulkei8vl70BkFD729/J+PToI//Kw9HRWVBk6HSqRyuSOLQXT8qEAqm5g5VKggLekDgWBmY7ngfAr0hJLVdF0F+XTLyuIn0ml7xpQVKxsiuGjbZjZJKomc55HOiZDy20ri+72Mtr5pgTnx/fhK6nFV1KHbWYYOb6vUA+gu/1UnDGXxguXyHVidS0kEzgDvSiqiuLxTFp0xWMFITMAxeWRTjSGC/xBlMbpOG/skcy1rqM0TkfE4yiajrrgStAN1LoGiMckWE/GURctRf3sl9Cu+4QcRwFiURltqaigqiilFdh5+7VYLMbWrVv59re/zfHjx3nwwQexbbvgTLNx40YOHDjAhg0buOeee/KMsoFpmrz88svEYlKL4/XXXy8oiE/YxdbV1WGaJrZtk8lkCAQCqKpaIIYGBwflZ5ZXEdd1naqqKsbGxhgYGAAUNM1Nc/NaksmRgpBZU9MahHBoa9tIXd0c4vF+duy4HVXVGBg4SDzeT13dHNraNqKqGnV1EqDLFMgecrkYY2NH83pDC2lsXFjItY7FejDNZF6Ut585c+Q/+djYUbZuXUkgUE0iMYCmuXAcQSQ5REJR0ZFM9QinpyzWI6Mw30QSNR8C7P/x8iG4/j9VbBtn1ysFRUXs/72CNoquo7jdEkyTB/ORMeztfwTTRHVsdE2jvr6+oII4ITymqiqWZRXyU5qbm/PhJC5cLtdp7f1+/2kAurGxkWg0yvj4OKZpnpbjYlkWLpeLnp4eNE1j3rx5JBKJgsVXLpcjGJT5PLmcjaIop7HOfn9F4WbS1rYRtzuUtxu4n3i8n8bGJgzDV2iza9c6LCtNcfEMlix5HF33YVlpPJ6SUwD3vYRCDfIzEqKwyxiL9WKaSbZtk4A6mRzm8OHNRKPdRKPdjI8fRxWCLiFoQ4bReIA3kJ7VfchwmlS+zg+MIVXBq/LfkReoRoaICyTI1pC7hn7grHz/O/L9NubPLUTe/BxkCPrdQD/QlD/W5ceNqRq2Y3Ns7Bh37LgDVVUZSAywavsqynxlHBw4iCMcbnnxFio2VbBi6wpK/aU0FDUQdAepCdZgOzajyVEsYXHHjjs478fncceOO7i09lI+dvbHqApUkcglSJkpDg0e4geLf0DAFSBrZUnmkgDs7tnNyehJ2nraUBSl0H53z26yjo1QPVJAbPo/SdBcciEc/JoEwJ4Kqfw9oQo+EZJtJiXIVDUJaDPD4CoDf70MB89FoXyhzBsWjrSkciwQpgwlV3XwVJ6uRm5GABviHfm86CiFW6STDy8UTHrVCEfWaS7J6EZP5hXA81/oqSrgKFKQTNXyLPZ43qoLCfhziXyoe57J1lzSdssVnAT0KHL8iWKbk17XVkoCYG+F7JuLwRsbpcDYvnXSXqt6jmSWJ9oleuR7uHyT/Dz+cpusj3fL/u2b5YbDG9+dFCpTNQms2+6XoeATIerBRqiZNylq9sZG0Fy4DIVQyM03v9nEyEiSuXPr+O53d7N582E2bmzDcQTr17eyefNhNmyQAPzU87FYlkWLpjN3bj3r1u1i8+bDPPTQHubMqUPXVTZubGPz5sOsX99KJJKhosLPhg2thf4A9fUhVq9+mcHBBHPm1LF+fSu2LQp9ERDLJjkyfALTtrAch+pQGdFMgqxt8qW5H+fxT9zDcw//gs6uExzv6ODuX32Piy69mPUPf4/rPv1xHn7t11xYexbVoTIsx6YmVM7Xr/o8pb4ijo50oaLw9as+z/P/+BCrr/o8bt31N68G/h9V/prNPhVwTyspoSMc5v6dOzkRibBp0SJGkklKg8ECcy3q6yVgXrZMek+dmsCsqpJZvuMO6YdVVydp5KNHYeVKCab9fgmcX3hB9slkJBNtmnLcd9+Vx4YGSQG7XBLdxuOy3113yfYDAwXVMZchuPdewbJlk/nRGzZIxjkWk9Hjd94pQfR778kpp0+HH/9YtmltlcB44vVbb0m8//jjcO65Utj8M5+RKeObN8tL+e53J9+2ZUkg3pGXi+jvh/vuk7e6iTxwTYP0yAjvPv446bExvGVlpAYGsDMZRt56i0BdHRWXXIKvtpZZt92Gu7wcw+9nzgMP4K+vZ+itt0AIvBUVBBob8dXWMueBB9DcbhzTJN7VxYF16zBTKQJ1dXhKSvDX1zPnvvvQPR7KZs0i0NBAYMoUfNXVpEdGcJeVAZAZG0Nzu0FTJfBzHHkPd3slG42AjvclaP7N4zIcQNOkd7VjS6bZtmHr7yZFzEorYaRPAuRMSn4Rji3HFkL6WvedABQZFv7G67J/eEQqiQshwXwsIm3B8mu8CZ9rM5OUQmC2ha+4+jQgrAgHxzJxB4qpm7UIl68Ix8xJUTBVPc3OS+7LqpMq5DMuQ9Pdp9WVT78UIWC08w0SIydPAe1ziA4eY+C9V9DdfgIldTIUPptFJGIo/oBkmyPjqIuul9GQjdMK4mYil5GP8bzFViKGcs5M1MU3ICJjODt3oJwzEyUYwuntAlXF2bkDEYsWcq+dXa+gGNLbWs41Bqp22vw4DrhkaLSiKLS1tfHUU0/x+9//nt/+9rfoeVG1xsZGysrKyOVyvP7663zyk59EVVXef/99HMcprF137dqFrusFsmhgYKBgF6vrOqlUinQ6XWC7I5EIPT09AAQCAVKpFLFYjJ07dxYEfhOJBH6/n1wug2mm8/nSCygunsrSpU8QCjXS17ef5ua1zJhxbYHgaW3dgM9XXiB6mpvvLaiJTwDz+vq5ZLPR0/pIm7HJ8xNaRG1tGykunkIuFy+03737u9TVzUVVdfr791M95XIOKQpxYDpSbNeHDAOvRUZXrkIy2t1I0ujD8j9WPvxl/z9V8qHbDuRDt7X/bpf/pXIqmAe06z8lnXBVtSDC0NzcXAiZeemll5g/fz5Lly5FVVUcxyGZTBIIBGjK56tNgO5T+6uqSlFREaWlpbz88svU1dVxxRVX4Ha7GRwcpKGhgfr6elKpFCUlJZSWlhbyhjRNK8wl82AcmpvX5se+F0XRT3t9qt0AwPXXPwWIQpv58++mr28fjY1N6LoXv9+gpWU5U6Zcxfnnf5rrrnscRdEBh1wugWH4aW5eA0B9/Vy2bVtVGHvJkscLN7Ft21Yxf/5dmAh8isI8JARzkADXBs5F/uZNAaYirbW+BzyY/zoUpLd1FAm2jXy/CVxmIYF2CHgsP7ZAgmsr305F3vxOIgXRdOQNkvxYZY7JQDbKxraNbD68mW9f+W3W7VrH5vx7enzJ47hUF2vzn9fa5rUoKPTH+1nfup7VC1ZzVtlZGKpRCPMGuLf5XvyGn6eufwpVURlJjFDkLaLSX0lPtIeeWA8LGhZgC5uR5Aj1oXo2tW1i06JNKCgEXAHOLDuTJ5Y+QVA3pJBYqhvK5kIukg9lfkwCP0WXudEgj44lc589FRIoY8g2nmoJQidynr3VUnl8bJ9UGfc1ynonQ8EQVtHzFlzAefdIf23FkABdMSQwP61MgFxVgtpEr2RqVUOCzKKpebCcZ5c1DxTNmNwQsLISMAfqofRsqSIOst0Ec626JIMMUDxdHk+NGHdycj7yQm3RDsks78uDWoBrnpDK3petlq/n3is9tadeK0HxRLurH5fjGL5JUDxRb5vSp9pVJFnpiXEQk6B9Yq7UsGTNNffpbTU3LpElFPQQCLiYNq2YbNZmzRp5/7jnnoVomsLatfL+ce+9zbhcauH1PfcspKRE9hWC09p5vTq2LU6rKy720NkZLoz/jW80kUyaBfAO8MADV3DVVVMZG0tj2y/g9W6lry/KrZ/5AsFgkH956Tkef+D77HplJ/GxCMs+/kmKgiH+tOdVHnzpGf7xso9RV1zJmmv+iV3f+z0Bt59fvPEi/3DJUrL5ME2P4UJVVCKpOE/v+yO3zP04Wdss5GXfMu/jFHmDfFj+9xWXruPSdWLZbEFhHOCp66/n4poa6UGdB9EKyJjpJ56QqPLxx+GLX5SstccjwfPDD8vn6fTpimAg46vr6+EPf4ALLpDthZAAQFFkbrWuS4uthgYpXFZfL2OuS0tlXHcqJYH65ZfD6Cius7KcMU0lEte45x6Fz39e4n6vV17iE09IQB0OS7XvSERieV2XOHHmTLj9drlP4HbLKPREQqaUX3aZvDSPR77VBx6Ql/jIIxKsf/3rEv8/9VQ+jdiRb3/hQknQn3GGTEFHOAXFboA5DzxA5WWX4VgWgbw2i6JKkUZveTmqppFLJjHzdlyVF14olaQ1DXdREY5pApBLJPAFAlK07N57UTQNYVnyCKDruIqLpZey4+ApLSU5OEh6YICKiy7CymRIDgzgr6qCkQHpOz1jpvSx7umEqWdJ9nnGTMlMn3+JVBV3hFQPFwKKSgEhRctAipgJIcPDPT75oXj9EiAnY/J5KiHZaUWBJZ+e7Of1gz+UNx8HXt8On/hH+XcEBWAMUDdrEZnYCN6SWmnNBVTMuAzHtlA0nf53X6H63MtR84KHg++/RvV5V0y2zR+FbWG4/dTNWgSKgnAkw2t4Q9TNWoTI55hXnDGX0Y43KKo5q9BWVQ38pfWomo5j2yi2TPRX6xqxt//xlDXjTWjX3yR/RvNWW1y5GGDSCxukBazLjZ1fb3LlYpzWV1DnXzFp0QVoS25ETKQuouC0nrI+XfpJlFPmRzgSuCeT4HLz3nvvcfz4cbZv305dXZ3cpHAcIpEIw8PDnH322XzkIx/h5ZdfZnR0lOLiYnp6ek5buwoh0PIbdBOq4YYhP+eJqMxkMkl9fT22beP1elFVlZKSEhRFobu7m/Z2+T1OKJb39fVRVhYq5D/HYj0FLaCysrOoqbkYRVGxbZOmpjX5a1lDNNp7CtEjsKwM/f1vUFV1AUuXPoGiqLjdRSxYsDrfZy2KohKL9bJgwd2oqnHa2ljXvX/V/l4MQ/r11dRcgoPKbCGIKgoGUkw3DBxFkjffyx9DSDuu/5bcZi7/cPFhbvap5UNBs/+DRViWvFnrWoFh/g+byzQR4yNYigvHHUA1FFJ2mlQ2Rcgfkm1UgSMcXIqLWCRGoDiAg4MjHHKpHHbOxhfwYQoTxVEYGx6juLgYf8iPJSwprJFM4/a6cakuouEora2tNDc3o+s6pmmiGipev5ecmUNDY3RolOq6aizHIpfJ4fa5UVUVO2eTy+UoCngxFFBwsIRAEQ6KamCZCRTNi2WmsXIxvIEqVAQ9fQdorJ+Pgo1AwRYOjpVG1bxoqkImm8JRNBRhYucSeP2VaKpKJpdiYOg9GuouQ8VG1Tw4dppkKozfV4KieXEcC01RQNjEkmPoRVM5oWqEHJMqO8eoqlFtmyiKhqUZWIDbypBRNDKaQbfmogoosnN47RxZVcNxHPwIEA5CUfOhqDaOqqM6FkLRyOY3HDzCBs1AdfLKp4pKTnNxVHPRw6QgxWrk7mNZLoHimIRzKb728j1sWrSJoeQQ32/7Pps+8gN8apDRzDCl7nJ0QyFmhUnkEty38z5eaH+BP9z0bzTVXUEim8RWs7hcGioqjq2gOgaR3Dhl7koMTSOeTYJmoas62Br7h/ZQG6qiMTgN2xK4dQ84kHUyWEoOr9vFaDxMtacGtz2AyxnHTI9gls1H09zYdhZjfB+UzMbUAhgKGNlBTNWHqQXRFAfLzqFo8u8DYZLDkMJwThYbFWNsH5TMwlQMDM2DYSfASmLqAUwMhOrGpQgMRW5XmELBzIyhecqxhYqmgI0m57bTEjzaSXDlczSdrAT6qgIYYDuTgFtzydxmzS0BdagOFGsSKKsqoIGw8oDdBUI55T/WApHJi7JNbK0YkEtLuxgsmU9uO/JvIXIU3nyY3OU/wDSKsIWNRwGXGQUgZxSRE6BhYydHcbn9uHQXvL6a3BWPYKJgm2kM3cBGx5UZAm85OaHhUgSuRLcMX3cFyZkpctkUmr8cGw1XLoqr9esSzAcawM6Q0/1kLAvN8CMcOPbBGKVBnboyN46ioOo6qnAQjvxbd3ImqssPmKfBAAEAAElEQVRAmCamqhNLC3w+g9HRJMU+Dbdig9uNoasYjkkq66B73chP3sEyLUxV3kO9+ZR2M193si9JyKVQV+HG0Q0SlkIyaVLkU/EqNqqhk3N0UraGpilEsuOUhwJ0jQ8yEoszs/IcElaUv//tPfz6s9+j2F1KOmfiding6Ci6iaY7pDIW8ZRJwKuj6g5eQ4bBhtNxQm4/61/5GTva97D47Pncv3g5fpf3P+6G/39pSWazHAuH2dDaypqmJmaUltIZDjMYDnNNNou6fj1izRoZIn7xxfJ/N5GAygq5QZbNSfZzz17JPldVydDtzk4ZN/3Q9yWYzubA75O/34oiEe6+/TD7QomIJ8LINS2/macADqTSMn+1q2tyvFAQULCEwlfu8LJihQS9I4MWVzRZOELBdlRcLhkxk04KNEPD7XJwbMHgsEZZiUMiraEo4HHZeL2g5DUiLFOgaJr87VQEAoXBIZXyUgfV0Ojp10mnIei3qKu0UHU5n5VzGAurVFfJeTRDAphcNotuGDhCoOYVw4WioBgGqluyxooQkAfJmUgET3GxzOW1bcbefpuSs85CaBq6Yci+eeA58UnZ2SyqYUiAbds4uRxYFuEjR/BVVeGprERxuXByOclYgxxHceSmq6IhhI3mKCi2jW3kU2NUDU3R0UcGJct83WegvBorm8DOpVGLynDy/TjRjj11Bpqiy+czzpZe05qB41ioqobIZtDcfhAOtrDR4nH0nI1VWoIdD6MGS3BUUBQVx86h6h7sTIJUNo27rAFHUdBzaTLxMfSyOlQUVNsia2ZwazqpgXZ81WdhaTqqJj9z3bGxFBUXjrTu8gRxAN2xMREYtkU6NoJRWocLEMkwI8f3UTFjDoavSCqGR4bQi6uwXB5UQM9HY1mKipY1UbIWmkvHyVmog91oxSGcQAl2LIFWUoQaG5Pe1Iv/DkfRsU2BYqYR3gA4oCkWaiqK0/YaXHujJO01VYbtZ5MIlxfNpaMmI3I3yHDhZC3sVAbN50E1VBzVYOWXv8yf/vwnKRxYWkogEGTbv23jnAvOYerUqQSDQWxHAt+XX3uZVDzF1VdeDYoM2/b5fDxw/wNMmzGNsqoyvC4vtm2jGTKqL5vK4vK6UISCqkvxQwWF/t5+qqqqZJ0i6zRFw8GR/VUNVVExbRNN0+R5NLK5LGjg0jQUx2Kgby81leeh6l5UzUPOyqKqOu+993uKi6cwrbEJVXFwBKiKioIgnU3y51fWcM1HvoPPE0BRNBwBwjFRNRfCMUHRUXCwHYFjZ7AdQd/gIWprLwUgHh/C4/IQClQwIQBrWlls28bSvQhPEccVhY3IMPAzhENYCDyKgqGoxAGXcPAJgQeBo6i4JqLUTik54AOkddda4Bz+7wHYHwqa/Scufx26/b9SrJxFNpHFyv3/yN12HKxAGeEBm5blLaTiabqSXdy58046oh1YWBwdO8ryluUcixwjUBwglosV6gbMAQIlAZIiiaZraG6N6sZqvCEvHZEOdnXvImvJG9Wq7as4FjlGsCTIousXESwO4g64CZQEMHwGsVyM21+6ne5UN9UN1XTGOlmxfQUD5gCtPa10hjvRXTpFQS8ubFQng5IZRhcWem4MNXkSt53E0DS8bg8hl46e6kZ7YyVTqmeiJDtR9i9HTZ5AB9x2Ct1Jo9opvG4/frcfrzlKKHMcPd2Nun85ntwQ0xvnY6gKOjaKGUNHEFLS6AdWoSY60FUVVdioTpaiQCV+J8s0K01jLobHSlGXS6KnhtCsFC4ri2/8A/SXbiUQ/oBSM8VF2Ri1uST+8Q/Q/vwlvOFjBBAo0U6Ul25FjXagOCZqahgtcgz1pVvRshG8mQiBsBxLCx9DtU3UZD9qLobbTDE9G+MyO0eZlebXuTgXZGNUmCkMO4PR30ZFNsJTH/0pPqeEM4Pn8vjVz+AlyN49fcT73axcvp0Tx2OkMjk8ThE/uPpR3r31CAtrLqezI8wdX/kLY90KPqUIw/Gh5jyER0ySAx5WLt9GR0cEzXbjV0MMnDS5beVL1OdmMyN4Li68uFUvJzujLF++lZ7OND5CaKaXKk8trbt7OdbvIx04hxOu83jg5X/hZGSY0UyaRMl80oqfg31HSVg2aXctSSVA1nHojkZY9+rvSJg5TDRORKN8+8/PkDRzdMXjPPDyvxApnsOJlMkDr/yGk9FxslqApLuGnFZETyLBuld+QcS0SAg3KTxETIeUVkrMtBlLx0nZDm/1t5O0UjguHVQHDBVSr4PdBcTBPgmDt4J5TJ73l0gQTUaGJyoZ8JeB1QGDy0Ek8n1uAScK1ol8/6Og2HnhNhtIy6MTk2OndoFI5nPdOmBoueyjKaA7UDyd3BWPMia8tI+Nsbunj6SjkDBKSRiljOVsVm77E8ejKYaVIpJakKTiIXb5o6QchQ/GwuzqH+VoJMmXWrbyQdpFylHpSyRJOQox/xQSRhFpofJBUvDamJlvu40PUoLkVT8hEZxBQvWRMEr4IJri1j/9hWPhMHErxxn1fhqLVPS9bbiScTRho57oRGttRe88jvsrK9A7j+N6Yx++dJxKj42WTVNTYhDsP0Hg7tvxYeI6cRx1+XICPZ24E1Fcdg712FFc+/bgUx18mkCNx1COtuP68gp83Z2cNzVAfWoAdcVytI5jFOk2tUUq/t4TaHvaMGNpxuMGQ4M68ZiGYZYjbB2/VsR5pbPYu9tFbKCcrV98CsMsJx7TCI94SCdc7GnT6Opwo1heXCKIkyhjuCeEGz8A4XSMWCZBLJvglnkf/9B66z+4GJpGld/Pj6+9lrP8ftxCcE5ZGfOmTcM+6yzEz3+GMm0qXHoJFBdBNgUvb4bImGQk0zHoOQZzLoUzZkBJsUR7wSA8+QTkUvDrH0IqKkOFO49Ikazf/wTmXCJDV3Vd1nW+L3Nxf/UojA1K5Pj8zyE+LgH71+8GnxeOvw+ZFJqweeKHWc4/K8u0hhxXXTAM27agR4dxk0ZxbJTwKJ6/bMGdGoFcFqXvBLVlKdxmlDJ/itJiG5+eRRkfxmnZAuExtP5ONCuNGhtDbP8DKja13hH0P29Gjw5TEshS5Ddp8A7D9i2Qy6LFRjBeeY7asjQaNno2jhCC8WiU7S+/TDgeJ5XN4ug6WiiEHgxiqyqJRALTtsk5Dlu3bcMUAndZGUKTG8m9/f2UXXQRqt9PxrZxVBUlb7E0Nj5OMplEALF0mpZt2wiHw/T09RFJpbDdbsovvRR3VRWxbJbu3l4UtxtUlXA0Sk/PSSKR47zYspxwuIOenjbGYl3YLhcCB0uYWHYW08mRragg+w9fIVsUJKcKcoZCQsuRszIyckx1sM84F1NY2JqCOf1MwpETvLhtJePhDpKpUcbDnbz459sYixzHFBbx5CBmMECmvJi0naQ79j5jsRNYdoZwpIOWbV9mfPw4IlCGWt5IVFX5iqJw3OUlW1bPrYpKh6JgazpZb5Cc4cHVeCE5l5eE7uK4orBLVTmm6dyqaRxVdYQ3RFxV2ZOvX667OO7y4ipvZI+mE1E1coFSis+/mlQuS04zSBpulJJqOlxeblVU2hWVjKqRUTVUyyF6LEL37j7Gjofp2t2HWT4FK1jOWEeMF+98nbFjEUxvCeKjyzBVN2OdcV5cuZ2s7SbSGeXF5S2MdcaxvEXY136SsRMxulp7sDIWVtZhfMiia3cfuZSF6S3GNDVsSyGdVjB1H6YwsITB2NEwH01fx4HtBxnvGmfXz1vZ/cfdHP7eYcKDYd4+8jav7XuNl/e8zM7WnaiaSrA4yN6De2l7s41n//Isf3r1T1z+kcspqilizBzDwiIlUrSPtdPa08qAOcDu3t2knBRHx45ya8utdEQ6CFWF0FwandFOlrcspzPSiYNDIpfgtj/dRkekg1guxoptKzg6dpRYLkbWyZImzVBqCCFsPLrBtPrL8Mbfw53uRcfBwEZXFC658LOcMbUZLXUSdaQVTZiowkI58BW81ghLP/oD/HYYdWQ3ihByLXvgyyiJDrTcGGqyE3WkFT3dhfut2/FaI0xtmIeuCHyGi5JQFUUkUUdaURIdqPuX40734HV5CWoqAStFlW3xbcdmumPjM9PURzopc2xCjkWNY1NmmwSsNHqkA8NM59PgTi85JLDenD9+GD4+WT4E1/9Jyn8XHP83+phpk7EPxnjxSy8y9sEYZtr8d2PZQsVK2+xav4vDmw+TSqXojfVy1/y76I31IhBsbNvIC+0v0BPtwRIWmqLx8N6H2Xx4M+t2rSNjZfDqXk5GT0oQPnYMW9j0xnq5sOpCRtOjpK008+vns27XOlJWitbuVo5HjgPQEe5g5daVDCWGuHPenbg0l5x3twxbXt+6nnJfOb2xXk5ETsid9lQXHLgN7CTK2D551Dyg+1Bix1BG2sAoQtG80PcCihlDObyukKOrCBO8lSiZIXjzDpT4MRQzhqr7oGwOSj7nVn1/A4qdRtm/HJI9cg5VL4ylHF6HIiwJfswECjYKAn+kAyUTliIg2TCYKdh5JwoCRXNJ1eQ3H0YFFDuLIiyUfeugfbM8OqbMiW3fLEN7EeAtQ5kI81VUlFy0EIqr7Fsn2c69D0I+nD7Qt4uK8XbqrCx6NoZhJtGyUZSBN6B6DmnfDFIpi2zWJp22aG3tprs7yqWX1rJhQysvvNBOX1+cam8tAS1ESC/Bb5eRSk2G1K5f34qwoetEnFWrtlNc7Dnl3C5cLg3TdAp5sevXtdLXG+fEiQhCUGi7cWMbQsDu3T3kcjYLFzYy7YxiLKEwnBjnkvpzcGk6Jb4iHn7t11Iop3oG8WySnsgI61/5GSOJMIOJMc6vmSHVa4WDoenMrjuLZC7NM/ukAFXiFBXnwcQ4XdFxvv3nZ8jZJj/d9zzn18xgJBHmv/z5aXojQwgh2PjqvzCWiuIxPLw/1MllDWdRpPajWkMIspDeB0YdGFNAL4ex9RDfDGPr8qA6OgmezePghCVTpdeB93JwEpN9nOjp/UUqf0fOAjooHlADoNWA50JIvwEiLdvGN8u+IkUuFyaJj7TmJ+ByUR8KURMMsnLrVtrHxohm5U/e1+bPpzcWI2GarNy6lePhCLu6e7Ach41tbVT6/axvbWXz4cOs292G6QhURcFyHHZ193BsPEoOjXW7Wqk4tW1rGzl0ojmb4+EwvfEE63bJcxtaWynWNAJWCsUyobkZ3G6UdFrmnM6fPxmuu349XHwxSn8/2soVBPq78Org2vhdmDMH1bJQTjH8VSIRSfoPDMCsWSjxOEoud1oYr7JuHYppnjaHksmgdHaidHfDeedhah4GBlU6OmR4rM8nGenIQAmrVilUVEB3t4JwJLM9ODiRKqswaxb09ChYlsLYmEJ1NTQ2KigYaMJN1rIYj6cIKOU0BOu5f/HyD0XM/gOLS9cpd7lQBwZ468EHsWIxlGwWH/l/rfEh+O3jkI5LZnn77+DQXpknGyyC8moZPqypsPlJCY4VRcZFxsKnexqnk1A7ZbJOy6tn2Fbe17j49PaODdPOls+rKvnnRx5m6tSpKBfM4dC778KJDyA8xvVLPsLC5ou5+NqPctWmH3Jw/37ISAus7T98hLn//HUunDOPBVdfwztjUYjHcXbugHgURQjJkU+E6ba+guLzQzYjn9c1oDjOZIpY6yuU+LLU10j/YXXhVSiGAbqB0jAN4jEpKuXxYjsO0ViM+fPnYxgGLpeLZDJJNpstCEaNj48Tj8dRFIW6ujoZuZFXYgYIBoO0tLQQiURwuVxs376dbP7+VFRUhMvlwnEcYrEY7e3ttLa2Ultbi8vlklZHlkU8kymISCWTybxWSisVFaXs2rWO9vYXiMV6aWiYT0nJNCwrTTI5Qjw+kFde7gIUIvEeugb3Y1ppVM2Fx1NCX98+IpEuurt3Ew53YhhehHDyKs/9tLe/QGvreny+0oI+y65d6wCBx1NCNNpFS8tykskhGhoWEIv1AmpBOyaaGiaqqAzlreK+BrgUBVVReAEZeZZRFN4ETioKtyoKXYqCG6njMgdYrygSzCgKvYrCEHDxX9XnFIUFgFtRaFM1jru8uMvrOaYoLFc1Og0PvYrCQqS+i64opBUFK2cT64lSN6cOw2vgr/SzbdW2/NqxlcObD7Nr3S6Eo5CJ57BSFrvWyTVlNpotrC93bdiN7WgISxBqCFF1YRU77thBYiCB4THwV/jZtmo74Y4wXXsHGD8RQ/foxHpibF25FSszOV/r+lZ0t07VhVW0bWqjen41J3InuLXlVrqj3SRyCWK5GLZjYzkWAkHGyvCd179DT6wHgaA/3s/9O++nK9qFpmhsbNtIhb+C9a3rqfBXED0lfW5D6waimSiOcNjQuqFQl8gl0FWd713zPby6F1VReaH9BTa2bcSludBUjf54P13h4/icFEqiA+XAKpnClhlAESaut26XhA7ItaDmAU8lysE7pN7KhetQUj3STlDzSFFVYZ2yDl0PrlJ59FQU1q/K4XXoqoIbG2WkDZeqoPhqoXx+oQ1HNqIIE2VkF5qiUGdnOCdynIBwuP22lUy9+BpU3cXbu7aiOhaaqskUt3SEX/z8ZyiqxvN//EPhXjt37lwWzp7N27NnM+X889msKBx/+9B/0J39/4NF5NX3/r/0qKurE39LxcyaYvDtQbFl2RYx+PagMLPm/1Cf5EhSbFm2RTzAA2LLsi0iMZL4d2Nl4hmRGE6IgUMDYsuyLSIWi4m3B94WLe0tYiQxIhKZhHhn8B2x7eg20R/rF0dGjoj+WL/ojfaKZVuWibcG3hLbjm4T0UxUHBk5Ih7d+2ihbTQdFQf6DohlW5aJA30HxGB8ULwz8I6IZWIiko6I4cSwiGVip/U7NHBILNuyTLw9+Lboi/WJZVuWiUODh0RLe4sYTgyLHUdbhJMeFmLXMiF+jTyO7BOit0WIbESI1JAQvduEGN0nz40fkueSvcIZf1vWje7Ptw+fPk5qcLL9+KF8/7fl64k2mRE5x+iByfGT/UJEjwqRHpHHTFiI8aNCDB8S4sVlQgy9JURHixBvPiqfv7hMiMEDQsT7J9t1tEyeG35biExMtnlxmRDD7wiRTQiRjclzLy4TIhOV/Qtt3pZjHfyRELFeIcaOCBHrEaJzm2w7UZcaF2LwLZE9ul28/fagaGlpF4cODYply7aIfft6RUtLuxgfT4lDhwZES0u76O+PiQMH+sSyZVvEoUMDIhJJi2g0I/r6YmJoKC7Gx1MiFsuIm29+TsADoqWlXbz99mCh/dGjoyIaTYtDhwbEsmVbxJtv9otHH90rli3bIiKRdKHtm2/2i/7+mOjpich5h6Kifeik+PoLj4j2oZMinkmK1zsOig+GTor3BzsL5z4YOile7zgoLtj0afHNlh+KWCYpwqmYSGZSYjwZFa93HBRHBk6IRCYloumEGE2ERTSdEEeHusTXX3hEjCej4usvPCIu2PRp8XrHQdE+dFJ0jvYW6r7+wiMinIqJ9wc7xWgiLOKZpIik4sI2I0JkjgphjggRaxEitV+I2DYhrJgQVvivjjEhzGEhepcJcQQhem+erJsYw4oJkX5btsn1CpE+JJ+n3xbCiguRfif/+k0hzHEhrHHZN/2mELme/DXsy7d5R2RzcRFOpURfLCY+GBkR4VRKRNJp0dLeLjwPPiiWbdkijgwPi6F4XETSaRHLZMS2o0eF58EHxc3PPSe6IxExmkyKcColxpJJ0R+LiZufe04cGhwUiWxWjCQSYtvRo6In3y6RyYhDAwOipb1dHBoYEMu2bBFvDw6KSDotxlMpsWzLFvHo3r3iQF9f4Zwdjwvx1ltCtLQIceiQEMuWydf9/bLurbdk3aFDQkSj8jnIY3+/cN5+W4gjR4TYtk2Igwdl/dtvC6e/X4ijR4UYGRFiaEiIAwfkufHxyXkOHZKvT51jfFyIL35RiOFhIYaGRHTcFC0tQuzbVxj6313G8LAQ8bjsemp9OCzbHz0q387EJRw6JEQiIUQ87oi333YK42az/xG/IB+WU0sukRC7vvY18cGvfiVG33tP9O7cKcaPHBHJkyeEePp7Qrz8vBD93UKkk0J0dwjx9l55fGKdPL6zX4gTR2W7J9YJkYzL48vPC3HymDyfiAuRSgqRTMi6J9bJumhYtk/EhBjqmxy3s12It/fJecNjQiQT4rWf/UT0/P01YkppsXjrz9uEMzYirPbDYuzwO8Lc8kthD/aJZ3/0qLjgvHOFnUqKsYEBUVpSLA79YL2wB/vEq7/+pZh59tnCaj8scg+uFlb7YeGk08JOJYXd1yNfJxPCTsSEk0oKOxYV9siQsI6+L+xIWNgjQ7IuFpHzpZLCHuiVzwd6hZ1OCav9sLB7u4S55Zcil0qKgYEBsWWLXD9MPO/r6xPxeFwMDw+L3t5e0d7eLtLptMhkMiKZTIqjR4+Kvr4+kU6nxZYtW8QDDzxQGGPv3r2ir6/vtDGfe+45EYvFTnts2bJFDAwMiGQyKbZs2SIymcy/6xePj4u+vjfF6OhRkUiMiPb2FjEw8I4YHT0q0umwaG9vEQ8+6BFbtiwT6XREtLe3iN7effl2h8SWLcsKr3t69or29hYxOPi22LJlmejrOyBisf5C20wmVugzOPiOiEZ7xcjIEbFlyzLxwAOILVuWiVisX6TTUZFORwptY7YpDgghlgkhDgghYkKIFiHEO0KIo0KIkfxxf76NJ38+IoToE0Icy7dpEUIcFEI8KoS4WQgRF0Icyvd5Oz/uwXy74fyYkfx58sdI/hom+oSFEJ2pnBh4e0C0t7SL5EhSjB4dFQ96HhTtLe2F9Wb/m/0iHU2LkSMjor2lXfTu65Vryv6YiPXFxMiREfm8Pya2LNsi+g70iWhvVOx9dK/YsmyLSIfTp61Xe/b2yHXs6OQ6tr2lvbBWHTw0KOc/NChS4ZToO9EnWtpbxL7efaKlvUUMJYbEUHyosKY80HdA9EZ7xaN7HxXLtiwT4XRY3PzczeLRvY+KIyNHRCwTE2/2vSla2lvE2wNvi6OjR8V4alz0RnvFtqPbxEhiRMQyMRFOhcVwYli0tLeIdwbfET3RntPWqYcG5PHtwbfFtqPbxHhqXNz83M1iNNol146ZiBCZMSHSw3INGj0qxJbiyTVkb8vkuvODR4UYfVM+T48IkYvJc7tvluvBiXVq+B0hcon/yvo1/3rsLSGSPZPneluEGH9rco0bOyrXzPEuIVJjcuxcUrz28p9Ez8lOMaWhVry1e4cQ2bgQYx8IkU2IE0ffF/PnzRXzLr1Q/HHLb4Vw7NPut5Zji82//ZU4/9wz5bX91fm/1QL0iv8GTv0w5/o/Qckmsrz4pRc5vPkwM5fN5IZnbsAddP+/7vPZls9S1FDErnW7aL63mWh3lN9e/9vTxrJyFlbaoru1G1+5D+8ZXvaO7aXCX8FDex5ibfPagt3S0bGjbGzbWBC0coTDSHIEv8vPSGqEdbvW8Y0F3+DMsjOxHJln+9XtX+UXb/+CZTOXFYSu4rk4sWyMan81PbEeHtz1IKsXrObM0jO5teVWNh/ezLKZy3hi6RNkrAxBd5C+aB8Bd4Aqtx99dLfc9TvyEGLmWhRvNaBOilT5p8D+5XJXburN0pppQgTLTsHYASiZLYWprBQc+rr0Ow5Mg/0roe8FaHoWKhbKkL1kF7y/Xopb+adLQSzylk2+erDiMn8u/C6UzAI9KAW2Xl4pWeazl8FHfgSZMSkc1fGCtCeqXSDVrXd/C6ouhXM+I9WZ+9vAVy2v2fBBsEGOr+RlzRxbilblYjIfUHPJ+RRF9on3SEb7stVQfKasDx+VdXPWguEjptZw6/Lt3H33fIaHk1RU+AuqzV6vjmUJVFWhv1/aEr3wQjvPPvsp5s2rL/gPDwzEGRhIMHduHW63TjptYhgaLpeKaQpGRpJEIhkefXQfmzYtwuMxyGRMvv71l7jrrgXU1QXweg16e2P85S8nmD69hDlz6kinTbJ2ln67jxJvkHA6TkNRJYlcmmgmwezasxlOjLOn6x3eG+jg61d9ng2v/JyvX/V5wqkYz+x7ni/N/TjDiXFKvEGKPH48hgdVUTDyYbcKMJaM4HN58RhuTNtECEHazBD0BBiOj/OLN17kzitulvnuCNyawXf/8gu+eNkNnFlWhuLEJcusBmSetV4JWGCNSbZ5bB2UrQatFpwUaCXy+1NckqkG+Xp4tWxnTAerB5J/Af9i0IrAjkz2E1lQvCBykDkE3svADsv57VHJaOsVgEHCtHEUN/FsFkNVMTSNsVSKtGniMQyKPR68uk7Gtnmjr48LqqrwGQajqRQBl4uhZJKBeJzZ1dVEs1mK3G7cmoauadiOw97eXmZVVjKWTrO+tZW1zc34dJ3xdJoSr5dKvx9NUegMh+mJxagLhXh0714eXrwYJc/OBE0Tta9P2t+8+66UMx4ZgRkz4KKL4NlnpXqTyyVZ5+PHpVTyt74FU6ZIhnFCuQnkcSKftadHKi6BtFWKRGSfN9+U4lGjo9IcuLZWKkONjEiRqsZG2V9RSAs3yazOqlUKmzdLZeRHHpFWRN/9LqxdK5vn3w6plOxqGLJO0yZTbwcHYccO2L8ffvQjCiz3xLjPPCMjjD8s/3HFNk3iJ06g6DqHn3yS2XfeiZlK4WQyFNdWoUTGpRr00s/lha0cGbr9xutw2eVw05fg2Z9Km6VcFqrrYXgAdjwLn/2yVILe9jtY/CmpBu3xSasl3Zh0Eug4DCWVUFEl/15PtEv16YpqGO6X/a/7DIRHmLr0kzz/m3/lwtkXgaoVRJyUmbP51XCMRzZt5NCRDzjw5kFu/vznaT/8Hk73CZwt/0LZusd49aWXmF1RihIqwmn9C+qCq6CkdMLYD2GZOC9tRV14JUpxGcKxJXvd141SVCx9nDMplPJK7K1/QLz7JsrM2VK8SlEQ8Riiox1rxjm8uPM1Dh8+zKpVqxgfH8fv95NMJmloaCAcDuNyuQgEAiSTSUzTpLW1laamJvx+Py6Xi3A4XNBhKSkpKSguT4y5c+dOGhoaaGhooK2tjebmZmKxGL/5zW+YOXMmixcvJpFIUFJSwrZt26ivr+fcc8/NC6BaOI5JLNbFrl3rmT//LjyeEkwzSWvrBpqa1hCL9VJU1EBJyQwcxySZHMHjKaavbz9bttzEued+kuuuexzTTOFy+dm69Su8++6vmTlzGVdc8QDBYDXJ5Ch+fyWKoiKEg6JobN26krq6OTQ0LKStbSPNzWsJhRqIRnvRdRfj48fx+coJ1FzECs3FZqTt0Y+RVkeNwCAytHYNUpg0xaT7Rx9SLNVCWn3W5x9fRfoRjyJVnecgRVL9yNzXNPAucBngRgqrRoGi/BzLoXAtTwEksgy91oW/ws+eh/bQvKaZaG+UosYiiqcVE+uJ0flSJ6VnllI9u5r4QJzEQIK6OXUAxPvjtK5vpXltM7G+GL+57jfMXDaTKx64AgDHdCieVky4Myzb5ccPNYQomVaClbHo299H0dQiihuLEbage3c3W27awtkfO5slP1qCElJIWSnCmTAlnhIMzcARDiu3riysKR+44gEAErkEJZ4S/C4//fF+NrZtZE3TGqYUT0FTNGxhg4Ch5BBV/ip6Y710RbtY0LCAtJVm9UurWb1gNTNKZtAb72VHxw729+3nq3O+yg/2/oAnr38SIQS/f+/3TCmewuzq2RQZHryKgpI6Cak+uXY8vF6KpwamSTHUsTfkGlLRpHtJehjcRVLQNDMi26S6INEBlVdKy9CyOdLRxMqAvxFwZHvHhJHd0HoT1H0MZj0g16pHHppc45bPlfowdhYOrIKZ98o1bkEjRuKNqTNm8PxzzzJ7WgjSozjuMq79zCq+t349d319NXd89St8/BOflOvXieLYLLn2KhY3X8QdX/0KFJ8hXUX+xsuHOdf/HyiaS6N5bTMzl82k+d5mdPd/P2Tw1D5FU4ooPbOUG565gdIzSylqLDptrH/+53/mjLPOwFssQ7r3/mAvZtzk8bse58amGzl430G+8Ikv8P4H7+MIh8HEIM997TmWXb2MhXMWMv+S+ZxZfiYdH3TQE+3hhfYXCLgDdIY72d2zm4yV4bElj3HzrJtZ07SGeC6OQDAQH+D+nffTHe3Go3u4a/5dDCYGydpZ7llwDy2fbeFHS37EWGoMn+HDdmyqg9UAvNazB+FrkDeaSx9HCc6A9KAE1mVzpKcxyBtW4zKYvUmqTu9fDrEPJMAunwMISA/I42U/geAZUgl65lpo+CSUXJzPJVEgOB0u+7G0aBp9A3S/fPjq5dhv3iHHKr+Mgi2TmYIrfgD/+AFc86QEwIE6mLNm0vf35ZWQHoOrHoPz/l6G2uSS4K0CwyutmhxL3jQVZOi5lZYPYcHOO+CJ6rxnsSHfu+aeVG1+82F5/cKRolOX3A2Gj5yrEkXVefrp6znzzDIWLmygqMjNxRfX4PHofPDBGMuXt3DiRITKSj+rVy/g2Wc/RV1diK98ZRtdXVE0TWFgIEFFhZ9Vq7aTSOSwbUEmY2HbYBgKJSUehoeT/PM/z+XgwQFs2yYUcvH449dxxhklADiOoLjYw/TpJdTWBvnKV7YxNpampiZEZaCUXx7YSmWghJSZ5ZcHtnJh7Vn0xYb5SduzzK49mzuvuBm37mLtNV/Ca7gLod8/3fc8xd4gvzywlTJfMUIIhuLjPPjSMwzGRlEVFZ/Ly3g6xoMvPcNQfBwBuHU3kVSMocQ437zmnxhLRdn46r8wkgijqCrn18zgmX3PIwomaQCaBNYiA6k2CazNnnyI9kYJwPVq2T69P58/bUDmINiD4J0jgTh5S7D066AVy7ZOGIZWgdUvv8v0XtnXOxeG7siHjPvAmCpDwwdXgNmBS4wWFtE9sRhf3b4dv8tFbShEwOXiQH8/GcsinE4zq7KSkVSKlVu3krIsAi4X329rY25dHbqq0jE+znAyiaooHB8bo62nh0traynyeHhk714WNjTg0jSqAgF+cuAAQdekdEljUREXVFVRFwzyyEc/yslolOUtLZiZDMqJExJhBoNSNfmxx6SYVF2dFIq66CIJnm1bAuAzzpCeQlOmyPN33DGpxDw6KgH1oUNSCKe2VqLdvXulvVEoJEH6vHmy7ZQp0tDXtqUv8VlnSe+hCREq08TuHyISUXj4YThyRAJrkFj9mWfkELoup927N/9Z90hnpq4uqYd1223yMkIh+OQnpVbVyIj0Fl69WgLre++Vl/xh+Y8tmmEQnDYNX3U1s+++m0wkwuEnn8RTXg5ujwTWb7wuQ8RHBuD4exLoXna5PHoDEngXlUJRmfzbiYzBjV/Ib2COwLWfhNg4pFOQScvF5MiABOnD/VA3TY6fSctw8ennSCCfy54eKj7jvLzNkEfqKegGavPV/ONf9jHtn+/hvvXr+eVvf4cYH+OM2hrGImFan/8DSjBESyxHPJ3hZG8fauP0ghKzSMQgFsHe+hwiPCbTh+oapOUnyHPb/4jiD8gNASuHs+e1vN3SUmm31Hw1qCoiMi7tlBqmovkDNDc3M3PmTPx+P6FQiD179hAKhVDzgmQ7d+4kEolgGEbB9qi1tRXDMBB5f+J58+YRjUZxHIdgMFgY0+1209TUxIwZM2hraytYJtXW1p5mCRoIBLBtmyVLlnDuuefy0ksvMTY2huPINDhNc9PQsJB9+x7D768oWBS1tq6nsbGJoqIphMPHaWlZgWmm6OvbTyhUz6c+9SyLFm0iGu1ix447iES6WLLkR6xadYRrr/0BbneQ7u62PGBP8eKLtxCNdgMKCxeupq9vP8FgLUuXPkE02kM02oNheMnlEhQV1bN37w8gG2etEAU/4TQS6KpM5q6uR9p5zgAWAD3ALKSS80qkzWZ3vs+jSJD8IHATcADpIOIDIki15wVIO9AEMAzcjwTjAI8DLcC3kG4jLk2lfm49ex7aI8O71++isakRX7mP7l3d2Dmbvv19VF1YheEzKDurjMaFjRg+A82l0XpK6HjtZbXMXDaThfcsxFPsIVgbJNoTZez4GEVTirj+6espOaOEhgUNuPwuIicibL9tO0X1ElgD9OzpIVQX4uyPnc38u+eTjCc5HjnOqu2rSJpJ9vXtoyvahaqorG1ey7KZy7hn4T0Ue4qpC9YxmhrF7/LjM3yFsO/1revRFE2uX7ulTeh9O++jK9qFW3dT4a9g5daVDMQHmFM3h55YDx2RDu7beR8LGxayadEmRlOjrG1eS87KkTJT3HjujVQHqvEZPsKpkbw3t0faih7ZJAmgVB+YCciOSUJH9cD4QUh2g69WkinpQbnmnAgJr74WDq+TwHnsALgrwVMuyRYlr0aPJteodR+T61qjGIwSuPRxWPKOHAcdRtomHVJcRRJYp0ch0S//GCbsPs20XLd6y/nBz55n4bw5XHJGMeDkrTdPFV6Fnt5eXms7wN9/7rNyLaucfv7/1vIhuP5PUHSXTtk5ZdzwzA2Un12O5vpv7/pYOQs7ZxcAdflZ5RheA3fQjeExKDv79LFuuukmXtnxCnVVdfgr/Fz57Stxe9zccsstbG3bysX/5WJuuvEmVn15FctbllMfqufIW0do3d/Kz7f/nL9b8Xeccc4Z/LDrh9SH6nn2U89S4a+gJ9ZDpb+SfX37yNpZnlj6BOW+ct4delfmr+ZvZj2xHlJWisf2PcbFNRejKRpnlp1JQ1EDt22/jZSVQlVUOsY7WN6ynJHUCB+Md5JwVyPK8gDZycndO09FPgc7JevcFXKnTvfIm9CEZ7GTkbt66QF49355dGz4tynyGJgmwXZmCN74MqROyhtVqh/Cb0PFHEiehP0rINEpraImxlYUyWYLG0bekVZEbfdBrAv6WiHaKT2N6xZOWhwleuWNNXJcguX0CARq8rnTDoQa5QItfBz62iSIdgXkzXDOGsmKz10j31OiVy7I5q6V9ZdvgtgJeGm5BPvpYTD8mI5BIpHj2LFxbrttG+m0RSjkxnEEjkPB53fdul1YlsNZZ5XR1NRY8Alev74Vw9CYM6eOkZEkd901H5/PYHg4yR137ODYsTFisRwej059fYjHHtvHxRfX4HJp5HIOg4MJLMthYCDBqlXbAFiwoIHe3pjM8x6IkrNk/rMEyv+G13Bz67wbAQr50r9440XcugtHOAwlxjjU184tc6U41C1zP04kHefWeTfiIEjm0vzijRfZ0b6HZ/Y9j+XY+Fwefrbv3wpjJbIpfC4PFYFSKgIlZM3caeczZpb5Uy7g1nk3yp8RexBG7wd7SDLRQ7dJ5tjskYA5uAzK7gGtGswOCZKNagmCh1bl2w6AfxGU3ZuXxPVB9ZOSofbOhfGHJvOoFV32GVolGW7vHFmfawer75Sc63W4jCBCmMRzOTa2tTGnro7+eJyvbNvGUDLJrMpKVm3fTtI0cWkaG/J50ut37SKRy7Fp0SJ6YjFu276dCr+f3lgMSwgGEgkq/H5u276dE5EIP1i8mIUNDQX/4MeWLGE4lWJ5SwuxXI6T0Sh3v/QSA4kEWcsqzJNJpVA2bpS+Po4jvYLmzJHPjx6VwHl0VLLJK1dKo914XP6P2bZsf9ttEmSvWAHJJBQVyfG6umT//n7pN9TfL1nvkyflWA0N0vx3eFiO9c1vSpS7Zo2knV0uMAxcQQ8Bv2BkRO4BjIxIkLxgAZw4AcuXy+l7euCccyAanXRmWr9e2t9+73tSJFrT5LDBoHx89KMSzz/1lCTqT9mP+LD8BxbNMDB8Pgyfj/effpqKCy7AlYygHD+M+PQK+M7TcOb5ko3+yToJbD+3CsKj0srJMGB8VOZeCyQ4VnVAgZIK+PNzUFIOoWIJ2BUmQfOOLdIbedo5cGCXBNxCyLqTR+G6T08CeTMHmo5IxhHhceytz4EvwK+276Dr+HG+c++3+OYD30YJhSgqL2fzb37LvY8/wWVLP8bL4STnTZuKemg/4KA2fUQC4/opkznVbTshm0WZfhbqwqvAOcWSc89rKP7A5Ou837B2/U0SdJvm6eMAxcXFXHfddQCngWchRAEQt7a24nK5CqB5AhQrikIoFGLv3r0UFRUhhMBxHIqLi1m6dCkul4uioiI8Hg9NTU2FvoZhcP3111NcXIxhGKiqSjweZ+vWrcTjcerq6mhra0NRVKLRLnbuvJ+GhoUsWrQJRdEKXsDNzWtIJodxHLOQAy3zp8tpbV1PQ8N8DMPLrl3rZH50tJtYTI6XTo9hmhlCoQY0zWBw8BDz59+FrnuIRE4QjfawePEjuFxBduz4GuFwB7ruIhCQ0XbRaC9LlvwIVdGYDjwBTEOyy9VI8PsNJIO8FrkwH5R/bcxBAuONSPD9XaQv8YT953C+z7NIl5DlSDa8FDiWf12NtPZcnx+jG2nhuQrJgLvzrxXbQXOfTvaousrgoUH+8Lk/EKgJcO1D15IcStKyvIVIRwQUyMayKJpC0zebZL81kthZ/MhiSs4owR1ykxhMEO4Is/ehvSiKQs/uHsy0iZky8ZZ6C7nbu9bvIt4fJ5fIUT+vnuJpxVz/5PV4ij24yl0FO9ENrRso95Wzbtc6IpkIZd4yHln8CGeWnolbczOSHGFh40KGk8O0dreypmkNy2YuY03TGhzhFPKtJ/KqJ14/tOchNh/ezMa2jSyavoi59XMLc25s24jP8NHU2MSUoim8OfAmQ4khfIaPmkANqqJS6qtAJE/KdWdmVBI/jcskoE73Q+I4JE9IBtlTIdeWOPLcxFrVWyVZ6v+HvT8Ps6q8873hz1prz1NVUdQ8MCoqIIiRqQpNoogMmSNp2z6ddCdBIhhBBVswajqCEVQc0CTGpJN00knjkDQpQBwSYhVFgaiIIjJUATXPe573Xvf7x2/XLkhynj7nvH36edLtuq669nSvtTbUrnvf3/WdXFUChutfEBVm+LSQPJEzMNAk6spsXKpIZ39f1sOZaE65eVBuD6+Wc5TMlwt93slgHyskkHOsVIhmkxBoBVROipXk/c44L770G+697WYB4dlkjoi6UO38k5/+jGXLljJ20lVSo/pnUsX/W27/T5rx/6/+/FfzXP/vbP8n/uyR/WpralXTK00q3BtWPUd6VNcZ8TrzAOr5V59XrhKX4gHU8ueXq0A8oD4c+FDd/OLN6pprr1EzvzIz/5o/7lfhRFgNRAby3pcRL0pnsFP5434ViAfU0d6jquFEg/LH/arhRIPafnB73ps9EB3In3v588vz3paRxx/0f6BisX7xVScDSsX7xItyvnc6GVAq1q3Uie1Kde0e9Z8MvSWelWTgj8b7cx6Uo/8TL3Z3zutyRKnA8QtfG/F/D78rY6Ld4peOD4sX+hHktrtFbsPd4rnpy/mxYwPihT5/7OAH4s8e8VP3HVEq2qdUdEB81dF+8U4nQkrF/eLHjg8r1bpbqd63xRcT94t35o/fw9BxFfSH1fHjA2r58ufVE0+05D3Vhw93qVAokX/87ru9qq9Pxu7efVK9/Xa3Wr78eXX0aK+KRJIqEknkvdQj/m14QC1f/rz64IN+NTgYveAcDQ0n1Dvv9OT92A0NJy44/8hzQ6GwGooG1Icjnuv+cyqajKtoMq6C8cgFz58b7lGhRFSt2/m4+tXbL6u+0JBqG+w8z2MdUMFYWPWHh9Wxnla1bufj6mT/ORVLJlQwHsl7tz/obVX9Yb+KJRPqW7ufUb94a/cFr3/Yd1YNhP0qmoyrDn+vMjPB8zzUy5VKfDB6Pz2gVCaqVCYgfumM/98Zm/NfpzqVSnUple7LebXDoz7s+Lvis/7j48SPivc6Ezxv7BGlMgGVTIlX+nBXlzo+MKCWP/+84oEH1PLnn1cf9Pfn7w/HYurd3t4LfNKBePyC8QORiPLHYqo/Erngef8fjTt/vz8+53AslvdcD/j94o0+fHjUc338uPycb17+4IML7w8PKxUKyfjBwT81OgcCFz43YoYeMU6PPD8wIGbo1lalhoZkXCQiz58+LccKhVQwYP7J4f74tMPDYu3u7Bz1Vo/4s48cUermm+VUg4NyO2IpH7F/f+S5/s/fMqmUGv7wQ/Fbf3+TUq/vVOrcabnf0aqUf1DuhwJyu/JTOU91SKl4TKmONnnePyj79XTI468uktvAkIyJhEb91WdPiq86HhWPd0ebUiG/HGN4QG6722WfwJAaV1ur3t69U6Vf/IXKtLyhsuGQeKG72lX6+Z8ph8Oh+lr2y3O9XeKJ7mpXsYE+VejzqRMH9iszkVCZk8eV6R9W2XhsdFx3h+wXDqlMyxsqc/L46Gu93SqbSFzw2EwmVPrfnh99Hz1def93Ih7Pe6JjsVjec93b26sikcgFj0+dOqVCoVDeez1ye/79YDCoEomE6u3tzXu3Q6FQflwkElEnT55UoVBIxWIxdeLECdXb2/sn3u3+/n7V3d2tYrHABZ5nv/+s+vWvv6LC4d68h7qj42DOSz3ilz6S91YHg50X+K+j0YELjheP+1U43KcSiaAKhbpVONynYrFhNTh4Sn33u4VqcPCUiscDKpEIqXg8oE6e3K16e4+qEyca8scIm9m8N/qwUqpTKdWtxO8cVuKDHlZKfUWJh/pU7rVuNeqPPqqU6lOjHuuDSnzVf+ypHvyjx8NKqXdy9wf+6LWDSqndSqlYLKV6j/aqk7tPqthwTMX8MRXsDKpQd0gNnhpU0aGoivvjavDkoOp8s1MNnhxU8UA8/zN4clB1HuxUJ3efVOHesOo8KGN6j/bm/deh7pCKB+Iq0BHI+7MTkYTqPSJjeo70qGBXUAU7g/nXT+4+qXqP9qpYPKbe7X33Au/zu73vqkA8oG5+8Wa1/eB21RnszGcGDUYH1fLnlyvHgw7VF+5T3aFu1RHsUKcGT13gnV7+/HJ1tFdygs7PAwonwqovMurnPtJzRAUTQeWPiY97xPcdiAdUNBlVfeE+lfmTdWdAMnxGnh/JCTp/bfnn1qrD78q6N+GX1/94TTrQkssZ6pZsoMCHsl5ODP/58yRzzw8fVSqTVCqTkp9sWvzVnU3iuT58SKlURD3z+FZVXlaqxo2rVeNqKpXdblclJSXqme3b8/OraZpqwoQJ6uWXX/4Pnbf/Ejb+Hc/1/+tA+f/k578zuE6EExeEQSRCiX93n3QyrRLBhKqtrVWPfeoxmdQ+HFBDfUP5ierzX/q8uumrN+UnlZFAh0PHDimn06l+//7vL3itO9StQonQn4DkgehAPpTs1OCpCyalvnBffuzIpLj8+eXqUOeh/D4jk1xfuE+91/2WMqPdEtKw/2aZNEbCyobflceB40pFu5SKdgroDXwgE83wuxcC7uF3ZYJKhQRERzv+FJAnhmVS239z7hhHRsMi4v3y09mg1PB7EgSRzIHekUCzkcCy/qMCiIdOyOuJgADhC4LJjsrjPwbciYBMdOEupc6+kgPVI/u+JceP9gv4HgH2oY5RED/yHsLdKhKK5YPKRkD2CCj2++MqEIir7u6Q8vtjKhxOqOHhmBoejuVfi0SS6r33elVPT+iCfQcGIheEk/n9sQvOcfBg5wXj+/sjf3L+QCCuwtG4CsUjqrH1bdUV7FeDkYCKJmIqmoypvtCQGowGVCgeUZHcc+FEVPWHh9WZ84LIBiP+PJj+oKctPz4Yj6gDZ95VwXhEhRNRFU3I/uFEVDW1vaNO9p1TwVhYfWv3MyqciKrBiF8NRYMqkoip/vCwuqfhKfVBb5sy/xj4prrzYWIqPaBU2i9gOBO4MKwsfvTCsZmIUonTOZAdFoA9Elg2ArLTAzLmgnMeyb0ekeMlPjzvnEGlQi+rWCKkQolE/mcEQB/t7VXdoVD+fiiRUMOxmBrIBZj1RSJ5UH7+mNbBQRX+o+P88eORYLPlzz+vukMh9U7u/tFcEFookVD+XICaGQwKyjx0SKlTpwQ0n5/+dfSoPF6+XKm33pL74bCEl508KffPDyjLBZGdH26mIhG5PR/NHjki5wsEBAHv3i3nikRk/0BAkPJXvqIiYVP198vuR4/K0+dnrb31lrzt3l7B436/vK0cNlc336zUE0+M/pMOH5axBw+Ovnb8uOzz0faft6UTCZUMhVQmGlXZc6cF1J4PjiNhCSVLxP98uNm7LTJ2ZL/zwXl7q1K/b5Ax4aBSYQHLaqhfAHo0Ij/vH1ZqX4OEncUio+FoZ04q9f1Nalx1lXr79b0qGwqqoQ/eUx3vvSvAdqBPvfjwJlU1pkhl2s+o7ECfan/2SZV64A6Vfv5nasPaNerzn/mMyg4O5ILJcoD8xV+obCigzHhMmfGYykbCo0FlvV0qG48pMxJW2UhYXk8klBkJS3hZT6fKJuLnHSeozFhUZU4cU4lYTD3//PP5ELITJ06oSCSi4vG4ikajKhQKqf7+fhUMBtXBgwfV4OCgCoVCKhwOq3g8rkKhkHrxxRdVT0+PisfjqqurSyUSCTUwMKBaWlrUiy++qPr7+1U0GlWJREK9+OKLFwSejYSlJRKJPJDv6enJg/FEInpeyNgRNTh4UvX2HlWhUPcFQLqz8818yNng4CkViw2rRCKkXnzxZvXgg458IFok0pcH4T09R1Qs5lcDAx+qWMyv4vGACgY71Ysv3qx6e4+qSKRPRaMSotbV9ZYKBjtVINCRP8/Jk7tVKNStAtmsalACZhuUUseVgOBuJUD7eO52uxoFwRElAWVBJQD6lFLqTfWnwDmkJJhsuRLg7VcXAvLTuWMP5475znljT+aOHwnK+rLliRbVdbgrD4jDvWGVCCVUZCCiBk8O5kPPRkLHet4ZfXxy90kV88dUZCCSD0I70XAiv2aNB+IqEUrkj9/zTo8KdYfUiYYTKtIfUYlwQiVC8hPqCalgZ1AFOgJq8OSgig5EVSQRUQORAdUf6b8gcKw71K36wn0XhOuGE2HVHerOr1eD8aB6+dTLqiPQofrCfWo4Nqz6I/0S6puM5F/rDnWrQDygwomwOtp7VJ0cPKn8cb8KJULq9OBp5Y/7VWewU33l11/Jv5cR0B2L+5V5/tpxBOxGO0cDzM4PKEtHZG16/to2GZTnkn5Zp0a75CcfsPuuUqFTo+NS4VHSZ2TN/OfOE+1QKtiqVCYtoDo2pFQ6IcTN0Idq3Lha9c7hN+X1ZFjWsOmEUpmUuubqq9WvX3zxgvn1tddeUzU1NSqb/e8RYnb+9u+B648Czf7Ctkwqw9CHQ/nwsn9PRn7++LWNa3n+V88zvmA8ulenz93HuMJxPLT5IV7Z8woNLzfgdDkZjI76VB556BEOvn2Q2x+9ndlVs7FoFvpj/SgUD77xIGvnrsWiW9javJVHFj6Cy+oCIJlNYtEtrNy1kp0ndvLCjS9QX1tPLB1j3avr+Ie6f2Bc4TgSmQSHug4xrmAc4wvHE06FATCVyfH+o1xbOxctHz72EpTWj/bthVvh+MNw6XrwXQxoEDohnpX37pd9FrwEY+eLVEUhEu8PNss+Qy3gmQhj5yIiKw0S/bJ/vAcSPaMhEqkAHH9EpOHXNIhX2/Dk5OFKgpgsucArzSIBavvW5sLGLoZoDzgKZWw2kfNzO+Rx6IzUcc3ZAN5x0H0ASi4XWbhSEnphpiDhl30Mm8jGNR2GT4r0qHK+nMNdJe8hESBuryEQTGEYGk6nlTNnAmza1MiGDfVMmFDErbfuYvbsKm688TIAotEUhYUO/P4EhYUOrFadwcEYDoeFwcE4Dz3UxL33LmDixCJSqSwWi8h/UqksDodBNqtoawvQ1RWiutrH5s0yfsKEQkwTzp4dPX93d5jLLy+jqMRGNBVnIOLnJ2/+lq/P/RxVBaV0BPr40cHf8LU5n2OspwANjfd7Wyn3FFNVWEo0FUfXdeyGlWQmxWsnD/Ju9yn+4dqvABoPvvocX7nqU1h1i9R2lU/C0A3e6znFrS9+l0VT5vGt67+Ooel0Bvp47uBv+MpVn2JcUQXffuVZ9p44wNJL63nwhv+Bjp4LJjPFbmApRkR2SkLHsv5csNlWKN0KpMRDbykj769Gk3367oDSzeKfxsgdNyufPzMisn/NJ8dDB92dC+kzpPPaDIPuk+P1ryE19nE+DGh0hcJcXVtLm9+Pw2qlxO1GA2LpNIFEgkKHA4/NhqkUsXQaUyl8djvf2LWLtXPnUltQQCCRYKxL/n6VUtgMg3AqhdNiQQGDsRhFDgf+RIJUOs34oiIySmHRdbJKkTVNMqaJBvgTCYocDgxdx53JYGtrEw31hg0SaPbuu6K7BjEyz5kjn/V0WiS5ug7NzaLHXrhQfNOplLx29iyMHSv3s1n5+da34MEH5X4qJefI+UCJRkWG7sj9vRmGHPfhh+Gee0hldU5Yp9HeoTNnjsi7166FGTPg858XK3c0Cu+8I7vV1Une2oYN0Nkp6vOSEpGLnx9e9v3vyz9h1ixRrG/ZIuFol1zykTz8P2PLptOE2to49uyzXPa1r+GrqcawWNAGekTCff0XIRyA2sliFdI0kXifPiY1WuGASLv/5Wn40kqp4goOQc0kqeFySsVV3ke9+EsiE28/LTJypSAYgKJiGOgVufiXboFwECxWbvnSF9j11lF6E2mKi4vxer3svWs1Nz37U+KJJFo8Run4CWz97kPMuGgy2Gys+MatNP3+92RsNubOm8dTjzxC4ZgxqGgEzeNDhYOo1hOorg6MJZ8ju/vXaOMnol82Iy/XVKkEqrcbzeuTALQF16KCAcxf/igfZJZteCEfqqZfcz3ZZ7ag7vo2SVNhGAZdXV34/X4mTpyI1+vFNE127drFsWPHmDp1Ktdccw0+n49kMkkkEiESiVBVVUUwGKSlpYXFixcTi8VwOp10dnbi8XjweDxomkZPTw8FBQW4XC6SyST79u3jxIkT3HjjjdTW1uaDEkcWsQChUAjDyDI8/A5udwkORxFudynR6AA2mzv3iVDoupWurkMUFIzD7S4lHO5E0yxYrU6cziI6Ow9SVTWbrq5Duf37qaqajdXqZHDwJNFoH+XlM0gmQ9hsXk6c+C0TJ16b33dkn6KiiTidxUSjPTQ2bmbBgo24XCXElUmPt5LNmsY9wDjy3wy0Ag8B6xGp9kDu9Szih04AfiAXe0kP4tO+Nzf+LOBFPNd6brwDCUHTEGn5u4gH24L4vePAB8CVufegR5PEPxzC5rax7/59F4TsjoSQ1W+ox+qy4ih00HWoKx82NveOubQ81sKyZ5cROBcg1BGianYViUACR5GDvWv2snDrQgy7gWE12PWNXbz3i/fygWfPXPYMNzXcRMWsCpSpiPRGaN7STP2GeoomFZFNZOl6s4vyT5QTz8SxGlYOdR3i9PBprp14LVXeKkxlsqJhRT7Y7LlPPceZwBk2NW5i/fz1VHor8dq8nBg6kQ/tLXWXcs/r9+SDdQ92HaTGV0NNQQ0ZM8Ph7sNML51OJB2hylvFGf8ZNjVtkmC0gnEMxgaJZWLU+GrQ0LCYCTyBt0R6nRwEzyR4+Yrz1q9Z+d82EzB0CBwV4KwAqw8yIXnd/x4Uf0x+07pN1ngWh4SkGnb5Wzazsp49/nAuLG2ijM9EJLwsMQCOMpnXkgNg5DKE8mvhrnyY2S3f+Aa7du+ht7c3PxedPvFh7s8mC6F2Pv65r7Lm9tv57Gc/K89rGn99899w0UUX8e1vf/v/n6n6L3L79wLNPgLXfwHbiMfasBlYbBZ5nMxisVv+XWCdiWdoWNHAsR3HeNr1NL99+bcUhYooqS+hpb+FN194kxeff5H7nruP+RfNJ5QMUeouBWB/+35WXr+SFfet4P7O+1k+dTnPLHmGVDaFUor+WD9PtDzBY4seQ9f0PHBeO3ctld5KPDYPJ4dO0hvppdpXzeamzdy74F4mFE4gbaY51HWIaaXTcFld6JrOoa5DzCyfid0iqT92lcaeGhbfSKxbwiHSIbAWgNULsU7ofUUmqI89TT5kzExColcSGq98XCaZY5tg6gbZ5w/LxAMz/QEJf0jmXr90vXhdDA+8tXo0UMJZwTdX/i07X3uTcx09vNPyO2ZeUkmCAv7qb/6OD44fx+nyUDp2DN/bspHJU6aB1c2bv/8Na+7dQiRtoGnw2MMP8skraiDWBxXzJOWx722oGAleGxIQ4CkDDIh2g6sMwu058L0RPDUQapMwszn3isfFVSoA7PgvYOBduOZRuc6QsNLY2M706WV4vTbS6Sw2mwXDkMVJJmOSyZgcPtydTwdPp01SqSzr1r3KunXzmTixiKamdmbMKCMUSlFV5SWZzPDmm93MmFGO02mhpaWTmTPLsdsNLBYD01QYhiSQ+3x2otEU0Wiazs4Qc+ZU5a5FaOi6RlZlcXkM+sKSCj6uqILLyiby0Ov/xN4TB9j++bup8IzFbrVQ7Cokq0wM3bgAkP/9nM8wxulD1zRcNica0B7oo8w7hkgiwhh3IZlciq+uafzjKz/k63M/h91iw2t35c+1aMo87rv+6/QEB+mNDDGj8mK8VgATTY10XFfC0KNQ9hSQzT1XDelO6Fom/uuyJxE3XWY0BTzrFw+2SgtQTndJX/bQQ1C8QRLER87hnJ3br1DCzqy1YJ0A6RMSnFZ8t4xPnSTCJP7QMcT0sjIK7HaaOzqYXlqKRdfx2Gwks1l+9f77TCwqYmZ5OT3hMD2RCHOqqnBYLJzx+ynzePLg+L3+fiq9XrY2N/Pwddfhslqx6Drd4TBuq5X3+vspdjoZX1SEziiItlks7G9vp8LrpSuXGv5QUxMb6+u5zO3G0t0tyV8eDxQWwvjx8OlPwwMPCPo8dw6GhwXFapoA3w0bBEQfPSqIduQiVnMzTJ8upuZkElatgp07JXV87lwBzyDjYzG4+25Ytw5KS+Htt0eBfDIJFgsRZwk9/QaFhZLyXVsrgLmtTSq058wRXH7qlADv8wH0HXfAY4+Jp9owIJGAgwclBG3iRMlnU0p82x8lhv/nbulolIP33Uf7yy9Te8MNfOzee7G7nGhKidf5zAkYUwZjSyWwzO4Al0fAciwCbo8kaZsmZNPwzgG46hrZN52C7nMw6VL45ydHk8a/vFaCzXb/SkLPIiGYPFWO/8Hb0N4qAFsp8PfDrlGQr6ZcjhoaAJs9HyKm1YzHbN6HXn8tKBMVjaJX14KmowJDmI2vo8//uAD4UGD0sccHdgeamR1NC5+7ADy5D54C89Xf5gG0sfhzmF3t6NXjUBYLDA+hQgF5rGmYe35DdukX8mnfixYtIhqN5tPACwoKCAQC7N+/nwULFuB2uzEMg2g0mk8VP3DgQD45XNd1IpEIjY2NzJs3j1gsRm1tLalUiuPHj9PZ2cnChQsxTZN4PE4oFMLn8+WTxgsLCzFzc7qmaTQ0NFBbW80ll4yC71dfXcecOd8kGh2gqmo2e/eu5brrHsZm85BOx3j11XXMn78Oq9VFIuHnwIFHqa/fkOvGTrJnz2qOHdvB1KnLWbbsBzQ03MLChY8SjfbR0rLtT451/rlMM4PV6qKhYUX+GNdc8wB4KljtLMwndD+H+KPLEeAcATyIdxoEMLcjHmsTAdrB3Pg4ElpWCDiBA0jwmQ2pZTeAcO7HiwDqXiQorRXxX6/PnettBGDrqQzOoTiaoRHtjeZJHG+Vl93f2D3aTlNdQOPmRuo31BPqDOGr9hHqDFFQU4CrxEXP2z2jieMbF1AwrkD+JmNpXt/wOtduvhabx0YqmsLikGCujuYOqmZXER+KA+TB/U0NN1FQW0CwPUjVNVWEVAhTmYRTYcrd5ZwLnmNz02Y21G+gtqCWRCaBoRlYDSsW3cI3dn2DX7z3C5ZPXc63r/k2Vb4qusJdvNL6Coe6DrF14VZMZTIUH2JT4ybunHcnA9EB5lbPpaWzhfraek4Pn5ak8QUb6Ax2suyXy/LNOOOfGM/1k67n2WXPYmgGLk2hh09KPs/UDRJC5n/7vNTwDQKo37pNyJqRtaizUrzYxx6SMe7xFz6OdUoOUPVnhdSxFoD/CPxhiRxjznOS65MJyTk1Xf7QNQuc+xUUXSHvac6PINwlPuoxl4LVLWvRSJf4sI1chsT50FBDwHzonIzJJsFi/2/tsf4IXP+Fbxcw1RsXUHxJMRbbv58mPrJfsCOIr9pH0+Ym1jat5cXnX2TqxVPJGBm+88R3+PHPfsyLDS8yY/wMzgTO0BvppcpXxSPNj7DMsow7V93J+yfe57aXb2N9nVQSmMrEVCaGZqBQtPnb2Ny0mfXz17O/Yz/7O/bzwDUPUO4pJ5aO4ba5uaXhFnae2MnRlUcpchbhj/spdBQSSAQY4xwDQFe464IrjGUOH1qkFS3WAaVXQyg3YV12j1yRe3uNAGJXpYDLI3dLeITFJQA7ek4qu966fXQS+9h2CXiYdq9MQIZjtM4rP8mVS3J3vDs3QW7kjXe6mVjhpv6Gm/nNi//KzOmXkEia/O7VPSz++JVo7gq2b3uYF/7lR+x7/RWUs5SaCZP5yfe3cd0Nn+bkL77Kdd95hxNHD+N0+yT07NBmuOofBBw33g1XbwGbd7ROLB2Wyev1VXDqRUkfr6qDrv3w2y/K49IrhLF+a5vsb3XnGJM2oq5LON0WyoNa04Te3jBdXWEWLKglkcjy5ptdzJhRhjdX/ZbNmjlMkiYaTVFZ6UUpiERS9PREsFo12ttDzJ5dhcWic+hQF/Pn15DJmAwNxSgsdGCagoHOnQuybVsLjz22iNtu28POnSd4772VlJV58qB+Xn0laZUmnIzitbuxW2zEUgmyKsupgXZmVF5M2syQNc0L2O1ybzGD0QAHzh3lw76z3H71TVgMC8F4mAKHB4tuQdM0ssokkU5yov8sU8snYbfYSGRSHOttpcRdhMtmJ55O5Vjyz+Ky2RnjKiSZSfF+byv14yajmSHQC0cDypx14Pq4AGTXXGTZYkqCuLUGrOMgfUZCyyylUs+lOWSMlgPdyoT4m2ApAr1IEsiHHobS7+Yqv+LQvw7GfFMqv1z1kiRuRsCSW3r1byBe8gyBpKTkenPM9JlAgO5wmLnV1fnvSF3TSGYyvNPby9SSEiLpNAV2Oz6bjSwQTaUwlcJpsTCQq+myGQbBRAK3zYahaVgNA4uu0xeJEM9kaA8GmVNVhZk7vsMwWLlrF9+cM4dHDxxgx7Fj7P3Sl1iYTqM5nQJuYzFBqjBaOzc4KID74EFBtV1dgmSvv14Y60hExjz0kFC/48YJwL7iCgHrZ87IMYuK5Bi1tQLK335bwtMsllwisw1OnJAo7/OAe7z+Ok6dsdDRoTF7trR5jR0LQ0PCSN9xxzd55ZWddHaeo6npHdzumTzyCHR0XM/AQC+aplNQ4GXVqifZufMKNmyA8vIka9bcyZtv7iWTcXDppTPw+X7OvffClCkfMdf/GVsmmSR89izHnn2WqbfcQsG4WvSBHnj5eanbsjsALZdEj3wehwckDXxMidyfcAmyQNVyqqMsjFR5LfkrqeIKDI9Wa40tg5+dV+v1P26X1PBdv4IblkNxmRzPYgFTQTaTr+lSxaWSdahpqHQakgnMfXsvYJAxs2Cxork9qEh4lKW+4TNkd780CpaXfB4VCuSquT6O6myHwiIBy6aJZhhgKsyuc1LHVVQM/hxYr/8keH3y/pIJAek2Oyml+G1DQ74264033qCqqopJkybhyP1Na5qGxWIhEAgQDocpKytD13X27NmTZ7WXLVsGQEPuWCPPBYNBGhsbmT9/Pt7c1afXX3+dRblav/PHL168mD179lBfX09RURGBQACLRSOT6aWxcRPz56+no2M/XV2HWLLkaUCY7kwmhs3mJRzuorX1ldzr22louCUPgiWYzIdSUtWVyaSwWOykUmE8nnL27l1DTU0dNTV1eZBtGDaUUlgsDgnr6mimqmoOgcAZ9u//LvX1G6S+y11Kq26wGWGca4EmBOB+F7gHqd2qBiYiYLgQOATMAvoQdnsD0AksA24GvoeAbxMB5N3AAgS4bwbuBiYzWu31DeAXjFZwmeS1WDiiSVRKodk0VEah5S7G+1uFuV7y9BJ2r9qdZ7WXfn8p6XhayB67gcoq0CDSHaH1lVaKpxRTdnkZaGBz21CmQpmKdCxNKpzCXmCn72gfZZdLArkyBZOYGZNEMIG7xI1SilQkRTQdxVJioSPUka/V6gyNgt2nbniKrMrma7fuXXAvNb4aeqO9eG1eXFYXiUyCYDKI1+ZF13QMzcDQDQZiA7ze9joTiyYyr2YeVt1K23Ablb5Kbt19a16BWVdbx/72/dT4aqgtqGV/x36qfdW4rW7KPGW4ddDTIVm/Ocpl7tAMiHdBz94cGfQURM7BBw9J9aujAqwe6H9DQs4SA1BSf2HV7AiBlInC0Xvh8gdFLZnoB1uRrGVDJ4XJnvW4hPV+8JCw2u4Jcv6+16Fymbwvlc1VeaWk1jUegLIrZPGWTeVUXrn6rkingOpUCFJh8FRKyvh/k9qtP7d9BK7/wrf/3Q7sEZYbDXbdsovjLx7nvY+/R+PRRvr6+hhTNAavz0vDyw1cdvFlUASFvkKqfdX0JHo48uYRbIYNTdP4+le+TpvWxj8/+c+MLxyPrulkzWz+SuFIN/bXfvu1/MQzt3ouiUwCTdPw2rwopTCVybngOTpDnVQXVLO5Ua4yuqwuipxF2A07PeEeTg2fosRdwkB0gElFk5hSUIF2aIXIuz/bI2x07yvgfwdmfFd6AEcmocQAOIqlvurIerh0nVzpG1sn445tzk1iZTJh6A5hxA2nyMvPn+QMpyy2Dt1yXk/gXDj7C8Z/fCO/2bmXmTOmAvp5vdIbONz8e77492s5+7PlDF68hqppC0j2vg/2IvjZTC7fXsAD923k85/7HPzuNjj2E0n7nvePIgG3eWSh94c7YNaa0Q5CVyn0vy2sdaQDyudA0g+OIrn62Hw/VF0Nkz8rVxGtbtA0QnELff0CeA8f7mbmzHJsNmHRk8ksoVCS0lI3uq5hmopYLE1fXyTfaW21GvnXBgdjFBTYMU1obw/Q1ydd2TabhUgkiaZpuN2SJB6LpenqCjNzZjkOh4V02qS3N0xHR4hZsyowTUUkkqKm1kt3uJ8xHh9W3ULazKCjE05GKXB6yZrZvBR8jNvHo/t+zrSKSVx/8TwUiqcaf8Xq+i/htDlIpJOcHDjHWHcRPzr4G/5+zmcodhXwYf9ZZlReTCKdZHvTv3Lbgr/CbXUQSkY5PdjB1PJJGJqOrutoSKJtxsxiKhMNDZ9NoY10Ves+SLeJ3FtlBTBn+0H3QuLdUWCNKXJxLFzAXmvWXAXXwRwbPV7Sv/UC6bNOnwJXXY6dXg+x/RDfD+XPQvpcrk/7nhzrXQ5KI6pfxml/gM1NTdxTX8+koiJ6IxEKHY68zDuRybDu1VdZN38+E4uKODU0lGev7RYLp4aGeKylhacWLyarFIF4/E8A9emhIbojEeZUV+MwDBrb2xnrclHocFDkcPBmdzczy8txWCwMxmIk0mk6w2GuLyvDaGwUINzTM6qNLi6WOq3582Xx0dcHbjccOybPJRIX0sirV8O8eXDjjdJnpesCuo8eFbY6FhN2+pvfFFQ8b55IzAMBSSLftEkAtcsl8d3Llwtr7vUSsRfTE3DmmeuamlHWOZ2GH//4Da64YiJf/3o9M2b8hgcemMmkSRAMBjh2rJDqanjvvV+zceMD9Pa+y6c/DR7PWt54I8Obbz5JJqNx8mQvF19cjtst7PdH2//dLZtOY6bTpMNh0tEoVo8Hp8eNNtJnPfeT8D++KSzzcL+AaKsNfv4UXPsZiASlTsswJDk7HASHUxaSv3xmFDzfvFoSePNbTj3VekyqvEoq4WePy/jb/zEnKY+DrwAB9hmZs9MplN2BCocE4C64Vjqp/YOoUBC9epycRwNMhUonz2OjffLeg37Mpty+vkJUNCLgu6cb/YZPS/NBOi3M9AjLXX8t2phiqaQ7r1/bWPZF1PCgsObzP45WXEI6GmU4lc4z1wDhcJjm5uY8yAV49dVXufrqq7HZbOi6jlLqgn5rp9NJb2/vBUx0QUEBkUiE1tZWurq6WLJkCdFoFLfbTSAQ+BPmOhQKMTw8zKRJk/JAPJuNs3v3LRcwxQ5HIbHYAI2Nm1iwYAOFhRPx+9toatrM/PnrKSqahK4b+ecWLNhIYeGE/GNhsicRCJwlGDxHbW09weA5DMPGvn33U1t7NZde+rm8TFzTdCwWR/6zkM1mcrdJ7PYC0nYfGU3DRBjmNPItcSujYPcO4DHgB8A5BBzfCYxHeq13IsngdcB+BHQPcGFHth+p4bofSQdvQAD7ZiRZvARYA9yFgPeS3LFqgCmpDKSyeTA9/+75FE0sQjd0VFaRiqaI9EVofriZurvrKJxYSPBskKaHmqjfWE/huELMtEnnwU48FR6KLy7G3+on1CkycYvTgsoqNF1jzzf3MHv1bAonFBI4GyDaF6Vmfg3pWJpX173K/HXzCXeH88A7kUxAAflO65un38zTS56mJ9JDgb1A1pwoUtkUHcEOyr3lOAwH/dF+St2laJpGJBXh3t/dy4OffBCPzYNSKr+mvaf+HsrcZRzpPcLc6rlYcn3OZ/xn6Ah15BWYGxZsYKxzLPf+7l623bCN/e0CsCcXTUZXaRxmHM1womLtQg6NsNYjZJDVJxfYR2pgB/bLGjPWPspueyaK7PvYZgHLAOmgqDbj/eAsHZV4H1knxzackPaDazy8cwec/QVcs1uSxtNBOa/VB0o7r+PaJgBa0wVQjzyvafJaoFXWmc6x4K2ROS7zEXP9Uc/1X/j25zqwM6kMyUiSTCpzwdgRtvq3X/0tgdYAi7cv5tIvXMoTW56g/Uw70UCU483HOdJ0hJrSGt7tfZflzy7nDwf/QNOhJt576z10Xacz1MmhrkM895Pn+KfH/4mtzVsByJpZ0maazU2b2XFsB5saN5ExM6yfv54XbnyBal81t+6+lcHYID6bj4yZIZwKs/7V9dQW1FJfW09nsJOdJ3bSGeokmo6yavcq2vxtuG1uqn3VPHrgUap8VZR7yjE1C2rqRvFNx9rFRz22Dq7YJkD7+KNSVaDpkI3CoZXilS6eLRPS2HlAFgyX1G55LpJJ6c1VEGmFobdGa7nm/Ei8MVaf9BBmIjJZ1b8gE+Obt8q57WPkymGiVybGaC9ceSdEOnliRzOfqb8I5mxgbM0lVJSVsuPhv4dYL29O+wknTrdx9tRxAWaf3A4re+DjT8hVwPigVGmF26HuQZm4Si6Hw1vB6oKqegHWzhL43Sq5iGC4pK/wqvUw5UaZDHVDjm9msWpJYrEMq1fvobzcg2kqbr11N8lkFqXA57MTj2dYtWo37e1BrFad6uoC6upq8fsTxGJpwuEUsVgal8vKmjV76e2NUFDgyPdeR6MpBgZiuWquYVwuG11dYebMEWZ7cDCGrmuMG1fI1VePw+Ox4XJZsVh0smSxWS0MRAIc6T7JQCTA5td/TCydJJlJ8UFfGzOrplDqHYPDYmfN1X/NzMop+T7qv7piEYPRAN955YcMRPxMHlvDT9/8LTOrLsZhWHFbHcyovAgNcFjtrK7/Ekopzvp7eOwPv6DUMwa7xYam6fSEBjnSfSL/OX+v5zR94SFAExCt2QAl8uxMH5hRuRqt++R5x3TQ7AK+e1cIy6wSIuv+Y2BtKcsB9CSkWiHbA6754L5egPVIb7Z7IRRvlK7zoS3CmGsOcFwOQ9vANpmsUnSHw2y57joqPR50oMjpJJBIEE+naensxGGx8MzSpZS6xXvYF41S4nazZu9eIqkUFV4vD193HVnT5M2uLopdLhwWC2nT5LZcFZfXbmdGWRmDsRjhVIr5NTX0R6NE02lW7dlDuceDqRQrd+0insnkZeh+00TNmSN9VSP9VZs2CXNXWiqMdCYjYNluh/r6US31jBmCRDUNnnoKPvtZ6cNatUrquhwOqeBqbpbjPfyw1HQtWCDj1q4VwF5SIrLyxx8XJnykzNrnA8NAtxnEYorVq2VoV5fMp+fOCab/xCeuJp2uRim47TY5RE8PGEYh06dDezucPRvEZtN44QVYuzbKL3/5I376003E4xqrVoHbXY7fL01hqdT/9a+N/9ZbNp0mFQigMhn8H37Iy1/8IkcefRSl66ibV8Ht34GbboV0UoC1rwjOfChS75u+IcB60lQB1Il4TkmkCbi1O6Sy65vfhqU3wVAfJGLy09clrPVgr4BopS7s0J40VVjugS4578+flMcWqxxXN0arr/bvAzOLVjgGraKa7Mv/Jl7p4UGyDc9DOCTd1c370Gx2SCdR4RDG4s+hFRULa71vL1rNBPTFn0FTCpVKkn21QXzgFiv6vGtQoQCYpkjC530c/aavYiz5PGgaZkvjaA2XUiini3A4zMKFCzEMA5vNRktLS75+K5USu9jChQuJxWI0NDQwPDxMJBLh3LlzXHPNNRQWFvLaa6/x/PPPEwqFWLZsGT6fj0AgwL59+6ipqWHhwoVEo9E8G97U1HTB+MLCQsrLy6mpqcn3apumSWdnL/X1G5g+/WYWLdqG11uBzeZh//4tHDu2g8bGzShl0tQkNVzNzVswzTS7dn0Dt7uUZcueJRTqIpNJ5Mc0NW0mm03gdpdSWjqNTCZBYeEkPJ5K6uvv4bLLbiQc7mHfvvuJRHqxWp1kMgmyWcnZsFrdaJpBX997BALtaIicO4VIwA/m7m8HdiO902MQVjvNaHXWo4jUeyNwFJGJH0CAtQuRhd+FsNklwJNANHfchtz4ztwYZ26f54Di3Pu5BWHPu8jJzxPZfGd1pCdCJp5h6OQQDbc0EBuMUXxRMUu/vxSlFNH+KE0PydhwV5h0LE1sMEbZjDKifVFUVhHqDOEucdN1qAt/q5+GFQ342/zMvm020f4ouqFTfFEx1XOr6WjuINwTpmp2Fc1bm6maU4XNYyOTyGBRFqy6NV+rtXXhVmLpGAAem4dwKkwoGSJrZtE0jdtfvp1zwXMUOgvJmBma2pvoi/SxevZqeiO9rGhYQXuonc5QZ77eS9d0KjwVNHc0k8gkAKjwVrBg3AK2Nm+V2q7GzYSSIdbMW8NAdIBlv1zG1uatZFSGrJlCMxygMmjHNgkTfWzzaJWr4ZL1WzYucuzDt0LklPzPj4w7thnCJ8UnPec5UWMajtEOad9F0on9zjrZb9Y2cNUKk33iSckLmrnlwgqw9+6HeJ+w1dmkrDuzSTnmSJaPpoHNJ88bNgHuBRNEPu4VfzaGA+wF/62B9f/K9tH/zP/Ht/M7sMdMHkMmPQqghz4cugBgZ1NZDmw7wPz18/FWedEtOku/vzQfembYDNwlbjRDw4yYTCqcxLPLnmVS0SQ6g53YDBuhZIieSA8l7hJW7VklYWULt+Zltoe6DnHnvDtZPnU59y64l5bOFvZ37Gdu9Vw6Q53cOe9OOkOdpM00/dF+XFYXD133EO3Bdpram5hTNYejK48yp3rOBf2CDosjD9ofanqIrMry/sBpAbxj5492WJ/YJgBSt8ukcfwRWfycP3mVXy9X+jRDQFE2Jl3W0TOQ7JX9dDuMnSMeloEm6R48tEJuHSUQPC59gCX1MjH1vgLJfkTS54Bwm0wspbPAW8Pmnx/kdNs5HvpZozDMuoV/u/sKfvxvB7hi7sd54pkfUz/3SixaVrqwA63Q91aOjdBEYnPlnQKkE0PCRseHpMM69+VB+Wx461HpzT64SeQ8Ni8UTMpNvk5Ag54WyCTIYmfz5kZ27DjGo48ewGLRueuueXg8NqxWnSNHelFKsWnTJ+nsDOFyWclmpZ/a7bbh9cq4t9/uoacnzOzZVWza1EhJiTvfe20YGr29ER59dCGVlV4sFo3582vo6Ahx6FAX0WiaVat2c+5ckGzW5OTJIVau3EU0msbAoMjpoz8yzNTySfRHhtnXepgfHfwNAJPH1tDh7+Xh3/2EWDqBx+6k1DOGq2ouIxAPUVtUTk1hGWuvuZnhWBBd01l7zc3MrJxCV2iAWDqRZ6N1TcNmWHFa7fz8rd35HmxTmWga9IaHmDy2hs5AHw+9/k8UOb30RYbl/zNzDuItApzNsABcS3HuIkZIxmge6aYe2joKgnVPzj/tF2Cd9YtMXC+UfbOD4JgB6T75/RpFUPwPud7se8FSLUy4ZoGy7SINH7wfskNQugXQMDSdSq+X9a+9Rk8kQto0GYzFcNtsuKxWyj0eVu7aRZvfz5HeXiI5YDwUi3HH3LlYdJ1IKoU/FsOfSDCvpgarrpPMZPDZ7WxbtAiXxSIBaZrGGb8fi65jaBpzqqt5pLmZq2trqfJ6cdtsXF1by5b9+8kohaFppA0D5XAI6F2/Xhjjb31LGOSLLhL99VtvCQi22wV5Hj4sYWVeL5SVSeBZZ6c819srwWhOp/RX6zpUVAgKHhwUo3Q4LCj54Ydln7ffFtC+bZtIyO+/X/YtKACvlwxWNm/W2LEDHn1UiPB0Wk4z8tycOfJn6nIJsL7/fnkra9f+LStW1LB9+7f45jf/mfnzIRJpZezYMfzyl5uZNu1j7NixgNtvf53hYclcSyb/k748/ptuZjpNrL+fQ9/+Nq6yMuq3bWPWunXQ3432i6dRRcXyuWn7UBjrkF8CzP7laZGCT7xMGOLgEKQS8Iun5TYWgf5uGTemVCTexWUyhycSIhV/8w3Y868SeGazQ1Ep2J0iQ9eQMd5C2P2vMnb3ryCTlu80TRMmeepM9IXLUKEA2YYXIBxEq6qBZBKz6XeoE++jImH06bPQF30aNCSgzOXC7O7IyTktaDXjUdEwBHL92ZEwWlWNAOpMGhWNoFeJf1urqAaHE62gUOTlgWH0hcvkvSy4FpXNgq5TVlZGPB5n9+7d+P1+Fi5cmO+jtlgsRCKi8mlpaaGmpgaLxYLH46GrqyvvkZ47dy5TpkzB6/WKBF4pQqEQ8+bNIxKJYLVaSSQS7Nmzh3Q6TX19PVOmTKGgoICOjg6SySRWqzXfq93Y2AiAz1dIUdEkli79HtHoAA0Nt+D3t3Httd/lppsa8vLwBQs25nqv76W7+zBVVbNJJoOARnn5TBKJQL4bu75+A5pmwTTTvPbaesJhgZ/RaD+FhROwWOw0N2/Jg3VNM1DKJBTqoKOjGb//NHv2rMLtLsFqdaAQvBJEwsYqkK7pdmAm0nc9FgkysyBg+mbg8dx+E5CgslWI79pEZOUx4BGEnbYAW3N/C6sRNtqByMH7c2NXIJLxMoRBr0MA/FyAVJa4P87i7Yu5qeEmqmZXkQwmadnWQk1dDe5SN6lIij237QHAXerOE0C1dbV5WbemadTMryGbyjJuwTjsPjtlM8po3trMsR3HaNrcRPHkYrxVXtqb2skkM8QGY3gqPER6IkxcOJGFWxei6RrZVJaet3uI9kcxTINxBeN4Zskz+Gw+LLqF1uFWzgTO4LK66I304k/46Qx1cte8u6jwSv+0P+FndtVsvHYv4wvHs6V5S54kml01m+VTl7OxfiMuq4uaghrqa+sJJoIkM0lhwzMpti/ezs3Tb2ZD/QaRmVtclLhLaLipga0LtxJNR3EYVpFkD70Jsx4Va+Ksx0XaPfVeAdZDBwXkYopEvOYLIhefukEA8dQNQvQ4SoS9TvTngtD03H6ayMhnPixr2aFDMg5zlFyyuKX7GiXr4vYdso/KCHCO9IzaCBXCRoc7ZE1pdUMyJCA7eGYUVOvG6M9HwPr/cfvof+cvYLPYxMsyfGqYcEeYxk2NHNtxjMZNjWST2fw4w2awaNsidENn96278bf6QSMfemaxWdBtOlanlayRpTXQyqrdqwgkAlQXVOMwHBTYC5hdNZtHDzx6AfANJUOksinm18xnSvEUvr/0+4wvHM/M8plcP+l6rIY1zzxX+0Qpcd+++zgXPEc6m6Yz1JkH7LFMDLthZ+OCjTKhLdiIw+LIX428u+5unj/2PIUOt0wEmi4scu1ymUwiZ85jsbdKcnZ+UtooTHOiDw6vEgbaUSqA+sQ2AcvjbhLmWpniQymeDbEukYAf2yyr6IJpEM4BbmclXH9IbpNDEO0UYA6A4pHHtvHSb/6NPS/8FJeRgde/AaE2ZnzlOV5+7GbeefcDfv6TH9LdN8xU7S1hn6NdUDJDGGszA6Uzwe6TyS/SJQD68CMiFR+5Qmhxwscfh1u6YeEP5apnsA1eu0V8MJF2+N1qGDsdUNj0FBs31nPzzdPZvn0xTqeF6mofkUiKw4e7mT69lIGBGOvXv0Z1tQ+Anp4wZ8748XptkuOTVSxYMI6LLirmy1+ewQ9+sBRdhwULavH742Szirlzq3G7bYRCSWy5z1p3d5gZM8pwOCzU1dWwZct+slnFtm0t1NXVUFrqIpUU3/4lpeMJxsNcUjqebZ+5kxVzP4/b5sBpdVBTWMa6T/wtdsPKueFetvz+p1xeeTEXlYxjOBYkY2Y5PdhBmacYm2HFZlgZigWZXjEZm8VGPJ0im1vUHetrpTc0xJqr/5pFU+bxtbmfywWfWJhWPolYKsFzB3/D3hMH+NnhXUwrnwRkRIbtnC0eat0tSd69KwV0p04L86wZgEXSwl11MHif+K5ROZY6LWA7MyiPsz2QOiOSctd82RdDgsrKnxPZeGYA0mdzTHg7pHtyrPYjsh8Zsii2NjdTV1NDqdtNPJPh4aYmlFKUuN14bTYeXbiQMrebOVVV9EejrGhooMrno8LrZfWePcTSaWoKCylyONjf3s4Zvx9D18mYJkop3DYbzR0dAMwoK2MoHiecSmE3DLYuXMhnL7mEjlCI1bt387lLL+WpxYsxNI3+aJS3e3owNQ3ldIoc+7nnRHedzQrQbW6GK68UIH36NKxcKYBa0wTFhkISXtbZKch2JF0sm5XxHR0CzO+8U8ZMny7WimBQns9khAEfGBCJr80mLPbWrXKMri50leaeewT3b9woQ2Kx0WsB994rWN405WeEgN+yBZ599mccO9bB+PEP8stf3o3FAqFQho6Oc/j9l/HKK4dZuPBJ3n33S7jdfTz+uFxD+Gj7v7gpxfEf/5j2l1/m2A9/SMmsWRg66HsE0Gq7fiULyjGlAoInXAKvvDgKdvu7JCl84iXw2r/BDTdCUQkUFov8evJU8WUP9sKvvi/qp4IiWL5C5OZL/gqcHnB7JUDMZoMXfiQe5iV/JcceYbNvuFHAdTYt771oDMayL6IZ57HYzfvQJl4Mdjt6/bXoN34ZzScgmFhUal98BZgH/oBWXonyD4+y1rUT80DbbGlEm3ix+K6DATS3Nw/GNasNzePF3L9Pztn4Ohqgz71amHXTxEgmsNvtWCwWampqaG5uBmDx4sUUFBSQTsu/IZVKsWjRImpqanjjjTdIpVIsWbKEgoICTNPE6/VyzTXX4PF4yGQyGIaBz+fjwIED+Hw+NE3jwIEDHDt2jFdffZXCwkIWLVpEYWEhgUCAvr4+NE2jvr4+D+wNw6CoqIBAoI1wuIvm5q3U1NRhsdhxOAooKKhl9+5VBAJnsFicLF78NEVFkygvn0lNTR379t1PIHAGm82Dw1FIYeF4li37AYWF49F1A03TueGGJyksnEAmkyCR8NPQsIL33//VeWz54yhloutWDh3aTlnZDCwWOzU1dRw8+CRudwkgvulWJJzMjci8NyGL8XJgJXA691Eeh/ipBxCf9BkEiI+w2RZgNsJEjzDXcYSd7kXk5B25cz2EsNojbHgH0JZ7LzflzqMDGDrpWJo9q/dQUFOAxWXB5rNx3cPXUVNXw941ewn3hJm7di42tw3d0CkcX8iixxeJ17o3whsPvpH/c7Q4LGRTWTRDw+KwsPR7S1n14SoWPb4IhSLUIaz2nlV7SEfThLuEtfZWerF5bATPBdmzeg/uEjehzhBKKeKZOKlsilAqxNq9aylxl9ARlO+o3kgvY5xjuKLiCp44+AQ94R5MZVLmLsPQDMo95dgMG48velyA8oINADy77FnGFY7jTOAMt+6+ldPDp3HZXPgTfnrCPazas4pzwXM8ccMTjHWN5b3+94imo9zScAs1vhq8Ni/hZJi0AmUtECl2YhDeWiOhuR97GjzjZE3qqhLbYbxXxug2sSzGugUQeyZK2riZlOeyMQHktlxWfKQVjt4naeRDb0rYr6tCLsSXLxIwn43BmX+GwRZZF9cuF7CeHBJPdcF4WbekwgKis0lZj0a6BMgbVpGIxwfl9oKEsz8375oyF460+fw33z4C138hWzaVpXFTI62vtDJ//fwLZOIjm8Um7HLzI83U1NXIa3/0OVdKwiQ0j5a/Ytcb6aWpvYk2fxvRVDQ/8Xxlxld4dOGjJDIJnFYnPeEeVu5ayenh02homMrEaXEyxjEGpRTd4W52ntjJ5qbN9Ef72XliJ12hLtw2N3Oq5owC9sbNJDNJOoIdbF+8nclFk4mn43SGOtly3RYqPBUsmbyQWi0mnut0RIDt9AeEoR1hsY9vkUkpFRSPyZznwD0uB5p7RBYe75bJbWwdXPGYXN07vFomGUwB4odXy239SzIpjVQfJfrh0rtExuMoFQ93JgapQbkPPPboI/xyx0u8+tsXKBxbLhNV604Id9IzGBL5d2yAH971SdwOC5+87Wfila6cD2hw6GG5kmlxCJsd7RUJ+N8dl32DZwU8B9tkQRgfgH1rIHBKQHm4Q4B4KgThTvjYXXLl0eLEpiJMmljE008vAeD06WHWrNlLX1+UadNKiUTSPPJIM3V1NTgc8jmqqPAyZ04VkUiKU6eGuOuuV4hGU2QyJk1N7XR0BOnri5JMZqmrq8Fq1envj9LREeT06WEyGZP+/ihVVV50Xef++/dRV1fD1q0L0XWNp55azJe/PEP+KfEMmayZr1NRSnFF1SWU+4qJphK813OK7tAAW3//M5LZNCWeImZWXcwv3tqNw2Kj0OnDVCYXl9TSHx1mOBZEA0o9Y3jw1R+RzKTQNMiYGUylmFY+mf7oMA6rnXsXfg2n1YapzDz49tpdfHXOZ1k0ZR5fn/s5HBY7WWWgrDU5eXeh/M4sFQKiNQ84r5LqLLLyo3vk+THrwSgBbJBuhcTbIg13LZDPneYD5xzxZseahQHXLLk6qtMQawLDB5obnFeLAsNVD96b5dxmBDIDWDWN7YsXc9O0abzd00NPOMw3Z8/GZbWSMU3KPR4cFgtv9/TQFQ7TGQqx49gxtuzfj9Ni4c5583BZrbQHg6zas4cStxuH1UpPJMLKXbvojkRwWa3MqarCY7NhNQxah4fpCYcl/MZiIZJK0RuJsOmTn0QpxW179tAWCGC3WCh1uzGzWbR4XIDyqVPQ1CSgd+JECRw7eFCAdk+PoNaODtFkj9DDhiE+7LY2GdvbK7ezZwsQj8WEXq6uFja6txfuu08qu44eFZA9d66A6YcfFnD98MPkvBEYKktZmeLxx2HCBAHQiYQc+vHHJdhcLjSB3y8AfASI67qQ5gcOfJmWlt/T3T3ErFm16LqOad5MZSXs2HEFEyZM4M033/uP/Er4aDtvy6bTpKNRsuk0us3G1BUrqL3hBqbdcgu6LXeh8PovwlVXo5beBLoGY8ulTsuwSIL3d34ot2PLwOUF3QJ/dYv4pqNh8Wc3/AvMqheAXTAGrv88BP3wz09ANAR/sxpKyqGjFb69SgLBbA74yh1iXRhTCuOnSGDaX60U9ryjDaG1NfAPSw1WOo1e/8kcc3wdOF3yebVa0WsnYDa9fgEINpt+hzp2JMduv4468b5cxclmUMODArQXLkPz+lC6LgA7GkYrrUAND5BteB7lH0JfuFTOWf9JlDIxW95Ac7ogmUD1914g377uuusA6OrqEi9rJMK+ffsIh8Pouk5zczNVVVWEw2EaGhoIBAJks1lsNhsulyufGJ5KpWhqauLEiROEQgKeFi1axPTp06mrq6O9vZ1oNEokEuGSSy6hurqa9vZ23G53XlY+ODiIUmn2799COh1jyZKnmTHjy/j9ZwgEzrJu3Ua+9rUdVFRcweHDLezZs4pMRlKpm5u38POf76CiYib/9m87sVgcpNMxvv71W5k2bRYf+9hcrr/+MzQ1vc6uXSsJh7txOIqor9/IhAnXUlg4gcWLtxON9rN79yqUynLDDY+j6zpNTQ9z6aVfYPHip9B1a75CqwRhn2OIf3ojwiB/FwHbXuQbpR9IImB5BITPRqTeTyHLu7W54/QzylJrwBWIPLyaUUn5AOLLXo5IxZ1APVLXlUWAOWkzLwlv3NRIJp4hHUtj89ho3tKcl4rrVp3h1mEheDSweSSsLNofpXpeNZG+CNH+KJlkhs6DnaTjaRL+BJlkJh+ShgnjFozj4JMHhc1+qImqOVVYXdb8n4S71E3t1bUcfPIgVXOqyOpZesI9vN3zNhbdwtq5a3ny4JPMqZqDRbdQ7atm7d61osr75CY6Q53YDTtnAmc40HmARCZBxsygUDy95GlcFhc2w4ZFs6BQdAQ72HliJ1uatxBMBClwFORVlZubNjMQG0DXdObXzOehpofYeWInTquTRDbB6eHTWDXQMjFZq37wUE7mvUnALgbYCiUBvH0HxDrE0nh4tXz/j52H1HJmBOzqDqnvinXLmvXwKlnbxjpG5eOF00Tu/dYasSs6KyHZN7ruLbxcQno/9rSsQezFwkQHz0gtrM0rQNrmE+LHWy2ElWEH33h5zlOV+1T9TzZlyjo2cFpuPwLYH4Hrv5RtxHvddagLb6WXT/3wU3+241q36izcupBLv3ApAKlI6kJvtgKV66q8p/4eFk1aRH+0n/raeip9lTgsDlbtXsVAbIAnFz/JUHyIt3veJmNmcFldXF17NW6bSESbO5qJZWJ0hDpY0bCCSm8lL9z4AhsXbKTMXcZLy19iVsUs4mnpJBy5Unjvgns52HWQZb9cxuo9q0mbaQ52HaTEXcIHAx+gUFS5x4pfpX2HhDVYPYhENzbKUl92N6ALgB5sEuB8aIUwzmPnigwn0SuM9IltslhyVMAVW+TqnW670ONSUifS70MrZL+iGSI7z8a45e//iuqr/p5Ov86i//EdJn/sM3R2dHLnA9sIxLJ8YvFnmTm7jjmL/wa+dgYq63j2+09z8fSPcdH8z/HbtrH8esfP0ewFMvm8ugJivTBztVRuvbZSJjGbRya9lgdlnHMsVNbBm1sBU+TgJ3ZIiFoyIFLxKculsstTLWx38Cx07yeVNWht87NiRQPnzgXp6YmwY8cxHnqoCYtFp7zczVNPLeYLX7iU73znDdra/ESjKTRNw+OxMTgY44475uVTwefNq6amppDycg/ZrIlpKgKBRN6TPWNGGYODcdxu8V0Hgwl27DjGli3NOJ1WNA0SiQxnzgRYs2Yv/f0xLIbGYDTA95pfAKAr0M87XSew6AYzK6fgMKysufqvcVqF7rvuojnc9Ym/pSc0yIOvPkdfeBgNjRmVF1PuHYuu6/RHhvnyx5bhtjpwWO04rXZS2TTpbJoZlRcDigdffQ6PzYXFMNA1DYtuoOs6NYVlfOv6r+Ow2IikYuiYaJZyYaM1aw7UdkiSt8rJ9Y0iCR9Lt4tsfPC+3MWZI5IwbqkF5zxRYWAKI627xXOdHRKQne2H3luEobZUjcrJjULw/TUMPiyp4+Xfy3VkS76rqRTtoRCHurqYXVWF127nouJizgWD3Lp7N61+Pwe7uihxu2kPBpldVcXyqVN5+Lrr6AiFGIhGKXI6cVgs7DxxgicPHqTc48FmGFxdW0tfJIICrIaBUorheJx51dVUeL1oQEtnJyUuF1U+H+tfe43eSITZVVVsamykxO2m0OHAMtIt7fUKoK6vl6CxkcCxsjKhhuvqoKFB2OkRTfaWLcL8ZTJyf8YMkXzPmCGeal0XxnqEuc5mR6nlhx6Cj31MgPqKFQK2V6+W110uAehuN2ndzttva/T2wte+BidPysvvvivqcRgF13a7hJVv2hTgyJHuPMNdV/cbiouLOXduDGPHjuWaa67l85/fS2EhtLefoa3tDC+9dCnd3R95rv+jt5E+64P33UeorQ0A38SJzPnHf8Qzbhwqk8HweNAqalB/eztaSQX4hyE4LJ+fnIyage7cAbPit04loO24LBS9hcJOL/qCgORT74N/UPzawSFhvXf9Sj6n2SzUTITvPCu1Xv/8hDDk/d3isx7qg9YPRFpZXCqM+M+fAmUKS10zHtIptKKxGEu/IOy3UmgWK5rLjdl+Bn3eNaOSbaXQr/8Uxqq7we1BXyDsNpk02d0v5ZLFQ2hWK2p4CHP3r1GaJiFp6RRm8z6RmocCaBYrxqeWoxUUQSaDseyL8j7dHsyqWhobGzl27BjNzc3YbDZSqRSlpaXivY1Gue666/D5RAW1YMECJk2alJdvNzU1oes6mUyGRCKBYRg0NjZy/PhxFixYwI033ojP56OhoYFYLMbSpUuxWCy43W6sVisulwulFHv27MHlcpHK/SGNAG/QWLhwCx5POZFID6lUhNLS6QSD7dx889d4+OFlVFdXkEgEqKu7m0DgLEqZ1NT8DcePF3PllZeTzaaIRPqwWp3Mnz+ZFSui7Nu3k/Xr72LFinXU1NTR3LwVt7uEMWMmkcnEaW9vRNOgqWkz1dXzUMokEulBKcXs2bcRifSya9dK/P5WdBRzEJB7J8I01yNe5zMI8H0BAcurEN/0QQT0HkU82TYEMK9E0r9nI2z0WISNPoPIvnvOey0NXIIkiI8Dvg3Yc/uM+L/bgSOpDOloKk/g1P9DPV0Hu3CNccnvNCf/rp5TjdVppWp2FZ0HO0lFUnkvtbfSy2U3XkakJ0I6mmbvmr2UzSjDV+XD5rbx6rpXcRW70K067fvbCZwNsHDrQqbfPJ1Fjy/CsBgkQ0lRX5720/N2D7V1tSzcupBQR4hsJktPpIdSdymHuw9z0ZiLeHrJ09gtdrpCXWxu2pwnjda/tp5qXzVKqbx6cvWe1bQH26XtRimi6ShN7U2c9p/mloZbqPZV88KNL3B33d0UOgoJJoJsqN/AzdNv5vFFj1PlrcrXx26s38gLN75APBPnYOdBZlfNlu9+ZxnihX5M1qHT7s0FiaWFgb70TlnDFs+5EGjHOkYl4OmwMNdmFkoXgMWXU2A+LgrMpceFDNIto7LvY5vlvLEuIYasPiFuOn4NqUAuiNUm7LTNm/NVm7JmzCahcKLIzLMpWYeaGQHYuvXCSfePWWqlhNyJD8rtX2BQ9n/09lFa+F/Q9r/ab52MJBk6MUTzlmbmr59P8ZRi7B57vvc6HU/T834PJfNLsBk2sipLW6CNh5oeuqBO63tLv8eBjgOUuEt48uCTbF24FYfFQUtnCzPKZ+C0OEln09zxyh35HsHvL/0+6Wwau8WOrulkzAztwfZ8uvj4gvEYukEwGSSUDFFgL8Bj8xBJRTjSe4T5NfNZ0bCCf/7UD7HGzgrAvvQu6fwzM3LVLtkn4FmzyB/4W6thyjcl4Kx9B1zTcGGnYKwTxswSVUu+XmuD+LkjrblxG4X1HmiGouk5ma8BO8dB1afhkjvgw8eEHY+cEX+zoxxSEZlg0hFwV8pk2HNQgG4+7bsE9q2V4LHCi+DVrwu7PVKtFRuUCVAz5CLC698Q0FxVJyD6qvVybJtPrgwe2gxX3Q3uCnnOTIuMNtYP9kLkH6oRSeis/OYfmDevmhtvvAy73UJzcwe1tT7Gjy+krS1Ae3uQ2bOrSKWy6Lpcmdyw4XUefPCTeDw2DEMjHE7hdts4d85Pe7vUegUCCZxOKy6XlcHBGOXlHk6eHGLLlmbWr5/PRReNIRpNs2bNXjZsqKe42JXv11637lVmz67i+usnUT3BxebXfsy0ikksubSeUCJCOBHjp4cb+Oqcz+K02nBaHRd0WtcWlvFW54cUOb0EExEuKR0vFVvpFLquMRgJ4rRaKXIVkDVNUtk02/7wC/72qmXUFpaBgu7QIGPcBeho6LpOMB7Ccd55vjrnM1QXlGE3shiZVrShzVD+fQkzG3xQwK93eQ4kp3KBZRn5TKZOy/NGCWTOiqfaMRPMoMi5NZfI/M0I9N8NxetGe7KrGiR1fGhL3leN5gRNIfxDGmKHJNRM9xBKWznQ2clVlZUowNA0DF3nG7t2MbuqiusnTcJttXLP66/z+KJFWHSdnkiEco+H5o4OStxuHj1wgA0LFtAZDDKrogKAYDJJmdtNZyjEg42N3FNfT6nbzdq9e7mnvp6uUIjqggJKXS404Pa9e9lx7Bg3T5/Oo9dfj6HrOHOhaN5MBiOTEeBx8KB4pMvL4Z13oKpK6rTcbpFy53zQFxRGO52Cdp1OOcabb8Lll8t9p1PATCgkIB0kjXndOvkZNw7275fwtKIiAeaaJjJxlwvsdqLWAmIJg9WrR7uoH3hADvnYY2Cx3MIrr+zC7++loKCYVMrLa6+9zq233kgiEQd0fL4Stmx5hMsvn0ksBitXttHd/VXi8UE0Tcfnu4/m5i+wfDn88IeSpfbR9h+zpaNR+g8fxjFmDInhYUqvvBKrx0M2nSZ85gzRvj5KZ87AEhhC8/ejJlyCZrHmWGW7gOgXfiQp4WXVAoL3Pi/VWWVVcmUlnZRp1WoVIHz9F0TeXVIBngLxYS/5KwHchcXgK5TP4UCXAPPiMtjxLLT8TqTjf70qx8zpcOo9eOZB1G3fRtVMgnBQUroXXAuFxWhK1D3m3t+iX3uDSMGDAfFLW6yYHWfR3G7M/b+XPmyvD80whAE/r8caixUVDuYTxI3Fn0WlkhAOoiJhNF8BKhQUiXnT7+RYbg/m3n9DX3At6cJihoaGaG5upq6ujjFjxuQBrs1mw+/3EwqFqKqqQtd1YrFYPu17JOXb5XKxd+9e6uvrsVqtpNNpmpubWbJE1FXn12196lOfyh9zJCm8vr4e0zSJRqP4fD6CwSAVFRXouk5PTxc1NRUMDZ2kuXkL8+evx+erRtOkZMowrFxyyQz+9V9/zmWXTeb11zfwiU88yOc+9zd85zv3cs89D7B69UpuuOETvPba+nwHts3mob39Q2bMuJa2tgMUFlZjt/vIZtN0dh7A7S7B4SginY7h8VQQCnXkz19cfBG//e3XOXFiJ19f9SHZglo8mkYbAno3IL3TYeTj4EEY5BWQ78K+AxhGPNkgUvJ+pNP608ADCEDuRMD0akYTxefmXitApOMR4Ku5Y/chAHwzUgHWA1wRSRJubKfkshLpnwai/VEsTovk9ega6Xgaq8tKoDVA4+ZG5t05j4LxBbxyxytUza5i0vWT8FZ5ySaz7F61m5q6GmrqavLrUTTwVnhJBpNYPVb63+unanYVhs0gFUmRDCaxeW18+JsPaX+jnbl3zKXlsRaWfn8pe27bw8IfLSSZSXKw6yAzymbQF+3L13JlVRalFB6bh9PDp/PtM/Nr5pM1s6zas4qdJ3by0vKXqK+tx1QmLZ0tTC2ZSiQd4ZXWV3in5x2eXPxkvm62N9RLsac4X9uVVVkyZgarbiWRTWA37DS1N1HiLuHRA4/yi08/hxFtQzs/9XugCZxVsm7MxmRNWjxHQGv0LBzfKsyyUvJdP9giDHSsE4pmifw71i4WRt0h0vJ0ULquLR5Zdw6/CYUzxT6oADMhxzuyTtpz7KWyxrQVjU6eqbAA7FRI1rK+8XLB0TQl+8ewi11RcV5gbo6lDncKy23J1V/88XP/xT3ZH1Vx/TfYRuq3DJuBxWYhGUry26+fV9/1w0+hW3XS0TSdBzupmFVBVs8Sd8bpj/Vjt9i5f9/97Di2g+VTl/PANQ+QMlNMLpxMPBtn1e5V1NXUUVdTx5bmLdxTfw8TCifQ1N5Eja+GYlcxd7xyBxvqN1DqLsVhceQrDLIqy2B0EJvFhsNwYDNsxDNxBmIDbGrcxMYFG+kJ91DhraDMXYbNsNER6mCipxSPGZHJIx2Q3mnHWJG6lNSJ3CXXQY29RBK8LW6ZcJwVMNgs8pfEgIxHiXTm2IMyQZVfL76X/iZJAPddggg5MsKOH70XLt9MvijYfwTc1eKDeWuN9GVjEWAb7sjXcRHpFAY6PiCs81uPwbxvw7lXYPwiAcnZJMI86lKpZfUIe/3mFpizUfZPhUQKPna6XJm0enJXHS1y9dNUo6xLfABc5XKl8byqrpRewFDMiWkqensjbNnSzMaNC5g4sZBEIoPfn6Cw0MGhQ13U1vpwOKwUFjryQDsYTOLz2Xn33V6qqny4XBYcDgs2m4HVKhd3brttD+vW1TFpUiErV+7Kg+bKSi/RaAqXy4phaHR1hYlG01x88RjSaZNYLE08nqayxkU0nciD2q/N+Sx9kWFWv/Qwi6bM4x+u/TtC8TCdwX4mja3BZlhwWh10Bvp57uCvWfeJv8UfC/Fcrn6rqqCUI10nuKR0PIORAMPxoHRlZzMc621lRuXFGLpB1swSSyd44o1f8uWrPkWh04OhG2z53U/Ze+IAi6bM41sLv4bTSGJJvAWujwG2nHzbIZ+T+CEBwiNebDMIRpkw20OboHgDpLuFmSY7WsmFRVLDXbMBQ5LHdbew3655ORb8rHRop3vlHOmO3HHMHJCXv/1o1oUCTvv9PJSr45pcVETGNEmbJoe6uqjx+agtKEDLJY0GEwlS2SyFTierdu/Og+LvLV2KqRSmUvRHo/jsdqKpFMOJBAPRKJOKirj0mWe4efp0vnvttRi6jsdmQwfSSjEQjeKx2RiIxdiyfz9bFy4ExEeoZbMCgjVNwPG4cQKoYzGRc6dSwmRnMjLm7bdH/dXd3QLIz5yRpPFHH5XPfigkIP3sWWGp77lHor5rakTfnUgIgG5rE+BtswmojkRkP6Vg7VpSjz9NzFFMPKERDAq213V5C9XVcoiiImGtm5okg62wUHC6rsOtt4pCva5OSPF77hE8/8Yb8Oyzgv9PnJBU8Tlz+KiO6z94S8diRNrbOfbDHzL161/HW1uLxeUiHY1y8L77mLVuHTanA8u5EwJ0X3lRgLC3QED1F/5eFpPd5+CiaQKQP3gbSisk9TvoF3Z6pK5r7Zdg5lwByNmsfK5MUyTe33tQXvv030j6uK8I4jGRdQP86w/gSyshEhCme9GN0pXd2Ya6aDoohdl+BvP5n2KsvEuY5abfSfe0aWK2NGIs/TwjHfEKDS2bGe24nn6lvG6aMkVEI5JEbrNDYCgPypWuQyYtSeNKgaaT3fUi+px6zAN/uKBbO/vMFrSpM+FTy4mnUiQSCRwOBxaLhVAoRGNjI4sXL6arqwu32000GqWqqgpN03jllVdYvHgxpmmi6zrhcJhUKoXdbsfj8eSf1zSNZDJJNBqlqamJuro6CgsL2bNnD9deey3pdJq2tjaKioqoqalB0zT27NlDZWUll156KTabDdNMA2k6Oppxu0uIRgeoqZmPrlsYHj7N/v3fZe3aJrZvv4dPfvILWK0utm17klAoyH333cu1115Hfb2DO+7YjtM5lr6+d6mtrScS6WHlys/z/vvHefDB5Sxb9iwAmmYhk4mzZ88q5s27i2i0n5qa+ezatZITJ3Zy440vUFtbTzodo7f3CCUTPkGvxYEG3McoeH6C0ZAzL1KhFck9LgCOIIFjEcRjbUWWJQcRgO0if9kVhTDXPYxWb92DdFx7EKD9IbAF8Vh3547rQdLCjXia0Mkhmrc2s3DrQqwuK5qhkQqPgl5N17B5bPz2a7+9oOs6E88Q7gnTvKWZBRsXUDipkEBrAMNm8MaDb4wC72ovQyeHaH5YwPaYyWPk/1PX5PkcCPdV+4j0Rgh1hiioLaBoUhFmyiTrzJJRGTQ0eiI93Lfvvvza9Zklz2DRLRiaQZu/ja5wF3U1dbnfl9RwxVIxSj2lZMwMQ7Ehil3FJDIJjvQe4WOVH8NhcXA2cJYHGx9kw4INTCycSKu/lYeaHmJD/QZK3CWs3buWu+ffzYSiCeia1HjeuvtWXjz+IpG7ejCGDkDBZaA7BaCe/bl0WH/sKZkHdKt8j4dOydrOUSrrzhHy57J7ZD1rK5Bf6vBbUjV7/NHcmrcYjtwtieAWp/i2bUU51jmSA9XrYcod8qmwesCeY9Mt3lwNWFbAdjo6Su6YGWG1feNyBBMSnDtyX7fI8c6v5xrpulZmfl76rw6s4d8H1//1/wf+i2/n12+NpIcbjgvru3SrTiKQyNcjpGIpdJ+OoRvYLXaiqSjr56/Ph4tVeiup9FSyYtUKZl06ix037qAmVsO2lm3MLp3NXX9/F7OmzWLNZ9fw5S98mf6Ofh5f9DhN7U383TN/x8JrFjLnqjnMmDaDzQ9tptBRyHt979EZ6iSWiWFoBpsaN7HzxE46gh1cUXEFHcEOzgXO0dLZQq2vFovFjTJygWaOcjj+MLQ/L8Fm5defJ4PZJN4W+1iZsCKtMkk5K3NVXdXS6TfQPJquOLZexmWT4nE5+ZRMBtG2XJ1XL1y0etSvneyHkvlyBdJwiNQnFZTz6VZ4a5tIt0fqs955Eipmy+QzZyO4y4WFbr5PAHPvQUlq7D0oExsIsB6Re1vdsk/FPGGjf3+7TGaxfmGuX71FQDQadO/PpYmbYHWKN+Z3qyAdxeZ/B6/Hitdrp7LSy9VX17Jly34yGYVpQlGRk0OHuigtdeNwWIlG06xevQdd1+jri3L//fvo748yf34NTqeFkhI3breN7u4Qg4MxNE3j4Yev4/HHD5BOm2zfvpibbppGa+swbW3DvP12D7qu0dYW4DvfeYPycg/ptElzcweaphGNpnnjDx04rHZ+8uZv2XviAD9587dcUTWFf/u7R7l34dcwNJ1SbzEzq6Zg1S1YdQsZM4vDauXA2XdzKeAWvnLVp3BYBOhNK59EJBljOB5kWvlkALKmmQPWOlll8m73SYajIaZVTOJHB3+Dx+bCZlj56pzPSNjZnM9i6Aa6bkc5pslVYDOUuxqcEDm3Y4aEnVlKcgFluZgaSzlEX4GhzSInz3SOVnJhAhkJMcv0C3udOCpfTM6rBFhbq8F3owDrkSA1xwy5qKI5creAZkXXIKsUXaEQd86bR1cohALaQyFW5zzULquVeCZDMiPec6/djttmw2mx8PiiRQTuvpunlyxBAwZjMbKmia5pmLkwM5/dzqyKCso9HpZPncrWhQsZisdZ9+qrRFIpUqbJYDRKmduN22qlJxzOe7k1EAQajwt4tlrFP11VRb6bKh6XpO/OnJzM6RTZ9+CgJH+Xlsq+mzbBK68Iu+1yidQ8nRZgvXOnAOurrhLPdnc3/PKXArAdDvFz33ILRKPClAcCwpTv2IFt3RrsKs7goKK1VUC01yvq9cmT5RAj7V8zZwrg9njgwAG5JvDMM3DzzReq0T//efFkG4bgr4kTpbL74EF5C/H4f+rXxH/ZLZtOo0yTYz/8YT7ATOUyFHSbjWm33IJmGAwcPYoaP+XC4LJ4FCZMEfD8wnPCOCdisPOfxVN90XQJ83I4BST/y9Piu/7GRlj61wJY7XZoPQ5v/kHGzJwrFV0FY2BsxajcPOgHhwv+x+0C0Hf9St7H3uchHkVddDkqIH5rzVcgoWVuD2bzH0QmbrGiFZegz7ta/n1KYZ5rg8AQGBbpth5JGR9JBw/6UcODEIvIdOHyoJVVkt27U+q4UmmUfxgVFfWVvvTzqHjsPK/3tWC3y/26T2CgsNlsuN1uwuEw0Wg0LxPv6uqiqqoq3029d+9estksixYtYmhoiM7OTgKBAMPDw+i6zu9//3v8fj8dHR34/X4JZdM0ioqKuOaaa2hvb6ezs5OFCxcSj8cZHh5m+vTplJeXs3v3bgKBAIsWLaK6upq9e/cSCASALLHYMBUVs7DbfVRUzELXLaTTUfbv/y7Hju0gmQwwZsxEkskgx459wK9//W9s3LgB08yQzaaYMeMruN1lGIYNn68GTbPw61+/xpEjMX78439myZKnUUrlwtFaMQwr9fX3EI324/NV09nZQn39Bm688QV8vmoaGlYQjfZRW1tP77k38CkTD7AeAdYbESa6G3gw95lWueesuds6ZLr3IvLxlUj/dR3CYN+CBKAdQOTjk4CrkcTwHUiQ2YgD1pZ7/encedoQwH4aAdmZrPitq2ZXEe4Os3vVbsyMmfdXR/oiaLqGmTGp31Ava8yNCzBsBla3Ne/JbtzUiEorCsYV4K3ysnDrQmrqath3/z4CbQEiPRGO7ThG85ZmADRDQ5kqv3/zlmYsDgtjJo+hem41vhofw6eHCflDhFLSaBNNR6n0VnL3/Lvzkm2LbiGZSZI203SEOpheOp1Tw6f4esPXafW34rQ4cdlcnB46zWBskLHusaTNNKYymVE2g6H4EJFUJF/NtXX/VgAcFgd1NXU83vI4hmZw57w78dq9dATFEnk2eJatC7fywo0voDQD5ayEd9aLzDsThZovCoudDpL3VKsseCcKgQSQDokd8dI7BVhn43D4NqnVKqmTiq2SOrEzjvizRwLRbEVCQpHJAXonzNgsndi6VcLPYudg8IB8msy0sMwgzLRuEwAd6RRropkWgmfkKr6Zlv2yOZm6tzrXe11Nvh5M0z9KET9v+4i5/gvdRthqNNh1yy7e+8V7wlI/9ynsXvsFEvJMOoP/lJ+mh5pYsHEBrhIX8WScbHGWYDKIz+bDa/di5uRnB7sOcmXllexv3I91jJUVX1jBL5//JdMvn87xnuNs+NEGfr7+5+i6zs+f+zk7f72Tl/a8xOHuw9z1hbvYeN9GFi9dzN739nLrkluZvXE231n+HQodhYxxjsFm2DjjP0NHqINqXzWbmzazoX4DLquLImcRa15ew/cWP4En0SWy8BF2+sg6mLk1l6jdJlKamVsFXGdi8vqUb0q42Vu3CfiuXS7pi+EzkiBeMl8kOo6S0auAngk5BrhbKreGDsGVj0sf9sgx5jwn0u9MSK4AalpOlp6ThI8wz7PvEf+zMuVqYNIvVxxfWyngecpyuPIOYbRHbhc+K6D5zS2SBh7rl37rq7fKVclUEAY/gPIrYd8dIhkff72w1WYakkGRiKtcCMbJl8A3jlTFNQwFsnR3h9m2rYUtWxbidFrQdY329mBeEh4IJCgpcXPLLQ3s3HmCc+duZ3g4weuvtzF58hjmz68hkzFpaemkutpLbW0h6XQWvz9BUZEDh8OCUuTHVFZ6GD9epEe6rtHU1E5bm5+5c6vZsqWZO++cx5QpxSSTGTRNw11gkMykeL+3lSkl4wgmItgtVrx2Nx/0tTG94iJ0TSORTmGzWEll0igUFl0HNJTwN7zf20qFZyyVhSVklYmhaSgF0ZQkixY4fWjAu90nKXEXUeyWL7WBiJ/KglKGowE6gv0UOr2EE1FmVk3BYaTR0ydFpl18N1gvgvRJGNoOZY/lvkj0HFAehuFHhLHWXALCrbUSTmYpEa+1tVpAd/FGGWMpRhQQEfFxj7ldqrospfKZzPaJBzvdlmOvZwNWqfFSUSJZH3FK6QmH6QiFmFNVhdNi4Y32dsa6XBQ6HBIqphRn/H4ebm5mQ3094woKMHQdUyli6TTRVIoStxulFG/19DCnqopsjsW++9VXuf/jHxeWWtNIZbO0dHYyrbQUi65ztK+PGeXlKKUIp1KU51LLzdzjKXY7WmuroM7164U11nVBnpoGhw4J2+x0wpgxAliCQUGzXq9oqLNZ8U67XMJ2b94sFHFlpQSYdXQI6t28GTZsEDR78qS8VlcnSPiyy0Yl5rlkY1pa4KqrCFmKaNxvUFIixPi990qQWSolQ774RTl9R4c0ej31lJDs57/1kbd1990SjB4OizJ9/XoB1vG4/DP+4R/kuUsuEdLzo+3/bMum02Ti8by46J2HH+aSL38Z74QJGFZrfoyZTpNNJtE1sIb9aLt/BYu/lJNu58D0m29Ieven/wa+tUJ6rItKBIQv+StJB3/yfpF0/83qnOzSFE920VgB1oZFPtepXIhZJi31XS6P3PoKxYOdiMvt7l9JWnhBMcrhJLv712hVNWiTpkjwGMi4cGhUJu50QSQsj+ddg4pG0IqKpUbLIiFQ58vB9bnXgNOJ5nBhdrejlVWi5fITNKsNFQldyI7nmHbN5QZDRyVz79fhxLTZiadSJJNJbDYbVquVTCZDMpnEbrdjs9nIZDLs2bOH2tpaLrnkEjRNw2az5T3ZDoeDrq4unn/+eaZMmcLcuXOJxWIUFBTQ2NhIfX09LpeLV155hbq6Onw+X54p7+7upqysDNM06e/vp7a2loaGBk6cOMGNN97IuHHVgEkmEyeRCOBwFGIYNjRNJxA4Q2PjJtaubeL5539Jd/eznDs3lS1bnsBmswOKvr5+PB4Xn/vcBL7znR9jtbrYvbuJb397E7t3/xqfz6S5eSsLF24lm00xOPghNTV1KJVF0yRR3DTT+Xqxl19ew+zZqyksHI9h2PH7z2IvGk/K7sGS+wynEOB8FyL/nsxImobcxoB1SGhZJQKAL0aA+bNIDVcpUIj4p2PA3cA/IN7qVO5YFv6UuX4YYb0HAT/CkpfG01gCCQybQWdLJ4GzAWrra2ne2sy1370W3dDzndNKKQyrgW4RMGVmTMyMSdehLgrGFeAp82DYDFFMabDrG6Pr1MXbF7Nn9R4WfGsBhRMKMVMmukUnFUnx6rpXqVtfR6grhK/SJ69nTcy0iSpQnBg6kVdQTiqahIZGxszQEeqgPdjO7KrZOCwOlFKkzTTD8WECiQD90X7mVM9hMDaIoRlE09E8Gz2xaCKnhk7RE+nJ79/c0czc6rlomsb+9v2UucuYWDSReCZOMBmkwF7Akd4jLPmXJSyfupxnlz2LqUxsZhL3u3eNKiRtRULKJPvF95zoF6l33qK4UYgbMwOxs+LBnrpRAHLaL/lAY+uA7IWqSosrt0aIi7Ky+Co5vsUta8+BZqkBi3XAH5bJOvaSO6BwBoTOiefa5hOm2lMtDPtI73UmkUsL75bXskkZHx8Q+XjhJPkA/zdhqf/c9hFz/V9wy6QyxIfihDvDpEIpFm5d+Cfp4RabBbvXLt7sLDQ9NJr+mAgmsBfb6Q538+AbD0pOmJmhqb2Jc8FzTC2Zyqrdq5gwcwIXTbwIU5l8543v0BHqYGzBWH6y7iegwbpX11F1WRVnz51l9Z7VVHor0TSNw22HMXSDSwsvJaES1E+pp9pXjcfm4faXb6ct0IbL6qKutu6CFMYSdwn+uJ/b59yOTWM00GyEnb7ycZmk4r3iRZnxkADmQytkoho7T2Tghh1mbcv1Cm6Uq3LeSTBmJqCL12XEn31sk/ynRs/8Ub2XQzww1+yWrkJlAia8/x25ApjoF2Ab65Nu6hHm+dBDMrE13i2hEKkodDeLZPxzDXDt0+AYI4z2CLMN4sX++ONy4cBih1lrc0ETrfDGevBWyb/rk9vhkpsgcEY8LoYN3GXyXqK9Uuly6c1QcRWpeJxgMMmWLc3Mnl1Fb2+Y5uYO0mmT2toCZs+u4tChLhKJDDabzve/v5SenjvIZhUPPvgGdXW1zJ5dxalTQzQ3d/Cxj1XmgLWJ3y9BZqtW7aG11U8olGTlyl2Ul3twuWycPRtgxYoGTp4cYubMcm688TK2bGnOd24DZDIKdJOuYD/v97YyrXwSHruLwagfp9VBIB5mWvlkkpkU7X6p4eoNDXJi4Cx2w4qGfgGwHuP0YbNa6Ar2c6TrBMmMACinzYHP4WUoGiCWSjB5bA19kWFCiSjD0RBjXAWkMmlKPGOYVj5JzlsxWZL1VVaAdXiHVGGREUa5LOeHNnOqAaMY9CIYc6f4py2lAqzRJeU7MyTPDW2V9G9LrQDrWIukg2sOKNsm4F33QO8q8WunTkvauOYUgN63WirALCWQ7sSWkxl2hEKUut0c7OoiZZrMLC9nOB6nzO0ma5poQIXXS11NDVubmzF0nbZAgBUNDfRHo7hsNlbt3k08k+FjlZWkTZN4Oo2haTy8cCF9kQgrGho4EwhgMwxqfD7e7+/HZhjMqarComn0RSK0Dg+TMU08Nhv9kQhn/H75Aq6tlRqu8eOFvdZ1Ab6rV4u+2ukU9NnSIsBX1yXRW9MExBiGSMNLS4XhfuUVYaOdTjnmggXCVt91l4Bn0xRQXlYm+1ZVCaLt7hbUu3KlUNJVVbBqFYZFY84cAdY7doiEu61NJN/V1QKsnU4B1rNny+sjb72jQ0j4zk54+ulRxfnbb8M3vyn7tbfDmjUSkLZ2rYDqj4LN/ve381PBzXSaWHc3h779bWLd3Vy5ceMFwHpki3Z2cvjBB4n2D0Bppci5HQ550e0ZrcVaehM43HJ/4iWw9wVhsK02uPhy+M5zcNOtAjb7uiSczFckwJvzbDqaDsm4AOp0Es58KAAbTUC3yyOM8xe/KsDc6QRNQ79uKVrNBGGbM1mIRtCsNgkcO3YEc/8+tJzEW6udiIrF0GsniOw7B2CUUqMs9oJrczkFabJ7XkIrrYBYlOyeX0MogEol0dxe6cxe8gW0giI0w8j1buuo4UFUTyeay41ms5MFwuEw+/btIxKJ5NO+9+3bRywWA8AwDJYuXcrll1+Opmn09vbi9/tpaGggnU7T1dWFz+fjxhtvZMGCBcRiMaqrq9m/f3++F9tut7Ns2TIKCwsxDAOPx0N3dzelpaXEYjFee+21fGjawoUL+eY3v0lFRQXRaJRAoI2urkOk01H27FlNMHgO0POJ3gJ8TebOXcuXvrSI999v5ODBnTz66DxmzZrGP/7jKr72tS/jdpfS0PA71q+/nV/9ajs1NTU0NW2mqmo24XA3v/vdRmpq5hMItNLQsAK/v5VwuId0OkoqFUPTDBYvfpKiool0dR3C72+joKAK3UxjKsUgwiIHEQn3U0iHdRYJMTuJBJopJCG8Nze2BAHW30IA83zgIgQ4t+SOeQfSX51hNAF8JOc5hQDrOxBgreXGjs8d25FTfcQGYlTMquCyGy/LM9nRvih71+zF3+bHsBkYNgN/m59d39gFgL/Nz57Ve/BV+ygcX0i4O0zDigaGTg9hZk0WP7WY1SdXs3j7YlCw9PtLKRwn0vFdK3cxdHIIgKXfW0qwI8hLf/0SoW5Jj8+ms5hZk6zK5vupH2p6iM5QJ22BNgzdoD3YTqm7lENdh8iYGaLpKLe/fDuxdIz+aD/Vvmrshp0CewEl7hK6Ql3cOe9OOkOdmMrEa/cyu2o2h7oOcTZwlsvLLmdFwwpODZ1ieul0vHbpZXdYHPm2nLqaunx9bCwdQymF3eKEK7ePVr4m+kRabS2SgFxHiTDY56svs3H5Gz7+iLDTjhLxUieHYMxVwnIfvm1UVTmy7o20yqekaLokiVtcsjYdaBZw7yyX413zMlz1A/BNEYbaUy02S00HT2VOpo6sPQ2bAOlI92gNl82b+wBFZC360fbvbh+B6/+PbZlUhmQkeWHC9x9t2XSWcHeYfffvI9wdxua18ann/nx6OAAG1G+s56aGm1jy9BJ81T4wYEvzFklVDPfS3NHM7KrZuK1ubIaNO+fdSUewgxJ3CcFkkFdbX6U92E4sE2P9a+vpjfQyr3oezz3zHEuWLqGupo6tzVvZ9sw2fvnkL5k8YTJzZ8zlsYcfY8nMJazZu4bucDezq2azuVGk4hpavtt644KNEhCRSVDoKCScSZHKdVuraffmFiwBmWQc5fKTiY5WHRzfItIbV3Uu7bsPrnhU/NRvrwc0mayiZyHlH00cv/QuOc5IavjxLWC4c5Vdq6SrMDmUA/C9uU7sTqlPGNgPjkLoaoKr7hkFz7oNrv2esM4FE6Raq3AilM6CvreE2faNg+prwFUqVyxfvxVOPi+y8eA5KJoM9gLwTRBg7i7PfUDiEo7mLgcU/H6N7D9yBTE+JEz679dg2J2Ul7t59tll/O3fzqCgwJFL9I4Ri6VRCurqaqmtLaCtbZjBwRggSeH19TU88kgzhqEzblwh9fW1BIMJzp0LsGbNy7jdNkpL3bmarWbC4SR1dTU4nVbKyz1s3dqcTwoPBBLY7RY2blzA8uVT2bhxAUopenrCKM1kMOrn8oqL8lf8p1dchNNqpyc0QCqbxm6xMRQLcuDsu/RFhpleMZlkNs2W3/+UgUiA93tbKXJ6GY6HKHL6sFusTM1Jw2PpBMl0imQmxbMHXmIwGsCiG0wrn0Q8naTIJb2qH/afoTPYz0Ov/xNlnjFYdIOsMhmMxVDFG6QCy7UA0IV97lsrSeBoueo2DYyxwjo763J/eLqw17EmsFYJ+C7bDgV/K6ElmSFwfkyY6UxHDji3AiaMWSuA2zFDfNuW0hx4XyeMN4BjFrbB+3FZdOpqaxnjcDCvulqk3zYb83PeRABd04imUtTX1OS90A7DYP38+TgsFgxN445587DoOv3RKB3BILfv3cup4eELgPmW/fsxlaIjFKIkF3CWzGaxWyz47PZ8D3bWNBlXWMiC8nJBqd/4BrS2Cnju7RUAvGWLsMo+nyDSri4Bz83Nksj84IMydsUKOcZIAfWCBeKznjtXfNf79wslPHMmPPGEjOnvl9vHHxePdUmJnOuRR0QSvmOHsOObNsGOHWQjMfx+8n3X5weWb94MQ0PyFrZvFwn4yGuPPipge2BgtL57BNvPmgVPPilvo6NDxvf1CdkOgvE/Atj/69tIQNlIKvifyMGz2T8B1mYqxfs/+IGM+cEPuG3NWsZPn4FWVs2RR+6Hu78M/gGu3/E6l3/yembW17Pgpw28c+wD+PzfwaTL2P3gRmZddRUzFy5i2lWz+emOF+G1Xwvb/fIOmDRVfuGDvXD6fZkLrDbxdw8PyO2/PC2vKyVy8pqJ8ss3TUBDy2bR7A40rw+tejwqHs35tDX0RZ9Bm35lXvJt7tuLdslUNK+PbMMLEIuCmZX7QT8UFEmAWUGRSMtzfdnCUI92Z5OQBb1WVQshP9ldL6L8g+J5yGQwm36H+csfCRgHMM188ndzczNKKfbv38+xY8cIBoP4/X7a29sJBoPs3r0bpRQ1NTV4PB5qa2tpbm7G5XLR1NREbW0tRUVF1NbWomka1113HZdeemnuNALwMpkMu3fvZmhoiNLSUgzDoKmpKX9+TdOwWCz09PQQjUZxOm00Nm7C7S6hqekhjh3bQWPjJjKZOMuWzeSii6bR3d3L4sU3UFf3OSKRHhyOQpqaNnPs2A6CwXbGjr2Empo69u5dw9e+tgrTNLjxxr9m7tyr+cd/PEZ5+fW0tGyjqmo2mUySxkbZt6lpMx5PKdFoP3v33o7f30oyGWLXrpV4POWEQh0olUUpEycCaCOIvHsykMj9GAhQ3gbMQ8B1AgHRFYhU/BmElW4FbkPAuCc3RgETkbCyZgQvORAWPJQ7/tbc7UpEFp7NHdeKRLmEu8O88eAbKFNhsVtYtG0RkxZNomVbS77iVcuFn1o9VubdOe8CSXfT5iZUVuXrvCI9EYLtQTpbOnGXubHYLehWHd2mo7IKi9PCvLvmEemNkAgnQIPaulpWn1iNt9pLw4oGQh0hAAzNYMMCSe5+7PrHcFlddAQ7yKosc6rn0B/tp8Rdwm17bsNUJpuv3Yzb6mZ+zXzGFYwDwGV1YdGksuvJg08yq2IWGhoem4e1e9fmc4Nsho26mjq2H9qOx+6hyFnEQHSARCZBkaMonxj+7Wu+TVN7E+teXUcym0RpOirWPlr5Gus4b925UQggq08sjrXLxV+dCshv78rtMHYBDL8tJE3hDFFkZhMwY5MAZ+9Fsra8dL2saTVDEsBnPSqstXucNN28vVYCgAf2w9g5QgodXi2fBm1EGt4h61UzLdbDTEJk32gCwEek3yOXZwpz1shs4qParX9n+0gW/v/S9schZCPPDX04ROOmRhZsXEDxJcX5187f/lxgmd1n/5+eKxFMEB2IYnPZSIaS2AvsJFIJMkUZbBZJC9fQONR1iFkVsxiIDbBl/xa2LtyKy+pi2pRpTP/mdH72jZ9xsPNgPoGx6RdN7N61m8lrJ7PxExuZWDSRr/7tV6m7ro4FyxbwwG8e4K3Nb3H/D+/n1jdvvSAs7aKii0hlU+iaTjTnOzY0A4suXd237bmNe+at5bLiidIZeORumUwMp0hUPOMBJcndxzbBZf8g8u5DtwhIHn+zMM/ZuIBlMymTwDt3QMeLUP+CXNFLDMgVvExCJrFL7hApzeHVcpylH0LktEySySGR8xh2mbAOfg2WnRRwq1tlgooPSWK3kft9mElIBMBZnAuDAJIhGDgqVwwPbRbw7BwroFjTc6mLo8FkZJLipVZpOa6ZkQsNjmKZJJWS9291y/9JJg4nXyA6+e8IhrP09ITZsqWZe+9dQHW1j76+KAUF8v7WrXuVrVsX4nRaUUrR3x/F57Pj8djIZMx8fZbTacU0FS0tnbS1+fnsZy9B1zVcLmuO4YW2Nj/btrWwdetCHA4L6bSJzWZgGBrRqCR5Dw3FicfTXHRRMV1dYarHudEN6Aj00R/xU+YZw0/e/C1rrv5rHFYJ23m/9zSXV14MgK7pmEo8wR3D/QzEhrmsfBLHcsy31bDQHRzguYO/4atzPkuR08vjb/wLa67+a7LK5PRgBzMqL8aqW0hn0xIArBtklMmDrz6XDzO759q/AxQ+m8KI7wfX1SLd1p1SmeWsEz/10BaRgVsqxSaAgYDqlDzO9IMZAL1gVOqdaYOhx3Jd2c5cWIiS369Ki2oi3Z4LRdsoLLfKmXQTR8SbnQ2A7iRFISeGI3SGQtTX1pIxTVo6O6nyeqkpKKDN72dbSwtbFy7EZbXmvdRKKfqiUbx2O+/19TGnqoqMafJmdzczysvRga5wGI/NRrnHQ0tnJ3OrRQFl0TQyue+NM8PDlHg8RFMpKr1eMkqRzmbJmCbBZJJJVivWVatg3jwxIns8Yjp2uwX0mqagzIICea6xUYDwk0/C1q0CqONxYZljMQHD99wjjPSaNRLn3d8P3/2u6LGVknNUVgpLHYnI38jDDwtzPYJs16wR4D04CO3txK9eRCBiABput5CQra3CRs+ZI+DY65UgM79f3tKmTSIfr60dtZODsNxbtsgpMxl4/30B4KtXS1L4qVPy+vr1MGWKvN2Ptgu3bDqNmUqh22x5wJyOxYj19tLb3MzQe+9x5b33EuvqkiCzFSvwjh+PxW6/YF+A8JkzvP+DHzDtllt4p7OTiy6+mPr6en7zzz9h5uRJ4HQRSCQpdNgh6OfXL73IAz/+Oe++eQg1PEjxJZex759+wOXXLuLsyZNccvUnGDh7Bm9/O4wpg+ISCPilO9tbKGy1xSaPFQKsW34njPiXVoqHu78b9vyr9Gr//9j78zA5yzrfA/48S+1VvabX6upsIIQQEgJk6QUQbEIScEQFZZhxmZHAkLCTRBIUHEmiCZgoOzjqjDqOyKgTsxACGk2nswEiGGNIOkvve+37s7x//Kqrkxlnzpz3Ou87c87wXFeu6qp6lupU9V339/5ugK1q2OkUdjRyVlr3NZLeXVqGUlYBuRzmrn/BPvZ7tHsfQbFtbMvCHupHKasoBo9pi2/C3LUVbclNWF2nBGDv/zXqoj+DVAJr7xuozR8GfwDFssDhxHz1X1AaGlFnXAJOl8jFjbzsu/AqlMoqjJ4uxgJlRfl2RUUF4XC4GGi2c+dOFi5cyP79+wmFQoRCIQ4cOMBHPvIRHA4HqqqSy+XQNCEAtII8fceOHVx//fVEIhESiQTBYLD4vGma9PX1UVZWht/vLwaoLVq0iFQqxb59+7j22mtRVRWnUyMSOUE02k1JSQPt7etpbV1LNNrNj350AzNn3sJVVz3Gs89exMyZt7B48dNkMhHy+RTt7etpaVlDWdkUtm1bxpEjLxf3dzoDpNMjtLdvoLX1S5SVTca2LRRFIZOJ8cYbX6S5eRWBQJBXX72XYHAe06cvwu+vYXT0OMnkEMHgPDTNieEKcEJR2YAEjTUi3xinEG/0KkT+bSFgtxthrYNnPX8+AqjfBi5GAtBOITLvNQjw1hHQPC47dyNs9VcQxnoZ4sfegaSQj4enlcey7LhrOwvuX0BpY6lUvwYDlE8tJ5/KE++TwLKWh1vw1fhwBpxgS+VrvD9Ooj9Bw/wGNNdE8re/zk/PgR7qrxBlYz6V5/XVr9O0sgmH10E+lad9fTstD7dQfl454c6w3F/TgsPr4OkPPc2s22Zx3ZPXoZapRHNRAs4AGSNDOBOm3F2OR/dg2AZ5K39OAO/mA5vZ1Ca+aasAAlVFxef0cfsvbj8nqHe8Kef8ivOZUzsHTdFwaI5iKvjBnoNcWncpAP3xfjZ2bGRt61oqPRLo+0jrI9T4aih3OHAcvnPCUnj50zD2pgBl3TcxyCmqWPksQ96l0YPgbRTwmg+LunLGqon9j20W8K2oQu7YiBy8fE5hB1t8244Cy5weEPDtrpJjhvcJ0J/6ebkfPSnMdPWlMt8cDygLhOR4zVk8bTHUTJXvSCIn/m2g2f+w7QNZ+H/D7U+FkAGYOZO96/YW5dtm1vyTx//rwLLxyoR/b1MdKv4aP/H+CbbbV+VjODXMgZ4D9Mf7WbFzBVW+qmLY2LzgPPrifSzbtgzTMlnbuhaX5mJ+cD7l7nLefOVNdm3bxQX3XsBPT/yU/kQ/75x6h5///Od85GMfYSg5xC8jv+S8WeeRO51j263beKT1Eap91fTF+shbedJGmr5EH6Zlkswl0VSNjJnBoTpY3byaySVBlPQgvP0AnP6hgGhnqazAWVlZPfNNlcEr3SegcpyRvnQTJLskZdHKyqphuk8CzYIflUFM0WXwSQ/Kf9QVz0k9l+IUWfnSoxKM5g3JQDdepZAZgapWuOGYyGRSBYm4bQvAHTxcAPMmZKLCTqMUQiyQwIiGVnk8eKX4qzWnAGhXuQx0nqpCMFkKfNXyDWkZwlSjCqudHhbpOcDI7ySAwjYFgF9wM2Y+g64r+HxOmptD9PTE6OqK8uije+jvj+PxOFi//hrcbp1MJk86bfDVr/6GwcEkiUSO0dEUqiq+5UQiRyZj0NQU4uabL0JRJE08kciRThvousrAQIJ1667Bsmzuvnsn/f1x9u0Tv3UikeMnP/kDJSUuGhpKOH06QmfnGLYiIG2Sr4y5wQup8JbymcuXAjCajICicN6kRlK5DFkjJxIxyyKVy9BQXs0F1VOIpuNcWD0FXdOxbIvhZJi5DRfi1HQ0VWV2/fmMJCNs/vUPqfZX4FB1MkaWkXiEaCaOiY2uanxh/sdYdMFCPnvFDcSzKRyaQ2pcHHXyf2wOQmq/gGnfIpGHVzwEep28v8aIgGrsgifaFOm3owCOB5YXeq+niQRcLaw6U0juNM7A0L3irVY8hXPXAgZk3pb9HLUweJ+ki6slZCyNnoLXOmMYdHR3U+/343M40FWV8yoqeH7pUty6Ts40yRoG7V1ddEWjnBgboz8e54r6es5EoyzfuZM6vx+PrhPNZplWXk6JyyVqgpoaOsfGGEomSRsGw8kklm0zvbKSQMGLfTIc5o5t2+iLx7GBR/fsIWxZ2Js2CWv89tuCWO+9V2jgQECY6UcfFSCsKBS12fPmCWg+cEA82JMmCbM9nhg2zj7H4wKst24VBvz882XfRAK++lVhwPv7Zd/NmwXJulxyjXfflVTxUAjLsnA4FN5+W0hx2xa1+dy5gsNragRQHzwoAHvyZEkCn1qIaxjPZstmZT3g/vuFpV61aiJx/G//VvYdDz7buLFAXH6wAROSbyObLTLU8VOnMPN5zHyeRHc37z3zDJMuvZQ5Dz5I92uv4amuZt5jjxFobMQ2TfKp1Dmd17ZlEZg6lfl/+7cEpk7lw9dcQ0NhkYhUQvzWiShl5RUir46NEXV4BXRmUjDSh6LpREqrQdOJJRNUlpXh+ueXoKIayiuF7isrHD/UB//0PIwNSRf26KDIv+/5isjRPV5Z5N35Y2G+VQ0iY5BOYu19Q4Bw+y+FXW7/pfRa731D1t4Atelq1Fs+B7aNnc2A0yl91SWlwm63XINtmqiLPwaKilJahp1MCJOdy6KUVaAt+jOU0goJRRsalM7rtqUojVOx+ntEFu71oZRXSs92ZRV2Po9SU0tZaSlXX301Xq+XcDiM3+/nhhtuAKClpQW3280NN9zA7NmzSSaTNDQ0kEgk2L59O+FwGFVVpXO4p4fR0VEURaGpqQlFUQgEAjQ0NJBOp9H1iTlNKBQiEAigaRq6rrN48eJiR/Z4iFp/fz/hcAxdr6WxsYXy8mksWfIs5eXTKSlp5NZbt7FkyTP4/XX8+Z/vYPHiZ9B1Dz5fNeXl07nqqq9w5syv6e7uoLV1DTNn3kJr6yMEAvWoqobD4WPx4qcpLQ2RyyVIJPrJZuOoqsaSJc9SVjaNaLSLj3zk68yY8QlcrhLy+TSHDz9LXd1cNM2FbVuYKGxgImjMRnzSvUjv9bj824/0UG9E5NobkHqtgcIxfiCEgO0uhKluRvzXGsJqt1OYNhT+bSrcdiAg/DakY9sNVBSeUzRo29SGqqvsXLETX5WPeG8c27JxeCcCy9o3tJOJZMjFcxhZg90rd4MNJQ0l7Fi+g/DJMAB7Ht1D9EyUUHOIWHeMnXfvBOCaddcQ64nhLnXTvr6dY1uPEeuNYZs2sZ4Yx7Yeo2NTB/5aP8uPLmfxU4tJDCVIJ9K83f82J8InWL5zOel8GguLvJ1HUzRcmovnlz7Pp2d+mqcPPc39C+5HV3Xe7n+b4cQwJa4SvA4vCgpbFm1h0fRFRZn5xo6NtE1ro7mxGcu26I51c+f2O+kMdxZJJV3RiWVjxWPW7V2H3+nnxRtepNZfS1e0CxsVe+ZaqYS9/BkB1FUtQs4MtxeqU3VRTCoOAcFvLi+w3F0TeUDjSkr/ZPFrz91c6Js2C++yDWWzBFBr3olA3/SgEEqqLsRQqkeAdeV8mHxbYRHfnmCmx2XinkkyB1U0+WdTmF/a8nrP9lb/qUCzD7Zztg/A9X/B9u+BaM35r0Cz60+DZt2pU3lh5X8sBS9sRs4gfCJMLpErDowHNh/AUA3Wta+jyldV9D0/uf9JHJqDLYu2cNus2xhIDLD12Fai2Sg2NolcgtH0KD/+9o/555/8Mz/82Q/Z/GebuWXmLcxvmM8z7z2DpVvc8+w9zAvO4++u/Ts63+tka3grDaUNuHU3ZyJnmFM7B4C+eB+P7nmUweQgVb4q7tpxF/3xfgzbYFppCJ/uliTFGavF+zzvRfmjr2qRyoFxxk/zyGNmUvoBZz0mg02qSyoORg9KqITuE0/KvOcLKeKWAO73HpVb25LBz0xJr+CRx6VP0F0lLPfRjXINV+UEE57sl0HHMqF/vwDtSbPg1yvlDfAWfC35JPQdkNXC3ctk5W/4HTj/4yIl19wSVjF4WALL0sNw2YPi504Owi/vlgHxqicg0QVvFIB3Nir/B/VNkvpoZgtebA+6y4dpCnj9xCdm0NzcSF9fnE2b2jj//Eps28bjcWCaFpqm4vM5eOaZJQSDAbxekXfH4zlWrtzN8HAKj0cYpHG2WlHkZ4/HgaJAa2sjzsJnceHCBtavb2fSJG/h1seiRdMZHU0zNpahqytKVZWPXMYkmctgWhZnwv1849c/oNJXhtvhoi82TNbI4XW6cetOTMsimUsTTsdw6k4UBVy6E01V0VVhQZ741feZVXc+iy5YiKZKL+WSGS1EM3EevPovqPSWYmOhqRq1ZZUEXD7e6T1Gb2SYSf4yHr7280wuryPg8pIz8+RMBVufhnit+0XG7ThPpNzuueCYLF+QikPSwM0w5E9B7pS8/7YFOAvHzgMsYa7NiJzTikGqAzBBKQHvNcKC6zWgVsqxKOBZKNcY/VrhZxH7aUBrY6Ow0UBzYyPTKiqo8HqJZbMs37GDznCYju5u+uNxwpkM84JBPA4HVV4vmw8cwKFpuHWdVU1N1Pr9KEB5wZOazOXoikbRFYWAy0W5200kk8HndBYZatO2qfR6qfL5ip7uaCbD1mPHeGtkBNvnEzn27NniAV21Sjyvti2AdxxpGoY8vnYtLFokiHTePEkN6+oSgH7LLRJYVlYmP5eWCn383nvCeNu27D80JMeuXy+A/ZZbhAk/dUok6oOD0pVtWeR6h+k842D58gn796lTAqrdbiHRfT7B/9XVcvrxPLRMRlTp6bQki/f3y1rB2Zh+/XpRAAeDwoivXSsv55FHPgg0G9/OlnybqVRRyv37F17AyuWwcjmOvPgiXa++ytHvfAfd7ab6iitIDw9z6LHHiJ48ST6RwDIMVIeDqksv5dg//APWn2DAAfmc7H21IO1+BUyTz3z+rwgt/jhfWr+e73/iWoiGUaZdxI+/93d8/FOfYvLUqbT82cf5+xeexXnhbPFajw2L93p0UPzULrf4tHe9Iv3XO/5JmOryKmGwh/ogHp3weWu6SMwzadTWa7GTiXPTuj1eAcaKArkcSsUk8VmPSzGNPFbPGYiMSW911ynswT6IRTB3/QLKKlAbp2LrDgkpUxTsVALz1Z+Lz7txKoptozjd2PEYis8vMvBoRAB8NCIBaru3YZo2Xd3deL1eNE0jGo0SiUTYtm0biUSCsrIynE4nY2NjbNu2jUAgwEUXXVSUksdiMRKJRDFZ3OVykcvlKC8vR1EUcrkcsVgMv98vYVT5PJYlDHF3dzeGYRR7sk3TpKWlhenTp3PgwAFqamrQdZ1cLkc+nyIe78U0c3R1tVNa2kBpaYgdO5YTi50hFGpGgs8ydHd3kMvFCQTqOO+8JQSDV+D319PUtBK/vxZFUXE6S3C7y8lkIphmHqfTTyRyBqfTj8PhRVFU4vE+fL5qXC7xgmezMXTdTVvbRmzbYseOu4hGuyCXYIttcxTYYttoCLhtAJ5EGOpaJAU8joDg4cLtT4G5CBhXCseMp4I3AZ9AgLmNgPDZSD2Xkwmw7Sqc348khicQr7aCMOCoKrpbJ9YTY+GDC0mNpmhsaQRA0RVaH5H5afPqZtxlbpx+J7pLZ/FTi6k8vxKHz8HChxYS64mRiWVovLIRX60P27SJ98VpWNhAYiDB66teF3si0LKmhZtfuZmShhK2LdtGSUMJt/z0FhY/vRgza0qSuGkTqAmg5lTmB+ezoX0DLx95GY/DI+TQjhXEc3Es26Kju4PB5CCbF21GV/UicVRfWs/J8Mmij9qje6j117Jl0RY+N/tzbF60mbpAHQoKyVySgcRA0ZNd5a0qzo9LXaXFdp01LWuKnu6+eB+b9m9CV2wU32QBs7mwzOssS0Cuu0qAdOKEED+JkzJP7XpZAPV49/U4SXTxI6KW89RL0G7ihHiv7bxIwx2lMscdl3y7q0VyrijgrpMcIne1yMTfWSnzWcUhnxJVh0CjzKN1l4SUae6JxO9cTMZJK18Yf+KiogS5dtl5/yP6rP+/3T6Qhf8XbOfIvx9pPQcgn53y/R+B5v/slk1k2X7ndhY+sBBFU2hf386iLYugAmLZGKoioVCrdq9iVfMqppdP58TYCda3r8f8F5M9u/cQGYlQUVmBz+/jse8+xueu+hyhKSFKAiXS8acr7OvYR2e4k3ufvZfBnw+i2iqmYeKe5+bYh47xys2vcEXwCg73HmZu3VycmpPh1DCvdb7Gb/t/y+ZFm3l/7H2Gk8O0NLagmikCukfkKLpXmD0oJCA2SPXW2/eJh8U3WQCxbcI7Xyx4UXwy8IwePCsZfI0w01ZWVuLMlFRtjcvIL3tamEcbSWSc9aicxyqIqxQdsEVac2Q9XP68SGNc5VKr5akRD7ZnkgxG+RT8ZiVc/hAEJssK429WTaSGX/WEyMjffAJavy5AGkWul+iHt7fA1ZvlmvmUAHeHBw48LgD8gltkMEwNTgROtK+FqyXFOp5zc/z4KP39CebNC+L16sRiOaLRLKWlLjRNLWbwGIZVfBzg7bf7mT8/iNutMzaWIZs1qKrysX9/N62tjaTTBtFohupqH/m8RS5nYlk27747SHNzCNuWcJ10WlQZpaUuslmTjo5uLr64mrIyN8uX7+Cbz7aBZuLSnWTyOYaTYbDh+29tZ/U1n8OyLY4MdHJB9RR8TjeGZfFu3/vU+Csp9fh5Ys/3+cL8m3A7JF08bxpE00ncDh23w00im8Lv8hbOnyWZS+N3efE5PQB87Y3vsrzlFty6C4eqkTFzqKjEs0ncDheqolDuVlGNYbCTUr3lbS68T+IDw0pIvzWIl9o2BPzmTxaSwdcIIMeU99K25ZY8KC5AFYDtmY/0Zx8UttzxIQkzy/dJ5zU6xW5KLLCSpKwyTkTieHSdVD7P+vZ21rS00BePc0lNDYZl8fuhIaq8XoZTKYIlJWxob2dtayu1fj8OVSVjGLwzMMAV9fWEC8AZIJ7NUuPzkTEM/E4n8VyOaDZLqcuF3+kkYxgc6u1lcmkpDSUlDCSTBJxOfA4HmqqSM01ypomZThM0TRTbnqjWymYL/w/AO+9IPZdpCiodGRGUaxjCXE+aJGC5uVmOyecFeBuGmKHHz3f4sABmr1fOYVnCVJeUTISixeNynUymWFQdMzzs7dCpqhLvdHOztHatWiWHbNggeH76dPj1rykmiq9ZI7Lx8eNaWsQe/vLLAp6feUYqvFavFua7pERYcbdb1gYOHRJJ+QUXfACyxzupu159lauefRZvbS1HXnyRi++4A//kySiqeo6829/YiJFO8+bjj9P16qtMueEGLnvkEWzDYPTdd3FXVeEPBkn29/OHfyUbB5gyZTI/f/4Z5px5V6TZsYjUdH3yr/n7H/0TP/7ed9jx7ecw/GV8ZNH1/O3jj3Nl23Uc/v0f+OjNt/Be+2+YVB+E739TAPp4uviuV6Q32+mGRFS6riur4YfPSO3XRXMFbOs6oEgdmFPk6LbHByXlEtKYzWDrDkjERJrdei1KWSWYhgByI4/V1y3p3w4HVvdp1GAj5s6foS35OOaOn6I2XQ2qOpEEXloOgKJqFHuyw6NY7W8IoC+fhB2PYncew+7tRlvycTlvVQ22y4VlmqRt0HWdnp4eQqEQiUSCzs5Oent7WbJkSTHg7MiRI8ycOZMbbriBfD5PNpslEAiQSCSKieGlpaWUlZURDodpb2+npaWFQCCAqqpYllUMPysvL8cwDPr6+qitrS2mj4/nSeRyOZLJJB0dHSxdeh2Gkaa39xB+fx0+XxX5fJI9ex4tSr2vv/5bJJMD7N27nubmhykrm4xp5tF1UekYRppcLoXT6S1+PgcH36WmZhbZbAyfr5Z8PkUi0U9Hx0ZaWtYQj/dRU3MJTqefXC7B0NDvi/s7nQH++Mef09Ozn7alz3PK6WOdorAWAbnliP/5ZSSs7FnEC/1NBDj7mUgQjxdejw38DrgCkYDrSHDZIYTRno4EmqUR8E7h+ATgKRw/giSMpxEGfBUwLZEl25+YkGqvacFX5WPX/btoWdNC+bRybEvG7eRwEm+lFyMjzPWC+xcQqA/Q/3Y/JaESyqeVY+VlESg5lMRV4kLRFF69+9WipfGGF29A1VUsw6KrvYuffPInXPDRC7jx2zcSORVh77q9tDzcQqw3RmmoFN2r46x2cip1inXt63jhhhdYsWMF9y+4n8bSRiKZCGXuMiKZCJO8k7hz+53FDuwXb3iR5TuWMy84j5svuhmQUN5VzauYWja12GW9tnXtOffHm2zSRpppZdMwbRNVUUnkEmw9tpXG0kYWhhayr2sfn/zJJ4k+NIDDTKFoTgGyw/uh/BKZxw63Q/snRT154QPwx2+I8nL00ASwHu8/MLMyv7MNOPw3UtF19EmovhIaPiZAeby5JjMkVVyOMlF0Hnn8rBTywnzXtuRcul/+/uPdMm90V07MKxRN9oudBn9dQQruEGCtOSQw11UyYXH8H7x9IAv/b7j9R8zzOSnf/wc2zanRtqkNG5HbLH56MQ6vA0wYSY1w3677GEmN8NzS55hcOhnDMopMtvZnGp2nO+mL9rH7d7uZ9/V5zJg+g/dH3mfr/q3M/PJMvr/r++z41Q4URWFy6WT+Zc2/8Mt9v2T/4f1s3rqZF9e/yCs3v0JDSQN377y7mBreHevm0T2Pii9m0Wa6Yl08uf9JGkoa0BUdjyOAneoWQJqPSzCDkZBUxFSXDCRdL0OqV1YGc1FAFRmOfyq4qmVAOScZfL0MPIfvkmNsJEyi8Rap9EqdmegVnPsNYa/fXCGstKLKsagT4We5UWGJBw4K2C1tlPu/XCFycd0tqd9vPgGYMlDOWyNp3ldvAWeZhJtd9oAA5NfvhHiX7HdoPcxZIYPc63cKiHf64fRrAsTP/0RhxdCWATA5ILdz7i6GUti2TSDgKtZt5XIWtg1f/3q7KNgdKocP92EYFm63zqlTYSzLxut1sHBhA6qqYFk2+bxBTY14hVpaGonHc9x//y68XieJRB7TtPD7nZSUuGhqCmGaNgMDCdJpg3feGWBkRFI0VVXh0kvreOyxPaRSeZ55Zgket0MCssKDHB06RW2gEp/Lzez68xmMj/H7gU5m1k7H63DTNTbI7/reZ2btdFwOB+lcmjnBD1HhLaHMU0I0k5A0T4dOmbeU8YVD25barpFkhOc6XmE4EcayLQzL5P6rbsPjcBNORUnkhUHf+Ku/x+1w4Xa4MC2Lt3pPYuvVoFULsLaz8n6qfrEQ5E5IIBk2GIPyBWanBVgnthYCyHJgxQsp4F0Fttspnuz8KfFR22mRk7tnQ35QrpHvEaCd6pDrKg7AkPvmCHlbZeO+fVT7fLh0vcgcz6quxutw4Hc6uXLyZM6rqKB18mS+eeAAVzY2EgwEcOs6o6kUDlVlfjDI4b4+yt1uAk4nA/E4J8NhUoZBJJslnsvh1nVKXS58DgemZXH/rl1UFa57Jhrl0T17GC6kBr8/OspdO3YwmEziARSPR6jcEyfElHzvvUIFBwISRJZICIC2LEGf778Pd98tbHcoBFddJZMIp1Nk3bYt+1ZXy+OGIfuCJIGnUuKvVlU517JlIkl/+23ZP5ksBqVpDo1gUABzQ0HltmaNyMI3bBCwvGmTXPLKK+XlrF4tL/OSS4TZnjdPjhtnpR96SJ5/5hk57pFHCq4Rh/wKK1bADTdIZls2+39kqP+/ehvvpG68/np89fUEJk/m8kceIdnfT6KrCwB/4THV5cJIp8G2uegLX6Dx+uuZ8+CDpPr6ePPxx3FXVJAZHkZRVdKDg8z43OdIDQ2BkcfOpEXubSMM8p8vFyC888cCfiNjfFaN8qvfHWG0op53jr1PXyrLlTPOA0XhilAdDW6d3x7cL2/4kk8JAz31QmGpx3uzf/AtqdFyOOUN/uRfw/SLYPuP5DhVF1m6xyds96svw9HfYkfHsLtOSa+1rmPt24N97PfYsZhMejUNO5fF6usWObgC5q5foNQFQdPRbrwZW1VRmz6MUlkl52mchh2PoxQYJnt0GHPHTwtp4X6U0BTseAw7MiphaaEpEp6mgFJSgjU8KEz26ztwFrzToVCIaDTKnj17CIVCtLW1YdvSg93U1MStt97KkiVLigAYJKjM6XSSTqepqakhFpMk6PGQsvb29iIjPs5uBwIBcrlc8Rhd1xkdHaWrqwvTlAV3p9OJrussWHAF4XAnO3euKLDIAZxOPz5fDa2tjzBz5i00N6/GMDLFILJ4vBfDyBCLdbNt2zKi0dPYtoXfX1MIJ7uPeLyP+voriMcHGBvrxLIMnE4fBw5sLoaZVVdfTCIxwLZty0gkBqivv6Lw/aPgcHi55JLbWLz4aSyHm3WKwstICnglAoKfAbYBX0aY5vOA5xA2OQEUvnEAeAcByAsKxxb0e9gIW+1Fwss6gd8ik3yzcJ4kIiMfQUB9ByIpf4CC/9up4avxo7t0Qs0hOjZ1kIllikFmtmWTGEzQ1d5FZizDzrt3Yls216y7RgLJohm8k7zEumNETkXo7ujGMi0UVSHeH8fhcUyoM9e0khxKMnZijK72LoLzg9z57p00f7EZ27KL6s72De14q7xEu6P4qnykR9NMLZ3K80ufR1d0NrVtQld1DvUeIpVPcaj3EOWecrEXNq0uBuZqisamtk00h5q5b9d99Mf7uX/B/TgL3uInOp4oSr0Ny2BD+wa2HttKT6yHal8108qmYRd6n1VURlIjXDP1GupL6lmxYwVz6+Zy6p5TOFQVJTMo88z4cZh0xUS6t7dB8n5mrgVnhcxXNbfMU0cPipXRSBZCefvlODMl89TMsBBEoZtFSv7ul6W6KzMk+xx9opAx5IFLN4r1MR+Ht+6VuXOqS0LOFF0Ac+k08FRPMM/jt1ZOAneVwiJc9OQEsHYGKIabfbD9h9sH4Pq/aPs/DaL/o+s4fU46vt7Bj274Ebvu34WiKVhYRRC9bu86euO9nI6cRlXUcyQv7V3tqIp6jnS8yldVlOWsb1+P1+HFsAxGUiOcjpzmvl33cTp6mjm1c5hSNoWWxhZ6Yj1sPbaV9e3rsWyrePzGjo0oisK6veuK50sbaQYTfSiaR1hnLFmJSw8IuKicL6ENjbeIXLso7e4v0LBpOcbOC8s8LrGZuUYGsK6XRSLj8AsQv+JZ+Vl1FeTfm2Ql78h6SQdP98lAme4Tycz4+RxlZ/mjVwjAjXcJ0E4NiJTbXw/XPCXndvglPfzaZ+RnMwNDb8tEK9kvjPbBdRJidsUqKJ0i1V7HXhaw7amCgUPSTQhy7dfvFMl5sl982+XnCVB/429wKPliMJnP5yz6oFesmFes5WpqCjE8nKSjo5srrqinpMSFaVo4HBqGYRGP56is9GKaNvv2dXH8+CiWZfPAAwsIBJz4fA4cDo1YLMvx46MMDyfJZIwiKTl/fpCenhgnTkg11/j1BweTLFu2jUzGIJFNMZKKUO4JsOGN75LJ51gyo4Xh5Fjxsd7oEF6XiwpPCb8f6CTg8lEVqOQj588/5/Nu2zaV3jKwbUaSEV468DMALNtmNBVlT+ebfO/wL4rAO5pJkDVy6KqGW3fic3pY+eHPYNs2G17/DiPJCOdPCgo7bUULckxN/lkpMEcFDI/3WsvV5Pnqb8C0kwLCU4fktmazeLStOFgZ+dkxWYC26hY5uTkE3iY5h7dZZOKeeSIlt2KyEu1tAcdUnKrCprY2TkciPLpnDy2hEE8vXkyp2013LMZdO3ZwMhzmYG8vyVyOLddfz2dmz0ZTFBSg0uvlrf5+VEXh8vp6Dvb2cjoSoT+RYFZ1dfH/ya3r9MRi3FdIEE8bBgsbGhhOJqn2+eiLx/nw5MnU+HxohcTxrceOsaG9HdXlwtY0AbstLSLJvvJK0VrbttDDAwOCNNNpYZ6HhuCBBwSNvvWWeLSHhgSct7dPJJCfPClMdiRSGPB08V/39Eyw1ePS8/XrhQWPxyfivjdtwjTtIohev14Cx3w+AcHPPw87dgi4TiQEp7/9tpz2y18W4nzTJgHSyaQA76efFmb65EmRltfWSu6aZcmvqOuSpXb0qNy6/v0syv/nt3GftW1Z+IJB5n/1q/jq67Eti7e/9jV+fddd/P7557FyuSIrnY/FePPxx0kPD+Pw+Zj32GPoXu+EbPx736Ny1ixUTaNq7lwcJSVUzpiBls+iDPTA32+RBdOGKWDbRCJh+uZ+WFjlXT/h5z/5CZWlJVSYWULvddAfiXLUkDCfE+E4ndEkF1RVyBvqdAtATyVE6l04B4d/I2A7GYdXvi0AetdPigCeH3xLjjl9TBaA/nw5XHEV6A7UYCNWbxd2ZAx18cfQ71mLUluPueNn2KMjoOuoDZOxerrAttHaloJtC2COjMnfVOUkAEkgn30ZakMjtpEHw8BOxlGCIYhHMXf9i4DpxqnYsShq240ogVIUXYfwmDwWDIGuY89rxrLtYvDY3r17i8ndDoeD3bt3k0gkqKyspLS0lB07dpD7V3H4yWSSPXv2kEwmCRXaDFpaWpg5cyatra0oioLD4SAYDNLX14eqqjgcDlyFPxJVVXG5XASDQXp6esjlcoTDYcbGxqioKC0mfyeTQxhGiu3b7yQWk4CzRYu2UFY2DU1zsWjRFmbNuo2Ghvlks1E6OjZy7NhWYrFedN0N2HR0bOLIkZfpKMxREol+fL4qdu5cTjTaxeLFT/Hgg4MsXfo8TmeAZHKIhQsfwuUqQS0EPCmKhmWZdHXtIxbrQUXhYcTv/A1kAt6P1G4FEan3SSaSvEGYZwWRdQ8DsxBQ3AXci9R2xZAANB8i+9aQdPH5wAngLgREVyHAvBw4jIDxqUhI2jhAj56OsOfRPYSaQ7RtasNf62fGJyTJPZ/K46vy0djcSHI4SahFwq+MjEGoKUSgTsLPGpsb8df4Cc4L0nuwl3wqT3IwiWValIRKuPGlG4n1xchEMsR6YviqffQe7MVT7qHivAoUVaFlTUsRhHvKPZSESoiNxhj0DPKb7t9gWiZ5K49Tc9IT62FecB5eh5dqXzXLdyynM9zJtIppPL/0eQzLoC/Rh9/pZ/OBzbx85GX6E/3oqs6jex7lZPgkm9o2FWu1ToZPsqppVZEYWrZtGZ3hTmLZGMu2LeNE+ARTy6ZS5auiL9bHAwsfQFd13up/C9u2IN0rTHNmSMCs5hbGOTUgt74pwiCPviVBttkRkW6n+gTkznhQ5pueWtnPPx2qmsB/nmTqFGu8NkgO0Tjhk+oWoP3bVYWaLkvmsPn4xHzWyomX2srLO27lJTEcRea9Zk5eg+aUDmxnQIC2s0Ryf4wMHySE/6+3D2Th/wM2I2cwemyUaFeUUFMII2NgeSzOZM+wbu861rSsodJbye8Gfsfl9ZeTN/O4HW4O9x7mZPgkN190MwPJAdbtXcfa1rVMK5tGZ7iT9e3ri2mJmqLh0l3nyHC+feO3ORU5xbq963i45WF6Y700ljYypWwKJ8MnWd++nkdaH2Fa2TT+OPrHYvpid7SbKYFaLnI7pOt6xmr5dvHUyUAzPghYOVmBG08Ib7wF5n9bfCxHNwkbrXsEkNv5Qpr3QEEys0YkM+MJ3ZlBCUybsQq89TKYWIYMZCMHRMoT+oSEntmGrOJpHpnImBkZcMy8eKxRRMKtOeU8+x6BlvUi+7YsAUeae+L1p8fAWyXnUR2QGRMJkTMgchy1IM1RneKDcfplAOw/AL/4pLDY1z4rb7aiiLfbXUnSP5M/Hhtl48YOVq1qYt++bvbt6+aZZ5Zw8GAPNTU+zj+/EsuS9OjDh/u47LI6wuEM8XiWmho/Xq+DTMZA0xRcLr24Gp9O5+nrkxTyNWtaqKvzc/hwHy0tjZw4McbGjR2sXt1UPD9ANJrl6NFhFi4M0dcX57XXOrnwogoWtNSjAO/0vc+a7U+xYendzAlegKoo/Lb3GPf/y5NcPf1yvtT2Bd7pe59yT4B/eHM7Kz/8GcZSMbwOJ+XeUjL5HJZt4Xd5MCyL3/W9z3mTQvgcbsbSMXxOD+8Pn6HaX0FtYBL9sYlU8VBZtbyVtkU0HaPcWwpAJp+j0qOhWDGKa5GZdwTc5t8vpIWvBscFYKcgfagg6T5fALmiFdjmQhCJlZKwMqNLjq3eSHElWNHks5V5r8CQZwoS8ZDI0T0LCp/LpJzDToOiETNKuH3bNrYeO8a7d95JuceDZVmsfv11Lq2r47rp06n2ejkTiRAsLUWFYiq4z+FAUxQyhsHhvj5mVVejqSoBpxPTtknkcjzyy1+y/tprAegrJIiXu904dR3DNDnY20tjSQkNpaWSQO504nU4yBhiCajQdZyRCEo0Kky1qsrfwbvvigYbRKbd01P4/PaJT1rXheK9915Bq1VVYnCurhYP98svw7Ztgmh7e0VaDiIJ93qlaqu0VK71wANCK3u9otE2DHjzTViwgLTq5Xinyrp1CmvXSlhZKiUvY+NGOWzaNHl5jz4KDz440Yd9yy0SbGZZgvFXr4ZLL5W6rrvukl+vuVnOs2aNXHZkRCq7162Tc1944f9MWfi4zzrZ34+3pobU4CDemppi+re7ooK3vvY1Lr7jDgJTpwJgJBIcLkjBG6+/nnmPPUayr4/UwEBRSj5z2TL8oRCJri6Ofve7zHnwQdw+L6ppcMe997F912sMDA1RWVFBwOvhjb/5c25+eRfpbA7VMqnC4Inv/ANzJjfA0Xf40eF3WP/9f5KmgnyOh5vn8Odf+RpMqp1YwMnn5LOrKMJYv/J3sOiTEB6BiiqorBG/dfkkmZiaJvSegvMuloquXa9g/+W9wh4XErpxe0QyrigomoYdGcNOxFECpSLlbv4w+PxYr/0Ctelq7O7T2N2nhb3O5eQ6uRy4XNiD/SjVdShOJygqdj6H9dovsN97SxLGb7wFO5eBeBw7lUANTZ2QjueyWG/sxFz0UeLJJGNjY1RXV6OqKq+//jrNzc3ouo6u6ySTSZxOZ1Ea/uCDDxKLxejo6KClpQWHw0EmkyGZTNLY2Fj8LIzXMCqKQiQSYe/evTQ3N1NRUYFhGOdIxCORCNFolGAwWPRZa5qGZRkkk6fZt28jS5c+SzzeR2fna/T2HqK1dS2nT/+aCy/8KIqio+uuApOvkMvFC+nfMr7v3r2SpqaVeL1VvP76KtraNuFw+Are7w4ikdNcdNEn0TQn2WyM119fTXPzKrzeKnK5BG53Ob29B6mtnUMqNUos1k0wOA+wsZwBbN1NWlHoQ4Duo4gk/DaErU4gTPN7SOBYgomQswwCjNNI1/XlwMcLzyWAlYiUfBhhxtcWrhEuPNaKsNdRJPysp7DfauBDgJrI0vPrM/iqfbjL3PiqfSiawuj7o3R8fSIlfPfK3bRtasPhdZBL5Bh8d5BAXYBYb4yShpKipDzeF6d6VjWqruIMODHSBr0HeyltLMU7yUv/2/0E5wsA91X5OPitg7RtasPpd2LmTFRdLcrGk8NJ9Dqd9t52qnzigV7TsoZJ3kmMpEbY1LGJTW2bUFDoi/dJr7XuQlM00kaaQ72HaCxtZJJ3Eit3r+TZpc/SF+/jjZNvMK18GgsaFqCrOolcgjVvrGH9tevxODzs69pXbMiZXj6dGc/O4JaZt/D04qdZsXMFmxdtRkEhlo1R5a0ioDvQk6dQUt0CiItNNCsLMu2MVG85y2VOF++ETJ8AX80roPjIOpmjuqqEbZ65Rjzb3kY5h5meSBf31ACq3J80Hw4vn5gPz3pM/sAcJRKo5q4VYsdmouHGtqXL2h8s9F1rBZ/1OJOdF5DtbwAssSyWTUOsksr/WM/1/0oW/gG4/r9o+1P1Xf/ZLZ/OM3Z8jL3r9tK0qgnfh3zYunyZpfIpVu5eycrmlUwrm0Z7VzvNoWaS+SR98T42H9jMxraN+BwiDb7v1fu4vP5yPj7j4wScAeK5OCt3r2RT2yaGU8NFwN5Q0sBdO+4qgu0XbngBXdHJmlncmpu8nWc4OYzf6S++zoAzwKnIKSocToJ/+LIMEldtEznN0U2S9q17BbAM7RWZOKrIx52lkpJ46PYJX4qiymOZYTlO98pjilrwoFjy8+G/kUTyxluEyTbzkB2cAOkKEixhpiEfFT+35oZ8BpJ9cHgjzFsrnmhPAWBbuQIAN8Qzve8RaFkn13P4Bbynh+VnkPNhyYCrUHh9NkRPyTXq5k90DPYflMEu0QPVl8l54j1Qv6DgrzGIZRzcfservPzyEW65ZSZf+cpVlJa68XolgGxoKEkymWfTpg6eemoxpmlx8GAvDQ0l9PXFmTu3Drdbx7JsUqk88XiOkhIXXq/4Bfft6+Iv/uJn/OAHN7F16xZ27txOd3cXbW0b2bs3x3vv3cmyZZ9icHAAVVXxev088cRmZs26hPvv34WivMobb+ykq6uLv/vFj7jpmiXY2IwmYgwlR5ldqN9SCuBzXGGYymcxLROvw03OzONxSDhW3jLJmwZehwsUJGzLEjFdPJsk4PLh0p1YtiXM9BvfZfvRdhZdsJBH2v6ansgQo6koF1ZPKTK2yVyaKWUlKPn3YXSzgGHVI5+5gWUQfxmCO8A9R16c6i3It13y/hmnJVXc2ySfidQ+6bzOd4uf2ttcOO/XJQHcSoJaMuHXrngQjGFwXwLoYPaLZNzbIp8VK0EudYw/ZmbSHY3SUFrKpn372PiRj+BzOknkcqTzeSb5fGiKgg0YpomjUIdj2TaWbTOWSgkot+1iYBmA1+EgkcsxlEjgLwSaHTzLZ50rnMu0LHRVLaYB27bNip07WdnUxAyvF+d4/9Tq1YJUQYDJmTMTYNrlEtChKGJiLiuTILOSEvn5rbdkv/Ht/vuFNj58WB43zQkjc0WFAOpVq+BDH5q4nnTGSU/Wli0AJPQy0nhwOicU5kNDAqTPBtDjgHtgQOTj69cLYJ46FW6/XYByZaX8ik8/LeexLHnZkyZNrA8oyrne7BdflBC1/0kA28hksAyD4bfewl1ZydHvfpcZn/88mXCY8vPPR9E0dK9XQrccjmIYmZHNEj99mqPf+Q6XPvQQmsfDyG9/S7K/n4Zrr0VzuTCzWVRd563167ngM5/BV1eHqio4sFAiY8IgL/k0VNfB95+aqMn66GegpHRi8ScWlTcGBCx/8q/lzXtzL9TUQ8M0SKckATybgVwGdolvG1chGCgtNgk8XmHLx89bUgooAsx/9BxccyN2TQhzx09RgiGU6RegBEqxLRPFsrB6u1BKylDKyjF3/Ky4D24P5jcfR7ngYtSrrgPLkoRww5Dr5XLywdKdEAuL/7rpagiUAjbWrq2ozR9GqagC08BOp0SqHosIgG+6GgIlEmrmD5DXnUSj0aJHurS0FFVVMQwDVVXZvXs3V199NU6nk2QyidfrZfv27Rw5coRbb72V0tLSfwOMs9lsMdzM4/GQTqfp7Ows9l7v3r2b+fPn43a78fl8JJPJIkAvKSkhFotRUlJCIhEjGKyWuJN8mt27V7Jgwf0EAvXAOIucR1GUohcawOUqIxI5STTaRTA4j2i0iwMHNrN48VOYZo5Eop/29g00Na2msvL8QthaUhhK4OjRf6a7ex/XX/8tEokB4vE+GhoWoKoOTDNLPp8u1nXpZVNxuQIYCNh1AQEkwKwGqd56nIlKrgBwDOm9fgoB3QcRhnsy0pPdA8xDfNevIL5tAwHiDoSx7kJYbA8QQbzbpcC7hfPfgjDkrnQeI5JB9+gSLzOawlPmIR1O8+153+amH9xEw4IGIqcjoEKiL0FwXlC81Pe8yvx75nPwWwcJzgsy/brpeKu9RE5HBJivaRGWuspHcjhJ3dw6sSgq8h2//a7tBOcFmfGJGSQGElL5tbaF0sZSkgNJfLU+TNUko2VYvnN5cV757JJnuffVe4u+60O9h7i07lJGkiPUBmol3yc5TDQTZTA5KJk+Bc90NBul1FWKR/cwkByg1FVKMpek0luJgoKiKJyOnC4Cd6/DS9bIYtom7wy8w5J/XMLgg4N0x7rZ2LGRNS1ruLhiMtrwvomsnxmrYPQA1F4ngHr0oMxnUz3SRKN5pHrr2Ldkrql5wIhC9A/ShrN9hsxLL3xAGG5vo0i8K+fLvomTE4SRbwokzxTqaVdLENrZ9V+J0+ALyRzGNgseb1tsh7mEpH9rTjgbFkY7C7VbVSIlBzkmegoCwf+xoWYfeK7/G29GziCbyBaruP69x8Yf/1P1Xf/Za1h5i73r9nJs6zESAwk0p0ZnuJP+RD/37bqPH773Q9bvXU/GyNAUasLGLkpofvjeD7l/1/1YWCIRv3Y9H5/xcQDu3H4nffE+5gXnsXL3Smp8NTy1+Cl8Dh9Ozcna1rVFiXnezGPaJk7NSWekkzu23UE4E+adgXcIOAMMJYe4c/udVHgqqA00YI/LryvnnyXRHoBDd8qAUt0C0aMTv6yNsMLjvpTMsASWxY8LqMYSL0vipIDn2PuF+50wZ6Nc66LVcOafJJjq6Ca44IHCsYUtMyQS9MwgoMoEyuGD+maRZjt8wlqDsN65GOx5QCZlV26UyX0uIauZffsEdDu8wkbbJvQfEjbdtqC3XWTmTr8MbL+6T5hsy4C6hVLl1XCVAHrdDb46kYlH3gcU3LrF2rWt3HLLTB55pJVQqKQoATdNm5oaP36/k82bF6FpCm+91c/s2TVMnlxKU1MIj0eno6Ob7u4oAJ2dY3g8Oum0wf793cyfH+TYsRXMnVvHkiUfZceO12lsbOTLX76S/v4Hqanx8/TT3+HSS/+WH/zgNa677jbuuOMLaJrKN76xiE984hNsf+01aoN1lLi8bPrVP2BZFrUlFVwavBAFhUw+RyqfIZlLY9uQNfIcHTxFNJ0U22Q2hWGZGLbFu/3HCadiGLbF6bF+Ht/9bYYTEcCmzFOCrmokc2nWv/4d+mMj3H/VbSy6YCFfmP8xFEXhe4d/QbknQCKbQjvLo23ZpgDgivsnVBAo0kEd3CHAeRwY23lhla2UrADrQXDUQ6pdQLdnvkjIvc1Q+llQ/AVgXXj/Vb98rhyToeZZ+ZL1tgjgVn2glIB7lsjDjQFQvJieBVR5vSxoaGD93r3MCwbpTyRYvmMHJS4XZW43+7q6SORynAyH+ZsdOzgVDk+MEZbFJJ8PXVU53NeH1+nEo+tFgF3qcjG1ooJJXi8rd+8u+qzThkFPLEZHdzcoCpqqcmJ0lOU7dpA2DDYvWoTP4cABgkgffFCY6+5uSQzr7hbgvHDhREn0W28JuJk0SYBIY6P8fPiwGJvTaWGzz5yBp54SPXZTk/hao1GhiWtqRKPd3Cz6bhBAvWyZHDce4x2LgabhtDN4PDb5vNRsZzLyslatEga6gMHx+yUR/MorJdzsxRdF8r1/v1zK6ZTjnntO1gSWLxe8X18vRHsqJcR7KiWg/JZbBJAPDclLSaf/U0P6//WbkckQP32aQ48+iremBkcgwMxly/DV11M1ezYoCr/bsoV8KoVtGNhn9ZXpLhcl06ZxxaOPkhkb49Cjj+KpriZ41VW8tX49RjpNZmSEbCTCnAcfRNU03ly3Dt2ho6RTE5LtXa+AacGtd8G9fyv90yVlwkD/8Bmp0hruFf+00wU3fU6+X7pOwLyr4fxZ8tz2H8mYHigTifhNn5P7//SCyL4dDtBUCS7LF8aN0nKZjBo5yKTh5tvle8S2pBJrxiwACTazbOxMGjXYWPgbUVDbbkAJTcUeG0FRVLQ7H0Jd9FGRc5dXCAN8djI6oGgSbGYf+72w35qG4nSjLf0ESvkkwMbq7QIjL/t27EFpnCrndLpQKqrQCmDjbI80QDgcZteuXRiGwXXXXYeiKLz66qs4nU4URWHRokXMmjWLhoYGotEoPp+Pvr6+ogc7HA4XGe+enh68Xi8zZsxgYEAWZRcsWEA6ncbpdJJIJHA6nbjdboLBILFYDJ/PR3t7O1VVFYTDnWzbdgfxeB/B4Dw6Ojai625yuRQOhwen04dt2/zmN4+TSAygqjq2bRCNdhUk3ytQVZ22to0oioqqanR0PEEo1EwgUAeAaWbp73+bVGoEp9PHrFm3sWjRFjTNSSzWg99fR0/PgSL4VlWNhoaF7N27Drfu4aRtsw9J/V6JAF+1cNuFsNgbERBsFn5eiIDlEUTK3Vd4X/sK90cLz38aOI3IwEcQ8O5BGPA8Ih8HYcv7kfquvyxcPw0oloVt2YQ7w2y/czv5ZJ6egz0YKYMvHPqCVG3dtQNVV3H5XfiqfOxcsZNYd4y2TW0kh5O0bWoj1BJirHMM27JxBVwc23qM9vXteCd52f/kfoLzgiT6E0RORdh2+zYipyO0bWpj5qdn4vQ5KQmV0HhlI/HeONEzUfY8ugcjbWAnbNy6mxeWvsDIyhFeWPoCbt3N04uf5vyK8zEsg9k1s9EVHa/Di2mZDCQG8Dl9lLnLmBecx1ByCNu26Y/3cyp8Cl9BlVDhrsCyLco95eTNPF2xLgYSA6xvX8+84DwGk4Ms27aM7lg3AHNq57Dt1m24dFexWacn1oNtq+dm/RzdCKFPily7WLnVI6x0ulfSvL1TziKOFIj8Qapf3bUFS+NacFYKaeQNSgp4drRQw+URGXmqR+a/6V5pxAl8SPzb+ahkE9mGgHK1sGA4HkpmI97r0qkyZ8nGCwFnhSfHa7pKJguxE+0U5aQzIITO/4UE7f8/tg/A9X/R9qfAspEzSI+miffESY+mzwHQ/9kO7H/vGrlkjkVbFnHPyXuYfOVkTFsGHa/Dy+ZFm4tVBA7NQSqfYvmO5ZwMn2Rj28aiDwWLIhMYzUaxbIuFDQvZfGAzn5r5KbYs2oJDc/BW31tU+6o5FTlFd7Sbpxc/TX2gnoH4AO1d7WTNLB7dw9ZjW/nWwW/RHGrGtE16Yj3889F/5p2Bd8ibaZT0gLDImksGi8ZPw7HNBa/JOvlDn7RAvNbjdVqqU8LMNCf88QnxUOs+mczk4xPBZpjn+lZ0r0jK/VMhcJ4MQJc/BYHzhYEee1v8LLoXZjxUOKcmgLrjUQg2Sx1Wsh86vixBZH0d8kaMg+rBtwVIe2ukcstTLYy0okky5MBBAci2JXVdnqoJT/dvvyXhaKoOg2/JoKZqAtJ728VnnuwVf/bhjaCoOJMnOG+yi6efXozbrZPP29TWBrjiinpGRlIYhoXX6+D++3dx/PgYs2ZV4/M56ewMs2zZNk6ejDBrVjVerwO/38mVV04mnzexbZg1q5qDB3txOFTcbp3LL2+isrIW24bu7igrVuwgHs9RV1fFAw8sYGAgQV2dE11XOXkyzJ13bicUuoTJDY04NQc1gUmsuuazWMDvB05gWCY5M8/RoVOEU3H8Tg85M8/vBzqp9JQyyV+Kqij4z0p0nRu8kOpABbqqUe2vYG7DhQwnxxhJRHm3731swOtw85eXLeV7h3+Bx+Hi/qtuYygRxrZtPnfFjYTTcfwuL27dRU2ggoev/Tw2Onbtc+A8D/kmcsoXlWMaOBoEOGOCNkk82LYpQBhFGGzHFKnWGlwBRo/sZ6UFgI98DRSfgPL0oYKXyZTn7WwhJVyRfa14od86AOYAjHwZjC4MWyOazXImEuEb113HbbNmUeJysf7aa0nkcrzV309LYyNeh4MppaU82dbG5LIyYZgBh6oykEgQz+WYVV1NwOkkZRgcHx2lo7ubeC7HYCIBwMa2NsrdbqoLTHiJy8W8YJC3+vowLYup5eV8/SMfYSAeZ8XOnaTyeWxVlcLoxkbRQ9fXC0LdskXQqWUJwsxk4LLLBJGm03J7333yc22tBJX19QnI3rJFJiESdS8gO50W9Kqq0nvV2iqdWrZ9bgpZS4sYqWtriwFp8bjItWfPllYvyxJ2+vnnBdMMDcmpChloDAwIVvL7JdSsuVmY7pMn5WWsWyfWb5iwd49bvleuFPL+pZfkv6S6WtYOTpwQovH/9c0yDI689BJdr77KkZdewl1RQaCxUWq1vvIV0iMjnP/nf056aIhDX/kK8dOnMce7z0BYbNsueqyPvPgiiqoy43OfI/LHP+KtqcFZUoLudhevY6MIe/ypO+CrL8GtfyM1Wp1HYNpFgA0/elb80FMvEAa6YZr0V+ey8LPvQTwCwanw4xeEkZ5ULV5pl0cWawOlwvrqDvjYZySB/AdPQXRMgs1MA2JhYbhtC1JJua6mCdgfGUBxuiERxx4bgfAoVu8ZFLdHgtiMvABuhwM7MV6b9VPppUYRz3U2WwgRUyCRwNqzCxJxQEFtvVaAeGgKtmVJOJNtYyfjYBgowcnYsSjYtgD4xqmYu/4FO5vBDo9i5HLk83laWlqKgWWqqtLR0UEwGCQej7Njxw5s2y4GnO3YsYNkMsmSJUvQNK3YS+33+9m+fTujo6MEg0F8Ph8OhwOfz0d3dze6rlNTU8OuXbuKAWrxeJyxsTFUVcXv95NOp6mrq8PtdrNo0SJcLgeJxAALFz5IIjHAtGnX0dr6CKnUCJ2drxaBdyIxUATemuZEUVQaG5tJJoc5dmwr7e3rAYVotAfbtmhr20Qo1Ex//9uEwyeLgWkOh3z39PQcIJWShY6GhvkkEv0Eg/MxzSw9PQdIJoe46KJP0tKyFlNRWKcoVAHrESC9HmGRPQjY3QZ8EZF/60gN180IkH6UiU5rR+F2sPD4OODuQTqz+xDvdQ2SApJCPNl+pMJrkAl/dzfCXNsm5OITta0dmzqouaQGzaXhr/XTsanQc72+HV+Vj/1P7i/e15wajS2NaE4NV8BV9FsbaYObX7mZ1jWtpEZSUjPr0SmbVka8P07jlY1oLg1niRNVVena10WsJ8aFH7uQxuZGOjZ1EGoO4fA40D06iq3QFe3iQM8BDMsQ4tVIc3zsOCt3rxRfvu6izl+Hrup0jnUyGB+k1l+Lqqh4dA/JfJL+RD+zqmdxYuxEMVvI6/AWA86cmpNELsHalrVcN/06nuh4guZQMz6nr3ieUGmIZduW0VDSwCs3v8L8hvn0J4exNbeElV21DWY+IorDcV/0sW9JdWxgOpTNkQaccYXlSIfMNyfNh1S/zPHmPS9ScN0nYDozJPNFRRNSRfcJ0K4sqLr2flyCebGlVQdF2GxFl+sqWoFpLowTVm4CMKPIua08RAqP6S4onS7ft2ZOcoTMLHgqP+i5/g+2D8D1f9H2p8CymTeJ98XZ8+ge4n1xzNwEgP7PdmD/e9cYeGeA1HCKXCJH+GQYMtBQ0sDK3SsZSY3w1OKnUFAYSAxg2RYtIQkh8zl8vLD0BbDhVOQUOTNX7KceSAzwyYs+yaa2TQwmB1m+czmnwqeYUzsHG5t1e9dxw49uYMXOFTg1J12xLqp8VSzfsZyUkeKVm19hU9smTkdP/5sBajAVxi6bJQA69r6w1ZkBkc003iIAd7QARsZB8tGN8ouH35ZB6LKnYVJLgWkekFXAKbfB3C0y0Mz9htyfuUYwU+KUXMddJ/LvQ3dC8iSMvilhE956WW30hsT7beXg8CZhrR0+Gave2gydW8WjUrdAXs84qK5vkuotMwO18yEzIo9FT0pvtadKAHIuLud0lXLPk9uYcsFslKU/5J0/dEpwmqeK6z51F5dc3sKci8+n9da1/PbAHqibBzNu43hwBU1Xt/GhBTfSemULP/nJHsLhDPv2ddHfH2f58p0kk3kOHerF7db51rcWU1LiIh7PYlk2Q0NJnnyyjZoaH36/i3TaYNmybbz//ij5vEiq/X4XVVU+7r57p/RNuzTefrsf07QYGUkzb16Q/v44d965nQ0bHuSzn72KlSsfZsuWF6iu9tHcHGJgKEbGzmDYJt8++DP6osOSAFwznf7YCBve+C7lngBuh4Oe6FDxfsDtQVd18qbBH4dOkTVyaIoqfulMnKyRI5VPc2nwQmbXfwi3w8Gc4AXkzDymZdFQXsMjbV9AVRQCLi9zgxfgUB1Mqajn0uAF6KpGKp/BoTnwOjQ0Oy6y8IFlYPSL13nwHsCUsDHvlQLg7DTkTlNMcbdikg6e7wLn+VDzHDimypdR5l0ByNWPA4b0Y48D6XwnZN6WkDMUAdlWQoD6uCRd8YGnmVx2kNORCGciEc6vrMTvdGLZNn6nk5KC97k5FCKRyzFQAMgBl1SMxXM59nd3Y1hWMeAsUAgOCjidnFdRQVMohGXbfPU3v+FMNEo0k8HvdNKfSGDaNj6nk/t37WJeMIhhWXR0dzOaShEsLeXBhQvxFIAQg4PinT5xQuq1mpslaOzkSQiHobxcPNAgYDlRYP2efVakuQMD8NprcnvbbcJa53JC+d57r7Dgbrcg1YMHBeE2NIhcPJuVx+rqhFq2bXlu2TJIpcgrTvr6FB59VF7mggXwu98JeO7sFHzv84mk+8orBd9PmiSn7OwUfL5x40SOmtMprPaZM3Lcww9PsNQjIwKuNU1que64Q/5LZs0StjublV8rkZDbs3/+v30bDy9TNY2Zy5bReP31zLzzTlRdxzIMPFVVzPirvyIzMoI/GOTod75TBM/WWf8BZj6PbdvM/eIXmfaxj3HZF7+I5nKRGRvDU12Nomm8+fjjnNq6lYuWLePq559HVRQBteNbPiefr0CZhItFw9B2k8i5r7hSpN3JOJw5LtVXbTdJVVc2LeA7FoYfPC1+aU2TfeJRAeyn/giJGERHJ3q0NV1A93CffP7GhmHr9wXMKwp88q+lqs4yhTX2+aV3uqZepNpOpwDfRBw7l5VAs/2/xj7yDtbeNyCTnggp2/YKdmQUOxGT5zv2gG2hlFWieLxY3adFmp7LyrnzOem2jkVQQ1OxFQXF6ZKk8dAUyOWwYxEsr4+BgQFKSkooKSlhx44dRCIRFi9ezKxZs0gkEjQ0NJBIJNi5cyeJRIJgMEh7ezvxeFxaG3SdhoYG9u3bx5EjR0gkEsRiMXbv3k0+n2fSpEmEQiF6enqKx3d0yCJ1eXk5oVCITCaDbdt4vd7Cd5GfVCqFomjU1c2ltHQKoVATJSUhysun4fGUM2PGx2lv31AMKJs2rY3W1rWoqk44fJJt2+6gpKSBm29+hdbWL+F0BigtbUBVnTgcHjo6NuLzVf2rwLQ0XV37CAbnoetuTDNPOh2msbGZWKz7HBCu624CgVoUM8da2y52V98CPIR4oNPAPkS+fT4iCTcQsOxAGOxxVtsuPGf/q8dBqriGkZouEEZ7FAkzs5EwtBakG3vdWceaQEYDX42PG799I6vDq1n63FLS4TR7Ht1D5GSBXb5lJi1rWjDzZnFO2ry6GTMnc1hFU3D6pS4t1BRC9+o0tjSi+3RqZtcQqA+QS+RIjaQILQwx+zOzaf9aO+HOMOlwmuC8IK6Ai2wiCwosfmoxMz4xg+793UTPRMkZObpj3TKX3LmczkgnmqKxsWMj84LziiRO2kgTzUSZXTObxrJG4rk49756L6PpUfxOP/OD80nkE/Qn+qnyVXHfrvvIGJlCk4jB4795HICp5VOp89cVk8bH576aqp0TxNvS2IJbc+N1eEUd+eZymSt6aoX8OLuZxkiJbUN3C5B++z6Zc7prpaEm1SPKTDMr80QzIyG+qlOUlpkhIXoO3QlYheOWC9HU8gpcukkk4MPtst+kpkLWQ8GmYuZk3mlmZb6SHhGLoaIUqmRVYaYTvbKvmQVUIboSfXKrqP9jJeH/me0Dz/V/0fanuq6NjMEvbv9FsQPwxpduxFXiOueY/50O7LOvseSZJbx636sseWYJif4EdpnNodihYlBD6+RWjo8eZ2PHRlY1rWJ6xXTORM6wvn09a1rXUOer43DfYZpCTeeElj2/9HkyRob7dt1XfOwrV32FYEmQrJnlcO9hZtfMxuf0oaBw1467+OF7Pyz2Dioo3L7t9nO6CDVF41T4FBdVhNDMHOTGYPAN8E2DqoWACsP7RB6jecFMyqrgRV8UL0u6T+7PfEQkM7q7sMpX8DYnThUCI9YKU23lBSi/de+5QRDbL5KfL31SBh3NJ3LxkQPgrpfVxFziLM/1GpFqD70tUppD6+Gqb4gf+uwuays/0d2t6AKYj3xPKrqufRZQZCXx0AZ+Yy5i2iSNllvX8PNnv8icY/fAjNuIXL6BMj0Jp1/jZz/9Zx77lxF+99YhwOKaa6/lMx9t4XP3PMY/vrKNJ558kq9+9UfFSq5IJMPISIrm5kZM00JRQNdVTNNG1xVyOYtUKs/vfz/EvHlBFAVOngzj8zkpK3MTDqeprQ1wxx3baG4OcfXVk+ntjdPUFGLWrAv44Q9fprZ2OoqiUFnpxeFQSSTyvPji37Fnz3aeffYfCQSclFTqjCTDzLloFjV/fgUfu2YJf9P0SSp9Zbzb9z7TJ4Vwajoeh5tUPoNpmZwY6ebS+gtI5jMoKLgdThQUusIDfP+t7dx/1W0oKNjYvD98hjn1F2Da4r0e78v2OtxY2KRzGbb85h/53BU30lBWg0OTBatENoWuavTFRgiVePEqY1K3pVeBMQqeywBdWOh8r6SFWzFQS4VZtrOS7K2VA+OrxKqw3cZp6a32zJ+QmJthAeb57kLXtQX5M2CMiJdbccq+xhBoZXLtwRVQ+QAJZQb9iRSTvF5S+TzvDg5yRTCIS9OIZbNoioK/EE7W0d1NQ0AWK8rcbjy6jmXbJPN53LpOxjCIZrMECnJwVVFI5nJUer1Yts2bfX00hULFfus6v59gSQmv/OEPfHzGDKLZLH6Hg/eGhri8vp5Dvb3Mb2igwjBQ9+2Diy4SoKzrghZ9PkGzyaTQuk8+CWNjsk86LYB5/nwBI273hGf64EFhuMNhSf5ubxfG+oUXJrza497rSZMEHX/xiwK8V68Wn7bfL+hZ04iZXvbud5zTV62qgvE7OgQEL1ggAPrhh0V1ft99onIfHha2W1HkGBDw/NBDst/KlXKcy1XIvcoL+M7nRTY+7rt+7DEB736/JJKvWyfk/PDw/xvBZ+PhZcWe6lAIyzBQNY14V5eEmN1+O5rHg5lO429sJNHTQ6q/n0mXXILm9aKoKlY+T6K7+9zgssL9GZ/7HJmxMaouu4xkfz+6y4WrogLbslAsC4fLiTLYK9LwRTdDbRDef08AttcvDHQ6KQy32yuMs9cHp45BRTX4xaeMqgnw/sPbMOtyWRHZ8U+w9FYJOTMNOPlHmPIh+MdnRHIejwg7/fHPS1DZiSPw3DqYswD+8t4ig2wHSiEWkZTuxmnn9lk7nRJUpqooDifYlnirx+dw2YxIxX1+7GQCNdiInUnLfYBouBiWZqeSKHUNUvfVdQrrJ3+PcsHFaDd8UmTlliXHuj3Yuo5imOR0HcMwSKfTjI2N4fP5cLvdGIbBvn37aGtrw+Fw0NXVxc9+9jM+/vGPEwpJmrSiKFiWhVr4IxkPKQsGg+zatYsFCxZQXl5OPp/n9ddfZ+HChcTjccrLy3G73QDE43EOHDjA4sWLsSyr2HvtcDgKbLgEjCUSA3R0bKS19RFKShpIJocIBOoxjCxgFdhqjXff/SFTp36YPXu+zJEjLzNr1m0sXfoctm0WPdtNTStxOLzk82kcDk8xrKyhYT49PQfx+arYv/9JWlvXoOt+crko5eXTSSaH+Pa353HTTT+gtLSBvXvX09q6FlflBWi6CxMo8IREEOA7jIDsQQRg24V9RhAWuh5hudcC0xAg3gScQkDyI0id1hBQVjhvOcJau5kA1nVAL1Ll1Yuw1vMK+5DOQyRDvC8unuc1LTi8Dp7+0NPMum0WS59bipkzMTIGiloA0aaNoivYpk34dJjyyeXkkrmib7p1bSv+Wj+WIQvzuUQOX40PbOg50EPtnFp0ty45KSmD3at207yymbJpZURORYh2R4u+7tcefI1rvnUNOTXHwd6DxflrU6iJk+GT+Jw+Osc6i4Fnj7Q8wpTyKZi2iaZonBg7wZP7n2TLoi14dA+xXAxd1VmxcwXNoWaaQ83FOfC+7n3s697Hize8WBzHlm1bVpyrblm0haHkEOvb17O6eTV1/joURcGvgP+3Z80lL39aGmC89SLbVl0i1YaJrmojDnqJkEADu8B/vsxvj6yDmQ/L3NNMybx2xoNiefRPkznq0qNCIPVuhdafCpBWVEgPipc7MwTlc2VenBmAukXCSqdHBEiXTZf7/qCAdyt/bsBZZlTmuWXTBGhnIxP3/wf3XX/guf5vuv2prmvNrdH6SCu3bruVJc8sQXWo/+aY/536rrOv4fA5aNvURj6Vx13hxlfuY27dXEpcJVxadym2bbOxY+NEPRZKsX5r/d71uHQXoZIQo6nRoo/6kdZHGE2NoqAUH/ti8xcJlgTJGBkO9hxkTu0cRtIjLNu2jFPRU2xq28Rts25jy6It2NhoinbO+VL5FL3xXgYTPaiKQwaJRKcw0OVzJBk8eVpW9VLd8NoVUl8w/9uyQqi65P6MB0WKo/sgPSSybjMrE/SzmW67kN6t+wWMX7VN5DzuuglWuwjKO0VuUzZbJN0gYPnwRpFjv7lJ/NHBZhmcOreKFP3NJ0TSrTkl4VvzTMi5o53w4W/BzM/BNU8LyMcS8H35Kq5sbabhkmsgG4XKmXDTNrjmKcq8Ohx4HILNRBtuEmWOmWGor4s33/k9f/GFe8ilU1z94aX09vZiWaOsWLGTVCrP0FCSOXNqOX06wt137ySdNjBNCaGKxXI88MAuvF4Hl11Wx6FDvdg2TJ9egaoq/Lu8lgABAABJREFUDA0lqK31o2kKa9a0cN110+nujjFrVjXJpLBLqqpQXx/AX1i9tm0BHvfcs4z9+/dimgkCASeaouF3efG7vHzx2s/z8LWfp9JXhq5qzKydzomRbkaSUZK5NBt/+feMJWPMqjufgqCRb/z6B/SEhwAIllVz35V/Xgzi8DhcXBq8AEVRMC2LeDY50ZcdHuCrr71EOB3nLy5bgkOTFPQzY6LacOlOUBSGE2O4dDdoNRJCNvak3OKUxZrRdeJ/Nvth5OvitcYWMKz6BRBjCii2M7KQojcKGB+8D/KnIX1YALkenHjcGAS1vODlDhSS7pMSljZ4nwDx6nWgBNAwSBkGd27fznAqxazqapYXpJkjqRRv9feTMQyGkknq/X5qAwEmeb14dL1YvZLO59FUFa/DwalwmKFEAp/TicfhYJLXy3AyiaooNIVCGJbFm3191Ph8BFwu3LrOZ2fPxuNwoCviyWwKhaRztaaGvGli6Tp2fb2YmPN5oXcfekhY55qaCcm2xyNp3tXVgjRnzxa9tGFMdFV3dYlHO5+fOPYznxGNtdMp0vJDh0Q67vEIon3wQaGb43F53O0Wyvlv/gZOn0Zz6jQ0TPRc67oQ6nfeKfdvvlkA8ssvS+91JCI/P/mk2L39fqnkuu++CdX6+H4//KHkrlmWrCGMjsrfQjQ6wWivXi3EvdcrOK27W1jwaFSA9csvy+05fdiWBUYhIOv/gs3K5fj9Cy/Q9eqr/P6FF7DyeYbffvvfSMSdgQBHXnqJ9OAg3tpavHV1jP7+91jZLFY+D7b9bxjtf1PBpar4g0GMVIo3v/pVzEwGh9slFkKXGz40S8CubUv3tMcHJeXyWRnuEzm3ogjgPnVMnhsbEmm30y2s9cgALLgWSivFq33+LAgPw3C/BJSFpskH6TP3iWc7PCx+bEWBf3wWyqvgb9YKIO/8A7YC+AJgmiiBUtTGadiRUcydP0OprhMBSyJeWOTVsMfD0QrBhDhd4o8uKcXa/2uUklJwOFB8hUWkfG6CiXa5Bbjbtviv64Jodz6EtvgmbEWFaET81+OMdmRMqrhsG03TCAQCNDY2MmnSJLxeb5GNjsfjbNu2jZKSEr7whS9QW1tLIpHAtm3C4TDbt28nEolg23Yx/VvXddra2lBVle3btxfZ6n379hEMBov7OBwOSkpKWLRoEYZhsGvXLqqrq0kmk2zbtg3DMLBti1wuTkfHRo4ceZlotItotIs9e75MONwJWMTj/Wzbdgfh8EmmTftIoQN7LTNn3kJb2yYikVPneLbb29ejaU4cDi+GkWbnzuWUljZg2xaNja24XCWEQs3s27cJv78GRdHo6mrH7S7n3ntP09jYjK57WbhwJX5/LU5FI1vwXJ9BOq3HGetyBByPe6h1RCo+DWGapwFbCvv0IcA6i1RvPU0BHCOy7ygTwNqDsNJnA+v5hcemIUz3CgSkO0yLbDRblIWPy79v3XYri59aTC6R49V7XyUxkMDhc5BP58mn82QiGV6971X81X5QwBVwkRxKcmzrMfau20v0TBTdq5MYSDB2Yozo6Sjb79xO9axqksNJ6cPOW+genYaFDexdvxfbstE9OsF5QTKRDLZlc90z13EmeQaH5qChpIEn9z9JQ0kDTtXJeRXnEQwEaW5sZjg5zNZjW3E73JwMn+SObXfw/uj71Ppr+dq1X+Ng70Hydp53B9/Fpbt4ZskzfHrmp4s1XRs7NtI2rY01LWtQUIo+7TUtayRDqHUNA4kBJpdO5rGrHmN/937eGXgHv8OP1+GTELNxr7TmAXelZOVkR2ROqPkE/MZPFNpnMuKHVlSYfCtUt541T31CfNmqSzzXmVGxO47PUR2lMndd/K74tA8tE7Wn7hNg7a4SMH90o5zHSE74qAMNMgkonSbWFlWVuWt6RFhrVRMgXTIZjKzYFJ0lhR7sD+Djf7R98L/zX7j9a7CsO3UqzqugNFTKjuU7GDs+VvRi/6mQs/+dazg8DpwBJ7ZlY+UtTNssyrv74/3Ytl0EuQ+3PEzOzPHMkmfYdus2vtT6JamhiHUTzoTx6l5evOFFJnkn4XP68Dv99Mf72fiRjUwtn8qpyClW7FxBla8KTTlLOrNXOrGfW/ocg8lB7th2ByfCJ/DoHp5f+jyTSyezcvdKdnXu4upQE0qicyIAIt0D+ciE39q2hKWuvU5Adz4BuagMHOVzxNei+0W24gjIoPLmckidmZCWj8tz8jFZrfM1ygrfOytFonP5M9IvqGpy/qMbC6Fq/RKUZpsyQZu/Fi64Ba7cBJGT0LtPZN+3nwFfUHqt/fUw+KZIxfMJ2HOfyMATvYANH94i0qFMRAY5RZFVwY4vS1WXuwI0B1TPlYA02+Iz308TmnsDX1r3BN//zovQf4juE+9RVxdEtzPkcTEwkKS+voHR0QGam0Ns2XKASy6pwenU6O6OsnBhA0NDSdrbu8jnLdxunXvumUcmY2BZNgsWNKAoMDiYYNIkL6FQGbquks+bTJtWTm2tn/nzgzidmgBZ0yaZzBXARJyjR09iGBYej4OdO7dRXl6Bw+HHNG3ypoFbd6KrGudVNvD7gU4GY6Mkc+miBHwoMUYim2L/6d9RU1KBrqiYloViw2cuv4FgWRU2Nu/1H0dRlHPsP4ZlFc71HTL5HPFskpyZx+dys6fzTYYSY2iqxnMdr9AbHcKpa6RyGR7f/W00RaXaX8GbPe9jKwqMbpBk8Hy31Gil2qFyDaBBfghqtwjgttLymVALCzJmRCq6Bu8Xabdd4Cs8CyUN3H2xgPPBe+Xxms2ghwRwG8MCyjNvSfe1ohX6rvsh8wfQazDRWL93Ly8fOcKG9nbiuRwvHzlCMp+nJxajyufjvl278DudTC4vx6Xr5C2LvGURy2Y50NPDJJ+E/Bzo6aHO7yfgcpHO50nn89hASUEqfnx0lDu3b6c+EOCCSZOo9ftRFIW8ZTGSTFLmdlPicjGQSODRdUpcLpyahmYYKJs2iRTc7Rb02NIiaDKTmZBsgzDNZ84IUh0cFL10NCoS8uZmAd3JpPyzLDnfqlUCnLNZYavnzROA7fOJbzsUEv91Q4NIyjUNvvlNOZ/LhWna5/iiM5lzfdIulzDHt9wCjzwixPj4z9msKNXHQfDGjdDWJoFlZWXSFPb00wK0nU7puY7HJcz8vPPE033++QLQT5yQ9YOGBnjlFWkRO/u6xT5sy4JUBt4/Lbf/zQD2uPx73Cdt5mU8K0rBly1j+Le/xV1RgWUYzLz99uLj+XicmbffzuDhw2BZpPr7cU+axPBvf4uZyWCZJnMeeIDG66/n4jvuAFVlxl/9VfG+5naTSyYFdL/0EpWzZpEeHsYyDAG+W78PcxZCWSUc/72A5n/5BxgdlACy8y6GSTWyoDMOvr1+eXy8aisyIn5sIyd+51QK5jbB9JnCYI93Wf/DN+W8qgpTL5TqrVhEnt/xT3LOsWF49qsQj4qvOhkv9FWPSuf1wqvkjY+LD1tRVRRVK/iqhRHG6UIx8tjxqISWHXkHOxbFzmaxx0Ywd/0LJBMo/hKU0BSsPbuwc1lIxsWTnUyA0yWJ5KZRAOUl4HCiLb5J5OxIs0g+nyccDrNt2zbC4TDd3d0YhsFFF11EMpmkra2NsrKyood6nLF2OBwcO3aMvXv3Eo/Hi8/bto3T6aSjo6PYmT1t2jQWLVqErutYlkUqlSKfzxOLxdi5cyfJZJJgMEg+ny+Gq+3btw/QcblKaWpaxcyZtxAMzicW62HhwgeJxXrRNCcdHeKf1nUXfn8NYFNSEuL667+FrrvZt28joVAzTqePmTM/RXPzw7hcJfh8VUSj3Rw7tpV9+zah615MM8fYWCehUAttbZuwbROHw0swOI/e3oNEImdIJofJ51Mkk4PE4/2kzQxhRSGEMMwgYHc2wlA7EWB9AgHffwPIsoBsXgQLBZio3jKQibwH6cseLOy3HAHQncDdhWvUIHVcrsIxZuG4pxHgbTk1XKUumlY1iQVxbSsoUNJQws67d2JbNtesu4bEQAJsSPQn2HXfLpJDSa55/BpUh0pXexejJ0apnV0rXuu1rSSGCvsPSLp4rDfGsa3HyCfyxHvj1MyukZyhjMFFn7yIRVsWoagKRtpg54qdGCmDTDhDzsjxePvjHB89Tk+shwcXPkhPrIecJTWc40B63GJY5asqkkQbOzYSyUTQVI1QaQhd1ZkfnM/p8GkO9hxEVVWeXvw0t826jS+2fJEKTwXTyqehqRrVvmo0VaMv3scDCx6gJ9pDY2kjiqJQ4iphWvk06gJ1xHNxDNsUVnne85L2Pc5SKyqgybxO1SUU110lknDdJ8y27pPqrcTJc+epydPCTk9qniCZUl2iquz5qcxzneUyNx4njvIRma86yqWua+435Odkl8xpS6cV+q1tmf86AyJV9wfPBd5l02T/RO+5oPsDcP0fbh/Iwv+bbdlEll/89VnS8L+7kcjJiMjH17ZSeWHln6zh+s/UdGVjWeJ9cQAckx0s277sHDm2ruikjBTRTBSf01esKfAWgjsUReGu7XfxtWu/xkh6hA3tG3i45WGmlU/jVPgUmzo28ezSZ0nmkpiWyXtD77GgYQHdsW6p52pdQ1+sjwUNC86Rlj+w4AFK3aVFOc+3Dn6Lv7/hGbRDy86V1lj5ic4/V7V4qyvnFSqxYrIi6AgIQ9j1YxmIjm6c6Aj89Q1yrnkvUqziMhLwzmrxcKd6xbuCIix4PibnQwE9IP2Etg2/fUBqu5Yeg7FOmDRLgI/DK2y0p0pWF+sWymQsn5LBb7zywFUm8pp8QkB35BQkusV/bWRg5F051srDH/8JyqYx5aoviCz8mk/LsalBCU+rnsvf/+DH/Piff8aOrT/nrTcP8ed/vYJjb/+GmFnC3vZeVq/+FJMmfZQnn7yD6dPLOXMmSk9PjPnzgzgcGgcO9DBzZhWJRJ7SUheBgJNoVGiyRCJHTY0PGM+Osujri7N+fTsPP9xCTY2PQMDJPfcsZ+fOnQwPD1JRUYnf7+dLX/o2Tz75AIlECq/XSU1NFX/7txs477yLePfdQX788tfYtWsngwODuPweKssr+PGvtnJx7XkS3FNIp03ns2iqiktzYtoWkXSMEpcfVVX52hvf5S8vW0p9aRWaqpLKZ9ny6x/yF5ctocpfjqooLH7pbl757EYCLh/xbJISl59YNkGJy8/6N77DrmP7WXTBQr7U9gVQFPKmgUPT2fTLv+fVYx384vNfo9o1ijK6DmqegcHlkNgK9T8Fb6sEjSluxDsdA70aYaxHCgnfzgkWO3VIALXqEyAOMLQSKh4A51Rhqe28JIrbmUL4iKfwmAOMPpGou2eDOURamUokpxPNZiktoK+3+/tpCoXQVJV7d+7k7vnzmVpWhqooWLaNAuzv6eGSmhppfAPiuRylLhfJXI4qn6+4nw0c6OkhGAjQG49zfGyMmy+6CI+uk8znGUwk6E8kmB8MYgGmZRVfi2XbrH79db7f1oZiGMI6b9ok/7xeASXvvAOXXy4gOZmUx4eGBFR/4hOCTMe/o06dkgqt55+Xc61fL+gzFJrQcTscgo4VRc558qTsd7aee/yYU6dgcJBcy4dJmS5MU0FV5WU5nYLPa2oEJNfWilI9FhNgbJpCTI6Oyq2uCwO9apVUc423ORmGWMyDQSHSd+48t/fa5xOi3rYFWG/dKsC6pUV+FbOwfud2WTg0e7wRXYD1cBiqyuFDU0D/z6mZ/n+2WRZmPo9lmkWZ9sV33IF/8uRiddacBx5A93rJjo2Ri8fJjI5Seckl6C4XlmmK99o0i8DRMk1sw2D0vfdwV1Rw9HvfY+btt+OtrcXK59ELSfB2wS5gZLOEjx6l8uKL0VwuEl1dqE4n7z3zDAsf/RLa6WMiAa+sgZdfhGv/THzUh38jieHTZsibduqP0HieAOGdP4alnxZJ+I9fEKa5qk5Czk79UTqsx4ahpAJqG2CwR9jtrd+fOG9ougSgudwCsCfVSlJ5VY3YI1IJ7NJysMHc/s/YR95BvfWvUUrLsPbtkXAxTcPO57GHB1CCjWfVc5UK453LYp/4o4Dnjj3CQqdTAqSP/R715s+iNk4VCfjPfoi2/IuQSWN3HsPu7Ua97kaRje//NWrrtZJons9JDaJDFGQ52yaeSBQ7rGfOnMmCBQs4cOAAN954I+FwmI6ODtra2gDQdb34Xtq2jVVYBIpGo8Uarb1799La2orX62X37t1Fafk42z3OZOu6Tj6fxzAMhoeHKSsrw+12k0ql2Lt3L4sWLSKZTFJe7se2TWzbRlU1wuGTtLevp6VlDWVlU8jnU8TjfXR0bGTRoi0kk0O0t69n4cKVVFaeX3itFrt2PcCCBffh9U4qysxbWtYQi/VQVzeXVGqkWN2VyUTweiehqjqRyCmi0e7i4253KTt33s3ChQ+RSo1Qd94iOhWVqQiorkb81MeRuq1NhT8nEwk1+2ekXqsZYbhXIh7tXoSxVhDAnCica9yHbReO+zRwAJF+38hEBZe/cI4GBHz3IAx2L3BNMltE87Yliyrd+7upm1uH5tTo7ugmEApQPrUcMzMhEdc9OsnBJN4qr+T0OTTJ1RtK4C5xo3t1wifCxQ7sWE+Murl1OH1ORo+P0rGxg6ZVTVReUEm4M4zu0tnz6B6OvHyEWbfNYskzSzAUg7gSx+vwcjpyWmyLLWuYVj4N0za5Y9sdvHzkZW6bdRvPLX0Oy7aKzHOpuxS37pbHFAUNDROzOF/94htfZFXzKiaXTqa9q51QSYjG0ka6Yl2s27uOta1rqfRU8sBrD7C6eTXnlZ/H7dtuZ23LWqaVT6Mn3kO1txq/7sCRPIXyr7uqL3oYfJMFVDtKBUifXRs7Pn/NDMn8c1wxCTI3HXwDfOeJNTIflqquSQvFIlk5r9CdXSZZRN5GCTPT/ZIbdGR9wQY5Tc7lqgBHmcwlEz3CZGuuQn2ss6gAxMwKmC6ZLHORXEwCzlSXfMn9DwbYH8jC/5tu/x4bPR5cNuu2WSzasgjbtIl2R4vymj+VEv6nUsb/1Pk1t6xKOgNOVEM9pyYrnU9jY+NQHVT7q4us9mBykFQ+xbJty6Tvr20THoeHDe0bePnIy2xo34Bt2/TF+/jm9d/kdOQ09+26j8HkIHNq52BYBpM8k3jxhheZVjaNy+svB2BV06qiFHwkNUKpq5TG0kaGk8M8tfgpMpaNOR4AcfEjAiw0H1zxjAwc764RsPz2/YAyEfSQHpYBZepnwFECA68VarzmF2Q6a2S2Ol7DlR6QgenIBhmMjm6UtPBiAvmA+LqNhCQy2qYEpS09Cp46qJoD+aT4ukGqsUoaob5F7kc6xYMdOyM1WfmkeFbSI3Dgq4VuwSBUzRZGGlvY7VwcfnXvRAq5ZYCrXPzZmREB1p4qUDU+e1Mrv/rNPkbP/I6Qa4T+/n4MxYnbqdLS0sjgYC+trbPYvPkAiqLQ0xOjqsrHffftIpXK09QUwudzcupUmIEBWXzx+cTcefJkGNuGVMrg7rt3MjCQwOt18OCDC+ntjRGLZbBt+OY3n+GPf+ykry/CO++c4JlnXuXiiz/Ez372Or/97Tvs23eIH/zg51RVTQeguTnEN558muMnT3B88Azf+dUr/NMvtzKr7nwUReG9/hP0RIZI57N4HC5My6IrPEA0HaPCW4phmWSNHHODF+BzyRfmb3uPMZqIcHHddL53+Bcksikcml4E1slsijJPCaqqUuktw6Hp3D7/4zz98dWsufav0FUdwzQ4MtDJQHSU1dd8jh//5ddQVA8ZZSp27Usiza55BupfkaRw2yhIwFUJHNNr5T20MpIKrvrlSwnEr+2dJ8DZGBLQrHqh9jlwNEKqQ3zcIJ93xV3wZRtgjshnT68tAPok5Pux8DCYTPLonj0MJZPoqkpDaSl3bt/OmUiEby1eTGNJCSOpFHnTZCSVoisa5eLqauK5HHrBA6kAbl2n0usla8oYk8znOdDTw+X19XgcDppCIZpDIa781KeY+aEP0VBaSrKri6ZQiMN9fdx8441cu3AhN119NR+//no6//AH7l+wAFNRsE0Tenr47uzZKPX1/PymmwT8Xn55IQzOlkm8bQt7/dOfCghPpwVsK4qkjDc3CwAap5a7uwVMnzgBd90lgNk0RYudSFDUe/f3CwM+rrFWVakFu/xyzEyedFr8zZmMPLViheDvyZMF8/f0yGMul+D15csnCPRVqySo7LnnhDjv6xMl7qlTAqwXLIApUwSgf/rT8us8+KCcs6oKjh+Xx9asEWA9nrV2/Lj8Ki6HhSOfQXn/NGSy8vlqrBNg3VhHEXGfLRX/j2Tj48+Z5n9OWj6+/5/at/CcmcuRi0axcjlSAwP0/upXRfn3kRdfpHv3bsJ//KN8D3k8HPv+9/HW1KB7PCgOB4qmYZkmRjrN4b/9W2KnT2Om01iGQeUll3D0e98rSscVVSUzOsrQ4cMkuro49OijJPv6MJJJ3GVlvPn44yR6e/GFQniqq5m5bJkEilVUixxcUSQtPBWHv7gbvvWKyLrzeemzbpgmUu7ICBx5G8Ij4se+bYUAc8OAMydkv0CZ3L7+M2GxA2UiI1/yaVhwjZzX6RbvtqIKu11eBZVV8lnXdPD6UaJhUDXUpqtRZs5BDTZi7X1jIqRsx0+FfQ5NQbGkNkvxBSTkbNwb3d8H5ZVoN9wsbLPPj9r0YdSbP4tSUobVdQo12Ih27yMoiipMeGhqEbyfHZCmKCokE5IWPjYiMnRFIRAIcMMNN7BixQpaWlpIpVK0tLRgWRa6rrNw4UJs2yabzWIYBqZpYpom3d3dxONxent7AWhsbGTv3r0cOXKEvXv3ous6S5cuLcq8o9EoLpcLn8/Hzp07iUQiaJrGL3/5SwKBAIFAAAC/38/ixYsBaG9vJ5PJoigqsVgX8XhvMYCsvX09tm3hcHhIJof4yEc24nT6iMf7OHZsK253KZHIabZtW0Y02sU11zyOrrtwuUo4dOjpAtvtZvLkK3E4POi6h5qa2aTTY3i9VQhJpVBS0khjY0uBkRdw1NKyBre7jNraOZi2RQ8i5y5DfNE2MIDUbfUB9yHs9dNImveliGy7D/FGbwAmISFk5xWO/SoSXGYglVsu4CbExz0XuLWw36OF81hIn7Zd2Hc2Us01C/maSQwkCHeG2bZsG7lkjkBdgJ0rdjJ2YozqWdWUhcqwcpaElwWcOLwOol1Rxk5I/VY6nCYbz2IZFr5JPoysQT6eJ94X5yMbP4K/zs/kKycXg88SAwmObT1Gx8YOrJxF+/p2Ol/rLDLo137tWiKnIvQc6GE4OVysyBoPEzMsA03ReKT1Ebbduo2nFj9FIpdg+Y7lHB87js/pI5KJcDJ8kmXblnF89Dg2NifDJ4vz1XnBeazbu46cmWN6+XQqPBUMJgeLyst1e9fhdXh57KrHqPfXs79nP1c2XsnksslkzAydY51kzSyqbQiw7noZjm2R+ePlTwuYto3CvLJfxoN5z8PUzwIqOEtlzuqbivhArImg3fcelaTv6iZ5g4yMJI1nRkTBqToLVV8r5H5gmozP43lEvVtFnm5mBDzrJXINRZkILgMZk7Ixiks0ZlasjlZeLIxaAVjnYhOL3h9sf3L7AFz/F2z/UWf1uE966fNLSQ2n2LF8B3Vz67jn5D0s2rLoT6aE/5uU8bz5J8+vO3WcJU6cfie6qTOtbBqPXfUYvz7zax7a/RDdsW66Yl3n+K83tG8gkomcM7g4NWcRHK9uXo2qqFxScwmWbRUHonEJzunoaVL5FACWbfFm35v0RHuo9dfy7JJnmVI2hfPLzyfgDDCQGGBBwwIURcFWdGz/edjzngdPCFBE0n14udQKXLJuQjKTOCmDirsKfPUCsof3iUzmhmOyYpcPywDnmwqYMojNeEgCHmqvE9CdHZFb7HN92apGcSlXc4vX++jX5X5qsFC91SX91pGTUpVlFpJp08MCnL01Elbmr5e6rUADfPgpkQcNHJLfb7yy643lct659xfC2FS5rq8GrnqSSP8J+pTpEAiB7uXnrx2gssxPxanvUT3jSubOnskPfvQK2Dbf/vYPMM0AH/tYE5s2taFpCvPnBxkdTbF58yL8fgHVHR3dXH55PcFgKSdPRrjjjm2MjKSYPz/I4GAS27ZpaQnhduuUl3sYHk4SCpVQX19CIpHj+PFR2tu7UFUFj0dn1qxqysrclJd7GBlJYZpS+/X447/BtiEez5Ez8/RGhumJDrF4RgvnVzWy/vXv0B0e5OLa86jyl+PWndiAW3dSX1pFhbeMVC7D+8NncOlOllzUgsfh5shAJzNrp+NzuWmafAmfn3cjAZcPXdUnGGtPgKyR42tvfJeu8ACmbVFXWsmM6ikcGewkY2SJZ5NUeEpwO3RSeXkPFUXBpWso2PKFl/4tuOdKFdc5NRTjC1+WsNlGdyEx/I6CJDwlABpTgsnG5eW2BO3gmQd6Q4EFR45PdYBxBnKdcrydleP1BvC2YGKzob2dl48cYX17OzYUZeJd0SinIhEO9vaSzOe5b9cufE4nVT4fAaeTUpcLj8PBYCKBWvCmd3R3MxCPc6i3lxKXiyvq64lmMkzyelEVhaFkkq76er72j/9IqLGRfMHbfXl9PT/40Y94vaODX+7fz4p77uGOL3wBh6qSyeVQLIvTdXW89KMfseDyy+H22yf+2xwO0Uo/9JCgVU0TM3MgIJrrcVY6Hodbbz1Xpz1/PkSj3HPbbUx5/XWUOXN45+RJYbiB626+mUsWLWLO6tW0/tVf8dtvflPCzVSVKVddxQXTpzP/2lauvvpSPv/5H9PXJ5cbx+BOp+D4116Tw0pLBSivXi0vc1wOvn694MzOTvjyl0XZ7vFMNIgdPy6st9MpawTj/m7bFhY7EhGwfcUV50rSocAedQ9AiR9URS7k0GBaA2Rzhehgc0Iqnjf+fdn42ZLydBai8T8tLT8bgOcNSJ91vnFQbk5c0zItUsPDHP7qV/HW1NCyeTMX33EHtm0zc9kyWjZvxltTw6HHHiM9PEzlrFkc/e53sS0LM50mH4/z9oYNYNvMvvdeMiMj5FMpNKcTzeWakJTfcQeqrhcrvMb92ke/8x08kyah+3xUXXopR7/9bcxCT7a/oUHSwh1OkWSf+qMA5vMuFi9yNCzMssMhKeEut7DWjefBum9LVVcBXGLk4eRRaJgiXm2Q/W+9S8bpn34XRgdk/1uWQSYlCeOppCyCqKrI0//hmzDYJ+OJpsk5sAvg+JMiCV/0ZyjTL8BOxFEXXg2lpSimiZ1JSe+1240abOTeLz3K1Jkzcdz0ad7Z14657SfYo0NSr1VZxd/v2YtWF2Tr278T6XlkjP5/+h5Llt3FBU3NXDJ/Ab/Z14Haci3KrMtQF320sNjlRF14tfiyVRUFipLwfD5PRUUFjY2NlJWVEYvF2LNnT5Gp3rNnj4CmQnK4z+cjFovh9Xrp6OjANE3a2tpYvnw5ixYtore3t5D5EWPhwoXFWq5kMsmxY8fYt28fiqJwzTXXEIvFME2T3bt3o2kavb29mKbJddddh2maWJbBvn0byeWSLF78NLfeuo3W1i+RSo0CCrW1c/jlL9cyOnqc2to53HzzK+ckgcdiPaTTI/zmN4+TyyW4/votzJjxCcLhk8VkccNIoSgKY2MniEbP0NOzH8PIoKoaicQgmuZA193ouo+yssn4/bUoioZmGcy1bQykFqsSkW83IHVbA0iNlg9hqqPyqaAFkZF/Dni+cNyXCs9tBu5HPNpvI7JwHQHLj0/MXChBWO8BpJbrfqQTuxPxa7cAZTmDXCqHp9xDrDfGwgcXomgK+zfvJ9Qcwulz4vK7iJ4Rz3S4M0wuniOfyuPwOPBV++g73Ievyocz4KTnQA/RM1GMtIHD5yBQH+D1Va8T645hGRbhkwLgSxpKihLyVDjFoi2LmH79dCo/VMkNL96A0++k44kOXDUuNnZsJJlPFsmhhxY+REd3B5ZtESoJ0VDSwJ3b76Qv3se84Dw2dmwkmolS7avGrbtZ1bQKv9OPjc0THU+c47Fe3byanJmj1F1K2khT56875zojqRHqAnV4HB5mVs3kYxd+TAilV+9jds1sYcZRJpLBL90sFsPsaIGJtmVemekvzFvvFuJEdUguUD4m88uxt4RFtk1hmrtehqMFG6NtFgLL+mV+eKTwRZHqmei7NjOi7LSyIgdv/elEz7arCqncyghI91SLRBzEeujwQfRUocu6RJ7XnPKzKQnu0o5z9tzng+1fbx+A6/+C7X/VWT0u6967bi/BeUHifXF23beL1HCqEOX0r0/IRC/hxg5sw/73z2/CtmXb2Fi+kZ5f9ZA38xzqPcTXP/J1vA4v3dFuska2OKCsbV1Lqbu0yDKPb3WBOh676jHq/HUMJ4fxOX04NWcx8GF182rK3GVMLp1MmaeM9q52Osc6mVU9C7fDzUhqhLt23MXJ8Emq/dUMJAa4uPpiTkdOc8e2OzgZOUk6H0cZPTQRxTsOeP+wQQajy56S4K9Ut6zMHX2yEGjWLR7rscOyn28KDLwBY2+Kd+XwXTLgOcqE0faGwDtZ/NWugkZz5pqJQAoQBvvI4zIgeeulzsu24NAGCTM7tB5cpSLv9lQLYLYMqdRKj8Gee6X7WvMIAO8/IIMkyD7OkonuwfoWuV9+Pnc8tI6GqRfS09vLoo/ewnmzW4i6P8THbr6VWZc3Mfuy+Tz97R+ybesvUK75JjhLeeEbX+WF55/loktm8fzzW3j22RcIhUrxeh0YhoVlwZw5tYyNpTFNi8bGMlpaGotVWlOnlvHcc0uprw/Q1xfj1Kkwfr+TW2+dRVWVl9HRFLNn19DbG8c0baLRLP39CaqqfCxfvpOuriilpW7SaYODB3soL3djWWCaFvffvwBdV7AsG4dLweVwMLN2Or/re5/RRJS/vHxC4q2pCoZlEU5FGYiNsu71v6MrPIDP6WFGzVQi6RhZI4/X4abaV0kqm2KSr4zqQAWhslq8Tje9kSH+MHgSj8PNaFLCdP7y8qVU+cvJGjnWv/4dRlMxLq49j0g6jsfhJpKJU+ktYzQV5aUDP6Pc7UDJH4eB+0Se7V0gjLOdl/Axu+B6s61C+FhGeq0dU0X+7blSwHa+WxLHB5dLpZfiLci7C6w09gSwxpK6LfdsecxTyI81umHgTsifgFQ7DgzWtLRwy8yZrGltJZrJ8HBLC7fNmkXr5Mk4NY3ZNTUMJhJ88/rrCRSCygC8DgeWbTOYTOJzOhlJp5ldU0N/IsHCUIisaXKwt5dUPs9oKkXGMGhpbOTM5s3cNG8eNiIDr/H5iGYy6F4vw6kUK3fvZmhsDF1V8TgcuF0uzHyeLyxfzlMbNuAaNyqPjAijfOCAyMG3bBFAnclIAvipU3Lf5xNW0ecTRrqzEyorRR7uckEgwCeffJL2H/2IyV6vINsCM/3ySy/x7saNvPODH/DAbbfxuWeeEZOzYUA0yo+zWdp/8xbf+MY7fPObn2JgQADwuM9ZVYVRPnRIPNInTwpBrmkTdu+z9x0PPtu0SeTeX/vahBc7FpPLng2ebXsi0Ky1Va69Zo2cc01BZDM8Ava0Bij1w+k+yOYhkRZpscspINcyBXiX+OV+V7/Ixrv6wTrrO8Oyz33OoU/sMw6wxwH48TMU0wi7B+SYbE5A+fEz557LNCaCxl56iapLL/3/sPfn4VWVZ98//Flrj8nODAmBDCAoDqigVpDR1orWqr3vDqa1dLCDYNU61qFqq7aCClrnVm2tra2tNVJbjSiOyJgAAYIiJCEQkr13pp09rD0Pa53vH9fODvTu/Tz38R6/5/e893t3HUeONV3XtVamta/POs/z+8VZWUk6HMZVUUHNpz6F7nRSfcYZdL7wArULF3LWnXdiptOM7N5NcnRUeVuPjLD74YcpnjQJ94QJmNksuXicxOAgJ3372yQGBrBMk1nLl5MKBgv12nNuvpmY18tHTz3FxDPOYM6PfoTuchHz+Wj76U8xLQtxuZXnc/10JTAmomqjX/uDimhnMwq8x+qwRZRi+B8fV6nf2YxS/y6rVKA+7IdUMv9WZZ8a85vXQWklvPNq/nPLpuB9zHYLUe0u+LJSDQ8FlMAZABqaCFbfYWR0RB0pLUebXKfSv3Wb+t06nVh+L1pRMTgcfPniz7PpvfeZ2tgInhLkyEFlv5VK0tt7mN/89nnOmTtXBZqcTiQW5c6/reOcuWfTdeAAzz3zDMu+/W2yxR6VHh6PY7Y0QzaDxKPq2mhYYhXg1zAMcrkc4XCYbDbLpk2b6OzsJBqN4nQ6CyJl27Zto7GxkfLychobGykqKmLx4sXYbDbsdjvBYLBQQy0ilJWVEY/HyWazBXG0yy67jM9+9rOEw2HefffdY4TQTNOkrKyMd999l0QiQXGxssQ6/3z1cu3NN6+lvLyBysrjyOXitLQsJxr1U18/n1hsEJvNydSpS9A0Oxdd9BSXX95Cff08Nm1aRV3dXKLRAfr6NmOzOamrm0dr66M0NCzEZnOi63Y8nhoMw4vHU82bb15DKHSIYLCbSOQIiUSAUOggLS0rCIcPI2JioSOaRgSVop1ERaNXoWqf64GHUXA9hIo0D6LSu+ervx7SqMh1fX5/DQqmr0WlhpeqaR5l+XFBpYYngIfy/UpQUe8pKKjegYLsdMZkaPcgNpeNsvoytj28jdhAjAsfuZCGhQ1suHsDZm58/rp19VbSRppUOIWn2kN8OE5JbQkty1sIdqsod6Q/gqfag1jC5lWbx+epphQ8rO0uO1OXTKVyRiUlNSUkRhIEu4MF+Db6DJauWYqn1MOa89dwXMVxHFdxHE9f/DSBRICp5VMRhMH4IGu2rmFJ4xIayhr41uxv8cgFj1BbUsuR8BF0TWdq+VQOBg/SG+5l9dLVhbltVVGVeiGUiVHiLFFaQrEBpldM55lLnqHSXUmJczxVu9xdjsfpwWt4ObfxXDxOD5ZY6JodcU+Csx7PA6iVD8ZYan56bouad+5bqbImE0fy2kI1YCsB90Rl/brrRnWueoESLjvriXxqdkgFjhxlKgL9qSfV8eIGNQcurlfXKa6D3beqoNHEBbB/Ddc9M8i0E2ahOVzs2dWuoDnSo+a1YvL8Lx9Cc7j52/rNeWsuVdJxz70/Z+aZSzht7hI+c9756ln0r8j1/3L5F1z/X1j+K57VY21mXDCjAM7/WVq4zX3seDbX/2J8Gyz68SJmNc2iYkoFJ1ScUHhA3frurTSUN+Cyu/A4PDx7ybM0ljWqf65z72Fi8URSuRSxTAyXTamHlzpLiWVjrGhZQU+wh+mV03n2kmeZWTWzEI0ee6s3uXQyDpuD2pJaXHYXCxsWsmbrGtDgg8Mf4La7Wb11Na91vkZ/pJ8iZynirlXp29EemLP6KOAV9fZv+3KVJv5vR2DuM6reesI8Jdww8RwlDpaLQuNX1QNmDMQT/SplZuc1EDuoHhbOchUh1mx5QYpn1diWqVJ6TrxR1cPsuFqpPKIrq63v7IdPP6rSaWrnKXXyomp4/xrlJRjrVwC+YzVgQkmtAmqs/MNXg3C3SgPXNDj5ciUokYnyzEN34u3cSa77dYb2vc/Bji1MPfgg2z9o4aOOPXRsfZt3//YCc047WdV7h3s48fSz2bbpAz7au49XXnmX0tJGBgaiLF/eQm9vBLfbzsBAFJtNQ9c1UqlsQbyspMRJNJrhuuvexO+PUlNTymmn1XDwYJDNm/s4ciTCT3+6gaGhOAsXNuBwaEya5GHJkqk0Npbz7LOXcNxxlWgalJTYWbSoEbvdRlGRHcsSpkwppbjYwdBQDDMrFDncRJJRZlY34nG5sGk6K999jkQmRSAW4ZOhHqqKy6ktm8Cd53+PKeXVJLMpHvnwRYocbuy6DQuhvqKasqJScqZJzrLyKuVCbdkEVcOd/yBw253YNRurP/g9I7EQp06eQSAeImNm0QCXzcHsKTMR4IUdLZxVNwObZqKNrlGe1JoNsodVxJmc+t2NRaiTrSrKPHy9gl/JKWgu/6ZSAy9eotTCq34MthoF4GiQOZxPAy9S/YauhuwhBfCah3zIS6WY22dAzcOgleQj13a8hsHN8+dTV1LCxOJiZlRW8quLL6Y3HObuDRvQdZ3TJ00ibZp0jY6yoqWFPsNA1zREhIUNDYgI5S4XpS4XCxsa6A2HuWbdOqo9HvoNgwnFxWz3+TgUCnH9+vVEMxlMy2LN1q10B4MUO53YNI1/++pXeeMHP+DBn/+cKd/+NolcDl2ER9asYWE8zlmnnqq8pkdHVRi4qEilhm/dqtK4Dx1S+dfV1aquetIkBeA33KCA/MYbFVCPiZXpOpSXs2TePOqfe04VTP/ud+r4oUNU3HGHGqu/n4hpog0PqzrXrVvV9R96CAcZ6uvlGLXwe+9VaeGgUsN/9SvFUGvWwGc+o6LXmqYi0z/7mdrfulVFt5uaVLtE4lhF8PJydetPPQXr1ql3CZoGM2eqb6e7W33rNTXKJ/u445QzWe0k0I4G3LEotssBbqeC7ExOQW9NFTgdKl381OPh+MZj08bh2JTybE6tj45gj0FzqQdSGTBi431KPePnLBMaaqG6Et1uH48uX3klvW+8wa4HHsBdUUHowIFjwffmmymeNInEwAA777sPd1UVqZERSurqSAUCnHzFFSSGhvLiXTqazUblySdz8C9/oeqUUxDLori2lqpTTqF4yhTOuv127MXF46rhv/0t9qIirEymAPySy6rU6xG/AuOZp6uXYUZQpX6HAyqVun46vPt3OH6WahccgT2tSoAsmYTPXQYTavJp5hOhtBySMVVXXVpegF8uvlyNZ3eoa+xpVanjmq7Swt9eq+q2g8Mw42SkyKPUwdf9VVlnxQwF7gBRQ4mSRUJIJo1md6BNmoz51t+R0ChLLriQupqJarJrmdiu+hH6ws9gFXu48qof8NjDD+Oy2/Mv/wS94Tia39/AlSc0IpEQc+fOZXKxmw/fehPNZgOHQwmZOZxoxWUq9VwEXdOZPHky5eXlNDQ0oGkaW7duxbIsFixYwFVXXcWUKVOIx+PY7XZsNlvBA9uyLNatW0c2m6WiooJQKHRMRFuJYZoF5XG73U5DQwNbt26lsbERXdePiWpbloUz70s31qakpARNs2OzOXC5ynE6S/JK3quxrByRiBI3i8UGOeWUr1BWVse6dVeTycQIhw/llcAbsNuLWLToDmbMuIBYbCAPztdiGP1ceOEjNDQsZOPG+xCxqKycTmPjYtraHi+knxcXT2Tz5vtxu8sLAmpKcbwIzWanCGW9Vaye6ixF2WhlUTD8mpqm4UbVWj+JgmdB1Vb/CCV2tgXoQ4HyKpRfdSC/n8iv787/689D1VW/xjhwJ1Bp44n8+QHA7rTRsLARM2PiKHYw/0fzMbwGGlphHupr87H4zsXMvmI2Fz99MaVTSimrL0N36DQubsRR5KBxSSPx4bjaXtxILpNDLBn3xb59ITaXjc//8vNMXTKVDXdvIHQoRO+GXnLpHJtWbsJT7SnAt81pw+lxUl5dTomrhL5IHz944wcks0nmN8xnWsU0bJqNMlcZD57/IP9+0r/Tb/SzomUFo8lR7Lqdak81E4snMpocZfak2RTZiyiyF6mSxcrpWKKejz/d8FMOhw9jicUl37qEmcfPpLKokvbd7QjCipYVHIkcIZaJccHNF3DJiZdQcriEI5EjXP/W9Xz2/M8x/eS5zJm7hDmzjuORJ36t5q6Q976uV3O/Mx9V0JzwqjlpaliJlAV3KTg+8UYVrUaDs3+l5qxj4meSVetcXEF4NqoyN6sXqj6SVaWOfS+PR7bnPMhXmr7J5g8/YOrUqUojyMyobEozQ+/hQ/z693/mnE/NVpHpknqwTB5fcw9793bwcccePmpv48/P/ypfymWpz4B/Lf90+Rdc/19Y/pkN13/WprS+9H8J4mNCZlUnVHHpc5dSMbUCTdf+0/FtDhueSR7OvedcPDUenLoTCwt/1M/DSx+mprgGQSh3lWPX7Oiazk1v38QpvzyFW965BY/Dg0N3EEwGORw6TCKboLq4moeXPkyZq4zDocMsb1nOodAhTDFx2pzceM6NDMeHuWH9DVhicTh8mLs33K3geukabJqNplObaPW2cvP8m3nlsleoL6tnKOpDG6sXSfrUw2Teb1S0Gl09NPpeVkCcHFAKirHufG1JEka2qtmrvUw9wEY2K/D+tyPqIZTw5SPea/Jpf4680Jmp3uSNbAVEQVLiiIpsl0yDs38J6aAaOxWArXdDclSle9scqu46FYKzblbWBZPnKTXxs29T14gNwLsr1HpwhxI280xWaeBxP7yzHKJH1C8s3KNSx2vnQfvDqtaldi4kBlU7UHXcG29RImgVx6kXDMkRzKzJmjVbmT17EjU1Hh5+eCkDA1EsSxgaijNhQjHptEl7+wD9/RE2b+6jq2sUEWHu3DpWrdqMy2WjtNTFtGkVzJ9fz1NPbWfhwgZKSpzYbBqJRI6tW/vp7Q0RjabJZMxCttCECUqFescOX0ExvKTEiWkK9fXlFBXbC9CroTGhuILf7XidM+tPwu1wFcC4PzTEz9/5DUPRUfYOdDOaMLh20Vdx2Z2kchk+HujGQtA1DV3X+WigG294mHgmSTKbVqmKmkaZW6UyuR1ONvTs5Hc7Xmf+1NOZPWUmI7EQ/ZFhBqIBfvb2r/FFhrnx3GVcdNJcNHSofQr0MvX3cHQEWuLK61qzq7RurRiqblFp27n+PCgfpFDDpDnBeTzoRag32WXgmKwstqwYOI6HSU+CfYpqk+uHwM9BkmAl1PU0jwLv7EGcqQ9pKC/j8bY2bPn6aSOdxh+NsjKfHm6k00TSaYx0mtVbt/Lyvn2s3LQJr2HQEwqhaRojiQQ3rF/PwWAQCwp9H962jbl1dWRMk2qPh1X5FPRIfsx3enpYvXUrkVQKh83Gay+/zLZ9+5j6pS/x9tNPs2rTJj7++GPW/vGP3PWd7yhA7upSkWeXSxHoGEw7HONh3YcfVqrfljUeDh4YUOR7990KvJ35qG0sphTHb75ZRcC//311Lp+z/a2mJhqWL+cn99/PH37zG3XdBQtA1/nW00/zqfmf4otf/D4vvzzCmryikMej5g/d3bBihQqi2+3wxBNKcLy3V9VFBwKK/wFOPVXB9m9/q26juFgx/i9/qQC6okJFri1LuYkFAmrsnh4VCX/kEfUtRyJKhVzT1I8lZ+ZFu/IgS+NkNYiZr8lz2FVE2eGAg30KiJ0OFdU+2KegO2fm24sC8pnTwO2C8lLV95OeY6PcJ0yF2gkqGp5KqzYnTFXfUONkqCqDQz6IxGDqFGxOF2XTpzPv3nvxTJnCpAULmPuzn4GmUfOpTxUgdwx8xTSPtdA6/XRsLhfFkybR+cc/UnnyyQBILseuBx8kHQpx1p13kgoG2fGznxHzehHTJLB7N8mREUba249RHR9pby+kpDd+7nPYHA6IjKqo8+EDCmyNsKrDvvMxaDxB+VO7i1U99txPq/Tvqhq4+i7lVV1RCdVTVP/AENidKirtdKtf1ktPK4suEfCUqO0/PDZuu/WV76nrrntJiZ2tf0Wlps/7DFgW1qb3VM3ztg/zad9FYOawtm4oKICTzWC+sRZiUfT5S9CKS9S7ExEF4/EEmt2JVjmRRx59lPmzTuasGdOQcFCd122MBgJkMxkmDXuRSBjEYtrJp9DX05N3xsiomm53EVRXo5VVKAVzxkXK+vv7iUQiLF26lFwuR1VVFU6nE7/fTzab5c033yQSiZDJZI6x2Nq8eTMiwubNm+ns7CQej9PYqFSXRQSXy4VpmmzevJmTTz6Ziy++GACn03lMVHvM1stut3P++edz2mmnYbdrhELdvPnmD8lkorhcZZx88pdZunQNmqbnPa9HqKubh8PhYevWh+jsfA1Ns1FcXM3SpQ8TjQ4gYlJRMY3S0noaGxeRSIzS2fkamzevQtNg69bV+ai2n3XrriYSOczSpWu4/PIWPv/5pygqqmLx4jtJpSIsXarUxzdsuJtsNomGxhHgasbBeArKXutl4A5gr5rd0IOKKj+Cqr2+ivHabC9wNkqozMz3a0LB+Fjdth8VzR4EVgB1KJGz2/JzQT/jNdg2lLWXBoSPhEmGkhRPLKZ8ajmTz5yMZtNYcNsCLm+5nLp5dZRMLuGiJy/CMi36NvcROhxCEMKHw2y4ewMn/ftJ1M6pJTGSIBvPko6mCfWGqJhewSXPXELVzCpy6Ry5VI6tD43bfhVPLC7Ae2I0wUVPXsSpl5+KZtOwTItMLEMmnmHV5lXMrZvLQGxABXZCPQzFhihxlBQcbKZVTOPWBbcyGBskmlFaMslckp9v/DmBZACP08MP3/whiWyCrJnF4/QUrLhWblqJkTY4OOkgZ911FrX1tTy3+zmcNqfywt6ymn1d+9j5+k5OnHMillj4DB/z6+crm9CHV7OnvZU9+3q58YdXqqxJ3TkOzLob0vlATXGDstGqXqjmsu5JMLoTSk9QjjWaTYFsol8JmCUH8wBuV6nms1epucTuW5SI75w1EOsdtwM75TaIHgJHGUsu+CL19fVqPDRVQx3zY2kOvn/VtTyx+h5cxaXjiuZGH2ue/C0PrPw5TqcLzDS1dfUqaGRm4J9l0v5rAf4F1//Xlv+KZ7XdacdV4vpPQfno2u1UOEX4UJjXr1R11sA/Hd/utFM0oYiy+jKKq4qVvzY25tTOYSg+xPXrr6cv3EcoFSJpJtE0jTsXqRTxNUvX0BPq4Zo3ryGRTTCpdBKD8UF2DezCZXcxsXgivqiP1zpfo8hRRNbM0hPswaE7GIgN8Frna9g0WwHGh+PDuO1ufvDGDzgSOcIZtWdQ6a5kUeMi1mxdQ5GjBPnUU+rBU9ww7t9ncwOWimCfu04pK7prlOri/ofUW7tEX97m4EYlRlY8RaXajLYrkE4OKtutRX9VD6NEn3qrGD+iwHzntVB52vhx9yR1fPtyBeoTz1HQbS9W/tTlU5WVlplWx+sWqjTxmjMV7C99FipnqnPl01T9dfEkBc3xAWXNVdao6rbPfRhKpyohierZMLhTfb+f/ZV6m3jKtyA+PO6jvX0VzPmheiGQTSpYb/05TomyZs1SRkeT3HDDeoaGlL+1w6GzeHEjpmmxc6ef2bMnUV3tYfbsSQwPx3G77Xz1q7O4887F2Gwavb1hrr56Hf39Bg8/fCELFzZw8GCQgwdDXHvtm1RXe3C7HSQSWbZv92FZQjSa4Zpr1pFM5pg0ycPWrf3kchaxmDo+MBBFBEbjEbyRYRw2O2gaN5y7jDPqTmKvv0tN5nQbJXnrrN/teJ0TqhuZUjYRt8NFJBnFZXcye8qJCl3zoH5q7fGUuotwO1x4nEXYdR23zcFwNESHv4sSVzGvfHs1K875MhM9lQAEExFmVjcyobiCmz/9DUYTYTwON0UOl4Le3OB4+nfRPOV5HXsNsgNQvCifzu0AW3Uewp1K0KxoCWhlQD6KLRn1u8wFINujxtZKYNJjCpitqLLtyg2ozy1btVISxwIrov6JNZvaHl2Nc/CLzCh38fAFF5DK5RiKxwGo8XgK6eLlLhflLhdlLhe3LligUsgXLeKdQ4dYvXUrOcsq1G2v3rqVeCZT6Hvn4sU4dB1LhJF4/JgxK1wuls6YwW0LF1LhduO02ZhaXk5daSm//slPsB05wrWzZrGprY1eTeOEhx5i2pIltI6MsPzHP+ZXzz13LEw7HOM50XfdpejUZhs/Nm/eePuVKxVsR6OKhBsblSLZhAkq5Ox0FuqyX3j9dfq7urjvjju47fHHlfjZVVex8bnn2Lt9O1s27+SiiyayePG3eeIJxerxuMpOHxoav1wup47FYkq0bCy1e6xqxeVSt5xMqqz23l4Vfc5k1G1GIvDDH1Ko63a7lTr4mjUqgP/EE0og/cEH1TsDM1/mGxwF7ZBXRZBnNCg4jiUU+I5FpctLwD88Xpeta8emcqfSqv9YKp9pqhszTSgphgkVCppFVH21EVOQ3utXY3qKVJQbFMzb8jXfVWUK5GE8hRxwlZYS93rZfvfdxLxe5vzoRwW7LBHBzGSYtXw50y65hLNuvx3dbsfM5UiMjDD7+uuxuVykRlRq9MQ5c9j37LNILkdicJCTr7iCVCCAZrMx4fTTOfD73xP3+3FXVzP33nspmjiRuN/P3kcfpaS+nk/ddReJYAg57iSV/l0/HWKGqnMOjUB5FSCqLjqTUnXSR6d/z5ilzr/4lKqXPu5kqKhStdRv/Fmle+t6PtrtykesnWrssaj4zNMVhCdjcOFX4Owl8JXvQ3AI/vA4pJPoiz+rxMwWfxax2dCcLsQ00S/8ArZrbkOfOh1r64dI58fgcqGVVWINeAsp5NjsSDKGhEf5aOd2/vra6/zkgdVILKZqylMpNLuj8AerN12BVlaO2fKK6l81UU26HU60SVOQZEKpkEcjaPVT1ZwjlyOZTFJfX4/H48HpdBZSuKPRKDU1NQV7LCUwlmLfvn20trYya9YsLrroIkzT5MILL+Tmm29m6tSpxONxLMtC13UGBgaIRqOcd955hQj1WBZSaWkpHo+H1tZWFixYUBA1c+VdErLZFJs3ryqA7/r1NxCLDeJ0lhCN+v8hfbuHz372AS677BXi8UHWr7+BeHyIurp5hMO99PVtzqd0L6e0dAqXXfYKixffiabZClHtMT/tTZtW4XSWUF7ewLp115DLJamsnIHTWZKHeNUunY6QE+EhFATXAAaq5voI8CWU73QKaEOli5eqJz8rUfC9GvgKKrX7h/k1KNh+inFxtJvz66n5Pi+jhNDmoVTGs0cdX42KXgNIxsToi5CNZ3njqjcw+g0k/8KtvEGB9vob1hP1R8kYGd685k081R7VLqfSvBuXNOIsUdo+rgoXYgmeiR7ig3GsnBJBCx0M8eY1bxL1RXnb+TZPFT/FZS9fRvv2dsqnllPWWEb9/HqMPoPHVz7OxJkTufvSu4n6o2hZjTsX38kFMy7g5mdu5uWml7nix1fgsDnIWlnsmp3ecC9Xr7sam25jQf0C/FE/N6y/gYHoAHPr5ha0hObWzcUf9bPijRUcDh3mwfMfLKSJV7graLq4ifv+7T4ssfjemd8jlAxx+amX8/iFj3Pvj+7l0ccepaSohF/t/BX1ZfVcdsplaICWGlT11LmYAuAJ50AmCEVT4Iw1eTeLGjjzYSXUay9Rc1J7iSpXrDwNot1qvhk7qAJDxfXQcJnK2HRXKwDPxdS81FYMZz2mUsEdpUpst3Smyr70TFcgHzuslMTHaraRgqf1L1b/nIUL5nPWogvynxEC2TgGFQwNB/j7Ky8yb/4C5p37Of7yh9/kLbny4qv/Wv7p8i+4/m+w/GcgfnTtdjqS/qd11v9MNdzutGNz2chlcqQyKXKSw0gbDMYGuXn+zRQ5ikhkE1yz7hoOhQ4xo3IGz1zyDEX2okI6tz/qR9d0+iP9VHuqufbNazkSOcKChgX8temvlDhLCCQDzJ40G1/Ux7y6ebxy2SsMxgePURPPWlmum3edSgN3FJHMJdnct5lHl66mMhdA23WDeuCMpbx0PqKAUncqaK2crYB79y1Q/0X41BMqilhzroo0z3lQPbR2XA3JIZh4NiT9ecVGP9QsUoA8pu64b+W4n3Y2pt4yVi9U17IV5S27/KiUboey2Xr/WlVHjaWi0b4tKuK89acqEi2mStmO9Kh1Nq7Uw4fbVR9nqQLldFipj6Optu8sVw9BT60SOTMOqcj1uyugdApc+opKZZ93J1QePw7p8QE480acVgSPx8GqVZt5+eV9rF69lXA4hWUJhw6FueaaNznttBoCAQXfo6NJZs+u5eqr1zE0FGf69ApyOSn0X7VqM5YlrF69lepqT+H4ww9vo7raU1AhX768Bb8/yty5dUQiafr71fGrrnqjcHzVqs0IQiARprKolPvfex5veAinzc5wLMgETwX3vfMb+iNDVBaXs/bbq7n9s9+h2OEmmU3z0UA3yWyaDn8X/eEhfv72r/GGh7EsC5uuU1FUxkcD3fSFBomlk+i6TjCpADqcjFLscDO5fCKCkM5lOLFmGrqms/qD3zMajzCr9ni8kWEF7KYfAj9VKd+JzYAdah6FGV4F1pJTtdcIaIKqv06q32PZ11X6t1ggKRj+aV71u1pFqfWivKf1ESVephcr0HZMU2NpNiWcpher6+rFalxbLdfd72HaBVWUFFVx6JNPKHI4sGsa3/jSl1g0dy7LLriA/kceofvjjymy2ym227nlW9/i43vvZdkFF3Dfd77DlysqsOs6dy5eTNOsWdy2cCEa0FhezjOXXML0igpsus6ewUGqi4spdjh49pJLsGkadl3nJ0uWcHxVFZFwmG++8AIHg0FylsXO999n4sSJzKir49vf+AYDhw/Te+AAvVu3ck51Nc8+8AA/+O53jy1attth+nSVEz1mo7Vpk4Llp546Fr7vuEPlTzudKh+7vl4piYOi4ERC5XM/80xhrG9Pn84HbW2MfvIJ3Hwzjbkc5HK4nHa+9KXr2bZtE319Kih8331qvWCBCrQ/9ZTav+UWBdwLFozfRjqteL2tTQH1NdeoiLPfn0+cscOuXepdwPz54POpEvKSknFR9MOHlfDZyIiy4B4ZGY+YV1RqSEOtijRnc9B1REWlBQXA3UfU+viG8brsVEbB71gq9z9GthHVLpMFmw4zpypoz2YVlDsc4/XU3iFl9eXIJ6ce8kIglIdtDUQwk0lyqRRmKlWoobYVFXHmLbfgrqrC4fEw9957KZ4yBTOVInjgAK7KSs649VZSwSDb77mHhN9P5YknEu7uJjEwwMdPPw3AtIsv5sxbb8XK5SieNIn9v/udUhr3eLC5XHzqzjupP+88gp98QtzrZeeqVUw4/XROv+EGcqkUms2GzV2kFMBnzFIR67Ea6Bmz1N/MWMq4za7anXAaVE5UAP6np1Tb405U0e/QCLz45Pixd19V4Dz30+qlRmAIDn6svK1X/kZZfGUz6lgmo4TQvn6Nus4bKoqtvfIcWsUEZaEVCUNoVD0znE6Ix5WlVjiIvvQS9Mu+Dbks5ptHpZCn0+B0otfWQUkpm7Zsoberk5knn8yMz15Am3+Iq356D0/98CqqUOnXw87igi92b28vjVV50Ha6IKmuSTSC3jAN7ZTTAYhGowSDQQzDIJPJFKC3p6eHrVu3ous6ixYtoq2tjRtvvJGamhrmzJnDRRddhIiwfv16LMviueeeo6ioiBdffJHi4mIMw+DKK6/koosuor6+njfeeIN4PE4ulyObzdLX1wfAhAkTuPDCC9F1nbfeeotMJoNlWfT39yNiY/HiO48B361bVyNi4XKVUVc3l23bHi6kbzudHhobF7Fp08qj2ubYtGllXuDs/kLbxsaFeDy1ZDJRKitnUFpax+LFdzJrVhOLF9+JiFUYZ9OmlZhmBgBN0wvtHI4S7GKxRoRFKPExO0pYbDVKITyFAuXZQBCVPm4Dfg2sQ6WPuxlPA1+FguivoIAclDr44yjwLgJ+jIpq34WKct913XXMmTaNlzWNpXv2cAfj7+hyThvv97zP5DmTeeXlV9i6eiu6Xefb3/g2p5xwCud8+hzu2ngXv7r+V6TCKfa9vI9tD2+jbm4dul1n6ZqlNC5sVNHsnhDrr1daQZqm0bi4ESunos9jtddbHtjCl7/8Zba0bWFq41Rq59RSMa2CN699EytrsfaOtax9fy0nTDiBvi196n6KdZUGnrYReC3A5DMns3T6UiYUTSBjZjDFLCiJ37/5fnKSKwj0jgmX3bX4LspcZVww44LCuTHV8XvOvYdpFdMocZbwzCXPMKV0Ci6bC7fNTTgV5to3r2Xl6pUsWrCIb1/0bfoifWzp28Kqzatw2V1oGtx+592cdsX7fPXrV3Cofa0K0uz9qbLhspequWUmon7yrgkqJTyWz1IsmqzmmqlB5XaT8MKEs9W8016k5qOpEQXgSb8a10xCvB92/0jNj23FQA4CW9W1q/Mlke7Jqq/644Ty6XzcG2btug+5647b1fx1TPvHVUbOEvVCLSu0bX6fv7z4Ajf+ZDUdPQElyvs/2Irrf7f86yfz33g5unbbVe76D+nj/5kq+djx3q29hFIqLXSSZxJ1ZXU8vO1hErkEXsNbeOBkJctIfIS+SB89wR6+furXWdy4mHBSvfl7vO1xFjYsxGV3oWs6ixsXY9ft9AR7GI4Ps7BBTXoXNS46Rk1c13QGYgM8vO1h6svq0TWdlZtW8pXmr1DqcKHtX6PSaHS7SoOZuEhFmZ2VyhrAPVGpK3Y+km/nUKncscPqAbPjaiXm4CgZV/7WNNW+eqFKMwfVpyBgdpd6c9jYpMB1zhpo+LJ6m2cmVRp45WwljGalVNR4TNBMd6p1UfX48R2rFUwXVUNb/lzGGLfSeu8apQB56SvgrlQP3GxU9et8WbXd8YDablul9se26xYp4bPSBkDG+8QH1M+s9efYdeHOOxfT1DSL225bSEWFG8sSVq7cxMsv7yMWy3L//ePwHImkePnlfaxcuYl02sRu1/jxjxfR1DSLO+5YhMOhc+utCxgZiReO33XXYhwOnXnz6nn44W0FkF+6dDrl5a5/evyOOxZhZuHU2hn8addbzKmbicOmyhDOqDsRt93JnLqZvLCjhZFYCLfDzWA0wH3v/Iabb7yZr3/m3zhx0jQYTuKyO7ji7Eu5etn3mH/2PM484wwuOG8pMpygtqwKK2fyta98lSsuuIzzF36a7zZ9E1+fl5xl8tAHL2BaFi67E7fdyZn1J+FxqlrumtIqNM2C7DDUrFECZcXngDkK5kg+5btLgXSm+1hANoch1a5mLVYUhq4Hcwhq7lYq4YPLIdutvK41m4qAO2qVWJmkIHtEbef8SiU8F1Ap4YNXqWsCX/n3xWx+ZR6NjY30GQYrWlqIZ7O88OKLbN2xg207dnD1dddx9YoVJHM5dE2j/Jvf5M/vvssH27bxi7vv5uc33YQlQnVxMY9eeCEzKitx2+2MJhIks1m6RkcZisWoKyvj4dZWUrkcN157LWeceCI+n48vXnopc045hahh0P7II3x2/nwWz53Lnfffz7cefJBoJoO7qAg5dAiuu05FmGfOVLnUt96q/v+efFKleff0KNWv5cuVfLbbDWedVRAfw7IUfD/zDMxQlm6IKE/ssfRyUO1FCAcC+FtaVFh44kT+FokwoaKCqlNOId7fT/ikk0DXMf3D3HzzS+RyZ7BqlbqFuXNVBvvy5WrotjalkzZ/Ptx/v7rMb36juD+TUYBcXa3WCxeqsvJFixQcj2W9DwzAV76iPK+vvlrB98KFKto9pjqeF8wu7K9cqXgPh11FkMeAt39QPcv+Ubgskx3ft+lwQqOCtFIPeAe57id3Mu3EmWhuN3v6e1XU2bS44NzPcPqcOcyZfw6Lv/9Ndre3w4wGRqfXMudrX2TOmWcy57TTmXnSydhPm0lQFwXslgUH+7BsOgm/n50rV+KuqsLmdGIvKiI5Okr7Aw8Q6+8nl0iw/e67SYdCVM+eTS4eR7LZcSG0Z58lG4sVVMAnnHYayUCA7ffeSzocRnc6x9XBn38eoCCIlo5EmHj66ex//vlj0s9tTieB3bt54wtfIJdMIhqwvjmflt2s/j/TSQXNpRUKpDNpOP4UleY9BtDrm+GUM1Uad1kFXHYlREPq2Fe+ryLaf3pKRb4dDjXWX55RadZj3tlllarGurRCRbdjYeWhfd298NUV6s/ZstAqJ4CnBKu/F800sTa/N26R5XAov+p/TCEvKVVe4xvfhViUq774b/Td8D0OPrKKQzu3c87cufzqu99gRf0ErK0b+Mqll/D0r59FX/xZdrrK8AdGWWwmkX17IJ0qQLe1dQNYlop4ZzNs3boVj8eDw+E4JmL9/e9/n8WLF6NpGuXl5dx444386U9/orGxkZqamoIVV319PX19ffzpT3/i1FNPJZVKoWkakUiEqqoqnn32WRYtUlZWGzduLAikeTwefD5fIcI9Ft0WEbxeL3V1dTidDsrKGiktrWPRojsK4Ov1tiJiYbcXHQPElpU7Bn4XLrwNTbOzaNEdxOMjLFr043zbu8hkEgwMtONweACLWGyY4uJqPv3peykra0TT9KPa34mm6aTTEbLZBBUV07nooicZHv4I0TRKNY3jUOndt6IA+0HgHWAnsBhlj6WjUseXo3yw56DqtC1UHXYL8FNUJHoAlda9FQXbN+bHMIHjUArjXmAa0PuVr/Dq5s00TJ3KLSjl8RhwGHijt5ff/fF3nHX6WTQubGThbao2+iL9Ir4b+S73zrmXJx95ksd3P46zzKnmm3cuxu6207+1H7vbzub7N+Op9rD5fgXQm+/frFK6oxnW37Aem8vGojsWFfouWrAIzachCFZOlbqcc9M5JIIJXgq8xB3fu4OJ0ybSuLBRXctmJ56Jc/vNt3PHHXfw6ZM/TaW7kq7RrkLp4Ziw7h2L7wA4RqC3rrSOaRXTAJhSOmXcknbxHWTMDNWealK5VEFc1x/zo6FR5irjoW0P8fL7L/PCSy/wox//qCCQtrBxIbcvup1WbyvPP/8c+/dsYu/291h8XIBLvnP/eAnjJ/eruVohwDOYV/72qgDSzmtVpDrQqqLQF2xXEeudP4TKOWpuu32FOmYrGRf5zRpq7Alz1V9ItBu2XwXuWgXVVkaVRCZ9Ct4RiHrBzLBpz2F6j/RxwsmnMu3MC2ht287yq67iV796mqrKKkpKSvjGt74HZoZp02ewcMFCdhwYVPPdfy3/+TKWcvPf6auurk7+OyzZdFZS0ZRk09n/s9cwUpJL547ZFhFJRVPS3NQs93CPNDc1S8pIHXN8ZHBEdg/slmVrl0kwEZSm5iapeKBCugJdEk6GpSvQJR8NfiTRdFTCybC0dLZIm7dNmpqbZM/AHvEbfhmODYvf8MtO305pam6SjsEO8Rt+aWpukjZvm7R0tkg4GRa/4Zeh6JB0DHZIU3OTtPvbC9fkHqSpuUmCiaD4Db8sW7tMEqmImHGfSLBDxLdOJB0USYVEMoZI3D++jnvzX36R8H6ReL+I9y2RxKBIoE3E2yKSDolsWSaS8Iukw2qcuDff3ifS/axIpGv8nPctkeSw2s9E1ba3RSSwSyQ1qsZLhUXSUZGhPSKvN4kM7xGJD6n9npajju8VifrVseH8uahPJD6szj+EWidDqr/hEzG8IoM71fGoX/V7vUlkuEOdGxvX8Kk+gztFDr2lzr/eJJIYEXm9SdI7fiV+vyGGkZJwOCnRaEoMQ311dAxKU1Oz+P1GYbujY1D8fkOamppl795BicfTYhgpCYUSMjISl1AoIbFYWvx+Q/bvH5ZQKCHhcFIiETV2NJqSPXsGCv3Hjh19vb17B8UwUhKLqbHjqaREkjEJxiNyJOiXSDImw9GgbDm0W6KpeOErkoxJX3BAPvYflJdb/iobd7dJfUO9bGnbKiPRkAxHg/Lmno2yf+iwhBNReey5X0rNtCkyHA1K/8iANL+6VsKJqATjEbn+7lvl7AXzZDgalCFj9JhrD0WD0hcckGA8Iht7dkk2GxUr4xfJDonkDJHsqEguKOJtEtmPWqc+EUm0qu1Eq0hqv4jRIpJoU8eSO0VGH1PbudB/7JsLimSHx4+n9h/bJjt47Hlvk0g2IOJtkvTIk9LQ2ChLV68W7rlHmpqbJZxMSjSVko6BAbnh/vtl1mmnSTCRkEgqJSOxmAzHYtIfDssvfvlLOWnWLPEbhnQHAtLm9UpLZ6fsHx6WoVhM9o+MyLquLvFFIhJKJCScTIqRSsnbBw+KkUpJMJGQdV1d0jEwIF2BgAzHYhJMJCSUSIjPMKTd55OuQECykYhIS4tIf7/Inj0iTU1qbRgikYhId7fIjh1qHQqJBALqXDAo8tZb6tjIiDofiah9v1/kiitEvF6RYFCWf/vbUldRITabTWomTJAZ06ZJ74YNcvaZZ8qpxx8vp5eXy2fnzZPdmzeLtLRIz1//KnMqKuS0E06QWafMkosu+oLs2nVYQiGrcAstLSJut7rd1la19vtF9u5Vt9DRoY7t3q2Od3eLhMPq1gcGxm/zscfUrUYi6vzYuFdcIRKNqvZjY+3dq46N7Xd0iHqe7zso0j8oYsREPukRyWRFslmRdEYkEBKJxtU6nVFto3GRVFptGzHVNhqXD3//J+k/0CVTp06V3du3qz5GTEIfd6q2maz8tblZTj/tNDVGPDl+nc3tsuZHt8slF12kxh671oYdkjaisummm+SlM84Q74YNkjYMSQQCsuXWW+XFU06RTTfdJOGeHnnxlFPEu2GDBA8ckE033SSj+/dLfGhIttx6qySGhyUdiUikt1eCBw5IuKdHNt10U6F/2jAK/eJDQ4XtwN694t2wQZLBoMSHhmTTTTdJ8MAB8W7YIPHhYYkPD0tqNCBWX4/I3u0ifT0iT69U61hUJDQqYoTVse9dKOLvG99+eqWI/4hI/yGRVEKkP9/3cJdIKCCSSoqER49tH4+q9bt/G7/WoQMiHa3qOmPn+w+JJBOFNlbMEDNmiJVKiZVMiJVKiZlKiunrl2zzC2IO+sWMRdWxQV/h2JXf+57UTZkiGoiuaQLIrq1b1Hl/vyRGhmXK5MlSW1Mjsxrq5etf+qL4D3bL+QsXSHlZmTgcDgGk/Z31qo8ROWp8n7qfVEoyiYQYhiGGYUgqlZKRkRFpamqSuro6AeSDDz6QBx54QJqbm6W/v1++8pWviN1ul+OOO06ampqku7tbRkdHZcKECTJ58mQpLi6WU089VZ588kkxDEPi8bgYhiGzZs2S5557TlpbW6W5uVmSyaR0dnaK1+uVtWvXimEYkkgkpLOzUwYGBiQcDsvatWslkQjL2rXLxOdrF8PwSzIZlmh0SNranpSurnUyMNAhXV3rJJEISioVEcPwy6uvXiGRiFeSyZCkUlE5ePBt8ft35dvEJJkMSyplSCDQLbHYsHR2tojP1y6JRDB/rZ0Siw1LV9c6CYf7JR4PSCoVkVTKkFTKEMPwS3f3W2IYPhkZ2S8xy5I9ItIkIrtFpF1E1olIWESGRMQQkYiI+PNf60RNeptE5JP8+bH+HSISy7drF5EWERnOj9NxVJvu/PnhfJuPRCQqIo1Tp8qfd++WJhEZEZHLTFPmffoz8uoTr8riRYvlL3/8i0SHopIIJmRgz4A0NzXL4N5BWf/GeqmsqJR4MC4j+0ek9bFWWbtsrfS39ktnS6cMdgxKZ0unDOxWfQb2DEj3W90SHYxKqDckEW9EutZ1SWwkJolQQtYuWyuGz5D6KfWyeulqGegYkFQ0Jat+vkruuP0OSYaSsmjBIvnz7/8siWBC/If9csfjd8gll10iTc1N8oWmL8iq1atk/8h+eaz1Mbny71dKNKXmrLF0TEKJkERTUQkmghJOhiWYCMqBkQPiM3zyVvdb4jf8Ek6GC/PU/SP7xW/45a3ut+Sx1sfkwMgBaWxslI2tG8Vv+OWae66RSZMmSX1jvXiqPeJyuWTCxAny0KMPSTARlFgqJmYmJlbGEAl2iMvlkkDXuyKbmkRG29W8clOTyIuodToskhw59thI6/i5sePh/f+xX7BDbcf9IqO7VZt/bDc2l00b6jq5jExtmCK71z8vMnpAxMyK5LIi2bRIOibnLl4or77yskguLZLLypXf+4489fhjItmUjA4ckcb6KdK2+QORbEr1/R+6AF75X3Dq/3VQ/v/m678DXGfTWRnsGFQPpI7B/6OA/V+6h72D4wAeSYnhNyQwGpCm5iZx3+eWrkCXjMRGZCg2JB0DHQWAjqVi0jHQIeu61kkkGSk8wJatXSb7h/eLkTIKIL7Du0O6Al0SiAcKbUZiIxJNRaXd1y7L1i4Tb8Qr4WRYQomQGClDhmPD0tLZIh2DHYV1KBGSSCqiHk4JvwLgLctEAjvVttGtHha+t0RGd6ntuDffpl0kExNJR0QSA+qBMgbJ6YgaLxUSGd2jHjyBnWo/eNT+gcfU9hjAj0F75KDaT4UU7CdHFdwmgyLpmMhot4LfREDtp8IKmkM9eRiPja/T0XEYHu4QScdF4iPqflMR1S4VzgO3V8F4fEQkZajrpQyR2MA4pD/qFulZdxT075ZYKCh79gxIV1dARkZi0tLSKXv2DIjfb0hLS6cMD8cKsB0MJuTttw/mYTopw8MxGRmJSXd3QEKhhASDCRkaiorXG5FodLxNR8eALFu2VkKhhEQiKfH5DPnkEwXeR4N2MJgogL5hpKS7OyDBYELi6aQMR4NyeNQnkWRMwomoxNNJMVJxGTJGZfOh3XJgqFd+3PKEDEeDYiRjEkslJJqKS2Njo7y3eYNsPrRbgvGIhBNR2XxotxipmPz4wXtk6szpMmSMyqGAV4ajQRmOBuXHLU/IWxvekYbGBjGSMeke6pNNPbskkoyJkYxJJBGV7qF+ORL0i5GMiZmLimS8ItmgSC6s4DgXFUl25MG5XSTjVzCd3KPWGb9IduQ/QnRyr0guptoV+g7kxz1qzIz3qPH3KPg+BtY7RLIhkWSHRGOHpaGxUf7y7rvS1NwsewYGJJpKyVe//nWZWFsrNZMnywUPPSR7BgbESKUklEzK177+damrq5O6ujp5f9s28RuGhBIJGYpGJZhIiJFKSXcgIH7DkHAyKT7DOOZcOJkUbyQiV7z6qvgiEYkcBdofDQ5KNN9mKBaTkVhMjHBYrFBIkWVTk/rYaWpSBDs8rCi0u/tY8A4GRQ4cUGvDEBkdVdQZDivg9vtV32BQZGhovF17uxrD61VtgsFjrzlGv+vWKcJtaZFEKCF79liFS4dC47fR0jK+7ugQicUUOBuGyLJl48MeDch79oh0dan3AUND45f8x/PhsLrFK69U1wyH1frKK9XxQEB9G1Y2pwB5/yGRTEbBbkbBcgGkx/bHzmWzCsI37FBtjj6ezcrUxkbZ/cprIpGYAuxYogDTz//qaZl92mkKrI++RjwpJ82cKa/++nl1L9nxe8jG4xLcv1+B8/79BcCNDw6q7c5OiQ8Py6abbpLk6Oh/gOZ0NCrx4WFJBAKSjkQkE49LOhqV0aPHGhpSED06KulI5JgxksGgJAIB1c8wJNLbK4GPP5bk6Kjq23tYAe1VlyrIjUYUHEcjIsm4AucxEA4FxrfHAPifQbT/iALlUEDB9lj7sbH+EdKNsPpKxEUCQwr0x0D7qkvFMiJiJZNiJRNiBkbESsQLYGvFopLr3CemERZzwKsgPA/gua5PJLdji3zw6lo5/PSjMrW+XtrbWsVKJMRKJeX6H/5QrvnBVWImE2Ilk+Lv7ZVc9wHJ3HervH/vHdLX3SVTJ9dK+wfviRWLihkYVmMnE2KmkuraXZ9IKpWSwcHBAtQ2NzfLunXrpL29Xaqrq+Wdd96Rzs5OGRwclKuvvlpWrFghdXV1snr1atm9e7ekUim54447ZOHChdLf3y9z586Vb3zjGzJ//nyJxWLS2dkpPp9PzjjjDLnllltkeHhYBgcHJZ1OSzwel+bmZmltbRWfzyfNzc3i9Xqls7NThoeHpbW1VSKRoCQSoTzgxiQeHynAcDIZlubmJmltfUx8vp3S3NwkAwO7JRzul87OFhkePiCplCGJRFAiEa+sXbtMBgZ2F0B8cFCBeTIZlnh8tADOhuGXkZH9Eg73F8B9ZGR/Aap9vnbx+xXsp1JRCVuWtIhImyjQPRqkw3IsPO/OH2sSkV0iEsyf9+f3h2Qcyt8SkX4R2Z8//5aIPJnfHuuzLD+2kd+eMnWq/H33bgmKgvQb16yR6358pxh+QxacvUBe/M2L0vZkm6xdtlaig1G5+fqb5bhpx0mJq0Re/8vrkggmCnA8uCcP1B0DkgwnJRFMSDKk1oHugBh+owDovp0+aX2sVZqbmmX4k2G5h3tkZP+IVHuq5YVbXhDDb0jr+60ysXKi1E+uF0BOP+V0eeGXL0jbk23y8b6PpaqqSjyTPEINUttQK7f87BZpam6SyfWTZfrx0+W000+T004/TX71/K/Eb/gllorJnoE9MhQdKgSCdvp2Sl+4T5qamyScDEskGRFvxCv7R/aLN+IVI2VIu69dWjpbpKGxQf72wd/Eb/gLAaKdvp3yWOtjUn1Ktfz6j78Wb8QrfcE+OXD4gJj5+ekrL/1BGhsb8vPIT/KBodj4fDO0dxx8x0A5uEcFc4IdItnYUQDtPbZfJqrmqGNz2owxPmcN7Bxvl42JGAdFMoYs/963pa6uTr2Erp4gM2ZMV2CdyypQzqbl3CVL5NWX/6TAOx2VwKBPLr3kYpl1ysky66QT5KmVN6lzmbhILiNimf/Pgst/k+VfcP1/afnPosb/by9j0fNUJCWZROYY4E8kEwWo3TOwR5qam2Tv4F7pCnQVos6hZEiampvkybYnZc/AngIgBxNBMVJG4UHTMdAhQ7EhGYmNSEtni7T72sVv+CWaikooGZKh2JBMe3RaISoeS8Vk7+DeQrS7K9Al7vvchQfdiOGT3Oju/wi8iUH1sNmyTCQVVG/ivOvUgyfWqyLQYxHthF9tb1mmHkpx77EPr6PfAG5qEnnJrY6nAuMQHdip+se9+ch2UEWwvS0KYqN+9ZWKKJB+8wqRRFBFj8ci2IlRkcF2tR8fUUA8BshjYJ6KKCiP+kXeWKaAegy+hzpEgl1H9Qmpr+BBtT/WLupX228sEzH6JRJJyLp1XeLzGbJ//4j094fl4MGARCIp6e0NSXd3QDo6FAC3t/vE641IJJKUQCAufr8hy5atld27ByQcTsrOnT5pamqWnTt9EomkZN26rmOAe2QkJgcPBgpR8nA4KU1NzQL3SFNTs0Qi41HtPXsGC4AeTyVkyBiVkWhIoqm4jMbDhUjygaFeGTQCcstrj8pLu96SSCKqosvGqPxk3S+lobFBtrZtEyMVly2H9shwNChf+/rlMnnKFKmrq5O29u0FQA/GI2IkY/LSrrfk0i//u5x56RLpHOqVI0G/fDJ4SG557VHZN9AjkTy8D0eDcjjgFTMXURHrXFgBtvcKBbzZ0DgUp7pFEttFUl3qWOqg6lMA5L2qXS4sYrw7Pl4uqiLS2aCC7GxIgXQufNRXNA/eexVgZ0cUoGdDIqkeiadTMqW+Xv7+wQeFiHXP6KgY+Sj13GuuEY4/XpqamyWSTMpHAwPS0tkpI7GYPPXss/KpJUukIw/ew7GYtHR2yt7BQQknkzIci0k4mZRgIiG7fL5Cv+5AQLyRiAzHYsf06/D7JZxMSiiZlHAyKSPxuHQFAmLFYooWjw73dnSoYy0tikKjUQXTjz2mwHeMaH0+RZj796v2PT3jkB0Oq+0xKO/oGAfxMXJ9661jz3d3Hwv0oZCEQ7kCfy9bpiLMbW3q8qGQAurhYdXc7x+/FZ9vHJaPfm8wBuRdXYrtg0EFykcz/vCwupbXO/6O4MABtf/kk6rN0JBqY2ZyKlKcyUeQx9b5qHEBngMhdS4QUu2PBuOxKHY6I5JKy9QpdbL7138cP5bNyjcv/7rU19dLfW2t7H37AzVmPKEi5p/0yJYPP5RJkyZJNmKo66TS6iublUw0WgDfo6E3FQ5LYnhYYoODEunrU+AcixWizsHOTon09ko6GpVUOCyBffsKMB05ckTS0aikDUOSgYBsu+MOOfCHP0i4p0cy8fj4GAcOSCYWk8TwsMSHhiSdH38sgr7pppvk4MsvixUKKOANjSqg7js4HsFOJtTxaEQBbzymQLijTQFzPHZMlFl685HrIZ9IzFDAHI8psP5ou8josIqK9x8F6YmY6hMcGb+PeEykr0esju0qWvzqS2Im4gqyE3ExI2ExjYjkOvdJ5p6bxBwZKsBvIbo84FXgnI94T21slPYP3pPMfbdK+A+/ltLSUgl5+8X09ef7JhWUdx8Qc9AnZkL12dXWKmbUENPfP36NVFLdk/eIJJPJAtQ2NzfLPffcIyMjI9Lc3Czl5eWyevVqSSaTEgwGpbS0VIaGhqS6ulpWrFghzc3NsnPnTjnhhBPkJz/5iTQ3N8uiRYtk5cqVUl9ffwwsL1iwQJ5//nlJpVKSTCZlYGBAAoGADA4OFq53zz33SHNzs8RiMTEMQ0ZGRiQQGJKBgT15cN4jqZQhyWRIYrEhSSbDYhh+SSSC0tzcJPfcgzQ3N8nw8CcyMLBbUilDBgc7ZO3aZRKJeCUU6j0KpgMSCHRJONwvPl+7dHa2SCw2IqmUUQB1n2+nJJMRSSSChWh4IhGUQKBLBgb2FsD76Mj1HlER5N35/Z2iILhFxqPVYRmH7pAowA7lv9plPDpt5PuPjTMG6WPR7GC+/X5RQO8WkeKpU2Xz7t3iF5G/fPSRnHjOORINRcW30yenVJ8izz30nEQHo+Jv94vhN6SzpVN8O33y56f+LLNPmS1/+vKfZLBjUFJGSlJGSpLhZOFr7bK10vpYq4wcGJFUVJ0LdAXEu90rXeu6JDoYlfhIvADnEW9EGusbZf2L66W5qVlW3b5KKisqpaqoSmy6TRwOh1RPrJbV96yWiy+9WNxFbqlvqJeGxgYpKiqSiooK+dx3Pic1dTWysXWjhBIhafe1F4JEY0EgI2XIuq51hfntGCzH0rFjYHo4NizRVFQu+upFUl1bLZquycTqiXLc9ONkKDokT7Y9KcvWLpNPhj+Rs+afJX986Y/S7muXPUf2yBlnzpFTZ50ip8+aKeedWSN7NvxZzRvTITWnHIPh8H41z/S+pYJGR4NyOqiCQZGDefgO5zMu/Wp+mjHygZSgyqb0rlPwHmhX18oY4/2869Sc2fuWOpfL5sE4raLV2ZSagyZGFSznMup82lDHxiA6l8kHkTrHo9aZhIiZ+38KV/5bLf87uP5XzfX/oeW/4mX9/9YypiKejWePET3TszonTTiJRY2LCgIQfZE+ErkED297mIayBmyajacueorLTrmMNVvXMLduLoOxQa564yoOhw9TZC8qiKANxYZo87Uxt24upa5SnDYnh0KHWNGygoHoAHtW7CGRTbC8ZTk94R76In2q/nrLamo8NRy67hDPXvIsIkI6G8X2yf3jtdK1S5WlgM2lRMcmzB1X8q48TYk07L4VzIQSc0gOQvsNqrZlwlxV85I1xn3/JsxTddWn3qVqXmfdAYteUbUsO65WwhOapq49Ya4ab/tydU1HXmDNygGi6qAtU22f96RSURxoU0rgJVNU/XPF8apG2uYANPC3qn6arurHw93w3tXKI/usm1S7omqlHO7wqGuiqWsMtCll8uIaVUtTPl2pkTtLwOZUVl2bbsdtN1m4UPmUaxp4PE4mTvQQjaa57rrrOO+8M5k9ezLf/e4kpk+voqzMxamnnsinPnU6F1ywkD177mH79vXYbBoOh8X+/U/wmc98ioULz+bee7/PsmW/we+PoesaO3b4qaoqJpezsCwhnc4Var3vumsxIkcLo20ilxNSqRxoEEwa/OLDP5LIpLDrdmLpOEUONxOKyylyuLnlM9/iopMXkTaz7PV34bDZuf2zV6Ch4TcC/PztXzPBU46I8OCTD7Ovez/fun45P7rlFtA0jp/YwP3vPc+AEeCjv2/m0KEenn7kSUbiISYWVxTqu//Yvo6cZZLKpQnEwui6DtiQ7CFVI53ry3tdu4C0+l1IQtVCBx9StdeSAXuVEjlzHAeTnoJsn/KtlgwU52uixtTCkzvzNlt5JXDseVVxUymJZztVnbVtQl6V3AGJjepe7BPJWoKmaVS43cQyGTb19VHmdgPgstuPUe226ToNFRXMr69nNJnki1/7Gh9v344tlcK0LILJJLMnTcIfjeaV2sc/HurLy6nxeLhh/Xo8TiclTicuu7JSM1IpFjU2MrWykkQ2y7b+/oJPdjybVTWnIjA8rOSzn3kGjj9eDTx7NuzYoWS4Kyvh8sth8eLxImZ7/rlZVaWKk2tqVG32DTfkdRBMdfztt8clvfv71Xm3WymMT5+uTKWnTVPj7NyZt0vywLXX4rBr3HGH5P2phXhc1UyfcYayy8rlYPt2JUQ+Jnbm90NpKdxzj7olu70gTs68eeD1qlrtQEDdYjB4rBB6OKzqtwcH1dh9ffDTn6r2y5apNqAUxC0BsenqnqNKDZ5oHOqPsuYCVVedzama31gib7mVFyo77FO12GP97TaoLFN9NQ0iMV544ff0Hz7Mffet5LaHH1DWXUcGlEja9Hqee/55vvW1y7F7h9UPIpuDnn4lkKbruCdOZPSjj8YtsVasIBMOkwqHMVMp3OXlCJAcGaG4tpa5P/0pNpeLbDRKoKMD3W6ntKGBM2+7DZvLhbuyklQwCIDmdHLGbbcx9fOfJ+bzkU0k8EyZwll33IFlmhhHjtD+wAMkR0bQgMTwMJUnnYSIMGvFCuqXLlUK4SN+9b1rulL2/lyTqqEGZX1ld0A6pf63//QUPP5TpQiOQGBEScJ/83qoqVP11SXl+b9RUQrqApRPgOZfQ2hYWXd9/RqlOm7mlJiZy63UxWMRVQ9fVQ0nzMLasgH9vAvBCGO2NCOhUfXI1zT0uka0WXOUxVcui8SiSCSMPv9cKC2DbBaJRpBMWv283EXYrvoRh2ecQlVlJfc//Avmfv4Szr3033h3XQuSTqJNmgwVEwrWiULeT93pUpZf616FTBrb0ouReAxN01i0aBHxeJxFixYxa9YsXC4Xixcvxul0Mnv2bPr6+ujq6qKsrIwHHniAcDjM+vXrAeVHHYlEePrpp7nxxhvZsWMHP/vZzygvL2ffvn1s27aNuro6dF0veFiLCJWVlXg8HkpKSigtLWXx4sXMmjWLxYsX43A4cDgceSVxF5s3ryqIkImY9PVtIRodQNN0EokAicQoF174KNdcs58LL3yUw4ffZ+vWhwCw2ZzMn38TicQI7757K2VldYgIb711PblcEperlNLSyUyaNJv162/AsnLHCKeBhWXlOO+8+wAwzSzFxRMpLa2lpKSWN964ihxyjBiZiVLxHlPtjqDst/YDjwJxVM21oOqvt6KUvgGG8v1Wqk+UY9S/LVSNdTXKjqsPmIyy3upF1WVX5dtFgAc3baKzt5dZs2cxZ8kcOkc6ufHOG3n+T89TOaMS3a7z6jdepfWRVr74jS8ST8bJHJdhy+otSE7IpXIFEV3LtLjoyYtoWNTAxp9vJBPNYOUsnCVO2h5ro3RKKWIJ665ZR+RIhIt/eTGuUhfokBxNMv/m+XxlyVfwHfbh9Xmpm1LHzKkzefKxJ/nuld9l44aNvNPxDgt+sYDWj1s5/9Lzabq6iT899aeC6JggTK+czmemfgaPw0M6l2Zz32ZimRh1pXWMxEeYVzePUmcptSW1JLNJTMtkJDHC7EmzERGyVpbm3zez6aNN9If62X94P29vfxuX3cW3Zn+Lpz7/FA1lDbz3/nt84d+/wFB8CHEKr739Eh+1b6Lj6Tm8d6vB7OPzmu+aHWKH1Lw01qPEynbdABV5N4KET33up0chlwIzrgTMdl4D8T41RmiXEjgb3giJw6quOtGvNITMlJq/ahqqYl9T8+HK09TYFbOUblDOUJ8lkcOqraYplxubY9xiS7NBzK/m27qjMA8YE0FTc9aevKXXv5Z/tvwLrv8PLf8VL+v/N5ajFcW9bd7/APxOuxOnzVkQgJhXPw9vxMuP5v+I2tJaRISclcNpc/LERU/wtVlfK3gB9kf6SeaSjCZGmVQyiYbyBmZPms2t79xKibMEu27HF/WxpHFJQexsMDbIw0sfprq4mkWNi1h22jLWLF1DIpvAptmw8v+sFcWTyIz59M26U1lxlc7Mg/CdUHvBuEhENqbEHMbAWZNxoYcxMJ91JzjKxoHa5oK5T0NRA4xsA89xUL3oH4QnGL/W2Hj7Vimw3v8wYI7bFpipvEd2DqJ9Cozfv0aJi2k6ZKLg2wpmFtIh8ExRKuXZhHpgjYmRta2CiulKLCJjABp4JoGjeNw+YcoCtS85ZYlgZdXPJXJYeW7XLYQla3DaNXQNBgdjHDwY5MiRCMuXtzA6muQHP/gWb775LvX1jZSUuNSbtvzT4MUX/8Tbb2/hkUde5fLLv4ZpCna7zo9+9EN6ew+ydesOzjrr0wSDf2HKlBKKihycc049qVSOYDCJrmsUFTk47rgKnn32EhoayrHZNO66S8H2nXcuxm5XvqaWCL9t+zunTp5BIB7mvnd+g9vhZjQRYfUHv2cwGgDgvnd+g4gwwVPB/e89T394GIDX9n3I+s5tPNf2d2y6TjKb5v73nufr3/g6bVta8Q74SGRSrO/cxvLbr2Pd62/w/F/+SPMn7zOzeipeY5hfbX2FOVNO5MZzl7FvsIeMmSOQCFPi8qCRQxtdBdGXIesFMwCBu5U1F07lW+2YAbXPKoVv7HnLrrzt1tA14LsERleqtqBEzPRi5VddfA5oRWCbpP4OrCgk2/IvXaIwuhqiL8Lwjfn/aIHihcpHWywcGmiaRjCZpNjh4OSSEta1t3M4HGYoFmPvhg3UVFdTW13NaDDI4MAANl1nksfDe+vWUVVVxeSaGmy6TrnbTbnbzYKGBpLZLDetX088m0UDnDYbJ1RVsfr88xlOJFje0sLhUAhThGKnE0uUXUuxw8HixkYebW3l5X37uH/zZnXbQ0MKni1LQYhlKSguL1fKX7t3KwrVdXXuySdhdFSJkRUXK1Ae86datUp5WiUSSiWspEQB+p13qrG9XnW+rw+2bFFKyiUlqm06rQTQfvhDdZ1Vq8iZGh6PxrPPQnGxpvSnDitGnTRJ3dKZZ6pvARQUP/KI+tePxWDPHjXU1KlK5MzhgHPPVX2rq5UAd02NYvunnlLfyth7hNWrVZsxh7FVq9S406cr8A4E1PW1VEYpfTsdqoErr+x9fKOCZ9NSbwF0TR0v9ahjXXkl8ePqoKZK2W7puvpba6hVYJjNKYA2LYjE+fZXv8YHGzYwOjCoxukfJJZM8PIrr/Ddr10Oo2H1exgTU0tn0IGShgaqzzoLT3098372MyUo5vHgqa3FXlzMSEcHiYEBokeOIKaJ5nDgrqoiNTpKxQknYPT2sv2ee0iHQkSPHCHu92N3uwtK4mY6zc6VK6k84QRSgQA777sPMU1K6+tJj44yad48imtrQdOoPuMMbEVFWJkMJfX1OJ0ONIdTCZI5nOr+KybAxFpwFalJoqblFboVXPLVFXDOeXDx5epnVlUFxWVghNTL1NIKdTw0qp7T2bQSQ1v/CuxphbCyxMRmh5IyONKtLLGyGdW3qkb9n2u6ssZaegmazTEuVrZ1A5rNjmazIQ4Htkub0HQbWnkllJahlZVjbfsQYlEQS6l7jz0lLAutpBQTjSN9fZx8ysnsaG3l0Qcf4PIrvsPQ4UPqDzWTRmJRjvar1UrKkKih7LeiBuabr6KVVYAIDoeDuro6SktLueSSS3A4HJSVlVFUVEQymWTy5MlkMhl8Ph+maTJp0iTuvvturrzySj796U9z6NAh+vr6OHjwILW1tTQ2NvL6668XYDmVSuH1etmzZ0/+pbBGJpOhv7+/cH8ej4eLL76YsrIyBUHZLNFoFE1zsGjRnVx+eQsXXfQUppmhuLgGw/AiYlFSMomSklpsNgfBYA+JRIDTT/8Gn//8U4CGrjuorJxRUAnftGklmgbnn/8gxcU1iAgORzEuVymf//xTJJOhowTS7kLEIpkcRdN0XK4ybDYHpplF1+1s2fIA+/a9jJVJFNS77wACwJ35/dtQ4mRHUBA8AnSggDmO8rQeg+UjKAGzMRVwO+Oq4HeiFMbnAQ8zDvJhxmE872mBDkwCnv/BD2gZGODjAwfZu3UvJ1afyNO/fJorvnYFob4Q3d3dfPmlL3PRkxfR1trGyMgIZ198Nuc/eD7ZVBa72469yE42kSUxnCCXzBEfilM3t46oP8pb17+FWMJ5K89Tdlo2jfk/mo/D4+CaG65h+snT8fl8LP/5cpZ8dQn18+vRNA0zq4Dd6XESG4ix5a9bqKis4MpbruTl617mC0u/gNfnpdRVylVvXIWFxW3X3Ma8s+bxgxU/4MLJF+JxerjlnVuYPWk2RY4iaktrmVs3lzZfG73hXpy6k6yVxabbmF8/H4/Tg8/wMZoYpSfcw083/JTR5CiWWHicHiyx6Brt4pp11xDNRElkE5iWyYKGBdy/+X6MTBzRHDD31/DvXmX52n69EiNzlCkrrpLjYfp3YN5vlHUWwL77lKNN0SQVFGq/AZIDKriz/0HQXVC9WHlkT5wPxY3KasvmUb9Rz7T8HCKj5h65KAT3qPY1i/PXkbyauAvKZ+ThWleONTH/uMWWpkMyqLbFVPNXTcuLmFkQ86nz5liQ4V+Q/Y+LJiL/+1b/P7bU19eL1/svj7X/yjKmDL5p5SYW/2QxVTOqsHIWdpe9APzxdByxMjiw0GwuuoK9TC2tocTuImVZbPNvZ8Hks8giFOl2NM3OQHyI2uKJ+OMBqoqqcOsaKTOLTXfg0HUQi03e7cytm4dL10ll46QFSpwl2CSHhYau6ViaTkosdMvEJjkCqTDV7kp0u5uslaNYV1YvOTNFNhPHVlRNDjuapiNWDmdwG0yYS9YSHKNtUDWHjK0UTdPAyiFoOG02QMhaFg5Nw6EDkU71wDrzF2TRyWYT2IomY5oZbJkQpltNfEQs7JqOaaZxjG7D4WkgWzKDjGmi6TZcksaWGoGSyaj30Pk3hmOTFSubhyoT0nEY6YApZ4MpCsJ0jopK5yjAmYWCMEcJpGOw8Q5YfB+4ygBLTdCiA+qNZP0C9TDMJiHqg9LJKtqdSWIk7GxpH2XBogaSqSwDvhh19aW4iuzYNI1TZs7kT395mRNPOhWHy8bpJ57Ii3/+C6efNQe7ppG1hJHBOKlYjgkTirn11nd48pcXsWfvbr617HI+PtCJlRXatvtYsKhBzTGzJjZdx2ZTIZGsqX6GFoKOpta6hpmzcNp1nGYOWzZHEosRI0BtZS3haJiomaLU5qLIU8o7na1cesI5tA/3cOv6X7L6wqu5/Pwv8cKLL/BubD/fO+VC9FQWR6WHZCrBhvc38pM77+Zw5wE00+LmB+7hwzff552/v4anohS7KeguF8FoCCOnrlNZMZFEJolHs2MDhjJxaivLyKZTZNIpbK5astkUNi2LrsWxtCmYZgKHw4YlLnI5wemwsGGQNV2YUozDnsZMj2JzTcA0ndhsacx0CJurCtO049T8OF0OMAdg9BEylY+StSoxLQ1d19Aw0WUQUybidOYwsxEy1hTsduH6677Dm2+9x9DQIJVVVZSXlfH2W+v56uVfI5FMYtd1JlZXc8tP72bRvLkMe3189fKvETAMHDYbU2pruee++/jUnDModjoQyVuyqH85MpaJXdPJikUokaSquAinbmPDkSP0hIJ8/vjjqS0pQUMjJxbRTIZUNovb4aDU6WQkHmdCcTFuTcPKZLA0TU36bTYwTfRt2+DUU7FKS0HX0bJZJKcir5rNhlgWus0G2SyWaaKFw8ikSZD/79JE0IaHkYoKdLcbm2FgJhJYlZVobjcSi6E5HEgmg+ZyIbkc4nKh6Tp6dzfU1GA5nYjbra5jCh9ucXDSqQ6ctizpWA53qR2H20E6kSUTz+H02BHdgWWBQ8+SiuaorLaTSkPSyLe3g8eVxUJHxyKZsWHXLexOHclZ5ETHypkUFetkcho2TdCxGArYmFQt6JqFpdlIxi3sLh233UQTwcqZiMupANpSjxotb4Uilgk5Cxz5l7iaBqagBcNIVZl66QDqF2sJM048ibXNzcyZczrhSIRENMqUhgYA/v63v3PdDTfSe7AbPT/+c79/nt//9nds/PBDhPwLEhGlJK3bkUxGRddNE8nlsDkcWGjkkgnMeAK9qAgxTaxsFnd5GWkjSlFVJeg6omloIpipNJaZw+52g24jPTqKs6qSWH8/Dk8JRRMngAiapmNZJlH/ACW1k9Sz3mZDy49jiZAaDeKeUKXE+i0Lm82GqVmYCCKmaouuntJWDj1nYelgiyfAVYSpmeB0o2s2LDODjg0rl0a3O7G0sUe8BljYcoI9ElYR7nwkPJdNYpaVoVsaFmZe8l3Dlkph/+sL5L70LUyXo2BlY0umsLlLkHiMdFk5GZt6PgPYRMiJYBfB1DQsM4dD08lZFo6P2rH39aIv/izmL1dju/keps+axV9ffJFZZ5zBQCzGjCl1hJNJBEG32Tl37lx+et/P+eznLsKWy2JawqwTT+Qva1/h1DlzMHUbDhFMEWwxAzOTxhE1oHE6Vk4wE2mcToeaU4ug2TVmnjyTl198mdNnn07fkT5OPv1kamtrGR4epqqyiogR4c9//DNLly7Frtt57InHWHn/Sp549Am+1vQ1NLvGqgdX8Ztf/4bAaIDSklJcbhfvv/M+jXWNoIOZM7HpNhLpBOlcmrKyMhwOB6Ojo2zdupVFixZRWVlCMhPFBJwODzpCNpvABIqcpZhYZDJxnDYXGTOD2+khlYnjsruIG140exGu4gloaGi6jpVLg25H1235vxdBA8z8vMCORjIZxFU0gYyVQUND1+2YYpKOByjyTETQ1N+hmQKbiyKbAx0LS9OxS/5/W7ejWznQdOJo9Gk65WIySbMxmF9rYrJBd+IDvm6msGsapmZnULMxxcqgiUVOdxCwF3HAzLDEyhDWnXQAS6wsNjGJazauueZ63lj3FuHBQaomTKCstIRPDnyMXSw0MUF38ZnPXsD111/HFy79AiO9w3xx2ZcxYlFsuo1idxE/+fFPWPipBZTWlnBkUz+l9WWUTSkjl8pgpnMUTSjG5tSxskIiECdppJg4cyK6Pmb6BVbOQrfpoKltyxQs08JZrP62xpThjzv+eF55uZkqo4pA0TDzFi3g+eee5Ztfv4zde/fxuc9/ge3bPyTlzuCOOSipreKWt++gbLOHgwcO8ve/r0UX9bNN5jI4NI2NvjaqiidxfEUj7vxnnEPTGUmFqHZXkhIL0R1c9cZVvNb5Gn9veoXPNCwglEngdpVy5etXsqRxCZed9O8U6Tq6rYhwNk4gEeDkymlgOshaOmYuh81mQ7cMsnjyL1zU961pYOZyuCNbcJZMgsBmMu4TSFUswSZJHL6/4DTayMxaQ0aKsNl1LFO9A7XZdJW4ZQl2u4bDJjiT3WRiQ2QqFqufr2XhdmQgHSSjT8CWG8V01GCz27HZdBw29XepXizmAzeF1y6oTE+HZ3xf5CjrrbG2mgJvh0tF2f8HWXNpmuYTkfr/7Pz/nJ/E/7Alk8kRi6WxYDyCPnMijiLHf/DMtmuCM3IY10ArjlyKmZUNlMQH0d5Zjjvax2fq5uIebKMk5sf+7lXYslHqzAT2d1fQ4PLgiXuxv3sVJXE/bk3DHj6I/d2r+HT5ZIptDuzGYUo23ECVBk7jMPZ3r8IZ6cGeieLIRCnVbHjMFEW6g3ozifv9a3BEDlGs2cgKZLATo5iAFNMXCbPL10k6l2E0GaXXcSLhrMV97/+R1MRFxChil68TX3iEWDbHyvd+R9K0SJqCKRpp0UhYNtL2ShIn/piUvZI4HgJWMYlcjpRomEW15ARi6SS7fV0kclkCqSRHnKeS8BzP4fAw977zHJlcAl1PgqdKRRkHb8hHLcmn9HbB8A8gd0hFPN2lUDsFRq4BbQAcQHZP/rdgAjaVPjy0Aqwj6pxlgKsYzn9UrXM9MLRc9a+aBnWzVXQ026VSGkttMPoj1c9ZhKvMzfzF9fQaYa5/fz32Gh2H20YimyWayZA2TSyEnM3ixvVvoWnwvSu/y9wzz+SqFSvwDg5QMtHJcTMrKJ3g5JFfXggOeOjRX+CeNYuDoSB2l845i+rRNEjlcgTTSfQxsLYsspaJiaWgTRNafV6MdBrNpuHI5bB1H0TbvJmi3j6m7u3C2XOISbv2MiOYZNKujyjNmHzp5MU427ZzTmkdJ++GyxZfjNfr5bJ//zJ/uvYhZH8XX16wgKULP8O/f/5LvPj0b2iZNQt7zyEGX3uNxx94lGjEYOnFF7NgwWIWX3Ahtp5D1LTvZcZogkk33IKj+yDluhPHwR70q6+hNquRSTg4cHACH26tp6vbxpXLS+g+VEnarCMc0YknSjAtNz09OsuX2+g+aCeRqeJAVwlXXqnT1e0mmaun+6Cb733fRld3EUPBOrI5NznTQYZGjGQtyewk4qWPMxqp4mCPjSuv1Onp0chk7YRjdaC7SWU8pM0pDA5qRCI6jzz6O958s591b2QY7vdycN8+ptdOZsfvX+Lj1u10fLCJ9/72GhcuXIAnZzE9Azs++JBDH+9j/969fPD225x71qcosdnQBWzpDHr3EfRUBls2hztr4jjYR1HWpK60BDcaNiPGebWTuXLOGdQXe7BZgq2nH6fABJebektjgsuNM5Oj3tJwZ02ssIGpaZiZDKlgkFhfH2333IMxdSq5khJ23HcfMa8Xy+HAGBqi7Wc/I+rzMdLRQTqRwNR1krEYmdJSsvE4Ua+X7XffTTaRIJrL0bZqFYbXS7asDCOXY/ijj4j29dH24INEh4dJpdNEh4fJWhYju3ZhZjJYM2eSdjiIBgKM7t6FbXQQeyLMeYszTJmYYmJ5lvraLFWeNB5nmoqkl/r3HqE6109NRYpJlSkmZPqpf+8RisWgKuOlPrGXCaUZypL92A99hDPkx/7io5TEfRS5BbtkcabCFBk+Sl55FNtQP267iVM3sZspplRnsZND79mHLR2jtNjEbcuhHfwYK5fBcjvJpA18H71DJm2QSydIJ8JYCKJpiMNGJhFR5xMRRIe0R8e37z21L8KKFSuYOmMGXq+Xz19yCSeefAqBQS9fuqyJOXPO5IwzzuAXa1byyp9fwJIcliaIDX77/O/4zve/i6UJlliIZZGOh4mHB7AkhzhsJCMD6iVpPIr11t/RNXAVFeFOxXDlMrgrK/FUV2NzuSiuqkS8RyCbRctkIBhAe/d1HNk0WiqJFgnibP0APRqhbNpxFE+oUpO70ChmSzOaEaZsUg26w4G88wZaNqPOrXsVDSgqL0MLjWK9sRY9amBqQjJjEAr10NKynFDoEKaVIxQ6yOtvrCCY8JLDxCwrYzTl4413byKTjWNKjj5fK6NGL0cGt5MyE4QivRzp20wocpgj/VvI2EzS1dWkm64gW+QmXexiVEK83rKcYLSXWHKU0dGDWFYW0+0idfn3SepZ3nzrBjKZGCIWZlERGc0kVTWBbruD5bpOl6aR0zQy+ZcHOZuNQzYbm5wuuux2vu9y0XXWfJJfvJzkxBoSP32IlMeDaDpxTwnJYg+hSbXM/+xnefOddxCni8N9ffQeOcLE02djaRqm3YHpcqlPIN2G2OyMaBoHNY3v22x0l1WwubqW0HEnYJgw2hVkYJufTDTDaNcoLVe2ED4YBgs2/mwjkUMRGusbOe/T5/HUo08x1DlEy+9bcOFi1oxZ2LHz+BOP86cX/8QTS5/gc2d/jr5NfYQPhrn+muvZv3M/vr0++nv66d7bzZSKKXi3esnFchiHDN5Y/ga5oRzlnnLsph1MKCsq4/wl5+PQHZjo6A4PGcDIRDGyCcTuRrO5MBEOh3ppHdjFIaOf1oF2DoYOcfX66zlk9FNc3shANs7yN66iO9RDzjI5Ehtg+RtX0TXaTc7KYVom0UyMgdgARiaGiUbGzBI3k2z1thLNxslaWYbjw5jOYg5HjrCpbxMpM43oTqLJII5sBHsuisPMoBvdaNuvRI92o41sQjM6KbGynBztpq7te9ii3dSbCey5OPbhD/lsepRvGQdwbL8SLdqDTSzq0qPoRifazquxZ8JMyhh8Oj2KbcdVVBkH+IyVxm5l0FIDlGQj/O6pRxk5tI9sMsLQkX0c3PUWjkwY3TiAFmhD02xseP9dvnjRZ9AlQ+30SWzZvIGPP+qgY9c2Wt9+gc9f+hnK6zzYrBjHfaaRisYyHMU2iquclE0U7C4dHcHm1CmbUkrNSdXokkHLGGhmGi3Sg03LoGmCZqawxQ9jt+dwFdvRxESzUthivWioyLXNrnHcp+uZXqOh6zrfvOgsbO+u4KxpJRw3ZQKH2jdyctlkplcXMUGDZz7/C2773hfZvHkzDuMQ9nevwp5NUJIYwP3+NSwpqeakyqmUi4nbylIiJu4NN1CfS+BOhym3u6mw2fnzpc8SuXmQpeUNON69iompACWajRcvfZYfzP4GEx3FlGaiFGtQ7fRwetV0xHSQNm30HIpw9bVvY8RypKwyhobTHOwJceXyNzh4MEQkkuHK5W9yIHw6McdJxKd8nwPh07nyyhYOHEySmPwtjJN/yWjMxZZtA6QzkMmpMiFLIJnKMTwcJ5nMkTU1YvYTGLXPJWKk6ewa5crlb3DgYIqUbTIfbh7koL8YdDuJRE69SBnLBMvmiT1jQio3nu3kKIOUCV19KhiUzkEkps519am2kTiYTpW1898wUPt/cvkXXP//4XLNNdcyY8YMSkvdfPhhGxYcA9TPP/88mqbxt7/9DQCHWOzZtoFzLruNM087gdmnncGaXzwKUxai2V1omg2KatDGvJszBlrbSuh8GS0TKWyz/X715jOf4qy1rUSzsirV+R/b7litxkmH0cykeoOWGBwfd8dqNDGxNAcJ0+LjwR5KXSUMxkapLCrl/veeJ5lNMxgdJZ5O8I2zPk/OMvlk6BAzqxupLC7D43Qxe8oJDBrKH7k/PEQikyKeSZJ21ZD2HEdfeIRV7z1PKptBEOy6nXgmxQPvKR/VsTTkZDaNy+HAFIvftP6N9Z3bcOqgmX7lYYwFk1aruhoE9CLljxx7TaX22mtUm7EU49GV6pdVNE/5GueGQdLqePRl1a7oU6CXgpWv69V0GL3/qP5ZVYNb8yBoJSo1fHQ1FM1VY2e7yVoqYr9q82Ze3rcPr2GQyuWIpFVtnstmo2NoiIFolGvnzqXlnXd45G9/4+3NmymtqODqK68svKPsCYW49u03WfPgg7Tu3Ut3PjLSEw6zvKWFnlCI7T4f8WyWnKUimUPxODkRkrkcm/v6SJsmc+vqANja3489l0PzemHuXLTiYrX2emHSJLSiIrXf1oZ26BCcfTba0BDP3nYb3t/+llxrK0MvvMDB9namPf8824NBPjrzTDo+/JB3p05lzjvvoK1aRf2SJciePfTMncued95hzzvv0Pbmm2grV0J1NVo+J1dbuRLNslT+7i9/iVZURNa08eSTGgsWwJo1GgsXqkxlh0OjuHgsIKjhcsGSJeDzaWiaxurV8Npr4PVqOJ2wcqWWT/vVmDgRDh7UuPZaiEY14nGdcKyOeKoK0I9JEQYoKtKIRsHv10gmNXp7xz7HNKqrNRYvVDX12GwqRbihFs07BKXF0D+oyjaP8kPWNJU2qMo5NfXBqnGsZ7LdVuij5T2UNZsOZR60dEb9nEwTDYG6GrRMFu1gH5QU5TPNdCj1qOiPp5hcIkEmHKZo4kR0l4vqM85g/29/i+RyTDjtNPY9+yyY5jGex+UzZpAcHmb7vfdiJpNoNhu5RIJP8l7H2Xicfc8+W2gvlsW+Z58t+CSPHXeUlJAYGEDTNNwTJjC6dy9mOo3d7ebA889TNXOmSrV1utByWbRcTj2PXnoaPTSMTbNwvvNn2LERbf0raKaJZplooRHY04qWTKr+x89CQ9DeekWl/a57SfVZ95KCyD8+DkXFaj/vs6yJpWpx00m0bFqlHNdPRxOBPzyONuyHuuMQdzFoGppup7hyCoGeHdgcLrLJmPojyafl6TY7E6d/SqUPAyMH24gMdDJysA0xszzx6Go+ad9EKhHF19/L/n0fMWPmKWx8/012tm6k5fcP8quffpMpngS6zQ66TiYe4S9P3cU3l11ONhVlcP+HKmuouAx3WTWDn6h9T3ktpFWase28iyCXw3zr72ieEiQaQbNMJJNCQkHMdX9FKy1Dc7rQ7HZVQ9xzADEi+fZRtMbpYLOjiYX55t/QLAuJRdHnn4sYEUin0ESwXXipyjKKqutqmqa8mrdu4IaHH2X6p87G4fawd+/HbN26hoaGhcydezGzZ5/N/Pnnce21L/PAAysADdPK8fjj13LnnRuZP/88liw5n1ColMrK6TQ2LsLp9BCLDTJp0mwqK49j6tQlgE4mEyNmqWi1iMWmTSsLqcXFxRNwuUrI5VKMjnbR0nIl8fgQc+deSzTqp6VlOeHwIbJAAg2fpvEwMBVIAtdoGocBS9NwAXOBVZqmUnw1DSsP4JdfdRXHNTTi83pZ+rnPcfoJJ1AC/Pjpp1n50EMsOO00Lv/3f+eRZ55hVl0dNuA7V13FjPp6fF4vX/zc55h9/PEUA/358Z/SNJYAJZpGadYk2R+hbm7++b16Kw+8/ACnnHMKvgEf975zL3MWzSE2EOPnN/ycR594lHO/cC7fu+V73PHNO6irr8Pn93H7Xbcz3DfM7X+7nXM+fQ5fvfWrbFq5iWJXMTaHjeDBIJEjEbytXqIDUWpOqyEdSbN19VY6X+vEXmRHt3QlHJQTbNgYaR/BJjYimQjdwW5uWH8DI4kRihxFeA0v27zbSJvpQkqw1/BS46kpaM2s3LQSCwr7q7euBuCRbY+wsGEhHqcHXdex63bsup2eYA8D0QFMLJzFE8iaWRY1LkLTNH745g9JZpOUOEuoLq5m9qTZ3Lj+Ro5EjlBXMhEtn/KrJY5AagD6Xkbbtwpc1ZAaBt2G5q6GmiVoCR8kB9B23QCVs9HsbrR9Kwula5pk0bKRgjaMlvSjb79SXWPCXLT9q9WzREyIHgR7KVrsENrIZjXv0l3gmohmL4LUINQsyet9ZMFZhmZ3gaaeKyBoMS8kA2gxL5puA5sLLRPF7kTBM4DDg5aJgpVFi/SAmVafCTGvquuN+VQasqYfk5asxXz51OO8JoKzJD+jFbSoF83KMnFyI5/9zLms37gD6pbQe2AXh/2jnFznIREcIJy2Y3MU48bk5Sfu5IzZp6G1jc1bx+ef7vaH8dicaPEB2HADWtwPtXPVHLe4Gi0TRTNz6CI4NR3NUQJ1S9DtLjQEeyaGbqbRNUDT0XIJnLkEWqiLnAm5nMXKlZuYO7cOvz/KVVe9QUWFu6A7c//9m4lEUrz88j5WrtxMv9cgkcyxcuVmXnutk8HBGGg6Q8MJ7Had+fMb6OuLcNVVbxCPZzl8OEQ4nKKy0k1bm49Dh8IkkjkikQzRaIbVq7fmx96EzxelutpDX1+EdNrE5dDRrXwZjK6rUiObDk47pDNKyyOdUT/6sTnBWBmQwzHeJv8ZTyaX/32OZyX8a+FfauH/XZd0OivRaErS/8Ti66233pE33tghxcXV8uKL6yUaTRX6fPzxATnnnHPknHPOkVdffVV1yCZk9umnyt+f/anIridl9OA2qa6eKPs+bB63igoeVGrU8aG8X15QeSsnQ0oBu6dFZPgjtT/m0Tzckfd+3j2uZj22PbQn7+ncr/qmwkoxe3iPyBvL5Ic/WC5TGxsFkJYP1sugESj4D9/y2qNS33S2APKHl16UWCohnUNH5JlX/yDzzpknp5w6S2qOq5PfvfInCcRCcstrj8rpa74qt7z2qBwKeOVQwCtGMiZGKn7MuTFv430DPfJi+zo5FPAecz6aiksslZADQ71yy2uPSjYbUmrQo0/m7ZoCSgk64xXxLstbM607SgXaUOrQRotI8qN/sGXardSmC3ZLeYXp5O5xS6ZsSHkmFyyawqpPdiQ/5l5lA5XaL5LaL+nw+oJF0u6BAaUYnUqJNxKR/SMj4o1EpL6xUf6wfr20dHZKIB6XoVisoPb81q5dYne7ZafPJ0YqJcvWrpV/++EPZfYZZ8jGAwekqblZRuJxaWpuLngst/b3S1NzsxiplOz0+WTZ2rXijUQknExKfzgsy9aulT0DAxJKJmWX369smvLK0NbRqs7hsFKRbmkR2b59XFX6iiuUtHIopOSYOzqUYvTOnapve7v6Olph2jDU9mOPKUnm/fvVeGOS0Edfd0zBOhgU8fsl/db7YhiW+P1qyDGHp+9+94fi8UwVQDZu3C3r1qlzkydPlbq6mTJz5mw56aTZ8pvfvFTwO162TN3aL37xWwHkyitfLdym1ztu+zx2O2Pfxti3N6YuHQqp29u1S/0IsumcWGMK0mOex2OWTXk158K5MdXpsXbpzLhH8j/YLh2zn83+86+x64z5MKdSSmE6lS6MmYnFJfDxx0rZOW/XFPj4Y4kPDkqkt1dSoZDEh4eVj/H+/bLl1lvVfl6B+qUzzlCWTZGIpCKRgtVTfHj4GMXoSG/vf7CDCnz0UcEDOW0Y4t24UeIDA5IYHpZUJCLxoSHJGhGxknGl4jxmqdTXo3yKn14pkogpj+SnV4qMjhzrk9zRqpSi+w+N+xjHDJFBb15tulWk/7BSnf7ehWr/aJunUEDk1w+qdSyqzvd2i0SCIu+9JhIeFTOdklw2JYnwkBxpf13ioUFJJwyJDB6SbDYt2XRCUtGgJCJD0rfrDckko5JJRiWbSUk2k1L7CUPSCUNS0aBkU3GJDPZIIjIsmYQhyehoftwBSUTUNRKRYcmm4pJNJ+RI++vy0bpHJZOKSyYVl2wqLumEIcZQj2qTTat1IqYUphNxpWodCUmubbNkm18QKxZTStQjQ5JtfkEy992qFKkTcXXcCIsZGBZzwJtXwPaJGQkV1LBzrRv/4bxX+T2P7RsRMQd8430TcTEjIdnw5jo50tUljY2N0tq6SSIRr/h8O6W6uljeffcvYhh+aW5uksHBPRKLDcvAQK9UVpbL9u0fimH45K9//bU0NJTJwECHxGJDEosN5y2bQsfYNg0O7pFEIiQ+307p7GwpqFb7/e0SjQ5KMhmSkZH9snbtMmltfUxGRvZLMhk6Rrk6bOZkSJQS9LAoj2O/iPSK8ioes2waU35uEpG9IuKVceumrnz/x0TkClGq0WMK0Xvz50dE5KAoFeoWURZOY0rTHaKsnYbz+2Mq1X4RSSUyMtAxIJ0tnZKMJI/xPjb8hjQ3NYt/l198O31i+A1JhBLia/cVvI5ThrIA7VrXJf5d/oJrSde6LhnsGB/D2+aVzpZO6W/tl+am5sJYA3sGCj7KY5ZOEW9EDL8h4f6w+Hp8sn9kvzQ1Nwn3UHAeaelsKahDj7mi/KO7ScdAhxgpQ/yGv+B7/I92oWPK0svWLpP+cH/BDcVv+OXAyAEJJoISTARlp2+nrOtad4xl007fTtk/sl+sdFi5jxx4TKlFp8MivnXK9SQ5pFSjx2yURvco1efwfnUs0J63aNozbrMU6Rrv84/+xmPWT2NWToE2NZ63RW1valLn4n41TnCPSDapXFAy8bwy9AG1HvNBzmXyCtIxtT16IK82HS1YNxWsnRKjIt6t417KY4rUY+0To0ddI5pXpM4W2iy/8vtH2UZNlBnHNYpk4tKzd5t8eskCOXXWyXL6abPklTsWiwztlp5Pdsuc02fJaSdOk1NPOVm+cMnn5fDHbWqu+XqTmmuObQ+2q/loT4vIQ6hjgU/G57BHu7AM7szv7xmf1yaCR81z96r7T4VEgl0Fa9Ph4ZiEw0k5cGBEnnyyTbq7AzIyEpeWlk7Zu3dQIpGktLR0yq5dfnnssVZpaemUjo7BgmVqS0un7N6tHFbGjsM9cuDASMFetbs7IOGwcngJBOISDCYkHE4W+rW3++XJJ9ukpaVTQqGkBIMJyaYy45/bYxaNY19jrhJjn/ljc4Ax94mxecE/zhdy//MUw/mXFdd/7+WfQXQ6nZWOjsHCP90/AnYkksrbIJXL0qWrJRJR/Xfv9ktNzWny5z+vlyVLlii4zqVFhjtkzvRK+f1vfiWSDEpf5y6pmzJZBtr+OP7gSYXVw8jwjttKJYPj1lFDe9QD5vBb4x7N6agC72CXSGJYJNgtsutJ9RBLR1WbQ+tEBnepB9pQRwG0P/z7b6Xr4AFpaGyU373xkkQSUYmm4hJPJ+X9HZtlyknTZM5ZZ8izf/itGKm4fHiwXWomT5LLfvYD2TfQIw/99VkpnVghw6GAdA0dkY09uyQYj0gkEZXhaFA29uyS4WhQOvOg/NHAQdnYs0v2+rsLED6SP//jlidkJBoswHUkGZPReESiiZBYyb15m6YRBdIZrwLpxE5l25SLHgW/e8bXY3ZMR3shj4F3LpiH5M5xf2NjnUh2UCTTr87lwiLZIZGMT61zQWUJNQbxGZ9EUzFZ19UlPsMQf/7LSKWkPW+rNByLSWNjo/zt/fclmkqJLxCQXr9fDoyMiN8w5Pu33y40NkpTc7ME4nG5e9UqOem00+Qrv/99Ycx4Oi17BgeVx/LgoLJkyls5LVu7Vnb6fLInD/btPp/s9Plk/8iIGKmUXPHqqxIcGlIk2dam6PHJJ5VvUSSiLJl27FAeSIYxbhjs96tzIyMiw8PywxUrZGpDgwCye+NGZUTs98tUj0dmTp8us089VWYfd5y89OCDMka6S+fNk9OmTZPZp54qi+bPl13vv68odt06dS9NTSI7d0p610cSDluybp269BjkvvLKh7JtW7/U1EyV997bLaOj6rZraqbKhAm7ZWhI3V5X17jzUyQi8tprh6W6er6cddY58vzzrx7zTiAaVe2i0fF3AcuWqW972TJ17eFhdYtjPsjBoIJrSaUV1CZT6gPwHyF4zKZpDLLH/I0zeTDeuFPt/zN4Ptreaez40SA/9iE8djyezFtGZUQ+6ZFMNHqMPdNIR4dsufVWScdikgwGxbdxYwGuk6OjkgqF/gM0J4NBScdiBeBOh8OSikQkMTIi6WhUjCNHZO255ypbJ8OQVCQiyWBQeSIbhmTi8YJ3cmDfvmP8kuNHDisLpn/0JfYfUZZLyYT6ikUVOB/dJhZV5yIhBcVPr1T2S6HAOICnkuPnjnQrq6dE3rbp1w8qiB+D+sOdCszHbJt+/aDkEgqWj7S/LntbHpIj7a8XADoRGc7D8JBEBg9JPDRwFDwPSTphHAPLY+3jIb9EBnskGQ3IyKF2iYcGJRkdlchgj8SD6lw2nSxAeGSwRzLJqMRDg+r6iagkwoOFa6eMoLJ1CgyPeyXHomImE2IO+sVMp/IWUwkFv4FhseIx5d3s6xczEhIrmVTgfc9NCpKHB9X22hfFSin/51znPsncd6sC9kR8HNTz4J5r3ajaJ+JiDvjU+ANemVo3RdraNhesmMrLkdWrl4ph+KW/vzVvrzQsW7ZskOOPnyHJZFhGRg5IZ2eLlJQUy3vvvSqDgx15EO8oQLnPt1NaWx+T5uYmicdHpLm5Se67zy2dnS0Sj4+IYfgkkQgVbJrG4L65uUkMw1+A8MHBjyRmWRKWcU/ifhm3afL/f9j78zArqnvfH39V7XnomW56ZlRERBBl7AaNigSHRKOSGE6Sk8QZk6CIRvBEkwgoBCWJxjExk4lBzaAM4hSUppFmEEHEZqbnec/zrlq/Pz57gOSe7/09v+997j33d1LPs9l7V61aVXv3pmq91+c9KKU6lVKfKQHXfUqpHiVRTp8pAdOblDoj5un0fOOPlQDrfZnn04H2ocw+qHz8U5+SLOagysdBRQNx1bqhVXXs7FCvLXxNBbuCKjYUU/FgXIV7wyrmk9eBjoDqP9Svgl1BdeTNIxLJdKhfxYNxFfVFVbAzqAIdAdX3aZ8KdgVVPBBXod6Qem3ha7no0nB/WIX7wqrnkx4VD8dVz37JUY75YmdEnPZ92pfrJxQQoJvNKu4KdqlgPKj6I/1qwSsL1M6OnTngvaF1Qw78ftT9kTo8cFj1hnrPAMSdwU7VFezK7dsb6lUbWjeok76TqiPQoRa+tlB1BbvUR90fSeRTzz51eOCw+rj7YzUUHToD5PeF+9SCVxaoVCKozEhXHignhk6LC/1YqWhvHvwGDis1tF/ex/rl/SvFmbjQwXw8UzbfOJnJSu7YoFS8Px/tdDrgTvilr+y67Qulj1if7JeKSNRSFuRm45iMlIDiZESec9FMIRlDZtv+IyjPxjilEvks5XQqsz0ozx1N/wy0U/EzX2cfiZCMQYMdSg0ekvHn3idlDJoIKhXuFuA7+Jls8x2V6NO4Pz82HfhUqT0/lX2i/RKfGvPlx6yhLtn/jQX58W/Md+b7aL9SbyxQ35ltUSPqamTs8f5flYr0q1Awro4d61Pf+tatavToMerss8er665bkIsi3bXrlLrllttVQUGVGjv2HLVgwVfUF7/4dVWfKSY1Ne1UCxe+pnbu7FDXX/8HBVNVQUGlOvfcCeqaa25QwWBcffDBp2r06HPUeedNVBMnnq9GjhytLBaLOn68Q/X2hlQoJJGoPl9UvfnmkdNiULtVMp5U5j/GNH56LH9/z0QvZiMaVTyhVCyRf58dZ3x67LQoyH+B6398/IsW/l94SSbTfPbZIN/+9ht89tkgyWQ6s95gxYptOdpHIhOBkF1sNp1lyxpxu+3cfPMU7HadZNLgG9+4n76+Uv7ylyCmmdFHGEnYuYIXH7mZ/3j4R9TX1XL2pJms/MH9VE66GsYtgOnLhXKcDIjTYKRb3LDfuR0ydBpaVoqxwVBr3iHbf0wcs+M+6G4BZxF0fiBuhmjilF04EtzDxRm7ZQX85WqIdDPzvEoocJEyUowdVk/CSLHynV9xaqibH933H/z+hV+DVSdtGPiiAapsJQz2D9DqGuLXu97gS3OupKq8knfeepua4gqGe0tZ9e6L9IQGiacSLHn9cZ54/yVqi4fz/cu+iS8apNJbhj8W4uYZ11Ho9KKA2uLhLL/82yigP+wjmoqLa6puIa0McYhOnRLds61SvtOe24UePvwJiVvqXQzOSWCpANdM0CQqCaWgbDkULJBnzSlxS+gQ3yvxS84poBeCc7JQP/uWgCFO2WguQEG6XY6poqBSGafIXuy6zuTKStxWK+Fkkt5wmEgySXc4zAs/+hHjx4yhs7OTf7/xRs495xxuefll5l1xBZ9vaGD2tGl0ffIJv3zxRZ6aP5/+7m5+uGwZfr+f1+6/nwkTJ3LNZZcRTCSoLSjghWuuYWxxMY319YwpKcGqaayZO5f6oiJWNjXxemsrBQ4HI4qKsGgaCcPg2XnzKDYMePxxqKtDPfmkOEffeSccOSKuzsXFMGyY2DFHo2LP7HRKhFMmJ+mGK66g6aKLGFFXJ47Je/aI1XJJCX96/nn2/fnP7Nu5ky9/6UtCZXI6Wf/KK+zfv599v/8992ga/3777bJPQ4PkMM2ZA319pMaei9WqMXOmfOUeD9x9N4waNYcnnqjN+US1t8tpWyzwy1+KMfXOnRCJSPtYTKhiq1ffzO9+93NcLgc2m7hOz5kj7tCpFOzYIU7VRUVidH3ffWLovGaNMLJaWuCii+QraGmBU6fkq8kZ6Fkybts5bdQpiCWg0CN0rqNt0lHWUVopiWuaNlGcpBXSPrt/MCJtiryQTOX1WKFIniIG4l6dXW+a8qyAsfVoms6EW2+VeKZbbyURCHDh8uWYySSD+/fjzPx9Wx5+WKKUrNYc3Tva04MRj7P30UdJRyRGquScc1CaRri9nT2rVhE6dQpHaSnTM/TxlocfJtzejsXhEFr5ww8TbmvLXx89HsomTmTwwAHSiQS2kjKUpoHLDfNuhKlzxCHaUwhFpULb/s0TEq1ksebbfP5GiXUa6IZICN5cL3TvjS9DLCKvN70M8SgUlcAX/g0KS8RROhGHw5/AvBvg3Cmw5RVpH/TJ9t/+FPxDMGoc2vHP0HQr5WOnU1Q1jvKx09GtNnSL7TTadwvu0mo0Xafr4HtYHS5SsTCmkczRwjXdkms/cHwP7pIqLFYHMX8PNqcHm9OLzVXAwIk92FxC87M63NgcHjylNRjpJAPHdxHobsUwkvQf25U7ts3mQAX8kEpidrZJlNPmv0DAB0XFIiFQCrP9pLxPp4Qa7vGiwkFxcddAn3UJ2oTJ6LMvB6dLXs+9GuUbxNjwKlphEfqN35DtFgv6vC+gL/gmhEOYW7eg1Y1En3s1AGbTu2geL2bTe/IfUYGuW5k9ezl2u5sXXzzJjBmX8vWv30Q8bqOzs4UxY0YxNDTEhx/uwuMZzo4dRwiHo5w8eZxAoD1H9Y7H/bkIptGj5zJ79oNomoVZs+5j3LgvUFRUj8XixG4vIhhsY8OGWwgE2nA4CnPxTW+/vZSSktFcddUzuIrqOIbELnUh1O8w+ZgmC9AN/ABxim5BPO2OZ9Y1ZB6nxzx1Z64KPwXqgQrAm3muzjw7gSLgPvLO01k3lpLM88nMeSkL1EyrYcfaHRx46QBbFm8BHZSp0O06b979Jkopwj1htj60lVBXiLpZddQ11LH1oa34T/gz//9s9OzrIRlK0r23G6UUNpeNeU/M46YNNzH7wdnEfXFC3SGK64sJdYTY9sg2/nj1H2nb3kbjskYmLJhAw/0NOIucOEuc2L12wifDWAYtDMYGeWjrQ/RF+4gkI/hjfpbPXk5/pP+MVJQV21aw/uB6ftL8Eyo8FTisDtoD7bze+jqrm1cTiAfwx/2sP7ietTvW4rK5qC2s5b537qMn3MO0mmkEEgFWNa1i/cH1rNy2kiJnEe3Bdqy6lftm3ceCCQt4cPaDtHS2sP7geu58cwlYPeLc7K6F/maJ6hx3t1C7rS5w10gaiREFi1PSSXYvkvczfy/JKcqQMYaGxIQGj0pqine0bB/YKQkmyoTx98PIhTBlXeYe4YIJD0pyyuQ1mUjTu+R80KBwRKadIx/HBDKmS8czv4qMq5+eMeWzOCQJRbcJPTjrNK1n4p3MlJxLVpbrrZX23lpwDcu4VXdk3Kq7pG9vtYxPs9GUukX6sNgg2iPJKJEuOPsGmLNG0lL+/j0InQL/UWmbisB7d0HwFFTNku/MTELX9kzkqUviU0On4O1bZT+LE5JhmHpffvwb64cLl2TePyj9TL2PG+5cQdMbLzKirka+m/cWAbBq1cOEwykuvHAV69e/x49+tDJHCf/qV+/ENBU//vGfmTLlx/zgByu45ZZ/4+mnX8PtLqezM8SaNXMZHIxSWtrEwoXnc+rUMf74x3eAKzhxwk9lZQWvvvoe5577A158cTNf+9q3mDJlDsGgBZvNQmvrILfeuoFTpwLMmFGbO3ZHRxAjbaIlknBWJmkiR+/O3N+LvJIuEYpAIiVpEromj3gSTnZB2oDRtfkoSP1flPB/XP4Frv8LL/8ZiLbbLWdkCDv+IUPbMEw6OoIUFjro6wuTTpt88slBbLbPuOmmO3nwwdl510aLHaYv59FXPmHVl+tp+36Ugz+/jOU/epRPDx2CmQ+Ds0za2ovAXihges/avHZ6xFy54FhdEgPV/JBkQGc12nvWQtV0yZ+es0YiqALHoW8veCQ6hYGDMH2ZXLxsBaQqZ9IbHkTXdJ7b8Wf6wz7OqxrDHcsWM33mdM6bdD4umwOrxUIilcZR4KSyqpIR/U5umXEd7Z8d5+Sx45w8cRJTmbywU3TSL+z8K16Hm7VfuIeln/sGAGkjTV3xcKqLyplcMw6n1c61v7qbNX//LaBQKPrDPp5ufpX+sA+rbiFtGiRSETQzcppO+lExEstqpjWV0U5PA6NXAHO6HQZ+AKlMxqBtFFSsg+g26LkDcf0ywVYDGGB0SfST0SU3sWzfYid+WlxTRoet2cDol37NEP3RCLdt3Egsnaa6oICucJjpNTXYr72WTXv2cP3LL7Pl44+ZuWYNmwYGmPTQQ7z87rtc+OMf8/Krr3LRhAks2ryZhMfDpsOH2dzSwhvvv88HO3fy923b6IlEuHPTJg4PDhJMJumPRIimUvRGInhsNlo6O1kycyav3ngj0XSaRZs3E0ml8MVimIkEWiQiIHnxYrS2NolRWr9eMopCIckzisXg6FHJLu7tFVDX3Q0PPQRdXcxpaKD2kksEWK9aJdlGXq/ohB59VAbWLS0CziMRuP12igcHpd+VKwk0N6P19QliPXFC+m1ogMmTMcLRXEzz8eOyyWqVw69fD4GAnE5WJx0IwLJlX+fiiyfy7LPf5qGH+pk2TXKRP/e5xxk/voFZsy4UH5GUgOZrr5Xo5ttvh8pKSZByOiVDubwcmprkfXu7vL/rLmkzcaJ8XNNEdE8nu+RmmEjKSbX3QKFXALemyft+H3T2yg1U1zIDoYTkFafS8ttr78kDZ5tNAHk8KTffrCbbZoWOTFRTxjT0DE1Wdr+EeBm4KiqY9vDDFNTXU37BBUS7u9n9yCM4S0uJ9fWRikRyGmkgl5Vcdv75HHzuOcomTiTW30/LQw+R8PvRLZacPvvQr34Fpkn5lCk5rfWhX/1KNNhZ7fXzz6MMuX5aPR4GDx6kbOJEdItFpGK+AWg/hqqohoV3QckwMWlpOwZBfx40A5RXSpvyKvnyN74Mn+49E5i7PPL6yq9I1JPTLTpshwvsTnj1l/CLH4OvH0rK4KqvSPvR5+S02mx5Bc69AGpHi8bZVUjVuZdgsTnpOvAuppGifMy0HOAWjXXLGeBZt9gz26dJRNVpAF3TdHSrnaoJl6KUovvgVmzOAmomXo7NKYkLNqcXNB3TSKFbbAwbPZWiqnFYrPYz+pIs5hGYTe/lAK06uA9z27syDDcVZscpNLcXLZ3Ox03teB+9ph6cLsz2U3JLmn8dKhQEqxXL1TegWSz5/preQ68fhQr4UAP9gIZeNxKz6bT4KpsNpevosy9DRcLojZeBx0Mo3EU43EtR0Ui2bt3Kzp0fsHPnDi644BqWLFlBUVE9xcWlPPfcYyxatJBZsy7hj398ivJyaG39MzU109m5cyx3391ERcW5uN0CqgsLa3E4KrjnnvuZM2cBDz98gMWLfyz3DpVi/frvc/fd65kypZFZsy6mvPzLTJiwgJkz7yGZDBONDmBY7KzI6JxXA3MR0JuNabKRzzFeBQxD8olXkM82Vqe1X47ENikgDjngHgGiwIdAZoobD3AW8BwwGsmsuA8B4iZ5wN5ss2B1Ws+I89QsGu3N7QROBZh21zRSkRTNq5s5uP4gzaubUabKvd+2YhtmykTTNQprC9mxdgeFtYUYCQPfcR+b79pMUV0RVqeVZ85/hqYVTRgJg2NbjjHr/lnctOEmaqfXUjKmhKueuYrSs0uxe+3YPXaMlEHTiiYi/kgONK/cthKFYuoLU2kPtDO1Zioji0fy1Pyn8MV8OaC9Zu4aTgVOceuGW6ktrOXVG1/l/ob7KXGWUOwszgFkU5lnaLLnjp5LkaOIZbOln3tn3suuzl1Mr5mOrumMKxvHc1c/R6W3kgpPBQsmLOA707+D0iwoZ7mMh5wVAmx1q0Q0oUl0UnkDHFqTj/3MxoCWzwJXlYDC8FFouU3ykG1eSPkFhEbbM4D8LkgMgHcUTH0aEv3QcqvsZ3HCOffIDyCr4T64MnN8i4DhLNg1EpBOCHjNaqWTwUwMEwKScznJJ6QQU3mhFE6SoXy8k57dLyb3HXuBgO/iMXI8b7UA7cIRmeN35XOWdZucA8jrbHTprtVgdco49jTvH1zDpBCUXbdzhZjNBo5DqEMAddFoWWfEcr5AtKyScZfdI3Gpc5+TdumEAOzLn5G+e3ZC8VnMue52aguS8p188ktoXU/I38cf//hbUqlLeOWVT1m5somammqWLWvkS18aQ1fX+8yffxtf+cp5PPnkfOz2ImbMaOA3vzlJNJrkhRf2AjBpUil/+MNviUbn0N4eor09yBtvdLFixTbKyz08+uh21q8/yOrVzbz00m+44YavsnJlE6apcprrlSslCjOLF6ZPr6V/IIbyuvOT74kkVJblxwftPVIlcNghEJK/m1KZsPXTfFksOoysBqeDXI7rv5b88v9U1v6v+vjvQgs/nf69f3+PSiTSZ2wLBuP/tC4UiqtoNKk+/rhHud3l6q23mtTHH/eoKVNuVsOGVaj6+no1YsQI5XA4VHl5ufrFL36h+jtPKrvdfprGZI+64dqr1XPrHlGqa2eeAp4IC/UmHsxrV7J6k5hPqD0bFwrlJtKb769vv9Bzevbk9SyDh6Tdlluk35hPaOOBk0qFe1QyEVXBeEQVVpSosxZfoZa+vk5t3vaOmnzhBWogOKRODXWpxtmN6g9/+qOKJKIqFI+ozR+8oxouma3OnzRJfeH6a9WI889Wj6xedYZO+nDfKRWOR1VfaEg9sOHnqrXvpArHoyqSWXd8oEP1hYbU9uMfqc96T6pgPKL80dAZ2utgLKxC8YiKJwLKTAdP001nNM8dC5SKfSz07Ng+0UB3LMjrqU+ngWf101m6eKpPqfhnsj558sz26aFM+z0Z+nlYjpfTYe8Xmnim71D4+Bl6aH8spoLxuArF4+rjDIV7X3d37vl/RO0+ff+TPp9a8MorOU227x+2f9rXp4aiUbXglVfUxz09KhyPq48z/f9j295wWLX39ipzaEh40SDPfX15nnRXl3CiDx06s43ff+b7oSGlDh1SI9xu9VF2nc+nRrjdaiKo84qK1LeuuUb1feELSn36aW6/r335y6p2+HBV63Kp/a+8Isc7vd9PP1WJ53+tQiFT+Xxnburvl+fq6hFq+/aP1Mcfy/s33zyV0Ugn1fXX36caGuarQ4eUmjfvgIIZ6oYbksrvV+rCCy9Wc+b8JXvq//QV9PUpdfKkUr29SrW3K/Xmm/ljZtt1dYlMPJ1ICzUrS9E6XV8dDJ9J/zpdP5Vte/q+yZTsM+D7523Z96drrrLa6uyx/gf7paKxHM174JNPVCIYPIMmHhsaUpG+vhwNPBkOq2Q4LDTxoSE19Nlnyn/s2Bn7JILBPHW8tVVFBwdVMhJRgxmt9VBrq0pGIjnt9dBnn6lkJCJ67NZWFentzR3bCAZE63z8s/zz84+J7jnkFyr484+JRjoaUerUUaFw+wbkceJwRjc9KHTuWERo4uGQUMCff0zaDPZJ/5Gw0MV/tVapUFDaxGOi0e7pOFOTHY+qdCKm4qFB0UsnIjl6eNvejSqdiqtUQmjgiWjwNJp4n0on4yoZD6tUIqZSiZhKJ+Oik05EVTqVUMlYSKWT8Zzm+sCmdSrQc0ylkzHRayeip9HCj6v+E3sz/cRUsPdEbv90KqGMeFw00D1ZKnZG/9zTpYxgQF53nFLp1oM5anh2u5mIKzMRF1p5RpOd/vADZXS2/bOeOkM9P506boSCZ26PRpQZz9DQoxFlRCOqvr5O/fWvP1Pd3R+pV15ZoDo6dqqBgcOqp2e/2rbtt8rr9ah4PKhiMX9OBz0wcFidPNmiPB6bam5+XSUSEfX22xvV/v3bVH19vWpufk91de1VR468qRYtuk3dccdtqqNDKN8fffRmTpvd0DBV3XnnVNXVtUf99rfPqQsvvEAFg12qs3O36u//TMXjQdXrO6k+Ns2cjjqUeXQppT5Vonv+WOUp3xsy205fF1Siv/40sy2rtz6d9r1Q5TXdx1Se9h1SSnVnXvuUaLo7Mo+sHrs3kVI9B3pUzB9TMV9MDRweUJ0fdarIYCRH7w52B1XPvp6cFjsejOe02R0tHerwpsMq5j+T2h3uC5/xPjoUVaHekIoORVU8FFd/u+VvKuqL5rTWWe11975u5W/353TZ3R93q97jeWr3nq49qivYldNaHx44rPrD/WrT4U3qlO+U6KpjPtUd6j6Dwu2L+ZQv6lNDkSHVG+pV/phf9YZ61VB0KK/Z7vlY9YR6ctTzrC77QM8B5Y/51VB0SHUFu3L09CMDR1RfuE/5In3KzGqgh/YJFTtL2U4G83rqgd1CF0+F8+uG9inVsUnWJ/yy78vODN3bJ+uT4TNp39sWKBU+qVS0+8x1sT55jnSe1v/Hsj6dOo2KnRAqd3RQqVDnadTtDF38dJr44GeZNqE8LTxL706GM5TwTLuOZtk/q7PO6rHTSWmXpYtn9drphLwOtMlY8R/HlqGu09btkzFrsCOvk+5ukTHpGwuUWudU6timvHzx2AYZ52b11DFfnh6+caGsiweFXh7qOpMeHg8qFelXI2oq1Edv/U6pNxaonc3Nqra2Xn3jG4tUSclodcEF09WGDZtVKBRXf//7h6qiokYtWnS3Ov/8C9SFF05Xf/rT6yoYjKvduzuV212uXn75bdXeHlDvvNOs3O5yBQ2qpGS0mj59prr44h+olpYO1dcXzmGDX/3qb6q8vEL97W8H1ccf96ihoajavbszhxvC4YQKheI5PXYsHFcqkZGRZSngp+urg+Ez/VpSqYyXyn/mw/LfjxKu1L801//XL/8jEH36tqwe+x+BeDSaVPX19Wrbtp0Z/fXDasGCVzJ9pVRj42y1fv2rSqWiKt39kSop8qp3N/9NqdiQ6j/1qaqrq1XNG34rF5dQV15zvfnf5TnmywBln1LhHtFLZy9IPbtFSx3qyu/bs1fWZfs5/mYGsAfFyOz4ptMucAdUMhFV4XhUVdfWqK+vu1d91ntSrfvZOjWsolxV1lSpmroaZbFZVWlZmbrnRw+ovtCQCsTC6tRQlxqKBNXS19ep6pF16pfrf6se2PBz1RMcUMFYWPUGB9UDG36uDnYfUy/vfVN9cGxvTsudNTT7tPu4CsejORO1yGngvLXvpOoP+VTbUJcy0gExMYsfVio9qFRqSKngmwKQU3150JwF2VkAnQXfKZ+YoQU3KZX2SbvgWxnjsn2y/nTgng7L8VJDed11/Kg8J7uUSnbLPodQKrhJReNB9XFGD/1xT4/yRaPKF42qwUhEheJx5Y/Fcs/BeFwNRaMqGI/nwLM/FsuD7u5u1RsKqf0Z0N0VDKreUCjX/56uLtUZDCp/LKZaOjrU4YEB5Y/FVG84rIaiUTUUjardnZ05AH94YEClgkFx6ProI6UWLFDm/v0iOPb75bmrS1BlV1fesGz/fqXCYZVDs9n3waAaUV2tPpo7V9ZFIurU5s1KLVigkrt2qfuuv17Nb2jIA+g9e0Sb7fOpX69apebPnSui6tP77epS0SPt6uOPTXXkyJm+Z/39gunr60eoLVs+UkeOCCDesEF2PXxYqQMHupTX61XBoFLLl/9COZ2Vqrp6hKqvl8mtsrJy9fDDvzjj4338sfSzf39O9q06O/MmZqefQzCoVDJuiJnZ6Te9rE46azSWBcfxhFKBUF5nvXXXPxuTnK6pzpqdZbdl152uxcpqsz49JjfqcPTMG3Uo8k+a63ggcAYwTmX10IGA6vzgAzX02WdienbwoIr09AjYDoXywPmzz0Sn3duron19KtLXl9NTZ59T0ahKBALyPhhUyXBYxYPB3OtEMKgGPvlEdW3bJiDsdJOyng4ByqeblMVjSvV2CLjuahOzsYBPqa520VOHAnlzsqzR2YnDAtBvv0behwICrONRpXq7RKvddixvaBYKiKlaLCKA+5PdSrUfV0Zfp0olovKIR1QyFlLx0GAOMMdDQxkN9XGVTsVVLDSgEtGgatu78QyNdjTQq/qP71Gn9ryRA9WJaFDAdzyi4qGhnJY7GQuptr0bc9rsVFxAfRZwR3xdufax0KCA6852Ac/hkADt/l5lxqIq9dpLOTBshsMZ7XUG+IZDygyHVPrwIdFdx+NiVpY1Pstoro1QUBkdp0SrndFeG13tygj6VXpnkzJi0TP7icXOMFCrr6tTzc3vqldeWaCWLUP9+tfXqljMp44ceVOtWvVj1dAwKweuT5w4nHt9zz13qPnzL1GtrRtyGulYzK/q6+vUe+/9RUWjQ6q/v115PC515Eizam3dkDMoi8X86vjxg6qgoEB1de1XO3c+qVpbN6rhwyvUwYMfq3C4X7W2blA9PftVLBZQwVTiDCMzvxJd9C4lhmYBJXprv8qD4DeVAOU+JfrpDUq00hsy7X1KAPRQpo+hTN+bMu2DSkB1KNO2I7M9oASUL1Si5z6klIqE4mrg8IAK94dFe93SoQYOD+SNzT7uUYlwQkV9URXukzbdH3ereCieex/sCqpgV1B17u7M7TNw5Mw+srrt1xa+ljNC85/ynwHA23e2q9YNrSoyEFEf/vRDdeTNIyoUCKmPuz9WG1o3qL5wn9rduVstfG2h8sf8KhgPKl/Mpw4PHM4B5D2de9RQdEiF4qEcIN/XvS8HqDcd3qS6gl1nmKAdGTiihqICuvd27lW9oV4ViAVyxma+qC/3nN1vd+duFYwH1eGBwyoVH/pnkBs4KsA64Zfn8CkxOUtkxkfJoLzu2KDU4WeUGvzoTHA+9LFopeODSiUC0s8/AviE/0yQngxndNYZsB7rUyp4WEzVQifzAPsMoJw4E/Smk9ImOqiUkc5rrP8JGJ/+SP6DdjshGu/s62x/WRCfDOf13ImwtE2GZQw58KkA6FCXnGcimNFNh5UaOCRa7GObZIyaBdLxgBRxskA82CGvj20QHXUiJG3i/jNBdKRPgHTiNKOz3r1KnXhLqURIjairVh+98TOlov3q/febFaCefvoFNTAQUU1NO1VpaZl66aVmtXnz+wpQzzzzgtq9u1PNnbtaFRWVqMOHT6pAIK7q6urVW281qYULX1NvvvmBAtS0aXep/ft71PbtO1Vpaal66aVm1dUVVMGg6Kq/9rVvqMWL71Hd3SEVCiVUMBjPbevtDamurqDy+2Nqz55OdfTogEonU6K5znqunG5sFk/Io73nfwyms34q/3CP/+8IsP9n4Ppftfz/4ovdbqWgwIH9tFxq+Gc9dipl0N4eYMmSmdx33/cYO3YUnZ2dXH/9NezYsTRHIbdadT77bJDW1kE6O0MkkwaWaCfrn13F0rv+nUkXzmDOFV9k8V23M1PbAlPuFspSZ5NoqSffJTqXru2iY3n7Noj0gM0l9BoQqo6zTGjfoXbRsug6lE+W1yjwVopm23dYdDHDJgnt5rKnoHAEKWVimAZW3cI3pl5DmbuIm/79a3zzheUcOtzKV59airOuhDm3fZEl37ub/rCP7/9pLfFUknAizPCTioqSYZw1ZQKTqs8imoxj0XXWffAHNh5q4te73uCqc2cz3FvKR52ttPt7WfXui5S4ChiI+lEobBYrXoebj7sPU1U4jAfn3kxt0XCODbbhtDlRSgPNAZYSiO6A9AlItULvXULPHlwJnVdDugtSHeCaCpobKlaLnrr3LnA3iJ665zahirsmCWXKWvUP7UulTbpDtNV9SyWiyzpMIrxCf4a+e2WfggXgnIyJnfrCQp6cPx+X1UpaxLkseeutXBRX2jQ5NjTEHRnquKEUFk3DqmlEUymGud08fPHFVHg8eGw26ouK0DWNrlCIe956i1HFxTxz1VWMLi6mwG4nmkoxEI1S4nTSF4nQEw6TMgy+s3kz29vbWTdvHiMKCzFNE10piMdhzBh47jm0qqqsgFgo3kuXCmd63z446yx45hnJwQqHhR/9wx9KbFYsJtxpXYf/+A+orYXWVuoNA556Ctv48SxesYJt+/aJaPrhh6X9vfdCdzffcLv5+wcfMPitb0FZGTz3HIwYARYLyfIa2ts1yspEF/2LX0BdnfyJTpyQ07daoaQEmpsjjBzpZ9gwOc2f/vSPTJx4AYYB9957B11d3bz//kn27TvJlCkzuOOO51i06A4KC+Hss+Xj1dVJf21tcnqFheBwCEurpUVO75lnoKpKvgYNhWYaEqNx9gjRUKVO82Cor8rrokCo36evd9hlnzF18nykTUI0j7ZB3xDYLDCiWmjgKrM+mZI+LLrsB1BXCcGw/P0U0tdZI0DX0W22vOb6llvQdB3nsGFc+P3v4ygupuWHPyR48iRKKYrGjCHa10fxOedQUF+P1ePBNAxS0SiYJlP/4z+I9vSw7XvfY+9jjxHp7sb36aeE29tpeeghQu3taLpOOh6n/6OPCLe3C604nSba2cnuRx4hFYlgxOO4ysspu+ACNKUkHmvfh0LTLigGhzP/+g9PQV8XFJRAInONmzILTAP6O6G0XDLmX/0l7GmS/UaOEw231Q4PPw2lFfDSkzDUK5rqwmL5rnz9cN2/g80u/Wo6HPlEJA3VI+Dtv6B7iiT2RtPlWUHfkQ9JxYNEhjoxzRTpRAyby4MyDMx0EmWkqT7vUsZfcRc1E+ei6RZSsQje8hGUj52OUoq+w83yk4iH6Dr4HqaZRilF96dbScUjuIorM/TySjSLlZqJc0G3YHN5GTzxEbrVhqZbSUb8oEzM5r9jvvIbzM42NMNAHWvFbD+J3pDXUSurFQJ+jA2voQI+MA2MzX9Bc7tRPV3y3RSVoHkL0Bsvlf0aLgFloiJhSKVEe11UjFZajmZzQEkpmlKi8R7qh3AIY8MrEA5x+/0PMPI799HZ1cW1136FpUt3cOmlv+SJJ44xdWoD1157D9u2bePpp9eSSARJpxP88Ic/5vzzL2TcuPF0dvbx7LNPU1U1BXsmGigSEc+LYLCDdDrOkSOtlJaWsXr1E3zlK8t5441zcTq/jFKKV19dwvDh5WiaQXHxSAoLq6moKOLTT3eyefMiPJ4KrFYXmqahLFYCwCyEqt2PULqLgGKgFzAQLV8voo2eCvgBK6KfrgHWArWZ7THgMNCMUMJvR6jelcBiRNftzvSrAQ6EDq4ybe4BtmfOQbPopGNpOnd2UjOthuKRxXgrvRSNKGL+U/MpHlmMMhXKUHS2dOIp9xBsDxLqDKFMRc20GmxuG28vfZv27e1c/PDFFI8uxjvci6fCw7x183CXu9l4x0bCPWFqptXQvEZ+o7pdZ94T85i4cCKzl83GVeKisLaQTXduoq6hjtqZtQQHgqxoWsENr9xAS2cLI4tH8tjlj6FrOgpFPBXPxW+93vo6BY4CAAKJAJ3BTp6c/yQjikZwz1v30BZoY3b9bLx2LxWeCi4deSnd4W6Ge4cDsKd7D8MLhtMV7uKWDbdw1HcUh8VBNB0lkAgQS8foCnWx/uB6nvjwCQBKnCVomhUmLBO984TlQg13lAk9WSm5phgxKJ4sf2kzDrvuAKWJlrr2C/DpqtNo4o3gGQXBw9IuckKo4bFOuOhJ8I4B71iR+3hGwYXrwDFc/sJDu8FRCr69cux0FPbeI5RyDekn3JWPWdL0vEa6oFauV8FTYHVkxiwZenbRaCgdL22MpFDGM5Fc8hnTMi400/IZvTUyBkST/ox4ni6OLnRzzSL7e6tkv769Qjnv3yfnFTgOb90stHRlgqMQRlwGFZPlx5yKZI5vyPmHO+HY6zCwX+jrNY3Qs0v2T4al/bSMTPGieyEREE17KgIF9TDzh+AaDpVT5bvUrXIs3c6IEfXous7s2Vej6xqFhSNQqhif7xQlJZXous6CBTfxxBMf8vbbUXS9lE8/PUgkIv4ln302wHe/O52SkuHous4vf7mcYcPcnH/+JEaMGIXX66OvL8IHH5zi0087+eMf/8R1130Vl8tKKJSgubkdANNU7NnTTXd3CF3XKChwUFrqxjSUaK4LPfJ3Pn2x6PKoKJUxhcMu2upEUiRnaUMecCZFXKn82O1fC/AvzfX/tcs/6rENQ1FbW8jatTt49NF1HD16gnQ6TW9vL0ePHuGFF65h3LhhGIbk7/X3L2DHDi+JtA7VDVw+dRR7vhPj48cm8+nu97ln0S0w+1G5aLx3lxiYRXuh5CzR91TNlItpzRy5ALvKQbfLxWvacigaKRcsZwm0fyA6F4sdqhvkorhzpVzcIj2y3l4gfSkFZorvLPou54w9m87OTr587Q1Mn3QhFl3nB1fcgt1q5ZtTv8BZ5fVcf/5lFNg9/H7PJv780npmXDCVz02dzcYNG2n47nWcM3wU88c30hHoo9Pfz90XL2TeuJncPP1a4qkkveEhJlSOwWWz842pV+OLhTivcgwWzYJpmhimyaTqs+kJDvLI2y/Q6e9jYtXZWHVJClZmCIwBMSxL9YLnCtFQo8nzqCNgrQTXLIh9JMDYjEHfPRB+DVKdoNnB1SDa6dQJiDZlTDwSoIL59qGXYHCNmGlUrAAU9CwSHXfBtVCxRsB+5XOgF2Aok55IhJbOTnzxOIs2b+ZUIMBd06bRGw7T1NZG2jSpLSpi5WWXoZTirk2bOO7zYQKBRIL733mH906cwKJppJXCVIpwMsnq5mZeOnCAprY2NOBUIMDNb7xBbyTCxIqKnLa6PRDAZrHw2OWXc8WYMXjsdu7avJlzfvELuuJxVDQKH3wgF2aHQ4yNmpsFMP/857B/vzh4hULQ1yeg2m4X/fVbb4kQetEiQZ3JJFkxc0Qp/AcOwK5dcPQof/zyl7lg3DjQdfy9vXS98464hRUX81ddp0zXKX3jDTmeUhnNkQObFaZMUTnddUuLgOqlS2/jiitqGRzs4MtfnsfUqWMZNaqX66//HOPHn8/nPjeRzs73Wbfut0SjopM+dUq00x9+KN2fc454r6VS0mdzs8wp2O1QXy9ebiUl0v7kSTj/fPj4Y/mILhcEg4KDSaYhbYqGKhAWky2Q11mQ67TLTbPImxlFZ26aup43mQmERUONEvBdWgjHOmD3QdFkA9QOz99oFWJ6AtL/iGp5HU+Ilss0wKKhDANvXR3THnoIT52AcavTicXpZP9Pf8qwyZPx1taiaRpGOk35pElYXS5Cp06x+8c/lkxql4uCESPQbTZKxo+nbu5cJtx2G/biYiouughnWRnn3nor3tpalGGQCoVwDhtGtKdHtNZKcfD553Pa7T2PPgpKEenoIDo0hLryK3DHcigph9/9FAZ6YMwEeOu1vDGZponJ2Ou/E6MupwtGjYMTn0n7L31T+iitEEMztxdCfvB4BTzv+1D02boF+rtFq1hSDp0nYKhPwHc4AKPHQzgox7vxFtmmFGY6SSoREQ17SRX9R1uw2l0MHNuNs7AcTbeCbsFidWKaaSJD3SgjRSoRwTTSuIrKsTkLSMXCKGUwbPSFaJpG/9GdBHuPkYqF0C2Soz14Yk8OiGvaaRO7psHAsd2UjZqCpulEfV1inpaKo8++DP3Gb6AVFotZWd1ItNoRaMVlWK5ZgFZYJIZnzVtz+mni8TO018pqRdM0MT5zebBcdQPYHDJ+rR2R11Zve1dM0Ta8Iv1aLFiu/BLahMmoSCSThe3n2aeepP3kSVKhIG0nDvPJJ7tpbLyRHTveZ+vWv9HS8j6vvbaes84aj93uxWp18JOf/IC9e5s5fPgzHn98GTt3PkQk0gsIoE6lIsRig5SWnkUk0su2bY/R3t7B9OmX0tz8Po8++gO++tWbOHy4hYqK84hG+ykulpzs5uafYLO5cblKufzy1TidJdjtHhKJIBYFxUrRBBxFQK8TAcWLMs8+4ARwBEgAgwiAtiIAOWuAthLRTlsQoD4JWIeYnjkR07SZCNAOIeZnUWAXYpLWBLQBZyNabC+QNEysLis102qI++O5gXngVIAti7eQCCUw0yYWh4XC+kIi/RFqptdQUC0g1kybaFaNuWvmMuaKMTiLnbRvb0eZikQggWmY9OzrYfr3puModDBx4UTmPzkf33EfW763hehAlKuevgqrx4q7zE3TyqacthsD3B4335/+ff684M9MqZpCf7QfXdPRNZ1TvlOEkiEAnr3qWT654xNKXCU0tzfTG+7lyNAR7tp8F93hbl468BIdwQ7SZpp4Os7e7r3MrJ3J9JrpHB48zO0bb6fSW4lVs9IZ7OTemffisXmw6BaUUjzywSN0hbpoqGtg4cSFPDn/SRJGAl/ch4YJ0Q44Z4noprOa3733iGGZpiSPOpYxhdXtMGwmhI+LltrqhfH3ZcD5sowWNnkm4FaGtB9skdfO4bJvyy3y7NuTAfCTRJNdNl38clrXwfilclNJBAXQFo7Ie+4oQ8Z8xWNFs61pAoCtrnxmdTohQNfiAN0h63NGZR3Sxkjk32NKW3uBfJbCEeLrkwrLe92aMUqzS7t0TNZ7a8XLx1sjHj6n662NGET7xPsn1i/HVEoA/Tu3i3lZdQN8fT8Mnwqd2yDYJmPawhGit/7gPgHxlz4JjmJwlwtof/9emSg49Rb0fyTn4zuc+TzdYMQpKxtGY+PFNDW9RzyeZvfug/h8XXi9NTidRZSXn8cf/vAXfv7z+bz99tWAj5qa0SxevAWAigoPa9fuwOEoYtKkmUycuISlS9/m+PETnDp1krPPPoc1a5opL/fw3e/+hLq6s/F6q2hqasNmk0zsI0cGuf32jVRWeunuDgMQjaa5/faNpNImqsgrf2fDlMcR8UfByJihJlOZiXZTxhNFXplgt1oEdJuZMUJFqUywa2QGI/9asosm1e3/u5ba2lrV0dHxf/o0/o8u2cr1ihXbePDB2YweXcLWrScpL/cwOBhl9ux6QMzP7Hbrf7rfuHoN+7bvyCxduENm5QpHykVfs8C7d8Khl2QGb+5zMrMYapeLW8tKuPhxubC0rMz00SWgOnACwu1QOT1jdHFK3MCn3geFo+UCF+mG8klicmEvkhPcuhguf5ao5uCkr5tf73qDf596DSNKqjBMA12Xm6VhGnQHB3hh51/59vRrKXEX8pO//5ZbZlxHZUEZP377BSbXnM3k6nH8etcbfP2iq/DFQpxfNRZd09nXdZhhnmJ0TacvPESFt5Tf7HqDuy9eiMvmQAFdgf7cOg2Ntw7vYFRpNWOH1aOhUeayoKWOQKpbTMs0F+KCfkzMxSrWibP34EooWwa20RmXTwuYYWmvKUgPSQUaMjfLmIBkzYrMfxlyYY+1gHuazGIbvaB7IfRXiH0Awx4Ga630awZALyJilpA0FZqmsb2tjRteeYUvjBvHL668kg87Oij3eOiPRKgtLGRlUxP3zZrF9vZ2tre388xVVxFPpzEz14eecJjVzc0snz2bMpeLgWiUlU1N/Mfs2dQXFXHLhg2sP3iQBRMm8MOLL+at48e5YswYqr1eLLrOsaEh2oNBptfWYtU07tq8mec/9zlcAwOCIv1+AdQrVsDatWJytmoVLFsGbrcYka1aBcuXSwn56FFBmEePctsLL7Bx2zZ6/H7KSkspcDp5a+JErj96FMNmQ3V0MLqujp+uW8fIiRM59fzz3Pjqq8SSSXRdp3zYMH7yox8xedw4MUxzOsX8rKOD0JwrOXZMY9UqweJVVVJZzlaTAwExGV+9Wk6tvR2uvho2bJAqdGcnzJolf9pYTLoOh+UwTzwh+3k80N+f31ZUJB83HJaPvGSJbL/oIgHoa9fKserrodBtoB89CWPr8w7eHT1yw0umxJykvkrAr2HmzUnShtwsQdC9xSLb4gno6M0D70RSZqbrq6R9OCoAXNPkhhpPyjFyQN0UQN43BFMnYADpdAqVTpMMhTASCQ4++yzjv/3tHKBWpkm4s5PW3/yGyffeiwZYnE72PvooZ331q3iqq8VVvLwcV1mZuFi73Wi6jplOo9JpBg8coOTcc0kMDXHoV79i8pIlWOx2NKsVLWO2ogwDBXz06KMc/+tfueqNNzj47LNMe3AZViMt1eeXnhQwPXUOfO27Ugkd6oNR54DdAUMD8OkeGF4NtaMhFpUqd+cJqBsrMyNHD0o12+YQgH3iMwHcQ33yXDYcjhyQPv/wFFxxfR7Ef/eH+bajzhFQfvQTjHMmoYw0UX8PVocHm8tLOhElFQvhKqognYjSf6yF8rHTsbuL6Nz/FpXjLyadiJJORHAXV+b+9so0SCdj9B/dSdW5l5BOxkjFQthcXvqPtjBs9FRsTg+61S7tNQ1Mk+6D71F13mWY6SRGKpZpeyHpRBxPSTVaIoFmsWBs+jPq4D60CZOxzL9OKtmFRahgQAC0rmNu/it6w+fA7cHc8jf02ZehlZSBKQaS+IfEvKzxMrSSUkgmURYrBH2yfvbl8veyWtHsdlTQj7ntXfR5X4RIGLN5K/rcq9FsdtDA2PhnzBkNGCVFaJqGpumYpkFX1y5qa6WSH4n043QWo+sWNm/+Dg0N9xEItPPHP17NhAkLuPrq5zCMFJs3L+Lmm9fzl7/8hZoaG4mEjcmT5+P3d2O12ti48Xa+9731fPvbF/OVrzzC9Omfp7e3E4tFJ5EIcdZZk/nzn5+nvNxKbe10dN1GUpmcchbTpmlMQ6rRBlI9vgsBwjcileV+BGT/BHgA6ERAs44A75XAMmAsEESMzwqBAqQS7kecwG35uwsDgAsB9M2IGdpaBFhn/QrNWIrkkSGCnUFqZ9SCBulYmp59PQwdGaKuoY7m1c3MXjYbq9tK3Bdnx9odzF4+m8L6QlLhFH0H+/BWeQl1hqhrqEMZinQ8zdtL32bu6rlE+iM0rWyicVkjwY4gNdNq2HL3Fmqm1TDmijEU1BTgO+HDW+kl2B6keXUzDfc3UDK2BE3XMGwGJiaxdIyWzhaqvFWcVXYWPeEeoqkoHcEOZtXNIp6Os/TtpXx3+nfpj/QzumQ0KTNFubucvd17aaxvJJqKsuzdZfz4cz/Gqlvx2r10hjrZcmwLLZ0tPH3V0xz3Hacj2EFtYS0rm1Zy/6z7USg8dg81BTWYyuSk/2SuTamjgFrCaNFOKJkMqYA4h1vcck2N98u6eC+UToH4ALjrwUzIJLuRFjCp6QJw0xGpOBsRAdbjl4KtSIzS0lHYvwzOX5kxnHxFAPeUx2FwD1TMluu1IU76WJwZ47BkvlpssYsLdrgzA2SdGdfwmADprMGZbpHJVP9RGQ+6hkFBXWask5axpbdagLK9QAos9sJMhZwzn7MO4eEuGWdaHOLwna1ep6PiCt66Xsallz8r481dj8oYtLBeQHR2+9xnpYjT/FB+3RUvyD47V4gLeKwfqmfJZwGpXltsGad0DaIDArAx5DNoOug2brvtVjZueYeefj9lZaUUeL3s+/gQ+/d/xt13LyIQ8GG1WigquoK//e1HLFq0ifXrtzFx4ofEYkH6+2P84Af/QUvLB7z33lsMDfVjs3mJx3UWLHiOe+89h5tvvpl0Ooym6Vx33a3ceec3cDqtpFImV199GQsXfoOzz76csjI3a9fuYNmy2XR0BLj66j+yYMEEnnpqPg6Hle7uEB6PncpyNxYdMTJt7xHWWSAszLMR1TJO6OyViXSHXcYVDruMBRx2AdcK+b3qWgagGzKGsFn/25ibaZrWqZSq/U+3/wtc/9+7JJNpEgkDh8OKYZgcPjzIypVNLFvWSEWFh8WLt7B8+WzOOqsUwzBzQDuZTJNMGpimwpnsxp4agFifzObplvxFZ/oycA6D9+8RN/CikXKRtXlh2/cFdH/zEHz4iDiIj5yXqWDrcoFEg54WAeyhNonZyoL07haoniGzfrtWC+j21sIzlfDNz4i4qvjhOy+ypXUH88bNZOnnvo5Vt7Dq3Re5efq1VBeV86O3ns9t/4+5N8ugW7OgMOnw92GzWHm6+dVcmwcu+yYOqx1TmcRSCWLJGKf8vUyoHMPBnmN0Bvo4v+osfr3rDW6efi294SHa/T05gP7vU69hZGkVJ4e6+f2eTaz4/NfQ0n1gKRbga6uXaK6em8W9e9QhcfoOrReqduVzmTiKhMRuqYi4fVsqId0mgLzsPrBUZ2I2nFLJTnULfZwMHUelILYTbFVgrZGJEN0DWCF1GAYfg4rHiZmFHPFHWbFtG8saG+kIBqkvKmJ0cTGxjHP3kpkzWbtjB+sPHmThxImsveIKLLqOy2rFVAoNSCtFfyTCtBde4IoxY3hy/nxsui7ASCkiqdQZ4Lu+sJBIKkU4mWS4x4OmafRFIvjjcX66cydr5s7FZbPhNU0sR46grVyZB9F+v3Cke3sFXVZXC/psbhZAffnlYqkNgnKPHRNAvmyZtI3HpfpcUSGgvaIiAxrjUnaurxdQHomIxfezzwrqtVgEmGZLx9EouN0ElZdt2y2Ul8PgIMycKd1FowKGQeKzjh+XU6uuFmfwqiqJ0po4UU4/nZaPVlIiwLyrS05h+HApyldWCnBeswYee0zMzvv6ZJ++Ppg+Xfbr7JSCfUsLPPUUFHgM9HhCTspulRudUnLTO94p8VqlhWC3yckaJhzvkBtqIinbdT1PDzuSoYOXl0jFO7s+N/A57UZq0QXAGxk6mCUzqw1wtB1G1ZAy0oTb2jj4/PNMuOUWor29vH/nnVz8i1/gHj48v76/H2dpKZ6qKgYPHMBVWYmnKkNlN000qxVlGALeEgkBzpnXg/v34ywrw11VxZ6VKym/4AKGXXABrb/9LRcuX46maaRjMfytrZSedx4Wh4OP1q5l8j33gGlis+hov/spnD0RJs+EeEzcvl2ZybK+LtjyKtzwbRlQmKZs7+kQR+95N0JFtWwL+vKAumQYbPqTxG25PEIxzw5GhvoyTuHl+ectr8JXF4lLuWHAn1+EeTdgDq8mEQ/Rf3RnBszG8JTWyJ/FNNAsVsx0kkDvURyuQtwl1ZhGWirZIJMLykQpea1Mg65P3iXQ3Upx9XiqzrtMqsXpJEop4sEBPGU1JKN++o+2UD52GjZnIf6uQxQMG4nV6SYVj2Cmk1isdixOL3oqhbkxU62uGyngdvblqIBP4rYiYTRPASoSQq8dARYrZvtJtOGVaGgoq02A87Z3xeU74Md85TdYbr8XzeUWp3FvoVDANQ10XX4PpolSCvOtN1AH9mBZdH8ukit3Hhm38JRm4o+0s23bCmbNuo+SktGk0zGUUmiaBavVKX0DyWSYrVt/yBVX/IRwuAuHowibzQ1AIHCSiRNn8frrbzJyZCFNTSv5+c/buOeepVx66UwOHtzFFVfcyAcfbGD8+JnMnTufhQsX8PWvf42//OV1Vq9ezSuvrKGiYiKpVBiHowjlqWCbbsmB2mXACPJu31nCZQihaO8DrkScwZ9EqtEKoYsXIYC6EgHXOlJ5DgP7EaCeQqrabYjj+DIEUN+dee1GKuJjTju2Cifoef8UBTUFhDpD1EyrQbfqaLpGOpFGmQqL3YKRMLB77Wy8YyMHXjrAhAUTuPrZq9lw2wZm3jsTZ7ET9zA3qWiKd+5/h1n3zuLUB6cYc8UYtj60ldbXW7nx1RupmVpDPBDH7rUT6grRvLqZxmWNuIe5sXvsKCT2y1nkxOa2kdbShAjRF+1jZdNKlsxcQn+kn4b6BgC2t22n3FPOz3b+jMcuf4y0mebT/k9pqGtAobBqVqLpKF3hLlZuW8l9s+4DQEfH6/BS7ilHQyNpJLHpNtDgtg23sWTmEn6282dMq5nGjefeCMDSt5dyX8N9VHoq+c6b32HJzCUMRge5fEQDVk1DUyakw7Dvfpi8Wq4zqQDYCgU82oug/c8w/FIZg6Wj0nb8UgHb0XZ5lE2Xqq4RFzBopiHWlQHa9+XGihxaLe9d1VINNhNg8cpYYrAFXLVQMBoSQ2AflgHDtUL5NpKQ8AvgLB4t55oIyPGyANjmkuOkY8JS9NZI0SS7j1ICqK2ODFg2Mo7gnZlYrgTYPPkqcyoCQ4cEpBePESCfPSdlgP9IZtx4v1TSlSkAOh2V4pCRgA+WCqW7aEymEm4KKLZ55DO8e0e+cHTZUwKaP1gq1ep0TJiaLatkbFo0BoIn5X2uEFUHhaPElVwurmDzEE45aG0dZPXqZu67bxZnn11GImHgclk5enSIlSubeOqp+SxatJn16w+yYMEEnnxyPnfdtfmMsfv99zcwfLgHXdfo6gqxenUzTzxxBf39UdxuGyUlTny+OCUlLpxOC7ffvpGXXjpwRn/Ll89m1KhiwuEkLpcNi0XD7bRIUMjhU0LrLi8RUK2UTMIn03JvT6VlYr22UibgbVaZeB9RnbkHZiLaTgfpLmeeOff/58v/DFz/95hi+C+yJJNpwuFELq/6/+1yuh7bMMxclt3KlU34/fEcZTwSSf5TVvbx435uuWUDn3U6SdrKpMKsW4XakosvWCnAbebDAqyTYXCWysXpsqfh9m7w1MjFqKZRZi1D7dC5HcI9Aqwrp4FnuFC+b+uCi5+QGcjy8+Vid3qkgsUuFzp7IXZd4+bp1zJv3Ey+Pf1anFY7hmlyYe059IWHALj3c1/nqvGN3DLjOuLpJB93tpIy0ximSU1RBeXeEr41/YvMGzeTW2Zch81ipcPfy8U3fJ4Lzp3IiLIaBk928+i7L1LhLeW+a2+h8aIZ/Py2h2mcMYvDTfuYOeJ8fr3rDV5veou5n7uM8yecz/VXXMMVwyZjKCvKUg7o4J4N1gwttuJxKFgIepFUrAsWyDO6gOi+e6WdXiBtVEzo4eHXIdUjNHHNCRhS3XbPkIivnkWSqY2ZqZQXiCbbGISeuzJAvUoo5mYYIz3Aim3bWH/wICubmmior6fS6yWtFA6rleevvpoxJSWsmzePhRMnsmbuXHrCYRZt2sRRnw9TKY75fNy2YQPRVIqWm2/mgcZGdnd1YcnMTsbSae5/5x22t7fz8MUXU1dQgEXX6QmHOTo0xKlAgOb2doZ7vYwpKeGxyy/Hqutsb2sjnUwKsF6/XtCm1ytaZ9MUFGq1wve+B4cPC7q87jpZb5pSyj12TErF69cLUNY0QbyzZkk/Xq/QzBMJQaMVFSJmLi/PZ2dlcq9z2c/ptCDnxYvh2DGsNo36ekVJiQBrm02627NHUsNSKTncN74hp5ZICNCORGR9cbGcYkuLrFu0SLYfPSoAXMukYYEA7bvvlnmFpiY5jZ/8RCTkLpdQx48dg5tuEsZ8NArxhIZy2vNUrXBUboqaDmProLxYbn6GKUBY1yTDUtclpgtER51tM7omr9EOhjOj+2RGT50B7ae6M7Fd2QuRTWa0s/nappJj6zr8QxxW2fnnS8TWxIlEe3sZ/81vYnG5KJ88GVd5OXsfewxnWRlWpzNXcTYNA0wTleHmZ7dlq+FlEydiKyjAktF2V86axaFf/UqO0dVFy8MPg1I4hw1jcP9+jESCC5YsIdLRwe5HHiFtGEILH1YpdOzXfyf07LQhlaKiUrj+W5JxfeqIRHMBvPMXGDtBKte6BscOCrC2O6TqvOlPZ2ZX/+6n0N8jkxSbXoanVwiwHjsBiksFWA/2wsvPyDFGjYNNL6Pgn/Kp04kYppFCKZNE2Ef3p1spqhiL1VlAZKhLvjtNwzRSGKkEqUQUZaYz32eayvEXc9bF36Ry/JwMeyBNLNBHOhHFVVQOqFysV//RFkBRVHkWFqcHZZpoSEyXAlQ6SSqdRL/iC+gTJqGVVWCZf51UlQuLUNEIev0otMIitOHVGG/+DeUbhME+zC2vg80mcxbb8pRvvaYey+33/lMetpbO3DsVot3e/BcIBdAvvxJtwmRwOEWrPWbcafTzd0WbbdXZtm1FLp9aKRNNsxIO99LdvQdQpFJRNm1aRDQ6yLx5j2OaSYaGjhGNDqKU4rbbbmXKlPkMDSX44hevZ/LkRg4eXM+CBaU8/vgTnHfeeL72tTt5+umnOeecaQA8+eQTvPji7zn//Av5yU8e5/nnn6W+vpFYbJCtWx8iEunDCkxXirXkad0aonl2I1XmHuAhhNI9i3wudRL4rtwViADfQSjeGlLlXozQyL1IfnYI+B6Sl92eOd4aBGwvyfRfiei3s1psEzAsOjXTawh3hxk+aTixwRjpeBrNohHpibDle1sItgXp3tuN/4SfuWvmSmTXconsmrduHs4SJ+lomo2353XVTauaGD13NI4iB7OXz+bGV2+ksK6Qzl2dkmFdYOfDJz6k9fVWbG4bFoeFtu1tBNuCFFQVkAwnMVIGaS1NMBnMxWWt3bGW6TXTSaQSaGhMr5nO2h1rmVYzjZ5wD/e9cx+TKydzwn+CWzfcyjH/MZxWJyu35eO2RhaPxOvwEklFuG3DbZz0n8Qf99MWbENDY928dZxdejZPXfkU14+/nqVvL6Ur1MW0mmms2LYCh9XBA40P0B/p55L6BqzpCFrwsERixfuhbJpMpMe64MBDQgd3DRfPFne9UMV3f0d+81OeAGeVXNtzcVuLRGc9tAtCxwVoH1wpFPFDq8E7Qp6z74UWBNaCzP8jQ3TbVo9Uhx3D/jmCK9QuVebCEeRmW+2FMo6zFwhAzoJLq0vAsG6T8WJBTYaNZ0rVW3fkjxvuzNPDHYWZHGvy/Z+u7T49A1u3SkzWzIfBU5WvpNsL5MLw7h1CC7/sKQHaf/+usCTjg8KM9B8RQDxnTT7H2uKEVFTGtZom57L3p1JwsnnkGJFuqXKHO6SItHOFTE7oVql8b10M/qOYRj4Ka/XqZtJpk0WLNnHs2BBut40nn5yPy2Vj+fLZbNhwE089dSV+f5zXX29l5comnE4r69bNo6rKSzicJBhM0NMT5t57Z+Lx2Kmq8hKNpti5s5NIJMWiRZs4ftzPk0/O59ChRaxbNw+328Zzz13NiBFFKAV9fRG2b28jHk8LsA5EzvRjyd7Dk6m87jqrqc5GbqbSAqB9QQHTChkznB7h9a8lt/yrcv2/aTmdjr18+WzOOafsDLr2/4r+BwdjBAIJiorkArZ48RYefHA2bW0BbrjhFV599UYaG+uxWjVuuy0/y/XCM5dTsP02mZEz03L93LVaKtehf6CKp6JyIXMUS9afp0oefXvlgvPRz0SrrVnkAjpwQIzMIl2ZPpdD0Sj5j5kMykWpZZVUxgvqyF1ddStRpHpq0XQS6RShRIQyTxEd/r4cHXyYpwiH1c6+zlbKPMW82PI6/z71Gsq9JbT2naTMXUxtyXAS6SRum5OkkeL1NzeyN3ycPz/4LJ+7ZwH7Uu3MGzeTP931OOtefJodkSPcMuM6nFY7Je5CUkaayy67jC9/9SbuuvUO/vTKn3jyiZ+zp+UDoYUProKy5aKtRkMUcEnQPBl6vRIqN0kwfELn1t1iSNb3oOindY9opzSrXLCVAXqhAO9slTraxHeXvcPrm3dzqq2bjz58mckXXQU932bkzHdwOL24bCGwVvHA9+/luuuv5zNflOu/+S2iBw7Q1dHBn95+m3mNjURTKbpCoVy1eVRxMWnT5PaNG3P07mevvprbTqN7P3f11SQNg6RhMBiLsWLbNtbNmweA3WLBbpEZy0gqxffefJMlM2fSH4kwafhweiMRVjc35yro5R4Pw2026nt7Jd+6sVHA2YkTUro9nWO9YAE8/7yUeEGei4rE6Oyii0TQvHy5GKNlK9n33w+jRglAD4elEnjggLR3OGRdKCTINQPesFjkWdfhpZfgi18k6K6kt0/LsdKXLRPMXlIizZWCnTvhwgul26YmqVbrumiis6c5bJhUoLMF9eJiKZAfOyaZ2TU1+f47OgT/r10r+H/BAvFY6+uT/VpazqScF3oMtHgiP8tszXyORFJuiromn1HPzCin0rI9S/d22PJ6KU2TCQaLRW60LocAZptNqGKja6U/MhXc4x1CH3M5ZMbbZs2wM4BwFMNpJ9jRzqFf/YoL7r0XSxY0axrhtjYOvfgik5csQcsYn6UjESxO0fMN7t+Pu6oKR1ERe1evZsKtt+KurMSIx4kNDHDoV79iwq23EssYoFldrkyVVhHu6EC32Tjw1FN0/v3vfOHtt9FtNjSlGDxwgKJx44SJaJrYPR4s2UmO3/0sT88uKRcQPP/LYkDWdlQAbzQCngJIp+QHEI+JedlHzXD4AHz9ezIY6++W/b+6SOjfuz6AGZfCv30HUkmpbheVQekwqQLpOvz+5/Dhe0JL/8K/QTqNMbwaMwOMNYstXz0H0skofYebCXS3ctbF3yQZ8WN1uBg4vofysdOxuQpJRvwMHN/FsNFTcXhLSMcj6FYbRjqJ1e4m9Q9Vcbun6LT1QjW3OQvQdJ1kNEA6HsJdUo3SdFRaAL7F6kCLxyERB4cT1dOJuf7X6Dd+A33EGJR/EBXwCy084MP8cBv6nMvlO/R45fsK+mX95Veh2R2ggQoFUcdaUZ3tWOZ9AaVbMDe+imX+dRib/5Knn199A6ChUGiaDiiUf0iAesPnwFuAYbcx5D/Ktm0raGj4PqWlY1HKJBLpx2p1kkpF8HgqUEq+W8NI8vbbS5k+/bs4nSWkUjGCwXZqaqZhtbqIx/1omkYyGcLhKMLhKCCRCOXuyW+/vZRZs+4lGOykqKiOoqIR+P0naWpayezZywkE2nnllRu48cZXqRz7efp0C24E/A7P3EksmTuiidC1vwRcD/yCPOgdQKrMNYhh2XpgIfA0Qhl/C8mxrkZA+32ISdl2pOp9F6LHzi7ZKvdSpJJ9dma9JZwg1h3GO9zL4JFBmlc3M+u+WZSdXcYbN7/BwfUHmbBgAjPumcGHj3/I1c9dLZebaIq3l75Nw/0NFI8sJtQZ4thbx+hs6WT28tmYaZPikcWkYiksdguaptHW1IanwkOkT3TbulWnY0cHhdWFbFu5jZlLZhLpj1DfWA8K2ra3UdVYhWE3OBU8xcptK1k+ezmji0ezvX07w1zDGFs2lpSZwjRN7n/nfi6ouoCFExfS0tnCcd9xLht9GZWeStoCbaxoWsGDsx9kdPFoUirFXZvuYlrNNOaNmUdNQQ0JI4HNYiOSjNAV6mJ182oeaHyAD059wPb27fzw4h9S5CzCZXOJf4syKdA19Fi35Ew7ywVce8cImG65XQBw/QKY9nymgmvCQLPop4c1QqxDwLjulMrz3sXyvvIK0WL7D0gOdjoK+5ZKpbpgjGi4D66Ec78v5mZmApI+qXZH2zIAP8NssnqkUh3ukHFalh5tpAQAZwG3xZGpJNcIkLbY8pRqZUplGqRabXHIfkY8o9/OcMCzleuCWhn3pCIZgAx5yhTSVpn5X3w6Bl3NAr5jA1LY+ftimLMatt6dYVFeIQBc0zPnYJcxVbbqbi+UKjo6JHzgKJKxbW6cukzGvYHjmfeZ8amZlM9rpqVSbnWBqyxPQ//SJqIVl3LkqI+VK5t48MHZVFZ6qa9fx/XXj2fVqsuIRFLU1BRgmopUymTnzg7q6grp7Axx/vnDcbtlstFi0YlGU9jtFk6dCrBqlbBSq6q8fOc7b7JkyUzWrt3B+vUH2bDhJurqinL4YvToYkKhJEuXvs3Pfz6f5uZ2yss9/OxnO3nxl9dgTaXQsmy2UEQ01WdUoB3591lZWRYqHm3LM98SSZmkz44l3M5/0cKz2/8Frv/3LOFwgm9/+40cDeSFF66hoMDxv6z/fwTvZ51VSjptYrPpHDkyREdHkOrqAlaubGL58tmUl7tz4Huc62Psf5sns3izfiiUJKtTLlzOYpkNDZ6SmbqLH89csAJCDx84INQYb5VcnKwuaduyUug07uFCyTld7zLzYfBUwnvfkQvhiLngrhAdzWVPyYXykieI6k7SpkEineSJ91/iG1OvoeY0OvhV4xv57pybsGoWnDY7K9/5FRsPNTFv3EzumHUDxa4CTGXSGxpiMBo4Q1fttDk47+zxvLT+ZcafNx5TKc4/5zye/PWzXNZwMXaLjWgyRl/Yx1Nv/4Hf3PkYbV3t2Gw2OgJ9XHTOJPZ9+D5nedeCayYULhQQHf0QbLVgGwUYYk7mnAjxA2CrAc0L1goB0JpVNNJGr1C/bbViWFbxmABwMwp9y6Dix4AFNJ0Ptu1ktPfXNF7/Pn999QUmX3g5pI4y8pwv8tf1P2XyxHq5MQ8+BmX/QUQ7i63btlE4fDiXXHwx6158ka/Pm0d3OMxDW7fyemsrr954I4319eiaxkm/n8e2b89Rt2OpFEvffpulDQ24rVai6TSji4u5Y+NGZtbWsnDiRBTwYUcHNQUF1BcVYdF1jvt8eGw2yjO08B3t7Zzw+fjS+PHYLBYGo1HKPR68hoEei6H5/WJKpmkCbHfsEFHyXXcJUB4zJvtDF6Fzebm8t1oFDOq6AMi774YLLoAbbxQUHI/D7t0waZLws3VdHrEY+HzSxjTluN3dIoJ+8EEB3X19hKvPJm1obN9Ojho+e7Z06/MJaIYMa8qWx+cyWyzde71y2larHCYWE8A9darQvrNa6yzd+4kn8qecBegWi5zeypWiwR4czGu5Cz0G2uGTeYrXWSOk0nw6ILZktNapDHA2TKnMplJyYzUzlLks9RvydPGse3ihVyrhyXT+pquU9G23SYU7kZT+TltSySSmYYg2OgOYPdXVtDz0UI7CfehXv2LCLbdgcbkw4nHRTd99N5rViu5wED51ioTPx7ALLkCl0wwcOECko4Ph06fjLC0l3NXFoV/+kgkZU7MsvTDU3k6st5eSc88l1tdH629/y+QlS7A6ncR9Pox4HG/5MGzpuADdVAKOf5bXQ2f11zfdAYN9oo2+8ivyuYcNh77uPDW8dBj4BqTSbXfKgBQNomFIxqWS/eXbIewXY7OrbhJ9NchxFTKIXP+cHKNsOBw9iDF+EslYMAOARQ8dC/RhcxVgcxWCaRD19+AqqkCz2EgnIoT7TxIP9FF13qWk4mHC/SeJ+XuoPu8ymdeM+EWLXVKJkUxwZNtvKRw+huoJl6KUiW61ixIgMz4wjZSAVk0XqUgyhmmm6D/aQtX4S7DoVhjsFxr2rEvQSodhbHgVffblaAWFqFgUzenK6K+LweNFczjE3XzLG2jVtWjnTJAJoHAIFfSjFRZjNr2LPusSKCiS6r9pYvxiNfpN30YrKs7TyINBtMpqNKtVKOQV1dJ/OoX6dD+qqwNj/lUoJYN+TbPi9x9j27YVzJ69HJerjLfeuofGxmW43cN45537mTt3NYaRor//U+rrG0kmw5imwbvvfp+GhvuwWt0kk2FCoU5qaqZjsdgwjBSdnTvxeqtob2+ivX07M2bcw4cfPs6VV/6CTZvu5ODB9UyYsID585+ks7OFwsIadGcJRlE9vZrGKvLUbA9iNrY6s64DmJL5f9V12vqxiIHZSaQK/WTm/U4EVI8lD7Q/Ah6VOwquTDsdAfVWpEoOot/2IM7jMcAVS2H649jcNtqa2njlhlcY94VxXP3c1fhP+Gla1UTj8kZsbhveCq9MjhiK9h3trP/Sem589UaK6orYvno7lz92OTa3Dd2m0769XTTUHUG8lV7KxpWRjqfp2tVFxcQKLHYLFpsF3aaz8fY81Xz+U/Ox2ASM+076iPRGKJ9djqZpxNNxWjpbqC+sZ1TJKELJEIZp8P13v899DfdRX1jPcd9xusPdzKqbRSwdY/m7y1lxqVSb7RY70VSUvnAfI0tGEk6GcyB6eeNyXDYXJc4SnFYnnaFO3jn+DmNLxzKzbiaGaWDX7Rz3H+eRbY/wQOMDjCkZg10Dm0qjR0/BwVViSOauE6CbjsDBFXDeg+AZCcEjcOgxaeOsksq0sxwOrRWXce8YSAWl4n1otbRzVAjgnrAcvKMyIDeVqRZnru/h4wK0JzwAFg+kfJk+l4F3tABHrOR0QMZpdGyrQ4zO7F6RDma11cVjpHp7+mKmz6STF43KmNUmpfpcOCI/2WuaMkY8nWZudWSo4J35tqYhAN1IQKhTzsNVnqG5p6VNMpwHyNMekKJQ8FT+M7SshEvWSVFn54ozKd7ZMWlOq/0cvLtIxqjjFmQmHuJ5qWNBndxnjKRUtXethsufJhy3EEso7HYxuIvF0uzb18PkyZU4nVZMU2GxaMRiaRYv3sK9986kuNhJRYWHaDTF0qVvc//9DdTXF+VY8v39EXy+OH19Ec4/v0K8h3SZgFi69G3Wrft8Rs8t+OKZZ64CIBpNYbPp6LrO4sVvcvfdM6ivL2JYiUOmL1TmH00TE9LsGGJMnbweXiZ/n6zXiq6d+XfOwsdkSib1/6W5zi3/Pb6F/wKL3W5h+fLZuUgsh+N/XdUa/tk9PJ02KShw4HTaGDeujFmz6nK08RUrtuF0Wnn44YsZNswtleVxC2R2zlsnADk2JBdOS0ZLk6WKW2xy8Wp+SDQp1bPkohQ4KbSYUJtcrLJUb80is4RT74frNsClTwkI724R8N21XW4APS1w4T2ADrMeJqHZ6fD38sjbL9Af9nFe1Rh+ufOvxFIJvn7RVcwbN5O7L16IPxZi9d9/Q3dwgO9f9k3++s213HvJ1yhweLBZrDisdn6/ZxNnl9fjsNpYPOerWHUL+zpbMZTJ4f5T9IaEZm63WPnB4u8zZfIUvv7v3yDsD/HrXW/w1p4PsBe5CCQjpE2DF1teRxXY2N96BFWxRpy608eg53awVWa00seh51YB1HqR0Lit1WAtlxnU3nshdVQ+r1aQp3lXPi3AWiUBBZXrpKod3wfpPubMuZzayU+B5gD/03Ic21kZHdLTmRngbgitJ5no4Jjfz2/9fgrLy6kpKGDS8OEopaj0eLh/1ixevfFGagsLuXXDBo5lAPEzV12FTdfZ0d4OwFNXXkmV18ucX/+aldu2kTQMHr3sMq495xwiqRS9mep0ZyhEKlNRG1FcTDSd5tYNGzg6OMj0mhpumjgRm8VCIp3GY7ez++RJ9GPH0HbtEuDb2yvc6WuvFfGx2y25U2edJYDw1ClBnVln8KYm4Vj39QnaBUGmjY3Sj1ICvCdPFl51c7PwtlMpoX1ndNU4nXL8ujoB1y6XVM2PHsVixLFaFVOmyObGRulyaEjAtlKCYW02AbwnT8p8QCwmoNjtltNKp+E735FKtdMpGutFi+QUdB0eeQSuv17o3k6nVMIHBuChh+RrSSbzTPa1a6GhQb4O/1BGA11XeaZzZ5EXuvqkqqxpebp2hl2ARRe6l9ctYDqREgBtmLJN12UwE0sICB9TJzfarNa60CtAOjv7rRBaWaFHQPbhUzmquYaGEY+jTJPyyZOlMq0U595yS47CnaWN2wsKiPb0MOl73wNN46M1a4h2dhIfHMRVUUE6FmPXj39MybhxDLvgAg489RTR3l7i/f10/v3vRPv65PuORiURrKyMYZMmoek6VpeLcV//OrGBAVp++EOMWIxoX5+cj6dQwNvxjPmY1SYAd+ocebbYBFjv+xD8A1Ce4fSH/LJuyyuyz/HPoP24fCGGKcDa7YXiMvja94TesPFlAe1DfQK6E7GMXs8u2uwvfE3A5PFDUD8WOJ0WvgsjncBqd5GKhUjFgnQdfA+bqwDdaicVC5KM+CmuPofKCZ8jGQ3Qd7gZT1ktVRMuzVXELFY77uJKor4eTDNN/ZQvUHXuJWi6BTOdIhkNyLxKhnoeC/ShTINkNEDnJ+9gmilSsTCB7lYMI4kyUkLDbv0EFZbqreWaBahQAJVOi266s01010G/1K4Cfgj40C/7PKrjlAB3qxUVCqLXjQSbDX3mJahwCM1mA7sDraAQy/2PoNeNRCspw3L1DdKPbxBCAYyNr6FVVEEsjLHpz6BM9PETYd5VJJMh/P4TbNhwK+l0LEcR3759NbpuZebMJQSDHSQSIWpqphEK9dDX9wnV1VMBSCSCaJpGbe1Mtm1bgcdTTijUicdTTmfnTvz+U3R27qSmZhoORwGjR19BY+MyotEBGhuX4fefpLHxASZMWEBj4zJ03UZt7QyamlaRivThRgDwEgREFyGAt+e0dQ0I6A4gwDpLIU9lxgFu4CmE8r0I0VF7EaD8UGb/JxBt9iLElXxI7kJ4EKD9HYQuXoUAcCOz3pq5toe7w1RNqWLBnxcw+z9mo1t1ikcXc80L11AyugS7x04ilGDw8CAbbttAQXUBN756I7XTawm0B7h0xaUAbP7OZgZbBxk6OiTmZVNrCPeESYaSGAmD+oZ6NE0j2B5k4+0b8Z/wM//J+Sw6tIh56+ahW3U2LdqE/6SfktEl1M6oRUtpJIwEu7t2c17FedQX13PCf4LFWxbTF+njnhn3UOmpRNM01j28jlsuu4VSdylbd2zlrmniFn7b327j1jtuZdbkWVx/6fXc/O8347a5Wd28mle//yoLLlvAdZ+7jqvnXk3LnhaODh2lsb6R6TXTOTJ4hNs33s4x/zHaAm2sP7ieVU2rMJRBSomRHgdX5Z29430CrD2jJDor0gbhExDvzrexOERbfWhtnt6NEmOzLOX74EpI+TOvVwiINZMCytNh+XGYptCfyxvg0E/yYL1tPRxag9w4TocE6kynb6XkXJLhMyO5tH+AEQLSqYAAAQAASURBVMr8H9PJdT1DBe8X/bIi4w+iZ6riKRl3hjOFMyMhoFyzQJYRYnFIsad4tBR33rsL/MdkW7hLKtRZqWHLqgz9vEMAss0NF94rIHzXajj5lqyrbpAxr26TMWl2LIwOsx+DmgYp/ASOyzjVVS7j3HRMZJS/OluA9+XPgJHAQoJ02uTYsSG2b2/HZtOZPbuewkI7hmEyNBQjnTbxeu28/norfX0RotE0t966ga6uENOm1dDWFiAaTXHkyBCLFm3C47FTW1vIlClVFBY6cTgs7N3bTX9/lCefnI/DYWHZssYzInc//LCDgYEo99zzFlarxpo1c7HZdHbv7sr/reIJ8VkxzDNp4hY9nwQSjsoAJxSRMYRCJtjjSThySvrwBSVR5F+O4bnlX+D6f9Nit1s555yyXCTWP+ZW/7/v/z8H73a7FatV4777ZrFgwQSWL59Nc3M75577CxYv3kJCKxRHRc9w8B+Hd26TC7JmkRk5Zcps3/iFcgE6XScNMmDbvUZ01a5yqJ0D178Jl/xULl62Aig5W2b63lsk1/Cq6XLhvPzZvDGEpwp6PgR7ESnghZ1/ZUvrDn696w1mjjifm2dch1IKXyzEA5d9E5fNwa92/o0trTvoCQ3SExzg6eZX8cdCWHSdeCqJhsYDl38Ll00G9Jqm8WnvcUpcBRimQaHDgy8WxG1zsuntLTz7+u/489tvYC9wcdvNt3Dz9GuZOeJ8ip0FeB1ulDK5efq1FDm9RFJGRjftAdtYqPiJAGRrBaTaRUM9+BMEQGdoST2LQcUFNNvGCj3cOhyMAFhLRDfdszhjUlYAmJlqeLXor0kJ+MaA6PviRJ4Z/nx9yQkmXrSAb3/vZfq9H5J0zqE9EODemTOpKhC61ce9vRz3+Yil05xVVkZjfT3rPvyQ+2bNoq6wkOEeDyf9fhZt3kyl14upFLdu2EB3KMQL11zDssZGkoaBRdex6Tq94TDHhoawWSw01tcTzIBcpRSdwSCvt7bSHQ7TFgjQF4nQFgxy79tvA3BxdTXa6tWip3Y6obRUfk9Wa97crLdXyrfptKxrbJSb8d69wrF2OgVI33WX6KmtVhEzl5XBkSMCont7ZX0W0Z46JQJqt1uA9tCQDDxsNgHW5eVifDZpEkbcIJ3W6O2Vrg4fFkCsadLNHXeIfrq5WU6js1OK5zabsM4NQ+Thpils9Z4eWZcFyHa74NWZM2Xb7bfLfIHbLdsaGkR3bbEIZXzBAony1jTZXl2l0MJRmTE+qx6VSguwjSczQFuTm2J21vl4R0Z7recr2tnH6JrTgHiGJm+3keNMB8PSbywhFewiL7kKR7YqrpC+B/1ifqJLxiymSbS3l/59+7AXFGCmUjhLSnBVVOQzsG+9FQD38OF8tHYtsYEByiZO5ODzz+MoKeHgc8+RCoVoe/NNUuEwn2a13M89R9nEiTQ+8QQl48aRCodJBoOkIxFsHg+63U58YIADTz2FbrEQ7+/PgfnyCy4QKnkqKXrr2tECnlNJqUx/YzGUV8pnysZ11Y0Rk7Mjn8DIsyXH+qqvym932HCoGw0Bv4DlwmJ5NgyphMfjedA++px89WaoH37/M6GSF5UKyB57LoT8aIc/oXzsdM6++FvUTLwcq8NLOpnAXVKZB93HdqGUwmp34Swsl6zqWJBULIy7pFrMzTQtY/Kqo1ttdH+6VWK0YiE8ZTWkkzEiQ51YbA50Xej93Z9uxd95CHdxJYaRYvDEnlx/7tIaiqvHY7HawWI9LYqrCLPtBBhptLqREI3kddPRMHp9Rq6RSmI2v49ms2O58jq5bkQjaAWFGBtfg1QSFQmJblsTBoCx4VVxEm8/ifINojRdtNyjz8L8cJsYmdlsqGAArXYEhIIYW/6GoVIkEgGamlbR2vo68biP2bOXM2HCAubOXUM43MOOHWspLKyjsLCGiRMX4nAU4PFU0Nm5E5/vOFu3/oBwuIdzz72Bhob7UUoxYsRsHI5Chg+flAPamzffRTodpbCwjtLSs6ivb6SoaASx2BDFxaO4+upncblKicWGsFgcXHnlUxQXj8CKVInXAnWIM3glcAHwM/LZ1QoB3vchuuvlcldAR1zAu5HqdQPiEl6JAPHXgT7530olMCfTbhgCsm9FgPzdgJ28e/hRpNot7FwZPCtTUd9QT/GIYtKxNG3b2hg8MkgymMTmtmF1Wgn3hGl9vZWmlU3UN9RjcVoorC3knfveyedYr27m3BvOpWpKFbGhGFVTqrA6rTkddTKcJNwTZuaSmVidVoLtQbY+tJVofxQjaTDj7hlYHJbcuYUGQvhiPqoLqln+3nKiqSjD3MOYUz+HQkcho0pGkTJTLNq0iM9d+TlWvbQKimEwNsiY0jH0hHv465N/JZwK81rTa0x7ZBoP/PiBnL765T+9zJ/e+xNrXlvDrXfdyp233smk4ZPoCnWRVmlWN69m/cH1rNi2gqk1U9lw0waeuvIprJqVeDouQDSbc33eg+CqhP5tEO+CvXdD+JiAx/JGGLlQqtBmUkDxlHVw1SG48OdSgR5olu0Xb4CLnpIKd3YfLGJOVjZDWIjxPoiegv0/gGENMHmNHGfCcjmXyWukz1hPfkyXDInDd077rAlQHWoV4Ht6DNfpi1IyGVk4Uqq6uQq1IaC8dLxkYUMmBzspr+2FUDouv81emNkvKVVqLVO9DrVDZ5NUrKfcLWNPFJzcIuumPSAAeer98hm9tQLCU1Ex7o10i976W63gKJECTyqWAe1nScW6aBS8v0S+O5tHxraRHikmZWNmQQpLV/5exrmB49C9kxQuLBaNqqoCZs6sZXBQwHQyaWbsZJzs3NnJyZN+/vznBcyePQKHw0JDQx1PPPEhc+eOZvr0WgKBBKtXNzNtWg3d3SH27u3G6bQSjaZYvHgL5eUe2tsDORPGMWNKeO65qxkzpgTTVMyZU4/HY+Xuu2fQ3x+loMCO223jkjn1+YpzVi99vEMmx8fWZybWlfimaGT01hlq3tG2zKS6Na/Jbu+BkkIB5f9Q2P7vvPwLXP9vXE43IPv/dfnPTNH+Z+DdZrNQXV3Aww9fTH19IfX1RXkgbk3nTci8w2Umb9camZmzeSWKwV4glG2FzOpdt0HemyZ0fwiX/hzGfVm0174jYpAW65eLoJmQk/hHUB7pydB5rEIrt3mgcgaE2rBq5AzNvjX9ixQ6vdQVVWDRdcYMqyWciKKh8eDcb/PUl+7nvMoxOTD+ws6/YrfYsFttJI0U+zpb6Q0O0h7ooz/sY8ywOn67eyM2iw2Pw8nZ5SM45evmN61bKPMUE0rH+I/7ltG8vZnKwmF898qvM9DXj02z4LQ5KXEVYgTiTD/vvEyF+jZx9Y7vFwfwaJNUrKtflezp1EmINotWqvJn8pzuF3OynlulD90tlW+jG0rvAkwxMVMpMTSzVgsojzbLNs0Bte9kMrWtfPD3LexvXsfeHX9gWFkZ37jlQSwo6goL6YtE0AFTKUpdLnojEXRNw1AKXdN4fN48LLrOnRkjM4fVyvqDB1m7YwdWXWfJzJl0BIM01Ncz3OPBouu4bTZsFgsFDgfTampo6ezklN9PhddLPJ2mub2dmoIC/rxgAY319ZR7PFR6vTgtFu6eMYPuUIjOeBy1Zo1Uk+Nxqeq53VJF1jThU1utgiJtNlkfDAo/euJEAcWVleIEtnat7Hv8OCxdKjcIjyePTtPpPKJ1OGDhQikvL1okqHhgQN53dAhSVgqKirB4HGiaYtUqqRqvXi2s9KKifCX5Jz+RDGqHQ7C/zZY3MFu8WHC+wwGffCLVb6dTKtTXXy/yctOU0+npgddfl1M4flyq1g0NUsQvKICxY8Uh3OHIm5tpOiivWwy/FGg2q1SxdS1TiNDl5pg25P9u7XAB14kknOgU0KcANEgZ0q7AI2A7lsgYpBlyU7XZzjRCC4QzFVdrZtbaFCBv0WHaRLk5A5gmqUiE+OAgJePGkfD5MA0D3WYj0tVFtKeHi5Yvx1FSgsXhwFlWxpSlS4kPDVHZ0MCEW28l4fMx4bbbsBUUUP/5z2PzevOg/LbbSEUiVFx0EdaMhfvBZ58l1t8PSuWOVX7BBbT+7neUX3ghV73xBhd+//s50zT8Q7Dxj/K7G3OuDOJeegp6OkVTHfJJ9fnsifI7CQxCYYnopt1eKCqWz3/WROlroEuo3v4hybxWSvTaHcekKv2Ff5PvzmKV/re8ItXsLa/KOfgGZIDzzl/RB/uwu4swzRSdB94hFQvgLq0CdMrHTqeoahyV58wmFQvQ/elWMSUrFuDtLq3GXVJDMuJHUwqVThL1daJpOmWjpjB44iPcJVWSoR0LYXW46Dr4HqaZRpkmw0ZfiMNTjKZbsNrdDD9nNu6SGvoON5OKBamaeDm6xYaGDoXF6PWjBNh6vFI59g+hgv58lnXdSFTAJ+AZDf3z18rATdNRPZ1S4W56Vyrg2eiuYADNMPKGZ03vobk9mNveRVMmKhQEtxfL/GvRzr9QAHrdSPTzp6DCIVTrJ+gdnTgcRTQ2LuP22/fjdJZQVDSCq656BqvVSXPzGurr51BYWAMoOjtbSKdjRCJ9eDwVhEJdXH75agoL63Ku4YYRJ5mM8MEHjxCLDVBX10Ak0s/MmUsIBDpIJoMMDR3JVcq93uFs2rSIVCqGrltxuUrx+0/Q0bGTUKiHlJmmA6lSu5DqcRNC076bvC5ay2wfg0Rljc60yWqwi4DHEHD9EFK1XgO8ilDEb830fW1mvYGA6qczfY1BKt9ppJrdC0zMHDvcE2brQ1sJ90g11Hfcx6ZFm/CUewh3h9EsGoFTATbduYnCmkIW/HkB89bNy8lsm9c057KpR88dzezls7G5bYS6QwwdG0K36ug2nYLqAoykgafCQ2FNITvW7iAdTRNoC3Bw/UG2rdgGCgqqCkBBMixO9wXDCqjwVFDlreKeGffQHepm8ZbFXHvOtUTTUW7feDs94R6m1UzjzfSbXHXhVVR4KqjwVHDbhtsos5Zh/9jOT1f/lFVNq5hWMw3DbXDLhlvoi/Qx77x5rNy2kokVEwkEAlh1Kx67hzn1c7DpNh6/4nEWTlzI8tnLAagtqmXRpkUc8x1jZ+dO4kYa5R4hVWqLS8ZYwy8Dx3C48EkYcVMGRKZg6rPgrpXxU/92SPSJ6Vm0TQzNwseFVu6ug8GdMiE/9RmhdxsRsJdI25bb5X20PV/5trplst9dD1N/Ie8ProCuDfIrUkgV2EhlwK4u7b214CoV2nZGJnLGokwZ02U8InIAObstm2mdDAlA121ybUwE5QdiLxSw7T8m29Hk+0iG5PjKFIBfPkkMyrzVApR1O5y9QNq6K6UYVDyWXPX9DCOylTKujfSKb1DlNPBWyvcH5JzNZz4kQL75IRh7rRyrq5lchd/ikLFrTaN8Jlc5lE/Copl0d4fZu7ebtrYgP/jBVk6dCpBKmeg67NzZSUWFh7a2AA0N9Zw86eehh7bS0FDHmjVzqasrxOm0UFTk4PHHr+DrX5/EmDGlXHBBJb29EUxTMXNmLWvX7mDatBp0XRN2uqHQdY1UyiSRSBMMJikv92K16jz44N85ftyPx2PHomtopiHV6jF1wnirq5TPHorI2EFlqOKK/JgglRJPl2wedm1lvtLtsMlEfCyR8wP57778HwfXmqZdqWnaXk3T9mma9ommad/4P31O/1WXrK76H52/s8v/E3i3262UlbmorS3E7bYzblwZL7xwteRc927L0GYydPCaBqHD6FntDWI+9u4iocMUjZaZzHcXQfB4nibz3iJ5HemWC2GoTd6/u0hm9WY/lqHcLBPgnYoIlTwZllnFZEi0N55KzHSCYd5iHrjsm/SHffSGBumP+BmMBDg20IHT5iCSjDEYCTCuYiR2i41vn+YurmkahmnwSc8xSl2F9IQHKXYV8Ps9m3DbnDxw2TdlUs7hRdc0VNLgrMJqfrd7I+dVjuEvr75GyYjhdPh78RQVMHHS+bzw4i9JmwZv/O11KiorOHtsPdrgConaGlwlWdWDKzPPq8DdKFVmSzm4ZkC6TzTW6SGwloG1HlxzYPCnclOoWCsxXPaz8gYj6Y4MoNakIu6cKHRyYxCMLqlmm0Hqa1zgmonNWc3i793Btm1bMYDOUIhJw4eTMk0smkaB3c6sujp6wmFu27CBE34/Vl1nVVNTzlW83ONhw0038fP58zGV4mc7d1JbWIhV03BarVg0jf4MQPfa7dy9ZQsVHg8VXi8Jw2B3VxeThg+n3ONhdn097YEA4WSSRDqNRdM4q7SUkcXFlBQVCWpUShBrOJyptIbyWVVlZcK3DgYFPPf0CIdaKZgxQ8BhMCj7eTxC5542TdDn6ehU0+DJJ8Vq22IRsF1ZCffeK+XmoiI5bmGhiJlNE0wTEwvhsJarGt9/v5iKBQLiobZhgwBli0WAcjgshe9JkwR0T5smBfXFi2XdyJFyyqkMj/ORR2T+YMcOmDJFQPXs2QLis2De5RK6eXu7zAX4/bJu2rSMVDqZgpNdaImkfE6HXW5y8WSe3pUFvk6HVJx1XVzDQYCzacrN0WqRdkbmvceVn91OpaTdkVOZi4otD6rPcCBXAsozpmeapuMcNozyyZNB03LA1+J0oluthNvb2fvYY2gWC+GODvY8+iixDBB3Dx+Op7aW8gsuwF1Zie/wYS568EFsXi+O0lIuXLaMBx9/nImNjdi9XrauX49uszHu61/nvFmzmHDBBVw0bRoXzZzJzkiEKd//Pso0SSaT3P397zP+/PM5/8KL+LdF34Hr/l0+10tPCSgeMx6CQ6KftjvhT8+KxrqgSDTZQZ/Ea/0h095ml/0dThg1HgI+cR4P+OQHcu4FMHIc/OU3QkFXSr5vl1s021PnwA03w0AP9HWKU/lXbsecPAOUeYZ7twZEfd1Y7S5qJs5Ft9py2wdP7KGoehzVmYitdCKK1eGi85N3pLrt8NB18D00Xady/ByMVIJAzxHcxZWkEzGGjb6QVCwEGthdRRkH8k5AYbE5GDyxh0B3q9DSo346D7wNykR1tIGmodfUY+54/wznb23CZMmmRsPcvhWtfjRaSal4s/V0ofyDaJXVmO0n0RsvzVXAjc1/kcp1pjKuTZiM3ngZKhaVTGvTlAp1pppNwIe5dYs8t51AKyxCv/EbWIrKcNqLcvFbmzcvIhA4ia5b0XUrV175FJMmfQNNs2CaBjU10wkGO6mpmUZx8Qiqq6fS3/8ppik0ea+3krfeupdQqJsZM+7B660GFFVVU9i162mqqi7AZnMTDHbQ2vo6iUSAbdtWUFs7UxzeEwHS6RjBYEeOXm5ViilKUYhQuZ3k47GqEXAdRujcx4DfIiZnWep4CAHdnsz+RcC9CNXcCzQi1PLXkUp2KLNeQ9zHOxCTszQS17UYAdmzMsc1TUXz6jw4Ng2TppVNHFx/kJ0/20l9Yz02tw13uZv6OfU0/6SZ+sZ6ov1RNty6Af8JP5c/djkTFkygcXkjhbWFuMtloiLSG8FT7mHzXZvxH/fT3tyO1WlF0zWCnUFaX29l28pt1EyrYcKCCTTc34Bu1Ql1h9j60FZCXSFwQJgwPeEebBYbo0pGUeAo4PXW1wknw7QH2lkycwk94R6uGH0Fy2eLdtphcdAX6WPJzCXs/mQ3w8qG8dijj/HJjz/ht9/7LW++/SZLZi6hI9iBYRpE/xRlxoQZrF2xlmd/+SxpM00sHaOprYmh2BBPX/U0Y0rG4LA46Ap2sfry1VR5q5g0fBLfe+t+EoCyOFHO4ZDozwDmU2DEYPddAoQHd4rx2cAOiPVC8YS8C/jBlUITr7sRYba1553Dw8flGhTrlW25fVaJ2dlVh6QCno5maM3HYNed8n7CMqGRZ2dCckA4LKZfypB1BXUiP/sfLUrJxECoXZ6VKcUZlak4K0P6thfkTRw1TQorZkq2G4k8FT1bCc26k+tWqJkt5+E/JmNNu1fGpx/cC75W2WY7jVXlrROj3YopUm2/ZJ2MM3Mg3ScTHcokF9f1wVIB2y2r4Njrcq4FdVK57tktMkiVls/W2SSMz769EO3DMBUrVzZRUeGhuzvE6tWXM2JEEYZh5irOfX0Rpk2rweeLsXr1dhoa6vB47Hi9dkKhJJ2dIbxeOz5fjB072tF1jYICB8XF4tN0ww3nsnz5bNxuG4ZhEgolaW5u5/hxH7feuoH29iCmqdA0cnLQ1au343LZsNkysC87+X5WvRiWZeVkui737yxQNgwB3A67SMkcdhlXOG1w9giZXD/Slp+0/xc1HPg/bGimCZ9hELhEKbVf07SRwGdAuVIq9J/t93+jodn/iuX/W1O0bI51Ntf6P12fDEPnNhg2US429iLRkOx+TPQjaBA4BnueEGCs0jDwiYDvd+8605Wxa7vQhxzFAqg1i8y4vrsobxBx+TNy4epsEgOz3T+RKnlNw5lZ1/EhEu5qToUC9IYHOa9yDKFElFQqTVXxMExlkkgn6Q0NnZE/DZBIp7DqVrqD/byw8698/aKrCMTDTKo+m3gqidvm4M47F7Fp00aG+gcpLSvD5XYxb9nX2PazP2NBsptr6mu59+FluIYVckHNON7f1cwtN9+MPaXhdLtY/fMnmN8wCythNDMIluGgYvJFx/dJ5do2ClQCYrvAOTnzV8hc8PsWZzKtK0HzZLalILZb2uruzL57BIgP/Uyq4LoXzDAjx5zHX1+YzuTLXiYS6iWV8FFcWgvxj3n8F+/w1zf+zpZ338fATjydZmdnJ7dcdhm/efllZlx0ETe/8UYu2/rpq67K5VUDFNjtHPP5WNnUxP2zZqEAj91OTUFBxr1dI5RMEkgkKLDb+etnnzGyuJj6oiI6gkFm1dVh0TSShoFV11FAyjDwxeN47HZ6QiF6IxFm1NZSbBhora2CIu+7D8aNg+z7xx+XivLp4c/9/WLVresCkDVN7LqrqsRy22KRfR55RLjWX/qS7AcCuLOZ2FVVeUo5ZCjQGXCUTkufdXUER5zH9madiRMFf2fZ0oYhoDgWE7BbVpa5J4UFgC9dKmlgui6H6OkRYA2CUVOpvB67uVlOvbwc7rlHTq+iQgD5/ffLqYbDcnrZY0ajMicw73ID/Vgb1FQIcNbIu3ZnF6UysVKGAOUxGYqfYchNst8v7qBed36drufNz0BA9Nh6eS7wQGVZPt4L8gZn2bxtkMq2103KSBNqa+OzjDO41ZXxcdB14v39WN1ucRHXNAb27SOcMSqzFxVhdbkwEgmSwWBOjx0bHKR88mTiQ0OkQiH++OMfc8mdd3LVwoX85oknsH74IRNuvZXJV1zBq3/8I9WpFNHeXmouvlgivJTiW1dfTcnEiaxbtw6b1ULfpweo3P2ugNxjn8LRg2JiFvCJ4/fp679yOzhcQh0/3fTsa98TYLz5T0L99vXDzx6Sbf/2XfletYyWXSHRXSXlUFSScdtFBibHDgpoz5inGSVlKJuNVCKcc+/WdSuH3/8VRVXjqJ5wqVR+zXTOATz72mK1o1lsdB14O+co3ne4mWDvMUZceA3ukhoUEPN14SqtIXVatrXdXYwyDQHxDheDJz6S6C7dStTXhbukKrfN7ihED/gxm99Hn38tBPxiRtZ4KdjsaB6vgN2CQvBmJtTCITFAa/gcKhREKynD+NXPsNy8ONfefOU3aOPOwzL/OlQ8jubx5L5DlT1GJhdb8xRI7Ff5cJTVCoaB+e4mLJ//IoamGAwcw2J1sHXrQxw8uJ6JExdy5ZVPYhhp4nEfdrsHpVTO/dtm8wCKQOAU27ev5vLLV2OzuYhGB3A6iwkE2ohGB6ipmS6sgs4WCgtrc87uzc2raWxcRjDYQWXlZKLRQYqLR2AYSTo7W/B6qykrG0syGcZuLyRldxHQdEJAAULpvhmpQDcggPi+zH9pD0IBdyExW6uBB4CRCPBejRiddSFAOY2Ym9WR11OPQnKuVyLU8kq5KtCSabcVAdvPZe5armgS35EhmlY2MfvB2RSPKMZ33EfTqibmrZuH1WXFTJl0tnRSWFuIq8yFbtHZsnhLzkn8qmeuItwbprCmECNh0LGzg6L6IopGFLHhlg25dnN/MpdIX4QPn/iQuWvmymXMVIR7w1KtRk52y/fyfX/+t5+ndbCVvkgfkyonEUwEKXIUsb93P7PqZpFIJ/DH/VR4KmR3TfTZU8ZP4Se//Amv+V/jusLruGneTTz9wtN8ccEXOXLwCF+88ovMWT2HH139I8aUjEGhSJtpfvOb3/CHl//A3974GwBum5v+SD9pM02Rswin1UlboI01zWt47PLHcGcYD3/65E9cPfZyajzlaP1NZzqHbxwv1O5Jq0SLbfXAxw/ABWvkj5AKgjPjo6FZhDKtWWH3nXDypYzb+LNS6S65QKK9Dq0W+re7HnbdJq9dVVLtbblVwPeYW+CCtRlzMFMArr2AHNCGvOt2Miivi8fmKd/ZxUwL6M2anRWOEEOxgjoxN8tWpnNu47UZN/F4JvO6RijwgWMZKrqeN0vLOo8HjkvhpnKa9Gnzig+QAuweqVyH2sQnKJt4Ezgp1edUKGPY65Lv0H9UYrvKJ4tJr71IzjEdkwmFVAzC7QLMI93yqJwu55EKCwi/4LtSLHKVg7OUpKOawYCMs5NJg6VL3+buu2dQWenltdcOsX17O089NR+rVWfHjg4mT67M5VgvXz6bsjIX99zzFsuXN1JZWZADwydO+HjssWYeeKCRMWNKUAp27GjnvPMq8HrtKAW33baB9esPsvD/w95/h8lVnVnf8O+EyqFzDopIgCQkkoSkbmGCkAn24MQMYHvGCbAFtgAjjIQzkowEBhOMjXF8jIOMbYyFhAg2Rq1WICMEBtQtqXPuqq5cJ71/3KeqJMbzfPM84/f6vm8857r6qnTOPqeqq/bea691r3XlAh544GJs2ymapG3ZspKxsTQnz61Cc6zjjUk9ugBqn/f4bOtoWPpqx5Gx/92mqZFQaU5QGXU9WNwVEVX5b21u9nczNFMUpUFRlNsVRfmdoiiPFf7+DtfoAOXu/SgCtnN/h3b/223/GVO0TMZgairPX/5ylLfeKrHbhaiuvr4E4+MZeV7VBNymh0X6khqAaDOc8UXpHBVFQG/DUmlc9cqqIZpr9NAmHamdh8Y2WSEM1kFmXFhp1QMrfwAf3C5ScjMnA0GkRUD4knUCzt+ddX30KazMGA/t+z3X/u52Nj3zYyoCESrCUXomB3l14G38uo+Ax8eipjn8/MXtWLYNKHg0HUUp1Wv/7IXHWdg4h4H4KG+OHKY3PkLtpQv500u7+fPbz9N1tJsr7/si7zl9Gbv27Kbz+X08t7+TR373O04+YS4n1k4HINpYRfM17Vxxz40827mL5WcuQVdVFGsExr4C5lHIvgTWiDDWSlDk3sNrILBEmGg7BWpAAHJgBYzfJdJvRRNg7phyLI7UWSseeWyOiyM5Nldf81maZ5xK30CcVR97ntlzFzE8+CbnXHA5p5x2PguWfZG/dLzCz376U2zH4nAsxsc+9Sk+c845jAwOcvmll3LKSSexvr2dy+bN4/bzzyeRy/HOxARrdu5kJJUibRhsdJnswWQSXVX56rPP0j05SUdPDzYwkEjw1WefZSiZ5MMnn0z7tGlUB4MsrKujs7eXrslJPv/EEyTyeWzHYTKbJW0Y6IpC1OdjWUsLtiO1uEWa9q67pBNvbBQJt8cDd98tiDMYlNeqq6XYubNT2O3VqwWVDg4K+vT7Banee6/kYt90kxRKJ5NC937xi4JWC0XR69ZJu4GADAQFu++FC6G+Ho9ms2iRU0z06uwUdrmjQ0CubZe82JKub0yhnNtxSqeod1VXnZ0CigvAuuD6PX26AOfHHhO5ud8PX/uanOemm4QtX7tW1g1qauT4ZcvAsBSc2S0yKE4lS4ZkUGTfi1Jtr0cGS0URUHxkQAbYmgpZsVYUWa0GMTg7MlDKvZzZLK/Pbi1lZxcGY02TGuucy5TnDQHp0RCoKtff+EUWnX8+yzdv5tXXXyfR28voSy9xwkkncfp553HWueeyuK2NX//qV5SfeCLN557L/OXLWbh0KWecdRaL29r4ze9/z/iBAwQbGqheuFBqt6NRQo2NXP7lL1MBKJpGPpHg1BtvJNjQAI7DwQcfJFhXR+uFF5IZG+PFb32LsaNHefyNN7j56qsZe+UVFBwB1s8/J9nVZ66Q+CyvX2Tar+yV3OvlKyVmyx+EbFp+p1esltiuiy8XGfiOX5fk3bPnw7d/JcBa16X0YXRQADrArHlu0b0rjcznXUXBiQKsn39OgL3Xj5FLoqoemhacX5SIlzXMpWb2Eiwzh/I3XFwLwFpRFGpmL6asYS6a7qVm9hJaT3sfuj9C/4GnyKdi+KM1KFCspTazyeKkKlTVhMcfoWrG6RjZFAOvP40nEEFRNTyBMGPdL0rZSedfUJpaIJUsmo0RjoLXh5NKojQ0oZRVoOgeyOdLOdS7/4za1ArhCPrnboZgCMc0UVumo13zRdT283GyGcimsbY9gjM+gpPPi3z8GHYcv1/qtZ/eJjnhqoJ6/sXYr7+C5Zjs6thIV9eTLFu2lnnzLuP8828nHu+hv38ffn8FXm+EZHKY5567zY3jkoXQ3bs309S0mGRyiL6+vQSD1aiqh0ikkZaWZcTjR9mx41pCoRqmpvooL59GZ+dmDh7cSkfHRpqbz+Ktt/5IJNJw3L4+X5hYrJvBwZeYnDxUBOXHbuuBCyiZl20GWhG597C7TxkCgFsQn+cwAsa3APMR9nkNsBBhwlcgsV1Qqs2uQeTh17v3e4GVSI62iuRmZ22HSGOESx68hPLp5Tx1y1OE6kJc8uAleMNe4kfj7Lh2B6GaEFN9U6huP9S2rk3yrm9tBwUClQFih2NFOXm8Jw4OtK9vZ8GVC1h19yq8YS/JoSTNS5tJDCYYfGkQ3afjL/OTHkvjDXvxBr20r28vZmlblsXmzs0sqF3AYGKQrz77VQYSAyxrWUYyn2QsM0bIGyKRT/CZbZ/h8ORhJjOTAPh0H4+99Ri/6vsVqqryTx/5J9bsXEOgJYBaqdKcacav+1FQyJk5Ons7Ofv9Z3Ng3wESkwleGnyJrokuQt4QteFaNEVjNDXKQGKAu1bdRdgbZm/fXvqn+rly3odo8oVQcKDiNHjrHpF/++tL9c+5cTh4m8wNzrgX9CjkxoTNTh91I7q6+PyVS5g++ySU5Q/zSm6l1HE7kAsv4tqPncMJp1/Igmte46OrNwjZMfSkMN2qhx//5Cco7Vt5NLMeFm2GVLfUZls56ZPi3SUptm0Iu2zlwV9dqot+96aoAooLddpGRgC06hHwaeWlPvlYozSFYzKv+10GdabMNwuy83zC7SePUUT+6VoBwThC8FTMkfmlgrDkXY+JBLx+Mcz9CKSHSvPcwvb8ZiGXjjXpzU+JXNxXIbXXTW0CvFODct5n1wiw1v1S8/3yPdCwGPwVogAY6ARgdDRdlHBv3tzJ1FSOlStn8uUvtxMICAhtb28lGPQwNpZmxYpWvF4NXVd57LG36O9PYFk2w8MpslmT4eEUW7ceZNOmDmzbYffuHhYsqCUY9DAykkJRKOKDLVtWcvhwjKuu2sboaJoHHriYUMhDT48YVR6XT90zKIvvHs/x2dbRsMwfTFOA8rGGZ4U0EtOSuUEhysuyIZOFt49AOvsPLRH/TzPXiqLsAV5EFjatwvOO4zz8X7oARTkf+BWQQhZjP+g4ztPv2ucG4IbC47KysqZYLPZfOe3/326ZjFFkn+UHWtqOjeO68caljI6mWLFiGpGIj1Qqx1//Os7mzZ2sXbuMuXOrCGfegWirdCxHnhQnxPPuF2Y5Mk1emzoipg2F3EKPixoUTTqiQBWgSCf33E1w+vXSMU71lOK4Qo1u7Y0jK5SOLfXWiV7puIy023ZI2k0NYQRriRkmft0LioJpmeiazjef/AGnNZ/IaU0nFVltXdXQVY2e2DA/3PcoN53zcSYzUzy091E+fdYHaIxW840nf8DHz7iYX7z0BPMbZrF02inUhCvQFJVkPsNocpLxdJwTa6czmpzk5y9u50vnfQLLtkjkUkR8IRwc9MIqquMQ8VooQ1eJLDxyGVTeABP3iuM3ttReG0cEII9vhKp1YPSJo7hWLwBcAfAIEDd6Xddwvzwe3whVN4M+091PEVm5nXCN1KKl8+i1IjsPLJEsbSfHlDKbXUd7qAmFuGffPrasXEnQ40FVFLKmiV+X92K7fcBULkfONKkJhUi7EVx3v/e97OvroyYUYjSVojYUYmZFBZ/bvr3IfH/v4ovJWhb7+vpoDIeZVl7OSDpNKp9HAW7v7OSWtjb6p6ZYMW0alm0X2exqQE0kRGddXy/a59tuEyTZ2Ciss2mWDDXcHGOSSfjSlyS267LLpBg5FhNWuxDXFYnAo4/Cc8/BPfcIfbxxo0Rt1dcLsCkw4JmMyMsjkRLy1XVSToBDh3X6+kSGrWlCaldVCf6/+24B1ps2ySU3u+uYQ0Mlwr3AOOdyguFzOXm9t1f2L+wXDAp4zuUEbBuGrCvccINIywuR3w89JG9/agqmtdr4VBOlAKihFKV1uB9mNJao9sMDpcd58/gormxeBtsZTSJVjifhjS6orhDZmO0ISPd5hZlOpOX/0eeufBciuGyXJfcIA2Ll8zzx2B+o9fv5yA038Jtf/IK5LS0YU1PMX76cX//0pyw55xySAwN4gkH8lZUomsbsuXP56d13o3d2Mu+qq9D8foxEguz4OFWnnILq8YgLta6TnZjAG4lw4qJF/Oyee1Cfe46TPvlJTnvve/ErCmY6zYqLLuKDoRCJ554jf/rpfPXZZ7mkrY09Bw8SCAT4+prVnB/vlaisRExA7UX/IuDQyEG4XD7T7jegeZYUvueyIvH+wL/JYxSpn+7rgpknS383NgxPbHWjtWoFWDfPhERc6rZnnAheH2TSUpsdCEoddnwCJsf4/Hd/xGM7tnP0aA9b77mes9rOp3HB+cyafQI+n4+AP4DtWHxp7VouvWQV77z0DB+//ls4jo2VS5O3FA4fOcpgfy+VVVUUxnsFSE300/vKdloWXUSoshHbMhl68znqTmzHMrKMHtpHw8nvwcylGe0SxtzIJDj6wu8pa5hL04Lz6T/wNPHBt5h++gcIldWj2DZONoMSCOJoGko+L3J5RQHLdCO5gji6BuNjOMkp1OZpYlgWn8Tu+BNq23kQDGI/+UfU9vMgWo5i28fnWq/6J5xUQvZvPw+lvFK+b4//triPevYFKOEIdn8vZksjk5NddHbewfnn347XK2qWnp4OQqFaUqkRmpuXkMlM0tX1JM3NS0kmB2lqEpVAKjXMxMQhIpEmN3prcVFS/sc/fvqYeK378XgCTE6WYr6i0VbXdMghlRolm42RSo3Q2rqcbduuZunSG9mz505WXvpTDun+IkM9x/05K4hhmYFMvF5DTMY+iDDcJtCNGJk1U8qybnSPX8Px7Pd6hLW2kIitAcRB/Hb3uTySs20DowjzMQb4MgaBt8fp2NhB2y1tlM8ox8pZwkS3RLHyFmbGZPSNURrPaMSxHTSfRj6ZJ5/IE22KsuMLO1i5eSU7rt3Bwa0HWXDlAi66/yIc20H1qmBD7HCM3Zt3s3LLSjwBD6nRFNlYlj137KF9fTvhhjCKqqB5NVDAMR0Uj4KlWnRNddESbWEoNcSTXU+yv38/D1z8AG+Pv83mzs2sXbaW5mgz9XfWs/2K7SysX8iZ887kJ7/8CWatSX24nhs/diNXfe4qzl55Nk88/wQ3fuRGntz9JI7HIUyY8tpyLNti22Pb+MaXvsEzrzxDxBvhwMgBZpTPoD5cj2mb+HU/iXyCeC5OxBvBcRwsK0NruA4l2Q1vbJIs6vG9Er9V0+YutFvCKNcsF/OxQtRWuk9Y7rfugdPugheu5bmdW5l56iW0Xf8qj/78bhaddQG8eB3X/ySHaTvcs+XrKL5Kht58gvrpCyVTG5UjrzzGFZ//Do6V4+brP8ul//wpad/OQ/Rkuc3FBEjbeQHFBSa7EM8VaRaWGVwm3R2DCvJqy3Cf14+P9CrkXhfaUL3u4/4SWz3yipibeULyeSiaEDaeoADbgiLyg9uPYZ3d+u7n1kodth6QPthISztPXy2A+32PyLyzUMut+wUQb/+omJM1tYvMO9UvxruqTwC35hVAf6zacvE6UWF6o/I5DXSSqjmH2JRJIpEnEvGi6yqmabv51QqapmCadjFma2QkRV1diKNH42zcKFnWfX1TtLdPI5HIFdsJh72sXr2dLVtW4vNp5HImfr9kYiuKQi5n4nVz4gGuuqrEYt955wV4vRqapqIqDmGvuwj+HzHXx2ZbT6Ug7C+p2GTSKJ9tgZl++6iw3boqi/IFhnvOdJlP/Dfc/m4514qivOY4zil/tyuTNnXgaeArjuM8pyjKmUhJ0ALHccb+o+P+UWXh786yPvHEquNk3++Wjd9//4VEo368Xo2pqRyf+UzptR/84BKi43+G6oUiNfJEXHDr1sCkRqSeJNIknVC8S+pPimA5IlmHBXmOosPUYen83i0T91dKB5oaEBlO/WLppN7aCh98AmpOcXOzI3JuFIyR18g0tjE4NcoP9/2BTy25lJZyqYH2aDp98REqAhF+9sLjfHrJpTSX1/Ji31+pCESIZRKc1nwiw4kJ9vW8Ttv0hfg8viJQz+Sz3P3cL/jXM99HTagMj+5l09M/4gsrLifg8WNYBqOJGNXuhNrv8bq+DhaJXJKKYBmaohDQLJGE2wmRhWO7DHUSRm6Cqi+KEdnwdeIc3vgIBM4UmXjgTDCHwegpMdvYYmCGV5hscwD0JsCR9mq3CDNuDEBwmfzTC8YTwh2BnZY6bAXyto8pw2H19u0sb2lhxbRpbHKl3jMrKlAUhWQ+z81PP81Ny5bRNzVFSzRKwOOhIhDAr2kYtk3GNFn71FPctGwZDZFIERwncjkaI5GipNyybXKmSdDrZSqXoy4UImuabH3jDfb393P3qlX4db0oOV+7bBmnlJWhd3WhFOTaAwPi8r1qlYDrXE4CpcvLhc4tBEYXsqkLLt8g+mu/X5y+7rpLEGsoJBrqSKR0jKKU8rQqK6W9wvHhsGvy5UAmw1Swjl0dKnV1IguvqZHTXX+9kNsf+5gc9oc/iAx82TIZbzo6YN48OW3OLa+96SY5rrFRwHF5uRifHTki5eN33VVKINu7V0zSgkFp7+hR+VuyRAB6Oi2pZBecb6FhC9NcGBS9HteUBFkU6+4XI7PCpmml2mqfVwbRt4/KSnVZWAbdggma5srDc3l5DkpZl+/0wMiEO4hOK+VcF49VMPIGIy+9SMXcuZx4+ul8/dxzufTWW0kPDbHoggt4+P77ec8//zO2YZAZHeXggw8y7zOfYdGqVXz9nHNYev751C9bRrCujpGXXsJfUVEE2PmpKXS/n1wsxps/+hGX//KX/Obhh5l/wglMvvMOk4pCS1MT+Hx8c8sWXj94kF9///u83t1N2/nn89B3v8sVl13G62++yYWXXsrBF/ZT19AoZmIHX4TDb4kEfHKsJA2vrgczL2DY70oLPT6KM6WChHIqJkC5twu+85WSNNy2IJmQzzBSLo813XXBjUu9tj8o39WJEZ77ziamf/LzrLjwEn79y59x+hlLMLIJTpx3Kr/97W9YtOhUrHwG3Rek/29Iv7e9FKejcy+/+NF9bi52BCMzVZR+q6oHVZffj6J5yKdieAIRLCNLcvQI4ZrpjLzdSXzwLZGgzz+P9OQQwcrG4iROJtMKyuS4yLOjZWJCFi0rgeVQGHvnH1DbzhUJeH0TiseLY+RxhvpRG1txsmms792BMnc+6tkXYH13M8qC01EveB+K7sEx8thPbUNdfg6EwqBpKKaJ4/Gg2LYosRREfh6OyMKIqqLoHiwsLGwcx0RRVAwjg8cTwjQzZLMx/P5y+vv3U1bWSllZK4aRPi7Turx8BqaZY2DgeWprF2AYSXy+MrzeMLHYYRdI34quB/B6Q+h6ANUtQVAUDdPM0t+/j2i0hampXqLRZiorZzMxcYipqT6i0Wb8NSezW/NQg4DaNqTWeRS4AwG/7nIqaeAV4AzEzGwPUIU4jW9FXMQLcu4jiHy8GzEm0xB2ewCRgncgDLeOMNV3UZKRN1Gq4Q4mczz1qT8WZdhnf+1sIg0Renb3UH9qPcnBJJ2bO2lb10b59HLifXHKW8r542fkmMu3XU7DaVK+lRhI0Lm5U8zOHMhN5fCV+fCGvRx97ii1C2rxRXykRlL4oj6GXhniFxf9oigt79vbR/PSZuJH4yQGEjQvbcY2bOyQzeHEYTbs2sDNy25mZsVMFEVhJDVCLBtjJDXCspZlXPP4NQSfCLL98e2MjoxSVVVFJBLh1TdeZderu/i3T/4bZVYZfo+fm9fdzMkrTubVt17l3pvuJZvJomoq1dXVfGPjN6ibXUfYGybsDeM4Dj1TPWzYtYH17eupClQVZekAYRU0x4HskLDI4/tFjp0dFka5aonU/1oZ+V29fENJ7n3GfZCPCeB1FDeyawCqljB97mk8+r/uYNHSC0kNvkrDSefQd6SLqB4To7J5t0CgETJD2Adu44IvH+H2L13Jjbf9lDWfvIhLP3iZ7Hf6vZJ/newrSbTzU/8e5E68KfO7spnCcEeaj3cOty2RiDuWzP3ix0jFy2eJgZnmEeA6dVQMxTR/Sfpt5QSwOtYx8xt3s3IQPySs9MofQOyd48sKE30S1WWkYdfNosSMTpe5aqJXFJbJXgHOiibZ1mfcJO/RExIQnZ2AbAxe/o5rmKbL9RkpAeN2Ht76DQzucY1+3XI/M03SqSQ+lUNVFYJBD7oumdb79vVz2mkNjI2l6emJs2xZC9msyU03PcXatcsIBDxMTmYZHU2xZEkzPp/G22+XCLE5c6oAOHw4xoYNu1i3rp2ZM8sxTbuYea3rCqbpoOsKXV2TbNjQwd13r2JkJMXGjR2sX9/OSXMr0XGErymUf03GobaqVOPuIBFbRfCtQVefGKAZZmmuUci1zrljfzh4PGgP+v/bSsP/njnXLyqKcsLf4ZqO3RYBjY7jPAfgOM7ziK/GqX/n8/y32N6dZZ3LWce9rqoK3//+Jbz99rV85SvthMMlczO//3hJud+nupLwQZHDgLDPqQHp+PQA6F7ANahIDYrjYnqktLoaqhOgPLRfGGlVk7amjshq4gt3uJnWe6UD9oQh3Cptnne/OI43LpW2Y13SqelByE9hVC/Admx++vw2FjXNwavp4DjUR6upC1cyv34Wv3jpCU5rPpHKYBkAJ9ZO5xcvPUFNuBJQyFsGTWW1+Dw+fLoX07Z4pf8tJjOJYm52zjJ5tf8tNzM7ybee+TGWbdNUUYuDw7f/8nP64iNkjRyvDx0ia4j7eM40MGwHxxqD/CGRhQ9/XmTeqh9qb3dBbgCq1guw9jQL0PY0geIThjqw2GWaDZF/OwYojtRce6YJcFd0qLzRfW66MOGODXZGBjNzVBhyx3bP6YA5hldJEtA01re3c8GsWUXTssFkkqPxOFdt28ZYOs0NZ53FQCLBmU1NBDwe0obB6u3b6ZqcpLO3l8FEgsVNTWzs6MCnabw2PAyOQ9Tnw7JtEvk8U7kcYa+XmlCIoMeDpigcjcf5ws6dLG9pYcvKldiA5Tj0uRFdd+3di2aaAqwLNtnLlomNtqaVgHUqJag0mRRwXTA+6+mRLKy33xYa1++X58vKBKlGo7J/AVAXWO+pKUGvqVQp+9qyRDLe1SXI2A2k1nSF9naYOVOAdSYju951F1xxhci+b7oJ3v9+Ac2rV8vlnXWWNNvbCy++KPj9+uvFUy0QEIJ9/35xD//IR4TJ3rBBMNXq1WKA7veL2j2ZFKV7c7O8duiQHLtggfzLURQByCdMc41J3HrqqaR8P2Y2CUgO+GTgK0jFy8KyP8ixtRXyeiHTUtfkuFy+9ByUMi5nNguwLjiN+rwleblXB01D9XqoOuUUjHQaI5mk4sQTxbn79NPxV1Zy/ZYtnDRzJldfdx0J26bm1FN588c/RgHu2L+fD3zjG1x93XWMjIxQc+qphBobqVqwgPHXXsPK5dCCQVSPhxP/7d/cSRhogQAVc+dywimnEKytxU4muaK9nd179qBoGi2NjaiqypUf/SjZ8XEWzZ/HjNYWDrz6irDHo4Ow+D1Sc22ZAqyff04cvTWt5Czu9ck/tusgTAy7t6NSiz06IKD5hAVw1rkiG+9+U4B6eSWEyyTj+lffk/MZefjDz6TGGwTAb/8VK1LDNLdOw8Fhsuc1HNvE45dFyNGu5zGyCTRvANsyaTj5PVQ0zUP3Bmmcfx4ntH+cn/zs51x6/hkEKxrwBiKgqIx3v+TGd72A7g+hKCq2aYBt4Q2WgWNjpGOUN52Mxx+mcf75zDn7EzSc/B5QVAJlNdhmHsvIkUtO0n/gaRTbFqOyukbQPSh1jdidrqlZxzOQzZScvmsbJJN6228glUCpbcDa8TswDdSP/Kuw1T4f6uWfQrvwUnAcrCekrlW76AMQLcP56xs4vUfke+k4OJaJk5zCsW3U5mkolTU4wwM4B1/ByecglyUW66anZzeTk9088cTnicUOo+tBAoEKstkYTU2LCYfriMd72LlzDanUMM3NS4nHe7GsPJaVcx3Bh3n22a+SSAxg2xaBQBWXXPIg8XgP3/veAhRFAxxMM0cqNYJpZslmY9TVLSQUqqW5eSm67sdxbCoqZtPa2kZl5Ww8ql6M4mpGwG4S2ITUTQcRYJ1BwO6ZQAwBwm1IPd06BFjf6s4J+t19m4GzkAnfTYiDuPtr5jS3TYDb3PYmgcXusfXuuf2aWpR4L//ScsINYVCgtb2VfCJfNDvr2NiBYztSG63CqrtXsfqvq2le2ow37AWXaSvIvxNDJadwFIi2RBk5MEL8aJxnv/IsqdEUre2trP7r6qLzeO2CWmxDDNVqF9QSPxpn5/U7sR2bDbs2sPXgVgaTg/RO9dLR00GFv4Jyfzkt0Ra8mpcHL3mQu++7m/fc+x7u7rybJ155gjNvP5PDscM45Q6jHxnltG+exq79uzj/4vMZTA4yb848TvjSCfzymV+ys2MndZ+ro2x6GYcmDjGUHEJVJHZww64NPPbWY/TGewl5QyxpWkIqn8K0TWxUnPRRMTErRGJp/neZkh0SQ7PskLxeiNrS/AK6918j0vDoCSInf2G1zMeCLTC2n67BFJXVDWzcfBdnvOdDtH/6Nzzz0zUCcg9u4Nvf/w3LZ6Y4/bx/Fbl2ZI4A656t0n6yT4xtrbyALW/UnWdkZS7ojZZk37YhLtqmu4Jc3BwB12ZWHpbNhNpTBeQ6uDXXA7JfuMElcLoFtCf7JPcapP34YVfx6M53HUsA9Ok3uHPTIZmbpoZk/qjq8PQ1IgOvXyykkKJI1GvjciGAaha6gyfSzgtbZD6bGoBnPify7syIHJ8agGevdw3ddBjYI6z8SVfAufcJ6z111DVYGQDHZHQ0zZo1Ozl8OMbUVJ41a3aycGEdgYAHv1+ntjbENdc8Xsy17u2dIp02ueeefZx2WgM+n4ZtO4yMpHjssbfYvLkT23awbaeIATZu3IVp2uzd24dhyGdz6JAYmh06NEl9fYT77ruQYNDDli2dLF/egteroSoKSlcv7H1NzEl1DSrKXGPZpIztIGN/NCxA2bSFjbasknS8Z9AlImyZR4RdJiDgF8b6vzGw/s9s/yfv/NtAp6IonYqi/Knw9188fy/QoCjKSQCKosxGkiDe+i+2+99y+9/VXGcyEjh/9dXbSKcNZsyowO/Xjzn2+KguFJVkzkN+arTkhnhs3Yk3ImD76WukI2tYKh1ew1ny+lNXifnZ0H6pQ1E1WUl8a6sYSeRicn//RumI92+UVcGyVukEn1ktK6NQqmX507WyuhhqRPNX4FF1vnTeJzj/hCX8YO/v6Z8aRVc10mYOn+7l+rOvZFHTXDb/+accmRjEcZwiaLZsi9pwBac3n4hP95Iz8xwc6mJ+/SxqwuW0TTuFm875OEGPnxNrZxDw+PjhvkdZ2CjrR+PJSXyah+va/4Wx5CSqojCvfhYBj4c5Na3Yjo2mOChGv4Bdrc4F1F4XIPsEdBuHBSQHV8D4lpKzOKrUXjsmqCEYvklu1bAcb/RIvbYakn28s4WVNgcFcDtZGPmCOIdrVeBpEfZbcVyQngUrhqJAazRKUyTC9y6+mO1XXFEEyo+99RZ9U1PMqqxkaXMzk5kMYa+XoWSS5S0t+HSdU+rquGvvXlbOnMmt7e2oisJZzc0MJZO8NDgoscaKQvfkJKZtM5xKcTQWoyoYZCiZZEVrK42RCGGvF8u2Wb19O83RKL+77DK+d8EFKOm06KkfeaSEHhVFdNeTk4JoQyGRc9u2AOJQSCbVfr8cGw7Lcz09AozTaUGf2Wxpv4Kr+Jo10v5ZZwnKrasTnbdpiv56YADOPFPQrqZh28Is79kjuySTAqgPHYLrrpOv76ZNwlA3NwtZPjgoedXpNMyYIesFALNmSSl4X1/JPbxQP33aaQLcQWq2+/vl7Xz1q9LesW/X7xdWO5WCoWF3TpPNC5i2HVlZPjaCq5BXDSU30KjL0L/TUzo2b8rrPo+4hCdS0t67n9O10qA5u1VAezYv533XphmWxGtVV+MrL6fp7LNRdR3bMHj22WfZ+/TTvPb229TU1vLp1auZdtFFnL5+PX968klefv559u/ZQ/OcOXzyM59h9OWXyYyM8MKGDfgrK9H8fqxsFhSFcGsrOA75ZBJF08g5DrFYDCuXIz08zJOvvcbC+fPxV1RQXV3N6a2tPParX6H5fPQODXH4yBFOenOffJjRCjEqmxwTFrlQV33hZfL6zt9IrNbEqDiLR8rlfrhMgLiqllzERwfho9dBTYPIwcsq5INxbJFLr/qQ3Kqq1Hbv/I2Abo9PpORfewDH68U2cvgi1RjZFGY+jW3m+cK6b3HGkjY+9alP8vruRzHzaernn4uRmWLg9Wfo3NPJ5OQkl33sKoxsQmK80jHqT36PxHedtIJ8Ok46NozmC4Ki4Ngmiqaj+0KkJwdwbBvHNhl5Zy9mLgW2hWXmsS0D2zIY636eqeEuUEBdeQlkUjgTYyi6jnrhpcI8t50L/oDrGH4eiqqW6q07/gT5XKl2unUGhKMovgBKtFwiuxJx1MXLXED+CEyOo8w/RV7f9oj8MFPJkkt431GcfE5cyk9eCIqCpavs2rWBUKiWqal+li69EV0PkM9PkU6P4fWGGBx8Cdu2CAaraWlZzt69d3HyyR+moeE00ulRQEBhoZ66s3MzuVycJ5+UirWyshZOOulDeDxBbNtCALY4kxtGCkVR2LnzC0xN9aEoKqaZw7YNYdIVlQwUo7j6EHl2I3A/8FGOJ5WSwPMIgz2JmNSsQAzNHkKY6kMIqK4CpoDrEFfxG5C66gJTMoSA7SgCogvt7kdY6yQCuG3LLtZcV55QiZkxSQ4mMVIGoboQy9YuEyfwdW0A2KYNDuh+nUBlQKSrUzme+uJTRY8Ax3ZIDiaPcwpP9CeoW1iHHtBZtnYZodoQ+USe5775HOnRNKqmomoq/fv7WXrjUlRNpWNjB/VL60mZKda1reOyeZexpGkJPfEeakI1rN6xmpSRoneql6yZxbAMANa3r+eCWRewuXMzj731GP1T/bS1tjF84zB3r7obj+rBp/tY0ryEO/fcydaDW9nSuQVd1YsO4jXBGjZ3bsa0TQzb4Ja2W/jdZb/jtIbTyJt5PJqHgCfAZGYSxbFQCg7eb26Wf6qZFsb6zTtLbuD+GgHcelBAeH5c5gEFEHxwo8wTCm0ZMXlcdjKmBUd7ejnZv48Xnn2Ee75zN//8zVcY7nmT15XL+O2rVdx6+0/F9MyxBXQXsrf1oJtFPVcAcG5KQGWh5lqRBRDKZwnYVz0CNDWffJlsqwRaNY8cE+8WoF4A5woCgMtmSnuqV/7KZkoGdrjJlZTzrlpsd8xRPeLb8+K3BZSHm+HFO+VWQeaaBQ+faSvF7wdVwH56SOajiios9tPXyNx1xRa59oL/z76NUkdd8ASqXywA+pnVUiYJ7tz4qEjI92+U9/38ZuxckjvuEDDr9+uoqsLSpc2MjKTYvbuHiooA5eX+Imgu5Fpv3LiLpUub8fv1ohHZokX1/O53l3Hrre2k0wYdHT2sW9fGZZfN4+abl6Mo0NbWiqoqqKrCli2dLvDuwOPR2L+/n1zO5FvfOo8Pfegkyst9WI6D09oA82fLorqqlFJFIiGZKxRqpWvKZRHd54Glp8hE5Njaa48u84Z3emRsLBx37BzhH3T7P5GFvwr8AXiB42uuH/8vXYCiXI4suNoI2N/kOM4v/nfH/KPKwkGk4bmchc+nHxe5FY9nizUWl102jwcfvISyMv9/2EZJXt7GiY1pvOEK6Sze2iqMcsOS/6CupQxGX4HfXSQO4KffIJ3c+d8TEJ7oceU2uoDlM2+S58PNUpuiKDDysphIKJqw2ce6ip90JZz/fdKOSl98hJ88/0fWrLgCj6ajqxpZM89df3mYfzvzfTSX13LbUz9kfsMslk07hapQOaqiuF8kBUVRSOdl5TTgRnfd/dwv3GNFYv7QvkddWXkdvbFhqkNlDCcmGE/HqQtXMpycYH79LDRV444//4wvnvNxALJGDsfOUBtUUaxBMAZF3o0jg6AdF6CcPQiBRcIo40islqfFZaWnSvXTIMA8s98FykFpw9MKVgy0CkCD4Rug9jYXhBd+hqqAacUnsnE16rqNGySsCFO5HEPJJJs7O1nf3s6s8nKm8rI66QBrn3qKLy5bRv/UFPXhMHOqqnh7fJzNbq10XShE2OslYxi8OjzM4qYmOnqklvvOPXu4pa2N6kCAAyMjLG9pwbRtPJqG7crF1z71FNefdRb14TC/ffNNdvf28tD73oc/m8Vz002CIMNh6ZwPH5a3FA4Lveu6dtPbC6eeKt+fQtB0KiV/fX2yT3+/0LmFGuMvfUl01iMjAs7XrpXj6+oEJdfVyWBQkIU7jiDiV14RgB0IMGUG2dWhUFsrzSxZIuW1AwMlAj0SEWDc3y+YXdMExx84AGecIaXg6bRcwrp1pbjuWbNKamJNk/ZCIbmkgrT8gx+UdYfCR9DUJGD+llukLtvvsfB7nZLBSKEGulBDVTAl+Vv1VZGQsNL9IzC9scj80t0nbLd8KV2TMlOkYVIfIYOnY4vk/ITWojM4eaMkK3ffnGlZ5JMJTly0SGTh69eTHh6m+tRTBRw7Dr1HjnDG+eczcvgwjuPgCYmplZnJ8FZnJys+/nHG+vp4ceNGjmzbxvRLLuHMr34VK5vl2htuYMeTTzI8PExlRQWRSIRN557LbXv24CgKDjC9pYVv3nADqZ07mXfVVXQfPsx169YRSybx+Hx85RNX8KEPfghqm6TG2rKETTby8MRv4MOfEsm2ogpg1j0Ss1VwCr9iNaSTrlzZAw/fB3v/JK+9/6MQCEMyJqA5n4OnH4XLPuNO8mJS+z4xLO7hkXJhxRUgl8U28sw84yweeeTXzGmtJZ+dIpbz0txYj6N6ueFz/8brrx/k4Qe30Dj/fAZef5qp4S5u/1+7qWto5lvf2sTg688QG3jTrZVeKb98RZQcjqJgGzmG/7qL6pln4A2VkxrvQ/cFGOt+keqZZ5KODeANlBGqbMJxHGwXnJi5NGYuRai8ARUVx7Elk7q/B6WsHEIR+YJ7fZKt6pYdOZPjRadvouWQSoLPL1nXwRD4/NjP7izVWF/0Qaztvys9vuTDWNt/j9LUgrrgNOy+o9i/fxj1A1dKlraRx356uwB+wFYcxlNH0fUAhpGmo2Mjq1bdTSo1wtRUH01Ni9F1H7lcgnw+gdcbQVFUvN4w4+Nv09m5mWXL1lJVNYdY7DDxeK9box3DNLMkk4M0Np6J6ronG0YKTfNjmhnefPN3VFTMpKlpMQcOPExl5QlEIg10dt7BhRfeh+OYZDQfE74IGYRxWIJEcR1G2OT1iJFZFyUn8BYEVDsIGC5HmOwqhPXOACOIodlixBl8BAHsG4GbkVxr293/CLAB+BICuBcgZmm2e55wxiDxzgTx3niRrc4n8ngjXnS/jubVsE0bRVXIJ/N4gh5s03UPb43i8Xvwl/uJ98TZf99+Vt21CkWRcfrxzz3OgYcPMO+yeVzy4CXEjsTwBD34K/z07+sn3BCmt6OX3t29XPLgJSiKQuxojHhPnNa2VuJH4lgRi1etV1neupycmcPBQUVl9Y7VbD24lSsXXMn9F92P7diMpcfIm3may5pRFZVkPlmcH70y9ApnNJ6Brup4VA+HY4dpLWvlSPwIG3dt5O5VdwOgKRoezYNpmwwlhwjoAapD1ezp3cPy1uUkcgkAhpJDbO7czLq2dcyMNhDODQrAPvlmGO0QafiZ35MYrYMbBOjqQQHd6T4INsGbd4hkO93r7rMeQjMkSuuNTUy/YheP/vbXLJoZZGzfJure93vyk++gJd6EmuWceVY7m277Gu909/CNDbfj0x3IjjCU8BCNhPn6DZfz2RtvEwDsrRDwG+sWQ69CPXR0+jGyb0NAbiE+S9FEeZibEmLGypek5QV38XCjsNXls1xH8RjULpDjzL9Rk23ljncVV3VRRYZdxtw25LzPfPb4RJp4twDiJeshOsNV9CHpOLtuFgl4uAGGnhdSJzMqjLaREbZ6/8bSsYXjPCGRhKcG5X6wDibfkf3LZolM3P2sMlaAnKliGDb79/fT0hKlvj7M888PUFMT4s4797BuXTt9fXFaW8uYMaMc23ZIpQyCQU8RWN9889N88YvLmDWrAkWBa655nMcff4f9+z9NbW2IVCpPJOIrysTXr2+npibImjU7ufXWdurqQliWQyAg85sjR+LccUcn33/gYoIBDaXgo+L1CPNc8F2ZM03Gv4I5qqbBod5SIklx5qjI5/NOj5Sd+bylUrN/ANb671lz/arjOAv/blf2X9j+kcH1f7RlMgZvvz1erKuYPbsS27b/XRwX/I1Ir+9dQCSoSM30vg0i2c5OSr300H7X4OGQG0OwWGpOnv6sAOfkgABvT1AAdbwb9t0mRg+RFsT0wAtvPgwDHdL55RPCkhc6wLKZ8lw+LjEKZoaUJ8rXn3yIRU1zOK35JH72/DbWrLiCgNePZVscHOpiQYOsvRdMxwIev9T/5jOEfEH8LmOdzKUJeQMAjKViBL1+asOVZIwsecuka6yXRU1zUVBwcIrmZ5OZBJWBKBOZKQHYiorlOLw+dIiaYAUzKqP4VLeuCAtGvuTGa1XByA1y3zNHwLaCrCw7livd1sB4G8Y3Q+23AdV9XmrOZaU1IX96A8W1p2JbCjhpyL4KnkbX/OwWMPpFdq7VwchNTFU9RNY0mchmebKri/39/Xz7ggsYSqXYsGsXa5ctY3dvL/v7+9l03nmkDIOmSITO3l5OrK4moOsEPB4+v2MH1y1ezIwKYd40RWF3by9VwSCjqRRnNDZiWBbDqRR37d3LlpUrATFLe/Svf+W5nh6+dvbZAJi2TXUwiN9xKLMs1J6e4129VFXAxr59kkk1Ngbz55cysUdGBHxHo4JITVPQ5v33CzgvuIvt3g0XXCDtXnuti0b9gnTjcUGyIG0lkwLUa2oEjN58M3z962SitaQyKvv2KdTVQWurGJSNjcnhXq/8uQQqzz8vrHLYJYhtWy55dFRA9tiY5FgbRslAuuDD5vHI84U2CgZnFRXCdH/rW3KZTz4pxPyWLVBdaaFrbv1UPCmOnbUVMgmyrOPNREwLUhkBwTmjFLWhIANpd58MkvGkRG0VzMkK/YeDgPhiZJfbtqKU6rALRmn9w7LiraoYmQzp8THmL13K/7r3Xk6orcX0+/HX1xMNh0kPDXHPAw/wzIsv8vjDD5NXFAzLovuBBzht7Vru+f73+eO2bfzp6adRgGwshr+iQqTRL79MsLaW9NAQ/spKshMThFtaePx97xMA/pWv4LjGai9v3syRbdtofe97OWP9ejS/n/TQEKGaarTYGMrkqIDbnY/Ahz4pbuHJOBx8CWaeKKxyweRM06SuemJEXvP4BHQ//kvZJ1IGj/wQPvQpYUQCIcnFLrDiKz8gX5Dtv4aL/lnOFS2X376qwsiAsODvvQy7vokZc+byvW99kfdc/C+oqgfbNoqxXKPjcU6efwqjg0dRNR3bMpkcG2buwqV0PPsUJ8+bD8DgG89SM3sJ3mCZGAqmY4x1vUD9SStQNQ+5dAxN86L7gjiKwtDrf2Ky/yBlDXNpmHcOZi4l+5+4AtXjLQJzxXHAMFAsWxjkjmdQl54tsVitM8GxcRQVJsckqmvlJSiuIV3hc7R3uUA7GBaA3TxNpOb9PeIwXlEpgHxXId7LJz+8RFzivNzIL4y8nOP8i1BsB8fvh4lxnHQSs6UFsMnnk7z55u+YOfN8JiYOHWdopigaO3fewLnn3obXraHdseNaDhx4mAULruTiix/AcWwMI83Q0Cs0NZ2J4zi88cZvmTv3fe74OvQ3YrjG6OjY6AL0Ezh6dBe1tfPRNC/PPLOO8y68l5w3xKSiUI4wGIsQBnoKYbGrkWisDwOPUDIv+zZiOHY3Ui9dmNFlEdZ5EpGar0OMzD6HgO2PuPvd5P71AZdQqtdOISB7GDFD807l6Nl1lKbFTeh+ndxUrgiuPSEPRkrYRm/Qi5kXVrtjYwdLb1yKv9KPN+gt1lbrAZ2pnqmicZnu1+nt7CXSGKFiZgU9HT1Em6J0bOpg6ReX4i/3E6gMYOUtvBFxEveGvGherWhsZmJi6RaGbWA5Fl7NS97KM5AYYFPHJu5edTfDqWE2dWzilrZbCHlCZMwM/VP9NEYa2dK5hXsvvJeeeA8bOzYKGK6Yyed3fJ4N524g5A2hKe7iiW2QNtLc/PTNrF2+lvpwPcOJYWZWzMSwDRRFYTA5CMBXn/1qEdz/+OJ78aCCIj4FZIfdTGYFPFF3fNfkdv81cNKNwmjXLIeasyHTB1WLhak2MhCZCY7B9BMW8Ogjv2RR7j6oXcEFn93Kmmuu4KKL38/hvnHOXLaCV3f9nqZpcyTiy0rBwY28Z10fa96rcOn03ZKBneqFunModfhKqV667kwBtFbu+Bpsx/UoObZOu2CIlk+6JmWOAOiCaa1juRFdTVJ3fWxNdqGOOzMhDHpBIh7rliSa6pOhvxOq54mj99QRmXMuuVXOZWYg5xJB3ohIyof2iyy8v0P8gFY+VPIRWrxOAH//bmGrFV3UmWYOyqbJezbSMPaa+Ant3yjHpI6Z+6KKfD3VT6rmXLq6Y8cZC7e1tWIYNqtXby/Ou7///UvQNDEii8Wy1NWFMU2b8fE0ZWV+enri3HXXXu6//yKxQUoZvPbaMKecUudOW7yYps011zx+HKkmNjQK+bxFJmMSComRWkdHD/Pn19LcGEYr1EiXhYv/5qKHyrJFpXrrlnpRpmVyrrItVBrndU3Gfcsu1WE318vzBd+X/8YA++8Jrr8LPOg4zit/p2v7v97+B1z/7SzrgpO4xyOrZoqiYNviUvjuvOvx8QzxeI6yMh9VnjG84XKRzageWSE0s7KyV7tIOo/0iBg8vHhHaVXPykpHOnVYJDYNS6STNTOlrMDnbhKjiWR/qSOycvDsDQK4T7pSALeZlfiDSCsEqsgZeRKeMry6VyJiFAXbcXht4G2qguVUh8vRVA3Ltkjm0oRdMN0XG2EsHWN+/ayiHLzg9u3TPPTFR/nJ848VncBfH+qiPlxFVbgc3WUdBqZGGU/FWNg4B8dxUBUV07ZQFIXJdJzygHT2Ea+CYnShFFy+jR6YuAuq18OR06TOOtgmcu6Rm6DqenEJV0PIbGAE7Bh450hMlzVUYsAVv7DRBVCdeR78p7iMtCkDALoA9uHPQ/K3xximvQiB08lbFmm7nKPxeNFArDESIW9ZrH366aLb950XXIBX08iYJuufeYa7Vq3CdBz29fXREA7TEIkQ0HU0VaXbNSNb19ZGbSjEmp07WdfWxsyKCvrdeK7lLS0sb2nhrr17uf388wl5vaTyeTSXpQh5PCTyefy6Tnk+j7J6tRQkt7aWCpF7ewVYl5fLbSoFr74qhc0F626/X2quv/hFAcXRqNDHBfS5fr0cf6zjeAEU+v0CxAuM9syZosPeskWiwdws5pReho1KLldilJ9/HhYtkib27hW2urdXaqZvuUWMzQxDGG5NK5mRv/IKLF8uMvMNG+Ty6uulzVhM3mYhR1tRRH4OJex/rCt5Y6NrbO63ULO5kpGYqshA2Df8712+c/mSgVneFNBs2S4wVmRA7R8R05LCuOC6HBczr1VFVrgL7PSxEVB5w6Xg03INZWHoG+aqOzay/YkdDA0PE/X5KK+u5vcPP8y/rl6NZVkY6TSz58wpMsuBlSv55Nq1TL79NtGZM2mpr+erV13FolWrwHHIjI+TGRqieuFCFFUlMzFBPh7n7Z//nDO+/GWwbUZffpmKk04iNzkpJmlXXYWvooLJN9+kasEC6S/Hxnjzhz/krC/fivqrB+CDnxAH8HxWPo8ntkqtdGWNAOlcBrwBqZnOZQQQ57PQ2w3T58jnNDYigHzWSRQddG3XlGcqBsFwqfb/V9+T/U5vl5UV25a67FnzBIDPmAtntGP5A0yfMZ1v33IlS5afS/nMZRx99UlI9lPWMJetz7zBHx57jKd3/BHN60dRNX70ox/zk5/8hL88+ycUVZX345of2mYeVdPpP/A0wYpGghVNjHU/T83sJejegAvCF+MJlGHmUmi6F1Xz0H/gKYIVjUTrZVHTtgyJ+1I1NFvBSU4dzzZf8mGc2ATOVFwcwTNpyOVQKqvAMHDcL7sz0IsSCuOkkiILV1ScWAFInwdl5fJVdBxQVezeIyjhiORib3vkeDZ72yMorTNRTpwv0mOPDxwbS3HI5OMkEgMu8L2FsrLpqKpKPp8qmpctW3bTcTnVy5ffQnn5NFKpYUKheuLxo3R0bKStbR3RaAvp9Ag+XxmKopHNTgDw3HO30dS0mFmzLsDjCWEYaZ599itFR/H3ve8hJie7i2AbFMLhOrRIIxlFKRqJTUNMyIYoAelbEFfw5Qj4tRDH8CGkPlpFwHite18FPgs8TAk0pxEzs80Ie+0g8u8GYDXCXE9DAP0kUOmeJ5rKMXloUnKu17cTqArw5A1PsmztMqrmVJGbyjH82jAty1twLIe+vX3ULqhF1VS8ES/jb4/TeXtncf+jzx2ldn4tqq7y9M1Ps+ymZZS1luE4Do7lFB3FL992OWXNZezauIu2dW0kBhJEGiJEGiNoPg0jZZBL5Bg7OkZuQY6NuwUY90310RJtIeAJUB2sBuCax69h68GtXDbvMh685EFyZg5d09nTu4cjsSNcNu8yrt1xbXGf71/yfWzbpm+qj/5EP2c1n4Wu6gwnhynzl5G38iTzSerD9XT2dtLW2kYyn3THuRCmbRZB+JaVW6j1R1CTXSiZATEYO7hRmOrQTDCT8MpNMPd6CM+AdL+4e6teAeIvr4Hun4h8+8Qb4K/f5uqfBHj8iacYGhqmqqqSSDjMob++Rvehv/KpT32SsVgaVQ/wlRs+xodmvwgn3Qzh6aIW1CO857z3smb1J7l02i449S7J1S4w1eFmV31ky+OyWQJIo9MFcBZyqXX/8dnWBXAcbpL5pOtBUDR8LIByEDbYF3Xl5Ja7vyKPi+DbSwkBurXcRlrmi+EW8AQkBkvzu30cwpyrHmk/H5cFjLEDcu1WHsqmS2ljkfH+vki8922U+WqwTuavZkZIoPbbZU5rJOGd34mRWfsmmRc/v7mUp12zkLhdfZxT93e/exHptEEo5OXwYTEZE2Y5jOUme/j9OpmMgc+n4/NpJJP54hAcjfp47rmjNDdHmTGjnEQi784LvMflWN9883KmTy9HVaGrq2B61sbMmUKIdHdPsnFjBw//7J/Qkykp8zLMf69oKwuLwemxmdYKMu4fa2TW3ScL6JpaShc5edbxjuP/jRnsvye4PgDMRUp5soXnHcc57b96kf+n2z86uP7fuYYf+9ratctoaIhQVuYlFPL9B8e3ceKsIF6PJquNx8Vq3SSui3ZeOsPMOGTHSzKaqR4I1sDISyV5TaT5mA6qHg49Kh1ZU5srux0ReTiOGEHUnibH7dsgphSZUSibSdpbTl8mz0+e/yNfOvffsBybZC5FRbAMy7YxbZOA7uPI5CA/ef6P/NuZ72N6ZUPRMXwyk6A2XMkP9z3Kp5b8EwGPj4gvRCKXYt/R11nYOIeH9j3KJxa/n8l0nIWNc8kYOWzHYSIVp6m8RhgAxyFr5knlM4R9QQ6N9TC7WqJVqvwKSroT/AvEIVwtK7HSTh7QwBoWCXfiUcg8B3X3CKhW/CL1tiblVvGIZFyvLkVqYZek36q7Omqn5LPLvg7BxXIOLKmzVt1zKz6w0yTzWfozEb7y7LNsPXiQy+bN48FLLmE0lSJlGGzp7OS+Cy/EdBye7+/nlLo6vJqGR1UZTqUIeTwcGBlhRnk5TdEotuPQ0dPDh3/zG94/dy5fO/tsTv7ud7lywQIeuPhiTLfexnYc9vb1cSQW46zmZpGjt7Uxo6KCv46NUen3UxsOkzNNKgHFNAUADA8LyhwdFXl3ICCgY/duQaHTppXMx778ZQHGui7fq1BIEO3oqCDR+vqS87eqSht1dfK8oggInJgQIP7yy/Cd74jWO52W/RIJaGoiSQjDVPF6Jd+64LkG4oXW2Ci4PJmUU3m9cjswUHL/BnkrLsHHDTfAb38Lr70mrPTkpFz+0JDUVy9ZIpdXMC0LheTYffvEgVzT5K11dsLKcy3UqUSJ9i6sRBckuMcyzyCDYFlYQHXeEBA+85jxQXvXQFgYHhy7pF8/dtX6WPCuumx5wCfHGSaoChYOtmWRGRnBSKfRQyGCtbVYuRzjr71GsKGBUFMTVjaLncsR7+qieuFCXtiwgTO/8hVsw0DRNEZfeYVgfT2Bqqqis/hJn/wkgdpazEwGX3k5iqoWI7oUVSUzPMzQ3r2EmpupOfVUzEyGyb/+lar588lPTTG8bx/TL3wvumUI+59Ji8t3XzeMDMHis+U9J2IQKnNlgjn5TH79fbjsqpLLdz4nrPeHPyWgLuk+f6yzeC4rANvrA9OQ/jafhUd/Bh/4VwHsIM/FJrj641fyeFcfQ8MjVJRFiJaVs+0Pv+Pyj/0blmniADNnzuTbd97BtBaR8iuKSvt7zuPfPvYvXHjWLKpnnonHH0LRdJl3mgaq7sXIxFFU/Tg38No5S3nnLz9h2hkfJFBWg2Xm0TQPiiorPo7jyH3bwjJyaB4fqBqqjSw4JBPCJLefjxKJYvcdRQmFsff8pSQBn5yQCK6mVtA9OJNjrqv4uSgV1TiJ+HEgXX3vpdJuxzPFfeQracHkBPh8KKGwq9YwcVQVYhPFNp2pOGZTA4nMiMtU15BKjTJt2oqi0/eyZWvp7d1Nb+9uLrrou2zf/jkOHtzK5Zdvo6yshV27NhSZ6F/+8hKuuGI79fWLyOWmCIVqURRxBjeM1DHjbAKfL4quBzHNDIqioWkeVFXn8cc/y5tv/paPfOQRWlvbMBWNw94QPYrCYkQSbru9u4GYlU0isu4ViFx8s/sXADoRYzIHSCDgujhJQ+K4bkUithSknroGyT7NuO1sQWquVUQGvs9tEwSwT3OZ61BNiNRoiopZFXz3pO8Wpdxm1sQTFAbbE/aQT+SLruDt69uJ98b55SW/ZMGVC7j4exdjZs2/KflOjacI14SxchZ9+/poXtLM9tXbiy7lZ91wFvvv3c/FD1xMYiBBqFbYtLw3z1U7rioC4xvOuoF799/LAxc/gO3Y5K08Q8khbtt1G+va1jGtbBpdk11FyXZDuIHnB56nJlTDnXvu5Nb2W2mJtgjr19NBY6SRO/fcyeaVmwnoAcbT49SGajFsg7yVJ+QJoShKMfZrfdt6Ap4AFYEK/JofB4eQYqFmR6WmOjsKTy6G+gvECdzOQ+9vpRb69LtBj4jsuwDAg9Pg+atLsVyhVgjPlL4+ddjdbz0EW8UMzROGyQNQs0yivXq2ijlasNmVmzeXjgnPEjMzPSTzusyYzOnKCoUD7rhQzMA+fLz7d0HWHWmW+8e6iRfY73eDctUr71nzC1Fj5Y+RgbsMuEJpcdJx3LzpoePni9XzoWM9nHO3/GKKi4m2nLfgJF5+gsxt3/q13I80wvNb3Nguv8xH//hhmPV+WPo1Ybqfvlrmuid8SOq1X7wLVmx2Y74UKX0skETn3Q+OTcoMYJgOluXg9WocORLjttt2FSNwDUPcvTVNXMRfeGGApUubMU2bycks6bTBxo0d3HJLW1ESblkO+bxFIKAXjc2Oje6aObOCZDLPTTc9xd13r2L16h1FNvt737sYVVVYvXo7ixc3cdWnT8WnKyimeXxs1gnTSq7fxwLknAHhgNupGSWp+OhkcQG9OIfQ1HeliEz/nyiu/0RDZ/+t5x3H+cv/5bX9X2//6OD638m6H3ofkYjvb772ta+dTWNj5Lj66393/A8uIuLNS0dx+vUlUDz3I4BaWiGMtkpns3gdlM+GvmclRksPSM306TeKsURhNXDp1ySGy3En+pqP4urjwF6RjZdNF0m4Y8nKYv2ZYBmk8HD7rt9wbds/E3CjbhzHIWvkuK/j11zX/i8EPD5e7n+LdY/fy8aLr+PUprkAbP7TT1nddhkZI0c6nyXo8VEVrmDT0z/iE2e+n8ayGkaSE+w5+hqvD3ax/vxP0RcfcYH4pTRGqxmcGhNgf94nUBUFy7bRVBUFhd7JYUbTkyyfNgcFC8V4R+TdVbeAPh3MLjCGxB18fIsYnakhYbDViPt5OGBOCCC2pwSYq2EB6QWJeSF6a3yjSMetsWPuTwhA12vkMy2YqBnvwPjtULWOvFLHeD7EQCLB5s5O1rW30xeP01pWRn04jFfTOBqPs3n3bu5573uxHYfJbJaUYbDJZbpnV1biOA4Z0ySey1Hm8/HK0BBN0ShVgQCvDA2xrKWFrGly01NPsXbZMoIeD1XBILqqMpxMMpnNUu73kzNNjsbjxf3f6O/nXMNA6esT+lfXheL1+SR3qlDEXADQqVQpzwqkg7/jDnEJsyxBn83NoqeurxeKuKenFFBdMEg7trb6jDNkf8MQDXZ1tVDNLpWcUiPkDQVFkZcrK4WlLhDcwaBcXjLpRh1TehwKyWWZpjxnGHLfceTUhYzrQvxWwQ9kdFRIeJ9PyPVjI7qSSVGs33STeL6FgzZlYQslkYJoqFQT7dEpOiAVAHA4UIwrKkq8vR4ZSI8F4ZZdqskGGVB9XmG2A75SjjZIlvb0RpduR4C3bR8XC2aYBkYqhYI4edv5PLZpYiSTeIJBVK8XVdcxMxle+fa3BTDX1KB6vaT6+0sguqoKM5fDG43ywm230fPEE0y/5BJOXbsWzefDsW1Sg4O88eCDnLZ2LblYjIMPPsjJV11FqKGB7NgYnrDUoL+0ZQvzrrqKYGMjdiaDPxpByaTEDVbT5R9mmZCcEiBcAMsF5llRYLgfqurg6NvCXP/iuzB7nvxNTYhTuGUJGx2tgJp6yb3e8Wv456ulvcd/JRFfhf9JQXpe0wA/vUtqupdfgPWxa0sybBzy6SlGD+2jZvYSPP4IVj6N5pa+KKoKDvQfeIqp4S5aT3sfwYoGFFXDsUz3tyP/63e3pXsDZOIjhCqbsMw8I2/tpv5kGfqtfFYk40B6YgBPIISRSeIJRPD5IkVnfkXT5DoVFUwTa+cfROZ98ikSqZVOyvmNvNRZDw/A+CjKrLkokShOPg+FDOvl56CUVx6XX61d8mFZQHEcHK9PFiJyOfnBqCqKpmP3HMb+zU8l1uusFZgBH044hGnmipFYFRUzePzxzxZZZr+/glRqhPLymcRi3cTjPbS2LqenZze/+c2HmTv3/Vx44X3s2HEt73vfDxgff4dkcohotImOjk20ta2jvHwaiqJjmhn6+/cTDjdQVTWHfD5BIjFIMjlYlJ/39e0lEmmks3ML51/6U3apGrVIvrWB1E+HgDhS+/wKUi89DbgaAdmXImA6jDDYhxCgfAviFN5wTHtehLFuQID3PqRuuxepty60VThXNXCiu+9+4PxUjsl3JunY1EHbujbKppXx+NWPF7OnD249SGtbK1N9UzQvaUb1qGxfvb1YS33hfRey49odrLp7FenRNLs37+a8b52Hqqt4/FKfreoqRtogPZpm18ZdtK9rJ9oaZbJ7kr137WXlFik30gM68aPxYub2VP8Uje2NdGe6izFY/VP9LKpfxEhqhI0dG1nfvp4Z5TNIG2m8mhfDMrjhyRt4+MDDXDbvMr538ffImlkCeqBYC57IJSj3lWM5FgPJAVL5FAoi+T614VQGE4Ns7tzMLW23MKtiFoZlsKdvDzWhGir8FaSNtEjM29cxLTqNoKrgSR+Rmut560ALCmMdaHI7VEcWyPWAMLQvrBYZeMMq2acwlyqo1xxTAO+LX3DB83aoWCT9iRZ0F/ptAbHj+6B6Cby4BhZ9S1jYoSchfILUdR/cAEt+KCx5ss8Fw2ap5ln3U1xtPRZMqz6Zw3nDx7POBRdwzesCZK0kF9f8wlgX2Oz4EYhOk/eXi0E+JTXMBXA9dVRqtm1DorPqF4vZWKih1IZtyL6FWFdv+Hh2euWDsnCw7zZYvL7kdp4eKoFskPY8Qfd9ZqRmHKQ0snq+fO67bpayyEANjL4KjW3yvxjcT7r2PcSn8kVlaCqV54QT7uOyy+Zx992rcByIRITF7u2dYsmSJvx+HcOw8XpVcjmLX/7ydfbs6eP++y9C1xUSiXzxOMuS/0EuZ9LXN0U47KWxMUJ/f4KdO7s44YRKmpqibNiwi5tvXs6MGeXoukoikWdwMEFdTYDmxkhpgb3AXPu98nhiSsb5snCp1KwQ0VlQwBVUa4Va7HfPC7p6/4e5/s+C6/9f2v5RwPXfkn4Xni8wz7fe2s7cudVFc7NjX7v55uU0NISpqAgc5xwu+4yJPGV9G3MDL+Mta5R6lLLp4giuaCL13ndbaYWwYQl8t6bUUVkGDD8vHctUd6n+uphZrUoHl5sCIyE1MI4thmj1iwEHUsNyjmJ+dhQcG0PRyNhOsWY67Avy9uhRKgNlVIXK8Gg6rw91UReuIuDx4Pf4i/v5dK+wze7j7vFeTqqbhYODZVtMpKb40f4/sGbFFfg9PnRV5banfsjjb3awau5SvnLBZ/jGkz9gUdMcVs45i9HkJD95/o98csk/URUsI2NkmcqmmFlRQdDjBScjf9k3RJY9vAZqvyVA2U7JgDN+O1TdKlFaTrZkXFaoz679Nljjbg327QKcFQ3S+8A8AtF/dsc1S0A0pkRx2SnQyiGzT8zPlIArrSoDJ0PGMLC0OnGIdBx+9frrdPT2suHccwl7vXzOzcA+e9o0NnZ0cN+FF7K/v5+aUIjRVIq21lZURSkanK1dtow5VVV09PRQFw6jKQobOzqKpmYZ0yRjGGw4Rob+ytAQi+rr8bk1uqPpNGGvl0rLIlCgf7/1reP1zkNDAoTTaRnsAoESqEmnBWl+7nNirf3BDwrTXF8vYMbjERS7e3epZnv5cor51vv3S1Gz3y/0b2urtF9TI/vs3i3It7mZhF5Od7fCxo0i4542Da66SppbvlwA9rp1cjkVFYLJC7XYuVxJyV5Qn9fXC3AGWUdQFLnckRFoaCiZbRqGXFJ/f6m9/ftlnz17pHz8rLOkZruxzoJCbmXelNVjBYrOrnlDwHbOkM+w0JfYjgyQBTk3DiQzrhkZMJUqOY57dAHjZa4a4PAAzGgsncO2XQMUVxb++iGYPxsr4MV2HBK9vbzxgx8UmWZsm5c2bxYQHI+THhykasECFE0Dx0FxTeasTIbep59m7JVXmHf11QSqq8lOTuKNRMgnkwSqqnAsi7FXXyVQV4fm96N7vejBIOOvvUZyYIDWCy/EMU3GX3+dirlz0f1+Dj/2GOMHDnDGrbeimAYevx+yaflcPF5hlR/5Iaz6sMjCu96AimrY+dsSM911ECproaoW3nldjMj8QYnhap4pjHZ8HGacKGZnkXL4X98RV/DbfwapBLzxUilP++H7SgZpH/+CAPHtv4J/vhrLH8DGxsimUHUPo+/sJVBeT7hmOrovxODrz1A96wyMTAp/tBrN4yWfnsLIJPAEwqiqpwiMhw7+maqZp7nAOIwnIP1yJjZMoLIRIx3HyCQIltdj2xaWkUFVPWheH1Y+h+YLoigKjm1hWybDf91F08nnQT4n30GvTxjkTFrk3o4jQLrIap8HgSD2k39EXfYelKpanPERt3b6PPB4hIl2DXOcVBJyOezdfxJG/Nj661X/VALibedCKCJZ2Csvdj00wBkewGxpJhbrZteuDSxdeiOp1CitrW0YRvoYqfg61+nbJhyuwzQz5HJxfL4yhoZeIRJppLJyNpaVR1EUtm27mqVLb2TfvnuKAD0SaXbZ8NuOOc9ykslhFEUjFKrBMOR75vWG+OMfP0NLy3LmLrgSM1DJPkWhBTEWuwthqjcBaxE2+osIw6wjLHMKYaRvQwB2B1KT/X7EdbzC/Zt0bz0I0N7ntjeC1F877vNJ93mQOu6s2/aNwMlTOZ74TCnnetXdq1BdpYvm1XBw6NvTR7AqyJ479xSl40OvDNG8pBnNpzHVP0W4Lszj1zxO64pWTrz0RPKJPL4yybKONEaomFFBz+6eoqTcE/RIeZauYmX/YzY7OjtKypsino1TH65HURRUReWzj3+2CKAfet9DdE92s6VzC1tWbiHsDZO3xNHbsi0yZoaR1AibOjaxdpnUUpf5yuiOdbN592a2rBQAZtkWaSPNOxPvUBOqYTQ1ylnNZ8ni+1RvEcwH9ACT2UnG0+MsblpMpa6jFFjk1stg8YOuwihVKsWZfEncw1WPGwk1IM7iBcY62CRZ1P5aAdaqR4zO0r1Q0yZtvbJW5OWBRmnzpTUlE7RCXbeVkvmYHoEXPicgftan5dtVAES5KZh4R4zH3l1XrSBzQMeWUkJFLeVUa76S4rEg9y6YnL0btGs+io7kVl7qpFFKpmbeqHxD8wlZdLBysu/QfiF9AlUCds+9V8D10D4B3eUnSD12wWQ3NyX7grT/zOfg1M8LIdS0AmZfWpqngqg3V2w5pqa6W+qtz1wr9dkDu+GCh6SuvOAhtHgdicCJ/y6f+tOf/iPr1rVh2zIPmzatnImJDOXlfmKxLBUVfhwHdF11pzgmigLBoId02iCdzpNKGbS2lnHkSJxNmzqKytRUKk86bbBlSye3334+waAHj0dlYCBBTU0Ij0f+l5Yl0V67/nKUf71yHprnGEbZLiyavEvpls3LYweZVxT2S6TEe6WgdCss1vu8JdOzf/Ca6//0O1cU5WRFUX6tKMpLiqK8Vvj7+1zm/2zv3gog+VOf+iN//es4+bxZfO3dsVrHuoYXXvvBDy5hzpxKysv9xwHr4j5zK3noBxcJsN7+Qcn5O+lKqF8iudSJXumU3toqnU/DYuko514mxhFGGv60WlYTAcpmi/Q7Myb1N7pPZEmFWIb9t8t9b1gyBp9b6xr9VIvs5sW7xITCKUmhdVVDVzX64iOMJWPMqm5hLB0jlkmw6ZkfUxGIMJwcpypYzmhykgc6H2E0OYmuaownY/TFR9BVjQUNcxiaGmPDUz9kNBnDq+vMb5jFWCrGbU89RF9shDUrruDik9q4yXUD/+J7PsaquUvxaDrj6TjPdr3Aj/b9gWQuTUUgyi9eegKv7hEAbfbCyFoxFlN8Ao6tMRj7qqxyGoMSwWX0gNENw9cK42z0CmudfExk4YoXKl1W1jwK6T0QPAuil4M5Bhiyj9ENQ1cj9UspGF4Nei3odQK07bzsq4bR9DIS+TyHJia4+vHHOcvNnNZVlb19faxra+OCWbPY0tnJ8pYWVEXhtIYG7tm3j+ZoVNzXHYfNnZ089tZbDCWT2I7DKXV1hDweNrrZ2Xd0duLRNCoCAQIeD092dTGUTOLVNJa3thL0eMhZFjnLontyEgDb48FZskSA9datQtEWpMXV1cJev/SSIEtFKWVTFyYhDzwAH/+4gOSKCmHOxsZKEVzt7QKSlywR8P3OOwKmTz9djrnuOgHfdXVyWwixXrZM0Kuu49jCGi9fLpfhOMIa/8u/iDR77Vo5NByWWuyqKmnaMAQUL19+fGJYwZjcNCkan2cygk0LMd6GISR7JiOX5vPJfm1tMHs2fPSj8tb27we/14ZsDuXto7LC7NFL7t7vHJXBMZMTYF2I2Hj7aCnLsvB6QSofDVOsb4uG3Tgu123V55Vj86asVudNONQjx+ZdiVnelaafOQ/Kwti5PI5l8cYPfkD/n/9MbmIC3efDE4lw6he/iBYM4q+ooGLuXMbffBMrlyM7MYGZyeBYFvlEgubzzmPRjTfijURQdB0rk+Gl229HDwRwLIvRl1/GX11NenBQTM1iMV7YsIGyuXOZduGFWJkMr9xxB9WnnILq8TD68stUn3Yai268EUXT0H0u+6npUhfd/abc/9AnQfcK2x+tEPOxGXMl5/rn98hzHq98jrPmCQivqBYwrXukNrtlFhx5SxhvTYOLr4CvPeAuuA1JBvYVq6WdK1dL5NfFl8vn7/NJjJfPD7aFomqYuRTJsaPUndherH12TINARQNjXS8QrKhHVTXSE/14/BFClU1FA7T+A09hZOJUTl/E6KH96N4Ao4f2o+Aw8Poz5FITYJkYmQS6L0A6NoSq6Xh8YWzbYOD1P6HqHhzTwDJymPkMiqLQMO9cqYfO5+Q3k89hD/SB14uTTMiXXdVwkgkxOovHIOfGb3U+K4ZnhdemYijBEHbvURzTkIxq3YNSVo72vsvESdzN1HYOviJu6h1/KsV6ZTMozdOE5c+JMFptmYHjWOzatYGDB7eyZ8+dNDUtIZ8XCXchWqujYyN+fzmGkXRVqDbPPXcbicQgra3tVFTMxLZN0ulxHMdh1aq7SafHWblyCy0tbUxMdGGaWXTdT1fXk0VgbVkGkUgDwWAV+XySp566iVRqGFBob1/HrFkXMDz0MjriEr4B2IpIsTe59zcjgHodUgs9irDXQ8C17u1qRMbdjZibVSL11asREL4PYaifBxYiddztiKw84LZxCHEXv8Y9tsc9/52A7inlXLetb8OxHVSviupRSY2lcEyH1vZW9t2zj4NbD7Jrwy58UR9lLWVsX72dye5Jok1RNK9G+63tnPLRU9C8GoqmoOoqTUua6NzSCUD9onpSwyl2rtlJ/GgcVVeZ7Jpk++rthGpCZCYztK9vZ95l82hf1056LI0TdFizcw1Pdj9J12QXV227isOxw2xZuYXL5l3GzctvxnZsNnZsZHHTYmzH5u3xt/nc9s/RPdlN1syiKzp3dN7B8pblhL1hQt4QlmPRG+9lafNSBhIDrNm5hvHMOI2RRpY0LWE0NUpLtAWfG0e1sWMjj731GAFdJOHj6XEW1S+SHGxFK8VezVsHqGBMQT4m/YgeFpA78bwAaz0oEu/+x0TC7auGg5vE0dvMwOSLAmoD9ZJzPdohQHbu9fDWXa7xWUyOT/ci1fMKJA4Jg50dlb5o0e0S+ZUdlf7fzMo8TvMJsFY9bv71mMi6ceR1xx3IbPN49hrHZawNmUtaeQHFmTGZ3xWztHPuQrAm+3hCpfFd9chjbLc/jErbiR7Jna45VdSUnpBL8PTInDRQI+a72KKODDeLsjKfkLJE2xTDsjO+KKWOS9aJSjM9JFG0qQH5TE+7XhYN+jvEVyjZJ7G1qaFiqo0sLGgyf31rK6QGcByHu+7ay/LlLYRCMj48+OAl1NaGCAY9jI6m8Xo1MhmT/fv7qajwY9swOJjgmmse5/DhSSIRL8GgB1VV8Pt1qqtD9PZOYVkOmzZ1sHXrQTZv7iQez1JW5mfjxg4WL25iaCjJNdc8Tnd3jKamCB6PimU5mKbN0FCScNjLhz5yMqpHw7EdGbeh5J3i0QVAF/KuPW4ZWNJdeM4bMuYXysAK+71zVOYXOXde8T9RXP9HsvDXgJ8hCiGr8LzjOLv/37m0/3j7R2Cu/3fS7/9PWyZjkEoZ7NvXR2trGXPnVv07x3BApDexLkj2iiP41JHja1kKcVxLbhUzCyzpmGyjZEg29zI49z4ZBAoSpXgv+KPi5FhYRSwYTRTqXxxcFnIYGt0iVtSi82N65Y/oi4/x0L5Hi87dJ9ZOx6PqHBg6REUgQjybZGHjHICiPHzTxdexqGkujuOQNrLc37GV69r/BQWFJ9/ew+uDXdxy3icYS8V4oPMRnu16gW+//wYWNs1BRSVtZLl316+4rv1f8OleXht4m7m104tO4o7jEPYFMW2LiMdEcdz6yyJzvVg65qFrBFBHLoO6+wUA190vDLNeA+ao1FU7hgD04+qvfa483IGR9VD3bVdS5dbzZV+B/otgxpsC4JOPwfTX5NjMvlKUlxoiaYXpT+Y4NDFxHBu9evt2fvvmmzzykY+wYto0LNvGsG329/fTEA7T0dvL7t5evnfxxRiWxVAqRW88TnM0ysaODta3tzOjvJzuyUn6pqZY1tJCxjA4MDLC0pYWqc0ERlIpyv1+NFXlhp072XDeeQR0HVVRSObz1GkaWnc3Sk+PgFpFERq34O4FJZ10KCToc3JSwLTfLwh0/36hlFtaBJkW3MEKNt3l5QK2OzsF/d55p9DQpikF04UIqs5OAeMFFhvIOzpphKnLZOSU8hsrJXZNTgqZXlUlTHVzszDV3/42jI+LjHzJkhKrHQzK/qmUrCFoGtx4o5iaa5o8D9J+U5Ow3R6PPHf4sOx3yy1ybFnYImK5Nde65tZDqfLZjUzKoDi9UR57PSLjCgehMiqPC/XTha0gL1eU483OFOTx2KSsTBckY3/thsWnuFFSU1BZVjJKAyzHxsznSQ8Nofl8eKNR8okEut8vsvBwGDObxRsOF3Or84kE3mgURdOYeO01qk45BUXXsV1N/dhrr1G9YAGKqpKLxfCEw8VjVI+HzOioyM09HsYPHMBfW0ugshLV62X8tdfwV1WRHR+n5tRTsS0LLAufrqJ4vMJGR8rhyd8KyPV4BRjjuOyM+1158TmYewqEy2WR0DSlTnvmSfJZ5XLwyENwwYfEXbyvu+Qqns/B4b/CzJMhNiaO4wV22zCECceRPtIysL0+crmkK91ejJFJEapqJJeMMdb9vNRUB8LgOJj5DKOH9lE983S8oUocy0DVPQwcKEVxNc4/DyObRPeFwLHFKTw1gar7UFDQfQHMXEbk1a5pmW0aWGZWWG7AyCTEBG3WYjyBKKqjyPvKZcHrFfl3bELY6AI7fUxtNWUV2I//Vpjo8kqcyTExPmtqxcEB25H6eRxIJnDiMZRomXv8eRAKYe98TJhrkPP63B+nx1OKAwtHUaqqyWMUI7Xa29dTUTGTRGKEcLgWxzFJpUYxTYPy8tbjJN29vR1UVMyioeE0EokBVwbeTEfHRtrb1xMKCUPa37+fUKiGPXvupL19HboexDDSdHZuYeXKLei6n97eTsLhRsDG6w0RiTTR29tJY+MZ5L0hrtX9XI+A6I0IQB5FwPatiIRbR+qhvwAsBT5IibHuBs5CgPh6xBn8swgzfQEiMb8FAewjlCK9ahEW/CqEob4TAdRXIhnbg4hUvDyZo/cvRwlWBwlUBQhWB7ENN2qrJcpU7xRlzWUEa4PsXLOT5Tcvp2JWBduu2lZkmM/+2tlYhkWkPoJt2egBXVQQLjPtWA6KqpAYSPDsV54tHnfJ9y9h29Wldi68/0L0gE6iN0E+lccT8hCYEeCt8bcIeUPHOXTfd+F9oICu6Dg4vD3+NmFvmAp/BRPZCZ7pfobZlbNZ0rwETdEwbZPDk4e5vfP2Ut20vwKP5mHNE2s4teFUPnLyRwBY98w6vnnONwl7w8X30T3ZzXBqmEX1i5jKTdEQaSBv5ollY8yK1qHYJjKFLpThpIQx9USlr31pDZz8JWGmX7rhGMa6UCvdIrXWVkYev/GtksTcmBR38XnrBIgX+LPJl+S4dK+w4vlJ2HEKNL1f6rsVHV64FuZ/WczVEr3H11TnpqTWOjng1lXn5fy+cgHRBU+OqaMus+2TfvDdRmf5hKtOtMRs7N011kXjMrsEsgvxWwWW/qlPCyHTtLzIFhcNyroeg/c9Iq8rijiqP/uF443LHEfenycg/j9GWhjxp68+RkL+UImpLsyH6xe7bHlzyTG8wL4HquEvN8DKH5DK60wlLQYGEmze3Mktt0hN9MhIkrq6MLbL/nZ29lJdHWRsLM3y5a0AxGJZAgGdwcEEGzZI3fX06dLnmqaNrqtu+ZiDqipksybJpLDagYDOoUMT1NSEGB1NsWLFNLq6Jtm0Seqyg0EP1dVBvB6VIBZKoba6d0iiNwslY+/0QFNdKU2kEPPp84jcu1CjPWeaMN3dfTAeEzOzsnBpof6/+fZ3Y64By3GcOxzHec5xnN2Fv7/DNf7P9jc2r1dj/fp2LrtsHrfe2o7P9zfA8bu2fN5kaipHLJZlzZonqKkJ0dMTJ5ez/vYBmkdW/sLNslq3b8PxTLXjCHBO9EDsHZlEDu4VKdCZayUP+9z7pHONdUnnlhyEshbpOAuriOlhqDjBXWF0WeqyabK6WL1Aalmeuko6Ud0Pp9+IY1s8tO9Rdr61h5+98Djz62cR9PjxaDq14Up+8dITLGg4AcMyebn/LerCVTz80Q3Uhiv5xpM/oDc2jILCv5y6itHkJJv//FMWNc7l+rOvxLQtAl4/n1zyT9z5/huoDVfyzScf4ujkII7jcG3bP6OrGgcG32FuzXT8Hp8Y/wJhX5CcmefVgbdxcCVPjiFy7OBZAozT+6H2bgG/tXcLK13/oEi9PS0wcafUYzt5tw7blUDqdeIKbhwRcK14JNPaybqxXHHAgeAyaNoOehPUfw+mHxBwP7y6xIjrNYCNpqjUh8Oc2tDAeDrNkqYmVEXhC0uW8KGTTuK0hgZst6Z67VNPsbCujunl5Xxy0SK+d/HFALw8NERLNMrZ06bh13VxAt+zh4xh0BiJcFpDA9ft2MFIOs2ZjY10T05y1bZtvDMxQdDrZTKbxbJtbjv3XBzHYTiVQlMUhpNJMtksSn29oM/OTmGrFUVux8dLFt0ejztYupTwyy8LG22aQuNOm+bWSnkEjebzAtLLywX9FsD76Ki4i9fXCw3c0yOB0vm8XENdnaDkZBJWr4ZMlkwGurrgxRfldKOjclkLF8olVlfLYR6PYPqNG4WITyYFpy9eLJdQ5SrS9u6Vt1BTIxLvw4cl6jubFXJ9zRrxdps/X2ThliWPs1m53bpVXMOTSUl4cnxe+Vw8rpwvb8hnVVcFs1tkADwyICvMs1qgprzUB+iavJ43ZOAMB0rmMSCr2Id65NhkGqorSgy2zwtnunLBTE7a1VS539ULhomm66i6LoZlroGZNxJB8/k4+P3vkxkdxV9RQT6RwMrliiA5PzWFlc3ir65m/9e/ztSRIyIX1zSqFy4kOTDA/q9/HTOdZvzAAaxsFt3vx8xk8IZlgH/lzjupmDuXcEMDmsty15x2Gp5oVAC7pqGoKq/cdRd508JRFZg9X+TaH/601FNHyoV5VjUBwf/rO8I4n3G2mI+NDIjrt8cjADmXgYfvl9itWScJePYHhME+/JYA0HRSWG/NbTNSLu7gOVdxMTYEP/sOjA+Dx4ejKIwe2kd88C1GD+0nVNkIDox1P0988C3Gup9HVXUUVcPIJKieeTqa7sexDCwzj20a1J+0grKGudTMXoKiaujeAENvPIuZz0iueKAMj18Y6tTEALovgIKCkY6hKCqaN8D44ZcxcylUVSuee7Rrf2nBIZXAmRhDcevWnVRK2OhkAhy7xDB3/kVKQi/5sLD7jg0eL2pTK3Z/D7j7Wzt+XwLWoSh4vGgXfkDAs8eLdvGH5PueTsp5VU0+v/gk1o7fiyQ9OSXfTwcikUbe856vE422FqXfk5NdbNt2NYaRpqysiVismx07rnVNz4aZN++faW1djscTpLx8BtOmrcDjCdHV9SS7dm0oAuumpiXs23cPLS3L0TQf4XA9nZ1baGpaTCIxwOOPX0MoVIPPF0ZVdZ599qvEYoepqzuFJ574ArptsdZxuAsBu3e7P88gcB8wC5fgQ5jr2xHH8DXA20hs10cQwLwVAeTmMft9FTFFK0jKC/ttdM+jIoB8FAHcV7rnNZBs7THA8GqEW8rY++29hGpDxI/G2XHtDkI1IaZ6pwhWB9m1cRe6X+eSBy+hco74dSxbu4x5l81j+c3L6X6qm87NnehBHd2vY6ZNejt7sU0b27DZvno7scMxQrUhlt28jMu3Xc5F918EClx0/0Vcvu1y2ta3kZ3M4hgOpmGSHEoSqg6hORqNkUaaIk3cf+H9bL9iO/deeC+GbbC7ZzeHY4fJmlnqQnXUhesYTA5y23O3ccWCKzi98XR29+zmnfF3yJpZBpODbD24ld6pXtJGmn39+zBsg3suvIe2ljbW7FzDQGKAaxdfi6IoRab8aPwodeE6lrcux3Zs6kJ1WLbFi4MvUhWswnFseP4a+G2NmJOpGmSG4MBXITMoC/M9WwUwGwmJ4FL9UHs2hKZB7Qq5Hdkl34Y3viX7H9zomqSNw2l3CjD3RN1El4DIxdO9ss8Lq8FKQ9sjMP9W1/clDyetFYdyRSsBxnCza2Tpk3lf2Uy5742Av0ocss2cSKNtQ5jrAhsNApoD1XKLIsfGu4Sk8UWPZ8MLx+CU2kNxX++TcyqqgNrpFwiwfmurAF0QBvp9j8g1P321AH3dL3PVk66E97i/KlWT+WewvvQ4fljanXuZpOHYhrRbnA8vEWVl03JReTYul7YblsqtNyoSctvEkxshHPbS0hJl8+bzGRxM4DgOoZBEZ5mmjW07LFvWwshIigULakkkcrzzzjg33fQUQ0NJgkEPd965kpaWqCsVFwZbUQRQf+ELT9DTEycS8WLbNpZlU18fprk5yp137qG5WWrPCix3X98UqZTBddftwKurAqwjoVL99LFKt0gI+ob4/FduZfoJs1GqK3jlqT/J96C1gVxZkGvv3swJJ53EgjNO56O3fRnOWgjhINsf+imnnX46ixYtYv78+fz0pz/lH3X7PwHXf1YUZcX/a1fyP9tx2/9O+v23toKM/DOf+SMDAwkWL27izjv3sGRJ038MzDWvsDG6X2qkz70PPrgd3vMdQHUjs66H318iHU2BZda8Yj7RsETMJ2xDVgG7HpP9NJ/kBxY6psblApw7vyqd04otskrZsERMNQqdZLJPpOS+KLqq8+kll7Jq7lI+c9YH8OleYcFsix/ue5T5DbMYnBo7Th5eGSzjoX2P8mzXC4yn43h1D60V9fz8xe3sfGsPP3n+j/h1L2PJOPc890uqgmWc3nwiXt3Dv535PoIeH36Pj6lMiteHuljQMBsU2PT0jxhJTOLVvcVortObT0TBFhdvNSgAe+gGAcHBs+TzHbtNDMnsNAytlte0Wqhc69ZU6wKCrRHI7AUnB8HlAprVEAxfL/JyNSgxXWNfBWsQ0MC/SMzL0p0iBdfrofKLLiO+GFDIO2FieZucaRLyeFhYV8eanTs5HIsxvbycBy6+mLF0mo6eHqk7P/dcxjMZPrt9O4cmJ9nrqkNOc4G57Tg0RCJ8YtEi7n7ve7Ech+t37mQgkWBpczODiQSaqjKjvJzvXnQRTZEIQY+HtGGwescOxjMZAA5PTmI5DrOrqggEAjgDA4IoFy4UdFpbK3bbqZSYlKVSAnS7u0UmXrDUHhmRxy77yPCwUMKJhCDh6mqZ+FdXS3uqKvXV5eWi8dY0YbuXLhXddp9IWRkelv/f0qVkFR/xuMLwsFxeId86LERhkXlOpeTQE0+EH/wAtm8vycXHx0u3fr9g/FxOMH1jowDwsKsavuuuEnjWdVixQl7XNClDb2uDN9+Eu++W9QHxt1FlQDTMUpYXSon593rEzbNgcqZpbsh2XpjqgoSrMMjGky5r6hqeNNcJgx0KyPGqKxnP5UsyscLih2XJSvjopLyezaMm0zj5POnhYSrmziU3OYmVy1Fz+ulkx8YA0AMBXvrWt7AyGcZffx09EED3+0kPD9P/5z+THR/HyuXIjIxgZbNkJyepOfVUVK+X8rlzeetnP5PfpqYx8de/ArDoxhtBUchNTeFYFhMHD5Lo7UUPBNB8PqZ6esjFYiy6fg3ebBLlndfFxGzGXPj9T8SwLJeBGSfJpC42JiZluk8+A18AKqpg5QdhclxYb90j2dZlFbD0PGidLUZniTg0zRCHcZ9f5OOKIoA8EROGOzYm+djbfyW11zsfAdtGQaFm9pIiOLYtg/RkPzWzlzD9zA/QNP98qWtWVDyBMGPdL6LqHsxcmtF39rqfi4emU1aiqjr5dJxMfIT40DsYmYTEHBo5HNvEyCTRfQH6DzyNg4PuC5GJD6Eo0HDyORiZJMBx16MoCopj40zFUUJhrB2/x8nnUOobUaLlqK0zcECcvuctQl15idhH2PYxrvaGC4gjIgPXPSgt07F3Pyuu4uVlIjPPpOXWMnEmx4XdjsfkvDv/IHnbwbAcu68DtWkaKEoxnzgSaUJVVQwjheOYdHRsLErCwWH37s20tCzH54vS2truZlpnMIw0TzzxecbH38brDfHpT+9n+fKb0TQvLS3L0HUfF154H6ec8jH8/kps2+LCC+9l3rx/IZUaKdZfh0I1xXPu2rUBjyfIRRfdTy4xxEyEKU4CJyPAuRpxDu9CmOUuROId4njJeAypp16HRG59yR3iw0AUqdUedB8HkXruKxFADcJw1wBt7uvfQlzExxAJeT1ge3UqZ5ZzyfcvAQc8QQ9dT3ax5849NC1pIjORYdXdq3BsByNt8Pg1jzPZLSVAq+5eRbghTP/+flZuWUmsK8bj1zyO4zjULawjM5bBzJo0L21m14Zd2KZN1QlVRJuj9O3rI3YkxvbV2ylrKcMT9JBP5jEyBuWt5USbomxfvZ3423Ei3gjJfJKxzBiL6hehoDCeGWdh3UL6pmQ8OzByAE3RqA3V8p33foesmWXNE2uoCdUwnBpGVVSWty5n2+XbWNK8hL6pPmpDtezr20fOyhHxRXiy60mGkkPMqpxF2Bsm7A1z8/KbaQg3EPaGUd2pdfdkN529nSxuWkzWzPKX3r0489aLLPzkm2UQeXOzAOQ3N8vcqvUyAb3+eqhuk9+HlRUX8eQRyI5A1RnC4hbamrdOFuMrFknfn4/L3MpfLceDAPPspNxqLmAPtshrr90KY7sFuCuqzAsjLXKbT8i5NI+AYjPnAmQXTCf7Sqx2oFaApm1B7LAcVzbD9YFB+rxwY2lBLtwsBEx0ujx2bAHW3qhb163K65FmlxH1QMUcOe68+4XgWeJ+i8tmyvwy2Sdsc6JX5qz9u+HsOwWkD+yWeS2qgO/+Dvm8otOFaHrP3aLSVDW5f9KVotzUAhLPhQLn3Cvu4d6otLX3m+I5NHZAXvcESSbz9PZOsXbt0zQ2RtA0xTUjs5mclHmQqiq0t08jnTbweFTCYS8337ycpqYIdXVhQiEvhmGRSORZvXo73d2TjIyk0HWV668/iy1bOrEsh2zW4q679qIoCj6fzvLlLWzZ0oltO6xbJwTdkiXN9PdPsXHjeWi6IgvyBXl3bUVpzO4ZhIootDbw4Q99iI5nn2XatGnQUA2pDPi9fOnH30fRNd4+cIADL77IHZs2SbSiY/PRW27iJ99/kFdeeJFt27Zx9dVXkyhkiv6Dbf8nsvBlwE7EUDKL/FQcx3Fm/r93eX97+0eQhf9nt4LpmaLA1Vc/zsMPHyi6hJumzQknVBVrrv+dQZqVh4m/SicUbpZO6Vh5+OJbpEN5do2sCkZnAra7MqlKR22kBVAXcv4izVB2AsTfkUiuJbdK55rsdzvNsHSuji3nt82SGcTKHwiLnRok3XQuSbemL+DxoSoq46lJ/B4/o8lJAh4fD3Q+ws639rBq7lJuOe8T+HUvvbFhhpMT1IYr+OG+P/Dpsy6lIhBly59/xicWv5+mshp0VcN2QXI6nyGZS1MZKidvGTiOQ87I4tG96KqGR/PQHx9hIh1nTs00RpOT/PzF7Vx/9pVUBzwoRjeMb4CqteKyqdcJiFYjpfit6q9B6ikBzgVXcaMfPNPAM0M+U2ypq3ZSx5iaeeUPBDTbkxLTFVwqj9FAr5JbVDkvuLFdGinTQ962Md8l997f3893L7oIB5Ftx7JZvrNvH1tWrgTgN2+8wcuDg9x5wQXoqoph26iKQtowABhOJhlOpTiruRnbcdjf389pDQ0MJZNs6exky8qVhN1sa7+uYzlOUTJ+WkMDlm2jqyoeTaPMslD7+o6PwCorEwT7uc9JPXYyCc88IxLuM86QAuS6OmGbMxk4cEBQ6sBAKSdLUUo51rfcArNmCQJOJOS2v7+k3163TlCy3y91roVcLV0nFaphKqEWnboTCfFbKyuT+wXga9sCvKNRwa0FZZRpClPd1CQ4PitloKxbB9/8Zun4fL4k/b7uOnEEnzkTDh0qXeL06dLu5z5Xet2nW2hGDqVnUFhpwyw5datqKTIrk5OBFErRWX7v8VFaXh0SaQHRBZBu2ce7f3t0YaVb6sUh9N15mODK7lIlh9GJKcyKMI6ilGTfkQiqz0eqv79oZmYbBmY6ja+ykmR/P2/+8IfMu+oqtECgaFw2/tprlJ1wAp5IRGTQmQyq14uiqgK0LEvcqk2TsVdfpXzOHHKxGG/+6EcsuuEGNJ+vaJY2+vLL+CsqiDbW4zFyEAwJu1xZB6GwMMnRcmGbM2k3RmpMpOLhMqnT/u2PxPTM6xNGOhkXljqbEaBciNrKZuU7/WKHAOqCK3hto7Df239Vejzc7zqKX1PMv7a8HmzHRtW9mNkkibGjRKqnY9umKwOXuK1MfJR8epLyppNITw6Sz8QJljcW5ePp2ADeQDmhqkYc28axLYbefI7qWWeIaZnHRzo2QrCiTuKlFAXFtknHBtC8IYn00r04puEC+BS6N4BiOyioYmQWm5DPKjlVknqrKqgaim3JxNU0sAd6BYB7fNg93di/+SnqR/4VpawcJx47/jjHEdYvlRTZudeHte0R1PdeiqIoAsxbpguo3rsL9fyLRObv/jgdwFQcHCxs2ySTmSAUqmNyspupqV6ampbg8QTJ5UpZ2KtW3U0qNUxHx6bjorrOPvvrRKNNxTxsUIru0j09uwmF6ohE6hkcfJmGhtNIpUbcbOz1VFTMwjTT9Pfvdw3STiCR6McXaeKIG8W1BDEgSwIzEVB8GyV5dwPCXivufuUIsE67z4Xdq0ogddtliPv3QgQsb6AkGwf4PHCq23YTUpfdggD5zQgQV9y2pqdymBmT7GQWf4UfbEgOJwnXh9H9OpPdkoO9bO0yendLvNbZXzsb27Qpn1GOYzoYGYPBlwYJ1YSomlvFRNcEycEkTYub0Dwa8b445dPLSQwkmHhngqbFTfTv7+f3H/09H/j5B2htkyhMI2ug+/Si7HzBlQu44IcXkDEz7O/fT3O0mdpQLWt2rmHtsrXMrpyN4zjoqk53TFzFb152MzMqZjCVm+KN0Tdoa20jZ+bY17+P1rJWZpTPIGtm2de/j9pQLSOpEZY0L8F2bIYSQ/RO9dISbaF3qpclTUvw6T4GEgNEfVGCniCmbZKzcqx9ai3Xn3U9e/v28q/zP0JYccDOipQ7M1iSa6seYZGNOPiqIDsm9dXj+1w2ulxk5Ac3CbAOuOyrMQW+WncekYJXbpa66+hcqa9+Y5Mw0+FZkDoij+etF9DorRAgO7ILQi0QPfF4OXf5LFlstfMSnxU/AuE6OVZBgLSRco3IcE3NvOKynU8I6LVcyHBc3FZzST5ecB8vmJ0VjcyKPzHZx8qJwdjkOyWjMs0PsSOw/5si+546WpJtR6cJi33ufSLpDtQI4bNknVvPPimPF6+T6zSSpWjYxbfIc4omrHVmREijJeuFtTfT0p6RgvE3XF8ilam0wsBQlq9+9dliWee997636PINcNNNT3H99WfR2BghHPbS3T1JX98Uzc3RYgxXbW2I66/fyc03L0NRFGbMqEDTFIaHk2QyBtXVIQIBnd27e2lvbyWVMtA0BY9HQ1EgmzVJJPJFU7NMxmDfvn4uvGAm6jtHj5d3H5th7feWPnfLYvoJJ/Do737HooWLSE1M0jBrBn1vHyJaXSn75AzIGzjRENX19fz+Jz9jxTnn8Nqht7nw4os5/M4hvH7ff7sa7L+nLPzHSKnPe4H3AZe4t/+z/X9pO9b0rKsrxpYtK4sycqm1rj4OWP87gzQrL51IoFY6rPrF0gkW5TabpBblvAcEZCtIx6d6xQjCExJg/NZWAdJNbQLAY93ScZ3/fQHW8cNSvxJuoCj5SY+V5EXlc+C878prqUEI1OAYKd4aPcpwYpxvPPkD+mMjVIXKSeczTKtooC5cyU3nfJxHP3Ena8/5OH7dh2FbNJfXChuteVjUNIef7P8jAY+Pr1zwGaZXNJA3DY5MDPKNJ39AKp9hLB2nNz7C4NQom//0U0aTk1SGKlBQGE5McNtTD6EpKgsb56C6QP+jp1/EWDJG1sgIsE5sFUDsnS251vkuAcVlV0LVegHaoQtg/C4IrAC9EYIrBFxjiqlZei/oleImXnmjOIdbcUCRWna9FtRK8J+GgOpGYbcLbDlu7bY1Iq87koHbE49z7Y4d1IRCDCaTrJw5k2+ddx7dsRhXbdtGxjQp9/vZcO652I7DTU89JbLvVatQFYWcZTGRyWDZNlGfD7+uE/H5aAiHuW7HDrKmybKWFoIeT5HBth2Ht8fH+eJTT5ExZQIa8floa20tHq8oCj7bRjl8WEDwrFmCWg8fFopWVSViS1WlyPiKK8Qeu0AXJ5Oiz1ZVCYMOBuX1gpz7yBFhogs0sGUJSKypkcc1NeJUtmKFSMqDQSmKTiRwMy+ETkYhHJbTDA2JfHtoSH5/jiN/2axcSmWlYKECgH77bbjmGsH99fVSe71mjawBXHutEOR798q6gmHIH8D3vlcqHy+Yqfn9Lta1JJI7GCxdqtI7JEyypgpIntksF2zbAoQtW+qkHUceezyuuZkjkvBISPZXVQHEhlkyJ/PqAqgLbWqq3M8bMuFqbZAButX1VSjUH4eDct4jA1AmwDrZ18fEwYP4KypQfT6wLAI1NVQvWoSq62iBAG889BDpoSE84TC1Z5yBv7ISf1UVVi4nYLimBs3vx0gkMJLJonx89OWXSfb0kJ2YINnTw/6vfx1/dTWaW3s99+MfJxuL8fw3v0ni6FHMTIaaRYt488c/JjUyiuPzixy5eSaUlQsDXYiV8QchHJHHlbXifP3zeyDuSr8nR0XanYgJOx2bgG2/kP3MvBw3NiD7n94uwPr55wRQW1aJqS48rq4XYO3zw8SoSMbdOr18KkYuFaO8YS6aP8RYV0kabpk5gpWNBCuaGHj9GTyBMGUNc7HyKepPXIE3EKG8+WRClQ1YRp7Bg3/GzGeomnEa490viQu4qhKsagQcUhP9GOkYZj5DoKweTfeComCk4wy+8Wfy6Tiq5qH/wNOAijM5hrX9dxKH5fGWpN4DvWCaKK65pZPPYu18DKWuEVIprG2/QYmWoX7kX1GbpwkDXtcoLDVAbBy7pxvFtuWzTCZBUVCXnyPGZYDafh7KrLk4yQTauRcCYO14FGdiHEdRsR0Ty85jmjl6ezsxjDR9fXuoqJhBWVkLO3asZmLiHXQ9UDQ4y+XidHRs4uDBrXR2bmbmzJUsX34z4XA9sdhhHn/8GgwjQzx+lG3brmJ8/B1qaxeQTA6SzU5RV7cQjydAefl0Vq7cgscTJBbrYseOa4lGmykvn4FtG4CDrfvoURRqEAOyDDAbAcNhBOQW5N1pBHDvc+9f7+7vQhuS7u2gu/8AMB8BxxuAx5D4LQsxMfsm8KFjjp0uIzGb3X1DiJS8Jm8S64rRv68fI2WwY/UOkkNJdL9OcjiJ4zh0bumkZXkL3pCXef88j/Zb24k2RwlWBXn8mscxMgbesJemJU0Czh3wRXyEakPsvH4nRsagrKVMZPxNEZqWCLCOtka59u1raVnWgpkzpYrKp6PoCm1fbuPybZfz3u+9l8Oxw+zv38/ipsUEPUHi2ThbD25lc+dmAHRVJ2tl6Y33cuPSG4n4IvTGe1n/p/Usql+EaZtFIN0T7yFn5fDpPpY0L2EkNUJNqIY1T6zBsi1qQjUsrFtIf6KfmlAN+/r3cXjyMN2T3fh1P6qisr9/P0OJIRb/P+z9eZxdVZ3uj7/XHs58akil5iETITKEhCEJmUCRgAh67VbTDn3tdiCgCTJJ0IRutCEBgwitoBJt2/a2Q0e7tTGESRBJpSAJIAIBM1SGmuczj3v6/vHZp06C9m37Xvv3e1279+tVr1Pn7LXX3uecqrXXs57n8zztS9nWs41L5lyCrpl4xRH41UZxAo/NEQb5hfUCfPWwzLPQRb79wnpf8j0mjwfu8qXgW2R+8MJ14h6eOw77rhGZ+czlYoTmOVAYFEOzg/cJKaKHfPY6UgXu2aMiQY/NlT4rcu54h69iKvnGZCWpb9YCMldM+hLvQI3MJ6dNzTSpx453CJGidCFYdPMkKfiAb76K7KvIvpUScJ7qlXP4BrfoprRxbWHV21bA8H6ZX2ZPyDw0PyrAuvdh6V8pmYcavlKyEhW7dytEGqvP922V/wgjLOduWwkvfEmuK9Ur/ey7S/rN9Mt7NKMw9Jw/d14iyTeOjW6a1NQE2bhxBWvXnsWmTavQdXHvvuGGxxkayrB8eQcjI1kCAQHCoZDBokXN3HNPDzt2HOCuu7pJp4usXNlJa2uclpYYzz3XT7Fo09wco62thlgswMaNT3LVVT+gWLRxXY/+/jTXXvsIfX1pstkyyWSR8fEcvb0JbrjhcRYtasb1wOtqhaYZsiAPAqjnz5JHx5XF+EMnwHLkvp8tQKlM78GDzIjXsPWLd3PB8uWsvuQSnvr5zyFgog738U9//w/86Uf/gllnLGDVRRfxD994iMDxIcgXq0q6/yLbf4S5ftHzvPP/k6/n99r+m7mW7c2mZ9/85rtQCoJB47dk5L/TIC3sQjHpOzIqWYHzXMATc4bK6p6Vk4Fl6SYZSCrPl9wqtdR2wc+w1mQgHH5OVvZ+9RWRgCsl/TglWT2MtspxyV6/n42Se71grfSTG8KySmTjc3htpJf6cJzaUIyQGSRXLtAYrUcpGEiN8a3nf8onlr2Hjrpmcn79YKKQYSKXYFHb6ZIgoDQ8z6PsWKSKWbY/9y+c0zafd56xCsuxsF2HB7t38Jbm2ayYvYim2AzKjsWrw0e4+eEvc+n8Zdy25uOUbIvXR49yeuMslFLETI2gexw1uQUa/sqP2SqJ3DvfI3XVRqeYjEVWALbcqDx/0uiMgjXq71PCSuu1Ihn3yvJ52sdg8svQtE3AtOcBZZGAVfpSAXCSVVM0oxWsXtLM41O7nmBpezuXzZtHW0xMV3KWxfWPPcbDBw/yyrXXUh8Os3dggLZYDBeIBgJ0xOMcTSTY0t3N5lWrmFVXhweM53IUbZu+VIrjySR/esYZAERM0/+Mq/X9Sils1+WWJ5/klhUrmFVbS9G2CRkGY7kc8wIB9N27q1Fct94q9KznCZVbyaEul0VTvWWLyLfnzRPw/KUvCfCOxQShbtoEd94p4O7116v6a9MUzbbrm6TkctL34sXVAd80p3NyKZflsVgkE2shm1VEIiLjbmoSL7XmZt9EW1WTu5qb8W+Usq+7W5y9//EfBSCXy1JKXkkGGx4WjK9pclkVs7LbboM5c+TSNU1eHx4WwN3fLzXcoZCo5CfGXC65yPZDh3xZti5sH64v6wYYGBXTEqVVnUFTWQHBle3kWA3Hqa40n5ybPR3D1V5tf/JWYcIDPoDf9yqcOQ8raDD24ouEGxspjI8TaWkhPzJC47nnYpdKvPylL3HGRz+K67oUx8dpPP987HyexMGDRJqaKIyNMXPRIpRhCOPqeWQHBiiOjdGwcCFaIIBbKqEFAky8/DK7r7+eVffdR6SlhQPbt0/HeAGUM1IDF545k9zQEDVtregTIwJ6166DXFpA7Zujt7IpYWQ9RC5eLgk77Xki+w5F5IspFas5zkP9MOd031nVZ3Qnx4QBn3uGrJgU8xL79Y73S7711LhEdF2wGk4chngdTmsntl2klEtiBKX+ueWMi9B0g9zUEGYoihGMohkBrGKW7MQJgpFaIjM6KOdTp7Dbrm2hm0HKhQx2KU90RiseCqtQie6KV03RwrWgIJ8YwQzHCURqGHzlSVLDB6lrO4OWMy/Gc11MZeDs/HE1i/pda0UaDhAI4iUnT2GjvVd/hZo7H/eZx0/Nr8aXxE1NnBLNhWHK5xmNoWxblALgg2t/vAgEIDklpmcr3oo30Ad19Whdcykri0TiKN3dW6cl2k1NZ2PbRaamjhCNNhEK1RGJyN9ILjdGNNokn7kfxxXwmTnPc9i1az3t7UtZuPDDDAw8P52DffHFnycSmYmmmaRSJ0inB6ZzsFev3kwq1c8PfnAVZ521lquu2k4yeZyennu47KqHKJoR1ivFDkTa/SBS83wL8FXEwXsHcBA4jDDZLwDNVFnoEiLr1vz23/P7uh9xBLcRtjuP1Ft/DqnnPoyA8aX+8RlET/VrxFW8D3h7usSuTz0i2dS6huu4jL06RufyTpSuKGfLeK5HdjRLdjg7nXUNTLPLH9r1IWraa9i9ZTerNq3CjJiE68MUEgV6n+ila2UXz//t81zxlSvwHI/ceI5iukhdZx1KUwzsHaCms4barlpyozmizVE/Fs6jZJTYM7yHxmgj9z5373S29DWPXMNtq29jbv1cKvPd3kTvdP70QGqA3kQvqzpXMZwdZmn7UpLFJHWhOnRNp2yXiQaieHgMZSTrWkNjKDvEsvZlhIwQ1z5yLZ9e9mnGc+O0xdu4e8/dbFyxkTl1cyg5JXEK9zzCZpgaXUe5JQGE5XFouFBcvrvfVzUYe3guXPEyvHaHuIe3XCaxWpohTPSBLSIdzw1A9jDM/jCUpsQZvDgGMy4QcF3J0y4MyXk8Byb3w8zK7z4jXhyDGeeJW3jNmX69ke57yjgnGZw1Qt1c/x6dgamDEJ5xqumZYwnYrtRQu478V7uWzAFPMTELMp0oc3IUl2vB2K8lOqt2rtyUKjFf5bSQMLlhIYRKSQHyT28QKXdhXEDxdCxsTFjvcANkTlQzrc2IKC+fvQWWfBai/g18eK/MUSPNcPifRUq+5ptyfjMq1zK8T86d6fNZ8s/JPitH2uhiz95Jzj67iUjExLJkTvSZzzzJ0qXtXHbZPFpaYuTzFum0ZGHn8xYzZoQxDI3u7j7a2+N0ddXS25tg27Yevvzly1AK0ukytbVBXn55hPb2GmbNqqWnp59Vq7oolx2mpgokk0XGxnKsXNnFnj19LF3azoYNj7JyZSfvfe8ZjI9nWXR2k3w9xbKUbwUDVeY6YEDvgCy6z6hh9hln8NPv/YDFZ5zBS0cOcf6Fy/iHh7bzkVWX8KvMJGuufCcH/uURGiyPSz93PX9zx51c9La3sv/FF3n3u9/Nq9/6PjPnz4HTZ59qnvr/+PYHy7lWSv0NsN/zvJ/9oS7u/3T7b3At2/8u7/r3aktRBh/PkxiC/dt8Kcw8wIWhHjEcs7Jw/AkBxm/9Mjx9naz2/clOaDrPXy2866Ss6pgvA8/JZD43JBFfpYSA+cKYsNxPrqu6M771fjnOLkm7SBMFFaQ/Ocq39gqArgvH+dIz/4tPLHsPrTUzuePJb/FM7wvc++6bONd3CHc8F9dzMTSdolXmGz0/5oaLP4xSCl2p6bznkl0mZASmszAdz6VQLnL/s9/nL5e8m5BpEg9GyZVy1EfqcD2XRCFNbSiOrsmNMmp6aJ4ln5UKgHVCfsJLkVXnKd9YzPP3DYhDOIbPcB+F0CJhrvVm37gsBVotFF+B0DliNoKGgO9h0BvB7oPJe6D5AcD2HcI7wBqSWmwtAl6JshdjsugwlMnwwL593Hf55SilMJSiYNskikUKts2W3bv5zPLlzKqrI6Tr5C2LkGFQsG1+9PrrvPO008hZ1nSeddQ0qQ+FcD2P4WyWgXSape3tmJqGqWmUXZe8ZXHrz3/OxhUraIhEiJgmhqYxnMkQCwYplMt0RiKYuRxq/Xp4+GGRdzc0+OZcvka6p6eKKq+6CtauhQcfFHZ65UopQh4dFda6wtaOjQnSBenrhRekrlrTqlbckUg19quCbONxAemVUOt580jbEYoldQruDgaFnU4kpHy7Iv/WtGqE1rZtwjpX8q43b5ZuQaTghQKk03KZfik6uZwcP2uW9LV3r7z1wUEh5yvM9auvytsZH4fauEvjTFdYvZIltVMnS7ZP65LaqpoY1MXlRlrrC0crY7/nnSrZqlDyFZBdya4OmL5kTMnEKZWtgmhdkxt1/4gPvHUfJUmXtmVhl4q8cOednPGXf0lxamratbth4UJyw8Mc/v73OX/zZjzbxrEsPN8dPHHwoIDyyUnqFywQl/F4HCMS8eXCvrO06zLxyivUnX66yL81jYlf/5psX59EcpXLvHzvvZzxsY8R6+wUYOZ5mLpCffdvT82fDoXF4btttvzueQKYSwX4yT/Aez4iYNpzBWT/5B/gT/5CQPjR16FjnjDPSkkb3ah+lslJOWbXD+Eda2Fms+x3K319x+8/LH88/Udw3rJIZNF45BMjhOJSsz36m93MnLeEQKQWu5iblom3nHExjlVAaQZjh3qmwXDr2ZeA506DZSMQZvj1Z2g8bdl0BJddKmAEw+hG6CTZuZikGcEIrmMx8saztJwhFixWMUcwGEOlkiID75glhmblolx/MCTvq1jAfe6XAphjcXm/uQxeJi2MtaZBcgpVU4ez619OBeqlgsjUDUOk4b4zuPv4v6KtfrsA9+ZWnCd3Th+nveM9kE3j9vwS551X8rOd6zhwYAdnnbWWK654AM9zMc0Itl2iWExgWQW6u7ewatUm0umBUyTdq1dvJhZrxXVtAoHYtCQ8lxsjGKxhZORlYrFmYrE2AoEYjlNm165Psnz5Z3yg3kguN057+1IefXQDK1feyowZ8/nZzz5BZ+dKOjtXUdOyiIymk0LY6lcR0PwU8OdU86kvAo4h7PMyIIjUYXsIEL8RaPP/lW9AJOCzkIitiiR8EHEXf79//DgCur+E1G0PIBLxOYizeB0Qy5WwU2Vy47lp6Xe8LU45WyZcH2Zw/yAdyzrIT+YpJos896XnWL1pNXXz6pg8OEnPth7e+eA7p/OpP7TrQ7QsaqGULhGsDaJ0xWPXPcaKjSvQTI10f5r2Zb5UvC/F7jt3s/zm5YTqQ1h5i/RAmpr2Grrv6mbV51ah1WhozRrrH13PjgM7WHvWWrZftR2AifwEzdFmehO9hI3wKfnUy9qXMVmYRFMadaE6Xhh6gcUti4mYEZkbuA66ppMtZ9n01Ca2vn0rAT1AwSrw6tirLGlfQlAPki1niZpRrn/sei5ou4D3n/l+wmaYXDlHyAjRn+6nPhCmnRzqwFY47z4oTQhQnnYE74LYbCiMitu3psv44ZYEpGqGsMYg4NfK/I4c7A5hoPd+4tQ8bTsvcvNQk7Q7sAXOuFkAdcNSAb6/uhmWfQuMqJw32Stgt8JMB2vkD62c9k3OSr4HRZBpAGxGBRxnB6su31MHoWmRyN4r9xsPUeV5rrDFTlmAfHaoepwZPSkTu03a5oaFra7MTQO1MnesgHSlyzmSh6rpNPWny3w20ixqygqovuAz8hxN+qqA8YlXofVCAdFty/37oisKzP1f9OfJcyRNp2WpGKxFW+Gp9RTOuZWkPhuAaNRE1xW2Le7eR45McvfdPWzevJqGhjA33fQEX/7yZUxMFNi6dTcbN66grS1OPC7fcankUCza1NQEsW2X558foLk5SmNjlM985kk+//mLqasLMT6eJxw2qK8PsXfvIJ2dNcybN4NCwWbv3gEaG6PU1Igxbyig09UYRGlKlGUdLTAwcmp5V2Vhvn+E2Vdcwk9/uIPF55/HxMgozXNmUR4eQ/czR5dcfil33f556go2H9p0C4cOHBAQrRRLlixh6yc/zZoPvB8ioT8qafgfUhZ+HfCvSqmcUmpKKZVQSk3931/if2//J1ulfnr+/Bm/l+nZyQZp8+fPkOMdTQZDK3OqFNwty+DTutyvZzkmBg6XfFU6W3qbAOv2lbL6Z4Sh/SLIjcnv5Sw8f6fcCAIxWe185gYZKOMdUtddmPDzBdfC0s1Vc4iRvWDlsdAo2uVpx/Bv7f0puXJh+nelFJ9Y9p5pt++/eeKbDKUnSBezjGeT3Pnk3zGRS3LtivcxnB7nrp9/m1y5SMkuoyvNdwBX/HroEEPJcRL5FKZu8Ofnv5PJfIKwGcLFoy5Si4dHspAmHoxi6gauK8ZqCg/sozD6KcmermRNF14QZtloFCbbLYCKCZDGBeWJaVlkhbDR5RMCrLUQlI9Jm8gKeW5PSB8A+kxpp6LQtEUcwgv7/fivCIQWyrH2CKgwAa1EPBAgGghw5yWX0JdKMZbLUbBt9g4OUrJtWmIxtl91Fac3NBA2DDLlMp958klOpFK8NDzMys5OGqNR7unp4aKuLpqjUVpiMYKGQdAwiJgmTdEoGx59lBOpFOlymWsfeYSRbJblHR20xOMEdZ2e/n6OJRIcnprC8zwigQCWX9fMpk3w4x8LsL3uOkGqIJrpRYuE3r34YgHR27cLur3/frj8cqF0W1pEf33smCDVI0d8B+uCGJ5VIr6yWXjtNQHRIGBn/34BPLNmVY3UKm7ihQKmZhMIVBcgX3hBGONK/Na+fXIfCodhakoU601NwkBHItJ1OCyxXIYhhDnI2sHRo3KJFba7oUFYcccRdnvRInl7q1ZJLTdIfwsXClteKEA45KHKtixilS25Ueq6TFwqOdVdrRK9pWnymueJ9Esp+dG0U7MtXa/qOl6Rh9dERVqOkmiOQkleC/iLIB4C3CuMdqkskR6ug+M6ZAb6wfM477OfJdLSQtOSJURaWqhfsICXvvhFNF3n3FtvJdvfz74vfIG8r73XIxEazjmHwvg4jeecA55HbnAQza+bzgwOsu/znyd94gSe6zJz4UKMcJjswAD7br+dutNPZ+a557L/jjsojI/TsHAh+bExXNsWqfmLL8p7uuLP4JObhV1+5Afyucw9E2xLWObvPSC10J4nwDcQEsb5+1+TbOxL3iWy794D1TiuTFIcvzMpAZdHXoPxEYjWSH72O94vbtkgdde9B4SRXbtOHpMJ+WDnnIEqFsW4TjMwwzFGfvMsdilPuL4Vq5DBcx2UbkzLxF3HYvzIPrLjx5k5dwm1rQtoectqrEKGodeexgiG0TSDGz9zKxf9yXoitU0c6psgGK0nMqOdMxYuYeG5S1i24mIue981/NM//QjXtclNDfLY40/w7o9tZsmylSw+fyk//PG/ojQD6meian1gnJwEz8N95nHIpFCxGtznfunnUT+FMnyDo0AIVVuHO3BCFojiNXgo9Cvfi37z56tRW9msMOGui5eQvpVpoq14G0TjYpoWDKGteJsA69Vvl/i2nl+iXbgaTRmsWrWJs85ay+rVt2GaUUwzRjJ5jEcfXY9l5Uin+6fNzSKRRpTSMYwgnZ0r2bPHlxUbISYnD9Hf30MqdYJnn70Dz3Pp7FxBfb0wbNnsCJaVY/XqzYRCddTUdPDcc/dSU9OBYYR4xzu+wowZ8/E8h8svv5958y7n+ee/TLmYZNzzuB2Rgy9GjMTeg+RPr0dqoV0EWDcimdUVGXgM+FsEDKeAAMJ4D8pfOI1IzNYwYlz25wiTPYxIvycQZvwe4BzESE1HJOf7AFvTMMIG3Vu7ObDjAD3beigmi5SSJQqJAvG2OI9++lECsQA1nTVc9uXLiHfEQUFtVy3v+ua7MMLGdD5118ouMsMZnrn9GTJDGcyQyarNq2iY30BtVy2dKzoZ2j9Eqi9Fqi/FwYcPkhvPEW2KYkZNOld0EmuLseLWFRhhg2AgSMgIsWn1Jj688MPcf/n9uJ5LT38PETOC4zkMZYaIBqLT+dRdNV2EzTAtsRZigRg3Pn4jC5sWMp4bp7uvm6JdRNcknisWiLFtzTZCRgjHdab7ueWJW8iW5VvIWTnuu/w+3vOW92C5FocmD3H949dzInWCgfQAbdGZqDfuEQm2HpRa65EnBOw2roLobJl/hVv9e1RJWO3cgHzzekik4koXE1WFyL2bLpJjGldByD/2jFurxmlKExD+6u1yzvygXINRA42rZb6SfNV3Dw/68mxN5mvlrFyrHhSw7RRlLueUBGzrQblm1/LrrpUsANTM8mun4z6wDvilQ2W/H1/l53l+ZrYnrHdFMh6skcWFaRn5kF9KWCuS8PyomOTmR+UaB7vleDjVKHf/Ntk/c6Fc22C3gPy3fUWAenZYxtncULW/tpXSpvEcmSPnhkShmR+tzpOtPKy+W+bGIM8veQC3dj5jYzluuOFxHMfjyJEE69bt5OjRBLFYkB07DrBly24ymRIXXdRFNBpg9uxa7rlnDRMTeTRN4TgemUyZz3zmCTRfaVYs2ixa1MzoqJia3XrrSp588ijpdGkaWO/fP8SiRc00NkZxXQ/DUJx3XiudnTV0dMRpbo7S3CTlP5gmzO8SAuLk8i6F3MMrJme2M+3dMrOunre/9W08vvuXMDDCseEhjh0/zhlnnUXnyqUMj47wxpHDoOscOXqU3mPHWHDJRX90wPr32f4jzPWs3/W653kn/qBX9Hts/9WZ65NZ6M2bV/OWt/wbOdYnta8YmQGnHjsvTMDNVJnrZbeJqYTniORl7xaRzESaRCq+dJNIgFJHfdOHTTL4NS6WAXDfVlkpHNwjTPelX5dBqWJmsec2WLW1GsXg2n59zVGR66y+G5ROzqxlMp+iZFmEzAD1kRo0pXh58CCNsQY6ahvFY8NzSeRTBIwAutKJBIKMZabY2/ca7bVNLG5fwK8GDzKUGuOc1tNJFNIsbJuPrjTAw/E8bMdiIptiNDvJOW2nY2gatuMwmBrn7/c/zMd9prxsWwQMk9H0JH+//2G2vON/ouwxcet2ktVHLSzM9OQ2aNgERpfcRHClLnrsVmi4RZhssxXM00QGXmGgzbkCogv7wOwSwK5C/s00CFgS91XJ1HZ9mbkWA+uQ1HY33UPZi/KbRIEtu3ezafVqIoZB3rKmmeaAz1IPZTJs6+lh86pVdNbWkimVKDkOdaEQ+wYHuWjWLLLlMqO5HHd1d7NxxQra4nFeGh6mo7aWgVSK9/3oR/z4/e/nwo4OjieTxAIBmmMx+lMp7ty9m5uXL2c8l2NmJEJtKIQC5pkmxvr1QsN+6EMCrG+8URy99+0TrXVXl5/RHBCq99Zb4ZZbBAxXHEfXr4fvfU9Y7a98RbTX994rRmZdXQK6t20TED9njqDau+6qPj98WPbff7/0V0G7hQK5eAu9R9W0HNswqvFb4+NSpv23fyssdTgs949KAlgwKF2/WdJtmlJzfffd0j6dFoO0sE+Q9vUJy33rrbBgga/EPiYl5MuWyTVks6KGj4RdTGxUhTk+WeLV2SISr7ItTHalxvpkg7JKe02Tth6+mZkPrh23ykxXbhXTcj/vVHO0yvnjUZGe+xpfq1hk/x138JaPfpRIc7PUSZdKv2VkFm5qYuyllwjV1VFMJplx5pnogQBK18n293Ng+3bO27iR4uQkr/tmZ/mREX75qU9x8Te+cQqrnfjNb/jltddy5c9+xqsPPkjfY4/R9Y53sHDDBiLNzXiui1Mo4LkuwWgEXSGfgWWJa7fr+aZjfyZM89gwnHmeuIBPTcDUqBiTTY3Bkz+BD1wLR9+Q2uun/hXe+zFxE88kRc48NSYu5CAgPDEuxmeaLgZpnivnnByFJ/9FpOhKCYh3LNxinlLAwAxGsa0i2fHjFJIjtJx5MXYpx/iRfTSetgwzFMcu5zECEaxihone/b58XBZBBl8VSfesC/6USH0ru599lq7ONt5++ZX86J9+wILZrUTqmjltwRns+P7/4vwlS8lNDRGpb8UpF9GMAM1tHfz8ycc5Z9Fijh89xtnnLGJ0oJ+acFiypaMxvFwWVd+A87VtVcl3KoG7+6npbGvKUrLh9h9HRaLCaq9+O0SieCPDaB1d/oRMQbmEh4c3MiQst23hjQyhWtqqZSRRKXsBz2f8wCuXIJfFqo2BpvA8h1xuHMsqUlfXRX9/D42NZ2IYYUwzTCYzRDBYQ7mcw7JydHdvZcWKW6mrm41SEonT399DJCJRXU1NZ6NpBqOjr9DWdgHFYpJQqI4nn9zIFVd8Bc9z2XkSY37llQ/Jv45rMTi4j9raLurq5lAuZ7BDdVxrhqdl4fcjUu4C8BICjscR5tpDXGX95S6eQ+qqK0UelX/Ryu95fpvV1uVOQgap144hedkr/HNu9I8Z8M/dlC0RH8kSqgsxuHeQeHucutl1aL6Sq7+nn8TRBB0XdpAdyVLTUUP31m5WbVpFeiBNrCVGvC1OIBbAKogZWeWYuW+fS7QlimbIOOO5Igkv58pkBjJSe713kJqOGmGsO2vIDGboXNkJHvT39BNvixNeEKanv4dl7WI6tndwL4uaFzFZmGQgPcCyjmUEdTEdi5pRAkYATWkkC0kao42UnTKe501HZ9373L1sWrWJiBkhb+UZygxxYceF0zJvD4+CVcDDI1vO0hRtwtAMXM9FKcVYdoxEMcFYbowVnSuo1Q00OyN11bjyLZQmwcn4JmWfk/rpUDPkjsEb98BimROBJnOlfdfCWbcJw21l/X6QWusKgx2d488NSv437cL+T57EZH8TMof99pvF6Czf77PADXIeYDq/Gu9Uk7N4p+8AXgFMXlX+jXeqxBtfvVNpW077wLzWN0g7KlLuShZ26qifpf0m5jreIZ9BKSmkTkX5eMaHxbDMtWRfqF4WCFJHJTbronv8VJywnNcuwJ6/knmoEarOzU5WUl76kF/37ookvsKA150m7ZbdJqSRGZXFhpF9MgcuTpLWOtizb5Izz2xkxowwn/xk1Wj4oYeu4rnn+lm5sgvP88jnLV55ZZSFC5unJeIAN9zwOBs3rpBAiTn12LbLvn3CSM+dW4/jCBP+6U8/yn33XU6hYJNKlWhqitDfn2br1m42b15NNGoQDpvTcvJYLACuR0x3xQS1YmBWue+D5FbP7eCaT36SR3Y9wsjEBA0NDcRjMY4cPMjRo0f5+J9/hImJCbRIiL/+3Cbee+4y6GrlB//6E7befTeapuG6Lp/73Of40Ic+xB/j9gdjrj3PO/G7fk460VP/txf731t1K5dtstmSGI/91j6H/v4UN9+8nP7+/02ONb9tZGZZArJXruxk27Y9lNyAgNy6+XDpN2R10MoAXjX3ev/dMiBWjB+ckgw2bStFEtR4jgzylVzA/dtg1hoZ1MpZGZye3iAAfvEGWQV89jPi6uiU5Zx7t4q8Jj8Kz9yAUoqSZdNSO5PacJySXSZbKjC/cRbtNTPJlPIcnxriV4MHCZkhlD+dcD2PmnCMK85YxYKm2Wx7+h94S9NsrjrzIrrqW1jcfrrf0sP1PF4ZOsRkNk1DrJazWuaRKmRwfZlpLBjmmd4XmMgl/POLpLg+WsOfn/9OPAw8ryAgWK8XabjRKI8qCuGVItX2igJ6R9YDSlhna0CYbhWvAmujSY5zs/L5R1ZIxJbnSPY1DmALm222Sl9ulun8a5QcP+MmwKXoGmzbs4eVnZ0EdZ2WWIyYabKqqwvbl27rSjGSzXLz8uWETZP+VIpXx8bIWxYbHn2UjpoaxnI5QobBXd3d7DhwgG09PaSKRc5pbiak61w8axZHP/1pVnZ2YjkOrfE4dzz7LH2pFH2pFDsOHOAre/eyqquLrtpaWqJR2uJxLMPA27gRnn1WaOB77hHkuGGD0L+trYIs9+0TBBqJCPgeGhIAvW6dINGvf11o47/7O2nzla9UjcxcV4Dzjh3SfwU4r1wpz11XHMo+8xlBq4YhGdq+Vtt2RJZdybSumD5v2CDNOzrgppuq83vHEQb6llsEALe2ytpBU5P0ceONculLl8p6wfCwmKQND1f/Z2fNgs9+tlp+7rpyzqYmWUfo7xeG2/NgfELD8nzFSjAgku9SGSaTUmet6wKOHffU2K2amB+pFZV6atOXLVdc1Tzk2JBf2+q4wlifvBirqaoZGlTjvGyn6jLuuGj5Eos/8xkU8MKdd+IUCujBIKEZM5h89VVKiQSvPPAA2YEB6hcs4I3vfIf6BQsoTkyw7/OfJ9vfT35khMFf/ALlZ2Yvu+MOom1tNC1Zwmkf+ABN55+PZppk+/spTEzQdN55/OmzzxJuamLpF77AVY8+ygW33UakuRkrlyNz4gQv3n03xURC6rinxiVbOjEBTe0iOz7tLKm5nncWzDsTHv5fUi9tmtVsak2XTOxKzvUT/ywgOpWQTOxyScBzvE5Y7uSUAO32OT5TYwsj/r++IoA7NSnHJ6ek3npiBH74EF7tDIxgFKuUZexQD5H6dlrPugRNM7AKWdKjvViFDFYxw9ihHqxCmkCklraFl6LpBv70mMbTllLbuoDIjDasYpoLzjmNttYmnHIRxyoSmdGGY4kjn+vaDL76c8ywGA25rk0+OYJC0furp7HyKVKpBHU1UUKBAF6xgKqpxX3ul6iaOojFfRb5UjyloSIx9Kveh6qbgZecFAm3VUbrmouqb0Bb8y68dAqUhorFcB75Z7xSES8xKTFbuSyqqRXnkX+GTBrV1CoT9mxGGPJUArfvGF4yiec4eJkUyjTxMinQFInEUXbuvIZiMUE63YdSOvF4O+Pjr2MYQfHrSBwlnx8nFmumu3srBw8+TDAYF3dqK8euXeuJxzuYOXPBdP51IBCjs3MFQ0MvYNsybrztbX9DInGUXG6M1asrjPlmlFKkUiems7RTqT4ymQEMI4Rul9jseaxFpNshGdGJAechkVrnIaA6hxiVrUfA8YV+2+uQ+mgDAci9SITXKFJPvQ2J7UoikGsEMT0b8Z+f57f1gJsQ8L4Kychu0LVpI7OajhpmzJ2BnbeZPDJJX3cfbUvaOOfPz2HfA/toXtRMrDXGFQ9cQaw1RvOiZp6/73mKySIoyA5n2bluJy2LW+ha2cUztz9Dui+Na7uU0iWyw1kC0QCBqJifmSGTjgs76N7aPZ2r3bSwianeKXLjOTpXdFI/tx5DGVzYcSElp8QNj0u8VkAPMJQZYlHzIibyE2TLWY4mjjJRmMBxHfYO7CUSiHBk6ggbHt3AaG6U1V2rqQnWsLJzJff03ENtqJb7n7+flV0r0ZSGrnRyVo7nB54nYASImBGOJ48DULSLjOfGwYPGaCPzZ8znvNbzMDWT7sF9eGat3NNLUyKLDrfAG1/yTcruEoDr5KReeuZy+WbLaV96rSTHWg9LLFfiZTBiMmerRHod2ApOQUzKJp6Xc2hBAdGzPwzn3S/fcHFEjM4ObAE7DY+cAS/e4APyN22uc2pmtdIFfLo22EWpt1aaL/d2fFdwU1hfEOBbMSgLxOWnYpBWM6tqnoYS8kaZcryVkzlm3TwBwW5Z5NypY3DJg/CxQ6KotAsw+pJvvGvI+6s7TeK6AMZeOlU2vvg6mYf+/FpIH5PXl22uKimhytbnxsTIbL+oV6bnyUZQ5r3FSWhcJCpNPYgZMFm8uIVAQMfz4IEHruDDH17Ipk2rCQQ0Fi9u4fDhSdat28nYWI7lyzsxTY3e3imGhzNomuLhhw8yMpJl3rwZFIs2N974OG1tcaJRk0ymzMhIFsdxuf/+d2CaGqGQwYwZITRN0dwcnZ7fNzXFGB7Ocuedz+K6Hq7rEYsYAqwr0Vsecm8vWQKs41FwHB7a/hADAwPYhQKjx45z5PXXAZg7aza/ePaXvLr/BX798ssCrP2+Prj2z3j117/m17/+Na+++uofLbD+fbY/JE8/4w/Y13/p7Xc6e5+06bp2Sli8YfzbX2O57LBly+5pKUqhYHP77c/4WXhrCAZNWdWr1Fj7UVgM9QgrfcaHpR462iJS8CWflQHnonuqchily6D21vvhmiExf4h3+ReQOlWeUzur+nzvFllpLGelhmX2ZdP7PMdiJDvBcGqcO5/8FmOZBCEjQNAIiDuspvGd/T+jPhxH8+WtmVKOfLmIoRmUHYugbnLjxR8mqJvkygUc16FkWyTyKVzfZXZx2wIa4/UYmkGqkCFkBsmXi9zxxDcpWCXuffdNLGo7nYlsEk2T+qs3Ro9haAZ4FsoaFLm3M+EzyL4JCED8vRBZ7ddjj0B4ueRUj230GepZwjZXZODmbAHnWgwwxeDMs+XzVWGRe+f3CJA3feZWq5Ea7elNQWA+KIkv++Kll7Kys5Pbn3mGY8kkDZEIR6amuOHxxxnN5YiYJu01NXxl715igQCN0SjLOzoIGwYbV6wgbBi0RKNoSvHQlVfyl4sWcevKlbTEYkwWCvz1M89wNJFA1zRs1+XF4WFGMhmWtrezZfdulrW3s/ODH+SrV1xB3rK45ckn6UuncVyXpOtSPu00vO3b8WprBRhX7LE7OgTs3XKLoNJIRGTibW0i8x4YkDrtirPXTTeJnNx1xW77scfEGSwYhAcegJ07pe/jx6G3Fz74QXndNIUOrquT+tBkUnTXo6Nwyy0YBqxeLd309goIrhiYh8MCoAMBUZorJXJuxxFfteFhUaX39wt2V0o82QYGRNEeDgtoXrlSTnfihKjbcznBtZ/8pJxzfFwub9Ys6Scclrd83XVQV+ti6j7gdV05eSwCZ84TV+9iWRzCLVuAtG0LC908wzcXUVUgbDkiA8errmK7rtxwK8dXGOmKhLzChIP0ZzvCgFu2HIeHXhPDjEbRg0HO+NjH0IJBwjNncuTHP2bm4sVEWlo48+MfJz8xgR4I0HjuuVi5HAe2b6fvscc4sH07DQsXcsVPfjIdt+WUSoy/9BLZgQHOvflmsv39vHT33dQvWECstVVIdqUYf/FFckNDGOEwk6+9JuZbkQiR5mbO/PjHMYJBlOeiKo7dqUkYHxYgPe9MYZA971SH73itgOjK80DAN30LSJzWmef979vPXuAbmRXk5+S2c95SPT5eB7t+iHvambiOhabpjB/ZR2r4IHYph1XMMPjqk5jhGF3nvYtIfSvjR/aSGj7IeO8+GX7zKQZf/TlWQbw1NM2kfeGlKGD8yD6CsZmMH9mH61jYpTxWIc3ooR48z+MT6z7F2//0av7yIx9mfHSE8SN7MUMRvrrlJtbdfAfzF5zF296+hjuufx9mMCDsc/fTIv3ueQal6ehXvU/qqxOTuMMD4Lh4nou75xlUu1/3PjkmLuOFHKpjFsow8TJpvN7fyOKFYaCteKuYmuk63sHX/P7FlVzVzUC77F2Sj93cJvtcV8zSyiW0rjngutP50nv3fsXPsHYwzTCxWBt9fd04Ton29mWk04N4nsvq1bdx7bWvEA7X09/fQzY7Snv7UkwzRCJxlF27NuC6NpaVp1zO0tS0kFSqH2Ca9f7GN87BMCJcccWDpFL9eN6br2MVhhFGKQ09EGU2wlh3IdLvdYjse5Sq83cIkX3fhQDmUYRxNhFm+h5E7p1CwPQOv+1lSKxWG2JSpiMS8pv9RxBQriOgei7wRYT1Xg4YjjvtBm4ERSlXypTIjeams6qtvMUVX7mCQDSAa7kMvTCE0hSBaIA196yhpr0Gz/GmpeWldIn0YJrlNy8n1Z9C0zSyo1mmeqfQDI1YSwwzbFLKllC6YsWtK8iN52hf1o6VtQjGglg5i53rdpLP5elN9HLtI9cylBliaftS7n3uXkzdZGXXSkZzo9z57J24nsuFHRcymB4kVUzRGG0kXUqzrWcbOw7soC/Vx9HkUW5/5nYB12vuIVVMcd/l93EscYx1O9dxJHGEmmANLbEW1u9aT1+qjxWdK+hL9bHh0Q1EAhGOJaVtb6IX13Px8FjSdj5ke8VIzMnBSzdIjNYFX4W37hLgq3RRv525CTrfL4x09gjkT8ALG2TMDjWIRLz7T0U2btZK1FbXWgHRmiHO4vWLxMDMKQiIX3Q3FEdh3zqpzV71Y18KHhbgXZGFgwDqyk9a/q6pmydsr5WDsZd9IF0SIJw6KmyzZgp4diw/G7t8krR7UPrJDvnu4Ereb908Oe+0A7nlHx/0I1sdGQsqc0/wSw1jAu71kJ92UxIDstRxWZB4cp0QNs1LBOgXxuX+Vn/aqfNSlID8t31FFgysHCQPi4S8dQl85FV469/KvWD4eZkno+S8KKlRT/dBz1/jYjA6KrLww4cnKRRsvv71K+nqqiGXs0ilSmzb1sPDDx8kEjEplx327RukqSnK8LA4iP/Lv6zlvPNaGR7O4roeq1Z1MjSUYeZMkXvfccezHD+eYmxMnMB7evrRNIXniXHaqlWdPPDAFbiux8hIllWrOgEYHs5iu564hVdk4JYtgNqyZM5QG4MTwzIvqMwBCiX5/CubrstifipblZR3tkhb9/dTQ/+xb7+3LPzf7UiplzzPO+8P0tm/s/2xycLfnD/9O52948Hp9v/e/jf3fbKRWV9fiquu+sG0u3hNVEnWdUXiHWsVw7Leh+FdP4aOi2SVcO8WWdmr9SXh8U5ZiZw2jFhQlYpXjM2MsAxSJ0vOa+fKcXu3+BL0Wf5A/ZIw4IUpyA5gdbyVrO1wzy++y9mt87js9OV4eHx19w+5bvUHCJtBXM+jbFtEAiGypTy5coFoMIICfjN2nLNb5pEt5QmZwen2U/kUMyK1lOwySikCuslULkk0GOHQ+AnqwzU0x2dwydev5fIFy/mryz6BrjTyvizxvl9+jw+d9w4ShQwrZ52OwkFZh30p9hcFGLtZGLsNmr8MOFW5t9EKo9dB9mFo+zFEVp20mqoAQ8Cz2QTGbGG8cX3w7AjYrhie6fV+v50CvPV6Od6ZAGMmoMjZIcquy7WPPMKOAwdYe9ZZPPjOd7J+167p59uvuoruvj4WNjURDwZ9gycdx8+GLfr1z6+MjrK0vX069xrP45N+Pzs/+EE6amvZepL8e259PbbrMqeujky5TKok9d8/O3iQS+fOpSESwXIcIkD02DFUS4uwxiAAeGhI6N1yWV7LZKTw2PNEL32Pf4ONxQSF3nST0MQgiLUSPm3bwnyfc44AdM8TRPzGG0IpO46g10JBgHp9vQBuX65e+MjVJLMm6bSadvbWNPm6xsaqAFkpeO45OU0gIF2MjUlt9t/+7alq964uUaMXi2Ja1toKp50Gu3dLefns2UKen3WW9F8uyxrDxo0CsCtvq1CA9lYH3XUAv45a92+AFXO3ykp0S0NVFn5y9nXZqsq4U1l4vReWLZzOriQelb9RrWJQ5kk/uiZyc0OvSsNPloQf6Yf2JggGcGybUi6LlclgxmIkDh+m/vTTMaPR6TzqcHMz0fZ2CqOjmLEYRlRWzx3LQjNNcZ4vFrGLRUL19dOS7sShQzQuWsT4r35F3fz5KMPALhYJxOOU02kCNTWSa+15OPk8KEVhYoLi1BT1CxZg53LE21pRlazpD60XRnr/s7DkIvjzT4vcu65B9l/5QZGGJ6eqz2e2SG22bUH/UQHlk6PV/Y2tp2ZZB4ICnMtF+TxTCQHTV34QGlvkb3JyTJjs+kacGTPxTBOlaZSySSaO7qftrEsYOvA0qeGD1LYuoH3hGuxywa+13kvjacsIhGumZeDS5lLfFTyFXcxihGIYwRh2Kcvpb1nIT376U5qMSVLDB8lSz5I1H+TErx7naz94igNv/Iaf/Oh7FDJJ3vOBj3LdX7yLq9Z+nJdfeZ3/8Z4/4cCvX6VhRr2A2sE+VKuvlisVRQWgKRRK2O1QBE9TYkwGeFMTqGhMDNwsS1zC11wpcV4ovFwGrLK4gPvu4SoSBU3HKxdxn3wEbcXFsrhhlSEaxxsekNzstR9F65yNnU8zVR5md/dWLr/8fvL5CVKpPjo6lqFpJo5TZmjoBVpaFmOaETzPJZ+fwrbzpFJ9tLcvpVhM4roO8XgLfX17aGpaSDAYJ5cbIxCIoWkGSumYZhjPc0kmj5NK9dHVtZJcbtyXjNdj23n27NnGFVc8MC2f9MwwR/QAW5TiZqS2+hYEPH8YeB54H/Bu4BsI4B1HgPYxYCECwmtlJKAANCCy732IodkcxMRsAGG6DbmrsME/VxMiP+9AQPxKf38euBX4UtkmOlkgM5yZdgPXgzqe6zF1ZIrn73ueNdvWYIRF7t2yuIXcWI49d+9h1aZV1M+t55FPPsKabWvITeTIDGboWtWFa7sM7huk+ZxmzIhJbiw3bYh2+f2Xy59RqkSwJkjAN3ryXA+lKzzHo6+7jx+970d89PWPcuOLN06bmX3+4s9juzZhI0xjtJF1O9exsnMlKztXsq1nG5tWbWJW7Sz29O/hvNbzGMoMsa1nGw++80HW7zrVFG0kM0JzvJlrdl4z/fpDVz10yvOTj3tj/Rvc/sztp1xLW7yNGg3UvnViJPbGvVL3PHNlVZ4dbBTAfdYmkWp7Dkz0iLu3Y0lpmBaAyX0S35XvFxO0SEe1Ttp1JJbrN1+CxdtkHjbeI+1DLfDidSfJwx+qGomZcelb98tUHItp13ClCXDNDsmcrZJGUSnNSh397VxsPHm9YoiWHaw6hFc2z5M+Kk7gTgmm3vAZ8raq87jnyDxRDwrw/vk1opxsXylzy7feL0a5e7fC+TcLiK6dC985U9joNd8UsHyywVllXnvxvb5nSVpUA5oOxSkB+ZVc7LfeD/kxUWe+9T7/97uEFKoYt2UH4CdXkf54hk9teILlyzt4//vPJBAw0HX5nLLZMsGgTl9fkra2WgIBnfHxHKlUkdHRHMuWtRMKGXgepNMlTFPDNHVMU8OyXCzLwbJcfvrT3/DccwM8+OA7sW0Xw9AYH89RVxfixAkB3e3tNWzZsptNm1Yxe3Yd2WyZTKZMPB6gtVnmyQrkflO2Zc4QNMUItTYGtfFq+VjQN6Ir2yeVlFlQKEJTvf93589ldf2PyhX839r+kIZm/739J2y/i6UOBHQ2b149nVkdDJ5aT/3v7T+17alGZl1dtdPHhUKGrPpV5N/7tsrgdelD8JFXINoug2xl/94twqTuvfO3GWnPOUlGvk0YaaVEcl5/OqzZLrXc5ZSw2pd+A0Iz4KlPyYXGO2H352TgjndiPr2BoBHgxos/zKXzl5Ep5fA8jw2r/gxD0/nV4EFG0pO8MXaMXLnAVCHN13t+zERWGO76cJx7fvFdQmaQoBFgKp9iJD3B1/b8iJJdZjKfYtvT/8BIegJN0zA0ncVtC4gEQoSMIFeesYpPXPgn2I7DQGqML//yH/E8j+tWf4BEIcPZLfPwPBuFK7XV4aXgjMDIOnmcsUFcvUdvEGZbbxIQ3HQ/zD0qedX5HhmUvCKM3Ciu4ZELpeYaB4ov+Yx4RiTlWgzMOWJs5kwJE250yOuF/WKUpkVhZANYxzHdIRSwedUqdn7wgzz4zncS1HU+u2IFuz70Ib5x5ZVoSnFeaysHxsfpS6X45K5dHJqcJGdZFGybbLlMyDBY2t7OWC6H7boowNR1/mr1anZ+8IOs7OoiYhh8ZvlyJvN5Vnd10RaPEzZEjhoyDGaEQgB8YOFC8rbNtY88wkA6Tdh1UX19AqavvVZk3rGYoMwNG2TAHx+vaqcNQ0B3hRYulYSBPv10QbQvvSR0r+vKvp4eMSfzPAHMuZzQzMuXV1FqU5Mg3nxe2pw4IeD9/e/HwWBoSPHXfy0MdC4HV18tp4hEBPyuWye11UuWCKD+1KfkeTQqjPO2bVW1e2NjlWxfv16eDw/Lv0pHh5SKj4wImT46CtdfL5e+ZYuc68QJeUtDQ1IyrjwE6Cq/NlUp/zmAJ/FbjXXCMh/p89+zr6wIBqoybtcTqfiZ8/z6axOiYdmn6dJX2ZJ22bwAc9MQIF0bk2NMU85RLMO8DrkW28HFozA2xqsPPkhhYoLGRYswIxE826aYSjHz3HOJtbdj5/NyXUrhOQ6FiQk0wyA/Osr4Sy+hGQbhhgbccpmp11+nmEzSuHgxKEXDOeeQ7O0FpQg3NKDpOqGGBiZffx2nWBSPlmgUK5/njW9/m/r58ymMj/PKAw/g2ZYA4P95vbyHd35AgPWVH5Qvbt6Z0NQmQLuxRczIGpolizpWC4WcGJ6lEhK1lUpAQ5PIxaM1IgeP18L//DTMaPSdWIviNh6OQkuHnDs1BaNDMDEqx88/W84bDGEVM+QmJXKr6fTloDQaT1tGbesCGk9bJh+bpmEGo7QvXEMgUounFI3zllTbKG2asT7x4s+wClk0XccM1aCbIVzbmpaNL179LpSmM/u8K7jx5s+wp+d5zGCMw/0TDA+PcuX7/hIzXMP5559H1+w5/OrllyExifPoT1A1dahAEGWaTLulZzM4jz8sCwuGLhO7eK3USdfU4u7thkAQFY2hXbgaclmJ9poah0AAL53CO/AyXjoJtiWS8cQEygygXbga9/luAeiGKeeurUN7/1+g4jWSo22a1NXN4eKLv4CuB4hEZtLcvIgnnrgFy8rjujbt7cvI5cbYuXMdqVQ/kUg98XgbXV2rGB5+iUAgRjzehlImNTWdjI29Sip1gmee+Wuy2RFMM4JhBJmYEMOzurrZ1NZ2kcuNEwrVk89PEAhEqa2dxZVXfh3bLlAqZUgkjlJwyvT7wHqcU7OtP4UA3h8jcvF9iAHZPMTReyWnMtsRf38fApw7ERCe919rQWK6DiEgfCkSy5VEaqsHELB+2G83jjDXRSAQC1A3q46uVV0M7h8kcSyB0hQ923roWN6B53nTTLZmauy5ew8Hdhyge2s35WyZV7/3Kk9ufJK6WXW0LG5h8tAkj1z7CLGWGEbIwCpYxFpj1M+tZ+WtKzHDJp7rkTiWkFgvDRLHEuxct5NEb4LceI7W81r59NFPU9dWx6ZVm1h71lo2r95MR00HXbVdLPzGQp4feJ7Nqzdz2bzLphnqrd1b8fA4r/U8wkaY+Q3z2X7VdsJ6mE2rpZ9NqzZNZ2OP58an+9+0ahO60tm8ejNrz1rLrStv5UTyBBtXbGTtWWupDdZOt7115a3UheoAcNEEOBfH5bHlspPk3FskSmvwYTE48xxAg3C71FkXhuT5CxuElc73w8xlUnudOypsdPaYsNa/+RIsuFFY5PEe3yG8X+Z3Z20SYH32bWDnBGwXhmTsna619kk3ZfjgWvlsc0xed8r4xfFy34l1nJqLXVHvxTokNUYPVlnvyvGpowKUyxk/wss3P6v0o3ymOnXUn8zWSJtyWsxwZ18OuREB05oOL94vgDtYI6a50Vb46BsCjPFOna+6tsxHL3lA2O/csJiZ5YZkMSLSLH2F6sVRXNOlfvvgDjn/vruqxmbhmTJ3blkKC9ai6zr33LOG97znLfT3p7nmmp0cO5Ykkynz8ssjGIbG3LkzcByXDRt2kc9bdHXVsXJlF+GwWbkF+jFeLjfd9DiZTJli0cayBMB++MPn8NWvXkE+b3H99Y9x7FiSSCTA+vWPYpoaq1d3TZd/3nNPD5qmGB3N0ts7RSCgC7nsuH5Up/Lv7a58d12tMLNeQPTJ0nHbOfW12qjc+4/0y8K6rv3ueM7/ott/fxL/f97eLNsulZxTAPHvcgH/9/a/eQsEDOLxIKGQyYIFbzpO6bL6tmCt5FZbeZHVWHmINEoHlf3LNslgu2QjTLxedftetlkG40rNypJbZQXQykstTPKoyHOSR2Tgz4+IVOeXN8Eb34Pxl2WFcNlmKrXeVtP5DCZHCRkBJnJJvt7zYwCShQx3PfX31IfjjGYnqQvHyZbyfHvvv/L4wef4zv6fgVJ894VHOLt1HuPZBHc++S0KVonR7BSPH3zulPaj2SkKVonXRnoZSI3xtT0/YjA9xm1rPk5bzUxM3WA0M8WitvlM5JLc98vv0RSbQdAwsVyF5xag4XMQvUxAdmaHPJqzYXKrD7pHYewGYbSdcfkdF8wWH4wPCRh3huW5ddyvwW6U2mw36fczBIXnwT4B5cM+eP+k9B9aCCPXSpvwUpjcSoBxTFVkbn09yzo62DswwPFkktMbGmivqeHaRx7h8OQkIcNgRWcns+vq+NKaNdQGg4QMg3ggQH0oxEQ+T18qxV8/8wx9qRQT+Twl22Z2XR3ntbYyks0SCwSYyOdZ3NLC8VSK9bt2ETFNbNdlIp9HKUVNMIgC+lMpnj1xgo7aWql3XbZMHLx27JDHxkZBmTt2QColtdM7dghKDQTgssuqIdHr1wuFezJajcVOfT4wIP0sXSrItbtbmPCjR6tIOJ+Xdjt2CJIFME2ck0q2t26V0u9KOXcyKYu+lUvzvOrb2LZN9tfXC8iuvH7vvXJJW7ZUny9bJve1SpstWwTzb9tWXUfYuFEusb9fjt+6VfaVLPActyr3rmyOP+nRdfm9VBYn8YApq8qVUhNNVVeZFXKzrAB2Q69KvF1P+tI1kYeXLenz0AkB2rpvBlYb8zOxlZzLlFzqN779bQZ/8QvMaBRcFyub5YUtW3DyeexcDrtYpDA2xoGHHhInaJiutdYDAanPfuUVsn19vLBlC6EZMyiMjIBS5IaGeOHOO6mfPx88j/Tx4+z7whfIDgww8+yzKU5OigP50BChGTM442MfQ+k6b3z72/Q99hiFRAJvfFhqpEcGBAD+z+sFSNu2fEaV3G8PqZN2LFklCQQFIH94A8xsgtoGeOT7fm12AHY8BPueEUZb+f385mXJtXZdOd8/flXAdksn1DdIvnbv68L6+lFxE70vUC4kUZqOGYpJjFQoTtvZl6JpBuVCimJ6EpSG5zrYxRw4NmakjvaFazBDcaxiFg9oO/vtdJ33LqmlnjYbUuhmEDMYo27uCvJlD9e2cB2LH3z/+5w5f5a4Ynd0MDI6yvNP/RSFx4Ff7+fo0WMsmD8ft+cZvAMvg2niJSZwdv0EAgFUIIiXSqI6ZoHn4k2O++B4EqXpeJkM+uXvRpkm7sigMNKZNKpztny+SkNr75L67Y5ZIinvnA2GKXFtmo52+bvwkgmRgicmIeY7iKeTeAdfwynl6OvfQzBYQzrdz+OP30AuN8rSpRvIZIZ4/PEbSKf7SacHOHBgx/Tvu3Z9iqmpI7S1LSGXG2XnzqtJJntJp/uJRhvp7r6LAwd20NOzbToqbcaMObS3L8PzHFKpPiwrx6OPrqepaaHfxzqSyWMopVMuZ8hmhwkonQ7P414EMDsISK7IurciIHoOsIRp2ygK/mOl3X2IrDuMuIRfhLiG1yOs9DLgbr/tNgRQrwH+CmhF5OgX+8ePAA8j8VwfBloth+TRJLs+tYup3inal7UTbYwCsPq21Zz5/jPJjmR55vZnyI3mMMMmq29bzQd3fpB3PvhOArEACz+8kJW3rJThRlcEYgFWbFxBtDmKXbR58jNPkjiSoDBVQOmKndfsBCDWGmNw3yBOwcEMmxx8+OB0/XVmKMPwS8OUS2UiZoSvXvFVwkaYofQQrufy7gXv5pzmc+iq6aI93j4NiD+36nNYjoXt2jw38BxHE0fp7uvmaPIoMTPG9qu2M7d+rtRORxqJBWLMq5/H9qu2c9qM0wCYGZ7J/ZffT2uslQf2PUBbvI37L7+f4cwwrbFWtl+1nY54Bx4ezw88L7gzOlfcvaNzhHE+a3MV7Jp1ItWOdAhYzh2T+uozbobCoERpDT4s4LxxJSCqHPSoPH9jmxAgi78oc60KEC+OQcMysDOgR0SGHumEl28VYP/GNqaN0YBp90q3LEpD26+NDs0UQJzpl0flK5r0oJ9HrVWPRfmvzxYwXUr71jBKQLKvUkQ3qzLxSs01miwMZAcE0FdqtvWggOG604QFj3UIs5wbEUn3Wz4ojHO6j9/aLnlQShuX3eYvRnsCpJV6E1EEZAaE/Q7WC0udGxEg/tE3INIifVTmxIUJf+4KXPoQmi410JlMmW3beqbn9rquWLasnVLJYffuPsbGcixd2s7AQJqRkSwbNuwilSrhOB62LSx1LBbgK1+5gkjE5OWXRxgdzRKNBujrS3HttY8wPJzhppuW09ISJR4PcO+9a4hETI4dS9LbO8UHP3g2X/2qyMOHh7M0Nkb51UvD6AqUZUsZmGVX4zktWwzOdE1k3hXpeCYHU+nqa50t0l73/Vv6R2QyUixzipvif+HtDwmu+/+Aff2X2f4tFroCiP8t4Pzv7f+3z/em4zRNBrO3f00cwcdfhnCTrOAFa6SNGYMLbpYBx7VE8t12oUjE33q/MNCj+2VwXbNdBr0jPxHjicoAef7N0qdmCvA24wLSF6yFliVSP/OP501HdFmz38Hf7/8ZHvCd/T/j8YPPkSsXpqO5vvvCI5zdMo9kIUM8GOETF76Hyxcs5+oL/wRdaXxi2XtYPuuc6WP/bu+/cnbLPC5fsPyU9me3zOPv9v4r9eE4f1eJ/Xr+p7iex1BqnL954ps0xeq59PRlJ/X1U0q2RaqQRCkdzHkSrdWwCeJroWEzqNBvg243BZNb/N8zMHn3m8B4BZxvFWn31L2Si63VVfsxGmHyrupjZoc8uplqX9E1ci32JEqFOJpMcsNjj7GouZmZkQgOsG3PHh4+eJB4MIjjunT39XEilaJo2+Qti0ShQLZcZrJQYGYkQnM0ykVdXdMZ14liEct1CRkGCjGSW9jURLpUoj+VYssll+ABzw8MkPPN0Y4lEozncqzo7OTQhg04fo2wCoUkCHrtWqmTDgSEll27Vmy0K79v2iSS8fp6QaQnA/CT0WoFfZ6MXuvqBJRv2yb73wzak0lBq5VrAHj+eQy9evrNm0WZXrmUujohNteuFaW6rlffxq23Vh3DXVeMyytdm+apfYZC8m+4cWO1b8OQ55VLroD7pUuFyN+0SfY5DqiyJQBXqarcO5uvSvZMU1hqy5d6V4zNoFo3DdU6asuWx8N9coJKEsHRgep5amNyE57XUXUTr0jJsj4DrSkcy8IuFDjz6qtZdd99OMUi+77wBQoTEzQsXMiB7duxcjncUok3vv1tGhYupDA+zr4vfIHQjBnkR0YIzZjBG9/5DqEZMzjwzW/S99hjvPGd79BwzjkA07XZVj6Plc1Og+bXv/lN8Dxe9485sH07SiniXV0YkQhnrVtH1zveQaimFpUYh8veC+kERHwmfmxYMquLBbD89+26cPyQLFg4LmSTAraTU5DNyN/uez8utdumKWz3Pf8o7PeRA+I8vvSt8MFPAR78/CdVA7Mff0sejx+EOWdI9vWR11C2TcsZFxGpa2Potaco51O4/vUopfwIrhcI1czEc208z0UzTEbeeBbPsabbGWYIq5Bi6LWnMMNxzHAN16xbx+x58xkYGOCdV72Lt5y5kOHhId5+6WWcd8FSzr1gGc927+HrX/kinucxoy7G1x74Ctff/gDnnb+U//nx9Xz+5o/RMatT4q/OWoyKxnC7n5aa6kwaZ9dPUK3taOechwqG8PJ5VNfc6TIQ1dKGV8jjeZ5kZJsmWudsVOdsMSrLZvBME/3K90r99ZqrZN+zPwfXRUVjKE2fBvdeOgmZNG7fMbT2LvRrP4MeraOjYzmBQPQUQFxXN5uenm3TEVzt7Us566y1tLcvZffuLdPtwJ0+bvfuLbS3LyWXGz8l3kvTDFzXIZebwLbzlMs52tuXTR9nWdlT+tB1k0AgTnv7UjLFBFuVmq6PdpA56kbEOfw2qnPWAaQW+7Dfbhz4rN/uHkQmvg6J8lqJMNoDiAt4CGG/1yJS73qEFZ+DsNrXIyZozyMg/8d+nwVEbbx7624O7DhAdjhLuj/N4zc8TqI3Qd3sOoygQc+2numYLs/1MMIGNe017Fq/i+SxJFd+40qMqIHSFdnhLFNHptB0jcevf5zMUIb2pe1039VNqDY0XZddzpTJDGaINkbZtX4Xdt7m/T9+P6s3rca1XXq29RBtjFKeLJO38lz36HXkrTztNe1oSuNb7/oWYSPM8dRxPvnIJ2kIN7D9qu00R5u56YmbmCxMsrJrJXd130VjtJG+VB/1oXqOJ4/T3ddN2S0TD8ZxXIfdfbs5kTzBM8efoWSXMHSDwfQguqazbc02suUs47lxvtjzRQYyA3ieh+M5eJ7HOc3noCuFsjOQPgQvfEqMyKKz4PyvQGCmmJM1rhLmevBhicwyYlJTPXOlxG29Z1h+d4rCqNo5OHCnvLb4i5JnrQXE2OxkIK4FpW2oCSZfFOKjUqd99m0S/XnyVsmcPrk2uiI9j7X5LLdXlZW7lgD71FHfaRsB0fjS70BcWF/XERa6aZGwx3pQHqedxp2qEqt2rgB6pyznVEqcwktp6btiopvpF2OypzcIUWMExTC353ZZPEyfgKfXCyNeO1eubahHrsfKn0Qg3SbvIdMnMvSn10t/mX55ved22RdtEbO0mtnQukz61AzQDJxyiYmJPDU1QTZuXDE9t49ETPr709x44+MsWtRMU1OUP/uzs1i2rIPBwTT33Xc58XgA23bxPBgYSLNu3U56exNks2UWLmwiHpes6v7+FE880Us8HqSrq4YXXxzm8OFJlFJEowFCIYPGxigbNjxKf38Ky3JYtaqL2bNrueD8FlG8ncxCV7bjg9U4zoAJs9rkPh+PSuJIwJQc7HBQFiEMHZob4LQumQBVFqDdkxdq/mtu/5EoLgMZe0/zPO+TSql5wCzP857+z7zA37X9MdZcl0oOwaDxHwbL/9HznFzbjVOGwqRItSu1Jq4jg5fnS0Q8SwY/z5NBe/INaL1QDDKG9woQL05A+yoZ7DxXcgP3bZVVvdp5spK4b6sf43Wav+KpSVvXkkE6fUIGsFgnZPux2i8iadkEjQAj6Qm+tfenbHzbR5jKp/nW3p/yiQv/hLaamVT+fl8dPsIZzXMIGQEs15HFVKUxkBqbbt9Z24TlOhStEiW7TF04jqEZ9CdHGM1O0RSbwd/t/SmfWPYemuMNbPn53/H4wee4fMFyblvzienruPrCP6G9tomynaM2GEBZxwTUNt0jN6h8D4QWA/6NyB4RwNx0Pzhjv/17w20iBbd6BXw3bPJjuroEdONKX9YxsPqlftsakMfK8fpMYcQbbhPpOB5lxyNtG6zftYuVnZ2s7OxkW08Pn1u1iqZolF/5UVon10ovaW9n/+Agq7q6cE8aG256/HFuuPBCZtXWUrBtPGDjk09yy4oVREyTulCIkGHguC4F256usQ4bBmP5PE8dPco75s2jMRqdNpOLAmYyiRoeFg30hRf6smZdntfUCFXc1CR/f/l8tfi4s7OaWXX//YI4t2wR9Dp3rui2K8/nzJH+mpok06q/H847T1676y5Bwi0t1ZrsQMA35nApG2EsTGxbYZrTROI0btU0ITeVEsn4K68IAFaq6vSdSAiA1nVRpFtW9TjDEJn34sXS38lsd+U8x46d+tZsW/oIBiEccDCyGQFyg6NiSKL5q/KW47PICHA2TTkwGq7Kx5Gm9PZDR7PcSMFnvj35+83kqnnWlUivTE6M0yq1144j+6YHG2HSLavM/jvuoGHhQmZfdRX777ijGou1fj2ubROsqyN58CDhpiY00zwlOuuC227DCIXI9PWRHxkh0tzMgW9+k7OuuQYjFCLU0EB2YIAD27dz/mc/K2ze2BhvfPvbnHX11UTb2sgND3Ng+3bOvuYaou3teJ5HMZHACARQmkawJo4aGxJTs3d+AJpapaRgx3b4wCf9+nVHDLUqE79SQdjny98nEvFMUmqLC3kIRySGqzKGHn0DaupFGm6agIJjv4EZTRCNC3h/5AcCss86H2pnyJdvlXwJeQmnvoHB135erZ8+5zLK+dR0fbUZloVQ1y7jOhZGICx9+GN6PjlCpL6Vodeemu6j7axL8DyXQmqccG3j9FdXSE0QmdGKwsNDgLnneZRzSexSjkhdC0oXxqxS013fsZC2My6WrGql4SUmwDBxn3kc1TkbNWuu1EyveKt8DoYhNdfRGNiW1GPjSf30yrei6hpwfrYD78DLEuV15XtxB06gtXWCbojUuwLAe57xI7xiuI//K/o7/1Rys6Ox6Xgvt6aGyVQv6cwQNTXt7N69hVWrNlFfP49k8ii7d29h9erN1NR0kc0OE4u1kk73sXv3FlauvJW6urnTz1ev3kxd3WzK5RyBQBzPc1BKx/Mc+vt7iMfbicVaKJXSxGLNJBJH6Z6u9R5j9+6trF69mdraWSgfRBScEv3hGfQpxVLEnKxSE+0iYPccxGhsPUzHdX0emIkw0HWIkdkN/v43EGBdafsNBIi3Mh0CRQZ4GWHDT+73JuDLwHb/b2IY6MqVSB9J0L21myseuIJHNzzKgR0HOGvtWVz10FXkJnJYOYvurd2s3rya+nn1uLbLznU7T2nn4aE0xc6rd7L85uU8d+9z0/sv/vzFOGUHM2Ji5aWvy++/HN3U2bV+V7Wf7VehmRqe45E4miA9kKZpdRPXPHFSDfQVD7J3cC/LOpYR0kNc+8i1fO/V7/HhhR/ma1d+jaHMEE/0PsG+wX08+M4HyVuyKBg1o1iuRaKQoDHaSN6ShZ+wGQZgMj9JyAiRtbLUBmsplAs0xhpxPZejiaO0x9uZLEzy9LGnmVs/l/Pbzmf/4H5Wda2SmuuKQVndQjDi4s6tS9+4lpidVeqpG1cL22xlwKyBxK8FYIeapTb7jI1iVNb/zzC+By54AEoJaeOWoJyQuVq+X9jwN+6BxfeAEQE7C6nXoWGJzFuMk8C161QB8nSs1ptqn52SvAbyuqYL6DWj1fmdlROSxi5VZd8oYcSVP9dNHxcG2ilVj8Vnt6ePQeTjgbi8VkoJ450bkXLEtz8IT60/NUrr59fI84++IaC4su+t958awfWLG6D5Apj/p9XzO8VT+3v7gzLf/clV8vySr8LIfpGC451SR15IJUg6Dei6mpZ553IW0ajJJz/5CEuXtrNqVSejozkuvLAD09TIZMrccsuTfOYzKxgcTNPZWUM4bJJIFBkfzzFvXj319WFGRnJs3Sp11JGIST5vs3Xrbm6+eTnj4znmzq0HoLU1zjXX7GTHjgPs3PlBOjtr2bJlNxs3rmDh2Y2YukIVy9X66VBAVGjjCWGm58+qrua9uV3F6KwS/1nZV/F5qTyvZFtXTM409UeVdf3v1Vz/R8D1N5DxeJXneWcopeqAn3ued8Ef5Er/A9sfG7j+/8X2O7OxKUHioNSbtCwVVjl9QhhsKyt1J6lj1ezqaKswzuljMqBVjCPaV8sgCjI4VWpxlFGVANkFmHhVVvisLHgKaufIKmAli/BN2YX5S79JtlRA13UCmoGh6bieh+u5pIpZ4sGoMDKaRt/UKN99cSeffftHAQHWjueSLKSJB6Nomobt2Ji6iQKGUhOM5aY4u+U0goYxbXaWLuZIFDKc276AgdQY3977r3ziwj+hNd6Aruk4nksin8aybNrragnqHsoeBjcHRpvUPLspKB4QB3B7UFzEA3PkPeODlsI+sI5C9BLQW8EekCguFKgIMk2i+jm6WX/l2PRVVy6oIHglWQBxc6DXnJSN3ULajjGay5OzLEKGwZ3PPsvS9nYunzeP9ngcD8iWyzxy+DBvmzWLplgMx/PQAE0pjiQS3NXdzedWrcJxXUayWTpqatjqZ13vHxzkT888k4CuM57LUfal4nnbZt/gIItbWpgsFNi2Zw/b1qwhapq4nseJRIJYMMgc00QfGpJ66pUr5WfbNqFzGxulfnrZMkGRY2MCfkFk30pVUa3nCbJNp4UujseFmQ6FBMw895w4gFeOcxyf5fUH/opLmeuKI/mSJVVDNCCn12A7cqd5/nnpqpJprZTg1YqB2ZIl8P3vi6F5xT18xgw5ZTAoj6WSXJrnVffruuwbHRWyHuRtOE7l/xdeeEEM02I+sZpOQyzqUhNxUEf6RJ5VGxN2upJ1XbnpVZhqTZ2ah90/IoDcr4+ezrfuH6nmYJu+lFzXhNXuH4HTOn35XE76CZhVqfhJOduOqZM+cUIyqj/7WUpTU1Wg2+HflzwPz4+/81yX3ODgKWD4pW3bWLhhA0YoNP19K6XECMq20QIBPNvG8c3vzGi02l/luwbsQoGXv/Ql3vKRjxDt7ETTdTzXRVce+vceqJqYfWi9nz3t+SYuRRg4Ch1zBQjHa5k2Djp+SBy+NSUOdQO9MPdMf/XEEha6c57PuAROysheAPmcAGnwPQKK8NN/gLVXy/MKAG9swfE8yuVcFUyH4gydBLabTl+BbgSYTuTTDCqLI/mpYUI1DWhmEOtkQB6M+v8HukBb18VzHJSuy+emaT748/BcB9e2cOwiE0dfpPXMt8r6TTnHRO9+2s64GM32IJPC3deDdvm75PNPToFuiFzbB8raO94j8VndT4lBWSSC+8TP0Fa8Fa//OF7/8VNzsVddArUzUHiSid3aAbnMNHifBuCX/w/QNAFvSsPZ9S/T+5x3vou+wedob1+G45QoFpPEYi2k04OkUidob1+K4YMLz3NwHNuP53JRSqNczjIy8jJtbRegaQaPP34Tb3/7Ft/8DHK5MaLRRv+rtND1IJaV56mnNvG2t92BaYbR9YDPbI8QjbaQSvXR3b2F1atvo65uNlYgRkYpUkjslqIq5e5DGGYQuffdCAPdhcgPFfBJpH56JSL5vh8B01sQ5rsBcRPfhAByze9/KQLOE8C9/v4BBIQ3I/L0IlCTLjG0p4/GMxsJ1YZI9aXYvWU3qzetJj0k0VihmhCuUzUoC8QCJHoTdN8lgDvaEsVzhNFO9CZ+Kw+7pqNGsq4BzdBwbRe7ZGOGTBLHBNivvHUl8fa4ZGGP5UgPpGlf1o6KKFJOilQpRW2wlrARJlvO8tmnPsvGlRtpjDRyw+M38OXLvoymNFKlFPFAHE1pxAIxSnaJvYN76artYk7dHDLlzLTJ2eZVm+mq7WI0N0pbvG26bWdNJ3Pq51C0i+wb3EdXTdf082QxSTQQJVVKUROsoSZQQ0R5aJ4D+eOQH4b6xSL1DjULAD6wRSTgxXFoXCH3/vQhkW2fsVHaJX8tBmcnfgjRuTBzKTI1t2VO4ORk3Hr5FjlGD0OgTkzQcseh4ULfQO1zEJktjtdGyHflrki9jSq4qjDT2aGTDMn8sTF9QhhlzaSSLY/nVF+vSK+dcrV2++Tj9JCAf8fygXNZlI6xDqo52v6gdoqpmX+tmr8YDFWD3YpxbvKw1ESfbHa2bLN4/gzvhdal8j49B0b2wkxRQk0D7AoptGwz1J7mG/HeKSx3blTUm54nc9vuTZKbbUbJlU0OHk4wPJzlootmcejQJNu29fC5z62iuTlKKlWit3eKtrY4d9+9h40bV9DSEuOf//kN9uzp56abLmRiIk9HR+00kO7qqkUpuOaaR6aNjLdvv4p163ZOP3/ggSuwLBeloKYmSG9vgi1bdvPgg+9k/fpd0+2++/fvJhjQqoak/j34lPt+0J9nep4svFdA9+mzRL3WPyJs9ZG+6r43Pz99ttwX88XfBtx/BNsf0tDsQs/zrkbGWTzPSyILrP+9/R9s/7sc6/+c8/12bTeeI8A63ChymkyfDCxGWGpNrNyp2dVGGHDFHbH9IgjWQsfFUElRffYWGdA8T2penvyE1FmP7JPBqvVC3zxiDOrmVk0i3vieuIVb+apUfMmt09eeLmQp2mVeHjpIwSqiazozIrW4nsuvhw4xkByjra6Rmy7+MIbS0JV/c1aKmdE6cqUcCoXreUzmkhTtMpFAgBnhGl4bOULJtig7FgWrzHdfeISWeAO60mmJN3Dbmk/QVjMTlMJ2bO55+h/IlQsETJ2ADqqSSW20QvHXYkqmRQVY44He4jPN/TB6DdjHxMDMbIfCswKMle5nXAdFTn4KsPanTloInLRIk5Qvx8rvBk8ABcYMGN0Ag1fB5J2gTHTlUh8KMZhOEzVNtq1Zw3vPOIOaYFBwUbnMpqee4sr585kZjZIulbjxscfIWRaO5xE1TT6zfDmD6TSz6upY1tHB1pOyrj+wcCHDmQwbdu0iFgjQUVuLA7wwNERTNIqpaWzbs4cbL7wQU9MYy+VwXJd5DQ00RCKUdF0iuG69FT7wAUGNGzcKCq2ESK9fL7XRwSC8/LL8bQ0OCrLcu1fYbJDHXE6cwB1H6rBLJQE8S5cKYq3c2CtIFsQh7BOfgCNHhEK+4AJh1bJZGB6m7Bn0HhXTsmPHBNxGowKyK9nWzz8vl9jcLGR6e7u0P35c1gj6+sQlPJOR+ulAQC41n5f1guuuk9ODPM/l5O1bVtUs3TRl7SESkcs8fLhK8nsouXHNqJGbnmlWJV+lsgC1I32+eQmyr9Im7tdPV8zOFNJHRS5mGjAwUs3BrhxT8o8xTTmHpk7tdzwB/SPoukGso4PzP/tZicBqaWHhhg0E6uoAyPb1MfbCC+QGBtj7V39F5vhxom1tXHDbbeSGh0n39XHan/0ZStMEVGsarm0z9qtf4ZRKaIEAxakp8qOj2IUCpakp6W9wUPrr75/+3l/+0pdoWLgQPRxG813VnVIJNAPvzSZmji3g+MhrkEnB7LeIZPtfvwtT49B7wI8uOUO+hHJJPrv2OZBL+eYwnsi7Myn44TfkuNo6AdbHDgrTXcxLzvWR1/wag6ul32xawLwZEHm6Y2OGa2hfeCmBcA147rT5WAUoK93EKuUopMawimkcS4zcog1t6EZAMqU1g/aFl2JGalGayDyV5+JYZYYP/ALbygvY1nXfE0/ApTJMjGCYiaMvkh7tBaXhOGWMQIS2sy5BqyykzpiJfvm7qv+XkRgqXjMtGddWvg2l67jdT0lkV/dTUCpV47vmno62+u14+RxEouiX/w9UfQPYZdzBPrSuOahAAFU/ExWvPaVf9/Vfi6EaGp5uVPetfjuabtLSshilFI8/fgNf+9qZ5HKj7N59Bz/4wVU8+ugGPM/hxIlnsaw82ewQjzzyScrlLJ7nYhhhEomjPPnkRhzHYs2abZhmlIGBvdh2nni8RQC9Y+G6wmBnMkO0tp7L2NirOE6ZTGYQy8px9OhT5HIjdHdv8SXid+J5Dh5iSHY7whSHEYOx9Qh0chBGuQlhoechtXhXIy7gXwTm+z/bEYDeSJXd/jXCTN+DsOIxBLBvQGTf9cAD/vHn+ecpyB2fGsAwNWraa3h689NYBYuarhqueugqoq1Rms9pxgganNh9gsTxBE1nN6EZGn3dfYRnhrlq+1WEG8I8cdMTZIYyOCWHgecHaD2vlfrT6rlq+1VEZkZ47PrHSJ1I4Xkeru2S6k8xtH8Iz/OINkW5/P7LqT+tHt3UMSMmRsggeTxJMVVEKcV4fpzbn7mdsdwYE/kJgkaQL176RYJ6kHggzrfe9S1igRghI4SGRsSMEAvEsF2bZDHJ0valhI0wHh4BPUBNsIZblt9CS7wF27U5MnWEY4lj7B3cS2O0kYgZIVvOMlmYZFHzIiJmhEw5g+VaNMeap88TNsI4nq9DcIuSZ12/UIzEXr0d8n0iAW9cCUaNMNbKr6c+eJ//elTk4ZFO2P8pkY83rpQs63yfMNa5Xnjxeum3YakAdicPL90I9edJ3NZ0vvVd8j9bAdblSUj/RhhvpyTg0i4KyNXDUnOtNN+M7Lj8f9d0+eZmStjpVK+A3kDMf90HqUr366aPnbq/4kCuB6UPpXwAH6gyyKmUzf4AAAEAAElEQVRjVWbcjMg5nr5OAHlFcv70BhjcA8s/L9dZSgrAvvQb8v7MmLDPmX6Z10abJeM6eVjeR+uFp85hXVtIpuWf9+vMy2Jc9tb7oW5+FVg/c6OUOy6+TuZruWEcT03XN2ez1brru+7qJhQyqK8PsWxZO3ffvYcdOw6wbVsP6XSJNWvmsmnTKiYm8ixb1sHWrTJf37q1G01TWJbLpk2rWLv2LDZtWoVhaNPPK7LzmpoA0ahJT08/XV01fOMbV1Iq2Xzuc9Lu1ltX4riiHEQ/SXZX2Wa3CeC27Gq52LwOWHIWzOusmqCNJ2Rh/eRIL9s59bmmhLE+WX7+Xyim6z/CXD/ved6FSqlfeZ53rlJKB172PG/hf+4l/vb2/ypzXZFl67rGkSNT3HnnSSxypa7xP/HcJ0dyLVgwk4DuSM3JyfKXNdtl0Hh6A6y+WyIJKjFdkWaRJ4VnSqf5MZEFTbwCDWcL8Jt4XeIRckNw/AkY+5VEHXgOVfmMJqA+EJMB6Zc3y8A3sh9mLpSBUOnklUG2VJCIrUAYF4+yXWZGpJah1Djf2f8zrr/og+hKJ2RWVzA1pVGyLTKlLDXBGAHDBDwcn4nSNQ3X87AcG13TfEkiGP7rCkXeKnLfL7/HXy59F/XhGu75xXf5+LL/get6TBVSnNu+gLDuoNyU1DtrcfnxSnIRKgT4E2yvCGPXS010fC20bJfPoCLOs8f9+CxPGOixW6DhFqnlxvU/O0tYa3sSvDxYg1KPrQwfoIdOkpXfBkYzZTeI5Ukcl6YUmlL0+mz0xhUraInFGMlmAdjW08PGFSumP8NtPT1sWrWKgXSajpoaTpshUtW0H6tVGwwSMU3W7dzJys5OLpo1i7u6u7l1xQpm19XhAQE/0qsvlaI/naa9poZBv7+tftvFNTVonifIdXBQMq0zGUGqxSL88z+LFvrCCwW4HTokIdMbN4rc+/hxoXjr6+WzDoWqwNk0BZ1OTQk9XNF1VyJElBJzs/e9D979bvDNtDAMOc+2baS/8T2uvtZgxw6ph/7a1/yvVwl2T6UECAcCApxDIfjrv2a6/fbtp8rIKxLwiiJ940YB55ddJm8hkZD+hoaExN+0SeK3NE0u/brr4OabZf+8eXDaHAfjWB/MafOzk8unssdvXk2eP0v2V9poSkxNTt5fLJ3KXAcDVTlY2ZKb8snHnNb124z4STIy27bJHD/OG3//9yy+6SY8xyF5+DCN553HC3feyeKbbkLpOnooJDW0hkFhbIyR556jZdUqwg0NYlyl69j5PFYmQ6ihgdzICK9v385Z69ahh0KEZsygODVFIB5n6sABsgMDdF56qXiQFQro4XBVMr5uHcG6Ol7ato0Vd/wNmuee+kUlJiQKa95Z8v+nm5CYhNdfhL5eeP/VMnYdPwSdc8V4a9pAzvEl3X6JgW0JMG9skQljuTid2SzZ5P5iWj4n7uNW+VQG3HVxAiaea5NPjGCGYwQidXiOLYZgiBxc000815GFCKXhORaOXUY3AihfseMphWdbAqxBJN+uQ7mQIZ8cIhipJVLf7otjHKxSlvEj+yTaK1JLhbHylCYu63go3UTzkPedSviRWZeg6meC6+BpAuClTEY+Xy856bPSb4doFPfxh9FWXyoycV1H+QsingfKscUkTSlh97MZ3Od3S+11QBQGnmXhPrkTbeXb5P/XtsQ5XDfwDAPL8Mhkh4nFWkgmj58k0x6flnqn04NEIjNpaDidbHaEQCCGrgcYHNxHLNZKLNZMMFiD45QYGNjrv9aCaYb9rOsMwWANhhFG0wwcx0LXhX8oldI8/fRtXHLJnQQCMZTST5Gjx2Kt2JGZrPPrrtciAHkdVan214DvIW7hX0VY6cMICK5HgLQC9iBZ1rP83yv7m5G4rhhQQpZwr+dU2bju35mK8k0zjDDfm4G52RLkLfSATvpEmufuf47L77tc6v41xcDzA8w8Y+Y0ez30whCt57eiaRrKUPTv6eef3vNPnPHeM7jy61dSzpYxwga5sRzxVpH+eq5HOV9m7JUxOpd34rkepWyJX/zVL7j8vstJ96XZvWU3qz63imhzlHKuTKw5Ju2MEuseXceOAzv48MIP8/Urv46Hh+M6TBWmaI4205vsZevurWxevZmWaAthM0zJlpjNkBESAOyBh4flWJi6iaY0LMciWUzSEGnA0Axs12bf4D5Wdq7E8RzyVh7Xc6kN1nIkcYQv9XyJr17xVRzXIVlMEglEMJTBjEAIw3P9e7YJv7oR6s+F1svFFdwp+DFbXWJSFmqUb8rOQ+IVkXDjQu6EmJTF5oGdFqa7YQm8cF01Zmvh56vRXgtuhGjXmyK8OiF+mkjErazUeb96O1zwIOSnZH4WrmgcPJFlm9GqnFtx6r20lBYwHKyrqhYrEV1N5/qTswCfvuEGHv7ZTk6cOMGvnvkpi89fAuGZ7Nr1KLfdtgkXA9uxueXmm/mLj3yEinLmC5+/ne/v+GeC1gQz20/jF08+KvLwaEs1BnbZZqiZ41+bDUPPCwteN0cY8eNPwOx3CIAON4pfkBmVeXDYV2w6JQHWSvOl8Z4vc/fvD+Us7LlNmGrNgJEXoGP1NNNduPhbWF6A4eEMsViAiYk8W7d2T0fhvu99P+KVV66lULDZsmU3t966kra2GLFYQCInbRddVxw9mpxWmra2xjBNnT17+pg5M8LERJ5Vq7r8skiFriscx6VQsNm06Sm2bLmEcFhAdltbjNNOa8C2XcplB9t2aWuOoCpRnBUTU9d3elBU2eVKyVdlPhAwZF/Zl+tVNs+XfTtuNe7T9DHNf1Hm+j8CrrcDzyKRiO9F/DCKnudd94e40P/I9v8iuH6zLLu/v5o3/b/Lqf5DX8Nv1XbbBcrFDOVSlkAgQgC/pvDQj6B+PjQupqxMLCOO7XmYSurwbA9Mt4iLEgmc6/iyaWGM9cIYbrgJ2/MwlEJz8jjoBEZ6CMTaKcfaKGOg66GKUBrXExCoUDhWDiMQRVk2hmOjKw3leZQVGK6HqxBGxXWYKOeZGYigGSa4Lp7rMmbnCRkBosrA8ADDwLHKaIaJch08TcdzbCZKORrCcTQUynPxlIaDh45MOkuei26YlAo5wqEIhi8HdZRC0zVKXgjL1tB0CBgFsKewaMND4ToOuq4wDRvcDJYTBi3q19p6OI7y2UcX2/bQNRcPAzwX1/XQdAOlPDxP4boeuspj6iVw81i04bgauu7h2Dam6eBYDrop16OrPEoPki8rDNMmFtDRlSJvWfSn08ytr8fUNBzg6p07+eGBA+z8sw/wttmzyFsWfakUtcEQhqHz+tg4F3d14fnjbsGy0DSNoK7juh4Z2+KloWFaY1GiwSBR06RoWcyIRAj5k38Pj5FcjoZQmMligZnhMKamo+Ghjh/HOXwYd+VKtFwOCgXc+nrU1BReYyNaPo9+yy1w66044TBuKoWqrcVrbkaVSnj+IK/5ddluNotWUwOxGG4uh+a66C+/DG1tOKOjuCtXimzYdVGeh1cqoXw2X1kWXjgMuRxqcBBn3nyS2SA3bzTZuBG65tiULYtY1JcaO/LeTF1ncMglGjZELm5YxKMKFw+7rFO2HGJRheszgaPDGsmMS21Mo7HZJZc1uOUmg1tugVlzbUqWhW0pDrxqsPhc0E0bXRl877sGzz4r6WOmCbblUh+z0R1bFiOiQV+vroHtgqFVWdQKa+95Agwr7RzXV0lQfQ18B3Ldrx1WkC+d5Crq0+qVUG/XqdYjV6T2/jldFHa5BIaOXSzx8rZ7OOOjHyXW1YWVzaIMHSMcQmk6Y7/6FfWnn45m6LiWgxmNUMnXVrpOKZ0hefgwTeee67tiF+VY3QTHRmkadqmEa9nogQCe66BHIih/YuTaNk6hgJ0vEKyvI9s/QM2c2ah8HjV4HOa+RRgSx64Wxh8/KAC6IgUPRaoqiMpn5bnymfiZ2mSSUDdDBrZySV4L+jWNrlsF4dmUAOqK9DGTlAxsXcaBSmmCpxvT9bee56HrGq5dlpHKn6x4nudfloem6XieSL01XfO/CpHTA9MmhJV66srrnufhWgU0I4im67i2LQDV89A0NZ3Qc/Ixlc3UHZSyhGJ1PDCV/N1oHjJg60wvFlZk654Ljm+Egy0LtJgyqa1MzjwXHH/hQtngKrzJNCoWEfmi5i9SOkq+L68oiyF6SMC47oEZxMOhaCtsTweloyuwPTCUh+daWC7omo7CpexYBM2olMm4ZUaHnqOlZTG53BiJ1CDN7cvRcEEPoisdzy2TyU1QE50BKDwl/hOGbuJ4LrpXJp3oRdMMtEAtwUiz3CeBQnYQPRBFBWrxdIOyYRDkt2uiTaCMMNoWwj57/t+E4e8z/efjCKAuA2kEWCu/fQGRft/rt90PnIvUc1uIu3jlmy35r8XlS0fLW6i8xfCLA3SubJe/Lcc5SRLs4jrglC2MsImma7i2g2ZICYbnKYmvVDqe46IZUgriOjD0wjDtS1rQTGmL0nAtG6VrlLMWoZognuNQytnopobp17O6tkN+ski0MQyaLIwHzDCe7ZFxM7w29horWlag6zq7B3dzLHmM9572XqLBKHjguA7KUJTLZaasKRoCDQQDQYqlIgkrQXO4Gcdx8HQPU5koT0pSLF2UQJ7lsXdsL4ubF1Oj1eDgoCkNTWm4jv//53p4uoeGhqMcHIoYuoaLjuPZmKVJnEAduufioNDxcPQgGhqWWyagNMJuDhIHKMxcRtnzMJSJ5lk4xTH0cJuMs56Djoeu8Pt20ZSO6znobgnTKxNIHqDcuIKylSWgIBBskC+7PAn5IQg2Vdla26+D9mwZ61TlfuCr6jxX/pcr9dlK+X89ShYPPEsAt+F7QHg2z3Y/x9y581j11jX89Mc7WLzoLDzXpqF1Ns88+RjnnHMmx4+f4C0LL2B86CjxeC1/+9UH+eWzu/nh975DIBBkZHSMlpZWquJbTwB95feKlF0PysKE68hjqEHGBteWH8OvdR94BsLNEIwLsEaDxGEojIpKU/nakdyYvx8B9hO/hrYVwu7nRuDYo1gLPiLel3aZTM4jmyvT3hJCaQZWqcz4ZJnGmQGUHmAq5TCjVsfUXVzHYWSsxMwZAcamyjTMiBAOuFJe4+EvnOo4to1uiMReeS6OqxgZLdAww8TBpJC3iEVgd88o9Q1xJibyXHJxO1axgGV7ROMxTNNApbLiv1Ip9arUVKey//bi/Kw2H0i/qb66MlafIiGfLSD7v2jN9X/knd4ErEZiEvcg4/Jn/+8u77/OViqdKstetqz998qp/kNuv8thvIzJwZzLLydt0lqcXGAmaaOWwpkfI9t6MXkthGXE6U0mWbdzJ6myTW8yRXdfH4fTRX45MMqhRJKrH3mUw4kku/v66E0kcMJNpMtlhrNZ0uUyJRVi9+Ao6ebV5GpP51DGZvfgGEXXxQXS5TKf2vUoqVKZI4kEVz/2NPl8gWA6jem4aLaNUopAqYze3Y157DiG46DbDk3BGPrze1HpNMq20bq7aS5Dradj5vIycXYcDKWh9fairl6H1tuLXirT5GgY6QzaoUPy+rFjcr5Dh9DXbyBSKBFwXGrQMW1HzvGp9RjpDKWyTjKtMzSskUppTCYi5O0OypaO42jk8ibpjEHJCpIrzcRTMdJpRT6vSKc1rr9eYduKI0c0du82SGcCpFIaBw8ZXL3O5MgRRbms0duruPpqjSNHY5TdGZTp4EivztVXy7Fj4wEOHQ7x8XUxDh3WGRvTKJRiOI5BLKCoDRgYSgwsoseGWBCNE9A0VCqLXizzzSuvJHXLLVzS0op26AQxx+OM+hm0D0/SFAjy1uYWtMMn0B0Xze8jZDlogJHJUacbXNLSyplTObrMIA2hEB2xOGFNR0tn0YslDKA9HCHsurTHYoR0Hd0fdO3OTuzlyykkkzixGKWaGsbfeAO3pQUXsKNRrLvvxm5txW5ooNDYSMZx2Pv5z5OZnJSJj6bhGAYl02RsdBQrGMTVNMYOHSIzNYVzzjnY7e04K1aQHRhg3+23Y5VKZEZG2PvFL5IZGcFxHNxgEJTCC4Vw5s1DMzTq40W2f7PE3AUFymQ4kjoIyiNnFRhID/HKyG/oTw3zzdceIqsNEqstY4bKDKRG+ZsntjNaGOZg8jf0p0b51dBBBlOjzGyxmNmRwIkOc+dTD5FhkAe+UWLO/CKenudQ8jekvWEuXFUi6QzyxV8+xFhhkL/4eJHtf1cmFCuidJuXfu2S9xwsHQjqcPg1yUq2yjK657OSw1xxvPY8GB+G7/4tDA8IICzlYWxIXhsblpthPit5zbblg3MXIgEBio4Nk8PwwwdhQiTL5HPitF3ICTPreTAxAt97AE95aKEAxew4ynQ54xMfozA1CcojUFsLmk0xMwoKmi84DyMcpFxMYNbEULqikBrGKmfJTQ2iTJem88/DKqVx3TLoLsOv/wKrkMLDZfC1n+N6ZcyaOHrQRA+HUZ6LXc5TzicZfv1pPM0h1NSI0jVCrTMYOvA0XjiMN7MFt/84XmJC3KstC69YwJt1Op7ScZ74GV6hKAyqbeP2HcMrl4SF7T+Bl8tKxFQ6hWf4TL/ScEeHZTHPsvCmJqQWuFzGy6Rwnn0KL5OSybdj45n+4ojn4vkA39MNbMDxPBKJBDt37qRYLJFM59j5yCMkk0lc16W/v59EIsnOnY8wNTVFqSSO4q4rNe0DAwOUy2UB0D5KTiaT7Nq1a/p127bRAxE8BEh7Sps+59RUQu4Z5TLZbBbXdSmXy5RKJTTKKPswamQdyj0ORgFV6EY5x+Q15zB4aZSXRo1dg3IzKKsXNboOvKOgyijnKKr0HKgsSs+j3LT8OCNgKKCAynejnBOoxjoIaSinV/q3egVEaydQyU+j6ANSECii7BfAy1BydEqeScZyGMvlOJJIsn7XLiwXjqYLXPvoExxLZ3EwQAvheh49/f0czxRo7XwrrlGLMuIUomcyUbQ5kS2zbucuDk5OkrUhp2qwCGBjcngqyTW7HuNoMinGhlqQ2oaziNadxnA5yLqdOzk8OUnZdQnE2vGMGnr6+umfnMSxbdYhUu8Y4vp9A3Bc3hEZhFl2EOb6Gr+tjTDTzyNmkRXwfRQ4gbDgvf59/6v+fgNxEfeQCZ7PXaGAHv+55p/naqU4GjExagy6Vneg6ZpE4915J3YuO61Oc60Cdi6Jpms4pRKlxBROqYRbLpMfGqCUSIBro5kamf4+9n3+dlyrQH2ny/6/+TzZvj6Kk5PkBvp54Y4vkO07QSCqkx3oZ98XPo+dHkMPKKxshvTxY+z/m8+DNcX4Sy+SOX6cQNlFd2GoZ4haVcvyhuUMdA8weWiSZTXL+MiZHyHgBChnykwemmTXul2ke9Pols5MeybWlIVbdgkQoDXcSuJwgseueYz8sTye5VFKl8gN51AZRcANYE/YrG5aTZw42eEsmqOhoZE8mqS/u59Eb4KdV+8k3ZsWBtxKknVKlFw4NHmE3X095Iw6hvMJDqdH+OXAPg6nR3A8OJw8yrpHPsWhVB85vZ78zJXkbJue/uexXJukVWTA9ii5DkeTx1i3cx0Zq0CyXOA3k4fY3ddNb6KXq3eu40h6mElHUZi5gt9M9fLxR2/gN6khyk5ZZNiBBsrxt1AO1ONlDksUWGkErLT8njkqINUpQmkcskdh39WQOSLAdd/VUh9upUX6jQ3ZXnFFL6fk933ruGhRIx1NMfmr82xpnz2KcvIkJ4fAypAefo2GuEbQEifre750L3evdQiUhVRraWqU0kPXL3VKn6hmYFcAv9LELM2ICIi2C9LWteX+VFkQAPENqp0tknSUHN9wJrSukD6ckrz3aKsclz4uEvX2iyAzKP1F22DhxzEMhWElCXgFZtTpdDU6GL/4FFr6MCHDoqNZI2RPENBKtDQoArqDljqC8cx62mc6hLQCnS0BIqVjaD+/GlVOo6WPoj+1Di3Vizm6By15GM21UFYOQzm0R8cIT/QQDVjMjBUJd1/HmvNKtDWZrHlbG4FcL7Hk89TXmhi6QqVyUt7luqeWgTnuqaVdJ0u/O1sgkZZ9hn6q3LuywOu3dTtbcSqRbBXPlz8iYP37bL/3u/U8L+t53jWe5zX7P9d4npf7z7y4P6ZNN+DWzy1n7dqz+OymFUQi5u+dU/2fuZUdh75UmsZolL2DgwJsd+7iUDLLSK5AWYWwPY/+VIoneuXWvGX3bhqjUbZ2d08/7jhwgLu6u5kZibC1uxvLdRnKZLj9mWcYzmQwNY0lbW3sHRykN5kkaBi0xGJc+8gjHJqcxPM8brzwQkKGwUA6zRO9vYQ8D63i6jQxAceOoU7OLrYseOEFYVBWrBBHqWuvhcZGVCQir4+PS/1shS26//5qrpGfu0wmU8072rJFzlcJGR4aQq1bJ5rfiQkZeG68EbJZbC2A6wr7HIlAOKwwDEWxKGrll16qKJEV112nyGTkEm+4Qbq78078WAVFU5OUEZ98KXfdxSn5x1u3gm0rPE/aX3QR3HMPNDTA1q3Kb6NoaBB5saF7BN0SKi3SbzQFNTFU/4isJEbDKE1Ddz0CKNRJg6WyHRhPoBwH1TfMp/9qM7NPn4+KR3m553lU3zCTExMsvuRizl26hHMvuIDTL78Es66GxNQUKPjYX/wF51y8isUrV7Bk+XKefvop6BtBOa7M5rJ5XEeMqJSuY0QivLBlC7gudfPnk+nrY+Lll/EcBycSITM5yf477yRUW8uB7dsZ/MUvyI+MoAUC2Pk8L9xxB8XJSernz+eFO+8k29/PzHPOQYvHcWprKXsexYmJanRTJjP9+4Ht29EMg+LUFNn+fslFHhnBtW0s22IgM8LWn/8dITPAOW2nU7ItsqU839n/s1Nj3Pb+lIJVQqGmY+P+bu9PqfPb1IXjfGvvT9GUoi5cM93mW3t/im7YoDnc84vv0hitJxoMoRSMZac4v+MtmLpBySkymh/h5eE3KKsMs84Z5I6ntnMsM4Z14jB0ngYNYqyEbQmjpBvCiP7wGwK6d/1QzLt+/hP5nzBMePxH8tquH8rkJBASfTq+FPf7DwooLxWEHXzkh9X2jiOsbM0MSPvnGR+Gqf+Pvf8Ok6M8s7/xT1V17unJSZogoYBAQigAygMYEFgE27AwgLGxASOxCGOiAAkvYo0kkMBgE2zABAfstQQ2YZAQAiyYUc4CIUZZk3py59xdz/vH3dMj7fq33v1teL/fd7euq69Kz/NUzUxPVZ069zmnG3PEaSQTYXGrLqxE1614amsomzSBeKgLTQerqwCHp4zOL9fnqkuchZUkI37aP/8Ii91NKhbGYneRisktR9MtWGwueg5tIeBtpufQFjTdwFU0lN7D28DMEOnvIBUL0P75RxhWOz2Htkrbw1tRmZRoaW0uKsfUoadNzMaP0dx5krGc5xFzrvVrIRQEmw19+nnC1Pv7Rf9bVQtWK+amRvSqGrBYcu7VmjsPFY2gkgm02lPQrBZIxAezoBNxzMas7rjxY2HWlYJUkkzDmyi/T8rBG97ETMbx+f2Ew2GamprYt28fiUSCxsZG9u3bR2NjI5qmUVNTQzgc5vDhwyxYsIDx48fjdDrZtWsXmqbhcrmYPn06kyZNYsqUKYwfP56hQ4cyefJkdF2nsbGR2bNnc8455zB27FgaGhrQNI2mpiaam5sJBoPChivFZ599hmmaJBIJkskkup5GS7VB8b2QakPTrOA4Q9IMshGBmukXT4pcLOEyCK1E61sihFeqHSzlg1IbLVt2qOejmWG0rrskgjDVgqbiaGSg70lwzgTNjoZCy8UZLhOQqGngmkbK1DjoD3Pb++/TGQ5Tkr1PTamqImWaLN+wgZk1NdizJen3ffghoWSSadXVOCwWouk0t69ejcNdSWV+EaUuF0saG3P+E3q2Kmhjaytp08Rjt/NuczNLGhvxhsMc7OsnmBRTp7ZgkPumT6c6m7xwsK+Pja2tnD10KA6LeBusRMqxk4ih2NOIHrssO78LYZSXAx8ibLYNAePTEOZjPlLWPRbRWc9EQLcTAeIKAexzs2PekZ3PRcD0eIQ91xjM0V6uaeiZDGYyicpk2Pfyy4PxeYsXE+nowOJ0Ys/PJ9zaSt/evWRiMbY/9hix3l4MpxN7URGZVAqVyfDVa6/9y2vxyy9j83hy6/tffRVM86RrNaZJKhLJxe7te+kl7MXFxHt7MWxSwVY+vpx0LE2sN0bFhAoiXRHi/jjpeBqVEZA8EB3WuKSReH+cUGeIvIo8zLRJ68ZW/Ef9hL3hXBvd0Al3hek/3I9u0dEMjXQiTbQ3ipk26T/UT6AlQDKcpHFJI+4ydy5SrHFJI8qmUJoikAgQS8fw2D2UucVozW1zU+Yu48yKM/GGvZjKpC3Qxn3T78NlcZFWaQLJEPevu5+JlROFGVcmR31HSZtpHBYH7za/SyAhpm7LNy6nzF3G0qalrNy3kqVNS0HTSSqTJU3LWLlvJUs2LCehTJLpJMF0nGgmhaHSaPuWSHn5viWQ8styrA0iR2D7fNF+n9jGsIr+25onOdoa8rJl/3JpkwoMtt+/XMZUCuLyUlXb/zh/nJ/kqutvZtiYs5k157v8+tYYtoPLCQb66Oru4Z2GNUydeQFTZ17AH3/7Kyk3D3fINzRvqABgwyrrA9rwWL+cR7gt275NgPNA28CRrNmaRdjpZHhQH64y2TzuE/qZyRPGapcHOFu2misTh0QQzUxDtAvW/wjNd0AkMZVT0LZIGbmW8IG9EK1jM1oyJJUcBSOg7glpmwygpWNo4TaRayaDUvLevFI8kJylIqsMtkiEbfA4msUOznI072Y0qwvOfxot3MHQSjuGiqGF2gT8R7ykkzGSugHpDMowctnVqnaIwOFUKgeSsVlRdhvq1GFiWhqKyL4T9NWqdghKA1PXafclidVW0dqbIBrL/PvAyP/Hpr9ZFq5p2o3/2n6l1G/+U8/o3zD931gWnsqk8YXDBCMxCtxOCvPysBr/PYz1vzbFUikiySRb2tuZUlXF1vZ2rl61im+MGcPLV1zBMZ+PhxcsYPenn9La0kLj5s3kDRvG/uPHWXzLLaQyGayGQUd/P7Hubn63cSOn19Zij8f52re+RWdrK7UlJSxevpwP0ulc5NOs2lrmNjSwct8+bhg/nufmzCFtmmxpb6cmP58CXac2k0Hr7hZU+dBDgkgPHhSB6tChApzLygbdn+fNGxS7vviimFoNZO/5fCJqtdvh7/9eIp3a2mBSVgvk9Q46VZ9yimhu3W5xsl65EhoaxKnqyScF0bpchPV8mg9odHbKrmXLYNEixfDhGo2NcmpPPSVDplIwfLgYWx05AlddJY7T8bgA83g8a8qc9Y3q6RFN77Bh0n7p0sFTG0iTmjpV2huGJE/J8UWLe+gQlBRmqI4cEzfodFY3M6IqW8KX1Q9piH4mljhZK2u3ZV9I6BBP8tmf3mHEzKnMuuAC3v6nf2Li5MlZnVUSnHZUPMlTj/6ET7/Yw3tvvw2HW/F7HBSWlIChs2vHDi68/DJ6jx5H13Vo64JTqkiZGcItLex7+WVOv/lmenftojKr/Q63tuYyjsfNnUu0s5NPb7+dKz/7DJVOo1ksKNOU2DWHg3BbG7HeXkrHj+dYQwN9n3/O2QsXEunqIur1UjJ+PJphEM2ul511Vs6Zety8ebiHDCEdj5OOxUgFAljz88kkElgqykhaNHRNJ21m5PyVImOa9Eb89EUDgzFu0yTG7fOOg5TlFfHKlnf4wdRv0RXup8JTgsNiI5lKYbNaKHIVEE8lePrTN7hpyjepyi8lrUzaA930RwOUuYt4fdt73H3eDdgtNvZ2HODUsmHomp69dij2eg9x77s/5fyRZ/PIBTfh1oxBhrr1MBSWQmklvPGcGGmdXSf73nwF/u5mMc7y9UBRKaz+oxh6WW2DWc9H9kNBSTZGyjZYKh3sF4B96XWiTy4ug9KKrC55pxh2XTuPTDxCxIxjsTtJJ2K4ioacVFYW9XdisbuxufJzuraYvwOLI49ULEzLzveonXwF7uIqlCnlp6logHQijKu4imQ0mHO/1nULmXQSm7tQ3K+VovPLT/G172PY2VdidXroPbyNytPq0C02YaDNjFQVR8JoDifKMNCyxjqZ999Cfb4D/fpb0AoKRSNcd6G8jMhqpjXDQOk6+PpRQT96VS3KYkEzTXG2rhwKsSgq4EcbUiX5yxvXo1/yDYhGZMyZXxOtsW5gfvgeWlUN2sgx4HCS+dljmHc+zHtr11JbW0ttbS1NTU1ccsklRKNRGhsbqaurIz8/n/fff5+6ujosFgufffYZpaWlfOc73+H111/n7LPPxmazEQ6HcTgctLe388Ybb7B9+3ZeffVV/H4/F1xwAc8++ywzZsygqamJO++8k3379mGxWOjs7MTj8RAKhaipqSGTyRCPx7HZbCilyHMbaKlDaH0rspGEeYh5UzTrIXGPpCJgQvc92SjCnqxHxKJsfGBWl006WyVvgdQBiTksWQDRDRDbABXPZaMIh2fvYunBlIRcJOEDYB2DIoOGIhzv45Y1O3m3uZk3r7mGWbW12Qxi+VizrEp3JILHbqczFAKgKxJhZrZt2jRJZDIsWLeOJy66iO5IhMc3bGBRXR21+flsaG2lzO3mqU2bWFhXR1sgwBCPh6aWFja0trL4vPOozs/niM/Hio0bWTF7Ni6rNVeav7G1lar8fE4pKuIHNhsLgVEI0H0SAcguoAm4Gsmgrs5uiwJLGXT6rpbfCk8zWP7dgYDkRYjLeJyTNdfP8y9jvqoR9voYkr/9bCpFnt8v11yXi0hbG47SUpKBAJ0bN9L3+edMfvBBlGmSDASwulzsfvppjjU0cN4LL+CqrGTfSy9x+s034yyX8tqdjz/O5AelCDIVCmH1eES6EYux76WXGHvLLbirq4lmI/XGzZuHq7KSTCxGrLdXPBTmzcOw28nEYhLVN3cu7uph9Db3s/GJjcxYMIPiUcWkoil0i046kcbmthE4HqBpWROzFs3CVeJC06Ugft3965h651QiPRGqplSx5o411D1cR0FtAS1NLbjL3Gx6ahN1i+qwOC2koilxLZ9SRdwfFy15V+QkN/SZD8wkb1wewUSQUDKEx+Yh357PD977ATNrZjKzZibLNy7noVkPMapoFArFEd8R2oJtVOdXs7RpKQtmLABgxY9X8Je1f6G7vZvGzY1Ujqqk0FnIn9/9Mz9f9nNMZRJPxvnmTd/ke9/7HkublnLkp0fo7ujGcBpYDSvOs5389onfMqp4FP64H0MzyKgMlY48tAGH8nELpUx8512ixd4+XwDyeQ0S7bVvKYx9APLHZKNaB/TiTinB1izQ3SSu6IkeAdjjFkLeSIaPHsvbK3/DxElnke7fz0VzruAfl7/KuTMms23DOr5x3Tw+3/IBumsIJVVjePTeG/iHRQs41gMzzr+ENX/+IxPOnsGgO3mVlGebqZNjwgbKxMNtknONLkB5QA/uLIXCkaKZzh8u/cPtWWM1hxioeaqlRN6wSv9w2+DxNEOOETgiIN/MDMaAjakXUzSQcT21wnpvXQbnPCh68fV3iZFvwUj5OcJtkt5jccBHfy9JOrGeQU15uF2iwz654wSvpBfF0K1sggD7bcsHndFjveKXFGmHVJSkowplK8LQNWKxNE6nBV3TaPOGKStz0tcTJRhKUpuNAwuGk9htBk6HyAB1PVsNBcRjaXSrQWtrkJ/85DOmTKni4otHMnRoHg6H9f9V4vC/evpbZeG5N9H/vz7AquxnLXI9/ghYh0h3Pvhb/f8rPlVVVer/ximZTqlwIqqS6dR/+3EjidhfPW4oHlf+WEz1hMOqoblZ7fF6Zd7ZqfyxmGpobla/fPNN9dnevaqmtlY9+/bbqtXvV72RiArG46o3ElGheFwtXrJEfe3ii1V3OKzCiYS67jvfUfc8+KBafeCA+rixUZVUVCj7o4+q+lWrVE84rILxuNrT2anqV61SHcFgbnlLW5tqaG5WqUBAqf37laqvF06nvl4pv1+p7dtlec8epUIhpTo6pF1/v2xraFCqp0epcFj2D2zbtUv67d072O+555T6/veVCgaV8vlkjIMHZV8wKO16egbHrK9X6mc/k3O44QYV8GdUQ4NS3d3SxOGQJv39sm3g1BsalNq9W9Y7OuRUVq+W5Y4O+bF8PjnlgXa7d8u63y+fgWPs2aPUgQNKbdky+GsIBmVbV5e02btX5i88n1GJ/ohS8YRS+w4p1dqpVDAsy6GIUr0+pZIp+cTjSiUS0jaZHNyfSCqVSsn2VEoNqx2mdm3cJOvxxOAYqZQ6bcxp6s8rV8q2QFipSCzbN67+8vobqqiwSGUS2T6xuFLJpEqEQqrxnnvUG2PHqsZ77lH+w4dVpLtbRbq7Vayv76R9sf5+1XjPPSoeCKj+r75S0d5e1bd/v2q85x7V+8UX0q+ra3C9q0slIxEV7e5WEa9XbViwQPV/9ZWK9fWpSFeXivb2qmQ4rBKBgIoHAsp/5IiKdHWpSHe32rBggYp0d6toKKi6g/1qn/eweqjhWRWIhVVz1zFZjoZUOB5VgVhYRRIxFYyF1fF+r2ruOq66Q/2qL+JXwey+QCysgvFwdh5RX3QcUve/+4za33VU+aJBFY5HVX8koD47vFMd6DquQvGIuv/dZ9QbO1bnjt0V7FOBWFgd7+9QzV3H1UMNz6ruUL/qCflUd6hfxeNRpY4eUOqXS5Q6fkipvm5ZjoSVCgeVCvqV2rNZqdYjSkVCSvV2yf7brpDtkbBSQZ9SLYdke8vhwW2tR6VN0K9ULCqfSEj2HTugVGebjPvyE0r19ygVDikVjahMNKJSiagKdB5WEV+HOr7jPZWMhVQ00K1adr6vEtGgSiWiKpWIqYivU7XsfF8lo0GVjIVUKhlX8VC/SiUiKtB5WEUD3SqdSsiyv/OE/jEVD/WrSH+Hiof6VTTQpY7veE9FA10qlYhll7tVKpVQ6WRMpRIxlYyFVDIWUq271qhMPK4y3jaV6e1WGW+bSr31hsoEA8qMRlS6eZ8yw2GVWvUblVx8j0qt+o0y43GVCfjk09OlMsGA9G07rtLN+2SMVb9RmbbjKhMKyra24yrT263MeFyZwYBKb92gMqGgynR3qvTmz1TqrTeUGY3IWO2tueNmertVPB5T7e3t6sCBAyoYDKru7m4VCARUNBpVPp9PHThwQIVCIdXW1qaam5tVLBZTzc3Nyu/3q9raWvXJJ5+oQCCg4vG46uzsVG+99Zby+/1qzJgxauXKlSoSiajDhw8ri8WigsGgCgaDKhaLqdNPP13dd999qrOzU8XjcXXgwAEViURUOBxWvb29KhwOq3g8ruLxuDLTfqXa6pXq+5lSyTalYttlPbZbqXQw+/ErlQ4oleyQTzqc3RaUPsHV0r6tXqnYHtneVq/UfmQe/1K2p3xKBT+U/akepYINSkW3yjzZoVSqW/bFdue2JeJetcfboRqam9Wu7D1u98C9LjvvCYfVgd5etaO9XQXicdXQ3Kxa/X61y+tV9atWqe3t7aotEFDPbdmiVh84oHyxmPLHYioYj6twPK58sZg60NurtmbvYb5YTHUEg+qGt95SOzo6VEcwqILxuNrf06O2t7fnjtsdDqv+aFT1RSKqIxhUgXhcdSulfEqpZqVUg1LqmFKqTSl1g1Jqj1LqgFKqR0k5oV8pVa/k4aheKbU5O+9WSnUopUJKqUB2nC3ZebdSqk8ptT3bdm92nF3Z9Z3Z4weznz6lVKtSKh6JqFhfn2r77DMV6epSiWAwd70cuAbH+vpU3759qvGee1Tf/v25a/LA9fvEa30iGFSx/n4VOH5c9X/1Ve66mwiFVCIcVnGfTyUjERXp7laB48dVIhBQwePHVbijQyUjERUPBFSsv18lIxGVCAZPGj/uD6rmhma1mMVqVf0qFfPH1IHVB5R3r1fF/DEV88dU74Fe1bqlVfUe7FXBjqAKdgRVzB9TgbaA6vmqR8X8MRX1RVW0P6p6D/SqqC+q4qG46vmqR23+2Wb11g1vqZgvppobmlXblja1qn6V6tzdmRsv0htR8VBcRXojKtoXVaF4SG1v367qV9Wr7e3bVSAeULu9u9X+nv2qflW9YjGqflW98sf8yhfzqfpV9WpL25aT9vVGetXjv3tcrdm+RrnKXOqNtW+o9mC7eu+r91R+Yb5679P3lDfoVV989YWy2+2qvaddfdXzlZo+a7r63R9/p7a1bVPd4W7lj/lVKB5SoXhI7WjfoXxRn+oKtikz4Vcq0qaU/0ulIu1KJUNKxXuVSgaV6t+j1IYblIp2yPrAPNajVFuDUr1blQocUKp/t1KN9Ur1blcqkm0TPKxUwq9U3KdU3241rNKldv3lDaUiHWrbhk/U6FEjZPy21UolAurssyapDxtWKhXpUHl5LnX4y11yHqmIuvrv/k69/IvnlOr7SqlESKlQuyxnUkolI0qlk0pF+2RfKq5UOiXbUglpk0oolQhLn2RYqWRU1tPZ/qF2pfqaTx4vFc+OlZB2iWD2GOGT58mIUqEOpfr2KxVsk+V4UKmYT6m4X6n36pV6Epn3fjm4HO1V6nCDUh1bZL17t7SP+2WM3i9lHvPJcbp2ZdvtzZ5LjxzzxPGjvXLs7j1KvX+DUtF+lYhG1Z49naq+fpXaurVNHTjQq3p7I6q11a9Wrz6gtmxpU/X1q9TevZ2qoyOo6utXqd27vSocjiufL6aCwbjavdurGhqaVU9PRIXDCRUIxFVHR1Bt396u6utXqT17OlUi8d+Lc/67J6BN/Ss49W+WhSulrlFKXYO8HD1bKXWRUmo2cDbwv2Xh/47Jalhw25z/rYx1KpPmaH8Hi9e+yNH+DlIDzrTZydB1jgUCzF+zhjK3m9ZgkBk1NQwrKGBzWxtTq6qoHj8eT1kZ/bEYo4uLMbJmVgf7+rh99WoO+3z86pVX+EtREXevXUvaNHn3T3/i72+7jer8fF7s7KRyyBB+XFvLoro6fPE4h/r6GFFYyIuXX47DYsmV2D21aRNTqqqI67rENC1YIEz0ww/LCf/z8m2vV9jlo0eF1q2pkfimQ4eEYVuyRCjkZcukX0uLUMF33SUO1EuXwmefCat9222DIcMgdPD8+TKm0ym08MUX50rGrWaC6mrFHXdIatSbb8KPfwx9fdL9mWfghhuEYW5rE5dnw5BTnpZNcrj/fjnVWOzkEvAVK7I+ENlq9v5+OZ3lywcZ8ZUrZT2TkW3btonx9RNPwKxZcOFFOprLjjIM1MgaqCgRlrrPLwy12ynM88HjkMoIm5hKy2cg3/hQi7hAGycYh3T0DMY6edyQMdm48s/4/D4uv/wKYb1TotV98Lb5jDztdK666w7e+v3vhfXNyxpCmQrdVIy79VZqv/51xs2bh7O8HMNul3J1h4Nxc+dS+/WvM/aWWzDsdsbPn086EmHfSy9hJhLEuro4/fvfJ97bSyocJhUO50oJrW434dZWdjz+OLG+PkrGj2ffSy9h2O2gFNHOTrb8wz8Q8XrJxGJ8/txzxHp60HRdSh27u4n4+9F1DZfVzl3nfhsNKdOeMHS0sJtmhv5ogLSZIZFOYbdY6Yn047La6QsH2N1xgLQp5VHtvh72dBwgnUnjcbjYdGwPPWEflmx+eiAW4tSyWroj/WTMDDeefRnTh53J73as5jtnXYrVsLCn4wDxVJKucB8Tho5GKUUoERFHbNRgefeaP0qFwtevyZZo90hpd36RMNAgJc6XXQ8Tp0nesp5VW659C0aNE3Y2nRTttdUq0VDhoGisezvhtz8XF+xAv2ix+7uFHQ/44Hc/h6529HgUTdNxF1fRe2QHAW8zmXSSnkNbcBZWkk5E6fjiY1LxIOlEBGdhJalEFO+X60nFghg2J+lkHEd+GamYyDtcRUPoObwNf8d+Ovd/SjoZwbA5SCdjWOyuwfLvQ1vRNI2h4y7A6swnFZUS8VQ8mI2rilA8fGLWPMuG5s7DbPoEraoGQgEy77+Fll+IshjoswYjn4R5N8S1ev1aCAXQ8vIxN32aG0Pt2y3rVitafgHmpk8hlUSlk6hICHX8cFb3l0G1HkOfeT5KN9CsVpGruPMx24+jOV0YaHg8Hqqqqli7di0vvPACn3zyCZqm4XA4qM0yq3a7nSFDhhCJRMjPz8fhcGCaJtu3byecTQVobGykqqqKrVu34vP5mDp1KqtXr8blcjF06FD+/Oc/4/V6Wb9+PYcOHWLv3r00NjaSTCapqakhGAzS3t5OKpVizZo1+P1+uSooXdhl98VS0p0rz14qBmOdP4DUUYkPPDxU2GXSkDom+zKd4Bh7Qhn5EjDDULJQEhZKFoJRAkYxxDaBa5qM1zVfSsXT3eCcAmSExcaUsSzlEN+NTU8zoqiYadXVLDtBzjRwzytzu5m/Zg2RVApvOIxSiqlVVYRTKZadED8YTCS4euxYhno8zGto4JjfT8Y0ae7rY0NLC0UOh8QWVlWRymTIs9lYMXs25W43LquVoz4fh/v7GVZQQKXHQ7nbzR1r1tASCJDIZLhr7VoO+/1sTafxIvrqKmAB0IlkUrcizMZ84CtEN70QYZsXAr3AfcB2pEy8Xf6rqUFY7Cok17one0V/ARiBMN5exDX81OwxgsAB4E6gIJUi2trK9iVLKBo9mnh/P1sXLybW3U3J+PHsf/VVDKsV3Wbjy1deoeWDD/jqtdewuFxMeeQRNF1n3Lx5cj3/wQ9wlJZK5JuuY7Hbaf7Nbxhz443ohkHPjh2E29rIJJMo08T35ZfY8vLQDIN0LMaeZ54hFYlkncp10pEISilOv/lmuZfceitoGlVTq5jw/Qlc9uJlKCVxXuGOMIHjARrmNpCKpoj2RMkrzyPSFWHtXWvxH/NjL7DjKnWRiqZo39JOJpkh7ouz5o41JENJ7Pl2Tv+705nz7BzQoLauli0/3yLl30sbcZe6sefbCbWFOP7pcTLJDL6jPjIqw/KNy1m5byXLNy7HH/fTFmyjylPFwlkLqR9Xz6K6RXRHuomlYiyctZCeSM9J+2yGjVu+dQuvHX2NaDLK63teJxAPUOoqJZ6Ooyclt3t/x350l05LuIW1h9dyqP8QGTNDgaOAjnAH81fPJ5AIkFEZPHYPCkUyGULr2Sj3eZBvTiokmdo77oS8EXDOL8SpfMsPxKU8FRZG21Em2x1lwmi3vyuxX4ZN2FzDKextvBO+WiHxooYTNJ2ammq8nd3sf/8B+PRSDv3pOg4fOcqY08YBJtdfcxUfrPsI0Onv7WXrtq2cObJ8sDzbXijs8oB5Z+CIsMwDxmZwgglb9jlGt4CnRtj1hE9Y6ExC4rps+dlIr5Ak3gSOyjV/IE4sEwfdLtnc4Tbob5a+9nw5XrQbNj4C8T4Za8AAUymYsog7917B8Pmb0ErHsttxBZz3NOgWVn8eY/LsbzNx3irOOOc8fv3b38u56wZbV7/KtLPHM2nauZw+ZiTLX35H0n081bD+Xvk5bAWDcbZTF4mhW6RDWO/KKRBqJRmL0t4e5KmnZjN6dAkVFXn4/THy8+3MmFFDcbGD556bQ01NPvffv453322moyOUM4YHGDrUw9SpVWzb1k4wmCAaTZGfb2PkyGJeeOFSvN4Q8fj/7LLwf4/CfJRS6ouBFaXUPiQS8X+n/4OnVCbNrzb/WXSdm/9MMpM6aX/GNFmR1Zvl2+3Mqq0lnhYAXpmXhwKmZh9I7IZBXyzGXWvXcsTvxxsOs3LfPu555RUS4TBXX3klK2bPZteRI8STSSIOBy2BACv37SPgdFKQSDC8sJBQIsEvtm/HRG76vdEo906fTv24cTxcV4fLas2V6VFdDb/8pdRU67oA3Pp6ySjSNIlhevdd+OlP5cK6ZMmgQFkpadfTI/P6ekG6A22WL5e66iFDBgG8yyWfTGYQ6S5ZIrmtNTVS/50F2SllOUHrLIB2+HDJKb7jDtFX/+IXEs9UXS2AuLNTophuu01A9pQpchp+v5z+wGmuWCHvCzZuFFD9D/8gOccrVgjOGfg1rFgh7wvmzRsE+CtWSHxzy3ETS7YsklRaQLTdBmNHSun3PzelSKbFLdJmFdDcdoLRxcCUzoipRWun/D10DY628cobv+PGy76BxWo5Ke/48e/eyuHtO1n5m9+w4P4FJINhQImrZDKFJRjFU1PDlMWL8VRXS7l1LIZ//35UOk3ewL5hw8SIKZ3Gf+AA4269FTOdxlVRwf7XX8dVUYGjpARrXl4OqCulTtLtVc6YwRnZ7f9cr5eKRHLtDKuVyhkz2P/qq5jhKP2RILqu44+F+Mm6X1GeV8zXRp3Dno4DeEO9vLBhFd5gD/u7j9IXCTBh6KmYQGe4jyKnh8fW/QpvsBeX3U6R08Oyj18jnkryxneWUJFXwq72ZjLZcnNfJMSkqjFomkaBI4+KvGLuPu8GDN1g2cevUeT00BXu54zKkVx06lR6I35+sfFNesM++W+65JrBvGaHU0Cz3TGosw76BAgPAOPSSvjunVBRJTr8o1/BVTfByLHw7m+lzLu/GwqKRE/97m8FqPd3D2qu8wpkfsppMHbyIMBfu0qAfNapeiCX2bDYKBs1lbyy4fQe2ZYDwq7CypO2pWIhUvEg3Qc2kk5EcRUPJervRNMNykZNlYznkedgWOxouoG7eCjKzJyU/4ymkYyHUJn0CfrsrVhsTnqPbMPmKpBnLZsNlU4LiB45JqeNNps+Rksm0YpKMC6/Gq24DKVpktU80GbjenFSrrsQFQkPAvG6C0ExCLabPkEzLGhFpRhzrkR1toMrT8YtLAF/H5mGN0Ur77CjufPIrP4Tur8Ph82GYRjU1dUxbtw4LrnkkpPMyKxWKw6HA6UUTqcTt9sNQCKR4PDhw2zcuBGlFNOnT2fkyJG8/vrr1NfXs3XrVvbt20cwGOS1117jpz/9KVdddRUvvPACM2bM4JxzzmHOnDk5A7ONGzdSUVGBxWKhpqaGDRs2oLIu5VhPBcsQ0PMFaHvqpeQ7tjWng8Y5Jbv9YXkIPUGTjeY4AUw/AKE/Sfl35YsyT3eCGQPrUEi3CwAPrYT+pySWECt0PwjWbOlnySLQC8E6lGT0C0LJJLqm8dCsWfREIizMzqdWVfHUpk0535CpVVXomobdYqHAbuehWbOoHzeOB2bOpNDhwGW1UuF284tLL6Xc7cbQdboikZxviTcUYv6aNXSGw2iAw2IhkUqhaxplbjcTKirY1tGBrmkUORycW1uL3SKlme82N/N4YyNTMxkKEXC8jKzeGZiNAOwlJ2yLIuD4JeSBbAYCsCchZmb/ABxFQPnK7HhFiIM4wO1I6XkcMU9LIKB+wDxtefaY1mSS/a++StmkSRgOB7GeHsrPPhuL00ntnDlMfvBBkUmYJmOzL0Un3XcfkY4OenbtQmUy5FVX567nmXicVChEvK8PdJ1JDzyAs6yMZCBA6cSJOIuLsbrd9OzZw6e3387OJ57IXdMHXn5uXbyYqNdL/5dfEs5KBcfPn4+7qppkNIPVaWXOz+cQOB7g/Xnvoxs6NTNraFzSyL6V+2ha2kRtNtKoaZloo4NtQXyHfay+fTWRrgg1M2qwOCxsemoTVVOqCHWEWHvXWqI9UdLxNA1zG/Af8TN7xWzG1Y+j7uE6dJtOJpURoF3mJhEQfTcpckD54bqH2d+zn5qCGpKZJC6ri+fmPEdroBV/3M/uzt2MKBrBzNqZjCgawfNznmdYwTA0NBwWB4vqFuGyubhp4k0UOgrpi/XxzK+e4bvXfZfTR5/O9ZddT+zyGE9vf5rZI2YzrGAYi3+8mG+e+02uuPIKRjCCznAncxvmEk1H6Yv2Ybflkyk6E4w8cA4FTNi7ECougDOXCtA2kxLb1fmhRHoZNtFbN/8cSqYKSJ38DHyrTfK6e7dLxJjFBUkf8+55jOprPqatK8Al37yeUePOoaK8lJde+Dn1y44x4fGxXPnYcZ575qfU1lSB4WLZow/wwZrVnHHWLM792kU8cNdtTDlvjpR051WDbst6NJgnaKI7BPxqxmDpOKaAYE2T9YRf7pvOcgHeJ+qpdUN+NmcpeKrknyXcfsJ+XcbJHw7OErBkE3+UKdro5pUCas0kRLqy5EUErC6u/rtv0fToBIbVDIEpD0K8F/XR7Xzn+z/g9ddeZ/cXzTQ0fMC8O+4i9M5NEGpl7orVLHz0SXZt/owNW3bx5DPP8uVr3xGwf+Y8KQe35UPhKLj4V5KLHjgmOvhzFsDwS8DqxHC4mTixkt7eGPPmNXD0qI/y8jwSiQxNTS3EYmn8/jjxeJr775/Bm29ew8SJlRw40MfcuQ2Ew0m83jDz569h/Phyuroi7NjRweHDPjZtasVi0Zk2rVpSy5Ink3n/k6Z/D7gOapr2fW1w+j5iTvm/0//Bk9Ww8INpV3LJmOncOu1KbNnczYHJZhismD2bmTU1PLJ+Pcf8fiLJJAAji4qwGQYOw2DhrFk4rFZe37OHlfv2saSxkSlVVdSPG0fBvn18+zvf4eVvfhOX1cozW7ZgKsXSxkbOybYZW1oKSnH7+++j6zpPXXIJx7IO5LFUiuFZFntEURFH+vtJxWJo998Pf/yjhALDoNj4uedEjHz77QJ6BxClUqLNHgDf/f0wapSg0iFDpJ/DMYhgFy2Si+Po0RJIfMop4irm9QroPrEdDJ5HWRlUVqLbLCc1sVhEJ32iAVkyKXrqE3G63z+I7WfPhgceEOJ8+3Yh259/XvD9AOk+0Hf5cjl8NDr4a3A4Tn6fMGvWYN/Jk5QAa1OdZFZGflZPqxh0ghzIMIwn4WCL/F5O3BfIFqlYDCjKl21KARrhojxWrv+Ym2//exmzplKY64H+HjcXjTydUDDI5x9/KhFRPT4B6EXyVlfTdUKtrWxdvBgAR2kpWx99lHBrK5quE+vrI9LejquykrzaWlxDh2IvKmLfyy/nTHA0QLdYOHvRIqJeL+l4PMd8n5HV6eVVV6NME6vHk2M5zpg3LwfKz5g3DwU4y8sZN3cuep6L7kh/zohswHwskoxljczeyZqWvUOh08Pr294T8J5OckblSH6z/f2cqVmRMz+3/qstb1PsKqArC8CXffwasVQCl91Om7+bx9a9QiydIJKKo6HlDNN+s/19zqgcid1iw26x8fq291jbvInXt72HiYLKKrjxR6KhDvoE3OYXwmXXCegecdog0F79T6K37ukcLJEoLpf5AED+YKWAZlOdbHp2ymky3qXXCZt92fXy/SgqHTzWZdfLSxYdktEAqViYoWdcgJlOY3V4sDrcJwNh3cDqyMsBZ1fRkBwL3XtkGxrgLKwgGQ2QjoeoGn8RNnchSim8X3yCmU4DGlZXIVXjZ2O1u0EpbM4CNMNy0rHSyRhlo6ai6Qa6bhEt9IfvgcuF5ilArxtkqhWgUKiUOHyTiKF0fbBN3YUioSosRq89BTwejDlXgqcQlUlJ5vO4ieh1krmt/H2Y7S2Yv/8V5tp35P8onTrZ4Mydh7npU9S+3WQCAfr9Pt5//31cLheXX355zmisqqqKUChEQ0MDwWAQTdPIZDKsXbsWn8+H0+lk5MiR1NXVoWkahYWFALz77rt873vfY8aMGYwbN47q6mr6+/u58sorWbx4MX/4wx/o7Oxk4sSJrFmzRhhCTWP27NnEYjHWr19PTU0Ns2fPzt5JdMCEzvkQ+jNYqqHyJbCOFC30AKDW3LJdc0mfHJjO7rOOgspfglEhDLW1VuJ8XDPBOkxY6r6lEPnwZACvOaHrDgi9IfvNsOivjWLoW0pSH8Luzk40TaPK42FmbS2jiotFTw0srKujftw4Fs6ahS8ez7mpOy0WRhYV8dLll3NqcTF5NhtH/X5+tHYtLcEgO71ejvr9zKyp4alNm04y+GwJBDjs83Hb++/jyva7a+1aemMxxpeXM3/1atw2GzNra3lk/Xo6w2HevOYaHq6rk5sJklf9EMJKPwyUAA4GmepFCLscBg4BNyEgehYSrbUUcuZoU07oY+Fko7JlwEgkciuCmJ4VZNcXABcDcU1j4j33UDp5Mr179lA2YQLVF17IvhdfRJkmiSyTHenowF1Zyfj58zHsdqJeL46SEvo+/5xMIgG6TrSrC80QPaatoACL3Y5usRDr7WXvc8+dBJiLRo9m+OWXc9aiRaRjMU6/+ebcy8+Ba7+9qIj9r7yCxenETKfpP+Rn3X0fk4qmUKbKmYo1LWtCZRQzFswQILyoDjSI9ESoW1jHuPpxVE2pOqm9mTZpaWph1sJZjLx4ZM4ErWlZE3F/PLdscVg4b/F5OIudZJIZ0tE0sx6aRaQngr3AzhptDePHjmfikIlcW3wtpa5SplVP40/v/onzZ5zPlV+7klGnj+LKh66kO9LN9JrpHOg7wB2r7+CTv3xCRX4FLzz7AolMgs5wJyWOEkqcJdTk15Bny+PMsjN54/k3eOOf3uCLA1/w+p9ex/Geg9vH3k5VfhW//c1v2bp7K8v/tJxrL72W3z/0+xyLvrRxKaXuUsn1Rs+6fM+Xb8nkn4KjQljmWAdsu1301hdvlfm226F0JkxaIQA6kxJ99bbbIXQQSs8R47KtcyET48Xnn6bt6Fek1/8dXc8lOPSb6RDv4vpr/47Pm/7InhfO4PPP3uDbV39d+kRbKCkp4t1FZXyx7RO+2LOL22+7TfTQBSMEAGfiEDwq55tXnQXE1VlfGUOAcsEpsj8jz7cUjBBduJkUXbXKnNw3kxLmN3+YVHApRGc9AOgVotM2UwKwDXs2jtKAKQ8NsseaRfTo6+ZCtBMMK+fqa6nua5A4LzOdY5Y1Dfwf/wOkYwTjGUrcBvajf4Zty9Ew8YdjEDhM5IMfYrMaFI+cIS8QDAts/AfwH4L2JvAdELAfOi6u5gUj5dzTUTKBTgxDw+GwMHNmDR0dIY4c8XPHHWsoK3PT0hKgvNyN02mloyPEOedUEQgkWL58IytX7iMQSOSSj8LhFMuWNVFR4aay0sOMGTWYpuKuuz7gyBEfyeT/YPb6X6sZP/EDjAG2IgaWCSTxYcy/tf9/5uf/Vs31f3T617TTf6vfv6b19sdiqn7VKsXixap+1Srlz2rFBvRiu71e1RYIqJraWvVP69ap+lWr1G6vV4USCdXS3a3y8vLU9j17VEcwqPoiEbXb61WG3a4+2rtXHejtVd3hsBo/aZL6xR/+oLa3t6v9PT0qGI+r1QcO5DTW3eGw6LEjEdXQ3KwiwaAyOzoGNdY+38n66y+/FJFzQ4Ps6+sT4fGA+PjgwZM101u3yjwQEFF0T4/08/lO1nG3tw9qswfE0N3d0j4Ukm0HDyrV16dCQVO1tcmptLXJrhPl3Tt2iER7QCs9cIiOjpPl311dsq2vT+TjPp+sb99+sl57QF/d0SHj3nCD9B843u7d8uMP6LpD/rToqBOJk7XW8YRoqSNR0UUnkqKDHtBZr9+m1P4jopdOpmR/Vps9rLb2ZM11PKF+9csX1cwZM6T9/iNKtXaqpC+gDn75pRwjlVJb/vKpKsovUP0tbYMa8FBEpaJR1b9/v/IfOaLa1q9XvXv3qmhvr9qwYMGgNu/IEdE/d3ereCCgIl6vivt8KhEOq/6vvlKN99yT02Anw2G1YcEC9U+TJolGLxTK9UsEAqLly87jgYBKBIMqldURJoJBFQ8EVODoURXP6rBj0YgKxSMqHI+q5q5j6v53n1HN3aKp/uzwTvXVwLauY7n1npBP+aMhFYlHc/sPdB9XkUTspDEiWZ31/e8+o85cca26/91nVDAWPmn9SG+b2uc9fNI40URc7fceVb1hn9rfdVTd/+4z6quuYyoSj4hWuvWwUvHYCRrro6KNDvple8vhQU11f4/sG9BlR0Kip27Ntmk9olQsIhrulhO2dbUPjtfRKn3DIVmPhJXy9WU/vSodj6jjO95Tn69+RgW7Dqt0Mj6op07GZT0eURGfV0V8nTmddSoeUdFA96BmOhFT6VRCHd/xntrb8KQ6vuM9lUpEVcvO91XE13nSuOmsrjrYdVil4hGVSsSy+/pUIhrMaa+DXUeVGYup1FtvqPTmz1Smp0uZ8Zh8ggHRVWe10pn2FtFjB3zKjEVFPx0OiaY64FOZznbZ7/cpMxJWZjwmGupYdLBdVtttxqKDeu14XNoOaLU721UmFpXxVv1GxSNhtWrVKvXYY4+p5uZmFYlEVDweV16vV/X09KhVq1apxYsXq1WrVqnu7m7V3d2dW6+trVUff/yxCgaDqre3V0WjUfWLX/xCTZ8+PaeXjsViKpFIqD179qhVq1apzs5O9fzzz6tJkyaplStX5saKxWIqFouddLxYLKY6OztVOukT/XROM71bNNXJNqXiB5VK+7I66J3Z/buUSnVlNdHHpF3bDVmd9GrRbse/lDFin8u2dP8JY9wwqN3u+1lWr70nO/YOpZKtshzdrlRsl4pGjgxqrLP+Htvb21V7MKh2tLerhuZm1Z/1GNnb2anaA4GT2nUEg+pAb6/qj0ZPuldubm3N3TP3dHbmtNwD3iIDbff39JzU78vu7r+63ReLKV80qlpTKdWglNqvlPqZUupLJbrpoBKt9Ymaa1+23Ym6a58SXfXu7PoepdQhpVS/Ev30wexYu7L7dyvRYu9RotNerQb11r7svCuZVPFAIHedHvC2+Oq3v1X+w4f/hZ76jbFjVdv69SrW339Sn/6vvlLxQEAlw2EV6exUvV98kdvetn59boyePXtU4z33qEQwmLtub1q4UPV+8YVKBAI5rfdAP19zs4r19qpIV7c6uOYr1ba1TfUe6FXxYFx5d3tzeuh4MK46dnSIHjoQV70He1W4O6ziwXhOY92+vV3a7+1UB1YfUI85HlO9B2Wszj2duX3BjuBJ7Qb03ZHeiHrrhrdUpDeiIj0R1XuwV619d6368uCXyl3mVvf/5n61v2e/8ga9Cifq0qcuVaF4SK3ZukbZ7DZ11HtUHeg9oLrD3eqY95g6dfyp6qKvX6Tu+8f7VP2qerXHu0cd6D2gampr1Dt/eUft7Nip/vDBH9TQ4UNVd7hb+aI+1R3uVqefebr6yas/Ud3hbnXDWzcoX9Sn9nbuVasPrFZ2u119+uWnqn5Vvdrt3a1WH1itkvF+pfz7RS/91c9EMz2gnU74ZfkNZP7X1vv3DvYf2B7v+Wft+kXn3L9H1vt3KxXx/svx/F/+y+UNN4j+eUDfnE6K/rmvWam2pkGddDoh+ugBLXRfs6xnTtBep1Pyifb9dS31gG47p9lOyXIyMjh2W5PottNJGXvgeCdqpEMdoqUe0EGHO0VP/V69GlY9RO3a/Jloovv2q3U/OU+VuFC1ZS7l8eSpdatelD6dO9SuprWqtqZG1ZS6lMOC+vXdU7L6656TddYdmwf13JFu0Vwngjm9d7R1j+roCKr9+3tUW1tABQIxVV+/SsFiVV+/SvX0hJXPF1Xh8KC2+kQ9dUdHUO3a5c0t79nTqbq6wmr3btm2a5c31zYQiP+7sMr/TRN/Q3P9N93C//mkaZonC8pD/6ko/98x/d/oFv4fnQa007/a/Gd+MO1KTike+p+i3U6m0yQzGQ77fCxtauKBmTMZkpfHTq+XIdmycLfNxlCPhzNOPZX7f/5zppx1FiVOJ26bjVdeeYV3//hH3vnwQ3Z6vcyoqQHglptuYsyoUTz48MN81NjItddcw/Fjx3A7HPREIiTSaUpcLu5au5aFs2bhslo59bnnWP3tbzOzthZ7LIY9FhNR8pQpIl5OJmV9wQKhdHfulFLtAetsp1PapFKiJ21tlbyre++V0vApU4TqPXAAnn6aO2023v3oI463trLrwQeZ+P3v02ezceHll5/gZuznSFcX3Zs2UXzKKSy9915+/emnHGxp4Xe/Xsk7DVfnDMpfeEHk3IWFUF4uDPPChXIK+fmDp2YYcnoDMpzDh4UUr6qC9nYh2lMpYbwdDjE4j8dhy5bBH7eyUgzTXS5oaoLSUkkKKyuTUvRnnwWHLYORTKAlklCQN/hHF8JZ5kqJrrrHJyzzqFpZH1kjpeS6DjYL8267jfc/+IDOzk5KiorweDwcOnAATJMZ553HrTffwk03fEcY0ESSqKExe87XCQQCWKxW3G43P1m8mAumz8zGPxlk0mlMZRLt6sLqdoOmkQqHsXo8APi+/JKS8eMxU6lBV9i5c7EXFpKOx7Hl55MMhXAUFYGm0bNrF67KSlwVFZiJBAoINDdTcuaZaIZB986duMrLiXZ2UnT66SR8PqKdneIibrFIqW8iQTIUyo1tcTigMB9TmWjiQU06k8ZqWElmUoQSETx2Nw6LnUgyis1iJZlOY7dYMXSdtGmSMTN80XmYEmcBeQ4nxa4CYqkkh3qPM2HoqbT5u/nVlrf5wbQrKXUX0hP28cqWt7l12pUUOj1EE1E8zjwsugV/LEQylcIb7qUj0M3XRp1DJBnDY3dTEI1ifeQ2uP1hqBkJsaiUhHccg+FjRCttd8rfCCXl4X/+NVz5vcHtkSA43aK3HviiHN4HVSPA6ZKSt1QKdjTC4f1w9Q9keeRYifa6+hb5YmcyctzaUWSsNpKpKKlYCKvTQ8+hLZSOOAerw42ZTmGaKXoObaVs1JRs5FbWWbywkkwqQSadwLDYMWwONN0gGfGTiofFeVzTMdNJMqn4SeOi6WiaRioWJBWP4CqqRNMtZFIJ0okofUd3MGRcVj9tKvR0RqK3Nq5Hn3UhFJWArxcVDEjklsVC5v0/iZN3Nm5Lr7sQFfBj/uEVjPkPYK5fi1YzHG3YCMyNn6JfdCma3SGl4a3HMFe+hjbmDIwr6lG+Psymj9Ev+SZEwjLe7MvQrHbUQISaBpppkgH6QmECwSD5+fkEg0Gqq6sxssyf3++nsbGRmTNnkpcn/+dXXXUV+/bto7u7m6Ls/+vGjRtpamriiSee4KqrruKmm24iGAxSUFBAfn4+DzzwAGvWrEEpxZgxY1iwYAGjRo1i06ZN1NXVUVRUhGma+P1+mpqacsfzer2MGF6BxVCQ7gFLCSgNuu6B8scg0w19jwtLneqA1EHRZluqIHVYWOfkoax2uoc7H3qbd9/5Pcfbouza3sjEM0cCitV/uIGHn/ZimlbSmTT333M73/v2+ZBqoTs0ghtvupPDR45gt9t44clbOPf8i3Jjh62zuG31xyy54AIWfPRRzjV8Rk0NFl0nnEwSSSYpdDiw6DrdkQiHfT7Gl5dj6DqGJg7ydsPgeCDAksZGFs6aRVswSE1BAS6LBZfNRjAepyL7N7Dqeu6++swll9AdibC0qYmH6+oozd77nrnkEnqiUZY0NnLf9Ol0RyKMLC5GeTyU2e2kkNitRQhrbQe2ICXdBUg0lxVhr02kjLsQqSNwMljenQ90Zf+jl2fHc2X7g2RaXwV8A/g5kov9FMJab0bKzmcCjngcMxut1fLBB9R+/euMnz8fq8dDor+ffS+9xBnz5mErKmLn448z7rbbcFdWgqYR6+7OOYpPuv9+KS3v7ubz55/PjXX2ww+z/bHHcukQrspKXEOGsGPJEs5auJBMMkmsuzt3L3CWlopPgWmiGQah1laaf/1rzl70Y5JxsDqtZJIZVEaec+OBOEop8srzCLQEaFzSyKyHZmF1W0lFU2xcsZGLnrgIe74dZSoyqQxmygTAlmfDTJtkUhkMq4Fu0UkEEyRDSdyVblDQurEVz1APhcMLScfFkTwZThLyhrC5bdiH2xk7ZixPvPwE7wTfYeHMhZw/7nx+v/L3zKqbxd69e7n6m1fz4roXqS2pZVnTMiL/FKFqWhXd27s55jzG7uG7abi+gar8KmaeOZPX/vAa5089nw/3fsi8i+dx7mPn8vh1j6P6FVOnTOW9T98j7ozzzde+yQ3Tb+AXl/2Cd/78DgvuW8DLn7zMlKop+ON+Pjz8Idec/i3KbC40lc2C3nUPHHsDauthyssQOSp66nELwTkEYp1ZB/BFkHeK6LDLZkL5eYNO4u4REG0ZdAp3Dxcml6wG2pKNfDRTEDkOXy472aX8jIfBVirL4x6G/FOFIdYtEp1l2GU5eEwYZ8M+qLvOGzpYHm7LF9ba6s46iidl+8DDkJkadBvXrdkHNIQVD7cLW23YyaUaZBL/0jU8k5Ds7nVzB528z39G9N8fz4epC4XlVgoiXoaPn8Xbv/oJEy/8Dul0hosuvph/vMLDud9/gm2bN/KN25by+Y5NlBa6ue6qS/nGnAv59rdv4Mi7CznvkR2sbfgzYwv6JWZr2+MyfqhN8rjdQ6QkPBUW3XWkE/KqidhqaT4Sw+sNM2VKFU6nhVAoSSCQoKDAjsWi098fpaLCw6ZNrYwfX05enh3DEMF1T0+YdeuOcu65w6ipyaezM0xZmZu5cxtYuXIf9fXjeP550V3/vx01/F85/S238H9LFNdopdRBTdPO/Gv7lVJ7/4Pn+O+e/ieC62gyzuK1L7K2eROXjJnOI5fMxW1z/ofGTKbTfNXXx9ObNvHzOXNoD4WIpVJUeTxYDYO+aJRoKsXf3XgjkX376O7qoqi4mLhh0Hb0KOFkkssvuojvfv/73HzzzRzo6+OpTZtYMGMGfT09/MOdd7LvwAHK8/NZ8fTTjJw8maVNTTw0axZuq5W0aTL2hRe4Yfx4Xrj0UiKpFHk2G+FkkkwsRlUmg2aaAowHcqZOOUUAXyQipXNbtsD48QKsrVYROhcUyPKmTXDppQLMX3hhMALo7/8epk/ns8pKRpSUMOu73+XtV15hYiolwuWlSwXAV1by5C9+wacffsh7L70Ey5ax9etfp1Qpbv7Vr7ht/r2cfsbfsXSpGJlVV4umOj9fpOBKiVFZJiPV5gUFAriLi6X82+8fTAczTTl1p1OAdne3aLNBEsG6u+XH/MY34J57RGL+y19mZTwpMTMbaO90ioHa8JoMedaUlHsDBMJSEq4UhCKiv3bYpBR8IKbLMAa9TFJpsErkE6mMLJum6KwTKTE98wgo5lALVFWAyy4lxAPjKyVjmqaUpNdUgtMOGZNUJk24rU1isSZPJh2NsvunP2XMjTfiGT6cSFsb+156ibMXLWL7kiW0/+UvzHr6acomTSIdj7P7qaeYePfdJAIBiXf5/vclPiseZ99LLzF5wYJBwJ6Xh2G3YyaTmJkMevaBTLfZSPh82IuL0UAA+pAhGA4HzpIS0hadcCqOAiKJKG6bE4fVjq5pJNJJPjqwhT0dB3n4oluIpOL0hH28vu09fjDtW1Tll2Oi+MmHL+f+bx+68CashoVd7c0UOT38fucH3H3eDTitdna3H6Az2MPXRp+D1bCSSCVx2Rxomkabv4vXt73Hj869nocXLOTDNR/QcryFxs0bmThxAr5+H5d/fQ5aFg9HQyGOtLTSfewoxSXFnH/JHI4fP05BvsSTfO87N3D3pRdIebduSJZ122EoKssak50mX64//EI02OEg+Htl/+p/gq/Xi14bBLS/9SpccIWUlR/9SuK7KqogHiXjcBANduEqGkr75x8R7DpM7eQrcuDY+8XH+Dv2Uzj0dIaccWE2RgsyySi6xXYyAB85Bau7EMwMUZ8Xq8ONzV1EKh7GTCcxLDZ0q51MKo7FnpfNs1bEg324iofIY5SZwTQz6IZBzN+J3VOGVbehUkm0dBqztxu9ZhhkzZTMj1ejzzhf/hETCcz1a1H7dqONm4gx50rJvK4Zjkqn5X8hHpMXF3keCIdR4SB61TBUPArpFD969DHee3MVx3t62fHJx5zZ107vtk18/d1PwDBQkTAxw8qRY8fwbvyMkqpaNm/awF3LnyIej5NMJvnud7/LfffdN1BVhmmaObANUpGm6zqJRILOzk6qqqpQSpFOp9F1HdM0+fjjj5kyZQrRaJTa2lr27NlDe3s7l156KZFIBIfDQTwex+FwAOQiowzDIBQKceTIEdrb27nkkkuwGEnsVgukjoBmh95HRA99ylcnAWdcsyB1CPqezkZ2uQCLgOy+JVCykM82dTHilApmnXcZb7/1ByZOHItSGiUVp7D+o7c5c8Jkjh1r5bRxZ9Pj/RKPM8zNt95L7bBRLH7gcrZ9YePKa77P0QMbsNpckO4kZuaT0CrQNI2jfj/twSDV+fksbWpiwYwZDPV4cFutbGht5cyKCgrsdkLJJKZShJJJCux2XFYrx/1+2kMhplVXY9V1MkrRE4kQiMfpjEQod7sZVliIDmzr6GBSZSVOqxVd01CANxQi327HY7MRSiZxZsu/NU0jmcnQFQ5TnZ8PNhuaYWBBIrUsSMlgKrussuu7gXOQUvEjSPn3IqAUAdyP8NejthoQY7OBiC8HArCrESDdjuRn70LivNLANuCCaBRNqdy1edy8eThKSuR6KpceEoEA3qYmKqZOxVVRgVIqF3k4EMFl2O2Y2azrWE8P+199lTPmzcNdXY3KZEj098tLTo8HW0EB4fZ2nKWlWJxOtj76aA6Mn/a975Hw+XBVVEgE16234igpQbO5SSdMIp0RAdALZ2F1WXEUObDYLaQTadbMX8O+lfsYVz+OOc/OoX1bO+4yN5GeCEWjisgfmo+ZNknH06y7fx3T7plG0SlFOSymW3Xev+19qqZUUTOzho3LN1K3SOK6lFKk46I3tXnEd8LMmGTsGcaeNpYFP1/AFeddQYG9gPWfrOfmG2/G7rTT29/Ls68/y+WXXM696+5l5cqVDOsexppVa1h812JqT6ul5fQWHKsdrHpnFTFfDHu+naElQ9n6+VauWHgFm/+wmQJnAUPzhnLnvXfy3Ru+S4+/h9kXzIYMOKwOCosLqb+nnqlnTaUn0sOUqin0xfpo9x/lgpKhaAMA2l4GO+8eBM/pmPgeBL6E4rOz+dC6gGXfXigaL2DOVQUqKS9jk0GwFQ1+k3UDou1Seu4cCl8+DqcvAGellI87h4DFI+XS8U6w5ueMz0hHRUuMkQW2Q6V82+rKRTmSimSBdCKbZ22X63KoHQqGD4JmTDmGZgwyHcHjUgZuprPjV2fHiYtpmm6T8vGBY5hJ0W0nw1J2ngxJmbrvgGRRD0RqoYnuXCno3AGlY0GzMHzcVN7+p9eYeFoN2784xrdv+SEHPt8mum6Lk3POu5SlD9/NpLEjqBr/NRJt2+V3anVxzdyFXHxWLbf+4BYoyJ5zOqsnt3my5xmFZEDM1Q6/C1e8SbD0QhobWygrc/PUU5tYtKiOsjIXd921locemkVFhRun04LVahAMJujqirBsWRMLFsygsjIPXdfYudNLbW0Bw4cXYpqKdNokmcwQiSQpLXVjtYo5qttt++vg4/8D098C1/8WzfXT2fk7f+Xz9n/0BP93+rdNf0s7/f/PlMxkWNLYyOt79vDZ8eMU2O2UZ91Tf7hmDW6bjeFFRWz885/Ztn8/7+3fz/5jx/AeO4ahadgMg8d+9zvO/9a3MDSNnkiEe6dPpzMc5qzRoxn2wx8Svu02zl6yhAsvuCCnRRtway10OKgfN44Vs2dzLBDgrrVrOdDXh6kUTkBzuSAvT7KlZ84UujeTEaDm9Qp4njlT7Lk3bxZquKRkULw8axasXi00rmkK0lVKxMrXXMO5p5xCdSQiFyOnU+jmEwXOwSCv/PGP3HLHHTm38SkffMCIq6+GVAotlWTYMMWLL4oEPBIRltrrlUPpugw78P7KNKGiQpjnrVsFWJsmHDsm7HNRkYDy554TIt7hEFwaCslz/d69oscuKYGf/UzGD4dhxw6YMWOwTSwmEnOHE5RpwoHjkmNdcAKwdjsFLCvAboXRtXLTC4QFNGuIvnqA4Y7FZXs4KsBa12WMdFp+CI87S7cnBWhbrdLeYZdxWjsF2NuskDHhSJtUBni9OIqL2f7YYwBM+NGPiPf2yr7ubibffz+arjP5wQep+9nPcFVUsPXRR4n19FA6cSJa1p127C234BoyBGdpKdHe3pzRDkqx78UXiff3k0kk2PH44ySDQXSrFd1uR9M0Im1tZBIJlGlSNnky7iFDcBQWkopESJsmuqbRG/bxi41vAtAV7GNXezO6pnP52HN58MKbRLeXiOY00L/a/Dbd4X5iyTg3T/kmz131AAsvvBm7YSWVSXNG5Uh+v/MDzhgykkgiiq7pnDl0NOeOPIun1v+O9kA3sXSclCns/q+2vM0ZQ0bSFwlw5nnn8Nu3V1JZNQRdEyDl8LjYtHkju9/7E7s//Qtzv/sd5lx0IcWkxSALxdOP/gO717zL7g2fcfeP7oQRp2cfWLKVHiNOz2q0i8RZ3NcLs68Em10cwatHCKM9ahyE/JBKihbNZofr5gmg/uOL0t+RffFntaNlMjgLh2Jm0pSNmsrouhtxFVUS9XlJxQJUnn4uw86+kqFnXABKYWZEpyWFFQqLw42mW3AVDSUVj5CKBuj44mMsdie6IS9wNES333VgI+lEBIvNBWaGWKCbTDKGq6gi1880MxhWG6Dh8JRh6BZUMi7O3ekUWs0wyGQwvW0QCaNPEw2sZrOjefJP0FBfCFYrWn4hmfffkp83knUQ10Xnp8JBMSZb8yf5Ped5uGrSeD77dD3DsikE+iXfpGLxk+zavYddW7eya89ebr35Jr5+7ixKaoeBw87ti/+RB+68k3Xr1vHAAw/w9NNPs3fvXlKpFK2trei6jlKKZDLJmjVrSCaTmKaJzWajoqKC9vZ2AGw2Gx9//DG6rjNnzhyKiorIz8+npaWFM844g8suu+ykdi6XC8MwsFgs6LqOxWIhk8lgmiatra3MmDEDTdPQdTvKDIN1hJialT8DnhtEO22tFtMxaw1gEW118d2Q8ULnXAHWqdacu/i5506luqQja0QUlzxsFUfTDPz9RyHaRDDQS0lJMXZHPvQtYeWfN3Dbrd8F5xTOOSPJ0MoiPm3cJi7i1pGYxhBi6TSJdJpTCgs5d9gwVmzcmHMBDyQSxLLVVLFUSu5BWcD4RFMTplI5Q7Ljfj/90SimkuzrcrebU0tLmVpVlQPWW9rbKXW50HWdY34/P3jvPY74fISTSe5ftw4TcFmtKCRLO5xMkjZNKvLy0DSNmGEwH9FR9yBAuQsB13GETTaBCYh5WQgBxAP66gDwMfBTYD/wDAKgnwdWA3XZ9bsRh/DbEDfx4YjmzwCuR1jsNoQtPzfrFr5z6VJclZVMWbwYZ2kpbR9/TLi1lW2PPkqotRVHSQkVU6di9XiI9/cDnGQsabHb0Q1DALmmkVdby9kPP0zE6yXc2kq8v590LEa8r490LMaOZctwlpdjcbnAME7y0XBXVVF21lk0//a3lE2ahG6zYXG76T/iJ94fp3FJI83vNmN1WXEWOWnf0o7/mJ+4L87MB2eK7nphHQD51fls+fkWhkwagqfSQzKcZM0P1xDqCFE1pYqwN0w6niYVSRHpipAMJZnz7BzG3zCecGeYwx8eJtAaAE2At8VhwbAZmCmTZDhJOpomGRO977jycXzR/QUHeg7w1BNP8bPXfsa5z5xL+jtp7p53N36fn7mnzqVwayG/f+n31OTXYOgGpc5SXrz8RX7+ws85fOww+7v3c7T1KLu/3I3TcPLiQy9S/3w9jVsa2bpjK9dedy3RVJSUkWLT1k3s2r2Lzds20/BBA9+d/V0K7AVMGjIJh8VBlaeKmVXnoEU7YPJT4CgHq0e01M5KCB+F/m1guKBkugDr3s1ypd55F0QOiVt4+CCED8HW2yB8DBylAqS3zZc5yLhlswQ0l82Eg8/JeO5hoDsFGPZugHXTwbeLHMu9+35hqcPtg2ZltnzZR9YwzLAKa61bxL3bsAsoLhgubLX/sADmZHjw4SxwVBhrW54cO2ds1ibj2/LFRTwTB7Qsg430T4YGDc8GsrULRggw/+QO8B+RFwC6TV4MlE+UlxSaLvcJpcBWQM3w0Xg7vex//buQjnLoyHEOH/yKMcMrKRo2Abcnn092tUNeFb2hDFu2buOMiWdDXqW8FPj4dtF0W5yDDum6RTKuz3kARn4DPMNwWBXnnTeMkSOL+OlPL8bhMNB1jXffbebJJzeiZ1NDTFPhdFpy2uynn95MKJTAMDRmzapl5MgiTFMRjabYurUdh8OC223jjjtWc+iQL+cs/j91+rdEcV2enZ/yVz4j/utP8X8nEHB9SvFQHrlkLsP/k0rCbYbBw3V1NFx/PVOrq/HYbESSSTrDYZZccAEOi4VQIkFfLIbLamVIXh7zV6/miM9H2jRRSjEj6zJuKkV1fj4/37KFyUOGYNV1nrnkEm4YP55FdXVYNI3n58xh9be/zTOXXIIORJJJ7p02DSAXxTUQd+J2OlHHjsmF54knBEQ/8ohYY2cyQs2Wlcn+geX586V+urJSlo8eFTp340bpt2OHOI6BoF6vVwB1IiEgcdiwQRvuBx5g48GD+IJBLr/iipPNzbIMuLLbOXZMY948qTR3uYQgHzFCltPZqurOTjn1zk7p2toqh92yRfZXVMj6/Pni8v3Tn8opdXUJXh0wMM/Lk6r40lIh7TdulP5Tpgg4P3QIzjlH+m3fLgRzzsgsmRJQm04LyNb1LFBOApqA74PHBfzq+iBIjicHwbjdJn1tFvkYxmD7ipLsuJqA6PauLKuN/NCjaqCsUP52KMh3o+sGJWeeSfPvficRLFYrmVQqV8ZdOmECus1G3+efA1A6aRKG08npN91EvLeXmosuIt7bS7ilBc0w2LViBalIhLIJEzjlm98kk0hgOJ1MuOsuYl1dOUfwaNaYLtrRwfYlSyg49VQsdju9n38uTGU6Tc+uXcR9Pgxdx2pY+d2O1ZxVfRoum4NyTzGnltWy4i+/oS3Qzefeg0SScUryinj4olt456anuP9rN7K15Que+ez3VBWUUZFXzNKPX6Ut0E3GNAklItx93g1MGnqaMIzpJJ97DwLww7rr6I348djdLP3oVUyluGXqt5g+7Exe3/YeF5z3NYYPq8VmWImnkiz7+DX6ogG5UTucEIvyyh9Xckv9NeLyjQaxiDi9F5eDxSY3dl+/lHxrmvQNBaSMPByAU8dDcRmUDoGjzWJUpuviFj5yrHxQYqRimnBonwDuU8aIkZrdIccM+QWQ6zq6YcHmKkC3WPHuW4/F7sRqz0M3rLiKqzAzGZSZJhboBqQMP5OMYaaTdB/YiKuoClfxUHTdwtBxF2BzylipRETmsSiu4iqsDg9oOplUAldhJXr2RWTP4a04C4VtT4T9RH1eNN1AQ8s6xWaBsa8Ps+04mjtPykp0Q9hqfz+gidv3FfVoBcXyMmBzo5SDGwZYrOizr0Bz58mLn6ranDGZuWE9mmHhvOu/Q3VxkTDc4RBYLGKW1tdNZvWfIBbh1Vde5eZbbkVze9Dy8tEsFvyJBIFAgDPOOAOLxYLT6UTTNMrLy0kmk7m4rQE2uqGhgb6+PqxWK3l5eaxZs4ZAIMCUKVOETYxE0HWd/Px8Kioq6OjowOfz0dDQQCgU4vzzzyedTmNmr/Wtra34fD4sFgsWi4U5c+bgdrv58MMPiScyKL0AlToqgDnTDRU/le9WqgPKl4OlFswg9D4mD9Ip72Ds1oku4ljAeY58v8xe6H0EzfTyx9+/zlXX3s2wcT9g1nmz+fXLj2Cz2eljPqlUmsoKt5iaWcoZPryWltYuMUEzgyjSmErRFgzS1NJCIpPhuTlzuGH8eB6uq6Pa48HQNPqiUUpdLpKZDBtaWugOh3nsggtwWa0EEwnuX7eOb5x2Gi6bjYP9/dy+ejVH/H7CySS+eDznFF7mdtMdiWA3jJNeKg8rLOSJiy4inEgQTaUwNA1D0+gOh3FardgMA0PXcSBmZG1I6bYXOAzYkHLuCYiTuAspD3cB5yLRXM8grHQ9UkaehTMcQUDyTKTs+yjCUo/I9m3Pbr8LcCM8YxgB4WVAKusWPvrb30ZlMvTs3Emsr4/aOXOwOJ2Un3028f5+VCaTA8nepib6du/OAeLTb7qJ3j17RJeYTpOORtGAnY8/Tri1Fd1qxV5QgKOsjLKzziLa1SXVSQNmaVlTy/Hz52MrKsL31VekYzEmP/ggNbNnE2lvJ5NIUDKygGQ0yYwFM7jmzWtIR9Osnr8ad5mbQEsAR5GDohFFXPrCpThLnWiGRtPSJqqnV6OUIuwNo0xF9fRqNi7fyIjZI6iaUoVmaIQ7w3z22GcoU6HpGm2b28ivzeeO5juomlpFS1MLyVCSYGuQ1bevJtASwOq0YnFasLlsIi0y08yqnUX7gXa8Xi8Xfu1CFsxYQP3F9YwcNpJD+w5xeN9hrFEr182+jlNHncqf//Rnli5Zym133waA2+bmqO8ovdFeeiI9HPYdpjXQynNznsNhcRBIBGgNtnLHmjuIpCJsadtCKBkimAwSTUWJpqP85LOf4A15iaViIn3SrajS6RIz5dstLLQlT0BwtF0Ad99WKX1O9gtDrVmE2a65RkzGiibA/hXQshL2Lxemdf9yWW/OcnUWj7DQ0eNwynfhrJ/LMc2kMLzb54OrBi5vFgfy3s0C1CeuEBBccAo4s6KGTCIbj5UQcBvugFiPAE7TzH77VdbcLMvqhtsFhIfbBIjG+gV4O8ukxPskUzROdgnXkGMoU0zDCkZmwbYm+waONeAYvnXpYKm4SkPEy7z5d1M95iza2tq55FvXM2rcWVSU5vPSc89Q/9QOJkw5lyuv/z7PfSNJbcdrGDqs/PUvuf+B+5lwznTOnfN33HXHbUy/8Fty7FArHPswy1inJQoscEzAfahFwP5Fv4SCYWTSaQ4f9nH77avp7Y1y8GA/XV0R9u69jSeeuIjOzjDz5okreEtLkEceWc955w3j2WfnUFmZR2dnhLlzGzh4sJ+NG1tRCqZNq2bjxla83hBTplSxdGkTqdTA7/5/5vQ3wbWmafn/2ue/4yT/d5LpPyMnO5VJE03GSWXS2CwWRhUXU1NQwPxsXvUQj4fq/HwWfPQRLYEAAI999hnxdJrKvDwWzJhBWTZ+RMs+jJRnNWZD8vK4Z9o0OkMhGltasOo6P//616nMyyOWTrOlvV1K3oBbGxqIpFL0ZBmAE+NOihwOrEqhLV0q1KzLdXK+tVIiPn7qKbl4Tp06GPwcCMDjjw+yzwPoc4CZvuMOQbCZjPQrLJQH6C++EFQ6cqRQx9XVvLJqFTdedx2WH/4QPv0UFi+WsvSeHmG2Ygny8qQ8e+RIIWuPHpWYrcOHhVBPpwdP/ensfeXcc6X99OnSJpMRY/MBct5qHYzvBnlf4PXKj/3kk8JM33WXlIl3dcEPfwgTJghbbbFIm3POQS70A47dBXkCsGOJQZA9kHONkn0jqoVptllk+4l52Bqy7cBxOZF4EoJhGSubaZ0rJy8rlLF0TfZnMtmTyb7KzIJxw2rF4nAw8b770A1D3GTjcfr27hVXWWDnE0/gKC3FsNnIxGJYnE6af/tbXBUVWNxu9r30Eo7iYva99BKl2br4WHe3ZKAaBiqTwX/oEEVjx+IsLeXyNWsoP+ssNF3HWVbGxHvvRbdY6Nm1i6LRo4l2drLz8ccpGjMGZ3ExplJkzDR3n3cDc06bSSqTJhAPYTOsfOesS/n1tvcYWVpDT9jHTz58GW+oj/ZgDwAXnjqVu8+7AU3TeH3be0ysOhWrYUHT4IbfLcJmWOmPBXBaHfhjIc6oHIUvFuLZxn/itPLh6JrOxKpT8UX8dIf7cdoc3P+1G6kurMBpdRCIh/HFQpwxZCSvbnkHlUmDp4CNXx3C5/Nz+TX1EPBLmbbDxYMrnmT85Mlce+50jmzbLDqF6hGiX0vEJA/bsMDo8TBxupSKB33SxtcjYHkgYmvgtXQoKA8ZI04XBnvsZHEk1w3Ju37nNyhdR6WTpBJRMqkEmm4wZOzXsLuLRDOdSaEyKbq+agQFrqIhRH2dmGaKVDxMJp0YdAzXNHSLlXQqjlLynes5uBmlFO7iIRRUjMa77y8kI350i5VMKoFhc4BuUDZyCgVDTxOQ7/TgKqwk6pfjnBSt1fQJmst9Qm71x6jmL1ABPygTZWZQfT1kVv8JlUxifP0baGeehYpG5HegQWbtOwLGLdZBV/HZl6NSKTRdl7FSScw929F0Hc1iBbsDffr5bPjLX/CFw1xeNxOzswPMDC+99DKPPvooF154Ieeeey6PPfYYo0ePxjAM7HY7hmHQ399PKBSipKSEUCjE7NmzKSwsRNd1wuEwzc3NNDU1UVJSQjgcpr+/H9M0icViRCIRysvL2bhxI7W1teTn52OzSUnfBx98QH9/P+Xl5QSDQZRSJBIJYrEYXq+X888/H5tNQyOBNhCPNZBvrUyJzupeAOnDgClAum9pFlDfICy3ZoHKXw26g3fdLw+9mguK7yUda+expcv505u/5fimc/n4NZ3v3vwQvb09AqDRJK6r+F6J31IZCLwhYF53iFIlmcQbDkum9erVtASDPH/ppVTk5XHY72f+mjWMLy/neLaKakJFBbWFheiaxua2NmyGwRMXXYTLasVts9EdifBuczPLmprwx+MUOBys2LiRc2trGV5QwKzaWnRNy71kXlhXh90wyLfb6Y5GuX/dOkLJJCUuF1UFBbQGAsxtaOCIz4c1ncYBTJarM/lIxNbAJbYfKfGOIdpqE2G3j2T3mwg4vgsBxgbiIl4GdAAtQCXCWB8GvpUdf8BV3Jvt24Hou58Ckpom10vDYPuSJTiKizFsNqIdHXz+/POUTppE6YQJxHp6KBozhlh3NxVTp+IoL8dZVsbZixYR7+uj6LTTiLS3s/OJJ7DY7aDrTLzvPkonTeLz558n2tVFKhxG03VcFRWkotEc873vxReJ9/Xx/hVXsPvJJykZN05ysXfuBMBRUsL2xx4j2tGGp9JFyakl1M6spXGpRG9temoTVVOrsNgtBI4HWH37aqK9UQybwayHZjH2mrGEO8Osf2Q94c4wY68eS93DdeRX52PYDKwuK56hHqbfM51wd5iWphaqplThqfBgZkxivTEqJlRgy7NRUFvApS9cSrgzLGy2RUdpioyZYcXGFRzqP8TIU0bS6e2keX8zI4tGsuC0BbQfb+e0U0/j2iuv5bWm13hr41vUPV3HhZddyLV/fy0P/MMDzG2Yy8G+g4wvH09LoIViZzFLmpZw9aqr2dq+lQJHAVbdyvIN4ga+rGkZ51Sdg9PipCPUwV1r78Ib8jKlagpPb34ap1UqjSyajhY9DtvvAMcQAcvxbgHZZTMh3ivgOdErDHa0XcCw4RpkS9EFBNfWS2l5okfmtfWyPXQYtt4q31JHhTDcwQOQiUL/TnEkL5kiMV+xLujbIuuGQx4hDLcA4cAReRYZiMMyrLJ/ABjnDzvBCdyUkukTM6wzqSx4NqB8ggBTMyU/gmGHwpEC+JXKxm2VZV3ClbDgZmqQBc8kZe4/IuOhw4XPw5UNMPXH0LlVyrKVAvcQXnzpZdpeuYS0v5WuloMc+uoLUBmuv/46Pv9iP3s+38/nWz/l29fXi446k+CimRPY8ecn2fPJH/lyxUTuufkb8nf5eD6UT4ZbDonG+i93CYMf6YChM+VnSYXgkx+CMkmmNZYubWLlyn0sXdpEaamLJUsaKSpykJ9vz+070RV86dImMhkTTdNO2nbGGeV4vSFuu+19ysrceL1hZs8ewcKFdei69r9RXH9j8gO+7Pyff3z/FSf1v9N/zTRgirZ47Ysc7e8glUmTMc0ca7y0qYmUaebetC9taiKYSDClqoqOUIgfrV2LkTV/Oerzsb2jgzK3G5RiY2sr3nCYIR4PeXa7PMCsWUNrMEjGNHMPK6UuVy7Pc2lTEzNrawHoCof55WWXMaKwEJfNRspiQS1aBJ9/LhfPAeb44YdlvbJSUK2mSf30AONcUHByCHRnpwDqaFSEywOZVQP98vIE/J16qjDg6TTs3Ek4kWDl229z8w03iCHa6NHiOKaUgPTWVgyVxu1WxOMyXDoth5s5U/B6ebmA7YULpTr9+efl7xAMCmttmoIzvV4p6x4g548elfLwe++V0+vokO1e72AV9pIlAsS7ugS0ezywe7e8N1ixImuYBgKIR2RlIa2dApSTKTjWIZrqgrzszSlPmM2D2RLyPBecNQ5GD8uWh2vQ1pWN8TLkxAvywNCl/cAUS0he9kBO+QCgV0rAdiwhZeXZ8nMtFMHicLDv5ZdxFBcT7ezEUVzMzscfJxOPM+FHP8LichHt7GTH448T6+0VltsuZVlnL1qENT+fcbfdxrDLL0fPGpPpFguaxSJAefRoUIpMMomjqIhUJMLOZcvQLBYsLhfKNCmdOBGL242jtJQx3/seMZ+P/i+/RNd1esNB3FYHGWXyRedh4qkkX3QexqJbePDCm8izOanwFHNW9Wk5sN0b9rO/6ygWXXSwd593AxOHjuEXG9+kPxLkje8sQdd1JlWNoS8coC3QjakUZXmF/LDuOpRSPPHJ60wcOoZidyEVecUc6mnBFw3yxCevo5TC43Djstm59PRZLPjajdiy7PMrr73KjVdfhSXQDwWFcMoYfvvjBXz18Vr2/vHX1DkVl3/vJmGUNQ1aj4LNIWx0NAyphJiaBf3w/h8ABSPHSbn3tAskSxsEiOuaAO/fPSs646JSKS03LIPRXUAqHhHAqxsCqM00qUQ0y1T3kIpHKB4+MRvPo3IMtLukGos9j9Hn3cSQ089DKUUqHskBat1ioeSUyaQTUdo/X0cqEcFZWEnvkW2gaZhmiqjPC2ZGtNoD4FiZeL8U9hxNz0Vr6dffgnHpVeB0odddJIz7jPPRr/keWn4BKhJG0zQoKECrOUVM0FqOQsAnrHcoCDY7+vTzUAE/KhRAKywWpttqQ7NaMTta0YZUQX4hxqwLUMkkmQ/egVQSFQnx2rsNfPc7N2AtKkarriWTybBk6VL+8R//kX379vHJJ5/w4IMPsmXLlpx+ur29HbfbTSQSAaC6uhpd12lvbyedTlNdXU19fT11dVICW1xczLBhw3Kl4wMs9uzZsxk/fjyaptHS0kIkEqGqqorNmzdjGAa1tbVomkZJSQkej4chQ4ZgsViwWUDDKrFYAwy0XiLfrxOzrM0guGdDyY/le1X5rMyjm0Wv3TkX0seg+A4gLQC9/yl2fxmmw9vFuedeAOXPcM63OqiuGc6u7Y2UlBRhsVjo9FdD/89BRTl27Ci1p0yGTCd03oZDi1Dpdp+Uab2ksZFoKoXdMLAbBjNraoikUixtamJKVRVdkQi3r16NqRQTKipyEpE7Vq/mYF8fEyorefOaa1g4axaFDgfBeJzn5szhO2eeid1iYXNbG6FkEofFwi8vuwy3xcKpzz1HMpNhWfYYneEwt73/Pp3hMC2BQO68UpkMKQQkW5Es69sQgBxDWOa7Ef31huz2PAQgu4BNSBn5E8CpDDLboxCAPQvoBO7NzgfcaRcisVvLGczRzmS378m+DB2IP9z/+uu5F5stH3zAl9k4xHBrK7H+fsomTZKXoHY7sb4+kqEQZZMnY3G52P/qq5ROnIjhdGImEhhWK/tffZX2v/xF7gFFRQBEe3qwOBxMXrCAEd/6FpMffBBnaSnnvfACE++7j2hXlwD9khIMlwvD4aBs0iT2v/YqyVAMlVG0bGhh+n3Tub7hei59/tLcGwpXmYvZT83G6raiMoqi0UVY7BYi3REuWn4R+TX5WF1WLC4LyXCSsDdMMpgkGUmSX5tPQVUB7nI3a+5Yg5kxiXRH6D/cj81tw8yYhLvCaLomjLdFY/6d8zltxGl0dnSy7tF1nD/5fKz5VpY+s5Qrr7mSuql13HjdjTz1zFMUDinE0AymVk2l0FHIwlkLiafj1BbW8viGx1m5byXLNy4nlAwxpWoKGhrPXPIMR+48wuQhk7ln7T14w16Wz15O/bh6FtYtZFv7NhQqF7/19OanuXbctTw751nCyTDzV89HqbRkWJ9+r5QwR1th32PZb6KC8jqIdcPnjwgILpspml5nhWiLI0fF5MyaB1NekrHWniPzKS/JQ8mXy4TFToVg/5MyhsUtoNReJix35cWSke0oFTC/824B3xYhcnJl4YZ10IQscFQAtGETYKzJvSanPw63DTLUeracXLcPlmYPGJklQ4MvClQmWzKeFoCdDAhw1TQB07F+CLdx5z33M3zUqWglY9i9e7f8bLFeVu/yMfni7zDxWws448Vh/PrXv4amhYDG1B/vZeKMi5g4bhRnTJqCljeEvRvWCOusW0VHftGLYlDWvEpK6SunwI6nBjO0E37ZFumQsvBIBwyZDmEvDJ0B474n5x/zwdeeBcBmM1i4cBb19eNYuLCO3t4o9903nS1b2jFNldtXUGBn0aI66uvH5fbrunZC31lYLHououuppzYxdWoV1dX5jBxZRDSaIpH4nxvF9e92C/8/YfqfaGh24pTKpEll0lgNy7+Lxf5rpmhW3cpXfX0saWxkUV0dwwoKiKZSBBIJCrIAJpBI8NhnnzGlqoqLR45kSF4ePZEIBQ4HW9vbGZKXR7nbTSydptjpxGYY/P377/PG559TP24ci887j3VHjjCzpoblGzfmXFar8/MZkb2Jpk2TzW1tVHk8lLrdOC0WPOk0lmRSQPCANtrhkBroI0fg298WNPnkk4IoBya7XeqqXS6YO1cA9YCpWUeHAPCsOzUHDjD83HN5++WXmXj55bLt6FFeueUWXkulaFqzRpBrKCR9ly+HRYs4/7bbmPfD+zj99KtYtkz8z4YOlaax2KBZGQhpHgwKqe7xyGkdOyZk+/Llcsi8PPFZe+MNAeITJ0r7oUMlzvuNNwYdyY8fHwTk8bjorKdMEdY6FpPjiQw6gx5PCMAuyBO22WqBw63CSp81ToBzOiNzkDaplIDrVHrQhGyg/NvM5JyMCYRlu8MmgLnFC9XZjOsBd3KFvLw42i7jWAxZPqUKTJNUKkUmk0a32XKOr7H+fuweD5qu07d3LwVjxqABLWvXkjdsGK6yMqJdXWI8ZrfjKC5GMwzCHR0YNhuOwkIyWbOc9vXrqZ0zB00p0rEYu3/6U0676SZUJoOzrCxnpjPu1luJdnXhKC3FWVaGbrGgGwZJu5VdHc2U5xXzypa3ufHsy/DFQhQ6PQTjYU4tG4auadgsNnQ0MsokmU6xv/soxc58+mPBXC714x+/xtjKEcw5bSaGrrOn4wDl7mLsVivBeITfbH+fW6Z+i+5wP6WuQhQKp9VOhaeY/kiAAlc+P/nwZSZWncqkoadxwdkz+eOqlQw/bSSJVIrhPT0kDCtDzprOtoa3Oe3sbPnC0a+goBgcLvAUQCiAY9gI2pfcT8nNd0kZ+Oo/wpxrJRO75ZCwz0qJj4Guw9u/EVdxm0Pe+Af80N8lxmfRMOzbCadPFHCtaQLM41FY/U9kbr6HSL8XR34pZiaFxeYiFQvSc3grpSPOwWJ3kQj14CqqAg1UJpPV0CnMTBrdsKJMeQOuGxbSiRiGzQmaNqivBsxMEpXJYNgcqEwa3WpDmVlmQ2U1e8ok5vfiLKgkGQthWGzYLE7RWus6KpPGXPc++szzobAYbSBWQ9dRaGjpFGZ7C1p+ARQWY67+M/qFl4JhCOi2WEEpVCQkmvSiEvlek/25zIyU5WdSjBh7Bm/eOY/J370JdfwIqvUY0fFnUTX5HLasXcOY8lK0/AK88RSnnHoqwWCQdDpNPB7n+9//Ppdccgk/+MEPiEQiuFzyOzAMA9M0aWtrw+Px4HQ6WbduHbNmzaIoe0FKJpMkEgnsdjudnZ14PB4KCwtzJmjpdDoH1h0OB3l5efJSI5Vi3bp1zJgxg+LiYpRSmNmyS4ctIw7DmgZmVFy6ka8fZgy674eSe8AYCnpedkcK0r1iaqa7QSUg+Cdhol3TGT5yAm+v/BkTR7XQ1bKRUXXvs3XTx5w+poZD+1Yz5YL72L1jI7U1ZXz/e9cx/JTRLF50K9t2d/Gtq2/h2KFtWPsfgPBbJGu/pDnowmGxEEunaQ8GJeNaKaKpFPevW8fd06YxsqiIWDqN22YjlckQS6Xw2O0c6e+nMxJhWnU1erZqQwFG1uTNkjU3S5umAOOBvzlwz4cfsnDWLEpdLu758MOcQ7jNMP7FfXX+6tUsmDmTiqIi+rOVA0OBuQjYvQFhkV0IM70VGIew10ngfgR0VyAZ1ansOdgQ9noTMDbbXwPuAO5DtNabEC12BjiGlKX/GBiWPZYGOBMJMsEgqVAIq8eDze0m1NqaMzdzlpbKdywUwl5QgG61YqZS6DYb4YF2c+diLy7GcDhQ6TR9e/dSNGYMcb+fWFfXoDlZtp3vyy8pOfNMDLt9cIx588irribW1YV3wwa5L1RUEPV6Jf3BsKCwADrJcJJULEU6kqZxaSMzH5xJXmUea+9ay8U/vZhob5SNKzYye8VsbB4byVCSRCCBzWND0zQMh4H/qJ/NT29mzrNzMDMmcV8cZ5GTmD/GkY+OcOa3zySTypCKpej+vBvPEA9Ny5qY9dAsgu1BCmoKyK/NJ2PPcDR4lJZAC1OqpmDRLSQzSeyGnbRK44v5iKViLN+4nBWzB59p8m35pFUaQzMIJUMEEgE8Ng+6ppNnk3ttOBkmmAhS7i4nlAzxedfnjC8fj8vmYkvbFq5edTV/qv8TQz1DWdq0lGcueYbeaG/uXFoCLVQ6CxlKeNDQLNomALv2WkT3bINMRMBx31Y45xdyTVMpWXdWQawdymaQSyUxU9JPN+Q6rEwwEwKozYyUe1vd4CiTDpEWcNVKyfi+JXD6A/IttuRB3ggBvzmXb5NcVZxKi4GXxSH65kxCQHj+sEEAPXBSSsn9YEAXnAgKw5tJ/LOxdQHYKiNjJrPtTjQ7s9j5rHEDI4YPZ9YFF/P2qt8z8bRhqGSQklHTWb9uDWfWujj23iJOm7+Oni/W4fG4YdtyOGcBtG/gzTff5NF3uvl8y1/kHLv3wJBzpBzffxi2L4e6J8BeID9/MiAvB4xs3Yp3M7x3teiqv/Zz0V5vWyF9rK6sE3sXbHmMZN2z9EWdBIMJhg71kMkoenoiJJNphg0rYsOGFs4+eygWi47FohGLpdmypZ2hQz1UVubhclnxesPk59vxeGwcPepnyZJGFi2qY8iQPLzeMEuWNLJw4SxGjy7G5fr/pqnZf4ah2cBANZqm2bLLMzVNu2Mglut/p/++6a+xz//WyWpYuP9rN/L2TU8J02VYsVksjC4u5peXXUaZy8Xmtja6IxEe+0wYJ5fVSpXHw4rZs5lZU8Mj69dzLBDAbbOxvaODGTU1jCgqIs9uJ5ZO5zRoK2bPpn7cOB6uq6PQ4eDikSNZnjWQWdrUxNTqasrdbnojETKmiVXXmV5Tg6kUn3d10RII4I3FUO3tAqwzGdFN/+AHUv88apQ89C9bJsjz/vuljWEMsqYWCzzzjIDiX/xCxjl6NOcqPu+HP6S6ro62aJRLbrmFURMnyhitrbyyYwe32GyCkuNxQbrLl/PYn/5E9QUXsGnHDu64Yy4zZlSzcmVPrgL9yBG4+27B7pasLFmpwTLvri45vNMp7bq6JFEskZBT/OorqKuT9o89JlXxbvedlJcPZ+VKjV27dtPVBbW1fdTVTeTiiydy330TGTbsVIqKLEQi/Rw5AldffRNjTj+dCTOmMfPyS9m2ZYsAa0OXmK1pE6T8O501iDvSljV2sws7begCyqsrhX1OZ7LPw1l2O54F7Hab9BsoI2/rzBqnIa7hwbD0ra4QltMwhElPZ+BYB5rVgpnJEG5rY+ujj5IKh7E4HIQ7Oujds4eSM8/E6nLR/9VXlE6eTNmkSTT/9reUTpyIe8gQ7EVF7HrySVLhMO7ycixOJ9uXLCHa2QnAsMsuQ2U11LH+fsbceCOG3U7+KadgcTjIq61l0n33YXG5KJ04EVdlJYbTSay3l+1Ll6KnxHzslS1vs7Z5E7/Z/j5nVI7EHwsxYeip2A0ruqazp72ZSDKW/Z+xc0blSPpjQYqcHpZ9/Bpt/i7u+9qNTKwaw5KPXqHF18mo0ho6w30UOfP5/c4PmFh1KjbDwuiyWvpjAQzd4Bcb36Qt0I3damd3e3NOe90b9aNrOof62vDY3ditVpJDa/nj0sVMOP00TivJB38//P550i4PXWkF7jwIB3jr4/VUlFdQMmmqfLf9fXDNraLPdjgFMB9tlpL+rJsxF35Dxvvtz2RutUq5uFICyKddAL1e6O0U4y6LRUqkv/sjNBNcJVXouRitgXisoegWK7rFhsXhIdLfngXWGspME/V1ohvijWymU2iaDpqObhkE2xa7O7us0A0rhs1J1NclZeNm9mEq6yyeigYADYvdTdTfic2Vj2F3oTQNwiHRO4eCaFU1qGBA3MLDIUinxRgwmUDFomgVQ1GhIBqgz75cvtfKBNNEJeMyTioFVpvouQN+MTwL+gHQDAPNJuWw+vTzwJOPPuFs9CuuYeVHnzBhwgTGVJRLBJgnn9KyMvLy8li/fj2aptHf38+uXbsYPXo0pimlesFgkFgsRjqdpq2tjYqKCvLz83E4HMyePRur1Yrf7yeVShEKhVi/fj2hUIjy8nKampowTZN9+/bh9/tZs2ZNDli7XC7S6fRJLPZAe4B0Ok06Lb9/0sehcz6QEdYofRw675DvT+XzYnY28HCbOgSd8wRYZ3qyjHUreL7BvHt+T3XtKNEjXnYdo85ZQcUZv+SlF56g/rrvMeHsi7nyO0/x3NM/pramDGJbeGLJfWzc/Dmjz7ya79/yQ373+jNYLbo4kg/fS1Kv4LHGRs785S9xWixMrKzkYF8fcxsa6I5EuHvaNNw2GxZdx2mxkEyn2dreLjIETWNEcTEza2rY3NbGcb8fUyk6w2FCySQbWlvJKEXGNDGVwpp1bTd0nWAiwbvNzbQFg+TZbPzqiitImybuf3Zffeyzz4imUjx/6aWcUlhIxjCoBIYgoPkZRE/9CwQop4FuYLz8NtmMsNh3Iw60VkQ/vQUp8W5CjNCmIwZotyGl4XcjmmodYbQHSsnTwAvAKQjQvi07XgzQLZacpjoZieAeOpSzH35YGOqeHin3drnQbTZx/g4GySQS7H/1VcrPPhtHaSlWt1s8Lx57DFdFBZlUCk9tLWWTJ+eY8X0vvYQGOcPLTCKRY8mjXi/htjZCLS0Mu/RSyrP6bEdxcfb67yUVTdEwt4FYX4y8ijwalzZy+MPD2Dw2rC4rV7x8BTa3jXBnmGn3TMPikGudbtHxHfWh6RpWtxXDarD1ua1Mu3saZsaUauYiB+3b2rG5bZx5w5kiBUll0A2d8vHlNC1rYt/KfTQta8JV5iLYHhS3fV1Rk19DdX41d6y5g9ZgK3nWPFqDrWxp20KRowin1cn06um58u2OUAcmJvNXzyeUDNEV6eKR9Y/QF+sj357PMd8xTGXisroodZUSS8dY+PFCavJrcFgdGJrBzJqZ7J63mwkVExhRNILn5jwHQEughTJ3GXevvZuhnqFUuksFWLeslCitkilQe70A3W23Q+QI9O+A0plS4g2yb/sdAo5j7aKR1qxSLh7rysZexYT9zUTFFGzXfdlS8JjESGUisHWeRHG5a0FTUnJefi64hoirePiIgHKrm5y+2UxnAXtGvsW2fAHBGlkzsrxs+fYRaZebVBY0Z+VsA+7ihlWY3oHxBsB3qF222fNPYqyx5wM65573NaqHjRgcO9oJGx9B08AfCMDWpQS/fJ8St4G9bDTseFpKtq1uGHMtr2y3cMt1V0D3TjEkK5sg5d2BQ5BfC1MXkXspMDBZnHIOH98Onhq49biUoltdAqwrp8h5fHSbxHCFWqB5JclohLvuWsvatYc5cKCPefMaiEbT1NYWksmYzJhRQzKZwesNEwwmsdstTJ48JHdYXdfweGy43VaOHPHR2hrguefmMHJkEVarQWtrgHffbf4fr7v+NzPXmqbtRKqOSpBreRNgUUpd8193en99+p/MXP9HIrkEmLfzq81v84Np3+KU4iqshiVnruKLxyl1ueiNRsmz2bAZRo6Zriko4I41a07KB42lUiz46CPunjaNoR5PztSlLxplVm0tZpb12dbRwbTqahKZDFva2hjq8dDY0sKG1laemzMHSzYPeGtWkz28sJC5DQ08evbZnJZOiz22xTJI7dbXS0l4PD7IJj/zjFx4lBKWuaBAaOIjR8RBbIDajUSk3vqhhwZp5EBAysyPHRMb7qefHryIDYRND0yJbIlzNEqschj+oIFhaDm2eONGYZavvVZKuLduhdpaeS9w+eXQ0CBy8SVLpMK9tnaQIOzulr5TpwqmDwal7auvfsZZZ43g5ptn8cYbbzNp0kQCAQHmXq+0f+yxJ9m06VPWrn2Pnh5YvfpdRo++lDkXa7z/fgN33Hknx9Z8Mphf3dYFI6uzTJOSm4xhCKDSszeVAVfvmsosiEY01z0+KC+WTOyB35OeHSeZGoz3GmCyHdk3lwMMua7BwRbo7id15iiivv5c1ullDQ3Y8vPRDQPNMOjZvRtHSQnO4mJ8Bw9SPnkyyjSFhX7qKU6/6SbsRUXE+vqI9/VRNnGilICnUuhWK9HOTva9+OJgTFcsRrSnh6LTTst6rSkZ5+abMZzOXDli3Oejc8MGSiZOxDm8lrZQL7/KZk9XF1QQTkZx2xy0+rv59bb3uOvcb+Ow2vHHggJ2LVYS6RRfdh1hVGkNhmbgstnZ1d5MgSOPQDzMaeXDsRlWDN0gbWaIpxI889nvufGcy6kuKM/FdfliIWoLytnU8gUXjZ7KA3fdx5o1a+ju6qKgqBDTorFlz3ZqCiu4cMZMbv3Gpdx0z33wxvOwezOR+5/ivG9dRSIWQ3c4KS0p4ac/nMeECy8W4zHTzDLU2Zv3m68Mxm+t+aOUgVdUiWnZ0GFSMq6R7ZcQYy6nS9bbjgg4t1rl+9DbScblwszzSFSWzYkyM2gWG8mwj94j2ygbNRVdt/w/7P13lBzlnfcNfyp07unJsWdGQhIIIRQQoDQjYWMJIcBeYwM2ixMGhIzAFhkklmCQAMkCTDA2yWHttS1jmwUFZJGMRqNEEAgBAsXJuadzqPT+8evpAd+7t9f37vOc97ntOmfOdFdXX1Xd01Nd3+ubUDQd2zLQdHceYNtYRhojncBfWgOqXmCSrVwKRXOhai4URcG2DDKxfnyldShAKtKJrzSMkY7K8/NBZoqqYWZTKJqOoigoqo5qO9gbni3Ua6lnnIVSFMIZGpD+6bmfQSmvwhnsw965Ld9f7RPWBXAURY4rP7mnZLPY/T2ojePAsbHbjmD/8VeoX/oaauM4rlx2FZs25zvjy8spCgT4cO33UZvPpPkLX+SySy/l0vO/KD3YzWeCy82WXXtYsXIlhmFgmiaXXHIJV1xxBS0tLTQ3N+NyuTAMg1gsRkNDA6Zp0tvbS3V1dYGlzuVy+P1+Ojo6GB4e5sQTT8TtdpPL5dB1Hcdx6Ojo4He/+x0TJ07k85//PJFIBFe+p96yLFKpFLZtU1paiuM4DA4O0traype+uBC1dwn4msDfBEpA6rhG7g+uET+0aywoHgHT8fVw3AejtV1FF0HFnXKusOOSMD6yvuYpkY0bHeLVxgVOCvqulXHNfvDPB+Mj2Vf5TaDXi2fbOEIu28OgOodYNktdURE5y2JnRwcX/O53PHvhhYVarpXz5lGZ76C+pamJsSUltEWjdMRizAyH0RSFSDqN3+0mms1S5HYT8nhQgEORCF1/UdPlOA478t95a1tbWbtwYeGrJOh2k7Msdnd2clpdHW5No7W9nfpQiOPKy4nrOisQBtmLgOI04ou+FQHNUxE5eBy4BWGuKxCPdmf+sX35dQNImJmNBJVlEQY7hjDdI/5tLb8NiBx9L3AOsMUwOP3w4ULtYWZoiGBjI/6qKlK9vbj8fvY++CDlU6bQsHAh6YGB0T7qykqZVFIUzHQaRdN48957P9VvbZsmwx9+iK+qqtCXHaivx0wmcSwLV1ERiU/UMw7u24e3rIwPfvYzJi9ZQqCujt133lkY85SbbmP4WIrUYIrG5kbMrInm0rAMi649XdRMr0Fza2guUWLlkjlwYOuNW/ncfZ8jPZgm1hGjflY9mldSv1HATEs115zr51AytgQjZZDoTZDsTVI/ux5VF7Z8641babqxCd2vFzq0P/fk5+hOdnPHa3ewfv96Lpp8EU+c9wSt7a1MqZpCwkhQ7ClGUzSuefEa1u9fzyVTpJt6KD2ET/dx3Z+u4/cf/J5nL3yW5sZm+pJ9BN1BuuPddCfER90eayfkDlHiKyGSjlDqLSWSiZAxM4wtGcvlL1zO/Mb5fGXyV1i2eRlNDU00NzRT4Q3R4A2gGFFwFUvatOqG3UsEcDdeBCdeBx8+ADN/LN8Xe74jj429BE77kbDYqkfA8wf3S81WcLwAaSMq8uZ0n4ShaW6ZiOtrEQl4YAygQm5YpOaOKYx48cmg+8FRhfEeqdkaYZkdS0D0SB/1SLWWouR91kXgLc/nOGjyY2UkmCw0Ju+TRnzc7qBsaxufeDw/XuyY9FpbeZCvqBSAvgNjx4/nufW/ZHrfo3BgPS+lz+CrD+0j4PMQGeznD7/9JQvOOlu+K2NHYM/9tNdfxsS5X6Tt9aeoCE+Atx8WxtkxYfB9kXmPsP6KKtWX6T6ZEOjfC384R7zdRQ3yWmtnSYZFqhd23i0ge+xZ0nv98jLS8x7no8NJvF6dgweHqKwM0N+fpLm5kSNHhqmrC9LeHmPNmlZuumkuJ5xQjm07JJMGN920leuum824caUoikJfX5Lh4QwlJV6yWZNjx6LMmhUmEsmQzZqMG1eG3+/638GS/88u/2PMNYDjOBngXOAnjuNcjNh5/rH8v7j8dyq5DMvkqZ3PFaqCcpaEN2j5C4GQx0POsmiLRgnkuznn1NczmE7j0jQeW7yYY8uXMyscZmdHBw6w6swz6UkkUBWFlGmybscOptfUkMiHx6RMk3Kfj48GB1m2aRMNxcUcV1LC7s5OVs6bh0/XaY/FuHrzZuqKiuhJJNAUhUcXL2ZceTlOKiUJYYcPS2r4SGK3rgtbvXOnAOtgUOjiYFDY6e5uOYG1t0uS+LXXClAOBsXc/IMfSOx2X99oCnln52jgWWursNih0GhPcyYDN9wgqLasDNtWcBwFl0seamkRW/bFF8v9wUEJGvP5ZJcffSS/29vh+ecFsx89CldeORpcPpIiXlIiqePXXguf/ex8xo6tx3FgYEDmDkZCzyorJdxs8+anWbbsMrZvF2n4Oed8gVNnqDjpLLNPmUFnVxdmd39eAdAN4SqRcn/cRqGL2rJGE8Q/OiZAuSgg248sIwFp48KynWnJdiPbjwDpkZRyw5D1B9vkPTQtAV0TGqCqDMXjxhUMMuPmmzn3hRfwVVWRGRpi4J13sE2TqhkzCNTUoAeDVJ5yCrZlYeVy6F4vJ37zmxz413/FFQzir6qSxw1D0mgtS7JPPB46X3111B/45JOUHn886f5+8VTrOhO/8Q1SfX3oXi/xtjbeuOcedJ+Pseeei7e2hq74EF6Xm39ZeDnhUCX3vvwMvfFBDMuiLzHENfO+CsB9L/+UjJEjnk2SNQ08upsptcfjc3nx6C4sx2F63UTi2SRTao9HVVT2dn1Ex3Af73R9xEByuBBOpioKVcFSfvHGRqqCZVQEy5haezxrXv05N6/+Fw4eOchwMsaBIwf58KMP6U9GsGyL1ldf5tLrbpSLoouWwFW3Eais4o2tL7Jv79u88/prvPzIGqaddY54o3/1mMiX48Pwmx9LCFmhfmtQws08Xrm4KK2AziMw2CPP03RIxqG/S26PsN6pfMWJbUk3dnEZRiZJNjnMCAvtmDlc3gD+0joGDu1B9wYwsyn6PmrFyCSFhdZduDxBCR6L9GCkhjHzPu3ClLCi0Llva76OrIJccpiu917GG6oSZll1oXt8dL//Go5j4zg2msePqun0fPA6RiaG7difqtdSgiFAkRTwxuNQiooBxG9dP0ZuD/Zhbfy9dFtHI6PMtGmIJL1+DE4ui91+DDXciHb1LSg1dTiDffzonM/R9uH7GIMDdLcd46M3dqOe9XmUUAnbt7Vw6YUX4MSGhdV2ucHIceb8+WzcuJE777yTV155hZtuuomWlhb2799PS0sLgUCARCJBfb2kHeu6Tl1dHbqu4/f7cbvd+Hw+2tvbKSoq4sQTT2TLli0MDg7idrsLwDoUCnHhhRcyb948HMcpgPa2tjYAQqFQIdTMtm1aW1vZv38/x9p6cKoegtAlYPRA6s9QfisEzpJOa18TqCEB1k4WylcIaFaLJdDsuA+g6gEJI1NLBCyPbFO+ApycAGXfTEjvBrNNLohHxvXPA2wB1iP+bsUNKKCHwTsVgMq8fF5XVZobG+m+7jrmfbKWa/t2VEXhhjlzCLpFFlxXVMTchgYJcrMsqoNBuuLxgrrLzk8wNoRCzG1oYDCV4lAkwpING2jLy8/XtrZy7ezZ9CeTvNXdja6qqPnjmF5Tw7VbtnBwaIgpVVW0RaOkLQsv4nm2gWuAJAKYmxCwPQthr1uQVPDrkACyIAKe7wEGEan3OMRnnUDYagUB3A5wHwKiQYD1EUSGfiS/n7lI8vj8XG60UutnP6N8yhS8ZWUkOjrY99hjZKNRTl25kprmZhRdx+X3M+nb30Z1u9G8XqxcjvTAgMjBbZtJ3/42jWefzUmXX87gu+9ixOMkOjrwlJQU0sBt0yQXj6P5fCS6uyUY7bbbyMXjlE+dygc/+1mB5XYs61M1XbajsuvhXdTPqcc2bVRdxUgZbFm+hWCNqKs2XbWJbDxL5HCELd/bQrw7zpzr5uAJeigeU0z1tGo693RiZkxSgymMpIHu1Zl97Wx2rNuBYznk4uLHDtYE2bh0I4MfDYIDZz1wFiXjSgjWBAnWBln04CK0nEZNoIYVzSu4aPJF3Nx0M47jMK9xHh7dw6GhQ3THu/G5fKyct5JLplzCI4sfIWtmea/vPXoSPaxduJZnL3yW+lA9SzYsIWWm0BSN7kR3gYWuDdZS7i/HdmxKvaXs6txFykjRFm3DdmxWzlvJuNJxaKrGiuYVnDX+LLoT3Xh1L2TznupMr5zDFX00kGzyCsgOwYyH5FOkeuT2+V0iETeT8Ob3pHIr05tnnuvk+6jgye6D0PHyndK/XWThpdMlOC3dA7mIgFsjBv27pfZLD+Y7qfNAtsAyH5bbiiZAPTRWtlFdIt8eWeetELAcb8/L1BGgGswzsnZOgHdojPRZO1be1x0c9XOPVHWNMNa2KRJtKzsabDZCNsxcgTnhAu7ZnOQPv/klxz7az8tbt/L1K77LQNv7AuxTvXBgPT9bdyPnnXM2FSefA5lBOPU6OW7dJ75pRYPIIehsyfdYI6A52SWPT7xIAHS8XULXXl0uVV+BGjjzUQg3S8917BgseBxbcVNR4aemJkh9fYh163ZQXx9C1xXuvbeFdNrkwQd30tTUUOipXrZsE93dcebMqaeoyINp2vT3JwkG3RQVeQgG3fh8OtOmVWPbDhUVfqqrgxw+PPR3G2r2t4Brj6IoHmAh8Or/Q8fzj+WvLP+dSq7/DJjbtk1XPM7yLVvoiseZVV/P0WiUq/KJqnPq60kbBgPpNJZts6eri5p8QvjKV17hlNpavLpORzTK8wcOoCkKXfE4d7z2Gt3xOBPKywuS8FXbtmHYNmsXLqTS7yeRyxUC1e7bvp3Z9fXEczl0y8KVzaKsWjUaQmaao4ndO3eKz/rCvHDi8GHxVx88KDHa3d3CMs+bJyz2/fcLIN++Xfqv166V8UZ6rVetEnb7+OMF4U6bJqg1FpOxr7pKQPXMmSJF1zQsW0HXBZdffbUA3fb2vDXZlnN8ICDE+8CA4PqeHpgxA/7wB9l+9WoB2h0dYhUfM0Z2EYnI4T3yiCSL19bKuKWlo9VcM2eKb7uyspXBwQgvvHAelZUyR1BTAyUhBzWX44eP/4hzzlqEXlspILqxVuTfqiJy7Vw+YExRIRSQ4LP+iPwuDQlzPSKPcukScqblGWi3LtsNDueTx/NLY62w2yPVXePqxZ+ta1LtZTswQTyPus9HNhJh32OPkezoEN90ebmkhudyqB4P8fZ2+t9+G0VV0dxuBt55B8XlYsaKFTh5xYKZTjP4wQeUTJyI7vXS//bbWNkszT/8ITNuuQUUhdNvvx3d78cVDFI6cSLZ4WF8VVVUnXoqRjJZCNrBtqWj1euhJzFAMpfh7q1P0RHt46SacfzijY24NI2qYBkP/vlXBWDcmxgibWS59+Wfksyl6YkNcM/Wp+iKDbC38wDHIt2cVD2entgAa1/9BSdUNlIbKmdG+ESqgmUsmjiHb8/8Arbj8PSuf2fLgR08ves5LMfmZ3te4LVDb9CbGMJ2HNJGlgf+/EsGk1FOqByDrqjg8kg/9b/+UMDehJORCO6gMNG6DsdNgnRK/t6XXC2z4n/6vYSPxYbEnx2PSgL48ZOlfmugG4b6JNQsMgDnf0s+5MMD0DA+z+IqAgaLSmRsl1uqvxxHvNEeH6lIj4SIOdDzwev4S8PUTj6zsE2s9xBmNoVt5rAt81PBY6rqKnReS7eysA2x3kPYloFlGQwc3oOvpAYjkyQ51Inm9qLpXnxldaJczld7gUL1xGaMdAJVUXFiUdTZ8yXFW1FwjBzq4i+iTp6O3d2BM9iPUlOHctJUyOUKyeJkM6C70Bafn5+EUMHICdh2bJRgUDzaigpuL0pJGeriL6KomqS7Dw/J2JqOk04Jqx8MoTSMxd6zQyT2RSHQ9QKQbW1tlQvyefOYPHky8+bNQ1VVGhoaiMVidHR0YNs2mqYRjUbZtGkTkUiEjo4OAoEAsViMTCZDQ0MDRUVF2LZNKpWivr6eQCDAmDFjKCoqQlGUwvaBQIDNmzczPDxMTU0NjuOQTqc599xzufHGG2loaABrQICvfy6ELgbXeOm8rn4U/M3CUBtHhNnSa6HmibwsvE8eswbFe40F7vGgj4GaH4MSFFCulcr4epX0Yit+YcUH7gDjGKDJ9hN6BbDjFgbcGsCglL5kkh0dHZi2TcowWLZpE0ejUZK5XMHGtHbhQnoTCQZSKaoDARTAo2ns7OigMxbDq+tYeUn4nPp6ehIJWtraOBSJ8J1Nmzg4NITf7cbvcnH9nDm0R6MMp9Pcv2ABE8rKCIdCNDc2Es1kCgC8Ox4vyNJdmsbMcJhhXacdeAMByw8yGlj2dflPI4v4qisRwDwOOB0B2z35dVUIq/094CM5E3CPvDO0IKFn9yAy8rcQQP1JAJ/n8/gx4i8//Y47+PL27Zx+551oXi+KqpLq6aHz1VdFxq0o+CoqcGyb9378YwmWVFWpRXS72f+Tn5Dq6cHMZPCVl3PqLbfgq6rCX1ODKxCgetYs9j7wAD2trXkMleWDp5/GyuUIVFVhGwaD772HOxRCc7sLYHrykiWobjeesrICMDeSOern1BM9FmXj0o1EDkVwbIfwzDA71u1A0RTm3DAHd9CN7tVpaGog2ZtE0RQ2Xb0JI2ngKfJQPa2aLcu3YCSFjNh8zWaK6opY/MhiNK9GoDpAY3MjO9btYP/6/bSuaSUTzeQVNXahlmvz1Zsxsybt0XY6Yh08uvhRHMdhV+cuDg8f5urNV1MZqKQ70Y1pmzSEGnjsnMfImBmWb1lOZaCS9lg7fpef5sZmVresZv3+9azethqX5mJmeCbrdqxjZngmXfEulm5cSne8m12du6gMVNIR62BWeBY7O3ZS6a9kdv1srtl8DX8+9mdKvaXMa5xHsduH8sFaCRnTvMLOvn0T+MdIIFnRBKiYIwngb1w9GgI29BbEPgZsmHitgO6qeVDRLI+N9F57ayTsLHEEht4Qb7a/Qc6b3mrxELtLob9VgGblHJGC97cImE0chlSXMNGWAcG60XCxEQA8EnDmWOKltvMBqyN1WlZuNDlcdf8F6NZkMkHRhKH2lHy6hstTIgnjDgKyR+q8CjVdqjzfX8XewEV09Q4xf14zxNs5/bRTqA/X8faOlyHZDXVNOCdcyE9bhrnsaxeKhLt2jhx/z25AzVdqHYGiOvBVQc8u+a6dca1Iy0EAdHYYamZJ2NlIwNnWJRA/JvsaCUBLdGLZNnv39mBZDl1dcebPb8Tr1XEc+PGPz8WybNauXUhTUwP33PM6iUSOxx47h/HjS7nkkqmk0yY33riV6uogLpfKoUNDdHfHqa4OoigK7e0xli7dSFdXnGPHon+3oWZ/iyz8NiRc8iNgNtLk8AfHceb8P3d4//Hy9ywL/+8uhmWSswzcmqsAzGPZLFe88EJB8t3c2EhfMkk0Xy9SFQiQyOW4OS8BrwoEuGHr1v80qGxuQwNLN25k/f79XDR5Mk+cdx7HolHWbN9eqDJxqyod8TiVfj9HhodZ09rKzU1NnFBWxoHBQaqB+nfekUSvtWvlZySoLBSSC/sjRyQWG4R9Xr9emO077xztwFYUoYIbG4UqLikRzXVVlQDEWEx+iosFeHR3C9C++WZ5/tix0pM1PCws9/jxwsY2NpLMati+IF1d4o0OBgXUqqqw1GvWiPq8uxtmzxZieNcuAcrjx8tLsfLnHZ9Phq+qkvuqKo1flZXyUjUNJk8eyyOPPEdT03Q8+YYIUblfhs9XzrRpa3j7bXj4YRm7KGCx/lc/455Vq3h92zaqa6pF6q2pIttu78lXZqmfDh0bCT1rrJXbI7MFI172EaBtfcJPk0iJdLytW57ndY/Wc+WMURbctMCVTx93wDQNzEyGt+67j/IpU6iZOxd/dTV9b72Ft6SkIPnTfD48xcVyoZbJ4DgOZiaD7vOR7uvjg2ee4aQrriBQW4uVyWAkk7j8fkzDKEi9+995h9ITTigEDWHbvLVmDZO+/W2KxozBsW0S7e34a2pI9fRw4Be/YPq/3Iapq9yz9amCFWPlgm/TnximuqiMu/Prz53UzPWf+RpuzcXero+4/vkH+O3X7+PJnX/k5NrxzBkzFZ/byxOtv+eGz369kDxs2zYZM8dAcpif7XmBy2d/kdqiChygK9bPM7v+nctmfZGaonJ64oP4XG6KPAHe6zlEhb+Et7s+ZG/nR3xn7gVUuf0ENDf822PSN33SDGGbB3oEGJdWSHDZ166BoX7Y9Bs45ysCgI0c/PYn8PXvQV8XvPRHuOAyYbDTKZGiBUPy27Kllsvnl5C0vi6Rj48Eov32J3D2RVBRDaaB5RNfs2MZOI5D74fbKD/uVFKRTtz+UnzFlVhmDk13k4724y+rI5ccZuDwHirGnU5quIuiirHoHh+WaZCJDeDyBeg/uJvKCbMw0nF8xfKPY2Sk8zqXHEb3+Bg4/CaVE2bh8oXIJYexckn8pWE5HtNAUTVUFOm23vYy6rwFKEUh7M52+d3ysiR/JxMopeUiFzcMSQlvfQ318xdCZFDAebgRdBeOY4tMXFFwutpRaurl466qkibu8YgM38jJBITuEjm5np/s7DiKUl0r91UVx7YxVO1TQWQjMm5N0+R/wTRxuVwkEgm8Xi+dnZ0UFxej6zqZTIZUKkVVVRWGYRQCyiKRCIlEglAo9L/Iy1taWpg3b14h6CyRSJDL5QiFQui6TG4ARCIRWltb+afPfw7N7gOtRACwd7qA5cFVkiButEPneXmJ948ZFR8roxLxoosEcNspMLsk+EyvAzsxep5R/cJ8K25AhZ6rIP4rCG+SfdpRUIsEeCuqPNdOE6OebcfaqAwEWLdjBzfNncv29na2t7dz5xlnUFdURFc8TtDtJmOaVPj9pAyD2155hVWf+xw+XcewbXrjcTricZoaGnCA1vZ2Kvx+fpBPIL9o8mQePvtsepNJ2qNRZoXDOIBP18nk6yhrg0FqP2GjKvV6yRgGbbEYs8JhfC4XhttNPyLT7kUY7BWIjDsJ3AvcjEgHrZHzGQKovwOUImz0auAmJFF8O/Bwfrx2pHLLnd8uyqiEfC5wML/P25ALPR0IZDIkjx7lg5/+lOnXX4/u89H/1luF86W/rg5/dTXZoSG8lZU4poljWaQHBtj/k58w+Yor6HvjDYJjxlB64okSihYM4goEMFIpzEwGb2kpiqpiJBIYiQSuQID04CA4TuEc71gWus+Hv7qa9OAg7mAQIx7HU1b2KVn46XfcieO4eHH5i9SeUsv4s8bjLfWSHhYPtm3adO7qJNQQItYeI1gTpPz4cl644gUamhpoaGpg54M7WXD/AnSvjmVYuLwubMtGURVhslMGLatamLdyHv5KP1tv3MqC+xeIV9stUvJET4Khg0MEKgN4x3u56tWrCpLwO8+4kwp/Bbs7d1MVqKLEW0JloBJN0fh48GPub72fm+fejINDwB2gNlhLa3srU6un0pfs477t97Fi3goCeoDqYDWJXAK35mYoPcRwZpi+ZB+V/koe3v0wPzrnRzg4HIoc4oEdD/DYOY9xcOgga1rX8MNFP6Qv1UdPrJ2F4Rko6S5J7T7pVuh/XWTd/gYJN6tsEsY5eRQqm8WbPel6yPRD2WnCWKfaxXudGxbG2khAz59E4n3ao7KtuwQG34DSqSL5RpXuayMqAFzN/48P7pJ+bf8YePMa6Hsd/qn904FliiIAV/P+RTAZAk6LxwoYT3RI53P0sGxfdQqYGQHJliGMdD4WQv6pnNGqLXdRHsjnAbyVkfWF/YUYO36CyMIrovQmVCbM/TK7W15hUmiQg/02MxdcwN5XfkdjhQvCzbz88itceuXVHN31HGq6RwDyiBrVyOtJ+vcKQ53qB3/l6HocYah9FbLOHZLaMc0tTPWh5+Hzf4Dw3PxrkFCzdOB4PjqcZPXqFlasaKaiws911/2JFSua6eiI0dBQzHHHlXD55S/Q1NRAU1MDa9a0cuutzVRXB3jrrW5qa4vQdZVVq7Zxyy1N9PQkmDOngZ6eBPfc8zozZ4Y566zx1NUF8XpduN0j03T/9yx/TRb+N6WFK4pSAsQcx7EVRQkCxY7jdOYfa3IcZ/t/94D/K8s/wPXo8h8lh/+taeJpw+Dg0BBeXafU62VXZycNoRA+l4uUYbC2tZX7FyzAtG3e6+tjRm0t/akUlX4/sWyWg0NDVAYC9CeTNDU2oikKR4aHWbVtGyuam6n0+ynyeEgZBl3xOPdt387KefNoDIVQFQVFUeiMxyn2ePBoGt/ZtInP1NWxZOxYNEURUNfTIzTvypWCQL1eWZdMCqLt7xep9/33C13scglo1jS5bZrizx4B6iNp4aYpLHh9vQDpyy8XkL5hg6wb2X5kCQaFwa6uJm3pfNzmpbNTIV+xXBi2pUUY6/5+IcEHB+Xwb7hB2Ofq6lHQbJqC6828eqa3V+zgIyHl+/cLOJ88eSy//vVznHDCdLq7BbzfeWeCU06pZd26PZx33okEAqNYefPGX3P7ilt5ed1jNH5x0agPurFWWOZ0drT/uiggnh7LFobZdoSZBvmSMUwB5SOhcThwqGMUSMOoH7uyVPzYCgUQDY6M4XJ9ys+da6ii/803pRd1cFAA7Q03oPt8OI7D8uXL2bBpEx09Pezeto3Jxx/Pn1et4qatWyWJ1jQZ7u6ma3iYF77zHRauXUvs6FE+eOYZYnPn8vmLLuKeFSv43tVXo3m9JLu7ef/JJ5n07W/jr6nh+YULmffDH1IxfTqKqha8vrvvuIOq006j/swzoTRE23Avz+z6dy6d+XkqAqUE3D5SuQxDqShP7XqOGz/7DSKpGE/teq6Q+H1i1Vg8uhvLtohnk3kvtptkLk0yl6bMXywgxXFY++ovOKlmHAuOn4Xf7WEoFcWtiSzVo7sZSkWpDJTSFe3nyV1/LKSW1xdXkTGzVARKCbp8+ExTqrSGh6QK65yvCrscPk5Y1g/3wuzPSYjZ+29JcNlXl+b/zo4AveFB8VJXVDOS2o0DJKOSFh4bFjB9zlehqg7+7Ucw5ng4tUke3/WqJIf7g3D0ANak6Tj5UDHdEyAV6SQ93EPNSWegqjrfW34tGzZs5FhbG2/s3sW0U6bzwfbnufg7K9FcHhQUkqkkR44cpav9KGUVlcydO5dUMoFjmSguL/v3v8+bb+xm2rSpgIJjmaSGhSU3s2kCZWHMbArN5cEysti2UZCMK5YDpild1+1HITqMOuUUHNNEMU3s/l7UunocVUUxTRxNB9tCMc3RaH5VGGvH5ZFE8a52YbpdHhwjKwnkc8+QBHIARcVuP4JaP1b6uqMR7JZXUOd+FsorUSwTu+OYpJIHgpiGScQwiUajBU/1SNJ3S0sLc+fOpahILia7u7sJh8MAheCxkc7qXC5XuP/CCy8wZ84cduzYwf79+5k8eTKLFy9m8+bNHDhwgK985Ss05OXQyWSyUNn1SeD9wgsv0NjYyIwZk9EcCXkTAGzmQfZJoPjyPutlUH4z6A0SdmZ0CKNtp/KguDifGp4Bs0cAuW+WPNc4MnofHXqvFl+1Vgl9y6HmSQlJM7o/sc21UP0AYJGzVDIE6IrHefnwYcaVljIzHCaXn9306TqHIhFC+WDOzvwksShEDN7p7eX0cBiXqqIqyqfaLUa+J1e3tHBLUxMTyspI5HJYts0tL7/M2oULGUilaItGhZXOZAi63fSnUgLA8x7tEf91Y3ExvvJyynUdHWGYvwR8AXgEkYivBzYgDPNR4AfAWnnVDCOMdV/+dh8wHgHR44B+oARJGh8DhPPbVCFSRhUB6L/K7yOMgPlfJBLs+cR5cWQCM/Lxx1ROny5kXns7mf5+yqdOhXxVHqrK0RdeYGDvXkkUr6rCTCZRdB3N5ULJhyZa2SyD775L5YwZxNva+OCZZwoTn7vvuGPUn71yJW+sWiVp4qWlvHX//UxesoRgfb2MsW8f/ro6Bg/ZVE+rw+V3kUvkeOnml5h741xKx5cyfHiYbau2Mef6OST7k/gr/aQH0zQ2N2KbAp4TPQlyiRzBmiCJngSta1qZt3IevnIfL938EgvXin8+3hXHHXRTVFeUt/86JPuTZONZSo+Tid1oW5RYe4zwGWFiToxoNkqxpxi35satuTkUOcS9LfeyonkFHbEOGoobaI+2c8HvLmDf0n2U+8sxLAO35iaei/Ne33s0NTZh2Ra6qtMZ6yzIw1e3rC6MUx+qJ+AKUOGvwLRNIhnxX+uqvOdZK4vf5cd2bFraWrj8hcvpuOYDtDeuljCzmrOESVY0kWsXAPF0kS33b4eWCyD8BQHNqkvWeSvhg3UiGc/258H2TAk6UzVhoPevhhnrpDv7/Xth8m3grxdw7hJrDm8th0k3gKt0NE08NwS+epFyq3kgGj0qEm/Nm0/0dolfOlgvkvTMkIBgT56YGfFnF+dDFnPxvIw8D5RH0sAVRcCqbeX91nWyzQj6tg1Q3Vx55RI2bn6Rnt4+ysvLKAoGOLhnM7/+91dYve4xVFXBjnVw6/wU/3znH6F+PkSP8s+XXcPxU2Zz17/cIhMQ/fskJRwNXr0GTrsBio8TNtyxZJtcTIC0q0hY/UxEmPhQg4BsRRUWPN4hLPuu1ZJKHqgDVSMRTXLZ8jd5/vkDPPvshcyeXc+vfrWP3bs7ueaamTzyyG5+9KNzyWZNHMfhuuv+xK9+tY+LLprMQw8tIhBw4TiwZMkG1q/fz0UXTebHPz6XoaE0fr8Lr1fHNG127+6ksbGYiRPLcbv/6wrb/68s/9Oe62HHkcg9x3ESI8A6vzzyf3iM/1j+N4thmaRymf8wFfw/Sg7/P0kTt2yb40pKSJsmyzZvpjIQoD0Wo9jrLXR+9iQSrHzlFWbU1hJwuWgMhdAUhepgkPpQiHU7dlAfCpGzLI5EIrRHozy6eDG243DTSy9JbYmqct/27QV5eHciwcdDQyRyOblIyTMijy1ezNjKSpxAQHzVmcyn5duOI1rse+4RGjgYlPTwxx8XFHv11cIue73y+5prhD7u6hITs9crIPHjj8XPXVMj42Uyo33as2YJqL72WkG+icRocnI0CqqKoXppb1eYPVsOacUKAcMgNVllZTJMcbHs+vrrhTgPBITZXrJEFOe5nOy6v1/s3nffLeNZlly7T54shzqSpeZ2yxjXXw+bNv2Wk06axle/eiJut4D6gwfhD39Yz+133s7WzS/S+NkmAUcj6d/ZnIDpsryfvCggUm2UT4SaKXmGMivp4Fr+VKFpclvTRscCAePjxUdNY97HlM17sW1Lbqez/4ufW1FV/DU1KJrGgV/8QjqsdV0k3ZkMX/qnf+K1V15hTGMjkQ8/JD04yLiZM3n8nHPY09rKrj//mcsvu4w548fz2e9/H8dxCDY0MP7KK7lj9WoWzJtHT2srICnN6d5eelpbyQwMoLndLP7jH/FVV7P7zjuJHT2KkRCWbMYttzD23HNH/kFoLKnhX866nHCoioMDbZi2haaq1IQquG3hZXh0N72JIb5x2rn0JYaYXncCjuPQExvgvZ5Dn5KKD6ai/Gj77+iO9bO38wDdsQFu+MzXmR6eyJpXf87RoW48uoeDA+0MJIfpiQ3wo+2/ozPaR09i8FOp5VXBUsr8xXzUfwwbWzzQLs9ox/Sm30hHdSIm8u7pc4TJfv5fpdf6gssEGO7+s3ils2kIFEFFjVwEZdMCymPDEAgJkz08AHt3wpZn5UP61Sth1meE4c6kYPpskUgf/Qj7hCnkUlFSkW78JTVouptg5RhqJs3HzKZIDnXyT+ctYvNz/0ZjYwN9B3dipKJMmvt53nrzDXb8eSsv/OxerrjsMs5etIiy8gocy+D3T9zN7tbXeWffflbcdD0Tx49h0vFjSQ11YRs5FFXDV1zF4JG3cfmCoCjoHh8OoOouXL5iNLeH5FA3jgK4XMJkB0Mo404Qdjo2jPXSBpSikEwKRYextvw7xIZRXG5wuwuMoZPNYPd0o9gWqCpKeAwkE1gbfldIIB/xTzumKeC8Yaz0W5smSqAIpWGssNrDg9idbaiNx6GESkBRcTxeotEogUCAjRs3Eo/HCYfDBAIBzjnnHEpKSnC73bjdbqqrq9myZUsBWGezWXK5HLlcji1bthS6sBctWkQoFGLRokVMmTKFefPmkclkaG5u5sILLyQcDhOJRNiwYQOGYeByuQo+723btuE4Ds3NzZx00kloio1i9Urllp2Qi0HvdMh8KOAYhLF2NQKGMNL++YAqcvLckbwk3BEwbnSCXgm9ywRYK77R++Yx8V4PrgLVCzU/kecZ3fltloOThuo1AtR7bwRF5+jwMHe89hpfPPFEptfUYNk2Xl0n5HbzZnc3Y0tKqAoECOg6s/LAeyBfmTUrHObNri4cxyFjmrS2t1MbDNIei1EVCNBYXMxDixZxQlkZWdPkre5u+pJJZobDRLNZ2qJRqgIBdnd2UurzEXK76YzFqAwE2NPZScowGEynmVZdTUcsRrFlsRSRCU4D3gUey3/WHkK81fl3jx8gLHQXUq2VRiTjpQiIngU0AMfLO08akZvPRcB1O3B3fn0KSQp/BAHWsxBgvR7ocbmYfMUVNJx1FumBAfY99hjpfIikbZooQKa/v5Dune7vxzZNsG2O+8IXOHXlSvw1NYXrjlRPD7vvuotEeztGMskb99yDt7y8wFK3vfgiHzzzDNfecAP//JvfcMn77+PMn8/Q/v10vvoqLzz3HE0LF3LFs88yZ/FinnzkEd5YtQp/TQ3Lv/99Fl92HrM/M5uTx53May2vcfYPzyZQFQAHtq/ZzoHnD5DsT9LY1EjpcaUFb7ZlWJLhUOyl/IRy3EE3xQ3FzLlxDrHOGKpL5cxVZ+LYDrlUjrLjy/CEPNiWjW3YtLW0YaREUm7lLBRFweV3UT2tGkdx6E/1c8/r98jXqaphOza9iV7mN87Ho3uYWj2VNdvXMDM8k2cvfJaUmWLpxqW0x9pJmSne7X2XuqI6ehO9tMfaUVDIWlkCrgBd8S7WLFhDbbCWadXTWNu6lupgNW2xNnZ17iJpJFm+ZTlpM42iKPhdfo5EjrBkwxLqQ/V88J13UFFh+hqRdCcO5f3MPmFqB3dD5WwBseleKJ0Bzc/BqQ+JFBxNGOsP1uW7rKMCrL2VIiNP5TNeCtJznySMdz4vj6Xa8h3a3QISO58HV4mA+ky//J/76vLXInlJt5WDYE1elo0wzInuUaZZ0SCXEFBs53UemgdKxo0GobkCee828hx30aiHevjQqN/ayslP9FC+L9sN2PzkkR/Q0daGmc3Q236Yg63PQusdXHzOLPa9tZN33tjBvj2vC7AO1suxxtv4t1/9kru+eyG8dKW83kCNeKatDDSvEkm3oslEwkha+M57ZD0OvLxM2P7QGJHAv7YcnhorwDrcLL9PvV7SwrNRUN24Q+WsXNHMs89eSH19iKuu2kRTUwNr1y5kYCDF2rULOXp0mKuv3kxPT5I1axYWeq2LitwcOxalvz/JY48tZsOGi1m5shmXS6Wiwk8g4Ka9PcbVV2+msjJAW9vfryz8bwLXf2VR/vom/1j+luWvAWUJKPtjPqDsj+Qs4z9c99cWTVXJmCZrtm+nqaGBkMdDc2MjsUyGFc3NLBo/np5EglVnnontOFyV96oFXDJruLqlhfX797O2tRWPpuHOswDXbtlCTTDIjU1NbG9rQ1MUVs6bx0WTJ3NzUxOvHDlCTyKBO19dYtg27bEYyzZvJhwKYbvdOI8+KmjypptGw8z8/lGPdF+foNQDB4T6HVl/7JgA554eub9qlaSJuVzCVIP4q9euHd3mjTck5OyJJ+Qid+1aAdRXXy0pYSCzniecAIaBqkqA2TXXyDnvgQdEsT5i/04mRQZ+5Ij0Vvf3C2sdDI7mqnV2yu537Rr1U8+ZI+z19u2CXW677UrOO6+ewcEO/umfFlFfPwG/X/Dt97//NOeeexm2LfMKc+bIPMOVV15CJp3hixd/helnnsH0005l0MiCrkqHtWPnE51tCRsL+OT1WZ8QGSoIkG6oGQXXhzuEAbdsqd0K+uX+ofb8e9oo8nBVkZ9QULYdAfTZHETzioKachRVJVBfj+bzcdrtt1M0ZgyKolB1yingOEwuLSVcU4NjWbhLS3EFgxz3hS8w6+67AdD9fn79wgssX7VK0sXffJNERwfXrVzJTcuXU+zzUXX66eh+P45pUnnqqZy3cSP+mhp233knViZDqrubthdf5MAvfoGijcqX+vftQw0VYSnQMdzL3X96iu74IBMqGlEVBZem5xPHQVfFfz0SQKYpKpqm4dJ0Tqhs5Od7NrDlwA4S2RS/2LOBU+tPpCJQwrS64+lLDKGqKr/Ys4Hp4RPwuTyoisKU2gnUFJXz1K7nCl7r6XUn8OiXbuaK2V/Co7noiPaz7rVfUhUsQ49FRa6diIpE+/T5cO7FckGx+bcCtjNpAdx7XhcA7vEKeK6slioul1suLg7th8Fe8Pgk5Ky/EyL9khh+3Ilw5+PwpW9DLiMst5GDDf8m26qq/BSX4Rg5jHQc3eOja/8r2LaJy1uEqrtRVA1vqJITa1yMOW4c2DYl9ZMw0nEJI7cMBo+8SflxM/jpz37Opd/6BiiKAOfSWgYO70FR4Mmf/IivXXyBrC+pwcyl6Ny3FSOTFP91Oolt5jCyeU+zqqPgkIr0Sgq5osqXVzYLpWUowSIUTcNJxHEOvIfd8rLUbMWGUed8RiQlpond2S6v3TTB40WtDWO3H8WJDIl83uWWUDKPF3X66SiBIlEGxKLiyR4eQjvrPNB1nGwGZdIUlGAIJzqMUlWLk8vi2LYwe7pOOBwmmUwyZ84cPB4P8Xic7u7ugv85EokA4PF4WLBggVT/5JVpI+Fkc+bMIZ6fAfykvPvcc8+lpKQEn89HaWkpY8aMQVVVAoEAY8eOJZFIoCgK5557LldffTWf//znURSFkpISXC6XnDMG7xXQa/WI1NvqBd/pArbNHmGzHUvAtuITebeTFgbbO0X80Wa3bO+fJ0FlviYJJ9MrJeSs7HrZPnAWlN0oPdko8ts3SxLGfTPB6hbmXNGh6h5yjlbI9nCpKrbj0B6Lcc3mzcRyOWaGw6iKQmt7O363m/ZYjN2dnSQNg2WbN9MRizGnoQHTtolmMsxtaGBsSQnzx4wpTLAE3W5iuRwDeZDcm0xy1rhx1AQCNDU2UpK3WC3L11U2NzbSkPdge3U9f12v0NTQgFvX+SzCKPsZrcnKn6W5EQHeSUS+/VUggDDZnUiS+K7848sQmXcMqePyId7swfyYjUgYWg/iuz6GVG/V57ddgQSaJTwegmPHonk8nwK/jmVh53KYmQzlU6Z8KmRM1XXeWLWK2NGjWPnZYUVR0DweXMEgky69lFRPD0YiQduLL5KJRHCAyUuXct6mTcy8806+dP75vLp1Kw3hMHpRESUTJ9L0wAN87957+d60abRs2sTzL7zAtbfdxoGNG9n/xBOsXX0vb7/9Nneffje3X3Y737zymwwdHmLL8i0MHxlmwf0LWPruUsKzwrRtbyPRk8BMm2xcuhHbsIm2Rel6swsza5LsT2JbNqFwiPo59TiWg+7TcQfd+Mv9DB0covutbqLHomy+ZjPV06oJVAaE8e5N0NbShr/cj6qqWJrFqm2rmBmeie3YHB46TEtbCzPDMzl/0vnc8/o9DKYHWbtwLX5dvNXt0XaeP/A8a1rXEM1EqfBXsLplNcOZYdqj7ViOhd/lp9JfSV1RHTe9dBMdsQ4C7gCPLH4Ey7ZYs30NlYFK7m25l5nhmXTHu2lpayFrCnM9v3E+1YFqinQPSqZfErkz3SLHHtwlSd++arm/e6nUbyUOA7aAbQd44yqIfyQge/IKSQ/3VguIzvQLUN6/Smq3Tn0YxlwMAztFbt78LFTMEja7bb1I0jU3LH5XmPNcRKTj8YNyLI4l4FbJW8w076gXGgRsukMi+QYoOU6ONdYm5wsrO8pgj/it3aFRL7Y7JD+JrlG22lcl60bA9wiYR5XHo4cEFDu2dFgfWD/qi050QVGjMNa6B3JJ8UYbSQG+p94gAN/lFz91sgcG3oPa2cKqv3INDH8kY9XMlPGNpOxjz1p5bZ4QfOYhOP7L8l4AVM2Q9VWnCHBXNNxOkuNrMzQ1NbJ2bWshuCwQcDNzZhi/38WqVdtYv34/q1ZtwzAsHnpoEePGiQqjujpAImGwbNlm6utDNDYW4zhw5MgwXV3xwnPXrdvBrFlhPJ7/+1jr/8ryN8nC/7cDKcpbjuPM+B8Z7K8sfy+y8L9WuzUCvp/a+UeumH0+Y8tkRu8v1/01aXgim6UnkaDc7y9I3lyahgr0JhJUBoPkPuEXa8l71R5dvJjhvGdsV2cnM2pr6UsmWd3Swk1z51ITDBLyeHj92DEu+N3v+PKkSTx+7rnkLIucZbG3p4faoiLubWnh1uZmjstXcK3fv59LpkzhqYUL8VgWysCAsM2aJpTtSOe1xyPs9cyZcNZZIuMe6bH+Sw+2aYrvuqVFfNxdXYKM771XKOcJE2QbLX+yjsdlnyP7DoUEsLe1CR2t68Qo4oorNZqaYP780aG6uoRpPussAdH79gnoTSRE4j11qijWq6oEg/T1iaX7Rz+SFrD89S7HjsmcwIoVEnhWXz869iWXjFrBS0oE+69aJXMPjY0yhtdj49ZslGxOQG3Qn5d1q/mdKMJYu1zg9wj7HE9C0DfKYFu2BJJ9ks22HfFi9w4K+32sW4LRPG55vtslP4mU/PZ5Pi1JH5GRA0YuR7ytjfeffJIZN99MNhqVQLPSUhRdx8pkGNy/n7mXXMLvfvUrpk2bhp3L4dg2kQMH2NfRwSWXX86Hu3aRGxzEW17Oxm3b2LptG0//+MdcftVVnDxxIpdfeCHvP/kkJy1ZQlFDAwC2YZCLRvGUlZHu78dXVYWdyzH47rv4amoI1NRgul3kHJN7X/5p4f/wzkVL6Iz20xMf5OSa8QKkVY2+xBA7jr3Le92HWLngMlJGpiD/1hQV25FOYgUFy7bojPbz0z3Pc8Ws86krrsTBIWVkSWZTBD1+gm4fb3R8QJkvRJHXT5EnkJeXB/HoLkm5VlQcx8HBQbUs/P/2OFx81eiHaMQvP9groPorVwoL/affwwWXy/+QosjnQtdFRnHkQwkui0UkEO3Q+zDuRNkuk4Y//BQWXQCVNdDTKf7sL39b9tN5RJhygEP7sRsnYPt9dL33CtHuAxTXTiQ8deFoB7WiouDgoDDh+BP45dM/YlbTGai6G/K+5R2t27nwwq+yc+MzhCefgepyiSLPzNHW0cGUaady+OABSkMBNLcfxzaJdn9EJtpH9aR5qKqOZebIxAbwl4jUPRXpxl8qCgvVUQQkj9StJOMi0W4+EycWRSkukYmH4SG5HyoueKwdVcXpOJb3Z78y6s+ua5CxshnpFzcNAe8jyeuxYVEBBItgeAi79c+oC86V/mtFEal4LguJBJbHw5BpEwwGsW274LtW8xkImUwGr9eLpmkYhlF43O12Mzg4yM6dO1m4cCG6rtPe3k5tbS2pVIpt27Yxd+5cSkulVkVRFEzTJJPJ4Ha7icfjtLa20tzcTHFxMYZhoCgKel7BY9s2nZ2dhEIhqiuDKMYhAc4D9wjADZwldVjGR8IquxqEkfY3ybnHTuaBdn7izjgEgw9A1f0CrO0E4stW5T45CUNzLPFVm915cD4yppPP2YBCFFe+eidn63w4FGPVtm38+Nxz6U8mURSFcr8fl6pycHCQ+1pbubWpieNKS+lOJAi6XNzy8sv8/oMP2Ld0aeH70XYcBlMp4tksx+XzHBzAraocGBzk/tZWbpo7l+PLylAUhXguRyybpdjj4d3eXg4MDnLhSScBcOPWrdy/YAGqohSqvYo8Hg56PNQg4DYPD7gR8VTXAL9HZN3rkOCxVP7x6xAfdgfiof4X4BRgEVK3pTBar3U6Bdc7XiRJ3EIqvX6FAOon5d3Hzm/jBsxslvjRo4W6LH9dHY5l8ebq1Zz4zW+iaBr7n3iCyVdcgaesjPY//Yn+t9+WoLHiYpkwQiZ83v3hD5n6ve/hCgQwUyn0QIBYWxtF4TDJzk72P/kkk6+4gmBjIxNOPJEnv/99PvPlL+M4DlXV1Xy3uppFX/4y3vPP5wtf/jK/uvhipi1Zgre8AtUTwHFUtm3fxle//lWOvHeEjzd8THFjMQ1zGzBSBltv3Mqs784i2Z+kdFwpPzrpRyz7YBlDh8QjvWPdDppXNlPcUEyyL0lRXRG2aWOkDJGZ3zQXl8+Ft8RLZjiD7tFRNIWXbn6Jppua0H06mUiGHet2cNYDZ6FWqByKHMKji5rj0NAhKgOVrNuxjpvm3sT29u1sb9/OU59/iqPDR2mLtjErPItIJkIil6AmWMPenr1Mr5mOW3OTs3LcuPVGbmq6ieNKjqMz3smfDv2JieUTmVo9lVg2RnWgGgeHgdQAaSONW3d/ar8PLXoIBwdd0Sn3BFCNGAq2sLKDu4V1PvCw9FprPjCjEH0fiqfIucyIi0S54znxQ5/+IwHYZiovZY5KrVdkr9RvBcdLEviItzqyT4LLsoOg+Ue3V3VhsPevErDuHysyaHfZqN95hJ0e+ScE8ViXHDfKLDufkHSrrlEmWHXl5eCf8FtbOQkHyyXyzLYj60Zk4ppbxh+p7xqhFIcPiYe7bJJsM3wQdt8rYDfdJ9LsmbeCv1rY5dNvgpIT5NjMvJRb844el21C9Bik+6FutgD2nt0QGgfeElGVKTp07xAAbmagb69IyjWPJIvXNclxJLsFkOs+eO06mHMHMbuM3r4UwaCbrq44a9a0snLlPMaOLUFR4PDhSN6TPQ+/XyedNmhvjzFrVhhFUbjqqk0FSfgTT5wHQC5nkcmYqKrCzTe/xE03NTF+fCmqqmBZNm639n+VPPx/VBb+j+X/3eWv1W59Mjm8sbSmwGz/rWnimqpSHQySMU0ODg1x1aZNHI5EiOdylPv9JD8xG9+fSvGVyZN57JxzcIDhTIblW7Ywo7aWoNtNVSDA/MZGHty5E7/LRV8iwYzaWt6+8krWLlxIxhQfx96eHmbV13NvSwvPHzhAZyyG7Tg8tGgRl0yZwg/PPBPP0aMoO3YICvXlJxUcR0DA2LGCNh99VLqvDh0SYF1dLVLxhx4SBHrbbbLdmDFSrzVzJtx3nySF3XvvaFT3CLCOx0VK3t8vHVnJpJy8u7oEWFdWwrJlcOwYLtXioYccvvUt6aNet06w/9y58OUvC+5XVcHyV14pbPScfPxfcbFgWsuSIevrZftjx2T4VErWPfCAHPr8+fKympslAH3nTmG6R5jwyspRJrytTV5qKp0H0W3dwkznDAHCkGcXFQHEHT0Cfk1L2GVNk21BQHQ6K0DZYRSsfXwMSooEPI/Le5MOtsmLyhn54DJ9dJxsTlhsly7jjEzq2TbvP/kkbS++iJFM4isvx1tejpXLYZsmqq5TNWNG4eJfUVWGPviA9OAgFVOn8qs//pHzzzyTXCRC+ZQpDKXT/OCxx7jrmmvYfddd4u1T1cI+0j092KZJoq2NPd//PmY6DYqCOxjETCZ567778JaVke7rE/ZScYhnk1w+64s8+qWbufVzl4IDpf4QJ1Q2svbVX9ATHyRlZHi89Vmm103k2jMukdRcl4fKQOlorsBwP9//05O0R3vJWgZBj49rz7iEmlA5lmNLpY/j8OTOP9KfiOA4DidWjWVsWR0lvhCJbIqMkePel5+hY7iXSCqGaVt0RPv4/p+epCMxhHHh5QiL2CuJ4f3d8sVcWQtf/y60H4aD78NFV8h2w0Mi5wbo74GjH4lcvKoOTpgqf+9xk+DIRwIUPT6p6nrpOUARsLjwfAGLf/wZNE6Qz4KqwnEnoj77NIoNlRNmUVw7kcoJs/hLkZNtmYXPg6+4ClVzYRlZuve/imPmeOanP+drX7uE+qlnomg6lpGj672XMY0Mv/zVrzln8dlUVFQKIFcUFEWlpO5Eak4+E1XVMbMprFwab6iCrv2vYGTicvu9l3BskbPi2CiqmmeJXSiN43DicdTG4yAYQlFUlFAJ6pjxKKESlOo6rC3PQ55ltltewTnwHk4yIXJul1vG8sp5S9FdOEMDEmjmcqMUl8r94YgA9nADpBLYbYcFiCsqiseHUlaO7Q+yfft2AWrxOK+99lohZGwEWHd2dmIYBslkktdee63ATu/cuZPZs2ejqiqpVIpwOIzL5WL79u3s37+fRCJBNBplw4YNDA8Po2kafr+fbDbLzp07aWhoQNd1VFUlkUiwZcsWTNPENE1s26axsZGSkhJsR8HRqgRM1zwCRV8WkG0cBqMXvNPEH+2bJQy1HaOQHGSn5bdSDGXXiWfbjkHmXQHRIwniqZ1gdgC2sOB6pTDg/rl5djwPts1BeRxT9mHHcFsfMqHEwxPnnYcr/30XdLu5fssWErkcjSUlNDU00J1IcCwa5Y7XXmMgnWbtwoW8u3QpJT4fA6kUx4aHaW1vp8TrJVxcTNo0ORyJ0NreTtqyqC8u5oY5c+jLg/eRrut7Xn+d7nwQ2sUnn8xb3d10x+PMzPu4R9o1ehIJDIR59iPA+t387UeACQhD/c38fRthprsB87vf5Z/GjqVIUbhu714GkJTxkk2buGDGDJqmT2fMySfz5M9/zhSE2b7i0ksZd8IJnDZtGp9rauLPe/awFgHWtyGAOoj0Zo9MieoeD6Fx45j1/e9TdNxxhayKSZdeSnpwsJDY7SktJXLgADVz53LSZZfhCgZRNe1TNYhTv/tdAGJHj/LmffeRaG/Hla9L258/Z+9/8kmZULUsihqlYULVdX762GM80tvLxb/5DWeecw5PPf44M777Xfrfeou9D6zjtjtuY+JJE/nK17/CT+77CVuv20r97HpqptfQ1tKGqqvMvnY2ux7eRXhmGG+Jl4s3XCzp3/Ma2fXwLvav30+sPUa0Lcrrd79OLpHDsR3cQTezr5tNojuBO+hGURUC1QFhtANuzv3RuegBnUBVgGR/kkN/OoTqUlEtlXGl46gJ1lAdqKa5sZmHdz3M+v3rWdO6hrPGncVDix7CdmwaQg1Mq55WkHFPKJtQSArvT/Zz1aar6Ip3Sa91tJ0jw0e447U7aGpoYm7DXLriXRwcOsjR6FGWblxK2kwzrnQc4aIws8KzWLdjHev3r0dTJBTRsA1yZgrFiMHwu/LHrpwnwLp8pnzarKQA1oomkWp/cmm4QEBwbkjk5LoP0l15mXcXVDWDr1YAZaFJXRFme2AHdL/4FzVgWZGUT7peQLeVglT+/191CxhGyVc+Hs6zxhaEGvOTbJoEl9mG+LEVVUApjoBRxxYgmugalYyPsNahMRIWpij5NPChvGxckbFsQ7zPTj6PJFgvwNoTkpflq4Q5d0qY24g0O9Ep0uwD64V5dkw5nmQ3/PkG2Z/mga6dwlx7i4VtfmkpxI5C5TSZIEj1iBw8dgwqpwurrXmh5jTo3gXDRyDycZ4V75ZjeeVqYdanXknO0rBth9raIH6/i1DIw5/+dIg1a7bnJ29NJkwo5dFHF1NXF6SqKkB7e4zKygDLlm0mm7W49dZmLrpoMitXziORyLFkyQa6uuK8+24vAwMpHn/8XNrboxw6NMTwcIbLLnuBDz8c/Luq5fovg+t8mNn/dpP/3qH8Y/nL5b9Su+XSdNyai2ORnoJ8HCDg9v2XgHUuD6jThoHP5aIhFGJ+YyM/aG1lOJNBU1W643EODQ3h0XWaGhroTSRY/uKLWLZNQyjE/QsW4NV1YtksN27dKr2eCxfi0TTK/X4GUikODQ3h0jR8uo5L06gPhdjV0cHKefN49sILqQ+FuGbzZgAeO+ccgoDS0SEscTYLu3ePArJYTBDo4cNC2e7eLaC5ulq81UuWCOP8k58IjZvJCMU7daqw0CtWCHi+9VZ49llBxi0tsl0iIX1abW3CfI9Iw30+QbaPPy4o1uPBVnRA4eOPpalLVQWLL1kyqjSPxwWXr1kjuxlJAX/zzdEu7PZ2eV5RkQDq666Tl7Fjh7yMK68Utnokly0clvmGZcvkebYNb70lcwzz5wvQnjZNxnEchC1WFEkHLwpAzpTqLduRA4qIhxy3LoDbQQB1zpD/6pwhOz/ULgO6dAHK2Txw1lRZVxyUiYniIHhc4PUIeP+4TVjzmvLRs4TtgGWjqBqTr7ySM378Y/xVVaguF2YqxTsPPoiVzWJlsxiJhKQbf/QRZipF5fTpFDU0EB0a4vfPPcfl3/kOpRMn8saqVbz11lv09vVxxpe+xCW/+x3Pb93KvevW8YdUirHnnUfljBmomoa/ro5TbrgBX1WVBO+4XOg+HxO/+U0O/PKXVJ5yCsnOTozBITKGgdflpiZYTiKbwnSEeVFQmFZ3PE/teo5ENsWWAzv42Z4XCqFlqVyGY5FuAb7DvQQ8Hk6tP5HKQAk+lwefy8Mj235D2sjSExvgvpd/CsA1877KYCpaeK/aIj3s6/6YUn+I2lAFKxdcRlmgmPJAMZZt8fSufHf9rufIeTwCziL9cNaX5beqihfacaCkHD7eJ/JvJw9u3B7ZpqxSGOo8uMNxRO6diMKYCbLd+iekqusrV4r0WVGgohbKqyQYzeUWxjublu7rRReAZaKqLsJTFuL2FwNgZGICni0DVXflg93AccTvqGo6ZWOnE4/HefbZZ/nq+YuRDWxU3U3tSZ9BUTR+9rOf888XfkHGe/81cslh8rEgGKlhOvdtxbYNXN4gqqYXerVtK0e0+8Aoa5pI4KRTYDs4QwMoJ05GKQphbXgW4jGcbBrrxX/HyWVkRkxVUOrHYLe+huJ2oy0+H235bcJmJxM4kUHs9qNiMzBNrM3PiSy8uBjFMnEyaQHhJaUC2KedJr7r6jrsrnbIZXCyGTAMNFVl4cKFaJpGUVER55xzDh6Ph2AwiNfrpauri+rqalwuV0H6ncj/zyxcuBBVVens7MTr9ZLJZDAMg8WLF3PxxRcTDodpaWnhwIEDxGKxwvdCIBBgwYIFTJo0CY9HWLbi4mLmzJmDy+UimUyyZcsWhoaGcBwHBQtF0QRM9ywVafiIL9rfJL7qvhtFCq4GZSeZdwUMKypgScWWosvzQaTixhFIbZPn+ZtAq6VQlYMigJ28CmLgHtmvXpNXIZiynRokp03g0HCGvmSy4Jl2gDULF+LVdQZTKb4+dSpzGxpoz1dK3tvSQtDtJm2aLH/xRQJuN/WhEHPq67EdB5eq4ne56E0mC95py7Yp8ngKnu60YQiInzOHkMdDxrIKsvJxpaV8Y9o0PLpOscfD2gULaAiFcCNe5+2ILPx0RNa9FAkv68//Xor4rK8FaoFvXXABm1paaBgzhm+Qr9JyHK752teo+9nP+MXevXxvwwbuuvJKeuJxqoBp55/Plvff54F33uHyW29lyYUXEgCeAiYyCqj/ctFcLlyBAACObWNns6R6eymfPJnI++9jJpNEPvyQ8pNPxl9TQ7CxES2vPvNXVlI6cSJ7160DVUX3eskMDNDT2kqqpwdvWRkoCpOvuKJQs5Xo7MRIJDBTKbKDgxi5HD/86U/5/R/+wEf79vHHZ57hsquuor+vj/6332bSZZex4poVfPDuB/ziiV9w64pbeWf9O7SsbhEgXBlg89WbUXWVhWsXkk1kcYfc1M+qJzWQws7ZLH50MVMumUL9rHriXXEWPbgIV8BFOpLGylmUH19O/Zx63EXyLimKgupSSfQmyCVzBKuCGCmDxnmNXH3galw+F07KQUHhWPQYSzcu5Vj0GI8ufpRLplzCynkrqQ/V05/qp6WtBcM2KPYW8+CiB2kMNZLIJVj+4nISuQSVgUpumXsLE8om8M1p32T+mPk8uutRmhqaCLjl7/LgzgepClTRGevk+jnXFyrAjg0fw6f7eOycx9hw8QZcmot4Lk4il6AvPYzjrRIQ/MbVkgg+fa0EmykukXe/uRziH8v3g+oRIJ3uFQCc6hDmN9Uh4DXTI3LwD9aAKXkmOLb0We+7Q34rinRZ1ywYlYW/fy9oQQk4+2CdAGtFE4acfMimmRHAaJv5/ulOOSfY5qdBteYRxh1E9p2Ly/aK9omarQ4B5p+s1Er0jALn6lNHmW3UPNPsGu3ZHglDGz4sj7kCkuytuiDYIAx0zSyp95r8LThjnbwPIHVbtXMECHe2CEjWvfL8PfeNystHmHJfFYTnwxtr8xVcMyHeJgDaVwmJdhizUMaunSX1XCPy8dLjySkBNF3j0KEIS5ZsIJUy2L37cu6/fwHHjkVZtmwzhw4N4/FoeL2CIebNG0Mo5GH+/Eb27+9j/PhSnnjiPMaMKeauu16jqakBj0dn6tRq1q5tJZHIcfToMDU1QXw+F/PnN7Jmzfa/K//138Jcf6woypOKokz7Tx5/9H/igP6xfHpxafpfBcp/q8/6kyFpOcuiLRqlK5Hg6k2bMGybf54yhUcXL6bY68VxHIo8HmaGw+zu7OTo8DA+l6vgv75h61YGU6lC8Mu1s2fzw507CbjdpEwTXVWp8PuZVl3N8hdf5FAkQsowGFdSwtyGBhpCIWbX1xeC07ricZZs2EAMcObNE+S4e7fQvz6fAG2/X5DjmjUCCiorxRfd0yMs9Pr1Ao4PHhTQ3NUlwWgDA3kwUCFl0xMmCGD2+T6NVtvaBBlv2iRg2u8X5KtpwojnaWnLllUNDaMB5F6vYO8HH4SFCwXv19WJZby9XcB2TY0Mv2uXMNRer+xiBKRrmoDrkR7s9evlfnu7MNKqKmz2DTfIy9V12fbaa2XeAeR77/prbZyREDFNFZD9yRAz05Le6VlTBRxbloBuxxlNEQe53dmbB+aGsNg15VAckO0tWw6qulxAdzo7GlqmqjChIZ80bucDRgBNxXJsEp0dBGprqZohjhIrK7PDx19yCem+Pt687z7SAwMAFDU2ApAeGMCxLP64aROnnHoqk6dMQdE0Jl16KYvPPpv2w4c5eOAAb734IvPGjOGGpUu5f906Tr/9dsxMBts0cUyT4Y8+It3fj5lKMfDOO9iGQbC+nuk33ADAB888A243/ckhyv0llPpDeF0e7nv5p/TGhwA4Z1IzKz73bcr9xfzT5DO44TNfl4ssRSGTSxP0+Ljlc5fidbkp85fw2Qmn0xsfYvVLz2AjQNrn8lAWKGbFgm/jd3s5PNhBdbBcFMrZFAGPlym1E0gZWd7t/pie+ABrXvk5HdE+HBxu+dylPPqlm1ky+0u4Y1Hx9ZZWivS7tFJmx599Gt54XRjsby6Xv6vXLx88wxDpN0p+dj//tWDb4uEuKsnL/ww4/5sSmGYaArxHEuV1Pc8KICnhrrzcvLwaPB40r1/yWGwLHIf+g7vxlUhfci4Zpeu9lwGZsLByaYxMHHeglPXrf8fJJ53ISSefTCrSg+PY2GYOx7F5fcduLNvmvC9eiKLqVIw7DU13CXutaSiqgGkzk8DIJul672X8pWFqJs1H0z0U105E1XT5vHs8KF4fducxAcGqht3yMs7+veK5zmaFXY7Hsbs7UFQNZdppaOecn5foKWDbWFs3gtuNEipGqR+Lk5QgRO1z50BJidRrWRb4AxKaZhiF1233doGioNaPkUmKVAK7uwPNNHC73UQiEbZs2cLw8DC5XA5VVQvssaqqJJNJAoEAoVBIeqeRVHCXy0U4HCaTyeD3+3G73XR2dlJbW4umaZx77rlcd9111NfX09HRgZE/Jo/HQyqVYsuWLUQiEWzbJplMYts2LpeLAwcOkEwmMU0TBw0HVfzRviZQAhD6CpTfJp+Jgh+7K+/H7hE/tuKVi3bHEPbZ6JRarhF22+gQ0J3eDU5OtnFsMI5CqgUwxYtt9cr4SlBSw3uulDovOwGpVjK2i7ZojJRhsKuzk9Pq6vDpOitfls9dVVAA//IXX6Q+FOLZCy/k5qYmTNtm1bZtzAyH6Y7H+e6LL5K1LFyaxkAqxQ3XXcfSBQuYVV+P2tNDdzzOkUiE7a+8whlz5nDm3LnMnjGDnRs2EHC72dXRwQ9/8APGTJhAWSDAxuefB6Dc7ydnWXTEYiRyOXaZJpUIeNYRxvpxoA5J9a5FAs0eRDzTGnDa/Pm01ddjAeXAIYT51hSFLw8PUwwsjMWoLi+n0eOhDPjOF75Aua7TBJw3eza5zk6yponOfw6sRxbLMIgfPUr/m2+ieTyUTppELpHAX1NDZmiI8qlT0TweYkeP8sbdd2Nls6iqiup24yoq4tSVK9G9XmzTpHzq1NEsjDvuIN7ejqe0lNP/5V8INjTw8b/9G65gEN3vx1Nezs6XX6b96FGaZs9G93o5sbaWutpaPurtlefU15NLW2y+ejOnn3A6aqlK6OwQix5ahO7VSfYnOfD8AVpWt+DyuwhUBrDSFulIGiNt0LGrA8d0OPcn56K6VRqbhTFXFAVviVewXdakbVsbkcMROnZ2EDkUwUyZDB0cQnXJOTQby+JYDppHI5fI0f5WOxkzw+pt0lG9atsqDNtg3VnrqPSLNajSX8m06mnEMjGp2bNNkkYSr+5lzcI1eHUvAMeXH49hGbS0tXBk+AgPLHqApoYm7njtDo4OH+XRxY8yrnQcM2pn8Piexzml9hTK/eV4dS+xXIyB1AAzamegqRo1gRpqgjWUBWpwFBVS3ZLk7a0UYOqrFc9zoAEm3QQfPwp2Bt5YJttkuuX/s3IehI6XoLM3lgk4bv6DpIZrXsQK5AjYHvFW2znxUXtrYMaDMO5bsr2qice7ar4EoOk+2Q571HMdrBNw6ykR4Kqocj80VsCumpdxW5n8RJtLgHUuIWMUjxPGuaheHqs6RZ6LItJyhTyrbYj0e6TeVXPLeJ/0Xic6ZGzHErD78jKZAHD5BAD37BK2+cxHBHyP9HBXToeJF36aZTbTMon4ucfg/E3w2Udkn9kYvH4jhJtg/lp53Sd+VXzcdU3w9sMCqIvqxb+tekSafumH8LnHwc6hKSaW5dDREeP66+fQ0SGsdDDoLqxrb4/S1RXnyJFhbNvhyJFh7rjjNZqaGjn55Couv/wFDh4cIpUyuP9+6cS+447XGBxMs3btQoqK3HzpS5Nob49x5ZUbaG5u5Ac/WPh35b/+W8D1BGA/sF5RlG2KolykKEoh/cdxnKf/x4/uH8t/aflr8vFPLn8ZkqarKrPq6/lBayvXzp6NW9PY2dFB2jQJuFxoikKpz8fuzk6qAgG8uk7Q7cataQTdbq6bPZvOeJykYXD15s3oqsqDixZxNBJhV0cHGdMkkcvRn0xy7ezZhecfHh5m2aZNpAwD23F44KyzWDR+PGtaW1m/fz/v9vQIM71smSBHv1+o3vZ2CSrTNEG0brfosUeSxGfO/HTa97Rp4ittapL7liX+ab9fkO6IBntgQLbxegVw+/3Sf2WaEu39ne+I9LylRajnOXPQVAe3W4Z354nAUEiw99q1AqoVRQDw88+PzgVYljDW06YJ7q+sFFC8Zo28jNWr5fD7+4Vkv+QSOaQRRnr5cplHKCmR7QIBmQO49lrxby9fLhL0SSc6aB3d8N5BYY/der5mKx9iZtuf/nBomoBj0xJmORQcZbgnNAowzxniyc4ZoyBcy0vFR5QFmibrXbr82I4A7kPtwnY7DuQMkX3n3zjHcbCyWYY++AAQIB1sbOSZ3l6mLlhAZ1cXX/znf2bK7Nkoqkqqr48nH3+cb/7zP+MpK0NzuwnU1eEOheh/801SPT24AgFKJkzAiMVwTBMznZbndnfzxqpVeMvKSHV3o2iaJNyuWkWqu7vAyJx2++14QyGm1B5PzjL4oO8IA4lhTq4dz8/2vCCqjtgAq19+hq74ALd87lKG03Hu/tOTDCVjVBSVkzUMPug9TJm/GAcHTVUZSkW5Zt5X8WouXKpOxszx8Ou/JpXLYDsOJ9dMoD85hOXYlAVKyBg57tn6NAOJCBMqGnh6178LS777Bdyai2g6zolVY6kLVQhjHI9+IrTsWWGYv3IlnDhdGOzeLpGG27aAOJcLxp0koCUWGQXJZk4SwvM+ZFz5y+31T+QDuzxQVCqS8ExaQtCMnPz9HVtkdqaBsAk2jmVh5TI4ikLlhJkEK8eiqBrXXHsTs8+7nI7OTs4++2xOmjoDI51AAX7+y3/j8iuWYGbT6B4fKCpWLk062s8zTz/D1y+5GAVhg1zeYL71zcE2Dfo/3kmo5nj8pWHMTBx/WRhVd6HqblRNp3byZwFwFEX6uDf/ESUQxEnGUTQNdd7nUC++DO2cL0GwCGXydJTyCtTG43BwhF1OxGXCQFFQdBfqmWdDPI616Q/yXioKRCNYW1+AeBwnm8HaugEARdWwezqFoXZslIbjpA6s4xgYBkppOWrDWOzuTnAcWltbaWhoKADmaDRKd3c3pmmi6zp+v5+hoSG6u7sLUu9IJILb7S7Ix9vb2xkcHCQcDuN2uwtAOhqN0t7eTjgsnrrNmzczPDxMLBZj//79tLa2FkB6Op3G5/OxdOlSGhsbJdDMMVGsyKcl4WYvuMYBKlQ/BsXflBquqjVgDCBd1RakWkfl3v650netFsuPbxaYfXmAvQf0CmG+FR/o1ZDeBVopKEUQWJRnrT3gmw9Gl0jMvdPQnDSzwmH8Lhczw2He6OoiY5rcn7cq7Whvx7Jt7jnzTB7auZN5Y8ZQ4fNh2jaPnXMO35w2jaDbzbWzZ9Mdj7N040aShsGEpiaeeu45Ghob8blchDweZtbVccWll3LPww+zbedOfvSrX7H8mmswMxlmhsOcceaZbNq0ibnNzfJZdRx2d3YScLupLSpCVRQqLYt1SECZDRxB6rG6kGquDuCfEWm4I+8iA0iyuCnvOJXAbkXh3t/+lu9+6Ut8ZswYFjc388DPf47pdlOdH+92hAn/4Q9/SPM553C1rvMxkPsr1x12LkeyqwtvWRm777qLbCQi59S+PkonTiQbiUhdVzDItO99D83tJt7ezp7vfx8jmcRIJguJ4oPvvUe6v59UT48EpT31lDze14dj28y45RZUXUdRVVRNY8K0afQPD7NrwwYSHR3EQiGOHD1KY3k5mVSKjw8cJNYWY//6/fz0+p8yMDjA15/4Oi6fi2RfklBjiAufvZDmW5tJ9icZPjzMpmWbMJIGLp+LQFWAdCSNmTZJ9iVxbAfdo4MCulsX8OxAeGaYopoiwjPDuAKuQip4154uIkciDB0cwrbke9bld1E3r45dnbu4tflWLplyCesWrsO0TXJWjr09ezkyfITlW5ZLkrfbz8Ghg7zV/RZ+l5+MmeHaLddyLHqMRC7Bocghlm1eRlWgCp/uw3IsQp4QN8y5Aa/upS3axlWbrqI73s09Z96DS3Wxu3M3AXeA3mQvd7x2B93xbhQUVEXFtE0s2yLngFMxR4DZ0FuS4A0CUAd2ihf6lAfFj935PGQGBQArunwaMwOyzcRrBRRXNYvce/fSPFPtgtMegzM2wOSV8v2Q6YP+FgHDpz6a78aOwds3Smr5qY/kZdx+2V5zC0BNdI+CaE0mHXAF8rLtuIDtYK1sNxJ+lkvkvdpqvrbLI6/Vyo6Gm4EA2by4Cysr0vBEh+z7k8FnoTGyXfE48FbI957ugzMfFdDrLYXeN0TWXVQvr6N7p8jF5YtAjiE8T9jxuiYB7NHDAtCL6uS9f2mpSMJrZoqf287lpd+9AvxPvFgAtOqSY395mby+VC+03i7jde/CslQUBerrQ6xbt4P6+hCaptDXlyysC4dDJJMGq1Ztw7YdOjqiXH/9HDo7Y0SjGdav38+DD+5EVRVUVaGnJ8Hzzx/g3ntb8Hp1LMshGs2yZk0r69fvZ/XqFvz+/zv7rv+z5f8o0ExRlLOBJ5AJ0x8BDzmOk/wfPrb/dPl7CTT7WxZhoQ3cmut/y3L/RyFpqqIznJHYlFg2S21RETnTJJIPKxsJPRnOZKgJBjkUiXBvPrSsrqiIgNvNtmPHPtV1vaO9nSlVVSQMg5DHQyqXI5nvAl0xbx4d0SiHIhGaGhpY09rKiuZmxpeWcigSoSse56zqarRt2wRRDg4KuszlxGx8wQXwhS8Ii+zzjcq4Z80SoGAYsj4WE5Q50n/t9wvD9vHHcv+mmySSe/t2ePJJWb9mjaSCVVYKSn30UWHF168XlHvffYwg6oQaIp5QCrLvlStltyUlsqtP1myreZWtyyVYfiSIzJ/PGLNtmUt44AEB5h5PvhI6n7GUb4jC75fbgYCs37lTmPMxY2Sc/v7RsevDFl47izISJOY4ItM2TYjEoLQ4D34tsBxhseNJkXCPpINblvz1tU/Mw41Ixj3u0RRwM/8iRoLTDHM0wMytQzwlL0jXZLu2bsyxtcTb2wvhN6neXkonTgRNw4jHcQWDmJkMVjpNqqen0J2KoqDqugSSxeO4QyG5b5oMvf8+5SefjKJK0Nfgvn2UnXQSmttd8HDb+UJxO5dDDwRwbFtSlfMd3qmeHlI9PVSecgqmS6M92sfTu577X7qlw8XV3LP1qcL/0u1nXcHbnQco9RUR8gYo8gR4v/cwJ9dMwHZs4tkkJb4QWTPHg3/+Fd88/TwGksMcX9GIS9MxLJOHXv83vnn65wkXV7K38yOm1h3/qX3c+NlvAJDIpigPlNAdG+DpXc/xrdM/T3VRGV4UAmgw1DcaYDYCts/5qki6jx6A4nJ4cT0suhBKysRPncvAlt/Dxd+Rv9GRD6GsSkC1P5iv6spAUbF4rx0LNBffve46nt+4iWNtbby9ayfTTzqRwfZ2PveViwuy62QywZGjx+jqbKe0uAhUnbvvWcVvfv0bXLpKRWUFL/zuX2l76wUaZ3yBQHlYgIdl0PPB61SMP63QS9257yVqJp2BmU1hZpP4S2pA08klIqP3VZXhrg8JVY3HsQw0t/g4rVwaVXcBAoYVQDVtrBf/HXXmXJSSMpGzO7YwOMOD2NtfQ138RRRVA9vC7mhDqamFZBK79TXUheeh6Lr0UteEJawpHgW3B6WoWG7nsiKr9/ogHkUJleJkUij+AI5pFHqwnVgUpbpOFAHxmIzffCZWaQWZXI54PE4ikaC+vh7HcRgeHmbXrl0sXLiwINcekX9nMhlSqRQNDQ1YlkVnZyeBQACv11sILEskEoTDYTRNw7KsAgiPRqPs3r2bs88+m0QiQSAQIBaLEY1GCYVCn+q6Nk0TXTVxK0dRBldLl7XjiFd6JNBs8H6oegisPmGjP9lXXfZdYZ/d46Siy+wGLS/tRhVJeHoXuOpg8L58v3WdsNJ2BIYehqq14s/GkrGcVL4D+0aoup8cxWRtF0eGh2mPRpnb0EDaNLlp61ZumDuXCp+PfX19NOU9vSnDYG9PD3VFRfKd1dxMRyxGfShEVzzOx0NDLBo/nso84zzz5JN55te/Ztapp4LjMKaujn/97W85dfZs3nvvPb72pS+x6733SDsOxR4Pe3t6uPvb3+bCb3+bE5qamBUOo6kq12zezI1z5+IvLyfjchFGrtu/B8wBLgRcCIBWEN/0DKAXqcy6CfjS2LH863PP8cT06dxjmlyyYAE3f//7zJs/n5f37GHZF75A6759VFRUFLqwf/vLX/Lc3Xcz7fXXOaO6mkVIWriDMNj/EYttGQZmIsGee+6h89VXaX7wQSpPPRVFVYkdO0Z2YICK6dNRNA0zlUJzu9l91120vfgi57/+OqmentEu68ZG+t96i/KpU3njnnuYvHQpwbCcA75z9dW8+Kc/0dPbS1lxMUWhELs3bODRW25h/cGDaKoqKqBvfpPJvb2MufhiLrrqaqLxGKmeFFVjq/j+3d9nesN0Wla30LyimaLaIjSPRrI/SaAqQKJbOq1H+qoTfQn8ZaK2wQEjbaCoCu6gG8dyMLMmjuWg6qpgw+EM7oBbXDYBebcSvQkykQypgRQ102vIRrN4a70czRylKliFR/NgOzZ9yT6KPEUE3UGu2ngVM8MzuWTKJeiqTspIYdkW+/r2cVrdabRF23h096M8dPZD9CR6SOQShIvCODjcuPVGbpx7o/RbF9fTEe3gvF+fx6Z/3sT0munEsjEq/ZWoqsr2tu1c8LsLePbCZ5lRO4OueBc9iR4aQg2cWDoGt2NISri3SqqwrLQEi026XqThlc35IC5A9UHiCGS6pIZL9Yg3W/PnAwURYN35/Gj69+CefFe2X95g2xBAPhJEmOkDdzEk2wSsl04dlYXb9ih7bFsCMEeY4BG7iJHId113C/gdmTAeSRiH0fMLeTZ6+DCkB6Fs4qh3utBvHRaArefl3yPBZ5pXtnUYBeqKApGDwlh7SiEbAV+FsNgtK6DpHmGV0wMyfqA6z7Afgl2r8mFnx8PWK0TOPfEi8W//7KT87bvAUywAXlEg1S9d1+k+kaAn2gWAx9qESW+9fXScU68jrVWRVKtYtmxzIZTsnns+S0mJl6uv3vyp7upMxiQUcnPoUKQQaOb16nR2xqmrKyKbNdm1q5P6+hAdHTHq6kJ0dcU4/fQ6cjmL3t4ka9a0smJFMxMmlBEI/DU9zP93lv/RQDNFUUKKoiwHfoiw2Ncg4ZVb/jsH+Y/lv7/8V+TjI9v9Jcvtc7kIud3oqsrBoSGORiLs6eoi4HZj2DaWbfNGVxfpfJelN++9fnDnTqKZDCowKxym1OtlVj6gZV5jI0UeD8UeDzgONcFgwbO9dvt2ZobDnPUJpnptaysOMLakRDxtmoZTXy+sdF2dIMqrrhLD8bPPCqX7u98JQB43TljnSERAtm0LwPZ4BFhfe60w00uXSuhZKDQ67le/CrfcIm/OCHW8apV0WTc1CRAdCUdbu1ZQcns7LFmCbTtomgSK3XST4PGKCrmuNE0hwTs7Rco9kpF2KK8sGgHY6TRs2yZDnnCCJIb39QlRfviw4D3HkXVvvSXzCyPB5SMV3R4PHD0qcwSlpaPp4WYOSQqvrxbQ6xXvJOksFBcJYP74mKyzbWGWQ4E825aQkDMUkYHbzmgaZ3uPAOVsTn7HkwKaVXVUXt7WDf0R+a2qAsQNQx73umFcPY5psf+JJ4Sp+OlPKZk4Ed3vR3O7QVXRvF68ZWUE6uupnD6dXDxOur+fwXffJdnVRS6RwFtaWmC/h957j5Ljj5f+1DvvFEA+ZQqOJT4f1eXCsSwG331X6l9SKRJtbey+4w4SbW3i8U6n0TweKqZOBVtCxn6+5wWmh08g6PGLZzpYypjSOlRF4cbPfoNzJzVzxezzUVCoCpbyizc2kjFyxLNJptadQE98sNB1fc/WpxhIDPO1U8/Brbk4uWYCALFMgoDbx82f+xY+lxvLtrju+XW80/URl8/6YuH/NeD2EknHeLz1WXpiA/Qlhgpeb5em4z58QP5GRcXwha9L4Nim30gvdaRfJOMTToZXnocTpojP2u0R6ffwIJz/LWGfn30aGsaLR7ukTC4CPD4oLQe3VxjywwfAyHHBF86jZeufGNPYKOD7yAHK6xvYu/VF9m78d958cw+XX/Ztzl60iKBHJR3t59FHH2Pfvn28/eYu3nlnL7/65S8JlNdz/Lxv4CuuJJuIkIp0oqo6tSd9VoC1NwAohKcuRHO5cfuK8JfUYBlZsC3cgZLR+45DafgkYal1N45tkop0o+ouzFyK7vclLC2XGsZRHNRFnwdVxe44hhMZwHrxeemiDpUIsAacbBonnUZtGIPi9kJJKers+QKC24+KnDufpE1RCPv1l3AieStKUf5iTdMgGMJJJ8EfkBOFg4yjuwRYGznIZrFbX5OQtHgcOy9JHQG6mzZtIpFIkEwmCYfDxOPxQh81gNfrJZVKUVMj0vtMJkM4HMbr9RIMBnG73ZSUlFBfX49t2xiGwZYtWzAMg66uLoqKijj77LMxDIPXX3+dWCxGMBgsMNWHDh0iGo0yPDzM5s2b0XUEWMfXS4CZXifnDscEfVwe/PpBq5Jws97lo33VI/VZWi3ggB4WL3bPMvFw4wgYH7xPxh9cA/awBJqNPFfxStp4qgW0EnCNEWa87DpAwW134jgO7dEolYEASzduLASK/aC1laDHw+z6eizbJmua8h3X2EhtMMiaBQvoisep8vvpiMWY29DA16dOpcLvR1dVErkclm3zQX8/pm2TMAxufPBBvv7VrzLjpJM4f9Einnz6aQayWe547TW643Fm5RUCHl2Xeq7Nm2mLRpkZDrO6pYUK2+Y4pK9aReq2vogw1q3yzhJBJOIaUr91PVKnRX7dWuCDvXvp6OrCNX8+GeDk00+ntr6e995+mxTCbrf89rf84a67eG7rVp6qrubLwGFEVv5npMIr/YlrCMswMJJJbMNA8/mYvGQJzQ8+iL+mhv4338TKZglUV+OtqKD/rbdItLXx5r33YmYyTF6yhMazz0ZzuT5V5wVQOmkSmsfDaStXorndGIkEsWPHuOtb3+Lge+8xdOgQB3bs4P133sHl93PjU0/x5vbttGzaxBstLVz8la/Q+eqrHPv1r/nzyy/x9p63+fDoh7y8+WXOaD6DltUtElDWESPRk2DDkg0YKQPHdvCEPBTVFRE5HMHKWvjL/Wy+ZjORwxFUXUVzi6zbNmwUVUFzabiL3CiKQteeLqnacqn0vN1DNpYFIFAZwFfmIzwrjKqrDB0aInYkxnElx6EqKlkri2VbqIqKS3WhorJ24VqaGpr43ovfI2WkcGtuir3FzK6fzVB6iLqiOh5c9CApI0Wxp5hxpeOIZqMAXDf7Ota2rpWqrm2rmRmeyUWTL6KpsYnueDeaoqEoCjkzx4zaGfzhoj8wq34W8WyckCdEU2MTjaEaXKmjn5B798nvD9ZI8JirGKrOyH/IfPDOCmG2A2EJPctFxKcdeSdvAVPlEzz5X2DxPqnmUnSonAt6UNjX/u2SCt7fmvdyWwLO37pWOq1HerVTnbLfEcZheMRvHRJwbmZkf4oqgFfRBFzapmxr5qXhipZnthMCmKOHhYkuPk78zu48WM7GRvutEx0ypuoZZa295QLqR7zfmjuf9G0IwDWS0LMHjFSede6DM34gr+G16yQpPVgrwNpMCAEv7gABAABJREFUCjA/7SZZrygw6zYBxLNuE/n3yO0isfwQPSwebW+J/PiqZL8j0nLVBYE6WPBj+E6vyMMzQ1juciKRTCGUbMWKedTVFeHxaKxY0VzotB4YSOFyqTgOdHbGqawMsGtXJ4cORbj99tc4fDjCrl2dVFYG6OiI0dTUSE9PnDFjirEsh0zGZMKEMp588vNUVwdwuf5+WGv42wLNfoJUK04AvuA4zmLHcf7gOM41iMXnH8v/nyyf9FT/5fIfhaTlTJPDw8Ps7uxkZjiMz+ViSlUVPfE4e3t68LtczG1oIOByEc/lUICvT53K4+eeS21REaZtoyoK1YEAb3Z3Y1gWhm2TyOVY8fLL0rcKFHs8fHnSJNYuXIiuqpR6vaxobuaiyZNZu3AhhyIRWtraaI9GcQwDZcRwvHq1INH16yXhe0QjvXu3MNCHDo0iy+pqYZY1TX6vXSve6hFpeGen0L69vaP66uOOk5P1bbeJz/rHPxYQ/+Uvi1e7v19Q74iUvKcHrr8eTXUK4Le2Vh5WVcGby5cLzg8Gxc795puyzXHHyaEEgwKAd+0SJbvXK0M7zqjPevVqAdOGIdLyqip5ydmsjHXDDXIoNTUC6qdNk8MNBOTt8fgUnKBfgG9xUAYfqd7K5oRt7o+IF7q9R0A4ipzYi4Oj3tuAT0DAiIy8sXZ0TJ9HHh8B2F6PvPeNtVBZKr9BQHXQJ4y27UAyjaprhYut6TfcQHZ4mN133SVSbUUh1d1N/5tvYudy2JaFt6wMf3U1pSeeSKqvDyudZvddd5Fsb6f/nXcEnHu9pHp66Hz1VVLd3aR6ehjav7+QPv7GqlV4y8tJ9fXhLStDdbupOu00MkNDaB4Pms+Ht6wMRdPIRKNoisK1Z1zC9LqJ/Gj772gf7uPtzgN0DPcxlIqiqxq3Lbyc2lAFAEOpKKc3nERZoJiKQCkKMJiMcEJlIx7dzbdO/zyVwVLqS6oLCeiRdJy24V46on2s2vo0aSOHS9X5zPjTqAmWU19SzYoF36YnPpiv2RsNMDu5ZnwBeHvicVxFpeKf1nQBxYoq7PR3VgoLffA9udj46lKYPgciA9JdbZmSCv7Hn0mC+JmfF8b7V49K4ng2IyDc5clf0Hihfhwc/Yj5kydR//q/y+dLd8Fxk+C3P4FsBtvjJpeK8sxPf8qll34LT6AYf2kN69Y9wN133Y7H6wNVK4BAzeNH1XTcviJ8xTUkI10YmTia20cuKQFl2cQwtmHgODap4V40jx8lH8DmODaaxy+3bQscm3S0H0VR8ZfWYJk5+g/uJtp9AMvMoaouUFQ5R43Ua8WiqDObIBqRUDLbxkklhcHPZbA2PFsAzUpZuYSUBUI4qaRsm8uiqBrqgnMEMAdDIgkfGpDjTCawX9si43d3iCKgKCTr0kkoCqEEgqhnfQFt6Q2odQ2FCqzGxkZSqRRz5swhGo0SDocZP348ra2tHDhwAJdLwuE6OzsJBoMCKNvbC2z2SMr34OAgHR0dxGIxuru7UVWV2bNns3PnzkKiuGEY6LrO2WefTXFxMbZt86c//Qm/38/3vvc9xowZg6ZpNDQ0YFo2lN8qkm5/k3irB24XAO0khUE2jkLmrVF/9OBqCCyE8n8BxU/BP+1kBCyXXScSb8UL6FC+QsYvvxnUUsA1KjdXVNDHCHBP7wHjGKR3gqtRJOQDd6MpNjPDYdbt2MH6/ft5cOdOvjJ5Mo8sXgyOIwnfgEvTaG1v51gkgkvTSJsm02tqGFNaSkMoRGt7O5qi4NI0LMeh3O9HU1UmV1Wxs6ODnGGw8emnefKXv+TpV17h9xs2cMVll2Hk08J7k0naYzE+Hhwka1n0JZOs37+f1S0tLBw3jtvmzcOVn6SRyExJCHchXutpwB6gFBiD1HXNRXqr85fd7Muvb2hooKu7m5IPPkAHth08yNFDh/BOnMhbwBPr13P7bbfx6EsvUd7YyFIEoE8B2hHwvQz4GAHYlmEQO3yYXbffTuzIEYxEgqKxY6k89dRCGNkb99xDur+fdP4cO5L6vXfdOoL19cy84w4c4KSRwLIrr2Rg717S/f3gOLyxahVGPI6RSJDp7y+MOTLxmeru5t1HHyUbiTC4bx9WOs3ge++h+/188ZVXmHnXXSiqSvv2dqLHonS/2U3kcIRFDy5i2QfLGDNvDNvXbOfA8wdw+VzYpk0ukUN1qYRnhXlx+YtEj0UJzwyT6E4wfHiYzl2dGEmD9tZ2IocibFy6kcihCJ17OgnPCmNbNp27OqmaUoWiKGRjWRI9CXzlPhRFITOcITwzTLAhyOHhw0TSEVRUIpkIpd5SHBwyVoagO8iDOx9kZngmvclevvfi94hlJUhFVVS6493oqk53vJs3u98sgPPueDfjy8azduFahtJDPLToIXy6jyfOewIFhZAnRIm3hNb2VjpiHdiOzbzGeeiqTl1RHWkjzZUbrsSrqCj7V+fl3v0CqBVNQs0qmuDd2yXArL8FUkfh+Ksl0TvdC0NviCw6MEaAduxjAelmSrzangow4/L83UsgeRgG34DSaQLgS6aKl1vRBMROvFZA9+4lAuBdQXm+5hZQPOK3VhAmeUQOPuJldhwBnJprtLN6hElPdOaZ7Q5hkK2sjJGLj14su0N5oF4ioWYjEvFE56isHEXGTQ/I821DJg9qZsEbP4DamaN+6LcektemuYW9TvYIODbTIpXfebcw7MMHZTKgeCx89mFJP1d18WrrXsmnyEVHPdov599jb4nsN90v6eQun6SMv7RUJgMA6ppxe9yUlnrp7Ixx3XWz8ft1Dh+OcNVVm6isDPDUU5+nvj6Ez6ezfPkWDh0aZu7cBtat20FlZYDVq1sKUu+KCj8PP7yL5uZGDMNixoxaxowpwe93UVHhZ/nyFzl6dJjiYu/flSQc/jbm+iNgouM4VzuOc+AvHjvzf/CY/rH8NxbDMhlOx+mNDzKcjv+nAPuTLHfOsvDqeiG0LG2aBN1uuhMJplRVcXBoiCUbNpAyDLy6TsjjQVdV4nkvtWnbDKbTZC2LOQ0NtEWjLN24kZ5EgqtnzsR2HD4aHGT5li30p1IE3W6u2byZsT/8IR2xGE+cdx5BtxuvrjOtuprGkhIctxtn5UrxT992m9CxF10kjLWuCwC87bbRNK9PmpGlqE9QqM8ntO6hQxKnPW/epw3Oq1aN9mY3NsLppwvV/PHH8mbNnCnb5HL50K5qAd4PP4yDWsCbPp8MsWSJsMrXXDMKiEtLpYIrT6DS3y/AeiRHbfdu2aaoSAj6W28dfdlud34Sc5ZIv0cI+r4+eU5Tk2DevXtl3Uium6bl92eYwlRb9qhHWs8HmumaAGBN+3Sdlm3JF4lLF3bbMOFoV95njTDPIwz1wTZ5ntslt3OG7Mulw/gGYawzOWHFDUvGO9QOAR+aphNsaODUFSvQPR50n49Jl15KqrcXd1GRXKyVlzP47ruouo6ZSvHmvfeSHR6m8pRT2P/EEwKie3uFac5fmPlralj83HNUnXYagbo6Kk85hcj+/ViZDKfeeiu+qiqqTj0VAEXTqDj1VEonTmTgnXdIdXXxxt13Y6ZS+MrLsWwbr+6mKljG9Z/5Gn6Xm8k14/G6XGSMHO/3HiaZS9OfiJDMpZlaewILTpjFB71H6Bju5e3OAxxfOYbhdIIfbf8duqqJT0lRCLr9ZM0cA8kIZb4QfYkhvnHaufQlxG+9YsG3KfWHsGyLrJmj3F/MUCrGZXkm+7JZX0RTVW787DeoDVWghkqgvBKOmyiAbTgioLk6DMefLB+mUCn86jEY6BEAHh2UdUc+lA/Swi9BYhiq66Xb+fgpwmi7PRAdEvBnWQKwPV4ZN1Qiz7Nt2PhvwpAfNxE2/xanuIyW1/9MNBbnnLMXyvxOPEFvXx8bN25m9uw5zJk9m3/96ZPYZg4jHaPrvVdwHJHq+8vCuP0hUFUGj+7FX1onsm5VJoG8oYoC6DYyMdLRfvG0qRqObeHY1icquBLobn+hFkx3+2Us28axTJTaME46hVIbRimvAJdbqrhsW0LKVA10F+rcz0joWS6HtemPkIjLpJKRw8mk88FobZBKyv+GZeYBeBFOIjYalNb6Z2GqR0LYxh6PUlqO4jg4qZS81/4Alq4TGR5mw4YNRKNRampq2LFjB6GQsOHBYJDm5mYuvPBCTNNk06ZNBAIB4vE4qqoSCATYvHlzASwrioLH4ymA6JHHVVVl0aJFWJbF0NAQW7duxTTNQn82wGc+85lP+bmHhoZoaGjApXtwXOOg4vvIBF1Ags0G10owWXy9gGm9EoweCF0iMnG1SPzUThqsiMi5e68Gsw30Whi4QxLDMQQ0Vz0ErhPk4tseHgXSqRbZRi0G/+y8J7tKGHInAzWP4VLBpaqsaG7mknxop1vT0NTRy6CUabKzo4PKQACvy0VbNMo9r7+O7Th4NI2aoiJhuB2Hg4ODLN24kfZYDAfY39fH7Pp63t+3j30HD3LmZz7DaXV1HDd5MrV1dXz43ns0NzTQ1NBARyxGQyiER9Noamxkw8UXs6K5mTKfj7GlpSzVNA4BUSCJ+K4tYAVy0TYbYa4tBPjuBH575ZUsrq+ns6ODlYsW0TBhAlZ1NY8/8QTfuOgiTpg2jXXnn8/aRx9lXGMjM4EVl1yCnslw/T/9E2dNn85706cTGBwkiCSWrwPWA6vyx2HlcqNqo2eeIReLiTJIUag89VT0QICq004jPTBA5amnEhwzhhk338zY885j0mWXYaTToKpkBgfBtjn1llsI1tWR6OjgwC9+geM4TL7iClxFRbiCQcqnTOGDn/2sUMnlLSvjwC9+QeUpp6C63ZRMnCiqp+OPJzM4yJ677yZ+7BhGMkF4Zg2aW6OxuZHixmJSAyleu+M1ho8Ms3DtQi589kLMlMmW5VtwB9zYho2VtZh9/WyCtUGmfWMaY+aPwV/tp7G5kXhXnEBVgJZ7hQFvWd1C1ZQqrKxFeiBN9bRqPEUeXH7JvHn97teJ/v/Y++8ouco73xf+7Fi5OsfqbiWEAKFEaGVsggCBsw0+NmMcCTZgMtiIMWAjARIYTLCNsfGMfewzB8fBQiAwNoNEK4EAYQESip1zd+Ww0/vHb1c1suece+/73rXeMzPea/Wqrqpnh6qu3rW/zzcdTeJaLpGmCK7t4gU9upPd5Kwck4VJmiIyyeq4Dtc9dx2HJg5x3zn3ce6sc7ln6z10JjoZzAxy5TNXkrWyDGQGcDyHgcwAjZFGdvTtoCZYQywQI2flKlVdQT1I3s4znB2m6BSpD9dz3ebraIg0MJARgJ4upRnMDJIupRnIDHBGxxk4io4393aRb9ctFlY5c1hY6sKwH3LWCNUL4J37IToN6hcL+A02i/w7fUDOAbGZcPoPoDgqYNyzJQG8OCzy8ny/rFv2dhfHYdF3hcUFYa0LQxJ8tnedAPDdNwjbbUR8mXjE9y78FXttxoUJBvmuCtULM636eUTx6bJ+OdDMjPsgPCb+5pJMaKCZ8oMrwWiuKzJzMz6VSB6fNlXDpRn+6zQEDDsl6as+6XNw1sMCpF++RY6xeha0LhN2O90z5aUONQiA91zZ/otXQbZfarysvHRyG3EZX04C37FOvN2KJhMBrz0g+9KDArSzg7K+UwA7i66rtLfHGR/P09wcpb4+zNKlbbz55iCHD0/yta9tYmgoS2dngnXrtgDw0EPn0d4e56GHzuOSS+Zx220rGR3NsWHDKo4eTXL11c8SCGgcOiQp5EePJrn77rNYv/4VLOuv8n3+Cyz/t8G153kPeJ6X/F88N/D/3iH9ffn/ZbEcm5HMBD/o+jUjmYl/F1yXl5JtkykWURWFnG1z9bPP0hCJ0JNMoigKKzs6iAYCzKqp4YFVqwjpOr3JJLsHBijYNjHTrKSvlgPNDk9O0pNK8dTevazv6mJadTWGqhIxTZa3t3N/Vxeu53H9kiV8ZM4c2quqGM5mOTQxwR0vvUTENDk6OclQJiNg9/HHxVQcjcKPfiRS7lxONNKRiIDocoJXGQiX6d98Xn7v7xfwPTYm9HBjo5ib+/vFa60oQjsrioD1ZctEe53JwKc/LWMMYyqK+557/MLqqbyCQmEqqPyee4Qsb2sTsB2JCL6//HLJRotE5CU1NooUvJwcXm4Wa2yEO++E2lo5BEURZntgQMBzNCrrNzXJy+vqEiZ7aAhmz5bfHQfGxzyRhZdZ6ExOgLamCjjRVAkqK/upy+y1okIqI+x2+fGRCblVELCcysi4tibZWXlM94Cw3Ad7ZH3LOlYibjuyTvl4gMLoKCOvv46Tz7Pv5z+n5sQTUXWdhlNPpTAxQbCujpHXX0fVdeZcein7fvYzFEXhtNtvZ/Xvfke4uZld3/42+bEx5lx6KcHaWgLV1eKjdl3ZRlMTejiM57pY2SxOsUhhfBynUEAPBLAyGYK1tbzz5JPMufRS9GAQK5PBGh9nMDXGO8OHMTWDqlCctwcPEgtECBomx9W3M5KZ4Intv0NRFFw8XM9lfstsmmJ1nNp2IiEjQGu8niUdJxMyAuiqjuvPykTMIIsSc5hR28rCxBxa4vWc0DgdTdUYTo+z/s//zEBqlJJtMb2mhRMap+N6Ll9d9imqQ1HuffGf0FSN1/v2UXLFAw2eAObqGvn7DffDz74nk03pSThurgA6w4QZJ0AoImD48Lsy0TLjBBjqg+4DsOQs6b32gOd+JdsLhmU/fkI2mg6NLXJ/+hwB28tWwaevQPHgl7/ZyD9c8g/omk4pn6Rnzx+xbZt8scSOHdv5H7/4BbfduY49f9mLomrUzThF/nZ4eI7FwN6X8OwSLXM/SHXiJKzcJHYxh6rpwhDrBuHaBFY+R7i2FUVRce0Sg++8LON0g/qZp0pImqqim2ES81fJRa1dEiyo6SLvfvmPlJudlGgMz/MkcEw38EpFCIZQausFbOs66tIz8NJpqdGqqZdANEBNdIgU3CpJuFkmDcEgimGgXvhJtKtuRV39MchnhbH2PJR5C8G2cbsPg1WEqhoUVdjRLVu2sHfvXrZs2UKhUGDv3r1s3bqVyclJNm3aVJFsv/LKK7S3txMIBOjo6EDTNLZt28bevXtJpVLYtl2Rj/f19WHbNtlstlLFVVZTlBlsz/MYGxvjhRdeAKbSx5cuXUoqlSIcDpPNZgELxStKoBiqhI3FPwdNj8pjM/YLy2xMB6Mdhq6Vz5IaRRy9roSVKRHIPC1A3J30QflaGRv+oIDm99d9BeeB1SOgPb9z6jkvJ0FooU75Y1oHILcVVVWYVl3NDy68kO5UiiufeYZ0sUh3MsmB8XEMVWVxIsHDO3bQEInQm0qx9izhDsr1k5qqoioK7VVVnDltGqamoQC1oRBXPvMMWnU1dirFS7t2sbOvj3f27+ft/fuZe+KJlcCyjngcy3WJmyaqorBy2jRaYjFG/X7spYisuwFhkq9EuqzvRhjsUYS5jiIJ4gsA+/HHebq3lx7b5mdDQ2QOHGAdcNFnPsPit97ij2++yZa33uKDn/0seaTCq8eyONTTw9NvvMEv3niDk994g2xdHXmE+b4N6by+DQhaFnYux4lf+pIwzpddhhmLyd/Gdcn29fHWY49Rv2gR1ccfz8hrr+HZNlowyGn/+I+MvfWWpNr395Pp7iba1oYH7PrOd6hbuJDTvvUtAGLTphGsrcUuFNACgYq6ae5ll2EXCiy69VbqFy3ircceozg5ycKbbkLVNN72GfJ3nnwSK5NB1TzGD46T7E6imRpb1m5h71N7eWXDK5gRk44VHSR7k7QtbSM9kGbzdZvJDmWpmVFDqjdFdjQrahpfztq2tI1gTZAV31zB3IvnsnLNSsyoSbo/zUt3vER+NI+Vs9h4xUYyQxmWXL+ESKN0XztFh4HdA3gZj5UdK5lWNY2GSAPpUpqbnr8JD4+1Z62lN9VL2AiTiCV46LyHuGTeJQxmBnl639Pcs/UeFicWM5obZXHbYoazwzREGrjq2avI2TmCepCt3VuFBbcL2K5NxIxw3XPXcTR5lM5EJw9se4DORCdhI0x/ur8Sara8fTmfm/85Cq6DF52JF2iQ83n9UkkOxxGGOT8kIWOKJqFkakBAYN1iePteAcKFAWGzR14RRjjUJHLwsR2guFK7ZVRB9UJ5/tWrBTjne33fdRmIuSIf77gYTv5HAcanfV/sHooqQLocPvbX7DWeAMnkId9j7V+rOSVhtRVVtpc86rPQyHnLc6lUaTmFKTm5agqDXPBtPu+v8FJ9kO/6k86qAckjwhh7LjTMk1CxYkruL7xabiffkzGRFmGZT7xEpNvBWgHIL1wu6zV3CngOVInsW/WD41QDFq8RuXjnbXKc+RE5plNvFE+2nRegHU2It1szKXlhduzoo729ipUrO7Btl2y2xKc/PZdly9pZu3YLTz21l/Xru1i1aiZr1qxE11WGh3PcfLN8Dzz22AUcd1wNp5zSgm27lXUcxzuG2Y5ETDZsWEUuV/ov1XEN/18Gmv3/e/l7oNn/eskW89z1/I+mAsvOvZxIIPQ340q2zbtjY6zdsoXHLriAqzZt4ul9+/j1RRexvKMDXVFIl0oki0VipoQQRAwDx/PIWxbfePFFbl6+nF7fw/bwjh0VH3VrNMrXNm3iluXLmVVTw4Hxcda9LwBtz9AQ+8bGWDVzJrWhEN3JJN/z1790wQJGs1mm6TrG9u2CPB1H0GdLiyDPfF4AdiAAd9whiPbiiwWR2rbopPv6BI0uXSpArhxWdsstgmgPH5b7990naNXzpIZrcFAev/120XCX6eauLmGsZ82Siq+WFjKhevbtVyubPe44CRNfvFjA8JVXwi9+Ae+8c+xhPv64sNvr1h0bgpZMCmAulQSMP/oo3HqrzCd4nmCjspW8/HY0NU01lMVi8rLuvlvWO+F4h5DhoOAJm6ypkMkfG1hWsuU1msbUh8NxplK+K8Fm/heepso6uiZA2dSnns/khBGHqYqm8nOH+2BGYqqS61AvzEhQsi123nEHJ37hC7zzT/9Ew6JF1J9yCoWxMRoWLQKgMD6OlU5THB+nfsECFE3DyuV44/77OfFLX0ILBrHSaSKtraimieenkFvZbCUYTdX1ShptuLmZ3OgojYsW4TkOiqbh2TaFyUkB5b7WXwsEKGkKbwzs57j6dnKlAnWRavqTIzy581+5bPHHSVQ1MJwZJ2yGCJtBClYJU9MZSo/z011Pc/0HLsHUDP+CXMV2HSxHEvJ1VSWgy/+W43lM5lJEA2E0RUVVVdb98Unmt87mnOMXEzaCPoNtsX/kCCe3zEZXVBw8NBRyVpGqXBYjUiWf99HBqRCziRF4+A44/Qz43LUCtv/4O/jUlwUoOw4cekdAcTAs/uv0pN9ZPQmbfyXbicbledeV8e0zp8LSzruI6R84h98//hgLj+6B1Z+GhhYy6TQts45j2ytbOW5mO6VskmC8nrrGVl57dSctNUGC8QY+8w+f59xV5/CZj59HMN6IXcxhFTISTqYolJOFPNdF1XSpxVFVSrkkIwd20DCrEyNcBa6DYxVFGu7/7ro2owd30TL3LMAlNzFEMF6PpossRHE9FNfF7T6M2tiCp6mVgDEiUdzNT6Oe91GQIm5QNZSyegbwXBeyGT+F0JQjdWwURcXL53B+/BDaV65DCYVx+7pRmlsFzGsS7ue+9TrKSfMhm5bwtLMvQAkGRdpeKmFrGhOZLFu2bGHlypXE43Gy2SyBQIDBwUHi8ThVVVVyLJ7HxMREJcisXB+UTqeJxWJ0d3dXAHE4HGb79u2sXr2avr6+SlDZihUrqKqqQvVDActScsMwcBzpIR8aGqKpqQlN09A0DVO3UdyUf+EbkLAxPAHP9hDodeApwlC7OfFFKyrktoPRJsFnzpAwz4U9EJwPahDsUT8N3ECcxK5UbGWfFzDduEGeG7oKam8UD3b6KZGPNz0qx4AG+e1kaGeglKAhEkEBBjMZ/njoEBeddBKOz0yP5HLE/V7vqGmSed934FAmQ3MsxmA6zUAmw+JEgluuvZanN25kcnSUmtpaguEwP3rhBQa2bePee+9FV1VylsUNN93EJz/9aW794x+p2bmT3/z854yNjhKORgkFg/zbtm00NDSIHcayiIZCKLqOjfRdfwr4NRIytg74JgKsIwi7HQP+gMjClyBy8i6kIzuE+KaH/XVvA8JAwF9v2L99E7gAAdN3ImE6FjL1kQdK2Sx93/42dfPm0bxsGeHmZlTDqNh2CqOjDO3YIRkZCxZg53K88eCDnPilLxFtb8fOZtHDYUZff51AbS1v/+QnnHTZZYy+/jrNy5bh5PPsfeIJ5l52GbHp03HyeUb/8hdqZs+WFH3XZXL/fhoWLqx8J5S/J8rfCeXzvaIo5FMK+fEiudEcbUvbcC2Xvp19tJzSQnY4S9eGLlZtWIURMuh+pZtffepXzPnIHC547AJ6d/TSskgsTcVUUfzVqiKd1h54rkcpW8IMm2y8YiN7n9rL3Ivn8oG7PsCh5w9x0kUnATD4xiDx1jhb1m1h6U1Lic2K4YZcLNdiZ99O2uJt2K6AjvVd67ltxW0cV3scePDexHvcs/Ue1qxYQ8gIUROqwVANDk4cZHbtbDzPoz/Tz4uHXuS42uNY0rYERVHQ0MjZOV7tf5X5TfOxXZu/DP+F42qOIx6MEzEiKIrCV5/5Kr946xds+uwmlrYtxXZtJgoTHBdvQckcgL33wNzbIDpL2FinBBOvQdVc0GNQHIFAg5yaFV2A8tgOkYSP7fS92g9IIrgWAmsSjBphvj1fPu158PsWmPbf4NSHBXR6Lrx+g0jO48f7jznyf65qcl2S6fVl4ZaA41Ja2ORKOJoxJRHXglOPeR64RZFyR9t8VhpZv+yZVjV5rXbBZ8gVOY2oKkwehappsp/yOlrQZ5lLArojzSL3DjVIONrkQdh1H5x+qzDl5YmAl2+FptOkSks1xJMdrJbt/ekaqQWbfq6EouWGxWtdDmF74Stw8Gn48K+hdSlYBRh9UxLHJw8JCG9ZDIVJOLIZpp0tr3fyIHnivDcYIhQyqKkJsmtXPwsXNhMKGWiagut65HIWigKRiImigG17vPJKN0eOTLJkSVslpKyjo4rt23tJJGL09KQ444xpHDo0wYYNXWzYsKqyza6uHpYtaycWC/CfZfl/NdDs78v/+YupG3xlyVQAkqkb/+64kuOwdssWntq7lx29vaxZuZJfX3QRbfE4V2/aRLpUIqjrHBwfZyiTEUY5meTa555DURTWnXUWYT/0pSYYZMOqVSxvb+eOl17i8OQkj11wgczOOw7rtm6tMNkhw6A5EmFWTQ0NkQgRw+C42lp+cOGFrGxv5wq/D7SkaXhLl4rWulzHNTAgzHN1tWikEwlBp5dcIqFjra0SbjY0JGOXLZMLWJiSga9fL+CgXNs1ODil5TaMip+aYFCQ6uWXi6R88WI5BteV/QQCuK53zGZVVRjlq64SFnr9egHTVVVyeO+8I4S5pgkwfvRRIefr6wXfNDbK7bXXyqE8+qi8xDLrPTAgrHcyKbbzadPkfl+fEPmFgoDtm28W1tw0QNH8gI98UUBxVVTej3IXtevKAWnq1E++KJVZmZwA4UJJfvfBRKXKS1Pluf1HRToeDYv32vOmtl/w2e/j2qeC0kqWgHDXRQFO/NKXKIyPM/eyy2hevhwjEqFh/nzsbJbd99yDHgoRTSSonjOHV9euJXXkCLgucy69FM00CTU0EG5qQtF10kePsus73yHT0wOuS8av1lJNk3Bra8WvXX/yyViZDE6xiGvb5MfGCFRXkxscZPe99+L6kyqaBwtaj2csm/RDxMYImwEuPe1CAoZBX3KEnuSwXBSXCgCoqkrIMPjcaReiqxqpQhoFBdt1SObTBHSToBHA1EwyxTyZYp7RzARBI8DbQ4cYSI+hlr3eiTnSaT05xEQ+haaqnNwym7cG3qM3Ocx3nn+CIxMDUg1lBuB/fH/K+3zcXKnimnGCAOsLPyNf7Jt/JUy15wlDfXAvTD9ews0CIZF/B0ICpANBCT4LBMRn7TqAC7PnyvN/3ijS8Ro/diNaBedfLNsqFvifP3iE+fPnMXtWB0YgQrimBQWFT198Ec8//wKh2gSTyTS7du6iJVxAD0RQNAMjFCNcmyA3OSzeacRDPfTuFmGbEVBr5TOkhg6iagZ4LrnJQVzXwrVL5CYH0cwgqqoTqmnBKojkPBivx7Hy9L31Aq5VqtSEqe3T8XQddAPtrNV4aWE41KUfeF84D5BKCrts28KHJCeFfQaYnBCpuOuCqqJEY+jX/SOYAZznN6IkpqEYAXAcvGJRrtnmLUIxTNxXXpIubQW8sRGcjb+GXBZP1YhGo1x44YWVdO7y0tHRQXV1Nclkkk2bNmHbNtXV1SQSCcbGxuju7sa2bWIxYeHb2trYtWsX8XicmpoaLrjggoqXu1z1FfGr6MbGxti4cSOZTKaSRK5pGrquV4C767q+CsMTcJzfLizx8LVyH0dSw+1hGaMGRa5tHxWG2WgWNtor+PVbYQivAGdkioHO7/Cl4YDrS0Zjn5wKSVN877UxA5p/CMdNQPMTAvTtQWHJg4vQArPJWRavdHdzZHKS77z8Mh8/8UQMTSNTKtGbSnFgfBxdVYmbJq7nETVNqgMBoqbJnLo6AppGW1UVnYkEE4UC6x9+mP2HDvHu0BDvHD7MD59/nkQsxuqPf5xF3/42f9y2jaf/7d+Yc+aZxAMBHr3gAr71j//I87t389u33uK97m5e3rOHhoYGyVAqf6YchzTCLp+CBIytRNjsp5EAswamarpM4BIEfH8NyAEJxC99EAHhG5Bqr0Z/3bz/oyFs+ArgOeCHCEhXgdeAbmA3kNR1TvziFxl5/XW8cuOCZYGi4BQlxKvt7LOp8c/TKIpUcAWDZHp7ee3ee8n09lK3YAFv/+QndD/3HG8/8QTt55xzjDd77xNPSFhaMEjdySczsW+fZGIYBuGGBl69+270UEjyN048EQ8YeeONqYsbRUELRwjVRqidXUvHyg7svE1+LE/LKS0YYYOt67aS6EyQ7k+z8YqNxNviXHv0Wum1NlSmnTENI2zgeR5b79sKSJWWa7vipx7IoKDg4bFyzUphsm9fSbQ5SvuKdgZ2D6Dq4uF+ZYP4u4PVQdSIytHkUa5+9moaIg30pnqZXj2d9V3reXrf0/Sn+3E9F9uzGUgP8PS+p+lL9xE1o1iORc7K8ciOR8iUMnh41AZr+fiJH2d+03yu2nQVjuvgeA6GarCkbQlhI8yaP62hLd5GW7yNkdwIl228jEMTh1i/ar0EnrUvJ2/nGc2PEjEjeJ4jwLr7Kcj1g5WWCi3VhFAbTL4loBVF5OAj2yWd27Ok31oLiVe7OCYVXaoJoWZhffUwZA7Brq+JfNzJw4pfS7WXlRGPtVOA+XeDHpF9pA/Ca18HOyMsdKZXarEcy0/1VgRge44AXs8HvqpxLLAupeV3x5ryWXv+uavsr/Z8MkX1JeKK5pPe/sRq1bSpEDQtID/lyq8ymw1T0uxUt2zn1BtlH3ZeJNquAx/4rvRVv/g1YbGNMAzsEPn5mQ+LlDxYK8cYny4stpWT7/DTb4FZHxHAnR8X5juxQo6/HGr24lUyOZBYIQDfKYARxilk6etLE4mYjI7mWbw4wfBwliuu2MihQxNkMiWuu24zw8M5bNtl//4xXnmlm8WLE/zDP8znwQe3V5hpx3FZubKDmTNr6Oiooqurh1mzavjBDy583zbFs20Y/7Xg5n+tV/tfYJHAssQxgWX/3mJqGmtWruTiuXOZVlXFrJoalrS1sW7rVjoTCQbSabp6euhMJIgFAijAhvd1YZcch6hpMpjJEDVNoqZZSf5et3Ur/ek0judhqCqPrV7Nxs98hn9cuRI8j9Z4nPaqKq7atImDExN09fRwaGKCaCDAU3v3oikK+1Mp6Z8tB5E9/LCA4ZoaoWp37BDN9IwZUvI8NDQFhPv6BKmWSvDyy8Jyl/3ba9YIWn3wQQHl8bgkg/X2ynZ9PzXRqKDeM88UxGwY4lnNZiuJZUE3z+23e2zcCI89Ju9rICAsdiAgTPJdd8lmQa7P43Eh1y1LAHEZ+7/+uhDi+fyUuj2XE+V6T4/g/d5eWa+xUdbxbZC0tk5ZzgcGBMwPDMDAIHiFkgBhwxBQC1My7rFJkW6buoDog71TvmzTkKAyVZ1KaTvQLWBZVaGtWU7yxZL8Xh4XCcnjmio92T1+fq3jyguPhORFN9eBaaDq4rtuWLSISHs7ofp69HCY/NgYALMvuYT88DCv3XMPeB6nfvObhBsb0cJhQo2NeJ6Hlckw/u67eLbNvp/9jKbFiwm3tor/b9EiYVVGRnByOVBVGk89FcV/48f37UNRVYK1tQAEa2qYc+mlwig6DqployoKISPAwsTxjGTHKVoWE/k0sUCEgGFQF6oiqJsYms47w4fpmRgiHoqjKSr3vPhTgkaQ3uQwb/bvJxoI47oub/W/h+O5RAMhooEQsWAEz/OYVd/OT3b8npxVJGKGaI7V8YXTP8xEPknICDKZT1O0S5zcfBymbvCF0z9M2AigKgolVYVZJwpr/fTPRc79qa/I3+4frpHPr+tJPdfiM0XOnRqf8lyX5WbP/A9hrj1XPrRLzoZ47RSD/Jt/gnxOPkcXX8YVP/klbdNn0NvXx3mf+CTHfeBsCUJLT/KTTS/wpc9fiutY9L31Ap5rgwJ3fes2nnvuORYuWMQHzzqbG2+4jrM//BmMUBUKHvnJAUrZScI1TeCBXcrjeR6Nc5ajqhq5iX6sQopwXYI5Z34FzQzhlPKEa1owgnE03RRwPjGI69pUtczBymeon3kqiqoxevBVkgP7QFXxFARgZzP+5IH8I6vt08HzcHdshUwaxTCgVMLLpFAiMWGhHQcMA2/fXyThe+uLApCzGZxNvxNJueuCrktImgI4tgSZKQgw7zkCjo164SdQ550Cqoa7fYskhWfSaKoEruXz8h4YhsHExATptITv2LbNK6+8wpIlS1BVlXw+j6Io1NbW0tTURKFQYPJ9nu2zzjqLSCSC67o899xzTExMkM1mWbVqFSeeeCJFHyjFYrFKOrjruoRCIVzXpaenh8nJSQzDIJVKkcvlABesPj+5OyrAV28FdJFvlw4gNVmjEmymxIRptgb9bmpD2G6vJBfpVt/7fNr1MHaP7MPpFx+2M+iz4iNQ2icA3O4XQG4f8i+SXdl24zpQQrgeBPxcjw1dXZXvuWuefZaIaZKIx1nQ1MSr/f2VcM2ibaOqKiU/pHMyn8fxGzTqw2HGczkMTaMxEsF2XZa2tdFRVUXUNHl09WqipklzLEZnIkGqWOTqTZsYyGQI6DoNkQjXbd5MXTiM7Xl09fTQm0qJFQFhl78rr4KbkS7qDcAexA+91f8uX4CEmWWQ3uqnEcAcAG5FwLQKPAZ80l8/J//phBDgXV5/PiJBP4gw2qf5YxYDVbaNFgrR+a1vYVZXs+uuu0j39IDnkR8e5q3HHiM/MoKiadTNm0d+dJTXH3gAp1hECwQ48YtfRAsGUVS1EmZ20pe/jB4Oo6gqc8sBZ5dfjqrrpLu7efXuuwnW1aEFg6iGIfkaCxeSHxnhtXvvlf2pKnVz504dw/AweC6K6gomcjzw4OW7XyY9kEbRFD78xIdZcOkCssNZ9j29j63rtoIHyaNJNl21iVKmhJW3MMIGq9avAuC5654DQAtojB8cJz2URtVVqqZV8eEff5hwfRgFhcxAhkhjhL6dfXiux4U/uJCvH/661Hh5HtOrp/ODC39AXaiuEir20HkP8duLf8vC5oXsH9vP5RsvJxFLsOfKPSxrX0ZQD5IqpnA9l2s6r2EoO8TlGy+nJ9WD53mEjBDrzl6Hruo4nkPWynLNs9fQneymM9HJuq3rsD2b9a+s54yOM2iJthA2wjx+4eOSeO5LxAfTg6DoeHNvEzl2w3IqMm0nLxLvciq4WQNaRHzTelA+dVpQwPPOK8Qz3fYxeOsOeaxhuXRXv+0D93fWC5vdsFy+e/QgBFvkVotA9qicC2Kz4ZQH5TjyAyJxrp0zJcUuy79dy5dzF8W2lDzks94+2Dajfj5MTDzYZUBdnjRVDZ/d9i/WPNffbmkqvEzh2M5rkO2CAOBQo4zbuU680OluCRt77QG59VzoukM81JouHut9T8Gu9eKJDjXI63eL0N8F6T4/xMyWoLPsoGy/+jhY9WPxkds5kZdPHhKGu3nxlBe7lJTjDDUKcA/WoNXOYPnydgYG0tx998sUiw6NjRGWL29nw4YuUqkiTz21l7Vrt6CqCm1tcRKJGDt29GFZLj/84YU899wlPPDAKkxTx7JccjmL3t4UNTUhvvzlP1Ao2O+Th2+hULCx7f9avuu/g+v/hMtfB5Z9/etfZ/r06SiKwhv+DK+p68yIRql68UU+tmIFi085ha9++ct8c8UKzp01i42bNnHTRRcx+6ST+OS55/LOW2+x3k/5vt6/IDBUlYPj4wyk0ziuyzf9oJiHzjuP1lgMU9NIlUpct3kzbVVVNEWj6P6FYpk1X7d1K/XhMOu2bqUhEuGSefMIGQZzqqpQDh8WPfXy5ZL6HQyKN9rz4OSTJRls61a5eJ0xQ8aEw7BkiSDOW24R1Ol5wmg//rhQxaOj8rN9uyDY++8XqhcEmK9dO5US9pnPCDh57z2pAhsakhPv3Xdj2nlmzYT2do9duwTr19SIPLzFt6A2NVXUnxw6JD9XXimHfvrpstmuLjjtNAHeqjpFxO/eLRh/8WKxiy9aJG+BT4qhqgLGd+6UMLMbbhDgXZaLRyNIx/XIBPQOClvsIQfU3gynzhUAXGaeprcIY73/qADxcsCZpkLAkHXKIWd9Q7KtgCm/a+oUC17yA9CqohKUpqmyvSP9U1Jy15NxCOvhFIviO9U09GCQUGMjejhMfPp0Sskkp9x6K0Y0ilMsMvHuuyiezCTvffxx8iMjVM+ezdhbb7HwxhvpOO88nHye/PBwxV+959FHyY+OVliUkddfRw+HK/LFop8zoGgaqmGgR6Pk+vsZemsPWZ+RPmf2Yha0Hs9gZoyaUIx7XvwpBatEc1UdBbtEspBhfstsGqI1qIrCP+36Ay8dfBVVUWiO1bEwMYe3hw5RdCzqIlXc/cKPyRTzwnh7EDaDxAMRbjv7S4SNIL2Tw6z745Noqsq8luMZzUzSmxwmoJuUHIsnd/wrDdEaooGIyMwDIVh8Fjz/G6neSo3LLI/jwFNPSOK3qk6lgCfHYdbcKc/1wb2QnBCAbgamwLXnQSEn9Vx4Iic3A/DUj2BkgMe/cT29v/4Zds8RhrqPcuDN1+Giy8AM0LX5Wb7whS8wcmAnqaGDKJqBouo0Nrfy+9//jjdef5Vtf3qGr15xOYFIjdRhOTah6hbMSDWKoqLoBppfqaUoCgNvv4QeCKGqBlYuycDbf8YqpADxC3uuTf9fXqSUnSQYr8fKp1E1HSMUZfTQa9jFLM0nnsG00z4hvm1USKckzdsQmaA3MS4MNB7aeR+BaEy2H4midszAy2VQIlHxU9sW6kWfh0AQ9byPoi48HaWqBm31x1DMgJ8i7qHUNUByEmfz0yhNrShmECVehdKUwO3vRan0t2poF3wc/YY7UNqnodkWuqpiGAaZTKbCQAcCgYp3f/Xq1VRVVVEoFDBNk/HxcTZu3Eg+nycajaJpGsuXLycajRIIBNB1HV3XWbp0Kdu3bycUCmEYfhDTyy+TTCYZHBxk3rx5RKNRXNdFVVVc16WpqemYYDTTNAFN5N35nUg6+G1yYYwl1Vp6o0i3vSwoQWGkxx+A4ELxSQ9dJww3BiiesNexSyQh3B6VWzwB42VQ7mZEXj7+gHiuxzZIiJrWIkx4brt0Zg/fTMkpcXBSwslUVeUHF17IpQsWUBUIsO7ss/E8j1f9+skVHR20+IB4slAgqGmV4LOmaJSwYaD6Kp66cBjHdTkwPs61mzfTl5bJkKJt82p/P9lSCUNV6erpYSiTYWlbGz3JJI2RCCPZLEvb2uhOJrlq0yYaIhEGMhlSxSKe55FB+qtVpGarAZGCR4HrENAcl3eMwwgEWoHUdTmINHwGEERk4VcBI4hUfBAB0Mi7yt0IMFeRALNeBIDvRLzdIaDBNAnW1Yn14J136HnhBQGygB4K0bBoEft+9jM0w6B52bJK1VZuYACnUKAwNoaTz7Pr298mWFvLqd/4BsG6Oob9a5JgQwOLbryR/PAwrm3zzpNP0rBoEWE/L2P3vfdSc+KJTL/wQgqjo/T9+c+88+STOPk8iqoeU+3l5PM4hRLJ3iTZ4SyqobLk+iVkh7KU0iXG3htj4xUbibXGuOjXF7H81uXYJRsjbLD64dXoQZ1SriQp4Dv7yAxnOOvus0gdTfHsVc8SaYgQiAaYODjBxss3Mnl0EjNqggLTPjCN/HieSEOEvh19TBya4IWbXkCJKDiew+HJw3z92a8TNsJ4eBTtIiE9xLL2ZWiKxnB2mBuX3kjYCBM1o+StPAA1wRqiZpTZdbMZSA/w/MHnGcwMEjEj5K08d/z5DjIlYdTDRpj7zrmPkB7i0gWX8tgFj6EqKo+sfoTPzvsslmtx9aar6U52o6DQGmvlgVUPUBeMozh5FC0Ki/3zvRaGfY8IcNZCwkQHm6A0CWa1fGpevQZyvYAisu8TbxGViqJD05kCmvEk9OykNfCBTdD5IwHgiibs+Mh2yB2WULRcN1TPk3qu7EHxZRdG/Alg2++Wdnymtux/7psCz+UEb88RMGxEfD+0WIGonuU7jVwBpU7R/28Q+xF+QjvxDp/Rdqc82FpAwH004TPhJanicu2p0LSyF7plsfil9z0lHdal1BSYdkqw+DbxWn/guyInr5ohqej5UWhY4LPdvre8dRnE2oTZfuFyv0IsL9s9+LQA9nCjvEcffEi2a1b5CeLDFTbbsR1cFwYHM6xdexau63HzzS/44HoV8XiAiy+ey5o1K8nlLMbHC5Uqrquu2sTBgxPMn99EJGLy3ntjXHnlM/T3Z1i2rJ2HH97B8uWialqzZiUXXzyXm25ays6dfZXw31LJJpMp/qf3YP8dXP8XWD71qU+xdetWpk2bdszj37r9dgK6zt6336brtddYd++9RA0Do1jkoVtvZdoXvkDyS1+i/mMf4/Of/zxhw2Dd1q0sbWujYNuM5vMsaGpiKJslVSwSMQweu+ACAK7atIn9Y2O4nifdnVskcdADLMfhgVWruGTePNasXMloLsdtK1diqCo/vPBCbNcl4Dgo69cLsI5EBGUWClK55TjyWHOzMM1bt4qE++abhVneulVA8NVXy+3u3cJoX321oNHTThM6ubNTwHiZuQZhqd9+Wx5fsUKQb0+P0NBl+tjzYHycvBmnWIK1axXmzRNs6Vdgc+iQKNi3b5cctHhcVOqDg0KGt7YKZp8+XfD/LbfISzJNAcsgcwSqCrt2ySHHYrLNgQHZpmXJPk8+WR7TdQH4hYIw4dEYeLPa4fS5ktxdLEEqK2A3FJiSd/s+UjTtWEZbVUXOjSey8LIvW/MfV5DxsYiAZz+gjIApwLpkTXm2e4cE5BdLU8nlho7rOhTGxnj9/vuxczk8x8Fz3QprYWWz1M2fj2IYeK6LHokQbGj4m4AzVdOItLaih8MCjoNBzKoqkZ6rKt3PPSfjfJa6YdEi3FKJkddflz7t6mqcUglF14k0N6MoCuHmZupOO7USEDianURB4eTmWUzk03z+9A8RNEyCuslYLsn3X/kVg+lR3hk+TH9yhOs/cAm//vx6VEVlz8B79E0Mc3LzcYSMAPWRajrbTyJkBNBUjXeGD9OXHCFbyrPuxSfpnRxiKDPG5n3b+OddGwGPhmgN81tmM55L4nken120Gs/zSBcleMdxHUmm/sxX4ap/hI7jfHmDAhdfJpUgiiJS8V0vi1daVaVX+fA+Adi19cJqB4LwL49DqSCg20NAtab7Sd0qfPzzMDkqAP2U5TA2ICA8l5P1Y9X+f7xCy0kfZM6ZX8ZzLPKTA6jl+ivXlRAyTSU73oeVmySfHAVFRcET73U+ST45TCk7iaJqtJz0QYxQFXowzNih1wjXJjCCMbRAmOz4AFYhS92MUzBCMTTDJFKbAGDs0G7CtQl0M4Sqm4RrWsST7HkVptpzHJF7Z9MVBtrt6/aP1ZEe7OQEasdMAdPLz4RIDLVjJooZkH9gn3l0+3rksx6O4Gz+V7zJMbzUJErbNBlnW7i9RyGfRUm042UzokBMTYrsvHw14rl4isL781EcxyEcDlcqumzbpr+/n2AwiGEYbN++vRJiNjExwcsvv0w0GkXX9UqvtW3b1NTUsHr1alKpVEUCnkgk2Lp1K42Njdi2zdjYGIODg9i2jaIomKZJOByuyNAFlNsCboMLxHNde73IwgevFGm2PSrAVwlJCrjWBI0PyIX12Pqp4DH7oKxjHYbm74MxU4C21gj2GARPEfl4aLnv85yAujVgT0DzD6DqUgHd5bAzv3u74Bqsf0WUVyFdJ1Ussq2nh6xlcfMLLzCay7GkrY3RXA7bdbFdl2ShQF04TMayuO6556TP2vPwPI+grqOrKpbjkLdthvw6re5kkkOTk1z17LPMa2xkOJutKMDaqqq4dMEClrW3s723l1NaWrhk/nz602nO6OggHgiwoqOD6mAQVVUZRQCwgYDkm4EDCLh+GKnh6kYA8GkI0H4PuBYB1LWIZzqLgOO1SCiawVSl1zUI0L4eYbDDiLx8MQKwm5BUcgsB79m+PnZ95zuEm5pY8eCDNCxaRLqnpxJktuimm1B0nVBjI5133cUHfvhD6ufPJzc4SN28eeSGhuh54QXeeOCBCmNdP38+mb4+Xlu3jsLEBDUnnICq6yy86SbqTz0VK5dDDwRYdMst5MfG2HnXXbL/732PU269FdUQ+fYp3/gG0z/0IeZedhkeoIcCxJpiWDmLZ69+FlVX6VjeQTFZpGt9F3uf2kvXhi6mnTGN6hnVBONBrLzFM199hmR3knBtmL4dfSQ6E1QlqtACGsneJEtvXEp2JEukIULXhi7al7cTa4lRypTo6erBLti0L28nN5aTdHFfgm55Fo7n0JfqY+1Za/HwuGrTVfSkesjZObZ2b2UwO8iC5gWM5cZoiDQQMSJkShkc1yFkhBjKDGG7NkvalrDv6n20xdu4YuMVDKQHuPusuwnqwQpgVxWVgxMHOTp5lKs2XcXBiYMU7AJXPnMlQ5khrl9yfSVU7bYXb0NRFNqiDSilSWGoMwelSsspwMJ1AtqslDyWPSwS77EdkDsqbHZhQH5/7VoZq6jiSe74tHRUlxPDY7MkKA3AyYkcHBdq5k3J0feuBSspvu2990g1WH5AgtC0sABT1fdIRxOS1l01E98ADlWzoPl0X94dl32puoDtyUM+YHXkGOMdPrhW5PkyAw6QOirXKvxViJkZm9p/uc4r46uRPEf2v+pHMiFx1qPw8Y2w+B8h3AxffEfArxaQcWc9Kuv/6RoB6EZY5OAoArj1oEjZ/3SNMNflBPBMr7yO028R73XDQmG3/3iFBJud/X0YeUPY8/ex2VppDPBoa4tzyy1/ZHAwQ2dngvXruwiHDeLxAA89dB5tbXFSqSKxmMnixQkeeGBbRQ4OoCgKg4MZnn56H/ff34WqKjzyyGo++ckTufXWP9LQEOaHPxR5eEdHFaapUirZvPvuGF/+8h94992x/9QA+++BZv+FlunTp/P73/+ehQsXks1maWlp4dCRI/RbFmu3bKkEju176y2+/PnP85stW7hn61bWrFzJklmz+N2zz9J6/PF0VFVRchx29vXRGo0yu66OkuNQcBzWvPgid591Frbr8pfhYWbV1OABBcchZhjkbJv1r7zC+lWriBgGmqJgex4lx8FUVbpTKda/8go/Of98zFIJxbIEbba3C3Itp36vWye1XL294oV+4IGpxLAbbhBz82OPiVb63nsFdEejclE7OSkA4P3baGsTE/O2bbKPVErQrOdNBaht2DDFjgNpNU4qpTA4KGA5mfzbfLVoVPDL0JD8LFkiIBhkF7feKti+nJu2fj184xvCQO/ZI4AchGivr/dDtjMVpSnj42JBj0REdW2aU33ZTQ0OWrEoKd0dLVKhVShN3S+WxBvdUA2ONxVO5vr+onKwWdlr/f7QMsUfV66xsewpuXl78xQQP9gj+zJ0WbcqKuP8YDXLKrHjjjskyGzRIt558knmXnEFofp6FE2CowojI+ihkEgKFQXXtsn29fHOP/0Tcy+7jGBdHbr/N0FRyPT0sPdHP+LEL32JUH09RjTK8Kuv0rBokfgax8cJ1NbiFotooRCuZTGxdy+18+ejKIq8JsfBtW3sSJDX+/ZRE4qRLGRY2DpH/M3Am/37aYjUUheJc9+f/rkSIvi50y7k568+w53nXS6stKIQNgKSNKyo2J6LrqoSZJ8c4ae7nubaMz6DpmgoCqx+4ho+OOs0vnn2F7nnxZ9y85mXMpFPMZKZ4PiGaWSKOSJmiGhAqrz+MniQ+nA102qaCY+PycRRMCxA23VF8l3bCOPDUNMAsSrpoT73UwKmj743FWJW0yCg+/yLAU+811W1YFuynY7j5H3O5yDkv+e/+2cB74oqn5VSQT4/v/4JnPcpnJa2Y4LHdDNEPjVKqKoBRdVRFMhN9KOZIeyiSLutQpqRAztpOK4TI+DL7lRtCuQ6AvQUVcfKp1A1Az0QBkXBc+xKlZddzDF6aBcNxy3GCMaw8ilGDu6kfubpwozjobqyTcXzxIpilYRxzvjd1JEo7rZ/Q11xNoTCeEP9KFXVuFteRF15NoQjeIP9UtvlgWdb8vo9D/f5p1FXnI139CBezxG01R8XkOx5oiQwBGRjWWAYUvGlKBK059p4mg6Og2WYjI2NkclkiMfjpNNp2tvbcV23AnAnJydJp9O0tbWhaVolxCydTlMqiU89m83S3t4OQG9vL42NjRiGQS6X48c//jGf+MQnaG+XXm3XdXEch0KhQDgcxrZtMpkMXV1drFixgqNHj1JTU0NVVRXVVUFMLYfiDImEu24NKGFhr9Ckcst6T+Tgep2w2p5FZX7fTfonujv8QLIvQNMD8hlUAjB4AzTdCzjCjhttYPVK8rjhTxq7OenTrrtZALxigFuA4ZvJ1j9ByQXHdZksFGjwfeUj2SwThQKjuRxL29uxHYcdfX0sbG5mNJerBHECaKrK/V1d3HfOOYQNAwW4+tlnuX7JEo6rreWqTZv4/oUX0p9O86IflKapKrqqMprNUhcOY7kuuwcG6EwkUBWF4WyWqGkylM1Wvms74nF00yStaTjANxBg/W/AaoRRXocEk7UgcvEHgDUIOK5CJOGvIOC4GQksKyHe7KPAdxDJuId4s4MISx73xyqIH3sCAef3A09ks4y/+irBujqMWEysNIrC7nvuoebEEyshZ5UgyUgEFAUjGiXT3S1hZZdfjhYKEaypAUVh5PXXCTc1kRsaInP0KM3LlxNuasIpFiVo0nFQNQ3HsvwwQ41sXx+F8XEaTzsNK5cjPzxc+d6IJBI+GFLZdM3zLL1+KcmeJP/jQ/+DuRfP5UOPfwgrb5HuT7Pz0Z2sfng1nuORHclil2x0U6cwUSA7kmXaymmMvjvKtge2sfL2lVR1VOFYDv27+mle2FzxZE8cmmD7d7ez+pHVuLZL/6vyvB7UcS2X9FCaaFMUNariaA6HJg6xoWsD951zH47nENSDmJqJ67rc+PyN3HvOvTiuQ6qUIh4QYHjLC7ewYdUGTM2k5JTYM7SHpe1LsRyLf/nLvzCzZiat8VZ6k70k4gnu77qf+865j7ARpquni0/96lN8ZM5HuPMDd3LS909i42c20hZvqxyHqZnoqk5QgWC+GyXcJr7ohuXQcIZIuU+8RbzTPb+RJPB5dwrYfve78nugXhjm7qfgAxsh3CZsdt1iwBWZ9zv3S8BZuAOcrA/AI34gWF7qvvL9UL9EJs/yw5J6XR6nIAnljiWA2Iz7gNY/p5Yl3pXAMd8X7RQEHEcTwh6X0hCfge8bEJBcDi4rpaaCypw8lW5q1xGwHU0IUFc1/zqpNBWwpgWFTU4dkXqtaEKk3523CVs+eUDuL14j+y+z504RUn0QbZbDN8JybkwdgR13C4DuewVqZguILiWFlbZyArbNqPRed90hzPici+GcH8rzVgYirXLs6aNk6s8kV3CZmCiQyZSIRk2qq4MMDWVoaIgQj5ukUiWGhrLcc89WvvnNFbS2xhgYyLBu3RbWrFnJzJnVZDIlgkGdfN4mGjWxbRdVlUC0w4cn+e53t7Fhwyo0TSWZLNDcHEVR4Mtf/gNPPbWXiy+ey49//OH/sCFn/1eBZn8H1/9JF8uxsRwbQ9Mr8vD3g+s9e/bwkY98hE9cdBH/9NvfMmHbfOALX+AHV19NOpXi3NNP5/Ff/IKzzziDP2/ezMWf/CT/81e/4sIPf5i84zCRz1MdDOIBQ5kMd/vgvLw8uH37MQA6WSwSNgyufOYZlvtdn+u7urhtxQr602kWNjcTNgy2dnfTk0zyuRNPJHzoEMratcIYj40JRRsOCx38qU/BRz4iqV87dwqDff/9An7LSzQqSLQccLZw4dTjXV1icj77bEGm3/wmPPKIAKuDB2V8Z6fQyyCM+cknC6LdswcSCVIdc3llm8ZJJwnAzeUEy2QyUzVZiiLWbz+AmjVrJM27jAV/+UuxhX//+/KyGhpEMn7aabJOKiXbKogymUhEJOC5nCjdbVsO8fBhmXso917rOoQDDup7R4SJPmmWAFsP2XA27yd7eyIF7xkUEKyqkgReloS3N4OhCRguh6GV08JV5ViwrqqV/mFAJOC7357aN5SJTFkcB8fzSB09imoYvPXYY3Q/9xwfevZZnEKB3MAAdX5/NYAWCLDr29/mlG98g1fvvpvu556j4/zz6bzjDl5du5YTv/QlgnV1vHbPPfT9+c+sePBB6hcsQDVNMr29vPOTn7DwxhsFpAOKruMUi4zt2UO4uZlATQ2777uPuZdfTqihAVXXcQImPclhhjJjLGg9HoCJXJKaUBxFVUXKrii4nicvy5dRe56HrmnYrsue/v00RetorqrHdmzSxSyxQARTM3ijfx9HJwZY2DqH//7aJq7/wCWVoJyoGcJ2HTRVZSg9Tm24ioHkKCO5CU5unoWpGYxkxgmZQQ6M9rCgZTbR/X8RgNzYKh+ObEpAcC4r3dfP/0YSwx0bjuyHmSf6QXPjwjb/9qfw2la48wcQjsqY9pm+TNyToDTHkaqocpp8clzAe/nixhW5PxMjEAzh1NTR/5c/EapuJtYwXZK8UXz7cYmhd7dIVVYhK4FnqioMMgigLn9sfKY7PzlAMN4gHdVeOW/GITcxiB6IYIar/OskBbuYJTNyhPzkIK0nn03fWy+QGjrI7JWXoplB8Dw0NLyJUdytf0JdcRZU18rRKfIZdjb/K0qiHWXWHJSIP1tWKuF5YoNQNB1PUVFsq9Jz7fkTNN7be1BOmo+i63hlAI2CVyrg/nET6pKVKHWNeBmRonipSdREB56uo5RKYJh4ioIFlEolTNOsJIAXi0X+9Kc/cfbZZ1eSvAEKhQKWZWEYBsFgsJIEbhgGuq6TzWYrKeGu69LX10dVVRW6rmNZFl1dXZxzzjmYpollWQwODtLa2oqqqjz77LO89dZbzJs3j3PPPbeyveq4jqZq4BUB1f8f18FNy4/WBLjy/PDNUHcD6DP8i2Hfz4gH2CLnDi2V0LOxdSIJN2aKfHxsAzTeK9tWTNmeEvKTxqOQ/v1U3dfYWgH5xgzyjsl7E5P0JJMsamlhIJ3mwe3b2bBqFQoQMU2KjsOuvj7mNTYSCwQo2ja26xI2TTRFIW9Z9KXTNEYipEslqgIBfvvOO7zc3c3jH/qQeI9tm2SxSFMkQk8qxYPbtvHd885D9ZUHt7zwAneeeSYxP4kcIGwYdPX0cFJDAyFdJ2QYHA0EKgAYBERH/Hfpq8BvkPTwFYj3+lP+/XZgPXAfArRHmQovw99GAWG9fwssRNLG40haeBNwPOK/Dvj7ewWYBzQVizjJJIqmoRkGrm2DoqCaJumjR3nnJz/hlG98Ay3gq6L8iUoFGNm9m23f+Abn/su/YMbjjO3ZQ7CxkWhrK26phB6JkDp6FCMcxozHKaVSBGtqsItFJt99l9q5cyWhH6luNKJRjGiU3NAQ2d5eqmbNQvdtQ+UWiUIughEOEmuNke5PE4gHcB0X3dTRQ7qcog5OsHXdVlZ8cwWx1hiZgQxb1m1hxZoV1MysId2b5tCLh5h13ixC1SF6d/TStKAJVVUppotEmiLYeZv0QJpYS4xiqkikUSZuerp6qOqoonpGNa7t4louVsjiiueu4IyOM/jYCR8jXUpTFahiz9Ae5jfNJ2yE0RSN/WP7ua/rPm5ddisza2eSLCTRVZ3b/3Q7a89eW2G0b/3jrdy07CZm1szksj9cxk1Lb2I4O8zJjSejqzq3/vFWbl52M72pXqZVTaMt3sZQdohELEHGyhA2wjiuw1hujOpgNXFNxXz1q76sW5PJsbfuEMDccbGAaJBzfLgdcGQSq1x3lT4olVoNy0XGbSUlVbx+CaCBnRK2NdggfdZv3AJzrhd5uOFP61gpWc+I+YDaE3l4zSmy70AdlDICeDN94nUGYZwzfRImpig+U42cr4spGN8HoVo/dVvzk8cdsLICwDO9PnA2fMm55/u3A/5+pvmAmqkleVgAsRacquGy85LmfeqNU97nORcLk11OEc+PSNBY8oj4s0+/RVjs1NGp+5FWYZ4n3oPp50G4yb+gzMCWW+HU66F6thy/GRPPdm5QJOeLbxfWOzsgsvHFayDaDk6BPDHeO5QhHDZobIxgWS6GoaKqCrbtyvesB1dcsbECgh95ZDXJZIHGRsmGOXRogvvuk8TwSMQgEjFJJotUVQXIZktUVwfRdRVNU8lkSigK1NaGAY933x1j7dot3H77SubMqcc0tcrbWSrZlEoOpqlhlsme/0OXv4Pr/+RL0S5VQHS51sdybA6P9/Pj7b/jK0s+zgw/2Oz94Hr37t2ceuqp/OTJJzntggu46Wc/Y9c997B9926C1dX88umn2fjEE+SzWZYtW8af//xnvn333cxetoyeZJJEPM79XV2Vi5O+dJqoadISi3Hts89ydWcnHVVV7OzrIxGLETFNmqNRDk1MENB17njpJZ7au5dL5s3j4fPPx/E8dvb10R6PM626GjOfJ3TllVM08I9+JAjyrwF0LieF0KYpYCKXE3n4LbcIUg2FBN0GfEns8LAkfgWDot3esEHo4lBIUKrnyXhdFwDe1iYo9sABGXvffYKMx8bIN3aw/7DBunUKa9aI7bvc6AVyW10tm7r+egHVpimb37NHPNeBgNRohUICpJNJObxYDPbtk0N76CE57PLu4/Gpa5dXXpF5hVBIfsbGhIhfvBh0zaXKKEjXdTQsMu0yiC57p0ESvN8+KCA4GhbwpGlTsm7DgEJxKuX7/cC7DKjLyWyF4tQ+guZUhZeiyDjXP9/4VV2O41BMpdACAXIDA+z72c84dc0aSaNVVZx8HjUQqLDNdiaDY1k4xSJ7H3+ck6+4gkhrK1Y2i10qEaypwXNd3FIJ1TRxLQs9GBS2e2CASEsLnuMw9tZbhFtayA0NUXP88RKYo+u4ti1hZ64rzHXQ5PXB96gJxfjZq8/w5cUfZTQ7yfEN0wgbIsFzPY9UPk0kEOYvgwdpjNbSEq+nd3KIf9r1B77Y+RGiZpCgESSom3jAZD5FPBDF1HWG0+N8v+vXLEwcz8LWOfzTrj/wpcUfpaO6SSbk8ShYciGuqiJ7yxZzVIViaIqKhyce0GKR8OiQgOJIVOqhwlEB1ZYANawSVNX4TIAGKMICHDkAM46Xx1UFCnlhpD/2eQHnnieMtOmb/h1b1ldVueAY6Ydn/kUqu2ob4L8/IsFpmTRObR2uqmAVsowfeZ3mkz5YYaAVRRW2GCqTE65d8qu2NKmDcl08z8UqZH0WuhMjGKOUS2EXs4RrmqcueFStArSNUBQrn0EPRDCCEVzHklRxf8knRzBCEYJmDOe5p1E7l6FU14Km45WKwlCX+7vTSdztW1BXf0wmVXzJtgcycWGV8NIpCUErf979SRImxnG7XkJd9SEUXcftOYISjcvaZgAlVgWeVIEpkSheNoMSr6qAfbeqhrFUimQydUxdVjgcJpPJEPWrhwBeeOEFli1bhmEYWJZ1DMNdZrPHx8dpbGxE07QKcC4UCkQiETZt2sSSJUsq/u1IRGp7ysy3ruts3ryZ8847T4K3PA9VVQmYLop1AKUMhpUIaPWAjQiKVQkdM1qFqdFb5X0qM83GTPFJ53cKE21MF3l3GUCrUchtFak3KrgpkYe7OVBD/v2YsF1K6Ni6rubHyNg6Vz6zmXvPPptoIEDJtulLpWiMRitA+Y3BQeY1NjKRzxMyDBoiEVRFoaunh4ZwmKZoFNWfSLvh+ee5Zdky2uJxhrNZQrpOYzTKgbExhrJZlrW3U7RtLNdlLJejJ5VicSJBQNdx/Wuurp4eWmMxZtXUcHBi4pi6ylAohKvrlKceyix0CyLxLn/2tiPMcw8i5b4OkXh3IHLxdmAmIi/vBToRljqLyMv3I0D8FsTDvYdj675mIX7uMNCRy+FZ1tT5s7UVzTQFDKfTDL7yCjM+8hEyfX3khoakStHzGHvzTaqOPx7NNHEsizfuv585n/ucVCfqeoWVtvN5nFyuwnCHGhoqkm+3WESPRPAch9E33iBQV0d82jRcxyE3MHCMUqnnhRcYef11Ou+4i2JW3uvBNwZJnJ6gkCxg5S2qp1XjuR7Z4SyFZIFgVZBIY4TurVLJdfFvL6Z5obCIZtSklCnxws0vsPjaxdSfUI9dsCsMNYAe0kkeTZLqTRFvi5PqTZHoTFCYLBBtilLKligmiwRaAmRUAbUAo9lRasO16KpOqpji1j/eyi3Lb6En2cOH/seH2PiZjbRXtbN2y1puXXYrTdEmTM3Ew5Nbz8NyLUJ6CNdz0RSNdCnNnqE9LGlbQskpsXtgN8val2E5FgW7QN7OUxuqRVWkHtJyLIpOkWwpy/RYM1r2IMq+h2DRdwWgZg5L+NjC+yTBWzHkf9qzYXQ7BJog1CIgVDEkjKs0Kd5rXAncKoPo6EzxU+9dJwB+9JUpFjzUIqA3tV/2d9I3xds9+YbPZBuidlFDMi55SOTUjYvk/96zoTjpe8MDU17rcn2VW5L/Gi3gS8L9x/EEJOdHJOgs1i7AffLgVN2XIRPCFeZaUQRIgwDkquk++24LMLeyle8ZXr4ZTr1BgHDyELy6Ac7YIGxzKQPv/RYGtsGZ35Pk8INPw4d/KxVbqiYTA6N7BGyXgXf/dtlnYsWUra+UnmLZyxMEuWEIVMv7EmmGif1k3DoGszGamqLYtsvYWI6qqiDBoI5tu+zc2ceyZe04jsfISJZCwSYU0qmrC6PrKvm8xe23/4krrjiN6dOrCQQ0DhyY4J57tnLbbSuYObOGUslB0xTyeZvrrtvMmjUrOeGEOkxTp1SyKRYdAgH9b4B1GXi/f/z/qcvfq7j+Ey9Fu8SR8QG+/fwTHBkfoOhX1FiOzY+3/47N+7bx4+2/o2Rbf7NuR0cHqqry+Usv5YS6On59zTXMnDmTN/bsIW/bfOHjH+eFP/2J3bt388ADD9Df38/MOXPoS6VY1t7OjOpqHvQvsF4fHGRaVRWqonB0cpIHzzsPXVW5+tlnaYhE6EunqQkG2drdzYzqalpjMdasWMHGz3yGR1avpug4XL95c2WsqigUNA33ttumEr4V5diwsZtvFsTpy8s4cEA6sMo1Wz09cvGfywna3LpVUG2ZUrZtYbBvuEHA4+ioSDMzGenCKtdv1dfLNh97TJBtJCJjIxEsR2XDBoXlywXHO45IspO+wrG+Xjap6wKQo1HJSAuHRe7tutIAtmuXrBsOyzxB2WoZjcocgWlKaviNN8pjrivsdqkkh9jXJ/vPZKZU8tddB/mCCsEAXlXUr9nyg8xUX/pcrtEKmBJuVhUFPJGKl33Z+aLIxzVNkr7xBAXN7hDwbAoDwIHuqXFt75OFg8/0WVNBabYjoNtxKhdbR595RkJu1qyRwLE33wRACwZxikX+8oMfkOvvZ/K993DyeaJtbXTeeSfRtjbyExOgaTi5HDvvuINcfz/j770nDIvP9L358MME6+pQFIWxt94iWFdHbmCA6tmzKUxOMrZnj0gQDQNFUSgkkyi6jobCosQcImaIU9pOYDQ7ybyW4wjoJtlSgYJVQlNUaiPVOJ7L8Q0djGYncD2XsVySS0+7kNHsJHXhagKabFsB6iPVaKqK7bo0xuq4fPEnOG/O0koq+c92bQQgZxXonhhk/Z//mfFcCl0Vz2zQCHDviz/l6MQAuVKBbKmApukCpktF+MVjAoYPvyvy4/Fh6amuqvG9cyU4sFeSxX/xGFRVy2O/fEyAdTAMF18uHz7HFulyIQ9jQ1L3pWkCxEtFkYgbATjvU8Jwazp89ioIhnAbWyjZBRRVY+zwazTOWY6igOs6eJ6LXRJOTWbLRcqt6KYEjamaT4arKJrB2OHXSA0dxMpnUVQNMxwnGG/AKRVBgdzkIFY+6TPYIQHWZgi7mEXVDDQzjF3KM/jOy3ieJ/LzfIZCIYV63oclTK33KNgWihlAbRfZnmIYuDu7UM+5QI4TRSZfervBtlEiMZSqGpTENLzJ8felhDuSQp5JCUPtb19pakWproFYFe7Lf8SbHANFRU1Mw92xFaWpFXQDpWMGXjqFo6gkkykSiQSGYbB06VLS6TSqqlLrp9y/+OKLeJ7HWWedRSqVIhKJYBgGbW1tx1RmlRPANU3DNE1aW1vp6+ur+KlXr15NbW0tmqYRiUTo6elhYmKCwcHByt9p9erVFY+3pmnyN8NGsfrFR623gd4EXh7yu8Rznd8hvmq9TYC1mwIl6Cd5h8VjPXS9eLaNDsCCwutg9/qd2baEnykmOAN+Yni/BKVV7g8KqLeOyP3wCmh6GABTVdiwahVj+TxXb9qE5brMrK2tyLtdz2NeYyOmptEajxMxzUpuSGciQUsshq6qJAsFUsVipVoyqOv0plJE/PNMLBCgJRrl8o0b5XHDIBGPs7StDdsH1Z4nE3LL2tuZWVOD43m0xmI8uno18UCAVKHAgOPQjYDqQwhzPMDUBZuFJHwvQ8D1GQjT/BgwG2GjOxEg7iDAutF/3EN81y7CWD+NsN06U17rmxCW20Fk5X7RHrmBAV5du5Zgba2A5XyeV+++Gyefp+2ss8gNDZEbGKBm9mzSR4/y6t13U3X88ejBIKNvvkl+ZIS6efMojI2RHxnh1bVr8WxbQizr6siNjND35z+TGxwkPzLCzjvvJNffj5XLkenuZueddxKsq6Pgt0momkawtpbmZcswYjH0cJjpH/0oc7/6VVxP3i0zatK0oInnb34eI2xQ1V5FKV3iueuew4ya1MyowYya9HT1kFic4Mq3rqRjZQdGRL7Diqkinuux5PolxNvilDIlNl+/mcZ5jWSHsmy+bnMFWEcaIpXbzddvriSEe65Ueim+bCtnST5JY7SRol0k5QdodSY6WbtlLZ2JTi6Zdwkrp60koAWEwa6ZSdgIY2omKiolp4Su6gS0AOlimq6eLgp2gZgZY17jPDKlDGP5MRYnFnN08ig7+nYQC8SoClbR1dPF0cmjpIopvrrpqwxnhwmbYQbTfSj5fli4Xs7vw13SZX36D6Raa+cV4sV2bQGd9UvAiAvbrGgCrMd2iJzac6TCC8Rjve9BnzEOwkm3QjgBM74Ap/9QJOQocs5871Gp8Aq1iq+7bqnIuj1X2Omy9DvaJmC43Gmd7hGZuBkXFtqIyON+Q4V4pANTE7GlDBUpXdVM8W1HE1Tqt+LTBagbEanUci0BxI6Er5I8JJLwqhlU/NpOUdbPD8NL1wlg/+B3hbHO9gs4bu6U11JMibx79ifgzEcE9K96HC47KizzwDYZZ0ahdYWsf/BpYaaP/5S8/hcuF081qrxXqj4FrBVd+q+HdovX23Mh1oEWb6yEkY2O5shmba6/fjOZTIlCwWbp0nYOH57g+uufo6EhTEdHFXV1YW64YTP794/hOB7f/e55TJsmHdeFgs0992yt+LELBZuvfW0TR44kCYWMSvJ4sSjKKtPUicUCxwBrgFLJYe3aLX8z/j/q8ndw/R94sRybn+z4PZv3beMnO36P5Ug4gKHpla7rL3Z+mJxVrDxXXurr6zn77LPZvHkzpq4z0NPDkSNHOPmkk1CAgYGBShLtd77zHT545pnMmjmTpW1tFG2brGVx/ebNjORyzGtsZEdfHzXBIEFdPLrlbuuHd+xgZUcHiqIwr7GRV3p6KNk206qrOaWlhaFsFtfzWNrWxgPbtrGsvZ1DExNc88c/Upg5E+9HP5KEb88TFvmWWyQVrLNTPNOOI/fXrZvqrb7lFhlbpoMHBgRxXnWVIND+fonszmYlWnvnTgHhXV1TNPPQkAD0664Thvv++wVUX3GFrBcOo1kF1q+X3LPdu6dk4PfdJ79r2pQH+rrrZNednTJmcFAOfdo0AdrZrBxeb68w04WCzBfousjFW1slv+3yy2U7uZy0kbmu7F/XZd5g5Uphr9euhbpaBwpFlPf3TQdMGaz4v78/AfxAD/JFE536oFRF5XlTlxfkAe91C+j2mGKmYxEfXKugqxVmurIETAHklW0J2FdUlYU33UTbWWdJLZJtE00kaPAl/IWxMfA86hcuZO8TTxCoqWHvE0/gOQ7FyUkBmjU16MEge3/0I0mL/elPaVywgGxfHyO7d+NaFguvv14AkWXRcMopxGbMoOHUUzFiMUK1tVTPmcPu++7DSqfxHIdAVRVOsUhxfIK8VSQejHDBiStY2DqHiVwKTVExNAki600Oky3leWfoMKZmsCgxB1PVOaFxOhEzxAmN00FRKDoWuVKB0ewk2VKBvFXk7hd+TO/kEC1V9ZUu7UWtJ/CNs7+I7bqoisJ/f20Tm/dtYygzxkBqlPV//mdGMhPMb53NWC6JqUt6sa2p0jO96V/8wLL/Kfef/Z/Sda0oMDkO//1hSQVPzJCxb2yHiVGRfH/ySwKU81n4zZMyI64oPvttyQf601f4DLErFzpmQOq86hplf4WceLoH+/DwsPIZAFpPPktqX/7yJ6x8Gs/z0AJhXLtEKTtZSfjGdVHKCa14FY9y0wkrmb3yUiK1rXieR25iEMfKo5khPxgtgREUwD12+HXCNS1oRhAjFKXvrRew8imsfJpQTQsAdilHqKoRq1gUBj2VlATwZ38n4WOlIugGXqko4DuXlaCxiVGcZ3+HEpXJKGfjr/AmxlBUBXfrnyQILZPGeeY3kJwUkK5qsk5jC+SzkjKeTqIk2nG3vCihZbqOuupDkM/ivrQZpWMGSnMrSlZ81n19fQSDQYLBILFYDE3TsCyLQCDAeeedB8Do6CgdHR0ARKNRent7SSaTuK7Ls88+W/FRDwwMMDExgaZptLe3V5LCywx4b28vpVKJtrY2DMMgkUigqird3d2M+cCmtbWV8fFxent78dDxggvBGZVeaTclF9Hh5aB3QHgZ5F8VoI0Lo98S2XfhLfByYPX4oWaK9GTntss6Roew1oPXCJhGkQC0zNOSGI4LShxqbwJrGJn8MyXwzBoCuwdy2zFJEjE0+tNpvnf++YQNg5LjoCkK8YB4/qqCQQYyGb62aRP96TSdiQTru7qwXZfrNm9mKJMhEY/THI1WqiW39/bSGImg+4ngUdOkKRpleXs7I7kcedum5DioilIB5lnLomDbDGezlcqv/nSaq599lpxl0RqPk9N17gfqEb+zgXRURxEtwCRQLa+eaxF2OQNcjoSe1SEXdy3+6Xclkvpd54+7CUj79/cA/4iw00EEYI/6+8J/vIhMCux94gn6/vxnCuPjBGtryQ0NVVK7FV1HDwZpOOUUrHyefT/7GXMuvZTi+Divrl1LzZw5hBsamP7Rj9JwyinkBgelVmt0lJ133knqyBFq5sxhxYMPUueHoJ34hS+QGxrCjMUqPdjv/vM/03jqqXiOg5XJMLF/P9POP59gdTWjb7xBrr+faGsCz1UYfGMQu2BjhAzOuvssVF3FKTqVVHBVV+nd3kt2JEticYL+Xf2EqkUb4DkeiqagqAqBeICqaVUM7B4gPZhmyfVLMEIGRsRg6U1LhalenCBYE6RjeQe5sRxLblwCgJWzMKMm5333PAiKEilZTJK1smRKGV4beA1TM4mYEc6deS63r7ydkB7i0QseJVvKoikaM2pmkLWy3LD5BnJWDsu1MFWTdCnNQGbAv76ax1XPXsWhyUNEzAiDmUHueOkOupPdNEYbWdK2hEwpw3XPXUdDpIG+dB+6qnPj0hvpT/ejKzpV4Xq8UAJ2Xy+Mc/1pkl7tWhIy1v0U5HoE7OZ6JCVcj4gXG0XAYsMKiHQIyAs2yPPTLoHTfiCf2FCzeK6ttIDxCus8IhLwUx+GaZ+VALOdl0tI2vhuqfNyHQGuKBLQWT1Lvp8qoWJ9cg4oS8MVsW4xeXAK/Jb8iYBA3E/7LgpQNiJ+7ZUj23DtqYovMypAOtQo672/jktBXle5G9uzjk0IV1Tof0Xex8W3wfRzpSqsvHjuFFP+whWQGYBoI9TPkwmA7KC8Py1L4MpBkZcbEXkfEmfIup4jcvTCuMju+7b6ryko25ncL0A8O4BjuySTRQYGMlRXB1m3bgudnQn6+9Ncd91mDh+epKcnxdVXd3LkSJLLL9/I0aNJrr66k/XrJbjs0KFJrrrqWRoaIkxMFLjtNkkGv/32lUxOFnj66X3cc48En5UfDwT+9yy0aWqVhPH/O+P/T1/+Lgv/D7yUmeuf7Pg9X1n8MabVtlSk4blSgaH0GNuO7mHDmrUMv3WYocEh6urqiMViHDhwgEOHDvHlL3+ZkZERLM/jmptv5r9ddBE7+vr48V13sffVV3Edh87Fi/nOhg14gQBh0yRiTJ0Ytvf2srC5GUNVpeVJUTA0jQPj4/T6LHfBtrntxRf57nnn4bguE4UCNaEQmqJww+bN3H3WWURMk7xlETYMrtq0ic5EgivmzCEAAm5bW4VRfn9amG0LGn3vvalU8fcniv3oR4JCdV2Swp96Ct55529Tx9JpoYLLwWi33SYx3pdffuy23n//8ccp5R3y4VqKRaUi91aUqcCyXE4Cy26+WVjs92epbdggFm/HEZDc0iLk+uzZYg1PJoWlfustYbO/+1051FNOEbZb045VrtfVyZzAmjXyMnI5mDnNQXnvqADf2riwycnMlES8LPMuL55LxRD9fgl5sSTguOzHLjPUujZVrfX+pWQLeLbsY8PTAubUbcDEcWxS3d2EW1pwcjnyo6MSTHPZZWihEE4+z94nnuDEL32JcHMzhdFRcoODRFpaiCQSU/ZtHxCUg8xO+cY3UHWdUiqFGYtVJODhpibxXvv7yA0NVcJ0gvX1lcMvPx9OJLB1laxdZCybZDQ3ybzm43BxUVBIF7NkCnmiwRDVoTh5q8CB0R5OappJQDfpHh9kLD9Z8Wp7nkfeKpIt5YmYITRVZfO+bSybvoDGaC0j6TFyVom26kY8qHi1q0JR7n/p59x29pdY9+KTleC0m8+8VF53MUc0ECZuBAnYjrDLz/9G0r0VRUBzWb49MQp7X4Pug8JMu44A51JRgPaFnxH5eKza/0x4kJqUiSpNE1A+OQrHnewzCX5g2rTjZR9PPQEfu1Qe7zuMO2c+rqpKkNiBHdTPPJ3cRB+5iX4aj1+KEYhgFXMM7+8iObCPaad9HCMU9cPMFqObIQbefomG4zoxw9WVYLT6madjhuOAVG85dglVM4TxLjMbvv/dLubQjACOVUQzAz7D4pCbHCIYr0fXTBQPsC0B1nvfQJm7EPWD56GEIzjP/Sva6o/hPPMb1KUfwN32b1NjPnAuzvfXo8xdiHbeR6UrW9dxX9pcGaN96FM4G3+Nt/cNtKtuPeY59QPnyt8gXi0suKbhbPrtMc9bpRJHs3kikQi5XK4SSGZZVkUGnkqJZDwejx+T6g1U7k9OTqKqakUqXv5MZrNZAj7A3Lx5M8uWLaO6uppUKkU6naajowPXdent7SUcDpPNZqmpqSEej1MqlaSmixyxiCbp3WpUftyc/3cIgjMsid8o8ndx0wKs9Tqp0mp6TIA5CqALI40LXkkes47C+IPQ9F0B6EpYxniWjBm+TVhwNQi5LjBawJglUvLwcnCz5C2botKI5SeBN0ejFGybXf39lcyPUb+3OqhpmLqO7bpM5PN0/vjH7PzKV6gJhZjI56kJhQhqGpbrogBD2SwN4TA9qRTrtm7l1mXLOL6uDsuV8ELbddne20tTJEIiHmcin6clFqNo2wR0naJt86u332Zbby+PXnAB2WCQCOKVDvm3JgKyXwFaEYa5DQk624mEmnUD0+UdREHCz25BvNvtSGiZ/87SgwD3Df62dSTsbK2/rTF/Hwl/3I+LRdxUCs00UQ0DO5vFAyb276d+3jw8x6GUTkvQGUjzgy8hr549G0XTmNi/n3BDg0i/L7uMYEMDr69fT928eTQvW4ZZVYWqaaimKXkYf/kLNSecgB4IYBcKTO7bR/2CBdh+JWPDwoXY+Tz50VEKPitePgZPMfEcD7too5kaqb4UuqkTaYjgWA6u37vrOi52wSbSEKGULTH05hCx1hhb121l2a3LqJlRg6qrlDKlylgra1Uk4FvXbRWP9qwanLxDfjJPuC6Mqqt4nkfvtl4aT27ECBs4YYdkMYmqqBV/teM5FSY7ZsZQUMg7eXb07mBh80JGc6Os27quIguPmTGyvuzY9VzeGHyDzkQnhmbwiz2/4OyZZ5OIJfj6s19nUcsiLjrpIgBufuFmblhyAx4eETNCW6yNQxOHWLt1LQ+d9xAAcSNE2M3LqVOLomQPQa5fmGfPgrFXp7qvPXwW2ROQrIYAW0D55B6oPV36sK20yMGdvO+lrpLvony/JIHPvc1PAM9LqnjDMjlvuCUJQTOqJLyrlIRALWhRAb6ZXgHRZQl4pleqqtSAfPjLnaWTB6fk43ZhitEu+7OdokwWmPGpx7SA1GvlR4UdL4ef/fV6WkDY4tSRY49l8oCw1ItvEy91phdKOYi3SUBbOTjNSou3PBCH57/iS8J/LXJvkGPPDhwbjFb2hlfNkvVLKTl2PSzHsfMe8XvnR6B1ufiwy0FnH99IvuEMio6cIUZGskxOFojFAtxxx0sVj/Wjj65GVRW+9rVNlccef/xDlTidrq4ePvGJp/jIR+bw6KOrCYd1LMvDshwUBSYmCuTzNi0tMkUXiRiEw/J99L9b/leS8f8Tl7/Lwv8TLwHdZHptC98697JjgDUIe225Dm/07eepn/2SI0ePYts2Q0NDHDhwAICZM2fy5z//ma7XXuO7v/sdK84/n6t8KfdX7riDV/fs4e133+Wb3/0u+7NZGiMRIoZB7n3VJJ2JBFHDoCeV4trnniPnh8DMrKlhWjzOWC5H1DR56PzzKdg2123eTNay2NHbS3cyydWdnQxmMlyxcSMjuRyqorD+nHP45Ikn4um6sFYDAwKkb7lFgO3ttwsanTYNli6V3qnWVjEfr1kzJSXPZsXcHApNPV5VJeFl5e1UVwuwXrx4KnF83Tp5E8vr3H67INmyTP222wQpRyOoqhzeFVfI7c6d0N0toLdMsPf2Cul99dVySL298nh3t7DVDQ2y7qpVwmL39wv+HxqS+6OjU4f661/Ldr/2NWG2582T7SSTcuhr18rLra0V+7M3s03Y5yP9wl5HQlOS76oopLMCpNNZsBz5UnIceazN91THInJbru4yDfk9nZVt5YsC2svd1ZoqP8WShKl1DwhjXb71E8Zd2+adn/wExfOwstlKT+neJ544hql458kn0UyTcEsLtSedhFldza5vf5tsb6/0wXZ3s+uuuwjU1NB5113owSClVAqnUKhIGHMDA+B5x+yjzIIHamp458kniSYSxzyvAHaxgKaqlRqsyYJ0ur89dIi8VSQWDBEygoxlJ1EUlePq2/nL4EGKdommeA0nNx+H5dhSnwWgKPx059OV/99zZi/myR3/SraUpzpcRUdNM7br8Gb/fuojNQxmxgibQW4+81JMXecriz/Oo5+4lW+e/UUiZojRzCQ/6Po1I5kJHH/7NLbCP1wtfdZH34PxEXjvLzAyIN7opefAf7tCZOD/83GRkm/+NRw3V5LEo3EZ+/PviZx8tH8qzMw0pXrLKsk2J3ygfWS//H7WhwWM9x2GGSeg+i6CkQM7SA7sY/TQLqIN02iYdTqaHvDtYgYNszqpaplDuLqZkQM7SQ7sY+TADhy76P++Ezyvsh27mMUqpCte7OH9XTilPKBQzE7S99YLlHJJPEXBdS369/4J17XATxfv3/sngvF6nFIezypBqYinG6grzxZQu/JsiETxFAV1yUq8XBZ1xVl42QzqirP8MedAMCS/Lz9TrjVr6lBiVe/bzjmgqpX7BILHPKfEqyEal45rX1KvrnjfMQSDqNkMbYkEwWCQtrY2SqUSmzZtIpvNsnTpUiKRCB0dHWSzWTRNIxAIoGkaxWKx8n3Q29uL6ndlNzY2Mj4+Tnd3N67rVjquDcOgo6OD7du3y3eIYdDeLp2lvb29RKNRstksiUSCaDTK5OQkAwMD6LpOMBjF8xxQ4740+6D4qUE+AFqt74f2BPw6YyLzNqYLsFYCIhfXm0GrE+bbHhDGJr9L1m3cIH5qYwaoEQHozgjgQe01Ig/PdU3Jz9EFWNujcr7RmvGQCYW6cJh0qYTluixrbyeo64xks1QFArw1NMRAJkPe/56LmiYHrrmGqGmyq6+PnGUxmc/j+vJuVVHQFIXeVIreVIqn9u5lKJslXSoxnM1iuy5F22ZBUxMjuRxhw6AlFpP3NZXiqk2bsD2Pz86bx6OrV6NrGmF5VexmKoxsBGGb5yFs8ukI+D0XAciDCONsIyA6y1QFVxmge/6tA9yDSMf7ga8hwLoH6bnOIL7rhveNw3Eojo/z2rp1WBlRo+B5NC5a5JN3LoHqanBdRl57jdzQEADhpiZef+AB8qOj1MyeTW5khFNuvllaHoJBTl2zhhkf/ShmLIbnujilElY2S3Figvr58wFwikWMaJT6BQsYffNNCuPj1MyeTX50FEXTiLW10XjaaSiGgR4OYxc9Jg5OkB3JohkaqqZS1VaFlbXYdPUmXNtFD+oM7BbW14yYZAYy4EFicQI9oEud1khO1Mq2i6IpqJpKtCVKvC3OtJXT0EMyLjOQoZQqkRvNYUZMerf3MrZ/jFK6ROvprSiqgl0Q9eBIboTrNl/HgfED2K5N1sqSLCbx8HA8hwOTB7hq01U0RBowVIP+dD/rz1nPzJqZRIwIB8cPsntgN4ZqUBWoojHSyNXPXk1PsofPzvssCgqO6/DQ+Q/xufmfQ1M0wkaY753/PeKBOIZqcMdLd3Bo8hA9qR6e2vtUpV/bdfIob9wMPb9FwZG075p5whqP7YSGJRJE9urVkvadPSLVXK4lnzzXEpBXvQB2XydVW0ZMvpe0IKDKrRoQZrrxDJkQCzWLR7t+MaQPSW0XChjVoEdlTLBewL2qHVt/5ZYE4FbPEum3UxCW2bXkA1+Wjyuazyw7f1urFag+9jHlfevF2uSa5a/XC8QFTFvZY1lsVROZ+arHBQCXfACteFKnlTziz3z5oDfnS+c718Cle6Q2KzfsM+YxYctfvV+Ash6Ahvly3///q9yqujDvrcvh9YehpVOOJdwEZ/8QvvguJFbiOg5HjiS54oqN5HIWjzxyF+eeeypPPXURq1aFuf32lYTDBi+99AJ79txFdfVPee2123nqqV+QzVp0dfWg6wOcdNLTvPHGHZx99jJ++cuNXHHFRvr60uzY0Uc+b9PeHsfzPExTqyii/q+W/5Vk/D/i8nfm+j/pYjk2JdtCUZRjEsP/vSVbLJKzbXb29dEQiTCSzbI4kSAeDFKybf7t6FEWNDUxnM0ylM2ypK2tEuwynM0S98Ng3hsfZ3l7eyWFNeSHkRyemOC+ri7WrFiB7bq0xeMYmsbOvj6WtrfTn07z/MGD7Ozr48HzziPo95DWuy6Bbdsk+eu66wRIf+ITQukmk9JZdcstopfWdUGtPT2CXE1TkGtnp2ilo1FBseWqJduGiYkps7RhCFpdt06QbFOTmKCLxakC6XBYxuo67NpF5rQP4qjGMYR2uQWsfHvnnVOK9PKYRx8V6fb7CfTHHpOMNcc5liB/4ompXSrK3z5f3r5lyVt0++2iordtmUP4wSMO2sEj0jHdUAPHTzs24TtgSPe1oUsX9exp8qEolqZY5vezz385IL3ZR/oFfOs+uDYM6B2UPu3/HWNdBundAzjTWijmsnIx9P5KlcsvRw8GsX3meu7llxNNJBh5/XWqZ8/Gzuel+zQSIdzYiJPP4xSLJA8epN6Xk7u2fUyi+Gm3346iaWR6eir7yA0OEm5unmLD29oq7PdcPyjNVjx6s+MMZcZpitYynBlnfuvxaIrKeG6SmnAVCgq2a6OrOp5f1LWnfz9NkToa47Uif1ZV9vTv57j6DsJmENfzsF0bQ5UJpH4/BbwxWstPdvyeS0+7kIl8mpObZ6FrGs+8vZXVJyzH8BPIx3NJomaIvFUgWcgykU+zKDFH0sLjtdDUCv/9UfjEF8VzHQiCXYJIXP6+tiU1W67ry+AUYa8LeQkw6zkI3/sWLDkL/ttXhaU+sg/ajxNm++BeqegKhsGvj8K2JPAsPQGhiHRn1zbiNCco5SYrbPQU4yxBZWo5WM33VVRqu45hrhcLy11IM3JwF61zz6J/759oPuEMBt99meTAPqpa5tB68tn0/+XFyv3EvFX0vfXCv3t/9ge+yPD+LlrnnIGqmyiu9ElXLgPKkkJF3hvPNKfqutIpAcOGIUx5uSJs8x9Ql6yAmnoU30PuvrAJ9YPnoBgmnutK6rGHrGOXJD1c81PRHRulfK720+jxPCxFlEGlUqnSVV2+7evro7GxkUAgUEkStyxLEuv9Duxymrimadi2TbFYJBKJYFkWui+16e3tpbm5GV3XUVWVyclJkskkiUQCRVHo6+ujtbUV3Z/0dF0XVVXp7e1l5vQmVC8lgFetgsIbUr0VXglKFPQGQIPBr0PdtQLA9Qap3xm+TRhpRfMDynzxs2cJqMaQ7SqmgHI8AeFeSaTmwQUCtj0PvAwMfwOaHgW725ebL6bkRRkrWGiKQkDXK+nd23p7ObmxsSINz5ZK2K7L3pERFjY3U7RtSQ53nIpiaziToTYcxnFddvX3M7+pqcJ61wSDXLd5Mz+48EIKts1koUDOstjgV3hFfW92yXEIGQaW41CwbSKmie26GP7n4FAgwAbgXqQaC4RJbkBYZ42paq2y3qgLAdwOIhuv9x8fQrzVLvAGx3qxPWAHIiU/G5GRdwFLkFTxNxDmehoQymYZefXVCgv9xne/y8IbbgBVPaZ6a+KddwjW1lKYnKTxlFPIDQ0x2NXFxDvvcMptt0mKvudRHB9Hj0bRAgGcfB4rm62kgKcOH+adJ5/klFtvBUVBCwRQgNEyC+5/j+eGhlB1XZol5s1DLSeVqxrpgTxWzqJrfRfn3HcOZtSke2s3k0cmaVvSRtf6LpbeuJT6EyWgrG9nH/G2OJHGCJuv28yyW5ZRd3wdE4ckUXzZLcuomVlDsidJqkdk4LiQ7E1Sd3wdxWSRUrqEGZO/8dCbQ7QtaUMLaJVU8lVPrqKrv4t5jfPQVI2YGSNVTBHQAxUv9dXPXs2/7P0Xfnvxb1nRsQLbtdnZt5OTG08mbISxXIujk0e5f9v9rFm5hr5UH4cmDnHJvEvQVGHCdUUnXUoT1IP0JHtY37We+865j3ggjuVYHE0eJRFLENADbO/dzrL2ZWRKGWJ6gJCXRyuMSP3W3NsgMk1Cx4KNUpVV1wnZbtBjkHkPqufJ754l0ujCuIA81RRQjCvMtmuLdFkPyf+1ZsgHsDgGZjWM7YKahSJzdvKQ3Cv7UgwqrLFqyHmgzFzH2mQ/pbQA0bL3uhxEFoj7ndi6KITKfuQyA11muuFv2W/P9VU29pTP+/3rKfpUUnf5ewJFwP3EPvFGl1PAFQVevApalsKciwSU922FP3wKZn8SzvmB7M/KwdbbYMVamaQoy9Nd238+A+FG//vBkCTxbD+0LhNW/uWbJUU80ipsdvKgSNM7b5NxDQtJuTV87Wub6OxMcO65szhy5A1isSY++9kP8ctf/op58+bjeTB9egsbNz7P3Lnz6Os7yimnLODIkV6Gh22WLp3LQw/9kM9+9iPs3fsOH/7wBfz61y+TTrs0NIR54IHtPPLI+X5919b/EAFl/0+XvzPX/4kWy7HJlQp/45/+98YdHu/nrud/RG9y+P9yu4amEdJ12uJxHti2jbZ4nLBhYGoamqqyOJEgY1kMZDI0R6Nc+cwzZEolupNJvvXSS/Sn0yxrb+fcWbNY39VFZyJBfzrNFRs30p1MMpDJ8NTevfSkUrTEYvSkUlz5zDPMb2riyOQkd7/8Mp888UQeWb2aZKEgk4a+9MxLJAS43XyzSLWHh+GrX5WT1YMPCrAOhQQEr10LH/qQUMSuKzrpc88VqjcUktucL1UsFKRM2nGEuT5yROK+v/990XDfeqvIxXWfac1k4JprpDtrcBBOPRUNG03zjiG0R0enbteskXpuXZ8i3desEfV6IjFFhN9+u7zEI0dEeft+Yt11xXNt+3/yXG7q+VtvlTy3cq3XnXfKoeu+PXrd3S6K4gnIbaiRWxDgOzIhtyDMtGXL8/73g7DMxrFjYxHZjqrKWMuSHcUiAqxHJuT9fP86VVEJPivfmnrlea17ECMSwc7lUFSV+PTpElLW3k6gtpZoRwedd9xBoKaG1+65h+oTTkAPh0l3d6OaJqG6OukD1nXeeuwxQo2NKJqGXSigmiZzL7+cjvPP5+QrrkAPBlFUlUhzM5133UWso4OGU0+V21NOIZJI4No2kUSCzjvvRA8ESB89imVZ/HjH76kJxRjKjFMfqeHN/v2UHIuqUJw3+/fTlxzhL4MH8fAEKHkeC1vn0BCroWiXeOCln5MrFTi5ZTYRM0SuVKBkWziuyz0v/pSB9BjhQICaUKySofCzV5/h5OZZGJqOgsLZszt54KWfkykVAOidHMIFqkJxJvJpmqJ1khiemAHBkKgIPvNVyKbh6Z9Tro/i4NvyoSrkxRs9OiggfGJEPgtP/1x82bPmwulniLR8YkSCzhIzIDUhnu1YtQDrUhF+8agw3Effg2Je/hd/+X0ZMy7nHyNURWLeOZihONmxQfA8SrkkA3v/hGOVcO2ShJy5Lka4isS8VZihOIpuVn63ihnsYpbEvHNQNJ2G4xZTzIzScNxiqlrm0HDcYkChfubplfse0HBc59TzilIZr+kmDcctxnVtmBzHefb3wsh7Hm7PUbySH6LjV2553YcBcP/wK5zH7sN9/mkJOMumZWJBVVESHWCYKHjy/2FZKM0tuM//QerF0inpwcbD81wB0q4raePZjHx+HFtSmSfGcJ79VxxFpVgqMTY2xubNm0kmkxQKBSYmJnjmmWeIRqMVWTdQCS/760VVVZ577jk0TSMcDleAuJxXckSjUTzP45lnnmFiYgJd14lEIvT19eF5XiUIDUSS/txzz1WSx48lJlzxS8f/m/it1QgMXi/BZE3rBVh7ORi8WsY2rZeTjnVQQLRXELbZs8EeEha78IaEm2mNUutldQuwDi8TMG6PAJZsO7QUcARY6w3gTGC5HkFdR1EUtnZ3c3hiAscPFYv6wDZVLOIB1cEgS9racD2PvSMjdCeTXPvcc7w3NobtutSGwyjAzS+8wAIfWHf19FCwbQxN47ELLiBTKnG9r9LqTaXoTCQYzGS4atMmCRTTNFLFIjc+/3ylym97by8HxsbIlEq02DbXA+NI1VYJkXMX/Z8CwlAXEPBcRDzZLiIRzyFg3P+2I4R4qBcAryIM+AHgasRj/WkEsFtIvZfvXmc5AqxVAE0j3NTEm9/7HgALrr0WPRpF1TQUTUM1DLRQiOo5czCiURpPPRWnVCLT00P9Kaew6NZbsXM5nGJRQip/+EPyw8Oo/uSOWVWFHgzK+SIcpvG009BCIXQffO++7z4B0IbB+NtvUxgfJ9beTrCmhpo5c3jjgQews1mcQgE7lyUQ0QUEdybIDGbYePlG4m1xTrroJLrWd7H3qb1se2AbdtFm8/WbaVrQRKQxgqIqHHz+IJnBDJ7rYYQNlt68lEA8IGRF2KBpQROuJex3IC4hWZnBDC/d8RKZwQzBqiDxRJznrn2OUrpEpCnCsluWoaGxtG0pAT3A7oHdpEtpFEVhNDeK7dqU3BKPrH6Evuv7WNmxEtu1GcuN0ZnoRFEUrnn2GgYzgwxnh3lq71Os3bKWZe3L+Oy8z+LhkSqm2NazjYJdIFPK0JvsJWSEWHvWWsJGmPfG3uOrm76KpmpYrsXW7q10JjrJlDLc9uJtJK08ih4VYN39lKR6K5p0VReGBWCPvQqx2RBuEQm3Y/mfMkUqs5ys/D62E7KHpphtPSIsrB6b6p52CgIix3YIKw4wulPG1nbKPq20BKaN7gDPo1C0+NhFn+X4JR9mwalLWXXe+Rw4Ogiey/DoBOd/5uvMnruIk09fycv/9pKcv5OH8TyHO++6i+NPOpl5py7hzE9e4QPzlIxRdUkKL4NthalckdRReR+0oASYKbqAdM0QYO9akjjuObLOrvUiw961nkqC2hkb4ITPyob7tkpo2Yd/LY8nj8hjqg7L754KTOvvkmtdMy6TDooq4Wp/vFKeN6NS7fWna2S/K9aKRxv/2LUAnHaLTHY0L4bsIBoO69evYvnydu644yVaWk5m/vzj8Tzo7U1x2WUbOXx4AkVRyWSSHD2a5JZbnqG2thZdN7njjk3k80lefFHBslzmzDmB+vpabr/9R7S1xamtDfHQQ+cRCOisW7e1ElBWKPzHDij7f7r8HVz/B1nKgPnOzY9zeLz/bwD2+4H336SFV05+/+ul4Dj0plLcuHQpvakUOcuiZNs4/mx6VSBQAc03Ll2Koao8tH07y9vbiZgmqqLQGovx0Hnnccm8eQxmMjy9bx/rtm6lM5Hg4rlzWdzWRrJYZH1XF0/t3UuyWGTtli10JhIMZTJ09fRUurMPjo8zlEyiDAzIyWX6dDjjDDErd3YKIL76amGqMxnprrr9dti4UWhg2xb2ublZmOtAQBLAXVcqvbJZAc/5vIxraBBQEAgIK3711aLVvvxyGd/UJElln/ykvGHFIo6n4TgKs2bB44/DcceJjDsSEQu448gPTOH2xkbYskXOnTNnwg9/KC/NdeU5oLK9cFjGLVggTLjjyBzDK69I+vjxxwvbnc8La33SSXLb3y9YqqbaQ8UVdnp2hzDH8FdgW5HwsaqoyL095KcMnt8/VlWE2XY9YbrLKeSqMjVO0/4WzMOx4Wfl59ub/ee8SuWKoqo4hQLlrmjHsph45x3mXXWVyILffJO6efOIJhLyuR0fJzc0xOzPfpZ3nnwSAD0gF0HRtjY677qLSFsbTrFIuZMVz+Pa669n9kknYYTDbHvxRXZ861s4xSL/+i//wumnncayCy7gjHPOYfdL/8aXF3+swiKPZCfY/9pfqItV8/1HHmN+6/E0RKs4ufk4keN50mvdnxxhz8B7jGQm+Myi8wEYy06SswQcvzN8GF3V+IdTL+AXr22iPlxNc6yem8+8lI/O/QC3nHkpuqqRt4qs++OTjGYmuXrFp5nMpXmzfz9zm2cR1Az2lH83DLxCQWZWSkVf0j0iwHjXy5LoPT4sgPeXjwmbrWoSdrbrZanRKuTk982/kguLS68VxrsckFYsTI1//jciIf/r8LR8buqx538jQWqA51i4jo0HhOtaQFEYP/I64ZpWNN2QZHDXwXNt+du7DqV8iv49z1PKpwSQhKoI1yQABbuQwQhGCdckMMM+cA9XAfj3V2GGq3CKOYxgnMS8czCCMbJjgxjBGIl556DqJma4Ct0I4W55EaV9hu9P11Dbp6OYQVA13N6jeJMTKM0JPEVF+9Cn0G66E3Xl2XjZLFglnM1PQ6mEOm8hhCN4Y6O4A70omoYy/xTU5WdKxVssJoDatipZAV6p6IckRioVZBgG7rYtqGedj+MI09zV1cXevXvZunUrwWCQrVu3snfvXlKpFCUffG/cuJFkMolpmiiKQjKZZPPmzYyPj2PbNp2dnSSTSZ555hls2yaTyfDMM89UaruKxWJlH5FIhGw2WwHYExMTbNy4kbGxMTzPI5FIsH37dlRVlfOIM+indg8hDl5VqrDwfADtCiDWG8Qz3ejbb4aul3AzJQpeFoauEvCtBKdOHsF50nmteAK+lSCEThNPtZsGLw/OpLynVZ+Xi9/wShh/GLRqPFSxIfm2p5BhULBt9o+NcfnGjfSkUiiKQqZUomDbbO3uZjibZV5jI72pFDctXUpbVRWO67Kzrw+AB88/n1ggwEg2KyBb18n6k9DlkM77u7pY0dHBpQsW0B6Pc8OSJfQkk1zz7LOoisJDfrjaWC5HZyJBLBAgWSigOQ4BJKm7EwHMh6mUmrEDkYFPIAB6BwK0JxAQ3ouw3ANI2njOHx9BWGkNeBSp7bL/ajuHgG/5p+zDCLg/jKiBckNDLLj2WqkuNE3sXI7d992Hk88z9tZbOIUCiqZhRKN4rgueR928eUSamysVdm8+9BAAp9x6K+Hm5spXRG5wkJHXXyfT3c2eRx+lftEinEKBnXfdRX5sjPlf/zqKquI5DvULFxJuaMAuFJjYvx89EhGWG3j9/vt90O6RWJxg1rmzKmB667qt6AGdlWtWMvfiuay8fSV9O/pIdCYqyd+ZwQxf2fkV4ok4Gy/fiJWzCFYFsXIWG6/YiBkxyY/l2XzdZsbeG8OMyPdqeR9d67skHfyerSQ6E6T702y+djOqpuLi0p3sZmffTjoTnUTNKAPpAQ6MH+Bo8ijbe7eTLqUr70nBLhAxI2zv3c5AeqCSJr44sZiL5/5/2PvzaDuqct0f/1Sz+rX7Ntk7PX0gNEL6CIqIQGw4alTweOwSkKAigSAJCjYJkoiiB2wAm+OxOwGPCiEIiILZhCR0oQlp906y+371XXXz+8dba61Ez73f+x3jjvH7nXupMfauVVVzzqrVVM35zOd5n3cF65etR9d0ik6x4hS+oGMBLwy+QEO4gbaaNgpOgfV/WU/RKTK1ZiprF68lZISIBWO0xlq59rFrGcoM8c13fpN4MC4g8rx74Ip9skYTlrQMsBvOAicjKbN2XwtuVkDyi9eLgVl+wAfk80VW3rxIcl7vXiV1lCvpvV66AYojEm8dbpG2iiPS/thOaTPgxxKbtbLfLYJbYtUnr+LAm3t59ZWXeP9738tnr/kcaAZfXreehfPP59C+vfzsJw9y1dUfx85NQM00vv+D+3nt9Td449VXeX3PHn7zy18KMDZCPmg9KimrlOuz2w6VfNh1s6VPtNIw/JKUNYKQHRSAne0XoAsCkBesl9zWC26rupmbEXH2/sv1AoizfRJbHYyL/LzlbHjmS1AclzZzQ1Lu6dUSwz28W5jybH/VLC3SIrm02+eLvPxvayUeOxCH9BGppxuw46tyvmANAV1Sa23atKPi8G1ZMlAdHc2xZs0iBgYy/OQnv+Cqqz7K4sVn8vTTX+ErX/kOu3cPc8cdlxONNnLBBZPousbPfraVw4cP0dxs0d+fpqVFfHx27Ojj1luXsmLFXG65ZQmG8b8mDf8/ZXkLXP83Wf5ngPnvgbeh63x24ZVceuoiVi68kuDxzoT/xWK5LolCgU4/RnrZ9OmETJOC46BrGnnbJmQYRE2TaT67PZzN8v3LLuNjZ57JkUSCrCW5aQF2DwywoKODYzfcwH2XX07UNPnB5ZcTMQzaYjG+8+53s+2qq2iLxbjn0ku5dM4cRvwBynihQNayGMnlePToUbz584XS7eoS8HvvvXDppeLeXTYx03UByrNmCVV8ww0CrqNRARtHjghYbm2V8sFgNSWXYQhqDQYFqSol5QMBAddbtkiyacMQaTlIwuqxMYyQQW+v4tln5XSOI2O7tjY/U5Em2Lynp6pG13WYO1dO8be/VRlpTZPL7emBz35WTMtaWoQsHxqSy8/n4aabpN7YmFxqby9MTp4YDt7cLB/VwKCGKqfcOtQr0myFMMinzJC1JFKuXoTtX1AoCLXxE8sWLUhnxcjMOO7RYTly/OQZ0kb5dShQjQkqM2l/f34g4OfSFVDlYYRCjL36Krn+fsxIpBKzV46zm9i7F9tnKMJNTcSmTKFm+nRJ4zUwwNgrr+D6LFQ5X3Upk5HUX5aFUyjw/ssu43vLlzN92jQizc2cv349mWKRVWvW8K3PfY6Xdu9m87e/zXW3fJlIIMjc9tmEzACz4+384K7v8Z73vAdd0yjZkg5F13VczyWRTzFvysk0RGs5uWU6k/kU0xraABhKjxEyg8RDUVpjjbwx3M2U2mZueecnKdglAoZJLBDmyxd/ikQ+yzeeepCxbIKzp55MLBQmEggRDgRojNSy+a+/AE1jbvsc9g53U7JtTDMgnXIF8P5WwO0Fbxep96zTBPC+8DcByYYJl31Ejl/xMZFyl1/rRvUHfflH/TZi1ddXfEzql7cv/yhk0/9YxjfV0nQT3fBjGzwPUEw5853Ud86V54amo5vBihRb041KfPXY4V1oKPKTA7iOhefa/k/WB6dKYRUyDLz2pMRhe44fc53ECEUZfOPPlHIJBt/4M+HaBqmvFFY+SW6iH6VrEgd91jl+yIiN19uDSoxLLu6p04WdDobQHBuv76g4mtc1QrwGzAD6wmWQSUuuak9BXR1arBZvsE/SrzU0y2fqKdTkBN5gP5rjiAFaMCipuXRdmPB8Dk3TMN7zfrRgEL2/l1AwyOLFi5k7dy7Lli2jWCyydOlS5s6dS2dn5z+AbwDDMCoAfMeOHRSLRerr6yv7SqVS5XVXVxcdflx3+Ry6rtPZ2cnzzz9PLBY7oa1SqcTs2bN517veRTabxbZLVRdvrcYHuwkBwHqt3Ph6XCTcw9cLeC7ulWdC6waw+wV02wPQuEZiq51+sI74Bmk10HqPsNlaWPa5CQHQelxit40GyD8nab1USWTjbfeCFsRTLoOZDJsvuYRTm5pojcUwNI3RXI6bFi0iYppEAwGao1EmCgXObmtjMJMhHgxy3pQpdNbWVmTg8zs6KDgOu3zPh6ZoFE3TaI3HGcpkuP2ZZxjOZvnQGWew+ZJL6E2leK63F03TmN3QwEAmwyKfGS8D8YJts3tggIZIhI7aWgKmyTSEQd6NAOw2hKXeRVXaXYeA5kUIYJ6CMM1L/O0a//U4Aph7/dc68H1EVr4LcRKP+ufoR9zE44h7+Nn4acBMk2h7ezUvdT6PGQrxtltvJT82RqixEU3XKU5M8NK3voWTy1EYH2fi9ddB0/AsCz0QYN4XvkAxkeDFDRvIDw9j53KY8Tjxjg5xD5+Y4PRPfpLCyAh2Nkvvn/5EcWwMdJ3MsWO8snkzru8eGojFJLOEUhKLnUjQdNZZvk+HgRk0qemoqYDppeuWojyFGTVZfv9yGmY3UDe97h8AeKw1RtedXZXtcF2Yro2yXUqVKq93bNpBMVlEeYpl63zAvn4Zru2ybP2yE9u9swuFIhKIML9jPqliCsdzOLnpZBZPW8xQZoizWs9CISFDtmeTt0R7sLBzIcPZ4aqbeCDCj5f/mIgZAWA0N8qe4T0oFIZucHbb2dzwxA2MZEeImMJce8rj1qdvZUrNFGpDtRTsAuP5cR458Ag1oRqigShZK4vjOVAahddvFwdvlA8yQwKw7aywyfs2VdltOymv990thmfFYQHb0U6Y9uEqE75vE+BWt9+8Ux7j++6ubtsZAdLFEQHgmcPgZEUObgQJBzQuf98/ydyklWHhgvkcPXYMPIstDz3MtddeA5rBBedfwNSOaTy763XQg2z+9nf41tduJWgosNK0t9SLuZlbkmuonSlgVTP8GHLkWCktn4FrCRBvPFVk4fh1jJCsQ/XSJylXWOmLfyBMuPJg+AVp1wydGBOtmcJ4P3MD5EcEJO/aKIC8fb6Ykr1tjQDqSIuYlbXPhyu3wsX3SX+64DY47aMCqC+4RfJZa8h6yiKZnDh/rbDusXaCuSOETMV9913G1q0fY/36ZezcKWG2ra0x7r77edrbo9x991388pe/5ejRo/zxj9tYs+ZzfPCDP2doKMMTT2zlsce2MGvWGTz55K85/fTzeNvbOujsrGXVqq0MDmbo6UkwMJDmvvsuZ8qU+P914PqtmOv/JksZQD+48/esXHglMxunVuKo81aRO574ccVF+PZLVxE0AliuTdAI/E/jrQEsxyFtWezq7+fstjY0TWM4m2XTjh2sX7aM5miUV4aGWOAPCI4lk9SHwxQdh29u386XlyyhNRbjxief5Dvvfrcoi31W5uannuLGhQs5uamJkg/iGyIRQoakRWmLxdA1rSKNG8vlqPNTeq154gl+fOGFaF1dVSfv9esFRIMg1A0bZN/s2YIod+4UNvu97xXAXVcnpmYHDsBHPyouYb29YmAWCgmA8ET2iS95rCSSrqsTh7LFi4UeXr9egLUPxLNelHzJIBiUquXLWbdO2GfXFRLcsqR6fz8sXCh4v1CgbGaMrotj+Pz5VVPzskF5d3dVRj44KER8qSSpvxYsqF5uIiGO4aYpivdEAjqneoSDHlo66xuZGVK4p19Y4zJgLsdHB80qwxzw42ChKo36r56NllN1C/f8Z0kmJ+DcB8+VRflN+nS+qxSlTEbi6TQNzTBQvmMymoZn2+imyQtf/zpHt25l+nvew1mrVxOIRikmk7z5wAOct3YtpWRS4qSvvZZYe7uAs3L+XV0XBgVhuYPxeOU8nuNwxvz5bPnVr+jQNI6WSnzymmt489VXhelWitaZM9n6xOPMPG02NaEYn/nUp/nIio/w6B8f4cx5Z/Hxz36CvGXx8xce4UsXXk3YDApD7n9YtuvwxvBhTmmdSdgM8trgQU5tnXnChFfA/91N5lPEglGCRgDHc3ls33beGOpmzUUfZyKX4sFdf2DlgisJBQIEjACmbnBw7Bint80mW8rRFKkjpukwOlh1/q5rgPERAb6nnAmjQ9VjLVPkB+j50udcRszMDN8FXtP8MAFNvttsUn5cDc0ST13fJOx1MOwb2BVFKu75LuIagIYbFFWC8icENd0U86ty36Pp1bhlxwYNNDOInU8y3v0i7ae/Hd0IoMq/Q8+Xg2jgWiXMUISB1/9ciatuPWURh579OQ0dc5ly5jtBeSjPwy5lMYNRXMfCDEbIJ0aI+hMfOrqQoskJyTEdi0v8cznWzjDBdSp5qink8Lr+IqZjdQ3+Wy0758rvTWma1K9cry77XIdyTm2tbSqaaaLywoB7XX9BX3oxRKOokSH06bNRyQnsugbQdDzPwzAMPM/zc4OLtNuyLDKZDDt27GDZsmU0NDTgui7pdJrt27ezZMkS4vE4wWCQZDLJ9u3bufTSS8nlcnR1dVXqlOXkuq5j2/J9ZbNZUqkUtbW1dHV1ndCWUoqtW7fy9mULaKlLoGkRAbluQtb4Mf3uoIDvpnUCkPWYSLxVoRqnrdeC3SPg2WyRL9jLCBM+sQma1ovMXDOEvUaJbNzuhcgCPzZTvk1wJJ1XoBMCMymUJjmYDrGxq4tbly5lIJ3mvClTGMvl6EunWdDRQcAwsF2XXQMDTI3HObmpCdc3LMv5E8ymrpO1LEk5CfSlUpX6YdNkOJslUSwymsuxdPp0PKXY0ddHayzGqO9lEjZN8r5cfCibZYGf+aDkOGRtm7pQiGIkQr1pYsg7YQyJm84j+ayzCLCOIhoBG5GO6wgg3o7ESvchjuKDwCHgw/5jeC3iIN5O1Vnc1x9QAl4AzvE/zUi53WyWsZdeEp+K0VFazj0X5TiVSSH8frz8vL7i0UfJDgzQ4MdoK6V47XvfY94NN2D4CiKMqtnR2CuvEG1vJ9rWRnF8nIAfjz2+Zw8t550noirLEvURMqmmGwae61KcmCAQi5E4cIB4RwfKcQi3dbJt9Z9YfPNi6qbX4TkeekBHN3RQUt9zPYyAPH+TR5Js37CdZbcto35WPckef3vdMsyoiZ236drYxaX3XEp+LM/2DdtZcssS4lPjmCET13YxQyaarlX7OqjEbC9bt4zw9DDHrGNEzAgN4QZ2Deyis7aT/nQ/nbWdzG6YXcl5HQvE/HGRxy1P3cLX3vG1isO44zkUnSKRQKSybeiynsxP0hJroeRK/uxoIEqqlKImWMNIdgSFYtOOTaxdvJaTGk+iq7eLzrpONm7fyNrFa5nbMJ3wS9cL2J2+Ai74gQ8sfSWJW5T7ujAsYPnM2yDYLAZmZ94mabZ2r6rWn3+/uH7v3SD5rWOzxQjtzTulfGw2ZA8LSJ+7XvJqawiwLrdx1h1ieqaHBGRXFsU/f+JfaIwH+Oo3NjF12nRKQ69VnLtXfPSjvOfSS/nQP32AprapbPzm13n4d/8JaNz4+Wv4yMf+uWKwiudKzHOo5vjm/WNWlYE2gtX9clC+7HJsjF2Q1FfHx1w7BQHKuzbIvthUmaQIN8LT1wkTfeoKWHSHMOZ1s6Wtsuv4/HUQiEpcdd1siUkf2iUgvn6OxFZnB6DlHHFVD/jvQdP9yZCcAPMF67G0OPsHImzY+Bzr1i0jGjWZN+9HNDffz+mnX89TT+V517vCHDnyINu3v8zNNz/F2rWL+eQnr2D16lv54AevwHEUq1eLk/jVV5/FCy+sY/Pm7/KrX+Uq7uJ33HEhluXS1BTh1VdHePvbZ1BTE+L/lOWtmOv/Q5aAYTKrcSq3X7rqBGBdPvb3THXAMIkFI/+vwBogaJpETZMFnZ3kbJuArhMLBnn79OkMpNNEAwHObmvjhYEBhjIZvrdrF/FgkGm1tdx72WXMbmiolA/oOsPZLHuGh4kGAnz30kupDYU4lkyyq7+fhnCYgK5Tchx6EgkKfs7scv7PJp85yFoW915yiTz4jnfy3rBB0GqpJEjz5ptlXSwKsJ42DT72MQHRR44IG71kCfzzP/tGWr3CYL/yirx5XReWuox2SyWJ6y4Wpe6yZfI6EhGHstpaGRQ4DrquGBpSXHONnKqvr2o27jiiqg6HxeV7+nTxZduxQ9hp1xXcPjQkRPvZZwvWLxuU33KLnGbWLImrLhbl8ixLLnv+fLn08XF5W42N8PzzAsZXrxaVqWMrNKWEgdaA7j6pPGeaz1pzYny041vcBH2GsWSJO7hSPij2hAF3PQHlB4/JyS3Hl5MrOUcgUG3/+E4onZV6hkitPMfBCIdxi0Up6jvFeq6LchzG9+whOzDAOTfeWImdDtTUoBkGb/pO4nahgBEOc/769cSnTsVzHIqpFJ7rgieGUsXxcZxCgVB9PaVkErdUkli+WEzGQIZB6znncPKcOUxOTPD0o48y8dprbP3Tn8hkMvT39lIbivPH3/+BkBmk87yTcVwXx3UJmyGigQBr3/kvhAMhio7F5r/8Gzlf/u14Lqe2zCRsBJjMJZk35WRCZhBXialPqpih5NgoBQXL4s6nf8ZAaox0McP75l7Ire/6NJFAiJ+/8ChPHHie4ewERdviu8/+iol8ipOap/Gtp39G0bYwNU0cu1umwFWrRRaeSkAmKYAYIJ2Cj39ByjiOxFArJeAxVusDbeT7nhwT52/PN3YJhgVQ//o++P5Xhf0OhqR915X82PmsD8o1AYumKfHUjoXr+MoJXUfTDDQziG74knAloE4zBSB5dolAuJapZ12MYxUkT3Uxi3LF+dsu5XCtEp5nozT9hLhqwwxRN+VU2s+4CCufZOD1P2OXsgSj9WhGAMPPqhBtmopdzFCYHJT7XnkQr0ELRySfdSaNMkz5S07gbvtPtFgcDAOv6y+ovXtETg4Cjj3fGA5Q+byYn1kl3Mf/gEpMoOwSeC4qnxNg0DkTLRAQpjocgZpa9EUXoTIpCIbQO2egSkVUJgOaTqlUIpfL4boutm1jlR8GCFBoampi+fLlNDQ0UCqV8DyPurq6yr7h4WEmJiaora3l8ssvJxgM0tDQwPLly6mvr2fbtm0kk8lK+8ViEcMwqK+vZ9q0adTX17N8+XIaGxsrBmm5XI6lS5cSDhkCrMuMtdEgLt/KlRQ99ihE3wnmNAieKmAaXQzKrG5hcMpGZRUGulfKmdN8p/CoP9GTFXk5OphtUsdN+p+EIeBd2RKPbU4DFLbewsauLrbs3cudXV00R6OkSiX60mlaYjFWP/44R5NJdvmmnvFQiJ5kkq7eXroTCb74pz/Rl06TLpW44Ykn6Eun0TXthPoZyyJn23zb9y0xNA3b81jQ0cFoLlcp15NMEgkEGMpmK/uGslk0TeN238Ok2XW5FpFoFxHWeZAqe327v9aR2OlrEHY5AXQjjuJ9iKnZRmAxwmDf4Jebj7DYQ8C1fp0MAtp3+fVHELfyY8BKQNN1ms46i/zwMA0nn4yTz8tEomFUVEIKOH/9ei78wQ8qcddmLFb5nZ788Y/797eN7hsEjr/6Kk4+T8u8eUSamsgPDbH3xz+uTJKW5eEohec4Yn45NoZbLGJns7jFItn+flCKlnPPJdrWRqxDgPXrv3qdro1dKE+RGcrQ91yfuHZrkDyWpP/5ftySCxrUz67n8h9cTrQ5St9zfdTPqueyey/DjJqE68PUz6xn+f3LCdWEqJ8lZRvmNGCGBXiX0sKAWjmrMrJWrqJhdgNX/OgKGk5qQAtr9KX6yNk5Vj8ujuD96X6ao81s7NqIpzwCegBN0+hOdLNq6yp6U73cftHtDGYGWbV1Fd2JbgpOgS8+8UWOJI9UHMcPThzk2seuJRqM0pPs4frHrydn5/CUx+3P3M5wdpiTmk5i045NbNm7hU07NgGwZPoSNm7fWN2nB1Fz1wmoPfM2iUs2wv7koSbx0IFaqD1VgHN0moC5+T8WGbiTF5A8fYWsURCfJWXjJ8m9WTNHto0opA9JG2+7B+IzhYHVI9U2zrhFXMOV5t/frgD8VDcbN27gcE8Pd377X6uT//Gp1Ylhf6fjKRzHoVAosmvn8/zHr3/Jl275Cq++/rr0f64l769sTua5PmPtL7ofW10uWx7YuEVhnl1L/pQ/6Dk+5lrTBBjv2nBcHDaSwzp1VMD2qStESl4zTRjqwS55ju3eKHV2b4RQncROp7pFKl6WlitH2m4+S0zLyg7kuiky91CdAGtfSm4F29mw8Tm2bNnL5s3P0doa49ixL6LrcPPNi7n66rNYt+4KhoeH2bHjZW68cSGOM86RI0cwzRb6+tIcOHCEm25axLZtV7F40RDxeISz572N9etFBr5+/TI6O2uZMaOOXM7mvPOm/LfPW/3/dXmLuf4/ZLFd53+Zqf6vFsspoLwSSgtycCLNhq4uvvPudxMyPIp2nqAZwXJ1UCU6akSKpJTHULZEWzyChoeumYCDp4T11DUPx3NxlUFA99A1A4WLpwyKTomIGSRRcrnhib/wpYULmdPYSEi3MTUHpQXxsjbh8XEKU6Zg6TqBYhEVDuNqGkahQMC2IZ/HbmuTlDuuS8CycMNhjGIRLxzGRVgYlJLBjlIYAJqGoxSmplXi2BTg5XIEAgFswxCjFsD1PAxdx/WPeYEALsLOdz1rcNVHTB7+tcU7FhfJlwzCEQ3DsxkYCxKJGdSELFzdwLU8wgGXwckwNXEI6xYTKYOmBo+A7rJ9d5jT5snAvxw33Vhj0dFUpGgbGAEdQ7nSVtEmGhdJ++BYgOZ6l0BYB8dB6YZI33QPSw9jOzpBUxFUIqWzcjbFcK1gXM3DUxqe0lAKAoaHa4MR1LEtD8PQ0HWF54KLjqEpdANsS2GgCOguGDpWUWGEDTxPw/WEQXc9raK8V8p3PffP6RZdjLCBYWoEDL9DUorC+DjhpiZAEwbAX1zHwc7lmHzzTRpOOQU9EMArFAk1N5E+doziZIL289/2jz/s4xiE/2qZddJJ/P7hhznnnHNQrstf/vJXvnHnRrLZLAsXLuSvzzzD5798I68zxF83/Ya7f/kj3jZnLteuvIZU3OUHG7/L1NoW+pMj/PyFR/n0gvfjeR7NsXrGc0l+/sKjfGbBB2iM1rJ/9Cit8QZGs1VX8M8seD+j2QRt8UZGspNc/593ce8/3cJprTMZyyb4+QuP8tkFH6AuEufuZ375D7muP7f4Q3zgZ2tEsfLulcRcfxY9m5T450hM2GVNrzLUVknSdDU0VRhZjECVpS5PlOh6dVJF0+TDLLfT8yZ0zpGYbNeRWOXywEL3Qy0MiaMWOXR17SqP4YPP0X7KYmGMdeO478sTWzhNk9e6gWPlCRihqrJEVX8v4u4tZWXCxgLTREcYY095Iu1GQw+E/OvSq5M+fj2lCdNckZOU1/6zAgDHRg0NonXOkNhf15MZNN2oqj6UlNPSKbxsBm36TPk+fFM0ech44lNQDpXQ/XAM39iMWLx6bsOQz0HTwfVwbRszEBQgoyGTZ7qBVmb1lYftuOi+GaVyXWENXdfPqWygGSaaUniahuc4eCgCZgA8V/Iy+6ysruQzOdbXR7SmhobaWgz/d5HN5YjHYmgo0rk8ZlAjFvHQCrsg0AETd0Lr3ZK7euJOaP2upM2a2AhNt4r8O9ApgNlLSK7r1nv8MhtEGq43+PLv41hvu1/aN5phdI3PZrdL2q6JjXIetOPq3ApGKzmviUOJBHd2dbFu6VL6feba1HWuf/xxtuzdy4q5c7lx4UK+s3MnP16+nGu2bmXNokXc/fzzleN3XHghZ/zgB6yYO5d7Lr30hPr7Vq/m9meeqZT92kUXYTkOM+rrsT2P1du2VY794PLLUXDCvuPbvn/5croNxVTPJoZOCo3XjQCLzSBdjkWLazFmBFliBnnesTjDLRLBIKKLugHloBtBxjSDZtdGQ5HD43dGmBfNIN9yLEKuxbhuEPJsauROpGAEsIFa18bBJYCOh4aDotbV8RxH8ld7HoWxMd584AHOWLmScGMjL9911wlZGOLTpmHncpUsEGesXEnN9Olkent5089znR8ZoeH00ylOTso+v362r4/mc8+VzA5+uWhbG9GODrK9vez76U85/dOfJtrejpVKYUajFCcmKuVrZs5EeRqFyTyRxihG0MDOW+iGTn6iQM2UOHbBxgzLc0s3dMn04IFTtLELLqHaEJ7j4lkudsGhxs/Z65RcChN5jHAAM6QTjAXxXIVreZhBDU+BYfrPzvIzQQPXT+elKQfXKUioDKJu8TwbTTMEnCsoOAVyhQRpO8eMmqlEg3FyVoa+zDDTajuIGEHSVp7aUNx3vvfIOyV6U/3MaZjB9oHd9CZ7WXHa+wgHYhya6GZaXQcxM4TSDPJWFsMIE9I1OS+SVg7loRsmmm2DCsiEuzsBgQh4IsuWDtmGgC4MKlEhbwMGFJKglcBsrnb8yq36tNiur4yypc/wPNAsUat4Huge5MfEEdvT5BzKBc9X3Rmmr4Ly2Hzfffz2oYd57LHHicVqMU2N1tZG9ryyl6lTp6DrimXLlvK1r32diy66mPYpzezYsZsZ02dhBjSuvvoqLr74XXziE5/CMDRcV8naUei+hFlTHrqh4zouwYA8x21l4jiKYEDDcLJYroERCGB7RqWdoGnhFccIBGvwdBPbCKOjERjaAc1nYgdrASoZF3Q0PMRnxnSLuEbYH5dqgIuHr4bTRHbuuQ66GfJTAcpMjqc8TLeE6xTRQjWgGZVUgZ5S1frImNYrOUTDiutWf4nH//QEw8MjNDU1UlMT55WXX+GPf/wdd911N7qui3pi7Rqu+tiHUcrjG9/cxK9/8x8oBaefOpv77llH58xzUOjIaNoFTDTNwXZ0MhmXmtr4W27hby3//Zb/L0z1PyyeRUAlCekWIb1EY1jnkQMHiJpQqx2hM/cl6vWjTImbdMSDaDhoykF3h5kaD2I6RzAKXWj2YbThVRhON7rmodk9BIrPEdJLGJTQ7B70fBcGReIBE0PzaAprPLj8XZzaGKMuYBHWsgRGbySg0gTiGoVp0ziYydDV10fKNNmfSLBy61YOl0oUa2spTZlC2nE4MDnJyscf52CpRN7zsCMRDqdSrHzsMboTCWylSFqW9HWaRk8iwVguhwd4StInFR2HEaU4mMuxcts2DicSpCyL7X19HE4kWPmXv3Aonydt26zcupVDExO8fXGRiaNp3rmkiD42SjxgYWRTaDt20NFq0zi2n+DnPkO4kCQ+dBjz2pVMy+2nPpQnMtFPR3OJSN8hzGtXctGU/TRF87TFc5wzJ01LbYHpsQnMkUHiTopwIUnw+WcJHztI/KXt6IcPoe94jo7cQcKrP4PecxjDLmFmUwS6D2A/t5vJTID+YZOJjEnBiJJVYfaP1LJylcahwxrJtI5l6xw8qLF9u8bBwzrPPmdw6DBsf86gUNJxlY6nGQwPa1iOTjKlMTRiYCmTggoykTbZvjtIMq1z4JDO8zt1Aeye5ktXNdJpjaEhjXRGw/F08m4QTdcI2EW0VAataKEd7iPS3IKOhu64aJ4SvKfAME3CdXVMmb8A5XmEgiGi4Si6YVA/ezbt579NypbrlP+Uh+Z61WOWI+c6eAytKMyfZtloqSy6pnPxJe/i2b/8hZd27+Y7mzczNDTEy4WjPP7sU/T297HyvVfxtrnn8NgfH+Vvv97Gp65fhae8CrP8011/ZGpdCzmrUNn3k11/IFvK+27gfzzBFfwnu/5IfaSGB3f9gTPb53DpqYs4s30O2VK+Uv/BXX9A13RuvfhTmIbBZxd8gEtPXcRnF36AeCjKpacu4lPz3ycgc2JUzMxKJWhsEXCdSVXzVifGZF/rVHEF//fvy9oqCUtdLMDIgJQdHxIAmUmKq/gvvgfD/eIIPus0QEnZX90rZmilgrRVyFVSrmk9B9CsElo6iTY2hJZOYkxO0HH6RRgY6LqO5rpoSqGNDKD96j70UgHN89BsG00pAkYIzS6hFfLHfaeuHC8W0Ib70X7xPRgdxHA9dA9wXTTXRVca5uQERs9+sEpori3tFHJS79AbqFKB4721le9abhXS1XzZSuE4FnROlwFwPs3A3qexvBIqYOLZtsRya6BME6+uHm36TJSmYRVTUjafQikPqyjtep6LVcoy8PqfsZw8KhzGi4SxrTyeclEalLIJBt/4i7wXyyKoFLryJG2s66J5LlpyAm/rw5AYR/UeIZBNYeo6JCeg/6ioGfqPEs5nUH/6I1hF8Fw0q4hRzBPUdSgV8B7/A4FsWj7jxCTu1odgYpQZbS2ETRMzlUBt+x3a5Bg10Yicd9vvqQ0GCGDiaVFUZIGA6cwWYZgrr9MCfjNbZJ/ZLNtmiwDrzBbwUgKsM1tkn9ni79vk19vo17tT5OKZLVJeC1Xb9tJ/V+dO8FKYuk1bLMo9l17KSY2NLJ0+3VeOFFm3bBkr5s5l3bJljOfzrF+2jJxlcevSpYzlcty6dCkr5s7ltmXLqA2FWDF3LuuXLQMgeVz9mmCQdX7ZW5Ys4cnubjZ0dVXCocrtrF+2jN++8QaJQqF67qVLqQ+HK8cNDczJQ3zx0ZUcnDiAbqVY4hYxrTzL3CLTrAznFSYwS1nOKUyw/rHrsEtJXKfEkcQhVm1dRc/EQVrcEplSkoMTB/jioytZOrGfe0s5Rib2c82jnyE3cZDXjm3naOIwSjlE3RJGYYJDE/v53KMrOZLsQcejd+IQeVfif41QCCMQqKiH3nzggUps9N777yfU0MDe++/HsyzsTIZ9P/1ppZzyvEq9vQ88QKihATubre67/36a5s2jffHiSr1yub0PPCDhuf7+fT/9KUYgQKCmBt0wTiivHAvTdKhtC2GaDnq6m2BYEQjp1HbE0bEJxgIYhoYR0NFw0dNH0LEIBYrEmoKYAUUo5BKJWtS0BtBS3WhuCTNsUDu1hmhjmGAsgGal0XWPQNBBd7OYPrDWFGjKRfOKaKluTM1GVw568hCBoV2YykXX5HlmDD2PnjyEXkoTUi71yqUz1szpjScRG3sFLdlD3M5xWsMs4rkhjD9fQ31pHMNz0RIH0Z9aRTw/xOmNswm5Fhd3LuKT0xcRf+YGzFQPpzXOIp7tQ3tqFXqyh7idIawcdLeEZqXRSmkMK4PhFMDWwNLgcLd43Xi1QBwKtoDtAwdh1edE1UYcuo+IucyhbvBC0JeFlaugu0cmFg52Q9cOONQDq66R/c89L+2PjoEbgEIRtnfBkX7QGqCnF65bDcmsXE8qDc/vlOe6Utzz3e+w5be/4Wvrf8jYmEep5JJOW7zznVfwwQ/dQjpjsXPXiwwODTF/wVKSqRLve98H+dWvfs/KVVt56aUjvPTSC9TXz2T79l4OH05U1itXbaW7O0EqVSKddUimLLY/N0CuCCXX9IkCD9tRWHqcvG1yqCfLypVb6e5OYphwLJvgjue2ciRfwDbCvDJwgL7UKPbUxSQJki0VODo5xNefepC+5CiW55ItFRjNJijpIfpTY3z9yQfoS42St22+/uSD9KXGUAoGUpMkSgVyVpGxbIKcVSBnFXhl4AC92TRfe3YL/akJsiXZ15cc5etPPsDRxBBKKfqTo+RLCWpjFgFGuf+HG+g//AjOsQ8yfOwpDr/yr8SDR/n4Ry/l9Zf+wJ7dv+L1P53Jxz/6HnSnB2N0FXfcuoKDL32Pg/tf5pGH72RaWw7NOYpeeA5dpdHdITSVRsvvIKh6aGwwMPW8yOv/L1neAtdvLYCNhgdOH9rwtXSEh/njRz5IPKAIJr4FmS0EE99Cx0FzjsHwtZJDFF0mwiY2yECoMnjaKO1pUTBb0UZWC7OgRSF8Npo7LvlMlYfmDBHWPWIcQxteieYOQuP1aO4Qbu55LKXY2NVFSyx2gtP4xq4uXKVwPY+IaZ6wP2gY2J5HfzpdcSx3PA9D0/jymjWcccopzJsyhSP795MulcjbNk89+SSXvP3tfOCii3jn29/Olqef5s6uLlLFIo/99KcsO+88tnz4w1x3990ki0UeOXCAJtMk2tODvvo6NNcVafnOnWjRKCxejJbPo23YAFu2oKVSohffsgVtwwYhU31mnDvvhEceQevrI6AsdDyM55+jo9lC8zyJ8x4dRYvH4Oyz0TZvlhj0b38bzj8f7bh2CQQgnYZNm7DPehuDgxq33w6DgxqOCyVLZ2BA4+1vF8l6JKJhGDB1KixdCrGYxvz50NenVfJz9/RoaJrI20Wdp1FbK2939WqNwUGNs86CdFr2L14Mtq2xYwccOiSh7zU1Mmkaj4PjaNg2TIwptL5hiQcPmjBnmrzfTE5mqbv7fNaUCjjWs3miNXVo4RDUxSvgWyszkbofH5zKViTIGLrvVK5OSAVWSUUWCEBtDJRieGhIZO6uyzc2bOCiCy/k5itX8uEPfJBXDr7Bb599lD1vvsby97+Xt191Ob+470EMTeeTF7y3EpYRMgLEQ9HKvs8uvJJ4KEqikKk4j3+mDJAXfIBkIcPKhVcSNoN89eLPEP67+isXXkksECakiSHWtLpW1r/9n+msbSVkBvnc4g/REmsgoNSJZmZocGS/xFFv+y3s2SlS7zKDfXxZ04RoXNjuJx6qOoinJiAaq5Z94iHJc22YIhPPZeGUsyRndnmpMMsezDldWOuaeqlXU4/W2ILm2MJOj49IzmzHhsZmuPKTUv/X90FyAs110MaGJM1XICjA/bc/FoY3GBRH7/Qk7NmJ9sTDYjqm+bmqj3Wj2f4kQ+dstId/IlK5Ql4mEZ54CGrqUZEoynPwPNeXosoE5fGGak4pi+fZFYn7iWZroBk6nmtLfV0X6bjniDq+kCM90s3Y4V2AYqx7N6mhA7ju8e3sRlMKp5Rn9OAO7GIONJ3xnheI1rWhKyCXwX3ij6jJcbBtMUXTDVQqib7oQlQ6hd4xHZVOCWu//Wm0WBxvx7MSJ14xXsvgbvtP+ZxtG/ex30E2g9YxTeoohdf1NOrAG6hsBs0wqY3HwTTRps3E27kdDQ1vZxf6wmVouo451E9eBXD0GKppPdSsQOl1/+VrmtaBM45qug1F4L8u33QbnhZE6XXQtNavt15SdDXdhtLrK+UUhrRZswL0ur+rsw6lNxDUdRpDAWKBAJonKiZN03A8jxm1tfzoiiskNKqjg+m1tdz2l7/QGo2ydPp0Tm5o4IHly5kZq6UuFOJHV1zBUEYcnePBIDNqa7l/+XJqQyGm19Vxz6WXMiUeZ/fAAOuWLSNVLFKwbQbSae677DKm19byfH8/WctiRm0t91x6Ka2xGLXBIPcvX86MujiuKrFh+4aKVLcch5supTg0cYgbnriB0dwojnIwdZMbF91YyXF8Z9edbNm75QSZcSwYY8m0JWx+bhO2sittb+zaSHO0mTu77mQoO0TJLZEqpSrS4Q3bN+Aql466DmLBAKbpgVtCD5iVVIdzV64kEI/L62uuoZRIMHfVKtB1ArEYp3/605WwHt3Qq/VWraKUSBCsqTkhbaJmGATr6v6h3JnXXINuGieU1QMBgvEYZix23P5V6IEgmhEAPYiWHYDCOJpbAs9G8+W9mpURw6pkt8TSBuNo2X4IRAUUa5rEsRoB2V8Yh2w/mmuBW/L7HgXBWglzKadMUi5assd/BrrSRrluOQ9zrF3SKSUOSkxsx9sldjYQR9NNtMIo/PWLco1TFgpzHG2R+r5UWNu1AfCqEuRdG+W5Z2fRPAc9EIHuR2D3nZIasFwu2wd2Hm14l6hdAjFRLhXGoZhDc3yPiGhUQuh27ZJYtptukmfGpk3VED3Pk3HII4+IqUwwKOOcRx6RODnPk/ItLZXxDxs3wplnSr2WFhlITExIbNzgoAxMWloklWo5YwvAWWdBJkP/9u2s+drXSCYSfPXrn+XKK9/B5ZdfRDQa4O67N9PcPMGyZedy7bUr+dGPfkI4HCIWC/KVr3yNX/7y92zZch3Ll7+bz3/+Rh59NEdLS4yNG7sq67KDtq5rpFIlDEOjvT3Otdc+Rnd3gkzG4nOf28ahQ5NkMhbBoMmGDdvZsmUvmzY9h6d7/GTXH3im+0VGspO4nsu8KSfTFKsDNAKG+Q+T7wDjuSQ/3PEwAA9WJt//gILKa8u1Gc5OUB+tYyyb4Ic7HmYsm0DXNBr8SfryhHzOKpwwkf/zFx7FQ5HIj9Ea1WUcrsdEueBPRmr+BKY2sRH0qP96w38xQbpZxvIoCb0Jnw0T36t6X1jdaO4QhM8Eu1+ItZGVYO3/vwZgvyULf2sBNw3OIIx/EyLzIfZulNmJwkCzD6FNbEA1rUcLzIbhz8jN1bFV5HlleV9ZrjdxpwyCyvF3dh8MLJeBTvuDYB+sSvwCsyC/HQLTTizX9gMsO82E00QkEMTQNF9N6WH7qVCm1dYyra6O3lSK/nSaztpaNnZ1sX7ZMmbW1bG9t5fO2lr602naYjHqwmFaYzH+8swz/Ka/n+e/8Q1+vWULc844g64DB1j17nez8Ctf4Sef+QwvPP88a2+4gd0vv4wCdu3ezZTWVj63ahWfve46Lr3iCvYMD3Nxayvha66RmO6PfUyCqDs6YGBAgqJDIemU7rxTcmeNjkrHctttEsOdzUrZzk7pmDo6qmVB0GgsJoHWu3dLAHaxKHbkuZysQc6xcaM4qU2ZItLXwUHSM+ex8rpAxSDtxz+Ga66R9OCjo9K3bd6siMc1stnqzyGblTjv1aur5mr33SdvR9MEu6fTApj/8AdxL7/nHukTi0XpHzdtgi9/WV6ff76kBj/+Em0bkgmPM052BIyUjjNWMw04MgCdbRAJVaXdCvmXzqHq4miuV2FIhQLw5bvlciW72mY5BlwDihbXfPozPLZjO8PDwzQ1NVFTU8Ph115n5eevZ/tzz+E4DosWLOA7mzcTDpiUigWijY3YloXhKa794g2cefY8rl+1ChwHLRJG6TqG42KNTxBoboKAKbLkko1hGniGjj0xiVlbK47SoQCmb0YT0A00y0F5Hnu+8x3OummNMKCeQ0AzoFgiNzjIvp/9jLkrV0pMua5j1MQJNDcR1DQCB1+XdFhP/xE+9NlqWq7Bo9A5W+KjFdCzDzpnyeelGwKU8ePMdFOYzd/9FC79EBzaC2eeJ+08VjZCa5ffZD4rgFzXKzLwiqS6nL/ZdQTg1zWJuVokJiy3UgJwRwcEeGeS0Ngq6cJmnSbrp34PH71WrremXpzOL/2wfIe1DWLSlpyA2adXfx92SdjzJx4S1/J4LWy5X+rpGjS1VXJZk0pAehL3jHNx7RKuXUDXA5ihKErTsPMpxg7vouWk+RiBCMX0ONFGSV9n51OMde+m5aQFBCO1DO39K02zz8Mu5Ig2tFck2mX383xiiEAkTiAcxy5kGOvezZQzLpLHr2NhGAHQNDzH5tD2XzD9vPcSa+yQOHXLIqAHJLVXLC75sBua0AJBVCgEqYRvhPZOmYCwLZH8JyZQmQxa+1TIZXzwPQNVzOP+6NsY16zBe+YJ1IE30D/8LxLj7bpowZDEiKeTaLV1krc7HMEb6EWL10JDo3zcug6JSbyup9EXXUipuZXDwRC1yqaTEs9qIVoVnExJ2GUFmipiahI32aeHyWhBajyLVkrktBA5BVMpkdBC3KIF2eRZ1GERUB749VzNYBidZhx0LYSrwMDGVA6OFkACBVzJI64ZWFoAI6fwbA/P8RjYPUDttFocpYjNqSMYMPCUxK2baLhK4XgepqFjKI3B7X1MWzwN13YxAgaeCZbyMDUd23UJ+mE4nqGh6eC6ioChYTueyD01hanr2EphjeQIRoOoqCHto2GjfFNPj4MT+7hrx138+Iofcyx1jI1dG1m/bD2z6mcBMJgZ5KvPfJUte7ew7aptnNN+DqlSirpQHbXBWmzPpjfdy4btG1i3dB0z6mbQm+5l03ObuOtddxENRNE1nWOpY1Jm2Tr6U2Km5SmPztpOHM9hMDPIph2bWL9sPVPiUzB1k3rTRLPTMng2ArgqhGf5k2S6gXKKaF4KZbag+W7tyqj1/Rdy6KEwxsTzuA3z8TzTN5YsoWsWmDE8y0Jzk6hgi/xWNA9VGEWLtkr0xuRzGM3n4rrgFdPokTqM1KvQcCYEanG9AF6pgB4KYZiBapol3ZTUSXWzJTdwfKqkUCqvC5PiAB2sqd6z5Rndso+CZ4tjc7xD0jEZYSkP/3ieeIc8jIyIL2m2BWDXdMpv2M6KGVWkRUyupi6RPMpl46r6OfDkZ2R/x1JJyTRlgZzTKUhc7a6NsGAd1M4W86yXviv5ko2gTBj8bS3qgrVoZgTCDXItnuUbcoVh8DkIN0vap6lL/H7TA8eAjD8YqKnxn/N56cwXLYKrrpJn/QsvwLx5AsA1TQxfOjqqgNy2pe6ePTJz398v45yNG6sGtL4ZHplMdQa+tvbE8Ux/PyxfDvv2VQcot99eGZh49z9AWgUwTZ3u7gQbN3Zx661LaW2N8corQyxePI1CwWHt2qdYu3YJTU0RbrzxSdatW0pzc5Tx8Tz9/Wk6O2sr640bu7jlliXMmdNQMYxctWrrCUZdZ5zxg8rrzs5ajhxJ0NeXZvHiaYSiGn2pEUazk8eFf32gsh0JBIkEwtWwr4UfoKO2la89eT9PHHiev3zuR4xkJvn5C4/yqfnvZVp9O68OHmTe1FPE0FLXcT2PDX/+SSU87LZLPsurgwdpizfy4K4/8NmFV1IfjnNg7FjlGj41/73MaJhKULcwnW7Q4r5xZMAfl39Lxu52nz+mH4TIQsCRlIrh8+Tz91JgtAvBNrEJWu8SII4J9lHfYHK++GDocXlejKwW3FCzAqY8KNkf/psv/2+y8LfA9VuL/9DN+/SfCcoCLXjcjeLPRnkFcEeFqW67T26Y3JMwYzeYrYjZRBEKu2TbGZW6I6vlpg3MhOGV1Zus9R7/pvRHxvkdArQDs8g5OvsnEtSGQuRtm+Fslik1NWzYvl0czCMRMpbFV595hkcOHODhD3+YxdOmUXQcXhsZYX5HBxpg6Doj2Sw522ZjVxdrFy8G4L0LFnDmF77AnVdfzfDBg3z0qqvIXnMN2666iqk1NZw/ezb//oc/UDdrFos6O3E8j3e885185tpr+eRHP4qmaaTTaTqHhtDKObTnzxcQ/PfO5q4rzmPhsHQi9fWy79VXpSOaMUPA9sAAPPmkuJoPD8u+lhYBLRnfTCOTkU4qkxHk+t3vSv5tx4E33hDzt2AQNI0cMQ736JX+bNYsYZJnzJD0XaGQ9GdHjkgT69ZJn1csShNHj1b7uKlTqbiiHzwo5deulVzbXjnG2jeY9nzMWxRPL0xTUorNny9Z1MqpyjwPamOuzH5aNiTS4DPSgB+f6kK2IO7jfw+UPe/ElGCpLMSj1W3XExlb2bXccYW5Lpt2lV1d8V///TlrYlhWid23307vn/7E9Pe8h9P+5V/Y/2//xvw77pAUUp7HC9/4BgN//SsfeOYZMeO5/37mrlpFqKGBxL59NM2bh53JYITDKMcheegQ9aeeipVKsff++090PPeBsxmJkO3rI9zYyL6f/7wSi/jsddcx/T3v4YKvfIXxV1+l8fTTCFt5tGBIGOZcVoCoVRTwWo63BnHz7u+BmafIG3XdKhD9yDWQTVUBdHO7DLaU8hlOS+7TcFja7TuuHU0XUOc4AqY9F8IRGBsWQJ/PCnhumQJ1jSJTj8b9WG9TwPesU+UajYAA5PL3EgzKdf76PmHOL3g7XH19lX33FAwclfq+twK/vg92/kXKvu/j8JVV8voTN4iTenoS5sz1J2Zc3EAAu5STuGzfUE3TZcJB83M45ycHiDZMwXMdRvZ30XbaUnTDJDc5SCAiOX2dUp5ow1QA7EKase7dNM++gEA4hm4GJFZVeZJyzJ+EsPIp7EKGaH07rlPCDEbITQ4RqWsR0G0GBXh7ChITVRBd1yCfS7EgAHnvHrS552BcdiXeQC/6lE5/MkVi8L3eHmGxn39W8nOnkmhTOiGX9UF0vYDkZRdDrAYCATSF1Kutk/MuulC+V9uulFWpJN5vfoJ21tsoXvkxMpqGC7yOuE0PIemgGhCzrQbpYbge+ALigr0ACdlMADkknVQtVZfsAuKAHfP3K8QZ2/bbdhAX7ZsRF+xZfo/i+udygVC2RKInQbovTcf8DorJIp7rEWuO0b+rn1hLjOfvfp5l65eRHkiT6ElwxofPwAyK+7NrufTv6ic+NU7DzAY03feE0CDRLW7QS9ctJd2fpu3sNnGkBgLRALmxHEf+eoS5H5qL8hRG0KCQLOAWXZyCw/YN21l00yLiZ8ZZ9dgqtuzdwv7V+zk8eZgzW8/E1E1u+fMt3LT4JmbWzaQ70c2mHZt44L0PcHjiMENZyX8cMSOMZkeJBEVFEg3Is3BH3w7OaDmj0s7axWuJBMStWqE4kjjCWH6M86eej6c8id3UTYJGEMdzGMoMsaFrA79534PoTrrqEj13PeT74NnlVUdntyimVThibLXnFjh9LcRmSmoltyAmVm5BzK9alsg35Nrwyo1w9FfS1tu+D8qWtEyBekjsgWcvl9zLr99edZE+99vV55tmitEWfpyuZohLchkEownwdEsChv9+nR2A2hky4VhW35TFncdP7qaO+I7NflvBuDg868Fq36NcSPdC7XQqWQQUvmeFBYlD8OJmePsmYY7zo1BMQmG0CrbNkLDq5VzGF90j7HKmF9ovgFJKYpOlAxOjq913ikHWwHMC0mumS37laKt8FkqJuZZuiAGXHpB1KQnRFrB1SGeqnhNr14ppbGurdNp9fTJzvm6djE3WroXNm0WSZtvS2ZdKMg6aNk36hBkzKmMSXFcysWQyYkRbWyvgffdumXU/+WTJRVqe1b/3XkmhUiYcPE/GRps2oW67jcL0OeRtRShkMjSUIRYLEg6bBIMGBw6Ms3nz86xdu5jnnuvjuef6uP/+5TiOh2W5ZDIlDh2apKUlysyZDeg6JBJF6uvDBAI64+N5GhoiBIMGR48m6e1NsWBBJ6apcf31j3PjjYuYMiVOLmfR1hbnyJEkmzY9xw8ffA97Bg8wt30O33r6ZxUA/M/nX8G/v/gYnzh/OalihnOmnoryOzrbtXE8j2wpT1OsnpJjkS3liQUj1IRiZK38CR4snfWt9KdGeXDnH1i58EpaYvUYukGykME0TOKhCIYmIBw0399Nw1UeMdPBcMdk7O2lq5ka8OSe0wKShUEPAgaM3gJNN0PgZLAP+4B6s3wfzqB8rxN3VUm1sodG0zoInCTl7MO+38ZtEDqVEx3f/3sub8Vcv7X8ry2q4A9WszDyRVAlmPimsMkjq8uFRALS9q9yA7beA1N+DSoPw6skjUphl9SZ/LYPysPQ/mNhqZVXle81rRM2w8uCfUjqBzogMAOcQVyvwKYdO6gPh9nY1cVpzc1s2L6dLXv3smH7dmLBIO3xOOuXLeN9p55KZ60YRLw8NERrLMa1fqx11rJoi8crTrGbduxgZn09qVKJp7q72bRjByeddBJGscg7TZPzp05l9Xe/i1Mo8K9PPcWZra0cS6VY/fjjBHWdcd9V3FOKlmAQbXBQOpnp0yGZrDqbHy+LMk1J67VmDZxxhtiDx+MCkr/9belwjhyRGdklSwRURyLCTl9zjczk1tT4BlOadFiRiNDPixZJRxWJwHnnicT5ueegtxcdl9ZWxT33yOVls9J/ffGLosQqleTUNTVVVVc5JfjRo0Kab9okfaPjlCXiJ6b/LmctS6fl0o744VcHD1ZTjQcC0kd+6EOSg9s05djYmP+zKlpwdBDqagQcp7ICjMsp0uriAopPml5N+1WyJKWY61WBWG3MZ7AR0O150D8swF3XpG7Z2dzQhdl2XDl+8Jhch28QRW1MHOEN4x/kiWd85jOA73gbCDB31So63vEONGDv/fdXYgftbJZnr7uOF7/5TfRgkMLYGK/cfTfRtjbMaLRS1s7lqvUeeIB4RwfBmhqa5s1j389/fkIsYkUOGQzSNG8eqlhECwQl3vlX9wnDbBgCmv/4C5GBlwpw+A0BW52z4eGf+LndQxVJNYW8AOs9O6vs56E3BCDblgDzxBj88l45PvMUAc2phMRcjw6KvHtyjEru9CceFqDf2CLS8dpG/7NtkGdJMCzX0NAism8zKPt9WXUl73wwdGI+7UAQUpPw0IMyaKtrgF9+X+K/rSJ88NPwha/B1avlXF/8hrzWNHjqP+F7X5XPY2wI/v37aIUChhnEDEexizk8x8YuZhh842lKuSTK8wjXNGOX8iilCNe3MfTmM9ilHL0vP4pdyBKKNRCpa2Vo71+wi2nsYpbU0AHGe17AdfzJAp+ZtvIpkZ4rhV3IEq5twbGL6EYANJ1YUweapmPlknI9yhOgW3Yo7/oLmqbL9x4Koy++CG3uOejLLhZ2ubYOgiGUVQLbFkDfMR3v+WcrDuf69Fmo4QFUbw965wyRgfvHKBbk+9Y0qVc+7/PPCkA/rqzeMR1t7jm473k/RxB36RCS4imCAOVyuqdmBAAfQ9yq70aAdRgB4V9FBiRZxAF7FQKaw0DSb6Mb+BwCuANAGliN5IP+ITDHr3/Ar38YSUvleJDuSxNrifH49Y/j5B1qO2oxQgadCzp5/u7n2btlL9s3bGfa4mmc9oHTSPenyY3lcCyH/l391HbWUtdRR6ovxdZVW5k4OIGVsQhEAyxas4h0f5poi5hnZQYzPHHDE0weniTWGuO0959GoifBtuu2kehOMPraKE7eIdWXYu+WvTz/7ecxNZN1S9dx9VlX0xZrY1rdNApOgRufvJFfvf4r7uy6E03TOLnpZO697F4c12EoO0RLrIXrH7+enmQPzbFmXh56mb50H6u2riJv55laM5W1f17LcHaY+R3z2dC1gcnCJKsfl3797p13M71uOmEzTKqU4sYnb6T97naufexaAkaADV0iIc/bub/Lb7wBmuZXXaGjnRCbBbke2H2tgPCm+VIOV5hSIwLhFsj3Si7jzCEpWxyGczZXHaqNILy8Bh47Q1I8NV0gxwJ1cMat/jnXCVtsZ+TvlTXy/ChLrz1bZNqFcWGXUT6QFpUIwbisQ7Wyv3a69CPJHgGcniP7U92SAkn5s8d1s/zZG7+t1BEB8uWyrj+rHIwJk+3ZVTfqMiB/cTOc9yUBtwNdYBchXA/tC+Q91c0UBnzKAgHWB7ZIiqVd34RHPyR5k6Mt0sflxwCv6gj9wiaYcYm0lekVMG1lpH5Z3VVKyzXZOcmxHIhC6pg8b8spTIaGZEZ840bpyEOhqiR840bJMzp/vlzDwYPwuc/JAKBMMEQi8hzfuVPGKAcOyOCgTAzoupAS118v5YeG5PzHp0wxTQHW8biQB+EwnHIK6v77UbPn0NOXZteuAY4cSaJpGuPjea67bhs9PQnq6sK+VHsHl1wym/Xrl6HrGsGgpIVrb69h2rQ67r57J5oGq1c/zimn3Mv11z9OoeCQyVg+yM4xc2Y9nZ11rF69jd7eND/84RWcfHIjtbUhCgWbXM5mw4btzJ/fgaY0WuON7B3u/ofwr88u+ACJQpqWWAOvDBzA8zwKdglDN0nk0/xwx8OMpCeIBsLEQ1E0Tcf2nH/wYLFch/aaZr504dWEyuk/NZ1MKc93n/0V/ckRPKVIFNIiJNN0BlJjvDF0GMfTUGYbuEMwfruYP6KEvR75HNhHxDDSy8tvJbJIgDGWEGuR+VJn9AaZ0LJHILJEALPZDpPfr3pkOP1gvSkhoe33/x8DrP+XFqXUf7u/jo4O9dbyv3Fxs0oVXlSqf4WsJ76nVHqrUoVX/X2vKmUNyj5nUilrQKn+q5Uq7FHKSUuZfcjaHq3WcdJSpn+FrIuHlHKSSjkpWdsjShX3/139caWclCqVUuq14WE1ks2qsWxWJQsF9eLAgFrx0EPq1eFhlSoW1baDB9VgOq0G02l1765d6tD4uBrL5dSKhx5S3HGHWvHQQ+rN0VE1mc+fUDdbLKqpnZ3qkk2b1J6hIZUuFtXWP/1JLV66VJ1z7rnqI5/6lKrt7FT3/PznajCdrrTXcsYZ6t9+8xs1ksmokUxG2bmc8gYHldq/X6l0WqmxMVm/+qpSW7cqtWePUitWyHY2K+sVK2T/5KS8BqX27au+XrFCqWRSqUTixH3ptFIvvijtvvKK7BscrL5+9VXZXrFCqd27lRoZUZmEra6+WqmJCaVGR6Xqyy8r9dJLSo2PK5VKKbVtW/Vyx8aUuvpqpb73PbmkdFrKrlghp/7hD5U6eFAu7+BBpV5/XalDh6pve2hIytbXy/FEQt725KQcTyTkb3Kyel6n5Ci197BSz7wg62xeqUJRqUxOttNZpSy7up3JKWXb8rpv+MRyxZIcK5akzvHt2rZSJX+/bVfbKFnVcuMJaa+83ntYWdmcKqZSqjA5qdJHj6rCxIQqplIqPz6uciMjqpTJqGIqpZI9PaqYTKrJ/fvV9htvVIkDB1RudFRtv/FGNbl/v8r7r391xhlq+403qtJxZXMjI5XXk/v3KyuXU3Y+r6xc7oT9hclJVUqnlZXJqGIyqYqplLIzaeVlM0r9aINSn7lU1vnsidupSaV69svrIweVOnpQ1j/aoFTvYaVe3alUYkKpvm553dstx3r2y/bgMaVy/jn+/Ifq8XLd8nm698l68JhSuaxS2bRSiXGlBnuVmhyT17mMUpPj8vrVnUqlk1Ink66229ej1HC/HCvklXp9t1xfYkLOP9RXvZZy/fI1DB6TOuW2EuPyvn60QfYlxv3zJeX8PfuVen23cuyScqyiSg13K7uYU8deelS9tvXb6thLjyrbKqpcYlgde+lRlUsMK6uYVfnUqLIKGZUa7lb51Ejl2FjPS1LHbyOfHFZWIaMcu6RSw93q9W33qGMvPaocq6gcu/QPbTt2SeVTo/72oEoNdyvHKiivWFTu0ICyH/qFcocHlHNov3LTKeUV8sorFpWXzyl3fEy5yYTy0ikpP9An5Yf6lVssHFd/ULnFgvKyGeWOjyqvWFDusH9ssE+5A33KHehV9u9+JfWGj6uXzSh3qN9vd0B5JTl3ulRUB5VSo0qpg0qpMaVUQil1SCn1qlJqq7+vXyl1tVLqTX9/QimVVkrtV0q9pJQa8rf/pJS619+fPm7/1Uqp7ymlXlRKrfDX3/NfJ/y/wePK7VNK9Sqlni7ZKjeWUw+teEjdwR3qoRUPqdx4TqUH06qQLKjhPcPqoRUPqeE9w6qQKKixfWPqwNYDauiVIfXQiodU/65+dWDrAZUdzaoDWw9U2sgMZyp1h/YMqfGD4yo/mT/hPIVkQRWShRP29e3sUw+teEhlR7Ny3teGVSKTUFsPbFV9yT41kB5QyUJSJQtJ9crQK2rFQyvUa8OvqVQxpbYd3Kb6U/0qXUyrsdyYWvHQCsUdqBUPrVDJQvKEffvG9p1w/M3RN9We4T1q64Gtas/QHnVw/KAazY6qQ+OHVCKfUIPpQfXiwIuV8+VKOfXq8KtqxUMr1Hh6UHm5QaXGX1Rq+wqlJl9VKn1QqcKoUlZGqf5tSo3vkmO/QtbJN5Wa3KNU+pBS+WGlxndL+cKYUsl9J5YtJZUqJZQa2KbUxEtSb/sKpRKvSfv5QaWKCfkrJZWys0pZaaVyg0rl+pUaf0kpu6DUxH6l+rtk7dpK2SWlHH9dysp+K6tUfkKpUlqOlfeXMkplBuS1UzqxLSsn7ZWyfptW9biV+8eyVk7O49jy59pyvnS//I3sUerRFUoN7lJq8qBSI6/I9sgeuY7hl2T/6KuyP92v1Ogepbq3VuuOvKJUMS3tlsuNvqZUMSn7c2NK5UaUGn5Rjg2/6Ld93PZL31NqYp+0m5w8cdzx5pvVscWhQ9UxzWuvyb59+/5x/LJzp6zLY5hdu/6xzOjoP45xxsZkUJLNSvnvfU8GJGNjSo2MyMBhclIGIytWKO/VV9Wxw6NqYiKvVqx4SI2OZtWKFQ8puEOtWPGQSiQKasWKh9Rrrw2rdLqoBgfT6uqrf6cGB9NqcDCt9u8fU4lEXiWTBZXJFNWePUOV8qlUUaXTRZVIyLFyW+W2k8mCGhxMqwMHxiplX311WO3bN6ZGJ9MqW8yrVCGrcqW8msyl1bHJITWZS6l8qagyxZzKFvNqPJtQB0eOqb91v6zShay6+ZF71LzNH1E3P3KP6hnvV+lCVmWKOfVczx41nB5Xe4e61c2P3KMOjEqdfSNHVKaYUyPpCfXQK0+q3slBlSnm1GhmUqULWfkr5lSuVFCZYk7lSnmVKxWU66Rl/N1/tYz1i/v8cfzVMg5Pbz1u3P6iUvawjOeLB5XK75Lyx4/ZndRx+MHHCv0rlCq85mOFT/rj/qRSbv5/F2r5//kC9Kv/CU59Sxb+1gJuVmaYck9KbEXzepGHBGYjojod8l1gNsmsVOtdgAPFNyQmwxnw06fcBMFTRCqSewpil8L4V6sy8LZ7pf1Apy8RWQfmdHB6/Djs22TGrLgHAh3ktVNJWRapUom6UIh4MIjjifPzl554gi8sWEBHTQ0h02T1tm2sXbyYOQ0NdCeTbNi+nVuWLGFKPM6e4WF6Egn+6fTTqQkGyVgWC888k19u2cLZ55zDuC8b702nWdDZCY7DnOnTeXbHDmbPns2RZJKNXV30fOc7rPnSl3jP8uUYuk7MstAzGaFt6+qEaa6rk5nbCy4QLXRZ3vSjHwmFWzY+MwyZvd24UWZmx8bEIGT9epgzR76Xw4eruuxZs2DlSmG/yzm/9+07If6IO+4QZnzbNjjnHArRBpL5EKOjGhs3StWGBlFhbdwoiq62NlGnL1lS9ULzPJlcrquD116TCed3v1tCqo4ckcssS8gPHJCU4gsWyER1d7esy+dYt07e5sKFVcZ6506RmUejcNIsF61Yqkq+Az4z3d0npmMtDXDydMmvXd6eM01SF+maMN7l/TOmQsiX0IIw0idIyX2Js+4LdopWNWa7d0iY8cO90NkujPdYAvvcU8iPj7PvJz/hlKuvJt7ZieanKsr295MfGqLprLPIDQ1x6Ne/5rwvfxnPcTDDYTzHwS0W0UMhdMMg29/P3vvv58xrriHW0SGEu+tW8n2LbFhRSqcJxmJMvPEGDaeeihkKUUqlCNbVoVyXiddfJzplCvmREdrOmYfp2MIgP/GQSLobW2FiREzIrviYMMO//P6Jsupf3Vvd/ucv+nHYflz2v3+veuyq1fKbjUSFnTYD8Mi/n3j81/cJo5wYFxa5rqnKPqMJo13XJHHAZoCKxrJYkO30pFzzv/vX+IWvQX2z5NG+/KNy/Uf2wcxT4T9+DB/7nDDkZgDGBqvx2Jd/VF6HQuJs/sLf4BsPnHi9n/iisPuhiDDX236L97HP4YVDfkyvRz4xhBmKMN7zUiWmeuD1p0gNHaBuyql0nHUJTqmAEQyjadoJx1pPWYTyPILROkkBpukVtkj5qW7QdD/VmEIpj8E3nj6h7ePbm3rmxbhWiUAgItddLMj7y2YBhbfjGfTFF0FDk3yqtoX3523oSy6qSrbnnoN+4btRPQfRZp+CVlePKpX8b0HhPf0n9Isvkxhu25LrLRZQ3QfQ5pwKmlaJ9XZ/fi/6+z6GPm0mAF7fEbRYDcWWNg6ZJhs1jVuBAaATmAl0AS0IU70OaEUk3j8HTgY6kJzMnUhO5luA2fILYRxhqTcA6/12Ukie5y3ACuAORCI+R3olFMJ4DwGbgFuB2ZZDIG+TOpaia2MXy25bhhkxKWVKNJ3chHJFbaH5KXisrIVu6jx+/ePs3bKXuSvmctm/XsbACwN0LOjg8dWPs+SWJdTPquexax+rlFl+/3IAkkeSdN3ZVZGZt5/TTn4sz/YN21m2bhmp/hR10+tomN2A53houoYTdCg4BQJGgKyVJWyG2T2wm7NazyISiGC5Fjc/dTPfuvhbjBfG+faOb3PvZfdWYqxvWXILJzWeRNEpMpQdYuP2jdxz6T2M5cfYsH1DJXZb13QKToEXBl7gWPIY/3T6PxEwArw4+CKLOhfh4VFySuwZ3sP8jvmUnBJBM4ipmUR1he7khVme2A2Zw9B2MUQ7/OerJ6z03g0w9zbJWzzWBZEOCLVA4mXJaWxEwIxDYdCXmK+DUCs4OXAysP9ukXwbEXlejJVjhEdFSu5ZoIdEep58DZoXynYlPtqPcXYsYZBduyr71jQqyTetjLDbqW5huCPNkmu4bNChVDXWWg/IM8Kzqt4S5eO1M4XpPr5sOcVgWU6ulLDag8+JSdmfrxWm+dQVcMmP4alrjtu+XxjtbR+HTx+AwgT0/gVmXgrR5hPLvutHMLQbpi6qsuTBuB8v7veFJ5zrfnhqVXV70R0QqpdrziVhKC+d/G23wcyZ0ml//vPwhS/IOGXRIpG97dkj7qX5fNVoZf16UexNny7jmMOHZfu886plbrtNxjOaJgOG8rlmzRLJd73/DB8cFNl4PF6Nwy7LxP0xj/2j+/nzzlGmTq0hGg2Qz9ts3NjFunXLmDpVwsui0QC27XHNNVt55JEDDA+vwbJcdu8eYMqUOCef3MThwxPE4yFaWmIYhsaOHX20t8f/y3jsdeuWMWNGrc+U52hsjOJ5ilDIQCnwDAdH2aSLOaLBMIfH+6gNx0kWMpzZPoc7n/4ZKxdcSUd9CyOZSZ4/9hrT69tpjTfy8xce5Ya3X0U4ECJVSBMJRAgHguh+ikwPxZ6Bg9z4yN286+QFrLno4+iapJEbz6Z4cNfvufkdnwBgLJtgIp+qxFx/esH76axrRVc5oloGzAZhp4uvQeQCwICRz0PbPSfGSLffj8RT90iYaHSZhIxObICmWyAwR5SnlfI/Elm50SZdfTkWe+KbIh0PnnZiCMV/0+WtmOu3lv/54uXBOuzfKGvBmComBHgSY+0lwewQmfjIapF/RJccZ0o2R2Th6OAmJFWKV4TRm6F1k5/ndIMAZ7vfB+h3n3gjYgCuAPqRG6HxCzD5fbLNP6HgOLw4OMg57e2ETZMdfX1Micd5vr+fmfX1LOzsxHJd4sEg6VKJsGmSLBZpjkbRNY2MZTGSyTCYzTKttpa+dJpl06cz99RT+bff/IZzzz0XU9fp7e+nrrmZLz/9NJHt2xk5epRf/uY3XLdtG/M7Orhk9mxWffCDXPf5z/Oe5csxy+D64MFq3HM8LlLtZFLWxxt4TJsmHdSNN0pckedJHHZtrXQkhlENdk6n4c03BaA7ThWVDg5KR1Vu9+9BeUuLyLkeeAAOHSIbb8Nq6eRzn+MfTM2Ox+PNzb76NliNqd60ScD3qacKgD6+31y+XOref7+8zVRKgHhDg7xubhb1V/kc3/62vIXjjc7icemTzzzdxdAkLuiEfNRFSwDvtHaJwz7e8CxgVmOtjy8XDAioO9xb3S7nZy6373pVyXnJgppYNd663F7JqsR4OzOnYGWzmNEonm0z8dprRKdMId7ZiefLxiu5hAHluky+9hrhtjaMYJBwQ4Mc8zw0w8DJ5VBKYYRCaLqOUgq3UKCUSglQnzcPPRikODZGqKEBz7LQ/bK5/n72PvAAp3/ykxQnJ2maNw8TD/N3P5GY47ctk/f6+3+DK/9FZNfZlADO8WEB25d/VGKfx4eq8dWJcfjBN+C62+Dksyqgs2JeVijAQI/EKcOJdVumyG+znMdaQ0Dgwz+B93xIwHpNQ3VSIzUpMvOmNtnnuSKX1LTqhEAZsJcB8ce/ID/Mco7qYkHqGoakDyuboAWDIm/v64H6Jmnr+Fjyyz8qIL4cJ+5PIrh3/hQnEsEMx1Cei13MYBeyRBum8KUbb+LRrY9x7Ngxtv36e1x0xcfQ9QBPPv0X7vj6N7Esm0g4yNfXfJILL/8owUgtu3bt4otf/CKWbVMsFvnUpz7NzTetEdA3OYgZivpx2EGUUhKffXgXLSctIBCuwSqkGO9+QYB9tE6iGByvEjdNOIIWq8Hd+tAJsdbu479HX3wRqu8oqu9odd+yd0E0hvfEH9GXvhOtoRk1MVoB5pXyV3xQ8pJnMyL5XnwRNLWcEOut0imJ1c5npcyiC1G5LNmTT2eVplUA743Ad4Af+Hffaqpg+H7pXdgJLASuBdYg4HsLsJUq0C4D9eXH1QU4AtwJ3AbMQCTjKf9Y1F+vOu6cP8uWKAxnibfF8RyP/p39xKfECcaDRJuj4jCva3iOh2u7BCIB0CDZkxRAvF7AuFN0qO2sxS25BOJ+me5qmYbZDXiu5DNWjiI3nqPnzz2c9v7TCNYE8WwB0oCcz/VI96VJDCSwzrH47s7v8v3Lvo+rJDd7X7KPY+ljLOhcQKKQYN6P5rHnmj0cnjxMS6yFRCHB4mmLK3HSKLCVzXhunIARIGJGiAQiFJwCqWKKeDBOxJRtT3lEA1Ecz+HFwRc5p/0cwmaYHX07mBKfwuyG2RxNHeXOrju5demttMXacOwsndEGyQaiBwTcvnYbzNsIZhiKExBulW94/HkItcF4l4Djs74GgbgYeo08LbHZLYvByYqE3IhCpB2KYwKky1LryReg/iyRoJpxUI6A+NKYbPf/AUb/Bov+HVJHBViG6qW8smUgn+rxwXOLAGzlygRB2SDEKQkwrun0QbovL9eD1XhrDSobpTRMHob28wRsl1LSdnnRkGdU6qgYp2laxZCPZLd8Vk7eNyZbD3VzIHW4alSW6Yd4p1xT63lifJbpk3hsz4LskBigXXCLyNRTxyA3IFLwUgLCjQLIU91+DPdR2LUBFtzmG7t1V7drZ1bjwvNFP/4863s6FKGpSdavvSZxZe3tMpZ55BH4z/+UNCMg5EIsVjVf6e+XMUl5YFHeb5pSNhSSz6hQkPo33yx/g4MnmqDNnl2Nw/aJA1IpVF0dhWgtkxkHwx8P1NYGcRyFZbn09iaprQ3T2hoDoLc3STgcoKEhwq5d/bS1xairk+OjozmSySLf/vbzrFu3lKamCGvWPMWaNYv4/vd3sWhRJx/+8BmYpsGuXf3MmlWPUtDZWUt3d4I77+zinnsuBaCuMUB/aoQHfUDbFK1j819/wcqFVzKcmWDNI9/h4X/ZRE0oxhvD3TRH62mK1REPRfGUyMS/++yvuOHtV5EsZHhw1x/4zIL3M5pNcHrrTCYLaR7c+Qduuuifmcin+NnuR/jsgg8wkp3k+v+8iz986m4AfrjjYT5x/hX84sXHeOLA81xx+lJuvfhTREwwnG40uw+iS8HLHRd77U9meXkZwzetrY7x3SQY9SLxxhVSLfeUxGIHOqrjfC0s95BWA5RjuCfg6FkQf99bhmb//7y8Ba7/Ny2eJTfV389SORPiIqiKPtM8TWIpnEG5ccZvr5Zv/jroMQHkXgFG10HrRt+ozJB8pF4S9HqErXrlOFfx28BskzaHr5NYjugSsIexguezP6nYsL2Luy+5hPFCgTu7ulizaBFjuRznT53KcDZLfzrN/I4OIqbJ9t5e5rW1SboVTSNv2wCETRNd0+jq7eUnX/86u/76V0ZGRmhobCQQifDam29yw/XXs+u557Adh7PPP5/N3/kONXV1jObzfPyGGxh99lmSExPE43ECoRDP7NjBqY2NaNu3S1oJ05QYoZtvFkq2oUEoXMepMqaOIx0KSFz0woWCVvv6hPoNhSRu6UtfEkr5y1+WmKYPf1jqv/66bAeDVQfxefOqnZdlCf2s67BqFdbb38XEP32G0VH9BIx/7JiYkt9yi/Rh8Ths3y792PTpJwLj++8/cbs8cbxuHZx0UrX/HRqqMtWzZ59o+NnaKqD7eJK9DPJ/80sXvVSqAl1Ng3RW0nNp2omGZeUllRXgHAkJUNb16gDIcyWu2tCljOdVgdjft/FmN5wx578wS1Ngu+A42CgKyQRuocC+n/6Uc770JYxwGC3gt61pAoBNU1Kr+WyGZ9sVgy3NMBh75RXCTU3EO4ThcW2bPd/+Nqf+y78Q7+ystmXb6MEgpYkJzHgcp1AgWFODEQrxwte+xtGtW5n+nvdw/m23oRkGgWAAbXwYbXIUTpoLh/fCDzfAOQvhI9fK55FJSUqtsgt3JiksdSEn7t2BoKTCMgPyGzIM+T2Dv60LcLZK8Idf+MA9VAXR77oSauvFLG3WqXDkADy4GdZ/T9zLUZBOyf0QCIrLd7xW3vOR/cJMo6B5igyaDVNY8jLAb24Ts5wj+wUc1zaIA/ic02VCwTRh97Nw3hLIZWD/HjFkm3Ey9B6Gk88U87RMSoB9vLYal77tt7j/cgOWlcUMRimkxgjXNqNpYm72t2eeZUpznPd84GP87qGHOPP0k0mmM5xx5jn8x/0buHD5P/Pcjp2svv4L7HzmMQLRWuYvupCvrF/LglMaMRpP5tz5y/j1D+5g8bs+iBmKUkyPEYzVCZA+ztAM3WB4719pnHkOwUgt+eQwgUgNgUgtugea4+AN9qK1d6AFg6gy6F32LlQqcQJLjeehNTTKZwwoTUdTHkrT0FwXd9t/VoC5fuG75fuPxdECQdzHflcF7Vd88MTt5R8CzzuhvnHZP5GLRunWNDYi7HQ/MA2YjsRGdyPs821I7PXLwGIEFPf45cuA+l7E8KwMjMvbNyFM9/XAIuCfEEOz8gjGQQB7G8J891JlvE8t2CQPTZLqS9Exv4NUb4qd393JFT+8gsSRBJmBDNMWT0MzNDzbIz+Rxy7YpHvFAM0Mm3iOhx7QyQxkCMaD5CfyUm/JNAHNhkaqN0UgEiDcEGZgl7iS102rIzeSI1QXwgwLQAcY3jPM1AumggdWyOLap65l7eK1mLrJxq6NrFu6jik1U7Aci6ydpS5UR87K0RxtrjiJH89Mf+fd32EiP8FAZoCFnQsxdZOR7Aj14XoSxQQFu8DshtmkSikKdoG2eBs9iR42dm3ky0u+TGuslRufvJE1i9Ywlhtj6fSl7OjbwVmtZ2HoBo2hOIFsD7oZRQUb0CZegIZ5AkA9ywfZG3xGF+j/TwG9Z90hQDU2C3JHxAStab4Muq0JCDYJCLaSAqqdIuy5GU6/WUzPIlMFsL98o8R2R9oBHSZ2QXiKsObFUag55TjmtgZhnkUpgnJlu2x66NlVM68yo40COy/gPHWkymTXzZZ2lOuzz6Vq+3J3VScPFXI864NjPHEkr5sjrLVyYXAHNJ8l4N4IyXsZ2gFNc8XcrDB+nLnZYn/y0RBAnOmH+DS55qkLq8c8Rz73/JjEbmP4fekxabNsaGaG5ZI1U1zHo21y/YM7YMpi8DTwDOnA+/tlwDAwUJWelZdSSd6zacqzORCQ8Y1lycDiy1+WukpVxyWFgsjkLrhAxjq5nIyVdF3AvOPIGGfuXBk43HmnzMBPnSrn27UL3vY2mdHfsAG1fj2TrdMZTznoukZ9fZjduweYMaOOzs5ace0P6Dz3XB9Tp9YwZ04DPT1JNmzYzk03LWLGjHp0XWPXrn6mTaujry/F8uW/YcWKudxzz6WMjOQYGEhz3nlTGBzMsGnTDm69dSltbTGi0QCHD09y0kmNFSfxfftWc+RIggVLpvCtZ6tO3l9990qKdolIIIztOqRLWUq2pNSa2z6HgGFi+GkBU4UM8VCUofQ4sUCI3tQoDZEaEoUMc5o7OToxyLypJ6P75b/51IOV89x68ae48+mf/Q+Z65vf8QkShTSdNVGi9m4Z4wdmgtPnk2VrxYBseJWvKp0mpJoe95WrzZIKMepP4ttHfED9FfFUwpHfst0jRFr4XInrnth0nAv5dAieDHr4H8d1/82Wt8D1W8v/ePGykHsWAlN9G/5bwJgizoFlCUjZUt+oRxifyHE31XowmsAd8d0C11ZneI+/oQY/BFMfhmh5OAXCXWiQf853CJ8pN7IWBhyyTpDPPPoYW/buZf/q1RyenKQlFmMsl2N+RwdBw2Asl6MlFquAaKAiHc/bNrf8+c/ctHgx02preXFwkLdNncqu/v4Kg72gowNd05gsFKgPh3nBZ8hBJJyvj46ysLMTBYzlcuT8XKUdtbXc2dXFzy+9lHBPj+SZXrtWAPNzz0neKtOUzmRwUKROZbZ57VqZ+S2bfYyNiUlHNiv07x//KA5iixdXJcs7dkid1lYB0i++KKDacYThXrpUEG7ZcXP2bDhyBGs0QX7BOzAMrSLHbm+vKrI0Tfq3m28WxVdjo7DOx45xgsN4d7f0c+vXC6Au4y/Pq/q1OY70g+VsTKYpl1pWwmezJ6rCZs+Wduee5mJkMlKwf7gKcC2nKhGv0ga+g1pCAPgpM6oO4ZYNfcNVZrunH2Z3ngjO/57lzuYF0Hf3ybq1oSoZ9xRkcriRIK7jsPtrX6Pl3HNpPu88ArEYwdpaJl57jYbTT6eUTFIYGaH57LPRTBM7lyNx8CANp5yCnckQiMcx/DxmmqZRSiYJ1dWBplF+/nqWhfI8EgcOEG1pYe8DD3DGypWEGxsrjuOaYfDShg2c/tnPEu/owMnnCUUj6K59ost2fzd0zhEgqwG//sGJ7tnxOgHF73yvMM+azyjX1Incettv4fKPCKPd0CKGZOmkOEXveR6694m03CrKl+tYEK+X7Yd/Iim8yuD7iYfhQ5+hYiMfjsr3WfLLXvx+AfuzT4dMWlQEsbg/IWLKn20JaI7GIJ+T67eKVSn85R+V89mWXPPs0/0UL0lxvi6D+LpGOX9NnVybVYJ4La5pMLj3r7SdtgzdMMgnhonUteJYBWGU51zA6fPm88NvreHCyz7Ma292c9XHPsIbr75EMFKL65RomTKDp//8JOeeey7nXzCfz193LR9b8QGO9nRzyXtX8Mu7VjLnjAtoPWURZiCCUh66EahIwOunns6UMy9GUwqlaeQnB+l9+RFq2+bQMfditGQC77ln0N/zATTl4Q32obVORQuYYJqoyQnfwftdaPWNKMeWyYRYHDU0UHX8XvpOP03X5AnlcV1UIY8Wr0ElJ4SVXvpOmchIJ6vu4Ok0WvsUyOUq9TEDlGpqSQZEKRJBgok8/7ZLIVJwF9EoFRFTs3HEUdzXSRFA5N0GYkR2JwKMy3LvEhBEJOS9CBjvB84DBhEJ+Jf913P840XEDK0jW6Lv2WMVV/Cl65YSa40RjAfxfFPE/EQeO2eL8/f6pQQiAYrJIuH6MJHGCLqhYxekrwnWBAVT+SEoypOUPbmxHHbeZsfmHVz8rYsJRAIYQYPerl7a5rWRH8+zY/MOLtl8CYGoTAJbOYuB1wew5ll01HZw3bbr2LJ3CyvmruDB9z7IwYmDbNqxibWL13JS40noms7fjv2NllgLM+tmVgzP9q3eR/dkNx01HQxlh1g8bTEAlmuhoZEsJmmLt/muwS6GZpC382j+c0ihmPm9mbzv1Pdx32X3ETJDZK0snvIwNIOWUASjOArBBmGTmxYI6LQSEKwXgF0YgX13iUN4tFPudSNCOSUdxVEI1om5VrjJN0TKiht4dArs+zacc5ew06k3oe4sYbaDDfDITFj6sMjK8wPCeouW3+8mPGHeKmmzOuW5owepmJlpuoDqMisNAmKtXFUyXgbfZSbbCAlTHYhVjytX2rEy/n7DT9EV8su4ss8IVtU5qSMQnyLndIow/CK0ni19m3Jh/HWYulRY9kpartn+pLEFxYSYmDkFadMICUttF2D3hiqL7ZQN1eICmtsXyPvXTZlk/Ovn4fybfUCOGKC97SZoOl3ejxuVGfU1a2R8MnWqhKLddZco7RxH8lLX10MiUQXI6bSMUTIZGdMMD1djyKJRGWw0NwvALo+HvvMdaWvDBgHls2bJ4MHzZEBRTuV1/IDkODdxdf8DpAmSz9vcfPNTfOELC2hoCFMo2AwMZFi8eBoA4+M5WlvjZLMWrutRLDoUCg7f/OZ21qxZxNhYjvnzO9i9e4AFCzoIh2XskclYxGIBrrtuG/Pnd/Dud8+ho6OGNWue4PbbL6KuLkRPTzUNl2Fo7Nzdx8x5QR7cJU7eTdE6DN2g5NrkfDfwVwcPVkDzaa0zK07gx6fs6qwTR/Cf7PqD7xDeRsmxeGO4m7Z4E531LfQnRyX11oIPMLWuRdzHFaQKGRpjdbieR7KQoS4iTPG3nv4Zt1/ycUK6I6Ra6yYYXXtiBp/uqX6q3U4/fPNWP1zz1eMk4ZvE2LicpiswXcqgwegXoXGN4Ijjibi2+2SMjy644b+5NPwtcP3W8j9ePAusA8IeuxMi8Si8Au3fr3YOypYOEANUAQovQPgcmXkqp846AUAvEcA8+CGRgLTd64PzBnESD0wTR3AvL/ny9LjvHhikMvxyJ7D0NvZP5tiwfTs/vuIKjqVSbN6xg82XXELUZ6Y9z6MnkeCuHTu4delS5jQ0cKQcb+2n3OqsrSXkM9cAJcfhpaEhLpg6VeSWfg5t23UJmSZ52+bmp57ixoULObmpCVcpPM9D0zSufewxblq0iFEf1J8RDhPfuVOkT2Njgjzj8aqbdzIpua/mzxfqNhiUTicYhN7eqpy7qUk6kfnzq0A7lRIbb6hqtiVXhHRq5fxWmzeLvLy3V+onk9KBTUyQa5vN/oN6ReJdxv733y9VmpsFt591ljRXUyP9Wfl0gYD0h0GfzN29Wwh2x6mmuSzLu3O5al/b4GPUXbukX9y8Gf71X6t9pmHIZPfOnXDpu1x0TflIXUGuIO7gRUvA8snTK0CXUFD+LFsuKHzcw1khQM9TAq6LJd9Z/Dj2+1AvjE6eGJ99fP1yCq66OOVUX67rUsplKU1OogcCZAcGaDj1VOxcjnBjo/wOHQc9GEQ5DpphVAZgTj7Pa9//PvO++EXMSATleRQnJwnE4yT27yfc2EikRaSEL991F6d/+tNEmppIHDpEw8knY0RFrurk8+z5znc4/dOfJu5P9niWxcRrr9H2tvMwHAstOQl/fRRWrPQnCDQBoIGQDDq3PABXflIAsp+eiVKhOlgsS8k1TUBrU4ufq1pVc1XXNwuLrPwPLJMSoJoYh8d+I7mkj+yHplY46Uxx5J7wJdtPPCTH2zvhl/8qjt6eBwNHfEl3SNjTMri/4qMChiuTBgr6uuUaWqfKdmIc3nxZmPKrVsv56prgT1vgPSvkWssx37UNwtLblrD3c+YKuH70V3gfWYmrXBwrz9jh3TTPfhuBSB2F5DBmKIJTKjJv/kU89B+/5pxzziaTK3DyKafx+9//jsUL5rP1sW1c+cEP8x+//iVXXvl+/vz7n3LNLZtRnsv4RIIf3HcvF5/TRsucCzBDsRNScSnPQ/Ix69jFDGOHd1XSdxVSowQiNYSCcbytD6NNn412+lkySWOaVSmn68p3pQTOen1H0WpqRcLd0ARWqeIUXmajJd2Qh3JF2SA5sKejigXJax0MomwbNTKI1jYFDQ0CAQHxu5/DeM/7UNmMsN2lEtl4DX8zTdoQmXYISatV/tvs/4G4iJfBtIPER2cRxrkcDZummspkDzAVYbWPB9tdCGivoRqDfTVwn9++ibiIR4Gago2Ws3h89eMceOQAH374w0xfMh2lFIkjCXZ+ZyeXbL4ENMgMZKiZWoMZMSvPhv6d4hYebYpi5SyizVHsvM3IayNMvWAqZsjksc89xpKbl5DqT5HoTjDj7TPourOLxV9eTNOcpspE2mTPJLqu07Wxi8VrFxNvj5MdyVJzeg2artGd6K7kt55dP5v+TD9Pdj/J7oHdbL5kM9FAlN5kL5FAhJZYC4ZmkLWyhMwQrueya2AXZ7edzWhulJHcCAs7F6KhYegGnv8b2dm/k3lt8wibYSbyE7TGWlEoxnJjFJwC0+umM5wdpiHcQH+6n6HsEJfOvBAj1422dyOc8WVhor2CjAW8ksi6i6Pw+FnQ8T5Y8CBkj0j89elrIT5b2FsNAcGlEZF1G1HZN7YDckehaZGk7WpZIh/++A6J2c4PyD43J7JTtwhGTOpqhs/iBqoS8MbTfYnzcUC7zDwHYvJrK99DZenT8VLwcr+Af9hzhQmOTxVgnT7qx1rbwk7XzqCS397OnXhuI+Qz3y4kD4sk+4IvC6P87I2SPqv+ZKn752ug+xF478OS57ocq23GZNKhfN1u0b9LPLmuUP1xQHstNJyCH9sA2T4B2UYI3vwFDPwNLv4BDO2ESCvU+dc+/ILEr2d9gB6LSQ7r88+vduCjowKyy51+KCTjnLvugltvFaZ7+nQZyyQSMjYqe9DccYeMb0ZHBYifcoqA8D//WfJ0NjXJgOK116ROeSDR1CTtLF5cld6tW4eaPZtXu3O0tET5wx/2M3NmPUuXTqdUcgkEdPJ5m1tu+TObN18CgGFoBAKGn5q7n8sv/zUrVszlvvsuIxQyK/mqywA7k7GoqQmSTlsMDQl7vX79MmzbRdehpkbitJVSfOlLT3DjjYuYNaeOglcgW8oTD0U5OHaMs6eeQm9imJ+/8Cg3XfTPBAyTO5/+GZ84/wpiwQg/3PHwP6Ts+sq7V7Jn4AANkRpqwzFKts0Du37PJ86/glQxy7lTTyVvl3CVi+VY1Edq2TN4kFNbZlTk4p+84L3sGTzAu09ZxL7RI5zaMoPakEnI0NDsI2AP+OTaRp8sa4Hiy//FOP4+0HzVpTMAuaeh9sO+IsSV+9/0wbV9xGeuzxNX8TLRln8GCs9B8x0C3P+bS8PfSsX11vI/XvQgBE8SNlqV5Iff+k1htFXOt+b/gmxjVWOqi3tAWSIrsQckbmN2j8RjOyNyU8183b8hgwLKR1ZXy2NIvuzx24X11mLgHIWR68A5BnqUYHE7JzfU8eB734umafSn0yydNg0FDGWzZEolCo5DTSjEmkWLGEin8ZSqpOsa8vNi96XTrNq6le5EgoxlETZNlkybRm86zXXbtnEslcLU9Uq5EZ8ZH8pm6UkmuWbrVnrTaQDWLl5MQzjMeVOmUBsKEQqHUZ2dMqvb2SmOXxMTwiYHAsIin3uuMM1lirivTxjtvr5qPqtYTDqNYFCQazgs9ctmHvG4uIatXi3t7N5dBdOplMi3zj5bBtnt7dIJtrfjOl4lc8amTXDJJcIa79gBf/qT9FsLF8qY46abhEkuq9uee06UYa5bzQbW0iKXbttClk9OQleXXGpTkwDuhgbpTwcGqkr3+fOlTne3TIj39Mglnn8+fpyyJ2mxevoFPCslDHNNTEB2JufHRvvy71BAgLXrS749JQZnhiGAWkMk42hwZEDehAJOmgatjVXmumgJ8120hAnXdAHWhZJsGzqe8kju30+so4Noezst555LYWyMbG8v+ZGRCrDWNI3JN9/EKRbBB9F6IMC8L3yBwsQEYy+/jPI8QnV1mOEwLeecQ2lyEjufRzMMiaMeH8eIRmk4VUyk3GIRt1jEjMU4Z80awk1NlHOFJvbupeG009A1Da1QEFOwD31GwOPhvRJj/dsfibzatuCqzwmT7fphCihhcUsFAWYf+ISw08UCNDRDNiNfmvLg6AHfKCwsYLl7rwDUrb+WtmvqJFY7k4AF74A5Z0A6AdNPEtl2ehLe/UFZlwoiHU8l4Pc/lzKmKcBa0wRYv/A3AdmuK9f/0IPyvJozV4C78qCYF0A/5wz40GeF8Z51mhivffzz0N4h338uJedrapX3EAgK0P7l94Wtf+9V6IU8umEydni3nz7rJXTDIBCJY5hhYk0dMp71QwtqYhF+cOdNrL91HfMXLeH3//FzTj/tFALBILphcv+vH+Pmaz/Ggddf4qn/+Fe+evvtpMxpBKP16GYQK58kNzmAlU8xtPcvvvGZRiBcQ7Sxg4kjL+E6JWKNHTjFLKViGn3ZxWhnzJP3nk7ibn0YlZyQEIT+Y6jEBMq2cLf9Hq11ClqsBn36LJlMCUcwLrsS/WOfkTzWuoFKTuBufVgk+jW1EsP9xCPg/5bRNNTwgOTL1nXQdbzeI6Dr6Bdfhtd3FKwSmuehXAdTeXQqxQjCHF8nvzBa/O0bEbCbRZjn5xFWuYxhDgNHkdjsLMJmxxGJ+VkI8P4BIjNP++U6gHqgDslvvQIB8MeQOO4ev94gMO56FBNFlt66lA8//GFqO2vZes1WUr0pskNZOuZ3kBnKMPTSEHUz6ghEA/7DCZySw7TF0zAjJpqhYedsHrv2MQDi7XEeX/04ySNJFn5pIUbIYPqy6cy5dA5dd3Zx4JED1HXU4VgOubEcylM0ndREIBbgwCMH2LFpB7qpoxs6g9sHcTyHOQ1zuH/5/ZzUIOZk3ZPdLJu2jHsvu5eIGUGhiAQi5O08Xb1dFJ0iGStDX7qPgBFgQecCsnaWoewQ7XFJqZWzc2Qt2Ze1slww9QIUipJboj3ejofHWG6MWDDG1JqpdCe6qQnVEDACDGWHaI21UrSzAqwHHpEYad2omohZKTEiM2PCLp95m/xW920SQGzGZbyh+0x1vhfe+IZ8+ZoO4zuh4TyY+XEB4c0LxCxt9yoIt4uUvGWJgO+XbpBtswbyR6RMtsdnjzMCfiPNIt3O9gvQzvYLi5zt94E1Qi6keiqTUlgZAc3lmGrP9X+gSgzRNF1SZOlBOVd8qrz37KBvIGZLG5run3ugeu4yw+45AqwPbIEXviVsdzl9Fko+0wtugU+8JmA4Pyax2WW23Cn5sjNdgLIRAHQ5TyAuzPbUJfDSd8HKSp1ABNrnC8vtleD0q+FdP5bvYuoSKE1KDPfTqyU9muvflOX8mvPnizJu9WoZt+i6jFFiMfF4OXZMxj/33iuz6fPnS1hbQ4MA4mnCHnPPPXL8tNPgwgtlbduS9/PqqzqfhewAAQAASURBVGWAYdsy3pk6VUC158lgo65OxlIgoPyOO2St63z72ztIp0t86ENnMG1aLV1dveg6jI/nGRnJsmhRJ9FogHDYJBAwGB3NAbB48TS2bbuKe+65lEBAnu1DQ1nOPrsNz1PYtkfEn2CLxQIMD2dZs2YRfX0pZsyoJx4Pkc3arF69jXzeYdOmSwiHTTxcNv/1F3zgZ2vY/NdfUBuOU7StSiqte/72a4JGgM8seD8JXwb+yQveyxWnL+Xmd3yCKTXNrH3HJzA0nTPb55AoZLBsh1AgwCfOv4JEIcPZU0+hPz3Kpr/+G8lClrpILeO5JKe1ziQSCPGz3Y/wxIHn+fkLj7JoxjzCgSDN0Xp0TSdVSKGpggDp8FmiGm29x2eTo0KADV8jAHjqwyIRL7wgEzv2ERj/JtRcKRNZxZfBnZS6qiSstt0vilfNEFOz1nvkHIXdoo7VG6pA/f/g5S3m+q1FZp/dpG9e1u6z1WExOnCGfJn3XSIPsYf8mAtbyhEETUkshsofJyNpkzx4TevkZhtYfpzzoOY7ij8pN1z7fSe6DbZ9H+xeLJrZn46yYft21i1dysz6eg5PTrJpxw5xBm9s5FgqxUb/+MmNjewbH2fTjh3cd/nlTOTzFTn5RD7PeVOmnBB/3RSNMpHPs3T6dAYzGbKWRTwYpD4cxtB1Vm/bxpa9e1kxdy5fv+gicpbFKU1N2J6H7bo0uC6Brq4qc710qaDN42VU0ah0jGvWSOfw7ndXqd3rr5cOZ3xcOquyxXbZpbMs9Z4xo8p419ZKh7djh0ik6uqEci4WpTOaMkU6Nl3Hytvsz05jw0at0mRZvXV8lY4OeQvlnNQlv/9+4QWZgD7jDImTfuABcQvv7xfg7HnSr37ve8JOh8PyVhoa5Jjrd9LRqODe7dsFhDc2Sr+cTsMpc1w0X8pEsQQDozCrQ8By0PQHuEpA8rR2AdWeP+otx7iBL/0dgFlTfW26v8/yQwbKkvHj2W7LEVBm+rLCssu4rlXqO6USVrGAnc0SiMUwo1F233EHp3/ykwRqa3FLpYpjuGaaAnYsC6UUyQMHaDzzTFCK3OAgB/793znnppswQyGKiQTB2lqMUEhcxH/8Y+auWkV82rQKA27n8zjFopiiaRpje/YQaW4mPzxMtK2NUGMjqYMHaD/3HDTbEjOvcEQ+r//8mYDKM84TB+/Jcflya+qF0S7kBYiW462DfgxUqSDHI3E/xrlNzME8V+pnUsIAHz0o7Ta0VOOma+okxrmhGZ74nbDT4UhVAn7ph8QgzXHEnXxiVCTcqQmYfVpVtljIisxc04SNHh8REP3k7+CDnxGQr2lirJaclGNl996yNP09H5brKzNSqYSA8Suugrp6ea/5HNQ1+mGGBngu+cQQgUgNwUitgF5dx3VsTj7ldH73nw9z1umnohkmum76Mn8Y7nmVuQveTddfnyQWMjjt3CXkMim/rTj//OlrecfbF/PepafSctIC7EIGMxRh4sgrNM06rxJfbYZimKGo75skUl3HymMYQQKBqEjGs2m8Z544MV7asiAcFrOzch5by5JbIxiC5IQw09NnUc63rWwLte8NaGhE75wu9RwH5bp4f34MfclFIsO3LHDsqnlZPoc+fbZ8pp6HyufRwmGyoTB/M03mAy8ioHYaIsluQJjsQYRlLvjbQX/tc2/sQIDxe4EMApoj/r6NCIBu92/d3wHPAT+mYodZAeqrqMZr/wiJw15mOaiJggBkTWPrqq1VF/B7L6MwWUDTNcL1YQZ2D1A7vZaathrQYfCFQdrmtRGIBtADOo9d+xiv/+p1Vu9fXcljXT+jvlK2/Zx2AtFAhalGQX4yTzAapJQuEfMNljzbAw3MsLDeHRd2MP2j0/GURzwYpzfVS2+ql/kd8wkaQWzPJlFI0BBuIGyG2d67neZoM+P5cZZMW4Lt2YSMEI5yJCTSs9k9sJuWWAunNp1Kz2QPg9lB5nfMJ2pGOTBxgLt23MW6pevoT/fTWdfJ7PrZfOHxL/DNd36TeDCOoRm4SrIYRHWdQP4IWr5fgPDxTt/5fol/js+m4sat/LhmOw2J1yQ2Ot8ncnI8n8U2xO278XxRyL30eTj1RmnHKwjwNXyDJOXC2E5ovsAHmAEpf+y3cNnrvgxdq54fqvHPNZ3+NXkCSD1HDMKCNeIWXonTxpdv/z/s/XeUHOXZ7Q3/KnWenpyDsgTKBI3CSMIGhAAZDDbwgPFjG2OiwBbZCGywjYSRyCbjnC3jhIVAJhpJgyIIhACF0UiT83RO1V31/XFVT4tz3vOd91vrrO88wb2W1NPV1XdVdVfVfe9772tvh53Oy7+Pl5FLPUBB3QcOg4esY1uMdUyRo7JtRXeusRRE2h3jsu/Ie4k+kcoPfQDlM2V/rDT07pD6am85DO51aq07pQ47m4K3bxN5d7xHgLhtCYDOO3+H2x2ZeFI+Xz1P3vdWCtO9cy003wlFTdD7jix3N8r3kEzK2KOxUQB1ba3cY+sc1dDtt4s3zLZtcM45BcJg/nxRz/n9Ml5xuQQwu92yTn6MUuvI42+7DZ56SgYWeZOW8eNlHFVZKeOo1atl0FFTI2awV111nCz8OfoS8lsHAi4ymRy6rtLa2kl9fRFer0FlpR+wSaWyWBbcfvur3HbbInw+MTfTdYUbbniZ225bxMSJpUQiafr6YmMsdWWlD01T6e2NOm7hi5k0qRTbhuuue4nm5npaWhpZt66V1auXMH5KEd0RYanzRmPTKscxmozwkx1/46oFF1LiDfLJQDszaybh0d3YWORsm5RjZva15vMo9QZZ/+Yv+cqpKwh6/KTMjGNudgGNxVXs6f6EUm8RxR4/HsNDLJ3A7/Lid3npCQ/SFxtmZs0k3E5CRzyTxKO7HEOzwyjDa50666mFOmnv/P/Bg+lZYbDNoxC8BPpv+LSpcdktoJaJ75LiEoLs+HSg/hsKxsdYjJn6KZ7/8rLwfzHX/3qIREsrB70O6YByYB6WWSmjCfQGidkyux3DsSPQd60AZDshf9txuThjL8p6igu8S8HsE2Z7cr/MYOUND4bukeXVTwAKVD8LEw7Is+IBtYSMUjbGRK/duhWAR7ZvZ2lTE43BIAoQMAzWn3kmtYEAOdumrqiIe087DV1RqPL7qQ8GeXzHDubW1ODSNLZ2dHA0FGJuTQ0PvfMOc2tqOBoKoSoK44qLOTI6imXbGKrKw2edxeWzZnH3kiVU+/1MKC0llcsxlJA6NcUwCsx1Y6OAusWLBU3mgXXe2OrRR+Hf/71Qe+pyiT47EBB9dlWVINQXXxSUmk4L4z1njnREfr84gsXj8vmFCwUVx+PSMe3YITPGRUVS8xQKQWUlTeOkBHz8+EKNtNcr7PHKldJ/1dUJKN6+XT46OCibX7RINn355YL3bbtgALpqlYDniRMFXFuWfD7PXOdyovxatUrSOLLZArFfWSm7WVzsnH85S74nlyHssqY6xmIIm21mhblOZ2TdbNapR7eFYU5n5DMTncHV4U7HvVoVBrurX+q0O3odEO8w1i69AKzzLPjx+4ONraokBwfZ9+STJIeGsG2bGVdfTWpkBE9ZGYneXjxlZexes4ZEby+5dJo9P/wh2Dae8nJ233cfycFBUsPDlM+aRXJwkMH33sMVDJKJRIh1deEpLxdGfGCAWGcnO7/3PSJHj6K53eSSSQb37CGXTlMxdy6esjJKpk3jwK9+haJplEydKsxzeFTAptsroPnyG6D5MxJVNTIkgNIXkOMLj0o8VV5afeyQAGwQkO3yCsCdPEOk1YoioPfwfgHKv31SAHdFLSRiIgGvqBEgN3G6SLP/7ZpC3bXbC5deC6Eh+W5//4yA8Tyr3TBR6q0zKWkvnRYn7/5uaJwk64WGRNauAG0fyf5W1Mr7pjMbFA3JsU06USYNUAT4h0NyvV30DWGwVUfeWFwm0mhNw0yE6Pnw9TEDMRQFMx0nPtKDqmoomsZQ2y5U3UBBobu7i0wiTM+Hb/DET//E6Z89nSlTplJRXYPX4+LVzZvwl9cRjibZuXMXs2fPxVdWz1DbLnylNWi6h7qZZ+Dyl5II9Tvy8zhWLoOqG6i6C1XVcPtKUHUDGZiA4g+grvgi2so7UJefj91+GDsRA5cbOxYVmfnoMLnNf4N4VKYWwiGUqlpZvvGP2MODoGmos05CbRyH1XlUmO9UEkXTUBcswdr2FigqiseLHQ45wDohwNrKYadTWN2dKE69pa5Ag21zA1JHrQE3IZFbLkTGrSFS8JJUim9ccAHzpk5l3Jw5nLlsGfsOH2YhcObAAJeffTbNU6aweOZMtr/9NuuBFiA9MMBXzz6bJVOm8NTMmVz69tsoQD8C2HG28RwC5B9F2PJ6pL47MZjgpWteIhPLsPiuxVy28TLOffJcdI9OUX0R2USWl294GX+Vn6JqkWinRlPUzavD8Bm8fOPLhNpCLFu/jBmXzMBf7SfYECQ+ECfaG+XllS9TNasKbIj1xsgms2Mst8vnIt4fZ+TwCOFjYV669iWivVG6d3YTapc2p102Dc0Ba5lchq5IF3Oq56AqKgoKu7p3kTAT7OjewZHQEVoaWxiIDzCrahaHRg6xvWs7R0aPsK1jG1k7i0/30Rhs5KF3HqIj3EFDcQOLGhdh2zaRTISgO8itC2/Fb/hZ3LSYKl8Vlm3xzeZvAtAb6yWaidLa2UrbaBsKORRvHVQulkGyHhC5t+aBktki5U50SPRW/Ajsug4iB+WHKZ0lwNpTJUZkqAJ8QZjp3TfIZ8ubIdUrfysOMz60E8yoXM9ViwSU774RYm1w0sNwzgdSv2079zArW5Bg59JQMkkY34EPjqu7domk210iwFozhHUGqYvOZRypucOG27YYiuUcvYWiOeVyOPvpKqxjZZxtaGJkproLsnVVFxn2GU8JC55NirO37pHlQx8K+H59pYDdeLd8pqYZDB9UzoFEvwDp2oWwe/1xwDokBmWKM6xXVJGYJ/rFQO2tVYW68ViXSM933i9APNAojuSeIhlP7Nwp4wmvVzrs3l5RGK1aJTLum26SsctXviJjF69XJvV37BCpuMcjbbS1iUnr4cMyW58fz6iqqO6am+VevHatAOb162X/WlpksLB0qbS1cKFsT1GklO6SS7DvvptYRqK2fD6D9vYQ11+/iba2EebPr6e+PkhlpY9UyiSRyPLee30YhspNNy2gpydKPC6s87FjYZqb61m7diu5nE08niEYdPPEE+fg9QrbnU5n6eqKcOutC/H5DNLpHLFYhvXrl3HWWZNYt66VDRv2s3btFhRLYVxpLXeecQWVgVLm1k2VyfHYKHeecQV1wUr8Lg+zaidj5rJYdo6jI7384B/PMxgbZWbtJH68/a/E0gneatvNaDJKma+Ywfgo8xqnU+4rBgVOqBrPb999BY/hGSts8OgukqkkN39jJVcsv4RFzQs45+xz2PPhe/hdXva1fcJZZ69g6omLmfmZDbz90m3StwyvZ+d7AyxYuJiTzt3LiecVse7ndTJeMurBf4YQYWW3QvBSUZt6lxbMjxUPkBMgXXSJ4xrukzQgvUkAuqJCpg36roLMJ3Kd/Bd+/Iu5/tfDOckzgCq10FiI26QO2UGHkV7jzEBNFOdAzyxnHQ3axhXqqz+VY308g317wSwt2y2suDFO5OWpvU7OngXZvrFtZewgw9mKsZzrRCaDz+XCsm36YjEe2b6d9cuklsaybVRFQVNVXJrGO52dzKyq4tZXX6WlsZGWxkbWtbaOuY1PLC1l+lNP8fHKlbSNjIyZlB3vTP7tlhbqiorwGwZZyxKWfOtW7ly8mO5IhOXV1egrV8qN/+KLZXZWVQvxWXk3TEURN6+iInHDnDlTOop0Wjqqdevkn9crHYrfLyi3tlY6njyVnHFuRvkQak0TSdXg4KdneZuEiYprQQ4cUikqEtCb79v8fhkH/P73Be+0rVvlvf5+2ZU77hDgnDc437pVEjD8fmG83W7ZtZ07C4djWQXjUFUV8P6b3wjr/eSTBZbc7y+A8MkTcijJVIFZdrsEGOesghtaPClxXG5DJNv5ddMZWcc0Rc5tWXIDzzuGZ8xC1Fa+95GTpTDJ0d4tTHn+oTlsuC1g2zRNBvbswVNWRmpkhMqTT5ZorXz8lmWRHBigr7WV4X37mHHNNbx03nms2LiRWEcHnvJyjKIiPGVl5DIZzHgcVyDAsCPrVgDV48HOZtHcbhL9/fRt28bwvn2ccuedDL3/Pp7ycgHns2eDbaPq+hiz7fZ60BSnrrhh4qedwROxgiO42yvHb7gFhN57HXz3SQHfwVJZNmmGI4VURO59fD32BV8RsHzkYxjshxNPgtIy+Z2whYUODwvQdpzPx+qy0ylhtRVF9iMRk1rryTPlOx/oKdRkV9UJeM+z7v6AAP58PNglV0uboSHZXzNdcCwvKRPmfPxU5zd2jjdnOjXGduHY0ikB85v+QO7rt/xPOda2bZHLpLhh1a1s2rSJ/oFBykqKCRaX8MnHH3LNtdezZcvb5CybBfObWX3dRUyddzYAm1/ZxHe/t5ZszsI0M3z1y5dx+bnzqDlhqQBlRSGTCI/VV7v8JSjY2M65qygS0ZZJhBk6sou6E05DzQlbphgy2291daAUBaU+2h/AVkDJ5bA1DSWTwfp4H5SWozaOA8DOZiW7+sghlElTUTw+7FRCwLOiynnicgmgdmLlFMdZOV97rTaMB2zseBzF58POmlivvoS6YCnxmjreVlUqkWzrmxFH7y9RyJ7uR4zI5qRSvPPGG/jPOYcKReGnTzzBBy+8wNNvvcUFX/86ZzU1cfW999K+axffuvBC3mtvxzQMln796yxrauLz994Lu3bxjQsvZG97O4ZhEEdqs09GgPUjiETch9Rd10XSdG85hr/Kj6fUg7/Sj5kwefW2V5n/rfmUTy0n1huj7R9tlE8rp3p2NZpLQzVUOrd1UlRfxLG3jtG5rZPljy7H8ItsvLO1k6pZVZhxEzNuUjalbCzqy1/tJ1gfZP8f9jPr8lmyrMrPjsd2UN9cz6SzJmH4DV6/83VWPL2CjJ4hS5b+eD9tI20sblpMe6id+7fez+2LbqfaX837/e9T4avgRzt/xNMrnh6rt7z5HzfzrfnfosRTQomnhFAqRKm3lFAyxGtHXuPSmZdiY7O9azs1/hrGl44HoLWzlcZgI+W+cu547Q7WL1uP3/BjY9Pa2Uq1v5oqfxX7BvaxbPxStNhhFM0v8m9FEyC8fy1MvxOKJguDbQQgtA/c5RKrFZgkzKxiFMzPhncK0+ypgvduE1Bdc5YYlykqDL8r0nAFh+2ynazrGsnOzkYg9CFULS3UdS/4JWMZ14F6kU1/inF2vCaOZ53zzDNWQXqtORO7mUjB0dsynffcst7xtdf5e8v/qtZbcxcYdH+N5FcH6uXzOVOY613rJIIrOF6AdU2zZFoHGiCXFBa7aJx8LtkPRpGA7rykHQSgmwmR3fuqZZkZE5bbUyrPmgv6dhZY8KJGcUPPROX44gmIKgKQ88y111sYQMyaJZ29rsu4JJMRv5h586QvzqeYNDaKRO2WW4QweOGFQib2HXcI8z1hgqyfy8m/cFjY6c5OKXtbtKjgMF5fL7VmLS3yXafTWF4vI2mV0dEUJSUebrppM83N9Vx88XQA9u7to66uiK4uMRtLJk1uv/01brttERMmlHLVVX/nxRcP8MILF7NgQQOZjNRpG4ZGImGyd28f8+bVYRgalmXT0RGmpydKfX3Rp+qybRva28WFfPXqxfj9BjWNXt7rPkCZL0hTSQ0f9B4ay7qeXj2B4Xh4zIisNljB3p6DlPuKqQmWY2iGeAHZkMymsW2bH235Pbd+9ivkrNyn4rteO7SD5dMWkrMsVFXFpRn0Dvex553dnLl8GQcGj/HK7//Gllfe4O+bN7H4vDM4cfJk/vDo7ex+/dtceM1e2g+/j2F4mXvyAr5/z22cf/4KRkbjnDBjHm+99ADTT77YOZeOCoi2k84Y3Rnfp951EoAehKoHxEcJzTE+fhiqH3YmfHTouwGiPxcA/p88kus/tKGZoijlwOvHLfIhKRpVtm2P/K8+9y9w/X/wYWVkFinv/q3XyE3WCjsnviIugeYRCF7MN2/6Li/+fRPHjnXy3ubzmPvZZwF4ZfOb3H3vejKZDD6vzrPrz2bOpG6ouIuB3dP5yl01tHV7cbtUnvp+E0tXPAqKV4zOUKW2u/w2MHvAPAT+5WTUcRwcCePWdSr9fpKOK7imKIykUsQzGRTgAUcm3hAM4nHiIo6GQvgMg6RpUhMIMJJK8fqRI0wsLWWhExFx0+bNPLJ8OSgK2zo6uOiPf2TvNdf8T87k+dzsa196iRcPHOCFiy9mXn095bYtTteWJai0v78QWWHbQt0WF0uns2NHAYWCAOKSEmGYo1FBsomE85tY8vfxUqu8zrq/X8w8br9dzED6+2XGOBaTzMl33oGnn4b2diL1J7Blu4v6esmafvxxaeZ4MzJVLbh/a5r0X//4h6ivjjfpzGZlF8cwabuQ8488IrusKDLBnF9+fOx23gQ0my30uzU1jsrdn0ONRP8HkHycPPv4qC0oRGiVl0BDtcjIpzQVzudwTAC6qkI2J8y0rhUM0VRVAHQ+M1lVnYmLLGiKnO/HvZfNZslEoyILLyrC5feTTacZ+fBDyufOxc5mGf7wQ0qnTUP3yAzy0L59VM2di53LkQqH0d1uMUArLxdnXtkK2VQKVdNQDYPUyAg508RbVibg2TmHCtJSm9SoRILtf+45TrzySoqamjBUBaXtIwGUtiNXzOVEFn7WFwXwTp0l30UuK/8URczBJk53Jh5sp249fyLogA2/exqWfUFitnRDWOCmyQJuXW5hwvPxWIYL/EHZfiImbb30O3Edd3kEtIM4ff/hWakPd7llYPq7p6FpkoDpvATdskR63jixUBu+Z5uA+sFukbe//jeRnudryRVV9lNBwHNXu8jO8+fO4f0iWS+rkpPRifPKLV5OJhkay7ZWVG0sfzofk5Uz06iGsFO5bAbd7Qc7RzLUh7uoUkzKQJhwK0f/J1upPmExqqaTTQsjrKDS98nbVEw6FTMZ49juvzD1tK9jWSaDh3dSOXk+ustL70dvUTm5GVU1UDQdXdELWeKxqORTt3x2zARuzNnbcKH4/PKdYmNnMlivv4x6xjkojorA1nWprdcNFI8Xq7sDJViCUlqOnU4W2l9yBvgCY9nYlJZLFFh3B0qwWMzSAkHARikqJuX3c1BRWasorEaMxnyI+/cORCLuBUaRPOu7kHrs24Av797N1RddxL6jR6kLBHjt8GH8NTWsAfY3N/OltWv56plnMjUQ4NXDhzmxpgYdOK25mW+uXcvnzjwTDzI9nEWAfTOwGOgF5gNF8TSjh0eJdEUINgTHzMQ6t3VSOqmU4sZitqzZwqLbF1E+rZxMJEM6KhJuRRWJfi6dIz4Qp2R8CaNto2y9fyvLH11OfCAuDuOrF+Or8PHaHa9x5rozURQFV5GLdDhNJpbBX+3Htmw0QyObyor8vCGIv8qP4TeIjETw1/oxLVMk3rqb61+6nj99/Cf+fMmfaWlqwbbtsdpogEg6QrW/Ghsb0zLpj/Xj0T2UekrZ0b2Dk2tPxqN7yFpZdnbvpL6onoArgN/lJ5wOEzACpHNpyn3l5KwcqqIyEB8Yy8NO59IEXNJn+RULdfdKOOVxB5TakmW95QtiYHbqk7B7JZz8iGRQ718rknH/RER5oQtQHN4Bnmowip1MbBWslAO4m0QSDrJuHoyrHqfCwwHIg9tEZh6YIAx5xUKYdPVxedYVIonGuafbOQHEwXH/AwD3FIBvcLyw3rEueS8vCz8+fssyZR8yEalpDo6nkDCREyMzd9DJwT4A3jJhzkNtsl8VMwVQ9+2AuoWyvbduho9/A9MugWXPSRu2zVjtdi7P8Nny98BeqDkVdK8cm2UK65zNQLBJZOKuoEjBK2Y7jGFEAHcuJdsc2leI+bKce6dtyQV7pEM6/rxbeEuL9M+RSCHyIy/VnjtX+pN8+dvIiIDqfHlKMlkYHPT3y6Djr38VKV1jo7T1xBNyf9uxQ2b7q6pk9j5PUuRy8t6sWWOz//bq1diTp5BEJxJJoyjg97tIpbKEwynKy33oukoymUVRYOfObmprA2zd2sm2bZ0899znSCRMvF4DTVPI5Sxnd7NEIumxbOzW1k4aG4upqfFz442vsH79maTTOUpKPOze3cPcuTVjbZhmDrdbJ5ez0T32mLN3TaCcEl/RWNZ1bbCCta/9lJm1kzhr6kK8hpvu8CA/3vGXMbfw6kA59cWVDMRG8Lu8DMfDaKpGvxPfBTaqopKzcngND+lsho/6jzC1chwKijj8qyq9kWHe2bGd+761mg8+2U9dRTWt721j9qSJKFg0Lzidtd/5ImeedR4nzb+Qm1bdxlcuW0jnvrtZeMFOdu94m5raOgHUioEA5Osg+hsouhyqH5LrN7kTer8Mtb8upAL1XQdlN8l1n5ecK25ZXn4HuKeJwvU/6eM/tCzctu1h27bn5v8hiq6X/78B6389/k8/MgKsoxvkWfECFmhlwjKrfpFvF10AtslFnz+Vra/8gHHjGqH0Bsj1Mdq7hcu/egO/+OmzfPDeO6z//pe5/Lo/QdV60Gr59nNfYMGSyzj0yR5+tm4CX1r5JmaiXRjx5A7ZXtlNMLxeLkxfC2SOkMrZuHWduGlyzcaNDMTjBF0uemMx7nnrLXRVpTcWY8P+/axrbcWlyaC4bWSEnmiUKr8fr2HQF49z39tv86VZs2hpbCRpmiSzWX50zjl0RCLcsGkTJ9fWcuSb36SuqIhGR0p+cm0thqbxRns7I4kEdy9Zwr5rr2VJUxM5y0LJFxXHYsJKn3qq1EIfOiTLyssLHcSCBbLO4KCg2fJy2LNHaNyJE2X9224TQO73FzKzli6Vz/t88m/iREGrzz4rnVZ+G5EIXHihyKpsG7q78SgZ5s+3efBBUXFZVqGPGhwsmIvlHAV1HjQvXiz9aV6plS+5OnJEpN+qKuD7mWdkV71e6Ws7OqTva2kR4BwIiPJ96lT5mlwuea+mRtbbtk0wne126rKCAQHTbZ3OgOa4wm2Q1wGfZFM31QqbPaVJWIa2Llk36MwYuHRhug1noqM4IODapQujfayXsfo8G1muafLe0R7JuXbqXvOy8NTwMJl4nN333YenvJxcMsnu++6jdMoUAJJDQ+TSaSrnziWXTktdtRPDpei61O86JmWpUAjD50PVddJO/XWgtnZMNm7GYkS7uhh8770xxtVbXo63spITr7gCIxDAtiwsFOzGSQUn1842AaOXXS9AdcosGOwrGHi53PJv8gzGapHTqbExKKNDwoJbFiy7UGTb8aiA6AnTBCiHhoT1/e2Twnq7XA4A12WA6fbA6CDs3S410cEScfkOlsmxfPHrAuDzxmuXXCUZ1eAMUDNitNUwUYBzfzd0tIlZWlmF5FaXV8PyL8qx2La8bzkD4UMfynP9BCfXOyy/8dTZUF4jv7luiHR+/ulg5TDcAQxvET0fvk4mEQIYq41OhPrQXB5UzUBxJLpmUiThutuPqulY2QxWNkM2kwQbqqa1oCgq2XQSVTewclkxoiqtZahtN76yeqacdgW6x8dQ227CvQcYPLyDXDaNr7QO3eVDc3nJphPEQ70y2ZLJYG3fgtI4XoB0IIgdjaIt+xxKaTmKv0jMzYYHsdMp0HW0s8+X8hVHyg2glJQJ223bKNV1MnAGFJcbOx7HPvAh1pbXIZVEaRyP4i+CTIbcqy+hVNeh+ItQGsYLc15UTO7VjWQti7WKwgakPjqAuIAPIwx2EwK4h4EXkfzpEAKCn3jsMU76/OfpHB7GNE3G19TgA24BSsePp6ijg8zwMFnTZEJNDcOIWdnw+PGMdHSgIDXa30TA9APApUAtMAdYhdwatq7dir/Sz9a1W9m/YT/bH9nOjH+bQVNLE+HOMAdePMD2R7YDoBoqiqoQ7grTsbUDy7QwfAYl40uwczZGwGDhrQtRNIVoT5SFty7E8Bu4/C7OfuxssOHV214lE82QGEyIHPxomK53uhhtH6Vndw+NixopHleM7tWxLRtvuRfTMklmkwwnh4ln4qxftp4XLn6BOTVzODx8mK0dWynxlBB0BdFVnSOjR0hmk6SyKXJWjppADaWeUiwslo5bis/wkcqmuGnzTVT6K+mOdlMdqKYn2sN9b9+H3+Wn2FPMO53vkM6l0VWdoDtI0B3Esi3e7X2Xo6Gj5KwcoMIpTxTY3sF3xMV78Qsw427JqT75IdB9Uo/d9w9xArfS4iKeS0pfX94M/iYBeqkBeT8TkuWaBzFOiojM210BmREBudEjjnlZu7DankrZj7nroWIxJLuF6fVWCujNy6MtU/4ONslNLtYDyRFH+o2wucHxznvdjglZd4HFzruL27ZjyuaSbRRPkHtofjJQ0QQMh9pl/ZpTpF0bZ78qnJusJa9fuw7ivbDkATEZ+8yjTkdZJPeogb0CynvfEeCbGpFnfw28cYOwzWHnfV81BBuEqd7+A2m3Zr7sh+YRsJ1NQP97wqTXL4bEEISPSlxXzpTjzuVkDLF0qYDfpUulb85mZfxRVCQT+3mpdn4AcOQIXHutjGNaW+W1psm9Zc8eGRyoqvQVl18ucvA1a+T52LFCjZrbLftw+DBcf70MSNJpGTjEYuQdWpW1a1FME8uy6emJ8q1vbaa9fRTbhpISD0NDCVKpLF6vTi5nMWdONf39cZYtm8jq1Yvl9B1McM01Gzl4cJh4XIgbj0dHVRU6O8Ns397F4sVNY7Xbd9+9hOJiD4GAi+HhJPPn1zMwEOeaazbS3h5CVRVaWztJpNJ0hfq5//WfUeotoi82jFt38d2zrqK6qJyUmeGuM6/knBNa+Higne7wIIPxEU5uOIFyXzEn159AQ3ElOduiOzzAcDxMY2k1/bFhSr1FPPjmL8lZFtlcDkMz6A4PcP/rP2NyRSPDiTDr3vwFQ/EQHt1NXXEFr/3h78z7bAsftR8km80yY+IEx+cmy/hxNXT0B0Cv4Wc/eZ7v3LuWpkmLmLpkI2tvH09NrUO2ZXuk/NNsF3a66HKnpFNz1KqNMM55TrSCnZb3jfECrPVKqeU226H2mf/0wPr/zeM/Ws31lcBP/m/vxH+vh0sY63ydBEithGKAFYE+54JQDFAMlp62goZJZ4hDoDUKSoC2TpPyYpMZUzWwoiw540o6Ovt5d+8RIMuGP23i2ivPAxvmnbGeupoy/rkr61x0VU5E1zjnYsWp016EpqhU+f1MKClh/bJl9MViWIDbcfxe39pKc309l8+axWPLl6MpCqqqEnS7mVFVhaoolHo8rNmyhYUNDUJo5XLEMhkMZ7Z53bZtLGxowLJtwuk0sUyG7miU5vp6eqJRrtm4kVPr6vC5XEwoKcHvcnFoZIRVmzczYttiW1JVJUzzDTcU6pM0TfTTIMz0qlXyXF4uHYyui+wp7wLm84l2Ok8P5wFzJCJINB8kHYsJOn3ooUKHduyYdEa9vYJoczlntllH16Wv1HXpv6qqpH/0eGSV9esLSRpXXy0gOhiUccTzz8OmTUKch8PSfE2NSMRTKcZ81To64L77pM0lS+Cyy+Tw02n5l9/No0cFUOfJ9uZmR4WsqiLfjsQAW2TamipAN5mWgUsyLaDbzApQ9rgcxtmU98fXCvsccWqpoSBrzlmOfNl5uF2yvXxEl5mV9m2k7jsYEMk5iPP30BAnXnEFuteLZhhUnnQSn/ziF5ixGN1vvonm96PqOvHubjSXS2Ky9u9H9/lEjqso6B4P2XicTFTq+tzFxUSOHWPwvfcwioqk/rqnB83jEXM0TSM5MEDplClEOzrYec89RDs7sbJZUsPD6F4vid5eht5/XyTdv3ysIO3OZeHIRwW5ncsF0+YIyNV0qYM+vF+A599+KQBb1cTkLDwsrPBvn5Rlk2cIwJ0wTSKv8jFWm/4g4NnrF/OzQx9KzfexQ8KMTpoB198tzHNoRNy9zbSMLeOxAlg3XLJPkZBI1G1LpOP+IjFD03SoqJJ2Njwn8uV8BnZlHWMZ1iXl0lZkVEC5pss2DZeTgZ2WOu2BHvmuRgbk5AuPoDgy9sHDO4j0t2EmYyjY+Mrq0XSPMNeZFJlEiJ79b2BZJmYyJuum4iiKiqq7yKYTKChSM60Z9H38NpZlYts2AwdbyaYTFNdOpXbGZwHQXcL21M48gxPOvI76WWeie4ooaZiBomooqoLLV4zu8WM7pkDqmeeiNI4XU7PQMEp1LblXNwqgzqSktjoWkd8um8XOpCUyC1ACRcLKW1YhNs7jFaCNjZ3NojaOQ7/5HtTln+db936PSZd8GTVYzPsffoh6+nKIx9j0wx/QvHAhc+bNY9HpZ/Bh3URcNtxl25y5axcHW1pYNGcOn5k7lz+98QZO4QArkUitPyP10DVA39q1tB0+zFP33w8U8rETCMNdipwyGacNPwUH8nIEoF/vvG5GgH0Q6ENYccVZlvNoLLlrCYnhBMsfXc4t/bdw7pPnYngN4kNx6ufXc+0H13LGD88g1BZi802bcfldlI4rpWmxRHZZOYvR9lG6dnQRqA5QPrUcw2tQ1FDEjsd24PK7MJMm2VQWgPrmetLhNK0PtlI9pxrdo1M9p5pod1Rcxm98GTNuiju7G2zDRlM1dFVHU+Q54AqwZNwS3JqbIncRVf4qVr68ksOjh9nZvZNZVbPoj/ezavMqLNuiN9bLju4d5KwcB4cPsnLTSgAeO/sxGoONLGlaIudjfIDHzn4MgF3du6gN1OLVvRwaPkQsEyOdTTOaGqW5vhmP7hFTM2wByMleyZ7O11FXtohUW/eLZPndmyRO6/yj4K2BkfeOcws3xFkcFbzVx7HTpQKwXaXCdB3vKv7Bd2U7vjpofkbY6lwa3l8t6+g+8I+Tz6iaZENbprDHuYzUNYPcWyxT2OuyaQI8sylhuy1TzrDgOAHBgXpHjo4A0zxTn4k48i2zUJcNjvN4mywL1Mj74Xan/tuS/Q3UOf2SKrXSdS0CdN1BOP0JqY1+9WoYPSj3uIoZUmedd/p2l4or+Z6HxGE8E5Fjr1vsXB2IJP/0H4nUW1Hl+FRNvhujCOoWQP+7wrr7q2SfKufAwB4B6C63MMn/9m8y1shmBSD39cn4Q1Wlc//ud4W5HhyUPqaxUeRx48fLuKa4WD4/PFzwh/H7ZZa/s1MGJE88AZdeKoOQDRtkTFNZKWOevj5hzru7ZfBh29Lm7beP1VtbhvTz69a18uKLB/B6DVRVwbKgtNQzJtf+1rc2MzAQZ8mSJurqiqitLcI0c3R2hrnlloX09cXQdZVjx8LceOPLBAIumppKWLKkCcuyGR1Nkk7nmDChBFVV6OmJcs89b9HZGaGrK8KGDftZs2YLpmmxYEEDviKN/tjImLP3zJpJpLMZ0tkMXaF+Ph5opys8wPo3f8nUyiaqi8o4qX4ap09p5vEtvyNupsjaFu/3HKTCX8qQM9k7s2YSv9z9EjNrJzEYG2Xdm7+gNzJEX3SYzQfeIZFJ8dMdfxtzCVcUuO++NWx5bzvf/s5qfG43AKqiY5tHZdxtZyHya8j28sP77+X+711Px9GD7H/jXO5af4yPPjok57jZL5nYeo2QbtUPQbbjuBSgzuOenTE9WZGR+5aC3ig12sPr5Fz9Lw6s4T8QuFYUZRHSl278f3jvZkVRuvL/YrHY//938L/qQ3WB6wSpfzAmODKolMwmq0GofswxKPMW5OIoIu8I/wT0SqaUvcDwSIzWzbeDovPiX39NNBrj6NFDDHe9imnmqClPyM3emMT4yS10dPaLTEQtEdv+5A65WFHBaCCTzdIWCtHa2UncNEmYJvPr6zkWCtE2MsJlM2fyxDnn4NI0njz3XGzg+k2bODI6it/lYvXrrxPLZNA1jUeXL+fi6dM5Fg6zs7ubuGmy8uWXaQ+FeHrFCr48ezYAD2zdimXbLGps5Ktz5tAYDPLUuedSHwxS5HKRs200ReGR7dvZsH8/q954A7u4GFtVpaPJy6iamwUsWw6g8/kEffb3C8pMJKTTcoAX5eXCWOc7s2RSOjS/SJM4elQ6NbdbZomDQWm7tlY6pAkTpEPLt3H0KGgaGctgeFgZI71vvVVKpxIJ2ey//7vkT6uqRHQ//bQ0VVIiAPrwYVF9aZr0jYsXi1S8oUH6OJDNjh9fKDc/ckTmGBIJqalWVdnlF18UJryiosBw79wpBKJtWZ+O22rvFtMxTROgmwfawyExJbNsAdIKsg52Qdde7Mju89LyrCPxNrNwuEMGAooCNeUCuDOmsNte6XjI5aC6TAB4OIai6ZROn46vuhpPeTnpSISKk0/mpFtvxQgEWPzIIyR6enj3gQcomTYNRVWxLYvKk05C1XVGPvqIRG8vmsdDcniYWGenSMF1HV9VFaUnnMDwhx/iCgbxlpeTS6fZvWYNqeFhqk45Bc3jwQgEOPGKK0j292PG47jLylBUFc3lomrObJTNLwgIDpYIYIxHpZ5Z14WFzmRg7gIBvmZGwOvkmcI6T5kFr/1FBi9en9Rqv/43aU93iufdXjnfpsyCskr5/lZcCtfdJUD9D88KoC0qkefIqPw2U2ZJuy/9zgHwqoDeYmc9G/mMokB1nexTIiZMum7IsfR3w6+fEPB9+nlOuUWvMPGDvQKsi0pkUDg6JAA9D6i9PnEMD41InJeZkbrsyTOEWR8ZFGO3dBpQqJw8n6aTz8PwBuj58A2wbTSXh5yZRnO5UVUDX3kDujuAv6yeKUu+guEN0L3vVcxkBJe3CMsy5XUqQtn4uQwe3omVyxDuPcBw+x6H/Za6z0wiTPe+1zCTEWwrJ9u0pB40MdpLOhbCypm4PUGsVzdCNIri9oLLjbroM/JdKgpK08SCxD6TRq1vKuStx6LYI0MQHpUorayJ4mRc517+K4wOyfLREbByEvEVHgVd54vnnceWza8wrqmRXOtbkEww0t3JVx55gp987VL27tjBA/ev5ctXXokrlWSSbbP/wgu56Hvf4+333+eWDRt4/Gtf45pkkg4K4HcxUgd964MP8vKf/8xfXn6ZO3w+0uXl6LrOkb4+1iAMd/fRo9Q2NaGVl2PoOgN9fbQiJmX20aO83dTEBqTG+lLEHVwBGoDHnC5uNQLWfZU+ak+pRffq6G4dK2thYxOoDpAcSeKr9OEuchPuCtOwsEEysI+MsvHqjUQ6I2STWYpqi2hYIEpAM2GSiWUwvIasb9mkI2kMnzDYM/5tBu5iN8vWLyM5lOTt+95GVVUaFzUS64ux8OaFaG6N+GAcExMUOBI6wg0v30DcjLOzeyftoXbimTjXb7qeRDbBQHyAFw+8SFeki+b6ZorcRXh1Ly2NLcQyMdZsWUOVvwpN0WgMNvLI8kfw6B5URcWlubBsC1VRmVszl6Oho1z70rXUBGrojnaTs3P0xnpJmAl29eyi2l+NqqgEXAHcmhtVUYSR3n+ffLF6QMzN8vXIiiZM9Nx1AprfXSUMdEWzgL5sVIzIcnGRhif7hNnWA450uFoAdi4pAFwPiGy8sgU0r2x7941O5JcHZt8nNd1DraDYIjPPm5rFusWkLJeW5/CRgrw7zzDbOSdGq8hhuZWCCZnucYCzU5+dB+CGvxDZpSiOVD336dgtzeOA7DrHtM1yGHBTpNy6D5auh/oWaL1H2lZUMRfLx3JlIgLqjYAAdMMv7uBmQsDz1w8Kg+2rlm30tBZAfHJIPgPw9q0QOiSvMxFZr7ZZjm/0ELz5LTnO2gVyXD2tAn5DIemsFUU68x/8QCThlZVSlvbii4VabMv6tM/MzTfLgMPjkUFEZ6dI3np7ZWzU1SWz88PDBab8kkvENVXXZea9oUHGUvPny+AjH9E1aRI88wxKVxfqkSO4yPHYY8vZt+9aSku9jI4mGRiIMjqawuXSqKkJ8I9/tNHbG+Po0RADA3FcLg2vV6epKchDD71DQ0MQv9+gqsrPY4+djW3DTTe9QiQiqR8VFT4sy8I0LRQFHnlku2NetpXm5nouuWQGd9+9BJdLI53OoakqNYFygh4/c+um4tZdtA11oGs6o8kIUyubcGk6Xz7lXELJGGte+wlHR3rBtrnspLPBtslkTebWT8PvcjOzZhKJTIpoOs5V8y9k+bSF+Fwermg+nwp/MSfVT+PJL9xBwO3jG/MvGIv0euShR9j0943UfHU+ScXEWyTeHP193ShOXNbRo0dpKnufoUP38JeN2/nSsvdADTBx3o9ZMH8e2976tTOGbXYmoJwSCyUAej1UPyNO4L7T5D3fEsiOgGcO5IbkejTbpS47+G9CoP03iOGC/0DgGmGtf2nbdvZ/fMO27Ydt227I/wvk61b/9fg/81BdSChKvi5qAAa+JTnXdgq8C5GOxwc476s+KL4aUCie8jwv/OZ+7nwozinzl/OP13cy/cSJ6LEfO8HytkjLsSDxtrSZOeQA9oTY9ednvewMDK8lY+us2bKFWVVV9Eaj3PPWW3SEw1QFAixuaiLrANeEadIbi2HZNgsbGrh/61ZCqdQY83zDpk2AsN1dkQjVfj/dkQi3LFyIR9dpHx3l6o0bGUwkuKG5mb5YjKs3biRhmmRtm6OhEN965RXaRkfZ2tFBbyzGA2eeyeWzZrF+2TJhgEA6gHzedd7EzO0WsJvJCFDu75cZWk0ThHnttdIZHTsmM8EgHdGePdL5DA1JOwsWCOu9a5ewkKmUAGlFERr66FFpq65OOrCeHohEUFWbWMymtVX6paIi2Q3Lkj4vl5M+K+2Qw6Oj0qRpFszNVFU2d/CgMNt9fXJ469bJWKWvb0y1jN8vm29pEYY8H4OZSIifyerVckjz58vhV1bKeEDJG5NF4wK4GqoLDuC2JcuKA7BgDkwZJ99TPqYrZxXkf/ll4VghgsulF2qrJzfK4CkScxzBsyIPt5xt5BlyG2HGiwPYeWOzWAw7l8NTUoK/pgbdieWqOvVUkgMDzFm1SgD00JCw2D09Ih8vKyPR14cCpAYH8ZSVMbx/P2YsRiYSAVWlYvZsYQ1dLryVlZx6990E6usBsLJZdJ+PVDhM6Ykn4q2oIFBfT2p4mA+eeEJqpi+7TpzBVef7Up3CeMMlUuiySmGBJ890JIw5qWFOxOHkReKinTNFTq7rn3YaH+yT6/ePPxYm2JmzoKRCark3vyDu3PnfwOsX8JpJC4Pu8oi8/LW/yCA3Ghag7fXLSZNzJIfJhLDlLo8w8L96TMBveNiRlw8JU63pEAvBxVfJZELjJDE9C5aIs/nkmeJ0ns3I8di2mKVNmCYg+/fPSHTXlFkC4CfPwM6mSYz2ohkefGX1KKpO+YSTMVMREqO9WJZJYlSk4SV1J2Imo8RHetDcPgxPEf7yRsxkXOqjXT585Q1kUzHc/lJqp38G3eVnymlXUDvj9AKgTkXJphP4SutQVA1VN6g+YTG2laV3/1ufcg+3yEk0Vlm5uHqPDks2tduDYhgoc06R7962IVDkOAqKw7nV+pYw09EISnUddjKBnUmDbqCdfo7UTvsCWK1vgaqhLvyMSM5VjdNOO406TQHLRqmqwdryOu0pk/KSYmZ96asoHg9LW1ro6Oxk+5tv0DU8TP/gIHefeSbDwBemTsVbUsL8l1/GD3wNAb8ATzz8MNt+9zvGv/oq8ZISmoF1wLkXX8xLzzzDM8BLu3bR093N9NNOowRYePHFrH/mGeYD3bt20d/dzUOnnTaWb92PuIKnkDrvFMJi/wgIZnJsXrWZXCZHNpkl1B5i0/WbyEQzjB4ZZeSQuHh3tnbStKSJOV+Zg8vvItobHZOLG16ZGOnY2sFo+yiZWAbVUAnUBJh+8XRi/TFGj4zKT4GNbdm4Ai5QoPXBVhbctADVUOnY2kHN3BoUTWHzKmHIdVvHtm3WblnLhv0buH/r/VT6KukMd+LSXLQ0trB+23qa65t54eIXaAw2srN7J2bOpNRbymUzL6OuqI67l9xNiaeEnJ3DtExcmgtVUdFVneHkMDY2OTuHpmg8sv0RNuzfwA+3/ZD59fPxaB4WNy1mculkFjUuQlEUdvfsZiA+gI2NZeckequ8WYDx7hscqbRbALGdg9I5sjzZK+BXdYt7eOSwAOlTHhPAXDJH2vJWCyAf3u0A7Eq533jK5fm926CiRdZL9kg9tx6QSK70sIBVTw3svBaibTJOsW2HudUKrHOgTtp3iU+AdDyaMNWuoMRyWabTp6SF9c5HRCqaSMDzTHU+01oVUztUQ7ZXdZIAc0Vxcq77CgZomlv+ZaJy/zV8AqIPbIBd62W/z3gSLtwI877txGlpTn23w9zOvVHk3slhAdWm851bpkjAo11Sy+0uFefwbBIWr4F4nxyP4RcWvKcVIl2yj4vXyDbeXCUXZuU86ZzjcRlTtLXJtpubpdPPZsVo5cgRGVTs2SPjnHzeps8n5i4eT2Eg0dMjQH3dOli2TAYIPT1COFiWfObHP5Za7RtvlO35fLLNXbtkDGUYBUXftdfCueei3HcfA12jDAwk8Ptd7NrVTUWFjwkTSgkEXPT3x3C5VNrabmTJknF4vTp+vyw3TYu6uiAtLY309EQ5ciTEqlWb6egIUVTk4pFHzsbr1dm1q4ds1sIwNG6+eTPRaIYf/egcNm68jO98Zwm6rnDvvafR2Bjk2LEwq1a9gmXbuA2DlJlhb89B0lmT2XXTGI2HmVU7hUgyQVd4gNpgBT7DzSkNJ+BzefAabhpLq0FRePifv6ZztA+P4cGtu3j07d9y0S9ux20YjCQidIb6qSkqx1B11r72U6oD5fgMD7XBCu5ediVP/+hJnvjpM/x900u8ueonnFJ/AoPxURaetZSnn/05ttHArs1fors3xGmf/yOlE7+L3+fmjX2fBSvB0EiKHTt3MHPuZ8UDKdEKWomM2RVFQLNtyli+/1tgtonRsXlUxvqKW5zBsx3ymbwsPNtRGEP8F3/8hwDXiqIEkFjKn/7f3pf/lg8rKaZmfVc5eXc9kmWnBIS9VjS5ePpWSg223gSooFeDeQz6V/LZM87ln2+8wp4XZ/LQD79FT28/0+u2Ua78GF130ddzFLL94JnD0aPHaJrUAuTEVTy6AUYecoLnPVB+Fy4ly6PLl+N3ueiLxfhHWxtew8BQVWKZDLe9+irJbJaBeJy2kRFcmsbls2dz1+LFlHg8XDpjBo3BII8sX45H1+mLxTi5tpamkhIanJrqgMtFpd/P7YsW4dV1ppSXj7HS4XSaSDrNutbWsSiwCp+PtVu3EnC5eGbFCgxNI5GXhnd3y2xuvuY5lRK0Wloqs8AdHdKpXHKJdBT5guZotFDjVFQkIH3OHKm/ztcztbZKZ9PSIp1Lvv0dO6QD8/kK1LDPJ+gVMDM2a9cqzJolfVhJifSHgYBsYtcuAcc7dgjQrqqS3QmHBactWiRYPhweK3Wio0PA8s6dhTmBY8fkUL1eYbcvvrig5Fq4UHZr0SLxKpk0SdqeP1/mIkwTAc5eNwT9Er2lKLJMdQqBzeynb8iKIsx2JObMFHTI61wODh0TabfL6YxzOTjUwVgOWSRWYMNdhtRsaypE4oB93HYRkA4kBwf54IknSPT2kgqFUF0u7FyOofffx8rlKJs5k/Dhw+RSKVyBgGRfDw5Sdeqp+OvqqDzlFBRNo/KUUygaP57KuXMB2P/ss6RGRkBRMI9T4wx/8AGRjg6srMwzam43lXPmoHu9DO7dS3J4GM3j4eTbbgNFxTYzjsN6TqTb6bQw1qkE9HXBrx4XkJxOCrgcHSpEVRkuGRzpLmF2s6b8cFZOgKvhEhC67EJhj9ucOunfPCH505ddJ3XLbo84dQ/3C6hOxKW9Ix/JIPGib0ibgaCA/XQSjh4QwPu7p+TAL/yagGvDJQB98wvCpN/7tDxHQ3LtTJouYP7PP3dmdYpFlt7vyMrTafjNk8Jsq5rEgi1aBlW1sh9x57suKoYFp6MUleArqxNW2bYxEyEUVcVMxvEEKzE8RfjK6kmM9mEmI2i6C19pDVg5kqFegtWT8JfVkjPTWFmT0roT8ZbWk03HAbCtLJl4CLBRVZ3o4FHMZAx/WR3Bmilk4mHMZIT+T7Zi2zbV0xaTTSfxldSg6S6RdJaWC0kWCaFU1UI8Rm7z3wRoZ9JYb22GaFhk30OD5F76k4z7l5wBHi9q4wS5mD1eqd9WVeysiVJbD14v6rLPCcudiEm+tTOppDaOA1VFnXwi6oovMmXyZIZTGVo//Ag7k+Fvf3qBaDTKkUyWw5WVVNfWsnDDBoqBfbt20XPgAKNHj+IHDgHXAu90dfHjW26hKxTib5/9LBfPncsv5s/nUeChBx7gndZW5k6ZwnVf+xrP/vrXlBgGJvD0Aw9woLWVeVOmcO3Xvsb3f/1rMAy+h9R4NwIVwB6k1jqA1GLfDGRcGssfXY7L70LRFFofbGX/hv1kopmxWuxIV4SqWVVkohmGDw6z8ZqNFNUVcfELF3PmA2cS7gzTtaOL+uZ6imqKMBMmm1dtJhPNoLt13EVuAnUBOls7sUwL3aNj5Sw+2vARZz5wJqquStRXpV/2Yb0DuHUV1VTRFZ07F9/JJTMu4a4ldzG+dDzz6+czkhzhspmX8fSKp3FpLpaOW0p3tJtKfyU7unfQG+3lhpdvoD3UzviS8VT6K9EUDZ/h42joKEPxIRQUKn2VKChs79pOX6yPH53zIz5Z+QnPrngWQzPGYreS2STpXJr20Xbm1c2jK9KFZVtkLLBn3CWu3gcegWk3CWNs54Sh1jzCyla2SCxXekgMzjyVIknOO3WPvCt11HPXy+tkF5TMktiu3SuFZc2l5H5cuVjAN0DFIkdOask2fE0C1FN90P0ifPKggPm8/Fs1nP5Cl32Tq9GZENBkXKNqBfZaNYSJVhSH7W7HmXWVNl1FArzD7dJG3mE7lymw2bm01EnnMlLjrSgFlls1BGDnnck/8yhc8bFIwiNHxSW8qBFKJ0vmNYiT+HZHKVA2RWq482z1wB6IdIoBmqLIe/WLoX+XMNy2BW/fXnAmzyYhNSwy8ECNOIjnMsKqn/awPKs56ZzXr5fxht8vE65nnQXf+Y6A5kBAOnufTzr27dtlUGAYwja3twsA7uyU/Vq0SGbV775byAfbFvXd2rVyXCtXCkFgGDLQUFW5h+/cKT42gYAMVMJh2f6TT8LGjdjf+Q6uIh/d3RECARennlrH9u1dmKaFYaiUlnrJZi127OgmHs9QUeHHtm1+8IO3OXpUaqpbWhppaWlizZotbNiwn0DAzZEjo1xzzUY6OsLMmlXFypUv09ER5oYbmunpiXLttS/R0FDM+PEl3HjjK0yf/hR9fXHWrNlCc3M9ORMqfCWU+YqZWtnE+jd/QWeon87wAL2RIdyGTpk3yId9bQTcPj43fSkAqWyG93sOMuTEcf1819+JpRPkrBw3nXY5L1/1I8p8xZT7i6kOlHH/6z+jNzrMzNpJ9MWG6Q4P8INXf8z2D9/lntXfwTAVLlxxPi3zF3LakqXMqp3CM48+ydtbtzL1xMV87Vuv8etHZ2AUn4bmmcaG3/+c2+58jDlzZrD0s2ez6ps3sLB5Gpi9x9VMt0F2ALJHhYDL9ci4fXhtgSAjC7mwLNdrRCaeHZSY3uE1QJr/Do//EFFciqJcCVxh2/bi/zfr/8st/P/gw0qK+UBiG/RcJJFaNc/JRWT2i7kYNiS2y8VjNEJyJ+NnXs1f//wH5k4Ng15Jb9chaid+DqwQd6++g4/bEvzpd+tALeZr37iV8U3V3Hv3Nex6t4sLLvp3jrbtx9AVyB5zYrtWS862nQNsMpRyYCRMRzjM/Pp6LKAvFmPNli3cvmgR27u6uHj6dHK2Tc6y+Pbrr3N7SwvjS0pQgJxlYVqWkJCaRtw0sWyboNvN1o4OTq2rw6PrZHI5NEWhPx4n6NSkvNvby6LGRgDaR0d5oLWVu5YsoTMcpiEYpLaoiN5YjMFQiDOCQZRwWOqB4nGReKdS8ndJiSBYB0xRVCSdhttdAMf5fCvbFjn47bcLsM7lZNm6dXDnnaLbzkuaLUvY8KNHC/FbXV0SwTVhwtgMb1L1cvCIwbhxCkePiprrzjtlHqChQcqk0mlpdt8+SdPQNJk8vukmMSLLTxabpvRt1dWyaV2Xvq+8vLDJXbuEZM9mpb+trpa5gr4+AdXXXiuT0cuXy/aTSQgGchjZNEpHr5iU2bbkUueNyhQ5/YjEIeBxBkUI86ypAoCTaSgLys7v3CeGZ8G8usWG/hEB1ZMahdE+PqLr+GivfLY2znaBTCrF7h/8gIq5c2k86yw0t5tsIkGorY3K2bOxbZv06Cia243u8TD43nt4KisJjh+PGY2SHBri45/+lBlXXYXm9ZJLpUj09VE+ezaJ3l70QABXURHDH3yAr6aGRF8fnvJy/HV1qC4XuWQSGxj95BM8ZWV4y8vJptPoTtmBpyiAenyUVbAE/vi8OIV7fCJ73vU2zFsK5/87fPQunLpEvufONnHPHhmEiSfIMsMxlMllCw7ff3gWzr1UcqGzpjiRb38Dvvk9cd4eHZQaaxAmOjwKr/xRjMtcbsmlbpoCsbDkYecd9OQLFtCel5srqgBuj0f+9ubLK5wBcS4nAL+0UuqyYxGJ6Mq7kgdLITQsx9nRBl+6Xk5IbDlxVUWO0bbEpfzsi7Gq6rAcNisR6sPw+DFTcXxl9ZjJMIOHd1IxcR6620cqMoi/vF5istp2U3PCEhTNIDHag+ENYHiCZDMJNN1FMjyI7vbh8heTiY8ydGQPlZPno6r6WN22r6QGFIXe/W/iLa0lWD0ZK2ei6S5U3SWmY5aFEhodcwVXiksFPO/fizJjLuppZ5F7ah3KjLlon7sIq/OYRGUlEiiN4yA0CoaB4nNqt82MRHClkigeb742QyK2/KIosDNpJ2ZrCRMXtvDn3/+Ok2bPweru4K33P+T7j/+IWDjE/Loa/tnewffv+S6LLvsSn3zwAWvuuIPB/n4mz5hBT28v537+81zzzW9yI7ABmUV/DpFqe53Lezsi5Z4IfILIvB+gYIy2F1iAsNG3IeZlg4gTuI7kXPcg7PcjziUcAYoQCfrETBZ1OImiKWiG1Mm+fOPLnPnAmSSGEkS6ItTPryc5JPW5b93zFvs3SITWiqdXYFs28YE4qVCKdx58hyV3LSHcGWa0bZTGlkZa17WyZPUSdJ9OajTFjsd3sGz9MgyfQWdrJw0LGnjp2pfYv2E/My6ZwYpnVpBNZYkPxMXBvCmIf6qfpJnEa3ixbIuEmWBv317m1c3DwqIv2se61nWsX7Yen+GjtbOVWVWziJtx4machqIG3Hq+rlLFsi1sW+q4o5kouqJLzI+qMRAboMRbwmhylKSZZM3WNaxevJrGYCNZK4uhGQwnhinxloANXsNLNB2l2uNHsXICqrMpyMadaK0d4GsU+barRJ53XQtHfwPjL4d5z0gu9cfrYe4PGcvJzmdSp4chdlhAtl4E6QFwV8k9QFEFvO+9A068TeK+Sk8WAP/R/eJInugRx3D9f6dqdICtognbrjnlbnnlTSYqADh/L0IR8OpyJgfC7eDyO8yycdxnDGnLyghrrHkKEVxjLuN2QaZuWwKAQRjlXArCxyA5IC7eedD72rVSmz3li1KTnTcqy8eKYQtDvnMNNN8pDLuVE4BdeZIcY16KPnoQdj0gQDo1LMz50nWFzs5MgKsMTEU6Z8sqxH4WFYmUrbxcjiMfqXXrrTLu6OyUMcj8+TLT3twMv/61DAhcLmlL18XcJT8AWbtWxjvbtsG558o4KBKRgQMIY71vXyG2ZPVqmaHPiNLNdrm45qbXuffez6IoEA6nqaoSsO3xGJSWetixo5v6+iIqK/3s3dtHc3M9HR1hHnlkOzfe2MyPfrSTp59eQSqVZefOblpamrjmmo1s2LCfyy+fxUMPncWxY2EGB+PMn9/AypWb2LBhP5dcMoPnn/8c8bhJOJymutpPV1cEw9CoqHZjG1li6QR+l5c3D+9iT9cn/PupK/jV7pf4zrJvsLfnIKXeIsKpGFMrx42ta2Hz8Fu/5rpFF5HKpqn0l+Fzucla1lgMV22gAreh49JdaIom8zaKyod9bZT5ghS7fZT5S7BsG8u2efDNX3LpScupDJTid3nIZBMUq10ow2slt9oYL+dAcgcYtRKvNea7FJXn/pUCjuteEEyQ2AZ934CmtwUX2EBuGOxYYTyv+MGOi1Fx1frCJaiX/5eouf4P7RZ+3ONfRmb/Nx5WRuTZfddINnXdC46pmSqZ1N75YB6GvqvlotNrueZrC2g44Qq6uvtYfu4XmDz3Ohh5iO/+cBMnTJ/L5CkzOdaT5SdP3Q5D90BuiAfu/wGt299lyozlfO3K6/n1T+/H0JyZab3BAfM9csHlumFgFZlcBq+us7ipCUVR8Og6Pl3nxQMHWNfaykXTp9Mbi7Fq82b6ncisNVu20BuNjuExQ1VxqSqHHQOyoUQCFZhXV0colSKdzWLZNslsVuanbZsil4uGYJBrX3qJjnCYqeXlPPe5zzGptHRMau7RNKp9Pk6vr0fp6YF77pGOx+8XltkwpBNatUqsufMTWNEofOtbosnesUPQbTBYkIjna5LWrhXE+sgjBdfOaFRmeA8dko7N5xNgvWGDrL9woXRuMGaC5iXNlMk2imJz//0SsRUISJP5PuqDD6TfXLxYAHQqJU2tW1copUok5BDKy6X54WF5r7lZyr5vvFHWmTGj4L82Z45MYvt8si3blgnniy+W8q22NumDDQ0B1oOjUk/tccHEhuOYaVuYa7dRsDTPWcJwJ9PiHl5Z4jh8ZwVYFwdEVh6JyYlQUy7gWVPFYbw4IGdIvuY6eBxbnWe4QeSwqsrcW26h4fTTsbNZko4cv3zGDCJHj7LznnvIJpPoPh/JoSHW/OpXzD3jDFx+Px8ePIi/tpZT77qLLfv28dkLL2TpF77AF269lT3vvIOnshJPeTlnnXceLV/5CovPO49zVq7kJ3/5C6rbjZXJMPLRR6RGR6mYPRvd50Pz+/GUlaF5POJCDgKsd70t0mu3Fy5fKRLpYCl8+Ua478fw5W8KOD65RSTe4VGYcGKhTvqPPxHwallOLbsuDLKqStubfg/xiIDZi64UsD7hBDEGq58gTHRkVNooKhamOxqGI58I8Ha5BYTnssJUD/UJs/77Z2R7ZkYY9qE++S0iIQHW2aysd/gjkZorimzPcMmxOtJuNv9JjmW4X4zVFp4prLrlAHlVk304dki2AcJoV9RgK8IuZ80UnmAlZiqBr6RGdisZo2LiKWMSbV9pLdgweHgn3pIazHSCxGgPvpIaDG8xYKGgoCgqvtIaRo6+5xieuamYeCqqqqF7/JjJOLrbS8/+NzBTMWpOXEpx7TSy6QQDB1sxU3EB1oqCYoO17S1xCddF8q0uOUOA9eLThY12/rZtG6UoiPXOP1GKgpKZHQmBmSH30p+kpt3lwuruADOD1d2BPTpEbuMLYKaxOtqxh4cKsvFYFFAgESf38l9Q/AE+M3cWb732GrtaW3n4F7+ip6+PE2fMYNC2eWbOHB5+5RW2vPceq3/9az7q6WHqjBm4gYeBTcCTgGMDRRvCZtcgGdgmApCbEVOyqxG59yzgRgRSPAZMBZZKT4WKAOl1SJ223/lX7GxjCuA2c9iWTaQrQmdrJ3bOZsUzK3AVuSibXMa4pePQXBr+Gj+uIhdnPXwWKz9eyTlPnEMmliHWG8MVcJEYSrB/w362rdtG0+ImZl0+i/hAnKalTWgejUBtAHexe4yp7mztFAm4qrD80eV8adOXOPfJc7Gywmy3rhezs+DEIO2hdnb17OLI6BGu3ng1A/EB5tfPZzg5jEt1UeWv4qYFN9Eb7eXqjVczt2Yuw8lhvvvWd9EUDdMyuXrj1RwLHyOWibG1YyumZaIgqQedkU5ufPlG4pk45b5ydnTtIGEm6Ix0smH/BroiXaRzaYn0ivfjd/nxaB5sbA6PHubD/vecc+GYyLBT/QLaRnZB5SLwjxd37/QImFFhpk/bCKf+SMDkx+sdSfmAsNe5tLDKqgbeOgHnubQzwa46kue0AE/NJ+D54/VQMluAZ7JbHMmTPbL9fKxWJlJ4tnMOcG2TZfnYKWBs+KtoBbbbcMpVbFvApqLJsnC7fL54vCMj72IsFswVFGCdS4u83BV05OjOe7btsNaGyMHDR50xgS2S77xUPDkgLuKqITXRPdth3p1wwqXy2lUE3ioBzpaQEGhuYcjrl8LuB4WFj3YKIE/0CXMd7ZLj9tfCqbdLW7oXFt8v+51xVAe+CsipEufp9cp3c999IuHO5QqGKdu3S8f+2GOFPM/x44XpHh2VGfuDB4WxzuUKDuLJpMzwV1YWlHt5qXh1tWznu9/9tPPprFmFdXt6nN9LGXMkv+Gak9D1T5uMeb0GgYAL07RYvLiJQMCFrqtUVvq54YaXMQyVJ544h6amYn70o3M4dizEzp3dzJ/fgGEo3HXXYi65ZAbr1y+jvz/mAOt6vF6d73xnCRs3XsYTT5yDoigMDydoaxshm7UYP76E0lIPXp/OYGyUp1tfYCge4syp8/nG/AsIJaNcOf8CNEUdMyebXNE4tu5wPEyRy8edZ1xBZaCUqkA5HsNFMpuhNzI05j7uNnSKvUH8LvmNbBvcuouZNZMYSUQIeoN0hgb4/j+epzcyyKUnLR9jwS3bBsVFTp+MXf2keB5le48zJuuVks/IH0RpqnpE1l2+WvCB0VDACxPel7LOvmuEJNOrCkrU4bUCoofXCoOd64GBVZAb/G8jC/8PwVz///r4F3P9f+hhxSD+T7mosoMyI2Ujko/h++WCMrug+3PiJl5xL7RPl7+rn5QZrb6r5WKa8AlkDjvs9njovwO8p0LwUlkvsc0xORiUNn2LwEpBai945zkmB5a0F3uR5PgeQhmd/nic+7du5fZFi6grKmJvXx9za2rwGQZbnWzq86dN497TTiNrWYwvKaE9FBpjuPOfOTQywsXTpwMQz2Qo8XjY1dPDSTU1eA1jbCCrKQrXvvQSv9m3j0tmzOCZFSvQVJV0NssNL79MS2Mjp40bx9qtW/ndsmWoW7dKZzE4KBKmY8cKbPI//ylumJ2dApQfeEA6m0zGKTi2paPYvl2kVJ//vCBd0xSAnjc9ywdT54ukKyqEpc3lpCPL12F7PNJeLCYdWTxOzFPBliP11NYK9g8EClGVd90lwHdgoKBezyvRUylpoqxMNmWaspsNDdIPqqrMD9TWSl988cXyOctR5ZqmTHg70eSfmujetk1UZqWlUBrMoWbSUnedZ5NtjpuQiAuA1lRnuVNjnUoLw91UK+vt3g+VpTB1nLzOObXHZtap18qf83Yh89pwTNDy62uqgPqufpjUAIpCLpsjZ2bIZTIk+vtJDQ5SPmsWmsfDru99j6MbN3LaU0/hq6lh/3PPEZo7lxkLFvCZM87gt889x0mnnMJgVxcnn3EGm//6V2ptm/c7O7nhppv4uK0NO5dj2bnn8s1vfpPPn3ce2WSSbDI5xmbnWWwUhUwkIsz3wAClJ5yAAniKAiiDvQX2WFUFwGq6PGdN+MsvRHKtOwPZoV6J5SqpEOn1F79eMC+DggN3WZVEXv3mCVnHsqC73Ynxcr7QnFOmMDoksV2TZsjAL5sVwJ1KwisbhFUvKRNQvPMtKK+SDOrhfnB55cS746twymL40kpx97ZteOEnsu1oWPZ54onyOykOu6JQYKKzpkjTJ5zomAekC1nXIKz68IDUe5uZMefznMsgHQ8xdGQXFRPn4fKXkImPohlurJyJmYzjK6tzYnZzKJou0Va2TTLUj+72kE2n8BZXgqKiauLIDYo44dsW2XQKVdfJZTNougtFM+jZ9yrh3gMU106jbuaZKAp073ttbFn9rGWy36YpsX/RSCGDuqQMJZ+FC9jRMPaRg6gnzha5uMNqayu+CLZNbtOfP8V0i4N6BgwX1pubUWrrUCZNA8OFPdCLUlSMtX0L6vLzmHjCifz5979l7rhxUFxM38AgNXX1KFmTu269hU86uvjF3/7GVl2nqreXCbW1GMDZzz/P6LPPsnXXLrKKggthmMMI8NUQCfd0hMF2egA6ARdwDwWm+17gn8Dlzjqa09ZORA7ehMRzFSHS8ATwATDPaVuLpIn1RBlpG8Ff5Sc+IA7hukeMzUbbRoV9vmsJJZNKCLWF2LZuG8seXDZWay2qZptsOovm0oh0Rthy3xYW37WY4sZisuksukcnm8xi+A3ig3G8pV5UTZXPq5BL5eja0YW/yo+nxCM12UAukOOazddw68JbefCdB9mwfwMbL9tIQ7CBrkgX9cF6Hmx9kPXLhAH640d/ZPmk5Xz3re+yYf8GLplxCfeedi/Tn5rOJTMu4fGzH8fMmcTMGMXuYjRF48ZXbqSlsYWWxhbWta7j1oW3UuIpodJfyWB8kEq/yMbbR9rxu/1U+isxFIOsnWUgPsCEQBW6nZGa6o4N0HSJZF4newXols8XkJbsE6Y5OPU4tnqdALqcKe+5ip1c60bHCbxJ6qpRHRa8QQB1LuHkZd8l6yi2yJv33i4s9vHrzP+pAMlAHcR6pZ5aUQW8jhwQh3BXUWH8k4kWYq+yqUL2te4R5lh1JOi2LUxvJiZO5Pna67yDuG07fhcIQM7EoWRCQTqe34aN7HsuKaDYsuCfN8NJNwiojhyTvOq6RXJ/zSYdI7QMbF0Nix0ZteaW9+2ssOTuUmcZsiw/edDdCn//Apz/Z6icK8t0DyQGBPSbcXFb33m/sN6xbpmkyOdc3367dPoTJwpQVlUBvLGYgOSHHxa5d1dXgYm+805hmvv6JGrrjjuEKHDuY6iqAPBkUt5fvVraz+XgmmsERF9yiZiiPfwwPPqoDFDWrpX4kvb2T2Vwp+e3kNDcbN/exfTplXi9Oj6fQSSSQdcVDEOYXU1T6e+PUV7uQ9NU4vEMe/f2MW9ePZZl09ERor9fQHQ+q9qyLIaHk5SUeNi5s5vGxiATJ5bS1jbK2rVbWb16MT6fQSiUYmBAmG1dV8DIsfaNn/BW224eOv9mTqqfhqqo2LaNjY2qKGQti97IEOW+Yg4MHmVyRSMe3U0mZ/LIP3/Dl085l8aSatJZE4/hYigeovXo+3zY28bdZ15J3EwxFAsxlAgxs2YSLs1gMD6K13Djd3lZ+9pPmVM3hTOnzsetu0hkUrIPwPo3f8HqM75MsZFBUb0CjqMbjhvXu8FyyuQGboPyW8GYApifXrfmubHxOnV/dvKtFRnrG/VikGy2izQ8Nyp4Qw3Ie+r/TmHyH//xn4W5/tfj/8pDE5l3dlBYajTI9Quwzs8+eZuhfqNcdHoDTDgA1c8KYEaD8m/L+3qNWO4bkwAX1Dwuxgb914shgmeW1GtrVQKyE9tlVswzB/pXyUWYHXRmyP6MaXvQHMa6pbGRR7ZvJ5RKsbipiYF4nK0dHeIevmoVT557Lk3BIBNLS8laFuu2baOlsZGAy4XXMFjU2MgXTzyR2159Fcu28btcmJYlbSUSXL1xI22jo8QyGaKZzJhh2aPLl2OoclP06Dp3L1nC8kmT6HIM0WxNk07leCOz49nk5ctl2fjxYss9MiKdSd4FPO8INns2nH8+vPuusNo33ihMtW0XgqmHhgS1FhfLc97UzO2W2eRvfUuA/eCgtF1ZCX4/am0V8+bZTJggNdWaJh+75RbB/HkF+6pVwkwbhoBlyYuUddvahFivrxcFmMcjOO3FF7/JBReM54YbFA4c2EsuJ4fzz3++wuc+dyoLFsxm2bIF/PrX79PfL0z3F794BU89NZsvfGEuZ501jzffeh3F4xJgDQWmOj+zX+zUR2eyhcmIwx3yPLmxUF9dVVYA2qmMxHalTUARFjscKyz3e8UhPA+s84+cJevWV8lnDx4DK0c2lUIzjDFDst1r1hDr7GTuzTfTdPbZlM+ezf7nnqPjlVco2buXMk0D28ZVXIyqabR3dVFWVsask06i9IQTWNzSwlAqxd69e1E0DUXXsdJpYcUBd0kJmVCIirlz8VVXo7pcvP/oo7hLS/HX1VF1yinoXi9mUiSsdkWNyKRj4ePqofvENdy2haE1XFKPPdQngDnPJl96rcjHrZxjoGMLu5mPycplhf3WDQHWZZVObrQtbEgyLuuVlAmoHewVNhpbJOoeLyy/SIB3MiEA+JTF0DRZ2ikuE0MyTYcf/lzY5pEBaSM0IvuRSoqxWd6JPJkQ8B4LCxOdk9p0dMNxKLdEOp7Puh7oEbO0XA6q6mS/XC5h9jc8B8Bw+x58pXWougCpkaN70QzHIby0FiuboefD17Edl++eD18nm47jL68jm07iCVbI4MnKkY6FyGVSKKqCbVlkM0k0lxtF1aSeW5HJgbqZpzPu1AupnDzfAW8KtdM/wwlnXEPdrGUiz1YUbMVG0Q2s1rew9+/F2vK6U+oqkyfWsTZxWC8pkzrrRZ8pMNmJBLaioC52mO4lZ4rpWTKOPTqM4najnf15lBNnY739GiTjqE0TUfwBrt/4D5omT6Gru5tzPn8hU5cshWiE71z1dabPmMGU6dPpGBjk+e9/F11VmWvbPPfcc4yfOpU5U6YQ/Pvf+eVf/sItioIpvQUeoB3Jo/Yh0Vy3A11yxqAi0vA64C4EWN8NlCDAOuZ8NgrsRmK5up22JyEy8pvlqmex056F4CB3sZv65nriA3H8lX5eXvkyo22jKIpC6zqpwd6yZgt21mbLmi1j63a2do4ZlGXTWSxTlC2+Ch+NLY3EemNkU1nSoTTZZJa+vX2MHBrBV+Yj2hVl49UbGT40TCaaITmapL65Hk+JB0+pB1fQheE1UDMqq1tWU+IpYfXi1Vw+63KJ4NLdzKmew4OtD9Jc30xPtIdVm1fR0thClb+K1YtXj9VoB91BNn1pE8+f9zw+w4ff5ad9tJ3eaC9ew8sdi+7g0hmX4nf5aWlsIZQKjdVh1wRqMHMmneFO6orr8Lv89Mf6MS2TrJWl0lcp4p5MCE59UhjpGXcJ+NP9wkiP7BLG2lMuNdZ2TuTapzwm6+RMAay6X2TgpXMg0S1sd6JDQPne24Sh9o+XGK+kU0+d6JR1dt8oZ0reGM1bI+C9+0WRkgcaZDvFEwRkWqaA26o5AihzGadm2pIIrPwkoepyTMh6GDMpkzfk5PFWSZu2I4e3sqL8sy15DrUJQ+6tdIA1BWCdyxQM0lRNgP+rV0P0GMy9QeTZmktY8Zr5YjgW7ZDNv369SMFb7hPvhQGH8Y91QN9OMTVLh+QsV1R5z0xAYhBq58FVHQLWDZ+jTMpB6LCYnPmrBWzXtQjr7a2A2MCnWeWLLhKwvHKlgOrKSiEAli6VgUBXlwws1q4V35fubhmTdHbK6/5+GWSkUnL/XbVKBhy1tfDMM6LKU5zfwKml5u67ZVb/ySdlW3V18Oyzsl5PzxiwtufPl3hCVWHhwgZSqSymaZHNWgSDLtxuHV1Xx+Y+EgmTG298mWg0jc9nsHhxk5NmojNtWgUnnVTLqlWbOXIkhKKAYWhjmdZz5lTj8xnkcjZdXRH+8Y82enqiVFX5mTKljDlzqlm16hU6OiK4VINvLLiAh86/mapAGd//x/N0hfpJmCnn7wE+6DnInq6PcOsGUyvHMRKP8EHvIXRV48unnMuv92wia+XGcrCf2vZH5tZN46bTLsfCJpZOMJQIUeot4sO+NrrCAzy17Y+MxCOoisq3z7iCc05oIWdZDMbkHudzefjRlt8xt34qRS4dJfWuAN7y1U4U711yHlkxOZdUD5TdImw2WRmfl93irLtafrMxRrtOgLZ5CDxzQa+VtoxxwoBnDst1NPRdyByRa+a/+ONfzPV/58cYc10lJgXe+TJrZR6C4QdEIm5MFGl4vm5C9QKqMzvVILNTVlQk3XbGmem6TZb3XXXcjNjjsg2zwwHyKvR/E8pvkraS26T+IzsAvqXEsy4imQzhdJoil8zua4qC12GsK/1+Ht+xg/XLlgmDp+vYwFAiQcDloicaZV1rK6sXL6YnGmV2dTVZy6LE4+FoKERXJML8+npCqRSb29o4Y+JESj0eFMBrGFi2jW3bHBkd5eHt21m/bBl+w0BTFEwnFzeYyaBu2SIdzvCwaKvT6UKdtc8nlO1tt8kscE2NzNjqeoHG7e6W5Q0NBda7pUX+rVsnHcn48dJmHsAnEp+eJb7xRukML79c8rTSaQiFyFTUMpz04XIpGIYwxnPnFiaC77xT+rbrr5fNnXZaYfm4cQUCfXhY8P0LL8DJJ8uEe18ffPvbb/PDH07kwgsX8/Of/5VTT51Ld/coLS2T+c1v3qa+fgYvv7yFn//8Ot5++0MMA2KxECMjJaxZAxde+B7XX38Gg0c70PIsdDojrLLbEIDb2QcT62VgYGZl46GoGKC5Xc77DYXMahAgnnVY/iK/AOoJ9QVJOYgc3O0qbC9f852vuz7cAUV+zBI/ydFRPKWlKIpCcngYMxrFCATwlJVJ5BGQS6cZ+fBDSqZNw85mmb5wIb96/HEmlZSgjx/P9JNO4i9//CML5s3jt08+yRWrV/Pc97/PF77wBS689lp6u7uxolFOXrKE73/nOwRjsTF2WvP5wFFWpEZGyMRieB2NvtvnRbMtqYv+0kphdz/eC5UOgLYtYWtDQyLjxoZwSH7YQLG8HuoX8FpaKfLvFZcKG+wLCAAf7JU4rbO+WMjSzpvNpVOybNPvpS57dFDM0ybPKDDZeZ+AvJt5/nXWlO2oiuxDnn23crB7i9RnT5zm1F0qEsv1ygY4+xKorpf1bFuk56UVUFkDg/1ybEXFY9FUxKPCYpdXO/WbafmNOw9DSbnUXDvxWIlQH4a3CMMjbJOdM8llM6iaQaT/MIGKcQwe2o63pIZA5Xg0w002HR+rtQbIxEN4i6swU3GGjuyicnIzZjKGt7iKbDrOYFthmeEtwuUrJpMIk01F0T1FDB7eQcXEeRgeP4qqY1tZNMWA0WGsra+LJLy4VCwJnO/VjsdQ/AFym/6CUt+IMnEqeH0oqkrulb+NLVOKgmBZWF3HUKrrIB7DjsdQG5qc30cmsGzTBE2T2K6sidXdgVJcAsWl2B+8i911DLW5BWv722ifu4iYrpPUBZAoSC71B8Cpzt8gMu91wLeR+ugW4BqEnd4EzEVAslt6B/oRUI2zzEZM0dYBdwDjkXrqBuAocAyRk/+P27sTODGRIRNOY3gNrKzFppWbxuqfz33qXKLdUbas2ULLHS2UTSlj9MgoultntH2U+vn12Dmb7p3dBBuCFDcVC5iOpPFX+VFUhUwsw2t3vMaCmxdQMr6ExGCCovoiot1R2ja30fteL2c/cja5bI6eXT3UzK3BVST3Gjtno2gKOTWHqZls7djK7OrZjCRHWLt1LXcuvpNqfzXhdJh73rqHDfs3cPmsy3l6xdNYtoWmaGPPkUyERDLBlV+5kkMHDlESKKGkvIQnnnyCCZMm8N7h9/jSl7+EETYI+AKseWgN00+dTpW/ihuvuZHt72zH6/WiuTWu+PYVXLHiCmxsKXWw0gTSPSj710qds+4HdzXEjwhzPP1OyZtODUislqLIL2mlwAyDu1wm5W1TmGBXsciSszGplU50S/RUelicxOc+ILJzywHlqUFhaPUiiLXDxw8IwHdXwui7woL7x8tnsmmJxQo0OHXObtDdAnTtnJyluUyBybatQv+h5H09HPCsGozlWeeZbDPuuIZnRYadHBEAr7qc/iVaALQ2jGlhswkB1gc2wLRLxCE81iNu4+F2AdU1zQKYLVu+m5JJ8j32tMrERdkUAdxGQEB5fgop3if7UjNftpscBk8J9O2CitmyP8khSIVkeTYhTuVLHpD3FBUsFUIxmXjO52tu3Sru4AsXSunaokWf9ofx++Wfy1WYnZ89W167XFIrdscdYuSybZv8e/LJQryWbYsUvLNTara9XpnRX7NG2OvBwUIMST7ORNexNY0Pj0Tp6IhQXx/kwQdbWbduGUVFLtrbQ6xbt43165eN5V8PDMR47bUjnH/+CUQiaYqL3XzwQT8zZ1bh8xnousroaJJ9+waYPbuakhIPBw8Os25dKw8/fBYjI0k6OsLMn18vQwlnLOHzGViWzW9/u4933uniuZ+cS9bOoSgKP/jH82w+8A7Lpy3kukUXccHPbmH5tIXcecYV3P/6z1h9xtcZTUboCg9Q5g0ymowwu24qmqIykggRSSX4zbsvM7N2EgvHzabUF+ST/nYmVTSiqxr3v/4zvnLqCn65+yU2H3iHJ75wB9WBMn6846/c9tmvMJKIMBAbYWbNJIfBTjKciDC5rAwte+S4cb1P3L49c5xro08yqasedU77MKjFwmjrFZAdEvCtOtdPXsGaV7jqtQLGtVLG/AH6byisU/vjwmf/kz7+d8z1v8D1f+eHlQErIkYGeiWMPF640FARaVK3zDZ5W4SZHr4fym8X04PUPsm1s1MFM4TEVgHKVY8COUcKUiwXYqLV2c5DMuOV+KesW3GvAHPFB3YUjEnEsm4ODI+wrrWV2xctYmp5ObFMhg/6+1nY0EDCNPG5XBwbHaXDAcqjqRShVIopZWVc89JLbNi/n8tnzeLxs88mZ9vs7O5mfn09O7q7PwXOPbpOa2cnJ9cK83k8MO+KRDgaCnHBCScQy2SoLyoilc0ymkoxweNBa2tD6ezEnj8fxeMRYKtp0vns3SsdUSYjbmDJpEjDH3hAmLePPhLUGosJLTwwIEA934EkEmLosWBBQZvtckln94UvCNu9fr28F43KDHI6Lb9tIEAcH4faNB58UDbp80nfl05LX/bEEwKm8wT4PffIZPMHH4jyPJGQv+fNE8l4Xsmu6wWTM12HOXPG87vf/ZXp0+fy+uu7ueOOL7F370FR7SowblyQn/3sLQKBk2luFiO0qio4ePAtbrzxCwy9vQN1OCyy7oZqAdHFgYJZWXGgYDqWzhRk4jnH6EpRC1LvfF12Hiy7DGcwlC0sU1XQNfmMYTjfq+F8XvnUJZI1s0Q7jrH/ueeYftVVeMrKePeBB5hx1VUk+vspnT6d1PAwHz3/PDOuvhp3WRl7H3yQy373O/74m98wc8oUQm1t7A+H+cHatYQGB2k+9VS2tLbynZtuYvyxY9RccQXe4WGKp0zhx7/9Lc8+/zzv794tpQqaRjaRwIzFBMyrKoqmYWez5EwTj9eN0vZRQQr9/2RE5nILwxwZPQ5gjwpDnDcyA2G2n14j+dWllQJ2J5wgTPa910lW9pdWyvc3BoxVkYSPAfrpjBntoDiSS7MgM/cHoatNnMiTCWG2FQekGy5hsyOj0o6qirTcsqXJzjYB4fM/W6gPz//++XKByKiYpG3+k9SGu73yWjdEBh0akRr1c/5NwLuqYmVSpMliJqP4SmrImWl0tw/bymFZOayciaoZwmoDNgpYOcm/NkSOqagatm3LuqpG1kyRiYecSK0kusuLargZONg6JvuumHAK2UwSf1k92XQCRdOxciaxwaMkQ33UTD9NwPjhndTPOAMVOU7bBrunEyUQEJOzRZ+BomIUtwd7ZBBr6xsCwEvLnXu4KWC6uFSW5YFELodtS424nUrKvSVfZgLye4RDIkU/41yRuBuGRHkpKnZvF0pxCUpJOSldI6Rq9CjKmKlYP/AQEpPlBd5BAPDnEYY5LwE/RoFlTiFS7waElY47z2FEKr4KAeMbnXXWIjnWfoQVjwPVCEh3IBSDQH04RefWDgLVAcpPKCebytK9o5uiuiJKJ8nEWaQrwpFXjzDpnEmomoq/0i9fXypLajSFp8RDKpwiUBPAztlYWYtcJsfrq1/n9PtOH3ttpkwMj4Gn1EP3jm4CdQHKJ5eDDZYT+6fqKplohmhvlPhAnJq5NdiGTdwdB8CludjetZ2L/ngR5087n+c+9xyqotIeamfNljU8uvxRBuIDdEW6aAw20hnpZH79fAzNIBwL0/p2K2efczbvdL3D2398my2vbOG3L/6WK6+8kvHjxvOF676Ab8DHZZdcxq79u/C5fby88WXmLJlDmb+M1ze/zl233MWHBz8knoljY1Ph8mDsuREqFpKqPJdLv3ojH338CV6vm6qiHE8/cAeTTz6bgcEhvvKNb9J2+CBuj5en7ruapeddC1hcceU17NmzE9UIYBgGP/zetzljycligpYZdeqrPQIaFb1gYvY/SsQ1L5ghMEqEwVZUGNouLuKKIdnRySFhYwN1wmaPGYwFnbu7LcD9eIn3WI6vMzEw9nDukZmo7JvmKdxz7Jz8U13yHDkm8nJVd0B4UD7vmKWlIgNc+pWr+OhgO16flypfjqd/+lsmT5zAQP8AX/n6lbQd68bt9vDUQ2tYurSFsdgv2+SNf25j2ecu4qH7v8eqb95QOM7kIKTCkOyH2vlyTG/cCEt+6MjjI7Ivg+9D7UJ47RphretbBJgHGkVdqJdLB5+v+6qtlTFGJCKDgERC7r1//Su8/bbEaB09Kgq65mYZTBw9KuA4Tyr09zNWmxaPC6gGkXm7XAKmq6pkMJI3RZs9W8ZQqioDEpBtOJJ1u66OV98NU1pVxNBQgubmelRVQVUV+vtj+P0uAgEXiYQ59iv6fAbxuEk0KiZkmqaSzVqMjCQpK/Oiaarc4RWFTCbH9deLgdnHH6+krW2Eyko/jz++gyeeOIds1mLXrh5mzxZWW1EUkkmTQKnGB70HmVs3jWOjvfx819+5cv4FlPmCrH/zl3x13ucocvsp8RYRSkbwGhLDlTIzWLbFE1v/wA2L/w2vy4OKQs626A4N8Ks9L7HqtMvxGm40R/rfHRrAbRgUuf181H+EOXVTGYyN8s6xD1g0bjad4QFKvUX8cvdLfGP+BTSUVLGv5yOaG6eiZHsELBsNjhQ8Borf6b4zEPkjBC+GbKcA7fI7wJjq3FlVId2UIlGtmkfECbz8DvFrUnS5lnKjBYCd7XXMzu4G9zT+s5ua/UsW/q/H//qhuuRm6p0vwLrsJrkoElvlYgEB0dVPSO202SvsshIUkwPfYmGtc0My42UOOkHxT0pNRW7YMTUbBHSRmI88JDUaZhcELxcQrhbJa71SLkw7h2Vnx2Kw1rW2krUsVm3ezOGREdrDYb61eTPtoRAew6DS72flyy8TN02GEgk0VeXJc85h42WXsX7ZMroiEXb39LC4qQld01gybhyP79jBwoYGLNumPx5nTnU1mqIQPi5+a31rK4ubmvjy7NkEXC40ReHI6Cg7urtJmCapVArFiaNQ8s6aO3dKxxIISCeRyciyZFI6hoUL5XtNJgtO4SAAu7xc2mhrg+uukw5p7ly++e1vM/7EE1EqKtj7zjvCkHd18crFF3Pq+ecz+6yzWHDppby/f7/Ix999lyuuvpo5J53IZz4zh9bWFl5/fRetrdL09ddLX/nII7L5iROl33v+efjwQ9n1/n4ZX8yaJYowv1+I9RtuKJROZbOi9kqnpb8EmDhxCqOjw+zY0UouB3/844skk1H27TtKRYWA9D/96ducf/4kbrjhC/xxwwaU8fUi657UCF6PgOdDHQJ2q0oFWA+HBFgXOwYqyTTEEnIgquKYkjmgOZ2Bhhp5VhAgnl/mMgrA2u0SpjrPgGdMYb1TGdl+zsK2cmOS74+efx4zFqPjlVfY//zzuEtLMaNRPnr+ebrffJNEXx+aYTDtK1/BzuUIHTiA7vNRPmsWJ48fzw9bWti+ZQsPPvAAA6EQ46urOfmOOxg3cSKVJ51EpL2dq7/6VdqPHePgP/8pX6hto7lcYxFfu++7j1hHB4PvvUdqaIgcKnbjZAHCv3tKwLXhduTYFwuwLiqROuNgqcijQyMCnBomQjQicr1jh0Sq/cOfS1Z0aEg+99snhf297i5YcZkMhIYd2XbelOzFX8Hk6QKYD+8XMDvYJ4x2HlgHSwXMp5MyEaDpUvuNIvtYUibPHq9IxQ9/KDnbv39GjNQ8XmG1F57p1DbGZd+G+mUf0imZVAiWCNifMkOOMT9xYJriJu72CKv+jz85gwgLW1Uxk9ExgzHLyoKiyMRGOsHgoe2omg62TTYtUnxFVdFcXrJmCtu2iI/0YCYjqIbIv3W3H8MbYOjIHgxvAM3woOkuaqd/RjKvp38GzfBgeAN073sVy8qiKAqDh7YTrJlC3YzTUTWdobbdhHsPyK6ODmF1tKNYOdS6Bqwtr4tMvPUtkc5bFnY0grrsPBRfQFjR0SFym/4sILi03GnjKHZohNymP0M0Iq7hPrkPWVvflONze0W+brjQTj9HxkmvbsQOjYCqoRgGauN4YbJDw2TjccKKwiMII+1GmOOb5c7PNqAeOB8ByAeRuuhq4GRE6h1DQHQVIhMPI8y1gdRSexEgfQniEr4WAdprnXb6ge867bYhrHg7ArxVQ6WxpZGSCSVYWYvePb0EG4KUTCgp1EObOUonlRKoCuCv9GPlLCzTQtVVXAEXqXAKf4V8T5lYBisnpmTLH16O4TPQvTqugMi8zbjEdFXPqaakqQQrZ5GOpjHjplMuYOMqcrHziZ1Uzaoi2hMlFo2RMBMYqsH2ru00BZv44NoPePLcJ7Ftm2++/E0qfZU8u+JZfIaP2kAtc6rnjMVyrdq8ioSZoLSolLPOPgtN1VjUuIjm5mbaj7ZT5C5i2yvb6D+xn7k1cymdXEram2bjPzYylBhi+pLpfH/r9+mJ9rB44WJ6enoYiY8QSofkVqQY2Kc8AU3/BorG1V+/nANvPsr7b/2Oz1/8db5x109B9/DtO25hwUlTObR/Bz978Ea+9K1HMc0U2PDIQ+v5YO8H7N3yJ5576nEu/vdrsNyOosRTDf4meVZdoPkl1zrVJwDaUwsnrXOAdhI+flAA9+BWiB6GqiUFv46SSVA9T3KnNa9IwFVDmOqMI9EGR+JtCijOR28pqjDS+XUU5z/LFLZa8zAW2RVul3VVA5Fma06tt8KYGVouLWBfMxyviCGubs5woPXPvN/6Gp//wsV846qr4I0b+Pbd32XB/Pkc2reHnz33JF/6xg2Y6ZQ4hedShKNJvv2d73PuWafD4b9KXbaZgJ5tEq1V3CQS9tdXQsRhwTWXMN07H5Dvom6R7G/zXTB+uQDrmmYnnqtKxibZbMH5VNOETfb7ZZwCIte+/HKJ57JtGdtUVgo7HY/L3y0tMsjQnRKsVavEkBUKaSh5sN7cLMC6qkpAfWmpDDhqamSdgQEZbAQCou6rq0PRNJY0V1Na6mHhwgYsy8Y0LUwzR0mJF5/PIBbLsHr169g2eL0GmqbQ1xflu999i46OMNmsxcBAnPJyL7ZtE42miUYzxGIZ3G6NRx9dzscfr6Smxs/8+fU89NA7NDfXO5nWm50abY3W1k46O8MEAi6wYGrlOJLZNA0l1Vy/6CLKfcX4XV7uPOMKRhIR0lmT93sOcvmv70JXVXoig6x78xcMxUNcetJyRpIRfvCP5+kY7QOgMlDKv5+6AmybtJmREiTbprqojLRpcv/rP2Nq5Th6w0N0hQc454QWKgNlzKyZxGgyyldOXUF/bATLtjmlYQqK2Q5o4JoiwDqxEymBsEVJmu2CogtknD+8Thhns1/G+9leB4gXCRFnHiQVbeeC62NMnX0Jc045k2Vnf5HDB/eA6meg41XOPvdCpsz8PDOXf8Db23vGgPWuXbtoaWlhzpw5zJ07lzfeeIP/Ko9/gev/9g9NTvTqJyQKKzcMnpOcmgkFyEJyp3Q+nrkChNWALLNiUqM9dI88+xZJfUX/Sicvu8up3V6DdDxeqevIuw72Xw+5AWHAjVoI/17AvaLh0VTuWrKES2bM4O4lS3BpGnctWcKZEyfSFQ5zy8KFdIXDVPr9PPTOO2zYv5/7t26lpbGRI6EQqzZv5uTaWnyGQW1R0Vi01judnRwLhVi/bBkXT59OXyzGPW+9xUA8js8wqPb7eWbFCg6sXMnTK1ZgWhZbOzo4FgpREwjQEAyysKGBKr8fl9uN7fcX9NMej6DR+++Xr7azU9BoZaXUJi1eLB2Sz1cInU6lhFa2LOmA8q5jt90mTuIuFxddeCFb589nXFmZtBuJMDowwOVXX80vGhr44De/Yf1ll3H5FVfIPlRVceGUKXywcw9vv72X2267k+uuu/hTJp0PPljwRIvFCkbkeUfwkhLpP4uLRdHlcomC/eab5f1oVHaxv18mqkH+rqkp5vbbX+A737mTM844hU2b/sG0adOZNUtn3DjpOx944IccPNjGz3++gdtvvxNTRaK3QOTYGVMYbEMXwDypEU6ZIRLvcEyAsqZJ7bRtC7MZiQmIzgNttyFA3LIEMLtd0OUA6Dxjnc7I+seDcV0ThrvIDxkT1bKZcfXVNJ19NjOuugojEGD85z7Hyd/+Nv7aWrxVVZx6992c85e/4KupYc/99+OtrETVdUpnzJCaakVhOJGg8pRTALj/4Yf5zNKlzD/vPNB1uo4cYfeaNZRMmcKG3/2OEpeLiaeeSi6dJpdMohoGmtuN4fdz8h13kBwepmTaNHELVxX5ATb9HiadKN9hNiNgKxYSMBkeEQbX65f6Z7fHqYf2CcCNhAS4aroD0rJSu/z632DvdgHuk2cKWLUsAd5nfVGekwlxE3/5DwJ4i0pkcObxiqw8D6zzrHlphQDuF34iIDsecQB5xpFvZ0Si3jhJPnfxVVBcKiD68IciUc/nYv/bNVBSLsfj9sqg+PB+YcjnfeZ/vtXlGduTW4TVtmTwrGg6vpIaho7sIdx7gMHDO7CtLNiQTcepnrYY28qRy6TQ3V6n/voNzFSETDyMbdv4SmtRNQMzEaZ736uYyYhjhFaP7vKhe/womkE2k2Tw0HYAdLcPMxkj0t/G4OEd5LJpvCU1ZNMJuj98jUwiPOYirthgRyMo1XXYyQSoGto5F6JediVqy2fl+9Y0lJp6iEfF1Cw0jB0OjdVpY1niOl5VA5qO2vJZlGAJSiAog2ndQFu2QkzNhgfJbfyjOIgP9gEK2vLzIRBEcSYtbFVFQZzMdV2n2LZ5AGGhtyPRWbVIbXQzAo4jCCB+BBl8uBDGWXGeqxF376WIg7gLAcrXIdLvScCzzvInEZn4M87PW4zEdPmdbbUADzrbwbbJJrIkBhNkk1kaFzaiu3VUTSUTy4AFpRNKKW4sZtPKTVg5C0VRJINaU3EVufBX+una0UUmmkFRFCzTwrZE0t21vYtIVwTbsglUB4j2Rln+yHI8xR5yZo5sMivA22dgJkzMhIlt25zzo3Nw+V24g26KyotImAl2dO+gub6Z6qJqUtkUKzet5Gj4KD/47A/QVI2sJQZjiqLgd/lZ0rSEYncxD5z5AB7dQywTY1fPLmzbJmtl+c2Pf8Pnz/88oyOjmKbJlpEtaIqGS3PRNL6Jn//z5xR7irl/6/1s2L+Bda3reOJHT7Ds7GX43D40RcNQxfSTXBJsE4+vhHPPPgOlYj74aljQPI+jxzpA0dmwsZVrV94MWoB5Z11JXU0N//z7jyEXp6TEqcVGJRwalvt3rA32fFNiveRCFcY30SHmaZ5axwuiE96/S+Tonko48XYBixULwVfv1Eq7BASnI075SUbAbS4jy8NHBPDajurFFSywz67AcZnVrkItcC4j66ouxpjtdMQ56SYIeLUtidKycwKq8/JwRSvkaGtusEw8+x7j3PMvQtE94AqwYMkZHO3qhyUPsOEvG7n2qq+DqjFveiN1VWX885294K8Dw8cNN93O3XfcRHlFFUy+QBQ88W6p9X59pQDl5IDIznevh2mXynaLGqVuO5dyMrBzYs4WqBfGun93IQu8v188XNrahBjI5eS+7/NJfxwOywAACjXT8+cL6F24sJC28dWvSpmaxyOfvfVWqSdTVekjolHpxydNknWWLJHZ94ULC4DetuXv6uqxsY2Tu4Wdy2F43VRV+VFVhXA4NSZc6++P0traicul8fDDyzEMlXfe6SQazVBbW0RLSyPd3VE6OsIcPjzC0aNhrrtuE0NDCfx+F36/i1zOxu930d4+SkdHGJdLZ/XqxZx11iTWrt1Kc3M9nZ0RVq3azJw51VRU+BzzNHHnj6bipLIZqgJlfDzQzrGRXnojQzQUV1FfXEl1oJy1K24EFPqjI3zl1BUMJ8LUFVfyy10bmVs/lcpAKZmsScpM0VhSTcDt5eDgUTpG+4hnkqRzJn2xYTYfeIdYOkF/bJgKfwn3v/4zuiMDuHWDqkAZv9z9ElWBMlQUp6LLK8DYighY9sxEDIWvLbiGWxFRpZbfKVJuX4u4fg/dI896tawz/AD0XMDVX4xy4IMXef+97Xx+xQK+ceW/Q66Xb3//ryyYGeLQJ7v42fOP8KUvX4lpyv3vwgsv5Hvf+x7vv/8+GzZs4Gtf+xpJx0vmP/vjX+D6v/PDykDmACS2AFlQPDB0H+R6BXCbhwsW/arv0xeWZ6bUYYyZn60DLAHSx5uh5Y0SrBiQEwM13xKp9civ51soDLkxAbI90Hc1rtxhJpWU8MQ559ARDhNJp2kKBqkJBDi5tpbHd+ygIRhEAVY7IPyuJUuwgbVbtozFZm3t6KAnGmXlpk3EMhkWNzVRV1REwOXCretjLHVvLMaRUIjWzk46wmEOjYxwZHSUlZs2UeX3U+PIwd/p6qIrEuHd3l5UJ4OWzk5x/OroEDT65JPSAXi9IosqLpaOw6nVprNTOq8jR6TDuPFG+T0OHhTHzERCcq0DAfjWt1haV0fDz39esPJ2uWj7+GPKS0uZ8b3vwYMPsuQzn6Hj2DHe7emBoSHOv/pqdFWlshLOOmsBmUw3fX1ZVq8WM87162Xz+QSwm26SzRmGkN979gjuB5gyRZYvWlSI3urrk8nm++8vjEFA+sIvf/mz/Pzn/+Rvf9vDM888RG9vD4HAdPbska/A45G2p08/k3g8ygfvfyCgF3sM1IrreUIa1VRw6bIs6BcQ7NIFGFu2AIOAVz5/8Ji8H0sIu40i6x4f92XoArSL/PL5PPB2OwOiSY1QXQ6ahmYrBBobab73XgJNTWTTaebefDPpkRFGPvqIeHc3wx98gCsYRPN4eHz3bqbMnUtXdzcrzj+faSeeyM577+W+dev43N13M2vBAg5/+CEP3303ZizGtnvv5cJLL+Ubf/kLC04/nZ/94Q/84Wc/Q8tnnwNmLDZmoja8bx8lU6eSiUSIHjuGkssJw/hv14hc2uUWwGtTAMyqKgOUYKmAW5cbfvOkGH3VTxBwOtQnQNhMSw2zmRFzsXufFlB8+ENZpqgiGf/Hn+Q5WCKxXCsuE/AeDUGwWNqMRYQd9/kdh3Fb2tA0uOArMiAdGSgw5OnUmIM3sYiw1tEwY/FeE6eD7iq4mx89IG3laxoVpTAJoDplLemkRI9FQ7LtF38lkwl5E7fDH8lvrmqfMhhLhkS6YXgD9B/YiqJqaC432XQSVTOonf5ZzGQcT7CCbDpBz4evYVkiLc8DdF9ZHf7Seno/eot0bBQ7Z2ImoxLhlYrTve9VDG+AppPPo3LyfDTdTaByPENHdjlt7ETVDGpOXIqtqMIUx6PYI0PYoWGs7g7U+nEoZZUobrew7canjc/U+qaCkZmqop1zAbhcKG6PGKAl4tiZFFZfN4RHhcW2bHC7sQ98iLX1DZSqWkjEyL38F4iEZP3Oo6KAUBTUZSvIebxYioIfYaErkYitfiRG6yZECl6LsNY/kt6CjPxKqIj79xGEcT6ISMRVpG66BQHfWWe9Q8BKRAa+3VnuR9hxBSgFvgo87XwOC6J94hauGiqWZTHaPko2ncUVdGFbNjkzN2ZkFumIiBHZwWHSkTSZSIaOrR0EagIYPgNXkQDl5GiSXDpH/fx64v1x0hEpyymqLyIVSpFNZ+nd0/v/Ye8/o+Qo7+1f/FOhc09PzkERCZCEhIAZpREZmWSDDXLA6dgYOBbYEgJhJAz4gCSQCCKZbON0sAXGWIDINkbDKCIESICQRmFynukcqqvqvvhWT4tz1vrd+1/r/+Lecygtre6u8FR1T1c/z372/u5NvD+Ooiqomkq8L87rS19n9NAomWiGjtYOvMVebN2mPdxOeaCca1+9lt5YL+3hdjbu28jalrW4NBemZaKrOmX+Mnb37CaVTWHaJsW+YoYTw1zzyjX0xfs4reY0Dgwf4Iwrz+DAwQMs/+Vyrn/jehRFYceVO+iJ9XDbO7dR5ivjihlXoCkaGxZt4IoZVzCrbxZ/f+Hv3LXhLoaTw5T5yyT7WgUl1Qcf3AjZqLCfmVGwTB546BG+dtFXGOrvxjDSVBWkBIhbWcbXV9IeKQTVA6khfnHLfzDp5HP5+rd+yF//8ynUVI8YoqX6hYW2MmJy5quGk9eDt0p+dw48DFOXidxa0aFgomRhowpwNtOOUsklADoHknWPPMa6RUKdY6HDRwRkam7576sQIOoJyXrTUT6pLmnLTMujojoMeJQxabllCPM7FvPlgHcQAO4OyfkUTWqcj/uGrLOyPPDAg3ztwq8wFM1gGAZVn64R0zFfKeMnTKa9ox1GD/L87eejmkm++rWvY5pZnn76KabMaGTm11Zw7gVf5eB7G2HnOvpdU/nKa2dw3M+2Mv20hbz7wGVSi+0KcMb532DCtNOYddpcZp3axP0bHpB665oF8p6zhoDrhx8WSVtzs3T+/f3Sedu2SLlzM+pLluTHMRs2CHmgKDLzfviwzNy3tAiYzkm+AwEB27nokquuEiAfj8sgw7IkauvwYTlfJCLbr7tOgL7HA21tKD09qLbF4GAC07SprAw61h4KDQ1FNDbWOthcIZu1aGqqZWAgzu7dPXz729Npbm5gw4ZtzJxZiders3BhA4GAa4zBXrr0NWKxDAsWNDBuXBGqChUVAYqLvf8NZPf1SbttbSMYps1gfFTitWKjoECJP8RgYpSAy0PQ48cws9QWljOrZgrRdJyKYDH/ufs1jq8Yj65qrDrnx5xzXBP3/euPDCXCeFwe/uONJzky3MPksgYCHi9u3YWqKEyvmsSiqXMJevycVDOF3+7YxOv7t/LUthexbJunt7/I6/u38vT2F0maGQwTbL1c7iGzNz+mV3QZkw/fK2N3tQjMsJiSVT3ljO/XfXG8r1VBxX14j/+MC76zCcVVC1jMmfoBR9oHYGgdG59/mWt+9jCoAU6bcxY1NTX861//YmhoiIGBAc455xwApkyZQlFREa+++ir/E5YvwfX/5sVOicGYXi4gOtsOvrlg9AOaOHv7FsLwo4AKej1UrHO261JLXboq7x6YOZyf5Sq9GcyI3JSucaCG5Fy91wnQrnpIXMZLfwnZIYi+CP6mY3Ly1mHaNivefJOqYBC/y4UNbOvsRFdVls2Zw/rWVgAmFxXx+EUXUR0MYts2D59/Pt+aNo37t22jPBBgTUsLjbW1AHw+NMRPN2/m8OgoA/E4KxcsYPG0aTTV1bF6y5ax/XOPG/ftoz8epzcWY8mrr1IeCNDlGKQpliUdTyAgEqgNG6QzGBoSwFdWJmg0F+zc2ipSJ59PjMo6O2W/yZNlFjeXa11eLuDA6xWquaNDEDDI/jt2cFxlJUPDw7Q6HeGmzZuJZrMcaW+XDkrTyODhxhsVrrvuAc499wJOP11n4kR4+mnp2zo7Jfu6oCCv/spk5PnMmQK4YzG5tIMH5fIDAZk7mDABfvhDecvHLpKQ1ENNjfSn5513B6eeehZTpkymuNjg+ecPcuiQTIhv376D/oF+JtXWSU51Jit114VBAcCFQQG/mazUVxsGoDg51TgAyoZ2kU6hacKAu3UB4W5X3uhsyjiYPwuOGydZ15Mb8hd9LPDOxXcdOAqWhenRMeJxzFQK27IkY9rjIdHbi7e0VB5LSth1552YqRS/3biRT1paiA8OcmD7dn5/+eW0v/Yaa5csYdtLL/G7Sy/lifvuo7SiAs3tpqGxkVcefZT3Nm3i1Uce4cXf/IbJZWXY2Sy6wxToXi+zli9H9XopmzULzeXCV1ZG+axZYmZlmiJ5tpzPaKBbpHiWCUc/F6CrOTXK6ZTIxr91DURH5HVBoTDfBUUwPJAHu8MDcuyR/QJai0rl8379eWGrX39e2v3ez8VF3OOT/XRXHtR7fFJnHRmVgZHLJax1LJJ3JY+OwnmX5SXbqipt79nm1GQ7f8OsIX+fWETamDzdYaeyY+NYQK4/lRCGOzwijP7IQN5N3OuTz8IyoX4itq6TSYzSvfcfYwZj3lA5YKOoOpXHN8v7tkH3+LBtC8vK4issR9Vcx4Dh7fiLqxh36qXUTD8bRVEYPCSy7sFDOzGzafzFVf8NQPuLqsimYqi6C90ToHxSI4XVUymf3IRt26Qig9iONNVqfQclEMSOhB0WOy410DZSQ51Jf9EtPJVEu+jyL9RaK4Dtcsnvl6KgqBpKwwSUQIE4iWsqSjCEvuxW1EVfQ1FVrJZ/HCNBT6H4AyJLj0ZQ3B4sRUzGDiGsc73z+AAi63a0S7Qisu3ryDPWAwgYDiHM9b3AoPRAWAgQ/4bzp81xGsfKz5ukN8KFSMszCHMdQ0B4C/KzHO+LUzmzkpGuES7/1uVccN0FNC1o4vzzz+fjXR9jpk1m3zKbX276JfMvmc9NW27it7f8FlVX0Twaf3z3j8y7cB7+Yj9/euJPdG7rxF/qFwZcV2lY0IC30IsRN4h2RXEH3CSHktTNraNwXCG24x0Q64vRsLAB3avj8rmonFkp8vOsSnNDMyFPiIUNC+mJ9rCgYQF9y/t47MLH8Ogegu4gNjaGaTCvfh4u1UV/vB9VUWkoauDdo+/SFelCVVWef/J5tM80/v7S3ykrLOPDyIfouo4dtakuqObGeTfS39VPeU05hmkQdAc5J3EOT93/FH9/5e8YPoNDI4dIZpPY2PL9+eweB+C6YaAVzCRr7nmUg4fbWXvHbVI3jSrssu4TgB35BNKDsk33c9evltO2469s/PWNrPjlGjKFp0LDt/Ku4zgeC6oX9t4pBmiYcMpDYpiWq40eaIXYITmHq1BAdTYtkVmK6riDpx0n77SA3IqTZZuZkXxogNFDIg8Hadt0JhFVt8NaI4BbUeQc4UPyWbgC+ZptMyMseo7ZzsQcZ3Ln3JpX3MBz15XohXdvZM3auzl4pIO1t90ErbfJuc56UGTtlgmpQUgO0zuS4s5Ngzxw921yvT07mDt3Pvv3tPLhzvf42jd/xJX/nAFnP8IvbvkVc2bP4MBH2/jt44/wnXt3YWx16q7NNPd/dzx73vwDe3a8x7KfXyv12qMH4K1rQFNkzHLttdLxR6My2x4IyLjG5xMPmKEh6eCvvz4PtPv75Tjblnrrri5hucvLZQxTXp4H44mEjGnWrs27jPt8AqSXLs0fY5pyDevWyWz+0aPSRnk59PRgZU18PhfbtnUSjWZwuVS2b+/k6NFRwuEUbrc6VhmUTptUVxfQ2FjLrl3dRKMZHnzw/DF2+pJLjieZzI4x3nfeeZaoP7LW2H9dV2lvD+P3u6ipKWDVqmbOO28S69a1Ul4eYP36VsysyTM7X+Kdtl0EPF7SWYPhRITKYCnlBaWMJCKsfutpjo70oCoqIU+Q/tgI1zV/S8iht37D0REZ702vnsTT218klk7wTtsuRpIRgh4fBZ4AH/ccZDgewQa+d+qFfD5wFE1R+eFpF7No6lz+rfFibNvmyqZLuPCEBdxwxvdway4UxUSxDfEmUAolUst1nJBrta9JqabiFkLNTgqbbbTJ33VsvL9KPJSy7XK/oyKO4v0APPBHD1/7ynEMcS2GkaWqoVHaU9yMHz+e9vZ2ysrKqK6uZuPGjYBIxPfv38+RI0f4n7B8aWj2v3mx4mAl84Zm2QHJprYtmckaWicgWR/vHGCAOSoGBYrPCZnPyUsS0L8SKtaIbNyKSy1HthOG7sxnZhttIi8ZWifr9AYB+VZMXMutGPTfRKbsPhJWAYqiEDcMVrz5JjfOm0e538+Kt95i/bnnEnS7sZzvb2tHB3WhECU+H9e/8Qa3NDdTFwqRymbx6TqmbWNaFte/8cZYhvXyuXMZiMeZU1eHV9dpGxmhIxymPhTC53JR7PWyvauLpro6lmzezKb9+3n+8stZ0NCAZdv4TRN3NCqO0S6XAJpDh/K5j52d0iG0twtwvu46ieOaNUs6kYoK+cFyu/PuYLadf25Z0okVFYGmMX76dF6cNo1Z99wDEybwz3fe4fY77iAWizF3wQL+uWULa//93/nqjh3w6KNkYmmeeG4z9z+wmkcffZenn65k5Urplz7+WOYDTFOwTK6U6sYbpb+cMEH6tMJCwfPDw9L3KYqw1uvWgWleTWvrK/T391JYWEomU8Bnnx1k5cqf8N57W0gksvT0zOWSSx7it78t4pprErS1ncvoqEis+vsD/Ocfbufc007LG4sVBp2MapVjfbGwke2aJqy02yUgOrcYpoDj+iqpo04beQMzlwaxZN4dPOiXN65p+fxsnPOAgPkPPoHiQozx1RixmBiKlZaS6Otj3+OPM+0nP0Hz+XCHQuy6807aX3uN8RddxGm33optmii6jp3Nkk2lGNm/n/JZs0gND2PEYgSqq8nlVrsLCtC8XpJ9feg+HyMHDuAtKuLTZ55h9k03kRoeFrO0q6/GV1YGijLmSq4oCt5gACWdlO9NKiWsMQj7XD9RQLdtiaw6MnyMkZhfvnc5M7Dhftm3oFDY4mQCfH55bTmMc8pZZ1nw3JPwzWtEev7a8yKzdnkkAqukQtjjTApGh75oXubxCfh/7TkxR8OWv0UqKefKGgKCc2ZoCnKNuffo9sIfHoCvXC6M9uY/C2vucosMXVXh2Ufh3K/LsUVl0l4mDX97Bi79gbSRTsJffwPnfQOzupbuvf8YcwDXPVJXayTDjqN3cMzZe7BtJ1UnLETVXNiKlKhZpkHvp+9SNum0MefvgYPbKZ/chO720fvpu1Qd34yiueSzVjWMZJiBgzson9yEkYzi8gVxeUPYlomRiuLyFaCqGraiinlaJoXL5YfRIexIGLVhYt7FOxhCKZXJAPOVF8QZfNJUCBYIgNZd2OmUnDsWFYOyBWeDy4Xi9Y2ZmSluD2Nxd7YtDuQ+P2i6MOVb3hYJejAkZmYFIezOdtSTZhN3uYmokqPah7DXTQiATgHbkXitcQjL7BQccSNwA8I6JxDzs7sRljsB7EFA9GGktnoFMNX5OcgirHU9Ym6Gs34bwmBXka/b1jNZ/CmToYNDDB0d4kDqABdceAGxnhjPPPcMm17fxIvPvMiSG5ZQ5ivjrgfuYvdHu/nW977Ftpe2kexN0uPqoaKmgquvvpqfXPETzpl3Du+tfY95N82jeEKxdKlZCytr4Q64GTo4RKwnRv28erKpLG/e+CZzrp9D6XGlZNNiqFbYUIivxMcb17/B2Q+eTYfdweqW1dx33n0MJ4dpD7fTVNuErups7dxKTUHNFxzEd/fspjZUy9qWtaxsXkl1sJqeaA8PPfAQu17bxYPPPsgjex9h5YKVjC8az1U/voq6hjpuWHkDG9/YyF3X3cWHn33I9W9dz/T+6Tx5z5P87ZW/MXH8RK555RruOvsuAu4Alm1R5PKiGhGUdL8Yi51wA/c88Qp/fv5F3vrDzRRVHw+JbgJTvkHbp7upKtbBU0rj/LNZc8vPOef8r+XBKiaoHo6fPps/3XwCp1zxLNhZwBJDrkS75GYrmjiDp3rymdilTQLUjVEBn2Vz5VhVd0CBI9NWnI4jOeiYpHkcQ7MC53c+Ks9z+9q21CmHGvKvjbiA6GNfmylhuf+rIdoXjNBsYardAWdf53yqJs/j3dzzwGP8+aV/8tbLz1NUKgx8oKSStsfPp+q8WyHeTeNlN7PmjttJZwx+dNW/4/MFAJvBoWHcbhf//uPvs/rO/2DX7g+57Jvf5shjZxJc/DcO7n2fqmqR0zc2n8Oa237BOect4oyF81l61fe45NJLxW0cW95fblIh64L3tsKJJ0ocViQirqZz5kj/smePgO977pFBgM8ns+7jxgnI9nhktj6dlhl8RcnXUsdi8MIL4ia+ahX84x9wySXOJDnCXJeVyec8MCBJKLkBSiQix99661gWtv3II7y9c5Da8aX4/S4GBxPcf/827rrrbDRNJRh0E4tlsCybaDRDZWWAzs4Id965hXvvPRfViVmNRjOEQm50XWXnzm7KywPce+9WVq5sZuLEItraRli7VnKtKyoC3Hjjm6xffy5+v7iQA0SjaT78sI9Zs6rwBTT6UwP0xYbHnLu/f+qFjCSjzKqZwh1vPjXmIH7reT9BVVTimSSxdIKA28c/D+7k/c7P+Pd5l8mdYllUFJSQyRq4dRd9kWF6Y4NMq5oE2LhUnQ+7P2dK+TgCbh8JI0U8naDEXwiKgqZI+U5nuJ+ntr/IzWd/lyK3lKuJO2Y87w5eugq0chnLV94nP9SZw4IN/HNkf7NXykOjL0JyK1Q9LPdfcju46liz9n5een0vb7/5Eslkipr640knRwUrAIsXL+YrX/kKP/rRj/jwww+56aab6OvrY9q0afT09PC1r32Nn/3sZ/y/ffnS0OzL5f+wqAKAvbPBNV5qppWAU0exzjEe63I6liQkd8mN2LdEJOOq25F7O51Y2QoB3cZh6L9BQLNWJk7jQ+tFahI47xhpyRrZR1HBToidvzkEVY9iUEjbyAhXvfwyPdEojbW1rGlpIZxO01hbi2XbfD40xFUvv8zh0VFmVFTQHg4TTaeZX19Pmd9PKptlT28vR8Nhfv7aa5i2zUOO0dkvm5sp9npprK1FVRSShkFDKMSk4mLGFxeTMAyWvPqqAG1N45Hzz+eja66hPhTiqpdf5mg4jGJZ4hDu8UjHE4vJDG9jo3RAjY1SQzRunMisRkel7trvl+0gEVvRqBMTZUoHMziYjy4KBATxplLy+pRT5Nh0mjNVlX89+STv//3v3HvrrXT39HDi228L5Wya/O25/2TDA3ewadObzJhRycKF+ejIOc7vZF+fXHbOAHT1atne0SGnPXpUjDvLygTjBwLSV77xBvzbvz3Oxx93MjKS5T//s49Dhw4SDMK3vvUkGzd+xv79B/n00z/w618X4XbD/ff7efLJ95g9ey9/+tMePvroPU4/4yxsj0wu2LmsayMrNdSQB7xjiy211hlDBiqqJt+fHPvc4bDYx7LRWStfYx1yBhRHe+QxlZE6b8fFl0xW6q5PmzGWm50cHCTW0YFtWWgeD72trST6+sZY7MZf/YpL33mHU1atItbVxY5f/WrMdCw9MkLx8cez68470X0+grW1WNksQ3v3YiaTDO3bhxGLST2jpkmGdSBA+cknY8TjfPLkk7S/9hqJnh6SAwPsuvNOvKWlYNsMf/JJHnDqLmF1Rwbgjw+JBNy2oe0T+RDLq6TGOTwi0uicTPoPD4gkvKxagK+RcQzQ/PnXmiaTPaoqjLQvAN/+qcOIu+DcS6XdZ38tMvCCQjElCxULUxwNyznDI/JbUlopcVrD/SLzDo9Af5fDrCflnLYl4PxPjwgYbz+Y/z588xqoqBVJ+uU/EWBtZETWblsC9Mur5D2ZprDwkRE4+6vOAHpEpPG5mm1Uqk5YiL+4loED27BNQ8BfKoY3VI6q6viLq1FUjcrjm1EUlfhwF0YiLC7fikr1jHPGTM8GDm4fY7JVzUXNjHPIGim6976FkY6BbaNqLmpnnIvbX4i/uAaXJ+iA9H+hewJk03ExSUuESYz0obtkkkQpKhVgLdbTwl7HHXmqpqPOPwO7qwMCQRQncousIQqFTEYk4/v3fgFYK14/uD3YI0OYm/+G7SQOKMECrK527NEhCBWhXbwYxSkrUOvHyzkmHoedyeDKGgRsmygCrCsQQJ0CRhBGOifZNhCQDMJA1yBAuBphqUNAGgHmCxD2uhvYhEjETUQ2fo1znIe8pLwVif/yOf+DCKPtAWzbJt4Xp+G0Br5y3lcAGDk0wrTx0zjafpRARYCX3niJ6264ju5d3cyeOZuamhp27t1JbWMtp846lQl1E6TSJOjGHXCzf9N+4n1xsqkspmGK+VmBlJcUjS9i3MJxKKqC7tU5Z905FI0vAht63u+hcmYl/jK/sN4LG1ALVFa3rGbjvo1EM1E6I53MrJyJYRmoikpjbSPrW9ezcd9G7mm9B00Rw7KaYA0LGxayYesGfLqP0f5Rnr7racLhMFdffjUf3PYBixctRlVUfrzix/xp85+YN2seD658kOOvOp7eRC/L5izjl9f9klQqxTe/8U2aTmvig9s/IBvP0h5uZ0fXDhQ7i6IHhKGdfR/3Pf06zz73d9584QmKxs8XA7KyOVx+6UU8tuEOyMbZ+bvFdHV1c/rcaRitP+HgJztl3JAJs2P7NvoHR5l43jr5MmSGBBz7awQwZ4bkG+OvduqqG6B8nuRpm0lxCi+fJ8/33CiDd9sWtvjYHF1vqbDFObl4Lufa5ZTeKJqoX3LSbstwjMoMAd+WIfXUiioMtq9cTNHMjMitLUO+2JYhjPWYHHy87Ist+7v8MgEQOcJ9997Lsy+9w5ubN1EUCsI/l0ImwuVfv4TH9pRBvJudXW66evo4fZLGheedQV/HYY7sfIkjj8zlsq9dwK3X/4TV/34emBmR5Z9/DkMn3iBMoX1Yrrl7K+Mb6mjv6nP6ikJ+sfZRZjR/lW9e8QMO/eUamRSwDOjdJb/1NTVSzvb55zJWmTlTBgqWlfeUaWwU5vmaawQ4V1bKICEUkrHKBx8IwDZNMXI5cAB274ZvfhMeekgGE4sWydhp925R6QUCwoanUvAf/yFqv5YWuQ5VlUSV+++HTz/F3rABy+vjhJNqqKoKUlTk5f77tzF3bh2KoqBpCpZlU1AgjuElJV4UBcrL/cyfX088bqDr+cFFzvCsqamOe+/dysaN+1izZguWZbN2bYvzuoVwOMWyZXNwuVRaWto5cGCISCSNoigsWNAwFulVW1jBybVT6YsN807bLn6/6xXHXCzC90+9kEVT5/KTOZfyQdd+LFuyqB9tfZ7B+CjnTGni3xovpsAToLKgVEzLshk+6z+MaZmUBkOU+ELc9fZvGYiNsqf7cyqCJSiKwuq3nkZBoaKghL7oMB92f07GlO/nnz94nR+edjF+l0cY596r5FENghKEkhWCBxQVSq6D7FFhrRUNvCeJ0TGGEGf9N0HgLEkXMtqhbyl4Z3LPA3/lhZd38+pvJuL3+yk1fomuq/T2dI3dk0eOHKGhQVQjM2fO5LXXXuODDz7gj3/8I93d3UybNo3/CcuX4Pp/9WIKaMYSu/3ea8SITKuQuK2c8VjvVU6d9QwYukfAsuKRG1Irgt6fAgrodULlKD6ouEtMzvqXClNdcTegyz6VjziS8F+MSUXycvDVkO3ExKY3FmP53Ln0xmKcN3Eiq5qbKfJ6OW/SJKKZzFi99NqWFqKZDE21tVQGg8yvr2fp66/TE43SVFtLdTDI/YsW4dV1BuJx5tfXU19YSNDtZsWbb5LKZlEVBU1VqSkowDDNMUl4RyRCm2OQFnS7KQ8EmF9fzz2treiKIh3BwYOCRL1e6TR27ZJOxTSlwzEM6TQWLMh/9NGoMNmVldJpbdvmzCLaIiM/elQ6lu5u2c+y5P/550tHt307PePGSYdUVcUd99/PWQsXMvmZZ2DcODb+/veseuBBnv3zm6RSDSxdKqe/7z7p81papKTpwAE5RUWFNLt3rxh1+nx5tVYgkPcoSaXEb6StTZjvwUF5mzkl2cGD0v/29Mi+bW2Ca01TPp6uLml37VqnXROUdEYG+20dwlp73HlJeDiWz6ZGyYNfjzsPihVFsq6nTxa5t6IIMJ4+WWTgHlfeFfzAUWmjwGEjVEXM0zKGAHpdk4zsjAFeN7Zl4QoEKJ0xg6GPPsJMpznvz3/GX1XFwO7dwk4nEnxwzz0kenpI9PVRceqpeMvLKZs1i2R/P0YsRtmsWWPmLLrPR/nJJ/P5s89SdtJJqLpOrKOD9MgIVjbLp08/Tf255+IrK2P2TTcx8ZJLKD/lFFSXi/KTT+az3/0ORdfxlpRgZAzsoT6J3fJ4ham9/CphiX1+ibRyJMUoCHs9ZkCWEBm2x5evyz56QEzDgiEYc8516gf9zsSE6bDLQ30CmjVdznfpD+UzbT8obTz3lLDdoSI5z1t/k7ZcbgHf0bADtiuE3T56QIC9x5uv7ztumrh/TzzBYcPTMiCzTHjhGTk+WCimZ6FiAePRsIDJPzzg5HKfICZplXV513RVg2RM2rZMFFXLm5fZNvHhbnxFYlLWf2AbRiqKgoJppEiM9uIvqsLlK0Rze0iGe7GzGXS3xHeVT24ck4Zn0wlsK3sM4N6BoipYZlZcwrMZjFSUxGgvqqpROmE2lmkw2LYLb6gcRdUIlNSgjI5gbf4btmWCZWJblrDRqoJaP2GMWVOKStEu/AZERsUlPFAgcVuBIASCqOd9Ff1nq8DtweruACOD+eoLMDosUvPaeqmvfvl57KEBlIpq7PCoRI2NDGK1H0LJGtiqhuL2iBlaPAqmRQJx9V4ATHQedyIMdCHCaLciZmR3InLwHQj4NRGH8GsQAzMDAeZZROY9B/gY+KV8AwkAZznnqwD8TnsViIFamXzj8SN12f0ZEzNjUj+vHnfATWIwQSaaoWJGBY/95jEuvuBi+nv6MQyD+gn1VM6s5M0b36ShvoG+0T45qQrt77WTTWfJxDJkE1kWv7CYhgUN4hbu0ena0SXstSkMdjoiDuGJwQSJgQSb/30zQweGqDmthuRgkjdvfBPNozHtm9NQbIWbF9zM4mmLKfQU0tzQPGZQljbTaIrG+nPXs3jaYtafu56+eB+tHa0oisJ3ZnyH+xfdz6HRQ8S8Mfb07OHh1x7mL2/+hfv/dj/vtb6HgsLv235P39f7eHX7q5y6+lS2ubbhc/kYVziOF/e9yOZdm7nnhXv4w2t/YNvObRSXFFNTUMO8+nkoigbxI4BCZ/cQy2/6JaOjI5x50Q+YNfcCms7+Jgxu4+47VtL6UTfHzb6AH67bxx+feQpXQS1GyUJ+sORWps+ex6zmy1j2i//g+Wd/S3FZlYwbcq7htikMs22LG7gRl9exNthxDfhqwFcl23ZcBckeOOlO+YPHOiVzOldKkokJcMQWAK2oDjPtMMiWI922HeZW80KsS9juWLejnnGOMTOOZFwRsB7rlnPl2HjN64D3I8cw5+RBOoCVpbMvzPI1TzE6MsqZ805m1pwzaLplD2hu7r7lZ7TuOcBx517LD3/0I/745AO4iurgnWVgxASwn/1rAemqG8pnsmbNGg62HWbt2jV5U7Ka+ZDogUAV9L0vbuNGjD88/SiffbiNj3a10nzG2Vx098cQ6YSe7VB1qvS169dL5x4ISOfd2ys5nb29Uie9cqUA495eKW8rLhZ5W19fPmbr1FOl9qu9XfqWvj4B6bmBRCgkoNuyZECRcyK78UYZkDQ2SklcWZkw5KOjMojo74fbbkPp70eNRigp0Glt7aC9Pcz69edy+eUnAtDdHeOqq16mrW2E/v44qqpg23DzzW/zjW+cQFVVkEDAhdut0dY2TF+fTOZHImluuaWZzZu/w2OPXYimKWzYsIgrrpjBqlXNVFYG0XWVJUtepbw8QF9fHF0XljybtWht7cBWbOKZJAOxEY6vGM/9X1vOT+Zcikd3YRgmIW+AX557JbWFFVT4SwB4ZudLvL5/K8/sfAm35qIiWIrf7eHocA97uj/Ho7uZUj6Ofb1tKCiEvH5m1x2PW9OZUj4On8uN1+Vm6cLvoCiQyWbpjQ1R7Ctg7du/pXO0n+VnfA9d1VAxUIwOKFnukGHtkDko98TgraJIdR/3xbG+6hNlad+1UptdsR70WllvdEHlA9z3wO949i9/581X/0zRcQ9IFnbFai7/xtd47PHHILOfndtb6erq4vTTTwegJ1fuCDz55JMEAgHOOuss/icsX8rC/zcvVkaY6GyfmBrkAt6rHmOs4i3xXl4y7p0tx41JxldJxt2hqTBuh8jFk9vFtEyvgr7r8m1WrIPUJ+CqcbLuVoI+Tuo+sJycvDWSk5doIRn8CZ8Ph1nT0sLKBQuYVCxZpKZtY1kWyWwWy7aJZjIUejz4dB1FEZfGZa+/zsnV1Vx+4on4dJ1DIyPc7eRWB1wu/G43uqLg0jQSTnzXmpYWVsybR1UwSMDloj0SYfWWLTxywQVs7+xkekUFuqpy01tvcf2cOUwsLiZkGKi2nc+kyjlpVlQI9btmDdx8syBKpz72C4x0NCqdl8cj6+JxeR6Nim67vBzuvZer/X5eee01egcGKC0upsDv5+Dzz/OTW25hy6FDZE2TuTNm8NADD1AUicDq1bheeIHKyioKCkpJp4V43LTpbcrKStm+XTB9YaH837lT+tL33pNTPvig9K9ut/yPRuHDDwVAr10rfWt3t/SViiKT262t0lcODIj5Z07dpev5eO5UStbt2SOq+YYGiIZNaqssAdZ1lQKAs447aUcvTKwVIBSJiZwbRModjkldNYps8zjg2bLyddapjLDVOSAdicHeg1BVBpMcNY9lC8A2rXy9tabJa7eOkckQ6+wk0dND6YwZZOJxfKWl2Nkstm0zuHcvpSecQLy3l8zwMKWzZqEoCkYsxujnn1MyfTqax4OdzYKqkk0mMaJRXMEgeiBAvLOTT3/zG2YtW4ai6+g+n9RQKwoDH31E8ZQpss6ySA0N4fL7JQbK42HX6tXMue2XqAf3iTGZpsHffgeX/EBmMnJyastmzPDL6xdA6XMGTkP9AmYLi7/4ediOHv/YjOocQzzc/8X861wu9uY/S/xXqEhk41NmwKx50p4rJzlG2lVVAd62MK7oLr6QiV1cLgDf45VrHBmQda8/L4Zmbq8w29GwuJZPOF7aAQHelgU3fV+yub/977JNUeWYv/1ODNW8fjCzWLqOpYlUe7BtF1XHL0TVHXdkRSETH8HMJPAX15BNJzGzKTTdi+b2YGbSaB4/CpAY6UL3BnH5CjGSEZGGTzoNVXejai7MbAbNed718ZuEe/Zz3On/NpaHPXjofconNzrycKkjVzQN1QK74whK7TgU28ZGsqmPlYTb0fDY74ii6djxGPbRNtTjZ4CmSYRXVa18PumUMPe6CxIx7Lb92F0daIu+ip1MYL37Vl5a7nUiuTRV2ggEsbb+C7X5bJGn148HyyLq9bFVVZkj3zT6ENbYRkByJQKSkwhAXoOA7CQCmk9DQHYGcRQvhTGjswhSz70CcQtvQ/KxmxBGuttpXwH6ETDf6Wy3nDY8SYPE58OEO8OEakO0rG1h3op5PP7Xx3ntrdfY9OwmkqkkU2dPpXtftxiT2XDNzddQN1LHrU/fisvnwlvk5SuXfIXrfnodZzeeTaAigJEw8pLvyaWYGZPO7Z0Ea4IUjy9G1VVsyyY+EOep055i0nmTuOCRC3ht6WvMWTaHwnGFdG3vorq5GtNljslVE0aCG9+8kRvn3Yjf5afYW4xP95G1s6iKSl+sj9HUKH3xPppqm/DqXq579TruOPMOYkaMoCtIKpui0FtIOBWm1F+Kruq0tLcwq2oWA4kBOsId1BfW0xHuoLG2kdHUKCPJEQYSA2Pr60J1rGlZw58ufgw9PQjuYhjaDsUny/dJUeQP/dFKOPleAZZD20XG7a/Py7pLm8TULBuRe1EvEDmp7YxFNBdSPZ/7q2VlIA+Q6IZ9dwiDXf8N0INiqpbsEbBt2xDeC6XznElTx4TMFciXvthmfr3mkeeRwwKQS6Y6RmY4QL4TQuMFkI9JyR2FXq5d1am1tm3ZP1grbUIevB+be6155H2mw5AJg6tA4rQKx0NBA+heYbpVXYC07vhNGHHQHYm1bUEmDoMfQvUc7rn3fv78zCO8tflFimqngmUSqJxE20dbqaqfDNk4jc3nsWbpYs75+o/l+Hg37FwHjTfjbZhD1753KfUr4jJe1QzhuHTw69bBLbdIXzIyIp37ggXy26rrMku/fTvMni3g+b9KxXO51fPnS9+UzTr9slPffuONorKrrpYBxkknyT6ffCIKPVWV88bjMljQNDlnZ6eMn4qKML0+YrjJZEzcbg1NU0inTbZt6+Syy57j+ecvp7Y2NCbrzmYF3Pf2xqirC7FmTQvLl89lYCDOggUNtLUNEwp5SCSyrF69hRUr5lFTU0Aw6MY0LUChtzfGG2+0sWNHF488cgGJhEF3d5R161r5xS/mc9wJRSSMJPFMkoDbR9Dtk/RII43f7aVztI+ntr/Ij5suob6oEtO2SBppNvzrT/yw8asMxkY4rrwBj+4mnIzi1l3oqoZbF+PF4cQoJYEieiKDPL39Ra5suoRif4j7//Unljk52IZp4NJcDMZHSWRSBFweygtKSWRSlPp0FOOgmBHnyjX1cjEyOxYDWKkvjvWNDui6yNn+hGACvQqsKJ1HP6b+uEVMnDiOgmABKAoel832f9xFX2Q83/vhtRw+9Dlub4iHH/41Z555JgC/+tWv+NOf/oRt25xwwgk88sgj1DvJPv9vX/7vZOFfguv/7YsVF+OxsZvol45rd6cw2NkOJxx+pUjH7YzMXsU2CbPtny+GI9leqa0uWe4A8emSf52rrTY6JU+7b8kxN/ATjIF425CO1Lah71piZY/z45deZeO+fSyeNo0NixYxEI/TFY0yt06+z0fDAr43LFpEfzzOmpYWVjU30xAK0TYywjoHUHdGIlz07LMsnjaNJy66iFgmQ18sRk8sRlNdHSPJJCc99hhfnTqV208/HUVRqHXcwb26TjSTIZJOU+B28+JnnzG+qIj6wkImer0EjhxBWbOGsWLmZcvy6PPAATjvPOkIEgmZ4e3uFoR6333SefT0iA67uFhQ7qxZgkRdLumEenulAPrzz6XjWrECpkyBd9+VzquoSI7dvl1iMbq6pO77u98lo/tIGC4SCYVIRID0nj0CgouL5ZJylz55skwMd3fL+qoqKXMqKBDwDEKuHzoE55wzpkxnxw44+WTpd3NtTZwof8Z4XPrPG26QS122LH/5fX2yzu8x0TU7z07naqFzbt+FQQHZ9VVSYx1LClhWFdme25Zz+o7GnXpsV545ODbTOmPItv/6s3fgqLDdqipmapYFsQSGRyc5NIS7oIChjz+m7OSTMVMpVE1DdbtRVJX+PXsomzED2zTH6qhVt5tYZyfJvj5KTzqJTCQiBmXIEE3zelE0jZ2/+hWlM2ZQdvLJ7P/975m1fLlMElkWroICbNMkNTyMmU6T6OnBW15OwbhxYFnYto2mKmhZQ96qyyNgOh79IgD2eAVMgZiUvfIsXPAtYYyjYdmei9nKAenhfgGzIwPC9PoCIvc2nQHS4f35/SYeL4zxnm0CtCdNE9dxt8OiWKYMRG1LnodHoaxSWOhce5ou15hTaBz5TOTjRaXS9jd+JNfocjtyB0UmAhRFIsCMjLyPY2vPs4b8nX1+uZ54LF+XnWO2Dn2KNekELE0lMdKDt6AMRVFJRfvxFVY53yEFIxVl6ND7VJ14xtgknmkk0d0+bEXFNgXw2LaFomrEh7to3/0ShVXHUTPjnLEoL83tARuMdIyBgzuoPvEMFEWle98/CPfsp7B6KrUzzgUF0rFRBg/tpHba2SiZDMTjWC1vi1FZJCzGZvEYav14zFdfRL3w6yg4A3BFxbZMlGwWXC4x01IVGB50aq7PgkAB1ut/R513BhQUSs01NnYmA9Fwvja7oAB0N4ptYcdjmE9tQJl0PNpFl2GPDmO1/IP0168goqq4EZD8HgJ4JyIAuod8HXYaAcG9SD21jYDqHsT4bINzS4YRxtsL/CfwLvBrYBipo3bIZHYCM8lXkMSdfQaQeuwO4MxYms0/fom5y+ey/cHt1DbW8lrna2x6axObX9pMYaAQ0zCpGF/BJx9+QllhGbpXZ/7p87n9lts5+6yzySay9H3cx4/u+BHX/fQ6vnLmV+jd00vNqTWYGVNi8YD+vf3UzamTmC5VYahtiFhXjNqmWrBB1VUUVUFRFUaOjNByZwtzl8+lYFoBpmqStbLs6NpBXaiOfx39F5OKJ+XrqhespDPSSXWwmonFE0EBTdFIGklM28Sre2kPt9MZ6WRe/TxS2RTxTJwibxHbu7ZTHaymuqCakDtExpFpDiYGKfIWsaNrB/WF9fh0H8W+YpZsXsINc29gMDHIjIoZVPoK0eOHUPatgROWQ3CqsMk5t28rI38RIyz1vCMfQ1kjDG6T6KxP74Vpt4C/Dqy04x7eDy5HJbN7GUxbBckuAcyJTonY8o/P/07ngLLiMNHJXkh2QtkcWa8XfrH2OQduQ+Nk/1gnBGsE/GrOb4kRF+Ab65L9VC3fP2QiAvpN45ia7ZC0a8Sdmm1b3o9pyPu2jC+C7dRQntW2DBjZL+D2tBUQrBMQDdJmcgiMpBxfOy//HhRNar17d0h0lq+E+67/Gn/aZfDWi3+k2OyA2oWQifDDa65n/ISJ3P7LlezcsZVLLv82R95/A6V4EkP9PVTaR2D0EH/90OT6W9dx9PO9kpPtq4D0MJTNg0RSPkOXS1R3K1dKB+/3S8efA75FRTJeaW2FadPkt6K/X8Y8H38Mp50mYLutTWrObr5Zxjw5IL13r8zG5+rN1q3Lu6SGwzJoCYXk+K4uMWtVFHjvPezaWlL1E8jqblEbxQ0A9uzppaamgM7OCE1NtSxd+jpz59Zx+eUn4vHoDAzEKSz0smNHF5dd9hzf+MYJ/PrXApJtG/x+F1dd9TKbNu3nhRcWM3duPZom93YsluHGG99k2bI51NQUEAi46O6Ocdtt77Bx4z4WL57Gb39/IUdHehlMjDK9ahIe3c0HXZ9xYuVEdE3njjee5PX9W3n46zdRESzh6e0v8uOmr1EWKMLv8mJYJulshlg6QdDjx6O56Az388zOl/hx0yX0x4apDJbic7lw6278Li820BXuBxv+8P4rXH/6FXhcHjLZDJZto6kqCgqxdJzaAj9q31X5cXjlwxKt66pzCK5VoJWC4pW43GP367tWtrsmiepV8YKdBnNEDAitmBgdqwVgRQET+n8BpTcKrlC95DKu/7++fFlz/eXyf7M4M62u42S2SvFKPfXgrVKPYXQcUx9tSN11xQaYeAh884T1trP5TOucjX/qE7Hpr3pMbkRfI2Ad4zZ4k9MpReWGNAfEFE3RoOpR3KrCqmZx8r5p/nye++QTVre0cGJ5uQzGTBOPrjO/vp5IOs361lbm19fj0TR0VSXodjO/vp71ra001tZyxYwZbFi0CBtwqSp98TjlgQBLNm8mkc3y/OWXc9P8+RR5vdQEgwBkHQmTbdvc+e679MZiXHbiiWPO4i7TRMlJqDweAYWbNkknNH8+fO97QhEXF0sdk8+Xj+fyemX/gQHpWAYHJaZiYAB++lMB5jm9NcjxCxdKzZFpyr45YL1zp9DIdXUSnfGd70BrK+5D+3HpNi5Xvmy2qUmY6WMzr9esETwTj4uHyaRJefOynPL9uutEvfXNb8opMxkB1hUV0u6aNfLWc31vX5+sv/566Us9HvlI7r9faryLir6IcSSjWhXAnDEEVFcUCxCeWOdEdTmdfTQux/g8sk3T8vnVBQF5DbLuYLsco6rCZB/tESCv4IA953koKKBaU4XhVlUIBVA0DTOVYtfq1XhLSlAd07l4Xx8Du3djZjKUz5xJoreXob170X0+0uEwtmURqK6meOpUhvfuxR0K4QoE0DwejFiMbCKBEY8z64YbqJo3j/2//z3H/+AH6F4vmt+PHghgZbPsvusuzGQSzeulaOpU/BUV2KZJcmhIPjZNQ4mFxRAMW0BwUanUPuek4pFR+MODwgAP94ssfPOf5XtUUCiDyeEBqU0uKBJAXTdRmM26ifn67IP75G+QjOdrq6fMENB6wbfyDPYfH3Q+/5TEff3pYanrNjKOJLxItusuuV63l5/9YiXjpx6PEgiy54P3xQncF+S119/g1F//mZMWnsmcs87hww8+gD8/DgM9NDU1MuvUU5l1+plMP+s8lOIyPtq3D4adunuXO+8Mfni/AOxELP9e00mYdCK2polhmC9I72fvYmOjewJ07/sHRioqKoKD2ykZPwsjFSE+3CXkmOai55N3wbIc8zEFRVXJphNjEVtVxzeTSYRJjPSMMd1GOoaqSs11MjxAJhmlfPKxDuEiic+m40T62jBTCUinsVredhy7/4VSWQMeL2rDRKyuDpS6cfKeswZ2PDbGEplvvow9PAhmFkVRsbZtQakfP6YUsNs+w45FJcKr/TDZDXfIrRGLos49Q8o1NBdkUpib/wZGBu3KpQK6AWtbC+q8M7AVBRtx+TYRGXeO64s4zxuROuwhhNWeQT5SK4vEd81Hplt7EIZad3qoK5B861x99TLnPAYCrG1gt7N/NdCAyNL9iFS8T1NpXtVMfCDOuevPZfPhzfz+6d/ztz/9jZA/RHwgTrQ3yqK5i3j88cdRXSpbt2zl0GeHmFE7w/F9clE5o5Lhg8MYSQPdq1PbVMvry14nMZQgE8/g8ruom1NHOpJm85LNjBwZoXRSKQ3zG0iNpIj1x0CBWE+MTCxDQWUBc5fPJT4QR9VV2sPtXPvqtZQHyumOdvPNad9k4biFVAYqOWv8WXRHu2msbaS+sB4bm0w2QyQdwbAMLNvCpbqoCFQws3Im1716HZZtETfiLHl1CRWBCgo8Bbg1NzEjRnu4HU3VCLqDDCeHmVs3l3J/OdXBalyqiw2LNlDsLWZW1Sz64n2kjbgA6/aNApQVBFh7yyWPGlXAcvywOH9XLJCBdGkjpAYEkGteAc3D7+dBI5Yws+Xz4dN1UHiiGKZ5ymDfWvl2qLoAahQZhwy0CrDW/FDqAGvFLdek5MCxU08dGkfOKVtk3IaMPdKRfB21mf6ie7iZljY9IWnDHSTvFt7m9FluYbEtQyTimlOvGusS0K2ocr2eIid2y5D3vHOd5FDvXCd12LkJseQgGCkIVsoEwJtXwejnAuKNmABrXznEOug8cpDlT+1mNBzhzIu+yaxLbqKp+SxIDnL3BVlaW1s5btosfnj1z/jj736Lq2wK6VSCC7/xHWZcfAMzf/Aov37iN2z63QMyAVC7AHwlUHYaRGOivLv2WjhyRH4/77xTOvdsVvqNnTtlFn7HDtk+a5YA8JwM3OMRltvlEqZ59WoZbKxdC9OnC2mwYoXUUVdVyWBh3TrZJ5dsAfnyoKoqGQtddZWMjWbMQOnowExnME2LdNpk9+4e+vvjTJ9ewZo1Lcyf34DXq/Pww+fz3e+ehM8naqTSUpnkbmqq5ejRpTz00PnE4wY33PAm3d1RVFXhllua+eija6itDXH11S/z+edSW21ZNo2Ntdx//zaCQTeJhEFFhZ/77juPTz9dwoYNi7CwGUyMHiPJ7mNyWT1r3/4tKSPNj5u+xqKpc5leNemYmKy/49JcZG0LXdXQVY3OcD+DsVFUVR2TjT+9/UWKfAX0xYbwurwoKCSNNEPxUcoCRRR4fdx45vfxujx81P05A9FRPLobl+bCsi0KfSEimSx26cq867fidXyXJkPV42IybKUEPJeulBLOykdkv4r1oPjFmLhviTxiOXG9RZA5Kq+Nw5DaIyC76hGJ2kX9HwOs/58sXzLXXy4Caq2ESLp9jeIIbkVE3q14xF7fTkl9hl4lEm6jA1y1UpdRcbeYIiRawNUgYDrbDvE3ZEas6hHoXSIxX4VXyExX5G8Q+rpT8/G5w3CvEJBvxUH1Ecv6yFoWNjCUSFDk8+FxgNPh0VHWvfced59zDkG3M3NpGAScyK6sZeHSNDRFGTObPjw6yuotW1i5YAHji4q46uWXx5jxJy66SJzJMxn29PZSGwqxesuWMal4fzzOhKIiNEeyZ9k2eiZDIJEQR95YTIB0TvtcUCB66nBYZl4LCvKW3LYtHcuNNwrN+/nngjpzWuycqUdZmex/6JAw3evWSTvZ7BdlWTNn5gFlbgY4HidTPY79fYV4vcoXyO3ycrmk0VHpB4PBYwjDI8JeNzXJdp8v71GSI9Nz0u5TT5W3V1kplzIykmfDc2r42bPlctaskbdcUyOXGQxKWfkJU01UbBTLhENd+frnwqCA4ZwDeC5WK5PNu4TnOl4cWXfWhK4+B3A70vFP2qC0SKK4Pj8qILqo4Jh2dfnskmno7IPJ9XnGGzBSKbbfdhvtr71Gw1e+QuPtt5McGCDW0YG3pIRPn3mGaVdfjebx4C0qEoWjYaC63aSGh/GVlWEZBsN791I6cyaKqmJns6guF7ZlidM8SO12Os3IZ59ROn06mWgU3etF9/kwUyn0QIBoRwefPPHEmFO5mUwSrCjHZaQERP9Xx23blj/woc/ELXz2fFnf9gkUlQjzrOkysDv4CTxzP9x0j7ShqJJtXVgqLPOBvQK83/irAOlgCDY+Aed/U449tVnO9aeHBbzf8aT8XQa65LjoKJTXCJiOhSVvO+sMcjvaeHf/ISYe/IAFD/+JF5/7C7NmzWJkNMzkadN59/XXmFZVxpYH7uLfX3qHvdta4cXfw9e+JxLnwmKe/8Pv+NV/3MHHrS1QWZs3OCupgLIqp6YyK+9/dEiAf6n4HVipBFZhId17/zEm1e7/vJVwz36Kak4Q5tnMimt2NoNt2/R9toXSCaege/xSruJIvq2skZeLu71j5mfHyr6NZAx/cTWgYCQjZNMx/MU1oppXVTKJUZGnn7AQAFXRJHs6PCps8vmX5J1eAVtVRS5uGNi9XSgFIQG9iy6W375EXMzPCkLYhgHRCHYsglo7Dhvnxk9LLbvd2y1APTwi7HioEKv1X6jnXIiiadi2jeJyg4QzybHhERLllezXdNYBK5Ga6ArnHlKAI0A7ArBHESDdi9ReL0PA8CjCSPsR0GwjQDyBMNorgfEIGP+vx3gRptuPyM3TCNC2EUA/M5amyLTBhq6+LiYfP5kJ4yYQLAiioOD2uNny9hY+2/4Z1/7iWnpHe3F73Nz+s9s5+5yzMVIGd627i+fefo7BoUEC/gBuzc3OHTspKSghHU3jK/FhmzaaR8M2bTKxDEbawO1zk46kCVQERPWALX8/QNEUjJiB5tUwvAY/efknbNy3kStmXMFjFz6GYQkb1x/vJ+QJAbD09aWsWrAKn8tHkbcIXdXJmBk8uoeslWVn105OqjyJrJXFp/u4/o3r+dPHf+Llb79MfWE9XZEu5jfMF+WLonFg6ADdsW6aapuwsOiN9rK6ZTU3L7iZScWT6Ip2cee7d/LkBQ/iS3YKAJ613pEqa5Dogt7XoWoRxA4K6/zJXXDCTRCcKMDYNmBoBxSeJKDUTAqzXT5HYrBG9kDpqcJsYTpS8ZTDdCmQTUA2Du4iR3JeJ8DaVy3sebIbKs5wjEGPYZdzkuyctDv32/4FZtrjSLEdJtpMyftSnd9QRTlGYq4ICPY6fbOiOuV1Zp4Nz/XxxzqJK0gkWKBKrmn7amhaBYUTZf2ONdB4s8Oqq1ID7SuH5AAUTgZvkZw7HQZ/uaj8silIj4CnGBC1CqlReU8F9XmWO9YhDHmiF6rnOQz5AGQS4PY7THkHVDeB4YLuHqmx3rQJnn9eZsVBxiF33y1O3xMmyAx7Mgm/+IXI0t57T2bma2vz9WMNDTJoyMnMV66UGfmlS8dcv3nySXlv0aiMa7yOAmlwUAYriiKAfmhIQLvPJ2ocGwzdxWdtYTo6IjQ21hIOpygr85PN2ng8GpFImqGhJF1dEebMqSObtdixo4uGhkJ8Pp1AwE04nKagwM2LL37G1q2dPPzw+SiKgqIobN3awbRp5WiaiqYpDA8nsW0oKvIyMJBg9eotrFzZTEWFf8xFPFToIkOG9f/8PdOrJzF33EmEvAHOf/I6zjmuiZvP+REpI41Hd9M52jfGSJf4QwRcXrrCA/TGhphWNYlYOk6xL0SHs99Pmi7F43JR7AuJURnQHx1hMDHKzJoppLMZ7v/Xn/juKRdQGigknc2QMjI8tf1FfnjaxZQHi/l84CjTK2sJeXSJ5LKzApyzh/NKU60C+m8Utjrb7qhXVwhhpoYg23XM+P5hSGwF70xQA/JdSWwD32ny3TcOOxL0VVLL7biG/399+VIW/uXyf79YMTB6nUitiMg6FA2yPfn6aNd4h1l2iTNgxV0OCA7KbFRyh1Nr7cz+Zttg6H6Z6VL9MoDPHgajR+ThikuMFLQySO3O13X7F46B7VjZ72kbGWF9ayvrzz0XAJ+uoyoK3bEY8UwGBbhv2zYePv98NFXFsm1s2yaZzXKjE99VU1DA0XCY9a2tX4jTsm2bvnickMdDoccz5hB+w9y53LN169i+8xsahK005McsV+dd4chtME0BvJmMAOYVK6STyWSk4DjHnMZicNNNQufatiDM2lpBpIoibaxcmZ8lHhyUzqurSxDsccfJZ2sYMhheuVLMzwoKhHZesSJfw5RIECsdx5ZtLmbOFIl3MChKrcZGwfCHD8sE9bF9YTAozHQuISyblf+2LX1e7u1ks/Czn8kpy8sFbC9YkI+lzGTydddbt8LXvw7f+AY8+qjsI+VjFoWulBiaFQSkPrqrXwAuOIN+Q4ByLjYrlfliLXZu5kQBDnZAbUW+bjtnTmZZIgnP1R63dcLgCJw4ScD2scd6RRpL2oB0BsPnJnr4MJ/85jdMu/pqAjU1AoqB1MiI1E8XFGCm0xLRddVVaD4f3pISsCyy6TR77rmH43/wAwJ1dZipFIqioHo8pIeG8JSWEu/p4bPf/IZZy5ejezwM7NmDv6aGQHU1VibD0Mcf46+uJtHTQ8uyZSy4/37KTz6ZgQ8/JFBZQWFDPUpft5h2TTzeAdW6MLUdh8QMDFsA9msb8+AYxKn79edkXVEJjA4Lq33BN6G4AuIRAceqKqB03/vCAl/4bfj8IzjtDGlHUYQJHh2W9r55jXxRRgaEKZ5wvBOx5Sy2LTFevqATlZUC02T8zNm8+NRjzDryIbuqj+c719/I53v3QngY/AFCNfW8s/llZs+eLQDaiQw7/6KLWWRHWPrC6yL9PvyZmKZ5/XL9mRR0HhLGPZmQunDneKuwGEvXRLrtGJMZqShGMkqgpMbxOkqgOYZliqpiZQ1S0UECpXWkYyMMHX5farVdLqys/E4ougtF8Bw9e99mtPtTCqunSga2qtGz9x+UjJ+FomoYySj+oirQdHo+fgtfURX+4loGD+2k5oTTUbO2yJ7dHsm11nUUy3Lcvp04LX8OvCGSe0UZA804MVsKipiSBQqw41HUunHYioL16ouoc5ol0iuVxHzzZdS5Z8g+FdXYHo8oFJz4NrunEyVUiFJUitV+iPikqWzRNCqQuC0XAopvcv7naqJ3AbMQEOxU1aIgbLQNrEIcxLMIKM7Jui8DngfmOfulEUa8wnkecNY7mhbiOBFczn9X0mDk8yFa1rSwaMMi4n1xWta20HxLM6G6EKZhork0kXF/PkS8P06oLkTLmhaaVzaj+3VSIym2P7idc9efi+bR0HRNZN2rW2he1Yy/zM/ry15nwcoFuPwujIRB8eRihvZLJFdtUy1YoLpUsqks6XAaT8hDJpkhUB7A8liEM2HC6TBVgSpSTvZygbsAwzbQFA3Ltoimo6SzafxuYeACroBIw80k2zu3M7NyJoPJwTEZeUWggt09u5nfMJ+B+AA+3Ud/vJ+eWA9NdU1YtsXR0aPcs/UeVjavpDPcyUXPXsTiaYvZsGiD/BTbFhXeEHo2JjX4tuXIvwth5CMoni510Ciw66fQ8Vc4/2NhtUGk4UUzRAI90Aq+OnHx3r0cTrxZwOrIh/89bstMyuviWZKVnZOkpwaEEVfdwpa7i+T8RjIPonPsdSYqYBv+O+DOAeac/DpXl+2UVoDiAHC3U6N9RGqxwWGsuwS4KsoX66wVzZGbux2TsdwkcEquJz0q12Bb8NbV0LYJLn5eGGQzIxL2TFiu2x2S41Ij8v52rIbGlXLtLr+056+UffSASNR7d0LZjLzxWXIAAtVitrZjtQB5V0AAfM/WY/YtkL7PcCY+e3uFdV65Uhjoiy6Cl18WlVyuDiyblUn94mLpp5culUHGeefJ4CLnM5ObDFdVGXysWSPjoepqGXjEYl8E4ePGOeU/lszQV1YKM756NaxYgV1TQyZYSHtvktHRFPfcs5VVq5opL/ezdOnrrFrVTFVVgOuvf4MHH/wKlmWzfXsXlZUBioq8VFYGsSybdDqLy+VEU2GTTGYJh9NUVgZIpbJj9dSrVjXT0BAiFsugaSpLl74+JgW//fbTefPNQ8yfX8/AUIx5C2tJZzMMxEZ4ZudLXNl0CQPxEaaWjwMU3jqwnXHFVcysnkLcSPHOwV1Uh8qYVTvVAc0K+3rbqAqWUlNYPlaKpCgQz6TGJON+l5fdXZ9R4gsxnIwwvWoShpklYaQo8Phxay4+6jnA5LJ6NEVzPFxVPKqBnyMOmL4JXFOkFDT+BiQ/gMq7ZHzumniMNPwKx4/JkrF/zhshtVuINn0cmP3CUo9N/pqQ3Abdl0Hwq1IKqhXyP2H5Uhb+5fL/YHELI624AE1mRRU/DG3IuwWiCsuMLkw0GmQOSV1137UCjo0OZ2Z3J+gTZD/FJ0y1ogqw1ssdOclR2ZbtkVqP4XvlEcaiuizbojMSYfVZZ2HZNnt6e8laFqYj09ZVlZ5YjMbaWpLZ7Fh0V9vICJZtj8V3uTSNIo+HDYsW0XP99SwcN46kA5QLPVKLmrEsvLrOhkWLmFhczIZFi/j4mmtoqq3lvfZ22sNhgm43vbEYd777roB4XceORsUi+6c/lQ5g2TJBm4Yhr01T3lPOFXHBAqGCJ04UqVPOVXzZMtn/zjulo1EUmeEdP16OmThREPLnnwuqtW3phAIBGUD7fDKrHAxKB1dZiTsxQvMCkYUfPixNzpsnY23DEMy+YIGcYv166ddy5PvAgBM/LJgHn09Os22btJVOS/+Z8y+ZM0f62MOHpYyqosJRYqdEMfbCC3KOaFTmAXp6IOCzx5zCaesQdjoHrMMxB9F7GKumtGwB4BNqj+mskTdjWjDJYZ1zLuLRuAByr1u2R+PS1uQGAdY59/BUJn/sgaMyuHC7IBRE1TQKJkyg8Ve/IlhXJ7W26TSp0VGReodCeEtL8VdUUNnUJMC6qGisVlrzeJj585+jBwIoqgq2zfBnn5Ho6SHa3o5tmuherziLDw4ysGcPpTNm4CstJZtMkh4dpXjqVBJO7faCBx6g+MQTMdNpKmbPlsxs2xZgHSoW4JvLU865cv/xQTEx8/pg0WUCtDw+Ya1jYbjsSmFxdZeA7SkzJCJL1wWAtu3Lm4/Nni8xXIUl0HgmDPfl47x8AaiqzQNrVRP38snT4ch+cRdv+1TaAigodgZPJnS0iXxdUSQqa/I0jpt6PEMjI7RubQWPj03PPE00FuNIZ1eemQc6Ojr51+49fPcPf5NJg3hUQLTXLyDzDw8I6B9//NgxEvdlwyvPYmsaydHePBNsZXF5g7h8BcSHe7CtLLazPhkewLZMVN1NoERkGEOH38dXVIWNjWlkMLMZFFVHsW2J7EqGqTph4ZjsGxRsM0vpxFNweQswklF0j09k6Ikw1dPOpKj2hDFZuGIrEI1g9XTKTeb2QDaLnUyAPyDf9WBIorc6joCRQcnFs3l9AvJR5DNQFNRxEwUYV9ZgvvZ3CI+i1I3DjsflfvL60C66HErLUGsbhLUPj2C98zrERCav+APYkbBkfYcK0WNR6mybfkTSfQ3CTDcijHUvcC0SnWUhNddpJJM6KT0QAYTJbgeWInLvckTe/TFSr91KvmZbRaTh7yM52FFEGu5CDNGWAkdxwLhp0bq+lfr59WhuDVfAxdwb5qJ7dbKpLJGOCK9e9ypGwiBUH6Jubh26T2feinloPo1gdZDC8YVc8MgF6F6d5HASM2Pi8rnYv2k/W1ZvIRVOsW/jPlrWtOAt9NKypgU7K/FflTMrSQ4msUwL1SUGZ55CD66Ai2BlkGQySTgTpj/eT9twG7bz78O+D4lkIvTGeollYmzr3IaiKJQFhDnd07uHjJnBsAyWvraU8kA5bs3N2pa1bNy3kfWt6ylwF9BU18R77e+RzCZxa25CnhALGhZgmAamZTKYGGTjvo2s2bKGxtpGFk9bzE3zb5Lb1F1A0B1EtU2UPTcKCMOR7WKJlDjZK87d8aNwysPw1UMC9HYtgehBAdbY4vbtrRDWW/NBxUKRlms+KJ4pLLi3AoZ2grdSGOryZmnLVw0n3OgA69NgaJeMVbyVUr+N6gDRjLDBZtoZ3jiy73CbAOLCCfIbORazdZixOKpoR979O7feE3IAsiKy8hwIH3MV73Q+E0XayKZkvOMOOUy2nZeE2zb07xYXc9OZADtjA3z1BQHpby8RYK175fyazznWAl8ZFNTC6feK+VigSj5Hb7Hkc/e9D+FD0kbZDKnf7nvfmShwwL6/XJzEd90jwFrRoGaevI9//lwmEpJJYYlNUwYJudqxxkYB1vPnC9DetEkGDTk5mmXJ7/769TKTDgKYc2YuOXWdqgr58Otfy+uPPsp7rTz8sJS/1dXJfgMDAqhvvVUefT5xKO/tRQmH6e8cIZHIMjiYYP78etxuDVVV2LRpP6tXb8Hl0li37lzSaZPBwSQzZ1ZSVOQlEHDT1jbCj3/8AosXX8Ypp8xg9uxZXHrpRXR0HKatbZg9e9q44oqvc8YZp/Dcc0t49dW3UBSFjz/u58ILz2TPntspKvot779/CyeeWMH48Sl6e2Oc1lTNXW//lqxlMpwIs+z0KygNFHJy7fGMJKOs++fvOKn6OCaXNaAoKiOJCFWhMsqDJXzQtZ+B2Ch3vf1bin0F9MeHsWyLrGUSzyRJGul8bFdsFEVROKX2eOqKKplS3sAnfYcYSUb59XvPMRQPo6kaM6qPw6252D9wBNu2cWk6PpdLyC/fQtAnIlohHULfhqoHpdwz2w92RhjrgsVClFlR539EMILqB+OIjO2zHeI6TlbG/NkjAsxddeLPVHqLgyX+dyxfgusvF1mMQwKS7biw0MYhqLxfDMsGb5MbSNEAQ+TfZr8TzbXmi7XW6GJmNpaj1+mAcoSVVsug4l6RnehV4J4o9dqxTdIW2bG6bE1RqQuFWPHWWwDMrKxkKJlEAdacdRadkQhNtbUsmjQJTVGoCQZZd8459MfjRNNpzp04kZXNzbhUlYDbjcNbkspmiWYytIfD/Pz11+mORkk76wYSCX66eTMD8Thlfj9DySRz6+ooDwRQFYX7t22jsbaW3liMvtFRkfXW1+eBrsslNG7CARBex9RJ04T1ueIK6byuuUaQaEtLHpRXVAjwzs3w9vZK5xRxOrxgUM6xbJlsu/Za6XAMQ4qiVTV/PIDbTdQpv8zFa/f25k3K587N11qvXCmTzLk665x6zuuV/dNpkYDPnCkA3OeTt/Lww9LPtrZK/1hbK1FcuXmAn/9c6q/nz5fz63o+2WMkrEi2tWEIYAY40C4S7VAADFPcu9163gHc44bDXQ4LTf6zxRYMfmy+dS4P+0C77BcKCpNt2yI77+yTdaoix3b0yrHpjBxniCO4EY9LpFY0iplIoLndUls9MoKnqIhYVxc777iDslmz8BQVYabTmJkM0Y4ObNPEVVCAOxQiNTSE6nZTfvLJeEtKKJ46lT333IPu9zP+wgtxBQJ4S0vZtXo1lmmSGhri40ceITk8TIUTxVVxyimkhof5cMMGrGxWaq6jEQGwVXViJpZJCXNrWVBcKuC5pFyAZ0WNRFe1fSIgtm6CyLPNrEi/i0pg1lwxPUslRCKey8d+5VnHdMwUwJ1OCSv8lcsFyNsiESZ3p6VTAqpBrsvthknHi9GZaUgN+KFP5TonTRPpuKJAw2SYPI3CdJTnf/0QN199Jac0L+SNvfs58bjJ6ANdwsp7/aAoPPPcX7noK4soC/iFKf/77wWoFxaLu/hxM+Rz0J1ygleeFaCpaTBhKkoyia+kFkXVyMRHMVJxFFVDUTX8xVUYqbjkX9s2gRLJu84kwnR9/BaZRJjqaWdRVDdNnMB1txPJlaVn3zt4Q+Xobj+KqkuutS8EtoWi6bh9IRRNx19cxeCh94n0taGqco3J0R58hRVMPfNKWefxoDZMkM8eG8XtRikoFEbDyMDIIFZ3hziKqxpW+yExjnPJJIRtmQ57bQEKaBqKx4M6Z6HUYZ80G7WmHqv9EPbQIHYmBUZG4rrcbpRAAUr9eNlX07ATcdTaBgH9Lf/AzKRZryjMRCTaNyG51j8CFiIM81kIyA44/5ciYNsGfg7EEEbbB8xFHMeXIgx4AIFzC5F67XEIG/4+eRCek6IvRRzKVyNO4gAZt8ZXHj6fk753Eqqu4i/zUzS+CH+ZH3fQTbw/Tt3cOqI9UXre7xEzMkVBdYn5mG3Z6B6dTCxD57ZOvEVekiNJsskslz9/Oc2/bCZYHWTJp0tYtGERqWiKRRsWAdDQ3EC8P847t71DtDsKQGIgwetLX2e4bRgra6GFNMLpMJ2RTsoD5VzzyjV0R7s5reY0eqI9tA23oas68+vn49bctLS3YNkWVcEqlry6hKPhozTWNnLv1ntxaS5WNa8ai+w6NHqIpa8tZWblTMr95fhdfgLuALFMjHA6jI3N/Pr5LJ62mFuab8Gn+3jioieYWjKVgCtANBNl6WtLsRQN+9RHBdBqfvjsPvlwFU1MyU64wamp7oDh3QI4py6D/fcLy21EpF471S8xWu//HMZ9B8rmO2ZoGlQ0i5S8YoEDeDPynU31iUIuOEH21/yScZ37rVFUcQ9XcOqnxznO3Y606b/WQYePOLFaqjDRqiYMb7CGnIkh7qAA23TEOYciruI5qXdoPFSc7LiKm9KWospxtnNduW4qm5K2VA2CDVA4Tj4r2xYGuXahAOrZyyDeC92tUD1H2Oh3rpffS0WV8+oBqGoUxvqdZXLugloonwm71ks9txEXVruqUaTjvlK5nv49cPy34ayHpa3ebdKu7oPTbgItKED4ttvkcd48kW7fcot0+vX1cPXV0tHnJOPH7p+rM8t18pYl8rhbbxVTsvfeEzIiGpV67eOOE9C+dascc999cOmledKhtFTa3bRJzl9cLIC7rg6rsoqX3zzK+vXv0dzcwLe/PZ22tmH6+2N89NE1PPzw+aiqQkGBm+7uKLfd9g59fXEqK4OEw2nWrm3hr3/9BMuazSuvtLJr124WLbqA6677dxoba3niiXU0NTXR3n6I55//I/fddyNXXvkiNTUhNm58nXfe2conn3zMbbfdxoknTuOss+Ywb149WAo/OO1iDNOgIljC/f/6E33RYeKZJL3RobHILQDDygpjXTOF3+18iSnlDbg1nVm1U/jP3a8xs2YKqWyGofioDHVUjWd2vsQ7bbsIerzYtk3Wtvi45wCjyRiTy+r53c6XmFU7BbeTnmFaFnt725hcVs9gIsy+nk/lnqp6CELfgewhieEdG/sfFqJML4f+lY530uNy/+XUGWpIarJ7l4B/AfibJZJLr5DyUsUtUvCcX5OvSVSq/4sg5/+ed/rl8n9YMnIzlSx3bpByqbFQFGGRY5sYcwVM7pLaCq0ClOAxBmUrpVYbQ8C0XiPxW3qlyM6zPY7k3AcokHpf6rjtjNx44z+CkhulVsM1Aaoew7SNsbxpl8NS3/rOOxwJh/m4v5+6UAi3plFbUIBp23REIqx46y1qCgqoCgapD4Uo9/uJptOE02l0RaE9HObaV18lbhh0RCJs3LePda2teHQdBVi9ZctYvvXRcJhb33mH9kiE3T09HB4dZf2553LepEmsa20lbJoSm5TLsQ4EhJJtasp3BCAdTA4UHz4sgDhn7lFW9sXZ31hMgPLRo1LjZNtyrM8n6+68U/atroYzz5SOLBSChx6SfW+8Ua5BVTG8Ifr6FJYuFaCbTEq/1t0tf9qjRwXj9/ZK/9bVxVh81qFD+dLvQEDqr0tLpe+84QY5dscO2aeuTsB7roY7Z/A5ZYqA774+2dbaKm8jEJA++aZfqI75iRsOdQqgLQgI6FUUWe/SZb3pgOKchDxj5I3JchnNII7f5cXyqCjSVl1lHpxrqrDkOba6vEjk4zZwXAOcNk2AdzoDLh3bmehwFxSg+/1ofj+KppHs7+fjRx4h0d1Nsr+filNPxV9RgaKqDH/2GanhYYqPO46hvXvJJpPY2Sy638/wJ5+AZYlpmd/PST//OcnBQQY//BBvcTHBhgZO+PGP0Vwukn199La24goEhC0fGsJMp/GXlzNr+XLMTIbk8JAAoeiofA8P7oVYRKK5juyXzy3H0iqqAN5nfy3Ms8vtsNheeP7pvEmZpsN5X5fHowck6io8BBOm5s3Aaifws2XLGH/iNJTxU9jz8F0iOw8V89o/3uHUxiZOmjuPOT9awod7PpDrymSwTZPbb1jKlJknM+Pcr3Dm1T/Lm4sVl0E2IwPJkjKYMJUzT5jMv86ewfvXfod716ymu7ePE2fMFAfxwV7svk5++7tn+PHiy0QO7vKIa/nrz8l7vuzHMPlE+PNj0OuUEk2YKts1F5w4G3raMRJhuvf9A93jQ9PdZBJh+j9vxUjF0HQ3lVMXABK3BTaa7sZfWofLWzBWP5tNJ8aczFXNRdW0MwHo/fRdjFQU27bp+vhNbNvCMjIY6Ti2aYAN5ZMbaZj9VVTdRTaTxFtQjm3b9H76L2xFETn48BBWTyeKaQqkSKfAMCTD2uVGqR0H0VHMV/+GEiiAomKRjluWzLD5/E4tqCmst2lCcQnqoouFme46KoDZ45HZtFQKpUKUEXY6hXLCDNRzLxJgXlyKbWZRCkJoF34Dt8vNettmCBlUNCDAN4oYk/0cMTmbizDYPQirfRdSK91IPge7GPguIg/fhABuL8JIR5z/vQgYPw0xUVuKyMeLEFBtAZ8420GM0KLtETq3dWIkDAHLPp1sOks6kqZqZhUnffckCqoLqJxZSffObrzFXgqqCnD73QwfGOblq15GUZQxFtoddFM4rpCGBQ0UTShCVVUCVQF0r06wKkh8ME7ntk5s06b0uFIuePQCvMVebNMmWBOkYWED8b442WQWNaNS6CmksbaRgfgAy+cupzfWi6IoFHgKxmKyDo0cGjM8c6kuuqPd3DD3BvwuP1fMuIINizbg1tw0hBp4/KLHCbqDdEW6WH3WahRFYU/vHlJmiqA7SF+sj9veuY2eaA+qovLERU9QFayifbQdVVE5OHKQn7z8E7qj3VzXeJ3gxGxMgLGiway7IdknjLWZgNSgSLP9NcJCD++CwDg45SHwVks29UUHhK32VsDxyxkDv6pbQKNti/zbUVGjeqXtT+6SRxQB7WYKBlok5gvk9fDOPFg9NmdaUaBoojC10S7ZN2dQpkqZg7DVznVkU7LNV+FkX7uEETYzwmKnhuU6FNUBzdl8BJdtC+NsGeTztQ0nusstvw8ur5Oa0Ab/uFZAsp0VaXewRiYBfOXwj+vkfZy5QYBy9zYBzQqQ6Id4D8xy9kkOyPUsXA+Xviystivo5GPHBazbtgDwXN63mYLi4+U1iGzctPLGYvffL5/D449L7XSuRG3durzBajYrrzdtEpIgN94ZHJTtXm+e5V6zRlR9XV0yEGhqEnOy666TWfvy8rHJwLHSN5dLAH57u4yVLEv27e4GVeGsRVN4+OHzOXx4lGuvlexpr9dFMpnl2mtf5ejRUQDq60OsW3cO/f1xLMumsNDDzTcvYPHiWWzYcB3V1QWk0yazZp1Kd3cny5a9zqZNL3D22Yu55ppXOO64k6isrOL006GzM0xRkY9g0E1BgZvHH3+S+fO/ysGDI1xzzSsoGvhcbor9hTzlGJY9s/MlYukE06smsWjqXP6t8WIUFHRVwwZGkhGWLryC0WSMR1ufZ3bdCVx/+ndRFSXPVMdHURWVK5su4d6vXo/X5eXoSA93vf1bppSPo9RfiM/lZdnpVzCrZiod4X46RvtY+/ZvKPYVoKsav9n+d46vqEexE44ZcQqMvjwI9k6XMb+vUco0K9aIOrX3agHTig/MXuhfCmaP7De0BjAFYGcHBT8k3hNMkDMvjvynHIOjJvlfsHwJrr9cAFXqpbMDAnRdE8QR3M7KY80LYCdEzu2qAhS5UbLt4BondRh6NWjljEl4s53Qv0LaANmmhpwabT0/w4UqNv52Smq9XXVyE9sKXk1lVXMzi6dNw6VprGttZeO+faxtaaHM72dNSwsW0BOLEU6nx7avaWlBURQS2SxD8TheXacyEMClaWNgfW1LC421tSyeNo1Vzc1s7eiQmj/nfE11dV/Yt8zvZ/WWLfhdLqoCAYn88vtR/H5h5NraBNTOmyedyXXXSQehO4ZZgYDItj0eOP102L8/32k1N+flqn6/yJ5yIB2Eoc5mZQZ49WrpYFauFOq4tFQQ8OCgXMfdd4uEPJPBNG3WrpV+ct06YZ7LyuS5aeYdvnt7panmZsH+u3blmW5Nk5LuoiI5hcslcwTr14vpZ1+fTGTH40LWL10q8wOWJex1rgQ8kxF5+OHDMqE9f76cH5s829zZJ8B4coN08pGYgNwj3WJkBgKscy7iLl1Y7py020Yk4FPG5Q3QJtbJ89x+RlbaaO8Z+6pKjVlW2jjSLY85gA2khod5/667iHZ0jP2dUoODdP3zn+x78knKTz6ZspNPZucddxBtb6fspJPwlZSguFwUH3ccyYEB3r/rLlJDQxQddxw7fvUr4h0dDHzwAenRUQKVlZRMm8bABx8Q7+nBV17O4IcfUnrSSVz0yiuY6TS77rwTM5kkE4mQ7O9n9913g2XhKypCGe4Xtjrn9j3cLyB6wgkCkPu7hNE9uFeY5UknCKD2B8UBPDIquc8ut4DpyIhIzP/y+DGu4CdB05nSzp5tkE5xWambluf+zLiSIti3G0YGGOnr4Yorr+R3Tz7JRzu2sf6OX3HF938g7Q338+DDj/DRoaPsXf5vfPz+Lp699CwxQEsm5LoVFTb/RZjlw/vpydjiQn7ht7lj3XrOOvMMJn++a8zx/B8ffUo2k+HcOY3y/jPpsf0BAduv/kX2f/05YeNPPFlqzBUgEMSefDwDB7cT7tnP4KH30T3+sddGMoplZen97F0AdE+AxEgvmttLUc0JZBJhuve+DbYtRmbZNErO7Mu2UTUdX0kNRjIqmfDFNaCoGOk4CgqqpoPDYgdKa/MsOaC53FSfeIYMntMpYa9rG7A6j8oNpSgCvC0LggViahYeRZ17et4UyLbzyg4QQ7NsVmquU0l5rmrCgteNF+OzYIFEmXl9KG43xKJjknDF7ZYJRa+okeyhAcxX/oorlSSAAOFipF66wrm9uoAbERdvBbgbicr6PvA0UAP8EKgj7yjeATyE5FVryJAshbDWvcBtCEDXgbXARkROnkDysAcRGXkWkY6TMdmyegsVMyrABjNjkolkePvmt1EUBVdAnITTkTTugJu6OXV0be8i1hdD0RW23b+N+vn1uPwusOHdO9/FtmxGj4zy8lUvM9I24qiCLTq3dZKJZCgeV0xtYy0drR0MHRxCc2kEyiQX2zIsjr/keOrnSZuapVHoLsSv+6kL1fHg9geZXT0bTRE37xVvriDoDlIbquXRCx6lIdSA3+VndvVsJhZPpDJQyY6uHQwmBjFMg7aRNq5++WoOjx5mVtUsVry1AkDqsRODxDIx6gvreeKiJxhfNB4bm3Q2jWEZ1BbWYtoma1rWsHHfRta1rmNy6WRcCiipPnh/KUQPOHXAPdC1SRzAy+YAljDSKOCtgt1L5bmdlUgqb4VTrx2X+mpFE9n4zp+Ky3g2Bh/dCvFDkB4CMy6s6sn3CYAd2g5GFGxDALzmF7Oz9CAUzZQvnGVA9BhPHst02GfEETzWLTXeti0yaDOT31/VBAiHj+Ql4aYhcvBYp1OqVOqUsxh5kO6Q3cQ6j5GKu/nCojiA3F8lcnFXABascW6SVqe9ApFuF0+BU5bLttGDArTLZ4jUPJsS4Jzog+LJYlS27U5nYsEPFbMFiOteOPvXcr7quU59OfDujTJZYGVh8COpQW+9VcC6SxXDssWLpZOPx2WAkEjI+KKmRoxWOjvzzuH33y+1YAsWyLrWVonamj9fyuXq6oTlXrlSCIe6Ohk0dHTIAOL66wVs57Kwg0EZdHzwgYyr+vsFTF9zjRyjKE52ts4dd7xLe3uE9vYwGzfu4957t1JeHmD16i1s3LiPjo4IsViGjo4IK1a8RU1NAbquEAy6GT++kCeeuIjjjitBVVW6u6Ncc80vWbDgXKZNC2IYBk8++TkbN+6jvT1MVVUdv/vdu9TWhtB1BVVVOHKknW3b3uOyy77N2rUtbNy4j9HhFCkjw4dd+7my6ZIxMB10aqBXnfMjSvyFJI0knaN93PX2b/G5vPjdnjH38N9s/ztelxvLtsecwp/Z+RKqolAdKmNG9WRi6QTP7HyJ6dWTGIyPsu6fv6M3MkjA7eWZnS9R7CsYa+/3u17Bpbm4cs4l+F0eAcaDt0kEr39eHgTjEhMzxS2GZKpflKUly8VgEGusbJOhdRA4V46zYiIX988XFWvPd0U2XvWEyM6TH3wpC/9y+V+2WBkxKsvJQPqWSkeoesEcljpsfzMMrXduqLuEgY5tEpY79xUyI8dIwY9KDUZ0o3SeZj/0/VyOIyuMt1oss17J7QLcjXY5v1YGfddD9iimlabc7+f2009HV1VWLpBorpXNzQwmEtw0fz5Jw6DM76fQ42HFvHksnjaNW5qbaWlvpzsaldoSRaEjHGYokRgDz6uamwm4XDxx0UVUBQIcGhlh5dtvM6GoiCcuugivpv23893S3Ixt28QyGSYUFRHweoXCvfZamXXt65PPorwcHnggb7O9dasMgIeHhRI2DJGAg3QqpilINhqV/SZOlI5qZETWP/CArG9ogE8+kXUbNkgn094uFHI8DkuWCAKOx6G1FW9ylA0bbD79VNRWOYB8yy2C+TdskD6yuVmaOHxYxuQ5WXfOC8m2v5i8oevS7+o6Y+A9EhHc39go8wItLdIXL1smYL64WNrOJXKsWydvw7IR1+7yYgHCRlZAtaYKwHXr8pgxnLguRYB2LCEX5nFDXZWw1yANhmOO/BU5RkGOn1gngDzHbIMMpjRN2Ot0RvbxOoMiVcW2LD558knaX3uN1MAAie5udtx2G/7KShbcfz/Trr4a4Iv79PQImB4cRPP7+fQ3v6H9tdf45MknMWIx2l97jX1PPomnuJhETw/JgYGxqK9kby8K4C0pYdedd5J02ssd4y4oYN+TT1I6YwbJwUH6PtiDPeF4qak+7xvCWk+eLsx0NiMAuaBIttdNFFDddGY+E3rSiSKZjke/GMWlqnDpD+U79txTMNAjEu7icgGvvgALl95MXdArdb/TZsOkabQdOkxpcTHTTjwBTJPmjo9p7+tn99EumDyd9Q89zF1Lrsb9te+BplP17Z/AaQu5+uZfUnf+1+ns6WXRvU8y+ZTTIFjIrUuv4/jLv8fk08/h6JEjPP3orwUYn7YQLvgWTz/7Z/7tBz9Aff25fMTY5OnCyA/1ywDyQmf/r1wuBmol5VBeJS7qH7SColI+6ZgoLKBs0mkU1ZyA35GL+4trsEwDVXPjL6oiMdLjOH3H8RVVYaQiJEb60ByTKds0SIyIz0JR7Qm4fEG6Pn4Lf3EtqqaJs7hl0L33H2MO5LZt4/YVUDrhFFTdjW3ZJMO9WHYWCkICehUFddwkcezWdYiEMV99UcC2pkrMVmGxMNdZA6urXdIM3F6p+U/EpHbbzMrfTdexh/oxN78AkRGsnk7soQFpT1XAAd7quRdLxFcyid3VLufPZCRn+9yLMUpKsRBwuwQB1sUI2G5GmGwVYaZVhMU2EWZ7KcJCu4AdiNy7wtk+gjDVKgKsQbKvb0BAto2YoC1GwPQaBGh3IgD9BqSmW3drLNqwCE+BRxQBe3pRXSqL7luE6lIxMybYEKySsySGEgQqAoTbw2gujXPuPof6+fVsvnYzAGetPQtPyEPhuEIuePQCXAEXo4dGefXaVwlWBdG9OuloWuTmc+ooGleEZVoMHRzizRvfRFEU3AE3iq5gJAzifXFM28REsqrvPududFVnS/sWeqI9XNt4Lf3xfkaSIyJXV1RsbFyqi22d2zg4fJAZFTNoD7eTtbOEPCEePv9hqoPV+Fw+7j33XoLuIL2xXm5757axYwEyZoZYJobP5SPkDolxEgqPXPAIn1/7OY9c8AgKClnTgE/WOlFc68AYFeOxBc9LbfTOa6T2urRRAPAnd8nzxFEBxbpfQPmOqwQ0D20X861P10mb+9ZIm7nnrkL5gw+0QqJd4r68TtX++0uFNfdVilP4x7dB0vE1MTMCom1LwHOu/tm2ZTxSOEF+38y0gGMzDcFq2ZYrqQpWCdgdbRM38ZKpjgGZnQfWti0gPBf9ZSMS8ZITxAUcjqnB1vL1VpEj0LNNXL5zdeGBKujbJSy2mZbGiibLdQdq4JTr85MBmbBsr5kvjzvXifw70Sv11poXKk8Rtjp8GAY+cOq7VQHYzXfDnl/L66pGiPWILL2gDuJHYFyVSM6CQccPpU2k2JqWz9QcGJCxzdCQdOR+v8jjciy0zycM9RtvyCBjwQKYPFnGPccy2fPmSbvXXJNXAPb0yFhoxgxpt7xcHm+4IV/XZhhwqI35jVWsXr2FxsZaFi+exqpVzSgKrFrVzOLF0xwH8TTr1rWyceM+1qxpIZOxiMUyJJNZlizZTCSSxrZtfvjDGzh69DCZzJmcccY4FAWH3Z5GU1Mtn346yK5dXaxd20IymaWtbZi//OWPnHXWIgzDM7ZvWYWPZ3a+RJm/mLqiCm497yc0FFVzYKCd9pFeNFXj3nf+SNATpC82zHXN38Kjyb34w9MuHgPjKgojicgYQP/JnEsBuOPNp9j8aQsBt48fnnYxc8edNAbAn9r+IvFMiiubLmEkGeXHzrFXzrlUyiwLK9BV5YsAGYRES7RA6sNjxvE9gOYQb0NCiKEcw0jfAlq1eCylPhJAjiJq1uo/yrg+hweqHgT3JL6M4vp/+fKlW/j/HxcrJkBYKxZm2jdfaiiUAllnjsgjuhMg/wvQHXZZDQrjnHMKNzqg66JjAueXQdWjYttvxR2Z+UNyo2EKU26FRZ7iawRsxwytHLIDhF1n0dLeQXkgQH0oxO6eHsoDAYq9XsoDAf6ydy9b2tt59MILiaTT6KqKW9NQFYWqe+/lGyecwKMXXohp27zX3s53//Y3/njppTTV1WGYJkG3m7aREda2tLDCcRX36TpHIxHWv/ce6889F7/LhaooY5nXqWyWgMuFpij40mnULVukwygqksdEQmZoV6+WDqa1VeqTJkyQ5zNnSueQA9e6no/oSiSkI4nHpSP1+6WzydVtG4bM4D7wgKBlVWXMZXxgAN56S4B5YyMkk2T2HWB/9Rm0dyhjSvVMJo9DNc1RiToKuq1bhSzPxUyqqvRz5eX50yuKMODl5XkD9JUr5XKy2XySmNstlxQKOV8zx+vkWPPRhgYIBU20XL00CHBWFQHZHb0Cgl1OrWxbh7x2OxK8nCN4bsmZmdVVyj5tHfkYL1WFVDrfptedj/rKtWnbeWOVWAI8bgwVYh0d7HviCU5dtYpdq1d/IZYrF6X1f9on3t3NvieeYPrVV+MuLmb3XXcx7aqrSPT2UnrSSey6886x/U+95RZUl4sdx8R/5dqcdtVVaF4vZjKJ6nbz8SOP0PXPf3LZli2oRgrFcc4GBFQvulxqr0srBHBmUiL//splApIHeoXNvfBbIvd+8DYBod/7uZiPbf6ztNH2iTDc534d3nwBvvczMSarmwi6zvjpJ/Hif/6RWbNPIXzgMybOW8BLv/st8849j00P3MPXbl3DX6/+Duf8fAWlJ53Kmttv4/kX/w62xfXXLuGb3/gGHPkcjpsuIH7znwVAjwzmY7wmHi8xX3u2CbifeIJMjJhZAdL93fnj3B6JJQsPiUs5dn5f3SXv9ZVnx1zTTY8HW3cxVrvpDKAVwDINej99l9IJp+AOFGEkIwwc3E7ZxFPIplP4S2rAtjAzKRSnxk1RFMmGBsx0HFV3kwwPcHTXC2PRXjhmZ5lkGH9RDUOH36fy+GY03e1EXJmYRhrN5UFRNJS0DLgVhxe33n4N9ezzj4lyM7D7elCqaqQOetsW1HMvQnG5BBS7PSguN3Y8CqkU1tZ3UBecjVJcgvnSc9j79qBMm4U653TsRExcxDVNZOXOPaEAtqo5dd+MOdgyMkw8GKQ7VMQdCPt8uXNL7kGk2ToiB78LAcq9iAx8jrMNxOE7N/RSne0hRBKeW5c4Zt8ipD4762xTEAn6euDXSL11HGHM1UwWPhuiZfUWzrvvPOL9cd676z0WrFpAQVUBqNC1vYtQXYhIZ2TssbapFpfPhZW1ePmql6mfX0/9/Ho8IQ9GwqBlTQsLbl5A8eRiXvrxS+zbuI9pi6dx8ZMXM3RgiFhvjFBtiJa1LSxYuYBIZ4SRthHq59fTuq5VnMv740Q6I9ScUzOWV60pGu/3vM/JVScLEFfdRA0pLfio7yMaaxvRVR3TMollYnzc/zHji8ZT7i/Hp/tIZpNs79pOfaiejkgHVcEqagpq2N2zm4uevYi+5X24NTeGZbCjawd1oTomFE/g6MhRJhRPIGWmiKQilAfKx67Hq4AWP4SybzWceJMAXc0Pii1GZe0boWExzLhd3LtTA8LefnybOHzrIXme2+/464Vx9tcJmJ62CjzlwnafcIPUZgcnSi31p/d+sf1XTpTnjU8IWM9tm/sHYZpzcVzgxGj55TcgHXEk2rnOz8jXkeaiuHCYaNsWgG6bwjRblvxGHOsGbqbkPLEuAd+aR47POOfJOatHjork27ZE0u0vB8P5Nqua1FWf+aD0YUYChvYK24wtrHZBrdSRhw+LGdnC9U5Gdo4fMyExAO3vwKSLZJXL78ja3c7EgSGMdkEthCZA5BBsXwNNK4XJN6LQehvMvBE8DdIXhsMCslMpGZ84Tt1MmSJgOufsXV0twHrhQrjkEhnjFBbKWCYel5n8++/PT05s3y6GruPHCynQ2Ajf/77se9NNMis/aZKQB11d4pia88ywLCEp7r2XzlvWMZRWmTy5hGzWQtdVDh8e4ejRMI2NtWQy8lvV2xtj3bpWbrmlGa9XJxpNU1sb4i9/2cfCheN4+OENbN36KlOmXM/tty+iujrIhAmV7Nr1MTU1Nei6SlNTE2VlF/PAAz+lrMxPNJrm/PMbueeeBzj77PPQNAXTtHH5bEzLRFM1TNtiNBmhwBOgJzLInz94nV+c9UMsbFRFJZ012Nt7kMpgCT6XG6/LO+YEnjLSBD1+bGx0VUdTVD7s3k+xv5A/7HqFZadfQcDtxbahM9zP09tf5N8aL6Y8UELA7SVrmWiqSiKTEh5Cd2FYWYq9OqrR5iQB/UKSgnynyjjeP18k3T3fFYDsny/jdNUHZh8Yg07ajw24hIgzB8GOwdAD4tOkKIAGvdeDbzoEzhMMke0H99T/ruj4/+jyZRTXl8v/ebGSkDkgtRR2QmQbmTaRZyt+uSmS20X+7apDtG8JCYh31cgNWrLckZQ3OgD8FpGW21lxEDTa5YY0R0Q6ougCxHORXLkCK9sW0G6FQS0kYZeQMLJs7+pidnU1A4nEWE71BCdT2LAsfJpG3DBIZrN8NjjIvPp6uqNRagoKSJsmI8kkxV4vI6kUqWyWYq8Xt6bh1nV6YzHeaGtjR1cXD50v+YbHrrtl4UIqAwEM06QnFqM7GmVOXR26qhLMZlEikfxnmQt/zmSExb77bpF4Dw2Je5iiODPmpjz29wsozwVENzQIfZyThHs8sk9hoXRGDQ0y63vSSfn4rRwKjscFsNu2WHqfdBIxfwX/atEoL4d7783HUx4+LH3kLbeIQitXV50rWz54UJjp9evltW3L5cXj+fSNzk7pTydOlLeVSMjbr6mR49atYyxFIxTKG6KVluZjuhUF3LqJVzdRMsYXgW/GgOGIOHznWOZd+2D6ZGGr0xl5zIHj3OvRqDDf42pk//Jiee52iSx8YETW5XKvj32ddMB3fZUA+kOdGOPl3LYpEUyxzk72PfEE0666Cn91NYqmYaXTZGIxvEVFKLo+BrSnX301gbq6seNVTcNyALyq61iWJW0eu7/jKpdbd+KPf4y3rAzd6xUzvuFhvCUlqJpGrLOTT3/zG+befhtKX5cA5UWXS73y9d8WoPztfxcp+H8Fyldcm8+kPm0hfGeJMNcXflvA+O8fyG/76nfljzYyKKzv8AA8eKuz7fuMnzOfF793MbOW3QrPP8U///43bj84SCxQxNxZM/nn66+ydlotC86/gNLlq/nVL1Zw67e/zhE9yLyzz+HVKy9jZs8B2LBR2PGCIggUiBzdtkUS7fUL4B8ZEPMzBRm4RkbgwMdw8oL8gHiwTwB2UWlewfDnx6FhkrD2hz6FR1dD4xnwzaswXS7S8VEGD+2kfHLjmIP3QNsOyiaeRmKki8RIN7UzzqHr47cI9+yXSK0Z52KbxljGtaLq4qytqqhOTFyue1WAxEg3vqIqAEwjhe72gaIQH+omkwoTqpiEZRpoDhh3+QKoqguX7pXPPzIqOdfzzoRgEEXThZkOhmQArLsFetsWiqphqxqKmR0DyVbHEZTCIuzwKNazT6NMm4V20WUS7aVqYlRmmZKDHY2gVNXKZx8I5vOyDQOl2PlcDWMs9svweBkOBLEUhV6kXvoh8uxzMSLbrkNk3qbzmexA4rZKESBeh4DimQhjXYgA7Iizfp3TtuKsq0Tk4jawFzgVgRs2eXCuAfFYmvcd8Lvk0yW8c9s77Nu4j2+//G0K6wrZsmYLc5fPJT4Qx1/mZ9t92zj/kfPH3MRTIymMhIHu0Xnntnc4/+HzefXaV8fA9IWPXUikI8KW1VtovqWZwoZCXr7qZeYun8vWe7eO7Xf+w+eTHEqOnX/Jp0sYbhsmUB6g8KRCIkaESDpCyBMi5A5xcOQgXZEu6kP1dEW7mF8/HxubgfgAhd5CvLpMPVi2JU7AqmsskqsiUEF/vJ8yfxn3bbuP20+/nXJ/OUteXcJTFz/F4ZHDdEQ6xuq5KwIy4dsebqc93E5TXRO6orO1cyun1ZxGscuFNrRN2GozDR3Pw+BWmLlWgPCn6wQgBycI6FQ98iMfOySy8eLZwjLn9kt0SE12wBkrKIocB+IWHhgH7lIY2Z0H4NNvAXeZAPBpq6ROOxvLbys4Pp9JLT+8eWMzK5Mf2FsZZzI1nQfUZlIk46HxoniJdQpgVl0CjgsnyLGZaD5iy7bk2tOj8lrz/PfjQuPkG2kkRKptZvIgGuT8tvlFUG07BmndrcLOJ3okpisTc3LC09CySgC5mYbe7ZJpXTTByc1eK3Fb/kpxJw/Wwu4H4PT7nFp2t1zn0beEZa9ulGv1V0r5XtaSmfNbboE77ySl63zrkkv45NAhfGVlVFRU8Oh3v8vkG27g3049lfcOH8bndhMMBtlw7bWc9sorYyD812ecwUPDw+heL6pts/2f/8SbqznLZGTWPZUSWVx1tcje3nsPnngiP0basUPGP3V1MrYKhbAVBTNUSNLSaGlpp74+xPjxRXR1RYnFMgSDboqLvbjdGpqmYlk2qiqz+MlkFpdLJZXKcv751/LRR2/x7LMvsmjRDAYG4hQX+/j5z6+mpqaeb33rWg4f3sfVV3+XTZu2UVERIpUy+OCDraxa9TO2bdsLKAQCLlGy75j9AAEAAElEQVSV6DYpO8VgbJSAx0uBJ8De3jYqg6VUhUrpjQzSFxumIljC09tf5PunXshIMkqxL8RIMsKsmimMJKNEU3F+t+tlrmy6BK/LTZm/iKxtoSoKSSONgoLP5WFP934ml9Xjc3lRFYUPuz9nSvk4h69Q8LjcTiqA/EZ4NYUCt4KCIT5JWjEoXjExHlotzLTiFzwwtEaYaNc4YbK1ChnTD62HirtFNo5bykDVoADtsfjeiWOxugLiuyGwUOLe/gcsX4LrL5f/82LFoOfHIvOueV4k4HbaYaNrxfGvZLnIuO24Ewa/QrLs+pc7+XeLofIRuUGtqPPj3AlqQOo0tMI8u+0aD4ktIjFRi44B7w3OzfgZDK0jU/4EQ2mVcDpNyOMhmclQEQwSy2QwbZuP+/qoKSgYy8D26jqtHR00FBZS5vcTy2Qo9nrHarLXbNnCquZmJhYV0RuLURkMcnh0lNVbtrBi3jyqgkH8LhcdkcjYupqCArqjUfrjcebU1ZG1rDFmHCBoGCj79wuSvPlmKWhevlxQrM8noHlgQHTXR458MS+yvl6Qbo4pzXUi27bxBTRcXi6FzMuX59uKx7+YBzlxoswU9/bm676TSZIJi3hRLUuWKGzcKGVUjz0mCqyNG78YV7lihQDjYBCuvFKUX/PnyylWrBBF11VXMdbO9deLxPzY4ysr5TL/67FTpkibTzwhwP3YNmNhk9qyjNQ654Du5AZhoHOsc25p68hvq6uCzt78MXWVUrM9rsapPdP/f2Ouve4vgu1J9WBkv8Bcn/Bv/4aroEAyrEFqXi2LoQ8/pGTaNABUl0tAimliZbOomoai62TjcVS3GzOTQfN6UWybbDLJRw8+yElLl6Ln1Ak4QDxX26oomOk0msvFjl/9Ks+I33Ybiq6jAqpioxwLhr/7M4nfuuBbUFb534GyaYp52Bhz/W3ZL5uVAZ2qSrTW5j/LtlBxfjZE1YRdfuVZ57gqxk+ZyotP/JpZtZUCaHPHub2kPT6qxo1j5/IrmfzDJRScOJMPW95lYn0d6C4u/+GPWDTnNK4stOG71wlw3/xn+ObVEA07bX0LyqrFIdw081na539T8qq9fmFTh/rz7LXHA24fYznoHm/+PV3wrTxIH+7HLCklHhtC9/jIppMESmro3vsPfEVVBMvHo3v85AzhjGREMqmLxTU8l3E9xjrbwvSaZgZVc6FqLmG723ZQPrkJ3e0jGR7AVyj+FBKTBdg2VtYgGRnEX1L9hfh2LAsVBdswRNrtKFbsWEw8H5yIN9swpObc7cmD4mxWKsAzGUglRcZd24D56t9Qm8+WkoB0GqLhPNutaaDp2COD2JGwxHGlRI6iuB1mzjKxEwkUv18AdjxGorRcMrOda9eQuuhypGba66xvJZ9fXYEw0CWIfPsXCLvdhwDpFcAUpG77ToQV/z7CSO8FZiAguwBhsQ8jrHgtUoudO56kQfyYnOvEQIItq7dwwSMXsHnJ5i+A364dXRQ2FFI8sRjTMIn3xfGX+9FcMvs4engU3afnmeuVCygcJ87t0e4o2VSWovFFhNvDYyx4br9QfQhFVYi0CxBftEFk6a8ueZVFv1vE58Ofs651HTfNu4kppVOIZqL4XX4G4gN4dS/98X764n3Mr5+PYUn2dXu4nY5IB/Pq56GgkDEzuDQXQ4khCr2F7OjaQXVBNcV6MVf94CoOHziM1+fFVeDilrtvYWPvRlLPp9j3/j68Pi+WbnHTHTdRMaWCBQ0LuO2W23jur89RGAjhdems/o9fsuic02Foh5NL3SU51Lpf6p/33CjMc6JH1rsKpEbadn4/bEtMySxDJtqT/aB7QC8QWXKiQ+TkekBApm05wFjPm4Jhi6HZ1u/C3D9C+XzIZVXrxwzeMxEBvGZaHlVdZNm5bGrbFEAdrJN9hveLpDo3UWfEBRCnR+H/Yu/Pw+woq/1v+FNVe+rdc9Kd9JA5DEIgBISETIgCMuOErcd4FBUDAiqCgCQIKCTBIKPigMqPo6KYgCA0gTAZSaczQxIIoZN0J+lh99x7HmtXreePtbt3oud5znu91++9fu85D3Vd+6pd97Cqag913997re93+SoLwLlBveOjKb6OBuhuTtvmkgVQ7Wr5aG5tpCAodhS4Bthwo4Lhyhl6ztEc11ZAgXPjIj1P71YVHgtO1H4ev+a/9ldBNgqlExWAiwP5rHrIxdG0XP7KghhcVu/trVs0RDwzrCnI6uYBfjjQURzUC+Nc5sgR3sxkuPjSSzHa2/n5r3/NM+++y4bnnuOFdeu45Lzz8FRW0vzKK9zw9a9zOJmEpib+9qlPsXr1ata9+CKVAwMMrlrFuIcewgoG9Zl0yy16npISnf9EIvqMz+WK85pR73k2q9F8oHvTJO+4rN/Uz4QJmrs6nc7T0xOjoaGclStbWL58MTU1JbzzTh+TJlWwcmULt922gBkzqjFNg66uLk455QRKSycyaVINPp+Fx+Pl5JOX8Y1vnMC9997IoUOH8ft9/OQnD+L1zuSssxrZurWb3/52ObW1k4lGF3D77YuYPr2KlpZO5i9uQKw8PsuLAHtC+6ku5KE+vfFEfvzqb7jqzMspC5RQ5i8lmU1RHawgY+cAocQbwBWXXaH93PzCg5w780xuP+9rJLIp0naW3x4FyD866SMkcxlMw8BreXFch97oENPG1ZN18gguXtODaZi44tIV6SeeCTN38vEYmDDmwV6m4Nc+oJ5mT6OGiXvGF+b+GRi+t9CuW/sFF6rX2zvpKBvdxejVusc1LHwMI/xcgbVZnOv8d97+K3A9xvX67/RqbGyUD7f/TZuTFUnvFuluEknvEsmFRDL7RexBLduH7vPho46XiNhhbRNbp33sYZFct0g+pse5kEg+LpLeo+1zXYWymPaz+9VmZr9Iaofu8xGRWLNIW5UkMhnZ0dMjS559VrqjUYmk05LIZCSaTssHg4MynExKfzwuA4mEdEejsuTZZ2Vrd7c0t7VJXzwu7/T2StPatTKYSEjT2rXC3XdL09q18v7AgOzq7ZVQLHZM+eFwWD4YHDymLBSLyc6eHumORiWRyciugs2eWEz29PVJNhwWaWpS2aCmJpH339f3zc0iu3Zp2a5dIrHYse22bBHZv7/YZscOkVBI2w0O/uc2m5q0LhIR2bfv2DaDgyL9/XrerVvHbMY7hyQW+9dL2b272O2fTzU0pO3++RSj5aN2mptFBgaObRMK/ed9IxGRkRHdH10ei4mkEnlxM1mRWEJk70GReFJkKCyyYbse52yR7j4ty9n6iiX0OJ48tk88qfX2P72SaZFM9tiybE73maz2yWSPtVdol4vFZeNNN8lTJ58sG2+6SdIjI5IcGJCNN90kQ3v3SjaRkPTwsEQPH5aRfftk4003yci+fdK9YYOMfPCB9Lz1lh6/9ZYkBwYkl0jIyAcfaP/33pMP/vAH2XjTTZIaGJBMNCrpkRHp3rBBht5/XzLRqGTCYcklk5IcGJCh995T+21tEjtyRLLRqLjplEh4WOTIQZFfrRDp6hDJpEXiUZHwkEgyIdLZXqxLJ0USMZFYWN/HoyLJuLYNdWldIq71ybi2+fbntH9kWM+VSmh5KiGSTsnUSZPkndYWkVhEpK9bQvs/EOnrFknEZfm3r5fPnneu1sXC8s2vXSWPPfKwSCIuw+0HZEp9nWz9xwatf2+HSCal15xM6Dm/caHuQ0f0ukJdIru3iHR8oPtQp/YNdR7bfvS+f/MTvbd0SqS3S+TwfrWRTo6dI9/VLqlovxzZ+aKkov2St7NiZ9OSTcUk1n903YDYdlbsbFKife2Sig5ItK9DkuFesTNJycRHxM5lJJeOSy6TFDuXkXwuI7H+Dhk8/I7kMknJ5zJi5zJiZ9OSiQ+LnU1LKlI8t51NSS4VVxvpuHS987LkMylxYlFxomFxersl37ZX3ERcnFRS7GefGitzenvEzWTETafETSbETafEScTETSXFzWTEGRoYK3MiYXFjUS0f7Feb4RFxomGxn3tanFhU3GRCnEi4cI4ecTJpcVPJo9pExI1FxUklxU2nJOU4EnZd6RGRfSISEpF1IvJOYd9TKBsuvCIicrBQtq9QHy6U94vIThFpE5F4oSwmIiMi0lt4Hy8cvyIi3YWykIh0ichVIvJIwW5MRFLxjKQjaUmNpCQTzUg6nJZ0JC3ZRFb6dvfJ2qa10renT7LJrKQjaRk+OCzR7mixbnefZGIZGWwblFQ4JamRlCQGEpIOpyUTK9qOhWIyuH9Qhg4OjZWno1oX7Y7Ks0uelb53+yRTuJ5sPCuZeEb6dvdJOB6WJc8ukUe2PCKhWEhCsZAseXaJ7OjZIaFYSPrj/bJu/zoZTg7LQGJAmtua5d3edyWSjkg4HZb9Q/ulJ9YjPbEe2Te4T0KxkCSzSYmkIxLPxKV5b7M8+odHZTg5LPFMXFY9sEpqT64V7kYW3rpQhuJDEs/E5alnnpIJjROkK9IlO3p2yEV3XiT94X6JpCPyzvbNUlFeJolXPysyskvETohkw/rKxUUywyLDO0UibSLZqEh2RCTZLRI7KJKNaFkmrO9T/SLJHpFkSCQbE0kP6CsXK7SNiaR6i8eZEZGhnSIbm7TPyC59P7JLj7ubtX8+J5K3iy87K5LPiuSSWhfvERluE3FskdSwiJ0utCkcZxMiwx+IZOPH2snb2jaX1L55W+3mc1pmZ4rnyNvH2snGtG02LhIPifTtEHmxSaT/HZFEn8hP0eNsrFjXt0MkE9XXwG4tC20VaW/WPgO7ijbam9XuaLv+d0TSYbXR3izSv6uwf6doe+cjIsP7tDy0VcvDg/86tzh6XrFrl8j+/bL9ySdlajBYHPQLc47Bd98Vj8cj9pVXiuzZIwvnzZP1Tz2lg/2+fTrX2bGjOO955BG1/847RfvxuLaPxY5tG48X2+3YIW4oJJlIXAYGErJ//5CEw2lpalorhw+HpalprcDd0tS0VkKhmGzd2j1W1tzcJrt398q6dfslEklLJJKWoaGkhEIxWbLkWdmxo0ceeWSLNDWtlVgsIz09Mdmxo0eamtbKnj19kkhkJBxOS39/XNat2y/btnXLgQNDRVsjcYmmE/JB/2G55YWH5f2+Dnmr/W0ZSUblyEivtPUfkVgmKW2F+rb+wxLPJOWt9relPz4ibQOH5fbmn8lAfEQG42EZjI9I50ivvNd7UG554WGZff8X5JYXHpaRZFSS2ZREU3EZSUblrfa3pa3/iBwZCckH/Yflrfa3x67hg/7Dksym5ZYXHpaD/ft03p6PiWT2iQw/onP0fETEHhGxh7QuvaeIC2LrtF1mn7bLfKB1qa3a9+i67iXaJx8TSb9dsLFH65zY/ybg8n9+A7rl/wGn/h8Hyv/fvD4E1/+bNyerQDgf1T9EPqrH9qCC3fQekXyyAMILwHoMkO8WyfUU3u8oAOp3jvpTNusfL72jALJDaj8X0j+sPah/uqMBfuaARNNpaW5rk8Ph8Bh43t3XJ+FUSq567jkJxWISy2RkKJmUeCYjA4mEHBgaknA6LbFMRq567jn5+datEk6lZHdfnzStXSu7+/rk7VBI1u3fL5F0Wt7p7ZUlzz4roVhMQrGYhFMp2VNouzMUkke2bJElzz4rsUxGIum0rNu/X365bZtEMxkJp9NiJ5PijiLVPXt0oPnPUGskUkS0o8j0PwPmkYhIIlEcrHbvLtrcs0f7DAwcO6Bt26b2Rkb+Be2mwmkJh13p6VHz4bB27e8vnmr0snbu1LpEQtsdDcL37BGJRrVseFjfRyI61o1exmib0XFxtO/u3SLr1mm7AweObR+Pi+Sz+SLQHX0dDXIz2WMBbzIlkskUQXTuKJA8CpqHwgrAc0fZHQXQQ2Ftk7P1/dEAPJ0p2inYt1NpSQ4MSKS9fQwcd7e2ygd/+EMREA8NSTYWOwaED+7eLRtvukmysZhk43HJJZOSHh6W1ODgMe0i7e0SbmuTTCQyBqaz8fjYcapgOxOLSbKvT9IjIxI7fFjSw8OSSybFTSYUQL7+vALQTEpBb2RYQWVkWIFuNCzS3yMSHRFJJY8F06kCmI2FFcBGw1q/Z6sC1N1bdJ+IiYwMjtleeuVnpLGuTizTlAk142XmjBkiybhc/dWvyInHHy8zZ8yQL192kYQ7DmifdFKGOg/L5ZdcLLNOPEFmnXSSPPbQgwp00yl9pRIiI6PnLiwYHD6goDiV1FcsIvLudr2eUSAej42Be4lH1FZft8hQf7HP7i0iXUfdTyop0nlQ8oMhifa1SzIckkx8RFLRATmy80VJhvskm4zKkZ0vyp7mn0q0r0Ny6bik48MKgtMJse2spKL90vn2S5JLxyVvZxVAZ1OSDPcVy3MZyaXiEutvFzuTFDublq53XpZcOi52NlUA8h1j9o4G2046LU48pqA5lRQnmRRnsF8Bd0+Xvo+EFTyPgt9nnxInFhGnr2fsvZtKjoFwJxougPSEOAVA7gwNqL2otnXiMQXOyYS4o8B6aGAM2LuJeMFetzhDAxJz8hIXkQER2V/YD4vIEhHpFJEdItIsIrtEpKlwHBYF302iAHn3UXU9oqA8JCJDUgTPSwptR+28IwqydxSOdxXsjh7vFpFMKiexUEyi3VHpfae3CJjjGRk6MCSJwYQC4XB6DPimI2lZ27RW7uZuWdu0VlIjKW07kJBMLCPd27pl/7r9kolnJDmYlKEDQwrco2mJhWKyf91+SQxq26GDQxLpikhyKCmZWEYy8Yz07umVof167kR/QpKZpIykRqQ72i1Lnl0iO3t2yo6eHfLB4AcSTocllokpkE6FpT+uYDeWiUk4FZa2wbax+pHUiFz13FWyo2eHxDIxGUoOSSgWklgmJoOJQelP9MtgYlDWv7VeGiY1SNPaJtnTt0dimZh0R7tla9tW8Xg88l7ve9Lc1iwjqREJxULy5sFXJJ8OS3l5mRzau1GkZ51IZkhkZLfIpiWSHm6XT112oRx/3EyZfeosOf8T58qBd7eIZCNy1VeWyPHHzZDZp86SBfPnyrbmB0WGd4lkI7Lstu/LKScdJ6cdVyWnzT5F/vyb+wqgebdI9KAC51SvAs9sWMF6qgDIsyMK6qMHRQa3KfgdA7UJBbtHH6eGFeDamX8FwHZGQfPwByLdLbq3s0f1S/wT+E4UQHlOJDUs6XhEPnX5ZXr/s0+V88/7uBzYuEYkNSxXfeXLcvzMqTL71FNkwdzTZdsD5xcBdXpE5MUmeb/lOSkpKZHvXnF8sS4T0deLTcWy5IAC56PLQlsUKB9dlhosAvKj96P1Q+8rIE8OFsv3rzt24E8k/nU+Ew7Ll6dOle/Av6yk33HttXLFxRfranw8LtVVVbLizjtlwZw58tHqanlkxYp/nff8Z/Ol0UnGP5f/U998JCrhcEpCoZhEIml5551e6e+Pj4HhXbt6JR7PjLVZsuRZGRhISHNzm3R1RWTnzh5Zt26/RKMZiUYzMjCQkP7+uPT1xWX37l4JhWKyb9/gPwHzvjHQvmtX79h5mpvbZMeOHklmUhJNJ44BwtF0QmLphKx551XpHAnJSDJ6TH3HULe8GzogQ4mwtHS8I5FU/BjwPRgfOQYstw0cllQ2I4lMSkF4IizJbEpi6YQkMylp6XhH9oba5a32t+W90EE5MhKSeCYpg/ERCUV6xM2FdK7d3SSS3qlz+nykMJdfMjYPl+FfFuvsEZHubxbm8JHCHP6VAiAfKDrl8nGR1E5ta/cV69K7RZzU/y7U8n98+6/A9Ydh4R9uGsqU+6DAt7gVvCcU+BdHcSdSrRCcjxIJsyp+NhruUXM3HDr5/z4UxBlW2f+ShRpKMrwaJjyoKuLD9ymn42gxtLrfksz7OBgOs7IgNrapq4tNXV386tJLAfCYJvFcjt19fdSXl/PTQnj46Fbi8ZDK50lks9SXl+OKHCNMNpxKMT4YxGuaHAqH6YzFmDdpEl7T1JBGw+A7L7/MyvPOYzCVYvVRAmeWYZBzHKpcV+VE8nlV+8rnVTa7sVEFN1as0NDuqVM1dNN1Nbx2lHR88KCGX912m8ZkJxLKrw4Gi21Gc9R6vcW8j4ODyq/OZpWLPXmyhlBB8bx33EFiyskk0hbf/a6Gc/f3ayaL0Sj23l5NjzVKf8pkVIhsVCNtZATGjdOyTEYjbUfNj4aRW9ZYVCr9/SqePiqels9rfTisIuezZml0l2FoZPutt8Jvfl3gXI9+cYdDMKORsRylgn62Xq/yqrv6VNF7NG+146oAmjFmoRhP6x71bBsVPzONgvK4VbQx2kzcotobQCaHLS6JUM8xPGvT48FOJDS82zRV2AlIHsXHTvX1UVpfT7C+Xh+0hqHhtiJjvO1RTrYUuNdONksuFsNXUUEuHsdfVUWqt3fMZtmkSTi5HG42i+n1Yvp8eHxejIEQxmgodm1d4XcY1S/BX6Jc5ZEBFfca5fyHhzSdUnmVhlt7vEWRn1GhPMeBRBTKKgplpoYdH/oAqmqUfx2Pwvtvw6E2+LfroON9mHaifqimR/vlbe0zbgKMn1i8nupaDdNuWlrkT7/8lzGhMeyc8q5HRcbsHERHCn2u0WsbDfMur1QRt9GQ74pxUDVORdyyWW33yc+pOFpZpQqzLblBw+59PnLpKHY6QbC6HieX4cDG31MxcSb1sz5OPptk8OA2Gk69ADev4d6GoRxqT4GfnUtHqWr4CGAg4mIYJuI62Jk4YDDUsZ26kz6Gk0sx2K7cbnG13Si32xfU0OLkSIhcOkJl3fH6s7RzeFIZJBbDnDwVMHC7DmGUV0JlFe7Lz2MuOFfTivV2axi342jaLNC82KaJ4eQ1NRnF37s4eQwM3FAXRl0Dhk95pAKa2su0MFxn7BjLg4gLkZFiyDgC8RiZ6hoO+nx0GcZYWPYyiim5bgRuBh5AFb2bgMdQdfE1wD40xdZo3d2oQvgwxRDvOuBZ4JP/1PYXwHVHHT8OLD3q+LeJLF5H/+jNS5vHwsAve/wyDNMAE/LpvIqaTa6gekY1iIaAb1yxkUXLFlE6QXNYi4iGiBeeM27exbEdvEEvkheSQ0l8pT68QS/5bB4pnDeXyBGoDtCztYfKqZWUTShTgrgLBKEj0UFnrJO5jXPpinZRGahkXMk4PKYHV1xMwyRpJwlYAY5Ej/Dwlod58MIHMQ19Zrniano3wySei3Pb67fx80t+zg3rbuAn5/8E0zCxDIveRC8rW1aSeDrB5ImT+ckDPyFtp0naSWqCNaz40Qr2vreXP639EwYGm7o2MbF0IieNm8qf/uNpfvaLX/HO9k0YY+QFATdHJufy5ptvcvGF52OMbOPnf9nFM8+/zIbXX+SF5te45MJz8RgOzc3N3HDrPRxu2wWYRMLDVFVVgJOmZyDJSafMpuPBPDWzCoJlox+SYSq321upfOZ8CuyYpvca5REbfs0fnR6CkhrlSUcPFY/LGjQMvGqmPlOiHcW68snKZ85nj+JNe4piZIlQcZ8eUlXwMY51A5mc8OZrL3PxJRdjJHv5+e+beeavz7Hh73/nhad/yyWLTsZTN4fmF/7GDTf9gMO/XAzz7oDKGdjZFJ+46FNMmTKZ2govD19ua13FNL236Kj42B1FJfLwB6oUPm+ZphKbcIbmu966AuYuKwigtUOyT8PeE9263zZqZxokByA4AWKHtN/ih8EqV1XSSKSY5uOoecXKZ5/lxeee443jjiP46KOqKbNiBX889VTu+V//i7eeeoqJJ54I+TwVU6fyhSuv5FfpNOFnnuFjU6bwk+9/n8taWpTPPX26jjXt7cX50pQpxRRcDQ06R7rjDhU/6+gYmzNJfT09SQszWEJJiQfLMkmllGudz7vKfzYNWlu7mDAhyPTp1WNlIkJfXwLTNKitLcWyDGzbZcuWbiZOLKW+vpxg0KsCZV6TeDxLLJajoaGc6657iWef3UdHx3e48cb1rFmzlyVLTuWRRy7CNA38pZB3XXpjQ/xu6/N88+zP0FBRy+7Qfo6rmUzQF2AkFSWWSfL7HS+N1bui1+wWMNm9r/2W9W2bufDE+dz5yW/iiIZ45xwbyzCxTBMR6IkO8Nutz/ONeZ9mIDHCxLJx1FXUkHfzDCYihbLxDCZHOK3hBM1YambxDlyr8/TGZqVsDj8EEx9UsbL8MHjqCloIpuosgVI/yR/F1S4BbJAc5PuKnG27u0D1nKblbkQFzT7kXP//9/YhuP7fvI3yruNroHwJ1PxSeVT2q2Bvg7rHABNswHbBzIJjgLMNSqaCNR4Sb4M1T/lJ+QwYETBqGVOzdPPgtWHkJog/BdM/gNRBcCeosii1kN8EJZPBO5VYzuGbL73Jmr17aZo1i7s/9jGyjsO0ykr6kknKfSpMknddlr/5Jt87+2ymVFayraeH+rIyThg/nrbhYfoSCU6vr6c3Hmd1ayvLFi0i6PWSsm26I0nm1U3F6xVy5JDC1YYzGapLSghYFo4I169bx/fOWsjU8vFs7TvCpKpSQvE4F9XVYXR0FNW/fD4FxKPqXzU1CgrTaQXBkyYpKN61S3nRo0B7FNC1t2tuq4cfVgDd1aVIdTTll89XlOnevl0VNG1bX4GC6NGoZLdlkRY/kYQHy3Tx+x38fot/vGVx8CCcd54C3Q/2OXzsHAfHtchkLVIpHdNWrSoKoMXjeks1NZqecpR3/Ytf6Kl8XgfTcOgJWQwOWfz0p9q3p0f1SXp6FP/X1GjqynnzFHDPng2D/Q5lRgYHwbV0AcI0TawjfcqjDvhw8g6uk8dMZcHrwfVamKaF5fGo4NmowFlZgX8aS0BFWZFva+dxcHEzOYyADxHB9HiwLEtFzHK2pvsCyOVxTEPPl0zj+rxsvefHRa7znXcqMDcM3FwOA/D6vIhpkbdtBdEFoGwaBh6/D9d1yY0MYwZLMfwBTMsqqBsLrgiuK2AYmIaBZRpIPo9rmggG23/8Yw43NzPloos49YYbcHM5gnV1Y2JmJ19zDdVTJ2PkHVXDdgp8vq52mDSzoDRfUNZq3wvVE1SwLJdRQD3UD6+sKXKc1z8DV16tKymGwZiMe2xE01gd3g+N0xSYj3KcL/y8cq19PgXSXp8ubORzCuYcW+2kEkhFFcSjmsrJNMHy6oKHuPDHowTWvnAteL1I3h5T3DVSKXjh96oY/pPfa/qw99+Gznbkc1/Xew8EMVwHkjEIlisYbH9fAXUsgjH9BF0IGFcLldUKrj1ektF+SsrHI3YO0+cnFRvCW1KGN6ATAaMgoObYWfLZlIqfzTwLO5MkWFWHQAGEb1UQbacZPLiN2uPmYqcTHNnxHMd/7GvYiTBebwm2naZkXAOh994g2tvG1DM/g7ekjKH2HTSc/HEM1yUZ7cMKlOHzBDB6Q8jEBhyfDzCwDAMzn1Ng/N47SNdhzIs+DdEIkkpiTppSXPUqaAOQShbzYYvgvrYOPv5JHAwsnw/LdRA7p6rj5RW4LW9iLvoEeH24Pj+O5QHLwio8J10RHNvG8nlx0inildXscGzmOzk2Wz4+4/FxBQp8g/kcOLb+5nFpsQLUenxMR4XOVgO/yOfAydFq+Zjo8VFXGJ5uAebnc1zs5KiwfAx5fJSjoDuUz7HAyeGxfHzg8fET4A409dfBgt3bgONTOZIHRo7hQC9evpiy+jI8JR4iHQqi5988n9RwisZzp5EzDHwG2CkbynwYyRzp7hjRI1Ea5zbiCXgIHw4T61RVcdNj8vINL7Pg1gVUnFBDZChFid/CW+LBLfHihjP07+pjwsLJWNk86a4YG+/dyKI7FlF2cg2SN3GzsKX3H8xu+AiDqUFWb1rN6gtW47f85Jwcu3re56y6hYhh4yGA5cmzKbSBxvJGgt4gJWYFQbN6bGjx+QTHzCAiJHIJvAQZSST5/o+uZ+uGVta/uh5PwENdWR298V6uWXkNvS/18uKrL9Lj9jB74mzKfGWICDveauHrV1/LS88+w0dOmYObFywzjcfuIe+fjpO3sDwOnvAm8uWz2fZOB1/6ypdo27MXy0zhie2E8WcxNJKgfupxpF/7DJ7TfggldfqLGt5K22A5Zy6+mPY/nc+ERfeS9zbiOB6sSCuesonkS2bi2AaWz8IjUcgndf4wvB3qPqF8bBEFkuWT1K64xeN8lpzlJycuPtOLT5wxIJ0zLHKujc/04bM8astOHsvZHt0nuhXkRjsgPUKuaiY5T4najHdCepAdH/Ry5Te+z+H2g9ov0Q2l9Qx1fUD9SQtJR/rwuFkY2s0PH3+d2tqJjPR3EUnaPPzg/eiqiwmRTtVRCNYClj5PMyOqBp6Lah7rMVHYvD5TsYqiaFKwYyc0Z3iqT/njdgqCNYV/mal9cyYkU7rQf7SQWEEf5qc//zlPP/MMr7/4IlWlpToxME3+8tJL3LFqFW/87W9MaWzU1fhlyzhl82Ye/elP+cTkybByJbcEg/hrarh3+XI9bToNe/boXAZ0bO3pgTvv1HRdzzyjabxGHQ1QFHFtbcU9+2zED4ZhkXNMNm7q5ZRTJhAMekkkctx22+vcfPN8yst9VFVYZBIp/MESPP4ApmmQStnccstr3HLLAqrKTSbWeMnkLYIlXixsuvsy+AIlDA6mWL16E/fffwGBgIehoRRlZT5CoTirV7fy8MMXMjCQZOXKFp74/aV0hweoLR2HJV48XoN3+z9gXLCKqpJyfrrhD1w979PUlFVhYBDPpijxaorAZC7N+NIqsvkcg4kwf9y5jhsXfRm/ESBv5BhJRxlKjXDqhBNx8oLpMVj199/y0r4WLjxxPv9+5qX8YcdL/PCCq8eyOZiGSd518OLFtgXLA35fHk++A2N4heol9d+oAmWGH9LbsX1nYFOO17TxOh3KrQ4Wcjvk+8Gq0t9nvr8oWGx4sfNJbPHi9QTxUkgv46Zg4BYYfwv4ji+IoP333z4E1x9u//Xm5iDXBulu8C7SNEjbtsHsU6CisuD18+iqYWengsRRQFlacHt2HIJ771WBrWBQkZsG8KjQ1urVirhmzixMwL1wsF0B5OTJ+kBduBAQsCzEccmaAVJ5C7/XVC+oV2iP9NEdSzN34hQCPhPXMbEKc8hkzsbng2xOKCuxaO3qYm7dFLyWSSJr4xh5AoZf+xUcwlu2GDQ2Cj2+Q8ypq6PUCiCuQdbN4RiargvHKihsGyxbLkyd5mKaAo5JacDBNA2dfI+6akdTebiF+2/ZCKcUPktPwZX77rs6aFiWft5WQT181FXsinoJR0ZgYh1jN+kU8maZRsF+YUXfNHR8NYseXMeBja0Gc08fYeTwTupOOhfDNFRl09Yx2BAX13UR18X06IJFKiV0dVlUVLjU1Jh4PA6GYZC3BVcshoZcSkosysvBYznYmSiDB7dSe9w8Nm0dx+VXWPzteYdzznEYGDAZP85lZMSkvt7FcYWBfovxNS5526S01EEcwXUc3GyW4XffJdjQQPn4WsRjYXgsEl1dvP/EE3x0+XJSfX2k+vupPf10EMEyNW+Ya4BhmkjB4696NIXwHNPETqVUZXN4mFRvL+Nnz8byqxdPCoBeCu8xDNKDg/hKS/H6A8T7eskMDjDx9NMxTBM3b2NYHoyCHLphZ9Wxiv4WDa9+jobrYiSjSM7GCA8iM07S37YIRt7GSCWQYBmu5UVcB8swMHIZ6D6ETDsB8XgxRHBdF9OjStTpcJTg+HHk02mSg0OUTpyAJxDA6Os+Vi08n9ec1y//Rcsqq4ve31z2WGGvR++Ce34DL/wBjpsFJ5x6FGgep97vUTGwi5pURCyT1vajYPgr39Xf4TGptAZh8ky9jnVPI5d8Ub3VpgmWRyeJlkfFtzwevbZMWoG7vwQME4kM427agHn+Jfq5GoZ6uP0lkEmpUFlJKRIZwd34Bubi8zCqCoJzrgumpWrYWQ29MHwFMZXR/42T12solAmAiHqeDVGvrONiWl4VDTMgn0thGpb+XwwTQQXHXNfRDCWWByebIO/Y+PxlmKaHZLSXYFUDRIaPus7xuLiqHm95QfR3bOZdJJPCCJQgHk/hvCY5V/+rPT09VFZUUF1djRTAs+m6uKN5dCmo24+m6SpETphdh7HKypB4DKlrwPH6iUQibGxpYfGiRVR7PUigRJXsczn9bedtpKycSCTCpk2bOP/88/F6vVimieOqp2V0EmcYLpHIQTZtWs0FF9yPx1uqnj/Jg+ti20kSiX4SiV4mTZqHZZUUgL+NYXoJhw/RsvHHLF68nMpxx5P3lugCgmMTjrTTunEFixYvp3rc8eC6iDjYdpLXXruFhQtvo6p6Jo64OKaFx7UxsMhZXrziYDg5cE1SWQursgSP6+IkchjlfgzTIJ/XYyeZo7SxgjSw1TD4qAgDwArDYLkIUxM5KPFguoLr0YUGQdTD5TFxGYNE9BoG5SKUAznDwFuYa/UbBlUi+G0HxzI172wO2tsMVq6A5cuFqTOybAtt4cyJi/BaFiL6c9asDDpm9fcbzJ0rjGrcuaJDaz5vYBjCzp0G8+YJhqHDjONo/yuueIBc7mleeOE1xo2rBENwHZPnnn+aH//4h/zthVeYOmUapmmQzxvYpNjWuo1rl17Fn//8AqefdipGNkvP9h7q5tSpx16EfCaPL+jFsIRwR5Sl372G2rpaLnIuYvHyxVTPrEJch7t/fA/vvf8uzzy+CrNiEq5r8YtHlvHLP75KT08Pv/z5L/lC0xeQvGBYBnbCxgqYY7+1zk1dVDSWUjV9vH7Qtq3PfNMgj4NrubgFISfbzWNhjgk6Obgkc0mWvbGMleetpNRbSsDy4oiQzKfY2r2VKZVTOK5yCq6hC5wuLh7Dg+3aeE0vrmtjmV61Jy4ew+Bg5BArNq5g+eLlzKyaieBy9deuZvy48ax+YDUOLl7DgyMOK350D++/u5e/PfsnMCy2/v15li+/hdc27ORH9z1KJBrn4R9dC3vvhVnLINCgKuueIAQKADsbVcBeOrEg+kbBw5iFXBh81WCV6LHhLTwXRBcMcnFVLB8F1qEtUDMbvCXgWpB1dDF/5UpVKK2uhrIyHvzVr3hqzRpe/8hHqL77bhVmnTSJNRs2sPynP+X1005j6ooVWl6nS2Mrn3iCSH8/qx99lHR/P+d87WvcesklfL6pSed8c+bovCcUgjPOKALoo+eMXV0656ypUSXV229XJ4VhIEEDY3gn1M1FDC9i6fMyncphenwYkifvQLDUD5EDmNtWIgXvv+vkcbFw8g4+LxiGieFkEEsXMI3ezUjNbPCW0tObIVhi4IiHd98b5JyF9biuQzzpUlZiguVjaDBBXa0P07KI5oR0Qp/FwVIvYrjsHdpPY0Utm9rfZf7k05hYOY5kJkvQ50cA15GxdF6mZRTmL5BK6gLArbcuZOq0CkzLIBGzASgv9+E4wnuD+zm+dgo+w4dlaFaSSCZKpb8CwxQcB7Jph127+jjrrAZKgx5KrBBZsw5HGIvsBBkL+NsT2s/xtVMp9Y1mJLAxDRWYHfVbaD/wZjbjBs7iSCTMb7c+z9Vnf5oplbW4+V4sTw2Ok8Rr78ZbukAFjv8HbP8VuDb/7yo+3P5ftJk+MGZCZg607Vc56fp6nUQ7hRE9FtOH5oQJxVzLgQBsaoX2Auhes0YfyLW1Cq7jcV0B7evTh3RXl9pq3ax2a2s173NPD5x6Khw4AN9cCgfbsfvD7G/3MjJkEYsZ9PYaxKMG9aXjqU1NYVurl46DJku/aRCLGXR0GOzc4sPNekmG/Tg5i/rsNFpbLNrbDb57nY+hrpKCPdi/3+Daaw3q6qCkxGB+/XRKKOHgAZPrrzdwMn6CRgmJqEUoZLBihSpur1xhkE5aHGq3iEYE07YxDhxR5WnLozMc29aZzCgYPudjUFWtIc+ZnALoefOhvVuPvR7A0AHJRVWrcwVv9LgaVb3O5LSNndfjrK2A2/IUgDfqxc3kIJqATA7TgsWL8uSzCepmfRwMl+RID3YqguUR7FSUnndfJ59NYHq8YEAuFYZMDzOmjDBhXBKvJ4ebS2Hg4vGC18pQFeihusrGMtI4uQSDB7cS7W1j8OBWzv1Ynv7eHIvPHiEX66a2eoThA69SUx0uhBulqKkeIZ/oJhjMkc+msLMxDNPATiSonTOH0vp6HI9JaniIXDKJWVLCad/9LqZlEayvp3bOHPKpFG/fdx95J08s1MPWu+4i3tVF3raxEwmcfB5xXZxsFjefJzsyQjYaJdXbS2DcON6+7z7sRALJ58kMD+Pk8yQ6O9l2110ku7sJ1tZieDyIx6Jq6hTqPnoGprgYdg7r0AcY2YyC52wGOg9ieH14cbCOHMDIpjH7ezD++ChksxjjaqFqHMYfH9UQ7mwa40+PQS6DcegDzJF+LAOMWFg9FNU1GIf3Ywz1YfzhEax8DmOoF/OPPyMoOQzXwWsZVE6ZjBdXJ0zr1yrQXb8Wsbw6m375L2NlZFKQTSPllQp+t7+l++kfUXBcElRAfPIZxfr1ayGd1N/xaNkra9TW+28r+D7rHOTSf0MMA7LpY22XVSpYLpQZ654G08B55W+qRJ1OFxKg+xDDRDIZnE3/QMwi2HU3voHROBkScZyXnkUiYaRyPJJJ40aj4FXPvMRjGFOmYwTLdJEkPFJoP6zgdGRI01MBEh7GaX4GCQ8j6RTiOkh4CGfdc2DnNDSvswOGhzHcQlj18ABO81qIjOD1BTEphMjnMhiuKnUb0SjSfQTCQxivrsOfczEcF7ezg9LyCRoDYHkwJk/D3bQBiUUwcrYC+fAQTvMzGOERBBcjUILb0wnhYaTzEEZkGAtIp9NMmjSJispKwpEILzY3k8vlGInFeLG5mUgkQi6Xo3ndOlzXJRwO09zcTDgcxp08jXx5JfkpMxhOpoknEmxqbWXKlCmUV1QgZeU4BepMPJslaxhkfX4cx2HTpk2cffbZWJZFV1cXI+EwXV1d2LZNOBymq+sIInlKS+u48MKH8HgCJBO95LNRUokBXDeP319BeXk9kybNJ5UaBlzCI+10draQt1NUV01lypRz2Lz5IQw3jzebIDL8Acl4F60bV7B37xpaNq4AN08k0k5z8zeJx0PMn38TlZVTiIQPsu7Fb5Ac3k935yZGhj/A72SJDu+nuXkpttdDV1UJS02DdsvEqAwQs0zaDYPNXgtvdQn+xgpsw2DYMDgN8BoGKwyDNSjAtst8tHgsDvk8DJgGcdNgv2myyWsRMwz2GwZLDYNDhkE7EDAMMobBMJApLH6kgOsNgw6vxaBlEjMM0rbB/at1fdnvN/AYfk4f9zGGBjzE4wb79xssXWrQ328wbx7U1hqccgrceKOOf/m8QTxm8O1vG4RC4LoGc+dCOm1w/fUGBw8atLQY3H//Q2Szf+bZZ1/jvfeqaW83QSyef34td915Jyef9AZu/jgMPLQfNLlmqUnzX3dy7dKr+N3v/kZNzRxiCRPbtZhw6gSS/Um6WrvIp/NkI1my8RyODb/6y6/pS/Txnc9/h7YX2ti4YiPiwm9+9gT/8ev/YOXNq8h7Z5BJeIj35bju5gfY+MxGfrToR/xk9U/o2NlBZ0sn4YNhQjtDRI/EaF76EuFDERrnNRLrSWKnbMIHw7x4zSuE2yPk8jYRO0I0G8V1XQ6MHOSbL36TD4bbiGSjxHJxvvniNwnFQ9ww9wZ6471s7NxIMp8hko1yy6u3cNrE06gJ1pA3THJunnQ+jYhwMHyQls4WDowc4BvNSzkQPkjOtblu3XWk8llWbFzBmr1rWLFxBbbY/OS+1ezet4ebfngzHwy38c0Xv8mB8EHW/vlp/vrMczz+0+/DtqWkBvZy3Q9+ym/+sA4jOwg9L6o32gqo4rqnVEPVy6ZrDnAnAwgEqhVYJ9o1z3fqsD4zs0PaJxeFxEHY/i1IdmgfAVJHILYHJKH9EoegYT74KxQx2QO6UrNypc7nHngAamvpbmvj5h//mEhXFx9//nnmnHsu8269FVauZMn3v09meJhPvfQSc849lznf+x7D99wDU6dyU38//ek0J590EmeecQYX2zaf/9SnNDSupkbniPfdp3PBaFQpcs8/r2D68cd1bnjllXo9sZhe06pV2jYYwHATUFILG76H4aQxxcHMxSjd/F0CmUMEnCHKPCkMN4u5bSW0rcGId2JE27HeWIon0U7AK5ipXgw3D8k+jJ4WDCcL9fMxUgMYPRtpDPYxLrmNmgqHj5/TgCd+CN/fr2Gc0YU/P4jPzNEQ7MXacANGLobH8CvrIJolEc+BY3DK+I9Q46/h1MAc2nYliEVzjAzkyOddOtojtLR00t4eZunSZg51RIjHciz9ZjP9/Unmzm1kxYqN9PUmcGwhGPRiWeZY+4r0RIJWCeIYxGJZrr9uHZFeGBxIcfhQjK2bewgEPJx1VgNbt/ZwsD1C2phI3gXHdRlJRQlFhsm7wmAiTCqX4biaKQS9AZK5DJ2Rfn786v/i8EgviWwa23Xpigzw41d/w+GRPiLmGeTEw2+3Ps/6ts38dsvz2K6wsy9GZyTKrr5BDmVOwpajaEn/w7cPwfWHm2550WTHDQ1wzjnqfY7FFPDeeKMSahcs0FChOXM0tdS11yog7OqCuXM1VnjZMs1R2NGhQHzCBOUgP/CAPjBBPbbZLLz9tnpmFy5UEL569RhAz1VNYPX9BhMn6sLmXXdBKGRQYvp49EEvp52mk5BzzlGn14QJitNvvNEglQLDUEA8YUJxnFi50qC2Fnw+Y+xU990HNTXCDdcbHDliUFFRXDdobVVQn0goP7ipSZ/9gQBMmGAwqQGMzl4YjmhYsubU0VBjwyyAX1PBNqJhzqM8X9PQ0OVsTo/jSd139mo6qM7efz02AL+32C+TU7DtikYXlJfqwOj1QGevXo5hEqyuB3FJhfvw+Euw00kMOAoUb0McGzsVxbJ8BKvqMAsr9KlwP6bHSz6bAnExLQ/B6np6976JnUni5HPUzDiLyvoTqZ15FoYJPk8COxMnWFWHnU4Q629n8OBW8tkkrmvj9ZcRHNeIuILlK8HjD+LmbfLpNIO7dhE/cgQnkyHZ3Y3l8+Gk00QOHMBOJnFSKdKDgwAcv2QJks+z9/HH6XzlFfY+/ji5aJTMyAhONsvg22+rdxlI9ffT19rK+Nmz2ffkk4w/9VTSg4PsWLECTzCIYZrs/c1vxuw4uRzDe/ZoiPFgn3ok7Zx6YaefhBGPwB8eUQ5v43T446MYkRFomIqRSR8Fdp/R735dAei+/BeMdEo9xF4/zDgZY1yt8heH+pQLHR6EaScoGN3+FqRT8NJRANV14elfYQyEFJh6PMilXxwDungsxF8yVsZFn1fvbkmZhkmPll/yRcTrQ/79O7iBEqS2Hqmu+dd+plEsu/TfkJJSDa2uHId8+TvYFRVkkhFE0PRYZ52jXupEDAIl+v6sc5CLvwAYWJ+4WEPHbVsBcHgY8nkkGlEgHY/irHtOua2XfBZj1hzcLRuRvbtwW97Q78TjxSgtw1n/NySXxZw0FeOkU3H7ejDyedyWN7T9xjfU41VarjmhxS3WtbyBESzVIJPWf2CevRjDtHA7D2GUliOJmPKMDRMqqrDOvwyJxZBYVL26voInPJ+HTFrtlZbhtrxZPLdl6bm7j+iCwsgQ5imnY178aeRwBxS8cXh9mPPP1c8lEccNdWFOmY5RNQ5z6ky9X9dhZGRkzBO9efNmJk+ejMfjYePGjezdu5eNGzdiWRbz58/HMAxaWlrYu3cvLS0tiAjhRBLbttnU2koul+OSSy5hypQpdHd3k8/nSafTRKNRRkZGSCQS+Hw+DMPg0ksvpbKykkwmw5QpU6ioqGDSpEl4vV5aWlqYMGE8tp3AdW3S6RHAwO+vBASfL0gotB0RwestwXGytLTcRy6XoKKigYkTT2P9+huJRDqYPfvLXHzxo0Qih4jHu9myaTW5XJJFi5Yxa1YTixffgevm2VgA262tq6mungkwVtbSspLa2pNpbV2NiEtLy0r27l1D3vSw0jB4AegyDBzDoBTNn30qGkbeWtBPmEjhcYvyxpuA5cDGbJbVn/40F59wAp8+7TQ+d8EF/PDgQWqB67/2Nc494QTWnHYan1i4EHv7djqBrcBTTzzB8aeeSrXHw88ffpg1wErDoArwAOLTQLArr1RHYT5v4PHo4m8wqFIcDzyg6Q69BUdkMAgPPqgpEZcuVQ2NuXN1vDNNzeoYCOh41tgI06Z189BDNxMOR/jkJz/ObbfN4eqr53HoEFx99RIGBzO89NKnOPfcOSxYMIe77hphzRr4zneuJpvNcvPNX2PBgjmce+7p7Otow/JZxHpiTF4wmXgozoa7NpAaSvHwzx7mueefY+2Ta5l+9nQ+/8znWbxsMWvWrmHFqhUsyS3Bn/Zj+TWy4q173sLNuWxcsZHkq0km1kzkd7f/jtLaUlpWteh+ZQt71+ylZWULhmEwecFkTI9JWX0Zl/ziEkonluJ4HDyWph1yxBkDvKtbVxPNRgFYOHkhpb5Sjh9/PBX+ChorGrn2pWvHAHd/sp8b199IIpegM9rJDS/fwOHoYUo8JcxtnMvKlpVqc9NqTMNkxSdWEM6EuX3R7TTNamL54uU8/MDDNP+tmZfXvUwwGGR162rW7F3DNfddw8p77+O1dc8xcfh3MOEc2nvTdHZ18/GLPs200y/l4b+8zxNP/ZWvXnMT7Puphr0PtkA+rsB453chfkC55ojyzc94AFIhTXv67l2Q7oVAjeb+7lyj+3xCvdh7V6r3e7Tu/VWQ7lGQnhmEYD14LZ3HNTUp19nnY9KJJyLd3bT/4x/sampi1z/+wdbVq+GOO7CjUbq2bNHyDRvY9dBDjL/nHigpIXDnnfzHddfx/ltvsbepiR//6U/6g122TPeVleqdHhzU99/7Hrz1lk76vF794V5xhbapqCjOMSvLYaBVufLvPApnfE+jZHpaINUPdXMxtq7Q9GO+Mgw7panOTmyCurnKL29bg7F1paaEi7RrBEDFFE175uaVEpAMQUktRqJL929ejxHt0JD8xnMwLD8EdeHU2H4/nPE9clZlIWhTXcCGYZBO57n+unXE4zlqa0uZN6+R3t44d921Adt2uf/+TZxyygRWrmxhzZq9rFixEdM0WLNmL6tWtXDBBTO47baFlJX5OXw4ytKlzZgmdHfHuPnm+QQCHjo6Ilx77Uv09SWYO7eRlSs3UlMTpKzUx4IFk8lk8txyy2ucdtpEJk8rRzBwxGV3aD8ZO8e4snJ6Y0P8svUZhpIRSrx+co5NIpviia1/Y33bZp7c/iLJXBoDKPH6+OqZlzGcipLMpjCAq866nAtPnM83532GcDrGKXUzqasYz6kNx/Pk9mZyR+vg/A/fPgwL/3DTnILDw8XcybffruHbPT0a6j1/Pnz2s+qNBm13551F8u1jj6l4Ui6nI/qXvgR//KOCaDg2QfLvfqfc4tGQo8FBbZdKFc+/fDm5uimkfJWAcQzP9/HHhUTCYHBQFzBvv10nHG+/rROLXE5xemMj7N8P5QVtjlH6ssej9OfZs3Xxs7ygrfDii8pDnjBBsctNN8F3vqOXdNxxWj4afpdIaN/jZzqY2SzGKN93NGe1CCTTCoJdFw71wPTGIgcSFEyXlYDtKHCeUci7mbOPzcWcPio3s2kWRblAveIAHd2azzmbU/7xqHhawKdc43wOpyDElIkNExzfAKKea82/OxfLW4I4eSxfgHSkl0DFBAAMywuuQyrSh7ekDDudwFtSRnK4m1Q4xIQT5uPxlWrKUDQ8XgTsdJSh9h3UnXTO2M/MziTIZ1OUVE7AziTJZ5MEq+twcllcN4/XV4aTVVBbOmkSHr8fb3m55ob2eMDjGQsdD9TWUj5lCoM7dxIYN459Tz7JrKVLGdi+ncF33uGjy5aR6u0lMzw8FgK+c8UKzli2jGR3N6bXy95f/5oTv/IVSuvrycXjOJnMWD7rzPAwtWecgdcyFUhXVEN/j4Lmo8OpR3NH/3Cpvv+3b2k0gZ3TH17VuEKomxRExoIFUbq+oq2yCljzuIZcx0bg+FP1QxwNxT4m5/O/KQD/xT1w9y+hvArHq3w0w3FwKIqyZSMDlFZMKFAVQAwTx7ExAAujkCfUxnUdPH7NV5wO9xGsrMV0pWDH0NBoAMfRPMuGqd7yQmiwGIKTz+H1BjDFUNEvr19zIaMcdGIR8AX0O+zpxKisQqIR3D//DuPUj2J+8nKNFABIxNUrjIHb+nfNx1xRpee3rEIEpIV7pB1zQj1iGrivr8M8ezGUliP9IQW5m/+Bufh8jMpqFQCbUK+fRSKO2/IG5sKPY4yrQTCUg55MavmiT0B5BYblQUyzmAe6dQPmovMU1aSSyklecC6UFR4ihlkIlxPc117CXPAxqBynodWuiwz2YdTW6efh8+lnI0rtkLyN9IUwGyaruFjjVF0I6OnEKKuA8nJcr4/+4RE2b97MokWLqKysJBwOk0wmqSuEYXq9GqL78ssvc8EFF5BKpdi4cSOLFy+msrIYjmcYBtlsllxOPfWlpaVKPzBNkskkHo8Hs/A7+vvf/84FBbFI0zTJ5/NkMhl8PtUvSCQSVFUFcd0csVgXiUQfFRWNtLSsYsGC2xg//nj9HYlDKjWE11uCaXpxnBxvvnkHn/jEvYg45PNZSkrGYVleOjs3UVt7Mn5/BeHwYRKJEI2Nc7EsH11drQSD49m8+QEWL76DqqqpiAgjIwdpbV3NwoW3UV7eSDzew7hxxzM8vJ8tWx7ik596koxpESl4j1eggHkaCrDbgQY0z/atqHhaxegQiQLtSCbDy2++yacvvphthsE7P/85zz3zDD/esIHBF17gpEsu4UGPh8XNzdx/ww1sP3yYHHDN7t2s8/mYumoVV59xBu/eeCPLgeloDvDtwKKEPiJGI2KXLStKdMyfr2u0kYg+VkZFJY8/Hr75zeL4ePfdutYzfbq237ZNx8WuLu2zbJkGpY2Ok5WVSnmdOFH/7gXNKqZPV73NVauKffx+Hdbfegt+87jgI6s0I1dYd/06Guc28ubIm6z56xq+d+L3OP8H51MxqQJPwMNfnv4LP77vxzz9i6epooq6OXVko1l85T7e3vw2Z59/Nrlkju3rt/OlH3yJl9a+RGWqkvKG8mN48gtvW0jpxFL8lX5ysZz+/voStK5u5fyfnY9VabF/eD99iT4mVUxiZctKli1axoxqFQHLu3m2dG9hcsVkplVNoyfeQyKXoMxXRn15PZs6NzE+OJ5pldO46dWbeOrdp2ia1cTPL/4523q2jdl84IIHGEoPsaplFcsXLaeuvA6/5ednj/yMNU+v4W8v/Y2cL8fE0okcjh7mutXX0fN8D/94dR3TpkxBBdossKOw6zb4yPchMJG777iZSK6ch78YUfA7pQk+cpOKuO29V/N/110IJQ0Kloe3QqAeSuoVQDefoH3m/RZi+2Hfajj5NgXh4d0KrDODEJykAPvk2xS8lx0P1acpfz3WrcJVVoVS1FI9ej5HilQ/j1mgC5pK0cnn9UdleSCX1nHOMnXxP5sBX4lScDxe5S54PFrnMZSflstpnePoeOnz6DiZdzT6yePRqD4RjYDLDiKlVRiWH3Ed9Tr3bYWSCZo3vXKGgmZPiQq2vXE9LL5Pc4D7yjUaoG8blE8t5AqPQKBKwbqdgo23wZm3QNUM7eMthTeug31PKUA//1cqdLdtlYL2quM03D41QMKphPJ68nlhcDBJIpGloaGCv/xlLwsXTmb16laWLVtEd3eMyy77M83N/8YZZ9TjusLgYIpVq1q4447FTJ9exbXXvsRtty1kxoxqIpEMgYCH665bx5o1e9m//wZSKZv772/l/vv1+bx27fts29bD8uWLSafzTJ9eRVdXjBUrNnLrrQsAqG8sxVPqMpQM8+T2F/na3CsYSkaY03AC9xRE1C49aRF3XPANDUu3Mwynojyx9W98be7l1JRW88HAYSaUjRsTS5tUNQG3QDF0EWKZxJhg2zfmfZpxwQoMoLKkHO8oDeu/+fYh5/rD7b/eEgkN+b7rrqNRrAJe12UMyd56q46ygQAcOlTkxEyZAps3w1ln6UNw82ZtNyrOBUUkW1Z2LNh+7DHtAwouCzzWnFXCBx0+uroNGhvV1A9/qM5vw4CWFl3lv+IKePRRnUiMThZ27VJwPXlygdJs6/z41lt1YXSUg7ZypYLzsjKNSkql4JZb4Pvf12f86tV6eaMq2StX6u309+v1PPV7B49RUKseBcGT6yDg1+PuwvHo9p+B5JwNIzEYVwFHetX7XF0BPu+x35Gd14GmW21knDxf/OzneP/IYUpKAkyoncAvf/YzjjMDrHzmKf7jD3/kwMEDPLPmL1x0/jnksymC4xq4+upv0tq6mUDAT1l5OQ+svo+5884mn03hunnlTs88C8sXJBMbHAPUwao6HDuLYXlwHRvL6yefTeEtqcBOx8Y415Y3gOvYDOxvJVjdQLC6keFDO6n7yDnKG8Ygn02SS0bw+EsY6tg5JvoUKJvA4I6djJ89G7PgMZN8nnw6za4HH+Skr32N1OAg1ccfj2FZeEpLiff04PH5CIwbh2FZ5FMpVfE2DAbffht/VZUC72uuoewoZW4AO5kkOzzM3t/8hpOuugpvRQWBceMY3LWL6pNOwhMI4PF4MHAxXBf+8GiRY/yl61Xca8ZJ+n2271UBMb+/yD0ODxYVsUcBeXUtVNfAU0eJdx0Nzv/9u6qm/frz0PRN/e5dRxdS0gkVFfOOTlBUkMypa8QVByefw/L4SEcH8fiDpMI9lNdOx3VtBg9uo/7kcwHGFloM00Jc5xjxLctbgoGBnU2qaNdx8/D4Suh9fwM1Mz5KPpsmOK5x7Ds/VrxrHvlMnGwyQun4SQwe3EbNjI/iL6nGyGWL4HX+uRAIKADuPIRR1wippIZJV1TitryJdfFnFFiWliHJBOaU6cqdzuWK3GnXQRxH9x/sRTo7sC78FJJMILGIKllnsxilhUXBvI0b6saYWIfh9SN5G8PnLwj+oKHie3dhfulqvaZsRjndhoH76osYjZMxZp6IUV6JxKNIexvS04X5ycsLi2aiDxp/AMPjUU6gSEHN+2MY1TVIeKggFHYeVFYds2BALgd5W73mdg73tWbMeYuQZAKjejxGeQU9Q8MsWbKEzs5OysvLqamp4d5772XGjBncdNNNbN26lUOHDvGTn/yEr3/96wSDQRzHYceOHdx8881jYHrlypWcc44ufHm93jEud0VFBaWlpQCsX7+eBQsWUFZWRiqVIhaL0djYCEA8HqesrIxXX32VxsZG5syZhevavPzytznvvPswTUsXbTx+rAKHsatrE+XljVRWTuall65lwYJbxx5vra2rWbRoGbFYN/X1p5NMDtLSspLFi5cTjXbx5z9fxqmnLuGiix5BxCWTiRAM1gAGyWQ/Pl8Ffn8ZUNBZMCwcJ0smE6O0tAbH8nHQ8rHaMLgf9Ur3oGrkDUAC9SBvA2qBQWAmUA8kgRRQhXqhp6CAPA/s2rGDq668kj2HD5NFAXge6B0aYnZ9PYfSaSo8HjwogP/hVVdx+pw5XHfjjVhABwrybwZOjEFvSIfhV19VYDyqX5lMaiDZaJKINWu0/v77dXgeBcXTpunYlUzqODhvnj6SWlo0CreqSm0kEhqF9b3vwQkn6HA+GoDm9epau9+va+ajmSSCQZ0OdHcLM6a5pPsi+Ep9+Mp85BI5uru7OXnuyUyfNp3SYCm4ECgN0PL3Fsqqy5g4cSLjx4/XCGVX+O2dv2XWebO4csmV7N22l6qGKjw+D1+96Ks0faGJcceNw827ZGNZXNulZFwJ4gqu4+It8RLvjROoCpAZydD+aju97/Ty8V9+nKXNS3mh7QWe+fwznNV4FtFMlDJfGaF4iNWtq7l94e00VDRgYrK1ZyuTKibRHevmjPozGEgOjAHyCaUTuHH9jSxfvJyeWA8d4Q4+d9LnKPOVYbs2W7q30BHu4LwZ59FQ3kCoO8RJx53E5GmTKS8vJ2NnqCitYOOmjVSXVVMzoYaJNbUKijMDvPHKc4yfdBoc/gMMboJT7+bunz5JZLCLh1feCh/8FObcX1BCD2hIeDoEmb4iOD7pZgXLZTM0bHzH9crTLpuh44YhIAYMbYVgg4abB2oLIBUVn911C5z5C/WIZ4egZoEqoo8JthXU1EcV1kE526Pq46OK6lUzxgQUOQZWiALPowXhcPVa/tmWYShNEVQLSKRg/7AK0hke/RxiR9T7fO7DRYX0j96s7+vnqe1cXO34KlQ1Pd4FE06HZG9BZX05VB4HTgp6t6o6/LZVcNat0LNJ77d8UkGlfXkh/PxGOPP7qsT+5rehbU0BbP9az/X6NaQWPMqBLmHlyhZuv30RpaVeamqC9PcnueuuDbzwQht//WsTixZNIZHIUVKi+i2Dg0kCAQ/xeI6qKv1sysp8tLZ2MXv2xEIouEEmk2f79hBnnz2Ja699iYULJ4+B9ltvXUBDQzmmafDMM+/z+c+fzMhIhldfbWfbth4efvgiHNMmJQl+2frMmBr57ed9jYDHT1e0jye3vcjt532N3vgQT257kRvP+RKlvpKxjAUGkHPz5B0HRxwODnUxoXQcAwU18tFt5etPjAmtfWvBlUwoG0epv4T/KduHnOsPt/968/kUlY7GPt9xh47oo2B41SodzVevVpCczeqI/KtfaVj40BCceaa6hLu61BM92mfXLh3977pLR2yPpxhytHx5wQuUUm/20qUabj44SM6xWLHS4Mor1YH+619rRqsjR7TZpEkqJHnHHWpiNBOT6yp9e8UKPdXhw/Dd7+ozesUK9QpMnVoMFe/p0YnI0qXqpZ47Vy996lS1HQ7rxGK0fTRavDVXUHDsuAqcB8O6N1AQPBzR+hK/7kfDx10XDnZqWHc6q0rVXq8C8RK/AuvRNqPh5h5LbY6GiOcdln7yMtq2bGP35q18av4irr72WpjRyPlzzuTl557jnDPnAqpiHKioIZeMsHjOVHZu/Qctr7/Azd+5jn/78lcACuHicWpmfBQ7k8R1coWyBB5/CaG9b2J6vDh2mlwygmGYeANlGAiDB7cS62/HTscxLQ9uIVS8rHYa+WySiScuQhBC772JnY7i8QUJVtUx1LFzLCw9WF1PNhwmMG4cO+69l2R3N3YyybYf/Yj00BDjTz2Vvb/5DVXHH096eJid991HoquLsoYGnHSawbffJtHZyc5Vq4gfOYKdSlFz2mnse/JJOl95hVRvL4muLrbddRexQ4ewEwm8weBYKPi+J5/EV1GB6fEw4YwzyA4Ps+2uu8glE+pBbt+nALkQTo3XC9Xj4Y+Pqkd7+kcgEYHfP1IE1uVV/8pBXve0rvKP2rr03yBQCt/5ESy5Xv9365+BKTPVu/3nX+ps2QD27VZes+vqar64Kv5lGNiZJAP7W7Ez+l0PdWynrHYqHn+QwYPbiPa2gWGOtctnUximhWl5xuoHD27D8qhHcahj+xiP3slnifa2MdSxc4xiMEopcB37qP5bKamso6x22ljZUMdODBEMr28sHFuSccjbyjGurMLwB/4lpFoyaQXam/+BUVGpf/BEHHfDeuVQR4ZxXnpWPeKAcfJs9XD7/DBuPObkaep19nqRREzbv/wcRjCI9IVUc9CrImW4Lm7nIcxFn8CYNQdz8jT1VG9YX1A296qg2uRpuBvWj4V3G5OnYZ5/qQqHGQbEY2N9MAyc5megEOrutrypHPLR+4tFCinTInof0QhGIAB2Trnd8aj22/wPzMYp+j2bJuUlAW688Ub27t3LK6+8wvTp0/n+979PLBajtLSUm266ifnz5zNp0iTy+TwvvfQSkUiEL37xi9x5552sX7+eq6++mmuuuYZ8Po/f7ycajbJ+/XomTpxIaWkphmGQyWTYu3cvra2t+Hy+Mfsvv/wyiUSCWCyGZVmcffbZdHV14boOrpvnggvuJ50eZv36GzEMg0Sil+bmpYyMHGDChFOJxboQccZCuquqppFI9DF//s3EYt0Eg7Vks7GxUO6NG1fQ2DiXWbOauOCC+4nFunj55RvI59OYpo9wuJ0NG+4klerHdR2Ghw/Q3LyUcPjgGLjP5RJkxWWFYTAX6AV2AlPRCVAHUFJ4TUJThTWinutkoTyJpgyrRUPGDwHXAvc/8ggXfOpTYwrqS1EPeNMjjzDrkksY8ni4tnCOg0AGBfKHUXDfhQLrQfSvX1Ghw/C2bTos3nCDjk/BoHqX02k9/upX4Ze/VPBbV6eLwJMmQWtr0c6oyLJh6GLzT3+q/bNZtffoowrGQcfBL39Zz+s4CsA9Hp0apNOwe3cRN02caBDuSZBP5hFXeOlbL+Er81FpVrK2aS2tz7Xy7Opnee3p13jqR0+RS+To3N7Jw4seZv0f1rP2vrW0vNrCRxZ/hPRwmr/+5a/s27+PlldbuGPWHVz5mSuJ98TJp/O8dM1LpAZTlIwvIdYVY91164h1xcglcpTXl5PoTbDhrg1MXjiZ81aeh9fwsnzxcq448QomV04mmolSW1qLZVg8tOUh1uxdQ0+8h75EH9e/fD21pbV0x7qpCdYQzUbHwr5Xtqwk6A3y8IUPM7N6JnPq5nD2pLP57vrv0h5up7WrlYbyBj79kU9z14a7OBQ+xKRJk9jRs4P598/n96/8nu07t9P8ZjNtw2189s+f5ZWdr/DO9o3seuVBdm1Zz/hAEnCg7gIFxL5q7v7hHTz86GNQNhPOeBCyg7DzRkh1gbdMPdFHh3W3PQq1i9RzbQXgzJ9DqlvDyVNHYMe3wUlD7TzlbTsZ2HYNJDr0F+sk4aOP6oJw20Ow8dMw1FpI92Uo4C2pUZDpOgq2QcFwekj34kB5Y2EyeRSwLixaEu2AkX2Q6FEPsGGA6de2GJpWrWIqY2Fv0Xa9TsNSMG4YhXqPhmpjjoV1k4sW3+98oACsSyDcpkA41a/XUTlDvcumV4F12xrtl09p+/p5Cqzb1mj91Au0bOvKYltvEM57DFID+lnMW67Aet4dCs7zaZi3HNssHQvvXrWqhdpaXaysqytl+fLFPPPM55kzp479+4d5++1eOjujtLR0UlVVQjqd54wzHufGG9cTiWTo7o7R1jZMKBQf42Rff/3LNDZWYBhw660L+OQnZ7J6dStr1uxl9epWSkq89PcnmDGjmr4+BfQLF04uKJ1bBEt8lPpK+P65/87zX3uAWz/+FfweH3k3T0NFLXdc8A0Mw+CPO9ZxSv1Mkrk0mXyWpJ3BcR3y4pLL2zz4jz8SSSeY3XACfYlhjquZTGe4jx+/+htCsUG+97ElXHjifL429wrK/aX4PP/kMPofvn0Irj/cdAStqNDR+ec/15zJjqN1hqHu3VHCcXW1jszptI7EgYCO9jfcoMvsnZ06+R8F0Gedpah2zRrdp9MaZ/344+rx7urSJflREvSKFVBVhc9yWL7M5Yor1APd3q6nKfKnlao9fbpeZl+f4ve+Pl0PuP12dQStWKGAua9PJy2TJuklL1+ulzdvXtHm6tVwwQV66SUlCrZnz9bbHG0/ShFqaipEZ2cLq6tT6qG2Wveg+5Nnapj2/iO6P3mmeqaP5lF7PQrIRbSN3wcHCoJmo21Ht6POESgr5ZLLL8OoKIPOXs6eMpPDHR1gWcw97+PMOOEEKFEVymB1Pa5jM9SxnbknVBE+/DYeXwkza016ekLY+TyCoamAOnbiLSnD4ytVL2V1EQQ7+VwRbL/3BnYmgRgmtcfNZcoZl+MtKSP03htgGPiClXgDZXhLyuj74C0NB6+qY/DgNuWYWh5qj5unXO3j5ilYLy0bA8N7H38cOx5X4PvEE9QtWMCspUsxLYt9Tzwx1gbXZe9vfkNg3LgiUH7iCex4HEyTWUuXMuWiixg/e/YYN3vfE0+omJnjcPI3v8mUiy7ilGuuwfL7yWc0bc1oW8swMEYGNY9ybT188VoN485mxnjQrF+r399LTx8rFBaPHAvIEzEF0yVBtfWV76qKd0lQPdpPPQZDvXDlN1RYbP1amH4iREbg6V/BcSerJ/XQBxrG/NRjuCW6sjQKhoc6tmMYBrXHzcW0fIjrUHvcXCrrT8Q0zWPboeHVo/W1x80Dw8Ty+Io8+uPmYXn8xe/JVLXz0e/O8viO/R5NC2+g9JgyCn3MRecpeJ00FXdjkRONuJiLz1MPdaGNESgpcpdb3gQR3NYNyN5dkMsV+7duUNE4jxejslp50rZdCBUs8KKDpcX2BbAqto2YpuZstiwNvfb6sC7+jILtwrnc1g2qHu4LFMta3lSbrRs0l3QqiWFZx/ax7SKve8YJen+gKuGFz4Bs5iibb+g9jt5z64ZCv/N1IcfjwVn3POX5HLNnzSIWi5FIJLAsi4MHD9LY2MiFF17IZz/7WU1lZ1ljPOxXX32VcDjMJz7xCVpbWwmHw3g8Hl599VVEhJaWFhobG0kmk6xfv55EIkFZWRmzZs1i8eLFGIZBY2MjmzdvHuN1NzY2Ypom48eP59JLLy1oNOTxeoNjwDiXix/Djc7l4jQ2zsUwPGP8acsKUFExic2bH6CiYhIlJdX4/ZUsXry80GYZluXjsst+XbC9agx0i+RpbV1d4Fmv+pdjj8ePz1dKNhulv6uVZeLySRRc16JgOQl0A31opsmVaG7sVUAUDQ93jyp/APCh3uY1K1ey7eBBrlu1ijgQQMPM1/zxj6TWrOGXjz/O6kK/lUAN8C5Qinq4y1AQ/wAK6ims0cycqeD2/vuVnhQIKCBOJnW9O5HQxeD9+3U49Xg0OsvnU1mUZFLrli7V4Xh0YXl0eHWcIsgeHNThd/589V4vXqwLyocO6aL0/v3a/6yzNExcud2Ck8iyceVGDNOgcW4j4gitq1uVF72qhWBNkJaVus9Gs2y6b9MYZzpYE8T0mgqM79xA9HCUnm09JPoSNM5tZPMDm2mc10jPth72rtlL6+pWDMNg44qNY8eZSAZxZIyL3bq6FavS4mD4ICWeEh67+DHqyupI5VNc03wNvYlefnL+T2ia1cS8SfPG+NgPbH6AuY1zGUoNUemvZNmiZWPcabcADrP5LMAYd3ply0pqgjWsbFlJLBsbK3PEGWuzunU1hmEQz8WP6YfhUa/zvgd0b/p1XzYTPOUqPrbtWkgeUtC3d0WBN71CQeysZeqpnrVMw7/n3A/JIwXA3K4e7rKZhb4rNYw8HSoC6lSn2tu3WgF1PqmiZ4l2tdV4BQQLQNlAQ6arZqq3OXZEAXUuXgTdZZPU02z6j/JqZxQgu6poPda2YqqWxbuKdeKohzp2pCAAmy2A9h6t85UXQtFd9V6P7NPFglFg66vUPN+jIDcb0fpRAL1tVSFbgQ3BiXrOMVC8DLJhvV5xj7VTPlkXK0bbnvl9CLUqqC6pgcFdmoP8/F8rT7turoaPV87A6/WybNkimppmsWzZYgwDMpk8tu0yfXoVCxdOIRrNsnp1K7W1pXR1xaitLeX669eRSuV55pnPc9ttC6mqClBVFRgDz7W1pcdwsvv6kmza1EV1dYDlyxcXzrcIEGbMqGbBgsmsWLFxDHQHg142berCyQtl/iBey0N3dAABkrk03ZEB3ulpI5u3cUX4/rn/zpyGE/ll6zMMJ6NU+IL0xoe597XfMpSMcEr9TH639Xlc1+GUupmkchme3P7imKCZ3+PjB+d9jQll4wj6Av9jwsH/P95G09X8d3o1NjbKh9v/5i2bFQmFRCIR3S9ZIrJ7t0giocehkEg0qsdLlog88ohId7fIwIBIU5MycZqaRAYHtU0sJjI0pPvdu7Vu2zaR5maRkRGR4WF9f/iwHu/cqW3efnusTSJqSzSq1QcOqKl33tFmu3YVLzMSOfYSRka0bTSq7fbtO7Z+9Fbef19PO2pzzx7tF49rfTyutxAO622OfjQDA/qKRfPixpMi77eLm8mK5GyRobBIPKnvc7bI3oMiG7br3rZFsjmt33tQ96Pth8Jaf3T7REoklhDJZHWfyxVetrYdfcUS8uXLPyXf+da3jrF3zjmL5emnnpRMfERy6bgkw31yZOeLkooOSLSvXW77/vfksksvllR0QDLxYTmy80XZ0/xTObLzRcnnMmJnU2LbWUlFB+TIzhcll46LnU0d087OJiXa1y75XPqf+qcln8scU5aOD0kq2i/ZVExt5TKF86T1OJORkQ8+kI033SQj+/ZJcmBANt50k4Tb2iSXTEp6ZERyicRYm3Bb29hx94YNMrJvn2y86SYZ3rtXUgMDkksmJbRxowzu3i3Rw4fH+g3v3SvJgQG1F49LNhKRnrfekpG2NunesEGSAwNjbd10SiQRE0nGRdIpfcXCIumkSFe7yK9WiBzer206C8ed7SJ93SKJuL7iUZFMSm0kEyJdHdru0H6R4QGRVEKPv3Gh7lMJkVRS7YQ6j60LHRHp+GCsLJ+IiJ3LjH1HqeiA5Auf6+hnbNtZyefSYmeSkor2j7WL9XdoGzurfeysZOIjkk3Fxr6bvJ0VO5sWO5uWWH+HpKL9Mnj4HcnER/Q7tjOF+pTY2bRE+w5JKtpf6Kdl+VRcnN5ucYYGxE2nxMlkxOnrEXvt78Xp65H8gQ/ESSXFTSXFSafETafEzaTF6S22cY/uE4sW34e6xIlFtf3QgDi93WN9nKEB3aeSR5WHJBkekSsuvUSOP+44OXXaFDn/E5+Qtnf3iJtMyL0/+pGccPzxYhiGPHPLd8XpC+m5M2mZe/ocmT11ipw262SZdfxxAsiu7dvFiUaOvb6+kDix6Nh7N5MWN5sZuya9v4zeR09n8XpTyeI993brZ5VOiTPYL/ba30vu7pvEXvt76e/qlLVr10oikZDFixfL1VdfLcPDw5JOpyWTycjixYvlT3/6k/T09MjatWulr69Ppk6dKn/84x+lr69PVq1aJT6fT+677z7JZDLS19cng4ODsnbtWrn77rtl7dq1kkqlZGBgQGKxmBw8eFCi0aj09fWN2ctkMjI0NCTpdFoSiYRkMjFJpUYklQpLb+8uWbu2SaLRbunr2y1r1zZJKLRTYrFeyWRikkj0SzodllQqLENDbbJ2bZPcfTeydm2TpNMRSacjkkgMSDodlmw2KYnEoLS1NUsqFR6z19u765hz9fXtkVRqRHp6dhSOd0s2q9cVi4VkJDEgIdeVPhEZFJEm0clEk4gMiEhYRHpEZEehbI+IRApt4yKy+6jy/SLy7fvvl+qPflQ2hsMSKrQ9ICJPPP20zDjuOHn7yBGJHdVvl4g0i8gVX/2q/Oihh6TpP7mOoXhxnNm/X6SnR8evpiaRHTt0uI3Fjh3L3n9fx6dYTF+RyL+Od5FIcQjetavYdscOLevuLtbv2KHnbW4+9hyDg8fa7GmLSu+uXskmstKzs0eGDgxJ3+4+Wdu0Vvp29Ulbc9vYPhaKjdX17uqVtuY2SY2kZG3TWrmbu2Vt01rp2tIla5vWysD7A9K3p0+yiaz07u5Ve4XjURuhnSGJhWKSiWeK59zTJ0NDQ9K0tkm2dm89Zs/dSNPaJomkIxJJR2QkNSLv9L4jTWubZE/fHomkI7K1a6us279O4pm4DCQGpLmtWXb27JS+eJ/EMjEJxUKyo2eHNK1tkl19u6S5rVl29+2WUCwkTWubZGdop8QyMdndt/sYu0f329O3R5xsRGRjk8hT6D47IpKNiGSjuj+6LhUSGdml74d3iiR7RLIxkXS/vrJhkczQsX3SAyIfPCISO6B9I/v+qX6waC878q/nSw+K2GmRbEJkuE3EzojkbX1l48eWOaPlseL7fFZk+AOR7hbd53MidlbrHfvYOscWySX/tf3wB3qusXMXbGQTWpdL6PtMRCQTFUkNa3l6RCR6RGTkgMjAbpEXm0QG9ojEekTam0VSgyLpsNYnB0VG9us+ExNJDhSO+4v7eEj3mbD2i4f0NWo32S/S/44e9+8S6Vgnkg5LPJqU/v6EjIykJRJJSziclnA4Jf39cVmy5Fnp7o5KKBSTHTt6pLm5TQYHE9LUtFbgbmlqWiuRSFpisYzs2hWSgYGERCJpCYVism7dftm1q1eamtbKrl29EgrFpKlpreze3SuxWEZGRlKyf/+QhMPaPxSKyTvvaPs9e/qkvz8ujzyyRda/tl/a+g/LLS88LG39hyWZSUk0nZBYOiH7+g7J7c0/k4H4iMQzSdnY/rY8/fYr0jHULclsSm5v/pnMvv8LcssLD0vHULfsHzgiyUxKkpmUDMRHZG9vu9ze/DPpj49IJBWXeCYpA/ERydjZ/1+glv+jG9At/w849UPO9f+bt1xOX74Cx6WtTZe6j1YGa2hQ0lU2W1we7+pSmdJHH9U2jgM/+IG6hkeVUMrK1Mu9c6e6h0GXybNZXYqvqysKmy1bpsv1tq2CaJMmweTJpKxSsnkPHo9BNgvbt6tQOaiw+XXX6aV+7nNFWvgoBbyzUz3R99+vlzLKmV6+XD3hw8MadtfToyrj0ajy0UDF0R96SG2OXt7kyfqRfPe7ysmuqoLjpjkYBw6rF3rCOBUlG42dG1UFP1qQbFSgbJRPbR0VOCLoSnEmp97q0fYiHJO/+mhOUywBPi8rH3qAF9et441XXyXo84+FV33swgv48hWLmX/yBKaccQXBcQ0FBXGDP/7xKe699x42bNjA+Koy3HxOPaDtyrM1TQ+Wz49hekiNdGP5gvhKqzUEOVXMa22n4xzZ8RwnfOzrY9ze2uPm4fWXYlgecke19ZVUICI4uTQefxAMcOwc/R9spGbGmXgDFaT6+glUV2N6vbiOg5PWVCieYBA3l2N4716qP/IRPH4/2XCYfDaL5ffjq6gAEcxR/r5pas5qYPuPfsQp115LYPx4zNEQXtMEwyA9MIA3GKTnH/8YS/MljoPp8yGui9frUVXudU/DJV+AcRNUtCVvq528rUJd2TSYVlHK13H1+42G1ducTmuec9OEA+/Bb++Hq29R1XARGB7Q1FmXfBHGF87huoW6/qKYWVkFdB4c43I7X78Z17GV2+vYeHxBxM1jWF5633uD8dM/ir+0ip53XyPW387Uj15OsLoR13Ww0zE8/lJMy4udiY3xrr3+sjH9A3HyYxztWP9BUiM91J98LvlcisGD22g49QJyyQhDHdupmXEWHv8oV7+8wN+fS8BfgdvZcZTIWEGgLJmA0jLls3u8SDaN9PdilFeoevcFl2Kg6s2Gz1/4/bt6XckERrAUDBNxHdz1L2KevQiJRVUkbdacIm+7YbI+o3JZCJSQ3rWDN19ex6U//DHEIjz257/w7Jq1vH7Tt9g5YQrV7+9m6e//zHdvvJFPXX658qrrGxGPR9NyeTw8+8wz/HjFCt655w4VListg1xOc1ObJoZpFTnedQ0YXp+Gw2cyuJsLwmiuizG+BpyC8JuTR7xeDNfFffdtpKcL6+JPa+72UUG1xedxKJqgtKKCxx9/nJdeeol169aN8aS7urr46le/ype//GXOPPNMTjnlFCzLYseOHdx+++3EYjE+8pGP0Nvby2WXXcZ3vvMdstkspmmSSCRoaWlh8eLFRKNR/vznPzNr1iwuu+wyurq6mDRpUjHPdmUlwWCQ9evXs3jxYqqqgoi4jIy0k0z2M2nS2ZimBRi4bh7HySHikMulsO0k8XhorE043EFLy6qCONk0crkk4PLaa7eyYMGteL0lBAJVeDwBcrkEmUwEv7+cgYG9TJp0NiB0dW0mGu1m1qzPYxgGjpPDsnwYRkHcz1fKJsNkFjCOItf5DpRb7aIe7TrAQcO0M0AnMBnlXntRXvbdDz7I8089xSuvv059dTUC9APPrlnDPcuXs/b115k7dSpZoLxgzwYs4IarrqJ8zhz+48YbeQb1WK9EPd4z03Bwv8qfTJmiY87RYp53363D8eHDOi7ddpsel5fro6KjQ/ueccYx2qBj0V2jj5OtW+Hss4vSJ/v2HSu3cvfdys++4QY9R329RnK1t6vNO+4QZs4Ay80hrpAcTJKJZqiaXIXlszA8BuIIpsckFopRWgiLRcD0moij+asjHRE2rtjI4mWLiXZHqZxSSdXUKjAhG81ip22C44MAhA+HSfYlmXT2JEyviWu72Ckb02tieS0sv0WePO2xdgLeANWBasKZMKl8ipUbV3LbwtuYXjkdF5dwOkzAE8AyLUp9pRgYfOulb3HbwtuYWjmVbzZ/kzV719A0q4lfXforbMcmno0zoUxFm3JODkEwMfF7/LjikrJTuOJS6lVaRc7JMftXs3niiidYNGURrrik7TQlloeKbAhj7wr1PpfUq5d5sBWqZquXed9qOOUO8I2HyG4YfxYc/pOKjgUb1Ys963Y9tmPFPrOWq4CXpwysYGHeYEK8XVXBZy3TXNneauV9W6Xqyd67QvuKA+k+DVN3c3qMofzriqk6vsnoZIUij3qUE13WqN5eJ1vgUBeOxdFwbl9Fsa684LUXR73KiZ5imVE4RS6mwmOmD/rfgQmn6rGbh0xYlby3r1ZBMdfV1GR2XD3U+Yx6sf1Veu7MiIaNz12u53Gyeu6NP4CzblHudeQgbFtZFCgLtxXtJ3rUmx0Yr9dVNkn/2a9dU+Rdf+ynkB4hTSUH+gIEg14mTCglmVQvfUWF5qQ+fDhCMOiltraUVMqmrMxHR0eElSs3ctttC6mvLyMQ8LBtWw/19eWsWLGR5csXM3WqClKmUjaOI2QyNhUVAbZv72HmzGrq6so4fDjKqlUtLFu2mNJSD4GAB8syKSnx0N+fpKzMR8U4D/e8/hvWt23msc/exoTycfx2y/NcPe/T9CdGCEUH+PhxZ5HMpSnzBxERMvks1SUVmIbJT958kn8/81IaKmrZHdL82o7r4Pf48BbU+rsjA/x263Ncddbl1JZVU/U/SMhsdPtQ0OzD7T/fcjn44AONE1u+XMFtb6+GdufzChKyWY0583h0cnrDDUUFFMPQ0XzFCo3Bnj5dR+7+fgXXoypkDzxApqeHL372s7zv8VBSUcGE0lJ++eMfc9zvfsfKNWv4j/JyDiQS/HX5cj79ne+Az0duMMKmrgBf+tJX8XrbMQw/y5b9gkmTzmHhQr38UVHsd96BWbN0DaC0VC/12muLk4VHH9V2kYiGdZeUFJW/QQH2qIDM8uVw8sn/OuH49a8VH7kFMebSUigPOhjpjIZwV5TpoOCKKoH7fQqOochBct0ioBZRID0KvP0+rddYXd3n7GOFzUbTGJhF8PbT1ffz9LPP8PqLL1FVW6NhSx09MGMSH/vk+Xz7+m9x2SUXYlkK+gzLy1+efpq7f3wP69e/TH1NFXZa02ZhWjquCYBLPpfG4wsqhsymMT1e7EwSy+MrgGNVhu7b9xb1s84lHenDX1aD6fEhbp7+tlbqTjpHhclE6Ht/A+Onn4HHH6Rv31tM/MhiTMtLLhVh+NDbNMz6BNmRCLseekjFy/r7CYwfT2lDAxgGw3v2EBg/nszwMGWTJ5NPJtn35JOcdNVVuv/a1/CWl+MrL2f43XcJ1tVRNmkSuWgUT1kZks+r0vi4cbT98Y/MuflmvTbXxQoGcdJp0oODtP3+98z5/vfxBAJ4PSbGwfehYaqmSfL5lYP9ylr43NfJOC5f/OpVvL//ACWBABMm1PLL1fdx3DsbWHlggP947gUOHDzIXx+8j09/7nOw/lm48huce/mnOdLZSWWJH3wBvvrlL/O966+Djn1QNV7D0P/ya7j0i1BTr99rLqdKrGVV+iPMpnGCQexsilwyQqC8BgyDgbZNynMXl0x8iJKqieSzKfKZOMHqRs1J7boYpi7SiGGQzyRIDB7GF6wuiNjFlV9tmDjZJJavRPM/O3lMjw+70L6y/gR6399AtLeNyvoTqT/5XAzTIvTeG2Nlk2ddoBzrl59D9u4qqoM7ecTnV5A9usDn8UEqgXQcgOrxmA2TlH9dEtTrjkWQaEQ51VDo61eFcZ8Po6wcZ91zY0JgZuMUVTV/6Vk996w5mB/7pD4kvNp+x47tfP4LX6Bj62blNvv8fOLCC/n24vl85u57Fez2dGJUVCKxKEZlFZf8+1e5oHEC35lWV7SZzeBu24R16Wf1Py+KZiRv4765HvO8iwviZaqqj2HoPeWy+qfL5XQhxuPBfelZBeBeH5QqAMAwcA3I5h0effRR1q5dy/PPP8/27ds5++yzKSsrQ0T45Cc/yc0338zll18OQCqVIlAQ+XvllVdYsGABCxcu5Gc/+xmf+MQn6OzspLS0lEAgMAbSo9EoGzduZNGiRcRiMSoqKqiqqqK5uZm2tjaampqYMmUK6XSawcFBJk+egG2neO21W2hsnMvMmRdSXt6A4+To7t7C2rVXctJJn+PSS39JLpdAROjv301Dw5l4PCWI5HEcm3i8l5aWFSxYcBuGAZWVU3GcHG+8sYzzzlsJQDwewucro6ysnmRygNLSWiKRw3i9QQKBahQqm2QyEUpLJ+izzF9Bu2FyP/AzFCTngS1oaHYtsAuYg4aDl6Eh3ONRoL0IFTV7o7ubf588mWkzZlBWXk4eCPj9vLl1KxO8Xsrq6hg3fjxeVGH85TfeoGH8eH735JOsuuMOouEwfq+XkrIynnzxRc4+/XSMgu14Ato36lhWWanj2ej68yiQHh2OR0U58/ni8LB5s2qSfPazOsbl88WhPJdTwD1zpmqIRKNFmtXDDxdF0UbPU1Gha92WVWSImabayWahvFyIH+gl0Ztg0rxJiCvE++LEumI0zmskE85gp2yCNcExNe9PPvhJDNMg2Z9kyyNbuPDBCzEMA9NnYqdsMpEMvqCPbExVxEUEy2dhWiY923qIdkY58YoT8ZX5EFcYaR+h9SdqNz2cZvNDm7ngsQtoj7ezYuMKli9eztTKqYWh06Uz2qliZYuXUeopJeAJkLATVPorKfOVkXfz2I5Nb6KX+1vv5/4L7ifoDY6piR+OHKa+vJ6AFcB2bXJOjlteu4Xvnf09GsobCHgCZPIZgt4gpmGSyCUAqPRXknNybO7ezOJJ8yiVrP7/BRUTO+lWKJ0KQ1ug5mzGJg35dPHLfftGOPOxgjp4rYaG1y5SAbMTvwelU2B4m4aYl87QsHLTr2HoJRP0WZQdhPVnwfw/QfWcolBapl/VyL1lKGdawLEVDCOF3NqGAsyKaQpunWyxXgT6d8K4E4uiZb5CBgXXVp7z0SJnBmpfHAXfBb8B2bgqh3sCkI3pe8fWHNzZmPK1XVvPn+pXMFxSqyJmjYshcqAAhpeDt0QBeHoQGhbC6wUQ/JlmBcnxLg3ldnJgJ6CsAbpboGR8wd4ieG1pETh/9CbY+SAs+JEuKgSqNW3ZKCCft0w/5w03Epv3KBu3RTn99Hp6e+OsXt3K7bcvYvr0Kvr6Etx55wZuvnk+DzywmTVr9rJkyan88peX0t0d47XXOti2rYfHHrsEgKVLm1mzZi9NTbN4/PHLEIEjRyJjCuE+n0Umk6e01HuMKJplmZSV+fjWt17ivvvOY2AgSW9vgnnzGgmWe+iJ9tOXGGZO44nc8+pvjhE2c8WlPz7Ck9tf5KqzLmdadT1d0X5+t/VvfGPep5lcNQEwSNsZctkcX//KVby3dy+lwSAZr8tvfv04gdoKPvWFz0IoycTqGqoqKnn0kUc566yzADhw4ADXXXcdAwMD5PN57rzzTr7whS/w32n7UNDsw+0/30YJyUcTsUpLlWx13XUKnPN5+Pa3lZQlosD6oYe0bSZT7L9qldZblpLFzjlHR+jVq3XS/PDDLA2FaJs3j91//zufyuW4+vrr4dZbOf+883j5z3/mnAULFKCHQnD99eTGN3D11bczZ87ZvPrqAR577H/xve99iTPOsPF4dB3g+uuVSz17tgqueL0Qj6vz+58102Ix9VSbpl769ddr20OHFEQvXKhe7qqqIrd61MayZTqhSSb1dt5+WycxAqoM7vepFzmTU2BdWabA2nHhQIGD7rr6uTlOAb0WZkfh6LE5sjt6dJ/JqXq44+qJogkF26ahIDuR4sH7f8qfn1nLa+tepqqiosDVzh+VT9soft8FYL127VruvOsu1jX/jamTp2CanjHBMnFsXMcmn0sqZxUDOxOj593Xcd38GB/X8pXg5HOE3n2dfC5N/Snn4ToOJVUNmJaHVDiEnUky4YT5IC7JkR5yqSjjps3BsHRmOH76GZimRSocwjBN6k46h4Gdb4NhcNp3v0uqvx//uHFkhodJDw0xvGcP4089FW95OeNnz8ZbVkYmEuGMH/yAssmTmfujH1Ha0KD5qd99l/GnnooVCCCui5PNsnPFCpK9vf+S53rnffeRHhrCNE3sRIJ9TzzB+FNPJTMywuDbb6tntGo8PPNbGBmETApGBpQLDTA8wNJLLqDtjVfYfcO/8alzFnH1d78H00/kfCPJy8/9lXOOnw7jJ0LleE2rJcBAiIfuuJ1dO3ay64Vn+V5lXu1WVKkKuGnCri3K4wYF150HFHwOhOA/HoJYBAMDjy94DLd9wokLMUz16Aar6zBMD96SCkqq6jVfuZsHwyCbiNDz7mvYqSi5ZIRgdSPB8Y14fCUEKmpJhfuw01GyyQh2Jk7Pu6/royMVLajBN2KY/8SdNz1gmDSc8glO+NjXaTjlPFwEMU3lU5/6UcyLP41hmLgDfaqOHSxVz7S/BENExcI+MgujvEKBdaAESacwXIGycs0b3XVYowIMA8Png/E1uC1/R6JhrEs+o57tymokmwXTKnKdF5+PUVlVUFzPAfDIY49xxUUX427+B9gFBXHDxDjxZIhGcHs6FaR7fRjBMo48t4a3Wjbx73f+GOv62zAvvELzeaeSmBdchkRGcJrXIuERxDAw/AGsi64AjwdJJcHJI3ZOBc8iI8Xc1hvWQzyGYVpYl12pLkmvF6Lhgr0hjGyGe++5hz/96U/8+te/prKykvPOOw+/34/H48GyLPx+PyKCbdusX78en89HKBTCcRzmz5/P2rVrqaqq4uMf/ziO41BRUcHWrVvHcloDVFVVcfnll1NeXk5jYyNery7yLVq0iM9//vPU1dWRzWbJ5/PU1dVhGF48nhIuvfSXzJ7975imh1wuQSo1SH396Vx77btcfPHPyOUSvPbaLYBQVlZHT882wuF2mpuvIR4P4fWWMH/+zfj95RiGh3XrriMeDzF37reRAge2vLyet966h0jkED5fKfl8lurqGeTzaXp6thKP97J+/Y34fKWIOHR1bcYR9RDPRb3R30IB7cmoqFgUzXUdAu5CPdELUC/3GahXOwCcMmkSS0R4p72dv+/axU937eLJrVvJAF+wbd7r6uLtXbt4a9cutu7aRcf48SSAq666ine7u+lPJmmLRDjQ3c2C008nXbiOPUCppWvSy5bpWOU4Ooz++teacmv3bh2vNm3SIcS29THR2ake7oYGuPxyjfDKZrUun9cx0nHUdkeHrpGHw+qR/vnPVXN0wgSVQTnhBA0si0Z1HI3H1UYqpYrjrqvjoLjgL/dTOqGUV258BddxqWisYOJpE1l/43rspE08FMdf4adicgUX//xi/OV+DMsg3hvn3LvPxU7ZrLthHeH2MJlIhtLaUnzlPkrrSvEGvQSqAiT6E3Rv6WbS2ZOY9YVZZGNZsrEsdsom0Ztg75q95OI5Nq3exNxvz8Uxi/mtV2xcQdtwG0PJITymB7/Hz8LJC7l/0/1MLJtIf7KfuzbcRSgeGlNC9lpeplVN4+eX/JyBxAAtnS34LT+WYVHqLcVreonn4mzr2YbX9HLT/JsYSA5Q6iulO9bN271vk3P0uWIU0hhGs1G8ppdFUxYRtCyMXbcosMzHFBibfsBUL/ZgiwLjbdcUQG8ZeMvhrF8oSB0/r5BKa7L2OelWfZ8dVt70vvsBRwXQnBT4xyk4HmxR8a75f4TahZoLe+Rt5SN7y/Va8ikdaxxbgayTKQiYFdIvljXonMLJHlvv2gqsfRWFqK1MkT8d79Ifi+sUBc6cnJ7XMLVNtjC/tDyQKGjM+Mr1OqwCl9tfoZ9ZIqQe9JIJqvxdOQ0aFqitnQ8pGE506b3sfADKJuvn9onH4Ov7oXGheu9rTyuMgyZsuUf50mUNhT4FvDRvOZy0RBXJK6Yqv7q0XhcYfFXQ26p89PN/DaUNKng2bzmmv4y5cxuJxbJjQmOrVrWQStkkEjmWLVvE8HCKhx66kH37rh9Lo2XbDjNnVvPwwxdiWQaWZXDrrQtoaprF8uWL8XgUrq1c2cLcuY2EQnGuu24dpmnQ2Rlj6dJmSkt9DA2lufHG9Rw6FGH16guwLJPe3gS1taVs3dpDJmvTWDWBiWXj2NXTxjfmfWpMeMzv8eH3+Ma4009ufxEX4XeFPNe/2/o8jgipXJr++Aj3//33fOrfPsfWXTu44r5rsaeX8Y2rv8EpdTM598Lz+ce2TWzc0sptt/2Az3/+82PT0auuuoovfOEL7N69mw0bNnDrrbfS09Pzn0KV/67bh+D6/62bz1dU5rrjDgV60ahKii5cqCOsZamiis+nMqQ+n47Go6qORyNYj0c91q2tGire1aXljkPgF7/gkuZmjDvvBL+fs1ev5nAsBo2NzP3DH5jR3q6jvt+vS+lz5+JLhenrW8ONN17LXXfBpElnceKJDWzZ8g/yeW32wgt6mpISDe3evl1NLFqkmmyPP66hdR0d+qqvV++16xaVVH0+vd2HHtL3jqMr+WVlqrv2q19piJ7jFNVbR3XbolEDMSgIk3kVJJeWFHM1mqYC3VEv9CigNgwF4x4L5s1W4bKornIzc7LWZ3OFvoW2Xm9BRVw9490DA9y87HYikQgf/+QFzDnzTOYt+Tz4vNz7wE+ZNGUqW7Zs4drrbmDmiacwNDyCnY7xla9cRTZnc+Xn/43Zp5zE3IUfI5bMEaxuGFOTHjywRUOx/UHsdIL44GFVAjctBda5FKblof7kj+MNlGveZK8fcfP07XuLQEUtvmAFhmHQ+/4GPP4SfCXl+IIV5JJREMFfWoVjZwlW1WGaXsAgfvgI6aEh3nngAYITJ+KrqGD87NmkensJjBvH2z/5CZ5gENPrxVtaqqreIyNsv+ce4p2dGB4PpRMnUnvGGQy3teGv1jD2kokTOekb36Dt97/HsCzO+MEPmHbZZXjLyjjp61/HW1aGuC4lEyZw5vLlTLn4YtIDAwRqanBtG2NU8Xv9WkgnVazs5DMgkyaw4QUuueQSjJf/Atvf4uzsEIePdMLJpzP3hluZMWUy1NbpbyE8pGJkHo+m49q1GRC1u2tLQel6AgyGVAX7+h/Cl7+tkxLToyHkHi/8/cXCex8IGIbBUPsOgtUNeAMalpiK9OO6Nr17NyCOjYGQCvfiujZOLgviYnl8xPrbGTy4FY+vhHw2iZ2Kko4OYJoWwXENmKaHQEUtdjpJzYyP6m8knaBmxkexPArGvCUVNJ56Pr6SikIud5dUuK9wrozmcjYMjKpqrEs/pwrZL/9V804nkzjr/oqMDEEug9tzRFNnmRaUl6vQmGGAz4fb2wWuYFRUYkyahlFRBT4fzrrnIDyMOXdBQSBNMCdPU5XxkhLc7iNQNQ7r4s8g0TAyMqwe4ooqVt53H+0H27n342ePqXhLZBj5v9j7zzA5yjvfH/5U7NwTNDkqAEIIBZLSSDJJYIFsgw04riMGbGGThS3wYu8KARIiYzD2er279trGgG1ZSAhhjGE0CoiMAIFmJE3O0zlWeF78OsCe83/Oebt7qOuaa3q6q6qru2v6ru/9TZFJufAyDJT6Jtx0Sj4fn4//ODLAmgsuoMbvE0CcSoLpkecECU879LZUhgFuNlOaDHBefA7cQtBa63Sc3S/IOok46tJPgMeDG5nA6TuGomooHi9uLIp76G2czucZGBjkjjvvZHR0lG984xssX76cs88+G9M0ueWWW5g9ezb79u3jqquuYs6cOZx66qnous6vfvUrTj31VDo6OvjjH//If/7nf5JKpUgkEhiGwdlnn42u6+RyORKJRKkDW1VVduzYQT6fR1EUwuEw7e3tJbA9NTVV6sO2rDQTEx/Q19eF11uBrnt58cUNuK6LZaXp79+LYfg5//x7UVWDRGKY5uZFxGL9HDq0lVisH8tKsW/fA5hmkECglmXLbiYcbqW6ehaGIRJhwwiwZMkNJBLDpfsAdu/eRCBQS2fnRlpaluK6DsnkCPX1C9Adi1tdly8gUuyfAn7gPWBx4b4KpGJrCzAq39bUUQbcvQjIvg5hvfd96HEVkZmDBKUNIbVe8+Q/nDSSOk7heUHk4q8WnqsD8OfLAZxDQwJmFUXmwTMZkWrff7+4rHRdxqBMpjyGbd4s99fVyVioKDKxfOSI7M/rLYd33n23bHf11cJ0x+MyZEWjct/IiISYDQ0JyPZ6RUo+OQnBoEtmMo4ZNAm3hDn3rnMx/AZ2zkZRFFqWttB5Ryety1pxbFHIDOwfYOLwBK7t0rCwgedveR6As28/G92rY6Uttl2xjVw8R/RYlP69/Th5h6oZVbIfy8GxHKZ6puQc8Bm0rWhjwdcXEGgIsPrB1YSPC5PMJ1m3bB2Xzb2MW1fcyvSK6VT7qzkSOcJtL9zG8tblPLT6IRzXYTgxzNZDW9nUtYlUPkXGytAX7aOztxPLsWgMN1IXqGPtjrX0RHoImAG+t+N7KIrCkpYlvDz4Mo3BRpa0LCGTz+DTfSxqXkQ0EyWRSxDJRnBdF5/hw8GRgDRFhdMeAj0MRlj6oxM9AqhTA9I1rfkENGsfqi1STQkuO7BWOqs1H7g5CS9TVGGoZ/wDnPEIZCag6lQIHSey7wNXC9udGoDaFXJGGiHw1kMuIuA+flgAd3a8AJJVAcHpyYKE2hVg6xQYbdcWJruYGO4pSL7j/SKdVj+0fXGS38lJ0JnrShK4ZgrwNYPCBqsmVM4oqLTicr+iyHO6yDYVM+S/TVXlNdh5qcSKHoGzH4RvvActnxBGvKkDkgMQPSwd2PmUyLgNsRORi8rY2rRcxhvdC2fcDMFCKG24XfqsNUOY+VgvDHRKlZfug2knQ6QbBvfI+KxoUDETRdXRdZWKCk8JHN966wqCQZNg0KSxMchppzUyOipJ3mNjKTIZi7a2Clpawlx77U6i0Sz5vMOJJ07jZz9bg8+nc+TIJLmczcMPr+YLX5jLvffu5fHHDxKNZkvBZdFoljvuKIeeyXeAweLFLWzZsofa2gAH9g8BLoamMxgdZSwxxfpzv0lNoBLLsXBdl8uXXMT5s5dy+ZKLAfjW4sLfiy8qkUO/evkv/PXIAXrCCTy6wbcWX8Q5K87EiWaJZ1P86tb7mFXbSsD0sbyjg4GBAayC1OaNN97ggguEna+trWXBggX8/ve/53/S8rEs/P/lpajx8ngEEGazon0eGpKf4ih+9dXw/e+LhzqdFkTb1iYjbm2tAEaAyy8XQ3J7u0yNB4Mygu/fLyh35kzo6eEfrr2W6uOO4/4tW2Q0v+EGzuzr49rLL+eiBQsgEGDiRz+iaetWLrooW5JmZzKXMWvWJ/nxj79JT4/IuVtayn3VNTVi/d68ufwS/X7xlm3ZIt/T8bgQQoGAsM8bN4pVvKmpvG5Hh/xs2gQ33CAvu6pKvNiLFsF558n6quIQMC2UvCVf9mbBU2LbwiB/2GtdlHRbdrnjuuizzllyn6JAdx/MaCq/p9EkBAoTHUX2W1Vlf6ZekJ8WpFm5fLlr29CxNcgmI9IzPWel7G7ofdKRYWqPX0xi7Bj+quaSX7bozS32U0vP8aJCEnC+5MnNpxMYviCGN0QuFZP1Zi1CM+VioNh7XDPrDFKTA5j+SgxfiPHul2mcexa4LnY+i+PkpUO7qhFF1bASKSbeeovk0BAt55yD5vEIA2vbZCYn0QwDRdN484EHmP/976MHAoy99hrJ/n5azz0X13V5fcsWZn/ta4SnT8fOZpl48038DQ0EmpqIHztGoKmJ9NgYqeFh/PX10ps9e3ZJuv76li3M+eY3CTQ3k5mcxPT78KTjArA/eamwz6ZZuHgoTKKkEpDPwdO/5R927qO6roH777+vdC6c+ckLuPbrX+WiC1eDPwBHDnHmldcwPDGJYRicdMLx3PHDdcw8eQGlk6LY+W5b4ut2XejrgeknCMAeHYToBPachYUtXGwrz8h7LzFtxmkl73NRKp6JjeOvlLTUfDZR8saLt96LncugmV5SU0PoHh9WNl3uOK9qAFSGDj5Pzawz0E0f6egohi8o+5m1CMMXLsjG8wy/+yLTZpyC6asQ1tgBpiak43rFObjRCM5v/wVt7c1SbXXobdRLv4ba0i4p3qPDIvtWQLGsAnvtx9U1mBjH2fti2Y+t6yiOIwEihoGbychv28LZ9TRqx5ngC6BoGvbOraWuagyTLffdx+//vJVd25+mAgc3HpfntfKc9YmVfP/cs/jsP92Bm02XsylML8fNmcNPH3iAc7ORktRcW3MJ9vY/yv7bZ5bk485Lf0VddiYEQji7/oLSOl1AddcLcn+oAkwPimMLyw1y4efYOP29KKEQSmU1bjIBuSxKVQ22opAv5AlMTU2RSCRobm5G13Vs2yadTqPrOoZhoKoqfX19BAIBqqqqSsx0X18foVCIUCiEoij09/cTDofx+/08++yzLFu2jHA4jGEYjI+P4/V6MU2TbDaLx+NheHiY+vp6kskk+/bt45OfPJtEYghF0QgEasnnhQV7992nmDnzHCYnu6mvX0AyOcLevfeyatVmTDNIriCdzeWSBAI19PbuJhI5SkvLEhKJYRobTyEeHyr0YN/yEf91JHKUl17awLJl6wiFmgr7SeD1VqFpBpOT3ezdew/nnnsXBBvIFmwvLwMLkNRuDanG8iLg+XbgZqBQRISKsNy/AS4Dfo7UcG1EKrQmEMl4FgHbjUAnsLvw+GxEHu4WniOFJIXrhee1Efn5UiCXhKHDMhx3d8vQOjZWHuPWrxfgXFEhrHUuV2hzi8n9IMN1Z6fUURbHu3BYJoZra8vug0IAPUePCkgvPse6dcKM794tE8vj48JU33GHPH9jozx3RdhFszJYWQvdq5NP5snFc3jCHgy/gaLK92k+lWf49WGaTm8iE83gCXtQNZXI0Qgo0HVXV8lz/ds1v2Xtu2uZOjJF/YJ6cjHZXy6dE7l4NIu/zk+sL0bnxk6Wr19O1cwqIj0Rdm/ezTk/O4e1O9eyqHkRq2auoinUxNrta7nvk/dx7TPXsqh5EZeeJOzZTbtu4qZlNzEYH2Rhw0K8uhfHddg/sJ9p/mls2bOFW1fcik/3YWgGPt2Hi8sT7zzBkpYlbOraxA86fkBdoI7Xh19nWesyMlaG9X9dz8ZzNuLVvXT1ddEYbGT2tNkcnjrMxs6N/OuaR/E5GZT0EGSGhIlWVHjl+yL7ThyFdL/cn5uS5GtPjXirD26Q9O+2S+WEenM9zN8IekDOpPG94GmA4PSCb1mF7DAMPye91zXL5ARw0uK3djICqA9uhDk3glEpsnLHKfdOFyXepb7r2kJNF3JWO3kBlYomwNkMCbh2bbmv6LV2csJip8eheo4w0v/1OVBKmRqgFDzXHgHhKAXbnQVT70s11hnrwN8AHzxZ6KRulfsXrRcW2VMpIPj570HHP4v8++izcOIX5Fhe3iRguvJ48aAP7ROm2zcN/n79/75D21cj8vBVj8lbUJSOX7wN6k6F5CBpZRoRexrBoEkqlSeTsXjnnTGWLWtFVRUsy8EwVLJZm6NHIzz00H7uKVgkrrxyGytXtnHRRScSj+eoqPCQTOaoqPDiujA0FGfjxk5uvXUFra1hRkaSNDWFyGZt9u3r59RTGxkZSXLHHbLO9OmVqKp4ELq7IwwMxFjxiVYGkyP8Yu+fSp7ogOkr5fkUVRw5O89bQ4f58TOP8q9f/DFVvjAuLgeHuzm58Xj6pob51ct/4VuLL6LSFyRr5Vm39jqqq6v43q03AfCvL2/l8iUX8av7HuPg22/z5z//GYBPfOITXHjhhaxbt46enh4WLVrEl770JR544AH+uywfy8I/Xv6/F9MUpGkW/L7ptNDARe/12rWCQO+8U0b52lqZWq+rk/UqK2UUPnJEtr/vPjF1Ff2TqgoHDsh2fX1gWWzcsoXDY2PcMTEhdHI4LLo3VYV/+zeZJm9oEDk6ZXL85pvlf7+lRVTr9fXCPn94Jt4w5PCKTWCF609+9jN5mQAbNohMTtM+WsHl9wvhvn69gOdiM9iWLXL4+/bJ29DRITLyo0fB73VRevrBKADf94+JnFvTRJZdERQGGuTgu/tkPcsWuXc+L78NvWyeO65Vti+C5aCvMFA68vfRQdne0OXvok9bU8td2n3DJXA+3vMyvsoG8pkkQ++8gL+qmca5Z2N4AlQ0ncjEkVdK1UyA1DI1nYjpC9E092x0TxDdG2C8+4Cs130Ab7i2JP+dOPKKdFxnEmi6gaqbTPS8ir+qCVUzqGiajb+qkXw6Lj5gxyYdHUH3+DB8FXjDtQwd/Bu5VJTJdw5SeeKJtK9ejarr2JkM+USCAxs2YKfTRLq7AVh4ww0AvHrHHdQsWEDbJz/J1Pvvo3k8nLZ+PYGGBhIDAxzYsAFvdTWp0VEUVSXY0oJqmrz7y1+Wqruqjj8eXJdcPA6uS83ChRx87DFcy8JXUyOTtDUN8PmrIFwlnufi5wOQjAsLWtvAxqEshweHueP2DTL5MTYMhw/KZxcKgz8IRw5BRTX/8ctf8N4rL/Pmf/4LK5YuZc1XvyGhaKND8B/3i6/bdeXzPfaB3A5XwX8+LI9FJ6CiuhA6liefTaEU5PYTR15B1YySVNzOpfGGa0hFhkFRUFUDf7XIv1XdYOjg33AcC0XVCFQ3FdavRTf9hc/nBfKZGL7C56ioGt5wbelzLkr9U1MDKIpK/YkrMP2VUk9l5XDtHG48irrqUyihCtT2Wahf/jYEgmgXfBbtqhtRGptFMm2aEmjW2wNT0k1NPoczcAwik1K11dwK8Rj2zj8LGzzQK15sx4F0Cnv7UyKvbm7FeemvUpeVSaOtvghlzjycF5/j3nvv5Xd/3srOP/2RiqoqqKhCCYWlYzoWEan6gtPkMy5KthNxnv/b37Dyec49+yzU8z8jsvALPwco4rWeVgeBEGr7LAiEpNorXIni9aKtuQR14SKUcAVqx1kCqk1PyXOtKBIi4eYy2Dv+hBIMimTccYQ1r6zGVRWyhe8KVVXxeDw0NzeTyWSYmppi+/btWJaFqqps376dyclJmpubqaysxLIs+vv7cV2XtrY2QqEQjuOQSqWor6/HMAx0XaetrY1kMllislOpFH6/H70QFui6LnV1deRyOfbs2cPZZ58NaIRCTQSD9biuQy6XRFUN5s//Mh5PmPb2FRiGj0RimNbW5ei6F8vKMDT0KuBimoECmD6V+fO/wt699xIISOf13r330traQSBQi2kGGRw8gG1n0XUfbW0rMc0QphnEMPwEg41kMlEcJ4/HE6KlZSmJxDCZ+CBDrss+YAnyldmFdE9fgwDrdmATwmCnEfY5AWxGgPWPkAsmD8I0PwKsQFhsBwHITcDngfuA4yjMfRa2cYBY4bkthLWeKOzLAPyqDJ9NTTKvXRx7Plw/6feXZdperwzVxXm+ri4Zlzo6ZAgu1lOOjspk8hVXyBA/OCjDayIh8+ArV8qE9OOPi4LrC18QYG0YciytrQK677tPgkCHh+U1WWmLndfsxEpbpMZTTHZPYgQM8uk82bhIt42AQVtHG+nJNP4aP8mRJNu/ux1VV0uy7pc2vkTzombmXjYXT4WH1o7WUn91fChOsC5IfDDOC7e9QKwvRqw/Vqr1snN2aXsn7nDjohvZ3bcby7EYTY5yzeJrcFyHB1c/yOfmfI6bdgmgXtS8iI2dG1nethyAkeQIOTtHR2sHW/Zs4fGDj9Mb7SVlpVj33Dr6Yn04rsOlJ13KcGKYG5bewHBimIAZYFHzIrr6uhiKD3H1oqsZjA9y1dNXURuoZSQ5goODR/ewsm0ljp1FyUcFWHtrhYlO9QmbragQaBH2+tVrpYM61SfA2k7B6Q9C6+fgtZskxOz4q+Wsih+WQLTq0yE0U4BtZlx6rt/8R2i5SBjy/VfIfZOvQvwDYYhT/TCwVULOvPUCiEsd1gPCSCuKSKF9tcLm2lkBvnYBMDuWnOUVM0Wu7eSFwYbC9hS6rKeLlNsMF1jvybJ323UKEvNc+bYRENa4KEWPdMtzFnutX94kx1HqpC7cv38jeCrg+atlP5+4B9ITsv2JXxRZeFFCnhoR0J0eF6l4ckD2+b/t0F4k651xc+ECWhV/98XbhCXXfWAEsBUviUQOx3HxeMQTvXBhQ+m703Vd4vEc11zzDLqucu+956MooOsKt966gq98ZT5+v0F1tZdQyKSmJkAkkmFsLIHfb3DDDUvxenX6+2McPjxJNmvhOC6LF7fg9xvMmFHJY4+tobbWT1dXH5blYFkus2ZVsmxZK67i8Iu9fyrJvgFG4xOkrSwDkVHeGHwfx3UwNZ36YDWntZ5EzrJwgYlklONq2sjbFm1VDfzjed+m2h/m/hd/y6P3PcThw4e5+ubrqQlWMpmOsvPQHq6741ae+MMfeOyxwoQE8G//9m/s27ePhQsXct1113HOOeeUxpf/KcvH4PrjRRbXlVF39+7yyF4c0eNxGWENAx5+WEbkdLqskR4YEMBhGIJC02kBzY4jU+hbtsCiRdz98MM89dZb7PjDH/CffbaM6LYtzwnwta8Ju93by7R4HF3XCQSG+PGPJazl0KGjzJzZxp13londRx+Vw37kEZnxz2Tk/u99Ty4CrrhC5gc6O+XvRYsEOOdywnJfdhn86EdlYuq448q+t6LiXdOEqA8G5SJl5Uq5qMlmM1x087WccPI8FixZxKqrvsnh3qNgO2y85UfMPmsFam01f3ryKbkCOq4Vsjk23nM3s08+GTUY4E9b/ywAPJ2VA3dcYbJdRAauqWUpef+IJJNnc/JzdBDyFjLLm4egX7q02xploteBxpPOpLJ5DlY2SWykW6S/Bf+slU3SMGcllU1zaDzpTAAMXwW4Drl0nMGDz2NlEjhWjsa5Z3PiOVfSOO/cEvvl2nnqT1zB8Su+ir+qASubBsemYe5Z+KuaGX2/Szy+qoavog5FVVE0A2+4luTkEDg2qm5Sf+Jy8uk4NaeeAo7D2Ouvkxoa4pU77iA9NkbNwoWkRkaomT9fgs0OHkQ1DOZ///ukhoY4sGEDlccfT2p4mFc2bsSxbQL19Zx6001kIhFqTzmFxMAA42+8gZPPc9r69RgVFZx+663ooRDpiQneevhh0uPjtJ53Hiddfjl2LoedzTL53nsiDNA0yGchEJaTJRaBqTH4879DZJK777mPp/78Z3Zs2YjfNIVxNk2YNbfARDqAK2Fl1bW0tov8TWk7jquvupKeo8eYGBwUifjLL8q+x4cFTIcqxY/2zOMf7dGurgUgn0mW3mtPsIrGk89BURTy6YTIvrv3o6gq3nAtVi6NZvoIVDUz9M4L5DNJps04FcMbKsi5B9G9IVTNwC54kn3VTeTTCaqa5+CrqGPo4N+wc2ka5p5FZdOJ5JIRXCuP7gkw9M4LhZA4GzufQ9VNFM1EaWiCZFwk4FPjKM1tIg/f/lSJmXcnx8VXbRgogTBuLIq69BPCAvtDuLEYatsM1IVnSLd02wzQC7LtVErAaTCE0jYTZ+9L0hO99BO4tg35PPbTT0IizoDh48af/BORSIRzLryQU89YxNKVK0HX2bjr77TNW8Ce/S9zxfevoXXmTEZ2bC11T//yV7/i61/8AlpBCu1OTZQ90RNjwlwbBq5jQyImQWiKglsICnIdW6T81TUQDMnfyQRO/zHcqXF5P5IJlOZW3HhMguC2PwXxqKg4XMhkMliWyPeKfmqv14thGLS1taFpGoqicOjQIRKJBLFYjO3bt+O6LsFgkKeffpqJiYmSnBvANE38fj/9/f20tbXR0tKCZVkYhkF9fT07duwgGo0yOTlJIpHANE08Hg+rV69G13WSySS5XIKJifd5+umryOeTDAzsIxrtxTAC5HJJbDtHW9sK5s//MtFoHzt2XE0gUIthBIjHh5ic7EZVdRRFY9WqTXi9VQQC9axe/SCtrR3s3HktyeQobW0dOI5FMNjA/PlfIRisx7Ky9PZ2MjXVg2n6eeaZazHNIPPnf4VwuBXFDNCnKNQCVyHAeTHCJncgoDoHvI30UTvABkTyHQQeQiTg3YhEvAO4F2Gx9yLguDCljAcBzS8jDLUHCUXrQy64Ukh6+DKEPVcK+y3Ot2YyMpbdcovMaX94LFJVGY5vukm+UoaGBGjv2ydjW0ODDBU+nwD1e+4RQK6qYqOKRoWFXrRIxs1vf1sA+YMPSojnQw/JkDwyIsfS3S0NGY2NAq5TKQHgjiOJ34e2HiIbzRLrl1TwxFACRVNQFEUSvxN5csmc9FkfixLtjXJo6yHig3HaV7Zz/eD1nH//+ehenQsfvRAzLFaXvffupW1lG6EmmRVPjiY5tPUQnRs7S0C84+YONFNj+S3LmfuFufh8Pk6oPYHH1jxGW0UbVd4qxlPj2I5NxpILg+uXXE/ADPD5uZ/nBx0/KAy5Tum3oiisX7G+1IfdF+0rAeloJorP8NESbmHLni0sbFhIb7SXq3dcTW2glqHEEO2V7aVe6y17ttDR2lEKNvvSvC+RdVxco0IY6MwYzLlBAK6iQOx9ePm7IuuefZ2EjdUuB68ohzgghAOn3S/sdPgE0IICqOtWiqzayUvomZ0qyMA7RCJdBNHvbpZUcr0gjZ62GJY/IX9bcWFwP9xLbWUh0iPPWzlT5NOKIpJtO1sGyHZOgGzxthmUbayMeKpRCgy3Lid8xcxyAFqxE9sMfqjfOij3RY/IPhVFPNGKWu6jPuNm8FQJY52JCLtc6ruOyt/xPlBcmTDw1RYA9xE4+yH4zoj4tV0H9m4QoN3UIWz4N96V32f8sLxPLSBBZ5XHy2uJHZXgtFALDO6G+DHoug3NGyAYNBkaSpBOW/T0TDE2lsJxXA4fnmTPnn4MQ+W665Zw33170TQVTVOxbZcZMyrJ5x327u3HMDQcxyWTsWhoCNLSUkFDQ5Bp03xUVfmoqwtSVyc+6qGhOGvXbufo0ShjY0lUVcF14YwzmujunuSKK7Zx+PAUo6NJEnGLm876Kn/6xhZuOuur4LrUBqvx6CbNlXXMbzqBVC7D6wPv0xCu4bbzvk1TRQ1DsXEe6XqCscQUXs1AU1QmkhEOjR5Ff22cZ7Zt57dPPo7P78N1XRY0nUD7qIeDf+pkx85nqK+vL40306dP58knn+T111/nz3/+M9FolLlz5/I/afkYXH+8yOI4gjovuUSMyUU/9vr18PzzwjwfPlxOEevvlynycFgo5CNH5LF582RkvvZaWS8YhPXrueexx/jt73/Pri1bqPxwgphlyUgfjcpVw7JlQj9/5StcfNEl/PznPyMcBst6mampAX7zm08wPi4XAJ2d8juREBI8lYJ//Ed5+hNOKAPhwUHxjw0PCyt9662Cj4aHxZfd3i4SuQMHZD+jo4Lxf/pTucC44QaZW+jtLYefLV4s8xFXfO3rHPrTdt7Yu5/PfPZiLv/6NyCX59xPf4odTzzFyqXLRAKelxApKoKce/bZ7Ni2jZUrVhRSn3MQDsgOrYLUuLuvHGZWBNvHt8EZc4UR7xsWllpVywFpqloOU4NSMrmVS+OrKNRxVTUy3v2yMI6qhqLqNM07ByuXknCrdBRFM1B1A39VE+M9B0BRyGfiDL3zAq6Vw8qmBMzlUmiGB1U3JHHb9GHnM7h2HiubKjDdL0sAuqKSjo6SS0bApcCkjhRC1KwC+NbQfT7qTjmF9MQEdaefju7z0b5mDf6GBl7ZuBGA2vnzmXjrLbLRKKnhYXqfeYZ8IsHBxx6TMLKJCfb/5CekJyZKkm/N42HavHlMvPkmqZERdJ+PV++8EyuVwl9Xx5xvfhPd70f3egk0N5OdmuLAhg1Uzz4BZWIY5fc/k8otFJGBB4JgeOD1vdxz0zX89vHH2fXgZiqbWgQQK4rYLH79gIDyoV4J4KppxHJgpO8YPPUrUBSefPpp6uvqmDbzOPjSWtj4SzjuZGGmT5gHLzwtDOaX1sL3fyKVXJomz++6TBx5pcQgu65LPh1l4K1dGL4gx6/4Kk0nn4OqGaV/ddexyGdkskXTTTyBShw7z+Dbz0s1l6rjOhaabqLqJpUFUJ3PpsRDWNVIPpMgn44xePB5dI/E7491v4yvqlHq1qwcqqaL39t1IJvF6XpBQGrn8yiuK97kg6/j7H5BPMvNbcJQW3morEAJV+Ds60RpbEapqUFpaMLe/scCiG1DaZshjHI6hVLfWGadT5wroWmhMHh9KKqK0/nXEkBuPetc7FiED/bv5dWuLl7dv48927bivLCTW2+7jd4jR0iPjzE2MEBvTzcNX/ga6he/hbriHH7904f58Q3XYe/4E7iOSNljUdzu9yRETdXkS8OyIBRGbW7DxUVxbHnzrTzO8KA87rpgWbixiNSUdT5fOMa/S/ha20wIhFDaZ4ks3JFgINM0SSaTbNu2rQSYd+zYgWVZnHjiibz44ou4rsv3v/992tvbS2y0qqrouk5rayv79+9HVVVUVWVycpJoNFqSjxuGgWVZOI5DIpFAURRaW1uJxWI0NzeX7vN4PFiWVWC2PWSzUbq6NpX8083NZxCN9hXqsFyy2RiuK+9DONxCR8fNeDwVKIqKxxOmuXkRg4MHyOXimGYIv7+GdHoSVdUJhZpoa1tJV9dmLCvLs8/eSC4Xw3Es8vkUg4Mv09y8CMPwoygaZ599O+DyzDPX4jh5gkaQxa7LGCLXDgH9lIHyZuQrdhHCaINIxIcRoH21/OezubB+EAHONYjEfAKp7noFAdF1CEOeL+wjgHit6xHvtVF4bFphvwM56DsizLDPJx/1zJkyHDY1ySRyQ0M5d/TBB+XrfvFiGd8WLJDHvN7CaWbJOKiqIjDTNHjrLdnHww8LO33vvTJ/3tsrw/ttt8ltxynf7usre8CvuEL2vXmzi+rYuI7LZU9dRqAhQFtHG8mxJD1/7cHwGbiui6fCgxEwMHzGR4DxVW9dReuyVnKJHMOvD6PpGo7lsPP6neSiMqG3+sHVtK1oY/j1YVzHpXVZK9f2Xsvqh1eje3XWPLaG6uOrAahsq8TwGWQyGaK5KI7rcCx6jH0D+1jSsgQXl5t23cRYaozGUCO3vXAbI4kRjqs+rgSsN7y4geHEMLZj0x5u52drfobruiUg3RxupiHYQN7Os7FzI1sPbUVTNEzNpKO1gwf2PcDi5sV4NA/3nX8f7659l/vOv0+sMoXnyFgZdM0Qv7TmEwn2u1vkt+tKnVbv4yILV3V46zbxWasavHe3AG7dL2DzlWuE0U4dE091PiYfjmoK850ahNplULNcUsRrl8FFQ8KQZydk35lhOeunnQH5KCiFMULziMxa0cRnHWyU21ZGgLZSYDaMQCHILPQhtrtf/vZUCki2cyLrjnZTqt3KFo61yIoHm2Q9T6UAe9UQBlwzyyFprithZ64D8UFYuUmqvsyg/AcZAQHZq34uIWf5FLz2gEi1UcWH7akQ8JzolyR2Oy/+aUWBxqXChKNIIFrXbRDvlX2tekxY9+hhkYFHC5MN+zYIqI8PCkgPT4eVm7ExGByMc9ttLzA0FGfx4mYaGgKoqkI47KGuLsC11+6kqSnEffd9Us6NjEU2a5PJWLz88gALFtSjqgrxeI4bb3yWnp4pOjt7icWy+P0GjiPS8hNOmEZHRxt+v8Gzz3azceNL1NUFSCRyxGJZVFWhsTFER0crmzd3UVHhJZ3KMZWK8UjXE0ylYgQ8fvqjo/zTsz+nLzLCVCqKoijUBCrZsOsXDETHSFs5/mVfme3OOxYuLtMClXQ+8Sxbn/wTf376LzTW1TMcHwfgqSee5J2ndvPcc88xa0bRSiDLyMgITkFaunPnTt555x2+9KUv8T9p+dhz/fEiSzIp4HnzZpm+VlW5DyRO9PTTxTtdNIItXy7rF8s0+/pgzZpyh9XWrfDEE7B8Of1HjtB6yinMbG0lFI9DJIKnupp9R46wYf16Hv3lLxmzLEI+H95gkNd+8xsqmmewu9/DF7/4VUzzCIGAyVe/+hCrVp1Fe3vZ9jo6Kh40x5ELi6kpubAoJoQ3NQnG2bdPAPL06cKCL1kiFxz5vIDym28WED04CCtWyFxB0YPW0CD7HhsrV3bddx9UBGyMVFwY+3yeA++8zSWXXsbR518SIPxBL2de9Q2u/c53uWjBGcIoq6qAXtvmzE+ez7Xf/z4XXXSRXNkVq7pyFkxGobaSUhhIIiXMtG0XupQpb5NISWJ575D4rU0DbAfbVMXbbOdRNQOtAMZc1yWXimJlkyW/c/6/VDGNHd5HzcwzMLwBVE0nOTlYknKPvPsi3sp6Khpno2p6Ady7uCikJgfRPX7MQCWDb+2iYc4nsPOZwv5Ow8qmMQMVaIYXRdFw7LJP2AxUMtK1l2nz5qEWcgDGXnsNf2MjqaEhEn191Jx6KpmxMabNmweAahiMvfoqVSedRHZyEtU0SfT24q2uJjM5SbC9HX9traSI/5cqr+GuLmpOOYV3f/lL5l5xBZrXixkOo3k8vPyTn3B02zYu2rEdf2QYmmcUQk80YZFtC3ST/t5jtJ54EjNnzCAUDMDUOJ5chn0fHGHD7bfz6C//lbFIhFAohNcweG3n0/hffJpP/OJJspaNqqnU+H3cc/dmFsyYDhWVsv94FLKZgifXK0ni238nPdgen9w/MYJdNQ1HkyA6K5vCX90ErkNk8D3SU0M0zj2ToYMv0DjvXLAtUpFhdE8AM1CJnU0VfNbDeMM18hnaNrrHj2PlycRH8VU0gKpJt3m3+OhNfwUKCsnJAXpf/Qvh+lk0zztXaro0veT9bpizEiuXwuMJyT9hIoGbiAng1HWYmhQf9vmfhlQSZ/cLqOdcIOnfiipnlG3j2jbOc0+jLlkpJ73pEQn300/hvvtGya/tvP06VNegtrQBCk7/UZT6Qsd0LoPz3HbUZZ9AqarBnRgrHQuaLsxz0fvdNgPXdSWozMqLb3rFOeJ11w3x15umTGZk0hLAhkj+mJrE6fqb1GhVVIpnXNfLnd6qBo4tTLvXh6upKLZdqvpyuv4uEwOui9N/TALdCp4WZ+dW1BXnkA2E2fHss7S0tDB//vwSEC56rCcmJgDo6upi+fLlxONxWlpacF2X/v5+gsEgVVVVWJYlgXSGgCEZBpKlOq7JyUm6urpYtmwZ1dXV5PP5kufaMKT6xbIsMpkMgYCXfD5GPD6ExxPC660ik5nC661C131MTBwq9F8vxXEshoZeobl5cSFaQC7Wc7kEmubBtjPE48MkEkO0tCxGUTQGBvbT0rIUcEkmx+jpeY7Zsz+FWWDIFEWhr28Pra1LC15sqfMKBusL6yjYniCHFZX7ENbZRfqufwbcg4DjfQhYHgfuANYjIWcU1qewzV1IN7UPAdgKEkxWU1gni1R7NSEgfhECrtMIWPdRrgJrAVoSMD4kwHl8XAB2bW25BdMpWFF1vewWKdZJ2rZMCt99N9x1l8xnF8dGn09+xsclkySTEdZ73TrZ/6uvymTx7t3wla/Ar38tY+NvfiPjXDHo07KE4X7oIRkX3XiMcKWK7tHlvd/TR/18Ce80gyZT3VN0buxk2c3LqJpZhZUWK4PhN4gei/LS7S+xfP1ywq1hUmMpAvUBnLyDnbN57ubn6FjXge7T0X06ydEkiaFEueIrnSdQG2Do1SHCLWE6N3ay4pYVeGZ4yCk5NFVjMj1JJBPh7j13s27ZOnb37Wb/wH62nLeFY9FjVHmryFgZNry0ofT47r7dPHrho2SsDEEzSNbOsnb72lLn9WNrHiOVTzGSHGEgNkBruJWB+ABLWpagqzouLo7j0Bfr467dd32kyuvW52/lnvPvoVJTxW+tKPD2PwuD3XCe9FfnY9LT7GuCA9+FvieFVa5dJiefnREQbIRg4C/Q8lnITYKVFEb4nY0ShOZrkK5rXBjbDb4mMq/dzhe2jPPOB/343HHqfFEeuWU1x130K77xtS+z+9UefD4/wWCI++6+kzNOrIdgC1//9nfY9dxz1NbUAi6rzjmLzXfe/tHu6+LJWVoK/ugitij6tetOoTBoFzqyTbkdOyqgWvOULndwbIgdK3Rle0Sqbfhln8XKrZWbBVTjCuhOjQoYL4L9XFKYbjMoDPfwPkn7rpxVCF8bkMd8tQUmug/CrSINP/osDO+XxHAnD+EZsOvycjXXuT+TY1F1iB0pe70T/cSmncNLnb3U1gaorvZSU+Mnn3fYv3+A9vYKvF6dqiofpqlh227hO1Ahmcxx0027uOGGpdTVBXjzzRGWLGnBMFQsy0XTFBzHJZHIMTycYHg4QWtrmL6+GIsXN+M4MDKSYPr0Sj74YIKRkSRLlrSgaSqu66KqCrmcjScI//Sh+q1/PO/bH/n7B+d8nWg6wSNdT7Dz0B4unLOcW879Fjk7z9vD3TSEamiuqKU/MsK9T/+KR7/5Y1rb28ioFtX+CoK+ANv/9izNVXXU1ddRU1NDIU2Ev/71r0ybNo1f/OIX3HnnnWiaRlNTEw8++CAnn3wy/52Wj3uuP17+75Z0ulwVpSgy2tbUyAjd0VEu3Swmm8ycCd/5Tjnhq7FRmOvNmwWF9vWVU1JuuUXo4WRSpsDvvVfW8/tl/5GI/F60SJ4/FCJhefnWFVopzOxf/kWI7WhUwPTrr8ts/fi4PNWyZfIS3nhDWGqPR56qrq780t56S+YIDENezpEjMjdw111y8fD228IEmKbI5YrP/YtfyMXLh8PPgkHwmTZaPovSOwRtjfzDld+mOhji/gcfFLY6k+PMC1Zz7bev4KJLL5H7VFUk4H3DBeC9los+85lyGJrjFsKsKK1Ha0MhFM2hxFBnsiIFDwXKvdeuC8m0gHBNxcYhm5iSQLMTV6LqOlY2jWZ6ZdCBQoCIip1NYVs5zGAVrm3hOlYJaEkvsoWdy6KZHlDES6tq4rvGdUlHBtG9QQx/pcidVQ3XsXEdm+F3X8RX2UCwdjq6Rxj6fCZeAvCpqQFSU4M0z1tFPi4TOqpp4lqW+HbzeVTDwM7lyCeTmMEguXgcO5Ph4GOPMfeKK9D9fsyKClRdJ9Hby8Gf/5y53/42gdZWrFSKfDyOEQhgZbN4q6pwXZfM5CSJY8fwVldjhMMf2V+guZmxV16h/rRT0abGJNDs81dCIiYscrhKPo+edyX5OxgGX0CCxqbGoKpWwPD5l0JlNfR2w8zZ0POebDutTj7nnveEoa5tkgsKKw9//De4+GsC5BxbUsEPvw2hKmHMgxVyDkQnpeu6oYXk1JAEj7kuqcgwhjeI7vGLWiAVITCtlfHul6k/cQWKoqDoJvlUtBwyp6i4dl6+CqJjeMM12LkUY90vl4LPbCuLpnvQvQEcK1/4jAv+X90kl4ow3n2A+hNXAC6q7sG18+iKgZvLCii2LQGNFZVQOQ3FktwAZ3gQtalF6qocR8Cox4M7PCiVXMd6oLoGpaFZJh08QtG5Q/3/36C0slrYiWxW1i+UAyuKitPbI2zxvk7U1ReV+rOVcAVO5/NSG1ZVjf2XP3wktMzN58RjrumQywpwjk6VtnFjEtamfvFbKOFKYaWLx7dqDUqhjkvx+nAzaXlPDLN8MaoouJHJ8kSDqsr/XzqF/dNNwmivuYR88f8XAfUCLvsIBoNUVFSQSqXIZDJ4vV78fj+WZbFr1y4WL15MKpWira2txBxMTU2VgHggEGBoaIiWlhbS6TSPPvoos2fP5lOf+hQTExMlsD1t2jQikQjRaJTm5mbAxnGSGIaPaLSPaLSX5ubFZDJTWFaGaLSX+voFpNMTdHZu5Lzz7hXpcDaKxyPJ4jt2fK8UdGbbOUAhlRrD4wmjaR4ikaMkEkM0Ny9G1724rk0+n2TXrnUsW3YT4XArqdQoL764gZaWpZx88hfQNIO+vj3U1Z2MGmqiX1EIIeB5IwKeZyHA+mUk3TuAgN4e4BykB/t9RDp+K2XmuQLBPFkEML+BBJrdAaxDWOoMwk7r8s2NjYSopZE08WZgAFiZEyXvyIiEZ3q95bntYtd0NCoTvX19kh3y4bHoxRfh5JNlbFu3Tlozm5pkP5mMnFrF+4uBZT//eXkSef16AfaBgDxPMfSzOE729cnY6PFAIuFSEXYhnaF/Xz/BxiCV0yuJ9cbouruLVZtXoft0stEsdt4mn8rTebsEkFXOqGT7d7fTsrSFk79wMnbOZvj1YUKNITrv6GTZumX07e6jb3cfa362hsRIAkVV8FZ6Gdg/QLglTKw/RtXMKnKJHKnxFLUn1eKp8OD6XA5PHaYv1sfilsVE0hF2du/knJnnUOWtwnEdRpOjpa7r/mg/l/zhEp667CmWti5FVVRsx2Y8OU5dsA4Q0LO7dzfNoWZmVM3AdiQRXVVURhIjpPIp+mJ9LGpehFf3YjkWE6kJYrkYreFWIpkIld5KcnYOVVFp8AZRHEtAmWODmxdmuepUyI5KuNjcW8BTC1OvSs1WUd6NC+Nd4KmXgDI7XQDbFTD1Ovz9Ami7DOb9RMC6a4FigpMhM36I539/G6uv+g+U7CgP/dPXeeJljRf+9jxbt27jgtWfRM/2se2Fd7n6mus5uudx8NXy9es2sHDBfK79/vcK4WShAvscKQeXqaaA1WJAmeYR73Qx6Kz4WMVMYagT/QWJtybburb8dxS/03KxQoiZW16nuI/w9EJ6uCte6eSg+KdXbi5+G8q+Xri2HGyWT8L+O+C0Gwv91LWF6xZHxofhQpBZ5Sxhp/dt/GhY2uBuYa9jx0Rm3rhYlAeRHhmju26D7q3wqSegYREpN8QHhyNs3NjJffedz+hoko0bO7nxxqVMn16J16vjOAJ2Dx+e4M47pQe7ttbPk0++y+7dfTzwwCcZHIxz5527ueWW5fh8BlVVXrxeHcty2b27l7q6AKOjydLvxYtbcBwXn08nkcjhui7r1j3HddctoaEhSCBgYNsuHr/CQHyUf9n3Jy5fcjGtFfX0Robl78UX4TU8+AwPE6kov9z3Z2488x+IZOL8Yu+f+Nbii2gM16AqSgmQ/+kbW0pA/PzZS7l11eX0R0bKPdnVTfhN7/8/9PHfcvk40Ozj5f9ucRwBz1dcAR98IPLu8XFhqIvJYPffLzrrYjTpI4/AF78o2x07JjrqYLDcdT04KHRwX59osH0+0Ws/8kiZCk6nZcq9paVc/9XdjTnaz623uGzfLoFkrvvRWpGTTxaw7fMJJt+7V26ffrqw1EeOyMs4dkxk4x6PMNKaVg51KdaeDA/LhUdLQZ2lqh9VxTtOOVTm3nvLsj1VBSWbg5YGNt55B4e7u7njzjsFqdu2sMkK0oWdTEM2LyBY06ClYI4z9TKwLi7FELS+YfFY90kQFTkLevrlyX0ekYArBWDd0y/S86C//Hm6LlY2KUFiuAwdfAFVF8ZJ8HKOdES8z5opdVmK6+A6NiPvdeI4FsnJAfKpSKlaSbqPY6i6ievYEljlWPiqmjE8QfKpCINv/5VcKlLwZ6k0zj275M3Np2OgKCVpuqpL6FntcYuxc3lyiQSOZZHo7+eVO+7ASqdRdZ2xV18lMzGB7vNx4PbbsdPpkiS8GFCmALgumt/PnG9+E83vR1EUdI+H5MAAmUgE3edj/49/LGnhdXXUnnYa/oYGdL+f1OgoA3/7G6nhYVzLouqkk1Bct1zFlU4JcA6GBQR3HxQPtWHKIGtbUNsoku4P13d5vOXqrBknCgiPTsFvCn5qrx8mRuA3D8n9F31VwFsyXlA6aFLR9ewTAiwPvw3D/bLfyATK3r/hr27CdWysfAZvuBZVM1A1A1+4lmDtdMa7X5Zucd2Egv/X9IWoP3FF6XNEUVFVHX9VA46dZ6z7ZaJDh8in4ziOxXjPAVTdIJeMMPTO38hnYqSjo1i5NACKqjNtxqlY2RTD775IPh3FsQSwfwRYB0ICZHNZed8MQyTfO7eKh9nKlzuf6xpFRj7zBNS2GRCPlh8zPXKfYaKdsxosC/uZP6MEghJ8pqkQjxXWj6IUOqOdvqOoze04e/4u4Wj5HIQrhbEu1V79FVwXteOsUj82ivpRf/SubWBZKIGQJH/rOmrbDOnybmkHw5DjC4XRzl4NriNy8nwOZ7AP/AGRrPf24E5N4PQdxc3lUMKVaOd/GkwTN1tARsFQ6Tgsl1JV1sTEBL29vViWVeqjVhQF0zTZt28f+XyeVCqFqqosWbKEl19+mba2Nmzbpq+vj2g0SjgcprW1la6uLhRFIRAI0N/fj8/n46qrrmLFihW4rktXVxcHDx6kq6sLx3GIRqMEAgF27tyJqroMDb2KbecJButpbl7EwMA+8vlUAWgvQlU1YrF+li69AdMUn/ULL9xGPD6Eqhqcc85GTDOIZWVwXRvXdVAK56SmmSSTIwQCdWQyU9h2hmRyHNMMccEFD2GaQTRNR9f9XHjhI8yd+3nS6UkSiSjXXfcAp51+JqctXMiZq1bx2uHDBAD3G9/gcyecwNIFC1jZ0YH98suMI57sqlSKXV/8ImccdxwLTziBJ554ghsQj3YaAc9JJAjtRuSSfhkwA5GOjyLS8TQC1EFk4DmEsTYR8D2AeL8xBRjX18vQ8cEH4qwaGZFxb3BQBGHHjolcuzgWFbNHli+XSWfXldvF4bbIVA8PS6tma6tEm/z85zJ0bN4sIrP+fmGyHafs01YUCmxYeSI7kYBUSiFvgW3ZtK9sp3J6JZqpEWwKcv6952MGTZy8w9g7Y5gBk0BtgI6bOwjWB1FUhQsevoD5/zCfgf0DxIfi1M2ro+vuLlo7WjEDJnM/P5eOH3SgGiqB+gBWymLH1TsI1AaI9cdoXtyMt9KLt9JLqCnE87c8j5WysByLvlgftYFa1m5fS8AM0NHWwW0v3MZwYpigGWRj50YeP/g4G1/ayOLmxTxx6RM0hZq4ctuVfDDxAWkrDQocjRzlim1X8MHEByxsWMis6lkkcgmS+SRDiSESuQR1gbrS812942p6pnro6usiYAbQFI0DgwcImAEm0hOoiopX92K7FPIXZFKbiVdFxq37wd8Op26RBG8jKH5rzQdV8ySAbP8V4r/OjAg4V3Xptk4PCfhuuwxOulnWSfSIdzsfg8wY3qrpXLD2cRRcCM5iyWX3cLRvGF75Pp/+1CfR8yNw8HaWNA8xMDSKZVQKM+265WPVTGGhXfdDwWV9BZ91IfFbMwQsx/vlcfiQzFwpy8ftAkAuSqxVlZI2xBMWn7jmFSl6cf/p8TIQx5HrC7MCzn5A1u1cX5B5q4WAMa8w1bofTl8n3mgjAH9dK+Fm+ZQA64ZF4p128gKsi2Fphr/AXq+HwS5hr0Mthe0Pg+EVhvuMdQKsgy3wwnVYtsvGjZ1s3XoITVPwenXWrVtGS0sYr1cnk7Ho7OzlyJEpgkFPqQc7Hs/y+c/P5eGHL8DvNxgdTbJlyyqam8MEgybXXruT7u4pdu/upbk5TGWll8WLmxkdTVJbG2Dt2u1YlkMiIdePgYDJ9dcv4d5796LrKum0RS5no6JS7Q/znWWXUOUL4eLSWlHHj1ZdTm2wipDHj65qNIVrWX/uNwmYPn61/y+lnuvJVFTqugr1XEGPv3T78iUXo6vaR3uyi/3m/48tH4PrjxdZiuXRxfjsov/56FFhqI8ckVG3o0NG/e5uGWmvu05G3uLIfPQovPKKsEVLl8IDD0hCWCIhGuxYDN5/H666SqbmBwZknx6PoF7DgE2bMH0ax7VnaW52ufJK2SSREMw/NCTyuPr6cvf0vHlyITExIYfj9wuD3dgoTEAkIi9hzx7ZNhiUQLMvfEFm6IsWcNOUl97eLtLvadMkhbUYKnPXXeWANMcB12Ny9z9v4Kkd29mxbRv+ULAcTlaUOGWy0n9tGmVZuKfgb3IRBtp2BDzn8oWBBpGR11VL9zWUmeq8Jb3YjlueDTiutdClTcGHDThg+IJk4uOoqkbDSZ9AUVSsbBrXljCxYgiVW0iLdh0HVdOpn72cfDohqdGeIP6qJqxMQvqQM3EJAC14cp2Cf1TRNAxPkJqZp5NPJ3CtHNHh93EdqwT68ukECi4Nc1YSbji+8B64qIoHK5HEN20autdLZmKCE7/2NQHWr72Gd9o0UiMjKKrKqTfdhHfaNGpPO42ZF13Eabfcgp3LkZmaws5m8VRWYoRC6F4vsaNHGXvtNarnzkX3if92zje+IUngloWVTPLa3XeTmZig9pRTWH7//VTNmUNmagrNNIVJvfCL4nUOV8Hx82BqQhK8j58HNfXCPNuWGPkdB+IRkW+fsRJWX1b4nGxZp5guPjUm4PvZJ0Xivf130nXt9QngTCXEq/2bh4UNnxwth5kFK+C5P8rFxXEnw+KzJMCs0FGuoKB7fCQnB7ByaQxvkIY5KzG8QXLJCMPv/r3kdS+y2KomIVypyCAAujdI08nnMP2MiyVZ3BOg4cSVoKhY2QQ1M0+X1PHKBlRVJ5eKkktGMP1hTF+IhhNXYnjDqLqB41iSiG3bAja93pI03J2awOk9gqKqqEtW4sbjKJoudVX7u1BME+2Cz0qntYsElbVOFzY7l5X+6HxOgG48Kgnhe/4ucm/XFZ/3obdxE3H5nwiGITKFm0mjnv8Z1IVnoHi8kky+7QlJ8r70a6gdZwkjXDUNbc0lUFklcu5YVI49FkVpaRfwPjyAUl2D4g/gui7aBZ/F1XQB0X1Hhen2il9fXbJSQtia2yEawRnolWOtqkFtnSHJ5vkc9s6tEI1I/3c8hqKqheOoJmfbJWl2VVUV9fX17Nq1C4BgUGTSRW91LBYjn88zMDBARUUFq1evJhKJ8MwzEjBTlIC3traWwsm8Xi+BQKCUPF5ZWUl/fz8dHR3MnTuXFStWANDc3MyePXtobm5GVTXC4VYGBvYDKplMhECgruC9FqbZMPw0Np5KKjVRSvM+dGgryeQIuVycfD5VqOZykUsTB6+3ioGB/UQiR2htXUYyOUo+n6S/fx9+fzVTU91s3341huEXr7+dZWrqSAnYDw4e4Bvf+AoH3n2XhW+8wchnPsMPL7+cALDs4os55Z13+Lc33uBHP/wh3730UpqAlcB37r4bj8fDXw8f5nc7d/Kz736XjRMTpBFQ3IEkiW9EJN/jSAVXHmGymxGGuh8BzwXNER5gD3AMYb4XI0x4mnLcRjRabqu44w4B28W/N24UBvnLXxbftccj24yNyRAeCMhjixcLOz00JBPIIyMiNlMUGc8SCVn/0UcFeK9cKTJwkHFQ02Sf+bxcBoyOCrgfHBRBm6bCX3/4V3LxHHbWxrEcNEMjE8kwdWSKHVfvINgQxHVchl4dQtEUnrnmGaYOT9HX1Uc+mad1WStVM6swgyarNq+itaOVF257gcRwgsoZlQV1sYLm0WjtaGXfA/toXtyMZmjgQrAhSKAuwCfv/yS6T0dzNRY3L2YsOcYNS29AUzSG4kPcsPQG+mP9OK7DPefdw7tr3+We8+7B0AyWty0vAe5NXZuIZWLUBerw6B46Wju4d++9RDIR8k4eTdEYTgxz2wu3MRQfQlEUVravpDXcysq2ldy39z4W1C8gYAaoD9TT0daBoRocmTqCWwCOjmujpI4JUI5/ADVniAd6/xUClFEkcMyxBDTrQdArJMBszjp4/wGRiSeOCOM9bZHIxN08LHoMfM0STJbqlzRyHKnwSg+LBFtRIB/h/gce4jMXnA0LN4mk3N8MJ63n/id7uGD1avSa2QVvtcP9DzzA/IWnsOYzn+P1A3sEICsICx1sKid+m2EJC/twOFlRsu26hfVbRIZd9FIHGz/qwy76tF27IB03ysDdVzBgRHukb1rzCFh+4QZh8c+8R3zXRhBO+gdhqXNxkW0Xu6tdR/zV++8QEF4MObNSMllxxrpygJlqwrmPyESCvx4oTBp0b5VEcl8tjL4GFbMk6CzRD03L0RSFdeuW8cQTlzI0lOCf//lFGhtDmKZGIpHjuut2UlsboK8vRm1tgMsum8v69ctpaAgyOppk375+slmbZctaGR1N8t3vbmdkJMnSpS3098c444xmBgZkW8PQSh3Wjz9+EF1XGBlJcu21Ozl8eJLGxhB33XUufr/ByEiSV18dIu9a3Pv337Dn2JsksilwXUYTk/zzrl9w/mNreXu4G49uMBwbZ+Nzv2QgNsp1n/gy589eyhVLPktdsFqqBQ2TH57zDYKmn0pfiO8su4RKr9gRbjrrqzz/nUe5ddXl6Kr2v8CN/xeWj2XhHy+ypFIyqhc1YaoqSPO735Wp7aeekinxREJu79kj9O6uXeVS6FtvFcTr8cj+QEZ3vx+qq2UqPZcTmvmSS+DTn5ZEsQ97t2fMEHQLJIN1xJI6tg0HD8Ipp8ghaZocnmUJyL3kEgG8fX2ym3vuKeNTkJn7G2+UC4+pKQkvv+WWUu02t99elthJeJpsl8sJcC++/GXLZL8DAwVfGza/+9c7+c0fn+S57TuoMjxlmbYLODZnnn0O1157LRdd9Bno7hegrAC2w5nnrRLP9ZpPAa68sPePwfHtcgCxhLDTmZyw2cV9F3uxLbvcde0UZ3SRMLRZLdiKS3JqCG+4pgSiFNfBsS2G332RmllnkE/HRTZc3SKe2oLPOh0dEz+2IrJTK5dG002Uwsx0aqrg3fWHJfEYUDQD184Xtq2Xui4gm5gqdWmbwSoJuFJU3A95gD2BSrKTEdLj4xz693/ntFtuITU0xMHHHmPO179OJhKh7rTTBBBnMkwdOsS0k09G83iws1lysRhmOEwuHkf3+dB9PgCcnMziTrz1Fv7GRjxVVbx+990svOGGQqq1Q//zzzN64ACLfvxjFFUldvQomfFx/A0NpMbHaTr9NGEoi8EqjlX2mhXDzQo9xFRUF7zZennGP5OCvm5hubf/XqTidU1SuXXhF2FaPYwMQGyyLCe/4PMwNQ6P3A7fuUWY78MHhcGeHIPWmSJR3/477K9fh+PapKOjpV5r8bGfgpVNE6hulvfCsbHzGWG1VY10dBhvqA7VMMoyb9vCtvNoukk6Oo6vokaAt+tg5dLopr8k6S92nvurGgrng4/xnleoPW4x+XS8dH6orgpT42Vgqqpy1a6qKK6L6zi4o0OorTNwo5PlbuiqafLPWJSBF6o6FMfBGexHqW9AMUyc/mMwNYEy8wSZnEgmxO+syJeEm0lBPi/+7mVnQjAkagPLAtdBMT0C8ANB3GRCGGxFRbHyOIN9KA3NkgCuqJDLFGTmHjmHB/tQ6psgGcdNxFHCFbhxSTXHdaW72nUhn5fL66L/2uMFVRHgnc/j4ooEPhCUFPH3DkJllbxfmfRHvN9O5TTSuRzZbBazUHuYSCQIhULoul6SiRd/crkcmqaRSqUIBAJYlkW88B1b7MjWNA3Hcejv76eiooJoNMpvf/tb5s6dywUXXEA8Hi9JwIuBZ5qmlfatqnn6+rqoq5tHPp/A4wkzPPwGTU1nAE6hq3ozq1c/iONYDA4eoKFhIQCmGcZ1LRzHQlXlXBsY2Ed9/XwADMNPMjlGIFCLoijE40P4/bWoqvqhXuylJJMjtLZKkric77JPw/DjGl4+0Ex+8MqrvHPJJbx69Ch7gUuAJ4DA+DhnNzayJ52mRdc5d+5c7v2Xf8FesoTFwGmXXcay887jtssvpwphnGcgzLUXmQqoRKTerYi/urZwfzEeI1n47UEAeCGKiRHEq62lZV4OBMRu2iRNFjNmyLzzvn3SWjF9OoXPrlzSoesyV+31lrMUczmxQk2fLvPbRQn4D38ok8fFZo1ipEoxDC2ZlLEym5VJ6WnTZJ+/+Y0M+w8/7GJoDlY0SWIkQWIoUZJrF33Rj85/lDmfm8N5W85DURUykQyZSIbkaJL6BfWkx9N03d3FuXediyfswXVc+rr6ePyzjzP707NZ87M15DN5UqMpXrr9pZJ3W1EUprqnSIwkCDeH2b1pN+fedS6G3yDvzeMqLgoKeSePoUnw09U7ruamZTcxvXI6RyNH2dy1ueSH1hSNo5GjHIseY1HzIny6j4yVYd/APhqDjdQH6wkYAVRVfKtZK8sf3vkDM6tmsrBhIY7rEM/FCXvC+HU/KUtCH+O5OBWeCpK5JBXeCnRVZ2//Xs5vX4a6/woJLmu7DM54GF65tuy9NqvkQ8gMS7L3ws3CwI51SfCZv10+jLFO8NZBZlQSv51sIaQrCZpfPAYHCx7s8d0QnCXbH9zIxmdq+MtzL/PXJx/Ef+QemHMzBGfw69/+gX++425efO4Z6gN5qJjFwLtdNFYoqIE6/vi3N/nu2rV88M6bBCtqPioF1z3CBhe7sMPTZexTCtcm+aQAbpfCxduH2G4nXwb+Ja91U0FenheQW/wnslKS6u2phOEDUDtfGHU7By/dDCvuEsb+5U1y2/DLJEEuLn52IyQg2nXkeHIJ+OApGDkAZ91PSVaeGpW+aysD429CjXwXYQTkMSsloNq1IHpUwPai9VAxnVw6zUQ6gGlqfPe72+noaKWjo5VNm7pYt24Zu3f3sX//AD/96QUynikK6XQew9Do6uqjtjbAli17uOWWFfj9Ol6vjqap+HwGfX0RenvLHuvZsx9i//7LSaUsNm58iUcfvZDvfW8HixY1c955s6iq8hYC0Fw6O0VKPv24MK4uREwylybo8ePRTQYiowQ8XkKeIKqicPtz/1KSet9y7jcL1z/QHx3lVy//hW8s+jTjyQgLmk7gjcH3qfaHCXn81AQqSeYyjCWm+NXLf+HyJRcxo7oZQ/svCs3/5svHsvCPl/+7xXVlqnrDBvny8/tlxL71VgkmW7hQ6ONrrxWQ/dOfio76y1+Wqe+tW0WvVozvjkZlv42NMuVdvH9sTFDyU0/Jvl23PC1/++1yRRAKkQtV03NM4/XXZaBftkx2cfXVQn7HYoLbTz0V/vQnwe3FdPBgUA49kZDfd90ljzc0CLN9441y27IEkG/dKocQDMrFxPBwoVrWFPb6c5+TixNdlwuU226T/eRy/dzwj7cSiUQ46/zzWHj2J1i8dClkcmy4YR0ts2ax58DLXH7FFbRMn86YR3R2G37yT7TMmMGevXvlsfY2xgaH5f0q1GjR3ScMeHEwMgw43Fvo0VbLwBoEhOftQm2XKh5tRbzZ/mnCKjlWnnwqUqjgSuGrbBBpdnUzlc1zUDWDmpmnC4BWNfxVDeQzMQbeeo58Jk4uGcHKpnBtkYb7KxvQdLPAZKYYeueFjySB97zyDBdd9BnmzJnL4o4z+cZN99A3NA6uy09uu5U5c07C9AXZ9dIrsh9A9/m45ic/4Yq//IVFy5fTcdZZHDZN9ECAutNOI9Hfz/6f/ITM5CRVxx/Pq3feST6RQFFVPFVV0k09bRqax0NmbAwrmcSxLCYOHqRq9my81dVoXi8LrrkGXJfX7r6b9MQE7WvWcPqtt6IWgElRZp4aHqb6+ONgdBDl1w/AxLBIwaNT8r4risi6jxwSYB0Zlz5iVYWxIfj3+0W+7boSiLb998JOxyblM/7id8uhL7WNwoSHK+HSb0NkQiTk370V2o6T52w7Diqq4Pi5AiJ3PiGgW1FQVK3Ua136fHtewV/ViGPnRTKeTZJLRrDz6ULKdwBF08gmIgy/+yIg+8klRfYVqJbk78G3/1o4B6K4joVu+vBXNTFx5PXCBIyKf1oLhq+ChhNXYmVE8WB4A7JP18WNx6QyK52SiQpPIVwvmxGQWdeIm4jhRiNSn5VMSvhXMiEVXaoqkxbRCPaOP0oHNGA//SRKQ1M5OTwZFwm1ooJtldLH3XgUpW0GSqgCxeOVfSuKhKzZtvii9/xdfNIgfup0ShjmZBx72xPyGYNsb5gohonaNhPF65X91jdLQnjrdFzHEdCfy+JOTuAM9ctzAs6Lz8nFnSP1Y/aubQAiJfd4UXQDZf6pKOEKYbBND4o/KGz+7hdQXack/04kEqiqSmVlJYZhEI1G2b59O9GoJL7atk0uJ/47n8+H4zioqkpFRQXV1dWljuxIJML27dsJBALEYjHa2tq4/vrrWbNmDZqmUVFRQWtrK7quk81mcRynFIL2zDPPoCgara0dJJOjhUotg7a2Fei6B1U12Lv3Ps499y4URSGTiVBXN4/ShSwOkUgv/f17sW15j1tbl6KqBkNDrzI52Y1pBgoTBcnCv57UkrW1LWfBgq/i8YSpq5tXSCOXznBd92AYPhwnTzrazywgfP/9nP+Zz7AXaAPeRFjoP9x/PysuuIBqXScA9PX28vP2dmqBCPCZ6dNp6u1FQxjpEHLxNBNhqVNIongtZSa6C2Gs7cIPCKA2EYDtFn5qCvuybAHL4bBUQv7iFwKsDx+WYffUU2UCOB6XU9frlTmqyUkZy4oTyimZS0JRxArV3Cy3AwEZ+4JBAdaxmNw+4wxhrROJcvVWT49MRKdSMheuKBJ49sgjkMsppOMWnpCH6pnVtC2XyqzmRc0MvjyIGTS5rv86LnzkQlzHJRPNYKUs9ty9h3BLGDNo0nmHJIcDZGNZEkMJGhY2cNlTl7F8/fISmHrp9pc4tPUQnpAH13KxszZVM6toW9mG5tVYct0SEqMJUuMpNEUjlU8Rz8XJ2TmZr1Y1Np6zkf5YPy4uGzs3sqh5EYPxQa7YdgWHpw4zo3IGrRWtHBg8QDwXZzw9zoL6BYylxqjwVKCpGrZjs7d/L5Zr8aV5X2JF24r/hcnWVA1d0RlJjNA92Y2hGtQH65lMT6Kg0BRsoj8xjnvqfXDhe3DGo6AYkuBds0KYa0WTWqx3N0PNUjmDMqNy298i34HZcQHUmdFyV3Z2XG5r/vLvOTfKOm1fKFR6NXL3X3I89cTv2LH1D/gZlyowI8Tvf/0LfvKTn7DrmR0CrNPjkIvRfMJpqIE6CLVw8cUXEw5Xcuj99+XDKVZxJQpjXHg6NJwh3uriyZiNyWS0GSr3YbvItloh2Ew1yx4ERYVwm4BlKMvCszFKHmwrJWxzoEHWef5qSA2LvDsfF2B96nUCuge7BKyDeKNTw4UQNGDqffFmN3fAmfdKsNquK+SYcgnZVtVFYq4aMPpqQQ4ekE5rJyfS8v0by/3agNl1I5V2D4ausn79cs47bxabNnXx+OMH2bSpi1WrZrJ58yqOHo3w0ku9ZDIW+bxDPm+XWOitWw/h9+vU1wcJBEySyRyW5VBfH6K+Xuq3VFXhwIFvEwyaTJ9ewc9//ilMU+XBB1fzuc/N4a67OvF4NFwXUqk8p57aSHt7JV5TJ+jxY2g6/dFRJhJRdEWlvbqBan8FpqZjaBrfXnwxF85Zzrqzvoqmali2Rd618RkeFjafwH8ceJqTG2ahKyp1wWp+88oOfIYXy3FIZFMlafgv9v6JXNEe9v/Q8jG4/niRxbYFgT7wgIza114rI2xLi8SHflirtnGjTKUfOSIj7+LFMkW+YoXs48OGLVWVbTSt7N0uGsP6++F3vxME+957Yq4uMFq5LPT2KjQ0iIL8/fdl80WLBGcWAyq9XlGfu64czvLlckGwf3/5t8cj0nDLkjmC8XEB5ldeKRceTzwhTLZtC7A+fFiY8CuukLmAhx8Wr9qHwXh/P7Q0t+DmcnS/d4jXn/87r+/ew77du6F3iFsv/TL9PT1k43HGh4bof/MgtS3NYNvc+sWv0f/e+2SnIoy/303/+93UFjsAvaYMPrNaJS38cK+8WL3g0y76sR0HPihMZhTrt+zCfQVgjeviWjlcQPf4UFUTf3UziqZT0TSbhjkryadjpKaGcJw84z0HCr7qoULVUlIkwaYff3Uz+UwKRdPxVzaQigzjOAVZsabjr2pi8tgbKLqOppvUzDiVS89fysG33+C1117j059aw+Xf+ha5ZIRPXvhp/rL1j6xY3oGVTaLqMms99sYbbFi3jq4dO9j397/zqz/8get++lPeeOghEv39aB4Pc77+ddIjI+QzGWZ/9auous7466+TGh4mn0pJpzGAoqB5veheLzXz55OenOSVO+4gNTBApLsbgAXXXIMRCJAaHmbizTexMhmcXI65V14p/dinnYbp9Yrn+vW9wiRPny2s59Q4/OEXApJmzZXwrOPniX/XygvwLXquMym5KLrgC2WwHJmUWfrK6nIH9sQI/O5R6dBunVUoXj9ZgPXEiKSE6wagQPc7cMm34PiTIZ9DUVQBt3NWYudSVDTNpmneKhRFJRMbI5eOkU/HCzJumUjJZwSolHz5jkU6OiyAGYXk5BCqbtJ40pkFwFxDPpNk6J0XCFS30Dj3TPKZhEzApCIoisLwey/iDQvDaBf8+CiKMLnJeMn/TNF3CCKT9vpQgiGU1ukCMBua5Pwt1FTZO/4IkQncWERk3vGYgNC2GaCo4nte9SmRa+sGbmRC/Nf1TSj+IGrbTNS5C3GG+nEnxnFzWfFgezwSmtf5vOw3FpFkU9NE8QdAU1HClairPiUgV9VkH5MTEtiXz+FOjGHv/DNkkuA42Nv/CFZewLKi4ibjhdfwFEQj4vPO5SCbwel6QeTlhVou/AGwJTQJw0RpnQGug5vNoMyZh7pqDY6i0t/fj2maJVCtFcy3nZ2dHDp0CMMQ1q7ovx4aGsJxHBzHQdM0MpkM+Xwex3Hw+/0EAgFaW1vZt28fra2tRKNRdu7cyeTkJLlcjt7eXmIxkW4W9719+/ZSErlTOIcTiSECgVp27ryOXC5eAsPnn38vqdQ427ZdST6fxOutIB4fYufOa4hEjhAK1RMOtzA4eKAAnF0ymQjNzYuoqGjBNEVyr+vFYByXaLSP3t5OLCuD31+D11uJ49j09+8lGu1FUaQz23EsTDPApn/+Ce8dPsz5d9zBIsqBY5/89a95+vHHefixx6hCZNsAPwCqEcCsIGxzClhb+C1HIR7qALAFCUdrKOx7CSIdX4vIwF8BYkin9fcRwJ1F5OSHka940yxHn/T0yFfD5s3ivtJ1Abw+n5wu+/fLUFtRIWNaUVjz5ptybMGgbL97t3i4AwGRd6dScv/hw/Ica9eKq0vTRIb+YQ92Q4OMqcVUctcFw3DxBjUmDk/Qu7sX13FRDRXHdmhd1oru1XnmmmeYeH8CXPBP87N7825aO1rRPTqqprLi1hXMOm8WqiGXoJ4KD4bfoG1lGxVtFQzsH8AMmlzw8AVc9eZVWGmL/n39xIfibLtyG1OHp5j8YBLVUKloriBQH8B2bPyGn5AZkksa1+bI1BHW/3U9pzSegorKfeffxydnfZLR5Ch3n3s3s6pmYbkW7RXtdLR1oKs63ZPdjCZHWda6DMuxcFyHjJVhfv18fLqPkeQI8Vwcn+ErdVpv6tqE7dr4DB/tle0sb1tOJBPh6NRRDk8exnIspldNpzZQg5sdK4d9uZYAytBMYa8n9onke+EmaL1U5Nxv/iOk+mB8r3Rha37xYk9b/F+6slVhrg9cLXJyf4uA8swIHFjLPfc/zG93HWHXi69RWVVdqgJ7/Ik/cuvGh3lux5O0tTSUe651D/1DoyK1VnT27tnLxOQkxx1/ovxHeMJQf1qBpS6o5nIJkXRbGanfKiaCowhQpfDPZIaFmTZDkoIe6RawCvI6jICcbGZQti/2Xrt22Rf9yhZ57JyfCot80leFmV65WZ7r+auFRY/3CmBu6ijvNxcTEH7o8YJEXJHE70OPC0BPDsi2w/vl2J5fK38nhyTMzVMpEwBGUCTkn90uNWAAKzfje+dhNE1h+vRKWlpC/OhHK9i27Ys8/PAFtLWJ97qvL0ZdXYD9+wfweHRisSy6rnDffefT0/N9amr8fPDBBF1dfSSTedau3c7wcIKKCm/JY51M5gvf+73YtkM0muN739vByEiCDRvOxnUhHs/y+uvDGIaKz6ezZ08//ZER7vjrv1LlC+H3eEjmMxydHJI6rugIyVyG5opabjn3m0ymYvzTsz9nPBnFcRwe6XqCU5pO5AfnfEPYaAUmklMsaDqe8USESDpG0OPn62d8ivNnL+Vbiy+S8ez/seVjcP3xIhd6iiKj7ne+Iwz0hg3lKe9MRuTe99wD27cL2tR10UfX1sroHAiI3/rKKwWZHj4sSNXvF7Oyzyd/33ab/AZBuhddJLd7emS7a66RQLOpERYvcrnzzrINPBaTYHK/v1zF1d8PL70kEraODslSU1X53d8vv/ftk/uKoHrevLK9/I47ZLsZM8okem2t3F8k01VV3oKhoTLpvmhRYTxxChfFAZ8AX0UR9vm0uQVZVGGSIViYcDANOKFdwLBhyP0eQxjnDwrMtOMIqAaY0SwH4DjQPywhaZoqtVuhgEjE3z9W8Hm70FIv0vHCUpSIuq6L5vFR2TSHXDIqPmfNQPcE8Fc1YniCJdZRN32MHd6Hv7qJQFUzw+++iGPlCEwTwJOKjBSYySCOlSOfilDZdCINc88kn44xdPBvhKsb+PJVN6NoOvlMjFk1Cr39A5i+EIvOOJ3prS2AUkqhdm2LutNOo2n2bJF3x2JEJifFI/31r5fk3+/+6lf4Gxrw19URaGpi4q238E6bJkDa58POZrEzGd5+5BFSQ0OMvfEGdi6Hv66Ok771Lby1tdQuXAhArKcHb1UVgcZGqmbP5vW778axbQJNTdSddpqAO1XD/fyVcOevYNZJ8qYGK+QEPOfT4oX+j/vlynN8SDqup8bhc98Uz/UnL5UAM48XahsEgEcmYet/CIi2bUkcRxH/9pevFjm0qsn/petIsviskwSk/+ZhGB+G5plgenF8PnJ2RoLn0lEysXF8lQ0oqi6fTTaJN1yL6Qtj+IKFSRGZSDF8QSioFDLxcQEvngCDbz+HlUvhr6onl4yQigzjq2xENTxougDzcqd2gpqZp5FPJwDwVzej6hKmppv+go2gwM6bHpS2mbjJZOk+58XnxFucTUtPtKKIB1rXAVck2qkk6tIzQZeAMO2qG1HClTj9x1DnLgRNE/Y3GZc0caRDW2lpLzkl3FwGe+fWUtgZmbS851Ye17JQl52JetnXURqb5fHiRKDj4KaSBTtGRljzYmCa65YAsnvobQlp03TUJSsgXmC7E3FhspMJeQ2GgTrvVLESBIJoqy9GWVB4P3NZiE5h79omYNofEAbb9Mh7goJieojE44WEbkilUiVmWlEUVq9ezVVXXVXqws7n8+i6TktLS0lCnsvlCAaDJJNJhoeHpQde05gzZw6rVq0q/V3sw1YUhebmZnRdZ2pqir6+PkzT5PzzzyeZTHLSSSehKNDX10Vz8yL27NlCc/Mi4vFBdu26kXw+haIoBIONtLefRSIxgus6hMOtLFt2M35/LbruJRRqorV1Ga5r88wz15LPJ8lkIjiOzcTEYfr6ugAIBOoBhcrKVtraljM4eADLSpPLxUmnx6mvX0Ao1IDj5HBdm2w2xgMPPMK2rU+zdccOzvP7sREGef/vf8/oT37CX3btYlp9PTchVVwtbW28eOwYaSSc7OjRoxzf1kYA6cnuRy6ejgG7kURwFQk3SyDMdJGruR6Rji9FQHg78ADSh70WAe9BSvPK1NUJQ1zMDX3oITj+eHksEBBQbVmi5lIUUVEFAnDggEz+Ll0qY92Hs0mHhkSVVVMjY1o8LtkkHo+ovSYm5Pajj8q6y5bJfYVTBssqB4Wm0woOKp6wh+ZFzaTGU0T7ogy9MoSds0GBlqUtdG3qIhPLyHn54GrmfG4OL254kameKSqnVxJsDGL4DVLjKXZeu5NcIsfU4SmevuppArUBcvEc29dux0pbRPuiBGoDdG7s5ODjB+na3EX9gnoq2irQPJqcsx9irqPZKBkrQ3tlO/eefy+u6/Ld7d9lNDlKY6iRhQ0LydpZeqZ6uGLbFRyNHC1JyGsDtQwlhgBIW2m6J7t5dehVDNVAQWHDixvEc43Cw6sfZtsXt/GjFT/CUAyORI7w3e3fpWeyh/pgPW2VbaxoX8FkepJUPoVtpVFTA+CZJlLu7CRgCxv76nXCOqf6BSRqHmGe61aC6hEv9qF7JSEcRwBk1alw6AFJFQdQvdKHnR4SuXnqGKR66bdO5IYf/hORqUnOOnc1C0/vYHHH2dD7OF++4gdkcnk+c+k3WHjaIhaesYwJuxJUD1//5jeZt/A0Fp6ykOtuuJE//P53VFRWCZsc6ZZrDscqgON8gRVW5NrHDBUYaFcAdNGPDbJ9TsYMWbcAtotf2Ioq6xa3ySUoVV8tvkXA7DmPSBCZosLgHgHRZlik4Ps/BMAbFwvL3dwh7HXsKASa4OyH4OJtsPhHcjyn3SB+a7NCtnlliwDqD++rYZEAa81bDngLtwlwj/YI850eI9exhe6eCFdcsY2engh1dUGam8OsXbud7u4IhqGyeHEz4+MpFiyoZ2IixbRpfhxHxsXXXx/GshxCIenF3rixk8cfP8jtt79Uko0X/1ZVhdraAFdd9TRDQ3EWLWpmaCjBxESarq4+/H6DBQvqufbanfT0THHSydP4xb4/8UL3AabScar9FaiKwq9f2c7OQ3v45b4/k8imyNp5HCitO5KYxNB0FjafwGQ6ynBsnH969uccnRzi+Np2zj1hMZFMjApvCJ/hYXp1Ez9adTk1/or/cZLw/5vlY8/1x0s53eTKKwVRbtsmGrSi8euWWwQcB4Myavf2Clvt9QqynTZNjF2vvCK3x8YEoT7wgFwlFBns73xHjFvFfqujR2VfixbJtPm+feXtFy0iHc3yQaqZTZsU7rqrDKp7egT7//CHH/VRr19fYJRb5P66Orlg0XUh2OfNK2RoBMvd19Ony08+L4eQSMjM//z5ZT+bYQhzftdd4s0+/viCzM5ro2YyH63EKi6ZnADgUre1UpB0feh+r/nRuq1oQiTe7U0wFRNGum9Y1s3m4O3DUFsl4DyTk+c7VgDZ1WEB7pmcbDOzBVt1/7c1WkX7kp1NSfe1qpFLRhjvKdcuOY6F6a+Q0CsARfmot9rKM/zei1LtVHhc0YxCpVdWAqpUA93jw0Xh4k+uoGXmSdyzZXPJr3veJz/N1Vd/h89dchmpqSE8vmrsTI5/3LCBp7ZuZXxkhF8/+iir1qxBNYTddvN5FMPAzmSIvPce1XPnkksk8NXUYGcyArbr6sB18dfXo5kmruOQmZzECAbRTJPMxIQEpA0P8+4vf8nC669H9/lwXel5zsXj2NksqaEh6k8/TerWFEVY4/EReH4rXPZt+VxjEbj9GvjhvQKYX35RQPVXvi8nkFtINbWtwsWBJpLvd14VOfll3xaw7fEKaM9l4E//LlVcHq/871h5MDyyr/0vwPtvwT9cAz3vYZ8wl+TUIP7KBux8FtvKFHzWTTiWxcihTupmd6DpJk6hGm3kvZeIDL5L++mfk/quQtiO67oMHXye2Eg37ad9Cn9Vc0H6WxgjFJXU5CCGL0A+ncDwBTG8YaxcSuwEulmol3FLXnrd40dXTZiaEM/zeZ+CVKrkf3b7e6GqGrVtpjxH4RgVlLLfuVBfhWmWa7VyWcikJbxs+Tng8+OODqE0tsj6RV2sY8skhWnivncQt7cHbfXFuI4j59G2J1DaZ6GceLKEiU2MCchvaBIG2zBwkwl53nAF9pYfo8w7De2Ci0vvWVE54ALu8CBqUytuJoX96N0os09G+9RluAXPuXiy49LFrari9Q6FS350e8cfUdpmyvEoitgMcCGXk1Ak00uykCPgui7PPvtsqRoLKLHVuVyOkZERWlpasCyL4eFhQqEQXV1drFq1CsMwSCaT6LpOMpksea+LALqzs5Nly5ZRVVVFNBqls7OTFStWoOt6aZtifVdVVRWumyOXi2GaQaLRY2iayQsv3EZrawft7Svp7LyDZcvWUVU1k1is/0MJ4jr9/XtL/utsNkYgUIfjWAwM7Ke5+QwJLHZtXNfluefWsWTJdYRCTQwPv059/XwMw4+q6kxMHCaRGKS5eXFhv3sIhRr5wQ++xRtvOvznc38lXF3NMFKrdfrjj/PwLbfw1HPPMaO9nRRQmPblqz/+MTOOHuXeX/2K948c4XOLF/PMO+8wu6aGa5EKrxnAS0AdAsAXIWng40jQ2TpENt6LgPGWD93fhHiwTSCMSM1JwtEeGcOWLCmTgSDj0/79oqCqqZFx6MEHZW5uagoqK+XrZnJSHt+9uxxr8uMfy32GIYIzkOH86NFys2Z7u/ipFy4sD/u33lr2e0ejZe91Ngs+r0u6d5SXNrzE8h8uJ9QUQvNo5FMCngyfdKerukoukWPXTbtYct0S+nb3UX18NQ0LG8jGspIGnrF498l3OenSk8hMZcglc4RbwugenWw8y+hbozSd3iRVXK1hYn0xWpcJmLQyFijIunqWnJKjL9bHvXvv5cHVD2I7Ni8Pvsz8+vlYjsXbo28zq2oWyXySmVUz+d6O77GoeRHnzTqPplAT9XfX8+nZn+bh1Q9jaiaDiUG6J7upDdSyZc8W1i9fT2dvJ+fNOo8qXxX7+vfRVtHGjMoZuLgkcgmeevcpzp91Psl8Umq/lq/Hb/iJZWPMm3Y8hqqi2BnITX3UGz2xVyq2apYBCozvEXbatYTR9rWAt6bgqc4IDtX8kgyuh8CslPX8rcJ0/32N+LpPf1jGjlQfvLtJnis4S4D3u5th4V2FXmxVAK6dL3up7WyZfXZtue1S6K4ek+7qeF/Ba13zX+q2mgWEOrkPrVMLlTPLIWexY5JK7liF5/J89LntrHifUYVtVvWyHxpElr37Vui4XU5Oww9De8UjnYsKULZSUhv23JUCki/eJqnf+zYKUNcDkE9DsE5en6LL8VhpGHsdAs2Q6CtXcOHI44N7IdQsrykXLVdyffopYtPO4tvf3sbjjx/kssvm8rOfreHKK8t/P/zwajweAZzd3VPcfXcXmzatKqgxdY4di3D33XvYvHkVpqmRy9ncdNMubr55GTNnVuE4kMvZ5PM2Ho/OVVc9zdath3jiiUsL3dgae/b0MXduLZqm4vcb9PRMMjycZPnKFoaTY3gMg5AnIN3VwWlU+ILc/cJ/8K3FF1HpC5K18vgMD+OJSMGLLevW+CtprarntYFDVPlCTKXjtFbUUROsQlVUkrk0iWyKgMePCoS8ATwF69//pOXjnuuPl//zkk7LiJlKCT3c1FROO0mn4Z134LTTZGpbrnRkWruyUpDr1VeLdm10VH4XY7c1rVzKuX69oN1XXy0XZnZ2lru0Fy8u7+umm+C448jZKnnVi2VL/cf69cI4A/zhD3Kx8dBDssnSpfDZzwpwTibl95Ej5T7QxkY57Ndf/2j99owZ5fruD/eGJhKCa4rgemJCvGm//rXI5DQNfIaNlogLa60qHwrwcMUzHQpAXdVH09VcJD18cAxmtQgwn4xBIiUstaLITz5fBs7FfRS7rB33o/VdLpIgXgw5m4xCRRBbU8hZSamyMT3lrI6pEXzhWlRdJzk5iOELkU/H6X31LyVQRYHtBnDt/IeCzEbwhiXkKpeKYPjCWJkE+UwCf2VDia23sykcJ08+neCBx/6DbU9v59lnthPp2UN06BAVjbP5yvc38g8Xn8XX1/6QfCqObgaJH+vl3V/+kpO+/W263nyTW2+7jZdeegmPaWJlMry+ZQuzv/Y1Qm1tOLkckwcPMm3BAlzbZuLNN/FOmyZJ4T4f6bExDv37v7Pwxhsl3dw0SY2OkhocZNr8+eRiMYa7upg2f35pPc0wUHQdJ5cjOTxM1fTpqGODEC14oItvom1BXw/MOKEQkCIgi77DMKMgHR8bhqd/K3LwqTGRgydiwnbPOFHAuutKilE+C0//TsLOirMfHw44K/Zlq6p8/h4PZDPY/iC5TLQQLCYnuVPoYpXPzPkI2DU8AVBg6J0XaJp/HvlUpBRKpqg6rmNj5zI4jiWTILMWoXv8DL3zAjUzz0D3+MnExtBNH5rhRTM9pXA7T7AKtziRY3gAZJLFRljmJvEMunYeLFs6nE2P1L8pCkyM4yZiqM3tEkKmG5BOSof0+Z+WGqzO51GXnYkyrQ77L4+XOqjVT5wnk32ppPiSV61BMUxc15EAMdOUiY1kAqWyWlK8m1ul3zoeQ2luk0C3eBT8wXI/til+QHdoALV1OvbTT6Ke/xlIJUoBY4Qr5TkCQYhM4ux5UZ4fBMSrKvbOPxe85AmUUBhn999Ql50FldUotiXd3romDLailicjlp8DFZWl3m9ML4ePHSMcDhMMBrn//vu56qqrCAaDuK5LLpfjueeeY9WqVaW/TdNE1/USyw3Q1dXFihUrCAQCDA4OEggE2LNnDytWrCiFmc2bN48LL7yQeDxOd3c3Q0NDrF69Gtu2GRgYYGpqipkzZxIKhQCLXC5GLhcnGGwGHBxHwvGeffZ63n33SS699Ana2jokME8zURQFx3HI5RJomkks1o/HE8LrrSKTmcLrrULXPUxNHaGz83aWLfsBwWAduu5FVTWy2QTJ5AhdXZtYseIWdN1HJjPFvn0PsGrVZnTdy+HDbzN//kqmz5xJIBSSxG6Ph6f27WOWYTCtoYHstGnUId3Vf/zrX3l/2jSCySQ/+uY36TtwAFfTOGvDBvKXXcYtwEnAZcCjiLR7H8I+bwFuQTzXESTgrBaRmc9DwHQCYanrEcB9DAHlOqDGoPMlEYwNDMics9cr897FyeFimOcf/wif+YyA3nBYXFmLF8u6kYgMtUUftuvKaRyLyfoVFTLGXX65zKV/+csiRrNt2eb662UOfNs2CVDzesVWtW+fjKONjRAOuQz8/QN+u+a3zL1sLmseW0MukUM1VHSPjqIq9Hb2EqgPEKwP8u6T79K3u49P/PgThJpCTHZP4gl58FZ5GXx5kJYlco1q5200Q8PKWAK+68Qfq5oquVgOM2SSi8s5bAbl9vAbwzSd0YSt2Nh+m+/t+B7XLbmO9op29g3soznUTG2gluufvZ4fLv8htmOzqWsTP7vwZ6StNEPxIYYSQyxuWcxUeoqMlaGtog1VUUnkEuiqztU7rubxg49z2dzLeOCTD+C4DrFsjFp/rRyfotIz1cNdXXfxw+U/ZFbVLF489iK1gVrGkmOc0XwG1++8nn//1COo+UShnzoMU2+U+6lPe0CCzA5uLIWMoQCZcQHOuSj46gt2GgXG9khNlx6QcXe0U8B3MeTswFrpzPY1CTj+cJDaooLfGwSoF0F5oB0Sw2WwHGyCxKDIrj/SZW2Ww8ZwC8nenv812KyiMGnqFkPNwnK7GFqWiwkTbGXKAWOTh8BXXXjOjKSOB5tl/64twNZ1ZH+aVyYfioFmp98kYD1+rACe10OoXST4dkZk3o2LpU6r2E3dtBTSE3IM8V55ffs3wqIfQsUMAdt2GjJTwswnh0RSfsYPpGe7YiYc2yXMeGqUXF0HqbxBPu8QiWSoqvLh8WgcPRphw4aXuOmmpbS1VaKq8v13/fXPsmhRcyn0bP365fT3xzh6NMJFF51IPJ6josKDpin4fAaJRI7BwXhh3RXU1PgYH0/R3x+jpSXMxo2d3HLLCmbOrCQWyxGLZQmFTAIBg76+KD6fQVNbgIHIKCOJCeY3HS+p/KqKU7jme2PwfebWz+Kev/+aq5d/nmg6wXBigrkNs0hkk6XQsmQuXWK+1cJs4NHJoVLHdUtlPZqqEjB9/zvk8d96+Rhcf7z8n5dEQqa66+sFZd5yi4yqPT2iEVu8WBBmKiXT2sPDZYS6fr2A5EsvlWnzZFJG9OFh0Vvn8+Kr3rNHkPCxY+Xtpk8XYF1ZWZ6Wf+EF2L2b3M9+yUTaz+Cgwr33CmtsmkJC3XyzeNCamiTY3LLkpxjAUgTOfX2wZo0Q5T/+cfmljo4KsT42JgzBNdfIhcx558lFhGHI/vJ5qTApvgWOIy+rr08OtbLCobXZKfQrI6yzxyzXbeGKbLtvWDzUeeujrLXtyBWNppbTp//r30XWsLiftkYwdAHjIQFKxJLyvMV9mzoc7sNuqSWZHsfwBRk7vL+U7uwN1wozaOfQTJ8whQXWWTO9ElhW1VDwzeYZee+lUrK4N1yLnUsz1i37M/0VJCcGPpQUvQjTXwmuQ3JykIce+xW/++1v2fnMDmobW8mlIox3C0N+3ic/xTXXXsPFF38WFwUnkyU7NcXOz3+ehmXLmLd2LYvOP59H77wTo6uLOd/8JhNvvknDsmUl6bgZDqNoGq/cfjsnfu1r+Orr0b1erEyGfCyG7vej+/3Y2SyqaaKoKgpgZTIipVVVXtu0idlf/arIzN98E29dHcHmZhTA0DWUw29LcFk8ImB35xPwxe98NC3cLYBu3YDopASO9fcIwD5thVwV2zYce1/2FZsSgJ1KyIlmGHI7HoGZc6Tz+rzPSVVXkQ3/9Ffk+ceG5Bgu+RZ2IEhychBvuAankPKNC5n4KP7KJlAVUpODeEI1JX+8Im2nKEByUj47K5v+0Hkiad/HDvyRisbZ1J2wlA/+/qvSbd0TFB+wYzP87otMm3EKmu7FcSysTBx/VRMuSik5PljZJEyz68g/cCAoVgXbkiqrzudRl59dAJo2zkAvSrgCgmGcZ/6Ee/B1tLU3S7BZICgy8bYZYNm4mRSK14cbnQLTg/PCTqnqap1eSu/+MCAHV+7XCyA2n0MJhnGz6TItFwhKH3bn8wKAq6fJ/7iqyuO6jv30k7gHX0f94rdEot5ZANoVVRLgBjg7/4K6ZDlUTUMpyswVBfuZrSiNTagnLZD1dm1DXbVGHs9mBETnctgP3fnR/S87E6bVEc9kGBsbo7W1tQSepYZKlCXF7uoii20YwiLu2LGDZcuWEYvFSkngF154IY7jsGPHDg4ePMi8efO44IILyOfzmKZJLpdj165dLFmyhKqqKmKxGC+99FJJEt7Z2Vlgr4NMTByiq2sTy5evx++vYXj4dVpaFqMoein9W9M8aJpJLhcv9FgrmGYIx7Ho6+siHG6ms/MOli//IYYRwOerwnUdIpFjVFa2E4+PEI/309KyBFXV6e3t5KmnvsTFF/+atrblJJOj6LoHRdEYGXmTUKiZWKyP5lnnE1M1oopCGHgDCSLrA9ZQBssmEkb2MrAQAcIJJJisOEV6E9Jl7S/8nacMsKsK2w8Uto8hLHUWmEK82hspg/ApRCK+GQilBa/k8zLWFVVXmUyZdV63Tuaep0+XSeFi1Vax03pqSuar02l44w2ZEJ6aEjA9MlKeRD7hBJl87usTCXg6LQC9mF+Szco+k0k5HcfGZL9FB5nX6+Ihy/a12+lY10G4LUw+mUdRFLKxLGZIzsmRN0aomlkFCnjDXoyAgaIqJEYSeCu9ZCIZgvVBGeKSOVzbxQgYRI9G6byjk+U/XE5sIEa4JUzVrCpA2OrMVAZvpRfdqzPZPcnuO3azfP1yAscHSNgJxpJjDMQHWNKyBAWFrJ3liXee4JyZ51DtrWY0Ocr0yunYrk1nbyd1gTpGk6MsblmMV/OSsTJEMhGm+adhqiZpK82+gX20V7TTXtnOBxMfEPKEqPJWsW9gH23hNnyGD6/uRVd1QmaIvJtnPDlOwAzgM3zgQljTUOPvFxjkmyF8PKQHwVMvb+xYFyR7oPWzoPrAycj35uvrJDk8Ow6pXvFna74yMPY2SmXU1BsCrIsMq1v4UTTAFt+2v1VY8Ik9Ut2V6pP95aLgrZczPdEv7C5K2TOdi0kImeqRYy0C6iLjrHlkULGyAogrZhSuXQrrqbpIsoPNsq9copwq/mHgbmcFpKue8nOWPOqOPO7kxfucT8P+26VCa2C3gOdzH/mo99tfKwz3izfBGTcJaJ86JAx47QI5Pn+9vJeOBS/9AN79Dcz5skjHXUuAtadKjmWgS5jz9JgAdUWXBHN/Pag6yZzBe4cmPgKUW1vDzJpV9SG3kcvYWJJkMkdNTYB4PMeGDS+WUr4bG4NksxZ9fbFSyvgJJ0zDtuU707Icjh6N8NBD+7n55uVUVHjw+w06O3uprQ0wNpZk5cp23n9/orT98cdPY2QkQTKZp6ndx6GpHmoClfzr/q18/YxPURusImj6sF0H27FRFZWMlcOjm7wx+D5VvhD/fuBpLl98ES2V9RybHGI8FeHkhlnEs0ky+TyN4Wn8865flFLG//G8b+PRzf+RsvCP08I/Xv7Pi6YJevyw0diyZDResEBAhOOILvuhh8pmrWI59CWXyCi/YYMg3vZ2eSybFdD82c+WNWz33SePeQu+yqoqWaeuTkb6886D++4jp3iJRhU2bZKLh+FhYaiHh+UCoGjntm2R0e3bJ7tqbJRE1L4+2e6yy6TPurFRwlna22XeYGysTKBv2iSHVLSD27ZczMTj5bdgfFzuDwSEuW5uhrpaBCCns/DBMZFlZ3PCIBeZ5r5hGJuSjXuH5Hav+LnI5WVbTZNBqSgrVwsMuFbwbH94P8VtAz75jBxXbvcNQzgo+1BVaGtE0XUJMFMlcGy8+wC66ROGDhfV8Ap7ZOXJp2OousHQwb8VpMJgZdOoqsa0Gacy0fMK3nAtmm6ge4P4q5sZ7z4ggTVVjYz3vEJ06BBjh/eLV1lR+dm/Pc5v//M/eeo/f05VdbXIyl2XpnmrMH1hVMNEUVTxC6ciDL1ygPffe481Tz/N6bfeyltHjzI2Ps6Jp5zCnG99CyMYZPqFF6L7/Uy88w66z0e20G09+2tfQ/P5UAsmQc3jwayoQPf5sNJpXtu8mdTQEK5tEzt2jNc2bwbXRfN4OO2WW1B1nQMbNuCtrsbw+8Wv/dpruIqCO+PEQh91pbDIM2ZLHdaR90TG/ZuHRdqdSkA2XVZ3HHcyLDpTPsNkHDRdPNfT6mQfR94TtruiUqTOvoCEo2mayL79QbjwS9Kx/aW1EK6W/RePITIJ+Rz+6iasbIpcMoKiqCiGeOkH3n6ObCKCr7IB1fCgaga4MHTwb+TTUVxFwV8lqeK6x8fY4f2Fz3Af/soG2k+/mKaTz0Y3A1Q2zaF21hnoZgDXzmPl0pJAXd2ElU2je0Saq3sCDLz1HLlkBNd18YZrsLMJSsnck+MojiNS60RcWOPW6SiBUEGV4QhwNkwUTUNdcQ7K3IUCyMMV4l1uacfN5SRELJ/DGSjkEwSCqMvPRpk1GzcRl/5ow0Rd9SmUUAXgSi+2aYpsHFcmQ3JZmcyKxyRwLRqR7ZZ+Qr4golOyXUHK4jo26vJzUOadJseq66gdZ0liuKJISnh0CnVRh7wO28bpO4o7NYmbz6Oe/ymU1uly/IVubkmj+lDAWyCE+qXLUdtnyv6XnVmQiINpmrS2tuI4Tgk45/N5VFVFURRCoVAp5Gx4eLjEVp977rkEAgHa29tZt24da9asQVVVdF1n+fLlzJ07l1WrVpHP58lms2SzWXRd5+yzzyaREH/kSy+9xKFDh1AUhUAgUJKYO45NIjHM0qU3EIv1o6o6gUAt27evJRo9VkgSH2H79u8wNdVdYKs9mGYI13VQVY22thUEAvWsWrWFeHwIr7eCdHoKUEkmR0kkRgmF6mlqOp2+vi4mJg7T0rKU733vMI2Np9Lfv5d8PsWuXTeRSo1RVzcPw/DT1rYcV1UZVBRuQ6TfixEwvBL4AHgYuRjqBq5FfNd+BBzfBIwhYBgEhBtIENmxwu3WwjpVhfXmAYNADwLO8whbHQC2IrL0BqTr+q7CPhxHpNrF5O5slsLnLcy1YQirPDgo94dCMh9+4EAZkBc92aGQTBy//LIAZ02Du++Wca5Qbc7MmTJHftVV8q+3aJE8Z2enDOeJBLz2mmxflIRHowIMVGycvMMFD19AuC2MqqmYAQHUU0em0EwNT1A82d4qL+HmMMnRJNuu2EYukcMMmDh5B/80P9lYlon3J9h1465SfVxsIMahrYfovKMTf42fzo2duLZLpDvCwL4B8sk8O67eQaQnQnwgXvJhu4qLR/PQF+ujIdjAVU9fRfdUNx7NQ0dbB7e9cBvDyWHaK9t5qfclUvkUi5sXM5ocpTZQy9rta+me6mbfwD4S+QTjqXEOTx1m7Y61tFa0MqNyBnk7z1BiiGQ+ydoda6kN1OIzfNT4a/DoHuK5ON1T3Vy9/WoCZgC/4WcsOYblWrjYAqx7H4fMECSOQvxwAcCNQtVCqOmAyVchdRReu1G+pxZsFAm4v1mSvycOSPBZLiJ/B6eDFoLaDgHD+ViB4bUE/CWOwv6rBEwHpsMrV4vvO9VXSBy/WiTqVhywC4nfBaVitKcgCfcIi+3kP9pBrRkCjItJ4JpHpN8UALgRkHVQCuniA8JWh9tlm48kjw9IUJpakBEXn9N1BYS7lrDez18tsu1gg7DVZgXM/Tqc87AA6871wuh7K6UTOzkkful9G2W7QJP4pJNDkgAeOwp/u0YY95X/P/b+NEyuus7/xl9nrb16S+9LNrYQkg4QOlsHFAiRxRVkRJ3RGRWRoOyLgKIjCZKwKigq6tzzm82I4jABjBFESJpsLAIRCeksve9d+3a2/4PPqaow8/vf9+/B/eSe4VxXX9VVdbbqrqrveX/f2xbxXp+9RZjs5zYISz6+T86j5SwB1tFOmcRIHYO+b8q6ro3juJV08E2bdjJnTpjBwVSFRU6lioyNZZgzJ0xHRw3xeICOjhg//OHFfO5z3dTXB8nlLEIh4z0p467rYRgqR48muPrqZ9A0lQcfXE9bW5R4PIDnwemnt/K97+2hoyOOovBftm9sjHDPPTsxdZ3TWhYyk0ty4wc+S1O0HlVRcDwX1/PQVZ2CXSJiBtEUldNaFvKP+5+W9O89v8HxHGbySU5q7CKRTxMygkznZnE8l6+f97c88olbuXLlJ9BV7b8lsP4/Wd5nrv+nL6WSJHUPDr5XL93VJSMyVHVpnZ2CTsu0bjmBJRoVHVuZtR4ZEeRajjadmhLgXi7YPHwYHnywKh/XdUG7tbUCuvv7KQ2NM33GOiYmFAIBAb5PPSXJ3mvWyIBflombpty/7TaZ1R8ZEe9YOFwlDD2xLVZY6aNH5WKjLA0vS+Quv1yqt11XmIBwWBiC8XEB1a5b9WV/8GyHoFKCoyMCfBvr4ISuKkh2XAHQ//+Y62RGgLFly4mWZd2aKtsd7+Uue7OP92qXLPFlQ1VuPjQOCzpAU3E9l2I+yVT/PppPWYumGwKEghGpCnLKrPRyVNVAM4OUckkUVa14asuMtxGq4fh+az0QRtV0PNdF1Q1KuaTvpV6BGYozODTE/AUnsGD+fKLRKOARCATp2/Ui3/n7b/PjnzzOTCJNLBYjGAywb3cf4XCED110CalUCl3XiYTDXPepT7HuwgvJTUxQd8opItvWNFAU0gMDvP3Tn3Lql75EsL4eO58nWFf3nh7sUiqFlc0y9eqrTL72Gmd94xvs+853aDz9dOacfjpv/+xnLL7ySnJjY/zx6quZd8klnPXNb2L7yePBSBgVX4aXy/iJ3bqEkMXrqqngZ50tgHhiRBLCP3Q5tHTIm68capdNCYBWVdk+VitAWxfQSzohgLrMK+uG/F4swBM/hfWXSc/15KiA8af/FefyL0EoXGGgp4+8RsuiswEFq5DGCEZRNAMrn6z8Lz3XZerwftqXrANFwbVLla+DQmqScG2rTCo4FuN/2UnzKb3SdQ0VxtmxfOm3pmHlkhXGWwLqxPdtRmrQ9ACqoqG6AmyVSNT3SZ/r90EvkA7nkSGUFkkp98r94IYECMlFmyed1a6LNzGG2taBl5zF3f0Sas8a3L270C6+lHK3uDc75TPix8mqI1Gp6MLDHRpAaWpGMQOiYIDK+REMSdBZMiFA3md+FM8VVr2mFmobhKG2SlAqogTDuMPHUKJxiESlt7trgdSBDR1DicQkNbyuASUWx9n2xHsk7Uq8Bm96ErfvBfnbpJIoDKxdLwABAABJREFUrR3ynvPT1MvHPr7nOhAIVLzXvb29pFIp4vE4kUiE7du3s27dOvL5fMVrres6qqriui75fJ5IJPKe0ENFUZienmb37t1ceOGFFaa6t7eXcDhMJpMhm83S0tJS6dlWFAVVdUmnj7Jz5yZ6e2+nrm4BTz/9Fdrbe1i48AJisXYGB/uYM+cUAoEabDvH2NifiMXaKtvU1MzFcUpomoGq6nieg2XlGRt7nba25RUpueNYqH7ysONYDA/vIRpto6FhIZZVwHEK2HaJSKTRn3jI4kVb2KBq9ACf9N/rOfx+aaRrugZhkp8DPoyA4jYEGE8joWRvIEB6IxJsNolUeU3y3p7rLkQO7rtnmfSPVf6qBvFiDyJe7CGgNwVXfknyQ8pD5q23Cggu+6/L2ZbFony1ZLMyHh0vI0+nBRxv3lzNJfFjKDh8WFRgd94p7PfIiOxj4UI5xq5dwlBPTVWdYCDDczYr4+0tt8BJJzjs2PDvrNuyDjNq4touQ7uHaF7aTHYiy67v7mLtnWupXVCLZ3soqsLTX3maN//5TW4cvxHXcimlSwRqAiiawthrY7T3tKPqKpmJDGZYwJUe0sVX7cnv2fEs4cYwuakcpXQJM2oSbY0yuGuQjpUdOJoDAbA9m10Du7jsl5dx6aJL+cHFP2AkPcLv+n/H3uG93LH2DrKlLHNr5xLUg7ieS99gH5/Y+gk+cvJHuGHlDTyw+wG+f+H3+eqzX61Iwr91zreoDdYSMSOMpkfJlDJEzSjtsXYOzx5mc99mNq/bLMowz8XUTPYO76Uj3sFQaoiVbWdSb02gvL0Zlv9A0r09B16/Taqzgm0ws89PDt8L2aPQsFLk4n5PNYtuEXm4nRcAmR8VwL74DgF7Zp3IpTP9sv7i2wWYbzvJl4T/GLLHquvu3yBgf95n4PT75R1qNsg7N+lLvCve6hmoP7kq4TbjCEPu+ezycW/wcmaA60BqQIK/ypH2iiorOAUBz/G51ccqsnHfJuc5YtMx4+Kf3vGl/713OtoJ+XEJg8uNy/ns3SRBZYVpaDpDJlHVgM80N0oA2Zk3SljZO1sFVK/7sTDdRlieLz9+zn3y+sv7zE+KFHx4l0jgC9PQtoasFaD/cILNm3dVPNOmqeG6Hp4H2WyJO+98no0bz0NRIBTSyedtRkfTjI9nWbOmU+JZVIXDh2cYGkqzYkUHgYB4r6+99rcVhru9PYbrehw9mmDTpp2VHu1duwb58Y8v4dixJBs3vsSdd64lHDZoaopw5Mgsc0+Io6qisBpOTPDzfU/xxRUfozU+h9dHDnJay0I8PAKayWhyivponKlMgsf3/IYvrfw47TWiAnPKY6fromsag4kJfrrnN3zB31fICPy3Bdfvy8LfX/7vl0wGvvCFKnItG7ciEXmunG7y9a8LK62qQhO3tcnorKqixb75ZvkJh6sJY+VtvvrVKnL90Y8kOG3NGjjnHKGdy1cF5auGW2+F1avJfvqLeJ6C48ghykFjyaTMzIMA61dflV2UreChkIDh/6xenzNHZv7vuEMuRt59V4jy9nb5/d575dAnnCAXGUuWiD+tjI8yGXn+pptkX47t0tVqo5QB9H8OL1MQgK0qSILmf/rbu/6sreILSFJZiIZ8cG0L0B46DlAfv5SBuYLsu7zNTFIqvBwXx1DJzkjYFaoq3mlVFyJ1ZgQ9EAE8jKAA9LG3X2TOwuVY+SzB+BxhQX2/uOc6FFIThGqE1VY0Tby8syPowRhGMOoHWwV8MJdi8tAeqXEq5qqebE0nPzOEZoYwQzVYxcx7ALyTK+CUSuQnJsR7/YUvkJ+cpPbkkykmEvzl5z+vBJAVZmd59uMfp/2DH+TM22+nMDnJgZ/8RMB2bS2Jd99lTnd3xfNu5/Po4TBuUWqY3FIJt1gk2d9P/Wmnsf/uuznzttsozMxw4Mc/5oxbbiFUE0eZGhOf9MLF4o0uA10zIKznM/8mvuq6OSLn3veisM1dJ4j3uiwftyyYGRc5uKLCkbdlm7LXurZegHSpKB7t4/3W/X+WALTPfrUakpbP4oQjAv5UDbuY9YGy4ofT9VQmTZxSgfT0MWpaTpLec8cCoJCaQA/GmOrfR+vicwEPp1RAC4Tl7WuXsIu5StidEYxJvRZUgDdAcuxdYnPm+baC0UrYmXiuvQrodQePwMwUyoKTUGI1eIlp8Uiff7H8TwaPCkCtb4DkrAR9dc6nAojbO1FcH+TGa6GmFsW2q97tbEYC4HRDEsGDIbAsqdiK1+KlEqjtXXiqSMLd3/2HsNB1DVVAvva8yvbuy38Uj3U2I9LsVedUwLd4uy9G0f3z/k8A2kvOCkBv78Ir5EW+rqoC8BUqYWZKbT3AewH3yrMhGMKbnZZaMkVF0TQJdovEyPu+52g0Sn19PdPT0+RyOZqamlBVFdM0mZ6epra2lnw+j6ZpBAIBLEv+72XG2rKsSthZKpWqpJAfOHCAxYsXUygUCAaDFHwbRSQSqQDxbDaLaZr+vly2bfsSBw5sZfHiy7nkkh9jWTnS6RH6+jazfv1D5HKTvPTSRlavvpW6OpGM5nLTaJpJIBAHYHb2MH1999LbeweGEfJ91yaOY6NpBqVSmueeu4PzztuIacYolTK4roNtFwmHG3Bdi5GR/bS0LEPTTFRV+sBzdgElPAdPUbAQVrqAyL+7EUZ5ApF0z0WqsTYjwWXlMLI2/6v3GoR9fgIB1hpwhCrgngbW+vtPIIy1i4D1W5FE8WbgVape7RuBkzKQS8nYls3K+NXVJRPCUBWQFYtV1Zauy1jX2CgTzMGgrFsONPv1r2Wiuey1zmbFvVVfX2WwQYbuG26QIb1YlPnyo0dlTCyHiU5Nyfj7kY/AT37soZVyqLrK7JFZ+u7tY81ta4i1x/jdDb+jvaedxZ9aTGY0w85NO1l7x1rCjWFGXx2lq7cLz/XITmQxoyaBmgCJwwle2vgSq29ZTawthh7UK0BtaPcQ8Y444TlhSpkSwboghdkCVtZi5z07WXu77HvHLTu44NELOFw4zMaXNnJ77+0MpYZY1rKMmfyMgNuOlej+xIzrueSsHCPpETb3ba6s31nTSUgPUReqw/VcxtJjbNy5kVvX3MrOgZ2cWH8iHfEOgnqQumAd+0b2saxlGSE9VKkc8jyPvJ3n9bHXWd62XMIIgZACUT2EgitA8fWbJd17ahdM7oIVj0PFk10jAPG1G2DZd+Xxsd8J6F58B4RaxWtcmhWQHpknLPXkLgHiuSHIvAstFwjj/crXYOkm0H1DQ3ZIQKHryPGCLcJkGzUQbpN9e66wyfF57w0dc4qSBo4igWWqWQ0g86vQSB71AbVG1d7mM9mKQiWkrLyfMkgHAapasBpwFp8nj3suJN6V2qxzHxEGuwy0y17ps26F2hOlTuvo70Qqft4PhH0uh5x5Dky+CTHfU964rPqclRNZuuKTS2U5eahJerErXu01InVPHBZp+gcegvwkKbWDXXun6elpZ3g4zcaNL/H1r/fS3Bzhuuu2c8stq1EUaG6OksmUaG6OAAqTk1lCIZ2JiSyjoxlWrOjAMFQGBpIMDCRZsaIdTVPJ523GxtKVdYJBjauueppf/eptfv3ry1mzpsuXj8P0dI45cyJ4HmiagqoqKKrHUHqMx/f8hi+u+DhBwyBVyDKbT7O09QQcz+OAH3LWEm8gkU9RF66RwFc8NEXS+V3P9S1mHgqiOPnW9h9VJOG3n/93mJpB2Azy33F5Xxb+/vJ/v5imTGP/+tdCzRpGddQts87nny/T54GApKU0N8voOzAgfR9jYzICd3SI/np2Fm68UabPQyFJSzl4UG41TdDtBRdUu7L2768wU9g2PPAApcuuIJWCd96RQ0xNefT2ysVEf7+clqqKBK6nR1jmffvk1GIxuZDo6ZFDPPWUAOx0WjC9acpL7e0VRvzIEWGvv/UtmQvQNLn9058EUJd7R6em5AKk7PVuafHHgnK9VrEEs0kBue8ek+TusrTbdQVo244AY49qCFqhKH7tWFgee3dA1res90rBCyXZ1vWEsS6DdseperVbGmSf+SIoKqGaRlzXppRN4NoW4JKbHZF6pnAcIxhl7O0XsQpZQrUtTPXvJ9zQjqpp5JPjWIU0udlR8CAYa8S2Cniei2OVGHnreYKxRnQzBAgDmk9OoABT/fsI17WhqJpf+RVi5MDzeHYJPRhl+shroGroZpiWRedg5bPiBFYU9GCQcEsLzStWUJiepvGMMzBiMbRAgJP/5m/IT0+z99vfxikU6H34Yc647TY000QLhVj0t39LfnwcxTAINjSw99vfJn3sGHY2K8C6VGL6zTdFIm7bvHb//YSamlB1nZ5vfhM9EiHc3MypX/oSWjgsg/nsJHQsEJ+058HCRQJ6Y7VQ3wgf/Ru51Q0B2SvPFUm4GRDZ9y9+JPJxw5Bt/uVR2ecJiwVYl/uw81lhtmcnRfY9OwkHXpVgsxUfhCuulhquf3wYRgchFEEp5EHVsPIpStkEZjiOppukxvux8hkBG289h6ob1DSd4AMjF0XVKaSmCcQaUVSN5lPWAi5OqSBKhGyC3Owwmm5ghmsIN3T4bKFLPjmBVchSP29Zpfc63nwCrmsz8tZz6IEQVj4LioLietI5/cyTeMU8asdclCVnAOCVisLQtndCJo07eFSk3DU1MmekGyhNrXgzk5LqHY2hKKqkiDe3odTVy/V3qQizU1J9ZZUgGhPmOZtBCYUhFvMl4iK3dp59UqTfqoZ34HXcnc8Jw1zuuk4mKt5upWu+gFq/X9t9+Y/CvpervjxPjtPchpfLyHGicrGoxGtROubh5XPyXtDLYQ4l8DzZ3vVwfvsUKCraRZ9AveILqGvPExAdCKB2LZAqLk3DHRqQ16UoDA8PE4lECAQCJJNJXn75ZVpaWlBVlWKxSKlUor6+nnw+j2VZTE5OYts2pmlWeqozmUylpsswDCKRCM8++yyZTIalS5eiaRqmaTIyMkIwGKwA8IGBgYqfO5PJYBgGiqKzdu0dLF58OWvW3Mpbb/0bmmaye/eDdHauQdNMdD3E6tU3U1PTUemjNs0ImuYrNPAIBGK8885TpNPDmGYE17VxXZdcbgrXtdH1EOeeezee5zE9fZDt268jn58iGm0mmRxgZGQ/nZ2rMc0ormvheeJDD5jRSq1W+WgW4osOIZ7oOVR91JsRAD0EnIVIvIP+z2PAm1TZadv//WzEP70akYPv8ff3LiIhDyAS8BBy4bUCYbS/jgByXREQWyjI2DZvnoxFhYK8bSYnZci99lqZDC4UZGiJRKT58tprJdJk1y6ZMP71r2Ht2uqY6boySf2971XTwzMZef7662X/xaIA8fK8+vXXy3g5NSW2qzfegDvv9NA1l0KiQHIwSWY0w4GtB9j13V1ohsa6LevoXNNJYbZAaijFqhtXkRpOYUZNOlZ0kJ3MYudlgs4IG3iOR3IwyTtPvUPf5j4UVSaiXctlsG+QaGuU5EASRVVEDr7hWYK1QXbeI7VcL216iUKyQMeqDjzDozHcyP3r7mckPcKarjVEzShBPcjytuX0DfZxaPpQpb86bIR5ZO8jrOlcQ0APsHbuWhbWLRQv9dAextJjLKhbwGMXP0ZzpJm9w3s5q+0sBpID5Kwce4b3sLxtOVEzStbK0j/Tz86BndiuTdSM0hpt5Zpnr2E0Pcq+4X1EjRBKpl/CxfIjwlC/vRla1sFpd/rvPrd6q4fEa12YgjfvEsn4snuFcVYMAYnBORA9Aab2iMS8bon4shtXy/pv3iUS8jO/L53Xe68URlwz/W5pH9A6eWF9zXoJJfM8Abi1C+U6Q9X9eq2iAORy77RdoCLt1gyRkTslkWyXX4fnSq2W5pMEpYxsY8Z9H3XhuKouRV5TIF6Vi3sOFVa7Zr50SisqfOBB8Ua3rqhWZmVHIXVE0rvb14i8W1Hl/JNH5HhGVNhxIwptq+X1JI9AbhL8qj9KKdCDIjWPL5DXft6j8DdvCEv++y8Ls58ZFMCtahBqJBgK0N4eZ2oqx/BwivvvX0dzcwRNU/jd7/oZG8uwcKFMqB4+PMvRo0muueYZolGTaDTAwoX1rFnThed5uK7H3Lm1dHc3s2/fCI7jEo+b1NQE6O3twrIc0ukS3/3ueTzxxCdZtqyFQ4ekG9u2XYJBg2PHEnz5y9s4eHCaVKqI5dk8vuc3bH/nZcYz0xSsEv+4/2maovUoisp3/f7rscw0qqJSE4pX4IKqqL74oAqoj6dnv7Dio6w/eRVfXPlx3hrtZyg5juXY/E9c3gfX/9MX0xRN2LJlMkJfeaWgzVRKRukzz4QrrqiasfJ5mU4vF0k/9VS1ouvqq2UUX7FCRuqzzhLQt2+fjOobNsi+Fy6U0b+3V64gentlvb17ZTtdp+QaJJMSZrZmDTQ2KliWXGT09sohQyEJY7Esud/TIwC6r09m6K+5RpTsb7whuL58yDKgHh2tdmjruswLqKrsr4z7k0l5futWeay1VS46rrwSXNtDzeaqs63RMNTFq/7oYqnqyT7sKy10TdjpQwN+NzUQDAgL3T8IRV8KXu6xbqwT5tpD9mcYsm2h5DOynlyBaZqAa8eVP1JNFDwXxy7hOpawmq7F6IEXCMYaUXUTz5V6m4b5Zwr4ajuZlkVn49kl7FKBYLwRVTUI17ag6AZWMcfEwT6sQhZFVQnVtmAVc4y9/SKea2MEY4TrhN9pW3Ie8ZYTGfvzH1F1AyMYk35kVcPKZwjVtWLlk4z++QXsYo5QTSOg4hSL7L/7bnJjY3StX0+oqYm93/oW2aEhFFUl0taGEYkw/Ic/8PbPfkbTmWei6jqTr76KUyxixOM0nn46eiiEEYtx+k03Ee3qQo9EwPOYfustqeEaHcXKZhn47W858OMfC0hSVTIDA+z7zndEfprPYxeLwlgf34tzZi9cfIVMbvzT9+HbVwuz7LkwpwU+fbWA6V/Ifvn458EMCrCe0yz+6UAAUOAzG+Da78DlV4qnWjdE+v2LHwvzfe8/yvGPvCNguwzKA0HwPNRf/RzFtrDyaZnAeOt5XNem64wPixe+f39lkkMxTKxCmtEDf8Bz7UpoXSmbxLHy5GbH0MwAim5ihuOE6tqx/aCvurZFaGaI0QMv+AFoWcxwDVOH95EcfQfXsZg8tIfk6DtMHX6FcH0bVj6FZ5cEiPoA2tn2hDDSs9PguahdC1C7l0MgUAW+6ZTvjQ6gBAJ4mbQA253P4aWTKE2toCp405M4T/9KmGnfu41uoOim3G9uA8eRBG48AdrBYGVfiqYJS9x7Lmg66vqPot9wl3Rr2zZKx1yUrvk4z/waJV6D+snPoa49H09RUdd/FHXpGaJMCIZQTFNk4LowpV42LSFrjiVd3mVpO570WM9MA6DUN6Bd+DHAq7LxtfW+l9uQCYhiwQfwrXipJHapSCQSIZfLEY1G0TSN1atXV/zXL774Iul0Gtu2sSyLVCpFU1MT6XSabdu2kUqlKnJuAa45bNsmm83yzjvvoOs6rusyMDBANpulqamJZ599lkQiQTQapb29nZGREUzTpLa2llKpRCaTIRxu5OKLf0Rt7Xzmzz8fRVG5+OIf0t39ORRFwzSj7N79EOn0KMPDe2hqWkI2O0GplEVRNEAhHJ7DVVe9SVfXGjzPo1hMAhAICBtm20UURWr+qh7vYTzPIZUapKlpCaVShunpg/z2t9eSSg1SLKawFY1RReEQkvBtA68jQNt3g7IbYbBVBEC/BZwBzCAd1RngIPBVf71OBEjvRpjrTwPf97ffjLDSaaRqq9c/Rpksdv3j9viPrUHeHseOyTA4OioCr6NHZe65UBB2emgIfvc7CeUMhXz8o0kUypo18rWydKlYnnp7RQZ+/fWSGxKJiPurt1eGccuSx66/Xsa/1avfU+/O6tUykTw9LeNrIiEAu7lZoVT0CM8JE22KMvfsuWz4ywbWP7Se3EwO13Lp29xHKVMi3h7n5ftfpmVZC4mjCYb2DBGsDWLGTAJxkYRnJ7PEO+N88olPsubWNRhhg+SxJM9e8yyRpghmxKRrTRdG2KDvvj7eeeodCokCFz16EVdsu4K131hLsDbI4r9ZzJHUEW7ecTOKorCyYyWGYlBySjRHm7Fdm+7mbmKBGAPJAb767FfJWTke+tBD/PXSv6Y2UFuRc7ueS3dzN8PpYRx/giZiRHj0okfRVZ21XWtpijTR3dzNLTtuIVPKEDEjxAIxmiJNbHh2A4cThxnNjFaA+9LmpbieA3+5T7zRehTm/Y1UZYU7hXkGyI8JIM6Py7tGD4v8e9FNIg/XoyJtdrIClvddLaB6zgqIzgU9Lj5slKq/++3N/rVCUI799hbxWiumyMrfvEvAfqhNmOr8VJWJThzmPQo7My4gOD1Y7bYupQV8ZkYEDDtFmRhQNWG8XUuk5JlhOa8KCC/Kfack6eFOiUrHdaJfmOv6k33JuSo/pUzVI40igFcLwYo7Rb7dukKY7Xe2wisPCoC2/aTwOUtEzv37L8MJHxU2e8eVwobPWSJAGQ9yY74X+5g8n+yX1/jcBlEcZAZl/3s2iQf7w09AdkyquzyH+fNraWuLsXJlB4qicPPNOxgby7Jv3xc544xWRkclw2LJkibuuWcnvb2dBIM6qm8p1DQFXVeZmcmTTheJxQKsXt3Jvn0jHDmSoKEhTH//DK++OophqNTWBunt7ULTFMbHszQ2Rtiw4Vmmp/MMDqYqvutEooDiKXxxxcdYf/IqlrScwHhmhs8tv4SQ366xrP0kfv3G85zZcYpfXiPjhOd5lTRxRVFw8aqWKh9i14XifGX1ZdQGowwnx3l8928o+Sq5/2nL+7Lw9xeZph4akkCycmx2S4tMj09MVLXVN90knumyNLzc09HUJMD7ssvg0kul27pQkKuCZctknakpQapz5wqgBwHSkYiM5Om0dIrkctDYSEkPMZ0ycF35slFVWXViQlY94YRqV3Vnp5xKPi8z/4oiFye//z2sXy9W7vLpDgxUE8QfeUQuZFavltM9XtleVycXKscr4x99VC40Dh2SC51FJztEtSJKseQnd/vS73LX9Ild8jrL3muodlqbum8Id+HIMMxvEwCdzQvYLl/lqKoAck0VxvrQAEwn4NSFAqCP317TOL6Wy1E9v5taAUVh9K3nCNW2EG85EQDXsdDNMFYh7YdRyR/Pc13yiRH0QLRSw/SfE6TbTjsfu5Rj8t3dNMw/AzMUx7GKuK7F5KG9ldomu5gFFOxijnB9WyVlWtLJszh2CVU30YwAiqdSSqUZeu45Jvbv56xvfIOpP/1JQsbicZxCgQM//jGLv/xltFCIUEMDnuNQTCSEuQ4EcCyL2b/8hYbTTkM1TZy8BG+98dBDLL322kqftaKq2Lkcs2+/zZylS9GCQTzXxS4UcItFUocPU7toETg2wZoalFJRAshqGqC5Xf4/nicy8cF+qJ3jS7nnwPZfwaV/5zOVlqSG1zUKEAsE5YJD0wEPtv5EOq2NABz+M3SeIO+hxIwAcdeV49bOgcSUMOJlX/dFn4JYDY5h4pkmdjFLZvIo+cQYrYs/KN5jx8IqZLGLWcJ1rTilAo5dxIzUVSeF8PyKtQZUzUBRELl/IIoRiuM6llgEdEN8xp5X8c5Z+RST/XtF/l/Kv8d3bxdz6GYYZXYaNB33he1477wlILVznkizZ2eqSdu+FLvMBJNNVz3IPlhWXBdP10Wy/cL2ioxau+QyvJkpWX/teSi1DXilQjX927b9JO4g3viI7EvXxS5RVokoCqSTlWMSieGNDuH+60/lGBd9AnQdr1CAXMaXrM/Dsy3c534rQWV+FR2AZ5cgl8M7fBClc57sd/UH8AaPQv0clJZ2OSfTlOAzEMbadVGiMfGYKwqkEpVtlfpGSq7LwPAwnZ2dJJNJUqnUezzQ2WyWaDSKaZpkMpmKlDudTnP48GEaGhro6OioAOugryXWdb3iu3YcB1VVyWazBAIBbNsmGAySTCYrHuyampoKG+66BXK5CYLBWgqFBOGwOIxnZ4+SzY7R2bkG8JidPUwmM1bxUJePpygqtl2gUEgQCtWhaSFsO8fw8F7i8U5isRZA9f3VrTQ0nMTs7CH6+u5j3botGEYYUMhkxvxzmKG//3eMjr7Ghz70IKVADeOKQi2QRLqpFYS9LiI1WXMQwGv7P0H/tuSvawB9SBWXgfRVX49IvPNUk8C/7u8r7x/H8/cf9LebQPzdmv9T5nWUFLz8kgzBe/dWe6rvu0/GveNjSkolGavKrRnBoADpzZvFAtXVVQ23HxqSt2Q5CiUQkLnzdFoUWL/5Dbz4Ijz+uAz5xyeQHzwoorSvf12G+euvh9tv91g4zyFzbIr0cJrONZ3gguJXCw3vGaZ5aTNGyMAu2aSGUtTOrSU/k6eQKPDyfS/Te3sv6ZG0rBc2cG0XzdSEtQYGdg6w9RNb+eQTn6Sms4bkYJKOFR0oukJuKkewNsjwnmFqOmvQw7oEo2lFrvn9NVy/8nq6arrYO7yXrpouOuOd9M/2s7lvc6Um64v/8UXWdK5hTeea90jCW6IttERbCBuiYZBgpwK6qpO38rw58SarO1dzNHGUgeQAPe09lJwS45lx7u27l9vX3s5QcohL/vUSLl98OT+55Ce8O/Nu5dhL6hei2WkBtMf7qBffKb8rKkzuhJ2XQe8TEO4SQGzWHVeXNV/WaVxdrdc6Z9txnuxbpS+77G8ujksaeW4ADmwUD3Z4LhXAPNUnXdnN50n/tecKQ6yaAoDNqADqsjda1aCYOq4ya75fyxX4r9Jw1/I7sj0JI8OT9dySpH2XMn43drGaFq4HBGSXn69d4EvUPWG485PCSretEWb6lQeFnfb/Z+QmBTTv31JN+x7dB41LBGiPvCyv65RPSSf2f1wGCz8Cq74F4TmACs9d/V+92Ku+Bf9wqvxelqSvuF0mP0KNcv+D3yNjhfAUlWLRYc+eIVpbo+zcKT7oxx//MAcPTvPgg7u5997ziUZNcjmLcNggm7UYHU0zNpapVGrdfvtaGhvDXH/9dm69dTXz5tVSLDrEYiaZTAnbdrnttue4+ebVlSquefNqufLKaqf2I49cyDXXPMutt66hrS1KKK6iagq2Y6NrOiPJSSYyMzRF6/npnt/w+bM+zNy6VnJWgcnMLP+w7z+4+YN/A0C2lKcxUsdYchrT0KkLx1EVhZlskoJtMZaeYjg5wfknrcDQDEq2RU0o+t/Sd/2+LPz95f950TTRUd97r0xr9/fLxWhtreish4ZE5l1bKwavDRtkpG1uFhTa1wdnnCGj+yOPCCKdnpaR3PNkm2hUti/TvocOCYoNh0VWfvfdci4NDbBzJ+aRg9RqGeJxj8lJuO46GfjDYdnV4cNyGo2N8lg+X5WzZbOy+499rEqYNzYKsO7pkV7PBx6QC5LVqyWrbXRUUsjLwHrPHmG3QyEh2h9/XEjjtjYB8/ffD6EgAqzLbHKxJGAoaAqwLldtOY4A5mBAwsYCJli+PFxRpO9aUQVYB0wIGLKupoJ+3EdUVUR+vqpb1jt4TEB7GViDAGtT9y/wFaxChpG3fo+VT9Gy6GyijfNQVA27KMDYc23MUBwtECY7M0Ipl/CBVQRVM1A1vSLbDte3c8r5X6F9yfkoqooRiNB62nmYYQHWmhnACESZs+BMYcqdEma4RoB1XQu4DrnZUeySsP0eYASjlLJJ7GKOwswMAPM/8hF67roL1TRpWLqUwswMTrFIbmyMgd/+ltzoKIGaGjIDA+z91rewczlQVabefBM9FKLx9NMlNdxxsHM5VE3j9FtuQTUMpl5/HSefB9fFiEapO/VUCrOzOJaFlcuRGxvjtfvvJ9jUhGoYBGIxCRA78heRagdD8nd2bOg/AJk0nLRUgGHHAgHWCxfJOpmU3LbPF2Adq/UD0QywSwLozvuIAOl/+p6sl5qFf3vMT4xX5bjxOgHW80+R/W3/Jby+W8B8IAimiZVPMXGwj3BdeyXQLDcziqoZaLpJuLaFfGIUVTcIROrAcynlkvLeKGQIN4jioJRLMvzm76UTOyiVWapmUEhNYOUSDL+5g1IuKTVbiTGMUJz2JetEnRCI0L5kHWa4Bk9RUHUDq5SV8K9YDdpFn0C76iaUeI0wzokZkVsfeB0vmRAf876XJT08EICaWtRVHxAQ27VAOqwnx4VxjtWgXvBhSexeex6gSEL4qnNkX1BN/7ZtAeovbIe07+HOZaROKzGDIukxIv+usOTPQyGP2t4l7Pba8/DKRcBlOXskKq8jnUY9dz2K5+EOHMabnpRqL9eDeA3qkjMgEJTXkkmjLDgJtXOeAPkXtsu5JhOyL9uCaExAtWGiGAbEa9HOvwQvm8XDYzqRoLOzE4Bdu3bR3t6OqqrM+J8fVVXZvn07s7OzhMNhLMuiVCrx4osv0tXVRUdHB7Ztk8vlsCyLkZGRCludzWaZnZ3lmWeeIZFIEA6HyWazPP/881iWRTgcprOzk3Q6TSqVYvv27UxPT6OqBqYZJZ+fIRyeg20Xse0CgUCc9vYVOE6RgYGdqKpBR8cq8vlpLCsHeFhWjlIpw/bt12NZOTzPxbbzjIzsp7m5m7q6eaiqQaGQoL29h0Aghuc59PXdx6pVN6DrQWy7iGVlicXaUBSV2dkjLFp0KR/60EMSDoRHDvFLZxH2+l1E1h1E2OM9CJBW/ecPI3Ju3w1KDpGR5xHAvAphqNMIS70J2Arch4DnOkT27fn3S/66YWA/AurV446pGjKPXVZcvfkmPPaYDJsnnCDg2nVF/j0yUm3NKGeCPvhgVWE1OCjD7OCgqK3a22Xsm52terbvvlu2v+wyKfFwXTl+Gdwfr+665x4ZX7duhU2bFBxXId4ep31FOzOHZtj25W3MHp7Fztt09naSm8oxsGsARVWom1/HyP4Ros1R6hbUMfeDc8mMZehc3YkZNclN50CB7ESW6XenKaaKdKzq4GuHv8bctXPRwzrtPe0M7RnCztvYOZvt122nubuZcGMYPaCTncyi2ipb1m3BUA32Du+lp72HkB5CVVU6451sPn8zo+lRXM/ljrV3cMHCC9jct5mtB7aypW8L3c3ddMY7iZpRCnaBG7bfQKaUwdRMpnJSqdUSbSFv5ZlXO4+z556NpmhoikY8EOfGVTcylBxiRfsKLl98Obf33o6HVznGPTvvwfE8PD0kTHKwUcDwwFbxRzsFcIvCOn9sFBrXQm5EWOviNMxZJWAbF+aslvHhjIfg4+OyTX4Ehp+SFPLcMan1cvI+KM1DbhSazpbaLkURNnhqN9Qug3mfhswx3hMM4zkCpgO1wjib0f/KKMc65N2rBuT8naLIuf3rD1TTDzDzfy97s9ODAtjjc+WQmWG5r5nygbELcr9mPpUqscyIvOZwi4DbxZ8TsLz2XgHWfhYIpbQwz+c/5gPrPRBplfP5/ZfFZ33CxwRARzuEdT7rVqna8jyp9zr/MfGLf+AhkZ2vuFP+Dh/fJsfWghJ8FusSzzoIwM8MoRXHOXIkwYYNz9DYGGF0NMO6dQu48861uK7H5s199PS0MzaW4cortzE5mUNVFVKpIg8+uJvu7mZaW6Ns3nw+IyMpUqkCW7ceYHw8S7Eox0qnS9x00w4mJrJcf/1KAgGdpUub2bKlD8+DO+9cy7ZtV/DIIxcC8NhjF3PiifX86U/jeI5Mumz5wz/ieS4/3fMb6kIxfupLxf9h339Im4yiEDICLGs/CVVRmMzM8oNdv2QkOUlTTT3RQJjXht/h2MwYASOAqessaz+ZCxf14rgu333u58zkk/xPXd4H1+8vAv5ef11G3NFRQaIbNggy7eqSEff+++X+wICMsBMTMjJv2CDJX+PjgoAHfL/w3XdXyzKPHJHHyrq2p56SKfZkUr7Myn1bo6MSftbdDR0dOIEwmYzyngoRTavu5sYbhfxubpZN+/vlQiMUEuxvGLLu/feLx+ycc+T5H/5QsMu778q8wPLlMoN/2WXvBeODg/IS0+mq7/rwYXl861Y/jywWgeFxqcEy9Up4FuB3XSMn7briq1ZVAckB871S8HRWTrjoz9AWS5JCbjlV1jqZESm548rzk7MCri1HgHa+KB3YhZIcy3Pf633WTYxAGNUH180n91KuZnLtEuG6VlTVQDdDWIUsrmsz/ObvK+DYc0R+XAbhdjEHnoNTKvre3uexihk0PUi4rkX6kBVVJMKFNLnEGOHaFkkex/U9O6rUQfXvw6yJg+eROnqUvd/+NpmBAemdrq8nNzpKw9KlnPODH9B4+ukoqso7/+t/0Xj66WimiR4O07h0KXY2y/7vfIfs4CCTf/oTWjCIoqo4pRLTf/4zc5YtQw+HmfrTn7CyWQrT07z56KPkRkZQVJW3f/azCoB3CgUUz0MxTAHWuSxEa6CQk1CzzoVQP0c+P6oqAPqKr0ivdSoBkyMCpCMxYU8PvSVVWqWCvC8CQWhqh0xCKrrMgHRkn7SkCsBr6sWHfcJieV5VhLH+yh0iH08lAO84SfY+FFUmVyINrb5vy2b0z2IHUFRdqs8KaexiltR4P3YhjeJ5qLqJXcwTrm/HCMXxPPc4CXkbVj5DevIodjGHohmE69sqLLdrWaIGKOakvxpQFBUrlxBGtnwBEo4IgD3wOu5Lz1XBa8dcud+zGpKzIh9Pp/DyWZF7ex7EYihRAbTe9CQYJtpFHwe/2ktpbYdAsLJ+GShTLIif+sDruH0vgOfivvRc5RzQdJGsHy//7j1XvNOajvqhj0mKuxkQgB0IiGw7EKR0xko+ceVVnHLGcrpPPZX1X/wy7x54E4pF7nnwQRYtWYoWjfGb3/0OgkHxUMdq2Lv/FVZ94IMs/+qNLF7ew+abb6icj2LbOA/fjedYeKUSpBI4v98mKeOeV5F0A1x88cU4jsPIyAjt7e0EAgE0TaOrq6virR4bG8PzPNavX09NTU0lKbzsv25qamJ6epqnn366IiM/cOAAO3fuxPM8du3axcqVK1FVlVKpRHd3N11dXcRiMdatW0cgEAAcPM8lEIhj23l27LiJdHqEaLQZxymSz0/T3NyNrgdJJgeYnT2CrgdRVZ3x8TfwPJdzz92IYYTJZMbYvv06mpu7CQRiFItphoZ2V1hx286jqjoXXvgIqmowNLQbXQ9gGGFKpTQ7dtxMc3M3hhEmm530JYzim94MtCIM8gJE1j2NAOwlwA1I/ZaBVGV1A1MI2A77+7gLqfO6DAkoq/PXfwhJHX8UAfAJBIj3IeFmGX9fmn+soP/4q4i323VEILZ1q4wxuZzUZKVSIg+/5hoZ78qg+jOfkcnhqSmZ8/n+92HbNpnTHhyU8XFsTL6axsdluC17rUHm0qNRGVcnJ2V8Gx0VYF2ejF6xQvb56KMC0j/zGWGuVSQd3HM9ajpqWHXTKtKjaRRNwbM94p1xOlZ1kJ/OYxds2s5qY/rdaZ65+hlO+cgpNC9txspZoEC0OYpne0RbojSc2IAZNbHzNjtu3kHiaAIzYopEvDGCoins2ryLldevRA/olDIl9JBOrC1GwAwQM2M0Rhrpbu5m/8h+GsINuK6L7dqYmsmazjVoisb82vm0RFq4bc1tXL74cras24KqqgymBrly25WMZ8e5pucaRtIjXLntSrJWFoDWaCuGZpAupTk4fZCvPPMVJnITNEebmVc7jxXtKwjqQR67+DFp67CLPLT+Id7e8DYPrX8IFRdlsg8W3QiFSQkmO2ebsNB6FFCElc4eAzsLTauF5c4cluc8ywfNOQGdelSA6+RO6a6+8A2RfWthaFwpIFDxp4eaVsPcT1fZ8XS/eL71oOxzzlmA917Jt6oJ4I22C7isyLd9EK0G/G1KVDzUdlEAuON7scsy73ILRll2nhmusuvxucJ2l9L+fmJyLJBgNIDa+fJ60oPCajuW7NsISwjZH64VKXekBVpWCDv93AZhlbPD4qEuS7nLv+/fAu1nQ92JYIT8CQBNwP1LX5fjnvcoxDoFdMe6RF7uFH02HiqedT0E+zZj6fVs3PgSW7ce4P77X2bFinZaW6MsWFALwOOPf5jPfa6baNRkzZpONm/eRank0NIS4dFHL6K2Nohte+TzNsuWtdDSEuWZZz5Nb28XwaBOLmcRDOo8/PCHiMcDGIbKXXe9wPR0ni1b1vHyy4PMm1dLZ2cNe/cOoyhgGCqu67F4cSP7do+iqRp3nP8FFEXlpg/8NclChi/4UvEvrPgYqqIynU3yk91Pcv6JKwgZQTpqm/nCio/SEK0Bz0PXdM5sP4WO2iY0RaEuFMfzPEq2qDS72058Xxb+/7XlfVn4/8vL8XVcK1YISC7Lw9vb4StfgX/+Z9FSP/qooM9HHxV6t7FRfNM33FBd59vfFvq4q0uk4d3d1XC0ujqZPs9mZTtFkauIVAq++U1B0ZdeCmNj5ONNJKIdgFKRZt9xhzDJ+XxVEr5gAbz0kmD8TEZIeE2TC4uNG6U6ZOFCuVgov8RAQJTsDQ0S8LJli8wtlNXtH/mIkPCGIce67rpq4Pkjj8iFzj//o4OuutXUb8sR0BuPVieAHVd+V1UBYYeHRRZeLIn32kO21zUB2DVReSyVgT/3i/w7YIoHu6NF1jN9iY3ryn5LdjXQzDTkmJ6H6zo4qotVyKLpJlogjHfcF93on19gzgJ/QEWpSIfLM82jB/5AqK6VmpYTxaPteTjFLJoZqoClcmK0ouq4TklCrxRwSsVK4jSKQnZ6GD0QxC7mMUIxVFVHMwOynhlELhzAymR5bfNm5ixbRuf556MFg0y+/joNp52GFgiQGRzk7Z/9jGU33YQeknRW25d+2/k8ZjSKa1lY+TyhOXMEZPm+IEXX8RwHz3FEEqwo5CcmGNu1i+k332T5HXdg5/Oouo7qd9AYuiahYbrudyEnBGjZljDTz/wbXPhXEK+V4LKLPgWNrXDwDWGq0wmRhG9/Aj7xt7Kt47y3lgukN3t2Uthp3fAD0AJyAZGchaf/FS7+FMxphXffFB+264Bu4GgqpXyK6cOv0HLqOQK8fH+c5zrkE6NoZhgzFCeXGPM903nCtS3kEmMYoRiTh/YwZ8FZmOEarHwKu5ghVNsmjK6vMlDwRELt77tc5dZyylrsUp6pw/tpWXS29Ki7jqTPLziTYLD2uGqsc1Hq5uAe66/UXCmoIvWenkCprcd55tfV1OyLLoXULG7fH1HXXSJAPZNCqamrTlr5r1eqrP5QrbKK17yn0sp96TnUtedDvAZmp30J+fkoNbXvSerWLrmM99R5rfkgxGvEu+04KL4XWgHyhTzPPXQ/F119DQwd45Ef/4QnDx7h+d/vYN+ePTREwnzxuhv42jXX8LGPfBhmZ/AyKc687FN86xvf4BLDJXHWGk49/Qz+sP23LDrllEqKuXbRJ/ByWUkMb2pFUVU8M0D/wACxWIydO3dW5NmlUonx8XHa29spFAp+yJhCsVgkHA6TSqXes3456TsQCJBOp3nhhRcqCeEXXnghw8PDtLe3o+s6pVKJbDZLX18fF14oTIhlWYyPj9PW1oau64BFsZikVEpjmjH+8pffMDDwIh/+8ONMTx+kr28zq1ffSkPDyXiejaKoDA72EQ43Uls7D8cpUCymiUSaK73XAENDu2lv75GJvuG9xOMdpNMj0l3tOWSzU4RC9Xie46eEd6OqBo5TYmLiLdrbewAF1wjTrxkMK4r4mxGw+wYSWObKNxA6wjjk/PsBBDDHEO/0F5Ggs18jPmrX35eOAHAXYaWX+49N+PvIIhLxIsKSO1SruHr8fTglBOkjoHd8XHzOJ54ov6fT8nhzs4xjoZCMX+Uskj/9SZRVJ5wgk8HDwzKcep6A53KaeFmZ1dkp6yxbVq3cKld8feMb8PDDVdJx165qQcjEBNRHixQGpyp+6dRgivYVUqX17DXPcv6955ObyWGEjAooHnp5iOmD03T/dTezR2bZuWknvV/vJdIcYcfNO1i3eR16SGewb5B4R5xjfzzG4K5BzvnWOfzg1B+w+PLFXPzYxVh5i9xkjtRQinhHnNRQSiTjEYVDqUMMJAdY3bmavJXnlt/fwpZ1W5jITrClbwv3nn8vYSOMqqiVlGMPD9d1mcxNcnj2MEualqCpGhEzwtVPX82v3v4VT3zyCdZ0CTB3PRdVURlNj/Lb/t+yd3gv919wP67fUx8zYzieg+u57B3eS1usjYHkACvaV1BrBNGyh1Fyg9CwQrzCTt5P/M6LbLsMvKMLJeXbzgtTbOfgjdulLstz/+s2Rl31frl+y8nCgXukvit+soD03KCAajzxdx/YKH7u+CIBl6WM32FtCYAupgTsKopfq3WsWpOlGr6ke1ge04MCrPNTUL+omixeTv2OdkiwWOqosN5qAH/2tXrczGhVfu7610/lZHFVh+GX5Fh774Ger8uxIy1SiTWyC1Z9G2Lt8ng5LfyDD8lk9dSfRE6OB8N90LRM3vjZkaq8XA/513M5yE2Il7ptJSi6VHgVEvL/Ke9HUau+ctch69Xwl4MJNm/u44471nLCCXW4rkd//ywPPbSbBx5Yj6oqFIsOw8NJmpqiTE5mURSVTZte4vbbe5kzJ8zrr4/R09NOOKxj24LTJiez5HIWGzdK7VZbW4zXXx/j3XdnuOCChbS1STVXoWDx2mtjLFnSRDRq4nmwe/cQzc0RFpxYi6UUmczM8k+vPMP153yGgG6iqxq5Uh7Hc8lbRX6w65ec2XEKl5x6NiXH4q2xfpr9BPEDY4dY2noSnu+7LtolwkaQY7Nj/HzfU3z+rA/THKtnJpdiXn3b+7Lw95f/oYtpyohcjuN+5BEBuCBodfNmQZW33y4j+mOPyahbZrTHxmSbt98WfVlLi+znmmsE8U5OCkVcBtaFgqDdY8dkunxiQq4Ybr9dTNJ+YrkTDBMOK4TDYse++WbZdRlYNzXJRYZlyUXE+LiElY2MyGlu3FgNLLNtWbdMyh85IrP+k5OynuvK4x0d0kh2xx3VsJhwWF7WZz4jVVyG4Xdho+C5XjUR3NDfG1bmUa3ISmbkS3hBu6xXE/UHD8/3nGcFlJc90zVRWNldTQWPR+WFlkPLSr5HtFCCo8NVGVahJGy4AqrjoSpS0VROgC4HiKEohOvaUHUDM1KHXcwTjDdW/MiKqtG6+FxqW08mn5ygmJnFcyyK2WQFWCuaQeviD6Bo0nM99vaLWMUsTqmIHgjh2VaFFY80tPuBZ63oZghVN3xgHSA3O4pVkBlrPRhk2Q03MOf003nlu98lPTjInO5uVMPAc13e/tnPaFiyhMLMDIXpaZxSCSubRdV1gg0NeJ6H7vuxcV0818UpFMhPTZHLZPjYxz/OCfPnc8by5Xzooot4s6+POWecwe8DAU4780yira388l/+hb133UV2ZEQ+A6lZ+OdHeP7fn0Rr6+KhL3xagHViShhlwxSQfHK3gGwQb3QkVmWcT1ws/6OxIZGAl4pIyJUrb7LElIDxI3+RRPB/e0zk6KoGsRr40CdB97MKFi6WarBsWpKniwWR6C/+IJ7rkJsdEXbWLjF64A+VqrSRA8+jB0JoepBIfTuKphNp6GD68CuV9wKKglXIogciOKU8uHZFoWAX81jFLJ5rM/KWKBpCtS04joVVyNB8ci+eJ/5teW+cixGMyQRHKimS7ZTIxJSaWpxnfi3sdCGP4rmiAlA11PUfQenuQV3/UamCi8almiqdwh0dAkUVAD49iWeVxAPuCqPsvfMW7u6dKB3zUGrqUOculL9/vBbt4ktRautFBq4oaOs/Kkx6Lou69jzUT39JurIVFc8q4fb9USTrmTS4nn/rCE/hn0soHOHiW29HCQRRlvWw+u+u5OjgACRmWN7SyIL2NgHiniehcrG4+MkzaRIzM2gf+ijZXA5T06jZv0tSzAMhtIsvlZTxSFSquLJpnO3/DolpunzQ29XVRSaTQVEUgsEgzc3N7NixA9M0MU3TB73gOA6GYbBq1SoMwyCZTDIzM4PmW0kCgQCrV69m8eLFrF27FsMwqKmpqYSYmabJzp07K3Lyss+6q6sL13VxXYGYmcw4MzP9aJrJ0qWfYe3aO/E8r5IYHou1UiqlGBzsw7YLtLf3kM2Oo2k66fQYMzOHcF2bfH6amZnDeJ5LZ+dqFEVlZGQ/kUgzhhGms3M1pVKGZ565hkikiVRqkGefvYZotBVdD+G6DoFADe3tPQwN7WZ29jC2ohBWFHrxsyERsLwcYZgNqp5oFwk7m0CY5XsR1toFHgeGEWCdRlhpz/99AwKYFwNXIeFn4gQXiXke8Xv7KRiEEL/2fqrS9LIF6uDBKqOcywmIbm2F73xHJomDQZmfvuoqUXGFQrBypYxVti33lyypdl5HIvJYNlt1dZW3CQblOIWCCNhmZmTCOZuVbdNpmR9vbZV16uo8QhGVl+9/mUhjhPRwmubuZlzLRVEVVt6wklKmhBE0sLIW267cxuyhWTpWdrDo44twLIf0SJq5H5xLtC2KETI4/97zUQ2Vwb5BIs0RjLDBks8s4eIfXUy8I84NIzew/qH1crkSNtEDOs3dzaRH0kQaIwztGaJoFRlIDtAYaeSqp69iMjfJ9SuvJ1VMsWnnJlZ1rAJgPDtOzsoxlZ3Cciw0RaPoFCWgrKUbRVFIFpNkS1m2rNvCE598go54B7sGdnFk9gg7B3ZStIsoikJvZy/3nn8vuqoznh3n1dFXOTR7iCu3XclgapDlbcsJ6kF62nvYN7IPz7NQIvNFxq0FRbasGJKOrYWlaqswKexz2L9u1wwoTgqQXXo35IbFf23WCTgffgrevl9k5rlBAcpaWO5rkWoQmufI88FG2H+NAOvcsH+sTgGInucD4RG59RA22ikJaK4Ekw3J+ZQncqNt1cCz+Dxhi82YrKcZcpufkltFFSZYNeX1l/3UZlzk39FWH6j65EGZHTZjwqK3rhBg/c5WuQ3NgX2bYe46kXeHmySEbffdcOKlfuBZQM6jcZmw49lRAdZmVCq49m2Glh4Zj5P98PurpA7MjApw//1VkDgo4W3BGgk/S7zrh50dkfPNSACdWphi4cI6fvCDi1i4sI5cTpRcra1RHnhgPYWCzYYNzzA6miYaDRAOG4RCBps2Cdu9adNOdF1l1aoOdF3Fslx27x6iVHJobo7S2BhhzZpOHnxwN8lkgd7eLq644jT6+2c4dixBqeRg2y5r1nSiKArZrMX4eJbu7mbi8QCqTkXy/dkzL2Iqk+DuHY8zlBgnbAR5d3KAvFXkiys+xvknrcDxXAxNJN9hM4CuqixpPbGintIUlZAhComQKTLyf3rlGQK6SVddy39LYP1/srwPrt9fZPE8QZzXXFNNBuvvl9E1FhN02dQkzxf8EJ6yxHt4WLYpL7ouU+Fr1sgIXY7e3rNHAHYwKOuXNXCbNsnVxNCQMOWjo3DXXWjREMeOeezcKRcYW7bIU2XCfGJCWGhJNJQLiDVrqt6022+XOYFbb5VTWrFC5gK2bhVAraoCpu+4Q05740Y5hTVr5MLDceS0yjVcjzwiFzkvvyzzCe8cVPE0TXKhSraA2pINHc0+4EYGBlWt+rItx/diu1WwXH4+lRFGO1+oPu/4nEpLgwBtTZWdlsG7qkrA2cCosNqDYwLEVU1Am6oRqZeBb+boa4Tr29GDUVRVJ95yIqVsEjyXcEMbqqajIB3Yrl3CKqTJJ8cI17VhhoW5C9e1CkhQNTzHIjszCp6DGYrJvn3gLBJxqWvyPI9iZpbRP7+AVciQT05gF3NoZqiSSm7lM5X+XCMWQzNNGk8/XfzQhQL5iQnsfJ5lN9xA14UXEqqvRw+FePW738UpFCilUrilEqquM/WnP+HaNq5to6gqejhMZngYz7b5YCzGd1tbeezii7nw3HP5+qOPEm5s5ANr1rDx3HNZvXw5pWSyIg3HdeHZX5Dc8xK3bbyHiy64AE5ZJkD3xCVwRq+8eTRdgPSxdwXwqqov854V+fdZH5DPTWpGgHJ9k2yTzcDUhADm3/1K/NWzk3DBpfImtHxpXE29gO3yvmcnJUztyF/ADOJ5rgSPaQbBWCO52REURaVh/hlM9e/DsYskR9/BLuZ9uf8OmTBxXVoXf5Da9kVCEHgekfo2VM3EdS1ys2OVlPly6ruq6YTr25k+8grRxrnoZhgjFGX8nZ0oKETqW/Fsi3xCJic8VUGJ1+Du2SnSbc8D3aj4qZVgCC+bhekp3IHDKJqOduHHUExTXq/rQl19BZh66ZT0TQeCKGYAbBtn+3+AGUD/2h2oF34UHKni8koFAd62JQnktiWgVbRyeGPDEAxLQndbJ+7gUZGcex7quovRrrlNPNq6jtv3ohAVngf10mXt7HhavNHRGODx8MMP85ELL5TU8EgcYnGUQFBm+GencHZsAwV+/s//zF0b72ZuZwenLO1m43f+nraLP4a7+yWZaFA1CEf8OTMVd/dLVSm9nwi+aNEi2tvbGRgYYHp6GkVR6OnpqaSCJ5NJgsEguq5XWGrTNInFYrS3tzM8PEwikUBVVRoaGrjkkkswDAPHcUgmk6xatarixV6/fj3d3d2YpommaZRKJUqlEmNjY/7w4VFT00FXl7A5rmtTUyP+0Isv/iGnnXYFo6Ov4nku0WgLzz57DcnkAJ2dqwGFuroFdHauZmRkH5aVIxCIYtsFpqffZWBgJ21ty2loOJFQqI7Bwb6KjNzzXNLpEVatuhHTjJBMDjE6+gq2XcB1bTo6VlJXtwBDUYh4Hv3AlQhjnEHAbgRhp9OIJHw3sBKYjwDgBxBAPOlvoyJAO450X3/Vv/8wwk7rSC1XxF83g9RuGf79Y/455IBa/7ki8lYfHpbJ4M5O+ZgvWSJv/6kp+Tp48EGZYG5pkUnkG2+U4XloqDp/PTkpDHdNjQzjR47IeNXSIkPvmjWyv7Ls/NgxySgZH5fnymFohlGtvdR1iVEZG/MIhzy8Qom1d64lO5mlc00n+ak8O27eQSldom5+HbH2GNGWKJGmCF1nd9F3Xx8A6dE0z1z9DLG2GKf91WmkBlNs+/I2clM5hvcOE2mMSJp41CQ3lUPVVFzbRdHkQl5RZYyItkYJxAJ09XaRn83T3N2MaqmsaF/B/S/fz9YDW9m0cxNdNV00R5q5c+2dfHbpZzE1E13RCepBmqPN7BvZx9HEUWJmDFVR0RWdscwYd794d6Wqq7erl5H0iHi4jVAlDTxn5YgFYkTNKJqicV/ffTRFmhhODXPjqhsZTA5iaiY5O8c1z15Da7QVRTHw7IwA23KVlZOD/V+V2wv2Cqje+2Ww0iLd3nuVsNalWWF6Q80QbIaZfQLKPzYKZz4kwDTcAW/fJwy2awkAL05B3RkyjjSuhXe+V00Qb+qFuVfIsRRfplABwsPli8NqJVZmRI5Zs0CeShz25Q2a3CYOy+O1fqBazQJ5Lj4Pmk6X21Lal3UXITUgz6ua/C3SQ/IpKcvZiyl5HaW07FfVJUBsxe3ihf7AQyLV/sBDAthrFwro14NwxvXyOnZcCYkjwkgbYdl+773CVruOeLjPfwwWf14A+CsPCnDft1mAtRESlvqVB+W8Q43SOb5vsy8z3yjXaJkhyAzjhpoZGEgyM5Mnn7fYs2eIw4dnsSyXvr5BDEPl+utXsmVLH42NEQxDo60txh13rOXyyxdzxx29RKMGruvR1zdILmfT3Bzlmmue5fDhWTRN4dJLF3HvvefT0hLl8OEE11+/ne7uZubMCRMIaHzjG3/A80QOPjaW4a67XmBiIkckYjI1nmM6m+SHfU+gqRpTuQTb33mZx/f8hvHMDM3RBtrjjXTUNB3HaBc4MHqI+nAc1/Owjpd6+yDb8VwGE+Oc2XEqN5zzWQxNJ1AmBP4HLu/Lwt9fZEml4EtfktG1jFC/+10BaJGI6MX27pXRPhYTZBuPy1T36tVVIN7TIyP4174mvuuo7wmamJDRfu9eGb27ugQ8lmO8yxo3XRdt9qc/Tap/gi99xeDGG6ug+PLLRYH+wAOiTA8EBKcfLwFva5MLh/p6uUBwHPneV1XB+jffLOvNnSvAufySN2+WVNQF/rhhWRJ2dtllwmaXQ9O//nXZ54MPwj/+3EHF+9/LuLtaBSwHfGbTdmSnNVFhrNNZkXGHAgKiNVUY7khI2OuSJZ5uVanO3lq2D5qV6u+ZnNSAlSXGhSIMjuEu7KBYTGHl0yL3VmUAtHJJrEJWPLOIZzZU2wp4OKUCmhEAVSM3M4IRDDPZv4/GE3owgnGcUh7XtfyAs7aqn1ZRsfIpCceqbRGZ8pFXhU31PFyrUEkGl4CsKYxQpJIsbkZqyU9MohmmsKfpNEYkghGLCXhOpzFjMbRgEKdYFC92UxO4LuGmJjzP4/X772fZjTdSmJrizz/9KYu/9CVy4+MEGxuJtguocyyL1++7j0V/+7e8PTbGpz7zGf7lU59i0d/9HdNvvMHn7r2XG265hdXt7TQsXYoZCKBOj/HXX9nAJz/+cX79+GMsW38x1119lVRnua54pkuWvNlyGQHJF38KInHY+mNY/0lo6ZAQtJlJAd2lokjFL/uCyMD9pGxM3/NVzMv/3HNlH5dfKf7q324V6XlDs6SLzzsFJ2BSyiWZ7Pf/luG4L+3OSjWaIgqLfGKEcF07udlhirkkNX5qfD45iRGKoKpGxTqgqDqea+N5HhPv7KJ+3ukEIrUStOW6lXmjSkWZJyy86zqM/+Ulmk9ZK1J8TUdzpZpKiYgHXwJqJIAMqwR1c1A8F3fgiPRLl/3T6ZSf3H0eRKJ4o0N+OreNNz6C2jG38vXllYqQyYgsfO15EArj/v4Z1PMvQgmEwHPxikW8iTHUtg6RhGp65Xw8y5Lk7nAUxZGUbsUw3yNnp6YOxXUrlVleOonS3Iqi6bgjg3z3n/6Vbb/dzo5/f5JIXYPs1/M49/x1fO1rX+PjH74ELzEDKFzxycv48Kc/w6f/7gscOXqUD6y7gGef/BWnniZoStE0PMvCfe5Z1PMuRNF13MGjKDV1pIwAZjCIqqrYto3jOExMTFBbW0s8HseyLBRFqTDTiqIwPT1NX18fq1evpqGhgXQ6XQHS4XAYRVEYGBggGo1SX1/P7OwshmEQDAYpFAqEw2FUVcV1XYaGhojFYkSj0UqquGmqzM4eIpUaIh7vxDBCBIN1DA/vIR7vJJUaJBJppKZmHiMj+4hEGslmJ5k792xc1wE8SaRXVBzHQtMMLCuPppmUwTooDA/vIRZrJxJpZGzsdTo7V2PbBZ577nbOO28TmmZiWXlsu3BccnkDViDOqKpxGPE7a/5PAOhHwPVq/72UpQp8ZxHGeSPwIDJfOur/lAFz2l/XRgB4EfFhv4GAdMP/rFhUpeJnAf+CMOA2ogZvyYuLJJmUIVZVZfh8910ZapuaZPzy4wcoFqXlctky+drI5+G222R86+qqpoffdpvsp1AQEL5ypR/vUZRtCgUZmj1PxtHBwepYd9ttMt8dDguj/eabsPKMIkHdRg/qotwCntnwDCtvWEn9wnqsnIUe0kkeS4r0+/ZeaubWoOoqTtEhcTTB/h/tZ/1960mPpDn83GHqFtTRtryNQqJApClCKVPCyluVVPBoa5S6+XWkhlLoQZ1gXfXxWGsMPBh5a4S2c9rIlDJoioahGczkZqgN1aKgUHSKvD72Om2xNjbt3MQtq2+hOdLMmxNv0tvVS6aUIWpG+crTX6Gnvec9SeJNkSau234dd6y9g5AeIlFIMLd2LqqismdoD101XcwJz0FTNVRU9gzvoTPeSVdNF7sGd9EYaaQ+WM/8WDNa+iAUJqCuG6yUdEsP/QYmXoSeHwmwHtgKF/8FMoeEaTbqBHwf2CQ+bc0HiXYaAk3yxlQMCUCz0yInV4OSFK7LxB+v3iDbBhrh9ZvhzEeEOS6nkGthqQNzCgKs4/OEzS7LucuhZF5ZGt4mUu1y4rfnS7g9T9K6y1Lw/7yfStd1Wo5lxquy8lJKgHVZTm5GZVtVvgeE0bZ9qbkp0u0XbxY5d35S/NjRDum87rldjvnkJfCJZ3zWOul3a3syoRBtF+C9dyOcdQtE2uR1/PEGAez5CfFon3WLgHAjUh5xhLHedy/03CaTDm2rIXmUZHARu3cPsXRpM6lUkcbGMKWSQzBo8O670zz88B62bFlHMKhjmhqJRIFAQG4bGsKYpko+77Bv37Av6w4wOZklmSxQWxukqSmK47gYhornwfBwmmy2hKLAAw/sZsuWdei6SiCgoyjwla88zT//85t85jNLeOCBCwjFVV4feYf6cJxYIExdKM7rIwdpiTVgOTYzuSRL205iLDXNeGaaJS0nYOoGjueiojCTmaEh1oDjOhXPvKZq5KwCjutwaGqQ7raTiAbC/zuk8d9meV8W/v7yf7aoqoykn/ucGKvuvVc+OMmkjOimKYngZRPyd74jU+e9vaJDGx2V0X/vXhm1y+nfRT/4IRIRRNvdXUW/110no/j8+dVp9IMHYdkySgePkC3qPPCAzOI/9BB8/vNyO3cu/OhHPtmbEqX55s1w9tmybjmE/KtfFcw/MSGz81/6kvz+wx9WZ+fLcu+xMekPHR6W081m5aWsWCE92StWVIn2++6T4/zkRy5KOcwiHq3WY6mK+KpVRYByOUV8aExAcKEkwDoWEeBdlnLni7IfXat2X4MA8VRGgs/yRdkvwryhqXJMqCaWlyyYnMU7rv84NztakX2pmkG4rrUiGw7VtvgYSUELRkSKC4Qb2v1125jq3w+ei2aGpPu6TtjJ3Gx5dluSv8s+XkVVK/5bRVEoZhMoqkopm8Ap5QnXtzF5aG81hAuPYiKJFgqhahrZ4WG0YJDM4CD7N27EyeeZPnAAK5tFURQazziDWEcHkbY2Zv7yFwC6r70WRdMozM5yxs03E2xoYM6yZUTb21E0jak336SYSHDWXXcRaWvj0R/9iFVtbZVe7LmXXIJmmrz7i18QbmlBCwRwXYdfPv8iak0dH/ESIvsOhCBWJ8Dw0FuSWVBTK/Lt3/1KkrxnJkUufuISSM/K/183qqnh25+QkLTkLBx+W2Zr8OBffgBTowK0NU1Y7wOvCsttBuFDl8s5aBosPNX3o3lMHd5PuL4dMxRDUVSMcC3h2jZysyMUMwkA9GCM4Td3oAdjxJtP8JUEWYLxOVh58dILC6HiuTaubaHqJq2LPygJ4J4nrC0erudWq789FzyXXGIMp5QnVNeKqpso/qy1pyrSRZ3NCIM8cARvekqY2XitXI9lM6hd81HitahzFwqwzeVQuoQ1xjCEtc5mAE9CyxxHmGarJKFzZVn4S89BsSjd2oA3PSEBaaqCEo2KDB1Faq/KnrlycndqVqTnGWFKykFoXiopwWLbn5Iar0hUEszzOZxnn+SBXzzBk7/5d/7j6r8lHA7jJaZlkkBRQNNQPFcY81gN047Lb/a/xqevuAKABQsWsrKnh137XqlUnmFZ8lld/2FJDAfxjsdriEYipFIptm3bVpGFlwPGQFjk7du3k0gkyGazOI5DIBBg3rx51NbWymc7HCYYDGIYBpZl4Xke7e3tZDIZUY8cB6wty+Lpp59mdnaWXC5HZ2cn8XgcwzD8MDPwPJtUaoj29h5isZYKsBYpd4j29rPIZicxjBDxeAcvv3w/8XgnoOC6NrncFI5j4bo2IyP7cF0bwwhhWVmGhnZXurHb23swzQiqqhOJNPL001eRTo/Q03MN6fQIzzxzNfn8FKYZZnh4D5aV5emnr0JxijR7Hsvkm5MUUOZU4ghQLiHp4CDgeg8CkucCjyBMdBoB4t0IWFaQJPACsMu/7QSiCLAuB6SlEVCd8fezF0keP0i1N9tzZRg9ckTGr1hMvjY6O8U15TjVoRjkuZUrBThPTclwfcMNMrdtGPL4LbfIvspMd3e3vLUsX3VbUyMqMNOUbcJhGcY3bRJR2siIPGfbMuyfcYZHMGaQn83jOi6e66HoChd+/0LqFtRRypQoJovYeZv0SJoDWw+wc9NOVE1ltn+WZ65+BlVTWX//ehJHE7x494ss+sQiOld34nke4cYwdt4mEA8QrA0ysm+E5u5mYq0xVEMl3BjGjJjsuHkHLae3UL+gHiNkoOgKTSua2D20m5AuWRx9g32EzTDDqWH2DO8hqAfp7eolYkS4adVNjGXGyJQyrOlcw+HEYa7bfh2HZw+zZd2W9ySJb9q5iUQhwdYDWxlMDpKzc9z38n2MpkfZM7SHxkgjA8kBomaU8cw4e4b3VFhuTdXoiHcwmZ2kNlSLiiuMcd2S4/qlx6DzMqnjckvSe33JQQi1wJw1oNdIcFluRED3gY3CXudH4a3vCEvtFAQsBmohdqIPRgEjLmnjWkTk4wc2Cihf/gOp5tq/wZePh8SfnR8VYFu7UCZ5FUXAsWYKw5w8/N7O6kCtJHrLt4CEj5W7r52ibKtoxzHfw/KpKa8TaqrKyrWgSLrNuA+eDQGwis9ql2u9VF3A7HMb5EPTu0kYaS0Ajd0SUvbOVgHYrSukOqtttTDVu++W16oHxEPt2pIKvvxWmeTQQ/La1j0u+0wPwfKb5JzMqPjfn79GJhfqThLG24jJcVQTcmPomsLq1Z2MjKQ5dGiGgYEUN920g3zeoqMjzvXXr2R0NM1VVz1Nf/8sqqqwYcOzzMwUmJ7OkUqVsCyH3t4uVFXl5ZcHqasLUlsbJBIxcRyX6ekcjuORyZS4++4X0XWV8XFJDjcMlb17hzl0aJpMpsSWLev4zGeW8MgjF2IYGpqi0hSt5//at428VeKN0Xc5pWkeTdF6Omqa6G4/GVVRaK2Zw+ntJ4tSybaYzSUZSU7REKunaFvM5lPYjo3l2hRti1wpz0w2RXfbSWiKxv/05X1w/f4ii6KI7/rYMUGVsZiMzoYho7Wqymh8881VhnrzZnnMNGHtWkleWb1aUlgCAZluHxoSenh8XCTl4+Nw9dUyavf0yCjuOO81SKsqBTPOG28oTE3Bq6/KaXzve9VwSVUV+dv4uNjC770XPv1peX7nTgHRq1bJ4cvp4r/7ndw6jmAT25b97t4tFzB798rtzp3ykleuFClcNCov55ZbhDnfskXAuKZ5UsX17jEBtWVGOl+UEynf1kTl+dmkXI0ZejUpvGT5+vQWAdplwFIJalLkROM+EC8f49CAMNSOK2y3ZQtYHxiV28Y6FN0gXNuCXcz7AHtMJp91g9EDz2MXc9TPW4ZVyJCdEZ8urkt2ZlSAeS5JKZegtv1U2pacL4OgqsrF8OwIiqYTjDWST475/xeXXGKccG0LqmqIzzuXZOSt59ADIax8Bt0MMdm/FwVoXfQBTjznb2k99QOAQqyjndzICPs3biTY0ICiqhz48Y8Z/sMfyE1O0nTGGai6TjGZxPUBwfRbb1F3ojCwdrGIFgwyZ8kSAemBgLB2b72FncvR6ANtz7b55s03c+jdd/nRtm3M+8hHMGMx6dvVNGbefJMDP/4xnuMwOjjIxns28fC934VPb5CwMhBm+Rc/EqA8OykXAooCn/0qfPcfoOsE8U2fuFgk3+mE/3+slfWu+AqceiYkp0UK3n9AAPS6j8PslLCov/iRMNybfibytalRea/822MwMQyHDviycUX88W2LcF2Hkbeew8onyfqVatI17mHl08xZsBxV1VE1XX7XDZlA8RPdpbYtjaIZ6D6LPfLWc1iFNK5jMfzmDqxCBs91GD3wgv/V4U/G1LagaoYvMRcm2y7lpZs6nQTTxMvnxHMcCEAygTt0rFo/lZzF2bFNpNyeh9rRhdK9HCUcAUUVmXgwJJJrz8PTNKm0ApxnfwO2hXbVTdJHHY2hLDwZSiXcvhfwDrwOxSJeOgVWCefZJ6FUkoA2z5V13nlLJOdd81Fqan1w+xGp++qYi5dMoJ17ISjIeSamQTd4+J0B/u3Xv2b7r39F/fkXy0Wpbshxtj0hfdUgkwm6Tm1dHZFwmOf7XkZRNSYPvcueF//IaV0dUuU1O4U7NiwTCuXvXUWRSQbHQfU8du/eTWdnJ7quEwgEcByHwcFBisUiuq5X/NXBYJB8Pk8kEuG0004jn89TKpXI5XIA5HI5tm/fzszMDI7j0NkpPj3TNN+TKL5q1SpisRjhcJhSqcTIyAiuK8y8rusoik5r6xnyuVcNn51uIhiswbZzPPvsV4nHZZK/r28LXV1nE4+3Ay6FQgLLyjM8vAeA9vYV2HYBz3MxjDBNTUsqzPf27ddjmlF0PUguN01X19mYZoSGhhPZvftBDhzYSl/ffSiKRldXL/F4Bxdd9ENc1aSgKGgIOD6EMMZFoMG/3Y+Ei0UQX3UjArCP+c+5SNJ4L8J6pxC5uI0w3M1AFwK6dyLS87sR33WI41xCiHw8iaSXr/L37ToytLa2ClguFGQcKw8Bu3dLLdfsrIx55dRvxxFll6LIENzaKo/V1YkKq6ZG7q9c6TtNLBk3DUP2UxYvWpaA+BNPlMnrt96SSeVSSY5/6BCMjkoNV7Apjp23yU3n5HYqh2u7BOISUOW5Hp2rO1nymSWsu38dnuuRGkrxzlPvsPOenXiux0sbX6K9p53seJZtV27DtVySA0lGXxvFtV1UXaW5uxlFURh9dZTZ/lm2X7ud9Gianq/2iJArb6HoCtnxLOMvj7OifQXHkse4fvv1dDd3EzJChIwQrdFWrnr6Kg5OHyRiRpjKTXF66+m0xlpRFZWgFmRN5xq29G0hbIRpjbbykw//hJEbRnho/UPUBmvZdsU21nStIayHuWnVTQylhmgMN/K9Pd9jbddabNcmpIfobu5mOj9N1JRJ76HUEI2RRq777XW4qHDWj4RNNuLCVhfGBFhG58m7oxxUtvdKyB0V9jo/Ioni8z4j9VueC0YNnPmwAEIr6wPPEKQPwb6vSB3XzOtgZ0Ty/dFjAtzdUpWFbjpbar6CTb5Pu0n2XfZBK5qA2v8dqI75LLTn+mnh+M+PyHZmXB4r+YFozWf6DHdZ/o2AaLsggNdzRAZeTh3PjIqsuwzG7YKcl1sS4NzSI5VbL94soD5xSNY/ezOcfDmF7pv42F99npOu30/3WWtY96FLOFR3GXgOf/vXV3DS8vPoPv0M1pz9Afa9MyYe6tQxPv6BxSw7cznLetay7CM3oLb18NR/PAPDOwWgt66Sv4HnCDi38/CH6+R1tq3GKIxVKreamiIMD6fYtOlcgkGdVKrIwoV1tLXFuOWW1QQCGqqqcPbZXcTjAVpaongeJJNFUqkisZjJ8uVt7NkzTDhsMj6epa9vkGzW4sortzEykuaGG1bR2hpl9epO2tpiXHfd9koFWCJRIBw2+MEPLmZwMEVf3yC2K/VbL/TvZyIzw5LWE/A8j3uf/wdG01MkcilURWUsOc1MLgmeh4tL2AjSFKsjWyrw4B//iZARRFc1TM3gz+P9FKwSU7kEnucxlBzH8ltD/qcu78vC319kKZVkanrnTpneVhRJMqmpEel3U5NMf//qVxId+u1vV01dqiqj9MiIoM6ypuyOO2Q0n50VJLxihaSpPPWU6KxXrpTjxuNy7NlZuXoIhch6IWxXY+fOap3WQw/JxcaWLQKmw2G5CPE8IcNd36as6/J4Q4NcFJSTUcuBLvfdJ/sIBsWn1tQk++3tpXK8yUmRwz38sEjQyy8xk5E/w5VXwr/8o4PWf1QqsU47QcDv4BjMb/cHLz9gbHBMJOKmfzVUloMnMyIJD5gCvssS8HwRhsbhhC5Zv3xVVv6sKsD4jGwbj8qV09GR9x7XXxw8PNeuyL0dq4hmBN4j287NjlYTpOta/JliF6dUwHVKIiGvbQFVqyRGu66D61jogYj0VyfGMIJRjFAMu5RH001U3WT4jd+RGu+n64wPE6lvr1YyaTpWLsHkob00nrBC0sONIOO79xKsr6eYSNDQLeEynl91lRsdJTcxQd3JJ2NnswR8AK4oCp7rSuJuocDsX/5CY3c3dqFA4p13mNPdLX8+y0I1DDZv3syTTz/N008+iXPsGOGWFnJjYwQbG/n4l7/Mhi9+kY9cdBF6JMJvf/tbvnjVVYRME/JZpgolTF3nK5/9NBsvuwgamiS8rFSAwX5JBp+ZkNTvxBQEwhCNy2xOPisVXud/HGrrJS28LK0qJ84jTCezU8Ja6wYcPQgd88UbXCpIL3YgKLVgMxM4zW14CuRmxwjG54DnUUhPoZshpo68Qtvic8H3yDt2CU03K1JwK58lVNOIqhlSsZZPVOTiY2+/SMP8MwEwghEJobNKFFJTmJE4qmai6UYlczc3O4IejKGbIfLJScL1IrEr5Ut8+rOf5c8HDhB0bZq65vHDxx7jhPnz2LRlC//4v/6Jd/v7eeKRh/nomctQFi2BTAYvHufvv3sv//qLrQRMkwYVnu/rk7TunE/hFYvCWL/9FtTWodTUii+591yZtHAsSKfxMikB4qqK8/Sv8d58BWXJmWgXfwJQ8Gan8VKJqie8/J3o+7o9BZiZktTy8y9CcT08x2Zocoq5i05lQXMTsTlzQFEIBILs3rWLuzdt5EeP/5TJqSlisRjBQIBXdu6kcU49O371BLc/8DA2YBWL/N2H1nHdOatRe9bg7t2F+qGPyYQViC/fNCsTDLYHrqJg2zbDw8MVFjkcDmPbNs899xznnXcepmniOA6O41SSxMtS8uHhYWpqakgmk/zrv/4rixcv5pxzziEWi2HbNqlUir6+Pi644ALy+TzJZJJ4PF5JHK+rq8N1XVRf5eJ5pUoKuHRVe4yP/4nOzlUMDr5MU9MSVFXDNKO4ro3rOhQKswSDtaiq7su+oVBIEAzWUSjMUiymicXKIWU2zz67gc7ONXR2rmH37ge58MJHKkx3S8sydD3I4GAfra1nVL7/NC0gUnFFwTbCeIpCHwKcJ4EOYAsCckNIVVYdEjB2FXCtf78RAdL+Nzhp4BbgJgSIdyIMt3fc17WCAOwgAqaz/u8q1S7tI0glmAvoJVBKMoaBFG0sXy5fD5omYLtcvhGJyHhX7qx2HBF/gYx9Q0NVh1apJEB6akqsUooi45tfpgDI+NfWVlVtgUwqZzLy+803i9NrclIEbCZFrMlZajprsAs2eLDjlh2svmU1RsggWBtED+vggmtLbVesPUZ6OE3LshaMsIGVsyimirzwzRc4sPUAG97ewEz/TGW99h5JH3dKDsljSfZ8bw/tPe0sXL+QWEcMO28zvGe4klb+5Gef5KrRq9jwzAZuWHkDC+sXkrPkj/L62Otc9C8Xcfniy/n2Od+mKdKE4znsHd5LZ7yT4fQwS5uXEg9InZCiKKSKKe58/k42nbeJsBEmZ+XeIyu/vfd2wkaYqBllMjfJYHKQFR0rCGgBRtOjNEYaURUVTdHIWTkURaHBDKNk+qtp4aoB2QHID8Gclci0DeAWBERqvq3OKQqI9jyp6FIQIJ05DO88AMu2VN94s29A5h1ouUDAcuaodF+HO3xZ+e0iJZ99VQC7XYDZ10VKHj9FAGxm2E/2NiB1RFjn+pMFJJczIcpv8kqCeNtx8m3bl5bP9QG6D9adol+zVTguKdw7bntDfi9vV0oJ0E72+xVglp9I/q4w1X13CUt98uVw5g3wygNw3g9ANSgU8jy//Wku/OhlKHg88sOf8MQvf8ELX1/AU1M9XHTxReiRBrb9y6Nc8/ePc3TPk/DK/dD/lHRft/ey/7f/wIc+fwcjb/dhRuqknuuc+yVBfP8WkaODP6GgwL57Ka39PjkvxrFjScJhg3zeIhw2aGgIY1kOtu3xpz+N0doaY3g4xRlntDIxkWVoKMWKFR1omsLu3UOcdVYbgYDOyEiaSMTANDX27Ruhp6edvXuHueyyX3LppYv44Q8vplCw2bt3mLa2KK4L0ahJW1sM23YxTZVcTp5vaoqw4IQapq0ZgoZBLBDhrbF+5oRreW3kL7w12s+d676A63mUHIvpTJKxzDTdbSdRtEscnDzGqc0LsByboCGqJV1VsRyHt8YOcWrzAkqOxf0v/BN3rb+SiBniv+vy/yQLfx9cv79Ul1xOfgxDRuS9e2UavLERbroJvvUtWc+yZEq8rC9zHBnhczm5nZysAuV8Xljp228XZvzQIQHgK1bIdqYpOrjBQUHAo6OwciV5PUoipRIOKxVvWCgksrdVq+BjH6ti//JFwPg43HPPe6u3Nm6s9mH39lY91r29VQLe8+Q0NE0uVjZskJc7MSHPW5bss+xlMwxRr592qoNhF1EGx+DELmGhHVf+RmW/tO3AKwdEMh4NVzuRs3mRfht6teN6yAfhqirScFWp7s8RVrni5S4D8uNBeeG4+7aDqymUCkn0YBSrmMXKpzFCUR/Q9qCbYVTN8O3c8j1Q9lRP9VdrlVzHZvwvLzFn4XKsfAYjJOnTnudhF7N+jdOZaHrQ92OL71rRdEq5ZKV2Kzc7hhGKVvZh5dMc2/8kNa0nCwBEJX3kKG///OdStRUMYudyvP7AAyz6u78jNzHBnKVL8RxHPNjxOKphYOdyqJqGapooqopr27yyaRPLbriBwvQ0+clJ6hYtIj85yV0bNrBzcpKnn3ySIz/6EYs+/3kKiQS1J56Iqmms/9jH+Pwll/DZa64BRUHzXLRMCiaHIVbH52+7k2VnLhfPta6LfLsMmOO1MHwE2ucL81zbILcKIiX3/HC68m2pCIOHoHaOVHqt/6SAbpB9XvaFKvA2TVlfVeV/NXgY5p+Eqxs4yHtE0Qw826KQniBU2yLMTjErkm7/f+w5wvirmo5TyqMFfA+Z56L41Se5xAiaGSE3O4wZrv1PVV1xmcxQVKzj/rdOqYhuhuQ4qpxzuaqrYcEa/vCHP7D+1JNQm9t49Oc/51e/fpLnn/4P9mz/LU2nnMoXrt7Atdds4KPnfhCCIRRN4+FHf8Af//hH/uW7dxOct5DRiQlam5rE89zaDtmM+KFXfwDitdJnflyNl7b+o3i6jlJO/96xTdaNRPHGhqWr2n/fuwNHUNu7RLodDMkFY6kEpokSCIpff9sTKF0LUE5ZLM9FotKhPHgMZqdRFpyIEqsR5v14v7ghMm9353Ooqz8o4WxIVoGiqFJHpul4ioI3eFSY/WxG1u89Fy+dEm+3GQBFpQS4rks2myUcFl+b4ziMjY3R1taG4ziVr/RSqVQBzACqqlYA98TEBG1tbYyMjNDZ2Vl53vM80uk0pVKJ2tpahoaGiEQi5HI5mpqaCAaDuK7L8PAwzc3Nfu2XRamUIZ0eoa9vM729X6e2doH8fVwby8pVqrFUVSeTGceycqTTw36tliSOK76c0PNcP41WAhw9z8WychSLKV544Zt0dq5h7txz2LlzE+vW3V+p7jLN2HvWHxt7nba2s3BUg2wwTlBRcIB9iGzbQjqmQYLLNlMVD4UQAKwhKeDD/jbl7NtZ4E0EOM9FfNibgNv9fXYgTLdNlbEGuBm4HglDiyOe7lmgMQ/HDsq89O23y7B7/fXVHJHXX39vq2V5aC0/71vsMU386h2ZIB4ehqVLZZzM5aqZI13+3G250U7+/7LdaafJ+o5TZc737hWwb9se8aiDUirhlBzGXh+jbXkbyYEk2YkssbYYRtggPCeMlbP4/a2/Z9VNqzAjJpGmCFbOkm3OakMP6iSOJkgeS9K5uhNFU8hOZAnWBBnZP1IB4k7JQTPlBQ72DRJrj5EaTBFpkgC0SGMEp+Tg1Xik/fCr8ew49+y8h9t7b2dB3QJG0iM0RZpQFZWclePmHTfztRVfYzI7ydLmpaiKylRuiqHUED3tPeiqzpHZIwCMZkbpae9BUzT2DO9hTngOdcE6GiONaIqG4zk4rkMin2BOZA6Wa1FySrw+9jpntZ2FpmrsHtrN+rmrUAuTYNbC9H6oWyaybRyY2g2BZpGD6zF553hAccK/r4g83E4JGx1oBjcvcnEUH2Tf66+TgeSfpXKr3DP92o1w+B+g63I483vCbL/zPX+bMBSmINIlLHB+SlK4axYIIHZK763TKnuiywC6XF0V8NnqYuo4P/WID5b9vI1ylZdmynkpmiRzl9ISSlZMHOfD7hAZuGtTaURJ9AvADjfKtpYvv5h8XdavmS9M+56N4pvOjcPee9gf+CiXfeEWjl47DB/fJsz7nk1MLfwKrUvXkT/wK/TaucJO+/7sr9y2mYCh8tB3fGk4isjFd1wpIWftayTYrOcOCT4rJkiFFnPtdb/j7rvPJR4P4Djue6qwmpujhEI6xaJDNGriOB7pdJYrr/w8b7zxFnV1MRoa5vCNb9xLU1MnH/3oFbjuMeLxKJoWpLX1Mn72s68QCukcPtzPV796NW+/PUg8rnHuuRfwta/dyfBwhhUr2pmdLVAq2cybV4ttexSLDqG4AgqMJid5fM9v+JvlFzObT9NR00Q0EGY2l+LxPb/hiys+RsgwMXWTXKlAJBDG81wefvFfue28vwXAcixczyOgm6iKIp+tUgHwqAnF/lsnhb/vuX5/+T9fXFcuBI8dEwl3Y6MgUF2XyO3aWhnFQyEBxH19MhrHYoJkr7tOwHMkIsg0lxPQvHWrUMWWJSN6b68c4+qrJXWlpUXo4+FhCUwbG8OxIZdTKru45RbB5Fu2wCc/KUC6v19OrUyyDw8LkB4bk4uBstL8/vsFy+u6XLRccIG8rMZGuWAYHYUvf1kAcygkhHttrRDw11wjz69aJcS8rsu+m5t90tE0BFg7LhwbrdIMkZCsqKlVL3ZFKo7cDxgCRGqi8reZTgg41lTZ1nElrMyypdu6kgQuX44UfUqif1DWDZhVubnr4ikw0b+XUj7F5KE96IFQxec8eWivAGvPrXRR52bHUHUD3YxIIJVm4LkOqqbTfHJvRdZt5dNYhTSOVWDy0B6So+8wfeQ19GAY3QwTjDcy9vaLuHYJMxRD1Q3G/vwiwXhj5fmp/n2E61qoaT2ZxhNWCIgvWWihEN3XXotmmrilEno4zJlf/zpaKETjsmWgKJRSKQJ1dXh+GrgWCICiMPnqq6SHhnCKRRqWLMHKZvnzT39KsL4eK5Phjw8/zKN//COJRIKLLr2UL/3qV5z/V39F4+mns/mhh5i7YAF79u3jlvvuY+6CBUxOTOBpOl68BurmwO+ekP9tNg3//AiM+Qb9+SfD9l/KbP7CxRI89tT/Eul4OiEJ4pMj8I8PS81WsQD/62Gp+GqfL8B634uyj3xWfuafLAz1vz0GyRmRjCdn5b7nCSv7z4/iqSp2Mcfon1+glE2gaBrBWCN2yZfVBmN4nodnlypVbI6Vx3Mdxg/2YeVTeLaFUyrgufZ7pOTRxrmE61oq/2O7mPWl48/j2SWMYBRVN8jNjuO6FsNv/b6yv3JVV8P8MwgGg1z0ofVocxeAabJi2ekcPXoUzAArP/wxFviyfhQVxWf5PavEfQ8+yHc33k1g/ol4hXwVWEfi4l3XDZTOebh7+8RzraqoF1+KtuFW1IsvFZSRSuBs+yWkk6gr14Kuo5gmSsdckWtnM6AowngPDwhTbRiQSYsH2/dee9kM2iWXoS49AxC7huK6EjLW0oa65HS8mSnppEbC2qR6LIESDOHufM6v9UpBMoGXy8p6+RykUyIfn51G7ZwvIFrXZSJAN1C65kto2sARkaK7kub9wgsvkEqlGBoaIpvN0tTUxPDwcEUqDuKt9jyPQqEAiAw8lUphmiadnZ1omkZLSwszMzNs27aNYrFIIpHghRdeQFVV8vk8XV1dzJkz5z1VXLlcrsKEDw4O+myfRizWxrp195PJjKMoKonEYZ5++ipyuUmampYwNLQb17WJRluorZ1LV1cvs7NHeOaZDZRK2Qqr/cwzG5idPQJ42HYBxyliGCFisQ56e79Jd/fniMc7uOCCBwgEooDH+PgbuK6FbRfIZidQVYP29hXs2HEzXiCGpiiV3umzkFRwG1iIsMc3AGPAdQimGUCY6zwwDwk8sxDWOoOA6DOAExFGegRhssOIvDzsHyuC+K1f9x/7PsJ0h5CKrpuBOQhrvWWLZIc0NYmga8sWGUqTSQG8Y2PVVPBQSERgmzeLE6vccNHfL3kj3d0y3K5eLcN0X5+MXzfcUK3smpqqug5275YMk+XLBVinUjI879wpXzm9veLm0HUFx1XJz+ZRDZX2Fe2M7B+hZm4NXWu7SI+ksbIWT1/1NJmxDB2rOjCjJtHmqISdBXWibVGG9wxjF2xq59VS01XDs199Fs/1CNWGGN4rYWWe6zGwc4D0SJptV25j5tAMTUuapP5raTPxjjhm1GTw5UHSo2lyYznCRpiQHiKoi9T7od0PAdAcaUZVVIp2EddzuWHVDcQDcXq7etFVnUwpQ9gI09Pew97hvQwmBzmh4QRGM6M0RZrYO7wXRVFY1bGKzngnETNC32BfpXprOD1MY7SRolNkNj9LxIiwunM1yWISTdFY3bka21PwnJxUYdUtkXda+l1JBA+2+r7fsIDjyd0CgN/4pnihFVXG/fyYPJY7CjOvCvgsjAqQzo+JnByEtd6/QULTFAXO+J7Iyk+7U4DtO9+Dk68Xtnlyt4By1xKAGpoj4NNz5flA/D/VaeF7qruqoNmMgV2s9mKHmgRYm9H/Ki0vA/b0oDwW9I+naCI5zwwfdyxFzrcMxtPHJEQtNyGs+/grsm7bakn39hwB1u9slQCz/fdB2xoe/sm/8dGPfFhSxltXwCsPwfJbePj/2sZFH7oAvWO1TCa0rwVVJz/2Z/71F0/whb/+lDDk2TF5XQDnPADz1guw7n9KgHWwDgK1aLrGtdeK9zmdLtHfP8tVVz1NS0uU0dEMuq4yNJTm1VdH6e+f5ctf3sbYWJpLL/0MBw78mV279vKBD6znrrtuIBw2uOCCi3nmmT5efnkfN9xwEwcOPEo0amJZLhs2XMf69Zfw2muv8eCDT7J794v85jdP09gY4brrthOJmLS315BKldiw4Rkcx0VTVTQUTE3n82d9mGggzOntJ9MUrSdkBPiHff/BsvaTMDSdhkgdCuLRDhsBYoEIt533eQBmsglczyNsBNFVFcd1GEpM8PbEEWbyqf8TxPHfenkfXL+/VJfy1PfgoIzaZVQaiwlTrSjC2DQ1id6sp0c014cPVzusIhEZyRsbZQq+p6dqVD52TELL8nlBqvffL/sKBCSlbPVquUJA/Mxz5ngkk3LxUK7PCodllbY2AbwzMwKsW1tFrhaPy20wKGnizzwjcnLDkAuEpia5MCnXcpVP86mn5MLFsgTrNzbKKZdf0mc+I6msBw8K4FZVwTteyYKDx6pM9cCoAGHLFql2yRLwXCiJTzoSkjqug8fkMceV3wNmFYSXrOq2kZDs0wMWdMjzR0dk25qosN2xiKz77rGq97pYQvGgcWEPdjFH4wk9aHqQttPOZe7yj9N4wgqk0zhDdmYYXIdwfasP1P4g7KQtMmLPdfBch3BdC2a4hnC9dFbrwSjtS9Yx76xP0LLobFxb9IyqbtJ08hqf2c6hqBoti84GYPwvUtfUdtq5oOq0LzkfIyQA0PHBtBYMCuNl2+y/+25y4+PowSCTr75KbmSEN77/fXIjI8z85S8ScOazbXUnn0x+agpF05h3ySWEmptZfuedGPE4RjTKOddey9ALL/Da88/zzCOP8Nprr7F7926mXnuNr99yC2/v3s0frr+ewYMHeesPf4DBQeyizxY/8wvY9yL/cP9mrmsLVcFwIQenng4XXyFvOpDH970I+ZwA51htZXue+TfZZt+L8OwvBJBf9Ck462yp6ApF5OfUM6r72f5LuQIu3y/kJTV834vguUz2V4PhUFSsYo6Jg31YhSye58h1kF1i6vC+ysRKuZpr8tAeUBVc12LkLenBtgpZwnWtGMEoKBqNJ/RQ03oy4doWJg/tJVTbglXI+l5sCUSrTNr07z2u9iuLGYjA7DTuwBG5mlc1vv+jH/GRD5wDszN4eD577FWYdQVIFy3GJyb4918/yapzzmHVhy7i3x7/sfihGxqECX7x9yid86V6qwyUk7N4s9Pi4/Y8CUj78CdR6uegNDRBMITnuuIT13XxeqdTUsXVNV983R4QCEpVWCZdCaPzZqYEBPuSdHdkULbRddyhAZRIDC+VADMg1WMv/xElXoOnaWgXfgL1ii8IO55KVH3fVgkMU6rFjED1b6Eo8r5TFEjM4Dz7JEq8BnQDQ1HQdZ3Ozk52795Nc3Mz0WiUQCBAR0cHuVwO13XJ5XIMDQ1VEsELhQLBYLAiBy/XdSmKQl9fHwcOHKBYLFZquFKpFJFIhFKpxPT0dIXBVhSFcDhMMpnk2WefJRqNoiga2ewYO3bcjKIodHSsBDzS6THmzv0gkUgzgUCMjo6V2HaRUildAdCGEeLcczdhGGGy2QkA/36EUilT8XFns1PYdp66unkkEgPk8zNoWoCBgV2k0+N0dq7y5eYJLCvLs89uIJUapKfnq2iKMMvfRKTYswgLrSBgOksVZJ+NAOiNCEh2/W36EFl4DAHGq5B97kIY7mWIhLxO/oM0I8FoOaqhaSChZw4C2geQQLMCooh95BH4q78SJVZ/v0wGL1sm41ssJgqs7m4BxdGopHc/8og877pUxsuyIqu/X9RaExMyb33NNbJuLicKrWxWwPO778rzIMA8k5FxLxaTMXPDBhnmX3oJRkY8NA3CDWEKswWcokO0VcCyU3AEYI+mWXXjKjJjGU697FTCc8LYRZtSpoTruNTNq6O9p122LzhEm6Oct+k8AHIzOTpWdRBtiaLqKpGmCDs37eTA1gP0be6jlC7RubqT/HSe7deJB7t9RTuRpgihlhCu5zKYGqR/pp8rTruC7134PTKlDP2z/Vy57UpGMiOEjTCaonHXC3dxLHmMqBmlLdZGXaiORCFRCSTzPI+1c9fSEe+gu7mb3UO7OZo8yrXbr2UsPcaarjV0xju5dc2thPUwRafI/pH9RMwIjuewc2AnWStLupTmym1X4roWyoFNEkxmZQT4vr1Z7ueHJRF875fFY123BA7cU63NKoPL8voH7oHAHJF6N6wQGXj5OSvtP14G3FdB9gic9UMwGwEVln8fQm1Vebgegfy45IfULBTZtpX1K8O899Zpua6w16ljApLtggBszZSgsuQRH3zPPQ4sz8i6ocYqM12u/FJVsH3ftmoKyK1fJIAbVfaV6Bfw3bpCAHq4Wc6tsVtAeHZUvOsgSeEnXw5mDZy9mU1PvMOhN1/mnm/eBOf/UD5sH/we//Tr7Wz9px/z43tuhGJStnVFa/JE3ygnnTCPJSd2CFDPjoo8fceVct7hZqkE+/ATUpU2ugesLE4hy/BwCsPQSKWKbN7cx9atB/jud3fR09OOaWps3PgSjY0R7rlnJ1u3HmBiosRFF11Mf/8sO3cOcPLJ3bz++jvkcjbf/OaV/P3f76S/fxZd72J0dISDBye55ppnCYUM0ukUt9zye+bMMbBti7PPXsz9979MT087o6Npvvxl8Wb39LSjaQp4HkPJCQaTE2iqyg92/ZKR1CSO65ArFbju7E9zRtsiNB8wRwMhPDwKVolcqYDtyjVFQ7QOXdVwPZfhxCSjqSke3/MktaEYj+/+DaXj67r+By7vg+v3F1lKJRlhr7xStGS//rWgUtOsSpkjEblABhmdy+z24KAA4zVr4K67BKXW11dR7eOPCyoeGhK9tWGI31pRRKN29KgcY+dOAeDf/CauK8x1PC6e5/FxeOyxqnQ77V/z1tXJNbLqXysfERUXjiPPr1olFyIbNsg2AE8++f9j70/D7KjKtm/8V1V73rvn9JQeMjGHQARJyNCgQgiTiopRbxxQIaBBRZApiYJKOhBGFVQQx1tvNQEUCAkhgJF0OgNTGEIISWfoed7zVLuq1vvhqr070ef9P8//ON4P73vfVB991LTWqtpVtfeqc13XeZ7SVzz8sNRfuXJCEXzbNjkF040itLVNjDmUlcn/d78rHzGfA617QDjXPYNQVS4p2yDrxe0KAcgj0YnU7pGozC17Yrmo+n10XU2TNjXkQxb3FQF3ayNUlx9bp6ocysLoB/vw+SMEK+vxBspdIbMteIMRvMFyUA667sHjD9K/56WSlVZ8YJ8L0tISDdV0DH8Iy8yBblDIJgRYZWKkx/vEN9vjw8pnGHqvQ1TFXc41SPqrXcij6wZ1Jy6gkE/T9/YLbv1+CtkkudExMoODIp5h2+z64Q/Jjo5SM2sWex59lEIqRaC6mj2/+hXdzz3Hnl/9isrjjyc3NsauO+6QuppG3Yc+RG50lFd+/GPSPT2MvfUWdi6HNxKhfNo0as88U/jV1dW8eued2LkcgZoaXl21Ct0wmP2972F4veTGxghUVxN9by+gTQDgYOjfwXBVLVTXwoF35X6VyobFkisZg4s/J9su+QIEwkctB6BuMnz5O2LXFQjJMSqqJ9q55AvyEP5ru2edA7pB7XFzJQNgxlloUALRowdfQdcNLDOD4fExafpZpUwBw+MvLeu6cZRy+2ti24Zw3ZVdwBsop2nWIjTDQ+1xc4nUTj3mGJqmTZzDcXNKbYeqGnHMvERvwxHsjX9j9R23s/+9vbT/4PtQViZiZ0pNaAp4vKh0ikImjWVZZC2L7c9t4M8/f4gb776HN3fvljRsFMaFn0SrrkFDkzQSnw98fvSWqWheH05vt9ACi6ri+RyaR9LUVCohIBvQImUSRS4UUGMj2BueLAFkrbFZvncFc0L0LBFD8/rQmqagxkaxn31CVMjTSfSmVrCtY1XG41HsjU+KfZfHi9485dj9VgFn+z+hkBdBs7ER+Sxl5WJNFo+JCnrHS+IJ7grInXzyySxevLhkkVUoFLBtm1gsBkBVVRX19fUl8bFQKMSmTZtIpVIkEgn27NnD1q1bMQyD+fPnM3PmTMLhMOXl5Wzfvp3ycqEAFCPhdXV1jI+Ps2HDBuLxOMlkkpaWFiKRCErZJBJ9XHjhT/B6Q/T27iCfT9DUNIdTT/0cmzffRD6fwLJy5PMxlHJobp5HItGDZWUYHn6bePwIL7/8Yywrg2F4CYUm4fWGXKD8LQqFNP39r2CaCaqqphAKTWJg4DXq60+nsnIKjuOQzY4TiTTg8QRpaVlAZ+c91NQch4Okan8PaEAAcCcCjr8l33AGkcfwP5CU7eXA55GodMjd1okAYYDPuvXrmADe9QgY97tldiNR63pENK0LeN0tG0TE0Wa4x9CUdKU7d0q/1NgoA7+OI1Fny5Lo8fCwdLPDw8KbHh+f4E43NEh/ecUV0s0OD0uXWxyUvuUW6cbr6qTctGnS5owZAtaLkW2PB7Zvl23NzdK133OPHK+9XcOyNHo6ewhUBfCGvKSH0tSfXk9mNIOZNGmY3UB6JE3T3Ca8ES+arqHpGr6Ij1wsh12wycVyBKoCKEeRHEzy4vIXsTIWoZqQSwkAT9BD5dRKLnnkEm6J3sLHf/1xyiaXoekaO36yg5YFLZQ1lmHnbfre7sNyLIbTw3THu6kN13Ldxus4FDuEoRms6VzD0/ueZiA5gEf3UBeu45zWc1izbQ3ZQpaUmUJHpzHSiFf3irWWZmDaJmkzTdgXZmHrQgaSAzy972ki/giHo4fZ0buD1vJWakI1vNL3Ch+e/GECngA7encISPcESeaTrN2zltFcDDVzuaRm+ypElOyM++GSveJBvfceUfXODQrYPesRuPQ98bHORxFQ/DCcu15stfKjrjWXHwINsty6RMTSZq44FnDvWQXKcsVpCzDSKU9roF4i3FYSAtUS+bXzAiQNvyhro7niXTk3gq67Ueky6fN8Zf9r4TPNEMBdPlU424ZfyhSBd/XJbup5AcbfEzBfVAb3hgXgwwQQt/MifuYNC+96y/Vu1HqBWGXFD0qEOdULH74RChnufeg3PLnuz2z85Y2EggGIvg+bl/LXP/yCH655iM1XJqk//AiE66V+/zZIDfDrn/yQr3/hkxINP3EJNMwVW66iErmmQdlUSQ3f2S6DBrtWEzj8BGec0UihYFNR4efmm+ezZMlMVq5sIxTyousaK1a0MTKS5rbbFrJkyUzmzm0uAfHa2jDLl7eTyUxn1aqtJBJ51q7dQ3t7By+88GfOOed81qzZwdq1ewiFPsHTTz/J2rVf5aMfPY3Pfe4K5sw5kxUr2rjgghklYL9mTSeLFk3H6zWwlWI4Nc7pk49nUriSM5tP4ne7nkHTNLKFHAGvn4jfT02okqIlSF90hPv/+UcUCo/uIZZNkCvkiWWT5CyT4fQ4k8KVXDX3MmLZJFef/Sl8RlGh4n/m9AHn+oNJpnRaevbnn5dc6V/8Qoavi6niXq980dJpedH/3vdkePyCC+QtAASYF82oH3tM6sfjE8Togwelh77HFYEIBKR905Q2TVPqPP88iSVfY9sbEebOdd9tCxMq4Tt3SocfCk1wsauqZPvpp4vCd3v7sVy1ujpJkdu1SyIBY2PycefOldMo0sdNU6IBZ50l77dDQ/KRV6+WKELxmA0NUF1hYxTyArBbGyHgm7ieOXOCH138jvUMwowWiS4X93k8cLBngkedSEu6+NFt2o777xLgivu8HkkbL0bGj67jKDAL2F4DpdlkY4P4y2olOujYIk7lils5VgHN8IhatseHsi103RB/aruAsi08/iDKZSNa+TSOW9fwBbHNLJ5AmPRYP6HKepRyXBsn9xiGTzg+726h9ri5x3CtJ007k9FDr1E79WxeW7WaWcuWAfDsxz9O64UXMmvZMpxCAX9VFdG9ewnV17PnV79i5tKlBKqree2uu+h+7rlS2WBtLbvuuKO07aSvfIX3fv97zrz1VjSXl+0UCrx65510P/cclzzzDG8//HCp/Fk/+AFmIoE3EuHVO+/k7Dtux2MXJMJseCRlXwjMcl/zOXjiN/CZr1ESI/P55bkuWqYpZ0JtX9Nd2y2EV29ZFNOMRcHKoWiHhVWgJI/vc++pbYnAWYtkktjhiMvdlfpKQcGlAQhw9pIcO0x53Qw03RBuqttkkVuKpolPtlvHGygjEx0gXD0Zxy6UhM08/hC64UHTjX8rj+tTPNG2kufFMjGUjv3cU9y/pYO1L3fy/FNPURkJoQVDkhbt8/Gxiy/hO9/8Jpd96tNu9FqjvKGR1+7+Mcd9+rPg9bHkyq+yqKWRq++6F83vR0XHXA/q88RzunkKmlI4vUckvTwiL34lfrXjSIS5rAy8PrRQGGUVUIMD6JNbUNk0zpZNaC1T0VqmCVhumQpowgmOjqNSCbTySpcPLcdlfBRtxolokfLipxY/8GQCLVKG/dzTaJOb0E8+DXx+F/BbqGxWwLNVgGRcztkrgwtaWDQNSKeE221ZIto3PIDWMpXxVBqfz4ff76dQKJBIJEilUrS0tGBZFps3b+bss8+mqqoKgN7eXhoaGtB1vfRvmiaO4+D3+7Esq+SNvX79evbt28e1115LMBikt7eXiooKwuEwzz//PM3NzZx88sn4fD7y+TxDQ0O0tk7GcQqSAdH/Ks3NZ6NpxlHcadA0nXw+wUsvreRjH7sTny8MaPT0dDJ58ofp69tFPN7DiSd+vKRAX+Rpa5pGKjWMxxNwl4dIp4dobV2I41j09u6grGwyyWQ/DQ2zgSJvW8fnK8f2+jmgGfRoGnOVIqppxBDg2wbsd5dPR1TAKxBAXUAUw4tp3MU6cxFA7CBRbxu4FRFHGwJWA7ch6d5vAgsQ8H4I8dn2IQBbA65DuN7hOMcIeC5fLuPRzc0iRzIyInSkbBbWrRNV78mTpUxTk/RRDzwgg8l9fTJ+7fGIEJqmSf/Y2irt5XLSbx45MtFXNjQI8C5uu+02SSgbGprw3X79dal/3HEKK5rgxVtfZMHNC6icXsnYvjE613Qy/+b5VM+oZuz9Mbbft53FDy4mPZwm2Z+k+exmdI9Od0c3ZU1leINeglVBsrEsZtKkcmoluqGjUPRs6yFcH6ZqehWJngTx7jhNc5vAAU3XMPwG+UQeM2WKN7bPZMfADuY2zQUNtnVv4/J1l/OZkz/DLy75BY5ysB0br+ElZ+WI5+LUhGrw6B50dLJWlmguyqTQJED4pF7Di+VYDCQHWNWxilvm38L0qulkrSwRX4SO7g5qQjX8dOdPeeiihyg4BeK5OHXhOhSK0cwoteFalFLkrTyTfH50Jy93fuxVmDRPlMELcQHaKImCBupAFSTSG30Laue5fYEFo7ug8jQB33ZOxNA8YQHXIOJhhYTYb3lCkD4itls1cyWymzos6eY1c0DzwWvLZHnSAgHr9ee5ftNeAb1FHnWxbzqaM13kXUeaZXl8r5tS3kJJaby43+OX6HORz105Q9LIizxuO+/acOXkc/tcnjm4x+kVIG4mxNP6aDGzRY9Kuc1LoekcAby7VnP/66386e8v8MJff0ZVjdxXOm9n7V/XsuLFCC+89E+mHLhbItDlU6X+mTdy4Jk7mP2tjfT/56co/8Sv3QEFjww47FwFZ90C4caJNPH4wZLHthkf4r3s6axZs41f/OISHEeRyRRQCtE70TXSaZPa2jC6rmFZDpblUCg4DAwk+elP72X37pc57rjv8v3vn0dtbYgbbnie008f4uc/v5f16zejaRHa2zsIh7fQ0DCJrq5Tufbak7jyyk9x2213csUVlwFw6FCMVau2snJlG1OnVqLrGprXoTc2xO9eeYbrz/kPAl6/xG40nZHUONXhSjy6QW9smOHUGKdNPgGPruMohQJMy8RreBlIjPLrnX/nyrM+TmtVg4j36TqWY+MzvP+t+dbwgaDZB9P/yWSa8N57knd9yy0ynO2qwJJKSZh2zRrp7adMkW0Rlye8a5f02NOmCd+6iEKnTBFUmkxOhHyvvnpCTay8XN4ULEuQbmWlpIf390MkghmuJGGF8Ho1CgXRR8vlhNo9Z45g9traCU20ZFKWy8qEI/388/DGG3DXXQKeMxk5rR//WE59ZER4asPDE+LmxReMSKQkQoxhyIvKCy9IZvy8eVI3n4epLTYRKymp24YuALeYHl5U7LYdONQnSt6GLutFRe8ip/ro8oNjUF0hwCuZnhAuq4gIX/tooTRDl3/TcnnYbhuG3DsHRT4TY7TrFRpOanOBcwHNHVFUtoVWtDUCMuODhKvrcWyLXGKYYEWDG6mOl1S9vYEylGOh6R5QDko5JZCu6R6ysX6pZ3gwU1GsfFFpXGffS4/RMvtiwtVNpMf7CVbUlh5BDZ3EwcMEa2tRwOt33cXMa64h3NiIXSjgDQSwTVP4sI6DbhgoINXTw55HH+WUr3+dYG0tnnC4tG3m0qVkBgcJNTZS1tJCenAQbySCJxQi3dvLnkcf5cxbbyU3Pi7lr7mGSHMzdj6P4feT6umhsrUFLZcRYO1xuQWWKRFmxxYAPD4K9U3yQUYGJPX7ws/CpAZAg3QCwsIlFsVUV5xFNwSc+3yybFuw9lew6DKY5A7KODYk4yKy5Q/C/reFbx0MQ6Qc2y8K8MWBEQ3ctOci2FYl5XfbymN4/GKx5Q6cOHYBrz+Mlc+U1OQ9/iCObWFbJrrhxcqn0T0+PIEwhUyC0a5XqD+p7RhVcruQxRMoKwFujz8sImkeH4atuP/++/ivP/+F5//2BNXNrSV0r5CI3UcvuIBvf2EJl13xJTSvqIFf872bmH3a6Xzj6quIJlOcMXcua//0R+bMmStgN5NG8wdQuazcG12XVzGfTzQHioMYXvcZT6fkN8vrRQsEsTc9LcrfXt+E+rhSokaezUibmibX0utDaZSi5ErX0UxTwPLYCE7nP9AXf1KEyDq3oC+6xNVQxxVqKMiPRlk5mmWjchmJQqPQdANlWTgvbhRfa0dN7M9lRVTNHa4AjSwamzZv5vzzz8fn86FpGt3d3YRCIXbu3Mn555+PYRh4PB6UUqTTaTweD7quk8/nCYfDxOPxEhgvqiMX59FolEQiQUVFBdu2beO8885D13V8Ph/F9wXbtjEM46h6BaLRg3R0tLNgwa1UVk6jUEiTSg2WBM5CoVq3SxkEoLNzDYsXPwhAPh/H76/A6w0xPn6gVCccrmPTpu8yf/7NlJVNxueLkEz2MT7eRX396aTTQ3R2rmHBgltJJvuprz+NdHqYzs41zJ9/MzU1JxGLdWEHa3ijvIla4D4E+PYhINkLLHW3DyFA9zYk2nw9cCOiLL4ASQEvtvGgu30Vohy+DbgAuB1YCywB7nDLB5BU8xDC1x50j7Mc+KdbrzENhayA4KJjRV3dhC5ocTC4yK8u9mMuS4J162DRIvlpqaqSPtMVsC9FueVaT4iaHW3mMWOGHPeb35Qx8vXrJ/rGW26BE04oJrEpVDaHZlns/dteul/u5tJHL2XDsg0Tat5NZZICbjn4y/wUsgWUo3jh5hc4+4azqZxaCQrsvM2LK15k8QOSgWEXbHSPjnKUUIXyNr6wj+5t3YQmhUgPSzQ8F8sRmhTCsRxy0RyFTIH4UJz6tnosZRHNRqkKVBHNRUuWWI5ySJpJKvwVpM006UKa9o527r/gfsYyY/Ql+zi7+Ww8ugfLVa//1sZvccuCWwh4AkRzUaoD1YR9YeL5OBX+CsLeMFu7t3Jq3an4DB+7B3dzesPpKKVImSnqw/UoFJ09nUyOTGZ27fFoyhFPad0vANRKwe5b4MQboPxEUOZRQmblE4JnVkbKzV4DuWF4dzWc8YAsv3evKIZ7QtImgJN3VcZDgA4j20QR3AhCISb1auYKaMwNQ2o/1J0LesDlRLtgV+MoENyE0FbciHTsEPjCkvqt+wRkljWBJr/HAqbHJWrtL59QFi9rktTs+KFjxdNAhM0Mr0TGi6DbG55QKFcW5KIiPPbKGpi7UjjPwVpIHJZ6tbPp7eun5aQPM31KM2VlEdA9+H1edq7/Fd6ms2ior6NmUh1F2fMXn3uGGiMGqV6W/+RJ+t55kd//aZ1wu5sWyjXUEBuxI5thcJeoheseGbRQFjgFUlaEr1+9gaef3seRI98hEPCSTps8+eRetm/vZeXKNsJhH5lMgaYmUfTu6UnQ25vgtdce54knHufxx5+moqKSV17p57TT6tm06Sl+9KPb+fOfn2L69Gn4/R40DZqaJrF16+tMm9bKtm3dfPKTX+eEE2rp7Pwvdu7sZe7cJulqNRgbyzBpUhgj4PCj53/Fmc0n8dHjziJtZon4Q/g9Pt4e2E91sIKWqnre6NvHpHAl//nqs9z6sSvRdZ1cwXT7IXhv+DDXPXk3i0+cx/cXXYWu6fg8//1BdXH6QNDsg+l/P5nmhPrXwID04h0d0mNHIkLqKqqsGIYg2N5eAdZFvw/bFoD9yCMCkHVdwrzV1TJXCn71K/j85yfeCCw3RammRvYfOiToF/BpFsGggOKxMXkxaGqSyPTNN8t6oSCpa11dEp0uqp56vfDVr0pWut8vLxKOI+MDmiZ1qqrkpaWuTl4eihbbiYSc0uCgXIKuLvjBD2RMYPZsSRuvqpJIQiAAKhKaAE2GIcAXJMoYTwFKotWaNsGxVhJVxtClfDItwNl2oKFGONsHuuGdAxKNLnfTxc2CeFtbrsCZC6JxXAAPR20Ty6yRAzsJVjbIiGM6RjY+jLIL7vIQhUyM/ndeRNkFwtUNOI6oRnv8YQbe3YKyC3h8IUJVkylkUxRyCbLxYQq5BAoo5NIlfi+6TrCigUxskEImjuHxHZVynuS4BVfgDUboe3szwYpaLDPLwLtbsMwMmmFQNmWKeFPrOnNuv51QQwOv3nknyrZJ9vTw2urVKNvGsSyGXnuNQjpNuKmJOXfcQVlrK7rfTyGdJlhby4dXriQ8eTI1s2aRHRrCTCYJ1NTgcb2v/VVVzFq2DAUE6+qY84MfEKipoZBKMfbOOyR7egg1NropbyKYRte7UMiLmJZVEPVu24bNTwqohglxsufWyfrBvRAKS0qd44ig2V9+6fpTq4kyxaj2p74Czz0uLyEAaCKGVoyWzzhFxNX8QTj0HiAK79n4MMoyyaeiDOx5STIOHEnrHnz3n+geL75QBUYgLMBU09A9PgyPD6W5nOs9L+E4BREW03TMdAzbzOILVcrgiVKMHNhJrH8vg3v/ieMURDk+VEGoqqkkfDZyYCe6rqMZXrEj6u3le8tXEEslOe9Tn+FDZ32YuaedioqOserOO2mZOpXtO3ey9Pt30HrSSQz+12/B56P9pu/x3DNPc9qcuZx7/vncfMN3OeuUkwW0a7pEvvM5tHBEFL1R4j89NoIqmAKUvb4S51sLBMWuKxxBodDnnVsSQtOCIfkd1HQB2qEwmt8vkeR8ThTAARUdFU9tM++CcQetqhptynECxMMRjEs+jebx4gwNlFTYNa8PraxcwL+ho4UjOAN9ct8tSygacxZAPIa98UlJQ+/rlmOkUzgDvaLm7vOz+cUXaWpqIpVK0d3djW3btLa2snPnTpqamshkMvT19RGNRlm/fj2FQoFAIEAymWTLli3E43G8Xi+TJ08ulYlGo6TTacbGxigvL6elpYWtW7fS1NREOp1mYGCgVLaoJl6sVwTYHR3t7Nmzlm3b7kIpG9NM0tm5hj171tLRsZp8PkE+n6Cyckppu6YZJJP9bNlyO8lkP5qmH1Mnl4u73tVryOUkndzvr6CpaQ6FQqpUdtu2u0pK5MVtnZ1rUKrA1q2rsHNx5irFfQjwXY0A6xDCib4NUQVfc9T+mLt8H8K99rp1im3EEWC91q23CIl434YA6+VI+rkfSR93f8VJHnWc9qPqpb3Sp5xxhiR7LVgg0en6eumWi1zrsNvFdHTI+PW110qXfdll/86nHh0V1tX+/TIw/Y1vSPc8Z44MGkciEzolzc0yDvTIIzIO3tYm53PzzdJuMintHjoEuUSe5FCS0644jYsfvhjNo3HRzy7i5M+cTPRgtORJrWkascMxNn1nE6nBFPNumEfllEpR/tbAV+Zj8f2L0Q0dy7To3dHLeNc4Vs7Czttsun4TscMxWhe0kh5OE64Ns3HZRgoZ4XNmx7KEJoUI14epO62OnkQPsWyM+rCA7IZIAxFfhIgvQrm/nLpQHSFviPpIPfd03sPaPWtJmkl6Ej00RBro7OmkK9rFtc9eS3e8mzlNc+iOd5OxMty3/T7CvjBD6SFu33I7/cl+dE2nubyZm1+4mf5kP7PqZuHRPAylhjgwfgDLsRjNjFIXriPiL2ajHBIhsky3iI/lRiSC7S2TKHZuVPa99QPIDYn11ugOAckf/rmA7fBUOOM+Acbv3etyq/slvduxJPqbH5dI9K5rRDStapYA60AdeCsnBM8y3RCaLFZdI9smxMoMn0RqLRdoZ0cloowuUVorDxVTBYAne6RMxXTZPvSaCJtFmifSwWNdEskunyrgOzsmYP1o8TQzKdHgVP+EoJk3xDERbDMhYDvSLJ7WqV7wV0BmRFLDmxaCGad5cj0qPUTX65vZvW0Tu1efzs5Hvw6RZgrpKD2Hutj9wh/ZveoUdm/+T2oqglA5HSYvoH31Xfz+2d0CrMta5DonDrl6HBUw9QIB1sqGl66TQQIhGWGQ55FHLmFg4EZ8PoNcrkAg4GHx4hnceOM8GhoijI1l+cEPtnDgQJRUyqS1tYLXXnuSxx9fx5NPPkMioZNImMyf38ILLzxDe/sP+cUv1vLgg/vo60uSzRYYHk4zZcpUnnvuOQ4dilJT46G8vJ8vf/kCNA0OHYqWxNSyWYt02mLp0vVYBbhq7mWcf8JcxtJx+uLD+D0+PLrOqQ3H8Z+vPYuu6ZzaMIPf7nqaUxtnkLcLrgo4BL1+Ah4fpzbM4KFP38Ly876Goek4KAq2RcbM/Y/3uIYPwPUHE8gL3IoVks49d6701HV1MoReKMBPfwqf/rSEixMJ6b39fhnmvu46GVbP56Wspgn/GkR+tFCQ9pYulci2zyf5armckLvSaRfA+CQCfsMNgqY7OlCOvAgcOCCpat/4hqSoXXedvCjs3CkvCY2N0qTjyCFDIREeW7pU6hVp4NddJ6d1tCBMVZV89A0bhNPd7I5DrVkzIXa2dq0E5Is6bcuWwb59OT59+ac58dRTOf3MM1h08cUcOHwQlOKrV13FaR+azeyPnctZCxbw4ksvSaPdA7Tffy8nnnoqeiTM39c9IRFor1eAs16MfluS3l1bNcG3jqfEyquibELQrDjlTTiuxbVpcre50fHa4+YQqZ2KYxcYPfgKHn+wJG5VVA8vClT1vb2ZQjaJcmwKuXRp+8C7WwhVNRGqnszIgV2lesq2StxbK5+mkInTv8cVxcom8fiDjB58rQS4PP5QidtrW+ZRYGwXTqFQss0spFIk+/rQDYMPr1iB4fORGRzk9O98BzuX4/W77qLq+ONBKbLDw1jZLMNvvomdzeINhdB9PgyfD80wUI5D5Ykn4gkEsLNZXr/7bpRl8frdd/Psxz/O63fdhe7x4Ng2hVQK3eNh0mmnkR8ZQStmb4yPwF8fgebpIjqVjMu2v/xSFL2nnSigWjnH8qQ9Xph+Mhx6X5S+C3kpV1QC/8NPRDF86kmiLB4fl+NdfpWbOi5RZ6adDKk4HNgjoDyTln1TTwLbZqRrV+m+Wvk09ScuRClFNjaIpntoOPVj6LqHbGyAQiYmyuDuAMvg3pcFhOoeQlWTGe16VSLdhTyhyga8oQqJihviZ10UNytmMXh8QbKxIRTQeMpHOP7cr9J4ykdA03FcgZqW5mbsTJr927fx6g9u4vXnNrD9P3+L0/ESK779Lbpf3Un6T48x0n2Ewz9dw6Teg5DPU+3Reeo/f8+bf3+ct158nmsvXgw+H8rMo8aGsZ99AgomysyLIng6hdbUgtO5RX6PclnJrkjEBcz2dYs42PrHZfBL17CffULAs6ahRcpFHG98VITRbAvNHfTQvG70OJlAcyPvws/+G8oqoJ92BprHW6IEOH09aPUNaP4gODZOzxFUdFxSuy1LrnnLFImSm3mhZdTUopVXoM//CM6ODrRQRI4dLkOrn4y96WmIjbHovPOYMWMGqVSKcDjMhg0biMViLFq0iBkzZtDR0UE4HKajo4M9e/bQ0dGBUqokWlbcDxxTJhAIsGPHjpJ/dVtbGzNmzKCzs/OY9gRIy3IikXA53hptbSuYOXMJbW0r0TQDn6+M+fNvZubMJSxcuJxAoIJAoAqPJ0hb23JmzlyCYXj/BQw7LFy4vNROIFDJzJlLWLDgFgKBSjfNO4LHE8Tvryi139a2Eq83jM8XOeY80ukR5s27kUhFK35NYwUCfFciad6DiJr3DAT8FvevACqPKhtmwlJrubu94qjllUATIlw2Hfg5ojDuJtTSCK5hntS7+ah6LW65MpdV1N8vA7pHjsg4tGkK0C5yrYuuFUf3T2vWTGiKFAFxMCjd+L33StnVqyeEO6+4QsBzf7+0qdSEMrhlCR/blT/BMGTw2nFkDL6nR8NfU4a/zE+8O86GZRuIdkXJjGYwfAZNc5vY8eAOWs9pxV/mJ1wXpvWcVtJDaTRDo3dHL9GDUXq392LlLZyCQ/RQlL6dfTTNaaJ6RjWarpFL5GhZ0FIC4s1zm9l+33b2Pb0Pb0h43P5yP1bOYvCNQbSQRne8m5AvxP7x/Xzv+e+RMlM4ysFyLPaP7ecbG77BodghUmaKhy56iL3L9lIfrmdu01zu2nYXdeE6BpID3HP+PUytnMpXZ3+Vha0LGUwOck7rOfgMH2FvmO/N+x6DqUFsZdPe0c7aPWtZ07kGQzfwGl7K/GXMaZrDK/2vEPaFOb76eOrCdfIUZHoFDBsRAcjBephyhQDrV5dJVDvTKzzpd1fLoGvl6QKYrbSUSXVJb6lsOPMhUQHPDQpIz3TD2E7wVYmt18nfk32a1xVMWyrz3CjULnB5zcpNGT8gD7mv7FjFbl+ZgGBf2b+ohmvHllOWgPJgjQBgj/9flMb73Aw7JYrfhl/Sw42ARICLqeBHK5ZrBiUaVqpXyvVvE6BuZcU2KxeHQCV4Iy5f/JDU072UFMjPuhn6XobMoIBlx5xQFd/VDujQ+7IMThgBue5N50BZq5QtKptnRyUlPTsin/WsW+Q8dQ8oG0cPceRInG3buslkLHp6Elx77bNkMhbHH1+NpmmMjKS55Zb5tLSUE4n4GRzs4/vfv5VYLMr555/Hl760mM99bjGplMlVV11JNpvjppu+xjvv/IivfOVCEoko0WiOpqavsHbtH/niFy/gK1+5mC996TK+9rUvUijYfOELs3jooV0sWNBCIOBh1aqtrF27h5tveIHmynr8Hh+jmRg14Uru3PwYh8cHMO0CKxd9HRB7ravnforFJ84j7AsQ8gXIFnL0RofJWSZ+j4/6SDXtL/6Gw9EBcoU8AKZdIFvI/48H2R+khX8wyWSaApJ1lxM6Oiq9dColudKZjPToXq/MQYBxf7+gW6XgzTclvNzTI6jXcDml3/qW9OpvvTVBji7ytKdNcyM3Lq+06HWlaSRUhKuvMbjxRuGgFencDz98bOrc0Wnd9fVyyrffPlH+kUfEamvtWgHnPT3yMnLzzZLqpmnyYnG0ZyhM8Mva20X0rLlZogRr18JnPpPjq1/ZzMWLLkBzHB761aM8/uSTbNn8ArFEnMrKSlDwxu43OG/xYkYHB9HzBXa9/SaTKir52rXXcP23v81ll33KVd50gVwxxduQFwoUcLAXpjRKqrjjQN6Nevu8JZAA/Bvv2la2iFn5Qii7QCGXxsqnCVbUlZa9wQia7mH4/U7iA/uoaDyRuhPm4fGFsMzsMdubZp2PmU2W/LKtXKqUCjz51I/R/85LpbKTTz3v37i5vlBFab3xlI9g5TOMdO2idsZZ+EKVJA4eZu9vfsPsG2/E8PvRPJ4SX7OU/r10Kdg2keZmsRiKRglUVaG5KaqObTP+zjvUzJqFZhhY6TS6349jmihHsgY8oRDp/n72PPoop15zDb6qKklDX7oUIxAgUFWFlc+z+957OfsHK9EP7oVpJ8k9KQ5gREfh3dfh0D4RF7NtSQPXNEnvtiyJPvd0iY91ZbUAr5EBSXl7+j8lwn3WOfDl60VBPJeV9O9gWL4PIwMQHxN7L8cGNAHX+SyUVYCu4xge8rmECNMFJBU7Ex0kWNVYunYT92AOVi5NsGoyKIdsbADDF0bT9ZKPtTcQRje8OHYBzRW1K3GrgyJwZRdyKMfG4wuhHFvS9TiW6+0LVcgzqRSaZUv0dcumkge1fu4Fcp3CZaiBXrSycvEFT0Rxtr6IvviTaIaBveFJ9Hnn4mz/pyhq+0UN9l/bsn++ZqJdqyB8azRJAbdt7I1/K7Wj9uzGWHZLqQ1j2S0TomVbX5TjBIIiNLbV9ZpOxNEiZZLWjYbK5yb42aecdpSvtetL3TxFvr4FE+eFDejzzpH775PBmWJZvD45bsdLE8cpr4CKKhlEKfljfwTVcxjVcxj90s9S0DRs22bDhg3s2bOHmTNncumllwIQj8eJx+OUl5fT0dFBW1sbVVVVRKNRtm7dWlq3bbH0KpaJRCLo7oCSZVn4fIL2YrHYMe1dcsklpXoXXXQRGzdu5OKLF6FpRfgIhUIGXffg9YZc7rObqloa/dNRykLXPUSjXWzduoq2tpVUVk5FOO4FNM2LZeUwDC+aZmBZWWzbJJsdY9u2NZx33l0EAuUuj9ErSszui7hyxRqj0YPE491MPv5iDmoaDQjfeQQRJqsB3mAiPVxHhM9eQkDyfMTX+iBwJwKGW91P4EW41o48aeTctq9DIt0XIIC7+DOeRkB6cd1BouY3IWB7RkYe3aJ0yfr1E1zqFSuk37r0UunTfvlLETk7Om17+nQZdO7pmai3fLkA7GJfVuRwt7dLP7psmRxr717J0iryvf/1ePfeK+Be2GGK449TGBRI9iZ5d/27/OjxH3Go/xB2wmb6rOn87Cc/Y/rU6UQPRem8uxPOg89943N8+bQvc+cjd5IeSfPQ4w+x6R+bCJQFUEpxw7dv4OMf+zihmhC6V1LD5TfdAQW6T8fKWhMp4QWHvl19lDeXE6wJkjfz6PU6Y9kxDkYPMqdpDrqms6N3B01lTfQkerj0z5eyZOYSfnrhT3GUU0rvLveX0xXtIugJkilk6E308qHGDzGQHGBN5xpWtK2gJljD7sHdNJc3097RzvKFyzm++nji+TiJfIL6cL0IAGoeDsQO0L61nVsX3MrUyqkcjB5kTeca/vSJxzDSh9CyfTBpvjwNuREI1ArHuvtxiUpPOtsVmRH6FVYa3loOp905ITjmrxbONEoAuQKMEGC5qd4jAtiP5luPbBWFcW+VgHpluerYGphR8d/2VUmEughmI00CgjWXx2PnBCSXNQswL/Khi8reukfaK5YrnzrBvS7Wwf0iOLZ8Hs2QftGlMU18S1wdEk1zVcttKVNwB5h1jwBo3VUwUAUm1ERc4TbDJ8rsRkCi3nYeQnUuf/ww7FotqeXhBtfje1jEy3AoKZWPvgMNZ0q0vfMHE1zv8x+Rc1fuYLhTIF4op6Ojmzlzmhgby3L77VtYu3YPS5bM5JFHLmVkJE1VVRC/3yCbLeD3ezAMjXzexuvVsSyHnTv7OOusplIZr9dgbCzDWWc9xh//+CkWLmxl6dL1pXZ/+ctL2LGjl8mTy2hpKcc0bcJhX0myRSk4fFj41w/+7AI8IRulwGsYrH7xt2zat53FJ87jG/MvpzZShY5GwbHx6kK/c4r3ADA0nWwhh9fwcufmx0p1Vy66CtuxSeUzVATL8Og6aTNH5X9Tv+sPONcfTP/nUyYj+WPt7ZJTPTwsvfHcuRKp3r9fhrTvuUeAd2en5Ef39JT8q0zLwqypwbd9O77JkwU8Hz6MGQ5jTpqEr7MT36RJmNXVmI2N+JJJSKelTmen1OnpwZx9FoVwBYZVoOAYeHWbl3f6mDzFx4nTTLSCyZbtPk6bBWbK5JnnfWzb5StppfX3y4vAypVw0nQTzS7gOAqP5vCPzgCXftrHZz4DjzxkEjQKZFI2f34ywD+3+1ixQj4OyBhDUZG8UJB229vl5WPWCXls5WBrGm+8/gaf/+xnOdDVhV200rFtOjo6+OznP09fXx9ed1DCdhwuWHQB3716KZd96lNY2Rx2WQgdDQeFoel4juZiOwrLtaoyXGl0W0l0yXF/OQ1dx3OwDyscwK4sQ/f75AfRsRh5v5PGk88VkTIUhXwKwxdCc0WoNHRsy2Rg7xYmTT8Tjz8snGqgkEsKYJpxFuloP75gBaGqRnTdg4aGbRfQdF1eah0bq5DD6wtN8L8BlMJ2LJSy0XWv8FZ1DdvKl3jAusdHKmqhNAOPR5EZixEs8+MPelC2zdBb71F2/Mno/hC6lebt+1Zz8te/jq9hKpbjQbezeLU8ut9PPl0gm8wTmlSB0rw4DiTefpWak6ajBSso2B6RFFAFHMdAs/Mk+oYIVQTwBENYyos/aEA2ji8SxtB1AarJuAwuJWLw/BPw2asFCBcj3LYNZk7WD+6FsioorxRA7A9QIj/pukSyNz0On7tG1MPtQsnySThuloBWXZd68XEBYrouKcl+d2Td48UxdLnXypEXUQd0rwe7YJZsuOx8FtvOE6ltwSxx6OfgDZTT/84LpUGRxlM+QiGXxheqQNOg/52XCJTVEa5qwRepIBMbIFA+CeUo7FwWb6gMq5DC8ASxshnS0R5yyWFqj58rwnm6F683JOecTEAqjja5Va6j40x8PveFSrniesXnBsfCGRxAK6tAJePoTVMEARXF3RCRGOf5Z9DbzkOrrJG6jiNtuQJixMZQ8diEGNniT0ImJeD5ks+gOQp745MlwG5cejn2+scnAPzZ5+DseBn93AtE9dvMy/PgkxfFY8D+oo9DNvNvoNi49HKU659dOs5Fn8Le+Ld/O45x6eXySB19DudeAI5DNhRh0+bNXHTRRSQSCbZu3cqCBQuoq65GV0rE1Nzr52gaNrB582YuOO88PO6zqhxbvOUBy30HOBqUe71eAoEA/f39NLg/hkGfD91tM29ZGIaBruuMj48TDnvJ50cAjWj0IJMnfxjD8NHT00k4XE9V1XTi8W4SiR6am+eiaQYbN36LRYvuOaYLGhzczeTJZ+HxBFDKQtM82LaJrhs4jo3jWPT3v0I4XEdl5RQ0TUcph2RykI6OVSxcuIKysgZ0XYD50NBbNDefjdJ0Bgw/SY+PdiZ41B8GjrjLzQiwbkH42GcjwNoGtiNAfATxti5OcdyUbve/191fFDsz3DaywC53X1Hw7GGE0z0H+LwJg+9Jqvbkyf8OfpcsEXbWdddNSJoUxTxtW/on25bsrn8djH7kEenKi3ZdR4P3lhYZVC4ae/zfHa+uDq6/fmLfo48qdD2FaZqYSZOdr+7kxPCJ1Hyoht/95nf84Sd/4IXnXyDRm+C3l/6WddXrOPGsE1m4YCFLv7mUgD/Avk37mDZ/GtlsllgixtltZ/PWe29RVV2FbumYwya+oA9Lt8hmsoQiIUZeG6FhdgO2bpNJZwgGgxRyBQINAZykg+bTUH6FV1PoymIsG6chXIujLGzNw9XPLuPm+TdzUvV0bDvL1t5dTAo3MqN6Bp09ncxvmc/S9Uu5cd6NlPvLuX3L7Ty972me+dyTfKR1ASibf/bs4PIn/oO/fvqPnDdlIdF8mus338xN82+iN9HL3Oa5LNuwjLV71rJk5hJ+fvHP+c5z32FB0xyu/dBXhHOt+yA/JgAXA8wxeONGOPlmiEwXoOuvkz7AsUSgDCQ1fGSbWGh5IzI34/DGDcLF1r3CzTYCAvisNBSisPc+OONByI9I+nlwMpgxSU8PTRbbrpm3QaYPGhZJf6TcAV1d+nbsnESW7YLrQ4qAV90j+0u/Oy7FycpAtEui2OVTJ/bHD00A9iIAjzSBJ+jyqqUvI9YFkckIwM250WRNroemQz6OaRuY2SxGZBIOXmzbIqBl8G2/BRa2T0Sy8zFMfwOmZeBTSRh5C7N2Hj6fjs+OYWphTNuLT8uA4ce0dAyPQcFyMDQN3dCwLQefF3zJA5jxPsza+Rg+H7aZx/AFcGyF7dh4dI1E1iIQ0oW/bzmMjKUoCwd4841hTptdRzCsg9LJpAuks3lqayOgFT2oDSzbIWeahAJ+lFJk8ibYGpoy5HVDU/hDBo5S6DromoaZU+zaIRztZDLP5OYIuqGwlWJsJEvNpCCa0kF3GElHGUyO8uHm49ExyVvSV3t0haM8pMwsAUMj6PWjUOQLObyeILqmQDTD0ZSF6YDjFAh4PYBBrmDh90DessnZCsvRifhDhHwB/rtNH4DrD6b/8ykex9y5k9xpp2FUVKDncti6jjE+jl1Tg2Hb2Pk8PoB33qEwfz624+B1HAqWhREOczAa5c6ODlbMm8eMUAiv3y9iVrEY3YkEcydPJlQo0JXPS7mFC5laWclIOk19JIKtFF6lMGwHz4EujNWrUMuXo/X24jS3oI47Hj0RQ0skUJMnS2QsnZYB1UgFOgocG63Ig3YclOOgZ9IlYTa1YgXphhkEghpGKo42NAT33ou65x4IhXEMD7al8Gg2pq3Lj5euYVo6jmmj+wyCPlEeHctk2NrRwV//+lfq6+v5/ve/z9atW/nnP//JU089RTKZ5C9/+QvTpk2jsbGRTCbD1q1buf/++/nud7/LJz7xiZKQUNGbNhgMYhTPvzj06HZMSqmSSJHfLz+8L7zwAosWLcLn8xGLRvF4vViWRSKRYGprKx5DhEA0x0EZOrnUOGOHX6fp1PPBUWjJNMrvQwVc4OseR8YH7AmFadtGNzyAglwBLW+iigMAtiOnalqint7SAAEfKl9A6x5AudH0XDrDF754Be++9x7BYJC6ujp+ct8ajj95Jp+5/Fpefvk16ut1QiEvt922mosvFu/Tr3/9a7z++muMjuo0NXlp//GP+Mg555I2g8TjGhUVirKIg0J3ReplG2i8/jrMnasIBiU6s2qV5r4wKl5/XaO5WdHervHgg4qRYVjVrrFyhWL6NBuPB3y2iZY3JwY7zLykhzuuirvhZnt4vfKSkc9KCGqwF06YNfH9sm0BhLrhZia49xbNDX2ZE+J1xWW/71gV+JwpqvPTm+W4jkLpGrZl4bg2eaNvvknNrFklYTYNyMdieMvL8fj9OIUCBTNJtPdt6k9uw7FssBx0jxczFyfa8xYNJ50rokLu92f3ffcx67rr8ASDaLpOqreXPY88cowI3NhbbxFqbCTcPFmyGwJloBS64UG3LbHBsm00Q0fZDtrBvaiWGWiJKDz/BOryr8u18YuGg6ZslO6hpKRuS9RCGxsSj/CLP4+a1OAqsdvywuU4rsJ2WAYo/K4jQfE7VFRk140Ji0Fwxc7cCHLb+VBVDeNjApDbzhNgXlYOkXLUYB9aw2RJA9eNEtB2OrcIwA9FsDc99W+gWKuqRuWPLYvHe9RxzysNAGhVNSjLlIi4u684cOC4AxEaStLGS78Pbl/u/kaQToE/gPL5GBsbpyYSlmLFKHvbeVBRha0gnc/zwgsvMG/ePMKBAGWhEJZtUbAdLMuiLBxCi0VlgKNlKrbtkMnnCIfDKMvGMTTyhTg+XwTLytPXt5Py8lZCoWpMM0VZWROO6x/b17eL+vrT0HURXBscfKPEl3bcKJplZTHNNJaVZuvWdhYuXE5V1fTSb2WhkMUwfK6rgXDwHUci4aDo6dlOXd2p+HwRYrEjJBI9NDXPJeuv5LDhoZIJ26xRoBoZs7GZAMSO++9BLLRWIeni09yvcwJ4BwHHHiRy7XH/k8DbiBe2zkSkWgf6gReAxQhgB9BScM3Xj03wchzhWre3C8CdOlUGdzdvFrmThx4SDZDLL4dPfEKiy+Pjx6qH/2sE+qc/lTaL+xrcZJvXXxexzsOHBWwvXy4g3+eTpDafT7jWxWj4jBmKrtRbEsGdv5zja47nQPQAqzpW8cnIJ7l16a28+vKrhBpDfO1LX+Mzn/kMT69/mhNnnsi1111b8pDWNZ2UmaL/cD/nzj+X1955DRVWlPvLKfeV4+BwKHqIVR2rWD5/OdMrp6M5Gvtj+7lrx10sn7+curI6btp8E/csuoeQJ0SZx4NmZ9HMKCowCc3Kwu6bUSffDJFpcheUDLgrZZHGS9ATIJGLEglUITkWDkozRLdC2Xg0HS11CLwRVKAWBwMdC01pKN3Adhx3YNwAbJTSydl5Qh4vmuaVu586hJYdEFVu23TBZX5CcVoV3CiyMaGgrXvl6dF0qWPnxeZKOXB0NkjiAJSfMBFFjjRL+zjC2zZjUDbjX9pvkvZzQ8Lj9rh5FU5ewH/0fUmbnrNcxMNqZwv/2c671ofueSSOiLDYxx6C5BGxpTrrZghPlt9Zb3ji99nKCCfbV1ZKoxZ+t1/2G36JNCtHUr7RILofXr1HOM6egKRlB6rIqjLSGYtoNEck4mNoKM1PfrKDBx5YjKaB16NTsBRe3cHBYGQ0wdVXf4XDh/djGD7icYPHfvULzvvILPYfTLGqvZPLL/fz+c9fxmmnfZnf/e4uQiEPS5d+keHhPrLZAj6fwfvvv8sf/vAXamo+xOzZDfh8BoahcfBglPvv38FDv7iQkewog6kxTm2Ygc/wMpKOEvYFsbM6MSfKH15dz3fPvQK/x+faWpk85ipv10aqCHr9vNn/Pqc1Ho/l2Lwz2EVjZBKTK2qxHLvkQT2YHOexnX/ja3M/SXNFHbqmYzsOhqZjKdFtKfYM8WySbMGkuaIOS9kEPBpeFUdzEuCZjFJ5NDuKMqpAC6BRkIoqA+goLYim0rIMaMM3oWpuRjNqYfh6qLsfhY6mBUHTUBg4ysbBi9cT4r/b9IGg2QfT//GUDQR47/TTubqjg/eiUWIeD7bfT7qujn8ODrI/n2fA6yVXWcnYnDm8F4tx9XPP8X4mw5BSZC2LgNfL0/v2sWr7droti/eSSXJAbzLJ6fX1jOZyxD0eepNJ1u7Zw6qODtKFAtWhEAeiUZauX8/+eBzDsTHuXQMLFoiw0Gmnod+zBt1xeZBVVWipFNr+/XD99WhDQxiag961H33p1WgHu9AScbSlV6N3H5GX6DVrYO1atFWriOhZDCX2M6xeDXPmoPX3S/lkHF93F/rSqwkc2ocvHcejOQR79xP5ztcJ9h2Qd32vl3giwauvvsqBAwe44447iMfjzJs3j29961vs3buXBx54gOXLl9PQ0IDP52Pnzp20trYKeAai0Sjd3d1Eo1GeffZZCoUCvb29RKNRLNvGsixS6TSmaTI2Nsb69euJx+OMj4+TTCbRdZ158+bhcaPiHjfiFI/HaWxowDAttPePCDhMZdByJoFItQDrnIl2oFtSZ3UdLVeQstk8uuOgKQ3D8KBrGlqugJHKoeVMNNOS9rxeqZ8z0XRNXvSP9v0GKTe9Gc0vKaYaiqVXfIl97+xh9+uv88mPf5xvfvu7oDwEAg8Qj7/F7Nm7+f73H+Waa5aQzysyGY0773yAZ555ix/+cDetrY/yla9dgfL46e/XXB6i/JhnsxoDAxpdXeDxaEQiEnVZtkwjm9VYtUpj7Vp5YQ0ENE4/He65R7bF4xqr2mW5u0fj4GEDTWnyGcJBSpZqhlcE58yCCMtpImRSstAKhEXRe8ZMAcPvHxHBOleQCsOY2J4vHJXFpk/w77sHZPloT3SFUAHKwlLGtMRuLZMl2d3NyGuv4ZgmNbNmobvqfqmeHkbeeAMrm2XszTexcjly0SjmWIr6E84BWyPTO8ArP/oxqd5efIEK6k84B9sskOruZtftt5Pp72fWN79JdniYXbffTqqnh8zAAN3PPUdmYIBUTw+v3nkngepqgpMmoSkNX7CCdG8fu26/g2RPj3yW0UG0rj1QKKCl4lBRLZfOH4ArrkPzBUSZ3cy7mQIJtHxWwKNtoxUtxzb+VVLqN/xF9lkFtD89LHXHhtCe+r204VJMtJEBtP/8CdroIFoug5aIQTaNFh8H2xJwFgyhEnH0s89BxaNotg2hEPpHFkN5FXrrNLTqWtRgH87a3+Fselq41d0HweNBq6mTaHNlNXg8AoZnzkZvOx+tvBJCIZzuQ6L8XT0J45LLJfXbcUT9/iMXolXVoDdPgYpKnJ5DaIbnqHOKuS+o0mlrZh7Vcxiio9jr16HGhl3htbxwxTVNRN48HnSlqK2uRvd4IJ8Xv+49u3G2vogGGFaBUMDPwoULmVRZQbnPi24V8Hk8hAJ+yi35PVCJGFpdo3DSNz5JpJBHR8PQNbwKAr5KYrHD9PXtpLl5LuXljWSzo2zZ8gNisYPouoFtF6ivn4VSDhs3XodSNmVljTz77LVEowfp69tFoZDG6w0RDteydWu7K27WjuNYpFL95PMJNwtG0r7Xr19KNHqoFMUGjZaWhRiGH8vK4/WGaGqaQ9pM06frPIhYZB0EliGiZjkE/PYgyuEHEPC8DDCZEC5bhUSn30fuwxzgBoSPrSF+1weAMgRYp5Ho9vtAh3vMHyD+1pOAHe4xLcNhxQrFJz4hQpvLlkl0urdXItgzZihyOZEq2bZN6EtKQXOz1Fm+XPHOO1JnzhwZW3r4YZg2TdHYKMB65UqF48i+Rx4R0H3iiQLU585VbNsGra2Khx6S4w4Nyc+Spsn5vPwy3HEHTJ2qQLdKXOP2znYKqsCqjlU8ve9pHvvFY1z08Yvw1fv489o/Y2om51x8Dsr9KzgFuqJdXL3+an50z4/48OkfZuHZC7nvZ/cRqY7w45d/zHB6mIJTwLRNVnWsKh3H0ixsj81dO+4qbQNY2LIQRzmEDb0ErLEzaLuuhewA1MxB27MKzUqhpQ6ijXSCpqF5ywl7PBhWkqp3luNJH0K3EugjHejKwWNn8OaHxRrOWw6eCJqdRUehuVFbTTl4dAOfbmCkD2HsugaPnSKcH0DfdQ2kDqA5JtqeVRIlTvW5Nld5mccPCnDWfRKZ/ldOs9tzlsqbKRdYu6nSaAKsNY6t65gSZdbDUHbCRPuaBtmYiIbphpyTJwKJbjcS7ZfzOZqPPOlUAdibl0JqQKLIji3ld66ChjnucrvUeWWNnKsnBLGDsPlqiO6Tc/CVUfKyLmTgpW9B/Ij4U5sJAdWaLpFsZcvxG+bI8fs7oZAhm0ySzljs3NlHLmcRDvsIBDzceefH6O6Os3Tps+w/EKWzs4cDhxJoOoyOZli48FNs3/4Gs2f/kKGhZr729aWYjo+Gxgra2+ezevUPqa//ELt3D9DevpXa2jCPPvpHXnhhG3/962ba2x+kqqqaSOQUZs2qY3g4zTe/uYEjR+IMDaWZN68ZzVAMp8c5obYVj25gK7G+Gk3FiJR7+c2upzi1cQajqRhv9r9PVbCcodQ4W7pe5XevPEMqn2EkFeWE2ikCYjWN0xqPJ+Dz0hsf4s4XHuNIdAA0jYbyGq486+P812sbyVsmfbFhdvfvKwHr8UycnGXy9sB+MoU8Q6kx8rbJnoG9eDUbzR4A8wCovAzW6mE0HLTCQRi8FlQO7FEYvh7N6ga93C2jIDgPbWwVODFIrgXNK9utLhhcilbowsh24LEOyLP4P2z6AFx/MAFgWhZp22bV1q2s3bOHNZ2dxHI5CrZNLJdjYWsrTeXl1IXDDKRSxE2TNZ2drN2zh/aODioCAXb29VEVDPLWtdeyYuFCNh88yKqtW9E1jQWtrQyl09y+ZQv9ySQLWlpYMnMmtyxYgK0UjlKs7ugotWd7PBJJXrBACNRjY3D33RMnbBgisOYCZu69V160AwGpU5T+LiKpUEjeSJYskaH3nTvRDh8W5fPly8Wvuwi+4/EJ9fRiO7aN5m7TurshkUAD/vSnP7Fu3Tr+8pe/EA6HaWxsxO/309jYSC6X48ILLySVSvGLX/yCaDTK4sWLaW1tFfBsWZSXlzNlyhTC4TCtra10dnYSCoVKvrUbN26kUCgAHCNIFAqF2LFjB16vl/Lycnp7e8nn84RCMkLY1NSE1/Cg9wxOgN1wEHSthOU0XYd4AgoFlM+DFvBJRNR0o6tKocVTEt0+GuyNJwTg9UrbWrf80FM4SoitRUIiKhJyo7J5tPePEDC8XPyZTwmYtx3OnjyFw4cPY+jwwAOVLFki/MGRkXhJoM7vh0ikkjvvlFv7zW/GAbBtrXT716yZCB4PDExo7R06JCmRa9cKT3/5cnkEVqwQVsPoqLAcliwRhd4HHxT+4cKF0NCgyeB6RUSE51IZ99nTobneVW83oavH9b8+KtPAduRzF8GxWZBItCl6Avh9UFkmXuW2A/u7hVPfOwjRhFzHQuFYYbtEStqpq5L76TGgewAHRWZggEB1Na+uWkWmvx+AQiZDbnyc2jPOIFRfT9VJJzH27rsEamoI1dejHIfs0BB7Hn2U7ueeY8+jj2JlMhTSaTRdJzM0RN8//sGeX/0KTyjE3t/8plSuZtYszv35z6k94wwyg4P0/eMf7P3d7zD8fgqpFMqySu3mRobRbButrEJE4f76iFiQxUbF0swfgOF+UWMPl0tEOJ+F9f8lKfiOjTY6CH96iGNE4y7+vPs8a7DoU5DNormCcVpsHP7r5/KsHwXG8fkF1PsCogheKKAci4JtolVU4ux4Ga2iCmUYaP6geE/rQptwHAutvALtxFPR285Heb3ig+3awql4FOeZdahEHKpqBGxXVQvg8wXQmqcIvNBwOd4FiVp3bimluKMUquewpMHr+rHnpOuoXBaVSkqyQ10jTsdLApR3bAVXlRyPF2wbZ6AX4lGc7kOoginWZD4f+vyPlIC/crMdPJpObXU1Po9EfgWomxJxL6+UrJWm1tL5FsE5jo2KR7E3/h0Hm1BoEvX1p9Pf/xq67iUcbqS19Ry2bVtDItFLItHjcqQ97NmzFoCtW1eVAHRz89n4fBHS6VGUUseImxUKGV5++U4AvN4goOjsvId9+57G6w1i2wXS6WEsK+/6bb+CpulEIvVks1GC5c34NZ0bkK+mH/guouR9PdCNRJUXIGndYeABJBJ9P7ABSeXOAA/hDnIgXOxexA97DsKzPuS2FWdCHbwWUQdf684V4nkdBMqcAi01GX7+oEkopEpAu7VVEfArdA2GhxX9/fDww4oZMxRej8Nx020e+bnFcdMdFsxXeAyHYEAxqdrGqxfAspjWnOfRXzrMmKEoiyjqahVej6KlRXHBBXIMr1cx72wHA4tAQLFwoWLaNEVPjyIahZtuEvBtWQrdY5FRUR6++GHWf2E9K9tW4tE93LbwNpaMLWGsb4wLll5A30AfP73np/gu9TGQHEBDE09pTWd1x2rW7lnLkZOO8Mbbb/DU809x75p7GR8b58Z5N9Jc3oyuCd1ledtylsxcwsq2lXgNL0opbpl/C0tmLmH5wuUAXHHaFXg1MNIH0f5VFGzvGkl1nrkc9IBwkAN1Es1NdR0LwPeuEfurmjmSvp3th7dvF4XvYL1YVo2/juaY4iNt52CkA1IH5YnYs0qOWUgImO5ei7anXTjQJ98MmX6JKmuGCH3ZBbGqSvW66dAcq6BtJgWEahyVkl0E5PkJrjHIvqOFwPJxV207LBHrWBdYOTl23SwonyLrRRXvSKOAWmSgnDnLhVc8d7mc/ytrJsC2ct8RBnbCmTfC1MWQj0n0+lPrhcM8sNP1f+6eANy6R3jOL35TIt6eoOxL9QiP+sVlEqkuZOSzawbMXSHq3K+sgWAtZnyA/QMBli3bSG1tmEDAw5EjMbq6xvH7PYRCXj760SnU1YVZsKCVcNjr2rSGueqqJbz66gA33jiP888/F683wehoBtt2+O53r+d737uFs86awezZjSxfvpDt23uIRHyEQl5OOaWWZ575KwsXXkJzcxVlZX78fg8LFrRwzz2dnH12M5/97CmkExanTz4BDY2e2BB3bn6MmnAlo5kYGhpXnvVx5k05jdFMjKpgGT/e/Bh1kWru+8QNfHXOxwn7guzqfoewN4DjODjKQdc0qkOV+D1ezmw+ifFMHA14s/99PLrB9z7yJfweH1Whck6obeXtgf0MJEb4+bZ1jKSizJjUwq93/p1TG2aQM1OcUaehOWkoDICnFoaud+9pEDBgbJUAZicOY+2yPLaKkqyjHoaKK6DmB2A0wLS9oAXBSUFhEKpvhEIveGoFgJPnf9r0Abj+YALAtG1i2SzL29pKoLcyECCayxHy+TgwPs43N2zgcCxGyjQp8/m4ef58lsycycq2NuK5HLXhMNc/9xwRn48plZUcX13N99va5IVNqRIYX9PZiQIevfRSGiMRcoUCHl3ngcWLuWLWLJa3tUmCYyAwAZ5Xr4ZwWAD04KCgrvJyQWLr18PPfiZyqUUEds89EgIoIikQ9bJHHpFh+csvl6H7gwdlvbFxQjG9rAxuvXWiblF87YEHRGZ17lxIJHjgJz/hiSee4Omnn0bTtBL/8M9//jPJZBKPx8Nvf/tbhoeHOfPMM0sKvV6vVwTPoGSZs2nTJlpbW1m0aBGZTIbm5ma2bt1aAtNer5f58+czc+ZM2trayGQyLFq0iFgsxsaNG6mrqyOTyfDss8+SSqUwDAPbsSUdu7ZKQLPlcqhyJtr7RyRqdtYsKAujmZYAxYO94Hf5sF09JUDOCVMEzLU2CsjUtWOBXzwl6Dbgk7JBv2Sz2baAxyLIz5sSrU2kQNf5yd/X8ckLLwIgElE0Nd3Kpz89g1tu+TS33voEkyfrLF0q6ZCDg7dy7rkz+NKXPs3s2U+QyeilW7ZypUR1duyQ21PkHK5aJetLlgi/0LLghz+UCE99vSjGRyIiEFTU6QPBxwMDEr3RFHLe5WE3v9ORCHJFRCLXx7UKuE5lpFwxVVzX4fgpcPZpUjbgk2sYTwnAnlTlAnYlPuggbVVVCOgO+AWEnzBF2n23S66jrks5gNZGdMOg5rTT2PfHP1L7oQ+hu0JUgZoaqk48kWR3N6+5cve1p52Glckw+vbbOIUCnlCImddcw9RLL+WMW27B8PsxfD5e/fGPCdXXs/CBB5i5dCm6YXDK1VfTeuGFzLzmGoxAgFBDA7vuuKNU7pSrrgJNwxOUlM+Tv/Y1Wi+8kPoPfUhSuf/ySwHL004UwDtN1M7JZkS4rbwK/vhTGOqTG1Asp9QEQE64POcvfFOixKPDUkc3hN/+uWtg7kchMQ4zThYO/OLPToBxNBGPG+53zycqwNfrRVVWoV96OaqyEkcDx9BIxgfIZcfpf38rZiGDU1GBfsmnKYQCOBrYOji6hqM5su/Sz0J1NUrXyOYSODjkzRR9776IpSwByLqOrSkymXGoqUO/9HLSZMnlEpiOSaGmkrTKYJop7LII2kWXoVVUChhPJXFefkEGvvx+9MWfQJt1Jvr5l0AqKUro0TGcvm6xHEvEXdVxTQY0Uikor8S49LNQXlFSVNcAvUhRKGZoFLn/SuFsXo/SdPAHjgLn56E0DZVMwnmLMc0k+Xwcny9MJNLA+vVLSSR6OOmkyzj//Ls5eHAzO3Y8IOJ7ngBf+MJ6vN4QF1xwP8uW7WXx4gfp7d2BaaYIhycBEA7Xc+mlj1JVNY0XXriFpqY5pFKDrF9/DbHYIRYtWsNnP/s4lpWlr28ngUAVuFoSLS3zyeViRKOHGI0f5rCm04WkdbuflMmIUveNCECej4DrAwgX+zok6qwBs5FINgjYHgSuQdLKA0Ad8CoidNaK8KzrEbC9AuFrL2dCjRyEr50B0ja8eMNGDqx7g/i+AXx9h/jVow7HTbNRqRR2IsW0ZpPZ0+N4Clm0XJb8cBRDWfgwMVSBwug4djyJYeXI94zw4refgXyOoF9hFDLY8TQDHQfwWBk2f+sppjWbPPpLm2nNJrnBKAHNxKvZqESSwuAYuplj+hSb+jqH46c7PPqITcv0DClnFNuxuf6562muaCbgCXAoeohnf/csb255k+W/XE7LpBau/dW19A/08+LNL3LRnIv425N/40c/+hGrf7S6BJiLHtI102oon1TOG9vf4Ljq49AQf3nLsehP9PPQRQ8R8AR4f/R90oU0CsUd595REhlzlENQ1wXIdq+FPatFkbt1iYDq4GQ3aqtDbZsoZfsqhWtcAuAXwOy7xXc6Pybfmb1r3PbaJYqa7RXxsbGdoqz96jJZz/QIODnjQbhkLwQa5LitS+DUlTDSCaPbIDxNUp+VElBr+KHudLGwsk2J3OpeUdC28jC+TyLdxU7pX22qQAB+vEvAueGbsI4K1Ei7unGUZ7ULng2fLBeVvksWW70TwmEV0wUse0IC0OeuELD94e+Jx7NjybGyI8KNLmTElqqsGcL18MzlEtVunCv1zrrFjUSvdkH6avlinbhEyrx6L0xeIOfmFFygfUAAeHiyHD87glk7n1Xt21i7dg/33bed2tow3d1xamvDLFu2gUzG4hOfOInrr9/E/v1j1NSEOHQoyu23b2FsLMvs2Q2MjKSprNzNJz7xSSorA/zhD3/mrbeGOemkBUQiPj7zmZPp7U1w8GCU/v4kHR3dvPNOP3/603/xuc99iYqKAEeOxLn99i0sWNDC3Xefj9erEwx68XglbTptZvndK8+wad92sbRqmEFvbIhJ4UomhSuZPfkEotkkW7pe5dc7/87syScwpVKESJsq6uiND9P+4m8YScXY3f8+PbEhumNDfPS4s6iLVPPjzY9RFSxjKDWORzfoj4+w5h+/Zzyd4NSG4/AZXmY3ncAfX9uAoeksPfvTeA0PdZEI/thDoPkhOBfG74PgHLD73Wh1Hmpug7IloFdAzQpZrlkpv25OCgaXQaEHvFPlHhrV4CTB0wiBD0mEO3AG6NVST/PzP236AFx/MAHgMwzqIhEmBYM8uHgxM6qqCHm9VAWDJPN5BlMpbpw3j95EgojXC8DUykoeueQSplRUUB+J8ItXXuG7Z5+NR9fp6O6mubycqZWVwkdSihUucF/Z1kamUGDZhg0EPB4ylsXS9esZyWT4xSWXcFxVFWOxGNqOHRJqXL9eCGbFyOCaNfDFL4oA24wZEz4lSknIcXhYEFMoBL/+teQF//GPovZimoKyPvEJQV133imEtGXLRHzt0UelXmMjPPaYSLBmsxIGHR4WkB+N0mtZ3HrbbaRSKS655BI+/elP09bWRkdHB/fccw9nn302bW1t/O1vf+O//uu/OPXUU9m0aRM/+MEPOO2009i5cyfXXXcdH/nIRzh8+DD79u2jo6MDwzCEx6gUbW1tJTCt6zrV1dUsXry45EMLlAB4oVAo2eNs3boVgOeef56RdBJ1/BQBe90DpWhnCejmTPHZ9hgCGJsbZLtlS3TasifSmg1dAOKMFgFFeVNAnq6L/3bAL8DSjXaDEpDo9cKMZqirdnnLOlREaF+9mgNdXbTfdReOgqVLNb7ylbvYvbuL3/9+LevW3cyRIybPPy+X/skn76Knp4sHH1zLP/95M6+/blJbK6mKkybBG2+IY5zfPxGhXr5c1iWdUcZHKiqEW3jPPZIiefCgRLHdMSDuvFMwxapVEIshKuMVERkU2O+mcrs889K2nJs6rutynbJ5uQ7FKLareEsyLeXypqSW++S7RDorUekD3QLeUxl4dY+0DQKyayplkCRnltLSba9Bsq+PQjLJ7O99j0kf+hBvP/wwqd5edMNAMww8oRCzb7gB3TAYef11ctEoVccfz6t33kk+FiPS3MyHbr6Z3Ogou374QzKDg5z45S9j+P3UnXUW4cmTSfb2Em5sLPmPZ4aHJyLev/oVk04/HeWmoe/64Q9J9fcTnDSJs77/fclsjI2JxVh1rWtV9h8lMTCCIQHaz62F3TsEGHt9MO88uOI6Ec8pRqvLK4Tz/uefiyic1wsXfAaiI9LJJ+MS4a6qhTPb4InfSET8E1+C2sYJvvULfxOwXgTvgIMin0/St+dFzHQMxzIJVTXiDZQz+bQLRC3d8JBODpEcO4yZjpGJir1ZJjoALsjOZ+P0vfU8mi7+z0WvedvM0v/2ZvLpGI5dIJcZxyyk6X33RQ6/+jdGu17BCITBHyBQWY9u+Mgmx3AMDaXpaIaB07kFrallAkhn0hiXfAbNH5iIKHe8hBYKi8J6U6uoXqWSqPFRAelFvn90DGfLJkglAYWKjkqqZyqFio6J/ZjXhzI86As+gurvlrT2Ygp8RRWaUmgNk7ENveRXLcJlvezb9zSp1CAeTwC/v5yBgTc4//y7XXC8lIqKVjTNg2H4iUYPAYrGRpEL6+npJB4/zKZN32F8/ABKOcyffxMzZlxQsu7aunUVXm+I1taFxOM9hMN19PXtBDSUstmwYRmFQgavN0Tj1I/Qq2mcjqSAG0hatjeX49uXXcanTjiBG04/ncsWLeL7Bw4cE2W+8aWXaDEMHnvwQW5EQPWffvMbzp01i7UeDz9/8EHqgOOB04FvAYeB49xjFRDl8QXu/JdItLqYSt4P5AMGbSvamHHBDDrv7iS+fwQtkya6b5hN128iPZQGs8BjpzzIC9dvQDM0fCEf4/vH2fDNDcQOxvAFfRg+g/RwGm/Yy+L7F2MmTWKHYjz3redI9iepm1VHLpbjop9ehEdzGNl1CCeTJ1QdwjZtnIKDN+QlejBK/EicDVf9nczhYbJDMYxglq74e1y/6Xr6k/3MaZpD+9Z2xrPjfPHmL/L42sf589//zMdO/hgj6RHuu+4+/rDtD2x7axt79u2h/qx6zIUm4/PGmV45nS82fJGO7g7SZprde3fT/V43x590PIl8gm8/9226ol04ymH/+H6u23gd49lx7u68m0Q+QcQXoTJQSdAb5PSG01m2YRmmA+poQOsJwZxHRCAsNyriXruWShS6doFErmfedhQAbwRvhURXU11SfuYKd/8KAdw1c0UcLFB7FDC/T4B8UbU61SXCYJEZMOeXcvxQq6xHpspvXqpXItaaJnXMpGz3hiVaqxDgHayWSHZevqP8q02VUsdaYTkFGH5DosMgoDnWJe36yibspIpSSxXTofrkCeutUK1Em/s6hHttBCZ0QSqmwaJH5bxD9TCwS+o3LZDf1V1uSvjOdkCHGZ8QQG0EYdGvoOpE+axHR8R1H1zwmNyrc+6RtjpvF9GzhjmwaxXkxiXSXT4VmtrwBfysWNHGkiUzWbGiDa9XY+7cJu67bztr1+5hzZptGIbGjTfOY3AwhWUp2ts7WLt2D+3tHQC8/PIfOXSoi1tu+QGjo8Pcffdqrr12JaGQD6Vg9+4BGhoinHfedNas6aS2Nsy3v30/hUIlTz0Vo7Y2XLK2WrOmk1DI69rZRYnFs7zdv5+IP8SVZ32cxSfO4+qzP4XP8PKn1zcS8PoZSIweE7G+au5lRLNJHBRhX5DZTSfy2M6/s2nfdn698+9UBstK87SZLe37w6vPcmrDDBxUadtoJsZQcoxfdD7O7MkncsO5VxDyBqgJV9AfH+HV3v2ohp+C1QN2TMBz+AIYWyMR6uGbwTsNJt0hINmohboHwTsFLJcrUrcKtAAUDkFmB2heKYuSCLZeAXoIPA3gPxFRtf+fNX0Arj+YANx0QLjlhRd4cu9e8m66YNAwqA+HaSov577t22kuL2dyeTm6phHNZjmSSHD1+vUcjsV4YPFiPLrOdRs3UhsO0x2P05NIsH98HEPXmVZZyS8vuYSW8nJu2ryZP739NkPpdCkVvX3rVizHAaCyvBw1e7aA5+ZmAbcHD8oP/YoVApYzGUFdRUPOwUH4/OfFyPr998W0s6sLvvMdAeA//7kA5yIi83jgttsEhd1wg1wIj0ci2t/5jhzvn/+UsOmcOQKsUylIpWiePJnc2Bj33nsvX/3qV7njjjv45z//yfnnn8/999/PK6+8wq5du+jo6OCjH/1oCfieddZZ7N69m46ODt5++21+8pOfMHXqVD772c/S1taGpmm88sorOI5DZWUll156KeXl5ZimSSqV4t1332Xjxo1omobP5ysBcL/fX1pesGABSikWLFhA5/btOCjpH1sbBSwXI85FoFsWFtBnFiQ65vcJ6KsunwDiLoeanCmAz7SkjGVJ9La2WqLRKNne1eMCbE22F2w4vlVAqaFz791reHLtWjY+/iThUAjbmkg4yOdh6tTzOXAgSTb7Nrt2wezZIlZ/7bUwe/b5NDUlCYff5vrr4ZRTRMn2rLNkzMSyJBnhhhtknkrJmIrjwE9+IoC6yDjw+eSRqKuTtoeGhH1gGJLkUFlFydLq366FbU9E5LsHBED7PK5qeEGAXxEso+S6eb1yDY5uy3L+nV9dFp7ICrCdiQh2cZBkLAZ5E8eyyAwMYCYSGF7vManbALnRUVLd3eSjUV5dtYpAdTXZwUEKmUypnLJtNF3n3V//WnjUg4PohsFbDz1EqrubkddfRzkOtmkKcO7pwc5kjolk26aJNxSaSAUfHiYfjTL65psSIamsgccfE39wx/28VkHW8zm5EZd8Hr6xAqomidr62LAA5dFBAcZf+ra8jG74iwDj8WEB2i8+Ba3HyT2JjsCe12Xu9cLlXxe7tGBYrM3++DNRXv/M1+DbP4QrlkmUzPCi6zojXeLDPnrwFdA0CrkkA+/+A2WZFDJx+t7ejCdQRkXjiYwdeo1AeS0eX4hAeS0De7ZQyKcpZFMl/3ZdN6g9bi6R2qnHtO3YJpHaKRgeH7UzxDu84eRzKGTjDL/fiWVmMbx+wjWTJVtnfASVSQuXe8aJODu2orVMBcMjKd/RMfSLLsNYdgv64k+isplS6roWjog+QrhcItruYIJKp9DnnStp5o6D0/ESmHlUOonWNGVCxd2xIVwmKfCOg4qOCrCPjeP0HJYBDU2VQG9HRztNTXP57Gcfp7y8iQ0bvkksdoiLLvopPl+Ejg7hUcfj3cRiXWzcuIxIpAGlFBs3XkcqNUhd3Sw6OlYf5X+tqK4+jrKypmN8rHXdi6bpNDfPJZ0eJhyuZePGZcTj3TQ1zSGR6MGyMgwc2coCpRgCUgj3+Zvu/FNLl/Lkvn3c/+abnP/JTzJ81VWlKPNl8Tijt97KoosvJgHch6iKf/jMM/nd2rV89D/+g3KEp90l33LmIGrgClEG345Ewq9xy2hAFImKJ5Ho+dtAqDZEuCHMwuULmXHBDPLxPJ1rOtmzdg8dqzswfAYzl8ykbYX0E/+6PxfPYXgN/OV+ApUBNn5rI7lojo7VHexZu4fONZ34Ij58YR9j+8fo6eyh8cxGvCEvG7+1keRAkt6dvcS749TNqivV62jvIFQTwlY2azrXlDydF01fxIq2FZhRkzf/8CaxWIzLL72c8+afx62fv5X7tt9Hc3kzTeVN+D1+5jTN4daFt3KPqxC/5o41fP/y73PegvP42c0/46ZVN/FA1wMMpgaZ0zSH1R2rSeQTLJq+iOVtyxnPjnP/BffTEGmgubyZ0cwo39zwTQaTg3z37O+K8Ka/TgBtsBni+2DXNZA6BME6iWaXotAFsZzK9MFJN0gKOZqkd796nYBnKwP+Wph1B/hrYPB5KMQEaOdGjo1Me8KQPDgRyTZ8ArJ3XQvJLgHVVWfIb6GyBTBXnyjfsfhBl4NtysBf0S7Kzgt41QwRDytaPhW3F/2pj04j14yjlpngYCv7WBCu4fpBH3SFzzRJE9cMSeMO1krkOHFQgHm8C56/SqyqmuaDvwImny2DAulB+Y04GjTnoxL1rpgun81fDr6wCKJVnyAgveJ4St7WukfEykqp56thyiJpKzsKZ3wH+rZSVAlvbSnjoYcuIhj0YFmKaDTH8uUCuO+5ZxGDgynuu287TU3l+P1GCYyvXNnGY489xDPPPEVLyzLicYd33tmNYaT56U+/yplnnsLf//4kmzb9lj/84QEaGsIsX76QkZE0tv0aZ555KStWtGEYGjffPL8E8DUNHEdA/KaNBzmuppWg1099WTXXn/sfDCXHUShu+diVaJp2DHCePfkEhlLj5AsmjlK83ruXbCFfAuZXzb2MWDZZmkf8Ia46+7ISaA94fOiazlVzZdupDTNK7f/ulWcIeP0itqcbPLbz7/QnRqWvNGol4uydJhHn+keg7EqouRnwgGcyYEFuN2BLX+CZJMDZsYSPrfnB2wCZTigcgMGrweqG3Ouy7iQnBnL+p01F9eH/L/03NTWpD6b/56d8oaD6EwnVG4+rV/v61JJ169TugQEVzWTU+n371M7eXrV+3z4VzWZVIpdT0Wy2tH3D+++rRC6n9o6MqJ/s2KGueOIJNZxKqZ/s2KGWrFun9o6MqN54XMXcuv2JhLriiSdUXzyu3hwcLB1rIJFQsWxWvTkwoMxoVKn+fqWWLFEKZD4+rlQ8rlQsptT69UoNDx+7PxZTau9eWd6589h97757bPkrr1QqkVBqZESpaFSW/7W9HTsm6u7erVQqJecQi6lcJqMGBgbUunXrVG9vrxodHVW5XE4lEgn1yiuvqPfff19ls1mVy+XU4OCgWrdunRoYGFCJREKNjIyodevWqTvuuEOtW7dOZTIZFY/HVSKRKJXft2+fSqVSKpfLqYGBgdJ6JpNRo6Ojx2zL5XIqmUyqbDZbaiubzap8LqecXF6pQuF//Z9MK7XngFLxlFKjUaXiSVn/1/2JlFJmQZa3vCJlk+mJebGNfF6WewalztFt502lCgV13+q71BmnzFTjz7yo1J4DyjELqmt/Vv3tb/tVb69Shw8rdd55OxVUqcsuG1cjI6Z67rn9pdty3nk7VWVllTp8eFy9+abcnrfeUiqZVGp0VOa7d09sTySU+uUvlbriCnk8+vuV6utT6tVXpczu3fIogVLvvz9R9803lbIL1sT1+9drkctPfMZkWtYL7va8OXGt9hxQKpWZWDaPaqtY7+jrmExLO8VjpDMyT7nzo657IZ5Q43v3qm0336xy8bgaf+89tfWGG1R03z6VTybV1htuUKNvvaW23nCD+tMpp6itN9ygsuPjKj08rLbecIMa37dPmamUyqdSpbq58fFjyo+8+abaesMNKtbVVdqWj8dVLh5XsYMHVXpoSJnptDLTaTW+d+8xbYy+9Zayk3GlfrlKqa8vlnn/EaW69ip19Pbf3KdUOqlUOiXbDr53bJ3i9hf+rtSh92U5Efv3bd1dSg32yry4nkkrlUkd2142XSpjx8dVIZ9WudS4ysSH1ZHXnlGZ2KCyzKw68toz6q3196pscqy0fOS1Z5Rl5pSZTapMbEgdee0ZlY4OqpGDr6kjrz2jCvm0tBEfLpUrmLlj2jazSWXm0qqQzyqrkHfLpf7lGFllmVmVj42owhN/UtbOrcpJxJWTyyknl1VOJq2s9/cqu79H2aPDyk7ElT0ypOximXRK2YmYKjy1TtmZtHKyGWWn07KeiEv9fXuUPdCr7FxOOamUslNJ5WSz0tbosNTJ5ZSTTSsnm1VOOqUK6/6gzDtuUIV1f1B2z2FVWPcHlc8l1eDgm2rduiVqcPAtlc+nVDYbU+vWLVF33IFat26JymTGVS6XUAMDu9W6dUtUOj1yzP7h4XdLy4lEf6nc4OBbKpkcUplMVCUSAyqTiapMZlwlEv3qb3+7UuVyCZXLJf+X7RW3bX/1ERVzHLVEKTWslFqi5GViiVJqyJ2PKKX++corqnXKFDWulIoppZZ88YvqT089pb7wla+o2Q88UKozrpR6X6l/2/6u+//aUcfZ+S/Hix61vtddfiOZU09c8YSK9cRUNpZV2VhWJfoTqu/VPrVuyTo1+NagyiVyKhvLqnhfXI0dGDtm/8DuAZUYSKhMNKNGD4yqXCKnBnYPqH3r96mB3QOlNrKxrBrZO6L2rd+nenf2luru+MkOtW7JOtWzo0etW7JOJfoTE/XeHFTJoaRK5BJq98ButWTdEvXm4Jsqno2rRC6h3hx8s7Qtlo2pscyYWrJuieIO1JJ1S9R4ZvyYcrsHdquBxIBK5pIqmo2qdD6tYtnYMXXeHX5X7R7YrfoT/aon3qNGUiP/dqz1+9Yr7kCt37de7R7YrXpG9yq17QqlssNKxfYqtXWJUn9C5pl+pcbfkOXxN5Uyk0oVUrK8dYlS0beUyseOrZOPHrsee1ep6NtKmSkpm4sqFX9P5v+7umZCqdFXlbILSo3tUyrZ7y6/p1Rvh8wtUymroJSVVyozplRvp2y3C0rlU7KcTyqV7HPL56V8IaeUmZa5ZSpVyEudo+sVchPLZur/5timtJ8eUeqZJUo9GFCqa4NSuZhS6SGlXn9IqWevkPWh3bJt8FUpO/iq1M3FlOpaL3WfWaJULi4vl1Ze9lt5+R9+U/YPvynnlYtLvf6d7va3pLyZlvPpWi9lc3GV7O9Se/eOqCVL1im4Q23Y8L56881B9dxz+1UsllWxWLa0b8mSdWp8PKMSiZyKxbLqhz9crU4/fba67LLflvaPjKRUNDpRZ+rUc1V7+xo1NJRUr7/e587fUeFwWHV3Dx2zPRbLqqGhpIpG5Rhvvjmorrzybyqdy6hYJqni2ZQ6NNanhpPjqnt8QL03dFi93PW6em/osLrp6QfVvuEj6uWu19Vp93xO3fT0g2o4Oa7e7t+vblv/M/Wn1zaoQ2N9KpPPqWQurZK5tIplkyqeTaptB3er8XRcjafj6v2hbpXOZWR/JqHS+YzaV2zfPd77w0dUOp9V+4YOq3R2VCmzX6lCVCkrppTZq1TvFUpldytVGFMqsUEpKy77rKTMC+NKZV9TqneJW25cqdz7SllRpRLrlSoMy3pml6xndkrZ3LtK2Yn/p6HK/ysmoFf9/8CpH1hxfTAdMyXyefqTSW7fsoW1e/awZOZMHvv4x0mZJvF8ngq/37UBcAh5vRyOxWjv6GD5woXUhcNcv2kTN8+fz+SyMoIeD9dt3MgN8+ahlHgx39vZyd3nn0+534+jFIYbFSw4Dgp4rb+fs5ub6UsmmeL1EnQciSSvWiUR62KY0XEkRLlzp0Si77tP9ofDUkZIuhL1bm8XbnZHh0TCi97c8+cLUfemm+B735MU8K1bJ9pbvlxCn62tQtD1+SRK3t4OK1dSOOEELMfBcRxyuVwpNXvhwoV4vV4KhQKJRILy8nKSySTNzc3ouk4qlcLj8ZDNZuno6KCtrQ3bttmxYwdtbW2UlZXR3d1NOBxm+/bttLW14fF4yOVybN++nYULFxIMBtm8eTN79uzhC1/4AuXl5XR2drJo0aLSsQcHB5kxdSp6wRVLQpPrdrS10/tHJFpaWyUp3sm0REmL6c26PqFmbVoT0drjWiUq29xQEjajtko4xnlTorOH+49t27LpHR6kZdo0pk+dRpk/AD4P/kCAXzz8IhdcdCG1tXFM00NZWZjKyh/zs599DMjwta8tYnw8zvi4h6lTw9x2248pK/sYCxbIKWmaZO+HwzAyAtXV8njs2jVxu+vq5HHYvRvOPlsi1UXf1qKn7COPwDXXTPjAXrzYFmGbvCtIVh6ZuB5HT7ZkXIiwGZSstYrX2uuRaH5ro3ttNQmPF6+rx5BrdnR7rtVW6Z54XYVYw004ev8IhbpKhve8Q+Xxx6MZBnY+j7esjPF33mHSGWeQ7u0lMzhIqL6ePb/6Fadecw3h5maGX3uNyhkz0Dwedt93Hyd+5SugFJ5gkFBDA6meHvY8+igzly6V+o2N+Csref3uu5m5dCnZ4WEqTzgBZdvE9u+n+pRTMIJBRl57jUB1NWXTppHu6yMzOEjjWR9GHxuSiPOFn4WKaujuEk70+Ihs/9w18pmUknTvxLikdm/4C1zyBUknN/Pwt9/Dp75CzlF8/sqv8u4774ilm2Pyi1mNHHfeRXy1Yy+v/WMzejaDt6ycu37+S877yEdhbIi555xLPlQGhgdrbIg9/cO8/o/NzDh5OoHyWlHZ1g00TcfKZ3CcAiMHdtF4ykew8hlGunZRe9xcfMFyAPre3lzyCK87YR7KcfCFKkSYzPV+tc0chtePXTDx+F2bEqUw0zG8gQi6x4Nyuc6FbEJ85Y+biy9UIZQEu4BuOaIp4fejhcKogonz0ib0j10omRU+P1gFVC6LFggKt7u3G31yM8r1VXc6/4m+6BI0j1fqv7ABfe5CiWC3ThOVcTSJbpdXQkVl6VF3ervRGiZLZk+prUvF5sXjoaCLB7VSNobhxzRTACST/XR2rqGtbQXl5S1s2nQDH/vYnTiOhW0XsKwMW7euoq1tJaHQJDZtup62tpVUVk5FlL9B03QKhTSG4SedHiEcrkXTdLq7O4jFDtPaupDOznu46KKfEY9309HR7rYh7OpY7BB2sJq3y5upR4TKMkja93JELTwLzAC++qUvkauu5pc/+QnPPv44zz7zDL/5/e/51pVXMnn2bLqvv75kxxUHvn3llRw3ezZHrr+eW4BGRCk8CbzlrvcgvOvVwEokNfyAe/wHgWFgwLSYP5YlM5wm0hhB2QrDb6DpWilzZmz/GNvv2c7C5QupmlZF97Zu6mbV4Q16MbwGZsbEV+ZDWYreHb3UnVqHL+zDNm10r46Vsxh6a4j60+rRPTobr9vInrV7mLlkJufecS6O6RDvjVPRUkHFlArSw2lCk0LoHh0zZaJVazjKoS/Zx+aDm9nVt4uHL36YpeuXljydH7roIXb17aK5vJn2jnZuW3gb9eF64vk4t2+5vVTuwcUPMpIeoS/Zx9nNZ+PRPRyMHaR9azsr21YyrXIalmOhlGI4M0xTWRM5K8eyjRP+0Q9f9DDLNi7j4YsfZtmGZXykZQFLZ30Gw1MuvOlsv3CmT10pkbZQs6Ql50fACEF+XNKeA7XCUVaOpIzvaZc6kRmQ3O96QK+Q6LPjTIhWvnYdHP4TnLseqs6E/NBE3fBUSLwvx5+5XNZ3LYV5f3Sj0qYrNFaQiHJZs6vSfZSVVlEd3BOU8sqWMsXot+72H/mEcLOD1VA+TZSZU/0TkWiUfP6irZdyRDzM8MuxiscGidbbOSSp1ZFjDeyEcKOkgmu6cLd7t8DkefDCNyTSfOISiUaDRLd3tUvUuepEqTP+nvCv566Aihnw/Nek3slXwLn3SVq4sibO0/BJlNtMQe8/JRqfHYXmczGzGcbSfvoH0jzwwA7uuWcRoZAXw9CwLIdMxmJkJE17ewe33rqQadMqyGYtli37C3/721KmTJmG3x9ieDhFc3M1L720lULBYWAgyZo1neRy6zjzzA+xZ89x3HbbQiIRLz/96Wq6u3v4xS8eIxj0cN11G7nppgVMn16JbSssyyYez1FXJ97SfakhhlLj1EWq+f0rz3D9uVcQ8Hh5s38/y5/9Gasv+RanTT4Br26Qs0zeGeyiNlxJc2W9KHy71lxXnX0ZQ8lxJoUr0TWdX7t2Xbv797G7732+/OFLiGaTnNowA4ViJBXj9688w3fPvYKg188bffu48en7ue8TN9AQqSHg9dFcHkFz4mAPSip4zXJ5nqwhCM2TZ9vqlbRvowqyO8Hb6qZ7e2WuBSgZFRa6YOweqLtn4v3FSYNKgDEZPNX/LdPCP/C5/mD6/2vKFgrEcjn6k0nWdHaysq2NKZWV7B8bY01nJzfPn88JNTW8PzZGxOfjB0eB8DvOPZdTfv5zlsycya8+/nG8uo5p29JBptN8f8sWFrS08JmTT2YwlWJNZycPLl7McDpNbyLB3KYmAh4PB6NRVnV08NvFiwkeOoTW04OaO3fCz9XvF7UpTZPU8N5e4U8rJXm9dXVSJpMRvmEReb3xhuQOB4OiAJ5ISNlkEvbsEb52LucKh/gE/KRSInBW9MT9xjfgT3+CJUvIP/YYKdMscaR7enoIh8Ok02laW1vZsGED5513HoVCgYMHD1JVVUVLSwuFQoEXX3yRxYsX4zgO/f391NfX43W57LquY1kWGzduZM+ePcycOZNLL72U9evXl9YXL15MOp2mo6ODiy66iI0bN9LS0kJLSwudnZ1ccMEFZDIZMuk001pbJ1Kb4ykRxqqplDTjbF7AcmujpHPn8vIC7fVIqtehfpg2Wa6FUu6ghivolTf/117MxelocBnwTQDFiMtNdhQYIv6RSmsc7jaYPr2koYTm4s+kZK2K57RP/gcGhDsdiwnfujhG8t3vCl3e44FXXpFxkpERSQHftg0+9CHJFt61S3xc77pLxl2mTZPjeTzCJGhvF8BdXWmLq6NZmAC8Pu+xntQK5AVGyecqptMWwTMIgPa6imlDYyL45vfJtZ/W5PJgOba8x5A0fsuW5aKftqHLi1XexHJszFwWK53GX10NwOhbbzFp1iw0XScfi+GvrEQBubExvOEwhs9Hqr+fUH19yQfeyufxl4sytu6et5XNohwHw+dD9/kE6ClFPhpl6JVXmLxwIVYmg7+mRgCibWPlckTfe4+qk04qeWx7/D40y7W903XcHLoJ/vPRvtOpuIhsVdcK19p0v4+P/1qA+aQGyGfJWTYvvbyVixadj2Z4eOjeNTz+n39gy+ZNxAIRKs0sbPgLb7TO4rz/+DKjhw+i5zMQLndfjuHxP/yOH955J2/u3UseC48vyMC7W5g0/UxGD75GcuQwxy24wgXEOspxXGccTTjTiWE8gQgjBwRwe/whEQfTPSjHRjO8klqeiTNyYCcNJ5+LXchK+Rlz8PhDZOPDhCobQDcoZBMUsklCVQ3YpokRCMnAjtLQHQen+xBaeYX4Xs//SOlRcTq3oC/8mPDUi57Ziz8JqQTOtn+U/LOJjqG1TJXy8z+C6jmM6jmMcdGnULmsqwT+T/TzLkYLCNdSmSbOC8+izzsHlUpKarhrPadiYyVf7kJVGWNj+0mlBmhqmotheHnuueuZO/dbVFZOw7YLGIYX00wyNPQ2VVXHEYnUu97WBUBD1w3Xq9qL41hYVgbTzFAopEkkemlqmksuF6VQyJBI9FJe3kwk0sjzz99AU9McZsxYTChUi23n8fnKcJwC0egh0ukhmqZ9FNPwk9U0Ekgqtg34EPCbAn7f3s6fn3mGzhdfRCUSfOrCC7ljyxaOr6zkpiuvpG32bK6+/nrCiPatB7juyiuZPns2N15/PQaSBl6JiJqZiJ1XjbtuMaEwrtzjjyJgPwD4E3n6tnVTf3o9ZsLEX+7HcRyG3x6mdUErylHkU3lG9ozQMr8FK2fRt6uPitYKbNMmPZymbHIZid4ETXOb0D06m767iY/++KMEKgLYptjzGH75fscOxti6aittK9sI14cxfML17d3RS8PsBjwBD5qusWHZBprnNTPzyzNxfA6HYodYs20Nd513FxWBCrqiXazuWM2KthWEPCFeOPgCnz750/g9AtiWbVjGnKY5LGhZwJrONaxoW8GMqhkk8gmUUrw59CYfnvxhAp4AjnJQSuy6PLqHrJVlxYsraD+vnaAnyJH4Edo7BIBPrZxKX7KPprImDkYPck/nPfzh0l+gWykEGHoEpOXHBDSGp4rad6DW7Z9GoBCFvfcKAM70w6SzBeSNvwqVp4n9lp2T9UnzIXnABcwrIdQCuUERSxvZDlUzoZAEb5UAV8eU4+s+6UvTh6DsREpq3GbS5VgXRQQ1ObayBRQbPgHVmlH6zgn4Pgo4m4kJv2yPX0ByvEtSrX3lAtwjTTKIgNtPmUkYPwB1p7qe0sgxEz1QNlnUune1S5p3qldSxHNjUHeGpG6jQ+KQ8LcjzRNlQ/WSvl5Mb0ebAPfPfx26noaPPw5NC0X87OWbhGcNYrP1yhoB5MleEUqrPsl9KR0DMw6+CgjWSPdo2pi2DDInkybxeJ6KCj/vvDPMWWdNxuPRsW2F4yhuuWUzt9/+ESzLwTRtstkCPT0J5sxpIhj0YNuKzs4eDh6M8rGPTaO5uZyOjm5qakKMjWVYuLAVx1FkMgUcRxGJyDvOyEia2towR47EWbVqKytWLCQU8lLfFOTHL/yKL3/4Ev7w6rPMbjqB2ZNP5HevPMPX517GcGqck+qmAjCWifObnU/x9bmXMbl8Eh7dQ29siMHUGDMbZhDw+LAcG13TWPPS7zmpfirzppxGeSBMNJPC5zGoCpYTzSaoCpbz482PsWnfdhafOI+Vi65iKDHGYGqM2ZNPYHf/+1QHyzlhUjVeZwhGbxeOddkSqH9Inr3h6wVsayFQGVH8Ds5xHx1L1MP1MtDCrjgekNkGgVli2TW2WtLKvSfIfs373xJYw/8eXH/Auf5gOmayHYe0aXJcdTUPLl7M1MpKlDpW6dt21zd1dZUUw5cvXEhlIFASLPNoGvvHx1m6fj1H4nEay8pY0dbGBTNmkDzKxiuez9ObSFAbDrNs40YOxmL0JBI8vW8fjmmK/dXll6NFo64IT1RIuY2NAnyLwDoaFcQ1daoA66VLBT1dc42A7EhE1pctk5f4/n44cEAi0TfdJKTew4cFdem6ILJEQjq9ffukvUOHRFht71548EEMx8Hn80kKiKbR2tpKJpOhvLwcTdNYtGgR2WyWLVu20NraSkNDA+vXryeTyXDhhRJx2rhxI9FoFIB0Oo1lWTiOg67rxwia2bbNwoULS+terxev18tFF12Ex+Ohra2NGTNmlOy6TNOks7OTSCQioC+bF7unSAjmzBJRsiLgm9Ei4Ddvip2W4whP2jBkH0jdfAFSWRHaOtAtdcrCMj9+irS1v1uAp+NIe831ruCZK8Ll9UobRSBqO2j7u4kYeaZNlUjV4cNy2w4fllseCAh/uqEBvvUtuSWVleLEls1ObGtvFwq+xyOPQFubOLi1tEg7CxdKUoOmSdLC8ceL9db27RNt9PfLo/XLX8qpaiDnns0LGHbV1vF5JYpt23LNFAK+ixkVRdXlop+1bcsL1v4jAsgrIq6aeKsAZ5hoA+RaJtPC4Q76ZW4WyO07xGWfuZwTTjmF0+efzYWXfZKugwdRSnHVtdfy4QULuOgb3+DshQv55dKlGIEAmmFwwSWXcPpHP8q8889nzjnn8JunnkI5Dm/cey+5aBRPIEA+HkfTdZI9Pf8Xe/8dJUd9p33Dnwqdw0zPaIKmZ0YJEEIBkSQUBmxACIGcDQ7szdrGYDDYCDDCSKyxvUiAhAAbBBjjuMb2yphlQQEZMBiNRoFohAAhjcLkPJ1jhfePb3W3tLvv/d7nPfd5dp9d1zlzerq7QndVdXddvyux53vfIzc6CrbNyL59FFMpzHwebBtPbS2tF18MwHuPP46Zy1FMpcgODwNQf+aZKKqKmc1i5HIoliVp4f/0IxjogWxaErv/6cdyX9XED33oPfFG1zdBKiF1XB6fpIlPmS4+6uF++P3jeDNJLl26FKVYgNgY537s4xzNm1A3kepwWNZx1U3ENbccB02DYLXsW0UA/s+efY6rv70CVXfh9oZRdTd1J81H0700zbqQkxZdiWUVSY/1YVui/ujf/yqmUUDR3fgjTbg8QaKzL8LIpYgPHERRXSiKQi4xjGUUUGwbly9M46nnoagaI51viB+7c68kq3t89O3/cxlYd731PJnxAXSPD9sokBkfQLHFvqVGJ1WqtzpeRamuOTHEzOsrP08+h7XzlXJllhptFa92af6OV1GmniK+bKdA2Wr/M0rzJHC7sQsFbMNAcbnQLvschKtQm1qkq7uUIL7jZZRAEKv9ZWzLZHT0GN/+9jpOPnkKZ501j4cfPsrYGBSLGf7+76/krLPmM3fuXL74xdW88cYBAEZHP+JHP7qC88//OOecs5D589v4/e9/zPi4nNOBQF25p7qv73Xc7iCBQD0NDXPo6FiPrntYsmQ9LS2LePXV75FIdAPQ3b0TVdWpqZlKQ8McjGIOA6ncOhW4HgHIeSQtfNP997PtmWf487ZtTPD72fvmmwz393Pr3LksnjyZnU8/zfof/pBVq1dzEwKWSxdPQYT5TiGJ4Q784GZgC+Kz7kNCzq5HALeFpIePA28hQByXSuvi1rJH0bZtPEEP0flRjIJB184u0kNpovOjAFimRcuiFkJNISJTI7QsbMHldxFoCNC7pxfLsLjg7gtQFIXRj0bZ+s2tmHmTQrJAIVkg3BrmYz/8GOEW+b3q3tlNPpmnenI17pAbFEgPp1n64FKqJ1eT6kqhoDClegqPXfYYY7kxrt9yPZOrJvPIskfoTfQScAf4wqwv8Hrf6xyNHUVVVFYuWsne3r00Bht5/LLHmRaZxuHxw6zYvgIbm8ZgIytfXIlpOeBf1RhMDdLR3YFLdXH3BXfTn+znxm030lrVysZlG/HqXnJGjkwxQ7aYZWJwImsuWIONCcU4vHM79PyLHAlPHfgnyedeDwhA3nstmFlwVcOMW8Vz7amF3KB4rpMHITsAe74uDHj1XAEXpfTwTI8sDxJ8VncuvHUrbDkN3vmOMNJWDmxFAPBbN8n6VV1YYxQBwMW0VGiVOqsNhzU2nEHFUnJ2/IiAVrMgANYqil/aFah4mkvsc7AZPNXHeaz7KP/AWEXZbsNcYSFtW16fVYRwi/xGlYLJ9q4VxvjNDdC0ULzVL14rwFr3wda/E/B94UZhl1/7jnRUv3y9sNe9OyB2SPb7/NUCrIPNso7sMFz0uID1QkLWfdatAqx9dcJyG1kB/dlhCTnLDjv7Ctw+H8GgvN++viR33fUqfX1JzjprIul0kQMHRrn22s0cOxbn+uvPxu93EQy6qavz09+fYvny3/HGG30kkwUGBlIsWNDM5z43g+pqL5Zl09QU4sc/3sPcuY0AHDkSY8WK7YyMZFBVhVzOoLbW72TfaCxa1EJvb5JMpshgf6YcUHb1/E+zYNKccmr4z/Y8y+lNp+DR3aTyGX79+mbmRk/BrekyAG7kGUiNUuOXcLC8USCWTVA0DW6/4Cuc0XQqj3U8zVg6QVPVBEKeAO/0fUSuWARFKfuuv37uZ1AVBY/LRX0wUg5PC3v92IoHW2sUEB26Amq+A9k35DjV3ArFPgki0+rBezoM3gxGv7DVhSOgBsVXPXANFI+Bf7Gw2cVeSD0nbHipruu/KbD+P5n+Bq7/NlEwDFL5PAXDQFUU6gIB8obBQDJJqlAgbxjliq7VbW0owOq2Nvb29tIUCvHE8uXU+f28MzDAxmXLmBaJkDGMSlBZeztj2Syt4TDRUIgqj6cMyqs8HuZHo2zYtYtN+/ezZscO5kej/OvnPkegUJBu6qefFhQVi4k8u1gUYD11qiAmXRc2urdX5hsZEYn4lVcKevL7BfT09cFzz0E6LYnjdXUSUvbcc3LxPWGChKGtWCHzuFwCsEt1YN3d0NUl1KbDMuu6jmVZpNNpTNMkGo2STCbLVVwlABwKhdA0jZaWFnbu3EkulwNg6dKlzJkzB4D29vYyUM9kMvj9/nKgWTwex+VysXz5cqqrq3nhhRd45JFH2L59O8VikerqakKhEMuWLeNLX/oSHo+HSy6+mLpIjdRhdQ84AWZKRfLt1svsMSAgrgT6Aj4HEFoVkJ0vyDrqayS1GsosIMWiyJ6HxoStVhyGt+gEnuULMB6X+aqCsqyTeE0ogNLVj23aGIaA5FI9ueFg/SeegK1bJYjs8GFxA1RXy6G95RY5HPv2yRiJaco4SzIJs2fLYbNtcQVks/ISBgcFnIOMx9x+u5xGdXUCzG+5RZYHZH+Eg4BdYa5VpbJv3E7MuKZWksIL8mNHz6B0fns9Mu/U5kpCuGXJYIRpVj6MqYwsD7KfTFP2U65Q3lfXXvN1Duzbx1//8ByfWL6c6771LfZt3MgPvv1t3tqzhx3PPce3zjiD723ejOJyYRYKFJJJ/vHWW9nb3s6rf/gDi2IxsCxOv+kmsoODkiru82EbBlmn3/qDn/8cRdepmzMH3S8XErnxcdI9Pez9/vfJjoxQO3s2iqaRHRkh1d0trLdTx+UKBmWdllWp0tr+BwHXiirBY4kxp6DcLaFn2HKBpyjymFGA4T44aSZMmyky8f1viQxaQW5HB/nRxkf51CeWi8z84Ht89+abmDaplc9+4Yv88be/Rc2kZH5Vg1yG7kfW8JfXdvB3556BZRQp5hLYpoHbF0bVXWTGB9DcXlyeoADg9/5MMZegZvJcVN0NlkF6rI9iPoWNgjdcR/XE6WBbpMf60L0BFBR6971IMRsXJltRmDjzAiLRmUw87WOoqo7LV4W/JspI5+v4IxNpPfOT+KrqKebTKKqGr7qxrNixdU0CzZyOajT9uPsXYueyqIvlPh5v+X+17UIJNAuFT5gfnx/8ATkfvV60ZZ9FmXOmKAx0HUVRsDNp6RnXXdi6C6WqWmTmCrLNdAp18YWoFjQ1ncPnPvdx9u59idde28yFFy7ga1/7ezTNzcMPP8Hdd8/j97//PvfeexuXX3454+NHSCb7WLv2Jb75zc/z4otPcf/9N3HnnY/i9U5EVeU1GEaGbdtupL5+Nun0INu3ryCbHWXJkvVkMiO4XH5SqQEWLLiVRKIHRVGpr5/N6OhHbN16I4qigifI64rCBuAD4GGk3/o6YMMDD/Cn3/2On7/4Il3V1XQBL1x2GW8PDrL/6FF6jx5l2ec/z+rvfY/b16zhbqQT+1pE/l3S/t0GHHQeSwHrgYuRjutq5/7NCDAfRmq6pgJtiDRdtSxxfbg1xjrHSA2mUHQFM2+SHcnScHoDmeEMqiYS7/43+4l3xcmOZYl3xelq78IX8VHdWk2gPsC2G7aRHcmiulR2P7iblkUCvm3L5sXbXmT88DjuoBuraJGL5YjOj+LyuvBWeymkCqi6ipEx2HbjNqqaq6iZUoOmahweP0xvspc1O9bw1L6nGEgPcOO2Gzk4dpC+ZB/XbbmOukAdPYkeUoUUU6unsvHSjYQ9YcYyY2SLWe7ecTeb9m8iWUhy7857uXHejRyLH6O9q528kWdS9STmReext3cvo9lR+lP9/PGDP1I0ixStIj7dxxt9b9AabsWtubnlT7cwnhsnZ9lYrrBUarV+QYCvmQfFGbTUfZIIfsZ6YZ71IBz4sUjG3RF57pyfwJSrhLUe+JNIvXU/oFRCzOoWVTqws33yfVZKFp+73pHZZqVvGwsiZwj4thFwW2KQS+BYVQUMa66KHDx+WOq4zEIliMwdqgDnMsg+Kt+Z4LDlHgHlpVTx8CRZZyHp2G6OUPYulV+DIzf/t/3W2RHprKjDDisAAQAASURBVIbj0sDXgCcCl/4GQq1gGtC3E85ZCYNvQPQ88NcLQ50ZkH1RNU3uH78O25T1+xug/gwZIKg/UyrEPvaQsNuWKa+taRG8+aC830ICjCyFgkGxaLFuXUc5tVtRFJLJQvmx++/v4JRTajFNi7GxLIZhsWhRC1deOZuFC1vo60ty6NAYR4/Guemm7QwNCXheu7adefOi9PUl6e1Ncs89lbTxnp4EAwMp3G6Vw4el4uu88yaxcKEAbK/bRXNVA6c3nUJLdQMNoZoy6P3qvE+QN0RxFvT4WXHel5nbNJ3HOp6mPzGMR3PREKzhV69vZjgVI5lPky3mWf/Kr8kUc9SFInzlnE8Q8YdJF7Ksf+XXTh3XKArQXN3Ayo9fRUOwBgWFkCfAUGqcq86+jKHUGDX+ajKFrIDjYg80PEKu4OPTV/6IU2bM4/R5X2DJZ+7j0Ef7JMhM8UDNzfz5uVvQPBN46Im3wRA5+cG+k1my/AZOP+NcZs6cxj8/+x40PS3p48pxqr3/odPfZOH/w6eCYXBgdJSueJz5zc14NI1ssYhL03CpKjnD4M3+fuZFo6iOtLhgmnh1nZwhniiPrnPt5s1lefhPli9nV3c3jcEg9+7cyZ1tbdT6fNz8pz9x+8KFNASDZc+1S1WxbJvOWIy1O3awuq2NSVVVBAoF9JtukpTwadOESZ4wQVjo228Xj/S0acImr1kjIHziRAHFXq8w1aoq85f0wk1N8NZbcOaZsj6fDyIRYb2z2cp6du6Uv8cfF71xX58A7I0bBdXV18PICPkLLmB8fLzsqy75raurq/nrX//KrFmzykC7paUFy7IwDAOXS9gtRVEYHx+nvb2dhQsXlo9JR0cHbW1tVFVVkc/n0TQNl8tFLBYjHo/T3NxcZr0vuugiMplM+TUkEgmam5vRNA1dUdFK1U9FQ8Dz8VJtj8tJ9EYYU12r+Hu97hPnLcm/S7Lvfyv5Ni0Bfw4ABBwAap/o4y4x2qGA3PYMQutEbNtmNOvF51c5dEiA9apV0kd9442S4B0On2h5Gx6G2tqKJPzb35Yq885OOVwrV4rHWlVFkFBXB9Ony7hMOi2nSwkf27Y8Ho+L3Nznk1Onsd5EzeXlvbY0CpDWtMp+UxS5ADjcK8+7dGH4jx9EMC3pD5/aLMehtN9UVfaRQmV5jwuR03GclNyGRFrWZ9kVmbgCu3bt4rOf+AQPTZvG4gcfpO7MM7FtmxeeeYav3nwzB3fu5IOf/YzbX3uNr33qU/zdjTfy+j/+I3VnnMGEM87gg5//nJnXXEOwtZXEkSMc+PWvmXvrrcJ4K4rIvD/6iMjJJ1NMp/HW1mIVCnS98AKj+/Yx8xvfwDdhArnxcdyhEKP79uGfOLHs2/7g5z/n3B98H80oirLR5anIwi1D9k0JJCsqFAtw9ABMnSHzHPlQ+q8T4/LY+IjMWyxIWvi0may9916e/+0/8fIL2/CHqwQwHjkAo0O81DvKHfeuY+e/PoP7pWek87oqwj/e8m32vbuPTX/4A2YojOHzYVlFRjrfEJZZ08mM9+HyhShmUxQy4wTrJqN7g2WZ94SpZ2HkswRqmrBRKGbjDB/aW37cHaji0I7fcHLbVWhuD5nxAVy+EC5/VWUd085Bd8vAherIyG3TIBsfwBuuR9V0sEA1TPEgaxqKZVV80aEQCgp2Lofi9ztpw3ls2xZArSjYxSLWi5tR57eB1ytsc9cRrD/8CmX6LLTln5f50ynweFHcHjAMbCwUVKzeYyjBMITCFQl/Ookdj6FGW7F1F0Urh61ALHbU8Tyv5qOPBvi7v/s6b731CsFgfdlD/cc//oQbbljD7t2/wec7mZNOmkk8Pkg2O47XW828eW2sXn07n/vc5+XjYxYoFrNomps//ekW9u17ipkzr2Dp0ofIZEaorp7M+Phh2tvXsnjxKiKRqdi2hWUZKIoq/m7VheWt4piisB4Buj7gWE8Pc1tamDx1KmoohA8oejx8e88ePo3Ubj0IWF/5CnPmzuXaFStwA7/+5S/5xzvvJD4+jsvlwh8M8vfPP0/PGWewAZGMlzibI862gsf97noR33cS6boOAXoqT6xznPa17Sy4dQHp4TSTzpvE6EejdKzrYOHKhdROr2W8NM93FuCt9hKoC5AeTpOL5dh1/y7aVrcR747zh8//gcufvpzWxa0oqoKRM+h7o4+GOQ1YhoVZMDGyBjvW7GDxHYtJ9CaYeOZE0sNpEt0Jmuc3Y1s2sWMx0kPyWoruIlc/fzWLWhaVZd4PLX2IkcwIDYEGxnJjvHz4ZaZGprKgZQG6onM0dpRj8WPMj85HVVT29O6h1l/Lhl0bxHudGSYairK7Zzd1gTo27NrAqsWr6En0UBeoYzQzyqKWRaSLaQBue/E27rvoPobSQ2zYtYH1S9ZTMAu8N/QeJ0dOxjBSzKidhqJowmJnByreZy0g7HUxDq6QHIzuP8LwTpj3hICCVKfjs14l3mwrB96JTlqyT25B2O+uTQKoz3kUVK+w26XtFpOyDS0AmAJ83bXCvqZ6RK6tuiBxrCLztgryWPywAE/fBEncjh8+0Rtt5uV7NNldkYCbhYqPOthMueZLUSB2WLZRkpwfL0sv+b6DzfJ8ZlDSwEvyddXtyMaPVbzUuh+8EXkvug/S/eLLNjKQGZK073NWCqhOdksCedNCYeRfu00quiInQzEl8v14p8jCz1kJkVOcajLHJ/XabXDWzbIuI1uWiKfsCDvau2lsDHLvvTu58842pkypJpEoYNs2yWSBxsYA3d0JurriRKNh7rmnndWr22hoCKCqCnv39jJvXpS9e3v5/Of/wCc/OZ3HH19OV1cMr1fn6NEY554rRMLISAafT8fj0SkUTIJBN9dfv4U//vEDnn76chYtakXXFRKpHMEqHdM2eW+gk4nBCTRU1TKSGmdP13u0VDcwp+kUNEXFsi3WvvRzZk2cxoJJc6gNVHP3cdLu7174VfYPdHLShBY0ReWR9n/mW21flGwM2+KVQ6/zZs+H3HHhV9k/cJj6UISIL8z6V37NtfM/S1N1HXnH090QrCVaVUcqN0xD6rayJDxXtYE/v7KLZef7UFz1PLLhOp5+0cOr2x+F0XuJ699iyfJv0dDQyIUXnM+Kb38D7ByLzruEr37Wzde/9TjDXds5+4I1dHS8TrSpyRmo8cq58990+pss/G/T/3YqmCZd8bjIsrdu5UgsRtGyuG7LFjrHx9nT20t9IECmWGQ4nZYGB8vCsCx0VSWez2PZNg8uXcrWL3+ZR5YtQwHmNjZSHwjwg499jBZHJr2opYUHdu8m5PHQOT5Oe1cXH42N8a1t22gNh3n8sstoraoiVSgQsyzMNWuEnQZBRnv3iuH25pvh/vvl4ru7G269VfTAmibzRSLyfyYjqOnWW0Ub7PMJ0/3uu4K6MhmRiWezsp7nnpMQtBLj7bDTtLQIder1ink3Eil7vHfv3k1zczPhcJiFCxeye/duAHp7e8uguLm5mUKhwAsvvICiKCQSCTZv3kwsFiORSLB//346Ojqorq5m9+7dtLS0oGmaMIW5HC+88AKxWIxgMEg0GqWnp4d4PM5ll12G2+0mkUgQCATKt729vRQKBUzbwvY4Xmef86N8fN0TCFAD2Zed3QLEPc4XYqlmqnvA6XB2fuxM68T1lMbnvB6RnZdM06ZVkYKrDlOuqpWKKkWRoDO3C7weblupUiwKG/3wwzJ2MjQkLLLfL4x1SZ2fychjpX7q++4TJltVK0KDdevkdAE5vOGwnBaDg1LrVVrf4cMn+q37+2U+XUf0m6oqr1NzfGS5guyrkgcdKoMFqloB1pYtHvfSgENJQRAOyr506/9+eeu4dbr0CmsdDlY6yTW1LD1/5LHH+OSnPsXiH/2IyIwZ3H7bbcyYM4ev3nILv//Nb/jguHqtdb/6FWctWsRDhw9jzpjBgV//mt5XXiE3MoJtWYQmTSoDa9swpBN7bIwJs2aBbeMOBjFzOcY/+IBJl17KWatX462pQdF1zFyOt+67j8ippxJobETVNFyhEAMdHSIvTsbg94/DUJ/IvTv3y/4oP94vDIimCUutqgKyS8B6yqlS3VVTB6FqYbWnnMr96+7jmS1b2PYvz+AvZCEYlh/2aafBWW1clO4jmc2x7/U90oedHMdWNX7xagdXr/oeZFIogSp0j4/hQ3vxVTdSzKfpe+8ldI9PPNA1TfgjUYY+6qCYiVPMJp1KrTfxRyaCoqJgM9L5Bv6aKC5fFYGaKLonyKkXfgPd48Ms5PFXN+LyBFBsG1XVaZxxPi5PEFV3iU8bKGTi9O3/M7pHchzSY/0ogNXXheJyodi2hJYFQtiJGAoK5rZ/wT70Afb4GNaxTuccLMilabGItf1fsfe9ibXrVRSvXzircDXK9FkO+yzf60oojOL2YBfy2Nm01HP1daEEgtipBOSyKG4PiqqK1zoQdKq9LFRUTLN4XM1WNz/+8Y85//y5uN1+RkcP8u1vX8Npp83lW9+6h1/9aiOTJ59PY2OUpqYozzyzGcPI0dHxGocOHWHfvp2Mjx+hUEjywgs3oSgKmuZi2bJHOP30r3DxxQ9gWUV03YttWySTfbS2noeuewCVWKyLnp7dTsCaG93lw0BCxOY5H+vDQE9zM8O2zbudnbzzzju8+M47vLpnD5cjwPdBhG3e+Mtf8o0VKxh2Hp/yla/wRk8Pu9JpLonF2NzTw81nnMF9CCD/JiIHB+hFwHQQkYffhvRfh4E6hLUGibLoWN9By6IWPGEPrW3isy6xzu6A+GN3PyT3w81h3EE3W2/cipExyIxkaD2vFX+dn0nnTeK6fdcRbg2THkpj5MWfHZwoEP/Pq/+MO+jGX+enZVELHfd34J/gJ5/I4/K5iM6L0rOnh+RAkvRQmnBzGFVXcWtuVretPkHmXeWpYmr1VAbTg3SOdfLl2V9mbuNcbtx6I4djh/HoHuoCddyw7Qa6k93MbZzLcHqYjcuEzZ5UNQld1Tl/0vm0hlvZsGQDA6kBTm84nbAnzOLWxRyLH2PF9hUMpge598J7cakuNuzawLzoPPqT/bw39B7zo/OZXBVlhldD2Xut1GoproqU+4P14Guo9FhnBwXYNS4R1tnIOINHHmGmP1gP3noITHEk1CZkhyh7ic/eKGFms/5BgHWqUwB3MSl+7n13yYHNdMHr33R+J5VKPVaqV9ZZZqA7K2EjwWbpn66aKstUTxMWOzssZ6/uEeBSPU1qxlL9wnaX190j644flu2GJ8k2kiVSyhZgjVKRj5t5Z2AgA3/+lsjJFc0BwM7rPusWWYenGj74rQDfEivet0vWmeoViXfaYa1L1V4vXVeRg0dOksFV3S+vpVTB9fo6J1iuH15dIV7sxnnyuKLJ/Y67IN2HW4fm5jB9fUkeeWQZU6dG2LmzG69XY3Q0y113vUpXlwDrurpAmX1es2YHqnMt09wc5sYbt9HcHOaZZ67goYeWoqowcWKIpqYQc+Y0cOjQGNdeu5lMpkgo5MGybN55Z4BUqsDDDy/j3Xevc9azlWSyQFXETX9yhAf/8hRzJp5MfbgGTVExTJOW6gZOqZvESGqcdCGLisLN519ZZq9zxTxXl6Td8z8N2JxaP5lcUdRsXzrjEoZT46x75VeMpGNcdMp8vn7up9FUld74IE/ufpZUPsP2A7voT43QExvknpd/UWa3M8Uc1b5q7NrVIgmvvR2vBy5ddj6K/1wY28C5p77N0aNdMHovJDdx4zf/jjtXr6S2pkqOjQKoAf767vtceuknQQlQN/VqTp87j3/e9BxgQGYHFA7IYNH/0Ok/HVwriuJRFOURRVEOKoqyT1GU3/xnv6b/SZNb05jf3MxwOs2tCxbQHY+TzOfLcu4Jfj/37tyJrqr43W4OjY3xZn8/pmVRtCyyxSLXbdmCAkTDYW7cto2j8TgBt5vbX3qJdKFA0bJ4q7+fxS0trF+yBNu2uae9nbpAgHva2zlj4kQOj49z3ZYtHIvFCHs8vD48jBoOC/AdGJDb2bOFxtR10QfrurDQ4bDogS1LGOdkUtDTbbfJj8LUqQJ4brxRjLxz5kjxcUl/vGaN9Fg//bSA7m9+UxCYZQnTfeSIXLB2dlY83Pk8ZLMsXbqURCLB1q1bUVWVpUuXYtt2ubPa7XZjGAZut5tzzz2XfD7Pjh072L9/Pzt27CAajZZ91KqqsmzZMmbNmsXY2FgZfLe0tOD3+8vhZ9FolFAoxPj4OJs3byYcDuP1eolGo+zatYv6+nps22ZkdJSCJkFMfHRMfmRLHdetEwHFSalWBfSV/NGJlAC5KVGYdZIAS0WBY/3yuOaAzVknyXoURM4MgC3zFcQbRTgobKymigTasuRYDI9XAtEOHoNcnvvXWRSLsnvffLMSZHbyyYLDjpeLg+Cw00+X6xG/X8Y80ulKdfmdd4rn2jAkHfyuu+RQhsPiuZ40CR57TA65YYiAYcECYbRBxgBshcrAQ0n2XWLeyxJ7DRprZWDhUJcMThw/sKBp0FAr/5/UWvkfZGChtHxVUJjtzu6KNHxK1JGYI9sLB+R+Ns/ae++l88gR7tuwgfozzyQ7PMzlVVW8t2cPT/3iF6z63vc4+atfpfWSS/in3/yG/X/9K6898wxzW1v53Je/zNnf+x6f/NOfqJo+nbfuuQcjk0H3+VA1jdH9+/FOmIDu9aKo8jMx/uGH6F4v1dOn89Z995Hp78csFDAyGfY/8QS1s2eTj8XY+4MfkDh6FN3r5eJ//md0jxu2Py2g2eMT5nnKdGFAY6Nw8eehZgJln3psXELNpsyQzuuTZskyXp8w0oUcFAs88IPv8bvnnufF3z9FdU0NTDuN4mAvhx78gcjDPV72nnIuQ+Mxpi76GPiDMPU0/ryjHaNQZMnHPw4nz0I1ZaCi1Ec9cvj1E8Czgo2RTzNh6llO4NhEqiZOp+6k+SiKilnMYRSyNM28gOqmUylmk6TH+srBdumxPiyriFnMU8ynSI/1ououjHyG/vdfoZhNkBnvxzaL6G4fE6aejaq5UHUX3vAETLOI0tCEPT6GufUZKBakizpchY1dln8roTBKQxNWfy+KPyD71+1BW/551C9/3ZGH69jvvQsuN9ryz8tgRDEvfdWlgbZkAuvV7ZBMoNRPxNr1F9Roq+x/wNZ0CVbb9Rd5DbaNZZvkcjEWL17FzJlX8LvfdfDuu3u4774NuFw+IpGpPPTQ47zzTjs//ekGfvCD+ykWi1iWwaZNT/HrX/+Giy/+Mo8//gvmzz+TCRNOprp6Ei6Xn0sv3YjbHSSTGcWyDJYte4RMZpSXX16F2x1EURRaWhYye/aVJBK9gE11dSuTJrWV2WtD1bEUhY3AFxHZ9iBwOgK0DefvNudxH8Io34ew0B2IFPwQIutuQ9jmAPAdJPHbjwBov/OYM3zJAsTbjTP/zc42O6mAcANwuVSWrF/CjM/NwFvjBRsUVWHZw8toaWthrHMMM2+y7MfLaFncwvYV20n2Jzn35nPRPBqti1tpXdzK9hXbGf1oFHfAjcvropgusn3FdhpObyDYEETVVZoXNJPsS7J9xXZaFrWwZP0SMiMZAg2BshQ8UBcg0Z3AP8FP+9p2LMPCrbs5KXISDy97GF3VUVDoHO+kJ9lDV7yLukAd1225jv5kPzefezNuzU1jsJHHXn+MRS2L8Ggegu4gi1oXYWFRNIsUzAJD6SEOjx/mpu03MZgeZE7DHAJuUUClCil6Ej1s2r+J+zvux6W58OpeNl66kS/O/CJhT5h50XmM58ZR7QLK/rVOn/UaAZwzVlbk2sWUBJxFThcArPvB2yiebDMLmOCugZbPyfyKBnYRhtvlt81T6wDNw9Jp7W+VoDTbgEw39D4HxQRke2HGd0ALCptct0geN7MQniwy6PBkWf8J/uhe58fNLUC1UPImIey0OyyybssUUBvrdHqvnXVVTZV1l/qxg00io1Y1AcvBiQ5rnRKwragV+bg7JO8j1SPguNSH7QoKqKo/A95+WKTgqgsG9kogWWZQfNmhqKwv2iaBZPVnygDAxPnyfEkODpCLCbi2ijLYMe9OR4q+Wr43jwfbk5YI023mTnjcrRaYOrWaqVMj/O537zEwkKSxMcjQUIY1a3aUgfS8eVGGh9OsWrWYK6+czUMPLcXj0fB6ddav7yjLvRculHyZ/v4UpmmRzRZJJPIMDKS49dYFeL06R47EuPHGbTQ2BrEsm+uu20I2a9DTkyjLyFPpAj/b8yxfPGMpA8kR7n7xSbpjg9QGq5jTdAoezUXEH8ajS66B3+XlN29uZfuBXTzS/s+0VNez6qKv0VzdgFdzM5wa57GOpxlNx5lU04jP5WFu9BR+8+ZWXJqLt3o+ZF//IZaeupDbPn4VAbePpdMXMLvxpHLf9a/f2CKJ4raNopgorknQ+DNwTZPeasUrEvDa1fzod5P41CeXQe1qnv7LAlTfHD65/BLKcYy2BSicddbZ/ObZYRi5i8MH36Rj97scPXpQgs28Z4LeAHb2fyzA/k8H18C9yGX/KbZtz0Z+l/42/T80uXUdv67THA6zYdcumsNhouEwm7/0JVa3tTGSyXBnWxtuTSOZzxPyeJgXjbKnt5eBVIruRIJN+/eTyOfpjse5dcECeuJxCUFbsgRdVblx2zbqAwFCHg8eXadgmtzZ1sZwOs0dixdz8bRprOvo4LkDB+hJJLBsm0UtLfIl298vqGhwUKTeixYJsPZ6BUn19cnz/f3CTM+bJ0irpQUefFDW0dFRYbzXr5fnvV7RHV9xhfiz3W5htXt6hMG+5x5ZtrlZaFSQZVauFFOupqH19qKqKrqul1O6S37pUEgkZ+l0mv7+fkzTJBKJlH3RX/7yl1m6dCmapvGJT3yCRCLBe++9RyKRIJfL0draSjAYpLW1lVmzZtHf3086naa+vp5t27ahKArt7e3s37+f9vZ2AgG5EGlra8PtdqPrOh6PB7dLRymxzJ3dlfAxr3yxo4l/suwFNgxhqfMFAX0et4BEbDip5bg0cFvAZCkF3OMWkFwwBHh2D8i6q4Ky3ULRAe+KPNbggEmXDlObUfIFqqtsbFs80G1tlUN/5Ihg0dLhWrVKAtz9fqneUhQB0R6P/NXVwaOPSoPaOeeI1PueewSYd3UJeL/uOjl9urslAP7oURmP6e4WeXg+7xDuCsLOhxxQG0/J/421Iv9OpCofJk2VfZQvCFAJB0Ux4NIFNB8/OSIA4inZfwWjkkBeUgvYtsjJg/5KqJoNeNzc//ijPPPHP7Ll2Wfx6jpGJsMHP/85tbNnkx0ZIfTaayTGxzlw7Bjz7rqL6WefjVks4q+r4zt33cWRY8cYHhigmE6jahpzvv1tcuPj7P3+90kcPUrk5JMJTJyIOxwmPz6O7vdTfeqpvLFmDdnhYWpnz2b/E0+I7NgwOHPlSiYvX05maIj6s89G9/lQNI3AhAmQz8Hnr3YYaUVGSo4elPNr8imQHJf6rc79IvUe7pX7qgrHDgqjXcjJoMyU6eBy0fPBe9y64cfEerr5+Gc+z9yLljK/7TyKW37P32/8BbM+voS558zj5ttv5+nHHiay9SlZRyrOz578KV89YzpqKi7+799uBNvG5Q3i8gaoO2l+GTzjdFa6fEGMfA5/TRRFUYnOuRhV1Slk46guL5rLh+34GI18Fm94AsVcgv73X8UbrkN3B9C8ARRVxxuuA0VF1V34I02MdL7hzJ8mGx9CUVUGP+qgmE2iqBqDH+0Et1uCw0rhZf6A3Go6VEdQVBWrXy6GlWAQc8sfsUeHsPNZ7EIepTGKUl2LXSigzJwNxQLmC8+h6C6UQAiloQlz+79KAngqUQk9U1Xxd7tcKB6PvEPbwk7EsQ+8J6/BMFA1F37/BCKRKRw6NIfnntvKq6++gaJk2bz5G4yPd6IoKpnMMLa9nUQizrvv7iOdHmTGjKk8/fSv2L17B0899RRDQ2NMnz4N0yzS3b2LQiGFbVv4/bVs376CWKyTRKKb5uYF6LoPwyjQ3d2BYWSJRudJCF16mPHxo7zwwk2Mjx9Gx2bAtrkBYZbrgYUI2FWQ1G4TAdM+5/8BBCz3OPOXbl9HwLHtLP8oAqBTiNQ76KzvHGc9NzrzpZxtTXPu9wLPISD8GNBvWsJOA6m+FJuv3czoR6MYOQNP0EOgLsDWG7YSOxIjPZiWMLOJIUJNIV67+zViR2IkehLs37SfjnUd5GI5AnUB2u9pJzovSnowzfYV20kNpDjt8tPoWNdRnlf36kTnRVEUhR1rd7B/0352bdhFdF6UzEiGtjvb0D3SdmDZFtdtuY7GDY0MpAe4e8fdpAop5kfnM5we5tYFtxLyhHCpLu569S6OxI7w4NIHWdSyiLtevYvO8U7ShTQ+3UfWyDKWHWOCfwL1gXpWLlxJ0B3E5/LRHe/mrlfvoi/Zx8KWhVwx8wruu+g+TMvk4NhBrt18LaZtkjEy3Lz9ZgLuAKrqEhb6/M1w9iMC4EInw7zHRaKte0XirQegfrEA05HdcjRdYRjukLAyqCSF50agdp5zPyuAcP8aJ9isS4D23mvFt73sXfA1QuRMSQ3PHIV3vwcTFoHXYc0tQ6TSliMhV90ieW44B6qmCEMdP1wJH7PNShWXmRcQbpuO7zokP4AlCbhty23JX616nHUg7DWqgHNXQBLEFWTZ8GQ5O1WXgOKS/9ksyoBEZlCev+ARkadbRfjYAyIJT3YLGNf9AvoTR4R1zgzJ+nNxkZJPv0JAsm3L/o53SrhZ/DAEG4XRrpoq+2j+agds3ylAPTARBt86zg9+J+heVFWlUDDZubObqiofa9e28/LLh1m1ajFXXDGTO+5YTDyeY9GiVqZOjfDAAxczMJDimms2c+RIjPXrl7B585fYuPFSdF2hv78SjubzuaivDxCNhtmwYReZjEF3d5znnjtAX18Sr1fnvPNa6e1NsGhRK1/84kwefHA3zz7zEdfM/wytkUbcmou50VP41evP41J1NBT6kyOsfenn9CeGMS2L3vgQK86/kqXTF/Dtti+SLuQYzyRIF7KYtlUOQxvJxOiJDfFYx9PMbZrOLedfSa6YJ1pVz4RAhLUv/ZzRTByP7ua2j1+Fpmp852P/i2e/uoGVH78Kj+7m4EgXlq2JDchKgpWh7L/PdLB2/e841FvNPWt+wMCon7sfS/Kje/4XGEdk4KQsU4Rf/eIn7Nn5DHMv2sTNK67hwgvOR1dzkkJuDso5OnAtFD78Hwmw/1M914qiBJDflmbbthP/p8v9zXP9f3dK5fNc/fzzZc/0Dz72MfKmydTqanoTCaq9XjRVRVdVuhIJ1u7Ywa0LFjCaybCwpYX+VIpoKMQRp0Jr1eLFTItEMCyLnd3d1AcCTKquRlUU9vT00BoO01pdDYCuKCLRGx+nJ5GgORxmbXs7dyxezOl+P0qpd3p4WHTC6XTFOz1rloDdUilxqdD4zDMrPulVq8SY+9e/ipRbdzyzpikx0aedJnriY8eEwS51W0+aJP1MhiHLZLMVb3ZvL5x7LkW/n7FYjB07drBw4UIikQiKomBZFr29vTQ3N9PT00N9fT3FYhGPx4Ou66TT6bKMe8eOHbS1teH3+8nn8yiKQrFYpKOjg2XLlmHbNj09PeWKr0gkwhNPPMF1112H1+ult7eXcDhcDkwr+bhdLheBQACPrqMc79MtSbtzBQFwU5srgWYlf7TbVZGRx1MC6uqqoWie6D0G2ZelAC+XSwBQ0O/82CuVCiu3qyKZ1jTZZsm33dKI7XZhqRpvvaNx//0y3tHdDcuXS5DZ3LmymMvB/6WmtGRSMueamgQQv/66zAsy1pLLyZhIT48c4kWLKj3WH3wg4L3Udb1uHXz4oQgkEgnxXtdPMFEtU9jboiH7see46jJFAewTAsfkYsf5cNlUpH62JT9Q+eP86i5N0tNDAVm3kwouNXAZeO8QnDNT9rHLBT0DPPCvf+Cp3/+el178E0F/gKE33yA4bRoH9+/n5JNPZt/GjbzyL//C+r4+3n/rLcJVVfQeOkRYVYlMn84fn36a1ffey4E338S2bcYPHiRyyikoQNf27Yzu28cZK1dK9RSSWvzOhg1Mv+oqRt5+m+G332b2DTdgFYsEm5vJjo5ipNN8+Mtfctbq1SIbNk1UXUdXQPntRvjMV+RCLVBVkX+jCKAuSb+DVfDiM7Dks3L7d9+WMLOSLDyTEq/1hEa5/e1GCUk75zz48g2ys2NjkioeqRO2/PNXy75/Y4ew3ldcC8c+gugUp/5MhTd2YLZdjGUUscwCmtuPbRkoql4+iJnxAfyRRrBtMrFBfOE6VF3HKOTQPX4KjlzcH2kEVcc2CmTjQ3jDdZiFrNOPPY9iNoUvXA8KmEYBVXOVa/IGP2yn8bTz5aNoGsJkewPSj626YXwUq/3lcrWWUhWR76bjK7Q8nhP81Or5F5/4ZV8soNRMwNz8NOqij4OqSpr4wo+dUM1lbvsX1LaLUKojkhw+0IvaMhk7Pi7zL74AOxEXtjwygYJSxLJMHn74MX73u3/muec2UV0dYnDwXQYH38flOo3TT1/Ali3fZNu2p/jDH4Ls3r2V99//CbNm3cKkSadg2yY///mvePLJX9DR8RqWVURVdWzbpKdnN01N52CaeVTV5ci/JYk8n4/jdodxuXyMjx+mo2MdixevIpHo4Xe/W86XvrSZhpOWcq2qswm4AngcYaRTSF91GEn89jv3qxAAfQuwGmhEPNQFhLnOALcjTIAJnOSsK4XUfOWBGALG886yhxFZ+HwkJTyL1IDNA94Azs8WUXIG6cE0r9716gkd1KGJITZ/Y3P5seVPLGfs0FjZi929s5vund0se2QZ227cxqLvLqJ6SjXYYOQM8ok8r37v1ROWj3fFiXfFaZ7fjOpS6e7oltC0oQzt97TTdmcbNdNqsEwL3aNLVRdQMAp8OPoha3asKXumPZqHxmAjmWKGeD5OlaeKdCHNWG6M0cwoi1sX05fsI1VIEXQHaQo1AfDR6EcMpAaIhqP0JnqJhqPlWq/eRC8Hxw5y8bSLaQo1EcvGCHlCDKYHy53ZH9zwAXe/djc3n3szp9WehCdzDFXzgZmBAw/BGQ8639FAukfAbu185+iqUBgXgJgfFRn43HsdwOsTIF2MC6ge/yv4o9J9jV3xZZ+9EUb3CHAOnez8FowIeNf9Aoa7/yBVXmf9GDSf9FJrLvkedIfkt8IsOJJ0lySIj33g+K2nCcA3C04QmiLguGqy/I/t2JOKsi13uPJZty3HT+14sEv1YIrmMPKmbOv4ZcwcjB9w/M+3S081tsxb4uJe/DrMu0Ok6M1tkgi+9x6nw3oK/OnrJ3Zff/A7SSKfOF+k5KdcAYWYyLuPny9xFPashfn/IOuxDXlPlinvVXOB5qFgauSKCpqTV9Le3s3MmXWEw14nuCyD3y+DVMGgG8uy0XWFYtFCURT6+1P86U+d7N3by6OPXsbRozHWrNnBqlWL6elJsHz577jiipk88cRyANrbu6irCzA8nGb+/Cjj4zkiES+vv97Huec2Y5oWe/b00tISpq4uQK5QoL7RT29iiCd3Sy91XTCCV3ejKAo//NNPy57q1UuuZs2LP+N7F19D0TTQVY2e2BAjmRizGqfh0d1YtoVpWbhUjbf7DnDzv27gopPnc+dFV2PYFpqisualn7Hlg/ZyBZfwJhp5o4iNJcBe1TBti4BuoKKCnXM6rCeCNpH7H9jI73/7KC89ewfVzV9my5bn+do3/gGfxwI7z8g4uN0urr/6Ytb842qkrisNo2uh9k4u+dQtXP6Zj3H1FSHI7oUJq+HIaSI/n/ikVHj9N5r+S/dcK4oyBxm8/T1wEfJ7833btl/+3y33N3D9f3cqGAYfjo6yxgkUi4ZC7O3tZUp1NTOc3upHli3DtCy+8+KLzItGuXjaNAHUsRhrduxgVVsbfYkEB8fGuHjaNCYGg+iKQqJQIJ7PU+Xx8M7AALV+PxGvl0yxyFoHiLeEw2hOsNl1W7aUQf6vli7Fk0qhxOOi5R0YEHPtE08I/VhKtrrtNvFI79kjzLXbLfNu3y7d1g8+KKBu714BzQ0NMo9lCS3q95+Isn7yE0kcT6cFlTU3C+O9bp1Qo/k8/PWv5D7+cbZu3Uo0GuW0004D4MUXX2ThwoX4/X48HrkANAyjDIKrqqrK4NowDN5//336+/u55JJLAFAUhS1bthCNRpk0aRIdHR1cdNFFuN3yxVwoFBgYGKCxsZF8Po/H40FVVWKxGJlMhtbWVmyHbVMVFbdhopRkzIaT/l1imcNBYY8LxUpXdXPjv+lUluAsDFMAXrjE9eAs54SiFYqy/LSWE0O7SgBUKZ9sFZB/sEvSxesiMKkJy+VmcFTjD3+QQ/XQQxLc/vjjlbD4SEQOQV+fHMZjxyrhZz09EI3KWEwmI/PGYjK2ojuB3kNDcljXroUHHpDDXFq+rk5OswMH5FDffjvMneMEmpUGIkCYZZ/jLy8NTMC/CYtzO9I9qwKU3S75K4HmuoiTwl6sAHaPW87Vkmy86ISaKbK/e/Z/SMu8M5k6dSqhQAAsC5fHwwv/8i984gtfIB6Po6kqxGLcvWYNl3z2s4x2dfHxCy9Ei0RQLAtPNstDP/4xUyMRvBMmEJo0CatQYHTfPrx1dfgmTMAVCJA4elQCzm65Bds0iR08SLC1FbtYJNDcTDGV4p0NGzjzu9/ljbvvpu6MM2i5+GJyY2N8+ItfMPfWW/EEg6hjgwIEUSSgrKoWqiLCaPsDkEmLZPvIAZGBj4+ItzpSJ73Xx8+TSQkIxxbp9/an4fNfl8/z2AhMaJCLykPvw8iAgPKX/gU+9zVweyuDHKWwtNaTADCDIWzTwCzm0VweUDUK6Rgjh19n4mkfQ3ESwjPjA2XAXMylxHOtamRGe9E9XkaPvE3jjPNQNZewA9hkxvvpeut5wg3TmDDlLNzBGgBs00BRVRRFdarSbYq5BMVsSpjyXAp/pElYbtMuJ46jqMKoKwqKUcTc9i8orVNRTp0JqoaiaZLyXchDsHJBY7//roDnpZ8SrsLlwtz8NPb+dyRB/PyLwbJQIjVOcqBalrbbNiiaip1MYHcewO7tRlv2aVmPolBQLI4c+ZAZM85m8uSWsnLH6/WzZcvTLF26jEymiNvtxet18cMf/iNnn30SbneQ9esf4Xe/+2fS6RHmzDmTRx7ZSFNTA7lcDL+/FlV1Ydsm6fQwbneAZLKfVKqf5ub5aJqHZLIPtzuIxxPi+eevYf/+TcyceQXLlj3Ctm03smzZRmxfhE5VYy2wCnA4PA4ivur7EMbZQiTeQQR8NwKbgRYECJeAcRJoB/YizLWNAOt3EXC93vnzIpLySQjQVhDQHXHWU+9spxOYlspjZ4rYhi2hYj0JovOiqC4Vq2CR6k+xY+0OFnxnAZGpEbZ+c+sJANwyLMItYVLjKa7+1tV88MEHaJZGQ2MDjz3+GLVKrfRar2rjTy/8ia+s+gr3/OAePn3Gp6maVMWGX27g2WefxeP1oKFx1+q7WP7p5VimhebW0EsDqgjAzpt56bK2oWAWsLFJ5BOkCinqA/UAjGZGqQvUoSgKQ6khqr3VjOfGyRaztFa18o0t3+DWBbeyYdeG8u2m/Zu4YuYVPLH8CQ6NHWJdxzpWLV5FX7KPBc0LyBpZLNsiWUjSGJCqJF3V8Skm2hs3wOlr4e3bRA6uarD/Hgkn80100rSD8j1g5p0AMh3evgVOvQWCU8B21FxGBt65DabfLN7rt78joWdYAsY9tcI6Jw9J8JmZEcB95oNypEuhaZrf+SxZoIdku2beAcsIy+wOOZ81wwmBcsC/goBxV6ASRqZqwm6XQLPqEnbZJeo1AdoOGLeKMPRXqJle6cMug2m70ptdNUUeMjLCJh/YBJ/ZLMnfxVSlZ9odhoeDAogvelyWeem6E0Fy/IiA7XmrZBDAyAnzHWqBvt3QtECWix+G1+9zQPlU6cIubTfULEB73h0iSw80QryTghLiwz4/a9a0s3LlQpqaQvh8Oul0kYGBFOvWdbB6dRs+n47PpzM4mGbdug7uuGMxkydX0dWVYM2aHaxcuZDGxiCGYbFy5Uts2rSfK66YySOPLOPGG7fxD//QRktLVbkb+513BjjnnCZ8PhedneOsWbODDRuWoGkqHo+Gy6WJUEAFxWVRMIvc8/IvTggme+gvT3Hbx6+iLzHCz/Y8y9fnfxqvy0OumKeluoG7tv+Em8+/kkMj3dT4woxlE8xqnIZbc5Et5vG63Fi2zb7+g5w0oUWUQIUsNf4qAP7a9xETQ3XUBMLoqkbeKHBopIuTJrSSymcIevzkijnqAgE81lGU0TVSvWUM88Bjr/HU77fx0gv/TKS2Sc49OyefDXRA4Stfu5a5c2aw4qbrwIwxOJyirq4OlSTbX97PNd/4FgdeWYiveRVoMngmvdl3gmc6/91quf6rg+szgTeBv7dt+9eKopwBvAjMtG178Lj5bkEGkQGoqqqKxmKx/6df7n/rKVsskjNEujqUThP2ePDpOt/YsoXbFy2iIRAg6HaTLhbpTyZZ19HB6rY2+pNJDoyOcvG0aTSHQnw0Osp9HR3csXgxJ0UiHBgdZV1HBysXLqQ+EOA7L77IT5Yv5xvHpYs/sXw5uqJg2jaHYzHucUD3dJ8Pbyol9GQoJIDDNAUM27bQksGgIzNCKM3duwVh9faKtzoYrCSGf/vbgrhKyeAlerSzUyTh/f3CbsdicrF+220ShvbjH4ukvLVVUN/cuTA0RGHKFPKaSGwKhQJut5sPP/yQrq4uli9fTiaToVgssmPHDhYsWIDX66VYLJZTxROJBMFgkEgk8h+y2K+++iotLS20tLSQSqWIRqO4XHLRPjo6SkdHBwsXLqS2tpZjx47R0NBQBuAej4eA14eaSJUZz3LqdzjohG8pcLRPAHXvoADwmrAAwGxekrynRh2W0ZlK7HYJWDqKIgpFGEvI8sccGXVd5Di2WpWLgpKHufS109ntMOEuLE1j+4saDQ3ie66qksNdCoS/4w6RgZfy545noa+4QoLPHngAnnxSQspKoLmvTwLeGxsrp01dHeXQ6mxWThOonEqplDDe1SET9eDREwciwsHKYEFJFVACwAOjAp5Paqk8V7ooLe0rEEVAKX29tO98HnmsBORL6eqpTGXww9lXaCoUipj5AonhQTSPB3c4zOi77+KfOJFAUxO50VHc4TCq242RSuEKBjGyWbIjI/jqhHkdffddambN4o2772bGV75CbmxMEscti9d/+MP/MFVcURRsyyIzOMhARwfBSZPwNzTgra1F1TRG/vpXMoODRD/2MRRFwRsOQVaqpSRp3QRNF/DXfRimnCIp4qYh58j4KBz4K8z7mDyWSUExL6B72swyYYNRkOVsW9apu5wBDUNYDoDDH0K4SoD6v00hr6qBhmYsbPKFNCOdr9M44zxAkdcKWEYB2zaxTEOY6epG0ISZtm2bwQ93MGHaObh8Yfrfe5naKWfhdi52bMsglxjCV92IWchjWYYEmqmaVJrnM2huj3NeyDbTo734qxswi3lUTccyi2huP5qtYI+PYLX/GXXxBeByo3h92LoO42MCoi0TUkmsjlelcqu6hlKfvG1ZYBoCvFUNxVFR2LFRYaLbLpL5bUtAuzNARzoFobB0bcfGhDlf+DF5zO0VGXk8RrE1im3bFItpVNWFprlQVZd4zc0ipllA1z0oikI2G8Pt+GldrgCmmQMUEolu3O4wPl+1kyyu0tu7h3C4BZfLTyBQD9ik08PkcjG83iq83gi9vXsIBidSW3syo6Mf0dGxjra2O4lEpmEYWTTNQ84doENRmIVcKvqcU+hbiAe61bmvAnuAicDJCIBejDDWWeC7CFvdi8i7GxG/dGmZeuBWYJHzt865X0NFgh5w1qc5r8UAjIKB8eEoHet2ctF9F+Gp8hA7HBMwfGcb1VOqsU35curu6KZxbiOZ4Uz5+VBTiFwsJ6FkxTwvv/gyM0MzCTYE+cnPfsKr773Ktme2oft0YmMxLrnsEupq64gmotz9k7vxRrxsf3E79ss2F/7Dhbz89Mtc/6Pr6Xyvk/H3xqlqraJ2eu0JAPv4qQS2Pxr9iHUd67hj8R0EXAEyxQxr29dyx+I7qA/Uc/P2m7lj8R30JnqZVT+L8dw4vYlemsPN9CR6aA43s7Z9LavaVjG5ajId3R3Mrp+NpmoE3UE6ujuYH51Pd6KbrngX85vn49W8dI53UuP20+wNomheyByTqq3Xv1lJ9J7/pEixbQNG94KvBQItlUGkTJf4pv1R+OB+8Vyrzqis6pbnglPkTCkmBShjiZS8biFk+6W6q/WLMu8H6+C0VRCYJInjelCk2CXmOtXngGPdYZAdZtosAeeok/atHcdehyvffyXm2eV3mGhHIWUV5X4p7buUQG4VK5JxzV1hyc2cAOfSNuOdAmwv3CiAfPygBIw1zhOW/6XrhNUOT4a+Dgg0VJjrVD9MmCnbd/nl+aaFzlmiimR8zxoBzdUnVarEskMi/d6zRrb78g0VwH7RT+R9vHgNqUVPcPV1L5bB8Pe/fz5NTSHyeYOxsVyZkX7kkUsZGEhx112vlud9/PHLuO66LeX7TzyxnL17e5k1q554PE9VlYdw2EMuZ+DxaORyRpmRbm4OMzSUoarKwzvvDHDppb9lcPBWTOcz6fe7UFUFw7Bw+W0KZhEFhfcGOmkM1jKQGqUhVINl2jRVTZAmDsukLz7CWDbO6U2n0BMbZCwTZ2bjNN4b6CTiCzGeTZaXn9U4DU2VFhgU5bgU8BoGU2PUB2toqaqnOz7Iz/b8K1855xNEq+rpiw8fx4S7SOdGqEt+x0kLv5IeYxUtk2cydeoUQkE32AU83gh7Ol6GwRuhfh0Crr/J3LlnsOLGK0H18+Qv/si96x5AUxWamhp5+B8izIpuEaa68XEJrFFUCfv7bwas4f83uP7P9lx3IUN0TwHYtv020lwx+/iZbNt+wLbt5tJfsHQl/Lfp/9pUtCxURcFwbnVVRVNVnli+nGmRCAGXixUvvIBLVcv+6O54nHObm/ncjBnc/dprHI7F6E+l2LR/P/e0t2PaNgOpFLcuWMBQOk3I7WbjpZeiK0q553p1Wxu2bZMoFLjphReY4PPx0NKlTKmuxqVpAnI7O8Vz7feLPLyU8A2VIuREQoDvwoXCNC9aJMvm86IPvu8+Sa+qqxOkdnyQ2d69IgFvaZF1p9OC7Fatku2tXy8Ade9emT8chkAA2+PB7XaTSqV49dVXSaVSnHbaaSxduhSAQCBAIBDgoosuwuv1lqXgBw4coL29Hb/fTzqdRlVV/H4/ixYtIhAI4HK5CIVCtLW1MW3aNNLpNA0NDdi2jel0Iu/evbucMm7bdrl+K5VK8dprrznBFQjI7RmA0ZgA6ioHGLoceXzrRAG/U5vluaN9FYlzc4MTfnKcX1hVBFyW+pxL4WfZvPRfu12VdZVqljStwoCbVsVzpani/3a7sIFMVuHcc2X3+nzysqCS/n3PPXJYursrToHjfdgjI8I2W9aJ4WcLFghjnUwKaK6vrwSaj4zIqXX99ZWKLtOUx6+/HkbHFezWiTJooGmyP4uGXNyYVkVun0jJgo21AqzN40LQTEv2T9GoJIiX/OqlQYa6atln+YIsX5KhK4qoBXoGTwyHc5az3PoJwNpbW0tmcBDbtqUa6913Sff2ovl8JI4dY+yDDwg2N6O53Yzt20f1qaeiulycvXo1gaYm6s46i2FnmbPvvJPWZcvIjY0x4ytfkfU69Xupnh72bdzIhDPOoGbGDILNzeRGRnjznnuIzJjBpGXLwLYZ+/BDbNOUrubxEeh832GNDAk3mzoDjnwEw/1waL+wzeEqOGOBeKSf/pmkg4eqJeBsuB9+/SMYHRSAXgLThz+AkUFIxp0LYsuRk58CdU1OV/tMOamOHhDvdl0TWBa2qlLMJmmYvhhF1bCMfJnhti0TzeXF5Qmge3z0v/8qtlEAFFRNZ+JpH8flDaEAE2degMsbwChksMwiiqqhewL0vfdnLMvA7a+imE+THusFy0Rz+8oDLmYhh22Z+CMTycQG0T0+QGHo4G5sS05WO5lEu2i5qADcbsztz4kMPlKLouugali7d4hfesfL4otOxGQTqoricjmfZyfAzDRQqmvRLvsc6C7s8RHMzU/LOhVVWPJgCMUw5LOr6wKs3R6p67ItrB0vowRCqKiozoBEItFDT89uLKsIKFhWEbc7QCrVzwsvrCiz0QMD71AsplBVF/39b1FdPZVgsMEB515yuRjR6DxCoUb8/lrApljM4HYH8HqrKRbTbNt2A4FAHalUP7ZtUlt7CsuX/xS/v46urh1l1ttlW8y1bYaAFciFhwthl3XEF92PgOQ6JNRMAc4FEsBNiI96HnAPwmA3I17pFUgw2lQk5OxJ4CsIA/4csAHptO5DmITDSJDZMWcbBqAUTNrX7GDfU/v40y1/wjZtdq7bScuiFvwT/BSSBbbesJX4sTiti1txh91UTa5i6UNL8dX60NwanioP6aE02b4s1rMWwfog6aE0Sz63hGNdx9A8GpZh8YULvsCKa1YQdAXpf6efXRt2EagL4P6Lm0PPHKLj/g4+e9tnAdj38j4C9QHiXXGMrMjLjeN/DxBgnTWypAtpHtwt3mqv7qU+UM9AaoANSzbQEGhAV3SeO/Ac97Tfw/zofN4ffp+GQAPnTTqPydWTOX/S+TSHm9mwZAN9iT40RWNu41wG04Os2L6CI7Ej1PnrKJgFJvgncHrD6dz2p9tIFpLUB+oJ6F75zcsNS/2VosOZD8HkK4W5BgG9o29A3WIIThIQONwhj2e6Rd6tBRwJtxfG3xVAqSgQnCrAHEQqnj4iXuvIXEgflXTwCYtk/gMPQv15AqwVG8bfFm+2VXQAsiZgupTI7Q5Tll+XfNWlNPGSbNwVECAc65RbcBht50tEVSue61KtVyEh90sJ5yUft+aWx8q92T2QHZPtJXvggoflO7SU3O2rgz/fKGzzRY85wLod6mbLcwu+L/3UsUOw47tOxZcJdXMl+KyYBiwBzwc2CRg385DohtfvhUBUqrmW/FSY/uO7tjW3eOXnr8ZtjrJ6tfipb799EZGIF5dLpb9fgPSiRS2sX79EfjbDHlauXMgVV8xk1arFuFxq2Yt9++2LyGSKLFjQzMhIhs7OMVwulWLRRNMUOjtj3HDDNurqAvj9LvJ5k5oaL16vzuLFrVx55Wx8PheDg2lWrNjO0aMxTNNicDCNispIKsY9L/+ChmANtcFqZjVOIxqux+dy8W7/QQzLxLBMnnprKw2hWt7tO8g7fQdorqrHo7uZ1TiNX7+xhYgvxEBqlIgvxD0v/4L+xAg2/JsU8DGqfSF+tudZTGx+tudf2X5gF798/XkURWEkEysv3xMbIuKPYNeuEhBcv57mBgO75wo69z/LO3uf5509/8yel38o30z194mcWw3yy1/8jBUrbgK9EVQ/X7/6Kxw68DYHPvgrr7z8ArPO/w2EroTa74LtDOho4f+WwPr/ZPpPBde2bY8ALwNLARRFmQJMAT74z3xd/xMnDTgWj7O3t5d0scjN27eTKhSwbJv2ri6643EeWLoUl6bxwMUX88wVV9AcDnPt5s0MpFLMi0ZZs2MH86NRrpg5k+8uXkzBNGkOh/nxnj0saG6mK5Hghq1b+Wh0FIDHL7uMlnCYwXQay7Y5u6mJ7778MgGXC49loR4+LIzx6acLlWnbgrTmzROW+c03BSXl86IVXrBAaM7RUUFYXq8AnqEhQWwPPSQX2XfeKYjs9tsFxZWSx91uAeUPPSQ/VJMnw3nnyeN+vwB3l0tQWGen+BUti1QqxYIFC0in07hcLlRVxTRNbNtG13VcLhder5euri7C4TCXX345bW1t+Hy+srwboKamBtu26e7uxjAMqqury6FmJS+34agLli1bxuzZs2lra+ODDz7Atu0yuL7gggvweDyYloWtKgKgT5sm7OdHxwQMpzKwd18FcGuq7JvmxuNAuFKpfjIdiXMpBTtXqIBNVZUQNMNwZNCqgGyXLqCys1sezxUkoAulwoaLOQhb1Th4SOW664Sd7uqq1G6tX19pR9M0OP/8Shd1MChjJtOmifhg8mQ59KXE8FWrxFo/d66cQs3N8lbeeEMOY22trOOWW+QUeOstAe/d3QLOV96uklc92G63sH8lJvr4uizDdPah854ctpCTWiqBcYWiLHOoq9I7Hk9V1lOaSuFliZSAdsMU2fi0FgHg+WIldd3lQlFVzFyON+6+G29NDbnRUerOOINMXx9vrFmDt6aGTH8/WBa50VEmzJmDVSiQGx+ndu5cdJ8PI5tl/P33UZ1e5PozzsDf2MjYe+9hWxZ1p59ObmwMf2MjufFxbNPkg5//nLozzkD3+dAdJYnqcjH9qqvIjoyw9/vfJzsyQqQU9a7pUF0DzVPh9z9xRjAGxHM9+RSp1mqeCqEq8VN3dcoyn75KgPTvHxcvdXwU3tkt/zuVUxz9SMByVbWw4b97VB73+WWf5rNS9fXbjXJ/2kyH+bFkfsvC5QuSS45QzCWdMLG4SMTdHsxCjmI+jZHPSlVXLs3AB38RmbaqYplFMuN90l2vuSik4xj5DCgqw52SPD58aI/IvrMpkZUX5eJYUVWH1S6SjfWjKOCvaSI91k8xn8ZX3Sg91raFEgpjDYugS3F7UM89DzsRh9iogOJUEvWiS0Xi3XaR9GCHq6T3upDHHh2WtHFs1NYpYJryuKqhBCQgzT7wnigATAM7nUIxTWxNk97rsRFH96jIfUWVBHKv14kWsCgUkqRS/QSDjWzZch3j450AqKrGjh1riEbnEY93sW3bDQSDjdi2zZYt1xEMNgA2hUKKYjGLoigEgw3kcnEJqUJhbKyT7dtXkE4PEQw2Egw2cdFF68hkRolG56MoOooiMnuwaWo6h7GxQ2zdegNmeogAwiRvAtYgdVgBwAOch4Dfc4BRJA08h0i6hxB224skjT+EnD4ZBJwvcNZjIEz3QUQ2vgAB0g85X3NB5zEfsBJhuYvO9nS3xuI72/jS5i9x6cZLUTSFZY8sY9aXZtH/Vj/J/iTReVF2rNkh3dOdMTZfs5lEd4JiukjscIxtN2yjmC6S7E2eUOf12JOPsWTxEjZfu5mnnnyKuhl1BDoC+Cf4mTh3IotXLUbRFRauXMjMK2Zy0X0X8fiDj1Oj13DKrFPwVntpXSRd2flinnQxTa4g52/Jf93e1Y6Nzbol68rBZUfjR5kfnc9gepDbXrwN0zbpv6Wfxy97HJ/Lx9lNZ6OpGkdiR2jvaidn5BjLjjGUHmJOwxxM2ySej7OuYx2b9m9izY41TKuZxmB6kLf638Kje7j7grvpT/azYvsKfO6g4ExvHZhpAb75YTjnsQowznRDZLZIuUt1XZHZwlrXzodAq8i7X79e5q2d54BMwwG6euX/UqhZMS5y8K5NwlbblrDezZ926rmuk0RyzSfLm3mRSvvqKnJs25QEb0UVoF1KEy+FlLnDlEPMjgfeJS+ybUqXtVWUPxy2XXM5dVymU8XVLUDdcgZuUQS8Bpuh/nTZXqgFBl4HVMiO/vu0byMn69/yZfGVF5Nw7EXYcTu0XiAJ4olj0L/LCUg7GzIj0NteAc3n3C6vI9goTHXkJAH/iaPw5xskfG3JE1B9MuVe8cjJuMN1nHpyNT/96XKmT6+hpsaPZdmsX9/BokUtBAJufD6d7u4Yuq5yyim1PPHEciZPrmZoKMXUqREeemgp9fUB3nlnANO0y1VdN9ywjWPH4miaSk9PnFtvXcDoaIbGxiDBoBuXS2P37h6OHYvx+OOXYVk2vb0JnnvuAD09CY4di3Pffe1YtsVgaoyrzr6MwdQYffFh7nn5F9jY1IVqqQ/WcM/Lv2A0E5dU8Kp6GkI1vNP7EelintF0DJemc9vHryKeS5WB9vYDu/jZnmexbOvfpYDHskmuOfcz6IrGbR+/qhxipiiUl3+18w2GUmMoWCj6RJjwffkGGn0QalaCHgW9CdyngP98UDygOkRm8RAMXg/Fo2AlwBiCYqcElhUPOZ+JLDQ+JuuxLVAc9ZhVACv1Py7U7D9VFg6gKMpU4GfABITF/qFt23/83y3zN8/1//0pkc9zzfPP8x2HZZ5VX4+uqrw7OMjZTeKf6E+lyr7sKdXVfP3fhKBVeTwEnAv0dKGA3+3mm1u2MC8a5UuzZnHjtm3l+b9//vk0h8N8dJxsvDkcxnLOxxrTxLNrlwBpVRW5d0uLJFfpujBQpaCSfF4k3CtXiqe6WBT/9ZlnCr3p84kcfHy8YtrN5wUMGYaA8KNH4e67ZR3Tpgm6K0nHp0yR53t6pNNJ18EwyPl8mKZJMpkkkUgQjUZRVZXe3l4aGhrI5/Nlr3R/f385lKy1tRXTNNE0DcMwSKVSJ3irC4UCg4ODhEIhOjo6WLJkCS6Xi2KxyMDAAE1NTaiqiuqA+5L8PBQKkUwmaW9vp62tjUh1NS7EE2mrKspHx8QvXBcRxjjhMKjHe6TzhYpc+aNjAra9LgF1pcCufKHi0y7JzC1LgPPUqASfHe9RHnG2aZiVcDOo+JULRWxN4+XXdJZcrJ4QNHbllQKeLUsOdy4np8Prr8uhME051BMnyt9bb8nt5MlyTVI65KoqYy4lv/Uddwj7fcstAtrBCUf3VNR1K1bAwz+2CLiNSqCZy5EJlqTgJdl2KcjsUJfsA1U7MbjM6xYw7XKB3yP7z+369yFyTs3Wv5PyVzk/cpYlxwKge4BiSwNDb70pwHpsjNo5c1BdLvbedRddL7xA6yWXcPadd6I4YXdGVoCL6vGQ6unhwK9+VQ4hM7NZbEDzeMiNjpZl3kYmg21ZjB86RN3ppwNgW1Z5+bnf+Q66x0MuFsNbU4NtGKT7+tB9Pjy1tbjdLpRcBrIZqXN6ZxeceoaoIE7wUSNSb48PRvphy+/h0i8KkP7xXZXgskzK8Wh/CC3ThK2OjwkLrmmyj1QVEmPgDwlYHB+FQlYA+9iQeLF1F4wMYNY30vf+qzSc2oZlFkkNH8Xtj+DyBRg+VAki80cmYhSyDH3Ugb8mSrjhJGxHtq0A6fE+dE8A3eMnlxglUNsEto2Rz2AaeTTdg+bxU0jHMPIZ/DVNlGpNFAVsRS3LzVVNx7ZMUBQ0WxU3RdcRAdg7X3Gk2VUobjfm838o+6a15Z8HRLZv93WjNjVLdZZtOSS5AoqCbZlY259HPXcxSmQCYEuSOM64w0AvalOLJKAnE9iJOGq0tXzf6vgL6pLlKJoGmk7BzpMvJOXcUl1s23YjBw48x+WXP01z87lomptY7BiBQD253BiHD79MTc1JNDfPJ59PYRg5AoE6bNvCMPK4XD4URcMwcmXvNSjs2/cUkchUGhvnkkz2sXv3gyxZsh6Xy09v716ams5BURRMMw+o5HLjdHb+iebmc0lkRylMXcIaReE7QDUCkNcCDyBMQxwJM/NRSQvPc2LQGQhbvQoByJozby/CdJecH1lnmUbEr323s0wfwnR7nHX/FQH1oWyR8YNjtK/ZweJViwnUB3jxthe58N4LUTUVRVVID6YJNAZ44VsvnBBOtvna/zjs7K2Gt3h598s8cfsTWH6Lq265ihdfeJHqSDXXXH8Nc2bO4WtXfI1gQxDbsjHyBq91vMbXr/06v9/4e2bOnYmRNwjWB1GCCgcTB1nbvpbVi1dz6oRTKZgFrn7+ap478BzPfuFZzm0+l2s3X1v2TT966aPc9MJN3HzuzUyNTCVTzPCDV3/AuiXr5OvMtni973VqfbVUeauoCwgz7VJduFQXpm1i2Ra3bL+FmxfcTDQUZXfPbuoCdfx4z49Zv2Q9Pt1HPB+n2V+FlhuV3udsn3iF9aCw0QowsgcmnCtAYGQvpA9Dw4Xgjgiw05wQz0wvDL4MjUuFjbWB/JAj63a+5xVdgPn+u4Udzw8L2J51p1PNZQmIxhRga+TldR0faFaShZt5h+l1vNJlb7TjyY4fEbm25nb82sfLw+2KDDw3Kiy06qbiQbIFjHtr5X3nY8LIa56KZ7u0LbMgjHjJ2615BZjrXjCyAqzP/o6kgEcXQ2ZYPNp71sA5K0XWXZKDF1Kynh3fleeS3fD85+ETT1eCzQb2whnfgjcfgIuflNdb8l1PvwIu/plsf88a+JjzI53uk7C1+auh5lTQ3GSzRXI5g0ymyO23v8Stty6gry/JvHlRbrxxGxs3LuP11/uYPz+KpqlkMkVuu+1FVq5cyLRpEYpFm507u/j85//A5z43g8cfv+wESXhraxXpdJFkskA4LCBb14XlNk2bd98dZMGCZvr6UoRCbiJ1brpjg/xsz7NcPf/T+Fxu0oUcEwLV+F1essU8pm1yaKSb5nAdQW8Al+ZCU1TGMjEyxULZk91cVQ+KQk9skCf3PMu1536WaFUdRcukaBaxbJuA20fBLKI6gyUDiRGe3PMs15z7GRpDtVi2TdEski3mCHoC5IopGv0KChYoPgHBVlLOacUFxjhoNY61wPH+G8NwZJow0w0bBHhndkHxMASWCKDGAHRZFzZotXL+W2knOK0V3NOd8/PfTFYBMcu4/+Pn/wtO/6U91///Tn8D1//3p1KomU/Xy2FjD1x8MUPpNPfu3MnGSy/lhq1by+D40UsvpXN8nA27drG6rY1pkQid4+N0x+PlxO/VbW1MrqoiZxi8PTDAzLo6UsUiVR4PqqKgKsoJgPuJ5ctRFYWPRkep13WaTROlv19Y6nnznBFct4DnUnpECVm1twsobmkRUPyd78Appwj6KoVDlTzZzc0CmDs7BWmtXl2p59I0oTI7OmDmTPlfUQSkp1KiTV61ClpbKfj98sVVLKJpGplMBo/Hg6ZpxGIxdu/eXQbM+XyeV155hUsuuQTLsigWiwwNDdHc3MyWLVv+nbdaURReeOEFmpubOfXUUykUCgQCAWKxGDt37mTx4sVUO4nrJVZbURQMwyCRSOB2u6mprkbN5gXoTmuupH23TpR9d3yw2Mi4sNslObfqyL51reIZhoqkuSRNNk040isS8nhK5NNH+yoe5W4HILp0YbD/beBZKcBLUzHQufIqjYceEql2f7+IBRRF6stLXuxUCiZMEKC9apUcbo9HXkqhIM83Ss4NmYyspxQc39MjCeRXXgkbNkgg2vTpsgyIdDwclm2GQuDzmGi53IlJ4IlUJSDOpTn+X/PE/WTZArRLgxmnTKrsV5B9UFIEqCqks5VBihJIH42deEwO98h+LoWiZfMYNWEKqSTFVApXKITu9Qqgy+V4Z8MGZnzta4RaW8vnRzGZpJhO4woGGT94EG91NaGWFoxslnceeIAZX/sankiE8Q8+IDJjhrCt6TSuUAhXIICZzzP63ntETj0VzeMRIKGq5MbG8FZXYwNWPl9OGJ/x9a9T3dKMMtgrrPOUUysp3YYj0W6ZJu9Zd8ljtg3dnfCj71UA9ZEPZVm3R/zXRz6C6GQB68m4sNPbNsGlXxD5eaROWPCuQ7IczoiJbUsQWjIBU08FVcHUdSyjgJHPSEiZ46vGNLAsA9s00b0BsVpQUfKXAs/qTponUmaXR7zSLrekXAOZsT5cvgAuT5BiPo3bFyY91it1XM5nF2Dgg9eYMO3sf5cmruluNNUN+SyKyyMd15aFPdSPUl2DEghim8epd2wb66WtqMs+LQyuooBlio8aygMPtqLA6AhWxytoyz8v60gly0ng+ALYg32ozZPE/2yYogbweKGQR9F0bI9HJOMuFwWK9PTuoanpbFRVx7JM+vpep75+FoDjsVaJxQ6zc+c6lixZh6776OnZTUPDHFwuP5ZVJJkcJJHoIhqVfZrJjFAspmlvX8vChbcTiUyR3mojz8DA2zQ1nY2muSkU0ui6B8PIkc8nCAQaMByGzeXyk0r1c/jwy5x29nVkVY03ECC8GzgN8UQnqCSANyCd1/fx74POAsBHwDDixwZhuE931hFy5jmKSMhXITVey5Gk8vudda1DQL3iLNeSytP7l2ME6gN4q734anzEjsZAgY77Omhb3Ybu0+n8UyfN5zbTsa6DtjvbCLeEGe8cL9+vmlTF5ms288SmJ+iMdNLxbgf2qM3DKx7mp+/9FJ/TVz46Norb4+aar13D9+/8PunBNK/vf51rb7qWX274JfHn4ixZvwR30I1lWORdeXb27aQuUMdwepjzJp2HR/OckBwOMJge5J72e7iz7U6aw81kihlGMiOsbV/LyoUraQw2oigKiXyCKk8VYXeYvClNGUPpIcKeMGF3mKyRJZaLlcPRbCQHwLAN9vTsYXbDbCLeCDkjxxt9b7B08mJU24LUEXj/Hph5hwBlf4sw15YhXuxS6FhuyJlvlTwPTjK1KVJWI1UBsO+shLn3CbjGBJzEbUWpMNpWThoRdIehtk2wi87/jhVKd5z38cMCen0TpIta0USOHZ5U+Z4q+bBtS9aluuX1WGYl5buc+O34tUsMtaIKGLesSpf08fPFj4A7IGC89D7iR4SJ9lQ7ZzwCoD3VTrp5QQBxaJIw7mYW+vcIA58ddYLKbGG2X7sNzroZendC306Rmb96i7DauleCzernVn4vfbVyO/ahgOn5d8q+ePEaAdtfdcSsxyeMX/wkWdPLwYNj5ZCynTu72bmzm40blzE+nisneweDboaG0qxd216eb9q0CC0tVaxbt5P165fIy/Dp5HIGLpeG262RzRp4vToHD46ybl0HDzxwMaOj2RNC0aqqPCSTBeLxPI2NAXSfzdqXfs6sidNYMGkODcEajsUGqAtEsLF58C9P8XdnXUpdMILf5aUnNoTP7Sbir0JTVP7ad4Cbnr2fj007m39Y8nXyjg3J43JTNA1MyySVzxBw+4Q4sW3uf/Wf+Mo5n6C5uoG7X3xSOrM/ezuNwVoGU6PMaToFXdUomgYuTcenmSjFThhdA7WrQW8BOyPgWnEYBuMoKAHQ6wAXDNwI9WvBHIZiN/gXOmM4mhx32xb2eug2qP0OuE4Wdvu44DQC5/371HCrIHVdpdfiPvX/FQD7v7rn+m/Tf/JUMAxSjiz5pEiEukCAte3tbNq/n2ShwL07d7Jp/35e7+1l1eLFZZ+0W9OIeL1sXLaM1nCYdKGAW9OYVV9fXn7Njh0ULYvBVIr50Sgj2Sx3vfoqI5kMHk3Dpao8ftllHPrWt3j8sstQFQXTsnhw925S6bSkhPf3C8V4440CRI4dk/8HBoSWLHmgv/AFkXR3d0tP9ciIIKuhIUFOqZSUGzc2CsKybbkYXbRIws8CAUF0K1aIFnn+fPnBSaflNQQCArRvvVWAeC6HbdvEYjG2b99OIpFgfHxcWCdVxePxcMEFFwCwdetWstksS5cuJR6P09vbi8fjobm5GVVVWbp0KdOmTSOVShEIBNi2bRuJRIIlS5Zw2mmnlT3d8XicZDLJgQMHcDkKgWKxiGVZxONxurq6UBSFSCRCLBaTL77uAQF4R/qEPT1lktNnbVbk3VObYf4cAXG2LWA5X5D5S97qUh9ziUEt+a1VFU5ulXXWRSo+7pqwANKpzQKsVVVYcE2t+LbzBfk72gcFA02TIPhQSDLpzjlHxkwOHZJ6rP5+2XQmI2MkXq+wzrYtdniXSzZ/990iPFBVERk0NQmQ7uuT0+WKK0RqPjAgj3d1ySl0vL3f53MYbJCVlvZNycde8lqXLoTcuuNVdzx5qiL75ZyZMqAAgA25vCS1aw4TfrRPbkte+NL+KUn5g37Zj9iV/vCSDL0qiG2ZZIeH2bdxI7nRUYxslr0/+AH5WIyz7ryTwMSJ2JZFbngYyzTJjoywb+NGssPD1M+di6pp7P3BD8iOjjL9qqtEGq5peCdMQPP50H0+3FVVZZD9xt13i9Tbtkn39bH3Bz8geewYutfL8F//iplzvIC2zalf/Sqhpib53Hp9lToty5S/f/6JVGIl49JnbTuDD5oOp8yBf3wSvvANOTClQLJsWoBx81TZ9//0Y2Gx//SM9Gjrjrw8PirbnHaa7DtFlXAuFEkir46ITDybAdtGUXV0j9+RbOdRbAvLMsklRtE9PmzLopCO0bvvRYqZuDDWupvGU8/D5Q2j6i4GPngNze1DUVTSY70U0jHpr86mxH/t9pEZ78cfmYiiahj5DP3vv0oxl6bh1DZc3hD+mqgcA1WnmIlRzKVRLEuUEJaJNdALioLaPAnCVdiGAek01qvbIZ3GHhpEXXCeyLZTCWGaFcUB2ipWbxd2bAwKBZTaCahtFznXRy4IhFBap2LtbgePBzXaitXbDZaN4naLLNy2ZIBD08AoYr64GXtsFBSNYLCBLVuuY3T0IwwjS3PzwvLvTGkQf9euBzn33JvLwLmp6WxcLj/btn2LVGqAUKiB1tbFWJYJQCBQRzLZR2vreYRCEzGMHC+8sAJNcxONzkPT3Ni2habJgIbbHURRdAwjQz4fo+TTHhvrZObMK6RBwbZpQ7zWcxGGOYGw0w8iad8qkqDqRqTeXcAh571kkequMxDWOoOElx1PU6gIsH4OAdaLEEC+EQHfQ0jQWZAKx6hrKuHmMLvu30UxU6Rndw+qrpLqT3HguQPEu+ME6gLUnFRDZFqE5U8sp3pyNdtv3k73zm7O//75BOoDKIrCvqZ9HIocYuvzW6kKVdG+tp1PfuaTvPPCO2xYuIFdz+7iM5/6DDd//Wau/vjVxI/GefT6R/n6N7/OH576A+N/HCc6L4pt2YweHKVndw9ul5uWcAvD6WHmR+ejKRpu3c1JkZN4ZNkj+HQfyXySOn8dj176KFOqp5A1sgTdQda2r2XT/k2s61hH2BMunw9e3UtnrJPrt17PsfgxDo0dYjA9SKKQYE/vHvxuP8lCkr5UH5liBk3VcKtuzpx4JvuH9pM38sRyMWbXz2Ysl5Jj8P49ItHefw946kTebeVFouxvlhTxYkrm631Oeq1t09H6H5MQtPRhYW7fvk2O0JkPgqtK/NOje2U+RRVJdLZfpOFoJyZ2p47KvDif31JYGYowxr4JkoqtaAKEqxyAHz8qt5pbwscUtSInj3XKul0BCR4rzRc/UmGcVbf8JpXmVRy/tTso6zPzkuLtDjt920U5Y6umgqdK9k0xI+v21sDQm7IcNkQXkxvt5NOfu4JTZp/D6Z+4hSWXf4NDGQcc9+0GVefPmcVoTefw0LZ+8U2jwIUbeXTjw8w4eRKzl3+b0xcuIZcYqnxoNLew0Rc/WZGJl/qu3VXyd87Kcs91wfaQThdZs2YHmzbtZ926DpYsmcqdd7bh87mIRLwMD6cpFIqEQm4mTarm0UcvZWwsyxe+MJNFi1rp7o47rHOSFSu2k80aDA5m+OY3t/LRR6OYpoWqwoMP7mbRoha8Xr3cdb1uXQeJRB7bhr4+6cfOZg2wFG4+/0rmNk3nsY6nSRdzqIrKuld+xUgqxt+ddSk+lxBMNjY+t5tsscA9L/2cdCHLrIkn8/Tfr+Nr8z6JDYxk4qx75Vd0jw/g1d0Mp8Z5rONpRtNxvLobr8vDmc2n8ps3t6IpKl+b/ymWTl/ArMaTGEiNUhuo5u4Xn6QnNkg8l0TFkXAXuwX0Frud86ZKgDWanOeuaaBFILNTQHLjw1JRV+wGvcEZOFLl2BqDAs6xwDcPRu8BDAHMyU0wtgF88531/9upUJlvdA2i5/l///Q3cP0/eCqx1Vc//zwfjo5i2zY7u7r47qJFXDFzJlUeD6vb2rhi5kzmNjZSHwjw/fPPp87vp72ri6xh4NV1RrNZVEXhyPg4YY+HjZdeyuYvfYnVju/a63KBonB/RwfntbaWq7eOxuNct2ULqUKBkUyGnGFgA+uWLKE7n8euqhI0tGGDaITj8UpSVXe3AN+VK4XG9HqFtpw/H959V0Bzyc9akokuWiSoqa1NQHpnJ3zpS+KrDgQEhZ13nlR3qao8BoLWBgflfiQiYD8UAtumo6ODlpYWdF0nGo2SSqXo6urC6/VimmaZiW5vb0dRFHRdp7m5mWKxyPbt28nn8+i6TigUorW1Fa/Xy4IFC0gmk7jdbnRdx+PxsGDBgrL0/PLLL8ftdjM6OkqhUEBRFKqrq8vAPB6P09TURNE0JYyrLgJTohXPtKoIWzweF3CrOUEo8ZRcYEwrAWKFciBZCVzayPw+T+Ux05FGl9hYj1vAdjgoALR0DHRNAOjRvjI4pKtfwH/3ALZFuYLc5RKmuWS3d7nEU+33y9/EiTJWcuiQ3G9slPslAL1mjbzFwUGRipcs+X4/PPKInC6lU6mrS1T/pby6aFTy8g4ehHQG7BLDDJWgspL/OleQ+7lCxWdu2QKyLZtypzfIRY6mSuK3qh434ODsl4NdTuAbsq5SOnnWsTA01pYD4OQDLPLwg7/9LTO+9jUCjY1oPh9Db76J5vFgGwbDb79NqrcXX309im1z4Ne/Fq+03w+KgnfCBM753vcIRqMEW1pwh0JoHg/hyZPJ9Pez9wc/IDMwALaN5vUy4ytfQXG5KKbTvP/Tn9L1wgt88POfU0ylqD75ZLLDw7x5773ydlUVOy8y9LKMu5iXBO+xYfFJ5/MC1qZMl8fj4zLfUB+M9FXOHbdHZN824sF2e8RTfcps6a3+0vWSLj7cJwB+yqkCnI2i7NMjH1Yk6PGYpIx/5iuAAsUCxVyS/vdfdTZXJD3Wh6pq+GuaMPIZbMsQMD3jfFy+EKruQtVdDH3U4YSX6dRPX0QxlxAAXd2I2xdC010EapuFKUbB51R3qarKyGHxY2u6G7OYpe+9lylm40IaFDJ4Q3VoultyEywL27JQWybLNfq2ZyE2huLxgq6jtE7BTsZRm1tRaupEyj02AuPix7bHR8QjHp2EEgg5g0II+21Z2GmRdCunn4V2ySfBtrGzGZTmVhRdx86kUaOt4PGJz7y/B5JJlGgLdjoJtsGOHWvYv38THR3ryOVigEU6Pcj27SsYG+vEsgwuueQhQqEmtm+/mWIxTV/fGxhGjgsuWEsw2OgEkFnk83EMI0tPz24aG+dy+ulXAeLrnjfv2xhGFsOQizDTLJDNjjkVhFZ5PWNjnSSTA+i6j0Cgju6BtzkEXKsoJJBTqR+pwfIjHus35IzATyXorN65Pw8B1ToCqp1PISnkQsrtPO527t8JPI0En92IAOkiAs7nIkFnx5x1HALypkWiJ8GCWxeQ7EvScHoDukendXEr1+27juj8KOmRNC0LWlAUhe6ObgrJAgtuXkD3zm6MrIFt2fT09vDDh34IVXDF9Vcwb/E87jt0H6f//em4g25aFrWw+8HdAOTiOVoWthBsCvLT935KOp7m2huu5fvvfJ+rH7uad958B0/YQ/O5zRTNIt2JbuoCddyw7QYOjh8kU8hg2RZv9L3BsfgxFEXBo3nY3bObw+OHcakuVEXloaUP8eENH/KTy36C5Xho737tbgzLYN3OdeUQtDkNc7i/4/4yYx1wBXBrbjRFE5m4ZXLTCzfh1b2c03QO47lxIt4IIU+I215eRd4yJKH7/M3SQR2cLIA6PwapQ/DmTVLJ5WsQwLz4GXl+7zcEUGd6HGC+FjBhwgI5Iwpjjmw7B9WnQ6YPsER+vu8uAdiqLoB6pEPASWgKTFgocu1SAJnmlgEqzQPV0+RWdYtUvDSPOyhA2SxUPNOlHuvj/dbZkYoP2x10krc7/828PRU5efyIw0Dn5fNvFhzWXHUGF5xBSGwJQiupqJoWSdjZwJvy2psWce3Vf8+B/e/y1zf38KnPX8nXr18hr73udOJDR/nuvT/h0osvlPeXlNfwr//yDE/96gl2fyPJvnVn8tLzf8D1+t0i9TYLlf1TYtl7XxNWfMlP5bnhd8WDveSnFMLTyeYsxsez3HHHonJoWXNzmKlTIxw5Ms6ePb3Mmxelubmaw4fH2bmzC8uyOeecJizL5hvf2Ew0Gubyy09j3boONm3aTzyeZ/36nWX/tqoqmKbN+vVLWLSohW9+cyvNzWGefvpybr99EdXVXizLLi+vaQqHDozj0dz88vXn2X5gF6l8hp85HumRTAxN1crg2AYivjBDqTG+1fZFbNvmnpd+Tq4oeUdjmTg/Py6gzLKt8npHMjH6EyPc/eKTzI1O55bzr8TGptZfxZ1Lvo6mKMxqnEbA7eW7F36VCcFq8sUi8ewoijkOrqiAXleLfHPZOch0OLJuRXzS2TeFodZb5byw8wKe1Sow+h3P9WEoHASzXwaBAkukfktxCRMdukLuq0H+43Az94nz/YcA/P99099k4f+Dp1Q+z9XH+aZ/+olPkC4U8LlcFAwDTVXZ29tLjc/HpKoqbtq+vTzvLeeeywO7d/PkJz5R7rresGQJY9ks3YkE86NR3LrOcCrFhECg7KUGyBSLpAoFvvfqq+X1PbxsGbds3876JUvwu1xoioK/6PhIslmRf8+dK8bZNWtg40ZJ9l65UoBHSa7t98v8U6ZIgnipxquqCj76qFK3ZVkCsO+/X5abMEEMuHfcIYbd7m5BXfPmVbTGTU0ndDzlp0+nUCySTCbp6Ohg8eLFuFwucrkce/bsYcmSJWiahuYEXdm2TTweZ8eOHSxcuJBgMIimafT29lJVVYWu6xSLRTo6Oli2bBmWZZHL5fD7/U76t4KqquX/DcMgmUySTCZpaRF29N1336Wnp4fLLruM0dFRaiM1uF26MLCm5YRLqc5IOk4tUa8A6uO/Cko+YLfLqYRywlMAUlmocgYeSpVSuibS5lJlVEnyXeqILvmOSz/Yli2vw+mGtlsnUtA8JNNaeSxE00REcN99wlCPjMghmT9fRAtz5sAnPwmPPipMdl2dnB5nnSVjKKWxlUJBgHNLixzanTtFbp7JwDvvCOguFASAZ5wB+9JpVBcx0RSz4jkPO1xT0ZGBx1PwfifUVlek36ZZAcClyXb2tWlVgsos60SZvqpUGG2Xy5EAOnJmbNlXJ+xLG9OyMAp5Mn197P/pT5l5zTX46uuxTJNiMonL72e8s1O80pb4blM9PeSGh/E3NpIZGMDf0FBeNjM4iHfCBHz19Yy//z5/+eY3ab3kEs5atYrcyAj7n3iCmd/4BoFoVLqx330XX0MDgaYmFGD47bdpv/lmLvnjH1F0nWBdHcpIP8rYkADobFrY5XxeAshwmP9SrZbp+MmPHBAGOhkXBtoflOCylqky3+H3oXmaPIct63v6SbjwU5CMwcmzBaCXpOiKCr9/DC7+nEibPV4B3z4/pj/g+KX9uAMRbLOIbdvkk8Po3qD4rqfNw+VUbOF8/mwoy8mNfJpATRNGPotp5DDyWVw+WbZxxvmYxRyqqgsLXvI9GwVMo4DLGyQz1oPm9uP2iSchM95fDj5zu3woRQNSKex0CrW5tWIvsCzsTLpSy1UsVnquczmsXa9W/NifuBx73KnTWnwhSqQWe3wUOxE7wU9d9ldrmnzii0V5rlCQ7eSyoEuYnq0oKC43BiZjsU7i8YqkW1EUNm++lv37N/HlL2+lsXGuI9muJ59PMjS0j4aG00mnh/B4Qni9Efr73yQanVf52Ng2hpEllRokleonGp2PrvsYHf2IdHqA5uZzncAzG8syyGRGKRYzdHSs48IL7y2z2cViBtNXzbWam01IYmoVAoyroSwTNzixh3oOFYC83vlzI+7AdxCvtIUIhUsf85XOX4vzjfkNTqzmuh1JFk8hYFxDQHZdtoj3o1Ha17aL57ouQP/b/TTPb0bRFXp29dB4eiPJgSSp/hTReVEAdK+ObdkomkI+nmfw3UFCTSE61new7JFlWIZFbjxHMVukY10HF913ES6/C9WlMn54vPyYJ+yR9aiK1Nwazv82dO3sYsIZEzDDJjdsvaHsqf7J8p/g0TzkjBwjmREi3gh7evdQH6hnKD3E/Oh8Xu97nWgoSneim/nR+VhYKCh0xbsYSg8xt3Eufcm+coVXQ6ABy7bIFDNkjSzrdq5j3ZJ1OMYG+pP9aKpWrvjqT/Yzt3EuXt2LX1VxqxpK6rB4oGfeKQy0t85JEfcIS/fO7TDjNpGD7/l6pa7r7EfgrZslkEz3I8MklkigVY9Iv1VvhU22cgKoDz4i3uvhdvA1wYcbREauB8WXHH9XwtE0RxJbkncrirMNW9hh3es871hnCknxMCPKE+KHIRSVbSeOSuhZKZzMyDnguSistFWg3Isd66zI0KumUmbRy95uxfFb2xA76FRvzYf8uKxX94qPOt0n/u837heJt8vPG6+/yee//L84+v4bYFv8r08u4vKvfptnXnyTuf6DrNjwLLgCLP74Ur638ttcfN6ZwkKPvAtjB2DyUmHysZ0qxkOw524461bIDou/u283eCOQHaYw8QI+PJgoy7n9fhe5nEFvbwKAiRNDvPPOALNn15NKFZk4MUhHR3f5flWVB1VVmDz5RzzzzBUsXNiCpikkkwV8Pp1s1qCvL8m6dR2sWrWYpqYQbrfGtdduZtOm/Vx55Wwee+wy5+vXZnQ0Szpd4L77dvLYY5eRLRTAbTCWFWC88uNXMZpJ8LM9z3LHhV8t919fNmMxqy+6GhubbDHPg395iqvOWk5NIIxbd+FWdQzbIm8UePAvT/G/zr6MSZGJZf/1HRd+jXte/nm5S3v1RV9DVTVUhBF/p/cAcyaezEByjEGnysvG5pWDHXx25jkogzcIWxzdLAB7dJ3Ubqk+MEZAn+BcExYdwOsMwpjOcwPfcOq8roCaW2DsAangwiXnp+p1vNR5Wf5/lxr+fzrff6Hpb7Lwv03/Xye3ppWZ6Tvb2tBVFZemsau7G9PxFy5obqba68Wj6zy0dCkf3HADDy1dylg2y+q2NkzbZs2OHWzav59UsUh3IkFdIMAN27ZxZHycWr+f/lSKrGGQMwyu27KFgVSKVKFwQh3X6729LGhuxrJt8oZBseQN7OwUqfaZZ4ose+pUQVoej4DiyZMFWJd6l6qqBHyD6H7vuktubVtozNNPF5RmmsJC33qryMSTyUrfk6LIY6efLj5tVRVQnc9XEsQfeghVUXC73bjdbhYuXIiu6wSDQfbs2UM0GiWdTrN161bGx8fLPutEIkFLSwuhUAiXy4VlWbS2tqLrOl6vl0QiUZaTZ7NZ/H4/8XicrVu3Eo/HKRQKbN26lXw+j6qqhEIh6uvrGRsbY/PmzbS2trJkyRJs2yabyaDmCygfHcM2LQFt2bxzYYCAO02FKU0C4kr9VMm0gLtCUUBgKaGnBMxDfgGVpilgs4SEq4IVNjZfqMicWxoFaEMlbTiVEbCoqtDcgJIvoGsSVDYwILe5nDDU550nq58wQQ7JihUCgp9+WgLf3W45PcJhAcqmKeMo114rjHQsJsC7t1c2d845AsaDwQqwNk1hwW+7TVhtRXGs+qoETVEoQtBXDqDCpVcGFs6aCSe1yvtTFNGi21Rqt3KFinrCsmT/6prcH49X/O/prIB43fHoFQzZ7sFjFXBfFTxuXwroVhSF/Q6LvP+nP0XzeMgOD5Pq7kZ1u6k/44yyhDvT309udJTI9OmoLheRU08lMz7OOd/7HoGmJibMncvB3/6WYjJJ7ezZtF5yCTOvvRbN5WL/E0/Q+8oraB5PGVj7J04k1NqKmc9LOviMGSz+0Y/w1tbiq60FyxRgHY4IOA5Wg9cPmiLs9T/9SALGjh0U33RsDH77qMjAvT4Bx4WcSLjDEdkvhz+QxG+vTy5Q4+NysL54nUi+T5rlKDFGpcLrtxshNgJLPiOp5NU1ssyW31FKr/NV1aPqbmyziGUUUVUNX9VERjrfIN5/gGIu5TxXoJCJl+XhqubC7Q/jDdeRHutHc3vRdC+6x8dI5xv4I02omo7LF8ayDHr3vUQxm0ABFFV3LJ02vuqJ4vnOpzALOfzVjai6m5HO18UPrWoooTBKw0QBznAcsPYLELZtFJdbPsduD3i9qIsvQP3S1WjLPgso2MkE6oLzsRMxsC3sRAwlEMLq7RLpeCiM0hB1pOTi57PzOQHTwZCcv/4AZNOY2/9VGO7xUazkGFVVrTQ3z6e3dy/xeBeWZbF06UPccksfra2LsW2L1177R+LxYwwN7SMcbsbl8pFK9ZdrterrZxOPd7Fly3XE48ccP7UkkAcC9fT27sE0s1RVRQkGm+jp2Y1tSzNDT89uDCOLy+WjuXkB6fQQAwNvAza67sGlqNxp22wFogiTPAEB1k3yqcagkqw6AZGDL0I81D9yllEQafdCTuzMXuXcPghMcubTEAb7YipJ5f0Iez2EAHQXMB1oKFq0r21n/6b9tK9tR9EUAnUBqeDqihOdH0XzaHj+P+z9d7gU9d3/jz+mbd89vXEKCCoKUkQ9COegsSBiSUzuSBJNvFPRBBOxYQTvaBIBBQsxmqKmma4md4IUsYXI8dDsigpST+97tteZ+f7xmt3F+/5+yu93Xb/r+t337VzXufbs7uzM7szs7DzfzxZ046/107unV7zQ0Qzx/jjZWJZcKseEMycQ7YnSNK+JyLFIMUU82h2lsbWR+ECczddtZvzwePExgNEPR+nq6MLMmFg5i+7ObvLpPCjQ0t6C23Dj1bysXLCSJdOXsGrBKnJmjpyVw6W6SOaTLNu6jFp/LeWectpa2ginw1T7qouM9+7e3fTH+lnx/AqmVExhfvN8Qi7xWK+YvwKv7iXoChJ0Ban2VbN6x2paG1uLieB9sT5OrDqRNR1r2Lh/I73RXs5uOhvLtoimRnElj6Ike0pJ3skuSf8efkVu31op3505D4JvkpzPC3Vdp90hNVBn/Uwk5Okh8V3HDsHYG4582ysgND0CuaiwxKGTpbpL0SRx/IP7YeqNwkgPdwq4rzgDRkQtUJSgK6oAY/nhEECsuhxvtWM5MvwQ7RLwYZtQPlkGCGxTQLKqge4WxtcVFGBdkKbn07J82/6oDN2SfYqZKTHjhaA0O39c9dYyYZBjXXL/tfuhZpYA7Tk3yny9HfzoRw/wqfPPAFXn6U0vodacxicvv1y+DSd9RvzYzy/lvfff59W3P6Bt4Wc4s/1CHvrrW3DKF2Q7jB+SMLPwh7L8QxtlffWt8iNcMxPcIaidQzav0N0dYc2a8/F4dAYG4rjdGpMnV9LfH8c0LdrbW3C7dQ4dGsOybNramhkcTHDnndvp64vh8xk8/fSVTJgQZOnSTRw8GOb11/vp6ori9xsMDMS5+eZ59PREMQyNeDzL7bdLjde9915IPJ7lwIFRli7dRDyepakpxCOPXEImY+JyK2TyGSaEqvm3hV/HpbtoKqvl1vOuQVc1vj73ChZNncfyc66iNzLED557jOF4mFkTTqI2VIGh6bzTf5CeyDBv9R0gnIpy8ye+SJWvjP7xETyGi+9d9A1cms5Xzvokl57azorzrkFTNXJmjmQuzXA8zNTaSaJOMwxqAxWSUB6P0NoyGxQvdoEt9s4VqXftatlnyV0iB7ePOzaTHcJQ2ymRhGNAoc6rahWolVD3CEU9j+oMEqku8Vj/rwBzIUkc/vfz/RecPgbX/4Mnl65zSlUVj19+OSdVVnJobIzlzz7L3MZG/IZBxjRJ5fNohVRu4N6ODmxgXnMzJ5SXs7unp+jFLnO7mdvUxP07d/Lkvn2sceYF5wLSMIqd182hEJMrKnj88suZWFZGS1kZV06bhs8wcOs6lm2j5HIohS7qvj5hqqNRQT+DgwKOXS4JJCv0LkUipbLjgQEJNguF5P6CBeLBvvNOua2ulufmzBEt8Pvvl0y8bW3y4xaNCgo76yxhz48dgyuugAcfxLIsxsfH2b59O6qqMjY2xvj4OAsXLmT69On4/X4WLlxILBYrBkq1tLRw2mmnkc1miUQibNu2jbGxMVwuF5qmEQqFME0Ty7IYGxsjEolgGEZRFp5Op4vy882bNxOPx9E0jc7OTvbv3080Gi36sSe1TMToG4bhMIppCuA1DAF3BTlzQXKsKPJ/Nie9yroqQK4g6y54awqvC3jlhz0aFwCdyZaqpXoGSpVSqYxIyOUgKB18ZQFhX106eD3YAR/JpMi7e3uFnS5UY7W3C/hdvlx2e2urjKPMnw8nnSSL6+sT9X4qJaz10JCAcrdbeq0fekh2aSwmcvG2NhkreeUVOUx8PrldvVo2xaFDwo5jI6xhwWueyYlX3bJKAwsFwFyoGivI6fOOvj3jSN4UhNEO+mV+y4LTp5UqugxHJZDNlTqyDV3W0z3gSOmDArZTGTAtrHye9NgY07/xDSZddhlzvvtdbMvCCASoOOUUbEfO7m9o4Kx/+ze81dXUnnEGqtuNomkCvmfNopC8rxoGc1auxAgGycVinHnHHQSam0FRmLNiBe0//jG6z0d2fJzq2bPxVFQAFH3fqZERas84A0VVySUSJEdHsU84Bbx+kXVnUtJ17Q0I0H1zF2z5k6SFp1Pyf6FqC0WA8ra/yGORUWGcmyYLYB7slZAtRZFjUVGlwmtsWLb3idOFxd73upwnqhvAHxTGOhYWsK0bIkRIJxg6IJ3xlpUjOT4AinRXVzROx1fZiKJqKKrG6JHXioA7l47S9+6LmLkUvqpGbMtE1Q1c3jImzLiQiqbpjp3CQlX14nJs2yKXjspntM0ioDbcASwrJ33aZo4Jp53vVO3Id0dxe1D8QexMRqThuRw2cm4hl8POprEG+wAbxR9EqahGnThFQs0sU9LGd3egNDQBCurEydjJOIo/IDVdlg2pBFbPMQHpgPXyC5DPSW1XJi2PGy7UhZdLd7bLhRKsIBLpoqdnN42NrU7at0IyOcy2bcsZHT0AQGNjKx0da/H5qunoWIOmGTQ2zqWjYy379j1JNhulo2MNhw49h2H4sW2TYLCRxsZWPJ4Kmpvno6oGqmpQUTGJ5ub55HJJstkYtbUz0HUPfn8Ns2ZdQzDYQGPjXDKZKKZqkFU0WhSFeYjH+gDwbSSIrEA/uBHAnEPCzhSk39qPMNZ5hKVOI4FmhTOa11nWCLDHef0wcASYhID5DQhjvsBZfz+SJH4dUt+lqhTrsNpXtqO5NHbev5N9T+4j2h0l2h1ly7e2kE/mSQwl8Nf4UTSF+ECc7Xdul7TvZJ6t128l1BRi2pXTSmB9bQeNrY1MuWgKnes62ffkPnas3kHj3Eamf346ukcvgvZCn3btjFq2Xr+V8OEwmWiGLd/aQi6S48TyE/n5ZT/Hp/vIW3lRi2Lj0Ty0Nbcxlhoj4AowEB8g4ApQ4algbuNc7t95P7X+WnqiPaxbuA4bm4H4ANFsFEVR0FSNg2MHORQ+xI6uHaTzaVa2r+SiKRcV67jWda7Dtm1WLVjF01c+TVOoiW9v/TYATYEalPfXQz4hIWWTroaaBcI4V8wSCfes1bJXR1+Xuq6UE+Qx6x5w10G6X8Dz6G4B44omjxXqu4Z3SiiZp1qAdjbigOy8eFA1D+lTfsgVX17FyaedxazFt7Jw0SUc/Ns1IkeXUTVeeuklNJeHDT96WCTYhSPJyvL+e/vwBUMs/871ck4LTXQGxDVJHR8/VPottRFJeT4jLLcrJOfCbLQkAbdyAsgLjLXqDP66QxQ7thUH3CuqMNZvPCRycN0jzLGVE6Y6NSrrD00EV5A1j23m4KFDrL33fgb6+7h77T38aNW/ime7byekxwSc73+SfCbJkQ/f5+W//4Jnn/4lP3/0UTb94WFwV4DhFUC9e7UEqF3+tPitzSxgCWPeeSck+tE0haamEO+8M8SxYxG+973tHD0a4ZVXumhqCuF26xw5Ms6NN25j1qw6MhkTVVV48MFdRW+2adrMn9/M+vWdnHNOC/X1fs45ZyItLSEURWH+/GbC4RRz5jQ4vmuFE0+s4NFHLyMUcuNyaQwMxNm4cT+rV+9A01SOHh1n+fJn0TUNj+Emm8+Tzme558Vf0RMZwmu4SeUyNJXX8s35n8U8rlLr13uf4cKT5zISH2f9P57g5JoWKn0hTqpp4dd7nsGlGQTcXsp8ATy6mzUv/JLeyBBN5bXcceHXGEtG+cFzj2FaFmPJKD2RIXRVQ1c1qv3lVAcquPHcq/EYLtK5HKlcEkWvh/pHQfGC0QRDq0DxiQwcxWGrFRi8EfRaeU5xyWNWVKTi9T8HY7JIvs0RsCIiK/+/qd0qBJn1f01u/5tVdX0sC/94AkoS8bbmZq6cNo3+WIz+eJwFLS0ciURYs2MHK9vbqfb5GIzHeWDXLtYtXEjessjm89T4/ZIADkSzWSKZDGVuN5Ztc9sLL7Bu4UK8uk5ndzdzGhoYTiZZvWMHt7e3c0J5OUOJBPWBAPFslsFEgvs6O/nlokUYBw+iuN0CiNva5G/dulLCd21tkX1C08SH7XIJUDl0SOTdTU1FKXcxLnrTptLjDzxQkpuvXCkoa/58oT+HhkSOHokIyN63T+57PGTcbp7ZtIl9+/Yxffp0zj77bPbs2cOll16KaZqkUin8jm+7kAo8Pj7Ojh07aG9vJxaLEQ6HmTZtGrquOxUyJqqqkkgk8Hg8aJqGZVn09PQQCoWocMBMNpvl/fffp6enh8WLFxMOh4nH44RCoY9Ucek2qJaFbRgoti0grqkeegcFRNdWyQ9+oSZK15y6p6zTYe0A6sJ9cKTdSEjapAnymsLre5wAtbOmCwAsdDoXJNWFyq7menAbH5E65w03V1+j8eijwjivWSPCguFhCYJ/7jlYtEhSw1XHBp3LCZju6IBp0wSQ33abMNDV1SL7LgB1VRWZuc8n4zIFRjufFxB++LAA+0Lb2pEjMDRoccE5eRTNAdGHemQ7lAWgd0jCygpjT5G4gGdFKVWUFZ4rbMOQA9KPl5abFkVJXGFf+L3y/+HeUkK4psLBbmisBY8MWOTzOWI9PXirqlCdLu7M6Ch6IEAhNdxTWSk1W7aN5naj6jq2aZLPZHjzvvs4Y9Wqj8jKfRMmSHUXFOd7e8MGZi5fLr3YiYQki3/lKyQHB/E1NKC53eSiUYxQCDObJTkwQM3pp4NtY7gMlKE+2Pa0eKMlCltY557DpXAy3ZCk77EhYaDHhkuVWQXFQD4nr31zJxx4R5an6bJvCsnjhdTxp38BF18JZRVyQWnmnS5yR10w3A/hYcypM+l99wUi/fs56dyvoKCgGW6S4wMY3iAuXxmWI+HWXT4AkuE+fBX1JMMD6G4vmu5B1Y3iPLaVJ5dOkM8k8ZbVYOWzaM5rU+N9eEK1ArIt87ik8ATeshoAcmkJXxs5vJem6QshPIIdjaCEyrA6XkJtPx+76yjKlJNRfH65NE/EwR9AUVTsXAbr+c2o88+Vz194Lp/HjkUABavzH6gLLkApr5LHshmU8krp1NZ0B7iD/cE+lBmzUWxbBmsKFYaxiHRh108ga0BXVwd+fw07d97PggUrKS+fzObN36SpaR7Tpl2JrrtQFA3b6ee1rByqqpPNJkilRolEumlunk8+n0ZVNUClt3c3oVAzFRVTGB8/VEwaBxWXy0lwV3BuNRkYSY7i8ZSTTofJ5dJUVEwi5/JzSFFZgzDMDcBriI9aR1iGPAKo6xFADJICfrrz/wAwiMjHDUoAvB44QY4qMghAzzvzDCESc41SNVcZwoCbCAAvPNaSyJCNygWmy+8SG9GxCDtW72DxI4vZtnxbESAHJgTofqWbprOb2HzdZvZv3M8Nx24gPZbm0HOH6N3Ty+KHFhPpjgiLPbcJ1RDFUuRohEh3hKa5TWheDTNl0rO7h7KWMvx1fvb9aR+9e3pZcMcCDj93mCkXTcFT4eGRUx7hmz3f5GjsKN3RbuY3zyeVT7Hi+RXcOv9WeqI91AfqmVo1lUgmQiwbI+gKUuYuE5+1s59yZg4LCxWV3b27aQg0MKVyCh1dHbQ2tjKeHqfMU8Zrfa8xv3k+mXyGgcQAq3es5rvt32UoPsT85vlkzSzf2vIt2prbaGtuo9oTosUTQEkNgBEAT61IssfflAqufBrCb0LVmQK48zEJJDOCjozVLfLvXEReH34Has4W4JwZlc7qilmQGpQ+6+krxaNdMVuOoFwEjDLSpouXXnqRxQvPRcHi4Qfu5umNz7H9+WcgcCKRsSEWLr6MuvoGLjjvPJZ/+1phnDU3ufBRzv+XpbS0tFBTU8OGB+6T65toF4RaBAzbecilHDm3LUeelXWCzEzpmA5McCq7gnLuVJzflvxxUvCixxrn9YYMLCQGJb3byks6eKBZOqunfErCzbw18MZD3PfGZP7012d4YetGyr0qm+//Il995G28Pj/YJiMjI7g0+OY3v8Xqc/o47ZbXeGj5xZzfNAwLf86t138Nt7+Muy9MSOhZrEc6tv0NjjfdLnnPty+XlPBPbyJeuYCvXfscN988j/vv31mUaq9dewGJRI7GxiDf/OZmWlsbaWtrZt26TlataqelpYxUKo/f70LTFPJ5Ac22bbNzZw8zZ9YRCLjI5y127eph1qw6hoaSrF0rCeMC3CVBPBrNUFvrJ50usLuwfPk22tqa+co3ZtAdGeDXe5/hq3M/RYU3yIHhLqZUN7Hhn3/grouW0h0ZYig+Rm2gkt/sfYabzr0aj+EmnIwQ9ARQFZW3+w5QE6ik0hdCUzVG4mEe3/03vnzW5bzZt583ew+w8sKvoqsaP3juMbbt38nfvnI/PZEhKrxB/vD6s3z3gq/I5Ucuw4aX/8BXz/oUlYEQFW5N0sJzPeBrE4m3tw2CV4I5CKP3Qe29AprtPGCB4pGzlg2k9kLuAJRdQ7Fua+g2qLoR9CYB7FqI/+1kxQVYF6TlDY//5yTx/z+ePq7i+nj6X07ZfJ6saeJyPMEfjI7idlLATVv8nIlc7iPe6IcXL+bVvj5q/X5aysp4ta+P2fX1eHQdkPN3VzRa7MPujUb5cGyM9uZm+uNxWhsbMVSV67du5ffvvFPsvM6aJhPLysiaJuF0moDLhUvTKLMsEZocOSIg++BBQUQVFRIwZttCR5aVibe6UK+1cqXQmTNmCOCOxwUc19dLzda8eUJbfvaz8MYbpWLlJUvEz20Yoiu+/36hS9etE3/3yScXe5sylZWEw+EimI1EIjQ0NJBMJosS8UIPtcfjKXZgj42NMW3aNAzDKPqnLctCVdVirRdQ7K8uBJkBWJaFbdtks1ncbjcul4vjv8NdXV3FPu3mxibcpo1a6Et2fLrFjuaCBDzglQtm53ca0ypVbYGA40I6dqFuqhBuZlsCAAshXZYlYPnElhKwtJwFFdalqiXPdQGU53JYoSDxlIaqwo4dAo7Ly2V3a5oEjPX3i9BgaEjGSVpbRchw5Ijsonvvlev+996TXRyLpVmy5PP09b1HMOjFMGp5+OGfMnnyidx881fYu/c1RkZUGhsNbr31HmbOvIB77imNw7z0wgtseGgR9//gbpavuLUkpz/UI6DX4y59zuMnG2H1C771eFIAeaHX2u36z570Qsd4obasuV62TywhyePH758jvTClmVwmg5mVgJpsLIbu9YrX2u9H8/lEtpvPM/rOO/gaGvDV1xPv7ub9X/6Sad/4BiNvvMGkyy8nNTTEQGcn4fff54yVK7FNkdqmx8Yw/H5SIyNg27z/y19y6le/ysgbbzD6zjvMuvFGVE3DhiIA15wAw3hvL+//4he0/fAHKL/9kTDJU2eWeqYLyeCFDmyvD1we+YzRcZEfg3i0LUvk4OVVEAjJAREegdpGYcPTKSirFFBd6MEeG4JoGCqqpTN70ZUiCe86KLLz8DA0TcbSNDKKSS4Vw1/ZiG3bmNkkimaQjo7gr5pAJj4utVguN6nxQbzlDTJgpkA+nUR3e0VFEBvCW14Pikb/uy9Sd8qCoifbV1GPmc1gmVkMb4h8NoWqGUQHD5Ic66X+1HPJZ5IfqfdSVA1DdWF1H0VtahFwG43IAGIgWPRYo6pY3UdRgqEiCLePHYbKapT6RhTn/Gwnk+KbxoLxsEjr8znsiOO7TqdkxMrnw3ruGanlqqhGMfNYPcdQAiGoqJRzVtcRlLoJkIiRq6rAti3i8X6y2TguVwC/v674Zcjlkrzwwm3Mn7+CYLABVdUxzRy2bTI4+DbNzfMZHz9CJNJNU9NcFEVn69brmTv3BjyeCgKBOrLZBLZt4XL5yeWS6LrXaUxIMDDwFsFgA7FYv+PtjuB2l6HrXvL5FKavims1FxsRD3U7Iv1OAjEE3L4NzKAEfHch0vCJwBgSfDYBuAcB6H6gCgHOCUTiPRsB4PdRqvEqyAM/dB57ABhFuq+bkJ7tVcCJ0QypoTgun4tMNIO7zI0r6CKfypMeT+MKuIj1xaRya5VUbplZk/hAHN2j46nw0Lu7l0BDgGBDkGwiS6AuwPiRcXY43dm+ah/ukJvw4TDRnihlTWXsWLODebfMK9Z/5dN5FFVB9+rFiq/2le2oIRXvBC+JbALLtljxgoBq0zZ5YOcDfLv12zyw6wEev/xxDoweYF3nOh646AHGUmP0RHuY3zwfBYVXul8perBr/bVUeCqo8degoLCzZycz62YWT6MhVwjTNjFtUeCoioplWxiqQc7Kkc6niWVifDj2Ia2NrZRpGq7RneKxfv9+mPOAU7l1jwSd+ZvlvqdemOlcVMC14QCB6AEBzqeugOBJMuBp5mVeVS8FoxU83O4a6bVOdsvrpq0E/0RID8hyNR+vvv4Wn/38lzi681Gou5AvXXMNV175Wf76l6eZPet0li/7etEr/W9330dNTQ1joyOMR6JseOB+iiFjhaqtYqUWpQ5s1fFgBxqFtc7GSkx1NirMte7+zx3bhfAwzS3BaMFmAd+xLmGRC77n2jlSMQbQ9woPPPILfv/CB7zw6zupmHq+DE588AdJIQ82we41fPm3SWaffibLv/JJCLWwZv0Gxkf6Wbfmh6QyWc656ApWLPRyZc1OSQC/8OdS2xVslveejUmIWc1MSA7CnrVwwSOkchofHs3S3R2hqSnEmjUdbNiwiMHBBGvXdrBy5QJqa31omvwwK4qCYaikUnlWrnyRu+8+H5/PcIA16LqElqmqgmXZJJM5wMbnczEwECcezxIIuGhoCGLbNvF4lttue4FbbplPb2+UxsYQlmUDNk1NITxBhXte+hWzJpzEhSfPxdAMMvks6VyGdD5Ltb8ct+6SbmokR6cvMsJgfJRZE04mnc+y4Z+/55ozL8PnclPpK0NVFO5+/hdsfr+DRVPn8c35nyVr5qn0leF3eYq92gXp+doXf8XsxpM5o2kavzgOkLefMJt0LsfkijJ0kg47nZdwskKQ2MidArR95wr4LqR85w5Crs+574HkDjAmwOgaqLpNrgnVgNN57YDx/12l1kcquO4A99T/UrLwjz3XH0//r9N/TAoHOKmyksZgkIF4nNf7+3HrOgGXqyj7vmXePF7t66O9pYWJZWXs6e1lRm0tg4kE123eTFckQtY0ix7s1Tt2cNaECVw0ZQr98Tg1fj/Xb91KVzTKuoULi37rZC7H+s5ONFXFtG0qPB58hoFhmhimiXLkCEp3twSKNTcLy1xdLWAaRA/c1ydf7p4ekYL7/cI+h0KlPqY652KvvV0k3oVk8bIyQVNLlsAddwgVmsnIY5omqO3JJ+UWZF3Ll0M+j2EYLF68mEAgwMSJEzEMA13Xi2nemzdvJpfL0dvbSyQSobm5mVNOOQXLshgdHWXTpk2Ew2GSySTZbJZoNMrmzZuJRCIEAgECgQD19fWkUiksyyrKxwu1X4W/guy8AO4bGxtxu1youZww1aoq7GnB7wvyfyggFxCpjMiN01kBb+msgMNCzVSB0S4kiiuKvD6bFya3q79UuXVSixPeZX503gKIL4SomY60OpfDdrswLRknyedFpT8yUtplti3sdVubjJHU1Ql4HhuTsY7eXgHaAwMyBjJ7toSf3XgjLFmylJ/+dD8dHW9x1VWf4pZbvs6tt8I3v/kgDz30Nnff/SYPPPAoy5dfSV+fxcaNUtU1Y0aEl3fcziWLLnb6uPNOwJgqFWMFubtpStJ3oYrLsuUNB/3yOlX9aFe13yuPK8j8oYBTT+b/aIp4NgcVIVmXaQkQP3BM3seUJlFuqSqpkRFG330Xb1UVuttNoreX1OgoqqZhptNkxsepmDqV5OAgWBbv//KXdD37LO899hjNF11EoreXdx55hOrTT+f0224j3tvL8BtvYFtWcfnBlpbi697/5S+pnz+f2bfcQmZ8nDfuuw8si9k33wyWxWtr15IcGMAIBDj95ptl/y+5FuZdIIx002Sp4RoblufGx2Djb8UHXQjqcnsk/EzVBTgffg8mnSzg2HAJCK9rwtGkSkp4AVi7PcKKl1VJsFmoUrqyK2vkWG+aLOz2iaeBpqF2H8LlK8NX0SDSaUVBc/tRNR1f5QRsy0LTXRJGZoO3YgIoCpaZw8xlUXWDxFgfNja620/fuy+RS0WpO2WBBA9mEuhuL33vviRsrebCdqqmVE2novFUJsxYiKa7cPnLmXDahbh8ZWhuH+nYqISGBUOYm/8iwLqiUlLCFUXY73RKltUyWdK/myaJR3r6bEkX1/WiP1sCChVhpqtqUHx+CARR6iZgp5LgcgmLnclg73sTOxaFbEa83U2TUCqrUFRNQH1DI4rLhdW5HbAZHz9COHyYYLDhuF8am+7uTuLxQRobW4nFerGsPInEEJpmoOsempvbsG2LSKQbv7+Wnp7dWFaes8++kWRyBJfLz+joh/T3v4auS/XWwMCbRCLH2LRpKbFYP7W1M+joWEtt7QxisT62b7+TWKwP08xIT3c6ykrb4q/AHNtmAGGs3QhoHgbmydHEh4hUux5hng0EfLciwPpJpF4rhcjALQREz0Dk3r2AIz6mE5GQF1jqcxBQXo/I0Tcgnu4aQDFU/LV+Yv0xtt+5nVhfDDtvoxoqgfoAhs/AHXIz75Z5RHujKKqC5tIoaynDFXRh5SzxRofcGD6DfDJPrDfGjtU7ij7ubCyLbdl0rOnAX+Nnx5od7N+4X4B1hZeeXT3EB+O4Ai4URaFzXSf7N+4n2hPFN8HH4fBhXut/DUMzuPHsG1nfuZ4Tyk9g/cL1jCRHWLVgFZZtFWXcsWyMrkgX9YF6lm1ZRiwb4+yms/EaXmp8NQwlhkjmkyzdtJQPxz7krAlnMZgYLPqrLSzS+TQZJxn+0NghOrs7ORQ+VJSD1wXqmNMwh9f7X0dVXdg1bQJ8ezdKrVSqD069WeTchSosELAYPyRMNMjF/vvrxKv9/jqReReAtaKIH9tbDxWnw/6HnP7sSQJMM0NQe46kkAN4GiTMTNH50Q++wacuvwSq5/P0X/6Kqqp88pzT5HfEzgtQVt3sfuN9du58hW9/8+vCNDvfH/FbW06Ct+OpjhyRx0Itx9V7OWy1u9yp+HKA9dh+SQ23LFlXvF9unQaDonw85OSG2HkB1vufLPmeda8A7heupSdqcPMD/874eJjzvvhvzD5zLnPPuRBOvRoa5goDfcbNkE/Jsl+7H/IpbvrKJxnc9wLTzmjjzNZ5LD6/jStv/lmxWov0iLzWWyOfzbbAWyvbwN8AF/4MNA+W6qOmxseUKRW0tJTx6KOX4XJprF3bwZNP7mPDhp0Egy7cbh3D0Fix4nmOHYvg8eisW7cQgNHRJMeOiZQ8nc4zPJwgHs9iWTavv97P8HCSZDLHwYNj6LrKwYNjZLN5hoYSDA7GaW1tZO3aDmpqfPT2Rpk4sYyTTqoSkI7Kqgu/xiXTFmCoOvf94wlGkxGq/GVUeIWFTmZT5B2VoopCXbCS2Y1TiaRieHQXK87/VwIuNz7Dw3A8TCKb5sZzr2bR1Hl8/exPE/IEaC6rxbYt7vvHEzSV1fJvC7+OR3cRyyT42twrmDdxZjGl/Nd7n2HexJlUeEME3TqaeQzSr0O+CwZvAq1aQLFaBlW3g/8iAdZ6DQwuF5ZZbwHPLGGt7TT4FsDoemGec/0ywDLyPantSu74P0u9VZd0Wjc8/l8OWP/fTB+D6/+h038EwRnTxGsYWFAMJbt+61ZGk0kmV1Tw8OLFDCUSzK6v58j4OMu2bqXW78drGKx1eq0LAPmRxYvZ9IUv8G8LFuDRdRoCAeY3N/PQ7t2c09JCjc9H0OXi0csuozcq4T7rFy7EtCw8jjy6s7sbj2WJV3jdOmGks1nR9M6aJWxyNCofprW1BHwbGyU+urq6BPAK0vFCZ3U8Lh7qZcskNSsYFND+2GMSmHbwoCSH19QI0L7jDpGRP/KI/CANDcHNN6PmcsVKLVVVMU2Trq4u8vm8fIbjfNCNjY1Eo9Ei66yq6keC0Px+P5lMhs7OTvbt20dHRwd5x/NY6Lku9Gpv3bqVQEDkxV1dXcXAs9HRUVwuFxMmTCCdTmNjY7tdItW2rJLfN2/K9gj5RSaeyQroba53mFZdWO7jq7ZcuoDngFdY1UKYmaYJAGxpEDAejsh+0ByQWOh1DnhFBv1hlzw/2QFG0TgE/SiqyuCgSMBVVdT8M2YI2B4clM2ey4nY4OjREkleWSnMdXs7fP7zUrPV1ibEXm8vXHihh6uvvoS2NoVUClyus+ntPcq990JtbTnt7fLatWsjWJaA8r/+FX78Y7jlluv57m2rqKqokG1U8EYX6svSWflshQGGQjBZLFEKg7NteeO2Lc+fMKFUzWUjqet1lYAifu5UWq79fG4nvMyRg5tmqbM8k5V5I3EBfm43NTNnkovHeXX1ajxVVaSHhx11gSgjNK9XvNC6zlnf+x6XbtrEnO9+txhU1vXss+x/4glUTcNTUUHF1Km8fs89mKmULAuY893v8unt22n9/vfx1NRg+HxoLhdTv/xlNI8HRVXRPB5qW1vRPB5cwSBmQVocj0hQWSYNbi8s/IyEjFkmRMfEF+3xiof6w3flvWcy8MefyPaYMr3U03b0Q9kXliUMt67DCac6gWllsi3TKTkIQNjrPzwiTLemyfqH+4TZ9viwpkwjm4xgZtOgKCTG+rDyWYeZlgvQQhhZPh3/yHlUQYCqr2ICqu4il04SHTzE8MHdaLoLVXfhr2xE0z3Un3ouusuH7vGTSyfIJsbJpWNOyFlEKr/MHLaVx3aykX0V9Si2jdXxIvb+d8W/EB3HfH4TZDOybQxhtu3wiLDJBZuMXZA6OLJpfxDF5XYCYHOQy4pvOx4T37Tbg+LyCEgPhtCuvx21+QQJPguPQjRcrPWy+ntEaq5qEpZm23R0rKG2doajpJGU72RyjJaWdqqqTmTWrGtoaVlALNbP2NhBIpFjbN58HePjRzDNLC0t7VRWnkRd3Sy2bVuOquq0tLSRyUSKgWYCvE0aG+cSjw+wcOH9VFRMwe0Octllj+FyBdi160H2799IPD6Aphm4XAFUVaMGAbJ9isJhJK17BAG5vYik20Dk37cggLkN8VqnEV/1Y0Af4pv2Ioz19c6yyhDQPAd4DwHRDc7zxyglhl+LsNYqEn7WBiwHsk4NX8ET3bmuExTIJXKMHhhl09JN5JI5kiNJmuY1YWZMujq6yCVzJAYTPH/r82TjWXxVPhRd4ZV1r3DouUPMXzGfGVfPYNGGRQQa5HfjkkcuwVPhoX1VO1c+fSX5VJ6e3T00tjZS1lSGlbdQNIVFGxbxncPfoeH0BjKJDD3RHmr8Ndy47UYmBCfw48U/RlEUfIaPGbUz6I50A7BqwSqWTF9CmbuMuU1zueeVe2htbGUgPsB1m68jmU9S4RUvdqGKy+/yo2s693Xex5P7nuTBXQ+iOMzea/2v0R3pZjAxyKy6Wbh1NzeefSP9sX6WblrKUGKIc5vnoSUOo+y5Vuq12p8GT538//79ApKxhHlOHoU91zkMtAOuFR3O+jlc+oGEnCmavCY9CGNvCbC18+K1rmkXtjo1AHuWSkJ40xXwxi2OBNsCM8OatWs4OBZi7V0rGDi4i7vXrOFHP7ixlNCtia81mUrxrWXLeOynD6NYueNUX7lSF7XhL9VwFaq3cknxSmNDfEDm0ZxQtPEjsvzKqcJop0ecALaJH+24Vt0yX/SYgKH+3QKOpy6Buf8m20VRoOwEOOc+mkImdnqcQx+8w5vPPMibL/6Z3X++W96D5hGW+42H+PVP72f5Dd+BTzwIuhfPW/fxm0uO8d79Z7Fvz4v8YMW1wlBf8LAAd90PUz4pPvZsTD5/5UkyQHDgaRjYQ9bUMC2baDRDIpFjaCiBqiqk0/li4NiDDy7i8OEwnZ3daJrCAw8swu836O6OcP31WxkeTlJT46e3N8qsWXWMjaWoqwsU2exZs+ro74+jqgqtrY34fAa1tX6WLdtKIpGjvz/OwoWTWblyARUVXpqaQnzrW1s4cmS8qLRP5tKMxMNkzBxfOP1ifrn77+Qtiwf++Tt0VRWAnUth2TZ522I8GUFFIej2807/h2TzOcp8Zbh0VzH00md4+N5F38Cjuwgno6TyWe7b/lv+8s5L3PvSr7FsGxvwGR5GE2FqA5XF8LSvn/1pKnxSgVvr96GMrhbgPLoWYr+HoZvku2ElwThBpN3euZAfhbofSUBZao8cs0Y9DC6TgLPa9aVQtNE1Tlf1GkkT/7/prP4/BZ79F54+loX/D50KzPXqHTu4Y8ECplZX49I0UrkcOcsikc1iWhb7hoeZ39xMIpslZ1noqsqtzz9Pa2MjV06bhlfXORQOs66zkw2LFjGUTBb92RPLykjl8yzfto0NixYBMJhIsLajgxXz5zMhGKQvFuPBXbtYv3AhLk2jJxplTUcHt8ybx0nBIGWKghKPC1tc8FpXVYmZtrVVJMUDA3KxWFMDr70mj+fzMs9ZZwlALgCcXE4uUFUVnngCTjxROp0iEWGw/X5BcDNmlC7mMxkB9dGoMOCZDOzdS+YTn+CZzZtpaWnh1FNPJZPJ4PP5ME0Tl8tFJpMpdlsnEgncbreMVKoqkUiEjo4O2tvbiUajRT+1bdvkcjkABgYGqKmp4YUXXmDfvn0sW7YMRVHw+/1YloVlWUQikWI6ecG7nUgkCAaDUklysEuAX414tYt+54IEeTwmDOzxFVqZrASS5fKlxwxdpM1BvzOKnoeeQQHJBbBoWqUDrPBYNg+v7YMzpsGxfpFSe92lvm3Hc223NPD+UTff/6F4rnM5J7A8KzVaLS0CosvLBTPlciI+aG4WED1zpuwiw5BdVqjU8njES104dO6++0t4PJU89NCPSKVg9ervsnHjU0QiYb773b/w6U+fR2MjPPro0/z0p8/w4fu/5CtXLmH22XNZ/o2lwjprWkkePhSW7TKluSSzL3jXXY70Pud4feNJ2a7glHk7Fy2FqeC1zuVLUnFDd8C148tGkftZkernNYVYbw+pwUGqZ83CtixG3nmHqtNOQ3O5iB49yvu//CXTly7FXV5O+IMPqJo5k2w0ipnJoHs85JNJ3v/Vr8R7PTBAcnCQmtmzRVJeqH8DEr297P/Nbzj9tttQVFX6jk1hevOpFG/edx+nfuUr+JubSfT0SG3XN75BqHEC2h8eFln4lGmw7Sm49Asi146Oixw8kxawuOVPUpdVVQdPPiqhY5W1Jam3bsDogMi8F38OQuXCgn/uWmG0C8ASPrrsVV+D73xf5OCFdfgCUFaJaZvkzRyay42ZzaC5vNhmnsH9HdSd0o6qGeQzScx8Bk13o7m8YFuOJzuA7vIx8P7L1J2yAE03yGfSaC63eJ9ti4H3/kndKe3kM0mGD+2h5sS55FIxSRQ//BrRwUO0zLkcf2UjVj5HKjqM4fWTS8XxVTSgoKKER6Uiq3kSdjwm2woFOx4VObfTVavoLjDzxfRwcjmp6IqMSwXX/E9AMFSq1TLzUqml6UVfNpFwqY4rnQLDhWIYxXovOxFD8QUkCK2sHAJBLF0jlY1gGD6y2bgjAb+FsrKJ5HLyZcxmEwSDDViWiW1b9PXtxeutwOOpxOXyF2u6AMLhw+za9SCXXPJjck6NWTo9jsdTTm/vHsrKWgiFmsnlEs6yY7jdIUApysVNM1f0XRsVk/iWO8g6pCbrfkS+vQ6pxjoJYZcVRCp+q/PXh9RxBRCG+ggi7V6F+Ky/joDjf3GW1w/MRQB5DpGTFzzVtUAH8EXgd4h3240A+38AX0rl0HIm44fH6VjbwYI7FlAxuYJ8Os+Wb21h/8b9XPn0lTTPl5yHxGACw2+guTSe/fazNLc109zWXJSN+2p8DL49SNPZTSiawvhRSQdvOrupCN4UVVLhuzq68FX52Hn/TtpXthPtidIwp4HEcKKYKG55LDJqhmVblxV9zg/uepD1C9fjM3zY2CRzSRQUQq4QyXyS1/tfF9+0mcGyLG567ib+8v5fePrKp2lvaSdrZosS7z29e2gpa6HaV83ybcvZsGgDw8lhVu9Yzc3zbmY4MUx7SzuJXIJoJkqZu4xENsFYeowKTwUnBKrR915XqtVq/Zl8yFe/LTVYDYsktMzOwege2PlFmPcHqG0X0DyyC7yNApp9LRA4AayMzFvd5py3E1JVpCiColKDkAuL1DwwBQaeg9rzINnFfU/s5U9P/50Xnt1IuSvB5p9/g6/efwCvV+TVIyMjuFwuvnndtXz+05dy/iWfLma0jI+PY1kWn77kfH5z/20CkN0hpxITAdiF6q14nyMNNyjWd2kuRx4el4RxG7lv+AX8FwPPcrLcQlVXxUmQGBIJua9GgPX4IdizBlpXyusNvzDZiibbp383+CfA3nvgrBXgq4fEALj8wjgrqpyXI4dF2j33DgHqKLLdn18qYWbXDUDkqKzrrBVQNqUkT2+9HUITSeTcfHgoWpRjF2TgLS0h0uk84+NpJkwI0tHRxaxZdQwOJnjwwV2sXy+M9VNPvceePb3FCq9Dh8ZoaiqT4o5wmooKD263jqpCKpVn9+5empvL6O6O8NnPPsXTT19JW1sLlmUzNiYgfdmyLbS3N/P5z58mEnSvzdGxfn699xm+fNbltFTU0x+VlO/OI29x/kmtKE5d1o93/IlvL/g8Lk1CaLP5HF7DjWlb5MwchmYQScWIZ1I0ltdKNa0zpXIZhuNhfr33GVacdw1jySiP7/4bX597BfWhanRFxZTix2LV1+0XfAWPlscwjwozbTQ5su47BFTnDgkbXbseVL9zRrQQnU/euc1C9giM/RjqfwR2Fsww2ElnWSudZbf8t2SkC9PHnuuPp//llM3nyZgmbl0v+q4TmUwxkCzocuE3jKKHesX8+UypqCCVzxcDz1obG9FVlbxlkbcslh/XhX373LncvHQpL+3ZQ3kwyKwpU/BdcQVbx8aYtH07rsFBDF1H13W+f/fdnHv++Vy7aRNP7t7NnF27CPf14VNVfrJhA+c88UTJE/3QQ6L5HRoSabfXK2BFVYWJLqCupiY5qRuGzOvzCXO9bp30WdfUCFpLJuHVVwWhOUFQHD4sBt6VK0WPvH9/CaE1NICuk/H5CIfDBAIBotFoses6FotRX1+Pruv/yTetO97HWCzGoUOH6O/v57zzzisy2eFwmGg0SlNTE4qi0NvbSyAQoKOjg8svv7wIqo/vxna5XB/p2i6A9brqamH+sw5YK3h4o3EBuT2DMHGCALiDXTA6DtOmlILMsjkYiwoYDgVkGydSJfZ7LCLsaiGsTEF+xHO5EnNd6DEu/ChYDkg0LWfwwpJl5XJkvUEOHNaKOXUFUHzPPbKLVVXGNWxbLPL33EMxx+7QIRl/mTNHdvHgYCmYrLNT2O7u7jU899wz/OlPL+L1+nj7bRmH0TTYuvUF7r33drZte4VodIyzzrqYv/51O3PPCvLNpf/K7NNPZ/kNN8hnKHw+KFWLFSTfjXUlCX33gAw+qKqzbZztUPC9a6psu+MHKQp+7qExGRCZOEGS21WtFAZXCDgzLXJWntToKK5gkNF33sFTU4O3uhojEMC2LPbceSddzz5b7Kq2czlyySRGIEB4/37pv9Y0qV2yLNJjY+guF+nxcd577DFO/epX8VZXg6oS/uADKk4+GdXlIhuL4amsBNsmEw5jBIMk+vrY/8QTnHnHHQy//jqeykrS0SgTzpiDMjIgVVrJuHiky6sEKJum+K51HX77ELzWAd9cJZJtxQkwwy7Nq2qSAL76BvjGCpkvGRcfdjYDRz6AlhOlH3uL47Oub4TfbBBp+J9/Ln3b0+aIRzsSxgyFyJoZcqkYhjcgoLa8HssyyWeSRa91MiwBZ7rLSzo6hLd8AgC2bRIZ+JBQ7RQsM4emy8VE/3vbqTmxFc3wohpuFNsik4gwdvQN6k89h+T4YDHADGDwgw5qp7ah6q5itXk+k0TVDTRFlwuy8IgTaHaBnNfSKayd/0RdcAGUV0pgGbbIxUEAs9sj2yadkgCyCc0Qjwpo9vnFx21b2AN9KMGyjy530SchEcfq/CfqwktFTu4MtijggHMNE5PR6NFiz3Uk0sWuXQ9y8cUbsCyLaLQbtztELpeko2MN7e0rKSubyObN17Jo0QYSiUGi0V5CoUY6OtbS3r4Sn68aRVExDB+gYNsWicQghuEnn0/j91cDCmNjh4nH+2hsbEXXPWSzcRKJIWc9t2MYAVyBeuIuP5qiMIDIsN8EpiHAF+AwApxvB14GXkG808OUgswU4PdIfddDyOWmhjDbryEe7GE+6qWuR1jq3UALUOfc34t4tEGqvfRohuRwAl+1D0VVijVYWBAbjGF4DDwVHvr29lE/q15OrZaNO+QmG8+iuTR6dvXw1GefYuonp3L545eTjWfJRMS/rWpyHurd00tgQoCKSQLcAVwBlyzDrWFmTay8RS6RI3w4TO2MWnKJHJ5JHgDSZroIlFsbW2lrbmNd5zpWLVhFja+G5duWs7J9JZMrJgNwZPwI615Zx/qF6/HoHlRFxcZmODFMJp+hylfF6/2vF8PMqn3VDCYGaQg0sHTTUjbu38jTVz5NW0sbuqJzYPQA93beW/Rzd0W6mNs0lyrDI/3WyW6pxNK8svEK0vDjQ8h8TSLz1gOl56Z9V/53V0NmxGG815c6r/NxGH9bWOp9a/6Dv7pM1pcegPghHvjl8/z+d0/wwrN/p6LpdAlOS/VB2WkSFGZm+PK1NzB75mks/+oVTl91TpjpQBN33X0v45FxNty//jhPdI+AaGxhmxVFwGigXtZdDDNrcLquAxRHUbKxku/azMpvUbzH8V0bzrp7RE5uA5FDAmov/Dm8cK1IxKcugYWPCthO9ItcXHNCrnpfgS1fhEt+Jynj+RS8fKuA5NAkCUSrO0vO37YN22+E06+HiqmQiQgA1z3wwnXHrevn8Pxx677gJ0Qzbr5x7bMfCTNbsmQ6jz56GcuWbeH3v3+HDz+8ntpaAYb5vImua5imhJTV1flpaBA7oculsWtXD01NZfT0RIpgfcOGRQwPJ1m9egc33zyP4eEEra2N7NnTW/R4r1gxnwkTgoRCbqLRDLYN/f3Sjf34by5h7Yu/LHqu3bqLnJlHV+Uau3t8kN+9toXl51yFoenkzDwbXv4D/3rW5QzFx6jyldFUXkc6nyWRSRJw+zgwfIwZDScRSccIuHzoqsZ7g4eY0XCSNOug8Gbffso8AcKpGKc3TqUvMlwE241ltQzFx6gLVqHYOTx6QRtlyQCHOQ56FSRfgdxR8J0tvddVK8GY5KigTDnbpV4D7xnONZ0u6eCxv0hquG++493O8V+ps/r/m+ljz/XH0/9ycuk6Qbe7CKwBp563NOCiqiqrd+xg4/79DMTjwpy6XITcblobG9nT20tPNMp4Oo1pWdzu+LNXLVhAUyjE0qVLuerRR3l5924uvuQShv/4R5ZMn86vf/pTtu/ezT927uThn/6UL3/xi4zE42xYtIjP9PZy0bnn8sFrr/Gre+7hqqVLyd16K1x9tVRleTwSaFborI5GBTwfOiQx0fPmCdWpquK//vBDAdLRqKC1jRuF7vT7BSiNjYmW2O2W2OmuLkFoGzeKh9s0xbt9yy0C0PN5GBpCM03KysowDAOXy0VzczOdnZ3U1tYSi8WKfmvDMPD7/WzdupXx8XGy2Szbt2+nubmZRYsWkUql2LZtG+Pj4wSDQRobG+np6Sl2YldUVHDJJZcAEIlE2Lp1K36/n0gkgt/vL1ZxFeTkPp+PWCwmclxVK8mJewYFsJ3YIkFcJ7YISLMt+f+M6cJgxxJOCJkCNeXy2IfHBBCG/E4Vjw71VbKcgNfxZyMA8Fi/SMAtu+TbzuVKvdqa5qQ2I/d7BsRzDZxwgggTLEt2VWurAOVdu6QF7YYbBETfeadIx3ftkt0zZYocDtGo7Lr6evj2t+X+2WdDb+99/PnPf+X++7dy++0+hobkMNF1ef2ZZ15INBrj5ZffobPzNTStn2uumU1t/RSe/vvf+MGa1ay67TZh9VMZGbBQNZFnHzgmILmpToCwS5fBicmN8vkKg82KItsony89ns3BCY2lwQwbOLFZ0tanNMv+yZmyHRVFnvM4yguXjqKqmJkMY/v2UTN7NoGmJjSvFzOdRlFVzrzjDj7xs5+JBNwtF2T7fv5zUqOj1J5xRnHQI3rsGK/+8IfoXi+634+3pobaM8/kwz/8AUXX0QyD2jPOIBONko1G8ZSXk08kGHn7bTSPh0w4jLemhtm33IKiaVSffjrBSZOoP2MOjAxKYnV0DP7+hDMIJj5hdMMJaTPhi9+G+/8g4PgPj8DIgABn1UmnPvw+jA4KWFz1I0kGTydFSp7PyTF10gzxY7vdsOizsk7bhn+9UXb2F74JJ50msnAzX/Rw59MxfBUTMDzSWd3/3nbMXBpNd2FZOfrefQnd7SWXioGiON7qF8gmIyiKRsWEU9EMN7rLh6JqqJpO9eQz0V1+VMMNVp7EWB+KqlA/7RMoqoavUsC5mc9i2zaVk2YDYOWzZOLj9L37IqpuoGqGMyhjYnW8hL3vTayOF1H8Aayd/xRvdDQC2az4pi0LO5WU1h9/QM7qLjd2Io7a2CJd2IYLxePD6j4qPm7bRmmcCLqOEpC6Lnv/u85Fr4F69gIB2T3HnCwFG3PLv0MsitV9FNPKo+seGhtb6e3dg6q6WLz4YVTVwDB8uFxBAoF6/P5aLrnkpwQCdaiqzsKF92MYPgKBCdTVzaKz8z727XuSjo41WFaewcG3yeUS5HIJ8vkkL7/8Q1Ip8WFv2nQtkcgx3O4gdXWzsCzhngthapMmnU8s1o/fX1P8CoaBFtsmgNRjvYswzBoSVtaG9Fl/DngEAb0h4EzEP30YuAKRcx+hVKNlIr3X9yPAfQ3ize51nivIz72I7HwZArot4HVnuWhg+Azi/XGsvEVsIEbv7l5QoWJSBd4KbzGwzLZtti3fRnwgLiz2UIJnb3iWhjkN3NR/E5c9epn8nls2L9/9MomhBKpLJTWaom5WnUi/TYv+1/tJDCXIxrP0v95PtCvK87c8j6qJz7tlQQuJoQQv//BlbGwOhQ+xbMsy+uP9rF+4/iM1Wat3rGY8Pc7G/RvxGT4y+QypXIoHdz7ITfNuwqN7HDlskuu3XE8il8CtS25Fjb+G67deTzKfZCQ5wnOHniOejfPARQ/Qc2MPC1oWsLN7J4fDh+mP93/Ez13jr2HZlmWYVk5Apq8JXl0G0f3C9Oo+Ab29GwUsl88ST7SnVtjX/Q8K2/3ePcJwZ8akwkvzwOx7JfdhuENY6rJpAqx7N8py7bwsQ9Xlz9dIT6qZm7/3I/EkX/RJZp85j7mfuEz6sFXNSet2gK9tilcaRWTdgQkCgJXC1RjCLJsZkXOrLgHWljPKXDYJUIWJVlQB1gVPNYoA6WxM1lcY4NZcsrzUmABqVRWAXTbZCaCyBcSfuUKqt1pXOhLxVbJMf4P0XW+/Udjovp0iBf/6EWhcIAy4qksX9t51wqzXnSXXGb0d8pra0+G1B+Uz6G4Yel0k7md9t+TBNnPHydPvANWFR0mwamU7w8MJVq5s5+qrZ/DAAxehqgqPPHIJW7ZcRSDgIpHI8eGHo3znO8+SSGRJp/NFJhsECOu6yty5TaxZs4OaGj/33ddJW1szLpdGb2+Uc85pIRRys2BBCx6Pzvz5zaxZ01Gs8wKIRjN4PDrRaIZ16zrZuHE/wwMpbjz3as478SwGY2PSY50Ik7PELvjrvc9wWsMURhLj0j2diPDFMy7BrenMbDgJv8uDrmr4DDfV/nJs22bWhJMxLZNoKsH6fzxBOp/l1LopWLZNOBkla+aZ0XAST775PKfUTgJgMD7G9kOv8vjuv2HaJh7DDdjEss4Zz85If3W+F1SfJIYbTRC6UoB1QeKNBvmjMHiDsNO+M+UYsTNAVvzYvgXgnSeqDtXz31bq/f/J9DFz/fH0kdTwrGmyf3SUdZ2drJg/n5OrqjgUDtMbjdIYCrG2o4M7FiygORRiIJEgYBik83kS+TzrX3mFhxcvJm9Z7O3rY2ZdHT7DQFdVOrq6UPr6+MY117Dn3XfxGQZZ0yRvWWzcto3vfPnL7DpwgPpgkJaaGp7du5fzTjgB9dAhWr/0JdZ87nNceM01EmZ2332SOOXxCC3Z0CDoaulSSbPSNJln3TphYfbsEUoTBLUVQpOSSQHdiYRQo+m0aI5tW24HB2WedetkfS6X/MVi8NZb5OfMIeXzkUgk6Ozs5MILL8QwDAC2bt3KO++8w/Tp07nssss+kuJdUVHBT37yk+JzW7ZsobGxkenTp5NIJNixYwfz5s0jkUgwYcIE4vF4kc1OpVIcOnSIyZMnEwgEME0TTdPI5XIMDAzQ2NhYDDhzu1wYmoZSSKguSL0LkvCi5FuTxO/jJd4lu6b4pEfCAr517X/NuhZOJZYpTK6zLbDMUqJ4ISE7mxMGXFFg11tQVU7uhEm8d0BjzRoRCNTUiFr/7ruFpda0kqJfUUQyns/LPEEnn8Xrlceuv77U3LZ06QPkcr/n739/gffeq+Czn4U//SlHTc0x3O4TefBBuOqqPVx99cU8//whJk6swOso/zTV4rqvX8Ps5kksX3n7cXJvSoFkhST149nq42XxmiIA+XjZvcsQRUCBxbasj0rwD/eUlvMf13FcTVouFicVjeAKBoVNrqgoVmyd+tWvivc5FELRNEbeeouq6dOxcjk0txszm+XN++/n1K98Bc3rZaCzk6YLLiCfSOCurJTKLtsmn0p9JAnczGZ5+0c/YuZ3voPu85FPJnnzgQeYes01hE44AYB4dzf7Hn2U+d+/C/Xwe5IO/odHpK+6wEzbluzEaFg6rAsJ4tkMvP4KHNwHX7pBvNFjQ8I4J52Bn4oq2b65rABwf0BkjkN98OyTcMnnJQ28okZY8vFRYbIv+Ty43CIh1w2wTEyPFwvLqdHyipwbsM0cqm7Q986LjPe9T/mEU2k47QLxYtsWmWQETXOjuz2S4m+ZwgYoMPD+y9Sfeg4AiqrLF0pRMTNJdLfPORVJQvnokddEUm64wRZlysB72/GW1+OvbCKXjhMsmyBp3XUNjm/dLaFllo2dThVBtNV9VOZJJbF2ODLwQFA+8+gIdjKO2nJCKXwYHI+2Kuvu7UaprUfRdZGB53IiJz+eKd/dgbrwMhTTxBrqR/EFyVcEyVgpMpkIhhEgn0+TzyfZsWM17e2rMAwvHk+FvEcr50jA68nn5TUuV9BhqKG7u5Oysmai0V5aWhZg2ya5XNJJ6h3A5fLh8VTwox9NYurUT3L55Y+TzcacZdYRiXQV2XG/v5aBgTdpOPFi9isKD1JK8R5CJNvlCOOcQzzXKiVp+AoELC8HbkZY6ckI+7wbYb69zunSg3irj08Bfww4iMjFW515r0PY7yXAXYhfuxxoiWcY3T9aTOc2fAbpcFqk2qvaMbwGnnIP6fE0lmnxk1N/wvQl07ns0cvYtHQTzW3NnPovp6KocuJ2BVzYlk34UJjEcIK6mXVkIhn8dX6ivVEixyI0tjbK8iwLl9+FqqloLo18Os8Lt71A24o2It0RwofCnPK1UxhKD1HuKSeSjlAXkPCuvJVnT+8eZtbNxKN7GEmOkMqnpDqr7btMKp9EV6SLNR1ruG3+bZxQcQKxTIyMmaHWX4umaOzo2kGVr4rhxDCtja2MpkY5Ej5CQ7CBtR1rWTF/BXX+Ot4afIvWxlau33o9GxZtwNAMlm1ZxpP7nqT7Owdp9JahvLpMwPK5mwRo71sD02+HZC9UzJG9lep3mOw7ZJ70ILjKhIG2TYgfgX2rS0x3IR288kw5b2leUGxIj4pUfN8amL5K5OSqDvHDzuvvcOTlOflzlQtoLLLGupPy3STMspOKXmKxG4XRzWdKzLVqyHy2Jc+ZWVlONl6SfRd7s3PO5+lz2PF8ad1mRoCt6nYGCXR5bPwQxLul71pzQjvtvADvAqN91gphq/tegXPvExC+Z6087m+AoTdkHb5aYblVDXavgTNuAU+FPI4tgPrlW+H078gy6uaU2O3IMRnQaJgr7822YHAvqZoF5C0Ny5KE73zeIpnM8fbbg5x1ViMej0YymWNsLE0ikUVVoa9PQsi8Xh3TtNm1q4f585uL6eCJRJaqKh/JZI7bbnuBFSvm09xcxuBggrIyN8mkPH/sWIQ1azpYubKdfN4iGHRRXu7F7Zb3Ew4nqa72o7othuNhftr5NNv272TR1Hl894Iv897AYWoDlRiaXnzu4c/cRm2gkpFEmJNrJn5EMn59++fwGG50VSOTzxZTwOc0ncoTezfx3fO/jGlbvDtwiLpAlfTOA7/e+wxfm3tFka2u8Ab5YOgopzdOxVBtXOYh8V1X3gz5YXBNhiPTxD9d/zPIdZUk3sYkSHaCt1V+J/Jj0ntNXjzZWrnIwrUKUENynFhZIAu4/veJ4f+Fp4+Z64+n/+30H1PDLWBdZydP7tvHus5ObNumzu/n7KYm1nZ0sHH/fjy6Tt6yODQ2xrDTT+3WNFobGxlMJFi2dSsfjo0xEI9z3ebNHA6HORwO8/hPf4p3+nQmPPAASzdtYvWddzJ35ky+8+Uvk/3sZ7mns5OjfX3k83l+9eGHcoJ1u5lUV0dXNisgeO1aoTP7+uC660Q/HAzKvA8+CJMmCSt9zz3CZl9/vYSceb0i+R4dFXbbtiX0LBaTxPBUqoTawmFhu/1+oUfnzZP5h4eFCrVtmDEDM5kkk8nQ0dFBY2Mj8XiczZs3E41GWbx4McuWLWPRokUoikIoFGLnzp2EQiECgQDTp0+nra0N27ZZvHgxp512GgCvvPIK+/fvJ5FI0NLSgqqqxGIx/H4/W7ZsIZ/Pc8opp7B9+3ZyuRyWZZF3Usvr6+vp7e1FVVV0XUdXNZRURgLIAj4BapmsXCRnspJInclC3hKwlssLC1tICi+kfRdY7UJYV6HnunvA6b62i+FZROMCJFFk2QedALMTGuU+tqDkoF+WlcmKFL2lAd2QFrUnn5TKcZ9Pxk3WrZPd9vrrMv5x+LAIDBRFxlfuvVdWEQzKLvR4ROCwaBGsXt3D66/fTDQ6zoUXnseKFbOZPn0uZ5+d46ab/pUvfek03nprNj/4wY088cTTnHxyBa++KodFNEopHKq6QkLGClVkBUZe10qsfAH0Zh02O5VxGGpFBiEKgwshZx7TKrHYhYTwTFaAdGE5kbiA7cK6VVX2n6MuULwedJ8PRVXxVFUx8s47YFnMuuEGNI8HM53m1bvvJtnfT8VJJ/Hq6tVkxsfJRCKous7Ua67h/V/9Ck9FBc0XXURqZIRYV5dUHCUSvL52Ldh2MQl89J13UA2D01esIDU2xp677iITDjP1mmvY/8QT2Pk8tmmSHBjg1C9/GQuwTzhFAPDnroV7fl1ipseGhbGPjEKwvBQ65vbA/IXwxe8438dhkZQf/VACyyqrZXunU3DsgMwfi4rcPDoGe18WIB0sl9dquoDrk2cIoC6vlOW6XGAISyQBYxFsyySXSRTDwKx8jobp53PSuV8RYI2NmcvQ9+5LKIqKqutOIJkTwKMqmPkM3vJ6cukEqciwBJQ5XknNAdYoCqqqoeku6qa2o2o6mXhYQtMyCepOWUCgZhK5dFxqvqw8Sm29sMfbt8kgA8jAlc+HHY9iZ7MojRMltCwyjn3oA+xEAsXxf1NeLp7t8THMTU9hjw5LEriZxw6PYG56WkC6bUkyeT6HHR3H3v8udnRcnvN40S5YLPNsf04Sw6ursXWdWKyfcPgILpefQKAOXfcxb94tGIaXXC7J1q3LiMf7sW2b7dvvJJ9PkUgMsn37ncTjQ6iqgW1bTJx4DmVlE2lpaQdsstk4mUwUw/BRUXECY2OHiMcHWbLkryxa9CAAicQQ27ffSSTSRSzWR3NzG7ruxjC8BAITMLFZhySCg4DdAFKzVY5UY7kRBnsYcRbeiHiyx4GNzuNtCHBWnWWlEVDuRljoiYjnugH4uTNfCAHWeyh5tq9GksLrndcEkEM6PhBn3s3ziPZE8df4SQwnmHfzPAyvQS6ZY+v1W8mn8oQaQ9zUfxOX/+JyAC7/xeXMumYW7pAb1VDJxrOED4fZtHQTiqbQ3NZMrE9SyCNdEXSPTt2sOlKjKVwBF6EJIZGNA6quYvgMzr7pbDSXRkt7C9M/Px1d04V13iqss2mZHBg9wHWbr6PBSYi/bvN1pPIpuiPdbNy/kb5YH6qi0hPtYeP+jfTH++mKdLFveB8BV4D+eD+xbIzZ9bO5f+f9NIea8epeGgINtDW3cV/nfWzcv5GhxBABd4BzJp6Dz/Dx8OKHeXPgTXRFL4an1ftrUDSPhJF9uk/Su5N9DmN9n7DRuleA2v4H5XHNK79lrkpHeZVzvscuqGkTpttdLYFoVXNFRq57BFC/+m25TfYImN+3mqKfwz8J5j4uwP31m6Q/W/fJERHvEXY33iu/k4EJAmoVBLwomty6ggKKQZ4vpIGjCPuseeQ927akh2sOiMlGZb7IYXnOzMn6bPO4dfcUU8qLaeQgIDreLYndLy2D6BEHyJvSgV1MEX8Qpn4OFj4m4WjxfvFN710nMm9vtXindY8w4rvXyOtSQzIAMP6heK2TgyIvf+1+aDirNDgQ6ykBa80r+0MzoHompqUSjWZIJnPFjnufz2DWrDpGR5Pk8xaGoXHo0BiGoRIMupkwIcj112/l8OFxslmTefOaOXJknKVLN2HbNolEjuuu28zAgIDw7u4oXV0R7r77ZSzLprY2gKIoTJgQ5Mc/XozPZxAIGDQ0BDFNi/7+OOl0npqaAJmMiYpClb+cWz7xJT41/VxWnHcNlm1T5S+n0ldGXbCKb8z9NIumzuO0+in8YvffOLG6mZH4OPuHj+I13Nxy3jV4dBdjyQh5y8StGdyx8OssmjqPJ/Zu4rSGKfTHRln74q+o8AYZjI8yoayGX+99hm37d/KL3X9jev1kqnxl7B86SoU3yA+eewxDyQuwjj0JY/dLGJlaBo2boO4Rx74WgPpHwThRzoae2WCnnWseR3Nj5+Wx1G5htM2w3C9UbPV/7f+cGP7fePqYuf4fPsUzGb72zDNs3L+fp6+8kvaWFpK5HCtffJE1FwhL43cYyMPhMH2xGLPr64lkMkXWOpnP/ydPtkvTGEulGE+nGUok2PnHP/Ls5s386I9/5KE33uCOBQs4obycnGWx/aWX+N4dd7DphReIxmLMPukkkpEIroMHUVavZkk4zMVXXMFXr7pKtMFut9CZra1w5ZXyQW69FW67TdK+UymZp+DDTiYFKOfzgtJqaiil6VKsqgEEKOm6APN8XjTKLpeYdtesKa3Dtsl5PKTzeWKxGC6Xi+3bt7Nv3z6+8IUvUFZWxiuvvMLChQsxDIPu7m7C4TCTJ08mGAwSjUY5cuQITU1NXHfddbz33nt4vV6qq6tZuXIlM2bM4KqrrmJoaAhN07Asi7PPPptbb72VpqYmvvKVr/D666/j9Xrx+Xx85jOf4ZprrsHr9ZLP5/F4PHhdLtRoQkKyFErsscsQ4FZgSt0u+dzH+gXUVYZknuM7mQuBZqGAbCeFEnjUNWFXu/oFIOYcVvpQt0ilC1Jzt0tSyG3kx9yyxcNdFoBsHsswePd9jdWrJaDdIUExTREozJghYyThsADoeFwy6Pr7pZprZESy7ebPl92p6yXHwJo1YrOfMkV2K8jjoZAcBm+8IYeTrsv9QmNY0G+iZTMoBeCcN+UNed0f/RyWLeD3/80z7XIY/Ey2tM0LneOFirLjme3C/khl5LU9gyIxV7WSr93xv+e8LmJdXUV/dKC5GVXTyCeT2ED4gw/453XX0XLxxcxYtozNl1/OuT/7GRVTp5KLxzGCQTS3uxhQlhoZwRUIFP3bAN6qKnKJBJ6qKhJ9fbz3+ONMv/ZavNXVJHp7SY+NUTVjBoqul4LO8nkyY2O4KytxuV1gmihOGjeGWyTfkVFJAQcB1q91wF0/FVA8MgBb/yxMc1UdHHxXqrUioxKEtsV5rrr+o93WLjeMjThBZilhwbc9DZ/9ujyXzwkgNVwwPAAv/DvmNd+hb99LNEw/r3ROUCAZHsQbqhEG3xlQSoYH8YSqwbZJx0Zw+cv48J+/pnzCqdRPO1ck3LaNZZkMvLdd6rhQMM0sutsvnISNE3cvg1C2ZaKomuMaUErstiLPJcMD+MvrUNEkrExRZF5FRclmsXUdJZ+Xz2fb2I5EXrFtbNPEenEr6vkXo7hcoKhY3UdgbARl8sng8aLouqSA738X9cp/RW2aiB0JS6e1y40dj4pC4HiPtqbJoZjLYQ/2kW+eQFd3J3V1s8hmo8Vwseefv5WFC9cD8N57T9Hbu4cFC/6NXC5OZeUUTDNLJNJNZeWJmGaO3t7dhEItGIYXn68KVdWxrDxbt36b+fNvIRrtxe+vxeMpx++vJZdLksnEGBv7EL+/hkRimObm+YTDR4jH+2lqmit1he4yYpqBV1GwEda6FqnU6gKaEcZ5LgKwdwFnISA7DrzlzOMFKhDWugkJPCvIvUec5wxnmXcDdzivSyPp4aazzEJ42iuI73oYaEnlSB8YpWNNB+0r26mYUiF91N1RmuY2kQqn+NnMn3Hl01dS1lJGpCtC49xG0uE0uWSOaE+UUFNIbhtDRHuj/PGyPxbZ7a6OriJgn3jOREYPCEs+f8V8qqZWET4YpmNtB/NXzCc4QXyp25ZvY9GGRSSHk7gmu7ju2et4ct+TLJm+hEcueYTdPbup8dcwmhxlTsMcjkWOMZocpa25jYQTNnfr87dy6/xb6Yv1Mb95Pv3xfmp9tRwdP8q9nfeyYv4KmkJN1N9fz5artjC7fjaRTIQyt7jhX+9/naZQE+s713PvhffiM3yMJEeY+bOZ/Mup/8JPLv0Jlm0RVFW0fEJqsfatgVNvg8BksFIiV00cg/fWCBvtrobwm8I0p3qg+mwB3agChEd3i3Tc2yBea1eFMMaJY8J4z77XAZxZqd/Kx2WP6kF5/dheKJ8NRkBACLrc6jJ4hW2WJNgFP/TxLLaZcQC0u2gJIXpMpOHHs8+qIQA4NSKANthcYqoLjxU6o10hx5fdJbVbhbov2zkaFVXWW+jStk0YeQfqz4R/3AjnPwyxY7B3vfyvqALq4z0CgtNhYc/99SLz9tWW2PJEnwDvCx6R99V5Z8lLPe/74C4rAet4r7xfw+94zC3ndzYHikY8HyAayxYv4d55Z5B585qxbZvOzm4mTAjS0xOlpsbP8HCC9vYWli7dxMaN+3n66Stpb28BYPnyZzn99AauvnoGe/b0cvhwmAsumExlpQePx6CvL0YymeWEEyrI5y327OmluTlEb2+M2bPr8fkMdF0hmZQgtepqH+l0nrfe6WfybHfR79xUXkdPZJDHd/2tyCbXB6poLKsha+UxVJ2u8AA1gQr2Dx/ltPoTsWyLWCZBOpfj8d3/ztfnXkG5N8j+4WOcVj8FTdUYS4zzk+OY8dsv+AouzSiGoVm2zYHhY0ytmYSmqqx98Vds27+TN258DDV3+Lggs8myjXNHnM7pFaBPkZqu0dVQ97Acp/k+GL1Pws4Kk+LIy60E6A2SNq76YeAbAt6DS6RqSw3y3236mLn+ePrfTi5NY9WCBTx95ZXikd60ieFkkh8vXowNjKfTxJ3k8J5olPnNzfTFYty5fTuDiQR1gUCx0uvBXbvQVRVDVdnV00Mql2MkmWT3U0+xeeNGHv3Tn3hzdJTvn3suk8vLSefzjCSTTDnjDI4NDdH56qt4g0E8LhdDPT0oq1fDk09y9LXXaKmrkwvSlhZhotevF83v8uXCYre2ilf60CFBX4cPl3qbXntNkrBcLgkw6+yk2O3U0SGvAbn95jdLrHV9fckvXKBU+/tlPd/+tsg3Bwbw+/34/X4WLFjA9OnTaWpqYseOHTQ2NhKLxdi0aRP19fW0tLSwffv2YgjatGnTMAyDK6+8krVr1/L888/zqU99ih/+8IfEYjF++9vf8tprr7F7924effRR/vKXvxAIBOjp6eGSSy7h7rvv5tlnn+Wmm25iw4YNxGIxPB4PPp/PqeJCqrgSKfkhbKoTtllVBMgNh+U+CIg7qUV81E7oGrYtwDyTLc1TYGxBAKbLkP3SM1iqjipzAPjkJood10G/zJt22OwCgi0LCPGta/T0KdTUCOs8cWKJpV66VHa53y/igfp6WWx5uYgRTjpJyFy/Xw6DaFRa1g4eFDa7sOt6e+HIEQHhpimHhscjr1uwQKz3iiI2+6VLZRxHAQHWBbbYpZfSzg92iee6EER2sFu280ktcNZppYEMBfkrsNOFgYsCQ60d54vv6i9t68L2nNIsj0Xjpfqvgv/dsnjvscfo/cc/SI+MoCgKVj5PLh4HoPaMM7j0mWeY893vYgSDtFx8MTWnn05qeJh9P/+5eG2B4ddeI5dIoHu9xV7s9OgowZYWUiMj7Pv5zzEzGbw1NZz61a/iqajAMk32/+53+Jwy8uTAQKkfW1FwhUIC7nI5FFWV9O4//Uyk26FymHwqRMYgm4bPfk3k4gX/tMsNF18JusupMDtF5N7BcgHWe18WVnpkQIB5Ni1hZkN9MNwroWdlFcJgnzBVpOe//ZGsz3AJm11ZA1/4Fopp0jD9fPkM4wPkMnGS4QE8oWry2SR9774kXcmKhr9SKrdsK+94tIOccsG1NEw/D0XRsM08+UxSOuenn4+qGeQyTu1WKuqw3FHsfJZkuJ9cOkr/e/8gl46Sz6TAttE9fvn6meLr94WqUVCFSVZVkaXn8sI6q4qke2czkM9hdR0WD3U+J/7oWAS1dT4k45hb/h07k0JtnoTSMlkY8LhkM6jt56Mu+TJKQ5PIwQNBrME+7EwKJRBEKa8El1tk405dotXTBcm4eLUVjebmNsDG7S7DMPwYhpempnnEYn1s27ac5uY2Fi5cTyjUSFnZRLq6XiEWGyAeH2B8/Ci9vbvx+2sJBuvweMrp6dlFJhNFVXUuueQR/P566upmkUyOkM+n6O7udPzadTQ0zGH37ocIhZpQVReJxGBxXsvKg5llGAGzx4AfIoC3GgHHPoRd3us83o4w0imkTKaNjwLrAjA/DWHBr0Ok5GHndR7gOec1KjIeFnVuDyOp4YXl+pDkcU/OomNNR7GT2jZtYr0x6mbVYeZMAnUBlh9bzsRzJhKcEKRuVh3blm8jlxBg7av20bGmQ27XdtDY2sj0JdNZsGoBZtYk1BwiMZygcW4jqBBqDrFw/ULc5TJQ6K/z03JOC3se3oOiKRheg4X3L0TRFHY+uBM7YbOyfSVLpi9h1YJVuDU3TaEmhhPDnDXhLNyam4d2P8SE4AQSuQRvDryJR/fwo4t/xEB8gAUtC8hZOQ6NHaIn2lP0Tq/rXIdLc7Fk+hLaWtroj/VzaOwQuqoTdAU5Z+I5eHQP9154Ly7NRWd3J6l8iqevfJqb5t2EpmjiusCGXFSY5FNvBiMo4WZjrzvA1ids9b41AnJr2iHZBZ56qeWKfliq26qeB74GWYaZEg934pgTltYqFVxv3Cr1UbFD8Npy+U2LH5J5Cz3XZhqGOwV8m2mwc6WLL9t0gLVRArWpMceTHXJk4haMHy5VaKEI+CzMp6oCYL01Tre1Jkx1oEmAdaBRXqO5RdJt5SSpW3F82mbGYcudUVvbFIC/fbmwyjWz5XMtcORh/glwwU8lxTvRJ8DaWwMvLpMQs4qTwPBJqJm7XD7by7eKhHzeXcJCu0IiHy94qYONsq7eHTB+EDr/TX4v/Q5DmhySL068H/5xAyjimV6+fBu2bTNjRi0ffjjK0qWbqK8P0NMTpbrax/3376S1tRFNU1ixYj5PP30ljY0hli7dxNGj4zzwwCLa2pq55ZbnaG9v4eqrZ6LrCqZpY5oWR46EmTy5AtMUYF1b66e7O8ppp9XS1xdj6dJNHDwYZnw8XWS++/pinDazhsedfunHd/8Ny7YYjI1xzZmXMhQfo8IbYiA+SndkiDUv/JLuyCCN5bUoCsyacDIDDhudymUYTowxu/FkDE3Ha7g5uaYFXdVQFYXaYBXXzv0XHv7Mbdx+wVdx6y56IkO80/8hbt2Fx3BzeuMpaE7119fmXsGnpp+LjYZtnCgsteIR1hlLgHTsSfFbky/dT+0BxZDaLu88mRfEp634wRyDkTsFnKfflOOpapUA66o7nICz/3nTx+D6f/jk0nVOqaqivaWFNU5f9eodOxy1kYAoy7bRVJWmUIhkLsdAPM7N8+YxEI9j2TYrnRCz9QsXcnh8nOXbtjGrro6WsjJe/+tf+dtTT3H7z39OS309F02ZgkdV+ccbb7Bs61YSuRwvdHQQC4dRKyup8fu54jOf4ae//jX2hg3sffZZet1uzp02TUB0Oi2oCEQv/OSTIgf/3OfgnHOEla6vFz3x/PmiLa6rkwTxVEqA94wZgrKWL5cUrCYHBNbVyTIefrjky/Z4YO9euPlmSSqfO1c0y/PmoeXz1NfXk8vlyOfzBAIBLr30UjRNY8GCBUyZMqXYda07qeiF0DOAdDpdrNZqaWlB13VaW1s5cuQIwWCQnTt3kslkGB8f5/nnn8e2bfx+P3V1dQSDQT744AM6OzuZOXMmw8PDVFdXMzo6WgxSy+ekZqcowVYUAbyWLSCvpkIYUcsU0FaQMtu2oM9D3QLiygKOFzZXApk2spyIA/hObIaaSmG3C8soyJ0L68/mjpNO5wWcmha2Azy9PhWfT3aZqor4oL5edrPPJwr9O+8UwK0oki8XjQoT7fMJ2N61S3bb6tWlLLqVK0u7zuuVLLy9ewWIm6Yw2EePwg9/KIdITY2M2/zkJw45XQC5Ib98togTLlZIXAf5XFOa5aKgIOX2Oj8qB7vldYXHbFs81ZpKsUf8+BAzxdm2BcnfoW7ZXiG/DIw018uyLBs1lWH60qW0P/ggvro6hl9/neTAALGuLlRnkMRTWYnu86F7vbR+//soqsr+J56gasYMUsPD7Pn+9/FUVqJ5PKSGhnjnkUdIjY5Sc/rpcpyOjXHG7bejezyE338fVdcZe+89UkNDVM2Ywb7HHkM1DJKDg1TPnAm2jZlOY5kmo+++K+/DNIWJ3vuyVHGpqsjCN/4WxseEzT5xugBfRYGhXhl0GO6F4X4B25d+Qdjpq5ZJrdbkU4SVPnG6gPCmySL/njRVgLdlSUjavAvle3zq6ZIQrjjfbU0XJljXyaVj9O/7B55QDYYniK+yEVV3oWo6VSfMQVE1cqkIfe++iG3mpI4LyMTDpCJDsjxFwbZtNJeXfDblPKSg6S585fWSQl7VhOEJoGoGvspGcqkEseGjqKqB5nIz1n+EK674FFNPOYU5Z5zFxRcv5vCRY5DN8tVrr2P2WWdx+hlnctbpp/Pi9n+iaAYYLvbs2c3Zp8/mzM9cyfQF57J+/X0oPj9W53aU8krsWBTt4k+hGC7sXA6rc7vIvWMRFEVFqah2Oq1t7PCoMOnNkwCwM2nsfB7F5UZtasHOZjG3/DtKMCS1XgpgWyiKiqa56e9/nbGxw9g2zJz5RUKhZubPvw2XK4jLFcI000UgbRheGhvPwjB8NDa24vGUE48P0du7mwkTzsTtDpHJRBkbO8i2bTeQSo3S0tJGJNJNbe0MxsYOsmnTUhKJQRobW50gtCzNzW1FyXks1oepe1inKMxCgO9NyCViBGGU04hs+0wkxCyNBI0VGG7DeSyMAOKTndsgEm62EQHJBfCdcpbnRwLPbsUZX0MAd63z/FEEaOcRXHTpzy7l5sGbWbRhEYqq0Dy/GVVVyUQyZGIZdK9OPpOnZ1cPqdEUja2NRSCdGkuxaMMiylrKWLRhEbpX57JHL6PixApQINotUvOty7aSjWaJ98V5ceWL+Kp85DN5+l/vp6W9hUUPLCIxmKDrlS50t47m0lj80GLcfjeTKybz88t+zgnlJ5Azc8Xe62Vbl3EscozWxlbWdKxBVVTqA/Vct/k6jo4fpbWxlVg2xkhyhFl1s+iN9TK3cS5Lpi/hjgV3MJoc5aazbyJn5uiP9xcDzmLZGEfGj/DDl3+Iqqjkrby8PtrL/Ob5nFB+AtFMlKORo/yjqxP7I73WKWGVq1ohGxb2efHb4oMu1EPVtEuNVu05AqbNFLx1uwBhkJTvZK+A8mS3SMVbPl8KQctF4L21pf/3rZb/U72QOAyvXi/BaXpAmOlCyJOqyw53BUsBZIomlVuGX9YfcUC1K1Dqty6A7MqpApjHDwkzXDZZjq6CnFxzCYutGsVzE66Qc+6zS8yw5pIjU1Gcbmlb+q/PuFnqtDIRGZRIjUhqeLxPDuRYt0jsG9vhjYeEhd67TtZl5cSLnUsJKDtnPUy6SMC2nYfht8BXJ0nkoRbHO+6VkLRX14u8POEM+vd2SOWYqos/fM5NYENzc4h16y7EMFRisSzr1nXy5JP7uOeeV2htbWRsLMWGDYtwuTSGhhJMmVJBW1sLvb1RnnvuED09UVRVIRRys27dQkzTYnAwjt/vIhBwMTiYYNasOlKpPHv39tHe3sLkyRW0t7cQDLrw+120tTWzfn0nZWUe1q4tBZ2Fgu6P9EtnzTy1gUqeeHUzdYEqJpRVM3vCyQw5gWO/3P132aRpUXr8wgHmv9j9d2ZNOJnZE6by086n6Y+O4DU8pHIZRhLj5C2TurJKTqmdxOvH9rHkX65k8fzzufZTX+KyxZey6ZXn6R0fwq0b3PPir3jir39g9WXXs2HDj1CwwM7x4aEBzjtnBrPnzOeU8/dw84MnY1XcCujitw4uAaNRzoBVd0DZF0EtF2CNJmcuY5JIyPVm8LXJMe46RRjr/8ZVXP+n6WNZ+McT8J97r08oL+fA6Gixbsur6+zo6mJuYyPd0SjrOztZv3AhPsMgYzp+QkXhW1u2cE5LC1fNmEFXdzezp06laeJEysvKyFsWPo+Hzc89x4x58xgNh5lUWUlNeTnLVqxg1rx5rOno4LpTTuHuG26g68gRXIrCwyecwHm//W1Js/vaazBtmty/7TZhsaEUVub1CgJ74AF5zu+Xi/tdu4QCnThRGOhEQpZR0Az39grQdmTfJJNyUa5pErykO57XaBT8fvKKwmgqxSudnSxevFh8qrkcusPsKIpSrNYqKytjx44dtLe3U1ZWhmma7Nu3j1NPPRWAeDxOZ2cnf/7zn6mrq+MTn/gE+/btY3R0lL/97W/E43H++Mc/Mn/+fIBin7XL5WLt2rW8++67PPXUUzz77LO89dZbzJo1i8svuwzVtKSOS1VLEux0VmTJhclGWNFUBmor5AfYsmDPO1BVDidPLAG9WKLETJuWPGbZH/Uc503HL2/IPMevP+jI84/2icS8LFDsuTbdbtIZjZ07pZ48lZLFxmIi/37zTbjkEgHKd90Fzz8vIHjdOgHQPT1SQ15bCzfdJI9NmOBYxJ3rh0IAWm2tzL96tczn9wvoVlU5TOrqhBHPZiwqPemSLBxk+/UMOBJug49UcRV6vI8PkVOUUmhZYTn/sStcVWUfuB2m9vh5M1k5Bl260w+ulirNsnnymoJlmgy//jpVM2YUd6tqGFj5PKNvv42vvh5ffT17f/ADpl97Lb76erAsRt56i44bb6TxvPNovesu9tx1V7G6qwDEc/E4qeFh3v/lL5n29a+j+3xS/bVvH5XTpqGoKrrHI/LbfF4C0B56iJk33IARCKBjo8Qj4PULu1xeBVX18LuHBGyfdY4w1/l8Scb9ma+Ueub/+iu46ltSH5VJl4LJyisdWZr1nyu4Lvk81E4QJrtwv7JGpODRMenOHhuCE07B9HhIjPXiCUr1Uzo2hLesHhTVkXZL17VlmdiWiapqxY5rVTVQNB1NN46TdHtFso2Nlc+haIYTUePoGG0LM59BN7ygKtim9D6b+SzZnMk/X97B4sWLMbNpfvb4r/n3v/47L/3p94y9+CyVV3wORdd54403uPDSyxh47MfoC85nzoUXcddNN3J5+3zG/SFOnT2bl/7270ybMhmlvAos87hqLndRkaP4/PJ4eAyr8x8SXBYqF5m92wMuN0rhtcV5zpfjz+VGCZZhWyamajM2frhYxQU2sdgAHR2rndqtFkB85tlsAsvKk89n8Puri4O4icQgbneIbDZBOj3G7t0PsXDhegzDS1fXK/z7v3+RT3/6d44XWyEe72f79u+xb9+TzJhxNRdddD+qqqHr4lHftGkp+/Y9yfTpS7jkit8Q0dwMKgprkYqsZqRiqwxIIMC5nBJArqPUT51BmOcEwljPRcD5IMJ+v04pxKwQfNbmPH8QYbh1pFP7ViQx/CxK4WnvZvPM/GCUjtU7RJbdEMTGxh10F+XbFz1wEanRFDtW76Dtu22Un1COqqpkE1ncZW6snCX+0cEE7pCbD/7+Acf+cYzLHr2MxFACT4WHbcu30djayIyrZ9Czq4fxo+O0tLfQsaaDeTfPIzGcoKW9he7Obqngiufw1/uJdkdxNbk4nDrMus51rJi/gpOrTiaTz7C7dze1/lrKPeVUeivJmlk8uofrNpck5I9d/hgfjn7Ius513Db/Nk6qOgnbtuU308yRMTPc+vytrF+4HkMzWP7sclobW7l6xtXs6tnF0fGjzGuaR3+8n9bGVjy6Bxsb27YZiA9wcOwgtf5a5tSchDb8igSQGRUCUvfdXQo087WAv0X2Xj4pYNpdI+eQN26Ck64v/S6+vw5OXQHBEyUt3NdcqvlSdHjteqnpSg8KwJ6zQVLJ37sHznoE9i47LlitWYD3vN/LeyqElRXAr+14WHUvxU7qsQ+h8iQBxSDvNd4vCeGKKpL0zDhkE1AuA2Nk4w5Qd37XQdhpM1NKELeysl4z+9GQNBAAn4lANuKw5x75vXn+WgG9lz8tgNq2hW12heQ9Jwek3zrWDbvvFnCeGpZ5c0lneWUyUJCNyfsAYbXPvFVY8JpZsqzUiADzPatlOZ4KYcVj3WTrz2U0YtPXJ7VXq1ZJx/WhQ+Hi/RNOKAfg6NFxuroizJ3biNut09cXIxSScDKv14XPp2PbMDqaJJHIsWZNB7ff3k5dnZ9bb32ee++9kFDIjWXZxONZJ+isjZoaH8uXbyvWcSUSWfx+F5qmYBgabh/Esyk0VcXQJEfi3pd+w+b3O3j4M7fREKjGbehU+coxC153ZCBWQaE7Msgvd/+db5z9aRpC1ax54Zec1jCFeRNnUhes5NjYAL/au5Gvzf0UQ/EwU2smkk6neeHFF7js0stQFIUv3PwNIu9088DvfsbMhhOJx+Jcfsll1NfVcf5553Dz9ZegjK7miusGOX9+Fd+5xku67D7OmncB9675AZdcNBuS/4DApSLpzh0Wllqvlf9H10DV7fKYGgCzz6nuWiXA+r9piNnx08ey8I+n/6upwGA/fvnlTK2uxgL643Fq/H6u37qVQ+PjzKyrI2uarOnoYF5TE5Zt0x+PY1oWr/X1kTVNVi1YwJXTptEVibD+3XfpHh9nzzvvsGP3bl7q7OT3W7di6zpv793L5o4OXtmzh9888wwLL7yQvliMJ/ft42cffMCWv/yFD7dsYd+ZZ3LeJz8prPX118vF9uzZpQCyhx8W2lLTxHC7fLnoefv7hZq0LJF5f/vbwlK3tAhoBkFekyYJAA8EZP6GBrnIj8WEGk2l5P/hYXmdqopv+9prMYFXOjs5++yzAchmswwMDGBZFolEgtHRUSzLYuLEiWiaVmStLcvCMAymTJlSrPHq7Ozkpz/9KW+99Rbf//73WbBgAVdddRXr1q3jww8/5He/+x0rV64klxNZWT6fZ/v27Tz99NM89dRTfOpTn2J8fJxFixYxffp0CVKzbZRsToBsLi9A1rRKwDqbL4WXuV1QVyky50IIWeuMkiT5YJdcALhdJbY6nixWQpHJioS8UNPldn6ssZ1qLmf9BYl1S4N4ux05tNLVL+GracmPy+dLu/TOO2X3t7UJsL7jDmGpL7qoJF5Ys0YY574+GQ9pa5PdahiCJWIxedzjEdFCT4+MpbS1CdCurpbD5rrrhC3v75dDx23YJVn4wS5h33M5kXBnsh+t4iqEkBWk736vfO6DXQ4YMUosfs786Gs+PFYKmjP00nY62CWv01QZ/Ign5bkCm+11Y6dFtl9x6qkiw87nGd23j0RfH6Nvv03VjBloHg/YNr3/+AeaxyPkuGlSffrpfPK555hz++0omsbcH/yAf3nlFebcfjuj77yDmcmgaBqBlhbO+t73CDQ14QqFyMZi1MyahW1ZvH7PPcS6usglEuz5/vdJjY5KkrjXSy6REBLe5YZ4FLvlRKhtlENj8ecEWF96lXyvg+UwPgILPyMM9rEPBeR94ZsyQBEoE+BdCCzTDGGo//CIvFbVPspkgyznpBni1dZ0SRlvniLraZosgB0wvAEGPpC6Id3tJzk+CIoicm/NEKk3oGoG/e9td2q54ugeH2YuRWKsDywTzeWlf9927HwW27KFWbZN8pmUXE4qCsnxQSwzRz6bEv+yqpHPJBk60InX4+XC8xaQGu9Hd3s5++yzOXrsGFbndipOPgVsCzuXZXx4CBQF7fzFkhquqownUygtJ5CIx3GpGpXBgAxk2DIgU1i/omoobi/kcxJcFhkHtxvtwssgEERRFayXX3AGgDLYCbEYKMEQSvMk7FgUVA1r+zaRo0fGsWLj6LqXlpZ2LCuPZZm4XH4uvHAdZWUTUZ3E9Ewmyj/+8T2nLqsa08yIbBubl1/+IbFYP4FAPW53GRdeeC+qqpNIDNPYOJcbbjhKY+Ncurs7yeXiBAL1XHTRA8yYcTULF64nkRikp2c3+byoBtrbVzF9+hIWLLgDOxPDD6xFKrK6EV/0nYhvug5hqRNIMvgsRKodQCq4VCR8rA9JD1+GyMG7ECb8HCTUrA3pv251zn51SOXXCgRQz0PA+dkIYL9RzpDMz5p0rN7Bvif3sevBXSiagu4W5cmuB3ex78l9ZGNZdjjzvHLPK8T744weHMUVcJFP5unq6CJyLMLYwTFifTFmXj2TS39+KYqu4K3wohkai3+8mFP/5VSeveFZQk0hpl05rShF33n/ThrnSttEc1sziaEE4SNhFFURD7ZGsXbrwV0PyvdGM5jTMIcf7f4RyVySXT27GEoMoalaMWjsu23fRUEh4AqwYv4KGoINxLNxXul+hUPhQ3xzyzcZSgzxs0t/JstUDdYvXE9bcxs3PHsDcxrm8MWZX2RyxWRm1c3ixm03cmT8CBoatm3TGGykKdTEfTvvE8lrkblOikS8pk3qgcpnSsBZPilhWXpIQNtwh4DKmXcLix2cclx1l8PG1rQLsPbUwOvLBeie+YjIxgMnwBkbZL7AZGgVuw3TV8G5W4QV99RKj7aCsL+uoMMiK06WhuoElNkCfl0hqD9D2OXIYQHkqsuRhquSHh7rAU+VAGvLFP+z4SslfhdC0syMnCuzMfk/1iPfbc0ohabZJoXGgFK4mS2MsY3UcV3zjlRt5ZzrJ3eZvOdYt3ioY13yt/9JYbMbZRBMurAVZ7mqfI6h10td2XvWQPWMEmA3ApDodYLT7hfvdrwXamaRzqlEIpkiU71u3StomsrJJ1fx6KOXFYE1gNer09rayO7dvRw5EubgwTH6+2PU1wfwenUSiRw33bQNv99Fba2fc85pob8/hsulceONck134MAoy5ZtQVEUVq8+n+7uCJFIushS+3wGoZAbr1cIlZGRJJZtk85nUBSVt/oOMBQLc+O5V7No6jxm1J+Iy9DxGB6Ohvv54fOP0xcd4c2+A3SHB1EUhaayWu68aCke3YWKwvJzriqy1z3jQ4wkx4vMdrk3iKaqxM00H/jDjCTGURWFY54oBw59yGn1UwCFb37rW0y6eA6eoA9VoRhopuQOEkk3Qu19pNIZcrkcDRX9YDsearMfyEGuG/QKwBRgHXtSZOJaGViR46q7Vjtnto+nj8H1x1NxOr732lBV2lpaGE4k2Lh/P2t27CDgcmEDD1x0EVfPnAnAsfFxPLpOe0sLuqoyubwct67TF4tx07x5uHWd1/v7SeVyDCYS3Ll9O32xGAGXi7aWlqJ/uy8WY35zM0umT+eOBQvA5cKurxfw/PnPi/T7yScFcRWKjvv6KHY3GsZHkVZrq6CvWKxUmNzfLwx0IbyscPvOO8JiX3+9zNPZKaiutVXW199fWp9lCd25cSNaOMyll15KZWUlyWQSwzBobm6WWhOXi0QiQSgUIhwOF3utL774YhRFIZvNEg6HpcLHtvnggw8YHR3lxRdfJBwOEwqFCIVCbNmyhUwmw3nnnUcsFuO9994rMuN//vOfWbNmDTfffDO9vb10dHSgKAqXX345iiNRpXsARscFwEGJZc06XuEC4MtkAUWY1KY6mS+eFHAIIkU2LfEEF0GgA/7SWQHOubwswxZGFcsuycIL3u6eQXmtxyXrbmmAmgrslgZsBcbHBWBb1kd36TrnGufRRyXoLBgUEcKqVQK4V64U5rmpCb71rRK4LrgBfD44cKAEnru7xTXQ3i4p5Pm8LHPjRgmanzvXqf7ygB30C1Nd8EQH/SKpD/o/6l2vCH30sUK9VgGIZ52Bi8L2K4THFXvIB0rs+PHrNJ0Qte4Bee1/8MsrHheKppXk2iMjVJx0EsmBATxVVYy+8w6uUAjV5eKKf/4TVzDIyFtvYZsmCtD/5pt87ktfYtrMmcxpbWXB6adz6NAhqk47jWu//W1azz2X1vnzmXv22Tz/3HMomoanooJUOMxdd93FVU88wZltbSy6/HK6nn2W9PAwmfFx9tx1F+nRUVRVQRkfg42/RYmE5fPls8Isf+kGqKkXVvvguwJ8yyogEYPJ0wQc5rLw+0ek4/qzXxNAfsnnAVtA9t6X4cW/C5D+wrdgThuM9Alr/fcn4MRp4tke6BHPdzwqVWDRcZGl5/OMHHoVX2Ujmm5geMukg9oySYz1kktGROqdE6lo3Snt5DMpfBUNYIOqGvjK64tfr/pp55JLJzAdaTgoqLpB/75/YOWz+Con4PKG0Fxe8XIjoD06eAjTzKKqOt6yehJjfWx48AE+efnlqAsuQJkyldvv+gEnzZzFZ6/+Ek899jMU20LxB/jlY49z573rmHTiSUydNZu777qL+slTUGyRbdiZNFZPF4rHh51OYY+PSn/1/E9AeYUTXuaSjmzbFtDuBKQVJ01Dnd0q8nHDhTrvE3I8BoKowTJ8vmpMM0s2G8cw/ORySYaG3nXAMyQSwxiGj4UL7wWkVsuyTPr69hKJdNHUNA+3O4hpphkbO0gyGUbTXPj9NaTTYcbHu+jt3U0gUI9t22zatJRkcpRLL/0Juu5F131O37WFbVsEgw0sXvwwZWUtZG0bC2GslyDM8xoEaK9DWOi5CPieJ2cxhhHg3ICA6cMIeL4fkYH3OPfzSOhZGfCvwMOI3PyYHKHc58znR1LCm4GlCFC/HmG3h1waC1YtYPqS6Vx474XEB+Js+dYWwofDXLjuQqYvmY67zM2iDYtY9v4yLnrgIo68dIR4f5zxw+NsWbYFf41fvNc1PuIDcWzLRtVVwofC9OwWlnrzdZuJD8RFTr6mA92tF9e7YNUCDK+BmTXBhorJFTTObWTs4BhbvrUFJaWwqn0VV8+4mocXP0wmn6Gjq4P+WH9RDl7jq6En2kPOzNESauHxyx9ncsVkGbRSdCZXTMare7Fsixm1M1jbsZaN+zfSE+0hb+fRVI2smcWluVjXuY55TfOwsemP95PIJVAUhdbGVlbvWE3eznM0cpS+WB99sT7WXbgODQul0EOd7IGa+dD8L5A4In7f2nZJsHZVig9a8wrwHd0tydk17QK8K+bA4neh9WfCKKeHhbF+/37Hc90n3upcTEB811Pw5q0iid5zLSSOgrceKmaLDxwVApPkgCg7QXzK+bTj8UYANsh91ZAjJxv9z7JwRXEyPBQB2ooKGWe+QIMoedQCaO6VZRcAtGY4KeEBmT8bl/dRdoITbuZcSyUHBCwnB2Q9L6+AYAt4qwSgD78poWiDr8l78tfDuffLshrb4dSrRQoePQbPf0NC0MYPyrIjhySF3Fsj4HriQpi7UgB1Yb2JPpgw3/FkrxTP9YQ2SA6iqVBW5mbFivksWTKd9etF0p3J5BkaSpBO58nnLUzTwu93MTqaYtasOvr748ycWUdDQ5BoNMu3v72VgYE43/52K5ZlE4lkuOqqGTQ2BvnWt7ag6yqGofLgg7u48cazMQyVd98dork5RF1dgCVLprNq1QI0TcHrNTh2LMKePb0kkzkyaYt0Lss9Tor3QHwUty5J3y5dp8IbIp5JfiTVu9wbZCQ5Ts/4ID947jF6IoPEMkne6NuPx3AX53189984rX6KSM7nXsF4KoahGcXnf733GQzNwPV2mCs+dQVu3cXv//wHDo/1cqg8xoHhLlBUbMcTveFHP+epf3+RCS0zmdA0hWuuWsjpc68QMO2dC8mdcvx75zrBfFpJLl61EsyIJI1Xrfgf77H+T5Nt2//l/hobG+2Pp//fTZlczn5rYMBe8tRT9pv9/fam/fvtdwYG7Gg6bfdHo3ZvJGJf/Ze/2D2RiP1Gf7+95Kmn7Fd7e+2xZNJ+q7/f3nLggD2eStmRVMrecuCAvbenxx5PpezBWMw+Gg7bWw4csPuiUftoOGwveeopm7vuspc89ZQdTqXsvmjUjqXTdj6RsK0337TtJUts+623bLuvT/4fG5NbkNvxcdvu77fteFzmW7LEtt9+W+5Ho/K6V1+17fffl+dGRuT+kiVyGw7b9u7dH13mrl1y+957/3l9IyMy/6ZNdjYatfv7++39+/fb8XjcTqfTdm9vr/3UU0/Z/f39diqVslOplH3gwAF7fHz8I/f7+/vt8fFx+6mnnrLXrFljz5w50/7Nb35jR6NRe3x83B4bG7Off/55OxwO25FIxH7qqafs8vJy+1e/+pXd399v/+53v7Pr6+vtDz74wO7v/3/Y+/MwKcp7/xt/VVWv0z0bMMAwC6ugIIgm7IMaFfds5ySTeDyLWVwSzdFgQAVONDmCBqJgojGLWU+Sk4jGREdwwxAZRlYd0BGGdZh97+7qvWv5/P64u2cgZ/lez/f3/K7f832OdV1zVdddd91VXd3T3e/78156ZHBwUNLptGSzWUkmk5JIJMSxLHHjSZHBiEhhnc2J5HIiH5xUbZmsSMsJ9diyRv9ylkg6o44pbFuW6p/Jjj4+u0/hPMm0Ok9hO5Mdbbfs0XNksyOPXcuSbMaRaFTklVfUyxaPj76khw6pl/PAAZGbb1b7h4dFjh0TGRhQb4NoVKShQSQQGH1rdHWpl6yvTx1XeBkLxxw7JtLfr447dGh0HYmIxGIidtZW1x1P/uf36T9rL7QVnnfLCXU/Wk6I7Nw/up3N/ccxzITIkVP/cZxMVu0r3NNC/6Go5BJJSfb3S2pwUHLxuGSiUckmEpI1TUkPDUl6aEg6d+6UZF+fDB89KrtWrpShlhZJ9vbKrpUrpevdd+WPzz4rkRMnJNnbK4+uXSvLly2T9NCQ9Jw6JdlYTFKDg7LnL3+R8rIy6X/vPencuVM2bdggn7jhBokPDUk2FpO2Y8dk9+rVkh4ell0rV8rWxYsl1tYmbioh0tspYkbUX8dpkR+uFzlzQiSTFmk/qbZPHRVJJkSGB0R6OkQSpkh0SG2/+aLqE4+pPvGYSDol0nFK5PBekVRSJBEXObxPpO24yFC/yKE9asxDe1T/H64X+dI1ap1KjGzbA92SS8clFe2TMwdfkmSkV6xsWnLpuGRTpmTiw5KK9Ums96SkYqpPKtYnlpUVO5cRK5sWK5cR28pILp0QK5sWO7+dTZli9p0SO5se6Z9NmdLx7nbJpeMj58il4xLrPSlWNi2pWL+cOfiSPLTuflm04KMSHxoUJ26Kk06Jm06J3doi22+pl49eeKGkBwfENWPyuc9+Vn7985+LY0al9anNUl01Sd77y5/FPvaBuOmUuOm0OLGoWC/8ThwzKm4yIY4ZU9uppLiJuNitLeL0domTSooz0KfWZlQ9NqPiDParsZIJdYwZU316OiWTiklPzyFpbW2QRGJA0umoHDu2TTo798rWrfXS09Msra0N0tPzrgwOHpOenndl69Z66eo6INFouzz//M2STkckk4mJaXZLNNoh6XRUEomB/HHNMjh4TDo69sjzz98s8XivdHbulcHB42Ka3WKa3ZLJxCSTMaWr6+A550ynIzKYMeWoiJxJp+XKT35Spp53nsycN08mXHWVNBw/Ln0iEheRZhF5bscO0XVdPrJ5s3SLSLeINCaTcv3nPy9Tp0+XyeedJ9/bulUGRGSbiPSISFRE+kRkWETM/HY8vz0sIp0iciQ/1jYRCYhIg4hEROSYiOwXkbZUTtLRtKSjadlav1Ue4iHZWr9VzG5TEgMJySQykhhISGtDq/Qc6pHjrxyXdDQt8b64RNoicmzbMUn0J0bGyMQzko6mJdGfkM4DnXJs2zGJdkTF7DYl3heX7ne6JdYRk8Fjg5IcSEqsMyZmtyk9zT3S2tAqif6EpCIpObbtmDxa9qgMHh+UZDIpZsaU5p5mqd9aL3s790pDa4N80P+BHOo5JH2JPhlIDEhDa4N0m91yqPeQ1G+tl3d73pVus1tueeEWGU4NSzQdlXgmLod7DktDa4Mc6jkkDa0NMpAckGg6KtF0VDpjndIX75MDXQekfmu9HOg6IL3xXnWu3kMSz8RH2gvXk8ua4ia7RVLdIslukd03iyQ7RYbeEelsEBk+JNK1TSQ7LJIzRXIJkVSPSLJD9R1uFuncJpLsUn06G0QGD6qxslGR4XdFokdEdtWLHH1C7etsEEkPqLGyEZHMkBozZ4qk+tT5Bw+KxI6JOJZINiGSGhKxsyK55F+1WSJ2TrVbGdWWS4pk46rdsUbbC/2ypoiVVdupIdXXyqi/rJnvk1BrO6f6pobUvqFW1c+x1F8mJvJSvch3UetMVPXta1bbvQdEzA6Rkw0i3XtVW3+ziNmp2lIDIumISHr43HG694gMHTm3LTUgkuwTyZjqPCcbRLYE8vsGR9u+X6au4aV6ifX3yLZtx2RwMCnDwykxzYw0N/dKff1WeffdHmloaJXm5h6JxzNy4ECX1NdvlQMHusQ0M9LVZcqRIwPS3W1KZ2dMjh4dkHg8IwcPqn7Nzep4eEjq67fK8HBKOjtj0tzcI/X1W2Xv3k5paGiVaDQt/f0JaWholUOHemRwMDmyf9u2Y2Kmk7LqxS0yb9PnZNWLW2QoGZNdJ9+VwUREYum4JLNp6Y8PS0vPSVn14hZp7WuTt06+I5Gkec5xZjohiUxKktmUtPa1qb79Z8RMJ2QgPixmOiGnBzslloqfs3/1uvvlowsXSO9Qv3xwslXmzpsr+44dklUvbpFPf+5v5fHHHhWxIiJWv6y+529lw8NrRTrrpa8RmT2zRF5reEbEjonY0Xy/iIg1pNoyp0TshNpnJ0RsM//YVPudxP9PMMn/ExegU/4bnPqh5vrD5T8s/1k8F6gq9frGRlYvXcrujg6unj6dB3fu5NmWFurnzOGp669nf1cXF02YgJnLUezzISKkbZuwz0d3PM7mPXtGtNqFfatef53Vy5bRZZpUFBVx/rhxhDIZtNtuU2XL+npVsiwshVisdesUn/edd1SVORBQZU+vd1QzHQ6PmpOdPKnKlnffPTruD3+oKtXV1WrMgni3tlZRxjMZVbku5ENNngx9fVBRQcbjIZnNEggEyGQyBINB0uk0zzzzDJ/+9Kepra1Vzr6oSaxkMkk2myUUCtHX10d5eTmPPPIImzdvZsKECZSUlOD1esnlcrz22mvcdNNNdHd3U1xcTHFxMddddx3XXnst06dPp7KykgkTJjB27NiR8Z977jkqKyvRdR3XdSnyBzBAmWAJQF4fXaAY5yyle+4bUlTl82pVFbq9Z9TpOp99yvF2VdEuxEqBqmwXh0Zn0/OnwM3rj6smKAp1gY5e0ArnLFV1PTt2ytCx8fD6mwZ5lv2Iabltw4EDqprc3a1e1gkTFCkhHFa078JLdLZ0vrZWVagLuupx45QWe926UVn9qVOqz8KFSos9YYJqL2i0iwIOusiohq2wFslnNOfNyyx7NEu8sDju6D3StdF7W4jiKiy5PJW+YIb21+NAngWgjV7DWffacmysuMpZTg8O0vqrXzH/G99QlypC5PhxyqdPx1NUxMC77/L2/fez5NFHGXfRRZzZvp2Jy5YpDfXhwwQqKjg+PEz95z7H27/9LUUTJtCSj/naf+wYf/fFL3Loj39k7KxZnHfJJby2bRvnTZ/O0KFDlM6ahTcUQlwXO53GTqdx0mnKJteiDfSMap99flibr0D/491w/H1F645HYeY8VWF+dSvc8HlldFYUVv/Tbv51yGah44QyLvP6IJNSr0cmAyWlym3cH1QV77ZWqJkBgaCq/p86AuUVqkqby0JkEOd8xcLpfn8HwbKJlFbOBKD3yFuMnfoR/OEyut/bwYTzl+M6FomBNnxF5XiDYQZO7KVixkK8gWJyKZPBU/upmLFQUcb9Ibz+EJphjORc9x55i3HTPpqvWGsMntrPuGkL8vpt9Ybveu91nnjqR7z+9lH+/Jdd+NwUoZKJEIvgNr6JXncFEjeZc+On+PVPn6HGo1N72RWkuzvRAkHEcfjcLV9gxZVX8uUvfAGiw0gygV5dq6rYuSzuG9vQFy9X7yPdwG3aiX7l9Wher5IWvN6gqtpFRarvihvQvH5AcDvalNY6HkObWIVmGOR0hzPtuwiFJhAIlBIKVaBpHjo6dhMMjiEQKCMQKKWraz9VVQvo6tqfj9QqJxyegOQN0Ww7Q3f3Aaqr8x8CKO+KZHKQcHg8uVwCjyeIbafJZk2Kiydh21kymQiBQBm67qWz821++9vrmTOnnuuuexKPJ0DayZEOlqNlc+x6803qrruOsKbxoyef5I/PPccvdu5kHHAqFuPWFSvomTCBxVdeydp77qEXaPj2t3nl1Cle/MUv0E6f5mOLFvG9I0dYPnYs+Zojofy/5nEUZbygwT5b312Mopo3nrV/DaqKPSlnMzNp0dHUQagixNuPvc3ydcspnVyKk3VwbZdsLIs37KX/vX5q62rJJXLEu+Ps2byHFZtW4A15sZIWr696naWrlo7Ec5VNKcNKWYgr5OJKox3vi+MP+wlVhNAMDTttkx5KM3xyeOT8dWvqKJtSps7vuIhXkLBwW8Nto5Fc1z2F11DfC5ZrsbdTabAnl07ma698jWdbnuXmuTfz2NWPoWs6lmuxdsdaNly5gZA3hKZpNLY3Mq5oHP3JfhZVLSKSiZC20kwum3zOuX54ww/RNR0Rwat7OR45TtAT5Js7v8mzLc8SX9VHONOtNNAX3Kc+JMNTYHAPBCaAtxR8ZTC0T1WVs4Mqy3r+d1RlLvaBqlCLo/oExiuqeHia0mYP7VXV7eQZRW9OnFRU8SOPqYgvTwjsZH7MTcoMTFARRSIqAiyXyFeRe1T1Wc/nPmqgTMkY1UufvThZVXkumZL//HdGtdIwElWFlVTVecM3SsUuHH+29jpnKho5mjrG8Ktrd51RjfTQ+zBxkaoyF/TcoUp17u7dsO3v4YbfwqQ6df+696g8bm+RotzvXa8cwUMT1fVoump3nXw0mAvmKZWDvXBNXgNek48K0xQF/a1VIzFguWgfR9MX4fcb6LpGRUWI3bvb+cxntvKJT8xi5crFPP74Hn784xu57bYGnn22hfr6OTzzzMc5dmyIjRubePzxqxkaSrN+/S7WrVtOIOAhEskwNJRi2bIaursTlJT4KS724bpyzjhPPnkdRUUeOjrivPbaSfbt6+LRR69kaChNd3ec5ctr0b0u7WfppseFyrAcm1g6QW9iiAsnTsfv8YEILoKh6Viug6Zp9MQGeGbvH7l18aepKqnAFpdIKkZ5USkAhqbjiksil8ZyLEoCYV492kRV6XjmV81i9UNr+eWvf8Xt372Pf/3U19i+fTtfvf0rBAJ+BBgeGsLv8/GVL13D+g3fIVw+m2NHmplUkYah9az6rh9foIL1D94CVruqWOOBvrtg7ErwTMm/RzWQHNg9o/FdxiQwylTs3f+A5UPN9YfL/+WlEM/1h/p6Lq6spDeRQESoCIVYVlPD5j17uHraNCaGQjx1/fU03HQT9y9bhkfTWFZTQ08ioaK6EgnCfj8Tw2GCXi/9ySRLqqvpSya5raGBkxFFEX36hhuYXFpKXW0tU8vL1feKx3Mu5zedVqiqqUmJZB96SAHd5ma1feCAQmGBALz9tvqhPTCgUFdXl4rYeustBfAK465dq35k19WpAOSCfnvRIoW+GhsVkA8GFbgfN05xjtNpRZH0erFtm1dffRWfz4fjOPh8Pr785S9TUlJCQ0MD0WiUXC5HQ0MDlmVRWlqK1+ultraWQCDAV77yFdLpNG1tbbzzzjusX7+eX//61xQXF/PGG2/w/PPPs3fvXnbu3Mnq1aupqalh586ddHR08Oabb/Lqq6+yb98+GhsbGTNmDCIy4kwuGkjOyrtbg4rxSClgHfArYHuiHSrKYIaaQCGbU07iBRp5YZleo4y6cpbS+1q20hSf7Bil14PSb1v2KK25YKB2siNvzKWrMSIx9Vpkc0oTnrNxBS68cCTpjERC4SHDUDrsM2cUO7+yUsVpnTypjMg8HgWQ7713VEc9bpz6LZNPc2PDBgXEf/hD9XKm0+rt0tOjpPgiSrOt66NMWNvO37ZsTumqXXdUo164r36forr7feq5FVzXM/nnWhrOg2JR+uwZtarv8TydPpYAQ1Nju66a7NB15TDuuHlzG3sUnJ9oVzcF1H02dMR1sZJJrFSKzOAgF919N7gu7373u6QHBhh34YWkh4bY961vUTRxIje+/DJj580jZ5pMufFGAmPGMPT++wTGjiUzMMD3n3qKxZWVlM+ahe7z8atjx5hXV8dNX/gCv/u3f2PCJZdgJhL0Dwyw9d/+jfkzZ3LjnXfyh4YGzNOn2ffgg2QjEYLjxqmYLnGVNvrqv1Xr4tJRareuK3OxhDmaeR2PQPMeiAwqXr6bp8UP9MCvnlAgvGqq0loP9IAvoCjeev4+njkOg31Krz3tAgXM+7qUgVr5WCgtU4B8zHiYooC0a1tMPP9Sisqr6PlgJ1YmSbBsIoOn9oPAxAsuxcml6T/WRFF5FUVjJjFwYi+xnlYGTuwDYPDU/pFtjy+ojtU15UR+1pgDJ/fhKyod6T94aj+6bpAc7kLE5d9feYfXmo7wyvZtlJWPwRMsxnZcTrR3KsDr8XKgb4j+/n4mnzrKmJnnEyoq4s/7D+B2dzDY0c7et/7CnJoqcGzw+9HCYRWdJYLmD6AvvhR3zy60sjG4jTvQqmogmcDtPIOm6+iLl+M27YRsFq16MgCSMBER9OrJ4PWija+EeAxn2x8wLIfq6kUEAqVYVor29t3YdoaqqkXs3/8DfL4wrutQWXkJhuGnpmYZY8bMIByewNDQSTo6mvIGVzpVVYswzU5efvkOIpFklZI7AAEAAElEQVST5HIJfL4i3HwuuK578HgCRCKniERO09W1F8tK0tW1j1jsDDU1S7nppgauv/4pPJ4ibDuLk45SIhDw+5l5/fXco2kkgOrFizne1kYZigb+4F13cc+6dVw6diwLUED4ImDb73/PE3fcwSRg7NSphC+/nM4XXqAYBaqbUcZlCRSwrmCUdt6R/zsJ+FAeu8vO2r8BWApMyTmkBlOU1pSSHEhy3ZPXUT6tnGR/Ek/Ag7jqg0nTlIs4gOEzSPQmqF5STbw7TsOtDcS741QvqcbsNKlaUEW8O46ma/jCPrxFXiKnI8R744ydMZbQ+BBWyiIXz2H4DPwlfqoWVbH3e3upvbSWcKUyr/QEPXgCHrSQRtpOs+WaLdw892b+Zfm/EPQGEYSUleKeV+4ZMTfze/wj/Tat2ERvope7tt9Fb7yXh694mP5kP7c23EpbtI262jqqS6q5aMJFHOw5yITQBKpKqjA0g3XL13Hz3JvZcs0WdE1X0VtA0koytWwqk4onjfQp8viVU3chikv3wv6vKgfxUK2icB+4SwFizatiuUaitVZDcJICoIU+mX6131umwGdFndJbh6epMSuWKeO0C76haOj+cWeN2ZPXc1tgJRTdXGSUpu3LG4NKwZwyoc6dNdV2oV19Qql94UkKQLvWqHa6MEa8M08jL1FA1nUg1gZOhkw6yac+83lmzlvIRRdfzIprruVEez8KKCnX8jd3vI5RXMmWLZuVZlv3csuan1A1ZQbzP7qY+Vf9Hau+/YS6ju7dCgTfvB8qlyhNeHeTAt6JTmVCVn4eXP0MlE5XVO/Xb4PIMRUVBupak90KWLc+q7TXk5ZB2TSl4+5qVJMQV/0wb2jWiS88hunTy6iuLqa8PMju3e1UV5fw3HOfZe3a5QwOpli3bjm6rvHAA3XU189h3brluK6M6LTj8Rzr1+/ixRdbCQQ8lJcHGRhIUl1djDvyPwaJRI6mpg42b76GI0fuZMuWawiFvJw8GeXBB3fm3cJXkMnYVFSE+MhHKonHc7guVJVUsG7Fl6kuHY/H8BD2F1EeKmFmRS2b/vwrOqP9CGA5Nrbr0BXt55E3fkZ5UQlrr/oiZcFiDvUcI2vnCPuL0DUNXdMYTkXpMQfZ/JffkLFy6GhUl01gftUsnnzi+/xl2xt8aeM3eOCGW+mK9bPP6KDxvX00H3mP1/b+hU99+tPc/8AqHv7XB6B/LdOmTuaVV18H72SS4cf581vNXDh7hgLWngrouxPsMxBcCFYPSFbpse0eZep3dnyXG0WJZD5c4ENw/eHynyw+j4epZWXU1dYqigOQsm0O9/XxtxdcwPevu46akhI6TZO9nZ0sqq5m5pgxeA0DATbv2cOymhoqi4sxNI2MbfN2RwfzJ07k5nnzCHu9bFqxgunl5YR9PhK5HE0dHWRtG0eEtkgEt4B2vvUtVYKUvH533DhlWjZ7NuzapWyly8rUemhIIaK6OiWgralR6+Ji+PrXVe51b68ab8sWGDMGbr9dAWjFGFZj+f1qnCVLVB5TwcjsnnvgN79RiK27G9d1icViXHnllSSTSV599VXi8TjhcJjGxkZaWlrYtWsXmUyGlpYWTNMkkUjQ2dk5osuuqqqivb2d4eFhRIRrrrlmBEAnk0kuvPBCTNOkoaFh5PiWlhYaGxspKiqisbERUG7jO3fuBCAajbJ9+3Y0QZlxhfJVO8uCcDAPnGVUP3xWLBalYQh4Fciz7FGgGE/mzdD8yt06m1PbxaHRfunsaC52RfkoYD87wzlrKXB58WzwGOfoh3Vt1Lx94UJFELj9duVHF4+rqvWllypwPHmyAsUrV6pjqqvhscfU2uNRQNrrHY3hWrtWfWE2Nak86zvvVGB96VLV3tGhsq1PnFB9THP0LYGuq+di6ApIe73qOaWzysxt5mRVeS5o0s/Oq3byxmWuqL7xpGqfWjVqXlbIGC2YybmuuseIAvKefG2sEPdlGHlNu4uTziCui7e4mMCYMRRNmMC7jz1GenCQsXPncuRnP0PTNI787Ge0v/IKqd5e0gMDDB0+jJ1Kse+hh4ifOUP5eeeRGRrip2+8wclTp/jB88+TiUZ576mneOTRRzne2sqvn3mGNQ8+SM6yyJgmtm3T8fbbrBszhvsXLGD1mjW89J3vqPP09JDo6GD/v/6rqsyUV8Brz6u14VFxWpFB5YEw3A8l5Qr89nYq3fVX1iqwHR1WOunIoKo+FwB6NjNqbAbKsCyXUYC7pFwB6KIwnPxAHRsbUv1fzvf3B5WG+/RREJe0OYDu8Z4DeMMVk6mYsZBsKoqmexg4uW9kn4YwbvoCSitnUTFjEQDjpo1u27k0FdMXoOsGAyf2/dWYi9B0g4oZC0f7ZzO0v/MSbadPcP/aB0lmbK694ZN85CMLuOyqG8gN9HHLV77CvKuu4ZLLr2DlN77Bsz/7KeM+83d4gkF+99NnWP3AGi75m3ou/+SnuPvOr7Jk2TI0w0ALlyDJBNqESmWg5rpQPgZ9xY1geDCu/xu0OfPB70evqkUyabTSMejXfQoCQbTZ8yBuKpMz21IAPVyMFgioiviSy9B6ezGMIKFQBV5vESUl1XR17cV1ba655nF03YOuG3i9QTTNg+vapFJDiAhjxkylqmoRw8MneOWVu3GcLCUlNVx11UaSyX6y2Xi+qp0mm42Sy5l0du4hHJ6IaXZQVFSBaXZRVbUA0+xE03RKS2vYtu1OotETgIu/eCKOpiGaRifK0dsAfvfEE3zyk59kP7DzuecI6TpXfeIT7Ee5hxtACTDc3k7N5MkcQIHpj0+ZQld7O/cAcZRBWTFKa70QBdTXMKrvLkJlZxf02R7gKeAYSqOtA6JrBMoDlE0to3x6Oe//+/vEe+LYSRvXcUn0Jtj54E4SvQk0j4aTdejc0zliTNa0sWnEEG3ezfMorS5l+9e2U1xVDICdselo6iBcGcYf9pOL5xg+Psyr97xKsj+JZmiggyfgYcWmFZz/qfNJdCdouK2BoeNDiF9I2AlimRhBT5Cnrn+KyWWTaR1s5a5td+GKy+ZrNnPemPMI+8Lcue1OBlIDPHndkwQ8ATY0buDZlmfpS/ZR7Csm6Any+NWPU11SjeM6rNmxhsH0IAsmLeD48HG+uu2rnIycZErZFJ6+4Wn6k/3c1nAbp6KnEIROs5PG9kayTpapZVN55oan0UQU6G39noq/ClQoAHxkk9JUt2xQDt6t31PO1B996txorZYNYEXV4yOPqSq2EVSO4Jl+VbE+eLeqWFtxpcX2lat9RTUKsM9ZAxOvAW+JAuOaBsFKKJ42qm0unQbB8Qpgxk6rtTekgKs3pLYLkVlOVr1DDL8C5U5WOX0XtNOFyK5wZb5a7SiArumqLW9Ydtttt9F6aC+HDrzNJz9+PV++7XYK2u5YzOT+b67n+muuUg7kwQqljXYyrPryp2i+M0rzi4+zae1to5rpRAeEJiht9Zt35XXUXVC5SGmoPUE1kSD5iYBCvFcurs6BKDB+5VPwxWOqOp0eUNFi8XZ1f3r2KuDuDUNoErnwVEwzx4kTEe68cxsVFSE6O02WLatl+vRyli6tYfLkUv75n7fz1ltn2LLlGqZOLSeZzLFmzXLq6+dQWupnzZo6nnvus6RS9sg4gYDSTj/44E66u+MEgx7a22P09yd58MGdDAyksG2X9et3nWNoVlER4t13ezhzJoZhqFyIbnOQ93qO44iLgYbtOhztO81w0uTCyun0JYbojg3wfu9JbNch5A/wxvG9bPrzr3DEZdOff8W0sdWICAPJKBve+BmpXIbSYAkBr4+dJw/wzN4/omkaMysmc+L0SR64735S8SRvPvJbrlx2GZcvv3REp62hMZyOoWkaXkNHG9oAwYX88qeb+elPf8RFcyfz0UXLufLSWXz+c59UFevhx/LAeQOEroaiutGq9ODDio0xkmd9H+jl/73e2s2Bm1Dr/wHLh+D6w+U/Xf76jSEiLJg0id5EgjtefpmT0Sh+j4eKUIh7XnkFM5cj5zjkHIeNV11FXU0NiVyOrG2zr6uLuePH05dMsru9naRlser11zkZiWBmswQ8Hi6aMIHBdBrHdZlQXIzmuqoqXVGhLuDw4TzomKaA8bZtCoEFgwr83nmnMiXbs0cB44LddEmJynGaOVMB5WnTFFgKhVTVevNmVQrVNEUHv+suZSedzSrEddddCu0lEgqhNTTAU09BVRW6rlNSUoJlWSNguqlJVWCWLFnCnDlzWL58OYFAgDlz5lBdXU0sFiMUCtHZ2Uk0GmXbtm2EQiESiQSZjDJMampqGgHmInLOdlVV1ci4qVSK5cuXn9Mnl8uN9MtkM8qMS9fUc/Z61bo0rJ7vzMkwcawCjdUTFEg+3j5autV1ZYbW3qNAMwKZrKJ8+/OGZGNKzjXYKgD0gkt2JqeA4oUzFEB1XdXP51XxVDNq4cIZytAMjXBY3earr4ZHHhk1M4tGYfFiNW/y9tvq8ouL4XvfU0Nu2DBaoc5kFOkgm1XM/h/9SJmgGYYiJTz2mOpbSHALhdQ8zH33qbfTsmUKnLv5wrG4rrpWUHnUfq+67tKwqjAXnNNFRgzaqK0cvYftvereBf3qmEJ1vyQMwXzUiZO/L8Uh1de2AW2UHVC4r0i+nK+DruNqkBkaInL0KJqu0/KTn9D+yisc+dnPmLh0KRfefjuax8Oc226j9tprGTdvHi0//jGBMWPO6WulUvzqL3/hTy+/zB9//3uKy8r44Kz9nqIirrn+euLxOO+//z7ja2oIh0J89ZvfpPbaa1mxejVLFi0iOn06tddey9j8edpfeQWxcqPGY9t+p67/9FF4+mG1nno+vPLsaAZ2OgnnXahoA69uVe3D/YrmHY+q/mVjYfEVcG29emGnng+vPq+cwsvHqXP8/keKbp6P3GL9T+Ef/llRzYtLFUifOgssm2BpBa7rnAV4FdXbFyzFX1QKun4OGE5FekgNdzFh5lJ8RaVouo4/XE7V3KvwBUsIjanCV1SmGD8zFo0c5w0U4/WHFMPEW8T4mUvwBopxXYvaSz7B1GkzsXNpDu19k71Nf+Hgwf3seWsngYNNNL75JoffeJUDD93Hrj8+zxXXXovYFpJMcNWKq9j37G95941Xef/dd7h77kywcridZ5DokDIhQ1QkV8H92+cH28LtPKMM5IpCClgHgrhdZ5SLuJVD8/rA51c08mQCt6vAVtHQa6dCsEhVs0VVlgOBckyzk1Cogu3b78Q02wEhHu+hoeF2IhEFeH2+IoaHj9PQcBum2UEi0UNV1UJEXCKRk7zxxmqKiycRDk/A6y0iHu/O51b3MH78heze/ShVVQspL59CVdUiurr2U1JSC2gYho+ammXs3r0JjyeIpem4eYlOFcrR+/sbNtB94gT3PfIIU3p7+e7DD+M+8QQucDEq27oIRfPOqP9GFqPA9J/z23mfRb6GitSaiMqxrkNVvX+SH2cCClSvQtHD4yjwXo7Ku07nbLInI3Tt7cLJOoQnhuna10WwLMiuDbvImbkR8Ny0sQk7bdO1v4uapTWUTyvHG/Ryww9v4Bv93+D6p65H82oYQYPaS2vxFnlxsg5d+7oIjQ8R74qPUMF9IZ/qE/LiZBx6DvYwdHwIX7EPT8CD2WXS+mIriZ4EjubQHe/mxPAJ2mJt3LntThK5BJXFlaxcsnIkh1rTNAKeAEuql7B+13os12JP5x42X7OZI3ceYXntctqibWiaht/wM5QaQtd0tly7hUnhSXgMD5v3bObZlmfZ0LiBjJ2hK941As437t6IR/dQWVzJRRMu4p5X7uFU9BSa5NCyfQpIz/q6croefgfG1SmKtu5RDt619XDxJkicVqZkmV61v7ZeZWB7y1R81oKn8tFYlgJ33lLlHj7+UghUKsq3J6zcwwMVyk3cNsE/Hoqq8hTxhKogJ06qc4ECx7FToyA5PajMxwpZ1K6lKrcFwJ3ozLuMd+b7dirQ6i9Tx6UH1TjoCqiDAtmxU6qtZDKBYIjrr7sOzV8CjsXihQtoO31i5Bx33fFF1t3/DSUzK6lVLt2tz8LAe8rMbFa9As17N6hIrvQAVC1T/wUHNo06e1cuAqNI0dKdnKrG615FLc8MwfhLFOAPV6v22GnYcaeK3spGwV+u7kPlIkj3K8C+405FHS+fSU6CaBps2KBypR977G0WLaoChEgkg2U59PUlueeexUyfXk4w6MW2Hd57r5+xYwP84AfXU1TkJRTyUldXy4YNu0bGqagIjYy7cWMTmqZRXz9nJMN6/fpdOA4jFfG1a1VFvKcnwSWXVFJeHsDrNXBcl/7EMDPG1ZDKZWiL9PDw688wNlTGYCrKksnzmDtxBn6vlzkTpxPPJin2h3junzZy66JPk8im+dKiT2JoBslcml/tb+AfPnoDAa8fy7EIegNs/uS9fHnRp9A1nYDHx7Qp0xhMRNh76AD7Duyjce/b/HnXWyPGZ64IF1fN4gc//iFfuONWZWgWupqLL5rM7ufO59AfYhzZsYDvfPdHaNlDoAXOMi5bpzKsrTPQe5d6f03YrCaSvNNg4k/ANws8Y/7rTGs3B84QWJ1q/T8AYH+ouf5w+U8XM6vs9OPZLPG8frrE76exvZ2548fj0XXCPh9d8TiJXA4NePwsPbWuabgiZG2bnOPgMwz2d3ezsKqKfV1dfGbrVj4xaxYPXXYZVSUlHB8aYmNTEw/U1TGltJQi18Vrmmjd3Qpdbd4M/f0Kca1bp9BQwQb6bG32xo0wdqziDG/YAKtXq8itsrJRwC0ySsMtRGxVVCjt9o03ws03w9NPj+Yzt7WpKvm116rzxWIwcSIZv5+Gl1+mpqZmJGZr+fLllJWVYds2hmGMunaj6Hy2bbN9+3aWLFnC22+/TUtLC3PmzOG6667DdV1yudwIWC9kYkcikZGxw+Ewuq6j60p3pus6juNgmia7du3immuuIZVKYRgGb731Fp+44QY8hqEAYDanAB2oKvZI1TS/FFzEC3nKhqFAY7goz5d24WQn9A8rADlT0UX/U532sTMKcFeUw8wpCpSf08cYbctnXLccMejqgnnz1JzI6dOKJHDffUoqX1KiXoZFi9RLF40qYBwOj/YtvDUSCVUUHT9ePVVNG9Vwx+P5ZKew2rdnjxq/ILEPBhU1vasLrl3hqDizgvN3baW6j+EiNdhgRFXzS8OqmuzLn0RQoLj6LBF3wSFcQ0VxnT1mwDeqq05nFdAu3KtcvtofTyrmgWGMvmTZHNlUknR/P+HaWlJdXbT85CfMuf12QhMnYqfTRE6cYPzFFyO2jWYYJDo7SfX2juipZ3/pS/zkuef4/R/+wPM/+Qm+VIqKj3yE6OnTvLl5M9fcdx+eYJB3jxzhU5//PO8fOMDYceP46t13M3/+fG7/0peIxGIsWLKE3/3613z0Ix9BNwzi7e20/PjHLP7WQxiRAbRtv0NuuAlt3IS8DtFWkwz+AAz2KuB97WehdIx6ch2nFIje9ju4+U44dVRVpc2IAsuF+zA8mM9cC6hK96tb4ZrPqqr1iRZVJff5z828PisD2/nCSrKpGEOnDzLh/OUYHi+uY+PaNobPBwJWNoGue/H4g/nIGoF8drWVjmGlE3kN9j7GTVuAL1SKlY5jpRMES9UEoW5489YHDk4uixEIqUobIOIiroOI4DoWhseHa1sYviA6GkSG0IrCOK/+CWlpRpszH+Pjn0WGBpGEqSrOmo50d6BX1yLZLDLQi1YxEQxDAWRxkVwO6etGr56srsVx0Lze/ISNR4FvTUMTQVJJtFAYsSzFFPAHQFdRXqoC7oA/gOY42OkEGZ+Lrnvp6tpLVdVCtm+/ayRn+sYbf0RDw+1nbf+QRKKPnTsfHGm77ronSaeHAM5pv/FG5bdxdm71NddsIZUapLx8OpHICXbtWs+SJfcSCJRj22l27VrP0qUKnHu9IcxsDG9JNf2axjeB7He/y+nf/Y4n3niDp8vKqHv5Zb75xS+iB4P4gYHBQYp8Pr7wla/Qs349b82ZwyM//SnbFy9mNXB/fT2Lr76aY1/+MquB3fm/HwJ7UDRvHTgNrEdFcU0Ens/3+x6KPv4Iqoo+PZFl6C9n/oPWWdM1IqcjeENefEU+srEs/lI/uVQOb9BLzlT6aXEFK2URKA/QtbeLkpoS4l1xqhdXI46QjqYJVYRwbRfdq6MbOsMnhmna1MR1378O3VB52a7jYmftc87V29zLpI9OImNk+OqbX+XeJffyvb3f4+uLv05taS3RTJTyQDmGbrDy1ZU8fMXDFHmL0DSN9mg7NaU1WI6FIw6xbIxSfymGbhAwAiStJAFPgLSdxsyalPhL0NBwxaW5t5lF1YuIpCO8dvK1kZzrpTVLydgZDvcdZnH14hF38YCu47MTaLiQHcpnUi+EXBQC41B8ATcfgQXs/wq0/UaB6oU/VEDTiitttpOBXERRwFvWK1BuBBXYLpheWAmlybbjEH1PncvNKS227lPgWSwVRZWNKODoLVWU6/QgBMepCnbsFBRXK7Ci63+1f2peS+1V60Sn6qv7C18Aqq0wTnoQxl+swPnIGNPzTuOF7w3hH276DGOKfTyx6WGee+0ALz3/a375oy3ccs+/Mn/ePO756hehdy+3rPkxf9nzLsXhMLW1k3n4G19g/pSQAsf7NsCitere/uXrSltdOk2dy/BC5DjEu9T1JjpHddnpodEYLzupgPmYWSqOK2fm87BL1L3r2g0vfQamfwKu/AG5ZIxcoIqTJyNs2NDIunXLmT69nNbWQb73vX08/vg1GIbyaXBdZSyVTtuEQl7efruTxYur0TSNEyeGqK4uobs7wSOPNLJ2rRrn5MkI69fvYs2aOqZNK0dE5WWvX7+L++5bRmVlmEQiR1lZgEDAw/HjQzz++B6+852rCId9eDwaru5ii0U0rXxQnm56jldb3+aaWUt44Mov4DU85ByLwUSUZ/b+cSSvekJ4DNWl47HFHaGB265Lxs4RS8VH9NqGpuPRDRxcDM2gK9pPX2KIeZNmYmi6+r8b7mUgFeHCidPx6AaP7Pg5X1jwCarKKnBcl5AXNPXtpSrQ/fcp3bQ3PwmLDrnj4K0CLaj+b+yBfH61FzLNEPyoeixpMMb+99nWbhJyR/NZ2KsVGNfD/3X//wOW/5Xm+kNw/eHyny6JbBYBjuVB7+qlS5k1dizxXA5XhHguR6nfT3NvL5OKi+mOxxkfCjG5tJRIJkPastjY1MR3rrqKIq8Xn65zMhJhfWMja+vqCHq9lAUCeHQdXdNobG+nIhRiIJlk+eTJBDMZvL29iqdbUaGQz8GDCjiXlytgvX49PP64EuBu2AD/8i+qRGnndR+5nEJgrqsAtt+vgHQBUDY1qTynoiJVBvX7FXX8kksUwioIfg1DIbDFi1We08aN8OST5LxehjMZmpqaWLFiBZ48etN1nWg0yu7du0faXdcdAdvRaJRYLEZJSQmNjY0sX76c8vLyEZdBAMuyRvo7joNhGBiGgeu6WJbF66+/zooVK0gmk+zZs4frrrtuxDStqKho5BoCfj8l4TCaWxASO4pmXDDHch041aWAXDanQJzXUG3TqvKTESgQ5DHU74oTHap/wKeAX4EOXrivgxEF4gumZQG/ynEuRE/58h/Cx9pGAPhwxRT++esGTzyhfl9oGuzfDx/9qHqcTitw7PcrggIoYG0UvGC0URCdyynpvXotFJgO5tlMhqEq2tGoeitpmnpLeDzqmMLYyaTarpzgoGuCFkuo52jk74Fz1n3zes41dzuRN3+LJUar1Tlb3fuuPlXJN3S1/+ipUYp8PKnufzYHH5yE2dNHzeBOdSoque2cO0nhuFji4jo2mq4zcPAggTFj8JWW4s+/pzRdR9N14h0dHP3Zz5i/ciWeoqK8KYnQ1dPDtFmzqK2qIhKJkLUsDI+Hi88/n3gmQy6dprO/H8u2GRcMMmbiRP7+7/6Of/rCF/jSrbdy6uRJBiMRNF2nYswYxlVU8NJvfoMnEMATDOL16GgFI7aCec9AD2z/vTItKx2j7qcvQD7bCn79JBxsVPTwaReoa3VdVekuLlMU8+s/D2PHw799T2m0H/2FopDvf0tpuj/x9+qzYPwkNf6/PTG67x/uHtl2nniWrta3iPW0Ulo5i6q5KwAFeHta/sy46QvQdQ+OncHwBPD4g4gITi6N4Q+Netw5NiIuGXOQ0JhJdL+vTNAKE2z9rbuZcH4dAJruwUqbDJzcR8WMRfiCJbiug7gOrmOhG150rx8rGWXw1AGqZl+pKvcJU5maLb8KrWyMyqE2PGiOreILXRf31ZfQr7gGzedXQNlV2djuG9vQl12OVlquTMkmVikDs1wO6e9Br54C5J1O1UUqA7ShAQXga6YoQJ5MqP9hrw9sGw3IeaGj821qapYRjZ7G4wlg2yl27drA8uVrCIcricd7aGwsbE/CdW3i8W6amjayfPk6Sktr0TSdXC5xVvtaiooqyOWS5HJxdu9+lOXL11FWNhnXdXBdh+3b7/xvQPyPASFt+LG9QWxg4+OP89pvfsPP3niDx8vLeRZF334KGERlXz97yy3Mnz+fN++5h1PAzx96iJfb2mj7xS+4/vRp9i1axLIPPuBP48ZRDzyEqkz3o2jggtJX3wYj4z+U/261UWZmd5y175mcjW7m2H7nNlqebWHuzXO5+vGr8fg9aIaGOIKVtNixdgdXbrgSb5GXXCLHG/e9weKVixl73ljsrE0mkiFQFgBROmnXdkkNpfAV+c41MPNqbL9rO5UXVzL7s7OJd8dp2thE3QN1lM8oZ6h1iKaNTSxdvZSxM5VppiUWp9Kn6Ih1cEnlJfQn++k0O6kqqeKRxkdYU7cGOx+7tnnPZjat2ETQG8TQDHR0UnaKfV37qC6pZnLpZE5GTo70C3gCNHU0URmupKqkiiJvEacip9jQuIEH6h6gJ97DkuolnDHPsGn3Jjau2EjIGyKRS3C47zCTiicxkOjmyknz0TxBGNh9rtFYsFJpoFs2wAV5bTUuvLMSZt8H4emqsvyRJxWg1gAjpOje2+eqOK8FT6sJZgGcxOgkW/NquGCVGkNspQ+ONitKuHkcMj0qEsxOK1M0J6sqzgVArWnqw7FgOGb4R0G04Vca5UIm9shkuHaW8ZmoiUpxRw3PXDtvDqaquiqiywcIGzZs4KWXt7HjuR9hSgnX3vhpdv7xGcqqZ3PLl+5g/sxK7pl/BhatoSsGlVW16IkOXnjia3z1maMc/6CZMDFoew1696nYLW+R+i2he2DHV+FjW6BnP1QtQYkrXFXF3nUffHSV6m+lFEBfsBrKZ0GkFfZvVMZmJZNVNJevVJmtBcoUGI+2YfpnjCjRDUMjFstSVKSM3Xw+HdPM0deX5JFHGlm9eimVlcWUlPg4dUqB5EJbcbEv/5vJIhAwGBxMUVlZTCZjEwh4OHkywqZNTWzcuIJQyIvrCq4raBrce+9rbNlyLY2N7Vx00QSGhtIjYH9SVQhfkTZyjRkry5a3fssXFn6CqpIKHn7jp9z8kev45f4Gdp48wGOfWMmcidNp6T3JRZNm0mMO8Mv9Ddxz6d8R8Prx6Abvdh2lLFDMcNocMUTL2jlchOP9bcyeMB0XQUcj61gc7W/jrj98h2tmLeErSz/Dp35+L0/+zX2cP34Kg4koM8aOxavlIL0XvLXgnawAcP8qGPt1MCaCVqTeZ/YZRQ0fuwasXqW/LkxQuSkFvnUD9GL+y8UxofdWRTMvrlfVbqPkv+7/f8DyoaHZh8v/1qIBrggbm5p4sbWV/mQSR4RwHhg9/NZb9CeT1NXWMj4Uoq62Fq+uc+f27SQtiw7TZGFV1QiN/FQ0StDr5d4lSwh6vWRsm6+/+iqZPBBeXlvLUCpFTUkJOhBxXWTChFExbW8vzJ+vHqdSirL94ouKLj516mgAsmkqJFagQYfDClh7vQp9tbcrUO26imM8ebIC70VFqjJ+ySWqRGrbSpxr22qsJUvUjQmFFG/YNBG/H5/Px/XXX4/f7yeVShHJm7TF43Gqq6uJx+O4ecOvZDJJJBLB4/FQW1tLeXk5N9xwAx6PB8uysG07b+qjkUql2LZtG5FIhJaWFl5++WUcxyGRN5errq4mm83S2NhIZWUlkUiEhoaGEYBv2zYlxcWUeHxosYQyNrOd0Wq146rKKigdr8+jwGNHL9iuAocFYK2h9tuO0gWfV6uAdSyh+vi8CvwVMrHNpGqbOUWBS8dRQL00rMzLMlk15lkZ182HNTZtUtXiO+5Qeuhx49Schqap227b6rdMOKxe9jN5jzHbVi9tNqsupzAvUuhfwJEej6pw79+vxuvrGwXTZ8+liCjX8IKhtAZqsqCgfc7lGRDTa9R7w9DVfttRB0+rUm0TxiqwXDBDs6y8xt1SbQXtuev+x/zr2dNVdbygj6+eoM7v86hzdfXn3+MeNF0bcQYvnz2bookT8ZWVYadSOJkMTjqNuC6eYJCO11/nnY0bcS2LgYMHSXZ30/WjHzF85Aj7d+zgVz//OSffeIPowACf+fznCfl8vP3qq1wyfz7fuuEG3nzySRq3b+eer3+dsWPGsPWXv+SfPv95li5axPFDh2j80594ZvNmAmVlGIE85V03FDX7+Pvqhjq2AtYjGuj8D8bfPqVeRAGu+QzMX6xMx+z8rInPryrWrz1/lt5aUyB7/mJ13A2fV+D5hpsgVKzo3+mU+oF6/efPNVIrbOuec6jbaBquYyGuQ7C8koETe/H4gxieAIbPT3K4GysTV+eWfKVXA90w0D0+lX+taQpYo+HYigI3ftYyNE0nHevHyphYmYTSYp/cj2gaumFgZ1NoaBgeLxowdPodot1HSEV7VQW6bAzGx+shXIzkFLsIx8bt7RqZVNSvuBbNrypsGuB2q4lo44rrkFgUiZvKjCwZx2l4DlIJtJopapz202BbSCyCs+0PSC6LNmYs+uTp6r1tW7iNf1bfEbqB5vHg9vWgaQbh8ERefvkOysqm4LoOjmNz+eXfprx8Bq7rUF4+g+uv/wHB4DhSqQg+XzFjx87kmmu2EAyO5b33/h3LSuP1FjF27HnceOOPKC+fjtcbJByegN9fwnXXPYXHExwxPwOhrm4Nc+bUs3z5WnTdy9Klq5kzp566ujW0tzcSi3Xg13SCInR3drLl3ntJRaN88WMfo3n+fMYsWsQ6VKb1JJRWegqwAvUDqRpYvWoVM9NpQtOn03LNNTz25JN8Ow+s16Ko5v1ALYoWbqMq2GtR4Pk+oAzlGl6NqqEWNNnrgD6fB0+Rh+XrlvN32/6OG56+AY/fo5gMlqome0Nert1yLZ6Ah0SvovZXL6lWWddtUbr2dhEoV8Ba9+kjGmsrZaF5NPxhP1bSYttd28iZOa7dci1zPj9H0cPDPpauXoon6AGBfU/uo2ZZDb7QaDXKTttMLp3MgkkLCHqDdJqdTAhNoMvs4t4l99JpdjK5bDKb92xm5ZKVBDwBcnaOeC6O5VrYrk1dbR2VxZUYusGk4kmsXLKSnngPd7x8B+ND4yn2FxPwBBCETU2beLblWR5pfISlNUsxdAO/4efri79OX7yPxvZGfIaPRVWL6E/2c3ntErR37lHV6Io68JScpbf2jeqtj2xUumpPEcx9SFG8B5pg3BL1WZXpg4P3QPyEMij7xCn4yPcVjXzfbcoULTOoKOe6TzmNt25RFVtxFIW8YrkCu8XTVUU7M6ho4mgKMJdNV9Xns1gwGH7wl4zu17x5r5l81do8nddf5z8vnRwjhmfZiNpXNl09B8Onqt6GX/WPd4CT4bvf3cQf/vgntr/wO4oq53Dw3ffp6e1l/sc+y5Tz5vDcH17g2995grUvRMDwU1UzBT3dD/s38um/+VtKisO0thyGPQ8rWvilmxRF3bWg521F865ckn/uk1TlOXYqb07mh0u+rmjk/lIFrFufVYBaHLVufVaZnNnp/LtOFDV+x52qoh+egMer0dYW5bbbGjhxIkJJiZ/29hhf+9p2cjmXWCw7QuXeuLGJWCyD4wh9fQl+8pOPM2PGmBEncE3TCIW8pFJ2/reEi9drIAKbNjXxm9+8x9e//iq6rtHeHuOrX91GZ2ec733vOjwejerqEhIJa4RO/vDDu/AHPIhArznIw68/QzQTZ92KL+H3+Nh2pJF/WvBxiv1FPHDlF3junzYyITyWR3f8nPHhMXh0nZ/u/RMXVk5nMBnl4defoTPax0WTZjKcNikPFvN+70k6on08suPn9MeHmTdpFj3xQTa88TN64oMEPL6RLOxbF3+asL+IGy6o4+KqWXgND2VBPx7ntDIr81Qo8zJEAevgQtBCyqxMMwBLAeuC9jq4QIHt3tvAalOAWvOgxC//zaIFztJnrwM98N/3/3/B8mHl+sPlP11ytk3WcTgVidBpmtSUlIwAZo+u81xLC5+84AKCHg+OCLqm0Z9IMPeHP+RvL7iAp66/Htt12dPZyWe2buW5z36WmtJSOmIxFlVXE0mn2XHqFJ88/3yCHg+GruPmgaUGZGybcY6DduutCkQ/95xyn3r2WVixQpUdDUMBln37lP7a41FlStNUleiiPHXX681bP2sKQCeTil6+dq0C5LmcGmt4WFXFHefc0mY6rRCdspBUyEzTyOZjszwezwhNu1ClKqwLgLhQxfb5fLiuSzqdJhRS2kvXdXnttddYvHgxpmlSVVXF9u3bRyjjl112Ga7rUlZWhuM46Lo+EvHlui6appFIJMjlciOO4alUivKSUnQzMRoFBfk4I23k+zk/SP4LPq/NPmefKIBXqGrnAR0Aew6NVlfRzj3H2Y8LVPO/pooj4LgIkHE85Cydv05fMww1l+L3q0vs6xt9KZJJ9dIEg+pl8/vVUym8DXRd7XNd9RL7fOrlHzdOjbluHTz8sBovlVLmZ4Vtw1Bvg4DPwecVVXkVOWuCgtGJh8Ka/GPXVZMXhX5nLwUWgNcYrUIIMDCsJiumKxfg/0APD/rPva/5xXEczDNnSPX0MHbePDTD4N3vfId599yDJxhE03XsZBLd70c3DFzLwrEsIkePEigr48gvfkH7K69Qe+21fHTdOkWD1jTEttmxdSt3fOtbHP/gA1Zcfz1f++pX+cT11+M6DrqhgJXZ1sYFixbx+quvcsG8eWi6TqKzk5Yf/Yg5t92Gf8wYgkVBtEQMikJwuhVqZyh37+2/VyB43MR8/EtW6aFHKtz52Y7+njxlvF5VoQsU8htugoqJ6n/bjEKwCIIhVeEtAPJAUI2rG+Dx5qsrxqhu3XVxPB6Sw90UlU9E03RE0xA7l2fHqeq+bnhxHYuMOUCwrBKtEO8nLlJ4kfMVXwW2R9sKTv2q2p3C8CqWhwbYuRQeX9E5bw8NUTp/DdAMelv+zKQLPgbRIdxdO9DrrkQrH4sM9asIrborIBjCff0l9Gs+qf4BYlHcxh3oSz8G5WMUyO5oQyspVe9Pnx9356tISzP6TV9CKy1TYy+5HMaOQ7MsMAzEsXF3vIJ+5bVo6spGM/AScdw9u9Cv+xQ5zcJxchiGD03zEImcyFep11FWNko1jEZP5KvZqlIt4uK6alLR6w1i21m6uvZSUlJNaelkLEtVrP3+Uny+Ymw7lQfXLradxTB86LoHEZtkcpCiorHYdgbD8NLZuZetWz/DrFmf4NpP/IyMt4i9mkYFMITSRadQemoL5fCdQ4FsBwWALaAd2JT/Kzqr3ZPvZ+TXNuonZj9g5j8SZuTbCzAoBLgoungof05v/jqKE1k0gVwiR7IvSdN3m1ix8ax4rdWvs/jriymuLKbn3R7CE8OUVJcoenie0t3/Xj/Vi6uxMzavr3qdRf+8iORAkpqlNWiaRsPtDdQsq6FmWQ1NG5u4Zss1pAZSxDpilFSV0PhII8vXLqektoTIyYiqZq+pI1wZxkyaeMZ76E300hHrYFHVIryGlzPRM6xvXM+aujXMGDMDM2vSn+xnQ+MGVi9dzbTyaXSYHazftZ7VS1czvXw6bbG2kWp3p9nJjf9+Iw03NVBdWs2GXRtYU7eG8aHxvNPzDouqF+E3/LRF23h418OsqVtDkbeISCbCY28/xtrla6ktqSVnJxlrgKEZiB5Q+mtPWAFYT4mqSFtR8I/NA1d79IPbtfJUa1c5fL/993D1PmVWNrRfxXYZQbBjytRp+CAExo5WxosmKyp0obKtaWp8zavozejqOox8+sHZNG3NyPsVoNa6L1/dcJRZWLgqP17+GK3w3VGojZ31RVT43Mma6nqMYJ4uPsTjv97Bb579A2+8+irlY8rBzlPKw/kKOcItX/gi8+fO5p47vwzZKJ2Daaqra0CDPXv3c+PffJ6TR5opDRrq+fjC6jpTfQoED74HFfPVhMCbd8JHVkFprXpObl4XrnsUZd1KKqBdqHwXYreu/AFEjyuwvWC1ur7W38OUqyFcTSztOSce68c/vpGmpg4mTAgxffoYUikLETDNLMXFPnRdo7TUj+OMYh3XFbxenVTKwu/3jMR0PfBAHV1dJjU1pVRUFHHPPa+yZs1ypk4t5dZbzz2nx6PR2RknmbTQdY1HHlGV66nnFTOYjNAZ62f6uBp8hvq9NJSMMZiMMr9qFp3RPp7Z+0e+vOhTjAuX0WMOMpwyubhqFp2xfvyG9xw6+TevvhWAwUSE8qJSImmTprZDvN9zkjVXfZFvv/aTkb7/suLLaJqGno/t0jUdR1xEBMu1Kfdr6GdXkSc8yQi92+nOU7fXKj21pMDuhqFH8m1T1babULRuzyT12Cj+X9O83RyQBc3/X2uz/w9aPqSFf7j8by9mJkPENKkKBOjKZOi3LJ7Yu5cnrriCcl1HMwywbVxDafCyhsFgKsUkvx9b1xmKxwkUFXFwcJBLKyuxMxlSus79f/kLmy6/nHJdJ6PrRF2X3kRiRHM9ubSUDtNkTiiEceIE9PSQm78Aywjg+IsU8Mk5GB4Nr6ZKlJYlOP4iAokhfPd9HVatIjd5Bpm0YIQCaLqGlXXxGTbBvW8p/fTx4+RCZeRiGXwlAXwlAaXV7u4ePZ83gNfjYrkehTvTKfSgH1cz8Hgt1E8nFxEXxwGPRx/JbLUsG8Pw5OOdXXTdwHUdOjt7mDixCvWTzMHr9ZHL2fT19TFp0gTAyFe7HXw+f348Tz7P1SIUCubBu4NtuxiGhzwxFdfV8oBbKAqE0TKWAgJn63vP3q6ZOKoT1g0Fov+6v8+rqs2dfXDeZLVP1xXVu0BP9hijYKRwfCozCsoL68KYXk9ekzwRLIuOeDFFxQYdHfDEE/D9zVl8HnXtrguNTV7mzgOvliPn+MDw4vdDbNiicoI1kjTm2i6WeDEMHR0LxMVxdVwMDM3B0FwcPGiug+7RcG2hb9DDmDKbVNZH36CXnk6LpYtzOK6HooCN4fVguO5ZwMxV8VmarqqwhpGPFbNHqfBeTz6/WwPR4EzPKPU+HDhrLFFg0OdT25qMTnbYTh6Ie/JVcw1S2byZnPrfc1zoffedEaA859ZbVcb5hAk4mRRGoAgrlSIwphzdY+Bks+geL5qu4+RyaB6DXCRKYNxY9Z7SdHAdBg6+w8rNWygJBnnwjtu56f4H6Ovrw+P1MvuC81lZX8+si+bT19bG3Btu4OF//TbPP/8HxHW580tf4pNXfoz0wCChqmoCxWF86Tjatt8pt+9EDKbPQQxD3T8rh9Z+AsrGwavPIZ/5kgLJImpWpP04hEvBjKJVVCJl5SOUZU5+AJMmq4kHO4eWyyGxYZh+geqTy6LFhuHl38INNyHjJqpzJhPKTVzXkKSJU1yCKyCi3r+aiHo98v9XdiaFN6DipMTO4vEqmqBt5fD4/Ap8i4r00nUwDAMrEyebShAonYiuG0ryIRYDrbupmLUMVzR0Tciag3j8RfjC5TiOg4gC53YmgcfnxzB8OK6LlowhmQR6Mo2nZhrOy88jre9D/T/i1lQr1GaoSpje0QHP/gr9s/+EVlKmgPaSy3ECPtyCX4Drond1odVMxolH0XIWUlyMgY70duNOmoTu8aoILE1H7+xAGz8Rx+cBTUccpeFHBE0zsOw0maRJwDcOj9+HSxocnaQZIVQ8FlwdlxyG5kfzgKtlMc1OYpEuaiqXY0uCHTvv52OXbUB3ffiKinBtG7E1DK8B6IgraLqGOC7oIJpidiTNYULF49DEg+gWDmmFbcSHofuRgIcev4+gncN0cpQaPoo8PtqBCVYan5Nj0PAR0gwCTo4mw8fFHh+DQBew1M5hOzl0w0cGMJ0c4/MTQB7doNt1KDF8JIEyJ0fE8DHB46MNKLJzTHAsXBz2GAGqPD7G2zk0J8cBw8d8wOfk8ONBizvomoMVT5A2XcITQjjpNEYwSKIvSbBEx1scwrEcfAHBW+QnHbPpO9zP5LpKNNTnna65DByLs3vjPq7Zcg3eoBfd46Cj6MNndvcSOR1l/t+fjys6Gi6JgSy+oIEvpGImrWSG935/nK6D/Vz/xBUYhoODwY723ZQHy0eAbUesgxv//caRHGpXXO5+5W6W1Szl4+fdwNhQBbe+dBvPH3meP33uj1wx9XJ64r0kswnC/mImFVeSslIEPEGyTgZD82C7FkFvkZJZ2BkyTo6DPe/QHm3jpgs/T5E3RHe8m3jWpCPexSWTPkIml6AqVIGW7QfLzFPA74fimQrgujlF8zYCynRM8lpmXBh8W5mQJbtUtRtXgfHhw4rSjauAs2sp4Kh74cAd0PE8LPsDjK87d5LVtWF4H5TNU9uS13oHKshlbXI5C8Prw3EEw6Pj2C6GoeE4or6OrSQ5QviMHDgWOS2Modk4YqAbGrYl6IaGz6O+vnM25HKCjyS+QEABWLMtbxzm4dTpM0yfOYspU6ZSXKzou36fnx07/oKhg9dnQDbOF75yDxfNncc9n7kIX8lErvzc1+jtH8CjQ5Hfy4a/GcPHvvRdCE3CslJYwfF47STet74BH1mJVX4+loA31YPXSmKVTsVyHLy9e2H8RVgYGB4/jmbgBbxOEst1sXQvGEUILj5Ng85dWMEKvOk+vFV1ED0GBzdjXfEUWbzETZtVK99g1apldHbGqK4uYfz4EGvW7OB7P7wRzauSa1yArI1uuzi6hifoxdHy0xKOi6NpGJpGX7dJJJ5jsCvO3Lnj8YW8+It86JZDxsziLfJiGzp73zpD1fgippw3FvEZ7HnrDIsXVYHfoxT9hoYm4Lct7GwGRxP8GGiGQSaXwecPkBabTX/+FfMmTGN5zTzGFY8ha2Xx6Qaa14tpZ/B7fPSZQ/THBpg/YQYen5dkLoPhCrau8cTu3/PPS+sJGz40j4dkLk06naI8XIohGpqhY1kWzX0nGF86nvFFxfgxSDo5ykI+DPtUnuq9DjzVIFnQQ9D7zxC8GIo/q+jeksmD5sLd1BUVXA8DVp44kVV9/w+nef9fXT4E1x8u/+sllxst7flGZ5TsTAbj2DG09euRtWuxpk5VEVJtbehFRarct2GDKvkVFSHhMAwMqP5r1qB1duJWV6PNmAGmiWaauOPHKwqkpqHt2YPMm4cUFdGdzRJPpejKZllWU8NQNMrE4mJcxyCjKXB86pRGZ6diihdOO2OGYJrQ06MxMACLFwu6JhjZFKf6QnR0aCxeDB6P0NioUV0tTJsGTtZG93qIx4VVq3XuW+0ybbqmPM909ZmRyWj52yGIaCSTCkOFw8Lp0xqzZqVw3Ryua2MY3jxNESwrmddOq29bjyeA41gkEkpzuGzZA5SXzyAaPYVpdlBVtSivUczQ1bWXyspLAMhmY/j9JfT2HqKkpIpwuDJf5XFJpQaJx7uprl6MrnvIZk36+g5TXb0Y0IhEThEOjqOkx1LO1ifaR6vGf709eZJ6wf1eVV3+6/0zJ49mOgd8ClzqeZ2YRr66P2pORlFAgZ1jbQo8d/Yq1/HZ06Ekr0s+3j5ijCYzanFcoatbo3ycl4AnjZvNMPT++5TPmoUnEADdIN7ZRevPf8q8ld/AFyoC3YPYWZxMBkQwgkF1OXlqfLyjg2O/+hWXPPCAAgC6rsClz6eo0oAnEMC1bYYOH6aospJQdTXiKI0qmkYuHidcMQ7NttDajin9b2RA6U1z2dEK6ti8cZlCaAoQD/SMGmgVj1EmZiWhc421xk1UpltTZiraczqlDLuigyq2qtCvdIwC5IGCkVoPvJIHor4AyUgEIxhE9xgYgSDi5HDyxli6R2lxrYzJwIl9ygnbH8bKJhk4sZfK2ZdjZ1N5/e9CdN3Lpse/R8PL2/jNIxuoXvRRzpw+ycSKMjyBEN/d8CD//qc/07x/P7F0igkTKvnmv6zjm99cR1vbGZZfejkv/ukPXHThhWgepfPTHQctnYKuNrTJ5yG+ABIZVPrhuivRyseozyCPB9F1GBrEbfqzqsSmEqqquvxKtLKxyEgF9wq08nGKHp3NQCiszLYK+5deDsUlaB6vyrUuCiPRYSQWRa+anJ8QUpVlB510Lkc8HieRSFBZWUk8HqepqYm6ujq8Xi+BvJC/YCiYy+Xo7e2lqqoKwzAYGhoimUxSU6PYB5q4RGLmiDmhaZqUlJRQXl5ONBpl165dIwaIBbZLJBIZYa8UFo/Hg4iFZSmDHJ+vGMRFFw3XzuJ6PDhOBq83lP8M2Udp6WTKSycjuOgdnUhkCJl9ITnJIuKSSPSeo2l+9dV7WL58DR5PiKKisZixdmJmJyUl1TQ2bmDp0tWUl0/HNNvZvXsjK1ZsUqDfydLX9x4TJszDp5fjpF3S0TTh8YotI66iNTs5h/73+5m0YBLiCJqhoXt0bCdFvC1D44bdLH1gMeEaLz5PKVbKUs896FGTPq5gp216D/VSPKmYxg2NI/rg6Kkou9bvom5tHd6gl0BZAMdI4tWLiZ2J0bSpiRWbVmCMMUg5KfZ27qW2dDJTy6fhuDaGppOwEoS8IU5FT7Nh13ruX76W6WXT6dN1/K6FkUvyft5AK2WlWPX6KlYtXUWRt4iUlWJD4wbWLl/L1LKp9CX6KAuWEfQUYYqN33Vpi5ziO03f4f7la6kqn0Fv5ATrd61nzfK1VBRV8PVX72FN3VrOC0wmKGfQWtYjl2yB7IB6PGcthKagDexGxi0BTUdzkqAHEA3QfGhOWpl3edRnrHhUVTGT0jA8Ol4jjpbuhiMbR8fLDijqs6arf4XEMfhgo6rGGkWIr1xVPxMn0Y5sRC7ZDN4y3mzbyWeeq+e5zzzLx6Zcji0OOgWdqaChobsWupNDfMU4ImTsNCFPAM08g4Sr0HQvoulo4oCVQgwf2lmVVHGy+e0qxMjTSJ0MWqJrpE0TF9FQalMng5boVlnQYiuA7S1V31NWXv/jK1ZRUMke9TdxkQKimqaAtx5UVdiDm0crqqAo17pXVVd33QcL7oOSGrAzebq3O1qJjp1UrtqL1iqn7TfvUhXY0mnkHJ1UVhvxuBwaSlNa6icazZBMKnrx2rXLmTatjF27VIbzuHFFHD7cR2VlMV1dJvPnTyQWO7sq6yOVcohE0pSXBygKerAdwdCVX4vX5yEazeK6QjyeY+LEEOm0TXd3nM2b94xoikWE/v4k4ycW4fXnmTXicrj7GBPCY5iS+ADvC9fDBTeTveJpUq7wQd8pZo2rIShZPE6WdtvgJ3te4NZFn6amrIK0bfF+70kmhsdSXlRMysqQsXL8Yv9LfP3Smwj6giPGXY7r8H7vSS4YP4XhlJmv7H6SyWUTcBJdGLk4Z/RyfrG/gXs+9k8EgmFwBdPMkk3mqJioJg3EUL8vTZQcY7UI0wUsDdKaRgwVm6eLENY0bKBThHZNY7kISaBb09gIrHGFmoxFu9/Ddw2dTSIUoZgmhzWNhSJ4gEzeBHKvprHAsvCePo3h9+Ok08pg9LbbCFZUkB4aIlRVpYgJeb8KDINEWxsf/OxnzLntNsK1NXmGokGyo4OWH/+YS+6/n+zwMC0//jFzbruNouoqxSSyLHSfj0RXF6nuboomTCA1MED5rFlYiQTe4mK8oRCJ/DhzbruNcE0N4KIbLoZH8swKUdRtNLBOgdUB3mrl7h24hBFgDXld9uo8oC5Xaw0Fzv8HLR9qrj9c/vsll4OjR+FLX1LrXG5klyeXQ1u/Hp59Fm39enyOQ8B10TdtUjbMfr/SH2/aBKWlaLHYaP8NG2DcOPRNm9BcVwGeEyfQOzowdu9GO3EC5s5Fc130xkaqdJ0LbJsrJ0wgkEpR7fFgaUFMO0hfv042q7Fhg5JHnx27ZFkK5JWUKFl0KqVhxnVidgi/X2PiRKXhPX5cY9EiqKnRcF2NjO0lZmq4orNwIbR36Jw6pdHYqGHZGomEhmmqImI2q4C1li/KgpZPCHOw7bRy+hX14SPi4vUW4/UW4fMVYxg+YrEOMpkIjY0baG19kXi8C3AwzY6RuJpo9BQgVFUtxOcL/YfYmV271mMYPrLZGLlcHNPsJByupKOjCdvO4PUWMX78XFKpQTQNSkurOXnqddyaCaoCenZE1NnbNRMVyCjoif96fyFSqjSsgDWo2QczqaqwaKMxUiWqEoibn1ioUVVpaithbJmqcLv56f2aiSN6a8e22ffgv1DitBH0pMCx0Twexs2bRyYWIxuNgriU1Faz4JvfxFcUIDs8hJtNoXs8eAIBvOEwTjbLwKFDOHmn+9CkSVxy332I6yoArmnoedqzEQjgDYVIdndz4OGHCYwZQ6qnBzebRde1kSxoX1EQbagPra0Vps9Wz8/nUxTnQrzUcL+iKv/bEwr0OrlR4L3/LXj1OTUxEQ4oOvLZsVTiQmm50hsXBN7bf69Mu87uV6Ah57LqTVkyBj53u3J1bmvFP7YM0W36TjRiZUw0jw+PL4im519XcRk8eYCi8klougdNNxg4sZdYTyuOnRvJcB44sY8nnnyaZ3/3a17Y+hsmL69DNwwCuW48/iCDJ/fz6UvP4/Tp08SSCcaOGUM4HObv//5mXNuiclwpF8+ZxsEDB9A9XkCUmZ5lqUmLyTMRXwDExW18E2lpxm3cASKqRpxMqOfo9yMtzZDN4O7aofrt3gkio9tNfwFA03VkeBBiEchlz9q/U9m/a+rHLK6LxKJooWIVNWUrvbREIjhxlQHq8/kYP3482WyWpqYmWltbMU2TUEj9cNA0jY6OjhFvhfHjx/PKK6+Qy+UYO3YsNTU15HI5tm3bRtSME4/HqampwePxMGHCBOLxOLZts2vXrnPi9gqyDq/XSygUoqurS30GexT5WNOEZLKP3t5mcjmTeKKbjJ1AvF5lRJ9NkMslcF2bCRMuIhwej+1mSSQHsKsnIRddDF4vPl8ITTNoatpIS8uz7Nq1nkwmmn+8gVBIRZLtalSPGxs30NLyLE1NGxFx2LVrPVVVC4nHu9m27avE473U1CzBp5cTPRHjlXteUTpdTZlw5eI5Xrn7FZJ9SaqXVhNri7Htq9uItcUA0N0AjRt20/JsC4muFFquiOET+ezlviS6RyfWFuPlO14m3hNn/NzxNG5opOXZFhofacTJOOxav4uWZ1swO0yslEXXvi48bhjdo+MJeFj89cXYmk0sF2MoNcSS6iVMKq4kno0xkOwnY2d4t+ddbNdmw671PNvyLI/uWo8rFuPsDAErQ8gTpLK4ktsabqM73s3CqoVsaNxAaaB0JCJq/a71CELSSnLntjs5MXycd87sotNspyfRw4utL9JrdhEUB5/hY1nNMjbt3kgsE+XZlmfZsmczwZCOpvugYhmaZaId2age63nwXH4RmpNGix9Xmt9UO9pAE1rihDLkcpLqs3f4oAKb2X4CnMHrd9GsmNIbtz+L1rJegXM7oXTE5jE0bAWsC3nPvlK0ob3gpNGCE+Hi76J5itFciysmX0rH3We4Ysrl6K6Fz3XwWEk8ro3XSikTM08AfCVoroWBEDaUjwC+MJqTzX825H9v+IoVkC5ETWmctd01wnbWCtFTiS7lCq5paK4CKVqiS0VA5eJKn7tzlaJV5+Kw8x4FmvO5zviKFd36zTshfkYB48BE5Qae7FW64WQ3vH5bPofagTfuUGN85F5luIWmdNsFcycRBbb35rXEe9er831kpYqUysWxHJ22thh33PEyqZRNImFx553bKS0NjOh216/fhW0LixZVUVTkIRj0snRpDRs37mbu3PF0d8d58MGd9PUlCId9ec8Rh3DYx/793Zw4GUXTNHKWy+BQhlzOpbjYx+Bgigcf3DmSx1xS4uepp65ncDBJf38S23YZMzaA7hMEoT3Wx8OvP0NFuJwx4TKs6stJfWWQ1JU/4Vh/NwuvWMY/rvhb6hbXMefSj/HWsXZ640O8crSJDevXc8EFc5g5+3zu/Yev0JsYwufxEfYV8YW7b+fnX32EZQuXMnvBRXRG+8naOR7Z8XPKg8WgaTyz94/5jOY/kbItDkbj5Mpm0peIMK/mAroDIW7VNI4bOqHyIGOrShCPTptH5zZN41j+N+xKYKKmYWvg0TRVyc4vuqaRJ+PTnpeLdGsasTywfhbYoGsYQS+PGDoL8/vv1DRE01gINGkapqbRA9yZH8Oby5Hq6SFQXj4Sd9ny4x+r3x157Zo4Dk4mw+5vfYu/ra/noro6bn7qKa6++mqOfXCE3HAEJ5Ph3ltu4bNPPsmCujquvOqqkbEO7NtP3WWX8ZEFC5gzdy4/+M1vqLjkEgJjxzJu3jwKszdG3uQy1dtLb1MTqd5exLZxLYecmcHJpZT22u7OyyQcGFqvtNhDG9RaM8Dphf57FG08uFCBb0mqY62T/KdQ8n9YrvV/WAoOxf8n/VVVVcmHy/9NSzwuUl8vAmptmufuO3BAtR88qPZt2ybS3S3S3DzaHomIDA6q9eHDqr25WaShQfU9dEi17d2r2vbsUdsffKD279unxjVNdXxDg2RjKTnU7I4M1dcn0t8vcuzY6HCHD6tLNE21jsdFolF1Gb29al14aoXLPnJEpKtL9RseHr30WEzklVdEOjrUuaJR1f/WW1W/aFSNn0iIdHe7Eo2KZDJxyWRMSaejksmYksmYYprdkkpFZGCgVVKpSH5/RNLpqJhmtxw7tk16et6VY8e2SSo1LFu31stDDyFbt9ZLKjUsx45tk3Q6ek67aXZLb+9hyWYTkk5HJZUalnQ6JvF4n3R3vyNbt9ZLT0+zZDJx6e1tlq1b66W3t1kyGVOsXFrcXE5cyxL5r/5yf7X+r/6yWZFMViSZFkln1LZliwxG1LaZEGk5IRJPimRzqi2ZOvc8mew557IzGel86y0ZfO89yZqmpIeHJdbWJunhYcklk5KNxSQTi0lqYECy8fhIWy6ZlKxpSiYWk7fXrJHB99+XZF+fZKJRSfX3SyYWk8EPPpDOt96SbDwuWdOUbDwufceOyY3XXivTp0yRuRdeKB+trZXHZsyQXStXyvJly2Ryba3MmztXZlRUyL+uWiXJttMih/aIDPWLnD4mO+75oui6Lpu//ZDIqaMiP1wvEo+q9R0fFzm8VySVFEkmRCKDIof3SnpwQD554w1y3tQpMm/mDLmqbpkc//ZKkfaTctny5TJlbLlcNKZYLpp1njz+6KMip4+JHNojly1eqPbNvkDte/hfRVIJkXRKpP2kOufpY2Kn4pLLJCUdH5KB0++IlUmKlU1KrPekpGJ9YltZifWelGzKlGSkV84cfEly6bikon3/4fGj678lF82bI42/+7acOfiSWNmUpJNxOX38/ZHxnt54v9TUVIttZcW2svKlL35RvvfEZsml43Lozd9K9aSJ8pc3tsmZgy9JKtYnTiYlTle7WFt/JY4ZFaenS+zWFnF6OlVbT5e4mfRon64OcTMZcQb6xEklxenuEPvYB+Jm0uJmMuKmkmIfOzIylrX1V+J0d4gTN8VJJs9tM2PqXL1d4qSS4ibiarvzjOrTq64l29UhpmnKwMCApFIpMU1TYrGYmKYpqVRKksmkmKYpzz//vHR2dkpra6uYpin9/f2yZ88eicVi0tXVJc8//7yYpimRSETee+89+fjHPy4zZsyQOXPmyMc+9jFpaWmRY8eOyZIlS6SiokLmzJkjc+fOlQceeEASiYRkMhnZunWrXHzxxTJlyhQ577zz5Nvf/qak0xF5/vmbJZkclK6uAyP/86bZLa2tDZJKDYtpdsvzz98sPT3NkkpFxDS7xTS75YUXbpFYrFNSqeGRv56eZmltbZBkckAyGVMGBlolmRySdDoira0N0tm5V1pbG6SnR32edHcflGw2IYnEgMTjffLCC7fI3r1PSjI5KJlMTFKRpLQ2tEq0IypmtyldB7pka/1W6Xm3R/Y8sUe21m+VdDQtW+u3ykM8NLKdiqSkp7lHttZvleRAUgaODPyHPmdvm93mSP/ug93SdaBr5FyJgYS0NrRK575OObbtmKRjaUkOJsXsNiWWiElnrFP64n0ynBqW44PHpbmnWbrMLrn5+ZtlKDkkw6lhGU4NS+tAq0RSERlODUtDa4Mc7Doow6lhqd9aL2WPlsmxwWMSSUckkorIicET0tzTLPVb66W5t1mGkkNSv7VeeAip31ovezr2SP3WehlODcuJwRMSz8SlubdZ/vY3fyuXX3O5TJ8xXS6ce6EsvWypHGlpFnf4kLhvfVYeXHWrnDdjulw4+3y5/NIlItEjIskuWf/QAzJzxhTRNOSFf/+RyK56kcG9IrtvFjn6hOqXiYgM7hfpbBBJD4jEjombjYokO0UGD462Z4ZEOl8RSXaIpLpFMlGR4UNqzOFDIuYxNXZng8hws0g2JpKNiwy1ilgZcW1LJJcUsXNqnTVFUkMiVkb95ZJqbVv5446qtW2JOJbaN9Sq2pz/pE9hO5cYHTebGG0rnNfOqePtnEgmpvafbBDp3qvWg0dEvovIS/XqOaaGRZIDavvs9v73RIaPiaQj6u/lm0UOPiEydEQk0SuyJaDGi3eL9B5Qx/UfUteZMdVf1lRtL9WL9B4USQ+L9Der7b53JRpNS339VoGH5MiRgZHHDQ2t0tzcK/X1W6W5uVeOHRuU5uYeicVU/0OHeqWzMybd3eY5x3R3m3LgQJfU12+Vd9/tkfb2qNx88/PS2xuX4eGUdHebcvPNz0tzc480NLQKPCT19VslGk3LoUM90tcXl76+uHR3m3LkyIAkMik52tcmpwY7ZdWLW2Teps/Jqhe3yOmhLumPD0ssnZDBRERW/eFxmfLF5XJyoENWvbhFJn3qEqm5cLoMJ2NyxZc/LTd+4kZZ+fx3Zd6mz8lXfvltGU7GZDARla+t+4Zced0KOdp9Sla9uEUu+JdPyKoXt8ipwc6RcyWz6hpWvbhFWvvaZDgZk/e6j8uqF7fIsb52iTiOHBeRYRExRSQqIt0iclRE6kWBhHoR6c23H8hvHxKRThG5Ob+Oikhf/vFAvs8T+e2zj0m6rjSLyJGz+hwUkQYR6c+Pc/NZ581kMjJ89KjEzpyRbDyufo9Eo5IaGJBcMilDR4/KrpUrZfD99+XQT38qv3z0URk6ckR2r14tjz3yiCxftkyypikP3XWX3HDllfLm3XdLqr9fjuzaJbtWrpThI0dk7pw58sgnPymDhw/Ley++KBXjxsnuP/1J7T96VJK9vdK5c6cMHzmi2lpbR347db31lgwfPSqpwUHJRY9Kuhn55DWT5Lzzpsu8eRfKVVdeJsePHhCxIuLGtsuD/7JazpsalgvPQy5fMkHE6hWxI7Lvz4/L0os1mXdBqVx00VzZsWPHKHZwsiLpQyKd9WrtZP+/xyr/D1uATvlvcOr/34Hy/87fh+D6/8Ylmz0XrWbP+idQSHIUBHd1iTz9tEKjBdTa0DACiGVgQCHd7m61LiDYhgaRQEAd09+vtpubFaKNx0WOH1fbR46offv2SbzblJtvFnniCZGeHpFIxJWjR9XQ8fgolk8kRkF1PK4A8qFDo22HDonccsu5faLR0cssPPXCMcPD515iZ+foPEJzszouFlPrTCYx8gNWgd6IJBJ90tPTLIODx88C3bGzgHZUWlsbZN++p8U0u6Wn5908GD4k8XifRKPtEot1ntV+eARQd3W9M/KDOJWKyOBg6zkg/OwfxsePvyKZTDz/Yzoi2Wwe8CbTap3LKZA7GBGJ5UFxzlLAuACQLetcwNzRO9rv7PZMHnR/cFL1KQDqbP4c8aQ6Tzan/s46h5VKyXD+iyXZ16eAcCwmsfZ2Sfb3jwDl2OnTkonFJBuLSXpoSO3Lf1kVvjBSg4Oj7YmEZONxyUSjMtjSIrtWrpSho0fFHBqSF37/e+n4858l2d8v31m3TuZXV8twa6vULVok//bkk5JLJGTo/felc+dOSQ/0i2tGRbrbJbr5X2TBuBK5ce4s2fzIBpHeTpFkXIHdyKBIdEgkYYq0HVfAt/2kSGRQ0j94WF7+/b+LGxkU2fGifP+Bb8hldctEDu2Vy5bXyQv//luRvi4RMzo6Vne7XFZXJy/87t9FDu0VefNFBboL4x7aI/Kla0R+8h2xraykYv0KzEb7JJeOS6z3pFiZpGTiw2LnMpKK9UsuHZczB1+Sww3flfZ3XpZsypR0fFBsKytWLiNtp04IIFOnTJbZM6fKvHlzZcFHPyrR4UH5yCWXyJw5s2Xu3LnysY9dLgf275WOd7dLKtYvfb1dcsN118qc2bNl9uwLZMvjG0fOc+bgS+KkkyOA1ombYj3/G8k9vFrs1pYRsOum02Jt/ZXkHlo5AoYLwNtJxMUxY+LEIqMAPA/IC8dYW38lqf4+NYkxY4bMmztXrrriCmndt0dy3/2mXLpwgUyZPFkumnuhXDR3rmz6p78bOW7hRz8q8+bNk7lz58oFF1wggOzfv196e3tl69at0tPTI62trdLV1SV79uyRrVu3SiKRkHQ6PQLIBwYGZOvWrbJnzx7p6uqSrVu3Sn9/v/z617+Wo0ePSiKRkEcffVSWLFkipmlKXV2d/OIXv5BYLCbHjx+XaDQqAwMDYpqmzJs3T55++mmJRqPS1tYmFRXj5ODBt/MTd8Py/PM3y549T8jAwBFJpyPS2blPtm6tl66uA7JnzxN5UHxoZKIulRqWWKwzD7wPSTodHfm8Ghg4KqbZLYODx0cAd0/PYRkcPCbpdEQyGTWhl80mpLf3/fyYsZFxBwaOSio1LJlkRnqae8TsNv8DQO7/oF96DvVIJpEZAcC9h3olm8hKxsxIOpqWdCQtmXjmHGDee1j16T3Uq7YP9UomnpFMXB1jdpvywi0viNltjoyTiWXk2LZjEu2Ijoxzes9pueHjN8jU6VPlvAvOk4nzJsrud3dLt9ktPWaPXPfl66R2Wq2U1pTKR5d+VBpaG6S5p1l++/Zv5bIrL5Op06bKBbMvkJ+98DM5NnhsFEz3NEs8E5doOir9iX45NnhMhpJD8m7Pu3Lz8zdLt9kt3Wa3dMY6JZJSYDySjijwvRZZ/sBy+aD/A+mMdcr96++XS5cvFdl9s2xZ82n59I1XSTYxKJIzpeeD1/Mg+qDs3f1nOXmkWS67tE5eePa3o2A52S0yeGAUGMfywHhXvQLGmajqew6Abs4D8bOOsxIKaCe7FADfVS8yuE+dw7YUcI13KUCZGhoFu9nEKNC1sqP7C8B3qFWks3H0mMK+rKn2FcB2AZBbGTXO2cC9sG8EtOf+4zUUgG5yQAHl5IBIxpT0C5+XT177MTlvSpXMu/ACuWrZfDm++zmRl+rF7WuWB9eskvOmT1GTGXUL1RjpYRGzU2T7LbKj4Vk1qbrpUZHUoBq7e58C2+mIAuzxbpFkn7rWeLe6tnRE5OQ2ke+XiZxskEQiI83NPVJfv1W6u005dEgB6vfeU4B6z54OaWholb17O0b6FADx8HBKotG0DA+nJBJRj88G6IX+nZ0xeeedbrn55uelszMmbW0RaWholf7+hNTXb5XDh3slkcjK8eODMjCQENPMSH9/Qo4dGxQznZRVL26R3xzcJi09JxWg7T8j/eaw9JlDcmqwU/rMIekzh2TVi1tkID4srf1t8g+PrZRJ1VUynIxJ5aRJ8ud9u+RoX5s80PB9GYgPSzQVlw96T8mEyonymzdekHgmKa15AH20r03648Mj54pnktJ46l3pNQclmopLMpuSwUREPug5JbFcRuKuKwMickxEmkUB2ndFAeJ389sHRSQiChDfLAoQHxEFuJ+UUfC8V0S2iUgiP9bNogC5KQq8J0TkPVFAOprvcyS/vS+/Hsif65b8selEQjp37pRkT48M5n9HjIDco0elc+dO+c3s2bJr5UqJnjypgG/+90rjjh1SPWGCJPv7pXLCBHnr3/5N0kNDI8WB6MmTkjVNmXPeefLUww9L586dcuzwYZlUWSl/vP32c8YdPHxYdq1cKb+ZPVtdQ2ur+k0zNCSxtjbJmqbYGVPS/X+Ql194SlwrJmKb8v3H75fLFo8XyXXLlscfkU9/6uOSTbSJdN4sPe3NIulD4nZ8VqomjZfX//SwSPqwtB45LDU11ZJKRBV2cOIKWB9BrZ2zinb/L1n+V+D6Q1r4//TF54Pzz4dnnoFZs87RXI9QUUHRWQ8dgk9/WlHHH3hAWTovWgSdnXDRRSpvOpHPQE2nVUb1HXcokfThwyqHWtNUBNaUKSpTOh6HsjLF8X7tNeX63d+Pz0nz5PeFm26Cd9+FdFpRv11XXcpXv6rcokVUvFJ/vzINrqtTjHURdVlFRfD978OpU6pPJqPW2exotPWyZbB58+jT3LdPjdHZqYzBN22CSy9VT0MEBgbUdYBLMtlPT887OE4OXTcwDD/FxZUEAmV0dDSRzSrfWC2fZdnR0URJSTVz594EaJSXT+P6639ASUntiPNtX99hgsFxXHPNFsrKpuK6No5jkUz2EgqNp7NzL65rEw5XnhVD8y/oupfJky9l7NiZ1NQsQznqZkao68STo7FPWaVppDikNNEDiuZKe4963N6jtjt6R7fLSxTFW/ur9kIW+LTqs+K2cupmOa6ij3u96rwF5/GBCHT0qg8hn49Z//iPIEL8zBn2fetbSmctSsHnZDK8//TTpHp6EFDUKuDdTZtIdHSQiUYZd/HFePJh1jnTxEomR/KdQxMn0tvURKa/H3tggHF79xIcO5bI0aNcevXVRHSdVE8PQy0ttL/2GgChmhrGzp1LLp0Bnx8pKeOuPa2se2wLY+deohyZrZzKWE4nIR5TGcvDAxAbGqVzp5MEZl7I9Qs/gvb7H8G081m84lra2s7AtFlKlt/XqTTDv31K6bRjEUacX9MpKB8H58+HV7eOjjv1fFhwKW79rSAyQvEeOLkPNA2PP0gq2ovhCyCAN1CM7vFSOftyzrvsC0y84FIy5hCGxz9yn6urq0nHh2je8yaH3j/Cnrfe4LkfPYjPcHhz21be2b+Hvbve4BffvZcLZkwmUDqegRN7GTNmLFt/90u2/dt3OPD2X7jra3dTMWPhWdFWBlpJKe7bf4FEHH3FjWizLlQO1V3taKVlisJ23acx7rofvXaqioxqfR+3cYcyzcpmlMGYz49WM0VRvh1H6a7nzEevuwIRly/NPZ8jb+3k3ca3+Piyxdy28hsYd3wDzfDw3fpP8c4r23ln/37u/cGP0W/6EvryK9nd2Mhrr73GN7/5Te655x5mz57N3Llz2bVr1wgtvKqqikQiwbRp01i+fPlIOkBvby/hcBi/38/SpUuZPn06TU1NtLS0oGkaCxYsIBwOs337di666CLa29vxer1omjIe7O3tpbq6mmQyyc6dO4nH4yoxQdNIJpNs374dj8dLeXkFXm+IVGqI6677Phdc8Le89dbDxGLtJJP9I9TtadNWUF29CNPsYPz4uQwPn+Dll+8glRqgqmohptlBLHYmH1HVxs6d3yQe7x6hgG/d+hm8XpVR3dBwO9HoCZLJfiKRU3g8vvyYx/PHtzM8fEKZvFkOTZuaMPwG/lI/S1cvZU79HJavXY6v2Ie3yEvkRITtd26ntKaUsmlldDR1YGdsZVAmQvuudjxBD2NmjOGaLddQVFFE1sziCXq47snrKJ1cytDxIc785QxOzsEX9rHgKwvIJXJET0dpuK2ByOkItctqsZIWid4ES+5dQrw7zi1fvIWX336Zi799McuvXs69X7uXWDbGT37wE+iDBQ8vIPalGJW3VDKuaBwbGjfwxyf/yMyLZrLgOwtY+9haHvjqA5T7ykdo4BsaN5BxMrRF29jXtY+UlULXdHriPXzv2u/h1b280/MOA8kBNE3jTOwMA8kB1tStoX5+Pd+/+/ukrBTxXJwDxgFOnD6NzN/Epp/v5tGbvPhynWCnmTj0E0XVzvSw8IIxTBvcAHYK3DSEp8K4RUr3e6RA6V4/mvFcoHhnevKfKa7aX2jHhkwvXHAvpDqUEVdmQGU3ax6lvfaWQVG1Or5kiqI4OznlRu1klca5oEmmYPSY31+gVJdOgzEXKDq2k83vOwXoimJdcNA2CsaOxrl060S3WltJ6H9XmXWB0kSfTSdHwDwFvXtV3zfvVBFWH/set93xVVrffolDb73IJ2+8ji+vfAiufJLv/fIlDr/3Pu+/e4D33vw1//7drynd9Bt3QKqX2LRbuH/dQ1x/+UfVtacHVNxWZlDpw9MDEG9XbYkeSPapazNPwxu3q0iqm/epvq5DbW0pP/nJxykq8jJ1ahlPPnkdwaCHcNhHaWmASy6pZGgozbp1y3Ecob5+DmvWLEfXNc6cUZTykycjIy7Yq1cvpb5+DmvXLicU8hIO+3j00d0sXFhFb2+C1avfoLq6hEDAw0MPXcaYMUEsyyGVsrnzzu2cOhUZ0XwP9KX58qJP8X7PScaHy1l71ZcoDYQJ+QMMJqM83fQcg8koIV+QdSu+TJEvSHXpBHIHurnm+msxzTh9fb38w7/+M5+++kZe/9Yv+fVvf8P6N35K3DQZGhjk1L4WLqtbzueu/zQXRMuoCJXh9/j45tW3UhYsprmrlZkVk4mk46x/46e0DffgiDAuXEZOXE5pGneidM+dKPr2I6j4vOnAj4GZKEf+YuA7wDJUfn0v8FkYoX0/BixQ/wV0Av+MSgFoQ+XQnwQ6gBuBO/PnmIjKsu9Huf3fCZwBnsi39Xk8jJ03DyuV4sjPfkZgzJhz6OFj583jsh/8gAXr1lE0cSKhSZOwUimSnZ18+667uP7KK2k/eJCBoSF2trRw6dVXU/exj7H1D3+gaOJENMPgB9/5Dt/+zndYdNNNzFu4kIfWrKHua1+j9tprufD22/EWF5MZHmbObbdRe+21jJ07V1HVx4zhwPr1OJmMqq6m3yZQtpjrP/73aJrKI188q5m2bgP0AJse+x6PPrwKn88HE59m4qSpMLSRofR8BgYjXHXDP4PvPGZOgbJQnO0v/TRPA/edG72l+fmftnwIrj9cFBguLj4XWIPSy95zD8yeDffeCwsWKDTa3KzyjB56SIGMZctURtKDD0J3txrH74eNG0fF0WVlCp3mgRHZLMydq/pGIgqs79unQNiiRZBJ094Bd92luvX1qUvp7VWYf9ky1VVExViHQvD22wrP3323AtwVFWpox1Gx2KkU7N2rYptcV/U5dQr+6Z9gy5bRaOslS6CmBpYvV+fYtEmB9j171Fhjx6o5BNcVTLOTUKiCV1/9OrlcAstK4boOmUyM2to6fL4w2azJtm1KVz1+/IXKITd2hldfvZtI5BRdXfuwrGRe8xlm4sT57NhxP8lkP7lcnG3bvkoi0UNNzVICgTKqqhbS1bWXaPQMxcWVXHfdk3g8frJZk6GhEySTA4g4aJpGNhvPv5iinszZ4LngZVjQV5/9uKC1zmujqa1Uhme6rm7C2Zptx8kbWuh/Bbp11XY2gG/vUdsV5TiTJ5Lo7CTR0UFo0iSMoiKyw8Nc8IUv4CkqQvd4sFJKVz3rH/+R1l/9SkVJZbMYPh8VH/kIRiBAoKwMO5nETqcLsx7qjSHCQHMzruPw8e3bqbjkEo787Ge0v/IKrb/+NRUXX8z3n3qKj99wA+WzZzNmzhx++cEHXLxwIX9/yy28uGoVfW+9Ba7L8//2K/Qzx/nExy5TbtdxU2mt978FmfS5+ug88OWGm5Tr9exLRoHxq1t54ifP8MkVV8JvngIrx/1P/Zi5V1zN515q5NR7zcq8zFGZ2fc/vJ65136cz33tHk7NWarGve5zYHjgH+9GDB0BKmdfzvlX3s6kuSvQDQ92NoPHH6T7/R1Y6RiOlca1Lexsiv5jTdi5NEXlE7CzKbreex0rHcPOpTA8Pjz+EOJY5+iwPb4grmMxeErptnWPl9JJCjxrwMCJQt+9IILHV0Tl7Mvx+II42cQ5+mrN68W48TNQWo5eVQserzLcyqTRAkHc9tNoJaXon/0n9OVXIcmkcvZOxHF3vopWMwV9xY2IZYHXh3HjZ9DKx+JrfJNr/YLsfhN0g8WLl9B2+pQyGtQ0pKsdSZgQHcLZ9gcF6kvLceLmiAb66aef5qabbkJEqKur47Of/SwlJSVs376dkpISSkpKKCsro7u7G13Xqa6uRkTo7+9nzJgxFBcXU1dXx5w5c/D7/VRXV/P222/T0tLChg0b+MQnPgGoCLVHHnmET33qU/z93/89L7zwAi0tLTQ1NfHDH/6Qhx9+mHnz5vG1r32Nz3zmM1RUVChHbivJyy/fQSLRS1XVwrwGelF+gm0dJSU1ZDIxqqoWYlmJEW11Y+MjI8B71671eTD9yAgod12buro1zJr1CYLBcnbt2jCiww4ESonF2gmFKkbGDIUqRj77tm+/E3SNFRtXYHaY9Db3MmbGGG788Y0UVRSx4/4dFI0tGtFK71q/CzttM+6CcXTt6yJyKsLLd7xM0bgiFSvYk+CDrR/w+jdeJxPN8MN5P6TnHTXZl+hOEKoIsf2u7URPR0kOJAmWB0d0140bGnEsh9CEEJUXV+Iv8TNl8RRuuPYGygJlrF66mi9//Muc+f+w9+dhUlX39j/+OqfGrqqu7qYHemaWoZkUpJnaIYKI4JQoiVdzo4miEU0cAigQQYVWQQQNOOCQwZgYlCRqM4kDgaahAZVBhga6gR6rx5rnqrO/f+yqaoi5936m3/P9fb7X/Tz1VNU5++xzqrr6nLP2eq+1zp1n6c6lrFu7jhWVK3jye08yp2wOz9z4DF2BLhZVLKLq71U4hjnYeGwjH/k+Ijsvm6odVRIcl81h0dRFnHedp7K6MgXIBYIx+WNo8jQxb+s8cq25tHilfr6yuhJXyEWzp5lHJz5Ks7sZq8FKujEd0wETk6ZNxBOI0d7RyYdVWymf8j3Kr7iWv5wcC6VzILu8FxgHmiCWMALpqpWvyxbJfmVLJNAtWyzfj1gIjk8k+BZK7/KyxfKm11IkgbhFOktjyobxr0jwLuJg6iOBeNQjwbe7QUY3qSb57GuVz/FQAjAjQbSvNRHVFJVgNZm5nFyXBMSqTmqjwy6pWXbVSxAr4vK6dSF4NqZDWo4E9BGvnACwFctl6YnZ79pKOQGw/9mU9tkc6+L6iQNQrHlgsDLxims519oD7kZWrX2F527QYzSocGAl+aWX9G57YCUPLlvPktlZZOeXQsQNNUulHjtnpMxqDjvlM1rv+4i7N7e5thIseeBrJq4JVLU3p7mhwcX+/S1s21ZPe7ufpUt30tHhZ8qUEkpK7Bw71sFrr81i0KBMAFas2J3Kbw6FYhw65GDIkD688sr17N59ngce2IKqKixeXMG11w5i5coaNm48RmVlNS0tXkaMeIWFCz8FlNRYq1bVkJdnxWzWk9XHRGZaOo9ddSdGvZFWTydrd/2JuBD87sDHbK/byx+/3CIv94pCTIuzaOkSdn21l18+8St0KGhxjX7pfdm0/UPWv/U6S55YzJZdO+j0OonFYnLS8PNP+eO77/LQw79g4q/nsHzHmwCs+uIPPPrRiygovF37Idvr9vK7Ax/jDwfwhwPo9UZWkNBDAxPozYrXAaeAuUADMADIAGz0gulKwAQ8ccF2JmQcXgnQiQTXzUjgnYuM7LsLGcUnkKApDQmwV18wbjTRJzsWI+LxYLDZGP6zn2Gw2xm/ZAlXvvIKI+69F53JRPbo0XQdOYK3qQlFUdCbzSy85x4azp3jtuxs7EOGEIvFiKoq2999l/ljx/LYr37Fl7Xy+vrUE0/wA7ud926/na/37+fp55+nORSi/KmnsBUX4zx5kuxRo7AWFzN+yRIiXi/Zo0enojePbdhAqLsbTT9B/m4dD0D0DKDy0rtWbpp9NR7H57S3d/Jh1T8on3ID5ZOu4i8bN0HeSnJKZlCQZ2Djn18D4hz47FHq6t2cO/EHICyj14zDoOBNMA39/0T01v9s+w5cf9f+dYtEJFBJMtSLF0tAHIlIkH34sGSd9+6VF7QkkF65UqJUkNvMmQOPP54yWODcOZg7V4JwnQ7MZslyt7RI+linA4OBSE4RK1YofPSRxN9mcy/D7PNJsGu1SoD8wAMSdJeX9zLRK1dKXOfxSPw/dSoUFEDfvjBvnuzfty9MnCjHq6mBxka5jV4vD9fvl3HXFotksXNzJRHf2ChjXjXNQHFxOXv3rk6Z/Gzf/jBCaBiNFrq7T1FVNTfFGu3evQJV1VNUJG9wkze9eXkjCQQ6qaqaS3f3KYTQKCqaQHV1ZcpsqLq6EkVRicUCbN36IFZrLm73eXQ6I9u3P4Jen4ZOZyQjo4hoNEhjYzWxWBhFUfB625AukNGLwbOCZJJVVTqCK0jTsiH9pAEXyHzlQSXg9kqHb70OfEHZr1+hdBE/29IbQ/LP4FxehS9eriowpBRNiN7Z1OXLiYdCpOXlceK3v8Xf1ETE6yUeCtF99CjWwkLGLV6Moqp0Hz1KoKOD/rNnY7Tb6Tx8uNcsBDjx1lsACE2Tpmjd3Rx45hl8zc2MffRRBt58M+OffJLnV63i9KlTLF2wgHBPD4+MHs2+qioO7tnDmJISfr1zJ0UVU2l3OFi+YjkvDc6S4FlvhBNf9YLoNKt09L78CvlsNMKPfwG2TIiEICsbZsn1lQ09nKlv4NlL+8OBXbxz05Wc/OpLjny2nQqbjtm/XCDzmo1G3nn7bU4e3M+RHduomDKF2ff+XI5rz5Qsd1c76E0ytikSpO34TiJ+F1osiqVPIV0NX14Aji1oFxmX1aIoykUAWqc3ocWimGxZKKr+IvY5Fgmi0xvJH34FlqwiCdDDAVRVjxaP9vYddDlaPErQ3UE05KXt+E5i8Wgvw1xxDQgkMI6EQa9HsVgRHhdEI2gtjRJwG4yo/QahZGSiWK0oqoJW3WtUphgM8lxhkZFdIhZFnXJVah+KTsfLr2/gxhkziG/5KwjBkr2HGHvLbfzolluo370TbfdnKIDOaKRi6lT69u3LyZMnufPOO1FVlYyMDEpKSqiurubYsWNUV1cjhGDz5s10dXXhdDrZvHkzTqeTrq4uqqqqEEJgNBqZOXMmkUgERVGYOnUqdXV1BAIBVqxYwbZt21i7di1HjhyhtraWyZMn89JLL1FWVsbUqVN59tlnWbZsGUeOHGHt2rX89a+bOHHia4SIXmQwNnDgdKZOXYTBYGb27A0YEtFFFksOer0ZkymDyZMXJID3YtLTC9HpzFRULMbv77yg6mUJmhanT5/BzJy5jlDITUXFYsrK5jBp0q9oaTlAUVE5qmpIjen3d1JUJM99x45txB/swGA1ULOqBmeDk2ggiqIqGO1Grl9/PapRZeb6mdxedTuT5k+iZX8LEW8Ea641Bbr9HX7c593sXLqTkiklTF81HXuxnUeaH6GovAhFVSguL2bv6r0pkF46pRShCSoWV1A2p4wpC6cQj8ZR9SqqQaWnvgehCcKeMGn6NC7JvoS3XnsL2ygbG7/cSGdnJx9++CE/mfUTzjx/hkOfHmJi8UR0QR2xaIzlNy6XQLpiEX0K+tB0volBWYPYMHsD/TL6sW7/OhZVLKIr0MWSiiVE41GsBmuK3V69dzUTiiagV/UsmrqIDn8HxfZiXtz3IqUZpRTbi9mwdgOOJge/X/sa8WiMWFwQTCujds9O/rLuYR759UscNj8EESeMeFwCY2upZKu79kLWGHmetQ2CCRvA2g/aqyVInvAaWAdA934JplWdZLsvXw/BFog64dizvUy2FpOsccwHPYfAUiJvjEc8LgH7hUBXVS9+r+glC53MRbQVgykTUiZkzZLVUpRvA2Jb0bf7ijgEu+W6ZF9FkSx4PCZzlUGC9vTSXmZ7wiLJJk9YBEPnQPkSsOaDIR1MdtAZeemlNdx0bQWeXSvkZEbzYMonTqJ86XH+8v6m1LYfdExA1em58RevACo0fp4C3Sh6ObZ9AFyzXsZ6XbVWfgfGDOkQPnSOdA1PTALoiRKNxlPAtrJyN+XlRVxzzUCefbY6BYSFgNraFsaPLyQUitHc7EVVFZ54YmqKpd6/v4Xrr/8T995bhd8f5PnnH2LfvoVMmnQ5Dz/8b7jdLTz++BRuu20EffrsY9asifTr9yfOn38JECxYMJnc3I3s2vUoEyaMZ9Kk8bz6ynpOdZ6nw+dk+Y430Skqj19zN5qmMf/qf2fW8Kk8fOUdNLrbefqTN1j+XCXbqrbQ547LePfodjIyM7DabLyyZBU51iwiVoWpU6Yyq89lDC4egCHNxNU3ziAUC5FXlM+UyVMYGM3inom3APCz8pu5atB4BIJ7ym9mxtBJ3D3hBmwmC32smehQWIAExouQufNrQiGeuPlmxl1yCbeOGcMH06fz+JkzOAC3EDy/bBn7LrmEjFGjaLj6alQkw11fXs7tY8cycexYxo8cyRhFIePIEVRgDNAOPIxkwH+DBN73AaeROfZmYDG9IF2PBNfGBFjWW63Y+/cnHgpxcPlyyVIXFOBrakqZqAYdDrRolBdfeokDLhcv33034x58kLyCAqxpadx+660c27CB6N69DM/M5MC+fXR2dFDd0MDtP/whI++7jyHDhjFx4kT2f/UVBpsNxWDA2rcvEbebg08/jaIoGCwWdCZTiske8bOfYbTZUGM10qwsbQJ0V1JZWcmZ+kaeXf44MeM4YrEYwYCL2j0f85c//ZZHHpnH4aP10L2SD38T4O03X+TScZN46Y9Gpk7IQ2+/rpelVo2gpv+3BNbAd5rr79p/0LxeIerqpBNYR4cUKm/Z0usilhQif/21FCAfPizEHXdIXbYUSfeKmJub5brDh6WYOWme1toq+1VVSbOzpKmZxyMC3qg4fFhLaZ/nzJHeaq2tQrz2Wq/E+0Lp9z/3CwalJvtCzfSpU739k3rrgwelkVlVlTz8pIdb8qP5fN/e1+HDQnR3u1Naxc7OEyn9c2fniYvev//+HNHRcVw4HEcSGuyLjcc8ntZv9e3oOJ4yLOrt13ZRP5+vI2WidqF2u6vrlGhurk2YHn0t6uqqRDDo6jUTi8Z6TcW6nL36aY/vX5uaXajDDkcuGCcqNdzJbS5cfuH6lCFaQvMdCgvhD4hYKCRCPT1iz4IF4uQ774iQ0ymad+4U7116qdizYIEIezwi0NEh/G1tonnXrpRuqevIEeE+d070nDwp9ixYIEIulwj29IjmXbukbtvjEWG3W3jOnxdhjyc15u5HH5UGaR6PeGr+fDG0b19xtrZWhDyelDZp96OPipDTKYI9PcJkNIqOpkbx8QcbRV5OtujXJ1P0Ky4S1rQ0kZWRIRYtmC+E1y2Es1uI9mapt/Z5hWhtSpmZie4OIZrOCuFoFqtWLBfjLrtUOFuaes3QmhqECPpThmgmo1F0NZ6XY/l9Ulv9mdRbm/R60XX4YK/e+rUVIhYOilgkdJHGOejtEtFw4AIdtkNEgl4RDQeF3+VIGI11iGjILwLu9tT7kK9HxCJBEYuGRCTo7X0fCSWWh0UsErxoX35nm3A7GlLbdJ79SjR+tTml946G/SIeDIh4V4fQAn4RD4WE5vdJc7GkaVko+C+NxuIed6/uOhTsNUBLmJDFWxrlOIlHPBgQWjAg4qGgWP7UU2LihAnC/cc3RGTZo6Lh1TVCCwZELBgQL69YLoYXFYp4W7OIB+Q24VBIPPnkk+IHP/iBCIVCKd20x+MRbW1t4v333xcOh0OEw2HR1tYmvF6v6OzsFPv27RObNm0SHR0dwuFwiFAoJILBoKirqxPNzc1i06ZN4qGHHhJjxowRbW1twufzpYzPQqGQ8Hg8wuv1CpPJJJqbm8XZs2eFXq8XoVBIBAIBEQgExPe/f7NYuXLxRQZjyXOJ398jPvzwXhEIOP9JW30o5fPg8bSKAwdeE11dZ0Qw6E71TWqnpTeDM2WkWFu7TgQCPcLn6xB1dVXC4TgqfL4O0dZ2RIRC0kgxee5xOA6L99+fI0KegAh5pGa67WtpOOZudou2w22irqpO+Dp9outUl3Acdsjnow7hafWIuqq6iwzNLtRqh9yh1Lq2Q23fMkBzHHEIX4dPNB9sFl2nu6Tm2iM12ck+zbXNwtvuFS0NLcIZcIoHFj4gho0dJvY17BM3vX2TAMRjix4TVXVVYv83+0Vu31xx7aprxadHPxVGo1G4gi7R6esUHb4OcfP3bxbrX1sv3EG36PJ3CWfAKU52nhQ9/h7R5e8SrZ7WlNb667avxZz354gjjiOiw9chHF6HaHI1iZOdJ4Un5BGuoEt4Qh6xYNkCMfrS0eJE4wmhhT1CdH0pbNY0UX98v9Q/h13i1u/fJN549TdC9BwRomWLEOEeqbl+c4kQdet6NdP+VqmjTpqcNVcJ4TouhO9cQkfdKo3P/C3y0XWw16wsqcH2t16gx+6W/XuOCOE5kzAZS+qbPUJEAv9kMBa9QGudMC2LX7iN92ItdTwq+yX7Xzh+xCf7Jo3MYuELDND+eV+RhP66S4iGbVLv3HUiYUzWI3XR7Yflc8chseKxfxcTx40W/u4W0d16VgDiqcW/EiLkEmdPHBIF+X3Fob2fi7azJ8SYUWXC2STH+smdt4s1z8zvNTILueWxBJ1ynyGPEIFOIRq2yPfJ/TtPy+UfzxGubrc4dapLfP11W8q8zOsNCY8nlFr25ZetwuMJiZ6egPB4QuLgwRZxxx2bRGurR3g8IdHV5Rc+X1gcOdJrgPbNN83igw/+Lr7+ulXMmfO+ePzxFWLKlApRVVUnli9/Xtxww02ip0dqvG+4YYP48ssW8eWXrWLSpKni3Xf/ktJtN5zrFJ6Q/yIzM0/QJ3bVfyVOtZ8XvlBAuAJeMf+jtaJg9liRP6hEnG9rFp1ep/CG/MIfDoi7fnqXWPPSWtHY0ybONJ0VJaUl4ovd/xDzP1or+pQPFNPuv1V4gj7x8J+fE9n5ueJvn3wsunwu4Q8FhDfkF75QQPjDQdHkdAh30Ct8oYDwhQLCE/ILdzQsWjVNtAqpb75DCLE/GBTvbN4sbtM08bUQ4r7f/EaMv/JKcVAI8djatWL6LbeIv4XDYp8Q4p22NtEjpM46qdc+KIT4w/vvi4yRI8VLQmqtk+ZlJJ5d//T+eKJfa+J1sxDiVSFEmxAi4PcLf0eHCHZ3C1d9/UX3FmG3+6L3wZ4e8eQDD4jRI0aItvPnRefhw1IX3dMjfnb33eLltWtFz8mTYvPPfy6KCwrEP7ZtE41ffCGyMjPFto8+EtFQSHR2doqSkhJRU1OTun2PRSIi4venjMv8DofoOnZMtOzalTKEjXrPCFGXKTXRoeNiVeWjYtxlo4TT8aUQkVYhggeFzaoX9cc/liZmoRPi1hmIN37zkBDBQwmzsiNCaGEh4mExbNgl4tMdW/9/Akf+/7HxnaHZd+1/qYXDEvj29PTabCfBsMt1scN4V5cE0m63RKRJJLtli9z+wr4dHb0u40lnsAvRb0uLECdOCF+791/uqqdHiE8++fbuLgS/c+bIdUJ8e/ukg/g/929tlctOnPh2/6NH5WEnwXhyW49HGoYlncKTN5pJk7Okq6+8EZbO4j5fh+jqOi08nlbR2XkiYXLmvsiV1+NpFV6vQ9TWrkuZEtXVVYna2nUXjClBdEfHyW+5jgeDzn8C4Z0iEvZfDHAvNBk7Xi9Es6MXJHc5e9df6O4dCgtxokG+Dkd6+yXBcygkH/7At4B20OMVN828XgwZPESaTU2aIk4fOiKifr+omDxZlBYVicG5uWLksGFi6bx5wt/RIXpOnhQzy8rEiCFDxKiyMjGsb1/xRGnpRRepk++8kwLd/rY24W9vF13ffJNy1UyaiTTv3Cl6Tp4UEb9fPF9ZKS7JyxMbhg6VY3k8ouObb8SH990neurqhL+jQzwze7YoLiwUWsAvxPkzveZloaD4yZ13iDWVy4V443khGhPr6k8I4XYK0dMpRGujfPb7pMnZkVqx+pmnxWVjxoie5iZpWnb0oIi6eoSjPrF9U4P4YHWlKC0qFOKN50W00yEcp06kjNI+mHu7KLWaJQj3uFLAPBYNX+T2LYG0R3Se/Up42utFLBIU0XBQRIJeaVyWAMghb48IuBwiGvKLWCQkgXYCePudDhENB3vBubsjAaxDwu2oF35nay8g9zpFJOgVQW+3iIblvmKRoIgmTNZC3h4Jott6Dcpip05IwHwhePZ5hObzXmRQFu9wpF5rPq+I+/1C8/tErO6YiCxfIJeHgheM3SziXR1i5YoVYtyll4ru+tO9xmiOFukm7vWIuMctTCaT6GxuEvGAX0S6O4Xb7RalpaVi8eLFKQOzZcuWiU2bNgm/3y86OztTgNrv96fMzlpaWoTH4xHBYFD4fD7h8/lEV1dX6vXSpUvFwIEDRUtLS2qdy+US58+fF8FgUAQCAbFhwwaRk5MjHA6H8Hq9IisrS2zdulW0tbWJ2tpaUVxcLN57b5Vobj4gfL52EQxKcPzhh/cKt7tZ+HwdwuNpFadPbxPBoEv4fB3i1KktoqPjpAiFPIlzlATVLS1fppzG5fte5/Fg0CXa2qSxYmfnycTYnQmTxAMJkzNXapxNm+5ImTmGPEHRdlgamiUBcueJTuneXduccg6vq6oTQWdQnN52WnhaPSLQExBdp7pE0BkUXae6RPP+ZlFXVSf8nX4R8obEpjs2XeQcvumOTaLlYIvwdfQao3Wd6krtw3HY8S2H8UCPdH9/pvIZkTUwS5gWm0S7t10c7zguTBaT+MGrPxCuoEu4gi4xZcYUob9ZL+a8P0dYLBbxTf03oqquStQ214o+g/qIDRs3iJ5AjzjReUI0u5vFutp1Ys77c3qNypYh7th0h2h0NYrjHcdFu7dduINu4Qq6RFVdlVhXu04cbDkoquqqxKNLHxVZA7LE58c+Fw6vQ8TDLiF2zxH3Xo1Y/+hlQoRdotvRKEpLikTtJ79PuHx3COE5Ja6smCT+9s4a6Q6+e44Q7yKE66TskwTWwQ4JlpOvk47i7pMSOAccQoRdQkQ8EoT7m2Sfd5FjBjtk/91zZJ8kiL3QSCwJopNA+0JDsuTrsFeC4ySYvnBZxJ8wMwtfbHSWBNtJM7TkeN6WXgO0QHevIVo0JEQ0KMHshS7gXcd7X7fuE6vuHi3GjR4mnIc2SnAc7BE2q0XUv3mjNHv7eI649Zqx4o1XXhZV76wVeZkm0a+4QPQrLRFWS5rIyswQixY8mjI6E/7OhImau9clPOlSHujsfe45JUT71yLQflb09ATEli2nxLlzzpRbt9MZEG53ULS2ekRbmyflCt7ZKU3IXnppX8oV/PBhh6iv7xEeT0i4XEHh88lnp7PXiXzatOdESUmpaG31iMLCInHgwJGU83jS/Mzh8Ipx4yaJJUvWp0zWPIGA6PD2pMzM6jrOi9310lys0+sU7qBP+EMB8cXXNQIQ/QcMECNHjRKDh18iLh13mahrPyce/OMKMWPmdWLIsEtETmm+ePK5Z8T5nlZxsv2sePCPK8T3ZkwTw0eMEEOGXiKm3X+rOO6oF+6gL2VwVtd+TvgTruW/3vKKcAd9whvyi26/SzhjUVElpMv3P4Pd5OsvDhwQpf36CacQIruoSPy6ru4io7MWIUS3kAD6JSEB+rTrrhPz16wRdwlpYtYqek3PjgghvOJis7RWIYRbSEMzc2J5l5BGaKGE8VjS1CxFChw9KjwJUiDp4H1i714BiMKMjFRKyWWjRonmnTtF2/nz4oYbbhAjhg8XI4YNEy+tXi2ad+0S7116qVjzgx+IS8eOFaNHjxbDhw8Xq1ev/pe38RG/XwS6ukTY7RbNO3cKX0uL8DscYs+CBcJ58oSIOTcLEfxKrF65TFx22VjRc/59IWLdQoROCNE8R9x7G2L9isuEiPWIbscxUVpkEbW7/iRE3C9am09JYC2E2LBhgxg3bpzQNO1/DW/8X9i+A9fftf/1lkSwzc0SdTY3S7TpdPYC4iNHJB189Oi3key5c9K+O9n38GHpDJ50FXe55Ph33NG7zfHjQrz0knD3REV7u9xlkkk+fFji9SSTnIzXcrnkIdTWXuz8LcS3mWufT/b3+y/+CL0xWxfvz+VKGZiLU6d648AOHZJu4W1th8SmTXcIt7s5FbvldrekQHfSadfrbU8BaOkmLtnlC2NtPJ7WFIuUvAlOMlTJ/SRvZru6Tom2tsPC7W66CNjLyC7/Be8Pp9jyixhof1C6hP8zy+zxyQitfxWv1eWUbuDJcdy+iwF4OHwBuA7J5V6/EKGQCLo9YvPfPxSaLyBENCp+s2atuHLyFBHxeMUVU6eKFTfeeNHsbsjpFLsffTQFgAMdHWLnpk0i3WQS3SdOSEfvEycumhl21dd/a6a48/DhFIAO9vSIU19/LW8KSkpSYH78ZZeJzvPnxWVjx4qyESPE4NxcUWaxiN/++MdCC/gSwDoBlJ3d4id33inW3HZ9Inprv4zHSgBv4XFJxtrZnVjuE02nTwlADOzfX4wZNUqMGTVKTLh8vPDVfSPGlRaKkUOHitGjRonvXXmlOPTZJ0LsrBK+E0fEuDGjxcgRI+S6KyrEoSd/KZ3Cg34hWiW7HYuERONXm0Xn2a8SAFoyyI1fbRaRoFdEgt6L47cSgNnvbJUAO/E+Gd3ld7ZKp/Fw4CKGOslo+52OlBN5MopLLmtIgfigt1sy394eEXC3S8Y4wUrH6o4JzdnTC56XL0jEbIUk6+xxy/d+n2SrO9tF3OWUzLffJ9nqlqYUYNYC/otcxl9Y+qS4dEB/0XXimIi3Ngkt4BcRr0e01OwWsdpqoQX8YuPLa0RpUVEK2IeCQbFp0yaRnZ0tnnzyyZQbeJKtrqurE62trcLj8Yh9+/aJzs5OsWnTptTrUCiUAtR1dXWira1NnDp1Spw4cUK6rw8YIMrKysSwYcPEuHHjhMPhEJdeeqkYPny4GDlypLjyyivF7t27xenTp0UgEBCbN28Wl156qRg5cqQYNmyYeP75Zy86d9TVVYmWloOJx1cp0BsKeURLy4XRfJ7EJN7JVARXV9cpsXy5Wbz//hzh93d9axIuFPIJh+OIqKurEj5fp/D52oXL1ST8/q5U1JfDcVjU1VVdMJnnEgGXZJ0PvHYg5e7tbnYLX6fvIqCbdAtfxjKx6Y5NkmlOPAI9kv1Obp90H0+CZl+nTzqDuyVDXruuVmy6Y5MIOi8G0xeO4Tgit1v+7HIx5tIx4nTTaVFVVyVaPa3isOOwGHjNQFG5ulIcdhwWN719kygoKhCr318tDrUdErffebt4cP6DosPXIaY9O02Qjvj7N39PuYUfbDkoHF6HOOw4LCO2LojkqqqrEl+2fimcAedF7uLt3nYx5/054qP9HwlAkIXI7JcpRo4aKSZcPk6InkOiq+omccN1V4qyEcNF2YjhYv0Lv04B6GfuGSmKigqF0WgU2dl9RFFRoeio+0yuDzkvZqEjHrks1CVZ8IscxQ/JdS2fCBHqkU7hF7LYSYdw1/FEDFePBOIXMslJpjnQ/S+A8gWxWtHwxexzEhhfGK2VHKe5OsFc+3uZ71jkYkY89Yhc7F6ejPVKxWQdkQzyx3OE6DgkVi+6R1w2dpToaamXrLKnWYjuE+Leu+4Q6196QQh/h+iu2yVKcy2idvdn34rq+sntt4g1zz/Ty4R7W4TwdwjRfkjGdV3YP9CZ+EyJ5/ZDQtRXibBfAukLI7QOHWoTPT0BcfJkZ8oFfMuWUyIz8zlx5kxXCkS7XEHx6qv7xV13/U24XEHR2elLRHi1Ca83JE6f7kqB5FmzbhX33vtzsXfvaaHX68XTT68Q48aNF2Vll4qJEx8WR444hMcTEpMmTRWDB18ihg8vEzNn3iSOHP9GPFH1G/Hul1tEQ1ez6PK5xHtfbRPH2xrErvqvRI/fLbwhv+jxu4U/HEgB4qOtp2VEV4LxTkZ5Xb7mTrGr/ivR7XeL8z2twhP0iUA4KDwhv/CHgym22h8OiCeqfpNiy50Bj5j/0VpxvK1BdHh7RENXs+jw9ghPJCQOa5qoEr1g94iQYHeOkGz0D++8U9z3i1+IOW630Ov14qcrV4pxEyaIURMmiJ+89574REh3b7eQjPTxxkaRlpYmGjs7hVdI9+8tQojGxLjtQoLmJFvuTryvS4zTlli+RcjorlCCue46dkw079olIn6/CPb0iJZEZV3E50vFiPbU1aWIgIjPJyvwdu4UzlOnRCwSEUJIFtqZcPpOAnVnXV1q/X/WYpGI6KmrE8Hu7l6Q/8034uQ774jdjz4qIj63aDrxB3l/MrC/GDNmlBgzepiYcPmlQgQPiq6jN4kbZl0pysqGi7KyEWL9utUpQL1s2TIxZMgQMXjwYHHDDTeIxsbG/1mE8X91+6/AtSL7/N/ViouLRXNz8//bh/H/jRaJyIfR+G1DM49HPnu98pGeDhkZcOqUfJ2Z2Wut3dEB48dLLfVzz8HChVLUbLFInVQ8LjVaf/mLdAsrLZVC5okTpci5ulouLy6G9naCRYOICR2trQo+n9Q4FxZKGbiiSKl3WRmkpcnD9vmkz9r48dK3y2js9bZqb5cmZkaj/Bjz58OCBTBggPzoBoN0ALdYpIwzLa13P3v2yDEffFB6uq1eDR99BB98ANdc42bLlnlMnPgIGRmltLYeJD9/LEajDZfrLLt3r2Dy5AVkZQ1CUaRTuNvdzKhRP0IIeXDRaACA7dsfZurURfTpM4jz53eTlzcSVdVjMmXQ09OAwWDGas1BVQ1EowF0OiNCCGKxIAAOxyEKC8ejqnri8QgGgwWPp5mGhh20tOzn+uvXY27okqZiIwdLTXVjm9RXhyPydWmB/BsJAQY9IKC+WRqQ9bGD0QCRGJxrkePkZsHgUqmhTrZgGJrbYWCR/DI10bs+nviDqAoHa2u59c47OXPiBN+bNo17f/hDBpw/z8j77kNnMuGorSV79GiOv/EGI++7D2tREV989hk/+slPaGtsRNXp0GIxFFXF39LCsQ0bGPf44wgg2NHBibffpmzuXAIOB2m5uZhzcjBYrcRCIVS9HlWvR2gaSmKc85s307e8HF9LC1lDhhANBDCkp5OWbkMJBcDVI03JZv4Q8gqg0wHOTsjKlTrs638EfXLl71xvkFrrD96CW38mP7MQvd9tUwP0vwQCPlj2c1j2qtQfJ8fJ7gvxqDQXisfk94git4+EpIvu13ug/GriOh2RgJvO+v3kDrocQ1oGQosRj4UxmKxEwwEifhd6UxpGax/iYT/xWARVb8RgttJ69DNcrSe45MqfouoNxGMRdHojit4I8RjxaBidwQQ6PUriopE0PtNiMRSdiuPELvKHX4nOYCLsc9LVcICcgZdjsmXSevQzikZcgxKLSmdwewZk9pGO6BYbwtGCUtwPRdN6ncMtNoiEpblZSyNKQRH4/WjVn6FOvgqyslMmZVrjWRSLBW3vP2gbU07pJUMZmJWBzZ6BYs/AqMDnO3Zw1XUzCXV3ocvIIKdPNitnT2e0vwelbCzxG+Zw5513UlJSwuTJk6moqCA9PZ14PI7RKP/Pku7efr+f9PR0NE1DURSi0Sh6vR6ApqYmrFYrfr+fvLw8AoEANTU1zJw5k61btzJ9+nRp2OXz4fP5KC4uRlEUtm7dysSJE0lPT0+ckiNYLBbi8TiapmE0QlXVvRw7tpGysjlMnPgo+/f/hlmzXiEejxKPh9mxYwGTJ8/HYLCwbt0llJXN4YYb3qS7+xR+fwf5+WMIh71YrX1T5wy93ozT2UBNzUoqKpZgtfZFrzfR2FiN1ZqL399JQcFleL2t7Nu3hunTVxKPx4jHw1ituTQ27iEjoxSbLR+9mo7rtBu9RY/RKq8jBosBVa/Sc6aH6spqKhZXkDUwi2goSsgVwpqb0NLHNJxnndQ8X8PM9TPZOm8rxzYeo2xOGbM3zAYNFL08h0R8EbytXmpW1jD1ialYci2Y7CacDU65jyUV2IvtxIIxQu4Q5kwz7a52howYQnG/YvyKn4L0AtJMaWzcvhHNr/HQzx/ibMNZPGEPxdcU88nLn1DfU8+aT9fQ+odWzp87j96gp+RHJbw3/z3mbZnHxmMbmVM2hw2zNxDTYsS1OBaDhVAshDvsJtuSjU7REY1H+cW2XzChaALXDrqWovQizjrP0uRpotheTGV1JYumLqJfRj8y9HoUhNQaaxHpoB0Pgs4MwTZpSFa2CGwDpXlYxAXGLEBLnB+MsH+u1E+XzoEJr0O4E3Q2ub2lAL58uHf9+HUQaAZznjyn6G3SO0O7YGxFL8fXImBImF6KuNRlqzoIe6Tzt69V6qh1Cb2lu15qp9NyIHNQrxu4knACT5p0uBukPjotV2qptUivU3g8IrXXtoTWWmhSk20r6nUm16LytYj1jh92S3M0Ux8wWkHEaG5pp2TQMAb2KyZd9UN6ESajkdpP3qPbp3H3zx+m4cxpUFQeuP9eHvj5z+V3HHKCOQt0Zu769zsYm97Iw0+/Lo+5cLI8R39yDxROgaIpUotdvgT0ZmnOZu8vv78dc6H+I3w/dXL6TA8DBmThcPj55JN6hgzpQ1FROmlpBrKyzNTWtlBSYic/Px2DQSUQiPLNNx1MmlScuIxIQ7Tly3fz2GOT6Oz0M2VKKT5fGJ1OZeXK59iz51M+/HArsViY0tJCRo/+IVu2bKCrq5XrrruaP/3pb4waNZqqqgOMHj2EvDwrv/vdG/zx3bf46B/beLP279wz8Ray0tLxhQM0uzvISkvnDwc3c2/5LZgMBrLS7BxqPcVjH73IVYPGs2T6z3B4unmz9u/Mv/rfATDrjQjAFfSQbrJi1BlodnfwVu3f+dVVP8YV9Mp9ld9MlsXOmn+8y8NX/BtmgwlVUVAVhfM9Dt75cjMPX/FvWIxmVIMZv6LgUhSykOZiGhAH1lZWUvXxx/zls8/YFAqxMDubJ556iruffJJj585x++TJfL51K/3GjKENWAcUPvMMx48e5bcbN6IH2gA/0oF8EdAvcWuzFxiP1HnXITXZY5D6azvwEfAF8FY0iikalfcXikLI6cSUmYnQNPwtLRx/803K5s4lvbQUVBURjcpkE4MBAC0SQTUa0SXeA8SjUbRIBEWvR8Riqed/7vevWjxhArt/6VIat22j9LrrGDVvHiIWI71fHjpdGGLt0L0CsheArq88B+jz5LeqpIFq/k/38d+xKYrSIoQo/g/Xfweu/xu3SAROnoQVK6T52LBhFwPsYFCak506JR3CFiyASy6Be+7pRZobN0rTsvXrpeGZwQDd3bBjhwTer7568fbFxRIs1NZKtPzcc3J5YSHY7dKhzGTCnz+IMw0qlZVy9aBB0kjs6adDdHX9iObm45jNaRgMeSxb9ioTJgxmzpyraGo6j92eQSQCZvNP+MMfHqG0FBYvruSdd36Pz3ean/70r4RCN/PaazKaK3lu0ukkyM7OlmZmNpv0XzObpdN4c7M8/MpKWLIELrkkSCTiwu/voKZmFdOmrcRgSCMWC7F9+8Opm+GZM9exdeuDzJixFr3eTCwWQlF06PUmFEWPELGEw7gLiyUbRVFobNyD3V5CRkYJVVVzU2Mlx1BVPS7XWfbsWcm0ac+jaTE6Or4hK2sQNltfVNWAy9XA7t0rqKhYTHafIejDQoLowaUyFqvTCZPHwunzvWB5SD85s6BLxqAgDWqSwFinypitJBg3G+W6pFv4qfNgt0Fmem8fkxFCYekkXloABj0/vm0OfYoLWfX880wcORKvTofJbGb4iBEsW7iQwUOGoBgMiGiUJc88w6ZNm3C53fz2pZcY368fuZdeSiwU4uj69Yx99FGURGxcLBBAl5aGIgRhtxtTZiaKqqIlLkQAvqYmjm3YQNm99xJob8eSn0+wo4PMoUNBUQh1d3P8jTcomzuXzNJiFFcPfPSOdPu+/Ar40f1gtkgg/af1MGAojK8AoxliUQmaLTb52myRgDocgk1vwQ9+KmO7XF3SEC3gg/QMqD8Bhf3AYASTWUZwBQNgz5B/gPpj0CdPOpRn5Uogr+rQEGg6HTLpTYL3gLOFxq+3MHjKHehNFoSigBZHaHFCng7SMgtACKJhP3pjGo4TuygYNQ3iMQIuBwazDb3JQtDdSVpGbgpwB92dGNJsGNLsBHpaMKTZUFUDmhbFkJaBgqDl6Ke42+rIKBhK0ahp0mjM40Xb/RnqpCsRfh9q6UBAIAJ+FGs6xGJoLedRrOkIvxelsAR8HrTqz1EnXQkZWWjb/o44dgilbKx0GhdCmt27XQiPC7WoFKGq4HZJEF4xTU5yhAJoe/8hjdSs6fJvYTSBq1seU8U0NHsm8cTvJznrvH37dmbMmIHb7aa6upqpU6eSkZHB5s2bmTFjRqqvXq9Hp9MRiUTQNI2Ojg4KCwsRQrBt2zaOHTvG7bffTkZGBhaLhXA4TE9PTwqEFxUVEY/HiUQi2Gw2gBSQVxPHFIkECQSa0etNWK25gEIyZm/HjvlMnPgITU17aGnZz6xZr+L1tmAyZaCqerZvf4TrrnsZIeK0tOzHbi/G42nGbi8mI6OUeDySiAA0sHnz/UyfvgpVNdDSUktR0QR0OiM+XztGoxWdzkgo5CIaDVJdvYKKiiVkZvZHCI1oNEA0GMFi6kvV3CrqPqrjtg9uo3RqKYqqEI/E0Rl1OM858TR6sBfbqa6sZvKCyaQXphPxRQg5Q5izzET9UaqfraZiUQXuZjf2YjveVi/5Y/MxpBlo3NPI+7e+z9AbhzJt5TR2LtvJdWuvk9+dXkFEBf4uPw2fNjDgqgGkF6UTFEHu++Q+ppRMYUrJFNbsW8O6meuIiRi1zbUU2Aroa+uLqqjERZzHPnmMtTPW0hHooHK3BMDZlmxMOhNtvjZW7F7Bryt+TbG9GIffQboxHVVR+artK+qd9UwpmcLKmpWsnbEWgaDN28bKmpUsrlhMmj4NZ9BJn7Q+5FpziWkx/GEXJfhRAk3SvfvYszB8IdiHSCdwva0XPPrOSsBtzILuWmk6ZsoGnVWC8agbDHYJOlUjxAMSVOdOgbwrpXFZ2SLQW8DUF7ynJXAfvkCanSkG8DfIfpetlQA90AT510qA+88g2d3QC6QzBsjzVTwigbC9nwThWlw6gtv7SdO0JGhW9TJWy97/4uV6k3QNvxCgX/g+vUR+NoQ8pqhfAnstCq17pJO3wQ7e89L5u3yx3MeOeyUQLr5SOntPeCIB2IvlvgvKJTiP+sHbJJfvr5Tbe5vgb7OlSdn31oFjPxRNhWgAIh6wFgKadDp/eyj0v1b201vkZIOvBU+fq+no9OP3x6is3M2CBZMZMiSb9nZfCljn5VnJzDQTDMZYsWI3TzwxldJSO2fPuli5soYlSyowm/W4XCEyM83k5lrR6RTiccGVV87F6TzAtm3bKSzMRVEUiopyWbjwHWbNmkBbm4/XX1/INddM58CBfH7xi3I6O/2MH1+Ipgn698/lm+MnySnow4n2s4wtugQATQicAQ+ekJ90s4VgNMxbtR/ys/Kb6fD1kJ+eTb49Bx0KcaGhU1R80RBdPie/O/Bxql9fWx/afT08+Nfn+fvdq3m15gO21+1lxtBJzL/637EYzLS4O3iz9u/cdfkN5NqyONlxjiaXg7GFQ/njl1t4+OqfYEqzIRSFAKQeL73wAnvfe4+hn37KssxMBgCF6em8d/gw/QYOpBF4/bbbmD5jBtPvuYelwHwhuHnQIAa9+iovz5jBICAE1AI5QBfSLXwesAn4IPG+I7E+ACwEHgGKkVFfmdEouS4XUa8XQ7q85nz1/POMX7KEg8uXpwDuhKVLJUjWNBRVRTUY/kugDBIse8+e5ZvXX2fkffeRPmDAf7pdPBolFgwiYrGUOaytqAhFL9B13gd9fgE9q8G7UUZn5SwDXS4oZjm59h2w/pftvwLX37mF/3dukYgE1hs3yudw+OL18bhEmWvWyKDnwkK5fO1aCaAXLep1ErdY5Doh5Lh79khUHI9f7CRuNst8rAkTJLD+6CNp3Z2kms1m8PuJ+wJUVvZupijyEDdtgquumssHH9RRVnaYadNuYsmSe3C55K7mzVvDxo2HGDPmEIcPP8KKFXLbQYOm8fvfb2XkyCuYOlVmX3u94HZL4NzWJucRsrLk12CxyMMZOFAS9BaLPOScHPnxc3LgoYfSMBisVFdXUlw8CRD4/e3odCamTn0i5cQrhGDy5AWJm1gjRqMNnc5APB7B5aqnqmouHk8TBkNawjH8NPn5Y7Hbi2lqqrloLIDNm+8nFguxZ89KJk58BJ3OSDwepbS0gvT0AlTVgM/Xit1eyuzZG8jOGoJe00kgfEk/+YX8R/FbSRI6GJZO4JomX9c3QTQmwbZRL8dJOoojEtFXibH62P/TvOzKZ5+Vjtn3zEPV6Xh/61YO79vHttdeY8rEidx65510HT2Kv6mJA888w6J772X373/PW6tX89Tq1ajp6ex/6imCnZ0MnjMHX3Mz+5ctw9/aSiwcRlFVgj09KffwqN/P16tWEfX5ELEYabm5XLZgAZb8fHIvuwydxULuZZehN5sxWCyc/O1vU3EVqKp0755xW2+8lgDcPZJFvvVnMGgEnD8NXQ4JtiMhOHtSfs/hIHic8vd9y10yQsvdDemZib5huSwrB1rOym00Dbwu6GyR7Hj9MQngDUa53Zb3Eu77oMZiKIrMCRbxGP6eFvRmG4On3IGmyffRgIvWbz6TYNBkJeBsA0XBkGZHUVTyR1xJNOCm9djn6E1pREMy4sfSpxBF1RMNuBFCYMkqIBr0Egv7aPzqY6JBH3qTBYMlEwUQKOQOLr8g31pFpxrQ9uxEKekPJrPMsBYaWtM50OkRrm7iW/8qQbZZrlcMBrSaf0hn8L3/QNHpUKd+D/X2n6G7/vsIRZWMfiyG8LpTwFq0NIHVhm7GTSiZWSi2dEQwgFI6QH7H8TjajirJDtoz0c28RQLwRCad0+mkqqoKt9vNzJkzURTlW07hx44dIxyWLvyBQIDm5macTifbt28nGAxSWlqKTqfDYDAwdepUbr/9doqLi8nMzMRgMGC1WiktLcVut9O3b19CoRA6nQ5F6a3+iEQiNDc3E0ukLkQicTIzBxCNJrOnzxMIdKPXm7nuupfw+zsYOPBapk9fhct1jp6eelRV3mxNn74Kj6cplTDg8TRjschnRVHR6UzEYmFisSDl5b8kEvGj15soKLgMTYsRjQZwOusJBLrYuvVBolE/Hk8Tx45txO1uxOVqoKpqLl5vG9a0PABmrJnBnL/OwV5sl9nTDU6a9zXjOuvC0+i5yCF835p9GNIMWPOs5AzLwZJrIb0ondmvz8bd7Ob9W9+nurKavJF5eFu9VN1Xhb3Yzv1H7uf69dcTj8SZ9OgkkiSB84yTqvuqiPqjDLtxGDuX7sRZ70Sn6Fg7Yy13jLoDh8/BpOJJnHef5+FtDzOm7xgK0gvQq3rMejNH24+ybuY60gxpVO7uzbTWKTrafe0MzBzIa7NeoySjBH/Un/q7qYrK5JLJqX18VPcR83fMx2qwsrJmJRuPbWTlnpXk2/IZ1GcQfW19aXI38cCWB8gzZ6CcWCmdv835cPkr0v3bdxa+/CX46qGzWrKpgUaI++HgPJlnHWhKRGPpIdwBR5dKQKzFINQhf97DF0jHcOvAXsY6UcGQysc+sRK0sPx/UE2Qd4UE0OZceVwiLsGrt0k+J13Bk9nX6cWkLiA6U4KJjklQrEVlLJeIX+Aw3iLHzxgoJwYvdAqHix3FNa33va2oF1hHvHJsg1Vur+ok4DVmgIjCwRdScVxE/VC+CPrPkPsY95jcJi0XDq6Cogo5IWHpK48/dwwEHHDlarnv4ivg5+3SEVyfJplrRScdzdUEw6+o8tjuPCgdxJPXR3s/KLoCnV4hM9PMqlV7mDKlBKvViKpCMCgzp3NzrXR1BcjPt5Gba2H16um0tXkRAhwOH489NgmzWU8wGKOjw08gEOXBB7fg80V49dWXUZSj7N79OZmZWdTXO5k3bws333wrFst50tNNmEwRPvusmuzsAYwb15cVK7YyYUIRJpOO99//gIzMbMImgS/sZ2zRUGKaRiweJxSNkGWxk2G20MeSgVFnYGzRJfz+wMeMLbwEk96ILxwgGJP3kBoCfziQiu96q/bvZKal87sDH3Np0VD+fvdqsq2ZzC3/Puu+v5AnrrmbTp+TLr+TN2v/zs76g3QH3Bh0esYVD+P64VPpDri5tLSMqNlKm6IQFILDgAt4+cUXOfjnP7N0xw62ZWZSiWSfv3/77Xy5bRv9geyeHg7s38/I0aPJABYATZ9/jjMWY9f06VQi865NyFiuF5GAuQOYjwTWRUANElTfj3QQn4SM+jIjI7ws0SjBzk58TU2oOh26tDRavviC7iNHUm7dZffcg6LTEQ+H6fzySzznzhFxuYhHo/xXTYtE+Ob112ncto1vXn8dLRL5D/vGo1G0aJRAWxsHV6zAkp+PragIvcWCTm+QTHWsE7IXJTKpF4KaCXEnRM/yHUT8X2/ffXP/nZvR2BuXtWRJbwb1heuFkOh2yhQZNH3qlKybnjoV+veHDRsgP5+Q283Nc+dySXk5Y+64g+nt7ZzRNAiFuKq+ngFWK2MPH2ZsRQVrNm6U+1q7lo7f/Y7rXniBIZddxsjLL2fXqVPw7LOY//pnFi8SzJkjMXxnZ/JQzcybdz3PPquwcSMcOjQRt/scmZmSeS4qgvz8iz+WqsI110zgvfcGYrPJeK3775cV7Hl5EljX18uPGgzKjx2Nykr15PJLLpGl4clor4cfhjfegF27zEydupgRI27D53Owc+dSXK5zZGUNYvbsDVgsuYTDHnQ6PVu2PIDLVY+mxdi69SF8Pgd6fRqTJj2Gx9NMKOROxeyEQi5isSBOZwN2ewmzZ28gI6OUcNhDSckUWlsPMn36KtLTCwkGuzEarUQiXhobq3E66/nii1/jdNZLhjwiJDgOhiXL7PHJzOrBpRIwJ0G30QCObnl/lGaCDJtkqk0GyUY3OeTvQiDHOdMoWWxdokRQaLKv0fAf5mW/8Le/8NePP2LrW7/HNGwA3qYm2t56i1BPD30uuYQJnZ2cPX8etbiYQHs7LV98wbE33sCUlUXusWP4g0G2vvQSuZdeit5iwT5gAAarleE/+xnmnBzMffoQC4UkIDMa6fz6a4I9PYz+xS9Q9Xr5vqsLFEXGc7W0YMrIwHPuHPufekrGdT32mLwAzp2LiMUl65xXCHc8CLn5cgJIp5estNEky8XtWRIIX/sDcHVD8UC5TgjYuhGiEfnD0elgcJks/b5kFHz6d3njmJ4ht/nL6xKkOzvlmAaTBNYBP1htkNMXZv2bHKurPQXioyFvLzhOgN6u+gOY7bmoqp6cgeNRdXpUnRGzPZdYJIiIR0GnR1X1KKqOnIHj0elNWLKLUFVZ6hxwtqE3y8ib1m8+xZBmQ2+0UnrZDRjSbDIjO+DC39OKFotgtGRQNGo6RksGkYCbaCSAOn0WyvBR8qeTuHlQi/uBToe2Zyfi2CGE3wuxKPGqDxDOHtTps1FGjUOdcZP8vWXloGRkylgtVzdCUWQpnS0drVVmhaol/eRkhaqinW9AdHeiFJWilA5A27kdgn7U6bMhGkGJxYhv/RuEgsRRiMVi3wLSQCqzuqKiAkVRUvnVOp2O6upqrFZrajuv10skEsHn8xGJRMjMzKSoqIhgMJgC7rFYDLfbnQLjFouFYDCIzWYjHo/T1NQk/11KShBCXMBoa+j1JkpLr8BotGKxZBOPR1EUleLiidjtJRgM1lQe9dat8/D52jAabXg8zUya9CvM5ixKS6eQldUfu72ExsZqhIhhMKTh9baxd+8LxGJ+hNDwelvZsWM+QmiUlEzGZiugtPQKampeoKhoAmVlcxLxgjIazO/tIuKLEQvH0KfpKa0opWZVTSp72pJjYfeK3RSVF+Hv9DN10VTK5pQx7flpuBvdbJm3hbA3DAL0Fj2qQSWjJIOhNw6lYlEFql6lZqUcz9PsIRaMse3hbRhtRjJKM9CiGghSoL26spqQOyRfP1sNBugMdPLAlgcothdz24jbqKyuZFLxJBRFwR12owmNmBZjcslkTDoTBsXAE1OfSGVa2012iu3FtHhbCEQDqIqKUWekvqeedl97qiw8uY8PbvuA+ZPno1f0LJi8gDllc1g1fRUNzgYe2PIAZ51n6Wvry6ppq1B0JsTYVRDuToDpc6BoEvDmTpFgN3M0dB9I5F0n4rNOrIbsCTLrOh6SbHMyVktBstiH5kPXHhnFhQZfPQL+cxI0Kwpc/jrMOilZan26XHd0KRTfDCGHZL2D7UA8kV2dDjqjZKPdDRJAZwzszbEGyeSK2MVA2pQpwaitGPoMl9uIOLjPSrbX3q8XTINcZisEVHkRTwJ2nVmuczfIkvR4Mt6rCCI+cJ2BT+8DvwMqnpdM8+UL4fRfJYtsK4K8y2QsV95lYO4DV6ySDHpLtZwMqHkSgj1QMBmMdlIMuS5NlnxrMfj8ITlBYc0DU4bc1nlaHnvUD5/NA3+bnABIjBuPRtE0+M1vZvKDHwxn+fJdNDS4aGpys3HjMVav3suUKSX4fBHcbjmJN3ZsPiaTjuJiO93dAXJyLJSW2hkzpi+rVtUwYUIRzc3NLFq0kPr6Nq6/fgYzZkzlpz+9gcrKa3j88aW8//5H3HTTFTz00Bxmz76bzz4Lc/PNg2lsfIWrriqnoqKcTZv+wN8/2oQz4sKoN9Lkamf5jjdp83ZzouMsjU4H9jQ7Le5OXq35gLGFQ3n0yjuIanFC0TBr/vEu7d4emQWtKNhMFu66/AZmDZ/K/Kv/nYL0HJ645m7a3F28WvMBDk8XBRk59LX14dnPfote1ZNr68MT19zNBz9ZSV9bH462naHJ1UHlp2+TZ+vD9BEVOFSVpUCrojAVMDQ389Zjj1HvcvHk1VdTMHYsx8vLiQOeZ5/li23bKB85kruuuIK7Fy7kDxMmYAaGAn966y3uu/tu7lBVFiHjtFRkKfibSGD9OZAHXAG8AIxA5lpvRJaOfx8ZyQWQD1g1jVBnp4wYXbGCQGsrU9eswZKfjykri/GLF2Pr1494JEL3kSOYs7MJdXYS8Xr/U6CcbKrRyMj77qP0uusYed99qYq8f27xaBRPQwOB9nYCDgfD77qLgMOBSOolk1nU1ivAOBjy1oJhEIQOwbnR0L0cCP/Lsb9r/3X7riz8v3uLRCRVazJ9W3OdXB8MymzqZAn4hg1w5owE3YsWQV4eoYce4vOrr2bmj3+Moiise/VVPvjoI3Zu3sxVs2fz8L33cvOkSXKsFStSpeA/XbCA0txcls2dy4H6em6ZO5ezH36IYf16/L95m1hcoaND4vnMTMlO63TQ0CCHCQR+TElJH1ateokZM66io8OBwWBgyJARLFnyLCNGDMTjgV/+Uh7+5ZdfhdH4MHv23MycOfD665Jkz82VVe5PPCGl4g8/LCvfOzvlPMLcuRKo9+8vj6GxURL6L78cxGCIJvSXQY4ff5/m5r1cf72ctW5srKaoaAJbtz54UZn4N9/8maysQWRkFLN7dyVTpy4iI6MfW7c+yLRpz2MwWFBVI7FYIKXl1uvNNDfvo2/f0Yn1BsJhj8wxNFgAQXf3afbufSG1r9mzN/RqrXOzZDa1IRHk7QuANa2XgUiVgosEgyogFpfZ1qqSJPgkOE+3Sq22TifXX9gPJPhWVTl2Qnf94po1vPvnP/Ppx5vJys0hGo2wd9ky9IMGcekPfoAuLY0/vfkmv165kn1//jP24cNpbGxkyLBhiFiM2v37uflHP+LkkSNk2u2EXC7iwSAn3n6bcYsXI+Jxuo8cwVJQgCkzk6+ef57hd9+NtbAQFIWIx4MxPZ2I14sQAkd1NfmTJ5OWl0fn119jzswk5HKRM2ZMSitly8lBjQRliXaaRbLH0Qg0noHMHMgtkGDYaJLLezpgUJl83VwPA0ck8lfDEqRbbBIQZ2TLvGqjSQJpZ5fcLh6Dc6d6NdmRsFzfJxd6OmUpudEkb2zPHIOiAcTT02k5+ime9npKL7sRa3aRLJsWgmjQQ1fDQfKHXwEgmeigh876/eQMvByjLYtowE006E2VeeuMJgJOhywBN8uyNkXVEfY76Tl3iPwRV6IoKi1Hd6RKwPOHX4mqM4CqoiRY9dajn5FbOhaTJVOqCxQFFBURCaPtqJL6aasNbfuH6K7/PvEtf+0t/Z71A0Q8Dv5ESXnFNYky7yCY0yAWRbhdCZCuR2tsQMkvhID/4hL04n7Et30odd0jRqPoDRKYCw3R0wUmM1FrOucbG1Ol2sXFxeh0upTWWgiB3++noaGBAQMGkJ6eLr/baBSHw0F6ejrV1dXccMMNdHd3U1NTw9SpU7FarezYsYPp06cD4PV6yczMpLm5mffff5/bbrsNu91OTU1Nqo8xcQ5OlqdHo1FMJgMu12n27FnJzJm/QYg4zc212O3FWK25tLV9TXFxOTpdGrFYkK1b56X+/2+44U2czgY8nmaKisoJhZzEYiFstr6AQijkIi0tCyE0XK7z+P0dlJZOoarqPkpKptCv3xVUVz/L5MkLsNnyMRisKIoqizLCXny+Dny+VvoVTiPsDuNz+KhZWUPF4grMfczseGzHReXdfQb1kZ9NEyiJc4W3xUvEHwEFap6X22YOyJTfQ1wQj8RRDSqxYIwdC3Zw3drr2DJvCyVTSiiZUiL3t6gCW6ENb6s3pe+25FrY/vB2piycgnWElT1NexiRO4I0fRpphjTOuc7R19qXZk8zbb42JhRNwKQ3cc55jhXVK1g8dTFphjR6gj30BHuoKK2g3ll/kU7a4XdgM9g42nGUySWTeXjbw1xacCnXDrqWAlsBNU01TC6ZLCdrFFBQmFs1l43HNlJ1exUlGSU0uZsosZdQ1qc/umArOD6RLPOlqyWgC7b26q0t/SQ76j+bKO9eLFnULaNh6geyRPzYChixEMwFoLNA4JzsO+JxsA0GhATQgSYJzBWDBOdZoyX47KyG6lvhukPgOyNBeKgT+l4N6CRTnNQ+RzwSPGYMlM86U29pt84oQbCvJZFRnagSUXQSVCfLy0PdEjCb7L3a7CR495yH9ARTnWTNbYUS5KdK0QfK61csIAG167Rko4OdksUWmtQ/dx6C/MvlMTpPwZdrJPg22iRY/uKXcOkv4MvVku2+pUqCb3+bfOSXS4b68wfh8vlyUjRzYG9ZeFqu/LwGqxwr71JZGm7KAk8jBDsI5lbg8inodAoGg45z51w4HD4mTSphz55G+vXLoF+/TEKhGPv3t1BQYKOoyI7ZrKe6upHCwnSee24PCxdOZsAAWXkWjcZxOkM8+eROrriilJtvHkZamh6DQUcwGCUWE5jNulRZ+aJFUxk4MItwOM6BAy2MHZuP2aynqytAXkEamhrDFfReVLL94/Gz+PNX21g07ad0+pzsPX+Eb9rqWTTtp6iKQru3J7XsV1f/Oy988QceufIOLAYzAkEwAb7vvvxGTAYDnpAfZ9DL2MJLeGbHm2yv28u67y+kr61PSoPd7utJ6byTx7F49i+YqyhsROZLr0UyxvdDatkG+WvgAeDdxLLXE8vmJvptQbLQK5C66oHylw3IHOvKC5afQjLTi4FswAA0JZYtBIYAuxLLbgDyAgHi4TAHly+n5YsvmLpmDbmXXQaqSjwYRG+x4GtpIdDaSvYoOems6vUIQJ+W9j9cGv6vtNkXtqjfT+2TTzL8pz9F1ek49sYblN17L+kDBqD/ZyJNi0DkJESbwFAM3ZWQvQRMQ//75lT/F+07zfV37X+//bM2u6gIHnigF2wvWwYjRsjXa9eCwcDBEye49Uc/4tzUqVxVX8/D113HzTfeeLFOe9kybJdfzplNm8h/5x14/nkm3HgjlU89xRVXTieMkVhMIRTqNRvz+SRWsdlg5cpKtmz5mCVLPqOiwkJnZxPBYAnPPScYNGg97777CseOHScWk5h+wQKor7+Ke+99mMmTbyYjQ8q8g0GYN6/3sJ56Cj75BK69FgoKer+CtDTYvVuWhGdlQUlJEKfzFNXVlambT0CaLQGRiB+rNQe/v5NQyMXevS8wdeoiPJ5msrIGYrXmsmXLvIuAsKKoaFqMlpb99O07Gr0+DVXVJTSWYTQtBgg++eRRZsxYm9ifDp1OGrwEAl1Eo36qqyupqFhCdp/BUmvd5Og1GftXTUucBxSltzQ8qbeOxOSNRDgiS8H1OmhohkEliW0SfS7UYbt9sm84AulWms+fp+SSIQwsKSE9MxMiMYx2G5s3bmT67NmEAgGMFgvZ2dksf+IJhhUV4Wxt5ce//jUup5OY202f4mKeeuopLh848CLDMl9TE3njx3PsjTcYftddhHp6sJWUsPmGG7jylVew5Od/S2NtLS7Ge+5cahxTVhZfPf88ly1cSNjp5NiGDVz2+OOk2azS0CwUlODaaJYl4UE/7Pgr/PgX4POALUOWbxcPlJMKBpP8LjtaYdtGWU6elQMetzT0EsnZY50sHTelyZtJn0eCZ5NZbv/HdXDNTeBzQ9EACdDTLLK/ENDRihbwEi4uwWCyoiR+K47j/yB74DiiQS+RgAtLVhFdDQfIHTyBaNDH+YN/I7NwOIWjriEaktprCX4VYqEAik6PoigoeiPRgIvOM/vJHTwBg9lOJODGYLYmStGj6IwWCUJBAvczteQOLkdvTCPk7sCWWYRwdl+kjRZHv0Y0n0c36wcgNFnqndJBXyOBc14B8U+rEMcOof7bPSj5RfLzm8xy0iEUlHrqqdckvhMTxGIo8Zg0fbHZE5MMmpzs8HnRanZKoJ6RJScBVB0xLU4oFsdgMOB2u3G73RQVFREKhYhGo2RmZuJ2u9m9ezfXXnttyqhs+vTpGAwGFEUhEolgMBhoTID0QCBAQUEBsVgMVVVpb28nPT39W0B68+bNFBUVUVJSwr59+5g5cyaaphEKhTCbzej1eoQIU1V1bwLsXkl1dSWTJj2G399JYeF43O5G/P4OiovLE4aH/pR5maIo+P2d6PVmolEfJpOdSCRALBZgz56VTJ++Ep3ORDweYceO+Uye/Cuysgbjcp3Fau1LKNRDQ8NnZGUNpKRkEkKA39+O0Sj14SaTXVbXmAehRSDUE6LhswayBmZRPLEYRVVQ9Sphj2RAHIccpBemU7OqhpnrZiJigubaZuwldjxNHt6/9X2p1Z5SSjQYJeKPEA1E8TR5KC4vRmeWJfQ9Z3rQm/TsXLozZX4267VZ8rQVF+hMOgngFQUtrhHTx2jwN1BZXcmCyQsoTC/EZrShCY3qxmpyrbms3ruaxRWLaXI3MfvPs5lTNod1M9fx4NYHWTtjLQbVwLyt81LAOGlItmDyAob0GYJAoAmNYCzIgh0LmD95PnnWPPSqPqXTXjtjLR3+DiqrK1l//XrmbZnHY5MewxXoZHpOidRcZ0+QWsd4EPTWf2FS1gPGPolzdUKDfWy5BNq2AbLk27FDAvRxLwG6RF+9BMuqSZaZm3Ml8122SIJy39leEB9ohpzJsgQ9qdG2D0fyelpiwtAvWVwhJOhUdAkjsx7oM1Qy3PEQoXCUH915N8dPHCctLY283DxeXfcygwf1R6Dy1DOV/Om99zCZjORk5/DFZ5+CFuHue+7ny6+/RlVVDAYDz614hmuuqpBMtcF6sfY7WbIuBER9EHHL0nCjXR4vSFZb1Ulw3Vojy7/TS6T5mTlh3ta2V2qn91fKsm6h9QL+3Y/D+PnQ/A+p6572Wi/gP7CyV7+dXgLppZJZ97dJHbfQABV/RI/Lr+Jw+Fi5sobFiyvIzbXw8MPbWby4goEDM6mvd1JZWc2vfjWJzEwzeXmyckgI2Lu3ifPnXfzoRyMRAvbta6a42E5JiZ36eiclJXba2ny0tnqZOLEYvV5NXdbvv38z7757lKqq2yktzaCx0c3kySUEgzEWLNjB/PmT6TfIhqbG0at6QrEIpzrOUZY/CG/Yj1lvShmQ3XX5DeTZskgzmAlEQ/jCAazGNMwGE5FYlE9O7aVfVgE51kzeqv2Quy6/gaNtp5nUfzTpJivfOOrpa8umODOPZlc7vzvw8beA+/yr/51vHPXk2frw+wMfS7ButlGv07NCUViU+MvmIbXOSQDcL/ErPUsveG4GLkvc1riBAnqBdhKk9wD9gUji1udLYCLQCvgAG1JnnRAk4E/c+tiAIHAQWSKe5vMR7u4mHgym7jd0ZjNGuz01+Z+WkyN/kl4v8VBI3p/MnYt94MD/IXD9n7ULzc+8586hMxo5sm5dSutd/vTTGKzWb2+oRZBMtR6IgWL6Dlj/J+07zfV37f9M699f1kEPHiwdwJ54orfuOjOzV3ttMkFXFy+99BI3TZsGv/oV6HQ8vnEjo378Y37octFw/fWwcCHdmkY0GiW/f394/nno6qJ/RweNX35JRNMjhIKqSiAthCzV9nhkVe5LL73Axx//lccf30pRkYV58yASKaGzExYuVPjVrx6ko6OBQ4e6qamRh/zqq7Ka1uOBpUulwbnDIde9+SZ0dcnnoiK49Vb5sQMByVTHEviysBBeeEFK0YWIUF0tyyL37VuDqurR680YjTba248QiXipqrqPaDSA2ZzJzJnrMBgsZGTIskydzkhFxRL+7d+2MHv2GwCEwx62bn2I9PR8jEYb0aifSMRHNBrAYEjDaLRiMtnp1+9qDAZLSr/d0rKfWCyI1ZpLVtYgrrrqGSyWHMlyGPQwpFQC61BEmo6FIhJQa0IC42RLAutk2XcwLLc3GWWZeDgi13U6E32FBJP/rLHOsMntrGlQ30RxQSHCH6T+9BkOHTjIoaNH2L+7moycHDavX8+eDz/klRkz+OvrrzOhooITv/sdWYWFbHvvPd76/vepevFFPvngA7539dWEe3pSJU7Zo0eTP3kyx954g8Zt26j74x/JHTeOtNxcbtm1i9xx4wh0dMj+7e2Y+vSRWmpN48Tbb9O4bRsn3n4bRadj+F13oeh0qeVRrxehxaWz9UfvSMdwkCDZmi7Ls0EC73hUMs9eN7z/pgTMmiZZ1iGjZNl3NCKZ/S4HvPMydHdAErh3OSQTnWaVwPm91+Xy2x+QbPegMvm3tFhlOTqyGoAvPkbtbMNoySAa9sky7ZCXPv3H0nmmFktmPhmFw1D1BixZhXTVH8SSVZBgm68gEnAT8bsRWpxYOIDQNPRmC/FoiLbjOxOstg93Wx2dZ/ajKApGix1FZ0DV6dEZzClQrgCdZ2oTfWtRdXos2cUJ93mDBNahkPS+GzMedebNCGcX8aoPZCm9LR3drB+gZGWj2DMRej3qtTegm7dQmqB5PbK82+tGsdnR9iZ02dWfSUO7aBQ8LuI7qsBoSoz9PnhccsLCaEIp6S814EIg/HKmTkv86DVNQ6/XY7Va2bp1K9FoFE8iMcFutzN79myMRiPV1dUUFRXh9Xqpqqqiu7ub48eP4/f7sdvt7N27N8Vuf/755wAUFxfj8XgoLi7G6/Wyfft2XC4X06dPp6ysjPT0dK677jpisRjbt28nGo0SCoWIx+Moip4ZM9YyatQdeDzN1NV9xN69q1OGY35/R2qizu0+Dyj09JzB7T5PVdVcjEYrwWAXO3cuxettw2bry+7dKygqmoDX28aWLQ/g9bZSVDSBmpoXAEFGRilCxNm1aznDht1Mfv5Y5Dy8wOlswOdrT+m6bbYCdAYDIi4n6IbfMpz8sflsvn8zrnMuhBAY0gy0fdWGJcdCzaoaJj4yES2m0VzbjDXPiqfJQ1F5EXP+OoeCywqIBqMYrAZs+TbsxXYKLi1g28PbcNY7EXGBp9mDwWpg6qKp3F51OzPXz0Q1qGx9aCvf/OUbnOec+Dv8CE2gGlSETlBZLfXTK2tW4gq5CMfCROIRyovK6fR38tikx2hyN1FeVM6csjksnLIQs97M+pmyCqm2pZbHJj3GnLI5lBeXXzSeoiicc5/j/s330+aVLHhldSVGnRGDamDF7hVsPLaR+TvmMyBrAK/Pfh2zzszaGWspsZdwdelkCazNuXDwQckqG+TkEGWLJLAuWwSdeyTLi5Bl11oM0vrC8Mcg2CJP4IZMaT42dlXCcTwBA0RMAuX2zyC3AvR2WXJ+YpVEX0nt9bFKuVxRLi4zh0Q59tlenbNqlKytp1GutxVLYK0zSXCJAqqBuffeQ92xoxz+4gNuumE299x3H8RCvLzuFY4cPcI3u/7K0S/38ed335HjxEKsWb2KIwf3cejzjWxY/zK3/egONMWYYLhjko1WEtVRUX8C4AP+VqhZKp+FJo9DJMq6vU3SuTt3rATanz8omeeQU34/BZMlMJ6+QX7Pfgd0fCU/z2WPSG12v+myzDwekcDeYJUmaV+9BLmjJeuu6iSwz58AbbXgbwd9GnHFhNcbYeXKGjZuPMaKFbtxu0NMmVKC0ahDCFi1Sq7r6PATDMaorm4kGo3T2emnqCidH/5wJPX1Tu6/fzMFBTbMZjkROnRoNiaTnuZmD/n5Nu6/fzOnTnXj80XweiO8+uosurrmc+WV/Wht9ZKba+Whh7YihGDFiu9hsRhQUOn0uVi+400UIC9Rsh2KRrCZ0niz9u9sr9vL7w58jNlgQiDo8rlodndg0Ekp0Yv/+CNjC4cypvAS3qr9MNV/2iXlhKNRvnHUU5Y/CLPBQJevh+LMviya9lOC0TAt7g5mDpvC4mk/Q6/TM6LvAIoz8lg07acAPL/jTQYieA0oRYLhI8A+YBkSWAcStzH9gdeQ4PhW4BDSoKw+sX4xElgvQjqN5wJngIeQpmYTLlg+BGhAAu+zwL1It3BdYvkjwNjk7ZOqordYMOfmknvZZQQcDuLBIF899xxZQ4diLSxE1evpOXaMeDiMzmxO3c/8j5SF/2ctaXZW++ST+BobSe/Xj7S8vJTW+z8rI0c1gpoOapp8/g5Y/2+178D1d03Ssj6ffP5X606ehHvvldbZbrdkrZPOXgMGyFiuDRuk+9e5c1TedhtnTp3i2SefhMxM3nnmGU6uWcOR6moqpk1jdn29FDEnomdoaJDUdGWlFEL39KDTCRobBR0dvaXgwaDE8evWvcjvf/9n/vznHVx7bSadnfDhhzGefLKdyZNl3xtv3ESfPn0ZOjSbCROkzjrp1/a3v0kfteZm6QweDsuPtm9fbx+HQwJwTYOmJhnf5fdLjfYVV8jDVBQDU6cuoqxsDtOmPY/P50joqs9SUjKZvXtXU1IyBb3ehM3WF73ejNWaR2ZmP4SI09S0F7u9mPz8sfT0nKaqai6BQGdKyxiLhTCZMhKg2kY8HqaxsZru7tMMG3YTiqJLgfG8vFH4/Z34/R0IESM9vQiDwUI8HiGmar1/T1WR+ulwRN5wxGKyHFxVes204nH5fkCC6dY0CVyEkNuaDJDXR4LqJBr/Z411PDGOgiwhb2yTRmjRmNR/axpEY6iaIHv0aE787nfSROyNNxBCUHbvvYR6ejDYbIx99FFyLr2Uo+vXEwsGScvL48TvfidnhE0m0nJyuHzpUmZXVTFu8WL8ra3sX7aMgMNBLBgka+jQVH9bURHlTz8NikL5009z1YYNjP3Vrwh1dXHid78j1NXF2F/9itLrrsNgtUrQ9unfpE46ySbHohIA5+ZL4Jae0eum7uqCQcMlIP/jy3KbwSPgvdckOE/PhO0fyPH0sowai1WWkydNzroc8L0bZP8/vpwwPdNJk7Pzp6GzFf7wkowDm3Mv2phJIDQ6z+xPgWCjJYPcwRMk6FUUIn7JXheUfQ9FUSkcNQ1VZyAW8mHJykfRGdCZZMmvQCEW8pGTYL4tWfkXmJTJ0m5pTq5DUVUCTqm3RpGGZllFZRSOvCb12xCJ70xraUQxmxEBP6K7EwDFmt4LeHV6RMCfMirDYEDRGRA9XQhXN8LnkWC6ZicIDbXiGpSysZKJNpkgHEKrkRpuwiG06s8Rdd+A3oCiyTJwpWSA1F0rihxXUUBV8Xq9bNu2DaPRiN1up6SkhJqaGoqKihBC0NLSgqJIbfaMGTMYNWoUJpOJ6dOnk56ezpgxY7BarXg8Hurq6qiuriYUClFUVITP52Pz5s3Y7XZGjBjBvn37KC0txWq1YjAYMBgMRCKRlPt4EohHo1G2bdsGxPH7O2hu3kdRUTn333+Eiopfp6QjpaVT8Ps7qa//BLe7CZ3OSN++Y6ipWcWxYxsJh93U1LxAScmUBOOscP316ykr+xH79q1J+TwMHDg9YYp2NmFSJgG3qhrQ681oWpRAoIvCwssxmdLR641oWlxWzWggNIEpw4TBasCQZqDf1f2wFdgQcUHT3ibsxXbMmWamr5qOalBpPdBK6dRSsgZmUTq1FL1ZT+nUUvwdftq+akPEBVpMI9AZQAhB8aRiqiurifgj2IvtfPbEZ2SUZpBRksHWeVtx1ju5fv31jPzRSAxmA1F/lMY9jTjrnbTuamVxxWLuGHUHL177IgW2Akx6E+FYGIGg2F7M6r2rKbYXY9KbWDdznWSjheBA6wFMOhPlReX0Mfdhw+wNGFQDr896nZPzTrJ2xlriWjxlfrayZiXTB05n4ZSFGHVGdKoupbl+dNKjKCj4I372NO2hw9/Bw9sfxhMNIbLLJZOcNBcTmgRptoEwYYN0A997p3wOnJfa7HhAMtGGPlKTHfVebGrm+hqCDvl/qxp6o7ySuuqcKRKEK/oLQPxi+R5F6rD735HQa9Org45HJJuLkODaXio13/GwBL++lpQ222wycv3koSgiBkYbE8vLOXe+CQxWVq1ayXPPLMNo6wPxCPm5fST7rTOQmZmV0my7HWfk/rXEPYqiSL21uwFiYbkvLS4pxSTY/XqdPAXpEudtfQIsn/ukl8EunCJBeFIj7TknjdBioV5WOi1XgnBVL7XZtkLpiq63gLcZ9i2HIT+Aq9dKsL1vuWTJYwG5XVoueBtBRNHpVTIyTCxYMJk5c8pYsqSC/HwbU6aUsHTpThoanKxaNZ05c8ooLy+mqclNbq6VefO24vdHaWryEI+LFDhvafESCMSYO7eKujoJpMvLi3nuuT1s3HiMNWv2oaoKFosBny/CL3+5jfp6J5Mnl7B69V4mTCjC4fCxYMGnBIMxFB28lQDQvnAgBabfrP07mhDcM/FmZgydxL0Tb0FVVELRCFaTmbL8QXzjqKfd08Od464nLRGldU/5Lan+Jr0Rh6+brLR0nksA9mxrFo0uB09/Iq/72dZMnv3stzS7OzjUUkdc02h1d/J1Sx16Vcftl15HTNMII9nih5AsdH+kGZkusTwGJK3BJgJfA5ORDHYu8EskOE+C9GNII7NKJKh2IM3KRGIsLzAqMf4KZOxWG7IkPRd4NPF+buKqF+ru5svKSmLBINmjR3PsjTdkCbiiEPP7CXZ1kTlsGGk5OcTDYXl/0rcvSiLW8X+1XWR29tpriHgc1WjEVlJC+VNP/ZfO4t+1/3Ptu7Lw/+7tv4rj8vngZz/71yXg69ZJ2jcYlKA7I4MXfv1r3nvrLT69+WYy33xTgqj9+3tFzYsWYZ4wgZa6OrLdbqzjxlG/dSv548dDQwMT/u3fqHz6aSZOu5m2HhN+Pzz7rDy0gQOhoaGZMWNKKC4eiN2eTmsrFBebWLbsc5588kogTGurSm5uDq+++iLjxo0BYNWq5bz++mt4PJ3YbOkYjWZ27/6ajIzclCl6Tw+8/DKsWiW/gqS52Zdfyo+s18v47gTJTkmJB6tVRdOiqKoer7eF+vpPaGnZz8yZvyEWC+H1tiZyZBdjseTicByiuHhiIo86SjweIRx2sXPn0lR5+JVXLiMeD5GeXozX20p1dWWqnDyZP5uVNZD09MLUn0ne+IfQtDjhsCeVZyuEhqKopJmy0Ee0VJk2qiLBb1yTDHM4enHpuEACal0ibiUuJDhOlopf2OKa1G8nxwXJeDc5pJGZ0dBrnHa6Ufbrmw0eH1G9gkhEZXUfOYK1sBCd2YzOYCAaDGLOzkZR1VRG46yPP+bY66+TPWoUpTNmIADnyZNYcnOlpihRKv6PBx5I5TkCskT8tdfIGTMGEY/T8803ZA4dij4tDUVV6fjqK6p/+UuKrr6aCUuXAhB2u7Hl5lycc339j6QGOjNHaqY/eAtu/7n8nZ89KeOy7Fnw51dkdNczb8DmP0vAPa4ikfuW+I5EorxSi8tlf1oPh/bBzxfD4JFw5ht4dQWMnQh3/iLhGj4Mgj7QG+Xfxmgm7ncTM0vwI8u3yzFaMhBanGjIS+eZ/eQMHIdOb5YO0EEflj6Fshxbi6OoekQ8Jsta41H0ZhuKEMTCATQtitGSSYK2/Fbpdyzkk6ZpOoMErIlPF7mglNxstEtNtDUdEfCjFpfKm1uENDjT4pKBikZRLMkSSK03Viupny4qJb71b6gV01Ays9DON6BYrIhgELV0gPw8LqfcZsZN4PciPG6UjMyEDvsqMJtRrDa0pvMoFitKRgYRofDx9u2UlJSkQPXkyZNJT09Hr9ezfft2rrvuOtxuNx6PJ6WxnjFjBn6/PxXV5fF4sNvtqWeLxUIkEmHnzp0cO3aMUaNGMWvWrNS/jaZpNDc307evLN8Oh8OYTCZpzqaqbNmyhZKSEkaPHkZTk8ye3rt3NRUVi8nMHAhouFznEuXdqxKpAb3l3VZrHtu3P5KSj3i9rfh8Duz24oRsRJ6Ttm9/OBGrNQAh4jQ2VvP++7cydOiNXHnlMuz24pRuOxnlldR4RyIewmEP6eb+OOudeJo9FE0oQjWoICAaiBLxRjDajUQDUZltrSg07mkkb1Qe/nZ/SqNtybXIS5I/gjXXihbTiEfiOA45KBxfiM6gw93kJrNfJijgafFg62tj60NbKZpQxKBrB2HOMiM0yZRX3VfFpMcmsXf1Xs7vOs995+5DIDjnOkezp5nJJZMB6fL9880/592j76ayq1VF5ZzzHH3T+xLX4rR6W1NRWjmWHL5u+/qinOr+mf055z5H5e5KFlcsptReSigWwma0ERdx6fHgc5BhzsBisKR+A/O2zGNC0QRuG3Ebfc12lKgHJepGmPNR4kFAk2ZioTZpZBZxSaY60CLBW1pfCagNGbKEPO6/OMv60pVwdBlc9rIcSwtLMB5su0DbvQr8zRKU504FVPDXS9O0lM4bmZd9oVZaUSWDnKhgIOKRgDdZqq1FJQhPlIfjawN7f378k5/QJ9POM8sryc7Lp3LJI3yw+QtA4dH7bueH101Iaakff/xx3v/gfZxuH5ve38jVFZN6Nd3xMPSc6I3qigYk2D74Qq+WOhqQWuu+l0PYKd8brPIR8UBanpzgDHRAyAXBDsgYJMfOHCSP+7N5UP8R3PBBb/TWrvlw+QIJvl31vRnXly+U58qM/tC2Dz6+FQbdCN/7DehMuEMmOjv9ZGdbJN7Xq8Rigvvuq2LjxmPMmVPGhg2zCQSipKcbCQZjPPjg1tS69etnoter1Nc7WbmyhvXrr2fevC2p9a+8cj2aJjCZ9GiJnGUhBO3tfmw2I3//+0l27Wrk9ddnc/68G5NJx/Llu5gwoYjbbhuBvY+eRqeDroCLMYWXEIpFWPuPd7l7wo0UZ+QlpA8ikeEeQ6eqROKSje6TZk/EdEV4K6GbLszIlbcD0TDhaJhMi50un5NANIzFaCbXmsWKT99i84nqb0Vz/fv42RTYsxEC4iLOS7v+zMNX/4R4mg23opAO/B2pd16PBLotSLB9FslYT0lcs2qQzt8DEn1syPLu/Yn+g5HF0KeRILs+0b8S6Sqen1hvBBrpLTNvRZajL0LmXzuBkX4/Xz35JI3bttF/9mzGP/kk/uZmVKMRc04OIhql++hRzLm5pJeW0vnll6n7lf+wZPt/sP3PxnR91/7X23ea6+/af97+GTy/+WYvowwSYZ461RvuXFwMDz0kBczRKJSUSGp35UpeLCzk3S++4NMBA8h66ikoLSXmcNAdj9P36adh40Y2TZ7Mo42NnD9+HHw+7rrlFvoHAizbuJED+/dz8+OPc+5vf0N0uQlMmc5990lX8KoquasVK3qNxgYO7MX5GzbIMu8kE+1wyI+RmyuvnTU10qispUUanzc1SVOyCRMkaNbrpTv4+PGSBNuzR/YfOBDOnyeVt71vH9x2mwTi/fr5UFVBJOLD7+9Iaa/T0wtTeuuqqvsuyqj2+drxeltSjJCq6tG0GJoWTZkL6XQmhJCA68Ib3YkTH2XfvheZOXNdQnsNbW1fJcaSrs9OZ0MKjGdm9gekJhuhYdKM0nisOZk3rQNfUILdWFyCbZMRvH75rKoXm5QlW1xLLFMkaI7H5XKjodfEDBJILCZBeVyTDHlcg0g0lXkdVWXudKCjg9xLLwUgFgrhPHGC3LFjiQWDuOrqSEuA58sef1z+LDs6OPH22wz/6U9Jy87mq1WrUpqiZJ7kiISDOIrCoRde4PKlS4mHw3QfOUJaXh7m7GxpevbTn5KWm4vzxAks+fkEHA7MOTnY+/dHp0rmV3F2wfGv4GwdfO9Gqbe+8U44/rV0/d7ynnQK97pgyEjp5L3lPfjh/aSiykCWetszpTnZlvckWM8tkEZmPZ0SuGflSnb71p9JxkUIqSlOZl+nWSVI97ggzULcapO/FwFKYmIk4HJgySpAi8dSMU+KqkPEY/KmGEE8EuzVSyerFhQFEY/iOLGLnEHjUVWDvKGKRTFaMlAULjBPuwFrnyIEEOhpRW+yJPootH7zGWmZ+dhy+2M0WlGiiSzrdDvani+kmZmt9zyjmNIQ4ZDMt67ZiW7mLcS3/q3X4Gzm9+UkkKYhAgEZd6YoEjTPuAkCPgmk8wtRUMBoRCCNy+JVHyDqvkF3/69Q0iwynsuchggFUaw24tEI3YEQVquVUChEfX09bW1tzJw5E6/Xi8lkwmAwUFVVxaRJk6itraWoqIhRo0YRDAYJhUIEAgHy8vLQ6XToE+xDJBLBZDIRiUQIh8NYL7hpikajfPrpp0yaNImsrCwikQiRSASj0YjJZCIcDhMIBNDr9TidXRQW5lxkVHbllcuwWHLYvv0RJk58hIyMUlpa9mOzFdDUVE1T0x5mz96Q+P/Xo2lRmpr2YLX2xe9vx2rNJRDoprR0airr2uk8i8fTdIHxWTiRYx2nqmpuSuedBPkStAsURY8+no6/I4A500zL/hbspXayBmYRC8Ro2d9C/th8gt1Bdq/YzZTHp5A1KAtfq4+dS3emMrGLJxYTC8VQVAW9WS810zqFiC/CZ49/xvRV0zFYDDTVNJFelE5GaQaqTiXijeBt81KzsoYpj0/B5/BRekUpzjMS7NuL7ah2FUO+gXZ/O/U99YzpK00LDaoBg07efD609SEWTFlAmj6NYDTIgKwBALR6W3ly55N8VPcRH9z2AROLJxKMBnn8s8dTgHz9zPXUttRyedHlAJh0JlRF5XT3aV7c9yKrpq/CrDejV/WEY2FqW2oZmz8WVVFp87ZhN9kZZC9A8dUnjMbKEyC4tddU7MRqySCbcqUD+OWvSvDXvR/MhZA+GNAg5oNDC2HYo5BWJMcJnO/NrYZEFnY6qeJF5yHIGivN0UQcDjxwgc57gzxnqGkJkJwwM9OZ5Xs1Aajj4QvMzEyktNme84n4LD2Vz63i448/5LPtVYS6z5E9eCJPLX2SJ5/8NefOnmNyxRVs/dt7jLlsnJx8jEfBZOfTHZ/xxJLF7Pn4txjjnl4jM3eDHFtvlqA3mWOdBLsTFkkNdLBDlml3HZXrY0GZU53Mt049F8nJvoMrZUZ12CUnMbzNvZnXly+A1n0SQBcmyudjwd5S9WgA9q+ACYvBkCb13KoBogH8Sh/OnJGa6qSxWDyu0djoSWVa22wGMjJktrDBoHL+vJvKymqWLKmgf//MRKpJlHA4RlqaAUWB2toW+vXLYMCALDyeMFrCQ8XrjZCRYeLQIQd5eVaKi+04HH769bOzZ08TU6eWEghEaW31snJlDWtemk5GljGVNf2z8pspsOegV3UEIiG8YT82kwWr0QwCwhcAa1fIy6WFQwlEw8RFnDNdTYwqGIKqKISiEQw6HZF4jFA0jM1k4RtHPfm2bDLSbKzd9Scev+Zu4lo8tdxkMBCKRlIa70OtdUwfeTWNRnPKTGwgkllOCCVS+dPVwBhk6fYaJAC2Aefo1WFbgExklFdfpFFZohaDMDLbOqnJXkYvwPYDaUh2+8kL+ryGLE+/IholcvYsgbY2skePRtHpCLvdpGVn42tq4tiGDSlvmD4jRqDo9Rxcvvz/GBj+HzE7+67977fvNNfftf+8/VdxXJom9dbr1sk66lAI1q+H0lK5zGSClStp3riRx9auxeV2c/WZM4z94Q8pr6ggbLcz60c/YtRXXzEmI4NXYjE++tOfJGCfP5/nX3+dmuxshsyaxV3PPssfX38dw4svYrzzhxj1gkWLBHfcARUV8lCnTJHscnl5r9R7yRKJNbKyJIFusUiddiAgAXMoJEF0W5vcTggJrHNzZbxWY6O8PhYWyvdnzsh+BQUSK65a1Zu3feutcpylS0FVFZzOs+h0xpT2uqZmJQaDBas1L5VvPWrUHcyYsTahkbZitfalpWV/AiAreDxNbN/+CEajLXEjHENRdPh8DgoKLuP++49y/fXrSUvrQ0XFr9HrLRgMlgSA70tr68HUn8tgSGfWrFfJzOyHouhobt6H09kgAXayvLvb1ev0nWGTYFqnyi/hTKP8MlU14R4u5NUmEkuUemuk3MWjCSG6TieBdRJkQ2/klzFR5uQLSJ23ql6UeS00DZ3ZTO7o0cT8fg4+8wzh7u4U0D60ejW+5mbMOTmUP/OMvCG2WKj7wx8u0kuX3XuvjM+6/34QggnLlpHerx9hpxOd0cjlS5fia27m4PLlmPv0IdjRQdTno+WLLwh1daEzGskbP55ARwfVjzzCibffRgiBFo9DZ5vUXA8aAbfeI03HZt0uQe6Iy3rLvM1WuGS0LOPOyYd/m5cw2jLLMnKQWm1Fhew8Ccq3f9Bbip/dF4aOkY7kP/ipjPs6f1ruTyDZ84/ekbnZ0Qh89A6aohAJemj95nOE0IgEPLQc3YHeZEEkmAuEIB4NgaYlwLdkrAUgtJg0gdfiBJytRPxSI5uWmU9X/UH0ZguqTk884k+VhOcOLr8oiksapuVjtNgByTrnD78CS1YRHadqJCDWqajF/dD2fNFb2h0O9z6EBpFwqqxba2m8oOx7GsKgR/Qk9NnRsPyO7JnoZt+KYjCi7f5MsthtLQiPi/jH76PEY2iNZ1EnXYl6209k1NeWv0I0gtbSKB3HFRWd0UxWZiZ+v5+dO3dSUlLCjBkzcLlc7Ny5k0AggKIoTJ06FbPZzKxZsxg9ejRCCMxmM36/n/z8fFRVxePx0NjYiKZpKWCt1+uxWHrZSr/fD0gd9p49e1AUBZ/Px86dO/H5fAB8+umnWK1W0tPTSU/PJBzWqKhYTFnZHKZMWUhDww5aWw8yc+Y6srIGIoSgb98xBAKdlJX9kOuvX4+iqDQ378Plqmfz5vuw24vIzCzFbi9m797V5OePxeVqSElZDIa0VIxXLBZKAOsYQmjMmLEGu72E0tIKDhx4ldLSKzAYLBgMVvR6E0KNEQvE2PrgVqy5VgxmA656l3yfZ8VoM6Iz6iiZUsLe1XtBgCnDxOQFk7ntg9uwF9vZ8sAWAl0BjDYj7vNutjywBfc5NyabiaIJRTLnem4VlmwLniYPPad70OIaeosen8NH3Ud17HluD4XjC0Egy82nlJJemI6pwMS+5n3YjXbKi8ox6oxYDHJiqaaphmZPM69c/wpp+jQyzZkpdjkcC1OYXsjCyQv54LYPKLYX88ttv0RVVX4z8zdU3V7Fryt+jSY06p31fN32NXEtTpuvDV/ER7u/nQlFE2j1tnL/5vtpcDZQ21JLrjWXI+1HSDOk0eZrI9NokeXIgRaZKR3ukiA5rVDqn0Od0PKRdAKPuqTpma9B6rPNuRIox3ySkUaVTuNphZLNVhSpq86dIsEzmjRACzrAYJPlzXkVcp+hLlDNMOE1uKVdgnEhoGOXvBbEI71l4QoXxG+J3titePhibbbRBr5mXnhxLX/929/YumULFs1FH3MMm83KnT+6DVz19C8pYMrEyznw9dGE6ZojYVwG06Zfg9fr4+h5n3ThzhgoP1fGIAnyY2EJ9MuXwLAfQeZgmPaqPFZvS0KD3SbBsLsBdj4ic6wteVIn/dVa+aw3g71EjuPYD38YLYF10dTebGy/Ay65VYLtYKecAGj/UrLfBiv4miTTnQTWbbVygkHVEQ/7qaysZuPGY1RWVtPa6kVRFAYNymTduplYrQYCgSj797fIynedSr9+mbz66izS0vRomkBRoLnZw9GjHbS2epk3byvFxRmYzXricQ2jUYfdbsJo1HH+vAuzWc/kySXY7SbMZj2DB2fxyCPbmT37zzz88DZsNiOFhemsXj2dcFhWMBl0+lSOdVyT13VnwEOzuwO9KidwW9ydPPvZb+mTZsdutnBp0TDC8SgnO86ioDCqYAh6VUeru4uVX/yeFncnJp2BQDTMs5/9lqy0dBy+bixGM09cczcOTxfPfvZb+tr6kG3LJMuScZHGe1K/0RgNRlYiAW07sgS8C2lS5kG6eQugHAmCHUgwDbJse0Vi20ogA3gQqdHWIYF1GxJYO5EAfA4SxGchQfxZpNFZFOk2vgi4A5mJTWK/DxoMWEpLseTnc3D5cvytrcS8XuLhMMc2bJD3Lb/7HdmjR4OioLdYKH/66f9jLLPOYMBgtX4HrP9fbt8x19+1/ziOK1kybjTKWujly6W9diQiHxaLvPAmqd3FiyXo3rtXUsidnRLVdndLxjsel/txOuHJJ+Hqq+GHP0zopxJW4EeOQH4+keZ2AlOmJ0ok5SqPR2qeQR5qNNobHXz6tDy8t96SMmK4OGJr0SIpD1fVRBVY4GKH8A0betPGkix5U5ME2Xq9BN3z58t5hmQ/r9fD55//ihkzXsTlamD37hWp8m27vQirtW/K7TvJKFdULEKvtxAKOamtfZnp01cB4PO1kZk5AEVRiUYDADgch+jbdzTBYDe7d6+gomIRaWkJl8mIF5Mpg0jETyTiZc+e55g6dRFZWYOIxUKEQi6s1jxApNgm89lu6fCdjM1KPivIv2N9s2Sx87ISemoujtRKNk30stvhiATowbBkpE3GXtdwk0EC6pYOGFQMMotGLkv0iakK8Vg0xZo2bt9Oe20tox58UJaEKwqxYJBDq1cz/O67U+6bpsxMvlq5krL77sOcnU3A4ZAmIjk5xP1+ooEA5pwcAg4Hx15/PeUUniy/Gr9kCVoshvP4cSx9+6ZKyk19+vDVc89RNncu1oICDDoV5Y8vyxLvy6+Af/8luJzS8dvjlCBPVaXG2pwmzcfOnYKSgRJUh4Kw6W247jYJnmNRWT6elQs2u3QfV3tZY2lD6pb/X5v/3MuGDx4J77zUexw33gm/nkv8pb/QUrcbd1sdQ668m4jfhd6URiwcxNKniGjQTVf9hVFcOulIH4sS9HRiyewLikrbsc/JHnApsXCItMy8hOO9zM9O6q5BJehqw5IpZ51aj36Kq/UEGQVDKRw5jVgkgE5vJOh2YsnuK+OuNCFncJNu9MlS7ylXX8BcS6aZSAS87oSj9zSUzD69Wm17ppz0CQVliXjpAEQ0inC0ohaXImIxhKMFtbBEMt7/zFRbbZLBTjDh6sQr0PbtQjfzFmItTUSLStmydSvHjh2jrKyMWbNmsXnz5ovKuZPxWE6nE5/PlyoBLyoqQqfT4fP5cDqd5OXlJSK0TBiNRlwuF7t3707Fc23fvp3Jkydjt9vx+/1kZmbi9Xqpr6+npaWF66+/HpBxXMksbEXRgDhCaESjAXbsmM+0aSsJBrtxuxv/g+qVJ8jMHMCWLfMoKprAoEHXkp5eRHPzPgoKLkNV9Qgh+Oab92hpqWXmzJfxeluJRHykpxcmfB4kq61pMQKBrlRlTXIfkycvIDv7EkRYT9OeZnJH5KJP02NIM7D555s5+u5Rbq+6nYySDHav2M3kBZMl2LWbEJqQPltxQVNNE84GJwOvGUh6UTpNNU3kDMtJjeVt9bLzyV5n8JnrZ4IG3jYZvTV10VQ8zR4ySjLIHJCJr92HNceKv9NPNBglrSSNgF6eV+1GOzERIxANMH/HfH5R/gs6/Z1cVnAZTZ4mVu9dzdoZa+kMdLJi9wqWVCxhQOYA4iJOTVMNfa19Kcko4WDrQcbmj8VisNDp78Qb9jI4ezCnuk+xsmYlCyYvYHCfwbT52li6cykbj22UuuuJj/LivhdZN3MdBtVAVIsSCfdQZMmS0VnxoGSjs8ZKwJt06w40g6UUTDmSeT66tJddLn8TPKekVnv4ArBfIv+1fOdk6bhilOeXeEBOZLV8LB3Cc6fK6C1LqcxwNiWSDLprZZRXWoFkbo12mYEt/2C9ZeFCS5SARyQ7G/HKMnB3w0Wu4S++uIZ333uPT7dtJSs7OxWzNXfhSsaWDeWBB+6np7ODSydfzfvvvMWl5VM5f+48gwcNAC3K/n9s5bof3kd93XGybEYJYqH3WKJ+6DkNuSPk2LGA1Egnwf/xd6QT+PfWSafvnJFSV971DRRMkH0F8nMoOvlZtEiitD2a0Fc3SuZ6wiIZwdW8SzLdB1+Aiud6vxNFlcA8vUSWjedPkAx4Wg7BqB6XD9zuMOnpRlkVpYDNZkyxzR0dfjIzzezf30JJSQY5ORa+/rqN8vKiBICWLvjxuMb992++qCS8qclDS4uHkhI7TU0epk4t5fx5NytW7E4x5aoKwWCMAwdamTixmKYmyZovWDCZYSOzaHZ30OV3MqZQ/oZURUUTGioKcQSReBRN0zjVeZ4HNj3Huu8vZFhef5wBL+2+bkbmD0KnqDz3+e+46/IbaPf18OBfn2fG0EksmvZTVn7+e0YWDGJSv9Hk2rLQKTpiIs4zn7yRKgl/8tp70TSNVm8Xb9d+yL0Tb6HInkvcYKJBVakE3kCWca8BngesSGa5DVnqHUcC7AVIw7F8pI76WaSZWSnwB2Rp+P/D3n9HyVHf+d74q6q6Ok/35DyjhAEhFJBRnBmwASGEBIttwAGntQ3IFl6Tg4SNvYskkMCwGGyC1/Z6vWuvjMOCAiLYMhqNAtHIQhYwCpNz51hdVb8/PtU9kr33PHf3ufc85/6uvufM6VCxazrUu97p+whz/QHCYqsIo13lrNNynss68+URlvwE0I6A7o0I2C4AZ6dSvHWyNPyb38QuFDDzed5++GHO+fKXCba0oLhcp0Hw/6HjtCz89Pjvj6JkvK0NPvc5oYAtCxIJCIelmyoeh8pKkY/DJOv5jW8I5Vtk5d5+W6jg1lZZT7FPK50W1HrrrYJ+bUmfTiplmGicOAFTpsh5dzTKKR7s1lbZbCgEu3YJ8D7zTJGEVzj48GQA/dRTApLvugtmzBCGev36yf7qY8fk8eOPn2oTX7dOpmuag0G75VrCT36SQlXBtg3nJFTESZFIN7oeKHXJFgo5Xn75Lhoaziud4Pb2dtHYeL70BTu1W8JGJ3n55btYuvR2fL4qDCN1ih/7iiueIZdLkM8ncLvL8HhCnDjxqoBnbwWFQo5Y7AQtjp8wlRrB4wnh8YRx2y5ho7P5yVqtk+uziuNk8FwE0EWvtqIII63rAsyLzHRR9h1LwrvdUFMJZ7TICQu2eLpP3lZe/NyGWSDZ01PqYPQ3NZHu78cyTRRN491nnmHml77E2FtvMfrWW5z9hS/w53/+ZxY6Em9XIECyr49Djsco0NSEkUqhKAqaz0d2YoIdV11F00c/yvnr1vHmgw9y3u23o/l85CIR3KEQY2+/jbeykuzEhDDmDttrA26PG2VkYFLCXVkrdVB9R2HaWeK5/tRqxz8NHD0M4UoJOdvyNCy/BrrflfCzippT5eNTzxRpd6kbOyfru+waAe3ppMw37WxhsUcHJ2u9giH496cw//ZWcukYY0dfo/Hci0se65ozFuL2l2Nkk6iajupyo2Bjo4BloqgSXJaJDOGvqMcGzFwazePHyMQdQN0gadqWKSeBmg62xeCh31M9YwEut4/Bd3ed4vEuhp1ZjrS8atqH8fhCqDaY23+D0tyKOnOO09VtYRs58Vr7/PIaAWwLq/cEamPzqdLwlZ/A3PFb1KUXyvHxB1AsS8B3uFxUAZYJ6TR2PIoSCmPHY6jNU7BVFcZHpbrLqfpSwhXYsQiFQAi7qhrTNOnv76esrIxAIICmafT399PQ0PBX3upi3VZRCq5pGqqqYts2ExMTpa7riooKnn/++RJov/DCC/n+97/PrFmzWLVqVckTaRhGqVdbpOAR9u3bx7Jly5z1W9i2iaKopFIjqKqOz1dBPp/EskxeeeVuli69g4qK6fT0dBKJHGX69IsJBKQe0LIM+vsP0NAwXw6xbZUu0LlcXooKmni8j5YWcSoaRpqhobdpbFyApulEo8dLXu1YrJef/3zVZIVgwUukO0Lnhs4SgAbYefNOLn/icrav2c6hLYeYfd1sVjy+QsLunYqu4XeGS5LwobeHaFrQhOJS2HHTDhbfupiK6RUoioKRNnjpjpdou7ONYEMQl8dFPpXHMi1GDo7Q+OFG+l/rp6WthdiJmPRdr+0gPDVMNpcl48uUvuLueOkObll8C/v69jG1fCptrW24FBert63mXw/+K4fXHC4B4pNrt9a2r6U2UMsdL93BY5c9hmVbvDbwGvPq5+HTfWiKRmdPJx/f8nGuPOtKnl71tCSJR47TG+9lUfMiIpkIuUKOaRXTiOfipPIpmoLVeBUVpZASkKbpYKvw1s1QcZ6kf/ubAEUYZ2+NVGe9uxHOvVd80QeuF7A99Tr48OOSfp2POGy1NtmXfc49EJg6KRWfdY+EpPnqhQ0/tEHSx7OjEJwhDLhtgCv817LwYsrCX0nC7VI1Vt+RN2iZcyHTp0+nrCwIto3H42V/VyfjExH+9ktf4mj3+6C6+Nrq1Xztxi+THnmfZdd+lVg8jkuxCHh1/mHdbVy08hoB1KpHwG9yAEJTJMPBSDsg3y0gPz00WZHlqxHQqwcF+B/Y4DxfC7vvFE90ohf2r4dFayE0HdLD4Ktywt0sqe/yVkkvd2O7vJGMpDDiAK89KMuGp8thKQa+DeyDsibywTMZjxoMD6fYuLGTdes6KBQsvvvdvTz++ApOnIjh9+uk0wU2bNjNbbctYXQ0xfnnN3LiRIyHH957SnXXo48uZ2wsTV9fvFS71dnZQ3W1n5GRFDU1AUIhT8lTfemlM6io8DIyksTr1amo8OH1anz96zs477wGLr10Bs3T/LzVf4Qza1oZT8UYT8eoDVYykpygLlh1CnhWVZW/f/EZ7rn4S0QzwmoXe6m/vOgq3uh7l7f73+Oei/+Wja/8mL9deAVN4TpyBQlvTOUzBD1+FCBtZEsVXfXBKprCNRRsC9WxNKmKSsEyweUmpbmIKgqNSIDYBcBVSOhYGAHDCsI+JxCJ+B4EQO8DznXmuQsB3Y0IiM4jwLgHYbjXATMQ/3UvcKFzfwMCohuQdPK3gPuYlIc/DrxpGCw4dox3n3qK+XffTW5igkNPP805119PsLkZ1eXC5fVy8jgt5/4/a5wG16fHf3/k88I6a9qkXPzoUYnKXrpUQMjwsKBbTZPni8h3mvjVME1BpMePi577scfk+WPHRGf94INCNefzArZHRqCvj3z7RaRtL3v3KjQ1CYvc1iZs9NVXwyc+Ad//vizm9cpuFefJZGQ106dPAuZ77xWifXxc/jo6JsOyJyYk/LwYjG3b8tK+9jX413+dZLYNQ8LNFi6U6T5fmnw+Ri4XcwLEsqVD98ora7n44g2AMFC67iMSOUpX16aTAoYGSSYHaWpahKpq7NjxdRYvvhWwHfl4PYVChnR61GGuJXSoUMiU/JVVVWc6YUO9pZ5b08zT33+gFD4UDNZTVXUmHs0nP/rxpKR+2xaMRKAyPOmLBpFwB3yOosABzLo+6dV2aZDKnArOc3kI+uQkx7adwLSTgs4AXjsIZ08XptsUT3neyJfCyqauWsWCb30L2xaPcnZsjME9exg/eJBZN96IZRikR0aoPPtsNK8X27bJTUzgqajAyudx+XzYQLKvjz//+MfMu/VWXD4f2WgUl9+Py+t1TtLTGIkEejCI6nKJf/vHP2bebbeheTyoLhcnXngBf309DfPnCYtbMGB8GH73PHzsi/J6PB55vYWCeIB/9SMBzh6vAL3xYXD7IBCQE7t/e2KSef7MGlm2+5CkhL/4q/8ciF/+KXlsWvL/crnk/5JJAwpmIIhl5kFRUFUXqYl+et583pFtl2FkEvjCtRjZFGNHX6Nh5kcoGBnGul+jfuYFqJqL1MQALk+g5Je2HRlgOjqEL1xLIZ92QtEW4PaHsQp5sokxApWN8lmRK0zYioKRjjH6wX6qpy8gHeknHRmg9swlklIdKfZYXwIVlTA2ip2Mo4TCWJ2/k9TvUDmoGopZAE3Djk7IMm0fhUAQ+/BB7P5e1MuugkQUa88u1Isvl33QdcwXnkO77EoB7o63ugS+wxUi0kilHO+6DwoGhWCISDJVYpcrKioYHx8/BSAXmeXBwUEuu+wyDMPA7XZjOXWCL7/8Mm1tbZSXl5fA9OzZs0u91f39/YTDYfx+Pzt37qSjo4Py8nLy+TyJROKUbdm2zdatW0sBa6lUnFDIcILEJAyxUMiQTA6ze/f9LF16V+k7w+utwLYtUqlhOjs30t5+D4FAHS+9dAcXX/wAHo+khU9MHCWZlDRwl8uHbUsiucvlI5UaZt++R1i2bDMul7fEWNu2RTTag9cbJhCooadnD+FwK35/NbpVQU9nD4EaYYsrZlQQrAuWeq4j3RF2r9/Npd+9VMLb4jncZW50v070eJQ9D+yh/Z52fNU+XrrtJdrXtnPiDyeomFFBqDlUYqdDzSH69vXRvLiZRH/iFDY8n8xTyBYIt4bZesPWEsu96ulVGG6D9yKTjPKe3j3s6d3DY5c9xlByiA2dEkRW46/h5p038+jyRxlODbOxc2Op67rIPH/nwu+QMlJMCU9hf/9+5tbNZTwzfkqHdjKfpMIn/8vh5DAel4d0Ic3mPZvZvGwzQXcQwzTQNR3TMinTFDRFc5Kq0xD9E1QvBEUXkGbm5FbzyXfJ+F4InS0SbpBpuTGRjc9/FLJD8O4Dk4Fk2eFJ73Z2HGrbRYJeDDWb/4gA1iJAb70Wzn9ctl8E4Ut+JlJvdxA85QJiY8ckOdvKCzubT8rjfMLpmLYFkKOIlFzzTHqbT5aU25awz56QBIRlxiZ91WbO6Y9ulm1iA6qAZHdQtpPsh0CDAGJ/rSyz61Y4/K9w1rWw5NsQqIf0GEQ/gOpzHH+5De//BmZ+WkDy8Rdh5C34yCPioR7aL+sNNMj86SHw14vHOjUg4H3RWpGO/2aVbOuSJ2W6fDmC7of0KEm1jr7BHPfdt6vENn/72xeSz5s0NpZx0007uP32JTz00F62bDnEddfN5vvfv9yxjeQZHEwSCOiUl3uZOvUf+cQnZvLkkytLvdh33rmUxsYyksk8FRVe9u/vZ/bsWioqfBQKFoZhUihYpNMGyaTBxo2drF3bwZQpoVJA2o9+upK8aRDNJPjxgee47SOfcy7JKiRySfxuP4ecjuqmcDWxXIoyd4BsIYdL1dj4yo9L7PNXl16NYRbw6h7KfWVoikokHaMyUE6ukOdPQ91U+8tpLq/lRGSQn76+ja8sugqv7qbcF2IoPsZPnH5rj8tNNBMnHK6lU9WoQcLJBhCQ24v4qr8LjDMJjqc47xacd1oakY+f7JV+BmGjo0hg2YRzfwQJRBtFvNkuYPVJyz2FgPb5zjzrgXsRcH418FvD4KO5HFgWB77znVImzOw1a/DX1Z0SXHY6iOz/vHHac316/L8fAwOihT5xQgBwTY2EmqXTAqwtS05UN26Ujquiv7Aodd23T8DZY4+JLDyZFGB9yy0iB/3Tn+R5v1/o57lzcR/oxK3D0qU2vb2T/uj58wUw/+AHAqz375fH/f2y6P79gnnOOEM2U1UlAectLbK74+OweLHsnmNvxOdzbJ+2rOuGG+RawObNk55u2xY/9+LF8lLGxwFMEokBdu26j1isB9u2GBx8E1V1sXz5d1FVF4ODb5JMDqGqLvbte4SWljY0zY2iaKTTo9TVzSWTGaNQyNLcvIRkchBVdbFr133E4z243WXoesDxUU8lGj3Gjh03EQjUkEwOYtsm8XgvgUAN/f2vYRhSW9PSspSyskaamhaQTA7JC8gX5Bcm6Bdvdc6AukonaMyc9EyHg0L7F33SoaBcWWiuFxCtKJP1WqMR8VCHHAAZTworHUtOrqsIthfNkcf5AhiSVK6oaskvPe/220n29TH6xhuk+vt55/HHqT7vPObddhu+2lp8NTXUzp+P4nIx+vbbmLkceiCAmc2i+Xzij7Ys3nVqLzJjYxz4zndw+Xzkxsc5cN99GOk02YkJkr29qC6XJJN7PJz1+c+TGRvjtb//e5J9fbRccgnlZ56JaYoUmPERiE3ANV8WHzWItzqTkmTweBSWfQzCFQKuf/GkHMPRfpGMu3QBygsuEObZ7cjJp50twPq1VyWN/JzzYPrZAqzf3icBZ7YtrPYvnoShfgHzLl1Y2nwGRVEp5NISIhau5eyLbyRQ2SQ90xWNUrPlclM9/XxQVca6X8NXXo+RTdF/8GVcHh+ay42RFb+2kUuSjg5LCrhLx+X2469sopDLYFsFLKuAL1zrhByp5NMxBv70CoptlXqux46+RrBmCjUzFqC5PHKG4w+iXnhp6QOnVNWgtk4rVWbZsWgpfM22LOzoBATKUC+8FLv3BPbwEOrs+agrrpLWuN2voDS1QCqBufM/sGMR1MuuxJ4YL9V/mTt+gxIIyrqdOjklGMTOpCCfQ6mowtJcxONxLrnkEoLBIAD79u3j0KFDJBIJ8k5F4cyZM1m+fDmxWIydO3cSiUTo7e0lmUzS1NTE7t27sW2bjo4OZs2axbJlyygUCmQyGRoaGkpgetWqVaUe7FwuR1dXF4cOHaKzs7PEXre3tzNjxgy6urqora0iHu+jrKyBHTu+Ti4Xx+XyUV4+hWXLNuPxhFBVnVdfvR/LMnG5vMTj/Rw58hydnRvJZqM0Ny9xTtKHMIw0Hk8ZgUAt2WyUQiFLT0+nU/1Xhtsd5JJLHkRVXaTT47jdAdLpMSzLJJ0exTDSJWBdXj4dXfejaAqh5hD7H9tPw3kNlDWUoeqqyL27I4SnhFn55Eo8IQ+JwQS77ttFciiJqqnseWAPh7YconNjJ/lEXu5v6GT6pdOlosvjoqWtha7NXaRH04SnhNHcGppbo/UCqe7S3BrB+iAV0ytIjaZov6edWdfOomNtB6mRFJZtsalr0ylVWXe3343H5Sn1Va/fLe7M7634Hn7dz4yKGXz/8u+jqzrrOtZx7axrubfjXppCTUwJT+G1gdeYWzeXsDdMbaCWC1ov4JF9j6AqKplChjXb19AX72NK+RTqg/V4NA+3LL4Fy7Z4f/x99vbtJVeQ7kcbDTt5FA6sFsa4fLbcT34gsu3MACJOld8dwnMg+q6w3HYB3lkH3noJH3N54c8Pi8dadS4AeuuE+T78sMjNk8dOquJ6QAC2okzWcZ17r0ihT+66tk1hid0hYXnNLATr5TbRK8+HnYvqxYTw2FFAFWCtO8ond5lT5WVNzlPszbYR9ttXLWDaKsjrKZ8hr8W25LnivnjKJ33giuqEmt0gQLnjQQG7C9cJODZzArDLmuDVO2WfbUuAdew4RI/BOZ+Dix4TcLzrZmG8U4POb9sJ8W47/mle2yTe6sSAeLK/OgwfeVRei+oSP/aumwXM6wHcblephuu662bz6KPLqa8PMnVqOV6vi3XrOhgZSbF2bTvXXjuLzZuXYVk2hYKFz+eioSHI8eNRfD4XfX23lKZv2NDJc88dYWQkhc+nU18v3dctLSEOHhzh2LEI+/b1oesaZWUe6uuDPPRQl+P73g0opWov07RxazpBj5/bP/I5hhLjbPrdP6MoCiFvGbZtcWZNK6OpCSzbJppOsPGVHwHg0XS+sugqVs5s586PfoGaYAXN4Vp0zcU7A+9hY1PhD9EXHS55ricyMTRVpSFUzS0XXsdYKkKlP4yqKFQFwnz+/FWMp2P8ceA9soZBwcjTbNs8jPipG5B076IPO8Gkr7oXCTC7CfFmF8PK6pj0U9+LhKEVEKC+DwHgDyFp4UVAfpOzbHG5tQigbkPY8hok9KzFWe5KoEbXMYJBVI+n1DN9zpe/jF5W9leVW6dUaD311P/rvuvT4//7cZq5Pj3+85HJCHq1bbjxxlO11TfeKGXPV10lEvGyMgHZR49K6Nn8+SUGmoULBe1aliSHrV8vWmtVFU/2hg0S/11RIdtcvx7uuYd86xmMZ3yUhTUKBam+Kkq99+0TC7ffP8k4F3GhYYh8vK5OHqdScm1gyhSZZ2hIcP2mTbKuQEB2zbJkd775zcmX+uSTci4wOirb6emR3b3nHpGVu1xxent3l+qxGhvPJxbrIZUaKSXuZrNRUqkRWlvbMYx0qZpL/NHTyeXiqKqOpukoioJlFdi+fQ1HjjzHNdc8W1rupZfuoK3tTlwuH9lsFK+3nECgBkVxYdsFenr2UOck4MKkJ3to6G3KyhqpqjwT3VYn5dujUfB5BOzCZHVWa4Mw0rblnKwUhNU+WSpelJAXvdMzWmS+nkEB4IbhMN8IkNa0SQCviZcXRYG8geGEjtumCYrC6//wD5z1uc+RHR8/RaptO8Fp6YEBDj39NPPvuANUFSOZRA8E0INBRt5+m9rzzhPgrOscfOIJqe/aupVkTw/eykr8jY3ixw6FsBUFM5s9xc9d9GQv/Pa3SfT2Ut7agqYgxyKfFdn21V8WML3j3/9ztrn43LEj8PG/FRl5oEzeZB6HrfngTxCuEvl4Mi7Lrfw0VIuVAMuUBPFYFLb926nr/MwaAfqhckzdjY3JwJ9+h7+ikVD9hwDxVquqSiGXkXotj5+hw6+W2GrLshh6dxexofdLqd+piX56395Oy7zL8Vc0Ajb5dJzxY29Qf/YFqC4ds5Bn+M+7Re4drBBRqG1jFvIl6Xkhl8GyCrj9YQAK2TRul6eU2q1e+0WnOgtJJ4+OC/g9mcEur8La9iuUphaUlqnYyQRKqFz82s50xkfB7cbatfOkVPGPYQ30oTa3Ym77lWzvmi+IR1tRRIKuacJmqBpExykEQ0wkknR2dpYquAB27tzJqlWrSjLvpUuXUlVVVWKm586dy6WXXgqAqqrEYjGCwSC2bZdk4kUGvLgscAorHgqFiEajdHV10dHRQSgUwjRNXC6X9JPn87jdGpaVY9u21bS0tDFz5icASCaHSgwzSNUWKHR1PUh7+1oSiQHq6+fhcnkdf7VVAu+KopJMDmMYKTo7N7BkyW2OrSRzSnZEa2s7ExMf0NW1iaVL76K8fCrp9Ai6HmBk5E+EQs3EYj201l/M1uu30tLWQkt7C6nhFM2Lm7Etm4HXB2he3ExvVy/Ni5vZtnrbKaxy7ESM3et30/HNDkLNIVLDKQJ1gVOk4ItvWUxZQxmKpuDyuIj2RIn3xmlZ2nKKnNzld2HmTBRV8gt69vQQqAsQPCPI8exxNnRu4N6Oe5laPpWh5BBl7jJG0iOs372edR3rmBqeio1N2kgTy8UIe8IE3cHScTNtExWVPb17aAg2MKV8CkcjR9nUtYl72u+hxl9DyBOiP9HPi90v8tbgWzyy/BEKVuEU+XjezKOgcKD/AC2hFs6tnIJ64IZJ1nj2t2HbOSLxnrsRCikBz+keYafPuQe81fD23dJT7fIDqoSaFVO8MwNw5BGYt0mCzUY7ofNquOwtAdb9z0H7s+K7LgJdlx+wBeCbWWdd6UnmGlvY6pOZ5dhReVw58yRmuvnUqqzwjL+WlFt5YXyLTLjicpoMnGEZcuHANAS4K0gad7Hey/mto+BI0gMN0L9bAHFmVAAvyHoLGWGhiz7oIsu85DsCtvNJOdcZ+yPUnS/LxI8J4A82Oj71TqnW+tAn4GInqT0XlX1K9Ii3ulhLhg0vr4YjW2DmdeL1tgtkDA1L82NZcPx4lJ6eGIsWNRGNZgkE3Pj9Oi6XQipl4Ha7yGQM7rjjJW65ZTENDWUEg25yuQLRaJaKCh8+n0Y8PgnE7rjjJW69dTHTp1eQyRQwTYuDB0eorw/ywAN7Suw2wM037+Suu9o488xKjh6Nsn79bn7005WYtkUsE6fCH+bvX3yGeU1nsqB5FkN/IQlXUHiz/89U+MqIZBLMqG6mYBao9IfJGDke+cO/8oUFqxhJRqgLVtJcXotl2/z9X3irM0aO0WSEn7z2PHd89PNE0nF+8trz3HzBZ/C7vbzVf4QqX5gyr49QuI5OVaUGCRnLINVajYhc+1EmWeQnkMTvNudvE3APkjCuIpeqvAhbHQeuB24DHmaSnX4akZ5vAb4IfA8B4qNI8Fmzs67rnXmuQ+Tn/c7+VTrrN9JpCqkUlmkSff99aufPP81c/x8+TjPXp8d/fRTrt264QYDR2rWCNteuFdp23TrpoxoaktjsoSEBTjNmCOh2uwW1zp0rP1i2Levp7xdm++67ZfqGDYJkH35YqOn16+Xxxo0YLi8WAqxtW8ByTw+sXg319SIFTyZlFz/4QLD88ePisfb7hdyzLNmV6dNl93RdprW3T+5WMinLnDghaeEnB6cXs92qq0WNOzQku1pX57RvFPRS8m4o1Iyu+0mlRkqJu4aRcoD2Qgwjg9sdwO0O0NLSRlfX5tLhjsd72bZtNbFYDy6Xn/b2e7jmmmcJhZrYuvUGEgmRb8bj/bjdQUKhZtzuIC+8cAv5fALDyNDQMB+3O4ha+nFXcLm8NDcvJh7vw7IM53+bE1BRX+Wwys7sXgdo5/KT2njDmKzPKqaI55wfchsB2WdOkXlURTqtXaqsR9NkO3lDwHnegOMDArZB5u8ZBNsifuwYB779bVIDA3x47VqCzc1UzJzJkZ/9DH99vdO1DYqicPhHP6LnhRdQdJ3M6CgHn3iCzNgYAOXTpmGZJp6KCrzV1aWrxd6qKvx1dRz52c9QdR13MMjo22+T7OsD26Zq9mwO//jH1Hz4w6x8/nnm33UXiqqSHR9HdWkwOiSSbtsWSbiiQHQMll8tLPaij0r91s5nhYF++TfCUH/6a3IFZ9vPITIGuYwA7eg4NE2D2LgEnlXVSUDZkXcEtI8Owr88Jungui5J5B6vrPPqL8PYkKSGT4wCNunIENXTP0ywZqqAas2FAqQmBqSDXdNRVI2qaR8Wf28uDU6id+v8K0U2nkvhC9dyRtt16L4gA396GSOboJBLCcudS9F/8CUKuTRV0+ajuuR9ZqRj9B98CVXTMTIx+g++jGUZ6L6QBIBZJprbi61qaCs+jnbzveKBzuWweo/JBzVcMclgH3pbV6LGrgABAABJREFUGOmCgbriKtRz5joM93Sszlcmp1umSMu9vslU8SUXSsp4Uwu2qqG2X4R6zRdQQuWY238D+bwA63QKxbLFG75nF3YsSmdnJ4cOHWLfvn0l3/OyZcuwLKvELHd1dWGaJsuXL2fNmjWsWLEC27bp6+sjGo1SXl6OpmlYllVKBD9w4AAtLS24nS8T27ZJJpMsWbKEeDyOaZpUVlayatUqKioqKBQKxONxtm7dSjQaBaC3tw9V1Vmx4glmzfoU+XySfD5BV9cmmpoWkkgM8NJLd1BW1khZWUPp+6W1tZ1UatRhnSX1OxY7wdatNzA+/h5udwBd959SsbV793qn9WAzdXVzsG0LjyfEkiV3EA43Y9sWExPdZDITtLQsJRbrIRCooWBm6VjXwaxPzaKsoYy6uXXs+PoOosej1M2pQ9EUWpa2kB5P076unc9s/wwrn1wptVtBF8seXka4OYyqqkSORoj1xOjp7CExkKBpYRNdm7rkmlNBQvLivXECNQF2fH0H2NC8uJlMJEMhXcAyLKLHJfU+3BLGG/aCG/rifWy6ZBOVvkq+uu2rZAoZPC4Pfpefp1Y9xbTyadz+4u2oispAYoD7dt3HQGIAgOHUMMeix7hx6428P/E+s2tn05/oLzHizx15jv54P0F3kEQ+wYOdD/KJmZ/g0cseJVPIcPPOm5ldO5vh1DA3br2RwcQgB/oPUBOooTfeK6DynHsc1vibEia28rB4p5VirkVGpNw9W+DPD4lke+56wILX10DqmDDZb90qzOnhTZIqnhmEAzeAv1nAtB6UbbU/K88duEFAu+qC1Ak4cCMYEcj0iQzd2yCMOIqTldIsQDo8YzKxu3KmAN5knwSZmTmReFfOhNBUAcZmXqYl5ZiiuQWce6sEZGM7KePdcquoDrB2gg9t25GW6wLoCzkn0yUnAFh1QbBFgHX9IkCF9Kgct1xUwHawSW5nXied1IF6uViw62ap66qeLUniiiKJ475qAd6vrJHXfcWzcMFm2f7vbhLQ7vKKd3vogLDqiib7smidAPiOB2W+zDiW5uf99yP09yfo6YlRUxNgzZodJJMGb789hKoqWBYMDaW48catDAwkWLiwiUce2Yffr5PPmxw40E86bbB/fx/xeJ6xsTRvvjmIy6Vyyy2LGR5OceJEjJtv3snYWIa2thYeeGAPW7YcYtOmLqLRLF6vi0cfXU5DQxDDsPD7XTz11CqMgskfB94jY+TJmwZfXnQVS6bMYSg5ToWvjI2v/JjBxDgAE44f+6evb6M2WEm5t4yMkePvX3yG0WSEcxtm8E/7/4NyXxk/3P9bcgWDt/qP8JVFV7H8rCV8ZfFVACRzaX7y2vPsPLKXZC7ND/f/lnMbZjCWivL3Lz5DbbCS+nAVXt2LC5v5tk0IqdbqBz6DhJk97dy2ICBYR8D2ciaZ7Y3O6Y4bCDm3ICB7HQKa72EyJVxDAtGuBW5FpOF+hP2e5twvLltcxo2A7sqT1q/qOrlIhLc2byZQV4d6cnAwkvBdNm3a/9LU8NPj/9txmrn+v3kUU7/d7lNTwmOxyUjssTGhiqur5X5bmyBN05Seq89+Fn72M0GsuZx4sO+/X1BqS4ug1o0bpSS6oQHeekuSyIql0w88MOnR7u6Wee+9l3jrLFRN5YMP5Km1awUYn3nmqQT6c8/Bs8/Kbo2NycuoqJDdO3ZMWOtFiwSfFeu5p0wRUK3r8pdOy+PGRtn9cFjY72BQlt+0aTJArbt78nFzc5Lf/e7LpbCxFSseR9M8JJMDdHe/SH//AZYvf5RY7ASp1AihUCO7d0vCbiBQh677SadHSoFls2dfx+WXfx8QlqSnZw9+fxWp1Cg+XzNr1qzjT386iGXFaG09i40b72HatBYuvfRyEgkP5eXlAFx33adYs+YraJqXr3zlevbtex2/309ZsIxHH3qYBWfNnGSgbYQlPdov4NjrlhOWnCFMdku91GyNRqAyJPeLo8iCW7Ykj1vWXzPZJweYTcSF/T6jtZQanrdNDnz72/S88AIXfv/7+OvrpQfyy18G28ZfW4vq8WDl82hOAEh2dBRfbS2v/f3fc3zrVmGav/Mdxt56i+p583j9/vs5+wtfINjcjGkYuLxe0sPDFDIZVJfrlJ7JYEsLALrDVha92GY+j6e8HF1VUP7lH6U2a94SAcPlVQJwo2PQMsPx7zpS8X9/Cj55o7DREyMi+54YgZd+A5+9SWTdO38Jl10LdU3CiKDI+rb/Aj73dwKsi97sL9wsy7z8GwHWHi+8/yf44Wb4yh2Y55xHPh3FyCTxVzaJICAdczzSH0ZzeUuMs+Zyo6ia02/tQ3H88WYhTy4xii9cj6K5Tk0Bn3URBSNbSiH/y/VlYqOceP3XzFz2NQYP/b7Uba17g+TTUUY/OEDjzAtRC7ZcWPB4sIcGUMpC4AtgvfS8MNHhChTTnEwGL69AsSzsTAbF75cLNZaJ1deDEgxCeaV44Z2AdaVQcJYNY/ccQ5l+JihKKSVcaZ2Ocva5KLoubLlZgGQC/AHMwQEmQhXs7uzk0ksvJZ1Ol1LAXS5XKe27o6MDn88nnuFcDo/Hw9DQEH6/H6/XSyAQIJVKYRhGKfwsHA4TiURKzHR5eTmRSOSU9Rf7rYsS8l27dp0SgOZ2K2QyfXR2bqSjYx2hUCuGkSKZHCYUaiabnSCfT1FkrZcuvZOyskYABgffJBRqcvzXwkb//OernO+ax7GsAplMBK+3wvFeF7As00kIN+jr20dZWRO67sMw0iWWO5UapalpIQD9/QdobuhAw4NVsFBUBduyiR6Lsve7e+lY10GwPkh6PI07IJVcZt4sMdIVMyqI9cSI98ZpWtgkQWXpPJpbIz0q3dmp0RQVUyuY6J4g3henaVETO9bsKDHlnjIP3gov/fv7CbeEifXGaJjfgDvoxrZsMlaGo5mjBNyBU5K7v3fZ9zgeO87Dex9mbftaWkItaKrGDVtvKM3z1KqnMEzjFN/1ty/8NjX+Glyqi6ORo4Q8IWoDtRiWgUt1kcwnUVBQFAW/7qd7opuAO8C3dn2rtI7bFt/GeGac9tZ23IqCu5AQMtYVgsT7ElY2/1HxS7+7UVLAy84QMFzsqy7EwVMLhQRED0LNUvFsyxelgOPkUaiYLaDPFYTsiKSSu/wCyqsWTgamvfZVOP6vTr/1k5A8IduetRbKzhRADyLLtoxJJrrUdZ39C291swDN+AmRcStOO4Vlise6yEhbpqwz0TvJioemgZUTMH5yUNpf+r6xxeOtuhzmulaAcuNS+W41s7Js7JgTOrbOCR2TAEYKGYg7DLq/FvJx2a/YUZl/4T2SDD50QOq9bEtqt7JRZzttkkDuq4E3HpY08eQA1H0YXB4nTd0AyyBmhOjq6mXRoiZ0XSOfN8lkDLLZAjU1AdJpg3g8x7e+tYvnnjvCs89ew+LFzaiqQl9fnPvvnww6q672Ew576e6eoLY2wMhIikWLmvB4XHz1q9v41389yLXXzuLpp1fR0xOjpyfGwoVN6LqKYYjFoKcnxiOP7OPRR5fjcqlk8gZxO4LP7abME8Cj6VjYGGaBzb//aSnluypQjmVZbHjlRyUW+pvLvsI/vPTDv/JcDycnqCurYjgxzm3PfZcd13+PeDbF3hPv0DHtPLy6h7FklLF0lLmNZ5I18miqUprnT4PdrL3kS2LP8vh4T1HZhEizZyDy8DTCVt8NfIjJ4LF1CAjuRoD1vcBZTILeU06HkTRwy1lnEGGna3G4hP/BcsVlc4hE/X80z+nAsv//GqcDzU6P/3wUa7bWrxekePbZkwC7yFxv2CAotli1tXatmJk/+GCyequ+Xti5/fsn+6uuvnoS8RYTyK68UszPjY2CdA1jsu6peJtKiWw2lyMdqMawNDo7FWpqRJrd1iaA+pvflPTubFZavYpq8rVrBQzPmTPJXudystq6Ogk2P3hQyPV4XJjooSGRmBdfXlWVEOsPPCDW0AMH4Jxz5L7Xe2rI2U9+kqFQiJLLxZxarDSFQordu9eXTnBdLh99fXtpaVlCT88efvnLqznrrCtZufJJh2W2sW2Lvr591NXNJpUaobNzI8uXP0oqNUJX12aWLduMaWr84Q+vMnOmn0Cgmqee+hG7dh3k7/6umQ0b3uT22+/miisuB8DtLsO2pbbnV7/6BStXrsTvr+Sl53Zy0223cPyDbuc9YEymgOfy0DcMH2qVX5L3TwigrqkQdvovZeOWKf/Hk2q1yOXhTx/AglnCUo9G4NwzJoPPikDdCUkzgz4KuZxIvZ95hvPvvZfX779/EmjX1Un1llOVNf/OO8lFoxx6+mmpzaqo4M0HH+TcG28kMzqKt7oaf2MjZjZLbnycQ888wzlf/jLe6mrefPDBv67jWrcOyzQlCM2ySPb1kR0dpWr2bLRigJ9l4jINFLdHwOGvfiTg+d+egGuuh0RMGOhpZ0sCtm07ifpR8WPvfFa81mXl8vkqAue/+85fhJY1iL+6ogay6UnA7vHCT/9R2OsZ5wgwv/xTsi0jj1leie31OT3VwwQqG+g/+BKxwSOEG86iac4ycskohVzKkXqDmU+juSUVfLT7AA0zPwLYmKbhAHBXqVZLdbmF7c7EnBTyRWi6l6HDf5CAs0A5g396hYZzL0bBxiwYDP95N9UzFmBkEvS8+TznfPQG8acXL+TZCKi+8FLMp79bqsyy+k6ghMJQFpILNn8Bxu1EHKW+CcUtF4Csvh55PplAbZmCnYhDIIhSKGC73SgoYBYkjkeVVG4MQ/bF4xXPtdsDbg8F5KTKtm1SqRTZbJa9e/eWAHGhUGBgYIDW1lYKhQL9/f0Eg0ECgQDDw8OEw+FSIJqu62SzWVKpFK2trWzdurUEli+//HIymQxer5dsNothGMTjcZqbm7Ftm0KhgNvtLsmQC4UCum6xdesNp1hF5AKcSjR6nD17NrFs2WY0zQ0omGYetztAPp9EVXV27ryZ5uYlnHPONei6j3w+hcvlIR7vIxbrKYFv+c4ZRdf9juVEdcLRRvF6QwwMvEFNzTm4XD5cLi+mmUPT3BhGGtX0kTiRJd4XJ9QUonOjBJD5q/3oAd2RoisUcgWy0Szeci+x3hjp0TQtS1sw8yZGxuD33/w9F2+4GBRweV0UMqJ0yafy+Mp9vHDzCzQvaWbOZ+cQOxFDc2tMdE8QagrR9VAXFz9wMaqmogd0VE3FxsY2bQoUKOgFFEUhbaR5e+htFjQtwKN56OzppMpfxWhqlLbWNhQUTsROsH73er7Z8U2mlk+lYEn/776+fdQH62kINhBwB0jkE/h1Pxkjw0BioCQPnxqeyonYiVNCznwuHz3xHtbvXs/ajrUEXAGq/dUYlsHrA69z2dR2lEJagGB2TJhdvRxG90Dnx6HpSljwfQegapPVW7PugfSgeKldfgGMo10SiIZLQKRtiK/a3yK1W0VJNTgAMyXfXZjw5m3iuQ5Mg/1fnpSqL/6xfC6Ly54MhMvkIqVUTtUI2NV0p8bKK897q5xqq/ypoDp+YjLgrJQ6fpJ0vBiUVj5dvluLSeTFpHDF8RaZWZFoDx2YlIYHm+DARgfw9sH2z8KXjshrHnxNuq2dTnMy4+LZTvYK852LSM/1jCslEM1TLmB6/wbxces+8FTIfls5YbePbBG2+qLHhcXWgyIv378eFtxJOngusXgey7IZHU2zcWMn99zTTl1dgJtv3smddy4t/VuGhpI0N4fYsEGSxXt7Y6xa9XOuvXYWjz++ggMH+pk/vwFd14hGM1RV+TEM08kJgVtu2cm6dR0MDiZYsKCR3t44mzd3sWnTMgoFi0OHRpg/vwFNU/F4RB1mWTa6r2h/UDBti+H4OB5dx6d7S/Ltryy6iupgOaPJCP+0/z/4/IJVhD1+vLqXZC5NmSeA3+3Fsi2nxVMhbxocGupmTuOZDMXH+OH+37L24i9xaLibc+vPYDgxzg/3/5YvL7qKSn+Izb//KV9ccAU1wQoCupeUkcUdKOcGReE54FlE7g2wF7gceA+RY6/hVGm3yv8zQC6ODFLhtR8JRDvzf2KZ0+P/vnFaFn56/Ocjn5+UYa9fLyi0OHw+oYifflqo3SlT4Ic/FH11NitJX21tIuU2Tbj5ZkkT8/sFufb1yfThYfFf//a38N3vChDXNKGUv/51oYtFAyXP+XwCtBMJDEtD0xTmzxc79/z5siubNgnI/eADkXNnMoLnt2wRgHzuubK61athcFB+d7/1LZGMHzwoQNqyZNNDQ2IJ9/ulDczvF7X6449LYNnEhFwLuPNO2UYqBd/7Hhw+DI8+Cooiqbyvvno/AIFANbFYL0eOPEdX1yZ03Y+qugiFGtm69UZCoSauueZZOjrWYlkG+XyC8fH32L59jVPFFSgFEeVyMTo7N5Rkny+//HUWL/4QDQ3nsXfvwyxdegEnTvTR0bEOn68CRdFIpUbJ55MUCll6e7soFLL8zd9chebIqhfPnUf/4CCFPx915Nq6AOuCKQC4CKxB2OfaSgHNIMB6NCIgGeT/ZNlOmFlQZN7hoIBpXZ9c/i+Dz4rLBf1YhkF2fJz08DBnf+ELKC4XM7/0JVovu4yqOXM49MwzeCsrOfTMM/S88AJGKsWhp5+m54UXOPS0VNycf++9aB4Pr3796xz+0Y9QNQ2X1ysy7/POQ/N6UTSN/t//nkPPPEPVnDlMXbWKD999N6quo3k8ZKNRVE3DX1NDxVln8eaDD4pkXFEoZLMCoP/lMQkmm3aW9FRf/il5L8fGBTj/2xMCpkcGpI86n5Me7NdeFQBd7HFe8UlhpKedLcD7jFkSTmbb4PU7J4+IlDwRAxTZ1jnzBVgX11dWLoy45kKxbQYP/R6Xx4sNNJ17CVMXfJyGcz4CNmguNy6Pj3RkENsqlD7mui9E/cwLUHQ3isuN5nJP/v+dkZ7oJ5+KYGSSVE8/X7qUnaC08WNvoAANsy8ByyQ1MVCSjSuqhr+yiSnzr5AcgGQCa9dOSCZQ3G5JDPf6UK/5ggSPbf+1BI/FYygut/Rd79oJqRRKkwBntXmKHMdCQYB1XQNKIIjaMhVME8UfACOPnc8L653LYL7wHxCPYPU4EvQiprAtlGAI2+3GxKZgWUQiEbZu3UqhUCCVSnHo0KFSSFkmkyEYDBKNRtmxYweBQIBkMomqqjQ3N7N79+5SAJrb7cbj8dDQ0ICqqrS3tzNr1iw6OjrQNI1CocCOHTswDANd1wkEArzwwgtYloXH46FQKPDCCy8Qi8Vwu90oinqSVaSZrVtvIBrtcbzdHi655EF0p/fXNLO89NLtRKPHcLvLcLk8LFu2mbPPvgrLMhgff4+dO79BPN6Hy+V1vl8GaW29AE1zU1ZWj2FkSgFntm3hdgfQNA9lZY28/PKdxOO92LZFIjHA9u1rsG0LTfHSuaGTQE2Azo2dpVAyT8hD7HiMrTdsJXIsQjaaxUgZ7Lhph8jH59Qx/t4427+2ncxYhoU3LSQxmGDorSEUVUH36eh+nWBtENMwWfH4Cs6+6mySw0nKp5UTbAgypWMK+/5xH4tvWYzL42LwzUGix6OYeZNod5TePb0UsgVORE6wZvsavC4vCxoXsL9vP8ejx5lXP4/R1CiLmhahoNAT7aE31ssTK55gavlU4vk4RyNH6ertYkHTAs6sPJOAO4BpmQSc4x7LxUqBaRs7N2LaZikobVPXJqJZCetrDbXyxIonaAw2Uhes40TsBDftuIkqfxWWDXZ2CEb3Y3uqxSeNImz0VYOw4CmRiNuIFzk7JL7pQxuh/FzxWL++RuqhapYK2LRNkXy/fpMkhad7BWiPdkLquNwmu+GNbwhDrgWFsXZXw8juUwPOLEMAai4q4D7YJMA62DQJ+PMJ+XxpHgG/mkdYbU+5w5x7J1PEc3FZZ7BBfqgVhH0OT3dY8NxkUFpoCuQSspyqCWPuDsrysWNOQJot22pYJAyyr0aA9ZEtUr1VvxCuOwCpIRh6DZqWyjoG9glzHagDfw3UzBWZeCEDn38HLn5CwtV0v8jXj784CaxzEdlPzSthZn97WG5dARh7R6bvXy/78NomLCOPpil4vS4CAZ3bb19Cf3+cWCxbkm0HAm7q64O0t7eyYUMnW7YcYv363Sxc2MS1185i3boOvF4XS5e24PVKV306XWD16m309cVL637sscuoqfGzaFGTKCj8Ohs2XIRt26xd+wqNjWVYls2aNds5ejRCMplnz94T9EWH+IcXn+FEZJDthztFEu4P4db0knz7h/t/i666qA1Wcu+yr9BQVk3YW0YkE+eZfb/BxqZgmbzVf4Te6AgpI8vGV35MbbASBRhPR/nWpdfj0jQ+VDOFSDrGD/f/lp1H9vJP+39LMpdm55G9/OyN7fh1DyYWHk0HI8c62+ZZoAm4EemabkOAdA0Cim9jMrAsDXwFCTf7nxk+RDJ+AaeB9enx3x+nwfX/rcPtPtVgXGTqisPnk7/ubqGL33tP6N4iuP7EJwRceL3SUT02Jsj0vffgzTdlWl2daKvb2gStrl4toWd1dZIUPjwsz6XTsi3bFpCfyeAe6cO2bQYGxNY9MCC44847obxcpOLF6wILF05awl0uAeDFafF4ycZNdbUA8HRaQPOiRZN+7qYm2dWJCcF/zc2yS5s3y/LFALTeXtmf0VEAE10PsGLFY7hcXl544WZCoRZWrz7IqlVPOwfSYs+ezRw58hzxeD+tre24nJOmXC7Gvn2PsHjxrei6v5TyffPNPQQCdSxf/igzZiynq2sThw5tYffuDWSzUQ4d2sLGjetYufJSysunoWluvv3tDVx44d9www23cfjwW9TVzcW2LXbuvFnSwoF//Mk/cXnHhbgiCWGZ84Z4qS1L5No2ckDiTtL3h1onw8taG4TFbm2QkyBFEVA+rQlqymUe05Ik8nhSpn+oVUD3h6YI6G6ul2mqhJmpNujBIN7qav78z/+Mmcngq61l9po1KJrGOddfT3ZiopQmrgeDzLrhBqauWsX8u+9G83pRXS70UIj2Rx6RtPHeXsbefpt5t99O9fz5JHt7UVSVFb/5Ded85SsomsaC++6TxPE33yQ1OEghHifR18fEu++iut2c9fnPc/hHP8I2Talz2v6LyTTvRR+F1jOEadY9cMa58Mp/yPRMWkLOiinfZ8wShnr5NdB9WF53bSN8/hvCPH/6q7DwIzA6ILVdiiLAPDohIH77L6TrOjIKFVWTwHzlpyeTxm1LElDP7hApdirKwKHfSdK3JtVcllWgkMvgDVVjZFMMv9eFbRWwzQKWWcAu5LEKeQbf3QWAkU0w8l4XRjaFr6IRTfeg+4IUcmk0twczn8Vf0UTDrIsAsAt50tFh/OX1uH1lKKrK6Pv7sE2DYHkjWBZKWRh12RXYqSQoKnY8hn34IGrzFKzdr0haeCopQWeAtW+3+Ks7JYVcqW/E6j0udV79PaiNzaDrWEP92JExrL4T8t71eIXR3/YrAfJNLVidvxPgrSiQiJdAPgDRCZHrWVbJd717926ampr4zGc+w8qVK0usa0VFBbFYjCNHjrB3716amprQdR1VVVmyZAmzZs2ipaWFRCLBrl27SCQS4vsNh7n88stLNVu7d+/myJEjpb7sVCpFc3MziUSCrVu3kkgkaGpqKqWH27ZKIFBXyk9YsuQ2dN2PYaQpMti2bTpJ4T6WLLmVPXs2YVkGPT2duFweVFUnn0+WvksSiQH8fmGnW1vbaW3t4IUXvoFlmYRCTUyZ0oGm6aiqC7c7iKKo7Nv3KC0tbbjdAVRVJZEY4KKLJGHbVkyWP7qcihkVrHpmFZ/Z/hk67u3AzJungG1v2Ft6nIvnUDQFd8AtaeAPdVE+tRxPyENreyu2aZMaS2HmTQnge3uIeE8cgEh3hHwiT3IoiWVZXPboZZQ1lrHzlp0EagLEe+PYps3u9bvx1/jBB33JPtZftJ5sIcvNO2+mJlBDT6wHVVGpCdSwZscajseO0xPvYdXPV7FmxxoKdoF4Ls5gclDm2b6G7qgofwzLIGfmUFBoKmvi7qV3c93s63h0+aO4VBePLn+U62Zfx11tdxH2hkU5oUA0G6U/3k8yn2Rz12YuaL2AllALKhbKoQ1QvQAlfRzG9kHqqMjAk93iHc6OQPq4JIn7m6H91yIR14OghyT8zBUUYD3xpgDrdK+wz4cfhqpFwmB7aySkzFsj4Lzo41Y1QIHIm7D3M5Dug4VPCYut6iLPzju/D8UUb5d3ElyHp8u0ZJ+w2knHS626BYRGHT91kdlWVEAVEF3IyTpQZFppHf3y2dWcwDMzL/vhKZdpxe24fDKf6hHpd2ZUGOuzrpW6LM0tsu9Er3iro90SUlZ/vqSe55MCoN1l8NHvQVmrXDwYfE2SxPs7ZbvXHRDp/e/WCNOdiwjIBzjwoLxeKyfs9/jhSe/1grvQdBdDQ0n27eujosJLebmXlpYQ9fVBrr12Fvfe20FzcxnhsIexsTT33NNeShZ3uzUee+wydu8+wVe/ug2A8fE0uq7R2xvjueeOMDiYpKcnxg03bOXEiRjJZJ6enjirV28jnTY4eHCEkZEkDz54Cc3NIXw+nRdf7GbDhk6i0Sy19X5+8trzzGs6E5/uYdU5HZxdOxUci8PtH/kcK2e285VFV/H2wHuMpiKoisKfR46hqiqVvjB3XvQFbNvmgVd+TKUvhN/twa25mNd0Jj957XkMy6TcGyKdz5It5Am6vVQHK7jzo59n5cx2rl/8MYIeP8vPWsItF15Hf3yUf3jxhwwlxtFUlVYETG9E2OkNcsR5VN5JtCDe6ccRSfgdznzrEen2/8xwA2WcBtanx39/nJaF/9888nkBsx7PqZ7r4kgm4ctfnozP/va3BTQ3NEzqqosG5OnTZV379kmJ9LFjp0rJv/QlWc9110kqmKaJpnvOHPj1r2HePPF6h0Lwxz/Cl75E8v0B+voUXnxR5NlPPCG7pWmTvdaLFsnuDwwISHa5BCumUvI76/XKbobD8PbbAqKnTTs12NyyJPQ8HJbg80xGttfSIuT8zTfDXXfJcqtXTx6On/40TSTyPp2dG2hvv8dhnsrw+6sxjDTDw+/Q1LQATfNgWVIEUfQwlpXVo5Y6OxXHQznkJImvQ9d9jg/SSyRylM5OSfD1+6tYvXoFH3zg5rnntmBZUZ577tt87GPrCYen8fjj/8gzz/yE1177A6rq4uGH65k161oSiUt44IGHePXlV6irqpaQsVgS3jsGc2fKYxvo7oXmOvDo8EGvSLlVVaaDsM627SR/OyngmZwA9bKAAMh0Trqwddepfm5VlYPtdZe6sw2XhOQU0mn6fv97Ag0NIst2uzEyGaxcTkLKystRHAbetixSAwOkBwepmjOHfDyOmcsRbGpi/7e+Re355zN15UpG33oLb2Ulh3/yE2bdeCPB5mZs06SQzfL2Qw9x1mc/S3Ziguq5cxn74x8n573+ejxVVbh8PjRVRR0fEoC98tOgu8Hjg2QUtv0CLv+ksMjP/pOAZcsSQGzkhX0uSrhzTnDZxKgw1p/+mhybY3+GUIWw3DUN8M0bBEBf+Vk5xpExqKiW27Eh+HA7uNxyLG0bU1NIRYbwVzjsj+0w37ZNOjqEy+OjkMvIdBQK+TRWIY8nUI5ZMBg5sofas9rQXG7MQh5F1Rh6d1fJc900exkAqYl+XB4fY0ffoOaMhaiqjmUVGP1gPzUzFqK5fWTjo/grGjDzWcxCXoA2Kko+LxJvt1tOjj0emBjHjkdRW6ZiFwrYQ/0oZWFJA2+/GAJBrJ3/gbrkQuxUEqWiCvI5CSOrbZDj6/FKn/XwAEogiLX3D6gdF2PHolg//ycJObvwUrBM7Jhsy9z2q8lk8VVXY259lsKyK+gdGSUYDLJnzx46OjqoqKggEomwe/fukg+76KPWdb2UCp5Op9F1vSTlBkoy8NmzZ7Ny5cpSnVdlZSWGYZQk3wAvvfQSS5cuJRgMMjg4SE1NDS6npiWVSpVyFCSj1iYS6aazcwOrVj1DPp8gn08SCNSiKCr5fJLh4XdobFyAqrrQNJ2JifdLfutwuJVI5ChdXZu44op/IhLpJh7vo6lpEWBx6NAvaW5egsdThtdbQX//foLBBoLBOhRFxeXyEYkcw+MJOrJxjR07/o7Fi79BRdlMokejxHpiNC1sQtVV0uNpgrVBIt0ROjd20rG2A5ffhZExiPfGmXLBFKLHoqd0VbtDbvLxPInBBMnBJE2LmkSvr4LL7SIxmMBb7sU0TFIjqVO81sHGIFjgDrgJNgSxLZtYT4yyhjIsn8Wx1DF6470sbFpIT6yHR/Y9wiPLH8Gluli9bXXJC/3kyie5deet/MNH/4GQN1T6v3b1dlHtr2ZK+RS8Li+GaZA38yIxb1yAz+XDwuJY9Jikj7evY3rFdAp2gXQ+zWh6tNSnPZgY5Nzacwm6g1i2xa07b+WJy76Lz8qiuPzCKHtr4cg/Tnqi3RXyGX/96wKGp14HC54UID2+XyTf6V4B3ek+p9N6VJZ//SZH6j0VEkclrMzfIgFpFXPBiEsaeeoEvLtBGOt0HwRawdcCZkq83cUWCasg909OBtc8DgOtOd9B5iRYVpTJVHFfjSPnVuV5yxL5t5kXJrno2Tbzsv5iv3XxcbBR1qu5BZCbOSf0TBHQa2bFG64ocrHABgY6hWEPTxfpeHbc+S4qh6HXoXaeAOvi6wPZRmpYgtlyUchGhBFf9rTUfXU/J8y2pwKGX4PqObJPZh523wUL7oCQc7HBSILmJp73MzySprzcy4ED/TQ3h+jri7N0aSuJRI6yMjcjIylCIQ9+v87ISIq6ugCplID3QECey2YLTJ1aXuq4Xru2nYGBBEuXtjA4mOSVV44yfXoFS5e20NnZw9VX/5IrrzyLW29dTGWlj0zGoLc3zqJFTY54MEFNTYA/HhxkaUcTpm3yp6FuaoOVNISqSzLu6xd/jKZwLWkjy2gygl/3UOkPYwO5Qp5H/vCvfPbDl1MdKOfl9/fTUl5PfbCqlDSuKirxbIKqQDk90WF+tP8/St3WZZ4ALlVDVVTeGXyPaVXN+HUvfxx4j9ue+y4fmXE+61bexBpV41YkbGyz8+dHGOr7gQeQrwwdCSD7M5Md1P8jv/XpcXr8V8dpz/Xp8V8fxaAzTYP33xcA/eCDopsuotfBQaFwt2yBrVsl7aunR9Cu1wu7dwtVXF4ukvF0WtDt4sWCXu+8U7TYfX0CxovbufNOOOMM8p37+XPLMjZtUkqbjkQkrAxk11IpWcUdd4gHe2xMPNOGIeC4tVV24eabJzPTEglZ1549sltTpghI37RJKrbq6mT+224Tsr29XbZXJNWPH4eHHhKy/0Mfiv2VF7JYm7V06e34fNW89NJtJf+0nMguJJuNEgzWEY0ed2pv1lFePgXDSGNZJoVCFsNIE4/30tS0qBQ0ZNs23/nOHbz44uts2/Ybysr8ZLMTdHe/yPDwn1i+/BFs26C8vJ733vsjdXVNbNu2mtHRuTy0+SleeX4brbZr0h8d9E+mgR/tEwCsF5mDk0Bz0C+3Rc+1rkG3M7/PUwLK9DnTiyC66LOOJYWxPnOK8/4qCPj+oIfClAZMs4CZy6EAms+HoqqY2SxWoYCRSuGtqkJRVRRFkUou2yYbieAuK2P84EH89fWkh4aomTeP1NAQqq6THBykdt48LMMg2d9PNh6n4owzJLAsEKDvd79j5PXXS7JyM5cr+b2LVVyKpqEW8lLFpblEpp1NS6DZL56cDB377N8Jmz8+MumhjozCY/dNTs9l5E37iyeF0T5ztsx76ScgGYMZs+RNdvSwhKS5JwG01NYNw8SwAO2dv5JwM7cHy7bImTl0fxisAmY+57DLOcxCVoB1uQSVWYU8iupyAqfkJNIq5DHzGUa7D4iH2h9GURWsgpzMWYUCmkc83QOHfkd8uLtU3VXIpZ1t5PBXNaDYUsOluX2AjZnPout+GB/B6tqFuvQjECoX9UsgAPEo1m6p1lLKqzCL1VszzkIpC0PBkJCycDn4A9iD/VKpNTFWWp9SUQWWhbnjN6fUcZk7foPacQlKqBwbG6VQEP92ZLy0TcIVkMthejxkjUKpd9rr9aLregkkr1mzphQy9ulPf5qGhgYSiQT79u1j2bJl6LqOYRgMDw/T3NyMYRi89NJLLFu2jHQ6XfJiB4NBcrkchmGQSCRKPuuBgQFaWlpO8XKXlZXh8XjI5XLYdoFMphdN87Br17c4dGgLd94ZIRLpJpUaob5+LrlcHI8nhKZ5SadH8HjCuN0Bnn/++lLgouQ8uLBtE0XRMM08quqit7eLUKiZQKCOgYHXCIWaT/quijk92hqa5nbqu5IlwG5ZBfbte4TLL/4hqZEU3nIvA68PUD+vHt2vkxpN0b2zm+mXTKesqQzbtFFcCmZG2OjBNwbxV/lJj6dpWtgk7zlz8vm9D++lfW078b54Kags1BKiYmoF+VQebHjpzpdY9HeL8FZ4MdIGnRs66VjXQfm0cmxLzm9ShRT7xvdRE6gphZfVBmoZTg7TFBLZbCQTodxbjtclwYmWbZHMJ7nr5bu4s+1Oavw13LzzZh5d/ijDqWEe6nqIzcs243V56ertojXcytTyqXzl+a/w3JHneGf1O1T4Ktjft5+WUAu98V5W/XwV1866lh9e8UO6I91s7NzI2va1VPurqfOG0FLHUdI9wjBjyQW4zIDjrV4HgSnCkuYjUsVlK5AbFhly5BCUzxJAqfnFd121QECyr0Gky+P7oHwOaI6SwzIhfUJY7FnrBJz/YZUTaPa0yLRNQ0LRwjMh3iNA1lfz12DZNgVcWtakhDzYLKFexaTvZP9kF3Y+IfOrOsSPO6FlbnneXTZ5iyMZz8Vh4gj4KicZchRKgWbFwDPbBsMJOFN1Z3lNpPSZKPirZVErB4P7IdAkcvBCRuq8imFtqsOsG0lnnWkB4KpLXsv4nwRQ52MSopboFfn5gjuhf4+EnF3yA8cffwI0Dyn3FD7ojrFhw2Qw2aJFTbhcKpqm8t574zzyyD4efPASgkE32WwBv1+nuzvCxo2dpSotn8+FpqkMDCRIpQyam8vweFyk0wZr177Cd7+7HNO02L+/n5aWEL298RKQb2trZe/eXmbPriWZNAiHPXi9LnRdxVYssnaWZC6N3+3lg7FeZtXPYNPv/pk5jR9ixdltaKrKHwfeoyZQwWgqwpk1U1BQsGyL33/wGm/0/ZmvLr0agApfiINDH1DhK+Onr2/jK4uuosIfQkHh8MgxKnxlhLwBskbe8Vv/DX7dQ9gXwrQE4NcHq/HoLkKeILrbxweaxmZFYRNQZtscUxTWIynfrUAPwmqvA8523iX/T2Fjp8fp8V8dpz3Xp8d/bRSDzr78ZTE2z5ghJuSxMaFtu7tlnnBYgPC11wqg7ukRtLp/v6DbJUtEWx0Mijl6dFTY6a9/XX6oHnlEGPALLpD5i1ruTZtAUci3XcT69QoLF4p6vKtLgLWiSO1WIiG/4QsXCkFeKMjmT5yAm24SxrmnR1K/ixJx05Rlb7xRdq28fNLHvWWLgGZVFWA9OgpLlwp5/957cP31wo6Xl8vhmD4dFMXFypVPcuutA7S0tPHCCzeTSAyyePEtuFxeNE2nu/tFFEUjEKilrm4uL710J26nN7Xoz47He4nFTvDSS3c43qgqysrqCQRq2bFjDdHoB/T0dPLgg/fz4ouv8fTT91BZWUUyOcTIyHvU1FzM8uXfJRLp5pvfvJLa2moqKsJYVoF0+hIefPAJtm37La3ok/7oUEAA83snJNl7WpN4sBUVkmkB1m5dfNSm+Reea0Uk3g6TTFlA/ofN9QLa3S5nG0HoHxE5+RnFoLQeAe6KAq0NWKbJ+B//SG58nDceeIDEiRMYiQTpkRFy0SiKqmKbJqNvvEH8xAkK2SyKy4WZzfL6+vV4q6rQvF5qzjuPXDxOoLkZX20tNXPnYpkmuUgEX20ttXPnomoayd5eMuPjtFx6KbNuvFGqmUwTVdeZf/fdTF21ilk33MDom29i5nKYFtjRCfFcZzOQiAtzvfLTIvm+bo1zwckUsFz0RE87e1LCbeSg76jIyIv+6eK8L/5KgPX4MPzsMQHu2LK9oX5haDNpqKqBD80WYD3tLJGO/8tjqJFx3L4QRjpGOjJUAtaqS0f3luGvbCoxMYrqhNYYBkPv/gGrkEdz6aiaTny4m0IuhW0VyCWjDB1+FQCXx1tigBrPvYgPdXwe3Rek/+BLWJbhsOL1TiXXy6guHSObIB0ZxLIMkZx37RKJd9cuFE1DCYVQFFXk4E61Fvkc6sWXo7RMld7qyBi4dJGJV1ShuL1yX1EnJeP7dssHVtNQl/8NyuwPC3OdzaKtuho7FqHw3W9jbfsVaBp2ZBxcOtqqq1HKq+S4ZFJYRqGU2n306FFeeuklFEUpeaXdbnfpflNTE7lcjq6uLpqamkpS7lQqRU1NDdu3bwfg8ssvx+12E4/HS7VbhUIBv99PPB4nGAyybds2otEoTU1Nf+XlzmazWJZFLpcjn5fu6Xw+SXv7PcyadS1g09W1idra2SQSg+zadR+2bROP9/Lqq/eXOq2XL3+U2bOvo63tLt555194/vmvYNsQjR7jhRe+QT6fpKVlKaFQC7ruo7W1w5GgLyGTmcDvryaVGqG//wBgEwjUkEwO09p6AS6Xh6qqD7FixeMoukIhXWDnLTupm1uHy+uip7MHI2VQMb2CQF0AMytscyFTIBPJkBxMUj+3nr0P76V+Xj3x/jh9+/pQVIXW9lb2P7afQ1sO0bW5i7o5dWhujbo5dST6E0SPR9l5804Sg1LVtffhveL33iCS893rd5PoTxA7EUNxKWimxqKmRTy2/zHaWtrwuDwE3UGGU8MMJAZYs30NaSPNgf4DHIsco2AVGEoO4df9bLh4A72xXmLZGFsObSGWi7GxcyMLmxYykBjg6zu+zty6uVT7qzEtk3Ud63j2mmdJF9Ks2b6mVLe1sGkh1866lrva7sKyLTZ2bmTLoS30xfvwqCoaBQHW3lpholFBL5Ou6p4tAnxTJ8RXbaYl9Cx9HN75FmSGoXYp5MfhjZsh8YEEnKkeJyF8SOTl3npQfRKSZiQFcB7aIOs/tF5Y7tZrhbkupGGkU8C6v0HmDTZNysJLlVwO0E30CZOsqpP1WKYjxLUtAb/l0wWYxo46gWd5AbNFabdlOJ5spGPaMibl5JoHKs8SJhsnxKwIhPWAc9+JJtQdUD7QJR3UCpLwnY/KfEYS/nCH+KsDdbJNX5Xsp+0klxspAe2//wakBmS+zKhUcGXHJCU8NQBd9wmwTvaVvNVMWSZS9GxEwHVoCgSbMS2bDRt2s2XLIR57bD8dHa0oilJipjdt6mLhwiaGhpKsWbMdwzABqKsLcMEFrTzyyD6i0SwAyWQe26ZUp7VmzXZsGzZtWoaiwPh4hrlz6+jvT9DW1kpra5gZMyrQNIW2tpaSesaybCzLxjRtNBeMJiP8oOtZxlMx5jaeiYrCzRd8hnlNZ/Hg735COp9lTuOZNISqObf+DMaSUb77h58BsPKcDr516fVUBcqpDVbidumcWz+Dn76+reTVTubSjKYipRqvrJFnODnh+K3/gwp/mKH4GBtf+TEVvjI8uouskWfDKz9iIDLAhyyTJ2ybkG1jI6z0FgRQK8BDnCoDP1ninQeSzu3pcXr87xynmevT49Txl1LwZ54RML1/P6fEdu/fD+efL8DC5RI2ujjPww9PdmeVlwvKffxxYb8VRWShe/YITdzQIAA8l5PlHSo5P3cBfx6twu1R6O6eXO0990iDV329AOSJCcF1tbXikV6zRnD9xz8uqzVNAdu33vrXsu6nn5bzgGPHBHw/+qgcglhMrh34/acS9NdeK9L04sutrEyTz8ectPAQicQQyeQgoVBzKeXb7RZ/dT6fwrZNkslhiifGxWqcpqZF7NixhpaWNlpa2kmlhmltbcM0DQ4d+iXl5VOAZs48cw7Tpk3F53OjaW50XeUXv3icj33sS9i2jqJY+Hw2GzZ8h6lTw7S0tFFWVkVdXQ1VVdWSnmzbvPLkj6iac85kundNxWR9VjE9vGA6HlZ9sq4rmZFpiiJe7RYHTIeDkhpeXLY4vblO+rNz+VNZ7MqQgPeAj4JtUchmT2GNZ69Zg7eykrE//rGUFH5ydZavupoD3/kO/b//PSt+8xvcoRD5RAJvZSVAid1WNI3Rt97CV1uLt7KSNx94oLSemvnzUTSNzNgYZjrNoWeeKUnHC6kUvS+/TH1bG2XVVVLFVWSpP/d3Iu3W3RJatv0XsPJTUFU/Wae14pNQ2yCKANXJKc1l4Tf/DB/7gsjEiyz3ys9AdS1ExuHdN+HYEVlfUR7++Zsn17vyUxAMC9h+7l9knxZfhPmFb2CZIjeWpO7z0b1lFPIZSf92uVFsG8s0GDr8KlXTPozL40fVRDqp4DDOuoeCkWXkvS78FY34K5oYP/YG9TMvQNV0sTbYVql+K9xwFtXTPow7UE46MojL40P3hRl6dxdV085j7OgbBCqbqfDVYu3ZhbpslVOFpUpu2vgo1r5XT3pewdz2a+yDb6B++sso4XJhmZdfCShOergXsLFe2oa64ioUyyqx20q5Ix1PxiWszOWCVBI8XhTdjdVzFKWuUc7A8nmUshDmtl9jXnYVkXiczs5Oli5dWmKNi7+Ntm2jqiqGYZDNZvH7/SUfdj6f5/Dhw/T19dHR0cHRo0dpaWmhq6uL5cuXk0qlSnLy8vLyUgL4jh07TkkQ3759e+nxihUrSuFm2WwWj8dFNNqN319TYpAVRSPvhEft3Hkzhw5tYc2aw7z66v0sXnwL4XAr/f0HCIdbKC+fRj6f5KWX7qCt7Q7C4als3XoDLS1tTJlyYYmldrm85PNJFEXD5fKU0sIV5+JMLhfn5Zfvoq3tTny+Kl588VaWL3+UdHqUgKuZgX1j1J5bi+pSefmul1n0jUV4y70EagMYaYPhd4apm11HLp7DE/Iw9MchyqeW8/T8p/nGiW9gmzaWaTFycISmBU0oLoW+vX20trUSORahc0Mn7fe0UzG9guevf55DWw4x69pZXPjtC7FMi4ppFRgZg2wki6/CRyFfwMgYBGuCGBjgwQlaKnCg/wBz6ubg1/109nRy9S+v5sqzruS2xbdR4augwltBJBshbaTZ0LmBte1rmRKewt6+vbS3tlOwChimwV0v38VNC2+iNdxKNBstMd+WbdHV28XRyFEunn4xDcEGCcYrZDBtk7AnTK6QY3//fhY1L8KLRRBD5M/jr0t1lpEEPQxY8PZdcP4TAjStDMTehcoPT0rEi0zz62ugpgNar3ZqqpwU7dfXTM43+9vCdLvC8t1UZK7PvReC00Ui3vtrGNsrHu7cuFMFdjcEmkWejix6Srp3Pi5gtHyGgOxSFZcuYNRb7QBvB1Cf3GFtGZO+7WIauOrUFeUTMHFY/M/lM4TB1tzCxJvZydRwy5gMVAN49Q447xvgLRevdXoEjIyTBr7QCYcrOC9EhVzMAdimPC6khaX+4VTpt25qF9/181dLgviypwW8Vzs1Z7pfEsMX3A3hqU7ntSqBa69vhkueJFNwEY0ZxGI56usD9PTEWL9eGOkzz6yiuzuC1+vivvt20dbWwic+MZPh4SSDg8lSzVahYKHrwnI/+GAXd965lObmEP/+74doa2sppYz39cVZuLAJr1dsJl/5yvNs2XKIL35xLo89toL33htn06Yu7rpLtp3NFnB5bQ6NfsAZ1S1oiobf7SGVz+LWdNa//E/MazqTDzefw0hygnPrZ6CpGgcH36cvOsxHP7SQVC5NwC11hR5NxwZcqkbayDop4n5sIJXP8P09v2Tnkb2snNnO2ku+xGgyQtDjx6d7+PsXn/mriq9d3a/zyN/cxtyWWeQVBVXVyCsKQwiQXocw1xngZuCbSFWXySRj/eeT5j2b00z26fHfH6dl4afHf23k80LVejyCaN1uQa/p9KQGe/p0AeHDw5IUdvfd8KEPCRhLJuE//gMuuUSAdbGiqygbX79eGO+6OvFWn3++rKdYCeb3w4IF8G//RvqC5ZiWQi6nsGbNJMC99VYJH3/ySQG6ReVsIiH3R0Ymq7UbG2Xav/+77GJjozDd994rYHvPHpg5U1jxYor4XXdJ3tqMGQKiBwflr6h4t20h8M8+O8HExHvs2/cIl1zyoBP8o5FIDOB2B0QSC0Qix+jqepD29nuoqJjOtm1fo6lpITNmLKesrAnbNjGMNLlcnImJD6irm0sqNeKA7HYsq0B//wHq6uac9G9K4fOVY9sW0egJ9u59iI6OtQQCDQwNvUVLyxInDMmmUMjgdpfh0bzCVBcrts5olSCzIiCO/4W8u9iDbVvO+Ycq7wW3Phl+BsJSmwJoSWWFFceGeEqA98nbnNIoyxcBd2sDBU0h0dNTqtjyNzSgOJLoXCSCquvSDel2U8hmcfl8pPr6pKbLkYRXzJxJZnSU7NhY6bmq2bNRNI2xd94h2NTEtiuuYOqqVZz/zW8CYOZyWLkcbz38sNR/PfkkFWefXZKOuwIBdE1FGe53uqmvkW7qf35U5Nwv/moSdH9qNbyxB+a3SYVWPid+6spaSfUOVUL3u/DBIfjs16UHO1AmIH10cLITW9WE6f73p4TlDpXDL38obPU58yXYTHGOt5HD8vrI5ZKMdb9G3dkdYNvYlollGYx1v07DrI8COOA3QDo6QFn1VFweH7YNtlVg6PCrVM9YgO4PYRt5jFwa1aWTT0XxllWjKCrZxAi+cH2JxS5kk6Wea39lI0YmxvjRN6k/5yOOfF+q4ABcTjeuHZ2UZCvhCsd7DHY0Kl7rjovBL15r7fKPY27/Nfaht9Fu+zbEY9jJOGpTq6SrA3Y+J4Bbd0PBgIKBHYtK13U8hhIKY3X+TjzcuhvF65N9ikdFVt5+EQTKMBSFbS++RFNTEzNmzKCsrIxcLsfw8DD19fWlTut8Pk8wGJRt2zb5fJ6XX36ZpUuXEggEAFAUhWw2y9GjRznnnHOwbRvLshgZGaGxsZGdO3dy2WWXkUgk2L17N21tbYTD4dLjYvWXaZqojhVC7psoikqhkKG/fz+hUDMVFdOxbQvDSPPKK2tZvvwRihkOqdQwuh5gZOQgLS1LSaVGyGQipNOjTJnSQTR6DE3zoigqXm85/f0HaGiYj8vlw7IM+vsPEAq1kEj0O00G0nwgCeI2YHP48G+YM+czWJaFavmIvC/e6qV3LqV3Ty8VMyoIN4fZvUE81eXTyilkCpIC7tdRNIV8Is/gm4OEWkLEe+O0LG3ByBj8bt3vuHjDxbi8YmNIDiXp3tnN4FuDrPjHFRTyBQZem5SfKy6l5PkONYcEiK9tp2JGBZGjEfwz/KSsFJZtkcgnCHnES33ri7dyT/s99Mf7aQm3UB+sL/mpdVVnJDXC7Cdnc+VZV/LDK35IMp8srSPsCeNz+cgUMsRyMUKeEOl8mpSRYkPnhpJ8fGPnRu5pv4fBxCBLWpaQN/MMJgfZvGczm5dtJqAHCKo26utr4KxboOxD0nN9eJN0W4fOFKBnWydJxNeK1DszLCDTWyM+YyMOuVHI9EP1YnnONqUH++27ZX3eWkcWjqzPSArY9jWClXW28RDM2yxhZaNd0Hk1dPwWaj8ioLEInBVlMpRMPhnyHZaLC/AtdlHn46d2XyvKpGTbPBmIu4QxLjLRRcAd6xbGupCbXK/mhuhR8Wm7Q/L7E31PmOMFd8pHIdgou/XqHXD+7bLebBS8FQK4i9Vgo29LL7Zti/9b8zmKcyfDwjRgaL/sY2oAaubJuooXL4YOSACav1ZeZ/yEvKaGRcJeH38RmttJ6VP44ET2P63XevTR5fzyl+/yyU/OYmgoiccjoLi7e4KamgCPPbafzZuXlc4B3n57iI9/fAu//vW1LF0qTPToaIrKSh+KIsz23Xe/wp13thEI6CSTBhs27Gbt2namTi3nhhu2smXLIbZv/wzz5tUTi+Vobg2QsbKlyq0vL7qKlvI6UvkM4+kYHk2nLzZCha+Mf3vzBW658Dp8ulyI7IuO8OPXnuOLC66grqwSVVHZ/PufcvdFX8S0LUfiXUVjuEa+1yyTSCaO1+UhkonzT47/uiZYwVgyylBynNn1Z+B26QxER3HrLiqClXRrOv2qShMwDCxFAPQoAqynO9+CLuB9JsH0DOBLTFZ0/RBhtE+P0+O/M07Lwk+P/9pwuwU8p9OCPN9/H264QTTRRQ12Pj9Z/NzWJolhiYSEnGmahJZVVcFrrwml3NsrP1q9vaK5HhoSFLtwoYD4kyvBysvhZz+DhgbsVBrTVHC5hAgvJoKPjU0GnJumYPNsVizdPp8w28XNxOOym5/6lNi9zzhDSPS6Oll20SJhpo8ehc7OyXquTZtkl4utZM3Nwop3OxXRco4tDHRT00KSySG2br2BSKRbulTTY2zbtppYrIdkcpBDh7bQ1fUQoLBixfeYOfMTKIoL27awrAJud4Cysmaamxc5lTgNNDUtIpeLk0qN0NKyFFXVGRx8s3RC3de3H0VRKS+fyrJlmwkEGtB1Hy0tbeTzKZLJQQwjRalfKZYUhnrBLLlVFang+qBnkoHuc+TfubwAOMthXzVVnkMRlvr9EyIrL5jyOJmWk5GgTwC45SSHW/apSeMuR0ru1HOZ6TSJ/n4CjY0svO8+XF4vZj5Pqq+P0TffpJBO89ZDD5EeGqKQzaIHAmTGxkgPD1M1ezaHnn4ab2UlRipFdmyMqtmz8dXUUDV7NuMHD4oX+7zz0INBWi+7jPNuv51Ufz+v/8M/YBcK6GVlJTl4zXnnkRkZ4eATT5AZGxPvt2lil1fBJ1dDrSOxXvlp6bG+3EnvvvxTIhWvbRSgNzIg1VzFuqxgWMD54ovhC7fIOoLOyaBlyjzFOq+JEfAF4HPfkBCzt/aemio+Nur8O23IZrAVGOt+japp81FVjWxiHNWl43IHBGw73md/eT2ay0244Uy5WHPwZfLpGLZt4yuvZ6z7NQeXqbiDFejeIP6KemzLRNFceMtqGDr8qjy2LYx0FIBAZQOKoqB7y6g/50KMbJz+gy9h5FIA5GKjAoILhUkZ+J5doKjSiqVok7Lx3a+I737lJ7AVRTzVs+aJdD8ZRwkExVsdGQcQy8DEGKSSKMGQLB8ISjq4c1tKHNc07FwGRTtpe52/Q9F1VN3NihUrmDNnDl6vl3w+j8fjKcm+i8nfPp+PfD5PLpcjmUyi6zoXXXQRuq6XQs1UVWViYoKzzz6bVCpVkpg3N8tv8OHDh3nhhRcIh8OsWrWKiooKMpkMfr+fCy+8kPLycmzblvedbRONRnnhhRdQFBXTFGAdCNQSj/dRKGTZuvUGUqkRLrvsEWKxE/T2dhGLHWfXrm+RSg3T0rKUQiGHYaRJp0cJh5tJJkfw+2spK2vC7Q6SyYxTVzcXXfcTi51gx46bCARqiMd7qa2dDUChkCWfTzIw8Lr8v3U/Z599JblcgkjkGHbBJDGYYNnDyyhrLGPWp2bRvKiZPZv30NLWgjvgRnNrpMfTDL45iOnIXVWXSmt7K+HWMC1LW0iPp9F0jYvuv4jEYIJtq7cRPR5l4oMJWtpaWP7IciLHIuxYs4P6efWkR9NsvWEr0Q8EWBel4UeeO0K8TxLDdZ+OjY2maAwnh+me6EZXdQLuAM8deY6NnRtpa22jPliPaZmk8ikM00BRFGoCNRxcfZB7O+6V7313EL/u51jkGIOJQVyqi8HEYGmd9cF66gJ1PLzsYTRF4x/3/SNtLW14XV7aWtrIm3lUVDbs3sDCpoUMJgbZ3bObnK1gz7wLciPOZ3sEai9w6rgQwGbERCJe0yZyb80HwWkiET9wIyQ/EAm45oPK84UtTnaLHDw3Dud/H8qmg+qFQhIS3SIpB2HIrZz0OKf7hSXPjZ6USv4s1LQLKC6meJs5p13ihABSRRHgXZRwe6tEKm6bEgpm5iAzMblc7KjcN3OTsnDbnJSDJ3odRhtHeq7KNHdoMl08PE0832ZeWOjUEHz4NrkNtUqlVmoQ5t8iFwr89XJcdD9E34dXvgbpUUn2Tg3KsbcKcjEg8p4w0UZa9qNmLqSHoKlD9sNIyYWJ4ddlHxI94h1PD8tr8dXI8oU0nHUNvLYZU3GzeXMXbW0tuN0aHR2tXHfdbNata8frdXHppTOwLJtAQKexMUg47KG9vZVw2MODD16Cy6Xy5puDDA5KeNmzz15DY2MZN9ywlUQiR1WVT94umkog4Ka9vYXe3hjV1X6mTy/n0UeXc8YZlU4dVzvXXjuLtrYWBgYS3H//q5hYJHPpUuXWP+3/LaZlcmTkOGFvkNpgZUnmfW7DDEaTETa8/COyhTw1wQrmN59NJBPH7RJO+K6TgHWVL4xHl89iKp9h4ys/JmsYBD1+3JrO/OazGU1F0DUXTeW11AUr2fDKj+iNDtNYXkPWyDOSTfKQqjIX6axeABxFKrkiQC9gIP5qE+gHNgH1zlnQvUxWdP1FP87pcXr8Lx2nwfXp8dfDMARE19TI7ZYt4pH+5CdFF+31Cgt9332S+NXeLijU75db05Q0sHnzhC6+4AJZ78ml1U1NTnqwInrsYnm0zyeAfeNGzKyBbYus+w9/gO98R8Bxe7uwzt3dgv8rKmSxefME2y9dKptvbhamOp2W3LSuLmGi3W5hom+4QQLKbrpJXmZ1tYDqZcsEvLtcch2hv3/yMGzYIC8llQLLctHRsY4ZMy4tVdx0dm7A6w3T2bmh9LipaSGf/vRWVqz4HpZVIJUaQdf9+P1VpQody7Kw7QKaJl7toaG3Mc0c6fQYkcjRUsJwXd1cVFUnHu8lEKihr28/icQgw8MHURTFSSWHRGKAXbvuI5kcQlE0YexCAZF+Hx+QW5j0RvcOyeMiEA4HZZ6jffL/LDLXbpekgH+oVW7dLllWd8nBV9VJAA0CsnN5CTNTVcgZsl5nO5bPi6+yUiTBuZz0Utu2dFxXVZEeHi5JuYv+a29lJb76esYPHmSWU9flrarCX19PPpEARWH84EFZfmioJBFfeN99aD4fh55+mqrZs8mMjzP65puoLhcL7rtPgtLGxmR7Y2Pi9X7nHWHzE1H46aMCnCtroaZRXtunVkNZGH72PQnIUpXJ/mqvX6q6giH4zBo5aRsbFBBt5AVYowhjXWTBt/9CWO9kzGGrzxPJ+LE/y+PKapGJ/8tjkM8CKnVnd6CoqlPBVU0hl2bw3d9jGhnMfA7LMkhHh9DcXlRNZ6z7NWKDRxg7+hqWmSdYM4X6mRdgZOIMHf4DdiEPtlVadvDQ77CB+pkXYNs2g4d24S2rQVFd2JaFVchjWyYoKronSHy4m9EP9mMWcvhDtZDLYvWfQG2/SBK8L1mJHR2X5O7oOOqylfJ820ex3v0jdiqJteO32L3HJe1b1VCnTIdwBdolq0DXZfkdv5Fu7GQcbAt16Uekzqv9otJtcb22qoDuxlY1Yc5nzUNtvxjbyGPZdqnbWj6HcjFKVVW6uro4dOgQ+/btQ9M0dF1Y81dffZVYLIZpmhiGwdatW4lEIvT19REISFVVMpnk8ssvx+PxYFkWyWSS1atXc9lll6GqKrZt09vbSyAQYOfOnRw9epR8Ps/ExASDg4NYloXL5WLJkoVEo91s376GQKCGVGqEpqZF9PcfcDIbRMUVj/cRCNTS2bnRuZi3CYB33/0lnZ0baG1tJxbrI5uNsHPnzdi2WfqeSKVGSnLwlpY29u9/jKamhXi9YTTNzdDQ27hcXhobz2dg4HXy+SS6HsDjKSMcbkJxadTPqyc1nGLnzTtJDaVQNIUV31vBuZ8+l8gxqc4KNYWom1vHzpt3EumOoOoqRtog0h1h2+ptGCmD/gP9ZMbEk12s8PJX++na1IWCUvJV52I5dq/fzZHnjhDri9Ha1oq3wkv7unauefYaQs0htt6wVdjynIJP9zGlfArtre28PvA6fbE+3ln9Dk9c/gS6qqOioikaI6kR3hh8g1whx2hqlIA7QGu4FdMyeX/8fVZvW019sJ7B5CCmbZZqug70H6A70s03dn6D4dQwpm3yyPJHaGtp475d93E8dhyv5mV//35uW3Ibl864tLTs9du+hhmYiu1rEgl39RJo/aSA4+Rx+Z7QwzDvQahug8MPyveHbUp42dCLIu1WEICdG3eAdgBm3iahZpgCQnGWcfkEqB95xGGxhwWAemsEsB9a73ixN8h8xdj2YLNItN1lp9ZlgdM/HXJqtrTJVPBcfNIz/ZfLuUNQex6EpgrLrWqyjLtMbm0gdlwqr5STppk5YZaLnutiVdgbD0OwBbAFaLvLZFrXfRA/Jl7pfGISiOs+uQiw735JEnf5Zf/feETk46kB6FwrFzoaFjsMebcA9/QwVJ8r22xYJK/JXydg/Y2HxYO9f4O89gs2o2ka3/veCr7whbmEwx5SKYMf/GAlDQ1l9PTEuO++XYyOpqmrC5LPm4RCbk6ciPHBBxOMjaW55ZadzJ1bR0NDGaqqsHhxc6kLOxiUeVev3kZ3dwRFgU99ajZNTSFuuGErR49GKCtzUyhY7N3bR1WVj6eeWgVMer1T8QJ+3ccXF1zB8rOWcP3ij6EoCnMapZrLtC08Lp2vLLqKpVPmMJ6O8fWOT2HbNn8eOcbys5Ywr/EsDg68B4iS59BQN7PqZ1AfriJnGPz9i88wmoxwbsMMhpPj9EWH+UHXs8xrOosza6aw4eUfYdkWulPf9a9vbAdsdM1FNpvkQcsqARcFqeLaAjwMLAT2IV5rFWgE7kRAdwI4A2GsT6eGnx7/u8dpcH16/PXQdQHRFRWTlPHmzUIRF+nb3l5Bm4ODglD37BHwlEwKWk2lBIQXO7IVRZa/7z65TSYF3SYS4uPu7pbt2raAtLVr0fMpdN3m9tsl/TscluCydFrwXk+P4P81a4ShBiHaV68WT3afgwtjMdnN4rwnTsi0Yv/1lCmnMuLNzcJsf/Wr8MtfCkA/mTm3LAHZimLgcvkIBOpYufJJ1qz5M8uXP0o2G6e9fS2zZl1LR8e96LqfUKjZYZVOsGvXtygUssTjPezY8XU0TWqN+vr2YVkCepubF6MoGvF4H7W1s5mYeJ/t279GJjOGrvtoalpEKjVKU9NCdN3nhJ/dRCzWA4DbHaClpY19+x5B09yoouQsMcbk8sI4Hx8QID29WabnjMlU755BkYznC8Jua86JjmkJI22acn96s1yJKDLaOQlnKQWXBUUej2UJM25ZIg2f3ozi0rBMk8SJE7zxwANkIxFcgQDz776bYHMzFeecQzYapWbuXGzL4vX77yfV30+wuZmqOXPQfD6q5syRvJqhIcxMhtfvvx9vVRV6WRk18+eDI68dfestCuk0s66/nvqlS8mOj1Nx1lnkIhGMVArLMPDX1XH4Jz/B39CA6nJRN28eSjx6alhZJily5Bd+KSeC//4UvNEpCeE2cN1NwjSPDcrJnz8g9VwoEK6ET94Ibi/0HpX0cZdLpOL3/1AYcmx5/t+ecGTPusNsf1+CzyZGnH35dxTbRnO5Gf3gALHBI1imwWj3AeLD3RiZJC6PD1XVcXl8DPzpFfLpGPUzLyDccBY1MxbgcgfQPUEUVWP86BtUTZuPoqikJgawLAMjk8RXXk8hlyYdHUJVNerPuRBF1UhHBrBti0I+zeC7u8inoti2Rev8K6g5YxGayyMyT7cbJVSOUlGNdvnHUTwerL27UVqmguZCcXvRVl2DUlkNVbXg9ghQ7j0OZgE7lcTO5yEexXx5q8i/4zFZ3uNFnTJDZOEg6eHllSiBMiivRP3IcuyeY1gvb0dxe2BiDDsWRVvxMaioRNFcoCglhjqZTKKqaglkF4PMli1bRjQaZevWrSSTyVIPtdfrLfVjd3Z24vf72bt3b6mua/v27eRyOVRVpby8nEKhwPbt25mYmKBQKNDa2grAFVdcwaxZs0qseCAQoL+/H5/PR0VFiD17NtHS0obHE6K1tQNd9xEKNXPNNc8SCjWzdeuNhELNeL0VLF/+KLfdNszKlU+iKBrTp1/KypVPATZTplxAdfXZzjSVffse4dChLaRSw+TzCbzeSubM+RwrV/4AzUlfHhh4nWCwgUIhy44dN1FbO5tUapSenk4KhRwuVwC7YJOL5eja1FUKFAOI98bZectOmhZJPVf/gX4UReGi9ReVmOWTlyuFl3k0Wttb+cz2z3D5E5fjq/TR8c0O8uk8Kx5fwae3fhpP2EPHug4B0k0htt+0HXfQTfnUcqZcMIV9j+6jpa0Ff40f1aVyLHKMb7zwDZL5JIubF9MSbimleXdHuvG6vPh0H7WBWubWzeWOl+4g4A4QdAdJG2kyhQxhb5hNl2yiqayJC6dciIJCR2sHj+1/jNpALX3xPm5bchtDySFi2RiKorCpaxNbDm1h/e712Ni0hFoYTY3SEGxgUdMiHt77ML86/CuyRgqlGCqWdoLLvDXSVQ3SZe0Kiiz8QzfJPKNd4K2DK49J37Vti6z74H2QdVLEjzwGFfPl+wfV6WS25buq5RMC2G1LUrPd1fD+D2TarHVOuNm9Ii8vBohpbvE+o/xFqJkiYNpdNhl6VuzN1gMChj0h53twugDq8DR5vpB1Er1NkXrbtjC/hazsa3iaJHKDPOcOyZ9lCDAGme/ABgG0yV5hot94WJjjZK9UZyV6Zb5A4yQQL6Qh1S/stuqSlO/kEHQ8CFMvFZn5vJuEme7vlP0taxKpd7Jf/i8fcY59/SIB8poLLnkSZn1Req6NDLjLsIFstsAHH0xw8807GR5OkU6LSqKvL85tty2htzdGf3+cgYGE/FS6NebOrWPz5i6WLGlGURRisRzJZB5d13jyyZUMD9+Gqio8+ug+Lriglbq6AJqmomkKDz3UxXPPHaGvL45p2rhcCgsWNOJ2u+jtjTEykuKJJ1bwqU/N4tvf+gNWVqW1op77Lr2BiXQM1VEZxbNJRuITgEJDqJrqYAUza6dxdLwPr+7hzJopHBrqJm8azG08i1hW3gPVgQoeeOXHJan3ziN7+clrz7NkyhzOrZ/BD/f/lp1H9vKj/f9BKpfmcx9eCUClP8yVsy7krou+SH90lB90PYtqWoQUhUHgPqR+ax2TbHQM6bn2IAx2EXhvAqJIoWEx3Oz0OD3+d47TnuvT49SRzwvtW0z1CocFzRqGdFQVjc+PPy4g+oknxFddWyvodOlSAU+GIeC6rg6uvBK+/3342tdO7cyeP1+QrmnK3913i6d7YADmzSPpryWd0/D5nPrgk2zfZ5whiwwMwCuvwDXXCCafmJjc9ZoaSjWaLpfgedOEgwfF6n3LLXLNIBBwmjYM+XPsk/T0yO4X1+F2y+HxeiUE7eyzpec6Hu8jFGqms3MDHR33Ul4+DbCxbRPblqu327ev4eKLH8AwknR3v8iMGZcxMfE+dXWzcbtDji86iGWZpFLDeDxluN0hTDNLOj3Grl33lSp1Vq16GkXRSp23HR1ricX6+PnPV/HpT28lHG5mz57NXHLJg+i6H03zoNkKmqlMVmSd0SqAeTwK58xwUsEtkXp73IAtoFpVSuFjKEx2Vv9lHRdMVnIZhgSZFbuyz2iRdR3vP9Xv/UEPRksd6bFRkj09eCsryU5MULtgAcneXvFNz5mDoqq8sWEDZ33+84y/8w6BxkZq5s8nOzGBkUiQHR+n9vzzMfN5Xr///lOCzsbfeQd/Y6P0Zsfj5KJRKs45B5fXi23bJE6c4PCPfsTML32J0NSp7P/Wt+j//e/5m5dfJjM6itvvw18WQIlOiLR75adFrt0yXYLJFFWY5MgoVNZI2Nm0swVM625IJZx6rk8KoM7nhNn+xJfkMbaw0s3TnQodRwHws+/Bvt/B4ovgszfJG8/Iw8AJmHqmAO/LPwXV9ZgujXwmzugH+2k45yMU8hmMTALdF2T0gwPUnLEII5Mkn44QrJmKy+O84RUFIxPHyCTwl9eDqmFkYox+cIDq6R+mkMvir2x0WOwsZiGL5vKiuT2kI0OnBJj5KhoIN5yFqsoFFdsu5vkq4tlwe1BsCzuVlPu6jp3PYb28HXXphQKWg2VQFhYQbFvYiopimaBq2ImYpIgf+RPqNV+QSq6/Wj4kgFlRBSyo2l/4vCsl1CwQBK9Pqr52v4K58mqe37atFCi2cuVKTNMkm80yMTGB3+8nHA6zc+fOUn/1pZdeiqqqqI51oL+/n3A4TCwWIxwOEw6H2bp1Ky0tLaWAs46ODmKxGD//+c+ZNWsWl112GalUit27d5eC1FwuF5Zl0d/fTyAQIJVKMWVKM/l8jERigK6uTXR0rEPXg/h8lSiKQk9PJ7/85dXMnPkJVq58Ui6KGGlefvkuli69k7KyekAlm43g9Zajqi76+vYRCjUTCrWQSg1RVtZMLhcjmRxi375HWLZsM6Dgcsln27IMFEXjT3/6Beecc01JcfPKK3dLcKNajmWAZVj0H+gn1Bwi2BDkha+/QEtbC1MunELX5i4u2XQJuk+nt6tXKrWmV2Cbcg7S29VbYr+7HupixeMrwAbTMLFNG3eZm/Ej43Rt6qJjXQehlhCZiQz+Kj9bb9xKS1sLLW0tdG3qon1dOxXTKihkC/Qf6KemvYbVL63mo1M+yifP/SQ47839/fuZ3zCfaDZK2BPGtE1iuRhl7jKGk8PUBesYSg6xqWsTjyx/hPH0OH3xPhY3L8aluujs6aQ51Ey1v5pkPknGyNAb72VR0yI8Lg8KCt2RbjZ0buCutrtoLmvmF4d+wTXnXANAKp8iXUgT1v20egMomQEBxIfun+y39jXK90whIZLudI9ItXNRCQkrglJFhWLXczH0LDBNWO3qNkkM9zfBoY3i2db84C4XGXnyqDDVs+4RRvzII/Dhx8E2xNOdPAFlMwBVtqXqlILATvZMuzyTgWPFoLFiSFnRX13sxD458ExRASe3IzsuzHJ4BpgZ8TsXpeLJfglPM/MC1KPdAubdIQckD8H+9XDRE/C7NQKor3hW2OrMqIDc1zfBBZudnuwMjB0Uv7WRllotPTj5nKKJp1p1C+j2VgkgX7ROmH8jLYB+0brJ1PRotzy3cK1zEQKHYc8Tz3kZGMpy33272LLlENdeO4tNmy4hnzdJp41SZ7Vp2gwPJ0te6GJdliSL57nrrpd58MFLGB/PsH797lMquo4fj51S2wXiv66o8LJ/fz+trWHq6gJ4vS727OmlutrPyEiKRYua8fpVBpLD/HD/b/nigiuoDpQTyST4p/2/5SuLrqIhXINt22SNHI+++m98YcEVlPuCPLzrZ9z+kc8xno4xlopSF6xi2Om2TuRSXP3Pd3LJhxadElwW0L0ULJO+2Ag/ee15vrLoYzSFa7CwUVHIFnKYloWiKGSMLPFsikgmwZxp87hBUdgCXAd8H0n/9iNS8GLlVoZJz/VdCItdyWlgfXr8rxmnPdenx39tGIYg1vvuE7rXtgVVlpUJbXvddSLfVlWJ77YsMS6Xl4upOZmEffsmu45//WtJCNM0CSy79lr45jclJfzoUUG7a9cKgl2/XrY9ezbEYrjtHF6vTSIhXmivVxjjvj7ZzePHZTevukrI8H37hGwvL59MCk+npf3r6FF4802Zb+5cWdcPfiDhZ1/7mszn8VAC8qmUMNqDg8J2Dw4Kwa46n5ipU8G2C3R2bih5IJcsuc1J3E0wPv4eW7feSCx2AkXRWLZsM5nMGK++ej8zZ36CYLCOhob5vPLKWmKxEwwOvsn4+HsUCmkURUV1klI1zYvHE2bp0rscafkTpFKjpW0fOrSF3bs30NS0iFmzrqW5eZHzWHzg27atJhL5AFtBmGSve9Jv3dogwDroFwDd3Sv/BxBmWteEYfa4RR6eL0gCeFECHg4KGC+OoB/6h2V+t5P0Oq1JQLvuEiB+7hkCrFUFpjSiKIiku8gY19cD8lz1vHnkolHMXI7qefM4/KMf0XLppVSccw62aeKrribQ2Ii/oQEUBc3jYdYNN9D+yCNS1XX//XgrK9HcbsxslsM/+Qm+mhpcTpc2cKoM3LJKy6MoHHr6aQqJBEouC/XN4oOuroPqBnltiipMcmRUZOCRMQHJybikWrv0kxjvfxcvdWQUPvZFWf7n35dlZsySmi6zIM+NDkqP9YIL5Dabkfn6jwmwdnuEHa+pl8+nDbovRO2ZS4gNvc//j73/jpKrurf90c8OlUMHqXOQkAgGITKKLcAGIYRkGyc54OPrhMAI24AJtoQtfIwEFghw4NgGp+N8EE4oIYIto6aVCCIIIaRW6Jwrp71r7/X741tdLfnc3333vXHeefeNn9YYPXbV2muvXVVdYc8153fOYj5FqLqpzGYPH95NsFrcv4fe7cDOJcnG+kA52LmUsNr7/4adS6LrHiZPuxjD9BOqFjOgbGwA1y1imH5c16bvrb9h+gIUCzl0Xaf+7MuobHyPqAdifZIt7Dpkxnop5BLyeGMjOJueEobZNFHFIprHiz73MtyOf6AFw6hMWoC166AyGbSijcpmUFYBLVKBseQjGLfeg940Bbf7GKBhvG+xAOtgBHw+cUXvOoKKjaEKeaisxnj/MrSKapSGmJzt/EfZ/Ezt34fec5wFCxYwY8YMFixYUJZ/h0Ih6uvr2bNnDwCLFi1ixYoVLF68mEwmw5YtW4jH42VgHQ6HCQaDJBLCWC5YsIDp06eTTqeZO3cuiUSCpqYmZsyYQVtbG4ZhsGPHDvbv309HRwf5fB5d1zEMgylTppDNZgmFQti2i8cTJJ0eYO7cr5FIdBMMTiaZ7Karq52mptncdNMbLFz4IJaVIpMZBKC5eS7JZDfpdD+9vbux7UxZ3VJbOxPT9KNUkbGxTuLxo2iaXvaQSKX62LbtqyQSXbhuEV33oOsmM2d+Co8nQKGQLNWSz0UrSXWTXUm23rKVipYKIo2Sab1g1QKmXz2djgc7mHP7HLwhL8V8kbrz6/AEPcSPxulq78KxHJrnNuMJemi/v52mWU0kjifYfNNmkt1JeU8p2PWIsNGG1xA2+u9HcWyHBStL5ykx4MnuJPGjcbbespVQTQh71GbVglV8cuYnyRVzDGYGUSjqw/XcsvUWssUsAU+AvlQfq7evZiA9wOmTTidlpcrMc7KQpCvRRX24ni9v/TIpK8W8lnlMqZxCxBuhNlRLa0Ur59edz96+vRScAgpFbaiWx5c+zrTKaTjK4YzqMwh5QwQ9QerCdZxWeRqNoUlo++6EkZfEjfviH0Lt5cJAZ44JsIy/UfK1mC4g28lCfrhkOFksbZXImj2VUiMdaIL6awRYT5pVkonfIcDaycKrt0kmtL9GpN8HHoLwFHjP7eCkYXSP1FMfeIAJ1huExabk+l04WRruiwr4DTecDKw1BHB7QvI7My7tRgmATRyV+f2TxbxsfLxRMmVzrFK8lyXHKgSc+yqlzwwIw33Fo/LdfOldAqzDzfD8jQKkx53Cs8OQHxMg3dgmjzPTJ9JwtBKwNiF+VLKwXUtqrV/7fknqvUbMy8aZ8t1rZH6nIM7gjfNloQElmdfJo/DCCjyGS0WFj7vumseyZTO4554FvP32MFVV/rK8e+3adhoawsyf30pfX4rVq7czOJghny9y442bGBxMc9ttc/D7hXl++umDrFvXUYro0rj/fplnvC8c9pLNFlmxYis1NeJQPjqa4+jROHPmNFNZ6WfWrCb27u3FwWEoPcZtl19PXaSasC/Ab1/ZwgVNZ1IdrCBvF4SFzsQ5t2E6P9v9F7JWnm0Hd5Kxcvxiz9NUBSIMpkepDkR5a6CTiC/EU/9jHbdf/mn6EsJAj2TivNr7DrFsgubKOr559Q00V9TQmxjiO88+wfFYP44rZnJ+00vetvjVy5upC0/CQDKtlwF3yn8LDwKsT2SlDaAGeBSRg0c5BaxPtf++dgpcn2onN8eZCH7u7xe59g03CFV7+umCSIeHBZGOjMj4cVr5ppsm2Ovdu4X6bWsTnfWGDVKT/fjjUjB97Jgw4X19woAPDIi99wUXCP3c2SkxQZo8jG99S0ju/fuF8NY0UaY//bTgeb9fjMj27hXm2e8XsN3fL/0PPiiguqVFHoZScuq1a2W/64p6/cYb5TzBoDy1ca+1vj6Z17YFeO/aRSkLdxWVlVNobV1ANNpSdgzv6FhXrod0nAJeb5iOjodKoHeQrq52dN1kzpzb2LXrUerqzi9lzYbwesM899xdWFaq7CQ+adKZVFS0sHXrihIA95wgPV+JxxNk6dKfoJRiwYJ7mDHjE0SjLVx11TqSyV4c10LMWlypebaKAp7/pznWlPODAegZlLpsv0/+xnOwJ5dqs90Sy61pAr57BuUXDwTQOyXH1YBPgHdnt/R5PeOXXeXaasPvJ93Twyv330+2v590Vxe5kRGmLF3KrG9/G8MnTNor999P8vhxNNMkWFcnb91SzXbNRRex//HH6XrmGQ788pf4q6vL9/c/8QTZwUFc2z5ZBl5Xh1ssEm5poeaiixh94w3O/tznMMJhlC8gMu3EmABdn0/k2kUbNv8evr9aXMCnz4BkXPqUEhb/4zcK+3ztJ+SJVtXAUz+FRAymnz3hdN25X4497Sxhtv0BAdD+oBgFJEZFGv4fP4FcRi4ec1no3I+WzwJgeoNEJk8lUNmAAmpOn01l49k0nHMFGlAsZMr10P7IZHLxQYLVTeimj8nTLsH0BtFND8VCvmR69pw4hkcnl0H48GGRnDtWjlApQ1s3vdj5FH37/4bpC6HcYul2ADuXFsBbMhdTibjUdiQTuN3H0KJV6Iuvg0AArb4RNTqEs/mP4oTe1z3BchdyOFv/Aqkkbu9xtNoGyKZxnt+EFq2Aqkoo2jhb/jRRh13Ii+FvbARn0wbJBvd40edejkrE0Zta0WZcgBGJUhUOsXTpUiorK7Ftm2KxSHd3N7lcjiVLluD1eslms4yNjZVroQ8ePFiWgu/YITLobDZLU1MTANFolEgkQjQaZffu3TQ0NGAYBu9///upqKhA13UWLFjAJz/5SRYvXkw0Gi2f17IsWlpayvFdjgPRaDM7d64nGm1CKZdEootQqKb0nSCJAKlUHy++eB8A5513PVOmLOCllx4kFKop12K3t6/F6w3j9YbJZkeoqzufZLIHjyfIvHl3neQhkUz2kE73s3nzTcTjR8seENu3f4t0eoBzzvkoHk8QZSt2rNlRloQbXgPN0DCDJuGGMIt/uJjq6dUADL4xiG7ohOvCVLRWMGXBFHKxHMVcUaT4K9vKgLz1slYijRF8EfncL3xwIS3zW9i+ejuxzhhnXnsmpt8k0ZMgWBOkbWUbM5aJmdp4PXZmOEO0Osr0yunomk5/qp/V21fTleiiL9UnudeGzP/Irkd4cv+TrOtYh1KKCl8Fd827i+tnXk99qJ621jaaIk3cPud2BlIDLN+0nFQhRcpK0Z/uJ2Nn0HWdmbUzufWZW0mX5NFpK42maYS9YeY0zyFVSLFiywqOxI7guA7poo06+y4BzoZX5MmGvwR418n9ivOkLtpOAa4w2GZQMq1HdpXMvzTZ72QpZzYHG4XpHt0j/Qcekm22RwB3rh/GXoUpnxRQr/skhmvf12U/Olz8A1HWONaEGRlKQKk3KhLu6JRSHbhbqrsuRWUljsjWdQT8avrJ0m5KjuPhEkNfSooQU8xmYa51T4nt7pNtiQkW13Gv9Dm2zKV7BBAHaqD5cqkjb5wvNdRNbXD29RCuF0Oy528sPRdE/l0/S0zLnlsOicPg8U8YkyWOwvt+CJ87MCEDn70KzloGs+8Rx/DEcRnznk8Kg504BvWXSN31wSdx0qOEw15OP72aRx9dREtLlHnzWggEzDLgvvvu+USj4sC9bp1Iunt7k3i9BvPntzA4mME0db761We46KIGjhz5Cg8/fDUVFaLGWrVqQXmeyko/tu2Us7XXr9/JrFlNPPfcEdaubcfj0clmi9xyy1bq68MYmk5tuJpH/vFbBlNjZKw8d7z3M1zQeBbr/v7v5VrpP7y2jfefcxn3Xr2cmnAVP/rIN4j4gtz53s8wpaqBC5vOIuoPMTlQSaqQoSoQJej185tXtrDt4E5+sedpZtRPpyYyiYHkCN959gkKjs0v927k4ub3UBepxu/xYZQWwcel44PpUZyiTZ1S3AvUIlLvHP/ZoMxCIrkagRsQCbn1v7r2PdVOtf/CdkoWfqqd3CwL3nlHUOVjj3FSBtYPfyiS8dWrBdU+9ZSw1bmcSLp/+9sJyfd4LfWsWXIxnUgInfzmmwK+ly+XOf70J7k/HuPl9cIrr8DkyWSmnI3tDXPLLTLN1VeL+vzYMYnMXrlSWOz58wUQP/igrAtEIvI0TFOwfiQywUi7rrDV0aj0dXYKaNY0OHx4Isq7rU2wZSolD725WcD3d78rawCnnQahkDhxKyUmYt3dHUQiTVRVTaNYzJHPx7HtHO3ta2hr+wahUB2FQoKxsU5CoRp27lxPW9tKKiqmUCxmSaX6S/nX38B1XcLhOiwrhdcbxecLs3HjDSdIw39CV9dLBIM1VFVNRdN0enp2E4k0U109DctKo5SLZaXw+SrweaN4KdW0H+mZqKuGCTl494Cw2ePu4I4jAHEcKLtKoru8HnlxPGYpvyw7kY3tugKgT4jawu8tgXlTarKjYaipBMelqEmsUbqrS7Kmly8nOzDAP26+malLl3L+bbehGwa6z0e6u7ss4R557TXCLS3lHOwZy5dj+P14IxF0j4dMfz/7f/KTcna1cl2cXE7MqjQNJ5vFV13NnnvvLedrz7r3XgCU4+DYNrphgKbh8/sEwOZzAnr9pdWZzrfFrOyFv8JHvyig+9BbkmF92ntERn7tJyRyyx+Ui8vf/nAivuuTXxKQveUPEu2VikNNAwTCkIyJydlHv1CSjyMAvHGq/H/++HO46kMQrcQd6KbQ3IydS58gBZ+Frnsw/CFwHbKxfjyBsIzxhzB8QXTdg51PnSQhnzztUkxfkHxyGNMXKMnA/SXZJti5ROk8EYYP72bytEvxBitQbpFE/7vk4gPUnDGbQ//4JRUNZ9E4cyG6C8RGcDv+gXHth8B1JT8Z7aSMamVb4oDeeRDV241+5bWQSUls1rz3AkpY8GAYDYXbcxx3w7+jnXUuxtKP4mx6CrV/H9rMi+U8SoFuiHHagdcxbroDLRDE7TkugDwSRUPDAWxNx1WKfD5PsVhkx44dzJ07l0wmQ2tr60nmY7t372bhwolInIGBAaLRKJWVlcTjcXbs2EFbWxsVFRW4rsvWrVv/kzx8HEh7vV7i8XiZ1c7n85imSS6XI5lMloG6YThs2jTx+V+y5Mco5bBly4qTykXG86tbWuaXJeTBYA39/a/+U+nKVEZH36WjYx3z5t1FdfUZ6LpR+i7TiMePsmPHGq699rGTzrF48Q/YuvXLJz0OTdPRbD+j74pke/7d86k+s7r0nQFW1sL0m2QGM3jDXnwRH67jYmdtnr/7eebdNQ9PwIO/0o8ZMOX7xgErY5EZzJTjvSKNEbxhL8dfPE6oJkRmOEPV9CoiDRHix+Ok+9M0z2lG04UlHTs0RqovRbQlih7RcSY7BD3Bcv70VdOuojnSTLaYZU/vHlorWpkcnMydz93JgwsfJOKN4CK196Zmkivm2N27m4ZwAw2RBl7tf5Wlv1/K4NcG6U52s65jHXfNu4vmaDNjuTGeO/Ic81vml/vPmnRWWSJ+17y7eKn7JV7qfol1V60j6osSMUyMzBG0bA8EWycitjDkNUm+e3I8l1OAwoiYnvlrhYmtnS+AujAs0upAvbCz2VJt8BvfhKoLS3LzBsgNiCT8xFxtIyCyckVJju0IkI+cVYrFOjIhxU73TkRojcvTy7JxjTIrrRkCgssS8sZSznX0ZFn5uGTcKcg5XFvm5gTZuJ0p5WNrE+PH91kJkdXHD09Is9M9EKqH6DSpuU53Q9N8Ya8Lccm/bpwvzPO4C/ihP0H/TgHKz98o7PSHNkncVqpLzMsMUdmUn3fiiMwZbhAm++KviRS9cR4ku+DlB7Eu/zcKro902qJYdHnrrSGmT6+koSGK6yp0XcN1FdmszVtvDXHuubXl75k773yO226bwxlnTOKGGzZy2WWtXHfde0ilLCoqfASDHjIZu2xaZlkOrqsIh70cPRpnzZodrFq1gNbWKLfcspWvfnU2LS1R7rjjOWbNauLqq6fT2BrkvhcmMqa/NO+jTA5X8p1nf3pyX6iyZL/ikCpkiPhC+EwPGSvPSDrOSDbOufXTMQ2T/sQwP939l7LsezgTozpYga5paGjs6ztIhT9MhT9ERSAKUJadf/bS99NUUUvWzqOhEfT4SGsae71+JgMjQBsQ4D+z0hYTudZ3AEPAZZyK3zrV/mvaKVn4qfa/bpYloNY6YU1v6lT42c8EdY5Lue+5B+JxKXBeuVKAdXPzBIP94IMy7utfFxY7GoUFC4TmBdFqV1RMoNZvfhPeeEMyrdvbRbetaQLoFizAmnI6yWIIy5Kp588XTN/dLWz0008Lm3zZZXJYXx/MnSu/r+++Kw/r2DEB4x6P4PuBASn/PHZMMCDAe94jCvXGRnk669fLtlBKCxkaEgCezwtIf/ppAfBaCRTG40fYtGk5Y2OHqa2diccTIB4/wrZtt+H1holGm1i4cD0eTxiPJ0g4XE9T0yx27lxfZpE0TaNQSJbZoo6Oh5g06UwMw0ssdhSQcy1d+gSf+tQW5s//OkoJk5XNDpNO95edhFOpHgEu2oRjt1IuihJjPR6NVZJZ4jgCjgM+AdwFSxzANamYpWBJLbVC+kIB+f+5rgBllIDtzm4B5J7SxfE/M+FeU3K0W+qhtqr82FzHwbVt9j/xhDDLjz/OpPPOo/Waa7jgjjsoxOO89tBDaJqGGQhQc+GFHPzVr6hva6P2kksI1tdz9uc/T25kRMzM1qwh09eH4fNxyapV+CoqsFOpsmFaIRZDNwwKySRoGmd//vO0XnMN53zhC2iGQbq3l73f+Q4AueFhYm+9Kc87EYOnfy3ssqaJhHvae6Sm+vpbIB2HX31PmOmLFwiw3vuisNDjYeyaJmB7PL7L452QjT/7RwHk1TUC0rf+h7DY8TGpr7byMO0ckYaXGW4xVFOnn83w4T1lZlmk4HvQDBNVtChaOfzRGnTdQ6i6CaUUQ++8JCZvh3efdNzIkb3ohgdPIEyxkBOn8ZgYs2mahjdYSai6kZHOvQSrGvH4Q+Ws7GBVEw0z3ofHF2LKJR+i5vTZJYbJgUgUY8lHBFjnspBKTrh9J+Ljb1QAtLNnoi9ciqbr5dgslUlJPbbPD46N88xf0aIVUn+94Cph0Bd9AGPF3ehLPgxKoTQNXAd9yYcxv7IKvD45LhRGJROQiOP2duGYHhLJJFu3bsW2bRKJBPv372fnzp00NTXR1dWFbds0NTWV+1KpFNu2bSObzdLa2lqO0BqXebe3t1MsFkvqljamT59edh5PJBIkk0m2bdtGPB7HNE1CoVD5/IZhkEwmy32ua6OUe5JJoqbpGIa/3Dd//t3ouklb28qTmOcdO9bg8QRpbZ1PVdXpLFnyYyorp6KUe8L3zTrAZWzsMMeP7yAWO0oy2cuSJT/GNAMsWLCKGTOW0da2knw+ccLjWCX/L03HxSLSGOHyey8n3BDGSlm4tkvsaIz+V/pJHE8wdngMw2dITfmeXrxhL4seWYQn6MHO2my9ZSvxzjhW0mLzzZsx/Sbt94szeMe6DvLxPADR5ig71+8k2hQlXB/GSlsEJwWpO6+OYqGIW3TJDGYI14dpbWvFE/QQbAzSl+pj+ablNEYaue4913F47DCH44e5bdttnF93PpODk4l4Izx27WMEzACJQoJDo4do72rncOwwK7auoCZUw2BmEF3Tmd86n02f3ITH8DCQHuCOuXcQ9UXxm36ao81cP/N6BtIDPH3waR7Z9QgKhc/0Mb9lPo/seoSF0xayasEq3hl5B13TS4ZmawVQG35wMhKxlTki378H1ol794F1IgPXfQKGJ82S6K7Jl0oc18srRP4dbgUjQH7kINd9/HOcef7lnL/8ZRbe/EcOH+kB10YFmrj3xy9y5vmXMXPeB3jv4mUCpF+5lc998SbOfM85nH/pZcxf/Dn27t0rn9NxKXa69+QILZiI0FLuBGtNiaker7f2RiYYb9yTHcbHwfa48ZlSJXM0JWkLrl06ftxcbZyv1GROMyhzmn645C7Z1pwHr/1Q/CyirQJ2HRt8VZAdgdqSFM70Cyh/8U4440Pwvh8IsB9npxtmy3OtOV+Ot9ICwMdl8f17oGmeKA8a54uEvGGWLCpUni4GZ5pOOm2RSBTQdY3zzqsjFPLR2RkrO3q3t3fR15di0qQgg4MZbr11G319KebObWZgII3rKtavX8inP30eo6NZOjvHME0xL/vznw/Q15fipps2M3Xq93j11X5s2yUc9vDTn76fKVMq0DSNRx9dxMhIFr/f5LHHruVzn7uA6mo/uqbxxdnXseisuXxu1vsJ+4IoBZ+f/UGWnN3Gne/9DDXhKgxdp1C02F+SfacLGbJWHp/pJewLcGZNK4lcCqUUDdHJpTxsL32JYf7tpQ30J0d4rfcgvckhzqyZwq9e3ozf42cgOcJ9z/2U0UyCT198LR7DxEURz6ZY9/d/51isHx/Q5Lo8DLQq9T8F1pT6zgAeQ4D1FE7Fb51q/33tFLj+f3IbZ6m/8AXZ5nKyveEGAbuGIVFajz0mEu9cTjKwTztNgLPPJ6j3oYdOlnyX6mbJZCTfanAQvvpVQb3JpFDBU6YIYt29W2jp5mbRcofDYNvYgQr6+jVuv126162DZ5+V07S1CVN9wQUy5fLlAo4/9jFhmsfHNjQIdrRtAeXf+paA8EsvlYeXy8nDWbFCnm5fnzwdn09emkxGmPFxl/FsVtYUVq0Sgh3csouv1xvCMDyEQjW89NI65sy5DV330NOzi1xujGBwMsViQVgQ08+11z7Gpz61hUWLHgUgFKpj3ryv86lPbWHJkh9JBFL/qzQ1Se51V1c7Y2OHqa+/AKVcnnvurpIcfT6JRA8HDz7Nzp3raWqaBYDHEyCdHijHcYlcThcpuN8rTPWh42A7ApgtcSmnIiyu353dE7Fb0ZIe3nUEOHtNmev0VnmPWLbUVlNixfOW3B/Pth4Xx4SDMlbX5XxdA2i6LjFZ3/42l//4x8y48UZMv59Z996LGQjw7q9/zVmf+QxusYhmGExZsoRLvvUtApMnY2cyvHL//eiGQc0FF5Sl5dmBAaxkkle/+13MUAgzEBAQ/oUvYHi96F4vhXgc5boEamuZuWIF/poalOvydgnk26kUB37+c6rPPBMNBVWT4Povi5t1Pivy7LFhOOPckjz8BDdxj2cCRH/0C7IQkYyJIVltI3zg03Bofykr+wSwbRglgKmJnHz2eyE5JvLx+JjUYzdPg8pqOWbJp0R+oRsld24/jee+rwxsDY8XO59h+NAuNLRSnXQWbyBK/TlXoIDJ0y6lWMhRc/oscRA/fZaUY+gm/mgNdi5zgtN4HLdoUcgkaDj3Sqqaz8Et2tj5TNlRXLlF7EKWQEUtnkDpAlk3wFUoq4DKZsDrRaWSkjW98x/oTaKi0EpmaJphSu21xzMRm9V6mpicFfKgFFrzFNyOf6BPmY4WrRDwnclI7nVMYr6Ij0ltdmwMt78HUgm0ppbSOVvB5xcG27JOcvwer4tesGAB+XyeeDyOZVmYplmuox4Hyjt27KBYLLJx40Zs2y67iy9YsACAZ555hlAoRCQSKe9rbm4ug/AdO3YQCoXYuXNn+fyGYdDc3Fzu0zRFLHaEVKqvDI67uztw3SKhUC2XX34v4XADoEry7vBJQFxyrnN0db1IInEcy0rT3d1xEki2rDTbtz/Abbd9n7a2D/HhD9/JNdcs5oknPkUwWMP3v9/LnDkf5H3v+zBXX309nZ3nEo22ousmL764jSuuuoL5V8/nvR9+L8/89ZmS0ldis0I1IZI9SUI1Ibbduo1irkjLvBY0XUMzNJGHT6mg9bJWXnrwJQBmf2U2ru2WZd7z756Pv8KPnbHLcvFwYxjd1PGGvPgqfShXkexOsvmmzVhpi/5X+9F0DW/Ii1N0yrXTa9vXkiwkqQ3V0pfs43vXfI+QN0TWzpbl3bliDo/uYV3HOmpCNaxtX8vTB59mODPMvJZ5uMrlli230FLRglf30hxtZigzRNbOsnzTco7GjjKWG2N202zeuOkNHlz4YFki/pGzP8KDCx+kKdqE67rMbp6Nq1yC3hBc+mOInCGscn7whBgt9wT37lWUa5hxpf560mwBccGWkoTbFKl4tgcCtSy/6SscfKOD1/f8nQ8uvpwvfvnr8PIKvr/+O7zx5n7e2vsCb3Y8ze9/8UNhubue5EPnjfL2W2/y+j9+yze+dB0f++S/lIwCPQIgo1MnIrQMb6lGuleyrNEmxjgFAc7joHk8/9opiCKmYhr4q0VC7eSFPVbI74mmgTcsLLxmyKIDmsjTtfHLVyX7xwF+4oiAZN2AXd+R4977qMyZ7ILnbxJ5+cBuYbSVKzLwZLeA+/d+T+q3+3ZJ1rVjw9xvy+vbOE/O/+KdwnjXzy7lZodgylUiHd91H5zxkRI490PsEPRsh8QR7KIw0+MtGhWjsvE66bVr25k8Oci6dR20tlZw//3tPP30QYaGMnzmM+czb14LO3d2E4vlMAyNmpoQ559fx223bePIkTjTplVRVxdi5co2nnrqYzQ3R/nSlzYTCHg4ejTO8uWbOHYsgcdj0NbWSnd3kvb2LvL5Ih6Pga5DZSDCne/9DC2V9fg9XgxNp7milnsWfpF4NsW/PvsEx8b68RkeJoUquf+FX+D3+BnJJrjvuZ+SswtoaHQnhigULbrjg/xgxx/we3xUBaN89tL34zM9nFHTyi/3bCRdyLLt4E7ShWxZ/j2SjWPoBj/qeIr+xHDZZfw3r2yh6BSZpmn8TCnO0rT/ZR11AKm1vgw4k1M116faf187JQv/f3JLpwVYj8u+H39ckOr4/Z/+VH7cbrpJEO0nPiH3DUPQ6Lp1opMOBoWdy2QEHL/7Ljz8sOwLh4WZ/uhH4SMfEWrYNAXBplKyLRaFjl67tqz1Ts5bxA03mTz5pEyXzcppstmJYVOnytQnSrmzWQHJ0aiA595eUa57PFLKvX+/jHv3XXn4d90lKWIvvSRP//Bh6V+1StYRHEdY7A0bYOdO8XIbdxQ3zQyaZkl9au8eotEWKiunYNtZMpkRPB4/oVANoGHb2bLbb1vbypLDeAsVFS0ld/AKvN4olpU8Qc4t4GTbtluZO/drZDLDVFWJI6nfX0kmM0R7+9ryfBUVrYTD9Rw48BfOPXcZXV3tpVzcYVpb2/AXS+ZkIMB63Ll7eouw2uMy7oIlNdWVkZP7vJ6SJLx0UeO4Ew5vyfSEiZmhT8SqaZrsi4TExGy8JdI4ukZyaID9jz/O2Z//PIHaWjyhEOnubvY//jgzbriBYEMD2f5+soODBOvryw7iVjKJnckw8uqrDL/2GrP/9V/luCeeYMYNNxCorcV1XQqjo+x//HHOueEG/NXVvPrd7zJj+XJCzc0i/y4UsFMpPJEITqFAMZNh/+OPc/HXv44CvH4fRnwELTYMVZPFmOyaZfIcKqvBFwC7IMz25t/D1R+VjOrp54gzuM8vYLyQlzxsXRd5ec8RmW/cXdzrk1rqp34mEvNUvOQy/gmJ7/r9v4lp2vRzJlzLK6pE4u71gwauY5NPDhGobBAAquv0vvk8weomonWn4zo2hunFLRYxfX7UuN5fuVCKW1FKYeeSDHfuoWb6LDzBCvrefI5E/0EqGs6i9sy5mL4wdi5RjvhSaBQLaUxfGCsTZ+TI3rJcPDHwLlV1Z6GhUKMjYjoWCoOm42zbiP7eq9E8XpRtoQb60BubUfmcLFhUThK3cK3kQD46jNvxd/R5V0C0Ut5f2bS4gbe9DzxeNH8At7erLBfX51yGu+vFie3lV8tiR1U1muvibHoKd/57GdNM2tvbWbBgAVVVVRSLRQxDWNZx9+6KigoqKysByvLvEx3AZ86cyZVXXollWUSjUTZv3sybb75ZdiDv7u4mGAwSCATK0vPx842NjZXPH41GS3E7CXbs2MGSJQvp7m6nru58crkR2tvvZ+7cr5HLxWhpmYfjFHAcC683QrEoBlFiVuaiaTqpVD9ebwilFM899zUuv/zbHD36Auec8zFM04dSLj09u6isfA/t7XtZuPAKAG69dQnPP/8yDz20jO99r5sVK25i4cK55PNxMpkhqqqmEQzWcOaZ57F+/T0sXfRJ3n3rKB/85AfZt2sf4YowsSMxkj1JmmY30bu7l9pza/FFfdhZm+xwtiz5DteHAfCEPGiaRrFQxPAaZSMzt+hi+sxyBrmdtfEEPSSOJ2i/v522lW1UTq1k0/JN7H9yPzOWzWDxDxbLd0CygHeyl2P2MdbsWMM3F3xTgK1y8Rpe8sV8WRbeHG1mMDNIxBsh6otyaPQQEV+EKn8VsXyMnJ1jTfuak2Tdjy99nOWblvO1uV9j/c71PLn/STZ9chNN0Sbub7+fVQtWMa1yGgdHD5Yl4tOrptOV6GJK5RSydhZDM5jsC6GlDwt7fdGj8tnUDAGmulcWN50MKE0k3uNgEsR8K31YwHSwWbKpz74DQlMmzM90P+Dw8qtv8tFPfIZjr/6R5nMX87fnn+XMeiUO4Rd8V+K+nILM7wlDMc1ILE/DlDPJpRKYHo8wyEoJmI5OESCrKAHmUt2zlSrVj58gEVclGXV+VIBy2TW8qTTeNyH5dkv13U6hxHKXbpel6B451/h5DJ9Iu5+7QSTZr6wXBrlpvtRTz14poP7PS4WJvvh2eOVhmHsv/PIckX3XXiTGZnvXwaVfl9vj5mbJoyL3vvQuMSmrnC6PY89a6as6E5794v/8nIEayA2TrrmSRNIilbKIRLxEoz40TeK59u7t44IL6sv/0kjEx5EjMbq7E1x0UQN9fSnWrevg61+fTyTiJRTykkgUiES8DA1lqK8PEw7L7/vgYJrJk0PceOMmnnxyPwcOrGD16u08/fRBnnrqY7S1taLrGrlcEa/XwLIcPB4dM6CI5RKES2y0z/QSy6X41d5N3Hb59fhNL2krR+dIN+c2nM7a53/OtoM7+evn1tOdGKIqECGWS9FSUUvayhHyBkoZ1mdyQeNZjGYT1Iar+Nnuv/L52R9kUrACV7ms3/4b7nzvZ1BAppClJlzF2ud/zuYD7Sw6ay7fuPJz3P/CL7jjys8xGIjQpWnMVoqQphH4373ePdVOtf/CdkoWfqr93zev92TZt8/3n+97vaLL/sAHRB+9fLkA6+5u0WGDaKcdZ8IFrKUFLr9c9vX3iwPZm2/CD34gF7Zf/arMlU4LIz42Joj56aeFKr70UvyjvaxapVi2TBTlwaBIvMel4D6fYPwTpdxmqQT4jDNkbHe3kOg33SSg+c03heGGCc+2detg4cIJw/Lx/u5ueZrLl8vt666Tfa4r8nDHAcvSSSa72br1lpIkuxfLSmGafiKROmw7y6ZNNxKPH8PjCZZlmO3ta8tuv4lEF9u3ryaV6gOcf5JzKzRNZ//+J8usdDjcQCTSWDJIe7A8X2vrfEzTTyrVT0VFM5pm0NBwET5flIaGi2TerpL7ezIjgLmmSmTaSk3kX3cPCHtdN0mAYEu9bCMhecHHs65zhQmjMuVOyMU1TfYpJWA6mZZ9xaIcl7fg3ePg8+J6zQnjsZ//HDuVQjnOSeZjmq6z/4kn8FdXkx0YwF9dzcv33YeTy5EfHqZ+3jxmLF+OUmpCWv7EE+geD6bfX57r7SeewE6ny9Jz17LQTZN9Dz3EQEcHdiqFv6qKUHOzsObBIKbPhxWPo235g5iJbfkPYacTo/Ka/OHHMNBTqk33wqdWwORaqCrVyeWyJbmhB4Z6xSn80FviJn76ucJ2f3+1yL4dR9jwXX8TkH1irrbHA4s/DudcBM//WUB2pAIcBzefxconyYz1CtscqaF//9+xC2mU69J47pVUNs9A141SDrXCdW0yY30inXZssrEBceguSQyGO8cl4i+jaRqN514pbPj0SzFMr6Tl6h5c16b3zeexcwlMfxhch5Eje8vyck2DaN3pIue0LPnQ2pbURsdG0Be9X94+6SSYJlo4jLP1z8LwhyNoriOGxOmksN6ZlLDdHdvRTBPN48Xd8YLIxpMJMTTb+meRiy/7LPqiD6JVVKEv+iAql0VfcJXkbUdLr13PcfRFH0BVTiKVSnHVVVeV5d2O4+C6blm+XVdXRzAYRCnF1q1bCQQCXHXVVZimSUVFBZ/85Ce55pprKBaLOI5DOp1m9uzZzJw5k0WLFqHrOtFolF27dlEsFjFNk6uuuopAIMCWLVsIhSYM1bLZLPF4nGQyyZIlSzAMDw0NF+H1hsqmZDt3rqeh4WIANM3AtnPEYkfp7d1NKtXHxo1fxLLSJfOxb5JOD+D1CqMdDtfT3DyHZ575MonEcQAqK08jGp3M3Lln8cwzXyaTGeSzn12H6zaW1TWvvvo4tp0hkxmiqWkWfn8Fw8MDjIyM8qEPfRqPL8iMC2cQCUZ44OMPEDsSo2p6FVMum4LhMWiZ3yI11YA37CXVn2LuHXPxRX2YfhNf1IcqKrrau0j3pylmi2z50hbix+IYPoNEl7iHJ7oS6B4d3aNTMaWCa390LekBKV2Zd9c8ZiybwYJvinLA9JlEGiPopk5rtJXHrn2MKZVT6E52s6tnF0diR7hl6y3UhGoImAHyxfxJP5FnTjqTXDHHiq0ryBaz9KZ6md8yn5A3xMdnfJx7FtyD5Vh8o+0bDGeGWdm2kmUzljG7eTb3t9/P0wefpjvRjaMchjJDXNZ6GSFvCE3TeGTXI2iahqtcepI9KNeWeuuz7xCAa/oFQOaGwEqCm4dsn7Cqyi45cYO4eOcFUPtrZNv1pEjFXQdSh+C1OyTWCvjeD3/MB9+/hGROZ3AkwV83bmH2gquZ/aV2/uP3v4E9yyHbLVO7DlgJvvf973PtNQsxPd6ScZohQDfaKuPiRydk2pohgNcri2hSg61PSMbHHcG9EQHW407jgUlyfOKIzD1eo214INEpbLVjCTOuaScAa4+cxy05ps/6htQ6z1o5kVN98EkxFau/tGRAtlLOO/sekbiPy76txMT4vQ+IwZlmigx/95pS/zqYslDGj7uF710n0vfZ/5NzNs2XLPAGKZMZGEizevV2BgbSaBp0dsZZsWJrOTbr1lu3MTycJZ0uUF8f5rLLpuD1GgwMpHn66YM88MBL1NWF6etLcd99LxIMepg6tRLD0EgmJf+6tjbE8HCmbG4WDnv4xjcm2Ozlyzdx9Ggcx3G58cZN9PenGBnJoimNvG3xwAu/IG9bRHxBfr77r5zbMF18J+KDPPKP31Ibrsarm2UJeXWoktpwNb96eTO14WqqSxFeYV+Qz176fuZOOY9f7t1IVSDCz3b/tZxr7Te9BD1+7ln4RQIeH/Fskh91PEVfYpjbLr+eRWfN5YY5H8Jv+vjW1Tfg94fp0jRqgd2aRkYpcv/bF7yn2qn239dOgev/JzevV4qOf/pTOOss0V+P358+XahfxxmnaQWZrl8vdPDs2aLDHhgQvXVXl4wdj+761KcEdK9eLbLwUEgysVxXzNJ6eqQG+/77RcN9112iuW5pgb178VaGOO008UazLGGkx+Xf110n0/6zlNt1pYw7FpPf8tmzZf/XviYY//zzZRycvIZQWyvg3XWFmb7+elGqjzuFr1sn8vHxkvBUSnCk32+TTPZy1VXrqKiYSmtrG9nsKFu3fhnXdQiFapk37y5M04+m6cybd3dZhpnNjtDcPLsc4ZXJDMEJubIvvngf6fQAHk+QT31qC+9//xMYho9iMceWLSuIxTpZuPBBZsxYxty5d9DdvRPTDBAO19PSMo9x9go0lHIBNQGkwwGRhp85Rdy/NU3Y6/rJcEbpYmncrbV7QLapjGwTadn6fQK0k2lAA9OYkIt7PJKhnbcEqOs65fo5XZdsbV1H1zRmLF9ernn2hMNohvGf6qBnLF9OfmyMSeedx4Ff/rIMoCeddx7BujrCzc1wwlzn3ngjIDLj8b4ZN9yAJxym9ZprOPtzn2P0jTdQjsMFt9/O5Asv5M3HHsPOZsn09LDn3ntJd3eTj8fxT5qMuvYTJQn3x0WOPe09E+B32wYBw5mUgGPDA9WTZWEhEJBYrd89JuB8bBjCFXKs6wj7/JVvCyh3bFhSkogHQhO3l3xSXu9JtVA5SWTm088RYK8UKiK5xcHKerKxPpFkV9Zj59LYhQzZWD92Nl5279Z0AzuXxh+toWhlQYE/OrkcxeVYORrOuYL3XPUlGs+9ErdoMfD2PwhU1OINVqKbXpSm/ef6bqVw7AI1p89myiUfonHG+1Bo6IYJuolCoYXCZddwt/1vwpuX8qtJxMtScZVMQDol0u5ErCRT19Fbp6F/6gaMxR8qG9OVZePNU8pA223/G3rrNHET3/ZXyKbRW6ehVVSiXEdM1FyF1tQK2QxaNkN9fT35fJ6NGzcSi8XQSpF0O3bsoKmpiUwmU66Rbmho4Nlnn8W2bbxeLxUVFTQ0NPDMM89QLBaJRCLYtk0mk+Haa68lm82yefNmQqEQixYtorKykkAggGmaPP/887z++uv09/eTSCTYvHkzXq+XUChEKBQiFothWQUymSGy2dFy/fOCBfdgmj4KhSSZzBCBwCRCoRrq6s4vL7pZVqoc19fRsQ5N06isnIquG+za9UgpzaAXTdOJRptRyi2PTyS6+N731nPuuSGy2WFA4y9/GeDKKz/JypU/o7t7EE0zmDRpEvX1dfz61z8HF/bu3cuhzkO80fEG7WvbQcHou6N0tXdRzBZxbamHVkoRaYqw86Gd2Dkb5SrcoqgE6s6vIz2QRjM05n5trtzWtLIbefvadjxBD7EjMbo7ulGuEpm5R6P69GoWPbqIyimVpAfTdHd049ouyqs4EjvC7p7dOMphzY41Zbn3k/ufZP3O9dSF63CVe9JPZFEVWbNjjcjJd6xlXss85rfMZ/X21QxmBplWNY3+RD+NkUbmt86nIdLAY4ulZnvVglX8admfuLDhQvrT/cxtnktbaxurt6/mWPwYDy96GKUUftNPxBeRz0nVRcI8F9Pw8pel/jl9GHJ9YjQWfY98l6OLhHq4HTJHpf56xjckmmvGSpGPT54NdkJqtCfNgvwga798BYfffZv7772D4lsPUCwWyeWy7H75Lf7j1z/ntlXreN15v0R3aQZku/jNv/+UJ/+0kcd/8oScM1UC3oYPkscFLIfrZZvolK0nJBJppWSBQHFCjXbvxG9CuBkCk2Wr6SeA7Z5SCVJEJNzjfd4IVJ814VhueOS70yiBftcSR/LGuWKaFmo6wdF7JRQScOVjUHG6OIdHpwogn/dtYdK9FcJCjzuAmwHo65DHP2tlqX8VRFogHxd2e3zs0D6RuPuqTuhfKSx3/DAYflyls25dRzkqy3FU2cl77dp24vE8Tz65nzVrdki5uVXkyJEYN9+8haamKE899TFWrVpQdhKfNauJrq4EN920me7uJAC6rtHbmyIWy1NfH+axxxbz5ptD1NYGaWtrLUd+rVmzo3y+tWvbqajw4+KWpdk/3f0XHNfl87M/yNwp55Gxcvxy78byPhdFdTDKl+Z9FF3T+FnpuJ/t/gu6pnFB45nk7QKtVfXURar54uzriOVSfKEEyL845zoKRZvvPPdTeuKDpE6Qhf90918IeARQN0Zr6IkP8q/PPoHm2MxSiiEkZmuFpnGIUy7gp9r/ee2ULPxU+88tlxPd9Lj++owzpE46kRDaNhSSH0dNE132hz8swPiiiwTNrlsnxwWDcOaZEw7izz0nSHh8f2NjKZYnCXV1E/PV1kJlJdnG6Rw6rFFXp/HKK+VuqqvFlCwclimSSSHB6+rkN3dkRPKuAwEBw5mM3O7uljWA2bMFrxw7Jubn8+aJ1HvvXqnjDgZFCj4wIAD77rulfnv8aadScvzkyRksK0mhkMDrjaBpOpaVIRCoQtN0stlRbDtTkm6voqrqtLLZ2LjDuG1nKRQS+HwVmGaATGYArzfCwYMbqahoobW1DaWk5nLXrodZuHAdjlPEcQplyXl3dwf19RcAkMkM0tHxEAsXrsM0A3R3dxAONzBp0hn4rJILuNcj7LJRAsTjDLShCyAulEAxwNCYSMkrwiUZuCZjLFv6FMKEh0virPF88+HYRPRWwZLtuMRc1+W8iTTFgMiUHdtGFYsULQvT7y9Ltb3hsOwrLdzkhodFMn7jjUSamynm81ipFI5lkRsYYPIFF4gRVrFIuq+PwsgIk88/H80wUK6LWywy+sYbBBsaCDY0oGkae1avpuuZZ1iycSNvPvYYXc88w9SlS7n0W9/C1EA78g5MO0ukj7YFKInl2vwHuOZjItvu6oTW00+Wc9c0wL8/MuEO/qkVcPSgmJZNqpXXaWx4YvykOjFKy6ZFTp7LCNC2CsKCP/cn+OTN8Jvvy5zfeQKnejJWIY2dSxGsrMexCyhcTG+QbKxfQHd8gK5XNxKtm07TzKtQaLhFC9ex0Q0Pmq5z8G8/pfWi95cNz6xsgpEje6mZPqssLx7uFDdxjy+E5vFiZ+MlZ/LZeIMVAvZdB7uQYfjwbhrOuULeVhjyvEyPPJeCyOU1j2fC4XvGBRiLP4Sz9c8Yiz8scVuhsLiz25YA5kUfhEwat/0F9HlXoE0qKQSUODqTiMm4BVehRaI4W/6E2r8P45avg22hkgn0plaUaeJu/hP6/CtQySTF2nqUz8+mTZvYv38/M2bMYNGiRWUnb8Mw2L59e3nfFVdcgeM4VFZWYlkWhUIBr9fLO++8Q1dXF0uXLhVpc8nQ7JlnnqGpqYnp06cTiUQoFovk83nC4TBKqTKTvWXLFpqammhpaSGdTtPa2sqmTZu46qrLcJwEweDk8mfc56vA4wkyNnaYXbseYeHCdZSlt2gMDOyjtbWt7Pq9YME9RKMtZDID+HwVAGUHcSlRaSKZ7C07ir/11un87nc/4WMfG+XCC5dx/vnfpLm5iS1bbuHgwVZ+/es/s2fP3/F6w7z22iusWrmakZE455x9Dv19/Sy6YhG3fe02NFNj65e3cumXLqViagXJ7iQd6zpoW9WGJ+AhH8vjr/JTzBfZcd+OskTcF/UROxoj2S2ScjNgEj8SJ9GVkPt+Eytt4RZdXvj6C8y/cz6V0yrZ+MWN7H9yPysOrGCsc4xQbYjMUIb6K+vZ0bWDmlANw5lhmqPN9KX6uKD+AhKFBBW+CiLeCLlijj29e2gIN3DGpDMA6Ix1luXdUyumcsOmG3hy/5Msm7GMxxY/hs/0cTR+lDU71rCybSWNkUYG0gN0Jbq4bMplHBo9RH+6n9lNs4nlY5z34/P4yNkf4cdLfoyrXNySWWDU0NFOdAQfeQmGX5LM6XcehosfFTZ6XPqdHYKa2fI/13RAF0Z7/H2gGeIAnusDM8RDKz/OH7a+wfOPXUflvLUw8ByRi7/B6z+/gmkL74fwND720Q+x6D1xvvj1JyB0Gv/xs7Xc8+DveOHB82m97o9SF50bkVrrVLfcDkwWUJk4MnE/0gJDr5X2nUZ5MSDdKxnWum9C1q5plHmeE8doJUZ63E080jxhYBbvPPnc4zLyQmJC1j17ldR3e8Ol0pcSA40GA3slIgtNpORQys5WpZdPgZ2F9m/A/DXgCcj5fJUCwjVDAHO6W0zLjCAUM7JomumXv8b50PcSbPyo5G3XXkRKVdPZGeP++9tZubKN6dOrOHJEnLzvuWcBkycHufXWbaxc2cbUqZUUiy4337yFJ5/cz7JlM/jJT5aSzVoEAh66uhL4fCarV28v77/33suprw9z5EiMUMhLU5Ow4em0xZ/+dIBPf/o8jh6Nc//97f90vgUEgyaNrUGOx/r55d6NfG7W+2murCNr5TF1A1cphtMxfrl3I1+ccx0NkclYjo3H8GDqBt3xQX62+y98cfZ1NFbUYDtF+pMjxHJJakPVDKRHObd+Oj7DQ9bO4/f4iGUTfOTf7+KK6Zdw9/v+ByOZOD/b/Ve+OPs6BtNj1IWraayo4V+fFQfzf/vI1zm3+Rxs08MKTeNJJO/6p5xyAT/V/nvb/ytZ+Clwfaqd3CxLwPV4nfQHPiBM9niR8je+ISj21luFbW5shH37BDTbtgRAf/rT8JvfSHFzezu0toqxWSIhlPOJNd7HjgmIHy9yHjc5a2oiHaqhnyYaGkTW3dsrxHZ3twDkeFxk37kc7Nkj0vCeHtk2NAiBms0KO712rRDq46lhd9454TCu6wLAlZK/fftkfk+phHi8rHg8ysu25dgzzkiTSBxk165HuOqq7+L1hktA+CjpdB9NTbPJ52P8+Mfn8bGPPUVFRSum6cfvr6K3dzcVFa0EAtUMDOyjqWk2um6ydestzJlzG9XV04nHu0gmu8vzdHY+S3PzHNLpgRNidVZRWTkV0HGcAj09u0gkujnrrPfj9QpAdhwL0/DhM0v0vGRoCJi27Amg/M8tkRYTsvFYriO9wn57S7VulF4wTZfbtiMMdrG01TU43A1TG0tAMimAOxwsx3zZhTy7S+C29ZpruOSee9C9XlzLmgDBtbXs/c536P3732l75BFqLroIzTCwMxn2PfQQZ3/uc2SHh/FXVxNqbJTjSvXZ/7j5ZlqvuYaZK1bgq6pC93pRtpiqqWIR13HIDQ1x8Fe/4uJVq1COw+gbb1A9Ywb50VHCdbWYuGjJuDh4L1suLHVsBKadLa+NbcnnJhCCX39vAkz/y1dhdFDA85JPCti2CgKwTztL5OFP/3pi/Ge+KrXGhke2r+yAzgPwqZvh1yVA/dXvCIO95Q/w8ZtwggEysX5MX4CRI6+Uga6CE8DvrHJ8ljcowKqQjpVro33hSjKjvSfFeNm5NMdf/rPEaZ17JX1vvXBS3bWGhuENoGnaRO2264CmlceecfnnAPB6AmhFp2Q4r6FyWbRAUNy8E3EBywuuhIoqNKckT08lS0D5SlQijvv7n2GsuBs1NiJu35k0estUlKbJtXAmPQHe/QE0rw8VG0WlkugtUwWAWxbuC1sEVB/rRPV2Yyz5MDYaBcsik8mU654rKyvLIDgUCpXrn8drpJVSsghhWTz//PPMmTOHaDRKKpUiHA6TTqdJpVLlGK9YLEZHRwdtbW2kUimam5vL7Pj41rIseX2UKtd7p9NpPB6dYrGfHTvWMm/eXXR3v0R390ssXfo4XV3t1NbOxOeLkMkM4fWG8fkqUaooLt6uAygMw8vY2GHa29cyb97dTJp0Bkq5JV+GWnbv/h7NzXM555yP8YMfPM5TT/2R3/3u+7z55g9ZsGAVphnAtvMoZRMON1BTcxqHDr2Fx5OlvX0NSxf9gviRJO1r27nntXv4zh3fwXjRYOGDC/EEPSil0E2dVG+Kzm2dVJ9RTbQxyo61O1iwcgGJngS/X/p7ZiybweX3Xk6kMUJ3Rze1M2uxMzahuhCaVO5TzBUxAyaZoQyhmhBWymJo/xCt81spFor07uml4aIGvCEvVsbCdVwsx8JX56Mv3ccLR17gmunXUBuuLYPiRxc9ynB2mDU71vC1uV8rG5fdvu12HlkkTt+mbuIoBxQMZgYJeUK8OfQmc1vmcuOmG8uA+/Glj9Pe1U5NqIbTq05nLDfGpOAkbMfGUQ4ZK8Ok4CQ0NDJ2hoH0AEOZIa6ZMg9tz3KRdLcug5n3CmDM9kCoFQLNUBiV+uPR16C2jXIEFWoCPGqGSKR1g3Gg/fCjP+S3v/01z99/FlVz7gVfLdgJlv/LEi6YdISbv7CMsdMf4MILzmXDiiyz3ruMJ7uuZdW3vs3zD5zDFGszfOA4eCcJ0I1OlXOMg17ddzII1kxIHpsAxI5ditRiorZa9wj4Nzyl2nLv+NrQhKGZa4s8HBesDPgiUEjKMem+k8+tigJqO1aLJPusZRKlpZslSXqP7G9qk0WC8VrpYL0Yrf3tK3DhLXLfExLQne6T37pXHoYFD8jjHK93d8f50pJ5m6ZDb4eA7ilXSR25ckvRYVI2kykGSKYs4vE8lZV+cjmL6uogoDEykiEU8hIMesjlbHRdx3FcBgczZTDe15di1qwmHMfF6zUwDL0cs3X33fNpbAwTifg4eHCE7363g5Ur2+jpSdLSEmXKlEoAhoYyxOMFqqv91NWFcBxVUuUpfEGdjJ0lXcgyOVSJoevYjkOhaOExDHymF1cpDM3AdovynnZdwr4ARUe+/03doOgUGcsmCPmCBDy+MjhedNZc7n7f/6A/OcLvXn2G2y6/ntI3OH6Pj7FsgspAlNf73uVrTz/MFdMv4d6rl9OVGOTnu//K8jkfobG6Hlc3cICCJlGKVYD/f/MS91Q71f4r2ilwfar977cTM67HQ6Sbm8UB/OabJ8Kmq6rETewDH4Bvf1vGlAALrits9Hi2dUWFuIspNSEbHxyUvlBInMnH867b2iakw+k0OcdDXKsmENTYuRNmzhSy1XHEmGzOHPnd27kTZsyY2JfPC8Mdj8OkSRMPa2hI2O6hIWhqEom4rstDtW3ZBoOyjrB+vYDy004TVjwSkf3jc3V0wOWXJ+np2UFd3Uy83giZzDChUC1Kudh2lhde+Drz59+FaQYJhWpKF7tFXLeIYXhwHKtU32mj6wYeTwjLSmFZGSKRRiwrjesWS/PcSSjUQKGQJBSqQSnFW2/9ge7udq6+ej2ZzCA7dqz5J4bcxHUtQMMwvHg1L+WrFw0B1WjiCI6SeC5dF3MzT6l+2nHhaC+c1jgh5dMQt29Dn5hvvBY7WQLkMGF8BiV2XE38kxwXDAO7aGOn09iZDN5IBMPvR7kur6xdy6SZM6mfN49gff2EydmNNxKsr+e1736X877yFZTjED90iJqLLybT2yvmaJ/9LPmxMWouugjlOGgeDzgOusdDMZtFMwxxKTfFIGncyKuYz7PvwQc5+/OfJ9TUxJ7Vq5l5wxepaG6ayKf+zhMnA+J/+WrpdRHjJUYGTgDT9dKn3Ilt0Rbn70m1pVrsPgHt135CTM2sghy/+OMwuX5iEeNEWT2ludBwTBOlivS99bcTwO88TI+fvv0TfU0zFwogdIW56X/77yfsuwrQ6D3BuKxxxvvo2/+3Mli3sgmGD++mZrrkYCf6D+ENVpbzrmtOn43HFwLdEEO0ceZagakZojxIJ1GJOFq0ogycy4A6nxPQrOloSozG1MG3pHa6dRpYBZTXC7FRcQlfuATNI2ZcZEpMv8eDls/jjg6jN08RJn18v9j7ow68ieo+JsZm/gBk01jRKjLZLOGwLDCJ14FGd3c3gUCAbDZLQ0MD8XicXC5Ha2srxWKR3t5ewuEwPT09VFZW0traWnYVNwwDpRTZbBa/319mqHVdx1t6LCfmW+u6jq7r5eNPvK1pNlu23Exz81zOPvvDeL0hXFfUBEq5FIs5QPHCC6tYtOhhlHLI5WL4/VXk8zFsO0tV1Wls3Cg52Z/61Bbq6y8ofZfUlb4rNGKxY/zgB4/xzDN72bjxKWpqGlDKwXFcRkfHqKurIR4/xoMPfok//OEInZ2HUKrI8eOdtNSdxZYbn+E3f/oN3ed288zvnsHO2uimTvvadq5++GqyI1na14qB2aQzJrHxBmGZZ14/k2v/7VrSfWm8ES+armFlLEK1Apw1XZOc7KEMvogPK2thp22SvUmizVFSfSla5reAgmKhiHIU3ogXJ+/Qu7eX+gvqMSoMEk6i7BKul5ymd/Xs4uzJZ1MdqMZyLLJ2lv3D+5nbPJesnaUv1UdduK48fuULK1l75Vp5n6DQ0Ih4IzjKIWtnAYj6onSOddKb6mVeyzwMzaDoFlEoPLqHvJNnd89uWqIt1IfreaX/Fd43pQ1vMYNWGJSa6XPvgeAUKAyCp3Lie1T3Czute2QxC1ViY0tlPOPmZ+ilfuh5/WlaZn2GaVNbiEQrAA2f12R3+3OM9rzF5/7HpzgyGgBN5+bPf5Sb53TCjFV4ai+mvr6OSZVhcS4PtvDC5j8xqWEKZQQ8Xn8Npd8G7eQFV7co4Fa5si9xdIJxrpwOJ15+jhuYjZukaXrpu3M8N7t0jnJTEofliwiTbQZL7HMR+ndLJnWovlSj7gjTn4/L+BMB+Nx7RUIe7xQQffl6yAycnJOdOAanXycLFp6wPK/x51gyhCw7qWcGBJyDsOjZIai5AHSDjFuBqwTIjoxkSKUKNDdXlMF2PJ6nujqAZTlEIl4cR2EYGum0jd9vSCSlqWFZLqOjWSZNCrJrVw/nnFOD328SCnlKl3KiCtB1DaWgWHTRNHmLCCjXKBSKxON5Jk0KlhbwFGbAJZZNUhWMoqGRtfO8O3ycc+qm4TO9FIo26UKGnF0oZVdfR31kEqZh4rgOxVLuddQXxiilXxi6QV98mJ/v/Su3X349Po+Pfb0H6UsMMbPhDH65dyM3zP4QTZW1uMpFR6OoXMYycUK+ICFvgKIrz8cwfSQNA6VpJBG2Wiv9TeKUG/ip9t/XToHrU+1/v/3P3MPHEejoqHwzj+uvHUcuWN3SynkuJ9tsVlhq05Tb48en0wLY18qFCYGSjNg0ZS7DEFSsVLmAWmk6I2k/d93j5ZFHJhjmcFiUpfG4OIWD7CstnKKUkOrf/rbsC4cnALTHM4FPOjomEsAqK+WheDwi+x4H6dmsMOXNzSITnz174ql7vRliscMl2fc38HhCJRn4/WWGqapqOhUVLSXg+w0ikUZSqf6yy3dV1enEYodob7+fq69+mGx2pCTTbC6xTBNM1fvf/zNisc5yfyTSUDKoKvL883exf/+TfPKTm6ioaCGR6C7PIeeZjmaBbuioooNmGiW8JxfW44wZSqG5CmWKjFrTTwDIriv7dE1k1k7JqKbE4mm6jqbrqNICi26YGN6SLLx7AGdKPa5S6GiQyeKGggIOcjlhoL/wBaItLeglRjyfyfDaQ+u54I478Pj9GIY4Whcdh2I+jy8UKj1+ULpBfnSUQGUlStNQgJXJijv4DTeQHR5m0tnvwRcOoRyHbCyOv3oSunIoZHIkDh+i9vzzxMU6n8cIBIThNgwB4RoCjE0PwtLbaI4DhTwqHJH+YlEueD0lFqNoCcsdipRW5xG2VtdFPh6uKMdvafEx9Gwanvsz7unnoC69rAwWsfKoaNXEyo52AlOsy/9RU6rEeptorjvBErlOeVFEU/KZEligcPJZDH8QXWnyuJRLJtGPOc5wOw66Kj3m8jMAlMJVRTTdA24RVzmooo3hlzIBbTxjutS0Un20s/mP6LMX4GTSuKEQuj+AUbRxX9oOC5fieH2UHeaZALllZu7Ei3el0LMZNK8HB6nz1zUNN5VED4VxoWSIpqH3dmGEI7jVk3A0XVjU0vtdz6RR4QgKB3BRyqFYdDEME01T5YtbTTNIpRJEIhWAi+M4GIaJUk5p0YzSY1SCcQzQSoCsWHRxXR1wAAev11c6ziifTykNrzeA69pomuyzrAJg4PV6cd0CxWKO5567i3nz7iRcfTrJfJxIoBrLLaIXc+QSPei6ie6vwBuuQ3Ns8IbQnSJK19Eci1QuRmW4DkdkBLiahu4UcXWdga7jvOe005l62mmEwyE0wDQVt99+Fg8++A5FR3wMqidVs3bdA8y8ZA6FZA8P3nc/f/nzszi2y2kNp/G9H32PhikNeANecgM5njjnCW7cdyMjR0fw1fsoDBVobWvFKloM7BqgeU4zRYpYYxaBugCuckkdTRGdFsVJOIy8NkKkMUK8P07d3Dp8fh+5TA5v0IuGhqMc9KKOZVt4A14M3cAqWFhjwlbryMJf3klSsFL4vVH2DrzO+fXn49M0IqYPU/dSVEVMTUOhk3cdbnnmNn54zSP4NJ18MUPOdelJDdEUqSVoeAiaPvm+UKCpInnHxjC8eICcYxMwzJJBpcZoIcntz93NXfPuosIboDZQiaF78WjgagaaKqK7NpgRYX1xEan0Ce99JysAVPeJDHl83c3JlJzAOUFirWS8U5gAl1oJ5BolQ7RMD6QPwaRLoZiVc5tBAcuqBNzRJx5PaY6i5eBYNobXg+mMUXR9OEYYVVQYXh2PYVPM53EIoZsaruOC0jB8BrhyrO7x4hYddNOQSwhHoXt0lF1AN01cR0PXHVzXAEOTl0PJGNdR4CgwNAytgOk1KRZ1HFthGDYm2Ql2WTNkAaBvF0SaRMqeOCY51ropr4WGMOtOQV4fb1QYdeXA6H5omDPxHTReQ+7kBWB7gicvJqCA0uuXHRAQf/l6+f+ZQVw0ivjI2g6ax0FDp5B38fl1MjmLgMeL5lEUMjDQm+WRR3bx8PevRPe4mJqJo1wc12VXez9N9ZWcdloVR47E6BtMMH9BI5qulRfLcDVcHFA6aLIY59pgeKTfyoPpBY9h4qgiOia6Jj4Dumbi5HUMUwcXbMfBMGA0k6QuWsVgYow9vW/SXFHLzLr3YJoaeatIupjGdi08eKn0VWCamoB2j0bRVhimhmUX5TtVB8sugtLxGAZoCstx8GgmmqlI5FKEzBA+n4dsMYNyNHyRKJZh0A2sA+4CmoGx0vaUNPxU++9qp9zCT7X//fbP7uGBgCBPr1eo23HzsuPHxTUsnZY+kB/1aFSo4nHnL8cR+XgqJZTw978vSPdEwJ5KCYJNpWTswEAZ/Wojw4RDDo88ojAMkYa/+qoYmd16q5zKtoWJTqcnzMy7uoR5Hh6eGH/TTRN518uXixq9rU3WCbJZuO02SpEYMpffL9LypiYxQnvsMVG+Hz8uJP6RI6CUUzYAam+/H7+/ouzm29GxjmnTFtLcPJsdO9aUxxiG94Rj1qJUsXzMuAFRKFRzkhHRtGkLaWtbiesWT+rP5xN4PEGGh99mwQLJrG1qkvOdOIecx2H4jddJdXUx9NqrWOk0dipFbmgIO5vFKRZJHjvG7tWrSfX3YafTDL/yirDKqRTJo0fL+5SmUcznGSrtT/f08PJ3voOdTqMch3R3N7u//W2SPd3YtkXRdbBb67ALBYZefpmhI5186POf5ZzzZnLRpZey9KMfJdvUhDfgZ95ll3HhJZdw4UUXcunlVzB/3ToOHT2C6TH55je/yXkXX8yl89uYe+VVPPn732GMDKD/5gfohRxBZaP/9gcYY4MYKPyRMLO+fhfh+noaL70Yn6mjDfSi/+YHhLAxUOidb+P3mtS1NMg8o4N4+o6iFXIYShYhHFXEtrIo05QSPTuPo2uoYIiCzySTHMLKJeg98HcsJ0/RyuE6FrZj4YYjZJLDOCgKdpbet/+G6xaxPAa9+yU7uljI4lZU4jROwfnsrThzrsDRNWwrh+sPUPCa9L71PFY2TibWX2KgHTLxQambVqCNjaKe2YhmWWhFR0B1fBS3lPesQWnhxEFDQ4vHMAYH0WJjOJs2QGwUikVCwcn4/FGwLbR4DGfTUzA6Uv6KULFRnE0b5ByxUaldTqbQBwYlbqy0n9iofIaVEodw18VZ8hHsybXkG5pJ+YLkvX7siircuZeRUzA6OsrGTZuwLItYLEZXVxexWIzjXV3E4omJffE4GzdvJu/1MZrNs3HbNuKJhFx/hyPYSlF0XWLpDBu3bmWsohp7Ug05u8jo6CibNm0iFo+TzmQYKzo4ro1lJbCsJOl0P66bRZz7NVw3Szrdh2UlCYdDWFaSWOwIudww8XgnmzYtJxbrpFhMAy7Z7DCp1DE2bVrO6Oi7WFYaXVd4vTqZzHH6+3cRix2hq6udYjFPJjNEMnkU01SATbGYwrazuK5NoTAC5AAHGw03VMeVH/gpgarp5D1BXo82kTb9aL4IZrCGcMOFhGtnMFjRim36cb1hCppO2vCgdJO0GUCLNlHUDDBMjugGyzWdI6aXYd0kOmUaLyvFrCNH+M3rr7Pz9Tf4297X+MAnfsuLr73B82++xQVvvMnv//4Ppl8yh35Nw4k2863v/oCX39zL/nf38+ftf2bS9El8dftXOZo4SqAxwJdHvox3ipeKeRW8E3qHyfMnY2kWu4d203hZI47XYcQewZnk8G7sXVY8swKj1SBbzJIP5ml4XwOBMwM0XNHAaHGUQ7FD3Py3mzkSP4KLy1B2iCOZI9z8t5s5mjyKg4NlWAz4B+jo6aBIEZ+pMbk4RnO+k2qPh6umzKfeF6HaHsb78pfQM514nQz6nuUYmSMENfjRNQ8TdHOY6UOEX7+TyYbOBZOnUeMNEc73oe9Zjm6nMTNHMffeRDjfjd/JYhZGCFPELAxhKAcDlxp/BT9b/AjTog20ajkCr9yCJ3scTdPRUeiaiTKjJQDsCCM7DuYcW+qZMcFTJQAYxDkbwAyVJOBMHAel0puKEoD0Sg0zuszlKpGaV88SZtzfAJ7S+dFKYw3JhVaOPAY7h20prIxLesjCyrhY+iRsN0jsUIxNyzcx+u4YBdtk9JjNxhs2kU9YxI8m2XjDJnJjeUYPJdi4fBujh2KkB3PkExajB0fp7uimkChgZSGfLJIeymDlIT2YwUpYjL47KvPFC8Q742xcvonRg6PkkhoFy2D0cIKNN2xmtDOLnclBvOQ4XsyLIVmoQYB1/ayJGm3HFhf2QlIc2VFSU508BkOvinS9YZ68Bn0vyfEvfKlkpOYXYO0URPbtOlKjnRkQYK6bYo52+cPCpvsqIN2DPrATR3comnnau9tJ2Uk8foXSXLx+yJFmxZabGSgeo3cgzi23XkRX5gjLNy3ncOwwjiqyq7eDOQvqOO3MMK6nwNQzQiy4vAmHIkXXpj/dT9EtcjRxhOWbl3MseYSOng5SVhLTq3Ek3kl7Vzt9+WN09LTTGTvM8k3LORI/TNJKyu3YYWzX4tiROMWiS9FyyaYdrLhJMmFxcF+asz3nMT08neGhDE5RYeVcvHaQ2sBk4v2wfPkmDh+OUSg4dB6OYVkOtuVStBTZtIOuDPq6cqy46RmOHkmgHA0roxjoz6BsjVif4uYbn+HIoTghPYSbM8mM5vEoxTrgSQRgexFZuO+/5CL4VDvV/mvaKXB9qk20f3YPL8kXsSz5oR7PqVq7VpBtX58g3mPHJuK1Ojrg6FHZKiXHKCX3i0VBrrt3C/VcVydUcTottPHtt0tfPg87d5KrbSWe8zMwoJFOi5q8pkZOP2uWgOgVK4R1TiQmHt6aNSWj6+6J8U8+Kfh93AF87doJBrqvb2K+3btF9R6LydPZtUvWAB5+WMD5+Fxr14Kp+05w711JPp+grW1l2RE8EmlCKbc8pq1tJY5jl8e0ta1E0/Tyfq83QlvbSjKZYdravlF2BY5GW6iqmo6uG+Vj58+/G7+/EtCorDyNysppLF78Q/L52AlzrCw/Nl0zqTn/fA784hf4q6vRDIPcyAj7f/ITYaR1ncLYGLWXXILu8aAZBv5Jk8qS7QM///lJMVYv33cfgZoadMNg/+OPM2nmTHLDw2QHByeitB5/HOU4WIU86e5uXr7vPonUGhzki5//PG/s2cO2xx/n/YsXc99TGwhGQux++s/s+/0v2PfMJu79wr9w7jnncP6UZrR8ljs/+y+8eetn2Lflr2z+059YftvXGDl+BPbtQstlJTJr74uw5T/QNA1duXj7j2GmYwI6c1lx9963C21sWDKUm6dJrNOJ0VdTzxRQCChdmE7TGywxlC6GJ4BhelGuy0jn3rJzdnKwEzuXxvQFQcHwoV3Y+QzBqnpcx2L48G4S/QdxixO3hw/vwfD46HvrBaxcQi6LtRO+ljWNkc695bmDVQ0ot0j/29vxRydTLGQp5tKoZALjfYtBKZznNqG57oR79o4XACXAePMfUfFRVDKJVteIFoqgL3w/KpUQ07RUAs110TVj4vhdL6IpF5wibrv0USiUb7vtf0OvbUAzTFQyjjr4Fm77C8Icx0cp9vdiA7FYDNu2SaVSbN++nVQqJeZqVZMpWBY+n4/FixdjmiapVIqmpiaSySShUIj29nb2799PoVA46faOHTvYv38/O3bsoFgslqXY4zFa4/uUUhQKBTo6Osp9wWCQYDCIprmYZoBUqp/t21eX3LFBKbfktE+ZDSoUkng8UuaRSIjTfzLZO/6v+k8LYwC6Lgx1ONxAXd35pFK9hEI1bN26AtvOlAB9EdvOkkr10d//KonEcbZv/xaZzCC2pnPUF2G5bnDY9JP1hlCaxjwgpGnsBo5oGi9pGq5uMFnTKAJf1jS6QdhpYEjTuBU4rGm4wFrkAnUtIqlE08oXrWs1HVvTeMnwcMz0064bDGkajwFRYEDTWA30aRpZ3UB5gsStOH3pPlxc2lraCHgCFN0iKSfFV5/5Kn6Pn0saL2F37266k93MaprF4bHDtHe1U+mvJGAGeGTXI8xqmkVfqo87nrsDpYnKIlvMkrbSTApOKjt8r21fS2+ql0p/ZblvzY419CR70NGpj9Qzt2UuI9kRHCeHlu0Cfw366B7MzDF0J4eme6FmPhx8VIDl2V+DbA+asvHpOtoJbttarg/t5RWiSDD8clwxibZ/jdRJv71Oxgfq0PKD8Ma3xO07P4SWPozvtdsImd7yeG3/GnALaLa4PGtuUcCepgsgSxwV1tUpSPxUWRpdasYJIlhV+t7wRSkLZX1R2Rc/UmJXjRMcu3tKALBKjtMMAeuJoyWZc2k+b7i0WF6gqIUYOxRjy4ot2FmbXCIn5LCm4Ql76Hy2k/a17aii4qV1HRK95jdJdCc4+PRBCsnCSY7v/go/hUSBjnUd1M6sJdWXYtut28gMZvAGvWy7dRvesBdPyEO0JUrrZa0yx1qZo2NdB/l4HtdyqZxayZIfLcEMerC0Wmx/iwDd7bdCzfkQqoPmy4TFb5onwNgbEhn9OMOcGZAXMjAZGuZCfkyAshkQUJ7qhs6nRS7uFKC3nXFGGsMjEvCO1bJFCQNu+qQOWzkQmIzVOJ+4lWIkO8L5decT9obJFXMcHjvMzVtuZjAzyKymWazZsYZ5CxqYflbFSe93gPpwPR3dHXTGD7N80w1knTRHYkfkfe46HB47THeim+5kd/m4c2rOoWuki0987BN8cP4HufPDd/LZj3yWyfnJMv+2J3nfZe9jYdtCNty8gc/c+Rm8AZg6tZIVK5Zz/vlncsUVc5g371LWrv0W8+a10NgYIRj0UF8f5tixOLfeuk0czgsnO6D7fAY1NSGKRZcvf3kr3d1JXFehFHR3J7jjjrmESvn2APfd9yLFosvaNROu5sWiKIjuufs5jh4YZqVSLAPuQUB1Nack4afa/1ntlCz8VPtft/E67HFt9LiD+LRp4jAWCIgGe1xKfvvtgkTXr5cf5VRKAPPx4xK7tWqV1GuXJLfYtozbvVvcympqhJZev55URRPvvquxbp2c4vTTxR+tuVnI73FvtE2bxKjcdeV0FRXysGwbXn5ZPNcefBB++EMB0P9cUj51qkR1dXbK6devF9+23t6J+088IXMPDAiIv+ceOOcsB+UWcKw8us+Pq+wyANN1Q24XSvvcIppuoIo2munFdW10zcBQOspxcAzJtNYUuDhomkhOzbSFcbCL4pktOBEfGnppv1G6hNJxHQvNMOV8RXGAdh0LzZQsYooao6+/xaRzzkEzDEZef52a889nz7e/Tc2FFzL5wgs58POfM2P5cnyVlex7+GEuuOMOzEBAJN+uS6anh7d//nPOvfFGDJ+PbZ/4BHMfeICaiy6imM9jp9O8+cMfnjTfOV/4ApEpUyhms7zywANl07JZ995Lpq+P/Y8/ziVfv5s3dnew7MYvceyddyak10ffYfFX7mRRbYRbH/q+mHj9/t8EAH/l2xwcS3HJNUvo3LmDWkNB6xmQjEn98pJPQjgKXYfFOCybkcUb3ZBop+QYVE2W3OpFH4OGFujvFuC9eBnUNZXy39I41ZMFYClFNj6AJxDG9AYZOPAi9Wdfhm6YFAs5XNcumYaJKdjkaZeSjfWSjfWJQ7emo4oWTtHC9IWwc4my07adS02Yh814H5phlg3HaqbPwvQFySWG/tPc4ZqpDB/aReM570WLjQnInXcFqqcLbfqZaIEgbs9xtGgFWtVkVCqB6jwoRl6Lr0Ml4qh0Er3lNMYdt1VvF3rzFJGPx0dxd7xQculOoVJJtPpGWRgLhU8wI7sKohW4W/+CPu9yVDIhTt8VVbjPbsR537UQCJBKpQgEAmzdurXsvD3urC1fNeK8HQpJvWJ3dzfRaBSPx4Nt27S3t3P11VeTyWR46aWXWLRoUdmEbO7cufj9frxeb9m92+v10tXVdVJNcywWo729nba2NioqKshkMkQiflzXZvPmm9i//0lmzFjGtdc+hqaZxGKddHSsY968u5g06UzEODCHUi6p1ADt7Wtoa1tJRcUUNm++kUWLHiWbHS45dK+isvI0CoUkzz9/N/Pm3UEoVIvHE2bTphvK51q8+DF6e3dTW3suzz9/F3Pnfo2dO9eX91913a+40fSVnXG/DwwCa4C7galAAQgDR0v9dwEvlf7uBRqB5Qhw3gRcBPQhzM9KYBqQLs17P3LR2oOA7mFgMvBwaS4LCAJnlh7PvwFmIcPh0XdY17GOu+bdxfTq6eTsHIlCgog3wmBmEEMzWNu+tmwYNrt5NrFcjEp/JXt699Ba0Up1oBqP7mEsP0bGylAfrmcgPcC6jnV8o+0bTK2cSleiizU71nD3/Ltp72pnetV0miuaWbtjbbnvE+d+gv5UPw92PMi6heuo8obxKwvt5RWSI+2pBG8ljO4R1jY8DbLHpd55xkoINIjUupgpu23z5moB1DWXwdv3i6N3eLoA6P1rYMYqCMtniRONyS75gcRq1cyHlo/JfAfWyfhsN/jrofJcMewaN+oKN0vmspUSptVKCeCGUmkEpRpffaJuWaNUNqJPSMaVA/nRiXkcS4DhuDO2W/r9NbxSc+yNiMO2pk+Un5TmL2Qdjr94nFBtiMoplegeWQTMDGXwRX1YGYtitkjV9CoKiYIY/qUsfFEfg28O0jKvRQzndvdS0VKBGTDxhiTvPNIYYdut29j/5P6yqd2R544w5bIptN/fXnaR94Q8JI4naF/bzvy75xNuCOONeIl1xmhf207byjYiDRF0j45n5B+Y6U6plbZTwiSbgVLt9zFZYGicB8/fJPXXH9okBmmpHjEj23O/MM/5Ucm4Hq+/jjQLoM7H4JX10l85DZ794kQd99U/FRWBbpQWRTTo30mmcT7vjB4qf07OnHQmvalevtv+Xb48+8ucVnkaHt1DykoBkLVlUWlt+1pWLVjFtMppfGHjF/ja3K+xfud6ntz/JAdWHKBzrJPmaDM9yR5mNc0ikU9QE6qhP91Pha8CQzN46ehL9LzRww7vDlYtWMWm32ziDxv+wG/++huumHMF37r3W3zu45+jb6iPyy65jGeef4bGmrO4446bmTFjJocPn8nDDy+iqyvBgw928OCDC/F6DSzLYd++Aa699nccOLCCzs4xGhsjPPDAS9x993waGsK8+mo/9fVhdu3qYerUSubMacbvN+jsjNHdnaS5Ocrate3cddc8Xnqpm+nTq2hurmDt2h1lI7cLLqjH7zfZtauHC2Y1EaoK4Ne1U6D6VPv/STslCz/V/t9rliVMsmVN3F+zRpzDe3qkDvv004WtXr1aQMvKlQKsV66UHKyVK0X+PTAgY7q6BKk++aSg3qNHRVudzQqbPTIi2uv+frlY+NrXsCLVuO4EG71OSCDa2uT0TU0i1d60ScBxJCIM8+rVIhMHUaK3tUmE1/r18jC6uwVkB4PylMZLwBsbpZ56eFhysXt7hc2uqpIorkJBti+9JKliU6fKtYl5pB/fa0fwdPbj04N4O4fwOx68hh+P7sXnj+KxwHd0BK/y4DOCeJWJ3zbxFg0MzcSMZfEVTbydg3gsDV9G4TV8+HQ/hj8IVRWY/qAcq3nxu158hh+vY8h59x6WY5WJzxuSvrECelGDnGL0lX34o1Fevu8+sv39Ek1lmsxYvpz6efNOYqXtTIZJM2eC61LMZMgND+NYFpHTTuOSe+4h099PMZ/n6j/8gWBdHXvuvZfC2BjBujpmLF/O6JtvEqit5eKvfx3/5Mnleuzx7OoZN94ISpXZbTeX5Qc//gkfvHqh5EGnk+Dx0u0J84+OXXzamxPAbJpw7Sf4fsrkrI98mosWXcvjc99D7Z7n4fRzwcpLlNW/fBWqa6HnqGRL/+7fxCRsvCC/rknGb/mPiZzqYhEqquADn4ZJ9TBUyqa28gDY+VQ5J9rOpXGKBcmSzmfoffN5XLeIxxcmNKkZTTcJVjUyevQVwjVTqJk+i2ysH+XYFK0cQ+92YOeSeHxhGme8D28giicQoaLhLCZPu4RsfACUYuTIXmG2O/egGx5C1U3lXOmRI3sJ10zBML0C8JU2kR+9awfaeRdB0cbZ8ie0ikoB1rFR3O3b0Fqmoi9cCoaBSiXQGltRsRGRfydiaE2tOFv+DFYeLVqJseQjaF4fmB60cESisLZvE1O2yirJnE7EIDaG1tRSypg+Tdy7lUJfuAQ9ECAej7N9+3Ycx2HBggXMmDGDBQsWlF23AVKpFGNjYyQSCbq7u2lqasLj8eD3+/F4PCxZsgSAdDpdZrg9Hg+LFy8mk8kQDofLrHg6LdnI0WiUrVu3EovFUEqRTCZZvHgxVVVV2LYNSHlHb++ek9QimiYmfx0d68ostOs6xOOH2bJlBalUH8lkd7nsIpMZYP/+J3nuuTuprJzK0qWPEwzWsHnzl0inB2hqmkV7+/3k8wlA/VNetZ+KilZGRt5h0aJHiUZbWLToUWbOvJ4FC1bh0XRWlZiauxGGZg0ClPuBbuBW4Ejp9pPAI8DHgR8CDYAJPIYA61nAnUwA79OQktYMMAUB75OB4wiwno8wQ18HnkOY7hoEWK8CbMDB4ZFdj3BZ62W0RFvQ0Ah6ghyNHWUoPcQZ1WfgN/3cNe8uKn2VXDblMnyGj8nBybzc9zK1oVq6El1EfVEGMgPc9+J9NEYaCXlDDKQHeLbzWXqTvWhoTK+czk+W/oSGcAN7evcwpWIKZ1SdweNLH2da5TRe638Nr+FlbftaZjXNoj/Vz81bv4qj+1AzVgmwdrLw8i3gr4F8v3w37F8LvU+LO7fuE/DqiULkdAHAFz0KU6+HXK+MO7AO3JwA6lmPy7j0McmenrFSxl70qLDCFz0C9Ytg350SsTXzXvDXQftHZZ7xWl/NEHMtTQP/ZAFySgmDfKKZ1zizXEgKgFZOSSZeqvt1rFLNsT4xj5UWqbPhK0nDS8ZoyhFQHm6WsW5RwPh4fEZpft1QNFzUQLQ5iuu4bP3yVhLHE4wdHiPVlyJcFyZYE0S5Cm/Ui+E1GOscIzUghnPxY3F6d/fSNLuJiikVBKoCmEGTqulVGF6DBSsXMGPZDBbcswB/pZ/pV0+n/f72MktdSBXQDV1Y6p8sofqMagCcgkP72vYyI254DVF91y6As68vyei10mKEIa9JuEHYaM2AKx6VcQ2zYfdaCNTAnvvJv/Uk1338f3DmBW2cf3s7C5d9icP5JjBD7HnzKHPeu5gLb3ySsy9ewLqHHpnI0561EhQceOcgwcmt3Pqlz4rJWv1sHDvLQHqAr839GgPpAVzlUuGr4PuLv4+pm9y0+SaOxI8Q9oYxdZMqfxW1oVruvfxeaoI1aGg88f4nmF41nUcXPcr1M6+nwlfB7KbZ9CR7qAnVcMvWW8gVc5xInIU8Id57xnuZduk0Nr67kbXtaznr/LPo6+7jtKrTaKpoIp1Mk7EzDMYH8Xg9VFRUMjCQKjuJP/LIIkxTx+czue22OfT3p7j55i309aWYN6+FZctmUFHh46KLGjjttCq+//1r2LmzmzvvfI7a2jDr1nXw0Y+eQ1NTlJtv3kJnZ5zu7iQ1NSEefLCD+fNbCIW8fPzjM6ivDxEMmvzkJ0vp60tRVxfGNHU6OrppaoqSieXQMtYpYH2q/R/bToHrU22ijbPUX/iCbC1rog77Ax+QSC3TlP777hPUe/fdwmJ/5zswZYqg2enT5eLgRBn5rFkCwE/UaZumaLJXrxbN9/z5AsjXr8fWfaTTGo88AgcOwKOPyu/88eOwfbvUPK9YIWT31KkTqvXLLhMwbZrCNCslsVvHj0+sEezZIw/jqacklgtE1R4ITADslhY5tqZGiPdXX5V5XnpJnv5//AeksxpqegtcOgOmt0gE1emt4PdKFvS7x8XMq2DBSAzSWXld0tmyERgA1VHJgB6OQc8AREpOo6msuHafMaUUf4U4eR/rk/k9pkRj1VRJfvR4a22A6ihaOodmGEw67zwO/PKXJ0m193772/iqq8ugeBz4eiIR6ufNQzPNiflKpnUv33cf/7j5ZvY//jj+6mr2P/HExJzFIuHmZi7+xjcwfD6sdBo0DeW67Fu/npHXXmPmihWEGhtxbLsMth/+2c85PDTK/RdNm5Bl2xa//MN/sPTqhUxecJUw0ZYFsWG+8tPfcvD1fXQ8/SfWvjvI6LxrpHYuWgVjQxKFNdwvMVnP/nFiznAFeP1QyEE6Ie7cl14mcx85AK/thEBY4sNOkJcDJ4DaVwhWNWCYPsI1UycA8OHdaIaBlU0w9G4Hwaom6s++DI8/gm54MH1BlOOUpeB2LoVdyNC3/29YuQSeYAVNM6/CMH14AhHQNGpOn01Fw1nUnD5bAOiJfdNnYXpD6KYX3fCgNA297Uq0GReIi7amgWGiz7sCDPk/aqGwyL8zaSG1xkbRW09DQ00A845/oOn6hLx8619QtoWyCvI+CEdRqaSMfenv4gO09c+4v/8Zbsff0aadKSy2rqO3ngZeH5rXj+u6Zfn2888/T2VlJUuWLCEUCmHbdhlgd3R0EAqFylLwrVu3UiwWMQwx9SoWi9i2TUtLC6Zplp24DcOgtbUVx3HKsu+Ojg6UUmUJeUdHB7ZtE4vFyOUk1zadTrN9+3Ysy6WpaTaVlaeVwa2uG+i656SSDstKsmPHhMdCU9OscgmI1xthxoxlzJt3J5pm4Dg227bdyptv/vYk3wS/vxJdN6msnMa11z5GIFBNLHYU0wzQ0jKPbHaYbdtuJZsdZsmSHxEK1eNoOlM0jR8DTaWP5CoE3M7iZHn3rFL/gwgLfQvQBSSBFUALwjqPM9s2E7ZZGeAmBFS/CnwIMQm6Ean8Pg3YgzDdGvA4MB0IALru4YeLf8inZn4K27VZsWUFx+PHmd86nymVU0hbIl2dUjEFXdNJW2mKbpGO7g4awg0MZYaY1TQLx3XwGl5um3Mb/al+btx0I03RJvZ8cQ/N0WaWb1pOZ7yTnJ3j1f5XeWTRI9SF6zg0dojlm5bTlezie4u/h6mZrGpbxSdmfIKQN8Rts29BSx9By3YLoN6/VpjlA+th0ix5UWeshLanJEN6z3JIdwIujHRAMQ2FYdh7s+xvewrOuVteuPH9bkHk4js/Lez0pT+aOKYwAsEmYbuHXxKwpVxo+oA4g6MmaoT1ccig5LamT7DR42xymYEuAfLxUhLNkHlTPQKeKRkoGr4SQHeFfR2Xhmul2uPB1+S2rk8w2yUjQ0qmbK6rkepPMbBvAE/Qw6JHFpHqTxGsCdKxroNivsi2W7cBEOuMsfWWrYRqQqT70yhHYfpNmmY10bu7l0RXAsMvdeKxIzF69/QSrA2y6NFFVE6pxBv14q/2s2DVAmZeP5OrH76aSEME13FJD6Qp5sQJvf/VftCgbWUbM6+fyaJHF8lTNnVM04Xtt4GTk9dJXiBZPHCLMPDyhOHblT+S2vRZKyE3LNszP8LyL3yWg++8w+s7nuaD78nzxRtugGAdy7/8NVauWs1rP1nGSy9s5qGHH+bt4zG48t8gMAm7kGX5l+/gQwvnyPwvrIB0N6YnQku0RZQbTbPRNb0c8bZmx5pyaUPaStOX7sPQDW7ddivn/Ns5vNr/KkkryaHRQ9y85WaGs8P8cPEPiXgjeAwPC6YsIOqLMr9lPj3JHroSXXSOdeI3/SStJLdsuYXmaDNPfewp7llwDxt+sYGrr72aGzbewDfXf5PHH3qci8++mIWXLuSmu26ivr6O/v40SsHPf/4j2tpmsWTJUr7ylV9gmjr9/WmefHI/69Z1APD440uJRLwMDWW48cZNDAykmTq1krvumk99vY/h4Z8xf/6FvPe9c9i3bx39/cdpa2ulo2MnBw7cz2OPfYFZsy7ggQe+SzTqp1AoYpoa+/Zt5KMfvYwzzjibW2+9js7OISor/fh8J1yjnGqn2v9pbfzC5v+f/pqamtSp9v+FlkoptWyZrFcvW6ZUMin9hYJSiYRSmYxS8bhSg4NKvfaajNm3T/al00qNjSkVi8lxsZjsW7ZMqddfV+rQIaWGhmTceP/YmFKbNim1e7dsYzHp9/tVIu6oLVuUevXViSmSSRk2NCRbv1/2vf22Un19SvX2ysPatOnkh9fXJ3379k1sx/fFYkodPqzUj38s96+/XqnubjkmHpe/sTE59+HDcr+vT6ktW5QaGXKUk8wotf+wUqmMUj0DSo3ElLJt2b74suwrWHI/X1Aqk5WtbSuVySll2XI7dcI848cn0rK1SmMLlozZvle2tn3y34nnsWxlJVNq58qVKjMwoMbeeUftuP12FTt4UPVs367+cOGFqvfFF1UhmVSFdFoVkkmVTyZVIZVS+WRSWem0GnnrLbXj9tvVyFtvnXQ/dvCgyieT5TnHDh5UmaEh1bN9u8qNjqrc6KgqJJMqMzSkel98UY0dOKB23H67Gt2/X+UTCWWlUiozOKi+8/Wvq4svvFDFDu5XqqtTqR+vUerIQeXu26VOa21Vzzxwr1KphFK5jFJv7FbqpvfLmGRcqdd3qUVXXqme+tnjSh0/pFQmLfu+sEi22fTEnN1HlIqNyO2uTqVyWZkznVQqnZL9b+yRfYmYUkffLR9XtPMqmxhUx1/ZqLKJIVW08souZJWVz0z0xwdU0cqr469sVG9sekgdf2WjKlp51b1vm8omhpRdyKnkYGd5vJ3PqK5XN6vhI68oK5dSVi6lul7dLGOtvMomhlQ+NabsQkYlBjpVIZtUVi6linZe2YWcyqdi5bmK+axykgnl5LLKzWWVm88rJ5lQbjKhnGRc2X/8rXL6e1Tx4H7l9HYpJxlXTm+Xsjf8Srm5nHLyOeX09yh7w69knoFeOSYRU25sTDm5bHm809ul3FxWbg/0KWdkSDk9x0v3e8vntv/4WzlPf49ykwmVTyVVMplUw8PDKpFIqHw+r3p7e9WGDRtUb2+vyufzKp1Oq/7+fnXw4EGVTqfVhg0b1L333qs2bNigksmkGhgYUPl8Xg0MDKgNGzao/v5+lc/n1R//+Ee1d+9elcvlVDabVf39/WrDhg1qYGBAjY6OnnQ/n8+rRCKh/vjHP6psNls+x8jIoEom+9Tw8AGVyYyq/v7X1cGDm1QmM6zy+bTKZEZUNhtTqdSg6u/fpzZsWKYGBl5X6fSQSqeHVTo9pGKx4yqVGlD5fEplMsNqZORd1d//WmnsGyqfT6p8PqlGRg6pbHasfL5Eokfl8ymVzydVLhdXGzYsU/fei9qwYZkaGnpb3XsvajDerd5wXbVFKTWmlEoqpeJKqT6l1KhSap9SaplS6vXSvgOlccuU/GAuU0q9fcLt8WPfVkr1lO6/80/jh5VSsX/qGyv1DSml3lBKXV+aJ66UGsyn1b7+fWrZhmXq5d6X1fd2fU9tOrhJ7RuQvtf6X1Pd8W61bMMyta9/n+pJ9KhlG5ap3T271aaDm9RwelgNpgfVq32vlsdsOrhJcS9q2YZlKp6Lq2UblpXvvz30dvn2YHrwpH1j2THVk+hRqXxKvT7wulq2YZnKZoeU6tmk1MhupRKHlBp7Xakdy5SKvaFUIa7U6OtKFZJye8cypX6LbAtxpTK9SsUP/FN/TCkrpVTPFqXe/ZFSmR4Zk+mTvkyfUrnhk4/JDclfIa5U7xalDv5QqfjbSllJpay0UqPvKGXnlSqklBo9KLcdW6li6c+x/2/uW0pZGRmfHZWtnZPbjj3RX7TkuEJKzlVIT8xTPi4vfXZ+Ys7ScflETo0cGlH5ZF5lx7IqPZRWuVhO5eI5lexLqlR/SiV6EiqXyKkNyzaoe7lX/fH6P6pcIlc+5t0t76qePT3q0DOHVD6VV5mRjEr0JFR2LKsObjqoenb3qA3LNqiB1wdUNpZVyb5keTt8YFgle5Pq0DOH5DzxnMolcurws4dVNpZV+WReDbw+IMfv61d2rF+p/leUSvYoNXpAqVSvUqk+pTYuk75kb6m/T6l8XP46NymVOK5Udmyir5BSautn1d6voqbUBpUaeVtdcO5Z6t8f/4FSuZjq2vEL1VSB6t/1a6WG9im1+Xp1z9fvUN9b969q9co71Fc/eJZSr3xPqdF3VDwXV++OvKuG0kPq3ZF31XBmWMWyMbXl3S3qtf7X1LINy9TrA6+XPyvJfLLcP5wZVgeGD5z0Xh9OD6tDI4fUSGak/F5/ufdllcgn1KaDm9Tunt0nfSbH5/nWt7+lLpl1ifrwbz6suBfVMq9FPfGLJ2Tur6ACkwLqpb0dang4rQ4ePKLi8ayKxXJq3rw7FITVhz70KzU8nFbLlm1Qr78+oGKxrFq2bEO5D+4t3c+onp6EGhqKq6ee+osaHZX7d955n6qpOUe9/vqAmjFjpvrd7zaUjrtL+XxRtXPnq6qvL6lWr/6RmjVrjrruul8quFd94AM/VQMDCZVOF/5rrnlPtVPt/8MG9Kj/BU49xVyfahPtn93CfSX/xfGoLMsSfbTjSAD0o4+KsdlLL4mx2U03iVxc06TguaFBZOTTp4vrWFeXFE9PnSr9Xq9QxVVVsjVNmfPIEfwqx6WXKh54YMKkDKRG+pZbZPvUU6JA/9vfhFUOBKSsu6ZGtuOkeTAoNdnjxPqJpmSOI/Fe4xLxWbOERL/1VmG7s1l5Wp2dYppmWcJiX3IJ5HMKvbsfRuPCTtdOkoznQ13g88I504VF1jWoCEuu9LG+Ur404DUnlH4eU9hvjynHezzyGkZCkh1tGpDKQPMJTHUiLQy2VZTt4dJx6axIcoHzb72V3Ogo2YEBLrnnHsLNzdRcfDGLn36aQG0te+69l3R3N+g6qlhk+JVXyA4OopQqy8UP/PznKNcl3NLCrNWrMXw+Nl59NdmBAS795jcJNTQQe+cd/NXVvLxmDbnhYTRd59UHHmDHV79KbniYWatX4580iUI8jlsssv6hh/jT1q1s/tMfqWhogspq+PRXYFItfzvWR9FxWLjoaoiNwL8/CpWTeHvRp+DjN4Fh0Kn5ee2NNzjn4kuhpkEYl3E2+pqPyft0Uh18agVMrpOouNNnwLanxNn10H6wLYnLmlwP08+RnGnbknzqD/wLTKpDe3c/pidA47lXYnoDwji/9QIH//YEdi5N47lXYniDKNc5gVm+FKdo4Y9OFlZb0/AEK1CuomnmQtA06t6zgGBVE/1vb8fOZwhU1jN8eDcol+HDu3GKefr3b8fKxjFMD0op+t58ATufxCgZqCX6D5ZcwF3JgS4Km0MqgbPtr5BKlqXaWjCE27FdzAK9PvQFV0pcVmwMPF6MpR9F83hxd7yA1tQC6RTO8yVjtI7tJWZ7OwDG0o+WFCwFVCaNsfhDEK0E5eI+twmt5TQ0rx+tokp+ZIzxHFzK9dU+n4/Ozs4yw2wYBlVVVbS2tuLxeE6SjhuGQTKZRClVZsDb29txXZfFixdz9tln09XVRTKZpKqqiqVLl5JMJnniiSdIJpMsXbqUQCDA5s2byWazLF68GF3Xy+cIhwOkUn1s376aZLIbjydAKFTDli0riMUOo2k6icRxnn32dkKhWpYufZxEoptHH22lr28vrlukWMxKbT4aPT278fsrSSZ7mTPn/2Lvv+Pjqs+8b/x9pqmMqm25qRgXMFgYm+YmKQnFGINJSAJOMZslzbCYhG7AdmKSYJvYOJRAQiBh7002G9bGYQOyTE0cLOSOGy6Su8popBlpei/X88c1M5Ig2f3d+7t3N/fz+Pt6jc/MmXO+58xoZjyf+bT78fnaSSYjnD37Pvn5JZhMFgIBB++//3jmWRE8npO0tzcPCUTMzy+jtnYhecWjedwwuAFlljON8fQA30Wl3C8Ao1GGOowy0ll2ewVQlrm+LHPEe4EpwP3oR1AJ8CgDUu98wJrZPrtff2bbfNSPPTtzDs1AHqlc8NLalrXMnTCXmZUzWb1N161pXkMgHsgFLPljfjYc3sD67euZNnwaX//K15k9fTZXzb6KDQ9v4NGNjzKjcgbX2K7h6JqjzJ4xm92P7uaSE5ewomEFY4rG8KULvoT/t36unHolOx7ewWz/bFY0rMBqsuIKuwjEAzk20B3xIoVVylRb7JBXodJs2whlfSUB+x5QlrZ2uXqlpzysjLTFrqxz7TJdX7t8oOKpcCxUfQEiTvVkx3phZIN6mPt2akBazULdt28XuQ/8grHQ+37GE92jy6KqjLKpS1nmdEJl32Sk2cmo+qJTGSVJMqr3p+IatpVOKOOcToD/rLLV+q7T84kHdC5zPpSO13WpzJzmPH1M/vaMdzsxMCdGhg02sNltxPwxJC2kk2ma7m7Ce8aLpcDCm/e8SdgdxjAb1C+rp3ZhLXPXzSURStDX1sfmOzdTNLqIUG+I6jnVeE56aLqriXBfGJPNRE1dDSFXiNbXW9m2ahsGhjLTApIW3n/8fQLdAcZeOZawK0zTkibigThjrxhLOp5G0pILT9u2upmUqQSGXTDgJw859W/dukG97VkzeeZ9i2GCkZdpR7Uk1Jfd1aLPwdXP8szZq/jc526Gs+/wj9+u4Xs/+jE1F0zlgrl3svobMxh9yfWwczU73WPYvmMH3/mHb6nsvrIBKuvAewKrYSaSjLCraxfl+eWkJU0ynWSUfRTdgW5+seAX1JTUcKj3EMsbltPS0UIqneL5G56nwFJAaV4pS+csZWHtQpY3LKfQWkgoEcIVduVe62tb1iIizKyamfNlZ9+TD9c9zE+f+ilv/OEN/mXTv/D9a77P56o/h3OPk8/c9BmW1S9jYcNC6mfXs2fnHsxmEz/84T5On1Y7y89+9iDFxcV86Uuj8Pli3H//LDo6fDidymLv3u1g+fIGFi6s5eGH6/jXf/2I/fud2Gx5FBZOIRZLUVRkY98+Cy5XF6tWbSORSLN79ymWLWtgwYLxlJbaqagYxr33vsVrr73MggXf5tFHr2Xhwloef3wBhYXncsHPjb/9cQ5cnxsD4y+lhcfj6kk9cQLuuENl28WZYBW7HQ4dUqTZ2Qmvv66oNpVSJNrdrb1XJ08qUFy7VpGqxUKuW2vnTkW3S5ao1hvg3nuxhbwUFgjLlknOzp1KDQXGdXWK8efNU3V6IqG/DbhcGki2cKHebm5Wr/UHHygGy1rEV6zQ23l5+lAffRSuu25o6rjNpr8HFBTA+edrQNrIkXqaw4aD1IxREJ1ng+NnFTgX21XmXVqk67Ojw6nS745MfVkkptLxtMDJDoglFBhXjlIwXZqRKRcVKni3ZQD3+eP09pGTehyL+ZOycpOBuSAfS0EBR3/1K/58113sefxxQj09JCMR8svKCPf2MvKKK7SLWoQPn3iC/OHDKRimXrasXPziO+6g7+BBwt3dGGYziViM2U88od5sk4l0IkHF9OlE+/vp+tOfVCaeTnPZ0qXM/7d/Y8Sll5KMxfC2tZEKh9m8dCnfX7cOn9/PvBtv5NIpFzLzqmtU1v27n/Grf/xHvv73f4/pgkuGSLSXvvhP1M6YxfTLLuNLi27juZuv4aJhxXD8I5WCD6tQ8H3iCLz6S0AgHASXE17/tQLoW76p95cO0z5qgGgYTh5Wb/arv4R+lwaeJeOYSoZhMmlYnGGxYc0vUhA9+nwKSkdqlY7JTCIWJBEJMLb2akSEnmPb1HM9aaZWbSXjuE/t1l810ynMFmtOVp71UFdMmgkYjJnyGaz5xYypvZrCYZV0HXqXZCycAeC7MCAH5A0xBmp4/D5N9B4EhlWqfQ0SDmGquwryC8Bq09AxAIsFOXGMVNNrSDKBqf5qjImTB+boPIupISM5b7hWnQwmEyQTSDCIqfo89WMDYphUln7Jperj3rwJIiHSJnPO/yciJBIJEokE3/rWt2hoaMAwjJz/2TAMkskkpaWlzJ8/H5/Ph9frpbq6egggnj17NuFwGL/fz5YtW7Db7fh8PuLxOAcPHqS4uJjzzz+fMWO0C97pdHL06NEcKG9vb6ewsJAFCxYgks55q7NVeNlAMa2xS+P3dzJz5nfp7v6QWCxASUklkyd/lurquhwwDwQcQJrq6jrMZhtjxlzGrl0/pbS0mmjUR2lpDSqvTdLSspbKyhkEg04CgS6am9ewceMt+P2dzJ//U/z+LtLpFDfe+AImTCxFQe4jgDlzqQaeyHy0nAK+k7luRkFzBQq6J6BhZy8ANYCboaDZhErFJwJPo/7qO4GTgB2Vf09AZeOLgTZgOnAbKgkfA5gx6xfz2oWsaFhBdUk1ggxZV5Zf9onryxuWk2fJ4/ovXU/Lvhb+vOPPXPqZS3H9zkWhtZCe3/Vw87du5ru/+i5vvPsGnW924j7rJpwMU3WoioL8AvYf3k/j5kaO/+Y4xaliEukEXf4uCq2FPFr/KAtrF1JRUI6R9VQb6snFWgye/SrnLhgN09dC8LSGjF3xnNp29j8MpGH3P4B9PFz+tALtdBrCXSr/Nuepb7p9g8rNUxH1XuePgahL57IUqse6b6fOVzRRfdr28dox7d6p6d2Cguy8MgXZ5kxCuKSGJn0bDNyfk3l3DYDz7HYiKkFPxXVbX6aiKtvLPHhbBEpqdJ/c+q5MOFqadCKFYdYfB8LuMJZ8C/OemkfRmCJMJhOtr7fm0sLLJ5bzmR98hnQinUsEP7zhMB888QGVMyuRtOR80v4OP96TXhrvaKSkqoRbX72V+kfrScVTlFSVsPnOzQSdQSpnVNKytgXDMGhe00zljEqCPUE6WjrApMFqJdW6f8OKBkyWTN+0cxcUjIRQtwLtyQtVAp5NCQ87ByTwkV547y6V4wc7tcLL0cLqNU9wwhFkzdqnoXwyT/zRYM0PltG++3UO793O8g2dHDlylPDU+7jrqbd56ccPYWy9V59DkwV2r4WCCpKJIB2+DirsFezs2kl3oJt737qXMcVjmFU1C6tJU7NnVc1iUvkkLh9zOc6gE4ffQTQZpchWRFVJFWuvXUuXv4t4Ok6nv5Mia1Hutb68YTlmw4zZGPqeHFs8ljd/8yZ/2PQHnvrNU7zteJtOfye/+tKvyCvIY/oj0+n0d/LDGT/k8P7DXHzxxXznO1t49dUddHX5SaWEvr5WrNY49fXTKSiw8tOf7qKmppTS0nwWLqxl+vTRVFQU8vTT8xgzpogJE8qpri6hubmdK68cmwsky8vbzfnnz2H58ga+851VvPLKs9x44xW8++59/OhHP2L48JE8/fQ82ttPkEh0cvfdt9DWtoY33vg1Z854MJkG5Q+cG+fG3+L492jtv9XLOVn4f+MIBkVcrpxcW9raVKOd1Wo7HAMa66zmOhhU/XRWYr5okeqq3W5der0qJV+0SCXhg6XoDocep6dHvN60NDaK7NihU/v9QyXd2UNnJeMHD6pcOyvj9npVjb5rl+7f36+XrLK9sVH3bWoaqmbPStH379eHm5WYZx9uW5vOE/AmVYb9cbl2MCziD6pUOxrV627PJ6XfR07qPtn7QpGBZTyhcvxoTCQeVzl5fJAEPBrT/QfvN3juSFTk6ClJhEIS6e+Xzq1bpe/IEXF/9FFO3h3q6ZG+Y8dUzt3fL+6PPpLO99+X/mPH5IOlSyXU3S3h3l4Ju93yyqWXyrb778/JyLOS8FBvr4R6e8V78qSEenpy+3du3Sr9x47puoxcPOrxyAdLl8pvp0yRbfffL6lgYEDK7Wj/pKzb2SlyulXkwA6RgFel3C/9eGDdqWMDyxdWiTjOqmQ8KwUPBYfKxV/6scrAT7Xq3FnZ+Ok2kb7eocf39onceZOkersk7OvNyMJ7xOc8JbGwXxLRsIS9A3LxnjNH5KpZtTK+ZqxMvbhWrrn6Kjl25CNJJmJy5RWXyyVTL5Zpl1witVOmCCB7drZI2Ncrtyy4WsaMGS3TLrlEpl1yidx/3705mXgiFh4iNY8E3CoZD3ok5HFKIhaWVDwm6WhE0qGgyrS93pzMO3TmpHzupgVy/qRJcsnFF8u1V18tbYcPS2LTb2XG5ZfLtNopcsm4GqmdfIEAsm/3bpWUh0Py3JpVcmHlGLn4wgvlkosvlrDbJaloVNLBwFDpeTQiqe6uIdLwrHQ8/vhSSbYdycmxs7LwUCgkGzdulEgkIm63W3p7eyUUConT6RSXyyWtra1DZNsbN26UUCgkgUBAotFoTgIejUbF5XLJjh07ZNOmTRIMBiUSicimTZvE7/d/Qkbe2toqnZ2d4na7JRwO5+aLRoPidB7ISbiDQdfHZNv+nBy8u1vl4JGIVwIB5yek3LqtysqDQZdEo/6MpLxbfL5OiUQ80tbWJA7Hh+JyHZPW1kbxeM6Iz9cpmzYtEqdT93U690tbW5OEw/0SSiXEkU7LEVFptkNE9ohKtfeJSsEbRWSniPSIyrWzUm6fqFx8YWafzsy6tsz2x0Vl3YHM+oCIuDPb3pVZ5xGRYGb9XhF5M7POISJN2XOIBqTT1ylHeo9Ip69T/FG/eCIeaWxtlB0dO6SprSm3zhV0iT/ql6Ouo7Kna4+4Q25pbG2U3Z27pc3dJm+9/5aMrBwpB7oPyNRLpsoPn/mhHHUdlQU/XyAUIze9eJMc6T0iEydPlN9s/o14I17Z371fqmZXyffXfz93e9GmReLwO8Thd0giFpB0/wGVhvfvV5m2e4/Kt31tev3jknDvEd020ivySr5IpGdATt6/X+f6LSrxzq5379L13qMqFQ+e1XljHj1O/0GRaL9I376h83gOqRQ80CWSiKlUOxYckHPn5OLHVEKelXeH+3S77PrUYNl3QOcKdOkcfcdEOpt1+QmJeGbbZCyzPjj0WImoRAN6CfYGxd3mlu4D3bJx4Ubp2tMlfodfWhtbxXnQKRFvRJwHneJ3+CXYExS/wy9de7pUrp25PxqMSvd+3T/kCuVk5BsXbpSIJyLB3uAn1vce6RXnIadEg1EJuUIS6AmozDwjJe/e1y2tja0ScoXE7/BL1B8R6W8TcexUuXfYJRLxiLiPqNz7jYUiT6LLiEck5BpY19+mt082yrrvfUcun1Qunrb3RUI94jq6VWw2m0ikTyTUI9JzUG6pq5EXn10nB/fukBEjhsu4kYUyrhwptVuluLhYvrZwgcjJRglGfeIKuqSxtVF6g73S1NYke7v2Sm+wV20UGTvEvu594vA7cjJxT9iTez1n5d+7OndJT7An91rv8neJJ+KRPV17xOF3yO2v3S57uvaIK+SSYCwoW3ZvEUCqxlXJ+AvHy+TayXLxpReLJ+yR53/3vAybMEwuuvgimTR5knzzkW+KN+KVffu6Zfr02XLhhVOktnaqXHHFDPnDH7bIokWbZN++bvH5onL8uFs6Orxy5Eiv9PerPDw//3FpbGwVjycijY2tsnNnpyxcuFH27++WJUselssuu1I+/PCseDxh+cIXbpH161+Q0aOflF/+8l2prKyUXbv2yYED3WKxFMhXvvI12bu3Uz73uV/J+PEXyPe//4L4/dH/o19zz41z43938B/Iwv/HgfJ/5nIOXP83Dp9vqC86C7SzYPjIkYHrXq8aol0uRap79gwA5sGoOAvCB5uhFy4U2bt3YF1/vwS9MenqEjl6VFcHAjrtkSPqi779dpHnntP7/H4FyWVlA/Ztr3foYfv79frHH0JHh0hn58Bxjh/X/RsbFZgP3vbMGZ2np0ckFEhKOhD6JHDOguJEQkHx4RPqv876prPbR6MD4DwLmrPbZJfx+AAQj8Y+6dvOeq1z2ydycyaDoQFf9LFjEgsExHf6tGy7/3555dJLJex2S7i3V0Ld3fLB0qXSf/SoxAIB6dy6VdwHD+ZAd9Tn0/uPHRP/mTMS6e+XbfffL7+dMkXCbvcnvNm+M2fEfeiQdG7dqvcfPJg7h1Bvr2576JDEPP2S9rhFujtEwiEF0Ad2KDA+sFOXfs8ACG4/qd7pwcA4u00woHOEQwrMg36RM8d1vuy2nj6RjpMDvu3BYNrT90mP9ks/lmR0KMAN9TvUN/0x4Bv0e2TjP/9SQl6nJBMxWb9ujcy6/GIJe3skEYvkAPrvfvsbqZ1ykficpyQeCchtX/2yPLn2CUkM8nCHPE5xndorPufJQcC+V5KJmPh7TmVA/kmJRwKSCPvVJ50Bt8m2I5Lc8b6kXD0S9nql8bXfS9Lvk+TOZnn6m38vn66vl1SvU9KRiALgx+6XV+6/Wy6eMkXS4ZAkNv5afv+rX8rsS6dL/5FDknL3Ss/pUxLv6VYQvem3A8Da65GUqyc3T2LjryUdDinId3apz9vv/YTHOhwOi9PpFLfbLQ6HIweEN27cKDt27JCuri5xu93idDpzQDkLpsPhsASDwdylra0t5+OORCISjUalt7dXfD6f+P3+IQA9C+a7u7tl06ZN4vP5JBKJSCTiE7e7TSIRj7jdbbJ370sfA8gB2bRpkTz2GDngu2nTIvH7uyQS8Yrf78gA44MSifiktbVROjt3ZsD6fmltbZRIxCtdXXulra1JnM5DmeMN7NvdvT/nyw6F3Lnr3d37pcvXIR5Rj/QZUU/1YC+0VwZ81/tFQW/2ukcGgHeTKPj2ZrZ5M7M8KiJdmfsG3w6IAvNGUQ92W+Z21s+9V9Tz3SMi3qhPFm1aJM/seEaOuo6KJ+z5BBA47j4u/qhf+sP9cqLvhHjCnpxP+0D3AekN9oon4pGrPnuVmGebZeHGhfKnlj9JVXWVVFVVSV5+nsy4e4bsdewVh98hRUVF8uttvxZXyKVe0TnIlC9OEU/EM8SX6o/6JRHzKaj9SwDavVOvx/1DQW/MK+JvU2Dc1fSXPdSdTRnw7NX9fcdF+g+pHzvqEQl3K4D/YJEC63hAt4161av9wSKdJ9o/4HnOguvkxy6pxFDf9ZDbsaE+6ewyEVXQnowPBczhfvWYf3zbrD87O28ilvNhx8OxId7ntqa2IcA34olIa2OrdB/oFneberOdB53S1tQmEW9EQm4FxH6HP+fDDrlCQ7zSnbs6pbWxVYK9QQn2BnPru/d3Kyj3R8W535nzZQ/2d29cuFGCvcEckI96Qwp+31iowDoWEon0iwSdCqZ79+t9vQf079F/XKTnQGbdRyKxgKx/4ody2cRy6f8hIpsXiUS9kvR2Snl5mby3+hqRnv3iOr5DqkeVSUvjy7pNxKNzvrFQVj54p9xz17cUrPvOSjgakOCgfIL93ftzIDqbP7CjY8cncgWy1xdtWiSBaCAHxnOv/UHZBG8ef1O6/d3i8DtkT9eeHEBvamsa4tX2RXzS1NYk3ohXegI94o/6xeF3yFHXUXH4HRKMhsTvj4rfH5X+/rD09galsbFVDhzolmee2SELF26U/v6wuFyhnM+6sbFV9u/vzgBpp7S1ucXlCuUA9je+sVSmTbtUbr75f8kzz+yQd989JCaTRfbv75a2Nrfs398tVVWz5PvfXydtbW6ZMGGyvPpqoyxatEngMZk8+Sa5776HJBZL/h/8kntunBv/++M/AtfnZOH/Xx4fr936SyM/X1PCXS7VYe/cqV1VWc11aalef/hhNSjHYirxPn1a93/sMTU9D9Zzjxihy/x89WNPmKDbNTfDQw8RnTaNm2+7jemX13LVVdP4zGfmsnfvCQCuuGImN988nU99ajrbt1/M3XcbfOtbB/H74ZJLwlxzzVe4++5J1NZewC9/+SqdnQOH7e3Vh5BIqLV70aJPtoY5HJoO7nZr3Vdv74CMfPlyfaosFpWLWy1g2Kwq37ZaYNxYXZpMKu9OpVX+Xj0ahpepfPtEO3x0QqXh5oz0W2QgOdxsUm+1zaJStXRm/fhKve/jvm1Qz5iISsj9QfVdn2gnLelc5dXhF18knUhQMHIktYsXU//UU0TdbvY+8QSRvj5GTJ9OuKcHgPKLLqL1n/+ZwlGjQIRQdzfT7ruPsNNJzO+n7+DBnGTcbLXmvNmtv/41GAa2khKifX0Ujh6NJT9/SFK5JT+fK1asINrXh8Vmy3iGRVO8T7dCeYXKtX/+OGz+nUoZc9LwVyAvX5O/PS647ou6rc8D//ws9HSpxNswgd8Lb26An69SL/VXl6i8cXNmrtPHhiaG5+er7/vv7lGf974WWPhtEKFi0oxccncyHqFi0kwMk3nI+jybjc998UtYbIVIKskFo/No7+jCdXIXILmk8F88/wxf/8Y3sA8bS/eRrfh7TuDv0df2x6u2rPl2rPnFVE6di62wlFCfg7N7X8d9cg+Fwyoxma0YaUhvey+T4L0VU/V5GBMnQ3EJ+TYr86+/HpPVimna5cy+/VucOXsWUikklcjJvf9x30d840u3IoB5/udZ/+KLfH/pUkpHjsLIL2B4PIJZ0ojfq37srKc7EgJ7EaY5n1HZeN1VSDKhXeVFxZoYbrUhIgSDQWbPnp2ryCovL8dms1FeXk488/nT0NBAd3c3ZWVl2O32XKp4OBxm8+bNxONxfD4fW7ZsIRAI4HA4qKysJC8vj3Q6TUdHBx6Ph1OnTvH2229jtVqpr6/PebdNJhMFBQX4/X6uvvpqQLu0DcNEIhGiqelubLYiLrrolozveiRbtizB6z3J3LnrmDp1EePGNWA25zFr1n0EAk4aGxcTDvdyww0/w+drJx4PUFk5Mycr37ZtNZWVMwCDvLxiRo6cSklJFYlEmMbGxQQCjkxNl8rP+/qO09R0F319bYikaW5eTSrqJyJCGPgIKIWcTDwr6x6cGA4qC+9EK7iq0HqtWZltm1FpeB3adb0SrfQqzCxPon5rMutmADtRL3cHkAJeB4rJqKuBtMnKurnrqKuuY+XWlZz1ncVsmKkpreG5+c9xXtl52G122vrauHPznQTjQSwmC3mWPOqq6+gKdNEd7KbhGw30dfWx8YWNPD3vaZ568ikeXvkw2z/azgubX6DrtS4SzgQleSVEk1G+3fhtvBEvT897mm9c9g3mTpiLO+RmecNyFtYu5MHZDxKMB0mnE9C3Q3urpzyaqcn6icrBreVQ+z2VS+ePUC9275/hw3shb6Q+yooGMKwq8f50I9Su0B7s8ukQOAF7lmiXcv5wsNeAe7v2Zu+9R6XjI2ZDwSj1OLuaIXwGar4E059A7Sudg1LBjaG1WnE/OHeqbzj7/4SkIRnTdcmYnqOkMpJ3s0qRARIh9Venovr4SidozZitSFPCQaXS2cRxSQ30aUvmn3QCfCdJp4SAI8DWlVsJdAeonlNN7cJa6h6uI788n/YP2vndgt/RvKoZe4U2XthH2amYUkFHSweSFkwWE6GeEI3fbqSvrY9D/3KIzf+wmbLxZcx/fr5KuytLcOxxYLKYKJtQxg0/u4HCEYUkY0n1VXf6cr5sScmQpHCz1czw84cz7+l5WCwp9aR/5mmV7qdj4NihvvLu7VBynt5XUKFp3skQlFTD7MegYBidp1t54JHv403aueofy5j+yD5mzqnHvO1+NvxiFQ/9upVpMz/Np276e+69+w5mG+/BZffpc1ZUDXN+oHaAVEKPYcknFXQQS8Xo9HfywOwH6PR34ov6cvkDMypnMKxgGM/f8DzVJdV4Hvbwq5t+xdjisTR9tYmlc5YCYDVbqa+pp8BckHutP1z3MOFEmJmVM7Hb7BTZirDb7NRV17H2g7XMqpqVk4jnW/LZ3rmdL2z4As3tzaQkRVrSOAIOVm5diSPgIJVO8a1vvQFAe7uPu+/eQkWFnY4OP3PnTmDFigb6+8OYzQbPP38DjY1fobKymFQqzU9/ej3nnVfKyJF28vLMVFWVsHjxMrZv30Jj4xYee2we1103kRdeOEw6beGee37OyJF2Vq5sorPzCKWlNRQV2fjsZ7/Ie++9w7p1c/nCFyZhsbRz+eWXYbMN5HicG+fG3+IwJPth/T91AoZxBoihbR8Aa0TkX/+9faqqqqSzs/O/+tT+3z2ytVurVilqvPBCRYx/bdtoVP/TP31aDcwzZ6oRORTSgul33tGOqxUr4O231Qg9apT6tQsK1F+9erUi1c5O7brq6oLjx+HWW/U4Dz0E999P9P33+WMgQN13lrH4DjMbNjxHRcWrHDmylURCfw8oK4PGxle5774fsGrVIW6+GZ5++oe0t5/Cav1f3HLLaW6/fSY7dx7lRz8azrp1ivEBWloUOJ93nuLbZFKt4Rs2KIh+4QUF0E6nZq2l04qXCwv19wOfT5fnVacossQwTIYCXpdHw8bGjYUPj6gXu6RoILQsnlQAnE6rfxo0iCwWV590MqUA2mxSg3kwkvNPE0voPsfPDhzn/HEDoDqVHqj3OtkBxXaSw0qIh4IkAgGsdjupeBxzfr7WLdls7HrsMdrffJOa66/n8mXLiLpcHH7pJS76xjdw79uHa98+Ln3gAZLRKLbSUqJ9fYS7u7GPHYt97FiS4TAmm42w08nhF1/kskceIdbfz+EXX+Si228n2t/PiGnT9P6XXqL2jjuwjx6NYbEgySRWqwWjp0u7pufdqqFYG19SIPyvv1B/dH6h+qmbXlEw7O3TYLJkQgHysJHq1X52Jcy6WgGxxZb5YSINqaT+2PDb52H8ZPVdv7UR5i+EkZU6TzIBr/4Krvkc2Iv0B6KmV+CrS0hFQyQLCzBb80nFo5ht+YBBxNtNfklF7i3iPPo+w8dfjs1eRri/izu+u5QCc4JfvPxbrcsCzpxs45LLZnKy7QhFtjSW/CK+tugr7D54guKSEqoqR7P8oXuY1XANmMyk41FiQTeF5WPpOvQuFZNm5Kq90kn9Ymw2rOBxa7/0vM9BKKj91aMr9WVntWrndCLO1+59gGEjhvP0Dx7DKNJqmo72di6cNo0zR44wwmYm3bKVkd/+Lg/cdx9NjW8Q7XPztb+/nbu/fCumyhokEia99S3k8H6M2umYF9yCGCYMSWtAWiymoWVWKxgmxOMmWTacNOR81dkareeee47a2tpcwJhhGBiGgcfjoaioCL/fj81mY+vWrRw+fJglS5bkrtfW1jJ37lxMJhOBQIBgMEhlZSXRaJR0Ok06naa8vJxUKgVAZ2cnJSUllJWV4fF4aG5uZs6cOdjtdkymJG+9dRfV1XVUV9fR0rKWhoZl+P0O+vuPM3HidRQXVyKSxus9Q3Pzaurrl+H3d/K73y2gtnYhn/70Dzh9+j0uuuiL2Gx24vEg77zzEHV1D1NSUg1AMhnBMMyYTGaamu6itfV1br31VaqqZpFKxbFYCjAM6O8/ya5dzzF//rPE40HShSPYYbYyAwXHMTRULITin2LUc70aDSOrAZwoCDeAe1Ag/enMNg+g/dX1qId6AwrUX0SB90gUfM/J7P8B2nudXQfQi/6HvQoF+CNjQYx4kHveuocNhzewsHYhj336MaLJKI6Ag/qaemLJGJ6oh2A8SGVxJYLw0DsPcd+s+zh/+Pk0fLuBQ+8d4nd/+B3XX3w9Hc4Opp0/jQ87PmRC+QSC8SBf++rX8FR6ePkHL3PrZ25l8Q8W89X5X6Un1MNNX7iJb3zxG9y1+C4KbfphH0/FsZltmCRFIUmMD+9VoDtuEYTb4fAqDRsrHKefGa5mrdo6vFr91VGXbnPZ0xo8dmSNAuui8Zn+ZyDmhERQn62jP9b58obDhw+oD7tmIVz+rO5/eJWGnEVdMGKmAlfDAh/eBzP/V+bZzfxYmggN6qU+qV3VJpsGbZWO13WRfhg5TddLJuoum8Hgzdw/bLICZklDOq7nGexSb7c5b+D/p3QGnIMC+uyx434wW4lFrWy+q4nKGZVMvG4ixZXFRL1RbMU2TBYT8UCcdx56h7qH6ig/v5yYN0agO0DL2hYaljdQNrGMVDRFpD9C1Bsl1BuifFI5eUV55JXkIWnBMAzSqXQmX8wgEUrwzkPvMHftXEKuEM2rm6lfVo+/00/xmGLso+1YC62YzCY8pzw0r25mztI5FI8tpqDMhsUc137vkEN9z1c+otfH1mU87il4Z7GGnE1eCNc8D0f/RX3aM5eDtQjyy/S5kZT6sbPbzn5Mn8/Sifq3Sqe0xmvXapjxKBSMgGRELztXwczlxItrCItw1tfOupZ1rJu7jkJrIc3tzdSU1jC+bDyBeIACSwHt/nZWbVvFo/WP0uXvorq0mvFl43EFXXhiHmpKa/iw+0PqquuIpqKc9Z7luV3PsXbuWvIt+Zz0nGRN8xqWzlnK2OKxFFgKwIBQPMTD7z7MQ3MewhFwcOnoS7Hb7KQlTUtHC1/Y8AU+O/mz/Oz6FxhR/Czd3fdzzz1vsWHDYRYurOX55+djsZiwWMwEAjF6e0N0dvqZObOKvDwzbneQ8vJCUinBbNbP9Ntu+ycaG+/Ebh/FeeeNJJUS8vPz+Md/bOTee39Gb+8fEEmRSiX5whcWsWLFUtra+li9eivR6GucOPERhmHwhS98gVWrskGQ58a58T83DMPoEpGqv7rBv0dr/3dcgDPA9P+dfc7Jwv8PjL9Wu/XXhs8ncuyYGo57enSZlX8fPKhzHDyoeuo9ewYMzW1tuq6pSTXV2X4rv1+12Fnp+IEDul1Hh0hTk8QcLvH0p+TAAZFrr90tY8aMy3mdjx5VX/S1114vP/rRU+L16lSTJk2Rt97aLmfP6uE/+9lbZe3al8TjUbn3okV6uI4Ovf/MGZE33xxQrS9apHVe3d0DFnGPR5dZ63lbm55+Y6NI65GkSr47nOqrzkq3s9VZWcn4YNn3YK90LDZUBh7P3O/2Dvirs/Nlt/m4LDwrMc9Kx/1Bvc8flLg/MEQWHg+FBvzWg+q5+o8elajXm5N6b7v/fvGePKkVWz096r/u7ZVYICBht1tCvb0SD4Wk/+jRIffFAoEhc8R8Pon6fNL5/vsS6e+XRDgskf5+Cbvd0vn++5L+eH2Wp08l2UG/1mW1n1SfdL9bvdMHdoq89/qg2q6M59rvzfip/Xrd2anzZP3UHndO5q3X+3R5cJdWb730Y5F3/01936Ggersz0vKUp0+S8ajEoyGJhXwSDfZLMh6RWNgv7R9ulpDH8YkKrse+t0yuvPxS8Xn7c7LukMcpK7+/Qm6+6QYJe3skFvZLNNAvZ0+flGjIJz7nadm4cYOMGjVSjja/mqvoikcCkkjEJORxSDSg88WjIQl5nYOquLwq9c7IulNez0C9VleHpMIhefz735NZV14pQbcr45nWSq7HvvQFueWmBZKORnPy7uKCfPnm7bdL7MhB6Tm4T6ZMmiivb9woqYzfOh0MqOQ7I0NP+b2S9vt03q4OSbYeznmz48ePid/vl66urpzEOyvfbmtrE6fTKT6fLycbdzqduTquTZs2SVdXV07+HQ6HJRQKSWtrqzidzly9V9ZLPbhyKxKJiN/vl9dee018Pp94vV5xu90SiUQ+UfMVDgfE73dIKOQe4p9WKfeeXPWW3++QjRsXyuOP52ek3h5pbW2U7u4DEg57ctVbXV17xO93ZKTdPolG/fLaa7eLz9cp3d37M/sMLD8+f3f3fgmHPeJ2Hxen84D0eNtlfzqd8013yCcrshpFZIeoh/qgDPixPxT1Wbsz2+Rn7usV9Wpn/dgHM7ddme0+FPIewIcAAQAASURBVBlyvEYZ6t/en1mHqMfbn4gNkXnvdeyV53Y+J42tjeKJeHKSU0/Yo7Jw9wnxRrzSH+6XnkCPrP7xapk6faocOXtEuvxdsmjTItnZvlMKSwrl09//tPQGe6X1bKsUDi8UvqnS1gcffVC+cttX5KjrqNzw3A1CIfK5X31O+iP94gl7ctJZh98hXf4uScT8ko641OMcyVZz7VIvdNStsu5Yv8qmYx6VdW+/XSuzYj6RsEOl3L4TejvqHqjeirh0nlfydZ94YJDP+tAn5eiRXp0/HlB5dqR3QJY9uAIrHlJ5dk66nfFQZz3YOc9160CN1scruj5+fzKm+yZjAzVcg6Xn8dDA3IP819FgdKh/+oBTvdcHu8V93J2TbUcDWrvlOur6hGTbfdw9IC13+HPbRv1RiXgi6useVNvVtbdLdjyzQ1zHXJ/wZfs6feJqdem+3qHycNdRl0R9YX2O+46p5/rj3uuIR+XxPYPk4ScbRZwfikT9AzVcgW6t7Ar3Dd02FtDt/J26T7bm6+n8zHHcuu5U0yBvd7/4MrVyz+x4Jifb3te9T9rcbeKP+mVP155PVG5lpeKeiGeIrLzD2zGkAq/D2yGNrY2fqK7zRrzS7e+WnkBPrqKrqa1JAtGA+CK+XN1X1vN9wHlAfGG/HD/uFr8/Kl5vRN5887gcOuSU48fdcuiQU2KxpPh80Y95qp0SDEZl375uWbRok3R1+cXrjYjD4ZdFizbJhx92S1NTm/T2BuX2218Tj0crvjyesAQCUTlwwJmr92psbM1Vevl85zzW58bf1uCcLPzc+Ivjr9Vu/aWRlY2PHKmU8e7d4PWqRDwWU9n4iy+q3Dsa1bjtigpluMNhlZTPmqV08L33KtudTEJJCTz11EA0t4imj8+eTdwfxTCZGD8ehg17hiuv/ByRiJKziQQEAh00N/+Z/ftvw2zWh9Pd3c7YseOIx7V667zzzsPlamf7dg0unzFDTy0QUOK9rExPa/9+JYqff15l4Pfco8HlNpsy24nE0GDzxYuV+R4zJpMWnpVxn18DiaSyy1l2uthONBji5ps/zwWTzmfaFZcz946vc2LbdjAMZn66gemXTGP6rBlcPH0aRn4eB8+cBH+QZY88yoUXX8y0yy7lissu460/vqusdiSmx/FlJOCxuDIo1aOhs0e36XAiIkNk4ZJO5yTcB599Vqu1fvADCseOpe+jj6j99rc5b8ECLnvkEQoqKiiqquLgM88wfOpUIr297Fq5krDDgefIESSV4vBLL3GmsZEPn3gCSSaRdJop3/42NddfT+3ixbj27SPc3c2wKVMwzGYC7e3sefxxIr29lF94IfF4HBkszTaZoKgEzBZ9/ppegR1/hI4TEI9CSTlcNH1AJv72Jhh/ocqTb/uO7nOmVaXjxaXKcL/7GkTCYM2DLy0m92Kx5UP1BN33lm8qo/36b6CvJ5OkmxkFhaRTCRKRANGAm3QqQdehd0nFI4y+6FMkY5FB8vAZrF//E17f/CZbtjRRkGfNycFdJ3fxT7/+Dbd/7TZcJ3eRTsVJpxOMHTuWWMCNJS+PBddfgz3fSl+iGMNkUeY3YxlIxSOYbXm4TuxEUkncJzVpPBUNk37rdVI/W0u64wym+mswTCbSzX9EDu9Hgn7WP/EEv//n37D5N/9EASjDEouR+uBP/NNb7/H1Sy6EeCwnE6+pGcdXvvwlLOXDGJ5nY/6NN7Jjzx4MixWJRZFIGGNMFRQVqyQ/4Cf11h8QTx/k5WHYi0hteQ3x9pGuGkcsFqOlpYXKykoCgQCNjY14PB5qamooKysjHo/T0tLC4cOH2bZtG5WVlYgIc+fOBeCtt95i9OjRGIaByWRi3LhxlJaWYrPZyMvLo7KyklAoxOzZs7FYLHi9XpqamhARrr/+evLy8jCZTNhsNkKhUE4qXl9fj81mI5lMEgq56OzcMagKaxnpdJJQqJdrr12L3T4am62E+fOf5957z1JZOZP29g8oLa2hvHwCIPj9Xcye/QChUC+GYUYkTTDYQzIZ4+qrH8dms9PcvDqXCl5TU09z8+qMfHwV0ag3l1BuGBCNevjgg7XE0mbu/Pzn2X7BBdwybRq3zZ3LbSdOsAhomzmTT02fztLp0/nSxRdzvmHw4MGDbAC+f/w4373qKuZNn870Cy/kXx94gA3pNCvQFPDTqMz7OeA8lBG3MiAXfx1YCwSAmZm3wyoG5OczgCbg50DSYsNkslBVUsVLN73E+cPO59Ypt1JVUsUdjXdw2ns6x6Z9Z8t3GF44nLSkSaQSnO04y7KHlxHwBfjCDV9gbt1cmr/fzPqd63n2V8/S81oPMy6fwWfnfZZ/+M4/sPD6hXyv4Xvce/+9hCNh5s+Yz0frP2L2HbP5wQ0/wGJYOOs7y31v3ce0UdMosBZQZrNjBE9i7FmizLRh0eXRJyEVBvcOCJ6CqBuCJ8H1gdYxXfYsVN0MgZPKTo/7CuSP1Nu779LqrfKpKgtPhaH+Vbj0KZWIpyKaEF40DjBgylJlsS9eofVeqQjsvhNCZ8FaxgCFnBmS1jqsZAxiPmVHTSaVridCWqmVV6Jy75Ia3cd3SrdPp/S6iN5vK9L7U1HwndZjxYNa52W1Z+6LDUjPDdOAPDybRp5UFUjQGWT2A7Pxdfiwj7RTWl1KMpSkcbFKvdPJNCaLibzSPOYsnUPtwlrqH62na1cX9go7krU6CcQDccLuMJ5THhrvaCTuj+M56cnVdoVdYaZ9bRpFo4uY9/Q8pi6aSsPyBlKJFNZCK/aRduLBOKl4Klf/1bC8AftoOxZzArq2Q+FIKKqEveszbH0+hHsyrHJYH9/Vz0HJOFUFlIxTljrkhHRSt21ZCf7TUDYRrvmZstXeU/DOt5StLpukz+PMZXDTq3q89+4aYMknL4QrHiQecRNKhFlWv4zrJl7H2pa1uaq68nytLlzbspa3T76dS/9eVr8Md9jNioYVbO/YTkpSOTtFOBHOScydQSdmk5nq0mpMhim3/4qGFaTTaYLxIDazjcqSStZvX8/00dM57T1NNBkl35JPXXUd61rWUVdTx8jCkZgNC3a7jba2PhYvbmTMmGImTChn1KgiLrhgBDabmfx8MzNnVvHsszupq6smL89MMimsWdPMjBmVOJ0BmpvbsVpNPPfcDYwcWcj06aOx2cw8++x8zp71cccdjZw86UEEVq3axoYNh1m1ahszZlSycGEtK1Y0kJ9v+evfT8+Nc+Nvcfx7yPu/44Iy1weBQ8CvgIq/sE3WQtYJdJaWlv4f/xXi/5MjFlOKNhb797fJpoPv36+Mt8ejFG427Wv/fmW2Fy5UanjfvoHws8Fx23v2DFyy+3V1DQ0z83pFgkEJe8Jy4EBaLr54lUydOkvWrQvJwoWal+b1ijzyyA+lqupWeeaZAYLcbi+S5maH+Hw69eTJD8m3vvW9HFN95IgeJstMDz6NbMr4YDLf7dZT+mvhZolocijLHE8MpIYPCjmLuPpk8+/+VdJ/2iVy+IT89Mn18un6hgzDHVbmOxSRjb/5Z7n4ootyLHfT629I2O8XCUVk/85dUlJSIsHdBwfSx30BPV4snmG8PXo9FhcJhCQeDOaY6r7DhyUeCOTY5qjPl0sR729tlXgolLtkGe2+o0cl1NMj3pMnhzDSkf5+ifn90n/0aI4V79y6VdxHjkg8FJKY3y/+M2dk46xZsu3++yXY1SVRj+cTrLb39GlJRyMioYCy0nfepGxzKKAhZX7vADP98noNKIuEBkLJ2k9mWObQAMsd8A/sd+a4SL9Lw84G7xONiDg6lL0OBZSlHsygZ8POPG5JxsISj4YkEujLsdWDWepkIiaJWEQSsbCsW/tjuezSS6Xz9LFc4Fg2UXzzHzZKdVWVeBzHJezVwLKze9+Q0yfaJJmISjwSkG1/3irDhw+X7vYTObY7FvZLIhaRWMiXCTjrEX/PQNBZPDQo0MzRIamudkkFBtY9uWa1XDr+POl5+C4NHAsGJRUOScrnkbdf+RepHj5MEl3tkvL7JBX0SzoSlse//z158L77JNl2RILHW+XyiePllRdfyCWBp/0+Sfm8mdsRSQX8ktzZLIlNvx1ICs8EnCWi0Rxz7XK5hrDGvb294nQ6cyyzy+USv98vbrc7F16WDTnLpn2Hw2Hx+/2yadOmHEsdjUalu7t7CPO9Y8cO8fl8Eg6Hc/P7/X7xer0SCASkt7dXduzYIS6XS1yuLmltbZSurt0SDPZIJOKVWCw4JPk7HO4fEj6WDS1rbW2U3t4jGeZaWWi/v0uczgO50DO/3yF+v2MIE+5w7M3Mvy/HVvt8HTkWOxYLSiDQowx2MCA/bWyUW9Np2SciP/7pT6X+058ewjwfEJEXN26UcRdfnAs3m/e5z8nSZ56RhSLyfiQi4y6+WP5182ZpkgGGepdoIFn2djbALMtM7xUNOWvLbJede68o051NLn8zEcuFl2XTinsCPUNCznxR30CCcSYx+cOuD6U/3C/eiDeXcNzp6xRPRAPRvBGvNLU15a5ng9KC0WCO9Xb4HRKIBsQdcssLu1+Qbn/3J5jBSNil4WHHntEk75hPb2eZZNcOvR33K0Md6lAGOuRQBjrmVXa6s1GTwX1tQ0PRstezwWZ9+wcY8qgnc+nLpIg7dJvORg1T87Xpdn8pvTub7p1KDLDa2UCzXMJ3fCAELREV6WvT7QYng8dDesklhrcOYskz+w5OE/8LzHciEpWwJyzd+7pzIWNhT1j83f5PMNSbFm0Sv8MvYU9Ywv1h6TvRp0Fm3oiy2sdc4uv0ScAZkGBvMLf/x9nuwWFn3fs01CzYGxySVO7r9EnUHxVfp096j/Tq7UBUmefufco4D0kG79fgMeceDTfLro/6dd0bC0V69in7HOodum/Uq0qDqDeTRL5blzmW2yES9en8g/eJ9IuEeiQQ6Zemtibp8nWJM+Ackmrvj/pzDPOJPlV2BKIB8UV9uffTh44Pc6/7bCr/4HC0vlCfNLY2Smtvq+x17JX+cL+EYiHpD6uaYzCjfdR1NHcuR11HpdPXmXsvBaMhcbtDcvSoKxdWtnDhxk+kdIfD8Qz7rIFnPT1B8XqViW5tdQ1htfft65bGxlbx+5Wh/vjcXm8kF4Z24IAzF6QWiST+E19uz41z47928LeeFg7UZJZW4MdA03+0zzlZ+H/j+Lh8vLd3aOp3dn1/v6LcY8cGkGi222rw/h+P6vZ6dZ89e3Tp8YgcOiSBvph84xvr5MILL5dXXvHIsWMq53Y4RHy+tIwePV6eeeZNOXpUgXFX14AsPAuGTaZb5YorXpIjR/S0/X59OFlV+qJF2vrV2KjrAgEF31ms398/AMD37RtoIcv+bhCLpjQtPBTWSyymgPrIyYGk8A6n3s7WdQVCsnv7dhk3btyArDtT23X93OvkqSef1IRwf3AgfTwak1Q4IsV2u5z+3R8G5s+mhw+u9cqC7URC4qGQhJzOXE1WLBCQqN+vwDgDoAengmeB8wdLl8qx3/xGvCdPStTnk1hgkLy8tVX8Z89KzOeTzq1bJer1SufWrfLKpZfm6reyUvPOrVvF09qak4ZnwbintTW3T8zTL+lIeAAQd5xW8JuVfp89oUDb41agnE0A93tVOh4KZsD5DpE//gXJ+F8Dzwd2qGQ8FBwA59mk8IO7dNvuDklGwxKPBCQS6MvJtLPp3dk072igX062HRVAJowfL1MuGC+TJ4yVK6+4TBLxqCRiYfnylxbKimWPSjIelUQsItHMfFdfdZXUTrlIplwwXmZcebm8/eZm8TlPDqnfSsajkkjEJBELSzIRy0nFE7GwJCIKltPRiKTDIUm2HZWU0yGpcEja29r0nM47Ty45r0am1U6RGVdeKYnXXpHkzmb58q23yPeWPSrpSFhS7t6c5Dt4aJ/83Ve+IhddeKFMmTxZVtxzjyaA+32S6mpXIO/3DoD6rnZJ+Tx6HpGwpPw+TRXPVHNFo1EJBAISCoVyINjhcMiOHTtk48aNEgwGc+u7u7slHA7nkry7u7vF5XINqc8Kh8Pi9Xpz8vFs0vjjjz8ura2tmQTwSK6y6+OS9HA4nDueysIHV20NyLWjUf+Q5O+urj2yY8czsnHjQuno2CEbNy6UYLBXdux4RlyuYzlJ+V+q2Orq2iOhkFt8vk4JBJwSDvdLX9+JHOj2+x3S1tYkwaBLYjGtBtNk8YPSFwsMkYFv3L1bqseNkz4ZKg+vv/56yX/qKWkTTQRfcPPNcskPfyiIyM39/TJp8mR588MP5RlRsLxfVNLtEJFu0eRvh4i0Z9Z7RQH0m6Iy8Z/L0Ooujwwkl/dGfbJw40LJfzxfGlsbxR1yizvklk5f55DE4v5wfw4M7OzcKW3uthzA6PR1Sm+wV/rD/eLwO8QX9Yk/6hdnwCkHug9oOnLQJb6oTw50DwD5LBh3BV3SE+zJAfBjrmM5IPHu8SZJhxxaubVtoQLkkGPguq9NJeE5mXevVmm5P8yA5IzsO1u1FfPovp6DA/N4DipojroHgHN2/qhH54j7df6oR/fLAv3tt4skQhmZt3+ggmtwHVZOoj1I4h0LDgLAx3SZlXeH+xTwZVO/k3G9hPuGysqz22eTxeOD5khm901IPPRJ+XXIrWnf2Vot536nBF1BCblDEvFEJNQXktduf02iPk0Od7e5JegK5mTkObCc2d/v8OfAu/OA1nl9vI4r2BP8xLpsUnnnTk0bj3gjCoxjAQW7PfsyoHm/yrj3PjMAtN9YKNJ7UEFw31G9b8vtIv52TRsPOHS9v1Ol5IPn6m/ThPGTjVrd1d+m67MS8ez1QJfIGwslnHmdDn6vZMFz9n3i8DuGAObj7uO5Oq7BEvAsuB78A1ZPoEcOdOu2+7r3qcR70HtnMBjPvseyx93TtUf8Ub80tTXJ/u4DEgiHpavLL3v2dMnChRvl4EHnJ1K6vd6IHD/uFpcrKH5/VBwOvxw96hKHwy/BYHRIkvjChRultzcoHk9Yjh1zSWenL5dAfuiQUxyOARm6xxORri6fBALn5ODnxt/m+JsH10NOBsYAgf9ou3Pg+r9pxGLKSGcNywcOqN/6mWf0dhZo79unCDeLWrMINEsJZ/uwDh7UbQb3ZHs8Az7tRYv0WG63PLFmnVx00WXyyiv94nKp5zk7zYsvviuVldXS2ZkSv19Pcc8ekSlTVspNN/29NDaKNDaektLSCnn3XZc4HAMd111deph9+4Y2gd1++0B9l9+v23o8um32dwCPRwH44IeTjCUH/NTZSzwxUM3lDw7tp04k5LavflW+u/gOreLK+LPbT52SgoICcbWeGPBqD+rN/uXPfy7Tpk6V9EfHFVAPrv6KRodWfCX0+El/YKCDurdXYhmg7D116hN1W51bt8pvp0yRzq1bJdTbm2O8+48dk1gwqPOcOqVg2+dThru1VRzbtuUA9eCKriw73bl1q7gPH5bWf/kXBeMej0R9Puk7elR8Z85IKhQUOdM2wCo7Oz9Zk+X3Kkh2dAztt/b1KyOdBduhoMg/PaPzBXwKvoMZcJ31WGc92dlu7IBPfdcet/ZkD/Znh0OSTMQk5HHmmOQsWI4G+iXkcYjPeVKS8ahEA30SCfRJNNgviWhIooF+Bb/RUG4f9Vl7htRr/aUu6+y6sNcp8UhAkvHokK7tRCKWA9zpaERSbtcQH3QqElaQ3Xl2oH86HFK2ORxS5trVo2DZ71PgHA5JOhJRVjoUUs/2pt/m/NTZ+q0sK/3xCq7BbHmqu1OBejis4DoDaEOh0Cf80FnA29raKo8//niuMmvTpk2yc+fOHMjOMtJZ5jrrn876t4PB4JCarSxT7ff7pa2tLVfxNdiXHQqFJBaLSSTik02bFmVA8lHxettl06ZFEon0SyTiE7/fIV5vh7S1NUlv71FxOg+I290moZD2WB8//qaEw/0SDveLy3Usx3hnAfnOnc9JW1uTRCJeiUb9g4B0rwSDPRIKuXP7RyLeXHd2lhn3x0JyIOO53isiX7ztNvnad78rHhlgkt9ub5f8ggLZ4XKJS7R2a9eZMzJl6lQZNmaM5OXny12rVski0UqvXlEAvSdzPctWN4kCbK8oePYPunhEQbUjczmRWdcvkvvSnu3ozQIDf9T/Ce9n1vOZ9WN/nGXOzpNlwP1Rf26fhRsXyn6n3p+dM8sADt53f/d+8UQ8OTa9198p6bhfxHdMAba3dcAXHfdrTda2hVrFFeoYqOPyHdfb3qMioa4B4J1luGM+BcNZkNz1poLmwbVdg7u1+/frfFHPANDv26f7BM4OBc+Da7dyADjjuY4FBpjoZGyAdc4C55xve5D/OseKB4eC74/7tZOJARCeBevJeI4dHuy59jv8uaqtwZ7q7DZZdjvijUhbU5v4u/y5275On7x2+2uZTmr1XMeCsZyH+vibx8XxoWMAuB90StQfHcJcO/Y6xN+t3u3sdt37uyUWjA54o0M9+liCDu2m7jumjHXvIRHPcRHfmYz3et8AII76dXmyaVBl1359vk41qa86U80lAYeIv0Nv9+zT+6N+9Vx371Gg7j4i8iQScB+TNnebHOjWaqz+cL/4o/4hPwR93G+dZbD7Qn1D1h/pPZJTfOzt2pur5vJH/eKL+IbUe2XfOwecB6TN3Sa9wV4JxoKf8GY7/I6cv9vl65dgUKu4fL7oX6y/CoVisn+/+qQdDr/s26fM8549XeL3RzP1Ws4cOFfgHJaenoAcOKBMtssVkmAwKm++eVw6Orw5ML9vX/c5cH1u/M2O/whc/4+mhRuGYQesIuLN3L4fuFlEPvXv7XcuLfy/YMTjerHZ9PLxNPEJE9SsnEn0Zvx43c9sVq/ryZNqWJ49W9ebTHDXXXr75pvB71eP9RtvwFe+ovPv2qXG5fPP1xquGTPAZKLz8GGqGxoYPXoCw4YVk05DQUEeq1bt5IYb4NOf/ioXXng+N930A2bO1BalbdugsDDE9773DU6d2oPfb+anP32cz31uIWazhpyvWgVLl8KOHZoUPmeO2sAXL47S3f1lTp8+gslUwKhRIxk27Oc88cQkbr99JqdPxxg5EszmJEePHua66w7w9tuX8OADv+TNN5/m6LFjPPnEj7n3u99V/3WxXSu3XB64eBLk2aC9G6pHs/rpp3hjcyPvvf02hXn5cKoTJlTxo8cf59DuPWzYsFFN3sX23Fzv/elPfP2b3+CdLVuYfNFF+vxm/daWzPPf3g01YyDfpv7rTCVXkjRiNiGpFO4DByi78ELMeXmEHQ6O/uM/Mv2BB7AUFpKMRNj/5JNc9M1vYh87FtfeveQPG0a0v5+Kyy8nFY1isloJOZ0cefFFahcvxj52LIZJfcGR3l6SkQgGcOTll7n4jjsw5+XR9PnPU3nVVUxdsoRUNIrrww/xHD3KZcuWQTqNGcH8L8+ph/rKT8FX7lIfdCKuVVw3fhWGVagP0GzW9dmU8OGj4PghKC5T//UNX4YRo8HdDU3/qreHVcDJIzCxFhIxeO2f4PN/DxarpoRjQH6B1m8d+RDaT8JX/kGf03iUVKGdro/exdfdSumYyVROvRYRSET9uE/uYfRFn8qlgSNCIurHdWIXFZNmkIgEKSgdSTIewXViJxUTZ2Czl9F18O2B+S65jnjIi+vkLiomXoklz45hmNQ3nU6BCIbJjOOj93L7jL34WsIeh9ZxpQFvH+lt72Ga/WkkFMQ0cgxYraS72jHsRbquZjzi9ZBufg9T/dWI34dRWgZFxRgWGxKPQcCPBP2YKsch0TBysg2jqoZ0y1at2xo+Eunr1dvzPgfhoB637iqMsmGkNm8aSBGf/3nSXe2YasaTMEzE4nFisRh5eXnYbDaCwSAWi4VIJEJzczP19fX4/X5KS0spKysDNF3carUiInR0dDBy5Micd9rr9eLz+aisrMRisdDe3k5JSQk+nw+v18uFGU+/zWbLHS+bNP6Vr3yF0tJStm3bRn19PeXlJaTT6oHv6tpFSUkVhYUjsFrt+P3tbNu2ijlzllJcPBabrQiRNOl0gs7OnZSW1lBYOIJ33nmIuXPXYbEUAEI43McLL0xl8uTPcv31zxIMOmluXp2ZZwzpdJqengOUlFTj93dQWTkTiyUfEOLxAIGAk7y8YgoKyvEmo9hLqkgD61av5q033uCV996jqLAQC2AD1v3oRxw5dIjHNmxgLVq99djDD+MrK+PBRx8lv7eXK6+6ih8//TQ3z51LIRAc9PFfiCaI56Op4E+iMrIiII0mgxuoV7sXTSqfiPq224FPx8MgaVKSwhVykW/Jx2KyUGQrIpqMsrNrJ+NKx3Fe2Xkk0gkSqYSmeBsmMCCaiLK3ey/DC4fjCrmoKKxg/Y71PPbpxyjLL8NqsrJky5JcEvlz85/j7i1383Ddw4wvG893tnyHGZUzuG7idditdh5971FWX72a0vxSAIrNJkyBk3DsSZi+VlOwMUOsBywlWsOU8GgtV/5Ive47AhX1kPCrh9paDJZiTRXf+12YfB8UT4Rdd8CZ32pFV2E1hLtgZIN6uA+vgiueV092+watALt0vfp+Xc3QfAtUfhZmvKjrfGfU62wr+WSid7YaC0MTvK32TNp4piUi2Kle4FRUq7xsJeod9p9VD3AqpvfllWm6uJqewVqoc2a3M1nAfwaKxmqNVF4JiBALpWj/oIORU0diLbBizjMTdAaJeqJsf3I79cvqKRtfRtARZOvKrRzecJjahbUs+MUCDLP6ydPJNIlwgncffpc5D87RZHCgZW0L9Y/WYx9l552H3mH+c/MxmU2aIG4ykJQQD8d5d+m71C2to3xiOZIWJJUjZth85+ZBx7yB/F/ZB1K9k2Eov0A95bvWaBJ46UT1pe/+MVz9U3j3zoEk8Gt/oV7qmBf2PDmw/urn1IedCEFhhT5vjg+gcBR0Nev1uS9CIgxxn75mshke7z9E/Orn6EtEKLIVcdp7mlXbVrGsfhnjSscRSoQIxAOMto+m3dfOqma977yy8zAbZgLxAD2hHtY0r+HhuocZUzQGEcFus9Pc3kyFvYL129ezvGE5NSU1RJJawFNsK8YRcBCIB7Sey2rnkfceYd3cdQD0hntZvW01y+qXMdI+kg+7P2Rk3lh6jxTQUDeekpK/nscTDMb485/PUlFh57zzSrn//rf57W8PsXBhLb/4xQLGj3+GXbu+xciRdkwmg1AoTjoNgUCMEyf6qaiws379dpYvb2D8+DK6ugKsXLk1l0z+0ks3/bvHPzfOjf+p8R+lhf9Pg+sJwCbAjP73cQq4R0TO/Hv7nQPX/4fHX6rlisfhm98c6Kd68UVN8nr9dTh4ECKRAbQ6dqz2YxUVaXhZdp6KCu2tWrlyYJ7HHoPRo+HOOwfW/fKXur/DoQFn69YRKhpJMm3mxAld9eMf6/SxmILp7duhtlZ3K9XvT9x7rzZ9FRZ+8lQ6OmDBAj3cs89qgJnfr/tGIlF27fojv//9fB580ODOO59j375XWbhwK08/De3t2nvtcr3KD37wA1paDuHzQST0IfkWM2vWruOyS6dz741fgMpRQwHvpJoc0H5y6xZe+cNrvPvzlymbfpFWpkRjiM3CxAsv5Oc/eZp5864bUtP1503/xt+teJg3/u3fmHbxVAXjk2o0xCwLqGNx7c6uKIcJVfrlzzDgRDuJqpEEux25eqy4z8fw6dPZtXIlFZdeyojLLiPqcjH8kkswLJYMmNMvA+5DhxheW4thGET7+0nFYoS7u/nzXXdRc/31XLFiBZJOYzKbSSUSHHz6aS5duhRJp+k7eJDC0aMx5+eTV1KCKS+PRDDI/vXrmf7QQ8T6+jj84otc8eij5FkMjEgYCgqh4xSUDYeRY/Q1GAlBLDpQxeVxKZgOeDWwLJWCf3l+AJz/3T1w4iPdJuiD86cqqD7TBlUT9deUZAI2vQzzboGKMVrX5ffpC8uWp0C7vxfGX0jKYiVtpEkl45gtNkwWrbzpOvQuheVjKSyvxH1qNxWTZmIrKKHr0Ds5EDxi/OWYrHn0trUMAudziYW89J3ey+gLGzBZbIhhYIjo30wk90VaRKtpBIiHvbhP7qZi4pXY7OXEQx4MsxWbOZ/0x0GtoxOj5jyIxzAYqMVKbd6EHNqrndSzPo2EFXRjmJCADwwDI78AiUYwCgoRk4l002u5fcwLbtHXZSKBZH6cyNV9GQZ4+hW8N1wLRUUYGKS72kmOm0hfX1+uLstisZBO65fqcDhMfn4+0WgUu12DlUSERCLBu+++y5w5c7BardjtdrxeL4FAgKqqKkwmE+l0Ore/YRh0dXUxduxYRAS/309LSwtz5sxh+PDhpNNpfD4fzc3NzJ8/ny1bttDa2sqdd95JUVEeHs9JmptXZwLJXIwceTHJZJStW7/P4cMbmDp1Edddtx6LJY9EIsw77yxl5szvEg73MWbMZZhMFkwmC/F4kJ6eg1RWXkkk4iGZjFJaWk1j4x0cPrwhU9v1WOZjN0A43MfIkVNJJILk5ekHmdO5H7t9JCaTjeLiURi2YmKWfD6zfj0HX3mFm999l1+WlWFD/8NcK0LzxIms//nPmTZvHm+jNVtXFBXxb21tmMaOZTbw/YceIs9mY9mqVVjQvuozwBrgYWAC+tKLAQkUtHvRGq4oWrn1OFACxDP3NwPDgfGxEN3ek6zatoqn5z1NT6iHJ1ueZN3cdRRYChAEq8nKKc+pHGgYVzoOZ8hJsa1YQTZw71v3srx+OaOLR5Nn1i/VqXSKpCTpCfbw+LbHWdGwggnlE4in4iRSCQqsBQTjQRwBB0/teIq1c9dSYCnAZrIRT+s2I2x5mFzNUDZVATKioWbu7brOWqy1SoYN0lHo26VAuWgi+I/B0bVw0VIouQBcLWArg3g/DJ8NkoS4R9eZMnWWhjlT1SV6PR2F/j2Z7RMD84e7tCvbUpjZ15TZN63hatnQstzXtMznRDKWCSoryazOVDHqG0hv+88qQI77FUR/HHgbaPDZx7crrobefVolVZp9VUA8lqb/eL/WYS2vx1pgpaC8gIgnwguXvMDkz05mwYsLSIQTBBwBdjy1g7nr5mK2mTHnmfGe9rLt8W3MWTqHjg866Piggxuev4GmJU05UPzpH3yaRChB+YRyAEKuUK4zO+wO545z00s3EQvEiAfi2Ipt2Ow2fO0+tq3aRsPyBsonlWPb+g248mF9bFGPguGuFgXU464B+1gIu6BwhD7v/lOwc7UC72CX7mcpVGC+ex18al2mE9wCgXbY+ThcuVSBdTIC+cMyHeNmBeCOHWAfBeXnK/AeMZW41c4xXwd55jx+9P6Pcj8IVRVXccZ7hrO+s8ysnEmBpYBIKoLFsGA2mUlJiu0d2znrPcuXLv4S8VScV4+8ygHnAdbPW09a0ogIr3z0Cju7dvLT+T8lmoziiXqIJqLkW/Mpzy9nZ9dOqkuqGV44HEF45N1HmF01my9c9IXM+9BMOBpl5wc9jKsuzwWX/bURDsc5fryf1aubWb68npqaUpzOEKWleRQWWmlubqeysoSuLj+VlSWsWdPM0qVa6FdTU8rdd2/JAekXXriRSCRJd3eAtWtbWLGigQkTyrFaTdhs5wLNzo2/rfEfgev/0bRwETklIpeKyCUiMlVEPvcfAetz479gxOOKQrOp3bHYX04TX7FCgXVFhXZXP/igstUm08C6tWsH5gFlprPzLFumQNxi0evZuUGP53Qq0+1wYG3+EyCsXauEttut5Ha2vnjOHOjpUdzucOgpvP66VmgPPpXXX1dgXVcHjY16uMJCTQ9fuVKXI0fmc8MNN/DyywaTJsHq1bOw28+wfLnO43brOfz2t7/iW9/6Ji4XPP44TJ82jYsmTMIUikAyrWxzIqHJ4fk27aE2GTCxmp9sf4/f/eE13mnaQtlltZBIaaq4YfDHrX8mmUwx9/p5cLZbu6+B93//B/5u6f384ennmXbJNH2eiu2aFN7ercx4e7euqyhXoB2KoF2nht42mzBZrVRceimt//zPDJ+m89QuXszoOXOIulzkDxvGnscfJxWJEO7uZtfKlQTOnmV4ba3efuwxUpEI5rw8hk+dSs311yszbbMRdbvZ/aMfEe3r47JHHwUR9jz+OH++6y4Ov/gitpISdj/+OMGODkwWC1csX47FZsulmHvbWhUEv/4bCPg0EfytV7W3OxwEe7EC6/07FFifN1mB9fgLdT+rTUH3lZ/SpdkMNZO0H3vCReB2wr/8DCrH637/+gt9Hj9/u86XBdKuLk2+Npn0dkk5nD6m32PjEXrbWkjGw4T7u8AwqJg4g6KK83Cf0tRu14mdYEDFpJmZ5PCZWAtLsdgKqZg0k3FXfJ6xF1+DALbCUsZcfDXJRJSuQ++QCHsJ9XcRD3sVSId8uj7qJ9TfRSLix1ZYxtiLr8FaUEI6GScRDZFOxkmTwlR/tQLmhmvBasUoK1ewHgpqine/G4nHMM1dgDH1ckzzPocxbDjGmEpSTa8hHjcUl2IUFJLuaodEnHTnWfB5dJ/s3IZJv+PbbNrtHouSPnKAVNNrerzSMszXLtBftoIBUlteU+ZcJJfq3dXVhdfr1T7bdJpEIsGWLVtIJBIYhoHX66WjowOz2cysWbNoaWnJdVf7/X6Kioro6OjA4/HQ0dGRA+Z+v5/q6mqsVisWi4VgMEhraystLS3E43F+8pOf4Pf7WbBgAdFolPr6eu68804KCgoQSeVSu7dvX09l5QxSqTjFxWNoaFhObe1Crr32xwSDPbS3f4DJZGXWrPvYvfvn1NTUYzbbSCajNDUtwTAMRo2aRjjsxmYrwmIp4ODB31Jf/yi1tQupq3uY/PxyiorGUFJSTU1NA6FQL1u3riQQcGAYJsaOvQKbrQirVTvVu85s5YUn1yK/+x073nmHn5WVYdV3OXlA/R//SCyZZMPcuYSBW9E07+SECTz25pvMAfpCIf78pz9x0cUX04cyzgYKrDcA3cBZtPe6A/1i4EUZ6jvR9PC7M/9dtAF3ocC+DlgPWCTF2g/WUlddh81so8vfxeyq2aQlzSnPKXZ07iBNmsqSSj5V8ykcAQdnfWdZuXUlrrALu82OyTDx9sm3KbAWYDVZCcaDLGlaQru/nVQ6xYTyCby44EXGlY0jmozS0tHCWd9ZeoI9FFoLcQadzK6aTXegmzs338kJzwlaOlro8HeQwoQUVoH3kPZb7/4HCJyA4TMUWEtSWcpkUMFpxRwwF+r6o2uVdT66VkHr8Jma7j18FoTODCSF9+1RICaiieO7Fuuxkn7YczcUVOoTKEkY+SlNKx/ZADGXbmtYFJT5TirQL6hQ1tp7UoG0pDNd1uhtq123kxSZX+MUdPtO6zYlNQqk88q0I9tAb1vtCrK9p4Zul58B0yarHrs4870x7odUjHQiRfPqZg5vOIy/w08ilKBpSRPJcJJbX72V+uX1GCYDa6GV4RcO54bnbwDgzXvexHvKi7/TT3VdNTa7jdov1dLwvQbMeWbmPT2PJUeXMO+peRSNKsJkMbH5zs34zvroP96Pr91H2B2moLyAe8/ey/zn52tVd48y5EFnEMNsUDaxjPnPz8fX4cNz0kPyMy8q4HXuUWXCO4uheCxMulnTv32nFHCnYvo480coy50/XJ+bnav1/tIJ2n8d7tEE8MBZBdetG7Q72zDr3/29uxRke08qC24fM/Djx9g5YCsljokCSwGjikbx8xt/TkN1Ayu3ruSU9xR5ljwq7BUs2bKEE94T5JvzsZr1B6k7Gu9gTPEYqkuriSajpCXNNROuYf289Zz2nGZx42JOek7y2Qs/y0/m/YRT3lMs2bKEUCJEgbUAu82OO+Jm2qhpdAW6KLQWcqjnEA/NeYj329/HHXZjs9gotBVQkl/Mp+rH/4fAOh5PEg4nWb26mQ0bDtPR4ae93c/KlVvp7Q1htZqor69hzZpmKirsrFmj261d24LdbsVqNbF8eQMLF9by4IOz2bGjk3Q6TVVVCS++uICKikLuuKORY8f6iMeTf/U8zo1z429xnKviOjf+MpC22ZTBfvllrdpKp2HSJGWsP/hAK7aefFLBcjoNd9yhFO+6dTrPww/Dxo2wZIlKyB97DP78Z72dSikKfvBBnTuVgv5+qK6GW2+Fp57CdqoVGzFWrBC+/GUYN04B9Z49ehgYwPFr1+rpHjyoFVvbt+tp/vSnuq66Wk+vulrl4Om04vjXX1dwfeqUyspPnIB/+Ad47rlnuO22z1FYqL8DzJwJmzdr9dcXvnAbq1Yp2EaADidEY+ALwKjhUFKkB0iloKcP4kk6z5zlgUcfwev1ctXca5l++eXM/PSnFBzH4vzq5Zf5+t/dhslihvGVykQD3/zh94lJmq//YAXTr7ic6dOmc6jzDFgtCpyzgNpkwAXjFNCXFqkMLS2krGaCnZ0cev55Rlx6KZc++CAiQtTlonDMGApHjmT4JZfQ+s//TMWll2K22Qg7nXT96U8cffllSKc5/OKLdP3pT4R7esgfNgxzXh4zHnsMW1kZyUgkB5KPvPQSkd5eDIuF2sWLcwC87+DBXBWYyWol6lEAe9E3vkHN9dczctolGG++qiy01QajKlUankqoBPzkEQXN/7Acyivgdz/TJQoeVRZeCp+9Tdlq0CovlwM8fTrndV9UGfh7f4C5n9frXadVWp5fCG9tgqJSre0yDD2XAjuUlCOpxECd1oldFJaPBQws+Xas+UVUTMzUcE28EjCwFZYwZspnsNjycR7ZSiIawFpYirWgmO7Df0JSCbLSTpPJgr/nJK4Tu7DYCkhEghiAyWxlxIQrSESCmfUBEhE/jo/eIxHxE/X3Yh82FlthKc7WD0iXFCurbLEiqZTK3EW0jqv1IyQYwDCbMSwWzDd8HsJBUk2/h4Afo7Ia8fvA20fqzT9gjBqLYS/GGDWW9AdbMaxWzDd+EQoKSW35N/0Cn04j8Rjp99/FqD4P07U3IokEAKk/bsHAhPi8OZm62TBIJpNs2bIFu92Oz+fLMdctLS1UV1djsSgzEQgEsNvtbNmyBZPJxNy5cwmFQqRSKaqqqggEAlRWVubY7K6uLvLz8ykuLs4B9mQyyZgxY/jSl77EvHnzsFgs3HnnnVRWVpJKpSgqKqKsrAybzcabb76JYZhzILqhYQVmsw2brYhAoJuSkhoWLHgRm82O39+B3T4Sh2MPw4adz/z5zyKSJpXSx15VNRvDsJClGUXS2O0j6ezcTmHhSBYs+AXDhl2AzVaE39/OW2/di9d7imCwm8OHN9DSshaz2YbFUkBxcSXJZJi33rqPRGIEy5Y+gsfrZf5VV3Ht9OlcPXMmIZRJfvdXv+Lqr3+dB00mOlHAvQyY+0//RPJXv6J+2jTmXnEF519zDQu+/GVGARWoXGwFsBCt1VqHgmU7+sWglAHwvRYYh6aOFgFLUQm5kZnDbBism7uOuuo67mq6i6qSKm6dcmtOyjqzciaxZIwdnTtoqGmgoaYhVyf0ZMuTdPm7cAad7PrWLsLJMHduvhNn0MmMyhmsaV6DN+olnopz1qtg2mKycOmYS+mP9GO32XEGndRV13HbJbdxwfALFISXjmPaqGk8teMpzKQxjq6D8mmQPwYuXQvWEgWZCb8u8yvAUgThTth1pwLmdBxqlw1UaGUlvrZSffQFo6CiDo6ugxEztJor6tTbFXXKRhsW6Hodwh0KthNBBXTu7RA8revbN+i82dqrYNfHbnfqZ1Pu/+wSlYQHOjLS8Iz4zzCgaIyuS4RVYm6yKUhPp/W2pCDo0O0Mk26XlZjHAzp/6QQw5SlQN1sh2InZFM/VXVXOrKR5jQLtbau3UT2nmvLx5aRiKUK9ITwnPDQubiTgCFA5o5Jtq7ZRXVfNRV+8iLzSPKwFVsrGlxH1RQm5QvSf7MdkM2GymmhZ10Lr6634u/xUXlmJ1W7FZreRSqRIp9K8de9beE55CPWEcmAdQJLCliVb+N2C37Ht8W2kkujjGztTgXLrBl0aJr2+a42+V80FQBpc++GfL4M/3w81V2utFob+rULdun3rBti5CsbMVJn4lQ/rcxfohMsfUNZ6z5Nw8nWw2aFgOMT88N4SSAQwGSbCiTB3N91NMB6kpqyGuuo61n6wNifr3nB4A6u3rSaaihJJRFjdvDpX11VXU0eRrYjeUC8rt67ktPc0XYEu6qrrsNvsmA0zZpNZbRVz19Md6GZU0Si6A92s3LqSnlAPddV19Ef6qa2oZVzZOF5c8CKTR0zGZrZlvg5aKC7O+3eBNUA8nmLnzk4eeGA2CxfWMnNmZa5Ka/XqZlIpoaDAwtNPz6O6uoSnn57HokVTWbGigerqUgoLbZx//jCef34+vb0hKitLOHCgh97eEBaLiXvueYvf/vYQq1ZtIxZL/bvncm6cG39r439UFv6fHedk4f8FIx5XxjoLrEEBtM+n+ulRo5TV++ADmDpV9djvvadebKV11UO9bp3OZbEowL73XgXQJpP2Y0+frvNHItqJHQrB6tXw6KNgt2uXdjgM3d1ESkYSr6hExODUKZWGf3yz/fvhyitV0Xv6tDLK69cr27xmzYAk/JZbFGiXl4PHM3S5ZAk88IDut2HDaoYPf4OdO9+jsLAQt1vB/LZtP+LgwUO88MIGXC49h6rKFEVGjNtv+zum18/m3jvvUrA9oVL/kzWAtAz4ryvKoWqUdlFn5eIXjFMgjqH91GkZoOdPdWp3db4NjrdDb7/Ocf449VQXZ/pJTUbOikc0Ixe/YByJaJSdK1fS/uab1Fx/PTN/+EP8Z85w9OWXmfLtb1NcXQ2GQSIUItLby9GXX6b2298m3NOT67kOdXcTdjopHDWKwy+9lPNaR/v7yS8rIxmNsv8nP+Gir3+dvGHD6HzvPexjx1Jx2WWICMHOTo7+6lfUfvvbFFVXk4rH6fvoI8rPPx/DbCa/uAgjGgZvP7y1cUD6XV6hy1+ug+XPKHD+zTMD8u+vLoHTrQqQK0bpc5hK6jxNryigLixSgN7fCxMuBIttwLNdOkyBdXGpAsZTx7T3GrQXu6AQOk6SqplEnKR6oifNJBEJYC0oxlpYSioawmSxkkrGMFvyMEwWJJ3EMFtxHv4T+WWjKB0zGZPZomxzLITVZieVimMyW9WrndZf5A3DRCIWysxflPNtm0xWzNY8HIf/ONT3nU5jmC2QSmF4Pep9rr9GWeXCItIdZzCKi9VbXVJKuvmPmOquguJS0m/+W05Gbvr0dRiFdmWZq8/DqB6PhAKYqs8DQEJBjPxCUlt+r/ePm6jS7zmfQTrOIB1nMF+7gNQftyhwN0wgaSQRJ/3em5iumU/CauONxkYOHz5MbW0t8+fPz4HpLHv97rvvUldXR1lZGW+88UZu2wULFuRAc5bZbm5upqGhAYvFQjQaJT8/PycpD4VCueuGYeDxeHJScoBkMonFYiEUCmGz2WhtbeWSSy4knU5iGAZGBqT09bXS0rKWOXOWMnz4BcTjQUwmCw7HHiorZ2IYBolEmHfffZg5cx6ksLACm80OGMTjQd5992Fmzbqf4cMvIJWK4fWeYdeu57j++qcAg8bGxTmZ+Pz5z9HVtYuqqpmYzXm89dYDXHfdkwSDDuLxEGBQOHoaH5jMXAxYUBn3fcAHwA0oIPahku18YDsq5+5HJeJBVAb+CPAQ2mlZjUrBY6jEO4XKwXdl7huNMtrrMpdCIIyy2WXAThRwnwcY8TDxVIw7N9/JhsMbWDR1ET+/8eekJY0p09feG+qlNL8Um9lGIp3AE/FQll+GxWThXw79C++3v8+LC15kcePinLf6h5/+IaOKRmEYBhbDQigZIpXWL9pFtiLSkiYtaaLJqP794yHK8sty8tea0hoEocxixUj4M+/vbmWha5dD4ThlnyOdymIbVgW9f75BAfUVz6s0W5L6OdG/C/JHw+HVCrrzxyhYNReAIQrKK+qg+osQcWaOs0wB+/CZ0LdbAX7CD9Yi8ByC4VfAh/fBzP+lID/Ypd5nc54yysHODPNsHbD8gLKrEVdGvj1RQWCwS3uaM+9D7cPO0zmy/u3cfxYoK222KpBOBBUoSkrZ66xNJR4Acx7JaJREulDxqM2M56RHZdgrGiibUIb3pJdtq7ZR/2g9ge4A/cf7mXjdRPLL8/F1+hgxeQTJaBLHbgejLhmFtdCKYTLoaOmgcHgh29dvp2F5A4UjCnEecDJ6+mhivhh5pXlIWnDud1I5oxJfu48dT+3ghudvoP9Ev/q1l9VTPKaYQHeA5tXNNCxrYNhEO9beP0Nl/VAPdF5pxmtu1+ciEdbnoXCUPv8i+rcxzCrh72qGimnKXO9eq7LxknH6/KbiKh33nYJdGUl5cTU5b09WGt7VDOddh69wNIsb76Cuuk5Bdctals5ZytjisRTZijjlOcXq5tWsaFjBsIJhHOw5SGVJJau2rcp5qXtDvRzvP06FvQJXyEV9TT0n+k+wtmUtT897GgBfzEexrRi71Y5hGDS3N3PLxlv47OTP8uKCF2n3tecsFoOB9f/OiMeTtLb20d7uY8aMSkSguzvA6tXNrFjRwOTJIwDh2LE+Vq3axvLlDUyYUIbNZhkC3OPxJLFYCqvVRCKRJi/PMmS/7Fz/Edg/N86N/87xNy0LPzf+hobNBsXFA8AaFLA4HErpnjkD99wD9fUq+zSboaFBwfJdd6nuet061VFHo6q9/vnP4YILVL+9e7duU1ioILyvTwH76tVKIXd1KWI2mSA/n3jxcI4Hx7JkiUEkouryujplmsNhtX+L6OHdbs1a6+xUJjscVvD73HN6OjNmDADr3bv19BMJXRYUwPPP632VlU9SXv57/u3ftpCXVwgosB4xQnjuuX/kppu+SUGBEviVlZpTJvk2KLHrF5GsRDueVMl3NA7JFFSNHmCZLRYF1iZDQTKgv46nMt95DJV9G4YC8Q6nrq8eNEciqT7aQEjnicQGjheL67aAyWTOsci1ixcjqRRHX345xzSnEwkSoRCW/Pzc+sMvvUTFpZdSMGoUhsWCfexYRl5xBUf/8R9zDDQipKJR9qxeDYbBFStWUFRTgzk/n/6PPsI+ZgwYBntXrcL94YdMXbKEoupqfXgWC4WjRuFpbcWcn08yHFaf81sbFTg3vaIsctMrKv3+1kMQj6qPerD822qF8y+G4owfMZ0Ga55Kyne/rwFnxaXKXI+frODZ7VRgXVymwDoeU8l4Ig6Tpihbnf2tUQQm1mJ0nsJaWMrYi68hEQnQ/uEbKgFPJ0klYxhmKxZbISaLjUTUT/eRrSQifkZP+QwloyYh6RSpRIxUMo6toBTDbCEe8gKQiAboPrKVZDwCJjOuEzux5BXgOrErx5SbbflgmAbk5hOv1EC1WAgRwSQG6W3vIYf3k25+D6PQjiTiCqwDAUw145XBPryf9Ad/wjCbMdVfg+mr38Z84xcxSsrAYsXUcA3GxMlI0I8xcgzS7ybV+CrEYwhpzDd8AWPaFWCxYFSfR3rHNowJF2BquIZ0b7eC7VAQ8WT2C/gxzZgDAR9GKEh9fT21tbU0NDRgMplob2/H4/GwefPmnBd727ZtiAgNDQ3U1tZSX1+fA9SbN28mlUrlmG6z2UxRURHhcJhEIkFTUxOJRAK73U48HufNN98kHo9TUlLCqFGj2LJlCx6PB1CAvXXrVoLBIFOnTgUMfL6zNDXdTSzmRyRFMOjk5Mm3CQadiKSxWguxWAqprp5DKhWjs3MHZrONWbPuY8eOZ7DZ7KTTSdrbmwkGe6isnEEw2I3Xe4qmprsAuOaa1fq3S4SHyMQtlnxKS6tpalqCx3OKuXN/TCIRAqC4eCyhUA9Ww6Aa+AgFwvcBTwFzgZFo6Bjoy9eCgmM3MAcF1j79lGE2KhkfAaxCAbWgXwSSKLAeBRSgDPgk4OdoiFkzylwPB+5F2e88VB4ekyQtHS08MPsBFtYuZN3cdZz2qly1ra+NlKSw2+z0RfoIJ8LsdezFbrOTTCeJJqNMGjaJZQ3LMBkmls5ZysLahaxoWEFVSRVnfWdzsle7xU6+JR+7zY6IsKNzRw5YC0KhrZAlW5ZQYa+gwFrAWd9ZWjpaSKUTKvM25ymz3PW6Al+TCQpGKuD98D4In1VJeJapNudpMNmuO3RZcqEC6/YNuoz367NvGPrMT1kGJZOVAS+sVvn30XUwYqay1hV1Cu4PP65/kYo5yhhf/hwkvApqSyeAJaMLsORB2UQFv1nWPOZX+XfJOAXWWfm2OQ/KJuh28aAubcUKuLPsN2RAYVTl5+a8gbnzSjIMOAPAUdK63pxHyrCz+Y7NrB22lqa7mygdV8qCFxdQNq6MeCCOr8PH7AdnY7VbqZ6jLPX7j79PqCdEWXUZ3lNetizZQtHoIoCc9Lt6TjXb129XFnzVNiwFFmrqapC0kFeWh63Ihq3Ixqhpo3jrvrcwWUxc++NrMUwGNruN6rpqWta1aCZbp59Z98/C1+kjnRQYPUN91ZFelYJH+1R6//5D4D2un/PhHvCe0BC3P90D4V5IRTTETgSKqsF9CMonwzXPqVrAd0b/buY8/fsHM8y1pQCSmef23TvBPlrnn/wlKByFxbCwvH45X679MnabnbrqOp7a8RSF1kK+u+W7pCTFCze+wCj7KACmj55OoaUwp8TY3rmdUDzEpWMupSSvhMvGXIbJMOEMOnlg9gMUWApwBBys3LoSZ9CJYRgsblxMVUkVr976KssblpNnyWPy8Mn88qZf/qeBNSjDPXnycD71qXEUF9soKLBwwQXD+eUvb8qB4Xg8lWOzV63ahgifAMlZpjw/35pjzG02CxdeOHSuc+Pc+L9pnAPX58ZfHyKqua6oUBr47rtVQ33HHco4FxSA1zugzS4qUka6pETBTzqtQLugQDXdp04pKh49WpFwOq3e69//Hi67TJFzMAi7dhEfMZZVa0zMmKH4/t57FVzX1Ske37BBcWp3twaVWyyK+xctUiAeDuvphsOK58NhZainTlWsf++9uvT7df0vfvET/vSn37F79ztMmlTGoUMK0GfOhIcf/iOhUJKqqrl0d+tDaGvT72VGKqVsMyjwHVaigDjrh7aY9ZKVbZtNkEwOIQ9AFCDH4gqS02kF5Xk2BeLpNMQSQ+fo6tH7YeB4HU6VhefZIJ7EbLFQXDOOGStXUlRdTTIWY8q3v50D2+4DB1TKbR4Kwl379kE6rYy2y0UiHGb6/fdz3oIFXPbII2AyEXY6GTF9OhGXi12PPYb/9GlSsRiXL19OwciRiAjTH3yQ0XPmYC0uJhWLEeroYO/jj5NXVkbZ+ecT7e/HsNmQeHwocA764cav6A84Ey7S5O+fr1Im++++C22H4MRhiGkaKtEwvPICuLrhlm/qPDd+JfOFMV9fUxOmKNiumqDy8OIsgJ+sbPevn9HwtIBX/d8Z/7Vp/EUZRtMgv6SC0tHnUzFppn5JKBqWk2tLOjkIFO9UtjWVwDCZScbCxENeBd+H/0h+SQVmi5VEJJCRhe8ESVMxaQbJWISKSTNyvm0jw0DZCksZM+UzhH09AFhsBUgqgRgy1HNtMpF+bwsU2DHKypF4DPP8z2P6yjf1frMZyodjlJRowFlfLxKLQNkwjKJiTOMmYuTnYxSX5lLADbMFSachEUe8/RgXTcU8/2YF5iXlmKrGqdc7vwCsNpWDBwMYZcNIt2xFLBYKCwuZN28epaWlhMNhCgsLc0DZZrPlgLdhGPh8PmbNmoXf7yeVSrFt2zZaW1uJRqPMnTuXizKJ+fF4nJqaGpqbm6msrCQQCNDY2EgwGOTqq6/GZDIRiUSwWq1cf/31hEIhotEohmEwd+7cQVLyFIFAN9df/ww2WxHJZIwxYy7jW9/aTUlJFY2Ni/F6zxCP+2hsXIxImqKi0WzZcjcmk5X5858lnU4SiXiorJxBXl4xEybMY9y4BsxmG9XVdezY8VQm9MwEGJSWjmPBghcpL59AOp1k27ZVHD68gebm1ZhMFgIBR8aH3U1NTQNJDDpQIL0LZYyfA4ZlPkZ6gJMo8DajbPJlKCvtAFYCTuAWVDLuBpbrJw+JzCWJstznA+UooM6mhI8CpgG7UUD+Y1Q2PhroAmyYqS6pxhVy8cKNL1BkK8JmtuXAg9lkzn3pdwQcXDn2SroD3dz71r04Ag5mVc2i09dJt78bgJ/d8DNqSmtISpLVzat5vfV1Cqwa8rSjcweBWICUpJhdPZveUC8PvfMQIkKhtZC66jqe3fksFfYKVjevpsJegTPcj6QiEHPDiDnw2VMKaINnYO+9EOlR5vroOv3cmPlLZbVBQbnz7QwYz1cm+rxFcNlPIG+4brNnCQTaoGiCstm7Fqvcu+pmmL5ObS5tP1UQbrFr0nikR7eLdOsxPQd0mYqrb1dSCtSynmtEAZ2tWNlmwzwIeGf+H0nFM+dsUzY1Ff8YCE/rXzQLvFOxAdAuogyuYdbjJKMD96Fum4blDdQurOWa1dfgPeulvbmdZCyJrchGSXUJod4QiXCCxsWNBJ3BnCTcnGdm26ptHN5wmA+e+ICYP5YD08jAvA3LG+ho6SCVSBF2hXnrnowEvDeEJd/CrPtm0bKuBVuRDc9JD+8//j4XffEi5v90PpZ8C5UzKwm7w5SOK8WSZ4GePcpU52ThmSyY+tUQcupzvGuNyvutdk0DtxZCxKP3G4b6rsfW6bbdu+CNW5SlNkwDkvyiKti7Xr3XJjPsew6uWKp+9spPKcB3tGBKJ5lYPpGUqPriixd9kXVz12EyTKy+ZjVVxVWc8pziO29+B2fQSYGlgLdOvsWJ/hMsblzMmOIxTBg2ISfz7g50Y2Aws3ImrpALQVjbspYNhzewtmUt4URYZebNq6mvqeeC4ReQb8nHZrFRnFf8nwbW2fFxYFxQYB0iKbfZzDlf9YoVDRlW+n9v7nPA+tz4v3GcA9fnxidHPK6AxGpVD7bLpSD4vPMGkO2aNQq6S0oGPNagiPXDD5XtXrJE5ygrU3S7Zo3u+8QTCrZ37VIzdX29IuhsOtmVV2ILe3j6aeFrX1Ov9Kc+panh6TQ8/TQcPaqYvadHTyOL+3/2Mz2NvLwBMj2ZHCDIbTaVkNfVwTPPKEC+7bZO1q9/AK/Xy+c/fxVz507ne9+bidut8xQW/oopU77OrFkmVq3SeZxO+PWv/4mqCRPY+PtNPPajH1F14QXs++ijT/qh02loO6shXTBQX3a8XUE1gL1gIKQsFh8A4ek0IMqOR+M6TzyhDHm7fhHNHW9ClW4TCGXq0TpA0qRTKZLhMPuffBLXnj3MWLmSsNNJ83330frrX4MIhWPHMuOxxyiurmbkFVdgLihQz/UvfkGktxdrcTFXrlxJrL+fXStXUjhqFNXXXZdjvI++/DKW/HwSoRB716wh7HAAcOj554n192POy6Ptd79j8te+htlmw1paiq24GJPJhPHqL6F8BHz27zS9tmKs1mwl4vr6ufErMH1WxmuNysEn1ioofuUFXY6frGDZYtXE8GEVkIzrF8bCQr2+8ZcK3G/5ln5TvOHLMOWyAdY8EoYt/6rX39qoz93Z48SDHroOvUsqEWXs1GsxW9VPTSqZ82OHPc4hoFjSKcwWG4Zhwn1qd46RLigfA0AiFqagdCQ1l302t30iEqSwfDTWwjIqp16LtaBE18dCdB18m2Q8TOmoSTnGOxHN/J2tNszzP4/4PIinD/P8z2kien7+QLBYaRkUFSGpFEYyMeCJDgb0y6Cnn3T7aUgmkXSa1DuNUFSM+DzKRAf9miQ/tkbn3LwJ8fZp6JzZoiFo2TC07X/GKCkFs0Wl6iYzPT09pNNpgsEgNpuN/Px85s6dS3V1NVu3biUUClFWVkYsFqOkpIQdO3bkwG9DQwO33noriUQiF1a2detWAgH1h9bX1zNx4kR27NhBdXV1br+sZLyjowOv18vo0aMpKSnBbDZjGAbvvPMOXq+XdFr90iaTlUQigtlsxWLJp6hoDHb7SObOXU8g4CAa9dPa+jomk5WiotHMnbseq9VOPB7MBJjZcTj2kEyGKSmpwus9w9atK6murmP+/Ocwm23EYgGczn34fO00Ni6mr6+NcNhNQ8Mypk5dxLyMrLO4eCw1NZ8iFOrB6z2JKZVgpgi9KGO8BA0gexWVaRejvmkvyiRvQxnsfJThzvqm81FgPhGVhJ8EPszMdQ8adBbOzB8CPJlt7gH6gJkoEDcBP8psPwdISpICawH1NfW5VPCVW1dSV13Hj6/9MSJDv/QbhsHalrW83vo6zqCTtKSpq65jVPEoRheNxhPxIEiO6Xv11lcJJ8Pc++a9TBs1jZK8EqLJKKF4CEfAwYzKGTiDTu7ISG7XzV2H1WRlecNyXCEXowsrMEjr50EqAv37laUOtysL3foU1HwJrvip/uKQioFrG/iPKxi+bhfUrtDrhePgip8rqO3bNQiYrwWJaf1WNgAt4VcW2rMfLnta2e9DK7XuKto9sB0CI+t1GexST7XJPMA6ZwPNQJfxYCbIDF1mQXUykwZuGJkqrZjOUzo+k0aekSvDQGCa79RAKJpVrQ0KvosUPGYbDBIhyiaWseAXCzDbzFgLrdTU12Cymkgn0lgLrdhH2nOhZy1rW5gwdwJ1D9eBkPNrN3yvgaIxRRpi9vQ8BMHX4WP+T+dTNKaI0nGlGGYDS76F6rpqAo4AiVCCLUu2YLKYmLtuLpIWWp5sYdb9s7AV2UhGk8SDcSQtjLlsDOXnlWL2H4URU/VxzVymHukZyzR0zH0IRs/Uxz9zBZTWqDz8j3dnvOpFCqDTCej9UJ+jdxarXP+mV1X+bc5XL3awS7dt3aCp4uYCuOpp9bT/6R79ccQ+EkbPIJWKkCY9hF0ushXxD5v/gd5QLwXWgk+8T66dcG1u3ZrmNQC5905xXnEuvKzCXkFfuI/lDctzyg8gd73AWkC+JX/oV71knGAsSDwZ579i/DUGOh5PEgzGzgWVnRv/rx3nPNfnxtDx8Vqu889XDbU58+vhiROKVJctG7hPRC8mk0Z6jxqlgDzTW82OHUoZm83q4S4uVlrY74dDhxRoD67meuEF4js+pLXqajo7DWbNUmYalAh3OtVbvWKF4v1UpvEkqzQPBgcOYzIpoX76tHqvq6r09B9+WE8/FoOdOxXAjxun6vfVqwcaxvbvH7CJd3Tod5bOTpWF116YwnrqjALikcMU3MYSyi7DJzuvZ1+S+XKXVvDs8kJBnoagZf3ZgZCyz5HYAIg2ZSjutrPQ54UpE3WfVErTwUuLBpjwtrMqQ+90kioqwB8NEu7uZuQVVxDs6ODwSy9x2SOPEOvv5/CLL3LZI48Q7evjWLbzuqBAfdRPPsnkr30N9759uPbtY8Zjj4EIu37wg5yHe8ZjjxFyaM1X7eLFhJ1O8keMyO0zdckSNt90U662y2SzEcqcQ+23v03ByJFYbFbMXjeGLU9l2aePQc354Pco0L3hy1qXJelMxUlKl6mUSsV/vkqB92dvU5l36XDoOKkS8DnX6uv59DFdf+KwXv7uHmWSrDb9e8Ri8OovlfUO+BSk3/gVqBhDymQMqdeqnDo3d3vcFZ/HWlCsHdaTZmLNLyYZD6n/2mwFSWOYzMTDvpyX2pJXRCISwH1qNyMmXInNXoYBhD1dmG0FmC35pNPJ3Jy2wlLC/Z2c3fsGJaMmDjl+6ZjJVNZegymZJrXl90N81KRSGGXlpBpfRVo/wnTr36uP2mRGgn4Fwc1/VNa7fITKv9Np0u81qcT77EmMiZM1tKyyGmPiZMgvwDCb1c+d6c82CosgP5/01rcwzf4MEgoMdGuPqQJbHimU7ezr6xtSjyUiNA7yYt94441s2bKFqqoqLrroImw2G+l0GlOmS729vZ3q6mo6OjrYuHEjkydPZsGCBXg8HsrKykgmkwQCAVpaWrjuuusIh8M0Nzcze/ZsQqEQY8eOJRQKsW3bNubMmUNHRwcdHR3cdNP1xOMBRNLE4wHy8kpxOvdTXDwWv7+ToqIxlJdPwGQyI5LCMEy0t3+A3T6K8vIJJJNhDMOC2ayd3G+++V1uuOF52tubsdsrCIVcVFbO5K237uXaa3+M1VpIOOwmGvUSCvVSWTkTSGM2a81XIOCgpWUt9fWPUlY2gcbGb3P1zb8mackjH2Wi30YZ7BVAJcpQe1FmO/s/ekvmvgpUxr0CZbSTmb+HFZV6z0Bl4zYUfANsBK4BxmTmGY6y2RFUTr4U9XvvAl5APdf+mA9QL3RLRwsn+k9wzYRrqCyuxISJk5mqruUNyxlXOo6zvrN0+DqoKqnCEXAwffR0fDEfo+yj6PJ1kWfV9GSLYSElKRY3LuZTNZ/iq1O/SjKdZFfXLqpKqhhfNp5oMkp/tJ/3Tr3HhPIJzKmeQyQRYZ9zH1eMvYIRtnz1XCeDkDcy40nOfGbGXMpAJ6PgOQjll0DCl/FEH4Zh0xVIZT246dSAtPuiByDqUsY6nYCi8RpSdngVTHkYCsaCZx8EjivbvfsuBdQ1C+GK5zRFvHYZFIwB67AM9pVMJ3V8kAfa9kk/tqQH/NFZb3bR2Mx5ZuawFet1RD83IVO/1a6sqpEJ7MLIVHQVkwvxyvq0UzEw5xGLW0gn00hKMOeZiQcUzAadwSG1W6l4inceeoe6pXXYR9lz21ryLJjzzBgmA88pj1Z6PVpP0dgi1o9az9RFU7nhZzcAkAgleOehd5h1/yyGXzCcRDhBMpLEdcRF9exqDTdLprEUWEgn0nTt6qKkqoSi0UX4O/0Mv2A4eWafyrQlraFyCb8+9r7DMLxWPea20sxjzvyoceZtcO5ScBx0qAS8oEJZ6WzX9TXPa76HrSjDVFv1tfP+Q9DwBET6FGxfuRS6PtAqrorpEPcRLxxNWIQ7MtkEC2sX8vS8p9l4ZCPzJs6jsriSaCrKzk7NDBhpH4ndZuek5yRrmtewomEF48vGc9Jzkk5/JzMrZ7KzaycV9go8EQ911XUIQjwV57Vjr1FZXMmc6jkUWAs+wVLHk3GO9R3LvScvHH4hNsv/f0z2/y8jHk8O8WFfeOHwc1Vb58b/deNvuuf6PzvOgev/whEMDu23/uUvFaVm70ulBsB2R4fSyc8+m2FYGarDTqfVDJ2ViXd3K2hftgxGjID77x9gxM+eVWn5unVgtxNMFfDnFiuVlWrHnjFDAXY0qsR4NqBs1ChlrNes0akmTVKlusmkp2EywSOP6P2JhNrDN2zQWq7qaj2dBx7Q3wLq6weqvF99FWbN0of04IPKlrvdMHy4PvSuLpg0PoWFlD4nVuvQ7mmTSaXdgzuvLxinoLmzR0PPzOYBv7DZ9MnrCJzsVO91vm0AcOfZBo5jteixYhm/dZ4tt0ykk/QeOED5+edjKSzEdeAAZeefj8liwVJYiKRSiAh7V62i4vLLqZk3L8NSGLS/9RY9O3cy9e67sdrtWPLzwWwm1NXF4V/8gto77qCoqop0KoUhgmvfPprvu4/quXO5dOlSlb+azbgPHGD4xReTCATIGzaMXYMC1masXImRjGPNL4C+noEu6xGj4LfPKxs95TKwZxLY/V7w9UH1xCGhY5RX6D6gX5pdTv17FBYpsC4pV7BeMUZfBOXD9W82OERt+Cj9e6Qykv10EjBI5eUTC3u1yzrbMR32KfideCXWglJAMAwTjo/ew+s4SumYyYy8YDYWWyGIaKJ0MobFpuEyHwfryk4HMyFmGpp2ds9ruXmU1Q5RUFqByWIbOP6kmeTnFWsfdjpNuvMsRnEJ0nEWysox1YxHEnHE2Y1RXKxguuEajLJhpN7YiBzej+kr38QoLVMmu7IG8XlI72rBdO0N2ntuGEgsSvpdBd1G+XDE484Bc6w2KCrGSCYRBAL+gfvKR2CkkqS7O0lUjqOxsZHW1lZuvfVWampqAA00i0QiFBYW5rqrOzs7KSoqoqioCIvFwpYtW5g/fz7JZJJYLEZeXh5Op5OSkhIKC/8f9v48Tor63vfHn1XVe/f0zDArs7EqCuIu+4hRERFMbhY5MebecxITJEETdxMwAaNghBCNQmLIcnJPTk4S1JgYFnELkWEARVxHBBmQ2ffpfa2qz++Pdy+Q5Jx77v3dx733ew6fx4NHdVdXfaq7eujuV702XyEcTdd1otEo7e3tTJo0id27d58WoqbrOtu3by+smz9/PrZtU1rqwTTT2HYWTdNxOn3YtkVPz+vU188g798Ih0/S0rKOOXPuxe+vwTST+P3VqByjqJSNphmYZgJddxKN9hKJdBbAc1vbUzQ0zMoB51U4nV48nnIcDi+WlUTXHcRifezevboQdrZkyRZGRo7hrzgbwxUgpWkcQEDvWMQb3YmA4kqEdb4PCS1rREC3F2Gb895qL8We6vbc/g2IF/teoA4RD7+FsNKp3O3LcnOkkOA0cvMpgHSc46Mf8nDLw9w35z7OqjiLtJnmQPcBxpWOoyHYQNJM4nP60DWdWCZGLBOj1FPKbTtvY+OCjWiaRjQTpdRdiqEb9EZ7CwDC6/DSPtpObaCW3lgvG1o38N2rvouhG5S4SohmokTSEar91QC0drYyNjCWls4WJpVPYtH4y9GjR4WhvnCDgC70XM/1+fIW65JvgBkTkF1xqbCQ2WgR9L51L5x7n4Dt7Cikh0VmDpAaEIDqq5NeayMXmGUmINkjXm9fg3i1z71berHd1QJeHV5QehHQahpoBqlUis/eeCPvH/kQr8dDdWU5P9q8mclTzuW1fS187eu3kzYVqXSaL3zuM9y74u+hbAIrV67id7//PW6HhtPtY+2DD7Lw6vlFcK47c95sCSuT8LJ8ingOUI8cFjl5oA5ivaTd4xg9NkqkK0L9zHocHgdW2qJrfxehj0I0zGqgdX0rzauaCTYFUUphZwWM54PJ+t7qI1gfJNwZ5tdLfs20pdNY/ORiti/fzsLHFpIYTLBnbbELu3xSOWMvHku0J1oILittKkV36ihLkU1keXnly3zswY+hGzqugItYf4xAtR+3PpoLdYsKiHZ4IDkiPmhlSxK8mRZPefi4SMYvu1f6r53y2U2kA5xecJdD3wEoaZLAMt0h5y7eA288Kh3YTp98VvTslTqv5KAEzQXqxN/9+nq47D6SZVP4MHehKQ+WLWUxGB8kno2zrmUdK+etxLRNHt3/KPc3388Lx19gwcQFNATlt3x/rJ8qfxUD8QHi2TgPtzzMquZVVPmquH3X7ayctxKf00fKTP2rvupYOsbNf7y5APJ/ev1PKXGX/NV2/7tHLJbm5pv/yHPPHeHpp29g3rwmvF7HGYB9Zvx/apwJNDsz/ufG36rlOvWxRKLYhdXZKYA4FhMJ+IkTIkXVtKJmu71dbjscxS7tdesEEN59tyBgpcSH/aMfyf779uHSMsycqejthQsukKau/LTz5slTqK2VXevqRDa+YYNgsKEhAeCZjGCo+++Xqq1f/UoY6aVLxUudfzobN8p9XReA/vTTwnDv3y/zP/64vOzq6hwRekJelmEg4WIf9RTB7ale664+eUL5zmsQX3Q+9Cxjyj7Hu3KJ4QiwTuW81+ks1FfLfJYNLqcw1p19stRzCeNKye1Uzred9107HFRdeCHJ4WGsbJbys88mNTzMGw8/TKyjg8FDh0j09nLJypWMW7SIRG8vrz/4IIneXpoWLWLaLbfgqawkNTTEaw88QLyri0B9PTPWrMFfV8fAG2+Q6O2VkLLaWuo/9jEuvOsulG2TGh3FSqcpP+ccDj70EGYyiabrTDvF822bJg6fX36cjw5Kl/WO38iPvs/cDJOmwvZf5167G0JD0lcdGhFfdGgEzpoukvLQiADudBIqqoXF/u2PxWNdXgmTz5NlZa34FZMJAdb5/mw7J4tMJQRgG0747Y/RUgmcHr+AZbef+HAPTm+Q6rNnEx/pprftFVCK+Eg3FRMuKsjCY4MnSYz2gga97+/mwz//gp73XkLZ1mld2InRHjLJCNlkjMqJl5BNRvGV1xYet80sw8cP4a+oR9MNEiNdOFxe6qcvEN81CsKjWDt+J9LvMZUwphItWCZy7ngMvWk8OJxoTROkdksp6bqefgl6wzhJFK+pQyUTUF6Bce3HwTBQeVuC04U+6/KCfERFoyIpj4TRAiUQGsHa+SzEoqhIGNX21mn1XnbDeLLZLPPmzeOGG24gGAwWAsjkY8VFV1dXIeCspEQuGLz44ovYtl2o0MpfCFZK0dTUVJB467qOaZqMjo6ye/duGhsb8fv9NDc3c+ONN3LdddfhcIjf+dRgtWAwSFlZGZpm4HR6SSQG2bXrdkZG2jEMJ3V1l9DZ2cro6HFMM0kk0nVKZZYT00ywbdsyTDNFONzBjh1fJRz+CJdLZOlS3VXFzp0riMV6mTr1BmKxPmbPvgun00s2m2DnzhWMjh7DNNNomoHbHWTOnHtztWCr0HUHwWAjhstPStMYRZjmEgQkfwh0IBLu23If02uRZO8uhLE+gbDaPYjc+xjCRrcjfukLkGCyuYiEPIRIyqtycyrEi60jbLcDAfG3A5Hc4wqL77V+j7mNcxlbMpZYJsbtu26nyl+F2+HmZPgkt++6nWMjxyR4zOkj4BLFzcp5Kwm4AvTH+jkxegKPw4PX4cXv9FPtr2bFzhW0h9qZWD4Rt8PNupZ1zG6YLec4HcG0TQKuQEEqPpwYZkb9DErcJVwz8Rpm1M+QQLPD60W+neqXgLLoh1A2HbBh5JDIxF9bJkx0+XSRfFspCSfL5l5p1TwB1q5y2c5bL+B5sEXAsuESYJ3oFFm5nZZ1h9dDy2ckNXzGjwWImynZ943bhJnO125Z6Ryw+wiAZV+6mSP7/sjbB/fziU98ii/d8hVZ/5XbWLnic7z5ylb27n6J7z3xY97vToCZpvniybz5+gHefustfvbjH7L0xs8Rj4zm/No5oJWv2bJyzzHWUww+c5UUfdpWFoLjUKYi0hXBX+MnNZpCmQplKYKNQabeMJXW9a0FH7WGxo7lO7AyFtGeKLtX7ybaE6X6vGr2rN1D/cz6gsfacBksfnIxroALw2XQOLeR/Y/uZ+KCiTTMbCAdThfmblnXgpW1CJ0Qv7fu0LnyoSuJD8bpPdSLlbYI1ATQDE2YZcMlsux4n1xQ8FWKwiD0ofRSJwflXB9YW+ytdvoEfPcdEHbfTMIrK+SiQ7BJFAAqp6B641EJTYv35Oq24jB2lswbaMwlhyuZ98hWeP0RDGyqfFU8cMUDNAYbiWVi2MouZATkPdI+p497595LqaeUvZ17ydgZXj35KrFMjEQ2gVKKMk8ZD7c8zNa2razds5ZQKlTYv9pf/W8GlrkM12kScrfD/Te3+9898j7sp5++gYaGIMuWnemyPjP+440z4PrMOH3k+61/+lOYMuX09HCXS/zTkycLM9jYKGbnnh6hlh9+OCdVjgsS7u0VQ/Ty5YJOv/ENQbbf+pag5GBQHgfZLxIRQD59Oq54CH+4h7lzFf398O1vi2R77175LjRNAbjLlolM+3Ofk15rTRPZ+AUXiEw8mRRZ+Ny5EnZ29tnw4x/LNYO8d/uxx+TpfOMbQqjPmyeYv6pKrhkcPy4vybZlv85OeUzZFH3S+aTwvNc6Gi8CYJCdk2mY1Ch92IYBLoc83lBzesJ4OlPc1+uW+UBApobIz0sDAuotW9jsZBqqxsh+uePpmo6m6zhzLLXD7y96pP/xHymbMgXd6UQzDNA0Dv/jP1J10UXoLhe6rlPS0ICmabz/s58VksKVbRPv7eXggw9SftZZeMrLMZNJ3GPGMGPNGpyBAMmBAd7dvFnC0nT9tH0DTU3MWLMGb1WVvJGDvWi//IGwz19ZBdfeUGDP2fWUsNeRUZFzTzhHWGyPV7qoX3pWXuvwAPzhn3IhZAaER4phZZGQ+LJHBgS0a8hVlLIKWHoLfPcX0DRZGO6BXvFljwxKQvmCT0kCOeD0yHnNpsJY6QQOlw+Xr4zKSZfJ494AZjpJ3XlX4fSUkAz14fSIf/G0gDLDga47qD13Pk5PIBdu5sbpDTB84k28pdVomkHd9AVkkzFAo3bax8gkwvS89zKGy0syPAAo+g6/KhlH+bTwPS+jmSZ643jsFlmnohEJjAO0c6ej1dYJ6E7EMK77JErX0RsnQDyGGhlCs+1caL0GsYh0W5smWvkY1MgQKpMWdjweQ68fB2jYe3fn0sh3ozdNwFhxH/q4idj79qDPasbKAeWTJ0/S0NBwWgDZjh07Ct3VwWCQJUuW4HQ6KSsr46qrrqKnp4eJEyfidDoxDIORkRFisZi8Hk0jmUxiWRaGYdDS0kJbWxutra1omkZZWRmlpaV0dXVhWRa2bRONRlm0aBGBQAClFJlMhjwz7XB4aGq6HLdb1AiWlaWm5gLi8X5SqRD19TMKCd+G4WLPnnW0tW0lnQ7T0rIuF0j2MErZuXCzmezbt5G2tq3s2bMOp9NLMNhIIjFMIFBDMNhAU9PltLZuwOn0sX37VwCNioqzWLz4SaLRXtLpCLonyEfiGKYKAb8pJLisHAG+ExBg7Ms9FkCA83MIqK4+5f46imnhc5Bws9UIuH4kN6cL2IgAeQUcBb6CAPkYArAfQoLUWgBdcxR6rvMhZTPqZ/D4gcepDdQWOq0f3f+opNxrOk7DSSQdYULZBDRNozfWS22gluXbl3N0+Ch+l5+B+EABOHRFu0hkE6xqXsUNU2+gP9bPsZFjmLk6O0MzCLgCVPgqCKfClHvLaQg24HF40HSHeJ7H3yRe5+rLxT+tGcJsemqEab50k4BpIyBAPDMK8RPw3oPyWTPuRnn80O3gqRZm2+Etpo1bCdC9cHijsNSZsFRoTVsF9R8X+bcCKmdBYDy8dY/IxJM5xthbmUv4FqDtcTu5rvk8tNQwxLqYNXMmH3V0QqgdTdcJWQEI1BOPRXG53IypqADDzaJP/wNerxeyCaafNw1lWwyORIVRDZ/ISdjHyut35RoX8scP1Mvnb9kkAf0OD+gGugPqZ9bjKfWQjWfZdss2or1RnF4nDreDeSvnMf2m6Sx8bCHosPCxheiGXgDGretb0R0613z/GgynwfU/u57ScaUoW4lUvH2U3at30zivkUWbFlFSV4LhNXCXuplz75wiGHcahDvC+Kv87Lx1J8mhJO6AG3+Vnx0rdhA6HhIlfCYmEu/aGVBSLwnf3S2iSippgEvvziWo2+LFnrJUvNTZpEi7x86S75N4r4SS5cFn+IT4r+O90PwIjL9GQPbFdwowN1NS3eX0ycUZ2xZf95SlMHMlGWVx+67befn4y8SzcULpEEkzyWB8kJXzVhbAbmOwkUnlkwi4AmxZsoWxgbHUBGowNAOf04dC4XV42bxoM9tu3Ma3mr9FmaeMpdOWsrJ5JW6HuwCs/5a32uVwcU7FOf9/p4b/z468D3vevCbWrWspJImf6bI+M/4jjTPg+sw4fWQyRR/133rs2DGhgfMp4M89J+z1ggVC++bN0fn47gkTYOFCAeMTJ8JPfiLm5vb2ImLOZARs9vVJqFlvr+wfiaBpRWb6Bz+A88+X6Q0Dvvc9YZ57e4XJXr5cpp03T0Bwe7tMqeeywfbvF9YZ5OkPDsrhBgbk8fvvl+2XLZNqLum9FqK9rEy2SyTkOsLgIFgKVC5MTOXDyyY35YzeviIATmUglhDmOWsWE8Hzp9jlFICcB+mlgdP3zSeE52VThl5MCLcsAeNOp3i70xl577ImROPEurp478knMTzipsynhV94992kQyHafvxjqcMCLlm1isqLL+bdzZuJdXVhZbMoy2LG6tV88tVXufi++zBTKRK9vVRMn05yZISR999H0zTMRAI7k0GZ5mkhZ4bTSdO11zL15pulGzgeJzU0hGYYuLwetB2/KVZwTZQUaCxTgsmuXSqy8PCw1GflAfAf/klY7c98SZjqU0PILFO2/fzXYM4CiI4KOz0yAIM9kgre1yX7aQjwDo/ChHPlmHnQnpO1KztLMjxAJhGm9/3d+MrGojuc9Lz3svRde4NS1eQtxT+mDtBQtknd9KtyknHQdSd1065E16XvWjccmOkEPe+9jJlJYnj8aLqDigkXk03F6X73RTLxEJnEKGY6DsouBKcNn3gT35h6QGPstCtB00XqPe1C9NnzJVTMMtFnz5d1TRMgGsbevQuiEdD0AhAHJI0cJV7pPHudzQjA9pdgXPsJcDjEX11TJzLxSAjNH8Da9QdJI7/ukxh3rUFf/CmZ0+1BZTLoiz6BVjoG3TKZO3cunZ2dmKZJc3NzIYCsqamJ8vJykct3dzMyMoLL5UIpRTKZLISQhUIhdu7cid/vJxaLkclkGBkZwefz5T4PjNNY6Ww2SyaTIRwO4/f72bFjB+FwmJGREXbu3FkA6gMDcqFidPQ4u3evpqlpHoFANaaZprf3EMnkMI2Nc/B4ynA6fSxZsoUxY6ag6w7mzVvJtGlLcbtLC7ebm1cSjw/R3v4CmqaxcOFjTJ9+E83Nq1BKEYl0Ul09neHhY3R17WfatL9j0aInsKwM7777K3btuh2lFNu3L2d4+IgEqdkmbk2jF7gFYanz3mg/xe7pgwj4/TYCqOcggWcNwLLc8mmKaeG5CEoephh4FsjNCZIm/tncsfoQYN6ZO9atSMBZPkjNsrOFkLKtbVt5dP+jfHbaZ9l83WYUihOjJ2hubGbTok0AxDIx7nnhHnwuH/FsHIfmYG7TXAKuAHfPvpu+WB/hVJiZ9TO5afpNPLbwMWr8Nbw38B6TyibhdrjpjfVS5a9ixc4VnAidwOv0cnT4KHfuupNKXyUOTT4vLdtC0wxUehDevBsqZsP4z4sf2vAK++wfJ6A5PSygG8R37akSQDzlLgGagy3it66cDc4yYbAH90rVU8UMkXyn+opVXa5yYa/942H6Gtn/jVtzPmAdzr1H/Nf5PuqSRmGSA/UCdPNJ1DkW+QebNvGJ6xeDq4R/fPJxvvXgIzRNnsrZ513MupVfo7Y6d7FaKyaC/+M//TMTJ4xjXEOtzBccn0sB18VTbOVCNXVHTvKck4zrDgGXhjv3uQaG08Bf5afl4ZYCk+yvklq08knlLH5yMYnBBNu+vI34QBxXwFVMAr+/GafPSWIoQUdLB6Pto2xbto3R9lE0XSvMGeuNEemIsG3ZNkLtIRweB8GGIIufXEz5pHJ0h07T3Cbig3GOPHeEPev24K/yc+DxAzTObcRw5+xWmi4gNzUsyiSHR/zTfQcg1gsHv5eT4BsChK98QjqrXQEw48JEpyMCss/6JOx/SNQE0U5ofw6iXbJtoEFSxssnC/B+9R6Z01sBvfshckIC5a75KZQ0YdhZVjav5IapNwAwxjMGr8PLGO8YeqI9/HjJjxlfNp47d91ZUGakrTQ6Ov2xfixlkTATLN++nPbRdul0L21kQvkEgq4gW5ZsYUrFlEJ4Wd5bffMfb+aD4Q/+CmD/70gN/58dLpcDr9fxv5wkfmacGf+vjzPg+swojkxG6N5QSNjo4WFZd+rjHR1C295+u1DCx48L9dvQIOA5FitWcg0MyJf80qUy37Jl4q3WNAk0mztXEHIyKeBw/fpCrVfGV0qo9hyOHtW45x745CflMIYhZHlvr2y+Y4eA6XHjBAz7/fKUbr1VnmZJiRDiQ0PCZnd3C5B2uSgkf+eCrQkEhIy/7z7Z5rHHhO1euRJGRwVg33OPnIaGBkinQHM54exxaPlarPZOeKNNbnf2SQBZOiOstob4rYOBYo0WmpyP0oAw2pMac+c6K/t29ErQ2dEcqw3yw2FSI1w2Tc5biV8k6HlwrpBKJr+Hti1bqJg+nURPDwcffBBPWRmXfOMbOLxe3v/JTwQkDw7y2urVJHp7SQ0PC3vtdKI7nSQGBhh88000TcPweAgdPUrF+efTtGgRvqoqyqdM4dAjj2ClUhheL8PvvMPUm2+m6dprOe+WW1DA9BUr8FRUiL92YIB3Nm0i0duLbduofAXX4hvltWg6/GqTsNEVNeKXnnhOrre6TEB4HkiDyMGv+7tijZfHJ0D61z8UiffEqbDmRzLH9lP2TSYEQF/zaWHCQ0MiNZ80FT79RZFLjgyA7sBXXluUbadiWGa6ULllpmOY6YS8KZpONhUlGR5A5WT+ViaFbWfpaXtFPL2GE81wMnT8dcK9R8gmo2QTIQaOtqLpOmY6Trj3CEPHXydQNV6AtKZTN+1Kxl/2SQHUyiYx2i1/PUqBwylp4fGYsMqWCR4vxqJPCbPdmmOWW3dLz/WNN2Ms+mTOc5nG7jwpYWfxKParLxXmVZm0/G2apqyPR9GcTvT6cZII3jAOUJI4bhiQyUg/9q4/QDwGmQzWzt+haTqlpaXMnz+fDz74AIfDQSAQYNGiRUyfPp1sNsvOnTsJBALEYjFSqRQAra2tBaDtcDgKwWT19fUcPnyYWCxGOBxmx44dDA8PU1paypIlS/B6vfT39+NyuWhoaGDfvn0cOXKEaDTKBRdcwJIlSwofaQ0NDShlF5jnSKSLUOg4O3feit9fRSQi2R4Oh4eRkWO5Wq52AMrKxnPddT/E5SqhrGw811//M8rLJ+Ny+WhomMWOHV8lkRjkuus243B4AcW4cc1ks3Fisd6CZDwS6cQwnNx44zauu24zlpVm3rxVTJv2WVyuAB6Hh1qlGIsA4F6EwbYQb3Q495EwHWGl80AZhI3ekFu6gcuBJiQtfGxu/5XAUuBuhIVWSHBZEwKqv4oEo/0OaEbA9lyECU8gndsOzYHf6S+waBsWbKAv3seKHSuIpqPMaphFfWk9STNJb6wXW9ncNuM2eqO9HOo9xLHRY9yy7RYS2QQD8QHqg/XUBmrxODz8aPGPAOiP93Ne9XnYiCpnZoPUD909+268Di+2sumL9fG1GV8jYSZImkmimSi37ryVrJlEa1sLZ91alH9HPxR/tRkTkK07JIws31tt+GFwn3xGl0wWZtpTJcx342eEpT64oriudoEw1M5SAczTVuV6pB0iRbczAsSnfF0k53ZGgPulm4p9yUqJb1t3CtDVdGFMSyex7pHvc+xYOw8/9B3wVvPdRzfz8INr6Dj+IW1vHWTVw4/z/uEPTksPf/mVP/HAQw/z29/8Fs3hlv5lOyvzG05hra10TryhyXrdUazg0vRCEJpuaIROhrAyVjH5e6XIunVDx5G7+Juv3GpZ14Jt2vgqfcxfMx9fpVwIywPyQqr491qxLZtFmxdx47YbaZjZUJhjz9o9mCmTjbUb2b58O8pWAspv2UawIcjf/f7vWPzjxaDB4icXc96N5zHSPkLooxCmHpSO6dbVItv21UgwmbcKDm6Qei2HW/7is0l45TYJOVOWVHfVzoBEn4BspWDeWgHUtTMkMTxQLwx2OHfF3s6Kp33sbDneS8ulQ91VInPaFphpbMPDuNJx+JxyPjojnSzfvpyuaBcX1l6IQ3Pwle1f4bya8+iJ9tDa2Vqorbug5gK8Ti+d4U6eO/Ic61rWUemrZO2etdjKxu/2U+opPS0VPGNlWLtnbUEBks5fTPm/PM50WZ8Z/5HHGXB9ZhTHXzLIPT2ng2uXS8zJGzfC7NnCvobFw8mxY0ILJ5OSvmzbQv8eOCA08cMPC5L1eOR+nmLesKHoyc57vb/5TVKWk3BYY/16YYrz/dK9vXJ/3ToBzhdeKOvicQHWVVXF6q7HH5fAs3zLV3+/BJO73fKy7r9fQtEuu0xCzo8dE3w3YQK88Yaw05s3i0S8rEyuOdxzj1w/WLdOCH7xOmeKku6JDVBRBiiRc0+dJED6WIdIvyc1QlWZ+KOzpnizTUsA9ORG+VEXjsk+UycVJeZ54AwQiZ/u9Ya/rv8ydPR4imm33MK4RYvQXS4qpk/nrUcfRXM4xP+8bBm1c+Zw+Oc/p/tPfyLR10fVRRfRuGAB8e5urHQab0UFnoqKAoCuvOACDJdLvNvf/S7J4WEqpk+nbcsWrHSa0rPOIjk8zIw1a/CNFTm7t7KS0NGjaFBgtdt+8hPSkShU1wnL7A/C6HCRhd75W2Gdh/tEmn3dZ6WDugDGPydvVkU1uDwCkkeHhMkfHYRP/oP4tKMh6brOz3HZ5SI9D5YLY/3CM+LPdrpkjsgIuL1yTieeIz+INANvaTW6w423tBqHy8+4Sz9J3bQrsc0sQ8cPSt6RZZJNRnG4vfS0vUI2FcVweU/pv34tlwzeQ+XESygdOwVf+djTHveVFf3WTk8AZWXJJEL0HX4Vb1kdmqZhZVI43H6UbWLbJqTTEmpWXoHqOIH94nY0fwC7+yQqky4y281Xo3RDwHF3B2p0WPYrKQHbxt4vMm5NN1CJOGQzWNufgWgYrWGcgGilUOS6taeeLwFmr74k0nGnExWLoo68h926GzQNffZ8LE2jo6ODTCZDR0cHpmliWRaRSITt27cTi8Wor69n79691NfX48mpLBYtWiShSLaNz+fD7XYzduxYHA4HkyZNoqmpiUgkwpEjR2htbS3Ixfv6+ggEAmQyGZRSNDc3s3z58kJaeN6/XVpaimVZxOMpFi58jBUrDjNuXDPRaB8LFmwkGGykqak513OuFwD4nj1rUcoq9F+Pjh5jx44VZDJRbNvE5Qqwf/+jhW01TSOTidPR0YJpZigpqaO+fsYpkvG1uefTwI4dKwiFPqKkpJZ4vI9XX30QC42YppFFJN+zkS/u/E/RhxAQHAAeAz5AEryTuW3y4Ho14r/OGVXwIB7qibnthxBAbSNe6gjCVN+FAOl5wEe5430aYca7cs8nq0tI2VByiIvGXoTX4WXtnrWFiqzl25dj2XLBqcxdRtAd5KyKsxiID1Dtrz7Na1rpq5TKIQ1OjJ7Asq3TOrIBTNvEY3hoDDYylBiixl+DaZtcPPZizq44mxJXCR6HB4/Dw7zGeeztfh01bZVIsdvWnVKVFRYAGTsuyd3l0+UMJXvlM7x8ugDo+PFc3dZGWRoe8U+fe5ew3VXNApQDE8FZAjOeBHclRI7BwduEFfePgxlbIDUEvkaRi6ML0M6GhM023BKwFTkJ6ZAA31A739uwnt89+3t2PvtrfF4vQwM9PPv7P/C5G/8ONJ2Jk89m1sXT2du6rwCG//ynl/nCF7/IH3/3W6acfZZ8twTHy3NHE3l0XoYeOi7gMBOjKKk6fdjZDK3rW3n/d+9TNl4quUrHl2JbNu4SN4bLwHAZp3VWW1mLXXfs4odTf8iu23dhpkxm3zWb+GC8ANCvfuRqwifD7Fyxk2BDEMNrFGTgc++bi9Pv5MZtN7Jo8yIAWr9X9F83zm0kfDJcYMC7X+vGX+Un3BHGynKK13m9/GVf8ZhctLhyE9TPE+AdPgGxHBsdk4uWXPEojF8o++VB9qv3CktteITNfu1hmTvaIe/Xy18VwD3lBtmv/TnwlIGnXHquzSQZp5f20Alu2XYL7aF2dE0vqD3W7lmLx+EhaSZ57NrH+Oy0z/Lo/kcLXuwZ9TMYiA+wr3Mfcxrn0HtnL48tfIyR5Mi/6Zn+v+Wt/veMM13WZ8Z/1HEmLfzMKI5MRlDqqbVYW7YIqPbmAEcyKSjT65Vt33kHLr1UQLOdu/KeycmUzVxAhcsl8u+urmIX1qkR3bffDnfcATkwxmuvEW9eSCgqV8I9HpF0f+Yz8PGPw5o1MvX48cJKx+Oyq20LWR6LSfhYPjG8pUVA9+CgkOUOh+yfr9X66CMB7C6XAOYDB2T/gQG4+GJ5KYYh+9fXy3FOnICJ4y38HhstGpeNstmi5/mUOlEiseLjpQFhpdFOAdZ2kd02LfmXn0tDQHtHLzTWikRcUaz3qiqXsLT88WxbAtIaarBME9vtlAquLVuY9uUv46urw3A4yCaTONxu0HWy8TiapqHnQLNnzBjiPT28/9OfFiq2Yp2dVF50EYd//vPCuj9/9as0XXst01eswE6nSQ4NUXn++VimSWpoqFDR5a+vR9N1sokEqaEh3v/JT5i2bBnJgQHGXnIxWjgXUDZ5mjDHu54S8FxZI69H1yVUx3AU/06dTnkDsxlZxmMi9a6uh8FeAdjllbDjt7DwBqhtgGPvw7jJIv9GiUT89VcFcH9uBfzLZgHg1XW5jm0XlqZQaGQS4UJ9ljtwamL4DJy+UpHGp+IYLjc9771SSAOvO+9qsqlIIQnc5QtiZTMo25RAMk1HmRksM4NhOMmm4+gOJ053IBfgpeh572UqJ16Kpuu5eWag604UNiqbxe3wgdMpieE9XVKdBQKekwm06rEisygphdAw9p6XJZAsHpNAM8tCc7nEmx2PYbe8jD7vSlQkjP3rn0nw2XWfRLNsVCqB5pEgNc1wYO14VgB5aTl2dwdasBQVjQirHQmJH3zxZ0jlPgtcLhfxeByv10tnZyfPPvssn/zkJ2loaMCyLNxuN9FoFFcu6yFfrTVv3jwikQiBQIBgMMip31uZTAaPx4Ou63R3d+P1evF4PHi93kI3tqZpKKUwDKMQpAawa9cuFiy4ilSqkz171hZ6pk+t5XI4vPKnlk3y4ov3MHv2nZSVTSQS6aCkpJ4dO75KY+NcGhvn0tq6nubmVfh8lezadQfNzSvx+arp7T2E31/Fvn0bmTdvJeXlkwiF2tmzZx3NzfdTVjaBP/7xZo4ceY4bbniapqZ5xOMDGIYbLVhPWjfoRBjplQiorc3960ck326ESX4LSfxeB3wTYam/hMi6n0ZAsTP3+o/n5tyA+LVBksVfR8B0GjiAJI9PyM1zOfBfgCiSGu4AXOkY8XSYaCZKiauEoDvIidAJXIaL1btXs7VtK/139dMX68Pn9FETqMFWwkAnzSR90T7WtkglkM/hozpQjVKKocQQ1f5quqPdvND+Aq91v8bm6zbTF+uj2l9Na2crF9RcQH+8n/Wt61k5byUTyycWqotWzlvJuLJxmGaSClcglyXQDkceg4u+n8thMCRU7Pgv4JP9EkZ2eD2ce6/4pp+tFa/2RRsFuOo5VjAbzVV2lYqUfHCPgGZ3BRy6M8dce6HvBaiYJXNOWwn+CcVcidSABKGNvAGVc3Np3g3CHisLop18/web+NUfXuGlF16gfEwlaBqWZVNVW8fTv/0tV35sPkPDw1x82Ux++8+/YPZ59bz65kd8/gtf4g9P/5qLJldBcIJ85tnZUyq3EGAZqBdveCYGZRMpfoFRlJcrGzOdITmaPT25e1wpLp8EkeWHmTGx0haaoZEOp4n3x2l5uIV5K+fhr/bTe6iX+hn1hX00XWPn13Yy9qKxTLpmEv5aP2ZSPi+cfieaoRE6FmLPuj3MWzkPX6WPF+58geb7myltKmXbsm20bW1j2tJpzLpzFvu/v59Fmxfh8WsYsQ+FhZ75LZFmm8lc6nejyLufXVKs1+o9IOf+4AZoXg8uv3ReZyLQ+m0By9c/LaBcM+TcHXhI9n15RbGqa8GWHGDvFm/36xtEcg5E0PnytmWFhO4tS7ZwbOQY61vX881538Tv9JMwE2zYu4ENCzbgcXgYSgyRzCZxOVycGD3BBTUXEMlEKHGVoGs6fqcfl8P1Vx3Wp46MmSFtpU/zYZ8ZZ8aZ8b8+zqSFnxn//uFyCZLNM8irVkFrK3z4YZHBzqPMW26R5fTpAoxjsZyUzhCqePlyWYZCIgXv6hJku25dMaJ7xgwxMd96a/HYDgfMmoXTThMMKtxuAdaNjZLivXKleLAnThSSsq9PDnv8uDDb8bjIuyMRmVIpwfOPPy5AWdelHezWWwVUV1UJkH7tNcGzoZDIxxsaBPdbloSadXQIU57NyvWFigrweXM/QdwukWXnpd5Zs3hOtb943FZSn2XkjOBOh6wP+uW+octBSvxF37vLAePqhNFu7xJm+lSmWjvlWJaVk4n3YzsNzHicwz//OVUXXYThdqM7HBIolAsxy8bjhQTxRG8vmq6jbBtfTQ0X3X03nspKqi65hNq5c4us85YtIg2/9lqm3XILrtJS3BUVlE2ZgtI0DJeLti1bCttaySSxzk5GDx9m8OBBpt96K/66OiovvFB8zV6fAOATRyRo7L9+HSqrob9LuqwHe+GfN8FQfxFMH2uTN0J3CLDOZqCmQcD4jt/kJOSneLGVDWVjBECnU/Jv6S2w8V/gv30dEjFoOySg3LJyHbI2oKFpFGTcQ8dfP80DPdj+GmY6RiYRxnD7QDOKAWaTLsO2sui6k/rpC3B6Suh9709SaW6ZdL/7EsrMYGaSDBxtxcymsDIJlG1jphMo20TZNnXnXY3bX042GSM6+BHZZAyH24fD5UNzujAxi4nhNWMhHJIu6tJy9Ibx2C9uQ7UfQTOzUrmVB9b1TfL/LZOGVBLN6SwEodktr6DXNwnjvWAJhEexezrA5RJfti0yeH3BEtANrJ3PovlLJFm8cQKapkvQ2ZH3ULZFPB5n165dZDIZstks27dvJxgM8qUvfamQHp5IJOjo6ODYsWMYhoGmaezfv5+2tjZaWlrw+Xy0trYWKrd27dqFUgrTNNm5cyfhcJi6ujoqKyvx+Xwkk8lCV/YLL7yAnasL1DT5D+N0OlmwYAFut8GePWsL4WSaZhQqseLxfkwzybZtt5BIDLJo0Sa6u1+nu/sAZWXjMQw3ixc/yYUX/gNudymzZ9+Dw+Et+LMjkR4OH/7daUx1S8s6lMrS2bmf+fPXUFY2nq6ufSxc+Bh33dVHU1Mz2WwClyvA4GAbupXBqRTrKQaUzUEArx+Rd2cRuXheHp5nqz25dXdT9F8vR5LCE0io2YzcnC3ASQRMzyLXTY6kiXcj9V2rgM9TrPHqQ1LLDaAv1sfq3avpi/WhUIwrHUd9SX2BNXMaTnxOHxW+Cmxlk8gmiGViWLbFxPKJbFmyhUnlk/C7/Hw4/CHLti0jno0Ty8RYvXs1cxvnsmHBhsKFFYcuPm2X4eLR/Y8WmG9LWYUE5XUt69DQGOPyoylLwLCvCS55AhIdIg+PtcNFj4qU23AKCM4z24ZLgPUlmwRQDR0QllspCSF7d7UsraTIwxOdkiye39+bA+apPuh+TlhzKy7HNOPi8cWGmisEjOXTujWRaHeFNO76ziZC0RQfu+Y6LrxkBjNnXIaha2z91X/nnnvv4YKLL+Hyy5u5/davMnv2LAjUcfPyFaTTGb7w5a9y4cdu4MJLL+Pd994X1tXpF/BnZcQzHOsCd5mAT6XEZ2ymIB0WMJrzhzvcLlx+12nJ3bqunwasARwuB+4SN7pDx+V3UT65nCVbllA+oRxX0EXT3CZQEDoREl/1iRALH11I49xGdq/eTehECN3QC95tM2myZ93pUvP5a+ZTNr4MzaExb9U8btx2I9dtvg7vGC/N32rG5XNgWGGRcV+1WV5buF1Sv71VAqxrZ+RCxu4Hwyeg+bW8HLxXJN/JQbn4MHPlX0jB22XOy9fLOZu5Suaa8U05CYE6kZ3n5eWRDnjlNnRN5/vXfJ/DKw7z2MLHUEoxqXwSTy5+kt5oL+Xecjbs3cAds+7AoTto7WwlkU1QW1JLfUk9cxvn0hvrLfw/03Mhnf8WsJafEP93vNVnxpnxn3WcYa7PjL8eeWn3vn2CWq+6StBmIPDXPdgPPAAvvyxx3aYp6DVfJr10qURzDwwIom1sFDS8dq1oshsbRSKulOit77kHJk2CI0fIDIT4oP5K1q7VCiT3zJnwL/8Cb75ZrNZuaRGMfuutxX7qefNkSsOQlzIyUgwwf+QRAeimKTLy+nqZo6JC8P6qVfK0+vuhtFSI+WuvlZfy5JNyenRdns/E8dLxrEVi4PcK6NVz16ssW0LMSgMCij84DudMlPsgAC6WFGDd2Sdycl0vAuX8yP/3zDPSjbXCcrucRTCfyRZ7r/Nd104HFop0JCJv6cBAgXV2l5VxaP16pi1bhqeykjfWraPj+eeZ/8Mf4qupIdHfj2/s2EJwmeZwoBkG8a6uAgMeaGrCzmRIh8Nko1Hxal9yCWYigeH1Euvo4PDPf87Um2/GX1fH6w8+yKX338/Bhx5i2le+QqCuDiudxuV2o2MLK21ZAnqf+Rn83S0ChK/5tEi3X38VvvYAjKkWL/SkqQKon/6ZbBMaknWGQ7zWmiYMdSRcVF0YhjyuacJil1UIEF94gwDvdEqAZr5vu3QMViaJ6fFg29kC++z0BskmI4Wu6/hIN4nRHurOu0oCw6wslpnGcLglMEwDK5PGcLrJpKK4vEF63nuZcO8Rzpr/BQaOtp7Se301ZjqJlgs9Gzr+eoGpNlxusQfmO7EnzcDpL0M3LextT6Pa3sJYcZ+kfvsD2Pv+jN58Ffj88v85x/RLD/VVaGMqwFaobBr7xe0ClBMxYbabr4ayMWi5Dmdr29PoC64XX3brbum8HlMprzcaRrUfyVWAlaIiYfFwAyoeI+MvYceOHdTX1zN9+nS6urp46qmnmDJlCkuWLGHbtm2F7uklS5YwMjJSYKt9Ph99fX00NDSQTCYxTZNgMEg8Hv+rPusbb7yRsWPHEo1GicViBINBWltbufrqq3E6nWiaRldXF9XV1QUvt2VZOJ06o6Mf0tKyjmuu+X4uuXt5oWt6/vw1/PCHU5k2bSmLFm0ilQqRzSaIRLoIBhsK+yUSw4Xu6u7uAwSDjfj9Vbz44j0sWrQJ00ySTkfw+2sARSIxRCYTp6xsXKEjGxTZbIKXXrqPOXPuxuutIK5pJIMN+BAgq4D9QA0CrAOIXDwElCGA2sz9ew0YB4xHwHIL8Bng4whjPYwA7pHcPG3ANCS0rDo3r517LIpIzZMIKL8rt38zYKUjtJzcQ5W/isH4IPOa5tHS0UJTaRONpY1o5JQDukEsE6Mn2lNg68YGxuJ2uHFoDmKZGKF0qMB2L522lAfmP8CfT/6Zz0z9DG7DjaUsslYWl+Eino3Lx6OyufOFO1nVvIoJZROKzHXzSiaVTcKra+gqg5bsF0B86SaRgXdsFVA9Y4t4oDNhAb9t64R5DkyUMx47AW1rRQaeGpRKrteWFfe/aD28eS9cuhk0h4BpT42A7ba1wlgneqD8QgHUqQFhplEiI9fdkjKeZzt1V84LnWPW7axUZQXHUWgsj3wkid+xHulvrr5APNP57morLUBaN8TeEjkpoE93SshXJioMrlLF7WNdso2VlQsNsR4om1yQmpsZk+EPhtmzdg/N9zdTOaXyr8D139qufFI5dtaWfmqliI/GuXb2tfSl+wiOCVJTV8OnSj7F0HNDuK5y8Wz4WQaPDRILxfiHf/gH7r79bvas20NLsIUXXn0Bh9OBpmvc9bW7+PTHP02sL0a4M0zDzAYMrwSauTMdwjq7AtJd3dNS7J8eO1NUBcrMncuT4r82E3IuWlcXmegrN0kYmrIFWOfXz3nglP7sIZF/p0JyzpMDAuwDDTJv62qom0t82hc4NnqcdS3rWNW8iu5IN5/a+imevuFp5jXNYyA+gNfhZSQ5Qmekkxn1MwilQpR5ynBoUie47BTm+8nFT+J1eDFtE5fhwuU4A57PjDPj/8T4HzHXZ8D1mfG3R17+3dMjyWGrVklFl2XB0aPCQK9aBU1Nwmr39QmIqawUNvq++6RUuqlJ0sRiMQkv27CheAylhPW+7z65nUe7X/sasQc2cvM9YwoYffNmIXRvv12CxgYHBaOvXCmS8N7e01XnK1cKTm9vL97v6oIlS2DbtuJ2998vHuuuLnjhBTjrLGHG162Tpz95sjDiq1YVX57TKdcczj3bwmnY0kedl227nAKqA17xWHf2CejNJ4IXtnPIb6TjXSL/LisRYBzwyTk2DAHb6UwROHtyX5xWTiqd92yfKhGf2AAnuuGsJgjHyHpdKNtm8I038IwZQ2pkhMC4cfS1tFA7Zw6+mhqiXV28v2VLAfye+4Uv4AwG8ZSXY6VSKMDh8ZAaGcEzZgwAg2+9ReX555Po7aUtJ/P2NzRgp9MYHg/ZaJRsPI4zEEAzDNLDwxhuN+lwmEBDA8nBQVID/dROaEDbngOzVWPh6DvCOvsCAp5HBqSma8dv4KYVwlL7/MJyl1YIg32sTWTdDqf4tNOnAOTRQdkuMipp5McPw+Spcu7/ZTPsf0Vk4R//vGz3y1Ok4p+5GaukjEwqTDYZwz+mDtsy6f+ghZop83IqAOh7fzc158wr/FnbZhbD7UPTNOy85NvhkvUuD2g6mUSIofbXGTv1CsxMksFjB6iceClmOoGvfCzKtuh9fzfh3iOMu/STOL0BhtoPUnvu5QCEe4+SigxRO+0KDEuh8nLvhZ9Ac7pQsQiq/QiquxNjwRKRcZgW1s7fodreQpt+iVRxmSaaYaBCowWZuKSHx4pAfOEnIB4rJoQfeQ/9hr9Hb5qIymawX9wm0vCKKuyTxyVVPB5DxSLoDePIGg6sHGsMwhzH43EymQxlZWVEIhH27NnD7NmzKS8vZ8eOHQWwff3115PJZEin07jdblwuF6FQiL1793L11VfjdrvFN55jo6PRKLt372b27Nm8/vrrXHnllQUpejqdLhzP6XTi8/nIZrNoWpZMZgSfrwLQSCZDZLNR9u5dz4IFG3A4PHR2tuL31xCP99PUNI8dO1Zw1VXfJZuNk8nEKCsbTzI5QjaboKVlHbNn30UiMUxDw2x03cjJzOO89NK9zJlzD9FoD7W1F+JweMhmEyLzV+JJdjp9ZDIxMpkYfn8NluEk6vShconh64FvIGzzpYgsPC/tdiOschYB4FWIj1pHpN4XnvIR/w7CWnchKeMzEfCeRVhqHQHWWm79XuBiBMSHgVIEgCeAZDZJdPiogIZ5qxhbIhafUCpEuaccp+FkxY4VPLHoCfrj/QXwfNP0m/jR4h9h2RYKAd/xTLwAvvOVREkzKV8ZKO598V7um3sfDcGGgmdb1wS0Pf3+01w1/iqqAlUoVEF67tNsjPSgSLbNhFQkmbEciF4pgWX7vyjs8rynBTybCanKuvgx8V3ngfSlm3Lfkb054LwKkt0iIQ9MhGj7KYC6C/68pAjgzbgw285SAXdWUpapftnXzgroNrwC9nOSbKKdIuX2VMjjWg7Q5lPGrbQsTwXHTv/pMnArJetdJfJ9q7IC6sm9yaF2AYneSiidKJ5sbKkaywecUZR9O9yOvwmsAdKxNH+8+Y+0bW3jczs+R+2FtaTDadylblwlLiKDEfa8toeZk2eyb/0+jk48ys4/7+TrjV9nzdtreOA7DzDvnHns+PYO7nn1Hl564SUm1U8iaSfx6l7S4TTDiWEum38Z7x18j/TxNNXTq8nGsnKMgAu3Iybn5dV74bJ7oaRJvNOu0pzP/Jj4pmeukteYCgkorm+WCxevr4fLNwh47mmFqgtzIZBhuSAS7wdNyXaX3CWgvX6eXLywLcCSCy3Kkhowh4eIt4qv7vwaM+pncM2kaxgbGMuKHSu4d+69TCwTO0O1v5pDvYeo8lexcd9GVjavZHL5ZG7dcSu3zbwNQzNY17KO+5vvZ1L5JNpH23loz0Osal7FORXnnAHYZ8aZ8X9gnJGFnxn/a8PrFbCbT/Beu7YYVFZZKcbnigrZ1umU8ue8XzufBNbZKebkmhqZ7447RK/tdsvSMIRuzldvrV4t23//+7hKXKxapbjpJgHTTqciEIDvfEcIdJdLVOYbNsjtSZOEsV63Tqbs6hKM2tUl99etE4Z72zbZL7++q0tIdYBPf/p05fr6nOJr82aorZXE8HzdV3e3PH2yOQAdDIikW9dzyeAadA8U+6p1TYDy4Khsb+YSaZvGwphgsdsaJZ3VmnZ6urh+CqWtaeLjtm3xZzfWCrBurJXHJtYX3hdNqYLM+/AvfoGvpgZvVRWVF11E249/TDaRIFBfz8zvfAfD7ebib3yDQEMD3krx9hk51lcphSsYxEylGDx0CF9NDeg6utvNuV/8Ip6KCsxEgpG2Nqx0GkcgAIaBw+/HcLnwNzRgZrN88N//O7rTSduWLfgqKtCefxrOng6lY+RHZNNZ8PIfBFhXjRU2uqxCpNtOtwBvTYfJ58njs6+Gz9+W8wDYECgTQH3Np2VZUgbPb4XxZ+e6W8eI13q4Hz5zczHgzOuX87nwhmLyeE8HaDB47DVOHnyWbDpB7/u7Ge1uo/fwbmzLRNkmY8/7GGY6Qd/hVyXZ2u3DNjPyeO7ipVIKw+2j572XySYlBLD67Nnir/aUUD/9agynG1/52FynrIuqyTMLoWdmKsbYqVegGU6S4UF85fXUTp0P2TRqdEgSw5d8BpxOVHgEe/cutMbx6FcvRqHET+1wFMPNFixBZTMQCUmXdaAEvb4Ru+M4amQYHE7slldEIv7iNgiUoGwbvfkq9Bv+Hi1YirXtKQk7q2+UADOlRGqezaBiEQHjO36HQhXCy0ZHR8lkMrhcLsaMGVPwSC9evBiPx4NpmoVKrXnz5IKFruuMjo6ilMrVWUWYNWsWTqeTTCZTqPiybZuSkhLmzJlDIpFg0aJFGIZBR0cH2WwWt1uARCQSKUjTARwOF9lsgu3bv0I43IHfX01Z2USuu24zADt33kZpaSNlZeMYO/ZiABYtegJd13G7g5SUjOX557+OaSZxOn3Mnn0X8fggjY1zMc0kw8NH2bZtGbFYL/X1M2hpWUd19XlEoz1s376cRGIIp9NLPD5Ab+8hLCuD0+kvMNkqHSGAwo14nO9GgPUMBEyvRxK7ncA+RK7divixSxHp9orcfRu4HRhEpOUaAqyrgNHcvnuRHwZOhO0ekU8lZiNseBUwGWHOWxE5usO22NAqPddV/iqydpY7dt1BwkzgdrhJZBNsWLCBrJWl1l/LpkWbCqnisUyM9tF2lm9fzkehjwi6gpxdcTZblmxhfNl4DN3AoTt4q+8tlFKsu2odNYEaLNtC13Q6wh2s2LGChJlg8dmLqQpUEU6HOTp8lGXbltE+2o6NjjLj8NpyCSDz1Ig8/LLN4BsHyX4Bw/Ufz4WN6dJl3fmMdF1fuhnmb4Pzvi2sMojke8aPBRRXzgbXGAHTh9dD1VwBrlXzYOI/CECXTwJoe0ik5LoDnEGRp7/77Zz8Old9pSyIdufuu6B0kiRP21lhREHYZHdQmFF3LvU7UCf7uIPFfV0lsl9eEm5n5XnoueOEj8t8wfFQc5kcS6lcwJrnNGANRdn3vwaszYwJmvRcrzi8gqZ5TUR7o+xevRtlK0LHQ/z5G39mzjlziPfFadvahnHQoKOrg8U/XozD5SA0EqJsYhlzvzMXt8fNGw+/QaQzQmlJKdEemav/RL9kP7g0Guc2Eu+Ps3v1bqI9uS/0P31duqhrZ8jFicjJYnK4UsVAsgNrRSr+xvfEg/3yVwWIX/VDAcyv3CaVXo6cAmr/Q3IRIthQDEx7YyPUzZFzbiYg3g0v3wpt/10k9mUTIdCAx0yzadET3HjejRiaQdbK8uTiJ6nyVXHbztuo9lcTcAWY2TCTjfs2irVhzzos2+KO2Xfw/X3fp9JXyfqr19MR7iBrZ3loz0P/zyWBnxlnxn/2cQZcnxn/+jjVf33//QKKLUuY5hdfFFRqGGJYnjlTmOm5c2U/pcS83NQkrPVHHwnFrJSA9OPHhe3+3e+guVnmnjsXHn0UHA5chs2kCTYbN+a7pzVOnMhVYKUFg3/60/DEE4KJ+vpk+f3vy5QNDcI4NzSIVPz++yXcrKFB7OKNjSL5njNH9nvoIZGC67qA6R07itVfmibXBh5/vNh7PWeO/OBUhiFscWlAQHE6I+neaJL+XT1G1qcysk0eBDsMAeNul7DaJX4BzHlwbgqLxeRcuvjJXpnDsoWpdjrlWA4D3M6iJ/tEHvWDpSlspcC2SQ4OUn3ppeguFxqQHhnhgq9/HZTi4IMPEvnoI7K5tGVl22TjcaxkEpQSr7Zh4PB4eOt736Pljjsw3G4SPT3EOjrQDYM3Hn4YbBtPZSXD77yDncngq6oi3tXFa2vWEOvoIFBXx4w1a9B0nXO/+EWMkhLUZ26GGVfISf7wPUn3njBFgHEyDtFwTi6v57zQSrqs5YlCexuMDMr5+uXjOYA+WSq5miYLA774RgHfGkUf9o7fSIr4578mwWcAH+U8339/h4SpTZ4GmlYAuYbDRdWkop9aN5wCnpVisP01vOVjsTJJut99ETOdQNMNzHSCbCKEbogs2TemnqH2g+gOp1RmKUkPV2jYlingOx7CNjNkk1Hqp18NuoHDU0JP2ytk4iE8wUrMdBwNIU5UNAIOSerWNA0MB1rjeOz9e9BcLjSnC1xuAbxlFRhLPoPmckM6LfVcDeNA2cUua7cbzePBWPIZ6a9esAScLjSnE8rGoI+bBA5n8RgTz0afdxVoGiqVBLcbvb4Je9+fUW1vQSZLOBxm9uzZxGIx0uk0qVSKaDTKr371K1544QVisRh+vx+n00l5eTmLFy+mtLS00G9dXV1NIpFgx44d1NbWUlFRgWmahVqvvOcaIBgM0tTUVEgLb2xsxOl04vf70TSNhoYGIpEIs2fPRtd14vFoIQlc/NAWw8NH2LZtGdFoD/X1M9izZy267iCRGKKjowVN03E4vKTTURwOL1deuQ6Hw4tpJtm3T5LGNU3HMFzEYn0cOfIcra3rmThxAfPmrUTXHezf/yiNjXNx5NJ7o9GeXD3XrYTDJ3G5RJ6uuUo4gcZXEZZ4APFb+5Av8E0IEF6BAN8uoBL4bu5+PvG7B5F2b0Vk3TYSRjYT2IhIyjtz+6xA/Nc2cAyI5fYFkYXfCnyI+Lt7AbfhYtOiTdx43o0c6j1EX7SPGfUzWLdnHSPJEeKZOAPxAd7ofYOT4ZPcuvNWGkobCLgCGJqB3+VnbuNc1u9dj0IRy8TojfVi2RaxTIzh5DAz62eiaZqEO+kuHLqDSl8lfqef2Q2zC3VFJ0InCLgCBFwB7ptzH3WBOgxstHxKeNtaYW3fuA0++hdhjV1lAqpn/hTcVTDQAtO+KSx2vnLL1yh91XZWEr6TvVLVlY3mgKxH2OZLNsG4G8VXHT8JFz2WO3G5tofK2QLAlSXMddtaeV52Rtji8EeyXel4YZ3TEXLfNkWfNOQAcM4jbVs5BjubY05tAduZmOwT7ZTPRjsrt+1s8X5wHAU/kp3J1XVlcv3X/3PKRjNjMnxkmFhvDN2pSy3WiRCx3hhtW9vIRDPsXb+XxrmNODwOxs0fx4oPVvBm6Ztcv+R6lKl44MsPsPqB1UyeMpkLZl7Ayq+t5Lz55/H6j14HDX7xu19w1+67uObvruEHj/yAyvJKkYEH3SzatAh30I2ylVRnxftg3DUiA39t3enJ4fO/D184LEvdCTNWwrk3CVutafLPXwvNj8i57d1XBOsHN4i64KrN8MltcNk3BEQDpEbBGYBL7oDuVyExkKtaUzD4Fp3hzoKi40D3AU6ETvBW31v84u1fcPuu21Eo/E7/aQnfHqeHcyrO4YeLf4iu6ax6ZRVNpU3/TyeBnxlnxn/mcQZcnxn/+nC5RAr+05/ClCnF9Zs2CU28erWA5IsuEkC9aRPceKNQu52d8uX01a8Kar3sMkHAJ04Iyp0zR8B2c3OxAuzGGwXBxmLQ3o5mW7jdip4eYZk7O+VwBw5IQLnPB7fdJrZtv78Ijk/F6hs2yNI05VpAntn2eqUprKVF9psxQ5bRqPwumTWrGIw2OChPacOG4nUGwxB7rmbZApI7+4qA1+kUgG0rAX1OZ9GLffY48LoFJCuKaeDHOgRk20r2NXQB5R92yEYT6ou1Ww21xdCzvM9bKQHnE+pl7kwW29CJd3fz+oMP4q2pYdx11wFgWxbemhre3LiR5NAQU/7bf8Ph9aIZBtlYDMPtJjUywugHHwgbmbvCYJkmF955J9c+8wzeqioMl4vyc84hMTjIuV/4AobPhzffff3d7xLr7CTR11eo3lKmSby3FzQNb3U1rvIxuV7qQZFol5QJqJ56kQDb0Aj84Z+ExR7oEcn2yACc/FDuZzNQP0H20TTZx7Jkv+2/lnMSLIPSchjsF/B+aie2psuPWZdb/tWPl87roV5ht/u7AXB6Sqg77yo0w4nD7aP67NlShaUUqYjUWdWddxVldecydPxgIfhMQ2Gm4zjcfnree4l0bJRgzWRqz70cw+nB4fZjphN4glVoKJzeILXnXI6Zli7tPFtupWJkk1EqJ16CmY5jWxlhuDUNpSH+Zg00tweVyWC/+pKw1gsWozJp7I4TMDqE/afnUaNDIvm2TCgJos/5mFRqxXId17qG5g+gMmmsHc9CJCSqktAwdtdJNNNC2dYpx1iCFixFKx8jP8PNLKqvBxxO8XVPuxDdYRAMBtm3bx/BYJBAIIDH48Hv9zN9+nSuueYaSkpKcpVX8iP/xRdfJJ1Os2fPHtra2shms7S0tFBfX49SiuHhYV588UVM06SsrIzrrruOYDAo75dTsrDzLHdXVxeBgAASXdcLvu0DBw6glKKkpIx581YybdpSmpvvJ5uN09q6nra2rQVAPHv23VhWFofDQ339DDo6WgiHOxgZ+ZBw+CQDA+9imgnC4c5cX3Yno6Pt7NjxVYLBem644Wmam+/H662gtHQcLleARYue4NxzP82rrz7E6Ohxmprmsm/fRo4ceY5otAen08d11/0I2+mlW9PYiMiw8wFjx5AO6iQCiO9FmOp5iHT7sdzHy5zc+osR9nop8C3kyz+JAOhViNS7GWHH5yKMeDR3vBxnxz0ImL4DCVNzIuDcj/T1vtb9GjPqZxB0B/nstM/y5OInKXWXUhOooSfaw6V1l9IV6eKF9hfoCgsD2xfvo32knRvPu5EnFj2BQhWqt5JmsiAj74x0opTi2MgxEmaCeDZOf7wfv8vPDVNvKFQadYQ7OBk+ybGRY9SW1NIZ6SRhpiX9u2kpTL1ParAueUJAsLtcgObQPvFWjx6CfZ+TnuuqecXqrkSnAOZDt0P5BeCpFoba4RGp9xtfz138S4qfOx9wpuunhJ/1SUf2tJUCyDOj4uNuWirgPNYl4NnO5iTdafE+h4/ngHVQwsckyEGCyZx+mUvTZNtMtAgOnTkVVb5ruRCa1i3vfKy74KcuPj4ic7uD/HUIyL89rJRFuCNMNpZl1+27qLmgBl+Vj6Z5TUy/aTruUjcL1i+Q8LJv72a0fZR169Zx/KPj3PX3d7FjxQ5+/tzPuePzd3D40GH+/MyfWf3garTpGtc+di2ZWIZzTp7Dvh37eOX5V9j4xEZOvH0CgGwiy85bd5JNZNEdWrE6K1Av53bGN4sBZpohlWitq2WpTAkou/rH8n5a6dxFC1O+J165tdhZfe5N4sOOnJCU8ECD/P28eo9cuMgmcmz1WbDgJzBmiigIDBeZ2svoiHQSz8ZZsXMFVf4qOsIdzGqYVQTSDg9ep5dzKs7hp9f/lCmVUwp+6qA7SIW3gh8t/hFTKqf8ze3OjDPjzPi/P86A6zPj3x4ul8RkA3zwAXz5yxKd3dtbpHH1nBzaNIXFrq6WbXRdtnn4YfmC7+2VdPFjx4RW7ukRNDs6KpLyW28V8G0YZAJjaD/p5MABjcsvl0y05mZhnC+4AA4eFBx1550CrB0OAbz5BrCHHhJQvX69TD0wIID6pz+V8PJ0WkD6jBny8q65Rra3bcGt/f0y/9BQsfI7EJD8tvHjc00qurC8hGMi785XbbmdEnDW3ikTOgxZHj0pQDpjyuT5buzT5OI5MK4hALuhRrzax7uE5db1YvK4rhUIDdIZ2dbQ5VyjgW0XUrsTvb3ij/7xj7FSKTzl5VRddBGp0VG8VVWAvBZPRQXKskj29eGpqOC1Bx4QVjseRzcM0qEQsY4OYh0dvLNpE+lQiPIpU0gND5Po7uaNhx8mOTxM5YUXSm/2xRcz/4c/ZNott6CARG8vyrLQDQPDyPkJd/xG2OQXnoEJ50BZpZyfl56Fs6YL8C2rEPn4rqchUCoJ4Mm4dFKXVwnwnnK+bOv2wIJPCjD8px8I2B7phx+tlS7sm24VIJ9Ny3EGeuFffijnzbYF7L+1X45h22STEWGUE2G0nJ8t3HuU3rZX8FfUkU3F5PFUlJpzmgs91Wg6/jH1ZFNxIv3tDB1/HdvKoBvO3EULJ4bHn2O7XyKbDKNsC2/ZWBzuAGV152I4XBgun3iuj7+B0xvA4fJLF7Vt0XdkL0rTIZHA2vWHYid1PI7mdINuoNXUYbcKi6wiYfFS54CyVlGF5nAKg13fCNEI1ranIRoRuff+PWi6juYLoNXUyTHCIfRZzeByo7ncWC/ukL+34SFJI69rRCkbvD70+ddga3qBKY7kAvb6+voAWLx4Mclkko6ODkZHR9m2bRuhUIiFCxdiWVZBIu52u5k3bx6TJk0ik8nQ2tpaANrZbBbTNEkkEti2XUgFdzgcuN1u6uvrC93aSincbjf79++nvr6eaDRKZ2cnfn818+evIRhsBGDOnHsLYLukpB6Ppxyn04fLFSCZHKam5gKcTj/19TNyy8uIRHpoaprHihUfMG7cfBwOT66e63s0Nc2lrGw8DocbXTcYGTnG9u3LicX6aGiYTSTShVKKhQsfY+nS31FSUkdHx14ikQ5S0R4uVIp+RNI9jADmdRSTvg8hid3fRhjnuUhv9QAi7T6GgGID+Cniw1bAwdz2XgS4n0S6sP8e2AzU5453CyIvn5Gbx4H0ZufTwi0rRVekiwtqLsC0TZFtK4vbdt5G+2g7sUyM2Q2zGUmOMLdxLu23tXPx2IvpifbQGe6kyl/FrTtvpSPcAVAAyuF0mO+1fo/Lmy5nbGAsfpefC2ouwKE56I/10z7SjkN34HP6uL/5fpZOW8qM+hms3bOWKn8VkXSER/c/StrKorx1AqgDk+TvVVkwfFBYX5UVwJzoFUC9+H3pph5sFQZ7/E3SZa27YMod4s0dOQTxEyI1T/blerDXyxdDPvisYqZ8WfxlArm7Ggb2CBB3lksvNpoAQXeZgNx0KOeVzuZ81Gn5XtAccoxTgXi4XdjXfBBZ+HixbSLaKaBcdwoQ9FZKaJpS4q0mB8Q1Q44/ZoowraF28WmrYl7CvzWyySxKKcZdPo5ob5SG2Q3E++Psun0X4ZNhFv9wMU6fE6ffiTvoZvbds3n08Ud56bWX+PWPfk12KMuUm6ewc/dOlt+7HMNlUKbKmHfFPPa/vp/nb38eZSuuXHslsb4YF11yEfX19fx85c+xMhYt61pOSxTnyFZhq600vLRcpN/X/AyCTfLa33gsJwvPbaNpch5fWi7nDOScpEOyXXJAJN8vf1W6raOdxWO4/HDJnXDyRbnvqxKQ7g7K+w1guHA5/cxsmFlIs9+4byMz6mfgNJx/BZD/tYTvv1x/Jgn8zDgz/t8bZwLNzox/3/jLlPAtWyS4DCAYFLZ67dpif3W+OHrZMqF6m5oEfA4PC7jOF09PmgRjxggFnZ/7ySeJaSX0DTmoqRG8E4uJGv2ee6SGK5USgH3hhUKaZ7OCOw8cEAC+ezfs3Qs/+IE83tEhT+/eeyWwzDBEqb5xo4SdTZwo37eplDDk69efHoJ2003wox/J4z5frobab6EfOykMcnW5PIFTO6lBwK4rJ9OzFcST4qE+1iH7jQnK4x92yD5OhzDPTkfx3Edi8N4xkZSPr4PX24q3DUOeuGnJ8W27EIBmahDtko7rfFhZ9aWX0nDllYWwMWcggJVKMfzuu3iqqgiOGweAlckw/M47EoIWCjFm6lQMl4vBQ4fwVFRw5Je/pPLCC2m8+moMrxczFuOtRx/lo23baLr2Wi5ZuZLU4GAh7Mw3dixvbdzIRXfdheZwEOvsJFBVidPnk3TvZEJ8z16fyLsnngsXzxGAvPO34oUuLZcfQB3tcru0QiQK+b7qrz1QDD/Lh5k9vvr0HuvFN4rkO9djjVKy/6kd24UgtDFYdU10v/si4d4jlNWdS930q1G2SWK0D6e3BKe3hJ53Xzol7XsBoKTuPRnGTMXxlddiZdLYVgaH249tZrHMFMMn3qTuvCvpzu2fDy4rpJJ7AiRG+/GPqS1sk08UT8dDONx+dAUGunib294Spvja/wKxKCoSQq9vQuVVE/EYWkkQu+MEms8vaeLzrkIrr0CNDoPDgb17V3Ge+dfIhYpkXEBzfRMqEhJQ7S8RbzWAwyEtcNufOS0sTa4+KUxNI3VKKFkmk8E0TUpKSrBtm+eff57Zs2ezb9++QpDZFVdcUQgwsywLwzAKwWV5ufepYWamaZJKpchms0QiEerrJXcgz1S/+OKLzJkzB6fTicfjweFwYFkWXV1d1NSU0d//On5/FcnkKI2Nc3PvoY2uO7GsDKaZxOUqQSkrV/8lAVu7dt3OvHkriUS6GDv2YhKJQSKRbmprLySdDuNylRQk5PF4Hy5XCS6Xn23bbimkkV977ePEYn20tKxj3rxvUl4+iT/+8UvMnn0XBw48TvOix1HeMYwi8uwAwkC3I9LwhxAJeAx4AUkI34R4p+uBhzk92TuF1G2NRQD12wj77ETSxC+gGJK2CpGKL0EY7zUUZeNbc+t+Cqh0HKVMToRO8HDLw9w7515qA7U8c/gZ9nbuZc38NVT6Knmt+zUagg10RbqYUT8Dhy4d5IPxQUKpEAPxAeY2zSWZTRJOh6n115I0k9jKpi/Wd1qXddJM4nV4yVgZslYWj8NDxsrgdrgxNIOMlcFpODFtk6ChYyggcfL0sLHyC4S5fP9hOPc+CJ4tgHLkdSg7PyfdTou/OhvLyb+dkradHYXD3ysGnU1fI/Ly1EAxKC0wUWTj6aFi+FlgAgy8Ci2fEY/3jCcl6Mxdnbtqm2eS7ZwdJp/i3SD3B96SZPB8V3a0E5IhqLkop2JCgGAmLpJvOy2g2x3MXYw1AT2XQJ5PtPbIXCp3tfbUcLNT0sL/tZFNZkmFUqQjafzVfvm/59CJ9kQ5/tJxyieW0zinkWwiS/87/dScX8NjP3iM3+34HX98+o9U1lSSTWR5/q7nWbZ9Gb/5l99wxeVXcOzgMeYvmc/PN/2cS8+/lKMnjlLnraN+Zj0nu07ysWs+xrat25g6bSpo0H2gm9LGUsonleMaeBkCjRA9KV7qLx4VVvm1dSIBD46Dnn1QNwvQ5DW+9BU4/CthuGevEVm4mYLdtxe7sL1V8v7XzRGZuKtULl5kIsJeX3Zfka3+GyOZTfLhyIes3SO97k3BJnwu3xlwfGacGf8fGv+jQLNCSMz/l/7V19erM+P/8EinlXr7baWWLpVlV1fx9vCw3AZZDg4qFYkoFQ4rNTqq1FtvKdXdLbcjEaXefFO2e+stWXf0qNxeulSpd95RanRUJWKm6umx1RtvKLVtm0x58KBSO3YUNz10SJ7Gtm3Fda+9JtMNDSnV06NULCa3T31677+vVCh0+rrDh+WpjYz89UtZulSe/ltvydxvv63U888rZWdNpbLZ4r9MVqm2Y0rtfl2poVGlonFZptJKRWJyO52Rbf/Wumy2eDsal7micbmfv51KK/V+u1KplBwvm1XqgxNyP5uV+V49qNT77SoTjap0JKKSIyMq0tGh4gMDKh0Oq1QopBJDQ3I7HFb7Vq5U8d5elRgYUJlYTKXDYZWJx9XI4cNqz513qnh/vxr54AO158471cjhwyr80Ucq3t+vhnOPD733nor396t4f7/q2r1bJUdGVCYeV3vvvVf9aupUtefOO1U6FCrOH4moPXfeqVKDA8oeHVaqo12pJ9cq9dGHSvV3yf2fb1QqEVeqp0Opl36v1E8eUarnpFLxmFKJmFKphFKppFKxqFKRkFJ9XUrFo0q9vV+p5dfLfJGQ3I+Gitsm47LtyKAc550DSo0OKRUNn75vPKZUMqHMTErFR/vUyTf+qDKJiMokoyoZHVaZZFSZ2bTKZlIqm4qrVHREZdMJlU0nVTI6rJLRYRXua1fx0R518o0/qkR4QJnZtDIzKZXNpFTHoe1q8PgbKp2IqESoX3Uc2q6ymZRKRofV4PE3VOebO1U2k1JmJqXMbFqlExEV6W+XY2RSKpOMKTObVnYqqayhAWXHoso80qasvh5lJxPKPPq+skKjyhrsV1Yirqy+bpV96p+U1dctjx9pU1bXSWUeaVN2MqnsVErZyYSyek/ZLrcuv232mV8pKxKW7RJxZedu26mUsk89RmhUjhkJKWuwX6VSKdXd3a2eeeYZFQ6HVTKZVIlEQj377LMqEomovr4+deTIEdXb26uOHDmi4vG4SiQSqru7Wx05ckQlEgkViUTU0aNHVSwWU6lUSkUikcLjsVhMDQ0Nqd7eXjU0NKS6uroK8z311FOqu7tb7d+/v7DumWeeUZFIREUiETUwMKCuv36xmjixSU2ZMl5deeV89eabe9XRozvUpZderM4/f7qaPv08NXXquQpQf/jDEyoWk32mT5+mams1dc45E5Smaeo3v/nv6ujRHSqRGFHhcJd65pmbVHf3QZVKRVV390H11FNLC/cjkR41OHhYRSI9KpEYUU89tVStWYN66qmlKhLpUT09h9SRI9tUJNKtIpm4esu21VKl1JtKqW255YhSKqKU6sndv0kp1ZVbH1JKDSillir50lyaW/d27vaB3DzvK6UGlVJRpdRo7vbhv9gvP89buTkiudtLlVJv5I73fDatIqmI+mDwA/VG9xuqP9qvRpOjKpQMqYHYgBpNjKrnP3xedYY6VU+kR3WGOtVNz9yk3up9Sx0dOqre6n1LLX1qqXqr9y0VSobU231vq6VPLVVv976tIqmIGooPqW1HtinPQx619KmlKpqKqp5IjzrYfVDd9MxNqifSo8LJsIqmomo4Pqx6Ij2nzT8Y6VZ2OqTUnqVK/QpZDu5XKnRYbv/Go1T4qFLJQaW6tik1/KZS8S65nRxUKhOT+0MHZfuRd5RK9he3H31XqUxUqb88RnJAqfCx4mOpkFJDh5QaeqMwdzLUoz6xcJY666zJ6vzzp6urr/yY+vD1XUqlo+rA3j1q5mWXqAunnaXOOWuieuThh5Uys0pZWfWzn2xR502bpgzDUI9+7xGl0jGlhj+QpZmRf+mYUsNHlMqmcuuyct/MyLZdLbI0M0rZlnzX25a83uEPZJlf/6+MbDqrUuGU6j7YrZ5a+pTqfbNXDX04pCI9ETV4eFAlRhKq9+1e9dTSp1T3G90qFU6pI28dUYAaP268mn7edHXOhHPURdMuUq/96DX1zD8+oy664CI1/bzpqqG0QV3DNeqppU+p+GBcXXHZFersCWercWXj1PlTz1ePfeMxFemJFI4V6YmoVCSlIj0hlQ31KRXpVqrvDaX+uFSp1Kgsv0fufkSpgbfldt9BpaI98u+PS2WfaK+cv5EPlQp/pFQ6qlS0W85LKqJUKlzcJxVWKptQKh1Rykz/j39OZdMqnAqrWDqm0v+O7c+MM+PM+H9rAF3q38CpZ5jrM+PfPzKZYgf2G29IWvjgoPivP/ro9HquZFJo5g0bRLdtWbB/v3ivV6w4nQHPXzHPM6+GQczykkgbWJbs+u67sqvHI9bt0lJpCrNtCIeFgd669fSarW9+U4jxcFi6rteuFfZ77FjZPxwuSsk1rSgpV0peqtOZazAy5eV8/etiK3/tNbGZj62WnmugyDKk0iLvntwk7HRDLThy/mmnUyTdTWNF1p2v0orG5X4+MVxDpObJdJHZVgAKInGRnucZ8nxFV96rfco8pmlipoqhZLF8T/VfdF3bpgSE5XuwvVVV6A4Hrz3wAB3PP8/iP/6RdzdvpuP552m69lpmrFkDwGtr1hTWTV+xAl9NDbGuLo780z9x0X33oWkaqZERzGRSPNpOJ6lQCIfHQ3JwkPLx49AtE+JReP+Q1Gvd+FXxuRlOyKSE0fbkHJ8uj0jhU0noOi5scyoJz/wcFn5G2ObyquKyeqzsn0wII+72ikTc65Xarl9tEtn5WdNknwnnQCKWqwAbhPJK7Jp6LFt6q52eAFY2g21l0Q0nutNNJj6KmUrgG1MHysa2zILPWtcNetpeybHSn8JbWlWo5dJ0h/zZ2zaZZBSXvwyUTWK0F4fbj8sXJJuKkk3G8JXVSj+3bZEY7cNbmpPxK4XDcMHIECoaRW9oAt2QBF0FamRQOqnnXYWKhLB//TO0aRdiXL9UvNeRsLDRgGYY2J0fodWPQ1M2dncHWkkQ/AE0w4m183dojeMLIWb6gsW57mL5u1d9PWgNTWi2XQigU5kU9ks7sBZ9kpOdnVRXV6PrOi+99BJz5swhGAzS09NDY2MjpmliGAa2bdPV1UVpaSkOh4NUKsW+ffu45ppriMfj7N27l+bmZkpLS8lms9i2zZ/+9Ceuuuoq+RNxudi+fTszZ848jQmfP38+fr+f559/nlmzZlFaWkp3dzcOh4N33jnEued6CASq+fa3l3P0qJutW3/I3r3fLbDSr776Ad///hb27XuZbDaG212KyxXg5MlXOX48zNKlX+DEiaNksyFaWtYxZ859AASDDTgcbjo7W9m69VNMmfJxrr/+J2QycdLpMG53KZlMgmw2RkvLOpqb76esbByx2AA+XwWapjOSiXFHsL7AFN8JfB94Ekgjvda3IFLwvFd6JdJtnUVY6iaE7b6VIuO8CZGM+xHWeyXCguuI1Dw/z2QkUfxFhBV/AvmI6s2tOwu40MwwOPwBneFOLhp7Eb3R3gLL3BXpoiHYwLjScXSEO/A6vVT5q4hn4tz/yv08suARbtt5G88dea7Q99vS0cLnn/08r33pNco95YymRgvLlJmiqbSJ3lgvq3evZm7jXOaPm4/f6afaX13ovu6N9eJz+hgbGMvtz9/Oj679Hp5Ep7DUBeb6YkgPijfa1yCMc17SPeZSYboPbxTG2VMrIWgdWyU53Nd4OhttpeSzK9kj8u9pq2Te8oslNC1/XG9dzl99AtrWkpp0F6+83smi65agaTqbvvcdnv79NnZv/w0XfuwGvvPAGj6+8ApGYibnTDuP3S+/xNTJDbx9+Dgut5uHv/sIF198Ebd/7TZIDovnunSCfGaGj4u03BUUqXm+dxlNGNlTq7vcpaf4r+0iM/4XaeF/OdKxNLZpYyZNbMvGSlv4Kn0AdLZ2UlJfQqQzwq+X/Jobt91IaWMpe9buYd7KeZQ2lbLztp3M/NpM4oNxmuY2EeoIEemMUD+zHofbQUdLB/WX1ePwOjCTJjtW7KBtaxvTlk5j1p2zKJtQRqQzwv5H93P1I1fjCriID8YJ+CO43TmfujMgryXULsz1zJVQMg5euqXYWz17jZwLZYvn3LZEdp+NCyvtq5Hb2aiw1cqGP98pXu7geDlP7mDxxFgZ+ZfzW58ZZ8aZ8R9nnKniOjP+9w2XS4CJyyUIdeNGQbIgPusHHhBNdjIpP7Bnzxb0e+yYAOtZs05PIF+1Sr7AP/xQksWOHxcZ+fHjGIait1dx++3ynTh2rEi+s1nB6nfcIYepr5dDPvYYPP88XH65PJXLL5fwctMUYN7YKH7rs84SFXsmI0+lq0vqtZLJohU8mRSP9fLl8tQSCTnmypUC6GfOlPuAvL48sNaQsLKzxwkIzPuwnU4BxA5DwHY6A6jcuTkl+dvvleWHHdJ3XVNRTBrPV2/5vbLs7IPhUO6CRA5Y5+cpDYBtoywT3eEgOThIor+/4L9u27KFbDxeuB2or+fwz39euK87HKRCIaYtW8b4JUvwVFZy6f33F7zTusNBenS0sG7ql76Es6QEZVkc/vnPOf9rX0NZFoOHDmGlUpQ0NaHnQqa8lZWYiYRUfTkcqPAIPPdLkWR/+uZc3+oImNmiZxAk9Xt0QCTcsQg0TpLb4VFJF9/xG/Fi7/gNjJ8i3mqlZK7nfilLpeR9CY+KJHzhDXDuhcXKrn/ZLCl1peUShDY6iG6a6LoTh8sHaJjpBANHWyUNHIWZiuMJVpKJh+h572WsTBKnNyjhXIaDuvOu4uz5X8Q/pg6lFIMf7sdMJ1C2Sfe7Lwmw9gULvm6H2yvgW9PluG4vPW2vkE2ESIz25pLCpRLMyiTBVqhIGC0QEFn28ID8cWsadutuqdJqeRm9vkmk3s1XSTJ4JIzmLxEQnfsBrTWMg0QMpevoTRPAH8B+ZRdK19AXfgJ9+sXg9mBcuQiUwnpxG8QkPEnzerF3/h5lGKhICGvH7wAwrlyEZlsEg0FeeuklYrEY9fX1tLS0EI/HCQQChdTvcDjMjh078Pv9hMNh/H5/ASBnMhn27t1LW1sb4XCYcDjMrl27iMfjzJgxg2g0yq5duwiFQixYsIB4PF7wazc3N+P1ejEMgwULFqDrOjt37sTv91NaWsqiRQtpaJjFvn0bMYw3OXmyg717v1tID/f5Ktm8+Xt88YtfIB7vZ/fu1USjPQCMG3c5v/3tc1x33WyUShVSx+PxfsrLJ6JpGh0dLZSU5EPNVgEa0Wgvo6MncDgE1I8ZM5nFi5/E6x3Drl134/NVomk6mubA5/Cw0rZYioDdIeB+RMYdQELJ7gWuQQDxVsSPnUXk2w1IungEkXkvzS29wJuIx9oPfC03lx+YhID3SUjgWQaRmd+HAOxkbv689NxtZfjOy99h/dfWM+fCOVw15yq23reV7zz7HWY3zOaL13+Ry2ddzmcXfJZFcxdR7i3ng7YPeOzaxzh+7DgdT3Qw9pdjufMTd/KzX/6Mi8ZexOtfep2EmeD2Xbfjd/nJ2lmqfFU0lTbh0ByUuku5d869LJy0EJ/TR4Wvgmgmyjv97+Bz+phcPpkToyc4GTrJuqvWkbUtVGCi9E0HJolH2kpKOnjlrGJw2eGN4pU2XHI7nzBuOIuhaBUziynfbWvlO0B3SS/20F6RiPubYN/nwYwIsO7YKscASHQX9ve0b+S6ay5HG3gV0Jh1+TV81D0AgXo0TScUCoPTTzwygsuhM6bUD64SLjh/OueeNQEdSy6+2qYA6eC43HdTVkCft0pAXnJEwHQeNDs84rm2sgK4tVPCyzRdgPb/AFgD6IaOmTRJR9J4Sj24S910tHQw0j5C9fRqAcoz6rlx2400zW0i3BnmyHNHCt7o+hn17Nu4j/qZ9aBBtDtKzQU1JIeS2JZN7YW1JIYSpEIpDLdRqPha+NhCkiNJDKdB6/pW6mfUE+uLsW3ZNsy4iR6sFQ+5q0TA8e47pWLr6h+Bwyevb+ZKAdaX3Sded00Xz/WTtbDnXjCTOa96vVSnGS4B6PFeuX9kq1R65VPVrUxxOXIEuv4sx87ZSM6MM+PM+M8xzoDrM0N+jMdisvz3DKWk6PmuuwSdZjJw6BC8/LIg0XBYAOANN0hgWW+vFEXv3y/x27W18OSTYnTu7xeDc3W1zHX33VBbi2VprFunsXWrTNHdLZu0tkp42R13yLrjx4UgB8HupimH+OQnhTQfHhaCPd9P3d8vj/f1iX+6v18Y73C42G8diRRfXne3PNbTIwC9slKuL3R05M6FrhWBtULCyvKVWXmgm85ImFk+3Czfg93ZJ0FmXX2yzjCEjS7xS4hZJJZLBNcFVGdM8WyjCTN+ybQi8+33SpBaaa6mRdfRNB3bNGnbsoX+AweYtmwZTddey7RbbsEZCNB07bWcd8stGC7XaY9pDgfu0lKSAwNc+q1vkejt5eBDD+GrrcXh8aBsGzOZLKwraWrCcLtB17nw7rtJh0IcfOghPGPGkOjrQ5kmVirF4JtvShDaE0+QHh1Fsyy0fJjZrqfkjQ2HBCDruoDg534pS6Vg+2+KNVrJOLz+Kqlt/8J/2fBDzn7kJ1yw6HoW/PMOjr36MoypYmbzfC5svpwLV36X8+bOQ/MHeKf9BISHhZWoGsvh/iF8sz7G7V/6YnFuNAlOK6+SajDbEgCqbIaOv15IA0eBr7wW28oW1g+2v4auG2iaTiYRJjHai21n6X73RaxMkppzmsmmJA28MA8U0sBd3lIMl4f4SDe2bWKmU/jG1ONwB/CV16HpBsMnDuErr8Ph9qE06ZZW0Qj67PmoWFTYfNsqdlo3X4WyLYzFn4FgGSrXR63i0WIXdWgYQBLDR4dzUg4XxjVL5EdoPCaAOZtBWSaa4UCf1SyBZ4aBSsTRZ1+OpumQe4xYDOulbSg0WlpaaGtro7W1lYkTJzJ37lyOHz9OS0tLwU+dTwbft29fIaysubm5EGiWv11fX1/YtrW1lbKyMlpbW2lra2PPnj04nU7q6+spLy/n2muvpaysDMMw0DQNp9NZeC779u3D7/fT2dmLw+Fh0aLNhEIf5/rrl7Bw4WNMn34Tzc0raW8/zAcfhPjsZ/+O1tb1HDnyHLFYH0rZhMODbN36O7785a/g99fQ3Cyp442NcwmHT7Jz5634/VVEo92MG9dMael4ABKJQWpqLiAe7yedjpBOR7CsLC+9dB9XXLEa2zbp6GhhdPQ4Ht3BZGWzWSn8SJjZeGAPAnLvQUBuOaeD5wMUgXYf4q+eSDGobDlwHVLLZeUeq0QY6RgCouMIO54H2xOAy3LHbQJ+jID0Dt3gvjn38fl/+DyH3j1E2zttXPqxS+n/dT+dkU4m3zeZX+76Ja8dfI0bvnoDU6ZO4eILL6Yv1sdtt9zGDUtv4O2332bz1s18a+W3ePvo29QEali3Zx2zG2aTV9gpFH2xPiKZCD6nj7Mrzqa+pJ6EmWD59uUA1ARqWLZtGR+OfMj06ul0RjopdwcIpPvQBvdIPdbAn+X/uadaAPHJ38DUbwpwPu9+Sf82k8I+Ny2VULP0iHiyZ/xYapimrcw9tkrYb6UEfA/ulSorBcz+Z3DXFLc9736p8ep7oQjUp63KVXt1gwY/2PQjPvFfPgmGh3/82U/51uo1NE08i7PPu4h1a75JbdWYYgCZlq8pTAsI1F05UKwV+7jtrKSGj5kizGwmmrvQaOS6skulw/nfAaT/1rBtW7qnv72b0eOj9LzeQ80FNZTUleAOuGma24TD6yDYGGTbLdsINgS54ekbmH33bLpf62bigok039+M0+vEtmyampuID0hndfhkGGUrdq/eTawvJhVbgLvMjSvgomleE7pDZ+FjC5l+03RifTGOPHeEPev2YFsIUB49Iuej8jz4021yMcFTDujgrZE+6zwIR4MrN0u9VvMjEOuBV1ZI0FkmmksNr4JEvwD0LxyGKx7Lhcmlc/Vl5OrPOmTbl1fA6IdF4H1mnBlnxn/4cQZc/2cfmYykgN98syz/RwA7z8TOnStdVo2NQufOmCFguq9P4rV7eyX5q6ZGZON9fYJ+lRJJeV5/HQxKylhZmbDgAwPQ24sx1MfKlYqlS0XCPXOmPFRVJaHiDoc8hbVr5dA9PcI650PKnU5JAa+slHavfP12ba08tXwC+Jw5FI7xzW/K7ZoaeSqPPw4XXyyseV2dqOH375dTUFOTOx92XhZOkV1OZyRg7L1jArI7egVEpzPyeFRki5zVBOdNFoZbzyVVN9aKFNwwBCgrJaFohiGA2+kUtjudyYWeKdlO0yRRPJUpJJEr22b4vfe4+J57aLzmGtxjxjD91lsJ1Nfj9PuZsXo13tpaEiMj+MaO5dJVq0j09hLr7kZzOCidPBmVA+d5VttdVoayrNPWJfr7SQ0NYWezaFB47PAvfkHF+eeTHh0lG4/jqaig7Sc/KVRzoevCHl92OVy7VKTPZeUSKGaZArjzwFvZxRqtxTdK+Nlll8PCpSy75RaOtO7h7YMH+cSnP8WXHnkURgY58OIu3mrdy1vrvsGab32b8849l/MDLpF/2zbZ/m6W3fApPnn9Ehh/drGi68SR3HGfxi4pJZuOkRjtATTGTr2CsrpzqZo8E9vKYmXSGA4XlRMvOyUlHNB0Bo8dwOH2MnjstQLwtq1MIfE735eNpuP0BjDTSbLpWIHBziZj+CrqKas7F2Vb9La9gpmOUzv1Cnzl9fQdfhXLNlEOJ1qwFHvfn9GCpRAowe7ulE7rxZ8WQN3fK8/LsiAeQ6HQG8YVuqjtvbvRNA3jykUC0AHyDHRoGBUJnZY2bu18FnRDOrANA31sA5SOQYWGsXfvEnl6LCIBZ6lkARg3NzcTDAbx+/10d3fT3NxMR0cHmUzmtG0cDgeJRIKysjIWLlwoEniHgyVLluBwOJgzZ85p2+b3nTt3LtlsFl3X6ejoIBaLEYvF0DSNdDpNZ2fnaYy2pmnU1FQTCh3ny1/+GMePf8Qtt1wLwHXXbSYQGMtLL33AwoUfo6qqkubmVdxww9MEgw1s27aM3/zmnxk/vo7GxgCaplFWNpklS7YAqsBi79u3kcbGuYRCJ+no2INppmlsnEss1sfu3auJxfpyoWduFixYTzI5xM6dK/D7q3A6PYTDJwnH+7ld0wgDJgJuZwMuhLXei0i5bWALAoaboMB21+Y+oo4hbHYqt99S4Ju5j7JczBXHkZTxOQjQPpDbPps7rg7UUKzyCgC1tkVZSRkzrpjBV3Z8heHkMBu+uIGOkx2sa1nH1ratrGtZh0Kx5/d78M7wFuqy2t5t47pF15GxMvzkyE9IjEnwzce/ia1sVjav5IapN9AX6+NQ7yFOhk/y7d3fpifag67pEi6nTNbtkWNEM9FCEvP61vVEM1Fm1s/EiY3WtrZYj+Wpku7q2HG48BHwTwRPDVzymHRZe6oEQLsrhIV21+R6pJMCurMh2WfGjwVkZeNgxWXuS5+Qdak+6bQGcFfC9Adkbl+TgGlvXY5FnygS83GfZd3D3+VYezsP338HhI/z3fUbeHjtQ3ScaKftjb2senAD7x9tLyZ5awYSxuUSEI2SC4eh9iLQy/dau4Ogu4v1XPA/xVD/q8OC/Y/ul+5qt4P6mfXEB+Ls+vouQidDdOztINQeItodLWwz7vJxJIYSBBuDuEpcODwORo+NsuMrOwgdl17sI88dIdIVweFx0Di3kf2P7kfTNUkg//ouho8Ok46IJN3hcZAcSVI/s57l7yyn+VvNODK9Ek72+npIh2HcAumwTvQJ4A21i8Rb2bkeagREv7JC0tRdQXj9u8VE8Xxq+BsboW6uVHG1robkIHTtESCeD6MzXNKt/cbG3P5ri+/HmXFmnBn/4ccZcP2ffWQyglC3bpVl+t/4AsjkwGEqJVHciUSxMDoUEuC3fr3M1dsrtPLy5bJdXZ0kgmuagO28mToQgMmTBfVu2CDoed06LJcHv1/jySflEB6PAOy8t3rdOsGdK1dKjdajjwqArq4uysaPH5fD5buu87Xc+Rax9evlZW3ZUnwaW7YI5lu3rth9vWwZHD1aBOe33CJz5LkUUmmp1XLlZNklfmGRz5ssB2gaK+neJf6i/DuZFjbb7ZJ/thJwHI7Jecz3XLd3ijdbQ/bv6jsdqKezMk/WhIn1AtLRYDiEphSVF1xAOhwmEw5z6Lvf5flPfxrbtrHSaQbffltquUpLsbNZhg8fpnzKFHxVVZiJBG8/9hhWNsvUL3+ZpmuvZerNN8sr1rQi071sGZ7KSlwlJQy/8w4du3Yx9YtfLLDiKIWZzeKrrsYZDDItN9e0ZcuwTAtVNgY+/nmoqhWf87E2qKyVlOrFnz2lk1oTqfeCT8nS44OPfx5PZRXXDR9Du/9L8C+bmXXxxXz0fhs8/m14+qdQNRb+29f52bN/4Oa//2/QNFn81tEw37ltOTdUejgrOZqb77/K85gwBdb+DG78KsowyKZjODwBut99ETOTpG761bh8pfR/0MKHe/6JZHgQd6CM+ulX43B56Xn3ZZRtUjV5JmY6SdXkGQUgbZtZ8VvrmmzvCWCbaYbaD0rfte7AV17H8Ik38Y2pI5sI0/PeS5jpBN6yWgaPHUDTYPjEG1RMuBjDcKFZJnbLKzkJ+CtoSqHVjEWFhrG2PwORkNRo7XgWlEIrKZU08WSiyG4vWIwKjWK9tA0tWAZo2Hteljn3nCIrbxh3yrFeRnM6hVV0OtH0U/Y5RYquvN6/6qJ2uVwsWrSIaDRKKBQik8kUgLTX62X79u2YpommacTjcV544QWy2SzxeJzhYWHZFy5cSFlZGZZlUVpayuLFiwGp+dI0jcbGRsrLy8lms2zbto1oNMro6CiRSIQlS5bg8/no6urC6dS4557/yu7d73HbbRMZN+5SotEetm1bxujoCX7xi1/whS/8Pel0BIfDS1PT3AJw/vGPN7Fs2VcLYHt09Bidna0oZdPcvKpQ5wWKcLgDv7+KnTtXEAodJxbrLXRpG4YLy8rgdPrZs6cIyv3+KvbuXY+ZCvOEUtQh9Vm9iM/6JMIm5wF1HZAAjiA+6U2IzDv3SUU38Bwi756Qe3xCbtuvAh8C03Pz27ntq5HebA9FYJ/NbXtPbt4STafcU14A0mv3rOVHm37EwsULWTlvJUunLWVl80o6OjrYv3c/b1W9xcMtD1PpqyQwLsBvf/1bnIaTv2/6e1y9LqY5p6GUoifSg9vhZn3reqr8VacBZ1vZxLIxMmamcIxSdymrmlexdNpS7pt7H2WeMkZTo2SUhrr4MQGxVc1w5PGipNvhg6o5MPqWfKkkuoW5JqdK6ntR2G3NAPQigIoehdduEYCW7JJ9/rwEDt4GzjJwBgXUagoO3SlsdfQ4JDrg4kfFd63pUsnlruJ7jz7O7373O3b+ehO+shqGMn6e/f3v+dzST0H4OBMnn8WsmbPYu/9g0SedZ66VVQTRaLmu6rQ85ioR4KeUAEJl/uvf8f8rw4BFTyxi3Pxx7F69m0hnhHh/vACka86vYe+GvTTOaaRxbiOvPvQqmViGxjmNlDaV8qdv/QlvuZc96/bQtrWNvev30tTcxNeOf42xF4/l+a8/T+PcRhZsWICyFS0PS+VW6/pWdIdOuCPM9uXbycazdB/oxkyalE8sx1ApYaCv3AT+seI3BwHKR7ZCrFMuirxyq7DMICC7bq7UdKGKLPbMb4lsfMpSmLkq9/53wiV3ydJbIV5uO5ubxyUXMWauKnZr5wH8mXFmnBn/4ceZQLP/7CPPXK9dK5VZU6aIp/pvjXj8ryu35s7N1SN1iKy7rk6Q6ebNYpKuqpJi6PvuE3A9aZKg13hc0Goy50Xy+wUs7tsH9fUkJ5zLhyccdHZqzJwpjUv9/aJef/hhAdU9PVLFFQjI+p4eAcz33ivYf+9e+OEPheVetqyYobZpk7Dfq1YJK61pUrVdVlbsyz5xQo65enVxvx/+EL761eL93/yzhZbNwEc9AnirykWurecC2mxV7E627VwllxLW/tR9zmqCrAWuXA2Xrgs9fuo2Z48r9ll39Mpx/nKeyU2nhZplvS6sdPq0Ci5N19HdbtLDw7hzsu22LVuYdsst+Ovr5XlqGsq26Xj+eQbfeINLv/UtrGQSw+tF03WUZYkU2LJIh0KYySSB+noiJ05w5Je/5JJVq1CWVfD2Db/zDr6xYwnU1zNw8CAV06fLe65pOJ0ODF0rhtqlktDzETRMFEbF6UTCdzLim97xG2Guq8bCQE8xvGzHb+DaG/iv3/g2Y7xufjDzbAHlVbV0njzJlIsuoeP531N5/qXgdnPg9YOsWrWSF2+6jgeODBAyLR5bvx4Ge6X6a/GN4HRhlVeCpuh57xW8ZbUEqsbjcPtRlvyI6n1/N5UTL8VMJ/CPqT+ttmvseVeJLzudxHC6QdPJJMMMtb8uVVu+UjRlo2xbgsEUWFYGh8tb8EFnUzFigx+RDPVRddZMlG3h9JSgbAsAQ2mozpNSsbX3T+hzPwaBIJrThbXtqUKtlrHwE9jvv43WOAFtTAXWtqdRR95Dv+HvxV+tVLFKa9qFGNd9SkLQWl4Rn7bDiebxopxOGB0WwJ07FihUbzfa2HqIRnIhaldCaTmappHVdCzbRtM0SdHUNDpPCTiLRqO0traycOFCDMNgx44dhSCyJUuWsG3btsL92bNnc+DAAa655hocDgfZbJYXX3yRWbNmEQgEcLvdmKZJd3c3wWCQ8vJy/vjHP3LkyBFuuOEGGhoaCtVezz//PAsXLmTTph/wq1/9M3feOYVFi9bg81Wza9fttLVtxbbn8/OfH+PIkXd54YU7ueKKNQwMvEdJSR1PP72Kb3xjNx999CF//vOdhWqtRYs2EQ53EYv10Ng4B9NM0df3FnV1l7Fz54pTttvMzp0raG5eRVnZBDKZKH19b1NSUlcINysvn0TCTHLCXcJ3DRf3IqzxN5DO6WsQT/UJ4BFgAwKCl1MMLnsSAc/rEBa7B7gQkXNryBX2rwDPAE8Ds5Ae6yGgFGGuL0IA96OIr9uP1HZ9hDDoE1NhslaGnmgP61rWUX2ompYXW3ji109w9tizcRpOHJqDFfetoKe9h4q/r2Bl80q6wl0YYYMnHnyCDz78gMkTJ6M7dRobGlm9bjV9sT4ag430xfvoDHfSEGxgXcs67m++n0nlk7CUhWmbOHQHtrLZ37WfWn8t48vHY2gGezr28Kmtn+KDr7xLk5YQ9nraKvFZH7pdZNr+8cIC624wowKWnUE5O4duF/m2r056r62cBzc5APHjUDoVdK8AZTNenNPXJNsaHmFG4x1y+93VAurH3wQXbRQQZsb5/jc/w69aMrz0x6cpr6wCK4vl8FNVM5anf/4oV169gKE4XHzZTH77k43MvvqTue/vKP9wy9e4cPpUbv/cfKnOKp0oEmbDnQssq5fnnE3AyPv/7nqtf+/IJrNk4hl6Xu+hamoVDq8Dp9fJ8LFh4n0CslGgGRrR7iiZeIZATYBMNIM76MZV4kIzNEaPjbJn7R4WPraQxGCCPWv3MOfeOXTu7aRzbyeLn1yMbcrnSNeBLkrqSigbX8b25dtPCzjb//39LNq0CHdAwxE7JqzxzFXgrxPwmxgUYF0/V26nQwKczaSw3M2P5ILMEjD4FtReJu9dz17ZLjkEdfMg8lGx1svpkw7s8iniZc8PKyMXOQz3mVCzM+PM+A80/keBZmfA9ZkhADudFjT5rwFrEDPyl798OkoFkXxPmiQM9eioaLEdDgHiDz8sKHbCBDnG6Khst2GD/PN4xEg9dqz88/kgnSamB/nzAQ9VVcJWr1olOD0WE3Z6YECY5WuuERxvmpLmnX9qa9YIPu3uhvPPF+91Pi1cKRg3rvhUurokGC0P2idNkn3zXdj5/SZMkA7stWtlu+nTLHTLErl25ykp4MdyndWe3Lk8elIAcPUYmNwoAPvUfTwuAc6ptKwvDQjI/sttMqYA8PywbGGsO3olKC2bFal4Vz+cPY5MKkVqZARPaSlK17FSKcxkssAyV118MQcfeoiK6dNpWrgQ3e0GpdAdjnw8C3Y6jeHxEOvqItHbi6+2lkRfHxXTp6M5HKAUr3/nO8xYs4bUyAiuYFCSxtes4dx/+AcO/+IXxZTx1auJ9/ZieDxYqRRtW7Yw64E1GKOD4r2+dql0UOu6qCOe+ZmkgLvc0oXt8UFJqUjGNR2OH4b68eDxg7JZ9/1H+eOOHby8fRs+v78g2X9w3Treff0AW3/zW4iFSfz+n2je8jRP/+wnTJg2nTUPfofQwVYee3a7hJoVOrMrscZUopxulG2STcUZOv46VZNm4PD40XUHSlkkRvvxlgrrrGyT/g9aqJ4yF03T0B0uMokwmm5gOFz0vr+bcO8Rzp7/RWw7y1D7QWrPvRzdcGKZGVKRYbylldhmBsPlQ9lmAZDqDhcqB1IBsuk42dgofs0rQNa2UaFR7Nf2Yiz6L6jRIQHH865EK68kh95RmoS62S2vFAFyJg2ZdBGg+wOQzaL5A6h4DFIpVDyK3jBO5PuWiTKzqP5etLIx8h5lMzKPyy2BcWYWOxBkOBRiz549zJs3j0gkQmlpKV6vF9M08fl8mKZJNBrF6XRSUlJCKLd9XkI+OjrK/v37WbBgQcE7HQ6HaW1t5f/H3nvHWVGf7f/vmVO2s7vA0jsIShMb2LB3Y0xRYkKiJiqa6GOMxgYmYiI27F00xhKjkRgL2CUhgEiVImUXWNq2s+30PnPm/v1xn7JrSXmePL/k+/3u/Xqd15yZT5k5M7NnzzXXfV/XKaecguM4tLW1MWjQIGKxGMuXL+eoo47K11qLCE1NTZSXlxMOhxkyZAgul4tUKkVzczMHHXQQI0YMp6ysBNN0U1xcxFtv/YYVK+7g97+PcNBBk/jlL28hnY4i4hCNttKr1xBuueUW2toC3HbbjygvH8DHH9/FMcfcSHn5QHy+jfj9O5k0aSZNTWsIBvcxadJ3CYX2sXz5PKZPn0N19Wgy2TrMWKydsrIa0ukobncxpukmk7EQscmU9OUqtzcPpgeg7HEz3b2o61G1cB8Ff+tbUGbaBwTQdO/j0BrrfSjgnoOmkCf0DuEGlJHujwJwCwXat/JFRfKBwFpgejqOOBYr9q/g/Rfe59033uVPb/+JxnQjRw09inQmjZ2xmTppKrN+OYufXPATVbXHoMRTQmO4kWJ3MTd8dAOv3vQqh596OC/86gX6lvZlXfM6jh12LE3hJiqKKvC6vKxpWsOwymEM7TWUq969iuuPvp7R1aOJpCN5T2xf1JcH489/7TGKO1druneyHWqOUQGwztVQPBAqRgIuiOzMKn3P1rTvSK36VtccDR2rVEHc9GYZ7v2aBt5nKhgeSAeyNUlVWTbZBjEg1QnFfZXxtiJghTQFPd4AW+fRWPkjhk4+g1GjRlFRXgYiFBWXsHrVSj76cAk3zr6ZdDrN3r37KC4uZtDAAfTr149TTjqBRx5/io6OjnyWx6iRI3niscc46eQTIVjPzq0b+MkvHqEtEMG2bX5503V854IL/kc11p+PVDRFtCWKFbdYcccKjr7haCoGVZCOpnGXuIm1xlh5z0qOnX0skeYIQ44agmM7JINJymo0r0JEME0TTJCMsHjW4jxgPn7u8TiWQ/mAciItEVbcsYLpc6ZTNbKKjJUhvD/MijtXMH32dEKNIcr6lRFrizF8+lCKll1cUAM/6VF9yGC4FPCmAmAlYM08FTaLNGqq+OBjYO09nHbvfnwdQcy4j4p+I3n4oQc5pCbCzjaHi675NR0N26k0ozx30+lMuPQP4Cri6mtv4K233mLfvn1s2LCBKVOm/EvOcU/0RE/8Z0WPz3VP/OsiGlWP6pkz1UQ6GFSz6YsvFolE1Nc6ElFP7FCoYBj9zjvav7lZt+/cKfLoo2pcPXOmSEODtvl8ajQdDEpq515pb3dk8WKR1avVy9rvL/hZb9yo27K22NLYqNPlrLJDIe2/YIHuPudh3dysu2xsLHhYr17d3ds6HNa5Lr44fzgSCOjYcFg9sdetE7FStjhpq7vX9bZ69bneuquw7fOe1WlLz1HO73pbvbbFEup9va1et+fakykdk7a0TyTWvU8q3d1XO7ufdCwm/tpa+fiGGyTW2iqpcFhibW3StGyZJDo7JR2LSSoUklQkostoVEJ79kistVWS2e3xjg6JtbVJ47Jl0rFliyQ6OyUVCklo717x19VJOhoVf12dNC1bJv7aWklFo5Lo7BR/ba00Ll0q/ro6Ce3dK6lQSBKdnXl/7calS6Vj82axIyH1lb7kdPWZznle768X2btD/a1z/tW7awttyYTI/l0izQ0im1bJ/JtvkMMOmSKBzzZonz07RPzt4vjbZeSwofLewldEQgGRJ+fJ5m8eLX3Ly2T4sGEyfNgwqayslIryMrnw62cX9h8Oijw5T+xgp6TiYbHTSdm3fpFsXnyv7Fu/SOx0Qux0UkK++rxXdc7P2rJSee/qdCKifa2UpBMRiQV8sv/Tt3U9GRMrGZNUPCz7P31bYgGfWKl43lc7HmrNemX71CM765OdjPolnYjk58skk+pVHQ5JJhTUVzKhPtNtPl0mk3nf6Uw8Jk5S+9url4v12kviRCOSScTFiUUl09wg9s7avId1pqVR/atbGiWTTGifcFB9r1uadF8tjboeCqjndTQsmXBIktGoLFy4UObOnSsLFy6UhoYGWbhwoSQSCfH5fLJw4UIJhUJ5T2qfzyfJZDLvdZ1MJiWZTEoikejWJx6PS3Nzs4RCIWlvb5d4PC6JRKLbvqLZfbe0tEgymZSOjo68J3YsFpNkMim7du2SRCLUzWc6kQhIPO6XWKxDksmwtLRsltdfv1iSybC0t9dKU9M6iUR8Eg4351+RSKu0t2+XpqZ10t5eK8lkWJqa1Ks6Gm2XeNwvb755mSSTYUkkApJIBCUe12U43Cw7drwjLS0bZOHCGeLzbZJQqDE7tk1i6YQ0O440inpQNzuOhEV9rR8SkVpR7+kOUe/qKhHZIeo/3Sgi70jBl3qjiERF/ay7eln7s/3aRGSdiFws6nvtF/XAznlbf94DO5htCyejEogH5LY7b5PRE0bL8u3LxR/3S3O4WWrbayUQD8gf3vqD9B/UXxqDjRJJRiScDEs0FZUlny2R8/9wvjSGGuXxlx+X0j6l8nH9x9ISbpEdHTtkdeNqWVy3WDa2bJTt7dtlxsIZwlxkxsIZ0hZtk3VN66S2vVYiyYgEE0FpjbTKzNdmStVdVeqxnQiIlY6I49+Y9ajeoH7TOX/rxndE0mH1oW56R7ctn6Ee1k3viMSaRVIBkViDyMczRfybtH/jYpGO1dk5N+q2WKNIvFnH5PrGmrVPrFnXl8/QZePigh+2ndJXvFO9kjtr1Zs6612dCHXI2396RZxkWMS25JGHHpTjpx8jTjohgwcPkg9fe1YkFZG6rZ/J0KFDJd7ZKJIKy9FTD5Gnn3xcJB2VtrqVMmzYUGncv+9f+rPASlkSa4/JwhkLZS5zZeGMhdK2rU0SgYS0b2/vtj2wNyAtG1ukbnGdhJvC0rSuSeoW10nLRvXBbtnYIh07OqRlg677NvskFU1JOpGWRDDRba5oW1Rem/mahJvDEvfHJdoWlWhbVOoW14nvM5/YiYRI6wb1rW7dqF7UsVb1pe7crp7Vu98p+F7H23V71gs78IfzRaI+kebV8qfHZ8vkCeNEWjfKiSccJ79d8LhI60ZZeNNRcviUCXlv67/+9a/S0NAgw4cPlw0bNvxLz3NP9ERP/OcEPT7XPfEvi3RaGcVEQuulw2FVAsvJZ8+bpxTzgQdq/1y6+YIFmmd9552asz1okNLCa9fCxInKct9yi6aTl5bqWMchbnvY2VzGHXcYzJkjjB5t0NgIH32kQuNHH63TtLfrYXg8mtUci+lufvYzZaETCVX8rqzUFPKcFW8mo23xuLLisazOWFmZEvTHHKOve+5Rpjonbh6P68d66YUM7nRS2eWhA9SGq6v/tNeTFUvJeYdmz2NOWMp0qQjatnroU6Wp3zmWu6YaRg/NMt7VWfXsGPQq0zEejzLVOV/srpFxIBonXeSmY8MGek+YgOnx0L5xI9Vjx5Ls7CTR2Un1uHEYLhcujwcnk8GxLKxoFE+5CqQFtm1ThtrlUh/kdBrHtvN97GSS4upq7GSSpr/8hdL+/el78MGYHo8yrKaJYRjYqRTpcBhvr175tPJEWxtbn36aY27/NUZnK/jb1Ld611Z4Yh5MORJ+8FP93Dmrs1T2vmvao33DQaio4v5HHuGlV/7AR+++Q7VkYNt62F8P3/0xS5Ys4YdXXMHejRswS8t0jkRcrbYsC4KdzL3qCoL9h/Hgw4/ovZjJ6DVra8aJBHDGTMAwDdLxMO27VmtKd0kvDISMbeFkLNp3rsqnjXuKy2jZ8hd6j5iCt6QX8aAPT0k5npLKfKp8bmxr7XL6jjqcmL+ReKCZwZNOoemzjwi31jPs0HMorRpAxkqpMjgQ9zfjKS7FU1yBYaqYkZFMQiSUT8c2elUhiTjOX97TNO9Jh6mwmW2p9VavSrXi6lUJHi9GeYXemwY4+/dg9B8I8TjOiiW4zvqWqonn0sW/dh5i2yqaFIvq+IpKMu++gTn1aDBdWm89/WSorMaxbTpj8TwTHQqFqKyspKqqinQ6jeM4mKbJ+++/3y0VPLc9l0puWVa3PscffzzFxcV54TOv14thGESjUVasWNGN9fZ6vVRUVJBOp3G7NfOjqamJ/v374/V6gQzB4K4so3wLVVUjse0kzc1rGTBgCh5PSV6tOpOxcBwLj6eMcHgfH388n1NPnY/XW46IQzod5aOPbuSYY67H7S4lmQzwySf3ceyxs3EctXULhxvy6eJLlszmpJNux+MpoaHhExYuPI9x477O6ac/SDjcwCef3Mfppz8I5QMIGwYelE3OXi6iySQ/uuACtm3bRqikhAP79WPeE08wdcwY1q5dy/XXXEMyGqXZMAjefz8zTjqJJwEXcPfjj/PII4/Q3+2m2DT5aPVqjOJiMqhI2R5USXw2WsuddUfutn0UsAMYnYqy8rNlnH3E2QwZPoSqXlUIAm6YMHsCNx97M9dcdg1TJ03l5l/cjGmYOOJgGia/vO+X/OnpPyGmMGroKO6+/24mTJyAgUHSTnLVu1fxVt1bfHbFZ/Qv78+e4B7mLZ/HLdNvYWD5QFoiLZR4SojbceYtn8ec6XPoW9KXmBWjuqSa1Y2rOWnoVErWX6Up2cNmqJBYrEHTdd3lXbypZ6v/delQKBuutcyZBAQ3K2sd2w91D8BhDylbnYlpn8BW6HcMROvVbmv8zWrFhWi/vS9C/1Pgs18WjuHwR+HTn8GU+eCtQuu5TfWmTnRAv0OUTfWWZ22iXFoj7Clj3bq1nHfB91m3ehWDhw0nFenIWmoVM/mwacy95Wa+dc4ZlNcMY0ftNgaVJiDRwdcv/QUnnHIm1153/X//d8CXRDqezqd1H3PjMZQPLMd0mzi2gziiKeCVRRgug/f+6z2Ouu4oinoVsez2ZZx818lYUYv6D+pp2dDCib8+EdNl4i3XdHFxBJdX/4d21nayfN5ypt8ynV5DeyG20LS2ibL+ZVQOrSQZTFJcXUxRmQe3JwPJYCHt29tL/5cEd8D6Bwrp300rod8UTe02XBDao+d98NF6xzd/zHOL1vLggpf44KYDGfOTP+Nf/zLugYch7lIGjhjHihUrGDNmTP58jBgxgjfeeKOHue6Jnvi/NHrSwnviXxuJBFgWdiROJhLHVVGKu1cZXHppISf7mWdUqjuRgGQS211EJpqEjIVr62dwyCFkisrAZUA0jlFWjOMYKlza1orTqwpXaRHxtJuVa2HiZIuiIoMij5tVq+CoY2wwhPZWFzX9HAxDsG0X7e0OFWVuNqx3c9ZZhUOJxGxiCZuaviamy8FtuAmGIJaw6Vdj4nJnMA2DSEwo9rowXQ7RsJtw0M2vfw3TjrI5/UybIQPdhCNQXGrh8Ri4TAMrHuEHF17Mtu21lJSU0K+mhiceu48xYw5gzZr1XH3Nz0ml0iRTSX74nQu44Rc3AhY7d+5h1hVXEwgEScaTnH32Gcyff7vqkVmA1wQcEA8kHEjHobIIDC/YDjhJ8BSD4aA/eW20UpL8eyGDOJBoCVBUVo64XLjcbkinkSygdrvdYNuIy6WzxOOqGlxaihOLUeT1Yni9+kTC5dL8e5crXyMttk0iFKK0d28kkyEeCmGlUiTb2hhw8MHgODhkwYAIpmGQMU06Nm6k96hReKqqSEoRVsaFaWRwkSGTzuDyurAyLlxuA0+0A4pKsNylZMTEZYLH7UAiTr0vwPgJIxg5ZAgVVdUIJkVFXpb99RMytnDpjy5gXCbKTS+8SVq8eI00Ja89Bqd8QwH2K08y96lnCfYewD1v/YVk2sRlChkx9GGNmLgNG49hY+Agpqnp14aB2BamR8+NbhecjIXh9mCgtfbRsA9XcSl2KkFp1QBMw4XhZPTJJtnMIQQTU0XssjXvGSeDy3SrJ7VhEAv4KOtVUwD/pqm/28la6ohounZOBdhxEH87RKMYw0frLWJZhadKLlMfwng82adMcSirKOgF5Lxwc+8TMW03PvckJ53W+8HMpphGIzj1tRjVfTCGjVIAXl5Bxra1tjyX1m4YWJaF2+XKP3CJJZN4vF68bjdWOo3L48FlmvkHNSKCk8lgZlO9BXAyGVymielykbEsXNkHO5gmtmXhdrtxMhlsETxeL046TSKVoqy0FDM7N4aBy6XX1TEcyNjEkgFKi6sx3F4y6RimuwgnY+NxebHQhy+N+1YwqGYyRaW9daw4pOwYkaiPEncZpZWDeOvty/nss5eYNGkm55z1BGbGwXB5sNMxDLc3/6RPbAuPtxQnY+EYBm7Tg5WOEow00btqBIanBMhgGA4AGXFwGS5SiRhLlq7gtNNPxjFdPPb4U7z1pzf56MNFjBg1ngW/WcApJx1P3c7dnHnG2Xy2dROVxUX88a23eOi+h3nnzT9QWdUHX3s76T59GWw6mLiADC2Gh1KxKMOFB1FdAMOFTQbbLKbF5WVQJk2nk6ZS4MeLr+Clz15ixoQZPHj6g1QVVdIe9fFu/QeMrh7F9KHHkEGwMmk8Lg+dsU76lPXFY7pJWAncLjce04PlWNgZi2J3iaYKZ6+1YRjYGa2vBlQbQhwyjoPbdJFx7Px5cblcWgXh6P0BBqaAYcXUrxoTjOw84kC6VRWlvZWqDJ5L6061q9J3JgaBLZpOLpL9O0pCuhM8fRSki+j3seOoFZe7FBI+KO7TZX/Z72vJ6Uzo/YcdA08FGREy2e+FrhoFiKhgoCOYpsHFF/+Q3tXVPHD/fYwZO467fv1LvnvBBXyyfhMnnHAit9/+a66/7lqOP/Fkzj7rLG649ip21NVy9Amnc8EF3+HRRx75l6WFA9hpm0Sn6qd4yjwqNNYQoqi8iHhHPJ/KXTmskuC+IOHGMAMPHYg4Qrw9zoo7NZ28enQ1ob0hVty5olvt9fQ50+lzYB+991MZ3EVuBCGTzhDcHeTjez7m1Pmn4i1T5XGX1wXpKHxwSSEt/NSn9WA/vExFy7Lp30ybDSX9YOk1+r5sIERbYM0dXPh8lL98sgEyFu8s/A3pZJzv/eQW6j5br6n1Li9Tp07lrrvu4qSTTsqfjx5w3RM98X93/D1w3aMW3hP/XJSUYJseOn0Wi279lE6fhW24lbGeMUMZ6CJVxbRdHlKuEhLRDPs3dmIXl5M5ejqJjBcrZROoD7Dop0vw7w6xf8V+AvVBMjX9scVNOBDj+xd+i6t+chCnnXI453/7TPbtr+PIY1N8vGo5B04Zz9e+dgiHTZnMDXNvxiKGu1cnP7rkG9x408FMnHgw22snU1lp8tHSVxk8SHB5LAyXQ8ZIUVlt0WHU4Yu38KsPF9AQ8pEygvjiLfz6o6eIGE0MHZHi8QUJvnNhhOe2P0NjtAlXaYQ7/rKAfYFmxEnjNiPMumQGdZteYdM74zn37GlceulFIBazrriS2TdcwoZVL/DxwoO49/HH2Lb5ffDN4vrrr+Gb557CxnXvs3HjSj746CPee/s5SCwHTxrEAt9PQYJQakNVCfrDzAKpB3s1GDll94z2J6sCKxlwwhjxTzAth9JQGPeqVbhFMCIRzPXrMQG3YaiydDKp7lHJJJ516yhua8NrmhQXFWHaNkY4jNHWBrt2YcyahbF7N4ZlYYRCmD4fpV6vCiOtXk2Z10vVgAEMGD0aY8cOjFmzcO3di8s0ce3di3HllbgyGfpPnIi3rIyk42XnbhfLVxgkUm5sw4vtLiXleGlpcxOKuLB69aMzVUHtTjeXzTLZWW8ST7mobaxg7m3DWbdO+PSz/bz40iYmH7yRN99aQ9o2cQw3T/5mIdc9/y7BmJeVKw1iaS/xb11J1OhFwlNJ9PzruPHtT7j99WXU7nJz2eUudu52s3yFi131Ji5svOkwZmsjxgsPYbS1YERCGO0+XLtrMdqaMXZuwUjEMVqbcL30GEa7DyMRw3jxIcotgyJPORVVg3CJgRGPYiTimK3NGC88hJlOYXa2Y7z4ELS1YISDGMkErnQaw5fdZ7uP8t6DMA1Dx4YCGAJmhy97TM0YGVt9w3fux0imwTAx+vbHGDFaLXGTaYw9zWBlMLKKx4bXCykLY3cTeIoxIjEd6wjGrgYMx8kCeENF0gxD95FIYezYp3Ni6pzhmM7VEsA8cArGsNG6rbScjG2TDocJ79nDmltvJdrYiGPbpHw+2tevJ7p/P2vmzoXOToo8HuxYjNCWLRiOQ7Shgfb167GiUSJ797LuttuINjRAJoOTSJBobKTj00+J7t9P58aNOtett2JHo5BK5cdYPh+ZaBT/xo2Ul5aSSSTyx+Mk4pgdPsxdW3DZDm7TS68EeF56Ald7K0WGF3fapqjTj/niI3j9fjy4GVUylpKGRr0nXngIV5uPElcZ/TK96PX6QlztrXzjzCf5wffe5ZwzHsPd3o7rd49htvvwJtK4Ozvx7N6Bu7MT78sLMNpbcEWjuNMWRsbGaxZRUzUGtwOmk8ZlBzGtEGa4Dk/7cszoLkoia/na9NF4186iOFzH8Uccyr499YQ+uIiO9nbOmn4oRQkfkwYKfTwR/rL4dVyRXTxy773cOvtaqtKfYUR3MbBPJcOwcdtJzOguzNWXMSiyg+q25XitEEZkF+aayzCju/C2LacoXMtwO0FxpJYhqy+hNLabB0+bz4wJM7hl+i30Lq6GZAxjXy2XHHwxJwybTirYipGKU+YqxiMGA0r74hFo3bqUYsNNkenFMEyMVJJg7UrseBixLTKpBGJbWPGwCkhKhkwqjhUP4tvyZ1ziYIhk50/gMkzEUsFBl+lSX3bHgUAnsTdf5xvfPJ9xk6Yw5fDDOPXUU6h7+jEk7mHNxlaOPfV8pkyZwiGHHcpHd96OJLwgJt/63iwOOftaDjnsMA455BBcxSW8+dyLSKKIzDtvIUE/GCbiGIiVQRIZJG0hmXIkGCGz+HUk6EcckM5OnP279aFmRoUJcZeTyWTIAMFgkFgsRiAQYPHixQQCAfbt34/fH2D//v3ceutcdu3axazLLyeZtnj++ef5zQsvM2XqMdx33/2MHTuWdNrCduD5559n9Zo1HHz40Vz98zmMHTsW27Kxc/v9F0UmneH9a97n/kH3s/iyxYgtOCmHdCTNijtU3Xv5vOVgQJ+xfRh+3HCKq4rxlnu7qX8bhpFfT4VSLJ+3PD82k8rg9ropqijC5XXp+/Ii+hzYh7OfOJvSPqUU9SrKs9y4vN3Vut3F+po2B0acDjEfHH6dstSpUMFyy/SqUFndq7xwUTkNm5Zw+69u5cbbH4VYq9bqG+4egbKe6Ime+MroAdc98U9HxjFYfs9q/ad3z2oyjqGp4M88k1cbtxIW6XCa/R83ADD06KFIVmDK9JhIRvL/dFfcsYLSvqWsuHMFjuWACU1rm/nOGd/h7QcX8+ffL+Gss87m0ssu5fYPn+Ga//opF1x+IV+7YxavvvM6C599iT076+lVXMYrr77CqrWr+HjtSq6+7UYqq6s45+yzaQi1EUiEaQ618+sPn6Ex1MakgQfwm9Vv8H7dJ/xm9ZtUllTk159Z/QapTIrblyygIxZg4sDRPLPqDaKpOO/XfcJzaxfhdTmUeFOcdfpUDP98iLzKkePWsbchCJLEMByCEQM6HyQmh+D1euldEYPoWxjWLkLBDjC8JOKdWLbNwEEHQslRkOkEDOh/DxjFYLcqi2Jkbbbcg6F4CsTXoDR31h4mvhKs3Tre8ID3WLBNjOHD4dhjFRwBHH64At8VKzRdf8MGjBwbc/DBGGVlEA5jpFKa8l9RAf37Y8yfX/Awc7tV/K6+HqOlRdnPyZMxSkt1P+FwwZbtjjv0x21JCVx7LUYigdHaCrEYacdNSYnB1KmwZg3s2WPQ3g579xr88pdqeeY4BqGQkbdbKy4Gl8tgwACDe+5RcbtMxmDePJ2npQVmzTLYvRsSCYPLZhm0thpMmgRXXmmwc6+XlkRfYnET8RSRKulLKm0yb57Bq69q9cLEiVBSYuA1LIxEHD56HQ6YpDZVvaoxgh1Q2VttwUaO0xTtj16HtctUnC0Zz793hQPQ1ozhODpXMglhP5z2bU0RD7TDad/WZUkZJOLaL+vzbbzzCkYmA7aNEfTDWy9i2JYqpK9dpksjmz5fXgz7WxRQi2YL4IiWLvQqx/C4wWVi1DcoiM56sBv7W9QirsGHYWe03MDlwrBsqG/ASKSU6cbQudoDWv7gduXHdp3LEIHyEoz6BsRxcJeWUj54MIfecAOusjJMtztfRrD9t7/Ne5/nwEblmDHgOGxdsIDi3r2xolHqXniBmkMOweX1YrhcWNEo2599luLevdn69NP55f733sOKRvPtOT92Ayju3ZtEWxtWJJJvc2IxDH8bVFRh/OEpAAy3B8ZMwHj/j+Byd78eb7+i1/KdP+iY3HV4f6E+rMquG2+/ghn0M7JkLG7c+etMoF0fVrzzit5Lue3BTp2vuFTF4SIhDCsFpgsj7Ne/f8MD7jKoPhjqHtSlWaSM6s5Heeixpzj37JPpe/QvGTigPwvf+ABKBrBu407qGqLs270TEo1sq93F+hWLOea82zj8lIt4+LEFeg+bLk1r3v8qxtY7oGqiMrDb7sxaV90BRX1xbZ2Hy0ljbJkHTW/hijfRu6iSl77xAuN7j8VtmHTUr6WkagBWMtzNu90wXVjJGC3blmIlY/QeMYVMOkHTZx9CxqZ912pCLXV07F5Lxk7h8pbgcnuwEhEcxyIR9OEuKsFT3Is+Iw/FSsZo3vpninvV4C4q1b8ptwfJWKRjQRKhdoyctdy2zVx6yERqN29iw1/+zDkHjOTy+x4i8/FSvn3xD7n5Z9cwYvQYgm1tnH37PZzyzW+xa9cuXvvdCzz18EOU2haxVArTMCjuVZm3pat79SVOOu00Dp12JOMPn8p1P7oYJ2OrIGA4hNRtUS9508So6KXWeO+/qRkmgU7ESpMxTWzbZvny5RQXF7NixQq2bt3KihUrKC0tZcWKFbzwwgu8+uqrvPbaa4wYMYJIJEJHRwcvvPACq1ev5s4778Tn85FOp8lkMowYMYLXXnuNNWvWcOmll9LW1oZhmmQyzr/0N4HL62L6nOlMmDGB6bdMx13sps+BfagYUtFtu6fEg6fEQ1FFEZ4SD+4Sd7d2l6cwT1FlUfc5i9xfuu+ugPtzBwW9D4TTnoHe43Q9t61iCFQPgV336bJ8ABw0E058UP8Pnvigrh9xIxRVc9HFl/CXvy5nyNhDaWnrxBbN4BER9u/fz7Bhw/6l57MneqIn/g+Pv1WQ/Z/66hE0+/eGlbLEt8mXFxyxU/ZXtgcbgnmxkqZ1TRJuDkvd4joJNgQLc2z0qQjJJp+Em8OycMZCaVzdKHWL66RhVYMsnLFQli75qwwYPFAmz/+O9Bs5WO597EGpa9sntTt3SP+BA+THz/9KWsOd0hbxy/aWPbLP3yyXXHaJXP6TKyScjMr1bz0onbGQXP/WgzJ5/nfk+rcelHAiKm0Rv+zuaJTWcKdEk3HZ0bpPltV/KoFYWDpjQdnSvEuW1X8qbRG/BGJhCSWicvPiR2Sbr14yVljE8ovYfpF0o0jjTPn+d8+Wq//rxyKJdbLh/VNl2NCBMnToYCkuLpLnn/yZiNUuktwhe2sXy6SJB8nAgf2kuLhY5t12lUh4sUhig0jjTJF0s4gdELFDIlarSLolux4WsYPZV1TE6tRjSNaKpJu0rx3S8ZGwqrDl1N/a2lSRLRjU9bVrVVwuGFQhulxbNKrLnTtVwM7v11cgUBCz27SpuxhdJNJdbS4QKCjMbdpUUISLRHSujg4Rv1+iUUeam0Vqa0U6O0VaWvQwamtFHnpId9HRobvpKlq3aZOu53YXDuu27du7i9Nt2yZSXKwft6ND5MknCx95x47upyd3+OvXF/T3UpGESKBDxN8usm9XQSwt0CESDnQXYPO3izw5T5yG3dr+9N26raNVBdniMV2PhlWM7cl52fdd5ggHdFs0osvmBp0rEdPxLQ0q9Bbqsu+G3SK+Rl3GogXhvJy4XSwhkkiKJJMisbguG3yF9q27VEivq3BeOKp9t+4qCPTlxPu6CvTlBPa6CuuForqMxsXe2yixtjbp3L5dll97rXRs2dJdaK+tLS9w59+xQxKdndJZWyvJcFhS0WheGC/W2ioxn086tmyR5ddeK/7aWkmGQtKxZYuO3b49v1x+7bUSa2uTWGtrvn+grk5SkYgsv/ZaqX3xxW5zJdrbxIlFRZr3i+zdqec7FBCJRsSJRvTcBjr0uucF9eK6vmmVOLnrsHeHXrPcfbJ3h8hHb2Svc6RwzbuO9zUWxgc6tC0eK+xrzw5d31crkgyoKFZwu0isSdeTfpFkh0jSL/Nuu0WOPHyyxD78loh/o2z84GE5/aSjZcrkCTLz1GFy0vQj5KH77hJJtEtFeYlc+v1zxV56nrTv/IuMHztMFr38sEhohwp+5US3kn4V6erMbgtsFml6R5zAZyJWTCTZLhLaIZl4q6TjoS5ifG2SioclEensJgRopeJfEAe0UvH8eshXL/FQm4oBxsNipxNipZOSjPjFSsW0Paj7iAV9YqUSWWG/lm77tq2UWKm4JCN+ScXDko6pwF6mvVUywYBkOtokEw7J6ncWyfCavtK6Z7d4vV6JvPSMLPrd82LHojJpwgT50YU/kOOmHiGZeEwGDxok77/xhlx+8UXyg/PPk6EDB0h0906xFr4gXz/9NHnwnrsl09QgsYBfJh50kCxa+Ies6F+j2HVbdf++JhUHbNov9qplkmlvFWvhC+IE/JJIJKSurk4aGxulo6MjL+DX0tIidXV1MnfuXJkwYYJs27ZNwuFwXsDvuuuuy4sEPvbYYzJq1ChpaWkR27bF5/NJJpMRy7Lk5Zdflj59+siePXvEtrv/z/5X/S5IhpNf+nvgy7Z/VXvX9b839r8d6YjezzlBuXRIt2UF5wJ7lkvTnh0qKGen5PXXX5fBgweLkwzJ8ccdJ7/97W9FRGThwoVy2GGHfWH6HkGznuiJ/7uDvyNo1sNc98Q/HW6vPpU+55lz6Duub7cnxnbaxk7YhBpC1L1VhxW18gz1yntWkgwmKe1bSttnbZTWlHLCbSdQMayCgYcOpGpUFb6NPo667ijinXGGTR9G5fBKTnvwNO56+B6+/vVzOX3cUSx45mkevOs+ph88jSmTJnPod07i47atxNIJoqk4pUVFBMIhfvf7lzjr/G/gMlxcMu1coqkYl0z7BqePO4rLpn0TwzBwmy4aQ20EExFi6STFHg8H9htBIBEm4zgEkxH6lfemyO3ljiXP4gt3cMsplzCkcgAOJkKubq6MO347gl276rlz3i/AauOuZ4q5c95t7N+zna2fvsOcX7/EtuXfB0nw+DPv891vT6V531r27VjCSy+9wId/3Q2dd0LJVMi0gu9ysHYCXmWwAfUqsSC+Qllqo0jraV29tR7bKAVJQXKj1v6Fw6rQduyx+kQ+GoUrr1TvsWHDtC2VUubZMLSm2rK0Xr5fv4L/2BVXwL59cNdd2m/ePPVCa22Fa65R27XmZqWWi4q0DnfcOHjwQZ07pxYnosztT38K+/bhODrsl79UTbz162H3bti1S6eaP1/Lej/7TMXocmT4vHn60bLEONGoitINHlyoUMj5mDc2wqGH6i6PPFI/8qxZKkxXXq7jzztP+86dCytWwPXXqwieiQMN9Wov9e4f8gwliTh4iiDLcPL+H6GoGC68BqNPP+0/8yqIReCPz6gXt2nodsNUxnvrp/B5BtrtBX87/O5h7VNZDd5iHdPZCm++oNdx/07oOwB+cLXaXiXjKgpnGAXbtooy7et26fVIZ33R07YK5nk92nf4IAhFYXdWx8JAbeACYRXmq6nWpePAzv1q9zZ2uF5Lr1vnSKbVgq7Iq/vLLp2KMgzTxOX1UnPIIdS98AJi28R9Pg7+6U/BcVg3bx6lAwZQOmCA1kR3dGC6tI68tH9/ag47DE95Oe6yMrY/+yxNf/kLcZ8PwzAoHzaMmkMOoWL4cGoOPZSKESOY9qtf4a2owFNWRq+RI5l2221UjByJ6fEwYdYsOj/7DMM06TVyJFPnzsVdXKzn9u2XC+c7Y8PLj2ME2qCoRM9fv0HwnSugoko91+u3Qc1gjH6DVHyv/2DYuwN6Veu171UNe+rUMx3gnT8UrnM6ree5rKLAfCfi2mZbmgUxZoLeU4YBvXuDpFV467NbtZbX9GRfXu594DFe1uEfAACnaklEQVT+9ObbvPvHZygdejxsn8/Bh0zlvduGsGHZQn538X6a99cy4aCx4Cph2LDhfPecqbh8i+nre4KzTp3OqnefUDupeBNMfRLKR6ovsGFC+Sg44nEoGQo10zHKR0N0F6y9EjIJxHCTydh07F5LuLUeKxHB5fbiLipl4PgTOOD4HzJw/Alk0klAqBk9lcqB46gZMw3DdFEzZhqVA8fhKanAW1rJwIknY1sJmj77CCsRxlVchmG4KOs9mPb6tcps168FcWjZpoywnYoRaqnDSkRx7DR2OoHp9mCYLpyMDfEoztL3VT/A7QWPh0de/D1fP38GNf36MbCyF4v3NHL217/BujVrqKuro6KoiH2+Vjp8LbR3dHDMUUfyyutvcO0PZlLVuw/vrlmPecLpGB4PwV07kWiYRGsLVijIwF4VGIOHquXdsJEYoOz51o04K5dijBoLRcWYp39ds0QMg169ehGLxSgtLaW6upqzzz6b3r17Y5omc+fOJRaLce655zJ58mSOO+44jj32WBoaGrjxxhuZOHEi77zzDu+//z7V1dWICIsWLWLs2LFMmDCBJ554gvfff5/BgwdrTfr/wu+CL2OQv5JZ/or2L6R+/42x/+0wvTBxjgrLTbwFzOz/163zYP+rhNbdxTfOv4BJhx3JwYcewaOPPsrixYsxinrx1IIFPPXUU4wdO5a77rqL3/72t/lpL7/8coYMGUJjYyOnn356N5GznuiJnvh/KP4W8v5PffUw1/95YaUsSUaTeTY6b7fRHM5va17fLOHmsOx4Z4ckQ0lp394uqx5aJa/NfE2ibVFJRVN5lrvruJv+6yY5YupUafd3SCwVl2+d92355QPzZLtvj2zc9pkMGDRQfvjoTXnmOpyIylk/myklQ3vnGepYKi6xZFxCiagE4mGJJuNS17pXrn/rQfmseWeenW4Nd8rWlnq5/q0HZWtLvbSEO+T6tx6U9ohffOEOaY8EJJZKSFvELxk7kmWaZ8j8O34mhx12iATad4nYUWlvWCper1vEalNmOd0s533jGFnwK7dIeLGUlZVJ075tynrbUfn5NRfJ7J/PEElsFEluV/ba/6Qy03ZYxI7oXIlNIo0zROKrlenOs9l+ESugjHXjTD2uRFgp3ZwP2c6d6j/W2KjUcI5FbmvTNr+/wGAHAgXvsnfeUeu0lhZtDwYlTzd3pYmDwYK9WlNTge1ubVUGfMYMbW9sVFp6xgwJhZxuU6xapcP37y8cYjCoLm3r1381c/3QQ8o+b9pUYKajUV3P7Ta7S9m2rbC/QEBkzZqEDBp0rowceYCMHTtZ+vc/RRYv3inhsMjq5cvk6MMPk8njD5KDxx8kS675kbKLiZj8Zv5dMnFQf3G5XPLAHbdn7cHqC4x1jvW84hxlIRPx7mxzOKB9/O06Jsc8f5k1WY6d3l2r2zvbCm25beGgSDzenZHOscqW1Z2Fzm1Lpbv3TaYK7zsC2icaL9jA5RjtrmO/jOHuCIgkU2IlEgWW2udTy7dwWPy1tXkme8cf/qB2beGwJINBScdiEmtryzPLndu36zafT2I+n8Q7OsRfVyeNS5dKwu8XKxaTdDQqdjotIiJ2Oi2Buro8Y53bLiJiJZOSCofFSiYlHY1KvKND7FBQz+NHb3RnjHOsczym1y6ZEIlHs8z/3sJ1SSVFGvYUrkGyy3osIrJ5TYGVzjHXvkaR5n26PdChrHk0rPNt+bQ7Ux5sV5Y6FSywbY2Ls0x2k9z3q2vk0LHV4t+9QiS0U/ulgtJc93HeCmrBPVfLYYdOEScVFvFvknmXTZTr/+tikdAOifv3y+GHTJRXn52v8wY2q61UolUtphoXF9jsjnXK8H2O+cukonnmWtlntaZLJyISD7UpoxxslVQ8LFYyJlY6mbeTSyciYqWTYqcTkoz4JR5q/RJ2O/bF+UJtEvLVd2PAQ756sa1knsXO2dhlEnFljxv3iV23VZxYVG6/6UaZdsBoidTvlEwiLhtWfSKnnXyyHDxyuHzvW9+UEw8/VA4bPVL+68qfSKZpvwyv6Ss/ufhCOeKwQ2XlZd8Tr9st9951lzjJpOyp3S6Txo2VgQMGSLHHI7866RhlqNt8kvE1iZNKKnPd1JDffyYRl0w8lmezk8lE3nYuHo9LKBSSSCTSjcEOh8OycOHCPLsdDoelra1NwuGwJJNJSaVSeYs7n88nlmWJZVkSDoelqamp2/b/58NO6X2etdESOyUS2FTI0Mht74me6Ime+FzQw1z3xP9W2GmbVDSFlbBIdCbIJDN8fM/HDD1mKO4iN8OPG05RryI8ZR7OfvJsKoZU4C5xM2z6MIJ7gyy9dSlDjxnKqfNPxVPmwU7ZeZY7J2ay4NUFvPq7V3lz4ZskDYvN9bW8+cYbzPzeTIZW9Wfw0CFMmzaNKQyi3FtCkduLyzBpX72LY885mUunfQOAjliQVMbi9g+f4bSnfkLSTuFxuZkyeCy///Q9Jg4YTbHbS6m3mOfWLsrXVZd5ivnlaZdR4immMxbinr88T2OwVcWlyIDVxP2/G8jLCz/gw0WPUJWaDZKgujxEWVkpf/7T+WDvp8OfYvX6fUw87vfgGcKooW7ee/dViK8kFvyMvyzbxMQpp4FntLLQA56AXt/TWmr17lJmunMeRF4F/33KcIsFTlSXhijD3e9u8AxXxiuTUSr4iiuUqi0pUbp2wABtSyZh3TqoqlLGOhyGnTvh44+1vbxcKeRjj1Xqd/du9T7r6FCa+LHHYPFiuOkmvSnuuYd84fMVVygdXVKihcy5eu1wGE49FebMwTSEm29Wpnn2bJ12/nzo7FQ2u75emeSWFt3t6NHq7DZypApdL1gAI0bA2WfDcccp2R4Og8+nJPy8eYXdnnqq6u1VVcHMmUqqO47O9eCDs/jkkzoefngTP/nJudx116Xs3i186zsXcNutt7Lp/bd59ZmnuPiPH5DwlkDG4bBQI68eNYbvHT5Ja1WtlDKPI8dBKKDsczoFP54DZ12gGQ45ltLfpuzn7x5WS7EZl6l6OWjfI46DUQd2759OwQevKQvuLSq0ffAajDxQt8VTemKy9c/sbylYwHVloTOO2r6lLWWexwxTFnp3Y2FcZbmOc7sglYa9TXpPJVLKVJuGvjKOWtHVVOvSAMpLwaUq4FsXLKDPpEkkOjpYc9ttxJqbift87H/vPbY/+yzDzjyTTCLBmrlzibe0AHSrid6WrcUO7thBsrOTdChEvKWF4t69WXf77UQaG0l0dGBHo9ipFE46zZanntKxv/mNWszFYtipVF48LbpvH4bbDY5DOplCzroAxh+ar6vm/YUw/hBlnT1eKC5RFrmkTDMzBgyCi34GA4bqeR8wGMZOLrT3G6jXJBKCqj6aCZKrrS4qVva7ugZKSiEahrdehM42vSFHHKBZEbm6/GIPxOqhfYVaRQ2bAX2nARka9+7gul8+SDAY4MSv/YApx57LtKOOgTWzWPDs7xg79VscMPlYFv21jtef/CmGk4St87j26C20tuxn/BFncPihEznz5KM5/zvfhd5HQOkwSLQBptZYF9fA1mzN9fZ7AOcLzJ9pqqVfUXm1ssu71hBqqSNjp/M11O31a7JK8dD82YfULnmKlm1LVTk+EaZ5y58xXG7cXq2bzrHZNWOmEQ/4CLXU4du+DG9pJYMnnYq3tBJPSQWVA8fRd9ThYJiUVg9EHIeO3cpu26kY6XgI20pg9KrE+eSvGL2quPfhR3h90WLeeeN1SisrIRRgYsNO3n3ht6x/+UWe/+43+WzPPuKmmzt/9SuclUv547fP5OWFr9Hia+WR2r0ce+SRuN0upLOdx278ORd8+1s07t3LnnVreGXHXpY4HoyyCs2GcER1Knr3waisIvPOn6CzXYX5smy2EY2STqcBePfdd9m+fTumaXarvTZNkzPPPJNYLIZt23i9XsrKygB4++23CQQChEIhtm7dyvLly1UkLZMhlUqxcuXKbtv/nw+XFzwVBWEylxcqDoRpz0DFuB7Bsp7oiZ7478ffQt7/qa8e5vrfH93qrjf5JNQYUqa6KSxN65ry29PxtPg2a011tD0q6XhaYu0xWThjocxlriycsVDi/ri8fvHrEuuMSbQ9Kjve2SHxQFzu/NWdMmH0BKldUSvBcFiaQ+1y3ev3i6vEKzN+/RMJJSLy05fulMFDBstHS/8ssVRcbl78iBz2i29LaVmpNLY2SzyVlGgyLuFEVJbVfyrbfLtlWf2nedZ6a0u9tEX8EkpEpDXcKR3RQL6trnWvLKv/VLa21EsoEe1Wrx1KRMWxo9Kw830BZNTIIXLwpJFy8IHI1MPGiljt8uHLx8uh45HJB1XKQQeOkvvuukYZ5sYZ8ulryNGH95HJk8bIgWMq5IbrLhGnK0udbhZJrFOWOrFJJLlD665zzHVik0hyl9Zepxu790036/tISJnqGTMKhceBgDLToZCyz36/Ur/vvKPbgkFlstvatP/mzbqtK73s92vBco4WztVY79yp7z9f+BwMFvrmCprDYUmFk9Lc7OTrmyMRnSYUki+w2blpNm/W959+qn03b9ZD8fuVyZ45s1BDHQoV6qhzZd/hcKGkvLlZ+2/YoER7rm77lFPWytChw+Xcc9vF6/Uqq/jkPJHONpk0bpy8dvn3lG3OMpEXffub8sA9dytTuXdnof8lp+syFlUmcvOaAnsZDnbvEw6KBDq1bzymjGeOCf+y/om4SMPnmNBopFD3/Hk2elu9MqqJpDLL2+oLTHMypS/L/mI9dTT+RdY7FPlivXauVjvHiKfTItt3i51Iir+2VoL19bL82mvlpfHjtc7Z71dmeceOfC10ri0ViXRjrgN1dWLFYvkxtS++KInOzvyYxqVL80y4v7ZWrHhcEn6/NC1bJslQqFtbeN8+WXjkkdK4dKmkIhFlsGMxcZIJPfe5eumG3VoX/T9h+Kx0gfGORfU6db0H9u3Sa941I6F5v15rX2OhRjsZUDbtlWJlkVMBrY3OMtfSsU7bk+1aj921ljQVEEm067iONcps+zdqW6K90PfjmSKpcKGvf5My4P7Nuq/c9sBnIlZUJBXSmuuuzF82MhlbEll2+fPMdToZFdtKSTzUKiFfvdZgW0nZ/+nb0r57fbe6actKiZ1O5Pvn66nTyUJddiLShfHW/aTi4Xz/XD13oqNZrIUvSHrutXLPhd+VQw85RDq2b9F652hErIUvyL7rZuXZ5m+dfZaUlpRIZ0uzOMmkZHxNsv3h+VJWWioBX4tk2nxy4Nix8uFbb4q18AUp83hk31MPiRONSKZpv1z3kx/LzTfeIJlQoMBWZ2v4c8dhLXxBnHhMMi1Z5joalXg8LslkUmKxmNTV1Uk4HO7GXO/YsUPC4bDEYjEJhULy2muvSSwWk4ULF8rcuXNl4cKFEo1G8wy1bdtfylx/vubasixJJpM9jHZP9ERP9MQ/EPwd5rrH57on/unI1VXvX7GfhectZNzXx3H83ONZcOgCrt59Ne9f8z5bX93KhBkTOOeZc3AVufLelHbaJtoSxYpbee/LUEOIQH2AoccMZdUDqzh1/qn4On2MnTSW4UOGU1ldiRjqU/violeZ+/S9bP3jMgwHArEwMy/8ARzWj0unfZMBvfpw08030dnawW9/+yz+eIjy4jLcpgsTZU0cEX71wdO8X/cJp487iutPvJAybzEp2yKailFdWgnAhqY6rnvrfk4YfTg3nnQRnbEQz6x+g0uP/CZDK/tR5Epj+i5TJrliBvR/FFqvgj5zlIG26pVp7nOj1kgnPob+D4Ptg847oM9ssBrBMwRcfcBJgMTBPQQy7dBxa2HuAQv05IuAJMAsQ/1S00CWhZAEJLeBdzQ4EbDGwPIVyjA3NenyzjuVshVRireyUuuhi4tVdrulBaZNy/stEwwqHbxrl9K/N96o8xQVweWXKy08cyY88YTWkRYXg+OQrK3lgquvZltbGyVeL/369+eJ++5jzOjRrN24kWtuvplwJEY8YfLww/dz6KEnEQqBxxPnppsuYfXqtQQCJrfeegcHHXQeAwdqTfTGjeQ9zJ96Cj75BA4+WD9KRQW88YZuu/NOPcSSkkIZeSaj5FFLizLaN9ygBP3HH2utdd++qlj+wgs/oKSkN9de+xDnfG0499z2S75z4nGs3bOPY087gzsPHcO1l/1I62qdDBdffgVTpkzhmgvO0zrpMROg0wdvvwKnnQd9+sHLj2uN9ZyHlKE2DGhtgvcWKjtaM1CvYVuzMtJnX6DMpkvZVSJBiEeVpT77u7qfoaOU4azfBr1rdA5XVlE3q8yPYUA4qmy2ZakKuIEyz/tblMV2uyEWL7QJYNl6wrwerdtOdemfSms99679ynLXVGsNNtl5c+2mAQKWlUZsGzuZZON99zH+kksoGzIEsW0MtxsrFiPZ2cm2p59m/CWXUNy3L67iYkyXCzsexywqwkmlcJeVEW1oYPuzz3LYnDnEW1rYumABh99yC+tuv539773HsDPOYOqtt7Ju3jwO+tGPKBs4kDW33VZomztXv8OSSaxIBG9FBd6qKlwZC373qGYdjD9Ez2dRyb/wSzN7A2Yy8PvHYPRBcNh0smbqen2LS5T5RlQt/JWn9HimTge7CeL7oc80rYv+YCoc9Qr0O0b7i4PqMWRt+dJB8FarZdD6q2Dc1ZDshH7H6t9+JqZ1ppkEWGEo7g/xRth6Oxz0c/BUKWNtuCG6W2tRJ8zR2msrBBtvhIOuh4qx6vf7uXCcDOJkMExX1t/cJh5o0Zrqkl7YqTim20PGTuNyK0OYsdO07VhJqKWOyoHjGDTxZJq3LKFmzFQ8RZpFkbFSuItKaPrso3y/wZNOBaDpsw8JtdRRNeggBk48OXtODNKJEJlElDJK2P/mQkZecQ2jRo6k3MlAKknxoCF88s4ibrv6Kl5etwl/KISdSrFs0RtMnHYUzvuLME8+g5/ecBOhUIhnz/sazzz3W57euou1W7dBKMDBU4/kp9dcw48uvJCYbXPimWdx7TXX8N3zvo1kHQKcT5Zinn4uxKI4K5ZgTj9Fr3+JOizYhokDZDIZGhsbqaysxO124/F48Hq9ebbZ7XYjIsRiMZLJJFVVVfr5m5qorKykd+/eOI6D2+3O11bbtt1tfNeaa9u26ezsZPny5UyfPp0+ffrgdn+5MndP9ERP9ERP/H2f6x5w3RP/VNhpm87aTpbPW86xs48l3BimclglpX1Lef+a9zn9wdOJt8dZPm8502+Z/gXBMythkQwm8ZZ5ScfSRH1RRARvqTefJj70mKGsvGclR113FLH2GDVH9kdKDEQcHBGiqTjlRWWIOMTSCZ5Y+Ufer/uER791IwPK++CLdjJxwGjcporENIfaeWb1G/z8hB9Q7CnCNAwaQ208u/pNLj3ymwys6ENLuIPWqJ9+5dX8ZvWb3HDihfjjYZ5Z/QY/nHoOfcuqSVhJKorKiKTiVBWXU+oBl12PkQPK7kGauu3EoG0O9LsDzFJw4tB2PfS5FlwDwSzXH8tOTEGye7CC75IjIBMA9wBN9c40Q+c90OcWTRVvuxH6zdc5RfSHL47+iJSYAmqzEswKsHaBVQ57Ewp4a2rgZz+Dq66CrM0RN94It96qqd+pFEQiKpzkchXEzySbzmjbCrQrK7WtrEwB9113KVhva1PlsGnTIBgk2d7On9ev58xlyzB+/nMeXbKEP/7+9/xl0SKGHnUUzz38MMcdfTwbGgOcd96pvPJKHQ8/XEJ19a+IRHbz1FPPsWvXHk49dRrLlm3nz3/uwyefwCOPaLb5LbfAqFGKVXbtUl21o4/We0xEtdfmz1fMv2OHPhe44QYYOxYuvVSfCcyYoaDaslTbbfVqeOyxO2hpWcTbby8hkymlZd8qZs++idbOABPGH0RLw37OHdybq+97BPr2h1CAi3/2c6aMHcM13/paIT3bccDJwO5akjWDueCii9hWW0dJWRn9xOKJJ59izIhhrN1WyzW33U40FsMwTO4/+QhOijTBEccxe5efP/3uBYr69MNjGsz78aWc/v2LAYE5l8LkqfD9/9J9mQbYAhgKbou8ep087u7A2JNN/R45WIG3COxpgtFDwc6Cv7RVAMetnVBcpCnijmgft0vbHIFITPfl9eg409Q+jT4YNpCMaRBu2M/WBQuYMGsWpQP1IUImkcCKxSjp25d18+Yx5dprSaXTXDhrFlu3bKG0vJyaPn24+Zvf5LAzzmDVihX86qmniCcSmB4P9959NxMrKvD06oW3spJMMsnbd97JrD/8gR/+4AdcfdxxtG/YwBG33kp03z62P/ccEy6/nNIBAzBdLsJ797L92Wc56Ec/otfIkZiGgdnZgvH2K3D29zSt23H03nd7/nVfoKkExLPifqGApn5X1+gDlTNm6AMSx1bBrWRcSweifhg7HmJ7CiC3dDhk4prWGq7TdO0jnlQAHm+E0iGa0n3QDdDxMbR/DFOfBjum4NhTDnYaMtHsnLN13F+/BscvLoyfMAfiDbp92AyYNBfshN6D7jIoHazH8HeiK9gGEMcmFQvSUb+WmjFT8ZZWIY6DlQxjJaKUVg8kk06yc/kL9Oo/mkETTqJ565+pGTMNb2mlsgMZqzC/beE4Fu271lAzZhqeojLSiTCdez6lpGoA5TXD8XorMJwMEotqqn8sgkTCGL2qkHAQc/AwGpqaGD7uQEaNHElFkRdMF16ElbfdzO2fbuf3r76KOBkO7F3No089xdCxY8E02bhpM1dddRUxyyKdSvG18eO464knIRLGqKxCwiHwd2CMHodRUQm2hSSTGOUVSLATZ/kSMl87n2AoxPLlyznmmGOIRqMMGzaMzs5OVq5cyfTp06msrCQYDLJixQqOPfZYwuEwvXr1IhwO54G1x/PP3a+pVIpFixaxdetWJkyYwDnnnENRUdE/NUdP9ERP9MT/S/H3wHVPzXVP/FORSWdYPm953p962LHD6DuuLyV9SjjnmXMo7VOaVxLvPaa3stxpOz/ecRxirTEWXbaIWHuMol5FVI+spmJoBWc+diYTLpjAqgdWsfXVrXxy3ycMnjYYxw3bfLsJxCMUu4uoKa+m3FtMibeY/hV98grgEweMxhftpLqkgjuX/JaWcAemYfBM1rvaZZq0hDu458/PM7CiL7eceilDK/tBtk91SQW/Wf0m79d9Ql37PnqX9uL6Ey9kaNUAUnaKT/ZuJpiI4HV7CCTCIGkMoxT6P6Iq3UgWSP8MIs9B2zXZWmiXgmJXP1Xxlowqevvv0XaA0mO1Xlri4Lta33vGKmPtGa7+tgMe1u2+a8CuByesHtiGACak92QBN9B5rzJcjY1K4brd8MADCpxnzVL0eeut2tfnU4q3shJWrVJQbVkq3d3WpuC8uFip4169FJBdfbUy2k8+qUC7sVEB/JVXQjxO8ejRnLV8OcbChXDffRx59NHs7eyk85praO/s5JSTTsJ747VMGjucXr2quOGGd3n1VXj55T9w8cVX4DgAIykuPoFXXnmd005TDO/1ap31qFGK90WUiZ40SQ/b59OP1L+/ln5HowWF8XvuUbx0ww0KrG+5RUn4hgZ9rV59L7t2/YkhQ97FMEq55hoYMWIK7z37NBv+aya/e+Jxmjv8TLjoCqjuCy8/qXXQpgu2fQoP36pq0W3N8NKjyj6OGQ8lJcz6yU+o27aNTT/9AedWe7j0sssQj5dv/mgWt910I5s+ep9Xn32ai199l8TBR8EZ5zN96hFsWLeOTUve5zcLFjDjpl8S27pRQdml18N5l0B7C7z4EPia9P7b36IAen+L1lAbdK+/tjPQ5leAbRgQS2idtGnouLSlbNqu/cpCFxcpeIas2rlbl13VwU1Tx6XS2t5Y8MF2RL2qc17TYts4lkWio4PPHnsMO5HgoB/9CDuZJOn3c1xxMes++ID1q1dz7je+wa8WLmTbb37DZb/8JT+bOZOlr77KjYcfzg8vuQTvkCHUPv88djxO0YABPFFbyzlnnUUqEGDAMccw/pJLAKjIqoKX1NSQSSSQTCbvme0uKQER1t5+O6niCuTCa6BmAKSTsGOznlfb0uuciOnyfxIut6qRJxNa111RVaidD/t1v5GwtpeUaX32kKHKNGeVjNk6T//mXSX6YG37Pbodp0uN9B2FGukR34PDHtTrTc7f2IDiPl3mvAP6TFUA3WdaYfzWeYXtE2aD70NItoDpVtXy6G6w43/3Y5umC5fbi2m6ME0XCHRkVb/bd61BMjZOxsJTVI6npILmLUtwHIthh55DzegjMEwXgyadiqe4HHEc0vEgLduWYqcTJMNtZOwkViJK35GHYSUiYBjYqTh9Rx9OPNCM2+WFQAeZxX/Uv0srDRWVmMNG4qxYgvPyb8i8+zpDhw7FScSpu+c21l5wNutuu4lVS/+COf0Ubp17K3Vbt7Cjto63/rqMoeMORHwtGBhMGTeOj//yZzauW8eWt9/ijiMmIB//BaO0DGf5EsyhIzCGjsBZ+r76WieTeo0zdr7mWhyH5cuXs3XrVj7++GOGDBmCiHSrlQa+1P+6tLSU5cuX4zj/vH+1y+Vi+vTpTJgwgenTp/ew1j3REz3RE//D6AHXPfFPhcvrYvqc6UyYMYHpt0zHU+L5gmWG2+vGVeTCv9PPoksW0VnbWQDYGVhxp4qWhRvCWDGLt694m8CuAM1rm5GMcPYTZ3Nt87Wc/tDpeEo9GB6DyYMOYFBlDS7TIGml2ONv5tcfPE1jsJWBvfry46PPw2W6mDhgNC+sezsvSIbAzSf/kMe+dSPF7iK8LjcXHHI6zaF2bv/wGRqCrQTjIa4/8UIG9FLA/eYP7+PgQWO5/68vccqTP+ZXHzxNZUkvJg08gCdW/pFgIkLv0kowvIhZDhm/stFGib76zNZU7j5zAJcC6EwztF0HnsEQfkXTwQcs0BRwJ6ovbE0XLzkE7L0KnAFN/86A7dcfyP3vB8ufZb37Q3wVZNqgeJKmpVu7swx3GwwepL5Se/fq2Jyw2J13KlD2+VQ5bPdupW4HDFDEesUVCpYbG7MsbJbFy2Tg00/hlVfg2mtVEM0wlLG+776CT1ZRUTdPrIcef5xzy8vp++abDPR4ePWPf4QbbmD1ug3s2FHHUUftZfFiyGT2M3TocBwH7r0Xxo4dQTi8n/JyWLtWWepZs3QpomJn06Yp6Pb5dPvevaq9lnMFmz27AKbXrNEz+vjjCtB9PhVNu+SS+/nTn17mt7/9kBNPrGLdOh23ZGkbUjMAvnclTz//PGXJGCcdOU2vyUnnqAWXYagY1hHHwaiDCqJmQT+88BDFgQ7OOuUUDCsFp5/PkSecyN5Ems6MQbvfzylnng29qhg7eDBV1b15t3Qg7NrGmaF9lJhAOsWkcQcgGZt2y86mnk9UhjzQDhtXKVAzUAa6yKtLQdnlrkJmbhf0663tpqGMdA48gzLWXcAxleUKukGFyxIpBdLdALutywoVVuq6P9PtZsKsWQw74wwmzJqFFYng8njyYmUb77+f0oEDKe7dm/oXXmDwjh1se+YZnFSKqYcdRmNLC8NnzaIzGORbl19O3e9+B6tXU2RZLFmxgklXXklx377cfuednHPyyZQ1N+MuKaG0nz40i/l8tK9fj2NZmB4P7pISksEgU667jr6HHMJnjz1GpLGRcTNn4sRiiGFCezO89JgCX3+r3vOtTfDCQ7r8nwBstyefCszp52s6eE7AbswEvWfeehHCAQXzb70IuMFVWhAzmzBbmej4fn1wd/hjyjbj0rZke/e+Hash2ar3bMJXsPIy3DDh5kI/dylM/jU4qcL48TdqvyMeh/LRMOwCqDm6C/i+A5w0ZNL/3HkwzLxgWd9RhxMP+nAyFoZpFgTQdq2hrPdgvGXVYBikY0GatywBcboA89WUVg0ik07gKamgY8963EWlYJh4yypxeUoYNOEkDAEJBTGPOh4JhzCKSzA8XiRjY04/GWPCFMxjTkRsG0xXYdv0kzHKe2FU90YCnWQWLUQCHeAtwvB4MQcNQVJJsNNkPlyMBPwYQ4bjvnoO5unnIok45vSTAXBWLlUbrhVLMMrKoLgYMQxcZ34T87uXYJgmRx99NBMmTOCYY47BNE1isVge+B511FHd1qdPn048Hu+2/O8AY7fbTZ8+fTjnnHPo27fv/4pNV0/0RE/0xP9L0fOIsif+qejqce0ucn+l/2RXhhvQ/l43uODoGzR/d/DUwbx71bv5PqfeeyriCJ07Oll5z0qmz5mOq9iFGA5pl8Pmth1MHjSWEk8xgUSYpfXrALj+xAupKa/W43N5uCSrEH7Ncd+jMdTGc2sXce3xM3EQehWXUV5Uyo72fbxf9wkAc0+bRcxKYmSP3WW6aAl38LPjZ2I7GS6Z9g0M4Hfr32HK4LEUuTTtTl2uc0yBozXPtk/Tw/s/Driyat9lykL3f1xrpD3DNQUcE+zdYDVD6dGAW4G5UaTvzTKwWzTN2+ylu7FbwdUfSqeC3QauKiiZBonVmpIeeVX79X8ceh0LB3hU0dvjUXA8e7a2z56t6DRH64KC5bvu0lzp3LbHHlO227Y1bfz66+HnP4c//hGGDi1c8JKS7nODgvMFC7jj/vvZtWcPS154AR54gDfPO48bn3qKOx9/nHEHTeTQQ4+lpsbN0KGK4W1bD/fuu+Hmm+GDD+D731d2+rrruh/aeefB5s1aL+3zKVu9Zg289Zb2efBBJdgXLNCP26ePMt2rVsGQIepxfdFFjaxdex1DhozijDNOpF8/qKgoYsmS1by28BnmzH4RiUU46NDDef299zGiYVj4NM/F3Nxy30MEgkHe8Hi4t6yMRQefyCFnfkfTTt9+ueBV7HJBOAEGPLTDx7lf/zp9+/Vj4MCBvPrHhcw47mjWPn4vdTt3sNfXCnYHnHE+bNsAu7byW6lm1PDhDN+6Smuu00n4w1MKzOY+oZkGbrfWSudTwLP+1jkv62AYqivhgGHKPNd3qaEu8mp/w1Tl8P59dFvGgfoG3ZbJQINPa7OHDtATnBs/bGC2xloK6uN2BpeVoWLIEA6/5RascBhPRQUYBhNmzcJ0u5ny859jmCaGaTJh1iwAxl9yCSLCgw88wNfOOosK06RfdTWvvvoq58+ZQ3D0aBr/67/Y19RESb9+rF2/ntWrV/OrI45g7a5duFIpJJOhbMgQ0oEARv/+rJs3jwmXXUaivZ2qceNwl5TkAf7ob5zLgJFDMfytSE1f9RnfuEpZ5u9dqZ+pVxUcMEkfpsy8EvgfpM16i5TtLy5V72zTVJ9sw1R/67XLtN/Xv6/vXW648EpNBZ/6lALrFefBsX+CohpN864+FBAFwGXDFfAe/ih0rtG+g78OUxd0YbnR9XgTHHitpoSXjdDaazuqftqHPwqx/dCxStO/t87TNPPyUTD+Zp1jwmxItUPxgH9SXVnwlFYyeNIp2KkEhunC7S1FHIeaMdMA1APb5cY0XWTsVN5Du//YYxg08SSqBo/HU1KO49gUV/bHcHkYNPEk4oFWvKVVOp8ILduW0nfEIRT1qlTP6WNPQpIJDK8D8RhG7xpc55yvD8lcLgyXG3rX4Dr720gmg9gWhukteFQDrnNm5NO5XWd/m8yf31X2efJhatKwfAnmsSdjDhupD7myINqZfJimiZsmRnkvpLONzMqlmNNPxmUYVFRUcPzxx1NcXMz+/fspLS2lqqqKM888k6amJtxuN7179+acc87BNE2qqqryy8/XUv8z4Xa7exjrnuiJnuiJf1H01Fz3xP9KdK3N7lp7badtEp0JksEk5QPLCe8Pa5/Z0yntV0oqlGLprUvzgmhnPnomljuDUWzQEu6kPRZg4oDRFLk9dMaCJC2bwZV9scXBAFymiSNCyk7jcXm4/cNnmDJ4LIcPmUCxx0N1SS9Mw0QQ7vjoWa49fibFniIcx6Ep1M5v177FJdO+QVvUz5RBYzENk4xkcJsuYukk7dEAz61dxA+nfp0D+/bFsHZk66Jnq4hZfDmUHkVebMwoBklCJqRg2azICp3docy2UQJOQK21+szRemsjKxAkNprGaWpauFUHlk8F0KxmKD0SyP2YMrXmuu0aFVBzDQJ3b4il1YIrk1H0WV6uoBeUCu7XTxHm7NnKUg8bpkj1mmuUeR42TAXPrr1Wke6yZaoA9tRTCubi8SygKlYauW9f9dOaNAk++4x7lyzhleee46NFi6g6+GC1JFqzRoH58OFE26IcfMYpPPDAoxx00MmcfvoERo36DQ88cCQjR8L558+gquo0XK5LmT9fs9Rzhzt8uGqqzZmjLHR9ffePMnSobofCc4E77tDlddcViPYZMxR8X3mlgvOZM1Wb7frr4ZlHExT/4QEFyaPHK1B+60UFPUccp6CofqvWzZb3gj/+RtO1PUVqzRX0K6t81gUQaOeOF//AoqXLWfLmnyjt249N22u58fqf01q7lQleaHGXcO5lV3D1T67UJw27t7Nk6w5+eP1NfPj7FxlnR6DvAGXGV/8F9tTBdy5XsTMrDUW9YNseZY5HDNKnFAYKknc3wqghCiK6ipEN6Q+NrcpmI9o3V3cfjipbXVMNLlOBgjgKBHM12yL63rJ0nMtUm68hA8CysIrcJPx+iquryWQzHQzTxHC5yKTTBGpr6TNxIqbbjTgOptvNXffcw9vvvcf7ixdT7PGw4dNPuebSS0mUlTFu5Eiam5r42hlncHgkwnVLlvDy888zYvhwrvr61ykaO5Z7fv1rXCUlmG53N7Gzw+fMwbFtDJeLZEcHWxcs4Khbf4krEdUHFu+/ptfPMJRlttKFa3jmdxRke4v09flabNvSJ0N/r04718809brl5j/7AiivLDw0qejyvn8faF+pFlzxBmWMpy6AyC4FzAfdAOUjtBSkqI+magc3Q8kg2D4fpsxXZtqOwcYbtL+7TIH01jtgwi1Q1Bc+vaZ7nfakuQrgO1drunmyHcrHQMlAvVdSbcpaVxzwT4HrTMYmHQvQvms1NWOmYpoe3EUlYBg4tkXGTuFyF+HylmCaLhwnQyrqx0pEKamsyQuhWckYnXvWM2jiyWBArLOJ4l41ZNIJ2uu1/trtLUFSKcwP31HLqwlTcJ35Lc3IyIHpz4XYNtLZpind00/G6F2D+Nuz66dgVPVGIiFk906Mgw+HHNA+81tk3v0TsnWjstGVVTrm2JOUMe9VCR4vRlk5OA6Z997EGDwUc/zBZNweEraNy+WisbGRhQsXMm7cOM4880zcbjeRSISioiJKSkp6gHBP9ERP9MS/MXoEzXri3xZ22s6rhHdluLtuF4RMKoPpMXFsh3QkTawtxoo7VnDUz48i1hZjyLFDoRjWN9VSXVLBC+ve5pJp36B3aS/KPMU0htt4bs0ibjr5h2ScTDfF76SVIpqKY5omCSvFb1a/ySXTvsHQqn4ApGyLSCpGRVE5kVSU856/gRNGH87NJ/+QLb56+pf3ZlBlDaZh4ojDhqY65r73JM99dy5DepVhdFULH/AkiKHAw4lpfbVnUAFIu2rACX1OBfwp8F1eWO99Lfgf0e3WTui8E/rcDJ4x4LsEel8Hdnt23rugzw3gGgCY4OqVVcgVBeNmiaLERKKQ/v3qq7B9u9Zbv/WWMtDHHquAoKEBliyB889Xo+kPP1QgPGcOjB9fUACzbS1q9noVaB96qNZd796t6eZz5kBTE/evW8dLDzzAR4EA1TkEO2sWLa++ysCs3Pdjz7/E4wt+y4QJa5kzx+Duu+fy8st7Wbz4OQxjD9/61jTefnsb48f3paJCP4rHo7tOpfTjiShxPmtWASznlMSnTFGc5PUq4G5oUMa6uVnbQiEtNe/VSxXHm5sL4mcffwzjx1mcPC2MUVSi4CsUUFD09ssFAOQ40Lhbxah+MUtB98yrFGi+8FAeiN+7N8grv3+Jj/6ylKo/v65iZMUlCrZ8DfD2Kxw0/zc8+vDDnHzcsRCP8ddPN/ODyy5j0e9/x8FjRim4s9KQiOtYQfdd3gs+/JOC/b0qJkaxtyA6lvWdBiCUVQ/Pio7lmetib0FFfOgAFSlzmQquXS79nJ9vS2brrFMWyV37uOAXN7JtRx0lRUX0q+nHE48+wsjhI1i1ZjU/v+kmQp2duIuL+fX119Nn82YmzJrF3c88w6JFizANA8eyGH/QQXy2di3vLVrEoAMPpP3TTykZMID2tWsZcPTRfPbYY/zo9df5yWGHkfz0U+5qaaFX796YLhfBUAjHcTj3a1/jmaeeQiyLRHs7WxcsyKuUZ1IpDMPAXVqKZDK4XC7MjIXx+8cKD1FyD0Qqe6vSe+5hyvevhlcXwHd/rOc//6Vmga9R74uzvwsDhnw5wO7ab+aVWl/d7WHN1Xp9138MEw+FskrI2FDihugu2H6vAmUDcBXDmiuUiR42Q1nt2L6CEFnpMK2NRiC6pyBcVjYS2pfD6kvhlGVQ3Fe/PzpXqcJ4sl0ZcCetLLjhgmh9dt7Zylwbnuz3XArMon/aEzhjp2na/EE3ZXBxMl9QDB88+bS8mnhOFC0VDdCxey19Rx2Bp6ScTCqOt7w3AOmoH0xX9zkmnapfif4OZa6nn4LRpy/G33gAIqkUmUWvFsD4OTP0byCTAdMsAO3TzoFEXFPOBw9DEIhGFGif9S0y7/wpP4d55HE4q5Ypg920H6N/NmshEsJZuZTMmd9i0bvvMnToUIYPH54XLfN4PBQXF7NlyxYaGhp6BMd6oid6oif+zdEDrnviPy7stE0mncnXZ3eNdDyNOIKdsGla00Tl8ErKRlbg8rpIWinuXPLbvIXWj48+j75lVfw6y04fNmQ8v1n9BtefeCGd8ZCqgU/7BkMqFUi3Rv18sm8zW1rqueXUS2gMttEeCzC2ZjgGBsUeL4F4iJRtM6iyL29vW6F2XCd8n45YiN+sfoNLpp1LTXk1Gcehb4kHw6qHzvkFFe+8MvjPNH277boscJ6pVl1Ymr4dXwmeoZoi7kQVdJuVWUA+BDzDwDeruxWXtQ+sBk0Db72y0NZ3rqqJiwM4BdVwVx8wvcoup9MqYnbHHZor3d6uSHPaNGWdRWDPHrXsOvZYBVKplKJSEVi5UlnsESMUrXaliUePVsDtONrXcWhsamLoIYcwavhwKkpKwDQpKi5m9RNPcNuPfsRLkQjidnPA2PHM+M7jTJgwlKoqKC2NMWvWj9i2bR2m6eKEE24nlZrB/PlKiA8frrvfs0dLu+fMUVwfDutv39y2khI9dLdbRdGvvRbGjdMScdPU1969+hFyBD0U3MVyzxH69bboXRTGCAUg1Klq4B6vgiTDgD210Ke/Mo4ZW5nGM86Hyj7Kcrc2wfsLub8pxkt/fI2P/vAy1f36KYAaMJSW9nYGDhwIqQRPP/UUTz33PGuXfIjx2rMsqxrG9//rGt587U8cMqimAPjKeynAO/18BXHJODTsVpG1mkHKPHs9BaA8aogKmXVVDI/GC4rgjugJcZwvt9dK21qr3bVt+CDdh2UruM44JBtb+POHH3HmJRdiGAaPPvYYf/zTn/jonXcZNnoU919/Pd/44Q/ZtXcvp5xwAncNHsyYs85i6IUXUjNwIIZp8uu77+au++7j3lGjmHruuUy68krseJzORILhBxwApskTDz/M86++ysqlS/F/9hkl/fpR3Ls3psfD7Xffja++nrt/9SvKhwwh7vORaG2l7+TJiAi4XMSamtT267LLKB8yBJc4uPZs1xrr4tLuYPf7V6toXB5sV0M4CAOG6s2Vi2QCnn+gMO6in3UH31/W7+rbYNiY7tkNFZUqePb7x+C7P4HfPawp6g88D+u6AOnDH1OAG9/bnZnuWKkAe8i31CJLbHAs+PRa2PtSFoQv0D7xhoIq+KEPKgudA+blo1GLr6zNX/uKAnPdZxp4ev3TgLprOE6GdNRP267VeQXwli1/priyH6XVg+nYvZZ+Y6bhLe+tAmjZMZKx85ZbOeCcSx3P93EypOMh2netzs8BQCaDkdWO+DK2umt0Z65Pwehbkx/TFXi7rrxRRcryjPg3NeXbNMHIgvAVf8acfjISCmJUVoPbTebJezEOOlgB+OKFyNaN8N1L8feq5uOVKzn77LOxbZumpibKysqIxWJUV1fjOE5PXXRP9ERP9MS/OXrAdU/8r8bfAspf1T+fLj5nOn0O7JMfZyUsrJhF09omBkwZgKdYxczMEhdWxqYjFiBppbP2WF+npqya8qIS9gd9eEx33pLrjR/exxMr/8jS+nU8cO51HDL4QBqDrTyz+g0uPuIcasqrKfMW0xrx07u0klTGIpaKU+YtwTAMitxe7v3LC1w1/QKK3V4ccbjnz8/z9vYVnH3Qsdxy6iWkMzblbht3ciUUHwyZzixDfQPEP1ZP634PQqZVlbv7PwJktDbaMzBryVWhfT39swz1bPCM0Fpq9wAVJsvZfHlG6Q9lA8BUoJ3z0HYN0LnIZG3AblRw7xkHLvWHJRpVkJ1IFJjn3bsVjc6erfnTptmdvr35Zu336aeaYz1ypCJSj0eZ75zH9WOPQU6l1uPReRsaYPp07T9vns41erTuv6Qkbzodo5RwpKCreP31+urbV0HxPfdo90RCQfD99yuIbmnRj1ReDoMGFbJxc3beu3crcM4x0KNH60fIfdyRI+Gyy/QjLF6sbHZjY8EK/Be/0OcIJWYCV6hDRa4qqtRnOpviTa/eWjObThX8iXN+xh4v2WJLGvfvY+iB4xk1YgQVZaVguvRBw5o13Hbbbbz00kuI43DQAWN47Ne3MXT0aNj4CQd854eEHRR8BzsgHuPFKy9m0o9/XmDIv3MFRIPQd6Cqlu9ugsH9oKRIU7PbA3DEBNjbXADGBwwnLzCAUQDYoUh3Rtvj1nrrHAv+Zax2xlGBs5x9l2FkValh3bq1nPed7/DJR39mxISDaF6/Xi2xZs1i+je/yXfHjOHHd91F7n/QXx96iG8//TSGYTCid2/KamowLYvlS5Yw/4kneOmllzBcLg4aP547b7iB0KJFTJg1i/KhQ0l2dGAnk1x30UV4x4zhnttvp7h3b1KBAJ7yclxFRdiJBC6vt5vv9WE33YSntARXoB3D34aMmYjhb1WP8rMu0OubyRREzEpKtQb682m5X2Cuh36xzxf6fU+VyXPzSzYDYswEffiScSDkh0gAxhyodnuGC1we/Q6INUB8H9Qcm2Wss8x0afZJUXx/gW0u6qsAe/yNUDxI7bPEVtC84jw4Y6My43kAPVUfzMX2gKtM/bDjDQqscVSp/B+w4PpbkcnYSMbK+1+7vSX4ti9jwEHHYbo8XwDN6agfKxnBXVyRTSefRlEX8N01ulp/fVn7PxJiZ73e3d1Tx7sB79PPhXhUmeshw/Wad0k1Fyv7fZD9W5FYpOB5Pf0UjN59EH9HHsQ71b3JZH+SRaNRiouL8/7V1dXVuFyuHmDdEz3REz3xb46/B67VL/L/sNfgwYOlJ/79YaUs8W3yycIZC8W3ySdWyvq7Y5KRpCycsVDmMlcWzlgoyXDyC3M1rm6UusV1Em2Pip2yRUQkbVuyo22/LK//VEKJqMRSCUnbur+klZJoMi51bXvl5sWPSCgRFX8sJPv8zdIW8Ys/FpLr33pQJs//jty8+BGJpRISiIVln79Z/LGQhOIRuXnxI7K1pV46ogHZ3dEoL3/6nmxv3SPXv/Wg1LbulbaIX65/60FpDXdKXavux7Ii4iQ2iaSbRRpniGxHl8ltIolNIlariBXQV2KjtsVXi4QXax87KGL7u49NN4vUFosk60SSO0XsgIgd1bnSjdn1gIgd0bF2SMQOF+ZPrBPpfFT3YQdFMnGRWExk0yaRd94RCYdF/H6R1laRmTNFiotFFi8WCQS0rbZWZMYMraSdMUNk2zaRVav0fSCgy4ceElm3Tt83NIhs2KDvN27UOd55R7d3dOjcVVWFfezYoceS7R8JZ2TdOj2UxkaRvXu1a22t7qKtTdc3bSocYm53GzZo28aNutywQXcbCIhs366HOXOmfoT2dh2T+7h+v0hTk7Z/vi13mBs2iIQ7kuIEOkTCQZEn54lccrouQwGRTatEYhGRzWtEEnGRREzb9u4Q2b9L3++vF0kmdJlbTyW/5A8jLrJnh/bZs0Mk5Ne+m1aLBDoK4xt26/qmVXpMe3eKPH23vk8lRdKWSCQm0hHQ5dZdIslU4X0kJmJZIuFoYd22RTKZwjjL0lcqJdLgE9m+W9+nrUJb2hJJpUVicR0T6jJfMiXSEZDvf+97cvX3LxJ7X5MMGzpUbjv7bHlp/HhZ8L3vidfrlbvvuENira0S3L1bfnrCCTLQ65Vij0eeffxxCdbXSyoSkaZly8RfWyvLr71WOjZvlkRnp6TCYVl+7bXy0vjxsvzaayUVDksqEpFVv/yldGzZIqlQSJKhkDSuWCEJv18SnZ35OWKtrfn3/u3bJebzycc33CCJ9jZx4lE9t5vX6PX1NYrEonpeE3ERy5JEIiHnnnuuHHDAATJ58mQ55ZRTZOfOnSIismblSjn6yCNl8qRJcvDBB8uSJUvyl/eiiy6SQYMGycEHHywHT54sP7/mGj2PiXj3+yocFEkmRSJBva4fvSESj4kE2kRizSId60SWzxDxbxYJ7RDpWC0Sb9FtrxSLNC4WSQVF0mGRj2eKvIS2pYIiyQ6RpF+XsWZt92/QMUm/iH9jdu4NOncqqG2JNl12rM62bxSx4v/w/4mvCttKSchXL7FAs4R89WKnk2JbKclk7C/tu2/9IvnsnQfzfb+s3/9f4ViWOMmkOLYlTjotGV+TWAtfkIyvSRzry/8POpYlGV+T2HVbxYlGxbHSX5grF5Zlic/nk7q6OolGo2J9xZw90RM90RM98f9/AI3yN3Dqvx0o/3dePeD6PyO+Cij/regGyDf78uA5GU1K+/Z2WfXQKnlt5msSbY+Klej+gyJtWxJNxfOgOhexVCIPjiPJmNS17pVfvPO4hBJRCSdj0hkLymfNO+X6tx6U9ohf6lr3yvVvPSh1rXvzAHtrS30emIcTUQnGI3lAfv1bD0okGZNwIiqhRFSW1X8qzaF2sdJBBb12WEFt4wwF1XY4C4jb9b3VLtI4U6TzIZHkdgW96aYsWM62hxdnAXlA+1gBBdrpZl1PN4pY/sI2O6TgO77mi+De8hXAdqxZEemXIdOmJkWR7e0FlBoIFIDzxo0izc0FdLtjh8jq1YpIW1pEgsEC4AbdHg5/cT87duhcXRFxFryHgs4X8HoOozc3K0huaBDZuVN3Fw7rbnLYf/Vqna61VZddxzU26vvWVj3MTZsKIHzGDF2PRgsf47LLtH8wKBIK6TOCuD+uICsR7w6QfY0KhMIBkYY9WdCZFmmoF4mEtN8V5yhQi0cVrP35LQVMiS8BJvGYyLP3KTCPhBSQt7UoeE/GRaJh3d/mNfo+dyz7dunYWESXOYC8Yr1ILFEAw7GESCiibWlLgfDStbq0siDFtvV9DoiHowr00unuYDxtaT/LUiCdSnefLxqXebfdJkdOmyYxX5vYre2y9pNP5KRjj5UDamrkvK99TU44/ni5/957JdbWJvGOjjzgXfbGGzJu5EjZX1srqVBIUpFINyCd8PsltHdvASDX1krTsmUSa2uTVCQisdZWaVq2TBJ+v6RjMQnt3i2xtjZpXLZMXho/Xj6+4QZJR6OSDAQkFYnIxzfckJ87E43oQ4vdtYWHF/GYXotsJBIJefvtt8VxHBEReeSRR+T4448Xx3Fk8ODB8uGHH4qISF1dnQwdOlTicb3WF110kTzwwANf8oWY1gcmuQcnqZRuTyV1ffNqvV+SQZF4q0hwu0jtQyKN7xTAcKxZ3zcu7gKQN+n2PBiOisSaRGKNOkesSWTHE1kwHlAgvXxGAYwn2kWsmM4T2qHrXdvT4b/5Pf+PhG1bEg+1yr71iyQeahU7Cza/LDIZWxKhNtm3fpEkQm3/VmD9+XCSSbEWviDpudeKtfAFcZJf/X/wy4D0V4VlWZJMJsW2/3M+a0/0RE/0RE/0gOue+F+MrwLK/8i4ZDiZ7991nqZ1TRJuDn8BWP+tSNuW1LXty4Pj6996ULa21Ettlnmua90nnbGg+GMhiSRjsqz+U/mseafszzLbuzsapS3il/aIX2KphMRSCWmP+GVrS32euY4l47Ji9wZpDXeKPxaSZfWfij/aLk4eBDcWgG/jTAW34cUiic0KtNPNCo7tgALqdJNI+L0ujPPGLEjf3AWkR0Sstuw863U9sUHnTzcqc221KtDuBu6DBbAdblXE2NiodO3ixQVEGg4XWOTcthy67OjQ9p07tW3nTpEtWxQoBwIikUiBMs4B5+Zmfb99e3f2uysAnzFD6egsuo1FHdm40ZHt2xU0P/qoThMO6yHnGO0uZLc0Nxfed8XtGzcqWF6/XtfXrStg/VRKX8FggaVubS08V9i8WT9S1/VQSKRhT1KcaFgBbw7E+hpF9tR9OROdYzkDnTom0KGAes8OEX+7bv8yFiqZyILmLox3DtA379dXjuHs+v7JeTrn3p26r0SiwCwnUyLb6rMgOQuCU+m/zVzH4l8AymJlwfiydQVmO8eM59jsLsz4/DvvlMMOPVQCqzaINPgkHYlIaN8+SYXDEm9rk3h7uxw4bpy8/957ko7FJBUKSaKzUxJ+v4T37pVTTzlFnnvoIfn4hhskGQrlgXRgxw7tl33lxu384x8l5vNJsL5eksGgdG7bJo1Ll4p/+3ZlvLdsyQPp3P7rfv97Ce3bV2DFP/tMUgG/OF0foMRj2Ycjsa/87lm7dq0MHz5c2tvbxev1dmubNGmSvPbaayLyFeDaSus17sKMd2uLRvSa7tkh0ra/AJw71omkQgWwu+oykVRYAXJoh8jCKm1LdijrnAwoGI63FpjvjnW63b9RGexkQIH08hkigc3aP7Qjy1iv0fe5/Qc2i9ipf+i7+W9Fjo3evPhe2bd+kVipmNh/A3RmMvZXMtv/zsgx0spcN/9DwLkneqIneqIn/s+Nvweuza/MF++Jnvg70dXzOme19VVhp21S0RR22sbtdVNUUZTv39UTe+U9K/GWeXEX/+NWIx6Xm5G9BzHn1Esocnu49MhvMqiyht+sfpP36z7hmdWv43V5cJsuMo7Dgf1G8PtP36O6tJL2aIAnVv6R9miAUk8xG5pqSdlpklYS0zC45dRLGVrVH38ixKSBB6htlziMrRmGx3SD3aAiZGa5vpwQlBylVlklR6gVF5bWRNsNqgxu7QAM9bY2iqDkGBVFw4HO21WozGrQmuvWn2lNtytrfdP5EPT+mYqi2R2AqXO5BmmNt6tGxdL6zFYRNaNEi5Z79dJ62iFD1INqSLZUZN48LTy+7z4VNyspKRhNg9pw3Xefbh88WOu2L79cBc0aG9VourFR667TaS10/uADLXaeMUMLpTs7tdB5xgy45RYVUHv8cdIDhhFPQGOjQVmZ1lcfc4y6gO3YobufOlVttHKHeccdUFqqwuNDhsCAATB/fqEtkYCKCrXa8vlUX62iQsXNvF79GHPmqEi6z6f2W/36FUrQr7xSncr279exgwYIhr8NXnoUOlq0rrm0XP2O1y6Dd14p1JtDwcM4GtQxQb/aZr2/UIXHioq/vBbXyWit8jt/KMwrji63fariWGfMUBGsyt5q23TEcVrfW1yir0Rc59mxD5IpvV8qytSb2s4KU+3ar7XTJUUwdoQuXS6tud7fAv6w1lTXVBdqq0HrrsePVlXxnfuhrERrsh1H1cQ9bhg+iPsff5SXX13Ih++9R9WEsRCOYpgmTXv3su722xHguZdfprSsjGMPPRQ7FmN7XR2x1lYCW7fSGAyyadMmRlRXc+iNN2K6XJQNGcLUuXMpHzKERHs76+bNI9HeTjIQIOH3M/zMM3GXlFBUVYU4Du7SUor79GHr00+z/7332P7sswAcceutJP1+1t95J30mT8ZdVERJTQ2H33ILyc5OXKaJ8c4rhfOfTqrFmuerhbseeughzj33XPr27aue5VkT9rVr11JXV8fevXu79Z08eTJf+9rX2LhurdZeP/8AtDVn7bu63Be2DeGAXtP3F0IiovXT+19V6y1Ea6mHzYAp90BsN6yZBZk4nLZGa6szCfW5TrZA2q+12kkfHHSdLg10zj5TIbpba6oPf0zFzNb+GFre1bbt98K7k9ULe+pTUP7P2W59VRimi5ox06gcOI6+ow4nHvDp/fsVYZouXG7vf7uG+n8rDLcbo08/XOfM6CZ81hM90RM90RP/b0aPoFlP/K/H3xIx+0J7F0/s/25YGRsrY9MQbOU3q9/g0mnfYGjVAPb4m3hlw/v8/IQfIAZ4DBf+eJDSojKiqRi9SytJZ2y2+uo5sN8IBECEWDpBeVEpZd5iNjTV0bukksGVNZR5bFyJj8FdA2Zv9bF2QmD2AgxIfqrK3zkrLqsBmr6moHfAo6g3dQz1sgaMMgXg1n4oPQbin4C7v6qKJ9aogrh7KNj7wGoEz2AVS+s3X223cEF8Bbj7qgq5XQw79qr617RpCt66+lUtWKAK4vPmKegdOVIR5j33wN13K4p1u1XgbNAgBc+BgKLU4mIoKlIV8SOO0H6ffKL95s/XV4n61uJyKUIOBqGqCjZuhH79iA6fwPK1xUyapBh+0CD48Y/hpZcKat2gQ7r6W48ZA7W13TXXrrkGfv5z7RuPF/qOHauH0TVy7mS5U7F4sZ6eK68snJpHH9XnC5VFMYwXHoKtn8Kch1TUTBwIdMLbv/+ieJVtqRhVFwsuvv59BUsVVar07XZ/0RM5ndJx/jYF2GddAP0GQ3sTvPdH9V4uKYNETA++qrfOsadOwXZltXprx1MFn+vhg/SYnKx6eDQOW3ZllcBHqAJ4LhwH4kkF4qOGFDytU2ndNnKwXsed+6BXOVSW6/ac2NmOfTRurWXojK8xatQoKrxF4PVQVFTEio+WcNNPr+atZctwbJuBbjfPvvYaNSUlbF2wgF+tW0djayserxfTcbjmJz/h66ecgquoiOLqauxEAtPjwfR4aP/0U1b87GcMPvFEps6di2GaRBsb2bpgARMuuwxXSQmZZBJXcTGZRIKtTz/NxMsvp3zYMBzbZs2tt3YTM0uFQpQPHYrYNi6PG7OtqSBm1neAfmbvl9se3XHHHSxatIglS5ZQWlrKpk2buPHGG2ltbWXChAm0tLRw7rnncvXVV9PU1MTAgQMxTZPXX3+dn/zkx+x8/WXK+w+CSBDGTv6itVc0ovdaKACRThhSUvCkLh0GTgJcpYAosM5bcmX9r3c+qsDbsdXzuuYYyCTVs7p0qHpVJ5rVSuuzWwvjpz0Nsb2w7R447FEVTdt6B0y8RYG1u/if+0L+G5GxLcSxiAd8eEoq8JZV4+oBpz3REz3REz3xHxw9gmY98W+Pv1WbbaUsSUaSko6nu6WK/6ORtq1u4mbd9mulJJKM5Zc3L35EWsOdEkpEpSMakLaIP59GXtu6V2KphOz3t0hnLCThbO11Lm28NdwpsVRcQomI7PM3SyAeFtuK5NO6E4E1cu7Xz5IDRlbI5EkHyCknnyA7t68SCb8jqz+8UaZNPVSmTJksBx54gNx951xNE0+slx2fPiWnnHy8TJ48UcaPrZJXfv9c91TxXD11TgjNDhTWG2doHXc+JXyjpps3ztRxoWwOdGenpmaHQoX86lzBcSikedZ+v+ZML16sqmK5nOyNGzVfOlewnMvBXreuUMicy8nOFUVv367LXN/c2K5p4bW1klr8vjQ3WNLUpEOam/WVSwX3+/UQc1noudpov797lnlue658vGtb+CtKQ1MpPayZMwunoKFB1zdt0v03NorEQ1lBs1i0S8pwts450NmtHldSWSEqX2P3+uxc3W4u7ffzdba5WtNUUvvFs7XOub6JeHZbQtO/c/NuWlVIDW/ep+Jb3eqlU4Xa6FxKeC6dO5P54knJZLR/JlN436022/ry1PHPpYVLKi2SSObrv61YTPzbt0uwvj5fPx2sr5ePb7hBal98UUK7d0syK0rWuHSpdGzZkk/r/viGGyQViXQTIWtculT8dXWSCoclGQh0r8nu7MzXVaej0by4WSoS6SZs5t++XdKxmNjpz9X5JhN6Lj96o3t9fO46ZK/V/Pnz5bDDDpNAIPCV300HHnigfPTRR1/aNvaAA2Td4jf+tsidldbjyV3/VEzTwa1ol9rqjSKJ1u7r4Z1aW53ya9/wLpFoQ5e08tUF4TMrLpKOdE8Jt1P6SodFrIS2p0P/klTwLwvbtlTM7P/idOp8rXWPMFlP9ERP9MT/8UFPzXVP/Lvjq2qz/ztq410jV2t9/VsPSl3bvi8F2LmIpRISyoLl5fWf5lXCI8lYXrQsnIhKbRexs2gynq+7zoml5dpiybg4XWqbE7u+LW+/9XtxOh4RSe6QRx68U44/dqJIulkOnjxW3nz2GJHEOun0fSY1NX1k66ZlIuHFcvSRk+Xpew4XSWyUtqbPZNiwodJY+1wWTL+j4mTxNVnl8HBWYTwrZpbYrDXXyVqR+DpdWj5VC0+s03rrDRsUmW7YoMgxV1OdKzhua9P1SKRQRz1jhhYur1unqDcU0rGrV3dHrh0dX6ytDgZF1qwpqJF/vs46N28oJNLUJJGwkxcyy23uWvucw+WNjYVD61qDvX59d8211tZCv82bC/pQXxapVOG5QU5rLbf/3Edp2JfOg2vZtEpFyp6cp/WwOSEzkYKY2dN3a211rkY75M8C6y7g7PMK0V8mcJb/4+kCxD8PqHMK5nt3ZBXFm7M10XYBJItoTXVX8PuPCiTl6rC7jrPtL4LpHIDPvXKK4dk67XRI1b1rX3xROrZsUdXutjaJtbXl1/21tVqXnQXCqUhEPpk9W+ulv0QdPB2NSioalVQkIslQSD6ZPVsCdXV5UJ0MhfJzd2aBdE4MLeH3SyoU+iKwFlGQ+3ll9889DLnvnnvk0EMPFb/f321oc3Nz/v2CBQvksMMOywufNTQ05Ns++eQT6dOnjwQf+MU/dg98PtJRkXizSKxBhc3a1xbUvcM7RTo3FBS+OzeoeFlwu8gnF2drrTsUMFvRwpw5MP2/BKD/1fGfWn/9ZdG9Jvur1cR7oid6oid64v+M+Hvguqfmuif+1+OrarO71lovn7ecTOqr6+2+LKyMzTOrXte66lWvk85YX9mvMdTK7R8+g4gwtmY4wUSEVMbCxOD0cUdx6bRv4DJNnl+7KFun/QYZcXguu/7c2kUkrBRL69fRGvXjIGTEjfSZDRUzKB50I2ed0Auj17dB4hx5wF/Z2xAEswQDm2DbGui8h1ikDa/XTe8+NVAylU2bt3HWtM/AaqSm/1AOnjyBP7y1H+x2TfsWB/wPgasvYGshMKLrnlGACend4B6o6ejiQK/zofMeSCyEUSPVZ/XOOzXf+pprNFW7pQVWry6kbWcy+po/XwufBw7UPO3bb1ev6nvugfb2Qu30jTfquJtv1vXZs7V97164914taJ4/X32w77tP65B/8xtNPa+s1M9hGGQcnfrVV3Up0r32uaEBJk5UT+s77tB+t9yittxPPgnDh8Pmzdp33jzNWD/gAHjmGRg3Ttc/H+m0zpeLXD33nXfq6aivh6uu0vTyQTUZjKAfXnxI629/PEdTht1uGDCkSzq4renEow/S9UgIUgmtczWMQn2tr1HPxdnfLdRMuz1ffZPbtnoi5+qARx7YfdzMq/Q4ikohmtCaaNPQlG/T1HTvXHp3Z1Drqv/RSiDThNJiTSEvLdbr7XIBhs43pL8uEa3j3rFPl8XZYxg2EPpUYbpdmpo9fDgVw4czde5c3MXFuIuK2P7ss+x/7z3iPh+ZRII1t91GZN8+7ESCQ2fPpmLoUAyXiwmXX87xjz/O4bfcgmGaiONgx2Ks+/WviTc3c9icOZQMGMDaX/2K8N69GJCfe9vTTyO2zad33YUVDtO5ZQuG242TTpOxst8ZtgXJhN6AwQ449VsQ6NDzZ9vw3kIYM4HG1nauu+EGgsEgJ554IlOmTGHatGkALFiwgLFjx3LAAQewaNEiXn/9dYys5/fFF1/MpEmTmDJlCj/72c9Y+MrLVJ73w3/sHugamTRE62H9NZBoheop4K3UWmvTo57UhgHrrlLP6kQTuEugZBAc8oBqBqz9ic6RsXS+TBqctKaH/wtqqf+3I+d53bT5A9JRP87fqNP+j4hMBmf5EmTrRpzlS/R7tid6oid6oif+r42emuue+LfFP1trnaul9rjceFxurIzNHn8zz6x6ncuO/CYjeg/C8yX1etFUnF998DTv133Cn3/8JK0RP8+tXcTFR5zDiN4DyYjgMkxi6QQA8//yApdM+wYDe/WlOdzOs6vf5LIjv8mAij4EE2HKi8rY4qtn0oBhVBYVYUgSEqu1JtozAnyX8oOf7aF3/0k8dO/1bNzcwLnf/j6Cm/Z2P089/gAXXvhdwMXxJ5zA2adN5obrf8ruT2cz9esr+d55x/HwA7eAWQWu3mDtBcOjgLnf3WCWAm7d3nk79LkZPCO13tozEDwHgLVH+1c/Cmm0tjpXiDxiBKxYoYj0vvtU4WvECAVOlqWvNWsUXDsOlJUV3rtcCjbSaV0vKdEfi8Eg9O37xZpugD17FMwPGlQ4hsZGGDyY2AEHs2uXwR13KGgeMgSuuKJ77XM6rYeQ+wgPPqjTNjcrIJ89W8vDk0kF1sV/oyQ0ndZ67Xnz9GMfcADs3KnzzJ+v86xYoc8IjjwSxg2PU/7ag4X66Qt/qoD586jdthQ496oGf7uKUJ1+PvQbpEDz+S5zXPSzbN21raDqywTOPj/v2y8rCPN4IRaBaBhqBkLG1ppv01RRMgMFz6aCOuJJBdTDBioQLvIqUDb/m89VHUf34zgQiel82Zpr2gNaz33A8KwwlaFCai4XdsYmHY9hmiZmkdYwJ/1+MvE4W59+msNvuQX/li1Ujh6NWVSE6fUSb2kh3tJC6cCBlPTtS6K9nbjPR2n//mx9+mkO+tGP6NiwgfYNG5g6dy6SybB38WIC27dzyE03EW9uZuuCBYy/5BKK+/al4YMPtO9ttxFramLrggVMvPxyeo0YjtnWnD3HF0B5FfzhyUI9vZPRv4l0El57Fs44P/tg5R8ExH/r2v4j90DXsKKw+pJCffSkuQqcTS9EdkNxbwXeufbDH8227YRe41SobO9L2nbEY9oW2wtb5sHEOVBx4H88wM7YaZo2f0CopY7KgeMYPPk0XO7/3GMW20Y623CWL8GcfkqP6FlP9ERP9MT/4fH3aq57wHVP/FvDTttkUhncRe6/C6xzQPrSI7/JyCyQtjI26YyF1+X5UmCtgNwink5lQbmLzliQ7/1uDkeNOJhfnHopdy75Lf9fe3ceH2V97v//9bnve7ZMFkIWAknYBRVU0AooRLu4K+fYbyunpz3HWtmsaA+KogIWawUU6tLFFbTWHk/749geKihqa6sGkUWtVansIAlkISHbZJZ75p7798cnmQRkD5IA1/Px4JFk5p6ZO8OI857r+lyf/zjvKnKD3Uj3Bog5cVzXxWN6MJQi6SapizQRi9t0S8tg4+7PObvXINLMBKazG6x8wGmpxhrMnfsgS1/5M2++/nvSgpl853s/5F/GXsV3v/Mttm56n4svu57XX/0TZ/atYXtlN6bdNY8tG0rpU1CPP1hMYf/LeOShu8DMBqeu7WvzG5A2SofmnJl6EniyTle5vQMg2ai/T7tQTxK38vWgs2hLVTqRaKk8ArHY3hO87rtPTwPbvRt27tTJ0jR1iKqq0tPGP/pITwwvK4NrrmkL0Iahq2VNTTpEtw5Q8/t1KLnpJp1ep09ve7xp02D3bhpLrqK0VJGbq4vaH3wAOTltmT8eh0cf1cPIV66E7t2hd29oaIDZs9vu7vHHdc4PBg/+eguFYPz4ttstWqTnstm2rpjPmaPDes+ecOutcMlX49x4VRnma7/HvfrfUe2Hl33hxbyfYWb/dhME0mB3RVtAPth9HPB+4/p5bn8/eT3BbDdlunUoWWuY9vv0ALLqPW1DzFpDd9LV3x9JyE4mIZ4AO942zMzr0ffjAo0hHbZ9Xt1BsbksFbjjfXsSb2oiUlPDZ889x5kTJ+LPycEwTQzLQlkWobIy1j3zDGfceCOB/HwS4TDejAzspia8GRm8P2cOZ9xwA589/3xqKNlZU6aQjMfJ6N2b8O7deDMyMH0+4s3NKMPAtCxCu3ax/vnnGTJ5Mm4iQVqvXnsNNhv90/tRv233d3b9VP16tjyA2/bhxuXXwZZ/wuZ1+gOS9gPIjhfHhsb1sG6Ongge6AXe7rryvHq8HlqWf3HL4LMZ+vpIJax7QP/sy4cPp+rv0/roIL3qB+2GmS0CT8bx/72OQGvlunrzavIHjsSb3r3LTBB3Ewn9b61potr9N5663DIlWJ8MUt0e3i7/YZQQ4tiTcC1OCmE7yn2vP83rG97j8sEXMPvySQS9h35zG7aj4Lok3GSqRdNUBk7SIZqwcV2XmuZ6Ah4fmf5gKrDXhhsoysqnvL6aRauXcP1XrqYu0sSZPfqRSDrURZronZlFgB2o2rl66yszl5/dfxW/fzXOX954g26ZipqqjRQOuIRYw1qw+oEb5brvTOKyyy5n4oTvASZgQHwD1M7nih+Ucd1132P8jf+JniJuQPhd3SJuFUDVrXqrrsJlLZPIF0D+fF3ZjqyBwEhw6sGNgm+Q3rILdI9zOKynfefl6eC8dSupknH37joM19Xp8m1jox7DHY3qJJuRoT88+Mc/dNv4e+/BsGH62FBI3/a//gtua6nKzp2r03GfPrpy3auXDuXtS83hMKH+Z7Fho8H8+fDII7Bnjy5qjxql72bFCigu1hXtLVv0zR97TAfp1gJ7cbHeTqt79/23gbfXvnI9a1Zb6/i+obt1kPr8+fDzR+JkZyQwPIdRYbRjusK5dT10z9dV0PQMwD3yKmWr1ur1a/8L356gt/PyeL94PwlHT4dvrSAP7K3/zraU6SCc1lLSbx/Aj6SKnXD0E7h9l36MoQMhvWVatdPS1YAL23bBgGJdKW95nDhJwtXVfPL443sFY192NsowiO3Zw6dPPUXOWWdRcOGF+PPyCFdUsO7ppxkyaRKBvLwvVK6HTp5MsLCQaE0NZiBArK5OTw2fNAlfdjYfPvQQZ9x4I2kFBUR37ya9d2/9dwg0bdvGp08/vZ/KdbsPP1o/LNn0KTw5B4aN0pPfHefIPyA5lhwbklFQpv7v3vS2he7P5sN5vwQ3obfhyhkJ70/Ze5I4LUsFatZA/gXtKtezIGPwCREWkkkHN+mgDLNLBeu2CvU3UDn5ewVscZJwbGhaf0J1ewghjq1DhWtZcy06Rft9rw+Hx7SYMOqbXD74AiaO+iZec++WzLiTIGxHaY5FiDtt92kaBuUN1fxj10Z2NVTz0zcWUl5fxUe7NlIXbiTg8WEZJk+ufIna5gYSySQ+y0t2IJPqUB2LVi/h9Q3v8cL7rzC0YAAe00PYjvLC2mX4PYYO1k2LoXYujzz6C373x4/58wuD6dYtCMkmspNPEAwk+etfXgc3Sk31dlav/ZChQwZD5U1Ula8imWgAqz+v//0S/rl+B9/9tyshvlmHatfWgTm+U++JnTMTMsbpy2rnQmAEOBVQdYsO20aarli3D9a2rQNyTQ2kp+s0uW2bTrG/+pXeLLqmBm6+WZd+d+/W15umPr6gQH/NztYV6Xff1RVs0OnX69UB7c47ddL1+XQAnz9fVzv79tVhun9/+OUvdek5N1f3YSeT9O+vK8+th4wZo3P4hAm6gtynj96KyzB06E1L0w89fboO3X36tO1lfSheL5x++hfXZHu9+rOA1q24AwF93JNPQkY3D0YgcOgwlYhD9U548XG9Pjs7t207M8ujK51H82a7dd31qr/qdmWl9n8/reuc87KhqEC3bZtm25rp1tbxHRU6HO+o0D8fCdNo2wc7I6jb0O2EDtx2HFB6LTboyvmAYl2tUwaB/HzOnDiR3ldcwZCJE/EEg9R+/DFJ28YKBhk2bRq5w4fzyeOPE961i3BFBTv/9jfClZUYXi9pBQWk9+lDWq9enHf33Xizs4nU1mI3NmKYZmqN9bpnniHe3MyO115jwwsvYPn9BFv2dU/aNgAZ/fox8v77yejXD8Pr023e379t72BdWa67EFrX2l/97/oDk44E69a13Yn9z4c4vL8DL3gywQq2vak3vZB5Opz/hP7eSoe8MWDX6X2te4/T4dnw6P2s194EwV5g+HU4GLnohAnW0EX3vJa11aeGpK2D9Y7F+msy1tlnJIToYqRyLY67Q+17fSAHagGPOwnqI03sDtXx/NqlTBh1LUVZPVJV6ETSwTJMkq7eTzoat3Fch5+/8zumf/37zP3Lc6mK+L2XTsA0TB5889f8+/ArKM7uQTSuhzZF4jFygt1otiO4QG7AgxHfArVzKY9MoPi0y+jfJ0hGVhEoLz6vxep3nuMvS6Zy14J6EvEw8WgVE8bfyO3TZsPmbBYt/QoPPlWFafnoVdCdX/7iMYaeng32NvCfBckQGFk6NCd26+q1G9XVaSOoA3RkFez6NqT/CxQsBGUAXt2yBnoT6daNoadP15s/T5jQVqZ96indAz1ihB5AtmdP2x7VlZV7byj94Ye68l1bqwN0LKbLx3366BDd2ls9fbquVoO+TVFR23rrtDQd1oGIvxsx5cdxFKapM0s0qmet5eXpnD9ihB4w9tRTsGOHvpt77tHvXefP18E8M/PwwvXB2Lb+dXy+o7yvaEQPLWu/v3V2Xsfbh/ddd32wcOc4uorcuh5638r0vq3jR1K5bm0Lbz2+ZSgdm9qttx7UV1/Xbs234yaxoxHsUAh/Tg7KMFCGQaSmhqRtE+zZs+Xu3L3atb8yaxa1H3+83zXWp3//+8Tq6kgrKPhCtXrI5MmkFxZS/f77ZJ95JtHaWv65cCFDJk4kXFVFWkEBmf37Y3oOsmZ637/L6/9L7yN+sCUB7fctP9Axe/09HoN12/vT2rKqTAhthuYduoJtpes9qh1bB4ITZIDZiULWVp8i9qpcnzjdHkKIY0fawkWXEwvFWDp+KesWr2PIuCGMXTQWX4bvsG4bdxLYiThKqdRgs7AdpaqplidXvpQKyT+88NvkBLsRS9g02xFy0rJQSmEoIxXSAXaH6gB0KB95LVWhPfRI705Rt3xCdpSalsA+fuS15KRlYhgGTkt1Oxyro0cwqNvN3Thg6GAbXgX+c0Cl6fABgILKibrKnTEOCp6C8EpdecYDkfdg51W63dt/rg7T8c0t66ung2cQxLe2tIEv0Out3bBeZ21kQfQjXbk2c6F6qq5we0/XAbuxESZObAvTCxfqiV2tC4z79NEBvDVIt7Zzu65OnDt36kp1a//03XfrRLt9u066LeunGTPmiwPNpkyBH/1IL6Juf3lLMGs2M2hsMmho0AE5MxMiET2s7LHH9Hpr0C3hffvq4nr7zwR27oSBAw8+xOy4ScShskxPDb/iOsjKgfTMY9M+fCTDr1qHjh1oTfWhrj+c+24dnAYQjR04rDsO8ViMxu3bie7eTc5ZZ2H6/XwwZw5nT52K6fHgxOPUrV9P7jnn6FbwZ57hzAkTSO+t29pd1yURCtGweTPB4mI8wSAKMH0+1vzkJ6kwfv699+r/3pTi7w89xODrryetVy/W3ndf6pjTv/991v/mN4y8/348B1ugfyQfaBxuaN43sH8Z67b3feOfPlC3iEuQPi5kbfUpQj6gEuKUJuFadDlHOiW8VSxhs6OuksqmWoYWDMA0TAIeHcpbK9e///vr3PG16/Wbb8MkFAsTtiN0D3bDbhlUtnH35+QEu1Gc1YOH3/otUy/+HoZSuLj8ef0q8jO6c07hIGLxOPP/9ptUYP/xZRMBuP+NhQwrHMS3ho7Et/uHEBgNaaNBBaFmtg7Q/dbrLbLSRun1kckwuM1QOwdyZoFnQEt4ntOyXju/JRTfC1ZRS9V4CgQu0FtrKZ8O4xXfhZ7/DWkXQbKpJVxn6G24lAEVk6HpRR3gey7S1+1voTHoEnEyqa/3+XQQHjECrrtOX3/nnfDQQzostR/NnZ/fNla7fXnZ79eBe8cO3T7eet+tQ9TuvBNuv11XzhsasDNziLo+Nm1SexXVYzG9Y9hDD+nTWr1aF74HDNAz01qXgBuGDuOHGmJ2XLUfPtZ+2NjJpn1AhwOH9YRDPNxM9d//jr97dz57/nmGTJpE0nEI5OQQb27GEwxi+v0opVCmSbi6mkQ4jDJNIi2V5nBlJTlnn43p8xEqL+ezZ5/lvJkzU2G8tXL90cMPM+z223Edh/pNm8gbPpymsjI+e+45hkyapNdsFxSQ0acP1qE+kTncDzQONzQfSWA/WvtOEz/QgDIZyCQOIZFI4DgOpmlinaz/jgkhxFGQcC26pANNCY9H4ji2g+k18QTaqj+xhE3cSaBQKKVItOxtahkmaV5/apsugLL6Kl784FUdspWitXYcjdsk3SRJXB5567+599IJ2E6c2uYGnl+7lKkXfZeA1080HuPRt1/ktou/x55wI8+uXsIPRowlN5hN0BugvKGK59cs5d5Lvo/f3Y6Kl+sQjQnJZh14rUK9HVZ8h57enYxA9B8Q+IquaJPQW2el2rmfAizA1W3fbkJP+naBxNaWCvYMHeCNoL4u2QzVd0HObeAZrFvE7fVtAd43eO911/v2PNu2DtimqavbyWRb9Xr6dFi1Sgdt09St31u3wje+oQN1Q4NuHQedbl1XTxXv1UuXmVv3zKqubhtu1ru3rnynp0NlJaG8fsTw7VWNfuYZndWDwbabthbGL7qobQbb3XfrUx09WgdscRwdSWt5MokTjRKPxXj/gQfY8dpr9L3mGs6fPRs3kcCJxzEsi3BlZSokpxcW4qK36vK2LB8AqP3kE9IKCwl0745q+cDGbmjAl52NYZq8P2cO2WecQe7w4TpMT5xIsLgYNx5HWRaxujoMjwfDNLHS0g5euT4SR1rlPtrBdofjcFpWZSCTOIREIkFtbS2lpaWUlJSQk5MjAVsIIVrIQDPRJVleC1+GLxWsE3aCWHOM2o21LJu0jNqNtcQjunU77iQoq6tiT7iBJC6JpMPP/vYClY01qfvzmBZpXj/gkhvM4o6vXU8sYTPvL8+xs2E3yWSS+X/7DXsijaR5/Ewc9U2UUvgsL1WhPfzXRf/Onkgj8/7yHK7rcmvJd4jGoxR3y2fWpRMwMNi0+3MSSYeirHxmXHIjlhVAeQfqSd6VN+lKslMNNT+G+BZQfrDyoPJWwAX/mXqtdHwrVE7Sbdy9XtJBGEOH8cqJkKgAlK5UKwXxSgi9rAeYWT3A2QWVk8Gp1G3ltfOBpK5CeU/XFev2wRp0oG4/9SsS0YG6tFQn1o8+0u2Mjz6qE2t6Olx/vQ5Na9boyeDf/a4O2q6r119XV+tqdFOTDlw9e+qq7YIF+j68Xj007Y039ISy1seNRCAjA68Rx+NxueceHaxnzNCH5OXph1+wQIfuhx/WhfFkUgfrxYvhwQfh/PO7SDv44ToWw6yOlWRST/9OJo/itkcwFM0wMP1+rECAIZMm0fuKKxh+xx3Em5uJ1NTgJpMYlsW6Z55JDSMLV1eTaG7GiUR4f84cIrt3Yzc1kXPWWQR79CCyezdr778fJxbDDARwolGSySTnzphB32uuIVpTw86//Y11CxeC47Dn009JRCJ4MzNTgToeDuPEj9Hfg+X54kC0gx17tIPtDofpPfSAsuM8kCmZdHASNsmkDPg6UTiOQ2lpKevWraO0tBRHhrMJIcRhk3AtOl1rm7gTdWgsb+SCaRfQWN6IY+v/ocedBF7LIhKP8dM3FlLRuJvvDL+cRauXkHSThO1oqnLdOu3bbgkw5/Q6jWdXLyGJy+sb3uO51X/CUIqqpj1UNNTiAkMLBmAZJi+sXcY5vU4DwGNY+D1+Hvjzs5TXV9EzM5fcYDYPvvlrQrEISddtGZDm6Epx02IdrttND8fKAyMbCn4JKKieqddJx3e0HZM2Rg8pg7b7qZ2r11RbeTpE7xXCHR2mmxbrr8FLW/a8bqn+G17dCq4OUomybdi0SbeB5+XpNu7zz9eV7QUL4Fvf0uVgx9GDy845R6fYqipdUl67Vleny8t16q2s1HtZb9umq3Kt4frmm/X08A0b2qaMh8M6yC9ZgtduxmMm6dHD5b77dGH788/1su2tW3Vb+LhxuugdDH5xonfr4PMTQmt18zeP6q+dGbBbK88bt+uvRxqw208l792zrTX8gMcbWH4/mf37M/InP8EKBom0bMsVqa4GSAXvIRMnUrlyJfHm5lTgDldXYwUCxOrrSUSjhGtqyBs+HCstDVwXu6mJRHMziXCYmn/8g7QePRjz6KMMuekmkokEOcOG4UlLw7Ftmnbs4IMHHyRaW0uyI+F63w9KDic0H68PV0yvbgU/UDXa8OqKdWqC+OHNuzgarXtS7/z4DezQHgnYJwjTNCkpKWHIkCGUlJRI1VoIIY6AhGvR6RzboXROKYlogsyiTFb/YjU9z+0JCuyI3jonO5DJs6v/xOsb3uPZ1X+iV1YeE0Z9E9d1ue/1p/l8TyVxJ4GhFDsbdvNZ9TYsw+SqM8YwceQ3MZRKbeP10c6NTPnjg1SGaqho2M28N39NdaiOqRd9l0sGjaSmuZ75f/sNu0N1DO05gOfXLiWJy6LVS1Lhu7a5nsZoM45rtW2PZWS1fZ8zAzB1mK68SW+XFRjRtn1W6zHhFZDYpY/NuaftcqVgz8N7h3DvAMDY+zHMHPD01fvdtkraesp40t7/E27bev11a1l45Ei9hjo/XyfWqiodgMNhXaUOBHTlefZsHaRHjtSptqQELr9ct5EvXqzv0+vVSbj1srIyfZspU9rWal9wgZ5OVlVF4J036BaIUlDgolTbac2dqw+97z59M8tq2x6rdRutL7tqbdu6i90+wNN4RFq301r7jv6aOLwt6DrkQNXpjm7HZRi6Fbz9Fl+HwfR4wDBwHSe1bdZnzz1HIhzGl53NeXffTbCoiLrPPsOfm8tXZs3i4ieeIG/4cEyfD3/37pheL/nDh5M7fDhuMklk924d0mtqUIaBLzubdQsXkjd8OIGcHMJVVayZPRvHtok3NaUe958LF+IeTdUeju6Dkq704crhVLePETfpUL15NQ0VG6jevBrXSeAkbJyWr+3DtlS4uw7LssjJyWHs2LHk5uZimoeeiSKEEEKTcC06nWEajJkxBjtks2LuCgpHFNK0q4llE5exZ+Me4tE4pmEyfuS1XD74AiaMvBav6aE4qwdJN8kN54/Fb1mU11exO1RHdWgP2YEM5r35ayoaa+iZlYuhDH582UQKMnM4u9dp/OkHDzO8cDDVoT1c/5WrqWmux+/x4bW8PL92Ka9veI/n1y7lwj5nc8dX/xPTMLnza9enwveTK19id6iOmENbK7aV0/a99zR0lXnuPlXmGbqqXPCMXntd8R/6GFw91Cz3Pv2VdqE9Z5ZeY22k6VZz7wDo8TjEyyFRre+vtVKdtPW664rx+uv+Avb+NnVuaICKCp0mq6rgrLP0z7Nn68p2WZlOvRUVbUF7+3a9xrr1vmbM0K3ioL//3vd0APd6dSW7pkYH9smTdUV7wAAYPZpAmkkwqLAsfbPWarXPpweZde++937Uh7undUe0zoAbP15/7XDAtiy9Hvf8i/TXL2MLpvYOVp0+0srz/hgGWOaRTxt3XRzb3qtSXfaXv/DhQw+hLAulFOfNnInrOHobrp49UYZBuKKCtT/9KeGKCgAdypub9wrppsdDrK6OoZMnY3i9KKVY//zz5LUEcU9GBmfceKN+3EmTMI703Fvt74OSQ1WlO+PDlYM5VHX7GFGGSf7AkWT1HEzewJEknTjNteXYzXtXs6XC3fVYloXP55NgLYQQR0gGmolO1TrYzHVclKWo31qP6TV5a/Zbqa26rn76aprMCJZp4jGs1PZWruvys7+9wPfOu5Libj34oHw9A3OLyfIHCdsxHNdhc00ZZ/ToRygWJhaPs3D1/zF+5LVUh/Zwen5f6sKNLFq9hPEjryUvPZs3N67m7F6DqA7t4ayCgXgtDzvrq1m4+v+4ceS/0rtbD+57/ZnUBPHZl00i6NvPZOCkrSeEJ7ZD7TwdlD39IFEJbqRl6Ng9EN8Jnt76T+Wkdlt1LdRBmpieFL5vm3fS3v91yZAO1q330zoxfF+RiB5mFo3qcL1lS9sgs9NO01tzTZ0KL78Mf/wjXHihbhv3+3V7d24udOum/zQ06PZy19Xh/N57dQk6LU0H8zlz4K679Cjw1jXYa9bo7bwCgb2SciTSNry8M9dTh0I6WLcOWlu0SIf6Dvmyh1nt9ViODtbt95+22r1J7sh2XB3gxOPE6uvBdTG9Xpx4nI9+9jPOuPFG0nr2BKUI79rFumee4YwbbiC6Zw95557LmpbttPpecw3n//jHqUp0Ihpl3dNPM3TyZNJ798Z1HAyvF9PjIRGLYTc2EqmuZsMLLzBs2jQ8wSDJeJxkIoE3K+vge10fyL4DzPJ7QfWug2/FdTwmhXdRyaSD2xKWd33yF3L6Dadm6wc0VGwgq+dgCs++DICdH7+x12WmdaKs+RBCCHEqkYFmostK2AkitRHqttTx6i2vEmuIkdUni4yiDEpmlTBk3BBKZpRQF28i6A3oddRKEY3HwHUxlOLub9xA0BsAFMN6DSLuxNlZX8Nn1duobW5gUF4fQBGLx6kM1ba0lS+hWyCDUCzMotVLeGvL+1SH9uAxTHpm5tIrM5ce6d2Z++ZzlNdXpW733Oo/0WxHmTDq2lSLufdAFUjDqyvN3tN0ldo7UAdfs3u7tdXz9BZe3tN0QN6rUu0/+PrpA163z/2o/ayntO22SeFTp+oPK9oPMjMMHYwfewyWLNHDzCoq9LCy5mb9889+pqvQa9boy1or0lVVMHw43HabfqydO3Vo799fDz574AH9OAsW6OFotbV7lYUDAcjK6vxBZfsW933HYlnqlz3Mqr1DVaePtvLcQabHgzczEystjWQ8jicYZPj06XgzM7Hr61FAuLKSypUrU8HasKxUpXvYHXcQKi/n/QceIBGJkNG7NyPvv5+Mfv2w/H69rVdLYLZ8PjxpaXz23HNsX7aMDx96CNd1MTyeow/W8MUBZsnkoavS+xt61pUG3H2JDMPEtLwowyRvwPkkYhHyBo4gq+dg8geORBnmXhXu1suEEEKIE5FUrkWniYVixMNxonui2M06YK2cv5IxM8bQrU83nLiD5bdImi5RbD6t3MJ5hacTikcBMJXCY3owlQ4IkXgMF5doPEp9tJnfvv8KP7zw2+QEs7ATCfweL3P/8hw3nD+WqtbKdaSRqqY95Kd35zdrl3Lbxd8j4PHx950bmPbyI3x1wFe499IJfLRrI3nBbuQGs8nwp5FIOnhNDx7zMINSa0W5dU/s2vk6/HpP00EaDlyNPlIHux/b1gPGCgr0G/xwWK+RDod1gJ4/X6fKQACys/XXjRv1PtcjRoDHo9dQn3GGTp633w6PPKIXR595pr7svvv04/Ttq1vH587VFfGCAvjDH3Tl+7HHdILdvRsKC49BWfjY29/uZSeUTqpOHw4nHidp2yjTpGn7dtYtXMiQSZMw/X68mZngukR279bbc02eTEZxMclEAlyXNT/5CTtee43eV1zBiJ/8ZK/tuvaViMX0/T/zDEMnTyajX7+jD9UHfJCjqErbMajeCa/8/sDV7pNQqoqtDHCTKMPEaAnSrde1v0wIIYToamSfa9ElJOxEav9qy6vfeMYjcWo31rJi7gqu/NWVLL9lOesWr+Os753FVY9fRagyhL+bH9cLH9VtYkjBALymRSxh47SsIY3Eo+Sld8dJOtRFGonG4xRl5fHBzvXkBrPIDWbjui4bdn/O0IIB+Cwvtc31NESbaYg2cXavQSTdJB/v2sSgvN7URZp4bvWfUq3jPTJyyEnLIukmCXoDmIaB72jaFVvXQtfOh/wFLXtV+zsWoo9Gc7P+U1mp106PGKHLxImEnvi9eDEsW6YD789+pivMXq+ubu/eraeIBwK6Sj1jhm7z7t1bL4y+/XYdzFur1MGgnhj+4ottoVspHaTT0lLt/bYvA9sx8XqPbYhtLdAf6/sVx068uZnVP/4xO157jYufeIK0Hj1SQTtcWcnbN9/MxU89RfbppxNvasKfk5PaE/vM8ePx5+bizcrC2qe1wInHcWIxEpEI9evX033oUKy0tC8cd8wcSct/Ig7RMLz4uK52n3+Rrmj797O8RAghhBBdirSFiwNK2AlioRgJ+8sdrtO61dbS8UupXV+berykk2TlgpUUjy4mmUhy9dNXM61qGlc9fhXxcJx3fvoOocoQSdMlO5DBg2/+mljc1tVqw6CmuZ4d9VWU1Vfx0z8vIhKP4fd4SOJyTq9B9O7WE7/lZVPNjtSAs5311WT50wl6/QzK64OdiONRJvnp3QnbUZ5LTSRfwrBegyjI6M7Db/2W3aE6km4SQx3lfzKpPaif1IPPzMzjH6xtW6+t3rNHB+u8PLjlFr2Flter10AvW6angVdU6FbxtDSor9clXNdtG4y1cKEO0WPGQL9+ujJ63316UNnmzbrdfPt2XQkfN06vue7WTU8oq63VQX77dmxPGrX1Jk1Nuks9Ejl2v+oxHUgmvhSG18vQyZPpfcUV5Jx9NusWLkztd51z9tn0vuIK8oYPT23d1VxVRXpxMeffey+u6/Lxz39Ost1frhOPEw+Hady6lTWzZxOprqbp8895/4EHcL/MIWJH0vKfSMDW9XDZt47fgDshhBBCHBcSrk9RBwq8x/oxYqEYTtzh3fnvsm7xOkrnlOLE9HAb02ty6YJLKR5dTMWHFSQiCZLxJKHKEJbf4utzv05jeSNePAS9AYYVDmJjzecowGN6eH7tUrIDGTy7eklqi67sQCZvbHiPf+zaSDyZwDQMzuk1KHX7qlAtlU21PLnyJerCjUTiERw3ybOrl/De5x+nJpLfOPJfsVv2zv7LptU8v3YpTtLBdjqwPvJw9qD+Mtm2DrvNzTpAP/xw23ZZW7bA6tX68kBAr6uurdWTvbp311PAt23TYds09R7YmzbpTak3b9ZrtXv10iF73jw9CK2sTFfFFy3SlfA//rFtDfbo0eD3E09aVFXpLL5pk87xxyIIt99tbM4c/dmA6HpMj4eMfv0Yef/9WIFAam310MmTwXU544YbcBOJ1FTwSEUFobIy1v70pwCcPXUqRktbghOP07RtW6qy3TpFvODCC1MTxLsEy4LuPaCpHr47BfILT5nhZkdCtuYSQghxIpJwfYpq3Vt638B7rLQP7/Vb6rl0waV6QNmsEiyffiNpeS28QS8r568kmBdEmYpQZYi3fvwWDZ83UP1JNZlFmSRVkidXvsSwXoM5q+dpugLdUM2EkddSF2naa4suy7C4aMB5nNNrEAnHIem6JF2Xhav+j2G9BnN2r0GpIWZVoT1kBTKJJxPc840buajfMIq79eDHl02kV0YuP3/nf6htbuDhf7md8SOvxXYcrCNdC5i0wWmEZPOB950+Xrxe3eZdUKDXTj/2mC7rXnyxbu2+8EJYuxYaG3WVupVp6vbvggK49VZ9PegW8Ysu0gE6mdR7WYdC+n63boVzz4Uf/Uh/n0zCO+/olvAFC3S4nj0bJ5Fk3jwdgufPbyuSd5Rptm3rNWOG/nVF12R6PHiCQSy/n8z+/Rl5//2k9+lDtLaWz55/fq+tu3LOPnuv4GwFAqlW76Rt8+nTT1O5cmXbllsTJxLIzye9T59jv9Z6X4c7oMzyQEEhDD5HvzCPZiu0k5xszSWEEOJEJWuuT1Gt4bd0Tikls0rIHZyL6T12Q2RioRhLxy9Nbac1duFYUGD5rL0ep3XddWN5I8UXFvPKTa+w4eUNXPfSdRSeX8jOtTspHF3I156/ia8O+Ao/vmwiuxpreH7Ny8y45EZqQnWkeQN4LQ8+00M0oQefFaTn4vNYZPiCmIbJ8s9W8EH5emZfNolmO4KhDFxcNu7+nNxgdmprrt2hOp5fu5QbR/4rH+3cQFFWPsMKB5NIOvyzcgvnFA5umU5+GFLrrOdAznQwe4GZoyvYnSUU0gPNqqt1pbm8XIfgigr9p3UN9ubNel32qFG6qua6ev30BRfAtdfqCnUwqNdN79qlQ/P//Z9uFe/VSw8xu/tuyM/X9+fz6Z5v19X398MfwuLF2K/+hfWFX2fOHMVdd+mbtt/XuiO/5ttv6x3Damr0ZwBdcGaaOAgnHifZsm46EYngycjQ229FIvsdUNZauf7ns88y/I47MAMBDMNAeTzHJ1inhpp9R1ejvQdZ3/2FIWinxkCzw+UkbNma6xhKJBI4joNpmljSJSGEEB0iA83EAbXuMb1v4D1W93044T0WivH5259TeH4hKGja1URjeSOZxZk0ljVSOLIQK2DhWEnC8SgZ/iAJx0EpqG2uJ2RH+e37r3D312/AcZOsq9zCaXm9SfP4qWispSpUy9CCAViGyc6GarqnZVEfaWLR6iXccP5YcoJZPPzWf3P9V64m6A3w5MqXUntY3/m161P7YN9w/ljy0rPJ9AcPf6DZvntO594HnqL97zt9vDQ2wsSJMG2abgufNk1XoLds0Wuwf/GLtiFmsZgeUPbAA20DyGxbh+l58/QE8F694MMPoWdPHaxBTwP/9rfhk090AG9o0PtrZWa2ncOuXbpUPWsWdvEAokYA01R4PMdm+Fjrmus5c/RWWoMHy1CzE1XrZHGUIlxVRSIcxkpLI9ijB1Za2n6Pbd3r+riJRuA3j7YNKPvuFPC1dHRY1heD877Hy0CzvbRWrqs3ryZ/4Ei86d07ZYK4m0joJTCmiTpBQ2kikaC2tpbS0lJKSkrIycmRgC2EEB0gA83EAVleC1+G75gH69b7zjk9h7GLxh60Km56TbJ6ZxFtiIICT5qH3qN701jWSDAvyPIpy6nbXEckGsNreWmKhvnJG89Q3lBNwOOntrmemZeMJ+bEqY80MSivDwpFTXM9VaHa1CCzisYaemcXEPQGeH7tUl7f8B7Pr12KoQwmjLyWLH86+endmdDaYj7qmwQ9fqpCe3hry/s8v3YpoViYxBG1J7bfc/ouMLL3v+/08dJaOX76aair08E5Oxt69NCl3awsPfE7mdTpNCNDt3inp8OqVXoNdSDQtqa6slIn1rPP1vtb79ihp4gXFcFLL+n73bULZs/WX5NJfQ533qkD+H33Qd++eP0GmZmKYPDQAdi2dVX6UOuyvV44/XS93FuC9YmttW3c8Hhw43E+e+453HgctZ/w3HrscQ3WoAP01d/RQfmyb0M4pLfa+s2jukK9b6u4ZemKdetAM8M4Jfa8PlyGYeJN707h2ZcdUbDed512R9Ztu/E42DGSn2/Bra3+cgfifYkcx6G0tJR169ZRWlqK40iLvRBCfJmkci06XTwSZ8+mPbrKPbOE7IHZuAmXpl1NbHljCzvX7OQr8y8gMzuduJOgumkPmf4g2WmZGChQih17KtkdrktVqV/5bAWXD76AeW/+OlWJ/uGF3ybuOBRk5lDbXE+6L400j58kLhUNu3l+7VKmXvRdAh4fhjL4aNcG8oLdqQrVkhvMIi/YnaxA+uHvbQ26NdyNgjJBeTpvmFkkovernjtXL0Lu319XoqNRPcisuFgPGxszRles6+t11bmxUbd2g+6vzsvTIbqsTA8pmzcP7rlHTwyfNEkvnh43Tgd4pfQ67BEj4LLL9PFVVTrEr1kDffro89in+ngg7avRM2fq8NwlQnNqG6b9VCjFMdVplenDYccgFoVtG6D/6fDirw5embZj4CTAMGF3FbzyorSId8C+1W5PMJt4c91RVb/dRAK3tppk6ZsYF1yM2xzC6DMA1YGt3DqrCr5v5To3NxfTlH3EhRDiaEnlWnR5SSdJ6ZxSNry8gYayBpLxJHazzTsPvEPx6GK+seASumdlYRkmPstLfbSJSDzG/W8sZHtdBc12hDSfj+xABgv+9gLRhM0lp43Ea3pSlejxI68lzevH7/FQ1ainhdeGG4gmYijA7/Fy1zduIN0bIJqwmfOXZ8nyp1MVqmV44WD6ZPc68mANen21man3te6sYA06mZaX6zbwXbv2Dtb5+TosDx2qh49NmaIniieT8OMf6+vicR2sPR4diseM0ftgt0z9RimdeMeNgzvu0JVpw9hreBmhEITDOliPHAl9+6b2uj7cX6HLTQBvXTt7oAqlOKY6rTJ9OLw+CKTBoLP09+0r0/uG5UQcqnfBCz+H3btgT6UO4q/8Tn9QczCODfGQ/ipS3KRD9ebVNFRsoHrzatjnZ/dIqteOQ7L0Tdx1H5F8722Mwj5gHX0gbQ3rztLFx70KblkWOTk5jB07VoK1EEIcBxKuRaczvSYlM0u47qXryCzKZNmkZTTtaqJwRCEr56/EF/RSEa7h/jcWUl5fxcDcYqpCe7j+K1ezJ9yAoRTd07KoizRxTq/TqAnV81n1NmwnTlG3Htx76QS6p2Xy83d+Rywex+fxcP1XrmZ3qA6P6cFQBpG4zZw/P0tZQxU+08PQngN44f1XGFowAJ/lJc3rP/Jg3ZnaTymPRXRVtahIr7MeNqwtRBcWwqBBui08M1MH75df1qHYsnQYLyjQFed339UVcNvW7eWPPw7f/77eouvzz3UV+le/0sPSiov1eaSl6fbxadP0CO+dO3WYX71ah/vWfbMPorUV3DT1+ulx4/TXDhSRjp1EQgeiww1G4uTWut+116cr0N+/DQqKv7jVViIBr/0vDBwCpgcGDoVRXz/0nteODU3rYfV4/VUCdooyTPIHjiSr52DyB46EfX5WR7Jm2zQxSr6BGjIMo+QS8HlR+/z778bjuNGobh8/lPZhvfRNXcE+jizLwufzSbAWQojjQNrCxXGVsBM4toPpNbG81l6XJyIJlk1alpowfvF9F5NMJOl2Wjfu/fNTqfbuWZdOoKKxhmdXL2HCyGvJTstkwd9eYMLIa8kJZvHPqm1kBzL4nw9fY+Ujf6CmejcxJ05ltI7Hfv5zSkZeyIL/W8j7i5YTqm8kIyuTYT+4lA8i2/lGv6+w4fm3+Oc//4nP76ewZ0+efuppBg4c+OU/OUkbsAFvxyaKJ22wN0B8B3jGwMbPdYi++WZd9v3sMz2kbMQIuO46vY5661Z46CFdfQ4E9JhtpXRQzs/XbwYjET0BfPp0ff1tt+nve/SAf/xDTxbfvl23k/fsqQN3IKCr1QsW6D9pafo+6+t15fsQ/d37toKfdprOJT5fF2oJ32vq836ClDj1HGqpQCIOoSaor4XX/1ev187rBaZ18NdPPKSD9Y7F0HscjFwEHhmD3yqZdHCTDsowMQzzCz8fiVQbt2XuP1jXVpNc8VeMMV9H5eTvdwZA+/tKtZmXXILKzfvCfQohhDgxSFu46DLa731du76WhN1W5bO8FlbAomRmSWo/7KzeWeQOzsXwmEwY9U0uH3wBE0d9E0Mpnl29hNc3vMei1UsIxcKp732Wl6EFLVXnngN48IlHuWruRJa99QZ333kXj86YS1VoDx//9k2uGvev/GPdx9w+7Xb+/twbXH3GGH5w/lh+MP5GPv3nOj75+GO+ee03mTBhwpf/5LRu21UxXn/t0J7Ytg7WVh5EKnQy3b5dr40eN06veW5t1546VYfgigodvMvKdIi+6SZ9uWHoKrVp6rA9Zow+xufTt3/0UWhq0m3ea9boh8/K0sfOmaND9Ny5Osjv2qXXZYfDOmAfRn/3vq3giYSes9YlgjW07Fl8kAqlODEd7p7VB7rtoZYKWB69nOL1/23pevh92zZ1B2N4YehMHayHzgKjK7RvdB2GYWJa3lSQ3vfnI6EsC+Xz7T8EOw7JFX/VlegVfz1kJVpZFionH3PsOAnWQghxkpPKtThuvrD39aKx+DL2fnN4oO3B4k4C24ljGSZxJ0HEDhOzw2QHu2EpRSQexTJ9WAqiySTVoQa8pkV5fQU5gXRqIyE+/esHPP7LX/G/S/6X8885n7KKHVSHm/j1mj/x3PgH+OtfX2PgaYOJJmx8hoFl+fnoo4/59re/zfbt27/cJ2ffbbt6Ljr6LbuSNiQboWoKeC7Cdq/FjjZjFvTCSTp4DQ84DnbVLszGEE5WBmZBT5yKXXjzesKq94ifNQQ3K5Nk0sGyE8T9Xixl4nFcaAphNzfgTcuAQBpxn4VDEv+m7VCxC7vkQrzKgvp64hlBHOXij8Thgw+we+RiZnbD6ZGH95138Rb10W3ph1G5li21xHHR0T2oD3ebraPtenBsSMZ0sDblP4bOsFfluuQbqJw8lAyhE0KIU4JUrkWX0bq2urUybfm++EbyQNuDeUyLoDeAz/LiMRROeBeRPetIxpuprd1I9a41hBq2sWzZRGJNO+iTlUPP9G4MDHq55+ab+c7F/8oDP/kpv37uaarKtpOZqYiGdlAT2s0NX7mCXr3yWLz4NmKxBiKNn7Ns2URqa9fz6KOP8q//+q/H4dlpv23XrI5t2WV49QC1nJnYvv6sp4a3Y5vYWLeFm5ZPIZy0aXRjvB3fzKYeFhUZio31Wxn/wY9Z37ydWMmF2JlB4q5DUik2RXcxadkkNtVtJqwcYt3SCed3J5yZRq0RZf2ejUxcNon1+YraC4Yx/pVJrG/YQjgryPqGLUx89SbWJyqpHTWMtwPVbAyEGf/qZNYPK8I+rf9B07JsqSWOu46uo993m60Dha6j7XowvboVXIJ1p1Eej65EX3OdBGshhBB7kXAtjpvD3fv6kJJxVpTOIS/vTGKxBlaunE8wmMeKFXNZt24xpaVzSCQiJJM2jY1lPP74gzz22BimT5/MtGk/IhKpwbICrFgxl+GFp9GnWz5KGeTnD8WONabu57bbvseWLZuYN2/esX0i9sfwgvd0XbH2De74ZHEjAN7Tsf0XMqd0LvnBfMoby5nz9TlEEhGmvj6VvGAeZY3ldPN3Y+6KuSxet5g5pXNwXIdV5auIJCK4uKnr5q2Yh4uL7djEk3FM06Ih1sD8lfNTtwWYdsE0yhrKcFxnr+vqY/XkBfPaHmvFXGIcerCP19vFWsHFye1ww/EBb38Eobl1AJosJzjhKI8H5fdLsBZCCLEXaQsXJ5R4PILj2Liui1KglEkiESUarScej7BixRwuuOAOmpur6dOnhETCZvnyKaxbt5ghQ8bxn//5Mh988CajRl1BRcV2LMvHnj2bOOOMC3jlld9x7rlfpbFxB3fe+Z/84x8J/vrXv5GTk9/Zv/ZRsxM262vXE7AChONh5q6Yy/QLp/Nu2bu8W/Yuv7ryV7i4VDRVMHfFXGaUzCDNSqObvxuWYVEbrqU50czc0rnMLJlJXloeU1+fyvQLpzMoZxCNsUYqQ5XMXzl/r+tnjJlB/+z+bKzdyPyV85lVMou8tDw+qPiAoswi5q6Yy6ySWQzOHYxXKnCiq0kNJPNI8BVCCCFEirSFi5NGPB4hHm9mx44VNDTsoLm5hrq6rSxffgvxeJiMjJ5cc83TNDdXk5XVm507N1NdXUdJyUyGDBlHU9MounfPJj8/l6FDB/Hii7/DcSL87Gc3k5YWpaLid4DLCy8s59NPDd58868ndLAG8FpeTs85nfxgPgtWLmB08WiC3iD/NuTfmFUyi6AniM/0Ud5Yzi+v/CVpVhr10XpuWX4LOxp24Lf8pFlpPH3N0wzIHsCMN2eweN1i5q+cj+M6uK7LoJxBPHPNM0z93lTOHHomi29ZzCVfu4T3P3ifgd0H8qMBP+LGf7mRknNLuPe795KoTLBo7KK9gvWvf/1rlFIsWbKkc58wIUAqykIIIYQ4KlK5FieERMKmtnYDDQ07KCwcQTRaT1paDq+88sNUVfrKKx/H40kjmYzT3FzN5s3/5D/+Yzxebx6GYZCT053bbvs3LrlkHIsWfZ//+Z8aqqt3kZmZxfXXF/Od7zzAli3/5OKLb6B///5kZOiBYj6fj9WrV3fyM9AxkXiEaCJKOB7mrr/cxfTR0wlYAaLxKD0yemBgkCSJ1/Ty7o53+fb/fptvnfEtnrz6SRLJBKvKV1GUWURuWi4fVnzIyKKRBKwAzXYzFaEKyhvLGRAYQLPZzPyV8xnVNIqFjyzkrNlnsfjOxZx/1fm8+cibvL70dR566CHWrl2bOrft27fz3e9+F9d1ueuuu7j22ms774kSQgghhBDiAA5VuZZwLU4IsViIzz9/m2Awj/fee5iSkhlkZw9kz57NrFgxl5KSmWRnDySZjOO6LslknOXLb2HDhpe57rqXKCw8n50716aCuW030a1bPxoayvB4Avj93di5cw1ZWX3IzR2EeRK1KtsJmw21G9jRsIMRhSMoayijqrmK83qdR0O0gXA8THljeapde8aYGexq2sUFRReQSCZYvXM1hRmF7GzayUV9LmJr/Vbmlurj+nbry4odKxhROIL3d73P1rqtfL3f13l7yds88asn+P+W/H+cd9Z5rNywkjMLzsRjeOjZsycrVqxg4MCBJJNJLrvsMh566CGmTZvG1KlTJVwLIYQQQoguSdrCxUnBMEyKikby3nsPtwwtm0symSAtLZeLL76PQCAH13VYtmwSiUQEw7AYM2YG1133EpmZRSxffiuZmUV4PEHS03uQk6MDdE7OaaSnF+D1ptOnz0UnXbAGsB2bHQ07yAvmccvyW+iZ0ZNeGb24dfmthBM6WLcfNDZ3xVzG9B5DWWMZq3euZkThCILeICMKR5B0k8wtbTtOKUVhZiG3LL+FXhm9+MPcP/C1c77GT3/yU+597F5+tPhH5BfkMzhft4Arpejduzc7duwA4JFHHmH06NGcd955nfwsCSGEEEII0TGyoEx0eYmETTRaj2X5KSmZCcCYMfeglMEbb9yeagu/5pqnueCCaVRWfkTv3mPIzh5At259WbZsEuvWLQZg7NhF+HyZnfnrHHemYTKycCRTlk9h8brF/OSrP0kFaYDHr3yc1TtXM3PMTK4/+3pGFo4EoLyxnPxgPmt2rkm1gYfjYR6/8nGuP/t6irOKSTgJ5q2Yx8sbXub6s6/nj7//I1vrtrLiTyt46L6H+NHdP+I+7sN2bJLJJA56nTbAp59+yh/+8AfeeeedTntuhBBCCCGEOFa6TOVaKfUDpZSrlLq2s89FdC2OYxOLNbB8+a04Tpwrr/wVjY07se3m1LCykpJZxONR3nvvYTIyemEYFj5fOpYV2OsYy+rA/tEnqGQyicf0MGPMDMYNGUeWL4uZJTMZN2QcM0tm4jE9jO49moHdB1KcVcyU5VPYWreV0cWjqW6uJi+Yx5RXp7ClbguJZIIpy6dQnFXMgOwBJJIJZoyZwUvXvURRZhGTl03GVCY3/uBGPl3zKUaWQXVVNW9vfZtNdZuY8PIEtn2+jfye+ZSWlrJ9+3ZOO+00+vbty6pVq5g0aRJPPvlkZz9lQgghhBBCHLEuseZaKdUX+B9AAQ+5rrvkYMfLmutTSyJhE4nU0tS0i1WrHuXSSxfg8QQxDBOlDJLJBEoZLFs2mU8+eZEhQ8a1VKgzUrd3nBiW5TvpWr4PxU7Y1EZqAUj3puO4DrjgMTxEEhHqonWpLboev/LxVHV73JBxPHHVE7iuu9dl9118H2c+cSbjhozjqaufYnvddgbmDGRP3R5ufflWllYsZdyQcVzjXMPkmyfzt3/8jbGXj+WmCTexoXgDixcvJvuDbLZ8ugW/5SfgCaTO9atf/aqsuRZCCCGEEF3WodZcd3pbuFLKABYBtwIPd/LpiC7IsrwEAjl4vRlcffUTGIaXPXs2UVr6ACUlM8nJOR2A0aOnk0zGv1ChtiwvlnVqhepWcSdOdXM15Y3ljCgcgcfw0Bxvxmt6uWX5LUy7YBoPv/cwi9ct5vqzr+eeMfcAMLNkJrZjE7JDzCiZAcCskll083dj3JBxzCiZgcf0MDBnICE7RM2eGrY+uZWs2iz+nvF3tnffzqLfLaImXMPCpxdy1613EWmMkE02C59diGVYNNvNmMrEe4r+3QghhBBCiJNLp1eulVJ3ABmu685WSr0FPLZv5VopdTtwe+vPWVlZhfX19cfzNEUXEouFWLp0fGqtdWuV+lSuUB9IKBaiyW7CSTrc/ebdTL9wOv2z+6cu81k+KkIVzCmdw6wxs+iR0QOv6SUcDxOxI2T5s0iS1Ft1uUk+qPiA7oHu1IRrGJA9ADtpkxPIIRKPkB/Mx8EhGo8y480ZzP3GXNI8adiOjWVYeAwP8WQ8ta1XcWYxlmGR7kvv7KdJCCGEEEKIQ+rS08KVUkOBbwEPHOw413UfcV23qPVPerq8GT+VmaZ3v+uoLcuLz5chwbqFnbDZVr+Njyo/IsOXwaOXP0qaJ41t9duY+vpUaqO1JJIJyhrKePzKx+nfvT+VoUomL5tMRVMFeel5TFk+he3125myfAq/X/d78oP5PLLqEXpm9ExVwIPeIM3xZkp3lLKjfgcfVnzI/EvnE7ACTHl1Ctvqt7GybCUJN8FNr9zEVf9zFQ+UPkBlcyVb67diJ+zOfqqEEEIIIYTosM4eaFYC9AU2KaW2A6OAZ5RSP+zMkxJdTyJhE4uFSCRsLMtLTs7pjB27iNzcwfsN0+2PP1XZjs2upl2M7j0aF5f6aD3RRJQdDTv0Vlqlc6mP1nPN765hyvIpxJNx5pTOYfG6xcxfOR/XdZl+4XR2N+9mxpgZrNm5hl4ZvVh4zUL6d+uPQjH7rdnsaNix13Ze1/zuGm5ZfgsVoQpe/ORFHn7vYUYWjsRjtA1VmzFmBs12M3NK5xB1op39VAkhhBBCCNFhnd4W3t6B2sL3JQPNTi2JhE1t7XpKS+ek1lgfbA31kR5/srITNrZjs6VuC3NXzOWeMfcQ9ATJ9mezdtdaRhWNwjIsVuxYQVFmEf269SOaiLJ652r6ZPWhrLGMTXs2cVn/yyjIKEChCHgCeE0vjbFGSj8vJS+Yx+7m3YwoHMGanWsoyixi7oq5zBgzg9y0XG5/43Zmlsykd2Zvqpur2VK3hTPzziRgBXBxqW6upn92f4LeYGc/XUIIIYQQQhxUl24LF+JwOI5Naekc1q1bTGnpHBwndkyPP1l5LS+O66T2tJ63Yh55wTx8lo9eGb246ZWb2Fi7kWEFw+jXrR8bajekttnqn92foswi3i17l3AiTDQeTQVr0NPGizKL+MXqX3Buz3OxDIvze53PwO4Defqapwl6ghjK4JlrnqF/t/7csvwWXtvyGmf3OJuacA23vnYrVc1V+C0/W+ukNVwIIYQQQpz4On1aeHuu6361s89BdD2ta6yBw9qr+kiPP5m1tmIDzCiZgdfwEklEUoEb4L6L78Njepi/cn7qskVjFzE4ZzALxy7EVCYe05MK1gDxZJwFKxdw26jbsAyLlWUrObfnuWyp28Kc0jnMGDOD/PR8Kpsq6ZnRk8eueIy1O9eS5knb63FuH3U7j6x6hEVjF8nUcCGEEEIIcULrUm3hh0vawk89RzoJXCaHa42xRt7d8S5n5p1Jli8L0zBxkg4At71+G7eOvJVe6b3wW3621G1h/sr5zCqZxeDcwXuF6X01x5qpj9VjKIOGWAPpnnQyfBlUhioJ2SHSvekUpBewsmwlPTN6Mm/FPGaMmUHvrN7saNiRah0vbyynd1bvQz6eEEIIIYQQne1QbeESroU4ibWG4KpQFUVZRRgYrN65muJM3frdHG8m3ZuOx/BgOzZJkvgt/yGDrp2wiTkxNtZu5NFVj6amg9eEawjHw6k13sWZxdz86s0sXreYcUPG8cRVT2AqExeXmnAN2f5s0n3p+C3/cXpGhBBCCCGEODqy5lqIU5jH9JDmSaMiVEFFqIIpy6eQF8yjrLGMeDJOdXO1bvm2vKT70sn0ZR5WBdlreXFdl/kr5zOicAQVTRXc9MpNNMebKW8sT63xNpTB9AunM27IOGaWzGRV+Sp2NO7Ab/npmd6TgBUglogRiUeOw7MhhBBCCCHEl6dLrbkWQhxbrUPNRhaNZMqrU1JrnX915a/wmb4OtWObyuSeMffgt/zMfmv2Xvc9bsg4ZpXMYlX5Kjbt2cR9F99HYWYha3auYUD3ASSTSRLJBNsbtqdaxgflDCLgCRyz310IIYQQQojjScK1ECe51sA6s2XI26ySWaR70zscZA3DoEewB4YymDFmBh7Dw4JLF+A1vSy8ZiGWYeG6Li9+8iLfOuNbuK7L1addzZ1/vpPpo6dTnFnMvBXzUqH8mWuekXAthBBCCCFOWLLmWohTROs6aZ/lOybDw0KxEG9//jZ5aXlkB7Lpkd6DbXXbUuutB2YPxHH18LRt9duYt2Ie0y+czrtl7/Ju2bssGruILXVbdOW6ZAaDcwbL2mshhBBCCNFlyZprIQSgW8QzfBnHbCq31/RSnFXMw6seJpqI4rpuaouvn638GY7rUBGqIOkmUxXq+Svnc9mAy3js8sdIukkGZA/g6WueZlD3QRKshRBCCCHECU0q10KIo2YnbKJOFEMZJJwEzfFmmuwmCoIFhBNhGmON9Aj2oKyxjDmlc5hZMpM+WX0Ix9uuM5ShJ5TLPtdCCCGEEKILk8q1EOJLtb1+O+NfHk9zvJnd4d3Mfms2Oxp34Lous9+azba6bfTv1p+nrn6KsoYymmJNVDRVsHnPZhLJBFXNVWyo3YCdsDv7VxFCCCGEEOKoSbgWQhw127Epayhj2gXT8Bgefr7q54wuHo3X9GIZFi9veJmHVj5Ek93Ebz/+LQXpBZiGSUWogvxgPqt3ribbn43f8hNzYp396wghhBBCCHHUJFwLIY6aaZgUZRbx8HsPUxGq4NHLH+VbZ3wLgKSb5I/j/piaUr5m5xoK0gvI8GYwuvdouvm7kR/MZ8ryKYQTYSxDNi8QQgghhBAnLnk3K4Q4ak7SSQ0x8xgenrr6KbymF1OZWIZFSe8SlFIYyuCJq5/AVCaRRITV5aspziqmurk6tRXXorGLOvm3EUIIIYQQ4uhJuBZCHDWv6U1VphdcuoCt9VspayijMLOQn7z9ExZcuoCgNwgueAwPm/ds5qF3H+LBbzxIwBOgX7d+vPrdVynOLMZn+Tr5txFCCCGEEOLoSVu4EKc4O2ETioWOaqCY1/Jyes7pLBq7iKA3yJzSOeQF85i3Yh4jCkdQ1VzFxKUTWV+7nlgiRm5aLreNuo3aSC03v3ozG2s3MqxgGAO6DzhmW4QJIYQQQgjRGSRcC3EKsxM262vXM37peNbXrj/qgJ3hy8Bv+plZMpPdzbuZMWYGlw24bK/9rePJOFNfn4plWJQ3lqcur4/Wk0gmvoTfTgghhBBCiONH2sKFOIXZjs2c0jl7rXs+2v2mvZaX07qfRq/0XtRF6+gR7JFqGZ9ZMpM1O9ekHufxKx9n3JBx3DX6LrL92dISLoQQQgghTnjKdd3OPocjVlRU5JaXl3f2aQhxwmutXM8pncOsklkMzh18VO3ZdsLGduzUbWNOTAdmF6JOFFOZbKvbxucNnzOyaCRpVhoJN4GpTDymR1rChRBCCCFEl6eU2um6btGBrpe2cCFOYe3XTHckWLdvLQfI8GXgNb14LS+ZvkyC3iADug+gOKuYKa9OYXPdZvymn6A3KMFaCCGEEEKcFKQtXIhTnNfyHnUrOBx+a7mTdI5ZC7oQQgghhBBdjYRrIU4h7du3j1Wwbb8d16ySWQdcP324xwkhhBBCCHEikjXXQpwi2q+vnlkyk9NzTj9mAdtO2Kl11gdr8z7c44QQQgghhOhqDrXmWirXQpwijuVk8H0dbmt5R1vQhRBCCCGE6KokXAtxipC2bCGEEEIIIb480hYuxClE2rKFEEIIIYQ4OtIWLoRIkbZsIYQQQgghvhyyz7UQQgghhBBCCNFBEq6FEEIIIYQQQogOknAthBBCCCGEEEJ0kKy5FkJ0CjthYzs2XlPWgQshhBBCiBOfVK6FEMednbBZX7ue8UvHs752PXbC7uxTEkIIIYQQokOkci2EOO5sx2ZO6RwWr1sMwKKxi6R6LYQQQgghTmgSroUQx53X9DKzZCYAs0pm4bN8nXxGQgghhBBCdIxyXbezz+GIFRUVueXl5Z19GkKIDrATNjEnhs/y4TWlai2EEEIIIbo2pdRO13WLDnS9VK6FEJ3Ca8kgMyGEEEIIcfKQgWZCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJCEayGEEEIIIYQQooMkXAshhBBCCCGEEB0k4VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJCEayGEEEIIIYQQooMkXAshhBBCCCGEEB0k4VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJCEayGEEEIIIYQQooMkXAshhBBCCCGEEB0k4VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJCEayGEEEIIIYQQooMkXAshhBBCCCGEEB0k4VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJByXbezz+GIKaViwO7OPg/xpUgHQp19EuKUI6870RnkdSc6g7zuxPEmrznRGb6s112e67q+A115QoZrcfJSSpW7rlvU2echTi3yuhOdQV53ojPI604cb/KaE52hs1530hYuhBBCCCGEEEJ0kIRrIYQQQgghhBCigyRci67mkc4+AXFKkted6AzyuhOdQV534niT15zoDJ3yupM110IIIYQQQgghRAdJ5VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWXYJSyq+UWqKU2qiU+odS6s9KqYGdfV7i1KCU+oFSylVKXdvZ5yJOfkopn1LqV0qpTUqpT5RS/93Z5yROfkqpq5RSHyqlPlJKfaqU+n5nn5M4uSilfqGU2t7y/9Nh7S4/TSm1suU93lql1JBOPE1xktnf664zc4WEa9GVPAMMdl33HOBPwKJOPh9xClBK9QUmAqs6+VTEqeNBwAUGua57FnBHJ5+POMkppRTw38ANrusOA64BnlZKZXTqiYmTzUvAGODzfS5/GnjGdd1BwEPA88f5vMTJ7UCvu07JFRKuRZfgum7Udd1X3bYJe6uAvp14SuIUoJQy0P/Y3grEOvl0xClAKRUExgMzW/+9c123snPPSpwiXKBby/eZQC3y7544hlzXfcd13fL2lyml8oGvoD/cAfgDUCzdieJY2d/rrjNzhYRr0VX9F/pTJiG+TLcD77qu+0Fnn4g4ZQwA9gAzlFLvK6VKlVLf6OyTEie3ljeY/wb8USn1ObAC+L7runbnnpk4BRQDFa7rJiD1WtwB9O7UsxKnmuOWK6zj8SBCHAml1AxgICBvOMWXRik1FPgWcFFnn4s4pVhAH+CfruverZQaDvxZKTXEdd2qTj43cZJSSlnALOD/ua77jlLqfOBlpdRZruvWdPLpCSHEl+Z45wqpXIsuRSl1B/D/gCtd1w139vmIk1oJukVok1JqOzAKeEYp9cPOPClx0tsBJIEXAVzX/TuwDTirM09KnPSGAb1c130HwHXdtUA5MLwzT0qcEsqAni0f8LSu/++N/rdQiC9VZ+QKCdeiy1BK3Q78O3Cp67r1nXw64iTnuu6Truv2dF23r+u6fdHrcSa5rvtkJ5+aOIm1VAnfBC4HUEr1A/oBn3XmeYmTXmvAOQOgZb3rAGBDp56VOOm5rlsNfAj8R8tF3wLKXdfd3HlnJU4FnZUrVNs6byE6j1KqCP0//61AU8vFMdd1R3beWYlTiVLqLeAx13WXdPKpiJOcUqo/8CyQi65i3++67h8696zEyU4p9e/ADPRrzgDmua77P517VuJkopR6GrgaKEAPzGtyXXegUmowekJ4DtAI/MB13U867UTFSWV/rzvgq3RSrpBwLYQQQgghhBBCdJC0hQshhBBCCCGEEB0k4VoIIYQQQgghhOggCddCCCGEEEIIIUQHSbgWQgghhBBCCCE6SMK1EEIIIYQQQgjRQRKuhRBCCCGEEEKIDpJwLYQQQgghhBBCdJCEayGEEOIEpJRylVLdWr5/VSk1+ADHvaSUuuF4npsQQghxKrI6+wSEEEII0TGu617V2ecghBBCnOqkci2EEEIcR0qpwUqpcqVU/5af71BKvaaU2u//k5VSs5RSnymlPmr502c/x2xXSg1r+f50pdRKpdQ6pdQSILPdcRlKqYVKqTVKqY+VUs8opbwHOde+Sql6pdRPlVIfKqU2KaVGK6UebTmXT5VSQ1uO/WrLz0+23PcnSqmzlVLPt3y/WilV2KEnTwghhOjCJFwLIYQQx5HruhuAO4HFSqmvAlOA/3RdN7nvsUqpbOAO4FzXdYcBFwJVh3iI3wLPuq47BLgXuLjddQ8Dpa7rjgDOQb8P+K9D3F8W8IHruucCDwKvAy+3nM9vgNntjj0dWOS67tnAEuCvwIOu654FvA9MPcRjCSGEECcsCddCCCHEcea67u+AD9FB9T9d1919gEMbgU3AfyulJgPdXdeNHuh+lVKZwDDg+ZbH+QRY0e6Qa4E7lVIfAX8HSoCBhzjdqOu6S1q+fx8Iua77t5af1wCntTt2s+u6H7Q7drPruusPcKwQQghxUpE110IIIcRxppSygKHAHuCArdKu6zpKqVHoivVXgVVKqX93Xbf0CB7Obf/QwLdc1914BLePtfveAaL7/Nz+vcS+1x3sWCGEEOKkIpVrIYQQ4vh7ENiArhz/TCm13+qxUioD6OG6bqnruj9FV6GHH+hOXddtRFekr2+5/RBgTLtDlgB3tYR7lFLZB3psIYQQQhwZCddCCCHEcaSUuga4Apjiuu5m4Hb0+mv/fg7PAv7YMhDsY8CDXud8MNcDk5RSnwIPAO+0u+42IAJ81HJ/bwJ9O/L7CCGEEEJTruse+ighhBBCCCGEEEIckFSuhRBCCCGEEEKIDpLBIkIIIUQnU0pNAG7Zz1W3HuHwsqN9/JeB3vtcXOe67te+7McWQgghThbSFi6EEEIIIYQQQnSQtIULIYQQQgghhBAdJOFaCCGEEEIIIYToIAnXQgghhBBCCCFEB0m4FkIIIYQQQgghOkjCtRBCCCGEEEII0UH/P2inWaPnQpp2AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "plt.figure(figsize=(15, 15), dpi=80)\n", - "\n", - "np.random.seed(20)\n", - "color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", - "recorded_fov = []\n", - "for i in range(len(fov_ids_lst_health)):\n", - " fov_id = fov_ids_lst_health[i]\n", - " X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", - " Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", - " \n", - "# plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.legend()\n", - " \n", - " if fov_id not in recorded_fov:\n", - " plt.annotate(str(fov_id), (X[0], Y[0]))\n", - "\n", - "plt.title('Slide 1: Normal Liver')\n", - "plt.xlabel('x_slide_mm') \n", - "plt.ylabel('y_slide_mm') \n", - "plt.savefig('slide_1.png') \n", - "plt.show()\n" + "data_final_result.dropna(inplace=True, axis=1)\n", + "data_final_result.rename(columns={'cell_single_id': 'cell_ID'}, inplace=True)\n", + "data_final_result['cell_ID'] = data_final_result['cell_ID'].astype(int)\n", + "# data_final_result.to_csv('./health/new/spot_fov_cellId_mapping.csv')" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 23, + "execution_count": 31, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", - "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAPnCAYAAACx6xZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAxOAAAMTgF/d4wjAAEAAElEQVR4nOz9e5xdVX3/jz/X3ucyc24zk2QyM5lLIAERQ4RizXVGUAhpSGjRCp/6tfVjiyAKVrwAktBqWwkaRPgoKkVs/fT38WM/iJeSSWK4tJGZTBJo0YKphNznPpPMnPtt39bvj7XPmZmYBFAqUdbz8TiPffbea6+9zz77nLVe631ZQkqJRqPRaDQajUaj0Wg0mjMT4/W+AI1Go9FoNBqNRqPRaDSnRgt3jUaj0Wg0Go1Go9FozmC0cNdoNBqNRqPRaDQajeYMRgt3jUaj0Wg0Go1Go9FozmC0cNdoNBqNRqPRaDQajeYMRgt3jUaj0Wg0Go1Go9FozmC0cNdoNBqNRqPRaDQajeYMRgt3jUaj0Wg0CCHOEkJI/3XW6309mlfPtO/v0t/Q+Y745/vgb+J8Go1G80ZGC3eNRqP5LUUI8e1pHfXTvb59mjoSQohPCiGeEkIMCyHKQojjQoj/EEJ8QQix8BTH/Ztf965Xcb2XT7umS17hMZdqMfny+Pfpc7+tAmqaAJRCiH98mbI/ernnWvPqEEJ8sHL/X+9r0Wg0Gs3J0cJdo9FofvuxgbHTvNInO0gI8W7gIHAv8C6gGcgDdcDFwO3AL4QQfyuEECccXhFXy4QQ573C6/ygvzwEPP0Kj9G8Mi4FPsvUPf5VsIF9/sv+9S/pV+bPhBDnv47n17xyDqKel5P+x2g0Go3mtUMLd41Go/ntp09K2Xya18dPPMC3zD4KzAF+DrwbiEopZwFhYAXwIyAI/BXwrROqeBTI+u//58tdoBAi4Z8D4NtSSm3ZO8OQUg5JKd/sv4Zex0sxgc+/jufXvEKklJf5z8sPX+9r0Wg0mt91tHDXaDSaNxhCiMXAN1BtwI+B35dS/khKWQSQUnpSyl1SynejrLgAfy6EuL5Sh5SyADzir/6ZEOLl2pNrgQjgAf/7tfs0mt8xtvjL9wgh3v66XolGo9FoNGcQWrhrNBrNG4/PAzXAKPD/SSnLpyoopfxb4HF/9e+EEOFpuyvu8m3AZS9zzg/6y3+VUva/6it+lQghGoQQHxJCfE8I8XMhRFIIURJCHPZzA1x4kmOEv18KIT7xMvV/xS/3k5PsiwghbhdCPCuESAshikKIA0KIrwshzj5FfdVY/tOc85fKVBLKMTXAcslJchxcerrPcmJdJ8snMC0G+oi/vkwI8S9CiGP+fd0rhLhDCBF8Jec6DTuYet42/qqVCCH+wI+FHxVCWEKIMSFEtxDij05zzA7/M35OCBEWQmwQQjwvhMj62+v9ctX7KoSYK4R4wI/RLwoh9gsh/koIEZpW7zuFENv8e1UQQuwWQqw7zXVc4Ien/JsQ4pB/f9P+83Sn771yRiBOkpxOCHGbv+3Ayxw7Xwjh+WWXnGR/ixDiHv/3m/Xv3X8JIb4khGg+RZ2VvB/fFkIYQoibhRDPCCFS/vaLft3PrNFoNK8XWrhrNBrNGwghRCtwlb/6gJQy+QoOq7gtNzHl7o6Uciew31/94GnOeQ6w0l89beKx15CPA98E3gu8GWXpN4CzUK79zwoh3jf9AN99/2F/9bpTVSzU4MX7/dWHT9g3H/gp8AXg91FhBxawEPgIsFcI8Ye/xuc6EReVxyDvr58s34H1Gp4PIcSfAT2o5yiI+oxvQQnt774Gp1gPSOByIcS7XuW1CSHEN4BtwB8Bc4EcKiRkLfAjX9SZp6mmBpWD4fOoZ8c9RbnKd30T0IC6F+cAf4t/H4QQHwGeBK4AQkAtsBR4TAjxnlPU240KT7kUlXeiACRQz9PfAf8uhJh3uvvwOvNd1Pe3UAix7DTl/j9AAC9JKZ+ZvkMIsRZ4Cfg0sAh1bwVwPvAp4IWTif3pVQA/AL6KytehQ3M0Gs1vPVq4azQazRuLS1CdWlAx7C+LlLIHOO6vvvOE3RUh/u7TWAIrMfBp4DcVCzuMskJfDNRKKWejBNlbgP+LEgLfEkK0n3DcPwAOsOg0ouM9wCwghYr1B0AIEUCJhTeh7td7gZiUsg5YDOxECbd/Fq9R8jUp5YCUshn4kr/pZPkO+l6Lc/k0ogYrHgRapJT1KNH6VX//Hwsh/uDXOYGU8j+A7/urd7/Kwz8B3Oi/vw+Y6+dtmIUS1KCexztPU8dNqO/wT1DfXz1qwCd/Qrn7gaPAhf53nEAJblCu/ncC/wv4IjDbL3MWsAv1G/zKKQYQfuJfY7uUMuJffy1qIOIl4Fzg7093E15PpJQDqM8AUwNcJ6Oy7zvTN/pW8e+jQmvuAxagPn8UuBDlkTEHNQhzqv+c9wB/AHwUSEgpG1ADj4de5cfRaDSaMwYt3DUajea3nxW+S/DJXs+eUPYt/rIM/OJVnOM/Tzi+wj+hrNm1qDj2GQghBPABf/WfK3H0/91IKR+SUv6tlPKnUkrb3+ZJKX8B/CnKCloL/PkJx40Am/3VU1ndK9v/7wmf51qmrHvvllJ+X0rp+PX+HCUkDvvn/dyv+RFfLyLAP0kpPyalHAOQUqaklH8JvOCX+aXn4Ffgr1CW7iVCzX7wsgghIkwJ529KKT8ppTzuX2NaSvlZ4B5//+1CiFmnqCoG/A8p5f+TUlr+8Ucrz9E0JHCllPJ5v0xBSvl54F/9/X8H/B8p5XopZapSD/A+/9hWVBLImZVK+T+llP8kpRyctq0kpXwM9Qw5wNoTwxnOMP6Pv/wf/oDWDIQKVVnkr37nhN33o7w4PuN/h4elwvPv9VXA80AL8KFTnD8G/KWU8ht+Pg6klONSysyv9ak0Go3mdUQLd41Go/ntJ4iyJp3s1XhC2dn+Miml9F7FOSoW99nTN/rZxysxySfLLv8uoMN//+1Xcb7/NnyX+EoStM6TFHnIX/4PIUR0+g6hYtQr7tsz3OSZEqxPSil7T3LeHLDJX71aCFHzaq/9DOFUVvB/8ZcX/LonkFK+iBoUAvi8ePnkh6Dc0etRA0l/e4oyG1GDVrXA1aco87yU8vFT7JvOgxVBfgJPTnv/S/fKF++V+O/Fr+A80489DOxFWex/SfSfQTyKus+NqO/lRP7UX+6WUh6sbBRCLEB5BRWBB05WsT+YUvF0OVndABMo7xmNRqP5nUELd41Go/nt5ydSSnGK11m/gfNXOsidQoiFJ+z7oL98UUq5+zdwLVWEEOcKIe4XQvzMT+7liqnkbvf5xU4WK/w4cASIA//jhH1/gRJNz0kpf3rCvrf5yyc5NZV9IV6laDtDmJRSnsrduDKFXMNrdK7PocTfW4A/ewXlK/d/33Rr9XR8of3vJ5Q/kV2v8PpeOMX2cX9ZYkqgn8iYvzzpvRJCXC2E+L6f/K0wLSGeRLmLw8mf3TMCKWUaFasPJ7jL+4MwlfwS/4eZVAYjQsDhU3kSoWLfYWpQ8ET+veLtotFoNL8raOGu0Wg0bywm/GXDK7RiVpjjLydPsu+xadurVnchRBwVawq/uaR0lXP/MWp++o+jhE4CNe98JWFbxWU2euKxvidCxZpedcX145E/6K+eaG2HKe+G082BPl1Qzj3dZzhDyZ5mX8lf/rqZ5QHwZx940F/93PRM7afgldx/mPoOTnX/j72CywMYOcX2SjK7Md+743RlZtwrIYQphPh/qFwQ70ElwAugfl+VZ7fisv9Lz+4ZRkWU/9EJniuXoMIEHOD/nXBMi780ObUXURPq9wwqdONkvNLvUKPRaH5r0MJdo9Fo3lhU4trDqAzNr5SKle+/TtzhTyf3f/3VD/hx7QDXoDrWLvD/e/WX+qshhJiDGigIoSzc70AlqKuvJGwDPlkpfopqKknqlk9LJLcaNfVdganPq/nvZSMqK/xZTCWd++/mVFnkfxNchwq5cFEeB+cAYSnl7GnP7h6/7Kme3TOFrUASNcBw9bTtFQv89koOgmlUkvUdPI0X0SvxKHo9v0ONRqP5b0ELd41Go3ljsYOpqZGufiUHCCG6mLK4/9spilUs6vNR01jBlHX6x37St98Ua1Bu7pPAH0kpe6SUpRPKNJ2uglMkqassH/VdgU+kYuVrPU3VbdPej097X3XrPU3se91p6v2dREo5zlRYwwYhROw0xV/J/Yep72D8tKVeHyqhGQ9LKf9GSnnwJFb70z67Zwp+LPr3/NU/hepUiu/1t53oJg9TIQTzTpbUTqPRaN7IaOGu0Wg0byD8ZHKV2NObhRCvJB65MnXWOKeYzk1K+Rwq0zPAB/0kU5XEb79RN3mgMsXbS5WM0ifh8ldQTyVJ3QeEEG2obNZwcjd5mIqdvuw0dVbOazF1v0BZJitMF/fTeftp6q0kGjzTrbC/Cl9ChXjMBW45TbnK/T9PCHFS8S6EqGcqtv3fT1bmdaby7J6YPwEAIcR8lBX+t4WKOL9cCDEXWIcagMoylcxwOpWpC2uZSgKp0Wg0GrRw12g0mjcif4VK+tUMfMe3gp0UIcRfM5W5+a9PYrmeTkWg/zFwM0pETjBluf5NUbGGn3sy67UQ4gp+eT76k1FJUtcIfBcVj7xPqnntT8Yj/vLyk80B71uLb/VXf+iHGFTYz1SM+B+d5NjZnHrqK5iK2a8/TZnfSvwpvL7gr34aNSf7yXgCNQBicOp52tcDNais5ScTjq83lWf3VIkLN/LbNTjTi5rrPoDyJqi4yf/gZFNDSin3MSXev+hP8XdShOIN54Wi0WjeuGjhrtFoNG8wpJT/CdyEcplfAzzrZ7GugWqHeJkQ4gfA3/iH/ZOU8u9fpurvoBJnRVFJ4QC+U5kL+zWgQQgx5zSvivfAE/5nmw38kxCixf9ctUKIvwC+z1SSvlNyQpK6ivfAt05zyPeA51Bt62P+PTX9c18A/BhYgBKNnzvhXBbwI3/1TiHEH1Zchf1BgCdRMfun4uf+8i1CiKUv99l+C3kAlXSuDug6WQHfu+Lv/NUbhRD3VOZqF0LUCSH+hqmBky9KKU+WaPH1Zru//LAQ4i8qCfmEEB1CiP+NysaePOXRrwEv8xub82rEsu/mX8kHcQNwpf/+xLnbp3Mz6jdyEdArhLhCCFFN4ieEWCiEuBnlsXLVyavQaDSa3z20cNdoNJo3IFLKb6GSYE2grHs/BApCiEmUNX4X8G6UEN/IVLz66eo8xpQbfqV9eS3d5J9DxTGf6vVT/zpeAu71j7kGGBZCpFBW6W+hrNt/wyujkqQO1L3436cq6E8/9R6//kbUPc0LIdKoqcNWoqzqf+LPU34id/ifox5lDc4JIXKo76IO+NhprnOHf94AsFsIMeFPJXbkZNb/3zZ8T49Tzc0+nfuZykT/aeCY/0xPAn/tb/8n4POv9TW+RtzL1Pf4LdRvMomyWn8A9RmeP/Xhrwmn+40d49V7KlTc5S9AJcUcAZ46VWF/msWrUP9Nv4cazMgLIY4LISpT7H3Vr+9UWfs1Go3mdw4t3DUajeYNipTyUWAhygr5b6gY9hgqi/dPgXuAt0gpN5xmWqsTmS7U/1NK+bPX7opfOVLKW1Fzrv8HSiybqIz4f4WaK/p005pNr2eEqXm9N/vJ0k5X/ihKbNzhn9tCiZVDKEG5SEr52CmOPQIsRWXgH0O5RB9DJWd7G6eZ5swfNLgM+DbQj0rON99/nSrZ3W8b/8Cp50UHlIVXSvkRlGV3M3Ac9UxPAtuAd0sp/6eU8ozMOi6lTALLUcJ0AJW7wEZ5a6yVUp6pAw6nREr5X8yM2f+u781yumOeAs5FhTzsRv0n1aN+yz8FvoGa5eG7/w2XrNFoNGck4pX3xTQajUajeWPhJzMbRiXLulJKue31vSKNRqPRaDRvRLTFXaPRaDSaU/PnKNF+hKn4Y41Go9FoNJrfKFq4azQajUZzEoQQ56OykAP8r5dz79VoNBqNRqP570K7yms0Go1GMw0hRC9wNtCCijP/L+DiE6Zv02g0Go1Go/mNoS3uGo1Go9HMpA2Yh8pq/c/AFVq0azQajUajeT3RFneNRqPRaDQajUaj0WjOYAKv9wWciYTDYdnY2Ph6X4ZGo9FoNBqNRqPRaN4gDA0NWVLK8Mn2aeF+EhobGxkcHHy9L0Oj0Wg0Go1Go9FoNG8QhBDHTrVPx7hrNBqNRqPRaDQajUZzBqOFu0aj0Wg0Go1Go9FoNGcw2lVeo9FoNBqNRqPRaDSa1xDP8zgxEbwQAsP41WznWrhrNBqNRqPRaDQajUbzGuB5HkePHqVUKp10f01NDfPnz3/VAl4Ld41Go9FoNBqNRqPRaF4DxsfHMQyDc889FyHEjH1SSoaGhhgfH6e5uflV1atj3DUajUaj0Wg0Go1Go/k1kVKSSqVoamoiEAhgmuaMVyAQoKmpiVQq9Utu9C+HFu4ajUaj0Wg0Go1Go9H8mkgpkVISDAZPWSYYDFbLvRq0cNdoNBqNRqPRaDQajebX5NWIcS3cNRqNRqPRaDQajUaj+R1CC3eNRqPRaDQajUaj0WjOYM4o4S6EOE8I8TEhxLeFEC8IIRwhhBRC3HmK8oYQYoUQ4m+FEL1CiAkhhC2EOC6EeEII8X5xYio/jUaj0Wg0Go1Go9FoXmMq0vN0bvCVfa9Wpp5p08F9BPj4qyi/ANjpv58E/h1I+tsv919/IoT4Yyml9VpeqEaj0Wg0Go1Go9FoNBUMwyAYDDIxMcHs2bNPOh3cxMQEwWDwt34e958DXwJ+CjwHrAf+7DTlJfCvwD3AE1JKt7JDCHEJsAVYB3wG+Nv/pmvWaDQajUaj0Wg0Go2Gjo4O+vv7mZycPOn+YDBIR0fHq673jBLuUsqHp68LIbyXKX8QuOwU+34ihPgC8HfAB9DCXaPRaDQajUaj0Wg0/42EQiHOOeccPM/7JZd5IcSrtrRXOKOE+38DP/WX7a/rVWg0Go1Go9FoNBqN5g3DryrQT1nfa1rbmce5/nLkdb0KjUaj0Wg0Go1Go9FofkV+Z4W7ECIC/KW/+v3X81o0Go1Go9FoNBqNRqP5VfmdFe7A14GzgWFg4+kKCiE+KYQYrLxyudxv5AI1Go1Go9FoNBqNRqN5OX4nhbsQ4q+A/wmUgGullBOnKy+l/LKUsq3yisViv5Hr1Gg0Go1Go9FoNBqN5uX4nRPuQohPojLIl4F3Syl3vswhGo1Go9FoNBqNRqPRnLH8Tgl3IcTHgHsBC/hjKeWPX+dL0mg0Go1Go9FoNBqN5tfid0a4CyFuAr7ClGjf8jpfkkaj0Wg0Go1Go9FoNL82vxPCXQhxI/AAU6K9+3W+JI1Go9FoNBqNRqPRaF4TfuuFuxDielQGeS3aNRqNRqPRaDQajUbzO4eQUr7e11BFCHExSoRXWAjMAQaBoWnb3y2lHBFCXAQ8BwjgRWDPqeqWUn7wlV5HW1ubHBwcfOUXrtFoNBqNRqPRaDQaza+BEGJIStl2sn2B3/TFvAwJYOlJtrf5rwphf1mPEu0Ab/Zfp+KDv+a1aTQajUaj0Wg0Go1G8xvnjBLuUsodTAnx17y8RqPRaDQajUaj0Wg0v2381se4azQajUaj0Wg0Go1G87uMFu4ajUaj0Wg0Go1Go9GcwWjhrtFoNBqNRqPRaDQazRmMFu4ajUaj0Wg0Go1Go9GcwWjhrtFoNBqNRqPRaDQazRmMFu4ajUaj0Wg0Go1Go9GcwWjhrtFoNBqNRqPRaDQazRmMFu4ajUaj0Wg0Go1Go9GcwWjhrtFoNBqNRqPRaDQazRmMFu4ajUaj0Wg0Go1Go9GcwQRe7wvQ/HbgOBaua2EYJp7nYpohpHT9bUE8z0aIyuPkYpo1BAIhpOOA64JhgOeBlOq9lGCafnEXTBMRUMdXj/G3nbhe4ZfqPtV+Iab2B4NT25FgBtQxngWyBMIE6YAIqv3S9bfJaXfDU/ulrfYh/PcBkP5+pL8v6B9jASHAVWUxQBj+cZVzSb/ugF9HCIwQtm3jui6maRIMBv3vw8F1XQzDwPM8TNMkEAhUt5v+vT3xPVA95lRIKU97runn9ADLdQn557BcF0MIbM8jZJqYQvzS/sp723VxgZqTrIf879FyHGzXxZHyl+oLBQJYjkPJdTGB4GnqqXwDFmCqbwETsP2l8TLbXP/b44Q6Qv7L8o9z/HXzFOVeKZYFtl197JFSPcLB4NQ2z1Pva2ogFFLHWJbaV/lZ2LY6xn/8q8fatlpWypimKje9nlBIvSo4loNruRimged6mCH/uTphWyAUqJatrJ/q+Mo+u2jjOR6IaTfBUzfQDE6d52T1STOI4xrV6z3x+k/1eV7p91C5pyfe7xPLTK//5c7pWA5uyQUBRsBAmGLGvTnp0vbUQymoPpjVe1NywZz22/b8cv49FELg2eqeB2uDp/0u8DzwpDq+8rc3/b0h1INT/Z5OKD+9LNOOAVXuZEzfP/39yc4r/XakcjIh/P9Sf7vwj6+8FwZ47lR5wzyhjsoH5JfrqiL97fLk9fjHeZ6L9NxqHcIwq22m9Nzq+omc6rhflennA37p3JblYFkupmnguh6hkEkoFMCyHEolt/qfo+qq/D9MlZl+7KnqEAICAYPa2uCMa7MsB9t2cV0IBg1s25tRP5y+zZnezp24fzqnaudObA8rdZ7svNP3qZtRBGmBOMW/vBFSfQnsae15EIzaadtdEDUnlHVP6C9MK6fu2lT9MNVfwfCf9+DUPp8T+2zT+26BwOnLmmbIv0fWjPcnq+uXy5UA07+HlbKqVTXNIFIY2K6DaRi4noeUkoBp/tJ70zBwXBchxIztQTNA0Axguw6265xyvcL07ZV1T3oYwpixbfpxledg+nN0qn7U9O1SSoT//3OyPtmp+minKl/ZP/1Z9pjqowRP6ONUsBwHy3Ux/ePcaeUBSq5bbUqME8qcrO+kObPQFndNFcexKJdzOI71S9snJl5k8+brmJx8Cccp4rplJif30919A5OT++nv7yWZPIDn2Rw92oNlZXCtEnJiHHfzI8hSEZmcwO3+HnLyODKXAdeZ2j8xjiyXkeUS0raQ2TSyWFDbppexLLXNssAqI3MZ5MQ43tGDat3fJ8tlsC1kLoucPKbOWzlHsYAsF0HYIPJINw/WPnDGwDoAozeAm/bfXw/WQf9O2EpoyxJY+/19B1TZ0RvAzYCXAfslGP2oWpdFcCdg5EawXgQ3Bc44SsB7UNitjnczYO+DQo+qM9+D41qUy2UmJyfp7u5mYmICy1LbLMvi6NGjTExMVJeWZTExMcHmzZuZmJigWCzS39+P4zjYtk02m8WyLEqlErlcDs/z8DyPcrlMuVzG8zySyWT1XJXzOI4DUD1ucnKSgYEBLNclb9sUbJuJYpGJYpGRXI6CbdPb30+qVOLFiQmu27yZFycmsFwXx/Mo+o2K5TdERcehYNvsm5jger9svlymYFmUfdEOUHIcyq5LT38/GcuiYFlMFIuUbBtHSsqui+W6ZCyLvGVRcl3yjkNGSgrAi8B1wEvAGHAA6AEKKMHtAPuB6/2yKaDol78OmPC3/2TatheBvF/HfuAG/7gTz2UBab9sxl/mgJwFmRwUi5DPQyYDhYISfcUijI2pbfv2wfXXw/79qj9YEYa7dqn9+bwqc911cOCA6sul0zAyopY7d0IqBY6jXqDqyeen9lWuoVLPiy+q9WLOoZQpU5wokhvL4doubtnFLaml53g4JYfBXYPYBZtytszEvgmO/uQoVsbCKlgzt+UtnIKDlbEo58pYBQun7OA5Hp7tUU6XmXhpgqM9R3GKSmBO7Jtg83WbmXhxArtoYxdtJl6c4PBPBnlpv+AnP5m6dxMTMDiolpXPU9mfz6tXLqfWi0V1LyxLbSsU1P0qFKa+j5ERdX9SKRgdhXJZlanU8+KLcOON6ny53NS2yj3MZiWFvEc5V1avvH8veo7ilBycsvqMeDC5f1J9zpcmyI3k1H34yVEmXppg8/WbSR5IYmUsNl+/mdSBlLo3L/r79ifxXE/d14w6x+brN2NlLCb3T9J9QzcT+yewChZWxqrWv+XGLVjpshrQdFywHUhnoViGl46o0YrK+2IJXE+Vq7wKJX9feUrEe646Lp2FUlkd4/oiV/ojIJX9lVEp24H9R9Vyep1VseyB5/gDwB6UM75w9rfbRUgdUEvPg3Laf++AU4LUQbX0XHDtKdHtWlP7XdsvX1TrnjPtmv191Xocv64yruvi2mU8xyY/MYyVn2To+cexcpO4roOVU+tlf911HVy7jOtY6mUVGX7hSaz8JPmJQazcJJ7nvqr2u4LnudXzuVYR1ypil3JYJZtMpkw+X2Ziokg2a5FKlbjxxi28+OIE+XyZF1+cYOfOfjIZi3S6zL59E1x//Wb2708yMVGkULB48cUJenr6SaVKZLMWtu1SKDhkMhaFgkUmYzE2lqNUcnAcj1yuTCZTIpdT5y6VXA4cSHL99Zt56SV1vlSqjOO41bbIcRw8z5vR5hw9erTa/lXaucnJSXK5HKVSiWQyydGjR0kmk9V9nuexZcsWLMsilUpV20bbtme0leVymVKphG3bM9pIx3Gq1yPdAtJNgTOi2nFpKSFv7YeR61T77hVUe++mVHs+er3a7+XVdutFf9uL4E7f9lHVD5BFVYe1b1q5iWn159VxMq/6IV5ancudAK+A4+QplzOUyzmKxYlqXy2XG2Fi4gBHj/6EiYl92HbRL5enXM5V+3cTE/uR0sVxihSLE2zZciMTEy/iumWkdJmc3O/X8RKbN19HsTgx7dgXKRYn2Lz5eiwrc0LZ65mYeBHLLpIuZrFdh7Jjc3RyhL95/CGOTo6QKxd4buhFClaJklPmyOQIzw29yEBqtFrmeD7JkckRyo7F4clhPrf97zk8OUTBKnF4cojPP/Ew6WKWXLlAwSpRsEqkilnGshOkilksxyZXLnAslyRvFbFdu3pcyj+ubJUpFotks1k8z2NycrL6nLiuy8TERPWZ3LJlC8ViEdd1SaVSM/pptm1TLperwrzyLFX6bLZtUywWGRgYUMLZdWc825U+XC6Xw3VdPM/D9jz2J5Ncv3kzB5NJLNclXSqRL5fJlMsUbVu9tyxGcrlqH+z6zZs5kExSsO0Z6xnLwvM8DqZS9Bw9Wq37xYkJrEpHQXPGoYW7xhfs+Rl/wNPFu+ta9PTcxd69j9DTsxGAbHaouq23dyORyBx6ezcihGD+/HcAAiGBaBzz8nUgBF7fDuTen+H1PoWoqUVmM3g9TyH3/gyZTilhv/l7kE6CEAjfquPt9I/reQo8Fyk9ZPI47tYf+CbFECIaw936A6Tli/+Jcdwt30fU1OD1/QTRfhYE/NFsIRBhA7xDiNEbEPZBsPvBrIeJjZB9RDWIlfcTd6kGdfRGcI6qOibu8vdtBC/lH5NRo+YiCrM+Ae6IL+iHoXaJOsaoVY3u6E2qfGQZGDE1gm+PQmAu2EM44RUUSxLHcejp6WHv3r309vYipSSZTPLjH/+YpqYmotEoTU1NZDKZGWV7enowTZNYLMbg4CAAkUiEQCBAMBjEtm22bNlCOp3GMAwMw0AIQTAYZPny5WQymWqjtXXrVsrlMqFQiGg0SiAQoGnePNKWxVg+j+15eFISC4VoqKlhz9AQTdEotYEAIdPkHR0dDGUyuFKSt21u+fGPyVoWhhAIlHAHaInHWdnezqadO3GkJF0uk7UsCraNJyXj+Tw5y+LC5mZu2roVR0o8KRnIZLihu5uDySSO5zGez3PL9u1kHYcDpsn1QlCWkruAR4CNwBygBmgFbgYOoUR6pcwmlAAPAVHgG0AcuA9o9Ot4xC/voEap7/a3pafVsxGYCxxEifoDwE6UeJcWHHgRPnqjEoMVoZ5Ow6FD8Oyz0NysLLajo/DYY3DXXUp4HzumdM+SJXDLLUqs19bCvffCWWepMlLC0aMQicCyZeqxvflmeOkldWw2C8ePw4UXqn033aSE6pw5sHIlPPAAGNIBx0YAwUiQ2NwY0pW4tov0rZV23iY/lmfe2+dVhXagJkC0McrWm7aSPJAEido2N8rws8N4rkfheAErayGlxHM8BvoGSA+kMYIGuZEc0cYo227aRupginR/mr2P7KXnrh5cSw0YpAfSNC3poLZW0NoKe/aozz08DJ/9rFq6rhLxF16oPmsmo/4ypg+EFApTQnv/fvVdeB4cPKjuST6v7uHYmBoQKZdhfHxK9G/apL4Hz1P1Dg6q7+mRR9RycFCw/4DAsg3K6TKe5ZHuT6vPd/M2Mv0ZpCexSzY7N+3k4OMHCUaCROdG1T1vitG7sZe9j+yl9+5eSqmSuhcbe5CupOeunuo+6UjK6TJW1qJvUx97H9lLOV2m754+2le2E22MUk6X+fEtP6amoYbejb10rGijJhZAlCwlli0bElHoH4FjSXUTK+8HRtWDVRXk0/aVLXXs/qNQtgEJ0Vq1X6D2247S4LmCep+ITrmWGALOaQfTUGUnUmopAK/sC2kllEkfhlAcEP42C3KDUDyulp4FZnDK+u6WoTip9lUs5q4F6UO+eC9DKAae7Qv5MiQ6lAXcLUH6iN92mOq8brlqxXdFEKuQZPjnTyE9h+isFuxijuyxI1jFLHguwggwZ8HbsItZkB6eXcIu53HtMtLzMMwgTW/uwjAC1CQaOXbwWWWB/xWQnsv4gT2kR/aBMLBLefLpFC8dSHH99ZtxHMnwcJZbbtnO8HCW5cvbGBhI4ziSoaEMixbNJZ0uk81abNrUxyOP7OXuu3upqQniupLW1jhLl7YyPp7nllu2s3//JK7rkUwW2b8/yZ49gxQKNs88M0S57GLbHh/96FYOHkySyVjk8xbDw1k2bbqclpYYS5a0+s53aiDZsiy2bt1KMpkEIBaLEY1GSSQSDA4OIqUknU6zb98+enp6qKlRVune3l6i0Si9vb3VNtDzPFpbWymXy9W2cefOnRiGQSgUor29nUwmQyqVIp/P43keIyMjBAIBQqEQuVwOy7J88eUi3GE4/lnVpiOVRVyEoHYlTGxSA/teGrysWq/2Hxy/TzFtG9bUttolU/0Fpx9EHGZ9CuwB1WeYdRtMPOAPNhWh0AfOoP9MBkAYOHaaieP7fZG8j0Cghmx2hP7+ndTUNFBf30Fr69sJBGqZnFTlksn92HaBnp67OHjwceLxZtLpo3R330A2O0xb23LS6QGkdBHCYOfOTUSjjfT2bmTv3kcol9PT+oZ3AXD55ZsIBiP09Nw1o2xf3yYwQnjAZCFN2bGYLKbZvm8XD+/5EUIIGmrj3P3UPyIQ/O9nN3POnHb+97PdXNT6JoJmgNmRehpq49iuw8O7f6iO3f0jLNfm4d0/4oKWhRwvpPnbx7/JkUn1HR3LJflG36McyyURQnA8n6quSwmzI3Xc+s4PIKXk58MHkJ4km82STKry0581x3Goq6sjEomwc+dOli1bhmEYWJZVfb76+voolUpIKclkMlUhX3m+0uk00WiUbdu2AdDa2srg4CDlchlQ/bSOjg527txJIBDAtm26u7uVJR4YyGS4dfly5tfX4/j9okPJJD1Hj5IqlTiYSnHT1q3kbdVub+rr45G9e9nY24sQgrt6enhk717u7u2lJhjEkZLaQICmaJS7e3t5ZO9e7urpUYYQxyFXLmsRf4Yh5Ax3MA1AW1ubrIid33Uq1nTTDLFjx2fZu/cRFi26lquuephwOD6jTE/PXXR2rieTGSSVOkJHx0p6e++mq2sDgUAtlpVj1qw3kUwepDaYIB6aBdk0Xt8OjK7LIBJFjgxhtM1HGoavVgp4vU9hrnk37rYfIvf+DLHoouq60XUZ1EaQo8MYrR3qOEA4Dt5//SdyaADzynfjdj+K3PszzJtuB0BOHkdEY1BTC6HwjOsQ9bMhUEKM3qAa0fi10PQ1cJMgC0qMz70f3GOqgZ29QTWgw++FeY9CZLkaaR+/HWbfBmYjjN8KzV8H+7A6fvZ6sAdhaJ2qf87n1Ah5cIFqnGtXQsRv7Ctlg61K9AeaKNsm2VwRIQQ1NTUMDQ1RV1dHIpFg27ZtLFu2jLq6OoaGhkgkEtTV1TE4OEhTUxOWZREKhRBCYFkWsVgMz/MYHBwkHo/T0NDA5s2b2bt3L4sWLWLdunXYtl19Jp544glWrFhBQ0ND1Uofi8XI5XL09fXR1dVFpL6elyYm2NTXx+0rVnDu7NmUXZc9g4PMjUapr6mh6Djc1dPDHZ2dNEWjPDcywpLWVizXZSyXYyyfZ148zsbeXtZ3djKczTI3GqUlHkcAphAMZDKM5nK0JhLc3dvLbStW0JZI0HzvvQx/8pNkymUOTE7SGI1yLJ9nWVsbH926lUf27uXFT3yCA4kEjcB5KPH8ZeAelBgH+Djwe8BqoAVlGd8DzAOagDqU2N4IrAfmA7uAC1Hiuw6IobRFyT/2YuAYSvzfA0SAXuC9wB8CXwLGgWgOPnudEsmXXAL33KNEYCSihHltrRKbd98N69crIfrWt0IspsTmrbeq109+As88A9/4xtTvuuIiD0qs3n47fPrT8PTTquyDDyrh+dxzSnQahrIUj4/DF74At90Gb3oThIyyb+j0GNw9SPOFzRSOF+i5q4cVt61g9nmzmdg3Qd+mPtY9tI7JA5P0bepjzdfWsO2mbex9ZC+Lrl3EpX93KeF4GAAzbJI6kqLvi31c8eUrKE4U6bmrh+WfXk5NfQ3Ruerb2XrTVl74zgssunYRa766hqFnh2hb2oYZVu5+TtlBBsN4wmR4WBCLqXszOgpPPQXnnKMGLAxD3YM774TPfx4SCaUTDx2Cr34V7rsPPvxhNTDy6KOwYoW6bzfeqMT3tdfCQw8pq3w4rIQ8wM9+Bq2t0NioBltADRisXKle990HX/yiGkz4+c9hxVKXsCgr93THY+tNW6v355LPXYJTcqg/qx5hCHV/7ulj1T2rCEVDJA8n6d3YS9eGLiKNEbbfsp2u9V3UL6gneTBJ7929dN3ZRaAmQKA2gBCC3GiOvk19rL5/tfpP9CRW1iIUD7Fv8z4WXL6A2NwYgZCB6TlwZFiJ5bcshLqY+kCe549W2EqAd7QoMR0MqocsWqsE+MAonNMBB/qViG9sgLPmqXLSd39P5yAcUmXPbp2KPzg0CO3Nap/nKsu8aSpxXxdT5oVyBoJRJZytjBLToTpfcKt2Soka3+VYGEqESwm5IUjMV9umx2KkDymxHq5XbsayEqphqHoy/b54F+o8CFVXrBXMGnUNuWHc+HyGf/4Us8++mFBtQrVPhoFEYBfT2MUckYbmKc9+I4BrlxFCIPzBhcLEEMHaKMcOPEPjwiUEwhHMUO2v5C5fsbjbpSyRhlak51IoSXp6h5g7N8qb3zyHYtGmWHR48cXjLF3ahmFAPm9T6z87nicpFGxGR3Ns2tTHhg1ddHQkOHQoychIjqVL20gmi7z1rQ/yx398PvfeewWRSBDLcgkEDCzLJRQyKRZtamoCZDJlXnhhnHPOaaClJYFlOTz77DBvfWsTkUiQmhqDTCZFOp2mtbUV13WxLIuamhr/epSgjkaj7Nq1i87OTjKZDNFolHw+T0dHB+l0mkwmQzweJ5PJ0NraSqlUwvM8wuEwhUKB3t5eVq9eTaFQoKenhxUrVjB79mz6+/tpbm4GIBgMIoRgYmKC3bt3s2rVKgKBAOGghTE2rc/Q/LDf3t/l9wPmKYu4EQU8cEf99n0DBBeqkVocKD4Dwfnq5WVUORFVAwLZR6C1G4JtMHEPzL1HDQzIMhjxaef7jBroD50FAXXdZavM0YH/IBptJJ8/RlvbUgYH9xCNNrJr1710da0nkxmmvX0ludwIlpUnkWhTIY1SIqWHEAZbttxY7QeuXn0/+fw4vb0b6eraQCTSyNjY87S2LsUwDKSU2HaRJ574NCtXfoZEoo18fpRotIl0eoBMZoBEopXe3rvp7LyTxKxzKTsW/zV2iHPndBAJ1fCfwy/x5sazCAdDlB2LJ1/aQ1t9E29qnE+4MvgmJZPFDNFQLS8dO8riFlVPrlwgFo4QNoO4vvv7XU9+i+37drH6vOXcuepDfP6Jh6vrf3XFh/i7x6etr/oQA6kxvv3sZq5bejUdiSYc22Z0dJR4PE5vb++MZ62mpoZoNOp/brv6TK1atYpisUhvby8rV64kFosRCARIJpOEQiFqamowTbPqRt/f308qlaKtrY2+vj5WrlzJrFmzcByn2qeLRqMEg0H6+/uJRqPMnj0bVwgylkXINLFcl1ufeIJbV6ygJa7+A8OmyWgux/aDB3lmaIgH167lYDJZ7WOd09DAi36/bUNXF42RCLds3876zk7Oqq/Hdl32DA0xv66OBQ0NHEgmuaunhw1dXbx59mztPv8bRAgxJKVsO9k+bXF/g1Oxph88+DgrVtzGokXX0tV1J4FAuFomEAjR0HAOa9c+SEPDAhKJDhYuXE1Dw0LWrn2QTGYIxykya9Y5eJ5FITtCIjJX/eGGwoj2s/B27kAEQ4hEvbKUpyaVJa9hNsYlVyDTSYwVlyIWXYTRdTneUH/Vyi7CNYi6etxtP4R0CgBZLiHeciHGmquRloXReRli0UUQroF4Qon8fA5sGxEK4+3uQXQsQCTqfUuJoQRz/Fq1FGHVAAYXQPNDgAB7CJoeAHMOBFuUaA+2wehHwD0Ozd9QDbIRg+avqYa5aqXfqEbR49fC7Dsh0AYiAZjqfNErpo2+b4TAHJi4W1nckYBFNBrFtm22bdtGXV0dtbW1DA4OsmrVKgzDYNu2bUSjUTKZDIZh0NzcTKFQYHJyEtM0q1aFiYkJtmzZQiwWIxgMIqVk9erVLF68mK6uLoQQGIbByMgI2WyW1tbWqmAHiMfjCCHo6+urWjKklNy3ezcr29tpicfJWRa3/PjHNEajjOfzNEajM0Z2DSFojEa5eds2jvsu9W9pbGSjP8K7sbeXtzQ2ct/u3cRDISLBILXBIPft3k2jPxL82L59jOZy1AQCdL/vfQA0RaO0JhJ8Zc8eLm5pIWAY3L96Ne9fvJi5tbVcLCUJlCv7ucDXUK7r16Os7PcCf4yywOeBW4B2YIF6AnCYsq5v9H8Py4HjwGdRAt1jSrR3oIR81D8XwE1AG/AosAFluR8FYiG4YwOsXg0bNyoBPTKiRGShoCztd9+txOPGjUoMjo8rK7DnKWHY0gIf+IASoK6rBOrBg/CRjyjrseOogYBPfAK+9CVYtUqJyUOHlPW9qUkJ+BtuUIMEsZg636ZNEBDKnb3iTh1rjiEComrh7dvUh2d7VcuuXbCr74f2DNG1votF1y6ia30X0cYo2eEs22/ZTmYgQ24kx77H9mEEDcyQSfvKdgrHCzhFh/7efjzbY80Da7jwgxey+v7VmCGTlotb+PEtP8bKWiQPJRnaM4QUBvm8oK5OCXJQ4nzlSjXIccMNysMA1OcFtf7hDytteN99SpBv2ADPPw9Ll0Jfn7r/n/mMEu3r10Nvrxo4yWaVh8PYGFxwgbKoRyIwb576Lu6/H376U7X+4INK6P/859DeLgmFoThZJDWQwgybdG1Q92fl7Ss59MQhdn5hZ/U/t3djL61LWskOZ9ny0S1E50a58utXEmmMYBUs1n1zHXXz60BC/dn1XPXwVdS11xFrjhGKhQjXh5n9ptmse2gdwdogoXiI3GiOHZ/dQW40x+I/WUwoEmJi/wT9OweQwaAS5W9ZqAT0S0en3NQ9CTUhOLdDLcMhCJhKVJum2rawXYnzjhYl2jtaIBRUIj+bV39pdTG1Ho9OucVbtlqvWOUtfwDBslX5kqWEfDCqhHj6IJhhqJmjxLQZ9K3mJ8YyCyXGc4NTlnQr6/+3+saKxHwIJSA7oIS6ZytLvltS+2NKEOE5qi5hQGyessgLlIgPxUBA8/nvQBgGhdSYin3Hb/4idUQaWpCeEkYje3fgORauXWT0F0/jORZCekQamjl+8N9Jj+zj2MFnMMzgrxzjbhgmwWgDgZo4+ckhAALBAG1tCb70pV3kchbDwzluu+1JWlrigGT//kmee26Eo0fT3HBDN/39aaLREG9602zuv381s2bVMjaWZ2QkR2NjlJtu2kqx6PD88zfy1a+uIRw2OXQoyUc/upUDByZ9F3mLj398O0ePpnnhhXHa2hK0tSU4ciTFTTdto7lZDQ7deOMWQFknm5qaKBbVgHUqlarGDIdCIVpbW9m1axf79u0jk8nQ0dFBTU0NdXV1CCGor6+npaVlxgC3bdvE43FefPFFstks69atIxAIzLCOuq5Le3s7+Xye7du3Mzk5iWVZ5HK5alu4bds2bMdAzr0fFg5D8zfVza624Zv8ZyULRg0YCQi+CZofBHtkyrXdnYCaiyHQBF5OCfbgORBoVcaC+PuhdulU/8EdhrGPUw0VsQcg9xhMfEEZEMwWVDc+gDBjtLRcTDhcR3v7Ckyzhvnz30FDwzmcdda72LnzHubOvYBU6hCTkweIx5vJZAbo7v4w6XQ/g4O7se0CK1d+ptoPDIXiZDKDLF/+KdLpAQDa21fgOEUmJlSoZKEwztq136C+/iySyYPs2PFZkslD1Nd30Na2lLq6s1i9+n7qGs5mMDXG3U/9I+fMaSdZzPLToX0sbjkXD8nGJ/+Bsewk7zzn7ZzXeBaRYA2D6XH+c/glRrLH+frO73Esl2ThnHZs12aikOYbfY8igdHsBHc/9Y9Yrs1fLP0jVp+3nOuWXo0APrT0alaft5wPLXs3BkZ1/fpl78Z2Hb797Ga279vFt/b8yM/LEKCtra3qudHb21t91irW73Q6TSgUqpZ56qmnqK+vZ926dcyaNYtQKIThG5l27NhBPp/HMAzS6TTd3d0kEgne8pa3VPtU2WyWVCpV7dNls1lCfnKUlpYW9uzZg+17Hg5ns3x061aGs1mWtLYy6Bs3nh0a4kgqxV/v2ME75s/nnlWrsD2PwUyGTy5bxmAmQ8aymBeP87lLLuHs+npufeKJav9LAjdt20Z7XR3tdXVYnlftw1Us8JozAy3c3+CYZoiurg0MDT1DPD6Pq676JnPmnIeU+PFPGRzHd2f1XPr7e6mra8NxChw9+jSe5xCNNpHJDCGlh+c5nNVxieoa5bJ4O7Yj2s/CWLVOJe/p9V3jM2kIhVSsuW3h7e6BWAJzzbuhfhairt4X8ZeBpOpS7/U+pTwnn35SJfERBiIchmgMc/UfIUJhSE3ibvshIhpDZlLguRir1iHevEi542/5vgoxN+eqxjJ4lroZ9ksw+iGwj0LpP2DoShi7WY2Kmy0QWTFTmDtDap+XV65wxWfVSHh1MKAWmv9eLXHAnK3i44ILVEM9e8NUWee4WkcAAlMo0Tzd7a9i+Q4Gg9Xtu3btorW1FVCWgsrI8LZt28jlcjMEdzabxXEcuru7KRQKrF27lkQiQTKZrDYYuVyOBQsW0NHRQTabZceOHdVGZMWKFSxatIiuri4CQnDPqlWsbG/nlu3bq43Ivbt2sbS1lZBhsKGri2sXLeLOri5Cpsm9u3apRqKnh6WtrdQGAty2YgXXLlrE7StXUhMIcM+qVRxKJrmhu5vDqRT3rFrFsXye9Z2dPHrNNbQlEtzQ3U1bXR15yyJjWdzd28uS1laGs1lu6O7mWKHAN9auJRAIMCwEnwWG/ed9hCmX9rtRqYCOAR/1yyxBublXOIaytF/rL23/VXGFHwCOosR5I9CPcpufQLnGV+rcCHSihL1ACfm/CsFZ5yqr7fr1cMUVSjBXhHowqCzf116rrMWuq6zhS5Yoi/zNN8PAgBLefX3KLd4wpsT+yAj09yvLcSCgLPrt7UqcV1y5775bWYsr52xsVOe74w7AdZWbtS/Gd35hJ2ZwpuBEUF0H6FzfyaJrF1E3v45AJMCyTy4jPZhWz6FfT+/GXlqXtnLNo9eQG1Fisn1lOx0rO0gPpKsu9pmjGVZ/eTWF8QLdH+4mO5yldUkr5UyZ3o29RBujSE8yNqbE9P796l4sWaI+Vyo1NQiRyagQgmx25j2WUonwBQvUsTfdpO7B888r8f33f69c39/7XlU+k5m6b4GA8mTwPDhyRA0SjI0p8R6PT7naNzbCwIDA8QSB2gDZwSxO0SE9kGbtg2uJtcQY+ekIq+9fjTAEwhB03tHJwisW0repjxe+8wLbb9mOYRpYOYtAOEDqcIruD3eTPJxESsnESxNq/VCSgZ0DJA8k8RyPyQOTdH+4e8YAS9+mPhBQzqjvNtoUVYLaMJRYnu4W7/jx7J6EAwN+dr6Qcmcvlqe5xfuULWhrmkpeV7aUgN/vDwTEIjC3QdVdOUdDQgl9mLkd1LVYfqKu3NCUK7xhKEt7blhtQyjhnR1QSwAkxNqURd21pkS+aymhb5hTdUp3mqv9kFo3a6fqBN96P6wGDiTVus1MP4YZxC7mqEnMwS6mGXrhSaxC2g+Pdxl7UQ12Nr25E2EGEUaA2WdfjFMuMPTCk9ilHM3nv4O6lvOYe85ShPmrW7Y8z1VtnhEgEK5leO+/4tguGzf28sgje0mny9x9t3p/1109uK5k06Y+Ghuj1TIbN/ZO/QceK/Cf/zlKIhFmyZJW7r13F488speBgTTFosONN27h6NE0g4MZHnlkL5s29ZFKlchkytW65syJsHFjL7YtueuuHh55ZC9f+MLOaply2amK50qbM2/ePLLZ7Ay3+c7OTq655hoSiUTVfTiRSNDf34+UEsMwyOfzM0SX67r09/eTSCSqYWFdXV3VtqySBKxyTMXVubW1lYULF9LX10dra6vK9eIeg/FbwN6vhPfce5TYnns/GBE1+F94Rgl4Zwi8EtS8FTCVCD/+eVTCupAS986A8sCz/dHFpi8rI0LT1yDxJzBxny/gR1W5YJsyIMxeD4Wdyq3e78ZLKclmR5icPICULiBIJg+ydetHaG9fxtq1XycUipPNjtDaugQhAuzefd+McMcnn7ydeHwea9Y8QCzWDEgSiTb27PkKLS2/h2EEAIkQJqFQlPb2lezcuQnLyuF5Nn19m6pu8SrJbRjDMDGMAC4GD+/5Edv37aJglRjPTdJQG+fzTzzMsVySC1oW8u1nN5O3ioQDQRzP5dvPbqahNs639vwL2/ft4tvPbsYUBkEzyD/42/LlQrXe+37yHepr43xkxXtpr5uL5TqM5yb5s99fy1h2goJdoiGS4NZ3foD62jjhQIhPX/pnrD2/k+uWXk1/aqxqFe/s7GTRokWsXLkSKeWMMIxK2OL0Mvl8nrTvelUqlXBdd4axw3XdGWGPgUCgenxbW1t1365du2hvb6/mG6oYU8rlMpZtM5rL8enly0mEw7x/8WK65s9n086dNEajVUPI3b291AaDPDM0xIVNTdTV1HBxSws1gQCRYJC2RAIDuH/1arrf9z42dHVhuy6P7dvHXT09eFJyLJ+f0YcLvwJru3at/82g/R7e4AQCIWbPfjNr136DQCCMaYZwHIticYJsdpi+vk1VF6mRkef8P3yDTGaIaLSRbdtuZvXq+zEMk+7uG1i9+n6VwTafr4p0DzDXXYO0yhgrLsUD5S5fyOM9/SSitR1z1TpkIIhMTuDtfhpj1Tp1jG3hDRzB6HyXOm7lO5Gui2hth1wWt28zRudlEAwiA0GE60yJfMBc8x6k5yGCIWQuU42z5/J3IcyfQaARJu9VDWVl9ByUpb1qLZ+nEtc5I6rBBJh9uy/Y81Pu7rXLVbxZ89+rTl5hJ0SWqAbdmVAx9NZLILNqlN0eUiPyBJVFHlOdw0iAUYeBQWdnJwBdXV1Eo1HlXikEXV1d1e3BYJBsNksgEKC1tZVt27axd+9eANauXcsK3/e3ra2NrVu3VvetW7cOx3GqjRHAmjVrME0TKWW10amUnTVrFldeeWW1oxMJBqvxUwCfu+QSLj3rLJKlEqO5HB2JBJ+75BKaYzEEsN7/LLevXEnAMDANgxZ/9LehpobaQADH86qND8BD69axtLWVZKnEyo4OPtzdXd33wJo1pEol1nd1ETZNPrtjx4zjkJJNQuB/ozyEimm/w1+/E9X/rgh5gM8Bl6K6Qj8DLkC5zD+kviUKQBIl4gGWokR75fgH/DrvPaHOS1B/tvtQbvgbgZUWHNwP8RpltZ07Vwl4UBZgw1Du3vffr9zmAwG1PRRSLtmP+Cf43OdUXPrGjcql+w7/Ay5ZosR9pdxDD6lEdEuWqHpADQjU109ZloNBJVYDAbAdk3BdmBW3qeen684ujIBB7Zxa1j64FiNoID1JIBJgzQNrMEMmDQsaWPfQOgBSR1Ps/vJuutZ3YQQNujZ0VetBQsfKDro/3M3eR/xn7O/X0bq0tepiD7DuoXX0bOyprl/yuUsI14XpXN9JZjBD7FxRHaio3ItVq+Cd75z6XLffrt4HAlBXpwZDKvf40CEl5B96aGowA+BrX1P3WQg12PGHf6jKJxJTAymRiPqZj4/PPPZv/kblJti4cWZ9Bh7Z8TztK9vJj+WJNkYZeka5/6/5yhpSh1MqBOEzK2g4qwEjMO2ere+if2c/dW3Kqv7Ep56o3pMrv35lVZQDrP3GWoSpOp/58Tz7HtvHhR+8kM71/n/Jhi6EKarf7eyFDYigocS55UyJ6PZmZVkHZU1va1L7Q0IJ+IrIBpg/Tz2w0VrIF9X7dE5Z0yvu85Vy4eDUOTpa1Lrlx75P315ZN/xM7zE1QEm8zTeaCyWeQe2viHCA+oVqRMUIqmsxfNE+Y787Vacwp+qKtfru9kzVGW+fEvaV482wKhObB55DdFYrUnqM/uIZFV8OzLvgMqSUNJ//DjzPZezFXuYs/H3sYo5gbQy7mKuWbV28ita3XvFrZZT3PJdybpJjB/bQeM5SzEANcxa8DWnAev/7r6sLc8cd6v2dd3ZhmoLbblvB6GiuWubOO7vI5y1uv/1J7rlnFS0tMSIR5a21wX8mly5t46abtvKI/9w98MAarr12EbffvpL6+ho8T3LttYtYv76LwcE069d3YlnujHPU19dw7bWLqm3K9DZn7dq1v9QG1dXVUVdXx5YtW6rbr7zySiKRCFu3bmXNmjWEw+Fqm9fV1UUgEGD16tUEAgGklFiWRW1tLatXr67OnDK9TV25ciU1NTWUSiWCwSCdnZ0EAgFcp4hI3zXVR5jzOSXUm7+hXNjHfZf52reDc9jvF9ymLO/S9mPZVyoRPr5pKgRvRn1tSsRXXOzn3qPi4Ctu9KD6DIU+FboX+0No+np1lptcboRodC6Dg3uqoYx796rjLrnkc3ieRXPzRWzbdjOdneu5/PIv4nl2NdzxD/7gfkyzllxuhIcffjvXXbeb3t6NtLevJJsdoa9vE6tX30+hcIyenrtYseI23vKWa5DSZWjoGTo77/Dv+52YZhgpHVKpI6TTAzS1vI3rlv6h+omFI1zQvJC7n/pHtu/bBcBHVryX32s9j3g4SsAIIPH40NKrGctNct3SqwG4ftm7iQTDCCGq22LhCB/y33/w7Vex/1g/zfHZlF0b23NojM3iW3t+xJ8vuQpPeuw/1s85jR2UrBI1gRAhM8idqz6E67m4roOUKrdQQ0MDV155JalUiu3bt7NmzZoZ/bFCoUAsFmPNmjUMDQ3xve99j2uuuQaAnp4eVq9eXX2mOjs7MU1zxvGe5xGPx1m3bh1CiBn7gBn9sksuuUSFPwYCtCUSDGYyhEyTO//t39jQ1cU9q1bx3MgId3R2EjQMvnj55ZhCsKytjYJt8/mnn+a2lSurrvH3r17NWD7P3b29bOjqYn5dHbbr8vyNN1JyHBzPw3Iczmlo4OGrriLs5ys6HZbj8OLEhHat/w2gY9xPwhstxr0ylUdlipByOUc2Ozgj5v0P/uArpNNH/VipDdTXn8Xmzdezd+8j3HTTL9ix47Ps2/cYf/mXh/CsMvFQA2Qzflz55VBXj/fjxxAt8xAL3oRI1COtMmQzyFwGo20+mAHcLd9H/uI/Ma75nxgdZ+MNHIVUEnH+BQgzgESqGYKEgFwWeXCfinNf+8cqa3wui0jU4fX+qzpv/SyE9FR5y6rGupt/eDUYZcTYLb5Lu/rDZfxWJcqDZ4EzDGaT6r17OSXUrf1QcwEQUtb24389FZdWc7EaVZ/YBHPvU/WJgN+oAmMfg1l/Cc4xiHSq7LGgGmajDvBU3PzcL1L2ZiGl6nxLKRkcHOQHP/gB7373u+no6Kh+f7YfjzVv3jxAuXmlUil6enro6uqioaHBj1+T1aQ+vb29dHV1kU6naWlpqVooKp2cinthLpejp6eHzs5OotEoo6OjVXf8bDZLc3t7NX7qzq4uzq6vZ+fAAAcmJ7lswQIaamo463/9L3764Q/z+aef5guXXUbWsnji0CGeGRria1deiSEEnv8fdDyfZ24sxqFKTFZXF+c0NPAXjz3GY/v28fyNN1JwHDb6DcPChgYOTU7Sn8nQ2dHB0XSau3p6uH3lSs6urydUU6Pi04VgA3A2yuLegrKKA/wHylJ+F0qMn83UjFsH/e23ocQ2KFf6TwP1qKRzEmVx3wjVc0jg8LRtC9Q3i4HKYr8Y5a4fzcHnb1Su6+GwSkZ30UVKMFZCg2+4QcVeP/88NDQoLRIOKwvvxo1KlLa0qFj1jg5lOXZdqrMtHjqkRGUlRn7pUlVHMqnqi0RUecdRwtZxlPW+o0PFiq9cUsYU6hmsID1JfjxPOBHGCBhkh7P0buylc0MnwdogtQ211Th06UmMgBL4SPBcFSsfa4kRioaw87aKz97QRTAWJNoUJXVQCdjO9Z3MOmcWk/snq2Xqz1Yx4NKVeK6HDAQ5cNjkrrsEt9+urOTRqPocR4+qUIBodCqcOpdTgyDCn1msrw8uvljdh4MH1b26805lnR8eVt4JiYT66/A89d0UCuqe7d2rvq9IRN3njRuVuD/7bCiV1PGVbQsWqHto4mIKl+ShJL139dK5vlO5v2ctJg9MEm2Mkj+WZ37XfCYOqMzyrUtaKaVKPLzkYd7zf99DR2dHNedAvDVOXUcd6aPpagx83fw6XNtlaM8QifYE2aEszRc1E6hV01WmjqSo66irTucXqjWhZCH6R5RYrwkpEW/6VnMp4eDglCXdEFNu7QOjSlwHA8ql3fPU8emcEvEBVTeVukNBdbznKWt+wFTn8SQcHFBCvyGhxPyBAT9O3lRu7qH4tOnh/GzwQoAZUtvckhLa8Tb1nyv8BHS5Iag7eyqBXawNAmEVN1+Jj69OB+fXb/kx9Z6jjkmcNfU+3jZldZcuHgZWIYVVzBKZ1YpdzCjhvPDtBMJRhGHiWEUCoVqQKqVjxQrfsuidDP/8KRrPWUoo2oD5a1jaAVzHYuj5x8keO8J5l/6FOne5QNmtoad3gMbGKGefXU8oZFIo2AgBsVjIT+wvsSz1z1hbG+TGG7v5znde4P3vX8yXv3wF4XAA0xQzyg4PZ9m4sZcNG7pYuLABx/EwDIFhCGxbTeUVCBhMTBT4xS+Os2xZG4YhcByVzK6xMYrrSmprBeVyuRoz3NXVRX19/Yy2LJ1OE4vFqtunxwYfPXqUaDRKsVikvb3df2xlNT7eMAySyWR1arfJyUmi0Sh79uxh1apVBINB8vl8dUquYDBIMplU7VxzM0IIwiFJwDuMmLhL9RHMFtUvCMxV1vBq7PuDKpFtdf0h9e9vH1aW9ooIr+TWGbvJr69ZJaKbfuzc+wFHudhP3K3EfKBFDfBPbIK5X1ShelLiuEVcolhWHs9zGR9/gXh8Hr29G1m58nb6+3sZGNjJJZd8joceuphrrnmUjo5O5bUoDJLJg/T03EVX13oikbls336LL9LHMc1wtT9Y6e/t3fsIixe/n7Vrv4Fl5QkEarBt5aUZi7XgOEVMM8TWrR9l+fJPsWfPV7j08ntwjRqioVoc12EkO8G39vyI65e9m9a6uXjS4z+HX6Ix2sBEIcWi5nOUsQKwXIe9owdpjs2mtV61vo7nYQqDsmsRNNR3O5FPEQnVIoRg3/gRLmo9j+O5JAW7TCRUw9zYLMqORbacp2w7jOaOc0HzQsKBIJZlc3x0nPb2dlzXpVgsUlNTUx30yefzlEol8vl8NRfD6OgodXV19PT0sGbNGrZv31711ojH49W+1xNPPMGll15KMBikUCgQDAYpFovs3Lmzmkehkl1+fHycWCxW/S3U1dWRTCaJNDRwQ3c3n1q+vOrBeO2iRfz9unXqr0tKLNfF9V3qN/X1cUdnJzv7+zmrvp5lbW1854UXWL1wIX/tGzquXbSIr65Zw8e2bWOD348TQNl1sV2XWbW1ADOm4T0ZuXKZ6zZvrtb58FVXEQ+HT1pW8/KcLsZdC/eT8EYR7tOTznV1bWD27DcTCJzM4n4niUTbjKQl69Y9RDp9hJ6ejX4CkzEymSFaWi6mxohgjIxgtJ+lOir5PFglqJ8FroswTWSxALURhGEqAV8uqfj0QADhOEgk3hNbMFZcCpEI3uObMVb/EeRzyEwKkahDZtLVhHVCGGrKt30/r4p+KSUkJ/H6/k253NfPQkipkirVqlF2vNyU2J69AYJnQ6EXgk2qwyqYsqgHF4J9CERENdbSU65qE3epBhhPJbjzchBa6E8jVPA7kUGwDsPkl6HpfkBlgsU+oGLgapeoDLXSUpmAHZhIlqvJUaLRaDVZTyVRXV1dXTVxya5du6qdHc/zqnOfOo7DU089xerVq6vT61SsCQ8++CDnn38+a9euRUpJf39/ddS4rq6OTCZDW1sbUkqKxSKRSATXdRkZGWHO3LkMlkr0p9MsaW0lYBiUHIdYKETJcXhmaIj2RIKRXI4V7e24Ug24VJKftCcSzIlEOF4oMJDJsKK9nZLjsP6pp/j8u96F43n8fHyczo4OjqRSDGYytCcS1AaDNEaj2K7LaC5HfzrNuu9+l/cvXsw31q4l5yduKTkO0ViMXYbBW1BJ5IrA8yjXdYGKaR9HWdTDqAzyBlCJhP0ZcCXwflRSuxBqCrcSKibeBPpQQjyDsuaXgWeBt6Li4y2//OdRIv4slFv+EuB/WBAuKJG5Z4+yuI+PK3FdU6PEYaEwlQRtYEDtS6enXL8rAt9xYPduJVRbWpSr9uiosvw6jrK0HzkCnZ1KTH7qU0q4F4vK4vyVr/izbMmpc5smBLBIH5pUwty3cidaE2SGMsSaY8x+02w2f2gz+x7bx43P30hNQ01VMDYsaFBZ4z1ZTZTWub4Tz/EIRUPEWmLkj+Wpqa8hWBtU4t5HuhJhCgZ3D9K6tLUaliw9iV2wGXt+jNa3t2KGTSxC5HKCUEgJ5ttvVzH9bW0wNKTuQTSq7uVzzynX9WPH4B3vUIJ7cFANVNTUqH2hkEpA98wz6l4uWKDWo1EVG19JWPfNb6rBgcFBdV8r30Fbm/KA+NnPYPlydY9vvVVZ+s+er77UkedG+O6671YT09lFm3hznHKmTLguTCgeYvN1m6vJ69Y+uBbPUfOtS0+y/ZPbWfaJZTSc3YD0JCIgcIpO9d5nBjJTgwDvmI+VsyinVd1jz4/RvqKd1OEU6YE0565egHjp6FRSufnzIJlRbvODY7DAv//5otq2v18J7LkNUy7x6dxUwrpKbHp1ICA8lRPO813vT5YIr3JMR4uq1zT8gQKoCvVKojnD9F3eXeW+HmtTAr6aRd7yreZCWcnNGggnqE5OLsSU2HctJeA9e+YxVn4qOZ2UYOdVOelNS1xn4nou+ckhAuFaJg7/1I93r3gqmIiKWHdtRn/xNLPPfhvBcFSF4QfCVbf9X1e0q9urLO6GEcAM1VLJiFe2BPsPJLn77l6+9rUrueWWH7N8eRvvec/5xGIhcjmLW299gr/8y6UcO5ans7ODgwcnGRtT7x3HY3KyQCSiBvej0SCVL9V1PSYni8ydG8XzJOWyg2171NYG6O/P8KUv9fHFL17uDxBIxsbyxONhampMDh9OsWlTH//4j2t5/PHtLFmyhIaGBkAlSX3nO99ZFdUVwdTSorwyKm1ZOBxmcnKSTCZDe3s7juNgWSpHjLo+l0AgwJYtW2htbeX888+fkTE+FothWRbhcJjR0VESiUR1wNt1XbZu3cq+ffu4/baPESDvf68xPxGioRLHOUO+sF6v+hD2ET+J3J3KCFDoUzHpiGkJ5u6AwFkqS7wRUdPOOmMQnOcnuL0TAu0w9gloug+w/cR2HeocAPZBv+wGHHMBE5OHqpbwwcHdNDQsoKOjE89zGBzcTSLRTiQym5GR50gk2ujt3Uhn5x1Eo01s337LjP4dSFzXRgg1/3oyeZDe3ru54oovUyxO0NNzF6tX30ehcLzah4xGm8lkhpg9+1ykdHFdi2x2mExmkESiDSOYQITrCQdCfOGpf+RP33YlzYk57B09SFNsNmO5CW7+wRdZe34nt7/rg3jS4+e+WB/1960+bzmfu+IGBtLjjOcmmRtr4Ft7/oXrll7NeG6yevynLv1TwoEQAkHeKnI8n6omoasNhoiHo0gkw+lj/NO/b+FDS9/N/DqV3LdQKJBOp0kkEjMS1CUSCTKZDHV1dTQ0NFSnEUwkEjiOQ6lUIhQKkc1myeVyJBIJstlsdSBgeHiY+vp6QqEQwWCQoaEhotHojETDlVkO3vzmN1MulwmHw4yNjdHS0oIMBDiYSjGUyVQT9m7o6mJBfT0SyJTLRIJBxvL5qgfitYsWcf/q1Yzn82z0E/wubGjgSDpdPX7A70ddu2gRn7vkEizXJRIMVj0hD6ZSL2tJn25xv7Ori/PmzHlZK73m1OjkdJqTMnOat7twXTUdRSAQorZ2NrNnn1eNeQ8Eali9+n5uuukXrF59P5ZVoL5+IVde+TWk9IhEGpk/v4tyOQOGQLR2gOPi9R+GUhGZzSihnEmpGHOrPNXJyqbxdmyHfBYcB29kULkLLuvC69sB5bJyby+XVIx7NIbMpNUUcNt+CJkUUqAyxp93AaKuXnUQ8zm8vn+bSnLnurjdj+J8+W8gV0B6OdVgTp+ixRlUse0TX1RZX6cnkMNR22RBzbHq9KsGdO79Ko7dGQUMVaawU8WviYgfx3aj6hTOvQflNC0BV4n2QKMfS59T5y/sxqOGTCZTnZotGAziOA7bt2+nqamJSCSCEILW1lby+TzLly+vWtsHBgZIpVJs2bKFbDbLkiVLSKfTbN++vTqqG41GOf/881mxYkVVtEejUa655ho6OjqqsfJCCFzXJRQKMTg4SC6Xo6Ojg6Jt88WdOzmYTDJRLGK5LoYQHE6l+MT27VzY1ERjNEpneztHkkl29vdjuy6pUomLW1qYX19PwDAY8jPJ9w0MEDAMbl6yhDv/9V+pCQRY2tqKKQSxYJDOjg4GMhmSpRIf7u5mKJutDhq8f/Fi7lm1CtfvlH/68ceJBIMEgIukJIBKBlcDNAM3ohLTRVDW8DwqVv1p1FzsH0dZxFeiYtu/6B//YX97FBX7XvbL3AY8jrKy7wF+H+VSXwQaUHHvn/LPIYFbUVPCeSgxvmePcl+fP18lVQsGlaC84QYlMDs7VbnGRhUzXSgo0V4qqZjtj3xEld+/X1nvUyk1YUM0qoSraSphes01ylq/cqUS6o2NysK8ZImq/6ablJU4k1EC9fBhkK5H78be6hRlHSs7CEaDROZG6NvUh/QkK25bwbU/uJZQLETxeJGmC5sIRoJV8W3lLXKjOZZ/ajnBSBAjZDB5cBLP9og2RjEDJsVkkXKmXH3lRnNYOYs558+hv0clq5NSsu1jagqd2LwYxWRRnYMpPfazn8GWLWrQoqYGzj1XWdg9T1nGL75YffY2vzmsxPX39ysvhJ071dR6zzyj7ks8rv6mjh+HXbtU2MIvfqGWnqfO8fu/r7L1Hz6svoPPf159B4cOqWPTaVXXpk3geYJSqkTrklYWXbuIzvWd1NTXMGvhLILRIOG6MNJT0+N13qHyBXRt6MIIKc+G7hu6SR9Ns+TmJWQGMqSOpOjv7cctupRSJVJHUgRCAZre2sSer+ypDnpkh7Ps+OwOssNZ2pcri6QZMmm6sEndu44WmDtLJZkLBZUoHxpXVnZhKNEeVqKN9uaphHOgRPt/HYTBUSXoJTPj5C2bSu4O5QpiqDoqifD29ytrfU0I3jR/Kru87Sg3e/At60FlOQdIHVb/p2aNsoa7fnvi+NPGSamuO30YamYrC3nq4FR8e+oQ/k1QlvX0EeVOLwywcippXaJjSpzZeZjc7w/GuipxnWdD+hBCCCINLRw/9B+khn9BKTOOXcox/POnsAspnHJBTQlnBmk6rxOnnMd1yxhmEDMQxAyGXxPRDioxXSjaQKBGZTYvJEewSxlcTxKNBvnqV9cQDBp89atreM97zudnPxulVHKoqQmwfHkb9967i6VLVfjAuefOZtmyNjKZMh/72LaqaJ86F4yOZgGorQ1w8GCSm27aim17RCJBQiGTL32pjyVLWhkdzXHDDd0cOZLm0KGkH/9s0N6e4PbbV1Isulx22WUAbNmyhWQySVNTE9u3b0cIgW3b7Nq1i0QiUU38FfczaWcyGbLZLE1NTTiOQygUora2tpq5e2hoiFQqxWWXXcbQ0BDBYJB0Os2OHTuIx+MUCoVqXH1HR8cML7WKe/N5552HISSUnkNN45ZRbbZ9BAhC8FxlWQ8uAGdc9QeavqoG43GgZrGaq90+rIR80wMqBG/sZji0wDcWzIeai9QsNU0PqClqnaPQ/BX1bI99Qgl1EUT9yOwZU9a6nlvtz/X1beLss99Fc/NFJJOH2LLlRhKJVurr5xMKxenoWElf3z20t68kEKjBNMPV5MQrV6qZebq7P0wuN4JhmAwM9FFXN58rr/w6wWCE+vqzWbfuIUwzfMJ0cJKGhrNJJg/4U8qN0NCwgIaGhSofUqyJiUKa54df4oNvv4raYJgvPPWP3PyDL/Lwnh9yQfNCVp+3nE9c8n4s1yZdyvHWlnNpiCT4vdbzWHt+J9cvezcekm/t+dGM+Pdv7fkRFzQv5IH33M5nLvtzPKkS3g2kx4iFa2ckoYuFI9Vp5/7p37ewfd8uxnITWK6Kze7p6fmlmPZIJEJvby+tra2k0+nqgND0mQ88zyMYDNLX11dNHDx37lwsy6JYLNLc3EwikaBYLLJ161bi8TjxeHxGouHW1lYWLFjA448/zte//nUef/xx5s2bRyAQoJjPs6C+noUNDbiex99eeikL6uvxpMSVkufHxshbFvFQqJo/6M6uLqKhEBunJfhFCBY2NPDQunWcXV9PeyLBtYsWsb6zk389fLgq2vcMDVF03VeUpC4UCPDm2bN5+KqrtGj/b0Zb3E/CG9Pifidz5pyHaYZOWta2i0xMvERf3z2sWnWPn3TEIJ3uZ+fOTaxZ8wCZjHp/9dpvQiqJ1/MUxvJLkPkcRut8MAQyn5tyb1/9h+B5uNv/pToNnPEHV0M6ibfrJyp2PRpTPrz5HERiSqRnUhitHTOnj7vyPXhD/RitHWCYao5p25rprp+oh+Rx5Sp/9dUI56CKMw+2TrmhmY0q+czsDaohtY9MTcti1IAUqrHNfmfKDa5ihbcO+HV9CeZ+ATDV1DCjH51Z3jmm4t2LP4Xa31OucrnHYOFR1SlEYnkRJpMl+vr6qq58juOQyWQAqtOy1dfXk0wmq+UAPM/jqaee4oUXXmDx4sWsXbuWbDaLbdtVy304HK5mnC8UCsTjcerq6rBtm3K5XBXtlmXx5JNPsmLFCmpra3niiSdYt24dnhCkLYuRbJaRXK6abC5v2+o41+X2J5/k9pUraYrFCJsmBX/KOU9Kbn/ySe5ZtYpIMEjZdRFAqlSioaaGcCBAzrLIlMs0RaNI4HihQENNDTdt28Zj+/bx6DXXsLKjg4AQuFJSsG1ufeIJPrFsGQI1J3yotpZgIEAWZSlvQonp76EyzM9DTdd2j/+Mu8ALKGt6PcoV3vS39wJ/CvwflFgvoAT7bShX+zTKtX4uyoq/FPBTEmKjrPAXoQYLDJRoJwe9P5myALe3T1nVpVSW2poaZQF2HJWAbckSJcBra5Vwr61VLt5f/apKXGcY6ucCU/Hbn/mMmtqtYl1etkwNDlQs+pX2tVhU85lfdJESsvX10DHPInlgkmAkiF20yQxkaF3aihk0sYs2ZshEGAIjYODZHq7tEqwN4pZdBvcMKsv72Q1TU5at7yIQCVBKlth1766q+7tdtDFMo2pRtos2gXAAYQg818O1XIKRIJMHJgnFQtTW14IBpVSJmpZZFIuCPXvUPaytVZ9reFh9lkxGeTOUy2rgIpdT927uXPX++efh7W9XAxef/rT63PX1SrxXwg8GBtQx8+f7odOG+l6KRRXisHixuo+GoUS+ny+yGgMfi6l98ZhE5nOE42E1QDGWo+GsBiSS5KEkfV/so/OOThoW+pZ0Q+A5HoZpsOWjW6rT4135tSsxgkb1OygcKxBtilZd5jvv6CTaFCUYVQMoW27cwr7H9nHNo9cwv2s+qSN+OMIdncw6p4Fgjansp55UFvGA6bu0SyXSo358gWn4ce6+a/yRYVhQiTOf1mCc6B5v+vXZftKiihu+Zav3pjk1EGDbU9PBFcvQPEvNy54bVPHnRlCtT5+ezQgqK3zqoJqvfdZ5ysLuFJW4t7IwuQ9qZyuhj6eOzxxVMepI9cvMDfqZ420l3pHqWDM8ZXmvTi8n1ICBEcJFYBXSHDuwh9bFlzP883+ltr6ZupY3ATC2r09Z4sU0o79hYAZO3t7+qniei/QcpCdxrQJmqBbpuVhukAMHkgwOZmhrS7BxYy933NHJnDm1fOYzT3HPPauIxUI4jkcwaOC6ajq4W299gk98Yhm7dw/yp3/6VmzbZc+eIVpaYrS0xHnuuRHa2xPMn1/PyEiOQsGiqSlGNmtRV6fcZNPpMp/97A4eeWQv1167iHvvVbOiZDJlmpqiDAyk2bSpj4ceWsPWrVvYt28f11xzDW1tbdVB42w2y8GDBxkZGWHNmjU4joNpmlWr+axZs0ilUjOmgatY6CORCLt372b16tUYhoFpmnR3d7Nv3z4+/vGPUyqVOHjwIENDQ9W6s9lsdSo40zQxTZOg6SKcAwh7QHnI2f0qqWxkhbK6u0kwG3zPuRIU90zl0Jl9mxrML+5UMenS8gf7B1SGeRFS/QJZ8q3sH55yl5/zNyr23cvO9A4MtKtYensEapdSdsN+H20TnZ3raWhYgJQe3d03zJjeDSAUimFZuapXZWfneurq5iOli2kGyeXGefDBxZx33h/yB3/wFaT0qtPCdXbeQSTSyOOPf7JaX8UqbxgmUnr09+/ke997L+ed94esW/f3pFJH6eu7hyvWPsTfPv5Ndh35T77zp3cxJ1LPUPoYo7kJLmg+pxoKGQ4EOTI5wref3cyHll5NjW8hDwdCyhU+WMNEMc1YdrJqqb+g+RyCpknJLpMtF4iGavm3A8/yH4Mv8tdXXM9w+hgP7/kRH1r2bo7lJjmaHOGKNy1HIrnvJ9/h1nd+AAOB4U6FWYDy/Fi5ciXpdLrqiVjxyjh69CiRSIRCoVANqQgGg6RSU1MbVuZzr8xSUPH+qPTPrrjiCtLpdNX9vpLHyHGcqsU9FApV54CvjccpeB7pcpm5kQgDmQwbfcv5WfX1fHzbNj62ZAnnzJ7tJ5VWHphH02kGMxnaEomq5f1Ns2fzkS1bWNLayqoFC2iNx9k5MEBrIsGAbxiRwGgupy3pv2G0q/yr5HdZuJ8Y067Wy9XEdKeiVErT3X0D7e0raW9fWf2zj8eV25rneWzf/nHa21fy9gs/hNf9/RlzsstAEJITVdEtDQM5eBSSE4iOs6sx6SJRp+LcK8dedS0yNYG3c4fKDB8MIh1HKQ/LqrrYi3BYueUnJ5VQ98sqVzYPaVvI8TEVSy8lBC3E6PVKMM97VDW+XglKP1MubYWdKsN8x9MqAU3VvW09BDrAHVNJ5EQYxj6qks4k3qdE/Yw52jeobPLjn1Sub5X52oMLUJKwEvtWqxp9NwlmPSUnxtatM+drj8VixONxRkZG+O53v1udg727u5uOjg7e/OY3VzsmAIODg7S1teE4TjUOvjKN3LJly6puWfF4nFBIuTFOTk6Sz+dpbm6mXC4TCoV48cUX6e/vr85/W5kX3gsGOeZP/aZizQSHk0mGfSF/NJ1mPJ/nouZmRrJZxvx51gOGgeM3JsfyeUq2Tb/v+jWUyXBxS0s1ccodnZ0MZTI0RqOcVV/PaC7HQDpddZuvjAq3xGL0Dgywc2CAb151FdlymVhNDWYwSFEI/h0lnEF12WOorO/vAK5mSthLlPt7O0p4F4BBlBAPokR4EiXsrWnH5VAW/T0oIX8vcD/KMn8XKiHefJSor8TGh4tKH1RiqV94AWbPViK+rU1lgf/iF5Wl2DCmxOjoqNq/caNyv543T4nV/v6pePb585X1uLFRucQ3NCiLcn29sgZX1stlVdZxlF6qDKY/95wSwQs7ygRM5aLe39tPtDHKrnt3sfr+1RSOqfncp7+vCMbtt2xn+aeWkz+Wp6Ozg+4bVBK6xe9fzNpvrCU7lOXQU4doWNBA+4p27ILNU+ufYvV9q/Ecj1KyRE1DDWbQrMZrx1pixFvihOIhNbe85yHNIOmcSTotqvdwxQrlrXDvvSrLe+V+DQ6qQZFgcEp8G4Z6HwgogV9bq7bt3Knc3evrlWA/mTt8e7uqe+5cJew3blTx8ZUY98o59uxRLvfnnisJGC5uvkRmMEPDggacglN1jx/92SiPvOcRrnn0Gjo6OxCmUGJ+Ux+rNq0iUBtgoG+AuvY66s+emr+9c30nwWiQ6Nwonu3x83/+OYO7Blnz1TWkjqaon19PZjBDoCZATUMN0pM8/snHq4MA7/k/VyMEiJLlj/yYSqzHIuphMMTMedzDQSXAK67sEj/zvDdVpiZU8dKeouKeXlHo013jgybkfKt+RfDXhpWwD5qQPazc12vnqERx05PN1TYqMW4YvqU+PyW0jaCyjFeWwpyKVY+1qlh2Kwt1C6bVNwfqFipRXhHywlTW+XLGn0M+oVz0fbd9148zkagQLOmpRBOuXVYu60JUXeXnLPx9QpH6XysJ3cmouMnbxWw18V2koRnXKlN2a9nZN8CyZW3YtssPfvAL5s+vZ8mSVo4cSVWnZsvlLJqaopRKDq4rGR/P09wcIxYL4boeY2N5GhsjlMsuhiHo709RX19LQ0Mte/YMcvHFLYyN5bn77l5uu20F55wzC4DDh1PcfXcv69d3MX/+9PngW0mnS2QyFuefPwvbtqqf52RtVkNDA5lMppp7JRgMVmOQ+/v7iUQiM+Z5b21trbogV+bWrkw1V3GFrpQzDAPLsjBNk1KpVJ0OteLy3Di7BrO0c5oYX6/acfsQ2MNQc6ES15W8OBjKkj78HpVEbs7nfGF+9tR+pMqdM74e5t6l+hMirNznK27xZqPahoSxj8yMfxdhJf4nNuLM+TJFy6BUShGLtZDJDJBO91dd4leuvJ1otIlC4TjZ7DBtbctmhD9eddXDpFKHq27vgUAEy8oyNPTvLF78J7iuRTp9lEJhgtbWt1Mu53CcMqFQZMYAQMUtPpMZpK6ujYaGc7CsPMFgLa4IkLdKCAQSyf5jR7mg5VxGM8d5eM+P+MDvryVZzHJR63n83ePfZPu+XTzwnttnuMPX18Y4cHyAi+a9CVdKAsKgYJcAQW0wTN4ucf9PvsOfvu1KmuKzmCikaYnPwTQMxrKTRP3492O5ZNV1vr1urj8QJxkaHCQWi7Fz586qcQQgm81WRXQulyMUCmGaJlu3bmX58uXk8/lfyptQscQPDg4yd+5cbNsm7Md9b9++ndWrV1dzDHV2dtLQ0MCWLVtYtWoVhUKhmt+hEgLp+Y3VgVSqmuunI5EgZ1mUHYc50SiGEGTK5arhpNk3nHj+YMQN3d1V40dnRwcCqv04/P+vkuMQNE2O5fOUHYcFDQ24Ur6iJHWa1wYt3F8lv6vCvRK7Xi6nCYfrqK2dXU1I93KUyzmSyQMEAjUzktatWfM1hob20N6+knT6CIFADfGaJoKZnG/p9mPLAVwXadt4T23FWHkp1ETU+1XrVNZ321Iu9I6trPVdlyHqGnC7H1VzsL/5AjUKGgwiXRdymWq56jksC5nLqPawEtseiYJlIWIJZGoCmc1gnNUGwkNIWyWQw/STwnxHJZoLtk2JbFE7lYQufq1yYxu72R/17gDnoJq2pekB5domwjMT0DQ/BNLx3eZslWHWGYOJv/OT0jQxFbUiYfw27DnfwPECVTdBz/MYHx+nvr6eSCTCtm3bqn/oExMTJBIJPM8jl8tVrfGRSITt27dzxRVXkM/n2blzJ52dnXieRygUIhKJMDw8TFtb24wGps33I87n81W3xHw+X51OB5Ro8gwD2/OwPa9qLZdA2XHI2TZ14TCxUAjLdUkWi0SCQTKWRZ3fcN36xBNsWrWKsGlStG1eGB/nbfPmgZT8dHSU8+fMoa6mBk9Kdg8O8vZ58/CAsGmye3CQJa2teFISNE3yloUhBOP5PGfV15MplxGmyWQkQlgI5qIE+yeBm4E3odzlz0IJ8BTKrd23wyFRMe3HUNb0MZR491Bu8wP+ehJlxR9Cze/uMJVl/heoud4fQ8XWN6CEfRtqMKArD4cPKMF3xx3Ksnv99Sr+/N57VQz21Vcrd/i6OiXuP/QhZRUeH1fx7B0dyvIbCMDHPgb//M/w6KNKZBYKSsRv3KgEabGots2apUS646j1YnHKEh8IKPG+f786x2XvKDO5f4K6NpXMrH9nPz/80x9y076bKE2WOPj4QRauXsjTf/c0rUtaWXjFQmoaanjxRy9y3h+dRygWQjrKgv7ErU+w6p5V1f+UYFR1bFzbxQyaeI5HejBNpl/F0VdEaWYwQ3RulJr6GjUFHFOJ7rxQLZmsQTar3NoTCaUfPX9a7+PHpwYrUik1l/369erz/t7vqc94990qgdxZZ0FPjxLZc+eq+1Kx1AeDU/dqzhxlEC6XqVr5BwZg3Tro7p5aryyXLFHnbporMe0CbtnFCBoEwoFqor/o3ChGwMC1XFzL5an1T3HZRuU6nB3OKmPwcI62pW2YtSZO0alm339f9/to+b0WsqNZlcxuaSuBUAArbxGKh7BzNsFIkNTRFOn+NK1LWjECBkPPDNG+vJ1QxERULOvhkHJvP6dd/Qgq28qWsn43+nHttm91B2WB9zxV5ucHVJk3zVf7Spaqb0GbEvquB4eH4GzfJeFYUlnWz25VHedsXrndz66fqsPzwJAzxQ5iSlhPTxxXSTznWkqsT7eWG37CutQhKB6bGgRAqjKemkILYag/Ac+bCueS3lSMO0KJ/FAMQgk8DMqlvJ/JfQnBSD1I6UsTQWFymEA4QiAcITO6n0JymNbFqzCDr23iJtcpM/T8E8xZ8DbMQA1mMEwhNUqwNoYnYmRyLqYpCAZNgkEDz5Pk88oLKh4PYdsepqnu786dA8ybF2fu3Ci33voEX/3qGlzXY8+eIdraEgwPZ7noouaqlX5yssicOWqgRyWmUzHx0WiI2toApmngOB6u6xEMmvT29tPYGOXee3dx//2rlTdKPEAmo5KnVtqsXbt2sWrVKlzX5dixY3R0dGDbdrUdcl23ahGtr69n8+bN7N27l0WLFrFmzRqCwSCu61YHnNXj5M1o76bniKmrq1Nft98vLhQKlEoldu3axXuuvkK5yzsjkH8cij+H5i+jhnODKsls6XmVVd5NqtljzBYlzAOzqQ79ekWVmNasV1b5YMtUPh17FILtKtt87VLV95C2Sk4XaJqy5AfnK4PA9Izz8Q9izfkqnnQRwmDLlo/wi198309CtxIhTBynzLZtN7F8+afI548RjTZWEw7X1XUwMLCLuXMXYxgmwWAUKV2KxSTBYG213whgWTmi0UaEMLGs3Iz4+GXLPsnu3V9m3bqHMIwgpVISy8oSjTYhzRosxyFTzhEPK6++VCHDQ7t/yIXzzuXyNy0lHAhhCIOh1Djf3PND7rjsz6vZ51eft5yPrHgv9bVxxrITIASN0XqO5VP8w55/4YNvv4o50XqO51PUBsNKuOfTFMpl2hvU9HCZco6GSB0/G9pHQ22cZDHLhfPeRLKQoT4cJWyG6O7urj5Hl1xyCbZtMzAwwMDAAJdccgk1NTXVGQnS6XTVul6Z0WfRokVcddVVpFIpAoEAsViMiYkJ+vr6WLFiBbNmzcJ1Xd/gtb16zKWXXsrXvvY1brrpJnbs2MHevXt53/veV01+d/nq1TiGwU3btlXj1z93ySUUbJt58TjPjYzQHIvRHIvx/V/8goUNDVzc0lJNVHff6tUqr1A6XbW839HZyVl1dRxMJrlv924eWLMGx/PYMzREWyJBJBikORbTieZ+w+gYdw0ArmuTzQ6zY8dnyWaHcV3r5Q+qIqirO4t4fB5dXRtYtOhaf1Q2zPz576hOERcMRjHMAMQTGJdcodzTLQs5cRxv8CgiEFCx6zt3IEJhzDVXK2u56+Bt/xfcB7+ETKcw174XIlG8gaMYne9CvOWtKkSyXFLJ7DwPmU6pOeHTKf8cx3C3/wsIA5nLTMW2B8OImO/2aAYwOjpAZhFeTs3L6uXUSHnz133RPl+NpEc6lSu9l1eJZCpzrrupqZh4d1xlg21+QMWemU3Kcl6do32DcouTZbD3KUs+QiW3yz2mYumNuHKBG78FXJWoTpSexXEcJicn2b59ezVbbiWx3Lp166pivaGhgUAggGEY7N69uzpvaKlUYu/evViWRS6XY9WqVSQSCeLxOE8//TSu6xKPx+nv78dxnGrc4JYtW0in01W3r2AwSDwexzCM6nQ6hUJBhbKm0zwzNERDTQ2pUgnH84iGQhxOJpUhzvPYPThINBRivFDgszt2MJzNYgjBktZWRrJZPrp1K4Zh0BqP8+zQEIZhsLS1lb3HjnE4leLGLVtojccJBwIIYDyfZ2V7O0fTaT66dStHkklMf3q5s/14r5xlEa6pYa4QNKAs3S4qSdwD/vuKg6yLilu/BSXKfadZjqPc5t8EdKlvjRAqK/0SVEb6OSjrfBfwA//Y9ajY+DpUQroXUFZ5G7gQNbf7HCDvTk0Zdvfdqu+2fr2yuK9fr1ziK1SE6O23Kwv50qWqnOsqMZnNwpe/rER7W5uyOA8Pq+nghodVsrZYTIlOw1DCXUol/itx2n19SrADnHeeb2G2ITeSI3VEzRueaEvwoWc/hHRVx/b8Pz6faFOUVfeson1lO09//mnMsMn5f3w+I/8xQvJgkv6d/eSP5Vn74FqCkSBIeOLWJ0gdSmHlLLZ+ZCsTL03glByCNUGijVF67+6tzvkemRMhP57HKThsvXmruh+ux9CeIRCC0VE1Pd7oqPpMvb3K+6CvT4ntymdva1Px/ffcozwRAgH12VeuVCEFw8Nw4YVKuMdi6lXJIP+xj/k5y4rK0cd1lRi/8EIl7t/xDhVm0Nmp6lJzt6vlzTeregwTBp5V8wTnhnP09/aT7k+z4693kB5I4zkeheMFAjUBVm1ahfQkT61/ivi8OPUd9TRd2MSPb/kxqYMpArUBOtd3svj9i5nfNZ9gJEjDggaaLmziiVufUKI9GsKzPUZ+OqJi32sCROeqKegAWpe2Us6Wpyzm8aiydsejysJ+cEC5yIdDKoFcY70S2WULiiUlytM5ZaEPBdVxF5wD50zNelGtz7LhpaNqefY8dTNzBVXvwvapePZwCN62aKoOT6pynqPi1d2SEtECJbbrzlbW8Ooc7IN+tnepxLUZnHJxTx9SMfCJ+b5ob1ODtiIw9QNTB/tjA0KdC6nOEYr71+DX4c8PL4WJXcwyZ8HbMIwg0rGwC/5c7vkUNYk5OOU8nmsRa5xP4zlL1eDAa46gceESzEANRiCIY5eoSTRiF/NIYeJ5koGBDDfeuIWDB5Nksxa33LIdgEOHUnzsY9vIZsu4rmTlyg6amqIYhmD58jb6+9Pccst2Lrywiba2BJ2dHdTUBHjppQluvHELuZxFLmdxww3dHDqUZNeuAfJ5m0RCZax3XY/jxwscPpyir2+ApUun5oNPp8uEQgIpPbLZLJdffjnhcLiau8UwDMbHx4nH41WrYyqVYuvWrdU5rnfu3AmoKeRuv/121q5dW52/XQhR9RIrl8ts27aNVCqFaZp0dHRQV1dXzeti2zaWZZFMJtmyZQuO41BTU+NP1WUg7aNKKEdWQvO9ytpe6FOC2qhTVnf3uAqRs4+pLPFmvSpjH4TCblT7P9t3pZ+rXN2D85Vor12iPPxql0DxWRVLL4QS6fZBFVYXbFev0s9Ujp6mB+HsF3Ea7yOZOkR39w0kk4e48sqvcc01j5JIdJDPH0NKj1IpyfLlnyafP0Yi0UFNTQPr1j1EItFOoTBBc/NF5PNjbN9+C6nUYaT0iEYbkVL9PqT0CIVi2Hae7u4Pk0weIhSKV+Pju7rWUyxOVl3opZTkcmPs2PFZMEIMpsbZ+NQ/ULTL/Hz0IMeySRpjs9hw+XVc+ZYuXM9j45P/wGBqjJpgkL++4nqCZoA7V32If/mLL/PpS/+MWDhKwDCZE2vgH/b8C5brVOd0//azmzENg8aYSnCYt0qEAkFqwyEG0pVzW9iuTVNsNslilguaFxIwDBpq44QDYWzbZsWKFbzvfe/jyiuvxLZtdu/ezcKFC7niiiuIx+Pk83m6u7tJpVLU19dXZ/qpzMve1dWFZVn09PTw4IMPzpjTva+vrzr4FAwGWb16NYsXL6arq4twOMyiRYsIh8N0dnayePFi5s+fTyQSYdWqVXhCsGdoiE8tX861ixaxoauLudEo4/k86VKJOZEIm/r6yJTLXLFgAV0dHdQGg7QnEryjo4MNTz1FazzOivb2GXO+IwSjuRzL29o4mk5z07ZtNEajDPrejq9kDnfNbw4t3N9QuPT1baomL/EjbV8RhmFgGAGk9KivP5srr/wGkchccrkxpHQRwqSl5WJsu4ApTN/CHUcIA8olZC4zlUzOMDFWrcMbOIxMJ1U/SUqMle9UyeXiCZWIbvtjeI/8o0pEFwypePUd2yGXBSEwWjsw3ncdRodyPfN29yix3vsURmsHYvHbVCZ6H5mcUMdTRgiTqaBKVEfKGVKW9uDZqkEevcFfb1MCftYnlRXebJgS5YEWJf5Hb1aNrFELIqYa4uaHQURR6YOjYI/5iehuUons5v3An+5FTkuCtwmiV+CGlyOEIBQK0dHRQTarkgBVYp0qFoNCoUAmk6G7u5tcLsfll1/O4sWLWb16NbFYjPe9731Eo9Fq/FWhUACgvb0dIQTxeJyOjg7K5TKe51FXV8f8+fOrLogDAwMkk0mKxSLJZJLu7u7qlHGO61IbDLKktZU9Q0NEQiHG8nlu3LKF5lgMKSU3btnC3GiUSDBIUzTKvatWMZ7PEzJNrli4kPt272Zlezth06Q5Hld1DQ7Sn06zeO5c7vYbl4FMhsOpFDdv20ayVEICX+rrY2V7O43RKK7ncevjj5O1LIQQzIvHCRsGoygLeB5l7T4O3IdKGPcMcAQ1vZtEubTXwoxj/G4Wef9YUKkFn0EluisylexunV/2LODvUfHs7SjRnkUlpTsOrABmo+Zv37BBZSjfsEGJuwULlChvbFRW8hM5+2xlYZ+YUOUqRCLKKlzJGv/II0pAzp+vljffPJXw7ujRKQu+YSi37k98Ykq0mqZK0HbDDSANg9alrey6d1dVSMeaYtVkZ7nRHIZpIISgb1MfrUtaSR9Ns+2mbUQbo2QGM0TmRFQitUMpum/oJjuaZdknlhGoDRCsDbL808vJjeYopUvVTOid66cSs9XOqqVjZQfpwTRty9um6p8bxXMlo6PKS2F0VGV/b2ycSjq3caOyeI+MKPf/970PHnhAeR2MjCjB39mpcgTMnq36yLfeqoS/56m8AiMj6v6Ew2qgY2RE3c9oVL2yWWV9Nwx13D33qEGVpUuV58Qjj6jrsCxBy7L5mGGTzJDyIujdqAYoMgMZ0v1pJg9Mku5PM/TMEGbI5F2ffxfZkSxbP7qV/Fie1iWt9NzVg3Qk9WfVc+UDV2LlLX78iR9j521C0RDv+vy7kJ5kYv8EW27cQqw5Vp0FYNa5s2hf0U5xsqimuEqElVQNBZRL/MJ2mJWYEtwCKJWVQBcGJKLKgh4M+kH7UWUlt2x1fDikBHjJHxTuaFGJ7ioJ6UJB9Ss5OOCHO9nqHJVkdmVL3fhsXol2QyhxXxXmQyoPiOcLagwV7163AGadr8Q4nl9+UsWimCEltouTarthqvKOBV5ZfS7DUOJc+FPPuSV1/ScOGIT8axECjJBymRcGwdoYodo6AuEIIhDCLhWZs+BtVcEeqW/GDIQJhmMYRiU56WuLMEyCkToCNVGEGSQYjmCYASKz5uF5klgsxMKFs/j6169kdDRHNlvmscf2YZqCcNjki1+8nFDI5PjxAkeOJPn4x7czOprjmmvewuBgho0b30U0qlzmHccjEDAYH89z663LaWmJE42GuO22Fdx//24aGyMMDmZwHKnyqo3licVCTE4WOXQoiRCC++9fzfvfv5i6ujDhsHJPj8fjPPnkk0xMTNDa2kosFqNYLNLU1EQ2m1X9BMMgFArR3t7O7t27WbBgQTU2vZKYtTLdVlNTU7UN27JlC7lcjmXLllVzvWzdupVMJsOb3/xmOjo6qm1uIpGgo6ODXbt2EYvFaGhoQAhXxbfP+pQS2XjKIl67RIlw+7D6Xo9/Vg3AR1Yoy3nxWWUECLQpK7o7AqMfUyI/0AaRLr+epcoo4Iwqj75gszrH6A3Kk88enOojYCjLvldWrvLH/xrXc6qJ4np7N5LNDlNX10FDw9lEo43k8+PYdpGamnpaW5fQ0HA2oVCMXG5E9dvMEOVyelof8R6EMKui/emnP08uNwpQnR++r+8eQDJr1jlcddXD1NerLPb5/Djd3TeQSh0gHI6zfPmncKXk289u5qLWNxEyg5zb2MF4fpKCXeJocoS/e/ybTBYzXNCykG8/u5lETRzbdZgspBnNTPD1nd8jU8wTDSnPvkiwhlvf+QGCRoBb3/kB1p7fyZ8vuYqaQJhjuSTf6HuU4zkVDz8rUsd4bpIdB/+db+35ESAYy03QUBvn7qf+kYHUOJarRrOfeOIJhBAkEgm2+kaFVatWEY/HKRaLOI5DLBbj8ssvJ5vN4jgO/f39ZLNZMpkM69atI51O84tf/IIVK1Zw3nnn4TgOXV1dVVEf/v+z9+ZxctV1uv/7nFNb19ZbOr1UdwcIixBCAkrWbpAliVlQXMjo5OrMqEQ0iKyiwAi/EQImRhBBwcE7jtdtiCiGTkIIS0w6nY0dIzSks3R19d5d+3rqnO/vj09VdeLM3Hvn3vnduc7P83r161SdrapPnarzfT7P83ket7sybkun0yxdupSamhqcTicf+tCHKpGEV1xxRSVHPp1O43E6aa+uptbj4bGVK6mvquIrzz5LSyBAk9/PeCbD1xcvpjUYpDkQwFaKAwMDaJrGX86ezforrsBWCoeuc0dHRwX8oxQXNjdzzXnnVQD9pn37mBcK4TaMP8vj/y+b/iyV/xem/8xS+f9ZM7o/nvL5NEqZKKXIZCbw+RqwrDzJ5FDJsETMTbZvv55Vy7+PU3ehJsbQ6htQ+Rya4TjVTG7lJ7DfehVq6yR3fe8u9CtXoLncKNMEs4DmqRKWPhBEq63H6vqV7D/7/RgrPwZoYFvYA/0C9qtrxMSu0vPOqVFzhTzksuB1owW9aOa7pT70r4LzbIj/g5jHND0OwyeZwzQ9VjKpe2Aq3gWosDOZHgH63gUlqVtrJaLln5ndVfJe18hxsTklVq7+LnCeTr7orJjOLV++HNu2K33ufr8fp9NZYcDLUTkej6diKjc5OUkymaS1tRXDMDBNk0QicYpUKx6Ps2fPHpYuXYqmaZWedsnedZBOp3E6nYyOjtLS0lKJLpk2bRr9/f00hUIcTSbZuHcvD1xxBX63m739/Xxi82Y+fM453HPppZz3/e/T9alP0VZdzYa9e/nWlVfidTpxlXqurJLUvhwfFy5VeMfSaS5qbq5EnLQEAnxp61Z+9tZbrJ41ix+uWoVSCtO2eXlwkAsaG3EZBg5dJ2OaDKdSnN7YyD7DoAGRvDcADwM/QFjvBkQm70Kk7+sRhrwKkcCPIVFvNYjb/AakVz1S2ncMcaU/D+gC2pGCwLzSMfsRhv+rCMh/CnGTfwLpiR8GWjPgMqdYcIdD+qubmsQRva9PgOCGDQLke3qEOR4clKixYnEqX9wwBIRrmki4y8ZqR48KgB8chOeegxUrBOCuXy/Mvtcry0+W5afTMDkJM9vy+LyK+Ik4e+7bU8kJD/eEmT57Orqh46hy8NbP3qJ1QSsun4tdd++qxJgtf2Q5gy8P0r64neRQkkKqQCAUEM+vdAFPTSk+rjVI9YzqimTetmwMpxjf5RN5NEOrPB/YP8C0903DXe3GNlwcOaqzfr1WyVBPpeTbmckIeLdtkcxHoyKVL2/3xS9Omf2BnIt77xUWHgRX/rf/JuewpUXO16OPiond4sXyNzwsRnT33y/tDpGIFAJMU153aGiq9/2MMxRmIsvzN26TvnSvEzNj0rOxh5XfX0lyMInT72Ts8BgNsxowU2al9/3nK35eiY6zTEv643PFSu9/WT2eGhI5ve7UCfeE8dZ7Kz4DZsYkOZQkPZKmbXEbdlEKgJ6AE82ypzIAy5J2vSQZt6R/m2MRAd9ld3nbhqMDEGqUfzjoh/dOTMXKndYixzItAeQn96/HU5BICbOua1P97me2C2h3OsWlvr0Zqlwn9ZuHhGm38iWTuNNOlckb7hKwN0Uub7in1ll5kdGXM9jLEXNWfirPvZAsAf3CFMPu8gu7rjlKLU/GlGxfWViWiULHzKcYO3JQ5PJV1WQmI3hrm0AzKkZX6YkIrio/Ln/dv2t/e3myimapv96uyORd3hpyecWRI1E2bpRoNq/XidOpk0xKgeX114cJhQKEwwnmzw9h23DiRIzx8QwdHe3k80VisRz19V6KRZtYLEdtbRUOh8b4eIZ02mT9+m7uuKODM86opVCwKBQsXn99mObmAPff383tty/i7LPryWaLHDwYob09yIwZtUIoG6BpNlu3bj1FavzH8uKyaVf5fqfreqWdLJ/PV0xcTdOkp6eHK6+8EqfTycDAALFYjPPPPx+gIpEHKYaXpc+xWIy9e/dW9iv3vafTaaZP86MXj5wU+3aGgPWyWZ0VByMgpnV6TSkyNi9KPDsDo3fB9PXyQRUH5Rqa+NYfjRO+LiRBZNWUMV36OfAtFZJgeJ1kt1sTU5Fy5hCY72H6/orJ2An27LmPjo476O/vZubMpZhmpmIq53T6qKqqxbIKuFwB8vkEuu4sGcu5KBQSlX51yXAfq8TLhcN7CYf3smrV3xOLHSeRCNPWtgjQSKdHcLsls9zl8p9iiLdq1eMUiwV0w03asiu95Z+d/xFaq6dXQPbJUni/20s0k+CJA0/zufkfYTQV5ZYt3+HZtY+goZPMpwi4/bgdTkaTE/jcXnxODzYyprjv+R+xq+9lnvqrDdR6q7FsG0PXiWbi5EwTt9NJwO07RYJ/x5WfpUp3USgUcDgchMNhNm/ezDnnnMOqVavQNI10Ok1VqaJuWRaGYaDrOm+++SY1NTWV8VY0Gq3ks5/c616O5PX5fJX43XPOOYcVK1ZgGAaWZVVepzyWKxaLvP3229TU1BBqb6dQ+l8UkC4U2NLby2k1NSxqa8NWCl3TSBUKvD48zMUtLRi6zpe3b6/EwGUti1cGB5lXMsJTSnHzjh1cP28eZ9fXc6wU/XZXZycz6+rwlloC/jz9n53+LJX/8wRIzFt9/fu46qon/k2g3TSzWFaWdHocXXdRLGbo6lpLKjVMIjFQqfAqVSQUmsd4tE+6+wLVMj7SNJRhSM/6rLnonVdgh4+htbajt5+OvecF1FuvYD/3zJRTlNOFyqTRmlulnzUSRl/2EYx1t6MvvxpVKKAmRrG2PoXm98tALxETRj2TmiI0To6ac7mx9/0O8kX+GcuNDb5lJQbccZLU/WvSk2YOSg+7US+yejsB5nslVj4E1Z8W0O6YfkpEC3Ycqi6RGzM6ND4Ogb8Wl3pVlBt7dp+sb/qhgPviICj7lOiRclxIKpXC7XZTLBaZmJigq6sL0zRJp9OYplmJwHG5XPh8Pp599tnKjSidTtPe3l4B54Zh0NbWVikAlKeT43LS6TRtbRIfFQwGSafTWJZFe3s7FrB+zx7mhUKMpNN8oauL1mCQX11zDXd1dlLj8dD1qU+xuL2dcDzOwtZWhlMprtu6lb7JSXSgqBQHIxGm+3yEEwmmeb1s2reP+aEQQZeL8ZK8/lg0ysYlSyrxJoam0Z9IcP327bQEAmiaxvXbt9Mfj+N3ufC5XDiQfvJNpXkt4iB/HHGLL3fM5hEg/yQC4DMn7VONsO0bSuu/jWS0VwOXIoC8C+l370cA/fXACaSPfTEiw3cAnwQeRaT5CWCwAIN90medz0vc2LFjYq4WCslXwe0WtndkRED7vHnCipfZdl0XvFVm1ItFAZZtbcIODwxM5ZADfPzjUhRobp6Shzc0CHgdHZUBdFWVbHPaaeAPyo29ekY1Vz1xFbVn1oIGrQvEF2HnbTtJ9IvRWqAlQKAlQOddnXyq61OseHQFDq+D9o52YsdjTB6ZRDd0dnxlB+mRNC6vix037qBxTqP0eBtyHU4emWTbF7cRLcVGKVuRCCfYet1W4ifiNF7QyIt3voiZNrFsDa9X45FH5D0fPy4sOQiDXnbn9/vFkO+WW0TCXihIQWTx4ilW/d57pYiRz8NXviJtA1dfPSWvX7xYzu/jj8OaNVPGdPffP9XuUP5c4nEZlzc3y/aNjbLv+JuDtF/SjsPtwN/kR9mKpd9ZSuxEjMm+SRweB20dbaRH01PxbYvbKtFxgZYAtTNrsXIWuajEyrkDbmpm1JAaSuFr8LFt3TbiJ+I0zWkiM5GhbVEbmq7h8ruoPb2W9s52rLwY/hVzxdK3Xp06N4sCwnMFkaqbRWHXXU4q+XuaJhnvDl1YcQ0B2g21MjcMAf39Q/L7fHJEXG1Q2H291EOeL0gfvFZi2AdHpRBQXq87xDDO4ZFvbmpQGHhlnSqTL8vaHaXc9pOZeldQ+tyhFPNW6pN3BQWol6X1VqHEpGsixXcFIRkumdy5TmXhNR3NcKLpBmNHDhIf6mXsyEE0DRzuKgZ//yJmNoFSimIuRVV1A05vzb+7KZ1VLGBZxVIbgUYmNoLDXYWuO7GLBYpFxfr13ZVotrJc/tVXhxgcTDJ79nQikSRz5jQyPp6tSNtbWgKkUgXWrZM4uFyuyMREFr/fRSyWpVi0aWz0s3FjD08+eZiBgQTHjsX40pe2VY57//3dbNnSSyDgJpezOHgwwvTpPjweJ+l0gUQiTzZrUiwWWbZsGevWrWPp0qUlmXWKhQsXVgy9CoUCQ0NDeL1edF2nWCxi2yKxL9+v/H4/iUSCyy+/HIDt27cTCAQ4//zzK8y73+/H7ZZknF27dpFKpbAsi71797Jw4cJKb3w53kvSXKyS8u4WYb+xBbSX41xVFnALi677xSUeXQr71gjUXT/VEqc5QQuUjhWWcULySSkKVM0rjT3ukjY872Jh8c0T0LipFGF7X2n7bwubH/wUNqoU0/Y4tbVnUF9/Nj5fA93d6+nt3UIiEcHnm45heHA6fZXrJ5EIs337lykUEjid3lIM8BM4nV7i8TC9vVvo6dnAGWcsobPzbzEMJzU1p9HcfBGZzAS2XWRy8gjJ5DBut6gsOzq+XpHO9/fvJZEYQMOmyunmx4eeYVffy4ylovI77avhby7+MMvOWci1Cz5Ko78Ol+HkiQNPl+Lbfsv5TTPZ9OGbGU/FuL8ktf/DSB/pQha/24dSCkvZZAo5HLrO5xdczYMfuYXqqiCmVeTNofcYjI9TXRWkuXoatVVBnMYUU//5+Vfz1tARUoUsIP4+zc3NrF69msWLF1eus7IKsVgskkqlKo/PP//8ihHwiRMnCAaDrFy5ErfbzeTkZKX4E4lEyOVy9Pf3EwqFuO666yppB7ZtV4B7VVUV8Xicbdu2Yds2s2fPpr29neJJbveWbfP68DALW1uZHwrRF42ytquLY7EYfpeLRW1tHBocJByP88AVV1Q8hsYzGS5uaaE/HucLXV0cjUa5sLmZDT09pAoF6quq2HDllfTH4xT/lei3P6Upl8tx9dVXc/bZZzNnzhyWLFnCkSNHAFi/fr1EPeo6Tz/99H/sG/03TH8G7v8/mxwOF2534H8atBeLBSYn32PbtnW4XF6KxewpuZ2h0LzKD7SmOZg5cynZ1DBEJ6XffGIcXG5J8a2tx1j1CVQ8hr35HyWjXakpQL7y46AbaLo+BbiTcQhWo01vgkxKliViIo3v2SXS+L0vofn8UgDo/T0qkSj1JiLxc72/x+5+UfLkD7+O3fM7QD8JnN8lA9Hxb0jPemYfOGcK864FAFuc4jWXSN7thID3iQ3Sp26GxUDGcxHotVKNL/fDG9Mh8FG5MdsJubk3PVy6sffLDd9RX8qHBTJ7wJgGms6yZcuYM2cOtbW1LFq0iEOHDlXiRfL5fKVn6uSMUa/XW8kg3bdvH6FQiGQySVdXF01NTbS3t7Nr1y6iUZErnn/++TidTlKpVGUAo2laJb+0p6cHAMMwKlm55QGNbtvc2dnJ0pkz2dDTw5OHD7Oxp4dLZsxgRnU1fpeLS2aIwdQlM2bwmTlz8LtcLG5rYyiVqtxE5jQ2Mp7JMC8Uoq6qikdXrMDtcGAqRTgeZ0tvL+u7u/E4HPxw1SpOq6khZ1ls2LtXZPYOB4amcUl7Ox6HA13TBFtoGl6kp70ZcXP3IyDdhxjOmfLpsgjpS5+PgPvFgJupH8ivl9ZvBCaAI0j823WIHN5b2ncTAvDvKx1zMWJQVza1W4cUB1qAxQUYHBBQaZrC1Pp8AiI9ninmuKVFjNcaGiSibGhIQP7x43DDDQLw16+XfauqRJ4diQgLHwjI+sFBkYWPjQmADIenHOk1TQoEfr8A/C98QZj34WEAyRRPj6Yp5opYBQszbbL1uq2khlOE5oXYu2Ev7R3t0r+uQ3V7NTMumUFmMkMumsPMmuzdsJfGOY34W/ws2bgEp9+J4TZYcNMC0mNphl4dopgXELn/wf0VWb6yFLpTJ9gW5MoNV5KIJMjFBbBmxjNo2GSzioMHpYjR2Cj95uU2g74+AeYjI3J+yhJ2l0v+X59PAPnIiLDy110n53fhwqkseF0Xpv2v/greeGOqz/2ii6S48eijYkr3t38rPyO6Ll4CXq8UVYaHwbIUOhaNFzTS3tHOZN8kxXyRYChYAfFti9pQtqKQKOAOull4i7QQoGDF91fgrfeKeV1WovbMjEnkYIRipojhMU5padhz3x40Q8Pf5Gf7l7djF21ix2OEe8IC1hW0fKAFh8ch8WSFIpwYmvrhd7sESOcL4HSIpL2pVAl5r1+eJ9PCpmfzAvALRdl2ZlvJ5dAWoN/eLBf4yaDeXQLQBVO2C/qlz75cLJjZJgC+/J7MNFjZUhb7SX3qmiFsetU0YePL1pL5hJjN+UMioa8+Q8B6/Lj0uaPJF8NwMyWtH5eCgCso26qSVaWmC/uuaXL4VERk96U+dd1Mi0nWmfOobj5HetgVjB99hfhQL2Y2iZlNMPJuD2YuDdjY9r/PgNi2LaxCFjOXQllF7FIOta8+hNtXi8PjxSoWMHS4444Oli6dyYYNArLXr+9m2jQvGzb0YBg6ixe3MTKS5u67dzE0lGT+/BButwNd19iypReHQ2NwMMndd+9idDRNfb2X8fEsqVSBRx5Zzpo1s5k/P0Q4HOeWWxYyPJzCMHQeemgZR4/egN/v4sYbn6Wx0cdpp9UwfbqPQEDGIcmkuLg7nU68Xi9utxtN05gxYwZ1dXV4vV4GBgZQSuH3+9m+fTumaeJwODAMA5fLVZEbgxSZX3zxRQAuv/xyEgkpnpTvmXv37q3kZi9cuJBEIoFlWaxcuZLq6moGBgbEwZspEKdphvSWF8dE1o5D5pObBESXc9dHb5RrSvdJv7tnDmjV4DobjBYp5JsjUqx3va8kow+JCq/+TvlgGx+VXnftZIKh5DqvNFEJBlYLAWAek3EEDqLRvlLveR+trQvRNCerVj3OjTeeIBhsL8nX+7CsAkrZFApJeno2EArNI5kcLK0/SqGQoqtrLcFgK9dc86tSglCIurozmJx8j66ua0mnR3C5vEQiBwiF5uF2B7Bti2Ixh1I2q1Y9TiIxSCx2nECgmWIxh1XM8dn5H2HTh29mur+Ov3vu7xlJTjCjrpm/XXot9b4aClYRp+Hg8/M/yrJzFvL5BR/F43Axp+XsCpj/x0NdnN90Jm6Hq+IfqWka6UIWBbRWNzKn5WzyxQJ/GDnKrKaZTPNXky8WyJkFcsUCk5k4HoeLu5Z8nolMjFu2fAeHrleKQMlkkvb2durq6kgmkxUgXWbCE4kEPp+P7du3VzyBdF2npaWl0rJRVkS6XC7cbjehUKjCpu/YsQOv14vD4ZDCXrHIzp07mZycRNd1fD4fCxYsIJPJ0N/fTzQaJZdOkzFN3p2Y4LqtW2kOBIgkpXW03FZ435492EphK8X8UAiv00mV08k0r7dSns1bFoPJZCXXfc3s2Ty0bBm/fecdbn/+eTwOR8X8t1AsUigWSeXzFIrlQu+f1rR27Vp6e3t54403+MhHPsLnP/95AK688kq2b9/OJZdc8h/8Dv9t05+l8v/C9Kcklf/jeLd/72MXi1nS6VFyuTj19WdRLOZJp4fYs0fiRerrz8G2TdLpcVwuHy6XH8OyYduWiqxdX3oVWunHCU1Ds22RwFfXQrBactu7X0TvuByViKO3nXZqJNyqTwBMSeVnzcVY+XHpWe8pZbTX1EI+j+ZwgG4Io+8LiBS/WKz8YNk7fou+9MNoPh3NTpT60oMigzzSVLoZfrskRStJ4hzN4iRrDkLVQhksYoupXe5NcLaUst6/JYAcEMhXBBxTQF8PlMyQXKXouTfBPAKBj5X2U2KEp1eRLzqJxVLs2bOHRYsWnRLZVs5XTyaTFQf5crRNuTfdMAzi8TiGYbB7925CoRCzZ89mYGCAzZs3s3r1apqamgCRClqWxe9//3sGBgZYsWJFJRO37Dg/MDBAW1sbk5OTlXicVCpFc1sbplJkSznqG5dMuYYHXC4spegJh7mgBM5Pzg99d2KCB/fv51tXXonf5ULXNI5Gowwmk8xtaiKez1PtdvP68DChQIAqp5MajwePw0G6UMDtcHAsGuVbPT08tGxZJULujo4OBpNJOmfOJKlpxDWtwpxnEHl7FulTbwZCSJRb2arRUdrudqQv3Y+Afqu0LoIA/7eQXvUxoKO07ihTTHu5N/63wEeBSeA5pjLkBwrQmROAnkgIyNZ1AdkzZwr7XgbshiFg/dxzZXu/X/LZ580TwB8MCgiNx2Ufn6+kdC7hk3XrZNulSwWsf+lL8LOfCXP8gx9MRZfdcIO4ra9ZA1hFisMTlZi3RCRBsDWIv8nPpqZNFem2p8ZDejRNYkDWd68XN/jkYJLGCxpx+V2VPHIzY/L87c+z6LZFsn1bkEBTgORgkp5v97Bk4xIcHok98zX5qD+zXnLdT9qvekY1VsFCN3RMRxWjoxo1NfDyy1PtA3/s9r5mjfS2ZzKCKUvpkYyMyLkMBMTR/8knp7YtFsWA7uTz6hXjbPbvFxd+y5pqSzjtNPlsbFsKH01N0vNedpavqlI4rHxFwr5v074pyXzWJBFOEJoXwuFxSM76vXvouLODmhk1KFtRjlYr5oo4q5ykx9JkJ7Ps37SfVY+vwipYpIZS7N24lyUbl+DyuyikCyhLSS+7pdAMjUJKrvTh14cJhAI0njsN7b0TAp4b66bM6hzGlLFbwfznMvfWRhgYkblZFKANsn25gqGQbatLcn7TFPZd49Ss9yq3mNeVZfZnz5DX8VWV3gfSy56PQSEF1acJcFaldqWSbH1KNt9SymIPCINeltmXGXnDVfq/kuD0ybHKsXGatGBVMt7LLH3iuBQJdIcUEpwl/xJNx7KtqfS70jmzLRO7WMThrkIpRWzoHbKTg7ScfwVo2r9LhrtVLGCZ+QoLZxdNHB4vylZkY4M4PAFc3qBEPdpQLEo+++uvD3PxxS1EozkKhSIzZtRgWYqxsTQul0Ew6CabLXLbbTu57bZFDAwkWLSojeuu28qWLb28+eZ11NZ6OHRokAsuaMTvd2EY8h76+qIV2fyZZ9aSSBSIx/MEAi6efvodli6dSTZrVmT5Ho+j9FslUuJy0kmZhRwYGCAQCFBbW4tlWRXZe2tra+VelEwmKxGmbrebQqHAkSNHaGtrOyU/e2JiopLPXvaL+ZeO39jYSDabrcR0eb1efFX2P4+DczRLT7oZFmY8s08K8sFPluTxt0H9reA4rZQ+s0Hk7c6zpJhvDU3FxjpnTLXd+a6QY2d6RNF3ist8TsYR5SLV8FpIbSE3Y/gUifpVV/2IaLSv0srodHp55JGzS/L1H6JpBrZtYpoZCoUUu3d/k1BoHjNnLsXjqeW73z2tlMP+Q3TdgWE4KRYLPPPM5yqv8aEPPUw8fqLkTH8HDocPr7eegYH9NDZegKbpFen9okVfpcrfgtNdja0U9+58ohL31uivO0UW3+ivw+N0kchlCHq81HqDGJrBYGyModR4BZQ/WIp9a62eznBygicOPM1tl30GgFQ+g8/tRSmbd8f6mdNyNrligYd+9zO+dvlfM5Sc4EcHnuZz86+mOVDPAy/+mG9c8flTHOWXLVt2CrFRXr5y5Ups2z7FRX7lypUkEgn27t3LFVdcUfFiKLc8lq+5YrHI9u3baWtrY8aMGXR3d7No0SL8fj+pVIpAQNp2ynGIuVyukmzwgUWLyLlc3L1rV8VV/oerVqFrWkXifkdHBzNraysJOeVUngsaGyuyd1spnLrOnv5+WgIByYHv6MDrdFLv9aIBI+k0fpeLGrebrGVxYGCA9upqzqmvx/UnbFb38ssv84lPfILjx49Xln3wgx/kxhtv5Oqrr/4Pe19/PP1ZKv+fdCr3rD/zzOeYmHiHYrHwP97p33jsrq61mGaGmpp24vHjPPfczXi901m16ocEAiEsq0BX1xd45JGz2LHjRhKJCJYGeucVGNd/DWPFR8EwsJ7dIhbVsUmsbb9Gq65Bq6lDUwq7+8WSqdyLaF4f9kC/yOrL5nJKodIp9I6S1H7xZSg0tPoGjFXXQHUNmlmQmLhMGqVsyWuvq0ezFfbQgMjnnU6MlR8v9b/b4spqJ2WuuaYM53AKaE8+KbJ3zS1zz2xQaTDflZulNVkylnFD3U0ihxteKzds85jEy5nHQfOK46zuF7O6zH6RzHkXSbV99Ea5WStbwL0ClMbevXtpa2vD5XJV+u+6urqIRkVCXF9fz6pVq6T3KRQiEAhQLBaJRCJYlkVNTQ0+n4/ly5fT1tbGs88+S3NzMzfccEPFBRVEfvjss8/S3t7OkiVLKBQKlX6tSCSCaZq0tLSImVWpaux0OmlsaSFbLLIvHAbg0RUr8LtceEpZuaZtM5JKsaC1FZ/LxUAiwZbeXjb09GArxYaeHuaFQgynUhWJl9fpZEFrq9zYd+9mMJmko71dqsYOB5ZtY9k28XyeXLHISDrNk4cPE8/nub+7my29vQwkEixobUVpGoOaxr0I490AnI6w7C8jpnEBpkB7eSjUg7DxHQhAn17afxIxmVOl5SGkZ/6i0rIE0h8/t7Tdu4jx3YdLy6uBjyOgfj3wCRegCyPb1ycscFWVAE5NE4l7TY24pB89KkDR5xNAr+tiqPbJTwqL3NgogLSvT5jjbFaA6HvvyfJHHxU5/L33ijnd974Hb78tAPXYMTGiO34cHn5YDNwmJ8GpW+y5bw+9W3pJRBKELg6RGEhguAwxjrurE3+zH4fHQff6bnGDXz/lBj/9/OmkhlN0re0ieixKZjyD4RKWff9D+2m8oBFfgw+H14GjysGV37oSp9dJMVdkxiUzBLQrRSaaweV3sfIHKwm2BUVSbymysSxOB/j9CsuCkscOhw5NZavPmyfmfxs3ynmoqhLsWFYeHDki4F3TpBByMmg/dEjk9k6nnFcQIH7ddQLKczkB7fPmyfm37SlgD/IZeL1TzvJ9fZDL2LR3tuMOumlb3EbPxh481R4S4QS+Bh/br99O7KjEtp1sWhfuCWMXhQF84esvUEgV8NZ7mXbONFY8uqJk92FTc0YNK3+wEofHgV20ycfzOH1OoseidH2hi2hflKFXh0iPpJk+ezrOqhKIntkmjHo5Fs62xWQuXxC5+h/L3NubBay3N8uJ9XsFGYKczLwpQDxfmALtti2MfL50n3K7BLRHRuV5W5OA9ramqfVHB2Q/Ky9ydVdQ2Ha0UiREfsrp/RR3+aEpuXu5h91widQ9GRFgrmkCvs301Iem7IpaC3+zAHrNmGLdUxF57g5OLS/J08ugvZCJE3lrJwC2bRJ5aydmLkFNy7k0z7ocpRR2sfDvxroX8xmG394NChxuL5ZZYPgPu/AEGnC4pGiAUvT1xVi3bhsACxa0cuBAhGy2yGmn1dDbO8HatV2k0yaHD4+RTpt4PA5uumkBGzf2MH9+K06nzqOPruDEiRupra3i0KHBEitvMDqaJpcrUihYDA4mueWWhQwOJlEKHA4dw9BwuQzWrLmAhgYf4XCChgYfhw4NkkwWMAyJ1dq5c+cp8aQ7d+6ksbGxkqCSyWRobm7mggsuwOVy0djYSE9PD9OnTz+FKfX7/cycObNyv4pEIkSjUerq6li5ciUAExMTRCIR2tvbKznZzz33HD6fD7fbjcPhoK2tjZ6eHvL5PPmCjaqaL4x7WS5vnhAw7WwVXxzPXCnuZ7oFXNfdLD3oGtJKl9oiYwuKUtCfeHBKzaeU7BtcDYU+GTuYJwTQV80XAzw7ISa6w2tlPQ7xypk5hK4bdHTcUVFAKlWku3t9pZXR52tg1qzVdHTcgabpTEz0snXrdWSzEwQCIZYs2Uhb22J27bqbVGqYa675FZ2dd+F0VuFy+TAMF7punJIqZBgu9u3bVJLiD+L3N6JpOu3tl+B0enE6qypmd/v3P4irFCfn0PWKPP78ppmnyOJrqgI8ceBpAm4f1R4vdd5qUFC0LVpqptHkr+fenU8wlopWjOxsVOUYeqlvW77Piiqnh9qqAPfufIKJVIxPf2Aluq4zzVfN+1vfxz8eegZN0/jaFX9DxsxXTOQkSUCMmb1eL52dnRXjX13XMQyDlStXsm7dOpYtWwbAnj17Kqz6jh07iMVileSDfD5f+nnUWLZsGTNnzqwoPsqsfHV1NcMidaO9vb0S3VtONphWV0e12813li7l7XXreGjZssr/enpNDQ8tW0Z7MIhZGicVbZvhVIpFbW04dZ3RdJrjpaSeo7HYKe7ykWQSn8tFrlgkWyzyzd27Gc9kSBQKrNu2jQafj/54nPyfuHz+u9/9Lh/5yEf+o9/G/9b0Z+D+JzxZVuEU2bpl5f9djnvDDTcwc+ZZNDXN4fnn5UffMFzs2bOet99+iqGhV7HtIocP/xMDA/srP+SLF38N08xgWnmoqQezgNX1K4hH0ectgnx+CqTveQGViKEsS+LeZs0V5rzKixYMgsOFsfLjkElhbX0KCnmR2i/7CCp8HHv7b0qsjiaM/eCAzHftkHn4OMQmsSMn0Hx+iYybGMMeOCEDvlQW5WyVyrmzFXBC48MihdP90ut++tswfZPcqOvvQNjz5NTN1pgmz8fvlZu0OSRg346LrC21Bclut0QKb/bJ9p7ZU660ExtLN253icm3YOSrGIbGkiVLaGtrY9euXZWs0N7eXhKJBA6HoyLlAxgcHARk8OPz+RgcHKz0VRWLRdLpdEU2v3PnTpG66zrDw8MopSpyQsuyGBkZIR6P8+yzzxIKhTAMg0gkQj6fxzRNtm/fjuFycSyZ5MYdO5gfCuHUdbr7+zkajZItFnllcBCr5H7fH4+zt7+/0v/+tcWLMTSNv7/qKj4zZw7Vbje3LlxIlcNBtljkuq1bGU6lmBcK8eD+/SigwefDV2LlFWBoGkPJJIvb2lg9axbVbjdf7+jgV9dcQ2swyHVbt1bk6fcxBcjziLN7CGG+G5CouEEgh0TCzUGY+DUIQE8gDPw0hH3XSttGkOz28uvYSBEgjpjPjQLfRWT0CYS9Hyvt/1UExCtbgOOcOeIUD/K8DKQPHBDg5/UKm5vLSQ98VZWwvroujHsqJfvPmSOMfSwm7PHIiLD5Q0OCfxYunGKB775bQHwkInLxxsap4/h8MBk3WPrgMm44egPNFzWz4+YdBFuD6A6dlY+tJN4f5zvN3yHcE6bjjg4yExmWPbSMde+sY+XjK3H5XSL5vnUhTq8Tl99FdjJL7cxaPvTQh9ANneHXh4kei0oPtk+Y+UKmQPRolK61XcRPxPHWeQX8H42SnchSzBdxBVy4vC6sos3IiMZXviIgvKdH+sprauR/8nrhhz8UtvzoUQHdIC0B69YJwA8EBKifdpqoD7JZKX7Mny/ne3xczqvfL0z94sXSjgCnti+sXSuM/tiYnNvBQTmnU87yGprHTSFZYPe9u2lb3MaSjUtE+n+yzH39HkLzQsxaPYvW+a04PA5C80JEDkSI98eZd/08UqMpMuOZSiKHmZGsdoBCqsDA/gHiJ0pRcyfiJMIJKajcL/F63fd34/K7KGaKWEVbQHg5rs1XNQXU+0tS9T+WuXtcwtB7XJLnbhbFKT6bFwBfME/d3y6Z39lK5PO5gsjiNU2KBiDHmdEi6xWy70SsJE8/Scqul83hmALoRqkAETwN6s6DmjNkfdlkrmq6PNcMCLZPrQMB7/Gjss42pRBQ7mcHxEkxeVLRAAH+Vg7ifdjKppCJM/j7F1C2zdiRA8SHerGKhcrjsSMHJdfdLpKNDWMV82Ii9789KcaPHqKqthmFophPoxsOms69lGIhy9AfdolU34JwOM769Zfj8TgYG0uzcGEr06d7sW148MH9Ffn87NlyrkZH08ycWcsPfrCyYmR3443PMjycJBrNsmBBK/m8xY037iCdNjlwIMLAgOS7b9q0j7lzmzh6NMZNN+3A55O892zWxOHQ6OxsJxh0l4zwFMWiTSKRYMmSJRSLRbZt20Y8HueDH/wgqVSKbDaLbdtMTk5W/Fx27dpFNptlyZIl6LpekcHv378fAL/fj8vlYseOHRVZfHlyuVzU1NTQ1tZWiUsFWLJkCR6Ph3g8zuTkJOeffz7Lly8nGAxS5XGhaR4B0cWx0lihRuLeKvdxlxTqPXPkunHNFDBeHAHPhZIkU39HSVlXLSo9b4cAdUrGh9ak7G8OQvCjAt5H1gnTrxlT/e1mWMYUw9dBsQ+lTAKBZlat+iE1NWdgWeYpQB40li//Hk6nF8sqVAD13r0bAIXT6SWVGqa3dwvd3etpb+84xQtJ2iaP4PM18aEPPUwgECqB0If4i794mtbWhRSLOfr7u4lGj5LJjKOUYtmyB5k9ew1XLNlEJDHG3z3394Rjo4RqpvPFRZ/A0A0+O/8jIouffzWxbJLPL/goLsOJx+khU8gRjo1w784niMTGcDudfOYDK5nIxFk04wI+O+/DuHQH31h6LS9c9xhVTg9+dxX1vhp8rip0TSOaTbKr72XGMzEMTS9J9Ce57MyLuenSNcSyElHrcjqpqalh1apV1NbW4nK5CIfDKKWoqalhxYoVgBR9+vv7K15AmUwGXdfp6Ohg5syZ7N+/n7a2tkrkYFmtGI1GGRgYqETvlkF+U1NTxcto+vTpldcYHh7G6XTi8/moq6ujaFl4nU7GMxnu3b27lFopY6JkPo/TMDBtm/54nJ5wmBPxON/YtYuj0Si2UvhcLnxOJ7csXEg4HkfXNO7s7GT1rFksbm9nsDSmG0omuWnBglPaEINuN53t7X/S0XDr16/nyJEj3H///f/Rb+V/a/qzVP5fmP5UpPL/Oy7x/71p9+7dtLe30tnZySOPfI0lSz6FYXhKsW86oFMoJEoxIRpudxClLBlAmmlSqRGa687F2vYbtFAb2sxz0AJBVKEA6SR2z+/Qr1wpsnYAwwHKxg4fRwtWQ3UtWsnh+GR5vH7pUnLpFJ/60vW8/d57VFVVMb1hOt+7ejlnf2w19oHuyuvhdGG/sA193mLs/bsxln8UO9KPFqwBpxMt6EIbXXuSc/zjJe3sl6VvzBqbcm01GqWqrmnCpmMLu24OiZGM2Q+TD0LjQ5A9wNKPfZvh4RF0LU8gUM3D35jGhZfcKzd71xlys9eccsxT5HIlp9rCEXA0kbfrJHatWGRsbKzi7B4MBkkkEgSDQbq7u+ns7MTr9TI0NEQoFGL79u0sWbKkIqkv91edLDNsb2/nm9/8Jt///vf52c9+hsvloqOjg0AggGEY9Pf3M3369Eqebtlhd8eOHRw+fJjrb76Zr+zcyc0LFnBmXR1p08Sybd4aHeWi5mZMyyJlmgTdbt4YHmZaVRW1VVU0+HzopUF3rlg8xU2+tbqagXicVb/4Bd5HH2V6MIi/1Jd17Q038Fdr1lRc5Oc2NVFVYvZLgkFAJGBf3r6dha2tfOb97+eorrNe0/gOApqHgAUIu55iCpAbiKz9V6X1DyL97H6k4WE/Im+fjoD7G/N5/uGWW3h+xw5cHg9nz5nDD376U8qWP6VmCmwEwAeA3wC7gYeAzcBfFMBdkm5nswIAT5Z3r14tZmpjYwLO02npS7/5ZmHjDUN6rZ0lde/g4JTse3x8gquuukL8wSwIhzNkMkd5771RamvrGBsTcD86OgX8fT55jTfflFx3f1WReN8E3ev3sOj2RTIO9bnEFV6D6NGoyLvnh3C4HShbET8er0i1DZeBVbDYedtOlmxcQnokLXL7UJDu+7vJLsry7Se+LRJ60+RvPvw3XH/H9Tg8DrZet5W3n3qba351De2L23njJ29Qf049jRc0AvI+lFKkszpf+oqrInG///4pZn1kRIB5Pj/lFB+Py7rbb5eWgGuumdrW7xdH/d5eePBBuPrqZ7n33ruIxwsEAl4effRxUqk5fOADcjzbFjXE9OniVv/kk5LlfuSIAPqxMQH5x4/L+7rrLoVn9AStFzVKGMVEBl+DXDGWKTL3RCRB64JWdEeppq5DIVEQ5tzvZPStUUIXh8jGstx5/51se3Yb4cEw3c91M/TEEIu+uoiRzAjX3XQd4d4wWkrj1mW3sva/rWX79dvpuKODxECC6vZqqtuqCe8LM/OK09GTokjCNIU9N4sCnNubhSW3Smx5eSoDcUOXC/FkmfuMFtn2SD83fG8TW7Zv48SJE7z2qy3MXXo5VLm54a8/x5bnd3JiZIjXDh1i7uwLpAoFcly9LINHXsMuucoHT5NlyvqXZe2G+1RpvO4s9aurf9GV/oa/fYgtW7fL+3v5IHPPm0lu8E0++eV7+cORE1R5PEyvC/KDx/6eM886a6pgUJbZT/ZiTZtNOjaKJzAN3eHEtorYlonD5UXZRekxd7jQDSeFTByntxplmRiuqv+hSd0NN9zAli1b5P299hpz584FYOnSpQwPD6PrGj5vFQ8++B3mXjAbTTfQDQMURN7aSXyol7Mv/SyW5uG9I3EGBhKEQkEikQStrUEGBhLMn9+KYWgcPBhh3rwQDodOIpHn978fZd68EMWizcsvDzJ3bhOmaePxOLAsuyJ/X7PmWg4deolMZozly7/Nj3/8BXI5i7o6D8lkgccff4L/5/+5me997x/56EevJhh0k88XOXAgQltbkKYmPz6fg2RS2rNCoVDFpKvcxmVZVkU6DOBwOCgWiyilcDqdlRayVCqFtyR7KfcS33LLLWzdupX+/n5eeukl3v/+95NMJpk3bx5erxePx4Npmnzta1/jE5/4RKXnOJ/P89JLL3HFFVfgdDpxO4toZl+pLe4BuYvofqDkh1A8NuUS72iD4tFSykzbqVJ3ilCcEG8bDLCT3HDTnWx5Zisn+kd57cBvmXvh+0H3k8+b3HLj37DjxdfxuA3mzJ3HT390l4xNGh8VQF8aw5jTHmcieoKeno0sWbKxBNCFzMnlEjgcHkwzhd/fglI20WjfP3OP7+j4OsnkEE1Nc0ssuweHw8UNN9zAb3/7W/r7+9mzZwdz5sxmYmKCVauuKTn7G6RScY4fD/PGGztobj4N00zT3X0/HR13UFt7BqbS+LudP6q4uN922WfwOFwcHu6juipAc3AaLsNJ0bbQ0LCUhWVbJHNpvl9ynT9VVn81oeoGlIKbb7qJbV1bGRyI8PQLW1k0byEP/u5nzM5N54FvrseyLTL5LLfdcivHmvPs6N3HynM7uOWD/wW3w4Wu6URio0z31aDb8h0vX1eFQoGdO3dWmPZsNsvk5GRFyVF2hl+5cqWMR/6VVsYHHniA559/nnA4zEsvvcTFF19MLpdj+/btfOc736lcr48++ihnnXUWk5OTNDY2VnrnDcPA1jQKpZjdxW1tLG5rY0NPD3d0dHBGbS06ULBtrtu6lVsXLuTb+/ZVJPX/zwc/SMDlYiKbrUjqQ4EAHocD07Yx83kuXLqUwb4+TmtooLGxkbpPfIIHVq9GpVJ86OMfx5VI4Pd6+cH3v/9/fV94oSAKIJfLwOVy8O1vf5tf/vKXPP/88xUvjPL0pyaVF9feP/+d8hcKhdSfymSaeZXLJVSxmP93PF5SmWZezZjRrp5/frPK5RIqlRpTvb1dKhJ5RSUSgyqTiapEIqJyucRJz4fU2Njb6kjvNmUl4sqKR5UV6Vfm5p8oaziirHxO2dmMsnM5WV9eNzSgrHhUFffvVubmnyg7lVTF3sOy3XBEthkMq+L+3Sr15qvqmZ/+RBWe/EdlRfrVww8+qC5duEAVew8rKxE79ZiJuCwfHlRWKqnsVFJZ46PKSsSVnU8oO/uGUgOrlcq+rlSiS+YT31Uq97YsfxuZF2NKDaxRKnNIqcQ2pYqTsn3mwNT+hUGligmlsm+o6OGrZVkxqX79Tw+rC2a1yP7mqGxXCMv+5phSxfgfvVZUqWJCFXIJlUgkVCQSUZs3b1ZDQ0Mql8upXC6nxsbGVCwWU0899ZS655571ObNm1U2m638DQ8Pq0wmo+LxuBobG1OZTEZlMhn17rvvqkQiobLZrHrhhRdUe3u7mjt3rvrlL3+p9u/fr5566imVSqXU+Pi4SiQSlb/f/OY3Kh6Pq2w2W3mezuXUYCKhBhMJ9XIkotY89ZSKJBIqls2qZC6nXolE1OrNm9UrkYhK5HIqnsup14eG1JqnnlKDpe1Gkkk1kU6roURC9cdias1TT6nRVEpte/dd1d7ernbv368GEwn117/5jZrMZNRgIqFGkkkVy2ZVIpdTA/G4WvPUU+q1oSEVz+XUtnffVePpdGV9zLLUaiVf6reVUl1KqVeVUmuUUgNKqUmlVFQptU0pNaaUSpT+JpVS8dJ8oLRvRCl1pLT8uFLqozfeqNZef72K2rYaUEr9dGhIjSqlUkqpQaXUK0qpd0vH7So9H1ZKvVlav1opFUspNTCg1BtvKLVtm1KxmFLj4zL/679WanBQng8OTj0fHVXqyBGlolGlJieVGhmReSymVCIxNS/vMzAg67/ylY1q3rxV6o03lOrqUpX52JhSqdL7GBmR/SMRpdasUSo+llObV29W93CP6u3qVUOvD6mn1jylEoMJlUvkVDaaVYnBhHpqzVMqPZZWY++Mqd6uXhU9HlXxgbh6as1TKvJyREVejqj0eFq9u+1dFQvHVGIwoaL9UVXtr1Y9z/eobDSrXvjRC8rtcquffPQnavjNYZWJZlR6PK2y8ayaODKhMpMZlUvkVCKSUL/569+o+EBcZWNZlU5Z6o03bLVmjZyTsTGl3n1XqddfV2r1avk/R0ZkXSIh5+TNN6fOVfn8btsm5zaZlP/9/vsnVXV1nXr00d+r0VGlfvvb3ercc2epyUmlhoam9hkbk+O/8Ya8XjQ69dqvvy7He/dd2S6RsFVyMqeGXhtSm1dvVkOvD6lcIqfG3xtXw28Oq2wsq4beGFK9Xb0qNZpSmcmMykQzaug1Oe/l/zmfyqtsLKu2/Wqb2v2T3aq9rV3t371f3eu5V21evVl1zO9QP3jwB2ro9SF1a+et6sI5F6psPKtyiZzKJXIqM5lR7257Vw2+MqgSkYQqpHLKzuWVSmeUyuWVKphKmaY8Dw8r9Yc+pbI5pRIpeVwwlUqmlTp8ROZm6fkf+pTK5ab2z+XV73Y+r8JHj6kZLSH12o9+ptR4VCnTVL974UUVfvddNaN9hnrt4KHKcpXLK/X2UaUKBaXyBVmeyyll5pQqpJUqmkrlk0pNvKNUPlVaVlAqn1BqolceT7yj1EC3PDfzSlmmzJORP9qmR/3uuWdU+MQxNWNGu3pt19NKmTmVTcXV1i2/VXaxoFRmQn3v2/eqSy/plNcyS+8lMyHvpWiqoplXmfiIig/3KTOXVmY+o/pf3aoK2aTKxEfViVeeUZnYiCpkkyqXnFTFQk4VzYIqmnllWcX/7v34d7/7nQqHw2rGjBnqtddeqyyPRqNKKaWKZl799L/+QM2ePVuZ+awy8xmVzyRUIZeuvHaxkFOTo+Nq27Z3VSyWVYODCRUOx9S2be+qAwcG1OrVm9XgYKLyF4tl1eRkRk1MpNXgYEKNjCQry955Z0xFoxn1xhtDqqurV42OplRX10713HOvqunTQ+q557rVm28Oq66uXjU2llIvvviqev/756nZs9+vFi++Tb322pAaHEyo1as3qwMHBlRXV69KJHIqHk+r8fFxlc1mVTqdVplMpnL/eeqpp9TQ0JCKxWKqt7dXpVIplclk1FNPPaUSiYQaHh6uLM/lciqRSKhMJlO59+3cuVO98847ck/ZvVuNjY2p3t5e1draqjZs2KCGhoZUNput3PdOvudGIhE1NDSkNm/erOxiTO7RE48oVRiQcUJhUMYE2TdkPvGIUuaIjBnMEaXMCXmcfb00VnijtD4u+5pRpQpD6ncvdqnwe8+qGa1e9dr+X8rxB1arG6//L+r6L/2NssPXKJV9XQ0N9Mk4oxgrHffN0nFfUbncpNq8ebXav/+7KhJ5WW3evFoNDb2menu7VCIxqIaGXlObN69Ww8NvqlwuqbLZqEqnx1UiMaQ2b16t7rkHtXnzapXLJdTw8Bulbd9QpplXL774vHr77ZdVW1uL6u5+rjQmHK2MCXO5hPr0py9QZ58tx8hmo6ccM5uNqbff3abeGTmmbtvykPrDcJ8aTUyoeDalUrmMeru0vHfkuErns6p35HjleTyTVIeH+tRtWx5Sk+mEum3LQ+qCjX+hbtvykDo6PqAm0wn1yy2/Utf913uUq9an/qHrlyqZS6uJVEzV1NSoz33va+rwUJ/6wztvK7fbrV7ue0vdtuUhNZKYOOV1dve9qpLpVOXzjkQiKpFIqGQyqe655x41NjZWuUZPvi57e3vV8PCwSqVSanBwUI2NjalEIqE2b95cGZ+lUin17LPPqiNHjqj29nbV3d2t3n33XfX222+rmpoa9eqrr6qhoSH1zW9+U5177rmVsVwymVTxePyUazKWSqk3hofV22NjavXmzYp77lFrnnpKDSeTaiyVUqlcTk1mMmo0lVKvDw2p1Zs3qzeGh9VAPK7eKe3jufde1dXbq2LZrJrMZNSz772nRqJR9chPf6quefJJNZZOqws/+1nFjBlq9ebN6qOf+pTi0kvV6s2b1Uvd3SoUCqlCofBvAxf/B6d83lRvvDGsVq/erN54Y1h961sb1EUXXaQmJyf/xe0vvfRS9Zvf/Ob/7Jv8H0zAgPpXMOqfpfJ/4tP/yCW+WCyQz6f+p/rf/7hnXinw+xtRysbh8DBjRifBYAuaplMsZkkmh1HKZufO2yT+xuHB7a6mPbQQe2eX9JeXnd/3vIBWLAqDPj4C+Zys6/09KhFHczgrcnllGGjBapHIe/1iTucPoiJhvGecxYfcwB/ewO7ZxYKLL+Z4fz96qB3NcJx6TKcTfcYZUOWFbAblcKL5/GguN+igOU+XCDZHi8jXHc0Q/AvpM684w9+JxMPdJtI2Z4sYxpzsJjuxHnSPyN8m7qNGf7rU/3aUeOS/oRl+YfG1KnGazb1VipBZJ/uc7EKPE1BYSvtnzvG2bRONRk+RCM6aNYvOzs6KOZFcE45KhXZycpJ4PE44HMbv96OUYsuWLdxzzz381//6X6mqquKVV16hra2NJUuWVDJGlVK88MILKKX40Ic+hNPpJBwOk8lkWL58OVahgNfpxNA0/C4X37rySnxOJxnTJFkoVHrPh1IpjsViDCaTrO/uZl4oxGAyybpt23CWstxfGx7Goet8b/lyqhwO5jY1Ydo239y9m5F0muvnzUPXNGylGEgk6O7vJ18s4nU6Wdjayv3d3WjA3KYmwokEa7u66ItG0UtM+9tIbNt84AFE3g7Sxw4ii1+HMPBHEaf4Y6VPwo24x48hRnTvATen0+z80Y/4zH33sVfTcANXNTUxiUjiDYTZT5eO21B67kEk+QrJcscSE7NwGGbPFqb2S18SKfvDDwsBun+/sMHf+Y4ww7GYyL/LvdamKY+7u6WHeu1akYR7PBL35vUKq75164+48cbPMX26uK63t4tsfmJCjqFp8j7WrpXtFy6EojLovLOT2Wtm094pEWYLblqAshUT706w7fptoODy+y4nG83ia/QRDAV58U5xc/7Qdz9EoCVA3Zl1PPuVZ2ma20RuIseOGyUOTnfqpM00mlPDN9OH1/DS/2I//kY/qqiIHIyIsVq1m4H9A+QTeRxVDi6/93Iy4xm2rduGWVB4vRqPPiqfZVnmPzgoDHhVlcjYv/AFOS/XXy/nK5WS83XwoDDtCxaIud2xY3Lezjyzj9raeq65ZhaxGCxa1Ek43M+OHa/yla8I4dzUJHL74WExE/zhD+U9bNxYlsZLHF86LRnykYiGrTsl8m1xG/sfEkmvr8FHsDUIilN63eP9cZEAf7uHBTctwHAZpMfS5BN5zKzJ5csu5+IPX4yVt0gNp7jmV9dwzrXn8MbhN7jm6mtwep383Za/IzIY4c19b1JIFsRLTdNoXdhK9YxqnD4nhstAOzkOThyNRLpQVw1ntYtBXMGUSDilpNf95Lg2j0u2M09yhjd0LvngpbS2tgoDf+7MSi/8JZd00nra6VOvGfCJGZ1ZFOl83pQee6dT4uYSx2H0NcQBPiKy+XJfOwqMKoluA2Hlp18oz21THOY1HbzTS9to4jI/fQ6XXHoZrf7SvdEfAs3A43KwYtkVaIUkuAIs6LiC4ydOTEXClc3t4n0il1cKM5uS+LfDL2LmklTVNJ0qle87iFXM43BXYdtFCpko6YkBCqnJ/26v+yWXXCLn74+mMmOk6QaS6GczdPhFQMMwpGXC6fETmr0EBbi9XubObSKVEqO4sov82FiaW29diN/vwunUSaUKFAoWmgYul4FtK8LhBGvXdtHfH+fIkUlOnIhTVeVk+nQfBw9GmD9/EQsXnofLZeB2G/T3x2lo8PGlL23la1/7Cvff/22Gh7Ps3dvP/fd3E4vlePLJw2zatI9580QqPzGRxeVyMTk5ycDAQKXfXSnFsmXLqKmpwePx0NbWxuDgIPF4vNIL7/V6aWxsZMeOHUSj0YqpXTkDe+7cuTQ3NwPgdrvx+Xy0t7eTz+dpamqqsPcej4d8Pl+JoEsmk9TX11d63ZPJPKr+DgheA9awRLRZgyUm3SWS98DVEuc6vBaKYYl7hamIWDMsChDzPWmfK56A0Vu5pOMiWmfMkTGG5gbNQXr0t/zox7/kvnu+iJbaDBPraWpqKPnnrJW5s13a+pwz0SnS2XknM2curcjgu7vvp7V1AU6nl0QiwsKFt+BweIhGj9LV9QViseO4XD46O8uS+r8FwDBctLUtZu/eDVhWnkWLFhAMQi4XI5udpFBIsX379fh8DaRSQyhlsX9/ko98ZDGdnXei666Tjnknuu6gJhCiyRfg7qVraatposrlIWfmyRXzuA0nc0Nn8+NDz2DZFiOpST7zgZWMpMRh/bTaZr6x9FpchoPPzb+aRz52O3dc8VkaA/W4HU4uv+xyvrz809R5g7TXNtMfHeb+F/4BpUGzp5afvrKNRCpBXV0dZzS0cdeSz+N1eSp98U8ceJrzm2ZStK1K33kqlSKXy2EYBrNnz654CG3btg11UnthW1sbNTU16LrO3r17OXr0KA6Hg+XLl/OpT32Kzs5OnE4nl1xyCU1NTViWRTabZfr06fz2t79l2rRpnH322fT09PDZz36WgYGBilO90+mkUChUxoE9PT1YxSIhr5e2QIC7SjL3jUuWMJRKsW77do5Eo4xnMmiaxmk1NXxv+XIiiQS6ptESCHDHSS2Fa7u6CCcSzAuFuH3XLj724Q/zg5Ur0TWNW665Bm8mwx0dHezYsoWr1qzhrs5OFi1YQEtLC7/73e/+1d+t/+ipULC47749PPnkYe6882luv/2rxGIxLrvsMubOncv8Um7rvffeS2trK/v27ePzn/88ra2tjI2N/Qe/+//x9Gfg/p94+tfM6/41MP/HPfMAyeQQ/f3dFIs5KCVfG4YLlyuA2x3EtossXHgLmqajaTrDw69ja6Av/iD26NAp/evKMNA7rkClU+D2oC/6IPo1fyUgfduvJWvd4YB4FJWIS7b7jt+CaaK53BjLPoxCoXdegf6Xn8dY9QkefvRRPnzVh7EHwyireOoxu36Fik2CoaP5g2BbqGIRVciXzGKOQnFU/q/cW1AcKEnexsB5WgnUN5UMYs6UjHbNK3NsuWHOHISmv5c4ON1bAeGf+eJPaDtjAX+74RD/bdNpcoLNo4AB3oXyGqkt4jrraCpluJ8hxjPo6JqB2+1m0aJFFXAOVGLauru7cTqdrFy5EofDQTQapauri8nJSaqqqojFYpXs93KMW1nu/g//8A80NjayePFi4vE4/f399PT04HK5ME2Trq4uUqkU8+bNq+TZloF/PB4HRKnj0DSGUymOTE7idTpJmyZ3vPACCljU1sa711/P4vZ2IokEmUKBR5Yv55OzZvHIwYPctGABlm0TzeVY0Noqci3LwlIKf8mN/oXvfIerL72Uh+64g7HRUVKFAkOpFA0+Hzfu2EGuWGTNBRfw0LJlFEuGdeVIlG/39IBtoytVNuPGgcjUr0F60u9Gstd9iImcFwHxG0rLjjEFvAcQyfwG4Nd9fQTr6vju+vV8/QMfYGVnJ8++8AJHS6/hQwzoIsAWJCJuPtJj/yHgNSRLfswj0uyODgGYwSDcequA7uPHBRQ2NIgLfH+/gM90WsB4JCK90z6fAMc5c2S/xYvleS4nfdvZLNxwQw/RaJSOjlW88oqsMwyRkAeDokr2+QSw33qrPF6zBnSnA29bHSsfW4ldsJnsm0R36uhOnf0P7mfhzQtxVImxnLfBi6Zp+Fv8LLxFetqVrSikClimxYKbFpBP5Nmzfg+HnzzMvo37+OHGH/LJNZ/krPedxZKrlvDTX/6UW8O3khpJsW3dNvxNfoq5ItvXbcff7MfpdZIeSaPpGsnBJKF5IXRs0ilFd7ecs29+U3DlokXw7rsiYx8chMsuk8dnny0mduW+/9mzZbuy4Vx/vxQyLr74LKLRCf7xH3tIp+ETn9hCKpUknT7O4sUC/B94QAB6ODxVNDlxQoD76tVidpdOy+cyfTrU1CgMJXE65378XJY9uIzo0Sjb1m2jmBPZ74zOGRx4+AB9z/XJOVSKlT9Yie7S2XHTDrz1XnSnztArQ0T7ooR7whguA1+Tj/aOdlKuFE1NTbg8LnyNPnSHTltrG2+/8jZKKWLHYvTv7ccu2ihLeuMrNT/DkD8QQJ5Mi0y93LPu94qBHUhUXLV/Kgru3RJYzxekLz1/0r2l3MviNOR4ZUm8WSyt0ORi9VXJfhpTPfamCZYCXwiqGmTbcvybKyjHsYunxredPBluMZJTFsSOioxeWdLHrhnSG+9vLh2nAIWEyOt1p/S+2ybfffhhPrLyQ6VIOL3Ucz8okXBWAU3T8dY2V+Lfxo4cxN8wA8PhouHM+RIRN/NiHC5xodc0HTObxVsXwnBV/S/3un/mM59hxozTuOfv7uXxhzfSeE4Hyi5K8SCbPGXboqVhGBrDwynuvnsXg4NJdF2jtTXI6GiaY8eiRKM5ams9HDwYIRyW33mPx8HoaJpLLmnH43GwcGErHo+DpiY/4+MZGhp8rFu3jb6+KJoGsViOjo52TjutGtPsJptt4gMf+AAzZlSzeHE7d97ZSU2Nh9WrZ3HnnZ24XAaGodHY6KsUqn0+H93d3YRCITKZDNu3bycWi5HP5ysZ7MlkkgsuuABN0xgeHkbTNC6//PKKA3g5Lk4pxeTkJEbpui77wpSzsjds2MCll17KF7/4RQYGBvD5fASDQfbt20cgEKBQKLBr1y7a2tpwugPgPAuluUUCX3craEG5JgrHJGVG90nWe2qLtL/ZMWmvq7sVQl3iPK97QfNLH/vERmm3s4Yg95q00Ok1oGz6rKeoq29h/caf84G/PJPO1e/ywgsvnZThXurTtUYh042Nm6qqegKBFjo77+Iv/3IbK1c+jmG40TSd5uYLOXDgYYrFDMlkhLa2xbhcPpSySSQGWb78EWprTycaPcquXXfT1raYJUs2outOwKKnZwOFQobXXvsRuVyMw4efZN++TYRC89i37xCJRJqbb34Mr3catm1SU3Mmy5c/gsNRhWlmqa2dicvpo2CZvBbpJRwdweNwMZ6O8YOeXzG35Ry+csmnMG2LRn890WyS85tmoqGRNnNYts1kJk6ouoH3TT+NDS/9IycmhyhaRTxON6fVteAynGQLOX586Bmee3c/S2/6FI/e/gA//eIGrrzsSm771jcYTk+SLxbQNZ1r53+URz52O1+/4rO4HS6qnO7K5x8MBvH7/di2zYoVK7Asq2I+l0qleP755wkGg+i6zuTkJJZl0dHRQW1tLYlEgu3btxMMBiutF+Uedk3TcDgcuFwu1qxZw+TkJF1dXSxZsoSdO3eSTCYZHx8nHo+jlDplHHj5kiWEs1m+snMniUKBGdXV/HDVKoDK2Gd9dzfVHg83PvssmVILY6PPh60Ug8kk7dXVdLS3V0zp7tuzh6Jtc/28eQAULItbduzgNz/+MZ+55hpqlaJomvzsM5/hnGnTcBkGp512Gv39/f9Lv1v/JyaXy+DOOztZvXoW69dfTT5fpK+vj9dff53XX3+dAwcOAHDXXXcxMDBAPp9nfHycgYEBGhoa/oPf/f94+jNw/088/UvmdcVigWx2gmRygGx24hTwbhiukxxD7wIU6fQIPl8DkcgBCoUUiUSYrVuvIxrtw+udhq47qKs7C1XqMWttXUAyMwo19eihdnC6MJZ/VOLaCgU0nx+9/XRwudDqp6O3n36KYR3ZDPaeF4RBnzUXvfMKlKah8llwOCGVBIcTrSnE+nvu4b2XD7L+q7eit5+B5vJUjqkScclv3/MCGpqY1cVj4HBITjy2sOIqPWX8Yg7JjdZ1hji2Dq+V6rljWsnNdaiUvz4ugz9rrOQI/548x5B++Onf5ic/uo/w0f3ce/tCbt9ULMXAeUtmMl8QQ7zT3oTGBxFe1yEV9PG/BbMPhbi919bWsnLlSmpqahgYGGDx4sUVIF8sFikWizgcDrq7u+nt7SWVSqHresXIbt++fbS1tZHNZtm9ezeHDx9mYmKCxx57jMnJSaqrq2lvb6ezsxOlFPv372fRokXU1NRQX19fudmUCwDlHHmAolKEEwkafD4xlEsmuffyyyvupVnT5AtdXbQGg5xVX0/RtrGU4sFly3DoOgciEdKmyZe3bydXLOI0DEbTafLFIi+99BJjfX0cOnQITzDIF6+9lia/n472dn5w6BA3LViAQ9fZ29/PaCpF0bZp9vv5+1WreO/66/ne8uWg6wxpGjpwAvgCwrJXIQD8SSRTPQvUyBWBCdyJ9L6XY92CQKd8QnwHeKpYZPDECS4/7zx+9/LLfO3hh7nuL/6CppERXkZY95HSvkeRYoEHuBjoAuYhBYOoC9I1Ava+9CUxNhsdlXl/P2zZIn3Sbrcwt1u2SK80CNgvx8ctXDjlNv+pT8k6hwNef11A7LRpP+KTn/wMtbUOOjqExLQsOfaNN4rzvFIQCsnr19bKOtMEXbOJ9gm49DX4SIQTGE6DK791Jf5mP+mRNIbTIBFO0LW2i9RQirqz6tB0DYfHgXeal6FXhgi0BPA3+Vn20DJmr5nN/Fvm890ffZef/cPP6H2zl2c2P8Nnr/0sQyeGKo7qex/YSy6eo21xG/5GAfG7791NcjBJ2+I2Zi6bSSFv89B3NRYulL7/Rx8VBn1sTIoWa9dK4ePDH5b/9d13BUy3tEiRIxCQ7cuGc/Pmwe9/Dz5fNRde+Ct+/vOvc/nl70ep5zj77PPI5x18/ONiOnfnnQLQ58+H++6Tz2dgQAorTzwhZndQNgFUBP0KXVlEj0UBAQ+JgQStC1tJDiUJ94SxChbLH1nO5w99HjNjVkz5nB4noXkh4gNxcrEc7R3t1J5eS/vi9gowLuaL2CVn90KqUEqnALto03BeAy6fC3+jv2J0Z3gM0iNplEKY8lSmZBrXLxdI0C9Au2CW8tRVKXmtBI7Dw3Ix5QvQ2iTzgA/OKzHr5UmpqX0tS5j0EiMPyIWWzcvFXI6UO7Mdzj9Tjtc3ABNpYcmtgjDt1WeUlAHmqUy4hsyL+ZLbOyKPgJJLvAZo4PJPGdGhyzLLFCAfP1o6ns76BzZypO8o9z+wETz1pRguKow9hhs9cRxNN2g+74Ocdenf0HzeB3E4vaDpOL3VtJx/BS5fLWYuWXKYT+Gta6KQjjH0h10UMvH/JYf5n/zkJ5w4cZy/u+ce/u6Bhxjp7cbMpamqaaKYT0+9XjaBrms4nQbDw6lKxrplKdav7664vGcyJocODdLR0U5bWw3JZIGvfOVZWloCXH31+9B1jXA4yTe+sYvjx2N0drbT1hZk06YlDA+n0DQIBNx0d/eza9dB+vv309X1GNmsidNp8KUvXczpp9cQCLj44Q9XMW1aFWNj4kafy1m43W6WLl1KMBhk2bJlzJo1C7/fz5IlS3A6nRXmu3xPM02TbDZLY6P4Xjz//PMUi0Xi8XiluK1pGj6fj0gkgm3b7Nmzh3g8jm3b/Pa3v2Xv3r3s3r2b+vp6vvKVr6Dr+ilu8rlcjsOHD5NKpVB2Huw4mrLAcxFMfhdUBjJ7wdkE2KV7ezvM7C8V/lvFoFavnXKeN08AhsTQNj0q0XFatTD2KMj/HqwxirafEyf6OS/Uw8s9T/HwQw/xF3/5N4zwd3D6O0IcoINjhiTUoBgZeROlFDU1pxEMtrB16xeYmOgln5cc+9bWhcTjA7S1LeLccz/O7t33Eosdx+ebTjY7gVIWyeQgCxfeQio1jGG4sG0Tw/DQ2XknLpeXiy76PB5PzUlsupMf//gfWbPmUxiGA4dj6rsvJI+fHTtuJFdIEY6NsPGln3B2QzsN/lochoHb4WJu6Gx++so2PA6XRJGlJqitCnD/C/9AJD5KldONUzfImnn+7rm/rzjKj2diDCUn+OZzf08kNipimiph9V/4wg8Y2vkWP/+nX7Lz5T1cfc+1rL/1GxwZOEYqnyFfLFDvr6bJX8/vh4+QLxZQStHT00NbWxuOkgdTLBarXGvLly9n1qxZ7N+/v3KNKaUIBoMYhkFtbS1tbW3s2bOnwpCXlY6JRILe3l6UUliWxdatW3E6nfz85z/nkUce4dJLL+UXv/gF06dPp1gs0t7ejir12NfV1XHVVVeBYZyiXLy2q4vjsRi2Unx10SJWz5rFnZ2dvDI4WBkjvT48LP3vJRO7jGniOMmU7o6ODmK5HO3V1dy4YweDySRjO3aw69VX+fo99+AsFVoDbjeucmH3//LJ5XLwvvfV88QTV3HOOdNwuf403vf/7PRn4P6fePpjIO5wuLEsk2RykF277iaZHMKyzAr77nC4qK9/H1dd9QTTpp2DpmlMn34++/ZtwudrIJ+PnyTBWo9tm3R1rSUa7SMc7qFQSBKP97Nr19+iKRtr+2+wHnkAa/tv0BSQTmLt+C0qNolm2yizgDJN9EUfrIB0qrwYKz6GcjoxVl2DFqxBvf0W9os75J/yBdC8PjY9/D1+/avNPPOxZXhe6YGiiVI2KjqO1fUrtGA1+jV/hd55JXakH72hEZWMg2mishlAl0p3OfZtcpM812sANSVtm7hfJO7WkDi/ag6JgNO9J1W+N0jV3TwKuVdke0czOE/nr768g5d27WXinWvlJm+Gp+T1jmmSF6+ygHnS8dajaxqmabJ169YKyx0MBgkEAqxcuZKqqiqee+45kskkbrebjo4OrrnmGoLBIF1dXQSDQa677jpWrFhRqfBeeeWV7Nu3j+PHjzN37lzmzZvHq6++yo9//GM2b96MaZoVA5Znn32WQqFAMBikra2NAwcOVLJwAXFR1TQ6S26jZddRt8PBwUiErGnidTrZcOWVtAWDpAoF3hwZweNwYOg6fqeTRW1ttPj93LxgAUPJJD3hMGnT5EAkghkIyFzT+PTatezr6aEnHCYcj/O95cs5s64Op64zp7ERv8tF0bYZSqVIFgr4XC5M28ZGTOEaEDb9VoQFtxBwvhphwsOIrP06hIlfWFq2CHF+/1ZpvY5Eup3f3o6u67SuWYMFnH/hhTSffjpH3nqL+QjA1xGG3kBAexIxtWtDCgfzEdO6aktAX1laPW2azOfNg1//Gi66SJjhiy6Cp5+Ghx4S7JFKCSP/3nvyWNPETT0WmzK6a2kB207x9NNP8jd/81mOHRNJvWkKsdreLrLw0VHBU5GIMPfj4wJmXS4wNEgMJFh4y0LSY2lC80LYRRt30E1yMMmuu3cR749XwHZyMEkhWcDMmBRSBSIHI4TmhXD5XYR7wqRGUqz8/krCuTDDo8N0LOpgYP8AF55/IaFQiMPvHSY0L8TsNbNZ9tAyAs0Bzv34uQy/Pozu0CVK7sH9oq4OBTCUxcMPq1POyZEjAp7D4anzGo/L4w0bBB8ePSoKhuPH5fHHPy4ReT6fgHiXCzZtuoxvfvN37Nr1Cps3b2JkZJCzzz4Pl0sKI0NDYhQYi8nncvSofE7r1kkRxeEQkzs5noalNCIHI0yfPV2MtIZSNF/YzHnXnEd6JE3jnEYy4xmK2SL+Jj8Ot6MSGedr8DFz6UycVU5cPhdmxkShsG0bKy+gTxUV7z3+HsMjwzj8Dvq7+5k8OklkKEKtXkvXF7pIDiWJHIzgm+6T3wWPQzjq8LAw3k4HnFlyee8LC9vuckpWO0yBYEMXcO1xSWzbwLDMdU3At1kU6bvYHlPJgwcB4/1DkhWvaVAoSgGgDOhB2P7y8dqapHoFYjA32SvGcCBAvsR8oywo5oQ1d/nlNzl2XF5DN8DwQLLUrFI1XeTurqAUAgBcPtDdJWZd49ubvsOvf/Mbtm/5FV6fdyr+LZ8QibxmlKLmfICiWMgy9p60P2i6jm3mMTNxJLpO3OYTI32Y2SQaYBUyJMeOY2aTKKv4bwbvtm1RSE1yxYVN7PrdbrLKw/jRQ/gbZuCtaWLsyMGSAuAADkNi2Vpbg2zatI+2tiCGofHII8uprfUwf36IgYEEs2dPp69vkn37wng8Dr7//ZU0Nvrw+ZzU1HhYv34PW7b04vE4yOUs0ukCPp+LRYvaKu70c+Y0cvToGwwM9NPZeSELFszm5ZcPcv31X+SHP3yMz33uGU6ciJNOm6RSJuvWbScSSeJyuXA4HBVD1XJyygsvvIBpmgwMDNDW1sby5cvleleK3bt3V4rVhw8frjCi5eK2y+Vi3759+HzC6Pf19ZFIJIjH43i9XgzDwO/3c/3117N3715isViFYS87zM+aNYtQKITLpaNhi/xd90rU28RGuY9PPCDF/eSTAtSLQxIJp0pKRUfjlPO80QBGPZhHSuTAsDy3E3INu84GzUv7DMmyX7PkDTDDXDi7htPb63nrjV0w/g2wxoFScQonOoqmprlMTh4hmYywZ49EwfX0bCCfT5DPJ7nggjW0t3dimhkAWlsXkkgMYBgOdu26m0IhRSDQwr59mwgGW0stmPK9ra09s8Toh3C5/Kxa9UOqq2cwMTHMU089zV/91acJBJopFrOk02NEo0fo6lpLMjlIKDSPbD4pkvTmmUyk47w9eoxwbJTv793M3JZzuPGSv0TTdJyGgwtD5/DzV5+tyNjHUlHylskTB55mV9/LTGTirDi3gwtD5/CPh55hR+8+hlMTWLbNkfF+FIrfv/EWg4NDXHLJJbgMB8s/eCWO6irMoQRel4ffD/cBGsMnFQksZZ+S5hOLxchkMpVItkgkQjqdZvny5axbt46lS5dimmYlqjAWiwFUouOWL1+OUgrTNGlubmb16tUYhsGrr75auV4vvfRSnn/+efbt28fPf/5z8vk8c+fOpauri3g8jsPhoKuri1gshkPT+NqiRSydOZMNPT0Vht3rdDKztpbvr1jBzNpaFra2MqO6moORCLOnT0fXNAaTSe7etYvhVAobiCQSPLJ8OV6nk6xpEsvlePLwYT77ta9xfN8+nnz6ad6KRvHX1OBwOCoxdQDHjx8/JVL4/8bJ5XIQCLj/04F2+DNw/089/TEQlx9hqwK+U6khYrG+U6T04iB6KzNmnMHAQISrr/4Lbr/9IB5PHT5fE8uXP8KnPtVFZ+ddFblUd/d6GhrOI59PVHJDLeyTZPJXgKadkteOpgl6KDHvxsqPgz8oADybQTNN7P6jqOgk2vtmoS//iEjcEzG+fd3n+eWT/8RzL7xI7QcWoHdcLo7x6tRMeL11BgRrBPw7HOhtp01l9CoDhfPUXnatSmJbyvFvlb5zW9h4RwOMXF/KXFcnbXN7KQbGQyx/DoPhdwSMF8d4+rdd1NfXU3f2IzDxiBQHAquh/q4pK3RK76n+a5X3YluZU2TxZRDtdEr/4nPPPcdbb71FT08PALW1tcyYMQOHw0F7eztOp5Oqqiqy2WylLz6TybBixQpee+01XnjhBY4cOcK8efN49NFHufbaa9m5c6ewgIkEl18uecORSKQSiVPuBSy792rA8Xicu3ftYnF7Oz6Xi0ORCIva2jittpZpXi9VDgcKCLhcNAcCXLd1K33RKF6Xi+u2biWcSNAcCFQk8N/u6eEsv59COi3HdDp58ZlnuGDOHBa0tjLd7+doNMq6bdtImybVHg8NJRnYt7q7AfA6nVi2TaFQIKMUX0AY9FEEODuAGUifuRO4BOmBvx1xkV+DZLPnEcB/L9LjvgeJgdOmTaPjiiuI7tjBBJA+doyhY8eYc+65DADXI0A/ivS2f7n0Cd+HFAQiiMaiFXjZJaDv7bdlPjkpjufhsEi6y9nsQ0MCAMfGJJ99aAhuukmApmGI0nhoSJ6X48t8PvjRj/4Jn28OLS3vo61NWPWXX5bLTdNEoj93rgDVxYsFxPf1CY7SSxHWwbaggPb5IZHGe8RB3lPjYcnGJfib/bR3tjPnr+fQ3tGO7tAppAroTp22xW2kx9LYRZvWBa0EW4IoW9FU18Tw8DBvvvwmbYvaCI+G6XuvjyZfEw6Pg5U/WElmLEPX2i4A/E1+tl+/Hd2hs2TjEsI9YYq5ImamwLFj8OUvy1fyvvukVSCRmMpwv+suiYcry9e93qlYt4ceEsbc7xdMWiiIp0AyCePjQyxeDDNmwPr132TWrMtpaDiTgwel3WD+fAH7Xq/sc+ONIstfuFA+P9uW9R0dwrofPQpNC0/DHXCjlKL7W8LWONwO2i8RD4HJvknSo2kKyQLRY1Hm/NUcVv5gJWgQaAvgb5RMdM3QUJb8gOgunT337iE5lGTpV5cy5/w5/OKXv6C9o51nd0ukY+RnEYmDW9+Nt8GLp8aDlbeY7JuUn6EzWgVIl3PTDUMAvKELE+9yCivfF5YqT64g4BrkQpmITYFxEPbd5YRESsB/uS/etKZi5RylAZXPI8C/HB+XN6eYfMsWAF9TYuL9rVB3jkjgY30ynz5H5PBoAuANZwnYa1BT+s0vy+SrZ8hFrSyIHxfgXpLESzycgPrvfPdRfvGLX7Bzx7PU1Dee+lvt9EkRoJzn7pkGSjF25ABVNU2YuTSRt3Zi20Wc3mqJa7JtGs6cT/tFV+Gs8hN5aycOj59zPvhZnFV+hg6/hF00scw8llX8V+7oMsViMQYHB1G2xeiRA/zm109RE/TRdtYFNJw5H6cnALpBw5nzRKZ/5nwcDlC2MOxPPnmYcDjB0aNRDh6MUFtbRVWVg87OGfj9bs48s56OjnYMQ8eybN54Y4Rstoiua2zatIRf/3o12WyRaDRLTY2H/fsHSCbzaBrcdtsiNE3j97+fweuvv8czzxxk4cJNzJ59Effd9yBr117Hhg1XEolIjnskkuDWWxfS0hIgFouRzWbxer3k83meffbZSuZ1ObrN7XaTSCTo7+/HMAyuvPJKXC4XTqeTdevWVXxarrrqKqqrqwHo6OggnU7jdrs566yzKoDD7XZX+uI3b97MnDlz8Hq9LFmyhHQ6jWVZFAoFVq1ahaNUcJ5S2R2R4vz0jaLAq79Liv6B1SX1Xlha6rIHkRKuBtM3QODjkiSjcmCOlAr190lByBqWdVoVOBqYNm0aV1zewY4/3AFV8zn22h0c6x/l3OldpX75/pIy8Atg9mHbOTTNwOXyYZoZli17iHXr3mbp0u/g8VQTDIZKDG6SnTtvI5MZ47zzPsGMGZ0Yhpu2tsXk8ykSiQEWLryFRGKAYjHPM89cSzY7QT4fBxSmmWH79hswzQxK2Tz11K+ZPfs8pk2Drq61FZVmeSzY07OBM85YQpU7wG2XfYYV53YwkYlTVxXkR6Ue8x8fegaXw8lAbIS/e+7vGUyMcdOla1h5bge3fvDTeJxukvk0n59/NZs+fDPT/XWsf/6/MhiX7cp58JZt0VbTSH90mM1HdzM8PMzhPxwGYKbeQG48waxzz6NQNJnddCagOL9pJvFcils++F/IWgWcTifpdJolS5bg9/tpb28nFouxY8cOGhsbK73u3aXxhtxLNfx+P16vt+K7sHTpUorFIoVCoZLhXr72Lrzwwkom/NCQRGZGo1GuvfZaOjo6qK+vr0Qbut3uyvhLV4pz6usJBQLc2dnJmtmzeWjZMvSS8/z5P/gBu0+coD+RYN327TT4fLgMg7RpsqGnhy29vYym09hKMS8U4uXBQaLZLPd1d1Pr8TDn6FHMN95g6/btZB0OZlRX43Y4uOaaa3jssccAOHToEJFIhEsvvfS/+zv15+n/u+nPcXD/wvSnEgf3vzKdHCG3YsWjbNu2jsOHn2TWrNVcddUTuN2ByjY+XxO2bVaqsLZdxLJMlLIwzSxud4Dt269n8eLbqas7E9u2iMf76e5ez8dW/QMqfAJterNI011u1MQYds9L6Isvg0A1mq6jYlG0unqsrl+hL7wUlU6hBasFeJef19ZLnFwqSf9Tv+D0627kjMbpBBqbAIXb5Wb/7t+hdANiEyK1X3wZqv8YKhKWokCpl1JNjGL37MJYvgo8Bhp66SZ6AiYfgWlflUGdsx2BWw7I7IOquQLay/Fx0x+C9LNiRoMT0MA8wok37uSadcfJZlPohp+GaX6+/bUgcy/ZKD3s6MK8ax6psNtJMcPTS/2axQjoAUw7yEQ0TXd3Nx0dHXi9Xp577jk6OzupqakhFouxZ88eOjs7CQZlX9u2GRwcpLVVKvWFgrBXw8PD/PznP2fWrFksWLCAgwcPsmLFiorxz5e//GVWrVpVMbgzTZPh4WFaW1sxTZORkRFCIcls3b59O4sXL6ampoa8Uuzp72e6z0dNCUBnCgXeGh1lUVsbtlKkCgVuf/55vrp4MeFS1Nua2bPZtHQppmVh6DqGpqFrGgciES5qbuaVP/yBT3/ykzT7fJiWRX1LC9944AF+Hg6zsRRz5zaMimHd7Tt3cs9ll+FzOrGV4mAkwrxQCM3tZp+uMxthuR1IhrsXYcLd8mmQQED7bYh53MLS1ZIpLf8qAuw14CACuDl6lM997nOMj4/j0nVC3/gGv/n4xyv7pUr7rEOk8YsRef4dyDDOD3wDuKQAHe/A+vvgjjtE7p1KSSTbBRcIU+z3w1tvSd/22rUiyX7zTZG0HzggEXKnny7Y6L33hOX91rdkvyVLFvHpT1/Lxz72N6RSwkbPmSNAc8MGec32dikQ2LYUBqJRAf9z50KtN0d/dz++Bh/psTTNFzWTHEySGk4RbA3Svb6bRV9dRKAlgCvowi7YaLqGmTHJJ/L4Gn0Uc0VRkb4xTKAlgNPrxMyYPHDdA+wY34EqKjRD45av3MJHP/RRYYN1je03bKf5wmZmr5lN5GCE6NEoZ1xxBoGWAA/NeIjPH/o8joZa1q3Tuekm+T8OHpT56adPpYrpujxWaip678ABUSiccYY8t20pdCglxzj/fLjjjmvZu3cPIyNFOjsXsnHj93C5aqipkeLHhRdK4aNcODl2TAof8+fLMV9/HS6+WM7nBReIXP+Hjyt2fuEpFn11UeU3+eRzufCWhWQmMrQtbOPke7OmaWiGBjrkY3lSIyluvvNm9ryxh5HREarsKuqa6uh9u5fe3l6u/dK1RGNRgsEgjz/yOK2BVhL9CVrnt6JsRWo4xZ779rDwloVMO6cOl9eJZhYlSx2EBXcYU7J4gHgasjlorJ9iz4vWVEycXWL/irbs2xfmC5vWs/XZZxkeHqa+vp6A38+R3l6+8MUvsnX7dlleV08g4OfIM88Jux5PQZV7SjZvK3kf5beiIaA9Ow515wqQVlaJETekV113TfXWl/ezbVmgiVcLVpYvrL2Wrc/vYXh4hPr6OgKBILte2EnbaWdwxhmnEwgEQAnIO9CzB8y0MPJowrqnBiE4AwudQiaGphuMvttDfKiX6uZzCM1eQnoygre2CXQHmlKVmLaalnNpmX0FZi6NbjixzCzjfS/TdO4l6IYTzXDwxS9+ia1bt06dv0CAF154gWuuuYZsJoOm6zRMq+db33qAC+fOLbkO22ilmDkNULaFmU9haUGSKZN4PE9LS4B9+8LMmtVAKmXS1OQjmy2SSMi6YtEmkzG5/fbn+epXF3P66TUMDiYJBt0EAi6SyUKl//3++2/nueeeZXR0hLq6evx+P5s378Hvd/GNb+ziyScPM3v2Nm6//WaWLl1ViZbz+Zyk0ybpdIGWFh+RSJimpiY0TcMwDEzTJJPJVO6Bfr8fwzAq5nOZTAbTNCvryxGp1dXVxONxkskkra2tfPnLX2b79u2MjIxQX1+P1+vltttu47HHHsOyLIrFImeeeSb33HMPJ06cYNGiRQQCAXRdJ5lMVo5bV+PEZe4XQK7XgFEnBXsssLNiNGtUl5Zp0tuuuYQZN6aXogtTMHo71N8kvjnDa6H+b/nCDd9h67ZtDA+PU19fTaCqwJF39nC0X/G5tV9hfHwcXbf4xlc/zsc/8Rei2PujOLhCw4+YnOyju3s9HR13UF09g3R6GLe7GpcrgGXlGBg4gN/fTDjcTTi8l6uueoJo9Cjd3etZtOir1NefXXne0XEHgUAzsdhxvvGN77Nt23ZGR8eoq6vF7/eyd+/T9PRs4FvfeofPfvavaWjYXxlLrljxfRKJAbq719PZeRfV1e2kM5NMWDpP7Jcotyqni6xZ4EcHnubz86+mzlvNhpf+sRIX942l12IrxVBinB+V4t8a/DV4DBcjqUn2nXiTI2Nhbr3sM1z/pS+x49kdjAyPUFdXh8vr4ZW3XqPr11vYtGEjE5k41R4/X//61/mLT/4FA7FRfnzoGW66dA1VTrf00ReyPLT759x5+WexixbJZJL9+/ezZMkSAJJJUfn09PSwaNFJv9+pFG1tbRSLRXbu3MmiRYtwOp14PJ6KQXBPTw9PP/00u3btqnyX/X4/PT09rFmzhuPHj2OaJjU1Ndx6661cc801mKaJy+XCtm0GBgYIBALU1tZiAfGSObCuaRyPxRhIJFjc3o6tFLqm8aWtW/nZW2+xetYsHlu5Eg3IFqcKgrft3MlNCxbQEgjgc7lIFwpER0aYddZZnHZ66XcP8LjdHDx4kJGRET796U9z7NgxXC4XjzzyCJdddhl/nv6/m/57cXB/Bu7/wvSfGbiDgHfLyqPrDiYn3yvlwP8tdXUzsW0T0Ojv7yYUmkcsdpyeng10dNxBIjGA39+E39+E2y1g0bIKaJpBJHIAn68Rl8tPVVUNFC08WhUk49g9u9A7roDqGulR93ikTx1QmTSaP4iKTaDiMfTQDKztv65ktxvLPwoOBwoNCnk53v496EtWojmcKF2HiXEpCHRcAbV1IsPXdUgmhFpzuKBoojmdlVx4x+1fR9NiYiZjxwU8o0u1W9PFtM6oASsq7LlWJfOJ+6S67jwdUAL4zbD0mKm89M3rvtJfUHrk089J5b3pUWF/VE5ez+wt5bd/FZxnl6SefTDxIPlpj5NK5Sr9UQMDA/zTP/0T55xzDqtWraK/vx+v11txF1ZKcmfL7EM0GqWnp4eOjg5qamro6uqis7OTRCJBa2trhU1vamqq5JWevE9VVRU7d+5k6dKlpNNp9u7dS0dHB7ZtV37Us6bJUKHAQCJBazDIxp4eNixZUgHQo+k0Qbeb4VSKJr+fgMtFqiRlL9o2GdOsgPrTa2ooWBZOXefari6ePHyYt9et4+5du7hl4UI27dv3z3JLBxIJQsEgDaXc3uFUqrJuRnU1mtMpCQWl3i6FlFhshBGPI1J6gKeB0xB5vIYw677StnkE5K8DvoL0w08Hukvz7yJyenfpmPWIHL+c81A+xmZgH5IPX4X03btTcPfnBIz/6ldTrHpTk/RjnwzCdV2At98voP3QITFXMwxZZpqwb5+ATqdTMt9vukmOBcJEt7cLq3/0qOxbVSVsey43BXr7+6ck86eFCnjcNspWlcLOszc+y8VfvJh9m/Zx+MnDzFo9iw89/CHSI2n23LeHZQ8tmwJMCkbeGqF1gdx/wj1hWt7fwvYvb6d3Sy/X/OoaQheHiByK0PKBlkrWeznLPJ/I8+JdL7LswWXYRZvIgQjVM6pxuB34pvswdReWpVMsCkCuqRFMOTwshYmNG+XnpqdHZOxjY8LK33KLPO7oEJM+p1PA98GD0NoqLQs33yzncO9e+Xv8cfEjWL9e+uEnJ+X8lQso7e2y3403wte/Lo+/9jV5D+Up4Lc5/A+HmLl0JoGWAP17+2n5QAu5eA6Hx4Fu6LgCLnGAB1wBF7FjMfbcu6dSICmb1qEgcjBC4wWNGG4DTdcoZmVwtvO2nSy4aQH+Jj+aruEKuoj1xdi7YS9LNspA9A+b/0DkYISrf3SV4POCeWp2eyojfe7lqQyAC0UBwfmCsOH9QwK4Pe5TwbJli2Re1wXIJ9Pgr5oywIun5LlZqrC4HLJvIjV13PZmcDtBFUo57K0icS/lsFM9s2RMVwLuujFVVFBKfsuVVQLcJZO6RLjEvGslHwDrJECOsPVlFj4Vmcp+PyUzPiTvwcqBpx4LYbTRNMxsgvG+QzS9rxPd4cIqFhh5Zw/TZl6M01uNmY4x1neQ5vM+KPL6IwdoOHM+ZjZJIRPDWxuimE/jrW1G0w3JZtfL5mpWycxOwy7mMXNpxo8eouHM+ei6A8PlKYF2hWUWGO3dS/N5HyQ2NkhBn8boaIb167u5444OZs6spbd3gg0benjooWWMjqbxep3U1nqIxXLU13uxbUU0miWTKbJhw142bFhCVZWD8fEMmYxZOda0aV5uvvk5vv71DoaGksyd24TX6ySTMbnttp18//srOXYsyvr13WzatITx8Sz33y/7trdXY1kWfr+TQkFc3cv5136/n1gshsfjqaSdRKPRUwDVH/7wB4aGhrjsssswTZNAIEAqlcLj8TA4OFgxZjUMA6UUyWSyUtQuH6fMsuZyOdLpNLW1tQQCAbZt28YVV1yBaZp4q3SqjDCaOSD96hPrRXXnPAOGPw91t0jL3fRN0gJXXu+YIV8Ka1Q8cpLPgHNGqafdlruS2QcT98r25gBEVkFgDTR9nym5h14ywPPLGEJzSXHAjoNeTc7y0t/fjc/XgMdTi2lm6e6WbHafr5GhoVcJheaRy8VxuwPouoFhuNm69Yu89dbPmDVrNatW/ZCurrUVAL58+aNs376OlSsfY+vW6zh8+Elmz17DypXfJ5kcpK/vOSKRg6xY8SiTk0fo6dlAZ+edeDx1OBxuDMOJpjnYuvU6Lr1iA9/avfkUYK6jkbdMkvkMdd4gg/ExnjjwNNfO/ygt1Q0oFPligeffPcAbg+9x15WfYyAxyhP7n+avL76K02qbCcdHK8De63ThcXrwON1kCzke2v1z/sv7V/D6YC+vR97ltss+g1N38PvhI8xqmonTcPDG4LvUV9XQUj0NXddxItdJsVjEtm0MwyASiRAMBkkkEvziF79g1qxZrFixomJouG/fPhYtWkQ4HKa2trZSPGptbSWbzfLYY49Vxm6xWIxEIkF7ezvhcJhoNMoZZ5yB3+9n27ZtXHnllWSzWeLxOMFgkJ6eHq688kpRfRgGRSSrPWOa6JrGq0NDzGlsZCSdZkNPD3d2dtLg9XLjjh3c2dnJmbW1xPN5RtJp7u/u5quLFrE3HGZvOMw9JdbctG0iiQTTfT5m1tYSTiQ4p74eV6k18s/T//npz8D93zj9ZwfuJ09lEK9pBkoVKRTSUrHXdAzDzbZtX6z8iC9YcDP793+HSy+9h0CghWj0KPv2bWLJkg3YdpGRkbcIheZj2yL5q/Y2VoCyNmuuxLqhoVAQncDe+5LI6Gvq0Er0mAKIR4U177wSgjXY23+DvuiD4JQ4NzQNNTmOSibQW2eglI31yAPoH12DFqwpjcJNOUbHFYJMCgVUMoEWCGJ3v4Bx9dVomi2Stwp4PqvEgqcklkX3lxhxv1TT9SByo7Uhsx+czeIIX4xIj9v070h1fWI9TH9Qbt5mv8jjcQKmbOs8DdCkB87RINJ8z0UI3NPBTmBqp5PLF0gmkxUwnUgk8Pl81NeLs3M6na5Is5RSpNNpfD7pXe3v72fz5s2Vm4VSikwmg8PhIJvNkkgkCIVC6LrOjh07uOKKKwCpKpf7uR5//HHWrVuHbdsVEzxd1wmHw/h8Pqqqq7lu+/YKsL6kvZ2r3/c+PA5HxaCuxuPBoetMZLPUVVVVKr93vPAC915+Oa7SYKrK6SRVKFDldJIuFLjrxRd5sOQWH83lyJomLoeDu3ftYktvL7+65houDoU4FImwuL2d4VSKu3ft4snDh+n61KdoDQZprq3FcrvxICx3DKhFAHYC6TsPIEw8SH/7ACKnDyNMuQNh0DXEIf5jCCAfQ8D4dCp6C3IIk24izPwFCLvfjbD000qvo5+0/IICRN8RaXVrq4C8Bx4Qt/lUSuTvmiZAdMECYYxTKWHK77tPgGNPj7DubW3CLJfZ5H37xCBtwQLBSpYlXwXLEgM8pQTUOp0CTKdNE+BbNlW9/nr4zgN5qowCycEkPRt66Lijg+r2ajLjGTy1HoZeGSI0L4Sma6TH0hx76Rjnrz4fTdcopAs43A7MrElqKMX+B/ezZOMSnFVOzKxJIV3AU+MhF83hqfXgqHJQSBZQtuL5rz5fAZ6pkRSB5gD5eB6n30kxV6SYLrJ3416W/eDDJFIGiYRGY6P8b06nMN/PPw9XXSWy93LP/qFD8v+NjQkzHo1KYSOVmlI35HICxk+ckM/E5RJw7/PJ/PhxMbV77z1pPbj//qlCwBlnwHnniSz/nnvgxRfh6qvlPVRXK6qDiti7w6QGU8zonEHseIw99+2h444OvNO8DL8+TOv8Vgy3QWoohb/Zj7IVdtFm8OVBmuY2oWxVcewPtAQo5otEDkQItgZJDCTwN/kJ7w0T3hvm0ntkYBZoDtD1hS7aFrdJ3/yGHhbdvojaM2pxehwYDg2tLGlPZwWEG7pcfJY1Bbb7wgKm8wXpibdtmExIbJzLIWCd0hdC06cex1OyfdE6Cei7qFja5woipT+jVV7XPmlcYmgSvZYdFzf56tNLknj3VO98ISmA3uERYzorP8XE684poO8PyXO7KM+DMwTsw0nHcUqvu5mSx1qpGJAakP0LCdmu+gwB94ClGeRTMSaOvULj+zoxnC4KmQRjRw4w7YyLyUQjZKKDNJ/3QTTDiaYUaBB56/kKO99y/uUUCzkK6Tie4DRsy8RwSPnPcFUBUEhNMnrkQGXb0Xd7SIz0cVbnZzBcbhEU6DoKDbtYoJhP43D7yBUMBocy3H23MOCrV8/i8cdXsXdvPw0NPk47rZpXXhmiuTlQAd7xeJ5AwIXP5ySbLTI0lKSpyV8yfHOSz1scPx5jdDTNzJm1nHvu91m9ehabNi0ptVMVaGyU+5Gua/T0CMMfCIhfQTyep1AoksmYPPLIQb73vWUVlUk+n6+Yr5YBzMnMejQapa2tjXQ6XVGY2bZduQfKxzlVbCwvLxaL5PP5yjble2eZve/p6akAecuyKi70+Xye2monxujaKYBeVt81PQZ2qZdd84CmJDJ28BPg/zg0PQKqCNkDMmZwniEMvTVYGnvcVVLgRWUsUDUPRm6CxkfkzpU9AM62kmKv1IoyvFYKBBgl4B4kbweJRvtKLPcdxOMD/OIXq5g1azUf+tDDxOMn2LdvE52dd+L1NrBjx410dNyBz9fA0NBrhELzAUUqNVQic+4iHu/nF79YxV/+5TYCgRa6u9ezbNlDZDJj7NlzH4sWfZVAoAW3O4hSVqmfO8vw8GuEQheTzcbweqehVBF0NwOJSZ448DR/M+/DhKob0DWd1yK91FYFiGWTnNt4OoOJcao9PnJmgScOCECf5qtB1zQ8Tndl+2g2yYWhc/i75/6eXX0vs+nDN3Nh6Bwy/wJg/9KiT+Bze7FsC5/bS97Mk8xn8LmqUCgKxQJ13hoMdMyStN1d8tUYGhoiFAqRy+Uqfe6tra0CootFtm/fzuHDh5k1axaXXnopgUCg0vf+0ksvVcZWQEUxYllWpRjwx2pKpRRdXV0sXLiQAwcOsGDBAqqrq4lEIkxvbqY/k+G+PXu4o6ODmbW15IpFxrPZyvhn9axZPLRsGf3xOOOZDIvb2xlJpfjGSevvufRSssUiTX4/v/rDH9gbDnPzggV8Z/9+Hlu5kp5wmEtmzCBQ9hb58/R/fPrvAfc/97j//3xyOFwYhpt8Ps7ExBGGhl7FMNw4nVUYhvMkc7s7yGTGWbz4djyeGnTdwd69DxAKzSOZHGLnztsIBltxOKpwuYJU+5pRxeIpfe6q5C6saTo4XWhtp2Hv24OmFCqTRpkFkYTW1GGs+Bj4/NjbfyOxcN0voBkOVCoJSgkI9/klRi6VxLj+awLiEzE0TxX2nhdKve4voHl92N0vYD/5D6hETFj8gi1FgokNUwZzKNB8IoPTS86o1oS4xupBoCigfngdOKcL0665BbQnnxSQXza1sxNSOffMmTKgS3ZNRbhgSNV+8mEB7bpXKuj/L3t/HmVXfZ/5wp89nvnUpBpPVQkkBmMxmbYllarKxIAQQiIzpG3n5r65tjGxsM1gwAjipLuNwJJlSGzHE+l05233fZfCTadNSUIIbNkqlQZwjIMVR4CmmgdVnXnc0/3ju88+VXa67+37rnU76WavVavq7LOHOvvsc36/5/s83+dRE6CncD37l3Lc+/v7A5n8yMgIpmkG/X6u6xKJRMhms4E53d13383w8HDQqxeNRjEMA8MwiMViQVbo+vXrgwlTIpEIDH/uu+8+MpkMk5OTlEolDhw4wNLSEh0dHYRCIQxd54mhIVrDYb65bRu/d8MNqIrCqakpao5DZzzOUrmMpqo0hcOcmJykaFmEdZ0v3nILAIvlMpbr4rgu88UinxwZYbFU4mtbt2K7Lq9NTxM3TVY3N9OTSPD1rVv5u/vuoy+Z5NMHD9KbTGKoKk2hUOCquqG3lz1jYyiahoYA6ro8/ccIjvB9/Ikj5nFRhAlvR0B7O9KrPoEw71HgdxGQfhwB8x0I2D+BONN7SEHgIQT0hxFwfwMiwc/763Ly7tMPPG7C5WsEXNdN6RRF2PZHHhEA3t8vDPinPy3rXVdA9cyMxJi1twuAHx8XY7SODgGWH/2oyLk/+1kBoadONYzsYjHJPD9xQsDoxo0C8ru6ROZdqcDXvibHqWarjO0eC3qkVV3FLktMW6I7gV2xGbl3BKtkcd2/vE6ixjyPWrGGoimYMZPifDFwTx8/No4e1jFjJtOvTWMVLaZOTpF+J82hzx6iMFOgd6CX4nyRUCJE69pWPNcjfT6NHtKJd8U5tucYvQO9uKi4bkPOXasJSF61Sl5/NNqQsEejAsT37pVrGonItavH4bW3SzzeqlVyrbq6pKBy//1yzS1Lrpeuy/uyYQN8+cuikmhqgptvln1GRuAP/1CKIL/7uwL8xadAkZbtRIhYe4z8TJ7cVI7NezeT7EsSSoboH+rHcz3sqs3i24ukz6cZHx0ncyFD5/WdGFEDRVMozBVYemcJu2pTyVTovKGTWEeMzus7OfHsCdZsXsPgY4OEm8LEu+OgwJZnt7D2jrUUZgsMPDxAKBEiN5Fj4tiEAOezE8KQx6PCcuuagOiK3/utqgK4TV1k7LombvDtzbJdudo4hqoK2M0VZH0s0pDe93VJ/7vriYN9PUYuERPWv+ZLOvNFeex5Apgj7ZLRrqgCvmsyFuD6bvCOb2ynKMKuK6qY1Tk138TukoB1VRMQXneWr+ZWHkfR5P83YuI0rxpyzPKS7B9q9v8PRST5qgkeXDr3GpnpnzP3D0fBI8hwrxvGtV+xQRj4agkPDw+F9ivW05JaR8+1t6IoGkY4TrS1B7taYv6tMaxKUQrVji1Mu6oRbemhlJ5D001WrfkA/TfdhevaoGgofiHUcyxUI4QZa2H+zDFUxaGpKcTjjw9xzz3reOyxQTRNCczqZmYKDA728+Uvj7FhQwpdVzl/Pu0DWygUalx+eQuKorBz56s4jhhCzs8X6e9Pkkol+fnPd/Dcc1uIx01mZwu++3yWsbEJbNtl06Y+Er6/Q7FosXPnq5RKNhMTOT71qfeTyWQYHx8nk8lw+PDhALTHYjHGxsbo7+8Peo7XrVtHsVgkHo+zf/9+FhcXAWlpUFUV27YplUoB+FcUBUVRME0phNi+bHhpaYmDBw9imiaxWIzbbrsNVVUZHx8Pitj5fJ4jR45Qqbp4Hc+JOq7rm5B6ScBznfyq/ERGGvuStNpd9qao7NAFuEcGQOuWb383B4vPilmd3inzg6W9MidQwtD1DcmBL58UIK9E/GPP+v46T8qcxJn28+RnACfoKz96dBep1PrAmFjTTI4f3xskDC33JzLNBE1N/UxNnQQUmppWs337t2hpWUtTUz/r1t1DPN6F69r8yq/8awwjFqQVjY3txjCipNPn2L//U1hWCcMI09V1Iy+99ACmGSOXu8iBAztwrAK9zR38wabfxvM8pjOXqDkW13ZdQTIcY13XWiJGmFylQDIUDzLW/91rL1KslQkbIVRFpSPeyl++vp+OeCuqovKxZX3v//rl73CpmOHa7rX8hx8fYMvVA+y89X+jI9FGppTnz479FSoKpm6SDEvxRlc12qLNOJ4rgiH//fQ8L5grHTp0KDBMrKf02LaNpmls2bKFHTt2sGXLFpLJJNlslkOHDlEsFoO5VbVaDYgPy7KYnp4mlUoFEb0DAwNB2sHExATDw8OEw2G2bt1KIpHg0KFDxGIxHGAim+XhgQEmcznKtk26Ulkx/3lyeJi4aZKpb+V1qwABAABJREFUVLipuxtdUeiMxXh8aChwne9NJrmytRXP8/jJzAzPbdlCf1MTz27ZwuvT0wz39+MhqspCtUptmcz+3eW///IucP+ffLHtGrZdRlG0wFTk4MEdZLPjQdTb1q1fR9dj9PVtoqlpNbOzb2DbFYaHd7J27e2/4DRfQ0fDSy/ivvwiRGNo234LpaUNchlh4NOX8JYuofRdhrrlLrzMEu6RQ5DP4VkWXrWC59jgOqgbhxs58KqCe+SQONH3rsY9/sMgRk5BwdN01FS/uMgP3NzYr1hA3fKraJ98GKW7F3d6QiSPbgnaHl9mFueJBK3yUwLDOKNfZPDWWalyO9O+G/0zfgSLKsZ2iXsEdNcN69QmyWxtNFhC4k7f7M7vi1vc5We4TvvusjNSGEBBxQ3iceqDQr33r25aV61Wg4nN1NQUiqJgGAaXXXYZsViM1atX09zcTKFQYG5ujmw2y0svvYRpmoFb/NjYGG1tbRQKBQ4dOhREvo2NjaHrOrqu09nZGRQQxsbG0DSNqC9PX9PSQnMkwonJSXLVKnHTZFNfH5lKhao/YTqfTnNycpLrOjpYKJX49MGDxAyDkKahKQqmpqGrKnt8l9SpfJ5crcZiuRxkvFcdh5ptc3JqioptM5HLBY6qNcchrOtc1dbGt311wZ7Nm9Edh6jnoQNv+O/CRgRAv4ZI2ouI23sB+Coilx9EGPXvIcB9HAHxOaQIcAMC5kOI+dwgIn33rbrY7W/3aRrAfxOQQoB8HeD3IcUCxe/DfvZZuOMOYYzjcZHI67qAyOXGa/m8GKbVHcuTSQGMzz0neeXveY+A9zoZOTAgRYFrrxWwX3eWX71aCgV1szXbFlO3bFb2K5ehUlMJNYXY9s1tPJZ+jLuevwuA488ep2+wD80UifbZl89iRAycqsPkiUmW3lki2holcy7DyL0jJFIJrv/d60l0J+i8oZODnz5IfjpPx3UdjD49Sqw9xuiuUU7vO83Y7jHe+9vvpXdjL+nzaUbuHRHzH9+gLnMuw+Y9m3nv3e9F8T9f9Tx6TfO7Y3R5TSdOSNGjp0fem0hE5O89PXINKhX5/c47Esl37py87ve+V67F7t1yjWZmRNmwfr0UABxHrtOePfIefOELAs7r6odUSs5VKkm7Qnu7HMO1Id4Zp7hQJNIaoXejFChe+sxLEuEG6FEd13LpvEGAeuoDKQqzBSrZCp7roRnCxsc6YkydnCLcHMaMmRx+5DDlxTKb92wm2Zuk9apWjJgBnvTRo4gTf2pDinBLmEhLBD2i07cxhVKPdKtZAsI9/BdZECCvquL6bhoCrOuRcU1xP/9dlefW9Mq2dfO6RExk75ombPxFX0JSKMm56g7ziRi0JmWd68q56g6JKGIG17TGN/GqCbg2fUM61Ww8tqsSD+dUBYibSWHmzaQA/4RPYDSthWiHHLcO4FUTtIgcK3NezmUmGgWC1qsFsGumvJGZsw1HekUNMtu7rvkgnuetMIczwgnsSgHHqqKHoniuw+zf/xAjnKT72lv8PvQiri3F60vnXiM7c4bF8z9G1UQT5No1Ft4+QbQ1RaSpHUVRCcVbiLX1YkYSwi578r+omqQFeI5F53uGqFVrxOMml1/ezHe+cxdr17bgeQ2zul27xChxz57NTE7mOHVqive/v4dIROfUqSliMRPLcohGDZ577g4qFZvXXptm/foUnZ0JLlzI8Ed/dISFhRKaprJ79xjf+94ZpqZybNzYi6LAuXNp7r13hLNn03iex5e+dBt9fUluvnk1V13VyrFjx+js7AzA0bFjx4Is961bt3LdddehaRqFQgFN0+jr6yORSNDf30+xWCSbzTIzM4PrukH6ied5mKaJZVmMjIyQTksxIp/Po6oqhUIhMGKdnZ0NcuNjsRi5XC6IBzt9+jRzc3P+pOkszH4awtdLS5yzCGpYivRzD4iHjd4prXb2vMwd5j8rQLzyt2Juq3VCx5dkjuAsrUiUofZzabGzxhuGuF5J3ttLXwD7gq/a81YQD6qiMTS0MyBadD3MHXf8KclkL6pqrEgYCoeb+fCHR9i69WsA5PPTdHbegKKo/o/ux5z1ctddz9PcfBnF4jymKYqL5edRVZ2jR7/okzjTjIx8MnCSr1azHDu2h76+QQwjAp6L5dpEjBALpTQLhTRPv/pvKVtV/n7uHMVameu6r8TUDT6x4TfYcvUAv7/+LuKhKJ7n4Xou84Ulfu/921gspgFINbXzL3qv4bs/PrDCcf7zt/4+rueRLuco1spcKqW5f+h3cDwXy7EwVJ2wESJihEGBmdwlQHrWjxw5Iga8isLx48fp7e0NzHknJiawLItKpRKA/LpRXT2v/cyZM8HcavlS71uvtyuaponneZw8eZLu7u7A5C4ejwfnUlWVjRs3cvLkScKmSW8yyd7jx+lNJslUKlz/zW/yd3NzwfynN5nkMwcP0p1IENZ1pvN5yrbNVC7HQxs3MpHNki6XGZuYIBkK8Sdbt7JQKvHAoUPMF4sM9PZyIZvlEy++yFuLi/zw4kX+YXHxXfD+T2h5Vyr/jyz/o0rlRRZfQ9NMdN1cYVQ3NLQz+HIOh5upVDLE42LJ9eKLHwvk8jff/Me4rk1z82UUCgL0s9mLHD36FAMDn6OpaTUxPfELEvm7wapJFJy/Tt34QdwTP0Lb/tsrt71tO873D6Jt+008S/rSxVRIwTn4n/B+/lPUe34fte8yPKuGe3gEddPNePk8aqpPot6smjD6sbj0ui9JNd4dfRV1+FaU5jZQKyiVMQi/F5QmqXjPPyKDqbMgzHjbY6CvkYlmadSXvv0qrPpj8Cww1sLs/dCxy2fo6yDdQ/hcF6y3Vvaxg/TF6x0C1JUIksXaLlV5NFAUqpUlCpVkYL5Tl1EBQQ6oqqqBCZ2maZRKJWKxGNlsltHR0cBkZ2ZmJujD6uvro6+vjxMnTnDbbbcFFd/9+/fz5ptvct1113H77bej+dLYuhsvNCRjui6DuqMonM1keOroUT4/OMhlzc2cT6dJhEK0hMOcnJqiN5lkOp/n2o4OoobBUrlMSNMwNI1irUZzOEy6UqElEkFTFE5MTrKpr49CrUbZsmj2j9OXTAaZ8QvFIutTKe4/eJCdw8NEdZ1ctcra1lY0RZFMeFWl6LosRqM8pSjsRYzpvowA64j/uJmGVN5ChIhFf30GYdWnacTBzQJDCIO/iID/ClIY2Oj//QjCunsIaO8GxhDwXkAM7x5E5PNWDRZ9c7onnhBTtXPnJA+8r08Y3/XrBYh++tPwuc8JM67rAuCnpxsmc6tX++bdE/KzYYNI4W1bwCgI4+7fRui6gNZaTVjhuiquVGqYtRleFV1H+qyfavRZ6xEdq2hRy9cINYVQdVV+NBUUsMs2iqbw0mdfIrU+xXvvfi8As2/M0vP+HpyaQ61YI9GdkMmPKxd44tgEyd4kzZc1Y1dsDt5/kNP7TrPj5zv40Rd/RGp9irVb1pJIJfAcD0sNkc8r5HKNXPs33mg45ZumvP75eQH3xaK8fsOQ114395uYgN/+bfEZqLcW1IdGTZP902lh2J94AtaulWu03NBvfr4hw6+3PXzpS/I/eB6EQh61S1kSq8JYJYvDjxxm0yObyE/niXXEaFrdtELynuxNEuuIMfO3M+LoHxI3f0VTwIVasYbruLz6+VfZ9OgmXMvFjJkkUtKrnT6XluOkkow+PcrQ40PEOmMceuAQQ48PkZvK0X1TN/H2CEqd9a73tHuuD5ppyN8X0tDRQpDlrijCmtej2+pO8qbRyGh3vUbvfJ9vtqD5laoL03B5ymeulcb274zLua69ws+D90Cx/ei1BEEuPDTc4M2kfP1W8+CURVLveX4/eo/PmmuNHvy6dD65urHeXdbr7rkr5fSKIkDedfzf1gpDPMfzKKVniDR3B54a/pc15cwMejge9KZfOvcaq9Z8APAwo00oqka1kG7I7HWZzHuujaobeK6HUyuhaAZ2tYSqG+jhOIrniveLJ731ClB/WFqaxojE0YwwmmFSrUE2WyObrRKPG5imjuO4uK5HPl+jqSnEz342z8aNvZTLFlNTeZ555hg7dw7R15ekXLaZnS2we/cYjz8+xOrVTVy8mGFqKs+GDb24rsf4eJamphAdHTFKJYs33pilpycR9MFPTubYvv1/D2T6Fy9m2LNnjN27N9PSYgIurusGkuS6/L0ud5+cnAySVerj4qZNm2hpESVAvUf9+PHjDA0NBWxpfRyr96+nUikOHjzIXXfdRTqdDo4Ti8U4fPhwIHuuO3nXt/n1X70NXa2J740aF4Vc+ZSw5NakZLmXjoFxNUQ2+KOJJsDeXRQZvN4uKruubyAtd6PiDB/dKAx8h2+IocbFM2eZ+Ryr/hWcv8b/+499xv2SxMx17KHqRrh48RjR6CpKpUv09HyAbPYCx4/vZWhoJy0t4mFULi8Ri3WSyZwnmx0nldqArkdw3RqKouJ5Mt+y7TKHDj3A8PBO4vFuv30yjG2XmZo6FfTSx2IdWFaJajXHkSNfCPrgb799r59kpJBOn+PEia+w+c5vYLsehqajKioL+UWKVpWoGaYlIj3uf/Ha9wLzuuZIAgVRS5RrVSKmDFI/nX6Lq9pXky7leN7vb+9OruKn02/REW/lz0/+DV+4/ROMp2f5d6+9KP3wrd2BKd0DN3+UsG7y0+m36Iq3kWpu58eT/8AHeq5hZGQkuAe2b9+OZVmBD1C9PREI7jnTNCkUCgBBW2M+nw/8g2q1Gq+88kpgWrf83o3H46iqSi6Xo6mpKbj367GI9XldfQ7mGQafGBkJ2gUH+/s5Nj7OTd3dzBeL7Bkb40u33Ybtuvxsfp71qRQ1R9orLpVKTOZyrE+l0FWVYq1G2bbpiMW41/cVumfdOr69fTsly+Kvf/5zjk9O8un16/nKiRM8f9dd70rn/19c3pXKv7tg2zXK5UXy+UnK5cUAxNclT6Oju1AUzY/6uB/LKqEo2ooseHEZTdHcfDkA4XATxeIlmpsvZ9u2b1IqXcJ1LTxF/aUoOEzzl/Pat/6mbDt8a8COu4sLqJu3yVzNMPAsC3fyIl6tirp5G9pnn0RJJEUiD2h3/gY0taB09eBpmszGDTGjc0ZegKVFlOZW3NFXA3YezwPVwDN6YP5RsC9KJTz/XV/u/mU/b9Wn6ew5iGyCNefFTV7vBWtKKuet90uPWf2jZI1LlR1L1i1+bZkU3++PV8Iy0Csx0Ht8g7yCFAy8MqCj6RHisdgK9gEkMuTAgQNB33mtVqNWE5YmkUgEcsB6xbdSqZBKpSgWiwwNDbF27VrGxsZIpVIUCgX2799PJpNh8+bNrFu3LojCmZiYIJvNcuTIkUAy2NfXF4D2Wq1GrlDgqaNH2Xf6NM8cO4bjecwVi8RMk8VyOcgS3dTXR1MoFOS7vzk/z1yxSNQ0Ayl83WF+yO/HihoGbdEor01Pc0NnJ6lkkqH+fhZLJTakUmQqFR7euJGortMcDjPrD5xzhQKGqqKpKrFwmClFYQ8CxC8DnvU/D4tIv3sG6Ws/hYD5KNKL/ggCuotIdvuVwBoEnOcQNr2IyOTDwI1I3FwY2IX0zhvAHwEXgOuAexHgvx4pHoSBeA2ee1ZY4FRK8Ew43IhzGxoS4Kko8Cd/IiBTVQVwRqMN1j0UEoDpugJC29tlm7NnJa98YUGAa6kkjui2Lc7yliXHjkbluXfeEYl+Pa3RRdjXaEeUO79xZ2COpmoqRtQgfT4duJRPjE1gV21c28V1XLSQxubdm+kb6mPmb2fQwzqdN3Ry6MFDlBZLKIqCa7tYRYsD9x9g6e0lum7soqm/CQDXdtm8dzMfOfARYp0xtn1jG9d+WPrn7YqNU3N8aWPje05VxXQvHF75/aeqwni3twvIroP2zk5hxgcHpZ1gwwZh6ctluY733Se97LGYAPN9+2R9LidtCzt2yHO9vWJ+19oqhZbJSVFIKIpc77r6wYiajNw7Qn46T+9AL4XZAv0f7Kd1bWtD8t4Zo3egFz2sY0QMYh0xDu44KNfa8/vbizVm35hFD+kMPDSAETNovbKVRE9CTNIAI26QWp8iN5XjzPfOMPr0KJVMhTPfO0NuKkfqAynMuNm4QE3xhjO8qgpgd1xhxy3bd5NHmHZ8djdfbDDjybi4wWv+vu9M+BULsyGPNw2Rzuvayrz4Sk32URXpoW9vERbecRpFAjMu7LdvoIrnCGg3YmISV83JNpF2iXpzLXlcZ+jB/xu/CBBv9OF77jIW37+h6tvQWAVA9ry8Lsdn6V0LxXOJtPQEfndWOcf0m4eplbJUi2kunX0NM9aCphusWvN+VN3AjLfKgT2XS+deI9LSDYBVLeK5NuXsJVzL8m0AFFTNwIw2oZsR8DyKSzNY5RwAtWKGKf98rl0jnFwlefH+jee6MDOT5+zZJUIhnVhM9z/3Bq2tYcJhnXXr2jl3Ls3SUoW9e48zONhHKKRjGBqGoRKLmQwO9vHlL4/hOB6xmMn69Slc15PbpylES0uYhYUiigKbNvVx2WXN7NmzmenpPOvXpwKZvqLArl2jrF+f8lnKaiAxrjtp27YdgJrJyclAWhzzx8X+/n7C/gfdtm1M06RUKnHmzBkMwyAajVKr1ZiYmCAcDhMOh+nu7g7kzZ7nBeq1sbExVFVlaGiIj3zkI9x1111omka1WiUajbJ161YcR8GzZxoZ6uVTfvTbpJ/l/iwkf0dAuFduRMHpnaLAC98kprZdX5f3vTTW6F3XekR+rxg+K38ecJcpAp+QY9TjZ4uHxZ3eWAOde8GZQ3UWSCZ7OXHiKzQ1rcYwIoRCSfr6Bhkb20MuN0E2O46mhajV8uRyk3R23uAnB+WYnDyB41iUSpfIZsdRFDWQ3auqgePYuK6Noqh0d7+PUmkRyyr6EXDzJBIphoef5CMfOcC2bd9A00wmJ0+Qy01QKMyQSq1H8VwWCmn+9cvfYSIzh+KP1X927K+Yyy9yqZTh0Jnj/PvXXsTUTRaLWfFIQCFdzvGvX/4O4+lZrljVh6oozPns+3xhCVVReF/q6iBirmLVWCxlhZ0vZXE8N8iRv1RI88XDz9MaSRLyzXTf03EZVddaIX1fnrRj2zY/+tGPyOVygXlcnZlva2v7pbZGIAD0vb29jI6OEg6HGR0d5cyZMxQKBXRdD8iTqakpLMvi4MGDpNNpZmZmyOVyLC0tBXMwVVHYOTTEC3ffTW8yySdHRuhraiJhmuwZG2OgV3Be2bZ5X7d8n8RMk2QoxBUtLWxIpTg1NcX5dJqmcJiSZTE6Ps7OZTL6Qq3GA4cOMdjfz57Nm7lUKvHk8DChd43q/sks7zLu/8jyPyLjXq0WWVz8B8bGdvuxH5LrXmfc65Edyx1Ft2//NuFw0zI5vUxyXNfGskq88spjbNr0CPn8NF1dN2IYUQH7joPqaSi6AZ6LOzmO0insfb0Hj3xWIt+Gb4Vks+82H0ExQ+DYksve2SPgHfCmJ1E6ulDqRnOFnMx5CjnUlJ9n5eHPkF2JkQtH8CplYd6XLom7/fCtEI2jRDwUZ953js/I77n7BZjDMuOYnZLXitowidFWQf4FYdyN3qDijRqVKrnnG8ioMUCB2T/w2fs+yWpVmwiyhOv72BMrmHnb8VhMlzl69GjAnBuGwcjISMCa/6IxT90Vfnh4mGw2SyKRIB6PB3Ks+mJZFtVqlSNHjqyoLAOBm6phGExNTa1wrj98+HAQAaLrOo6qcjadZtfoKH84PMxqfzvbdYNINsfvU7+xq4uoX7V2PY+a4xA1TWzHYSKXY9foKE8MDXF5SwuO56ErCnPFIq2RCBXb5o3ZWd7f04OhqhiaRtmyRNegqliOg+N5cnzAUBRqrosRCnFWUdijKHwV4T9OIhL1VcBPgA1IOcXGxyEIUHcR4F4Cfgp8AGHmH0Ry3W3gZ4hsvglh2k8hLPo0AuQjiMv8P/iPLyIS/LVADZHZbyiDUhMm+Kc/FQn3rl3C6tajyjKZRs64mJwJ2FQUWVcqNdbH49KzvmOHGKbt3Stg8557xBX9k5+UdfPzAmTXrxfcVTfAO3cO3v9+YYkBwmqVWqFGNVsllAxRK9UwYyb5mTyFmULABNcKwv7OvzlPzwd60HRhMRVVCZ77wR/+gFu+eAuu7eLUHKySFcTJTRybYOrUFLfvvR09LGz+4UeFkY51xKgVa8Q74tSKIief+7s5Oq/vRInHyeYUCgVpD6jL5c+eFTXC4KBco3o828CAAPTJSXntnicFjPFxAe2uG9QZ2bEDvvvdhtFcHfR3dMi1eeAB8RAYHBTVw6OPwlVXNd6TXE7ez2q1wez3dVb5065nAid+LaSRvZhldNcoW57dQvFSkdxEjtSGFJV0Bbtikx3P8r9v/9/5yIGP0HVjF9WsxOxZZYtaThQPekTHLtkUF4rkJnOk1qdQDZXJ45MkUgmMiEGkJYKiK7JuWSzfqqvb0BQPpW4HX5fKW1ZDenBuEq5aLaBb0xou8cayXvi6iV09972+aFrDuK7OrNdBf8iXI2j+G1dn3+vmdIris+FV3xyuRwBznRWvs992RfrTC9PiPF/Ligw+lGyA7loejGijilIH8/+Yq3w98s3zI+RcK4h+Aw+skpxPC0GtgGPEqJWyy+LcdNJTP6ecnqH9yg3oZgzwcGqVwETOqhZYeOcUXdfcjGNV0EMxPNfBdSxUzUD1jek8x0JRdf+iKQH7rmo6nuugaAYzP3uV7Ozb9N90F9GW7sBgVlFUZk7/gOSaX+Ho0XE6OmLMzxfZsCGF64Jtu8zM5Nm9e4wnnxwmHNYxTY1kMsSFC2mmpwts2NBLKKQxPZ0nHhezOkVRKJUs/u7v5rj++k4UBUIhnYWFIt3dCapVm0ymQixmkstVV5jUlcsWkYjBuXNpQiEBA6EQ/OQnPwqMuJYzj4VCgUqlwsmTJ9m8eTOmaVKr1TBNE8dxKJfLAUNfN2Ztamri6NGjQULK3NzcL0V2NTU1kcvlgljVWCwWMKTLTWFbWlrYv38/W7cME8nc32DAWx+Cpa+IiVz5lABz55JvSLsBiRxckrlF+SSEb5R1iibeOKhCCuhtcj/ak0IIRDciLiiKPK81+9v7siQ350fK+cDdK8Hc/VSTj1CoNROLSRuF41TxPBdNM1EUHdsuMz39Or29A9RqBUKhBEtLZ31QvQFFUXnppc+wadPnyOdn6O8folYrYBhRPM/l4MFPs2nT58jlpkgm+2hpWUM+P8nZsy8zM/MTtm79U0DBda1gfjgw8LAvm99AuXwJLbyKp3/w3cBZ/vO3/j7PvPoXwePHb/19nn71L3jkQ7/HYinLX742wkM3f5SwEVrhLv+Jjb9BR7yVqewCc4VFru1ai+63h9RZ9idv+xhVx6JQLREPRYmZESYzcxiazjfGXuDQmeN87TcfozPeyvMn/4b/bcOvcXlTdzCPqpsU1hnzjRs3MjExwcTEBFu3bl1hSldn5oHAR2G5miOZTFIsFtF1HcuygojBupoyn8/T4/dzZTIZTp06xfvf/35KpRKpVIrp6Wn6+/txEEd5FIVPLmPJv751K5broikKE7kcz544wVe3bsXxPE5OTrK6qYneZJLZYpG4YQSRvTsOHGCgt5ffvOYa4qZJ2bJ46OWXgyi57/gxwSFdx6wblL67/L+yvOsq/9+4/HMB7r8off+vLdVqjhdf/MQyUP4dwuHksmg4A9e1ggzP4eGdtLVdja6Hl52rSjp9nlxuglRqPdnsOCdOPMuttz5NsTjP2Nhu7rzz61jlPIloJ+Qy4uw+cDNeqSRSdtdFUVXcyYsCqIsF1O5evFwGwpGGG/zmu6BcxMtlUXtXg6bjVctQyDfi5QwDKmXc4z8M3OlZXJDYuXxOCgNDt0AiCdkMSnMraDrOwb9Bu2sbinV2WaTLFeAVhQ3HEwO6yAAk/6VUwUvHpKpuz8sA7WaFLfd8N1nPkt746EZxmJ3fCR1f9CX0BuD4kS9fhc6v+EyP7p/TkOp73WE+OkTV0nhx5KUVA4OiKKTTaXRdZ2lpiUQiwbFjxwJgX6vVAjlgf39/YJ6SzWaDgaIeB6dp2i8NUIqiBPnwmzZtoq2tLRh8hoaGaGpqClx2ASquS7pWoy0axfATAWzXZbFUoi0apWLbPHL4MM/ceitL5TITuRyb+vpQgLlikbhfQf7bmRl++6/+iosPPIAKZCsVOuJxXM9joVikZFm0RiJ8/tVX2bN5M2Fd51KpRNmyeMqPN+mKx0mGQhIpp2nMFwo0NzVxUte5FnEV2An8G8SQTkFA+ueRnPbVwFkETNeN5f4AiXlbAKYQkF9FWPPd/vHWAOdpuNBnEMCuLNvuCcTs7gF/n7XAD4ELNRj8B3j6KQF9nZ0CtvftE4Ozutx6926Rgdu2sME9PQIeH3hA+trn5xtANBzG7yeFqSmRjOdyDaf4qt+SW5fMv/66bBP125gvXGiAWF2HiFalmqtKpFjcDIzTqrkqVtES5tiPbqu7nRfni4SSoRURZLd96TY0U0PVVRzLQTM0SoslvnndN7n6V6/m5j++mVAyRGmxJMB1fUrk9IUa8U6JRHRtl0quIo8dkYxbnsmZtxR275ZiR1eXgIBqVVoA5uZElbBnj7zGuirBccScry6br9WkZz0Wk99NQvrzwAPw2GNiRhePN9znm5rkWs/NwR/90co4P10XNn5mRt7DXbuWxc9tcjl8318z/OQwTf1N0m87nefcq+d4793vlR52U8O1XTRDfuthKYyYcZNqrhq0J+hhneJcETNhEkqEyE/nWTq7RKwzRrgpTKw9hqIqTByfINGdIDuRlUKL795vxkzGR8fpW99DuMmXQNZscXFXNWHZHUcc5l13pdt7vghJvzCpIIB+ah7W9soNWLMlUi5XECbe8yX1ybhI6idmRSav+5PBrB8BZxoNcO/4cn3Vg+w531W+3e91Xza41ecwwTarIHm5L6OvCriuy+zrYFxVl0W79cg20gPgX4ecrNNCkgufn5D9zaTvTt/ru9r7/6rjMPXmYaItPURbUhLRtnY9RiSJoqrUSlmsch4jEmfhnVPS9x6KUSvnMMJxFFUXN3jXFamy60rh23UoZWYxIvFgjLbKBaItPT4rvyAZ8YqK5whwmP35j1i19gOY0Sb/c1PDtqFUVTl5cor29hh79x5n585hurtjfPrTL7Fv32lGRj5Mb28Tu3Yd5YknholEdNLpSrDt9LT0qzuOx8mTk/T0xFm7to1q1ebUqSl6e5NMT4sjPUA4rDM+nmXXrlEef3yIqakc3d1x8RqMm/T0JPzvohpNTSZO3VzQX+oAOxaLMTs7Szwep6WlBYCJiYmgmG2aZuACXgdN+Xyes2fPMjMzwx133BG4eMfjoqAwTZNEIrHCeb5SqRAKhYLc7OWpLBIHp6DaZ1HqcwZr0i/kt8kYrkTAq8k95iz4hrYezD8oTvTm1X4hyG5I7LUO8caxJ6F2Fowe8c9pexS0Lrkf1YQ/d9glDLyxRor99WKBEgZ7HMuNUXFiwfWr1YpYVpFcbpJkss+ft21A18McPPhpNm/ezfT063R0XIeqahhGjFotT61WIJFIkcmc5+jRL7Jp06PE4138/Of/BxMTx9i48SHK5SW6um6kWs1imgkMI4ZtlygWF4JM+ImJY0xMHGPr1q/huhaGEcNVTSYz80HkW1u8CQWFn82epTPeRk/TKjzPQ1M1FgpLRIwwhqZzevYsV7WvJmyEwPOoOTZhwwwc5v/y9f18bMOvEfWj4ArVEh3xVoq1MiWrQmskKYUdFBQFirUKz/7wuzzyof+Vp1/9t0Hh4F9tvpepySn6+voCaXzVHzRN0yQej+P40vN6cWfz5s1omobjOBw+fJiNGzcGLYr16Lht27ahqmpwv7muy/79+4P53fK2jXpbZN1AcWpqiu7ubkqlEtl8no5UCk1VOZ/JsPvYMZ659VbipimFMUVhdHycdR0dJE1TFJCGQcW2KVoWu/z50pWtrZL8UKsxnc8HMXKXNzeTq1Z57JVXeGxwkCtbWwkby4qw7y7/ry3vSuX/B1zq/ekvvvgxFhf/Aduu/Ve317RwIHkfHHwMyypi2zV03SQUSuC6NocOPUw0usp3FL0yAO31xXVtcrkJ38DuflRVZ/PmPaiqHhjUTU6eJB7vRHHdhrP78R+i9vTiTo37MnUNpTuFe3IUJdmMp+u4x3+4wg0eq4aXywbO8V5mEVQNd+xIwy0+Fl9pUOc4eIW8uM/nsnhnfoY7+n0U3QRVDY6jbrmLwByubghTd2yd/YSY1nXsFuOYuU+B9TaErxPQHlkvYFxPSUScZ0kPG4psM3ufsPWt9wu7PnufSOpRYPErst6+KGZ01lm/x93wneWTfiycjqrqDA0NsW7dOoaHh4NBpLm5mUQiQW9vb9CzXs9ut22b48ePB9XdvXv3UiwWGR0dDcx2YrEYk5OTOI5DS0sLd955J8VikfHxcRzHQdd1zp49S6FQCFxVBwYGMAyDXC7HoUOHcF3pRQyZJkXL4tMHD2K5LlXbDkC7Ariex0MDA0QMg4hh0BGLcd/+/VzIZrmQyRA1DKKGwc2rV/Oz++5DVRRcoDUaJVetsuPAAUqWRVciQcQweGhgAHeZHH8qn2ff6dPsHhtD9weyTx04wNuLi0RNE9dx6PU8HkVY8PvlXeAsIlu/REO2riK96DcgQL6AyOoTCNDvQIB3AmHsv+ZvDwLq2xE2Pk5DJv8ssA94CmHeBxFDOw+R7X+4JqB93z4B55omQPznPxeJ/J49whBHImKiNjYmoD0aFUZ4cFBA+eSkAPP77xfAfvSo9Mpv2tRQMU9Owmc+I/9vNCog9MEHRVbueQIyCwUpHgwNCdla74uvT2xr+RovPfASnuMRa49hRA3iPXFKl0rYVZvx0XGyE1nS58Q0yLM9Yl0xNj60kcJcgYP3H8Qu2xSmCxz89EHMmMlDMw+x7ZvbSPYnMeMmia4EqfUppk5NUVoqoWgS16TqKpVshWhrNPg/avkaritKgYcfFtA+Owv33iuvJ5GQ6zow0HiNliXqhrk5Ael1t/jXX5fH4bC40LuuXKfnn5drWSoJHtV1YfNnZ+XaplLwzW82ih3Hjsn+dVn+rl3y/u7dCxs2eOiqzV3P3yWgXZfrGmoKcc1vXoPneBz+3GGcqhQ2XMsNsuxf3fkqruMKSG8Whh0gfT7tv0kQ746z+ubVtKxpwYyZHLj/AOnzafoG+8hOZIm1i5ld+myamR/PYFdsegd6CTWFRKr+1kV54aoqgNvQRfquIHdtze/ZwBNZfdWCty/KviFTjOnqTvF1yX1TnKCfIR6Rvw1dZPKKItvWXedVVfrh37rYyIDPFcBTBChH2iUKDk9k8XbFB+2+lL5pDXS8TwzkVFUAthETZtyI+RJ3R/avg8TlcvlawTe183vmNb8Yrply7Ei730+fkHWeA5lzYojnm9PF2y8LjOUWzp6SfnfXZeGdk+ihCAvvnJLn3jmJoqqY0SSubeE6FrVSlumfvYJVzsvnx7GYPv199FAEq1xAM0JY5QJ6KML0z17BrpYIJ1cx/bNXscpZytl5rEqRSHMXC++cFPbeN7tzHZtwWOeDH1zN2rUt3HLLZXz96yeJRg2+/e3tZDKPMTy8mj17jvG9751hYiJLR0eMxcUSH/xgP6GQxoYNKSYmsuzYcYCOjhiplFS3bNvlhhs6mZ7Oc911Hbh+cUfTJDbue987w9NPj7JqVZS5uWIA2Os99vG4yfnzGQxDHNwPHz6M53nccccdQbxpX18fiqIwMTGB53n09/cHsvl8Ps+PfvQjaSPx27h+9KMf0dfXx9atW3FdN8hzr4+f6XQa27YpFotBu1kdWJVKJfr6+vjMZz4TyKUNw0BVHBS9G7q+JeZw0SHQ2qHyd+JPY70F5ROinqu9A4ouc4Xiy2Av+p9TQ7YN3yCtcoop96PeA9FhUKLQ+hhoKQHsitqYqxS+B9aMP4J4ogR08/K3sQZX6yCfn+bQoQfI56eJxdoZHd1FLNa+bN62g0zmHLfeuovp6dfp6xtEVVWq1Sy1Wh5FUVlaeodM5izZ7HjgHF+t5vz89m/S1nY1/f1D5PPTHDnyRxQKs6iqRrWaC1ztx8Z2s2bNZoaHn8QwophmnJdeegDHdehOruLJzR8n1dzBYiHL06/+BZ3xNnqbO7Acm3Q5x1RmQa67pvOz2bOsiknB5ouHn2c2v4ip6bwxdYZru9byl6/v9+X1I7RGmwgbIZLhWJA06XkeVcciXcpScyxsH3g/cdvH8PB45EO/x9/8/l4e+dDvoSgqqVSKdDrNyMgIlmXR1NSEqqocOXKETCbD1NQUhUKB1tbWYP708ssvo+s6W7duJRQKBS2K9fmbqqqk02mKxaKMZ6rK1q1b+chHPhK0beRyOc6cOcPRo0fxPI9CocDU1FTQInLs2DFa29s5l04zOj7O6qYmvukXBM6m09w7MsL5TIYbu7p45PBhLmSznPPNGNtjMSZzOb535gy7x8bwgAtpGTt2+6bATx09ymQux2K5zJ9t20ZbJIK9jKh5d/mns7wL3P+ZLsv7048efQqn7m77X1h03aS5eS133PGnRCJtzM6+sWIfTTP50If+FYXCLCMjnySdfmdFMcBxakxOniCVWh/EioyO7kLTTAwjGriMNjX1o3gKXqW8ss/dMFD710CpgDPyV5DPoaT6cEdfhWJBwPf0BOqWX0Pb8RjE4r/sHK9pjT75oVvwFGVZf/yteJqGkmzCGXkBJdmEevf/Kud2bNzR7+OdfgMvm4FcBvIVvLoDfNtOeZGLT8ngWHlDZO5KXCTwep8MuJENgCGTRc9qSC3r+a1qHFoflf3MK6XnLb9PjosnhjTmWhmwWz8ng7RbIOh9h+Bv162Sy+XYuHEj2Ww2kASOjIyQyWTQNI3NmzfT19fH0tJS4KR75syZoJdq3bp1hEIhhoeHA1OecDhMKpVicnKSTCYTyOL7+/txHAfTNPn4xz9OMplkfHw86A2sR/PU3VDrVejueJxnt2yhYts8cOgQRctibGKCs+k0UcNA9w3nWiIRrmpr44P9/fzJiRMM9PVRsW1mCwVs16U1Kq6xhqqiAHHT5OGBAWKGQVjXqTkO3T5b8kdHjjCTz7Opr4971q3jscFBQpoW9NvvHhsjV6kQMgwmFYWHEfb7MoRl340A6qeB2xE3+Srwt0if+v3+71P++lU0QH4BKQI8iLgY2MAw0jP/lP/u7UCY+y8BB4DvICD/txB2vur/L4YmpnL33ANPPik96JcuCTC0LIlju/tuAYX33y9AsN6L/qlPCcDu6REAv7AAL78sAH1gQO6kUklY+q4uiT976CEBnKOjAkAffFAKADMzwhrPzcnjd94Rpnl+Xo7jeR7VfBUzYbL1T7diRA3sqo0ZNzFjJlbR4tADh6Q/uz1G/2A/qqFSXCiiGRptV7bR1NfEwOcGUHSFsS+P0TfUhxk3UVBwLRe7bFOcL5KfzTN1akoKA2EDq2ix/779AcO//7795Gfy3PLFWzCiBprqctNNHsmkkMNTUwKUd+2Sj+mjj8o1rJOyitJgyefmZJ8dO+Qaua70tHf5Hmo7djTi81atkr9ff12UDb29cm0rFXnPFKUho6+D+HRa2hMuXZLfkQhouDhVh+J8kVquxuLbixx+5LDMvSMGGx/cSH42T2mxhBbWsKs2RtRg8+7NgBRPqln57NkVO3CeX3xnEafq4Nke5cUy+bk8qfUpRneN4jkevRt6Ob73OLH2GLmJHLH2WFBIAYQBT8ZF0q4oArLrF61m05DQLzOtU1VIZ31WXGmYxvV2rpTE+9gaVfN75F35ranCutcsWWfqwsb3djX67BMxX7Lvg2enJsy6Zgio8Vzpb8+clefsSsOwLrna/0r1X2O8u/GdnZ+U7SId8n9nz/sg3xQjO8c/znKQ71qyTaSj0WtvxmV7PHQzgm5GA3f59rUfwHXERKL9ivXY1fIKp3kUBadWRTNDqJq+Ij7Ocao4dtV//GOiLd04VpVoSxeXzv04KAy4Ts0vBJxCNyMroufwPFRNF4d5I0ouV+Ottxb51KcOsHFjL3v3buHsWXF6P38+g+u67Nmzmb/+63u46aZuZmYKDAz08pu/eQ0A1arD1FSefftOMz9fxHFc3n57kQceOMSlS2U2beojHjdZWCjxyCOHyedrtLfHmJl5iOee28LSUpnBwX6mp/NBVNzo6DjnzqWJRHQ8zw1c3g3DIJPJBLFadfDc09PDxMQEi4uLgUlYoVCgt7eXQqHA+Pg4qqpy22230dzcTK1W46WXXiIeFzf0l156CV3X6enpCXqKTdNEVVVmZmbIZqWnut5vXyqVqNVqjI+P46HjeY4U+N2S/xlIQHRAQLoS9yPfOgWYl18XkL7mDBgpUfG5OX+c12SOUe+DB/+z1SSAfP5zYL2DlHqBru9IvJyR8hNoJvwWPkX+9l0J6wTK2NhuXNdmaGgnxeICqdSGFXFwhhGhu/tf+A77MwEAVxSVaHTViji5egSw49TYv/8+0umzeJ674lye5xIKNS1zm3+CeLyb5ubL/PnkeW655YtoqsZM7hLPvPoXFGtlWqJJbkxdxUJxicnMHE+/+heUrSohQ6dsVXn61b+gJZJgoZimWCtz6Mxxnj/5N1Qdi8nsPKqi8siHfo9t1wzxwAc/wlR2nqdf+bfYvhFktlxgMjsvkW+xFrLlPFXHEpLAcwlpBiHdZCo7T6aUx3HtwPvgzJkz5HI5NE0LCIxcLkc0Gg2i2xRFQdd1brnllqAQVE/tqVQqbN26NbgP68Z09XQDkN53EAVJKpXivvvuY2BgAMuygsSgemzv5s2b0Q2DRChEdyLBvSMjnMtk0BVlBfjOVCrsO32ap0dH2eAff6FYZLC/n4sPPMAfDg+jKAqT+TympvHE8HAwjzp87hxPHT3KmcVFHnz5Zd6F7f80l3eB+z/TZblp3PDwk+j6/7Xbo8SfzPLKK4+SSPSgqg2zCV03Mc1Y8GV87NhuHKdKtZrDtkWOn0z2UqlkGB7eyXXXfZQtW55DVXUcp+Znf34bXQ9juxZKJCoy940fFLBsWXhWDTRd8ttPHEVZc5VI2UMhlHU3onSloFiQaLhsGk/TGsB88EN4KCht7Wh3/qbI3l0PpbkN7a57UJpahOUd84H+6PdR+y8H3cD9+582AH/vatyjr+KefRv01TIgGpchsW5PQs9f+71oHuhdArI92++nDIvpjO8kjBIFZ16q6/iGTeYa0FqEje/Y0zCTcQvC0HiOAPylP/GPFZb9nFk/j3VW3it3iaamJk6dOkV3dze6rlMqlejv7w8c311XJjr1OLhoNMpDDz3Eli1bMAyD7du3EwqFaG5uDtzgI5FIUA2Ox+Pouk40GmVpaYnDhw8DBL1+9ePWew1TqRTXX389mqZhRiLkazUmcjnuP3iQ6Xye9akUu0ZHWRWNsntsDNfvO9/U14frupQsi49cdx3P3XEHGtKf/s7SEhezWS6VSszk84xNTGC5Lq7n0RWP0+lL5gu1GgvFIrqqBuAc4Nvbt3Nlayuaqq4YgLricTyfcf9TQHQMEsn2NWAE+EOgC5G570BY8xkEVE8iLHt9WjUE/EuEUe9EXOPnEXM6y3/eQiT5X0Kk9k1Ib/vbCMOv+OfbgbD+uAKo/+zPGkBwfFwA+o4d0osdiaxkbdvbhYn/4AelB962pX/6ppsEcN90Exw/LusBfvITAZeeJ3Lv3l5h4j1PQH8sJi71jz4q5neOIyx1HfwCFOYKRJojuI6LXRFmvTBTwHM94p1xclM5bnnqFhRFoVasYddspk5OYZUsJk9M4trCvhbnixTmCmz96lau+/B11Ao1Dtx/gPxsnkq6QrgljBE16Lyhk1AyRLwrTmG2wG27bwuk4Ge+d4bCTKHRO+8puK7IH8NheW0HDohyQVHE/T0SkddRN9yLROT6zcw0lAt794p6Yd8+eOYZ+Xv9egHzZ8/K++F54jhfN/fzPPlpaZH3oFSSYseGDXKOTZvk/TxxovF+WCWLlx95GTNmYkQMCrOFIN9+5JMjqKZK65pWYu0xrILF4c8dJjueZerUFNmLWQB+9G9+hF2qT/ZB1VRC8RD5mTwH7j+AGTNp7m9m3e+sY/iJYVRDRdEUhnYOUVos0T/cT6gpxKZHN6GZPpBd0yt57J7nR8Itk7DXZfL1bPasGC5h6rDher9/3ZE++Dr7fWFamHjXFVa+ZsvfdSa/DuyL5YZEHsRFXlf93nVXjOtMo8GEO1WRtiuaz4gr0nteviQ98PU+d9WUQgE0QLpqigRe0aDpMjnHcqM61/JZedeXwWsC0BXN39+Q37Vcg6mPdMib4HmUswu4joUeitFz7W14nsjW8VxUzSDW2oMZbabn2lsxI0nsSgnXtSil5wBlBeDX9BCaHgpAvqJq6KEoqHpjuys2rNjGrpX96Lk4ZjSJY1WxKnmKS9PYtoeuK4HB3J49YjBXj4N7+ulRbFvY702b+giHdbq7477pqUlHRzR4bm7uYYaHV5PPV5mdLfDwwwNMTeX8z5dKOKzz4IMbuXSpxL33jgTAfGioH8/zuHRJWPxwWOf66zt57rkTdHfHKJVKdHd3B9nrxWKRM2fOkM1mg+isep51vW1rfHycZDLJe9/73hVjYalU4sCBA0G86bFjx6hWq6RSqQCUd3Z20tLSEjDydVVa3UDs9OnTHD16lEqlIsw/LkqQmz4tc4bZTwOaJMTU3hEQPf9ZuS+NbultRxVlXWRI7hVFkzmAGpfWutIJYc7ti7JvPXLWmlmmzntHvHW0djHOXXzWb9frErNcQFPKy+aET+C6Lq2tV9DfP4imGQwP7wxMhoXRnaFWK64A4JpmUipdYnj4CVTVYNu2b5JIpPA8h8OHHwm2s+3qMpD+pO9/pNDSspatW79OLjeFbZdxHIuBgYfFLC/UQs22mSss8enhf4nneXzlh/+BG3uu5oaeq4Lc9n//2giros2YmsGNqav4j3/7Etd2raUt1hww4zEzwparB3hz5m0APn/r72PqBv/utRe5tnstCgpVu0bIMFjXtZafzZ5lKrOAqqroqkbECFOxa4ynZ/np9Fus61pLyDBQVc2Puxvinnvuobu7OyjunDx5kmQySUtLS0BspNNpjhw5EjjMLy0tofqFzbrJIoBhGMTj8cDALpfLUSgUOHjwYFBImp6exjRNWlpagvnW8ePHg/vQNE00RaElHObp0dEAqBuaFmS4PzE8TCIU4p5169g5PMzxiQmihkHRsvjkyAgz+TyXNTejAD2JBJ996SVWRaN8e/t2OmMxTk1N8cTwMM2hEE8ODxN+15Dun+Tybo/7P7L88+pxr6LrIT9247++VKuFFdFud931PKFQYsXx6mZ1W7Y8R7E4x+jo0wwPP0Fr65W4rkWj1uOSTp9ndHQXQ0M7aWpajWUV0TQTu5wnoSTBrkm/+vBtQvHVqrjHfoC66Vcg0YRimnhLl6TPvXc1WJZExp35mbDl/ZeLr1A+h3fuLbyZadTb7hRQXyoKg48Hrm+Al0xCNIZ76HtyzuZWFMfGnZpA6exGcV3Jh7dqKM1hFKVuHHNK8tqNNUiE23mwJoRhd9ICsPVOiXGzF3xDul0C9PVOBHhnZLvFpxr9aWoS7CkB8WpCKuRe2e+Fq4CTEymdGoHZTzZMb7q+TdXWKRarxGKxoO98aGiIaDTKyy+/zPDwcNCvNzU19Uv97rqus3//foaHh0kkEpTL5RW9gHVzH5BBpVgscvbsWXp7ewODO13Xg3idet9VJpMhm83S1d/PdKHAF3/0I9anUmxZu5bOeBzbdUmXyxRqNa5obeVCJsN4Nsv6VIqwrlOoNVQcO199lX/zoQ8RMQxMvy89pOsULIumUIi4aXLON7/bOTxMdzyOoarct38/O4eGOD4xQZ/vWq+rKplKhYRpoqsqtucxV6vxhWSSQUSm/iySm24iUnYNAdsLSG/6PI3+9iqQRtzoTyHAH4Rtr/e3RxEG/hkk4u1yfKIQOIYY1XUiDvT7gJ8jLvP7gHuA5wvw1hnpwf7Sl0S+rmnCGh86JPnqe/YIm16PdzOMRlzb7KyA7McfF0D/0EPwla8IeHzmGVm/apWY3m3YIL3fFy7AF7/YMFI7f35ldJzjyLHr8Wkt0SrjoxfpH+7HKkoPrRE1KF4qEkqEMCICuGrFmtS6wjp2xQ62ibRE8FyP6dem6biuQ7Leaw6HHznMxoc2ggeJngR4cPjRw2zes1kM1iZy9G3qw67YzP3dHL0bZXJaXChKEcF1cS0XJZngLb/H/fHH5drd5L9Z9V70REL+rhv4vfEGXH+9MOG7dkkP+5o1gklPnBDDuVBIiN50Gv7NvxF1Qn+/gPa6id3Jk7IuHJZe+WxWGHfPayjOFxbk+UIBmpo8muIOmuLgOR7FhSJWySLeFeflh16md6CX6z96vXha+XL5WrHG95/8Pu+/7/2c+MoJbv7jmzl3+Bx9g32M7R5j02ObaLuqLTheuCks5n5lC8/xCCVDeK5HfjpPrVAj2ZekOFckOy797rgQbQkFstJAeg6QK0IsLH3onv84GfWf9wSY17PY64ZyqiLs+aW0bN/fDa+fFpf41T0+q25JPFx/N4RN2b4eH+c4UCjLMW1HHkdDwrLXo9vkHxUQrWg+8+75YL/mA227EeVWN5Mzk419fbAtPe4pAeVWodEHXzeyq6sE6j3viiLF18KMHFvVwHVwfMbTsWvM/cNR2i7/F5ixpqA1zCpllhnRlQMTO1BQNJ1GpJv8ricDKArY1QqaaeLUqriuhaoa6CFx0vAURWLhfMMqRVGpFjMsnv8xXdd8EEWV61Oz4J130kxN5dm4sRddV3Fdj4sXM+zePcaePZuJRo3AcG7Tpj5s22VxsUSxaK2IdOvqitPTkyAWMzl3Ls3TT8tza9a0cP58hqeeOroi/m1k5MM+g59nbq4YnH9urkCpZNHf34RpqqgqLC0tMjY2xqZNm2htbQ2Aed3ka2JigpaWlsB8bmBgIPB0cV2XAwcOMDAwEACedevWcfPNN+O6LtFoNDBl7evr45prrqFQKDA2Nsbg4GAA8iuVShDZNTQ0RCwWY2ZmhivXdqLM7hBQHbtd2uWy34XEr0Plx7K+fEpiYy/7ifSs6+2wtFdc4Y3LAdu//UpSpF/cDW2fl2PNfXpZ9NsfC1Cf883wUiPL5h3+/EKJgT0ezFVsz8CyPTzPRlE0bLsCwKFDD3DmzPe4++4X6O3dgG1XUFWTl176NP39H6S/f9Cf5z1JPN6FphmAwoEDO0il1tPXN0ixOE9X143+fCHqy70b5wCFSiVNONyMrkdxnAq53ASjo08zNLRTIupqZWpajLJV49+/9iIPfPAjOJ7LO5cmeF/qaiYyc1wqZrih5yqqdo1nf/hdfvdf3ElHvIWoEWY8O8e/PfmfeeRDv0emlGe+uMQNPVfhAT+dOkNHvI2uZBuu5+K4DuVamZARplAtETXD1OwaJavKn5/8z3x8w6/TFmuiWCsTD8UoVIskQjFCuolWT8wAFhcb9+Pk5CTNzc309/czPj4eROyePn2aHTt2sLS0FKwbHh4OlIrLI33rbYyJRIJ8Ph+0aIyOjrJ582bK5fIK3yHLsjh8+DCDg4M0NTVRtCxOzMyQSib58tgYz9x6K1HDwNA0CrUaUcPgxOQkG32mPVup0ByJ8NmDB3lfdzd3rF1LKpHA9jzmi0XWP/882668km9s24bjeTiuy+vT02zs7Q3mZe8u/32Wd3vc/wdd6v3pnieg/P+6z/2/ztLruklb23vYvv3bAIyOPs2ZM98jm53AcaqMjx+jVsv5EnuFEyeeo69vEF0Poaoq8/M/Q1E0cce1KqCbaFt/A3Rd+teP/UDY8LEjKLqOO34BJdmMkurHKxbwNB11y6+hf+YJlO5enAP/CdKLEArhTVxAvXWrmNMd/6HEv9WqeIsLOPv/D5R4HC+bQdENtDt/E5JNsLiAc+CvURJJMAyc7x8E24JEE+ghvHpkS2S9z6b7g5DW7kvdXhP2XIlIL5q9INvWe+OtSZnEOYsie7OmGtFvbg7wpW9KHc5B4A7rZEFrkvOWTopcvx774tXQKAbZoUePHuXMmTPk83lCoRC33XYb+XweTdPQNI3+/n4KhQIDAwOEQqHAKKW/v59oNIqiKMRiscBZ3vO8APRXq9UAxF9//fWYpsmmTZvQNI14PM7Jkyc5ffp0EEcXjUZF3mXbNIVCfOm22xjqk2gW23E4OTlJxbK4qrUVkKruQG8vSz6Ydz2PBw4dYjqf5/7161kslzkxOUnFtumIx1kqlzm7tISuqqhAWNcZ7Otjz7FjKIj53Te3baMjFmN1czOpZJITk5MUajWKlkXZtsnXahyfmKAjHOY5z+OjNPLXPQSo55FYtxoSC3eZ/3wEkbMbCOi2kb73KAL4k8DnEEa+HQHyD/vrK8Acor3YiBQADKRn/h6EgX8C+CjwJwi4e/bZhmR9dFR61N95p+FUrmnCGvf1Cev71lvCkufzDWb86afl8eCggMR4XPLep6YE6NcZ/AsXhAneu1fYdkURoHnDDSKNP3dOTN0cR/6HS5cEC6U2pMT4xlCZfWNWDOM64gFod22X2Z/Mgge5yRwzfzuDU3OId8TJT+U5uOMg8S5h717+3MvoYZ1tf7aN1jWttKxtoZqr4nkeGx/aiGZqQZ/7xNgEnusFRnXjo+PYZRvN1EQmb2q4jrfiOqxaJddseloKFHUjOpDiiOsKa24YUvjYuxdWr5Z+/k9/Woz65uZEMj83J9fpq1+V36+/Lvuqqhjb3XCDXM9iUVoZyuWGo3yl0oiKu3RJpPnT0wrVkkP6bJrx0XGsooURNTAiBlu/upVrfuMaDtx/gFq+Rn5aGPjSpRJbnt1C6VKJ4SeHiXfHue6j11GYLQTqg8z5DMX5IuHmMFOnplh8ZxHN0NDDEt1oV22W3lkSEjBsoId1UuvFtV5RfXO5eo971RLTtnfGRS6va/4NMQ4hQ8B5rtCQLxiGAOx6nnulJq7yTQlh8XVNQHt/t29EpwhoX0jLb9eT7R1XigCqKgx7vijMvGnI+qbLfdDu+solVwzjXMsfvbwGaFdUYd/rLHruoh8ZV4WsL6mvFRpS98KUnDeUlP/PrfmMuibS++y5Rq+8Zgporx/bAxeFWilLcWkKVdXofM8wZjTp9ycLsFZVg2hrClXTscoFIi3dWJUi5exc8HqscpapN1/BtS2sco6Z09/HtW20UATPdVF1A6tcRDNCFJemBf/ZNaxqCdd1cGoyftnVEm1r/oUo6jwPPBfb9piYENB93337efvtRTzPY/XqZr7xjW0A7NhxgPn5IgMDfVQqNmNjE5TLFtGowcMPDzA9neeGGzqJxUxUVcFxXL785TEGB4WhF2d5LWD0N2yQ+Lf161Nks1VmZgorzt/WFiWVSqLrKtlsDfACRnLMV1T19/eviGxbs2YNvb29HD16lNOnT3P8+HFSqVQwrtXbwur+MENDQyQSiSAZJRwOMzw8zNq1a6nVasH5jh07FhwnGo3S0tLCli1baGpqwjRNP97LwOv8GjT9L6C1ihKv6cMy9hu9MPegeNSsOSfAOrJBQHt+n8wN3IK4xHsVab2zZsW0zpqWx8vnAHqvKPo6noPLfy799Na0v/2snNOryHHDN4BzCcdVSafP8tJLD2BZJQwjSqEwx9DQTq6++ldJJLp5883/yCuvfB7DiHDnnV+npWUNsVgn27d/i+bmyygU5vA8GB8fZcOGzzA1dYpEoofe3gFKpQUOHXqApaWz/vV2qVQy5PPTTE2dxLKKHDr0ILVaDlXVyOWmOHv2ZXK5SVFi1vI0R5L8eT2SrZjh2R9+l454K67r0hZtoiPeyhcPP89CIc0NPVeyWMqKIZ0Cf/naCIfOHKdQLTFfXOLariukJ76UZV3XWrqbVuG4Dm/OvMNSMUdrrJmFQppvjL3AYjFLW7SZ+UKa33v/NuYKS4T1EBWrxjO+PP/v585RrJXFzsMnGOqqj7GxMd773vcGTHsqlaK5uTm4z0KhUOA7VGfIa7XaCvVG3ST4yJEjpNPpgJ2vy/A1TQuievP5PCMjIxSLRbZt20YyKUXHqGnS39REzDD4szvvZLFc5g8OHOBcWqJCzy4tsaG3F9U3qkuGw7iuy7NbtjDY18fbS0u84/fDlyyLUx//OF+67TYKtRqzhQIV2+b6zk5KltVolXp3+Se3vAvc/5kv/y0mdXVgftddz7Nq1dX/KEuv6ya6LtrSTZse5e67XyCZ7GVk5JPE4114nsfk5Alsu8rWrX9KX98wS0tncZwafX2bKJUuoeohlJZ2lHgCr1zCO/82Ht6KvHavVESJRnEO/ifpOY/GJOanmMc59J8hn5Ue+GM/QDFMtO2/jWIYQR471apMHpPNaLdtxysUUFP9eKWiyPEBr5ATg7qxI5IXesevQbJZGA4cFGtCKuJz90sFXDHFMG7+EUAVGVv5pLDkmBDdBBhS8U7cI+Z1gXRuRp6vS+PVFrAvAZZI3tSoDPR1Nkvv9PvkdYh+QNj4rm9LkQAF3BK6L1O66667ePjhh+nv7w8Yg87OTjzPY3x8HMuySCQSHD9+HMuymJycxPM8rrnmGnRdR1GUwGAsnU4HUvvlapt6dTccDtPS0hI4zG/dupUdO3awdetW0uk0s7OzgatqwjSJmyYzhQJFy2LHwYO0x2KEDYNcrcZbi4ucmJxkIpfjC0eOMJ3Pr5C6X9bczGQuR3ssxv0HD3IukyFiGLT7kq130mm+cOQIg319PHPrrZyamuJCNsuJyUnipsnG3l6eHh3luo4OpvN5/sg/h6oonEunqdg288BnEcb8wwhw/5L/muNIB2H9ZwyRsPv2V0Hfu4rEwi34+6xGGHwD6Af2ItFxc8AXkNi3MX8fE3GR343Ex60BvuGf71JYGHXDEHZ9/XoBgu3tAsoVRTBTuSyZ4Pv2wZe/LOs6O6UH/q234OtfF5O03/otcUfv7BT5dn+/AMdkUqTh0ag8F4sJ2Dx3Dj77WQGo69cL8z4zI4CzvV365V1U9JBO5kKGqZNT9Ly/h1AyJFnttks1V+XgpwWYGzGDWGeMRE+Cg/cfJHM+gx7RuW33bSRSCVRdZcNnNsjFVxr3X+ZChtKlEi1rWnAsB9VUKafL9A70Ss64AuWlMp03dKJHBIzW8jWmX59GxWHnTo+PfhSee86jv1+u4de+trIgMjcn4Hp2tgHKN20SZv3ECVEYrF/fMPt7+GE5TqEg23qeGPmNjUkB5AtfkPWdnVIw2LdP9iuXhXl3XfEayGYbz+/eDVbFZXTXKNFVUUZ3jRLvjLN0domJsQlUQ2XjgxupFWvkJnMMPDxAbjKHoij0D/XTvKaZ3HiOA586QLI3yd0v3E3vhl6y41msosXBHQeJtccIxUNkx7NMjE2QPpdm6uQUqfUpQgmZANtlm0pGWhMmT076N7vfW16tyZtzearBnmsarEkJkNZUMZLLFgSIR0MNZ/imuABtw+9V11T5uWq1MOuaL01f2wfXXgFX9AvoT8b84qbPdIVM+VDkCrKPYTR62bPnG0x7vMeXu/vfqXVJPL6ZXahZQHn5ks+ST/6CpH5KtkmuFoO5zFk5h9+zjufI8ZP9cvzsBdkuuRrCqwJXec/zsMoFwsl2bKsiUWnpWTy7hufYWNUSmhkh1pJi5vQPiDR10JK6BjOSINrcRSk9i1UtYpUL5ObOgqKiaDptl9+Eh7jCO7YoWqKtPQBEW7rF+M7/DCkoaGYEq1r0n1Mppqf9z5qKqiqsX5/imWeOsW/faWZmCoyPS495pSLGdQMDvUxO5jh/PsODDx7ihhs6ufzyFjo6Ylx+eTMbN/YSj5s0N4eIRAwMQ+VrX9vK8HAfqqpQqdicO5fmt37rGr761a0Yhsa3v72dcFinqSm04vxzc0UqFZuFhRK2LXJi22aFIevExASWZa1YV1ePLV+33K07mUzS29tLS0sL27dvD8ay+vO5XI5IJEI4HCYUCrFp06bgOJVKhdOnT5NOp3nxxReDsbFWq7G0tITnOShe2QfftswLZu8V81lrUor6zjTMPyASdzzo/BZccUmM54J2uGkZ542UAHujF9BF8df1TZkXzD4s+6thv5cdaeGzFxteO2rcn4PMyXE9mxMnnmXjxgfRNJPx8VEURaOlZS3bt3+b1tYrmZv7GZs37yGdPseBAztIJlPUagWWls7584AItVqB7u730dR0GVu3fhXTjAMeR48+xZkz3wvMjMfHR7HtMrncJLFYO2NjX2bjxgdRVZ3x8WMkk/3cf/8ZUqkNTE6eQEXa4z624dcZWH09/+61Fzl05jh/fvJvWCxlMXUjyGD/Dz8+wJ3XDHFt11p+MnWGqewCD978UbZcPUA8FOWGnquYzS8GPfE/mz3LdHaBn82epSWSYL64BEDECHFj6ir+w48PgAId8Vb+49++xHs6LsPDY6GY5qbe92BqBtd2XYHig/ZqtUq1WqWrq4v77ruPO++8E8MwyOfzQd95oVAgkUgEhnS/eF/WlY9bt27lwx/+8IqC09jYGJ2dncRiMUzT5LXXXsPzPLZu3coNN9wQECixWCyI+h0ZGSGbTtMfj9MZi+FBYDi3a3SUmGmyUCqB52G7LrbrMlcoULZtdFVl99gY7bEYu3yZ/a7RUTpiMZpCIaKGQVNIiLy4afLG7CzVesX73eWf3PIucP9nvvw/MakLhRIBaLft2i+x9bpuEom0Be6hdafQY8eeQVFUensH/EgLh3A4SSzWzoEDO0inz7G09DbptF+RTS/i/ugVlKvXCVhONqP+yhYBz+HISuM5gGo1MJFzx45ID/zwraCqwsjbNurQLagf/hhKwpch5jI4r4ygJJJ4eBIxl74kLHzdoG7zdrz0Es6Bv4ZsRiZ6irqyIr64C7waLD4tBjN4MkCHb5CqNjXJElYNiXXp+rYMsIu7fbdX6U2n81sSLacmpRhQeVPOU890xxNjG7cgoN06L4x7vddd7wIlgqN2k81mAyOTej8VwPr168nn8+zfvz9w3c3n89x2223E43E6OzsD05T64nkeoVCIRCLBwYMHyWQyAIyOjmL4cR+maZLL5di/fz+WZRGPx4MJj+d5JBIJ+vv7RWKv65RsG01R2JBKBT1Xe48fpz0WI1ut/tJAsXtsDFPTuGfdOp4cHiakaWzo7WXv8eMykBw9SnssFhxj+X6aqrK6qYn3tLVxQ1cXf7B/Pwqwc2gIzR+Ulp/j1jVryNo2uxSFAcQ0bsa/Fl9Evvhy/rq8/3MdwqArCNOeQaTzSYQ9b61/5oBPAu8gDP0gAtBjCBtfd5nfhfTPX0BA+3v987wF3AfkTalXTUw0XOFLJQHdTz4pzLlpiiT7c5+TiLivf13IQdsWUFguC9A+f17WP/AAvP22gPRwWMD5H/2RsPFtbQL077tPzhOJCECdn4ff+R3ZZnJSos327pXHVtUlP50nO54NDM1qhRrZ8Sz779tPYbZAan2KY88cw6k5VJYqHHvmGKf3nSY7kcUu2bzy6CvkJnJ4rkfrFa2gQPpsmv337Sd7MUvPB3rITebIXsxy6LOHyF4Qg6jceI6Re0fIXsiy9M4SiqJgl2xG7h0hP52n47oOamWP7m6Fb3wDFhaUQDnw7LPSnVM39ZuZkV7+Ojs/Pi7XrF4wiUbh9tsFiPf2yuuPxRpGdjMzDfXCciDuug2DwcFB2e7sWXnfPvpRkeY/8UTdgNAj/Q8zDO8cFgZ957DI2KfywbVVdZVEd4Jkb5Lje4+T7E2iGipWySI/mefoU0c5ve80o7tG6R/sRwtppDakGH16lNP7TgcGdKO7Rn/ZiM7vi89OrAT6Xh0sT87KbxAm3GOZkZwmf7ueAPV4pAGYbX+CV7OFHY+GBcSDVJneHhcmPltoyOKT8Qar7vnHcF1ZBwL0kzE5n+KD6ML0Skd3xwfwTq0BsJ2afID1kPS0x3slHk7RRBIfWQWJXtk3eZlso2gNgF+YkvNnz9e/OEVmr2jC+jtVXx5viZze88TQywfUmhFGUfUgos2qFpl/awyrksOqFIg0d2FVin4sqgaqRrSlG92MEG1N0X/Tr0mRAjDC8SDLXTejqLpEdoqpXQXw0DRDIq78vtqFt09gVXKoqi7u86e/j1UWQ7RwWOfJJ4cZGfkwg4P9RCIGnZ0xTp2awnFcPvrR69mwoZfJySxPPXULTU3hwLxuejqPZbmMj2f58Y9nqFbtAHD39zcTi5k88MAhrruuA0VRsCyHCxcyQY97ImESiTTOv2lTH67r8cUv/ohy2WZ+vohl2cTjcbZv304ul2Pfvn0cPnyY5uZm7rzzTmKxGBMTE1QqlcDDpR6bdfDgQRzHwbbtwFCuWCxi23YQ7+a6Lm1tbei6Tj6fR9d12traAoAfj8e5/vrrA5a1Wq2iqiqaphEKheTaO9Nw6Ysyjqsx6NgrTHhdPr+4259P7PHVdbY4zVvnQIkvmyu4Mq8ofE/mHm5WSIPZ++Re69wt+8ze588RRsVPJ3zdMjLBb/lYfBYig2iKxdatX6OpaTWVSoZUaj3Nzf2k0+cYGbmXdPocW7Z8BUVRgjnd0aNPUa1mKBRm/Mz3EI5To1RaYnr6NTzPwfNcLKvI8PAT3H33C9h2mampk6RS64nHu+jvH6S5+XLuvPPrtLZeyfT068RiHRhGmEJhLtg2FJLvhO7kKlbFW3jkQ7/Hq/d9ky/c/gnaYs2Yms7HN/w6W64e4KGbP8pM7hJPv/oXtEaShHQxkXvoV36XqiVz3DrI//OT/5nmSII/P/k3NPvRcDf0XMVEZp5vjL3A+3rew+O3/j6u5xExTD49/C8JaQaXihmu676S96XewzfGXmAuv0jUCJHP5zly5AiFQiFI6zlw4ACZTIb+/v6AVT927Bi6rqNpmhTvLIt8Ps+2bdtoaWnBsiwWFxc5ePAgTU0SzTgwMMC6desCWfyhQ4fI5/PBnG5iYgLHcYhEIqiqyqFDh8hmsxQKhUB1qes6F7JZ7h0ZoTeZ5IW77+aJ4WFURWGwrw/bdblUKjGezfIF38gX4Ot33sllzc18fetWRj78YZ4cHkb3vzcuZDI8cOgQS+UyCrCxtxct6J96d/mntrwL3P+ZL/9PTOrqi23XKJcXyecnKZcXfwm8h0JxdD2y4vihUJJcboLJyRO4rk002r7CZT4abadYnK8fBHXjMOTzOCMvQHoR7+wZ3IP/CXQDdWiZIzyAaTZM5IZvQ0k2QzSOs/+vwapBPguGidLUjJfPQrWyMh7Ov50D8D/6fdTe1SLL95l6d/RVf2KkAvoyedpOWdf2KCTvXlYdnxMm3QPcjPSlY4q0TVGh41kxtDN6fbfXi4Dm576npCKuhOXYXlkG58rfEuS+6v0Q2Qhe1a/kVxE5qB1IrEZHR4lGo4yOjlKtVmlubg4kfsePH8cwDBKJBK+88gq5XC6QX2WzWfbv308mkwmAfy6XC6Rc1WqV9evXrygQhEKhFeYpBw4cwLIsyuUyrutSrVZZXFykUiwyWyhwdHyckK6z0zeGe2J4GMtxaAqFeHTTJhaKRXYODYlZytAQi6US39q+nbZIhLlCgfAyV9OdQ0NoisITw8Mr9ntyeJiYYXAxm+XtRZF4rk+lmCsWmczlcFw32PbxoSEc1yWVSNCk6zznefwuIlPvQOb0TQhzHkVk8XMI6I4gcvnzSPRbzL9L8kif+iQC4OtgfQ8ipx9ETOpKwJeR3vYWpO/9ZX/dB/1zaog53qB/HE2Vnum9exuGcC0tEkHmusII33gjvOc9Dbn8hQsCOItFAf379gkjDw1Amc0KyKwz9U8/LWC/DlwnJgS812Xzrguf/KSA1hdeELAJsJhWiXXGSG1IcXzvcU7vO001W2V0lwDFsd1jrNm8huEnh5k6NcXZl8+y6dFNrLtnHb0begOgObZ7jEqmIlnvjhcAzdFdoyiKQu+G3uCYo0+PEm4KN7Z5WhjqWr624niqphJKGDiOKA3qr7XuKL8yik2uZR1kb9jwywWTrq6V+/0iW26a0rO+PAnAtqU//pvfJIicqx9zfFyKL5dfLgaE7e3Qt6mflita6B/sJ9oeZfLEZOD4Xr8enus1rsWuUXGLdz3iXXGGdg6x7p51DO8cxrGkV14P6wzvHJb1T4oZ3fATwxQXiivet6O7juK54jC/HOgrCsKQr+n1jeN8YzjbEZBu2QKgTb0hn9Q02cZD9skXG439HrJ9zfZ7PfpEgp+MyfN16X08Iud9Z7yxr+HL5BWlIb/3FAEzydUQbpP+daUubcePhXNlnZmU/zFzXsC9HoLmtbK/FhbwrZqNfV2RaNO0BlqvETCP1+h110y/N973VzaT8voUJZDLq8sUTVY5L5FulYI4uusikbfKRWKtKZp63oOmm1jVAsWlqYDVL2cv4TkWsdZuFM2gVsxiVcRNXdMMXMdi+mevUitlwfPQw1E816OUmRaDu8wsViVH2+U3oag6ejjG4vmfkJs7G8TL2bZLNKpz003dVCoWXV1xrrpqFTfc0MkjjxymXLYwTZWbburm7/9+gWrVIRqVOLddu0YxDI2JiRzt7THuv/8gFy9mKZdtTpyYxDBUHnxwI6apMTOTJ52uMDmZCyT2xaJFpeJw2WXNbNjQy/x8EdPUeOihATRNYc2aZqrVIi+99JJ4qHR1cfXVVzM4OCi53pqGrut0dXVRKpUIh8NBwfrQoUO8+eabweMjR45QLBaJRqOUy2Vs26anpycAYeVyOQD89fHRcRwWFxc5cOAAXV1dfOYznyGRSJDJZCiXy35rmSsgufVBAeX2vPyODMgYr7U05hMde8QTp3zSb8WLSlF+zTmR08/ukDlDzwuyjxIRIN/6sPxWFPHLye+DxS9D+Ho5lxoHvQPmdgig92rQ9VVI/BaekyeXG+fgwR1YVpGpqVNksxfJ5SaC+Znn2RhGjC1bnmXHjp+zZctzNDVd5qsq76VYnMMwIuh6KCBkstmLzM29STLZT3//ENmsRMtNTZ0in59hYuI4rmv7Znd5Ojquo1icJxZrJ5sdD+KDbbtEXXGoKSrpco7dP/j3jKdnqVhVfjr9Nt1N7Xzh9k8QNkLMFZb4vfdvIxGOUrUsvnj4eZaKWcJGGFVRVsS45SoFPr7h18mU83xi428AAuyPnH2dWCiM7ToslbJULIt3Lk0wm19kMjMHQF9TB4/f+vu0xZpQUSmVSmzdupW2tjYUReHkyZP09fUFSsXh4WE+/OEPs23bNjKZTJD009LSQnd3N7lcjlwuR7Va5cSJE8G+mqYFx9Z1nVwux8DAAIVCgebm5sBcsc7mL3eyT6VS/M7v/A6p/n7KjhMk6OzynePbo1FURSFfq2G5Lp2xGHHD4JbLLmN1czMu0u8+k8+z4+BB+pqauMzPbC/bdkCSjGeznM1kuG//ft5Jp6nVXVXfXf5JLe8C93/my/8d+ft/aXEcK8jizOenceqxN/+F44tBnR1Io+oDRN1ddGhoJ5FICz1dN+GlF8QdXtVEsr6cRR/4ILguSnML2vbflglaqYgSCotr/PbfRmlpBc/Fm5nE+/lPcUe/L6A9GpOs97NnfgnoY+h4lrVs3a14tvRArigS2DZSCT8ug23Xt8BYLS/YuEoGSL+KjeLDN/vCMjdZSxxkZ+8DZ0H6z1ZkwtcgfK0PxmeFmQep0OurhcWfe8CvwuvSq+bZ8vzcI+AWUFWV4eHhoE+vVCoxNDREOBxG07Rfynhf3gdYqVRWrFsO/Jdni4bDYZqbm1dsF4vFWLdu3QpZVz1ert4PPzY2RrFSYSKbpS0a5Q/276fDdyaN6joXMxmKvjndTd3drGlp4c/uvJM1LS00RyRm6s35eSJ+FntfMslzW7bww4sX+fzhw6xpbmaov581LS18a/t21rS08LmXX5aIOd987vY1a0iGQvQ1NfH5V1+lIxbjm9u2MZXLYWoaby8uUvL71EoIu34SYcY9xOn9PsTlPQ6MA59CQPskEvdmIIB8BhhA8tkdxHhuCAHuIAD/Bv/xPoRp70Ai4E4h0vxziJu8AzyHRMNpNWF90+kGGHzsMWGKLUsk3vm89FNPT68EpqtWye/16xv7RaONv1ta5Dj14z7xhDx+9NEGcK0D1F27IJNp/D04KMdXFGhrccWJN6wz/ISAw1BTKPh7+Mlhkn1JWta0EO+OM3VqinhXnO3f3o4eaewz+Ngg4eYwpUuSzT70eAOAaoaGHm1sO7xzmEq2sgKkli6VVp73iWGMmChFpqdF7v74443XryjLmW4B7cePS/HjW9+S17t+/cqCyVtviRS+fs0SicYxnnhCcOWmTdIT/6/+VaOfPpcTZt51VxZhnnpKMGr9uXxeITNdYuH0AuPHxqlkKyR6EmhhrQG8nxhG1dWg+DH42CCqrqKoCoXZAk39TWz75jaa1zZLu/ixcdIX0zRf0cz2b22n+bJm8vN5mi9vpn+oH1wa1/pJAftaaOX5UMCLRwWgn5v0K0a+tL0O3m2n0b9eB+aFkgDvXEEAd7XWAPd1IL+8Px5FbmwQ8znHXdnvbvg3vmHIPvW8eAUBuHWmOz8hzHo15/epJxqO8I4P4uN+pp9dj4qrisFc+VKjL375sermcyDHCbf5xzzn71tobOc5BBFynuev83AdC7taouuamzEjCWnpKOZo6rySWGsPHvifpRhWuYgeilBKz4LnEm3txq6WBMy7DtGWLjTdxLVrWLUSAJG2FEYo5pvZAZ5LONEu/fPNXRihOGasBU0P4bkuPdfewntu+QSx1h5Uv6OgvT3G3FyRz372EG+9tUg+X0VRFO6/fz3T03k+8YkRXNejqyvOjh0HKJVsXnjhbnbuHMa2HTZsSLGwUORznxsgGjWIRAxuuKGTBx88hGGoRKMGsZhJPG7S25tk797j9PQkcF2PkycnOXcuzcmTkxSLFvfffxBNUzBNDdd1GB09GhSVdV3nrrvuCjK06wCp7s9SV43FYrFA7l7vEa4XnrPZLEeOHAn8YLLZbBABNzk5iWEYbNmyhXw+j+d5FItF7rjjDorFIocOHSKTyQSpK7ZtyzygY48U3Z20zB3Kp8QgzivD+RsbLW9qUsB63bBOjYF1wS/a69D6kDD10UGRyCuhZdL5lJxreRHAWZT5hzUuBYP8PjGls6f9ecgsjtoSqC9HR5/2Y92eIpVaz4c/PMKdd34dx5F7v1ic50c/EuVAPdJ3YOBzFIvzKIpGPN5FMtlHf/8HOXZsN9FoG4cOPYiiaPT2buDkyT+ls/MGdD1Mf/8gqqqztHSWQmEOTTNIpTZQqxV/IYZuF+BRsarYrsPzJ4Qx/3evvUixVua67iuYzV3iX7/8HVzPoyPeyl++vp+KVWO2sBhsa2gaxVqFxVKWb4y9QLqU48aeq+lr7uT67itpiSTJlHN8fMOvs/dXH6Ji1QJJ/VxhkZZIgrnCEm2xZr54+HkmsnP8bPYsC8UMKEqgSlxcXKRWq7Flyxb6+vo4cuQIS0tLxONxmpqayOfzwRzp6NGjuK6LYRhEo1Gi0SihUIitW7dy7bXXsrS0RDabDUwUXdclmUxy/Phxkslk4FVUb9+IRqMrnOx1Xaevr4+abZMul1eQIVXbJlsVn5j5YpEHDh3i7aUl2qJRNvb28qkDB3h7cZHWSCQA6E8dPYrtumi+mrJOvGzo7WWXXxR46ujRd+Xy/0SXd13l/5Hln4ur/P+/S7Wa48UXP7HMZf47hOpMxH9hqdVKWFaJgwd3cPr0Pq677qPcfvten+mXamq1cInYkTG802+grLsRbetv4Bz8TwKuY2KdrdSquAtzKL2rZS9FFVMkX8buZRbFkX7oFrxcVuLemlsEzC8t4p44irp5O4oZAs93lU8k8PJ5lI5OFDOE5ziQz+KO/RD1tjtRDBN34gJKPInS2YLi5kSipjaJ87vWJIy63inxLM6M9KfX3eUvXA/xX5WBefbeFS7wWBd9R/knwbxCJnfWGZHOdX6LRvSbK730bgYqfwfRD4L1tn+e9VJBd+aocjkoUVzXXdHDV6vV0DQtiB8JhUJB9fbo0aMMDg4Sj8cxTTNwox8eHiabzQYmPfWe97rJSi6XC1xP6/E4nueRTqdXOMybpunHyBTIFQqsSqXYcfAg3ztzhhfuvpsPrl7N+UyGp44eZefQEHHTpC0SEaf5SoWyZfHU6ChPDg+zprmZkm3z+vQ013d2EjdN5otFOmIxSpZFsVZjVSyGpihUHYeQD8a/NDbGzqEhrmhpIVutUrIsVsVi2I6DqUv/s6oojE1MMLBmDW+rKruBryCu8c8gjvCTwHbENO5biPR9n//4OwiA34UYzy0gPfLzv7BuGOmJfwZ4HGHfH/CPPw1cj7D6GvAJCNzt6/+PWYD7PybS9BdeEMBsGALmL14UYBkKCYtbzwfftUuA5eSk9LD39cnzzc0CzOs/qipAdHpajmMYIrnfuFE+x6oqkvJduwTYrlolMvudOxts/8mT8CuDNTLn0+Qmc/QN9kkHSdXGiBh4rhdEwNVKNcyoKb3TzWH0iIALx3LQQzqKqqCoCq7tomjyPeHZHoqu4DkeVslC0RQ0Q0MzNayShVNz0MM6iqZglyU3HhXcmouHh2d5OOEon/iEElzDoaHGd5WiiCrB8wRgh8OiVojFpMUgHBamffk17euT197ZKWz53BwsLUnxZNMmgqz3ffsE0H/nO9KasHu3FAyuvlqk8k89JWB/9WrZZ3ERSiWPNZc5TB89R2pDClVXscs2iqb4PcoaxYWivE4I+tDNuIldsZl+bZrO6zsx4/I5LM4VMWIGdsXGLtoc3XWU279yuxjOAWbcJH0+TW4iR2pDimq2ihEVc7rSpRLhZonfM0IqSs2SCLdkXMDyxCys7QXLaTjAV2vS327763q7fKCtw+Sc9LJXaiufC4fEVf7aK6QYMD4DfV2N+DfLluMud6Z/Z1z+j+aEbH/VasAH7pmzAr4jq6THvTAtjPry9Ym+RnRbfqKxvnmtjDG5i8KwZ/+RYyX6YP4n0PG+lfvWn69H0S17zk304zgOimag4DX6zlUVDwWrlMEqF0Q+X2frVY3S4jThZJtEyJlRwMN1bKr5S0RbumUcdB08V44tKgQXPJdSZhYjHMeINslnybFR6t4ugOdYuLaF61osvHOK5rW3ML9Qpr09xr33jrBv32nuuWcdf/zHNwPQ0RHjU586wL59p/n5z3fwR390JNjm29/ejmGolEoWhqFx4UKGyckcvb1Jdu0a5dFHN3Hs2ARr17bQ19f0S67y9fPk8zX27j3Oww8PsHfv8eD4X//6nbz++iQ33tjE6Kikp9QTTOpso67r/N3f/R3XXHMNlUqFs2fPMjU1xebNmzFNE8dx0DSNdDrN6Ogod955JwcOHAic5bdv387ExAR9fjSppmlBDrc4pKuk02l0XSedTtPe3o6u6wFLX6lUaG02UbChNCbgevFpYcjtBVHl2ZekPW5xV8NF3i34/jaeEAV6Gyz9KXR+DSEPToLRJ5G09jQUXxUgHx2QfnZ9lcyrZj/ly/G3gN4j2+rdsj7/XUjcg7XqWyymLzI6uovh4Z3kctN0dd2IYcSwrCKHDz/Cpk2P0NKylhdf/Bh9fYP09Q1SKMySTPYyOrqLLVueBRTy+WnGxnYzNPQ4sVgnqqqhqobvSC+FlmJxjnx+hq6uG6lWsxhGnIWF0/T1bcLzXCYnT9DXN0g6fdb/n54g0XIlF5ZmWCxl6Yy38vzJv+H3199FW1TmJf8wf4H7//pL/Of/7Sv82bG/4tCZ42y5eoDHb/19nn71L/jYhl8n1dROxaqx+wf/Pnj+Dzd/nKpt4XouUTOM4zooiorruex65d+uOM7PZs9ybddann71L4L1/8v7t/H/fX0/X7j147x04OCKRIJEIsHIyMiKe2lkZIS+vj76+vqCOVL9nj169CibNm2ira0teLw8/QCkdXH//v3BMesFo2w2+0spChMTE2zduhVVVcmXSoRjMSq2Tdm2iRoGCvDa9DQ3dkmx8q/+/u85NTXFn9xxB586cIB9p09zz7p1/OkddzBXKDCRy7E+lSKi65xLp5nK57mxq4tMpUJXPM6FTIZnjh3jyeFhrl616l1n+f9Oy3/NVf5d4P6PLP+zAPfl8W/Dw0/+32Ls6xF0mcx5jh59isHBx4jHxTzl0KEH2LbtW7h2lQhhMZALhcEwUDwPz7IEMRTzAsq3/RZk0yJpH7oFmlpw9/8faFt/E+fgXzeA//bfxlNUlLoc0pPeLnfiAkosAfE43j+chuYWiZCzLNxXD6Ld8at4hTze2TN4M9NoW+4C18PzXDGKd3MC0FW/WFH5iYD0em+afekX4uL6/f70Mnj5RiSceSUiXqkCfjVeDUs+q3VRnGdBigNurlEo8IpgrJUM2OXnUSJU6QsmIcsjaepf6sPDw8RiMU6fPk1bWxudnZ1AIzvUcZzAlV5V1WCS4jgOL7/8MrfeeiulUonjx4+zZcuWoBBgWRbNzc0cOHCAVCrF2rVrSSaTQR4p4PsbuNjAhVyOsK7TEg5jaBr3joyw7/RpPnrddXxj2zaqjsNrU1Pc0NWFAszk86xtbeViNstTR4/y+cFBOmIx3pidZUMqhYc4yduuy2KpRHM4LC2w/vn/6u//np/MzPCnW7dSqNUIaRoLpRId/mCmIOYqjudBKMS9ivKPRrF9DbgfeBJxlH8LAdRP+I8/sWzbryMS+Y/9wjoNYe3r677tX595pDf+duCPgR6kzz207H/4OXC2Bn1nYGJcwHUmIwB9dFR+NzcLc/7aayKX98UKQYY4wI9/DK2t4lw+OCjrPM83+/a3W1wU4vM972mAzXxecMDyyDTHJxIfekiM3Xp7IaJWKC2IY3kdSGqGFoDwqVNTdF7fKQBbFXOx4kIRq2IRWxXj0AOH2PToJpovb8Yui+yuMFvgxLMn2LxnM0bEQNEUFt9alHizRyXerB7HgyI58uGmMEDAPnuuJ8BXMTl7TuGppwR8d3SIoVx7Oxw7Jo/n5xug+8QJMfKbmmqYATqOFDty0grMG29I+0A0KgB/YkL2r7f8jY8LMH/ySSme3HtvA8h/+9t+O7jfsn3+vLjZ1wsD77sih1opkehJBKZ8/cP9OBWHyZOTxDpiwbq6iZxVshjdNcrwzmGa1zTLV4ntMnliklhnjLYr23jx4y9y5ntneHj2YfEayFQwYwLwq7kq4eYw+RmRTBfnivRt6kPRpGgSiukodVd3TRUAv5CGD6xr/N3eImZynifZ6svX5YsCysOmONP/Y9tf0S+AvP7cVatFSm/qDbBfj4er1ATE18+96Xrpc1c0Yb8Lk9KnbleFJddCjfX1aDdFk+Kpa0nfeqIX1JCsqyyKKZ3nrTyWHhI2NHdBJPOu/cvP21VxmF92XMdTKWVm0MNxVNVAM8OU0jPooRhGOCag23WC+9mpVdHMMKgatUIau1rEiMT9mDeJ2pr9+Y/oumZYwLtjyfe4ZkgxamkaPRRB08PiNF8pBsdYeOeUZLlHkqAoYpDnediuyTtnM0SjOqWSzVNPHeWxxwbp6oqjqhCPm5w9m2bXrlGee24LCwslnnrqKE88MczatS24rodtyxjyyU+O/BL4/uM/vpn29ig7dhwM1n3ta1u5//6DPPHEMO3tUf72b2fo7U2uAP1PPjlMX1+Sc+fSrFvXFowz9cLy8nitpqamQA5vmmbgzVIqlbBtm6amJsbHx4lGo0QiEWzb5tixY0G0Vr0YXSgUSCaT5PN5EolEMJ7m83k6OjowDCNofVAUxWfbIRKyUctjEHl/I6Yt8VHo+rr/ZaXC7Gcg8j5I3O0PBo9A24Og9QjrPvsJUfJFb5b5Q+vnfLWfKiA+fKP8XScUVDGGwy34RMLssli4JyQBZ/4BmYcYl1O1wXUtFEVFUVQymfMcO7ab2277Eq5rMz//M/r6NmHbFTTNZHLyBLFYB8ePf5nTp/exY8fPAYWlpXeIxdopFhfo6xsklxvn6NGnGBraSSzWAch8b/PmvRSLc4yN7WbTpkdpa7uaTOYcx47tZvPmPRhGFEVRyeenCYWSKGYTu7//7/nw++6gr6XTH688XM/Ddm1M3eTpV/4tD3zwI2TKeZ4/+Td8YuNvkGrqoFQrE9JNmX94HpOZOf7day/ysQ2/Tmu0iYpVoSmSQFNUXH8A0RSFyew8z5/4Gz6+8Tdoj8n3Z0g3mczM8fzJv+HjG36ducISHfFWUsl2itn8ChKkrvhYHotbJzU2b94ceAl5nvdLxaLlgH/r1q24rsvs7Cz9/f0riJW6iuS/FGVYv/fLtRplIFet0pNIUPWTfPoSCS5vbaXmOKiKQsmyiBkG47kcTx09ymODg3TH4ysidp8YHqYrFqPmOHz+1Vf57ptv8tHrrmPv7bejKQrxUOjdHPf/jsu7wP2/cfmfBbjD/7Ms+Hx+CssqEo93B1/M+/f/AW+++V1uuOH/w/atX0fNZPCyGdTUarxqWWTuCmCYOPv/Gu/NH6M/8q9xDiwD6Hf+JvaeL6B+5OMoXSmoVgT46zpkM3j5HEoiiTv6KurQrXjj5/DGz6PefDtEolDISRFg06/IP6uqjcctbZDL+Lnyt6KsSqBYb/k5qo8KgK695WeuPikAGkUANo6YzEU3iQzTuihu9G4O1GbQ2qRvEmT72j/4x90pPexe2S8OWL5s3u+PL42J26xXkUFb75DjqXEqTssK8BwOh8lmsyu+1Ldu3crBgwe58847mZycpKOjA1VVeeWVV9i6dWsQP9Lf3082mw0Giebm5oDBdxwHx3GYnZ3lP/7H/8h1110X9G7Vs+Obm5sDUL+cAbE9D09RqDgOrucR1jTOZzLsGh3luS1bWCiVhH33GXbHdQM8dt/+/UEl+M/uvJPz6TSL5TKDfX04nkfNcbBdl2y1SlMohOt5PPTyyzy2aRNXtrX5al0PFZgvFmmLRqnYNn83N8f6VEr8qcJhzikKTyHy9AXgKQScr0UM6GoIoAYpu+QRY7nzy7aNIHL6+v51sO8iDvL17S5HmPYk8AbCwK9BAD7+9ueBp/3/5xLQX4ILbwvr+8QTEv1mWQLEYzEB1km/bfeNNwRshsPCBHd0CDCs71s3pDNNAY7T08IE79wpx73vPgHlfX0C5r/4RTne7bdDd7fIxN//fukX9z1riOg1qtNpspNZkr1JcpPC3qqaKv3ZG3uxyzazP52l5wM9VNIVKpkKxfki3Td185Wer7DunnVs++Y2cYzXxDE+0hJBURVKiyVi7TFG7h3h9L7TrLtnHdu/tR0UAoDueR5TJ0WCP7ZnjM27N9fFPbjRONWqwtKSsOs9PbL+jTfktYBcj3prtaKIQuHll+HKK2X7epb7ZZfJa4/HZds60WBZUgQJheQc4TBBGpqiiHKhDuS7u+V8dXL00iUpooTDEAp55M4ucPJLP+K23bfx/Se+z51/difZ81mO7jrKwMMDlBZL9G3qA2B8dJxYR4zjXz4eXJub//hmnKpDfiZP5w2dGFFjhbs4HpQWhU3XDI0DOw7w5nff5LqPXse2P9tGrVhDC4liJ3sxy+jTo/zGX/4awg0jwL0OpNf2CSO+HFS7rgDu+ro6c+6z/L8Ewpcvv/ic68mFevviSkD/i9tfvVok8IXplVnudXoZ/Cg4VYB3QDv7hd7l2wnl3VhX/+1avpu8/0lVVKjmwYg0jrn8EHgC7FUD13PwY9fF2LJawrEr2NUykebOoMqmaAZOtRRksWtmuFGBA6xqwQfe69GMiJi8VYpBJruq6StAux6K+uy6sO2e62CV876pnTjxl9LThBLtVGoax8amuO66DkxTIxTSUdU6OIVq1WFpqUw6XWFxscTwcD/lss2pU1N0d8fp7BRjsWQyxNmzaaamVoLvyy9vBgjA/86dQ/T0JDBNMe5aXCyRTIbJZCo0N4cJh3WmpvJ0dYk5oqoqhMNKUKzesmULpmmSz+cDdv2OO+5YAagty2J2dpaenh4qlQqxWIxMJhMUu+sy+1qtFpi1ep5HrVbjBz/4AZs3b+bgQWFX6+NeHaSrqhqw+KqqYlkWIVNFV2soiiZtbou7JK7NWWio7YzLZDx3sjJHACn0K6oo7axxIQZq78h4b6wWb5vFL0Lb4zIPsd6GxS/585IrxS8nukkM6vQOWPqymNr1vCBteqjSald+nao5wOLiWxQKM/T3DzI+foxM5gK9vRt9Bn0niUQP+fw0o6O7GBraiWFEsaySz7g/h65H/N74SVKpDeh6mIMHP01Pz/t573vvRtdDpNPnfMPabg4deiBQbW7f/m1GRu6lv/+DvOc9v06tlicUSpLPz3LixFe4Y/vzOJ5Lxary1aP/Pz73od+Te9+xcDyPqBHC8+Q73/W/kyzH4Ss//A989oMflrSEaomYGZGoON0kaoZ559IEq2It/PnJv+H3P/Cr9Ld0UXMs/n7uHFe3ryZshPjJ1Bke/t5X2PurD9EVb2OhmOa67ivQVQ3HE5WhrmjYNSvoSQfJci8UCsG8Z2Jigs7OTiqVCqFQiPn5ebq6ujAMI7h/65nty1WLLS0t2LaNbdscOXKEzZs3S8yqf6/V52vLyZnm5mZqtRpzc3OkUikqjsO5XI7dY2M8MTRExDBoDocxNY2SZZGrVumIxYI4uGKthodPZvjkTZ1cuWfdOv7Vr/wKVdumv6mJuWKRplCIhGli6vq7TPt/5+Vd4P7fuPzPBNz/W5Y6Q3/8+LNs2fKsL7nWcF0b2y5TreaIxToxMWDiIkosjnv8h6hDt0I0ivvyi/J3UzMUC5BIQq3aYOZ1XfLa+y7Dsy3cw/tRB38FpbkN58V9aLdtx3llZAXQx/PwVFVA6MgLK54LigLX/Qu0bb+Fl88K+z41gfar21DmfkHuXpe/p0bEQMaZ9gH44yJfQwnMhJj9RGPf7udBTchFcnIrn+v8uuTBGyl/cH8UtG5h98M3NQb91odFGhcdAq9G1Ynhuh7ZbDb4Em9qagoA+ODgYCB7B7AsK4h+q9Vq6LpOuVwOTHyWV4LrgH/55CaQd/rHqzMfnufx0ksvsWnTJgzDCFzsa7UatvJ/svfvYXJV55k3/NvHOld3S+pjdbeEhMFGxhDG6NhtYkAQgew4idE3jt/JZGIjsIXH2ARhJDkmE0tyJHNIDA7GdpJ3viS+RoodB1othMCRUat14AwWoEO3pO6uPnfX+bRP6/tj7apWY8+8k8m8M9/MsK6rrl1777XWrtpVe+19r+e+70dhOJ8nbBg0RSIUbJuQrtcoXJfeIB679VZ0VSWk63hC1AD+tu5umsJhVH+f43mcTCb5SHMzYcOgf3i4RqXPVSqUHYeIaSIAXVEI6DpF2+b+Q4f4wzVraAqH+UoV4Le24igKLqAjAbTnv6/yB0pI3Tvy16UEvIHMww7QB3wa+AlwLdJpvh5JgVeRudsNwEaC9p3IvO1X+Mcb8Pc3ItPSrQDWIQ3spoCFWdh0p4zY9vTIKPfOnfDYYxKc79oldenLlknq+8MPy31TUxKU79kjAXsVRFqWXI6PSzf0aiT4e9+b8xxTFEkRF8KXI+ckNbxUklHnujp480348IdhYbTCcP8Q7avaQQErbzH51iRt17ehqArP3fcctz5yK57j1SLy5ZSky2sBjaEjQ7SvbEcLaQhX4DkemqkhHCFp9EE5o58+n+bIjiN0b++mfkk9Vl7mMu/f3U/X1i7iHXFGjo3Q9OEmVF3l+QeeZ9VXVlF3ZSvZnEIwOOe03+g/L1fPRSol2QtBGbQnn5fnIRqdi5b39kpWQzYrz0W5LOtXo+cgJ0lGR+eM7kZHZV1Nk8eemZG/RSgk19PpuVR+W7bISYKgVkGzJWUdRV5v1UmLqz97tZzg8KPv8Y44RsjAKUoafPe2bmIdMUZPjtJ2fRuqppI+n6ZvVx9d27qo66ijMFEgUBdg/PVx4u1x4u1xChMFIi0RnJJDJVMhUBfACBu1435l6MvEw8gZBtuec4R/b8nkoVSBpoY5EzqQVPdLAbnl0+c9IScCXA8QNRlULW+8qs6PuFcp9Np7rHdU5lPh65fJyHd+RLrGu37kXVHmoujR9jnN+i8VMQfUrZw0oKvWraaaUy6ZbhOXIHyl+tnmwL8nBK5TqUW+a5R4QNE032guT7heOs27VgnPs2v0edeqSMd4VcNzHcrZaSILWrErRabOHmfhZddhhuIU0+M10O55Dqqqo5lBXKuMZgR8ar3jR+s/5n9VgaKbWJaD42qcPTvL7t39PPhgF83NEe6992CN1p5IxEkms3R01NHeHuPYsREaGyNMTRVYtqyBhoYQ4bBBqWRTLjtYlsuiRREsy8E0JSjWdZVyWQL+jo44oZBBNluhuTnCW29NctVVjYRCOkLAkiV/xmuv3eVPfqW48cbOeVKwqvxrzZo1xGIxLMvCNE0KhUIN3OfzeY4ePVq7PwohcF23xjTTdb2mKR4dHaW5uRnDMGr3vCrQv/XWWykWizWqsmEYtawqMgXuCEsWt6ErWcnU01uhemd5b5S9/DqErpfSOFGaY9LpHT5tR5NMPy8LWrP/O2Wg/LZsVzoByQ3+88P3wK4GFLZK3bwoSAM7o0Pq3EMrQAniODlsL8TIyHGamq7GtvMEAnUoisazz36J06ef5o47/p7Ozi6GhvrYt+/TXHnlJ9mw4UkURcfzXEBO6A8PHyMcXsixYw/T3b2VeLwT2y6Sz4/XJgDq6hajqhqp1KBPhd9OQ8NSpqffJR7vIJsdviQS/wHKVonJUoXx/AwfblmGpqiM52b4wYmf8vvXf4JFkXo0VcUTglQxOy8afs9P/pSffeFJJnKz/M0rvdz7sd+V+d39K1NRFFLFLLlykZa6haionJoY4PJFHWiqRtgIUnEsnyZ/Obte+EuuTVzBzR9YyUwhw3QxzYdblhFSzRrTo1gs0tnZWfsPVE0RNU0jn88zODhIQ0MDHR0d2LbNCy+8wE033VRjbBw4cIDW1laWLl1KPB6veQRFIhH5uX2WY9VDQdd18vk8tm1jmibBYBBd1xkaGqKjQ07mWpcA757PfIZEPM63+/t5fP16HM/jRDJJezzOqE9/V4DRfJ7WaJSY/9xUjbhv7erCE4KoadIQCnFiZITOeJylDQ3g/7uDmob5X4i6W46D5bqY/w/13i///PJfAu7vm9O9X/6riuNYfs7OJDfe+E0ymYv09m7GsrI1sPfii39CJnORXHECtX0x3ok+lI4lMmJuBlBX3yAfDjNpaVxnWVwaylBUTbYbvgC5nMzjfuQFEEJq3XV9zniu60aE69bywAtFmWdAh6aj3vqbaJsfQF3/KamZP3wQpWMJ6roNYAtEzVF+O9IMZptcD62UVLVaapddSHHvpDSiQZmru3C7T62vfomg3JbokaBdCcibcc0hdrfsW1/kH8PfPvuwNKqxB2Hii6hIE5mqcdyRI0dwXRdd19mwYUPN8bRQKNQOXc31WSwW0TSNUChEuVxG07Sa0V13dzeVSoV169ZRX19fi0j09vYyOztbyxk6MjJSmw3u7OzEMAxCoRDDw8NUKhV0XUfVNIazWcKmSc6yUABNVYmaJqqi1AxUtnV3E9Q0HM8jZ1kcGxnhsvp6vrdhA5fV1xM1TQKaRrZS4YFDh1iRSBA2DCzXZW1HB1HTpH94mKlCgUXhMFHTJGIY2J7H5t5eRnM5Vvgp6bKVCh/zje1AGtPZSLB+HtiETONWLQZzAHsT0mF+ORKwF5HmdZ8Erkfq16/yl0Uk/d1G6uNBgva9SMq95b9akEZ1GnA/0tjO8usvRMp2q2ZoK1bMdzT/9rcl/T0alZdQXZ1cz2YlGPzbv4VXX5W67SNH5PbJSQkk6+rmjOi2bZN4rDpHOzgoI9KxmJwcqKaSi8cljTwcllrxaFTil1hbjANfOoBdsDEjJomVCUZfGkV4glsfuVVqtFWFcGMYz/GINkfRQ3ISKd4ep5Qq4VkeVs7i2X//LKnBFIWpAqqu4jkeubEc8c54zdDOyluYUZNYIsbar60l2hpF1VRar2vlZ9t+VktB17+7H0W4RKOCcll+h6Ym6bhfNShPpSR4PnlSnqeqSW4sJs/T9u3yHK1ZIyPx587JOvm8PF+ViqTcDw/Lc7Nihezz/Hn4kz+REyBVYL9ggfydymWpi1+0SFLpd++Wv0smA1rApDhdZP/d+8kOSW5+1YRv3Z51WDmL4nSR5muaySVzhBeGqV9Wz/on1pMZzpC+kJYReU96DfR/u5/TT5/GCBl4rkfqfEo6x69qRw/qZEez8vdRFMyoSbgpjBk1UXSFrm1d3HP2HqItUUTAlH+SeFQC7UxefinXj7CDBPSN9XBuWIJt25HD96UGc0LMpZDLF2U9TZWAN1eco4yrqtxeqkia/eI2eczBET9aLmTbc8Nyli3aLl3f65bK9rX0bX5OdtWQAFxRoJSW26vpshCXmMz5egjhb9MCPkhXZIQ+50/YC/eSvPGOP+ngp56r9iUAK4sQLq5j4VSk4ZxrVVBUzTeRE9jlAsF4I65dBkAPhDECUcINbdJ/IRhB1fTa/sgCqW/XdJPW5R/HDMdx7Qrh+pZapN0u5fA8W4J2M1BzlVc0neYPdslUc4BiBFD8XPBCwO7d/ezde4pdu/oAao7xixaF+fa3+/nYxxazeHEdpqlx3XWt1NUFWLOmg0QiTjhscP58mi996VmmpopEIiaappBKydR05bJDuexwzz0H2LDhR+zYIfudnCwQjZq0tcXYtu1n2LaHaWpcvHgvzc0REokY3d0dtfzZVQ+WqvHX8ePHMU2zZthVddtWFIV8Ps/q1auJRqM1Wns1WloF7ZlMhgMHDvjO8HPU+kKhUMv3bhgG2WyWjo6OWmq4KmCvscw0D8Udhek/8lO0HZcU9pbHIPY7khbvTsiUbW7KZ9K9LM1otUX+yK8iIZEH038is9CIAkxukzR5RZe+N4leWPh1KRGppazdI/13jMtknUvN7+yLuCJAsThDR8caFEXhxRe/SS43imGEaqncqu7x8XgHd9/9pm9Y5yCE9NIZGTlOKnWBjo41FApTrF59H9nsKKqqY5oR4vEOFi/+OLncqM/08YjF2rj99u8RDi/C8xwWLLgcXQ/Q37+bU6f20t+/W2YGMKOM++Zwu174K1wh+MGJ+QZ1FdemUCnWHOUn8rMsb1nG7R/qIqgHaIouYOvNf0DIDMrnDUXF8VxeS56mbFvEgiFczyNdkoZ1pmbwzsR5kukpcpUCH25ZRkA3uHPlb7Fm8UfQVJXGaANXNHby6M//Vt6zfNO4WCyGoiik02n2799fA9eZTIbZ2Vk+8pGPEI/H6enpqaV0gzkp4apVqxgeHq55BuXzeQ4fPkwmk2F4eLg2EVXNAlSNvPf39+M4Tm3yKR6Pc+DAAfnfVhQe9J+rVra3k8xm2XHjjZQch60vvMDq9nY66+pY29nJeC7Hlw8eRPMj7wOpFF/Yv59F4TC7b76ZsGFwWUMDUdPk3mefpTESIWgYZC2Ld2dmuPOZZ3h3ZqbmLG85DvlKZd76uzMzfO499d4v/++X9yPuv6K8H3GfX6qR9kt1Sz09m2rmJtVZ1eHhowwPH2XduoeJBRtRPFdGw1EQ6RlJnW9fjFBVxFuvoVz9ayiui5ccQmlpg1IRkc2itvsGHq4rI/N19WDb0nDOqkioHwiA4yBk7wjXRUyMoSY6JBqCSwzubpLp4zIp1KuuAU0HrYLiTkg6mxDyBhte4X9j1deUVSPu2/wbLzJSHu6WAJ2KBOaK6acVsgBN0uG9AkxuhaadUqdmn/cj7g/4EfdX50fcq/R8P+pfWTJLxZLpQ6paqupMrm1LzaNpylhxlfZu2zZvv/02DQ0NxONxMplMjd5l23aN9verIhC2bWNZFrFYjOHhYdra2mpR+GoEJJ/P12aHDx06xLr16+WEiaIw6JvSbevu5rL6evKWJY3jwuFaPlBXCDRFwQMc18XwqViO5zFbKrEgFEJX1XkarMvq6xnN5YiZJiXbZmE4jO15vDw6yjUtLQQ0Dct1Zb9CEDIMNP/zXNbUxICisIs5TXtVj/4YMuKdBNYgQft7teoKkjpvIOn0RST4fgBJi6/epvJIOr0FFIBF8l/Av0e603fIfwox5iYRMsCbQHcRHEtipnRaAsE9e+Dxx+XfsliUwLO+XmrdP/IRCbAdR+q1P/pRmXrs4YclOJyYkAZ0hiHbe54Ek44jo/T+ZD8/+Qn83u/NAdQtW+A735Ggsxp11jQwPBlxb/toG5qpMdw/TMu1LfI/pyqYkTk6tOd4kqZdF0Q1VFRdlVF222PkxAh1nXWEFoSYenuKpg83oZkaqqEyfHSYSIvUagtX9lvJVph4c4LE9Qm0gEZuNEekKSIN8XwzN7tkE4gHsIWBZSs1RoFhSIO4qunckiXyO739tjx/ijJ3HqpB2ioTIZuFr38dHnlEAvJ0GhYulOfw4kUJ4NeunTNMV1X5+0id8Ny28XGZXq5SkSZ/HR3Q2SlQrTLPfWn/PFlA1aCvqjm3izbCE5gxE4T0BDj8R4c5tfcUn+n5DHUddWSTc2aBVUkBUNP+2yW7ZgpYLenzaY7uPiq9BcIGiq5gZS2CMRND9U9CclKa0v2qUn1UmJiBBfE5mvx7KfBVmron5jQXuYKsb+owMDI/Om8av5piX9XcK4ofua/Il+mzmzLnIZaQ2vVL9wkhx2DV9CPrJuCBVZAp3BRlfgS/bul8qryi+PR5Cypp6Shf708YvDfyL8ATLq4jdcWuLaPnrmOhm2EJbhQFz67gubbvFG/jeQ5T507Q9uGbEJ4E/ppuomgGwrWlLl540phOUVFUreZrJycZhNznj+fCc1FVSbupgnmEpN9PD7xM/bKP038syUc+0kwmUyEWM4n4WRk0TcW2XVRVoVRyahFyIWB6ukhDQ5BAQMey3JqBXdW0TlUVCgWbQECjXHaIRk0GB1M1Cv3SpQ04joeuK9xzzwF+7dda6erqIB4PsHBhWM6zlByCQYVSKUsgEKhFJN8bDa9Kverq6hgeHqa9vb0Wla/SiqtMsUOHDvHxj38c0zSxLIt33nmH0dFRfuM3fqN2vwRqdPvOzs4arXn9+vUA80xhFWwM3UYZv3s+Td0+Lyf2F26RlPbSyfnGc8FrwJ2WdebR6qv1j8Kih6BwSILxal9am8/i8/xnift9d3m/fdNjsl97SIJ3BLZr1szp1qx5ABCYZoRYLEGVHpLLJRkYeI4FCz5APJ4gkxmuGdOtWbOFSKSZiYk3WLz4Y6RS58lmh326fIBcbhTTjBIIxLGsvM+wbMJx5ISTZRWwrBxHj36LW299jGJxat4zI6pByXFqpnD7P/cYASNAvlIkFggTNkNUHAtD06VO26ogEETMEJZrM5mbZaqQ4orGxaiKgqEZaIpK2akQ1AM4nnymuDg7znQxTXN0IVOFWT7SdoW8XgDLsQkaJqrPnClYJfJV6n0hQ3uskbHkKJFIhGAwSCQS+SWderW8l8m4YcOGGvNR9ce9Kvh2XbdmRnf11Vdz0003EfQpYJd6GTU0NGBZFoFAQBpeKgrFYrFmQuwCGcsiU6nQHosx4D8rVSWEMPecJYD/7xtv8PLoKH+2fj2juRwvDA6ytKGB1R0dlGyb18fH+WhbG5brkrcsWqJRxvJ5vnH4cI0t+YNPfIKApvHuzEztGe+DCxdiuS6fe+aZefVigf8cy+n98s8t71Pl/5nlfeA+v1QqeZ555nN0dn6M5Vd9inAoSpWsYdklfvGLfVwcOkZ39zZc16ax4XKUdLpmQKd4ngTnl1LnIxFAwTv4jzISX9eAGB2WGvaj/yR16bE6SZ9PDkun+EAI4bkShRRy0m0+XjdnbufftL3+wxKsZ9N4P/rhnMFdOiX18Wt+HaWpAZwBlJmdkgqvLYLyGz6YnvRTtawBBFjn5az3It8MRotLsF4tnoWw3kWxhxFGu9/nljkN5cyjfhoZUwJ9YcuZeTUmDWsQ8uZcfguMNpjZSWXhXzI0PEpTU1ONmlV1Gq1GF6oOuP39/XR1dREOhwEIBAJcvHiRSCRCoVCY51K6cOHC2o1i3bp1lEql2k0jm81SV1dXM1+5VG9VNcg7ePBgze30iuXLKQuBoapsPnCgNoA/dMMNWK5LRzzOUDbLrr4+HuzqIpnNcl1ra037vmXNGlpjMV4bG6M9HmfEdzu955K+Hl+/nnsOHGDLmjVcuXBh7Ub1tbVrWVJfz2AqJfVe3d00hsO8OjbGmo4O7t6/n8c/9Snu0XX2Is3nisio+FagE+hHGseNIqnr1X1NyKj6FqRGfRipY9/qr2eR4P0PgSVCcMGfHHiMOef5B5FxlfH39D2CjMK3IgOJoYzEG8GgpF4XChLkjY/LqPojj0id9M6d8LWvSRA6OCijuFVN/NmzEmi/+qqkY3/rWzI1WlMTvPaajBTv2iVBbGen1Lo/8oikdldp3EePwu//vuxrfByuu05+noV1NsHCDH07+1izZQ2R5giBWKBG0V6zZQ3RFvl/HHttrKaDb71OGlYWJgv07exj9X2rZV7xFQn0sE7qbKrWPtIsadxOyeHIjiOs2bKGWGsMz/OYeGOCeHucvp19dG3toq6zjtRgiv7d/XRv6ybS2cDgkMGOHQoPPihN57q65hvGPfmkBN2XXy4j6lX5QUuLHIYuXpTnd8sWqVEfG5NAfWRkTrqwdescDX5iQp7/Bx+Uv0e1ffX47e1z/ezcCffdJydNursFFNOYcUlL1QwZkfU8D0VoCMVF1TQ8x0PVfd26UFBUDadikewfJ/GvOhh9eZTEmhYEDuWUTaQ5BHgoqgoo0oncUSnM5Ii11uNULDRVJz+Vxc56RJojqAHQg6ofmZWaCSEMHN8MUiAnn2oScn/E15B43BUeuqJgKwqGv18DXE9gZnIQDWPpGqYnMM8NYV3WTtnQ0BRFPlgCqhC4AjQFuVRlfxqgeh42PnhCTnYZpSKuo6KqHh5VKr4CrgxUerac9KkGNVUdPMev4zFH7vIEmgF6aRgn3IFr+5nmHEBVUHFq/au6gucKVE3Bq2akcz0QiuzXcdFMFcVQa8N95RLDualzJ2m96tdxKkWKpQxGXSO6ZlIuZajMjNDY8RGsQppyJYte14SqqFRSE4SCMcxwHcJ1sIVD2S4RNMKouoHl2TK/OwqVcp6AEULVTSzPRvWdtFXbRhMCu5SXpgvBKJ6tMXyxwDe/eYQHH+xi8eI6ikWb8fE8jz56nD975EbiMYV/enGM5pZ6wmGDYtFmeiLNDR9rRdN0hOfgeCq6BiCYSbm88eYkXaubsR2FYAAsR2NktER7WwhTd5mYrNDSHEDTdDzXITlRIRIyKRWLmKEQtqMRi2nYdplQMIBj24TCYTRNpVKxQVHmgZ71v/EbmKaOqqi+3YDAcR0URWVkJMnizo45yZcQXLw4RDgSkVR6z8OxLXTDwLJt6mKxeR4InhBUKhUcxyEWvUQyooDiFcAZBhECrUlOTmGBqMh/vxr2fRUUyc7TW3yaUwWEJc3mhDs3qSQEUALVA2H4k0Vl2ae6SO6rvAnB1bKuqoGbB8WQL3fKn7Qqgt6KEB4FW06wGIYOKDWdvq4rVCoZisUCoZBMV3b+fD/NzauZmDjGP/7jZ/jN3/wRLS1rMQzFZy/Iw46PH6O5+WpUNYoQKpqmIoSF47ioagBNk8cxTZWDB79IU9NHWbJkA/X1Ldi2QNMElUoJ04xI7w/VwfJswmYAx/NwXBtTlyw9kFF8AagoOMJDVzUcz8V2bXRVp+JIzpqqqIRN6X9TtMo83vef+Pfd/xpDM9DVOX12wSphORb14Thl28ITUusdMYNUHJtcpUAsECGgm9iuA47H1MQki5qbcQFT17EcB9MwUJGTPS7SCNi1LMbHx2lJJDA0jUwuRywSqQU0bNdFVxR0VaXiuoyPjJBobUXxQbiuqrKOz0g0VRVVCGzbxpHmD6iaRqVYlEETz0MBAoqC6TgyMFaVOfqy0WKlgmaa6J5HRdNwNI2A46A7DophoLoujqqiA3gejv/5HMfB1nWyQjCay7G7v7/mLG85zi+B9EvB/PsO9P/9y/tU+ffLv6homkl393auu/b/IqxPo4xvQrEHUYRDwAhy3a/9Pr/1m0+wcEEHzY2XoSJkrvVTr6MIgZccQk104h37uczn3veCDO2VS3L92M9RNA01sRjv6D/Vcr5TLkE+hxIM4j33jLyLFPJQKeP1/UxOBPT9zO/zZyj1C/D6D9eOoSY653K8A17fC3N9e44E2FUqvJfzDecy0nQmeZuMfjtj0iF+4VcRagOuEsZy5182nqigzOwAvfGSPndL45mZ3TJdy+S9YJ+TkfyJu+H8h2Dyq+Dfopi8D0Z/W2rnFj2E5p4j0dbGoUOHajr3ap72SqVSy9VezVvb19dHpVKh4ufzTCQSHDt2jEgkMq/tpfndbdv+pVzvR44cqdW5tG1fXx/lcrnWz9KlS1E1jUylwolkkvtWr2bj8uU8sHYthwYH2dnXhwfs8vOG7urrY1E4TKZSYYefJ3R3fz+ZcplF4TA7/f0nk8laTtGtXV2cTCZrdV0hanlIv3X0KJ4Q7O7vr+UcTZfLNEYi2K7LljVreHV4mG1CsBGpSx8Bvuovy8BKZCq3T/vbnkDS1+9njvLuIUH7XiT4rvh9/C3SZM7xQfteZBS9SpffBSz2j7HzkvaL/H4zyGj+BVNm18rl5CWxe7d87qvmbM/l5ujz3/qWjOju3j2XJ9y2JVh0Xam9/ta35L5du+b03rt2zeUqd925fqvH2L0b1q3Dp9LKNpmMfJ9JefTt7OPU3lP07+7HysmHpr5dc9sq2QrlTJnwojB9O/sILwpTyVSoZCq1tscePkbi+gTJk0mEI+a1t3IWkcYIR3YcqW0rZ8q17dU++nb2IVxB/+5+Tu09xZEdR3BclR07lNp3XuQTY6o53bduleu7dsnvXj0Xu3fL6LrjzJ3f3bvl9168WG5rbJyf676xUTIUque/2me1TvX4O3fKqH91+8MPy99GVSHQoGM5WTwsLCtHxcpSKI5hezk8UcGycthujpmZM/T03Ek6M4jnWZTtadq7F6HHFTo+3owaEKDbhJsNbCdP74HNVCpZUqkBevZvIlMYJNoSIZU6y4Hn7iKdH0SJF4hfHiTQYJCvDDM03IdlZZmZOUumkqEUDGIrCoOKwhcVBcsH5hl/fUBRqADnVIUJTeOsotCnKJwFfq4onAE+p6nMNMR519D5nKryrqZS+MBi3jV1jqgqZxWFO1WVjKpyRlX5nK5xRlVxdI20f5y0olBRVRRNw1UUUBTUsoPr6LiOwBM66cE0z9zZQ+pcivxkntlzKYb6hhCeID2QZv8X91POWLiOh2d7VLLy/zhzeoZn7uxh5myGSqCTmTMZnvl8DzNn0wwdHaaSqeDYKp7tceDLz1LOSKOE2XNpnvn8M8ycTeE5YBVsrKzFUH8Sq+DhVASFySTC85g5/wp6bAEVTWfBVR+jhIsXDJOkyJ377+Ls7FmOTbzKVDhAxXNwgyFGKHJnzybOpQawIhFEKEJFuFRUOJcb4guH7iXjFjmTOscXezeTtwrYwsPRdTxN50zqXK390eF+cthYhoFW38SQleLIcB+OXqazM8h//OFNfOSqCPVRj3AQ8pk8f/3DW1hQr2DoKus+nuBDV0RY0hlk2eIAN15fQZ/pQ8mfRX1pE6bIoxYGUU/eySJzmJtuaCMopomKCxivbCJoDbA4YRIybQwqJOJj6C9vQsmfQxMVOlpM6rUh2ke+QqM5TFuTRjTg0lAXIxjQiUcj6DiomUGCuodhaPz2p36Trz2whU9suJ2A5qJlz4NwUYWL6lUwC8PoKixZ3IkqbBS3gpIZQPMsLluymMZFCwiaBiFDEPcmCRlQF4uiCBfFc1Hccq1+KBQkFo2ieFL+pSAZ60KJgH45QlkIThmSfVIukp2GsdfBKoJrywmligrpi3JW1nbBVqCSlYyN0ZOQvgCH7oLsFIg6IAzZcShXQNRDcQo8A4JdkD4vj5UagOe/LNtWcqAshOwMjJ+F9CDlTIpczqNSkTr6fN7hnnue4+zZFI6j4DhRXnvNYXgYXDfAokXdnDw5RUvLDdx99xh1dWu5555DDAwU8Dwd11UZHy8Rj69AiBjnz+fYtGk/586lcF2dclljbKxANmvT3z/K2bNZ1q17kquv/jyRSDOZjMXmzb0MDGQ4fnyagYEUjucynp/mkZ//DflKCUVRCOgySutW/QRSU1iujSsk5X00PU26lEVVVAxNJ2wGiZghArrBSHqS//Dc90mVcjxw4++jqRpvjp1lODWB67m4wiNihggaQUYyk+z+p/+bdClHxAwxkpn087tb5CoFhtMT7Hj+h4wVZmhOtHEhlyNlWZzPZvniwYOcmZ3FFoLhYpHjY2NUHAfdNKlraeGeZ59lIJVCD4WoeB5HhoYYTKWwPY+845C2LO7q7cWuq0M1TQazWTbt38+5VIqjIyMMpFIcHR7mXCqFqygIw8AIBBjK59m0fz+u3+auAwekUeK5c6hHjqBls6iOgzo4iHLnnagDA0SPHyc4OIgxNUXEtqlzXYL5PMbx42gDA6ibNmGeP4+az8v3g4Oo2SzmXXcRHBhgoa5z5cKFfP8Tn6iBcVPT2OY/l23v7iag65i6zgcXLuQHl9R7v/yPKe8D9/fLf754Fnh5dBUaF12OptqXANOdgAPCQxElFGcSxT6PgoKnqDW9uVAUlHgdolySbu7Lr0Vd+3EIhiAQmAPWqga6/p46QQiGEMUCavfNCOFJirxpSo17IY/adeNcH5o+t951I0LVpCldJoWw7fl9Cx3h69TFwu0ItV7mY1XrZAQ+tlHS2tV6hN6OMK7AVur4/DPP/ZKexxE63sKt4EzVdPNi4XaEErykr60yvRxCvq/WEepcu+gnEcIFYaGn92DoHt3d3RQKBbq6uli+fDlr164lGAzWTOfWrFnD8uXL6erqqm2v0rO6urrmte3u7q5tX758OYFAoKZ97+rqolgs0t3djaKqv3Tcav/V9/F4HFNVqQsEaI/HmSoUePL222mNRjmZTLK9uxv9Ej3W1q4upotF6gKB2g3ggbVrqQ8GmS4W2dbdzXSxSFssxtL6ep5Yv56wYdARj9duFpfq5rd3d6MpClvWrKmt1weDTBUKOELQEo2yOBql07Z5SghCQpBA5k/vBKJC4AHbhOCTyKi4jTSm24KkzD+AjCJWwf92IdCFqO3fCuhC8KC/XicEWy/ZF/TpedX2W4Vg2u+3QQjqgcdDEK4XxOOCZcsET31fEAoJtm2TwLOuDrZtE2zcCNu3C3RdXKJdF5imoKND8LWvSWp7te7WrZJePzU1p6HfulWg6/J9LDa3fds2aG8XqKpsPzU1p5Efm9To2trN8o3LWfvAWoINQRRVqemy1z6wlmBdkGB9kOJ0ke5t3RSniwTqAgTqAnQ9KOt1b+umnClT11mHoit0b7ukz/ogqvGebQ2yz8JUoXas7m3dKJrCmi1r5Pr2bnTNY+uDXu07T0/LfOlLlgieeAIWLxacPCnPnRCi9p0feEB+R11n3raGBoFhyG3y3Inavvd6B2zdCpo291tVj79tm5wQuPT86rqgWEySTp8HoFyeRVE08vlxDh/+BrncKLoeolLJYFm5mj60r28nnmdjmmFGkidIpc7S03Mns7Nn8TyXkZHj5HJjrFr1FXQ9SDY7wunTT/vtHPr6dnLq1F6y2WFsu8CBA5tJpweJxVpJJFag62GiDZcxFm/nbkVhCDmJtQIYAr7kj3E7/O2KojCOZKWMKApNwE5FodFf7gWyisKwonAfMKYoCE0loSisBv4MOYmVvaT+TkWh5NddgczggC+pKQLCcrDSZVKDKXq/0Et6ME1mOCMnefb0E22KUtdZx+KPLQagfkk967+zHlVXSZ5IStJUzsLKWfMmfYQjapNFfTv7aPtoG2bUrMkx1v+5pMVWmSDVeoqioGjSM6Dto20kX0piZS2M+maKnsWCq26giMPR5DHOpy8yWZjCES4t0VYeWPMAQT3INc3XkMwlGUgNYHk2O47sZO+pvezq2yVvvQgyVoaSU2LHkR3sPbWXTCXDjiM7WJFYwWhulE09mxjNjQLQGG7k4XUPM5GfYGViJbqqM1mcouSUaIo20RRp4vXRl4gbRQLuBKqTRbEz1MdVPtbdhl4cRDm5CbJnUJwspsiju1miygTKqZ0QbIRTu2BoL9gZOLUThvainNqBIiww6mW9ob1o7+wkaHqobgnwats5tROsGZTiRbRyEhrXogQbUews6itfREGgetI3QcmPQGkaxbXQPBs1O0hAlZFJtTAq9wlXRrDzSTCjKJ6NkhmQkge/PfkRFIQE+ggU3xtBySclAePSPmr1fXKGas55HXgWip9JQO4zIPEx6ZFwchcsutr3SBiG5+8GuwjR5rlsM3ZOvl7aDaFGOLkTTu+FEztkG6ckl3YRKikINMDYCemnkB+ZazPwNBTGQZfpBHlpj9z38h6cUAvBoI5pajiOh+cJVqxIMDaW5/z5NJs3H6CxMcLwcJZCweHEiSTXX99GqeQwNpbH8wSrV7ezY8cRSiWHUslBVRV0XfP171nuu281yWQWTVMZHc3xjW8cZmwsx4c/3MSOHUdwHMGZMzNs2tTD6GiOFSsS8zwUjICCqRt+urc8qWKGol2maJWp2BYCQceCJnRVx3JtQkaQBdEYJbvCrhf+iuH0BK8lT5PMTKGpEshfm7iC//ulZ7Bcm10v/BUNoRjhQICx3AzfPPQDkplJgobJX574Rw6ePsYPTvwU13P5wXGpr//hiZ8SDUSYKaTYevMf0N7QilBUli1cSHM0yu6jR2vBA0cIRrJZrmluZrpUImdZhA2Dr6xaRTKXYyyfZ/OBAzRGIgxnsxiaJrPfKApPnz5NUNcpuS47jhzh6dOnGclmuT6RYCSbpTEcZiyfx/Z1W65vHPf06dMADGcy3Ld6NUHXRdmxQ84kV3Vwl84wL1qEsmcPNDaiTE6i2DZKOAxr18rt1Vl/gKefnpvl37sXbedOdNsmGggQDwRqYPw/B9JNXSd2Sb33y/+Y8j5V/leU96nySNDuzszlE9XiUDjsu6PvkvlHnUlJJx+/WwJUJQKiRIUOHFuXOSBVqUdVhOfnYpfuwqKWhscjVywSDgYplMucP3+e5VdegW4GEJ6HoqkIx6FiOwSCQRzbQlM1VE1F8UV/QniUbJuAGZAzUcLDdiTtVFPV2noun2NBfT2KoiIU8FRJdRvNWzSGgwQ16TnueC66KsmitueRtTxeGp2iLRbj5xcvcnR4eJ6ep2TbeF6FgOqCYqDg4Aid4yMjrO1oRVOqxFOHOU9zQcXTKdkOcRMEKkLYoJhoiofik0+HhYnpCuKKgupV6bB+URSEJ12PFV/TVKUIOkKgI+najqoy7XlEdJ03NY0u20ZxXal3B4QnjWkcITim63xI02hwHFQ/J2g1B7zwj6eqKgjBeD5PLBRC17SaFrBaF2C6UGCRr1fUVRXH82SaEv/zVWmz790/mc/TEJLpkFS/r+oSqN0Ip/J5FkUiCKDiOJiahisEAU2rpYuj5JIfTJPPWrTdsARPkWC7MJrDWBgmYGo4/mdSFPkLqbaLZ2j4llUorsAGrNEswcYIBHX56whQXA9PledGqTigKXiGhi7AKzvkZkvEFoZwAHu2RKAlinoJPdhTFfovnOe3f/QjPnnllTy1YQO60P0ICRi6gqIK8mUHT7WJmgFUoeO54Kk2L08Os7K1E8/WpN+XJqXBiiLQVQXXU1BVgW3L+qZqIDxFuqULF+GpaJqConpULIFpKDi2gqp5qGh4HgR1V6acUhXKuXFCdc0Ib06XLYvArVRA9VC1EJqBdCkWOsIVNSM6zVTxnArCU0GR+eBRHEl/dkB4vi5bUVBUcCs2qqnjWQ6aacxpuX1tNyo4rorlqJimiuMILCtLNBqlXBYYhoLrqlhWFl03UFUTz1MxDLX2uYVQ8Lxq+jcXz9NqbvKaJs+dris1PbzUxAtUVUHTZH5rITQ0TeC6CoYhn6WqfagqFItJ/uqvrmbZslu4/fYnse0iphmd5+58223fxbZLvp+EdG/u7t5Off0S/zu7DA0drdW/4YaHMIwwk5O/IB5vp79/D+vW7UHXQ1S5v5nMEH19O7nttid49tl7SSRWsGzZrcRiCYRwse0ilhnDDUQxmWMNW0hmyQpgLZIlshW4HBhEgvqVSP+Hi0iviGuRTJIEcF4IdigK25AZFe5lTqJyN/PTM25Fplec9EfGhD9uARwHuvIVFMul9wu9Nff92564jfxYvuaWX81O4Nounu2hqApW3sLKW9QvqZdjiKkibIFruSiqghbQmDkzI2UX27uJd8TJXMjQ/+1+bv7Tm6UPgKow3D9MeGGYYw8fk/KMlgie7WFEDJySgxbQsByLIW+I4ewwKxMrSZVTpMtp6oP1FO0iO/t2smXNFlpjrbw29hoddR1cVn8ZE/kJGiON5K08hmpgaAaGauAKl4pTIVvJUrAL7Onfw+PrH8cRDrZrc+/Be9l7ai8bl2/kqQ1PUbSLkiLva3fzVp6GYAOvjL3CysRKBII6TUf1yjBzEoKtEE5I00DVgJN3SXDduRGufkj+E4Itvl+LA6nXIdwmwfd1j0FlUr6/6msQuUz2U7gAp3bAVQ/I/vFAC0FhCN7eJbdP9cHUUcSK76PkzsI7u+FDW2D6KFz2b+UFY8ZlpDo/Iv0HMoPz/QhAZgMwIvK4rmRFkBuW9RZ8SALq/AjE2iWt3KtIc8F5WQdMn+6O9DjIJ2V9NeBfCP7FbuflsYQr61s5aXIYapJ6jOx5CZ5VDcqzcOE5aPgARBMSqN/4Hf/YLmSH5o5/cidc/4CMpjd8ANrWgu2bzU69Ds0flR4LwXoYOynb5Edkvyd3wYqtEG6CyVeh6ToKLODsuRS7dvXx4INdLFlSz9hYjsbGCJs3z3kTfOc763nppSSLFoX50IcaOXt2ht27+9myZQ3t7XGGhjJMThb46EfbGB/PEw4btLZG56X6W7q0gc9//plan489ditTU0UaG8Pce+/B2vaHHroBy3IZHc2xuivBZGlqnlv88pZlCOExVUjzlyf+kd+//hM0Rht4d/ICC8N1LIrUEzVDPPTcUxw8fYxbr1zNv/no7aRLOZqjC2qO9E3RBt6ZvMA9P/lTbr1yNV+/5U7+5Lnvc3jgZR7+5Ff5V+0fZCQ9yQ9O/JTfu34D8UCYkm3xQ/+zNEYbcDwXIRTGi5IV+MCaNSxtaEAA/cPDtMViXFZfj66qlByHk8kkrdEoiXgcTwjChkHf0BCf3rePT155JY+vX0+6XKYhGCSo64z7zyvThQJBXSdkGBiqylSxyIJQCE1VUYGcZdWo6tu6uxnOZPjY4sXkLItcpcLloRBqqYRSNWDp75cg/uGH5Szx8LDUuk1Ozum8qrqvpUvnTFkCAUkhq5q+5PPyOWbBAimv+ecUy5Iv0/znt32//MryPlX+/fLfUGxpzjb9DbkUQpqnKRFpvuJMSip48fgc3VxvlNRwNJJjY+QtCweFiudRFjCby5G3bUquy+Rsitlcjp/s389jjz/OPx44gBEMMnDhAqliiaJt8/KbbzJwcYjpXJ7eQ4coWhapfIGf9vYylc5gKQoWMJPLk8nlmZyZYWBoCAsFV1XxVJWK51ERMJPNMpvNMZnO8ONnnqEg4NR0hs/+9BDjBYufXRgjawdIWyqnZoqMF1X+9T88S2Dno2w+8DwLQiF29vWxbunSGlXIchwKlQqW62J5Gr+YKfHZn/by+mSe2bLLG5MpPvvTg+SdAG9N5/nX/3CI8aLHWBGytknFVXGExluTecquQdoyeW4wydvTRQbSDkU1Qkoz+HIgwFnTZDgYpGSazJomvzBNfs8weCcQYCQYxAoEqAQCpEyTn5kmpUCAbCBAIRDgTsNgWSDAv9c0rgVyhsGZYJB/Y5q8aZr8zO/3DwIB3tY0xoF/0nXOBAIcMk3ywSBDgQBvmSaHg0Es06SkaTREo5xPp7nzmWc4NztLybYZzmbRFIWibWN5HkXbRgEm8nk5CSAErg/6f37xIqenp5ksFCg7jjTYc10Kti0N71IpNvX0cCGdxhOCbKXCmZkZNvX0cD6dpi4Uouw4bO7tpfnhh7lr/36Kts3pmRk+/8wzqLbAcBWO7T7G39/2d4wdOEsgW6E8kMIey+ONZMmdmuK5z/yY/JsTJHvPUnhtjNxbk9inZzDyFnrBQqRLTBw8h5suYzoeZt5CGc1RPjODO1nALNnkXx9j7GfnUbMVQkUbbyKPbjk0RAzGD1+g9M4UQUCdKmCWbUSqRPL5c+SzWZqCQT555ZVs7+7Gdl0cxaFvbIBzhTEmrBSuajFhp3jgn56j6JXJizxFNc+MlWNROIxQXS6UJvnyC08jNBvPKDOQn+BLzz8NZoXB/CRfeOEn2KrFYGGSTYd+zGBhEgyHKSfF+cIkn+v9B0pKAUe1UIMWRUooRpmQWcBzZ5k89zyuk8YIBUCxERTQQ6AHQA8qqLqDGnAxgjp6QGBXMkyc/ic8N4MWcBg//RxCyaHoAtVQ0AICPSjQAqBqwnftdtACLqrpogdAMxWMmAmiSCF9hokzLyCUAp7IYZXG0YIKqIIDB/+RM2deJpMZ44UXfkowqKEoDp6XJZ+f5tChn2BZBaamklhWmmDQQlGKjI6eJZ+fRIgcL7zwD2haGVW1sO1ZcrkJnnvux+TzUwSDFqOjZ8nlJjAMi0OH/oF3332JSmUGzyuSy01w6NCPefjhP2Fi4iyumyefH+PAgR9TKk1iGAWEmGXZslvo7t4u03hpAYaG+ojHO7jjjr+nu3s7ruswOfkWgUCchoZlrF//eA20p9OD9PTcRTzezh13/D1r1z5AMFhPMFhPe/tK+vp2kkisQAiPVGqA/fvvJpsdpqFhKbff/iSqarBu3R46OtYyO3uOVGqAZ5+9F10PEjIjmELgIs2UZpDeDHuAW5CgvSr1cJCgvRHYjMyscBnQhQTi30AC+2E/mr4DmUKx2l5Fmj9GkWD9MaQ8pR9oQDJfysisDoPIyQFdU+exPNbtWUfmYobD3zhMdiiLETbIDGU48KUDElCHDYyQQaQpghEyagZ9qbMpeu7qITeWY+TECDNnZwC44aEbqL+snsJkgWwyy407bgTgwJcOkLmYofkjzRSmCmx4agOhhSGe++pzAGQuZjh470Gyw1kIw3B2mMZII/cevJeIGaE93k5LtIU9/XvYe2ovu/t3kylnWBRexI4jO8hbeepD9UwXpokYMs1m/3A/51PnmSxMoioqzdFmWqOtPL7+cYayQ2zu3QzA1q6tbFy+ke3d28lbee4/dD+KohAyQoSMEEW7yOYDm2mONlN0iryaPI5SOA8v3yOj5+Ux34XflDM1H30CbuiRQNyog1AChAMzL8vHgcY1EL0cVjwlwWpkCVz/PYgulTzymWMQaIR/9RhMH5NAXwtK84FgM1z/Xdk++gH48Ndl1Lo8Dh+6Ty5bbpETCGZcAlwtIM3/UCRgDS2SS+HNzwbgSylQtLl6up8aMNrm/+OErK+acll3mfwOVk6CbVWTEez6ZRK0IyQ9XXh+ysK4BPZOyQfzfnpDtwRj/RK0mzEojEH/NyCxVoLwEzugdbWMottFSa8vjELLCqi/HG58XE5ELPkNaOuSwZLJV6E4KSP4P7sHnKL83IuuhlgntK2RoP30Xgn8NRNaV4IRxnEFu3b1zcsa0N4ex/MEjz++np6ez/D1r3ejKLB4cR3pdBlVhSVL6tmyZQ2PP36SYFBnerpIW1sM09QYHc0RiZhUKi47d8q+d+7sw3E8Hnywi40bl7N9ezexmMnSpfV4nqht37q1i7a2GJdfvoCurk484TGRn+XffnQDQcPk2rYrAIGhGbVo+N+80ouqKFybuJKm6AKZHg7B51d+iluvXM3nV36KdCnHh1uWzXOkDxgmrdFFPP7bD7D1pj9AQ+FzKz/Fo795Hx9sWsJkPkVLfBHb132eVDFLyarQGl/E19d9nkRdE4amE9RNAkawJuUby+e5mMlw9/79tMfjfGDBAgxNYzCd5h4/qj7mp8OdLBTY1NNDIh7n7++4g+3d3XLcLpfZfOAAg+k0EdPkrp4eIqbJTLnMF3t7yVkWecvi7v37OTszQ86yCOk6EdNkbUcHu48eZW2nNGsey+UYmZ5GHRhA2bxZOtfqujTFmZqCJ56QRi5r1khQ/p4ofE0rNz4OmzdLs5xXX5UAP5uFe+9FmZz8r8QHlxTLgnffhc99Ti4t65/fx6VFePzVD3+Ioij89Kc/BeDf/bt/xxVXXME111zD2rVreemll/5lx/hfvLwP3N8vv7oI95J0aL7a11wKWj24GRlpNzplCpPY70uXU1RofhxVkSk1Dh06RCqVqjlqPvHEExw8eBBVVenr62NgYKBG9e7u7qZcLrNhwwbq6+sZHx/nQx/6EJ2dndTV1fGJT3yCiYkJhoaGuOGGG4hEIqRSKUDmHDdNk/7+fv7u7/6Onp4ebNtmZmaG/fv3k81mWbhwIZ2dnTXNtudTnu5bvZqpQoGViQS261J2HC73U2Rs7+6m5zOf4YnbbmNBKMTXu7vprKvjykWLQAhmSiXenZlhc6+82QR1nbUdHTx6/Djpcpl1S5fywNq1OJ5Xo0aFDYOIYVCw7Voqs0gggCMEtuuypqOD5miUet8kaqmi8D1kpKsJGQjIMPcw/S2g7pKfLYLMQR5GOqEHgW1I+vY2JB3cYE63/TBzkbOtzD2oNyJN2aoP6AVkRGwN8oH6Hl3m7a1qzHf39xPUdZbU19ei6ODr1oCGUAjHk8wIVVGIBwK0RKNMFYsUbZsv9vZyIZ2m4rokczkURan1vbOvD4Gcib5U0z5ZKOAKwf0+XX5rdze6qtbqTOcKlDNlurd1c8ff30G8PU7Pph7sok1hskCwIThHgd0ltdn5sTyqrnL4G4dJn09j5SwObD5ApDFCdjiL58gITX48z4vffNG/VASBeIDma5rxbA/hCQ7df4jZM7Psv3s/f3fb33H8keME4gGMkHRy1k2dljUJ3pyaZEl9PU/efjsj2Syj+TzTxSKJeJxHjh+n4k9o7OrrY0UiwWgux70HDzKay9EUjdIcjaIqCt/u7+eeFSsYSKX4Ym8vmqry6K23IoRgUTjMQzfcQFDXa54DO44cAaApEqk9qORtmwn/AaTtkUeYLRYQrsXUuZNkxk4zPfgSZqQBp1LEKqSxy1mSbx3CKmYAmDp73I+UqziVAtmJAaYGTuI6FTJjp5k6d0JKazSZs1p4LlYhzdjbh3EqRfRghFJmEqecJ/nWIVy7gl1MM3Gmn3BDgtblN2IEoqiqjlVOYxfSlDNjdHd3s2zZMvr7+0kkEuRyOXp6enAch2w2y6lTpzh27BiJRIJ4PE42m+XAgQNEIhGy2SyVSoVEIkEmk6G3t5dgMDgvDWMul+NHP/oRfX19eJ7HunXr6Ojo4PDhw+TzeYLBYE1S0t7eTqVSqXlPHD16FFCor1/Khg1PUV+/hFTqPAcObCYSaSSbHaa9fSXh8CJMM0pHxxoAHKeEEALLyuM4ZY4c2Vmjznd2rqWhYRkTE29i20VU1WDDhu+zfPm/RlFUjh9/lI6OtWiaiRAejlPi2WfvxTSjmGaE5uZr6O/fw4oVX8JxynjABUXhi/6yCRlBDyOj348BnwX8pJmsRIL0+5D0eRcZob/UC2KFP+ZsR/pLVOUjKjL14ot+uyBSnrLQH2cGkEB/DXCFP94J16MwUcAIG6x/XNLXq9ftkR3yf9y3s4/EigT58Tz7796PXbLJXJDgPnMxg6qpNV+Fqg9D/5/2Y4QNPMdDuIJIU4R4e5zntzxfSzl4ZMcRzIgpU/ABz331Od7627ewctY87wXd0FmZWMnDxx5mRWIFY7kx7j14L+fT59mzbg8bl2/ka2u/Rmu0lc66Th655RHJeBGCpmgTFzMXuefAPTRGGgkaQQp2gc0HNnM+fR5TM0GhRpm//9D9LAgt4KEbHmJx/WIeeP6B2jHv6rmLocwQI9mRGvU+U87wa01XoZzaIaPqp/8cGrvlr6EA+UF4eTOE2yF2BRgxKJyX2xquhvIEnNwE+XOyTWlMRs7dEuQGYKofGq4DJy+BemSJjM6/9EUZhVc1eYyTd8oof6gdKlPyeO88LJfhDgmOazeOstSDuxUJwuuXSUCeHZIgWTPkM0r6ggT8quaD8qXyMwoB+VG5z7NlBgJXpq2T+/3IvlORx3Eqc06MKBDvlO2qn8G1JPhWFDDCEGkFPQTN18OL98u6J3z6+0u75XFWboMr74DiOBz+sgTtqbMSkLtlqYfPDUH/1+VkxNgJOQlQ8D/3v7pPpicUQk4s/NOX5PdYsQ1+qwduekKCelVOYpiqzdatEjRv29aNrit4nsB1Pb7ylYN0dNTR0VGH43g0N0dZs6aDgYEUX/xiL5qm8uijt1Is2qxYkeADH1iApil0d3cyPp7j+PGRSwB5NydPJlm8uI6nntrAkiX1fOlLBzh/Pk04bLB0aQMPPXQDfX1D9PcP12j7qZkyTdEFzJaylGyLPzn0A6byaXRV4/6P/x7/+AePsO3mz2HqJgowMDOEqcn7ZaKuic1rPk1rfBEfbFqCrmp8ftUcmH8jeZamWAMfbFqCK1wc4dFR38w1bVcghOCpYz9hJD2Brqpc03YFHfXNGKpG2bG4mBrjPzz3fcayM2iXyPFWJBI1T52dfX2UXbf2LLf31CkePnaMlYkEBcuq1dvV18fK9naW1NcD8O1jx+Z58Ow9dYpMpcJOv4/cJW139/ejKgpD2SzfOHyYtR0d7Fm3DsPPbb+7v59fW7BA0uSrdPdkUtK71q6Vxio//7mMqJfL8zVdVQ3XpQY6VUC/Y4cE7tU+KxX+WcWy5vr8b2l/aREeF869y/e/9zirVq6oMWJ+67d+i7fffps33niDBx98kDvuuOO//Rj/G5T3gfv75VcXJTg/V7kalDcQdxbUEDXKtxKClu9Ih9PxO8G5iOdZ9Pf309HRUUuNcSlAV1WV9evXs2DBAmKxGLfffjuZTIaBgQHS6TTPPPMMkUgEwzCYmZmhp6eHVCpFc3Mz9fX1hMNhstlszWytvr6eWCw2T69tmiamadLR0cHRo0cRQjA0NMTq1atZvnw5mqJwXWsr8UCA61pbMTSNMT/tmADOp9MEdZ2OujpOjIzQEAqxtKGBiGli+inIMpUKjx4/zldWrcJ2XQZmZ+nq6OBPb76ZhmCQDn+Wtuw4bFmzhp9s3EjRthnL5xFCsLq9nZ19fTRGImiKQtSn3huahufT2M8g84S/iyTbq0igXtVZb0c+YJ9HpjQbYC7d2FngC0jw/ZS/fAv5rFbVYm9DAnwHOTHQ4m+bQj6gP8yc2dpK/6+xE2nOZqlqTa++rbsbTwjyfj73+w8d4qrvfpf7nnsO23XpHx5mKJPhywcPcmZmhpCu84GFC+nq7KzduKo3t8FUCk+IeXngHdelLhCYp2lPxOOEdJ2oaXLf6tWE/ffVzxQJBzDCBuHGMJ1rO+c9aIcXhUmeSNZ01d1bpTa7fWV7rd6RHUcop8tz5morEgz3DyM8aZBWBQpDfUOYEZPCRIGD9x4kPZhm3Z51Up/94FyUMDWYomdTD+mBNPnJPIah0xaL8cXeXgZTKc7OzrLjyBHqAgGS2SxPrF/P0oYGLMdha1cXtyxbNm+iRAhBSNfJWxZ71q1jSX39vAcIxZcivD4+znVPPUX/8PC838vypRDV81wXCMw7x2EzgBaI0Hj5Supar6Tx8pUowPTgS+iBUA3QT507getUCNW3YJcLJN86hBGK0nndJ2i8fCWaHqi1d62y1IoCrmMxPfiS7GPgJAhBuKGVqQG5zXPt2jGcSgG7nCP51iE8z6a+7UNMDZykUsoQDoeJRCLzAHwVdCcSiXnjTi6Xq+WHroL5QCDAsmXLamA9mUzOG0uq3g7d3d14nodhGPNMISORCA0NDdx2223ouk4gEKiNd+vW3Yjn2XiejeNU8DyXSKSRjo61nDjx5yQSK3jrrb9jbOxV0ukBeno2MTNzRo4DRphKJUsyeZLVq+9j+fKNdHdvQ1FUhob6aGxcTqEwSU/PJmZnzyKEi66HWL/+cRYvvoHDh79BOn0BRdFpbf01UqkBDh/+BqXSNOvW7WbhwsspFCZxgTH/Wl/iX+OrgQl/XAgCTwILkGA9iIyMP4xMdaghgftjSID/gD8G7fHHpjDwfeTkYwmZUeEapH6+ahL550hKfgtS1363P5ZZQMbUMOIBgg1BDtxzgLf3vV3zOeja2oVruXRv62bZLctqGvZKpsKRnXPgXggx57fgX+vd27uJJ+LEO+KMvizzUl9qxLh03VK6t3YzdHSI7HBWRv39PgJ1gbmxY5uMrgX0ANu6t3HLslvY3b+bvaf2suPIDsJGmKc2PMXlCy5nKDvEvQfvZao4RdSI4ngOBbvAzj6pcX/42MM0RhrZ1ber1l4g0BStFmW/f839vDnxJrZn43gOX1n1lV865orEilpEvj5Yj6mH4KoHJRX+1/ZIQH1yk1yWx+Y06MKWkfYqyLfzkuZe3Y8r9wUbpda9PCbfv3yP724ehsaumgaeUzskuHzn23Pr5TGwZi+ps1O2VaTcQWrORyVAVxRfa+7/MeuWSMCdOS/BcrxDgupKlloaF82QwLduqT8xITXxuJYEAsKb055fom2X2RVcSYNX1Pn7AnEILZRReqcsj1OakXU+tkce+votcOVGWLkVRv1IvBaQQL4K6Bevk4DeKcvvdmLHXPQ8tAheeVhG64vj8n20HUpTUtf+sT2Syh/rkNtf2Cxp+gCeQ+jYfVy+rIHvfW8DHR3xX9Ka79hxhGLRZnQ0h6oqWNZcFP3b3+5HVVWy2QqmqTE4mOLOO3sYHEwzNpbn05/eRzKZ5amnNjAykuHcuVkGB1Ns2tTD4GCKhx++hZGRLLlcBc8T2LbHkiX1tLXF6O8fRghBY0uYH574KQ2hGD888VMOD7zMZH4WT3ikSlm+e3QfycwkbyRPM5Qa58MtH2A0O81/eO77jGQmKNk2qVKWkBFAUzXqg3H+6JY7WRipZyw75eeVF0zkZvnmoR/U9PDThTQfbl3GX7/0DK7wGM1M8WryXRwhpXl/80ovB08fYyI/U9OVf2/DBkK6Xrtfbu3q4sTICEXbnncPFch0ttV76ANr19buq5e23+Z78FTvs9XtMdOc19bUtHnmvSHDqD1XPdjVhWkY8Nhj8M47cllXJ1PLOA709UnKfCQi3WdbWmRe2XAYVqyQKVGKxfnOrdPTsH27NMTp6ZFRe92/Dv9ri2lSM3rZvl1G+/8bi+e6fP7zn+c7f3wPAV3UrvtPfvKT6P7nWrVqFclkEuf/5LzxwndyfP8190okEuL/+OJWhHAyQrg5IbyKXC+9IUS2RwhrVIjSy0KMbBSi9LoQTla+fzcoRLZH2FZBZLNZMTY2Jvbt2yfGxsZEoSC3lctlMT4+Lvbt2yfGx8dFpVIRuVxOjI+Pi6mpKbFv3z7x0EMPiX379olCoSDOnDkjUqmUyOVyolwui2w2K6ampkQmk6n1VygURC6XE7lcbt6+6vvqK5/Pi3w+L4rFosiWy+LlZFJs3LdPvJxMinSpJM5MT4t0qSTOTk+L0WxWTBcKouf0aXFiZERs3LdPvDE+Liq2LYQQomhZYrZYFLPFonhjbExs3LdPnBgZET2nT4t0qSQKlYooVCpiKp8Xn/3xj8WfHT8+75ivj4+LbLks3hwfF/lKRYxmsyJXLovX/b4mLUvMCCE2Cvmn3CiEmBJCfFYIkRRCZIQQ00KIvBAiLYToEUIE/Xopf9u0EOIVIcSz/vqEECInhJgUQmT9ZY8Q4lV/f9ZfZvxlTgjxut/nm0KIgn+8N/xtmXJZJLNZ8c7UlEgViyJdKomJXE6MZrNiplAQE7mcSBWLYjKfF5P5vOg5fVoEv/lNsXHfPvH25KSYzOfFmelp8fr4uNi4b594c3xcpPzfZrZYFGenp8VkPi/ylYp4c3xc9J45I9KlkkiXSiKZyYjP/vjH4rWxMZEtl8WZ6WkxVSiIQqUisuWySJdKIlMui3KuLKbenRLF2aIYf2Nc7Nu4T4y/Pi5O95wW42+Oi2KqKErpkihny6I4WxTlbFmMvTYm6705LrKj2dr76TPT4pvBb4qZczNi/I1xMfXOlNi3cZ8YOTFSe/8QD4l9G/eJwnRB9psri1K6JErp0rz9xdmimJnJ1f4b70xNifFcTrw1Pi7SpZJIlUpiIp8Xb46NiWfPnhWzxaLIlMviDf9cvTo2JnrPnBEXU6naebn0//O6fy437tsnXhsbEz2nT4s3xsZErlwWU/55n8rnRbZcFr1nzojjw8Oi98wZMZxOi/FcTqRLJfHcuXPCsSvCrhT9V0k4dkUUMxMiMz4gipkJcfGVZ0QxMyGsUk6UcjPi4ivPiDd7vi0uvvKMcCxZ3yoXhF19WWXh2BWRGR8QlWJWFFLjfh+TYvrCG8IuF0QxMykuvvKMsIrZ2nu7UvylvouZSVHM58Tp06fFyMiIOH36tCiVSvPGl0vHh3/4h38QyWSyNi6Nj4+LUqkkksnkrxyXstlsbYwplUqiXC6Lcrks8vn8vLHt0rEpmUyK6enpWptSKSvGxt4Qp0/3iHx+UhSLs+LMmV6RTL4sstlRUSymxI9//FlRKEyJffs2ioceQuzbt1FMTr7t10+JZPIVv/2UKJdzolzOibGx18XU1Du/1CaXmxDF4uy87aVS+pfqlkqzolRKi+npMyLn2GLU88QrQoheIcTsJePDa/61/oY/VvyZv706LvVcMka85o8df+aPU+OX7HvDHzuq6y9fUi8nhBj1t73znjEvLYT4fSHERKEiSumSyI5mxdlnz4pSRl5TZ3rPiG/Vf0uc6T0jr93X5bWbHc3WruOx18fEzLkZUc6WRSklr/VSuiQyIxnxD7//DyIzkhGldEkUZ4si+XKydr2Xc2VRKVREfiovTvecFslXk6I4WxT5yXzteNnRrMgMZ8TExQkxmh0VE7kJkS1nxRvjb4iN+zaK18deF5lyRoznxsXJkZNi476NgocQG/dtFFOFKTGSGRHJTFK8Pva62Lhvo3hz/E2Rr+TFa2OviY37Noo3xt8QZ6fPir985S9FtpwV6VJa5Ct5MV2YFmPZMXFu+pxIl9IiVUzNO+ZkflJMF6ZFrpwTuXJO2FZOeIVRIYqjQlTSQhzZKMTfIpelKblMvSlEJSVEJSvE7OtyW3FUiNk35PvZ14SwcnJ9pEeIwqgQpcn5fZWnhahk5trPviGPd+l6YVS2v3Tb6HNCOLYQVkEIuyxflZwQM+/Of1/JC1GcEWKkT667fhunIrdX8rKfSn6uvl2W7x37l/uq7rPyQtiVuWNX+7p0XyUnxMTrQgz2ClFOy9fsWbksTAiRHxeiNCPEQI8QjwWFeGaj3Dfxunw/+aYQ5ZQQ5awQpZTsb/INf9/rst3km0KUM3Lbt5HLsRNyWUrJ/mbemb+/MClEYUJU0uNidDQr3nlnSoyOZkVv7xkBD4mNG/eJt9+eFK+8MiqGh9Ni48Z9Ip0uiWy2LF5/fUxs3LhPjI5ma+/feGNc9PScrrWdmsqLjRv3iddfHxOpVFG88ca4eOedKbFx475ancnJvMhkSiKXK4vR0aw4e3ZapNMlsXHjPjE8nBYvv5wUBw+dEZlSvvbqP/+6eHfivBicHhH3P/2Y+Mie/4+4/+nHRKaUE6liVhQqJXFhekT87Su94sGe74hCpSjenbgg7n/6MfHuxAUxU0iLMxMXxYsDr4rZQkbkyoVf6uvN0bPi/qcfE4PTI+L05EWRLefFiwOvirfHB8X9Tz8mTk9cEBPZGXH/04+J2UJGZEpFMZrNipeTSfHZH/9YjGazIl0qiZ7Tp0X9t74les+cqT1fVJ/ves+cqdWrPv+kikWRKZVE3r/fnpuZETm/Xb5SESn/Hp8tl0W2XBaj2azIvPcePjYmRrNZkS2Xa88JVj4vvDfeEGLjRiFee02IbFaI6vqJE0KcOTO3/vrrQvT0CBEMCtHbK8TsrBATE7LNu+8KkUrJbWfPCpFOCzE6KsRnPyvbVyr/dTihWioV2e8/t917yp7du8UfbfuaEDPvihs+1iX+4Sc//qU627dvF5/85Cf/Rcf5X6EAI+I/g1HfN6f7FeX/eHM6zwLrXZjZIaPu5gcBCwo/h9AKwAB3HArPQekktDwO9gWwk2AkcCqTOIGP0dPTw6lTp1i+fDm33XYbuVyO+vp6crkcAwMDJJNJ1q9fTyaTIRaL1fKS9/X10d3dXcsnfmkOcsdxSCaTxONxGhoaavu7urpq69FotBaRf2/u8k984hPMzMwQrq/n6MgIjZEIU4UCazs6GMpmGc5kWJFIABDSdQSS7l2wLAxVlWkwNI2B2VkuZjKsbG8nXSpxcGCAm5YupTUaZapQoD4UIqhpHBsZYXljIznLIhGLkczlODgwwMlkku+sX4/mm8r1Dw9zfSLBS8kkVzc1UReN4qoqJUUhg4yyF4H9wK1AM3N2d8eRlNZhZCTscqRrc7UdyBRnj/v1TyAjZcPABqAHuA6Zz/xRZKQsCMz4x3H89/XISNoJJBVWq1S485lnWNvRwccWL2ZXX1/N0EVRFPKWxQPPP8+WNWsIGwYLw2EUoGDbRAwDVwhKtk3ZcVgUiWCqKplKpWbM8rW1axnN5ejyNV4wZ2LXPzzMVY2NhPy0JEPpNLv7+9mzbh1hQ9LrUrkiwXGb7FCGxMoEeKAakh6aH88TiAaYeGuCtuvbGH9tnPbV7QhHmlepuopqqNglG93UUXQFK2dx6P5DrNuzDj2ko2oq6fPS4br1ulZyozn6d/fTtbWLSFMEM26SHkhzdPdR1n9nPdnhLEd2HKFraxfhxjB6fQBL8bA9j5PJJJ11dSxtaGAglWI4k2FlIkGqXCak60wUCjx6/Hjt+00VCtQHg3hI7dvOvj62dXXREosBENA07n32Wf76jTfYuHw5T95+O3/31lv8zoc+xCtjYzRGIjx87Bhbu7pYGApx36FDfN33bqgPBmv//bCmYBXSTA2cpPHylRjhOpnz27VRVB0QeK6DqssIll3M1Oqqft5mu5Sr5bRuvHwlZriOSj6FppvowbCfRlwgPDmDXs5OE25oBd8Mzq0U0AIR7FKWqXMnaFx2PXoggqIZuJ5sa9s2mqb5+YTN2jgR9XMxV5f5fJ58Pk8ikZAmi0AqlaJQKNDRIenQQggKhQKGYRAIBKjeIwuFAqZpoigKhv8fE0KQTCZpbW1F0zQKhQLhcBjbtpmYmKCjo5mhoSNEIo0cO/YwXV1bCYUWcOjQH7Jhw1OXDLoK6fR5+vp2snbtA0QiTYyPv0Fn51oURcOypG7eMCLEYm0MDfXR1HQ1pdI0fX27WLv2AaLRNnQ9gOvaZLPD9PfvZu3aB1iw4ArAI52+wJEjO+ju3k44vIiDB++lu3srwcYPU1E1TGSA4yTwYaQOfROScbMR+J68C/AKMq3hJDJKftcldZ5ERsu3I43o3tv+0roP+f1FANMfo9YyZ4b3AHAlkLccxLsz9O04wi2P3kJppkRmKEP7yna0oEYumSMQl1kMXMtFOEIaxuUtNENj5MQI+z69jys/eSUbntqAYznopk7v5l5WfWUVdZ11jL48SvM1zQRiAYQnKEwVqOQqLFy2kGfufIbTT5/mjr+/g86uTgqTBcrpMvWL69GCGnbBhgVwZuYMjx5/lN3rdhPWw6BA2S7z2vhrXN92PR4eY7kxdvbtZGvXVkayI7REW/jAwg9w5OIRFoUXMVuapauzC5DmkdXc1WWnzP2H7ucrq75CS7QFVVEpWAWao83krTyu5xILxLBci5PJk7TH27ms4TLOp86zs28nf33744RmT8roeGUGQr7R3Ie3S3M5Jydz0zt5MOt9irklo+qBJvnPUFQ/2b2vK1d1n5I+KCPpy7dJmnxlCoJNfk5zaQ5LeRLsNJgLILBIbldU6bSuh0G5NEqnSG15ekBGvJt+bc54rmpQlxn0DeYCc0Z20TZJPw/E59qGFvlaeb+41vy+qvsEgOe7Xmr+9/WNN11bfgfPllH2iP/ditPStM4I+9r7C1BIys/18h4ZIdeD8vsUxyHcLKn+J3dKY7n4YnkOPWdOJqAFJcuhMCoj9Cu3SUp+sEEa/SX7pN69ODZ/v12kELycd89makZzl1++gE2beti2rZvm5gieJ3j99XHa2+OMjGRpb49x2WUNVCouuq6yaVNPzVTu8cfXc889B9i2rZtwWKeuLohluWzf/jMee+w3UFWF8+fT7NhxhD/8w9VMThZYurQBy/JYvDhOsWjz2mvjJBJxmpsj3HvvQb62bTXhFocfnvgpd678bRL1jViujeXYTBfS/PVLz/D5VZ+iIRTn0Z//LV+54bOYmkHFsXz/hgD/4bnv10zq/uiWO3lr7CxLF7ZTtMosjNRTcSym8inZl2+A1xxbSF0wwpmpIZYtaiekB9j1wl/N6wegZFcw9RBj+TzfOHy4lrP8qQ0buJBOM5LNkojH2dXXx4NdXTRHItx78GBNbrmmowPTZ0rmLYtspUJzJCJNcoEL6TR/6hvOXVZfz0Aqxa6+vtq6ClT8aP14oUDUNHlrYoIViQTJXI4dR47wo1tuQb3zTklL37gRvvc9uOuu//z644/DyZPSmG7nTkmfb2uDaFReY3190NAgje22bJFR+khEOqv6GZz+R5Vf/OIX3Hnnnbz488MYus6v33gT9957L5/61Kdqdf7mb/6GP/mTP+HFF1+kubn5f9hn+59R3jene7/8M4slQXtur1xSATQIXgcIcIakaV34Bt+obha0ZgivhZlduGoTjuPU6KJr165F0zTq6+tJp9McPnyYjo4ObrrpJkZGRojH4+RyOSzLIpvNsmrVKjKZDELM5RwvFApYlkWpVKK5uZl8Pg+Arut0dHTQ39+P4zjU1dWh6zrHjx+no6MD0x94qtRWy5I0fs9xaI/HefjYMdrjcRRFYTiToTES4Z4DBxjL53E8j2ylwng+T8QwGM3n2dTTw9nZWQK6TmMkwubeXoqOw6c++EG+cfgwFzMZFoRCeJ6HKwRr2tuZLpU4NzvLQCrFH12iXQL4Ym8v52ZnubqpCUNVubalhYlCgbFCQQIEJGV0EkllXwucQ1JOzyAfkluBENIg6nKkM/Mo0ihqFHmRr0C6P2/2+wn5ffUgqapV3fwKv81xJMU16R8riATsDvKhfhioKArburu5Zdmymna6auiyqaeH8Xyero4OWmIxFkUiOJ6HAOKBACXH4cvPPst0qURQ1zk6NETRcQgbBo8eP17L1b4ikaiZ3VUcB8t10RWFVe3thHQdw3e0DxkGXR0dCGAsnydvWTSbYXIjWZqvaaY0XcJzPFzbZf9d+/nuh77L8197no61HSiKQuNVjaTOpyhMFUCF4kyR1GCK0ZdGSV9Is//u/QDc9sRtmDGT1GCK/V/YX6PhG2GDhVcs5Lbv3sZQ3xCH7j9USzfVvlqOvXWL67j1sVuJNEWYeGMCgKFstmZ0M5TJYHseIV1nRSLBS6OjRE2TWCDAeD7P/rNneXVsDICIaXLvwYOM5fOMZLNSatDXhwJ86cABcpUKX161is9efTWP3XorAEvq6xHAyvZ2Hva1dzv7+tBUlSfWr+eyhgaKts09Bw6QtSwpWfA8pgdfJtzQhm6GEI7F2C9ewC7nKKZGAcH4Oz9HQTD2ixcozI7QdMUazHAduhnGLuV+iVbvOTYg8Dyb5JuH8Fwbu5yjlJlEUVRC9c0Iz6Uwk8QqpHEdC6uQRlV1ElffjGaGmXjXT8ulgG3Lh17XdTl06BDpdJpkMsmPfvQj+vv7MQwDwzAwTZN8Ps++ffs4cOBAjWqXz+cJh8M1b4xMJsPs7CymaWLbNgcOHKhty+fzmKaJ53kMDQ2RyWRobGzkgJ9f1zTNGuiPRqMMD4/S3r6SY8ce5vTpp8lmRzDNKLfc8gi2XcS2i/T0bEIIj0ikidtu+66vX3+LWKwN2y4B+Pub/fPmEosleOGFrxGJNLNhw1N+mzf8ui7RaAu33voYCxZcTj4/Tip1AV0Pc/vtT1JffxmGEWbdum+j6xE0RcVE+l8cB672r/1J5ktqFKQXxmpgMXNa90vruEjw3oA0nKvu2+q3v9RvI4bUyNchJTzbgNeAZX4fvn84dZZLn69pt3IWelAnsSJBKVUidT7F7LlZVENFCEF2OEvv5l5Sg6na5Fs8EefKT15J9/Zu7JLN6MlRhCdY//h6VFNl7NUxOrs6MSMm+Yk8s+dnCS0IEWuRk2Dd29/jkVGy/RSGKsITVLIVPOHx6PFH+cqqr2CoBkeHjzKUHiJn5VgYXsjmA5sZz4+zKLyIJ29/kogR4Zrma7is/jJUVLo6u7is/jJWta8ib+XJVrJM5CcwVAMFhbAR5s9+48+YLEySq+QIG2EWhBZwIX2BV8deJaAH0BSNLYe2MJAaIKSH0NBoj7ezZc0W0pUcYuFKCdoXfFSayl3/XQh1SNCuRyXI1MPw6r1QuAhWWlLaT94pKfWlcSgOwSv3SIDvOYCQfa14CsKd8OqX5b7JF+XSzst2gUaILgMtLLXz+UHwvDmnd+FIR3XPhuwFua1qNqdo0kk9tEhSxVEkXdzK+G7w1dRvPr1eMNc21u5nr3F99/n39CXwX64E3v7koaTE+7r3KvVeMyVIT52BQ5vk++IkJI/IdrE2aR4XXwy//giUJuFnX5LfSw/Jz/rynjlqvKJIyv+o9MFA0f3JkiLEL4Obn4S6ZWCXJC0+MwCLPgzTb0D9FfDrj0FwkUwdd3Inruuye3c/e/eeYvfufgC+970NXHZZPel0mdHRHJddVk9zc4SLF9MsWhRBCNA0hXzeYsuWNTWzuWBQ57HHbmXx4jpyuQovvzxKJGKyY8dNAJw/nyYU0nn88fVMThZoa4tx6NAge/YcRVEUwmGTCxfSRKMG4bDB1q1dLFlaxw99Q7mgoVOwSqSLWYJGgCULWtm+7vO01zVzZuoi17R9gKl8ih3P/5DpQpqIGSRVzPK5S0zqhBBc03YFM4UMf9H/9yTTkwR1k8UNsq+gEeDDLctoiS3gz178ES2xRbiuS0A358zuVv0WqVKWsl3B1Iya/05VLratu5v+4WEWhcN0dXbWnnN29fXVNOsPHztWC/YMpNOUbJvRXI5zs7NcyGT4Qm8vw9ksU8UiW9asIRGLoQB/5j/n7DgipTwD6TRf6O1lIJXiuYEB7nvuOT7a1kZA01hcV8cPPvEJCbareUa3b5cA+9L199LWAVavnjOq270b0mnpMj8wICn0Dz88t880JfA/cwZmZv7lRnP/jHLkyBEuXLjAB664kiVLl3H8+HE2bdrEX/zFXwDwn/7Tf+KP//iPOXTo0P/2oP3/qbwP3P9XLX6Odbz/Ny4sc76+XQkAnnSXd1NgD8OC+8AeARzpJq/GwSvBwi1o3jhCCKLRKDfccAPRaFQCWdet6Uv7+/sJBAK0t7fjeR79/f3kcjkSiQTFYpG6ujoURWH9+vXcc889dHR0IITgxRdfrEXHUqnUvEmAZDJJPp/nzTffnGcglU6nufnmm1m+fDlCCJmrXNfnGY/oisLKRKIGaHYcOYKiKNQFAjWjuEuNvaoRy+p6tlJh76lTDGcyVFwXR4ias3q1/qUmJCHDwPU8vrpqFZOFAtFAAE8IMpUKu/v7yZXLXBSiBrTD8heo5VC+1KAuiYzGb0Jq4fH3Pe3XDwL/1l+uBab9+nchI+8hZGT9EWQ0fzfy4X0MCf7HkNG3qlHdNBByHOxKhYWhEAuCwZpm61JDl939/fzrq69mPJdjqlCQ+uhikbLjENR1Vre3s6uvD0PTaIpEODEygu15fGf9enp/93d54rbbCOoy9ZonBLbnUXYcspbFlw4cYDSfp+Q49A8P0xAK8dmPfITxXI5vHD4sXew1hY41HRQmC6TOpzAiBnpA59bHbuXqz17Nuj3rsAs2xakiiqpghAzsgs2BzQewCzbZkSyRxgh9u6TxVW40JzXq59MEYgFW/vuVWHmL9FCa3s29VLIVVF3lqjuukhr3mQK3PnorH/nsR3DKDr2be8kOZxl7dYy269uwEfOMblYkEqhA0XG458ABWqJRPCHY3NvLda2tnPvSl/i11taaqeGKRIKdR46wMpGo6f4jhsHj69dTdhwW19Xx5O23AzBRKHBda6uc7FBVHvR1dVu7unA9j3S5jON5td8uW6mwp78fRVVoXX4j9W0fpJSZxC4XWHjZdah6gPCCBKX0FOEFCYQQtH74JszwAnQzjHAdCrNJjFAUTQ/SePmKms4dBKpu1sC861ioqk64oQ0UFeG5jL19GD0QwqkUMMN1aLqJZgQozI6hKAqty38dkM/3uVyOgwcP1saPqrb9d3/3d/nEJz5BLBbDcRxGRkbo6Ojgq1/9KrfccgvvvvsuxWKRzs5OgsEg69atwzAM6urqaG5uZmRkBFVVWbVqFf39/YTDYQKBAOl0mt7e3pq5nWVZnDp1CkVRyOVyvPjiiziOQzQaJRKJo2khuru3cccdf0883s7+/XdTKEwyMfEmiqKyevUfoqo6iiJz4SqKSkvLtQBUKjlAIRCI13K+ZzIXyWaHeeutv+XgwXsB6O3dzN/+7W9w4MCXUBSNQCBGsTjFM8/cSbk8Sz4/RjTahOKnCxPCw3UtTDNSG/V15ORfCKk/TyOj4U8hwTRI8K3645GCNJVr8+uEkeBfRRrO/a6/7Qm/ju33/TgyGl8BupEeG13+Mf4c6Vp/N3KiMQN4mkrXti5+t/d3ibZECTeGKc2WMCOmdI9vjHBg8wHSA2kyQ5maj4VmaPRu7uXiixelc/ySesZfGyfSGGH/3fulI33IILEigfAkBTHSGGHhsoW4FZdD9x8idT5FXWcd7avmvC+yw1nsgs1w/zCZCxle/JMX0RSN3et2Y6gGJ5MnWZFYQUushaZIE1OFKZ4+/TS7j+5GV/WaW3w8EKfiVshZOY6PHMcREjRGzSgT+Qn+6PAfcTFzkaJTpG+oD094rGpfVYu4a6pGUA/SFGningP3MJAa4NFbH2Vtx1oUReFc6hxffvbLtMZaaYk0oagBqL9Wgnc7K3+p4kWYfRXyAzIlXGkMFq6Y07G/8/CcDt2sg+IIXLNDtp3ql9Fuz5Fg3y3IVHLFEQnUFUPetcy41LC/dp9cv2YnhFpliraZk1AYltF3M1bLyS516L5OHUVGouuWzungVUNuU/X5IB0/Sq77rvSqOaeHVzQJorWg7ywf8AH7oNxvRuUkgGf5rvXKnDGdosg6qibB9LofSOBeSELjNXLiQQ/L7zF6DDIXpVldywoZbX9xi9Sp3/g4/Lt34IaH5XnLDUkt/PgJ+f6fviy19MKTOvnMIOSH53K+C0eCesXX8mu6XN78PVQ9MM/RHeDYsWEAmpoiTE4WsG0P09RYtaqDe+89yJkzM5RKDm++KSeSH398PUNDGQYHU7iux6ZNPbS0xGhri3HXXT1MTRWoVBx27z7Kc88NIISgq6uT1tYoJ08m+da3buL8+TR33dXDqlXtNDVF2by5l76+IQxNqwHvheF6pvIphjOTjGeneWXkXVzPpexUuKp5Gbd9qKumPf/rl57Bdh0qtk1bfBFbb/4DHM9lzz/9Rzwh+OuXnuHg6WP81UtPgwLD6XEsx2ZhuI6gHgAUttz4b0nULSJoBLg4O0bQMHnwpn/HRG4GUzOYLmbY8fwPKVkl6kyTyxcs4Ief+AQT+Ty/vXcvr4+PU7TteYC+qlmvpmyzXRfTT0H86PHjNEYitWfGnX19rOnoQFNVvuiD80dvvbV2D7YvMb3b3d/PuqVL2dbdTVjXGUyn2dTTw2Aqha1piKVL4amnpLFcfz9cdplcHxmBVErq3B96SO4PBKRpXVXX/sADUs9+6NAcUL8U+J88OR/g/0uM5v6Z5Qtf+AJjY2NcuHCBCxcusGrVKp566im+8IUvsHfvXrZv387zzz9P5yUMzP9Ty/vA/X/FUqWyj31OLv97g3fVlPT41h9A4Eo/ZYzvMu/lwWiH2T+H4K/JfbjgpcEZB70dPbqyZg4Xj8cJBAJkMhlGRkZq7svd3d0UCoWa2dM6PwJ94MAB6urqqK+vZ2ZmhmQyiW3b9PT01CiuVVO6bDbL6tWryefzBAIBEokE0WiUBQsWzDOQOnLkCIZhcMMNNwBICqymzTc/E4JUuVwDNNu6u2VeciF4bWyMsuPMMxopWhZbL1lvjUb5/WuuoXvxYkKGgRCC+w8domjbfG3tWqYKhXkmJCXb5kQySWssRlssxl09PZQdp2YOFg0G2eGnVJpkDpi3IynrlxrUrUQaxu1FUt1d5MPyOBKoT/ntm4F/g3xY3uPXH0ZG8O9G0uETyMiXxtzEwG7/b1E1qtsJNLouuUqF18fHURSFznicx269laCu187L9u5uFGA4m6Xgf9+CH9EdymT49FVXsb27m7Bh0B6Pc01zM6+MjqKpKms6OngpmeTczAwKMkofDwRQkCC+Cvo1RakxH86n04zl87XIv+U7kubH8jRd3cTswCxDfUOohsrtT96OGTXn8oJ7gmhzdM552gfrhakCXVu7WHbrMvLjeVbftxo9qOOUHI49fAyn7FC/uJ7131mPGTMZ7h8mO5IFAVbOAgXsko0RNlj11VW89Bcv0dndiWZqaM58Az5DVRFQc5z91tGjZCuVmpv8F3t7GfMBe/XmXk1N+Me//ussCocZz+UI6Tr1oZCcJHFdgrrON198kdFcDlVVURWFtmiUpzZs4LKGBt6anCRvWeiKwrauLno+8xmaIxEeX78eULDLOcbePkww3ogZjmOG6+U5c21CDS3UNX8A1yqB8IgsaEV4Tg1426U8eiCMEYzTdMUadDOEomroZrhmeqebITzPYfQXz2MVMyiqRvOVXTiVkqTMqxqe51BMj8t1AaO/+BlWMVOjta9bt46GhgauvfZabvUZBi0tLczMzNDb2wtAIpFgeHiYVCqFYRhcffXVmKbJs88+WwPlnuehKArBYJDm5mZKpRKxWKzWfyQSIZPJcPr06Zq5XdW8TtO0ec724+PjNDQ0ABCPd7B4cTf9/Xs4dWovR49+i/b2VSiKRqEwSSo1iKYZpNMXuXjxRXQ9SDTaQio1gOOUEcKlv393zVk+kVjhm9VtR1FUbr/9L7jnnnPcfvt30fUAnudy5MgOTp9+mkJhivb2VXie52vkXFzXxjDC6HoQkKyaCSCHBPA7kVHzZuRDguWPI7Y/vuSAFDICr/v76pGTg8eRrvAXkWZzhr9dQU4AVsV5YaSB5p3ItHIukGe+O30GcF0PM2IST8iId+ZChtlzs+TGckSboxx7+Binnz5NZjhD59pO7jlzD7c9cRuqobJmyxqGjw7j2R6u49L20TZO/PkJOj/WSbgxTLQ5iqrLx6DMhQw9m3pIDabQgzo37riR3GgOz5F54W9/8nY2v7uZxd2L6f92f21Sr8qoiZkxGiONXNN8DV85+BXGcmP0D/dzXet1jH11jCdue4KQEaJ/uJ+8lWcwPcj9h+5HIFjVvgohBMdHjlNxK8QCMZ4+/TQ7+3aiKRqNkUbuOXAPQ5khdFVnMDXIpp5NFJ0ik4VJ9p7ay86+nX42jt3UB+vZ2bez5jbveY6cWC+NwlvfkFFwRZOAPNgIp3wDund2Q8s6SaFHkTnbf2sMVv5ARssb10DmbUl9b7gaZk5IMPmRb0JpAl7bIl3izQYZZS5NyIkB1bikzv1ygmDmhDy2FvQp9X6UPbhI/kGEM5d6zcrKz1PNh5654OdxV3yAf5mMkLsVWd8p+4Z1SId4RZVtdT/dm2vJCHYNsCchUC+j8ZW0BPCaKfsTwk8dZ/imdkKCbrsEiW5Jn/+nL0P6nKSyxxKwwI+IX/V7kh2Q+Jg8Ru6iTBlXmpaTA4kuSe1vvEZG41tWQPYi/GyzBPS5IZnureoir4cg0iyPX5qR9PnMRXj+LhQ8GhvDPPTQDTQ1RZiaKnD11U2cOTPD3Xfvp60tRiIh08N9+9v9rF3bQSRioqoKa9Z08IEPLMR1PVpbYwSDOoah8fGPLyYSMWlujvDAA2sJBnU0TeVP//RmVq9u55VXJAMsFDL47ndvQ9PUWkq6Rx89jqLAY4/9BnfcsZxywaOjrpmvr/s8HhJwN4RiTORnaQjF+MX4AFP5NLte+EvGstN85YbPcuuVq7lz1W+hqzpt9Y1+yliHv3mll//rX92GpqiXpIr7LTRUmmMLeWfyPKOZKfJWkW8e+gFjmWlAwdB0potpooEIuUqBBeE4uqrxH1/q4fDAy2iaRtayGMvnyVkWq9rb+Z0PfYgViQT3HzrE0eFhHrrhBpbW1/P6+Di7b76ZxnCYiUKB8UKBbxw+zHA2y5516+Y981XTw1UzD+3p70cAX121ipFsFv09Rr+t0ShL6utrgZ8q+Pc8D86fh7ExmcqtoQHuvBMuXICzZ6Up3b33wlVXyWUyKfctWSLN7JYtkyZ1J0/Cn/6pTAk3MgJPPinrdHTMAfyGhn+R0dx/z/LZz36WcrnMb/7mb3Lttddy7bXXMjMz8z/7Y/1PK+9r3H9F+f97jbuXl6A9t1dGxVt/AGrsv1PfFvIxzZxzXq1ut06D1gjlVyB4NagNIMpS5250yLzuXhGHemZmsxw5coTu7m7q6uro7e3lnXfeYePGjXR2dtZ0qYcOHWLt2rXU19fzzDPPcPr0ae644w46OzsZGhoiEolw7Nixmlb+hhtuwHVdYrEYuVyupm+vq6tj//79dHV1EYlEGBsbIx6P09fXV+sfYHh4mJaWFrRAAA+oOA4nkkk+tngx51MphrNZujo7Kdo2W194gW/eeCNhw2CmWKQ5GsXxJBg8mUyyMpFAALbr4gpBzDTJWRaZSoWYafLTd9/l2MgID99yC5rvMjqcy/HcwACvjY3xHz7+ccKGwfGRET69bx+/86EP8Rd+hFSoKhd0nWFFYS1wFPg08EmkVtRGRqwiyAfr80jn90eQEfGI/6rq3KNIav1uJDBfCHwVCfDvRVLkb0EC9xIyMnYe+RC9DRkNu1Q3H3ccPNel4jiky2UWhsN4QvDy6ChrOjrwfMZBwbKoDwY5kUyyIpHgZDI577tW62194QV23HQTEcOoaePvW72aqGkSNU08IXO/7+7vZ2tXF4vr63F8UHqpb8Bjt97KvQcP8t3bb8ewwMlbNUqrcAWe6/HC115g7QNrqb+sHqfkkDyZJNoWZeEHFoIHVkEC7kAsgFN2cMoOZtQkfTFNdjhL+8p2SqkST37kSTb+ZCMt17YAYMZMhCvHU8/xpM42Z1HJVog0RVB1+Tnsos2h+w+x5oE1RK9ooOK6XEinefzkSf58/XrenZ7m28eO8fXubtrjcVwhOJlMMphKcdPSpTQEg0wVCvLG7roy0lupUHFdIqbJVKFQ0+N929f9W67LLyYnua61lclCgbBhULTtmjZ+SUNDTcttuy4nfM39FfVxpt75OU1XrkXTDZxKCc+zfUAeIRBtQLgSVBuhaG17MT2KGaojsqANgcLYL14gPfoOda1X0nTFagaP7eWKj38ORXgIAcXUKHoghKYH8Tzb18OvwAzXS7Dp2gghpP69vhmrlGXm/Ks0XXUjqVS65oMRjUZRFAVd1ykUCszOztLU1ISqqvzsZz/j4x//OIZh1Gj1q1atAqDB92WwbRtd11F8fWuhUCAYDKLrOpZlUalUCAQCqKpaczHOZrPU19ejqiqWZaFpGiMjIzQ3N2OaGo6To1LJEAjUAYKDB79Cd/fXicfbcZwyphnB81xUVWVo6Cjh8EJOnPhz1q3bja6HKBanCYcX4ThlDh26n7Vrt9DQsAzPc1AUjeHho4TDjcRireh6kEJhgkikmXT6ArncKPF4O8ePP8b69X8uxxbhIYSHbRcJBOqxzDBZRUH1x4k8Um9+PzIyPuiPG1uR1PZOZO521x97JpHpIncgneXxx4mYvz+KdI8/6bdd4o9dCvBF5jTvT10ylu1AatxbgJjloBdsDnzpAIkVCZbdsgwjYvDCgy9w2xO3YRdt9JAOApInkzR/ZI5GaUblNamoCge+fIAV96wg1hajMFGg/9v9rNu9DjMm73NWweKdH79Dw9IGYm0x+nb2cetjt1KYLNC3s4+urV1kR7LUtdcRbgpjFSwiTRE83SPjZhAIspUsMTPGM6efYXH9Yro6u/D8CcT+4X7aYm0sDC3E1ExeGXuFj7Z9lKAepGAVEAhcz+VrL3yNPev21L5DUA/SP9xPY6SRqcIUXZ1dbOrZxNOnn+YnG39CV2cXBatAUA/63iJ5SnaJgl0goAf45ovf5Pu3fYegZqB4FchfgLOPS1BeuAjFYZmm7dQuWL4dokt8rbc6p1//0AMQvQy8styXegsWrZQu9DMnZTq34jD8fIN0rl/xPfkLlyelZv5X1fngV+HdR+SkAKqc0XErEsg6ZQmuzZjsx61I4BtfPAfePXuujmdDJQPBhZJOXKW/Zy9KMO5WJFDWfOCdOT+nc491UMv17l3SRquCFk9+PrcEVl72oRqS4h5NSM38M5+GT/w9tFwP4y/JpedKOr/hP5uZMTh0p4yeX7kR1j0lZQEndsKKB6UG3srA8W9KAL/kFoi0ye+bGZCa9o/tmZtQeHGLdLLXw6AZWPoCZjKgqgrBoI6iwMREHkVRWLAgjKYplMsO4bBBPm/heYJ83qKtLYbjeBSLNg888Dz337+GkZEs113XihAwNpZj9+5+tm7tYmQkSyIRZ9myBvr6hli5MoHrilp6uMWLZS73YtEmFNIZGsqyY8cRtm7tIhIxaE6EEYpHppSjZFeYyM/y4ZZl7Hrhr/i9j97Of3x5f017/vV1n0cAZbvCuekhPtC4mHylSCQQxhMeZ6eGuLbtCizXJlsuEDFDZEp5xvMzLG9ZRr4iA0O/+Vf38fhvP0BzdAFBw6RkW0zmZ2mKLvD19r9FW10jJadCQA9xZmaG3f39bFmzhisWLgSkz9HFdJqdfX1s7epiWUMDmUqFvGXRFovhCsFdPT01Xfx3b7sNTVXl/RmZz73kOOw4coQta9bQFosR0nXu2r+f7d3ddMTjHBsZ4aNtbeiqynAmw+7+fr6zfj2uEJwYGaEjHueDwSDmPffAV74iQfjRo/DpT8Pv/A488ogE2sUi3H+/fC1cCG+8AV1dcrvrylRxCxfKSa+jR2WEfskSGXG/+24ZwTcMuT8yx8h6v/yPLe9r3P+3K7+Kyv7fofyXIvmqKfO4K0EwEjB5P9iDErTrjZI+L2xQQriuV6PEHzlyBNd1ufnmm7nyyitpaWkhnU7T09Mzj9rqeR5r1qzhjjvuIB6P09PTQzwer+VI/sxnPsNtt91W08MrilLTv/f19VEoFGoUfEVRaunkNmzYwIIFC+RXUFVaW1tlZA0oOw6bDxzg0/v2cTKZZFlDA12dnWiK8v9j78/D46rubG/8c2qUqkolybIsyRpsbCZjsBk9ypAAwpghTTqghDikMzEkkITJEGwCdGIM2BgbMBk65DZJZ+ggHCZZxjhJu7EQkrHxFDCSLQ9STZJKqqpTp+bh+/tjl0p20t3vvfd3+71938t5nnpOnWmfUqlq1157fddarNi+nQvq6ggYBnds2UIsm0VDmaPt8nqZ39BAOpcjnskwlkwWDUjyJ02E3XjOOaxraaHEYqHUYqHL4yGRyfDu4CBrrrgCs8nESDzOhXV1/L61lQcWL0ZDGdXFkklmoBj22wvrV1CmT2YUy3Vw/N+G0pxuBNyo0tMaJkrdfYXzxhn0x1Gg/ieocth1KGb+UdQgvaTQZikq/qkOBdqHCueAYtyOhcPcuXUr8WyWsUSCZDZb1KQDfOD3s+Sll7CazVxYV0c2n2dJUxMH77iDdS0tGIWZ7bwIqy+/HKvJxHAshs1s5p4FC1j/3ntUO51EUqlihvvb/f3UFQzYQskkx0MhTJrGzeeey6Zly7CYTKy/6ipOhMNQyFPPpXIYfoNtd28jNhxjwT0LcEx2kI6m2XbPNpzVTuwuO+lomtHDo2y7exvx4TgpPYWn24PZZkYzazirndTMreHtFW9jc9n4ztHvKLOqkRgms4lsMstA5wDhgbAC8AKWEguaWSObyJLSU2TiGaxOxb6H/VGOhcPs8nqZUVnJc8uWYQKmVVTwwrJl1LhcDOg6333rLc6vreWL551H/9gYw7EYp1VUcDQc5j2Ph1w+TyqXI5HNYtE0PLrOvPp6XFYrG5YuxWG18tHICI1uNyKCR9epdjrx6Dpv9PYyqOscD4UYjsWKoL3G6aTUYsFsNlM7+9OYzGYkn8diL8VaWo7FpsrY0/EIvg//NMGu20oJHn2f8rozsZa68B78A5mETt3syznjsq9Sd86nMFvsNMxZCvksvj//iXwug7XURfDoHvL5LJmEUdDD7wIEyWZAM2E2W3FU1uL/aAeayUTd7MtBKEZP2mw2TCYTyWQSk8mEy+WiqamJkZERDMNg3rx5xGIx3nrrLUSEyy+/HMMwiqaXY2Nj+P1+IpEI7e3thMNhHA4HiUSCfD5PLBZjx44dxUqhjo4OotEolZWVZLNZMpkM8Xicjo6OYt+laUI06mPHjkeJRn3YbGUFTfppRCIn2Lbtu4RC/ervFKGpaQmTJ5/NNddswmYrI5fLkM3G2bLlDuLxEa699se43U2kUjqDg11kswmmTr2EeHwEq7WUfD7H2Fg/odBxKitPo6mpGV330NKylnw+RyqlYxh+stkkdrubcPgoGooxvxs1uZdHTeStQYHzDYX+wQ7MKfQL/agKoD4mIt/WokB6HgW+bYVzpdDOpShpjlHodyycmhGvAZ2oScWfoIzp3EDOZsFkNbHs+WWce/O5jPWPkRhLqIjFYyEQCPWH2HLHFly1ruJ3zlJiQXJCeDAMZrhq3VXEg3FsLhuWEgsL7l2ApdRCPpsnpacY2j/EnFvm0LioESNg0HSpqoyJ+qJM+/Q0XHUuGhc1YnVZsTqsuGpcSE7IkMGsmfFH/Ty641GGjCGWz1nOgoYF6CmdOztUHvt5U87DaXXisrsotZaysGEhZk15dOwN7GU4NozVbGVe/Tx8UR93b7tb7TNZaXA3sP699TS6lYHipmWbOHDHAc6vPR89pRNOhUlkE3QNdjESG6HaWc30iuk0lDWwrmWdAu1Gv8pWN5nhgg0KgDtPg0kXgut0uGij+g2P9ildu3FUAe2Bl1WEW3xAseUIVC9QQHZ0tyqtNztUNvx1H8MlPy0YvGlKO//BPYpZjw+qcy9rh4tfUEZ1sx8uMNpjBXBtLXxg0up55GihXD0Frjo1mZDWFeNssim2fJwNL5mkXlthokSV3xfK383WQhl8Rt2vYqYyvStrUO1kU+qhmQr7LOoDmUsVMuALJcOJYfjjtyB8WJnERQcVI379K6pa4E/fLpjmlSiDua5HVal8wciT+Sth1nLFxoPKae9/A3Y9UWDT6xU4r1+srtWPq7/P8MKnn1M+BJJTf0PdQnX/bBw6V2HL6bjdNoaGYtx2WzvHj0eoqysjFsvwzW9u4dixMHa7mVwuj8tlIxAwOHo0hGGkGR6O4XBYWbPmCjwenepqB5FICl1PFXXza9Z0cu65U6ipUWBuyZImBgd17rprK1OnltHQ4CaXy9PfP8bdd28jm83z+OM7i9dOqXXgiw6zevuLxDMpJrsquKjhbKxmCys+/WUiSYOvz7+Ba2c188Cnv1wgRTJsfOc3zJzcyIgR4sddrxA0QlhNZurKJpPJZ8mLUOUop9Rqx261UlVazoeBftx2F1PKqnj9q+u5oP4sXnr/TYxUgmFjjNm1M4t6+4Axii8ywqGhY4hIMXJ1Q3e3skcQwaxpTK+o4CfXXsv0igoS2SyjiQSP7NjBsXBYRez+RSTcuwMDnCj8vleUlDAYifBGby9ru7pwWK0kslmeu/pqmsrLec/j4Yu//z27vF7lt6TrrLlC+QmMxeMsbmyk3u1Gs1qRdYVJvdtvV6Zzr7wC69ZBIAC33QZDQ/DjH8OUKfC976lzLBYYHlbbTqfatlhg/nwYGVHX/v3fKxb+xAmVB5/L8Z+6SF5Nbo1/Xz9Z/ruXT4D7/4nLv1XK/r9kSf8bpnQnLZKD3BCMPlE4Zw1YJsPYeuU2n+gBcqBRLIlfuHAhXq+3CKKtVuspOvcZM2awZMkS4vG4KrluakLXdXp7e+ns7MThcFBZWVlk7UOhEE1NTWiaxtKlS7nzzjtZunQpdrudm2++mWuvvZZYLMZ7771HJqNYuhMnTqgSIyia3OULLOb3Fi/mlZtuYlZ1Nel8nmzhsa6lhaUzZzIci7G+pYUpDgfZfJ4T4TCLC+6hTqsVp82GWdMYLpjlBQqOpEOGgctqxWo2MxyLkcjlWNDQwHAsxgvLlqm8+JPAfnNTE4ORCIdHR1nY2EhJwdXbjho0r0OVxKeZMKU7H1XqfkdhXYYaFNehBs+NwNuoAXWeU7PfzSgWrKRwj3FNvKdwbieKeR9BlbpGUIz+y4Xn5HLFEq7Hd+7EXSipCsbjHA6FuK29nQa3m1/ecAOmApDXAE3TqHW5cBbySVe/8w4Ao4kEu04qpbeZTPz42mvRgPqyMspsNh5ctIjeu+7CBIzEYlSWlNBYUYHLZmMsoUy80DRKLBYa3W5MZo0F9ywgbaTpWtdF06VNVM6opOrMKuVYnhcaFjbw3vr3cFY7SUVSxRzo9za8h81lY9ql09BMylE+sC9AbCTG0meWYi21YjKbyKVyVEyrQDNpJENJ6ufVU1ZThsmmgHw8GKekogRbmY14MM62u7cxdniMsroy6hY34NF15tbUkMyqAUg6n8dhsZDJ5ymxWLAXJjEC0Shdg4PMq6+nxGIhI1I0sdvj9zPZ4aDR7cZptdLkdhNOJqkoKSGSTAKwqLGRurIynDYbF9bVcVdHBw1uN6/cdBPzGxqKcoY7t25litNJU0UFU10uJJsmk9Dx/flPZFIGsTE/kstgL5uEs6oBi60UZ1Uj2VQS56R6zNYS5ShvMp9iSIfkGe7rIpuKo5ksOCfVk0unmDzzYqSQ164P9ZNJRHFOmsr0Sz5L3TmfYlyzmklEiYXUFFTVaReSTRpkklGAop/FO++8g4jgdrvJ5/N4PB7S6TQNDQ3Y7XYqKiqIxWJcffXVWK1WRkZGcLvdAKRSKbq6unA6nXR2dtLb24vVaiWfzzM2NkYkEiEajdLY2IjFYsFqtbJw4UJ0XZXjRqPqtZjN5qJZpqoqShdL3Lu61pLPZ4nFhsnns+i6h97eN+jsfAKAt966m3w+SzabJhYLIiJYLHYiEXXezp2PI5JH08BmK6OhYQF+/wfkcikaG5uJRDwkk2GampqpqjoD0NA0C01NzZjNNrLZBFarQ3XlhcFSJDJA7qTv9lrUJF0LE5KZ54GbUWB9DDUpuIYJDw0nSorzABNAvha4q9CHHAPuR032jVfzxFF+GaCqfhqB76JA+z7UJKGBAvwxlOG5Pqiz9a6tOKud6B4dq8NKeVM5KX3ie6t7dLLJLPqgzpY7thAZiFBWU0boSIiOOzsom1pGPpfHXmFX/QDg6fYQD8aZeslU0tE0RsCgcVEjsz8/G0+3h7KGMuYsn6MG1F2DpGNpBjoHCPWH1HsZFaxmKwEjwP0L76ehvIFULkXXYBdDxhALGxbi1b247C6cNid3ddzF0dBRALL5LDnJMb9+Pk6rkxJLCV+Y/QWGY8Pcv/B+HFYHOcnhtDpZ37Keenc98Uyce7bdQzwbx2F1EDACrH5ndVEDP9U9lUw+w3BsmEQ2gdvmVr/d47nph55W4J2cAqrmEkgGIDkCZqcqo59136lAu3qxAudzn1DrZAAQVS6/+y6wOJWB3YFHlG4+oyvwnxyGs+4Bi1vluyOqlH73nQr4W5wK5JfUKIbb8CmQbHNP5K8bHrWNSYFYm1uVvGumCQZc/booYB45BjnV71E6RWnjzSVKmz5eRThuVGeyq8mBsUMTwH54rwLMcJLxnUeB5Z41E5ns6agC7Sa7Atq71kwYz0lOadovuk+tzTbVTj6vTOfMVoiPKDO7O4bVPpNZ/e1Wl6oCuHQtGH6lpa9boI796dsKrAOceSM0XKZY/yVPQXwEyQs2m5nFixtZu/ZdcjnB49G5776FeL062awQCMTI5YS1a7s477wp5PNSBOMffjhMU5Ob6dMrqalxUlvr5MEHJ0zrysvtmM0a+byQy0kxB/7JJ99VHoMCbredN97opafHy8qV45r7JWCSIlj+ec9r2MxWBsPD/ODtnzEWjzB36pk0VtSw6sqvMxbXWb39RcZiOg+3fB2HrZTReIQd/bt56f03sVtsTC2vJmhESGVSpHLKmd5hLaVxUi3n1s7kYOAInvAwg5FhvJER7rlsOS57KVNck/gw0F/U259bO5OAMcqkUjcUDHdbZ89mXUsLxwpjmb7RUeKZDDaTCbOmocGEJv1dZcg3o7KSf7juOs6cNAm33U6j201lSQkNbjd3bd1a/L393uLFRXIjk8txZ0cHU8vK2PWNb9DgdjMSi9HgdrNi+3ZORCIcLpjcdXs8aNksWmkpbNgAixcrhv3SSxUYf/xxpU9/4gmlTb/7bvj1rxWoz+cVgP/JTyj8YKlHMAhz56qS+pISpZU/7TSYNk1t/2ctkodsQslLsolPwPv/4PIJcP8/dTHZVHn8/zLQDmCGqpUFJn8lCrKdtGhWZUJX9cDEOdkgVH1fHS+dD5oNk2amvLycZcuWEYvFKC8vx2w2E4lEGBgYOEXnXlZWRiQSKcYsjTPtN910E4sXLyabzSIi7Ny5k97eXnRdR0SIx+MYhsGOHTuIx+OYTKYiGz8+MdDZ2Uk2m8XpdLJ161bC4XAxds6iaTS63ZTZbDQ3NeG0WjkRifCtjg6ORyK4bDbqy8o4v7YWTdOIpFIkCqZqicJrOhIKcXt7O7FMBpfdTu6k2Vq/YdAfDrPi7bepdjiwmExowOKCQclfClRy+TzX/fa3+AyD4+EwXT4fx1AM9zhwt6AGyePMeYQJPejjKKKiBDVQvg3FtO8Cvq/+s5wOvIhi7/2oAbSr8F9ehWL0xxn+atRkQDNqSHSypn689P5k/ZaGcjqvdjrxRCK83d+PR9eZX1+v3KhNJvYPKQOcnAhoGo6CE7yRThdj+LwFFrjEauVoKMSdHR0Y6TQum42zqqoYMgzu3Lq1qJmPZzIMxWIcGRsjns3SPzbGbe3tnIhEyGtQObOSsvoyWta1cN4XzwOBlJ4isDeA2W5mzvI5ND/cDBo4a5xFHeuy55aRNtKM9o3S8a0OYsEYTYubmHTaJNDgrXveIuqPInkhfCJMIpzAWeMkn81jspmIDETYds82bE4b+UyetFEABIsbsTltygxPM7GkqQmb2YyRTivHfJOJY+Ew+wIBjHQaAaaWlVFmtxcTD8aZ9crSUsLJJPPq60lms9y7bRt6Ok1jRUXRdd5hsxHLZIopCV2Dg/iiURY2NBSj9uxmM5dNm0ZpQX8XjMcJGAbZXIZcNk02GaX27P8Q9QIAAQAASURBVEux2F04KmsREXKZNCkjhP+jHTgq6ygtr8b35z9islixlboRzcTUc69g2sV/S905n0Ikj6NyKsGjuxm3cjaXODFbSzHbld696cLrsZa6iI35KK2oQzNZyCQNcrk02VScEnc12XQCa4kLR+VU5VCfS2OxWDAMg8svvxyLxcLo6Chbt26lvr6+WLZus9mKoNpkMuHxeHC5XESjUfL5PE6nk6uuuop4PE5zczN33HEHpaWleL3eogldY2PjKYaXsVgMdyGRoqysDLNZmcvNmjWLlpaWwsScmebmlQU9+ipVUZCJ0d5+G253Azfd9AqLFz8IaFx99UZASCbD2GxOxsYOn3Jec/NKMpk4sdgI2WySfD5DXd1F2GxuRDJYLHYymRgDA52EQv20t99GKHSEgYFOwuFj2GwustnkKf1OU1MzFsmxSoRWVHl6JQpIzyz0DYMoEF7NxMTeykJ/UV/oZ8b7obUosP3kSX3UGhSD70ex+icKbc4rXHsbalLgApSPxrxCu2bUBKI5nYWsEBmMsPC+hcRGYtTPq2egc4BcKoez1smyTcu4uf1mGuY3kNJTRT+KyGAEs91M17ouGhc34pjsIJvIsv3+7YSOhBjsGsRV58LqVBNxdredsjoF7lORVHEiLm2kSYwlaFjYoCpv5tTQ9XQXkhd2fG8HNpONC+supMHdQC6f4+637qbaWY3f8HPjOTdyYd2FBIwAecmzsGEhvqiahLJb7CSzSUyaiSpHFZ0DnQzFhji/9nyGY8PEM3Fua78Np82J2WQmnUvjtDp56sqncJgdWDQL0yum89SVTzFsDNM12IU/6qfH00MsE1OmdeF+jGwamb1Slaifvw6MYxDsBuMI7LpDsbauGeCYCpUXKqBdeYEaZ1ReqMC8xaXAtRREEiYrmF0w5VIFTM2lMOt+ZU6XMRTYL52ioucOPaXuYbKr4943JgzwjCOQHDoVJCOnms5pKLBrK1OgPKWrc2xlCoRTiJ7LpVUs3PjzdEHnns8UwLyo59HBgmEdqvx+ygXgnq7AfNHoDgWKJ80qGONpKsbts+3KZM5Zp/6ef/mO0rvPX6VK4Od9b8I0b896tTbZVEm7Y4oC/IlRdZ9cSkXi+bvVBEIqpN676KAqhXfVKUM9X5dqc8lTipW3lSmAHz6qKgASo6TLZnL0WIRHH93B4sWNrFvXgsmk0dDgZv3692hocFNSYqa83I7ForFq1RJcLjV+7O8PFXXwTU0VBAIGd9yxhYEBnTPPrGLjxqXMmFGJCJSUWIjHM+TzUgTmDz+8BJNJo6trkEQiyyuv3ERjo5tp08r5yU+uZcaMCiya+SQ39xtIZtInAfnXGTFCxNIJBOHFk9hwT3iYH779M6a4JrH+M/fyjQWfxRMeYtgY48WeV7FarEU2fjQeIZlJ8cQf/7Ggnx9l5uQGfvH+mwBMcpQTjIU4s7qJqe7JPHLVrVhMFs6tnclYQscEVDscPHbZZZScZGC8tquLSCpFToScCOFkkg1XXcWhO+/k+WXLiKXT9I2Oclt7O/2hEDkRTquspMblwn6Srr25qYkzJk3iaDjM3du2MRSLFQ19pzidrOvqosRiUZG4V17JVJeLuTU1PN3VxWSHg2Q+rz6H69Yp4P7oo0qnbjKdakBnsShw//HHin1PpaC7W51rNoPbrc7p71dM/OLFyujuyBHV1umn/+dGwYmoapNEUK0/kWz/Dy2faNz/jeW/vMb9f/VS1LVrEHsHLJMUIHdeOqGdz6ch3QdaKVimoIZvGoW8FMj0Kwa+ahUp7UwGBz1FJ3gRIZfLkUwmOXr0KJWVlTQ0NGAymdiyZQuHDh3iu9/9LslkspjvfvXVV3Pw4EG8Xi/XXHMN4XAYXdeLuvUlS5bgdDr58MMPi+e0t7cXB9ddXV1Fff14nvx5553HNddcA4W/djgWo9rpJJXLYTebue0kjdJPr7tOnZfNMqjrbOju5qkrr8RV0BDXuFx4C3r1XV4vm665BrOmcTQUYk1nJy9ccw09Hg/z6uuxFvSwABZNK7qkgyqLr3E6OaOqindOnGBefT13bd3KfZddxvrq6qL+c2PhX+ViQgO6EcWIP44aSJ+G0r7/pW7UghoYj+vVq4ADKKfnNYVrnaiy1G+fdO0mJti0MGrgzvh/vKDvAnBYVYzKeHbplEJ2qVnTSOdyBGIxHt+5kw1XXcVoIsFAAaRbTKaiIdt4BcS5U6ZgM5uxmc0MGQY2i4Uym43hWAy33c6BoSGOjI3xt7Nm4bBaSWWz7A0EWNDQgADve71MLi1lZlUV9gzkM2om12QxkTYUaz71kqloJo23vvMWix9cTHlTuTKRi2UACOwL4K5346x14nvfh7PaScX0CqKBKJ2PK62rY7IDzaRhc9kwhg0ckxzks3m8u7y4G91EvVGcNU4mzZykwLzFhGbRkIwQC8ZwTHaA3cQRPczASZntiWwWb2HCI1fwDJhTU4PLZqNrcJCjoRB/O2sWAAeGhjivpga94KmgAaVWK5lcjkw+z5u9vdx83nkAxDMZ8oXv4vf++Ec2XXMN2UJZ/Pm1tQTjcdZ0dvLAokWcUVXFrW++yT9edw02kzKnGzmyi8kzLsFa4lSDYiCXSZLPpjFbbJisdjKJKLZSN7lMqqhTrzvnU2TTCTKJKI6KWjCZ0ZCCVj6r3NTNFkxmC5pmIpuKY7bai5p5s7UUk9mqBhP5fCEbWkPTTORzGbKZDCabg2w2SzKZpKTAEmSzWUwmE9u3b2fhwoVUVFQQiUSKWviKiopi5vvJ2vXxDHjDMNi5cycLFy4kkUickvGeSqXIZrOUlJSQTCbJZrPs3LmT5uZmdF3H5XIVy+8tFgsKyuYQETTNRDTqpb9/G17vLq65ZhPpdKzYFafT0YIWXmPbtu/y4YcvM3t2K9de+xMymRiZTJJMxkDXvbjdDXR2rqG5eSVWqwuXqwbIFyY2gyQSY8Riwzgc1XR3r+f6619kdPQwhuGnvn4eFouDcPgoudJKnG4FVMwnfcdzhR7+tpP6hBdQFTpZ1Kz/bfx19voMlDP8yX2UDTUJeXI7wb/Y91ih3ekn9XH3ATONFM6cED4eRvfo1M+vx2w1EzoaonJGJZpJI+qPYi+zY3VYkbwQORGh8wn1XR0H4lFflK61XUXDusF3B1lw7wLiwTjlTeVEBiLUz6svmtXpgzqRwQiNi9T/PjYcw15mZ+jgEDXn1WApVSX8khOyJVkiqQhG2mCKcwrZvJrcHdedHxk9gsvuotpZXSyPj2Vi5CWPqfB9WrF9Bd+d/10qSiqYVDoJDY1gPEg0HWXmpJnEM3Ee2P4A9yy4h6llUzGbzOTyOSKpCOX2cuLpOHaLHSNj4LK6+N4fv8fmQ5t55aZXWNy0GLfZgimfVBPw42x3PqfK40VUqbaIiofLRJU221oOeq8yrTvnIcWMh/ZB5fkKQFjKlIkcKCA89r5yrrc4VBzcvgcV4z6+HFoLsx+CuFc5y7tmwq7bVMm8c8aEjt1kLrgYivoUSk49NHPhgQLmIhOTCeP56+nohCu85BRz72ooOLHbFOgf64XSSapkPl9o22SdyG4fz6rP50/KiW8ogP4TE7r00ikQ86uSfFe9Yg8DuxQT/8c7J/TsV/5k4j2KehTwtlcqN3lnHTiq4V/vh8ufV+clQ6qawOZS2vfQYVWmX9ag7n3JA0r/PvyB0td/+QCGuZ5/3emhuloZ0114YR1Wq4lQKElFRQnhcJLKyhKsVvX5y+cFs9mE32/w6KM7ihnuL7xwDXfe2VHcfuyxyzjnnB8RCj1AIpHF54uyYUM3a9e2UFZmI5+Xglx6kMmTHQSDcZqbm8jnhXQ6RzabJxJJUV5up3yShWFjDIetlBKrnWQmxcZ3fsMtF1+jbBXQcNpLSGbSvNjzGg9d8VWe+OM/sqN/N+s/cy8X1J9FXoSn/+WX3NX8ecIJg5qySTz+h5/z4/ueoCRtorqskhOxYT5/99d47vZHefvtt1n92A9Ip9M4HA6e2riemtPqi7nxDeU1iAjpXAbRLHxzSwdv9PZy4I47qCwtpcfjYWpZGadVVHAiEmFNZycbly5lJB7n8Z07WdncTJ3Lxbffeqs4fhyPYB2KxXii8Lta63LhtttJFSSa4+c+dtllGOk00ysqyBYq7QYK93lg0SLqCvFxH/j9LJgyhUmoykVuu20ir/1HP5qIbnM41HO/HwYHJzLc779fOcpPmTKhg//Od1TsW3OzcqQvKVHmdZqmst7/s5Zxxj3qUZ9pS2lxXPHJopZPNO6fLP/+coquvR9KzoexZ8Da9Bfa+TRkToDoEPgGZI5BPgaB20ASCrQXSuzNpjz19fWEQqGio7OmaYyNjdHQ0EBNTQ2ZTAbDMFi8eDE33XRTkT1vbGykpaWFXC7HpEmTWLZsGfl8noqKCpqamop6VrPZjMVi4dxzz2XZsmVomsaSJUvwer2UlZVxzTXXUF5eXogrUQx/S0tLUV+viRDLZLitvR1/NIpZ04oM8solS8jkcpg1DavZzNquLubV1xMo5LjHMxlyhdL7z82axbqWFmwmE9/bvp1sPs9Prr2WErOZBrebXV4vggJOd3Z0oKfTHA+FGImpwfqSpibK7XaMdJrG8nJKLBZWLVnCaDR6CgsmKIb8BAqg/wTFrjegWPQZqKkUMwqcH2YCtOcL512OGlybgHOYcKJfgwLz7wMPMVFO72JCvxpHDdIFVR4bQwFHu9lcrB4osVj44TvvcCISYSyR4HgkQk4mIs/0dLpYGj5a0MRn83n0VIpEJsPChgZKLBZ2+3xE02lqXC6sJhPJbJajoRC+aJRFjY0sbmpixfbtGOk0douF+fX1HB0b473BQeY3NHB6VZX6/whEBiJs/fZWUnoKq8NKzdwafO+rHOcF9ywg6ouqiaVUjqEDQ1hKLDQuasTisGB1WKmfr5zljSGDqDdK06VNlE8rx+ayoZk18tk8zsnKeM5itxTzoBsXNVI5o5JcJkcyXGA585BL51QGtNlEOp8vst82i4UpTicuq5UlTU1YTCay+TxzC3mlt7W3c35tLYubmlR+ezTKwsZGrCYTx0IhHFZrwXE3h9Vsxm23s3zOHACMdJoV27cTjMcpLynh+WXLSGQyvO/zKS28zYYvGuW+hQsJGAYiyu1eNBOaZiqWvAePvk8um8JkNpNNGWho2BxuUrEw2VQca4kL34d/Ip/PYDJZqT37UjSzFZPJQom7ujAEnwDt1lI3FrsDk8VGOq6TTcWVu3xBM28yWcllEsRDPjLxcCE3HkAjNuYjm45jtpUSDoeLOerJZJJoNMr27duJRqM0NDQUPTF0Xae/vx+73Y6IEAgESKcVYz82NnZKubuu67S0tOB2u2lsbCyCe8MwMJlM2Gw2vF4v2WyWSCRSlP4oQzqV864Y+Dz5fJpsNkksNkQ2m0TTTDQ2NtPSspZcLoPN5sJuVyX7dns5NpsLm81ZZOqbm1eiaSYymQRO52R03Ut9/bxiqX1X1zpcrmrS6Sijo4qlT6cNYrFh3O4GSksraW5eiUgeu72M+vp5JJNhcrkEFksJg0fexiRCBtiJmvw7hqq8iTORxf4wykk+iZLnRFFVOLuYiIQ7vdC/1KHAeTnKkG48raK1sC79i30Po1j+ElS5/eOoUvwRoNSmphPG4xm33rmVTDyDq9ZFJq7kUOPgXTNpZFNZdK/OwvsWEvVFsZSq77IRMOh9o5fuDd3M/vxslr2wjNJJpTTMbyAyEFFt37WVyEAEk9mEpVTlxceDcSIDEXY8soOoP8rUS6YiImSTWdLRNINdgwhCwAjww3d+SDKbJJvPkslnyEuevOSZMWkGNc4aEpkERtpQcW6amYAR4O5td+OL+phXP0+x7Nk4333ru0V3+allUwnGglhNVu5ZcA8bujcQToYptZQWje/ykqfGVUMwEeTRHY8ymhhl07JNHP3OUS6su5C7Ou4ilc8iuYwqad/zXQXOY8eVBl2y6qGZC9V8VrAWSuxdM6Hm0/Dx05AJq/L45JBqwzgCI52qndH3oWKu0mGPdCoH+ap5ygjPfZYyvZv1APQ+q4ztSurU/WavUhME4/Fv+axikiVHMWhdMyvDOs1UkOwVSt21AnmgmSb06FZnISrNpkrNE8EJd/hwvwL1U+aqewkKTI+b4YWPFoB8QSuvcWpOvGaaKJff9UTB1d4CXY+osl99QE0GmEuVnv2sVpj/cKFEX1P740OKRR93jo/5Vczd/FWqe4sFVFvuaep+0UFIBpXzvNmuHOoTQfV31jfDlw9CNomZ1CnseiBgYLWamTzZUYjntZHPQzKZ5fjxCN/8ZgeGkaa83F7McF+1qplUKsumTctob7+Zhx9eQkVFCa2tsxGBSERp3ufNq8fvj/LOOyc4fjzMrbe2U1XlYHg4xuLFjRw9GuK229rx+aLk80J//xgWiwnEhNPuIBgLs3r7i4QTUVZd+XUaK2qpKZvEWCJCNBmnylnONxfdiF8P8pVLrmf9Z+5limsSP3j7ZwSiQe7/9JcptdqZWj4ZTdP42iV/w+9efpnDH/Xy/u7dPPPYk7z/Ygcfn+hn+fLlPPbMGv7lvZ2sXrOGO752azFC7sXu10hl0whCNBXDajKzqrlZgfaSEno8HprKyzl90iS0gn/MfQsXnlIqv6YQaTseFbeyuZlcIdr3ic5O3ujtJWAYuGw2BNjj97O+pQXfvffys+uvL5bU+3W9aMTr0XXe7u8nYBjYzWZcNhvz6uvZHQwq47h4fIJhf/hhVTJvGJDJqMkmu109Fi5UQH39euUSPw7YXS544QWYNQuWLFHO8ytWKKA/XkY/Lj/8z1g0kwLrFad/Atr/J5ZP3q3/65e/0LWbnP+Odt6mSuFHnyyc+wTkI2C8AbnIqWZ5kkUkT2dnJ/X19UQiEbZu3YrT6cQwDPL5PENDQzidTioqKpg2bRoWi4XGxka6u7vJ5XKk02ncbjdbtmwhHA4X9eDLli1j1qxZ2O12MpkM27ZtQ9d1YrEYFRUVXHPNNaTT6aL2FJRj9Li+fjxCLlfoHO9buBCPruPXdWYWNEpTC+7xeRFsJhM/ve46/m7uXDbt2qWy2nWdgUiE/rExbGYzZTYbkVSKJ1taqC/MjuZE8EWjzK2pYTgWU2VXl1+OuVAi7rTZiizoFJcLEWHDe+8RSSaZ4nCwpKmJ05gYDBe8dRlPsDSjWK1voga6OmqQbUGVuI6z4xlU1NIo8Hngx4W2qpgA6Q+iSmKXAGcAP0MZQ5UW2nAAZ6MmCGwojavdbGZxYyODus7tBQ1YMptlYUMD3oL5mT8axW42s2nZMvruuosap5MlTU0MF2JT/NEoVpMJu9nM3kCAaMF7YGFDA26bjWQ2i5FOYzWZWNzUhKtQuuWPRnn88ssBuLOjg4FIhIbycuVmn89zeHSUbo8HEaFzjYp1M4YMBjoHMNvM1M+vx/e+j/Jp5TQubiSbyJIYS1A/rx6Awa5BxYjnFWNfM7cG3aPTuKiRs284m0wsQzaVxWK3YLKYyKVzyuAqmqLjzg4ysQyaWSNyIoK3x0vaSNN+WzujfaPkc/niPnMOmhsbi67wd3Z0YGQyCMr47+5t2xiOx7GYTMpXwWzGW/hBL7PbSedy7PJ6qXO5sJhM5EUY1HXu2LKFY+EweirFbe3tjMTjzKuvx6PrHAuHuWPLFoZjMebX15PN5zFpGufX1vLj99/nwro6AE6vrCQrkM0LdbM+pYzlZl2GuZCLa7E5MFmsBD56hxJ3NRabmqVXOnWDfD5L4ON3SMfCmCxWTGYLmUQU78E/FFzpoyA5vAe3k0ko0K6ZLWgmM47KqYwe24vF7mDkyK6TYuVKiYcDQB5HZS3ZZAwB3n333aL23Ol00t3dXTSrmzNnzilml3fddRelpaUkk0kaGtRk9rZt26ipqaGsrIx8Pk8+n6ehoQGLxVIE91arFatVSYdEBKvVSn19PRaLhWnTpnHvvfdy7bXXFh3pxz01IEskcgKvdxeZTIytW+8kk4lhGH5stjKiUV+hpP0odnsFZrONdNpg69bv4HRO4brrfkJFxXRisRFKSysxmaw0NS3BbLYybdql3H33CVpa1iGSJ5WK0NW1lv7+t7FaHTQ1LcZqdeB0TqGycqaqaMgm8Pl243BMxmy24XLVcO55N2OgGPC5qEHBeOn7ykJ/8g+oycFSVPn7SpQ55lSUjAegC2VueSvgRYH8I6gJgGOF6zcW+qbbC+eWoiYhJ6MmA+IoAD9eit+AKpfPxDPUz6vnvfXv8eHLH6KZNWJDsaJnhM1hw/CrSSdbmY36+fWUTCpRbLkoHXvdhXXcP3Q/17xwDWa7me0rtpNNZDGXqD4hPhqnZX0LzilOMEE2kWXrXVvJxDLoHp0PX/6QrrVdmK1mjIDB9hXbkbzQuKixYGq19hRjOYCByADDsWHykieajrJi+wqGY8OAKpMPGAGV8d61lpYZLcxvmM+anWtOaWcoNoTD5uCurXdhMVl46sqnqCipACBgBHiq86lTtPBv97+NR/cwoA+wYvsK8pLn8csfJ5tNKKYu7oML1yvG3TEVzrpXlcKPdCttumTBVgX64YIWPQ7TPg8XbVJg21Kmyt+nXAqH1oF9stLPV5yHilpLKj271Q21VykjvL80xjOVKEY/l1Al+iWTFQgeN4Qbj3ATUNr1glkdmtqfTSrAbbYVwLs2cR2ouLhsSsXETblgQjNvK1PtaOYJ07lxIzzDoxhuUH9DuF+B+PGSfVdhomHeqol4NptbxbiNA3mrQ+Xdh48oNvHyTeo1hY/AH24H/RhMXazO7X1ZldLXzVevy9WggL3hVYD+T3cqgB8dUFr4RFAZ1tUvVq7z4cOw/TYlQbCUkBFbUXO+Zk0np51WwYkTEe64YwuDgzr5vFBaqmLevF6dN97o5cEH/0BpqYXTT5/Ej350DU1N5QQCBnfdtZWGBjfTp1ewb1+Ae+9dwOhovAjyr7pqJmvXdlFd7Szec/3695g/v55sNn/K6zCZNKqrndxzzzZ0PUWp1c5oPMKXL76WkViIPMKIESIvwtypZ/KL3e1s632PRCbFr/Z0UO2q5IL6s4pl9S/tehOLyUw2n2OvtxdveJhJTjczp05TuvbIMK9/8Ed1/KMD5O0mOvVejFScRc2L8Hm9zLOfVijZ/yzRVByTppHMZMhJjhmVlSSyWe7eto25NTVMLiTmjGvP17/3noq9PYnosZnNnFlVxY+uuYYpTicHh4aK0b6v3HQTDW43t7W3czwcZn59PaOJBHdv28aR0VEy+TxVDgenTZrEsVCIbxX8Z3Z94xvUu918q6ODo6GQSpYZHlaA+sABaGqCn/4UZsxQoN3lUox5V5cqgX/kEQXEzYUJrqoqxbyPl9ffdptai8DAwER+eySiMtxjsQkW/z9j0UyqP/gEtP8PL5+8Y//XL7ZTQbep5N/WzptsYHKoc+vboeYFsNTD1N8rxl0rhdqfgnU6ubyJRCLJsmXLmD17djFP/eTc46lTpzIwMEA6nSYcDhfZ9mXLlmG324u60t7eXgzDKDo967qOtcAuWiwWFi5cyLvvvovD4Siy6el0uhgLpWkasViMcDgMgNvtpqenp+h07rbbuaCuDofdTm9Bo+QvGM2lcjn0dJqAYRDPZHhm6VJaZ89mfkMDpVZrMd7saDhMicVC3+go3922jRORCMOxGIsbGxmKxfjhO++QyGaxms3kRKhxuRiKxbh72zYOj41hpNM4bTY2LF1KMJHgu9u2kTeZMDSNQOHtP45ivI+iTJv8KL3pfSgGPErBNA5VFt+FYtotKLBfA7yHGkBL4dzpqIH01MJ5biZK5v9S3WRDlchGUMZRyXHzvIJ+a0N3N+FkkhvPOYdGt5t3BwZY3NhIKpdjNJHAZbMxWsgVL7PbeaO3t+gDcOfWrZw3ZQoA6YKTqaB08VOcTgSIpdO4C5UJCxsaSGRVeeZ9CxdS73Zjt1gYicXI5vOU2e2cN2UKmlkrZrDby+zUz6vH2+Mll8rhqnWx9c6tpKNpYkMxxo6MERmI4On20LCgAZPZRCqaIrAvgKVEMemaScPmtBXZu4HOAfLZPPlsvug+v+CeBby34T0l0axzMe3Sabgb3bSsbyEejKOZNRoXNWJz2TBZTOjpNMlsFpfNxn0LFuCPRsmLUOdy8elp0xgyDBxWK7fMmcMur5fGwg96PJvlzo4Oqp1OvNEo2XweI50umilWOxxYTSYubWqixGLh84XP7ThL4ItG1ec7lSqW5z2zdCkWk4muwUH0dBqTpmEymchmEspYLpMssONh/B/tIJOMMeWsxZhMZhKRYbKpOE0XXo+jso6RIz1E/L2MHd+rALlmwuYox1HVwOjRD3BMqkfyeSbPuBiTyYyjqp5cJkk6FqZi6tnUzb4cAapPn1fIc68lm0pgsZcqo7ykQYm7mlw6cYo5XSaTYdmyZcyZM4dQKEQkEkHXdT788EN0XccwDDo6OooO8CaTicsvv5xYLIbf7y8y5dlslkQiQX19PbFYjFgshqZpOBwObAVjyW3btpHJZEilUvj9fkKhUJH593q9RCIRRPLouqfAkHuLZnT19fMKk5tritns2WwCr3cXFksJV1+9EYullEwmyVtv3Y3N5sBsLilGwGUySdJpA5PJhs3mJp/P4XTWsGjR97jrrr5CfFwam81FLpcmn1eTqZHIIC5XLVu23MHo6GHy+Rx5sxW/ptHPhAv8uJ/FmkKfM973VKCA90xgAaryphSlXa9iwuTuaZRBnY2JMvoMaoJwH0oDX1O4Jg98AGwu3M+OmixcXNieks6xfcV2IgMRmlc1c3P7zVjsFnSvXmTQNbNG0+ImNLNG+GgYb4+XTCxTzGVvXNSIpcTC6JFROu7sIJvI0rK2BUuphVwqh6XUQu35tcXJgPDRMLpXp3Gxqr6Zdtk0VgRXcO1Pr0XyQtfarmJ+u+FX1Scblm7gK+d/hallU7m06VKMtMGgPkg8E6drsAub2cY9C+7BF/VxNKxy2BvcDbxy0yusWrKKqtIqSi2lrGxeyVUzr2Jt11pe/vBlnuh8gkgyUsxqd9lcuO1u8pJnQ/cGVl++mkF9kM6BTipLKum9q5cl05YU7zdsDPPn4T9jsTgRs1M5wmNSoDw2qErWk0OKBTdZVO56fEA5yVfNK4D6LtAKtVXJIcWOT/8iXPxjcDapaDmLSxnc7bkbokfUxEBJrQIN48Z4Hz5RAOdJxax/cI9yr8esGG4RxSRn4gXX6bSKQpMC634Kq16Ibxtn5812FeU2ns0+XvaeTarjFaepuLi0ocCCq06BZFsZ5DIKONsrJhh911QFnC12NQGgFV5j+TR17h/vhMgR5QJ/VqtizEuqlPbcYleTB0O71WvYtUa5x0cH1TfsUxuVu/z8VQWDvH744zcLwH4RJEaUsZ3hhbp56r0aB/u7nlCvY88Gxb47poCzDrPJXGTOH3xwMZqmFV3d167tQtdT5PPCd76jQPkrr9zEAw8sxmTSSKdzxONpNE07xUU+nxfq690880w3iUSW0lILDQ1u6uvL2LhxKTNnVvKzn13HW28tZ+PGpdhsZmw28ynad6fTyvr177GouR5TaQ6TZuLc2pmEElHOrJ6GLzJScIsPY9JMrLzia1x99iIaK2t5uOUbWExm4ukkX5v/Nyw9ayH3XLYcT3ioqGMPxsPYLFZ+3vMa6x78AZfMPp8/vPQaC26/nqvmX4opled8bSouu5PfbW7DiBpkwnEebvkGw9Exkhn1G1jtUjr8TCE7fV59PcOxGB/4/WRyOSaVlrKuq4s3entJZLN4dJ17FyzAp+vECqRDMpslnk6zqLGRMpuNRrebxU1NE1r5d9/FXBjXrG9pwW23MxiJcMeWLRwNhxnU9SKLP8Xp5InCdWs6O5lfX8/106ejhUKKSR8cVI7wR47Ad7+rtOoOh9Kr+3zwxhsKqI+OKqd5iwVWrVJGdmvWKKC+Zo1yj583T7H3K1dCeTmUlUFPj9LGf7L8l1s+0bj/G8v/nRr3FGh2kqk8X/jCF/joo48oLS1lypQp/PiFZzn99Ca++rU7ePfddyktteGyj7Jxw3NcsvB6iL+jIuHG1kPVSjKmsxkdC6HrOg0NDWiaxtatW1m8eDEul6sIxMcZq2g0Sn9/P5MmTaK2tpZoNEpXV1dRM1pfX180iQK4/fbb+eijj8jn80ybNo1nn32Ws88+m2XLlhVfd2VlJatWrWLZsmWYzWba29tpaWlhaGiIKVOmYC49Na9z5qRJp+Rwbly6lDKbjUQ2W2Q1z6iqIpXN4rBaORwKsWbnTu5fuJCKkhKmOJ10Dgzwud/8hqqODkpCIUpLSwkCtz7yCDcsWlTUye/p6uKz117Ldx95hCtuvpmZBRMTq8mENxrlD0ePcsvFF3PYZDolP/k6JrSgCVQ5agQFtEtRJawOFEM1FTU4XlnYV4mapesBzksm+dIXvsBg4b2qmTKFn/74x5x++ul86lOf4sSJE5SXlwPwd3/3d9xzj9IoxoCPUYPwZ7JZRkdHi7mktS4XpkI1QefAANVOJ9PLy8kUAGWN01nMvTaZTAwbRjHfvdrp5KyqKk4UfrjmVlVxx1e/yqFDhxCzmYapU9nw3HMM2+3Mr69n1SOP8Kvf/Iba8nKmVFfT8J3v8MxVVzEajzOo62pixWzGlBQ8XYM0LW4iHUuTiqSwuqzYy+wYAYNMLEPljMqiw3x8LI611Eo6qvKZNZOG5IXYcAxnjVNFukVTlNWVkYgnuOWrt/DnA3+mrKKM6inVrF+9nrPOOYtLr7yUdDqtymkzWQ71HmL7P29nyTVLyKVyJEIJSipKELeFI6EQT3d18dSVV1JeiCkcHwRomobDYqE/FGJDdzdrr7wSTdNw2Wx8c8sWNh86xCs33cTiQoRhNp8nkc3ij0Z5YscOxv7pnzh++DBYLDTV17Px+eeZdtpp/GHnTtZ+//skEglSqRSf/9KXWPyFL3BJfb1yti/ow0WEmlI7voPbifh7Ka87i/rzrsR78A9E/L1Mu/izWEvLGDnSw+QZFxUAdh2gdPHZZBRHZb2Sioz5sNgdWO1ONIuVZCLOF7/4JQ59/DFWU566+iae3/gMp595Jrt29fDA9x4mqkcwWaw8/fQ6Lv/0p0GEeMhHKhGhvPZMTCYTmWwezWQuVuRomkY2my1KZsYjJ7dt28a1115b7Guqqqqoqak5JZcdwOv1Ul5eTmlpKW+//TbPP/88wWAQs9lMaWkpDz30EC0tLRw/fpyvf/3rjI6OUl5ezqZNm/D5fBw8eJDzzjuPK664gkwmQ1mZg1DocFGLruseysubqKycQT6fJRw+TmfnGpYsWYXLVUc+ryakrFZHMWsdwG53k04bxTz4QGAfZWV1fOlL9xIIKIfv8vIK1q9fywUXzOXWW2/hX/7lfTwePz09nZxzzhmk01FKSsrp6LizqJ2/5poXSFhK6La5qEaZw41Lc6YW+o7bUGXrBwr9SA+KFW8EfoOaAGwo9FENKLC9EVXmftVVV1EWCGAzmdDKyviH555jxqxZfP0LX+DjQv8zecoUNvz4x5SdfjoGE4Z3PlRyhi2dJds7StQXpbG5kVwih6fHg7vRjT6oU3t+LZpJIxVJYS+3M3RgiOrZ1ZhtZnLJHNl0ltLKUnLpHOlYGrPVjMliYujAEGVTy1i6dCkZdwaLzYJNbDz+0ONcPP9iPn/75wn4A+TSOSonV7L6wdVcsvASbC4bof4QrqkudI9ObChG/eX1RNIRfFEfa7vW8lDzQ0wvn47JZCKfzyMI3Z5u6svqmV45nVvfvJWXP3yZ1tmtvHDNC6SyKUyaCYvJgiA4LA6SuSQ9nh4ev+1xwsEwfsPPabWnsem5TZQ1lVFbVks2n+XV377KnbffyS//+ZfMu2IeNc4aBvVBVu9czcrmlTisDsLJMHWOSdTbHWiZQrZ4chhKa5WTvKYVMtvXKIM5ayWU1kzkpQOkw4p9j3tOyn1fxVWf+xaBkRAmk5mykjzPffYwFzTfwPQvdmIvKaW01AHkeeiOa/n8F5arPPj3v6lM8kwWyESgtFHdx/AqrbjJqu4dHYTEGEw6S+W7p3QF+m3uiXPTumLsJQupsALm7umF9jzgns5VV19DwO/BZC2hzOXiuWfWccFFl5BKpblvxQq2vb2dkhI7c+fM4Ve//IUC7uPu9hoF7X9CGcdZHCrDvbRaAez65gmHe8mrCYRAjwL3jilKh+5qKOjkG8EoRMiZrPDRr2DalVx1xWUEhoYxVUynrLKW59Y+RtPgz7hi9QF1XipMPGvm6PFBhg/9K5OazlOTCokRBeTnPUTaVM5oZjLhsNK0l5XZOHo0zOOP7+TBBxczdaoLu93Cb35zkHfeGeAnP7mWf/qnA+zd6+e555aRzwuxWKaY2/7ww0s444xJZLN5cjnhb//2Oo4e9WC1mikvd3P//T/k978P09yc4sUX15FKZfH7de69916++93bMZtNBR29cqHXrHnQBL8e5MWe1/i7i6+jqbKW0ViYeCbFlLJJiAh9IyeY7Kzk5z2v8fX5f0NjRQ2jsTAl1hKMVJwqZwWrt79YzHt/6IqvYrfY8ESGGIqqfPZ71qwk9mcfHVs6ePuP21n/xDoMI8qs889j+x//wA9X/5Bzmy/irt8/xdKzFrLyyq9hM1vIiQk9lWIkHqfEYqF/bIxqp5P1773HyuZmpjidfOD3c0FdHf5olLVdXX+ld59ZWUkqlyMnQjavPEcChsHari42LF3Kz37+cx675x6e/vnP+eJNN/GnP/+ZL91yC65YjPrKSqZ+4Qs8e/vtnFZZyZGxMZ7o7OThJUuYUVmJOZvFns2i5fMKtFdUwF13KRDe3g6NjcpdfuVK8Higrg46O1Xme1OTYtYvu0wx8mvWqPNmzABdB13nH3fs4Gvf+havPvwwN3z+86x59VV+8atfcfjwYX7/+99zww03/Pdhik+W/7+X/0jjXjQP++Qx8aivr5f/Tyy5lEguqtb/3r6/2E7EIrLlzVckn02KiMjzz22Qy5ZcLOJpldfbnpVMMijiaZU3f4RMa3CIZIIimRERT6vIIUQ8rZJMxiUYDIphGMV1MpmUvr4+8Xg80tvbW1z7/X5pa2sTr9criURCRkZGpK2tTR577DFpa2uTRCIhyWRSDMOQ3t5eOX78uLz66qsyPDws3d3d8vWvf12am5tF13Xp7e2VtrY28fl88otf/EKcTqfoui6GYRQffr9fNm/eLOFEQvqCQRk2DOkLBkVPJmWf3y+tbW1yIBCQaDIp+wIBaW1rkx6PR9p7eyWcSIhP1yWSTEp7b6/s8nhkyDBkJBaT9t5e2e/3y+8PHJDnf/UrefPjj8Wn67J63TppXrJEgrGYBGMx+WhgQCaffrpcefXV8vdPPCFeXZdQPC6Hg8Hi/ff6/RLO5aRV1AeyVUSGRWS5iPhEZExEwiKyp3Bst4johWNHRGSksB8RaReRvYXtfYXr3k0kZMmWLTKaz0tKRNY//7wsvuwyiYvIZZddJq+++uq/+XGKnNTuoWRSWtvahMcek9a2NgknEqInk8X1kGFIOJGQsXhchqJR0ZNJiSSTMhaPy1g8LpFkUoxkUny6Lh+PjEgoHpdgLCaD4bC8dvCgPP+rX8lNL78se30+eWr9erlk0SLxRiLy5NNPyzXXXy+Hh4bkcDAoH/b3y7Pd3fLxyIh09PXJYDhcbC+hJ0X36ZIIJSTiicjm5Zsl4olIYH9Aett7xb/PL22tbeLf65e+jj6Jh+JijBgS7AuKMWKIMWSI7tNF9+mSjCYlEU5IMqLaPPjaQdn8m82SiCTk9Vtfl/VPrZcli5dIPBSXV7/yqvj3+aW3vVd++uRPZWbdTOnr6Cu2pXt12bx8s4RjcVm+ebPs9nplLB6XUDwue7xeWb55s/pcJBISSSZl+ebNsqmnRzyRiBwaGRGfrotP16W9t7f4mdnv90s0mZRgLCZDhiEDwaD8w29/K35dlw98Prnga1+TBc3Nss/vl4pp0+TZX/xCPJGI/M1/+29SNXmyvLJjh7S2tcm+QEDCiYQMRaMyFo9LJp2UdDwqieiopBNRyWZSEo8MyYk9b0omFZeBD7bIyNE9koyOSiaTklQ8IsnoWOG8YTmx502JhQKSSSclm05IJpOUdCIqemhE3nj9NUnoo3KwY6P84IE75NJLL5V0wpCpdbXy5qsvSyadlA8PHpDGhgYJ+o5JJNAvmVRcMpmUZJIxiQT6JZmMSzx+6uP111+XcDgs8XhcEolEsf8JBALS29tb3B7vUyKRiAQCAWlrayv2S8PDw9LT0yODg4OSSCQkGo3Kpk2bZNasWdLb2yuLFy+WJ554QgzDkF//+tdywQUXSDwel5GRkVPajsVC0tbWKo89hrS1tUoiEZZkUpeRkV7Rda8kk3pxXzIZFV33ycjIIYlEPBKPhySZ1CUeH5NkMiqGMSy9ve3i9e6RcHhA2tpaJRAYEK93t/T2tsvPf/6MTJtWLl7vbtmypU3+9V9fksbGqdLdvVN03Sde7x4JBg9LILBf2tpaxefbI/H4mIRiQRnJ50/pbz4SkaiIeAv9R3uh/2gVkZ7C9rCIBETkg5P6JL2wDo/3FaGQtIpISER++vvfy7lz5khPof/5IJ+XiIh8//nn5aLLLhNf4bzx/mtT4d7bUhmJh+LF72dve694dnmkt71XfSf1pHh3e6WttU28u72S1JOie/XiPv8+9f3WvbrEx+LS294r3j1eCR0PSVtrmzzIg9LW2iZJPSk/X/9zmVY+Tfz7/dK/u1+MYUOSkaS8uO5FmVY+Tbx7vJKMJiWpq/7AGDYkEU5IJB6RQyOHpLWtVXgMaW1rFT2pi0/3iSfikY9HPhY9qctYfEyiyagcCByQ1rZW2effJ7u9u6W1rVXG4mNyOHhYfLpP9vn3SWtbq+z175U9/XskFA/JsDEsm36xSWafN1vae9vlfe/78ueP/yxzLp4jZ51/ljzz356R1rZW2e/fL33BPunx9EhHX4e6rzEk+VREJLhbZGeryOhekZhPPQ/uFklFRDztIsEekUifOjZ+7th+tS8xotbBXSLvLhf5+FmRuE9C3kNqO7hbfv/bn8ucc88SSQzLtKZG2burS13naVftJIZEwr2q7cTwRLvZlEh8VCSlq3U2JZJJiqSihf2GyOjHap3NiKRjIlGvyGivSCZ10vGoOp7LqGOeLpFMSkLBoeL+37/yssw571yRTFLuvusOueubt0s+kxaJj4r/RL+6NptWj0xyor1UVET3iMTHRIb2irzZKjK0T+0f2ifS3y4ydEBkrE8kERKJDYkEPxbZWKKOJcNq7esR2bJcJOoTiQdFkrqEBg+JHHtLJOqT3//iOZlz7iyRDzapeyTGREZ7Zd0Tq+W6a65W7cRG1PrNVpGnUWtfj8TCYzI2FhefT5dbb31dxsbiEg4nJBxOyOHDQRkeNiQUSsjBgwHR9aS0traJz6fLvn0BOXRoRJYv3yybNvWIz6dLNJoUn0+X5cs3y+7dXhkcDMjevX5pbW2TX/7yt1JePk3gUbHZnLJz5y5pbW0T+K6YTFY5cWJYRkZi0t7eW2jfL2E9JnoyJive2Chz1n1e3un/QHqHjss7/R/Ix0PHZMUbG+VDf78E9KA81P68/HpPhxwNeiSWiks0GZN3+j+QSzZ8Sd7p/0D6hk7Izv4PJJIwxEjGZSQaEiMZl2NBjwzpoxJNxqSkpEQGfIMSTcZkYMwvY7GI3LP5aTGXWuUbP1klesIotvVO/wcyHB2TcCIhHX194o1EJBCNyohhSGtbm1Q8+aT0BYMSTiQkmkzKra+/Ls92d8tHw8MSTiRk+ebN8mx3txwaGZFIYXuf3y/BWKx47KPhYdn/8cdSdeaZQkODLF6xQj4aHpabb7lFzrnpJtkfCMjmt9+WuqlTZUTX5R/ef784XvLputz6+uuSiMUkv3+/SGuryL59In19Ij09antkRK1BrcNhEZ9PZPnyU4/dequIYYiEQiLRqIjfLzI0JMc6OmThvHmy4Pzz5dVf/ELE55Oezk7p7+//D8eFnyz/OQvgkX8Ho/6XKpXXNO0sTdO+rWnaS5qmHdQ0Latpmmia9vB/cE2jpmm3a5r2D5qm7dE0LVW45sX/N1/7f7nlFNO5j9X2X+1L/NV2iek411zwMlqmF/JpFsy/kOPHPoLY23zm+mXKJXnKRhY0fw5vIE02Z1YmdsUYuYcxaaYi6zXuvBwOh6mtrSUWi1FfX897771XzEweN3YCsNvtLFq0iNmzZ9Pc3IymacUSVKfTicvlYuHChfzrv/4rjY2N3HLLLRw5coTt27fT1NTE0qVLcblcHD9+HIvFUjSr2rp1K5qm0dXVxYIFC7BqGvFCZng8oxiFbD7PY5ddxozKSvKAT9dZ39JCo9vNkqYm2j78kLu3bcMMNLjdDMdi+KPRYsnyoK7z6TPO4LRLLuGmV17hwNAQixYs4MSJE4wlEuRFeOzBB1n7wx8yZfJkrGYzpRYLZpMJ20nRI090dmISYaVI0bipFPhR4V87hNKCDjERwZQHVqC07iVMmD7NZ6J8dQ2KPJhSUsIb11yDTdNIABcsWMC+48fpK7Tz7y0WJoyqys1mVhbyTh9cvJgjY2McC4cn4lAK0WMmTaPUaiWbz3NkdJQ7tmxhIBIhkcmgp9MMxWI8smNH0dDObrGwZMYMuktLafvoI7zRKA3nnMOHhw8zEo/z3IYNfP8HP8DtdFJRUsKxbJbmxkZqnM6iNOGRHTs4HomQzGeJj8TpuEsZJF797NXYnDZ0r45zipPONZ30vtGL7tVpWKAmNk0WE47JDvx7/JhsJkxW5UYf6g8x0DlANp3F5rJRNa2K/Gt5IscjfOrRT3FOwzkcPXyUfDbP0meWYimx0LCwgd9t+R23fvNWGhc1EvVH8X/gx2Q1ceVTV6Ilcmxatoxp5eV0DQ4yEIkwFItxz4IFWE0m3hscJJZO8/yyZXxpzhyGDINHd+zAF43istm4dNq0olTBG43SHwrR7fEwFI2SBG664QbKbDae6+nhQ7sd78AAdosFp93OP+/ejZ5K8frBg1isVn7R18fLH37IunffxaRp2C0WktksASNGNpMgHQujmUxkUzEsNgf157WgmczUzroUd+0ZykIqmyapj5LPjxuGmXFMqsdWWgaSIzbmIxNX3hOS0lm2tAWL3cEZS77MVZ/9EieOH+ejrjcIjo5x6cKL0ICzzj6L8ooK/vAnpaUXEbSCIZejohYRMJlM6LrOli1biEQitLS0YLPZyGQydHR0FE3nIpEITqez6AQ/XsVjMpmKcZOxWIympibcbjfnnXceVVVVGAXDPpvNRjweJ5FIsG/fPm6++Wa8Xi+f+cxn8Pl87N+/n3feeYd0WpWcTps2DbPZxpIlq4omcyqq7SiapmEyKc1uLpfBMALk8xlACIdPYLU6MJnMpFI6Hk834fBRtm69C6ezGsPwYzJZWLJkFeXlbrq61uJ0VrNnz29JJpXO/ZJLZnPRRdegaSYsFjulpVVUVZ2JyzWFiooZLF26kfLyaeRyaRyWEhySL5phjhvF5VAl801MlK2/jGLlL0GZ0pWgmPkUqsT9GKriRytc21pRwUpUhdChSAQ0jfUlJey85hrWF/qfSxcsIHD8OJHCdWaU7n05Sitfm84pc8EBna13qhz32HCM+vn1iAj5bF7Fv92/ELvbjuQFzaLRvaFbfb896vstImz9trre8BtYSiws3biU+z++v1gCP+IZwVZmw13vZuoZU/Ht9hE+EWbEO0IyksTwG6SjKiZysGuQfDav/C7EQn1ZPT+97qf03dXH95d8HyNtFA3oHtnxCEdDR+ka7KI/1E+Nq4bnlz1PXVkd0yums3HpRkyaiWpnNXpKx6N7uH/h/TitTmZMnaE+v8kIoVAIgAZ3A2s71/L1W7/O1x76Gs4SJ699/BqLGxdT7azGZXMxqWQSixoXAeC22NByMeXqPvAyfPSEMpobeFntk7zKVz+0XrHqmllltc+6T+muc/EJvbu1QrHljZ+DdISKijKYvBAOrSWiR9FAZbsjkBhU15VUKyd5U4li8kunwuhuyMXUccmq8nfNrNaYJozybGUTBnG5VMG0DlWW7p6mEic0bSIGTvKqhL58BtReDAgVWlgx9QKRiI4GxGIxfv6LX/P4o99D01S0XG19k7oWKWjuC071KV21a3OBSZsoW9+9Tu131akS9/Imxcz/6a6CPr4Wrn8FyppUW1MXK5a8bqEyqfvjtyDcR0W5Wx2TPJGE6js558tKR48G+jF+/tIv+fqXvwDeTmW6p5ng8heU3n7+KkiMkBcz+bzwwQd+Vq26FIB8XujsHGBsLMldd21lYCDC9OkVaBr85CfXUlZmo67OSVVVKc8/v4zPfU6lltxxxxaGh2Pcc88CNmzoxuUq54knlHY9FApTU+PkpptmU1pqIxIJF7TvjUyeXIWIibvvfou5c2soLbVSV1cGeRNmTHx9/g1cO6uZC+rPwmq2cGZ1E794X+naf7Wng1JrCd+74qtcecZ8ftb9Kp7wMPu8vcU4uNqyyTRU1DDFNYnV21/kREjJlLxeL0Y6Qd/ICX75219hcdqJmbIE/H4mOcqxm60kOo8z4/xZrPjsrezz9VHjmkSJ1Yo3MozVbEHIc8nUqdzz9ttMf/ZZQskkK5cs4f1vfAOXzYbfMIim06xtaeHdwUHS+TzDsRhrW1pY3NjIozt2cDQcZl59Peu6urCbzWy8+mrFwmcyfOeb3+T5556j2u3ms2efTUVJCW/8/vf8+JFHqHY4uGLJElxVVfz+rbe4fMYMLCYTJk1TevvaWkin0TZsgAceUG7xdXXKDX7TJqVvf+YZOHRIrVMppXvfsEFp1leuVOXw3/62qiBJJKC3F777XfJeL99Yu5bnn3oKe2mpYunvvpt5c+YwY8aM/2BU+Mnyv2X59xD9/44HqsJO/o3Hw//BNXf/O9e8+D/7Ov4/wbjnoqew4JLT/3pfNvwfb+d0+dLyL8p3vvVFkWSfSGKf2p/YJw+vXCGfue4qEc9ykcQekfhukeRHIpmQJJPxIqve1tYmfr9fent7JZFISCwWO4X9GmfcA4GAJJPJIsMei8UkkUhIIpH4Kwb+5O2bb75ZvvzlL0ssFpNgMCif/vSn5bTTTpPKykp59dVXJRaLyebNm6W7u1t0XZd4PC66rks4kZD23t4imx4qzJIeCAQklc1KLJWSsXhcPJGILN+8WfYHAtLR1ycHAgGJFNjmHo+nyDovL7D4w4YhXl2X5Zs3SySRkGs/9zm5/pZbZK/fLwvvvVeuu+kmCcXjct1NN8n5X/mK7CswpXoyKfsDAVm+ebN4IhHR83kZE5GgKBbqiCgWa0xEPhYRj0ww4AdEMV1jolj3r4jIYOFaQ0T2F87bLyJ+EekotDksijm79ktfki985zvSKiKLL7tMzjzrLDn33HPlxtZWOdDfL/HCvSIi8tbJbafTRZY9nEicwsAHolH5wOeT1rY22e31ik/XpaOvTzb19Ihf14sMfEdfn5SsXi3tvb2yt8Ae7/P7xTf+HiaTcv1NN8mlra3yygcfiMVikQcefVQuvPhiOXPOHHn8Rz8qVkOMz5YPhsMyGotJIpKQttY26X62WyKeyAQDt98vxpBRZNf9BxQ7bowYktSTMvLxiMTH4uLf75fNyzdLIpwQ3adLeDAsm5dvlsD+gAQPByV0PCTRoagk9aR85tOfka+1fu0UJn/3W7ultKRUTnx8QpLRpPR19Imnx1NkAYeOBmX/v1HVUay88PmKs+2RQhXD+x6PHC7M/EcKf+84297R1yfDhiFDhiH7/H5Zvnmz+Aqf9c/cdJN88etfl+WbN8u2nTulobFR6hsaxGyzybM/+UmRxdcLVRDjlQAjelgigX6JhXwy8MEWSSeikk4YBQY9KdlMSmLhQJFZT8V1SUbHJJNSjHgqrks6oRj7VFyXSOCopJOGxEI+ObHnTUknohKPDMtnr/mUfPP2b0gs5Jempkb5za9/JdlMSrp27hCbzSbr1j4lmVRCUnG9yP5HAkclmVR9ynif0Nvbewqz7vV6ZfPmzcXKm5P7nHF2PR6PF/uok9fBYFASiYR88YtflPr6eqmvr5eenh75wx/+IGeccYb09fVJOByWkZERueiii+TNN98Ur9dbbN/v98vhw4clmdQlFhuR3t52Wb26RHp728Xv31tY75O+vg7Rda+MjBySeHxM/P590tbWKl7vbolEPBIKHT+FtTeMEUkmowUWfkRuvPE6qa2dLFOn1sjTT18lPt8e0XW/pFKGTJs2Tfbu3XvKT0Mmkyqy7oHAAclmVbVVqtCPjNdnxUWx7L5CP9FzUn/TJyIHRST2F9eMtxErXPeRiHzhlltkckOD1DU0SOeBA7JfVPXQmCh2/W++9CW54zvfKTL1w4X7jlcYxePpCaa9x1P8rsZDcenr6Ct+Pzcv31ysdPHv80vEEylWuowcGpGIJyI9m3qkrbVNjBFDYqOx4vk3XnejVJVWydSaqfLeH94rsvef/9znpXZyrdRPrZenr3paYiMxGTk0IpuXb5bYaEziY3GJeCIydHyoyJLv8+9T7HjPJhmLj53CwncPdktrW6sMGUPSF+yTkdiItPe2yz7/PvHpPtGTuoTiIdnv3y/tve0yYozIkDEkN918U/Ez2LmrU7XZgpxz4zkybAzLufPOlZ//5udF9t6re095PZlURCQZmmC/QwcnGPfRPSKpMfX816h1WhcZ23sS435YxDih2khHRVJhkZinyLTf8sUbpWFqjTQ0TJUDL10l8mtkWuNUOW9mhZx7Zp187cs3y7D3aIHZ7xAJ7hGJDU7cMxVRzPVfsuYpQ7Hr44x6NvPX5/0lK59JTrD14+dFvXLLF1uloaFeGqbWyoEPdsv+Pe/LtGlN8uCK++Wiiy6U5gUXyR+2vaWY9vhooW1j4nk6JjK0XzHqw/sUyx31KeZf94iMHlLbRztE9jwrEthdYOX3KvZ9eP8ESx8bOpUtD34ktyz/gjTU10lDfZ0c2Pn6RFuB3fLun7ZKTXWVZF67UTH2Y4fV8fF7pgyReFBiRlKi0aTs26eY8X37/DI8bMjIiFFgxB+T5cs3SzSalJERQ9rbe2X/fr94PBHp6wsW9+3Z45Vnn+2W1tY2GR42JBxOiK4n5brrbhSHo0qmTq2Xrq73xefT5bXXtojdXia1tfXicpXJ669vkVAoLsFgTDyeiCxfvln27fNLR0efhA1DToz5RE/GpHfouKx4Y6N8PHRcIglDjgY9oicM6Rs6UWTff72nQ1a8sVG8kWF5qP15MZJxiSQMiZ7E3K94Y6Ps3NstF158kZw162w597xzpWnumXLG3VfJijc2yt999Sty+hlnSP20RvnCzV+QAb9HxmIRuWTDl2TFGxvFSMbl48JrGdJDoieTMmIYakzi80koHhc9mSxWvHkikWJVYXtvr1Q8+aT4dP2U8c9ILCaheLz4+77P75cfrFkjd95/v3T09cn8xYvlH3/zGznm9YrJYile99HwsHDOOXLxN79ZZNvHx6E+XZcdvb2S13XFoLe3i+zfL6Lrij0/ckSx8ONsfDSq9huGYt8NQ2R4WCQSEfnKV9TzAgu/bs4ceeS++0RaW+Wyiy+WV3/0I5GDB0VSqmf/hHH/f3/hP2Dc/7eD9VNeDHwDZVL7RZSR9S//O4D73wDPAV8B5gCr/68E7v9WCXxifwFoHxDJp/56Xy7xF9vxU7YfX/0DWbBggcSiwVNA/T89O1/OPPN0Cez9zATIT36k2kj71MA8FjulJN4wDNF1XZLJpOi6XgTwiURCPB6PBIPBYrlqIBAolr6PA+1XX31VdF2XRCIhuq7L5s2b5Xvf+57Mnz9fjh49WhwoB4NB0XVdXnnlFbngggskGo2Kruvi9XqLbUejUdFPAkj7/H4JJxISSiQklkpJPJ0udri7vV55tru7WA6eymYlnk4Xgc44yPHp+imddCgel0f+/u9l7sUXy+DIiBw8ckRmnXuuvLJnj0SSSbnh85+Xx554QoKxmEQLJeRDhlEE8KFsVjyiQLouCjQHRQ1kl8up5fHjoH1IFKD/saiB9jjQ9xbOi4jIYVHAe3/hnJWPPy7nL1ggJ2Ix2SMiBwcGJCIiej4vq59/XspnzRJf4frxMv29oiYH9HRaIoXybD2ZFL+uy2jhuZ5MyluHD0vJ6tXFH6RwIlEE53sK5eFj8bj0BYPFkrTxH7BgLCaRREK+98gjMvfii+Ww3y/HfD4B5I4VK6S1rU1efe89mTRlinT29Eg4kRAjlToF0I6X0I58PCLRoaiMHBqR7me7pa+jTwL7A7J5+WbRfbrEgjEJD4alr6Nvony+MKDvfra7+NwYNsS721u8vq21Tbx7vPLYw4/JvEvmycD+ATGGDenr6JP3f/K+rFqxSj732c/J4bcOq5L9cEJ623tldclqaWttk7GQccrk0UhBXjD+PpxcCj8++dF3kqRit9crg+GwtPf2SuSkz/OBQED6gkE5HgqJJxKRv7vnHrl43jw5NjwsA6GQfPbGG+WFF1+USDIpBz/6SOrr62XHrl2yfPPm4v/leCgk7b29Ek8mJJOKKxAei0gmFZdkETgfk0w6KYnoqIwc3SMDH2yRTCpxUom8T5W1pxKSTsYkFdeLJfMn9rwpB9qflkR0VFbceYvMOWua+I/+WeKRIdn62+fkyis+LXPnzpWbb/6CfOpTl8ljK25XID88JAMfbFFtpRKSiCtZznhZ/Hhp/PgkYSKRkHg8Lrt27ZJgMCjJZFJGRkaku7tbNm/eLIZhFEvsE4mEktGEw8X+KZlMFoH4s88+K5deeqls27ZNzjjjDEkmkxIv3P/888+Xl156qSgPWr16tbS1tUk4HJZEQpdIxCNe725pa2uVWGxE2tpaxePZJb297RKPj0kk4pHNm5eL379PenvbiyB9ePgjiUYDRTAfCBwolNR7Cw+fxOMhGR4+JBs3PiYtLZdLMhkRXfdLNpv6N4G7iALvyaReBO3/3hIv9C8HCv3FiChQHhaRxP/DT9LJID4sIhteeknqly0TT2H/fhE59/HHZc6CBXI4FitOCkQLfdlwoT87Fk2qCba9E9/NlJGS4JGghAfDfwXKB7sHpa217ZQy+nGZTCKkQH7KSEksGJO21rbiZNrqktXy5D1PylVXXiXdz3bL5uWbZfjQsCQiCfnppp/KVVdeJYmQajM+Fj9lQkBP6vLxyMey27u7WBb/lVe/ImPxMdkf2K8AdGCfAumBfTJkDMm+wD5Zvnm5DIYHJRgLip7UJZqMymhsVNp726XH06NK3wP7iyD/yU1PyuUtl8sr//KKVJ1RJd0nuiUUD0nzkmb51e9+JR19HbKpZ5MEY0HpC/bJ+573pS/YJ5l0VPJj+yeAeFoXiftFkkGRdEQB82CPAuJxnwLm3g6R3k1qO+ZTx2Ie9Tw+pMD+6B61PxUWSY7KSy/+WJYtbRFJheXE4YMiyTFJB96XB750rixbeqU6LxUR8byl2h3bp15TNqlAtqdTrXMFoJzNFIB4SgHqXOavzxsvrU/HJsD8OPj2dBeOp9X+0V55acMqWXb1UtnTvVMA+cXPfyqSzcgH7/dIVVWVBLwD6p7jbY9PBCTDCkjrg+p5MqxK+2NDEyA9sFvtHz10KjBPhE7dToZFhg+o0vnYsDqeDIvEhuSlZx+TZRfVqrb0AZEty+Vrf3eLrPj219SEwJblIkn9pHvuEUlFJRWPic+ny9hY/BSQrutJCYcTRTDv8+myf39AWlvbpKfHI+3tvRIIRGXvXr8sX75ZBgfDEgrFJRRKyOBgWN5667AEAlEZGYmJYSRlaCgqf//3G6W29gLZs8cjixcvkddff0vC4YT8+tdbpbKyWg4dOi5jY3HxeCKyaVOPdHT0ydhYXGLJhIzFIhI0QvJQ+/OnlMyveGNjsXR+HJAfDXqkd/iEBI2wjETH5FDgqKx4Y6MMR8eK13wU6Jfh6Jjs7N8rw9ExiaXip7R3YswvejIm0WRMOo/uld6hExJLxmXFGxulb/iERBLGSeX7+4rjuP0FyaSeTEo0mZThAlDf4/WKXpgo9+m6HCpI84rjv0Cg+Hve2tYmJatXy6Y335SL582TUDQqB/x+OXfePPnFP/+znPD5xGqzFe/n03VpWLhQHnvmmVMm8T/w+SSaTErKMCZK5Xt6FHgfGVHg/S9L5Q8dUgD+8GEF4H0+tX/3bpG9e0U6OkT27ZODS5fKgjlzJP3aayIgl1VXq1L5WEyB/1TqE+D+v2H5Pwa4/9WLg5f+n4D7v3HNY//XAfdTAPn+v9Cv6wq0n3zuyfv+ne11a5+Qiy66SEKjQ6pNvV0ksU/++UcL5PSZjXKi/wORtFckMySSHRPJ6iKZkIjeIclk7JQBr9/vl3g8LtFo9BTg7fV6Rdd16evrKw6oe3p65PDhw8VB+OHDh/8KsAcCAVmzZo2cffbZcuTIkSKjPq4vHQfpM2fOlK6urlNY+s2bN0symZTIXzDEIwXQHEulZCQWO+XYR8PDRSY+lcmIT9dl718wmnpBizx+zaof/lDOmTNHdvf3y1g8Lv+8ebNUVVdLY1OTNDQ1icPhkIqKCvnmPffIiGGIkUyKt6D3bm1rk2Amcwrj7hHFdu0VkWcLz8dEZFQmBtXDhX0hmQDmI6IGwbtkQuceLBz79rp1UnnRRfJOKCS6KK2qV0QOFe43JiJ2u13+JRgsMvb6+PFMRkLxuEQSieLkw8mTHZ5IREIF3fa4fjvy74DS/QVd9binwIFAQPRkUn64Zo3MOf98eXn3bhk2DIkmk+J0ueQzL7xQ1LXf8Ld/K8+88ELxR3R8djycSEiiMMBOhBMSD8WLTHoinJDoUFS8H3gl4olIdCgq8bG4xEZjsnn5ZnmMxxQrN2zIyMcjEjwcFN2rq+tD6vpgX1A8uzzy2IOPyZxz5ig9bEEXnwgnJDYWk5qyGtn8q80SH4tLfCxeZATHWcDYSb4K+/x+MQoDhPH3cSQWk7cOH5Zhw5BIMimhREKGDOMUPV0gGpUhwyjO+JesXq0mQmIx6ejrk79fs0bmXnCB/PP778t+v196envFZrPJUDRa9GyYtnChPPXss3I8FJK+YFD2n/SaMpmU0rknosXHwAdblG49FT8FSGfTCclmUhIJHJVYyC+ZZOwUtj0V1yVbAPLj4P7JNavlwgsuEP/gUQUmC5MAkcCx4rVnnXWmbP7VjyURHZUTe96UkaN7JBYKyMAHW4r9zDhLvnnzZonH46ew68lksgjuxycUx/ueSCRS7DdOBuvjgH/8mnA4LMFgUEpKSuSjjz6SsrIyOXHiRNFTY8qUKbJz587i5OC4t0c8HpcjR3olEvFKIhGWRCIsqZQhgcA+CQb7TmHXu7ufLTLq4xp0XfdLMhmVeDxU1L6PP6LRgOi6T5JJvcigl5TYxec7UQTk/x5w/x9ZUqIm/YzC+j+G+n997XjFz24RsZaUyN8EgxIUka+tWydnX3SR7A6FJCiqX+sQNUG4Wyb6u0CBcd+8fLN0P9stI4dGipUuRW37Hq8kQonidzA2EpNkNFkE5z2behTA9umSiCQkGU2K7leeE8HDytMieDgouk+XEnuJHDt4TCKeiMRDcQnsU54YJfYS+W9/89/Eu9sruk+XiCeiJuD8Cpy397bLXv9eWb55ufh0n4QTYdGTuhhJQ0KJkBgptR6Lj0kwFpTlm5fLbu9uGTEU6/6B9wMJxUMSToQlnAhLR1+H9Hh6pC/YdwoDX1JSIg8/9rBMqZkidQ110tDUIHa7XexuuzzxzBPi1b1yaOSQ+HSf9Af7JRQPSTYVLmjYdymd+cm683RUZOyA2k6F1b6drQpUxzwTOvjeTQWwOjbBto/tKwB9Xe0b3ScldpsEPb0T94n0ie/Pb4nL5Thp4iCqJg9SEbXOnqRTTxtKRz6uZ/8rhv2k805mxU9mx8f16Sez9SlD7Rv9WEpKSiRwqFNMJpNkhz9UID2Tkosvvki2b31zoo1suqChj6pHMqLY9ZMZ9qR+KiiPB9V54wz78H5176H9CviPg/742Eks/F61nRgTebNVSixI8Nd/IxL1SdR/WFxOhxz60dUKrEd9qv3xe/a3iwzvEyM0Jnv3Kmbb69Xl0KERCYXicuBAQJYv3yweT0TGxuISjSbl0KERefbZblm+fLOMjBgyNhaX9vZeOX48JGNjcdmzx1tk7MfG4vLBBz5pbW2T/fv9ousKvNvtJbJ1679IU9OMwrGA9PUFZdasuXLppQ/Lvn1+CQSiEgolZGTEkMP9IyeB7aMypI/KQ+3PSzQZk6NBj/x6T4c81P68jMUisuKNjXJo6JgEjbAYybgEjfApLPtD7c+LnowVNe5BIywf+Y/KR/6j8lD78zKkj4qeMERPGBKJR+XYqFeG9FEJx6MyEg1JLBWXUFyXWDIu7x7dJx8VJgSCsVMJhHHN+r5CNeRgOFysTIue9Pu93++XI6OjEipUco5XEe7z+6W9t1ceevJJKamokKkNDdLY1CQ2u13sbresfPJJcTgcsu/wYfHruhjJpFx40UXy+pYtf1XFOBaPSz4cPhWcDw8rUD6uVx8H9Xv2iDz77IT23TAUcN+7V7HtoVCRhf/R+vVSW1Mj0+rqZJrDIXabTaonT5YfrVqlrt+/Xy679NJPgPv/y8t/BNz/S2ncP1n+Z5e/yGKnEOFgsv11tJupEOwlGciNZ53bQQoaeJONZzb+jN/+cxvbt2+nosKh2vR/iZc37+DhZ4b5w9tbaJp2OqBBdhACd0DmmGqq9GLIK135yfp1k8mEpmkMDAwUnZ67u7vRNI3GxkbS6TTvvPMOZ599NmVlZbS3tzM2NsaUKVMQEQYHB7FarSxdupSNGzfy8ssv88tf/pLq6mpaWlqora3ld7/7Hel0mrKyMnRdZ2hoiNNOOw0R4dprr2Xu3Lm0tLQQDodJxmLFHM6HlyzBZrHQOTBAJp+nx+PhvoULi8fqXC5mVFaCCIlsFrOm8XRXFwsbGsiL4DcMjHSadS0ttM6eTdOf/8yW3/+ejrfe4qx6pcO8tKWFf3r3XfZ//DEHPv6Y62+4gRUrV/L4449z97Zt9IfDlNlsTHY4WLVkCTaTiQTKmTmOimlbjNKUfh74PkpzbkVpUC9FzVblCvumAZehIphsqHz2TSgnejvwwTPP8Kvf/pbQ9u1sqqggCdRkswwPDVGOynrfsnkz1TU1JKqquBQVA2WgSlrKcjkS2SzRdJpMIcJtPNt9Q3c3FpOJRDZLfyjEt7duJZHNomkaP7n2Wjq++EXm1defEpFi0jROKy/nxeuvp9Ht5pE1a3jmZz/jN6+9xulTp3LX1q30h8Pc2NrKgmSSz82aRS4W4/3332dbNEqty0WJxUIsk6E/FOK29nYy5IkMRogNx8hn8yryzaO2NU2j6vQqpZ0d1Nlyxxainigt61qY3Tqb5lXNWEosuGpduGpd45OCUJjsdEx28E9b/4nXtr7Gtq3bmDpzKha7BWPIoP22dra8vAVrmZXLL72c2HAMNLh8zeXoHp2mZpU1nEpmi+/Buq4u8kAmn8dhsfDCsmXYzWbqysq4a+tWDo+OkshksJvNrDtJTxcoRBcCrFqyhFduuol4Nsvdb73Fns2b2fzyyzz0058yo66OQV3n9Pp6Sh0Oft/RQefAAPrYGJnBQaZMn84Df/gD8Wy2GEmzruA7AepvzmWVU35pZR2jx/agmUxoZgtVp10IQCYVR/J5nJPqyKbiiOTJpuIqy91sxmRV/ZDkc1hLXPx2215+17aZt7a2U1lRQSYeZqivi0jKgqNqKplkjGeffBRHaQnXfe5LWGwOpp57BeVTz2b02B5KK2pRkWqdRb+M+vp6IpEIXq+X+vp6rFYruq7jcDiKzvFNTU2Ul5djs9mw2+04HA7S6TRer5d8Pk86naajo4PBwUEGBwfp6OhA0zTefvttKisrOe200zj//PPZunUrCxcupK2tjYaGBgKBAB9++CGRSKSooRcRGhoasFpLyWTiGIafVErHYnHhdFYX4+C6utYyY0YLS5Y8TCoV4dprf0J5+TQCgb2I5Niy5XZeeGEWb799L6mUTiqlE40m8PuHsFjsVFWdjcgNVFVNpra2EbP5LwMd/+MljfLHiBXW6ZP29wI7UTr1ocJ2uvAwTjr3L5dwOMwJn6+YCX/va68xuaqKX0yaxE+feYb3f/tbzt2+HWtFBSHg74BFKI37MCrq0g+U5fIkw0la1rUwq6C/lZz6Pnat7eLDlz/E8BtEBiJ4e7xEA1E8PR6yySxmm5mlG5YyZ/kcNE1j+4rthI+GSUfTbPvuNsLhMJ4THrw9XkorSun4YwcOk4P4SJzR2CgaGjvX7GTnRzspd5XT8lALRsAgGUmS0lN8+PKHJBIJHt/5OFOcU/DqXh6//HHykufOjjs5Gj6KntZ5b/A9cnnVT5o0E3aznXUt65haNpVgIsjcmrnUl9eTzWfpHOgknolTX1bPMf8xUuEUtWW1zK2Zyz9v/mcqJ1Wy8OaF7Du8j473O1i0fhGzL5zNl1Z9ia/d+jX8UT+P7ngUX9THFNcUBiIDxLMppPJCpWPP5+CDuwu680Gl/XZOh0mXAKI07bPuV3nvmlXp3JMBaLxRadwTQ+ofPHkh4e7H8PkCkE9BxuC1t96lqqqKkhIr4XAURnsgl+C3W/ZwwezTVH68o17Fm+mHYdetYBxTunVNg4qZKn997GOla9dQ7vGJoFqPa8/LZ6gYNVCu69aCM77Nrf6edFRpwM02wt5D+I59rK7XzLy2489UVVUx5bS5XPHpS9nWfQQEjvUf5tjRfmaddZZyqpc8oCkNfS5dcNcXlfkeD6hM9Zhf3feKca3595WW/ePfKff5lp8qJ3lExcjVLVT58H+8U73OsibCFz6OL2pSYzKTlddGF1JVXsqkK/8erA5+99pbzJ3m5Oz5y9TfaXWpa+c9pCLl6peAuYScVoLXqzN7topWXb36HQYGdAYGIvz61wd58ME/YLWaSCaz9PeP0dzcyLp1LdjtFiwWE42Nbv7852FyuTxlZXbeeKOXNWs60TSNH/zgbV5++T0GB3UMI80//dPLmEwOpk5tZHR0mJkzs6xd+y7RaIDBwePcd9/1eDw6DoeVRCJDMJiguqaUl95/k/Prz6TUasdld7Dyyq+RyKT4x11vcOUZ8/neFV9BgO+3fIOgEVa/IfkcVrOFXD7Pik9/mWtnNfOVedezz9uLJzyENzLMU396CZPJxFgiwrl1MzFpJpLZNAf8h/FHg/zo3TYAhqKjrP2XX+AJD2PSlDfCuXWnU++u5uGWb2Azm4vjwlVLlpDIZMjk86wpxMMNxWKs2L4dI50mJ4IvGuWN3l4e7+xkNJEgncvR4HbzuVmzOL+2lhmVlTQ3NdE/cybJu+/mquef52BvL2fOncsPn3mGRZ/9LNd/9rP87qWXcNlsvNvTg8/no/688+gcGDjltdjNZsRqRca16g8/rOLfjh1TcW8iKqt940alfd+7Vz0vKYFsVundZ85UbvKJBOTzcPgw3+zpwb9lC8fffJPju3ezYN48/mHjRr75pS+paLm1a9W5nyz/ZZb/0nFwmqa9hPo9/76IrP7vvOYx4FHg5yLyjf+Z+/4fEQeXHx86FQZo6Y8VwK56GOxn/XUO+8nX5UYh54PRtTBlI+RGCteuwjPsonHaTGbMmEFZWRkg2K15ev70JNZJN1BbbaWqulEZ0onwx1+fTdXUJeC8Csy1kDlG1jyTREojGo1iGAaNjY2AMoOxWq0MDw9TUVGB3W4nHo/T2dnJokWLGBwcZObMmezYsYMPP/yQ2bNnc9lll1FWVoamaeTzeXbv3s2ll17KaaedRllZGSKC3W7n7rvv5qmnniKdTpNMJqmuruaHP/whS5YsIZlMnjJw37JlCxfOn8+HsRiTHQ6C8TinV1biLinBabMRT6cx0mkmO52kczlGDENFc4RCPL5zJ6uWLKGqtFTFt+k6LrudaqcTq6YxMDjIOWecQcO0aRjAFJcLzGZe2baNaZWVarZM07j9G9+grKmJO7/9bXacOMG7g4P85NprGY3HqXG5wGajT9PYADwFuFCD5AdRpk+NwCgqV/l9lEbEgQLzx4EBlDGdFQXoM0AYFecU9HiY1djItBkzMJeVUQqU2u28/qc/seyyyxhIpagzmaiePJkbn3mGz82dyzDK5G48KmpmKkU6kyEnggY4bTZy+TyxgtGf224nncsVDefKbDaOh0L4DKMY13YsHOZEJMKixkaS2Swrtm9nxaJFSCTCBWefTdP06bjdbkQEI5+n+Qc/4K5zz+UH997L8WPHEOAbt93GV269lQ/8fhY2NJATYTgW49KXXuLDr95O8D0f7ga3ipJapD6HaBAbjlFaUYrJaqLjzg4O/vogs1tnc82PrkEzacqULqoi5Jy1KgoOwOq0IjnhV1//Fbe9ehunTTsNR4mDXCaHq9LFzj/uJG2k+eodX+Xsc89m5b0rSUaSOKocmCwm8tk8JquJTDyDyWWlPxpmoPAeJLJZHti+nfsXLWKqy0Wp1Yo3GuXt/n72+v08eeWVlFgsaJrGt7Zs4dcHD9I6ezbPL1uGhsq9N5tM+KJR9JER5p1zDtOmT8fpcpHMZqlwuXj7X/+VP/3xj6x+5BFyuRx6PE7rLbdwxRe/yOGxMa6aOZOpLhff6uhg41UtOPNJrCVlpOMRgkffZ/KMS7CWukCEbDpBsP996mZfXhjkAiYzkpswp0uEhyhxTyafy2C22NBMFnx//gMpez1nnnshp02fRqnNhNnuwGax8Nbm/8azL77M79o2k0nGOevM03l+0yZmnH4W6XiEkSM9VJ8+H4utlFw2jWZ1kk6nMZvNKnM+myWVSlFSUlKMdnO73QBkMhmGh4dpaFBGhCJCJpMhnU7jdDoJh8O8++67LFqkDL2Ghoa49dZb8Xg8VFdXU1VVxZNPPsncuXN55513WLVqFaFQCJfLxT/+4z9y9tln4/F4aGhowOPx4HQ6SSQSNDbWIpIlnY7xhz88yKJF91NZOZN8Pkco1E9X11qWLHmYiorpiOR59tnpzJx5FZdd9hj5fJrKytMJhfrZufNxFi9+EJerFjARCIT54hdvIZlMYjKZqK6u5umnn+b888/n9ttvZ8uWLQQCAaqqqigrK+PIkSN/9XOQySTIambCZiuapmFHgWZ3oW/JoUD7eYVfGnvh+29BGdGtRhlhnj3xS1RcTpw4wY033UQ4kSBoMjG3uprVTz9NbPJkri70P46yMgRw2O281dPDLuDCwmtYV3iUp7NkRxPYXTZG+0bpWtvFogcWUXVGFaFjITrXdHLNC9fQcWcHC+9bSGwkhrPaSc9zPbSsa8FSYiEejFNSUUJkIEL3hm6WrFrCP1z4D3y287Pc8o1bSCaSxIfjTJ89nR+s/AFlpWV8475vkEwkkZwwuWoy3//u9wn/PkzzQ82UTy8nm8iy7e5tXP2zqzmaOEqppZREJsGgPsi8+nkMRAbYtGsTG67egIiQyCZ4YPsD3L/ofmZUzsCEid7R3mJ8XI2zhru33c19C+9jevl0IqkI0eEoX1n+FbJpFdFYWVXJmifXMPu82YzER3hkxyO80fsGp79xOg/c+wA33HAD39zyTX598Ne0zm7lH677B7oGu7hqWjPm6OGJbPbYAPRugAs3qJi3kmplqrZvBcxaoSLfKi+EVBASHpi8QIF4CrFoJitoJk6cGOSmz3+BRCqDyWyluqqSp594BHd5NZ/7/BfJ5QXJJphxxmyeXfso06eYlRne7FVqgiATUtnvNZ8GzBNZ7bmUMqVDU88ND5Q1qKi18TFrLl2IWKtX+1Wup4psM1vB8IGrgRODXm666UYS6Xzhe1LF0089xfkXXMjRwx/z9Vu/TjBkYDJpPHLXzXzuxhuhfOZEFJ7hVXFuiJoQsJTAH+5Q5nSfbVevq2cNzFsJFacrYG4Mqmt2rVHGcaWTYcc96hzDo84543OQCHKi9wNuuud5EskkJpOZ6smTeXrNo5w/vQz2bWLR33/ErV/+Al/920vh/bUKsEseHDUqTi8+BD2PE/vULznSH2LNmk4eeGAR7747yLvvDvLCC8u4886tbNy4FIBIJIXLZeXDD0dYtKgRny+K02nj4MEhqqocrF//HitXLsHjidDQ4GbGjEreffcgy5d/gZoaO5pmorx8Eo899jjz519MW9vveOaZdYX4tzzf+tY9zJhxKZdcMpXSUgvhcArDSFPf6CKRTzBihHjp/Tf5+vwbGDbGqHKUF/uM8f2NFTXkJEcyk2bDv/6av7vkeoaNMWrKJjHFNQmzZsITHqbUZudH77YVo+EeuepWBkIBXnr/Tb5yyfVUOctZv+NXbOt9j9e+up4fd71SPPf7Ld8gmU1jpOI4baXYLFYyeUjnBD2Vwm23YzGZKLVYODw2htNm49EdO1jc2MjixkbWdnWxsrkZj67TWF5Ok9uN2WQilsngslo5Fg6zeufOU+LifnrttQBcecUVlDQ388K99xIPhVj17W9z5OhRIpkM6zdupO6887ixra0Y92rRNKLpNJPzeaydnTB5MgSD0NysgPsTT6iMdr9f5br/7d+qLPZoVO3z+2H+fLDblZndwYOwYAF861sqSq61Ff7+76G8nE+1tnL3V7/KDX/6E6vLyvjJ668zMjpKWVkZJSUl7N27l+rq6r/6Lflk+V+7/EdxcJ8A939j+S8P3Mfd4QtgG9vZhQMqi/3fBe0A+RjkkzD0LcXQn3YIgo+q52WtUPeiYun/8n6SgMBtE+fVbELRj7mJSYCqVaA5QOKktLMAyOVyeDwe3G43uq7jcrmYNGlSMdN7YGCAtrY2zjrrLC677DJcLlfxunw+j9VqVS8hn8fr9eJ2uykvLyebzWKzTfyd4XAYs9lcBP0333wz5eXlRCIR3G53cXJATUaA1+8n5Xaz5qSMzP6TgHm1w8Hd27axaskSTq+sJJ3LcfuWLcWc93+47joAhmMxYpkMT3R2srK5mWnl5eRE+FZHR/HcexcsYFJpKfFMhnWFzG6H1YqI0OP1Mr2ignQux+mTJpHL58nk81hKS+nUNM5FDZIPABcDgyjWaxGKHdsPLEBluO9DuT3ngRPAsyiWfXygnS08NCaymKuBD5jIX36gcLwGlfvuKLy/dwMXADcVtuOZDFPyeaLpNJaCC7lZ08iJYNE0ckAmlyOdyxUBucNqJZxMEozHWdzUhAnFMHd7PNQ4nXQODvLu4CAvXn890XS6mJP6UHMz1Q4HJk2jzGYjWsg5HzIMhmIxFjc2qqzwTIaVf/wja664glKrFXtOI5/I4u3xUjO3hthQjK61XTSvbMZZ7WTbPdtYsmoJpVWlvH3v2zSvbCafVQB0PCO6e0M3yzYtI59VrN84AE/pKdJGmrKpZQx0DjDlvClomkY6msZebsdkMYEG3h4v7iY3ZTVlYFLb5U3luBvdhI6GKDt7EsejEQYiEebV1zMQibChu5sfXXstx8NhHt+5kwcWLWJGZSXJbJZIYUAhItz79ts8vGQJjW43JpOJHo+H2VOmoAH/P/b+PEyu+j7zhj9nrX1pSb1Wd0tIGAxCBmOj3sEBhKzFjpMYEkJmJh7bQBDYLJYwEjGeGAkjGZBZbGzjTJJ5nDyj+E0c3GohBEZRt1oLYONFBiG1lt5bvdS+nfX943eqWjJJJu/1zDOTvMO5LqmqTp2luqrOr373976/9x1QVU4lkzzuvX9L43FkScJ0HEYyGbYfPFj9Hs4UCtSFQpycm+Opw4fZsWoVYV3HL8Pkr16lcflvYRlFcjNn0QNxQguaQJLIz47hjyxEVnVcx0JWNVzHxTYKyIqOrGm4LjiWgWOLib2s6rz98rPEGi+l6YobKCQnUH0BkQG/IIGRTzFz6nVqL267oGBQe3EbZjHL2Tf+vrqvJCtYtothGJTL5SqDbts2xWIRv99fHTsqee2KomB56o/K+GEYBqqqYlkW2WyWSCSCqqrk83lCodAFY01FqmaaJlNTUzQ1NVEqlQgEAhSLRQKBQPUc4+PjNDc3ksmcor9/K52dmxgZOcjIyEFWr95JNjsJOEQiTahqAEmSvLHPwHFsNC2AJMmARC43iarq6HoUWVZRVR1F0bEsA9s2UBQdVa08NgEbRfH/xjoXcJBlDcexkSQZxzEx9TA5WUFCFAgrY0RlzFAQhT8L4STfgshun0IUDD8JvIBQ6fzmYnj7ukAWoRwa98YuCVGU3OKNQ/ciWPYlwD0IhVEX8BTwnUwZ2XHIT+YZenmIsaNjrH1uLWbBpJQqEW4MkxnJoPpV4To/nUf1qUiKxCsPvkLnlzrJjGWINkcJ1YVQA6p4gS4UZgv4Y35kVUaSJRzLwTZsJt+apOmjTWJbF8yiiVW0mHlnhpaOFlzXxSpZoiAXdnBwyBt5bMfm2PQxOpo7cHEpmAU2v7qZR69/FNu1KVtlFgQWoCkad+2+qwqyv3rdV7n8W5dz24rbeH7d85TsEo7rICOTLCWp8deQLCXJlrM0RhpFocAqois6mqxxcOQgiUiCRaFF3Lf3Pv6050+5KH4RlmsRlUGaHhAA/e0nYPlm8NUJ9tbMgZURj11LAGNZBUn1fk0kmB4UTvDhJeKXwcqJ/HUtAkpQbO86nqN7WWTDu4Y3F3EEIHcdT+lXBKsk2PtjW8VriVwsTmWXRV676wrQLGuC0fY+KyQEYJcUsb44A4pfAPcqiPd7cxZ73pm+wtRbJbG/HhGPbWM++z12EaRPzRcIbMPLkZ8RwDvUKBzhg3WQPi1A9A3fgvw4nHkZJo/C9c/A+CA0XAPlNPji4laPQuaM2L9hpfd6FCjNQSkFb37DA/5LBag/+hhcswlCTZ6KoAyv/gkMvShc6hvb59+DfbfD8V1kPjPL5//kJ+zadYxbblnOV796HabpsGxZDY7j4jguuZzBgw++wn33tXPJJQs5fVrkvG/e3E1ra4w779xd3f+7313PqVNJvv3t13nyydXYtossS5w6lWTHjkF27FhFMKiRyxn84hdTNDVF2LZtgCefvIlz5/J8/esH2bKlh4ULA9x//8vsfPomQjHlggz2//DRdfy3N3az+cb/zLZX/ry6/ss3fIavv/pf+eNrPsFb48d5a+zd6rZbbvzPaIqK42GXsfQ0f/n6j7nvutsIaD6ShTS6qqNICrqqMZmZ5YUjf8+m3/qPzBUyvHDkR3xm5SdpjTcwkp7iz4/8A/+57bdpidVhuTIDw8PUhkJM5/N0t7Yync/jV1U0RWEqn0dXFB7Zv/+CuaDruswViywKBqvkxVuTk6z967/mthUr+Pa6dZQsC1WWOecl31T2f27NGjRF4fbe3uq659et4549e9jY1cXiaJTJfJ4Ffj+YJouGh5G3bYONG+HSSyGXA9sWYLy7W2S0V4B8QwOk0yLv/ehRkeUeCEChABddNL9tJc89lxPbRyLwox/BgQPw3e+KffR/AVe8v/xPX/4l4P6+VB6QJOl+SZJGK/9y58lP/20u/4Q0/p+Sxf/m4hhgDEHxMCx8SABwOSZY+kQv1D8HqF50XM5j9RHHlvT5yLcFX4Li0fnjzm6ffy1qLcw+BTikUin6+voIhUJVuerg4KAAOIaBaZq0trZy7733smbNmiq437NnTxW0y7JcBe2hUAhN00in0+zdu5fZ2VkMw8AwDNLpNOFwmJ6eHpYvX04ikaC/v/89kXOlUglN01jc0sLiYJCnPvYxLvaY8O0HD9LV0oKuKMiSJCRQ/f2YjqjUb+rsrMafqbKMIknUhkI85smdtw0MYLkuJcuqSpw2d3czUyhQGwqxY3CQ+9rb0RWFwZERRjMZulpaaI5GaYpEyJTLnJyb4+jYGAqCedIRE+I24A2ELL4dGERExF2JmOROIVixexEs2QeA5xBznTnmwbuKYOjrEaA8hCgCjAMvIqLlLkZI9O8FTiKk+k8hJtH3ettqjiPiG1yXkUyGgeFhhpJJNvT1kTEMbMfh6NgYLrD1+usZ9+TszdEobYkE2XKZ4148XEM4zEQux6qlS3mwqwvHFRXvZ48eZVNnJy3RKGFdJ6zruEBY1wnpOlGfjxV1dZyYm2NDXx8usPPjH8evqszk80JO60BrVyuKrnD4qcMc23WMgW0DlNIljr94nPRIGj2s84kXPkFscYwFyxYQbYkiSRK5yRzXb70eq2gx+bNJgouCVXAlyRIHvnaA1OkUrT2t+MJCtnng0QO4jktuIsfee/dSf2U90aYosi5TnC1Sf2U9akBFQsIX8eFIMJrJcGV9PbPFIk2RCDtWrSJvGGzt7xetBIODqB6T/sj+/Uxms8R8Pr67fj3N0Sj37d3L2VSKjuZmNFkmZxhYjkPE5+PloSEmslkkD7Qrssz2gwdZmUgwmctx5+7dFCyhJpjM5dh6/fX4VZWTs7OMZXM0XHYtrtcKEav/AIFYLfm5MVzHJljTSCk7i1nKMPn2AVzHARzK+RRmWUAzSZKwjALn3h3ENotIkkS86TJqL25DkhW0QJiZU2+iBYSqxirnyU6fwSzmkGQZzR9i0dJrqtFy5+9bYd4qxeeKKse2bXRdZ+/evTiOQz6f58CBA7iui6IoaJrG5OQks7OzOJ4E0LIsDMNAlmUmJyexLAufz4dlWbz66qvV446MjGCaJpqm0draWt13dHQUv99PsVgklUqhqqqnNLLp79/6Hjm8roeJRBqJRpur0W+2bZLPT6OqflTVx8jIIKnUWSRJJhCIo6p+kVAlybgulMsZisVZRkYOYtslSqUMpllgdvY4P/7x55mdfQfDKGCaBRzHoFxOs3v3XczOvovr2szNnaC393aQZM4BbyIKgDMIDOUyP0GwEaC9DlE8zAMNwCTwHW+7itT+fJn9rLc93vFOI6rqKkIGvwvYilADVaLmNES8zG1ADKH0UVWJ9Nk0Bx49wGW/dxnrvi2Yq8m3Jvnu1d9l7317iS+NE6gJkJ/OY5ZMzh07hxbU+Pg3P052IkuwNsjAtgH0sI5VtEgOJdl9527MvAD/Vsli7uQcfXf1gQvhhjD7Nu3DsRxcx0ULaMy8M0OkOQKSGANUv4riVwAYTg2TN/JEfBE6WzqxXZup3BR+1c/2VdsBeOS1RwjrYQzbwHZsvr3u24zfP843V3+TuD9O7629PLPmGbJGlnQpjSZrOK5DSA/x+vjr5M08E7kJUqUUiqxwLn+Ou/ru4uTcSdoSbdSGaonoEb619lssji9mKDnE4MggriTDwjbBbl/2gGDUVVHYojgOv/gKFIZh9qgHrsuQPQFH7xBS9kVtEFostpcQ4FiPgxoR4NouQemcB5ZlyJ+BmaPiU3ctIY3Pn4E3vygO4F8IgQZPkj8qigR2WTDlqSEBmkGAfavkSXUrsWyuOEf6jDiOLyoAbHSJeF2uDdlR8a2UVPF6kcQXUPEJIOy6XuwbEKgVoB1Pqi97rL6siUJAYJFgz2VVyN9z40L+fsO3BYA//Khgz69/Rpyv9ioxZ9LCgmW38uI1vfmE2E8Nitc/cVioF4rnBHt/dJv4eytRc69v9y6kjHhvrnsSPnsK6q6G174I2WHxOq/ZBJfegl+x2LKlh1tuWc7mzd0kEhGWLRNzm6GhJLff3svkZI6VKxNs3z6I47iMjKR54IEORkczSBI89FA3t922gp07V2NZAvQ//vgqJElCUSQMw2Z8PMv997ejqjIDA8NMTeVYsaKObdsGePHF42iaTDCosWlTJz6fgqrKvPjicbL5Ej8ff5f/+NF1rL60g8+1fYpUMcvn2n8HRZb5XNunxPr2T/HryVNclbiEoO7nE5dfy0M3fIaYP8R/XvlJZElmJHWOP3v5e4ylp2mMLuKhGz5DspjhZ2PH8Wt+ZvNptr/2l0xmZogHwvxJ56dFodJ1eHjV51hc04iLy58f+Qf2Hj/Enx/5BzFHkiSao1GeOHSI5mgURZLIlsv8fGoKWZJYGo/TGA7z0HkS9oHhYfKmSUDTODE3x7179zKVz9PZ0lKdLzquy2yxSME0ifh8PNjZSe+tt/Lc2rX4VRXTttlyXrxuybJ4ft06lsRizBaLhFSVgKaRsm2cZctwv/MdWLx4HmhLElx1lQDwjz0mWPStW+dB+t13Q20tDA+L20BAXFMXXwzPPw9Llojv2vg4PPIITE7Cpz8t5PgzMyJa7v3l38zyPnAHXNd90nXd5sq/Cuv7b3fRBbvt5aYj+f6V+3mAf/zTYI5Bw3dBXQj6xaC1wNQGsFPvzX8HwAYpBA3Pg7YY/FfP98hXigALHwSngFX7TWzbob+/n2PHjnHo0CESiQSFQoGenh5AyOb37dtXnXSPjY2RTCbJZDK0t7ejKAojIyPVfM5QKFRlwH4TiEuSRCgUYmRkhHg8zpo1ayiVSvT09OD3+1mzZg133303a9asIRwOVxkzVdNEjrMkof8TvcM/vPlmNnsDM65LYyQict7jcU4lk9y5ezeKJM2DdK8P6VwuR0jT+O769Vy8YAHdra1oksSOVatQZZm79+yp5r6bXr55QFXRFYWIB0YrmYZpBFMlI/rTj4hPgjYEYJ8AOhB5xwHgPsSkOw8MIQB+DDF3Oek9/iiiABA6b901CJb+OQTDFmCe7Up534DtzOfG+xWlKpFviUa5sr6eHef1/Zu2TWdLC1Fdx6codLe24rguQa8YE/P5iOg617a2MpnL0dXaSms0yjKviBLRdZ5cvRpFlrmrr48zKfEqMuUymXKZyVyOkK6jKwpPHT7Mfe3tBFSVnGEwWygQ9/uRFAnHFhnPru1y4+M3cmvvrax9bi3R5ihfOPUFGq9upG9DH8lTSayiRe8dvVXmLtoc5SdbfoLruCRWJrCKFi/d9xLlTBnVr3Lj4zcSrA1iZA1GDo2g6Aod93cgazKKrtB+fzuSJCEpYtIoqRK+qI9QbYjCbAE9rCMj0enlzz+yfz8TXka75Tg8v24d72zYwJM33QTee93V0sJ0oSAUCbkcBdPko01NDKfTnEqluG/vXkK6juk41AaDDN1zDz2trdiuy2yhQN4w+Pa6dXzmqqtIRCJcv2QJ4xlxHV/d2Mivp6exHYelCxYQ8vlB0TDLec69O4hZziOpGsEFCVzHxnUs/NFFzAy94fW5uxRTk/ijtejBaHXUUVSdpuXXI8sarmPReMUN6IEo4CLJKouWfhRZVnBdh+CCBB+8/nMEaxop55JM/Ho/kixh5FOYxTSNV9yA5o/gWIZXHIBcLsf+/fvJ5/NYlsXevXvJZrM0NzcjSRKqqtLe3g7A7Owse/bsob6+nng8jmVZ7Nu3j2w2Wx1bKr4a5XIZ13VZuXIl6XSavr4+6urqKBQK7N69uwrQVVUlkUgwNjYmxhVVFa0CkoQsy3R2bmL58lvo6XmYSKSJcLgeyypjGFlkWUGSVGy7zNjYEXQ9iGFkyefP0dzcTjTaTDJ5kr6+DWSzk+Tz09h2mWJxlj17vgi4NDe34zg2plkQ11asmY6OL5FOj+C6Nun0WfbuvR9NC7JmzdNomtDRVPrrHdeh0bvekwjwXmmxATgFbECw4ue8sSfqrb8d0ZaTAT7vjSdl5gG85o1DpxGFwnEEOK8DuhHg/GGELL+SIa95/+YQffWmYeGUbQa2DZBYmRCf47uz9G3oo+GqBr5w6gusfmo1qdMpRo+M4q/xE6mPEG4Ms/vO3aTOpmjuaKb2g7Wse14A/nKmXO2PH9g2gD8mxgs9rNO5qRPFp6CHdVZtXyW+Y5M5ypkydSvqCNeGMXIiy7339l6SJ5M4rkNduI64P87A8AAnZ0VbwsLgQhRJIV1KM5Wb4u6VdzORnSBn5LzxLMNbk2+hKipRPUprtJXBkUH8qp+gFuSePfcwkhnBdV2uqLuCbwx+g+7WbhrCDbi47Dy8k66WLhojjZTtMhv3beRM6gx+xY/jOgS0AI3hRvYPD+IqftHjfvxpqPnwfHtL6dw8mPfVgpkVbPrb22HsRSiOzeeZlya9wF0b5t4EKwu5UwLw6zViG1kTzHxdt3j+zS9C4azop1+4EoqTgsEvTsDb3xCvyXVFRnpu3OtnHxVAGQkUXQATxxQ93rYHIvSwWFfOeK9PEj90kiJy1Sv7pIY8ZWBZSN3Pz2iXNbHO9hj6ckY875hineIX/fSKTzzvOuCvEX3vOAJsN6wUPe+v3CnUC6VZeOUOwcQ3rBQy+nJKgPHciGD1J46I59QANLbBpbcISX1hWkjhK49dV2xj5qFwDvbfe95xtwrgH6yHj+1EDwRZujTOn/3Zx1i0KAhIWJaD48A3vjHIrl3H2L59kFWrlvLwwz0Yhk0iEeWJJw7R3CzG64mJLM8/v47p6QJ33dXHiRNzlEoWkgSnTqW4664+mpoiNDZGuPvuPdTWhpiYyKEoMg8/3M3Zs/ei6yo1NQE0TeYrX9nP1FSOX/ziThrrIzSEF5IsZnl41edojC5iRePFTGVn+dT378ev6fzpTZ+jOVbPpXWLuarpUr518G8Zz8zwq8khSqZBY1RItH2qxlWJS/jBm31eXUZiKjvHgkCUfLnAbCHNf/zoOqZycxSMIpZjE9DE9+jRfS8wnJpEliT+c9tvs/rSDj6z8hMUzTK261Z9Z7YNDFC0LC7y+tR1ReHBffsYmptjaU0N312/noZQiDOpFDnDIF0us31wkF3HjvHYwAAu8NyaNdSHw5xKJqvzyoiuc8nChbTEYmzo62MolcKnqlwUj/PV665jYHiYtyYnq149OcOgZNucSSap03WUU6eQ7rhDyN8dZx5oy7IA8Zs2zffA27boad+1C554AlauhFJJgHlFEftLknhsWaKffdcucev3Q0sL1NeL76Hxz7mZvL/8r17eB+7/HhdZF/L4xhf+5X729ywe4A9/ErRWkAPevvY8g++k38vmO4b4wVIbED1nabDnQK0HOQjaB6D+W6DUg5PFdnVGR8fo6Ojg1ltvZe3atVWGKh6P47ou4XCY9vZ20uk0e/bsqbLyLS0tyLJcXadpGolEgnw+TyKRwLbtKqve1dVFOBwml8tx6NAhIpHIBex8PB5H13UcxyEYDFIsFqsSVlnThHTcM5wDAYy2Dw7y4vHjjGYydLe20hgOc2V9PQ4QVFUkxLwloKo8s2YNtuuytKaG76xfzyULFuACXx8cZMXzz3Mun8ewbWRJEvtrGkvicX5r8WKePnKElYkE//evfsV4LsepVIq7+vooWhYRnyjETCDYqUnEhTqBYNhnxKdCBwJEfxohdf8SsAwhd40CTd42s4j++Ki3/5z4JhBAyF478VSKCJA+hJiU/wfg24iCgYZg1t5FGOOFgJxhYFgWPlUl5vfz7Jo13Hz55eC9rxO5HBnPL+CUx8YXTJOiaZI1DIaSST71wQ/SFIlwcHiYk8lk1SAQQJakC9QMtuuieT4FEuBXVXze56DJMnfu3g0IyXyqVEJyIDuRZW5oDlmV8cV9xFpiVaA++dYkruNy/bbr0YIaiq7Q0tXC4acOYxvzQCE3maNvQx+u47Jq+yq0oCYM7mQJI2+g+lXqr6xn7317kRQJ13Y58OgBapbWoAU1zLzJ2NExQotC4vXNFAgsCKCHdYrTOSSo/uBP5HKcSaUoeyaIUZ+PkKZxJpW6oL+uyr7ncnz68stpa25mLJPhmx//OAFVRZVlZEkSEmXD4G7vvQ/rOo7r4rguP5ucpLO5mY7mZsqWRVDTaG9urjID6VIJCZg59TrpieNY5TyuZeJYBkgysqwiqzoNl12LJCtMHNuPP1qHourCzM4sC5JL82GbZRTdB5KCVc6BJGEUMkhIaP6whwUsHMtg7JevYJayWOU8makhzGKOYLwBs5jDMcu4roNZEsUE13UZHBysFvIkSaKjo4NcLsfll19OLpcjmUxSU1ODz+cjn8/T3NxMLpfjpZdewnVdrr/+enK5HI7j0N3djd/vR1EUAoEAuq6zcOFCNE1jzZo1+Hw+Dh8+zPHjx0mn07iuW2X3K+OVruvV3nnTtAiHG7juuq8Sjy9hZGSQbHacsbEjmGaevr4NpFJDKIpOc3MHmhYim50kmTyFJClIElXGPpMZwTTz7N59J/n8Odas+SaqGqBQmMGySpTLKcrlLI5jk8+fIxptBiQGB3dw/fWP4jg2IyOHMM0ikiTT3f0Qy5ffgopocQEBqBcjZPFlb0zQEaD+20CPNxY5iP7zCmOOd3+bt0/GG0c2eONQEFEQbPeu3Y0IL45vAxd5Y9Z/QYD9U4gCZQ1CGbTQsLFNm84HO1n+B8tR/Sq5yRzNHc1kx7PsvXcvmbMZVJ+Qye/ZsIfcZA49pHP8xePkJnJYRYvZE7MCyJ9JEWmKsO75dTww9QCrvd7f3ESOuZNzyIpM3119VRl++kyaA187IH5BgzpqQH0P8FckhcncJBv2bBCsty9CySoxU5jBdm1qQ7UsrVnKBxZ+gKn8FEWzyExhhrAepr25nY0vb+RU6hQX1VzEysRKBkcGmcxOcl/7fYT0EKqsosoqO1btYDg9zODIIIZl8MyaZ7j1ilvJGTlUWeX+jvuFhN4ucnj0MLXBWi6quYiuli7BpB/fCVc9Lljf8hzkzkJttzCnq+2G2OUQaAR/A1z2IHT/EIIt82w6spDCG0nw14m+98KIkODPHhHs/dE7hfGcY4nzXHqfOG9tNyy5TYB/fx0c2yYKA4VR7xsli97y+msEe44smOlK73p2VABq3WPYA3XieT0qbh3DY+tLYo6k6KIAUJwTx6iw7UaOKshHEgUASfK20QSwdl2v177oGd1VfnWA3KQA2JICbQ/DB/9AFBSaugQ7fmTrPGO++Cb42E4INYh++MY2wZQHauEnd4NVEL3+q16ASKt4jVpYmNqpQVHEeOUO8Mfh9a+L4775FFz6+8IQTwsLUA+Qn0JxDerrQ0iSRDZbZmIiRz5vsGPHqioT39QkmHhdV2hqCnPtta3s2DGI68LVVzfiOKDrCl1dLTz11GFSqRKm6bB1az+7dh1j27YBUqkSu3Yd4+mnj9DT00owqLFkSQ227TA5mcO2HYJBjV27jjEykqFQsBg4MEqYOB9u+iCyJGHYJhPpGRYGY3z143dSNA2+9vILjKSm8Ks6f/H6j9l7/BDfP/Ij4oEILxz5EZIkUfJMUm+8pJ0v3/DHTGRm+NrL36MuXEPEH2RBKE5duIa/emM3deEF1EUWUh9egOU4TOeS/KePrieo+bAch9Z4PXd1fpqfjR3nqX/8AbIkVZnvL3d388b4OEgSgyMjjKTTfH3VKlpiMaZyOYbTae556SXam5upD4VoCIV4ft06ph54gJ2rV6NIEn5NQwK+fvBgVT1nOQ658xR12/r7yRkGWcOgZFkcHBnhmvPMe7cNDBDz+wloGlHXRdq6dZ5Rz2TmgbauC/D9gQ8IeXt9PRw6BA88IID8li2gaTA2JkC5JMHZswKQ6zrMzsKXvzwP+k+dEvufOgWf/zy888774P3fyPI+cP/3uvxrpPH/1D4VwK9fPO8kfz6DL8cuZPPRBPNuTYE5BJN3gJsXknjzNBQGwcmIYyGDMYQsQTQaxe/3E4vFGB0dZW5ujuHhYZLJJL29vWQyGSKRCJqm0dHRgd/vp7W1FUmSqhPxCoO2Z88eotEoqqqSy+WIx+OsX7+eBQsW4LpulYEfGBgAIJFIVCXNqmfmZVkWyWSyysQhy1VGyUX0Y/sVperM3RyNcntvL7bjMFsscmhkBBeoDYVQZZm438/gyAin5ubIeX3eiiThVxR2rl7NxP33sygY5OjYGDlvsHMBx3X5/SuuYMeqVWiyzKHRUdoSCbb29/Pi8eMEVBXTcbBd9wKG20VMns8hJsQqgq3aiXCaH0cYRVnAAILhehMhU5W97b2yC1EEkzXjPa7c+oGF3j4NwJ0IoA6CSbsbMcFuARzbxq+q+FWVgmmSKZcpWhYBTUOTZSbOk3XXh8M0hsM8tXo1juuycd8+xrNZrqirI2sYbBsYoDYUYjSToTYU4r69e5G9z2/n6tX0/eEf8tzatWheLz3AqWSSs+k0t/f2MpLJMJbNcm1rKyFdZ0lNDQ1hYaCWn8pTf2U9xdkiRsYgO5Gl9dpWwo3hqlmdbdj4a/yMHh6lpbuFGx+/EUmW6Hm4h+V/sBw9pNP+QDtaUEPWZNG/LlPtpx0ZHCE3mSOxMiFk+KkSzR3NWEWL/Lk8Wkijub0ZSRbMuxbU2Hv/XsqZMuH6MHnTZHN3N7233kpXayt+VSWo61XZ3dm06IF/8fhxJnM5bNdlMpfjxePH2T44iF9VCSgKVzU0cDaVYnBkRLSCui5ffOklpvJ5OpqbCWgaZdtmYHiYU3NztCUSNHmGOpIkMTA8zEg6zcm5ORzXJaTrZE2L2ovbiDVeSrCmQQB2RRVybUlCwkVWdSRZEay7C2Y5j+vYSEi4lkEhOYnjmIz/6ieYxQyqT3w2sqyi+IJIsoKqB5C8QkCFgQ8uSNB69SfRAmHGj/0ELRBGVlRkWamCekmC7u5uli9fzqpVq8jlctUin6ZpZLNZwuEwIyMjWJZFa2srH/rQh8jn87S3t6PrOoqi0NjYiKIo1NTUiNSJUglFUaoAvALOTdNkzZo1PPDAAyxevJjR0dFqSsaRI0cIh8PIslyV3SuKhqaFiESasG2T1tYuBge/4TnKP8axY7s4eFBIYiVJQpJUIpFGEok25uZOks9P0929meXLb6G5ua26TyYzSjJ5mt2778Q0c7iuw4EDwgZG0wI0N3egqn7AZc2aZ9G0IIqi0dLSSSTSiOs61NRczPr138GRJPySxFkEg37aGy9cb5yIIYxmnkGAcgtRCNyBYMm/4o0pMwggXplUjCKKiWFgkbfPPYhC5EoEyC8Bn0WA+AZEi08tosB4L6IFyNIVFF1hwbIFuLbLS198iWgiymW/e1kVPPdv668a0rV0taDoCqG6EL//o9+ntVu0yuQmc6I9ZjhN6lSK3XfuJjOaQQ2oKD6FzGiGUF2IwW8M0tLVIgoB3uPmDtFqaBkWjuUQaYrQ+eVO/rDvD1n3/Dos12Jr/1ZePP4is4VZ6sP1+FU/iqQwkh7h9t7bGUoOkTfydLV2EdAC5M08t/fezkh6hCdXP0lztBnLsfjpxE9ZmVhJIpZAl3WG5oZQJIWoHiWkh1gUXMSV9Veycd9GskYWWZIJ6SHu23sfiqQQ0kMcGT3CysRKipYA8CoukgtcvVN8QtOHBEMeqAMc4SA/PQC5k/DGBgFYI8ug7lrRw67XCLBeYdUDDRC5RLDBddeBFoNFHSD7obYLSlNCen/0TsGcf/gpyJ+F1+8SDLsWh+UPeYWBhMdwlyA9JOYkkuyx5CUBpB1TAGzbEIC6AtAlxQPajgDqekSw9q4ngw83w4JLxWuuHF8LnneMsigweGZ7SIp3jDGvD16d73d3HaFG0IIQWCjY7lD9vOT+A78n2O8qY/4wRFpEX/srd4r7sgaJbiHvb+qC13fMG+qlh+DAl4S0vjAt+t+PekWAyddFAeAzb8P1zwr2feKI2GfwK5Afx/A3cfKMaFFSVa/IADiOSyik893vrqehIcypU0lOnhTS+ZGRDJ/61AfZsWMVluXg96vkcmK+8nu/dxk7dqyipsaPrits2dJTldE3N0cZH7+fZ59dQz5vMjEhwPq5c3keffQAjuNSWxuit/dW2tqa2batn0WLghTyBkWrxHQuie041IZrWLKgiasSl/L9Iz9i7/FD/OXrPwZJ4qEbPsOzv/sgn2/7HVLFLJ9Z+QkUSWY6l+Tbgz9kJpcEJDRF9dj3PSwIxpAliXO5JPuH3hDH8hQWiiRTH17IXDFD0TR4dN8LjKbPEfIFeWvsXT6z8pMALAoG+ep111EXDHJVQwMHh4dZGAziU1VOp1LcvWcPedNkOJ2ugnGA4UyGO3fvZiSTqb73/WfPoskyW7zf9+fWrmWmUMBynAtaL23HYdO+fSxbsIAXPvEJNFm+YO4DCNNiRYGHHpoH1/H4/H1dFy7z4+OQz8PoqADv09Pw3HPCUR5EUeorXxEmdn6/APJ33SVY93AYnn1WMO2Tk3DNNaJAUCkUvC+Z/zexvG9O908s/+bN6f6fLv8jczv3/PuGkM3XPwtTd8+b0zV8V5jV1T0B9pRnTrcZ1BbKdoByWUhG+/r66OjoqE6mx8bGqmZ0H//4x8nn8/T399Pd3U0mkyEajRIMBnn55ZdZu3Zt1Z05n8/T2tqKaZrs27ePzs5OMpkMjY2NFAoF+vv76enpIRgMMjk5SWtrK47jVPevSOT37dvH6tWrkXSdk8kkjw0M8FB3NxfX1BD2+TAsi6JlVY1C3tmwAVmSiPv9HB0bozEcpjES4acTE1UDk6U1NcT9fmYLBZbW1FC2bQqmyYOvvMKXOjtZHItR8FjmikTcdl2U8/qO8+dVMje/+ipPf/KTDMkyjyHMmy7ynjMQk+rDCGOoitt8AAG4H0UYPE0jJstziEmwinCElhDgP+49ziEA+znE5FvkCIj1vcBvISbS0wjJfjOClW8ol8kZBuOegdzm7m4Wx+OA6BMbz2bJGgZNkUjVKG0il6MtkaBs2+QMg/pQiKJlMV0oEFBVakMhDg4PcyaVor25me2Dg2zp6aE1GuXuPXvY2NnJaCZDQzhMfSjEA/v2XWAQk/cKCFGfj4CqItvgR8YqWpRSJfxxP2pQxTEczILJKw++wqrtq8hP5xnYNlB1pG7tbkVSJVxLGJHtvW8vq59ajVW0KGfKRJoiuI5bZdy1gIZt2CiaIsytbAfbtKvmdqt2rELRFWRNJn8uTzlTrhotRS5fyEQuS20ohO04HBkboyUWY3EsxqQXMxjWdRrCYWYKBWI+n9gmGmUsm6UpEqEuFCKgqqKC7rrkDIM/fe01tt1wA6osoyuiB9d1XabyeWqDQVzAsG1UWUZTFAzbRgJ0RSFbLqMrCpqi4JNldEUAdFxwJQmz6u6+ErOYJxAT8kVJVjGLGaaHjlbd522zhGMZzJx6k/TEcRZ/9HfQApGqO7wWjGEWUkyfPErtxSu9x2nvcRt6MMbYL1729v1dArFabMtAUXWK6Wl88UYcx8s2lWXy+fwFjvKxWIyRkRHq6uqqqRKV8SMWi5FMJsnlciQSCRRFwbZtxsbGaGxsJJvNks/nq6kYFQf5bDbL4OAg3d3dRKNRRkdHqampwe/3UygUOHToEKtXCxZXnNNkdvZdcrkJmpvbkCSV0dFDRCIJMpkRWlo6sawi+/ZtorNzI5nMKNFoC5oWwO+PUyqlKJWSxONLyGYnGBjYxpo1z7Jnz90cO7aL5ctv4WMf+y8YRh5ZVhkY2EZPz2ZUNYhllYhGW7CsIgBTU7+gubkDcDDNIq++upkbfvvPsSSJOxGFwtsQALzScrMFeBIB2isJFlGqtmXIiGJixQXe8wKniGDOW70xJo6Q1T/lHdNGMOoqgo13EH4aGe8YUwi1T8iwKByfJTuaqRbbzKKJHtZJnU7R/2g/PQ/3ULO0hnKmTHY8WzWhrLm4BrtoM3pklGhLFC2gEaoNMXxwmL/99N9y8w9vrhpRJtoS4IBjO2QnsuQmciTaEsiqXL2+AWzTRgsII0bXddm3aR837LyBoewQY5kxOpo7MB2TVClVNZRb+cJK/q/f+b9ob25HU0Tf+h29d/Di8Rc5e+9ZZGRSpRT14Xosx+Lw6GGao80E1AB+1Y8qq4T1MLZrMzgySH2oHhcXCYmp/BTtze0osoLjOIJtLWf509f+lEevf5SwHiaiyMiZd4X8/fKHwL8IfvqAcHcPtsLMQSFjn3sDfA0QWSrM4yrTw+RPBcAujAm3+dIU/Pox71j1Il5u+WZRAKj5EGhRYWA38ncwcwg++hwcvR2Gd0HrLbDyeXAlMWbNDEL9DZA+C+EGIU+vsOyuNW8eF2kWwDd9WoB4X1wA69KM6HWvmNGBZ9zGhYZ2FaO5ug/P319w2XyUnOtC5iyEmzwg7x2jnBHns7xCgWuJ24GHoetronCQG4emds+kD/Ftdj1J/tgg/Ph3YdknYdX3hEndka3z5nOqXxQmSnMXmtw5JuQnxbYf2ynA+tFt0LZZqA8CtaJv/vguuOw2ct3f4+ChMbq6WrDt9xrRybLEO+/M0NQU4d5797Jr1zFuu20FTzxxEz6fiiyL4uG7786yffsgmzZ1VvfTNBnTtMnlTGzbYWIix/btgxeYz23e3M3oaIahoSTd3S1MTORoa2smEFB4991ZmptjhKIyZ5ITVdf35ng9k5kZpnJz1IcXci43y5WJSymZZZ7p/7+5p+cPCGg+ypbBK+8e4YYPtLH9tb+smtg9dMNneMwzsWuJ1zORmeGFIz/is22fIqT7WBCMY7sOyUIaw7SYyM1QE4jwV2/svsBdHqBkGSiKjz/ZPW8svHP1apY+/TSfvPRSvrN+PXecZyD37Jo1HB0bY2UigV9V+ZPzkl6+et111IVC/O2xY/zBFVegyjJZT04f8/kIalpVGRj3+3lrcpL6cJhLFizg+Oxsde5zvkny0nicYLmM3N8PV1wh2POf/xw+8hEhka+vhxMnBPu+aZMA35Yl+tkVxYs1tOH22+ed5L/zHbjjjvnHzz0Hf/3Xwsju2WfBNEFVvdYQxHF0/X2juv8Fy/vmdO8vv7EY/7K53QVsvsfG2+l5c7qFmwENFv4poMyb05mjItfdKfLyyy/zy1/+ks7OTvx+P9FotMqc33zzzXR1daEoCgcPHqS1tZVwOExLSwvZbBZd11m/fj2KohCNRjl06BDRqDAMm5iY4O2332ZgYIBgMOhlzQsGPhQKMTk5SV1dHbOzs+zevbsqpS+Xy8iyTE9PD2+//Ta261Zl2I95MmwA3es1r8il6kMhCpZV7UufyOVIlUosCgZ54tAhViYSxP1+bNfFp6qc9HrfJ3M5ViYSPDYwgCLLTOZyPLJ/P+PZbJV5r9zajsNMocC9e/cykc3y6PXXg+uyxHX5DgK0ywhW6osIUN2JkJ86CDf5YQTD1YWYVHcjAHYPYhKsIXrZK87OjvcvhJhgn/HuuwhGLY9g00II5msRgmk/iphc23BBT9d4NkvRNJnM5aoyeEWW+enEBKbjMJHLURsKca/Hpkd9PsHQqyrL4nFqAgEOjYzwkcZG/uhDH+IDCxfy5E03UecpHJ5avZrJXI4r6+sJeUZ1W7q7uW3FimoPuOu6PHrgABPZLJosUzRNUqdS7Ll7jzCgSpcwMgb5KSEtbO5oppwtkxnNVEF74hrRQ2sVLUYGR7CKFqu2r0JWZbITWfZ/ZT/J00ny03lhdqYpwoxuMkfvHb3MnpjFLJpoAY3B7YMkVibIT+Xpu6uPuRNz6EGd3ESO+JI4atzH6XSKE3NzjGQyHPEmAQFVxbBtTs7Nocoyp5JJQKg93pyY4Mr6empDIbq93nUJKFoWh0ZGMB2HkK5zz8qVTOXz3L1nj5Deey0bMZ9PmEN6ignLcQSL7zikSyXOpFLIskxI0zibTmPZFjgOrm2TnxvDLKSRZZVFSz+CWcwTrGkQpj+WCTjIikZ2+gxWuYCsaGi+MHogRmLFKi676W6CC5sFm17TxMzQ60iuy/TJo6QnjjN98iiSy3mPj4DrzjP+C0S2u5FPIUkywYXis6oAdtd1CQQC1VaZdDqN4zi0traiqiqTk5O4rsvq1aurzHjFN6PCpkuSRGtrK+VymVwuR11dXVUtFI1G0TSNw4cPv0fhU0mr6O/vr/bE7969m2Qyieva+HwREomVjI4eIZ0epq5uBZFIA7FYC7t330k2O0EisZKBgW20tnYRj7cSDjehqn5CoToWLfogqhogHl/C6tU7kWWF7u6HWLHiNlav3kkk0syCBRejaSE6OjaiqiHCYXF8AFUNoGlBWlq6se0yw8Mic/n66x+tmtA9C/QhmHXXu8YjCFWPhGi5qYwvFfO6yjKJSLEIeuuHvHHjSiCBKP7ZwCXA8wj5/EXefncCJ5g3rHsEUShs9I6hlGwyw2nqVtR5qQU2E29OkDyVJNoSFcaSrTFc20ULievu+IvH0YIadtGmmCySWJkg0hDBKlkMHxwm0Zbgzl/cSWJlAi2gkViZYOzIGLmpHHpYxxfxVddlRjJoQY30cJrdd+7GtVySp5MMDwzjWA6rHl9F+t00S8JL6Grt4mz6LHfvuZu8mefI2BGKVpHjdx+nLdHG4dHDnEmeQUJi5+qdnPrCKXRZx3IsFgYXcmL2BHfuvpOGcAPD6WHqw/XMFefIGlks16Jsl2kKNzGRm2BxfDERX4SPNn2UwZFBziTPkDfzbOjbgCzL7Pz4ToJakJnCjADBx58SbLgaACXsGcONgKwIFvyNuz3n+IsE6DbS4tOUZKi5UrDpNVcK1rk4ITLZQy2ghuDyLwv5e10PqGEwM/CzjbCoCz68Q8TKXf0U/M44tH1ffONkL/4tkIBz/wixJWJ9+pTXx+4KsFwxj1M8sBBbKtZZJQFuA3XiNuuRLbLyG4y652ofXSLc3mVdHKPuw0I675iiGFBh9XNjHuPviC+zL+qx8qqX5S6JIkH3o+LCCNZB7ZXwk3sg+a54zswLNvzVDVB3lTCVu+4Jsf/r2wXbroW8Pn1L/N2pIcHGX7tDnGP//eLvXPUd8bcf3SZA+hGvr744LZzoL7sNrn8WRZX40IfqOX589p80ogOXpUtriER0Hnqom1tuWc7jj9+I47hMTubIZgV5sH37fD98Lmdw/PgMhYKJbQsJfSZjVLfZurWfTKZcldC3tSW46aZlTE3lufLKemZnC5imw9KlC/D5VCzHrUrg/+L1HyNLElO5ORYEoywKx2gIL+LnY8fxqToPXv/HBDQfPx9/l9l8hqZYHeCeZ2L3O/xqcoj9Q28wWxAGbS94rP33j/yImD/CSGqSr738PYqmga6pLG9YJgzxzjuGi/Ajeeoff4DkuuxcvZq3N2xgp6cQ/OSll/JwTw+aLPPc2rX03norf9rTQ1DTaInFuHvPHk4nkzyzZg1ve540cb+fgKry2x/8IGfSaQqmWW1vm8hmAdHq1+wZ7y6tqaExHCZnGNU51db+ftKlUtUw2fuxg6uvFsz4z34mYt/uuUcw764LTz0lstdDIQHYIxGR2Z7Pi2i4wcF5xn7LFlFY2rJl/rFpwsGDwrFeUQR7f+edQlJ/7pw4VqHwvmT+f/PyPuP+Tyz/ZzDux8EchkAbyCHR7/4vbY/huTjbYE2DWwZtCeCAeUYUAOqfg6kNWP7fYtb6FJlMltbWVlzXpa+vj0QiwbJly6qT3FwuV5WyVySuzc3NyLLM8PAwTU1N7Nmzp5rp/rGPfQzLsqrMvKZp1filSka8LMsUi8ULsuDXrFlTZSIqKoBVa9ZwKp1m28AAm3t6uMSLYlNkmZNzcwyn07QlEuiKwud/o8pqOQ4/nZigNRZjSTzOD37xCwZGRnh27doLKrJfve460UcVi10Q9fHd9evJGQaTudwFWaDr/+Zv6PvDP+SqhgZCoRBnZJmtiOz0pQiAPY6QlE4hJrltiEn3EQSYP4mQ1m/x9rEQcUxHERPoixDAfxr4BvMZ8RW26/zjJhFA30VMqrcxz+Z3WxaFYpGJbJaJXK5qPncunyes6wRUlXOFAiFN49fT03Q0NzOey5E3DGRg3Cts+FWVM6kUjx88yNMf/zgOcGR0lOZolLpQiI379rF91apKdyEucJ9Xgb4oHq9GwhRME7+qkjUMfjk1RXdrK1be5LW79nJs1zGW37Kc9d9dz9zJuWoOdLQ5iuJTSJ9NM7BtQDB0S2swPKmgHtZJnkmSHc3S3N6MrMiUMsJ9Wg/qZKey+MLCbM42bX79//k1F33sIvw1frSghlW2cB2XVx58haaPNnH5zZej6qpg8x2XsuJy+57dPNDRwXQ+T10oxLl8njbP4O9sKsW5fJ5EJMJYNlsF9SXLIukVj0BEEkZ8PvyKwjmPlY/oOgUPiAZUFdt1PQlhjpjfT7JUIqzrTOXzPDYwwKbOTi5esIDbe3v56nXX0RSJcHtvL/91/VokI1ftMwchhTeLWUILmnBdcB0bcJl8+wCLll3j9b5rmKU8VjmPFggzfVKw8HowhutYgiH3ssMd22TqnQHqP9iNrKg4tnXesTRkVcW2ymi+MFa5gKL5KKYnCcSbcJDEa/AMJ/ft20dbW1tV4aOqajWSsr6+HtlrC9C8OMZKLCVwgZqnxjNJrDwvSRKmaVbj4F5++WV6enqIelF8jpc8kUqliMfjZLNZTp06xcKFC2lubsBxRCSbbRtYVolgcCGyrLJ795/wy1/+gOXLb/Fy203i8YswzSKua5PNjjM4uJ3u7ocIherQ9TAgkc1OeJJ3F9PMk82Ok8tNekx9kFBIqCBsu4yqBnAci0JhFtMsMDCwlY6OB/D7a7CsIsGFHySn6qQRsviAN9bAfG+6440jujd+bPT+LfW2s88bZ1oRRcQ6RMFwDNHbXomXAyGZ34RQCa1nnuUfA14GfuaNTUWgIV/Gtbx5igQjB0cILgqSP5en6aNN5Kfy9G/tp3NTJzXLarCKFkiilcUqWmgh4UkRiAcYPTJKqC5EYaYgrmlNxsga7Nu4j7YvtuGP+wnVhTALplj3hbaqCid/Lo8/7kfRFfIzefxRP2NHx4gtjqH6VXwJH7ZkMzA8wKf/9tN88tJPcn/7/cwV57iq4SrS5TRhLUzJKlEbqqVgFnhr8i0aI408NvAYW7q3ENACJEtJpvPTtCXa8Kk+DNugbJfZtG8TGzs3EtJC1IXqkCWZU6lTbO3fypc6vkTcH2dBYAFnUmdoCDcwlZtiIjdBW3MbUdWPZmWRiuNejvpm0VsebIHwUnF/8mVhMvfRbwlH+be3iz736KVCOj97BALNYnvXFuskRfSFu5IA53YOjnlM/MzB+d551xXS+cKIKBIc2waXbRKFguRbIit+6Wc893gHzIIA1ZWlwp47hmDDXVescywBalNDQtpe6XfPjs6z8oo+b8JlZMVjWRPgWvEJcD/3tnCPj7SIE1Uy60H8rbI2b26XHxfgu22LANb77xXs+dhBGD8oIuKK08Jt/ur7INoKk29A3ZUCrDuOYN3z49DUKQoQBzbCh78g9qu7WkTI/cVlQnK/6nueOd2UcJxve9jzAMC7MoHMWXJWlCwLq2x6JRLOshyWLq1haCjJ1q39bNkiot+KRYtwWL+AYV+2rIbh4Uw1Iu7w4VGuv/4iamr8HDkyxtVXNwIwPp7lqacOs2PHKvx+lcHBEZYsiVFXF0bXFRRFMPcTEzmam6PVbPkPLq8BCRwcFGQc3Avi3HRFo2yZnJg5y+X1S1Ek2WtltAhqPn4+8S7LFrYQ0HzIksxYepqp3Cx14QUENJ2iaVwQDfezseM88OKTfGzZR6vMumGbOK5bzW8HCPsC5MpFdNXPcCbL1v7+arzvZD5PcyTCUCrFjoMH2bFqlYjzBe7u6+MHv/wlvbfeSkssJuKEu7tpjETQvHSiu3bvZuv117PplVfYdewYvbfeSrMXRby5u5u6UIigpjE0N0djJMJENitibr25c84wePCVV3iwq4vlwSDy+RFuo6PCXX7xYsGuS9I8SI/FIBoVQBuELN6y5rd7/XXhRB8MiuupVBLbTEyIQkAwOM/O9/ZCIjF/3mXLRPHg/eX/teXfDeMuSdLVkiQdrvwD1nlP3XH+ekmSGs/bp/E39qmA9U/+xj5X/6/+e/7NLrJ+oZO8ceI89/h/ZnsAa0z0uJ++BMyzXs/7XaAsFNJ5VFj4EGrpCDXxGhKJBJVovXXr1nHZZZeRTCaxPDO4CgtuGAa5XI5wOMzu3buZnZ2lrq6u6gxfMaIbGhpiYGCA1tZWampqsCyLvr4+kskkoZAw/lIUhVAoxJo1a7j11lvp6elB0zSmpqbI5/MYhsG1116LqigsjsV4bu1alsbjDM3N8dkf/5i8afJofz/r/+Zv2LBnD9J5ZiUP9/QQ0DTCuk6nF+N2OpXitbNn2dTVhfYb27ZEo7TGYii/sd71TNYmczke6OhgNJNhZSLBLcuX09XaykQ2i+n1uHchmKciYqKsIYD2YgSr/jrzTDsIyfsTCIYLBBN/H4L5qmSzawjp6n0IoH47YgJ9/nFTCHOoKKLv1AdcyzzrVlZVQp47altzM9P5PEXLEspESaJs2zyyfz9zxSKdLS3IkkRDKMQlCxfSGo/T0dxMslgUfW7BII/feCOO65IqFulubaU5GiWoaWy74Qbc8/riFUkSfWUHD1bBfCXfXfZAalsigSbLaD6V7i09LL9lOT2be3Asp9oTe/ipw2hBARyz46LvXfWJ6KD8uTx7791L8nSSSH2ESFOE3XfuZvbErMj/DunCIT7sw8yb9N7RS3Y8ywc/+UEOPHoAxad4xsQiRmrN02v40B99CNWnMnJohOSpJMP9w8gObO7uZjqfpy2R4Fw+L1QJL70knN1rauhpba2qFY6OjYnIvT17KJimaLPw1AsRz3TutMfOVxQguqLguC5F08RyHBYEg6RKJUK6Lr7LmsaOVato8RQtT910E02RCLIksXP1aizHwSzmUH0Bxo/9BLMs5NiV7HXh6STAbWBBE2Yxi+oLgiRjG/mqqVxmagirnMcsZZj49X4AXMeqOsM3XHE9kqyQnxvHMoo0rbgRVQ8iKQrF9DSOZeA6No5jMX7sJ6g+cb27LlXfjIp/RaWtRtM0DMOgUChQX1+Pz+erRsJZlsXw8DCpVKoaI6frOh//+MfJ5XK4rovjOBiGQV9fH7OzsyiKgq7r6LrOJz7xCWKxmBgWLauagBEOhzE8NuKyyy6jqameVGqI3bvvJJMZ8RIwatm9+06SyVOsWrXjNxznG7GsMq5rUy6nGRzczrFjuxgYeIxSKU02O45h5AiF6nAcC3Cq24VCdR5or8M0CxhGHlUN4ro2hcIMpllC0wJ0dDxAPj9NKFRLOj0Csso4oto9znx/e/C8n4AKMMcbJ77pbTuGUOuAaMvp8MaeHoRRZsAbvwYRpnOD3rEe8I7fjfDR2OEd5zSiUr/TG6N+DRiyTPpsmt7be5k7MUfdijry5/IkViZQ/SrpkTQdD3SQmxS/NflzefZ+cS/p4TRG3sC1XcL1YVzHZXHPYqLNUWEmef9eyulyNTLOX+MXyRK395KdyNJ+Xzu+qE+0zigSZlGYTNqmTbguTHHOi3f0qygRhayVZSI3wdWNV/N3t/wdm3s2M1OYoauli/HsOI/sfwRJkihYBW7vvZ3x7Dgr6lbw2MBj7Dq2i5HMCEWryGxhlp7WHnRFJ2fk+NLLX8J1XbZev5Xx7Dj14Xps18Z2bbYf3M6uY7s4lz9HwSpwV99dqLKKJmtEfBES0QQb+jZgO5YwMgs2Caa8OAnxK4WpnJmF/GlYfCt89Nvi0w+2iP720hTkhkTfu79OGKbhCFYbR0jnSzMCRAca4Pg3hRz+149By6cFSD96+7yrvL9WgPbhXaIwYKagthMW/4HoFXcMIVevuMenvV72CsEkax7r7c73poMwtQvUzbvDV1h5vC9zxWFej85L8RVNmNfpEQ+0N3tqQ58nDfb2yY7M97gbaQHaK+ZzkgwfeUBI2hffBNc8KH5l9Rj0PC5Y+p/cLczpXFdkrudGxDlrrxRg3HXg6vvBF4Pma4V0PtQAy/9YSOQrxnrxZXDjd8TfVTwHmdPieJmzkB1BsdMAbNrUyS23LOfhh3toaYnS0BC+wFxu69YBJEkilSpRKlkXMOyuCxddFOf559dRVxeitTVGoWCxYYNwkH/rrUkiEZ0PfnAhzz0neq/vuWcPLS0xFi+Oo+uK5ynkMD1doLY2xI4dg3R1tRAK6UiyxGj6HI+98l/JmyUAzuXmuLLpA0znkmx95fskixk+1HQJv5ocomybTGVn2f7aXzKaPseHGi8h7AuiyArjGQHar2q6hO8f+RHZUoFzuTm+cO2tzBbS/NnL36MuvIAnPnk/n2v7FKqsosgKmqKx47W/4lP/9QG+sf+/ecVZ8Gs+ZguZedO4AfE+NYbDmI7Dtv5+ViYSjGez3N7by3A6zY5Vq7hl+XLampur+41kMoznctzd10feMHhmzRoR9+alD7U1N7NtYKBqglxh0ystg5csXMhVDQ2cmJ3l9t5epgsFViYSDHsKMsbGhOHc6Khg11tbhYHcPfcIRjwYFPnsjiPWHz0qvv+WBfffL25NE+rqBEi//XYRExcKwdQU7NsnGPdSSYD0W26Btrb5mLlt27wC2/vL/67l3xRwR+CEtvP+LfLWN//G+vPzz3y/8VzCW1/7G+vPK9/+H744huhdN0cg9+K8XP5fXHTPuG6TkMsH2mB2G2R/AOfuF5sUD4HailX3DEkvw900TYaHh5mdnUXTNMLhMHv27CGVSrFw4UJ0Xcfn85FIJDh48GDVHdowDPx+P+FwmPXr1xMOhxkbG6O7u7vKgmUymaoMFkTv6q9+9StAgMeWlhZUVWVubo6WlhZisRimaWLbNpbrcsfu3dTu2MFYNsvXvEH3yOhoFWRv7u5mKpej1jMrWRQM0n/2LO/OCgA3kk4zkk7z7Jo1XBSPkzdNLorHeX7dOoKaJvLfJeHY3BgO893161kcj2PYNgFNI3FeXmjQi49zPDf2YrHIDtfl97x3Pwjcj5gonwXuQshR2xDMVuVC7kAw4j9FGD8FvHVTCNlpDjFxBiFXnUL0tY4gQP5RxBysFlEUKCJk848An/L2uQMhcVVkmVOpFPe+9JIAgqrK0Nwck9kssgewRzMZbMchYxhM5vPCyE+WGclmOTE3x9l0mqxhMFMsVgGp47oYti0cuxWFmM/Hs2vX0hqL4VdVem+9lcdvvJFTqRS39/aSKZfJegoGTZaxHAfDtilaFrHWKOueX0d0cRTHdujZ0sOK21aw5tk12GWb4YFhGq5qoLWrlf2P7Cd1KkVmNMOxXcfIjGSQZImBbQPCnXoyh+pXkWQJRVMI1YYYeEw8lx3Pood11jyzBlmRKWfLTL41iazKOLZD34Y+5k4K0JEZyRBcFCQ7m2c8m+VDdXX4VZXu1laWxGLc397ORDbLXX19nE2n6WltJerzVSP3zn9fsx5IzBkG9+7dS2M4jF9VmczlRJqB65I1DL60bx/D6TSDIyMUTZOILpzfFwWDPPqP/4jpOLheXN9kLoflOMK1X9MJLmzGF6qh6YobMIt5VF8Qq1zEcUzhAF8U0r940wfRAmHGfrkPXAfVP28q13r1JwjGG5gZeoNgTROKKhjv6ROHscoFcBxso0iwphHNH8axDCbf/kdss0RwQRN6aAGSoqL5IzRcdq3YxxsHBgYGOH78OPl8niuvvJKWlpaqsaWqqiSTyaqyx+e1CsiyXG3RSSaTjI6OYlkWkiSRSCRIeeNXxXgul8thWRazs7MMDw9jWRa2bV+QipHNZlFVFU3TqkUCSbowx71cFlnrAoxvQ1F01q//DjU1SxkdPUw2O8aePRtwHBufL1qNkuvu3ozfH8Mw8sJV38wjeY7bkUiCzs4v4/fXEAwuosIUapqIljPNIqFQPTU1iwkEasjnp4lGW5BlnWi0GcMqvMcIM+CNMwPeOCIhjObeRfSglxDFwLw3bpwFvuatp/oKhDpoCQKgL2bedO4ib98NiEJACAHUVyDA+waE2qcbUGyHg9sP0tLVgh7SUTSFRFsCLSS+Q9FElENPHCLaHEVWZAa2DVSvXzNviqLbu7PIukzqTIp9G/eBC6u2i3zqvg19pM6k0EPCMb7jgQ58ER+yJnPg0QOYeRPXdok0REQcnYMoBjSEUX0q4YYwSkRBlVWG5oaYyE7Q3drNRfGLuKbpGlxcJnOTvDz0MpqsoSs6XS1dPHX4KRRZYXP3Zm5ZfgttzW2MpEdYUbeCE3MnuKvvLlxctq/aTlAL4lN8dLd2Yzs20/lpZEnmubXPceLuE/Qs7sGn+Li29Vomc5MEtAAN4QZao608seoJfLKClDsFb94rgPaiDiFx/9lGwBEg3rWERP6NDQJkN39KSN/9DfDh7aDVCJb96O0iAk7SRDHAznt570Pw4SeFc/xHdgqAXBgVzvFv7xDMe7BFGOQtuQ0uf1CY1Lm2Rw5Inku855IgSfNmc+CBeENsKynz+7jeN84x5vetGNbJFebcvRD0S7IA6OGEOE+kRbDc6VN4RgeeWZ33eqTKa4uKPPWqSdyUl8/eLI5Rc4kwrVP8gvGvyNtf/7pwnD++S/SsB+vFvoOPiF77+NJ5x/uf3CPA+PXPiL879S68+idCVSApcO5N8C+Yd68/shUaVmIrUTZu3MfBgyN89avXUV8f4tSpJJblcPDgcFUev2VLD4oiYZoOb701yc6dq3nnnQ185zvrUBSJfN5AliUCAZXOzha2bROA/4knDnHNNU0oiszQUIrbb+9lfDzLypUJRkbSnDol1p04MUuhYNHZ2UJNjZ9nnlnD7/3eZcK0znU4l5vjnp4/wHVdtr3y59SHF7Du8h6SxQwPfOyPWBiMYVgGCwJRJObl7y8c+REAQd0PwPcO/z13/93jvDX+Lp9r+xRzxQx14QWUzHI1n/37R37EhxOX0uT5sOSNIqZt8rn2T1Vj4ECw8KosE9H91XjfB7u6KJgmA8PDFC2Lp266idtWrKgaw27t7wfg/vZ2ksVidd7Y1tx8Aci/c/du8qbJkpoanl+3Dp+isLm7mx/efDOJaJS7+vo4nUoJgkOWMR3nPdFyNy1dSs/ixViKgnv11YJN7+oS38tSCXbuhPvuE/3ohw/DlVcKIO73i9z2DRsEOL/7biF/v/dese3EhADjIyNw+rQwrevqgscfF9u1tMALLwjZfUVS//DD4rjvL//bln/TUvn/Xcu/W6l8RdKOPs+S/1PbVI3pNou+dK31Xxcr5+S97FcHUAXjPrtVuM9rS8DJghymbGmcPTtSNZULBoMcPnyYtWvX0tfX9x4Ju+6BiIpUtaOjo8pcPf/881x22WXcdNNN2LaNpgmWNJ/PVyfHFdlqMBhE0zRM06RcLuPz+dB1HcuyyGazDAwM0N3dTSQSQVZVTqRSbO3vZ+fq1cwWCvg9gzRVkrBcl8GRERYFg3zj0KGqzP2B9namCwW6W1sZGB7mj/7+7zn6uc9R7+V5jmQydLa0ULQsNu3bx/3t7Vy6cCGG41AwTX4xNcU1iQQ+RbnAzOTZNWu4e88edq5ejSbLbNy3j29+8pOclmVGES7MGgKgfx4xye4DroKqxDWPMIByEBPpbwCbEYzX6wgwfikC8D+OkKp+wDvecwi5/ZUIML8d+DKCVVsKXA68g5Di1yJk9J3lMmPZLHnDQAKePHyYr99wA2FdR5IkpvN5FnnvZ9ozs6sLhZA9B/OKNHxlIsHRsTFqQyFq/H6KpslIJkNLNEpA06jx+6uGbCOZDC2xGEvjcT774x+z69gxph54gNFMhqjPR10oVJXNB2yZ5FCScGOYUrKEmTeJNEfQAlpVDq8FNSRZIjuRxcga6GGdcGOYvrv6WP3UahHjVhfCH/fjr/EzdmSMaEuUSGMENaiSPJkkM5qh8erGC02xltZglSzG3xin4aoGbMNm+tfTNF7diOpTsQ0bKapyMpUkqGmEdB1FktAURfQTFwpoqkrc70dGAPPKSH3v3r3CZV+WMWybo2NjNIXDOECT14byi6kpPlRfXz3m6VSKZ44c4c9+67cIahqGbbNx376qeWLFxV+WJIqWhV9RsByHiKZiFc8zj/NHBRvl2BSSE6i+ALZRxB+rR5ZV8nNjDP/0x1zc8x849+4g6YnjxBovJbHiRpBkXMcB1xHxcJoPo5jBKhfRAiEhx69pwDbK2JZBITlGITlO04pVIoIOsMoFrHKeYE2jYPVNA8OrRFWu9coyNjZGNBolEAgwNTVVNZyrGMsFg0F8Ph+5XI5gMFgtCMqyzO7du3n77be55ZZbaGlpqUrly+UyoVComtduWRa//vWvGRsbY+3atVWmvnLumpoYqdQJDh7czo03Pl7NUB8dPUxT0zXIsszo6BESiWtQFD+7d9/JL3/5A1asuI21a5+ryvQlSTCcpsdSaVoAyxLZ79FoCzU1FwESjmNimgVeeeVBVq3aQT5/joGBbXR2biISaWJi4qeEQrXk89O0tnbR23sHLctWE7jqM2yVJLYwHwd32LvWn0C03liICrqO+JWZ897nRQgwfh9CJp9GAHEJAcptb3vErwb/HfhDREtO2DteRWLfiigKhhHFyiLgNyy02eKF19eyGsyCWY1uq7bDfGc9qTMpBh4bYO1za+nbMP/c2m+t5aUvvkT7fe3EWmOMHR0j3BQGR7TFRJoipM6mSJ9N09zWTDFZ5NSrp7j0E5ciyRJqQBU99mWbfRv30bmxk8xohrpr6hh2h9nav5UHOh5gOj/N1Y1XE1ADnE2fZdvANjZ3byaoBSmYBbYNbGNT5yYaI42okkpAC2A5FqqsUrbKOK7DXGmOglmgPlSPLImy7MZ9G/lS55eoC9Xxs4mf0RJtYSw7RldLFy4uhm3gV/1CVSIpWK7FTGFGZLn7QkhvbBAGdA03CXf40hSc2w+tfyCi4swsaBEY/ZEwlPvIsyC5IrIs9QtYcI34dckPCxd5f50As6//CZz5gWc6912xLndGgPbaLs/MTYP8GTj2qDDEC3tNFqVJ8NUJEO1Yor885lmxVmTtig/hCl8W0WlA1fwNqAL+ihOdYwhDOz3qZbH7BMCpZLZX5PFaSCgHXMTj3Khg3SXPYb6yLrpEvDZXtAThukLSbhmg6lBKisfxi70IORPeenbeYM4x553nz701b2I3NgC7/xBue1241Dum2Dc/BXpQGNflJ2HwT6sGdNz4bXEsWRES+8mjEG6BaCuGrfDOUIGtW/t58MEuBgaGOXhwhOeeW8t//++/YunSGjo6WnBdl7m5AosWhVBViZMnk4yPZ+noaMY0HVKpEjU1fvx+FctyOHMmzWOPDbBlSw8XX7wAx3H47Gd//B5zu5mZPH6/iqLIKIpEIKBx5kyK0dEMnZ0tGIZNKKowkp7i+0d+xB9f8wneGj/OW2Pv8vCqz1G2DKZzSf7i9R/z2bbf5lwuyYcTlzKemeaFwz/i8+2/w5IFTWiKimlbnJ4b54XDf8/t7b9LS009lmOjSDKWY1M0yzz1jz/gj1d+kppAhB2v/RWfa/8UrfEGLEf4vUxl5zh09hf8amKIL9/wGX45cYIrmy7BRSFnGNiuS8k0ifr9ZEolCpbFdk8qf/5y7969fLmriyXxOJbjCAIjlcKnKDyyf/8FLZIg2roM28anqu9podzQ18dza9de0EpZaQs8nUqxVNcJnz0r2O8tW6ChYd6ArlQSJnV1dQKIb9smzOY2bLjQfO6fevzsswLUV9a/8IJg67dtE0Z3TU1CPm9Z4PO9b073v2D5l6Ty7wP3f2L5dwnc/0d961VQL8HEHYIpr7jDV/Pc/7ljFwVDL2lgDMHso4J51z6ImJY5VDshzdOYTozZTIDBwUFWrVpVlaZqmkYmk+HgwYPccMMNyLKMruvYtk2xWKz2q5umScaL1BgcHKz2klYcoKPRKAMDA3R2dhKNRvnmN795wQS7XC7zyiuv0N7ezsKFC0mlUqTTaf7mb/6G5cuXs379ejRNw3Zdyp6ztmnbOJ7rdsTnI6iqFC2Ln05MzPcj9fQQ9OLPKv1JQU2jYFnUBYPkDOMC9/mBkREuXbiQtkQC22OPs+UyGc9dHsSg/3BPD8PpNOv/5m+4bcUKnl+3DkuScDWNQUmiFngaISetmD9NIdjvDIKZqkew5luBh73tasSnje5tdz7An2Ne9l7pYbe82ywCsIe9c5gIiWsXgl0bAa61LHLFYtUl9a3JSU7MzfF7l13GVC5XdZD/zV7qh7q7GctkSESjhDWNulAI03Eo2zab9u3jwa4u6sNhdM/pfCqbZTSbpb25GQkBYL/86qs8t3YtZ9Jpdhw8yLfXrSNnGPhVldPJJI8PDrKlu5tLgnGG+4eJNEU4+PWDdD/UTWYsQ2tPK6lTYnLfuamTSFMEI2+gB3XK2TIhLwdXUiWSp4RcXpKlan9s/pzX8zqXR/fraEEh18xN5hjaO8SCDywg2hSlf1s/q55YRXGmyMBjooc+VBdi4qcTwuE6EcLxy/hUlWy5zGQux1OHD7Nj1Sr8qsrgyAgt0ajIjc3nifp8hL0ilypJnEqlGE6nWel5MZi2TapUYmEwiOopDyrvR6Vfr9LKoEgSQ3NzTORydLa0UDBN3pqc5KNNTfhVlZzngPuBWIT83Dj+6CLxnigarm0hqSpmIc3M0Bs0XHYtsqJilYsovqBX3JNwHQGiJUXDyCexjSKqP8zM0Os0XHZtdXiRVB3XMpFkGcsoouoC3EoSOLYHxCXRm24bJWyrhFUW7LztytXrOxqNkslkSCQS1WOXSqWq5N3n83HgwIGq14bf7xfjgDf+6LpeLfhVQDkIJU97ezuRSARd16v97I7j4DgOiqJU4yeTySQDAwPVJI2mpno0TQIkUqnT9PdvZfXqnRQK0/T3b6W7+yECgUWcO/dLWlu7cF0X2zZQFA1J0nAcA1nWMYwMkqSgqj6PaQfTLFZ75kOhWkyzwKuvbhaGc66Nzxcjl5tkaGgvY2NH6el5GF0PYZoFIpEE4OI4FtlyFjvWQkqSiCPAco03oo8jes4/gCgSTjDvgeH3xg4HUVAsI4p/H0aofkYR8rfHEAXEUQTwX+yNI1vPW1/rnbN43vrKGBY0LCSPOa+A8DXPrsE2bSZ/Nkk0EWXgsQF6tvQQbgqj+oWzt+u4mAWTqV9M0dze7H2NJKyyxdgRryBX40cP6ZTTZXwxH0bBQPWpKLqCookkCKtoUXHwGzsyRrgxzOihUeJL4iSuSWAGTO7Yewe7ju3ij6/8Y55e8zSmY6JICve+dC9/8fO/4Jblt/Cd9d/hjl6x3S3Lb2Hn6p3MFmapCdSQN/LUh+txXIeSVeKtybe4pukaFFnhnj33cF/7fRwePcyS+BLam9uRkJC9ayJn5CiaRRYGF1IwCzz4yoNs7NzIaGaU5mgzrbFWfj7xBtc1XCF63I8/BVdtFxcYsmDe7aLob/c3Cvd4WRdA1UgKB3oXKJ8DNSp60oNNnoP8VULaXZoRxQA1IIClXRAxck5ZyMv9deKbYuUgeQxq273rWhHnUYKC7dYjQmaeGxXu7pIyn6leYdNBsNeK7sne8QzhCt42zG9TMX9z3flj2qbXa26KQkG42QP2+oVO9OUMzJ2A+g+L4oPrQuqkYNFXPiSO5dji79NjQn0wPgDRpcKwDltEtoWa5osRVlH0s3/kPrFeVkSRYPJNYTgne5F0uTFReNAjQmlwZJsnm2f+fNNvidcQXQo4GKUyBTeMJMkUCiYbN+5j48YuRkfTNDSEaWqKEIv5ME2Hs2fTjIyk6epq5Y47enniiVXMzhYZH89y1VXCyyQU0pmZyZNKlWhtjaNpMrIs4fMpzM4WSafLNDSEKBYtJElsXypZHD06RmtrjCVL4gwOjtDR0YLjuBiGjT8i8fOJ49QEIiSLWVpidRStMvFAlJJZ5nuH/54rGpfRsfhD1IZr0BQVWZIxbBNd0dAUtfrxmrZ1wfrzwfx/bvtt4oEImqzyxP7/xu63B6ou9Loifq8N2yRbzhPxhdEUhanMHE2xWhwXTiaT1TneaCZDWyLBhj176GppoaulpQqol8XjjGYy5EyTsK5T4/ejKQqDIyNcu3gxp7zj/KZDfH0oxJjX+rdtYIAHu7pYGo+jyHI1cQgEyC+Yoknpi3v38pfXX4//C1+AlSvhppugpkZI5y+5BI4fF47yld73T38afvELIZ/fulUw5UuXCkA+PCzk736/2LZQEK70uZy4laQL3ef/y38RPe6R866v95f/V5d/Nz3u7y//TxZDgHa19r196xWWfeKzAnjX7ZjPaf/XgHY7BdaEcJaXAp4b/XYqQJ3CQTBPiW1mH8OxMwwMDNDc3CwGnkKhOrHNZDKsXbuWYrHIxMQEyWSyKqkfHR0llUpVe0lramq48cYbLzCwC4VCZDIZOjo6yOVyKIrCzTffTCQSqUpYNU2jubmZwcFBXNclnU6TSCRYvnw5PT09KIriTZBFBNaJuTk+39vLcCaDIklC6i3LBDWN7tZWltbU8C2vF74hHManqlzb2sp4NktdKMRoOo1PUd7jPr9q6VK6WlooeJFnOcMASaq6y4d0nefWrGFpTQ3N0Si3LF/Opq4u4ewuy8xKEl2ISXAHYhI9gGDTv8K8ydwjzAPqXd79hd7tnQiW3I9g2jUEQ/Y0ApTnmM+GH0BMnAMI5queeff5HgSoH0NI823brrqkjmezdLW0cNOyZWQNo9qTvcHLO1Uk6QIH/0XBII8NDFAfDnMmneauvj4mPPM1v6oykc1yR28vE9ks9ZEIDeEwd+7ezVAyiSzL7Fi1Spi5BYM8u2YNp1Mp7t27l+F0molcrtpn5kqQWJng4NcPcmzXMQYeGyC4KIiZN6tZzbrXdxeqDVVd49Nn0gwPDJM6laJmac17QHuiLYGkSARrguSn8mLbMyn2f2U/LV0ttHS10L+tn+MvHkfRFVS/SktXC4M7BimlSoRqQ2RGMsiGU2XY/apK1Odj2w034LguR8fG6GxpYUlNDSXLqrrlSwgjvpLnCr8ykfDMe2ySpRIF0+TO3bt5d3aWkmUR8fn4UkcHIU1D8SJdjoyOkimXWbZgAZ0tLUzn8/hVlSvr63ljfBzLcXCBRw8cwJUkArFarHKBiV/vxyxmkGSl6v4eqBEGaY5toegBHMvAMoS1mWUUmfj1fox8CtUXIljTxPTJIwTiDZilPMX0OQFCXRfbKs9nvzsWRiFNfm5cnEvVkSSwjRKK7kcPLSAYb6CQnLjg+tY0jfr6eorFIo7jUCqVCAQCRKNR/H4/kUiEtWvXctlll3HgwIGq50VfXx+6xyD4fD40TUzs9u3bV5XKDw4Oen2hqWo/++7du8lmswwPD5P0vAXOl+23trYiSQ653BSWVaa/fyvHj7+IJCkoik5Li8h0l2WFuroVzM6eoLf3dnK5cWzbxHFMXE/hpKp+JElmeHiA2dmTOI6Fomj4/XF0PYxpFtC0IKtXP4mi6ExN/ZJU6ixzcydpaenixhsfJxxuQJZVfL4oruvgOBZ79tyDHq7jp5JEFtFiE0EU9s5648Kt3vWfQYD2WgRAzyKk87cj+tePeGNDRfbe4Y0x3/LGkisRxUcJqv4dle1iCFl9RbK/zVv3OiAZNoWZAmueW8Pd797NmmfXUEqVKGfK/O2n/5bMWIZ1315HZkwUe8/+49mq67uiKbR0tjB3eg67LFhPSZZo7mgm2hwl3CB630EA/XB9GEmSyIxmRKpESYD27GSWPRv2EKoNkZ/K86HbPkSiLUEpXUKXdB7ufpjeW3vZ+fGd5IwcR0aPYNomz6x5hnc2vMPO1TtxXbcqi3+452HCepjF8cVM5iY5MXeCM6kz3LPnHlxc2pvbOTJ2hNH0KPe3309LtIU/+tAfcXXj1XzxpS8ykhkhb+YZGB4gqAUJ6SGOjh0lqAX55se/yWRukivrr8Sv+tFlnbbESgEs1RBcep/ocf/ZRsF0u6YApTVXChZeDQq2fPZ1EfWGKDyh1QiQXtcDocVQ1y2As20KcG+kBFjOn4G5N735hwu+RQLATx8UkWe1nQI0Tw8IeX3pnCj2hRPiOFWJ/KQHzjXPqM5D1RVJvKzP98GD2LbSE48rmPX06XngX5wRsvuK9D03BsU5j8n35kDn58QrPqhb4cnrEeC9In1/4xvifZJVSJ2eVyI2dggwnR0WjvKBWlE8yAwL4zpZFb3vWlgUOfJTYrtFK8Q+YwPi3F42O7jiPen4qtgnPy7k9flxWHSFAPSuKDAahTyG4WBZDrmcwZNPrmZ8PMOZMylCIZ1QSCedLou3V1e44oo6pqfzPPRQN4ois23bACtW1OG6kE6XyWbLBAIakYiPkZE0xaKJz6di2+J6icV8qKqM36/ys59Ncvp0kqNHx6itDTE8nCaXM+jqauH06SR33NHLxEQWyZGoCy/gr97YTV14AXWRhSwK1XB6doywL8i91/4hVzVdyrcHf8h4RrSDaIpKSA9cANqB96w3LJMXDv89e48f4s+P/ANFo4TrOvzxyk+w+tIO/uM16/nV5BAuLmPpc+x47a8IaH5sj6FvjC1CVRRsYJs3X9nmzVeOjI2xpaeHm5Ytu8D1vWhZIl8d+Mr+/UzkcuiyTEsshu26jGYy3N/eToNntFvZT1cUnjlyhCXxOF+97jpc1yVvmrw7O8sdvb2cSiY5cPYsZdvmzYmJau67JUlCxt7VBY88IuTsExMi5m37dgG0d+yAnh4B0MNhaGwUsW+traK3fckScX/DBrFNNCp622dmhFS+4iB/vvt8Q4Ng2iuLYQiQ/767/P+W5X3g/v83iy6Y9rknLox5A94T/yaHoPGF/7E8vtILjwMzj4I9Dmo9XHTCM6OTQKkH/5UwuwPyr8LCh1CcKXp6urn88svJ5XLs37+fbDaLbdv89V//NblcjoGBAUKhEAMDA9VopWAwSH9/P47jcODAASzLIhAIYFkWvb29RKNR4vH4BRFxlV7VTCZDKBRiz549pNNpLr/8cnp6eqqZzIqi8IlPfIJoNFqVKr2bTDKazVZNRbb29xPz+5nwzKlkSeLo2Jh4dz2Tr5xh8OiBA3zqgx8kEY2yoa+PqxsbUWSZ0XSaF48f54lDh2hLJGiJRnFBRLwdOIDj9RB3tbTw1OHDpIpFjoyNYTkOy2pq2Ll6NYuCQcqWRTKfJ++63IFgqW5GAOxOBGP1BIIR+wbzE902hDtzj/dcAyJ/uSJvvRKYQYDzpxGFgCxisp1g3uxumHnAnkXIWA0EI9/lvQ4Jqj9g2wcHcYFEJELM52NlIsETXnvBYwMDaOfF623u6WGmUGBLTw+O61bf++2Dg6xaupTaUOiCH02fovD1gwer26RLQiqcKpWqUXPnm8lUTP7ampuZKuaRNZnuzd1Vg7rCjHBYXbVjFS1dLex/ZL8wtXKpGtdVAH56OE1qKEXfhj4xYfdAu6zK7L5zN47lMPDYgOh19/pqB7cPggs9W3q4+Yc3k5vIsf8RAehX7ViFP+4XsXNtCV7b+CqaJHE6leLw6ChF0+TYuXPV70jJssiWyziuy+M33sjSmhpkIKhp+BWFulAIXVFEqsDYGEXTJKhpPLFqFU2RSNVIsTkapT4cpmRZzBQKfKSxkZjPh+NV80O6zlyhQEjX6W5tpWwJ1/eO5mZs28a2DGZOvV6NaLMM0V9ee3Eb8cTlyLJCMX0O17GwjSLTJw7jOhaqHmTR0o8iqxqyKsBww2XXEa5dglXOzxveFdMY+bRQEviCSIqG5g/jj9ZSTE14jBkoug9cF9c2scwS/mgtkiQRjUYZHx8nFArh8/lIJpPk83l0Xaevr49UKkUwGGR2dpbe3l4KhQKJRIL+/n5KpRLHjx9H0zQ0TUNV1arLfEtLC7lcjhUrVrBu3TpUVSWdTl9QPMxms9TX11d9NtasWcOdd95JNBqlr68PWdYIBGoYGztCR8cD3HzzD8nlJti//xFaWrpYtWoHPl8E08xVjej6+0Xvu2UVeemlL3rFiWH27NlAKFSLzxcmnR5m9+47SaVOAS57997L3NxJLKtEqZQikViJpgUIBmsZHNyOrlfi784xMfFTbLsMSDQ3d2Dkp2lxXWa9sUNHAO1ab8zY5I0DDd4Y8W1vvY6Qtb/ojT+LvLFhGDGxkBCFwhLC7FJBAHfVu/09hPFMZRKS89bfgpDmpxE975YiYxZMxo6MYRZMEe9YMIkmonzx7Bdp7W4FGRquamD89fFqYSxUGxL966dSxJpiOLbD7Luz9P1JH9mxLFpQw/VAyIFHD1THASNrkJvIEaoLMXZkDEmW0AIaQy8PUUwWxfk8DGmWTIqTRZbVLKOrpQvLsQjrYa6svxLTMckaWb524GtM5aeQJZnx7DjfW/89WmOtOK6D4zq0RFvoaO6gPlTPNz/+TQJqANM26WzppCHSwNKapUiSxODIIC7CpG40M4oqq1xZfyWO6xDWw3S2dFZ73yu57l878DVOJk+i4CKZwouCQJMA6AtXCtO4N+4R4F0NCTDuOkKSXtdNFSiDiIA7eqfoby9NewBZEvvOHBZZ6lpYsOf+OtEr79jCTX72qDhfsEEY4b2xQRjVFcY9Nt4WQLkS6+ZfCPGLxP7pM56LfdnrXXeF5B1XgPpw07y0vTgnADmSYNiLM+81oKtI62PLoPEaEffmIooOF4D8UQHoc6MCcEsKfOyp+f52IwulWWEyB8IoLjsiigKqT0S+/expAd5zI+L2J3eLY6dOCqCeHYahF0FRIdwoXObzk5C4VqgCQPyNWlC8B28+dZ4xngorvyyUBmMDKOFFTE7mueuuPgoFE12X6ehopr29mUce2c+ZM0kiER3DsBkamkPXFcpli1BIIxzW2bKlm1jMj6bJnD4tCpGBgEZ9fYhLLllIMKgDLpblMDWV56c/nWBoKMng4Agf/WgTwaDGlVfWE4366O5uFcVW22XbtoFqXJwruXz/vMg20zZ559wZli5qxkUYxFXi4l44/CMMu2KJ+S8vpm1RMEv88TUCpH++/XeojywkFoiwuKaRh274DOlilsvqlghl5XmGeNtf+0umc0mKZonTc+PosnyBz9FMocDiWIyL4nESkUj1uS91dPD6+DiKLBPSdbpaWtgxOIjhOCyJx1ElieZolCcPH8Z2Xb7U2ckty5ezpacHCXh6zZoLfoOzXhRcxbTumkSCVKlEWyLBn772mvgq+Hy4weA8SP/61wVzrqoCYPf2wjPPeMkF3ve5EvF25ozIbD99WjDuu3YJJj4QgPZ2IYuvmM8lk4LJ/+53BfCX5Xl5vGHAO+/AZz8rbt8H7//Ll/el8v/E8u9SKg+CHTdOzPedV4D5BX3tD/8r+9nP32eTYNWLB6HhBcGuz26DhQ+BOQZaMyh1UHoL/FdhORpFQzBXvb29HD9+vCpltywLRVFIp9PVWLeKpB6oSlRzuRzxeNxzKBV9pKOjo6xdu5be3t5qn/zatWtRFAXbti/on1+/fj35fJ6hoaEq+97R0VGNatJCIQ57mdizxSLbBgb4cnc3k9ks1zQ1ocpyNefachxMx+Ho2BjN0Sj/ePYsN19+Offu3XuBdKoiq2qNxVjqxUnZrsvA8DBnUinam5t56vBhHr/xRoKahuU4jGezVSlVazSK6TikSiVqYjE2qCq7EBPZFxCs1jbERLqB+QnvvYiJbiuiVOMgQPl25qWoVyMm1dsQ8XIfQABxzTvuVm/9Erw5DILJfwLRDDGDYNKClfOWyxfIwEKaxsJgEEWSkIBTnn/AFs9dX5NlLJHbRdGyCHqs5plUqnqMpfE4AEPnydQuXrCAoWSSrf39PNjVRZNnvoYkISOi0PJe68LDPT0sranBdBw0WcYuWJizReEobblIilTtbZckiZe++FJVevuJFz5B6nSK/q399GzuIT2aJtGWYM+GPfPy3OfWoAU0+u7uo/HDjSz/g+XkJ/OkR9JEm6MMbBugZ3MP0cVRRg6O0NrVSu8dvRf02MqaLLyRVInUqRTBS+IUTRNNUZgrFgl4kXZ1oRBl28bnRcpU/BE6mpurSs5z+Txxv194GqRSxP1+wrrOeDbL9sFBHu7poTkaxXFdfF7rgSrLlG0bzTPBOTo2xuJolMU1NViOg4QoAnyksRFVUQjKErLXXe+6jscsgSSr4r4kVXvd9dACrHIexzJQfSEc20RRdRzLrAJ3WdHExNZ1scoFTh78AZHaJTRcdp3Xv14gEKvF9o4huS6Od17HMlF9ARzLopiZFlJ5B84ODxOJRDh48CCdnZ2EQiGmpqaoqanhW9/6VnWcOH98uO6663Ach2AwyMTEBI2NjVXAXpHVa5pGKpWqemNks1kaGhqqPhr79u1j1apV5PP56jaZTIZYLIaqqiiK4rUDSaTTp8lkxmht7cYwcjiOzblzv6SlpRNJUnAcE8sqsW/fRrq6HiQeX1JlxRVFwzRLWFaRmZl3aGnpxDDyKIqG40Xx/frXP2Tp0huJRJq8PnsTRdGwrBLZ7CSxWCuSJDE8PEAoVMuhQ0/Q3b2FeLwVQ48wJStVJ9iyd617bimUEGDb9MaLChhPIqTsSW8fHwLsTzNvjFnrjReD3v0PAF9AFA7fRQD/ipx+E8KJ3vTOb3n3yZV57bM/puOBDg49cYjjLx7n5h/eTGt3K2beZN+mfbTf106kScg4J9+apKWrBTNv4tgO5355jpbOFqyyRWmuxNDLQyy8dCH1H6oXEvmoj7f//m1GD42y7tvrKr+A2KaNWTB59cuv0rWxCzWoood1XMfFyBr4Yj6RFW/auBGXk8mT1Vi3i2ouYiw7RkSP8KN3fsSB4QPsXL2Tv3v77/idy36HTDlDzBejYBSoC9dhORaHRw/zofoPVQH+9sHt7Fy9k+nCNFv7t/Llri9TF6rjrcm3aEu0EVADDCWH2D64ncdvfJyoL4phGxi2wVuTb1EfqsfFJaSHuCSWQM6860W8bYLIBwQQz52E+BUCBFb62BW/KJYVzl4Y22blhAt8aLH4VI2kkMfLPrCyIrtdi4ASqryD4riuK2Li3vqyOFZhBP5x/XxPfP6sOKakib7tiiTeyArAWulTyJwRveSVXHcQQL9iOicpnvxfqvTZCKY72uq54HuLW/1PLL8ZEadHRIEg0izO641zuK53Hq+f3nWFwZwWFsD++Qb4nV5hUndkq4iICzWJ49klwawf3yUi3j5yP7z5pOiDn3pTMPWOKQzygnXe+RzxNxlZIa+/ZtN8/Fzbw+Lvsssi7/3UbnL/YYTP3v7SBVFwtbVB7r13LytXJrj55ssB2Lz5Vb72td9CVRXCYQ3LctE0YVZXiYJ74olVzMwUeeyxAR56qJulS+N8/vO9bNnSw5IlMT7/+V4eeKCD6ek8tbUhnnjiEFu29LBoUZD77tvr9cOLOdDJk0m2bRtg8+Yell4cZTx/ju8f+RGfa/sULfEGRtKTaLLKtwd/yFWJS7iq6VL+4vUfX9DT/j9aCkaJR/e9UJXZ10cWVk3sQAB70zYZTk3x50f+gc+2/TaLQnEe/8lfsvf4IdZd1s2m6/8TyUKG+shCQK7O/XRFqc5dFFmmaFnoisJ0Pk9AVavzx02dnTRFIuQNg0XBIKOZDD5VpS4UYnBkhFPJJNdfdBELAgGSxWJVKdcai4miqmEwns0ymctdEBe3zPttPptOs2NwkL+46SaUU6eQKvL3iy4S38WpKcGCT0yImDeYj3o7cQK+8Q0BzG+7TfS2T0wIk7u33oLOTsG0b906L7VvbBSyeVkWrLyX3EQuJ0D7+f3w70vo/6cv7/e4//+4/LsF7uBVx8sg+S4E5//c+n/2ODkhrc/uErL6RV8VkiytFSZvn1+/4H6Ye1Iw8K4FU1+kvPA5zg5PVWWrFYBe6UuPRCJVgF7JWc7n8/T391cnv9FolFAoxN69e6u5yiDi3pLJJP39/RfkKJ9vbtfV1UU8HseyrPdkulcAfSAc5kQyyY7BwarZiOOx7FGfD01R0BWFfLlM0bJ4fXycFXV1KLJMQNOqkuVMucxXfsOApMLo265b7QFXJIn7X36Z+9rbaY3FODo2VnVJ/9Dzz/PJSy/l+XXrmCkUKJgmQb+fQizGNklii+uyWJLYgDCpuwkxYU4hpKgGQnJ6N/AnCBbrEQQT9kPgGu8jvR/4AdALtCCk9W2IifdKBLNemYjHEZP1Ue9fJYd5AFE0WFouM3D2LIuCQWYKBTo9hthxXfKGQWMkgu3df/gnP+HJ1atFjrgHtB/zgHZ9OEzRFI6uD77yCps6O1laU4Pl5WW/MT5Oe3Nz1SnecV0k4M2JCVYmEvhUFRmwXJfZQoGgxzKfTiZpCUTwuwIo26aNawnjsH0P7KtK2ge3D9LzcA/BRUEm35qkub0ZRVdwLAfbsMmOZwUgf7iHmqU1wgQqY5Adz3L4qcOs2rEK1a9SmCngj/kpZUr4Ij7SZ9P4F/ixCpYoBmzpIdISYezwGJGmCIM7BrnpW2uwNISLbKlEXTiMhIhyk4GDIyMkPOa8xu9H93rhK+9vJcPedBySxSK1oRCGl/FeME2WLVhQ/S5anlNtJTYP4K3JyWpUn+U4zBWLLAgEUGWZgeFhmqNRLo7HoJzFLGZFjrsspP2u62CWckyfPMKipR9BD8SqID4Qq8MqF5ge8rLbwzWY+dT842BMyOJlRcxPJRnJdSkkx/BFhPtvpbWmmJ4mGK8HWcEspufz5CWJyV//I3WXXYdlu+8B5cFgEMdx2Lt3L93d3cRiMZLJZNWYLhwOo2kaw8PDNDU1USwW8fv9ZDIZBgcH6ezsZOHChfz4xz+uHrcC0ivPj4yMsGzZsgvGl/b2dgqFArFYjP7+fm/sClIoTBMK1ZFOn+HgwR1VozpJkkmlzjIwsJWeni3EYovJ56fR9SCSpKIoGrKsUi5nkCQZXQ/jODaWJaLdXM9PIJ0+w8DAY6xevfM9hnS6HvXYL7P6vpbLaSzLwLKKSP44E9FmRiWJBEIOfxUXemJU4FPWW/cWwvRyDFEwXIpQ8rzu7RtCuMNXCo2NwM8Rsvh3gUuAQ8BHgTcQsvzfRRQKDgEfQYD6rcDThoX9ziy5kbTwhghoVaPIcGOYkYERRg6OcN1/uY5oU7Rq6DdyaIS6K+rQghqKrlDOlJEUkQgh6zJWwaKUKolsdk3BLAp2z3VcclM5chM5Em0J0mfTHH7qMGu9+CvXcbFNWzD2lrhvRSwGRwZZUbeCgBbAsA027tvI/e33s3TBUizHQpEUTNtkJDPC9sHtPNT9EItjizmdPM1EboKViZXoik7ZKjNXmuPloZdZvWw1X9n/lQv64m3HJmfmiPlivDX5FifmTvB7l/0ek7lJnjr8FNtXbSegBpgpzFAySwxnhlmzpBu5Yk7XuBoCwuMA14LyLPgWiv7r5M9h4TWC/T7fdO4jTwsjucKoiHgrjIpe+Le/IUzsXMvLeW+B8EWAJUzt3noQPvglwa6P/sjLde8SsvlgK4RahVQ+mBDA3XUu7D2XVQHYq/fPXmhep4Xme/XxgHW1n7153oiu8vgCUzp3HvCbedEGIM8XFkUBAMFeyjJYZTGPcqx5U7j8GCz6kJDDjw1AYxu8dq/oV1+yWsj/HUvsl5sUzHtjmzC0s0oQqheSedcRr032ihf5ccGuX7tDHNsqiSz4RKf4213X+7u9+1YRQwrxzskCW7cNVM3pli2r4eqrGxkfz1az2ivL9u2DbN7cTWNjGNt2CQY1br+9l127jvHOOxs4eXKO2toQ09N5rr66kaamJ7nlluV8//ufIJsVBfBQSOPgwREWLgwyPZ1n2bIaLrvsW9xyy3Kef34dR4+O0dXVgmW5WJaNLySRLKUJ+0LkynkWhuLoioZpW4ymp/iLoz/m/utuI6D50VXtXwXagQv62/85wJ8rF/izl7/H3uOHWH1pB1+56fNV47uNv/UfmS2k+fMj/8Dn2j9FU7SBjGGQOc/DpykS4eKaGoqWJcxyYzFao1Hu2L37gvlftlwmqGl84aWXWJlI8AfLl1fnghHPuBfgxXfe4UZPZahIEudyOXRVJezzcXdfHysTCW5atozmSATTcbhnzx5WJhLcdfnlqJmMYNTjcQG8Ewkhgb/rLnj6afGdPXJEgO/GRgG2CwXBpj/5JExPzxvctbaK75CmCYM7n0+w7S+/LKLktmwRx496wVwVxr1SOLj00vn1uv6+cd3/pOX9Hvf/kxZZBznyXnD+z63/ZxcdFm6Z74WvOs9r563fAvICqH8OUIWsvm47ilSiOZHgtddeIxqN0traWpXEDw4OUiqVRJa5prF7927S6TT9/f0XSOYHBgYolUocO3aMXC5HOp1m9+7dzM3Noaoqa9asqTLylT7VfD7PunXrCHs9R6qqEolELsh0rxjilS2LHYODrEwkSJfLWI7Dg6+8UpXE64qCYVkMpVJs2LOHhrDoffzpxARnUyk29PUB0BAOs3P1am5bsYKHe3oAOJVM4lNVVFlGkSRUWSakaTyzZg1NkQhbXn2VjuZmmqNRGsJhfvT7v89mb9+438+OwUFePXGCpa7Ld12XVklCQTi//ycE4xVAAOgc8EVEL+qjCOBdDzyPYNKvBt5EXOjPIqT0bQjQXouIXSogQHtl4l3vnUNBTMqvQRjZWQgp7UWALMtVGVhLLIauKFVDlYjPh+04lCyLqM/HM2vWVFsPavz+ar/7o/39SIBPUbj/5Zf5wS9/ydaBASwPuB4dG+OKujoc1+XO3btpeOIJ7t27F01RqA2FuHvPHvKGwVAyycHhYWI+H35VZTybZevAAIZpkR5OMzIo8rPVgGDMujd3s+ADC1j4gYWsf349scUx9m3cx9yJOcyCycw7M/Rt6MOxHGqW1lS3OXvgLMlTSbSQxuD2QX75g1+yb+M+ZEVG0RXG3xQy3dxkjiNPHyG4KEh8aZw1z64hPZImM5KhbkUd2fEs12+9HtcnczadFn+HaWI7DkPJJHf09nJibo4VdXUENI28aQq/AMNgulDgxNwcp5JJbu/t5UwqxZHRUQqWhSbLTORyfGX/fhrC4eo2E7kcLvDI/v3VmDhZklhRV0fOMHh3dpY7d+8mZxgMjozw7uwsK+rqGE6nUSSQZZVgjZCjurbJ+K9exSzlPBf4JjR/BNd1mDj2GqovAJLM9NDRana75LqYpd/Mcn8Ns5QhPzeOWUj9f9l78zg7y/r++31vZz9ntsy+ZAWEEECUrDOiYogQtLZVWqs/X61LoIItO5JE0V/JBJMiqKCIVO2i9RdtayEkbFokk8kCIgoRsswkmX2fsy/3+vzxvc85idrn99jl9zztw/V6zeuccy/XfWbmnOu+Ptf3s2CX8hITZ4iObvL1PvCQqrpVAs/FCMaq9PpihvpFl+A5wuDp6elh+fLlrFu3jpAfVaPrOtdccw11dXWoqkpDQwMbN27EMAxUVa1Ev4Fo2zVNo7+/vzJOeZ5X6bc8dpy5f8mSJQQCgbOOOZOGf+TIEQ4ePIiq6kSjTb62PcTq1TeTzU7wxBPXk0qdrmSrp1LDZDLj6HoIXQ+j60Fsu4hpZlEUhWeeuR3TpwhPTPwM08zK0K4a6HqYzs51lEpp+vp6K/FzxWIS00xTLCax7QKWlffj5ApEIguIRBagBKL0+iaY2xF6+hiy+DfujwcR/65wUkZ6ViEynQUINX4AYf5cjCwiFhHa+y6E+ZP2xw4bqcgXkEXHmxGg/0Gkul5+XfbZ2An8IqDTcE49Xd1d1C+rxy7YFb15djzLkiuXcOUXryTeKiaTe27Yw+zxWdouayM/neeJ65+glC6hh3Sy41meuP4JkgNJismiUPAPj5IaShGIiTllIBagfmk9Cy9fiGu5xNviXPXgVQBC1f/UXrJjWcyMyfCBYbSghq7odHd1V7TmU7kpVravZDw7zlBqiBv23MBwepiwEWZH/w4eO/oY45lxdFVnYe1CLm6+mDueuYO8lcfQDAbmBuju7KYp2sRd3XfxoRUf4ksbvkTUiKKpGvc8fw8TmQne1vU2PnLxR0gEE3QmOvnKVV8hHohjORaNkUYW1S2iu6ubkgfeWx6UrPbMCXGQzwzCdL9EshVnhP5et0IAuFMSsL7oQ+ICrwUFrDeslMdQs2S4X7xNjO1evl008tF2oXQXp+QDs2CNZLpb6TNy3a+TWLhIp69Xr4PJnyBcMaUawZYdlb7KmnRVk9g0xxTQHojLsalT8n7L1XfVp887JYTepFRfl03pSmnpJzNczXevxMt5/gKC6Tu4q3I8LqSHBbS3rAQjLNr0/ITQ5OOdcu237YT2dUKHTw7As9dBdhxiLVLF/9ENskhSs1iuaZcE9GdGBKCDUOFb1wj7wcyKN0DbGtnn+4JgZiE3Ln1Nv0wgO8DSJTU8/PBGFi+u5dVXJ3nLW1qJRAwmJrI89thRduzoZ9Gi2kp2e29vn2+06aHrClu2dLN79wdpaYlx6aWtfPnLh+joSBCPB9iz54/40pc2ADA9nef225/BdT0uu6yN6ekcnZ0JmptjXHvtcu68cx2qqlBXF+ZjH3ucoaEU4bCO60DBMrn3R9+iYJnoqoah6UQCIRbXt7Nl/ceoCceJBn9d0/5/1wxNZ3F9G3dv2PSvVukNTefjq95XodInCxk6apq5e8MmwkawEiH36MEfAiJxLHv4XNjUxEg6XZkPNkajDKdSeMBdfnzc5u5u+oaGmC0UCGoaO9ev5/fPP7+ywH7P888zWygQDwRwPY/fv+ACcpbFpt27OTE/T30kws8nJ1EVhS+8612s6+zk7ueeYzCZRFdVdqxfLxI605Q89ksvhZdegre8RVzkLUv07SMj8MILUkVfskQ+v01NsGyZUN9jsWom+7Zt4hR//fVibhcMCsgvFoVef8stUpXXzmCsBALwpjdJpb0M2t+gzv8fbW8A9zfab25qAAJvqmrh1ajPoR4Ug7qWr4OxDLyCmOFZJ4QWp0bRZz6Nputs2LCh4r68YcMGVqxYUZlYO47D0NAQ3d3d5HI5uru7z5r89vT0EIvFuOGGG+jq6qK/v5+jR4+STqcJhUIUi0Xm5+fZvXt3xUCqr68P13XRdR3TNMlkMpimydjYGDU1NcRiMVzXlWinYrEyEN793HPMFgrsXL8ezY+EypZKFB2nop++d/9+grrOhU1NFS31eCZD39AQhqbx8MaNLPIXEjoSCU6nUhweHSVnWdy4dy8n5ufpHx4WQ7e3v52hdJpP7d1L1jRZ3dFBRNdxPI+QrvPQ1Vfz4Te/GUdRxF0eqXRtQozmIv7rKWSC+xVkslxL1VBOQybYEUQXn0K+7F9FKK2XI5WzdcjkuAkB8+Uc5f1IJd9DKvu1CLj3Pb5xXZeoYfDwxo20RKOk/VXmiWyWl8bHGUql+PnEBCAVZEOTiJVkscita9ZUtF5J33W+nJ26tacHy3EoOQ5rOjvFzNi2K/s3d3cT0nXqQiEevOqqyjWbolEOjY7iuC6xQIA71q7FUFQyoxmaL26mMFfwGZQKNV01xNvjPP6Jx0meTpKbynHFvVew4kMrUA2Vg/cfpGNNB57rkRnNYBUthvcPE2mIYIQMrJzF2jvWsvza5azfuZ75wXmeveNZEu0JiZYby9CxpoPUcArHdNh7417+/pq/p29bH8FokHhbnGfveBbXcc/S8zueV1nU2NHfT8Y0aYxGK9tSpRLb+/p+zQdgQSRC7759mI5T2V4+tuzdkCoWK/0GfDZJ1rIquroz+ypfe1V7Ox4KrmuTnx8Dz0VRNcJ1rUyfOESkvo1Eyzni+K7qNCx+C3Onfo6qarRd+E7e9M5PEKlrITc3ihGOcU7PR4jWt2EVsmSmT1Wq56pq4LoWubkxPMdG1XTqF12CVcqRnx/DdS3y8+OgKGh6iPTkANMnDkvlHpXZ2dkKSK+vr2dycrKSSjE3N8fjjz/O/Pw8Q0NDAFiWxZ49e5ibm2N0dLQSSamq6lkgvJxusXHjRmpra9E07axxKpFIEAwGqa2trSwQ1NXVkUqlWLt2rV+lfyfJ5CC7d29ifn6AubkT1NR0VfTsqdQwtp3nwIH7SCQ6iMVaCARi2HaRubkTPPXUTeRyUwQCMVavvplMRgB/LNaKYUR8YJ/m+ef/gs7ObuLxNq666iE++MHdrFt3F7FYC4YRIRisIZMZZ3z8JVKp0zz33GdJpU4xMfEyYTXAA55HJ/CAP3ZMALciRnUngev87/3FVNMnHkRMMNf541Cv/ziNLPx9BTgOPIJU3G1kAfBi/xojSEXdRUA/CMgPIUB/ALgduMi0mT8+x+5NuysMlqOPHSU3naNrXReJzgRaUCM3lUPVVVbfvJqD9x8EF/q2i/eEoikS6RbU6XpbF+lR0cAbEYNIY4T9O/YDEG+VBAmrYGFmTHGZD+l4tsdQ3xCZ8QztK9vp294HQNOKJmzPJm2mOTZ7jOufuJ7WeCutsVY+cvFHWNe1juHUMI8dfYxt+7ZhuzZberbwgw/8gEtaLuH47HEOjhwkpIe45533MJ4Z5/onrqcx2sh4dpyiXaQ52szXNn6Nyfwkn9j9CcYyY6xsX0ksGOPE/Amu230dJ+dPEjbCTOYmSZfShI0wHh7pUpob9txA3swLwDbn/Az3sJirlbXoTg4KI7IwH2qsZrm/9aEqjb3uUgGMjWshcR40rBJjOj0Cl34RUGDmsFDsMydkDrHQB/5GnRynheXYSLuA3MJkVe9eBu1qAMJNULNEKOyhBsiMViPVtKCAdjMj4DsQq8a9uZY8VzRfI+67xTuWHwunVRcGVAMSC6v6+NSAD/b991EG0SB9ed7ZWnU7LzT5F3ZU89TL7yfeCe3doltvfxu8uFPex6Fe0bRnhmVRwi4I9T3cKLR7RRV5wOVfhAs+LKDLc+HgXwjbYKxfFhFUFYI14i7vubBgBWZ6koGTKa6//gmGhlLs2HGlsPnzFj09Xbz66vV86Usb0HWVBx7YwIc+tIItW7pxXY9oNIDrQixmcOmlrYyPZ3FdjzVrOujt7WNkRNzmp6byZDIm27btY+XKdk6fTnHDDXtpbIwyPCxj7uc+dzltbTFc1+O++w6wa9cRtm3bh217TE1nz9K42+X/Kb9uNvfbtv/d+UE9QFddC59Z/3GCeoCSZVXOCeoBPr76dyug3uVsDx9dVVnV0VGZD9534AAr29s5ODJCczTKo+95D01+JPBYJsNgMklY15nIZvnzp55iLJNhTUcHw6lUJWHI0DRG0mluXbOG0XQa2/O4rL2dki8lvP/gQd7W1UVjRJZNg5rG/QcPMpzP4z38MExMQEcHfOpT8hgKCTU+HJYq+/XXw8CAVN81DZ5/XuLiPE8i3sqZ7K4Lb3ubGNI5jlTwX3wRvvpVcauP+p/9MwF5ICD0+EBAtm/bVl0IKJV+49//jfYf196gyv+G9l+aKv8f0f61PHg3C7mfiHP93H1SaZ+8oUqbb3lEjlEilJxIBTyX6allujtQyUn+wAc+QFdXF47jVGKVynFLZWrr+vXr0XWdfD6PZVn09fXR09NzVsTb5Zdfjm3bFYOqUqmEaZqVjHjbtgmFQoyNjdHS0oJnGLiex0Qux9MDAxweHeWhq68mb1mkSiUSwSCJQKCi1d7c08NIKsUlLS3MFgoENI2BuTkao1HuO3CALT09tESjhP1+N+3eza1r1vDlQ4cqlKeoYXDXj37Eg1dfzXW7d/+aPv5MPfdf/f7vc0JRKlFKS4BvIeB5K6ILLSG09gICui+laiiXoFolKxMJy3FNlyBUVkf+wxWtu0dVz55EIud6gFMIJXat39d+YLVtozkOmVKJjGkSDwRIBIN8/PHHuXXNGqZzOd7c0sJUPl+hxS+qrcX1I/gUqHgGLK6rw3FdHF+LfcqPMNu5fj2xQADLcTA0DcfzODA8TE9X11k6+KV1dewbGmJFUxO6qkpkGqA5oLngWi6qruLaLiMHR4i3x0kPp/n++7/PB37wARa+bSHJwST7evfRvbmbyIIIqqHiWq5ku8flMzT580mJgZvOoYd0VE3FiBjs3lTVsW98eCOqLuuhdsHGddxK/nTPlh7qltaRHk4z8PQAb/rIhZwuZc/yAjidSrHdj4dpi8VIBIOc8D8TD2zYwHQ+z3AqdVZE4UgqRWs8zuKaGobSaXr7+nhgw4ZKBN/Wnh4WnBFF05VIoKsqGdOU78AZebHDfl9tsRixQICgCgU/Dq6sWUdRsEt5ApEaHKuEXcozM/gCjctWYYTiWMUMViFb0aqrmkExPUOkroWxV39E47KVFbAu+fCrMMIJFDzsUgHXtTAitdjFbOVcPRhiZvCnNC5bhV3MEEo0oWoGluORy+Uqi3JAxZyus7OToaEhvv/973Peeedx1VVX4bou4+PjRKNRcrlcpeJeLBYJBAKVBAtFUXjqqad461vfSk1NDWNjYzQ3NxMMBitUbNM0mZiYoK2tjWKxiGEY5PP5yphlGAauW2RkZD/RaBOhUC2hUK1f/S6yb989XH31Q+zZcwNHjuxi+fJrueaaR1AUFccxGRk5yD/904f53d/9Ozo6VuM4JqaZo1icIxSqw7IKHDx4Pxs2fJFytFs2O00qdYqOjlVoWoj5+QH6+3eyfv1OGcJ9bX0k0kAuN01z88WokXpO6WGGFIVVCPg+Mz7yZYTGPoFUxQ8h1fLF/phh+eNLWfNu+OOQRTUs9GWq8pyV/tg0gAD3O8649eyASpb8OBJF955siZ9+7HGO7DrCB3d/kJrOmoqvRHokTaIjQf/OftbvWI8e0avyZQXSQ2n2bdvHex59D2bGpJSWuMfUSIr0UJqOVR2ohirO8mXTcttl9PAoiY4EdUvqKr4YRsQgN50TGU3JoXZxLXbRxgpaTFqT3P3c3RVK++cu/xymY1Yi2cqPUSNKY1TkIOPZcQbmBmiMNnLfgfvY3LOZkdQI1/z9NVy7/FoevOpBQnoIVVGxXZtNuzed1X9rvLUSL7f7g7vpqOmgd18vd3XfRXO0mZueuok71t7B/uH9fHTFHxLDEgCuGWKq5uSrevNFH4K3flX+AE4Jhr8vWe5v3ingOrrIB/cTopNfvlkq73Vvlur6638pEXN6WKr3VlJo9Mu3CHXedcWUrjAqlfb8sAB/XPjnhbDxlxBo8h3efXp7IIGf6+fPSZQqhd4pye+haNXourI+3fMEAIump1qJPytKLiiLApV9npjGBWurCwCq+HKQOiXVcVuMTcmNwamnpfJ+xUMCqA9tg7feJueX3d9f2CGxceHG6mJBckD2NV4s78OIw4kfwujzsP4RkQWUo98K01Wt/Oh+caW//C+hMAuHt0vf2VGh4ycWkS2qfOy6pysa90ceuYaTJ5Ns397HHXesZenSOgoFm1SqRE1NkFgsgOt6KArkciITiccDFAoS6dbaGqO9PcHERJaf/OQ0V165lLvvfq4SHRcM6tx993OV6z300FUkk0Vqa0PEYgFfWj3Htm372Lq1h3POqSeZLjBrzfLXLz32W2nY/yPbr8bI/abtngevz86ybd8+tvo56qqicHxu7iw/HTwPj6ovzx1r17Ksvp5Nu3ez413vYsuPf1yZ/7XEYgwlk2zzPX0W1tRUPH42d3ezpK6OiWyWaCBAPBAga5qVe/ida9dyTkMDum0TSqdRUinRn19/fVVrXs5i37pV9pXd4ZculRz2XA4/t69qWmeacPvtcNttcs5NNwk1fuFC+aOUtfOxmCwWNTScbVJnmrIocOIE3HNPlTr/Bl3+393eoMq/0f6ft7Oi416vOsoCv+ZcXzh0Nm3e80CtAXsY3BylUqlCLS1Xw5944glKpRJr167lvPPOI5FIVKLedu/eTTKZRFXVCkBvb28nk8nwxBNPYNs26XSaI0eOsG/fvrMi3spu8T/+8Y8BKm722WyWUCiEbduMjY3R1dVFPp+nmMsxlEoxMDfHBy+8kAevugrdp7Wf9ldLHc9jaW0tj1xzDYtqahhOpfjl9DRdiQRt8TirOjoq7unb9u1DU1WJfAMeuvpqFtXW8pWrruJ/XHQRCqD5UWaGovDQVVfxh8uX8+Dhw7ytq4vWWAzbdRlNp3ns6FEsz2M7Vcf4EaSy9QWEIn8SobnnkMlwEzIZDiAT4gmkqlWOeTuJTLhXIpPxIeAgAuZn/P02AtYXIAsFF/v9lKv2eWRRYAVg6ToKMJvPoykK0UAAFdja3c10LscqP9qtXPUdSqU4mUyyafduJnzX/oH5eR46fBgNqYQnCwWypsmCaJSbV6/G9Y/50z17ODY7S8GyxOnc836tUr2uq4vZQoGfjo9TtG0Kti3yRNvFc73KZDzWGsMIG3St6+Km0zfRvqodM2uyr3efOMr39mFEDIywQXYyy9zAHFpAI1QbovXSVqy8VYmUA4mW6r7rbNd6uyi8BNVQMfMmiqqw8eGN1C6ppZQu8fw9z9PZ3Yka1llSW8tDV11FRNfRFIWldXU8cs01nFNfT87PUu9MJPjq1VcTCwRYUltLd1cXy+rq+Po117C0tlYi4TyPW55+miV1dTy8cSOJYLDSV0ciQVjX+dzll/PcqVMcGBnhZDLJyxMTxAMBzm1o4GtXX82yujqJP6ytJaTrWD47JVLfhl3KM3WsH6uYQ9UMApEa8DxcxzrLcV5RFKZPHCKUWIBVzDF1rF9o8PVt5OfH/eMOowcjTJ84TGr8KKqqYxVSjL7yrID2YAwrn2LqWD+OWSBS38bM4E8r14jUtWGXcoy+8oy8v0ikEs+WSqVoaGggHo9Xkig+8IEP0NPTUwHnv5pKsXfv3kocXC6XQ/FZNxs2bKCmpobR0VGampoqYN2yLLLZLIZh0NXVxfj4OJZloWkadXV1XH311QQCAbLZLIqikUh0kMtNYVl59u69EcsqUlu7hGuueQRNC9LTs5UVKz7Ehg0P4LoOruuQz8/Q2nopN954lPb2VYyMHPQr71EOHLgP2y5gGGHWr9+BbRfYu/fPfBO6DtrbVzIycohk8iTp9AgdHWvwPJdSKYWqanR1dVNXt5TOznVS3VcNhnyq/A0IaJ+kSpXvRmQ3eaQy3ohU4gsIJb68+Fdm+1j+mDKKVM+j/lgy6p97o99fGKnqTyCmmDv88W4Y0bzf7V+7OaDRs6WH5dcuJ9GVoHZpLV3dXaRH0kSbo6RH0ryz950E4gFcy2W4f5j0SBrN0DBiBtd8/RpQIDed47m7nyM1lMIIGUQbo4y+IE71ualc5S5XTBZpX9lOvDUugN5DpDQn5ghEAwLol9ah6qpo4+csaoI13LH2Dq5dfi13rruTZwafobevlwWRBfT29dLd1c3CmoWE9JBUwK08NcEaVrav5L4D97HryC569/Wyqn0V1y6/li09WwjqQWzXJllMUrJLbOnZwrXLr2Vz92ba4m1oilaJl1vVsYrefb3sOrKL7X3bSRaT7Dqyix39O1i/ZD0RPSy/XH5YnOGdnA+eV4qG/ZKdEuN2eJNs73ifbNMiArYVT+j1r+2AoV1iWhdcIBT4X26Xfsqu805ewPzQLjiyTUztFFeOCzVK/+WqfmECun8g5nfZUalsa4EqaC9HsWlhqWaXKe+aIVV0RavOUcpV+LITfrmaWzbSTA2KSZwRrYJyuyj9urZU+ctmcBXneqRqXjaKS5+SOLb2dUKJ91xxp7/iIchPQahOctbLVfjD2wWg6yH48afEeK6tWyju/XcLzf7c94vZHAhoP7pL+ji0reogv3A9rNosrMbD26t9hxfIIx4BA7Zs6eHaa5ezdWsPngfbt4uj+44d/aiqythYhrvvfo6xMfnd8nmL48fnuOmmp/A8GBxMcuONUkEfH88SCuk0NUU5fHiUmpogW7b0UCrZLFlSR3t7vHK9LVt60HWVp54a4IYb9mJZLuGwwZve1MCjj76H885bQChkUF8bYXF9G5+98l+ntP9nt/8n8XIBXedNDQ08+p73cN6CBcSCQWzPYyyT4cGrrqKrpobnT59mcH4eDwjqeiUtyHQc7li7ll9OT7PzDFbnUCrFqB+dG/Cp52fOY1zPozkWI6hpTGazZ82fxrNZBufncUwTZWxMouDyeTGSK1fOAwFxmw+HpRr/pS8Jnb7sCj81BX/+53DsGGQyArpfegm+8x2hzieTsggwOip9j4/L4+Cg9Keq1Wr6mc7yx48LDb9MnX8DtP+ntzeA+xtNmmuCkwavJE7x2cd+JVKu3HRo2Cxg3egEYwk0PyjneHnAgdn7UVSDeDx+lvbUsiw6Ojoqjs9nxrOVNaH79u2rVN+7u7tZunRpBfyfCda7u7sBuOaaa4hEIjzxxBMAXHHFFXie92taVV3X6ejowHVd9u3bR65YZDSToS0e58a9exlKp0mbJjfu3ctlbW0UbZuJbBbLdxbNmibvOe88Vnd0MDA/z5/v3UtQ03jo6qvZ80d/xAMbNqCrKvFAgKFUipuefBLHdXF9F/W/8HO444FARSc1kctx/4YNvO9Nb2I4nWbT7t20x+P84vrrMTyPzZ7HtcCnkUlzFKmku0ilaheiM+1G3Jo15AvdjUTAucikuBmZJJcN6E5SdXy+HQHqnVTjm8rVecW/ZhRZAHgZmbDHETDveh4t8Th1oRD7h4Y4OT/PEh/8hXQdQ9MqFPczaWbb9u1jrljk988/n51XXil/9z17iAYCTOXz3PTUU+iqiqGqZ1HHw4aB7XlM5XKVfrf09KD75oQLa2q4uLmZF8bGcFwX1QU7b5OfzmMXbNouayMzmsEu2Oy+bjeZ8Qyjh0ZxHfcs8K0FNDzXIxgPEm2OMnp4FNdywYPJX0xi522/ECST+sx4ho0PbySxMIEe1nnq5qeYPzlPfiZPuCZM/Tn1uLZLdjyLagiVNzcpQGFwfp5Do6M0RCLkLIs/8+UTAAuiUSKGwan5eQ6OjGC7LhnT5KYnnyRZKuH5q/03P/UUUcOg1//s66rKibk5Pv7445xOpZjJ58maJiXHYf/wMJe1tXHPvn1c/d3v8ondu3F9KUPJcegfHmbI1+59au9eQMwAy+B8ZvAFP5LN9qnrARYsuYya1vNoXLYKz/NoXLoSRVHOOkcB9GC0cpxdytO4bCU1reehB8MVED994jCKqjF94pC8HjiMAjQuW1U5FxSmB6Rvz3XxPO+sWMlffd3V1VWJenMch/7+fjo7OysRbgMDAxWwHgqFSCaTlWz2vXv3Eo1GCYVCqKrK+Pg4IHT74eFhXNels7Ozklaxd+9e+b94HvF4HEXxSKdHaG9fSTo9wtGjj2EYUgkfGurDtkvU1HSxcePXyOWm2LPnT0mlTqMoGoYRRdfDuK5Nc/PFZLMTKIrKmjW3EYu1Eou1oGkGgUCcd77zXuLxFp+xJMeXr3vRRR9G0wLMzQ2g6yHm508yMnIQ17VRVYOgqrPK87jPH1PKee07kAW8rD9OjCMa9ASyeDiO5L6fBm7zjzOoVt7bkQXH/QiA70Hc5B/zX9ch1PlL5a7C/cAeZIFyFHgbQrFPBXSK59RzzTeuobazFjNt8uRNT9J6aSsNyxpovbSV6SPTzA/Os/dG0b6nR9J4rkcoEWJo/xDzJ+cxIgZrbl0jgL8xyoH7DtC0ognP9Yg2ixQsP5vHKojuHRVyUzkyE0KPP3j/QRRVqUTIuZaLoirUNNQQ02Kc23Auj1zzCK2xVg6PHmZz92Zm8jNs7dmK53lM5CZQFIVb19wKQDwQJ6yHK4B8a89WwkaYR655hKV1S8mZOXRVJ6gF+dnEz+hMdPLINY/QkehgJjeD67ksrVvK16/5OhE9clY/taHayvPORCcKvwF4N6wUDfVlD0kU3JFtsu+1HQLIdZ+z1XS5AEajRlzhu66VintpRrZdcBe0XPnrfXddCxduBSMhlf7lW0RH37AKXruvCuwb1wkATiwUAJ06iVT+TdF949+MAvEqBV7RBNy7VlWnjuI70iPvV/F1uanT8pjokj5R5PjUoF+193XtqQHZbkRkWyDhFyPKxzhng2k95L8xV67XtlYWGAI1UiU/71pYuRmCdTB+EI58W9zhcavAvtxPzRK5867aIucFaqrPV22BaCskFgkNv7J9s7AEVm2VSLjCHF1dCb761avp6JCFjzKwvvOq5czvAAEAAElEQVTOdXieV9G233//QUDy3Mv693S6xLZt+9i16whf/vIhenq68DwxrXvggQ3U1YU455x6mppiDA4m+dM/fYLGxggPPLCB+vowBw6M8M53Lmbr1h6CQd3vXyceDxIIaJXXkXCQ2G+pYf9/owV0nXgwWAHZGnBRczNjmQybdu+mIRIhZBgMJpPc/dxzEge3fj0vjo2xpK6Oy9raKlK+W9esYTiVqrAs737uOXKWxebubj60YgUPbNhQMfb98yefJGtZWK5biZ5b2d5Ob18fpmUJiL71Vnj1VammP/KIGNOdPCnbamsFvK9ZI9XyG24QCnwwKPnv998vxnahkFDk9+yRKnttrSwCrFsn+fD33COf/9Wr5ZqBQDXL/Vfp8bZdpc6/0f7T2xtU+d/Q/n9Hlf/V6DetDYovnWFI538Z3SxYE6A3iBGd54IagXw/hN8qx9nTWDQzOy/uy1dffTWZTIbBwUFGR0d597vfjed5FIvFioa0tbW1QqkvU+BjsRgNDQ14nleJZOrp6SEej+M4DoFAANM0KxWzM13jyzT7/fv3VyirZcf5d73rXeRyOVKZDM2dnVx/hiPoV6++mo7772fyttsqFPBEMEjeNKkJhQjpOq4/KXc9j+F0mp39/Tx41VXYnsehkREW1dTQGIuhq2qFDn5paytDqRT3HzzIQ1dfTd/QEI3RKNO5XCU3e75YJGuatPmxGnf/y79w38aNuKqKqigUEdDdgdBIhxDw/gCiKd0G3IVMeNsRsP6S/7wNmWT3IhWuaWRyfB1CUy27x69C9O/Hkcr+XcjEfQwB7hcjlbgynXWJ/zcCKvFuQ8kkI/6qsgeoioLjO5uP+9F3W3t66KqpIWeavDI1xeqOKhto0+7dZzm0nkomK87/EcOgZNuYjkPQr/j73r8cGh2lLRZjUTl9QFUJmjB7fFbcoVe2o4d1nKLDnhv2VCPeHryKwnyBeGucwlwBx3Swizb77pFYOD2qY2ZM9t+7n+67ukl0JUieTNK/o5+1d6yl4dwGcatWFErpEoF4gNd/+Dp1S+poubilQt3Nz+YJ1YYozhexCha1C2vJOTaHZ8dZ0dRELBhkNp8nEQwS1vWz4vQW+xID23XRz2B1ZEyTGv9GGvOpdWGf6t03NMT7v/993nveeTxyzTXc9OST/MU73oGmqiQCAU741L4yDdDyzQQjhsFMLseCaJRUqUR7JITnOlilHNMnDtG4bBWBSALHMimm54g0tAoB1b+P5OfHCde1oihg5tNnnFMj/yv/uFJuDk0PoQcjQrcupCq0+UCkBjOfqpxrF3OEa5tRFFln9jwPq5hh+sQhmpevx3VdUqlUZYyIxWKV8aT8/S/HSgIVRs+zzz7L2rVrMQyDWCxGqVSqGGauWbOGAwcOVMaVq666itHRUdrb29F1vULLHxkZIRqNEo/HmZiYoLm5GcMwcBwHz/MIBFRMM02plCIYrGFi4mU6O9cwNLS/EssmbvKLGB7eT1PTCkKhsjO6SqmU5tln72Tt2tuoq1vG/Pygn88u4W253BTRaLNP71dxXRvbLlUc6207TzY76VfeV6OqOtnsFLoexLKyBIM1uLFmUFQsxJyym6qsptUfS/4BiWrr8MeRrVQX//L++IL/2A58CQHiZZmO6+9X/TEk749Z9/nb0shiQHlc24wsKL6MLDg6po33+iz7t+1j7RnO2OXvYbQ5yjO3PnNWVJzneeQmcxhRA7toY+dtUsMS86iHdcy0Kc7wrsf8yXn6v9BP9+ZujIhBcb7IgfsOVF6H68MoqkJqOEXftj667+omPZqu0OlTcykCTeIYrSoqrueiqzqWa8n3386jKzphI1yJfmuLt9EUbeKl8ZdY27mWol1k8482c/+G+7Fdm/niPHkrT29fL5u7N7OkbgkFq0BQD6KgsH94P23xNsYyY1zScglhXXTtuiqAyPVcsmaWzz/3eb5+1Rclx70wJgD7wq0QW+JnsasCTrODAqQvuBNCrUL5zo8KOJ//JTSulH+onZVKuRaBaIdPZXeq8XHLt0BsqTjNKxpYKZh/FeoukgWBSHv1Whduhehi0d8bdTIX8RxZUEgNChAPJHzteLzqAl+OdyulYe4ohOt9t/lyLcqjEiPnOWc71WtB/zquVPcV1T+8TLdPyHPPqWriHRPsnGSsH9omYDnaLL93OT7u0DYB1XpEKu+qBrb/+xhRobu3rRFde35SKuWrtgogt7Iw8wsxuyul5D0Ea+TYsoN9olP6mvgptK70tftFYR5M/4zcgrdzfCBViXBbtKgGTVMxTYdAQGN6OkcopJNOm7S0RCu0+UQiyM9/PsEll7QAkE6XaGuLUyo5HDo0QkdHgpGRNJdfvpBMxiQQ0Dh4cIT3v//7vPe953HLLav54hcP8tBDVxEOGxiGVgHq/52a6c89So5D0bbJ+fO10UyGp3y55VeuuqpyH+0bGmJtZ2dF/ra5u5vFdXV84vHH2XXkCB9asYKHrr4aVVE46d/v71i7lv3Dw+wfHubhjRvxfGlhUNMYTqdZoKq0jY+j9PZKtb2pSajuO3cKaC4U4MgRAe2eB/39UjHv7hZH+TvugJYWqZ6//DJcdJHo4gMB38MhK6B/0yYB8OvWSRV/82Y45xw5Fn6zs/wboP0/tL1BlX+j/W+aKaA9swtmd4CbhEj3b8h718DLwcSnwPMpbOhgtEPhRcAFvRnHM+jr6+O1114jl8vhui7Dw8OsW7cOx3EYHR0lFAphGAbRaJRnnnmG4eFhLr/8cqLRKN///vcrlfI9e/Zw+vRpLr/8cmpqanjyyScrjtCapjE6OsqaNWsqlHlN0wgEAtTW1nLllVeSzWYZGhpCVVVWr17Nj3/8Y+LxOJ3t7RiqepYjaFDXGbn55rISDhCQUHYwH5yfp29oiIH5eRRFobevjzUdHRRsm5l8noubm+moqUEFDgwPM5xKcVlbW2UF9msbNwLQmUhw34EDdPha4wmfBrWkro6wvzhwcUsLBdsmqygMIvTSRgRgK8gE+UGk8l2uvm9HJrvbEY16+XkQmWzvQibKq5DK2BaEojpC1WF+0O+73J+HUOtXIhW1Cp3VtvGAyVyO2595hqyvl26Ox1nR1ETGNClYlsSbuS6mbdMWj/Pwxo00hMMcHBkhFgiwuqMDzXc5VxWFrT097P7gB3no6qvRVZUldXU8dPXVTOZybNq9m7GsOGyHdJ1Do6OMZjIVl9d4MEjRtin5NPly1bx9ZTvFZBGn6KCFNHq2Cu22Z0sPru3y3GeeI3kyyfQvpwnVhUiPpHnXjncRbY0Sa45x6MuH6FzXiR7S0QyNg/cf5MiuI/Tv6Jdr1ARRDZW5gTmyU1ku+tBFdK7tJBAPYOUsnrrlKQLRAKquElkQwYgY4EHA0LikpYXJXI79Q0NkTZObn3oKy3XPYieUXWlfHBsja5rE/EiZe55/nrFMhph/w3Q9j7xtM57NcmlrK/947bVs7u4mb1n0XnEFBR+4Hp2dJWoYPPqe99CRSDCRzeL4rJKBuTkaIhFOJ5McmZrCUxSsUg6rkKFt+TsxQnFys2Ooqkakron87Cie6+ABdilHuLbFlyhY2EU5R1UNkR27NnYpD3gEY/Xooai/3SEQqaV9xXo/Ks7FCEZpX/EujGCUYKwe17HJz49WsuSNUIz2Fe+qAPKyQVxNTQ0PP/wwtbW1bNy4kVwuV5Hg6LpONpvliSeeIJvNVgwto34+bTabxXVdenp6fs0wU9d1otEoxWIR13WxLIuRkRHa2toIBoMoilKp7OfzeRRF8en3HpnMGM89dzeZzBhdXd0oik57+yoOHfoynZ3r0DT5f7a0XIyiKMzPi5nd7OxxDCPCO9+5jXR6FM9zMIwwoVAd+fwMqdSQbzJ3mqGhPkqlNOn0MM88c1vFfV7TQiQSnTQ3X8zIyEFsu0gs1kShMMvzz98DgIFC3vOYQfwvsgiAX4ss3BnAHyCLfSNIxXzEH19M//gupBJ/MbJQ+EWESn8TAspdZMEw7Y81i/3xq8YfY+5BKPbb/P7H/P66/f21RYf92/ZVvne1C2vp39HP0ceOkp3IEogG2PDABv7gh39A66WtZMez2AWbcH2YYCxIrDVGpClC88XNPHP7M5hpMZ3LTQvzpeGcBt61811kxjKVavzRx44KaK8LM3JwhPRImlhLjM51nRz80kGaL24m1hrDcz3CLWGG0kNs2r2JwflB+ob6OD53nGwpi6ZqRI0oESOC7docHj3Mxc0X0xRtQlVUPvxPH8ZyLFKlFDeuvFFc6PfeQG2olt4+ob/39vXieA6T2Un6hvooOSVWta9iLDPGiqYVuJ7LZG6yct8yHRNVUSlYBbZdsU3+iloYEudKdnp0sQC+0rxfNLaE+v6WBwR06xE/nkyXinDTSslqL04KDf6X94JbhKnnBYx7lpy38utyrpWC7Ek49DEB+XXL4RebBfS7Jf/YRyQ+7qefkjftlIS6roUERMTaILTAN6NLCHW9DNo9BLQbUWh5q9DVK5FwpgDt1El/YQLfbDcu1yhfRzWkwu95clxZI1/+e2SGZX9ZW69ooldf8zmhqJd8CvyZlfhD2wRwF6bhmevg4WYxn8uOiqO8okjVfeR5WPt5WWywsrKI0HyZ0OpPPwP77qy+h9ql8qOoEiO3YLnk0z/9UdHMT/0UQvU4bpUav317H4qi8Pzzp3Fdj0LBJhw2mJrKc/fdz1Eo2ExN5RgYmMMwVHp6uojFAhiGxokTc5w8Oc+hQyM0NkYZGUmzalU7igLhsCwKrV3byQ9/+Ads3tzDzEyerVt7iMWCRKOB/5agHcRkd8Bnv8346S4D8/N89oxq+0w+z2xevBB6Fi5EURQW19ayc/16xjIZkoUCd6xdy7XLl3PHunWVIlD5fr+jv5/1S5awpaeHom0zWygwnc/zZ08+SWMkQmsoJKB91y4B4skkrFwptPbDh8UBfvVqocLfdJPkuX/oQ3Lsrl0CwiMRAe5lCvz114tGPZMR8J3PSwX+D/9Q9PDr1snCgFM1Evw1Z/k3QPv/0fZGxf03tP8yFfd/zUTu39KPeUwy3vVGQAM1+OvRceVs9/A6iKwTkN/8kGjdjTaYvRca7sBSL6BYEpBQNnuCaqULYHR0lJqaGnRdr+jZu7u7iUajjI+P09HRUclsL1fSEn6OZLm/XC5X0Zt2dnZWTKOCwSC2beM4Dq5PpR0bG6O1tRVVVSs/nqJQdBwsf0XTo5rlfmx2lh39/dyxdi1L6+qo27GDa5cv59bVq5nO5+lZuJBTySQt0SjD6TQ7+vv54pVXMl8oENR1ydR2HEK6zsDcHPfu38+dfkZ5wbb5x9deY0ldHWs7O5nO5YgYBhnTpCkarYBY1zCYUFU+i4Dla5FIOA34LvA88FcI2C5XqUaQqlgTUnHvRCbfAwh4Lxs/mQhdVUF0qjeccY0HkYWCrcgk3CdHkUEm1DuAh0olVMfhz5588tey6btqanD9G5KqKLw4NsbypiaifsU8XSrREImQtywKllV5/urUFOs6O8n42u4a3yDQct2zslI///a30xKLYTkON+7dy2NHj/KDD3yAty1cyOAZpnVvitWRHPBN5/wKWU1nDbWLawE/j9l0ePiih3nPo++ha10XiqZgl2yK85LvrBpSjbHyFmbWrFJqZ/KE68JoYY3kySTp4TSdazuFQo9HbipHtDF61tfHyls8e+ezrLtjnejdNY+iI9+TsGHg+GwOTVEYTCYrxnJL6uroGxpiZXs7juvywtgYFzU3Y7sur/qMBVVRUBCTnPLn9tyGhgrjodxvyXE4ODLCxc3NzBYKlb/VwpoaVH9/SNcxfQPBhKGR983pVD0gCyKKIpUmRRyP8/MTGOEoqmqgBYLk5yfQg1HyyTGCkRoide2VlCUFj/z8OMH4gorRHXBWhd2I1KB4rvQv/yg8FKx8kumBsgleDFCwXdi9e/dZjJs9e/aw0a9WlPetWLGCjRs3kslkGBgYYHR0lJ6eHlzXpa6uDs/zcBwHVVXJ5/NEIpEKfb5sblnWt2cyGTo7OytjUDgcRtM0ZmdnyWazJBIJ0uk0iUSC2towu3dvqpjPbdz4MKqqSeKU5zI/f4pgMEY02oiiqFhWgaefvoVXXvkOf/RHe2hpuaRSrQ8E4phmxo+VM3Bdm2TyFPn8TKVS7zg2qqr9SvVd8t7ldywRCETJZqcYHHyW8857D0q8jbSiYPjf9XKFvB+ptrf6n9+XkEU/1z8u748525AFxHJ13UYq9hF/zAAB980I3rLPOD/kj2dlp3qXqrfcILIA8I2ChZ0sVk0et/ZQu7CW+cH5StW7r7ePni091C6pZfboLP07+tlw/wZy0zn6evvo3txdAd7llp3IVs49s4Jev6ye+YF5UsMpajpq2Ne7jzW3riE3naNuSR1W3qJuaR123iYzLu/pyr++kk/s/kTFPO6W1bfwxYNf5JFrHvEn5y4BLYDt2pWqfP9wPxc1X0Q0EMVxHQ6PHuai5otQUBjNjLK0bilD6SG27dvG1p6tLKlbguu5OJ6D4i8vq/53JF1KkzEzNEebGU5JTvwX3vUFYoEYnueR0DVUKyNAXA36X0ZNQPTsId8wbhTyQ7DwD/x9rujV51+W+Lf4OXI8ng+uXalCF2fgl9uEPq9FIFArc4eZfnGEL05D/aWgxeRcJw9qiEr8m50Vd3szJ9T17Jif2+6bxGVHxIBNCwog/02vE4sEZJ+Z1z73mgDsmsU+QHf9Sv6Af/wZVfgyFb587bPOX+LnrBcl9m3gMfjIL4QCP3EImi4VffuLO0X3bkT9mLqTcOgeqcLHOnwmQVC2H/YN6MqV95V3QaQZpl6SqDktJH9bLeRT/t0zTPdUed+nnpJq/Dvuh2KSjN7F8eOzjI9nWbmynVBI5/XXZ/jSlw6xc+d6YrEAjuOSzZrU1ISwbRkTbr31aW65ZQ2LFtVimg6KAi+8MEZtbahSSQ+FDBRFFgAOHRqloyPB0qV16LqKZbkEg/p/W8BebqlikU27d3PbmjVM5XKsbG8nWSySLBaZyuUqRQhFUdDK912k+DOVy1XYm5FAgJCuMzg/z1QuxyUtLYxlMuzo76+Y+CrAVDZLOCD33FgggON5JBwH5fhx0aRv3QoLFog5XJkKXyzKZzkeF/M5kMfxcQHvW7bA4sVCbbcsiXv7zncE3N93n4D6XE76m52Vivodd4i53ZnGdG+0//T2f1dxfwO4/4b2XwK4n0Vv3yLRbf9e8O5ZUOgDvRUC54Aa/g3XPAp6O6CJbg1VfrwCYIFbwNNa8FAoFGws20VVbcbGZmhtXYSqQqGQIRyO4TgQCHioqo3r6ti2hqbJmKKqDiAT3PI2XT97n6RcOBiGw/z8PMlkjpaWhYRCCprmkstZ5PM2kYhOIGCQTBaIRHSiUQPDp3bn/RzwmWyOy7u6yjiCvGXx3SNH+MnQEF+56io+tXcvD1y5gYRh4OAxly+wIBpBU9UKbcV0XdGJKyq252Go0pkL4Hqo/uucZaOrCpqqUrJtooZUJPOWjaYq2I6LpqkEANeyQFWxXRdNVXE0Dce2Ceg6nm1LfB2I7tjfpug6ii0TRBeY1jQa/dcAnuviqioa4vqs+Zn1+wMB2g2DcywL1zRR/D94KhDgM4bBfZZF0LJkQqeqoCionge4TBSKNAQDTBdNWuIxVMfGRUXFBU0H18VzHTTdAM+jYJqouk5IVfFcF0XT/GqqR9GDuWyWQDBIKBhCsS1iuo7nupRQZOHFdci5LsO5PAlNozkUpAhENA2j/KFxHE7tH2P+dIoLPvAm9LCBXbDQQwaO5VCYLRJuCKEoKmbews6XCC+I4loOjulh5U0iC8Johk4xWcQumoQXRNF0BVAY6huh6aImAlEdRVURPOti5mzGX5wg3hYnWGMQb41hFSxUXcMumFh5h1hzBNcDVVNQXJc5UxYxmkIh9o+N8eb2dhzP48WxMd7a3EytoYOqUTJNwgED0/XQPQ/N199Zvi+E67poqoLiU609z6PoubiOQ9iQCrDneliqwoHhES5ubCSoKuiGgeZ5mCjkLYuwolQmDQ4OjmdJf66DolYnaJ7noSryP/QUD8VDPhv+PjnHQlF1FFSsYhojFMcp5Snl04TrmuW4M8cZRcV1TDQtiOvZ/u/hoqCSnjhOrHERqh7E8/eZpsOPfvQcb7/yStRQCF1GIhTXlc+xpkEggO55pLJZ4uEwrqbJ5Mo0UQ0DT1FQHAc0DRfQ/YUn03HQbBtD1/EMQ0CYoqA6Dq6qonseRdsmoKo4/ndq7PRpYsEgRjRKOJHAxWXi9D7a6i7AUOLyfvCEiat7mFYaxQugqQFUXaLHUF0UDUqlNCpBDD1SWZh0McFTwVMYneinuXkFAb0W17EZGd9PvLaFusQyHNOmYM4SMurRgwammaWUzxGNL0BxdRRNxbST6OF6XM/GxqKkaBiqCq6DpwV4QQ9wiW0SdExcVWPGdWj1FwVURcVWNT/rWmPKdWjSAozqAU7bJisdk7CqYbkWChqeqmK5LmEEyE5rBlEjzBSy4NgOlRSNhbYJjoWChwZojovuOtglFSMaQMWUGEJFw/NMXEslP1ck1hQiM1nETOeItTdg5orEm0L+2OeSmSgRbohRmE6iBsM4pkW0QcexNVTVJT9vEWsKomg6Cjbp8RKnfnKaCz9wHqrm4aHh2bZ8ZhybzGQJM52j5rwmXps7IbT2ns2Mpcd4a+tbqA/XYjo2jucQ9Q3iRjPjhIwQdaEaXwJjMZOfpSXWjO06zBVmCephdFUnHohiOja2axE1Ij75W/EXwjwB8L5myENey4yuLCKS7w2A4poCVl1TwDs+eC87tyuqnOOaAprL26wUJF+Bukvkvq+HZV9pRqrragBOfw9a3w3BRgGceliOtbO+eYqvR3ct6S/Q4C/a+dVuowZUAzOXxnQ0ApoDwQTFooWqavK2XA9NU7BtD11TMAwFx7IwHQ1dV6Qrx8bQwPF0NMXGcTU0Q8UxLbkleLp/a/AIeDlwClhGI7bjEdAcNCuFqcYJhIIEcqcxwx1Yjorjehi6gqe5uLjoKLi5CbRwA45roRkxbM8VOY/n4eJiKAq25xcaPEf+E/5YpnsujqrjWTn03Bh2pA3FiKK5JjYKimqAZ6OqOra/AC7/YxdNUbEdC13VcT0XQ9XATFPS46iKgqG4qIrlJ3fYeJ6Kqnr+uOowPmGyYEGIQABUxcXzVGzbw3EVHNskFAqgqBqFfIGSpRGLBpiZSVJfH8e2TPIFlZd+NsOaNZ3+3Or/21r1/6iWN01SeZsgAVTNw3FUgrqKabvomoKmgesoOK4HqsNsIUfCiKIbHnOFPPWBBLomK9hF18IggGFAseQSMMB1VDQdDo0NcUFjIzE97A+tHrYDc2aa9lAYVZG5sDo1KU7wtg0zM9Dc4kchIos809NQVy/7I2FkkcwSYJ7LCUgvA/i2Nhky5ufg5z+XDPjpGXjqSXj3u+U6qvoGcP8/2N6gyv+3bCbYk1Lx1hdSrVP8G5rnihYrNQLGW8EeFw37r7ZytrsbBMsBxxPjF8eS18SBehQzgwpEIjrBQBBNi2Oai7nhBpVsViUYTJBOa9x4o8aJExqOE+TECY19+xROnFDYtEkhm9U5eVI5a9uJEwpTU7Ivm1UYH1fIZDQcJ0AwWEexuJjrrtM5dkzFsjROngxy880J8vkQJ07o3HxzgpMng9h2FSboisJ5dXW8vasLNZ1FKZoojkv05BgfPe98vrFxIzWGwbff+14aUAgMDBOyHNqDIQKqiuZVli4IqioBRUVVwPA8lEIJJZVFK5poJ4b8vh2iuk5I1dBRiDkeyolhVM8jZuiENI24YRB0HDKnTnH47rvJDQ0x/9OfkhsaglQKb2YGL59n9sUXyQwPY2ezHP7sZ8mfOgWlEl4+T2l2ViaYQPTUKV747GexMxlyw8O8cPfd5E+exM5k8HI5sG20QoG3Fwqcl8+THRzkp5/9LIVTp1CBOtPkwXyeYLGInc0y87Of4ZZKqJ6HMjWKnknRHjAID75Gp65iTI+h/+2XCcxOoDs2muehz0xgDPwStZBDnRgh+vcPETKLKFNjqCdeRSnkUCdGUf/mS4RnJ+mYOEVjZo64AjHbRJkcRT3xKiHHIuBYGN99iJr5aS6sraGrmCE0+EtqdB1jZgLlxKsoU2Mo332Irp52zr92IVMDz2EVU5jFKaxSilJukmhTAC2goAZVgnGFaEsE18kyPfgcWqhIvCMOlECDUK1OuEHHdbKMHXkWq5Siq6cdLVikmBkHLMxCkonXf4QWLLL4ioXULkoQawliFpIYYRXXzTI7vI9gnY1jF1CxUGenYegkCzSNjkgYY3yEd3S0U6tphF2HVc3NNBg6mqqhuw4RRQBpMD2PsucfYHZKqOYKqGYJ3SqhzE7j7v4B3vws3tAgIdsiomkopuzjiR8QTM7x9s5O6gMG0UCAoKKi2zZhPBoKWUJP/RBldhoHBxe7Mr54eJRKaVzXxjSzZLNjlMwMLi7Z7DguHqaZYXb2GEND+5ifH2D3E9eTTA7i4fLUj25nfn4A1QiiRaPMzh5j9+5PkEydAkWhZGaYnT3K3if/jJKZrrisZ7MTuJ6DGw4wPHoA2y6Qy00xO3sCJWjwzt/5HQiHyasqKUXhBlXluK6jhcPkAwHGFYW0oqAnEmR1nXFVxVIU8oEAx1SVfYpCVtc5pihsUhQGFAVH05gOBCiEw3iGgaUoFFWVPkXhpK5T8sE6wSCOrlPUNFxNo3nxYhLNzRg1NaRVlRtUnbq2HnJDHkN9I7iWy/yJJLs37WZ+IEXAqEUjhKrqJAdke/JkGlwNgxo0JcT8yXn2fHIPpXQJlQDpU1me2LSHeOlCAkYtnuPhmtBcs4q62Lk4eSjMWAScBbhFFTwNQ0kQNppIncqxe9MTzB6dRSdBKZUjbSaZyI5juCaqY2JZeUqFWdaWsriFWQ4N72d49hifefxjDM4dp29oH+lSiqHZY1z/+Mc4PXuME6d/wvDsURaVcnTbBYK42HaJ6cwEGi7FYhKrlOTY7FE27f4E+bnjxEpZYlaB7lKORaUs3yjlWFRMoTklcqUk2VIKPItg6RRGqp9Q1EJTbVRKqIoLdgr1pzeiq1ni8QnU2X0kEuM0pj5NSDlFojmMioOSG0Q5vIl4fAJdN0nUZ4kuCJBITKC//KcEvFMYYXmt/XQTSu4EynQficQ4F/3BOWj54yjTfai5AbT5/SjZ46izsr8x8xkMO82KBefy97/7d6xYcAHvXrKeBeF6NA9CWoCYHkIx0yieQ3u8lYZwHZqZQwfCWpCOWAuGlScEtDtFGoIJagJxNNcmpMv5auokqmOiAIpdQjUzKE4JJTmA4pRQXUsePaf6PHVSjnFN0U5bBaniAuRnBEh7rpibmVmhoxdmRbP9zCaJQjPqYMFaWch3LJg/JvtKOdDj0s/CP5KquaxGyXWSx+BfboLctAAJD1nsL+Xh2euF5m0VpZ9SikLJJW2G+Un/FLO5AEePzbGvb4RC0cayXEolhxMn5tm0aTcDg0ks2+P4YJZNm3Zz4sQ8rgeWrWC5OihwfDDLT/YNcezYHB/btJfjg1kc1+P4iSQf+/hujg3ZWAEB7QAlW2W2GGdkvMTsXIlcsIvZpM3rR2fZv3+YkuuQs4qUbIuh1DSf2/84pzJJZkyL08lJPv/0N8iZBYZSk/zPpx/ldHKakm3ieTCSmuVno8cYTk7x+acf5XR6Dtt1eXlqhHxsESXVwMXjdDbJ55/9FsOpKTxFZyg5xf98+huMJKewXYdtz36LoeQUPxsfYDg1S9F1KHoeBT3GF3/ydwQ0B909gTZ1HYp1Aq3Yj65kUXFRrQH06U10NI0TCjho9jGUiU2o9iAB3SGkniSW+SS6O4jqpYhlPkl9dAhdSdJe83NCQY94TKNpgcr6K9qYnc1RKp1Bn/5v3jxHZep0mD+9Tuf0oM7ctMaJEwp/ep3GyUEVy1Q4dkzhuk0qpwd1WqI1vPyige4Z1Cg19PepnByUwsP46QDXbVI4cRzmZjQGB1SZ4x5XWNXaRVwPUyoq9PUpDA6o9Pep5CZqQDfQPQd1cASvuUXm3UULGhohVwDLhkxeFtyamn2Kk4t8OSyRmcQTkLNBD0Bjo4B2x4WBYQH6l79d+mxthQ/9DznWdio+Nm+0//fbG8D9v2wLQeht4IYgPSErZ577vz/tNzXPd3BNLJIbcfjtQpv/1eY6gFKNY8mOiKtpdkRee47sM6LgFFGSA4T0Irru0dKi0N0tZpWbNilMTIg0Z9s2BctS2LZNobGxKsVJpYSlc+a23l6R8ITD0s/dd8PYmILjwORkkO3bVd/kUvocG9N47DFIp1W2bVPYtQvuvVfDsvyKoetioBBAQbFsiEchYMjKYiKGNjJJSFFRj51GB5ShcZiel8eAmKOVK/S43lmvFVUF0wLDAP88hsZB1VBKJhw/LY8lE9qboGTBsdMoRVOqC0WT1775TRrf/GbUQIDa887j9W99C0XTcIpFZn/xCxpWrEAPh1E0jTffeivRjg5UXcfMZLALBQ5//vM4pRJHHnmEoSefxMrlKs9f++Y30YJB9GAQO5/nZzt3kh8bw87leM0/5sgjj4BtY2ezZE6dYubll9HDYRZccgmzr76KYptomXkIhsR0bOkFKIEgyhPfgxeehz3fA6SizJ7vQbwWCnl46vvwwvMohTzs/V+/vn3P9yBWg/LE91AcR45LzUK8FuW7D6HMTcPi81D2+PvjNdCxBMV15Nx4Lez5Hu6yC/A0DUXViNS1MTPwIpHaFqxCllBiAR4etlkA18Uu5XGsIlYhw4Ilb8EqZMCx0QJhrHyK8V8+57ufH6q6nysKqqqjByM4tnlWLBq4aEEXRdUJRBIoqnrWuZoRxDVNvEwaJRrD2fuPYNso8TjuE/8A87NELJPafBZv+BQkZ3Ge+AdIJ8G28VJJvCMv4/Y/h+K6eLkslIpgmrj9z8m+vh+hRGNgiIaaUrG6b9+PUGwL54l/wJudwStHJ9m2vKfORbh1tRTNlK+5vo7Z2WPYdpFAIIaiqGQy4xWnctsuMD9/0v/8K/T37yAabaSvr5cjR3axb18vtl2kvX0l+/t34ilQKqXo79/h79+G5zkEAjFyuSne+c5teJ7Lk0/+GanUKebmTpBKnUbXg0SjjezdewOWlSdWt5hBI8InFIXTisLPAFdR2IYkKqAojCsKA8giXRSY8F8rQEpR2IHorlNUPRy2KQoWVM5TFIVhxFX9YkTTHQYcRWEeGFIU/hw44V/zlKbRrygEgFsAw3bQgzodazpQFAUjarDmtjUYYYPkySTD/cN4jkdqOMXRx46SHk6THEzyxPVPkDqdIj2cpn1lO9mJLJnRDPt8vfe+bX24psvIwRG0oEYgEsTMWIz/bJxYS0yiDSMG8yfnGeobAgXizXGOPnaUg/cfRFVVtLjGWHaMv3j+LyjYBfJWHtuziRgRHM9mJjfD2s61tMZa2bl+J1EjymXtl6EqKiPpEW5dcyuj6RFWNK2gJdrMwPwJNu3exMnkSYCKWVuqlCJjZtjRv4NdR3axbd82RjMj5OaO47omnmsxOH+8ohOPBWIYqoHm2ah+hJgyewjFzkJuBKb7pDJ53s1gZVCObINQE0p+BM6/DUULo+DKP/pILwztQjmyTT6jgVoUz5JzhnahHOkFzz77dagR5bWdUkXVo1B3Mby2U6LMjmz3rzUGb/kSSrABFRXVKaGmBqtgGQ/FKQkQNkQ6ozhFlOQgGBEUP35M8d3MlewIBGIoriXnqwZKKS37AzHpS6F6zz3zHqzq8ug5oOoo2VHRbKv+vRlPYsYcW16HG+RbYGZlO55UyoO14ub+lltFw50aEKDuWuJMX3ZEP7RNzNP6Pyua8eQgjPXLTVALnH2cmZG88/zE2c7spSSEGzAdlePH57nppie5+OJmwmGDcFjn4oubmZ0tUCzaBAIavb2i4d62bR+27VVc0Ht7+3Acj8OHR8lkSjiO7GtsjJ51jut6jI6mWbeuk9bWOOm0yQ037OHkySS6LnFp99zzPK7rYdviqH7//Qe54IJGDENhJpsEJDrskvZz+esXHicWjPLooR/y1NEDZEt5/uaF3VzSfi6GphPSg3h4GJrOuY1d/PULj/PU0QM8euiHOK7DsgWdvDoxwEw2RdEyefSg9PNXh36I67mVfh899ENsz+XC1qU8euiH1IUTNMQSTGeT/MXT32A8PcOnun8PTbFRZnt9v6JeCF0Azhg4E/I6swtldhsKtkgdy8cpCkrF56gXxU1WjtU0DUIrUKwTkN+PgoWmWtTVahX3+P8/NMfW6O1VeOwxGBmR+eroKDz2mMxNbVvh/vtFEh4MKriuwlvfCidPKtx0k8LFF0NXl0zVh4cV/zyFmhp53LVLGPCep3DypMKhQzJHjkSk4N3SrAhzU1NhWReKpsr8MR6Vx2gYDB0SUR8PeNXtlg2nxuRRVaGjBaIRAfSprMxV25vk+BNDMm9VOGPuOiEsxjfa/yfaG1T539D+a1DlfZCcGZYbd3gB1C6ruq3+tn259tmaLyNc1ZiCr/Gyqk6rnr8Clx0R0xXb9GNU1Kqpiv++nMQyMll5X9ddJwPdP/6jGF/6jGsGBmQQ7OwUwP7AA5JkMToK7e0yoG3eLIuDui5+Grt2SXrFV78K3/sevO994q9RUyOpGJdd5uF5Crrucfo0/MVfKGzeLINgfT0EVAeKJRmcuvysS9eV150teAFxo+aFV2DVRVD0gXZN7Df+GSmaMDwBS85gtzhutc+uVggF4NhpGQwb62BZl/wBjp+G2SRcsBRqYji2TSmToTA1xWvf/CYXfOIThOrr0UMhpn/+c+rOOQcrn8fwXejnf/lLIs3NvPatb3HJbbehKAqFqSliCxfimiazv/gFdcuXU5qd5cgjj7D8E58gWF/PS1/4Aud/9KPM/uIXRNvaWHDJJTilEi/fdx/nf+xjhBsaKKVSZEdHqTvvPKxsFiMaFTqgWSK6YAFKqQCpeXj2n/A++KcCrPd8D658P2SSsGw5zExAcga6lkFyTkD6H1wv++enz96+8YMwNw019dDcDsW80O2/+5AsCFz2Nnjvh/0Ikhr4X1+Hd18rx06PS391jTj1C3BVFccxUTX/f+nrshXNwMwl0fQAejBCbm4UPRjxAfZhGpetxAjGUFSN3NwoZjFNbeubRNOdnMAIx1FVHS0Y8ZlpHmYhxYyvwZaccxfXsSmkponUt+E5Fo5toukBFEVFQUF1PdyR0yhNrSjBIO7wadxd30I5/2K0jb+Pl0mBEcCbnkBpbEHxvRkURcEdHULtWIhXyOMNHEN503L5zGUzuP3PofZcAboBgWBVZ5JJ+fveBbqB8/BOtOtvA9vC3fcj1O4rUOoawLYwNQfTyvPUUzdVNNqXX/454vFWLKuAaWYJhWoZHT1MItFFXd1CHMdC0wLMz58knR4mkegkkxmls3Mtrmvjug6e56DrYWy7QCYzRn//Dnp6tqDr4pZu20WeeeZ2Vq++mZGRg9TWLqK9/TJGR1+gq2sde/bcSHv7Si644AO4kQX0aQZNQC1imAYwRTW68HkEmH8Z2InkjheAVxAztjEE5F9K1cNhK6K/nkcMHbcg+eIDwO/715hAnNN3+q/HgBiiCd/vv5cZ4B0Fi9TxOfZt21dxKbfyFv07+1m/cz1aQKjA+ek8wUQQRVMwQgZPfPIJXvnOK6z40AqufuhqXFsAevJUko7VHaL33tJDojOBVbDIjmdFb/3FKzEiBqnTKfq2i7473honeSrJgfsO0LOlh9RwipZLWijMFQguDrJ/bD8XNl2Irurc+eyd3Lz6ZjoSHbieSzQQpTxPODhykIuaLyKgBQhoAbJmltufuZ3b195OV00Xk7lJ7n7u7orW+5FrHuFU8hQj6REubb0U13OZyE6wo38HW3u2Yrs2Y5kx1nWtk/vD7usq5379mq/jeR7ZwgwdkTqUF2+A82+DyELAd/1++dNw/u0QWYiXH0YJN1NR6au+DltR5LE4JZTt+ZfF2TzcKtnjR7aJE3q4xX/tO6NHu4CyDvwFoYrrEX+hOw92XgC9okKgzncmt6WyrQUhmJDrpk5JjFe4Uc61snKvRBEwG2uVe2sgIfd0RfFN2oLyOhCT+7Oiy73VKVX3acHqPVgxRO6m6NX7NPju5gWplOcmRB9+eLtEldUuhfmjAqIvuwPqzpVjUcW4LlQnhmh/cxG85wei586NyfGrtkrE2vxx6XPqJclCL0xBe09Vy71ysywS/ORWaFsnGegv7BDtd3gBqDrZosb1f/YTbr55NV1dNRw+PEpXVw319WFuueVp7rhjLeed18CxY2druE+eTLJt2z42b+5hZCTFxRc3o6oq0ajB6dMphodTdHQk6O3t484713HOOfW4rofrekxN5YjFAvzwh6/z/PNDPPLINdxwwx5uuWUNixfXYlkOjiPHGoZKpEblZ6NHWRCt5VuHH+OPL3sPjbE6ClZRQPehH3L7Oz5CUA/guA6vTgzwpqZFzBfSPHrwh3x01e/QEKlh57/8DR+57Brm82k6aprImQXmCxnObexiNpfi2y88zkdX/Q4RI1jp98zjLdchpBvUhRNs/9G3uLB1KWsWXsTCmjiq4oF1SsB4w2YwFgmD0s2D3gxuBtQaUMJgDwh4b9gqsb7WCf+8LaA1wtRN0LAVz+hAsSfBHAC9CewpCK/CU8Io2tk+Lv+dmmnKTyBQNWw/ftxjeFiho0PA+ubNMDIigLyzUxjoExNVI/bFi2HfPlixAurqxA/uzPM6Oqqy8u3bRYLe2Slm8E1NEr2+apXI10slSMQcDLuEUjLxamIorgeZHMQiAspLJgQDVUCvisSC42fMOc9dKPNSVfWr8KoA+IAuIP6XA9BQC+cslH7Kc1dDlx9fCofrV/JVpbrtjfYf1t7QuP+W7b8EcC8D6TLYjnfIarnyb/gCuY78eLasgJtZuaGfuQjg2jKZKMeylA2qyhOEstbRc2XlH8DM4OlB/mVfmIYGlSVLZOAqD1jldIrW1qrcJhwWU8tUSgwtUylJr1B8XY9lwYEDsu3ee8Wfo7ERfvYzAfW9vXDXXbJteroK+JcskevG4/DaayLhiQQdqRS7jgxkAQNODMsgWJ+Q1+VWNH2Njy6Dle2A5lfVNU22HzsNiZgA++EJ6GyBcFD6th3QNTmnaJ4N5EGOyeZl0B2ewFnchmOavLhtGw0rVtCydi2RlhY8xwFFIXP6NK9985uc/9GPEmlpIT8+TnF2ltpzzkHRNF7+4hc5/6MfJVhby0s7drB80yYira3M/vzn1C9fjqKq/HT7dk7t3k3Xu9/NWzZvpjg9zZFvfIPlmzYRWrAAz3XRAgGcYhE9EiEzPExxepqGFStQDAPPtgmGAijJOXjsb+HcFXDJGgiGpapz8ijUNkBDk2+qo1TpVlYJgiE4fgRiCYjEoKZObgbZNISj/o3FlOcAU2OyIHD1H0Jjq/RXzMNP90NjM9Q1yR02lgBNx9FUHKuE61iomoFmBKWyrKi+67yDVcpWgXq4BruUw7VNjFAc8Jh8vY/mN3Wj6gE816WQHEMPxTGC0crv41glNCMImu5HowlgL6anCNe2gKrjFHO4ri0GbEtXEojWih7ctkV3lkkLoO6+Ai+TQulYiOL5oD5RCzW1MD9bBeSJWjm3VIRgEG9qEqWtw1+cEA1+WaPqeS6UPQs03WfOAKqGl02jxBJglnBf+wXUNaAkanD3/Qhv4/so2llyuUn6+razbt2dxGKtBIMJHMcinT7Nvn29rFlzK7W1i8hkJkinh2lvX+Xnj1uVmDLbLjI6epiami5qaxczO3uMXG6Szs61KIqK41hYVp4f/ejTrF59M8PD+xke3s+73/1lstkJ+vp66e7eTF3dUkwzUwH8G37nWwzqYUYUpRJVdheSjHARAqQV4JNIMsI6BJjfARxEjBu7EfO0CURnHYSKTn4/8H7gvYgx5MwZw+bdfn/rzjh3O9W0hkmg1bRR0iajh0aINkbJTedov6ydp255itU3r6amq4ZisoiVt+jr7WPtHWtJdCTwXA89pJOfyRNZEMEu2ky8PEHbZW0Uk0WMsFTSk6eSklIAzJ2YI9oYpWZRDaqmsueT1djDax65ht2bdp/1GmC4f5jWy1vJOBnSpTRN0SYyZoZXJl9hdcdqira4cmfMDIlgoiKd/tn4z1jZvhJd1fnuK9/l+aHn+fzbP8/TA0+zrnMd9x+8n3uvuJdoIEr/cD8f/qcPc/SGo2fFlRmageu5DCWH2Na3ja9v/DqnU6crOvFz6s7Bci1iKmjFaQHNZUOyl2+XSvvMfpjeLw7lriVxZ/lhqLsUcMXR/Oj9cMnOqvazOCkgvezhUl7Qc4pgJsVcTQ2Bk5Pjf7EZ3nyffJ9mD0lUWviMuDQtLNru8oJ2GTB7jlSePf/5ma9dU44rzko1unapTyf3ZNzzEIdxI+pX0A15n6U0zB2H5jfL/boSWaZXz8P/0OP/vq4l9+9nPiFV9J/eJwZr7/kBtHfDaB88/n5Y+l648lFhB2RGqgB/1WZ5HV/oLxBocu2y4/rECxJzBuKmXkzCz77kG7VFhIY//bK4xP/0Abj8i/6KvVYxjTNdndm0wtRUjt7ePm67bQ21tSHq68N85zuvcPjwKF/5ylUoCpw+naK3t4/Nm7tZtKjWl/PmSCaLnHtuA9msyPxUVSESMTBNGe/CYZ1i0WF+vkBdXYj5+SKZTIn29gQTEzkWLarBdT0cx+XQoVFaW2M0N8dIJIR9qAWhZJd4dWKAunCc+UKGS9rOZS6XZEGsHsdz0FWdkm3y6sQA9eEELYkGvvDjv+apowfYcN4aPnPlJ8QQ1hI2RlAP8PLYMS5sWcrOf/mbCghPhGLM5dLUhKMYms6rEwO0xhfQHK8XLwNFZT6fImyEmM7O83c/3cP/3PDHaPZJFCXsmwzrYA3C7D3QcBdozT4Y3yJAXT6I1XsFpngVFV8X8+HK4pcNTko+Y04StFooHJa44MB5/z5vpf/I9qtI+9/ZVTntbMsWSUIbGBBQ7XnVAtQPfiAVdl2vmq5v2lTd190tx09Oyjz3k58UL7hrr4WHHpLzCgWZ95av+9OfwlvfKibxjY3iGbdli5y/oM5BOXZKikO2I/PIjhYI+XPXjhaZJBsGjExU55iFksxJywA8m5d5ru/rAghVvlzA0v1t03NQm4CgIaC+Ji77XBfyxeo8NhJ6A7z/B7c3NO7/HZuiClVOD8tN3ze+qYDn37aVq+SBBCQWnsEB/5VrBmIy0bBLEp8y9TNIn/L3azLBcEy5+WtBUIPU1ans3Cnf9WXL4G1vkxXEt71NVhSDQRk7QiEB9i++KAaWiYQMVjMzsGgR3HijHLd6taxkfuMbMqDW1wsQL1Pqt2+HWEweyxT7UgkuuABuvVXOD+g+dVBBOi2UBDwv64SWBhlRyzSiMmhXFXmeyVVBuKbJQAgygNUnYGRSALzmf70GR+DFIzIw2o70taxLHoumAH7LFsBfMmFxO65t49o2l9x2Gwve/GZeeeghssPDlcrXa9/8ZpXyrusY8TiR5mZ+dt99FGZmaFixgiOPPIKVy1Vo78WZGZ67/npe3LYN13E4/0/+hK53v5sLr7sOLRjkyDe+UTk2NzrKS/fei6KqaOEwKArF6WlC9fW8uG0b+bExMdJCwUvUwbWb4C09Unn/7kMC3LuWyWdxZlK2lQpQzEmV3QjKsfEayKaE3u76k4hiXqroqiqg3SrJ3S+WkEp7faMcMz4M33sYll0gVf0nvgubPwp/+2UB/I6DXcozdawfEOfysVd/hFVIkZsbxSrlUFWDBUvegqoaWIU0Zi6JoqqM//JfsIo56hddIlmq2XnGXn0WPRjFKmRQNA2rmCGfnMB1LcaO/Bgrn/IXA/Ioqo4ejDL2qmzXQxFmBl4gUtcm2eWu6xvFZKFUOovernYtgXQS58l/RmluQ4nGUFQV9+C+Ks1dVaV6/txTkEmjdiyUc3b/AM808ZKz8nx2yneX9XD2/CNeqYCXnBOKfHIWIlG82Smcp/4ZpWsxaudiAe1HXsbNpXnmmdsZGtrPhg0PUF9/LoFATIziFIV9+4QGf+DAfWhakHR6uEJjTyYHsO0CQ0N9zM8PsnfvjUSjjaRSQ3ieQ3//F/jud69maKiPZPIke/b8KbncJO3tK+nv38GSJevp6dmKrocqdPu+vl5MM4OuhyoU+0xhnl5FoZFq5OF24EIETG8CTiFV8SupUuF3AO9EEhhUpEJ/r39OCaG834hU4QeBBxBqfDsSYRZHwH+5z0b/ursQl3UQ1/Qp06E4XyDRnuDQlw/RemkrWkDjqgevQjVU9t64FytnkR5JV6LOVF0lM5ZhuH8Yq2Ax3D+Maqi0r2rnqZuewi7YBGsETATiAYKJINHmKIn2BAfuO0B2PIsW0Oi+q1tiDzf3oBoqPVv8GMStPai6imM5dK7txMNjLDPGibkTnE6d5vZnbqcj0YGmaBiqwWR2koG5AQzVIBKIoCkajdFGbtwr0WXvv+D9bO3ZSk2whsOjh2mLt/G1jV9jpjDD9U9cT0eig7/73b+TOLPcJAdHDjKcHuYTj3+CodQQw+lhdh3ZxVRuiogR4StXfYW2WBuDcxKrZnoKnh6VivkLnxRw3rBS8shb1oubuaLKgvGRbUJlt1JC635thxxbGIOf3uSP+SrMvSRV8+wAHN4kueKzh8GaF/CeG4Sf/rmcd86Nshjw4g3Sd3EcrKSMbUaNaMbVwBkRYpYPbj3RcZcjyRTNf+3HkbmWxJ3FO+RYMyPbyscEEtU+HVNAuxaE+nPk9/A8cUH3fC/+Ulry0M203J+TA37+eFGu/fYHIN4pj+/9R2HWPbNJHt/zA6mgey4c6hV2wOHtPtW9VwB+olNiyFxTKPHZUfjxDRBtkbnAs9cJC6EwBa99R2LQQOYMbWuhZhm848vy90iegKc/Bpkhn8rvEQrpFVr71FSOfN7mk5/cw7p1nezcuR5VVSgWncoxvb19eB4YhkI+b/GXf3kAy3IwDJWJiSw33fQUJ07MUSzaHD48yuBgkhtu2EMuZ3Ho0Ci5nMX4eJZQSCcS0VEUGBpKccMNe2lsjDI+niWdLgGQzZo4jkNAM2iK1fM3Lz5BU6weTdVYEKsnbxVJFjKMJCfZ/qNvUReOM1dIY2g6f7LyvWw4bw0fX/27aIrKaGqaHf/y18zkU6iKSmdNEwHN4I8vew8vjx7Ddh0Cmk5tJMaDff8LQ9NZ0bqM8cwMVzx8Pfc881fC8LJsAprBt194nAtbl6Jgo1hDAratE2APC2jP7ILZ7RLzm9klhsY44pHkGxjiFWDyFnBmILwKsMHN+QtBrlTslQCoMZi8WRYGrCF/tPwPbqYpeeKm+dud8/rr8LGPyeNvc+6v9GPmTAoFj+FhePppYX2apoB204T9+2Ue+YMfSAHquusE1CuKzDM//enqvr4+OHUKPvtZmdvu2CGgfetWme+WC1KmWTWHb26WlLdVqwS0i/xTjvc8ZJ6pKAKaZ5PVqvnSTnkej8rjkg4pKAGEgnBOl4D4U2NCp1cUmfealhyTiMlcVlNlzup5sKBO5roeMj/1DZZxvbMloO4bBeD/k+0N4P5fuSmqVLrLFW67IDdEu1AF755braj/34H6ilZuVPr8tcq9Xy1NnZQFA6cklff68yUuxTF9mh9n6e5sX1Kzc6dU0l1XBrKBAfjwh4UG/8lPymvXhXvugauvFip8Pi+UoUgEjh4V+nw2C5/6lByfy1WNLgMBWZXcvRsefFAGwc98Bo4dg69/XQa9P/5jGTBBxiLFcWXQclwZlCxbQLTjyPaB4apuKKD7I7OvGbJtv0ovjumYlqxKBgwZMGtiMkAWTVjSLhSlzhYZ+AJle3zl7MHPQyrugyMC1BwHPRisgPQjjzyC4nnYxSLLN22i693vZvl111FKpQjV11eA92vf/CYta9ey/LrrMGKxCjgvP19+3XUARDs7eeuWLeTGx7ELhWqfmzZhplK85dOfxnNdTj/xBLMvv0zDRRfx2re/XbmGbugoMxMof/dlqZIHgvDsP8Hi82QZORSGhmbRpy89X6jw338UzJLPUghBJA6dS6Wa/rdfFkp9og7e/zHRc0+NwXceku2BoHwOFVX6T8/Blb8vFHzPk0r8ZW8Tqr3vRFzWnbuOdZbGXA+EsQoZXNdmZvCnuK6NVcj4OvbDpMaPMjP4AoFIDa5jVfXrAy8QqWsFD+nnjOOtQgarmGHqWD9WMY1VzFU0765t0XL+24jUtTP+y+dkv12S3ykYQl37dpTll0g13bEFnLd3Qi6D89Q/4yXnUN91tX/Mu8CjCvb7n5Mqvw+4KRWr4Lv/OSgWxLTwyMuigd//L9UFAM87Y9Hgx4CH2v1OlOWXoAUjrFt7O0NDz+N5LnNzx3n88Y8zP38SxynR07OZ5cuvpadnC4qi0d6+igMH7qto1ovF5Fk69wMH7qO9fRWqqtHTs4Xly6+lo2MV+/Zt48iRXWcA9i3E422kUkNYVr5yne7uzQQCcRzHorv7LpYvv5Z4uJ7Nnsc0Umm/FnEl1zlDr45Ek7Ug1fDyMe1IZXwMWAZ8HYjKJ4xepEI/hmSRTyERimMIhT4BLPX72IJklG/2+74Tmc72AnsDGqG6MH3b+2hf2U5mLMPu63aTHkqTHhawXt63/Nrl9GzpwbEc+nf0E22Mkh5OE22MsveGvRWde2ooVdG/23kbM2eiKAp92/ukv94+XNulblkd13z9GiKNEdKjaWqX1nLVQ1eRGkoxc3QG15J7gVk02dG/g8ZoI9v7tldywxVFwdAMxrPjZwH1iBHhvgP3VY4L6SHCehgPjy09WwBwPfesvtZ2riWkhehMdNLd1c1f9v8l6zrXEdACdHd186EVH6Ip2kTeyvOpvZ9iLDtG0AjSFG3i+eEDQkn/5XYY2nUGYN8CkQ6ILYHsKZg5ICC+OC2A2ojD+XdAy5VyztAuAfO+fh0rXd1+pFdyzF+7z9ew91avFVt4xuv7ZCHAqPVvJDFhAijIvbN8Dz3rPjharbif6QmTHfVp8SUB6L+qWT+rzzM07cGEAHEtIFFnmh/sGUjI80Di1/1n7JxUw5+7SR7bu4XGfnSXPLatk2NdVyrshWmhuJ93rVDaFd1fPG2R67asqgL7F+6VxYIyyG9Z6Z+3Vd5XbqIqs8uNiZ7+TP07LqajMjOT5667urn22uWsWtVBb6/o13fs6CcSMVBVhVjMYPNmOWbr1h4KBYtMxqyA+UOHRjEMjR07+ivn6rrKqlXtFT389u19LFgQYfv2PlatagcgFgtg226ln/vuO8DKle3U1oawLIdUqkS+YGG7Dn91qKpDz5sFRlPTRAMh6iM1FU3637z4BBe2LEVTNJKFDJ9Z/3HaE424nls5/5uH/hnHc+k//Qu+8ONv0xCt4a4r/oS2RCNPvt7P61OnuP0dH0FFwXJsGiI1vOucVdzxjo+gKgpttY0YqsbHV7+PNQsvwvVUAd1uDqwJUCPQ/DAsfh2aHgC1FuLXCjUeBdSoAPz8fpFZ1N8Ms/cDFkxcJ9p4TCQ1KAcTm2RbeCXM3SfX+k1eSP+e9m8F4KYp6LaMckv/hgUF08SczfD66+LD1NHhcfSozFE3bYLTp2WeuXKlFJLWrTvbf8l1pVre1CSV9t5eqZiXC0jbt0uR6qGHYOlSmWZ6HgwPy5z21CkpVp17rvQRDgtb9NprZW7refB8n4IXCgi4XtoJK1dI5fz4kMxfYxGZV/rzSEqWzCtLphxTNGV+WrKqWnbTkv5qYjLnLevdy3Ngy4a0X8AqN1WRBYTGOr9K/xsKfW+0/7T2BlX+N7T/ElT5X22uI6D9TL27ogiIz4xUs0n14K9T6j23ety/Rrl3HV+7Z1QnDeXtZZ1eebtdguwIXryDowMh7r5b42tfw49/k1XIxkYZpO6+u6pVf+ABqcDv3Ck/QV+aqyhVbdAdd8iK5+HDshoZCsnYY1lVKv30tAD8c8+FEyfOjq90fcljPOKgFIpnU9rL2vPLlvurkjForBWArmnVCrrjU+vLFfcyDamzRYC7pp6tYz9noVy4fH6ZKr+0Q1xBf4P+3bpoGflUknBDA7mxMdGlb9pEtK2N6ZdfFo17oUCooQE8D89xKExPy3HXXUe0tZXS/DzB+nrwPD+CCjzHYfqll+i7+Wbe/YMf8MpDDzH05JMsed/7ePOnPw2uK1FHroudz/Pyfffxpj/5E6Jtbai6TnZ4mCOPPMJld91FIGSgfOcM3flH/lyo28k5AdV1jVVqe009/P1Xq8f+jz+DcpRRmWpf0a//DwHvrgMnX4evbYNLVsOH/8yXh7hgBGBuCvb8L+m/wY8rSc5CbT2g4OhaJR+89YK3Y5uFSla4VcgQqWth7NUfkxo/Sk3rebRd+E4/kzzm0+dXYYTjeLaFVcozM+hniAejuK6DYxWwCtnK8W0XXsHYqz86oz953bhsJfn5cRLNSxn/5XPV/cvfieJ6KLbIHxRNwysveKTnQTdwn3sK78jLAqSv+YD8DxWkWp/NiC695wphMJQKuPv/BXXD70A+K/vWvUOYCoD71D+fva9Mua9Q8N+FUltHeZHOy2VxwgFsxUFVdTKZUQYGnqa+/hzi8TbS6RHa21ei62FMM0MgkCCZHGDfvm309GwhEmlkfPwlEokO+vp66enZQm3tYkwzi66H8TwHRdFIpU7R17ednp6t1NYuBuCJJ67ntdf+geuvf4VYrKminTfNLJOTv6CjYw3gYQbjTCsqDYCB5IGrSMzhEALatwCLETq85h83BLQhencFyAG3Aw/6w91phDJ/NwL+r/X33Qx8AaHgZ5HKu+Jfdw4B9P7yEoNIpf+v8ibJE/NoAY3n7n6uQle/6sGr2HvjXnq29BBrjaHqKlpAw3M9kieTpIZTtK9qZ+8NeyvnXP65y4k0Rs7atn7nekL1IZKDyYqOvpxZ3nBuA7PHJNf8qoeu+rW+4m1x7IDNYHqQ4dQwHYmOClV9Uc0iybB3bW7Ye8PZuvXUKXr39bK1Zysj6REaIg0VMH/t8mt59D2PMjg/SG9fL1t6ttCV6MJ0TMJGGAWFjJlhLDPGjv4dbOnZwsKahRTsAn/+5J+fpXHfP7Sft7ZcTJOuoRTGBEgv3yIadacIv9gKF/VSyeHWY0Lt5Qx9t+dB7pRU49/ygAD7Mp2+0udmyI9Innl0IeROV7XvsSVSmT/SCxduhegiqejPH4FG+RyiReX+Wtabq8Hq61i7VJVB2GnxDrlH6sGqN4zqV7X+tT7OPEcNVmn0lSi3M+j5auDXz1N1ocof3SWg+l0Py3378HYB2HoITj0tlPfceDVL3LXknu7aMkfQw5JZHmsTVt2hbb5WvVEWBS670wf4bfJ+pl+GaJsA9rZ18n8yM3KNss49sRjT9kgXNJLJIg0NEQxDZWBg3qfEi369pSVGS0uMaFT8SjzP48Yb93LvvVcwOZljx45+Pv3pdTQ1RZmZydPb28eWLT00NISJxQKcPp06Sw/f2VlDa2sMRYFQSMeyXIaGhIa/dWsPS5bUYZoOuq6STpeoqTdwFZfx9Ax/deiHfGzV+6gNxzg2PcRb2t9EzioynZ3n2y88zidW/y5BPUDeLNJe08h4ZobJzBxvalpUOebjq97HZHaOhkgNC6K1PHv8EC+PHuOOd3wEXdNRFRVdVXE9T2IoPQ9dVRlLzTCRneXClqUE9QAg+0OaieZMg7ZAKuhuWvTsxZfBaJftbhr0DsCSirs5INXzuftEE681QfElGL1GQH7LN8AzYfIGqdbHr4UFn5PvWOAcqe7/R7ZsVkB7eVL46KOib/zftTO57Vu3wnnn/fZ0+WyW7EiSj93dwa5dEm3+ta+JEXI2KxV3xxH5Zk2NFI7m5mQeunmzHLdihUwJ43EpLp0pC926VfrQykNSTi778stSrLr2WnjkEQHw5TnrkiVS4ylX5osFl/qEg5LJCTj3/ZhIZQVcdzRLVerU2Bnzzy6h0cejVQno8SGYmqv6LKnKr89Zz9TFL+sSpmmZKg9vaNz/k9sbGvffsv2XBO6/CXx73tlgPtYm1LrfZGLnZ2hX9H6/2lxHKHdZfxFA1WUSEmuXSYSZkcp76mSVau95ZAs6gyc1hodlACu7at54o6xYrlsn9KE775RBqqwVyufh9tvhtttEz/7nf14dyz//eRkYZ2eFSl8G96oKxSKMj0uVvrFRaEy7dkklvmx8t2ULrLjAQUllpHquKFXteckUwO66MvsuWWeD+8rfi6qO8FcHPM+T1cryoFo+z/HZDtk8vHoCmuplUHVc6U+v6t/tRa24nkdudJT8+DgNK1ZgZTIE6+pwHYcX77mHoSefpOvd7+ayz3yG/OQk+YkJGi66CFXTeHHbNk7t3s3lX/0qkdZW6eOii1ADAXIjIxx55BEuvfNOSvPz8vzTn6Y0N8dr3/wml9x6K1oo5BeNRnj9r/+aSz/9aeZ++Usa3/xmPNfFUBWUTBLMYhU8B0MQq4G//ZJUwp/+h7NB/ewkPPE9MZKrqfP12T7/KzVfNaZb0CJU+EIewhE5LhKDfBYKOXj2h/C7fww/eLTa/x9eL/1ovtbTLOHE4rg+y8TzPDzXRg9EQFEqLupmIV01lAsnhAZenuwrCmY+iaoZ6MGogFnXQVFV7FIBRdNxHQs9GEXxJ09WMVtZHAiEE/JBUZTKV8vMpyv7g+EaFNvGHT6FEo3h5bKonYvAtnHHR1Ca26CQF/r8undANCb6/IDATc+SSqunabJi5WvZicZRVJ8h4yHXVxQU28IdG0ZpaUNRNdzxUZSOLj972BVWZGq+YlJHTS2WYmE7JppmkMtNUyplaWhYyhNPfJL29pUsXXol8Xg7w8P9tLW9FVXVcRyTsbEXaWm5BF0Pkc/PEArV4jgm2ewU2eyYD/hD/nmX4XmOb3LXiWGEsawChhEmHK4TjT4qY2MvnNWnZRWJNV3AgKpVtO2jCP29AaG0F4EXgTUIuD6EmMedgwDrXoTy3oZU08/1t48g2vfTVMF/GAH6OvALqsZ29yMAPYKA+V8AlyEAfhRYnClhZk0UTSE3kauA65quGkB05slTSd70vjfJ8DCZJTuepX1VO3pIrwDyni091C6uBRWSJ5Ls691Hz+YeapfUMnt8ltxkjo7VHaiays//9ueMHBjh6oeurmjbP7j7gyQ6EvT19rHuznXEWmMEYgGKRhFN0bA9Wx5dG9u1UVC46ambuHn1zeiqTm9fL3euu5OWaAshPcRkbpLORCcD8wOMpEcqoP+2NbexsGYhqVKKmlANCgoTmQnu6buHr2/8OgW7QEgPcf0T158F0g3FYCA5wLZ929jSs4WldUsp2AWKhRk6jt4jle6W9RBuE+36kb8QnXu0C+ZehNpL/BtBENyi/2iKBt015Z7lWP5rn76ulQ3sdDF2Kw/qngeKJ/dURRGAUpyUSr4ehel94jKPIlX8+LLqPcHzbxBlvXr5fsGZ+93qfdb2DelUQ4CyavhmdL4OHPn8Sz/lhfI2oc2XafmKJgsZZXPZcn+eJ+Z6iiYmcod7paIebROw7towfhCi7RDxwXdZ/962Tq6Zn4RIk/ydnBI8fwe85RYxsssMw9CPoXYJtK6WOULfZnjHA3Ksaki8nB6Sfn72ILz9fn+hwoXxw9BwAQQT5O0ApuliWS4vvjjGJZe0EArpzMzkSSaLTE3lWLq0Ds+DxsYoxaKF5i+Gh0I6xaJNOKwzNZWjsTGKqgqFPpczyecthofTrFwpFXZdV9E0lXS6yGc+8y/09l5BJGLguh6Tkzni8QCJRJB0ukQ8HiCXs6hp0MmWCmiqiqHpeMAXfvRtMaTTDKayc+StEmEjSGOsjuH5ScKBIE3ROu559q/4o0vfzXdfepILW5dy9fndvDJ+glsf+yJvX/pWtq7/OPf+6Fv88cr30JZoxHQsAprBaGqavzr0Q/7ksvfSVdeC67lYvrdArpQjZIRQ5O5DRIeIVkRRY2Ad843n7hAwPnWbVN2dcdBahfLuZqTq7uYBB4qvQGSNUOBnt0llPrAUcj8BvcEH91vE8E4J/MeDdvj3AXDTlEp7MPhv07iXK+5jcXbcH+DBBz1UVakA7HBYwPiOHVJAWrZMilDr1kmxqCz5/MUvpEo/PCx093AY0umq1n3xYrldHz4sc+JFi6Sif9ttUon/0z+tznUffliKVhMTMne+4DwHLZMRED5wBhjXtKo5Xdmorjz/DPnzz181mitr2s/0WRoc8c8JnO3FVNa9lyWjbwD1//T2BnD/Ldt/SeAOvw6+fxXMl1fs/y0mdmdV9BslOs4tyURIDwGe9D/32lmLBF7NUp58Wuf3fg/e+14B3bmcgO1yZT0clteZjKxalgfG/fvl52tfg6GhqtHcsmUC/qemBKjfc48c39Ii48lLL8lgqmnSZzotxnVnGoN85+8cNLyKmRgeAt49ZOUyGJDB6/iQDI5NdVXzH9cH4L9aQS8PghOzAtYTsepErXiGOUi5384WGUwDhgyuChVwb1kmnuty+POfrwD0t27dih4MCkDM50WeHw6jqCovfP7zDD/zDD1f+UoFXHuuKy7pP/sZodpaXvv2t1m+aROxzk7sXI7R55+n+bLLCNbVAXD4c5+j8c1vpnP9egqzs5RmZ1lw8cUSQVcqkZ+c5JePPsr5H/0oNYsXoTk2ysnXBaxn09CxWD57qflfr7jHa2HoOCx+k1TKn/kn0cUPnYBF58oHwPNnvp4LU+MC5Dd8AJraZDHg6j8UarlZqjjHs+d78O4PSEXf82DXI5UKvKMoeJqKVUxjF7NE6toAhfz8GKFEo3xlPA9V1c5yinddWxzjAyFQVCwf3Lec/zZU3cC1RRNWSE1jFpIkmpfhORZaIIKiKv7f3qka22mG/2t5/tfUFpf78kJOcg6378dCUa9bUPm+uaPDqJ0L8dIpvMFjeKPDUiUPRyCblnPWvh3iNfI/2vOPKF1LUN50oZjUGQae6+E+/TjqFVeJmvGXP8cbHUZ79+8ImHdd3NEhlEQtSl09zuPfP6PC/34sxaVkpgHF17fbKIrm56tbPkC/GF0Po6o6nucyNNRHNNpEKFRHLNaEbZfwPA/DCDE0tJ9IpIFDh77M+vU7MYwItl3i6adv4ZVXvsPy5deyZs2thEL1BALRyvDzzDO3c8UV96KqKqVSmmAwgWkW0OsX06+orEBqrA7waQRotyEa97cBv4fEvcUQN/m1/r5yNf0B/zpRxJSugJBEmxDAbyCA/gv+T8Q/7qfABVTB/GUIxLoVWRSwgOZsicxIBjNvEm+NU0wWCcaDTB2Zon1VO67t4rkexfkieJxVlb/6q1ejBTTMrIkW0shPifN82ZBO0RQ82yM3nUMP6iiawrN3Psvqm1cTb4sTTASZPzHPvt59rPv0OmoX1+I5HnbBRgtquLaLWq9WAPMda++gJdZCIpjg+dPP0xht5MuHvsxXN36VscwYBatAe7ydsBHGdm3mCnM8M/AMv3f+7xHUg6iKSv9wP6vaV51lNDeWHuP43HE+tOJDaIqGpmoMJgfp3Sf722JtKCjMF+epDdWiqzqaqlGyS6ieTa3qoikqaBGwsz7Q9r8/Vkrc4vHgpVtg+V1+BTwvVfLz74DYUqm6v/6XYlSn+VwLp+Br1IPSr+cbdr10C1x6P5Smq338qhGe5wrYtzIQWyZAtSwhcy3pSw9WgTqKjI+OWWWslUE+SnVxwbV94zarCsRV3R8bbTGQ1UK+o/yoLJSrmvTrOf7ihCGL9DVLZFFd1WF0Pyy4QOLe0sOQOS2V9fQQvHQ/vOtrkDwpiTLBOmHYhespm1wy+SLUXyDvYeZVodunTlWd42sWyb1RVcWQznPlbxOokff3409B+9tg2ftkuxGH3KQcf3g7ucu/RTortPRYzOCVV6ZYs6aDQsGW76Zfac9mTVzX49VXp7joomZSqRI1NUHi8QADA0l27tzPzp3riUQMX/OuccMNe1i5sp0rr1xKU1OEU6eSfOEL/dxxx9rKGLNjh7zev3+Y/fuHeeCBDUxP52ltjaHrKsEIZM0CObNANBAmZASZzMzSXtPIaHK6UgXXVI1UIU3eKvFXh/6Zj69+H7XhBEenTtEUq+OvX9jNp6/4EybSMzx66If8ycr3srCuFfCwXfEP0VBw8Hh59Ci3PvZF7nvvLTTH6nnUr/RPZee4pP08hucn+PYLj/PHl72HpfX1BN2hqiN8uUJeBuzGMkj9rTxGVvsjpgX2LGg1MspZp4Vif6YBnbZAqvDhVbJP0QW4/2e1fy8A/22v9SvW8Xk3iGUrqKpSYXredZeA6o9/vAqqH3xQ5qGJRJXZeeedAsSnpkQff/iwMEmLRflpbKwC+GgUXnlF/Jk0TfrStLOd5xctksWBlSulrw3vctDNYpUBalpnzytBhhPLFnBe/j56nlDjz3SWL7dfnb+m/PlvwJDxyvJlna5bNbI7013+jfaf0t4A7r9l+y8L3H9TK4P5cvvXKur/u3ZmxT2xSCYX5ep7eXJSXvE/Y5HAUYK8ekSvgPRQCA4elCg424ZDh0TPs3Ch0I7K1PkPfUgoSJom4+nUlAyQiiKD3r33Sn8A3/++DGpbRF7JggUyKFpWtXJ/xx1ieHfLLTK4XrLCQS2Vzo7NcPwqu6KeUS3xqpMryxZefnnlsryaqSCmc7lCdXVT16qrnl2tcs6rJ6pVeahW7Msxcud0yUCsqjjpLHbIID82Jk7v111HrL2dqZdeounSS8mOjEh1/JZb0P8v9v47So7qXPtAf1Wdp3uyJmmSIgKEEBJIowg2GDDROMlBNsYEmWhykjBgA8KIILJtsLGPA8YSOAghLJJlIWTlAAihMAqTc+fcXe/94+2elvA53z3fXSfccz5qrVnVXb1rV09Pz6797PcJHg8CDOzaRdWJJ0I2S8LvJ5NM4i4vx+7x0L91K+6KCpKhEJUnnjh86Wh3N7t+9jOm3nabauUrKzFtNjVPMwwG338fd1UVnqoq/B99xN+vvppR55/PKT/4AQ67DSMR00mZza6/z8svwAXf1Ep6VisDOF0wNAAfbVWn+fO+rn/8sgoF+UN9CuhNEw7shjHHwW+fKlTTv3Yl3PJNmHE6fOvanD9AbvXX3w8fbS/0+4MFOSr+9XBwN9ljJpFJxrA7PQpU8/8WYtHz0d+pOXYOhmnHyqRIRgbwlNaqE72VJh2PUFReRzaVIDxwiJKacWTylPmx03EUlaoZXTzM4MGt1B536vC/SzzYTyrmx1vRQH/rJkaMmaZxc7nqSCLUj7d8JGbWUqO4XTswv3EZRl3DEZFtZ6grfyqprAOnfteMrIXV112o0tc1YO1+H6OhWanvkRDW+r9jnnkehsNFPgHC6mjTXPfyCgzDRNIprDdXYrbM0X6axiCBIa3wzz0Do6SMlJkllQoPg+Wenp3U1p5ELDZAMNhGff10TNPO6tU3ccYZi3E6i5FcZrRh2MhkknR2bsTnq6O4uA6n08vhw+9SXX0CpmnnrbduZ9asWykqGsEbb9w0HAvn89UyOLiPSKSb+vrpZLMpnE4vqVSU3t73GTnyFOz2ItIOD2HTPKry7UMr7U40vi1HDCWMUtt9KLjOU9nz1HcLOJh7fieqfz9EwSm+EwXyTcAm1LiuDwXoj+UeP5rr044C/92pDC2DcZKhJN4aL5l4hnBXGKfPSfHIYlKR1PBrhmEglpCOpUlFUsPHDJseH9o3xPol65mzcA7eai+rb1h9VLxc3pW+/b122t9r59xnzyU6FCUTzlA2ugzTqRGEA3sGhiv6NoeNpCvJgpULWLFnBS9/9WVmNMzAaXNyOHCYw8HDtNS34La7CaVCw+aY+Ui3RXMXUeurpTvcrSB9zkLGlY8jIxkWrFxwFL0+lU0RTASp8dWQzCTxJ/yUu8tx290kMgk2d21mUvUk7KZ9uJJoGiYOwBU7qBnrx90OvtEKRMXSn+03qYFcUQO0/UE17Z462H4rjLtSq+GGoUA4P/Dmo+EQ8G/Xc2MdUNmiwOTV0XDeHoZj5/wf6HUlk4ujy9HTQ/sg0QV1Zx8xSaagaf8kADcMpbJLVg3d8nFuvgZ9nArp3pZjCyQDkIqqll1vxLnFeZu+nqfG56+V79PIrRjnHb+ziVx+e66SnxhSAN+zCXyNGtfmLNH7ejah78M7Uhciejbq+ysdDYF9SnGfvlCp+na3FgJMp8bcDX6oiwH5qNp8zFzZMRDYq+Z4Rx0fn1tQmEjErGHPnsFhAD1uXAU2m0EikcHvT1BW5sbttpPNCqlUhqIiB/G4Gs/V1fkYP76Syy9/ldmzG5kzp5Hu7ggtLfW4XHayWQXEmYyFw2HS1xdl0qSfcuGFE3jmmXO55ppVvPFGK5s2XU5VlUoQ/vjHj6ipKWbOnCaSyQxun0lnqJeBWGCYph5NxfE4XGzv3EOFp4SheIgTasfisNnZ0bmHspz7/OSRx2AzDAQwMegODuJ02CkvKsHMGQFHUwkiyRiV3rKj6Ph9kSFOqB3Lg2//ctid/tunnEdd8QiW/K3gWP/jcy/B7FkAnlPVFX7wQa2a2xtBEvpdTuwAR0Mu9u1OMLwgsUJ8nL1O/z96ry0A/9rnc/NG138uYP+v3uJxrSJt3Kjl7HHjSAVifNxXwdLHDR5/XCvhR8YOd3QUaOz5qOLm5kK7lSuPTkwaOVILSSedpENDMKjz2J071YRu/PjCOsVtt+lc1evVaabHoz/5JKaWFtix3eIzszPYJYu4HBj5wlKVFl+OqpgfKf3E0DlpnmI/nJgk0NpRoM03j1Qj5U/OU/9JDmorUOY/3f5Ttk9d5f9f3oYN7Gz/hunc/8Vmc+oKvmk72vxGJDdxMHOvu9RAx3SRTht0dGjVvL9fTedGjtT/+2uugfPPh0ce0YGqpEQHr3nzFJT39mqbaFR/rrtOK/KHD+sKZFcX3HCDVtcfekh1R+XlCvT37dNzLUtZV+3tSp+/9169vuQNOxwOHcws0RXMvGmHSM49BB248q6Z+cnZmAYF6ZZ1hDGIRwczl0PbHGk8lx9cm+q0oi+iA2venbPYqwD+UBdkstjKS7HZHfiamph+7734GhrIxOOUjx9PbGAAm9vNyQsXYnO7GfjgAySbpXryZKIdHWz64Q/JJhJ4azX32zBNzXj/1a8oO+YYYl1dbLr3XqJdXXhGjKD6lFNIx2L4GhpIDAwwsHMn8b4+ttx/P+6KChL9/aQjEapOPpnzV67klLvvxkqnSScSuqbhH4DWXbq4M+8KzQ5v/aggzopH1fF97PHwlcvBW6ITbrtTXeUbxqiL/FC/AviDe482mkP08Vcu10r8Sz9Vh3rQa+zfpVV3j1fbnfM1sNmwGsfqRMnuwLIySDZN14dvk8q5v+cd41OxID0fr8Xu9pFNJ7G7ikjHI9hdHro+fBvLylBaN+Eok7qBA1sAME0bmWQUT8VIRIRsJoWIUFQxEl/VKPpbNxHqbSWbimKzOzAdDmwOJ+6SKro/WoOYNgXJk07GbBqtXgQuN+bM05BgQBcaYhGstW+pDt7hRBwOjWz7x98xSkoRux3paNPKu92hoH3GXKXDtx1A/AMaK1dTh1FRqVKAdEq9Dxqasf7xd8z6JiSdgtIyzNPOUo+B3BYOd7NmzT2Ew91UV59AMhnCbndTXz+dRCKAZWU5/fT7EbFIpUJkMsncP42BzWanqWkOLlcJiUQQgJKSBt55R1fZTj/9AUKhDpxOH+ee+yylpU04nT5SqQguVwlNTXM0894wWbXqWgB8vlpef/1aAoFWsghBFLTfiBrHhXKPD6Nxbx7ULf6e3N7MvbuxwE+AQeAaFOzXoRX63lybkcBn0Xi5WSiV3oHS6IvQSv3s3HW7UEp+V+76AHPSWcLdYYb2D2l122Zi2k3W3L2GVCRFtC86/Fo2mUWygsPrYO19awkeDtK2ro3AgQCGYbBh6QYaZzdqZd002LNiD+sWr8Nd6mbd4nXDrvRjzhzDnEVzMGwGxdXFeGu8dGzoIBvPIpZQPrqcptlNwzF0dsPOwjkL+eO8PzK1birprALcprImTm0+le0928lYGbwOL+FUmGgqSomrhKfPeZpaXy0um4uucBenNp2Ky+7CwqI/2s/COQuZP2k+j5/9OKZh4rQ5qfXVciBwgGtevwZ/wk8gESCcCpO20sxpmoM/7mdr91Yy2Qx90T7aAm04DUtBe+cKrdIaqLHcwHq975x4v0a+2YtgxGz44B6trk95VGPfJJsDo0M54GxXkBvv1n35ZHBXw4iZkBrUKvxZW3Kg2AP2Yqiao/r3okatzPev1z6Lx+hrwhGO8Hkafg5QRzohnr+2Q0GxlVbge+R91ErlPGSMAvB1lhwB2iUXwYb2G+7Qynv+nm6YOYM6h17bdGm0K4b+npF2BeqGqVF2iUGomqwae6cvJxmzKxg3bCp7e+caZdhFOgBLAXfrCq3meypz17Gri3w6CpUn6DVNh5rSnXKLvicsBek2V8GYbvvTep36WaQcVaTTFj09EW6+eSY9PREMwyAcTjEwEMfrdbJlSxcHD/rp74/icNgIh1PceOPqYQd4yxJuu20WZ501lu7uCNXVXjZu7CSZzGKzmRw6FOD66/9KOJyisrKIw4dv4JlnzsXjsfP442ezf/91+HxOrr12FYcPB7nggmOZOrWO7u4I2axg2mAoHuSYqiYC8TDRVJy9/YcBOKF2LEPxEOWeYh58+5fE08mj3Ocdpp3OYD8/euN5OoJ9OBw2Iqk4i996gUgyTsaycNkcPL/hT3SHBuiLDA0b4E2pn4DL7uDSli+oO33LRQTiYQAun3FRzrH+IgxsWl33fg4cY6HmaaW9Z9rBLFaQ7pmhID3vNG8rPeL54gI4r30exg3kQLsjd/7/MtAeCOj8bdYsRcipFCmctHcYLFmiL91xh4LxZ57ReeWoUXDffVoEmj5d8b5IwUSupUXnrrNnKwD3eNSE2eFQCWdrqz5uadH57YEDygTt7tb+Fi/Wvo+Ml+vqUmmpwwHTpptkDTvZnFyOcU3qw3SgQ4s+xd6C0XHePC5fed/fVmCSpnLz3FRG57L5uanLASeM08eQm6uioN0fPNrr6dPtv2379C/w6fbv3EQnE8EDCtB8DTlH+bH6ct6YLj/pyEXauJxCS4sedjp1QHv4YV1lfOYZHRR/8APVq1uWrkA+95yC7LxJaDB4tHtnSwucdRYsXVoYIEtK9Gf7dnWSX7xYq/qgY/SUKToY1tfnMuOzBpKPzXA4dBBLpAqDX95tPl+iTaV11dEw1BU+nVHzjnRG27f3FAY1y8oZhdQe7bo5vrmgQRJRKn04WoiRS6b0HNPUx5kM2WRSQXI0SioUAsPAXVZGNh5n849+RKynh7Lx49n24x+TjkZxV1RQNWUKu194gcTAAImBAaxsllhvL8ddcgmGabL7hRfo/NvfiPX0YDocNJ97Lrt//nMkZ0xXPmECu3/5S3WP/9WvqJw0CU91NQCO4mIkm1XHabcbw55bGm4YA+GQatMP74XRxymAj4Z1MnjmF9Vx3m7X70/ZCHWKX/5z/Uy/eIlWzw1TKffVdWpg53TCjg0aA+dywet/UId6AP+g6uG/eY0uHoiogV15JVgW4ikCIJ2IEg/2Y9gcalKXjJDNJP/ZMX7/phw93qCovI6BA1uHXeFN04bN7mTEmGmU1k2g9rhTkWwaK5umqLKB8pH6nvr3bSCTjOU+Hx9V41pomnoh7pJq0skY2XSKbDoFgLusBsTCKKvAdt6X9T3HY/o7u9wYdfWAYL23JgfETSQaydHgncieD7HW/12plZ//AobThcSi2M65CIpLsbo6MOuboLhEtfOxqEbE+QewujsgFsE4cSq2C74Kpon0ditIdnsU2Od0qPnotfXrl2CadoqLR+LxlAOC211OZ+dG4vHBHJVesKw0kUg3qVSY9vZ/MDS0H6fTi89Xg2VlWbduMfX104lEenjrrdsoKWnAMOyEQh20t/8Du92N0+mjqGgEqVSEWKwfEBoaZpJKRQiHu5g582ZCoU5shkEpWiW3A9fl/l0fANohH3Z0VAychVbiL0PB+gMc7SB/EQrgr0Er9d9AM+FvQBcFDPTGaaLA/cvA9UAj8C0U7D+Rex+ZLLiKXdRPr6dzYyeR3giOIgczb56JYTNweB3UT68n4U8Q7g3TsbEDK2Mx86aZhLvC1E+rJ9gexMpYnPPUOZzwjRMwbFqFv/KDKzn78bMxbAZnP342k+ZPYu5dcylpKKGkoQR/q5+VC1YS649RPamaVdeswn/Qr/8T8TS+Wh/h7jDB3iCjykYxq3EWgnDLm7ewd3Av4WSYSCpCS0MLiUyCdW3r8Dl8jCweSbm7nE2dm+gN95LMJpnRMIMvHvdFHlr3EJFUhMqiSoocRTzxef0k9g3uY13bOjKSoSPYwRutbzAYG6TGV4Pb7iaaipLMJGkqa2J6/XQ2dm4klo5R5avSe8vUx+HCA2o+t+0mpcyPmJXTpZtw8tO6GJjoUYC/a7H+pQ27GtENblIn+MSAVsntRRrrZi9SAJuO5Kj3pgJRT63e8/JxcdGDuliwaYFq3csnaWycYVMjO6wcCB9SyrqRq7ybDl3Mrp6c8/I4kAPnuQX1klEKjH31Wl2PdOl9NA/o82ktqZA+DncU7re+Oj2WCufM73JV9lRE2XGIgnIsHXM3PgCeaoaj8wKtqj93eDXLPRUC/15460oF4ZH2HMB+UmnxGBold8EfoXiktgu3Ky2+dDS4y9Qx/t3b9ZivAbY8oo871+lCgIj28d3dGg0XaIXOdaSSaQYHYzQ0lPDkkxuZOrVODdfcGtPm8diZMaMBj8dBLJbmyitfo6srzPTp9Tz66D9oaanHbjcZO7ackSOLaWlpGNa6X3PNKg4eDOD1Onjiic9TVORgw4YOenrCbNzYQTCY1LG7P4ZlCTNnNrB48TrcbjtdXWHuuWcNliWIZTClfgJOm4OOYB8DkQCTRx7Dzq692E0bJ9SO5ddbXmP1nn8QScaGHeZ/sfHPZKwMv9r8KifVH4PDZmdEURm/2fIaJ9SNZSAa4P43f053eJAT6sbyi41/5oTasZw9YSZXzPgib+z5B9s799BUVsudZ3wXt8PFCbVjKXK4KHMXc9Wsr1DmLsYSE8kOQGo/SFIz17u+opFwmTb9MVyqUy+epxX2bFD3xfP0eKZfNe/pA9B7NaT3aT9Wiv81WyqlqNjt1vnfddfpJNFux1bioaFBuPZaBdXV1VpBv+YafW6z6bHBQWWOptNaOxgzRuetHo/Ob7/8Zb1UPA4vvlgA7lVVCsLb2492pV+yBM48U2X9DocWuW64QeeyJ52kpIDDhzVlyWYKpiEYiaTOMw1TTek6eqG8JFcciipAH9uo89hPphcd+dw0tdLusBdo8maOhu9w6DUaa2HK8Tq3DUZ0n8n+N/4R/9/ePqXK/yvb/yqq/H/UZmVyN/ohqJigFXUo6PdECjS9bEHrLmVjaWszCQTNo+hDoAPTwoWqHYrHC+z0zZsVdB8+rAPb44/r6uSDD+rANmZMoSBuWUp/v/FGNf04dEjH43hcKUyplNLo6+p0USCZ1EGwuRmOm5DFFAvjSO3PuCYdiePJXLSGWQDvUBjYkiltU12uA+ewti9dWJGMxAs0/LzxXanvnzVF+e2I41nTINTeRqynh6qTTyZ8+DC7X3iB4y69lJJRo+jbto3y8eMx7HZMl4tMWLPFdzz2GBO+8x2t0EciBPbto2rqVDLxOOlIBEdxMTaXCyuZRAD/3r1UTZ4MlkUmmWTHI49w7He/i7uigm0PPaQU/YYGrEwGyWQY/OADiurqcLhdeI0sRl7D7itRffnZX1Uw7e9X/fl5X1fH8+Iy/R1tpprO2R3wu6c1f33cRI2MG31sgXKfyaijfEW19lU/Rv+wqaROeIf6VQN/7tf19SfvyTnSf0u174kYWa8vx1pNY5g2UrFQwRneXVzwHxBrWOPucHlJJyM4ispIxwLqLj92GlF/F8UjRmFzFSHZNKbdQSoaJJ1QV/l0PEJRWS2peIihQzuoO+GzZBJRbC6vWhdkUvR+/C6Vo0/G4fGRTSdwOLwYgSGtrJeWFUzhiopUlz7rsxiVVWBlkUwG6+3XMc/4vC6WABKLQpEXwxKszsNKs887xp91AWDo5+VygWFi/fXPql+fdDLmGeeqyZ2hchCr/RBGcSlGeSUy2Ie1aT22cy4iRZpUKpSjypfidBbj97eybt1i5sxZSCjUgddbRTTaT1PTHDKZJKFQO+vXL2HWrNvweqt5881bOO20eykuHolh2AgEDmCzOVmz5h527VrGpEnzOe+8Z0mnE0QiXaxb9yCzZt1OefkYQIbN7Ww2x1H0+7q6qWRtTvBUYDMMOlF3eBMF4S2oQVwEraA/QsFEbh3wFeBllPrehGrZD6F0+h+glfeLKFDse3N9P4hS6WtQMH8bsAHNdC9HDfBGohFzjnia4N4h3l38LjNvnom73E0mllFjuUVzKaoq4s1b3+TMJWdic9lIx9O8fcfbzLptFqVNpUR7orhKXcPZ7qGOECUNJYQ6QjTOagQDor3RYd1727o2ShpLKKkvYdXVq45ykH/2+GePMqibu3AuwY4gnkYP/mo/7aF2ptdPpy3YxtINS4ej3UYWj8Q0TA4HDlPjq8EwDPxx1aIDZKwMwWSQYmcxfZE+qn3VhFNhSl2lFDuLyUhGMXAqwh1v38Gts26lyFGEz+mjK9xFX7SPk2pPGh4Gd/Ts4JSRpxBIBKj11eI1wUyHFTg7iiHeq1T4eJdW2k9+KjdG58ZdEbDiOYd5S2nx6QDseQJOWpKjkZsKfg1TY+SOpMqn/Fo1d9fA1us0Bq5pHkz6IfS8oVR8dw7Y5yn7Nm+OdWbo9UOHc27y9pyJa0Phvlhx3NEUebsrl87SBiVNOr7ln5eOLmjMsbQPcjp5Z3GOOiafuG6d6tydJUcb1gVbdaHC4VWA7fDBwAe6eJAKg6tUfWw8VbqYMXKWgm6HTxc21i2EOYt1MaBzvV5r3Bdy7vbG8FhCsFWZAOvvLhjd1U6Dns3QcKrq4sNtUNcCCT8kAqQclYSo4ZprXmf27EZmz26kpydCfX0JjzyyniVLziTHKOf993vZv3+IL3/5OHw+J+m0hd1u0t8fo7xc49uKihw55+4UXV0R6up8eDx2otE0kUiK6movyWSGdNrC5bLR0RGiuzvC9On1OBw22toCNDeXsWDBSpYt28Xu3dfgdEOmKMrPN/6Zi085D388zIl14+iPBKgtqcQ0DDoCffx845+59bMX6xQgGaPI6SaVSeN2uI5ylC8vKiGSjPGT9S8P092vmvUVMlaWhtJqUtk06WyWvf2HGOGroMZXwfvd+6jwlFDsLqK8qBQRwR8NMMJXgceexoy9e4RL/CIwPGArB8MNVkT3kjNuxKEGdYZHvz+xdWCv1ur6wD1Hu8g7GvT4/4YtGtUJ4saNOjFct04noVOnEnJX8e56O1VVCp5nzNCKeJ4u/9xzOsXbuFFB+KOPKm3e44GyMt1nMkeb2B1zjM5VMxldADiyr8OHCz58o0blajbJow3q8izRdevglJMtqsszGHndOhTo7/kMdhFlckZiR9Piw9GCn9KRnktHyjjHNCjrc1xjQStvWYW5azCiYL4jd26R+1Ot+3/S9ilV/tPt37/lc98/mfdumKpdr5igN+pMEpKhXBX+4NHUP2dxzqCuAUOgukqOWlksKlItz4oVqt3JZvVYnho/aZKa0RUVaQZ7cXGhEj92rI4jBw7oQJbNqjnd0qU6XjU1gc+nRnV5587qal3tzA+cVVU6YMYSNgybeXQepWHo4FbqK4D2REpp7fGk0uHzg1htpbbPZ11aWR30UjmXkXxlHXRQ9XqOXu1Mpgp954F97rhlZdUlftIkxLLY8+tfD+enYxiUT5hAfGiIoV27kEwGm9uN6XAw4eKLSQwOEuvuZvujj1JUU4NhsxHv7+eDZ54ByyLW3c3WH/+YxOAgI044gfDhw2z64Q/1+UknEe/txe7xcPLChUgOsGcTCbY99BDuigpi3d24S0swVr+soNue0zzt2KBg2jBg9cswfpJW1kvK9fsU9Ctodzjh0F742veg5bMaf1ZSDof2HPlF1Dx4hxPGnwDRkFLibXbVeof96lzvz9Hrp52ao8v7NCotl5qQjgVzuelhbA4nIyeegdNTnJvoQjoRJhbopaiiXl3gbXZ1nhfB4S6h7vjPYHd5ifu7sTndxP2dOZdzg4EDW7C7PJimg6KyWmKBHgzTpHbiZ9Xg3ukZpudnkjE8ZbUMHNiMadqwO72aof7u2xjeYiQUxDzzAtWgmzak9WMF3FYWyer/ozl9Nogg6ZSyHrzFGKaJ1dWG4dXfaTjL3bSp1n3NagiHMEyzkBV/5vlgGkjQT3blcmRoAKO6DgkFlAFQWY15zheQlFaiotF+1qy5h2i0D7CGc9nXr3+YmpoTc5T2uRiGic3m+KcK/ezZt+N2lypTAKGsbAzFxfXDWe6f+9xD+P0HSCSGWLfuQXbtWkYk0k0weJjXXruSdDpKV9eW3GKdgnavtxrDsLHmjVuwS5YkarXUjGarV6MV80MomK9AafEOFLQ3oqC9HqXTHwKuRqv2I4Fn0Or5kds4tJJ+W+58D7AWpd9/GzW0uwaoQoF+BEhnLYIdQWbePJNofxRvlZd3F7/LrmW7eG/JeximwekPnI6I8MYtb2AYBmcvPZvyMeUYhoGn0oNpN7F77ER6IjTOaqS0uZSayTXEBmOEDodYe9/a4fcYOBRg/ZL12Jw25i6aq9nwd2nc3DdXfZOm2U2EOkLsWbGH9x5+j6Y5TZSML6Ez3MnkmskMxgcZWTySp855ilpfLbW+WmLpGACjy0bTHelmY8dGouko175+Ld2RbiyxuGfNPfREehhfOZ7eSC+tQ6247W7CqTDXrrqWVn8rhmEwvX46i9ctptpbTSgZoi/ax5ymObjtbt7vfR+33c0pI09hU+cmEpkEJqZi8ni3UuDjPapZTwc1xq1yOsTaYNOVWhXvX6cVcJtP702JPnCWa7V9xEztZ+sNWpk3HarNrpp7NFXe7tVFAbsHTnkaTlsJE+8GTz00f0Or8LEcnyO0Tyn7oIvb+Xuh05eTkWULWe7OEqiekstZ79L7ZD4mTrIK0g0zV7G3QdlohkF5vpKOqe/Z6VOwndftH3ndbDqX9Y72FR9SAO+tVXf4aBesv0dd3kfOVq27u1xfr56iFfaqkxS0p4JaiRcLZt+vCxGxPqibBsd+DdbeqmBfsjnjvKD+bt46raxfdgCqp8Kam3TxQFAqfu106N6siwJlY3AWj8DjtrFw4RzOPnssPT0Kojs7Q8yc2UB3d5gbblhNV1eYWbMa+eIXjyMYTJJOWySTWvnzeOz09kZJp9WZvrXVz/XXr8ZmM9i2rZt4PINhGJSUuIjHM2zf3oPHY6eoyEFvr1bnr732ddragowZo1KhRYvmMm/eREpKXFTVFv1zTrtpY2TJCJLZNBnLoqGshh+ceTlepwd/LMQvN63A43BTVlSC1+nhpe2rWb3nH/x8459x2Z1Uesu4vOWi4ep6TXEl9aXV3Pfmzzn1mStY8rd/4cSRx1BfUoXDZufY6lHUFFficbh58K0X6Ar1U1ZUSiydUDVfPmM9vAzS7SBxjXJLt0Jiq1bdrbBW5WN/V0aKYejo6WiETB+Ypap/L54HlbeDWc5/eF77f9eWSimqzk8Eu7u11N3SAsEgNtOioUEBeUOD1goefxx279a9zaagffp0bbNsmWrdfT6dX1qWkgqXLi3MdyMRXStwuwuU+ttv177GjFHn+BEjFKx//LFOO49sV16ufba0gNcjGKl0QW6ZyUCJtwDag1GGjZY/PqBzyjwt3uVU0B6K6By3eaQeczkL8998PnwipYxSy9LiUqlPP79ir4L2fLU+LyH9dPsv3T6tuP8r2/+zFff/b3nueTOgbEopcvl4uXzcXOnoXJyNC3L5smLYaO8wGfKbPPigDkQTJqgL55EZl3mzj8OHVROUHwRvvllfz29erw54oZCC9jvu0FXN0aML1fSGBh2Tb7xRz+/v10HP4VBZ00cfwbRpSq13OsmV7kUHtI9a4fixCrqzWR3gjox7ax6pOqA80C726mdyoFMHviONPeJJ1bxb1tFmdnlzu3FNRzt95p+PayKTSBDu6lRjugULcJWX49+9m8oTT8TmcqlzeQ5Q71i6lOO++11ivb0U1dbia2wk1tNDz/r1DH7wAaf84AdsuuceOv/2Ny58803SoRDpWAx7URGeqiq23Hcfh1auZNT553PyXXdhGAbZRAKbx4OVSqlBXXU1WBZ2jwdPdTWSSePEwhCBRFydzlNJ1a/nnUezWTWbKykvxL8V+RSM93XphMHfr+A/m1GwmUrCKy/A2V/R1yqqtYKfjOeckoMK9EEd6Ucfq3/ETFaZDYY5LA7LYhGNDGB3ebDZ3Zh2h1K5s2lsdieG3Uk2EcXuKkKA2FAXDo+XdDyKp7Qq5wZvYGVSZDNJ7O5isLLE/N043D7sriKsjFbfs5kUps2BZDOYdgfpRJSBA5sZMWYaMX8nMX8X1cfMRCwLZ1Fp7u+XxhYK6xezyFtweC8t08UQpytnSqesDMPlRkQKBnvRCIbbgxgm0nkYs6EZCQaw1q/Bdt6XkHBIP0+nS43sQMGzYSLhINa6v2FOn4VRVoGYJkbWQhBdzTdtSDhIqsjJylXfY9euZUycOI/zzvsp6XSMVCpCcfFILCtDNptGJEs6HaeoqJJ0Osabb97K7Nm3U1Y2GsvKkMkksNvdrF59I+ec8ySBwCGCwTYaG2flMuK7cDp92GxOOjs3UV8/nddfv5Y9e1Ywb94faWycBRi0t79HUdEIotE+GhtnkZQsbZ5KHjCM4Ti4RpQmfz6wkgLIzlfDq1EjudkoUM8A30Op9CvR6nsHMAMF+il0UcBGoSr/ILAQpdR388+Z7z8H9gIV8TSevYOsW7yOOQvnUDGuYtgc7siKudOnf2NnsRMDAytr0bGhg+L6YkLtIeqm1hHrj/HuA+8y67ZZFNcV4/A6WLlgJY2zG2mc3ajGdXfOoXRUKZIVbC7bsOO80+ccPn/OnXMIdWqf0b4oriYXpsckkooQToWp8dbQEerg/nfv547Zd9AT6WFGwwyyVpaNnRuZXj+dTZ2b+Mryr3DhhAu597R7Of7Z44dN6Na1raPaW81AbIAZDTOwxMIf91PuKSdjZeiN9NJU2oQgxDNxusPdLN2wlCVnLsFj97ChYwOTqidR4i4ha2XxGYJjy1VKgZ/zck5TbkHkoFaQP7inUBU/9iZIDqgWPdZ+RAU9rlXyIyvoUx5WUJ9NFtrE2nUxwOaByIFclvtd4BuVo3lFC2Z1I6bDwAaNpys5TivQ+XthcaPeAw27Hs/r1K20Am+DXH/JnDP8qNw/dc5kTrIF+vuwW72voKXPP89r3pMBBeCmE/LZc6lwgQFn9+jeMODNBYU89zOfy+nZD+g9vXa63t8dXmXQvXeXAnanT4F8OqaxcVZG35+VgkRAq/CpkFLxJaN0/1AbbH4I5j6kxwY/gpFzNI2mZzOMmKwO9l3robiZqGc8oXAKn89JJJLK3e81ou3GG1czZUodZ501loaGYvbuHaS7WyvyDz64jscfP1sJB7n4tuJiF+++e5iqKi/9/VGqq4s45pgRpFJZtmzpYsaMhuG4uPx1rrhCq+vz50/i0UfPwjQNPB41wzNsQlIS9Ee1Yr5gxpcYWTqCrAhiWXQG+/nl5hVc3nIRDaXVZMXivjd/ziXTLsBmmvxi41+4rOUi6ooruf+tX3DFjC9SX1oNIlgIJgbJbJqBSJDakgoSmRSRZAyv04NhGHidbgAODXXzq82v8t1pFyIIHoeLGl8FfZEh+iK9TGsYjyFJiG9UF/gj89crboKhx6D2ZxB7L1ddL9MKveHU75okcqOilTMydPCfFv32X7nl3eMNQzOC8/FCzzyjqDgXaxRyV3HFlfajYuQPHCgkIBUVKRDP+9otXgzPP69tHnlEvZaKivQy116rc9NsVnXqU6fmVJQhBePFxTrPBZ27xuMK3KdM0TX7fFH9H//QYpbXC8WeLGbr4UJFPBzVuSroCUdW0k1TZZ1Hzl/HNWmRyek4mklqSaEi73H9c8RxOicV/SRj9NOK+3/a9mnF/dPt37eJKGiPD+j+yEWdI93pTWeO+pfWvWeEAn0RrcQjusIfOgQI1TVKTf/hD5WZZFk6kM2Zc7TGZ84cdZNvbdWxta1N5UdFRbqi6ckxulIpHTz7+pRS7/EUQHt1tS4IBIPa76OPKmh35XzkfD69zlEpIzabgj5fEZx8fG51UQqumfmKfGNt4Vi+gt7aDumsUozstsLKpWXpyqTdVqiwt/foAGi3aRyHYeh51RV6Tiarx00DMQ12Pf88bX/9K7ueew6H10tRbS1b7r+fSEcHknOOt3k8nHznnbgrKymbMIFYXx+R9nY+eOYZRkydysmLFiHZLFNvv51z/vznHCgz8Y4ciWGaRLu6OOmmmxS0L1qEIUImGmX7ww8T7eggFQpROWkS3poaTLudXT/7GZl4HMPuQFweCAWgv0vp8E4X/P5Z6O9WIB7yq/Y9NJTjgCXgxWf09ao6bT96QsF9vvUj7W/0BKXZj8pV3Pu7FaRnUjkjRNFzi8ty/fXo3yswpIsI+axRhxNPaTWm3YVpd2DYHGSSMVLRgGq5AcvK0PnBm6SiAdwlI0jHI7pPRPV4LEgi1IeVSZOOBen68G3sLg/pRAQAu9uLYZikogF1r3cXkc2kjjCx24yvqpmqcdNxuH1a1RfBMAzi4UEor9RqeSZDdvUKBdjBAIavRN3l16zWL7vTBRgYIkg0orMBn1bZDdNUR/hYDErLsJ37RSQ3STFKy3OmWCaGYWC1H0b8A+D1YZ7zBYzScqyOwxAYQux2CIew2g8payEXMzdnzp1MnDiPuXMXEYsNEov1MzS0H7//IO3t6zEMA7vdjcPhYeXKBcRi/Zx11qMcOvQ3XnvtSgwDuru34vcfoKXlOkQs3n33fpYv/wqx2CCBwEHWrLmbWKyfzs5NlJY2Yrd7mDPnTr761ZcpLq6nrW0d2WyS+voWYrEB6utbME07hquEBwyDZSiYHoFq1luA+cBctALuBTajWvay3OsmCsT7Uer7vNzxDmAyBSf6PrRqH9ZvKQ+iAH0xCtgXA2+jzvK7Ud27hRrmebIW6x9eP2wqZ2UtKidUUje1jkwiQyaWYd2P12GYBk6fE8MwSIaTvH7d66pB7wxTc2INNqeNYHuQPSv2sH7JehJBNZabectMJn59IiWNJXxuyeeI9KoHQjaVJRVOseraVSQCCRxFDmxOG42zG9nwxAaa5zbjKHIQ6gix70/7sBk2nDYnrUOttAfbaQu2sWzXMn783o+ZNnIapqHfnyl1U7hx9Y00lDTw8ldf5q65d1Hnq6Prpi6ev+B57IadloYW+qJ91PpqufK1K+kIdTCiaAT9sX4ssRhTPobb3rwNSyxcNhc9kR7mNM5BREhkEsxqnEWpu5T9g/u57vXrwHQgExfBOe8jlS1aRZcslExQMD71cThvt+6TQwrWY+3groIt1yjYjrUriJ24UEH7xEWayR45CIMbFcB7arXyvuVaPW4rgqmPQlE9w24J6Shgg6pZukBdNUffj2EefS80nQxPr0rHKBgOHigYuQYO5Cj2Tl0Az2exQ06D7tAqeh5s2xyFqvqRz0VyFfgSBd6SLVwrb3SXl7Vlcnq0z/0UvrgKWhZp/5LVcz1Val4XH4Su9/S9nfaY7jvXQaxfK/bZFHT/Qx3mMwk1qSNH2c/GNTYudEjp8LXTIdaj2e9VJ+nx7o2a+W6gEXGeavBWY5qCJ6dp7+uLcsMNq9m3b4h4PMOTT57DN75xAq2tQxw8GKC7O0JVlZcHH1zHsmW7sNkMjixCmSbMmtXIqFGlTJ1aR3NzOYcPB7n22teZNKmaRCJDJJIiGEzmEnQNHn/8bHbvvoannjqH7u4w1177Oq2tftatayNjZVm69nfs6NrD1bO+wsjSKpKZNDs699ATHmIgFmBN6xZ6I0NkxcIfD3FFyxdpKq/FaXNwUv0x/MvmVzEMg0Wfu5QyTzHbOnbTHuxl8VsvEE0ncNjsjCwdoRK2WIifrH+ZwViQPX2H6A0PYYnwq82v8o9DO6kpqaCxrIZSj49kNk2Vr4LxI5pz2vRrtHpueI7Qry+EzIDucSj1PdMHEoOe72kFHluusm4B9pwpnft/B2gfHNSJYSikCHzePK0W+f16HKCoCLdTWLRImDdPq955cJ43Q16wQAtB1dU6L73lFp3qPfigtunpUQPmw4f1WHu7zk+nT1eW6SuvKKXe7YY9e5Q1Gotpu9tugxNP1D4WLICDB5WFOnGiznUXLAB/yEDGNBRMlJ0OQHQemq+u56vhDrvq2xs/4bVktx3NJE2kFLR/1KrnA4w9Yl6azug/VKkP9rdDIKwFrCNlnp9u/6Xbp8D9061AjweddOQnH3lRWb4SH9iv9+cj82ptLigbW6gs5PNxDTv4RmKkwthtFgMDSl+325WdtG+fDngLFypYf/JJBd+ZjI6jN9+sFfhx43Rgy2QUq2SzGhuXX7H8ylf09Wuu0cG0rExNP+rqtN+77tIB1rJ0RTOfl/neezpwplK5zyD/u+Y3m60Q7eN2KqD2uHLmczn9UN6Yrq27cN4xzbrKeaBDB9C8+Vx1hQ6GDkduZTRHRcpkNQbO7dTzEinVEZkmx19xBU2f/zzHX3YZks2y+4UXqJoyBXd5OdlkkkhHh+47O9n64x+TCgapmjKFXc89R9tf/0qiv59Ydzebf/QjAOweD8lAAFd5OZLN4iovx11ejqO4mGl3340B6ig/OEjlpEnE+vr0nGAQw27HXVnJyQsXYne5SAwOYiCqTS8ug98+qcB57HEKMm12rbK7PTB2ogL7N17RiLfVL+tnUOSDWFTPe/EZ7Sc4CMdPUTf5w/v0mN2hZndBP6z4je5NW6E/f7+aqemXVavzv34CUGO6vr3rSSeiGIaBs6iUovKRZDNJxMricHkZMeZkMskoVjZFUXkdhmEwcGAzod5W0vEwReX1uHwVmKaNovKRDB3aSVFFPabNgZVJKdW+rBab3QkCNlvBxK5qXAs2hwe700N+iVsAMQy8ZTUQGESiYQyHA/Nz52Jt/ocayolgrV+D7PkQXC4F7Mk42dWv5j5fG4aA1dmGDA0ord1TBEE/2ZUv6/+sU1erDF8xkkqSXfUnDJ8yHgzDGDbDM2pGIuEQhlhIKIDh9ZFdvQJSCWyWgddbw7nnPktZ2Vi83hGEQp14vdWEQu14vVW8/vq1BINtGIbJrl3LePfdBzAMrY7Pnn07bW3v8fvfn8+GDY9RUTEegLPOeox58/6I213Gu+8+wJ49KwiHu2lqmkNRURWWlaG8fCxNTbOHr7N69Y1ks0kaG2dht7sQsXAKLBJhHloBH0KBswn8FHWWvxWtuJ+CxrjFUcB9de5xEo2D+zkaIXdqrr0HncLej1bVTbTq/lMgkGtP7nqfz/V58Igh5CnA47Rx5sNn0ji7kTX3rCFwKACAw+MgFUkR7g0z/drpRHujrLpmFclQEkeRg8899DkcRQ6a5jQRH4qz6upVlDSU8NWXv8rs22fjLndj99gpH1OOzWkj1BHirdveoubEGgKHAqy+YTXh7jAzbpxBSUMJ6ViatfevpXF2I2cvPZtUNEWkO0Ld1DpGnzGacCrMYHyQyTWT6Qx3Mr1+OvMmzmPR3EXYTBuHAoe4etXVdIe7h+nuc5rmMKpsFPFMnFAyRNbKkpEMLpuLU5tPpdhZzC0zb8HnUJplrbeWYmcxgvDo2Y8iImzo2EBjSSPzT5xPsbMYZy7fPGtlKXGVsPiMxZhYGJ5acJZjYCnIHtyolPXoQYYrzADVc/SeVNmiOu2pj6pWvWqu0rxdVXDyk+BtVIBsK9IK++BGiPcppf64m1Wjbc9pt62k5o73b1Rgby/KHQupu3zZidoub0Rn5mjFhpmroOfumb6RDMexljTnvFEyCrzzEWymI1dRTxXo9jZngdk2/Lxb77+GUaDEDy8AGLnXbNpfPt/dpsabZBJQfRKUjIa1t2sVva4Fdv4E6mZCSaPu+3fo+0oM5Y435cbXgAJyZ7FW9Q0Tot1Kv492w4gTYONibTPqrIKLfCqo779qcmH+cPpTUD6elLjZt8/P9658jQMHAnR0hFi2bBdLl27A41G9usNhMmtWIx6PnenT6+nvj7Jw4RzmzZuIx+MY/goUFTk4eDDAlVe+Rnt7CMsSiorsOJ02Zs9uJBpNY7MZ9PREuP/+tTlDTUEE7r9/Le3tITo7wyxbtouHH17PiSfWYBom3512IY1ltVR4S4mm4jz8t19T7immNzLIxNqxPHrhTVT7KrjvzZ8TSkSp9JUSTycZ4S3jgomnsehzl5GxslgiPPy3X1PmKeYXG//CCXVj6Y/4+dEbz3PY341pGPRGhrj4lPMYiAaYWDuWZCaFaRhc3nIRv/vWA/RHAtz35s/pjwQIJ6N0BPsocTkw0h1QcXOBJm94ofY5MIq0sp7uAFLqIG+vOsJR/gEgDal90LMA0vsL1fb/6Vs6raj7nnt07/Op7nLcOKVmVldrtWjBApwHPmZcc5rnnhPq6gpU+bPP1uLSsmUKyEV0PvnII7pftEgNk5csKUhAi4q0yl5fr4Wihx9W6abdrvPOoiKYPFnXEvJ9B4MFU+YlS/St+XzKKH34Ydi23dS56ZHFoIylRsemoeB62kQtCIml89BgpAC0g5HC55JMwWBA+yj1wfRJWrza16bFqPy81Mr1k0jB6PoCTT8Y+ZQq/9+0fUqV/1e2/9VU+XzlPD+ByOvZU2E1ybHlVlePzHu3smpM5/TpinsyBEN7wFOhoD2b1rZ5gxwjt6KXDIHdhZhuevpsBIMa2VZcrCA9EFBtj80GiYQ+r6tTGv3ixQXjumxWVx8ffBDuvFOPXX65vj5mjD7+ZIbmnXfqa05nwfAjFCqAeNPUQXTWLH0/ZLIQT+ggNrZRQXkypQPikZg+TxNqyIno85FweQMQm6mrnKl0gbLkVkA3TJHPG4LkaUnDfxu0L5tJNp7AspmqMRchGQphd7uJ9/eTGByk6qSTAMimUgx99NEwAHdXVCAiSDqN6XIxsH07715/PRe++SaSUVMTEeH9J57gxOuvx15UBCJk4nF2PPoox37nO8QHB6k4/nhsLheZaBT/3r0UVVUpbf+KK4Yp+WXNTRjplJrIFZdBOACjjlHQ7u9XA7kxx+qE2crod+TgHo2Fsyx9POZYCA7BR9ugrVV17wYQDmo++5hj1Un+kyZ0374ehnrhtZfg4uuht0v19Wd/FSpGwE3fIPvEH+jc8y6h3lbGz70Ym6uIdCxIf+smqsZNxzQd2JwuZbSa5vD3XUCr4koc1++/AdlUEpvDBaaNdDxE//6NVI2djs3poffjd6k97lSly+cWgYz8/5lYCAaSi9kycpUwM5OFaATSKax172DOOV0XO3JfUMPKUdcNUyn0NSMxbDbEymK9+RrmjLngLUZ6uzDKKzF8xcOZ8Lab782Be0FsNu0rMKS0eU+RAna3B0nEFcg7XcP/v5LNfU8A6+2/Imd8jqwhpFKRXO76bRQX12KzOWlre4/ly7/ChAkXct55P+W1165k7tyF2O1FuN1lOBxe/P4DhELtNDbO+gSNfhSpVATLypLJJIZp9nqNW/D5RtLVtZn6+hZef/0amppO5dhjL8Jud5PNpnjzzVuZNetWfDWTkByDIgvEgB3AtNzf0kQBeRStsCdQ2vzvgD0UnOZBq+wmSo935R6HUL16PUqTP4xW5m2oi/3DRwwPRbm+tqBUe1sqgxFN89qVr7Fr2S6u3XctTq9zOLvdtJmIJbSvb8d/wE/DjAYiPRFKGkpY//B6znz4TICjst/FEmIDMVKR1DAF31fnY9dLuxh79ljW3L2GXct2HWVEN+v2WSDg9DopbihmcN8gka4I9dPrkRJhz+Aelqxfwm2zbmN8xXhspg1LLDJWhrSV5qbVN/G7D37HvInzuPe0e0lZKbpCXcxtmks8EyeQCJBIJ2gLtTG9fjoeu4dEJsHGzo1MrZsKQDAZpMRVQrGzmAP+Ayxet5ibZ95Mubscn9NHb7SXB9c9yO2zbmd85XgEUWd5VzFmZD/GrsVaMY91KIB2lOk+E4Edt8OEG6F4vN7PTIcC63i3usdXtui9Ld4DzlJ1mS9qAtcI2HYDHHcLeJv1Lz64UV/zjtJvTDattGG7T6nhKT84y3Rx2rTr3soWTOCySaWa5/Pb8xX3bLJAXXfkzexsKEU5B+DzRq95qrxYuTZSuEebLn19GOCX6PO8Id7w9TOFa4pVOCcZAFe5as13/14X6etn6e8ePAibHtCc9rKxumDfu0Wr5YaRW8zImeRFe/X3NU2tyHuqIN6vmvZoN5Qfw7A2PxUET42yADKJXDZ8o1LlXeVEMj7+/m4bVVVeBgdjzJqlOew1NV4SiQyWJfT2RnLZ7A05o7kUhmHgcmmVft++QXp7o8ye3Tic2T44GCObtaisLOKaa17ntttmMXZsOTabSTyexjAM0uksO3f2csopI7HbTSxLcDptfP/7r7N48RmIQCSSpGGUj45AL7/a/Co3nPpNsmKxf6CdE2rHYrfZsER44M1fDBvN3XvWAgToDKph3WUtF9FYVgNANBXHNAwGo0EcNjs/Wf8ya1q38OiFNzGlfgLxdJKlf/8d35l2AY2l1cQzSQaiQfoiQ0ypn8CP3nh++Dp3nHEJj/ztN9z3+UsxrSCGFVSduhWD6GtQ/FUdnPpuhcqbwD5Gte7pdnDUw+AjUP0wmEVqUNf1FfBdqIDfVsr/+C0UgiuuKLi9Pf64ls2rqtQh+emnlde+bBmpVW8yeNIZeL0GBw8W5qGjRyvxLRTS+aLDoQWg3PQJh0PnqbGYVunLypQB2tgIFRWa297SUjCyTyQKme5FRTq/LS7WtxSLwY4daoxnGNpWRI995jQLtyMnUcyb0rmc/2w2lz9uWfrGbDadl/qDOqf9JJ0eFIj7PHrTjMYVzFtytJzzmOajP1vDKEgjP93+Q7dPqfL/L2z/lqncJ9vkK+eZuLbPJAq0ukxS230y790wtELgLFEAb3NpvE3pGP0nN0ydNOTPSYV0pHGVIKaLdNbA7dbBqbu7MNBFo0r/aW1VJ/lKTfGiuhpOPVXH1/y6UmcnvPGG7i2rECuXycBjj6l5yNy5euzIVVG3W8G7iK5cHj6sLqGHD2sfLhfaIehg1u/XgS6Z0kHsk1t+pbOjR6vtefB9ZLalaeqxY5pzg2eO3n1kBEepTz/XvOldHti3tutzp4NIeztbHniAbCKBu7RU6fJVVVRNmQIiZFMpxLKG49uy8TiJoSGyiQTRnh623HcfZccey4WrV2P3eIgPDrL1xz8m3t/P+G9+E0TUmO7ee0n4/Uy4+GJsbjfVJ59MYnCQTffcQ3xggPLx4wu0/eefx1VRgc2dq944XaozL/IpyHZ59Hf1DxQi4lIJNaMDbWtlFeQ3jNLXVvxGwfy8BQrGf/2E0uqnzlbQvnmtUudHHwvf/yHMv0b78pXB167Uz2718lw1f7l+l6edipGVXBzbBaqzTkbpb91EsHsP6XgEy0rT9eE7pJNRMsk4ks3kFj1SpKIBokNdOdBukk0ltf2ud0jHQ6TjYUK9rWSSEWx2B3UnnIFh2smkYlq5zqTo/ujvSP67ZRgKwDM58C6CGIZS48NhbJ87H8oqlMJvd4B/CEnEMWx2RCyM+mYMmw2rSyUsttPPQSJhSCU1/91XjJimOtFPPAnD4YSgX2nw/kGyr72SYzl4sTrbIZ0i+/qfIJPGcDqx2g8iqQQgGg0XjShd/tTPMBQ8yMqVC4hEeqivn04o1E4k0sPKld+jpKSRK698n3PPfQbTdHD++c9RVjYGr7cKELLZJGVloykpqWflygWEw13U108nGGwjEDjIm2/eqkyGokra29cTifRSXz+ddesexG53Ulc3FZvNwXnn/YzJk79NLDZIR8cGTNPOjBk3EYn0YAJZEeKo8ZwAtahRXBd6k9uLRrYNorT564GvojT3NAroLbT6Hs8dW4DS4weA+3KP61Aa/Q2ojv5GtDIvaGW/FV13mo4C/t5Ulvb17cy8eSYT503EV+NDclUK02aSSWZoW9dGcX0xx3/1eDY9vYmGmQ2UNJTwuYc+N9y2uK6YtfetxX/Qr7r0Etewydy6xeuID8ZpnN2It8bL2Y+fzTUfX0Pzac3Y3XYaZzcS7Y1qfvw9awgcDFBaX6oxdIEEllgsWb+EFXtW0BPpQRC6w90c9B/kutevI2tleeqcp1j5jZXcNfcuGksa6Qp1UeurHa7U+5w+aoprqPZWs6lzE63+Vm5YfQOTayZT5CjCEovDgcN47DqmdoW7WLFnBY/+41GqvFUEk0EeXPcgK/asoNilVfmD/oNs7dqKWGkF7W3LNObNNUJj3ew+BeagxnK7lzBcfZd0zoW+JKeJT2vV3O5VKry7WoG8zQlVs7W/eI+C+PLJUDRSFwS2XKcLBfbiHGgP6HWTg1qNTkcg2Z/Lah8omNCZtpykbKS+n0ingul8NdxKKz3dSuekPU4F1sFDuUXOnO4cCjGsthxoz1e5Tacey7cracoBdYf2FenI+YJ06OcSOgzvXKt0/56Net5x39BotzcXKI3dUQSnPaoafSuj1fbaFjWk+9v1Cuxjffpf5a3JGbjaFcBvfVT3Dl9ubpDVe4HNkVt8yD1PDGoFv7he2X2JQWw2GY6CmzmzgXTawmYzyGaFoiIH0WiK4mIX06fXs3lzJ+l0FtM0CAYTZLM6xjY0lDJjRgPZrBAKJentjeL1Ohk5soSNGzuHK/h2u0kmowZ2W7Z04XTaaGmpJxhM0NYW5OqrV3HggJ+nnjqH4mIn3d1hWlv9ZC2Ln2/883CE29K//45qXwVuu4ue4CDvd+3jspZ8rvoXwYBUNn1ULFwqm6Yj0AvAE2t/T23JCKp9FVzechGPXngTNb5KtnfuwW7a+NbJ5/Ivm18lbWVw2Z38YuOfufaPDzEUCxau03IRkWScG0+bj0gGI9uljvDZLtWwF82Gvhsg2w81j0LsH6p/dzRD0RwwfFD7rL7es0Ap9CNfVkr9/wZDujyl8vHHlYK5aJFy0Zcs0UrRsmWwZYsenzeP9OzP0NVl0NWloD1fPRcpaNdNU+edoZB2b1labFqwQCntXm/B+669Xee6VVV6LJ/jnicAdHcr7j3mmMJ8GDQCLpHQav727YXsd5uZi4E7MpMddP6ZB+QOu84xDbQAdahL9zZT4+Ly89xk7s3n56AlXh23onHtG3Rx4MhY46ylAP9Iw2br/4A5Pt3+czYR+fTnEz/19fXyP2qzsiKpiMjgx7q3sv96u2xG23Ss0302ffTzTGr43BdeeEEA+dOf/iQiIpd852KZdPwxMvn4cXLK1JPkrdWrRFJRkXRCJJPWc7NpkdigSDKk/SUjYqUTkohnZeVKke3bRVauFBkaEunqEpk3TwXL8+aJtLeL+P0ifX0ie/eK9PeLhEIiO3fq6zt36mtDQyK9vSIdHSKPPabv8bHH/jTcpqtL5LTT3hbTNGXJkqXDv3oyKRIIHH3NQEBEslmRcFRkwK/7XftFEkmRdFr3oYhINK7P0+lCm3C0cCyVLpyTfz0UkRd+9px+hi+/LJJOy2lz5sqo+gaZPGmSTD7xRHns9kUi7T0i0Zie+1GryJrNIgN+SYXD8u5NN8nHv/mNDHz4obx3220S7e2VhN8v0d5e+cfChRLt7ZVkKCSpSET2vPiivHfbbRIfHJRAa+tR5757000y9PHH0rFmjfzu+OPl3ZtukoTfLz998kkB5Onrr5eOdesk0tMjt3//+zJuzBiZMHq0HO/zScfatZKKRCQZDErn2rUytGePBA8flmhfn1ixqEj7AZGeDpFQQGTnBn0ei4pEIyJD/SJBv0gkLBKPaZueDm2zc4M+j0dFDu7R57GIyE8fELnsbN3HIvLCIw/pZ/j7F0UScZl+yikyecJ4mXz8cTJxwgQBZOc7b4i0teo57QdEejuG+87Eo5JJJeTw1lel/+A2ScZCkggPSjqdlHQiqj/JuKSTcUklopJJxSWdTkoqHpZkLCTBngOSTkYlnU5K+/bXpf/AVomHByWdSkiw54D89JknBJCXfvdLSYSHZP17a2X69Gky+cQTZcKEY2Tx/T+SVDwsqXhYQr2t2lcyJu3bX5dUPCzZREKy3Z2S2bNLst0dkl7+a8n2dEo2Eio87+6QbCIu2f5eyQYDkg36jzieECsayZ3fKdloVKxQUKx4XNt0HJbnr75cAHn51uvFioRl49tvyazp0+TEE06QyZMmyVuvrZRsNKr9DejfNRuPiRWLSiIelOXL58m99yLLl8+Tvr7dkkgEpb9/t2zY8ITs3btKenp2yvLl86S7e7vs2bNSurt3yMDAXolE+iWRiEg87v9EHx9JNNovVVVF0tRULZMmHS8TJx4rL7zwjOzf/4Z88MEWaWmZJuPGjZPJkyfKY4+dLd3dOyQc7pU9e1ZKR8dGWb58noRCXRJORiRoWbJDROaJyEYR6RWRlSKySUT2i0hYRIZEZKuIXCIiH4nIE7nnK3OvhUSkL/d8h4j0iMgWEWlsbpbRxxwjx0yeLBMnT5bbX3pJukRkwXXXSWNzswDy5PbtsjXX5yoR6RKRj3P9BpJp6X6/R/b9dZ8kwgmJB+ISG4pJpC+ij/0xCbQHZHD/oMQDcUmEEhLzx6T/434JdYUkEUrI3lV7pXNrp2x4YoPsXbVXQl0hCfeGJTYUk8b6RhnTPEbG14+X5rJm+c0vfyOHNh2SM2acIWOaxkhzabPMnT5Xdm3bJa/Mf0U2PLFBQt0hiflj+jMUk76DffJ+9/uyb2CfBONB6Qp1SVeoS97Y/4Z0BDskEA9IMBGUUCIkwURQ/DG/dIW6JBAPyJbOLTL/lfnSEeyQUCIkA9EBaQ+0y/xX5ssTG56QuoY6Ka4rluMnHS/HTzpeHn3uUekIdsipnz1VRh0zSiZMnCAzZ8+U1e+ulu3d22XlnpWys2en9IZ7pSvUJe2Bdjk0uE+soR0i780XK9olEuvW+1y8TyS4TyQZ0J9ol0jnX0UGd+g9KBkQSfhFBraJdK4SSQ6JpEIie54W6VglkuuzualBjhk/TiZPOl4mn3CMvPSbn4skBkQSQyJ7fyIvPHq9jkE/X6R9JIZE4r3afyqk7yWZu/+mE4XHyXDh/phO6PPcfVFSUX2PqajeNzNJbRPu1HtoJiUS7hJJJ6W5uUmOGTdGJp9wrEyefKK89NtfiQx+rMePOUYmTz5Rj7/429y1koX3kU5q/4mgSOtKka5NIkN7RaJ9+jw2IPLqPJFH0OfhLpGerfo42q9te3eKHFglsu1pbZ8I6vO+90WivSLRPmmur5ZjxjTJ5ONGy+QTJ8lLzz0k0rpSEm2b5JpvnyfjRjfKCcc0y/wvn6vX690hEvfr7/v6JRIORGTevOXyxBMbZMeOblm1aq90doZk9+5+6eoKSSiUkB07emTevOWybVuXdHWFZOXKPbJjR7fMm7dctm/vlq6ukKxatVcCgbgEg3FZtWqvbNvWKeFwQhobm2Ts2HFywgmTZMKEiTJjxg3yt7/tkuOPP0FGjz5WJk6cJGPHjhObzSY7dhwY7mdoKCbz5i2X9vaAhGMx6QsPSSQRk2A8Ih/1HJAfrHpWwomoDEYDEopHJJSIylA0KAORgPRH/LK2dZt80LVPbl3xuOzpOyy9oUG5c+VTcmCgQ363dZXs6m6VO1c+JY1NjTJu/HgZd9wxMuH4Y+WCWy+Wj3sPyYsv/0EmnzRZJp14ohx73HGycMkPpT/sl3AiKuFEVIKxsATjEYkkYpJODYl0zBPZjUjHfJFMSCTVLZIeEEn3imQCIqFVIvEd2i6+Q9tkwiKJ3SKDT+TOC4hk4/80fWxubs593ybL5MmT5aWXXhIRkddff11OPvlkmTRpkrS0tMiOHTv+3VPX/9QtFtOJ5MqVIu+/LxIM6uOtW3Wi2NGhE8GuLv3ZvVuCgazMmyfyxBMiW7Zo8507dd/fr3PTjo6j56V+vz52u7XdwICef8kleslAQI+7XAkZN+4aGTNmnJSWniAwX+bNE7n00uuksVHvJbBdenv1LeavOTgoMn++vsV0IqPzyzWbdb6YToskUzp/DUV0HjrgFwlGdNJ7ZNvUEfPV/Jwz33bAL5JMSaKzR6658ioZN26cnDBxosz/xjck3tEtX7jgAhk/frycOOFY+dzpp8u+VW9pv7v2i6Qz/61/5v+tG9Ah/wZG/W8Hyf//+PM/ArhbWQXi+f1RgDzzr7f7JMDPZv75uYgcPHhQZs6cKTNmzBgG7v6hweG22zZvkvLycsn2f6STkWwOuGfS+nPke0lFJRzMyMaNhYFo1SoF6h0dIh9/rANfHqSvWqXg3O/XgWrfPpGNG3WfG1ulo0Nkx46DMn36TJk2bYY8/fSf5IkndHBrawvI1KnT5Nxzz5elS5ce9ZFFoyI7duggu2OHjuuSzg2Ea7fo4JUH4+nc4JZMFUB8IqnPU7kBL5EogP58u90HRNp75OBHu2XmjBkyo6WlANxPPVX+tPzlQv/5hYH8QkAiN9AmU5IKhWVw924JtLbKe7fdJgMffijxwUHpWLNGBj76SKI9PRIfGtLnu3ZJtKdHon19Ejp0SKK9vTLw4YfDAD4P1uODg7oA0Ncnez/6SGZMny5TJ06UXz/5pKSiUXng9tvl1HHjpGv7dkmGQrJ30yZJBoMS7enRhYK+PkmGw5KKRmXgo48kEwoeDdrzADwP1If6RQ7uVUDd1poD9q0iIb/+5IH+zg36eiwq4h8Q6WoTGeqXg7s+lJktLTJj2inyp8eXiLTt174O7RPZuUGW//Y3csKxE45eCOjpELnyAm0XDUs2lZBUPCzRQI+Eeg8Mg+h0KiHpZEyBeSIq6VRCYoFeadv2mr6ejA23adv2msSCfZJOxiXq7xlus3/vxzJj+jRpmT5NXl72kqTiYTn+mNGy7Hf/IslYSPp6u2XEiEp5c/kzkoyFJBbokcNbX5VYsFei/m6J+nskFRwYBtjpV34nmQ1rJdvfK1YiIelXfiepe2+SzN6PJBsK5oC7X7LhkGQ2rBUrFJRsKCiZfR+LFY+JFY1INhySbA64Z0MB2f/OmzLzlJOl5aTJ8seXXpJsNCL19fWy+i9/lmx/r+zeuUMaGxok4h8SKx6TbCyq4D0Slsze3ZJIhCQY7JD+/t0SCnXlgHhQQqEuicWGJB4PyN69q2Tjxqelv3+3BAJt8sor8yUS6ZXly+dJT4+C+O7uHTlwv0Pi8aAkEmFpamqUDRvWSmfnVnnllfkSDHZIIhGW2bOnydVXT5Pu7p3ym9/8XCZPPk727Fkpfv9hiUT6hhcBwuFeGUrFpEsUcG/M7UOi4HuliPhFpFNEdosCan9uv/uIc+aJyE4R2SsK3veJSERE+kWkurlZ/rB9u/hz7QO5tj/++99lZ3u71Dc3y2+3b5eVogsCAdEFgX2iwD2aTEvMH5NEKCHdO7pl+bzl0r2jW0JdIVk+b7l0bumU2FBMQl0h6d/dP/w41BWSeCAucX9curZ3yd5VeyXcE5ZEqAD++z/ul6aGJtm4bqP0f9wvwc6gJEIJad/RLsv+ZZm8/M2X5V7ulUunXCpzZ8+VUGdIOrd0yivzX9HFg/6IDOwbkHggLtF4VLpCXbK1c6us2rtKgvHgMIhftXeV9EX6ZCg2NPwTToTFH/PLx/0fS0ewQ4ZiQ9IR7JBVe1dJf6R/GMQ3NjXK2+vfllAiJJ3BTvm4/2MZig3Joe5DEklEJBAPyIt/eFEmTpoogXhA/HG/7B3YK/2Rftk3sE8C8YCEEiHJpMJipcIi8X6R4F7dx3tFop0iA1sViCeDudf3K4gP7NZ9cJ/I4DaRd+dp20QOwCcGRJJBaW5ulO3rV4u8N1/bD+3MPe6Ug3t2yswZ02XGtJPkT79eotdJDCloj3Vp+0xcAXgmqfe//OJ1bDB3PKWv5e+LscGjgX46UTg3mz6iDwX+zU2Nsn3L5sJrqahIuFOaG+tl+6b1//ZiQX5BPRkWSQQULLeu1P2r80R6t4uEOkR6toi8Nl8BeWxAwXrXZpHWVSLxIQXYybC2f3Wetg+158B9r8jQXmlurJPtT5ypbeJ+bde1UW74wrFy7YJLxBrYLRIblO7WD0SCh0WG9um1Qh0i3VslFgrJjh3dsnt3/zBQ7ugIyu7d/dLREZRQKCHz5i0XuFfmz39FenrC0tcXkZUr94jbfb/Mm7dcenrCsm1bl8yf/4p0dARlaCgmvb0R+eCDHqmurpe3314vfn9MVq3aO9yP3x+Xvr6I7N07ID/4wf0yd+7nZN685bJjR7eEQglZtWqvbN/eLX5/TEKxqPSFh2RXd6sC8d5DEoxHJJqMy57eQ3Lrisflo54D0jbULaFEVPrDQ9IXHjoKaA9FgxKMR6QvPCQHBjrk1hWPy4kPf01Kqytk/aYNEopHZG3rNpm29Ftyy1+WSnl5uaz5x7uyq7tVrvrFveJyuaSjr1vWtm6TvvCQ9Ob66QsPiZUJF0B5qkskvjMH0LeIpDr0WCbwCXAfEUn3i4RWisS3apt/BbSLKHDfvn37UceGhoakoqJCPvzwQxERWbt2rUycOPFfPf+/dIvFClWe9nadWH70UaFqk59g+v0FZO12S2xfu+zYYQ0D5fxLGzcW5o2BgM41jywA5cF9fn65ZYt2nQf4O3aIfOELN8jXv36thEKW7NghcsEF3bJzp8jzz/9d1q5tl7q6ZjnzzO0yNPTP13ziCZ37trdlxMrPOfMFo90HROKJQvEomdJiUyJ5dDEqkdRzjiw+5eecuULUDVdfI9dedbVYuXlp9/5WiYfD8tqKFWL1D4mEo/LU0qVy2pw5wwWqT4H7f872fwLun1Ll/ydun6S8w/93U7l8O7sHysbp3rQd/dwwsDJpLr/8cp566ilcrgJVqqy8YrhtMBTSvvPUQJFc9iw5t99RmgdbMgoxbCRTR7u719er5tw0lUJkyyWmFRWpriedLuRexmJ6biymbe6/H9xui+9//3K++c2nEHHR3V2gzt9447UsXHgXVVWV//SxFRUV8uCPOUbdPgGNyDh+rFKFEinNwgSlwYsoHSif1W4auv+oVWlDebdNEX0+thGrxMvll17GU0se0c/QsrSPeCKX9y76YzM1831Mg+qMbOawq7zpUDM4T00NpyxahK+xEdPhoGrqVIobGkiGQmy5/37cFRUk+vtJR6PY3W5cFRU4fD5KRo/GU13N1NtvZ9T55zNxwQLSkQjT7r4by7K4/NJLufuKK/CVl+OurAQRnnrhBS5yOGj9zW8wTJMRJSVs+uEPiQ8MMP6b3yTe30//9u2IZVHc0IDhcCAuN0RCSouPBGHcCQUfBZsdXG6Ne1v9MvhKVfce9Ku+PZ/TXlymVPhhgzmw7A4uv/pqnvrhD3A5nRoLtypHm//rMhh9LL/4l19z2aWXwmu/V+37i88oZf+kGXDeN0EY1ps73SV4KupBwMqkQCwMw6SoYiSxQK/S3xMRPGW1ZJIxuj58m1Q0gFhZKkdPxTRtGKaJw1NM3fGfIZvN8p1vfY1HlizG5XIx1Pa+usq7vIQiEXXsj0Swm1DXNA7TZieTjFJU2YDd5cPlLcdmd2K6PJhnfwGjpAzznIswGkdjrVmNBAYxzzxPc9ebRh/hMB/GcDi1XXcHht2OUd+IDA2SXfVHiIRBLLIrl2NFwnzvvsU88eRTuD1FWFv/wcCB/fT39/O5z34Gw+VmwoQJlJWV8fprK7HaD2FYonT67k7MhiYMbBiGCRjY7R5EMqRSYXp6dhAMttPevp6mpjlMmvRN/P6DxONDnHnmw3R2bmbXrmW8997DeL3VlJU1c8EFP6e8fAwiWfz+VrLZJJaVweUqprFxDgC9vd3s2PEh8+d/C6+3igsvPIfDhw8yOCg4HB5sNidnn/04kybNx2ZzkI4N4BGhAXgSmIpS3r3AHHJDEmow14Xq0j0o5f00YBSqUa9Dde9bcuem0Og4G6p1N4CZKKXeA5x+6qk80NCAhRritQANKC2/GaXqCyCpLNGeKNlUlnWL17FnxR5CHaGCw/vSDZg2k3BXmLX3rwUD7G47do/qDgWhpL6ExlmNOIocDO4fpG1dG8G2IGvuXoOVtUjH0qy5ew3xgTipSIoNizcw98S5nPXIWXxz1Tf57iPf5XD7YZzFTjYs3UD99HqCbUFev+Z1nEVO0tE0WcnitDkpdhUzqXoS+4b2ccXKK+iL9jGpehKbOjcBYGDQH+0nY2UQhHJPOS6bi8HYIEWOIuY0zSGYCBJJRXDYHBptZ1lkrSwDsQF+vO7HAJSWlZK20mzo2MD+7v3E0jHS2TQOw0GNr4aMlWFE0Qhi6RgOwLQyGNmE/nXz5nTxHqVpJ3phRIsaxqUC6lJud2ueO5a6y3vq4fg7oXiM6tIFpalnokovNx1wyrN6j4t3w7E3YWHj8ssu5qn7v4/L7VGddvkkpchncrpt0L+6SMEF3uFVMzmbS/tNhfVemb8vOkuOMKuz6fvIn2tllcLu8Or5Rl62JgUPPtMO7sqcvl7/Nwu58E69ryNK7Rer0GbLw2oMZ3dpfvu2J5TGXjoGznhW49t6NkFRDZSPU+f3WJ9S68WCTQ9C6wqI9ujnVD9HfWxcZZrf3v53nQ8YBnzmcaJDnfzinQ4euO0yjGArZJPUVuW09Z5Khl31K44hGxnC63VQV+fj+efPp7TUTV9fhIMH/RQVqX/M0qVnM3/+JB5++Ex6eiJce+3rNDSU8PLLX2XRojkUFTmory9m6dKzAbjuutfp7Y1QXe3D5bKxa1cfbW1BZs1qZN68iTz88JnE42kGB+N4vU5eeunXGMZUZs9uxOXS/7/aWi/d3WEMwyAWTxNNxhiMBbn4lPPojQxp1oBYw3T432x5jYqiUpKZFEVODwYQScUwMEhnM3zY00pvaJBEOkmR0z2c4V7i9hJPJxmMBZk88hhWXf4Ut372YjAMevpVV9/kraK0vIzH3v0d5Z5i3HYnAxE/P1n/MgORgH7X0x0a+wZqOBdeBoNLwAqBFdDvauVCKJ4PNU+rgV18o9Lq03mT3TT/3q21tZXKykomTpwIwNy5c2lra2Pbtm3/7j7+w7dUSt2Pr7xSueqGoRPE0lLVuN91l046S0r09XXrdHLa10e2qo6uLoOlS3V+mM2qBHNwUA2TOzq0+7wx/cKFOgVsalK/pHxK0tKlegmnUy/94INR3nnnF9x22wNYlkFHByxaVEt7O8ydeypjxzZgt8Pdd6v5cktLISd+8WI1vquthZG1YLidKtMMRdRLqb46Z1CZc28OR5UuD0qlH9d0dGTbkZLNTHb4cTQa5Rf/8iseuP8+jBydvjYpuN1uzj3jcxjJFDjszJgxg0Nt7Wp4l/d2+nT7L90+Be7/EzeRo2Pb4BMA3PzX24nktHFHaNjzzwEycR5bvIjZM6Zx8tQp/3TZO+5cyNjxx/Clr3yVV/7wIqa3WjVtkjOrESkY4ITbwcpgSBafVyVEdruOK2PGqI69txe+/33VCpmmatw3bCikc9hs6rC5YoVq24uLNXbzJz95jBkzZnPxxScrbi5VydIbb7xMMGhy1lkX/psfXVGRtvd4UEB9pF4oL2AqLlJADfqGU2kF13k9kcMOJ09U4ZHNPBrYG/DYfQ8we8LxnFxZW7hwSo3s7rj3HiZNOYmvfeEiDuzbp5nw0ThqUMRRBsk2l4toRwf927cDEO3sZNO99xLt7sZbW8spixbhKCmhctIkHMXFaqhmmli5fPf+rVtJBoOcfNdd+BobcVVUgGHw+JNPMnP6dM746leRbJbWl1+mc/duBvx+IhddxI1r1jD7M5/hqVtvpfNvfyMxMEBxUxPe2lqqTjwRsSyyySQGYAT9MNCj2vZxJ2hu+MGP9bO1svra9M/AN64Gb7GCeKdTgb6gYL6mAb55jerlc87xjz30ELNnzuTkE0/MfeZOOPdrakx33jdo37eXv7/7Lt/6xjf03O//UJ3oYxF9XlWLlU2TigXp/mgNqXgILItMKkbv3vWkE2GiQ51HxMCFKSqrxVc1algHP3Bg83DcWjIH4g3DoGf3Wp548mk+c8bnmXTsGEQsYv4u0okoP3/+Z/zw/gcZO+5Yjps4icUPPsSEKacBBkXlIykbeRzpeJjOD97EsjIY2CAWIbv6LxAKqMN84yiw2TGcbmznfVkN4yJhzJmnqa5dLHC5MOubkFhUwbbLhdE0Rv/JTBuy50Meu+N2Zk2bxilTTgK7HXPyKVS6XNTV1rJsxavgcLBpyxb27N3L4Y5OjKbRYGUxTBtmfSNWZzuChWna8fsPkMnESadjANTXt1Ba2kRj4yxELDo6NuDz1REKdeBweCgpaWTixHmceebDBIOHWbnye/j9BxCxiEZ7CYU6MAwbX//6lzj11At55pn3GBgYZOvW1xk5ciRTpnybN9+8lUikm5Ejq9m37wMsK0MkopPLs856FDBwequwGwYNqIu7HViPgm8L1bwPolp0n/6XYaAGdgK40az2DBoXNwnoBa5E897twKKLL2bmpEl8/7LLaO3vx4eC9FNRM7yTUDA/cMS/bxgF/uK04Sx1YdgM5iycw1df/iolDSWsunoVjbMbVccuwvol6xVQHw7y2pWv4W/1k46lh0H9ygUr8R/0D2vT8/r2ZDDJFddewTXLruEbF32DjgMd7Fq2i3UPrsPpdVJSX8LCSxdy5qwzsbIW5zx1DhO/PpH1D69n17JdGHaDjJnhgP8AV6+6mlgmhtPmHNa8d4Q68Ll8zGyYSV+0j1gmhmmYHAoe4srXrqQ73E0gEcDr9NIb7SWUDFFRVIHb7iZrZRGE73/v+8yeNpv7brmPb439Fm3BNjZ2bOTKy6/kss9cxs8e/hm//c1v2dy1mVAqRCQVIZAMEM/EiaViOAwwYoc12i3eo+Zw+ax1m0Oj2WLtsO1G1bBLBvo3aBvTBQPr9ZivGfrfU+179ABsvV6j3EwXF196JZOmtHDZxV+j3xoLvtE89uRzzD7t85w85xzA1Kx2m0/BdLxH8+MTqlcm0lFYyMZQUJ6PcnN4dTHBMNVTJu+oHunR+6XNmXvemVv4btZ7cj6vHbj4u5cy6aSTuOzyy+lv3ZbLbxcu/s7FTDppCpfdspj+SG6ZKnAwZ9Bn1/cquRvLqQ9r1FugFY79Bnz2SR2jY70Kzu1uGDFJF/q73suZ55n6uljQshAu/KMuPsT71Y3eW6sLDO4KLn51JJPOu4HLLphCf/vHtEbKqCgvZ/GT/8IpX7mTuWd/kbfXbdPFBSutv/+aGyEVxlZaSzSaZsGClezfP0Q2azF2bCUzZjSwYUMH+/YNYhjw6KNn4fM5cbnszJ7dyMMPr2fOnCaam8vIZi0Mw2DTpk4GB2PceOMMqqqKcDpNslnh2WcXcuGFp3HttVfywAMt+HxOurrC3HPPGv7613cIBoP8+te3M3t2I/fcs4YDB/yMH1/JrFmN2O0mLoeDCm8ZNb4K/PEwJ9SO1fsDBpdMu4DzjpvDHadfguQWWTJWlsFYiGffW05HsI8Pe1op9xTTExmkzFPMvv42RpZWcdWsrwAGV12+gGlTT+HSSy/lH7u34Y+HeebnP+Hq7y7g99c8yuIr7uAnz/+MWz73HQLxMBgGv9r8Kqv3/IOBWICsAI46jX0z3VC9VAF65e2a126W6vfA3gy1P1WDut5r1F0+0wee6frd/T9o2y+++GImTZrEZZddRn9/P+PHj2dwcJD169cDsGLFCsLhMIcOHfo3+/jP2pLJJNdeey3jjz+eSaeeyrdy1uz73n+fWZ/7HMfMmcO0ffvY1d6uJkeWpe7IkyerSd3BgziTYWbOFNxujSO+6io4dEhjh0tKNGM9mFuve/ppNUoG9bYTUSn97t3w1FN63j33KHC/4opWysoqePrpxXz2s6dw111zeeutt2lp0ULWwIAuDrS1wV//qil1d90Fq1ZpTnxdnerdM1m0uLS/TeefqbT6KaVyWvZURgtJ2awmH4ECeUTbhiJqvjxtou6PiDBubW2lorKSxQ8+yCnf+ipzb7qKtw98rH04Haqhb23niSee4Avnnafz4PyCQCb7qdb9v3D7FLj/T9wM41+vsP/ftjvS0E6EDze9wyt/WcVd180vuMIdsf34xz+mdf8+lr30e25bdDcpT71OOgxDqwjwT9E1YjrANMhmFagbhgJ1ETWQmzNHB8RsVgevkSPVsCPf5s474eWX1awjm4WdOz/kt799hXnz7mL9eh0rvF647LIeliy5n1/84glc//Z9ByjkwFtWzjBuMKBGHRg6GIVjCsgFHbBczkIcRjarMW6WVVjlzJt9tPfw4Ycf8sq7f+OuHy/W/EzQyY+viN/87Hk+3r6d9/++jrlnnM75X/qSXtfh0IE4bxayrw0rowsHpsNB+YQJYFnDBnE2jwfJgXRXeTl2txuby0U2Z8SSTSbZ9tBDWrGvrFSPkkiELffdx6a33mLlW29x04IF9O/YAabJ6AsvBJuNTCZDKpvlreXL+Zef/pSfbNpExTXXUFRbS8Lvx3Q6ERGyySTbH34YyWY0vq20Alp3acXckYtuC/kVbJdV5oB8Fnwl8OKzSrdwuTW/PRwofA+zGSir4MPRk3nljTe566YbFPjnnUur69VN3uniV1dfwvmnzmaEpLXSXl6ljuzxqF4vm0XSSfr3byTYvYehQ9shVzEfMeYUBg9sw+70kE1FsdkdeCsbMEwbDrePqnEtGuU2dhqmzY7dWYS7pIqej/6OWFkGrEr+9JcV3HHrjRSVj8QwbYyceAbeipE88uhS7v/RjzhwsJX3d2zj7nvuYfdHu8EwyKTiGIhG0lXUk4mHMbIZJBhQUB4MYDaOwmgchbX2LTWLMww1sWscpc7xjaMQw9RFjpy5ndXdAU4X5qQpyNAARMJ8NHkWf9q9j0XXXq3xcJk0YlmYDU38+eWX+dW//JqpLS08+fTTzJk+DVs4hJHJIKaRa5tFGhoIBA7S2bmJhoYZ2O1ukskQRs5oL52OEol0k05Hqa6eRCTSTVPTXMCgtLSR0077IXa7m3fffYBdu5axbt1iALzeGpqbT2X16r+wYcM7rF37OiUlLq666maKiqrIZBIAfP7zTxCN9uFylVJdPZFwuIu1a+9HxMJmcxKLDWj2uAibULf4IdTN3Y0C6elo9XtkfshD60mR3M9+YBsK3ueg7vPdwC1oNX7V2rX84/33WbVtG9tHjOCm73wHCzWnm51rfx8QRCv2SWADulgwG0g67dgrPZgOk9LmUppmN7Fu8Tp2LdvFhqUbcJW4MEyD83563lGAev2S9SQCCSQrhDpCzLx5Jg6Pg0hvhNevfX04Gu71P73O1o1b2fH+DiafM5nrf3A9k+ZP4qzHzsLKWDz06EMcajvEdV+5bnhRINob5Zynz+Gaj6/BUeTALDbpinbx6JmP0lDcgMfh4bGzHuOP8/5IQ0kD1666lkQ2QY23Bq/DS42vhu5wN2+0vkFHqIMqbxWWWNy/9n56Ij04TAftwXbWt69nxeoV/OXvf+GF116guqqah259iI5QBzW+Gr5z73fYvHszt//gdu5ZdA8t9S0UOYroDndzz5p76A53U+OrwcSC3Q+riZy7SsH5thshGyvEVe1arEA93q2gvXpObnHagrLJ+pffdKWebzi0fdsyiHex9o1XeH/9X9i2/nVGNEzgO9+9hA9f+gav/OnP3PX9r8Dmq8BKQGi3LhDYi9SA7bjbNE5OpJDhXtKcA6W5inv+NjpsMOfIgXEDSkcrsE5FtYJeOiYHajMKrkXA5mLt397h/W1b2Pbe24wYMYLvfP9uiHSy9u03eP+NF9i2/h1GVJTznW9/Xa9V2py70UUK92TD1PdcVK1V9zU3QigH8Dfcr/uiKr2PFzdoNd1Kq1N8nhnga4b6ucoiCLRqrruVgWgXa//6R95//322rfkjI0aO4TsXf4uMmBxua+f4CWPZsvavPLn0Mb727UvoPbwbMMFXoyZ10S6ywS4WL9ZM9u7uCPF4hn37BrnyyteorfXR3R0hEEiQSmU5cMBPa+sQ3/jGCfzkJ+fpr2gzaG8PsmVLVy6/vZyRI4vZvr2HTMbixRdf5Xe/e5MtW7aQSDi58srLyWQslixZz4oVe3jppd/w9a9/k4oKLwMDMR599Eyqq72IQCyWJpOxcNhNbIZJRVEpx1Q18fDffk13sB8DaCitZuHnLsVm2oilEjz57u9JZlJUFpUOZ7iXeYr59ZbXOKF2LDu69lLtq8A0TNJWhhV/XckXHrqKuqvm0J4cYMkdP6Ir0MezS5/ml7/9NS/9fQUvv/onvnfZFWzZ+z4Ta8diMwxu/ezF/OW7j3Jyw7HE0lnEMV4z3Huu0+9Y7TPgGJObhxQpQDdE/y8Gl2hFfuhR8LSA6QV7xb8ZAbd27Vr9G2/bpt/D73yH0tJSXn75Ze68805OPvlk3njjDY4//njsdvu/2sd/ypZKQSjEHTffjGFZ7N21iw/WruWRL30JHnuM7z34IAvOPZe9p53G7ddfzyW33KLUz0OHFLD39cGNNyr90+GgrU0LRUuWKOiuqlLQfP/9OjetqoLlyxWsZ7P6Fn7yE53W9PYqWG9r0wLU7Nk6P3U6M7S3H6a09HhefXULTzzxJI8++jV6enp1CtmurNJf/QpOP13np2PG6Lx33z41revtzaU25yvmnb0K0kFBeT7aDRRQu5wa7ebLueql0jrHPNKwLpWGURoVl0lnONzWxvHHHsuWTZt48qfP8rVLvkNvV46J0dHL4qWPsX/3xzz44IO6IJAvfu09BLHEp+D9v2r7tzj0/y///I/TuA9r1/eovi2bLhjUHdnuk+d/Qt/+7FNLpbamSpqbm6S5uVlcLpdUVVXJs88++0/nTJhwjGzZsP5ow528di+dGO7XyqTF71e50SWXFHRDoZBqgMLhgi5o+3Y1/+jrE+nuFmlt1f2R7e+991mprKyV+vpmaWxsFofDJSNGVMmPfvS0lJVVS1NTszQ3N4vX65Xy8nJZuHDhUb92Mqk+JStXisSiWdUL5c3njtT+pFKqcc+bfeSNOCKxI0w5ckYfeXOQRFKeXfq41I6okuamT3yGjz9e0AQlkiLRmLhcLhno6TnaQCSRFEmlJB2Py9DHH8u7N90kg7t3SzISkWhvrwRaWyUVjUq0r08Cra0S7e3V5729EhsYkGQwKIlAQPb+4Q8SPHxYkuGwxPr6JNrbK3tefFFuOuMMqa2pkYaaGmkcOVJcTqdUjRghj953n/h8Pvlox45hTf2XLrpIfvLUUxI8dEiSYdXc59/PnhdflKR/SKxoRCQwqHr29zfmTOFiIuFgzqQurLr15x9SHftbf84Zz0WPNq/rzZnWhfzy7GOPSu2ISmlubJTm+npx2e1SVVkpzy59TKSrTayhfhldP1L++qdXtK8rL1CNezRc0M2H/JJJqclc3kwuFuwd1pink3FJhIckFuyVRHhI0smoBHtaJRbolXQyJplUQjLppMSCfXJ466sS9fdIMhaSdCIqTz35uNTW1uT+xk3Df+N777lbnE6nJMJDw9f90hcvkiceWaya+dw18n1l4zHJDvQdZUJnJeKS2bNLLP+Q6s37e3Xf3XlEm4Rkuzsks3e3WLGoWIm4ZGNRSb/yO8l2HJbMnl3yzBO591g1Qppra4ff49NLHtL+QgHtOxSUY8ePlzf+8mfVzMeikg2HxIrHJBEPHmUGlzef6+zcIolEWDo7t8jy5fOks3OLhMM9Eo8Hpadnx/CxDRueGDarW758nnR1bZVEIiyxmF8ikT7Zs2el9PR8ILHYkOzb9774fD5pa2uV4uJiGRpql1hsSKLRQampqZZdu7ZLf/9u6ezcIp2dW4f7HcqkZJWorn1IVFveL2pQl98Pierc50tB+74991pe175SVLvuz+1X5s7fnzs/ICJbu7rE7vPJR6I3inkiMrK5Wdi+XXpFtfODufcSEZH3c9fsFJFEOCHh3rBE+iISG4pJuDssiXBiWLM+sG9Aenb1SCKUkOhAVGJDMYkNxiTuj0uoK6TmdsGERAej0rW1S/o/7te2g9Fhffze7XvF6/UO6+m/feK35cTjT5TNL22WSF9Els9bLvdyr+xZuUd6dvbIwN4BifRHJDAUOErfntewB+IB2TewTw77D8tQbEi2dm6V+a/Ml85QpwzFhqQ30ivvd78vK/esHNbAD0QHJJKIDBvL5TXv+wb2yc59O8Xn80kwHpT5r8yX9kC7dAQ7ZGvnVnG6nLLn8B4JJ8Iy/5X5wr0MG9WFo70i0Q6RgS0FnfrAFpHgxyKpsOrVkwHVuAf3iUTbVfse/LigZ08G1JTuvflqMDe0Q/tKBo/od4t0Hd4rPo9dnv0uei9sqJbmpobc/88IefaJh3IGdX69dtKvj4/UqOeN52KDheeDe9SILRUt6M/TiYIRXSYlMrg391rOXC6d1ONH6N27WneJz+fT4/n7bCYlXbvWis/nzd2P9xztOZOK5jTqO3K69D6R7q2qYY8NqBlduFP16vEhbRvtUx16uEv18YlATisf0nNigyJD+4/Wy4e7RF6bL117t4rP55P+zoNimqZk/vwV1bL3vS+nTDlB3lz+s5wxXr/2+9p8SW56Wnbu7JH581+RQCAuAwNRWbVqrzz99EbZvbtfAoG4dHWFpKsrJHv3Dgzr0nfuVHO6nTt7ZO/eAdm2rUvmzVsuW7Z0SmdnSNrbA8PmdStX7hG/Py579hwUr9cn4XBC+vujsn37ISkq8srnP/+47NihevYtWzpl3rzl0tUVGjbFC8Wisrv3oNy64nHZ1d0qv9u6Sm5d8biE4pFhjfuu7lbpDQ3KR90HpDc0KAcGOqQ3NCh94SFZ27pN9vYdlsND3TJt6bfk1hWPSzgRlWgiJuFEdLiPd9/fJF6fV5avXiHlI6tkV3er9IQG5OBAh5w4ZbK8vOJPsrZ1m+zpPSy9uX739B6WrkCnWJmgGs3FtqhmvWOeSGyjatgzIZH4dn2c7hdJD6rOPb5TJBv9v5p+dnV16ffwE1sikZCysjLZt2/f/1V//z9vyaTIzp0S+dKXpNjrleCePXosmRQJhaT3nXek2G6X9IYNIn6/WNu3S43bLftWrNBJIBTE6fPnS3goJfPnq0Z9aEj9lObPV7O4LVtUZx4KiVxxhc5lu7v1eX+/vvZJ8+MtW/TxmjX9YpqmrF+fkb/+Vc+ZMuUU+dnP3hzWsVdXN8sf/rBdenoKfX+yz6GB3Jw1r1s/cs6aN1jOeyh91Krmx4lEYS6b17Tn57Cp9LDuvX/dJv1/7R3IadfTcsqUqfLmz38tkkjKwz9+SE6efJL4e3oLevl0+uj+PtW7/4dtfKpx/1+4HUl5z1PinT5dJQ+0qqY9r2/7ZLwb/Kt0+6uu+T7dXd0cOniQQ4cOMWPGDJ577jkuv/xy9u/fP3zOpvVr6evrZ8zYMUfE4BwRPWOYUDpW9YfoYl9np65Q9vZqLEYmk5OFZwu6oAcf1NXMoiL9qa7WDEyHAw4c0PMXLLiK/fu72bz5EGeccYhTTpnB448/x/e+dw3t7b28//4hdu06xBe+8BUWLrybBx544KhfO5HQ1dCqKrhigUnCdCE2UzXn+ZXMZAqSaaXAG4aualZXaBzGEdQiQNvmqfY2k6vOOp/uP77OoW07ObR/PzNaWnju2Z9wxYLv0etzaO57Ks0rz71ATXU1lZWV2ldVudLxARIpJJ4g1tPDcZdcQry3F8MwSPr9fPDMM6SjURKDg3zwzDPEBwYAsLvdSCbDlgceINbTQ9M552D3eAgfPszWH/+YxNAQjWedxV3PPEP7gQPs272bf7z4IqdMnsxNc+dy5YIFfPWLX2T1X/9K1ckn033gAFu2bmXSpElkk0nifX18lKv4f/zLX9J8/vk43G6NuHc4welWqrxhFJahRaD1I6W/j56gOvbjp2pWOwLu3Epw6y5d+S0th6Cfq86YTfeB/Rz6eDeH7v0+M0YU89xdt3HVl78AK37DO6teI2OYnNkyTfPdr1qkFfffPKl6+aE+lPJHIR0qmyYdjyoFvnULhmlgdxVhmg4sK03M30NRWS2mzUEmpRSzTCJC//6NhHpbsdmdGIaBiMWVV15J+6EDtO7fw77du5g29SSeevxhvnP+KXi9RaxdvxHDtLF385ts3ryFqdNngWES8/did3nIJKNY2ZTmrHuKsNa9g+zagbXuHchmMUpKsfp7NI4NIJNBwkFkz4dIOKySiNJyjJo6sq//GRnsh0xGc91dbszmsVx12WV0fvghB1pbObB1MzOmTeNnTz/F1ddeS3d3N0QjWGtW8/xPf4K3uJjTT56ilftMGsRCMhlshp2Ghhai0X5mzrwFh8NHU9McyspGAVBcXM/s2bfjdPpwOIqwrAzvvfcwjY2zcTq9TJz4NYqL6yktbebssx+nrGwMIASDbezbtxavdwI+XzWZTIJXXvkLkyefwIgR5Zx00mSWLfsjhmHjT3/6CyNH1tLYWM2aNfdgmg5crmLq66fjcHhxGiYnibAfrbCPQKvnJuAHetAKuKDRb0VoFb4Tpbf7UJr8HLQyT+54NfC9aBRbIEAbGi234ve/Z9qUKdQB84FFqAb+zyg134NW2vejUXDu3LXMVIZUOEWoPUTnpk6C7UG6t3djpbU6Ee2P4i5zU9ZYhv+Qn44NOh5nkhlWXbuKaF+UxpmNZJIZOv7RgWE3GNo/ROeuTsLRMKbdZKh1iN/++recNPkkEv4Ed1x6B5uGNvHKC68w6dxJ2F125i6cy8R5E6lvqSfYHiQdTfP6Na9jmRahZIhiVzGnjDyFtJUmkUmwvn09XqcXr9OLzbBR4iphZsNMusPdXPnalfREenA73FR7qxGErJVlQ8cGWv2tGvuWBl/Wx+auzVT7qnn1lVcZddwo/H4/d0+5m2JXMQ7Twca3N1JZWcne+F4OBg7y8JkPM2/iPFoaWljy3hKS2TRiL4JEDxx3MziKter7/t0a8RY5AJsWQHifVuNtxVp5//A+1aNLBvrXwYg5MOVhPdc3Fqb/lGg0QmDT/Vp937OU3//hZaZMPYWr7ltJ9+E9HNq/h0P73mfG9Ck89+CVXPXtczQKLs9e698M2bzUKZvzerFp9rvDq21MRyFONU+VD7bqvdrh1Up8NqVxbsP3dxsYBlF/D4FwVO+pho3f//E1ppw0mWgkTCAY1qx1EX6/ch1TTjopF0fny8nXEoVoVslq1FvtdM1lLxsD9bP1ut46lR2EO5RKL5ZW0h1erdKno5rLngpr/N3bV0O4TePgIh1Ej7uaQNce1bnXTuf3L/6GKc0eRpS4OOMzc1h9uALSEQ5+tImDbV0cN9Kl0oHujfoZnP40zqpjGDOmjJ/85Dza2oJs2NDBtGkjufjiyRiGVr1LSpwUFzuJxTLceONqfD4no0aV89xz59PUVEJdnY+iIgezZzeydOkGgsEE4XCKZcu288MfrqalpR4Qfve7Fzn22BMIh1Ns3tzJn//8R0aNmsD558+kpsaLzWbS2FjCqac2EQolWbz4XZYt20XWsnhh419Yvecf/Grzq8xsPpErZnwRgWGN+682v0o0FaexvIaBaIDnN/xJxxSHi5Prj6WuZATJdJpHL7yJO8/4LjbDxr7uw/xoxU+oLa7k7rOuYN3r73Di5Mn8rWcnwUE/j//5BTwON4HeIdoOHeadgfcp9xTTGxkkmoxR4SnB43BS4yvGSB/UODjDrpr14Yr6dCALhlcfxzdCpkMr8vam4bnav7VFo1ECgcDw89///vdMmaJyyu7u7uHj9913H6effjrjxo37P/b3H7alUvDAA7T+8Y9UiLD44Yc5paWFuaefztt/+xvtS5ZQV1GBvbRU77ePPEJTIkFb3nRp3jzdL14M06djI83DD+uk4corNTlu+nSttDscGueWTKr+fGAArr9eC/eWBTU1Gk08fz784AdKEmxs1Mp9ff0IWlrO4PbbV1NXB21tBzl8+CDHHXcct9yi1XmXS9u7XOrxZLMpjT7f56JFYNpNLKcLxqsXEh29SmE3c/NUh12r7ImUattrc15Ph7t1jmUzC/PNpjqlzlsWOOyMaG7ijBmzWL1xPXhcHDx4kIOHD3HciZN47LHH+P2vf82br66krKxMGaiWpTfWI/sz/w3276fbf+hmyL9Cif5/fWtoaJCOvND6f8KWN6HDUG15fEBpe2XjCvr1f+uccIdS4/La+LyxmGHwmc+ezg033MBZZ53FmWeeSTAYxG4z8brt3Hf/Yk4//XM6OYh06cQkb4IjOdM2gazAro/sNDdrt9/7nma0f+lLqhWqr1dQvnixGn2MGqWUoWBQteiVlQq2330XJk1SnXt/vwLvTAa+8IXP4HDcwEsvXURfn/Zz552wZMklHHvsSdxxxw04c8yvVEp1RHa7MqNOnWtxxWWCgag2KJPVfPZxTfrYblM60JF5mfkta+kguK8N+oZ04BrbqPSjZErPaevmM9/7Ljd8/zrOHH0spy34DslUCtMwGVFaymM338HkC84+ul/LgtYOMjUVhPt62P3LX3LSzTdjLyqif/t2oh0dNJ9zDslgkHQkgreuDtPpJBuPIyJ0vP02fVu2MP3ee8mmUqSCQXrWr2fwgw845a67iHR0EA8EGDFxIpLNMvPEE7niq1/lkttvp7ezk+sWLeLg4cOICN8691xu+eEPkUyGaFcXAuz+xS+YescdmIaBy25giCgwDw0peF79MnzlMp3YWrnvUjoFJeX6PG90YGX1D/inX8EXvg0eb24lJwdWD+6Bihoor+QzZ57FDddfz0WxLmgayzef/iXjjz2OH0b3weW36oLBb55Q47ppp6rGPRYhW1lFMuJn4MBmRoyZhtNbRtcHb1J3/GfIpOIMtG6m9rhTMUwbVjZDMtyPp6xONeKZNOlEGDDIJOMUVY7UfHYMXawwDDLJKDaHhzPOPJvrrrmSCy84n7+teZc7F91FNpMhlU5xybe+yTfOmarXLypBLAvD7tAcdxGMbBYjFMR6923MOWcMU9/NptFIYAhr3TuYsz6DUTECq+0gRkkZEgqovt1ux4hr/rzh9SHpNKSSGG6PZsB7i/WzNAw+e+aZfP/r87jooov40dPP8uLvX0QyGY6dOJFnnn6GkR9uxfzs2Rgul1LzMxkkESfjKyKZCpFMBvF6awkG23E43Ljd5SQSftLpOOvWPcCcOQsRsSgrG4VlZUgkArjd5WSzSdas+SFnn/0YmUwCu91JW9t79PcnmD//UjyeKkzTQUNDFRde6ONLX7qf/n6Lyy5bwMBAP16vk1/+8teccMLxvP/+bykvH0NJyUiCwQ7q6qaScZeRdniwoWC9DygBdqD0+CIUzMeA93PHFgMLgbFo7noHCrDdQDS3jwObDhzgB1/+MuFsFpsI48eM4WtPPMHZo0ax6HvfY/Vrr9Hb00NZZSVFxcXM3L+fhajRnRud0yQBeyiJ1RVmzT1rmHnzTKL9UYrriwl3hqmfXo/dbScdTWNz24Zz22P9MZw+Jx//+WPKx5RTe1ItyWASh89B3wd9eCo99IZ7ufSGS0lEEhg2g4aqBp55/hlMMTnmxGMY1TwKr8eLaZo4XU7efeddJCt6vbiC9l3LdnHVgatw1jppC7XhsXsod5cTSASGAfn69vXUeGuoK67DZti47q/XsWzXMuZNnMfPzv8Z77W9R1NpE267mypvFQYGGStD5+FOvv2Nb5PJZkCgpLaEux+8m/qSei7+5sXE4jFcdhcVlRXcdM9NzJo2i0AiQIWnAptpw27YCafClNnteAxRML5rMUxcCLEu1amPmq/gM96hoN1Rpvns/eug7AQFJDtuhwnfh0S/ZrpnYqpN/+hBDpRfz5e/cSnZaA/iqWNMUy1PXFHJqHN/ngPnJmSjfObzX+GGa7/HRRd8Xu9xKb+a5NncED7A/4e9P4+Xo67z/fFnbb13n31fshKWEAhb1hNQJCCCjF4gIzJfdxYhStiCJFHwSg6QsAuiiOg44525DDOjGJYQUTQnh2wsihGyJ2ffz+m9u7qW3x/v6u4E9c5dZu5vZi71eJxHdVdXfaq6T/en3q/36/V+vak4ySsvU45JkrsCdjW/GMK5joznOmKkp3i93u2crIvHmQnPmE7h0JEeLr/yU9i2hes6zJwxk0c33oOjhbh8xQpsy8J1YebMGTz68MNMb2sqJxWSfXJfRvEM8A7AG4/Ahx/15mcLBraLFL5iBvRvlfr19CDs2gAL7pQYYnIvvPU4nPeQ3NfNlAD4SAtMHeLQ83dy+aMHsdFw7QIzY2keXfclpp9zGYd+/g2++MNhxuIZVFXlG9f/BZd/cXW57n5gO9TPh+woWTdG3tfItm091NWFGR1N09oao7Ozi9Wrl9DaGkPTFG688SXOPbedT396HqqqkMmUzdTefHOQBQta0HWVfN4iENDZtWsPN9/8RVzXwXEc2tuns3r1tzjppNm4rsvy5R/mq1+9niVLLiudq7FRJMjhsEFPT4L167fyzI8vIVPIkcpnCPtDaIpKUPfxZv971IarGE1PcmrjLDRVQ1UU/usr32d+yxzmN5/Ij3b9nC8s/AtqQxWEfEH6psRw7ubzrubo4aN8/q8+g2M7ZAt5ps+Yzp3f+jotba3c8cDdHHxpNw4u4+k4t69eTeuiE3m7fx93fuTzWI6NpqooKEQMG2Pkekg9L73YQ0shsw2MdtDbwE2DPQbjnVB9K1ij0stdDf5ZeXxxOXToEJdffjm2beO6LjNnzuTRRx9l+vTpXHPNNWzduhXLsli8eDHf/va3Bdz931hME957jzdvu42ztmzhrx99lM/MmsVbqRTLb7iBF/76r/nMjTeyd9EiCTDr61lw6qncd999nP+JT8gYU1MSdPr9pNQIVn0rK1cKYL/wQqiqkq/9zp0Sdz74oNSfBwJSi15VJVL69esFXM+YIer7UEj6tW/YINt37TrEl770RaZNG8PvV7niim+wcuXlrFp1HVu3vsDIyBDV1TVEIlH++Z8P0NkJd9whkvliteCuHQ7Lzs6hW6YY1KmKEEy9QwKc8yb8/gCcOrsUg9LeJL+3vmEhhzSP7EukZf9YpLTfod4evvjl6xkbHUW1HL7xja+zcPEi2mbNYmZzC9FoDHw6fk1nx2+2emO2iBGxqhxvgvfB8n+0KIrS77pu65987QPg/sfLfzjgDmXAbef+GIz/S8coShm0vx/Mwx/vU6qNtyXgkJ0kOFA9l0kzCZoPRzX4xS8NFi5U0XWZ4AzD8y7z8L2uy+OREcla7t8vk93q1XDiiXLq/fuFkV+zRow6VFUmzcpKYdAjEXHkfPZZSaI+8US5Zj4Wk/k9n5faIdcFn+FQXeFIgrDkvIuwtCAZy55BaG0Um/tISEB5cSIsgnO/T17XvKSF5o2z76iw9/XVMlnmC5II0FQBrsX9U5k/HtvQKORNdnzzburOOIPaM87g3Wee4cw77gBFQTMMFF0nNzGBHgiA61JIpzEiERRNIz8+TqC2luzoKO8+8wzzb7kFIxLBdRxyk5MEKitxLAtV1z1z5QKuZaGoKqrfT358HD0cRg+FwHFwQfZ1HBRVlX0tEyPvdSp4/m/gwsvhlX+EOfNg/mLJtsQqvIlcgVwGfvpj+ORnwfALy15VJ599TQMlhlzVhPUtmGJ05w/KdkMCWUYHYWoMZpwk9exmAeoaYHQAXvh7MairrgfHwfYZZKYG8EdqUQ1/CXDjuvS/s4VQVTOhqhbGDu2i8eTzsM0MhVyGYEWdfBU0Q+rIXRfHLpCNjxKqasA286iagarrpCcGMIIRDH8EFLDNPJrPj22KY3ohm+To7n9m2tmfxAhGGDu4m8aTz5XxVZ1CLoHfFxU3+IKJUl2LOzkOuiHu8nveRpl3Ftol/0VM6tIpyOVxMynU1nbPxMrG6etBaWiETAY3GRcnesfB6e9FaWhE0Y3Se3dVTZIQrouz5UXUD18oHQJcF9IpSfmbJko4gqnYjI/vI50epq1tKeBQKGTZsuV2liy5jUSin7/7u0uZO3cFH/3ot0mnh4nHe2hpWUguN4XPF8YwQriuSzo9jN8fwzDC9PRsJRyuJxCoJByup6eni3/4hys48cTLuPTS72FZJpomKgeAdHqUQKASXQ/wwgvXs3DhKmpqTsAxwuxXNfoUhRbgXuAOpD497/2Ub0fM6RqAW4HngecQln0EmAIeQMD8AHA64iSfB1YjrvMjCOB/EGHXLWAnYlI3HTHEOwWo8M55CHgI+I5poYxn0QM6juWQm8oRqArQv6OfcF2Y9GiaWGuMrs4uOtZ0YIQMAlUBclM5jKCBL+xDMRSsjEX/zn4iTRGqZ1eTHk5jZSy2dm4tJQPal7VTSBdAAV/Eh2u79Hb3Em4IE2uJoWoq8Z44qqGiB/TS8Rd8/wLwweu9r3N64+koKAT0AIcnD3N/9/3cufROIr4I9ZF6kekpKtlCFtM28et+FEXBcR1UVHb076At1sa0ymmSmFIUsoUsAT2AixwLoCoqKTNF2AiTs3MMJgfp7OpkzbI1TItNY1vvNha2LCSgBzBw8SkuSnZQ3NyNiLjEuwVJ9KkGZPog0wM1C4U9dk0Y2w7+BhjrElO6s5+Q+nTHgp3XCMs+/Wo440EPRBsw2i1mdzjCrBuV4lSvB0GPCOiffBtCTbDnXpi7Vurcw9PLxqypfql5t/OiQlO9ucu7J5bukYW0APSiWV3xvukTo1EZq+/4seyC97pzzP332HuvdwNzPdWTUygnB7ZcA2ffIWy7okAhK+fHc3cHSYLkJiA/BZkxaO2Q92NEy8q6SCvs7ISFa4Uo+OdL4cQV8KFHhNWPH4FIk4xz5BUYeQvOf8xTP3kxR/ywuNM3L5LkSmaEtN5EzgTDULnhhhf56lcX8uCDr/P883t57rkrWby4DctyUFUwDI1MpsDgYJLBwRQLF7bg9+u8994YDzzwOuvWLaO9vUK+m47r+c4qqCrs2zfOffd1s3r1EubMqeHgwUkCAZ277nqtdK5Fi1qxLEd8cIBQyMAIQt/UME/v+ClfWPgXVAVj5K08+UIBv2GQK5g8veOnfHHhJ2irqKcvPoJP0+mNj1AVjDKZTTKvaTaqonLPlqdLoH48E6c+Us0PdvyUz5x9CZPZJK0V9UT8IQD8uo97tjzN5r2vc9GJi/nykisoOBbNsTpc12UwMcaPdv2cdRd8hqB7BKXQC0YLjN8LNWvBmAFOHJw0jH1DWPjoCmh4ArTYvwja/90vpslYfz8Ns2dj/uxnaFdeCZdfzjl/+AO3f+UrfOnaa5mwLPQVK3AffpimM86gq7OT2aedBg88IO7HR4+C65L1xbCNAIWCQiYjwHn1anF0V1UpiV+wAK68Uk59++3y19cHl14qzPgTT8hr+Tzccgv85CcSkz7+uKhGn3hCVKcPPigK1GKsO2eOxKfxuNTJP/ssbNoEra1CSK1dCyfPsTHSSQmi+94H1uuqhIlPpATUH+iRGLSuSsgo14WxSVF9RkISO/kMMVYu7jdnmvxO9x89flsxHm5vEhLLI5hKpNWc6QLcHfcDAP+vtHwA3P8Xl/+QwL24vB+M/0vbj10cWxxlj2Xs/1wiwLGRX7gi8r/jAgy/ONomjkC0DVvxk81pJWl8Ufp+zz3Cjs+eLb/zQkEu75prygD8qadk2w03yIS5YoVkOoeHhX3/7W8FnE+bJnNvkbmf5vnzGIaMbVnyt3OnjFMRtVFzeZmM2hplAktlyuz6/h6Z/Kpj5ZYX+46ZzFobyhmH3qFyJrM4cdk2pLKSzXQckRa1NYKhyYTX1ihuoJk8BAwxxDMM+RAqIlimSbK3l0BtbYk1b7/4YrKjo/zh+9/n5C98gWBdHVowSKqnh3efeYZTrrmGaFsbKAp2Lsfu9eupO+MM2pYvB6CQyRDwzOqsXI63H3yQkz//eSLt7SQOHyY3NkaooYE93/8+Z65eTX5qij1PPcXca6/FX1XFm/ffz9xrriHc2oqqgFbIoxg+SqDbzIv83bFlm22JUVxFDcQq5TPUDdkWqxIDuxPmQT4L2QwEgvLP7jkAlbXQ0AzDA/DSf4eLroTKasjnxDn+lX8UmXxtoyQFQNbBMJg5yOexa+owrRyFbBIjGGH0wE7qZi/E8IflehUNO58mOXaUiqYTsQs5dF+QQjaJlU8RqmwGVcWxTBRVLwFfRQEXBdcuCLh3bAr5NKMHdlA3ewGFbAojGKGQTRGqamLoD7+m8dTzvc8FcF0yU0MYwQiqomPoAYhP4ibiqC3t2JufR120DKWiSpjzUBjXsnC2bEJd+iH5DM08bjKBEqsoHedqGm7vEZT6JkgncbpfExa/qho3n8MdGRawj4LTd7QE6F0Qhh0XZ8sLqEvOk7KFyQkKNRWYZhqfL4Rl5RkY2E1j43xUVcd1XXTdz4sv3sjSpXdQWTkd00zhODavvvo1li/fQDo9QiLRTyzWSjI5QGvrIlRVxzRTmGaaQKCS/v4dxGJtGEaQYLAKTQvgug5TU4fYvv1RLr74MVzXJp0ew+cLo+sBVFXHsvJYwSq6VI0FiEFcAJGsmwgQvwcB2b9HWsW5CAvvIrL2SkRSfxpwGQLgRxFn+SXeOD5Ecr8Z+BTiJB9HZPZ5hNFXEHBfgUj1d3jbT0nl6dvaQ7Q5SldnF8vWLqNyViV21qZvRx8tC1oY2D1AvCfOKVeegmZoFLIFNEMj3hOne2M3yzcu96ZcBytnEa4Lo6gKL331JZrOaGLWhbOINEdQVAWn4GAXbDRDw87bGGEDx3JQDRUra6EZGj3begjXhwlUBgjXh3ECDjbCpB2YOMBgapCFLQuZzE1y2ndP47krn+PMpjMZTg9zb9e9rOlYQ3tFOzkrR1APChhXIG/lMTQD0zYJ6SEKToFMIcMdv7iD1UtWM61yGkfiR+jc2snajrU0RhtLSYKCLfu+M/IOZzWdxdH4UUbSIyxpW4JPUQhlj6Jk+iDU4gFmj3WvOk0ANQpYCbkX+SqlXVywBbL9EJkpADY6y3MnTEB+VIzmikC/CCilwZfI61W/tFSz87Lt7Ttg/v1gxCSB0PtPMPY6nPOkgGNXkeNc25O6a2Vw7TryrSukJfFQMor11mZSJO7Fx0a4fHzRed42jwfnxWt2bS9p7yUAnIKAYUX12Huf7BM/KqDdKYgj/NY74JzbRTFXe5qAbseSPzMhbeFwJR4IVHnvQRFQn5+SVnGNC6SFXNNCOWd2AsJ18jlbafkMVY/hix+CXfeLO70eElO+dD80LsQkxHhc5sdw2IfjOLz+eh8tLVGCQYOqqgA7dvTT1hajvz/J/PmNBIMGo6Np4vEco6MZFi1qRVHgJz95h5kzq5g/vxHHcRkaSrFhQzd33tlBQ0OYVMrktNO+y3PPXUlHRztdXT0cOTLF4sWtRKN+qqoC7No1wPz5jQQCOoWCjaap+CPwX1/5fglA3/7hzzCVSdEQqwbgtwP7SgD9jJYTyRbyhI0AlutQsAs4rkuukCNgBJjMJDA0nSe7n+MzZ1/Cj3e/wOa9r3PJyR2sueALAExk4lz9t2u579KvMqduGql8hog/RNDw47gOr7z3OhedtISx9BTZQp6maIyYYaJpIRi67niAnt0BoWVQOCJt4mrWge8EcZ//z7CYJhdefDGrPvlJPrZ1K4dvuYVzPvpRfvvII1z97W/zOVXlc9/9Ls/t3s19TzzB7hdeEBapSJU/8giMjZFuO5EDR31s3Aj33y8x4+9/LyZzmibAusiir14N27bJ37FgfGysTDLV1gp4X7tWmHPblrDx4EFh71etOj7WvfFGiU/PPVfGKIL94j7P/MAh5LNR3g/KD/QIqPbp8tsrxqJFxajPc4A/0Cuxa8BXVo0ey9gbejkOLhJXAQMsx2sx58KhfjG0U1VJEvh9kgwoxtPtTRAKfADe/w+XD4D7/+LyHxq4/6nlz8ni/6X9NL/Uy79fel/ar9+TyCtSG6f5JfgwU7K2C7iqTiZnYDuqkA5S2sv4uAD24oSVyYiTfHOzZCp37JDemMGguHJCecK8806pmW9slDr4226TMXRdJlpNg9dflwnQMCSDWTx2zRqZQCNBG2XfkfLkN61ZZtX+ETihXSY/x5ZJqq1RJrpjs46qKpOhWZAJEOTxsfKk4iQYDUtWtG9Ytu/e88dSJkOXzGd7E/h9FJIpXEMjPThIZnCQmnnz0AIBdn3zmxzZtIn2j36UeTfeSLCujp13303Pyy+XtjmFAsG6OrKjo6iGga+igszQ0HHA/OQvfIGxt95i9K23WHD33ey+5x7m33wzimHg5POofj9vbdhQPtfKlQxt20bjkiWEGhrEoVwBbXIU5cW/F2Dd0ALjw1JjPuMkkU/ZlgDtYMjrZ+8B9EIeIpXyOWbT8I/PwAWfhOpaGBuGLf8En7kJfnyMBP6yvxIH+795TLYtOh+uXuklCPaKA/1J8yVJ8Lffxv7MV+l/9zVqZ57FxJHfUj19Pv5wJa4LmckhjGBIwPysBej+EEPv/obGk89F1XQc22Lo3d9QO+tsVNVA8wXku29b2IU8mi+AbeawLRMjEMaxCthWDiufRfcFGTv8Bs2nfkR6oCsKZmbKq6e3RKJ/0jJU3UBxFJRjkmpuOo0SCgmYdl1Q1dI2XBc3mxE5fe8RlPpmFK8li9N7BCVWgVJRjZtKHMfWqxd+HEUT+b+z5QWphY/GUAyfMPgFsyTJd/t6oLIKtX0GNjbj8UNs27aB5cs3AqBpfhKJXrq6Olmy5A6qqqRu3XEKpFJDbN0qsvlYrA1VVbHtAppmYNsmtm1LdywjhKKoTE4eIZnso61tiecf4GJZeY9pL7PsjmN5DP/tVFS009vbTSzWSio1RNOsCzEVBa9zNQ7wFcQV3ksfMYj0WS8C+j8lm+9D2PN6xGX+dAS8D3nbNwL3I2A9hbD69yPyfA0B67p3rnrvvBngHdOiI2Hy8qqXaVnQUgbZisLkoUm6N3Zz8eMX41gO/TuEUY80RPDH/CXZvJkyGf7dMK2LWrFyFkNvD9F8TjO6X2f8wDipgRRtS9o8xYeAdlWXNnL+mJ+ht4eINkepmlWFlbFwbId8PI+/wo8RMsgpOXJKjpAvhOM4uLjs7N/JaQ2nARD2hckVctiuje3Y5KwcteFaNEXj6NRRjsaPsqRtCTkrx+1bbmfj8o2MZcboifewoGUBPfEeRtIjnNNyDjv6dlAfrmda5TRURT2OqW+NtTKjcgaaolFwCri4bO/bzvL2Rehj3eIaP74Tuq6AtsvhrMfkXmROClhXA5A+DHvWSy18blSAuapLAhooNdLR/MKeq7oA1ewAvLtBGHR/LUy+BaFW2V7rscKFhABOKwNTv4PqczyArAjQDdSXy8WKcndVF7BeZNSLtfBFSb0C5JMCmhVNEgWaT77Mrg2JoyJJV5QyaC8y+7bpjavIccX3ovpk3CLQN5Pe3JWXcw7ukLr2/i4B3R9+TMYc2gnRdghUw+jbct6d94pk3ggL2E8PQN186WHvq5DzTx0sM/CxGfLeM0Oe3H5N+Rjw+s1HZGwzKecde4d03fnsPzDJo49u56GHLkJVFTRNEhRHjkzh9+vU1YUxTRtdV7zOFqCqKrmchWXZJJMm9fUSLBiGysBAksrKABMTOV555SA7d/azdu0ympqibNvWU5Lhr1nTwdBQiiVL2sjnbSYns9TWhsjlLG6/fQs337yIpqYolbUGvVPD/GDHT/nSok/SEqvDwcW0C/g1g4H4KMOpCU5tnIVf93ntEOF3A/uoCVVSE67AxeXR3/wdt37orwjqfnriw4ymJkuM++oPf4bxTIIfeMz9SGqCk+unM5FJ8PSOn/L5BZcxnp7i9OY5vDN4gLpwFUOpcU5tnEXYsPHluj2Aflgk8TVrwJgtM6OiejNVHhT/fxym3TTlz+ejVPf4/tffe49Do6N8ce1axpJJVEXhG5ddxuVPPsne++7jcz/4AePj48QKBX44bx7zfvzjchBpe4mv3/6WxJKL2NqlcuqpEk/ecYcw6rNnS7v3c86R2PKKK+DyywWoa5rEqQWvYmPlyjLL/tRTEpOqqsS1kYjUxPf2SkelY2PdGTNg3z4hpZYulUtSVQH5994r8vyZMxxCAUdawL6/jNP2CKKZLVCwj2fI46nj9zWtsjq0yJr5DCGsxibhlFlCOiVSEAuLYrRIchWXItgPeOTNsfH0nOmiMP1g+d9ePgDu/4vLfzrg/qeY9P9R7XuRmYc/I513YOqItJ0p1jI7XpCQOCLMu+bHdW3yBZ1sTs6lKFJbvmqVTIS9vVLHXlEhvS+HhkQW1NcnfiGOIzL48XFYtEhaYjz7rMiR7r1XDDwaG2Wf6mq49VYB5o2NIrufNUsSAmNjZenRihXwne9AdYWN8qcY91jEM+FLQyQoAVQ6K9KiYos4vM/n/UC+WBP/h4NQUyk17/lCWdJU7HtZnCQP9Mq41THJMGTzMoZPxyoUcCyL0TffJFBdzbs/+pEw39XVTP7hD9ScdhqqTyRLVi7H1HvvUT13LunBQfb++MecvW6dyLy9/6OVy6HpOvl4HDORID85SdUpp6CoKorm/X8AK5vl7Yce4uQvfAF/dTVvP/AA82+7DT0QwMpmmdy/n7rTTwdAdx3U//Z4GUT/1VeEPS/WsheBO4q0L7NtAey6IUGEVfBeB97cBgf2wF99FVJxCEckEJ0YhckRmDXXY24cuds99zRc8SXZt5goUFU49C7MPAUKeWzDh2nnUFUdLSA19K5XQ6+oGgO/f5X44F4qm0+m8ZTzcB0bVfNhmRlUzSAxfABfsOI4ibuq6bgoZCYGMIJhCtkUwcoGrHymXDOvGeKboKg4BRNVN7DyGTTDz8CeX5Yk+ppmYGRyONteQ73gYyg+v8iLiz/bvh6UaBTCEdyhgZL83c1mUEJhj1HLi8TddXGHB1Bbp0mNuqJAoYCr6zA1gZtMCCtvWxLoBIKQzaBEY7ipJO7BvbjDw6gXfVwSCYqC6Zr8fNM1tLUtpa1tKd3dG+joWEMi0cff/d2lXHXVJmKxVrq6Orn44ifo799BOFxHIFB1TO37WgwjSChUi2XlGBp6m+bmc1BVHccxUT3ZcDzec0wyYAau66CqBun0CPl8gt7eLvr7d3LJJd8pMf/t7UuxfFFMRcFCWPB6hAXfjdStbwfqEBa9FQHqqynL5p8FVgDf877/xT8Hkdh/A6l7jyDM+26EnbcQtr7Y/Eb1HluI3L54nu3Al1J5HMvBKTj07+wn1hajcnolPVt7qD+1Hs2nseX2LSz86kIy4xnaO9qx8ha5qRyhmhCqruI6InuPNkcJ1gTZcusWlq1bRqQxgqqrKKqC67glwB5uCIsbgwKKpuBaLooHhMb3j7P9oe0s37AcI2xgWiZKxJsnHIuJ7ATVwWp0VSdbyOLTfPQmerl/2/18++JvYzs2O/p3lOraJ3OTPLbjMe6/4H4sxyKoB3lr6C3m1s1FV3Uivgi2J90u2AUmc5PkCjn6kn0sbVtKwSmQLWR5Z+QdpldOpzJQyUh6hL5EHwtbFlLjC6CkDhzDtPdB1Zkea94vbeJcixIot+IQ/4MHrDWvn7kKw7+BqtNl/i4kIdDgJZ2HIXVAWsXlRiEy+xjG24W3V8OJt3jMfdZLEPRIXX3NQmGVtYAA4xKYxmPOI1LPnhqQ+6LuLytvnIJcVxGom4kyY+46cj/NjcvYx0nqi6oAtwzsVd1j943jGXvwFAOuGOLt2gjL7pPrKi5WVoC4EYHxPQKyFVVM7KYOwbSPCNB/9UY5FkU+PyMq1/PqDcK8T79Q9itkYORNaSWXHZX2c5lhkcaXkgFrwQiCvwoUlYQZYGtXHwsWtFAoOKxevYXbb1/CzJlVDA+nCIcFcEQiPlIpswSoGxsjhMMGR47EuffeLu68s4P+/gStrRXMnFlJKmUSj+eJRn2onnFWRYUf03RYufJFFixo4aKLZtHaGi15qtq2w/btfTQ2hr12sz4aGyNoAYfJbJyIX5IDE6k4T+34Jz53zsdpq2rkdwP7mF3bRsbMEfGH8GsG45k4YV+Q/WM9NMfqiPhDjKUnqQlV4td9mHZBDObClbiug6HpZMw8v9i/g98N7OfOj3wegLH0FDt6fk9bZQOnNZ0g5WuKwlv9e6ny2sx966LP43MOo+itkN0Oeq30dA8uBKtfGHYcmclKJY7/jhfTlFjp4MFyAflJJwl4PxbMFwoSTEajEgMcy9KEw0Jta5rst327OMBNny7ucwsWwFVXlWjt7P5e9qVb6OxUWL1adp8+XUB2JnO8NP7MM8VvacMG2Ljx+EtftUoM6urry2Zzq1fLsU1NcrmqKpfc0FAG6YpSfrtFksm25fIdB6IhGzWXK4Nmv0/Y9rbGsmT+nLnS7u04UsqR9x8NS4xaEZH49Vi1KPyxJL4oQjrWy6koxy8qRGOegugDxv1fdfkfAfcPPtn/F5b/2b7vwHEu9IoqYL1ydhm0W1nIJ6BiugQpUwfLdXSK5vWmFcmgkjiCYYiE/frrJdO4cqVMegcPCpgeHZUJacMGmV/7+mR9443i5FlZKdlHEKZ9xQqZJMfHRWqfzcrE6vOJvOiJJ2SubvdKet54Q7Kcq1fLsevWySTogsjWT5gmknXbkcms6BIfDiJMhiPgWlVFKp83vffH8S70jlN2lz9rroyrqSIzikVkgtRU2ffIgOf62SY18IgEu1Q7tO8orhdF1J15JrmJCfp/9Sv2PPUURihEqLGRN++7Dyudxs7l0Px+gg0N7PYc9M+47TZc12X3t76FY9s4to2iKOSmprByOXLj41SfeipaIIBr26iahp3Ps3v9erJjY9TMm8eep55CAc656y5UXWf0zTfJTU5Se+qpWOk0Ki6KqkhN+Ve/CVfdIFL13kNSl64ZkErIezN8knbOZ+GffiT164W8/CMCIZG3L10uoF3X5fWfPCHsfVUNtM2SY4f6hIFPxeH/+6r80w2fyO7/2xMC8ltmwN8+BoA2OY5PD6DqBq5lYqanGHr3N17eRaXplA8x/ZxP0nzq+eC6DL/XRSGXwExPYeUzVDTNIVTVhKoaNM09H0XVGfzDb3Ass7Q9VNmIqmqMHthBsLJR6sYtk0I+g+v1NC3k06i6gV3IUzvzLCJ109F0H4YRxNn6Kkqr1HW4qaSs45PYL/wjSiSCm4iDoqLUN+Hmc/I5Ggb2i/+MOzmGa+Yl8RIIok6bVUrIuRPj2Fs2gWWhVNeitk3HzeUgk8Z5bbPU1Eei0u9+YgylbYaAdquA03MYd3ICTTFYtmwts2ZdSHf3hlIv9paWhcydu4KWlgV0d2+kvf1cdN3HtGnnEou1EwrVEYu1snz5gxhGiEIhzQsvXI/rOkQiTfT378B1LVTVx+bNt2BZOWKxNj72sSeprJyGZeV4+eWbmJg4QChUQ1XVTE4//TNcfPHjTE0dZfPmm2ltXYxtmzhI/3YLAeMppJ69BZHNnwu0IQz6AALWRxAg/gSwCVjnTX09wDbKYPwhRE7/DW89hfSIV4E/ePvp8g1H8/4CwDSkFn4MuBJAVbCyFo7l0N7RjhE2UBSFloUtjPx+hOSgmNS9/uDrtC1pY+rwFP07+ilkCvRt7ysx7+1L2wnXh9EMjfZz2wnVhnAsh77tfUwdnqK3u5fJQ5O89o3XiB+N0/t6L67jYudserb1MH5gHMd2iDZFWXTzIpJDSTZduwnHdkiZKfaP76e7t5sKf0XJWd7QDLJWtsSe98Z72TWwi472DpqjzTRGGnlsx2MsaFnAUGqI1b9YzWBqkKVtSxnPjvPG4BvkrBx5O18C7dlCloZoA4taF5E0k9z08k2MZ8fpaO8g4osQ8UVor2hnceti3hh8QwDpnnuh/3kB7XUdYkSX6YeqeZA8INJ4xZXv/9QfRCbvmPDGV5DJWpXe7ron39pzj0jlUSDYCHXLBCSH2iDYLI8n35b73lmPijw+0wNvrJK1HhKgv/tGkc3jyP3QCJeBty8m99DUQLk+XG6y3n3WJ/P+1MEyKI8f8hLn3v03UCvb7Xx57FJzeKSWXFEoGd0pipzXKXhjeTJ715EEfMd6+Qzih2FgmzeWK73cM8PQvFTY8l+uFAB/wiflPIUMnP94OSmx837vAlzZ3rIMpg577zsiJne5SWheAv5KAex1p8PuB+Dg82XQnp8EHHRDo7U1xsqVLzE4mGTBghY6O7uwbZeGhggjI2nefHOQXE4M5zo62hgaShEI6Oi6SjCos3RpGw880E1dXYi+vjiO4+I4Lvfc8xuGh1NEoz7CYYNMpoCuKzz++MVcddWpHDo0SaHgYNsOyWSer3zlJRobI7S0VHDCCdU0NoblI3YV8oUCe4YOogB+Q+fM1pMIGn40FE5vnsN4Os6T3c/hui5DyXGe7H6OMY8hj/rDRHxB2iobifiDGKp2bOMT8rZFKp8lmU/zkRMW8LXzPyf3bcukPz7CRScuZl7TCdz76g/pmxpGVRRObZzFj3e/wGsHd2M7JkqhT76LgTNg4tvS093Ng1Yv34X0VjD3ym/j3/NSdBI2TaGzb7tN0G4uJ9LM8XFxLE6n5fnhw4KQfT4JJp99Vuom6+pkvAMHJAhtaRGk7DjSfH3FChn/iSdg/37suiY6OxWef17In898BpYsge5uiUcXLJBhly6Vks3162HxYhkuHsdL9MhwM2bIMddee/yx4+MSn0YiYmC3b5+Uhx48KG+lt1fK7vv6yl5Q+/YJ4+84SCw5PiWxJAgY7x2SdX21AOpjnd6LSYuimZ3PEHVoz6BsMwsS22bz4DeEcCqCdteR2Hhmq4w9S0ox8fuEkPIfkwAKBYRp/wC0/5svH3y6/y8s7wfg/yPDuj917LFt5ywvgFCQYCI7IQGJqspzMyVZf0XHjbRi2Qr33ivz6AMPwAknyKTX2wuvvCJr25YSo/FxYdoffPD4effQIQHytbWyXzgsjPvixXJJAwMyL33iE3LswYMyWR48KJNuJCLGH488ImO4Lli2gqtqXm12wZNLIZPh+JTX1qJ4S3VlAhudlMkOxEyuODlGw38M4vd7E6HrQl2lTHwuMsHGIuUJT1EE0CfT8lxVYXwKxXFJDwyw8+67CTU00PHww5x63XW4rsuep56iZt48sqOjvHHffWQGBsgMDtL/q1+Rn5hACwRQNY0z77gDRdPIDA7y5v33oweDhOrrqTrpJEzPpU/1+XBtG83n46TPfhYjFGL6X/wF56xbhx4Ok+rrY/c99xCoriY7MoJqGBiRCJquo4wNC5NeVSdg2XUFOI8MCJD2eaZMtgWJKXl/F/yF7JdJC0B3bJHKZ7NgmZ4Jgg/e3i4O9aom4wRCkJyU7RMjco6/eUzq6hOTwvq/+PcC8Hf9RiT5Lz8LBalDVzUd20wTrGqikE/TQbujWgABAABJREFU/84WAPRAhMzkIIpm0HzqR1BVQ6Tuh3ahqjqKqgno9lrElVh310H3B1E8Br557vlUts5F0w1U3YfuC3rfHJeRfd0Ucmk0f0ik9IEIjmORnhpEvegvUE87EwCn61cCtCuq0D72X1AiMdT2GQLMNQ1SSQHjrot2/sXyORVM7Jf+GSbHcfNZ7E3/IJ91RQXaRy4GXccdH8N+6afg88nYF1wqUnlVBcdBaWiWoGdqHPulf0YJR8AwUM0C1bHpRCLNLFu2hrlzV7Bs2VoMI8Cllz6FpvlYvnwDJ530CfL5JOPj+xgcfIN4vIf+/h34/VHC4TqSyUH27n0e00zh80lLOdsuYFlZFiz4Cun0MC+++GUSiV6y2Ul0PcAll3yHysppgMLk5CE2bbqORKKHRKKPxYtvAVwURUdBJO2rgP2IHH69t054295EAPVi4DFgPpRavLUh5nJ4xyz0HmeAJCKVPxdh65sQsB4GliJTx2HgOsSd3gb2ec/HvLGGgKzrkh5JM/jmILZpE2mIYOdtMairD5MaTDFz+UyWrVsGwNb1WwnXhUn0JqifV8/EgQk2XbuJycOTDL45iOu4tC9tZ/OqzSQHktTPqyc5mKRtSRuV0yu5YOMFpe3x3niplr6ipYJ4T5zNqzaj6iqpwRR7n9+Lrdloisa0yml0tHcQz8WxHZvx7LjUsRtBlrYv5bOnf5bWWCsd7R2kzBS3vXIbKTPFty/+Np+a+yke3v4wz+55ls6uTmzXJmyEWdCygF0Du7AdG1VRaQg3lGTy2/u2A/DoRx+lNdaK7dgYqkHKTHHL5ltQFIXFrYtxFRXOfBg+MSjGcWPdkD4iTLviE6O4ytNh91cgsU/AfKZXWOpTvib72HlxQs9683ftYql/Tx+FN1cJqKlbIiAeR9j0QCPsvB5SR7xEQa8Y2u3pFND+7oPyvBCH7EgZqBfvmyAS/dh0AbKx6V4kXhDgjCsJzkizl0xXBBhrhgDx+BFK6q5jxwaRxMsNQwziiqy6bXrj+sudXsykMPL1Z0ri3c7JeEUm3HWhabFI210bdnTC3mdl7k0PQvddHvDvgS3XCrCfv1LWr94oY1bOEqO5ge0wuV98A+rmyXU5BWkVp2hw7gb4+HNSbjC8S2KJ7BiFgktnZxfPPruHDRu6Wb58JmvWdCBlOC5NTVGWLm1naipHX1+cT31qHi0tMW644UUOHpzkwIEJli5tY+PG5VRVBWltjXHttZsYGkqxYEELg4MpDh2aZOvWHkDBdaG3N87u3QN0dLTjujA+nsHn07j55kU8+ODr+P0ayaTJwYOTXHvtJhzXYSg1TlUwyr2v/pCAEWB+y4k82f0c/fFRVEUlaPiZ3zKHrJllODXBZ86+hPFMHAC/btAzNcx/feX7HJkYJF3I8e7IEf7yb75GwS4Q0CUm+P72f2YikwBFYTQ1iV8zqA/XkMynUYCvnf85GqLVOK6LXzO4ZuEnefCyW1BVH67RCsMrxT2+8btiTGePwsgqKOyDwDwo9FC27vx3tJimFJEXmfaBAUHMmYwEj62t8vu54QZBzUuWyG8jFILTTxea2zSFql6xQtaKIsnuYhC6fr2Ae9sWlPzWW5IMcBzIZNBGBlizxuW552D+fJd9+wTvNzaKhP0v/1JAuapKvHrnnWJUNzQkRNTQkJxyxw4Zttjq+OGH5djHH5e3s3u3xLaJxPF5hnhc2P1Dh4TRv/FGudQNG4S97x9UcNubRMoeCcnnVIwvLRtmtHjtjE2pfff74HCfrFWPcCqWd85uh/oqKeEcnZTYtCihz5kSw+a9RKGmytgFT7FXjHd7Bss1AkXV6Qeg/d98+eAT/n9l+XP93P9Xl2LWf+qgBAf1p0PFTHmt6HwbPwR2HlsNkEiopXl040ZJkGazsGwZ7N0rqqVrrxXmfdkymYOL+69dK3hl/XqpGbr1VkkmjoyUJ8zBwfKEqetyGYGAMOz19fK8qPz3++Htt8slTSjIBFXs136gRybDBfP+ePJR1eP7txct8edMkwnxT4H43iEx9bA8E5BESlj2hhoBrPt7ZILV1LKESVNhwTxcVeHdZ56h7owzUH0+6s46C19VFYqqcvIXv0j7xRcTqq/nzNtvJzM6Ss1pp9Hx8MME6+vZeffdpPr6BJzbNqGmJk787GfJjo8z9s476OEwgaoq+Wwsi9zkJIqiEKir4w9PP42dzeJYFo5lEaiupu6MM9j7t39L3Rln4FiWqAEcR4BxJgWTo3DRFcK0G4a0hpt1MkxNwE8eF6A92i9t4+qaBViODoiUXtPlOL9nkuM6EKmAu5+UtnLjQwLQh/uFef/yWph5koD0IlifcZLUwH/sU8LeLzofYpU4f7USx+fDTE/R/84v0AMRKppOZOzQLuKDe7Etk0I2TbCyERyb9EQ/jmPhC1VQN3shVj4rSjFFJZ+eopBLYJtZkaE7DumJQVxPfu+6Dq5dIDM5AK6NbeYo5BKoho/Gk8/FFxKH42BlA4rrMHZwF3ogLG3rNj0HmYww3rqO65k5OYN9uPFJ6T+rabippAB2wH7tFfD5UWKVqMs/DoaB4g+gLb9UShFSSexXX5JEQDQmUnyviwA+nzz2FAGK348SiYGmoy75EPgD8jyfw0kn6O3dRizWzsc//jSxWBtHj24lHu9FUVR8vig+XxhVNdi+/WHC4ToSiV7q6+cxMXGATZuuJRpt4frrf0ck0kgoVMvExEE2b15FOj1MTc1sEol+Fi++1WPnM7zwwvVMTh6iv38nlpUlGm2irW0p27Zt8OrhNV566SsUCmkcxFBuKQKsc0h/9SxiQteEsO23e9s6ve1+75h+xAH+Osoy+wPe/i7CsH8akdonEal8EgHpeMff5o2pIImAxxFwbyNJBNWGRF+CcF2Yl1a+xOTBSfp29Imr/EialoUtBGuCVM2sQlEVOtZ0iGR+WTuBWICaOTVc8uQl+CI+Gk5vQPNpGGGDxbctJjWUwhfxEW2NkhnPoKgKgYoAbUvbCFQESPYnS+dNDaVI9CbY8+weujq7aFnQwvW/u55AOMBQeoibXr6JlJmiNlxL2AhzePIwI+kRsoUs23q2cWTqCF9+8cvsG98HwFcWfAXHdchbeYJGkCcveZIDXznAdy/5LqqiEvaF2T2wm7ObzyagB/jqy18laSY5MnWEVS+v4vSG04n5Y6iKylRuiqyVBSDii/DQRQ+hoHBw4iDpQg4XBVIHBUgHGgVEK4r0dj+WGc+NCECvWSAgNjJDZPSKAtkhAY96GGZ8Tph71Qeneez7aBegyj51S6W+vf952Puw3DfrlsJ5m+DUb8h/++wn5LmvQurb7bxXt+2W7oEoqoBsK+ex6IpcV8V0T4qPSOGtnIDmUH05Xxxrl2OKYBylLIV3XYq93kuMvF1kUY9JOhdl864jIHzqMOgBCNfLfkWm/eSr4SNPyJgf+S7cMCaqguwEnLtRgH5sGnzkOxBugaoTxJyuY71c/9RBGOiGxrPlelRNpPHDb8i9TlHluS8GLR2iQmhcWEry+wyFtWuXcfXV83jkkYtobo7S3l6BaYovRiCg8frrvWQyBQIBA0WBe+8VoN/Z2UVtbYgNG7oJhQwqKwOlJMDDD2/nL/9yLkuXthMMGtTXh1m16mVSKZPm5hhLl7aXmPlw2MfNN29G11U2blxOJlMglTIZGkpx222L0TS1xHBv3vs6qXyGZ3b8jNcO7sZvGOQtk774CGc0n0RdpJqGSA1T2SSnN89B9VSOft1gfssc/v6tzaiKwvzmOTz32Q2Mp+Pcs+VpxtJTnNo0i5HUBEOJcfriI9iuQ1NlLbmCybe2PM1Qchzbdfmvr3yfvvgoNZEKzmg5EccxUcY7xZRufD24WaS2PQwNj4MSE2f54EKpcf/3tGSzgmJ//WsJDItota6ujH47O2W/xYvLYPvo0XIA2dEhAd706fC970kv4RtukNK6Y8F8JiNofHRUegzv2CGxXFMTdm0jfX0K55wD8bhSAtX33SeE0/CwgOkjRwTMNzeXSf7nn5c41LLkUnw+jot9h4dFcQowf76sKyrKatC1a2XMo0clBzEwIG91akpeq6yEeEJlYNKPWxERAI4iQXKxW5HjSPz5+wMSz5oFqVlXVTGrS6Qkxi3Gu6Z1DJveWjZiPjaGLXo4aZrEq5MJkebXVcla8wiw4uI4kkRwHD5Y/m2WD4D7B8v/2uLaXkDULDdd1fCkga7clFODJVmg6iU7Z84Uk45YTFRJqZSw4bYtjHsxEeq6Ar5nzZL929vFsbM4+a1bJy3gzjlHALvfX85WbtggoP/wYWkLp2mQTMrz7m6Z5w1DJkK/HwzNFYOPnkF54VjZ0MFeAfQgsnbTYzdmt8vEZtkygVm27L+/B6aSUktUBPHHToTFybAiUvYEAHH3NDwXUMsuv25LUmD+LbdQe8YZvPPEE6T7+oQhdV0ira3kxsZ464EHQFWpP+ssVMOg7swzefeZZ+j/1a/QgkH0YJDc+Di4LtHWVqKtrdSfcQY4DrmJCdL9/Yy/8w52NsvOb36T7MgIp331q+jBIFowiAJMvvsutWedxVlr1wKgqCqjv/0tlm3jekDZbZ8NVbXi5v7335XHZy2Dzf8g4HrzP0LrzDI4T0xAtFJY+VxGjhsdhKP7JcDUNAHvgSC8/Jw3xj8IM3/CqcLWX3h5GawbhhjX7d8DvQfhr1bC5ChucgrbNhk//AahqmYUVUfVdOpmL5D2bP4QoZoWQFzedX+wxLL7QhXSAs8ycV2HUHWLmNT5QxTywr4HYrW4jk0hlyaXGEHVDIJVLaWWcIY/QiGTYOjd32Bm4tiFfEkG2zT3fAKBCtxEAu2CS1EqKsGycPp7pG49mxEmXDe8JJGGEqvA/uVLgIJ20cfFSLC/R26aPj9uPi/7RaIQiaJ97JPS5k1VIJPGfuEfIT6J03dUZPfxKezNP8OdmsA1c7gTY2J099pm3KlxiMZQo5VEo8309nYzOXmIF164nmi0pdSvPZ9P8OKLK0mnh7n44m9TVTWLadPOxe+P4vNFaGtbSjLZj2Xl6OnpwnEs/P4oBw++QiLRDyjEYq3s2PEYPl+EcLjOq6d/gPr6ebiuQz4f5+STLy8Z5CWTA1x00cP4PAPMjUhrtzcR6fotCHB2EPm6grjLh7ztGeBbCHBfioD55ylVfzLijWF4j3sQufwAcA7Col+PJALmAycgDvKve6/tRqT4OvAI4GjQvqwdf4WfJauXoAd0Gk5rYMdjO2hZ2IJmaDw67VESvQle+PILHP31UZrOaqKQLuDYDpMHJ3nhyy9gpk18ER+2aeOL+Njx6A5irdLmLdoQJVQTIp/I8/Kql+VYy6F9WTu7ntwl0vq6ENPOncanX/w0y9YtwwgbWFmL+GCc9VvXs6BlAWOZMbp6usjbeZa2L6Uh3FBiyvsSfdy2+DYq/BVE/VFmVc9CVVRu23IbB8YPoKBQE6phLDPGgfEDuLgsbFnIRHYCBYXO8zsxVION3RtZ0LIAF7cszw9UEPFFSoZ1CgpZK0vMHyOg6SiKJjXYJ6+W9mt1HeJanukXtj07LExy1ekC7J2CmMmVPHxcAZy+KmkNlzoogDJ1UGrUg40CvnffCKlDZWO7vzgKZ39b5qXdK8WwLjxNGP/dN0KoHfSoJ4nv80qE+srSeO0Y+XoRTGs+YdztnHc/KJQl6CWQ7i3xw16tulI2pfNFvTZuyPZgPfhjXqs5nxxvpmTfUq2+B9zDTQKwrZwA8+YOr72cJdL24jX96iYB/eEG+M3tMLXPY9174bWbxMumbj50rZVjKmeJLH5otzDwiiLnC9bBL28UqX20Rfbt75JjU30iyS9k0LBpb4/xne9cwuhohmuv3URPTxzLcrnmmk3s3z/BvHn19PUlqKsLo2kqa9Z0sGLFXNasWcbERJaHHroQx3EJBHSeeOJiNm26io0blzM0lOa66zaRyViMjWW4+eZF6LrK5GQWx3EwTZvt2/sYGUmXJPqhkNyz6+vDtLTEeOCB11FQ0FSNLy78BBeduJioP8QXFv4FD152C7mCyb2v/pCqYJSxzBSW6zCcGqcmXMk9W56mZ2qYnGXSOzXMxSct5Y7zP8dEOsG3tjxN1B/m6R0/ZfPe1/nRrp+zeNppzGuczXBqnOpgjN8PHcSyLQKGj9cO7ubpHT8lk88wv2UO1aEYuqozlp7Cpwdwa9aKk3z1bZDdKbOQmxEW3s2A3gxqhH9XxnSmKf1+b7xR2BavxW1Jhnks6A6H4a/+SmIE2z4e1H/60yKF7+qSwDObhRdekNZDM2eWJZdvvy0sUH+/jFNXJ+B9cBDNytHa6vLGGwKiH39cWrJ9/etyqevXl+NNx4GJCbnUdevguedEFHD99QK+FaUc+4ZCxx8bCgmWjkTE7+npp0Varyjl/R5/XKT6dXVyLXV1Ej9XV3vMebHwfd9RiVeDfok1j5XJ65qw88VSTuN9wLxnUED/Ce2Id0VBxi6O0dYoxxQZ+KKDvKGXy0xTGSG/irr+TE6M6jK5D8D7v9HygTndn1j+05nT/e8uf6rPu+MB92Lbt+Na0GjyZyZwdT+OEmBkVGNwUCa0QEB+x64r8+r4uCRFV66UiW/2bMkuHusev21b2RzE75f5/aGH4LHHyvPELbfIX3u7sPGVlXL5Pq+EMJWCr31NjEGmT/cmzICNkkiW632KUqJsvmy6EfBLdrE65rm+9wljXmTriy3jKiLvc9g8Zomnyn3a86Y8LrqNwPGtN4omd5qKbdvYtmdOV1ODEY3ir6jANk0B5BMT+CsrUTQNK52WPu5RCf6sbJZgbS2uZTH2298SrK8nMzREqLGx3NbtuuvQ/H580Sjj77xD18030/LhD7Pgm9/ESqfJjo3x7jPPMPfaa8WhfmyMd3/wA+bfcgt6IICrqlhTk4TqalGG+gVYX3QlHPwD9ByET98gEnnb8pyV8wKqZ5wIug/+9tuw/Zfwre/L5zA2KDL7fE5Y83xWDOoUVRzjZ54s+2mqyOBVTdj6dEIk46mEsO8XXgF1jfCTx3FOPA174Yekf7TmyTFQQFEoZBPHtW/T/UF8wQpQFLJTgwSi9VIb77q4jnVMT3dHmOpifaKi4FomuC5D722ldubZ6P4Qg394jbrZC1FVveQ27wtXyFswglj5NH5/DMy8JKuLfdRVVdzkCwVcnw/FtqV1W6wSNxlHCUdQKqpw+nuEFQ9HjvkuJcQdvuN8r53buLSEW/YR3PgUzt/9AGXufNRF50IgKLXt4QgEgijBEG6hgPOrzSjNLagnnwY+P6ab52jPVlpaFtDfv5N/+IcruPLK56ioaGXr1k6WLFlNb+82qqpmUVHRxtat61myZDXRaDNDQ2/T0HAafn8M2zYpFLK8+urXWLr0dnQ9jM8XRtN8ZLMT6LofRdEYGfk9LS0LUFX5f42P76e7+36WLFlNTc0cLCuH41goioau+3F8EQqKyqiiUIeA8gjCnO9AGPdGBLQfouwwfxR4GKlzP0LZVb4TcZmvR+T3axCwbyBS+iDwVeAM4DPIVJBBEgRFlt3xxrzfO/6kbIGp/RPEe+PEWmMk+hK0LGxB1VU0XcO2bF5a+VKp7Vs+kSfaHC05xL90k7R9O+XKUwB4dc2rnH/P+egBHbsgIN7OSXu5SHOESH0EzafRv7OfivYKYm0x4kfidN3bxZLVS4g2R/FFfbiWy8s3v8x5955Hr9KLT/NxePIw8+rnoXleCbdvuZ3bl9xOU7SJweQgfYk+zmw6k8HkYKltXN7OE9SD5O08t2+5nduW3EbYCBPzx3Bch3g+Tswf47dDv6U52kx9uJ5EPkFVoKrkVP/OyDvMb5x/3LiaqqGrOpprEcz2oLy7EeZvkPuRGgS3IGxvIVE2S1N0AbBWBt68Bc58BPJjAsxVXfqguyZMviMMevI9kbzPXStJgNR+aL9SbhyT70i7uUJcxs4NS9Ig1AK7vgxHfiKMe6hNgH5dByVDODMhRnSKId8SpyAsc7ELS/H+iVL2iPlT/diLJnSKJq+bSTlO85XvucX2c8V10cW+6MUCZVf9YpL917fCmavkepI9oljwV8HQDoi0Sw10xXQY3A4v/hVc8t+EKTdTUqNeOVPk9Y43v1tZcaUPt0BmUGrlcaB/G/z8CpHHR9vlXI0LhPVPDcCRzVBzMumaczELDqqq0NXVwxVX/AOXXXYid999Hqec8h2uvnoeDz54IX6/jmGoWJaDritePOHiunD48CT9/cmSW/zatcuYMaOSL33p5zz77B6uvnoeTz55Cfm8VWotV1cX5s03B1mwoIV4PIdtO4TDPnRd9drSuVx77SaefXYPQ+OrMJUsFcEIiPUjOcs8rs/6se3cVBTeGtjLzT97kA/NOps7zv8sg4kx/tubL3PzeVejoPDKvteZVtVEXbiKp3f8lC8t/ATNFVKXXbAtUvkMFcEIBdvCcV0OjPUwu7adgOEna+bYP9ZDbbiSH+z4GZ0Xfx5d0YACWKNS225MAyclM1PuHQgtAa2Cf1dLKlU2iju2Qfrq1YJmVVXAPUigd/PNsv03vxHK+777hJKeNk1YmnnzZMyKCpF4ZjLCEC1c6JE0PfK3cKEg4euug5tugqoqEnUzGRlVqas73oxu9mz52Rw8KDmCRx6RWLOvTy47FJKYtmigvGIFfPe7EkYODsp+x/Zjb2+XSwN5e+EwpbbFR45IZcCTT4pYYNcuqQQIh+WaaqtsDMWWWOhY07hir/ZURuLVgiWxKRzfyvj9fdmLHZJs+/guSsXFRZj6ouly0ZyuSEqNTsrzOdO9cx35wF3+X2H5wJzu/6WlCK7dfyHT9f79jn3uOnJDtr3aNMcuy90UpcwsHCuNLwYsjgmGOBqrTo7KSodoVOaEZFImvuuvl8msoUHm0e9/H048UfaJx8ss+r33wvnnl9vCqarMzY8/Lkx6V5cc89hjso+uy8S2cqWA/64uOZ+ilI1BMhk5BgUB0UG/rF1XJqFjTTf8hkx8Rwak1mdWq0x4B3rKNULBgAD8OdPK5nI5s2z2EQ7KuXoG5bFZ8Fh8ry7IMMp17z5d/vAmX1Wl7owzCDU1oQeDjO3ZU0qk6MEgb23YgJXJoIdCpHp7yY6OYoTD6MEgicOH2fnNbxKorUULBqk780wC1dUomkb/r35FZnAQO5fjzfvvp+rkk7ls82bO/NrXsLNZFF0vy/BHRkBRyAwOUjt/PigKtmmiqipKICifQzAEn74Raupg4YfhU9cLg/43j4lc/uAekce3zBDTudFBkcGfc64cGwxJP3fDJy3dcIVxP/Se1MG3zpBjDvxebuCGD559SiT6kQphpesa4bOrIBQWUH/RlVDfhKLpaIafQi7JwO9fpZBLeMA9Se3MswS0+4JY+ZzI3R2bYFULim7g2AVcR9rCmekpcXR33ZIBXCGfxrVMHEuAfdMpH6aQS2NbeRLDB8XN3hfAymcxghF0XwjdJ63QDH9YQvN0EmewT76UHmgvJVPNPPYrm1AamlHCEdT2mSjVdaW6dDedFODvSemdrl/i7v09biIu7dVSSdy9v8fZ+ipqSzvqp69Bu+RylJo6qXFvahEVhM8nzH02LXL99hnYWzbhmjlURaep6Uyy2XGams5kxYp/oqVlAVu3drJnz7N0d29g5swLaW9fhqb5aGtbyvbtD5PLTVFffyoA4+P7ePHFG8hmx2hpWcC2bRuJRBpRVZ1sdhKfL0KhkEFRFOrr5/HCC9czPr4P00zh90dZvPhWUqkhTDOFrvtxXYdEoo90ehQL0BSFWqTVWwqpO78RcZMfRNzmbcqt2nYBM4EnvamwCaljL8rnNyJGdM8jgL8SMaMrICZ4jyEM/3VAL+W+8HjTis8b/0E85t92pG69PowRMmhZ0EL/jn4SvQmObj1K/GicS74nUvjMSIbJQ5OYKZPMaAYzbXLRQxdx8uUnk4/ncR2X8+85HyNkYOUstty25TjpvT/iJzuWZfPNm2k4vYFQbQhVU+l+oJs9z+6he0M3uakcZtLEdV0++shH8cf81IXqaI42s7R9KcPpYVZtXsVAcoAFLQvo7OrEr/np7OqkLlxHPB9nMDVIXbiOHf07GMuM8eUXv8xgcpCbF91MQA/QGGkkZIQYTA5yePIwQT1IR3sHYSNMyAjREm1BVVTeHHyTkfQI8+rnkcgniPljnNF0BmPZMXKWgE3HzksP99PXyyc98TuwM5Afl/tSbgzeuUuk8HpIgHoheUz9eZ/I3ndeXzakq5f6aYwqOPl2ryZ7ibSZm3hbwHPdYhkzdVDGDc/0GHJbWPgPvejJ7f1QOc8rQ3PlHuiLCmh3zLJKLdYuX5L4EUAt16kr3pzvdYfATFIyjYsfLY9blL1r70sOqx6IT/Z6jHysbBxr5z0jMkUc4ge65f6+9B7YvVHeT7JXwP4vbxT2PtIggD43IXL2a45A0yIxpf3N7QLYmxYLaz+wTeT3+SkB5NFmYd4LafjVzVJX/8VDYl6X6hMGfminXEv3N6BlKTQtAQV6euJce+0mWltjPPfclaxbt4ympgiDg7fw5JOXEAzqjI2lyWQKOI5LoeBw6NAk11yziSNH4vT3J6mrC5dk8uvXb8VxXNatW8amTVfx7W9fTCplsmrVZurqwvT2JlBVhfr6MDt39lNZKbXx4+NZbrppM4cOTQGwdu0yVqyYS8BnkCnkuWfLDxhMjKGpGmFfEF1R+dw5H+eSkzv42kc+T8G2eKt/L0cnh5hTN40HL7uFLy78BIZm8OPdL3Bq0yxGU5Ns+NVfM7/5RE6sm05jrJYvL7mCymAUBYXB+Di6ppP1zjecnMB1XU5vPpHJbIJvvfJ9xtJTzK5t4wc7fsbmva+jokDhgPRwdzNgTJe2cCOrwB6GwHwvkfTvZMlmJeBTVdGSX3552eFt8WKhnlOpsrHc4cPwla8I/ew4UgQ+c6YEhL29sm9Rz37XXRIENjRI0NjaKoz+0aPCIBUdkA8elHNXVkI4jOaB6MHB8mV0dkrYkc8LQL/1ViGFikbKK1fKMMUSzhUrpI2cpgnZ1Nkp7eP6+kTBP2uWvBYOy8/v9tuFkEomZfvs2QLaDx+WS2xqkvh3aAiqKh10K19Whc5sLbPrqiJg3mdI3XpR6RlPST/2U2dLzAoSq54wTeLcImtvWuVSz2OEShQKEiOfMkvOoyAxbzwl7eeqYuXtx5aNFq/pg+VfffkAuP9nWor91acOyPrPgff37+fY5ed2wXt8UPbVfALMrZzXxkYRkx0tIPI82wsUisC9WMunGiipfsZGXTKZsnS9CMrXr5f5OhCQv0JB5o+WluPlSW1tYmhn2/Dee+K+Wez+UZx7Dx+WSdWyZGJ9/HFZ19fL+RIJWL5cMp2KIgC/JDQpAmhNkxqg3iEB64Zefr0iIhOQopTdO82CJx0yjpcrwR/XBymqN7F5xxdfK7aGm90ude+uKxnUgo0TCpDu62P3+vW4loUeCFB3+ulkx8fZ/a1vgesy/9Zb0fx+smNjVJ14IrnxcVzbppBM8u4zz9Dz8stkR0bQg0GSPT289cADuI7DZZs3U3fWWbz7zDPHmdzlJybQQiFy4+NM/OEPqD4ftaefjplMUnPaabRdeCG5iQneuO8+EkeOYAT8XjY8L7L3qQlIJ6XNW9Fg7sW/F3D9yj/KB3/h5QK4Db/0aS/WaI0NwZG9MOsU8AWEZW+dKcZ0vgBUVkubt3RSwPysk2FyDCaG5dxD/cLEF+X4dY24s+diesZAiqoTqmpm7OBuFJAWb4fewAhG0IwAoepmrHyGbHykFEArioqi6tTMOAsrn6GQSzK451c4lokCAsJVTST1Xgu1UHUzhj/CCcs+g+NYDO75FYFYHUYghqKouI5NZnLQK0N1BWSHo8KgW5aIORwHZ6hfPGGWXwIK2K++hOvYlO6oqoLaNl2c4RUVV9VQl30EdcXnUJpacFNJlKYW1BWfE8bdMFBb2nB6j+BOTgj41w2RxyeTKC3TQDdQVA2n+9coLW2QTuEU8riuQyBQja4HaG9fRi4Xp6OjaFa3jlisjXj8CK+9dhdtbR1cfPG3iUQavfr3CJWV07nwwofQ9SBz5/4ly5dvZGrqMP39OwkEKkXyjvRx9/lCXHDBBmKxNny+CJFIA1VVs2hvX4brOjiOg88XoabmBCKRRjQv0ZFFnN/DSN35K0AVArDbENl6h7ftbMQ8Lud9mkGEodeAq5Aa9RjwHMKm34iA+xAC3h0EmH/Y22Z7x+Yp18IPITfXWsDWVDrWdlA5rZJgVZDcVI6WBS3oAZ1gTZCuzi6sjEWyP8nWzq1iNjeQ5LW7XiM5kEQ15DYdqA7gi/hQVIWXvvISqeEUi25ehO7XaTi9gexklkhjhFB9iMW3LCY9mmbo7SFw4WNPfIyrX76aCx++kEhjBNdxmTw6iZ23sRSLlJkib4lh1Uh6hNsW30bMH+PqeVfzyEWPYNomd3bcyWh6lJg/xoKWBTz4+oPUhevo7Ork2T3PMpgaxFANDk8exvJAaWtFK+c0n0N3bzf7x/cT9oUZTY+SNJM4rsOStiXE/DE0VaMh3EB9uJ7B5CB3vXYXg8lBVFQCRgS36ky5L4EAatWQnu12VsBm3VKpRXe9e1mgEaZfLevaJWIo1/Os9GpXdDGcG+0S6Xz0BFnnRgSE1y6EN28WObwRESO60W7IHBUHe9cSgFx9jsdwHZHjXUe+UYomEvcik675yn3QFU2Y7GKZWVHRVgTrmu/4lnCRRgHh8UNlwG4mZVsRqCuUy9eKveGPM47V5ZqNkLDmRQl9saa9pUPe51m3QaAS0sPCvBfBfPyIAP7MkIDzVK9czy9vFCBuBD3vG0tihFdvlN7t81fK+rVVsn/zEnjjQTlmZ6cY4O3aADhYVtmcrrOziyVL2pg+vZKengS33baFRCKPbbvU1IRYvXoLuZyFoij09SV45ZWD9PXFWbq0naqqAGvXFiX0HXR399LWFuPMM5sYHk7jOC6LF7fy4IOvs3BhC6GQwcyZVXR0tLNrVz+HDk3R15fwrmMrQ0Mp2ttjPPXUpWgG/MCTtP9gx09xXIeR1AS/HdxHa0U9X/vI58lbJht/9eOSZD6Vz3BGy4nUhSvJFfJ8ceEnWDztNH606+claXzA8HHfqz/kL//ma+wdPYqLy3BqjIyZxdB05rfM4W/feJG0mcVxHZ7eXpbVq4paku4riiO925PPyhpbat2Tz8L4BnCmRKXy/29HedOUoCyfFzQaj0tftGMd3q64QgK2UEgA+LnnCoKdOVMk7l1dQnpomjDwl14qaNl1j6+fdBw5X1FSv369BIZFB+T16wUVNzZCMonrugwMHH8Z69bJZd90k7Dko6Ny6QsXimp0wwY5PBgUwP/d78qlptOy30MPSb5gyRK55GRS4tnhYbncxYvFvK4oLIjHJZYtSub7+0UgcOAA4LgoeVOAeNEf6YRpZRd4EFA9q03WIPFryF82RHZcAd15s0wqFWPSIgjHldjVcZAYTZVxfIacx6eLEnVmq8TAqirbVfUDd/n/C8sHUvk/sfyHlcr/z/Zr/6P9ZglQz46J+22y948fB2vFhK4kvytK+DwJPYpngGGXesva6Ox5z8DnU2lpkbl6aEgmunXrZA5W1ePl8WvWSGayrU1Y9JUrRTE1bVpZhrRvH1RVCWg/VpZUlNJ3dso4TU0yVnOz1BIVvTtUFSIhG63YD7OtUZh38PpdWuX+7gG/THBFWZHhSYre3ydz9x55XHT3PLY/vKaW6tbJm+XemaoXZBVlS22NMqEm0xTa6tlx113UnXEGtWecwd4f/5j5t92G5tUo2fl8qd+6FgwSqKxE8dz5XNvGdV1y4+Micx8d5Z3HH/+jsXS/H7tQ4K0NGziyaRPtH/0oC+6++496x0fa2nAdB0VVeWP9eqpOPpnGpUuJNdSjOLYY0L29HW74ugBvy8vC5LMQikhtejgm3x2vv3mJYTqm7zr+oHx/knEB5+GoyOur6yUREIrA4fegokbaxGmGsPnRSkhOQV2LpzkT0ybb55Ma9HyasYO7aDhpGZrXQ37gnV8wNfAuFU0n0nzqR1BUqQN1XZfM5AihqgZwHbLxIQKxelTNwDIzaLpfJPpFBYorzJiZSWDlMwQr6rAtE033kY2PYmYmiTWegJXPYJtpQlXNuCjY+Qy6L4hqeVL4cATn9V+jdpyPm0ygtEwTWX4uixII4qqqYP2CifPLzagf+SiK4feC/jwuLpgFlEgUd3xEJPJLPoRSUy/lsfm8lCEYPtA1FFSc/qMo4RhUVpSfV1RCZbVI9Pt7sNpayJtJUqkhurs3sGzZWiorZ5BKDZHLTZJOj9Le3sGmTdeyZ8+zXHXVJioq2kkk+mhvX4rruqTToxQKGbq7N7B8+UYMI4htF8RPwDPLVBQN17VRFJVUaoRAoAJd9zM+foBUaoCWloXouh/TTAFgGCFc1yVvhNB1H1lgJ9AMzEbYdxN4G6lLdxD3+VqkFr4VAddLvNdURD5/FJHS+73jb0B6vb+IuNJrlIG6B9PIIQA+hyQBLCSJUONtM1N5arMWul+X1m4q9G7rJdYSQw/qFDIFEn0JJg9O0ra0jWhzlM2rNrP3+b1c+dyVtHe0C9A+PFnqv+5YDnpQR/NrOAUHzadJPfzhSVIDqVLtfLGVXHokTbQ5KsRtxkQP6CgoFLIFsvksg8FBOrd28vCFD4v5orfcvuV2bl96OzMrZ5baw+mKjovL4anD9Cf6md84H4CoL4ppm+StPG8Pv805zeegqzqv973O2c1n4+KiKRo+zUcin2AoNcSG7g2sXbaWGZUzAOkj393bzRX/cAXPXfkcbRVtzIw2Esn2Cug+8yFh2t/dILJ5I+r9Bm1wFWnN9tatsOD78vssJOU/lR+FvY/CGQ95QNZLajt5YduLgH/ybQg1C6gPTxdGfbRL6t9zI7I2KgWoj++QGvfwNJHQ27myHB5XEgRFUF1SpBW8Xu8xvMm6LG2HY3qwK5R4FccURttMSTtX15aEuWbI2h8rz0coItMvlrEV5fpOofyXj5fPofnFZM4Xg9G3BfwnPWb8rcfK/dmNCIy+A00LJOHw6g3w7k/gxBWw/Gk5ZyElSZRCEsbeEZZ+cCfUniJSfD0oSYBkj/S039kJC9ZA5SyyBY19B+J0dnZxxx1Lqa8Po2lKqV97e3sFu3cPMH9+I6GQgeO4bN/eR0tLlGBQWrx1dnaxZo2w9D6fxrZtIrk/evQmensTPPzwdu6//wLCYR/ZbIFQSI4r9nl3XZff/naYhQtbuPHGl7jjDpm/NE3l3nu7ePpHH6M3PsSPdv2cLyy4jPaqRmwvcTicGOf7O/6ZLyz8C94Z2E9jrJb5zXNQFRXLsclZeb7X/Y+sOu9qVEXBcV0m0lNE/CE0VWM0NclwaoL6SDU/8CTzlaEYD/zqx3zunI9TG64kYPhRFYVsIc/Dv/4Jn1twGbWhCnRNx3ZsKvwKqpMAJwlqFNRKKBwU8F5zB2hNkHtTWsT5Tvq/38vdMYWo2HtQgr0NG8qeP7EYfOlL5YDuqackPurqEie3kREJHpcskf1tW6jvm2+WuvWbby5r0I8cEblm0e0tkRAUvXGj/AWDwvYXdfADA3KOUIgEMa65VjnuMrq6JJbs6oKdO4UNtyy5vKNHBWCvXi37KB6/Ew4LMK+sFL4inRbQbhhy7OCgkE8LFsi2dBrGxuTy7r9f4tWiVP+RRyTWve02OOkEm4ieRzm21zocL3NXVYlTHQcO98OMZomJXLfcBq61Uf4XxX7uf2682W2iNi2+7vcJYdXeJLFssdQ0Gv7AUf5feflAKv//yvI/06+9yArEpsvNOdoKHHOcoh3/OHLMeEUpHyDuu16gUKy/mzrkSfUikOpDUTUsS+Wuu4QVD4fhpJNkMpw+XebadPp4eXxnp8zD69fL5PaTn8jjfF7m4RUr5JhAoPx83bpyWXpfn7h7dnaKnKnFw3Jbt4pZ6fXXy4Sogkw4rY3l9hhmQSaenkFpCWd6bEaxRVzRyONPGYAUH6ezMmnOmSbJAM37iaUysPN3MtYJ7ZIc2O+x9HlTpPKaKsz7Ce2ohsHca6+lccmSEjOeGx9n17e+Raq/H4ATP/MZAtXV6MEgu9evJ3H4MIVUitE33yQzMECqp4d0fz+BmhpO/sIXjhsrOzLCzm9+k9zYGPNvu432j36UU6+7DkXTqDntNN790Y/oefllMkNDpHp72XnXXaR6eznjjjuoPfNMaVGmqiJT/9in4IZ10DZTWrNpWrm/umML465p5e/PcL/0Y58YEYn8+LCY2o0NSY/2SAXUNMgxFdVl0H5kn7DwdY0eANUF1L/yj2KIV1kt2eTidQGKqjF2cBc1M85EVTXSEwOYmTiNJ59LRdOJ1M06B1QN17FITwxQyCUJVTdSyCUY/MNrBKJ1KKpOZrIf1atzLxo1KICiquKuHowSqmqkkEuX2r+FalpKLeI03YfuD9P/zi9wLBPHKTCw55e4mo46baY4ubfPwE0lRRLvtWrD58PNZcEq4KYFtKoLlkI6JVJ5qyDsPEi9OuBs34q7522c7Vu9Mhcpf3F+8wv5PjsurusIY19ZIQ70L/2THK8bMDWB03cUtVUAiGmmSKdHWL78QUKhegACgSqy2Una2paiKCrLlq3jqqs20d6+FF0PUF8/j3w+SSo1iM8XJpUaZNGim6Xm3xbpbm9vN1NTR7HtPKYp++bzCUKhmhKgr6mZRUPD6WzevIqpqcOAy5Ytt3sA3sWnqhxyXVYiMvgWmYkwkRZwTQhjPojUsasI894KLEDaxd2ISOynIUB+F1Kj7kfM5d4FliFmdPsQifwhxLjuKOIqn/L2txDmPYwY3DlAo6qgB3Qc26H39V4mDkxQP68ePagTrg9TNbOKloUtVJ9QTaRR6tM71nSw4p9W0HRmE6nBFFbOIj2cpmVBC8mhJMPvDHt+ZS6v3PYKZspEURRqZtXQcHoDA7sGmDo6RWYsQ6InwWvfeA0zZTJ5aJLNN20m3hMnPZZGD+gEGgMMJAbYcMEGYv4YLi7xfBzHdVjcupjOrZ30JfoYSA6QKWT49dFfk7fzzKqcxdK2pYxkRnhz8E0OTB7gyy9+mdHMKAtbFlJwCqiKysKWhSRyCQKaqGFcXCK+SKl93Pqt62WKNFOMpEdY2raUwVsGOXfaudSH6wlohgD1nmcFHGb6vd7qHtjFhrHtx7SAu0O+Ba4jUvnfrQN/HZz1bQHXhYS0hbMyXq28I9u1INQvg3A7TP+MgPKd14ohXeQEqD8PIrMg0ADju2QdbPAYTAdS/XLvcwrCrtt5SYiXHOA1uT4jLEC3mMQ0wp4LvVkG8I4lAN21JXledHUvjlM0nTPC5Xt70fDOCMu5/TE5n+olShNHxQzOCImT/K9ugkSPN05IGPFwE7SeK7L+Un/2gzJm/XzvmCPiNH/iClj4dXkPvoi46ysIsK8/U84dbYbfrJZkgGPLuK3nQrQNLny61JEmqKSYNauKu+8+j66uHr7+9V8SjfrYuHE5uq6ycuVLzJtXTyCgl8zk5s9voKUlRmNjhHDY4LbbFtPXF+fo0UlGR9MsXNjCc89diWFobNjQzYIFLQwNpbjuuk2MjGRQVYWBgSR33fUaQ0MpDEOjo6Mdw9B4+umP09QUIRLxldzrx0Yy1EWquOP8z9JS2UDazLHxl39N3jKpCsf43DkfJ6AZfOzkDhoiNXxry9P0xUf43eB+JrNJbvvw/8dwcpy3+vdKe0RVZSKTpGBbDKcmmN88p8ToP73jp6TzGTbvfZ2/feNFIv4QtmPzVv9epjJJ1i3/IgHdYDA5xu8G9uHXDQq2i2uPwdhdsnYLoDdCw3fAOEESSXoDFHr5N20H55hgJ8BJl9l9xwR7HPIelbxggQR4q1YJIIfjA7pMRoB8TY3EAaEQLFpU7vXb2yusTpExL9ZLKkrZ3TgcFgBaVydB5YMPCl3++uvlZuvhsKDvgQG49loUtSx3X7tWSuYvvVTA9PLlAqyL5Z5HjwobvnSpDKNpEpf+9rdy2spK8bzLZj2xZa8o/S1L4tLTT5e2cJYl5fgbN8rHMjRUNsp/8klKPn0zZ8r4yrHGco57vMy9yMIXCvKbn+GpcBISO5TY9T5POQoSrxZ7t9uOqD5NS8yTFeX4+Be3zM6HgxILV0RkjvkAtP9fWz74pP8zLMX6dPgf92svSuTzCXmtcpbsp2rl4zSj/FjVJQCITfekfcXxXAk8Sg64jgfym2TcUD1UzsJFIRyWia2oWjpwQDKX+bzIkXbtOr4lxpo1knlct05Y9U2bRPpuGAL2v/lNGSeVkons6adlvk4mJSvZ2irunmvWyITo98sk2tEhk+Czz0oW0wHcY+vZVbUMLme3w1lzZfu+o7I+ZZZkM21HWHFDE4mSz5DPoFjjXuEBcBc5cTZfHuOkmWWp0bGTb0VE/rJ5mST3HQXbxl9dTbChgbPXraP94ovJjo5y8uc+R25sDEXXUXVdJO2axomf/axI3X0+Kk88kXd/+EP8VVXseeopKedvbyfU2MiCu+6i/eKLyU1McPLnPkdmaAjNMDjnG98g3NpaSgrMvfZapl96KXVnnUWgpoZzvv51ArW1qJpGbnKSYFWl1J3/3ZNQXScAfGoCfvZjAeSpuADxIiDPZeDvviPfj6oaWHGtyOVtW+TwF10hYNw0pSf8cL/8o6vrhH0//B5MnyPGdaNDAvxHB+Rcb2+HqfFyH9FkXOT7to2rKDSefC6KqjKw55fo/iCFbBJVM2iZdwFGuBIcm8zkkPdaCgUYPbCTYFWTVJo6ltS9qxq2mZMa+XyK9EQ/ZmaK/ne2UMilcB0bK58mPrgXK5/x3BNt0hMDOI5FISevOXaBsYO7CVY3C4s+OYE7MYY6dz5K23RcM487MYq9+WeQTokJXTKB89pmSKVQaupQwlHw+bA3P49S3wTpFPbLP8N1bLSPfRJt5ddQL/4EOA5Oz2FIpVAXLUPx+SXhkYjjZtIomg6RKO7RA/I8EkOJVqA0NGNv/jkoKtFoM21tS/D7owwNvcXk5BFyuamSiZxtF6isnE5T05n09r5OMFhFIFBBKjXMa6/dRTI5QFvbEqLRZhzHQlV9ZLPjNDScTio1iK6HPPZdF8M+XAYGdpHPJwDFq3O/hW3bNpDLJVi06GY0zUdvbzemY7FeUXgWAdI2AsZXIW7w/Qhj3kmZXT+AMOk9CKBf4G3fh7jFN3qvWYj0/S4EqGvAhmPGq/DWC7xxuhAgfxPiQL8S0EwLx7RxHRcrZ9Ewv4GKtgr8UT+Rxgh92/uYPDzJwK4BGuc34ov4GHxzkHB9uMS0y9Tt0rakjVkXziI1mCJcH6Z/Rz+O7XD+PeeTHknz4o0vkk/m8YV9tCxsKe2n+TXalraRT+ZJ9CdYfNtioo1RApUBnIKDUlBojjaz9pdrSZpJor4olf5KQkaIq0+7mocufIhfHv4lnV2daIpGfbieXf27MB1JFoR16dfen+jn+b3P05vopS/Rx5uDb5K38xiaQcgXImkmGc2MkjJTZAoZ7r/gflbMXcG6ZaJF1VWdAxMH6I33oqkaOStHMp+kgIY7dy20rxCwXLvYU7tQBt2Vp0OmT1jE6AlS964oYFRIuzdUkYsrmtStv3OX/NetFCQPwsQboLiet0veo83aoP5ceHcjOFlhknMjYCWlV7xRKWPtvlHGjrSCv1IA/LHu8nbeY8lzwqgrqgDxohwepexCX3SZL8rgS6/1y31a1cqS+WSfx6J76oFi+7ji+FbeS6Z73jVFebqZgJ33ismcEYJgjbD5/d1eu7kUbL1TYoXYNKlnz4xKeVzHvRIfGCH48GOS0DcTcow5JaVyqi77oMAbj8g504OSJMiMSJLiV1+VY7zafXPgtziOSyZTYOfOfh5++CJyORu/X2Pjxm7OPbedaNRfMqZbtKiVsbEsN9zwIvv2jRMO+xgZSdPWFmPOnFqqqgIlAzpdFwf6Cy+cxYYN3SUZvOO4pefFVnI9PXG6unrI522iUR/NzdFSjXxtQ4iA4Wc8Hedbr3yf8VSc2z70/6GrGu8NH6YuUkVNuBLbdQh6DvA/2PFTKoNRntnxMyxHpPVz6tqZyiYJGgHGM5NoqsqcunYc12X1hz/DJSd38IWFf0HYF+SiExdz83lX0z81wu+HDjK3cRZ+w8B1IWgECBkBTqyfLrxJdqrUDk4Z7wR7SEC61QtDXwJrAKxhMFq92ezfYHFMMN+DoWvA3C9g3cmCa4ITgXRGkPGFFx4vaU+lpB79lltkvWYNfPjDMGeOAPP6ekHAxX7snZ1SDP697wlDo2nl/u+/+Y1oy2trBVGDOMn39Ah6njdPAsbBQXn96quF0d+wAU1xaGhwuftuiStbW8txaXOz5A+ObQm/ZInEt0Vp/diY5Bd6eiQerauTSyv2a1+wQHIEN9wg+86bd3yp/bEfy/r1Eh7puoD4m26CfMHr414kipIZIX38hpA+xTZxRwbkfRfsspu8Zf/p+vNURlj1eEpi11ltXos3RQB8RQQWny5xsaKUa+WLzv7Fvw8c5P+vLR9I5f/E8h9KKl8E48k+uYn+OcBe/D/n415QMSCBhvEn9j/2ONuT16X6ZX9V96R9MY7r3VhsjO6poTGTuL4IeVNlfEKT0peQgPa6Okl+rlkjc3QsVv7tu65IjCoq5O/AAZnA1qyR44NBmfDuvVdqh8bHy1Klbdvk76mnypfU01M+fto0MRC94w44ba6NfuioZB2rY2Ujj2IwqHiM5+ik9Fef3QbDE/K4pV4Y81hE3m/Wy14XneWLLp0ukunM5aV2yGfIvkUX+7wp51cVONAL05vlnBMJCrEQI28dL1kvOcJfcw2RtjZG3nyTqhNOoJDNEqyvxzFNxn/3O4JNTYQ9AxfFK+i30mmy4+PiFH/99YSbm3ELojBQdR3HNFENAzsvQWshmSRQXU2qv589Tz3FyV/4AsHaWlBVjHAYzbVR/+5JcYk/5Uxhu3/8qLRuO+dcuOoGAerF55f9FfzhLZgzT+reL/5LiFXCf/8eXPJpqKgUCbptwdovwWkLYMU1Ut9uFQS8F0yIxMr7zD1TTPGO7BXXedeRVnHRSnBdHF3H8b6S6Yl+dH8QK58lVNVEdmqIYFUzhWyC8UNv0HjKeWLopogk3cxMofsj4DjYtonuC3rt+MBxbLJTw4QqG7ALeRRN2swVf0eDv3+VplM/QiEbp5BNE6puLn2nBn//Ko0nLQNFQVU0VMcVwBwI4gz0oTQ2S5u33iMwOY4ycw5KtAL7hX/EfecN1Ku+iFJRKYZzSz6E29eDcsppkMtKAJNJi7P8RZdBJo2bSKC2toOq4pomzpZN0qu9qkak+OmUfK7RmGTvkwncVAK1pR3Xtij4daamDhOP99DSsgBF0chmJygU0iQSfcRiLXR13UtHx51UVExjauoI27bdx7Jla9H1IN/97mmceOJlfPzjTzM+vo9Uaqh0TNEpXsbvpanpDFzXxTSThMMNWFaWZHKQ7u4NdHSsIRyuR9eDWFaWfD6OYUQgUMFRX4T1isITSO36XQi4XoG4xt8IrAPaEYB97OuPI7J2/sRxBnDtMdu+iwD4DUiv+CBSA+/3jr0VMaQ7dgwtnSdQcHAKDrmpHKHaEFbOYujtIZrPbkbVVfq291E/rx5FUTBTJuGGMKqmikmhC73dvYQbwtScUAOAnbdLZnQ7HttRcqPXAzqKomCbNqigB3XMhEk+nscX9eGP+Zk8NElyIEnj/Eby8Tz+Cj921GbbwDZOrT+VmD/G4cnD3N99P2s61tCX6KMt1kbICFEZrMSv+RlODVMRqGD3wG7mN84noAfo7u2mLdZGb6KXha0LmcpOUReuI1vIEtADKIqC4zrkrBwRXwTHdVC934vt2qiojKRHqAhU4OJie4loF5e1r67lBx/7NioFrz79kNSsn/mIOL3/4V445U6IzPQkoV4i+1jn9UJc+rcrujD2w7+AtivL+2sB716agd+tgdM6vVZuBiW3djyJuutdhxYQRr7nWbhiSuTyKALQbVMY51SfsMrFsrLifbUI0FWfp+ry5O26v1yrCuX7afGxlZcxIy0eYE7K+MU+7r5ouW7eKci1awG5pvgh2NEJH3oEsiPlmGHXRvjwtyX5MLwbak8vxwUD3eIUH2kEVMhPQiELuzfAsvtEQq9qAtiHdorRXLJX6uAbF8p7evXL8KGH5fXGBcL6Ny8VY7pdG+Cc1SR8JzA6USAU8qGqCiMjafr6EnR0tJNKmQwPp7n33i7uvLOD/v4Era0xBgaS7N8/wYUXzqK6OoBp2miewu3227fw1a8uZHQ0zZIlbRieT0QuV3aUnzWrmoMHJ1m/fivr1i2jvb2Crq4e6urCPPjg66xdu4y6uhDptEkmYzF9dhQbi3tf/SGb977Oz7/4MLmCydM7fsrnF1xGS6yOvvgIP9r1c7608BMMpyZoiFSX1m2VDdiuQ8+kyO0/d87HmV7dRNrMMZqalOMWfYLWWD3j2ThBPYChaSiKwm8H9lMVjPLj3S/wpYWfoLWygSMTA6VxWisbsJ0cMT2Ppuq4ioHiKmCPwNjXpc49ejXU3ytMuN4MSuBfXy5vJwS0J5+VtnQN35HfipOBXBC6dwh6VZSyXH31agHmrivPH3+8HK9mMrJOJkX2Xgzo7rhDmBvbFsBelL339clYlZWyPtYaPhQSNshxBOAnk1JbX1FRsotPP/UTCq5eIn0cR1oJP/ecEPUPPSR4/1h3+OuuKyv8n3hCMPL73eVzOQHs4bCA/OJrd98Np5xSluWDqFPvvVfIq4YGuY5rr5UEwaf+0qGu0kKx7LI03bEFYPcNl0swbVviyoN9x7vOF8G67cnoZ7XJvGJa8lrBKsexRRn8+zoelTokHRvDFmsEPnCQ/1dbPpDK/2deXFduwNkxWb8/EXOsEZ2d83qtD5Qz/P+jxI2iyk051V/eH+V4eZ4LTB3xQH5eAhBc8EVQ4ofxaTkMwyHiqWkWLiz7gnR2ylwaCnnlN6aA9ldekXm2UCgbdHR2lvtYFjOeyeTxvTGXLy8biXR1lROsxeOLviUNDV7p/8yWsmt8zvRkQkdlx7wpmcj6apnwHFdAeFujpECLtT7F/pmaKkC+d0hAe7HvZSQEFdHyOYotNAI+GeNAj2yf3SYfUDYPdZWoPoOa004rMePZkREUTZPHo6MA1J1xBlowiC8axUqnefO++0Q6Hwhg5/M4XhbUdV0UwyA3McGZq1cLqHddxt55BzuXE1d0VRUwaRiYySSG9w8rmty9+8wzFDIZFFWVendNh6u+DIsvgMoa+a58+kb46jfhkqukrv2Sq+T5p28U2fwpZ4kx3YWXw9SYmMm9vV1AO4ow5YoC65+WsQ1/2ZQgGBZm/r99R5j9tY8K4MeF2XMFfP7996SOO5eR2nfbopCV2nMjGGH88FsEKwQgab4QODajB3ZQPX0+hVyS/nd+QSEz5e0fQ1U1XFzMtDC/ruN6/isqoaom7EIePRBC1QyyU0O4VgEFl6Z5F4gBnj9CqKoJxzIZ3PMrCtkETad+BFX3oWoGiuPgZjJgFbBf+meUSARcB/vFf0ZpnYY6d76w8WYe7ZL/gn77f0WdNgvCUdQlHwafH+X0s8X0bnICFBUlHEVpmw75PG58CiUSEdA/Pgqug9I6DaJRFNcLXnw+cZjXfSiGAYGAONZnM6KAcG3i8R7C4TpeemkliUQvkUgDXV2dhMN1dHXdy549z9LVdS+ua7Nt233s2fMsW7euJxCo5Morn6Oj405su0B394bjjunu3oDrOmzdup5wuA5F0UmlhnjttbuIx3tQFJ3u7g3e+J0AqKpGMjnAa6/dRTo9jOYLU6coPIIA6ApgNQKc1yHg+inEoE79M6+3/IntXhqytO0OxC1+DgLgZyD18jO949ci7Pwab/8isA+5YGUtHMsh3BAmM5EBF9o72nEsBytn0bakjUBFAM2nMXFA2sY5lkNqIEUhXaB+Xj2pwRSO5dDT1YNqqEw7bxr+Cj+Lbl5EcjCJmTaxchapoRSO7UiCyZR11/1d3q3AJdIUoX1pO6quomgKqqHiM3y0xdr4/cjvsR2bqD/K83ufZ2P3Rk5rOI26cB1hX5hVL6/i8NRhwr4wK19aybz6eQynh7n+heupC9fRn+zn3Gnnoqs6taFaDk0c4o3BN7Aci5H0CH3xPjRVI2/l6e7tJuX5FdiOLcy9L8zugd0YqlEC+1FflAcufAAXB5KHhCEvGs0V4gLae56VNa6AV8fy2KI4vLlKnqt+YeFdBwK1IoVXVBjf6YFzV5zqAU74iiQEdt0Ayf1y33Qd6RXvFgSgawEB80UlgBYQB3jXllZnPk+mXjmLEvq2c2WJPIqAJjMhoNcIy/5WHuIHywx90RneTMhrdr7MwPsrvVI3730XO7w4BY/Z18qO84oGsZlwwfck+R6slxr0HZ0CppM9Aqhr50F2FH5xvcQMtfMEtCsqDO2S6wzVwZk3C3s++LrXM94SkzvNgHS/jD+0S5IBFzwphELjQgHvZ90K0y+C9JA8Tg+hGX7q6sI4jouuq/T0xJk3r57DhycJBnUCAZ2lS9t44IFuamtDbNzYTUdHO1dddSqHD09i2y7hsI+33x7CdV0efvgipk+vYNmydizLIZk0OXRoih07+lm4sIXGxiimaRMK6Tz11KUEAjrxeJ6OjnYee2xHyZU+Hs/j82n09sZRVPj90EE+c/YlXHTiYqqCsVL/9R/ufB4Ht2Q69/SOnzK/eQ6tlQ3MbZxFbbiylH851pjOdhxS+Uz5uO0/JV3IkTVNQr4AmqpRsC1ObZzFj3e/UBrbdp33jWPj1wxUVZJHSqZbmHajBYq93es3CgM+dhcUDiEFRf+Ki2NKUqBmtZckeES+N5kusAclLlq8WMB0Niso9rvfldZuti2B4JNPSuB2/fUSvFVUyH7V1XK/mjVLjpkzR36zk5MSj918s1DWtbXC7EQif2wNX18vAWTRor1Ik7tuybzOtlxGR8ut2VatkmGmT5f8Qn+/XOZTT8mlqGq5zfzatXIpplmW269bJ8BbUYS9b2kpVwSsWSP5heJ+O3fCoUMiJHjqKXkrRb+9J56AT30KCnkX5VCftCm2ba80Rftj02TLloub3S4xbJFhL34JbVsIqJynCHUceb13SGTxeVOeq6pnQOeT/5+C7GMY5S5MB3rKRncfLP9Xlg+A+3/05V+qa3ddueFHmmWtcHzd+p+qgz9ufPV946uUesbapqwrplFqFacZnkMuEGlCTfWTz7klP5Fg8PhSpkCg3KIzEJBsY0eHzMG6fvwkt22b7FvcVlFx/OstLTLBDg1J/VB/vyR3i68rimQ4YzGv7FfTjgfcli0Mu+3IRGQY5UlJVUUO7/dJTVCxhZuhy/5HPcn7TC9BVpTC2/bxsvhijbzrysQYi8j4OVNafISDJZmS5vcTamjg3R/9iGB9Pa7jlB4XMhlyExMomobq86EHApz02c+y/+//nmBNDbrfj6rr2IWCOKAHg9SdfjqoKqNvv41jmtSdcQZGJEJmcJDRt94Sth1KRneOZXH22rWc953vcMqXvkSgpobc2Bg777oLu1DALZgQnxC217bkumfNlRr0WBXU1EP7bHjuBwKsK6vEvC4YhvYTBPDf9yPP7G8fmDlpFxefEva9qPgo3hF8AWkjp/uk9t3nk5v51IR8nifMFcm8PwAnzMPVNEYP7MC28hSyKRpO7BDX2N//EkVVsAt5ameehS9UweiBncQH9zJ6YCe6Pyhscz4NQKi6CXCxzSyFbJz0xCAoCro/hOs4WGaGYGUjAIV8BtcypV4+nwLXQdMNGk5ahpVLoeB67vCAqqMEArjxKdTF5+EmE5DPi6N7fKoM5n0+3EmpOxfHfgOlqlp+TFPj2Jt/htLQJP+zwT6UthkQjqC2TsNNJlAXf0hq6P1B1NPOlM/PtqUNXTotNf7jozg9h6XFXyCIEo2hKAqKDa2tC3n99QdLANp1HZYtW0s6PUpHx53MnbuCjo41KIrOsmVrmTt3BYsX30Z//07a25eSSPRjWTk6Ou70jllTOsZ13dJYmmYcB9Q1zWDJktWee/1aadfnOqV9urs34ABpxBzOBKLACQgrHgISSG26jsjhM4h53fcQYP0H4MtI7/cTEFA+gFSAOojZ3d3eugB8Caj21g5iPqcgNe1LgFlIomAGIrUHSA+n2bxqMxMHJgjVhDDCBvlEnlfXvFoKpMyUyeabNxOuDxNtiOLYDhMHJ0iOJAlUBGjvaEdRFern1VPIFDCTUq9eMa0Cf8xPpCFSAuN6QMexHDbfshnXdbnooYvwRX30be9DMzQs06J/Zz+FTIH+Hf2YeZPeRC914TpWbV5FxBfh0FcP8fjFjzORneD2LbfjuA7rz19Pf6IfVVG5bfFtRP1RgnqQpW1LeWzHYyxqXUTSTDKcGgZgVs0slrQtYdfALjKFDEEjiO3YOK7DotZFRH1R8lZeerm7NhFfhHn18+ju7aYn3sNNL9/E/vH9qIqKguu5vvtg4dNwxSQEW+AUDzjPXScGdAoCeHffKHXsp90j4HFilzDuuIAmCYCJXVB9tgBZJw8Tb8o5orPLCYF3N3jg46jI63Oj5fELSTGmW/CUbKuY5jmrOx5WP0bpVrxf+mIyXhHE+6Ie667KMcUkuWt7jycErPtiImP3xcreNKrPSyCoMk5q4Jj9I5QM8RRvLi2kxBnesWR/zQ/nPwEnfUpaw+19VvbZvVEYcSMsjHp6BAZ3QOPZ4gPwm9vlM0sPCrDPDItz/NQBufc3LxV3+sazhbGf3C/b9YD0cs+OSjwSaRWX+UirCN1cePvtIVIpk46OdjKZAsGgwdGjce666zWWLm1j48bljI1l2LhxOYcOTbFy5Us0NUUIBHSGh6WufXQ0w8qVL9HbmyCdLuDzaYTDPurqQpx+egOrVm1maCiFqipEImJKl8kUuP32LRw9GmfjxuWsWDGXdeuW0dgYpqoqSFtbDNeB05vnMKO6ha9feA0Fxyo5ul+z6JNoXlu44nOAbCHnfeddwMVxHL507DGqRtgfKh33xYWfwHVdasIx7/i8dKrVjNK5vrTwE2iKypcWec8XfdJT5xRQrKMwvBL0Oij0yCzlOwmangY1DOP3ei7z9/Ivtgz+n1kcE5yUV8tuwsjtkNkGDQ+CPQpD13vXMgi6K/GP3y/S+GIrIMuC3/1OTOUGB8tsTG+vMOHXXSfbXbfcGu7AASlAT6cF8eq6BI1jY0JN/ylreMcRzbrjHC/Tt+0S+tb8OpkMfPnLkj+45x6RyHd0iPlcS4vkHbq65BJuuEEIpUcegddeE1Z+aEhyDY8/LmMcPAhvvCGCgS9/WVj6xx+XSwR53NoqzHt9vXgxFcv/zzhDPpYbb5RtldUKbhGMowih5LoCzOurjo9n84Wyp5KhS+26Y3vdjxQhnPw+2b8I0tsapSy0WCaqeXF9EeCblowX8svFHxvbushna30gm/+3Xj6Qyv+J5T+UVB7KAYKi/LHs3bElo5/qkxulHpD9/tT+f26cY9tQFdkDKyeBRWy6BALF8RXFCzpEim+jM5UwCARVCgXBdiAAPBAQbPzee2W5e0ODJGPr68ulS9msTJRXXCGtPp94QuYFTRMJ0vg4bNkibeOam4935iyW4aiq1AnV1UlWc2LM4UMLc9Jaoyj1cRwBz7O8BEUyLUC6OKmBTFyaIp+DWSi70sdTwsjPmSb7OI5MZrPayi71x8roHVfG9xkyge47KhNoZRR6BilMa8LO5xh/5x0C1dXkJiaItLfzwqWX0v7Rj3LWmjW4Xm1BdmxMJPDXXkuoqYnM0BCZwUFqTjsNRVUZ+93vCNXV8e4Pf8j8W29F9/sZ+93vqDzpJPRgEBSlJLMPNTaSGRmh9rTTRN5aKKAYhpiwqSpWJoNqGPh8BspwP2z+BzGnq20UUJlJQTgiCZypCfknJ6c8xcKEmMi9+N+Pl8pfdCVEK+C5p0Vav94D+pNjIoHXNO9/sweq6uVLE44IIz/cL+z9jJNk+9iItIibcRKOYZA309IzXVVxHOnTnhg+QGain+ZTP0JmcpBwTSuOZWJbptfiTVQF2anBEiDPTA5iBCOoqoGi6Vj5DGOHdlE3ewGFbAojGEUzAgy9+2tqZ56DLxTzflI2Q+/+htpZ56D7gmTjIxjBCKMHdlI3eyH+QAylUJB2cLFKqPIc3fuO4vzDX6Ne+VnUlmmeA3wUN50UGXvRsC4+JZL6tuniJL/4PNx0CrV9hsj+rQIuLoqmiyP9qy+LIz0KruPgjgzKeNmMJ9fvRWlsQTEMaeGKsHVTUwfZunW91/6tlWx2glCoFkXRse08mmaU5gfLytLfv5OKijZ0PUQoVIOqGqTTI57xnE4y2cvBg68wPPx7LrxwAwCqajA5WTzPWqqqZmHbBfL5OLZdoFDIEY02kEoNlq4lWncKcUVlWFF4ALgfAeEePOMQUod+J1Lv3owA81mIcV0WMbFzEXD/VaQ2vR3p/17jzXhFAeBhYD3CqLcjyQK/d3yGMoi3EZf78xJ5Nl3zc/Y8u4erNl1FrDVGV2cXS1YvKU2v3Ru6WbJ6Cb3beqmaVUVFWwVb129l8a2LqZxeSXIwSVdnFx1rOgjXhdl882Y67uwgWBtky61buOiRi8iMZti6fisdd3aQ6E8QaYzIZ6qpdN0r56ucUUmiL0GiN0HLghZyUzmyk1lSUylql9aya2AXC1oWoCoq2/u20xprpSfew8HJgyxtW8qG7g2s6VhDfbielJmiLlyHgoJpmxiqga7qxPNxkmaSCn8Fjutwxy/uYMMFG1AUhZgvhuVaqIrKYHKQqD+KpmrYjk08H6fCX0HEFyGei5O381QFq/CpPnJWjphuYOCiKK7I2d++Q/qvR2YJC+5YkD4q4L12EVLTjgDuPetFSh+eJky6ERXWPH1E+ruHWoXFP/lWyI1Lj3c7L67xwWaITIfdX4GaBdB4oTjK9z4HNYsE2M9dC7GTynX38suXb4PrCONddHkv3idVoyyDL7aDKxrOFQE9eHJ317vXTpPXFcoJgWKXl+J57Pwfu9IX2f7J/QKym73vXiEjIPycO8QsLjMEoUZR6KUH5a9poYwdPwpvPCAu8H2/lv7t5z8un/trqwT0n7gCFt8t7y9xWCTzjQvEEd+xIdzglS2kpUZ+y7Wl4xLn/jWuS8nlvaLCTyTiI5+3uPHGl3j22T2sWDGXp566tPS7ufbaTTz77B42bbqK1tYYnZ1dPP74xaxcWd7/7rvPo6YmyOBgis7OLlavXsK2bb1s29bLE09cjN+vMzCQ5BvfeO2PzmGaNoGAjmU5dHf3ct75bfQnR/jrXT/nax/5fInlNh2LocQYU9kE85rmSOmHovLbgX3UhauoDEZ54LW/4fYPf4aJTIKR1ASnNs4ioPtwcUXs4ZkGD8RH+fHuF7j5vKsJGv6SrP7z51yGi0tdpIqA7mNgaoyg30dVUFopgotfzaMNX3eMTP0J0GKgeHL4Yv35+HqoWQf+E8uv/e8sx423FnwnSF37+Ho59/AqCC6A8IUizbdUmPBIHdcVF7dzzhEg77qCgu+/X57v2CHyzPe3DuruliCuGMw9+KDUxT/0kNDURYXesVr1p56S2MC2pSXRyIgEip2d5fZGjgOOQ5wY13qu8ps2Sav4YsejtWtFHFA8hWlKbLpnj9S15/Ny6d3dwpY/8IAYJT/3nOQSXn9dCKVgUPIMti3HJxLwrW9JDJzNSrLg5ps9Yaf/eGn9Mz9wCJFD6RuW2LI03bhlWXuxm9HYpMSlc6ZJfDk+BYtOL88dJbm9IvsVyzZB9h+dhHPmyvNiF6X66nJ8rPA+R3q/APzi8w/awf0fLR9I5f+zL0VJ+5+rVS+a5KT6/vz+JUn9Qa+u3fKAvOMZ9pieQ7XHIxX7xqKUDew0v1cXqEF2SpzlNY3db6gkEuVJKpUqt8YwzePl7rGY7HfttdLaDQTAt7XBZZfJHG1ZkvXM5eS12lqRLZ1zjszFxzpz7t0rE2oyKQaljiP7NDa4Ig8/VupTZNU1bzKLhsUlPl8QVt124Ei/GH5o6vE92atiMpHanuTIZ4hMyXZEFj9nWhm0246A9opIuQ3drDaptS8x9RZmMlli3EMNDQRqakru75phUEilKKTTx8nZVU37/7H353Fy1XW+P/48W+1dXd2d7vSepBMI0KwKCVlaVAhrdIYZ5cro3OsVSVAYBRfQBAWUJBgGUVlkG2fG0dGLjONoIIRFo2maLGwCYUnSWXpPd7pr3876++N9qqqjzJ078537x28u5/HoR1Wd5XNO1/I5n9fn/VoINTTQsHgxL91xB4XxcRpOOIHC0aOc8fnPAzD16qs09vaiBYNMvfwy+eFhXrj9dkKNjRQmJkiccAKFiQl233Yb+YkJnFKJ0vQ0uaEhXty0icL4OJ7rwjP/LJr1phZ5Yw/vE8CdzwmIV33dU3ObmMz1nCJRbh/5NITC4mC+qFfaMQyZADjnfQLijYCY0eXStdnbRafKuWL1cHi/UO0bm8Vp/n89CMeOCu1+0alC+y+VCARjWOW80OCLMmiobzuR5kVLUBShvAPYZgEzn8Jzbcq5JGOvP0Oobg5WKcfY689Wjev0YFjM5Q7uqVXoA2GmDuzCdUzfmC5fPc4q5QknWquVfz0Yrlb37UIGktNSWY/G5D1IzeA88XOUeL2A9k4B7WpHN14+ixKN4Wz9Z7BMqdR3dKMsXIw7sF2c5J//LWrHPDxFhdS0xMmhiEFdNou6ZDlkM77xXRa1awGeptfo+hWjuy2PQWoGRVFJJgdJp4e55JJ7qa/vxrIKmGaWLVvWkEoNYlkFjhz5HZnMKJnMCK+//hPfXT5CONwAwNDQDgwjTDo9RC43QTBYz8KFF7Jq1WZSqSG2bFlLMnmQeLybSy+9n0Sih3I5g20XmZp6g3A4gWGEyGbH/Wu5j4aGHizPJaMojCIAPYLEvOURp/cIoj0fB85AquwrEQO6I4gjfBGpnOeAuxFwH0AA+FF/u4JU3HuQinoPAuYtv20Qff31iDleCYmPw1DpW99H7xW9dCzpoH9jP3sf3cvA5gES8xMMbB6ovu5Z1UPn0k52bNjB3kf38vxdz6MFteox/Rv7KaVL8nxTP2bWZO+jeymny9Vj+jf1E5kTqbbfv6l2PlzIDGeINkfZet1W7IJNuCFM6+mtBPUgZ7aeyeHUYa55/BpaY60MpYdY0rGECxdeyOaBzTy691G+s/M71AXqaI42YzomQ6khrtt6HUOZIQAmchPc/rvbcT2XaCDKDefewERugpyZ40DyAGu2rOFg8iCKojCWHSOiRxjLjnHL9luqrvXRQJScmeMzj3+GweQghXIKQ1VRCkdg9zViCNe0RMC250hFWQ2A0QChNtkne1A+tL0bpHJeHIXCkFTNixNyj3rjDslor2a83yV58LlDUlGPdInRnWLAmXfCnBV+1X1C9PEVp/u9G+QLYPuUdqfsu8SXENDsM91m3ydVFVDl0fMEbFf09kbUB8sHBeA7ZQHtriU0ervsbz/kT6oL6ENR/Gg4S7Z5jn8th+QclQp56oCA5sLRGk0+ewQGbpFHPSz7hpv9TPYJ0cS//agY3M1bJWBfNaSyv3S9gPZzbhL6Pq6A9nCz0O/tAkRb5XMa3SHVekWXSYDFV8DS9YQMD1VVcH0zxsrjrl2jfPGLy6oVcF1XcRyRf91443KuuKKXpUs7qxnwu3ePsn59H1dc0ctNN60gkRDJRWX75s0DrFrVw5e+tIxksoRtu8ydG622tX59H4WCRX//EIo/X18oWCxZ0oGLy9/s+gWnti1kJHWUO3/zQ/JWCVVRmcqnaIxIX+e4Li+Pvk1DKE7YCBIygnzx/Z9AVRT+fs+vuO7n3+L1iUFyZpHDM+Pc9tRDjKYn+f3YfoJ6gL88+1Jcz8Vxa3T4v93zS8JGEF3VOZZPMVmYIVPK882nH2E4ddQf14XwKrT4pptBjR0PzNVArfr+nwHavaKY3+V+KWAdGwILofUB0c+33AmRFT41/zBYnqDg66+X72NrqwDzQ4fkjb73XqmYV1yGXfd4HrphCJKOx+WxsVHWNzZKNUfTxLb9Rz/6Y2v4Awdqlfa/+Aspnz/4oBQWBgflfzp8GAOLdes8rrhC5g1mJx5t2FAbe+7bVzOYW7pU1g0Py5izvV0o8F/9qoD2jg4xwF+2TPa/5hopHu3aJcWl1laRhr7+urBI77lH5hLmz5djK2/BTTdB0PBQhifELd7zpChUYW/OHo+qqgDp7jbfIb5VDJcVpJ+oVMUHh2U8Go/JmLRkSpGlYmKnqfK+drXW4o5NuyYTDQYkDtnQ5T38Q8f7d5f/K8u7wP2/+vKvUekrBj4VulRFK1+Js0kNCpD3vD92uQXfeGcM8Acd1UFFSQZFLafh1XXiegpLlkj/mMnIoZVJuEBA/mbT3fP5GpDfsEHA+YEDQnt/5BGpqvtx5bz8skRyXHed9PMglKWPf1z69i99SQB8ZZKgv18mDdavh3g9eLp2fEdjWtKI69Uq4oYh622nRqUfnpAqx6JucdjsbhNXT8sWXbyqSkdq2zCTltlMkE5w/5BvbBeVjm/fEdG1qz6FfmEXtDSi6DqBeJy9Dz/M0JNPsvfhh1FUlXO+9jWiHR14ioJRV4cRjXLypz5F98UXc+YXv0hueJgX77iD4vQ0Taedxt6HH0aLRIjMncvLd91FaWaGhhNO4IUNGyiMjdFwwgnVc7z5d39H0+mno2oaex96qKZtz+UI1NUddy2uB95HroIzl4muPJMUAG0E5PU/3ieU9WxaTOtS0/7g1ZYPMBCEnz0C71kBH79Ojmtug/9xg/+dTUj1PhiCyTFpr1ysVd47Fsh3L5eRfT52jVDvVU3c7n/6AE4kgqfA1IFdpMff5tjBPbiOiarqBML1lPMpxvf+BjyvSpF3bLMKyh3HmnXsiwLyFRVNDzCn5xyJk1u0FNss0rxoKZoepL5tMZGGtuPOGWueV91ul4s0L1pCfdtiovWtuDuerQJuJRqrve7/tVTNVRWlPoFXKgqIf/63te0d3Xi6DqEwat/5KL1novadj6cqKK4j1XjLrE4MeLkMSqKxBvIHtksX4XnV82KZuP3+NQz8Fg8PXQ+QTA6ybdsNgIdhRKo69R07NmCaWeLxTuLxDmKxuTQ0LERRNAKBKKnUEUZGdtLVtRzDiBCLtRKNzqFQmGT79lvIZIbIZIb9tm73B8s6nudw9OirAHR3r0RVDaLRFvr7N/CTn6xm69ZrcV0L7BLtnsdyII6A7G8igDsGNCDmc2ciNPpGpDKuIZXzJUgF/nr/UUcq8Kr/+hYEFh0CnkcAuQbsQCLjVGAQocW3IuZ07cgEwREg77hkx7Osfmg1mqGx4isr6L2il76b+9ACx7+OtcXQQloV6Pet70PRFFauW1l9HUqEqvtXngfrg7V91vVROFagb30fWrDW1oqbVqDoCp1LO3n+rufZ++hedmzcQaQpghJXsByLdDldBeh3PHcHSzqWYLkWHXUdrO9bzxW9V3D3RXczmBxk7Za1jGfHCRmhaqSb4zlsHtjMko4lTOQmWLtlLbqqM54bJxFKsLF/I4/ufZSN/RupD9WzeWBz9ZhH9z7K5oHNlOwSrucet29btBnFs2cB7M3Qukoq3ZVM9qkB0agXR2H0lxD1q0IVDfqcpccfjyfbSlPQu072OfVmWV8B+3s3CPjecw3okVlAfaPc/yptn3qz3BdzI8e7yedGBTwH6uR+UfGGma1dL2f8+yqyrhKfVXGTr1Trq9R5fwLec2r36vShmtFdpTpfpduP1GjzbUuFCr9nsw/CNwkIb1sqWve3H5VH1xI9+ot3+es2yD4+yCbWCQ2Lpc3cUTHHW/VQLc3GKcv+1eP9CRbPhrp5wvrzbEmhueBBOcbMoigwMZGrxrPJb7+eqak89957CZ2dcdau3UK57FAs2vT0NHDvvZeQShVZt24lV1zRy7x59SxYkOCBBy6jo6MO1/UwDK26/eab+2hvr6OhIUSxaHHNNY8zNJRm8eImHnpoNQsWJHjllQmam6Nce+1WBgdTvPrqUYaHM+iqxlVL/4Rl807n7/b8ilPbFjKVS3L7048wN9ZIZ6KFifQ0m579WxrCdcRCYYpWmduffoTpfBrX87jhvI9z0eJlnNq6iFy5wI9efIIzO04kpAc4q2Mxc+ua6Kifi6ZqGJp2HBV/bl0jhqbRFKk/TvP+N7t+ge26uOgos4G5GvrD0aB8R9S6/5xK+8Qacahvf0wmCtDAHBR6vHVQzjG92afmbz6eop7Nwh131AZ6liX3fV9rzsaNwhGPRATQDw/LMUePSgl6bEzomQsWSKVnzx5p//vfF1pmRSgeDgtQr2QKf/WrAuwnJkR7mUjIPq4LIyNYnk40qlQx/ezEo/Xr5RJng/lNm+QteadI4/nzxXV+dFT+Vds+3rNp6VIZ3x46JIWnlSuFYj8yAjt3zqpXLJI5hhNO8F3lezqleJTNy04Vn6SezppjvGVLYSgUEIZoKCDjT8eR91pTa8ZyFV28YdTGrqGAmCVPpWRMGw5KilIlLrkyZsYTvf1Bvyj4Tq717y7/6cu7VPl3WP7/jir/by1/SIF/Jyd6kHUoAtKLxwTsJxZKpEwgJrPpakDaqbjTq0G5Cc8+pq4LTwuglDN4WpCCGSaTVXnlFaHAn3hijf0c8O8fFTr84cNCO9q8ucZi+tSn4H3vk/7XtkXS1Nkpf5/9bI1G9PDDcvzmzUKXryzhsPTRS5bI60AA4lEHJZ2VzmpkQjoaQ5cObTZo17WaQzxIp2cY0ulVKEEBo0Y3qgTKxyLSSRp6TWtUydkcOSqgf79PRzp1kcxcVilHASzTxLVtCuPj7H3oIU656ipCzc2k336b+sWL0YPBqmM8IBo312X3bbcx9OSTdF98Maddey2ebRNpb2f3Lbcct/7xD31IKPdf+Qql6Wn2Pvwwp65dS6yrC891yY2MHHdeu1DAKRbZ+/DD9K5Zgx4OE21qEGdox4ZiDqL1tQ+2mBcwfmS/OMFnUxIZV6HXX/RRAfLxBkgnpep+5Wfk2ENvSWW+vkGA+JH9Un3XdDj4hoD2YFiA/D/9QKLkYnF5/pGr5PuZmsZp7yY/M4oRijI1uIfmheegB6O4jo0eCDH62jNEGtqpbzsR2yxgFXOE61uwSnmOHdxD2ynvxzaLTB3YRfOipQQi9biOjaIKcdpzLBRVnLwr/ajiu6uahfSs4+LgVcmzVamK4ikwMyUgvO8CaGiEmWnc/mdR+84XKYFpgq4J1V1RIVnZfgHUJ/BGhlDbOkA38DIpvIP78EaHUS/8EIqq4jzxc7y9r6D0nol2yZ+BruOlpsWVvu8CiNcL8zaTknUX/QkUcrg7noWLVjNdGGbHjg0sX34jdXXtBINxTDNPLjdOf/9GVq5cRzzeVaXKm2Ye8AgEYjiOSbE4g66HURQFVTXQNANV1Xn88c/w2ms/prf3Ci655F62br2Ovr71xOPdbN16HeeeewOJxAKRa7g24KHrYVKpQ1UqfSzWjhdp5KCisgExkFuA6NotpGKeRgB9DAHbbcBcf1vl85gC3gf8ANGpKwgQ/wziEP8mAs6bEWC+DjG7SyLZ8S6iiQ8gYP1O/y8MlE2byHQRPayTHkoLTX1pB0bYYObgDJkheY0HqcOSu956psgzAnUBPNvz/RgctICG67iU02WOvXWM1rNa0QwN1VDJTeQI1YcopUtoAY1gPIjqx1J6nofruLi2ix7USR9Os2PjDvrW9aFHdAKtAQhAppxhIjfB5oHN3Nx3M/MT8xkYHqC9rp15iXmMZkaZG5vLZx7/DI/ufZQreq/gwdUPsnbLWtb3rWdBYgEHUwcJakFu2X5LdZ/7LrmPZClJwSqwsX8j6/rWEdEjlOwSPYkeBlODbNixgfV96xnNjLKscxlH0keq+55c30lgZrfQ1vduFKAc9SfuXvwcnHCd5KknX5OKuZOXD/fVdaJx1yOADvlDAsZPvRnCXXK8ggAMz4byMaHQl6dkv951cuwTp8Plk5A/KOfvXQ91C/37quPT3oN/7CYf65BtqlabAIfj75WxdpkAr+uCyZer909UQyru9T3yGKjzjWVH/Ql4nWrG++x7tUeNkl+RsSmKgK0Kky4/JuB96Xr/GgOQOSgAe+l6qF8o15o5IhX2JesElNsFMZeLtsl1ZY4I5d0uiDP9++4UUF6cFlp8+pCA/iXrhDEAMtFSkQVYeTEQNGLkmYOnKNi2i+fB9HSBOXOiVVWfris899wwvb3NxGJBksk8zc0xymWHI0dSTE0VOPfcTvHlUCCft6oV+HvuuQTX9ZiaKlAsWrS31xEK6VWq/RVX9PLgg6vxPA/LclFVqvT8j3/8NO6771IKBYu6egNF81AUhZHUUQxN5/sDj7Ht7ee5aPEyvrbq01iuzcUPXcf7F57N11Z9mm8+/Uh1+82rPo2uarh+scT1PPA8RtNT/MOLNXp8wSrznd/+mE8u+RCtdXOYzqdoitQzkZ3mkV2/4Oqll9NeLw72f7PrF3x66Z8ymUtyVudiooHwO40A/3MXNwfjV9Uo+a0PCSvFM0XfrjeDPQWRlVJpn94ILXeBpcGBKUGv3/mO0N0rkT/NzVKJ6ewUVLtunSDYJUsk7Py00wTVXnNNjX++cqWMN/wkHIpFAfZHj8ogUlGkFP7730vpuqtL9gkGxdSuqUnGao4j7vIHDlBoX0jaiXH0qMJf/7Uw90OhmlldICDFpfHxGn0+HJbK+WxKfUuLXK7ryv7ZrBSgKuz+9etlLqKjQyr04bBU8SvyzuZmuXTPk7kLkGvYtQvOP89BPXBYquijR49PRipb8lgxlar4OFU/O39sGwvP0q3aUpQK+YPxbF7Gr6oqEwAV93r/+3qc03zZ9M2Wgz6+QPqg2fLSd5f/0PK/o8q/C9zfYfkvB9z/cHF9Cl05JY6wiYU1mp7n6+EqoF4L+YY7Vi0STvfXVWJyFNUfLIzWIuNQ4OiLEG7Eji0ildEIBKTD6+gQqtCGDdKBVdw59++vge5oVDpJ05SOr+I87zjSPySTMqtZKEgfX3Go7++XDvFDH5LqekuLtJ3NSv9eMSdtbnRQSuXjI9mgptnpbJUO61/TqpdNqZTPjpJzPZn97OmUfU1L2q60O3uCQFVr4H9Rtxw3lZTZyhPnYZVK7PnmN3nvV79KaWaGiYEBpl97jffcdBOFyUmKU1M0LF6MlctVK+94XhVwn7p2LZHWVulDdZ3c8DB7H3qI3rVrJVbujjvoXbuWmE9VsPN50fmGQnieh6ppoqFXVcozMxixGFowiOe6qJqG6zjohoFSKsgEgm2JCd0Fl0s0XLkklHY8qbrXJXxXU0/M7EYPiS49m4Zf/oNQ5hefLrnsC06S4/SAPJbLon9f9WfQ0i7nOvw2dC6U7/LoIWhuhzdeEvO7bT+Dy67EmduBWUxjl7JEGtpBUSnMjKGHogQi9ZiFNIqqcWzwBYmDg1mMFDGR8zwXxy6j6UEU34BRURTscpH9O35IfesJtJ92gbj3A6gqiudhmwU0I4iiaORnxjDCMaxilkiiFVQNq5BGQ0U7Oik0+VAEJRqV35Lta95jcWhsgtQM7s5+1IsEjMuPQGi2XgXIX/bnkE7J8xUfkImMQBBmg/SGRhQPPLMsn0EoDJ6L+8wTqKtWowDum6+hLFqMEoliYvGrLVezd++j9PZewerVD2JZBcrlLNFoC4qiYlkFJiZeobX1jD+Kbtu27Xr6+tZRXz8f08xRKEzR37+Jvr71RCLN/vb1NDT04LqOfO9UDde1cRwLw4hgmlkCgSiu61AozBCLteC6NiMjO4nHOwk197JGVfkl8CpSYd8FvAepum9CnOE7gWFElx5Aot4OIUB7qf/6CGJq9y0E7B9CqvLf8bdfSy3q7UGkOm8jevaKBn4X4jbf7R9zA/BAvoxdtCUOrimCaqiYGZOJ30sknBExxEV+IkekOYKiKtVouGdueoblX1ouTvHAzrt3csG3LiAQC6DoCp7tUThWwIgYaAENRVVIHkoSrAtiFSzRxn91JYn5CTw8XNtldNcokTkRCscKdK/oxgyZlOwShmagKioFq4CCQiwQw/Gc6m2jYBXIm3nyVr4Kqk9oOIGCVWDP2B7O7TwXQzXw8DiUOsSGHRuqEwA5M1fVuBuqgeWDWM/zKNpF0uU0rdFWFEWhYBUwVANDMzBUA9VzCBaOoMTmSVb7xNPiBt+7Hh4/Rarep90qZnX5wwK6T74Rjj0HU8/JNhSIdEgUnBETZli41Zd+OX4F0r/PaWEwZyD9hpjXTe+GyDwB5KFmASnZt+GNb8k1RBfIG6QGakDe70OqA94KWIXavbSuU2jvelCAeOZwDexXtOyuW9u/onGH2gC5AtIrZnWu5Z+/Moj2p6ecsu8u7/fBeHLO1H54+R4479v+wFsTkP+bzwuNft4qmTQwYvDM2pqWfdVDML5TnOnz42DmpU/Kj/kxcIZo6MspCNTLtWy/Qej08QUyCZvcJxMIS75KPnoymYzJ2FiWzZsHWLduJQsXNpDNmkSjBpqmYFkC6i3LIRw2OHgwycaNEhE3f349miY0+mLR5pZbfsO3vrUKVVXQNIVCwarq3G++uY/58xPs2zfN5s0D3HTTChYvbsI0HYpFC13XcByXdLpMa2uU4eEMt9++g7u/u4r6hgAj6UkiRpCmSD0j6Uke8cFzyAhSssoS/1bXSEe8hdHK9nMvp62uiZJtsm/qCHOiDVXQfTQ3w3BqgjPbF1fj3V4Ze5tXRvdx86pPU7ZNwkaQbzz1cHUS4LPLP8LAkVdZNu904qEYyUKGeY1tGJrOf8pSMZujUpn3n6uBP9a2G/PFTV7RJSt+eiM0rQOjh5rISIGJGyDxXbBcGYTZNqRSUvV+5RX4sz+DX/xCytQVEyNFkX0tS8ra+bwA+grA/+pXZVB55pmCek1Txgs33ihC8dZWKZtXjI4+9zkRkc/OEW5tFeB+9dXkbvwG9sLFx0W83XabgGvTFJO5c86R+ozrCvV95UrYsaMGth1HLiESkUuu8+0qAgH5dxsaZPx6+uki/7z/ftk2Nibj1coyOSnMURB1wfr1sPhEF0N1UU1T/h9DlzHQwVGhswcNfxKjXBt/VtzkXVci4Ba0+wZR5vHj2Uq8WzQsQL6y7g817GUL6v1ZicpEAUjVvav1XW37f9Lyrsb93aW2eK4PzIdlBj8+rwZWKtp3PSwz7Jo/i/ZHkXB+9cAuUXWT10MyAaAHQdGkOthyBk6kE9tVqjOV3/ym0INm0+GHhmQ28oQThOnU1CQdYy4nlfKKmYdtC4VodFQ6yf5+6dy+9z2ZvF2zRvrzK68UJtSBA0KlX7MGfxZe5E5VPx9Dl87I80TnAzUa0MiEdIr/mjt8fez4KLlKDmZ3m282ZNVc6U3/xlM5VvWNParad+V4ihGgFsqc+aUvoRoGrmUx9fLLnHLVVWihEKWpKRpOOKFmMuJ5WPk8k6+8QqyzkyW33kqouRlFVQWA2zZ6JMKSW24h1tmJXSxyzte/TqS1lRc3bCBz6BBD27bx0h13yNdA08SUTtfxHAcrl0MxDHIjI+y+9VayQ0Mce+UVFDyUTBJ++oBcy+WfhHBEAGG8AfBv0MfG/e+Y/8YHQ2I6pxtiVveXn4cVq6BprujTj+yTz0NGafI+Xv5JaJzjV/fz4l4fjsgXY+Ep0s6KVdDSJhr6QAAcGyNUR7ihA9excS2TcjElWnfPxQjHMUJRWk9+H55j4doWVimHa5u4roDj8Te2s/+3f8f4G9vFoM8H7a5rc9IHrxbQ7klMnOfYeLaJXS6gB8LVkm60sR1V1QnFm+X9BYxwHMUIorR1ojQ1o8RiAqjNstDiO7ohGBQae/+vRZueTuL86mdSWVcV2TcjjvQ4Dl4ui3bJ5SgNTWCaKK6DkmhCW/0RcaEvl/Gyadxt/4Jz/2bcp7egGAHUpSvxxkfke9nQiBKtA89DQ626xPf1rUdVDQwjSijUgGUVUBSNcjlNS8tplMvZ4xzhy+U0b7/9S9JpmQANBKLH0es1LcDq1Q+RSPQwNPQcqdQRhoefI5kcZGRkJ55n43kOuh5ievoAW7f+FYFABNPMYVkFotG5aFoAQ4GbPY8jSEXcRejvdUhV/NtIXFsYAdNHgecQSv08RO+u+8dF/NcguvUFwPcRan0YMaS7AomLqwD1w8Bn/UcNqdjrCGAHuMe0MTMmnusRbY5il2wev+ZxshNZYnNjuLaL53pYBYvU4RRaQCMzlGHLmi0CrPu6yYxmaFzYSDAR5LL7LyMQk8F08kCSLWu2YOUFBD/5+SexSzYNPQ1EW6Ik5idYdecqsuNZwXGqgmu5zD1jLrvv2U19Zz1Dzw2huAqGz5hYs2UN7d9u58XxFxlMDrJmyxoOpQ7RP9TPVGGKubG5LGpcxIOrHySiRxicGWTP2B72z+ynZJd4e/ptPrf1cyxILOCh1Q/RFe8iZ+YIakFS5RRlu4zlWqiKiq7ooMD1267n5PtOZu3ja3E9l5fGX2I4M8yaLWt4+9jbqIoixnJWTqq7U8/BKTeBkRDQfspXRNuOB4VhocpX6PSn3ARGvfx5Lth5qcxXot8KRySbvBrRFoLJfgGciTMEpLe8DyJtEGqBqefBKQpor+rb7ZpfTIW6X6Gve/4vXgtKhVnRavdKLSia9Argr++pxcxBzQVLC0L9/JohFF6NR6sH/Yn3oIDz7EhN/lbO1FgBeJAZEpf32ea00TY476/lfd1+g7zHagDOuVGq68GEn9Wuw9Kba3R5zxP3eMeS643Pg7oOYT5M7JLzbb8e/u4U+O0NMmlx/v3yPyqKTJjMouzbtkc6XWbz5gEefXQvGzf24zgeX/7y0+zfP4NluQwPZ9i5cwTD0HBdr6pb37SpH1D4zGceZ3Awiet6fOtbq3Acl/7+IQ4dSqIoCvPnJ3jkkQ+xYEEC23bp6WngttveT09PgsHBGa655nGmpoqEwzrT0wU034R27twYv/vdEbHvAYKaTmOkHhePtvgcbr1wDc2xBoK6QWOknvd2noTjuNy1/R/oTLTw9QuvJhGKsenZv2Uql2TRnC7+xo+Re2TXLzi1dWGVfl+Jd1s+73Ru/MD/QEEc5T3P48sf+O9cdvJKPn3u5USDEboSrTSERUf//wm0H+cMTw2Yj18j8XFeHvI7wJmRnHYsAeutj4DWDBOflbx4JSTMk/AKmL4TzDehsEN08PYUNGyEwYPiEj8xISh37lwpaa9cKXlnS5cKd7y/XwaKIAPE666T/ZqbpZpeodRv2gRnny2/h4rwfHJSKvWbN8v4YHBQBoGHDslgMRiUbStWSIVI1+U7+dBDaIsXUix6VXr8zTdLoenQIZHet7TIrvv2SZO5nEg46+tr+vYvflH2qxjbg/yMp6dlbiEUksL/hz8sRadAQApZBw5I0enYsdo8g67L+PeXv5RLNnQP1fN9k3RNDJFNWwD60DjVMdbs8WfJ9PezJALOtGtV88qYNB4TZmnVjFmR58fR4pHxcn1U2jwwLG+G48pjT4cc9662/f/68m7F/R2W/9IVd9cRc5rZ9Dr1Dzr8P6TSa6E/qMIHhRKoBgAfYM2uNPiz/h7geCrptFTbbVs6qMlJ6QwrFfeuLgHkK1bIRKDn1SryX/mKyJiGh6X/XrKkNotZKWYEAuLYefAgXHCBtF0B91NT8Mwz8NGPyn6eJ+da9UEH/eCR42lGcPwsZMCodXA9nTILWXHtrDjBV6rki7prhnNQq77P3n5gqEqFp2TWZjSHJ6TTq1CXAMc0yQwP8/YPf8hZN90kFEA/yi3c3Ey0o4PskSOUpqdpPvPM6uSLa5qY2SyhhgY8IDc6SmlykqbTTsPM5wk3NZEbGmLvww9z8qc+xbGXX2bq5Zc57dprcW2b8Jw5VQq+Uy6T3L+fhhNOQAsEOPb739N/ww10fOADLLnlFgxDQ9n/ulDXVVWM6WL18txx4OCbAqgTc2rVo0JOqu+V15Ypd7FEY20w6TiS977tMaHPV6pHZlmq+hd9RJzkuxbWBqFGQLank1Wne6exCVc3sIpZcYBfuIRANAGeSyE5TqCuEXwKt6KomPkUxw7uEVf4aKL6WxBHeXGNL2WmiDS0gqqj+IAdqD1XVXBtHLOMFpBJLKdckOg4z8MspGvXEqpDSSWlIr78/WLKFwj4dPhfo678IDTMQbFt0FScLY/VaO+XfQQPD9JJf9/zxWm/XMJLTqPMbRcKPx7u04+jntsHsTrIZUFV5ZgLPwzFvF+RPx+loQnPcSRf3neiNxUH2y5SKqUJBKKUyxmi0UpZQGFk5Hna289B10Mkk4P092+kr+9mGhp6yGbHsawCmcww3d19pNOH2LFDttfXz2N4+Dnmzj2dYDCO45hYVhHbLhONilu961qoqoZp5slmRwGF3bvv4aKL7vYpsRqlQBQUhcPUKOoxpBJuyzeHPcDpCDBXpceqgvWKfv1bCCCfj+jYUwi4H6ZGn6981gWEln8fsIZaFf4hf7vpt18CQvkyWqos67MmwXiQN//5TRLzE8S74mRHs3QtF3dgPaShqnDoN0f46Z/8LxZ/eDGrH1hNaiRFdsTfT4H8ZJ7onChb1m5h76N76b2il4u+cxHZsSwNPQ1YBYujrx6lrr1OKu7rV9KwsIHkgWTVnb6hp4Gh/iEe/bNH+ci/fISWvhYGhgdojjZz1/N3cd+l93HtE9dW6e5fOPcL3LP7Hv7msu+j4/LsUD9/8uhH+PDiD/Pg6gcxbZNkKck3f/dNvrDsCyxsWIiqqBStYrWSryoqJbtEqpSiIdRAUA/i4XE4dbhanZ+XmIfneZTtMoqiENSDRBUPzS0LKFDwq8KOVMIbz5T7U24Q9m4SenthzF8f8UGwT/EsT0GwUSqDxUnJc58aEBd6zwEzCYGED4ILfnycIjR61/T7IU3+8kd8Ov16iHSDHvMp7THJMMf/0jimnFvzr92xBIC7Vi0errJv5QtmZmoO865/n61sd81ZwH4WC04L+sdFpLHMEdGQa2E/h96BwhRE5sr/M7ZTjjNCAs71sE+r12RiQgvLOWfT3et7fJYdgAZuGUopiLTU/h+rIJMJWkBM7XZtkCp7ZG713oai+jT5LOy5A5beTDF6Iql0reK+fn0fCxYkSCaLmKZDc3O0Gtt2443PcM89lzA0lGbjxn7WreujpyfB3/7tK7z88jh3330xtu2STBZJJEJ4HkxO5jhyJM3y5V2USjavvDLB2We3YxgamqYwOprl2WcP0tPTwHL/9+i6Ypgn3bqCFoTR1FFChkF9OI7jOrxx9CAnNs8jqAfQVY2iVcJQdRRVRfPvyZ4HG575Gx5/s5/LTl5ZdaR/fWKQtro5tMfngKLgei4qCrbnoqsaI6lJjuamaYk18Pd7tnDDeR8nZEihQVM1RlJHq9X8BY3t/zHg/kfO8CdJDzZ+lQDwyEqJcossB7cEpVfAaJM4uab1YCwQXbsxH+whv50bQWv3fyshmPg8tHwTSjH4zHUyiPvoRwXFHjxYo8b39Mg15XIyBvjKV6QiHg5LefqVVwTdnnGGjJVmDwQrxnSPPiomR3fdJevDYRkMPvOMtL9smZTODUMGpC+8IOt8HJRR43z2Wo0lS+DCC6UQ5DjHpxrdf7+A8qeeEtnmfffJqUoleT1vnoxp+/sFwJ90kmxLp6Uopeu1eYZEQvap7DszU5N0ghjS3XabzC94ni/xdGzRuFfYorZTKz6FDMgWZH1l/NnSCIt8xmjAEMDd0SJjz2xeHitjtoCBq4LnOiiajlqy/PFppz8+9aQf+kOZ5x9W59+tuv9/Xt6lyv87l//SwP2d9O3vFCF3HLhfdPwsvef9MX1erVD9/EFEelDyWbUgbqmMp2gcnfAIRnUs16Cp3kJXHImkQqXsaBKJbtqUbJ2/ut7gxz+WPvjhByycko1qqLiORzTiCcUXDdXPRlV1TaqOqoZru0wc02htFm2nqqtoilRQbRtsTyWkO7i6Tm205I+MqlRCf60f8eO5s7TNnkfVnXP2e+IXbQAUF1TLgeEJ3J4OPG3WvtII1Qg6/9yKp0CugFfv99Kuh2eaKLqBZ1uU02mC9fWUUmkCiQRmOkWkaQ6oigAuX1/uOi7lVIpgIiGX5nqU02lCc5pQPI+jL71EfmSEtuUrCDY1guOiBoReqXgunqJQnDpGqKlRNMa2TTmZQguHsUtFQvX1KIaBCjiKilMuoQaD4gQ8Wwuliv5d03QoFXBKBdREE65tox16C7oW4gTD1ffEc11UVcX1REeIZcnrXBo1FsfVfFrYrM9B8T82TVGgXMIp5lBLRdxQBC3RhKJ4ZGeGUY0geiAk4Ds9SSjRiutaOI6F5zkEg/W4Tln0wLaJEYqL+ZnryfuKJ3NUOCho8p57LkplEO1/jzzPQ/GoygI88N9DC1U3wPUoF9LogSBaIAKOBq6K53gomsxWK56Nl0yhNCTwVN/HwFNQVQ/XtkVC4H9/1IkjeKEobl0jiqHKhLftyfnLJkowgGu7qGYeNRjE8TS0oAamiaMY4Fgo+TReuB6CATRceOaX8P6LcZQgaAqWUsZVPRRcTLtMQA9iOxaqHkRTNMpmlqDvk+GpKiDvjaboEv/lOkxMvExrxxJ/vYppFeV4z8WyCriKSiAQRXFdisVpAuFGNFWv/jpdzwXHQtUMXM/l6NgLdHYuw/IcwqoOiofmuSiKilIBW4pOHoeSGiIE4JpoiobjuUQ8B0/RUPxH23Mw/Nd5VUf3XAKKiuJa5FWDsqLT4FqAh40A/oDn4ioaE4pKq2ehoeF5Nq5qMOm5JBSNoGPhWBpWwUUP6wQihoyxTIf8sTzx9ni1SwAPxcziBepwbA/P8VB1Fc/15M9xMSIGnuvhOtI/HOkfJtoWo3nxHDzb4Uj/MOE5EaItUabfOkbbWXOlQq8q2CUbTVdxbRct5HszOC6KqmArLtniDDE9gKYGcF2LjF3my8+u487zNxI3wuiKguJ5KHYRz4hi4WFID0zKLBINRNEBz7PZMbKbU1tOoykYxUPF8Vx0PGwUVEWR7hMP2wNDARQVDwU8BwuVrJklpOqENANNDVCydWynMt/nYhgqjm2jahqW7RGwj6JN/Rqr7XI8LeIXpV2fJQOqW8T2Aj6d2sEwdCzbQ1MVVEycQhI1OhfHFcAm1Vbpmozkc1B/KiU3hqZrOLZDyJ2E4BxMCzTNw9MCeKpDQFEwnCJlLYLlOeiKaJo1Rd4DDwioGrgWJsLgcT1PWAX+fcDzPHR//+qErOehKiqeD+ps1/GPdVER1pvnueg4OGhoiISDWe0bronh5EXzakQFhLsIIHM9mHwF2s+RiYv8mLAMilMQaQBP8yt5BYmQe/+dYIT9vthFpsQU8BRhK2iGxHWigWfJekX1WQTI5IlrCqNB8cBTcXEpO0H5fXkenuWBKocmp4o0tURQVYVsukwgoBEK6zieh64o8m/4/6cCmJaD6imYtoMR1FA9mfwtlCxCmo4eUHEUD0NRsD0PTVFw/Eeg2q7teaiIbt71PIKui+G6KJWSqH/vL1lljEAIzXFwdI2XJ/ZzVstCNLkB4KgKG/v/kS+vvBLD9cBx0Ay/mqHrOK7DdDFLIhBmxi7RGIwRcD08TWOykKIhGMNQNVzHRtVkYsB2bIrlIm+mxjh13sn/MX27m4P8cwK0nTGILgeCAuaVAJiHIHiWTNJoYVDCYKdADYNaT3XAU7kHuhlQo4AOXkE+f2VWgads4WSyuIEAXjCIoml4loV67Bh6LIbjebiZDGoshvb449gf+ADu3LmolXuLbaPOzEA4jKuqxwnAPcdBEUOE2nNf8qfoOp7rSv+lKDKumpnBa2hACQbxCgVBx4qCgkKp4BGMaDiWy7EZldZmB0VTURVhu+RLGprq4aq6KB9xKBVcyo5BKmfQ2WqhKQ6q4qF4Lpar4doetqsQDTn+dbl+9Kzjjy1lXFuydHbuUll2jo0aUNGRsWux4BKJqXiK/154MiZB8eR36Prfyco41PNQMgXUWERyJ2xbqPSzx6x/OB4FzEJaZH0NbSiqJj9Pz0XJFlCDIQgFcG0bT5H3F9MGQ8aeyrE0aqYgRna6xrvLf3x5lyr/7lJbFLVGhX8n0A68oxP9H0bIvZPLbZVK7x5Hq9cO7kWbGacj9yqN4QKtjSUMr4zqWmiZGXQzR0QrYUwPE/5fd1OXG+Gh+8sM7y/y8PfLhOwssUCZsGETC1ooEyMoP/wu6rExFNdGs8sojoPiWKhTY+g//g4d+ig6FgFMtOkxlB9+F2ViBMPKE3JyuJqGWUwz+trTlPMpXEcozmYhxehrT2MW0ji2ieu5uJ5FPjWB45h4ilc9ziykyM+M1h5LGVzbYuz1Z3E8Cyeo4ZzQieNZlHPJarue6+DYpqx7/RnMUpp8cgzHs3Drwri2KZ2gaaKWSyh4aJpGZM4cVLNMJFGPEQgQMTTcxx8DU6pTim3jDR9GzWUIh4OouQze1n9GLWQJNzdLdffxf2Luwh4W/smfEG5MoGbTKOPDUq2enqzGgEWa58gg+Yl/Rs1lCRWzBAydSH29DI7SSex8jqJp4hoBbNdjaGSEZDJJLp/HtG2mp6f51RNbmU6lKKIylCkwnUzxq61PMj2nk6Kq86stW0gmk7iuDFJnkkm2+OtsRWE6k+FXv3uOkuOSTCb51eNPYJomqVTK3y+FaVkUTZOionIknWc6GONIOofpONieS1kpYVHGU1WODO1AjURJpQ7y+OPXkMkMo+shyuU0ufxRbKfM2NGXmZnZz9BQPyk/5sp1XVwchkd2Ytp5ksmDDA314/iRT+VylmRykC1brsa085hmjumZ/QwN7SCZPMjjWz9DMjmIaeexKOHg4FoOrgnJQaE8JweT2CUHy1I4srfAzFAOUEgeSvOrNVso5WxcdJIHk/zq6i0kDyZx2+ZR1uPkJvK4psvMgZRsG0ziajrlrMkT122l7AQpFsAyXRwHpo8UZL8jecpaPY9//mnK6TKWBW7fxUwPFRkaGKaYL2IpDg4uDgovHP09ObvIQZ/KPJgcZPfEK2TtIo6iYLsO+6f3c7Uf+1V2yjiqSnvHuRxKHeLqLWvImDmGcuMSDZYZxgjWoxsRMWtSdSasAmsev4asmSNrZtk3vY81W9ZwJDdGxsxx7da/oq3zXPanBtkzMoDhWQRyg2i7r0bNDaK4FkrpGIqVIea5NLkW0cxbxHZdRSi7j5iVRt19NVruAGrpKJpTJOiWUJ0iCh5Ru0Bo8rco2QMoxwaIZg/Q6JRRPRPVtQhYaULZA6i7r0bPvEWHmUJHQL46tRMtu5/2XVcRzu5DO7YDQy8QaQwQDKsonouqgB7UqO+My9jfc1DSB1EcEwJ1KOmDaIolgEN10XXQdZuAXkRxyqjZg2iqhW449Jw/jzknNqJSRi8dpuf9bbSe3kK8LcqCD8wjXKeg5Q+heibBiI6uWQSsIVTFRXXL/rYyhufQqBsEPQfNKRMYf56G4iR/c+m9NCkQSB9EHe1HcW2w8ihmFgMVBRe1MEWDrhMAtNQB9LGdvL9rOXPKx1CfXoOWHsSwC6iuhWEX0M0sWmo/6mg/gcxhlKfXoKQPonoeamGKQOYwTUaEWG4EfWyAkq2RSpvYtkuxZPPcwAiptImLTjpjMT6eJ2U2YXZ+HNOVCmup7LCjf5j9+6fJZExMN0ip7LH/QIod/aPs25/k6qu3cGAwSSoL4+ko6YzJ/v3T9PcPUSrZANi2h5lYQcGpA0VjcDDF1WueYLrUxFsH8ly15knSBY/R7FFeGn2bnG1R1CIUbJOXR/cxlJqk5FhkzCKHkxPc9tTDpMoFDmWmeWn0bYZTR/nGUw8zlDpK3ixiOw4l28T0XBzPI1eWyLBvPPUwI6mjzBQyHE5O+MdO8o2nHmEofRTbdShaJhnL5vZnfsCR9BS26zKUOsrGZ35ArlwU8KIdg+nPgzUIzhS4R+S1OgmdS8FLAWUIqX7SSQ6OfgacQwL4wzG48B4IxgQwWIPiLm7tA1ckGYRiUvn3PHEXP3oNOINCudZ8xoJ1EErPg30QJq4G+yC2Y5Myy2TKZQqWhRpQQYWdoyNkgyZrHt/CvulplLBCMKwzmEzSPzRExjTZNz3Nmi1bOJRK4XoetuLh6WDrHl94ahsF10LVFDDACKkcTicxHYcDqRT9Q0MMJpOs2bKFjGlyMJVizZYtHPDbP5hKkjVN9hw+TCCdRh0cRFmzBmXfPgGCrktYD6C5LsrUFNrBQ5zdeiL6wUMoV1+Nsm8fWibL1/o+Tsjx0A8dRl97DcqBAygDAyiDg+iqRosaJPjc87TqEQIHD6GsWYN64ABzw/UE8wXUffvQ116DeugQiutiZHPEb/gSS4oaIU/hP7R4IVBWwuGIPHphqrFxRieEzweawJ0LXoNsz9eBGYF9Pg0b/IScIfDqoOQKG7GsC0vGU8BVIVPCUTVMwyBz9ChTL71EbmiI3d/4Blnbxqqrw1QUpqamcGIxrI9/nKzj8MLtt+N4Hp7jYNs2dlMTZU2jmM/j+qZHueFhdt96K5nhYaxcjqmXXsIqFkXed9tt5IaHKU1P49g2rqJgOw5eezteIIBZLDL59ttY+Tx2LodydJjY2Gvo06OEfnq3jCXzSbRyXsae//BdovkxwmaSiJvF8EroTpnY2Gs0WCN0t5UIWBn0cg716AjKP96HYRcIBV2iIQclm0KZmkDNJlGsMuqB11GOjYtf0P7XCSkl3r+8RMhMYjgl1GwSdXqCqJ3EKxdxHMuPrH0W17PwFEXGoMkxkevhYeZlHFs2bBxNpVxKM/r2b6pj1XIuKfI+r7avWUiLQWMxix4MM/b6s7JO8fA8Fy8ewTE0XDzKZpbRvc/iWGU8XcXzPGH3NSdwFnXgKu8WhP9vLu8C9/8Xl38r9/3fAveKgqdoYqQTnoNX1ymvK889z3fM7USxLOhYgBIIwMJTUHUdpsZRfnK/0KTrExAIoWg6yrbHYM/v0Lf9hLBSovPZuwnpDornwswUyj98V2bsMzNw4Z+jJKfk9U8fkMgwVYcnfgp7fofy+E+RKfYcir+ObT8T87CA0BatYpY5Pe/FLhdAUapZ3Zmjg0wN7kZRVDzHwnNdIk0d2GYR1xEKUaShnWODL/gZ3rUsb8cpE060YpXy1c4QmJX7vQvgHbPAHVsMR6RqCGTTuNu3CR165AjezDGhO+dzYJZxn9uO0t2DEggJyB4bQYnGwTBQYnGUaAylewHu8zukPV1H6ZovMWCWJfneO54Vc7RyuRYTtuNZvGwG0inU8y/Fy6RQonXyGXr+LHE6hRutw/M8kskkIyMjdHZ2Ul9fTzQapVwuMzAwwN69e9mxYwcl06SlpYX+/n5Z19+Ppml0dXWxc+dOVJ9WVV9fz6pVq8hms2iaVt2/XC4f93zHjh3s3buX/v5+dF1H16WC2NHRQSaTIRqNMjIyhG0XSKeHsKw827Zdz9y5Z6DrIdLpYd5++5cMDGxGVTWy2TG2b7+FbHaMlpbTyGRG6Og4B8MIY5o5ksmDDA8P0N5+NoYRIZebYO7cMwTQuzbBYIyBgb9m795HKZfTlMtpBgY2E40209+/0dd+b8IwQkSjLRhGBMUxUFUVPajTtaKL3EQO1xHNc9fyLupa67DLdjXHW9EUXNs9LtcbD7JjWbbfsh3Xdmt53hv7yY3nyI5l6VjSgaIpUqm1XOyifVzudylVomNJB7mjOYYHhrE9g1hbHV3LutDqNIYzwwwMD2C7Nsu6lqEoajXCa2P/RnpbenE9l4ncBAoKbXVtrOhaQdgIM54d57onriNjZmiONPO+7vehKRpBPciKrhVsfm4zRbtIwSpw7RPXkjWztNe1c9equwBxOq+ca8OODUSMCF9Y9gXKdpmNOzbynrmnoXhWLepr70YBD+G5It2Zeg7FKaL4EV/K3o1gZXzdcieE5sLMi1KtUHSwCyjlY9BwBkphFOp7UbQwiluG0rS0rcfgjU3VaDHFSgm92ClC8zIUNQjNK1De/g4kTkfRo8LMUHyzJVzxh7D9WDDXEop1blS2x9pRfNmR4lrg2Sh/EDWm5EZANVBcC03zZP/6BShaEMUto6QHUfCO3x+qk61KJSqseEz+59QBlPFdkBtH+fW1EG5Gy42geDaKmfZzvVtEvxxuAiOCktoveeBWAaWUkvMleqBjubznszTMihYALSBtWVnRN4ebxbW8EhmWH5VJgeyQXJ+fJW6WbTRNYWgozXXXbaWtrY5IxBBrFV1lcHCGiYls9faUy5lcf/2TNDdHGR/PEQxqgEIwqLFpUz/NzdGqPnrjxn5CIZ22thjhsEFnZz1z51aiwJL09w9h2y5DQ2kKBZMNG3bw6KN7SafL1eeZXImJ3DQN4To2Pfu3DKeO4noup7edwNy6RkJ6AAWF6UKa/372ZaiKwmR2ht7WhUzmkmwffIEf7tmCqiioqoqh6kz7A+u8Waxqnx/Z9QsS4ToCmn6cTvoHu/5FKuqaTtgI8pfvvYy/2/MrUBR+sOtfOLVtIbrqolFEmd7gx3NtAr1JjMSyj8qjooAageIuAdleWbTK4RVSaUWVdc4xeVR0mP6uvz0qVVjrIBT6wfP9b6bvnrU9CtYhsEeFUq03zzr/BkxCaIrKVKHA9du2sX96mqJt09vSwsb+fh7du5fNAwOAVMQ39vczNxolYhjMTyS4acUKxrNZLFcy0C1HDC8/t3QpIV3nYDLJ9du2cTCVIuQzxjbu2EFzNFptP1Mus2HHDh7du5eN/f0s6+piLJslXSpxVmOj3AMr+urNm2teA44wIGhqQmltRTHN4/ZTUikoFFFm591u3Cj67NFRGBxEufZaaG8XNsosDbfiupKlOztQfGREdOJLlqBs2IhWibL99y6eIvTpnk4xGqtOAOjghqFkC+W68n8qiBxQVUQXXfaBe9mE6VTNC2g6VdtWyQs3DFzbwcxmefuHPyQxK4p270MP4ZRKeKpK02mn4ZTL4HkUJieZc+aZFMbH2X3bbRQmJuR0ySTZoSE818W17ePia/VQiIbFi1E0jcLEBCd/8pNooRBOqcQLt99OfmQEq1CQSYNbb6U4OUnDCSdg5XJ4pSJaLgWLTkWJJ2DxGSipYyJjUzVJv9nzOxlT1tWjhEIoM1MSV1uXQJ2ZRMdGKRbEAHbbz2DBYvEC+uF3USbHxOOnPgFmqXocM5MyUVaXQPnH+2RsGwii/ON9sp9hQCxeBe52uUDbKR9A9b1JVFUXsL3311jFDFYpJ3G0g3vAl73NHrPa5TxWMYNTzjM1uLs6NlWASKKVYwdfrB7vucIwzc+MYZbTeJ5bjbtVVA2rlGXs9WewSjlQFCmA5ZPiE/SvLY4pxtiO+R/73v4/vrxLlX+H5b80Vf4/aXFtq6qDdiwbIybRLY5poxu6T6DyRFejaXjFAkqpIB2gbYkWubmtRtGp0MYH38BraEaZmYTv3w53/aPs+8t/EPC94W+k4ysWxJysXJJYsOZ2aWNqXMD7pR+DOa1QKohz+db/JevqEjC0H+eUs3BtE8c20QMRrFLWj+9aglXMYYTrxHk8n2JqcDfNi5ZgBEW/XkhNoAejGKEoxfQkRrgOq5jFCNeJKZmi4lglclOHKaYmaDv1/Kp+unnRUoxIPYrn4tgWR9/awZyF51SpSVYph1XMUlffjrPlZ3hvv4760f8hmd2louRx53MQjope0vMgl8XduQP1gsukqqIokJzBHfiN6KTrG6AS97X8/eI4jk9zymVBD0i7qelqNJlSnxBqFUhWel1cKPvTU3i5LGrHPEzXJVsuMzMzQ11dHc899xzLly+noaEB27bJZrMMDAzQ19dHOBwmEAiQSqXo7++nr6+PTCbD3LlzCQQCWJbF008/zbnnnkssFkNRFAzDqO5/0UUXkc/nq88LhQI7duygr68PXdcJhyVybGRkhPb2dkZHR+noaGZ0dICOjiVs3XodXV0r6OpaUXU+z2RGqKtro6FhIU88cS2dncs45ZSPouvBqlt6R8c5aFoQ08zhug7PPvsVVqy4kUSiR6r0uQl27rybVavuxDAi2HbZj0ZTSKePkM2OUVfX7mu/a27qK1euoyF+EqkDKZ7b/FzVKdxzPZKHkgx8a4C+9X3oYZ1SssTzdz3PZQ9cxvDAMNHmKM/f9Twr160k3hnnic8+wd5H93Llliup76pnx4YdrLhpBUP9Qww/N8x5t55HXXsdufEcADODM9U2+tb3EWmOUE6Xq+vzU3niXXGMsIHepTMwPMBpLacR0AJVp+/B5CAb+zdyc9/N9DT08Naxt9g8sLka9ZUtZzmh6QQ+/atPs6JrhYD0gc18deVXmRudy/Xbruem5TfR09CD4zloqkamnEFXdX4/8XvObj+bkB4iZ+YYy45VI8paY60EtSAuLrlyjgZdJ5p6UUD43o1iRhYSg0deuh5O/iIYDRIRtndTLQosf1jA98k3Qtg3NlMMMTd7c7Osr1sk4CN3SNZHusSVvGWlrKtqnLvg2E5ofC+UJqqu5l5sIUr+CMTm46GjOGWfouz6zuGIbCk3IcZeiiaSnNxITXLkmr5/SKBGb8wcwavrQFF00TLX94gngZn1/UfKMPMmNJ5ciyaruI776R9efL5Uz3MjYlD29NXw3i/WsrcXX4F3/n0yCeH55mvjO6GpVwzMAvUw9Qr8/FK4fAu0nCVA23cJF523B7/9gh8x1iOa5opxWmFCNNCxTgHvS9eJ8eRLd4uJWUUk8ey1FM69C8dIMDaWJZczicUCtLbGGBpK861vPccdd5xPOGxgmg7r1j3L7bd/ENt2ef31SZYs6cC2XTRNJRTSOHgwxehohs7OuK+PXsnIiLxua4sRCIjx2aFDKWKxAJGIQSRisHPnCGed1cr4eI7Nmwf4zncu4ujRPJs29fPdey4kGIPXJwZpCNeRLGY5Ze4CXM8jVy4QDYSJBsKMpqc4mpvmjPYTKdsmd//2x3zynA8TMgwS4Xh13f84ZzWTuSSLW+ZLXGEuyd/t+RWfPvdyGsJ13PmbH/Kl9/8lqWJW4sHOvZy5dU3c8ezf8on3XkpzrEEG4IEwZZ81FtZsIrpPaS/uAqMd9PlgD/u65JtAm0s11svNgVon+ztjYE1IBdYaAaPD1zivA30e2IOS0920HpSIGPy5OaFSKyGpqle2W8NSpY+sqLU5vRGa1lNQTsTyoH9oiOZolKl8noUNDbTH4xxKJtnY389NK1bQFotRFwhwMJlkXiLB4VSKjf39rFu5kpZolOu3bePG5cvpjMcZyWQ4samJkm1z3datPLp3L1f09vLg6tU8PzzMaS0tBDSN8VyOjf39fOeii5gqFNiwYwfrVq5kJJOhMx5nXn09dY6Dls2Ki/n4uBipBYPigFsxTlNV0WiHQqLfruTazp8v5j7BoMSVbd4sAuaFvk/L1VfXbMwfeeR47feiRQLcZ+eNNTXJeRIJMfI58cRatu6/OXhzRRqhIPpo05KI2qqO2R+7OT7gnkrCOadSTdjpbvN15YporWc7k8dj0kfZju86bh4Xg+ss6KCczVQnAsrJpPjt/M//SWl6mlhXF+E5c9h9222c/KlPCVNQUXjxjjuqcbbnfO1rlDMZQvX1IpcxjONjc+eIZ4AeiZAfHq5G2BYmJvjtZz9L98UXc/b69bywYUO1zfd+5St4nkcgHEJzLJTUjID0j1wlko/BvdDYAtE6ePQhuOxKaGyW4tNPH5Cx6Tnvg7+4Vnx8DL+/TidlvFoZv57zPvjwJ6C+Ef7he8cfp2rwo+8dv983roPPrIcT5P13LQs3EsZzHexyAauUk6QaRaWQHOfICz+nvm0xHaddQH5mjHB9C7ZZrCXa+PtFGuYy9vqvmdNztngnHdhdjbz1XMcfD+/2I3ELHBt8gbkn9aFqhkh0HIuJN39H+6kfZPS1Z0iPv01922JaTlwmxxdzRJs60fR3+E46Jsy8Jf4XS9dD40niifHuctzyrsb937m8C9z/7cXK59n19a8z+pvfsPLuu2l+73slN7pcJhgKopSLVPMcg2EflO8Vs7LkMXEV/8PM7qED0NAskV/FAphFyQbHg6kJmb3879dLdT09LbFhgaC4jM/uaHVDOtR/+gFc/FFps5Irue81qEvgdM4/LmvbKmY58sI/+53eqqpMaPS1p0mPv828sy/HCNdxbHAPc0/qk1xqXfSmiq838lyhbVmlHFMHdjGn5xyMYARFM1D8SA5PUbCq512CEYpXj0eB/PQYejCErgXRCyW8dAolXo+XSVfBO7YF0TrRXnse7sgRSCVROrsFwK9aLdoxFDEyCQRxtv4Cpa0dZeFilLo4Xi4r7eiGxI89t12OMww8y8J9eotvaBbHmxhF7V4AloWz7V/wBt9Cu+4ruK5HEakSbd26lb1799Lb28v73/9+YrEYtm2jaRrFYpEDBw5w+umnMzQ0REdHB6Ojo6RSKTo7OxkYGGD58uUABAIBQqEQxWKRuro6FEXBcRw0f0Bh2zZjY2O0traiaRqaplEul3nmmWdYvnw5nufR0NAAgOOUyWaPYBhhbLuApgXZvv0W3n77l3z0o4/R3b3S16h7mGYOzwcVppklGp2LZRUxzQzBYD0TE68QjbYwPPwcw8PPsXr1Q+RyE8zMHKCl5VQ0zeDpp2/k3HNvoK6uHYDx8Zfo7l6JZRUolVKEQgkmJl7hH//xUk477eNcesHDbLn6cbpWdNG1ooudd+9k1Z2rAHjjZ28wunuUi75zEaO7RulY0oERMShnxOjMiBjkp/IEYgEKkwV2bNhB39f6JPbLEZfyp7/8NCtuXEG4MYwRM7ALNp7nkZvMEYwFiTZHq5Fiiqpgl2223bCN8+84H1VTxR9ijmhPc2aumvH9nYu+A0CqlCIejFMXrOPqX11dNTK755J7eHHsRVZ2r6Rsl3E9ly889QX+6c1/4rGPPsa5nefy49d+zOKmxZw+93TCehgPj50jOzl97ulM5ie547k7WLdyHQsbFgJQtIu8MPYCyzqXYbs2u0Z30RXv4pSmHjQri6JHxIRr+DE49vzxUWFn3wtmSozH9Ij4c+xeIxXz+R+Hs+6qGXS++Hk4/GM5bsnDMviaHSEWahIH7tSrEhVmpcAqQWw+4EJpEp55Hyx9BJpXyutoN6QP+7nas3xBnLIAay3g9za+G3lxBlrO8A2HyhLHBbIt1lHbv2KGFmriuPgwRa2ZmFVNQ5XjTc98bwgZvJcg+bYPpDtg96Ya2E7uE0DetlQ0rsm3Yc+3xHU8sUgq7uffJ5X7nbdLhNj8CyHYMGsw5kutnv0stC2DEz8iVGrXlj8tJNfp+JMUIPnegXoA8m6cwcM5hofTdHTE+eu/HuBO/3cyNpZFVWFsLMeSJR2YpsPRozm+9S2JFFu0qIHx8Rz5vM2ddwrI1zSVuroA5bLDzp0jfOQjP+PDH15cBeOjoxk6OuJs2tRfjSUrlWyuv34bS5Z0sGpVD42NYWzbJRDQeOGFMc77YBd5q0iuXCAWjBA2ggwlJ/i7Pb/if57zYeY1tlIwyziew4Fjw5wyt4fxzDGSxQzN0QYe2fUL/uc5H8bDI2wECQdC3N//KJ9/35VYroOmqEQDYSZzM+w68hor5p9BYzSB47kkCxnKlkVLXQOWY6MqEDJClG2LbDlHXTBKPKijWgek4t60DvQuKL4IkXMlwkuNUXUFtw4KmG/5tqyfWAONX4SZu2qPszO8J9bMev2I6JzdrAB/NQ4Tn65tn3svHL0BWu6U6r49CW4Skzm8lYkS1nUKlsXG/n6+unIl8+vrUVWVkmUxXSzy9MGD7B4d5b5LL0VXFCzPY+2WLVVAfut553HK/fdzRW8vmy+4gBufeYaHVq+uTgZ8b9cu7ly1ioghTu1H0mnuHBhg86pVWI7DG1NTrOzupuw47BoZ4RP//M/86PLLWdndTbxcRhkYkCq5bR+fQ1sowJe/DF/6kriTmWYt+Hv3bnErW7BAjFgdR3LB6utrtuG5XM1srRJfBtIHrF8vgeKeV4vWaW+XqntXl8TxhP8NfftssF4szzLg1WFwBDrn/rFZmeG7qOUKUmVP5+CNQWhKiIbZcwWgz2TkuBO6jzf3VVXZPisG13EcHNdBUVVe3LCBE/7iL4i2tzP96quEW1oINTWhaBr//L730X3xxZx27bVE5s6txtyectVVxObNI++/PvlTnyI8Zw5GXR2FiYlqbG7v2rWEGhvZ881vMvTkk8xfvZqzv/Y1ipOTGHV1OKUSdj7P3ocflujc9nZKMzPUzWlCSc/UImor8bIX/jlkU5J649hweJ8Uht58BRadIoWhy66EOXPh2CQkJyX5RvW9K46Nw+M/lfFovEGkiWZZikyXXSmJOqoqY9vKuli8Nibe9hj8+VXihxAKYZXzmPkUejDMsYMvylgyXM/Ya0/TvGgpqqqjBUIoqkZ+ehQ9GPL3W0ogHAdFoZxPomqGtBMIY5tFoo0dwqh1HWGceh4Tb2ynZfEKND2A57lMvPFbmnreQyBSj10q4LqWAP+F55CfGaWQHKP91PNR9QCq+g46dzMHT11Vi5a88JHaPe7dpbq8q3F/d/lPX9RAgN41a1h5991EWluZevHFKr1JjMk06eh++gAcHZVOftGp4jC+4GRITsvM5KJeifkqFsWR/ImfCm0ITzq2H31PgH5Lu8SG4Qlor0sIzWhyTM617Wew89fwvx6UDvDRh+T14z+Rc09PCrifvxg3JzrzCt1n6sAuIg1t1LctpnnhOTi2iecKyGk/9XzmnX05kYZWpg7sIpxoxS4XGH9jO2YhQyE5hllIy+xnOQ9QbffYwT0C7j0xoHMdC2UWzWjqwG5QFMxCRTOfIdLYzrGDL+KaJUg0oXYvwMukUaIxnK3/DJYpYN4I4GVSOE/8HCVej3LK6bgD21E6uiCfFTCfSQrQTk1LBnjXfNzt2/BSMyixOO6OZ6FUFGr8ay/ibvsXmdXd9i/yemA7lEsyYaCqeLqOuvJ81Ms/DtmMxJcBmqbR19dHb28vK1asIBgMSj5zsYht2+i6ztDQEJ7n0dbWhuu6tLW10dPTU6XT53I5VFVlZmYGRVGIx+Ooqsr09DRPPvkk5bIYx5VKJSKRCKqqoqoqpilUq87OTrLZLLFYDMuy/OtSMIwIkcgcEoke6uo66Otbz0c/+hjxeCdbtqwhmRwkn5/CMCKoqkEuN8H27bdg2yUKhclZ9PlTGRjYTE/PKvr6bkZVdaLRucTjHTzzzI1ks+N0dCxhYGAzpVIaRVGr7uvlcoZDh37NxMQrdHUt48ort7Bq1Z1YbpaV61fS+7FeAtEA595wLtnxLNuu30bXii5W3bkKI2zQ0NNAeihNKV0iP5ln2/XbSB1KEYwHCUQCZEYzXLD5AsINYbb+1VbMnEkgFuCSey4h3h3nma88g5W30CM6gWiAphObsEs2W9aKFt7Do5wtU0qVWHXnKorHimy7fhv5ybxE8AJZM1ulrKfLaa7fdj2n3H8KX3jqC+TNPOv71nNF7xV8admX2DO6h+VdyxlMDnLt1muZyE9w56o7eeyjj9EZ7+SzT3yWFV0rWN61HNdzGUwOcs3j19Aaa8VQDe547o4qDT9rZrFci+u2Xsf+mf0cSR/h2q3X0hxtZjgzLBrT0lEB4qUJiM6XanklKuzUmwUYGjEfsK+VSLDe9bL9zG/JcXs+C/lhOPNOWd97s4DI7CC8dguUp8VlfPc1UJyA7H546QahB8fmATYcGxC6/KW/FwbA7jXiTu55Ator8qRYuw/afeq7ovg527YA+pYzBPQqiuyTPug7kMd83xB/ic+TyraiyqRFhXbvORL36dp+1Jgn/aYW9AFy2Y8K88GyokL9QgHn9Qvhggch2irbfbo6z14rhqP5cRlw7dks13CBHwUZqIe+b0HHChi4RSrqqkhrGN8l5zjnRhj9nbibe/hxoppkiT+zVo4J1Ikx2sAt8hiow/EUNmzYQXNzlE2b+lmypIOxsSzXX78Nw1Dp6KhnyZIOdu8eZXq6yPh4rkqDHxnJ0tQU4c47n2PJkg5yOYuIbxCoaQpdXfV8+MOLWb++j1BI47vf3ckZZ8wlFNJZsaKLO+8coFSyCYd1brxxBc89N4xpOriuRyikc911W7n00n+kULSYyiX5/sBjTOWSKChVivuxQoqR1CSbf/P3JItZFs3p4s7f/JDmWANntJ/I0dwM2wdf4FghhaZqfH/gMVLFLH/V9zFc1+Xb23+EAoykjnL/cz/jA4vOIWgEOTwzxjefepi8WSRo6Exkp9n8m7/nWD5N3iyy6dkfULTKZMt58EwUa1iAtzUiVPfI2YAilXZnCo5+VkC73ir7KYbEeDV91X9cV3us+zi0fAdwBeDXfVyq9gDOBBy7RR5BKu11V8h2z4TWe3yTs2nwijBzF6Yyhw07dpAqlaq09U39/SiKQtm2CRsGbXV1XLJoEV9ZsYKCZTGczTKVz/PVlSu5oreX9X19JEKh6vN909M8eNllAKzo6iJZLHL/pZcyVSiwZssWhjIZRjIZfvzaa9ywbRsFy6LTD842HYfWWIwfXX45nfE4a7ZswdE0vPZ2iSYbG5NM8FBIwHQoBOedJ5V4XZfX0ajsu3r18fT2eFyywz0PvvAFyRoDyQ6bnoZsVrLFTFOi0xYvlgq840i1fv9+uPNOmDNH2q0w4/5wcX1g7TjCfHR99/EKrX14QsZKi7qFLu/T2SUZxRXncMuGWAT2D8njktNgoaRbYNpwZByaE9IGSJuV+LCALnGuna1QNnE8l8zwELtvuYXs0BBn3XgjeiSComk0v+c9hP2sNc91Oe/++zl7/fpq9TzW1cXSb3yDWHc3CvDmD35QpcZb+bzo34tFpl5+mZNnVd1P/tSn6L74Ys780pfIj47y2n33UZ6ZIdTYSKy7m7NvvplQUxMvfPObbLnkEuxyWZicF30UTnmPjCv3/A6e+ieYvxgO7IVcWgpQ4Ygk58QTMjZtbpPfU1MznHCaFEaefxZ+8n2IN8J//zy0dMDIIXlfW9rhE5+T8e30UWGHJqdg1Z/JukBQxsdP/BQWLIb0jIxvFQVNDxxHaZ86sBtcRwCzquPYpapGvTKmrFLn/fc4EI6jB6NEGtqwzSJGuA67XBR/J7NEpajbesr7cawio689jVXK0jj/TKYO7Ma1LVzXxi7l6DjtAvRglGJqguZFS1E0451BO8i9bel6OPnj8P7v+BPU71Lm/z3Lu8D93eU/tGiGQd38+TS/5z0UJidpWLyYcjKJ6ziYpoWn6dLZLeqVqC+o0dYVRW4QZknoQqkZ2SeXETr7W7+XQa5myPFP/gwB8iUYfEsq7U/9k3SoT/wUNF062nPeJzOVmi7tnPM+edQNmQwo5qGYx1t4MoXkOM0Lz6mCdVBoO+X95GdGOfrWDhRUrGKGsdefxQjHQNFoXrSUWPP84/TqkYZ2jHAcPRjBCEYBheZFS6TdRUspJMelEu+5KHoAD4XmRUur2xU4bgJBAZkxDYRQHBt3+AhqRzfu878V/Xn/ryXj2yoL4PbXKT6oVhYultfRGG7/r6uadUVRjtOw47mofefj5XNyXO+ZqCs+gKeoEg3mvyYUxjMMFA/R3sfrUectBN3A1QwmJiYol8skEgkuvfRSGhoaCAQC5PN5Dh48yNNPP00gEOBDH/oQqqqSz+fZtm0bhUKBurq6KuCfrU3ftm0bpmniui65XI7Ozk5yuRxbtmzBsizy+Tyu65JKpaptnXLKKXR3d1fblwkADcvK8/jj1zA9vQ/TzJJILKC7e+Us3flGIpEmTDOHphnVLPJyOV3NHRcdvE5f33rq6jqor+/GccRhfPY+PT2rWLHiJmKxVnK5CfL5SVKpw2zf/nVOOulPqatrZ8uWtdTXdxEI1PH0r79A/fwo+Yk8v7v9d9S111HXVletvhsRA9d2iXfFaVzYiB7Sa/r2Tf3C4lCha1kXwfogz9z0DO1nS7U/O5rFKliomsql915KKBGSfPC1W0gNpkgPpataeAUFI2oQbYlihA36N8k5cuM5HM/BdEzqg/WsW7mOK3qvIGbE+OrKr3JF7xXctOImPDyawk3ce8m9TOYnmVc/Dw+PTf2bjtOmn9t5Lhv7N/Lo3kfZPLAZ13OPmxC447k7MDSjOgmwbuU6fv7mz9k5spP1feu5cOGF1ePvev4ulnYsRcWr6c33bpQqd6RbKuJn3ydAfrJfAKKdg/fcLRXz2AJY8oCA8Yo+/o1N4umx5CGpoLvl49u2UlVdO62rBOQrqoD43ddAqFUo9Wqw1uabd4oW2LV9sOxBbsyPB9OEwu7h53/PcvtNDfoDGqtm9BlM+Pu7UlF3bQHTjil/72QUqlBzv67EdOVGpPLuWgKePVfeE68SkAeUkvK6dWmNPr9rg4D7xVdIPJhVlFzwh7uFNh+I1bK5d22UNp/9LMRa5Vx13QL09ZBMRmy/XiYYKpMBuzbItVfa2LMZPIfQlFDTu7ri3H33RVx00cJq3vfwcIaJiRzXXbeV5uYoo6MZVq7s5q23ruWBBy6jsVEqkd/61gWsWNHFLbds58iRNDt3jmBZLgsWJLjvvksYHk4zNJTh7rsv4tixIrfcsp0VK7q4447z2bVrlELBxrZd7r//UubPT5DPmwQCGuvWreSKK3oxAupxOdweHp9e+qdctHgZp7Uu4pFZevSCWeLUtoVM5ZJ846mHaYk1cteHv8CprQuP062HjSBBPcBnln+EgB6otpE3pbJfOd/f7v4lDeH4cdnguXKBbW8/z9/s+hdiwSiupwrFfeYuoacrIZi4RkzlFEWo79lH/cztCdnPHge9BaxRedTbJB7MmA+t3xewP3GNaN5b7wetDdy80OKzj8qjmwOtCVofAONEcIuAAsXn4Mh7pe3WhwloOjf7wHtdXx9X9Payrq+P/qEhxnM5cqbJ2i1bKFoWCxIJAprG3GiUhlCI9ro6Hly9mvZYjLCu8+Dq1XTH4yzr7ORIOs2aLVs4kk5zTns7ecuqatg37NjBko4Orujt5ea+PrricZrCYT63dSsKcGJTEyu7u6sTCZPZbE17vnmzVLqPHJHs8CNH4MorJWM8k4Hrr5ff0fr1Qn+/6Sb49a9Fz+668pt89VX4p38S8J1K1fTrlee7d0tV/8ILJQ/38GHJJL/ySrj3XskOu/lmod//4eK6UCjBvsNSYddUAdr7jkhF/ZSFEkFbMmsAvXMujB4VwD07v9t2hO5uWgLuLX+iYGjcX29LGyVT6PbNDQLWQc41MgHBAK7jVLXobzz8MJ7r8tq991IYH68m4ujhMKqu03T66Uy/9hqFiQlc28bKZskcPszuW24hNzLCmV/8It0XX8wpV12FEYtRTqeJL1jAkltvRQ+FKBw9iue6tXXhcPXcex96iMLRo+SGh5l+/XUKR4/ynq98hfPuvx/XdfGCYWhpg4am2jjysivld3LCqZBoEpAejsCVnxWAraoyvpwYgR9+VySbh9+WserlnxTmRcX1vedkaduxpc2uHom31Q3oXgT5rAB1VYPBN6Xa708iuD0nYRbSuLaFounHjSUdSyZhtWAEI1RH68nnYRVz4LnV/VpPfh9mIV3VpHuO5Y9x6zCCURy76OvlI7iORSE5gaIoTB3YXZ0gCETqZeyq6hjBKOFEG3a5CEDzCUvRAyJb/NfBQ0Do8Rc8IKkVT18t1Pl3wfv/8fIfCH58d/l/aXEsC9c0UQMBNMM4bpselOiW5rPOIjs0JJniZ50F+HEVH7lKIjkKBYjXQyAkFHZVFa37P/y9gG+Q2cgTTgU80QRpuuyzfBWce750cp4HbV2yz6Ufk+Mu/ZgMYFs74C8/JzcX14WmFmmz7FOSFpwkFfpXdqJ84wHRowejtJy4HNc2sc1CdcZwzsJzxIDDN+0AaDlxGYFIHNexfaCPD8zHMMKxqi5eD0axijnaez9IITWBWUyjBSJMvOnr28NxMcVb8F6MYJRCcpTmRUuq7QEY4Tia6+EeOYgyt10q3X3nS+hO3/l4umSIqytnrXMciEZRdENep1OoKz8o21d+UEgQs9pwR4ZQ5rah1jdIZ7/6IzITm8uhJBr91ypeLgP5HF59Qj4704RgEC85jdo5j9bWVrLZLLZtY1kWmUyGeDxOf38/y5cv5+STT65WxQOBQNVgDuCyyy5D13VWr16Nqqp0dnbyxBNP0NXVVdXHr1y5kvb2dp588snqceeee+5xZnUAq1evxvO849ZdeukFZLNjXHDBZnQ9jK4HSCYPkckMs3LlOgBWrJAq0TPP3MSyZV+org8G6+nrWw9AX9/NKIpGONzI8PBzJBLziUTm+NvWVx9jsTZUVcN1bfr7N7Js2RerEwTvf/9t1edyvQ+xfPmXUTyDHRt20LWii+xYloHNAyy/cTmnfPSUKt191eZVaEENLaCx8qsr5Xzr+jDCBjMHZqrZ3KvuXIWiKWSGM9V2gnVBP+KuZlwHcMk9l9B7RS996/uwTVuixzQVPaLTt74PgM6lneRmcjhNDpqisbBhIfddch97xvZwxtwzeHD1g+iK3EKyZpaQHmJl90p0VcdyLNb77836vvV4nkdQC7LOf39v7rsZQzWoD9Zz4/Ibq+ts16Y50sxDqx9CVVTaYm0EtAC6quPhVdu8ue9m6WcUBeWUr0pf0LtOwDAONC8HFCgdhUiH32HFpHJu1EuF+shPoPu/yXGzj/dsAdN6VCrzII+zq/iRDumPiuMC5Ifkc+XsewXMV9o869vSX+VGpNJeMYQDSCwUYO6UBVRnDvv7jNX2qe+pGn2iBaRv82x5nhr84/3qOuV/CM8R2rvrCBj2/GuIz5e2FMWn7LfXWFLZYV+jvt7PA0cmMpb6/8vSdQLoP3ivxIlOvQztK+BDj8m5CpMC6EEqKmYazrvLp+ar8JvrYcXtcm3PrRdwDtLe4itg6c2AKsdW2vA8mHMaU0MFNmzYwfr1ktm93v+OLl3aybXXPsGj/vf6oYdWc+RImg0bdlT1662tMU48sYkvfOGp4/YDKJcdrr12K48+upePf/w07rvvUjZt6q/u98ADl3HWWW288MIY8+cn8DxYs2YLv/zl2/ziF/+NFSu6eOih1RgafHrpnwJw1dI/xfVc2uJz+PqFV6MqanXbp8+9nFgwwrJ5p/P9gcfY9vbzAHxt1aexXIerZu1Xti1cz6UhIpnhlTbqghE84JPnfAiAq8+9HE1Rj3sdC0a4aPEyPr30T8mV8ySCEZj0wTnA3Puh8UYxjUOVKjpAeCkcvba2X+tDYi6HKUB+eqPsa8wXOv3s/dQ6wK211bQOsj+H4u9gzjdAbwd9jlTtjW5o+xGEzgLrMIHpzSyY8zccTCYZyWS495JLSJVKfORnP+PDixdz63nn8ejevfz300/HUxQ2ztag19ezKJFA03UOpVJVfXpPQ0MVdBuqyv2XXYauqqzvk+/OOv/xgcvEMNByXQqWxU/37qVg2zzk31Nu9GVcDbEY3vr14t9z881Syd60SUC2fKnkMRKRavyhQ5JV/uCDoh2fmpI88n37BPivWwePPSZh4XV1AvC/9jVoa5OKfjQqx9k2zJ0LAwOio7/uOpkQWLlSQPsfatsdx58MVGtGclCrhoPQ2h23BtBBquY9PjO3u632qGvQGIfDY7V9F3b5dHjl+PUnzvNp9L4Ed1b76sJOetesAaB37VqmX32VoSefBGDJ17+Oa1komobrOFjZLA2LF5Pcv59ISwtWPl+tsgMsufVWltxyC6gqUy+/TMNJJ5EbHhb6/Cc/SWlmhmhbG1Y+T2l6muLRo/RefbWc++qrmRgYYOrll1ly223kRkZ44fbb6V2zBj0SlfHkzJTQ06/8jOjPD70tVfZyseavFI5K/3rILyYVC7UKPUjlfNvPZFw6NVGjwM+ZK5+P60I+JUkNC3vhx/eK1DPRJM8vuxJ6TpLP0wjAZR/DC4aEBm8EyU+PEq5vpuO0VVV6u2MWcB27KtUM1zeDomKE47IfMHVg+3Hj2srz9t4PoukhXNdm9LWnmdNzDmZhhmC0/rgxqqJq2CXxyzEi9eLXGgwfp3XvOP3CamzvOy5aQID6rg21+8CFj7yrdf8/XN7VuL/D8l9F4/6/A92OZeFa4piuGgb6O8zaOpZF9tAhXn/wQU5du5a6BQv+qB0AM5dj6ve/p/mMM6pVI01TUfFQSkUYOSidUfKY6HXS00Kbn20k19IuwPDQ21Jl9+PBmJkUuvulHxPNT8UYJFonndnBt8TE7sxz4RN/JVX7eEOtevXje2HhybDk/dIZP/FTuOQKnNZOP/PyeJM4IxyvHmsVM6JFX3gOejCKa1s4dgm7XCTa2I5dLlZf64Ewxw69SMdpF1DOp7HLeYxwHYqqMblvoNahnXYBZjEj5h2NHUKf1wMywYE4dxrhmFC30ymU+ga85AxeLiOUdV2H6WO4O3+HesGlKK6HOzmO2r0Ad+gQSrQOr5BH7eyWjtOxEY2pb/eUz0EggPf2myg9i1DCEdzRYZS5rShGAFRNpK+OLdmdmo7n2Ch6QLTwo0MosTgkGrEUBctxKJVKGIbBs88+y9KlSwmFQkQiEanyuy5PPfUUK1asIB6PMz09XTWsSyQSHDt2jOeff56+vj7q6+tJp9Nomsb27durmvkPfehDpFKpqhldOp2mra2talZXOTafz2PbNjt27GDFihU0NsZJJg/Q37+R5ctvoqGhB9su8uabP6excREdHUuwrDyWVcKyCgwMbGbVqjsByGbHicXmUi5nCAbjvPXWLxga+h2XXHIvr7/+E0499WNks5PU1bWgaUFUVadczmCaeWKxuSSTg2Qyo8TjnfT3b+Sii75DoTDJjh0b6etbRzY7QVf7Ssy0S3YsSyAaYPst29n76F56r+jlsgcuY+tfbaVjSQddK7oY2DzAyvUrMcIGxZkihWMFuld2s2XNluOOUVTluHWrH1pN+kia9HCaeEec/k39YnoX0Yk2R0GB4eeGqeuso2F+A3bZRjMks9kxHdw6l4yVwVANDM0goAYYzg7z1OBT7B7dzf2X3s+BmQPUBetoCDWwa3QX8+rnMS8xDwDbtZkuTJMIJdA1Hd3PdtdVHTxwcSXdwHMp22VMx6RklyjaRYbSQyztWEpQD7J/ej/f3vlt7vQ/H9dzqQvUkSpM0RWKiLN7qE0q3ntvF7p8fLE4mOtR32RuUCrhJ98E8ROhMOKD+CIEm6TqnT0IhSFoWgq4YrSFK4M5RQdsJJtYnMqxc1AcE/B+6s0Q7oTSMQg1+1T3iE9f92qa9opZnF2GmbehcTEE438Msus6pXpfMWpzrZrB3B+2pQUrnbb8r4oioN7MQf18edQMH0T71+76kwaqLtX1wgQcfgoaToBou5jGnXOTTAooCoz2wxOfgEt/JIDdLkqm99lfFr27U5KBl+dSzem2CjD9umjbPcfvixQx1du1QcB6fY9vgGcIy6Ga8a3B0T1kGlZy9dWP8+ije7niil6++92Lfad4UFWFw4dTbNzYz8039zFvXj1XX72luu8XvnAu3/72Th544DIOHkyyefMA69f30d0dR1UVJifzNDdHKRYtYjEZNA4Opti4USYJwmGdYtGiuTlKNBrAdV2GhjIMD6fp7IwzNpZlxYou1IBL2THJlPIUrTIKCv/w4uPccN7HURSFsB6UzHVFlVx3VWUkPckjO3/Bp5f+KeFAkIZwHNXPXQdIFtLEglGCmsF4ehrD0Px9VL8tpRrpVFksnw4dMoKYtoWHh6HpRHUXxRr0gffNApw9yzeqmy9/2IAO1oFZ+82X7z8eTKydpVW/3ze22yRUeGMhYAn9XQ0KFd6zYPJL0PQFME7wtfN3Qstm0dIrht/uGsj9ksy8JFfP0qvfd8kl7BodZWlnJ7qicMO2bXz7oou45vHHq/t84dxz+fbOndx63nm0RKN89oknqtvuv/RShjMZNvmmcwCZcpmWaBRVUegfGuKMuXNRFIWjuRzjuRxLOztxPY+pXI6WWAzbdXE9j0y5zImhkOS8O47Q4QEOHKiZyC1cCL/9rejOe3rkeXMz3HWXAP0F4hPDNdfUjOgeeADyeXjtNTjnHNGqV9r86lcFsL/0EvT1yaT5tdfWjr3vPqHdzwbujnO8ht3QpUpeAeAHR+R5MODT533w3tkq11Yfkwq65uvTA0bNUd6ya+2GAgL8/3C9ocv6Soa3aR13jGWaeL6hnGtZOJaFZ9sk9+0j1tFBuKWF7JEjvPmDH3Dypz5F3bx5eK6LUyxSPHaMN3/wg6rRXKStjVhnp4xxDYM93/gGw08/LZ5LZ52FB5Smp3nt3nurXkxzzjgDRdd54Zvf5OSrriLa1saxV16hfuFC1GCQYDiEaltS9X7jJeh9L/zLDwWM3/NzkX1u+5kwPFs74e/vlop4JCYFp9SMbL/0YzLebWyuGdrt+R187japqh+335SMi/e9VjvfKzvh1u9Lu4fekmMAJxTGNPM+MH8vdrlIpLGjOlZt7/0gY3t/fZxZnB6I4Dq2RAbrAaxCqmpGpwfCjL+xnTk9Z2OXC0QbO6q+TvVti31zumLVUNk2S5I573mUc8cIN3Rgl/Ni8FzM+EbOSwnGGlErUiw/UeSPAYY5y6TuZrkPvgvcq8u75nT/zuW/AnD/34Fux7JwTBPXNJl+9VUira3UzZ//R+C9YkBXcd5c+o1vYESjf3Qe1zRBUXDKZaZffZXGU04mVM6LM/yCk2Qg+dPvw/l/IhT3j14tg7dITIClY0M6BY//I1x8hThuDh+QWUg8eGGHzHYuWAy7fiPg/rIrZdYzk6o5xs9plcHv9KRvFvIx6RAdR2hIqiqd5Bsv45y5FK8uQWVQnBp/m8L0CB2nXeDjdkWqeZ4/gYBo0SuxG56izuoAl6CqBq5rEYgkcB0Lz3HwPBc9GDnOBC8QieM5DlY5708KLMGIJqptVTrjWH0r3tBh1K75OI//E97eV1B6z0S77M9xhw9X3eWVhib5nxuaUDwPL5vBG3wbb3QY7ZI/ldi2ge0C8o0AXnIad/cA6sUfRnFd3JEjKHVxiMZwn3kC9ZI/lXaKBZRQWMzwIlEx0HOE6uU5NuSy2LE4Fgqjo6PE43Hq6+txXZdsNkt/fz8rV66kvr4ey7JQFIVAIODHp7mMjo5WgfpPfvITrrzySuLxOIZhEIvFjgPq8Xi86hZfWTRNk0xX22Zqaoru7m5M00RRlGo0nOeV2LJlDXv3PsqVV26pgujly2+koWEh6fQR+vs3isN7wyJc16x+jqqqMTT0HJHIHEKhBNFos29kpzA6uouODpmBdl2bQmGaUCiBrodxnCKjo3toaTmNQCCK61qAQqmUJhZrwfM8hocHSCYP0nviXzK+a5KuZaIZTB5M0r+xv+ombxUs9KDO727/HR1LOlh44UJibTGeuPYJln95OQ09DbVjbu4jsSABSC58pZ1ET4LsSJZD2w/Rc0EP0TlRVENMZ5ySw8iuEaItUUKJEHbB5rk7n6sa5GlBDTfqki6nAamq1wfFMOzLT3+ZO1fdScSIMJmfpGgVGc2Ocm7nuWiqRt7M88rEK5zTfg6qovLFp77I3Rfdje3Z7BrZxZmtZzJdnGbDjg1Vd/mSXSKoB1EVlbIj4OeFsRc4s/VMAppEagFoqsZUfoo50Tn89LWf8onePyOmOKJl332NVL+7r4Bz7hcQWJoSY7oXroXRX8Ilr0KgQQzrQi3SB9gFoZXPvAINpwloVMNQPgp6HIw6yLwNb98tung9JsfYBdGZe25Naz69GxreI19UI+4DfqXaj4iDvU+Jnw3qA3Wy3TUFTLuOPJpZCMSrfRVmVkC46lM0q2Bdk0mI3DjULxA6el1nDSB5Ts2wrhpPhwygUvuF3n7OjZA4QeiLg7+UanrbuTIxYJegnBSK/AubRdPu2XDsddG2Z0aEORBtlXPv2igO83XdkDkk1fyl6yA0x3/fmsU4L7lP9OwVh/klXxU2QLQVEieQt4Ps359k06Z+1q/vY+HCBvJ5E8tyyeVMWlqiqKpCLmdSLFrk85bvGN/HyEiarq56urvj5POib7csB9v2iMcDZLMm4+NZ6uqCxGIBXNcjHg/iOB7HjuVJp0vE4yFaWqIMDia5555dfPe7l2BZDjMzRebMiaDrKqrhUbCLTOWSRIwgo5kpelsXoioqmVKWRDguE1R4qCiYjkW2nCcRjqMpKrbrMJae4m/3/JKrl15Oa/0cFKBkmYBHySph6AE0RSNkBFAVhbxZYiqX5EcvPsH1532ciBGkYJbYN3WE3taFBPUAY6kpxnPHWDnvBBQ3K9+fSmW88JxUwNUEEt8WAq0BnKSsR5f1xd0Qeg84k1UHeIx5YiynNwEGWPth+ltSZa84z+sdoARqk+gTa6R6H1nhu8yvA6MHrIOY5aNMq8sYy2bZPDDAzX19zKuv53A6LRX0vj56Egkc12UwmWTzwADr+/oYTqdpq6ujLRYjHgwymEyyYccO1vf10RKJkDVN5kSj6IrCvulpNg8McOPy5ZzQ1MThZJLmaJR0uczgzAzN0Sh3Pf886/r6WJRIYLouf7V1K8s6O/mzk0+mVVVRDh4UrfqKFb6Xj1qjvo+PS7X9tddg+XIBwtdfD8uWwSc+IXT64WGpsG/cKGB+3jxxm29u9j8bFT7zGfjxjwWcf+97ctz3vif0+KEhodNXnOoraTyGIffnUEjo8FNJoazPa4cX9kJLo1TZoQbMLbvmBA/S36DItnRO2rQs0bZ7noBxD8jkBPiXTZkkaGmQ6660Pdt9PhSQCYB8EepjWKaJlctRnpkRN/mrriLW2SkReLqO5zjsvvXW6phzya23UkqlCCUSYrhr20y9/DL9N9zAyu9+l4aTTsLKZjFiMVAU7EIBp1ymMD5O0+mnowWD1XFpuKWF0Jw5GNEonuOgaBql6WnsQqFqdJdYsAB1ekLi3i76KDS31qrvn/grqbg7DoweEuO6z31EqPSf+FzNkd9za74DmiY6+M4eqcjHGyCTPN5lftWfwdM/h49fJ0zTYxNCne9aKMcEQzJ+/cn9OJf+N0an3qwC6/ZTzwdg7PVnjzNRnl1wKqYnJQUpHENVdTGeU1U81wVV8z1NfTmnZtQKVrOM7DzHZvyN7TQteA+BcJxCakLo9aE6bLOAqhloRhA8iZ5TPef/zDneMf/ApPXdpbK8a073/+DimiavP/ggQ08+yesPPohTKuH4pl2uZZH36UGhxkbREZl/rC9RAwFOXbuW7osv5tS1a1EDARzLwsrnBfxbFtnDh5l66SU820bRNBoWLyYQCglorxjIJaeEAhSJiYlHOCK6IMcRs4/pSQHte34HT/q0mY4FYjz3D9+D05fU6EMLT4GPfFpmMQNBocR/4nMys/nzv5WOr7FZ3Duf/oUMaFPT8A/fFY29Zck56xuxSqJht0pZEu0n0bxoKcnRNxl7/Rk818GzRTNkl4p4QCAcR9UNxl7/NTj2cbofPRgmPzNKfnoUu5xn4q3f4ToWdilPfnqYtlPejx4IM/bas4Do2jNHB7FKORTPwy7liDR2oOpBIo0doKgobR14ilLToPddIB1tvB73+d9KzmhdHO/wIN7QYbzUDO72bShd81FXrRaqeyaF9sFLAHC2/gJUDfWiD4Fl4RXyQsXPZaFcFmO7dArnyX/xNVkuRGSixkvO4Dzxc7xUElQNRw+QzObYtm0bc+fOJRqNoijKcdnr/f39eJ6HYYgW3vGzbrdu3cpPfvITduzYQUdHB729vXR2dpLJZCiVSjz++ONEIhEuu+wy0uk0yWSSmZkZtm7dCsDo6CiWZZHL5XjmmWeIxWTgkc1mefLJJ0mlUpimiePAypXr6O29go6OJVWq+sDAZhRFOU7nbtsFCoVjpFKHGB4ewLZNOjuXUSzOEAjEyOUmKJczuK5Nc/MplMsZpqf3Mzw8QCiUAFySyUGeeOJaIpEmjh79vXgCKCpjYy+g6yGy2TEsq0Br65n09FwAikPH0g7sss3wwDD13fVc9sBlJBYkiLZEaehpINYW45J7L+HkPz8ZAKtgccm9lxBtjuI6LtGWKBd/72Lqu+txbZfp/dNkRjJccu8lJBYkSB1Ksf2W7XQt6yIQDbBl7RbKmTKpgymeuPaJKmiPtkRJj6TpXNZJdizL+EvjmLaJ5VoYqsFEboJbtt/CWHaMWCDG9y/7PlOFKdZsWUPRLtJa18ryruWU7BLZcpZYIMbZ7Weza3QXI5kRrltynRjLPXEtLdEWYoEYAS3A+7rfRzwYx3ZtsmYWx3UoO2Uc12G6OM0Zc8+oOs4PZ4Z5fuR5LMdiTmQO1z1xHUs6lhA2IniKIZXuiulc7zoBtk5ZXNend0k03MrHBNxO7xIw7zkwNSAA0nOheQUUj8LMS1A4DK9+XejwAJF2eO935fkL10J5Ulzqd31agGjusID2piUC7PWoXINrCXB1yr6OXJFqe/pgDdRohgByEEBt5vzIOEVAu5mpHWtEBZy7lgx8/Mx3zIxMXtQvkOPqF9bAfUXPrqh+tJwq+9sl2bZr4yzTOU9Mg646CO3LZbuZFU26XYDcsFTQQaruLe+BYlLOaxcFdFfa271J2qvq1u+U6w8mYOw50egXJqD5DAH97Svghb8WOr1/LY7jEo0a3HPPJYyPZ7Esh2BQJxIxuOOOfg4eTKKqCjfd9AyhkE5PTwMPPria9vYYy5d30dwc4brrtjIzU0TXVRzHw/M8PA/S6TLj4zkSiRCaJhND+/ZNs3btFnI5k+7uBHPmRCiXbebOjXL33RfJRxLQaG2NyQSY4+LhEdQMOhNzaalr4sTmeYylp7j96UcomGVc1+VIcpxXx/ZRsEo4rktjpB48jw3P/A0T2WmOFVJse/t5JvMzeJ6H5di8OXmI6UKGxmgDyWKWzb/5e4aTR7Fdl7ARZG5dI9e/7y8wVI2XR4Xy2hRNsOnZv2UkdZSAodMQrqNoFUVvruhQ+K1U1UOn+eC7Gawh8ApSgdcSgCEGdk5adO1KwNe2PySgHV1AfuF5H/TXiWO83g6R5fKoBMWMDhtQYe59EP+YZLtXsuOxweihFHof656Ve+N9l17K/EQCF2qZ6jt2MJrNcjAptOtbzzuPnkSC982bx8KGBvKmyaGZGcK6zr2XXILjukQDARKhEANDQ9iuy+aBgWoWvOO6hA2DiGFQHwyypKODu55/vnquouOgADcuX86FCxdiVAD6nDkSA3fggBjIHT7sp9XsE5r70aMC2iv733kn/OmfSrV8wwb4yEeEBv/QQ1KBz+elzUJB/jxPAPonPwnf+Y4A8akp0cJfd52A9Ycekqp+Lid6+s9/XnTxFbDY3SagvVJlb24QCnzJFFBv+1prVZGKeqns69wdcZCH47TpVZC/74jsW6no18fkL1uotV2ZxPAN6ShbNYM7wHNdrFyumt9empqiMDbG7ttuIzc8jKJp9K5ZQ/fFF9O7di2KpuHk8+y+9VYyhw6RHRmh4aSTuPixx2h573spTk3x2n33UZyawohGCcTjFMbHCTU28sLtt5MbGqoVp7q7sYvFan57bniYUGPjcRnwKp5kqF/455CZkf8l0Sh0edeF4YPSt/acIn3ouR+UIhKejFd/dI/kt6uajEVVTRikubSAdWuW+V1FO5/LyOPBt8SkLhCUolU6CVNjwiwNBOGyK1HSM7QsrHko4Xkoqlb1VarEGHectopANEEpcwyzmEbVDVRNooKtcp7R157BKucozIxiFjMUUxPYZhEUBT0Q9iv1Yexywe8rXdp6P4Ciqoy/sZ1QvBkjFMNzbab278QuFwAP1xGMcRwNftcGufe906IFZML6XdD+71reBe7/RZfZoLt3zRqmXnqJ7KFDAt49r9ZZ/d3f0XT66ajvkAGqGQZ1Cxaw9BvfoG7BAgCyhw6x6+tfJ3vokEwAjI2JK+eGDTilEkY8DpqOt+hUCEWk09r2GITCMts4fRT2vy6zmP94n1CA5rTCf1vrd4J/UQP2mRmhDBULQnHf8zuhFxkBAZa5jNDrM0nRsV/632S28uCb/z/23jxMrrJc9/6tVWvV2HOn052eMofMCUjmAWQKo3tvhygiiCKDBmUSVGALaBKUQUDBjSBsYYsiIaIYEmYDhJAREiCEDJ2h57nmuWo93x9PdXWiezrfOef79tnHdV19ra5V73rX6uqqt977ve/nvhXQX/h1/UPChX6eewJq67X2XeQ44G2gA1Yy2MWIcSeTCPUUWDEHl8dHtuD8nk3F8VXUkSi4Zw4NoE4+R2KwA9tXgttfoQOnvxzTsimpGYPhsune+yahzr0kw3pu80kXYPtK6PjgFSxvKWW1E+jdvxnJq8SRRFxz1ktLcV2wHKO8AgBn8xvIvg+RSEg5yMpqzFENw2Z1W97CsCxAMJrGIDllfc35S8GyVOoUjeBsfAniMczmcRglpRizTgbL0hi4aJT8S3+EcKhobGc0jSme7wRKeHvzZubPn49lWQWgrMB88eLFTJs2jSVLluByuUgkEpSVlWEYBplMhoULFxafT6VSnHnmmZimyejRo9m6dSsffPABL730ErFYjN/+9rds3ryZcePGFTPbm5qa8Hg8BAIBTj31VCoqKhCRokP9pk2bSKVShEJhKirGcMEFv8TlcrNs2X3MmHERixd/l3i8lyVLbmHatOUsWXIrqVSYQGAkfv8Iamtn8dJL1xIOH6W+fg7RaCcbN95GLNaDaVrYtg+PpxSPp4xAoJaOjq0YhklpaR0LFnybeLyPhoZ5GIaJy+WluXkR8XgPb765EhEH2/ZTWtqI5fITbg3TsU3j3nLJHC9d/xKZmC6ipSNpXrz2RXLJHLbfZrBlkGhXFNNl4i5x6+sZyxDrirF+xXpyyRyldaUEW4K8dN1LSF54a+Vb7Ht+H5H2CC63i6ZFTaSjacJtYRbcsECZ9lSO1k2tNMxrYOaXZrLlvi0EagLkXXm2tG/BdtlFA7kHtz2IgUFe8vgsH28efROf5cM2bWKZGLu6d+G3/eSdPIPJQRY0LqAmUMPE6oncv+V+ljYvZWLVRBxxOBo6yqenfJraklpyktOMdsuDpyD7XvnmSrpiXbgMFzWBGtoj7dQEalixYQVHw0eZ2zCX/ngXZuwQxo4VkA1qZNnJP1MZvBSk54alMvpUnwLzRAdUzlK22LQL9fCiYNswtZa9ei64AjDl28qaZ6Nas51P6ZhSPVeN51w+OPEuBekunx4f2KYS+lycQs1BwUk+U2DdHQW37tICaHcr42AHFMw72WGGfcj93VNWkLgX5Kklo4al7+FDemzIcG4oK33IH0jQv8tdRpHxd7LaPp/R12fuzcMuv4ZLDeRyCQXi6bAuCCxerbXto+bCCZ9TwD3k/u4foX1uvwsyCTjzEbiyE059QPubc5PWsS+9W/tIh6FhMZSN1X1yQPtqWKw176XNei/5LLZlUlnp5frrX2L69JFqjJ3OkUzm+OY353LXXZtxHOFnPzuHQMBNJJLm6qvX09ERwTQNwuE0c+c20N0dI5/XCDe/Xxc7GhpKWbp0NLatx7xei+7uGM8/v4+OjihdXTGuuuoF2toi+p3oMolE0sWf3t4EyWQOw4D2cC8rX/kl7aEeTMM4zqzONE1GllQxu/4EBPjJG7+mPdiLy3TxndMvxWe7ObHhBF7/+sOc2HACAHu6W6jyldEbG8QRhye3r2N2wyRqSirJ5DLs7tyP7bLx2h7CySiTappxmSb/vO35okldpa+MJ3e8QE80gpgl+p73LwajTIG8b56+J/yLwPCrCV1ym8raiyDeVAM6J4HaIpnqBp8Pgm+uMvWSguSOAlh3VCYvjtbF50N6LRxVf9Q+WHChv0Wl9Ri4gNWnK3u4Yv16DgWD2IbB/cuWsXfFCu5ftoxUNktXLMaYigpK3W66YzEOh0JcsW4dg6kURyMRyr1etnV04LMsYpkMWcdhTn09pmHwi/POo+eGG3j4vPMYTCap8Hrpi8fxWhZ+S83xhkzxOsJhDMNgdEUFdSUl+EGZ73hcWdSJE+G73x1myu+7b9i0LpdT9v2555SBt20F2A8+qDXts2crSN+3Txn5ZFJZ92uvVcf4ZBJ+9jMF7FdcoQz9s8+qA/3Q9Y8e1fZdXQroHUf9fKJxBZuTRg/L2SeNLgD1AqC2XMNsucet/Q2Ehs3mjq19by0sWmayem4mC5VlwzXwbd369x3b3nINg37H0TYuEw62YZgm3hEjiuC8esaMIojf88gjSC5HsreXubfdRmDUKCSfLz6/78knKWlqwnS7iXV0kI3H8dfUUHPiiex78knEcTBcLqpnzmTfr39NzYknYrrdVJxwAnsff5xETw/ZcPj46+XzRef5aVdeqa9R1UhNRBpSi4aDSvz0diqhBJp21N+tLHlZpZoub/hdwf09qM8P9KhhXSYzbLT83BPq9VTbAF+4SsmrmlHqTP9PK7Us1F+iAN/r0/4Of6zXKq/EHD0JdyZPw4wzcPvLwDTJJMJFXyXbW0rnB6+SSYYRR/CWjqCsVmX2Ti6LgRyXamS5ffQd3Kqlni3bVYCVyxDrO0r33jdxefxkE2G6976JOHksd0Dz3E0XiWBXcT7cf2i7Lsqk4mrGPOQcP+RdMlTK9R9t+YwuWv/NqO7f3f4mlf9Xtv8OUnkoSOJTKfrefZdN111Hwyc/ybwf/ADT7SZy6BB7HnmE6VdeSUlzM5bX+x/291fS+TvuwMlm2b5yJSNPPpnR556rEiTTwB0Nqtzo7OVqxmGaOgimk2B7NNO9v0cHx6Fan+o6XQXO51U+7+ShrUUlQ9HwsLlHVU1BGoqC+lRSBzmfv5jTzstrj68fcns0Tz4agmAf+SknkkkO1/q4C+yHAPl0QgesYyRDx+a8j5p6KobpwjBdagiSTeGy1b3YMIxCnXqAXCqG5dXs97opSzFdFvHBTnzlI7Wt6SpKnIbqkQ688SsmnvIVXI5gvPoS5hnn6t8ajw5nuZsmUpC4O5vf+Ov89TPO00i4d97EPPM8DAw1tDMMJJfTv7OnEwYHMGeomaDT3opRqr4BhtePpBLkH74H44TpuJb9ncqq4lGV3S8+jbztJuX2Eo/H2bx5M2eeeWYxV31oTMlms7zyyissXLiQ8vJyRISXX36ZuXPnUlFRgcvl+ivpvN/v56WXXmLJkiXH/V5eXs7g4CDxeJyGhoZirruIkM1m6enpoaSkpFjz7vf7yWSSuN154vFeNm1azaJF3y1mrEejXVRVTSASaaOsrAmRPKHQYTZtupOFC2+ivX0LFRVjaG5eTGvrJtas+Syf+9yzlJc38fbbd3HGGT/Gtv0Yhq59OoXc03i8B4+nDI+njHQ6QjodobS0nhde+DqNjQuYPPnvMU0by/JAxkPrW60EagK8c+87LLxpYfGzNmQud+zjBTcsIN4Xp3lxszrGWyaWxyLaGSUTz4ABm3+s55XWl+Ip8zB4YJBIR4SyxjI2rd7EwpsWUj2p+jhZfkldCRjQsa2D8uZy/CP8dL3bReNpjRyKHKK2pBaP5cFxHAzDIJFNcOMrN3LjwhsZVTqKrlgXd799N3edeRc+y0d/op9ENsHqTav53uLv0RHpoKm8ieayZuLZeDEP/r6z7lPvBRFMw6TEXULOydEb76XMU8bv9/6eN1vf5OHzHmZz22bmNcxjxYYVPL/v+WIefJnLxO7fMixvd/mhbwtUzhyubQcF3kN18IYJscOQbB+uZXfykA0rSHf5Id1fOB8F9Nko7LoJTrhOo94yg9o2PQB7VinD7xkJ716rYL90MpADV8mwHHBICm8wLI+PdWqs25CMXvIF4DNkaNegiwvZuE5+8mkF4JLXOvGSekB00WDoWNlorckfOt/l0XuIdRSu5RrOdDddw670hguyMXV5H8puNz2F2nSBzi0qZ68o1KQneuHppbDslwq4QWvaXV59Ph0Cb2VBOXCMRD+X1L+1e6v2VzZa2ffnzod/WAelTcrSnHo/ALGcH3F5yecdcjkhGExSUeHFskxcLpNYLIPX6yKdznPjja9w3XXzefvtNsaPr6SpqZy77nqbH//4DEpLdXH6nXfamTmzlkDAxjAMUqkc27Z1MHp0OR6PRWWll2AwRWWlj+3bO5gxYySWZeL12hiGLhoAtLVFuO++Ldx115mUVbsYLNSkxwoS+FQ2TTyTZESggnQuQyyTpKogPe0I9VJXVoXtskllM7gtG9MwMAoy+g+7WxgZqMLndhfr2hNZlcb/avuf+Oq8v6PSV0o6l6HSX44Lg1gmScDtoyPcyy+3/oHL5/0Do8pHkM3nKLHBpsC4G77CqOKgNe0tajRXfTNkO5WJN0rAkOHItmxrAaT7j2n/PXWFt5v0uKsKyCvwt5tUBu9ENQtecvp5SO4A72zNcMfSe5AcmWyUpDGymLfeF4+zdPToolndvIYGPJbF4WCQVYWM99Hl5cfVuz94zjns6Oxkdl0dAdumL5Egkk5jGgarC3XuPfE4d27aVDSvOxQKsbogrR9bUXGcZ8DRUIhVmzZx08KFzAwEsPv7obpa69vz+eHs9htvVAB/3XUqYa+pUaa8pUWB/P33KwhftUpr4ceNU3f5225TsL937/Dvy5fD7bfDyJHqVn9sPfvatXD66dp/by/MnauO8z//ufbv80E8p9L3ilIF0eMalWEfkq6nM8M57cdmrB97PBjWPtq6h+XuqYy2KQ0Mm93B8HGP+/hrfHhQmf4x9QraXS5Ipsm5TDLxGC63u1BzbRFrb1dp+4wZGJbF0RdeoG7hQvKplNay19ay59FH+cR3v0tqcJA9jzzCSTfeSCoU4qNHH9Us95E6p9p1zz184uabyWcyJHt72ffkk8y+4QYsrxcB+nfvxl9Tw55HH2XaFVeQ7O0levQodQsX4i4vx+vzYhz88Pg5pNuj0cXRENQ0QKBECSPbrT+g3x9OYdx+5hHYuQm+fouC9XQa1j4GZ/yDKkdbD0LjWC3zfPU5VaMOzYmrRur81nSpQtR06WsXjxTKo0zyPj9iGiSCXfgr6+jasxFfRR0lNWNw2R72vf5LymrHD5vW5XMkQt1YngCeksrjSjezySi2r5RsMoqvrIZcNlU0trO9geIc1V/VQFntBJx8FpflJhnuw/J4yaVT+CpGFudBXXv+TP3001U2P/S9Io4uBP9HrPpxNe//jrz+/5Ltb1L5/0s3l23j8noJjBpFwyc/WZS7u2ybsnHjikz6fwa0w78infd4cPn9TLviCprOOotEVxc7Vq3CMg2Ml549JgrOKLLXAKRTCsY/sWTYhXP90zqh7evS1crBPh0Ex0/T9iPqVK5UUga/+bmuQGLo6uYLv6WAAGDSTKhrgnOWw6t/GM6G95foF26wT1dI00nsAjNu+8vJxEPKqCcjmJZNLh2nv2U7/sp6DNOFv6qBivopRef3rj1/xsllMAwT02XTted1sqkIuXQCy+Ol7+A2XIXVTF9FHdmUypNsXwmGadH10UZCHXsZMW5OkbV3WR7KR52Ay3JjevwKul2W/v22W2PhOlohHMJsHqexbw1NEA2TX/csJGK4zvs0hm3jvP3nwnNRJJPWeI5sFlwuDNvGbBqLMesT4DhqZlffCKVlkM3gdLZilJRiXfd9zGV/hyAYbpVrmQtPBcvG5Qtg2zaRSITTTjsNy7JIJBKk0+lijvpLL73E3r17iUajxdz1ZQWToPXr1xMKhcjlcmzYsIFAIEA4HMa2bc455xwsy8LtdnP++efj8/mIxWJUV1dTVlbG+vXryWQyBINB1q1bRzweZ3BwkEgkwrnnnktZWRlut5tAwFtwk/fQ1LSId965t1CnTjGy7ZFHTqK19S2A46Ldpk79bDHrvaysiauu+oDRo5fi99ewYMGN2AXXbcMwyWTiJBJ9hX5rsW2/mnRHu9i48fsEg4c488y7mTr1cwBEIm2sX78CwyU0zGsg3hdnwQ0LiHXHqBhdwea7NrPnmT1svmszFWP08b7n9yloX9RMvC+un2+Pq8jOl9aXEu+JF88DNZeLdERoWtBErDvGOQ+eQ/XEajBgy/1b2Pf8PiyfhWEadGzrULl8axjLa1E5vhIzYzKmfAy2aZN38sSzcVasX0FPvIe5DXNZvWk1HpeH1W+tZm7DXLqiXVz1wlXEs3HaI+08s+cZ7tx0JyP8I1j11ipVeZs2AXeApc1LsUwLv60mhje/djM5R03raktq8VpePjv1szyw7AFchoulo5fis3zcuuTWYh78NS9eA4aFVM5WefvOayF+FEbMURn7tsshelDBqF0CvlHD8vNAo7Lu715bqO0cWsAWBfbeGkj1qmQ+n1JgPGKB1rhbfvDVK3BPdihQd/l1kjFyKdhVQK5Qe85wZrtTkBEOjYMudwFImwq0MRRYmW69z5KGwu8uZdxNuwDaC/X05WMVJJvuAlOfGwbmpq0LBbFOvVasXePanKzK04fY+VDhvM639e/MRPS8urmFSLicviaJXpWzl9RC6CC8coWC9C/vVql8tiCxdZepO333Nl1s+PO1Oi7nUprf7mT1nnt3an9DixYNi2HapdCwRBcaTr5JXx/bj8uyiMUyHD0aZsWK9SQSWUKhFPm8g8sF/f1xvv719XR2Rpk7t4G77trMWWeNY8mS0bjdLq67bj79/Qkuv3wdBw4MMmdOPT09ca655kXyeQfLMlmwoJHa2hIqK71s3dpBKpXD63Uxe3YdhmEQCqVJJrNs3txGV1cMj0eZ+dWrT8fnszANk1Q2y96eQ1T5y7FME6/toSPcSyqXoT8R5pF3fk86nyWTy9JQMZKc49Aa7OauPz9BT2SAwUS4WPte5SvD73bjs730x0PEM0n8trfI4j++9Y/4bS/JbIYfvvwobeEevJZb40RLKrn1zK/hsd10hvvZ092CZZoK2A1b/6fZg5DYpKDc8IPvk4W4t4VglgNZSGzW561aBe3JHeBEwFVTcKT3gXemSt+tOsBR0G6N1D6d6DEqEQPyg8rw53u13j17UJn4/ADE1+MyDBrLyrj3nXeKeertkQg1gQArNmzgcChEWyRSzHi3TLOY4X5rwSG+NRymKxrl7bY2agIBxlVW0hmN8vy+fYTTae7ZvJlFTU14CuZyd7/9djEaLpHN8nF/v2a8h8P4bJsbFiygOxYjBkhtrc4hUinYtEnZ7rlztV49m1XAPXasAuhUSjPbb7hBPxerVikIX71aQX95Odx0k4Ly8vLjY+MqKxX433yzHrvlFu3/9NPVaT6dVnn9/v3DcXBlZVBVNSyTH2LAh+rNh9hw21JA7rbAYyuwT2dU8u4tMOSRuEroJ47W9plCLbxtw8FWBeugf4fHPXzuELPvtoel+ratEvyw1sUP1VfH2tvZdscdRI4coaSxEX9dHTtWrSLW1kbTWWfhLitjzyOPsOm660j09DD3tttweTzsffxxRp58Mpbfj6+mhpEnn8y+J5/EcrvZdc89HFm3jp2rV2MV2lbPmEGyr49td9xBoquLEbNnU9LUxNzbbtM+amvpe++9omGe5tr/hVrUX6IgvnKEzmedgsu7VShRymXUiO43D6lK9LOXKWivrNFSz/CgMucvrdH/VfN47b+iCpZfrqTUr3+q7WvqoOWj4cXbwT6V36fT4FOD5EwmrhFu3gD5bJq6KUvxVzbQu38zuXSC5pMuoGbCPMTJa/TbntexPD5y6TiIYLl91E5aiNtXRqCqAbe/HF/5SAyXXWTjBw7vxLRsDMNk1NRTKR91Arl0gt79m8mm4njLRtB/aCf+qnpy6USx5LRuylKdsw5t4UP/+bi3/6y8/m/b3xj3f23778K4D23/nrv8v/b8v9U+n82ST6cxTFPNRGwbl22TS6Vwcjny6TRtL79MaVMjddOnqlO6xzvMtA85aZ7zeV15dHt00Dv0sT6urtMBbMi041Nf0pXPYP+w+3ywD356m8rqv3Q1BAc03910aZtln4PySp0M2m7Nwayo1jr3CdOUyT/8MfmJ08lkE8WVR9O0ig7x7kAFTi6D7S0hm4rTf6gQ5ebVmsbujzbiqxxVXIE0XTaR3hbcXh0Ic+kEjpMtRMQpUP9LZ3knn8PJZXC5h5h6EykYVhmAkReMbAanuxOjsRkiIZy3XsNccIpmrzeORiIhXchIJZFD+1UyX9+EuFwYjoM4DtLVjlFXD9EIEotilJUfx9zj5CEW1fi4xtGIOGC4MMRBUkkMn1/bhYNg2WpYh2BgkHVZDIZCfxUBV1ZWVmTTU6kUbre7GO825Ar/29/+lmnTpnHKKafw85//nGnTpnHOOecUDewymQwiQiaTwePx0N3dTVlZGZZlkUqlKC8vp6urC7/fj9frxefzkc/ni6x/MBjEtk1yuW7eemsVCxfeRGlpPR5PGdlsglQqRDabJBJpo7x8NJWVYwsMeRiPpwK3O0A2mySXS+I4OXy+ahwnS2fnDurqZmNZXhKJ/kIsnFFg2kvp6fmA2toZWJaPRKKfhx+eyQknfIrzz38EEGKxbjZuvI3Roz/JjBO+DGKQz+bp2NpRzGsfingbMpcLHQqpK3yBNV9wwwLKx5Rje20GDgwU2fmqCVWsu2KdGtWNqQADMtEMls8i0hrhrVVvFdl4y2eR6Evgq/QVDerivXEa5jWQCqZIBVN4q7y4m9zEMjHC6TCl7lJ6Yj343X4qvZX0xntpLGsk7+RxxOH6l69n7d61PPu5Z1nUvIh32t5hdt1sfJa+Z9ymm5ZgC6s2reInZ/3kOHO62pJa/LafRDbBd179DjcuvJEJlRM4GDzI6k2ruWnhTdSV1FHmKcMRhyvWXcGipkVcPvNCfJkB+OC2YVO6uQ8fb1I39xEF9Im2gmlcAfi6Agrs/Y363N67hh3nJafS+mwI9t6jtfP+5gILmYJdN2qOe7pXneqn3azy/MrZkB4sONPPBbsSEK0Rt9Uv4jiTuKIxnQIVrVN3D7PsQwA7n1FAPSSFdw1Jkgt9pQb0GuXjdLI0xNSD/q2Fz7WCqwHwlCvAdpeCu1zvcaiGXnK6gICj9+bkFJh7ynXRItYOR1/VazUs1Pt88yb4xHXqRt/7rhrP7bxXa9YbT1E5fc1s/ft8I4uJHoSP6HOj5g2rBob+3mwcPBVEMl5SGRgcTPHyyy2ccEI1M2bUEomkKS/3EI9nGBxM0dcXZ/z4SrJZhzFjKjh0KFgwqVtMZ2eUAwcGOeus8dTXl/KNb7zA9dfPp66ulGg0TX19Kel0nq1b2xk5MkBvb5wFC5pwuQwymTzbtnVQX1/C6NEV5HIOXq9FPJ7lxhtf4dvfXsj4KWXs6tjHpJpmDAz64yE1jVt6EX63h3QuQ95xsF0W0XScUk8Ay3Rx95+fZGrdOM6ZvAiXafJ+534m1ozGwMDv9hJLJ0hkU1T5yjBNk2Q2zX1vPMWlcy9gVFkNuzv2MX5EE26Xhcdy44jgMkwy+QyWy9b+RjRT47cxJA/kAZeCZWdA89pH3q///3y3Suit6oLUPQNOSmvfB1ZB9XfBNRJSu9R8buBOZd2t0SqVd8LKrqc+UDm+E9E+B+5SWbzhGza/OzITSj6l1zZ9xFKDdCTL+P7GjUUG/f5ly7BNkxUbNvD8vn08+7nPsai5mbdbW6kNBOhLJFjc3EzOcdjW0cHM2lp8tk1fPI7PsuiNx9UpvqGBYCpFiduNAF3HGOA1lpXRE49T7vHgtawig7/uwgtpKi/nrrff5u4zz8Rv25TlchgtLQq+b7hBWe5x4xRUD5nONTQooB87Vhn31auPZ9y/+111n+/tVXDuKjCq+bwC/nRawbPPpxLrZFIB+vz5+lmORHRB4K67hg3q4nEFhPk8VFSo1D2TVYA+vul41/d0RuvNh4411SnQNk11nx/fVFhsLADHI53QMFIB+sFWldRPHV8wtJPCeOEMKyCHnOZdx3CC4RgEfOA4ZBEkl2PbHXcMG9Dddtvxj2+/HYB4Zyd7H3+c2d/+tpoiiyCOQy6VYtc993DCJZfgGzFCWehEglwyqUz65ZfjHzWKRHc3pm3zwUMPHXetvt27qZw8WVl4EVIDA9glJVgeD9lIBH+JT8sJhwDoob3wwD/qnPTL16n8PRwcnsuWVSiL/tPbtE2hFJN/Kcxl55+mAN00lVkfOn8oXelfHhie815yjZZaGIYC+uf/Rcs8v34LTJxO3uWi48NjYtemn6EKnmOc4BtmnKnL0E7+OIf5+umnq+9RPothusgmo0UXeMvtIxnuxfaV0HdwW9FNflgtahMf7KD13T9RVjueUVNPBfir4w0zzlS2HVTy/vJlCsRPWK5xb+7SfweoZP7mMn/M9jfG/f/yzWXb2IHAvwnaj61bz6XTxz0eMrTLZ7NEDh+mb+fOotFdJhQil0oRPXqUbbfdRqK7m8bTTqNq5ixdUfQqK4k4x2dcvrxWa9SzBdBepTInnJyy6t+6QxlzX4muagb7dPBa/7RK6+cs1VXNvm4d2EyXthmqgU8lh2u6Js1QIN88QRkwq1BrZBjF1cVsMorj5Og/tBPbV4LlCWB5Apgum/5D2wv1QFuVtRaHEePnUNEwFdN0kYmHyKUTVNRPLtarO04Ot7+CQHUDtkf7O7YeXhyHXCZJOh4q/BcMcukEhjg4uQydH76GGKLy9sZmrTEfql9/5w3MhsLKdmm5ytfffBVjygzMxtE4nW36uuYVFJjN4zTSLRbVqLhIGCNQQn7Dc1q/7rL0WG09kojraxkJKbOfzahRXTaLUVoObjdOZ7tK71NJJJ8nEonQ0NBAJBJh3759bN68Gdu2CYfDbNiwgVzBMGeo/vxYQ7rFixfj9XqL9e4ejwe78B41DINYLMbGjRuJRqM0NDTg9/txu93s3LkT27ZpamrC6/WSzWZJJpM6sU0myeVybNq0CcuCt95aVWTRAdLpKC6XjWX5iEY7aG5ejFXILo3He9i48TYSiV4cJ4fjZHG53AQCWsf40kvXUVJSh4hDW9tmstk4L7xwFeHwEQYHDxKNdhVq4rtpa9uMz1fJtdce5ZxzHkREMAwLj6echQtvYsaMCxEjR/homA0rNhCoCRBpi5COpPFV+zjl9lM4svEIG765gYqxFTQvambT6k3seWYP79z7DpbbAgPcATdNi5rYct8WAM79+bmUN5Xj5B0kJ7gDbvKZPG/f9TZ7ntnDlvu2YJgGpsukpK6EfC5P7axakoNJmpc0Y3ktvJVe4n1xsslsMaqt3FNOqbuUcZXjOBo6is/2Mbp8NKlcimtfulbl8mfezftXvc+8hnm83fo2jWWN+CwfLcEWvrnhm0QyEWoCNSxqWkQsE2PVW6t4Zs8zdMW66E/2c9ULV9Ed62Zuw1zu3nw3Dg4ey8OipkXct+U+IukIsUyMnJPjliW3sGz8MnqTYcQu1/i3oYx1061Aunk5TP2O1mon2goRbS4F5DuvhegBZeEtv8riaxYVwHoUkt0qkU/16wJAok3B+LarNP5txALty1sLc/5J3elHLFA22eXVxzuu1nizoZr1oTzzoW0o2s1VYMwlr+2GzOPsQAGYF+rTRbSPfIbhAvbC5hupufAikAypLL7oHm9QdLwPH9bJk2mrTN1TAYhmwne8rSZ6nZu1XcfmYebeDig4z0T0XiZ/EUoblHmPdylDv/0ulcePmgfJPs2Dn/wFNZ2rm6ftQgchehReW6ELIGXNyrz/+VpVAjj54UWKXBJ6tuticl4wDLj44pnMn9+IiLBy5Zs4jpBI5Lj33ndobCyjrq6UMWMqSKdzrF69ieef30dnZ5SFC5v4yldmF4H+3XefyaRJ1QQCNmVlHmKxDNu3d1BTo6B97twGXC6DbNZhx45OZs2qpbm5AtPUY52dMQB+9KPT6eiI4MLgxIYT8FhufLaHgO1R0ziXS2vRTQu/21swRfPyce9hUrkMN572Zc6dsphgIkwik2J63QT8thePZZMXLU3pDPdimiZ5x8FrubnljMsYVVaDyzCpKxnBwf42TMPEwMBlmDgIecfh/c79zKqfVPyOIXcEer6he6sWBn+qLu+GWxdqsn1gBiDXo8Ado2Bc1wEj7wWrWR3pvbNg4J6Cwdydw4s8rio9379EHztRBe3RZyDbBhLXjHhJQP2zuhBgavmI2z2KMo+H+46pafe4XNguFw+dey7vX3UVTWVlXLluHY3l5ZR7vTSUldEdi3EoGGSE309nNMqV69ZR6fUSK9TDD7H1iVyOMo+HgG3THYtxw4IFeC2L9kiE2zZupC+RwF3IeF8+bRrzGhtZ9dZbzG1ooDMa5Yp16/Q7dfVqZc7vvVfZ9qoqBe+LFmn+ugg0Nyv4Gmp7440K5B9+eFgCH4/D7t0K8p9+erheva5O49+OHoVvfhP6+2H69EL5YB6iUQXtzzyjDvOHDqk5XWsrxOKFSV1e9+ObFEAPseHeAjvuModZ+LZulcwjMLZhGHzn87qgMKFJzzMNBf6fmKZy+UhMjeciMWXkh87L5nQBIJXRx+GYXjOb00UAtBThWAO6XCrFybfcwik//znTrrqKXDLJjpUr8VRVcfI//iMA2WiUyJEjbLv9dlIDA1TPmMG+J5/EsCwsrxfT68U3ciRzb78df309g3v2EGhowFtTw9SvfW3Y6+m996icOFFfplQKwzDIJZO8f//9GJaFv7pKCafBPiWRgr2qDp2zVMs+xdH55dBcdsPvFIgPzUvP/pwqJKNhWH4l/PBRuPAbKot/6iGtkzddw/Xr+ayWfw4Z1R05oIST6dIFgbOXwzduHY6QM4xhleb4OYgIjpMvmtPVjJ+jqUZOnnw2Tf200xh98j8UjeyyyTBdH20km4qRTcXUIDkZw3DZeMtGYJo29dNOwzBdf6EWfQXbV1Jk803LTS6TJD7Ygb+yjolLLtGM92PZ9v/ROneXW+XxZ/3y/3rQ/h9tfwPu/5dvf+k+72SzxccfPfYYTsFF3slmSfT0qFvnqlUkurrANHGyWfY+/jg1J56I5fPh8vtJdHdrnVh/t646ZtI6CH3pW/CTp3Ug6+9RaVFphWa1V1RrJFwipsC6thEQlQlV1uiK49nL9cvky9epwYfbA3vePR7Qn7Nc+zJMNcHr74ajB7Q+yXKrS+fBPeByUT/9dKac+Q381Y0MHNpJuGsf/S07MAwD03QhhkH99GMGPsPEcNnY3hIQIZdN4a8che0twTBM+lt2FEF+NhUlHQvhOHny6UTRqdNla1lCNhnF8viKEiOX20c2rXJTX1U95HM6NQ+HkHgM1zn/gHnhZZhLzkBMg/yLz2ukR7jgGi9CfsMfMEaOgngMp7sDw7ZBHM1pLyuHigrM5rFIPIbs+xBn02uQzWI2jTkOBxiBEozaepzNbwxL8df/XtUAJSU4nW3axrIoKytjw4YNlJWVcc0117Bs2TJEpOgs/9Zbb2Hb9nGGdKZpcsopp1BeXo5lWUV5+9A2xJoPgf1YLEYkEuGVV15BRDjzzDNxHIdYLIbb7aa0tJRsNktHRwfeQtnH4sWLcbu9LF78PaZNW86iRd8hGu0kHu9m3boricd7qKubjWGYhag3E9suoaXlZd56a5WaryT66e7ehePkMU0XZ5zxY0pLG3C7AzQ2LsCy/CxceBOW5aO2dibbtj2Iy2VTWjqK2tpZvPjitUSjXXR27iCXSyCSx+0uobpaJ9PxaD9vrXqrCMYb5jZg+216dveQz+apHF/JWXefBYAgLLllCdOWT2PJrUswLINgS1Ad4xc1cebdZ2JaJpG2COuuXEe4NUy8L17MZT/jx2cwbfk0zvjxGYgjpCNpBvYP8Mq3X8E0TZoWNhWI4Qyd2ztpmNtAaW0pgtCX6OPal67l4OBBXKaL+Y3zORQ8xOXrLqcn3sOCxgW0R9rx235K3CVs79zO3Ia5eC0vOclx35b7uG7+dVimxbtd77KkaQn1pfU8esGjdF7fyZLRS7j77bt5ft/z9MZ7uXT2pTx07kPknTwGBp+Z8hl+fMaPqfBWALCjcwfNZc00lDYQsAPK1JZOgE/cD+4anTx7R8GM26Fvk7Lj1XMVlLts+OhOjYVL9aqEXrLKyDd9BmrmA45mwSc71bhuzEVQs0SB/0n36nlNn4VUN+y8RgF9Nqbgfvs3IJ/QNh3PQ7qvALbTCkyH5IJDAN5dWjCqK8jYnUyBjZbh3HbTVsBMAbi7y/TzapgFdr7A3ocOa5u6k6BsjJ4LBWbe0Wsn+/V6oFFzplvP3bZandyjHeokX9asMXCJXjXIc3lh6V26z0R0ESDWoZFx8W41tjvlPgiM0jYNi6F8NMR69L4MQ2Pm6hdCvAc+cb1ev3uHLpqc9lOVzZNXxj50CCwf1M3Tl6IQ0wbQ3a2gecGCRqLRDHfd9TZLlzYzalTJcMqeA7feuoT337+KOXPq6e2Nk07ncLlMbNukrMxdjJO7+ebXEIH58xvp64szb14Dfr+F4wiWZbBwYROBgJtrrnmRo0fDANx220Y6O6PYtoumpjJEDDrDfax+9XE6I/0YpkkoGePD7hZmjJoAhkFbsIe7/vwEA4kwU2vH0xcLcuerjxfr1Es8PiyXCwchmU1z9+tP4LHcTB81kUQmxYfdB8kXMrUHYkHimSTVJWVMqxtPNB0nLw7xbIrdHftwmS6q/OXkHc2Mh7yC7OgzCroRqPsZlH4Ger6t7wF/4b3fv7LAvluAVZDPVxQY+BgYAah7CCaGofYXw18cklWXeskVBvJaGPkTGLtXwXwR7K9Wybw1Vk3wuq/AnT9AhcdNfyJRBNJ5EY6Ew6xYv55kLleUya9+6y3KvV7awmGCySR3bd7MmIqKomv81o4Oyj0eFjc3U+bxsLS5mc5IhJzjkM7naSrI8ZO5HF7L4oYFC2gLh8k4Dh2RCA+ecw6OCDcsWMBZ48cX+82aJnKsfD0UUubcceDtt9Vh/uqrdZ/JDEvdb7xRmfNUSg3mnnpKQf3ixTBhghrd/eM/KmPf2amZ7d3dujgwZgyUlOi8J5E4XmI/b97w4sDq1TCqTgHzkU6VwoMy78Kw63sqo0B7SFLfVDCrM4zhSLdsDo526d+VHypzcIal9AdbVQKfzqiUvrVLr5HPH78gANpu6D4a6xDHYefq1fRu386Mq6+mpLER07IY2LOHyqlTCYwaRT6V4oSLLyafTOr8MxolG4+z9/HHdV766KPULVzI7BtuINXfz7bbbycdDOLkcmy7/Xby6TTe6molkzo6sPx+5t52G4neXuKdnVh+P4jw3j33EG1txTdiBCd+5zvE2trIJZPHA/MXntb7/+KKgleTS0stl18Bi85SU+WyKp2LXnS1tn3uCZ3XDjnJD/YqsTRhmoJyj1efH3p9a0bpnLayWsF8f7ey8IN9Kp2fOENB+wu/xcjlsL0BdX33BEiEujEMA9tXzshJC4gPdtC99001EHaydO55veg0j8Exhsxb8VfW0XzSBfjKa8jEQ/R8vEnl8aYJFBYI6idjWjb+ynr6W3YQqGrA9pbg5LLFOWwi2I3L7dVrHLv9vwHif3OZ/09tf5PK/yvbfzep/L+3/WXee8no0cSOHuXDX/ziODOQaVdcQaChgW233Ubriy8y5vzzmfP972tUhOMQa29n72OPMe3KK3F5PJTWjMAYkgBd80MdlF4oSNkrqo6XFn1xhQ5ouaz+PPsYLPusDjcKJ2MAAQAASURBVIa3XKZtLv6WDpqOo9L4ZELN6NIpZZiranTv9UFvl4L5sz6jgL2kXHMyL/6W1g81jCVfUkYmFS7msNveMjo/fLUoEVLTjhL6W3YUjeUwTDL/Snb7kMHdkNzIX1FHJhlh4PC71Eych+0tLdYbDR59n7ppp4KTo/PD14/J3iwp5LjPwR0oh1wWl2nr30vBPK6sDMorcdY/h9HQhDHzExAO4mx6HXPhqUjbEYzxJyDBAYyG0crgd7RqTntZOYZham57QS5vlFfqcdMFTr5oUCeRsAL9QCmkUzgbX0L2fYjrmls1491lQWiQTEUVbR0d1NTUYBVqBuPxOBUVFeRyOVKpFD6fDxHBsqwC66wrBEO/p9NpXn31VebPn091dTUej07OM5kMuVyOZDJJIBAgHo/jcrkwTZPe3l5qa2tJp9O43W48Hg+ZTAbHcXjttddYtGgR5eXlGEaOTCaKbXvJZlOk0xHefPOHNDTMZfz4ZZSW1mt+KWCaQ2Z3ebLZJLbtp7V1E6WlDcRiXTQ1LdRyhgLbXlraQDTaQV3dLApuY7jdpeTzaTo6tlNbOxPHydHX9xENDfOIRNoKmfHfo7JyAiA4WSEXNUhH0gRqNU7PtEyyCZ1sOXmHdDiNp8xDzwc9jJw+EneJm2wyi+2zWb9ifTHfvbShlHw2z/qvr2fPM3u4cN2FlDWUsfmezZx595nYfhujYCqUz+QxLZNYd4xMLKPmdEAmlqG0vpRcKkcqlMJX6SNbkuWKdVfw/L7nef+q96n0VeI4fy2L1/iqLLbLRkTY2rGVOQ1z8Ll85CSHgUFfvI8qfxUuU8so4tn4cdnwu7p3saBxAVknW8xvNzCK2e6Wqe+xIQO7Sm8lqdQAjf5KNYvrflkd3U/+GYihQGJgm0rcS8YUpOAmxA8XZPMnatTb3rvgpPt0QMxGlS3PRSH0gbLwhkvN7PbeVchw92ut8Par4MhTyuyf/DPY8U1l58dcBCf/HPJxdag3bAXtyX6omnK8ydyQUR0Mg/VjjezyaZWml40ptBli0V3AMeDeoGCQlC2Y0BXaDz0uaVBAHW7RbHfTM1zPns8oE277VZ0wlOceGAW976nEPTWg0vq6eZrlnolB5QTdA7x5o55TNlYz4Xf+RB3kXW6NvssllN3v3lqIj+sb7s90aZxcYKSqrorSfgOySWJSwf4Dg5SWeoo16KNGldDQUIbj6Gs3tI9GM5SXayZ7MpmjpydGa2uYefMasG0X2WyerVs7aGoqo6MjysyZtbjdLjKZPN/5zqvceONCxo+vpKVFZfbf+c5Cxo6tBODQoSD33beFW29dwmuvHeYzn5lCSYmbdDqP5RPe795Ppa+UcCrGzPpJOI6DaZp82HWACSNUQv/qga00VdQys34Suzr20RnuZXbDZHpjg0yvG4/LMPnR67/ikjnnI44woqQCAwOv7SbvONy78V/45pIvYGDgdln0RAfpjg0wsqSSx7b+kW+fejEDiTD/vO15Lpv39zSWj6Qj3Eu5x2Kkpx9j4G51dSenrvF2E7iqC++VmErhJVqQuy+F7OFjjOi6CsZyJcMu8ZhglgFZcOLQ+x2o/ray9N6TIN9XOP9WsJog36PXMAzABd1fh+hTULqcyIgnuPxP64pS+UfOP58r1q07znzu6g0buHnJEvyWRTKXw2dZVHq9eC2LQwXjulsXL6axvJy8CFvb22kqK6O5vJzugiR+V3c35/7mN6y78EIay8tZ/dZb3Lx4Mc3l5fzL++/zdlsbD55zDts6OljS3MyRcJi2cJhza2t1fXsowlFEmfMPP4RPfAJWrBg2k/vZz2D7dmXlQQGsy6VM/JYtGudWXa1M+y23KCN/4ICy7vPmqVS+pUUl+HPn6vmmqeDfp7JzzQg/pAz83XdD9QgF1X1BWDBTGfH2Hs1vz2RhMKKu8xObFbwPgXuAcFxr3m1LGfOyEmXKM1ll2HMF87Uh47mhXPhjpfFDjHtr119L9Av95saMIhOPk41G8Y4YQT6d1t+rq4l3d5M8xoxu2hVX4C+oGPKpFMn+fvY+/jjTrrySwCh1tT82833G1Vfzwvnnc96f/nScPH7OP/6jyunTaZK9vex9/HGmfPWr9L/3Hn3vvceMFSvwjRjBtjvuYNT8eYw783Rl3VNJnWO+t1lNjy+5Fga6dR577hdgZL0y6EMGyEOlmhXVWrrw5DES+Iuv0bZDRswlZWpid87ntZ++rr8uBx06z0D7mjBN5fIjRup82YAhb6f4YAe2N0A2FcdfUQemi+49f8ZbPpKSmjFYbj9G0YE+qm0Aw+VCHIdEsItMMoy/op58Jo6vor5gbJele++bVI/9BLZXa+wdJ4c9ZOaczyIi9O57m9rJi3WebFq4hpj3IYM6l/tvYPx/cPubVP6/6XZspvr/2+0vI98sj6f42PL72fPII3T8+c8kurtBhJO++13G/f3f84lbbiGfydC3cyeJ7m5SfX20vvgiia4u8uk0uUwGufgauPc3MG6KDnZDUvZjpUXnffGYWve9Kik669NQXqUs/TU/VAlRJg373x+e6L7wW12FLK/SFcsheXg6rYYiQ5L8sZM1Nu6sz6p8afw0vQYaB1eUChkG9dNOBzRj3fL46G/ZQfXYk9QtfLCTTCJENhkrRmm4bM9xK5iGy8b2ldK553UMUxl9y1uKODkSwS4M06Ru6ilkE2EQqJ9+OqNP/gf8laOK/Qwc3qkOnYaJZDJINoPEY1qnbtkYIphnnIs54ySMXA5n0+sqod+8EWPcJPB4MZvVsTS/4TmMQIm+vrEo+fW/xwiUqtFd81gor4BcDhnoJf/CWoySEgXt/sLetjFKyzGXnI75uS9rHy/9ESIhJBbBNKC0tJRXX32VSCSCy+WitLSUTCbDSy+9VJSwD4H2eFylfI7j0N7eTiaTwe12M3/+fOLxeLGmfcjgrr29nWw2S1tbG263u/jT1NRENBpl48aNAIRCIbq6urAsizPOOINAQGuJczkHt7ukwJhblJTUcc45D9LUtJhg8BCZTIx4vJtsNk4mEyOdjrBu3ZUkEv0YhkVz8yLc7gAjR84oPp/NJmhqWohtB2homIdp2nR1vYuIEAodob19K/X1J2Pbfl5//RZKS+sxTeuYzPg7EckzNPQm+hMMHhzEyTnEe+MEDwexfBYujwtxhODhIKZt0rSgCcNlYJgGltcin81zzs/OYebFM7WWPZbBMA0W3rSQacun0TivkU13bqJhbgPRzijrrlhHsCVIJpYhOZgkn9X0h/LR5XjKPMR6Ymz8/kaCh4KkQimyiSztW9uxsbllyS08+7lnSeQSrFi/go5oBz8+48c8+7lnaSproj/ej2mYeCwPW9q30BHtYMbIGWzv2E4kE6Er1kU0E8Xv9rO5bTMHB5S597g8WIYa1PltP0ual5DMJRlIDjCvYR698V6ueekaWsOt9MZ7SWaTOAVjt9qSWrZ3bqcqUIOkupQhb/qMAmgnp8B8x9Vav275NAIOgf5Nmt8+cqmy5KluzXd3BVQeHzuoDHroA3WcNyxll/esUtY+2a1y+dghrXFvXq717wAnPwSnrNPjuYJsdcjBvaRR677dZcr6u0u131CBhRfRibnlKeS2RxWkD7UdktnnUoXBPz0M2pFCuamrwFiUoUZ3Ln2+pH64BrVi/HC2vB0oAJCctgnUqeS+6TRdZLBLlCF32Qr+fTXw+gqtPXeXqLz/zRsVZJ96n56Po9dfvEqPv/Ftff09FQr46+bqAkGsQ6/Vs13v01+tf3PXO8MO96+tgEQvjkBXV4x4PMuKFRuoqQnQ1RXD67WwLBO/36akZHhSOATiTdOgtTVMTU2AFSs2cORIiK1bVQ7f1hZh+vSR9PTE2LGjk5ISN/fdt4xAwCaXE/x+m29/ewGlpR7a2sJ885sbqK8v5aGHzqWxsYwlS5q55pqXOHgwyLZtHbgMjXt7cscLTKoZTVe4j1WvPkZbsJupteMZSIS5689PMLvhBCbVjOaHLz9KbUk1505ZTH3ZCGbVTyyy5l/6xLn8ZucGRlfV4SvUiyYKBqPXnXIRIsJP3vg1XdEBeuODTKppxu2ymd0wiUQmyW/ffZFL51xAbWkVhmHw653r+eJTP8CxxkHdz9VwTrKFWDh/QSrvL7yPkpDao4AeAwzPsBGdr5DAkN0PvTfq86Zfa9m7r9MXf+RqZeR9c/R/WJTKt0LuKPT/iOPkXXU/g4Z1UH0rLuCWxYtZd+GFPHTOOZiGwXcWLiyaz4VSKa6fP5/2cJiaQICxFRUkczlWbNjAoVCI5vJyfnDKKYytrCQvQjCZZG5DA3WlpbSGw9y2cSOd0SgLm5qKcvjVQznxmzaRzuc5c9w4blmyBJ9lsbi5GUeEsRUVNJaVqUGdCFgWcvQoXHmlMuOzZilQO5aN374dzj9fGXivd7hW/aqrtA6+qQl27dJa+Y4O/fyPGqV9DUXEtbUNu9UnkwWTxxx861vKvsdi2s8//ZMy/29shOY6ZdINU1nv0sAwC19eomZ0AK4Ci55MKxPvthSUiyjQrirThYHSgIJ9l6ngu7wEpk+ACQXQfqhdAToMy/InFkr5jjXFy+VhIFSsKd/zC1VqWD4f3qoqDJdLf6+uLsa17X38cZxsFnEc7NJSSkePZs4//iOWr+AL5HJx8q23qsT+yivxVlcz5vzzj4ubm3rZZRxZt46BDz7A8vnY9+STRXVo8znnMPVrX8MuLQXD4ORbb6V2/nwFxbGIsuWxCEz7BFy0Qt+2Lz47bKaczehcs3HccAnmq8/pa5FOKxv/w0fh81fpMZ8fvvgNnY+5LCWWQv26IDIUd3ysevS8C/V/YBgK6KeehBMZJJNJ0PHBK6rozGbAAF/5SGx/BbavhESoG5w8ddM+WTSty6ai5LNpbE+gOEfNpuM4uawa3flKCgZ0cSxPgM4PXyUT1//XUNwbQL7gOq+y+whdH20kl05QNWZ20YA5Ew8qITJUs/7yZf85c7r/ndt/s5i5vwH3/0O3v6xN/58F78fWwA89HnKRX3zfffhra1WSNDjIJ265RR3kV67EW1WlUR4zZ9J89tmMmDmTVE83rnwOo69LmXWXC877wnANkC8AiErnq0fqSuRTBdm8x6tSpHxOgXnTOJULZdK6qvnkA2rsMeTSiej5Tz+swNzlUgb/J0/rwOn2wISp4A/oF4yBnuc41EyYe1yWejYdxXBpjY/bV0799NOwvSV0fbQRy+Mjm4zhr6gr1qrns+nh2qKC27xhugqyou04To5sIkznh68XzzdQmXwmGS4MmKUYpotRU09l4ilfYdS008gkQjjpJNi21qAHB0EcjJKywgTc1Bp0y8Jc9imMGZ/AXHKGfjG4PTr/ikYwRk+A8spCbXtEs9/jUchl1YU+HNRV1Xgc1xnnQ2k55ujxGFXVGKMayK9/Dhnoxaio1uOBEswzL0Ciam7nGCabN2+mqamJ0tJScrkcL774ItFolMbGRmzbxu/3k06ni+A7nU4Tj8epra3FsqyiW3x9fT2tra0MDg4WgX9tbS1lZWU0NzcD8OKLLxafj8Vi7Nmzh0wmQzgcJhAIkEql8Hg8uFyuIkMfCh2mvX0r0Wgn69evIJdLUlk5rljbHgweJhbrwTBM0ukIe/Y8QzjcSijUQlvbO/j9I/B6y3G7S0gk+njllRvJZGIEAiPI59N0du6goWEubncJkUg7gUANL710HblcitNOW0Uk0k42G2fBghsKmfG3YJpaE+pkhXBrmEBNgA0rNpCNZ7E8FsGWIOtXrMcwDBrnN4JALpMjE82QS+UwXSaxrhhtm9sIt4YZPDiIaZkYhkHH9g7O/fm5WD6LJTcvYfyy8cR745x575kEagPYPptsMkvn9k5l+U0DJ+9QOqqUpkVNbL57M95yL5H2CIGaAK9+61XGV4xncfNi2sPtvNzyMp3RTkrcJSwdvZSuWBcBd4B0Th1gFzcvxmf5iGVizBg5g85oJ7dtvI2eWA8+28echjmUeko5HDrMtS9dS7W/mmw+y6bWTRwOHcYRh9s23kZbpK3oTN8eaVdH+w0rOBQ6xKbWTRwJHWF23WycfAZjz+rjQXWyU8F36zNqHGdXgL9BgUT1AnWDBz1WPU/Z5HwC/KPUaT7RqbL4HSsUoBs2TL0Zmr+gYHbKTWB6wS5V47uSscp2v3utLhTYpXoPg+9qxJzLVrl7+biCZP7wMBOR7NeJmZMtZLaLjmlDRnThw+CtLpx3aDi73WUPS+EpnAM6OXGX6uPwId27fAr4c+nhaLpoa8HoDr03JwfB/bDxWpXI181V5vzVq1QKX79Izeb2PQPb7lQQv3W1tkv2Q8+O4RpGf+3wAsOilboAkQ7pQkFqUP/G+oUaFVc3T++nY5O6zo+YoYsDkUMwagHYAby2sGTJaHw+i5tuWkh5uYclS5rp74/T0RHliivWFSXsK1e+CSh4F9Hzyso8LFrUxN13b2bECD/33vsOc+c2YFkmXV0xZswYycGDg2zb1kEikeWdd9qorQ0wblwlJSVuOjqiLFiggCeRyOI4Ql1dKd/+9gI6OiLMmDGSvDg8sf1PzG6YhO2y8Nkebjj1SzSUj8R2uQjYHi6dcwEB24PP9nDdKRfhs92kchnaQj386LVf4bO1Br6mpJLvnnYpOcchkUnx07d+S0GoxIfdLQzEw0wfNZ7Htv6BWfWTCCVjtId7OWfyIkaWVPGd0y5lVNkIPug6SHuol29/8hJWnnM5psSG3y9OWFlzs/BdnGuDTIu+133zlDHPtkD/9wuLT0dQdr1EmfORd+p5ic26uDVypbLpvTdqDXtyu2a4j7xbgbl/EWTboepb+nyuW6+fGwC7iYxRz6FQEJ9t01hezooNG9g/MIAAt59yCmMqKkhks/xkyxaay8vJFuq43S4Xi5qauOvtt+mJxynxeHAKx0f4/ezo7KQnFivK7O/avBlHhIfOPRe/ZXFzwZX+5iVLKHO7qS8tZVwhFg5gMJUi5zis3rQJ2zAwjh6F9naMu+7SuvZAQIF5a6sC71/8QuXvzc0K4m+9VcF2OKxZ74sWqb8PKIC/917NdT9yRAF7T48y7Fu3KvP+058qcLcsdbLv69Pa964u2LlT+zZNvYf9+2FwQIEzDAPwdGY4g9004UBrIQYyr+B+SNpeGgBHFKC7C2q/aHw4Au5Qu4J1jxsOHC3I32v/Oh7uwFHte0iO3zwKLBf5E0YjjsNHjz5K9YwZ5Av+SNt/+ENi7e1YPh92aSnTrriCU37+c06+5RYkn2fgww/Jp9OkBgaI9/Tg8njYdvvtxFpbGXj/ffy1tbg8Hgxgzve/T7yri0R3NyffeiulY8ZQMno0I2bMIDUwwOwbbmDMBRfgrarCtG1KR4/G8vmKhnf+qkqMSEgB+YRp6iPk9sDTv1BPpc9eph5MX1yh4Puzlym4f+G3cNIiLQMND0L7oWFzuWhIX/dMWhORPF5t89oftXYd0bnq/NO0HNS2h1WofV3w6weVoa8cgYyfQl/Bd6n/0Hby+TTZVIxcJokBmKaNv6oBEQfJZ8mlE4US0O0qgTdMLE8Af1UD/S3byefSRSLKNF1KIrUM9+/kM5TUjKZm/BwAcpkkNePnatlkYa47cHgnbn/5cX5Qks/913GJ/6+0gPC/ahOR/zI/wAnAN4FfAR8AOXRqcet/4twzgPVAP5AEPgZWASX/o/fR0NAg/9W3TCwmb11/vTw1daq8df31konF/s22uUxGMvG4ZGIxyWUy/2HfqVRKVqxYIRMmTJDp06bJhZ///HHXeuTnPxdArmtslLeuv16Sg4OSTaX0GvG45OMxkc5Wkd1bRAZ6RY4cEHl/m0gsKpJK6O9H9ovEYyLJuLZ99Q8ij/5YJB4VCQdFBvv0+GCfSDKh5z68SuSyZZL62R2y4tJLZMKY0TJ9ymS5aO4skcuWyej6UTJpwniZNXWqzJo+TZ5+7FGR4ICe19qi1woOiBw9KLm+TslmUpLLpOTozj/J++vukXB3iyTCvRLuPiSZZFSS0QFJJyLSd/hdObrzT5JNxYvnZFNxyabikk5EJBkdkGwmJYlwrxzd+ScZ7D4qX7/ycpkwfrxMmzZNLrzwC5KKDkosGpZvfP0qmTBhvJwwYYx89u/O0XOzacmmE8ddPxuPSL67Q7JrnpR8Z5vkE3HJd7RJbt8ecWIxyaeSku/rkXwkLE4qJU48Jk48ru0Kx/OppDixqOT7+8RJxPUnlZJ8NCLJwQH5xhV6j9OnTpUvfvYz0nf0iMyaMUNmTT5BZk2dKhObGsVlmtLf3qb3svYpyYeD4iTikk2lJJFISCQSkY6ODlmzZo10dHTIli1bZM2aNRKNRiUSiUgkEpFUKiXJZFKSyaR0dHTI2rVrJRKJSCKRkP7+funq6pK1a9dKKBSSRCIhyWRSDh8+LF/5ylekrq5OJk+eLMuXL5eOjg75zW9+I7NmzZKZM2fK5MmT5ZFHHpFkMlnsLxwOSyQSkWQyKfF4UNasWS7t7Vtl7dqLpKNjhyQSg5JIDEpHx05Zs2a5dHa+K/39BySVikgyGZL9+9dLPN4n/f37JRbrlX371klHx05JJsOyZs1y2bLlAeno2CG/+c1n5PLLvyzjxo2RqVMnyxe+sFxSqajceusnZfLkJpkyZYLMmnWCvPPOnyWVisj+/eslFuuTdDousVifJBJB6e85JLG+mKxZvkZu53ZZs3yNJINJ6d/fL4mBhKQiKYl2RSXSGZG1F62Vrve6ZN+6fdK9q1v2rdsn7Vvbi/s1y9dI9+5u6T/QL5HOiOx7Z5/MmD5DZs6YKTOmzpCxzWPFNEzZ++Ze2fvOXjn9lNNlTNMYaSpvkg2/3yCRzoiE28MS6YxI//7+4n29/eDbsqtrlyxfs1ze63pP9vfvLz7e1bVLYqmYDCYGZTAxKB/3fSzt4XbpjHRKMBGUzkinLF+zXLwrvXKg/4CEU2HpjHRKZ6RTnt76tDRMbJBJ0yZJxegKaRrbJKbLlL1H98rXv/N1aRjTIIZhyKIbF0lfvE+Wr1ku3I4sX7NctrRtkeVrlksoGZJEKiz5wV0iob0iby0XeQrdJ3t1H3xfJBsTiXeKZGIi6bBIolMk3q7H2teJxNtEBt7T9gPvaZv2ddK//2WZNXWszJo+WWbNmCoTJ4wXl8slA52H5NJLvigTJ4yXmVPGysL5J8u2t18V6d8p0rFeJB3Sfvu3ibxzqUg2LpLLiuQyIokBkfbNIgMfDz/OZ0UycZFsanify2qb9s0i2bQej3Zo+3RMJDEg/d0dMmvmDJk1Y7rMmjlDJo4frffXflAuveQSmTF9usyaOVNOnj1dXt3wvJ6by4gM7NO+cmm9ViokMrBX5E/LRe5B94k+kQ2XinTtEEn0i6SjIr0f6HO9u0Ui7SLdO/S8lnUikTZ9/KflIj27RQb3S3/rPpk1c7rMmjJOZs2YNvz6Hf1Q5IWLRKKd8traR8Q0DbnvzttEop0isW6R+736fDIokgpLOtQtnZ0R6eyMSEdHRC66aK3s3t0t4XBKli9fI3C7LF++Rj76qFceeGCL7NjRIRddtFYGBxPS1xeXAwf6ZXAwIZFISg4c6JcPPuiW3t6YDAzEpaWlXaZNmyGVlWNk4sSpUl8/Rlwul7S0tMuiRUtk9OjRMmPGTJk+fabcdttqueiitbJjR4d0dkakpycmwWBS4smU9EYHJZyIyr6eo/JWy7sSTsYknk5KKBGVaCou4WRMNh16T3qjg/JR1yF5s+VdGYyHJZKMyffW/Uye2rle9nS1yI3P3y97ew5Lb3RQbnz+fnl7zw45YdoUOWHaFBk5tkHGjR8nLpdLDrQekn09R+V7t9wsY8ePk6nTpsqiJYsllkpIMB6RN1velT2dLdI62CnxdEJy2bBIZL1ILiKS3CkSWSeS7RXJBfUnsk4ksVWk/SKRTKdILqTtBx8uPI6IZDr0WLZPJNsjkh0UyfZJf8dWmTVzmsyaNV1mzZwmEyeMKXxO3pG5c06WWTNPkFlTK2Ta1PECyO5tvxVpXy6S3KHXaV8u0VRclq9ZI1vb22X5mjXC7bfL8jVrpDMSkfe7uyWYSMj+/n7pi8XkQH+/RFMp6YxEpCcalcFEQoKJhEQKx9rDYdnR0SHL16yRdzs75Tdbtsi0GTNk7OTJMm3GDBk/YYK4XC7Zc+SIPPvyyzLtxBNlyowZMnbiRLnx+9+XzkikeP7u7m6JplKyu7tbnFBI5KKLRHbsEOns1P3y5SLvviuyf7/Ie+/p4127RA4cEBkcFIlG9fe2NpH29uFzdu0SWbdOBKR/82aZVVEhs0BmVVTIxNGFz/GRI7Jt/XpZOGuWzCwvl1kTJ8prq1Zpv/v3i/T2ivT0iPT1aV87d4okUyLptP5ksiLZrEg0LrLnoO7jSZGN2/X5VEokEhPpD4qkM9o2k9W24Zi2TWeK+xfWrJUTZ82SWSdMkWljxsmvHvy5SDQuPXv3y7Izz5IJEybItMmT5Y31L2qf2axIKq37bFYy8bjEu7ul/8MPJdTSIqGWluPmlaGWFkkFg5KOxWTw44/lreuvl4GPP5ZUKCShlhaJ9/RI+6ZNkujvl/7335f2jRul7/33i3PQJ370I5k9c6ZMqKmRRo9Hbl62TEItLXLrtdfKxIkTxTAMWfP00zK4d6+8fdNNEu/pkUwsJqlgUDKxmKTDYcknE+LEIjrfHOzTOenh/cPz02RCJBLSOWywXyQRE+luF+nvGW5/9KDObR/9sZ7X2SqSTMgL3/qKnDiiTGbNmC7TTpgkv7rnRyJHDsilC06SiWPHyMwZM2Th/Pmy7c+v65z10Me6v+oCkfe3iiQTkk8livPMRKhbMkmdn4a7W3Remk5KPNhdeL5HsoX5bSYZLZ4XD3ZLOhGRbDopuWxKMsmoZJJRyWVS8vzzf5BZM2fI1EljZeqUE+SXjz4suUxKvnzM98knPvEJeWnDCxLubpF4sFsyyehx81+9r6g42ZR+V/xpuUjv+/p98z+xvfDCC3LiiSfKrFmzZNq0afKrX/3quOdfe+01MU1T7rvvvuNPTEeP/25LR/6n7uP/qw1ol38L7/5bT/z/8QPczzB9cOzPvwvcgesK7RzgDeAZoKtw7GNgxP/IffyfANxzmYwE9+2Tt66/XoL79v2bgDyXyUiit1f6P/xQ3rr+ehn8+OP/ELxfe+21cvXVV4vjOCIi0t7aKoneXgm1tMjeHTtk/vz5Mmf2bFn1qU9JcP9+ySYSko5GdRAMhyUbjYgT7NfBKxpWAH/VBToIJWKFAS8+/Pvj9+qgF4vqwJiIK9jfvUUHyVRSwfzh/SKP/liu/fqVcvVVV4qTjIuEg9K1Y4vIw6tkdHOzvPfCH4fPi0dFOtuOGzzlw50i/T2SSycUhGfTksskJdLTItl0Qo7u/JOkE5EiIE8nIpJJxSQR7pVsNn0coA93H5JktF8S4R5JJ8LFBYDLvvgp+cY3vi7xUI+0vvuCHD10QHLZlFz9jSvliq9eLJlkTLKZlLR8/L6kooOSyyQlU1gECHcfkmwmJflkQnL79ki+/aiC9Xis+Di75knJd7VLbv9Hko+ExEnEJbd/bxFU5/t79XgyIfloRPKRkLbtaldgHw7KNV+7TL5x7jLJxWPiJBPSeeSI5A7slXxXh+RDQcmueVLuuu37ct6ZZ4gTi0p2zZOS2/Km5DtaJbdvj6RiMenr65NEIiF9fX2yZcsWee655yQajUo8HpdUKiWRSESi0agkk8kiyI/FYpJIJCSRSMiBAwckFotJf3+/bN26VcLhsITDYYlGo3L11VfL1772NfnhD38oa9askYMHD0o4HJaKigrZvn27pFIpef3118Xj8ciBAwdk7dq1kkgkJBaLSSwWk2QyKalUXLq7d8m+feskEumUSKRTotEeSSQGpb//gKxc6ZW1ay+SVCoiicSgJJMhSSQGJZWKHQfeY7FeSSZDkkqFJRrtkbVrL5L585Err/yqhMPt0tf3sRw6tFc6Og5JVVWlvPXWn2TfvnWydu3D0tRUJt3duwvXCEok0il9fXslEumUVCoiqWhKunZ1ydqL1kqkMyLJcFLB8wEFz/vX75dwe1iCR4Kyb90+advaJmuWr5FYX0z2rdv318A/lJSOHR2yZvka6djRIalISvr29snFMy+WSUySNcvXyCUXXSLf+/b3pO/jPnl93etSP6peuvZ0SawvJqloShLBhKRiKene3S0dhzqOA82hZOg4MD6YGJRgIigdkQ5Zv3+99MX6JJqKSiQVkUgqIru7d8v6/eslmAjKYGJQeqI90hnplEgqIv3xflm3b51U/KhCvnrTV2XZucukM9Ip5/34PHln9zuyeMli+c0zv5HeWK/s6tbFgt3du4t9hJNhefHAi+JkogqW450ib18kMrhbgXs6pD+ZiAL1VFCPt68TGdglkugWibUpUE/1i6QG9CcTEclECwC/U58ffF/uvvWrcv65y0TinfLHf/6+ZKOdIqlB+dOzv5LRdX5tG+8UCX+s10r1i2QTCpYLYFtymWFwns/qfmCf7tNRfS6f1Z+hc9Kx4Tb5rAL5IZA/dDwTl7tX/qOcv+yTIrmsBHvai9d7d+tbUllRLvlMWs8/dhEhm9L+o50KvF+4SCTapWA+HVGA/8JFIj279P5SIZHkoMhLl+s5qYiC/HiPnpfoV8Ad7RA59KJIKqznDB4s3N+pCvrffVBCh7fJnIlVcv6SaXLfD64fXhQYPKD9JgdF4j0SCwaLYLy9PSxHjgRl3bp9EgolZffuLlm3bp/09cUlGExIT09U9u7tkx07OmT37i5Zv36/dHZGZO/ePmlvDxcBd2dnRHbu7CicG5PBwYSsX79fbr99lSxbdq7s3t0lM2bMlX/5l6clGk1JOJySwcGEtLeHZd++PolGU9LXF5N16/bJQCQqrYNdMhgPy5st78re7sNydLBTBuPh4j6eTkokFZdIMiZtg50yUGh7oKdVwomoBBMReavlXXn63RflcH+7RJIx6Qr3SSQZk3g6Ia2DXdIZ7pPbVt4hE+ZMl497jshtq38gF3zqAmkf6JaeyIB8ePBj6Y0OyubDuySSiks8lZB4OinhZEyy2ag4yV0ima5jQPpykeTuIgBXUN6rYDp1UCQXFcmFRbL9eiwXEUm+p+dlOvXcyHqR3KBINqjHIuvl7h/9o5x/3rLCokBE+/rYK2seXiDTp0/V8/ei+2y/SKZT0pm4dEYi0hWJSGckIhetXSvvd3dLLJ2W3lhMQsmkhJJJWbdvn7SFQhJKJo8D6Lu7uyWSSsnevj7Z29d3HPjvicWkJxaT97u7Zd2+fXL7qlWy7NxzpT0clukzZ8qim26Svnhc/u7xx2XEiBHyp02bjjt/MJGQ9nBY8tGogubeXpFgUEE8KBAPBnU/9PjIkWGQvnu3gvdQ6Pg2vb267+zUNgVAf/fKlXL+2WeLMzgoDaNGySsrV4ps3Sr7fvELaWpokERfnwL/9ev13L17dWFg/fphsByNi3zUoo/jCZH27mEwHU8WwXQRrPcH9ZxMdhjgHwP4nVhCKisrZffOnSLRuBx+eaN4PB6JdPfKV778Zbntxu+IROOybdPb0lBbK5nBkIL+SEx/MllJR6PSvmmTpEIhSUejkgqHJd7dLYn+fkmHw5IKhyUTj0uir68I6NvffFPivb2S6OuTTCym4L+3V96+6SYZ/PhjSQ4MSGpwUBL9/RJwueTlxx6TwY8/lmcuu0w8brcc3rpV3njxRdn7/vsyf/ZseeY3v5G3b7pJ+vfsKYL18NGjMvjxx9K+caOSTq0tw0RTNKygubNV56qtLQrIB/v1+fe3KhkUGtA57OvPD89zYxGdh+7eIk5ri1RWVMju118WiYTk8Prfi8fjlsjm1+SPZ5wo2Yd+IBKLyp++cbGMbmrS6+zeItJ6UPfBfpHD+yW/Z+dxQDubTkoqOjgMmsO9kooOygfr71eyKZ2QbCp+HEF1dOefJJOKSSYZlXiwW8LdOvdNRgeksqJC3t25Q3KZlBw8sE88Ho8M9HbKB2/8TufAmZRs2/q2VFSUS3SgXeer2ZSkogOSTSclm04U57G5bFrBejryPw3aHcfR99/u3SIicvjwYX3/RRSEh0IhmTNnjpx//vl/Ddxz6f+lCwj/X23/HnD/ryaV/xC4B7gImAL8y390gmEYJwL3ogGl54nIKSKyHBgPvIay+A//b7vj/5+2v6xN/9ei3kBd4zPRaNGRc88jj+Bk/m2pSDwe57HHHmPVqlVFI7G6ujpSg4PsfvBBrvrmN3ng/vvxlZUx8QtfINDQQLS1lW233UbkyBHyqRQ97+0i77KRTErlVuOnwR3/NFzr4/GpCV00pLmWn79Sj//25yoNAqgaoVKlREwlSm4PVFQRP++LPPbrp1h13bcwUkloPUjd+Imafwnq5FlWCYc/VrlWZTVMnK5u8rkMjJtcMPbQPMt0LEjHB69ieUvBdFEzfi6myyaXTtC7fzO5dEIfp+Iqc0/Fi8f9VfXYnhJsbxnpaL+a3FWM5pk/vc7KH9xBf8s2fBV1jKgsJTTQyxP/8hQ/uOM2uve+geSzNI+dgGnZdH74OtlkFAB/VX3Rc8QoK8d55w2MsgrEZak8/Z03tKZ90+vqIC+iNfC1atbitB3B8AcAg/z65yASBsvWWLjKEVqvn0zx+G+fZvUvH8fI58ivf45aj4VR34xEQhimibnkdB7/7dNcdvkVSD6PuexTmDNOQuJxjNp6XOIUa8n9fj8zZ85k2bJlxGIxOjo6EBHcbjcul4tYTCWaQ487OjrI5XI0NDQUf586dSqmaWLbNul0mieeeIKVK1dyzTXXcNZZZ9HY2IhZcL1tbW0tGtNVVVWxfft2GhoaCIfDpFIq0W1ra8NxslhWoChlF3GIRNoLUW0Vhai2n5HJxGhv31KoUd+CiNbEu90lvPTSdUSjnbS1bS5GyZ166r3s2VPCD3+4klisH8MwGTWqjsOHj1JVVcWcOafQ3LwE09zCwECG/fv1PW2aNrbtx+Mpx7K8ZJJJnJxDoCbAWfeeRbw3zrrL1xHvieP2u9mwYgMlo0qw/Ta5VI6mRU3UTK7hvIfPw/bZNMxtAIei2/yi7yzCMA223LeF5qXNlDWVIY5Q2lDK1uRWrrnlGpZ8fwlr/7CWr136NQzTYErTFKpLqnnzzTfZsGIDwZYguWQOJ+MQqAtQUV/BrUtuZd2F63jo3IcAeOjchzh67VEqfBVsad9CPBsnYAeY3zifgeQA0UyUfMH0r7G0kSXNS2iPtLO5bTOmYVLiLiHn5NjWsY2TRp3E4WsOs+mPm5hz3hy6ol384Es/oGlME+l8mmQuydqP1tIebueR8x+hxl/D9S9fT3+iH0FY2rRA5ezbrtBM9ZN/rvXtTloN5bZdoc+7SlQ+P7BNZfVWQH/sgBrR9W/T83Z+C7IRrQE2XNqmIDd/7Hevc9mnTwbLy6eWX4kV2QWSZ/6CU+joT5MTt5rdffhDld6DlrY4WZXDu0u0jnvIXC4d0edKRhXk716VracjKms3bfCUad162WhtGyrI34fq18vHFYzq4LFfP8NlV3wDDKioHlmodRfC0VTBxV4K9fQFEzuXTdEAz10K5ePhjIfVSf6VK1Q6LwInXa/3iBTqbNNwyr2F2ntDJfIuX8Hh3tI2Lp/K3kMHVQbvq+KxJ3/LZXMcSPTAlIu4+uZ7uHX1z6gePUNfl5bnC7XvI7T+v3MzxLrIm17uumszc+c20NMT48MPe5k3T+Paxo6tZN68BrZv7yh8xkwsy2DcuEqam8uZN6+hWPMO4PPZeDwu/H6bceMqmTWrlu3bO8nnhSVLmnnqqSe4+OIv09YWwe128fDDO4lEMhw+HGTz5jY8HhcVFT4OH9Z6+blzG/C6LUo8fj7sbmFa3Xj8bg+lngCxdKIof49nktz56uN0Rfqp9Fdwz5+fpNJXitu26I4OsPrVx6ktqeacyYuoDlSAYWBbNslsmlw+j9f2kMqm+c2Tv+b2G26mrrSaRx96mO//8Ha8Hg/98RBPffwKAkwfNRETg5zode/585MgeTWmy3Wp6ZzVBL6lWoOe79NadrsBktvUPd4aWXCHF30sAuS0fj32vErts21g10H3VZBrARzwTuexX/2Oyy45GxJvg6S0r3GHeOw5L5d9+dOa6V66vJDtbkG+j3y2l/5Egp1dXdguF/903nm0RyLs6+8n5zg4ImxqbWVeQwOxbJZENks0kyk6vt/19tsA1AYC1AYC/OSss9i7YgUPLFum3z0uF17LYmQgwE9+/nOWf+lLlLjdmIbBlyZNwmdZfGPWLFy2TVNtLTcdU1ufzee5/uWX2R8KIW1tWrd++LCawi1fDt/5jr65brlFH998sxrIDcW2rVqlRnTpNDz4IKxbN+xK/9BDUFqq7vE//SnU1/PYE09w2fnnMzAwQN/AAGd89avw058yad48Kioq2LBhg7rIz5ihLvS33aYS+4ULKXwIVB5/XH17qea3h2M6JxtymM/nVdruLrjEg9apD7nFD4QK3hsuDCDU2w9eN5HqUjWTtW2eeWYNV33j6+BxM2feXOrrRvHG759XCb3bVoM8wDBNKidOJNbRQd/OnUg+j1VSQqKnh2133EGiq4tsIoHL5yvWqNeceCKpgQF23nknkSNHyEaj4DiMmD0bl9cLhsHAhx/i5PN4ysow6+vx1dQw5tJL9f7cbsyXX2akbWP7fEgux8m33EJJY6P6Q2Uy+Kqr8Y8aReXkyUg+r3PNMZN0LimiHk2VI7SOff3TWqYZHtS4uIaxEAlqqWY4CJ9YrPXojqgr/DHJSYZpEhoYhMMfE6moobqyEs+kGXzq81/A+uI3AIf5p59JR2cHuYoRMHoijBil81fTBa8+hzSMpuujjex/41caIWwYWF4//S3DMnWX21OMbRNxCHXtI5dJDEcSj5+DabrI5zKFmnZNN3LyWTBgoLcLJ59loLeTqsoKvF4f42YuJZuMkU1GOLTrDQwMcukk/qp6sokIPYU6enHydO99A9sXGE49+V/kEm8YBqFQCIBIJHKcmfHVV1/NrbfeSnV19V+f+N8wZu6/FHAXkV+KyI0i8hsR+Rhl0P+j7Xto5fI/i8iGY/pKAJcV+viMYRiT/7fc9P+P27+Xzz60mW437tJSpnz1qzSffTbTr7wS0z38xs1ns2QTiaLJXUtLC1VVVaxevZqTTz6ZJUuW8OpLL7HnkUf4xVNPMc4wOHHGDHAcnEyGZE8Pex55pGgmko3F8JSXI/kchu3WiV08DCUV6vgu6BeHk4dAmYL3dFJv5sx/0MHRNHUQ/JefqoO8bUOwH4CW9k6qyspZ/a2vc/LSU1lyxbd47c23iiWel/zgR8w481wuW3k3fb+4SxcCPF41EMnn9brBfogEyecy9B/aXjCoi2KIg+0rwzCMYr1O/6HtIIK/qh7EOe64AcQHuzFME3+lgviEt5mqqiru/NGP+fvLbuXvLlrBH57+JQcPHKCqqoo7bv0OF1zybU795Bmsf/5ZDMOkeuwnyKWTmJZbvfcMA0PQOLamMWBZGPkc4nJhLjkdY9ps3bvdENMcdwwDw+3FqK0n/9KfQByNiSsvL3ieC+SyOK2HaPnoQ6qqq1h12/eZe8on+eSP7+fVhx/CQDAbmsHt4Z2P9hEMhzn/nHPA5dL/ZT6vJnmmgdHTiWmahMNhXnzxRXK5nMaS2DYlJSWsW7eOdDpNOBxm48aN5HK5Ym16Q0MDlmXR1tZGIBAgHA5jWRa2bWMYBrt378br9bJy5UqWLFnCOeecw8svv8zLL7/MP/3TP3HZZZcxbdo0zjnnHH75y19y/vnnM378eCKRCNlslg0bNlBSUlIA3wFM08Jx1GE+FusiEKhh/foVRKNdtLVtJhrtZOTIGdi2n8bG+WQyUV58UUU8Z5/9AOXlo2lqWlgwusuya9dbeL3CnXeu4oILLuWCC77Ehg3PM2HCWAYHB9m06U1EHLLZM0kkUjz//A8IBltwnCyZggu3YbiwzVLivXEyyQy23yYwMsCY08YQ64nhLnFzzoPnUDm2knBbmDd/+Gax1r1tcxuDhwaLJnYV4ys4+6dnUz66XE3rHjyHyX8/GSfrEOuK8daf32Kwf5C/+8zfkS/Nk81myR3JFd3pJ0yZwMG9B9n3/D42rd5EKpTCyTm8fP3L5CXP2IqxNJU3sWL9Co6EjhBMBumKdnHti9cyq3YWfttPX7yPZE4/x17Li2EYRNIRvvXitzgUOoTH8lATqOHal64llomRyqWY1zCP/ng/v/zDLwkGg3zzS9+kL9HHpOpJuF1ukrkkwWSQL878IieNOolENsG1L13LUx88RWu4laPho+RzcYw9q4br2ZMd8Mb5ajz38T3qCm96dExJdBRq169WQB47DH1bNK+9ZqEa1Z1wvQLivs06VhQWBTZvfodgJM75n1+h57h8UHUyZII88JPVnDu/FivTAamuQr19l0bDZUIKwEUgfKRgCFcwrHPZBUBtFuLeAAxtk0/rPecKte1OToF9yajh2DhA65UzbH5nG8HBIOefe46OhZko3/3e9xg/aQqf/txy1j7ztJaiRtuHTe1iXXp9y6vAOZfS+yxrhsZPQqJfFxsqJ2rtc/AAvHolJHuH/cUyUV1oCB86xljO0IlmNqYO9vWL2LzxZYLBIOdfeRcERvHss2sw0wN8auk06NyihoGXvK+177kkbLxOzetsPy7T4HvfW8xZZ42nqytWNJs7dChEPu+QzTosXtxMMpnj2mtfJJHI0t+fIJt1sG0X/f0JVq58E9M0irXifX1xcjmH8nIvo0aVcOONL/P225sJh8Ocf/55LF06GrfbxcGDz3DqqfP45je/SkVFkv7+JPm8g89nUVMT4OqrN5DK5Pio5xCTaprxumwqfGXE0gkq/WV4bQ/7+44iInxzyRfoiQ2SyWeZVT+RYDJKlb8cr+3my3POx2PbpPNZOiJ9/PDlR+mJDABguVz0xYLc+tjdhEJhTloyj3f2v0dvTy8b1m3g7E+eySUXLGdMn4/BWJj3O/eTyKbIOjm8toebTvsyGcdA6h4Gqw6yByD1LpR9Xh3mrVoUlPvVsE5yBdd4IHtQ2+ZatZ7dVQlj3gezXGvhB35UiHi7C5wIm995j2AwxPnnnX1cX20HX+GNN9/hSxdfBvZYvW62Q9/vhpuMWUNrwXRuxfr1HAoGGRkI4C+A62w+z8hAAI9l0VBaSonbzaiSEu476ywumjGDu888k0OhEFe98AKpXI6BZJKVb76JAB6Xi0wuR4nbzZubNiHJJKcvW0ZXLMY9Dz3E6jvu4ITx4/m7RYu4/uabGdfUxKTqah45/3zGVFSQE+E7CxcyvqQEY9UqeP55BcyBgILtd97ROvTmZvjlLzXWzbKON6szTa1Lv/pqfb6uTs3lslmNkjNN6O5m85NPEgyFOP+UUxjh9zOqooJnnngCFixg++uvs+/AAY60tmqfLtfw4sB996lB3lCNuccNIyv/2iDOtv/imHN8jTui4D6fV2f4uTPAZWIcaud3//wkn77oQkaPH8/iU0/liV88QvTjg2TzOepG1Oh1k2nGTBhPay6p9fCxhPZjALkcuXicVF+fxgqvXEm8owM7EGDKpZeS6O7GECGXSOCtqmLuHXcAkOzpYcpXvoJdUqK17JZF01lnkU+nGXj/faqmTcMOBHj8pz/l8xddxAmzZ3P6uefyy4cfxgmHmXLppSR7esDlIhON0vfeezp8mSbZpH5nGaaJy+fDsN1ISZmOYSVlcHS/AnDQmvaCSVwxLi6d0iz3IeNly63nRUPDhnMvr8UYO5nfPf4on778Skaf82kWn3YGT9x7N263DZ/+ihom//pBHvjzFs498yyswx/rvLW/u+DrNKj19JbNiHFzmLDoIhwnS8cHr5BJhKmbspSK+inUTTkFcRwC1Y24/eXkUnFKa8bg5HPkUlEaZpyBO1CBYGB7AgSqG8ilU0T7jpBPx/ntb57iC1+6lAknTOWMZRfwyD89QP+BTRimycp7f8602XO56qYf8U8/vomS6gYM43hfp2Nr5pH/DHz7z22GYfC73/2OT3/604wePZrFixfzxBNP4Ha7efbZZzFNk0996lP/dgf/zWLm/ksB9//RzTAMN3Be4eFv/vJ5ETkKvF14+A//X93Xf6XNZdu4KyooGzuWeXfccRw7n89myYRCRAomd5HDh0klEhw9epTJkyaxY8cOfvrTn3LRpZcSmjWL3S4X961ZQ6ytTVc/YzE8VVXHOXjapaWkg0Esr08HvMMf60rzwQ8LGeofaq7l0QO6/+OTCtI9Xp3sPf8vajY32Au7tijILq1QAP/sY+QyWY52dDA1OciOFRfy03vv4fOXXkrPQ6t483dP8f47b/Pu1i2MiPTz5TUv6kBaUa0s+9EDEBzQBYTSClyWmxHj5hxjUPcqmUT4r/Lbc4WFBSefY9SUU6ion6LmdLkM/spaMgUDOhGHfN7h6NFWpkydytZ3NnH//ffzrVt+Qiab4+jRVk6cv5Qt72ziRz+8ha9eeQ2731xbAP51ZOIhNclLhHFME/PM8zGaxmgcWySkk2p/CeapyzRSzzDUTX4oa32dOvabcxcqoO/tgmgEScQxcjkklcJsGkPe4+NoaxtTp01jy63f5v577+WLDz5Cd/8AYtlIaIBfrryDi7/weSzb0sgQESSdAgRsN9I4BhEhGo1y9tlnF4F4LpcjGo0WjeOG8twNwyAajTI4OEg4HKatrY2Ghga8Xi8NDQ2YplmMdAPo6+tjypQpvPjii/z93/89X/7ylxk/fjw/+9nPWLNmDQcPHmTdunV85StfIRgMUlpaSmNjY/F6b7/9Nvm8GjbG470kEgMEArWMHr2UsrJmzjzz3oIz/BxisW7c7hJyuSRtbZtxudwsW/YT3O5STNMil0uyfv0KBgdbME03tl1KX1+cKVMm8/TTq7n33ru4/PLriMUiPPXUE9x220oWLlzK669vpLGxnJEjp2JZXkzTIpHoLxjcRTFsCIwM4Pa7NVP9xlc44VMn0Di/kXQ0TeeOTvLZPLbPpnFBI+HWMBtWbCBQE8D22gRbgqy7Yh2hlhAut4tcKkeiT5led4kb22/jrfDy62d/zSWXXIK31Ev4SLjI8ts+m1wiR/eubipGV/CtQ9/irJ+chbfCS8e2DpoWN2EYBo44uF1uFjUt4v4t9zMyMBKv5eXHZ/yYgDuAiFBXUkfADlBfWk8yl2TF+hX0xHq4bv51uF1u6krqGEgMsOq0VTjisKt7F444NFc0896G91hywRJ6Ej0salpEKp9iW8c23KabYCpYZO9L3CXcvPhmlk9bzryGeax6axVZJ6+u7s3LYdrNagzXvBzc5eruPmIRfHCbgvSaRbD3XgX52bAy8JUzIHpQmXlvPZSMg/SAmtS5/AqWaxbx2K9+zSXLz8MKv6tZ7/kUBN/l179/nWee/zOP/Ppl8NVBzWKoO1vZ/xPvQmeshka6DWW1h1sUtOezOpHIp3UfbtF+ocCWU5hA1hdc5DMKuF0eBf/hQwqUcyke++fHueTiL2GZBVM6dyk/unM1LR9u55mnnuSm736PTCquwH8oPq58nH6eJa8s+MZrILRfXeNP+Ly2feUKNakzDI2Hq18E2+/SBYDwIR2zXTb4R0LNLAXckVZdEAjU6uvXvZXHfvMHvb8Rk+je8zorf3QPDzz4qC4ajJiur41dok7y8c6C6V0v5FKY5KitDVBV5WXevEbuvfcdnn9+Hz6fRS7n8O67XRw4MIDjCAsWNOLz2VRWetm2rYPDh0O0t0cKbH2cK65YRyyWIRDQHHcRKC11s3LlaTz55K/41Kc+h4hJLufw0EOP8u67H7B16w4+9akz+cpXPo9hgNeroL2y0suNNy7AMlycUDMan+3FQaWMVf5yTMPEcRxm1k/Ea7n5p7fXMHnkGEzD5IKpS5leN4FgIozP9uK3vfhsL6Zh8PjWP/LSvnf41fY/kcjod4/P9tC5eS+f/+LnqSmrYkzFKHK5HH3hAda//jI33XsHt33vVnqPtDNhRBMel42Jwa6OfXSE+/BYLmW/DRe4RoF3FvRcq4Bc8voetWoBU9l3M6Bs+MB9YNUU4t1m6QKONVLd5LPtypo3rFMg7hrFY79awyVf+iKWu1xBf++1kO/lV8/s4/yzT2bEiPLC+9qtwD57GPpvw204zGto4N533uH5fftoj0SYUFVFXSCAx+WiJx7nnnfeIe845B2HVC7HptZWBpNJHj7vPHyWRcCyuPfMM/HZNh2RCAsaG+mJx7li3TraIhEcEXZt2MAlF1/MQCpFy+AgP7/vPv7xBz/g1AceYO0bb/CT1av53M9/Ts5xcBVWeQK2zQnV1Vi2rWD82WcVfF9xhbrKjxmjhnEul0a4feMbysiPHg2PPALjxytAb29XF/n2dgXZEybofsYMBcp3381j773HJcuXYx09Ct3d/PHJJ3n8gQc48eGHeeDVV1lcWYmVz2vfpaWa/75uncbP/aWTu2H+lUEc2az+PuQM77Y12q15lAL7dFaj4BxRM9+WNshkydVVs/Leu/j9s89y9N3dvLbhRS6+/GvkGkfq//PY/HZHlG2PJTQ67mArAKbLwlNdTfXMmez91a+GU4hSKfb+6lf4a2uxAgEQIRONkkskwDDw19aSGhggn0rRv3s3hmli+XwkenrwVleTiUbJJBLc8+CDPPHAAzz1uc/x3OOP89UrrkAaGrDLyqieOVPjZ0MhvNXV9L33HqbLhbeqisjRo+z44Q/Jp9MKRAd74akHdQ46ZrIa1YkoeK6qUUXnkGN8WYW6vw+5wIsDHYfV1O7cLxSP56JhVt5zH7//3dMc3fB7XvvUQi6+5jr6gyElq15ey69/+zTPrHmGRx64T6+Tzx3vNu/xYrgsbG8Ay+M/JtFoG6bLZtT00zEwyOcyOLkMks/h9pdjuX30HdzKke3P0fHBq4BBNhEuOtP7yms44dSvYpfWsvrOH7Hmd0/TcmA/L738Il/92tc58vG7ZJMx7rj1Jna98zpPP/1b7nlkLZlcnkwiQu/+zfgrG6ibshSX5aF81AmMnDBPY4b/F225XI6VK1fy+9//nqNHj/Laa69x8cUX097ezsqVK3nggQf+l13r/4Tt/2jgDkwC/IXfd/wbbYaOn/i//3b+a24u28b2+3XF8hh2/i9l9ImuLqpQueHyT32KXDrNiSeeyJjRo3lv5076sllmzp/P1Llz2dPRwTdvvJFf/PKXuHw+5t5+O6VjxuAuKWHErFk6gAX7VFYU7NPBbv3vdD90PDQIk2aodN5lKbieME0HyrGT4eu3qJP8vzygLNKnv0pzQx2maXLRFz4P513IiVMnM7YswAevv0LzbnUUtm2La+9/iLf27IO+Dl0IGJIs2ba6e4qDYZi4AxUEquqLg2AunUByGXKZFL7ykZimhcvjI5MIa/RFJsmo6afjsr30fPwWhgH9LduLsXH1I0dgmiZfvPALAMyYOoExY8fS1TOAaZp89lPnYnkCLFh6Og11IzjSHdMBzjAYOLyzyP5joO6zbg9G8zgkGtXShUxaF0KyWZz2VszFp2OMPwFn80Z1jY9GMKpHYpSWYzSOwSgpVUd9xwG3TX7DH2gqK9F7POsMjIYmThw3lrGj6vjw/d0YQOTVF3l2yza+8qWLkIG+ggN9CBnsL3yBBclHw+Tz+aKEPZfLUVtbSyQSoaGhgWnTpuF2u1m8eDEXXnghlmUV3eSHnOI7OzvJ5TRKZmgR4MUXX2TcuHGYpsmll16KbdtkMhkaGhr4/e9/T2dnJ4sWLSKTyTBq1CgaGxvZvn07mUwGl8vFeeedx9VXX825556Ly+XGsnyUlNThdgdwHJV+WpYXtzuA3z+CVCpSiHWzsKwAzc2Li/FxuVya1tZNxOO9LFhwA9XVEzEMg7FjJ+pnZPlnqK2dxUknncTo0aP56KOPOeWUJWzY8Hs2b36DH/1oJbGYwbJlX2NwsIVQ6DCRSDsNDXMBSGcHdTIRTrP5rs3HRbcl+hM0zGsgOZDEX+Nn5kUzsf02C769gHhfnEBNgE2rN7HnmT28fdfbmLaJy+0ieKggdc855FI5Wra0sPa5tVxy0SX4R/ix4haGY/Dij1+kpK4El8dFsiRJlb+Krne7sDwWtt+mrLmMqRdNxRGHw6HDHA4e5suzvsz9Z9+PiFDuLafMU4arINOOZqKsWL+CQ8FDlLpLWXXaKso8ZdSX1utkwskzv3E+H/Z+CEBdSR1bO7ayt2Mvzz37HDd84wZqS2s5HDrMivUrqAnUkHEyTKqaxJb2LXRFuzAwGFs5lkfOfwSf5eOWxbcQz6aRwFh1d/eMhOAe/d3l07z1vXcV2PhVgKMgf8xFmtVes0gBxIEH9XfvCMgnFeSbXkAgfpRYzWd45oXNfPWSL+h5O74JLi+/e72dO1bexStrH6K27QcQb9O8cn8DVMxWEG4WxtuSBu3fMHXlP9ZVcI7PD2epl40ugGqXAvV0RM83CxFxrsJzTlb7KRkFsQ5iyTTPrFnLV7/6FZWau0u0v4IL/RlnnEY0FueDPfsVSBvGsLt8+LB+prfdqe6/O+9TubtpaF9Np+l9GSb0vw8TPwOn/QyyCW1r+Qv36NLFktN+CiV1qi54bQVkosRKp/PMc+v46j8shc4t7Oy06OoLMnveYsbMXMqzL7zOD358H7f88B745AMq1R+9DBqWQEk9+TzEYhk8HguPx8XNNy/h2Wc/RyKROy4eLhJJ89nPTj3ueFubZrifddZ47rxzE888swfbNunpiXPttS9x4MAAfr+bZDLOM888w8UXX0pra4SrrnoBxylDRLAsF1de+Q2OHj3Crl2HAGWASkrcDAwkiUdz+Gwv6VyGRCbFYCJMIpsinknyftcBsvkcGAYXnng2fbEgH3YfJJ5N4UieSn85PttDd7QfEcFjufn2Jy/hvCmL+crcC6gOVNAR7mN/5xF2vLaZL196Kfv6jlBbMxJ/IEB2UhmmYTBt4mQmnzid9959j1JPgHQ+SygZZVJNM/3xICY5DESl8gUwTdV14KoBSWucm+T09+Q7CqidKIz8sTq/+5eAWapZ7d0rIHsE3GOVPbeboedqYqGPeOaZNXz1krNUSj9wF8SeRzJt/PMTT3HZZd8A3Np39xW6kDCwGmLP48tswWdZ3LxkCc9+7nM0lpVxxbp1tASDJHM5vJbFtxcswDZNco5DKJVibkMDTeXlpPJ5+hIJqv1+Am43PbEYs+vq+NzUqdy5aVPRTb5rYIA/rF3Ll7/yFbpiMex0muf/+Efmnn02cxsaeKK1lfnz53POEMvvOBwYGOCKdes4GAqpg3t7O8yZo1L1Z57R/eLFcMIJ+h3b0aHgvLtbP2c9PQqWg8FhF/nGRgXZ+/fD178O/RoJFrv9dp75wx/46nnnwYIFMGoUs+bN48WXX+a9zZv59b330unzMe2EE5S9j0Z10eCkkzTfXeR4oA4qe580Wq9nmgrKvW6VzRe+e5nYrM+995ECcBGNhzMNbZ/JsuuDD+hsbWPpnHlQVsKcWbNprK7h/V27sSyLbo+h122q40hbK83VNcrgF44BuCxLF+gjEaZdfjnNZ59N9cyZw5HDfcpsW14vic5OvQ8RBegjRuDyeqmeMYOB998n1t5elNHnk0mevvZaurq7mT16NDUnnsjCU06hftQo3nr+efLJJO/+6EdIPk/Z2LHYpaV4R4xg4P33cTIZ7NJSZt9wA5bHowsoL63VeajlUeXEhd9QVeiGZ3T+NSTbeeG3Sk7VjFIX+GC//q/HT9V9qF+PV9aw63AbnR3tLK2rhLGTmfPL39NYX8979/4AIoP8zqzijo86eeWPz1Hb1Fxg+Y3jI+XSacyDezBdqmQ9NtFInLwmexakpyICpovOD19DBOqnn8akU79Kw4wzAC35jPS0qKLUMBBx2LXrPTo7OhhfmSKbijJ3zhyamkfTFjLwV44im4ziLRvBkvmfINjfzXvbt5BNRon0tJDPxDFdNoZp0TDzLNwlVZj/HnD/H4xn27VrF52dnSxduhSAOXPm0NjYyM6dO+nq6mL27NmMGTOGZ599lh/84Afccsst/6l+/0/d/k8H7mML+5CIRP+NNm1/0fZvW2H7Sxn9iJkz8aXTLJ03j4cuv5zokSMc3L+fI0ePcuFll7F/61b2f/ghH23fzrSGBn52991c+tnPkg2Hi/EcjuPgsi1dda0aCYf3KQivHqmRcL6AgvHfPaJRb/NPh9IySCaUkZ97qg6UiA6eQyuOL60Bt5sRlovT557MSzUnQM0oDrd3cjiaZMppZxFafB4k4pB3+O0fnufEUTUK1o+RLFFaro/TKTAgMdhBPpctDoL+qvpiHXs2Fcfl8WMg9B3cqqA6FSvEbriom7IUEaidvATDNEmEuqmqKmPRnJmsX/dHnHyWPbu2cOTIYebO+QSnnfZJNu3cQz6doKWlhY6eQU5efBbZRIhsMsKoaZ/khE9ehr+yXl+/0CDOxpcwJk/DKC1TAJ3NaKRbLKpMe0UlRkkp5rJPYX3rFozG0chAH05Xu5YDvLxO/QQALBvX2X9HzeixnHbqKbyydz/GtNkcGRjkcFc3k0c3I5k0a0IJZk2fweTJU6CsAtc5/wAVlZjNYzE8PoyyClz+EiyXDsz5fL4InJubm3G5XFxwwQV4PB4qKytpaGggHo/T3NyM2+2mo6ODwcFBRo4ciWVZuAr9lJWVsWzZMmpra1m6dCnr16/H7XazYMECurq6WP7/sPfe8XaVddr3d7Xd9z69l1QI6bQkpIpA6PjoiMxYZhx1BGZApQhoUFCHhBIRVLAAlnEGC+joQAiEJsLhpNEhhISclNP72b2stde63z9+e++TODrPvM/nfecZn8eVTz5771XutXY597qv+7p+13XJJYyPj3P//fejlCKdTnPw4EEWL16Mz+dDKYXneTiOw9atW1HKJZE4zNatV1QYb89zmZo6yGOPXU4y2UcoVEcuN47nFQmF6nBdm6Ghl5maOsTg4G6ampYSDjdSW3s8xWKBTGaUmpoY69at5JFHHkbTYP/+t3n33bc57rhZDA0NoesGiUQvn/zk6axadQptbXV0dKwiFuugs3Mtc+aci88XwWdU4WQd/DE/q65fxZyz59B9Rzd7HtpDsj9Jsj85nfE+lsHJOWRGM8TaY2imxtnfOJtrR67l/HvPBw/yiTztp7VjBkyy41nMoMn2ge3Mnzufd7/+LokjCTpWdbBq5ioOzDyAnbZ59a1XGZ0a5YKLL6B9ZTtPXvckiSMJambW4JouGSdDf7KfxY2L6ZnsYSwzhq7pKKUoekVSdorR7CgKxcr2lWzq2kS+mOet0beoC9WhUPzj8//I4cRhuvu6aQg3YOkWd26/k6VNS3nxiRdZsnQJdZ11uJ7LYGqQ1R2rqfJXUe2vRtM0Dk4dZCQzQspO8e7Eu1y65VIOTB1gds1sWiONaKkDAjrir0HjKgHP5QHByXfD7L+Fk+8UIB2ZLXnrmV6RzCtX9un4ILx6HeRHhIV/6QoB8XXL+cVDD7N0ficnzGmF/CjULeehBx/gS1/6Mk8/9ks6jztJ2g+1lurNPYmDe+MmYfXdjDDLmi4gN9ggYBitNAgs1Ykne6nU/OiWMNnl+nivXGdcqm+3UwLyq2fzi189ytKlSzlh3gkQacfRwxx440WJaXMddu1+hdHRUWbPmSNtl+vsDWu6vn7FjTDvElh7u8S/PXOlxLEd90GJcHNtYdutkADrcLPUuScOSmRcqk+k8YPbZVLC9Atrnh3mF199P0sXzOWEk9dA86lcsDTGSM/rHN73Bof3vszFpzVz09V/x8bLzoDkETlvRAb7DO/C0D2yWYfh4TS5nENLS5iVKzvYtOkFHnpoTyXerbo6QCBgsnnzi6xe3UEs5mfNGomSbGmJ8IMfXMTg4DUEgxZf/3o3jzyyj+HhND6fwaOP/iudncezcOF8+voS/Nu/vc3XvraVVEoijH7963+lvr6BefM6uPzyxyoM/7JlrXiewlMKXdMYz8T5bvcvGU/HCVsBFjbP4a3hHoaTE3TUNPHj3Y8yt74DpRRjmThfe/J++qZGWNIiMXKvDuwjkU3xpbM+xYyaVnRNpyYY4+3nX6K6s5FYSx1z6zu49ZkfceEH3sfcdBV+00dE+Tjw1j5mHDebjJ1DKcV3u3/JRCbB0tbjAROFJkA59RA4Q8Koj14F7iDUXimRcLmdEFwuteyaIfFvobXTYNsdku0Tm8QHwkuX4uHu4Be/eIilSxZywvzFYDQJCz/zTZ7dnqXo2Kw/a03p9+uD4GrIvSSM/cw3sAMrORiP059IsKazk01HAW5d08gWi4xmMvRMTRHP56kPhVBKkXUcdg8MkHEcxrNZjiQS3FTKaw9aFjeuXcslCxdyw+rVPL91K4sWL2Y8FGJFWxv3v/02nmnyue9+l/WzZ/P3Cxawa9cuambM4IqtW8kXi7REo6zu6GDziy8KiOvokGi3sgx+wwb5u3z3XclSb2+fBuemCY2NAoqrq+HrX4d162QdQFUVfP7zkteez/OLbdtYOncuJ/z4xxIv99prDB0+LG2lUtz/t39LuLqaM9avh9ZWCIWkbxgaguuuk66jYAtQD/ggXyjVtKvpnPYDvSJh13W5PqWm695PmC2xcUVXJPe5AjTXQVWEjoZGhsbH2Lt/H2hwoGsHPb1HmBeq5kMf+Au+d+93YE4Hu996g4HBQd5z7jkC/I+bIaw+gKGjmyaubVfIHsPvZ+Gll7LmrruomTeP5KFD7PrqVwnU1wOw6+abCTU1EW5pEWn8m29St3gxht8vkb6nnILu8zF/1SoGBwcZDwapP+kk/u2GGzh48CAnr1tHdmSEpZ/7HChFz8MP4+bzhFtaCNTV8dItt+CvqgJNw7VtMAzUR6+ElWdBTS3ks+K9FJ+EMy4qlXB+U17PmidjSbcoxNDoIMQnRNoen4DRIVmfnKSjpYmhkVH2jkzAT+/lwGuv0HP4CPNGenjoqzfypU238fRjj9I5b4HUzLfPKpVRAeNDouaw83jjIzjpCYb2PIcvVE3b4vVY/jCJkZ7KrWPs3R0UC1lQksFu5xIM7XkO3bAq5mah2lbmvffvaF10JrpuohkWHW1tDA0N8equ5xnv2c27+9/l0OEjrDjrYvbv30e4thVNN3jm0Z8yNjFJTI0Tqm6m8+SLMAPRimzfK9pl0/A/vPwvxLN1dHQwNDTE3r17AThw4AA9PT2cdNJJjIyMcPjwYQ4fPszFF1/MTTfdxMaNG/+nbf5JL3/Mte6/w38kFu6PusoDHylt/+O2+fDp0j77/oN9rgH6y/+rqqr+E55/f7pL0bYr0XCVqLhUSjn5vCqkUuq13/5WLZ8/X82ur1eLFy1SD/3855V4jsl33lFONqvWrl6tfvGTn6hCMqn6n3tO/fykk9QL11yjEgcPijNnJiVOmxOj4sLZ2yNRcNm0uG4+/Rtx4Sw5xaupcXHhfH2HUn0HxZF+uF+O+95GWZfLKvW9jarnQ2vV6aeerBbNO14taWtWv/z+vapnz1vqxBOOV4vnHa8WLZiv3nfO2erQm69LG30Hj22j76AqpuLKyWdUNjGq+l59XKIxSi7zva88VnHfdApZVXQKyslnVD41eYyrvJ1LqeTIQVXIJEoxG4PqyMuPqq0PfFGddspitXDhQrV48WL1i589qBLDPeqtV3eq96xbW1q/SD34Tw9U4jPKzqASCTeiCvEx5Tz8E2V/5Rrljo1Unju/elC58Snljo0oL5dVzq9/Lk7xyYTykgnl5XPyP5dVxf1vq+LOLuUO9Cl3fFQc5xNTyvnVg+rdnd3q9HXr1KIFC9SSRYvUw//yL+JaP9CnVp52mvrB97+vvHxOHOnffUe5ybjEzGUzFUf7fD6vhoaG1MMPP6yGhoYq0W7laLhsNquGh4cr2xOJhHr44YfV4OCg2rdv3zGRceICn6+8fvrpp9XatWsrn+GDDz6o9u3bp+699141Z84ctWjRIrVgwQL1wAMP/MHruOWWW1QmM6X27dui4vEjKpudUmNj76hkclDt379VfeUrqH37tqihodfUww9fooaGXlPJ5KD61a8+quLxPpXJjKt8PqkSiX717rtPlNzg31HZ7KRKJgfV6693qxUrlqgFC05QixcvVD/72U9UNjupPvaxS9Txx89Vs2Z1qvPOW64GBnpULpcoOdNPiZN8Pq2Gh19XyfFxtX/rfhU/Elf5VF7lk3k19LpEvpVj4fp396v9W/er7GRWZaeyKt4XV/u37le5eE5lp7IqO5lVmfGMbC89Tw6U4uNeG1LLT12u/mHZPxzjOn/onUPqzPdKHNy8ufPUL+//pXr4kofV0KtDFUf6XDynMvmMGkwOqrH0mNo7tldt2bdFDSQHVH+iX70z9o5K5pNqLD2mtuzbol4eeFkNp4bVG8NvqHfH31V98T71ztg7ajI7qcYz42owOaj64n1q6/6tKp6Lq6nslHpt6DV1wkknqK/c9RV1ycOXqJcGXlKpfEpdft3lKlQXUj6fT9XW1aqW1hbV09ej9o7tPcbhfio3pVLpQaX6t4obfCFecoifnHaPn3xTHOJzY6XXb4hrfPwdcZovxEvu8QMS5xbfK27zPw8olR1RavJ1tfKUE9QPv/9NpXIjShWmlMqOKNM0VHtro1o6t0YtXbxALV2yWI33vVWKnUuV4uB2KpU6KK66E+8c6xJ/tGt80S45xeeOdZ0/+rFoixtu0Z52hS+klMpOqJWnnaZ++MD9Fcf4TGJKrVq5Qi084Ti1dOkStWrlaeqZX//42PMVnaPi4BJKZUanneQf+6hSL39TnOR7tig18uq043s+odTkftm/kJJ9yzE743uVSvZKRFw+WXKaH1Qrl5+ifvjtW8XRt2eLHJudVOrgVqUyo+rjl1yo7vrSZeIin5sSt/pDT8j15OMqFU+prVv3q3g8V3F/7+9PqNdfH1aXXPKweuONYZVM5tXgYFIlk3mVTOZVPJ6r/B8cTKqtW/ersbG0evfdcTU4mFSTk1k1MpJWb7wxrLZs2aeWLVuhvv3t71X2e+21I2r+/CVq/vyFav78Req009aqp556UW3dul8FAreorVv3q6mpnEomxW0+nZf/B8f71c9feUL1Tg6pqUxSHSk5yB+ZHFSpfEbtGzmsxlJT6tB4v3q+5xX11tABNZGJVxzoy/uOpiZVMpeuONWfeOrJ6tKbr1LXPXK3Ojjer5bd9TH12oG31Lnnn6dmHT9HnTD/BPX1u78hrvZDh1Qyl1ZvDr6rnu95RWXyWeU48WPd5J2x33N3L7nK231K5fdOu8Tn91bc4mXfjyrlDJci4SaVsvsr8XIrT1umfvjAd8RFPvdaxX3+w5ecq2664SPiUF+MK5V8Qo4rTilVTCuVe1Olckm1Zd8+tbO/X42k0+q1oSF1ycMPq5cHB9VkNqu27NunRtNptX98XL1e2vbSwIDqTyRUbzxecY//fTf4VD6vxjMZFc/l1EnLlqlvf+97aiqbVVO5nBpMJtUZN92k5i9erBYtXqw65sxRn7vpJnXJww+rb+7YUXGsf2lgQA0mk8pNJMQdfnBQ/icSSiWT4ihfdnZ/4glxlB8Zmd7e0yOPg4PTkXHlSLktW8RRPplUK5ctUz/83OeUCgRkn95e9ZVLL1XHRSJqbkeHumjdOtX79tviTt/fr9Tf/q20MT6u1MCAUtmsRLylMuIkX45zG58Sp/l8KQKuvC6Vkcdy9JvjyLZyBJztyP57DyplO+qnP/mJWjR/vlqyaJFatHChevD2byiVyqjhI71q/arVau7cuWrBCfPVsz/8Z2m73FbZvT5fUConscFHjycThw+r3MTEH4yHKz8vjzPH33xT9T/3nMpNTko7pWSl8bfeUj/63vfUwgUL1Pw5c9T8uXPVPV/+siqk0+rmDRtUc0OD3E9qalRzQ4PqP3hQZUdH1Tv//M+qkEqpib171QvXXKO8XHZ6zNl7QMakzz4i49JM+tiEpMEjSvUdUio5NZ2IlJiSaLg3dkmiUTkyLp9TP/3BA2pRa5NaUhtRi1qb1IMP3K/U9zYq0zRVe2urWjr/BIn2XLRIjb+yU85x5ICMoUuRxsVUXB15+VE1dvDlY5zk7WyqEvU2dvBldeTlR1XRzqlcamJ6//hIJTXp6LFmuQ0nn1H//E8/UgtOOF4tXrxILVwwX31r43UqMSX3mPnzjldLlixWK1eeph7f8hvlFDL/LlL5yMuPqlxqXBXt/B8HIP+L8Ww//elP1aJFi9SSJUvUokWL1IMPPvjv9vn4xz/+713l/0SX/wjXauo/mhn537xomvZj4OPAl5VSt/yB7R8BHgQGlFLtf6SNTwP3AfuVUvP+M+dtb29X/f39/8vX/d95cR2H1KFDvPX977PossuIzhIhgmfbaCXzDieVwgqH0XQdX3U1nm0z+tJLBGpryU9O0nDyyeQnJ3HzebLDw9QtWYKdSmEGAvLf70MbHUTb+nM450PQ8zYc2AMf+4xcxPiIuHTqOmRSIl/3B8UB3e+XGqH6ZpEt1TbKjGY2DZEqcArwyx+IhOin9wqTvmwdvO9j8OVL5fnHrxZTj8lRYft9fpgch1iV1LhbFl4whGuZ6JZPmAjPJTs1hBWMYvqCDO99nub569BNH3Y2wdiBnTTMXYFhBRje+zvqZy/DCkbQNI3s1DBWMIKTS2MFI4wd2EX97FPxBWM4hQxOLkWouhnXKaDwMP0RNIQdTgztIzc1ROuiMxh482nqZ5/CxKFXqZ91Mv6Ch/fCM+hnvw8yKbztz6Of9340z8Mb6EWLVUMwhObzoRJTqFQSvWOmzNQqTyalNA3Nkxl2r/8IWmMLmueh3CIUHVQijharQqVS6O0imVO2jRoeRG9tR5kmmgJQ4lgfrYJoFA2NgmHS29tLOBwmm83S0dFBOp0WNcHAAOeeey5bt25l3759XHLJJXR2dpLL5RgbG6O1tRXTNJmamqK7u5v169dX6uSbm5vJZDJs3769sj6bzRIKSVWM67pYlsXExATd3d2sXbuWRCLBz372MxYvXswFF1yAbdv4fAZTU+/S1bWJNWu+SDI5QCTSTG3tXLZsuZTzz7+XgYHdNDQswDSDmKYPz3PRNJ3+/h2Ew01EIk2YZoB4/DC7dt3DOed8AwBdN+XvxivS37+DaLSNaLQZwwjgeQ6GYeF5Ltu2XcM553wDz3MZGNhJLNZBTc1sHn30U1x07o+Y6knSvbmb9ZvXY4UsNF3DztigwBf2UcwXcYsudsom3BhG0zWcrMPIGyN0rOrAK3r07+gn2h6lZmYNqcEU4cYwXlG+f93QiR+J0317N2u/vJZIUwQ00E2d/u39dKzsoPfFXh6++GHmvW8e5997Pq7jYgZMHL/D9sHtrO5YTcpOEbJCKBQZO8MbI2/QGm1lc/dmbjvzNgzdIOKLAKChkSvmiOfj1ARq8Jt+ck4Ov+lHQ2M0M0p1oJqp/BTxfJyvb/86D+15iI8u/ijfveC7DKQGiPqiTGQn6Ev2saJtBUEzSNJOMpga5I7uO7hx7Y3Mqp6FbaepDUTRlNTBo+nC/DoJqZnW/YhV7m5h0o1gqS48K+ZnqgjjOyDYBv4GeOUqqZXP9oth3Vi3GNrtvXN6fagdwrNg16dFYt/xQcgNiyx/wRchMgcyh8QMr/lMkY37IuCvFhYz2QvVs0oM+lFsulsQ5r3s8q5pst5z5FHThIm3U6U6d00UA64j+5dsKCsGcYavxKgdkvMHSn2uUlLKpFy5HuVKHfvOTbD8ixBqEuk7yPkGd8CjfwFz3gfv/ZYw8ul+aFkhrO3gdmg+VWT4iYPw0mZYt1k+fyct5/JFYeAFURu8fCes2ACBOnjhC3DGPfI95KfkMzICgCdSyvE3yDW9l3jCYWgoxchIhtWrO/A8MAwN23bx+w1cV6HrGum0zchIhltv7eKLX1zDwECSk05qYWQkzW23vchdd4nLeDJZoKrKTyZjMzmZ5847t7Nhwxrq6oJce+1TbNiwljlzqlEK8vkiu3YN0NISYc6cWrq6emlvj7FpUxff+MbZjI9niVaZFEMZHtj5Gz5/+l+TyKUZTk+wqHkOqUKGguPQVt2Id1S/nHcKfPuFn/OZtX+Fz7CwXYe7fvcgn1j2PpqitbjKI1XIEPGHSRcyoibyXKqDUd4ZPUxzpI6xzBRLWsVFvuDagIYq3VtShSwRf4iwL4ihufhIlky5QoAucnenV0zmtCDginHdxB3ChJsd4I6IRF6PQXEAjGZh5idukX2sGeBl5djRL0DdDSKfL/ZD5hmIfaj0O/ODypUY+taSJH8nWB2gBcnRzP6pDJu6urhxzRpm1dTglQapuRLbvrm7m83r16MBA6kUEZ+P6kAATylGs1lCpknWcdjU1cWX1q5ldk0NjuuiaRqjmQzxfJ7RTIb2WEzOs3YtM6uqeKG3l5NbWhjLZulLJGiPxQiYJgcmJ2kIhxnLZFg3YwambRPQNLRcDnbtgpYWOP54OHhQnOPvuktk7xs3wvXXT7Piug5HjghznsvJuObNN2H2bNnu9wtrvmmTMPj9/cLsd3aK5P7JJ+G44+DEE8UU7447ZL/6eimni8el3bvukpp6pwiGDo4r0vfZ7aX6dVtM68qO80VXWPGy9Ptgv8jaAz5h5V1X2rGLwpq7bmnMlqtI6DENWUep+9l/RGrdF82Vc/UOiWzfMiGdxQ0HcXJZXrntNuoWL6Z51SqCDQ2MvfYaNfPmkRsbY+8Pf8iiyy7DV1PDK7fdxsJLL8UIBPDFYky88QaB2lr2/vjHLLz0UrLDw/zuH/6BznPPZfnNN4NhkOnrY8/997Pw0kvx19byym23seBTnyJQV8crd9zByTfcQGFqij333cf8T36S2MyZ7LzpJgZ++1su6XoB7Z+/OT2u/OiVUs6UmBJ2/fy/klLP2kaoa5L3nstAPidqTjTo2SPbG1qEhS8f19AiZslbfy718A3NIol/+1VRpv7lZZAumZQ+9jNh9BecDOEIvNQF80/Eq2vE9Rw03SA7NUTvK48Sa5pD4/Erefd3P5b68uNXojwPX6hKgF7RQTOm95+79q+xM3FC1c1k48P0vbaVuas/iuELVMbAvlAVTj6NbljohkF2aphArAHXzjHWs4uGuctxcmnMQBhfqBonl5Qx8pxlmP4wuhXAwJN7keE71hSuzLjv3AgrvvR/jNP7/9eLpml/HNf+iQP3i4BHEKl8zR9p42rgG8BLSqll/5nz/p8M3J1Mhp033UTvE0/Qee65rPjHfyTT389b3/8+J3/hC+QnJnj7/vulQ5s1CysUolgokDp0SDrDT3+a6MyZuLkchWQSXzTKxJ491JxwAqbfz9irr9J80okYh98RmXoqDg2tAr59fnGSN03p7HRDZEFT4xK5oSESdn8Qtj8tYP/D/wCH90lbT/5K5Pb1zXKzGS11guf9pWx/6PvSQdY3wbtvST19ckrA++SYTBZkUuDz44304846Hs0wcfIpxg7spH72KRhmANMvEjTluSilGNn7PIGqRiINMzEsP/uefYBY0xzaFp+FUlC0s1iBiESzURo6eZ5I8adGCMTq8VwHw/ShGValk6ufvQzTH0LTNHTTwis6aLopteyeh44OdgGlPNTIMHrHTFRiEpVMCECHipzK6z0o8XAaYkzX/Rz62jPFPCWTlhu86ZNBfqEA/gBqeAAtFJY4uWhMJgbOOh/N5xfwPjKEFo3K+do6BcS7Lsp18Z7agnfBBynYNoVCgXA4TDKZ5MUXX+Sss87C7/ejlMJxHIaHh2lubiaVSrFjxw7Wr19fcZB//PHHWb58ObW1tTiOI6UWhsHg4CCNjY3ous6zzz7LmWeeiWkKWNZ1kWr39vby8MMPM3/+fM4//3zS6XTlOhKJBB0dTTz22KXs2fMQCxdewmmnXcOOHd/gwgvvk49OMxD39wymGaBYzJNKDeP3RwiHG3BdB6U8TDNAJjNGKFSHphm4bh7TDFZAeyTSgs8XxueLkMmMkk4P09GxSr435ZFI9NPVdQsrV15LJjNGZ+dqHCeLpWrY8unH6FjdQceaDtJDaTpWiQNvZiSDL+LDH/NTLBQZ3D1I84kiHzYDJk7OIT2UpvuOblZ/YTW+iI9itsgLm15gzYY1JPuTRJojRFui+KJyU1SeQnkKTZeBmlKKbVdv47SrTiM1mKL5xGassIWTcXjquqc4484zyIVyjGXGCFthQr4QiUKCqC+KUoprn7qW1R2rWd2xmju672DDmg3MrplNwS2ws38n7bF2QlaIiC/CYGqQu3bcxeb1m4n4IqRL7vo5W+rrXeXiM3z0xns5nDjMivYVeMrjSPwIX9/+dW5ceyOzq2fj4VVkeP2JfiKWn85AWOp3naTUlyf3C4g++RtiNLdno0jZ8xOQKwFypYlj/N7bBWybYfDXwuEHJTLulLtFTh/qFNl870NSG7/0Vihm5Dzpw6Ua9lJbNYsFyJoRcYEXy11Z57mQHizVsRvy2smWADcC3jVjGqwnj0hdfBnMl9en+0tmdY5ExRWS00Z3FfAOleg2Jy0u9SATAOkBiLRLHbuTkdr5YkZM6PY9JHL5sx+Q6/McGN4F0Q45rn5JqS6/VBubGxfDOq8Aw7uh4URZnxmC2CwB44U4+GumJySGdwp4z01A08klHwCfXIu/WtppPPGo9+CRzhTpj0c4dGiKFSvacF3FSy8NcuKJzfh8Brbtct11T3HddatpaQmze/cgDQ1hxsYyNDSEiMUC3HzzcyVp/LUcORKnr08M60Ihk1TKplj0ePPNUWbNqmb+/O9wySULeeCBizh8OE5vb4Lly9tIJPI0NUXwPEVXVy8XX/wwr756Gbff3sWd3zyTt8cPMKe+g6pAGMd1yRcLfPP5n/HxZRcynolzYus8FIqcU+Cu3z3IX59yAXXhKizD5K3hHupD1bw6+A4d1c00R+oIWD6qglEc18EyLHRNQ9c0JjNxqoIxXhvcT2Okhh/s/Dc+f/pfE8+l+PHuR/nCmZ/A9VzeGu5hXsMM4vkUU5kJljdbaBWgXpocUZ7UuxuNpUkcuwSwCwLwvaTI3jVNwLZypc7dmwS9plSnfgvUXQ/ZHRA+W5znczshcCK4EzIR0HQPUJwG606fmN4VxyC0mnQ+zu8GbBrCYSayWZa3taEhjvpZ2+bzTz3F1aedRmdVFbsGBmiPxehPJmmPxZhdU8NIOk1DOIynFI7rErIsip6H43nsGhigo6qKvpJr/Z3bt/PQnj1csnAh9114IUPpNFV+PzGfj1yxiAcETZNi6dglTU2ELIugbePLZEQqH4kI+F65Ei67TOrd9+6VaLaHHhIZ/Ve+IuB6YkLM6pYuhWRSTOU0DWIxqU33PHj5ZWhoELDuL6VgHD4skvkVKyAQgGwWrrkGHnxQDOna22HzZvkfConBb9GdBssFW8zhli2USLj2ZgHapgGpjNS5O0XZv1SHjqELSM8VxGiuoxmCfnltOwL4dU00rK4rID7gl+MMXcztCjZURUSC/3YP1FWLZD5XwMFj9NVXBKRPTLD3hz9k4aWXEmlvR9M0FKCKRTzXxSsWMSyL8ddfZ/sXvsA5v/gFVjT6B0F//aJF6H4/qlhk7NVXCdTVYUWj+KuqOLxlCxNvvsnCyy7jsYsu4oJHH+XNe++tjIGXf+UrZAYHyQ4P07piOVoZXJ//V1LiiSYkURlIV9eVyKSMlHl6Hjx0P5z1P6bNlFNxGdM+eM/0JMDffE4Afj4rJaOFvNTMl4H85JgA+5NXy+8jPglP/xo+/PdyjkPv4M2cRwGnRCQtL5FFQjYNvf0cDXNXYAWilc8SpVBeEa9oY/hCKK+IZlgo18Et2himD6/o4HnFY8bAnlfEyaUJVjXgFu1S/brB0J5nSQzto7p1Pk0nrMVzHaxABOV5Mm7VADQMjaPA+Y0Sx/b74L18b/szaP+Dy38E3P/Ua9wPlx6rNU2L/pF9On5v3/+rF93nY9Fll1Wi4VCKt77/fXqfeAInleLt+++vRLupksO3KhbZU1q/5/77Ua6LEQxihkIo16XxpJNAKV7auJFAbS2u56FqGgRo1zRAVY2AaduGg3tLhkwBAfK1DZKt/tB9AsRB6nkWniIzkLmMAO9UHM7+oHRurguOLcd/+B/E7VNDDDyiVXLTm3WCgPZotXS6ui7nfexnEAiijluIU8hQtLM4udQxHVZmchCvaFO0c+C5NC94D6Gatkp+ezkjs8xs67qJUopCJs7gm09RyCRKM6LDEiNXWpRSaJrG2IGdpMYOY5g+DNOHXuo8ATzXwSlk0JQYhijTRPP50TtnyWRCMoHW2IKaHMfd8kvU1DjKzst2xwbbrhjVYVpoXol1N8QdnlQK77ltkEpKtnusGr1zNt7256VmPp3G6z2EZhjobR1idheO4A32ySRCNiPGfu0zUI5DKpViamoKTdOIRqOsXLkSgImJCbZs2UI2m63Utpe3p1Iptm7dim3bnHvuucdkb5az3Nva2hgdHSWdTrN8+XJM08TzPPr6+piamqK3t5dYLMaHPvQh1q9fX4mdK4N2yZjXOOecu7nmmkEuuuh+ampmcd5596KUh6aZ2HaKycl32bbtKhKJXjTNwO+P4DgZtmy5jFRqEMPw09vbheNkeOyxy4nHD2GaQYrFPH193UQirfh8YcLhRjTNKIH2laV6+DE0zaC6uoPOznXs3Pkt2tqWY9tZMplRMvlh1mxYw5yz55AeShNuCNPX3UficILnbnqO7FgWO23z+BWP07i4kcxIhm1XbSPRl8AX9uEL++hY3cHOb+2sGM11rO6ge3M3ofoQ3Xd0oxkanitGdZmxjIB2DTlPX4IzbjmDcGOYzlItcP/2fqyQxTl3nYOlW0R9Ufymn/pwPYOpQW55XuZPo/4o37/g+3x08UeJ+WNct+o6WqItFNwCuwd2s7RpKY3hRhrDjaQKKUYzo9x1zl2VDPdUIUXADNAQaSBXzDGWHSNtp2mvamd523J29u9kJD3CaGaUh/Y8xMYXNlJwCxyaOsSlWy7lcOIwhxOHyeQn0TRDGO90jwCRfXcJE24EhGGffx0YUWHY61dKnbqbAysG868V0O7mJL6tfrW40bsOvPMN+RtfuEFA+yn3SHvpHgHtwWZh34PNUH8a5MZg8uWSM7yC/FiJbTRL5nPyGRM/VDKpi5Ri3VTJlE4XltlzSgZzhZIpnX/afT43KRMAvqgMnsvbrbAw625B2qtkx8dKEwK6XEMuXoqaM2RbecJg+RcFtK+4cXri4LmrxSk+0i5Gcf4qUQ/89rPSRrCu9D7jktmeHYHnrpK23byAficDz14ByUNgBqHxZAHobWuk7t+15TtzsgLqm08Vpr4ci2dFMIpJqqr8rFrVQV9fkiuvfJzFixsZG8swOZkjGLT49rfPIxg0CAYtOjpi3HnndtrbY9TUBKmq8nPjjWJo5zguwaDF8uVtxON5Dh6c4uWXh/D7TVaubKe5OcIllyzkxhvX4nmKQMBk+fI2du0aIBz2cehQnEsv3UJ7e4xf/vJDRKM+vvWt8wgELJoidRwY76NQdEjkUyRyGT52yvn4DIuT2uYxmBjja0/ez1h6ikUtcxjPxonnUtz6zI+oCUaZzCU4Z95KTmw9nvpIFTWhGHZRQDvAZDZBoehQE6rGU4pT2k/Ab1ic2HY8WTvHj3c/ysdOOR/Xc3ln9BBLW44j5AvQHmvk1PY5AtrNBgHPTg8MfxqKR+Sz1pRMtLjjgA5G6but3LxKrLkeEWA/eSeorDD25Ti42MWy3R0XB3o9IvXstVcLA+/GxUnemiWPxQmZRMDEMOtoj8W4c/t2WqNRbNfls088Qdq2CVoW95x3Hpauc+Xjj0tMnGWxrK2N/mSSwVSKrQcOcGBykssfe4yhdBoFHEkkuHrbNpY2NdEQCrG2s5OJbJYvrllTyWjv6u1l/r33ct1TT+EBjudhahrvTkxw+WOP0RSJ4CnFpVu2YJYm1AH521q7VsYq3/sebN0qNevlLPcbboCaGvlbymbFwM6yxHV+ZESA9qFDsHu3APXVqwXgu67sn05LFnxDA1xxhRznunD77dL+ihXC0K9cKdc0NPTvXeXL5nCGIZFswRLA7umTazF0AeEdzQLWfRYcGZL6dtuZdokHeW1ZAvjLkXNOUcC/z5LP4+CAsPVVEfnpVEXglIUyiSCzMOg+HzULFmCGwxVT5D333YcqFnEdBzefZ+zVV8mNjWGFw+g+H3VLlrDqjjswg0EMv59lN93ErPe9j8zAAJmhIWpOOIGXb7sNJ5VCM00aTjoJKxbDLRQYf/11Zpx/PqfceCNWNErnuefii0YrSUgLL7sMTdfJjY5Sf+KJZMcnUA0tArIbW+T703UZZ568WsaP48PiBF/IST375KjUv2/9hahCn/yVjD9Nc9pZ/vy/knZ+9UNh2HNZMWOOjwurX1MPHXNk3BsoTcIkJ+EDfyvjul/+ADrmoILiEF92kw/XtmH6w+QSY9TPOkWMjfHwXAe3kEXTdTRNp+ynoukGKEWxkK34OJmBcKXN8YMvY/rlHIFYfcXvqVjIohtGJQu+ef46XDuHnYmjvKI8zyXITAyU1GO2gPZ9D8mjWzgWiJTj2eD/lUndnxdZ/tSB+z4gW3p+6h/Zp7z+lf//L+e/x+I6Dk4mg5PN4jrOv9sebm+vRMMdDeSP7tAWXXaZGIAAmmmy7Etf4j3f+Q6LLr8c3edDeR75iQlevu02kkeOgFLULV7M3h//GNOyRCZfjrFwS3EzliWGdPFJiXfLZyWrvdzxbXtYbjKjg7Dlp3KxsWrp4GobpycCNF0Yo2iV3BBmHi8zmKYpYL5svjLrBDmmfB25jMyajo+A6zJ+cDde0cYKRigWchg+MTA7usNyClk03ZjOb+/ZTbiuvTLLaOdSDL/zPE4uSbGQmc5+18AKinS43EkWC/JTbV14BvNO/ySe55CZHEB5RXRTBu7FQhY7E8dTDpqmyyym46DsPMpzBWxbFvgD6KtOB8uHZpjy+foDEI5gnPcBjMs/L7ntA0fQAkFUPoeKT6AyKbSOmWjRmCgKCnmUY0v03Jx5qLQAdXfbIyjXRe+YJYx8YwukkgL602m0JSeDaeL3++nsFECSy+VEPaDrpNNpVq5cWQHc5Rz3mpoaamtrOffcc1FK0dfXh+cJi1ooFCr7Dw4O0tTURDQapa6ujkQiwcDAAG1tbViWRSgUoquri87OTkzT5IUXXmDfvn0kEgk6Ozuprq6mzD4WCglsO43nuTz++BUkEr2Ai6YZ+HxhOjpW0929GcOwCIcb6O7+Oh0dqzFNP7quEw43kUz2s3Ll54lGW3DdAvl8gs7ONdTUzMDni9DfvwPDsOjoWIVtZ9i27Sp8vhDx+CF6e19k4cK/5IILvoth+NB1k3R6hJC/QfLbm8J0ru1k57d2Em4I0/31bjpWd2AGTaygOMkbPoPur5eM6/qSJI4keP6W55n/wfmce/e5eK4oPOZ/cD7rN68nWBfkgu9dUJHf5xN5nKzD1iu2YqdsOlZ1UDOrBitk4WQdlKewQhYdKzuY7JlkYNcAjudwaOoQByYPADCcHmbjGWL6csXWKziSOMJkbpKsk2Vz92aGUkPs7N/J4sbFjOfGuWrbVRyOH6Yl2kJbtI1dA7vIF/OYuknMH6vkvpu6Sc9kD8OpYQzNoOgVWdO5hqZIE6s7V7Plw1v40tovYRkWATPADatuoCXcwprONbRWz0IZluSnBxpgvHs6Bm58hwDy/IgYaZXd2ssmb2YY9n1LGPJAg4D9fXeJUzoenHwXjO8UCf0p34TsEZHS1ywV2bkREHb/pSsEqEZnQeM6AUCaKQ70rrxHMZ87IoC6DODLEng7RQVsG5YMYgL1ckzioICmsty8+RSJcdM0Kjm5mj49EeBKYga6KY+JQ6W4LyVAuHGxtBvvKbWrpGyg+jg46/vCoGuaxLudcq18ZrlRKCTkOq0QnH6XtDW8S9oJ1gnYTg/A4SchNSggvX2dmNgtu0HOiRI2XtPkfT11aYlpj8ln0rpKzpM8DKMvlyT/Bm7sOEIhAa8tLRHe+17JWO/srKapKcz4eAbX9aiuDnL4sLDpDz20h02buqivDxEMmrS3R1m3bgaJRL7iBh8O+wiFLJYubWJiIkcuV8QwdO6770LmzKnBMDSy2SJXXvk4jY1hQiELn89g3bpOBgdTrFnTSXW1n2y+gF10GE5PUBOMcuszPyLv2NRHqmiJ1WPoOnaxiN+yeK7nJf7l5a0VgB6wfHz81AuZyqVY2no8nlKMZ+IUPY+snWfv6CGGkxPEc0mi/jBvDfcwkBjjjaF36YuP0pcY5cTWedSGqrj6PR/F0A1ufeZHLGiaw1Bqgq89eT8ZJ0/KLqKCK4ThDi4HLQS1n5dHlZWM9uIRGL8J3GHQLPmPIUDdHRWZu5c+Cqxvkrail0Ddl6QtdxDGbxbw7mXluWYJy25UQ7ZL5PheWhh5zQ/ZF3ExK4Z0m7q6Kq7xQ6lUJc4taFlcu3IlNYEAEZ+PyVyOk1taaAqHOXvOHO7o7ubJnh4ipeScmdXV3Hv++WiaxnVPPcXhRIJTWlqYUVXF9y+8kNnV1XREo1yycCGb168nbdskCgUKrstIJsNDe/Zwa1cXyUKBR/btO3oaY7rkJJ+H7m6Rtkej4vL+wAMig1dKmPRZswSIX321GNPFSjnhHR3Cwu/YIWOkVauEWTcMeWxulpz4snt9PC5M/333Cdi/91742MdkIuDmm+XvvaN5OuoN5NHQBWS/e2SaNXccAeBoIml3Pbmm9qbpTPeyO30ZhJs6hIPQPyJSeeMoibyGSPLLTHzyKFO8QIlRNXRUqc8qZrMVU+RFl12GZlm4tk0hHqdm3jyMQADleTipFK/cdhvBxkZ0vx8nlSJ5+LAY2NXVkR0ZQdN1TvniF7EiEVK9vez66lfFgK6tjYYTT2Ryzx6yw8NYoRCn3ngjRiCAv6aGxVdcgb+6GjSNYGMjhUSCUF2tMO4P3iuMumEKUO/ZI2D9g5+U8ShI+tHu5+Hpf4Omdvjrz4r8/YKPicLRU9OO89W1csyH/x5OWTP9G+qYAxMyHiWdkHjk8WExFK5thMHDQnJdcqmMbX/PTR5NQzcMrGCEicOvEqwSAkE3fZiBsEQV73kWz3PwijaDbz2Dk0/h5NPTY1WlKoC8TEg1zF2OpmnT497SflaoitbF60sSeh+BWANFO49uWji5DKGaFhmPGr5pw9MVXyr1/7+3/C+Y1P15keVPGrgrpWzgsdLLj/z+dk3TZgCrSi9//V91Xf87F9dxSB48WMllt+PxCngv17fv/PKXyQwOAhIVF501ixVf+5rkvc+ezYqvfa2S914sFEgdPszuW24h1NxMpLOzEiln+Hw0nHQS+37yE5xMhuZVq1h0+eUow0AdlWGJbsC/fFvY7/ikZLUnpqQjOvuDIi+qa4JzPyQD122/hPUfkE7z3bekI5saK0V0WNLhTY4K6I9Pyn5jQyJLGh+Rm8jPviv7HD3jGQyL1Ck5ieZ5UrNu+qRWxx9k8K1n8LwiumExfnA3yZGeCthuW3QWM5d9gOb560q57c/g5AWslyPcwrVtzFz2AVoWnC6gV7fQEODePP89+EIxvKLN8N7nUcrDCkQJxBoY2vMcdjaBZpjopkUg1kA+OY6yC8Ksb/s3yEhsnIpPCGMcjghQ9/nAdVF2Xp4n46h8Di0cRauuQ++cJQ7zPh9aKILeORt96fQcl+YPgGmiWT60aBV6Zwmod8ySOvl0Eq2lDS0QqDjMa3X1aEqhuS6RSIRisUgmkyEQCBCNRrEsi1gsxvbt2/H5fCQSCR5//HEcx0EpcYMvFotYlkUkEuGxxx4jkUigaVpl36amJnw+H0NDQ8TjcaLRKG1tbQwODuLz+aitrWX9+vVkMhk0TeOCCy7gs5/9LC0tLTz55JPouo6ua6RSgzz33M2kUkNoms6ePQ/R1bUJ0Einh3j++VuYP/+DnHfet+X70izOO+8eliz5awKBWjzPo65uLh0dq4nF2vE8l1wuTjhcj6YZFIs2lhWiqWkJjz/+GSYm9qOUx2mnXYPPF6GmZjadnWswSo6ujpPFMHxEo61kC2M4WYfHP/M4TsbhvG+fR6A2wHn3nMfSjy+VenQdsuNZ0sNpzrvnPK4duZbONZ2khlKsvEYAfWY0Q6I3weSBSQyfgS/mo5gr8tjljzHx7gTKVYTqQkSbo5yx6Qw0TaN/Rz920iYzmiFYF0R5it6uXuK9cfwxPx2rOtCiGr3JXhrCDYxnxjm55eQK2F7ZvpLN3ZtpDDfiN/2s7ljN5u7N1IfqSTtpbu26lYf2PMTm7s0ANIQbWNq0lJcGX+LQ1CFeHnqZoBkkbae5/qnrWdq0lFm1s1AoQpZ4GQTNINv7ttNZ1cms6llk7Awxf4xZNbMYSA7Q1dtFUWkozYKGtWDGRLKuaQLAa5YKIK9ZCpO7S7J2BXtugdyQgN265eIA//JVAvZP2ixgdeotYcFrTwQ8KIzD3s0w7xowS0yBk5ZJgbrl8rjrMjm/k5ZjACbfkOtJ9wtbXgbZdmq6bt0o1a2Xo9/8MdmnHO3mOSU23RaZumtD/CAVRrSQlEF7qHE6/x3kfVQmCUrydsNXupZxAe7pfijmJUP+6cuEzS8khTkPN8s5ArUC2H0xyWYvf46tq6X9Yh6evVKY+Y/ugmgrDL4ooP63n5PriB8QsJ4ZEsZ91yZhY176OpXafM+RCYFwkzjSD++C5GEMUyebdRgaSuM4Hn/5l4sYHs5w2WVbOHgwTijk44orHmdoKF2RtV9yyUK+9KW1ZLMOPT1TfPazT5BO29TXh/E8xS23PM/QUIqmJvEpqaryE4n48DxVqZ3PZh3uvns7q1d30N4eI5t1uP32Lj7ykcWsXt1BNuuQTNr4gzp7Rno4qW0ezbF6bjzrU7TE6vEZFulChpxTYNMzPyTv2Nz5vmu4+j0fZTKT5LXB/UT9YVqq6lnUPBdd05lIJ+hPjGLqBkHLT20wxkh6gpxTqDDzI+kJaoIxRtOTLGyew0Q2ga7rBC0/o+lJ/ubUCzB0nX/a/SjP9bwkEnt0kceH1srEkh6B4niJNe8XJn7i1mnHeacHRq4W5r0M4DUf6EFhydu2QNO9Atab7wNrNuBK7ntwtZxL0yH9iMjinV7I7Ram3ZwhbXoJmRQwazDcYW5cs4YtH/4w955/Ps2RCOfMmcNdO3awuqOD+lCIiM/HRDZLdTBIwDS5vasLTykMXaclEuHuc87hpb/7O+pCIbyS43zWcdA0jeVtbWx84QVClkVvIsGVW7eStG1m1NTwwEUXETRNBlMpbi450q/q6Kiw8tWBAL/80IdkGnhkRJjycFiY7pdeEjDu9wsr/ulPS82758n9eNUqYdJNU4D75KQcOzwsf//RqOxTKEg8m64LwTE6KnFvmzcfy+BnszJRcPCgMPFHjkgbn/+8bAv4BYgf6BVgnspIN1Fm4vtHBJBXlWLhfKbs43kis/f7BOzrmrD0fguSmWmQbxowt0Pc5tFkQgCmJzKSaamtDwenryGRlkddwyu6aLqOk5Vx1eIrryTc1lbqo6TPNIJB3HyeXTffTG58XJjw4WE0TUMzTfb95Cf0PvEEb//gBzScdBK6ZaE8j2I+zzs/+lEl2jjT18eur31NAP7QEMVsltzoKJqu88rtt/PYRRfxyu23ozyP6MyZBOtKKpOpMWG6fX4B0JOjMnY9vE9+08GQ9LcfvRJueQD+6nIZo5bHo/UNAvoTk0JOoQSY53JyfHkMHJ+EQFC+n0zq2Mx2kPO2zZKxbc8eykSEFaySyLWgxFXa2SRWIErLojPQdIPM5IAw4UpNM+k9L6HpOvWzhZUP1bQw49S/oHXxekDhKwFyX1DuH04ug1Lq9yYJdFTRxs7EGXjzKTxPcEWZuQ/VtqLppsTAGT6Rx5/9wB+vYf+fsfJ/Xv7o8icN3EvLbchP/xOapp1bXqlpWgj4AWAAv1JKvfO/6fr+SxfPttlz330VubudSuHZdmVbWRb/1ve/X1lvWBZWOIxhWcc8dx0HN5uttHe0pCnd309mYIBZ73sfy26+mWBDA6HmZpkVTaeFDX/fxwSQ/+w7sONZMZbb9rB0TokJmBidZtEtn8iFJkZkVrK+RWae5y6Sbcctlqi4sUEB51U1cPHfQVWt3DSeKLX7+C+kczzrA/DUr+U6/upyqYv3B0SaP2chODZWMIbpDxOqbWPi0Ksl+dFONA0a5q6g8+SLCFY1UEhPkZkaJFjdgm76GO/ZXZEqleMwrGCEgTefwgzIoF5mOYsoTTIw9ZKZSLGQpXbmiTj5DEN7fgtA07w16LqJk00wur8b184RqirV8fv8aB0z8bp/JzcL0wLPQ6VTks+eyQiwTyXR0CASRQuE8HoPoibGUI6N1topxxmG5HwqJWA+MYWyC/LoOjJRkE4JUF984jG/KwVSN5XPoaYmcB//Dco0icfj5PN5AoEAAwMDpNNSu9zV1cW+ffvQNA3TNOno6CCVSpFIJHj++ecBkcVHIhE6Ozvp7u4mEAiQTCY544wzKjXyM2bMIBqN4nkeQ0NDFYZ9YGCAfD6Pz+ejr6+PYrFIoVBAKcXpp59OIpHAdYvs2HEXnZ3riEZbsawQH/nIVtauvRHbztDdvZnTTrsaw/DheQ5KySAkmeyvxMUVi1kymTE8r4htpzHNAI6Toa9vO55XRNO0StZ7W9tyurvvQNdNotEWCoUUExP72br1ChwnK+oJoFjMkUoNYmpBujZ1VfLbH7v8MTGkyxWx0zbp4TRO2qFxcSPJviSappHsS7Ll0i00LWlCMzQev1JAvxW0CDeGGdg1gJtzMYMmnes6ibZEpWZ+LIPuk6x3pRStp7aSGkrx3E3PkTickNz45W1EGiMV0O8lPVa0reDO7XfiN/14ZYYXuHjBxWxev5msIwOwD87/IJvXb6Y2WEtTuIm7z7mbrR/ZyrfP+zZpO81rw6/hN/2saFvBQGqAxnAj3X3dmLrJLWfcgqEbjKRHAHA8h67eLt6deJfFjYvpTfTi4eEpj0QhQb6YJ+aPsbRpKY7nABqqmAFfLcz8iDDop34b0OH1DWCEofZUqXE3g8KehzuFMZ/1CbCi02y7ERSWvH4FFNOQHYKp1yHQLEx+sAVSPTD5igDYxrUw628hPBNO+joEW8FXDWNdsl/DSvm7jc0UtlwzRG5uhQWwGyXfiaOj3wpJGcRUzZJ6cNcuSeT7hUlP9x8F6A9KW5pRAvCugPTEIVEBaL93i1cIwK6dLxMTsZlyfKoPTv28AHQzAKdeL5+VVaqbz42DnZRzZIeFKXcyMLQDMoMCtHdtksmD9KBI4UMltt0MSsSb4Zf1hQQs3yBszLrN8h6eu6bEzIbkO3j+ennvZhDPVQwOprj55ucYHk5jGDp33CGRb4GAiWFoPPlkD4ODSdas6cTvN7nvvguZPbuGSMRHR0cVt956Jp6n6O7uw+czuP32s2hri5Wwk49MxubgwSm6unrp6ZniM595HNdV3H33uVx88XzeeGOEQMDk7rvPRdPgwIFJrrpqG6OjGXymxZKW43DcIntHDjGSmuC1wf30J0apDlXxg53/xrZ92/nx7kc5qW0eActPwLI4vqET1/MwdZNEPkXGzhH2+yus/VBynGggxKLmOZU2fvLSYyxqnkNVIMQJjTNJlph6AF3TWdQ8h0Q+Td4p8IUzP8G2S+/BMiwifgutnNOef0UY9MBiAe2h1VKvXnejsOfBFSJ9r70acEVar7KQ2yUAXAtC4GRRseAKi+/0AAY0bhZwbpdez3xjuqY+dJow7SOfg+KwGN1pfpi8E9cVRr0tFuOKrVvpSyZpi0bZvH49qzs6uGrbNkYyGRY3NnLF1q30JhJ8ZvlyQpZFvmReZxkGzZEICkjbNtc99RQjmQyGpnH27Nl84+yzcZUibFl889xzCZgm3X19HJqawtB17ujurkTQAdx34YU0hEKELIvVnZ24riuS9MWLJf7t0kuFFR8dFUn7pk3wyCMig/c8YdJ7euT1rl0C3levFoO5m26S+vViUfLcP/c5eT06KmD8pptkv0gEvvMdMcGLRiX2rb5+Okf+jjtk4uC440p/395RIL3EnGsIE99QI6y4UxQTuVxBAGU4WCol9ARsF2wxpHOKAtqjoentdlFA+P4j8rpsTJe35VjLkuNdb1qyb5nC4pfYYd2yCNTUEJ05k1BjY8WzBE1jz/e/T3ZoiOzQUGUM23H22dTMn09ubAzleZx4zTXTTL2ukx0c5KWNG8mNjFS21S1eXCnvfPsHP6BuyRJ0n09KPZU6RiqvW5ZkuCNvSdU2CmD3Sh4QZeVm2yzpQLOliY6JURgdkH0tH+x5RaTvICz5+LAQVIYlr01TJkQCQSGhnv61THZsexjefkWMnMskU7ZUIlrIi2S+fTYk46XvWKHcIpnJAZxcEieXEq+eXJKhPb8lEGsQnyalqJ99SkXaXixkGD/4spgq6wahmhbwXDKTQ1IW67kC+rMJQjUtKNfBCsRoW3yWAHrl4RbtY9Sn5cmAYiFTmlZQuEUbz3On5fB/rIb9P8PK/3n5g8t/K3M6TdNOBr5z1Ko5QD0S0zZw1PoPKKWGjjruasSATgG/A0aBtUALIqdfo5Qa/89ex5+yOV2Zcd9z330s+NSnCDY04KuurgDx33eUL6/3bBvd56uw6SBGdmU3+b0//nHlmLLLfLChgdzYGKGmpmkXz6oqsPOEHv8pvLYDvvJdCEXg0DvQOVfkQE/8Ej56hci1HBsGj8DcBQLI4xNi/rHtlyJL8pWkY0UbDr4jhnPB8LSpxzkfmpYh9R4QQxDDlA4vlxGArxvTbp4ld09XU3iljsgwfWi6SdHOYhgWidEefIEY4do2nEIGOxPH9AeZOPSqOM0bJpnJwYr7Jkox8OZTJIb2VVw9yw6fbUvWl1zpd5U6uByhmhYG33qGUG0bsaa5MpNsWOC52LkErp0jXN0Ok+N4Xc+IJD5aJaw5GmpiVMzn1pyJSsbxfvYDtIUnYlx0iTDyibiYySH1dVqsWmrhkwm0WBVe9+/QzzwfrTS7rzJptEisJK3vRYvE0Ooa5Dw7XkBffwGaaYmrfKwKLB9eMIyjaWSzWSKRCEqpisS9ra2NRCJBKpUiFouRSCRoa2vDNMWFfmpqihNOOIF0Ok13dzdr1qwhHA6j6zqpVArLsnAch66uLtasWUMqlaK5uRmfz4fnefT39xOJREilUtTU1ODz+chkMnR3d7Nq1Srq6upKRnUBVKnkoGxAB+B5Dm+//a/Mm3cR2ew4yWQ/sVg73d2bWb9+M5YVpFBIUyzmCYfrcZwsw8Ov09q6DNMM8Nhjl3PmmbeRy03Q3b2ZM8+8DV030DSdVGqQ6uqZuK6DrhvkcpOYZoBAoJpiMc/g4Es0N5+IZYXQPIupd5OYfpPnbn6OfY/s43NHPofpM7EzNk/f8DSnXX2a5LYbGrqp49ouxVwRM2gy/Oow9SfUi6Q+ZOEVPVAwsGuApiVNlTx3J+uQ7E8Sa4vRdWsXq65fRd3xdRx5/gjhhjCZsQxty9oY2D1A+4p2lKeIH4mTm8zRcnoLSTtJxBchWUiiazohK4Shiet4rphj18AuWiOtHF93PDk3VzGmaww3ctW2q/jG2d9gNDPKbS/exoY1G5hVPYsXel+gIdzAndvv5O5z7mYkM8JAcoD2WDubujbxxTVfJGyFcT2XulAdQTNIrpjjpcGXWNK0hIgvQsbJsG/0TU7vXI3mFaVO13UEkIK8LmbFoC47ADUnitt8oAmyfWJgd+LmEuFbmpSwYlDMyWBL6eBmZYCh+0tGXnnAFYD82hekfj7UKTXvVhSCTdPS9rLDu3LlnHaqNIhRgDZtFGf4pdZcL4H38vWXWegyw13RpJauN3lYALwvVmqrVUCv8qgYjxk+8fZIHiltD0gTlXVtpcmChPSTuiXAPz0oQHz5hpIhXptMJMQPwO47YNn1cu3Jw/DyN2DlV+Rzqz5OFAeZQXj5LgHm5WX8DTG4M4MyAVE28HvmCsmPN/zT5nRmQN67GSKZM3ihq69iOLdmTSfZrMPgYIo77uhmw4Y1hEIW2azDpk1d3HDDKo4/vo58vsjUVJ6amgCeB5alk8s5ZLMO1dUBdu4coK0twpw5dRWmXSlwXQ/H8TBNndHRDE1NYZm0VIpMxiEctsjniwwPp5k5swafX6M/NcwDO3/D35x6AYl8mjn1HeTsPHXhakaSE9y/89dc996/ASBdyFIXrmY4OUHAsoj6w7w9cpDj6jsJ+QK8NrCP0dQk6+edJqVHmo5ddHhz+AAt0XraqhpQKA5PDjGRTVQM6j614v2Mpic5vqGTqVyKsfQUTZFaRtKTrJ4xF905KPL22mulvjy0BigKAFeusPC4QIkNd8dgYjM03gZaRP6esjvkOKdHGPq668FogfyrEFolpnb5l8FshOLotGO90wMTG0smdi9C7kVovLs0aBnDLgyTD6xjMJXmyZ4edg0M8KV162gKh7n8scd4aM8ePrp4MXeefTa9iQQ1gUCl/hzgSDzOxq4uNqxZQ38ySXMkwot9fbzY18f3LrhA0l9sm6RtU+X34ynFa8PDLG9rq+TC9yYSbCq10dXby5mzZ3Pzc8+xrrOTjyxeTJXronuejFsmJ0W6Pjoq9eZKCRM/NjZtGnfbbTJ2KbvK33knfP/7Ymb3yCPwr/8qte+2LWzsm2/CKafAZz4zbXD3ne/IZMHxMjnDO+9I7Xs2K+D97rtFVl8sCvt/1lki0YZpKbtdlOdFVxh024HJJKSzMKtNrk8D3u2F0UkB+MfPqHRBFb/L/UeEjT/QCxNxWDBHmHuYbjPon65xP9ArEwYFu2KE5+iQ7u0lOzJCzfz5Um+dzeKvq0MDUn197PvJTzj5C1/gldtu48TPfx4zGASlGHvjDWqOOw4zJIa+yvNAKXZ99avTRnM334xmGCjPQ3kehclJzEgEN5fDDAbJT04SnTEDNK0y5i2D9mKhgOEV0d59S0ikrb+Q8WJji/gv1TXKuDKfE9a9kJe0oyd/JcrSqhrp1+y81LKv/wvxWZq7UMB9Nl367YwIKNdLRoG5bMmVvrqkzooLcK9rlIkVX0DKR4Mh3LoGvKJdMYxTbrFipjz45tMEq5sJ1bQxcejl0lh1ejw/8OZTJEd66Dz5IsK1bXiuw/De52k6YS2uk/935nRlAzzTFyKXGCVUI35NdjZBsZAhXNuK5xYZeaeLphPWoBtWpc2GOcvwRWqFff+Plj+b1P3R5U/JnC4GrDjqf31pffvvrT9makYpdRewHtgGLAH+B5AGbgWW/b8B7X/qi2FZInf/6leJzZxZAe3lbWVZ/NGgPXXoEDtvuonUoUPH1MTrPh/htjasWIzlN99ckclrhkHdkiW8/YMfEKitnTauu+8+NMPAV1uH+svL4LYfC8v9i+9LvY4/KAz8xz4jnd7kGPzyAQHqXkmiNGfBtFTetEQiND4soD1aXTKcqxIQ/toOmY00LTH0qG0syeWHReZUdu4sOsfKkDwPDPMY4w3lFeW5k8cfjGEFxfnVMH2EqpsZP/gywepmnHyGwbeeJVjVWJEqoUFrSUrfMHcFpi/Mce/5BC3zTwcFTi59DGjXNL1SU+TaOYbefq4kbfIwzADB6hbwPLyuZ1D73hIW3LJKM8BKzOf2vCagvq0TbeGJ6GvOAM+VeLdwVAC4potHgPLwup4Vk7muZ9HaZ4AGqvS70CIxlF3A3fYIWjgqsj8Q6fxZF6D5BPBq7TNlZtnnxy2Bdp/PR6FQIJ1O47ouHR0dZLNZqqqq6OzsJBQK0dTUxLZt25iamqK5uZklS5ZglurjV65cSTKZrLjMJ5NJwuEwlmVVtjU2NmKaJsVikWw2S2trKz6fj7a2NgKBALqu093dzZ49e+gusSXFYrHExOeYnDyAbWcAcF0Hz3NZvPiv8PurCIcbaW9fSTjcxLnnfhPTDOI4OQKBKny+ME88cTWmGaS19VQGBnYSjx/mvPPuwecLk0z2096+kkxmrMTG+6mtPb5Uwz5Ef/8OHCfLyMgbxOMHefzxK2lsXEwmM0pvbxdFlSU6y0e0LcI5d5/DZw9+FuUqnrj6CQDO/ea5RFujWCELK2hRzBVJ9iV5+vqnyQxnaFrSxNjbYxiW3Bw1TUPTNdpPa8cX8eE6LqGGELGOGJ1rOrEiFiuvW4m/yo/yFDPWzaBqZhUtJ7dg+A3alrfRv7Of1HCqwsCr0j+AsewYV227igOTB0jZKVJ2iqu3Xc3SpqV0VneStJO8PPgyqzpWMaNqBkEryHfP/y4RX4SYP8b6WetpDDeiaRprO9fyrZ3f4qE9D5EoJLi161Yawg1s6trEI/seYSA5QEO4gbZYGz7Dx8H4Qa58/EqaI82A1NgrpVjXsRJNeVJ/vutykb2jxEDulWuEbQ93CKOeG4Y3b4ZsrwD3uuUimZ98RcCyVQ1OSrbtulzatCLCwBdTwmrnh0VWnytJ5PfdLWA3OkvAebIHxl6kErfmqwKrRljlcv26ERQmPNIqAzUNabsM0t2SdN21RYZelsiXAbl82eJQ768W0J4bl0kL5cokQFJ8RygkjzK7K00iuLacP9Y5XSuvPGHdn75c4t6sEJzyeWHjW1cJaAfIjELPIwLeDZ+cd8WXBNiHW6V9OyHbW9eUDAJ98tiyUga2gy+K6kAvue2fcQ/kx8XErizPf/pyuR47hWUq2tunDed0XSMUsrjjju5KLXtDQ5hNm7p45JF9xGJ+PE/+HiIRH1ddtY2RkRSO4xEK+WhqivDyy0MsX97GnDl1FApFRkczpFI2yWSBnp4pdu0aoLc3wT/+4/Nks0WyWQelIBKRwWUiUaCpKcLOnf04qsiPdz/KiW3HE/YFOaltHolcmu92/5Lh5DhN0VpuOOPjBC0/fkP6uULRpiFSRXUwhqc8FjXPZSqX4mtP3k9TpI5z56+m6Lm8OrCP/vgoe0Z6OKFxJk2xOl4d2IdSELT8HN/QyT/t3sK2fdv5wc7fUB2MkrXz/HDnv1ETjPLAzt9QE4ySd/ICwoOrJdottBacI1LbjiaMuJeG4csEZOtRYeMbN4IWhuJBGL4cLBm8V2T1E3cIyA8uF7Cmh0oMfrWA95ErpD2nb3r/8Hph94tDkH9DIuVCazgcT3Dzc8+xuqODzevXk3McdvT3c+PatZU69JF0mtFMhupAgKLnccXWrRyOxxlIpVjd0UHANFk7YwYzq6v5m6VL+dY556BrGkbJZfuW559nMJUi7PPREA5z5eOPky0WMXWd2TU13HfhhcyuqeGvFi2iLRrly2vXsr2/H1PXKSiFOnxYmPRsFr75TTj5ZJHEO45I4levFkC9fLnI6q+6SmTxNTUidz94UKLc3nxTQHuxKGz86KjEvYFsv+QS+NKX5F58/PFyDp9PmPXmZpgxA+65Rxj5fF4mEt5z+jRoLzPhrjft+O635PWRIQHXc0rse7kefW4nNNaW6tqVMPLvHinJ5JH1RVceF8wRMG470iYaNNXJukRajj+uU64jGi5NDtooz2PP/fcTqK0Vs1xAKSWmdK+/jm4YnHjttZh+P6fedBOm349bKFDMZqlftIj85CS7br6Z5OHDFPN50DROPcp/CV0n3dfH2CuvkB0a4o177qEwOYm/rg4jGCTS0YFyXUy/H180WgHtruPgpFLSL85ZKKC9PF4sR70Zpow1xwaFSa+qEdD+2g4ZFxmWEExoMGc+PPGQEEnjw2KQbOdFkVA2TJ4ak0kb0xTmfnK0tI9fxsCJKRnDgrDyoTAoVRm3unYO3bQYePMp7GyC5vnriDTMpFjI0DRvjUw0Tg5VvBlaF53FvPd+imBVY6nUM0OwuhnPdf6gOV1ZVYqmlUpJn8bJp/BHarCCUQbefBonn6koSAfefKrS5uiBnSjP/cMg5ejlf8bK/3n5g8t/K+CulHpOKaX9J/4f/gPHPq2UOk8pVaeUCiiljldKbVBKpf43vJX/rYthWViRCGYodAyDXtlWksLDH5fPl/eNdHRIvdFXv0q6t5dioYCby0FJbpSfnGThpz9dkS6ZoRCGYaClEvDz70kdz6x50imND4sL59iQzDaWZfNbfy6u8d+6WUD2xZ+STjCbltnKqhph2stunW5RHOdv+7Gw+D//nrQ5OXqsEV1iEvp6pLM9/69g9dnwsc/Km1MK187QfMI6rFAVumESrusQg43adnzBGNnJQQHmhknD3BVEGmYyfnB3BcBnJgclAtVT5OKDmIEoVjCGk0uWJgGyKM/FCkYqEiWUKtW3R9B1AyefJjnSUzK00/A8h8G3nkFpCn3NGeiX/C1aS5tI44tFFAp97Zloi09BP+d/gGlhXHixqBrcIvqM2RAICOOey6K5RdB0AfaBIMYFH0RfeiqaL4CGhtd3GDU1AT4fxpnnQXU1WiQKnos3PAiaJtL4x34FySlh5jUNQ9cJBoNomkY6nea5554jlZI/NcdxKu7vQ0NDmKbJaaedRnd3d6WOvb+/H8dx2L59O7FYrGJq19HRgeM4+Hw+stlsBZwnEgkGBwcJh4X98vl8mKaJaZr4fD4uvPBCrrzyStasWYPnebz44os0NtaVXN1nEok047oFLCsobLdmUizmsaxQKZNdUSzmK7/9QiGJUh7Ll19JItHL449fSTjcSCTSiFJF+vq6icU6WLDgQ8c40U9NHQA0uro2EQ43kkz209a2HNMMsXLl5zEMH6nUIOFwI4ODuzGNEMoDK2wx/NowqaEUy69cDkAxX6ofVDK4KaQKZEYzrL9zPaGGEFbQItIS4fHPPI6dtPGKXsWAbmL/BIZlkOhNMLBzADQIN4SpnlFNoDpAb1cvE+9O4DkeZkBSETRdo31lO+mhNI2LGkn0JihkCpiaxPA1hZs4Y+YZjGfHCfvCBK0gt591O37Tz2RukpAVYknTEkYyI2SLWUzNZCAltehVgSouXnAxG57ZQLKQxFUu95x3D1s/srUirZ/ITnDj2ht54/I3WNG2ghd7X+TQ1CE0NDa+sJGH9jzEbS/eRrKQZHnbcobTw+ScLLgZ2LNJItvevhVwhU0/7krIHhYQnjkM4TZxkc/2C+ju/CuIzICGNTDxisTJmaGS2/znhaVHk9p5NAHAobZStNwoNJ8DJ39LgPbYi5LdHm4VUzo7LiBcM6fr28sRbsoVQG4EZZ9yVnuqr8RA2NM57lZY2G/dd6wEHqQPNUpy92BDyWneLbnOx0oSzZgcG6gvucg7kOoXoK7pMmGgPNnXCkvderpflAr5cVmnSgPzwW6ItsH7/hVO/6Yc27ZOatIr12zIZMV7vgHzPyyTHr/9HKR6Sw7zV4q7f7ipZM4n/RO7N0ut4+7bZLKhdXWpBEDHdVw2beqqgPR02kbXNTZsWMMllyxkw4Y1ZDI2Gzas4Y03LqeuLkQqVeBzn3uCkZEMy5e3EQhYDA2lSnXxUyxb1koikadY9LAsg/r6EJGIj0DAZHQ0w9KlTQQCJrfffhbBoFkB7N3dfRw5kuDAgUkGB1OcemorqqjxhTM/wXknrMbQdYqeR2usnlPaT+DHux/F8YqMZxK8OrCPodQ4923/VxRg6CavD+5nNDWF7TqMpifZtm87w+kJ+uMjx9S0z6nvkHrWos2ilrm4yuP+Hb9mKpfi6vd8lHv+4ga+eOYnaKtqoC5czfXv/RuqAmG+eOYniAXC2J6OaroHYh8G+xB4KbDahT3PvQIqL/XrtdeLfB1N5PBeTrY5I9OGdMqeltXX3SAye02+K5k4yoPZJOvTjwjTfrSJndkutfFWO1gtkO0i7+psfOGFilTdZxjomsaJzc00RyLcd+GFhH0+BlIpGsJhrnj8cXoTCZa3tbGpq4tVHR2s7ujgpuee4/DUFJO5nKjAgKueeIJkoUDIsrhm5UpGMyLrHctkeLKnh/5EAtt1Sds2GnBwaop/2LqVg1NTNEUifPPcc6WW3nXRNm6clsWXHd0H5T7JypXyePfdcM45kqu+erWA7+ZmyX3/9rcl8i0cFon85ZfLtpERAbl+P8yZA1/7mpynDNhBQF48LjL9F1+kkr9edro3jZJTvC43jVxBHOSd6fsIhi4su10qy7FMkcr39Akzflyn1L5rmgD9WERk7gVH+inLmHaOP2ZgqcsEgKEfW2NvlGrfiy5ERVV38g03EGpuFia9/B6Uovq449hz//2YgYCUfff389LGjahiETMYRLcs9v/zP9Nw0kniMB8IkBka4pXbbqNmwQJCzc2irBgbI1BXx94f/ahSA49SjL36Kum+PrRSrCwIy26n03gl/x3XcWSi+mhvJNMSAmh0UAB3tFpKPVVpv7+/UQiq0UEZi6YTsPJMMaszTfjtlpI/k0/Gss/8m4xTJ0dFYfrgvTK+9fmnSaiLPyWTAW5JlXTBh4WFV15Fqj7Wswu3WKiUeAKYgQhWMMLwO89LyWVNE3YmTmZyAPDwivI+m+atoVjIEGmYgWH6aJi7gpq2hbQuOgvQaF10JjVtC2mYuwJdNxg/+PL0eY6unT+4G1+o6hgTu0jDDBrnrhAH+z8v/78s/62k8v9dlj9lqfz/2+UY+fzllxPp7EQVixXZ/O/nvi//ylfkQE2jnC2s6TrFTEYm3HUdfzCA9s/fnM6vfN/HJCbjp/dOr/vYZwVsP/1rqVX3+eHAW9B5nHSC5Q4rmYBYlTy3bZEoua7MTOayUi/02nbY/6a4d/70XulM/YHpuqJiUY5DVbLf3Y9fhW1ncHIprGCEsQO7aJi7HCsQw3OdinzdLWQxfMHKe3ZKJnIaGqY/JCaqhSyG5cd1Cpj+IANvPl2RzbcuPIPBUvZlVcs8WhediaYbFDJTjPfsns7iDITxhaoqx85b87cYIyNiFjc5LtL4Vaej1TXK+/A8VLEIqYQw8rEqvK5nJbs9FEEN9U+vW3Mm1NRBSUY/vf4MmdEtOvL5F/IQjkBiSravfi9Eq/Ce+A1qz2six7/wYsoxeLaml+SjmUqdezgcpre3l3A4TDabpbGxEcMwMEqz60fL4X/729/S0tLCggULAHjqqadYtWpVRRpvmiZ9fX1UVVURiUTQdR3HcXj66adZtWoVNTU1AExNTVVk9VVVVRSLRXw+H1DEtpNomoFhWHheEdDI56dwnBzRaDOe56KUh22nCIebAA2lXDRNx3VtdN3kiSc+R1vbchYs+FDpOq9jxYrPljLZ15Qk8gMcPPgMNTWz6ehYheNksO0sjpOhq2sTa9ZsqEjya2pmceTICzQ1nEy+T+eFjS+w6vpVhJvCjLw+QvuKdnRLAMvAzgEirRFqZtWU5IGKqUNTdN/ezdovrcUMmJh+E19UGHbDMogfirP9G9s59+5zyU3lCNWHcLIOI2+MEG2N0rWpi5XXriQzlqFmdg2xjhh2SibsrLC40Nspm+HXhml5TwtFTWr5y/XsEV+EfDFPPB8n5+TY2LWxkuGeL+aPkbOPZkaJ5+N8ffvX2bBmA0WviIbGSGaEVR2r0DSNF3tfpC3aRmdVJ5ZukbSTJAoJIpacpz5cT87J8drwayxrW4bf8GO7NpO5SdrCdQQ1Xep3J3ZCqKMkXT8I0bnCwI88IyDbVz29T3QupA5Ixvv86yEyS3LbcwMS8bZnE5x8t/zd5wZlImDhBgH9gWapZbdiAkwndgpYz4/KJMBYl5zDCArQxygNUEvgvxLPVpiWy2taiQ13SgZzalpab5SAFKK4EYa0BJLKcnfDL6/L0T/KLeW0l2rUKT3EDwr7Hqgr7W/IY/xd2LlJJPDVx8FTn4b33CmM+ktfFym7FZLXoSaRyO++Y3q958i5jYBI5jNDYji07HoYeFFY9pVfgR8vgA9skWz4nRulBr7M5ufGIVAjZQl2UtQPvipso5p33k2yceMLbNiwhsbGMD6fwY4d/dTXhxgfzzJ3bg1NTRH6+pIVg7re3gR33bWDG29cS0tLlBdf7KWxMUx1dYDGxjDZrMMbb4ywfHkbmga5XLHy2nU9pqby5HIOGzd2VeT41dUB4vE8U1M5vvvdl7jnnvPQDOhPDjOSnqQpUsdIeoJFzXMwNJ2C6xD2BbFdB0s3GU9PknEKaGj888uP8bl1H8bQDMFJpo9C0cZv+nhjcD8DiTHeO3cZIV9Jyuu6DCbGGctOsbh5LrbrkLVzNEbrGIiPMpyeOPb8usFtz/yIv112EbNqGzCLB9AmNkLjnaV89U3TUncU5F8TMO30l2TvORi9HuquBmsuDF8qgN3sKP3OPMAUYF8clOOs9pK8/nZh34uTJYM7jQpPNHwtNH5Vtme7wGwgpS8hWbBJ2TZRnw+lFNc+9RT3X3QRh6em6EsmWdHeTsAwuPyxx3jwzTcr0nlD0/CbJn//2GP8au9e3rz8chrDYTKOg6cUGhC0LBzXxS2Nd6/ato0Na9YQsiwyjsOtXV1cv2oVx9fV8XePPlrJeX/goovYPzHBcDrNGS0tBA4eROvvFzl8Swv09Umd+Re/CE1N8Mor07nrqZSA+jvukJi4OXNk/1BItpcN7AoFYc4PHYKNG2Xf2bOPBe0gGfCDg1I339Ag0vsHHpAJgOFhOP10UNqxOe5v98CKJQLUj17v9wlo7+kTOXsiPS1zdz042C8O875SYo2hi+TeMqel864r+1qmfL9FV97T4UGpb2+slUkCTY53XZdioUB2aIi9P/whp9x4I8p1sZNJfNEoRiCAa9sYJbO5sVdeITM4SN2SJZW891BLC+m+vsrr7PAw6b4+GpYtIzc8TN3ixWimSSEexwwEyI2NsfeHP2TBpz+Nv7qaVzdvZsXXvobu8+E5TqWtU7/8ZZkgMHWMoyP/DJnUR9fhX+4Rr6Zl62Ss2XsAZhwnYLvoSNTxdzcKkK9pmC7NrG8WUJ+Ki6K05DNEOR9+x7Pw2a8ee4w/IHFzFbl+KxQdXJ8fO5coydhXYPgCDL/9OxrmLCMzOUBVyzyG3v7tMePN7NQQpj/I+MGXaVlwOsVClrGe8ng3SnZqhFBtS9kilOzkIFYwjBWMUQqDx8mnxdSuulk+E88lOzUk5aLBGHY2zljPbhrmrsAXqkLTjf+5TP7/y6U84W34/o9h7/+UpPJ/Xv4Ll3Jte6Szk+Vf/SqRjg6cVIpiNotbKOBks2imeUzuu26aZAYH2XXzzWT6+9F0nd1f/Sq927bhpFIoIJ/JoC74sHRGH71CDOGyafjQp8WF82OflU6xsUWM45JT0oF1zpUZ50IOHn5A6t+jMXn86Xek43NdQImMaGxQOs0V74ULPiLrz7lYQGikStqZGIHedykVL05L5tPS+YksaNcxsqCj5eu6aYkBytQQ8cG9mIEwViCC5xXFhb5ol2qMdHTTQh0lg2+YuwLXKRzrzIlMdrgFYftNf4RwXRu+cDVoOq2LzmTGqR/ACISknvxog7odL0iWenyyJD3LSyxc5yyJhZsxRzpVTRO5fNezIqnvfg4NUQ5o7TMl371seGcXhEVXCs0fEHl9NIa+8j0Vib5x3l9gXPkFjPP/AqXpKM/FRSMej9PX10c4HKauro5QKEQ6naajo4Oamho6OzvRNA3P88hkMpVIuOeffx5d1zn33HOZP38+zzzzDEopzjnnHKqrq+no6MA0zYr0PhKJVNqwLIszzjiDZDKJ53l4nkcqlWL9+vXEYjGKxSLDw8NMTU0BHkp5EruXGUXXLTzPwecLk04PYZpBfL4IlhUiGKwrsf4GTz/9RYrFHKYZwDACrF+/mY6O1WzbdhWp1GBFHt/ZuRpN04nHjzA52cPChX9Je/tKtm69gmx2gkikmXC4kfXr7ySdHqapaSmmKSCsvX0FuufnhY0vsOehPXTf0Y2dsmlb0YYRNORzK3q0r2ynurOaYq7IE1c9QTFfJNoSZdX1qwg1hPBFfIzuGcVzPaygRWY0Q6Qlwlm3n4URMIg0RVCewhfx0baije7NEim3/c7tYkbXHEG5CjNgUkgWsFM2dsrGF/PRuqy1YkhnuzavDL3CWEby1ncN7KImUEPQCvJkz5OErBAFt8BLgy+xom0FfsPPWGaM+lA9x9Uex7rOdWzu3szM6pkMpYdojjRz6ZZLOTBxgBVtK2gIN6BpGhknU8mL13WdulAdL/a+iELRGm1lZ/9ODk4d5HNPfI6IL4Jft9CyRySSLdQhABwPonOEZX/zZqhfA/56cYavWSryeeUKwD9pMxRG5Zi3bxUAnu0XZl4zhIUv58LrfqheIq81XeT4L10hx1jVpX0sAe+hTombG98uTHk5q7aYLwF3TZhwX3Q6oi49VALaJQbeFy3lu2uyj52WY1EivS9L4NMDJQa9NFDySlJ4wyfg3y2I9L5YEHl9oF6OLeZlP88V0L7vIQHjyhPTIM2AXbeK8Vx2GJ79TClj3YPUAJx8zbRcPj0kteqJg1Kf/vJdYnAXmwkL/gZW3CRRc594B9rfIyZ277lTJimSJYm+k4WhnZL5DqIusMKAoqEhxLe+dS6dnVVkMja27dLeHuPb397FySe30NwcxTB0gkHJXU8k8hx3XC333ns+HR0xLEtj7dpO5sypoaEhRKFQJBLxcdpp7RSLHpqmEY36WLWqg3y+yHXXPUU47KOhIczq1R0MDqbIZh127RqgpibIzJk13HXXOTiOR952KpL0kaMi4YZSE4R9QZG6D/egUDREammvbiLiD7K09TgmMgm+8bt/wVNSkOJ6Hm8OvcvS1nmcc8Iq3hk9xJHJYdKFHAXXIVQyr7vjt/+EpmnUhKoARWO0liUtx1EbjrGk5TgSuRSFos3S1uN4YOdvUF5BQHvqIZHET2yG4DowWkU6r0cgtE5AeXCl1Kej5PnEHfJ9NH8PnAEoHgIMMaob/jvZNrGp5Ey/SY6BEvPeCContfGUSj0abwZ3SEB7cAVM3omhkkxks/RMTuI3DPymyZfXrsVTir5kUlj2rVs5GI+zef36ael8JsMVjz/OoXicO9av55cf+hBhn493Jye5ats2NE1jIpeju68PTdMImCa6plVi5xrDYb7e3c3qjg7CJZC8oZTzvqF0/rt27GBpUxO66wpob2yU2De/X0D5Qw/BrbcKuDs6dz0SETn79ddDW5v8jVdVCQHhusKe5/PwxhsSF9fQIAz9HXdMs+jp9HQNPMjkwOrVUkv/yCOQyUwb1BWLAsrbS3Xl0bBI2kFA+0R8en3BFqBddppvqpP1ifR0ZFzfMBRLUvu8DYcH5DjPK5VF6NMZ7nZRXhv6sUZ4mlYC+C6e66IBe+67j7rFi8VU7pZbcHM57FSKdG8vr23ejOe6oBQNp57KzAsuwIpEmP+JT1Sc5ff+8IcM/Pa35MbHaVy2jFnvfz+R9nbqTzxRlGNAsL4eMxCoZMW/ff/96IbBossvRzMMYdg9j3BrK/M/+UkyAwPs/sd/RDfFa0giNXUZY/7zt0QtevGnpse0himgXXmy7cF7pC7+72+E2Sf8nkO8Eoa+7BD/k28KgWTnpc1l6/79MZEq2Par6SQl5cGvfgRFMVVuXXQmxXwaDY3WRWdJlnt8GM0wqZ+97JjxZrnUMzG0D7do4+SldNPyR9A0nVBtC04uKZL7TJxArL6UiCSldyhxnbeCEQb3PIuTjZdAewRdN1Gei5PP0LrwjJJ6kf960P5/Wazcnxn3P7D838C4H820L7z0UoxAgEBNDcVCgde+/nXm/c3fEGxoQNN1rGi0wsK7hQK7br6Z3ieeYOaFF7Lsy1+WKI5cjvj+/dQuXIidyRBtbECzC2JKV9sos45HG8RNjckMY1WtuM7PXSizkU//WkzpyrOY/Yckp31yVFziP/wP0qG6RZGK9uyRdmpKdghKyXG//IGA+OpakRx5SoB/ydTO+/DfU6D4e4z7CnzBGJnJAUx/kGIhhy9cJc16rjDjpRnGwbeeoW7WKfhDVXjKO6aeJ58cI1zbVjnOdQoYPj9aKVtZeR5OIV0yrFuGFQij6SZ2LlFi4VcQ8EflJuR5eP1HBFxHo6i9b6J6D2Fc9CGZDJ2amGbVq6ohk5bZWrsAjiN18Ge/D3IZvBefE6M5NMlTLbGAms+PmhqfZuHDEbxtj4gUP5sWoB+OoNxipYbOMUyO9PfT1NSEpmnYtk04HBa5mesyPDxMW1sbhmFQKBTQdV1KKDSNN954g/b29oqZHAgTX2bNk8kkLS0tZDIZurq6WLt2LbFYjEwmg9/vZ2RkhKampkpdvG3bpFKpitFdLBYjm80SDlu4bgHPE4M6ywqTyYxhWUF8vjCaplMoJHGcHI6TJZnso61NpGFTU4dJpwdpa1uBaQZ4/PHP0NJyEnPmnE0k0kw83kcy2Utb2wrAo1i0MQwfhmERjx8ikxmjqWkJhUKScLix8tt4/PHPsGrVdUSjLZiqiqmeKZL9SdqWt6FbOrqhY6dtUkMp0kNp2la0kY/nsYIWhs9AN3WKhSIoGHljhI5VHXhFT4zpNCoMfd3xdXi2SOef/dKznLnpTMl0NzTstA0K/DE/kwcm6drUxZovriE5kCTSEqHuuDrcgkv/zn5azmwh7aQrDPibo29yYvOJ9Cf7Gc2MsqJ9BZ7yJOP9hY3cuf5OJnIT9Cf7K0ZzN6y6gVk1wqr6dB85N8dVT1zF8rblfKikYrjuqeu4btV1zKqR2Def4UPXdArFAkFLFC9XbL2Cz674LHduv5N1net4/wnvp9kfxhh/UWLf8mMCnnddBifdAa9eL/L592wVY7piEvyNFcUI6UOw93ZYeCNEZosEvWwQN7kbqk8U6fzR+y74opzLDElOfNUCMKuEeZ96DUKtwtbPv0EmEcyQ1HNHWoVNt8LSfnpQQHQZbKOYzmWXwdKxjLl37Do3L2A52l6qjy9OTwaU91Xu9OvchID4qlnSnp0UeXx6UBj/xEGRszdLmQaGT9pNHJTn3TeLfL1t9bTpnBkQ+XzzcpHA73tIHILX3yfnTx4W4L98A1TPnQb1/hooxCX/XTPls0v0QqBKavYLcZH+Kw/cAmk3wu+6hmhoCHPnndvZsGEtM2dWVczkDh6cYtOmLu6++xzGxrL09SU46aQWlFKkUjZVVX6CQZNMxiGVsmluDpPNFhkeTjE0lGbFirYKuz5rVg3Fokc26xAKSf9iGBqaBqOjaRoaIiWgD4ahi42AYzPpTjKanmRR8xxufeZHbNu3nQvmr+FL6z9F1i5gGSaFos14Js6Pdz/K3532flpjDbw6sI+BxChLWo7jx7sf5VMr3k97VSO26/DWcA8N4RomsnFOaJyJZViYul6qex9hads8frjz3/jUiv9B0PKTc2x+sPM3/N2K9xOwfET9YUzdYDg5QV04RI3PQfOSYLYCRWHU86+D1QZaEIwacKemH1UKzDYojoA1B4Y/KcA/+lFo/i4UByDzJFjHSRtOn+S1WzPE8C63U2rirbml82Vh9AZh+Z0+GLxYXOdVjiSzeaF3kIZwmDu3b+fGtWuZUVWFqWnkikWuePzxCgv+vQsuYDidpjkSqRjXXbJwId+/8EIA7GKRqXyetG0zs7qaqVyOgGmSdhyq/H4iPh9/9+ijfGntWmZVV+N4HlnH4Yann+a6VatoiUbxGQaWLoqylG2jgKBSVB8+jNbXJ4x7OCy17mWWvKNDpO9lY7mycdyRIwLsN2wQ1l0pYcnvugtuv10AfjotNe233CKMvM8n9fC33CJtNzQISK+uhp075Vx9fVJjPzYmhnWtbVSi3zpbpvPTE2mprTYNYdDdUj9TNq+rDApL/UYmJ7FynifAXClh4KcScNKCEguPgPnyRICuibldR7Ow+WVWPleQiYBYBMexcVIpcuPjmMEgb957b0XJeeqNN/LSxo3M/+Qn0U2T7PAwdUuWiKdPsVgxh7QiEVSxWKnbTg8MkB8dpW7JEoxSPfzEG28QammpyOmdVErq2Utldp4rkXSUsI9SCrdQoO/JJznu/f9Dctz9ARmbFh0hjvoPSsJRITfdP//6n+ADH5fXL70Ah/YJE28YwrCXx7rVtZQJG7JpacMXlN+PYUn7lk9Ipsd/IbL4hmZRlMYnpaS0xNy7hoHSQENJF+8VGdnXTfOC98g6T8gKt1jAMP3opk8+w5JpXMvCM3DyyQqJ4eTShGqaQcE7z95PrGkOLQvfK6z8gZ3HjE8H35pWktbPOoXxQy/TuuhMPLeI59qYvjCqFKesGeZ/HXi30wLay/efsx8o3Tf/tJf/iHH/M3D/A8v/icD9953jj5bAv+c736k4w8//5CcZf/VVxl59lcVXXAFAqKlJpEW2DZpGqq+Pt++7j5O/8AUKk5Nkh4dpOOkkivk8r915Jydfdx1+U0PLZaUDHDgktekH90p9UCouNT3JKekMVfmGkZrOaf/VDwXApxJSqz57fsn9VJNszLJMXinpVGceLyx82Wm+5204sEfqjMptB8MlEO/hGQaeJgZGlY64ZGDjZOMV6bwvVEUhPYVrZwnVtFIs5DADYTzHpujkKp2b6Q9VbgZFO4cViFK0s4zu7yYxtI8Zp34AKxhl7MBOWhedweBbzx7jQm/5wxWZ/IxTP0Ckug3iE3gvPCPsdzYjsvlUUj5T00TTNNwtv0TteQ39w59Ci1VXXOi1ugZUoYBmCWPnbnkYrWMmWscsVDqJ3tYpn3VJtuVu+SVq31voH/o4evsMVHwSrboWpetyD3YclGmiabqw2K6LrRt4nkcymcTv9xMIBBgcHKS5uRnLsipZ7UDFcb61tVWY1UyGBx54gDlz5nD++eezdetW9u3bx4c+9KEK4E+n0/T09FBbW0s0GqW7u5uzzjoLn8+Hbds8/fTTrF69mnA4XKl/z2Qylbz3zs42wGVqqoeurltZtep6ampmk0j00tW1iVWrbqCmZlbpPYn3wNE3m4mJd9m+fTNr195ILNbB1NRBduy4i/XrN2MYPhwnx29/+2XOOecuSpoyMplR/P4YPl+EiYn9pf3voDyS2bv3X+nv3865534LQwtBUSN+OE6iN0Hb8japN3fFEM5O27gFl1B9CM3QcG1XvvOSJF43dCYOTJAeShNrj1UAeLQ1iud6FBIFfFEf6dE00aaolGsHTDKjGfwxP76wj94Xe2lc3Ihu6Hiux9ieMZqWNAFghSyKgSKJQoKUnSLqi1Llr8JVLkop0naaL//2y2w6cxMAD7/9MOfMOYd/fP4fue3M2zB0A38p4qXgFtjwzAZuOeMWor4omqaRL+ZJ5BPUherwlMdUbopcMcftL97Ot8/7Nq7nMpWfojpQjaVb5Io5Xhl6hfZYOy2RFvqSfTQFq2gji5btg7oVIk8vx6opT+TroTZxk3dSIm+fel0AdrYffnfhNLAvawVfuw5OuFaY9KnXpF17Ch5fAm3vg+XfA813lEy+RdzkjaAAaN2Q79stQPJtqD2tJLuUvucYN3jXLtWRuyVjOlsY9DKo9+xpOXsZ5CcPC9jWzaOAvzd9zopbve+o122lmvujBlOeLe0qRYXlz0+Bk4d0L7SsEOm7coUNt5PQfVMJwK8ROXwZ6OvWsdeoG3Lew0/C6Kvw3m/JdpRMIjhZeOn3pPbpETlv84oSeK8HFLZnkszq7Nw5UHGWX726E12Xwfyll27hoYf2sHfvFdx883Nce+1KZs6soq8vyR13dHP99auYN6+OffsmKi70LS0Rdu8epKEhzLe+tZM77liP329gGBr5fJFw2Ec6bbNhwzPccssZRCI+DEPD88RZPhg00XWZ+LSLDsrnkClkaYjUMpAY5YGdv+G69/4NU7kkD+z4DZ9a8X7qw1Xc/uw/VUD9tad/DF3TMXWDN4cOMKuujYgvSKFo8+54L4tajkOX4TgAU9kEEX8YX8kpOucU+O2B3bRVNXBi6zxc5ZG2c7heEb/pR0MjYPlEpo9HRO9Dm7hDItvKvxktCJS9DhxQBRi9Duo+L+x6aJUY2IXWCPD2EhLjVuyDiVtKUvtWMbNTJVa4OCQsfeNt0r6yS21ePe0o33SvGNfVbQBrLpmi+e8A+j3nnYeuabhK4XoehqZhGQZFz+OhPXv4i/nzAbjuqae4YfVq2mMxdE0j6zi8NjxMazRKfzLJqo4OcsUi1z/1FFefdhrH19XheB6WrrN/YoI7uru5ftUqdvT3M7O6mtWdnYxnMjRHIuRdF79hkCwUyNk2c4JBKBbRRkdh3TqRqq9eLWBtZEQA+K23CtiurRVQvn27RMgZxjRIv+46yXXv7BRzupaWCpDknnsE1MsNRf63tgqLv2kTXHutgPXVq2Wf0tiFZArStrDoDTUws1XAuN83vZ/tCJPe2TItlS8/T2enQbiq3LKETS+DeJDcd79PJga8Uv26aZRi5ASkT8vpPfmbT+dx/AZjr75K1Zw5mNEo2eFhsiUpPEpVEooKiQS+aJSJN98k1NKCv6qKqXfekTFmmVj6+MeJtLeD5+Hm80z19FBz3HE46TRWKMRUTw+NJ52EWyiIFD8WQ/f5KGazxPfvF0k9UMzleO0b3+CET3yCQE0NwWgEzXWOdYc/+4Pi8K7rYlT3qx9K3HD5frHt4el0I19gmlhSSiaJX3kBTlxZAuG/FJa9POb0BcSPafCwMPKFnIxTS4bAHF1y+pErcH0WdiHDeM9umk5Yi26YoOloGuK7NNFHVfNxaLqOQsPJJUrgvKW0n4aTT2P6w2QnBzH9AcYPvkzD3BVCYpVKNgffepZgdTORhpkYlvQlZbJJ9k0TrGpA0w2U56KVTDftbJzxnpdoOWE1hqGj/Ve4xZcZ950bxSj1j+XG/4ktf5bK/1++lCPidt50E8lDhygWCgCc8oUvMPv976fhlFPQfT4aTjqJfT/5Cc2rVrHgU5/CikTwRaNopllxnk/39RFuaWHxFVdg+v1kh4cJ1Nay66tfJTc2Rt3ixVgBP1p8Eh75Z8meLOWmU1MvBnO1jdDYJmD+wFswNS6g3i4IyE9MiaFdPie5mLEa+JdvwciAgHalpO3ElNSwzzpBZi7LUqNtD8OCk2TmMpUARG7OL74vsqZUHKVJrEVZHlQ2SdFQaLpJqKaV8Z6XcPJprEAEMyAumpL3rdAtq5SF2crEoZfxXFtAn6ZjWIHKzGNZthSqaa4YemSnhqfl9HOWYZg+0PSj9m0Rc7gXnhGp+/bfoXfMQsUn8Z7bBtm0GH+UTOe0xaeIKZ1pTkvqlYJ0EvexX6KcghjazZkHfj96WyfeYJ9kuCuknbVnVozwcF2IxvAGesGxUbYNJbbc65PvRxvqr9Sul0H7wMAAkUgE0zRJp9MYhoFt20xMTPDYY4/R2NhIIpFg69at+Hw+PvOZz3DBBReg6zrnnHMOl1xyCbFYjIGBAeLxOM899xwdHR10dnaSTCY588wzyWazbNmyhXQ6TVtbGy+88AKWZRGLxSpGdwCNjY2lXHePrq5b2bPnIbq77yi93sSePQ+RTg+RSPSWctYzYhboZOnr68Z1HaqrO9m37xFeeGEjmqaTyYyWnOcDDAzsIpMZLZnXHaGvr5tE4gjPPXcTqdQgAN3dd9DWtpxUaqgksx9iyZKPct5535aae1eAeaI3QbgpXMb+eK4w5YGqAIEqMZKbOjhFbkIGxspV9O/ox7Vd/FE/4cYw3Zu76VjdITXvQQHnz938HOmRNHXH16FbwuQn+hJMHphEN3UwoPnEZjIjGbZdtY3cRI6O1R2V15MHJiugASBkhTgcP0xXbxeO5xD2hfnM8s8wmBrkqm1XsbpjNU3hJjav38xEboJXhl6hN9nL32/9e0Yzo9xyxi34DB8v9L7AoalD7BrYRcbJsKN/B/linrpQHQEzwJqONeSLecZzYoL3ytAr5Io5QlaIdTPWMbN6JkEryF077iKVnxLQHmgQ2Xq6RwD1rkvFPT59QAB82VE+NywZ7YFGaFwnoL1htdSxv3yVPNavlEczLNL6yd3gq4Hz3oAFX5A60vSBkky+AfJD0zXrypFouN1/L5MGsROk/rwMyjVNWO9AvRxTZgb0Ui2ppkFEBlnYyRLY1kXWXq6PL7vR60aFlRbTOns6890tlGSqNuTi8ngMA6JK9YBBObeTFcm7FQYrKIz3M1dAvAcGuiA3JuB/xQaYebaA9mCDMO2ZIalrf+YfINkr7bkFObZtDZx+l0TEJXpKcvswhBrg5KshO1Jysh8CK1Bq8wq5Hii9Z5NAwGTFijbGxjJ0dMQwDI1CoYjnKe6993y2bPkwVVV+brxxLWNjGSzL4K67drB6dQfhsA+l4J57dlWy30Mhi3XrZtDREeOaa1YyPJxix45+jhxJ8LnPbWP//gk8T3HllcsZHk7T1dVLKmXz7ruTvPLKEEeOJPj0p7fw7rsT+EM6+8eOEPQFyDkF2qub2HDWJwlafkZSk/zNqRcwmp7EMkw+f/pf85tP3MkXzvhbxtMJ3hruQdM06sPV3PW7B+mLj+ABC5rmkLPzHJka4mtP3s9AYoyAFeDWZ37EQGKUjJ3jjt/+E++ZeyrHNcwgbYsZW9DyEwtE8Zs+UoUMWTuP63mEfYZI5YPLwR2E0ask7o2SkZnKS927Zkl++8TXRcae3SV16xUkhgB0LSixcs6w1KrjwsiV4ByaNqNzRyG3Q1QVtdeAMwqxj0oMnBYS6b3ZCiqH5Q0RNE02lBzkv7R2LfF8niOJBAHDQAF9ySSXP/YYRc9j7YwZXLVtG2PZLPecfz6za2oEiHkeAdNkcWMj/SWJ/eWPPcZQKsXK9naG02k8pdje10e+WDwmu/3iBQs4uaWF4XSaulCIQ/E4Vz3xBK7n4TcMOv1+SCbRhoYEgHd1CfM+NiafSzgsUvb774dZs6R2XdPEPd7vl/r3I0fk2G9/W9j3yUlYulRA/4wZAthvuUVk7y++KE71miaS+nJ2+513imu9bcs5ikV53twkILyhpgTGS0D7QG/JjA4B7eV89bJUvndI9rOsaVM5zz02rz3gkzZ6+sTMzu8TUJ7KyPYymI9Fpl3qFXBooOQsH0LTdIINDbx6551kBwYIt7QQam7mpVtuITc2RqSjQ1Sd+TwvbdxIoLaW7NAQmmlSM28eufFx8DwaTjkFKxxGuS7jr79ObnKS+kWLyI2N8ea995KbmKDxpJNI9/WJFD+fx04m8Wwbw++nfskS3Hz+/2Hvz+Plqup8f/i99lDjmec5E4MQJhESMkErs2B3263pVvp2260E7HBbQAEltHBtEjQ0LXajIo5tT3aiV1sDMQQUzeFAQhjlEBJyMpx5rnna03r++FbVydH+Pff+Xs997vP8ruzXK6mqvddau6pO1a71WZ/P9/OR8YCWCy7gzW9/G2VZaMNE+76QSiDu8Lv/XV7jd7+0MDd96ocyhw1HFjLZKzL7IIB/+yrculHmraedI9fEJ74nfZPzC8bNnisLOkvPhJ1fh7/eJPNUp/zZ+fBm+MTfiBmzEm+TmaP7iTZ04JXy4g5fSBN4LtNHBog1dKJ1IMbJgGHYWOEo+cSkTHF1gJtP4hZSxJq7Maxwea77ArHGLuxoPVpDxzsuJdbYjZNLSvmkaWGFYnScdRmGYRFr6sJz8uQTE3K8zPaHonV0nLkWI30c9eTH/vdI180QNL1DmPb/Q0D7/2h7G7j/FmyB4zD42GMM//Sn5CcmyJw4wf7PfpZiIsG7tmypmnS0XHgh7/zUp4h3dEiUXE0NoYYGtOdVnecHH3uM4uwsP/3ABwg8j9YLL6Q4P8/Yz3/OoW99i461azFMY8Exfs9O+cEoFQWgX/WHIgNzSnKRO+0cYcFrG06p7SkD72hcan9+ukPG+vlPBIBHonDDLeLeadqyz1BycbvkPQLYG1pk3HxWLp6nuts7snBxqjunW8zg5JILF8DGbjpXvhvLjmFYNlYoRsvyi0XurhROPl1t1/GODZjl2mWlDMn0Nm1MK0S4ppHuc68Ew6Lr3Ct5x+U3Ea1vw47W0X3uFViRGkChfY9wvIHu864SUG6aAspXXoCx4Qr5O1aA/L6nRXLvlKChCfO6P6yCetW7FOPK60EZ6GwGPfQmOA6qvglVWy8GJ7t/iGrrhFwGf9dO9Nw01DVg9C2HTBp/7y7QGqNnSfU99J/47+j5WVRbp+TBR2MYIycwyu7yY2NjxONxQqEQnudVP3u2bZPNZjl8+DClUol0Os173vMetNYUCgWCIGBkZASA3t5eMpkM7e3tWJZFX18fuVwOrTWdnZ3VbPdK7Nvy5ctZv15iT/r7+zl8+DCZTKYaNaeUSAKvu+5RPvnJKa666u9QymTDhi2sXLmR7u5V9Pdvo7t7FdnsJE88sRnLilSj37LZKT74we+zbt2nUcqkp+cSPK/I6OjzdHVdRDhcS0PDEgYGHizXr0fo7V3H889/Ea0DNmzYwooVV/H881+kr+9SGhqWoJRBPj9HEHiowGb8xXGWXLqE5tOasWIiQVSGwo7ZOFmH0f2jdK/qprajllBNiNxUDjS0ndvGE5ufwMt7RBoiXPnglfSu6+WX9/8SJ+tQ11PHlQ9dSbguTPJYkj237SFUE6Khr4H289uZeGmCwAkI1Yao7a6l79I+Bh4cQPua9FiaNZ9cQ3YyW/07NkWa5G9U38uq7lWkiikATm8+nencND8+/GO2D2xHowmbYUbTo6zqXsVYeowfH/4xo+lRZguz3LL7FtribUTtKBd3X8xoepRz284FoOgVaa9p50/O+xMsw2JofojJzCQXd13MeGacTbs2cSxxjIGRATKlDP9w7T8QCzeim1fDoYdEFn9ouwDdint8uE3AbaxL3ODtOsiPSwScX5R6dLTEvI39WOrXl9wgLPvMs4ASM7qXbgWrRiT1IGOc9UmR5zevAqscaaNsGWN4BxRGRaruF0UmrnW55tyRc2ZGZPzAFTm99hei06SWQY47mYUoOVgA25XynOxouc58VBYCms4sS/IDYfU73iWPk8fKgB4Zq5SmKtGvyPS1lki2cL0Yx8XaBHxnx0RNEO8UV/iudWIkd9Gn5HWUUiJVzI7Ia316s4Dw3ES5BjYtMXPrt8q5+u+WBYh4pzjTZ8blXIUZYentqDw3w8b1NENDCTZv3k1ra5yRkTSeFxCJWBSLHnNzedat6yUWs1m+vIFLL12CYSgefPBK1q3r5f77f0k26/Dww9fwZ392PseOJTh+PInnBdx999N0dtbQ2VnLmjU9RCIW69b18sUvPk8mU+L005vp7a1j7dpeTFPxyCMHOP/8djo7a3jwwSuorw9jKoMzWpdITagCL/CZSM+SzKd4R9tSakJRzu86A6PMeH39+R8ymZkjGgrRFK2j5Dk0xer55O/8CYlCmkIpj2kYhCybuXyKZ4YO8o8v/ARDKf70ouuYys5TcApc0H0GIdPCVIqasGRbVzwpoKwmAyJWCE+b6OYtEL9K2PDMDol0UwZ4wwK6dR4IBEy3PQhYwrhbXTKgPwHOkABxqx3mvyHxcpWt/cviJN98N8SvBlUrAL5wAKxOkc1P/SX4U8LcYwk7P7WZkErhaU3csnjk2msZTaepCYXoqq1FA+lSqQqy06USI6kUn1yzhpFUSohPrSl4HqZSGErRGImwurubh557jh8fPsx0Lsefnn8+a3t7GRgZoS0eJ1ksVuvZ79mwgZhtM57JcO8zzzCcSlVd60+mUmzevRsbUOPjcO+9YhLX1gajoxL1Jj92As6PH5fF71hMMtizWclYb20VAH/8OAwMCIg/elT2bdgg86KvflUeJxICzqNRqYvfv39xTJxlwe23iyldJCJ9K3XnZyxZkMmfCtRVuf78nNMk+i1kL8S/VeLilvcIc26Y0reuRuZWILc97eJS/9bJMrseX3CmP1ZWqdbGFwD98p5ymWIOjV6IDv7610Hr6rz00Le+JTJv3yc/PU376tXEurpofde7sKJRCvPzAspnZ+m79lqsWAwdBLRddBG1PT0YlrVoHqp9f2HOOzmJXyhw8P77ZSHANBdA/uwsvVddxbu2bJGoYwIhnR7/N3ktq98Nf3QznDiymBT6wEeFBPrpTplzfrhc977zGwv18Je8R+akDU1yLbtmI5x9oYD801YK6DcMkdybJlz7R8KsX/chmXfNTgqI710uEXHHDqEK+UUJRxWnd98rEWvsEuNk0yqbJO8lCDxMK0KkroVSNsnYr57CCscxDBs3n8LJJWnoegedK9+D7xRQhkIHHsqy8Ur5cgzc07j5JIXUNF4pj2FaBG4Jw7CJNXTgu6WqWiQ3P4FlGhgvPCC/B/u3ym/O/7e337JYubel8v/J9n+aVN7N50kfPy7umeVaoqpEvqODwcce46yPfITi/Dxt73oXdk1NVVqPUijTJDs8zOuPPso5N91EqLGRxBtvVPuuvPFG8lNTxDo7qenuxjIN1PS4rFS+94+htVMmb6fW/dTWy0WpIjEqFQVQJ2aFmW/pkIua50re+xPfk/z3yv1Kv2hcpEaFvDjHh6Pw1utSL3TRpYud7H/3T+S83/sa/kduxcmnqk6ZTiHN3PGXaD19NW/94jssuej9ROvb0FrjlfLMHjvFAT5ai1vIcPLgD6nvPJPuc68o181KLVHguximje85mFaIwHMxLBu3mCuPI86bokaTlelKDVLHWZfilfKYGFhWRKpbx4ZRHd2Qz4kUfsPlqIZm9Nw0OpvB6FkiwLri/H7dH+Lv/hHG2svkB8Bz0akkRt+yqrTe3HwXwTN7qn2My65C1dafIqlfSjDwDOa1f4C/+78vbheLE4wNozu7mcsXSaVSdHd3UywWqampkRieIMAwDHK5HK7rkk6n6e3txfM8SqUS8XicVCpFf38/V155JYVCYVGbisN8fX09vu9jmiau65LNZhkYGKjWvVcM7zzPw7IsYrEYruvys5/9jGuvvZJkcoh9+7aydu2d1NZ2YRhW2V0eQqFafL9IEAQ8+eTtdHevYsmSy+jv38aaNZ8kl5uht3ctyeRxlDLL7vCfIRptYe/eT7Jhw900Np5GqZQml5uqyvFra7sIlWuTtfZx3Vz1+Pr1nyEeb2PPntu4+oq/x6KO1MkU6dE0vet6SZ1I0f9AP+vvXk/j8kZmD83y3EPPcfXDV4OGUqZEvC2OYRkU5gvMvDFD75peULBr0y76Lu3jrPefVW0HlH+MNYZlkJnIEK4Jo9FMvjxJXXednO8z64m3x3+j7r3mrBrcwMULPF6aeInV3aul7leZPDvyLK2xVjprO3lp4iXa4m1M56a5bMllHEscYyQ9wuru1QQEhMwQz408x7HEMf7grD8AFuralzcuZygxxAP9D3Dn2jvpqu0i62RpiDSQLCZpibVw8+M3s2NwBxtXbuRvr/xbpnPTbB/YzleueZgmOyoGdRUn+NK03F95N0Q7hWWvuMdHu8DLgpsQsF9xio/1yG3jhVCaKbf/FNScAUGZ/QgceOUuGSfcAi/dJv1rT4PMMWH4m1cLKz77PLSuEZCdOiEseNOZIpF3slLrXUoJ86yhWpdecYn3S+U4tLIZnZMREK7LYL0iSz/1uBUWA72KhBMWQHqlnZuXBYGgbL5UyXZPHBFjulWfEdf4X94hdexANTrOzYo5XX5KAHnrBXLcjsuJnv44vPth+Pmtktl+5gdFbaCsshleWUptx8oGVx5MHpBxirNikLdqC9R0yPkmXoC2C0gHjdx44y5+/OPDfP/7H2Tduj601riuj+sKgLdtg2efHaGjI87SpQKkLMtgejpLc3Mcy1I8++wIbW0xlixpoFTyqakJUSx6OI5PoeDS0BBh//4xOjtraG+vIR63KRQ8JiYqtfA9RCKm2Kh4AfPzBWIxm1i9gadd/CBYqGFf/fv0NLRzcn6CeDhCbThOppSjISpy7qLnELMj5N0iIdPG9V3ssgTeUgajZbn9R1f/HtPZBO9oW0oin+Y7L/yE2y67gXgownByim/t/w8+tvr3aYzV8eb0Cc7pWIFGM5uV53HrZTcQsUIMTh5lde8KDLSY0wUpMOqFLZ/cVK5d3wgt9wmAt88oM+sxwAVMyO8TA7r5hwScmy3ydw/SMlaQA7OhLL8PwD0mZnVNnwR7KUzdLkA+fpXU0auwSOetVhxayNOJBp4fHWVVdzeGUszl87SVzUndIODA2Bjrens5mUrx4MAA26+8krhtYyqFGwR45Ta9dXWsaGriWCJBxLJoicWqdeyfXLOG8UyG1d3dRCwLX2sCrTGUYtOuXYuk+nOFAvc+8ww7BgcJbr0V1d8vAHxmRpj04WFxgD92TO6vWiWmc+3t4iqfyUBtrXy3X31V+vT3C+ifnl5wh7/7bgH6+bww65/5jID+Cy4Q8F4sCqCfmhKju/5+aGmRmve2NpHTDw6KfN/1BWQXSrKYMDYlALpS036qvL0CyouOAPXl3QLaK9eQwIdsQcC45y+MMZMQF/pwSBYFejvK1xu1uO7dKTPKhsJ3XNJjo+QnJqQmPRQiffIkh775TS686y5KiQSDjz3GhXfdBUBhZobD3/0uF3zqUyIWeOopMaF75zvL1yVNdmyMN77+dc7etIl4Z2e1HFQphZfP88rf/R0XfvrTHLz//gVfps9+lvzUFJMDA8z96ldcfO+9ZEdHMcNhattaUN/9kgDr01aKqdzyd8j189++Atd8UOrP/UDmlhU/poqXU7xW5rKNzXKNKxXFb+nKP4C6BgHrWotColies6Lk7+S5AtBNQ977xCy4JahtFAl9Tb28j+XUBTefKrvDr8aO1ODk09X5pVvI4uQT1LQuxY7Eq9nvlfLM7nOvwCsVMO0w+eQkdlSijAn8RY/Hf7V3UV275xSIN3WL51Pp11OZVmPaEUrpSWqMAur/MOn6/+7tban8b/lm2DaxtjbO3bwZZVms3LSJvmuuoeW88xZWPL/zHZrPOw8jHP4Nab2bTlPT18fqz32OmiVLAGg5//xq38Gvf53WCy8k1tGBm83KhamuoRwDVyeyI98XQ7pXnl/IWa+sYBZycsFr6YDTz5ELoOuUHeSB5nb400/IZO5UOXyhvKpbWSGt1Gr2rYCR43JB/fBmcQK97gYxGzEs+NDHQWvscJxYo6wYhqJ1dK58D6YVXpCrKwPDtPBKOdJTQ8wcPYAVijJzdD+xxo5Fzp06CGRlspjDDMWqF0q3mMM8xXW+IksKfBftOZSySfKJMQzDovOcy8vny5KZH0Gh8Hf/kODfvknw1ONQUytxbNG4MO7ZjOS1GyJ1r7DzwegwqmcJ1NSh4rViLtfeJSx6uR3hyEKfde+GSBTte8LyrziTYOAZYffHTv5mO8tGNTbj22FSqVS1xrwC2h3H4ac//SnJZJJYLEY8HmfJkiVVg5lf/vKXpFIpMpkMvb292LZNbW0tfX19eJ6H1pqenp5qLrxSitHRUZRSNDU18b73vY94PF6toY/H49TX1xONRsnn85imydVXX43WPvv2ba3K5IvFJKZps2fPrbzxxk7m5g7zxBObyeUmufLKB1mx4qqqjP655x6iu3sVnlekpqazur+//wEcJ8Pg4A727dtGELjYdnyRHN+2Y+ze/V9xnDSum8O2Y9Xj/f0PUCymGBzcwd6ffRKlFP3b+om3xtG+pv+BfgZ3DNK/rR8daJ576DkGdwyiTEVmIsMzn30Gr+CRGErw1J1PUdtVi7Kk/v3qh6/m7A+eTWYiw/zReVInU4wMjJA8keTxmx8ncSzB/FvzZCYyGKZBvDW+cL4H+rEiFunRNP3bFvaBMOHzhXnW9q7FCzz6h/sZSgxxcdfFTOWmMJTB+r71LG1YytretWg0MTtGe7yd/WP7MTCYyc1wQccFrOtbx617bmU8M86q7lVs699GoAP+duBvubTvUrpqu6gJ1dASa2G+ME9NqIaQGeIz6z/DDefewMNXP0xNqIbJ7CRPDj1JSIGa3y+AfPU3xAyuMC7mdJFOAc6HtgubXpyUCUS0A9766mKn+EMPCvtuhiA/IqA9vgRUIPL3l25bYNcPbZeJ3FmfAjMmTLQZEdn8S7eWmfxLBIxqpN686UwBsakTAnTNEESaFlhwJ3uKS/zogoldaqickV4nk+lKlJxXlGtjpW48VLcA2gNfWG+/JKx6xbzOzZez3pGxk0NlEzstoP3wDjGTKyWldj03Ds/cKo7yyhDjODMkbVrOFQD/zK0SJedm4YpHRWHwnkfgtN8XJn7vJnkNyoT8NEy/tFAyMHVQWPmKSd5lD0H9UikPmHhB2Hgzgqngi1+8mmPH/op163qZmhIlSDgsPh+f+MRPeeutec49t43u7np8P2BgYIQTJ5LEYiFuueUJ0mmHSy7pobu7nrGxNNmsQ6nkcfDgeDXmLZEosmpVN7299dTUhLAsg2jUpr4+wvnnt1cjpz0v4PnnR8nlXIJAs39gHNu0MQ2D9tombrvsBqaz83iBXwXtr08OUXRdkoU0Y6lptv/sHxlJTnFo6jiT6Vn8IODzT3+bkucQoJnKzvPciVeZziZ4Z/eZxEMRvvPCTzincwUz2QRTmXm+tf8/2HP4Ob6x/0fCMpfd7GezSaay85zTuYLZbILPP/1tzu9chgoyAsb9GZi9tyyVN8uZ7DdA298JkHcnAV98HIIMTP5XAeVlB/hqnrtRJyz87P2gImUHeVeAvC5IPFzTJ8GbESVK24MQWyftdQAYkhU///c4qoUXxscJGQZrenoItGZgZIS86zKdzXIyleKW3bvpq6/HNAzClsVtl1zCZCbDpl27OJZMUvQ8btm9m9Z4nJF0GjcIiFoWRc9jYGSEkGly+yWXMJnNsq6vj6ht8+zICB0PPcTNjz+OBh6++moObd7Mw1dfDUCNbfOZMiuPZYk0/qGHxBzOtkXe7vvCvLe2wi23CPg2DGHD771XwHZDg8TE9fdLXfuSJYvd4bdtE2b9wQdlfySyECvn+3KbSEgkXKEg4H16Ws61aZOcq7lZQPfwBMynhVG3TMlmBzGpKzoih6/I24uOXA9GJoVNV4ZI3YuO3BqGRMRVMt8NJcx6fY38G54QED8yKSy/YSyA/KIj0XDlzHjTsqjp6anK47MjI9QtWcK7Pv1prEikOp90s1ncbJZD3/oWzeeeS2Fmhvk33mDpddfR8I53MPPqq9W5bXFmRhzmy/XyLz7wAPnxcWZeeQUMg4v++q8xw2FW3nwzl33lK1y0ZQtuPs+hb36T3iuv5KItWwh8HzMSIVRXR+AHQiydfaGA9toGyVlPzMAff1yIH5TUv//hX0A2LQC+rlEy2i0bpsdgZlIIpIrSMzUnbf/p72VuW6k80VoWZhKzcPItqY13SgLqK3PfbAr+47vyHMoEl1/KYYaidJ1zucSvKbWIgY81dVHXcTqmJWVCVjhOx1mXcfplf07n2b8DypBkpMGfYYWjGIaFW0iTT04Sa+jAMCwULEpICsXqiTWKRB+lMAxh9meHDgrbb5gow8AppKUU7IqvQV2f/Pa8vf0v3d4G7r8Fm2nbhBoaiLW3Y0Wj1C1fzurPfQ4zFlsU9WbFYpi2vUhaf+hb38LJZNCeV60r8rJZ/FKJleW+Z3/0o3hFmUgalkUxm0VH47JC6JTkYvNPXxL3949vESlQNC4s+DUfhGj5h6FUkH/pRPkCVpQLYakIris/9u/941P6xWWVcs/O8sUxIXVImRT80SaRGv3rl+W8TS3Cwv/Tl4S1Vwq3lCOfmCQIXIm5KGZQVoi2M9aCMvBKOcZffxo7WkPfhe+j9bTVeE6B1tNWowyLrnMuxwpFyc2Pgw6qbpyKBRn+7LEXAPBKuUXSeu37+J6DV8phheOMvf4UbiFFbn4cK1KLHWtEWxbG1b+HufkujCuuk4u8YaBMqcNSdfXoYgG0RjU0CahvaEK1daDOfadIJ4ePSSlBIYe/+0dQ14B57fvRk2MQq8G8/gOophZUOCw18o0tqNo6jPUC1gX4h8rtWlG2DZ6Dqq0Dpejr66Ouro7u7m7m5uYYHh7GNE2uuOKKKrjeu3cviUSC4eHham36wMAAfX19nHPOOWitsSyRidu2jW3bnHfeeVUgXygUaG9vR2vNE088geM41XZA2VhOpPeVWvtUKoVSBuvX383KlRtZt+4uIpFGDMNm/frPsGLFVQwMbC8D8K0A1NZ2V9tv2LAF33fYu/cOQqGaqrx+w4Z7iEQaqm0Mw8Z1c6xde2d1H8CqVf8V245h21GUsqr916+/u9p/3bo78Cmw/u715GZyKFOx/jPrWblxJRvu3oBhG2zYsoGVG1di2iYD2yXKrZQuLQL4XsFj9y27yc/ksaM2A9sHqqA83hpfAOLb+om1xBjYPoAZMsnN5BbOd88GRgZGGNozxNo717Jy40rW3bUOjWY8M85nn/ksxxLH2D+2n9Z4K6PpUQIC1vetJ2pF8QIPL/D4r7v/K2/NvUVLrIVljcs4v/18bt1zKzk3h6lMHuh/gB2DO9g+sJ2rll/Fw1c/jELx1eu+yh+t/CNemniJt+beouAVODp/lPHMOIEOWFq/lL+76u+Yyc9w8+M301PXw4GPHcAyo+j686A0J+ZzQUlA/KtbymZbHrzrH+DaXwkbPndAQOaFD0PvHwobbNfCxY9KbbyyhXWP9QgAful2uYhe+EWIL4VlH4F3PVKW3/eIfH52YMHVvmUNFCaEcY+0CmA1LAHM2VEB5rAgew/VCMAO1Qn4j7ZB/YoFgF7TLcC2woBpX0B3hY1XRjlqrijHSumFBQC/VD5f2bTOtBcAvV+S56SUPL/feRg+PgVXfkMk7Cs/IkB76McC6s2QTMCK8+ISr0zJd+9aJ8/FisrYe28Ud3rTXlgMeGG7vNbaHpHdTx2UWviWc+Dlv5fFlq718nycjNTBxzsgPwGmjVF2dY9GLbSGEyeSFAqywBeP23zpS9fQ0BCmvj6CbRu8+OIE55/fTktLDMNQrFnTw8REhs2bn8D3A3p7G2htjeF5AWvX9qIUvPjiBO3tkg8fDpvMzuYIAo3vB8RiNvF4CMfxyWQcnn9+lIsu6iIWs7Asg4su6sIyTAKtmcrM88Vf/AttNU2gNUXX4YGnv12NiqsJx/lmGXB/c/+PaIjW8o39PyLnFKqg/HNPfp22mib+5U+20lbTxOee/DqjyWluu+wG1iw5j++88BOeO/kaH7n4fVx95hpuvOT92KbNdw8+XgXy53SsqLY9p3MFIROUPy5u8e4YtG0HqwMIxDG+46sSCaeiAqaxxE2eQOLdpu8QcN68RZj55nvkA6nqoeMR+d4EGWnnT8k4drcAfbtHxkOJTD+6CvxJGd+IQtsXMIME57S14WtdBekVAF4XibCtv58fHz5MxLIo+T5D8/PYhsFENsuOwUG27ttHslhkx+AgDz33HKu7u8WF3DQZTqVojce5ZfduOmtruaCjg8lslnSpxJqeHr7/wQ/ymXXrsJRiJp/n3meeYSqXwwsCfjU9TWssxmPXXy8AulJnPjYGqZRI5nM5Adt///dyGw7Lb/UXvyhtJyZEHv/CC8K4L10qoP+55wTEv/YafPnL8h158EH4wz+U++GwsPh/+Zdw4sQCOz8xIf/WrJGFhDvvlAUAy5J5U2+HgPKKM/yRsqw9Hl0sf49HJQpOIeA+EpZ+ti2seV1ZSaM1FEsC5DUC8B1XnuOK3gW5vVKyUFCRyRuGRNOZpjDUvtR/Dz72GGM//zn5qSmJZQMhlG68kb5rrsGurcWureXCO+9k6fXXY9fU0PiOdxC4LlYkQtsFF+Dlchy8/36ibW2s/9KXFvk0Hfr2t2k4/XQK09McuPdesiMj1HR3E+voEC+m6WlO//CHKczOcnDrVtBazPBeew0nn0e3dkJDs3gnZZJS3mmHxG/pe4+KctQpyWusEEnphID0f/2ygP35aZn/PvVDma+etlLmYVd/QIznUokFn6ZAS/vaBlGh+r4w7zPjAuiTs9VYuCAaw3HyTB0ZwHcL+E4RHfho1KIYOPVrscZoje8WmXnr+SousEJRYk3dzB1/GSscxS1kRBo/+DNRJZbBedfK9xCK1S+eL7/+dFWG37nyPTT0rMQKRVGGRWPHaSgvJyaqezdB4q0FtdXb2/+S7W3g/luymbaNHY9j2nb1vhUOU7tsGas/9zlqly3DCoelsVKcXb6Inv3RjxKqrRXTkHIt/GuPPEIpkcAMh7loyxa01rz28MMAGOEwdiwmK47ohdr1Sj7laStlFTEcFRa9vVvaea6sFldM7VIJufAHvqw47nhMVirbuqRfR9kw5+TRhRXSSl39E9+TH7Bfz9J84t8XHmv9n+S470dpLU6dOqiayc0cPUC8qRs7HCfe1IUVjuO7paqbZrypE9+Tx/GmTrRSi1YqFVTHmj32AoZlU8rOYlohYg0dzAy9UD1PhdGvaewUGX0uQ/DLp6RkwQ6hSyX8PT+GTFpqzWvqIJXA/8lOcYKHah57MD4iwFspdCaDefm1Uj8fBJBMoCfHIQgWTOqckrxvKGhsxrz+A+h8TurnAO2U0DnJDtW5LAaQSqXYs2dP1Vk+Ho9TLBarxnSGYXDFFVdgWRbt7e08//zzLF++nGuvvRa/rKgwDAPHccjlctXHlRIey7JIJBJks1kMw+CSSy7Bsiwcx2F0dBTXdcnlchiGQSQSoVgs0t3djW3baO2TyYxz7bWP0NR0OpYVJp0ep7FxBbW13aeA8S2YZhitA2pqOrniiu2k02OUShnWrbsLUDQ0LOP66x8jFmtlcvIVrr32ERoalhEEHnv33sHIyLNcdtl9NDQsRymDxsblzM8PMTLyHI6TJh7v4PrrH6OxcTmOk2Pt2k9hWTEsO0zjaY30revDMA0aT2vk+q9dT8PyBnSgibXGuOy+y0DBhrsFxIfrw4sA99iBMQZ3DLJv6z50oKsLAafeVhYD8rN5NmzZgGEZ9K3vk/M9dj2NKxrp29DHuTecS/OZzbLvtEa01mwf2M6OwR1s699GS6yFh557iFXdqwibYbJOlrfm3+Ivn/hLpnJTrOpexUR2gpOpk4v2PdD/ALZps2XDFjau3Mjd6++mu66b6dw0+4b3cSxxjM27N9Mab2UiO0GqmKIl1sL2ge1knSwj6REiVoSt+7ZWn0tbvA0/cFCFCTGlM+wyw/6gMOOFKZgZkImpFReTuaaLBWz7eal3t+LCprsZMMq15XYNzL8iAPz0WwSQv3Qb+DmEiTTFeO7FW4FAauAP3CRAvveDshDQdBHM9Mu50ycWzN2ibQtgHuRxqFZqwCvgOyjXwCtLWHonW2bYtYDyTLmMS5X/C9WV894NAdHZcWE8zLCY1gVumbE3ywsIY/I4VCeseKUu2ncheUTq090sdF4Cf/qayB1TJ0Q+X0yUFQE1IqXvXidRcZlhGatS12jYcNnfwZ8fEgY+fVzM61LHoWut1LArS8ZwMnLevZvkfepYBS98XhYFnAyB7xMEUud+882P095eQzRqkc97TExkKRY9YrEQnhdQLHqsXduLYRjcccdeJiezfPCDZzM5mWXr1vegNTz33AjDwylefnmSINCYpsGaNb2cOJGkv38Y39c0N8c4enSev/zLJ9AaRkZSvPTSBLZtsHp1N7fdtod8XszxzJDCC3yypTzfeeEnVfAcoPnG/h+x5/BzfPfg45zTsYJsKcdHV/8eV5+5ho+t/n2ShQwfu+T9xEPRKtCugPrGaB3fLPf/xv4fEbXDtNU08bHVv8/rE0O01jTy2atuJGpHsAyTj63+/SqQj1hh6iJx/nzV77JmyXk4XknM4aw2Yb2Lb4A3Wv68pcE9IpJ5b1w+02hwjgnArvuAuMcrC0KnQ8djEvkGoHMweRO4Q8LAt22VhQECqaGvsPPemNxvvlOk8qpGJPn5Z0GF8c12AHKuy7b+/kUAPFWuRf/+Bz9I3vPY/MQTVVC/urtbMtfXr6chEqnWq0dtm9lcjvpIhNU9PTz03HPsGBzEVKpaxz6eyVD0PHrr6zmtqYmi77N13z52DA7yQH8/yWKRNb29TGazTGWzBIYhEW+HDklN+sTEQr07LLDl994rQP3BB6UmffVqAeDnniv17keOSGxcR4cw6fk83HrrQl08iEHd0JAw+ZWceM+T+9u2yXlGR+H554W9X78eGhoFvEfDCyz7qYy4UlLb3tYkMnql4LRe+e0vlIF5bVzAd30NlFypZS+V5e4V87qQLRL5Iyel3v30vrLjuiNMe32NsO+VuvmQJccBZZqsvPFG1n/xi8Q6Oph99VUMU0wzzViMi7ZswTBN7HicUirF7KuvEmlowKqpwQiFZO0yCLBranjXZz6DGY2K23yhQG5sjCXvfS/v2rIFKxbDKh87/N3vitrQtmm76CKK8/PU9vVRmp/nzD/7M7TvM/faa0Sam/FLJZidEIBuh4T0efIHMjean16YP0bjMi+qEEmn5rA/+QMB/dm01LqnE8K0OyW5PzclDHxFOeq50v7JHyyY1/3z3y8sAKxYKVHJP/4ntA6YKZNCbiFbBdFuIQVo2s5YQyhWLyZ0xSzpqaEyeaTxihk6z/4dlGnjuyUmD/2SeGM3HWddCspYlPc+c3Q/gedg2uFqDft/Nl+2wjF04OHkJNudQNJRdLRVlFmHd8CBbb8V2er/O7e3gftv+XYqoK9shm0TbWnhXZ/+NDV9fdh1db/BxA9+/euEGxqYHxzEisU479ZbyU9MMPPii5gKYWZRMhmsXNze+8dy8fruw8KGKwWJOVllTM6JuceppnamLZPRxAy82F9ejfREgjQzKfVCy86AplaR2p96nkxKVkorZh+//lgpWk9bhVcq0HraqirIDnyXqTf7gcXgOzc/RhD4+J6L74q6QFk2biEtbvO+izJMxn71FNpzsEJR2s5YgxWKCpBfsXAOlEG0oYPAc8G0Fp1HGP1VBE4RHIeg/2cie9cBOpsGy8K8/Fp0OimRbiBS+N6lBAO/EDf6kRPge6juJeh8FmXbqNo6/L270IlZtFPCOOcCVEcX/k//AzJpGSeXk1r5uZmy8ZVC9S2Tv6XrIpLcELpYQNXUEmjNvn37qmZxNTU1NDY2Eo/HAQiFQhQKBZRSRKNRLMvi2muvpa6ursqSm6ZZrU+vqanBdV0cRy7yFTf6mpoastkstm1jGAYjIyMYhkFvby9aa2KxGEEQUCgUCIVCjI+PEwqFUMqkrq6bQmFeIuyChTxYrX0aGpZx3XWPEo028+STn8R182jtYxgWHR0XUFfXTV1dL6Ojz0nuPVIX39u7hiBwKZXSOE6WtWs/xdjYASKRBnzfKdfQa+rre+jpuQTLiqB1UHZfNfC8PAMDf4vnlSAwpbwZTeAFZKeyYIAONIEbsOfWPXzl7K+w+5bdNCxv4PrHrseO2TSuaOS9X3kvdb111PXUCTDfsgFlKmo6a2g7t42GZQ0Czlc0VoF437o+GpbJosD8sXmyE1mUIVJ73/EZfX6UuSNzuHkXHdIEOlgA2xvuZjY/yz0b7iFux/G1T6qUqgL7B/of4MrlV1Yl8BVm/crlV3LPhnuwDIu+uj4eu/4xljUuw9c+2/q30RpvrbavLAo0RBqq55rMTjKaHiXn5vjM+s+wceVG7tlwD1prIqYtQLl5lbDp2RNwwYPQcfXC/pkBIICG86E0W65xzwlQNiNw3v1Sc14xqXMz0HiuuMXXLIU3HigvBEzCgZshd0yM54Z3SNs3Pl82xntQ2ONQozyXSLuA5rqlZZl55D+5AusFBt13qDJcTkb2V2rbTTG/RBnlqDhjweQO5Fpa6VO3RCbKhl1uW2bcMyMyVt0SAf3ZMTG10z44KXktL2wvy+QnxO3dK4gLvh0XkF2cE+Zc+8KyV1j1/VslPu7MjQL0jZC0HbhXmPr9Wxek+Nlx8PIC/u2YnPtUqf6SK2WMwAMnhe8UyWQctm8fYMeOQR54oB/TNJiYyHDvvc8wOZklGrUZHk5x663iCK+1ZtWqbrZt6ycatenpqePOO59iYiLDuee2MTKSpqOjhptvfpwjR+bI5RyiUZvW1jg33/w4J0+mmJjIsmPHIOl0iZGRNK2tcTZv3s3ISJpVq7rZunUfhqGwTEXRLREPRRex4GHT/jUwHaIpVk9vQzt/feXHaIzW0tfQTm99GzXhKO21TdX2H1v9+1iGxV+UQf6Nl7wfUxlVGf2HLryGN6dPAFB0SsznEvQ0tPHXV36M7vo2PO0zn0szm0vSWtOIaYTRdhdM3gzuWxA5F9wJ+V4EqcWGdUFa9kdXw9wXhWkPnQEY4CclFs4rL8zPbZN+7qjUtE/fucCwV9n5u6UGvnBAouSsbqmVd0fldmozJm71G7HlFGf5qG3TEotVY9q2lYF1BdRHbZuHr76aQGuilsWj111HzLZJl0rUhMMYSi1yq7dNc5GTvG2ahEyTAEgWClWzurvWraMhEsFUiqUNDXTW1spkeWpKgPnQkNy/9FKJagORPFdY9q1b5fFjjy3I3kMhcZ7v7ZV+Dz0kLPq2bVIbPz6+IHtftUrGWLVKwP/dd8v3uHLf8yTHvbUVNm8WCX1nh4DnVNnVXbHYZd4whEnP5BZnr5ecxcA8KC/kVUD/8ITI5EfLRne+v5i515Qz4u0Fhr9YBmpDIwv3TRMdBAK2L7wQMxKh+dxzcbJZtO8TaWrCyWaFaNCaeFcXrRdeKDnu5c+GXygw88or+OVa9lBtLTMvvgha03DmmWjfxzBN/FJpEZD3HadqwNx45pkcuO8+ou3t1PT0UEokaDzzTIqpFLHmZlRiFj74scWM+hPfE3B98aVw1QfK110lLPqHN8s1uzL/vO5Dsv+0s2WO+vgpY9TULx7rug/B8FH52/w6AVVZANBBdZ86drg6X4w1duIWsrQsfxduIVs2UY6jfQ+vVCDW2MHpG/6UzrMuQymDSF0b+eQUBD6GaRFt7GRm6ICQOToAw1w0FzbKAN8MRdCIbN4rFek8+3dEcn+WEAoLytEo+eQkAYAZQq+6u/x7sEV+i5zs2wD+f9H2tjndf7L9n2ZO9z+7nZr1roOAwHUxbLvKxFdq3wcfe4yVmzaRn5wk1tFBrKsLpTUH/tt/46yPfISG5csw5qdRT3xvwSEzViMXp3/7Kjz/M7loVerWfR88RyTxpaJc2K77kADyf/2KyIsSMyJfaumUFcoThyXbPZOS+vYVZ8Ell0v/1LycKxyRC6VpSj38yDHpYxr4pklufoxIbQuGZeM5BUwrRCE1g5NPEGvsxivliDV0oEwLHQRl0Bcw+cYvaFr6TsLxBsZOMe/oPvcK3njyy5x+2Z/j5pOEa1pQpgVo3EKWULS2fCEMgzJRaHzPRfs+VjgqP1iBjw58iqlp4rEWyZ+vEdMQpQwBeHsfF+O5xmZIzovxXLnWHcOA+VkIhVHxGqqmecPHCHb+o0S+dXShyoYoen6O4MCzmNf+Ptp1UJ6Htm3IpiVD/urfg3xW7q9/DzS2yI+o5+JYNnNzc2Sz2aqp3OTkJF1dXVVWvFQqUVtbi9aaXC6H53k0NDTg+5JJ7rouhmFgWVa1TTwer7Lwhw8fpqGhgZ6eHpRSZLNZLMvCdV1qa2tJJpOk02k6OsQcx7btKjgHATZKGSSTx9m3byvr199NLNbCk0/ezoYNW4jHO3jqqbt4z3vuJxSKk8vNUCplaW4+Dc8rYhgWhmHheUXGxg5QV9eHbUeIRBoxTZvR0edpazsX246RTg+zb99WNmzYgmXFcN0cAwMPcuWVD2JZUZRSqLJJmO+7mCqKk/TE2FtrlKkIxUN4RY+xA2N0XthJbipH/wP9bNiygZrOGjITGfq39rP2zrXE2+NM/2qa3rW9uHmXcF0Yt+Ay/sI4PZf0oMrGQyMDI/Ss6SE1nCI9kqZ7dTdW1MLLeWCAFbJIHE/Qv62fNZ9cQ24mR+PyRsJLw2ilybt5UqUU3bXdeIGH67v42qcmVEO6lGYyO8n2ge3cs+EeljYsRaE4ljzG1n1b2bJhC8salpEupbnrqbu4c92dLG9Yzr7hfazpWcPJ1ElG06P01PWwrX8b92y4h776Pobmh4jZMTpqOnADl6gV5dmRZ1nZupKMk6Eh0oBpmDSH4hhuGuWmBAgmfgWta4Ud9AvCsjecK67vXhZSr0PzJYASE7pwi4DI5GtS+z64Dc7+jMjtlSEMvvaBAGafg31/IFnuF31Z4uDe9bAw8oNby8Z45ftnfRLsRgHxVi3VfPNKDXrFhM6wyrns3YuB/akGc5VN+7LgYMdlEl8B+cpYyGT33QUTu8AVkFwB74VZmTzVLytf8EsykTLDwvjrQOrZ7bgA7sM7ZOL1nkck9m31FhnLL7sIWzGRxx/YJkC7foUshvilhcz3wzvg/bsE7O/fJk71Y/0w/qzUQGotfXLjAt5X3yMLHZXseKVwPMVcIc74eIbt2we4554N9PXVV/PbN25cyWOPXb/o8X33XQaA4wS0t8f4xCf2VI89/PDV2LbB5s27F7Xv7KzlppsWxnjkkWu55Zbd5fYmmzc/sai95wX09NTh4vDwwD/xX951HT2N7RTdEgpF0S3QEKvHD3xc3xd/Q605MnOSxmgd7bVNaK2Zz6f5xv4f8ecX/y7d9a1k3QJDs6Oc07ECy5AYzopjfaA146mZsnHd79Mcq5fFA8Oi6JY4MnOSlR0rMA2TdDFDXaQWUxlETAdz6tdM6MwWwC7XvY8LeG++G8x2KL4KdgeYbWA1l+vds2XQPiLsfWz9ggFdJZe9Mn77l0WWbzbIOZQFlP0YKjBMu9U+6SVz/OXuZ/j85ZfTGIngas1MLke2VKKrro6YbRNozYlkkm39/dyzYQO9dXXcsns3d6xdS0ssxu1PPsmda9eyrKGBkXSa0XSaVd3d2IaBRqLiUsVildXfsmEDrbEYd+zdy4NXXknEsvCCAMswcHyfoDw3fmVykgs6OmjXGuPGGwWYb9wooPz4cWHD77xzAcDfequA6yVLxDl+clIY8aEhAeN33ilsu2FAXZ3sD4VkQaAy9n33CThfvlwi3xIJMaNzXZHcn3eeSOk3b5Y+hw5J20xeAPjopID1StZ6BaxXTOkq8W3JjNw/vU/k734gTHnIFsA9PLEwTkXublsyJlr22faCNB4WvIY0cOBXcPYKOVfJwYuJh1LlN3p2cJDG007DzWSINDeTn5ri0De/yQWf+hRWOEwxkcCKRkFr3FwOu7YWfJ+XHnywaoocaWqiZskScuPjvPH1r3PWX/wFNT095MbHKUxP03zeeTjpNG4mIyD97LPJj49j19Xhl0pilnfuuZiRCCrwMT1HnOUzSZlzVgyVm0UVQjYp5nKP/5uQQZmksOPtPQvqpUqJaH2TkFSVMRKzMq9tbpP3ybTEWDkUkjHtkLDs1Tlwm1y7y2MEH/o4QUTmElop3HyybAy3CjtWj/bcqilyITVDtL4Vzykwc3Q/rStWYYaiTB76Ba2nrcIKx0WJYNrowAdloIzyfNF3KaansSILxnPC5MuxyjmUFUJ7jqTlJCel5r2cCx+JxlGBK6A9ebScs75FotveNqv7H25vm9O9vf0PN991q1nt6WPHcNNpqQ86eRLfldVw07ap6e3l4r/+a/KTk/TfdhuDjz1G9sQJZl5+mZWbNlGcL8u1KyuVj/+bgM9//bL86Hzgo/B334M/+SsB3bOTIoUPheVfU6tEvbW0C2h//mdyEVt+llw456bE3bOxVS5y9U3SfsXZwuRnkiJHamqTWiK3VP6xCUHPMvlxmZVVx2h9G4ZlM/7607z1i28z8cYxXoKkAAEAAElEQVQzxBraq1Ebwy/9hHxyErRGB17ZfC5D09IL8Eo5At89pa5oFShFfeeZWKEYVqSWyTd/iVvISA1VvKFs0uow/vrPqvXsge9gmKaY1QU+yjAxTJtYc4+A78YWlGWjQmG0U5Ljl1yKzmZRWqNTSVS8Bn/3DyGVlAleQxO4rjjIJ2bRvovR3Yd56z0YfctRlk0wOY6en4PGJsxrf19+cIIA7Xso06xGz1EqLsTQDfxCplxa41s2juPQ2NhIXV0du3fvBqCnp4exsbEqax4Oh3EchyeeeALXdampqSGRSPDTn/4Uz/MIhUJYlkUulyOVSvHLX/4SAM/zmJiYoKenh/b2dnbt2sXc3ByxWIxQKMT8/DzJZJJUKkVbWxu5XI49e/aQTCZxHIfh4WGUklx233eqJnX9/dsoldLV2nbTtLn66r8jn59l166bcN0c4XANWoviIAhcEonj7N59C/F4K7YdwXXzjI3tJwhcenvXYVkRDMPk2WcXaubj8RYGBh6ku3sVWgekUifYtWsTicRRTp78Jb5fQrsIWK8JkZ/Js+cTe0gcSzB2YIy67jqcnEPjikaufeRaUiMpMuMZMmMZ+i7to663jnBtmJ41PdXYtlK6xN479lZBeyUOqm9dH0op7KhNvD3O+AvjBE6AFbMwLXEQfv7h5+ld10u4Lkzf+j4iDRFMT8DmSxMvkS6lCXTAicQJXhh/AcuwUCiiVpQzms/gsesfo7euF4CiXyRqRXnk2kfoq+sj5+S466m7WNW9ipAZQqNZ27sW0zBZ0biCVd2r6Krt4rHrH6Ovvo+TyZN8YeALeGVTm7nCHBknw5qeNXz66U+z99heUqUUUSsq0TWF8XJG+5SA9uL0KTnrHYCSXHcQFvzAJsgeE2O5A5vEzK75IgHtwzuEYTfDYvbmpiDzlkjho12w/vviJG9FYdWjMkasr3w/LKB9eIc41kdaZdICZVBdFDM6ENMepQTQ1y8rS91BJsOlhag2KNeli8qHUG3ZtO74AuOeKpvM+eXadoLy+Rw5D4jUvcK2O2UDUTMs/yqTTcOChjPKee1bymzJ3eL8Xo32ceS5mSE5T/1SAfaZYZmcmSExrDuxBy6+U8aId0HtErjyMTGcmzwg4ytTXpdbgMYz5HhtD/zik7JAEYqDGSEUiVBXF+KMM5r52teuZ3Iyi9aaLVs2sHHjSu65ZwOWZVQf33XXOhoaIvT21jE6muIHPzjEnXeurbatrQ0RjVq/0d40VXXfli0bCIctHnvseqJRca0/9Xw9PXUsX96IUhCybT5y8fuI2CH+5smvc8WjH+fQ9HFybonPPfl1JjNzHJo+jm3aaK05p+M0onaYqBUmZIX4xv4f8dyJV4mHIyhDURuK0Rxr4M3p45gViTECPOdySTrqWrjz3X/Ki6NvcHjmBLPZJJ9/+ttErBArO1bwxtQxSp5DfbSOolti61PfRKMElNduhOa7JLZNxeRvEOTFRb7jMbCXgRGHyEo5bsROWUAKSS373PYyY38UVBw6viY17VWGfYt8LoOExMwppP49PyBgHeScp9TMm0aUO9aupeB5DCWT3LRrF4likfFslphtczyZZDKbZTSd5vZLLqG9XLP+L7/6Fdv6+0mXSlUWXSlVzXC/ZfduhlMpAe9aE7Ysumpr+dr117O8sZF7f/5zbrvkEizD4PnRUdwgoOh5/PvgIHfs3UuyWOTctjY0UFIKXYlk27JFvkMPPCDAeft2cZOPRAR0NzfL97utDS6+WOTwW7cutE2nRRZfAeddXTJmJe6tp0f+9fcLKG5vp1yzAZdcUiYmwgt96utlrNr4AjM+PCF9MjmpZzeUgPKhkYU69tZGkc/7wYJ8/sS4gHbDkHr20iksqWXKp9E0wPGkbcmR/rrM8nu+jGMacMn5Zdm9I0SB1vilEn6xiGFZtJ57LmhNbmICpRSxjg7O/MhHxB9ibo5wY6MAdyA3NoZhmpjxuMS+ffvbNJx5JnZNDYZlYYbDi6TxhelpIk1N1Sx3u7aWlgsuQAcBh//5n/Edh3hnJ63vfCdOJkN2fByltTDQkajMF2sbJA6upUPmlvPTYkT3+L8tZsUzqfI1uPzaAXb9K8xNyrz2T/5K3OiXv0NSk0pFUY8GfrkUsezxVGn/Xz4hc+F//5rMeZvb4YZb0NEYTiHF2K/2lvPYs9UySzSLTJEjdS34nrNQ8jl0gMB3qu0NUwirsV/txS3JHCI3N4Eul4tG6ztOYfQzVVLp1HNoX36jlWkRa+xcLLXHlFhRHSworv53xcP9H769zbj/J9tvG+Puuy5+qcTMiy/Sf9ttdL/73Zy7eTOPv+999F1zDas/9znssvzZd11KySQEAcqyMMt1R36xWK1VskIhzESZcT91lbG1U5hvjfyI2GG5GEbj8INvidv75KjIgjbeBLmUyIyu+5Bc9IJAzOcq8W4f3iwxHMveAWi480/hgkvgv/yVsFAzExJJV4mOs8s1/LkUfmMLge9SMaGbObp/YVURBMQqhVtIM3N0Py3LLyafHCcUrZc4DGBy8OdE6tuoaV2CHa6pAu/A95h44+ekp4bou/B9VYd6r5TDySWxwtGylEkMXRSy+uw7ecxQDNAoDJTvo4JApOmRKNow0KMnJRoOqRfDNPEf/+/otwYxP3ZrlWX3d/8I/eoBiYe7/gNSmx6vQbuu/GiEI/I3CLSY26my7EsLeCebWWDcc1mJoTuFffev/QOyxSLxeJxdu3bR29tLb28vAwMDrFmzhubmZhzHwXEcQqEQb775JsPDw1x//fXV9kuWLKG/v5+1a9dSW1vLxMQEiUSiun/NmjXkcjkaGxv5yle+woc+9CHq6uoWHevu7iYIAvbs2cPg4CArV67kmmuuIZVKUV8fIwjyhEI1+L7L2Nh+6uuXEIs1s2fPrWzYsIXGxhUEgcfwcD/xeCu53Ax9fetQysRxcoRCMbLZaR599FzOPPN3uf76r5HLzRKPt6KUIpk8UWXZY7FW9uy5lXXr7qKmplP+RsrEMEwKhXmKxSSFwjxdXRdjGCYqiJA4miDeFmfPJ/YwuGOQlRtXct1Xr8P3fKywhbIUmZEMx585zvIrlhNvjaMMRWIoUY2Ns+M2kfoIVsTCK3oEXsDeO/ay9o61NC5vJPADvKJHqCaE9jRO3mHq1SlqO2uFzb97A3VL6kgMJRjYPsCGLRtoWNEg33fLxwkcfO0TKq+Sn8q655wc8VCcqdwUD/Q/wJb1W+is7cQ27TJLqDAwyDgZxjPjbB/YzpYNW+irk8UEQxkEOiDv5rlj7x18et2nWdKwBC/wCJkhhhJDbN23lbvX382KxhVknAwTmQmmclNc0nMJ9aaBcWCTgOW+jXDxVwSUH/rbhX3n3gePnw3XHRKA/+v7+zYK8M4cE8f4s++C2jPE2K4wubjPxV8WgOznhI0vzci5LviC1MxnhgT4n3OPZL4rayFvPTMiwDtUJzL1uqUiB8+Oltl3W4CUk15wWq/pESm5k4HaXgHGySFhz6Mtsm/6Zblfv5xFVL3vLIztpGWM+hVyvOLsnhmBeDvsvWmBYf+dh+V5+gUoJgVYH9wuUnkzLBOvmVfEaE4HUpte6XvlY7JIcPBBaW/H5FqMIYsJypDnATD3OrRfJPvy0+DkZGGBQOr4D2yD1Vtw4it482iGrVv7ufPOtTz77AgHDozx5S+/l3zepa4uTBDoskG+xjQVQaApFn0mJrI8+OCzPPjglcRisogyO5ujvV1MAn1f3quBgRF6empZurSRINAYlZgsIJ0ukc06tJXjFQcGRujrq2fZsgZuv30PDz58OQEeYSskMW7P/4jPXP7nPPD0t9lz+DmuPnMNn7n8z4lYIdzAp+Q5PPjz73Lj6vfTXFOPQmGZFgYKjUahCNCYKEq+y+uTQ7yjbSkAhlLYpo1lGNy/95vc8e4/5YGnv80F3Wdwcc85hG2Lxlg9BorZXILGaB05twiBQ0dtHQoXtFNeqM1LHrsuCiAH2QdQfEVy191RsHsh9A5ZXAoK4BwFq1fq33NPigS+48sypkIAut0rYF7nwR2H6CWAJ23tPjmvn5DPhdmAo6OUAhsNFF2Xoufh+D4t8TiWUtz8+OOs6u5mXW8v2wcGePjqq5nO5RYx57fu2cPd69dzWmMjBd9n8xNPsGNwkF0f+hAXdnYynsmwfWCAu9evZzSdpre+nt66OoYr0XJXXEHUtnl+dJTz2tuJ2TYKKHgeqVKJHqWoSSQElJfNVDl+XAD5XXdBZ6fsP35cst1LpQWgbdsSGVdp29Ulsvm/+itxol+xQsB9KiUO9K+9JjJ5z5MFgcZGUQ6C3B49Kmx9W5sQIuGyEV0stpgpD4fk+uP6C7FtqazUs5+xZKFtb4cw6cdGBfS3NS2w8KYpINz3BayPTC5I7ysMfhAIOK/Ew/V1gm3C0OgCY3/kJO6SDjIjIxSmpoi1tzP49a+zctMmwo2NvPSFLwhb3ttbZc9XbtqEGYkQaWzEKxZ55aGHOOsv/oL85CSNZ59NcW5O2lXY95YWoq2tmJEI2verMXCV6OND3/oWF9x+O9r3sWtrCTyPuddeI9bRQbS1FStkYyZnUfPT4sd0dFDA+5M/kJz11JwkH7luOQKuvRwP58v7NDMJe/87bLyx/H3yxbvJNCUNYPy41KwHwUK03vQE7Pm+kFrhqPQ5fhi6l8n98ZPyXLTGt61FKs+ule9hfPBn1Ui48defrh7rPPt3UIYoPvOJCexoLVYoysQbz8hcN1r3G4pRrQyU1tXFB+cURj8UawCtF/XpOOtSpt7sp+vcKySirjxfrrQ3rZD81sy/WWbc73k7Hu5/cvt/x7i/Ddz/k+23CbhXmPbXv/a16sUv3tlJuLGRFz//ec656SZqly2r1sD7rotXKOCXShQTCULRKLHmZrRZ+cIbUK7nVZ6z4CjqlKBUwKtvwg8CjFyGIF6LaZpYniurii2dcOwN6FleBpamrEJqDaPHBKBXctwrUvpiAf7jn+D9fyYXG420XXqG1G47BbkYxuLCuhsim/fjNfieIwDKtIRV15p8YhI7Gmd26AU6V76H8defIj01RM8730u0oQ00lNLzxBo7BCCXJP6tIl1S5XEC7ZfrpW0Cp4QViqCVSFs9J49V6QPk5yeI1rcACgwlbp3KxkgkwLZRIQtKOQjH0WZYXOWTcwTP7cO8+jowoSpNq8jUlI3/+I8kws2ywS2h6hvRiTmCgWcw1r4b1dwqr9stETz9U4zLr5FFBMuCSl2ZbQsLjwLTwt+1Ez34CvqWz5DwfFKpFHV1dViWxTPPPFMFz+973/vIex4F36c2GiUwDHSpRNQ0mZubo6axkazrcuLIESaHh9mwYQOxWIxCobBonGuvvbYKzK+99lp279696FixvHiQSqXYt28f69evp76+nscff5z3vvdKPC9LPj9Df/8DbNiwBduOl93eY4BidPQ5envXkUgcI5keoaN7NWErSipxnHT6JN3dqzAMm3x+jpqaViEVlKrWtz/zzGcZHNzBypUbee97v4JhCOD/2c/u4dprv4QbBAQKbGXjORlCoTiJxAmS6WG6etdTnCxR09mIg2Lylydp7Kwh3h4ncAPCdWH8ko9nKagNY7kBxfE0seYYuzbtWgD6j17H6POj1HbV0r9NZPQjz44w8uwI13/tepLDSdIjaep66siMZ+hd1wsBDD87zA//5If83r9/gK7LlzH+9HF+8Hvf48zfPZPL7ruMwA2Inxmn6KQpOmkioXpc4NY9t3Ln2jvpqOmgJlRD3s1z655b2TG4g10f2kVPfQ8PPvsgj1z7CBqR2ketKB9/4uP8+PCP+Y+N3+c9S9bhaZOEk+WOvXdw2yW38ezIs6xoXFGVzT9y7SPcsvuWan77Y9c/hlEuFzmRPMFkeoT39K3F9IuoV+4QwB1qgcRr0L5hAYzoAEpTEGqC7HEYvF9Y83CbxLetvBtqVoCbFoY91CgAWtkCXgsTAtBb18v+wig4Sag5TWrivXzZhb4I4VaR5M8dgEgX1J9J+QsqTLkyBCwX5qHtfKkhd3NiPlfbIxMarYVlPxWc62AB2Pslqnnuhi3j1XbLMTcnknujfP/UsWXFVJj1wJUc+VCtjO1kpMbdroNwPY6ncTwD0zLwvYCQrQhlj8L++8VVvn4pTjaBY3cQ0imY+RVu+zp8rYjYmpDh4jgeLjH8ICBieYScGWFglAGT+6FjtTz37Ch0rMZRcRxXE7J8Qr/8Kxj8Dpy5keyl3+Hmv9zN6jVdXH3tchrqo/gOxGJ2ubxGWNxs1qG9PY7WMDubp1BwGRvLcMklPdi2QSbjcMcde7nzzrUsW9ZIsejx0ksTrF7dXVWnWJZBoeCyf/8Yvb11LFvWyJEjc2zfPsCdd66lp6eOjo6HqvJ8ADuiyLl5ZrNJZvNJzulYQdgK4Xg5Sm6OhmgDlqFxfAMPEwPFrjd+SU9DO23xJsK2TUOZHX/4l//Kn138Pnrq23DKoL05Ws/Spk48HVB0SzzS/+/81w1/TNQOYyiDvFPAMi1Mw8TzPYpOlqZYhPl8kZzj015bS8xWGMpETd4MmX8RZrzjUXCPg9WDE0RwAk2o9ByhcCeYTTD9KWi6Heb/Djq+DmadAHftlyXyW8VszuyC4mtgt4DVA0c7oPYj0PEPiDzeADzw5sCslzp5q6XMuocEzFvt5IxzcYKAvOvy2tQU3bW1VQM6yzC4bc8etl1+OVHbxlKKyWyW+WKRuXyedb29jGUydNbUMJJOU2NZdEWjmJ6HsixZAPd9fNPE8H2KhsHtP/85/3DFFcwmk8yVj03n87y7uxvTdRktFsloTW99PVpr6oMA5ZSZ6BMnxHzuwQellr0Cqk+cEGO5Si57Nguf/7yA9dNPX6gfHxiQSDfXFQb+K18Ro7lKRvz558Pc3EK9exDIOSxL+szOCtB/8EH4h38Q4JjJQmubmMG5PqQy0FAnj4+cFEDe2ghLuuQaEw6J+Vxl/4peMZsbnlh8vwK8HVcY9pkEnHPaYpBeZtSrbH/lPAcH5f7pS6Dk4GifA/fdx1kf+QiHvvMdhn/6U/quuWYRUXTxX/81L/zN3ywA7jLAP+sv/oLZl19m5uWXWXXffWjfr7bru+Ya3vFnf8ab//iPrLrvPmZff53mlSvJT0ww+NhjXHzPPbxw//20vvOdtLzznRRnZxfG/chHKM7P03rhhXiJOWKpaQHNli1zyn/98gJZ9F8+AfNTQihV5PPzU/DTMvCu9NEB5LJiqPz4v8E1G0VFahhCnIwMwdIzhSz516/Ae94n81+nKCTWH35USK0nfyDj2mE49gbBaedQck8lmuoWyqXQOPn0IhLKySUXst7LOe0oyCcmida3LcjoT1uNYVgEgYdhWlihGMDiRYJz3kMhOYkVqa32scNxtA7wSnlmjx0Uo7vyZlghAe4g4N0vlVVeb4P2/5ntbeD+f3P7bQLubi7H/s9+tnrxW3XffZgRqbWs1Lufalzn5nLkp6YAMEM2MUtMTVQkKtFkrhiqGRsuJ2hoxq/2FEbEdV0mJyepra2lv7+fDRvW0xiLoQ1DJNxl9tdIJwhqGwBQWhMoJT4opSJGOCoGGCWRWwVG+UdTB3IBUwrD9wg8T45XpPJl4GwoCFCAj9YugVvCsEIYho0mIPCkBgvDQAUa3/cwyrXTQRBgGCZgoLWH0qCVMKta++UaZnCcDKVSinC4nlCotvz6AwxlidGZUtX2ShllaXZ5TKUAAxONWa4JFC5Gl8GEI3NwU6S2qsJk+Z4AAaXQlbgo16X6JG0LnCI6k0M1NgIa8gWJgVGmtPPFFVSKaALphxajYVMtnMe0cZ0ibxw5Rtfy04nU1aF8X2oEQyEU4AJzSpHXmq1KsUVrlpSj3Byl8JXC0BqVz2PZNoFlYZX7GeWJSqA1ltb4SmEpJZ+n8oqwBiytccufEUtrTN8nME0c0xS45DsEXoFiKU1i5hBdXRfh+A4hK4rnOxhWGEuZBIgRm6EWpKm+DjCAQAfYho0buAsssjLwAg8DheMVCYViGChSmQnqajvxdYCtLDx8PF/YY197mMpCo6vxaZFwHSfMEMNKsVprohocP8DyAkgWoTmKZ5frXLXGKHqYtolrKsxA42uwggDPNFC+xs05WLYB8RCGBlVw8QMNNSGMQEPBxct7ELOwYgISjxtq4e+TczBiIfl+5R1UzMIuzRF99S788+5HWXW4fhFlhDDROBi4GopuBtfN0l7TTdHLYylFzvMoenm64i2gTAq+S+CXiCuNeu3u8ng1lAKP58YO8s6Od1JvR/EDF9MMlT/XFoH25X0nQCsTHXhM5Gdp9pJEnRl0+2WoCkinsnhYlpxX7mdHhb2uThrUwo0uf9b9gkjf0cK2q7LBZrXNqfW5nvQJPKn11pSZ8hA48+ClID8uEXLxXgEoFRLXK0n/wIWJ/VDbJ2y59sug2pPvoy7flhdDBbxbArhPrQmv9HVz4vx+6YPizl6pKaxfLv10IOdELYxflso7boBTLBEyfXyrllwhIJksEo+HSKVK1NeHqY95aGXhBSa2bXLseJK/+Zt9PPzw1QCLatBXLG/A9YS5zuVcIhETw1DYxUnccBumZeL7GssIcH2FbRkcHUqydes+tmzZwGkrGtBuAV+FMUwDT/uMpaf4x5d+zKbVf0BXQyue76N9hWUYKFPjBQGmMnB9H9uS63AQaAItWevnnNNGOGZgWSa6THgpU66uSiu00uXvvcY0DHwt4+VyLuNjGTq74tTUhMlmSwSeIhK1mJ3L0tVVh68DwoYGXcILNGErguEdQ7nDaLsHNbcN3bwFz1xKxnHwAoOGaATXy2EaYYLAJWKHyr8DJkoF+FphotEYeIHG1y4Ry0IuzoqSW8CyogSBQ6KQpyVeh4FGoVG6iDbi5c+ri8o/L8/DbMbJv44b2YAuA+pAS7lM0fMJmSYhVSBmFMGfLjPuPRIZp0I4bhJHRzGDOVwimEYYw4jgl94iFIwTqlmNk32BYuRSxMXFI9AGhjLkvQ1yRAwPjBqcQInhXnnNOeL7GK4rsaSeh2sYGEDRcTBDISKGAZ6Hb5oUXZeIYVAAooaBqbUAW61xgwBLKdSJE6jhYfTq1ahIBKan0bEYyrbRoZCAqGPHqm2IRGSO4PuoXE7izU0TIxym2TCIBIHUAPu+sOT/8i8iU3/4YWHF29okuq1Sp/61r8FNNy08/vKXZfxT23z5y+I4f/rpwshv27ZQH3/TTfDVr8rxBx4Q47vZWWHt775bXOWHhuCyy6TfN78Jw1NiGldfI0C7XFu+CGRHQsK618R+E5xrZM5g24tB/RlLygSMK4z7aX1iZFc5flrfQt18lXG3RJbf1ymLCJEwfk2U9IkT4o9UYdxvukkY989/nrM/+lHi3d3kJycZfOwxLrrnniprXgH4QamEFY9jRqOU5uaqrH1+cpJoayuRlhZGnnySuV/9infdcw/a83DSafxCASMU4ldf/vJvLBxcdM89mOEwXjZLpCaOmh6XKLcPfXyBLKoA9X/60mIg/09fEkZ8xdmQnpcyzie+B+/9I1Gb/v298Ff/bWH/tX8kvkU7vy5jNraKh9MT3xN16NAbYlL3439aGHfPTvjgjQSWhW/b+H4Jo/xbVkzPEIrXE3geoXgDaJ98QvLYxwd/tsCOv+NSTDvE2K+eIjVxmIaus+g69wrQgcQQh6OYVoQgcJk5eoCOsy6TCLkySHcLGYZf+gl9F76PeFM3ufkx7GgtdqSW8defqp6nZdm7mD3+It3nXik/NYZVnjO/vf3f2d6ucX97+7/cjFBoUZa7GYksiow7FbRrz8OyTOJtrcRaW4m3tKLqGyAUkogy10Fn0uJwHq/FB4IgIAgC5ubm2bVrF7lcjra2NgYGBujt7cU0LXQojDYt/CDA8zyCIKAYiZNIJjk5PMx8KsWuXbtIJFPoUISi4zA3N8dPntxL0Q9IJJP8ZNcuEqk0J4eHcRyH+UyWnzy5l/lMFkJhMtksjuOUTWo0Wns4TkpMwSybkdHnmE8M4TgZRsaew9c+vu+IeYgJw8P9JBInqEzeg8AV07P0yfKxo+zatYlk8higMQyL+fkhMpkJABKJY1LjnBwCZZBIDJVrno+VXc4DHCfNE09sZm7uLVTgYqaOofbeiEofF0n9+AAkj6KKsxAUUG4eFXiQm4RSRkBDcRaeuRWVPoHSAZigLDEgUonDqGc2o6wUSmlUYQb8KdTkAGSOo57ahMqPgPJRqSHU3k2ozHFU4EDuhDyX1JDUTyeHCE0/z/lnLaMpHqZoGJQsCyscJq0UR5RiQCkagKhS/BjYqhQ6FCJQioJSOICtFEYsRsa2edYweEspNhsGWcvCU4pZwyBtGIwbBinAU4q0YXBEKfYpxVtKsckwOG6a+KaJEwrxlmmySSkyvku6ME/GyTHv5qlrP4+s7+AbJoFSYNo8P/o8aSfDkbkjbNq1iayTJetkOTx3hP7hfo4lT7Dp8Zt5KzHE82MH8MvA0NMBGkXWK3Bg8mW8wCftZHk1McRQ4hibdm0i5aQ5njjOx5/4OEcTR+kffpaMk2EoMcTAyACTmUl8pWhXii5gs1IcVTBgmxyLWBgdNRy3TW5WimNAoBRBxCJlyntbNA1KlsGQbbLJNDgaMgk1RnHjIfqV4pihUDGbEzUhNinFMdPAj4cItcZQNWGKhsI1DUaU4pPAiFIQD1E0FM8bCh0P4RsmpUgrzsWPYtr1GLnjhOcPENIuZmmGSP4kNaZJqx2mu3AU08tQg0/EmaMpXEMXWdSBTSg3Q7QwQs3Ln0CVpuGdD2EWZzAObCKaH+HdfetoUD5G5gj23HMY2SHplz2KqQyMoIgqTmNkj2G+cBPd5Ik2nAnt70YFZcYYWfCiVDZaM8Mi7624p2dHWTB1q9ScD5Vr7gwwK6ZvBsKSlxF7pZZc64V+6ZNSZmKEy2MUy6ZxBoSaIQhBy1qIdZfHtgQ8qzLjnT4psWvRVqkP9wuSgZ48KufyCpCfERDvl0Sen5soO62nBbQP/Vjc8P0CjO2T4x2rRFp/ak1hZkRi3JJHRdbu5mSM3AQUEziOx+G3kuzbP49j1pMraPbvH6NY9KitDdHaGiMSsdBWjIJj0v/sKEeHErS11fDQQ1cSjdrEYjY1NSHWretlfDzD0SGJVjt+PMGLL47jeQGlks9bkxFu3PQEQ0MJtIajxzJs2vQ4+YLH1q372LFjkK1b9+EHcPRkiRs3Pc7hw3MoU/MvrzzO6r5z6GpoZSQ5xf1PfYOp/CzKgpLv8urEEcbSM/xq6i1yToG8W2Q0NcVrk0e4eG07NfUWD+37Ryay09i2Yjw7w+ee/Dp5t0jOK5BzCpxITPA3e7/OaHJKjJh0QDxus+y0ekqqwGhyir999jtkVJJQWNHaHiPnFDg0eRjbHyI083FijGKoAKWiYLWj3FFo+iTKHcFWJepth/qwje0dJe4eJGwExGwbwx3CnLoJ0zuG4U1je8cwpjZh6iwhlSOmT2BMbsJwj2EEaaJzt2B5xwjredpjBpZ3FMOfRuFB8UWU+xYqSKO8WYhejGuuIBc0M2esIVlycYOAY8ksN+7axbFEEj8ImMnlyHsh8rqJrDoTJ7xBDOqUhRMEzDthAhXirUyUG5/o5835AsmSx5TbQzHyO6TdKHPGGp4bGcUJAo4lMuwbHhHpexDwl7ufYc6J8uZ8ho/+5HHeSiQJAMNxMN96C6O/HzU0hOrvx/Y8rGyWmk98gsiJEyjXRU1MYHoeNcPDWJs2ya3nocbH5XgmQ+jYMYxsFjU+DmvWoCxR1NHWhpqZgeefRxWLKM9DDQ9Daytq82bU0BCk01KClsmgIhF6o1G6lSKSzaI2b5Yot0IBvvAFAd533SXMen29LBxUauArLvCVx3fdVZacm/CZzyy0iUYFtLvuQkb8tm3Sd8sWua3U0afTC3XyFSf6q65a6Pfss9DXAZkcOmSj62sFRL8xJOD99CXocFnRU1cD2bwA6iVdArJBwPoLgyKlrzjS93aIkM8wIBpGn7FEyvZOOU7JgUgYHQnB0jKjDwL4bQvSObBtzGyB2iVLaH3nO4l1d7PqvvsINzWRPHKEVffeS+2SJcy+/jrh5mZW3XsvhmWxctMm+q65hpUf+xih+noibW14xSJ2PE5NXx8X3XMP8a4uavr6mHnpJV556CE61q7lHX/2ZyitOXj//ex+//vJT00RbWurejFVcuPPuekmrEiEl77wBUaeflqe956d4q/0b18VsP67fwJHfiWg+lT3eAX6VDf4RfHH/77gHr/sHQv7d/+7KEkrTvNKLRzbsxPOfqeUj/66y3ypiC4VmDj0DG/94jtMHvoFge8Qa+ggO3OS2WMvoNCMv/4zTh78Ifnk5CKX+FJ2Do2q7mtZcXFVaWpHa/BKBaxwrBr3NvXmPqxwjO5zryQUq8eO1lDXvgI7WotXynPy4A8lQhkWZchLMtJqtNaMvbaXUnaeIFig8N7e/j/f3gbuv+WbadvULV3K2q33U7d06SKgDgLWdamEdl303DT+T3ZiaI2Zz4hsOjEnNdLdvcK09y5F9S7DNy2SySSPP/44qVSKcDjMmjVrSKfTGIbBlVdeSW9vL8888wyO45BKpXj88cdJp9OAuIOn02ni8Tj9/f0MDg6yb98+fN/Hsiyy2Sxr1qwBqB7v7+8nFotRKpWqMWX79u3D8zxqa2uxLKvKmmvtY1mRqlN8b+86bDuGZcWoq+tmfPwFDMPG94uMju4nHm8jnR6pvCsY5doh0wzR1nYO/f0PVI3JgsCjUJijvf18wuE6tPax7Rhr1nyKdHoMCLCsML2968hkxkgmBcRnMuN0d69iYGA7BgHqwLaFyXfgQ8dqVG4MYq2o3DhMvySO1AOfLTMFhcUT9sBBZYbl73NK5JLav1XqZ8P1qMwodKw65VzbhBisZHDu3wamjdq/cFzqckcg2op6ejNm8i1qfYdAKU4CNUAncD5wK5AHvg9sAZ4rlxRMAa8AaWC8vG810KkUX0QI/tuBdsBSCrN8awMRYBJoA7YpxQ5gGwJsfSXs8Q4g7TvE7ZjUSs8PMZGZoCZUw0Rmgk27NnEydZILOy9cFGmWLqWrj0+NKdvWv40LOy+k4BWqIH84NUxNqIaLui5iYGSA6dw0a3vXErNjfGrNpzCVyXhmnE+u+SRj6THaYm2YyqQ93s76vvUsbT2Lk4ZNAvg88GNgVCnWA0uUIlCKsTKorgVGEHAfUYpu4AXABvqU4i6gC8gCtypFGxBDFjpOfY90+b0eBm5BfgB6gIfKt1op7gRWISUBswigd42QGEvlx6DxfIlVs+Ko/CjKz6Pm9kPzKpRdK8A0O4QKSqiK4ZublkWhsz4J+TKAfuOBqhmc0p44wx/aLqZulX6D2+Rz/dJtkrkeaYXWdahD2+W5KKjml/tFAaThOvmapo4L6K1fBm3vLNd3U8bj/q8BeqRtBYSrck02ulzb6y6w1b++EFDTVVbB+LJ4lh0tHx8X2bp1ilt84IkDfLQVui+Fl/9eYtQm9i82gJt6AaLNwoqPDwj4rkTAxbvEnf193xeZfmUBIDchUWqhevidL0qGeqVeHWSMd31S6s5zE+IcnxvH8W0isSjnn99BJuMwO5vn/PPbiUYtMhmHmZk8SkE67eC6PuvX9xGL2USjFtPTOZ59dhjX9TEMxWWXLWHt2l62bt1Ha2uckZE0bW1xXnhhnHDYoqenjk9/eh19feIlUgHr+/ePcffdC8ZwWmu2bZNj27cPoH3Fpy//c655x1oCHTCdnee5E68SsW1KnsPrk0M0ReuYys7RGK3DNAxs0yIejtAUreOBp7/NRGaWczpX8K39/4FG848v/IQLus/ANi2ypTw5p7Aoh302l2Q4MUnOKfDq+BHybomp7Dx7Dj/HZGaOkeQ0W5/6JrPZJBd2r0CpEETXwdyDKAKRg4fOlFg1bw4i7wQMTLOWkAnKXgKxNShdAG9ice65Wb/wOEihFkW2bQMjCm0PodwxsFpRRlTi3XQOpm6FyPlgdpbN5Qo4bprD82lyrkvINLHLpnen5pYDtMRipEslfA2ehrxv46gmMCK4vkIjioZKv+0DAySLRZpjMY7OzbNveBjbMFjT24sXBIyUTeI2l03ibl+zhpBpVvtv3bePQGtsz0ONjsKqVahyzJm6+WaJSFu1SgD28DAMDaE8T+rJn3xyYf+994qDezQqQNf3xcm9ApaDQOrFo1GRo99yi0jNV6+WWLYyGFYg7YaGoFCQRYQbb5RFgFWrRNaeSglYv+8+qVW3LKk3tyyRv3/1q1KzPjoqz//RRwWcW5ZcL047Tdj4FeXrUT4vQLdiNLdli+xftkyY7wr4r69fbGAXjYo7fXmf7u5G2zbBij6GJyzmk0rAdXMDOhwiQFFyFdm8Ib8D4TLzHgRSZYdaAONhUSTo05fg2BH8QJHNK+YTimTa4Ka/NDl0Ikxw+lJ0yIbRKSEgUOhAw8gk2vXksWmiV/SC66LDISzTxAyHMQDDMAnFYrScfz5GeX7Wet55hOLx6uPaXgHn+elpSvPz2NEotT09ZfVDgBWJiKGu4zDz8suc/dGPEuvooHbpUgzbZuWmTXS/+91EW1vxC7Jw0Paud1Hb28eqe++jpqcHrTVnfPjDTB88iFMoCBi/+FL01R+ATBLteXB0EN3Yim7tJPjwLXj1zbiFArR1oRtb0Nf9sbSt9L3uQ+hQCP9Df0lg2XK8sj8aX7hvWYuOUd+EDoXQrZ0ybmW8aBwVjtK6ogySV1yMaYVBGRSSkxI1fEqMsR2tJRRroPPsd2NHaiUhCQjFGqpgPPBdCslJ7LJ3k8QkS/+W5e9aUDcGAXa0fqFf4J0C1IuE4gtjxpu6saN1TL7xTNWoTr8N3P+Xbm9L5f+T7bdBKq89b8EB03MJRk+i6htQzW0oyyof99COQ7B3F+Y1vycZ34OvYG6+i+CZPejBV1ArL8C47CoZNAhQ9Y0Eoydwe5aya9cuBgcH+dCHPkR9fX21BrmpqYkgCKrHN2/eTCKRoK2tDdu28X2fp59+mssvv5xQKEQQBIyOjhKLxcjlcixZsoREIkF/fz9XX301uVyuLLvfQCqVorOzs7pvzZo1NDQ0oJSiUCjgui79/f28731X4zhZcrkp+vsfYO3aO6mt7SIUqmNkpJ+enktw3TylUppYrBXfd7DtaFXWrpRJIjFEf/8DXHWVuJIvRH9FGBkZoK6uh3i8jT17bmX9+rtJp0fp7LyQfH6Gffu2snbtnTQ1nc6uXTdW66Qvu+w+PK9Ac8Ny7OxJAcyrt4iLtVuEhqUCEMaehWi7RFG1nCtRWIU5qVM98IDUocbaBNx3r5dopYq8dtXdMPoLWHat7M+OQ22XgPJKHFPyiLS9+C5oWAHzh+HFh+S51PbKc3h6c9WUauSqbzAfqiUGFICtwJ3As8AB4CtIteNxYCnwcQQsTgHbgbuAM8p9DyAg0kOA6QjQDTwA3A2Mlh/HkUWBbcA95T4uMFHe9zW3wPD8W2zdt5VPrvkkM7kZ1vetZ9OuTfz48I/5/ge/z/q+9WitOZY4xhcGvsCj1z1K0SsynhlnMjtZrbfesmELSxuWUnSLzBfneXLoSU5vOp2uui627dtWHX9543Ic32E8M86anjV4gcf+sf301vXSUduBH/jVaLUgVEO/Uqwqv9Yc0ADsR0D4MkTfMQs0IosZxfL9SrDS8+W2rcBtp7znK8rvx2j5dhuycLK83G8KSABLgBeBZmAGOA0B/1a57+ryeUNaEwtcQn5BarhfuQvOvA1qTxcXdysiZm3KhplnIdICdoOA7vwYtK0XEFqcg1DDQsyaXzar9HICzItTUBiTmvHBbWLylhuG7BC0rBNgf9adEt1WmIL6laJ3ruSh62AhAg0NylosdXcyAvKhHJc2Vq4tD0PyONR0lGPZ1EJ7MyTlI26ubNpWWuhnhMsS+XLtXkWOXjluRcv1hwjoLsyd8j38DMTa5b3LjAhov+hTYtTWep7UwR/YJmA70ijnP/DAgvxd+4uN4S7/sjz3/JSoDl74vLTNjEHXGmH5y4ZvZEbgh9fDmRspvOe7uJ6UKJ1az33mmc0cOTLHxESW1au7CYctJiYytLbK+xcKSd245wV8+tNPc8cda4nFbFpaYhSLHoWCS3NzDMNQaA3Hjs0xNpZl9eoeTFPx/POjdHfXMjKSZvVqqUMvlXzS6SItLTGGh9Nl6fx6TjuzgZxbYCab4Dsv/ISPrv59onaIkusynZvnvK4zCIIA0zBI5FMUXIfvvPATbrvsBhSKJ488x+sTQ9x4yftxfY/O+laKbomZbIK5fIp3tC2V79op4784+gavjB3h42s/QNYp8E8HH6+azlVunxk6yH985At0RGZRc1vFsd1aXlZumGL8VtgvcnOrD/wpMOrAqJX68kqduFZi2BZkJY4NH3RJctHbHpTPoj9Rjmy7p2wq5yKeBTWgC3J/arMsHsTWldtuARUlq9v4xbDUjcdDIdrKZrNH5+fZPjDAlg0bWN7QAIh7vUai50ylsA2DeDhMtlTiyNwcteEwBc9j67593LVuHR01NdSEQkxlszREIiSLRVrjcWZyORoiEW7ZvZsdg4NsXLmSR669lgNjY/TU1bGtv5+71q3j9KYmoq6LmcnIty4eR33iE/DOdwqjXDFm279fQPdDDy3UkDc2LkSiVSLaslkxfisU4I474FOfEul5sQg1NfCxj0n7G24QUH2qaVxnJ9TWSjSX1lJ3/oEPwO/+rgB1x5GxKrXmnifgfNs2AdDNzTLOgw/KcyiV4MAByW4fGZGFglOf79//veTBb98OjzwiYx44AH19Atzvuktq5INAzjk1tfB+PPssfPjD8M//DGvX4llhDp2I8oUvKD7/eWnS1BhgKo3rK27cZLBqFaxbB9PTsOqigIZ6jWHA2Dgk0ya9PQG1MV2tMHJ9RTpjEApJ+f62bVIZMD0t9z/9aVh5dkDgaX7Zr1i12iCVCGhr0ZQ8xeiYwcgI/M6lAWFbYxha3OsddyFLvhJBF2h5ne4pBniRELw1jB8LEzTWiXv8ybKZXiQk5ndLOwGF73kEpRJGJIKJEuO88Wn8pZ2SBW8YKNPErPouuQvnSWXw6+IE5TSW4vwcsYYGsCwhrQBnfh4jXoMZjZIdHWXwsce48K67QCkKs7OE4zFizc2iTPB9fK1Jj4xy6JvfZOXNN1PX043SAW7JYf6NN4jV15NPJGg6/wK0UyLI5Qg1NePns7glF7dY5NA3v8mFd3yKcCxGKV/AjoSl1KNsnqlS81DbgNbiv2D84NsEf/ARdCQqvkSBL2WohQLGD78jXlDhSLnU0iAoFtCmibIjGL4HvosfERf/imeUKuTQZrkkVhkYR35F0L0M7TlgRyAcQikLY3oU/IAgl8ZfcSZuMcfssRek3j7eiGmWVR1vb/9T29tS+be3RZv2PPTcNMHJIfT8DP4T/10cx1NJ8H05XsijMyI5VT1LCEZPYmy4HLXyAghHMNbLfWPduyESRdU1QF0DupBD9y5DKcXatWtZuXIl3d3dVQa8v78f13UZHh5m/fr1rFy5kng8TkdHB7lcjieeeIJcLseqVavQWjM3N8fjjz9OXV0dkUiE+vr6KvgeHBxk7969NDY2ct111xGLxWhqasK2bUKhENdeey0NDQ1ks1meeOIJIpFItZ/v+5RKqSpTPjCwnWIxidYevb1rUcogkxlnfv4o6fQwe/Z8glTqJEC1jj0eb+fKKx9ievp1GhuXc911XyWfn+Hxx28mHm8lnR6lWExWY8hisRZKpVQ1mmxgYDsQsH793axcuZENG+6hrq6XpqYzxFW6/jT0FV8ThsyKCrh2svDz26DtQmg6XUB5uL4s1Y0J6P6dhyWmyStAz2XyC2zXSOTS5V8RJm/ygICBA9vECCvSIrnKlfioeLeM03Ca9C/MCTCoP02OG2FYtQXO3IhefQ+7zDDbEAC5FdgBfBH4I+AfEDD4PNAHhIEvI8z8F8ttJ4BjCAvcioDGJQhoXwWMIYx05RxjCON+GvA1ZDEgj4DRPuAbgApctu7byo7BHTz03EOs7l6NZVjcvf5uvv/B79NT11Nl3s9oPoNHr3uUklfilclXaIu3cWHnhaxoXMGj1z3KisYVmJhMZCe495l7Wde7jnV969i2b1t1/FXdq9h7bC/b+rdxTts5nEydZPPuzbTGWxlJjxC1ooxnxrn3mXs5njyOqQN6tOYWYBpZiNhcfn01wEng5vLr0lBVG2QRkH8z0FF+r1Ll93E7cCUCuLcBH0CY90cRcH5z+X2OA3+LLAB0scC4t5ffy1j5fU9QFo4rRUkpiVgrzkDzKgHRBBBpE0A++zwEJWhZLSUboUYxfWu9pCz5LkpbJylGcNlj8OKtUJqGqacFvEfapU+sVzLS40slbq3jKjnf8A65tWKyaKCMcm54puzNEJLPvjJlUaoSrVZpY5YBuDIF5NYvL9d5Aw3LpL+ToSqNN+0FNj1UCygB2g0rZFEgdUwAeyXiJj0sz6NhhYyvTvmJ9R2RsZeVLxx4QL6zbh6yE3DFo9Bwuny3DVu+m4d3yIJZrPUUFczWcv27cUps2xaRw6eOQ6RJQHulbcvZ8vxPVfB0ri73u4cgEHf1INBs3z5QZbl9XzMxkaW1Nc7mzbs5diyBUoqTJ1MMDIxw9GiCT3xiD1NTOVat6mZ0NE0+73HzzY8DkM26bNq0iyNH5giCgKVLmzj//HZeeGEM3w9ob68hFrPp7a1n8+YnOHEixQsvjBGJWORyLr29dXzlK+/ltDMaCQiwTavKiH9z/49ojNUxmZ3jtJZeRhKTbH3qm0ykZ2mONxKybG699MNYhsmh6eO8s+sd3HbZDbTXNjOVnWd0foqQafPPLz7BZHqWmB0haofpbWjn3qs20V3fyvvOvpR7rvwYzfEG0sUsN17yfgD++sqPYRomH7n4fTz0u7fTFIsIaM/sAHdKQHSQlwi0qVvBagUVA28YZu8VAA4C2jM7BGDbPeDPwuxnpZ0/L74IHY+K8Zs3BfZp0P4VyV+fuodqXBuGGL6pMDT/NdT9MagaaLpT9lkdhEr7Wd3dxVgmQ7JYZGBkhEBrzmxu5tHrriNmWRTLYMM0DEZTKZ4fHcUrm6kVXBdfa2byeZqjUZY2NPDY9ddzWlNTueIe8p7HgbExcq7LTbt2kfc8QqbJlg0b2PWhD/Hl976XZLHIx37yE5Y2NPCV976X9nicoTn5fKjxcbj1VtTx41LPvW6dMOlTU1J//mvsOK2twkjfeediOfrsrNSHV1jyCgOfTMrtww9L7vmDDwo4WbZMQHl/vwB9zxO2/Pnn5ZyvvSagvKtLFguUgn37pF0kIuPs2CHgv6ZG6tYBnntO2qxYIUB8/Xpxfz9VPu/7wpp/5SsCWiMRec7Dw+JO/4UvyO2mTaICaGuThYYbb5RFhn/+Z1kUcF2KQZjRUcWXviRrBq+8AkfeMsgWTPzA4M47ZU2gqwvWroVITI49scfk9DNN/uZvAGUwMWPy0qsmH/oTkzcPGxw8KKKAJUvgb/9W3o6lS+Ut6+iAnz9jMJc0WX2JgW1DMm3wkY+ZnBw2CIdlLePGmwxRbGgEMNu21MgXHZHsF0pyvTUUjJbr9CvJDr0dmPkSdiwqoHtZt0jzAw0reuRvrhRmKIRdWyuqUcsUo7yaGKYXYA9PYfm66uNbkf1z+hJZAGisxwyHsYtidBmqq6eYy/P8vfeRHp9g6qWX+dF7r+PgAw+gfZ9ISwur7rsPKxbDzWQoTk9TSqUZ+Oy9pIZHcBwXTIvavj5Wf+5zWJEIfqDxtcJ3PUINjfzq298h0taOAg4+8Hl+8v4/YOqllyAcJdTUxOF//Eeazz2XUjqDp2Hu8GH5nmiNOTmG+a2HMAoFjEBjTk9ioOCaD2Ac3If5T/+A4Yr5sqnBCIVh4yaJrfvulySGOdAYdhjTtDHyGUglwDAxnRJmLov5nYcxJ0cxCnnMQGMm5jHGR6B7GUapiGmFMBOzmP/4JYzpMahvhqd+iK5vxDAsQvF6us65Ajsch8B/Wy7/v3LT5RqHt/8t/Ovu7tb/T9sC19VBsagD1/0fty0Wtbvzu9ofHdbe4UHtj57U3uFBHWSzOvBkHH9sWNqMDWs/k9b+5LgOSiUdZDPaz6Z1UMjLv2JR+8Wi9t46pINcVgfFoi4WCjqTyehUKqWnp6d1Pp/XExMTeufOnXpyclIfPnxY33///frw4cO6UCjoQqGgZ2Zm9M6dO/V9992nd+7cqXO53G/sKxQK+siRI3p8fHzReMViUf/whz/UqVRK5/N5XSwWq/9yuVx1jMOHD+vJycnyWGmdTo/riYmX9c6dG/X4+Is6nR7X+XxCp1KjulBI6J07N+rR0f16586N+r770Dt3btTp9LhOp8f15OSreufOjXps7KBOp8d1qZTThUJyUdtsdkan0+N6586NenLyFX348K5FfScnX9WlUlYXiymdTo/rVGpMp9Njenb2qHaLaR1kxrUuprUuJrUuZbU+8aTWky9qPXFQ66mXtf7JRq2nXtG6MK/13CGtM2NaFxJap0fKj8v9sxNaF1MyxtRrWg/t0jo/o3UpI+PMHdJ6/i3pX+lXysrtqeOUMlpPvyr9c9Nap0e1nj2kg1JG36C1fk1rndFav6q13qi1Hj/l/qjW+iWt9S6t9Svlfa+W22zUWs+UbznlcfaUtq+c0vfIf7J/XGv9cnnfy+XHqWJavzzxst64c6N+dfJVnSlmdCKf0NliVicLSb1x50bNfeiNOzfqRCGhM8WMTp/S57XJ1/RYekwn8gn92uRreiIzsahPspDUr06+Wm2byCf0DT+4Qb8y+YoeT48vajuTnfmNc866xUWv+Y1T7idOeT92nfI+Hiy/l5OntJ0+5X18tdz31L/DjNb60K+9v5Vz/fr+5Cnv+65T3tNXg0Dn3ZzWb35J630btU6+oXXiNa3zU1qXklqP7tJ6dr8cm39F61JK69yY3K/sG92l9exB2Z+fkv3/wsJ4xZnF+wrTWo//VMbPTy4ey8lqPf9q+dic1qV0+Tar9dyb8ll1iwvH5g7LYyenteee0i6rte9K+/ycHPPdhbGcnDz2nPK/krSp/HML5X6O1m5p4Xk4Oa19b/GF1yvJd2nyoHx3p1/TOjeldX5evk/5eXlOmXH5vk6/Um73qtalnNz+ZKPsLyTkOZfK14djT2j9cESOlzJyXai2nZfvbGW8qZdlX35W62JKZ9IF/dprE3p6OqtffXVSb9y4U7/22qTOZkt6ZiarN27cqeE+vXHjTj01JY/37x9dtP+NN6b1zEyuuu/QoZlFx6enpd/oaEq/9NK43rhxp37llQmdShUXtZuZyerx8bSemsrogwfH9MaNO3U6n9dvTp3Q87mUPjx1Qt/x44f14emTOlvM6/lcSh+fHdW/HHpJ/2r8LX1yflwfmTqp7/jxw/rNqRPV/b8ceklnijldcIr6yPRJvW/oJT2dmddT6Tk9lZ7Tb0wc078cekmnClk9nZnXn9n1D/rNqeP6l0Mv6cPTJ3SulNdz2aT+3ks/1SdmR/XI/LjOlfI6U8zpgWMv6KDwitajG7X2UloXDsr9wkGt575U3p+Q20PIrTurdX5/ud1rWntJrUdvkPbOuNbOmDwuvCqPi4ekbaVP/qDWhZe1Tu/SunLuwstae5nFjyvHnXGdK+b0TC6ndx0+rF8eH9e7Dh/W09msTheL+uXxcb1x50796uSkTheL+ujsrN4/Oqpv+MEP9Hg6rZOFgk4WCjpbLOpkoaBTxaJOl+9PZ7N6OJnUG3fu1PtHR/XGnTs1992nN+7cqWeyWZ0tFvVMNqt3HT6sX52Y0EdmZ/UrExN6486d+pWJCb3r8GE9PzWl9caNWoPcJpOLH8/MaJ3JaP3KK/L4lVe0TiTk3/i41m+8Ibdzc4v7vfHGQtuJCa3n57V++eWFMebntU6ltD54UPa9+KKce9curffvX2h38KDWN9yw8DwOHFg4Nj4ux8bHZbxdu2ScEyd+8zXdcIPWjzwibVMprScn5f6pr2vXroU+8/OLx0gkfnPMXbu0fvRRnU/k9fh4UH0pL70kh06e1PqnP9U6nZbm09Nyv9Lu5Zel3SuvaD07q/WhQ4tPMTy80PbgQXm62ezCqSMReVmZzG/+2SpP90tf0vrVV7XOpDwdlBytB49q/cwLcpvKyG02r7Xjau04WpccrWcTWmdy8th15f7gUa3TWa2LpcX7MrmF9q67cCyXX3yuYmnxOKe2HTyqvWxOz7/5pt53++16dnBQz77+uk4ODelSJqOfu/tunZ+e1qVUSo8+84yeHRzUTi6nc9PTujA3p/fdfrv+l7PP1vtuv1072ayeP3RI77v9dj136JAuZTK6mErp5+6+W+empnQpk9GlTEY7uZxODw/r+UOH9Ogzz1T7zL/5pi6mUnp2cFCPPvOMLszPayeX0046pYN0UutHt2r90avlNp3UOp/TupDXenhI9o0c03pyVI7lsgv/Tu2Xzcjt8JDW2bTWrz6v9fBR2Xf8iNZP/UjuDx1afDt+Uutc5jfHy2W0n5rX+eSUPvniT3Q+NaVdp6jzqWl98sWf6EJqWvu//pv49vZ/uQGj+v8Co/7/HCT//+O//6cB98B1tT85JkB7cux/CN4r7f3Zae1PjEq/iTEdOCU5Xixod+d3tXPf7drd+V0dFAo68GTMwHG0PzkmgL/ad1T7yUT1/G42o4vFYhWUV8B0oVDQ2WxWp9Pp6rFisajn5uZ0Op3WY2Nji8D4qfsmJiZ0Op2ugvEjR47oRCKhMxk519jYWLXt2NhYdTHg8OHDenR0dNG42WxWFwoZnc8ndLGY1oVCsnw/pYvFtB4bO6iPHHlCT0wI2J6YeKUK7pPJET0zc2gRQJ+efkPn8/O6WExXFwIqoDybndbZ7IyenT2is9lpXSxmdKGQ1NnstJ6dPaInJl6tLhC89dZPdaGQ1IVCUgeltIDl3IxMuqdelcn88Z+WQcasAPgTT5YB9psy8S+l5TY/K7fFpNaP3yAguzBf7lseMzMu+4pJ6ZcelbaTB+VxBWBUHhfmpN/4/oVFg8y49kpZ/YbWekILYExqrWfLtxVQWAGI+/VioDirBVhm9P+LvTcPk6I89/6/Vb1vs++rbKIgmyLroDGKBCW+OcnJ5CTk5JhzEvQEk7hEjGCiHgUVVDBq4naymg0kGhgGCS4Iw8CwDgjCDMwAM71Oz/RSXdVbddf9++Ou7p4xnu163+v6vee81nX11d21PFX1VFd3f57vfX/vAoyfJCKFiEIfWzeszw9/bP5B+mQwdacUiiaiNKwMUyQRofbedjrpO0mRRIQGI4PU7e/OQ3cgFiB31E3uqJuOeI7QR0MfUSwZo0giQj7JR209beSJeuiI50h+m9xAQCgeoqAcpGgySpFEhM4Nn6NIIkLdvu4x6w7JQ2NAX8qkqVvT8ufsHXX+MSpA88cHNT4a1Tcn9X4Oj3oeJKJv66/DxCDuJYb+jw+YjB5cOUFEkn4dP+laSYq7AOzpGFEqTKQMEkX7iBIfg+5UhCjuGzsveLAA6akQ0chxfp9rLwfj+1r5ORkminsZ+P9g5edUhOenIrxe70sMzfERBuP4CJG7k++HtFJYpiYL4J4DencHrzd6nVSsAP5pZSzgj4b+MYME8sfm64MGWvavv3wzKV6ejBBJHgbuwHH9Hj9eAOuYtzBAlgjx90Col0E/1Esk+wuDaPEgg/yO5UT+Y/r3RoAoepHbj3mJni/Rtx/iZRfezg/URSNxOndumLxeiaLRJEUiCTp3bphOnfKTJCWpu9ung7afenuHqbvbT21tPXT8uC8P+eFwnGKxZB78vV4p//rECV7/k4A+Eknk2+nu9tPQkEySlKRQKJ5fzz8SoYGQl4KxEEkJmWJJheRknJRUgpRUgqIJmc4GLjDQ67A+fcNX6P5tm+ik9xzdv20ThZQoQ3jgIimpBMnJOA3FQhRNyNQ/Cvzv37aJTvv66LdH2z9x+9O+PorqxxDQt+8JXKJ0OsJwnomMBfTkRzqYjwbqk0RpH0N1JsRgLrXz8ydCf4QoIzHE50BcHR4L8rn9fXz/8YNE7lZKpaJ00u+n3uHhPLznILvb76e2np48bId1QF++dSu90NVF7miUzgSDFI7H6aTfT61bttBxn4+8kpSH/UgikYfw0VAekGU6oW/T5XZTW08PhROJv4L7wUCAtBMnmPJOniQ6f74A2IcOMSGGQvwIBpkI336bSTEa5fmRCJHHU6DMkyeZJmWZn3PkOposh4YK8O71Fqg0GBy7Xg60cwMA7e1j4ToSYTK9/XYePAiFeH8nTxaAXFG4nUCAl4fD//Yx5baRpEI/nDzJx5Xrp2PHiM6d4/c+H0VH0n8F3UND/Mg1cfw4H94nAXZvL8/3egtdmBuXGL1u7hJEIvzc1lboOrd7bPdHIrzP3HGNDGU+Gbg/CcajMi9L63A9GsDl+F/Pyw0AqCqRkvgrKCdJ5rZGb6OqPEigz0uPhPMA/nGQTisFqA+dOUPRixcpJUmUjETGLuvpoVQsNgbkI319FDp7loZPnaL9q1ZRIhQqAHokQilZppQkjdkmJUk8QHDyJO27915ShoYoEw0zYPefLQC6FCaKRRm+4zIDvBRmaM/BezKug/35AqwrcgG6Y1Gi4cBYEPde4vVOdBWeL/YShYeJTh4iSibGDhSEhykjR+jS0e10su1punR0O6mpOEX9faSEvRT191FGTf31b+Kn0ydO/x64f5rj/gnTf7ccd0qlkN2+OZ9zbvh8KwSLhZfpueqAABgM7LCam5/JcJh8fSOECZMhuIohWCyFUPp970JcdBOEikquda7vi2JRwGSG9m476MOjEKZdA/HmzwPRMCgeh9Y0DiN6DnpLSwtKS0vzOemLFi1CSUlJ/n1LSwtKSkowODiIxsZGaLqzvMFggFE/1mw2i48++ggDer1vq16uLhaLobOzM7+P7du352t8L1myJL+OxWKB1WqFx+OB0+lEeXk5MpkEjEYRRARFGYLVWgKP5xAaGuaivX0lenq24ctffgNNTS0QBBHZbBqCYIDH04Xq6umIx4ewb986LFz4AJzOWhiNVni9R9DQMA9EGogIu3evwg03PAoA+OijLfB4DuGWW54HETA42In6+jnweA7hzTe/ji9+8XdoalrEfUxZWEQRQlrmsDwThxpB1HOEskk2s3I2cCh7+KxeGmo1h7Kno5x3ay7iR6gXKGoEAkeAypnIG2wVNXK76Shg0g2sFD9gdgDOeuCdfwbO/JZDahe/on/YCPDuB7b/LTDhNtDiV5A1mBEw2mAAh3IHwGZqcXBI9zoAm8A51KPz1R8Ah7t/CKAFhbztEDhcHOCc+HXg3Pbx4HzrIDhcfHTO+9XgcPNcvnsFADklowYEOS0jmorCaXIimUkinolj44GN2LhkYz6VedXuVXj4Mw/DYXYglUkhqARR5ajCUd9RzKmfA6NoRCqTgqqpsOuGd3E1jkOeQ2gqakJDcQMCSgDFFjbdUtIKHGYHzAYzTKIJQ8oQEmoCVpMVlY5KmEUzVBOHUufy2B3gEPXcOVai4G/eD05ByJnQucB58YcA9AL4ot5fqwE8rl8Ht94fDwCYpPetCsCsr5vR39v0vjcA+B44bH4QY/PjVxNhcjYJK6n8GVAGgPgAh8yLVg7Fjl/ivPSpazi8XTRyOPzptVwrPe4GbLWAtZZTN7Q0P4xO/hxSBkiHOQdeMALDh4CqBRyGPtIF2Js51N5o4/XjF4EzTwNzf86u67mSb9lUIS89XypSv29kD3+2DVYg2je2RJym6jXWh7l+eskENqsb/Z6Iw+OddZxLn1tWPI7TWHLGeII4Nkx+9JRNc7j+O3dy/vrRZwrPuXz1+Y8Av5wC/E0b58p36bnuiSA7x4smvg9tlaO8J5r0HP9BXv/aVWxklzPuE0Q9f19PA4icAw6vR7rlOaQMpejrC+OJJzqwatUCVFc7cOJEAC0tTTAaBagqQVU51NFuNyIezyASSaK01AoiwOOR8PTTB/DUUzfBbjdhZCSOqionslkNZrMB/f1hPP44l44LBuNYu3YfHnpoEaqr2biuosKO4eE4pk2rgsEgwm43YWAginXrOvDKv94CgwlwR4fw68NtuPv65bCbLBAFAR/6zuHK6gl4fPdr2NVzAEsmz8cPb/wmnnz3F/jW3C8gIIdQ4yqHxWjGgYsnMKfpKlQ6SzEsh/HTzjfwzTm3ocJRAqNowBPv/iLfxj8v+Fuo2QwCcgiVzlIE5TBKbC785sgOrLrhG7CaLEhl0shqGhxmG2xGgkBxCInDgKkGGHlSz0VvBEhPdhEdnJcu6GaFlObnwA8A22ygeDngv4PD512tQMUjHHZvqNY/U3a9pKCJ21P7C+XaRtZxfr1pMqCe1fPbV+eXy8JEfHDJgyqHA5eXl0PVNKxsb8/nnr+4dClW7tyJhxYtwmUlJRDAue7pbBZuSYJPljG3vh7hZBLTX3oJt02ejEeuvx5TfvpTtE6dileWLUPHwAAq7XaU2Wwot9uhZrOwGI1Y0dY2Zj9WoxF94XA+x31cSQmKs1mIsRiHs+u59jAYALOZ65qnUhwmfu+9BTf1ujrOW7fZOHzcYuEa6rnljY08P1dX3e0Grr6a28uVVKurK+SoP/ggx5g7nfzIlWd76CFuq6+Pc9EffJDD61es4GUVFWxY9/DDHLZvMHBM+YYNHFovivw7HgxyfrogcOw5wMeuKFyvff16bs9qBUIhDvmfOJFD4hWFt3PolS8yGV6eSADjxwOaBllwIhYT4PVyU2vW8O6rq/kUZZlPq6aGN5XlQvU5hwNobweWLOH1ZbnguZfNcrR+rsvsdj5lt5sf8+bxutkscM89bE2weDEf9vnznOmwaBG3ceXkLMyZFIe6u3SvEUEPidefxtScn9jEuepmI4fVD+j57WYT58Xn5uVqyVvMes35DIfL57YdPY3eJlcaTy9jl72sFtLg4CeWopvz8MM49OijY0rIAQBpGpIjI4j7fCifPh2CwYCREydgq6rC6VdewZR/+icEjx3j+vMPP8y/9ydO4IM778y3kwqHYauuhjI4mC+R52psRCaZzB/Drdu3w2g2wo4shNAQ14FPKIDdCVzsARonAMkEUFwGZFTgwlmgrJLL2ZVVcR15jfg3QokBjiLg9Z+we31lDW8rRdj1/tav8vrRMLefux9F3YsgneTa8nIUsDuAOB+HZrYglYpxCbkJ18JgtiOrJqAmZNhLayCIRgii4dPycP+J6dM67v/F6b8duP8boJ2bT9EIxPomNqkwmcfAOyXiQCwKrXMP57CPMafLAkZDAdpH76fls4DDCW33DohLvwBBI2ieSxCKSpAuKcsbz02dOhXLli1De3s76uvrMWHCBLhcLuzcuRO1tbX59yMjIyguZugxGAzIZrNIJpOwWq0wGo0YGBiA0+nEwMAAPB4Pbrnllr/aRzQazRvgORwOmM1mqKoKg8GAHTt2jFk3m01B0+Iwm53IZlN55/iSkmbIsh/796/XjeYsyGRS2L37fixcuArFxc1QlCAcjirojlcYHOyEy1WHoqJGRCIX0Nm5Hi0tD+Zzejo7148yv3NBEESEQucRi3nQ0DBP/xJjd3tVVbB79yr8za0/gxDt182kVgOyH6idUzCxyv2Jr28Za1B182tAOGcst4rz2tMysOdu4PpnGDQOPcHGWMXjuERUbt3iCWMNrGyVvN3ch9jsS7rI+56zmqGlaiYABs2ErRxJgzmf70goQHgJgAgY0nPz/QCKwbBoApvSrQLwFHQ3dHDedm4bA4AYgPv19Zr0Nqr1/Vv1Zw0FOBXVBLSsinOhc1jfuR4PLHgAl5dfDnfMDSWtQIQIr+zNg7ko8EAOgWAWzSAQYukYCAQpJcFldkEQBBz3HUdDUQPckhuVjkqUWksRV+NY17EOqxaswoTSCRAEAUPKEEqtpTjqO4q59XPz9d8TmQREiLDay3BBEDEAzieHfh6XwD4AlXrfRMCmdBV63x4AcJXeT0YA5/R+W6Uvr9bbOQjg6wBeB7AQPDhg1a9HFjwo0AmuAGADm96l9HVCev836ccwDKAmm4Yrm2BIT4U411uVAVMxED4JKOeBxi8yiCcCnIcOYsNEaw3vVbTo2w8zoGfTPGiUTTKcW6vY7M45gQ3qcvPtTfz+6HeB2S8CCT+g9LM5nbWOIXwMYH/sS1LAX0M4wACrqZzbTtmxxnKiRTeicxcM7DTdfC6b4veymwcCsmnOgRfEwmDBvzWlJMB7gI3wYvpgQ27Q4dA6vt9sFXzv3fjiGBPIvAGd4gcsJcB7o5Z99kU+tj13F+Ytfpn35ajjtq9dBZROHmtsN/V2SAt+hv37B/PgbDAIEEUBVqsR/f1cX/2+++YjGFSwcCHDfDZLuvEc4Tvfacdvf/shWlun4pFHrkdlpR2qquHuu3fhxRdvQVeXGwsWNCKRUBGPq6iocMBkEiFJqXz99x/9aBEuu6wERIAsp+HzybjssmKY7UAyk8azH7yOr19zC2qLKnDK34dqZxmqXeWIJmNIqmm81vUW/mnuF9BYUo2sphuvEkEUuCa7JzKEXxzehn+a+wWU2lwwGYywGM36N4wAdySA17rewrfm/Q0aiioBQYBGGggEIkBKxmAxWmAxmmEQRK5Qog/SOk0ZLrtGCcBYxfnpmSCgRTk/3TweMNbxn2ZK8T6H7gfK7wdM49nEDqS7y69jUzljEyD9GkgcB6qf5LtdMOvfcrnPmMrzNZnfii7eJ0RAsLEZnqEaCc2Gc6EwBiUJcxsaYDUY0B+JYO2+fXlY13Q1Z0hRUOVwwCDy92Eqy79jkWQSpTYbwokEEqqKSocDx3w+zKmvh81ozLe3ackSDCkK3JKERU1NuBCJYF1HBx5atAiNRUVYtXs31i9enHerPuT1YnFlJcQVKwqmba+9NpYWJ0wAYjG+/wIBwOfj/PNIhN3W77qLc+IXLmRqffZZptTRbd57L/D885xPTgR0dgLXXjvWLO7FF3mwQNPY/K2igiEdYJj+y184UTyXx240cm78lCm8fNw4puQcaD/1FB9/bS1Duizz8o0b+TgdDj6O6moeHIhGGcYff7xglpcbmGho4P9kOTLP9UtfH7BhA+Sf/QZRSYDRyKcwMsLNB4Psi1dfz+n+q1fzrjIZ3tVHH3H6/blzhW4Nh9lC4NIlHn/YsIEP48ABYOZMhvdUii+F280587mv07vu4kOvqOA8+4ULeX46DVSUZiFEY5zjrqpcKs4d4LJxyTQDeVodC9bxFOAJAOMbGNah37Kaxn0sCIU/HQKA84NAQzWD/Mdr1Ysig7xGXHfeaS98L2ezyBpEZFIpNlo2GiG73fjo1Vcx9dvfhr2uDorXy+9XrIDRZoOltBSCKGLo2DFYS0qQDIXgbGrCu9/8Jm75058gms3IJBLofvppXPmP/wij1YpMMglLWRmOPfkkpt5xB+I+H+TBQYy77TYkw2GYXS6MfPgh7HV1sJWXIxEMshHeD38Iq90KUZYYpuMy4HAxhJvMDN3vvAn87T/pVYaygOcCA7ocBZomApEQl5e75e+Aqlruh9yP5fnTQP04LlVnc/KHKJlgYLfagCFfoZ59ZQ2QiANGEw8QuEqAv2wFbv0qstV1AAjZjArKqgAEGEwWxCN+rvtuK4Jo+LS2+380fWpO9z98EoxGCOVVrLSPUseRzYKiEQgOJ7I73wR087kx25nN0Dr3gE53Q9v3bn65YDSyak+6yq6DvLbvXV634z0IJgsMt34JkCLI7mSDO5hMMBDljecWLVqEbDY7pvxbJBLBkiVL8u/D4TCcTidkWcbOnTsRiURgMBjg0J1vAaCxsRElJSUIBAJYvHgxAODzn/88vva1r2HRokUQBAElJSVYsmQJSktLkU6nkU6nYTAYIAgClixZghkzZmDJkiXsPmyA7gzfj/b2lXA4KqEoQwAERKODuOWWn+pGc/+cL9O2b99aAASHowIDA/vytdh/97tb0NGxDgChs3O9bkb3BEpKmvPvOzvX6+XmzNA0FZI0CKezBjt23IlUKoZI5CIGBjogiibMm3cvaIyZ1Dqg+mo2+MqVezv6DIO8YGKwn9zKjtSkFcyvDq/n96kIv1flgsHVoSf4z/vodQVhrIGV0cpKu6Oa28jt+9A6oH4Bu1fvuRui4oUtm8YRMID3g6HRCIbPCNjk7NsALoIhsBasGov6exPYFd0E5EuVKWD1XgWr90Z9nY1gwJQAjIAhPQEGeRUMvd8BkNCyUFQFftmP++bfB5fFhQuRC3h4z8Mwika4LC7MqJ6BkcQIBPCfcFVTMRIfQZayIBDsJjuICI/vfRx+2Q+DYECFvQLrOtah0l6ZV+bdkhvberZhfed6CIIAo2BEtbMaqqZifuN8JDIJ+GQf5LQMs2hGOBlGFlyWrVI/rwz4L3kTWH0/oJ9XMYAy/ZwPAJgNhvaDen/6UDCmm6j3w3fAkQ2H9Oc79DaLwYMAQ3p7C1Fw6D+s9+dBMMQ3gwE/AMBJBKMgAsogMHwAsJbz1Tv9OJDwsgGd4zKG7q5vsVu8YASO3QvsuBI4fAe/j50HDq1gZ/rhg3xzy/1semet5O3L5zDoyxeAkcNAZQvgaGRDuYr5utliEVAyneEaxNBrq2DAJv3PiJZGfqgom/7rdUbDfTbF90POeC7DJkUwWvi9aGbXeU1lhd5o5eeSCXxcOeO6nHr0b005tb1yGmCr4oiZ4vFA3QJ+XvwKG0yaHAzdRDxQphvJwWBlpf7X0/i8RpvTpSN8Dteu4nnXPsDnaKvkgYFrfsCl4kj/DdDbTc9/CppGmDmzBoGAgrvv3gW/XwERkEwW6qv/5CddWLSoCbnB/sHBKPbuvYR0WsMLLyzF8uXT8MADC/MqvNNpxquvfh4mk4irr66F0SjC5bKgstKBdDoDSUrB6TTj8svL8cory9DcXIJoNIXe3hHcffcuiKIAk8kAvzcOAuGe65ej0lmKSCKGyyubMBKPwCCKqLCXoKGkCj+++dtoLKkGESGZSWNYDiOZSaPb2wO/NIzheAS7eg5gSA4hnIghllLgiQzhqPssUpk0Gkqq8aPF34LVaMZAOICslkVCTSGRTmFEicBitMBmsuC0/zwAQCONB+LUFH87GasBUzOQ8bNyroUZ2m1zuDQbwOp78jjfC2X3AKqX3eUDdzG0Cw6gaj1grOHPlWMJUP0stxP4PgM6Zdj4Lr6PX2f8HPUi6LEzgoOd5rN+Xj/Tj6zqLZRma29HfzgMm9GIF5YuxfjS0rwJnaKqeKKjA4lMBhlNw/7BQWQ0DRlNg8NsxmGPB8lMBhNKS2E3mXB1bS3u2bUL/ZEIGouK8MLSpbAYDHDr+/pOezuqHA68dOutqHO5cM+uXbhz9myIgoCEqgKCgDn19QwHzz7LpnGbNjFV5mqWb9hQMG4rKmJarKxk4JZlhvfVqwvOa6+8wusBBeO61atZZl61ilV6IlbwDx/mZcuX837NZr6HRZEJdniY5/l8rKgvXMjHQ8SDAufOAdOnswrf1MTW6w8/zEDv8xWM9LJZPidJYnV97Vpu4+67gRkzWDU/dAh45x2grIyPZcIEHnxIp7ntbJbBfv16YNs2JuZslp937ICmqrj3XlbU77yTu8Bm48OfMQN47jk+/KoqPr1wmA9z+nRuxuXiYIWuLu4ig4EP/be/Zc8+UQT0CrxYuZJPz2oFpk3jy+Dz8UDAiy/y+EUO2i9e5LENARqfs9MOGEX92chADbDDuygwWI9vYPAGGNpdjsJ/10SK682rGW5PzTCASjK7xV9WxwfrcjDID/qBkYiuFmus6KdVwGnjeQZ2gUdWg5bNIptIIBkKIaMocDU1Yc4jj8DV1ISUJMFaWoppd90Fe20tLCUlCHZ3Q43HUTljBpKhEOy1tbBVVeHWt96Clsng2BNPAES4+oEHEPf7kZIknH7lFRhMJsx5+GE4Gxpgr69H7XXXAaIIa3k5QqdPw1pWhrjXCwgCjHY75jzyCMJnz0LTNIbphAKoaaD/DEO83QnEwsDf3M59suU1BvkJUwFZ4jryiQQghYCbvwSEg9wXI0O8HgGYOBX40y+Af7mL4Z3ADvSJOD8iw4Xa8xoBW38OhIa47b9s5WVvb4GQzULLZiBAgMHigKZl4D39HowWG9REDKDsp+Xh/jenT8H9v+mUr6+eyQAogLYwuuSCwQCxoRnagQ9APadAUgQgym/D6xjzbvHiops4vGj0PkaGOAx/ZAgQBIgtny2sKwogWSrA/IEPIDicEHZtQ5ndhmXLlqG0tBREBFEU0dnZma+tLghC/n1HRweMRmPeed5kMiESiaCtrQ2xWAyapkGWZWQymXwIvCzLSKVSaGhoQHFxMWRZRjabhdlshizLSCaT+frw7e3tAIClS5dCFEW43W4Iggij0YKOjnXo6dkGRQmiqWkhkskItmz5W8iyd4z7+/jxi7Fo0Y/4d0JNoLb2apjNRWMc4QXBgJtvfhYrV57BkiWbYDTaRi1fDVE0gggwGMyor5+L/fufxOnTm5FOyzAabWhqaoGmZVBaOh6CaGRVPPen3KiPDOcgfe4awGDnHzpXM/DZF1iBw2in6Yf4vb0G+GI7q2757VdzuPHodQXjx5Zn2CX7ve9y2PPoZYKhMAhweD000nAtGKZ9AKaBleAVYOgeBkOiFawIAwWFvBQMmCaw8usGcB8YJp1gYDcBOKI/bwTDZBDslC6DobMUPEggg8PKSTTAZrShoagBzxx4BvFMHAPRgXxd9mpnNQJKAA/veRiJTAKD0UEc8R5Bub0cgiBASklY2b4SwXgQc+rnYH3nepgNZoQSIWxasglXVF6BlqYWCIKAhY0L8dZX3sKaljUwCkaktTRiqRju330/LkYuQiMNF8IXYDVaYRSNSGaSSKUVtIBh+in93DoAnNf7oUY/r5h+vhmwMn8JrJTP1vtzLoBWcLk3AHgBrL43gsPq68BQb9f7JheWfxhAHxjUc9fMpu+jCzwAoAF4GIBXEJAFWGW2VgJHvguAgBlr2RUeYMCOuwHPNuDMBg5pn/MS8DcB4JrndBBp5HJuPZsASwWQq91euRAwFgGVixhOMxKH4pdOY4A/dAcQOwc0fKGQMmJ0sNqfTen12nWHeAi6Q7GJHeJJ44cg6G7v+jq5EnKimecJBgZrALA4GXCzaW5LEHS3eh3MUxF2cCdw29F+Hf7/nQi2bJorPYhGBvOhYzwAkJb4Hov08j2oxrhknJrg43LWMtC7Gnkf120AJn1JvxblXP2hqJnv80yK7/P5j/B7gAcHqq5mp/+Mwgp+Ws4PFKRhRzqdhdlsgN8vY9u2Hqxduw+JRAbhcDJfX33DhsW4eDGKO+/cgQsXIqiqcmLOnHocPuxBIpHBCy/cgkmTymCzmWA2GyAIwIULYaxY0YbhYQ4NTiYz6OgYgN8vw2o1IpvV8vMuXAjDZBLzzvZPP90JQQDKSx1wmG1wmK35QQMBAmbUTYZGBFlN4sl3f4mEmkI8nUSWNITiEn7W+QaCchgTKhrxWtdbuKpmAm69sgWz6ifDbDCi1F6MISWEUpsLp/x9cEeGcMLbixKbE/UllTAIIkRBwLASwasH3wQRQSPCjLrJ8ESD+Je/vIrBiB/FVot+d+pTrp576Cdcw12wIu80L7p4XuAevtb2BRzWblvI6xlrALFE/8xmuXQcJTlMvmot35GB77OSbp3GwE9x/vbIDADxDkAgBvbhx/XPkw/m5C7Mra/HT7q6sLCxEWajEVajEffs2gWNCAPRKFa0tSEgy3j8s5+FURTROTiIaVVVIABSKgW70YgFjY1oLC6GqmnwyzI0IsxvaMD6/fthFEWuEW8woKWpCc8cOIDffvgh7t61CwBwyOPBuhtvRK3LhVg6DUG/C5OZDLKCAAqFWGW3Wpkan3mGgXrDBlawAwFW3RcsYBn5vvsAj4dJdMIEJkank2Eb4Htx4kTg1Vd5/rRpbI3u97PrvNHIRNvczKXYhobYrb2/n/fT1cXwLghMsJs3MzTrqXrYto0lbIDLugGFwYZ163jbtjZu22JhUq6r4/kffcTrr1/PdB0IcBj/F7/IcvWf/sSSdm7AIueIX1TEgw9vvMEK/IoV/Hz4MKyiijWrSS/zTrDZCiXuh4cLRv3HjjFM//jH3BVWK4vfTid32YIFfEiaVjDgf+EF3ma0WX/O2N9s5nYefpiX5Q57wQLuuvXrOaDAYiKOhk+rDN+CDulWM+94fAOr7rE4A3WRHqI9sQmoLuP/pgQOa2+oKYC9QeTv8pwTvZLgAzg/wCHzE5uAOdN4X4N+DsMf8PFnTNN4nxe9rPYDSAwP40M9okJ2uxE8doxV8qIihHt74d+/H/LgIA49+ihKJ01CcmQEhx59FNayMhgsFihuNw4/9hgSwSBKr7wSx556CoIowl5Tg1QohKkrVkA0mzH84YegTAa2sjJk43EcevhhZBIJ2KqqcOaXv4S9uhqiyQSD1YpsMonSK65AMhoDVVQDzmKGZlcJ8MeXgWQcGD+FFXYpAoybzMq6AH5tMABFxUBpBUN2aSVHhplMHPb+m+eA4QCr9f+8BkingP6PeHCA7Q14EOB7jwJfW8nfT5/7MvDedlbdv7YS+P6/AF/9DgBANJohGIwQQAie70LU14Ph/qOwl9QgHvb/+7+Tn07/4fQpuP83nArl2qL8PBrER02C0QiYzBAX3Qjxy/8AoagE2bYtHD4/Gvg/Sa0Hxirs+95l0Csp43VdRaBUEnC6PgbzIsR5LSCLFdlsFgMDA/l89UWLFuVVeFEU0dLSgmnTpmHJkiUwGAxjysPlyrZJkoRoNIo9e/YgFosBAERRRCgUAgBEo1G0tbVBVVW43W6Ew2GYzWZUVFTA4XBAkiQ0NDSAiBAOh7Fz505dyecQz6VLX8Sdd55EUVEj2trugKrG8eUvvwGLpQiLFq3RoXsNbLYyFBU1IBq9iN277wcr75UwmeyYN+8+SJIbomhEIhFCKNQHg8EETcvA5arDsmWvoKRkPIiyyGZTMJlsMJns+fYdjirY7RXIZtPw+Y4hGh2Alk3xn/vPPs/h8WmJw2Njbp5nsgPQOLfXaGGwzySAd/+ZFbbFr7C6+O4/A7FLnNv+7ndY5fvMJqBoPKAMMVwtfpmhYM89PAhw4wu8H8XHSl3dQgYgVzMw+z5elokD1/4wXw4uY7TCDIby68AA6AeXcFsLYAEY3M+DFfkV4Px1M1jlnQ9WfgHOV/8JGC4JDJd3gkF2EPogOjiM/qC+Xgv4r3M5GOhPATBrWSQzSazr4JJt6/atw9z6uVg+bTk2LdkEjTQMKUO4ruk6mA1m1LhqsKBxAZKZJGKpGOwmO9Z+di18MR++MvUrePXzr0IURCxsWgi7yQ4Q0DnYib6RPhAI8xrmYVzpOEhpCWqWc+HvnX8vXuh6AUWWIsxvnI/h+DAuhi8ywAsiLhGhH/xFnOuHWnAg7DNgmPaC4dkPhvtaADPAKn0cDO+vghVyETywUav3g6RfC7O+jMA58D5wuP06cAj+evAgSVxvd4Y+36hfw/UAtGyS66cbi4DJ9/LFyiSAkpn8eQh2AOVzgaUngZkbGLiDnRw+bnTx+8Pf4T8MszYCznGc8z77Z0DjlwBzGfLxjqYSHggwuPgzWrkQ6NnIZeQoAxy7G4j1MWzLXi7bBujgrYN2rma7YGA4F838HZaSGIqI9NrrWQZvQM/97mMABvjey6b5IQh6GyrfY8XjCvsyuzjEPjdI8PEpX8PdzwMKAMP0yFm+l294juu3Q+P7rvNhjmhRFcB/mNvMJID3v88pMjf9jNsIdvMx7l7B6QImO/sHANxOtA945w4eCKiYxtE7tbpspngBIhhMJvj9Cr7//bcxa1Yt+vu/h02blqC42AKn04yqKjteeWUZ7HZTXn13uyVksxpGRhKYMaMamka444429PeH0dExgEuXoojHVaxb14HNm09jYCCKCxciOHTIgzlz6lFT44IoCkgkMrjnnl2oqnLAZjPBYjHi2WdvxttvL8fPfnYrVFVDKBLHYCSArKZhWIngZ51vAAA8UQZtk2jADz7z9/nSb35pBENyCLt6DuCXh7fDIIj45pzbYDVasPqmf4Q3Ogx3dAiZbAaz6ifjd8feRqnNhaASwuWVzRhRokioKShqEja9TNzXr7kFI0oUj+9+De5IAAF5BHv6jiAoh2EUshwmr8mcdz78MNdRr9qgq+Bg0B66n5VyQQDK7gVUP9+VNS8CRX8PiMX6h0VjVT4zyG0KJr3Ge5IX2+YDI09wW7HNHFqPDKB6AOsMIDPEgwBV6zjH3TYXME6ExWjEhsWLsbCxEQ/v2YORRAIbFi+GRgS7yYQXli5FQ3ExQokE7tq5E5UOB1wWC3yxGM6HQrikw31fKIR4JoPzoRACsozl06fj+aVLIafTeTWfiLBqwQIsnzYNm5YsgSgIaGlqgt1kgkEQ4JdlfH/XLlyMRtHt9wOZDASrFZg9m0PHz59nePvpT1kK9nqZDH06cDU0MNg3NPB6588zxF64AD3XgkPIV6xg4iwvZ9jPqd05uM7ljBuNTKm5+XY7Q/3dd3N7OYJ95hkuE0fE8LxmDVPu4cPczpo1hVJvFgsf31138XFVVfGxdHVxiH5REYMTwIMFfj/v9/nnuT67283H39/Px+ly8TaXX86x7evWFZT3ykqYlQgmXqbipZcIZWWc65471aef5m5zOlk1t9kY4jduZEHfamWGHRxktT4e5/nBIEftJxIM6bltFi/mQAVV5VPIDQo4HNz2xYuFy7FhAzBpEmCz60FOBgNQrI8SZDXOMU+pDOCpNDcYU/T7JssArhFDuKSnhBgNrNgbRIb1lMoqfEoFHDYG9CInh+JrGtDvZkAfV8+58zmVX9T3mQvDz2o48/OfY+Dtt6EqCuI+H6zl5Rj58ENQNouqa65BzcKFhXXicXz06qvwvP8+kqEQK+V+Pzzvv48zP/85ahYswNQVKyAYDLDX1qJy5kzYKitB2SwqZ81CSpIgGAw484tfoHLWLBhMpsL2v/gFBFGEaDBAjcchGo2wlpVxznrfRwWle9xkDoF//ScM8tERYMos4Nav8W+pEuOLSQS0/xHoPsiKezYLFJcC7/yZ1XajiUPiJ07l5eOv5G12/J5z3Q0GBv7fvcjl5CpqgC/9I7/+3YucYx8aAmU5EiKTjkPTNFRMuBbFtZNROXEusmoKJptrLGd8Ov2Xp0/B/b/jlM1yXvqeXVyXcVT4OzBWjRdMJgjlVRCbxkPrGAXh2QLsf6JaD7BiP1qNF0VAVVmFb/8ToMgQIAAOF8TPfQFCcQmLWKUViEQi2LlzJ1wuFzKZTL4W+9KlSxGNRjEyMoKSkhLceuutANhErri4GMuWLYMgCHmob25uhtFoRGNjIxRFQSQSgcfjQX19Pcxm8xjV3m63o6OjA4Ig5BX7oqIiTJkyBel0Oj8Y0NXVBQBQVQWJxDDMZidiMU++3npT00Kk0wmUlIzDsmWvQJI8eO65y6AofnR0PIH6+jmIxXxoa1sBVY0jHg/C5aqDpqmIRgfgcFSivX0lVDWOWMyLtrYViET6AQgQdbVQFI0oKRmPZctegSiaEI0OwOM5hPr6OTCZbNAEI8hSykrcm8vYQK7rcX793ncZwKP9wO5vA+FzfL261gLntrKSB/Dzua2sjKcibDS3526GHC0N2MoYit69i//gV1wFxP38/s1l3F7dAqB+IdD5Yx4AiAfZBEvLAmanXvv9MnShoN7KANIAZgF4C2xMB7ACPAPABgB/AcMlwF9CHrDqLoFB9B79tQSGxs0AngSry0bwIEAJGGxjYHX/KDi0uwY8gDBsMMNqtOKFpS+g7atteGjRQzAZTHjxlhdhM9oQkANoaWrB30//e6SzaZhFMy5FLuGY7xjMBjMECHhkzyOYWTMTVqMVsVQMnYOduBC+gBVtK3AudA7TqqbBZXEhmUnCJ/uQ1TjE3i25cdB9EBNLJ2LDzRsgp2UcGDyAUmspGksakcgkEEyGsVYQ8nD+Y3CawDFwCPwGMMDnzt8HHvS4G6zAzwGDdxaF6IZ+MNyb9OsxpF+P+1GA+Hv1+U4AL4OBP3eN1oEHDwR9fYve5iYimA16TrsgcA11o4tDr0Gc1165gAHT6GR4jHuA0hmcz65KgMEGXPkDXi6IHN4b7ASUCzwYkPByGL0qsTJMGSAbBz56Emj8Mue2W2tZRZy6hveRTbDaDFFXz3WVPZdzDhRC5tMSv7cU6cZxVFDYzbrCLnv0XHVdD0xECsCeU0EFg66w69sCrHwXNesK/yeoCVmVtzcX8SDHuysZzCum8f2cSQK183jd4y/wYJnRxudYMwfwdjKI18zh+zLm5n3Vzi2Y2nWt4+1TYd6H2ckDBdf8gPdrcvD9euXyQgRPJg41rWL9+v245555MJlEyHIaJpMIo1GAphEkKQVN43N65pnFWL58GhYubILXG8PDD++BzyfDaBSxefNpbNjQienTq2E2G2AwiHjggQW4/fYZuP76ZjQ2FmH+/AYcO+bj/8upLOx2EzZuXILSUisSiQxWrGjDyEgCc+fWQ5JSCAQUVFRb8a9db0FOJ/D60XbMrL8cZqMJ5Y5iTK2ZgFhKgT8WwhPv/gKlNhcC8giuqpmAJZPn41vzvgC7ycoh9GDwD8gjKLW58MS7v4A7MoR7rl+OaFLGrPrJMBmMcEeHMKJEYTWakdGyKLUXoaGkGpGklB8MmFU/Ge3feh7T6y6HomZBhmJAtDFEy9sAdUivsZ7lz9HIcwzroh0gFTDWcgi92ssqeWYASB4F1POA/042uBNsHPIOoZDeAABFf8v12g21wLgzQNWzTET2hUB2iO8FZAEtpSv+NiStLfDFYrCbTFjf2YnNp0/jiY4OAIBREBBXVdy1cyd8sRisRiM2nz6NZw4cAAFY39mJKocDbknCD+bPR5HFAovBgOnV1QjG40ioKgKKklff13V0wK8o2D84iGduvhnBeBwr2trQOzICoyDAZDBg48GDWNjYCKvRiLn19ciIIigeZ8itrGRAj0ZZaVdVlm1zincmU1DAN2zQ7z9rIb+9rKwQUp6rry4ITJdOZ6GO+po1TKi5GukbNxbC6js7WQWfM4fbHxoqSNezZnFY+8KFTLoDA+zQpihc4PzRRwtJ3V4vcN11TLREecjGypUM5IrCpFxTw2Aei/F+k0l+3ryZVf1IhNuLxfj8Ozo44mCU8p6GGXHVhEBAwL338tjFgw/yKW3YwLs7f54P+bHHgC99iccInE7uHqeTAxduuIG7zmTirpszh0/j7rsLmQK1tRzdbzTyY8MGXvbwwwzrg4NjS9vH4/x1K6gZBuRECugb5DB3h40VcAKHt+dGA85dYlhvqNZz0028PKYwjIOAczrUm00M6qk0A+bEJh4c6Btkhd/l4H0IAi+zmHlboJAHH5UhGI2YumIFmj73OZhcLpRPn87P06YhdOoUVEWBrbISV//wh/jMK6/AVlmJOY8+iqVvvQV7TQ0OPfII7NXVaNm4EVfdcQfsNTUwWq3YdvPNOPzooyBRRGJoCEcefxyqLMNSXAzRZMLM++5DxaxZOPzYY/ntZ/7gB5DdbqRjMZiLipCWJIikQWj/A6vtOaX72uuB97czcFvtwMSrWFkvqwRG/MCffw3EIrz+LX/Hinppha6yDwFf/Wdg/o3cx8MBZoOmiazcA8CEKzl3nggoKgG+/G1ACnM6mcHIofOH93I4ffsfANEAIg1Gs53TBs12VF2+ACarC0aLHRZn2af57f+b06fmdJ8w/d9uTkepJLLbt4xykf8yBAuHb401qhtlNpdK8fzOPRAX3gChvBKC2fLJ7eeM6Qz6zaWb1CGTAakqkEyA+npAnkEYbvkbaAMXILiKoO1/H2LLZ6EWlWJ7e/sYh3dJklBcXIx33nknb0qXM54LhUI4ePAgFi9eDKPRmAdzURQRiUSwb98+LFiwAOXl5ZBlGVarFclkEjabDYIgYOfOnVi4cCGi0SiKiopQXFw8xozu1ltvRSaTybvQL1myRDdvOQdFCaCxcQEANpkrKmpESUkzwuF+dHSsQ0vLapSUjIOiBGC3VyCTSUIQDEgmQ+jr+4vuFP8CRNGES5f2oq5uNnbuvAunT2/GypVnsGfPwzh9ejOmTm3FsmUvQxBMEEURmUwSqhrHe+89hM99bhMGBjrgcFTiwIFnsGjRapSUjIcRgCj1Q+haB1z/LCtyh5/ksHZXIytpeROqV9hYLjZYMLmas1o31mpkhVCVAXslg0+kHzi0tpAHW9SghxCLvN7e+3lZUdNY87ubXtIds41sbKcbXiVLJ+NdsxMLwKrtA2BAnAyGeBUMkwBD4Qg4dDsKoEjfxgIGyvVgd/RmcI63T3/MBUN9FAzrxSgY2WlgVTmu70MBYM2kMTJyFhv2r8eGxRtgM9l086UhVDmqkMwkYTPaMBAdwKA0iLn1c2HSlduMloFJNCGWjiEgB/DswWfx1E1PwWF2IJ1JY8tHW3DAfQBrFq1BQ1EDekd6sb5zPVa3rEatsxZSSkKloxIAEFSCKLGWwGw0wxfzodpRzTnv8WHUVE2FTRDRCeBvAdym99tL4KgDja8IDurnr4BRIAWOLhD1de4C8FsA7QBm6n1gB6vuGfBASQsY+OeBBz+S+rU4rG9j0ts1gSMa1gN4EDyo0gBgAmlwJnxA9wOsqBt18LY3ApZKoPt+YOZTDIWCiUE1dh5IBYCKeTxPSzHwdt8PTL4HsFUD4ROsqB+6AxjYzKH1CS9w9mluTzTz5y05xLnt0VOcB0/EgwGiQYdlgSFdNHKah0FX2AUB+TFqyuohyCY9xD5dyE/PwZGmsopf1Iy8M3w2VXCkF81A4DBQduUogzr9/tFSDNy57UjP68wk2DQyB9/SIIN77RyGdpOd96tl9QGJJJCKMmynozxv+EOgaBwfL2WA4Y+AuvlAbIBh/toHOPydNH1gxMT36GjjuzmreV+qwgN6166CYp+KdIaQzWoIh5N5pXzNmkUoL7ehu9uPhoYiuN0S5s6th8XCg48eTwx/+UsfDh3y4Pnnl+LOO3dg06YlCAQUPP10J9avXwyHwwSDQUAmoyGbJRgMAuJxFceP+3H11bV5Y7o1axZhcDCKZct+j9bWqXj11c8jFkshFkujps6OYHIYFpMJJbYigAiCyP2byWaQ0bIQBAHBWBhVrlJYjGaIEDAsh1DhKkdWyyKSiMFmssBissAgCBiKhdB56SRO+frwwxtv16tGpBFLKXBaHJBTCiocpVDSCcipOJwWOxxmGwKxEVQ4SuCPjcAfG0GVsxS/OtyGxz/3TQiaBCEbYOU77/S+CjDUMYRnLo2aV8Nh8/F9DPCJQ2xqF3pad5VfDtS8hLz5HDJA/CBgqgZMk/izmhkARtYC5T/kgQL7PB4EMNWzIl/+oH4sjZCFyVA1DQKAS9Fo3tG91umE02yGNxaDnE7DaTajzuVC5+Ag5tTXwySKyBJBEAQo6TS6/X7UuVxY19GBB1taMLG0FD0jI1jf2YlVCxagoagIAUVBpd2Ou3ftwou33DLGvf7lZcswrChw6Ptc39mJNS0tuMJqhfmOOwomcS+8wAD3xhss19bXM01u2MBQZzAwTFdXsxwcjTL4AgVSzJm45Vzhc/91c7nOosgA/dvf8j5feYXnyTKHqh84wHBfV8fr5dzq6+t5nWPHgGXLeNtNmxiq6+r4ebSBXFMTQ3hxMSvqow3zHn2UDe9uvpkBvLeXDe1WreIw/xUruI3ycuDECSbrsjIe2HC7mZb37wcqKyFNmImhsBmV/LODVAo4epRXb2riw50zh8ccLl5k5d3nY/E+HufdPP44H6IgcDdLEofCHzwI/O3fArfdxqeqqrzu+vUFR/lgkAMJbr6ZL99dd3H3jRvH4yJDAQ2Lb8hCyGSASz6G6TI96iCV5ofZxFB9foBD2q+amHd8zzvH54ztrBYgLDGgD/qBCQ38PZ777yrHeYCgrKjwXzZnbnd+EAiMANdO5feJFGAyQTUAqixDjcdhLS+HaDRC1l3mp3zrW7CWlSF89mzePf7o2rWY/I1vwFZVhfDZs5AvXULNggWwV1cDgoDE8DBUSULPb36DWT/4AQxWK4LHjkHxelE+fTrO/PznmLpiBZwNDej68Y/zjvXX/uhHEAwGBI8dg726mp3mv/1tmOw2OIQshOIyIDzM6vq4KxjKh7zA25sZziMjwGWXsxJ+eC9w7XXA//oGA3s2C5w/BfxsLfDIzzgcPperDmKjO7+HQ+2XfBkoq9DN/CIM5ku+DJSU8SABERD0sRN96wpAiSFbXYdUPILhvsOonDgXZnsxf2d/akj3X5o+Naf7nzb9VV76vxPenlPjDQbAVQzx+psB56gvslETK/VJDnXJZkAqK0p5NV4QATkGbc8uCI2XQVy8DCQIEJvGAyYzhMbLoHV+AOhh8FOnTkVLSwsA4MCBA5BleYwpnSzLICJ0dnaivr4esVgMbrc7D+0AIEkS5s+fD1nmEKlMJgOPxwNVVdHe3g5JknDzzTcjm82itLQUpaWliMfjY/afG4QpLy/HsmXLYDabQUSwWFxoaJiHdFpGe/tK3Rm+Admsms99lyQ3AA1msxNu90EYDCYYDGbs3fs4GhsX4sYbn8TAwH5omgqHowYA4ZZbXsTXvtYOh6MaS5e+iK9+tQ0tLWugKEFoWhrJZAQ7d34XshzAZz/7OARBREPDXBw48AxOn96MffvWcUk5AORqBt38c1bPSsazq3TOzXu0CRUAxDzsMi+72XVedvP74gn8Z1+NA7vv4FBgk41hXPFxDm1W5dcqpyPgsy8w7AOj8uBXAxAATwerRrIb6NsGHF4PM2m4GgyGAMNnHVi1/S7472dSf4hgVdwOhm8b2KCtBKwCLwSrzQAb2E0AsAisqMf07frAwHoJbMTmBSvLd+vHUA3AkE1i3b61mFM/B76YD8PKMAyCAUWWIiQzSShpBRktg+aSZsypn4PD3sOIq3FopOGg+yDOh87DYXKg1lWLe+bdg+H4MO5qvwuqpuJr076G55c+j1IrezjkDPC8MS/sJjtKbCXoGOhAX6gPdrMdGjROw7MUIZFJ4GTgJMaVjMMwBNwJBuM3wAMWw+Bw91xKwXmwCq7p5yiAAf4OfRkAPA+G9kVg8D6m95FD7+u/QyHE/rv6dfECWKkv18AA7wIPoAyDUx6sAKbr10ODwMp4xXxdHb+T893jHv5umLGWD+bId9lwThCApI+N5g7dCcjn2ZAu4WNoNzkBg5OhXTACU1YDTa0cEZLwFNoLHWFQsZQylJfPZaU9N2VSrD4jl9cuF/6kayrnomeTyOe058LfBVEvtagWlHTRoKvuTn3b/kKovLlILzMnAjVzWbk3mHi+7OH2DaMGQ7Ws/sip7S6Gdv8hvudcdYDvIIfQezv5yububf8hwFbObUYucLv1i3jgIDkM7F3FbRAxrN/4U8Bezef67j/zQEE2wbBuqxr7nWApLvhTHN0I0SBgcFDCypU7oSgq3G4Jmzefxtq1+yBJKVRWOuB2S6isdGDlyp24cCECWU7j4Yf3YOHCRmzYsBiiKOCll26F3W6CxyNh7drPgohw991vs92AKCCdziKRyMDlsqCmxgG73YTLLivBSy/divp6F667rhm33z4DDz20CIIA+P0yHn98L5RYBvXFVUipKiIJCYIoIqmm8MQ7P8eQHIbFYML6936FCmcJskQYViLIkIYKVxkyWhbhhASnxQGbyYoROQwlnYRHCmJW3RV48MZvQhRE9n4BIaWqePLdXyCp//aNyFF4pSBsJguypMEgishoWViMJpTbijEkh/G1qz8HkApBMACmCYC9BRjZANiu43Jwop0/W6oXUP7CIfKClb8JrVcD2RF+FksZtl2tHGav9rP6rvYB8U5W4VUf8vn0hkqg6pkCtAOAfREwosP/yBOAsQJQB9kYDMjntL+ybBkml5XBbjKBAJTabDAZDPjxnj24EIlgenU1huNxJDMZDCkK0pkMrEYjplZWYl1HR16xzxDlFfz1nZ2wGo0YX1oKjQjPf+5zMIkiNi1ZguXTpuGHCxfCJAgosVrZGO/QISxsbESlwwHVaAStWTPWJM5uByZP5vD5mhrgZz9jWF+5kiVdka8brNaC90SufpnTyeD78ssM7ZrGKvZ3v8uyczzO/4E2beI89DVrWNHu72dped48HiTIGeeNlpT7+/nYGhsLYfFAoTwdUFD7161jhTwX5i+KnIvf1sYDCtXV3O7jjzPw19ayQj80xO28+ipL2x9+yPurqeG+qaoqSN562oDBYoSiMOufP8/dMHMme/7ZbJxCn8th//rXCx5/K1bwOMNdd3G0/p13chBBPM6H8Z3v8C7eeINP1WrlMZJnnuH2clkKisIZA7nL99prPGCgKBw08JW/E6EJIvfn+HoG7ks+PY/fzMq3Z4ivZVMth7TnlPJcXrrJCHiHeFuLCagp522CYT09Si3kzxc7+ZF7L4qsso8OmTcY9P/GDsBoABHh2Pr18O/fj2wigWwyidOvvIKBt9/GR6+9BsFoROnkyUiFw8gmk7jiH/4BRpsNgiiicuZMVMyahQ9ffJFz448eRTYeh8nlwuwf/QjJUCivyDfefHM+3P70K69AU1Vc/cMf4ta2Nlz78MMQRBGCwYDy6dNxWg/FjwcCMDpd0MqqQCYTG801jOeLoGl8kU8fY2gffwWf11fuAOZ9lmG+pAwIeFhpL61k5d01Klf+dy9yyD0Ehvbug4AcASw2TvuwWLn9XVvYHC+bYZivqGHVXtOglVYAIAz3HUbU14Pg+S5oGZX9sT6F9v9j06eK+ydM/7cr7gA+sVxbbv6Y0nBlFXxTf0w9/3hY/OjScUJRMbSO9zh3vbSiUBM+mYQ20A/B4QQpMsTaBsBoBEkR3t+CzwCuYmTTaWTsDmiaBlEUsXPnTnz44Yd59Tunhk+bNg233norstksNE2D3+9HVVUVRFGEwWCAKIpj6r2XlpZix44duPHGGyGKIjRNw9DQEOrq6rBz504sWrQIRqMRr732Gr74xS+ioaEhPwCgaRo8Hg8aGxuRTqdhNAKZDA8GmEx2hEJ9OHjwWSxevAFmsxPhcD8kyY2ionp0dDyBlpYHYbNVYPfu+9DSshqXLn2AwcH9WLJkE+LxIEwmB2y2ckSjl/JKvd1eiXfeWZVvk0hDJpOCpqk4e/YtlJRchuLiBuzfvwG33vozRCL92LePt60oHQ9D9AIEeRBUMxdCKsxmVSUTGCZkN+etpyJsShfs5pD5K/+eQ9oPPVFQ1zIJXaG/k0H7828w0MeHWIGHwDB/+CkeDHA28A9dKsr7VDwcMg8AEFkB3PdDYPb9gOwGuZqglk1G1GDGITCEVoHhcQ5YvZ0AhvcuMNBPBKu7YbCqvh4FWM+pzE4wvK4DK/gTUShjlltnJVhpbgXwCIAp+uuXABhTCnpHzsJhdqAv1IdZtbPgj/nhk335XPb7d9+P+xfcD2/MixnVM+CyuKCkFZgNZoiCCINogJJWQCB0+7vRH+7HF674AmLpGIotxXCZXQgoAShpJa/aG0Uj7tl1Dx674TEYRANsJhsSagLemBcbD27E+sXr4TA5ALMTHaIBlWBlfC7yFZohgI3qqgBcrvddGGzAZwWr4LvA9dnr9D5aAx4AuR+cVmDQ+8gBHjA5DIbwDAoh87m++4m+b4N+PRz69enSr2cFgOJsGk7pLIN46LDuAh9kQznlAhvSzXyK1eDIKaDsasDgYMj3/wUYOQRc/j3AXMqPdJifc1fTYONtBSODf3yAw+8zCeDkGmD6OgbnbBoIdwPl17ICn5YZoGWfrpIbOCzeUqSHVGr8OTa79PxzfX+5P/7RS0BR46ia77oZj3QJMDv4/hLNeh14b2EfIAZlZ10hb13Q29C975BN8bGYnDxDVXiQwGDmEPlcWcdcPfY5azh3PptkeK+cyffp0WfYlM5k54Gz7X8LTLiNyz9GL7LqXjOXzy16CShu5lx+VdEV9riuuD8ElFymDyikAdEEOWXGvk7vmBrqd9/9NtatuxFWqxHDw3GUllrR1eVBZaUDwaCCCRNKceWVP0Vr61S8/PIyHD7swezZdTCZRMRiaXR3+zF7dh3S6SxEUYDXG8PGjQfzKrwoCrh4MQybzYTycjtUNasb2gkwGLjUXCqVgccTQ1WVAyUVJiQyKZgNJoSUCOxmG94/fxgnvOew+qZ/xKWwD+NK66CBS5pBEJBUU9j4wW9x+7W3wWYyo9jm4suSU+yJ4I+N4NWDb+Kb196G+pIqEBF2nNmHU74+3H/DNxBLKbAYzQgpEobjEVxVMwEEggj+jUqqKcipOC4rKQHUPgiqh+E5p5RTktV0UyOXdxP079D4fsA6k3PfR54Gqp7Sw+IN+recgXPYkeXcdkMRkDjMoe+5zxnpcUyC/luuKfqHDpxPX7WBP4iiE+lMCik40a/XT9+0ZAmC8TjW7tuHVQsWoM7lgpxOI5xMIqgomF1XB58swyNJqC8qwhMdHVjT0oJxpaVIZTLo8nhQ73KhyuGA2WBAl8eDy4qL0VxSgmQ2i3Aigbiq5pX5xqIiGEQRA9Eo1u7bhzWLFqGpqAiKqiKWTsNlNqMcgEUUISSTbORWWspgetddbGs+fjzwrW8xELe1MVR7PIU6Z6tWsTqfTDIkr1sH/PCHhfrvDzzA97XDwQA8OFhQrYn4v9H3vgds3cqU2tLC/5tiMabVzs6C7PzTnxac4xWFBwrq6wvr9vcX1P6BAVbm29qYgNetK0jR2Sw7vo0uZffggwz0d99dKCV34QKH6be0cITB97/P+e1eL5P25s2QfDHsO+pEZSWr3xMm8KZEfKiqyjD+wAPcVc3NY8X/F1/k9Pvc9gsX8qHllr/yCn+0LlzgnPmf/rRQNS/XLa+9xsEIklRwrwd4v2paQ2NNBkJO9e69xOHtOcU8V/4tnQFMBv7sCuA8+NEqei4kftBfyE1PZ9h8Lp3h2u1uf6H8mygU/gMHw4DNwvv8+JTVoKppyB4PRLMZ5qIiiAYDK9/d3XDU1sJRV4dsMonQ6dMonz4dpGlISxLMRUUwWCw4unYtSq+8EjULFsBaVoaRDz9ExcyZgCDgyGOP4WJbG9eEf+QRKD5fvva70WKBNDiIhN9fUNhXrICjoQGZeDz/vRXt7UHNVVMgENg0QNM4x3znHxnOzRY2lhutjGsa4L7AofS/ea6gwP/99/l/XkYdq8x/4/vASIBz6SdMYbBvH9W+2QKYrdyfyQS/HwkA7X9A9hvfQ0ZToWVVBM8fKijuggjDp3nt/6XpU8X9f+D0b+WljzGbK6sAhYIFV3jgk3PZgbxSLzic0Drey5d8G2O0JAgM9Qc+gFBUDDKyCp9X+Dv3QDCZYXS6YBwF3/PmzcPUqVOxcOFCqKqKJUuWYOXKlVi6dCkikQja29uhKAoaGxsBsMq+Y8cORCIRSJKUz2EnIixevBiJRAK7du2CoiioqamB0WjEsmXLYDQaoaoq/uZv/gY1NTWQJAnbt29HJBJBPB6HzWZDNptFKpVCNpuBogSwa9fdCIXOw+WqxeLFG/Kn6nLVoampBR0dT+TLu6XTsXwefM5l3mwuQnFxE6zWUgAESXJj/nw2q0ulJNTXzwGRhpGRXrS1rYAsewEAU6b8LRoa5mLfvnX48MPfIhbzwWi0Y+nS5+Fy1UGkLAR5ELBVQnhvJf8BlwcZbMomM3hbS1iBM9rYSfqym4HE0KiSb+s437VrLSuVcx4EbvsTm2JpGVbo4iMABIaR+uuAoxsZKlJRhvpDazmsXlUKirzZBVx9D3BkA+fY2ioggcO1K8Gu8KL++i6w0nsJrIbPAJc7y6njChjsc4oywMDu0t+7AfwADI/Q58XBoeMq2EH9dnCOdg2ANgAP6fuLGUwYXzoBtc5aXN98PewmOyaUTcCCxgUQIMBusmP9TevRXNyMlqYWOMwOxFIxHPcfhwYNBtGAcyPn8IPdPwCB0NLUgq9P/zoA4PG9j8Mb84JAKLYWw2ayYU79HHR5uuCOuvHskmfhtDhhEA3IaBnYTXZsPLgR8xvmg4jgk30wCAKuBkcdLACDcxYM2EYwyDfr50lgeDahkHbw9/p248BGdh5wGsEccMrBMXD6QExvczY4WuERfT/Pj+ovOxjUZRSc+Y/q16sKnM4gZGTg9Fr+vJVezep76dX84396HYevJwIM7eVzOYc9o3Ae/Lh/AK55AXBexkrwsbvZFV4QGCJHDrMif2gFPxusPDBw6E6u2T79cf4Mp0IMyRVzefCAMvx5zKqc1gEwTJsc+neWyNBqMOe/w7jGtcBgm00ztGsqf841PSdZEBmgreX6J4/4mIov42VaWlfRnay2CwLfIwL0ZaTDe5YHBFQZiJxjj4nECKcT3PgiYC1l4M7lqcuDgHQBeO8uhnmDidNjaubw/efp4PW/fYm3J7AJZa1+B4kmPkbRxH2geLmdXJlHk5XP8507eKAjMQyDqGHmzBqupCClQETYtOlzAIDvfncn4vEMLBYjGhqK8MwzB9DQUISaGieWL5+GTZuWQBCAqVOrcO+9uxCNpmC3mzBvXgNCoQREUYDdbkJdnQvPPfc52GxGJBIqiIDLLitFRYUDqqrp9eCBzs5B9PWxE/3goISaGieKS83wRIfwk72/BwCUOUpgNZpx0+Vzcc/1y+GNBvGrw21wR4egaRoGIwE89pdXEYpLWPXZf0BDcSVcFgciCQkZPXXilO8ckpk0Su1F+MFn/h6NpdUwCCJO+8/j6ror8cBnb0dW01Dh4ND76qIyTK2ZADkVR1bTEE1IMECAzWRBhaMEQAaC4GBopySQGS6UeTNW6qHyAwzslMs9N3Aoe9U6QLAjX98dxNA+pEc4GcuBbJThX7ACGQ8r8RkfuK57BtAkYOgHPBAgOrmEXDYIDH0fUPtgTh8CkQZvLIanFy+G1WjE2n378kq5KAhIZDIYicexoLERdpMJTpMJc+rr4ZEkbOvpwaAk4UIkgpU7d6KxuBgTysrgk+X8+7qiIvSMjGBlezsSmQzckpRX5ocUBRlNy+9z7b59MIgi/LKMh/fsgV+WYRYECP39TI+lpQzvAwMc353LZc+p1XPnMqxXVvJzLv89m2Xl0WJh8nzmGabIzZsZso1GVr8HBgq1zM6dY4J1uzlMfbRjey7n/M47GczfeINh2mJhqTkXnv/jH3M8+LFj3PbkyUy6Eyaw7NzaysecU+7N+veRojBFL1nCcnfOKT8aLSj2gsCyeZP+/Waz8YDAyZO8TC9nZ3JYcPXVhKIiTsOvri6MTcZiHGzg93N3rl/Pm+a6M+exN9rzT1ULdgAPPVQQdp94gtvo72ewb2jgzIJNm3i5pnEO/cAAp+KfP89tV1UQhOyo/5NNtUBVKYN3Yw2r6QA/J9Oc457VOP/8opefi538vZrSVXMQm9sZDQztBpGV+CJ9MMBs5O1yqntNOSv7WY6AQ1rl1+kM/7/VTeTs1dUgTeOycPE4Sq+4Ao66OshuN0Y+/BBlV13FKaiZDIw2G449+STkwUHMWrUqr7pnVRW2qioceuQRKB4PZv7gB2j63Ocw5Z/+CZlkEraKCthrajBy8iQyqRSMVius5eU4/eqreSU+m0wiGQzi6JNPIhEMomzSJAiigQcjknE2jdv5x0KZtqISYNcbDOkWq26+l+R896zKOfHfexS49avIV1oxW/j99x4Flq/k37fyGuDy6fw6PMzqe/sfgOIyLi/3+k8Av5vTFrKZfJ670N8Dg8kCUTShbupnYbI4eCBVyyA7ylfr0+l/b/pUcf+E6b+D4v6fmSiVYmjP58K35tXzv1r3kxT3RTdyLrzRpLf3sdz6W74IymYBRYbWwTn1MJqAjArV4UKakA9LFwQBqVQKoihClmV0dnbm67F/9NFH8Hg8uOWWWyDLMvbs2YOenh60traisbERmUwmXwbIaDRCURT09fXB4/Fg0aJFsNvt2LlzJ+bPn58fABAEAW1tbfk892XLlmFwcBA1NTUgIphMhB07VuTzz6+//hHY7RV49901WLx4PXLKRTQ6gI6OdVi06CHY7RXYtetutLQ8CKezFiaTPa/MNzTMhcFgQzotIZWKwmIphtFog6L4AWBMrvv11z8Cl6sO2WwKmpZFKhWFy1WPcPgCOjrWoqVlNawmO4ptpQztufzyG1/Qjb9sYy9eJsEgDoFDhhUv12Wfu5pNrFxNHE6b+1MY6dMV+QcZ2KP9vP6cBxnmzU79S93I6zprOLz48HpW5F2NY3Nx/UcQa2hBk9mF18Gh7kYUVOElYAX4cbCSm+YjxQA4JHwjGDA1MJSq+noCGNIVcD53HAyZ68CqcyfY8K4BDP851blJ30cWgD0lYVgOwm6257vr/t33455592B86XgkM0lYjVaIgoi4GgcAZLUs7tt9H9YsWgO70Y5iazGsRiuklIRTQ6cwv2E+spSFmlVZTc8kkNWyMAgGmAwmiIKIgcgA3DE3FjYuBIE//wIEZInXS2fTsNjK0CMI2AiOONCDPeECRxp4wLnnUTDcx8FKeQysspPeN6TPF1GIRhgGw3YUnDaQAfsKlIABPQAuQbcGDP6aPj+X256LcEiBTQObiDAxm4JNDbMJl9zHZdyuXAU4JwDxS4Bo4fnWSuDMM8DUhwB7A0OxwQSQDsTB/UDFHF6fsjyPiD9LWgKIfsTh+Lmc9+vbuJ3T64CpD+qmd1cDyQAPFNTcqPecpvei3pO6opyXv0ljFd1Zz0p43oQOHI5udnBYuYBCGTjRyNvkVPYclMvuQr67pnIoey4PPreuAP6zpKV5GcD57EYb79fXVbg3o+fZXO7GF9m4rmczm8jd+DPOmyeNBxosxXqofSNDvrOBAd1Wzt8BqQhHFxxay/eqZz8wbmlBcV/8MptP1szhgT5HLeSkAfEUMDgoYWhIwcyZNQAAu92Evr4Qnn32IF544Rbs3z+QV9xbWhgiLlyI4IknOrBqVS4ih0Pc6+uL8MQTHVi9ugXNzcW4666deOqpmzAyksDatfvw7LM3Y3g4rufSt8BmM6G01ApRFNDV5UF5uR3BoILZs+tgdQlY++5ruP3az8MgivjXrj/jW3O/gIaSamikIRSPIpaMI5SQMK12Ita983Ps6TuCjf/rPsyqn4x4mt0crCYzwvEokmoGdcUVIBCyGoe/RxISiixOCKIIgyAgnclASslIqRlYTVw6joj4V4EIUjIGi8kKURBgMpjgMgkApSFQAtCiXMYt+SGg9gCOmwFjPQO9YAIozXeqYONweMHKIe1jFPoGPfoEXC4ul69um8fl4GxzANeXucOT3YBtNreryYCxju+FeCeXjIMREMyQsw5I6TR8sRj8soyGoiJs6OzEUzfdBKfZjKCiwGEyAYIAu8kEURAgpzll4GQggPmNjfDpufAuPRfeF4vBbjbDajTCajDAE4thd38/xpeWYn5jI/YPDKCpuBiXlZRAI8KlSASDkoS59fWwGI345x078NsPP0Tr1Kn4/c03Q9y3j2H8mWdYefZ4WGkvKeFzjUY5V7yoiJXncJifc/nvDgfD8P33A/fcw+HrAKvXL77IYfY5Cfnll3lZOs1tfPQRMHUqt/H97zOdLl8+NsH75Zc5933BAk4it1jGytb33suQndvXK6+wBC2KTK+KwvuMxfg8XC7ky0329TGor17NcvgddzBRNzcXZPP+fjbR+8lPeJCiq4sJfcIEKGTD2XNGrF9fCD64cIGbXLWKlfH9+4FHHvnr7lQUTqPXxXu0tgIvvVTIX08mOcV+4UJ+rWl8qjl7gNde432tX89jH5kMcOpU4VL+9KeA2ZCF05iCkEpzaLoocO50boopnONuNrGy/lEfMHcaK+ghieeNq2c4J7DDvNPG0J1WCyp6VuPve1H/Dv64Cm8xMcznFHyLmQcL+gahNlXj8GOP4dof/QjSpUvo+fWvMfPeezkc3mDA0LFjsJaUoOf11zHzvvsgCAJI0+B+7z0MHTmCOY88gkOPPIKBt9/Grdu348MXX8znrc959FEkgkH49+/HyIcfYvZDDyF47BisZWU488tfYuodd8BWUQEIAtKSxMZ1ZjMyigLKZhE+dw7Vs2bBEAlCyOWkZ1Q2kcvltpdXseIeCXFI+y1/B1TVccm3SIgB+5a/4/D2WJg/w7ve4FB3Vb8PilghRzoFuPt5Pyz58/xcfvzMecDyu7iWvKuEHe6/cieydgfSyShE0QSjxYZsRkXg7D5UTLgWZkcpQBoE0fBp6Px/MP17ivun4P4J0/8YcP942PzHy719wvrIZkAQIGQzIEFkV3o9h35MewtvAIrLdAGLzaG0wYsQ7HZk43Eka+rz7e7evRsLFy5EUVERBEFAe3s75s2bh+LiYiSTSVitVoiiiHg8DrPZjFgsBlmWUVRUhI6ODixYsCBfDz6TyeCdd97BvHnz4HQ6IQgCfD4ffv/732Pq1KlYunQpTp06hdLSUhQXF2Pfvn1YuHAhnE4nTCYT2tvb0dDQgBkzpuYh22x28RcwEUwmRz7cfcGCVQAEFBXVw2i0gkiDpmWQTEZgs5XCYDBjcPAAKiunQlVlWCzFINLwl7/ciwULVqG8/HIAQDodAxEhnY7BYikGAAQCJ9HQMB/R6EXs27cWixatQTQ6iN//fhmmTm3FvHn3wWUvRVE2AaFrLRvSlUzQy8D9O1MO4nOlrnJO2+Fz7Ep/00ucV1sxjcFbEABPJ7D9ixx6u/hVBnnduAr2Ggb50QZ1n32BwSbuBw6vB81djUzp5bhktEEBA/RqsFpeCw7nzinl94NrjNeAIdOIAsQPgNViK9hVfQCsKCf17e4FQ6gZDJNVKNSH94FVYhe4rFwCQDiThiMxgiKzC1nK5vPXt/dsR2NxIxY2LYQAAXE1Dl/MB5/s41B3gxG1z9TiT61/wsyamZBSEqocVRAFERppGIgOYF3HOqxasAq1rlpYDVaYDCZkKYthZRgOswNmgxkmgwnpTBqRZATVzmpktAwOug+iwdUAq8mKqrIJWCGIWKifw0YwTDvBYfIzwICdA+lcyLweRAhJn3+/3hd36+8noZCGUKF/LIb0vstlhsfBqn2Rfg0IBXjfAmC83o9rAdwHDuVfpMooki9wGbe4Gwi8CzjHAxUL+GpmE/zD3n0/MOkuwDWeW4+dA3qe1Q3t7IVBIS0FjHSxuZ1jHEP/R08AU1cDrokcYq5GAVsdcOQ7wMXfcg78Ffdy/Xa5Dyi7BjCV8udcEBmkcwNUEAugnU3x/ZCWWDm3FPHgkzTASr1o0MfqiAe/DBa+bwSBBxREc8HUDgQkhjlEv2R84Y93SuJ1c94QpPdqJsn3JWl6xEoxq/OWYgZtWwWDtSkXgaBx+Lyjlo/brwO+rYJNIxc9qYdKZ4B9DzLsRy/qofAP8uDBm8v4Xl3wKG/n6+Ln4nF83rnBvZteRkI1IAMzZDkNp9OMWCyNVat245575qGujhXFoiIzEokMuro8aGwsyoP26PD5uXMbsHJlO+67bz6eeeYANm8+jdbWqXjhhaUYGIjisstKEAolEI0mMWlSOfx+Gbt29WHSpDLU1bng9cbQ0tIETeMw+UyGUFRkhiQnERMjqHaVYd07P8eungN44YsPoNpZhte63sI/zf0ChpUwLq9shs1kQTydxLnhgfx7d3QIvz7chruv+xqsJkv+uz6ZSeOFfX/AXS1fgdXEA9rRRAxOix2n/H2odpbBajLDZrLCYjAhSxpO+/swueoy2EwWTr+KBjESj2BB8wQOX1TP6aC9CjBdzq7xI+uBqk3s+D6yDihfzWXaTI2stIt25Aebhu4Hyr4HZEbYJT7jBZR3AdN4wD6f737K6p+TuK7AX9LN6NbwYIChlOdrMSDrBUbWI13xEySpGFki3LljB7b19ODDO+9EtXNs+PyQouRh3m4yYTgeRyyVwuXl5eiPRLB23z482NICjyShoagItTq8r+vowOqWFrj1+U3FxQgoCootFhSZzVCJUxiMopjf30OLFqGxqAh+fb1KgwGGeBzCaLjO1UAXBFbOYzEG1cFBtixfvZpVbSImx7Vrx1Lqyy8zjEQivN3AAEvGDz3EAwKSxEq8z8eKuMXC1JlMjjWYc7tZWq6s5GORZabdCRMYpnPh73Y7x4hrGq/jdHKo//e+x7D93HPsDDearrnEAieT5877pz9lkC8r44GE0YRttQKhEPfB3Lm8L7MZklCMfR1CPtR9wQJW2efMYUG/upo/YkajngkksWg/ezaPKQCsjj/xBJ/yxIms0FdW8m4tFj70p57iU62o4LGR3NjCihVjI/5Xry6Uh3M6AactC0MsVjCXs5hZOXc5GKwz2YLpnMnIIJ9bp8hZgEdNV4oFkedFZXamN+iRVFS4nZDO8PqpNKvulaU8v9/NbvVWcwHiD32I7ORmpAWCwWbDkccew+RvfAOO2tq8s7vBYkEiEIAajwOCgJ5f/SoP9plUCmaHA5lUCmlJgrW0FJlUCt1PP40r/uEfYK2sBIgQPnMG5dOmcX32VAojJ0/CWlYGU3ExDxCAw+K7n3kGV37zm4gHArBWVMBWWQmb0wHh/KkCKN/yd0CZPth86APAc5FLtKUSPOLiucDh7gRWyQ/v5Zz3r63UL7gO4U/9mkPjpRAb2LX/EVj6Fd7P5pcLYfcD5zk/Phxk9b2ylrfLDSQYjchqGWRIg8FsQTzsh9HiQDzsQTzsRd1VN8J76l1UTZwL86fu8v/u9Gmo/P+j079bo/3fWB8QoG3fjMyGH0Pb8caYUnOC0QihpJwN7ghAJg1S01xPXk1DqKkDKTK0xssQi8Wwa9cuxGIx1NfXY9++fXnVfOnSpXkQN5vN8Hq9kCQJFy5cQCAQQHl5OZqamiBJEnp6eqAoCjKZDOLxOEwmE2688UbIsgyz2Qyj0YiamhqsXLkSS5YsgSiK8Hg8cLlcKCkpwS233AIiwrvvvgtN07Bw4UIMDAwAICjKEPbseRiJxAiICO+88wAEQcDBg5uwYMEqlJRchvLySZDlANraVkCSBmE02pHJJNDevhKRyCU0Ni6E0WhBKNSHWMwHUTTi9OnN6OxcDyINgiDCbHYhkRjBnj0PQ1GCMJudqK+fA0EwwGCwoLFxIfbvX4/6+jl63fjViMeDSKopUOkkzmMtm/wfQzvAap7ZxWBitPJrLcPQ3rOZw3QrZ+plvMBgUHMt8I2TwNwf8w+f0crlqI5uLIQaz3lQN6hbwwBktHKpqb5tELrWIaNlUAmG9s0o1Af3geu1rwCboc0Bq7o+cH76JbCC7AaDagb80aoGw+id+rr3gRVgJxhYZ4ABdQFYdX4MDLTnwIZtXQBKsmnE0wpi6Rj6Qn045jsGi8GC5dOXo6GoAXe03YFL0UswCAb4ZB8qHZVYuXMlBqIDeOPLb2Bh00J4Y16cD53HQHQAHQMdyGpZ2E12bOvZhvWd6xFNRmE2mHEhfAH7B/ajxFoCq9GKI94jUNIKhhMM8hktAzWrYl7DPDSVNKHUWop0MoY1RFgCrtG+Vr+EneAw+RKwsv4zAJfp/fRd/fwyYOjeCI5OMIPhPwBW67vAcD4MHgD5MXgw5Ji+jh08uELgwQBJvx5eAF/Q21qvPxeBHekNgoGBXe4HTj8ONH8NKLuW89xzoeSihWu022pZDc/InIc+Yy0Ajc3pRCOfQegwYK0C4oMAsuwiX3UdzyNdNTn9OKBc4jD7W88AV28CzOXsRl+5iPPiIfBnMpfbnk0zVIMYuA162LjsBawVDOUpidcvHsedHunX89FjvL6QS1IXCi7xMU+hbXORXoZOv4cifdyurYrnpWM8mJBNsXu8aODnSB/Dv60cCBzhUHktAyhDDPdqnOE/2scDaO+t5IGA2ABDfs0cbicXcn/dBt7+0Dr2r5A9fO/+TRvfqzm3e2cDcPRZQAny98jh9fx9QFlo2QxkOY1oNJUPlZ8zpx7r13ciEknC6TSjry+Mri6uwe5wmFBT44TJZMB11zUjHE7oMG/E6tUtCAYVrF69CK2tU/GDH8xHJJKE0Sji4EE34nEVgYCCixcjeOyxvfjSl67EggWNsNtNmDatKl8HXhAEuFxmZLOEE8eHkBwywWww4f4bvoF373wJ1zRcgXJHMa5puAK/OrwdEyoaEZTD+Je/vIpIIoZZ9VdAScWRVNP49eE2fP2aW2AyGJHRMshkszjp7QWIcM/1ywGA3wOwmizY8P6v9bJyIZTaimA1mpElDbGUgqk1E2AxmNDt6YEgCHBYrKhwlCKp6gktI+t1Y7iN/DkQHIBtIYeyj6zTl20ArNM5zN1Yw+HtyW5OLal+DhDLAPsCzlkffpzN7mzzgUygYKIIDUieZIXeUM1GeIKdoT0b5vminY9D3oa0ZsSQokAAsLqlBbdNnowSmw0eHbo3nz6NaCqFTQcP4qmbboLDbMawXurNJ8vIEuXD3J/o6ECF3Y51HR0wGwz57dfp892ShIFoFA/v2YOAokBKp3FHWxsGolEAwLqODmzr6YHVaERG03AhHOauymQgRCKFmumbNjH1HTjAfen3F8Lcc/XG1q3j/yiqytC+bRuvt3w5K99GIxNqPM454hMmFFzTiDhk3eVi2M6VaEsmmVJHG8zNnQt88AHDNsA063CwWm+38wBBczPPO3eO1fLhYR40eOEFBvBNmxgQN24shParKgP6oUOFuPTVqwtF1KuqCjXsvV6mb7OZBxpmzODvKasV6OqCaBgb6m42c7m3f/gHhuxEgscQenq4SwSBMwXuuosPIRbjw7/vPj4lVeXdXbzIAQtuN3fVffdx99tsrN5XVXE3v/gi8Hd/Vzi9det4+5ERhvpwVAC5HKx855zkTSa9TrvGOyx2suIuCvw6Vwbu3KVRJnMG3RVvgEPqi528PnQFX5J53WxWr/Mu8jpVZazGCwJDe1rluu+XfHxN50wDil381zYex8z77oNoMODYU08xUAsCVFnGqZdegmgwIBkMonzaNCSGh3Ho0UeRCoWQjsUwcvIksolEft6sVasQPHYM3U8/DZPDweHxH36IbDIJg8UCe20tkqEQzC4XDGYzjj/9NBLBICpmzkQ8EED5tGlIDg9DVRRkCaBc/fZceDxpDM9lFcAXvsEu7394iZX4xglcMhrEsP79f2F1PZvhWvBNE4Enf8lO8u+8yaDerofe7/wjkFT49a4t/AEaP4XBfvIMoKqew+ZLK4FJ07iNjAqYrdC0DLyn3oPRYkMmpcBZ2YzKiXMRD/vYtK7vMEjLIptJQ9MKjPHp9J+cSB8J/fRReNTX19P/q5OmqrT99V/TzHHNNGPqFJo6dSr98pe/JCKi66+/ni677DKaMXUKzZg6lZ55Yh1lPQOkbvk1ZT0DpCWTpMkxSiYStGXLFnrkkUdoy5YtNDQ0RH6/nyRJot7eXvL7/bR161aKRqOUTCYpkUhQb28vKYpC8Xic/H4/bdmyhXw+H/X09FAikSCPx0O9vb0kSRL97ne/oxkzZtD06dPpiiuuoE2bNuXXX7NmDY0fP56uuOIKWrBgAW3ZsoU8Hg/F43GKx+P5/SUSEdqypZUeeQS0ZUsrxeMhkuUhkuUAJZMSyXKQenrayOc7QcPDvfn1Eolwfruenjby+0/Qli2t5HZ3UU9PG8XjIXrwwUU0bdoVNG3aVTRpUjO9/PLztHXrcpoypZmmTZtC06ZNocbGYgJAf/7z8+TxHCFJ8lIqJVMweJbi8TAlElHKZFL/Zy5qJkU0dIJoeyuRMkSUjNCO3z5Ps8aX0Iypl9PUSU30y588RpSUqOvt12nu5DKaedXldMXlE+mptf9CtPN2It8RovgwUUomGjrJbQWOE/W1kTZ0knZlUhQmohNE1EZEQSLqJaIhIlpORM8R0Rki8uvLWolvtlYi8hJRlIiO6++PENFvduygKbNm0ZQZM+iKqVPpp7/8JR0lopsOHaIZCxbQVdOn0+UzZtD1775L3fo2Z4hoQN9fFxGdU1MUSUToTPAMtfW0UZe7i1q3tNIJ/wlq62kjPAJq3dJKoXiIhuQhat3Smp8XSUQokohQ65ZW6nJ35bdfvnU5eSUvbXlrC82cNZOmXDWFZl87m7bt2UaRRIRO9p2kz9z4GRo/YTxdMeUK2rF7B4XiIZKSErmjbjobPEvheJiiyShJapLCmkYRIopqGrUTkZuIPKP6JEBE3Xq/HNf78W0ikogorPfxSb3PjxBRRD//QSL67c6dNOuaa+jyadOoee5cuq27mwaI6O61a2nC5ZeTIAj0r2++SWf0/b6g7+eM3n5In7+ciE5oGsVVhSgVJTpwO5HiJkqFiaK9RKEPiZIhosgZIsVDlI4RDR8h2tdKNHKcSPHya8XN6yWGiKK9tPPPf6Brrp5B066aQnPnzKbuw/uJRk7Q7Usvo0njm2j6tKm0YN41dOi9N4hCJ7mNUHehvVA3kZrkz+TIWaJUjCiT5s+7miSKj/B7NUWUUfmRVXm+muT1c9vFPEQjPTw/rRBlVdrZtp2uuXoWTZtyOc2dM4e6jx4mio/Q7d9YTtOmXE4zZkyn2bOvoXfebuPt4yN8LPGRwv7ScaKYlygp6cslokSYKBEiSkZ5n4kwUTLCy2QfkaS3NXKG6OhzRDuWE8WDRJKb521vJXoaRNtbaee2N+iaWTNo2tQrae7sq6m7czevHzhOFOqld9v/RKIo0saHvk3k6+LjUAJE/mO8XlKiWCxJbneUzpwJktsdJb8/Rh99NERHj3rJ45EoFIpTW1sPdXW5qbV1C3m9Ep044afW1i105IiHPJ4otbX1UCSSII9HorNnhygWS1IkkqCtW7fRzJlX02WXTaZZs2bTm2++T4ODEaqunkp1dY00deo0uuKKq+ixx56kcDhO7e291NXlpra2HjpxwkdtbT0UDMoUHIlRMBamnsBFun/bJjrt66OANEIBaYSiCZmUVJyiCZk+8vfTj9p/SiElStGETAFphIZiIRqKhUhKyBRNyLS//zgFpBBFEzLt7TtGv9+6mWbMmkGTp1xBs6+dTe90vE+XQl6KxmO0+qE1NGHiBJp85RU0d8E82tt3TG83RB39xymsSDSiRCitxkhTw0RpL5EaIMpIRJkQkdROlDhKpIaJEt1E7lZeJ+0hSp7R1x/ih9TG66S9/FodIoofoZ1b/4WuuXoKTbtqMt8nR/cRSW/TnGuvphnTp9KMaeNo6pTJBIBOHH6Lt0+eI1KDRGqISHqbUqkoRZMJOhsMkjsapXAiQZFEgkLxOLmjUbr9zTcpHI9TJJGgaCJBb587Rx5JomgySZFEgmLJJJ30+6l1yxY64fNR7/AwBWWZIokE/fS3v6XS8eNp0pVX0oxrrqG9XV3U1tND5jvvpLJJk+iKq64iVFTQ9K9/nSKJBJ3w+6mtp4e69fYGIxE67vPRrjNnSPN6ibxeojNn+Pntt4mee44oFCJqbye6eJEoECCKRoluv53XiUSIYjGiYJCot5foxAmi1lZepre18/XX6ZqJE2nalVfS3GnTqPuFF4i8Xjq0eTMtmD2bpo8bRzMAevfGG4kkidv0eomWLyc6eZJft7XxPkYvl+XC/k6c4GNrbSUC+Pmjj/hYu7sL63i9hdcjI0Rnz9J3//EfqbmxkQDQ8V27+LzDYeo9epTml5fTJEGg2ZMm0an9+4k8HqJYjHqPHaP511xDk8aNo9kzZ9LBAyeprY2oq4sPNRzmXR05wrs7fpzohRd42fAwkd/P3Tz6UINBXp473O5ufg98l6qqmgkA/eQnxykY5EvS2dlLc+bMp/HjJ9FVV82m998/lT+9r371u9TQ0KyHPx2n5cuJNDVDlFb5oapEZy8QDfqJlDi/T6b4dTJFNBwmiin8vOdw4f3p80SSzNudPk+kqvTdlSupuYn3dfxgF68rx6m3+yTNnzePJk2cSLOvuYZOHT9ONBymRHCE/tdtt9Gk5sto+pVT6KYbbqBzh45SOhajeDBI+1etItnjoX333ktnf/MbGj59mtx79lBiZIQUv5+iFy5QWlEoGQ6Te88e2jJvHrn37KFkOEyKz0f7V62iP8yaRe49eyglSZQYHqZ//ta3qLmpiQDQ+5s30/5Vq0gZGqJTR47Q3NmzqbG0lGZddRV1vPUWRfr6KClJ9JkFC2h8RQVddcUVtGD+fOrav5+0ZIJooI/opbVEF88RjQwRnewiSsSJ4jLRyUNEd36el3sv8fILvfw+PDx221CQXw/00XdXfJuaGxq4D//4a6LBC0ThYep99B6af/Us7sPp0+jUj7/HbUhhov6zRC+tpZ8//RQBoDdf/Rll0kkaOLaDgv1HKREbITWdJDWVoIyaokR0iC4d3U7pRIzi+utEdIjuuusuam7Wr9/x4/m/rr29vTR//nyaNGkSzZ49m06dOpVf1tzcTJdffjnNmDGDZsyYQX/4wx/+M/+G/9tMANz0bzDq/++Q/H/j4/9pcNc0Ki0tpe7Dh0nLqHThwgWyWCwkSRJdf/319KfNmykbjZAWV0iLK6Ru+TWlH7mX1C2/Ji2RIC3BcOzz+WjLli3k9/tJURRKJBIUDAYpEonQ1q1b6eDBgxSNRsnj8eShe3h4mGRZHgP9DNkJ6unpoXg8TpFIhJxOJ+3evZsSiQSdPXuWzGYz/ehHP6Lbb7+dbrvtNrp06RIFg0F65ZVX8u3k2vV4PPqAgUI+Xzdt2dJKfv8JkiQvbdnSSpLkJUnyUjB4hiKRQRoePkeJRIR6etrI7T5CshzIQ72iBGnr1uV08OBzFAyeoUQiSrFYgEpLS+jw4QN07tzbdPr0EbJYzOT3XyRZHqLe3naKRt30+us/pylTrqBIZJC2bl1OijJMPt9JOnjwOdqypZWSSen/7IXNpBgUUjJpiTCVOs104l7+83+h609kMYkkDQ3QjHEl9OdvgmjHchrxXaLKygo6fewAkf8oA8PQCf7jf+wFor52omSEtJRCXmLIjBFD5xn9WaYCALYTQ3uMCrAZ1NeJEEPoYSLq0TQqKS2lfSdOkJuI3tE/gxcliWrr6+kPu3dTjIh29fRQXWMjeeNxChMDbZAYOkeIKKymyCt5ySN5/grMg3KQWre00lHvUQrHwxRLxqjb302tW1rppP8kSUmJYskYBZUg9Q735td/7uBzdOriKSouKaZbN95KXslL7bvb6copV9KQPERf+tqXaNXqVRSOh+ntPW9TbV0tBaUgRRIRkpISvX3ubTrhO0EeyUNhNZUfrDiqH3MOmN/W+yyk94uVClAd08+zjRjqe4nooL48ordxIRSi0rIy2nfqFLUR0Wt799KVU6dSkIie6eqiHX19tPD66+m1N9+kgL6fMPHAS0h/btXbP0IM71I6xrCekogSQSJ3G1HoBFEqwkAf9xbAPXqW4T1ylijuJ/qDlSgeYNh2t1Go/wMqK3HRqcPvE0XP0t53dtDUKVcSpWP05zd+Q6ocIFK8tH3DjdTc1ECUHCZSBoncb3M78kV+ziQZvt0dBXAe6dEBPs0QnnvOgX1WZZgf6WWozuTAPp2H+ZB/kMrKyujU/u1EMQ/tff8dPj41SeFgQG9fpWOHu6i0tISyiWhhYCCT5rZTscLAQm7gLNDNAL7zdh3Yw/x88S/64MEZPqZEmM8rHtIhP8IDZ8kIL9+xnEK9+6isrJROHTtAlIzS3l1v0tQpVxBFLxH1tVEkcImunX01LbtlCW187H6ivjaioW4GdsnNED90gmJRmY4c8eRBXJKSFIslKRCI0dGjXvL5JIpGE7R8+VYCHqEzZ4LU2rqFgEeotXULffTREAWDMkWjSWpv76VoNEknT/rpyJHzVFpaRp2dRygUitOOHbupuLiRurt91NKyiH71q99Tb+8wdXf7qLV1C5044adoNEGtrVvy8J4bLBiJxujCsJv29R0jbzRIw3I4/xiKhegjXz/t7TtGISVKcjJOHf3HKRgLUSypkJKK5yG/f9hN0XiMegKXaG/fMepzX6SysjL6oGs/SQmZdu7eReMmTaCewCV6eN2/0C2fX0Znvf00FAvRmb4eGlGitLfvGJ0NXCS/NEz3b9tEQ7EQqWq0AOtqiCjtJkqe1V97eVmyjygT4UfaTeS+nZerQaJkL4N6spdI9RPFu4jcyykU+Ei/xu1EaS/tfed1mjr1Cr0NLw8MqEO05Y+/pqumTtYHDfRjcC8nSpwgysQolfTRCb+Plm/dSh5JomFFIa8k0fKtW6nb56NYMkndPh+1btlCRz0eCukQ745G6e1z5ygUj5OUTFI0kSBp1Lp7z5yh0rIy6jx6lORkkrbt2kVNkybRCZ+Pxl1xBT33q1+ROxql//Xzn1NpeTkd7u6mUDxO4USCWrdsITzyCJ0JBmn51q30yoEDlJUkJs3ly4ncbgbkQIDo/PkCTR45wkQqSUyjOdJcvrwA6889x9sdOUKhL3yByoqL6dTu3URnztDeG26gqZdfTtrgINXX1tLuP/2JKBajns9/nhrr6ije1VUg3UiE9yNJBUDv7s63TZI0FtRDoQIpd3fzsYyM0Biizh27JOUHJD74+c9pcO9eam5spON79/Ky8+fphuuuo1/85CdEvb205emnaXZpKR9XOEw3zJ5Nv7j7bqJgkLb85jd09bQZdOKElh9fkGWis2fHHp7fz5vnuioS4UM6dozfx2KFeVYrbzM0RHTDDR9Qd/cgVVU10+uvH8/vY9GiG+i5535BR44QzZ+/haZMmU3hMA8aPPnkB/TYY4NUW9uch301lSEtB+OpNMO6JBN91MevR0N9Os3zU2kG9Nzz3iO8fVoH/bRKH7z3Hg2e6aHmuno63tHJ26sq3fCZz9AvXnuNKJmiLX/4A82+5hqiVJoSUYl2bNtGWiJBlErR8888Q9dfdx2pikLK0BANnz5N0YsXKREKUXx4mNwdHaT4/ZQMhykVi/H7oSFKRqOUikYpJUmUisUoPjSUnx8fGiIlEKD9q1bR8KlTtOvPf6b+3l5qbmqiXa++Sj2/+x0NnzpFVzc20vOPP05nf/MbeumRR2jWVVfRvnvvpVBPD106cYKGT54k9549tPn11+mqK68kbbCf6MRBIilCpMSIAh4G8hycD/QR+d08T5GJEgq/v9BDFA0TvfoU0T8tKYC9/vqD3X+hwVMnqbmhgY7vfZ8omSBSZP4MvvIykSLTlm9/lWZXFPG2ikz00lq60HodzR/fRPPmXEtvbnyKMukkpeISKWE/XTq6neLRIUonYgzvGZUyaooyapIuHd1OJ9uepktHt9N7771Dg4OD1NzcPAbcb7jhBvrFL35BRERbtmyh2bNn55d9fN3/adOn4P7/MLhrqspKuKr+p5ZpmsZ/ZD74gIiITpw4QXV1dZRKpQrgHgxQpmsfZRNxyvo8rLj7PZSVoqRu/S2lk0mSJCn/GB4ezqvskiRRPB6nRCJByWSSFEWhSCRCvb295Ha7qaenJw/9Xq+XkskkxePx/Dy3201FRUX0+uuvk8/no2eeeYZqa2tpeHiY6urq6MMPPxzTdk6llySJDh48mD+GRCJCshygRCJEyaREW7cup8cft+rzh3S1vTsP9H7/CX1ZUFfaT1IyKZMkecnjOZJfJxr1kNNppp07/0R+/wl6+umbqaamkoaHL9KWLa0UiQySJHnohhsW0O23zySfr5uiUTdJkodisQDF42Hy+0/959T2TEqHkf+aMq+lZCorLaYPnriBaKibTux4nupqKinlP0Uzr5pMv7p3PlEiTAO93VRfU06+D9/jP/26ykcjZ/iPf6CbaHsrZYdOUDyTohCxSuwmBswQMaDn1OJBYgD0EMNlTjWOEtE5YhgNEKu7rrIyavvgA4oR0b4TJ6i2ro7+EAiQyWymXioA66Rp02jR1q3kpQL856AzlIzS2+fephFlhGLJGHklLwVigbwC7pW85I66aVgZJjkpUzgeplA8xNB97m3q9nXnFfpIIkIeyUPDyjDt+mAX1V1WRxfDF8kdddPtb95OTpeT3u14l+wOO3We7qRQPETuqJumz5pOb2x/g3qHe2lIHqJQPETnhs9ROBGmSDaTjzxoIx7oyEFy7nza9T7spcIgR65Pu/TtwvrzCX2bbiK66fBhapo0KR/1ECEip8tFm44epcN6fy+8/nr63ZtvUoiIzuvXS6KCag99P0NE5NU0SmRVhnTFq6vugwzUyTDR8NFPVsSj54hSIV4nHSNKBIhSITrcvokmTRzH27nbiBJBcrkcdPT9P7Ay724nSkUp6DlHRqOR1A++ygMByTAPFuxr5W0zqYLKnVUZ0NVEQTnPqAUFPq2MUuflMaCeh+z4CFHMS4cPdtKkSZN4nsr3mcvpoKNdB0ap6ml6f/dOBvd0itvLqfmZlP5aHzAbpZLTsH7/JKMM4TEvv/Yf4eWSmwG7v12H+bMFlV4JcB+kYnT4/e00acJlvL2uxrtcTjr6/ltESpC+/tWv0J83/5r+4Sufp40bnmTo37GcVfyRM/x+eytFh3zU2ztMQ0My9fYO0/CwQl6vRJFIgtzuKLW391IwqJAkJens2SCFw3HyeqW8Qu/zSRQIyBSNJigSSVAsliSvV6J3391H48ZNyA8KdHf7yGKx06ZNf6LZs+fTddetIo9HonA4TpcuhencuWGKRBLk9Ur6PuX8AMHOXT0kJ+MUSyoUjIUpGo/pSnuCpIRMcjJOUlKh/f3HaSjGavpHvn7a399NsaRCcpLh/cG25+ls4CJdCnnpQ+85+vtn7qXLxo+jaDyWh3+ny0Vt779NdfV1tKPjHbp/2yYKSCPUq8P+iBKlESVC4bhEp319FI5LlFElXek+M1ZdTxwvKOnqCFHiiD7/CFH86CiFPsTgntEHANI+ovhROtzxG5o0zkmUOKlDfpiv8YG3dEV9hEhqp88tuZE2Pr2W1X33cl3Vv8hgn5EolmBIP+Lx0JAsU+/wMA3JMh3xeGj51q0USSRo+dat9NzBg+SVJPJKErX39lIoHqdQPJ5X6r2SRFIymYfuzz31FE2YOJGkZJJC8Ti19/aSw+mkTX/6E02bMYN+9uqrJCWTdKq3l+rq6ujcxYsU0eE/N3DglSQaDocplaPHtjaiwUEmzJwyHY3+tZIdDvPrHGg/91wBmkdB9WGAJrlcvH4oROTxkMvloq7du8lsNjPd6jA9bcoU2rpgwdj9DA0xqJ85w/tYvpzntbZym7n9nzzJtJwj10CAnyVpbBRBKMSDErljPXaMIwWOH6dmu52O//GPROEwBc6dI5fTSepXv0p04gRp27dTNUDnli6lwJkz5LLZSN2/n6i1lbTubqqqqqbXXjtHg4Njd5UbBxkN6j/7GR9Cbr2PBxl0d3OAQ27sRJL4VBobm+kvfzlOg4NEX/lKgJxOFwWDKp07R3TxokaVldV0/Pg5Coe5jdtvJ2pqaqZ9+47T8LCuuCdTRIkkQ3kO4gf9Y9X0ZJLXS6YY2HMwn0oXHkqi8FpViYbD1NzURMc7DxIlUxTo6yeXy0WqEicaDpMWjVF1dTWdO3mqsK+YQpRM0eE/vknNTU2Ujkrk2buXkuEwhc6eZYA+e5bSikIjZ87QvnvvpeFTpygZiZASCOSV+FQ0mof00NmzpAwNkXvvXlbbR0bIs3cvxYeHKdTbS0319XSoo4NSskw7vv99sokiXXznHUqGw5SUJCpzOOiZiRPJvWdP4RjOnKFXnn+epl91FUNzDrzjMgO0d2DsfEUmGtSV9Qu9DPEnu/hZjjHIxyJEssQgP9jPiv3Fc9RcV0PHO/YSJRMUOH6IXFYLqX1nieIKaZfOUXWRk87tfZcomaDsxXN04xUT6MiOP9P1s6+mN1//NWWTCcqkE2PAPJ2IkRL2U0bl/6rZbCavvieiQ5TNZohoLIwHAgG+fjqfaJrG1+/cub9a93/i9O+B+6c57v+Dp5yZXK4cHGUy/+EyQRDwxz/+EV/84hfR3NSElpYW/PLnP4fZbAaI8ODqBzFjYQu+9tRG9F+4CDicEK+/GUJxKbTdbRDqG6FlMkin0zCbzTCbzbDZbNi/fz/mzZsHRVGwc+dOqKoKTdPgdrvzZd2sVitqa2tRUlKCz33uc3A4HEin01AUBR0dHTh9+jQOHDiAf/3Xf8X3v/99TJs2DT/60Y/w7LPPYseOHRgaGsJbb72FRYsWYf78+VizZg1qamoQj8exa9cuNDY2YunSpTAajRAEEzQtC1kOQNOyWLhwFb785TcQjV7Crl33oLp6BhyOKgiCiJ6ebYhGBxGNXsLOnSvhcFQiGh0AUQYmkx2dnevz6xiNFrz66kZ8/evfwtVX34Q1a/6Cb397CjQtjtOnN0NVFXg8ARw8eBwPPfRzxGJeaFoWfv8JiKIBmUwCpaXjYMiVr/q3pmwaCJ0F/vJP/JxJcO5tNv0ffi4EswN//P1v8cWnT6B59ufR8ner8av134f5TzfhFy8+hR9tGUTTpKm4/KprsO7Bu1BT3zAqb/Yhdq1WY/kSU2LXWojZFJJg0wwzOK89CXZ93wDOTbeBS5DlHONz7udZfd5hffsaQcDLf/wjvvHFL2JSczNuaGnBw7/6FRZXVaGqthb7N2+GHcCFw4fR19OD8osX4QXn0SvgHPrNAEQY0NLYAoNugGIz2uCW3Lhzx53oD/ejyFwEi8GCUCKERCYBg2hAUAmCQJjfOB+1zlr89JafosrOxnQAEIwHMfnyyVCiCv7xxX9EQA7guuR1kGMy+i/0I6Nm0NzYjM7BTthNdowfNx49fT1wmp2QkhJEQUSVswpd7i6IWhZriNAGziU3gMvb3Qs26EuBc/ltYFO5leD8djfG5p4b9feDYDf9DQBumjQJsZERnOnsxBEA27dtgxyLwX7xIsbp1yNnSKeCXeuHwR4Bcb2NNv14IvzFAFVTuVxbMsDmc4khzlmnDGByAZ5t7PyuRtgNPu4GsnEg2Mnr8KcPSA5j0tWfx0gogs6THqBiPra9tQWxmIKLPplrv1fMBbQUnnv+Z7jlc4thnP8ym9gJIrvZD2wGkj7dhNHCj0gfvyeN84BF/R7K+a8azHr5Gxfnngt6bryzTjc6MrA3hK0CkyaMw8jICDoPdAGiiG1bXkdMVnBxYAAQBPzwx49jwqTL8cXWr2Hr5i0QBWKDOJNDz7WX+Zigu+XPfYjvnxtfZDd6QeQ8+NzxAFytof46Lh13eAOXfRNN3F4mzrntWhbwHgAi/Zg0rg4j4Sg6j54G4n5s2/gtxGIyLnqCeOOx2yBmFdz2v74ADJ/W3ebjwHXrgfqFQOfD/H7uGhhtRYjHVdx1107E42q+7vrKle2w202YPbsOXV1uXLgQxvnzIQwMSACAvr4QLBYjHA5zvn77wYNuaBrBbDb8f+z9d5gc1Zn2j3+qOk53T9bkoDASI1CW0CiNwARJFmBsr0FeLIztXQwYaddkjMQabCQBkgGBwURjr42TCLaxAiLYLBoNGkkkwVhxFCbn6emcqs7vj6e6W7K94d33e12/692ldPXV0xXOOXWqq1X3c9/P/VBVNQ6/f5g77vgJW7a0smrVI8TjEfLzY8RiBp2dv+XiixdwzTUr6e5ux+t1smrVdvr7xbXe7bazdm0j27d/hfPOq8VQJqZpEkpEiBtJAlZ5N0OZGKZBNBFjavlEXHYnB7qPUJVfwtll4/mw6zDhRBS3w8XVcy7hF+9tZ4ynAK8zhwvOXcTw8DB7W1oozyui+4NjhIJBTh45Tn9fP1v/8Adeu+d5ll+4lF/95lcU5eRxsO84TpsDDY0SXyGtvW1iiWB0w+A9YhaX7Jbcds0N7hnyWbNBshdCr0ouvHOibEcTB/hUr+SwmwFxpndMYFL9XIb8Js17DoIGr/5hu1zj9kHouwlUnI5ejX97p4mrV34JHHVQdAsYvRD7s+TKo7BpOpuWLMGu66zesYNIMok/FmNsfj6PL18OwA+XL+er06cTiMdRwLTSUpo7OmgfHeXY8DBOm40ch4OEYbCmsZEVU6aw+StfYWhoiBdfe40btm3j8O7dhEMh8qNRnn72WTZ8//ucNWECM6ZM4c7vfpeI2811W7dyZGgIBTy0dCm5Ticuw8D5wAOSu11dLcZuP/hBtnSapomh3IoVUog8P1/yo594QkrHrV0LS5dm89LTpeHWrGHSlVcyZLfT3NwMzc28+vrrBINBOg8doqKsjC0/+Qn09LBv3z4OHzvGySVLpATcU09JIXSnU/KkbTa46ipJHHc44F/+RfLhBwZkHOXlYiKXTEqOe1mZ5NsrJefV1ibJ4A6HuL2ly791d2fL2kUi0vepU3R861tUFBVhnz8f1q9Hmz+f2uJi2r/xDTr6+qioqsJeXAyLFqFt2kRNTQ3l5adwuWSo6a6qq2V4/f2Sxj97tpyGx5NNkT95UvLQu7vFzG7DBikZPzgo60+csCp/GWLe39cHl13WQVFRBS0tdsJhWLtWo7KyllOn2rHZxE7gscckfb29Hd7bb0IsLsZwGuIQnzanK8qT8m15Pisv3WbNuS656MmU5LMfa5fPKUMaTn8GMbJLGdbvP3ScOEVFeTl2AG8OWjJFbXU17b3dkhOf54POPgAefeU3fP7Sy9CcDnJKSogND3Pw+ecpmTUL3eEApTj0k5/Q/tprHP7Zz9BsNmxOJw6vF3dxMXstx/jiadM4+Pzz2NxuSqZPJxWJ8P6DD5JTWord7cZmVVn65KmnCHd0UPjFL1JRVUVeVRX77ruPSHc34ydNwjFnDiVz5qA7HPygpYXJDQ18/4EHeObhh1CX/L3UW7/0KsljV6bUdL/k78V47srr5P+d4QEp47bzRYiGoWq8OMu/8Jg4xp84LE7yK1dBcZl8TwuKxONl58vQ303HoT9T4bJhf+NlMFJoZdXUTqqnPRyHZIKHf/EbFn3hCubUVmbLzwWGUWiUTJxHfkU9JRPnoWk2UvGwZdgKum7D6SuiavrSf9ekrqOjg4qKCuyWObamadTW1loeVbJcc801TJs2jX/8x39kYGDgr9r4n7p8Ctz/Jy9WbXbV+iHmrrfOMJr797alUinW3XcfL73wc07s2c3ONbdyzTXXMNDby89+/GNat73Kh2+9wcICL5d//vOga2i+XIkCLbkMfdps9FgUn9fL0NAQiUSCzs5OLrroIvLz82lqaqKqqopgMMi2bdvwer2EQiFisRg+n49wOMzWrVsJh8Mkk0mUUrhcLhYuXMhVV13F0qVLeeyxx/j1r39NZ2cn27dv51vf+hYff/wxqVSKUCjErl27uPbaa/nxj3/MJ598gs1mo6amhnA4zOjoKNu2bQMMgsFu3n77HkZG2igomEBtbSO7dq2nqqohU+M9FOplxYpXqK1txGZzUlOziJaWx6iqaiCZjBAO99PYuIYrr3yJvLxqTp7czWOPPc+jj97BkSN/5g9/eImnn24lFnOyatVBcnMreeGFX3HRRYswjG4qK+fidueTm1vJ9u03Egx2o9R/wazDSEh99sNbxGjKSIkxVXToPwXvqVSKdfdv4pVXfsupI5/w1s++x1dve4TBuQ/xwMNPcf+/3Ez70VZa973D2gee4M+tn0D3bgESeePE0MtTBp/ZDGevRM27mwHdgRsB63sRN3k30IaYoHkRgOlAQGgQAY0epCa7D5iPlC/TUil+tG4dv3jlFd4+dYp/fustbv7qVwkODvLC73/PD59/ns/NmsWPH32UhY2NNNjt9AKvAj9AwOwhq79jI8e4but1tI20YdNtVORWcF7teXgdXqJGlJauFiLJCC1dLZwcOUmZrwy7biecCJM0k5zyn+K9nveIG3FynbloaDi9Th5//nFG/jDCNcuv4Z0/vkP92fUkojLvuc5cZpTNQENDoRiMDKJQFHmKaO5oJhgPMr96PilNw6NpVAPXIyZ8jyAA/p8QQJ2DOPA/goBzN7AYqeFebu2brow7w3p/ErghP5/nXnqJ+++6i7vmzGHH669Tf845RO129lrznv7xdyNBk4g1Br91PaqB1db6HKVwGTEoWSQmcr6xApzdJbB/lQD0xldgzmbIKZcSbsXzxHjOXSJ12pNBiA+B3Ut+jslLP9nIXf9yH3MWXMDrr23jnPoJ2GOnxJ0+0sELP/9Xtrz0Ms+su1qAvz1HHlLSRnUljdmzPx2QK2WZ1MXF5M207gfTkLKG7mIB2KmYBbDd4nKvrIc+ZZKvB3jpVz/nrrVrmTO3gdebD3DO2ZOxK6nS8MADG2k7eoQtP3+OO77zHRJJQ+6L9AOIMy8Luh0+2ZZbDX+6SYC5w3pq3nWXAPhkWErHTfyC3FsXPi7nFveDR9yI2bNO3ODHTIVQB/k5Oi/dOoO77v4ucy76Mq93VnDOpFpCkRjrXh3k0buulvOpmCe/CU1r5LzTxnTN90B+HUlDZ8OGJrZsaWXDhiY0TWPjxmYWLKgmFksxNBRlxowyurqCjBnjYePG3eTkOGhoqGJkJMqJEyPccMM2BgYizJ1bydGjw9x443aiUTs///mv8Pu3MnHii5xzToDJk88mJ8fJr371Atu3N7N7917mzVvI1VdfiWkqGhtr6OwMYBgKTYO6ukJmzSmjI9DHxz1HiRvykO6yOSjyFtAbGGTDm8/TExzE58yhJzjEujeeo9hbQNxI8ue+48ysqsfnyiGRSlLqK+I7F34dE0Wuy8uX5i7l8R8/xTdWX8/iBY28vnMnxTXlBBMRUqkUdmXjRy/9lJ++8DOevH8zI+39zKysp3t0kPVv/pjhSICp5RPRMAWMh14Vx3jPQsj9kpjLoYOjEnqvkzJvlS+Jszya1HbvWw32UgHxVoCQwfsgdZJ81zFe+s1PuOtfNjJnVh2v73yVc86eiN3pgfInQffx0xd2ctnyRsYY34XkSbBXgJYrAYNUL6CRxHaGkVxnIEA4mWTVjh20BwJEkkmaOzroGB1Ft8rB5bvdlHu9eKx67nu7uugcHcVps1Hq9fLc5z5HXn4+m59/nkfWr+ej73+fN998k/rJk7HZ7Xxv/Xr+ee1aznv0UYxvfYv7v/997vjlLzO140djMZw2G9FUipjNRuKuu6R824YN8PrrYl/+pS/JfIRCMH68gOmqKkGbx44JEo1EZFtVlTijHTwoxnS6DhMmkP/ss7z0zDPc9Y1vMOfWW3l91y7Oqa3Fbhj8/vbbeX7vXmZ97Ws8+vTTNM6fj91mE5RqWr8tkYj0Ew6LiVxHh6wfP17c3ObPF6SsaWJe196eNZpLl3vr6REXt717BexXVp7pJOdwZF3pp0yROXjzTSl3t2SJBCscDjHA8/vhww8lQHDsmKDwxx8HBd3dGqtXZ4d6/LiY5Eej0mRDg4DzpiY4dUrKz7e3i/HcokVyOl/+ssQkwmE55vQ4CMDMmTLNFRUyvBkz5O9HLD/GH/5QAgFKyTGaJqc1Z5aSUnB1NTJf4aiAbV0TA7oJ1WIiF40LoD96SsC60yF12tt7YGAkW589Db47pOQuHb2yTtPk2vtyJGh7Rg14TYD+qR4oKYCJNWzYtJFjbW3cf+/3UKkUkb4+7G435373u4y95BJCHR2ETqvDPvPWWwl3dbHvvvukzvrQEO2vvcbB55+nfOFCZt12G5GeHgY+/BDd4aD+mms4+PzzKNMkZ8wYNJuNKdddh7ukBN0KABz8yU8yQQJN16n/6ldJRaUGzC9ffpkTbW2sveUW7v3BD9AKisRobmRQDOE0TWq1F5bI+tAo/Pwx+fyttfDZKyHHK3O+88WsqV0ayP/sUXGhH+qFF5+TubzwcnGOrxwHbisocLq5tWHwySP38fLLL3P32jUwvl4udtPrqDxx7rc7cyg9awF2Zw4Rfy+OnNzs7xsC3m1253/bWf6dd97hwIEDvP/++4wZM4avfe1r/612/p9c/j0q/n/z63+KVN5MJpXRm5aydyszlfxPt+3bt09NmjhRGQN9mfz1OXXj1c6tW5UZjyszFhWp/J53lMvhUAOnTipj1K+MYEAZgVE5zjKAO3z4sPL7/aqrq0sFAgF1+PBh1dnZqQYGBs7IYw+FQhnjuEAgoFpaWtTLL7+swuGw2rt3rxoaGlLRaFQFAgG1adMmVVdXpwKBgBodHVWBQEDNmjVL3X333crr9arW1lYVCARUV1eXuvzyy9VDDz2UyW2PxWKZfsPhEStvPWsqFwr1q56eD9XAwEH14osr1Lp1bnX48FYVjfpVINClXn55ZcZILhIZVkePvqb8/g4VDPZlzO62bfupGjeuUnV27s3kwc+ZM1v95jdPqRdfXKF6ej5U48bVquee+57q7GzJSOwPH956mgHe6H9+cU83nAt0ilw2LWGPB//DQ/ft2ycyYKVE9tv7vjp31lS15Rc/FelgeEDy14Pd6oq/+4J65vGHlQp0ZPNy05LddO5tPKiG4oFMnrtfSR62X0mu9uNKpPJbVdaA7kNrnxElud3vK5FrB5VSf9y3T9VNmqSGrWPeU0rNOvdc9eTrr58hEQ8opcZPnqzWvflmRmafzhE/qlTGXI57Ua8dfU2NREbUYHhQBWIB9XHvx2cYz+3p2KOODB5RB3oOqMHwoDo4cPAMU7uth7eqj3rE1G4gNJCR0w9HhtXA6IDKL8hXK55aoTwejzp84rAKxUIqEAuombNnql///teqc7RTrXhxhfqg+wM1HBlWhwYOqUAyqgZM8wyjPr91bidV1hjugHVe/dY5np7f3q2yhn7pPPV+6/zT0vdupdTfx2Iqt6BA7Tl6VA1b2+acf75a9NvfZtIYtlrHditJXzh9XKOmIfL1wfcklz0Zkjz3XSuU+gXyngiIPD4tk08EJffdf0jeo/2WdN4vr2h/Jlc+1tWkCvK96mjLi0r5D6pf3ztfTawbr061PC8Gd51bZf944DSjuo8sKbslg0/GRBo/dEj2S+e+Dx2ytsdlfTJuGdbFz8yDjwezhnbxwGlS+6SKhUOqoKBAHT3Umt0/GVfKSKr6+nq1v2XPabL70JkGeJFBuW/+sEJk6mlJfO9+pXrey5rOBTqVCvVaxwwoNXxE0lHSOemjJyVlJS2tHzpkmUaKvD/2u79XBQX5avO6O1RpgUuNralQY2uqlNebowoL8tSa21bL/WqluEiO/agKBWOqq0uk793dARUOx9WHH/aovr6g6uwcVYcODajh4Yjy+6NqZCSiRkYi6sCBXrVy5cuquzugBgfDqqPDr7ZvP6IGB8MZefvKlS+rQCCWOe7dd48rp9Or9u//WPn9UdXXF1KBQEz194eUw+FUb731sRoZif5VznvvkF/d/upm1RsYVK09bequrT9U/cFhFYpF1EBwRP3q/dfUXVt/qIKxsLr91c1q+qYvq7u2/vAMCX3aTC6dA98XGFInhrrUaDSkBoIj6tfvv6Z2H/9Q9fuHVH5BvvrNH3+vfD6f+rD1gArGwqp9uEdd/sXPqwc2b8pI5qdv+rJ6p+19daTvlEjlowesHPUBSx7/nlJDj4p8vnOFUgeR99SIlQ9vyeuHHrdM7D7KmtKlc+QT7fJuHR8b+L0qKMhXR1tfUyrRqcx4hxo/vla99ofnlUp0nGmOl5Hlf6hCsajqCgTU/q4uteLFF9VAOKy2HzmiOvx+1R0IqL5gUHX4/Wr0NMn7gZ4eFYjF1EA4rLYePqz2dnaqI4ODmfz2D3p61Iglpf/AWrfv5EmVX1Cg/tjUpOwOh3q8pSXT52Vf+ILa9Nhj6uBpsvv08X2hkDLCYWWOjmaTsNP57mnpu98vkvKRkaw53aOPit67t1dyyU93VQsGs3np+/fLvitWqFhPjyrIz1dHn3kmK3O3XNgmjx+v3nz11axM38onz0jn9+yR98FBGc/oaFYKnzaq+/rXRaM+MiL7hEJZ17d0fx99lHZ9k88DA0q1tUmOe3OzUgcOqL4XXhCp/PCwUsPDyhwcVGUlJSKV37Hjb0rlly8/+ldD7e+XoXzwgUzVypWSiXDokEzLoUMyVe+9l52KtMI/PX2dnXK8xzNW/eIXH6jubqWOHhUpc39/UnV1KfWVr5iquLhM3XPPUbV1a/bYysqx6ve//yCb3/7nNpHCp3Pak8ns363HlBoNiXw+/X66PH5wROTzZ8jq4yKbj8VFKv+nd5RKJlVfV5fK9eWq5NtiVmcmEiK1fu2Pclw8oTat36DmzJ6tRgYGlEokVTIaVcMHD4pMPS2Nt3LMQ11dKtLfr+LBoNp9xx3q0M9/rvxtbZnPw4cPq0QoJDnwb7+tBj/+WAzthodVbHRUJUIhNXzokCrPy1N/euklFfP7VcexYyrX51OjXV1q8JNP1Ds336xKx4xRfz5w4AxDvEQ4rMK9vcrtdquBE8dF9h4cFdn7gb1iJNfXKRL5j/ZkzenCQclrP3VU3kcGRVY/MpjdFvArFQkr9fE+pU4dVWNra9QHb+1UKhRUfadOily9v0epA3uVOToi38F33lI/uu9eVZ6fq8bW1qixtbXK5XSqkoJ89fhjj6pkPHKGVD483K1OvfcHlYxHMrL4v7X8n0jlT1+6u7uVz+f7d9v9f3HhU6n8/87lPyoH9+9tq6mpoae3l4MnT6Ev/AxtRRUcHxqhfvJkejvaUQlhr145coKysjKKiotFhgMQHEUND2KkUoTDYaqrq3nrrbfo6OhA0zTy8/MJh8P4fD4WL17MlClTWLx4cUYKk0ql6Onpoba2liVLlmCz2Zg2bRoOh4NQKIRSiiVLltDb28uPf/xjQqEQx48f5+TJk3z1q1/ly1/+Mm+++SbxeJxEIsEHH3xAPB6ntbWV5uZmlFKZfjXNRkXFbFyuPCoqZqPrdmw2Jw6HB4fDx7Jlj/DP/3yciorZbN++imCwl/nzb8bp9OJ0+ti58xZ8vnJ0Xef112+x2l7L+PFnMTgYoL19EK+3lB//+BqOHz/O0NAfaG3dwpNPfptUymDFiut5992HaG3dwu7dG6mtXcyqVQdZtmwzyWSEZDLK31yMhFUvOgH5E2DB96zSbN3CoEV6/9PvRU1NDT09PRw8eBBsDo4NKtpOtNMwdSxej5s/Pvr3UDKDwdEoLXv3MjX2mtStnrkagqfgzRuEHQy0wxvXoUaPk6fbcSOy9wGEeW9CaoFfjTDHC5CyZk8jdcKDwM2IJHwiUj4uCTxtjW/PwYOUAcljxzjR1saC+nrm9PTwJMI6/+TZZ/F6vSy98EJaEDY/XTItDOi6g83LNtN3ax8LqhcAMBgZJJQI4ba72dK6hYfefYh5VfMYjg5T7iunMq8SXdPJdeaS68yloaqBJ/c9yYLqBdTk17CgegHv9bxHT08P08qmsbdrLw+sf4DzP3M+z339OS77wmU89qPHCCQC7Nu7j96eXpZeuBSf08eF4y7E5/RhmAbHho8RSoSxA5uBg8DDCAs+25o/D3A/UhrvFKJk0BFGfAZSLk9HlAaPWOefsrZHgK/19HAES9lw330svvBC6idOpN9qPwFMRhh3B1KCzmO9NOBuRC7/hFI4IlYptVgP2DwQPCEtn/sEnL8d5jwq7G6kW0q62dxWzd2ERNnDpyAxKmXcMCE2QM+JA8LWu0u478EfcuFnPsPEyTPYsq2Zu3/ex5u/+ym1M78E3lqpFZ8YEVbcUwOzNkK0y6pnnRQm3UzKwH3V8v3MGwels+Q+sTmzcnhNl31HT8h9lIrJu6aLTDARBFsOPf1DGbb+vnXrufCCzzC2ophjx0/JDGkae5v+RH9/PxMmjD9Tdu+02IW0+kWzwbw1MG6pMN5tr0o5xcI62e4/Icc7fFIG7q1VwsKHOq0ScL3QtBZKZwtbnwyDZqMn7ILYEOh27vuThwsbG/j2rC76/vgQJw99yMmjrVxx6UV898pJrP/+vfKNya2G8x+SsnxGAp0Ug4MR7rnnbQYGIpimoqLCR06Og97eEN/97tu0twfo7w9z/PgI0WiK9vZRGhqq6OsLc+ON2+nrCzNzZjkul43HH1/OkSOr+eEPl9PW1k5zcweplMnPfvY4jY3no1QB11zzAoZhcvKkn0ceeZ6ysjKmTh2PzaZRWurlwgvH0dUlzLvP6+S2C64hx+Em15XDHRd+jRyHC4XiyMBJLpzUwHcu+gY2zcY/zvsCy+oXcMv5K4mlEoQTUeLJBB6ni6nlE3nk336BoUzcDhfFnnx0TeNkx0kumDiXSSW1fO/736PxvMVcMHcxX7zi77jth98nkogRDUbYv28/M2fMpD88zJTyCSyrX8C08on0hoZQGOAYJ+XYoi3CoCf7IO/LYC+TOu65K4VpTw2BGZIa7/03Sb12zyIp5+ZptO5qXVh3Y4iefgXFd0PVVu57eBcXfmYhE/N/DkYvf3x7D6mUwZKlnwfNBbH3pWwc2mml6TZgKIO1b70FwI8uuYQcu52Z5eX0h8O839ODruvku920DQ3R3NHBuZWVlOXmctLvZ9X27ZR4vfSHw5R4vZlybl1WTbHBvj4e3bOHRTU1vPD44yw67zye7e7G4/USOHSIytxc7p8/nw/276d0/HjueftthqJRlFKcGBmhuaODXE1DO3YM7cYbpXbZo48K43269F0pqUHW2yt08GOPCSO/bp1ot51O0XGfXiZu/XrYsoWeDRuESn72We576CEubGxk4he/SM/hw3DbbeDx8Ozhw3htNi5cvFhk66+/LhS0pkmJt82bpYzc5s1SLg6kD9OUQuWJhGx/7DGhsa+/XjTmhw8LSz5vnjDsW7bIuObNE1b+ttugpQWKi+Ucg0GoqaF06lRm5+Twwg9/CHY7L//2t1Tn5zPx3nspNQxmz5rFCy+9BBs38vL+/VRVVbNu3US2bhVp/Pjx8p6TI0MrK8vK5r1eGWJFRbbLvj6pptfZmWXXx4+XSnd5eSJycLvhhRekTbe7lKlTZ/Pccy9Yl+ZlTLOa66+fyLx5manPMP59vaC194g0PmnAkVMinTdMeSklrHuOC3xWPbpcb5ZF17SslP509t2mw/Bo9gHHmwOGQanLy+zZs3jh2Mfg8/Dyj56huqqKiRctBqeDhx9+mF+99CJvvLqVgrx8QKFSKVqffRZ3URGtzz4rTPpPf0rx9On4jx4lOjBAKhxm5q23Mmb2bEIdHZjJJHPvuQdfdTXJSAQjHpcSbkNDuIuK2L9uHZGeHoxYjIPPP4/udOIuLMSIx+l8/nlmTp/OlldfxeHzcay6mvKiIurGjaPv+HFGUin2r19PqKODbX/6E8VFRRS7HTDhbJmvtlapp+5wgNMNo8NS4u3Gu0VKr2mybscW+Z4GR+HVn8s8JeLC2p84JGXcxtdbknmEyd/yDKW5XmbPmMELL78Cufm8fNuNVJeXMTHfy7duupmeE8c5uetPnNz6EvMbGnjmmWe44frrMBIxKqctYfJF11NxzmdIJWKMmXAuRiKGMlL/pRJwpaWlzJ49mxdeeAGAl19+merqaiZOnEg4HMbv92f2/dWvfsWsWbP+0zb/xyz/HqL/3/z6n8K4/1eXvzSp++Uvf6mmTpmipk+bpqZOmaJe+PnPVHBoSM2ZNUtNnVyvpo2tURcuWqg+2NuizFBQpQ63Zhzmjc5TKnH4zyocCqlYLJYp7dbb26tCoZAKhUIZ87hQKKQGBwczbPrLL7+cMaiLRCLq5ZdfzpSCO501//a3v61KS0vV2LFj1ZQpU9Rzzz2XYfOXLl2qampqVH19vdq4caPq7OzM9D86Oppxro9ERjOmcl1d76lYLGiZw6WZ94/Uyy+vVKOjnWpk5KQaHDyScaHv6flAtbQ8bjHqg6qra7/q6npfDQ4eUb29H6pvf3u+mjx5oqqvH6dKS1E/+MFtmWO/+MXPqttuW61isUDGvT4SGVa9vQfUiy+uUN3d76sjR7araNT/1xcqFT+TWU8bWwW7hYnrbpH32H/O2P/yl79UU6dOVdOnT1dTp5yjfnH7QqVGT6k37jtfzZ5craafM0mdPbFGPXT/94TV27ZSmMO0ydZflKWKxgMZl/hhpdTXlbC4g0oY3O3W+3sq6yYfUFnn9DS7/KES9nj+L3+pJk+dquqnT1eTp05VP/zFL1S3Uuque+9VdZMmqfETJ6qGz31O7WxvV0eUsPArrXZOWn0ELMO5/lB/hk3fenir6g/1q2AsqFa+vFJ91PuRCsWFHf+o9yNxmu96T73XJW7zoVhI+aN+FYwFVU+gR3UHutVobFSt/NpKNemsSWrc+HFqwvkTVOupVuWP+tXRk0fVrEWz1LgJ49RZk89SL297WQVjQeWP+tVIZESNREZUd6BbPhtJ9ZrKuvB3KWHc0wZ16bJwpysZupWw6mk1wkfW3A6rM5n415RSX7j2WjWxvl6Nr6tTl119tfr1yIgaUErddN99qrSqSjmdTpVfXKxyqqrUH/v7Vciav3T/I6eNrds0VTw2LEx5bFAY8MEWq8xbt7xGD/2143zndnGaj6VLoUkpOBUdUNd+Y6WqnzhW1Y2rUFd/5ctqpO+kUuFuZbdpqrqyTM2YPlXNmFqvZkwsUIPH/iTHxUdPY/U/yjLsnU2Wm3zyNOf42F8w30MZN3hxlO/KMvVDh7Nu85Yz/LVfXaHq689SdXUT1NUrv6JGhgZUeHRYLWyYpaacc7aaMW2qWrhgnnpr5zZh2dNMfNrd/nQmv+8j6960GO+2rdl10WEpAbdtpZRaHD5i3cvbZf+0iV3v+7JfurxcsFvGeNZEVVdboa6+4lI10nMyq4oJdCq1baWY0z3wvay7ffo3ov8jpbatVEF/6Axzuv7+UKa829ath5XbvU6tWPGi6uvLmtf5/VF16NDAGez6yEhUDQyEzijl9sUvfkXV1U1StbXj1YoVV6nOzl61cuWvFFSoSZPOVuPH16tFi85Tv/3tn9TISOSMEnAjIxG1cuXLyh8Mq4HgsBoIjqhwPKKO9J36q5Jwt7+6WbX2yueh8Gim9NtoNKROWk7yo9GQ5Sh/Ut219YeZUnLXfOPratJZk1TNuLFq6RcuUSe6TqlANKTeP/Kxyj2nUk0+e7KaWD9JXXzDFaq1p00FY2F1arhHDYdH1VB4VA2HR1XvaJcyox8Jwx1pEeY8NSosfGCrsPCpEcth3i+seOyQZVDXIwx5csQyl7NM7YYeVapzpbr2H65R9fWTVF3deHX1VZerkf5WpYaeVCqwXV3191eo7959h7Tb+XUpM5cctBj3AxnGPRIbViORiOoPhdT2I0eE7Y5G1ZHBQbW3s1OtePFF9WFvrzoyOKharM/psm3ce6+w9KGQCsRi6qPe3kwbBwcG1Fe+9jU16ayzVPW4ceqCyy9XRzs71XtdXWr9T36iZsyapaZMm6bqJ09W6x54QG09fFi5161TK158McPsv9/drTq6uv7anb2rK8ugHzjw1wx8b+8ZTLrq78+6q3V3Z+uhrVyprv3KV1R9XZ2qq65WV19wgRo5dkypUEjde+utalJdnZo4YYL63NKlqn3fPmHI08eHQjKWQECpjz8+k4U/vczb/v0y3pERYeNPP5dDh4SyDgaz+7/3XtYsb+tWdd0VV6iqykpls9lUaUmJqqutVWrFCnUI1PwxY9Skujo1Z+ZMdaCpSUzvhofVofffV/OnT1eTfD415+yz1Z53P1SBQJbcT5P66Qp0R45ku//gAxn+e+/JPv39copHj555/PbtMsQvfek6lZNTpWw2mxozplSNH1+nRkeVeumlQ6q4eL6qrZ2kpk+fo37zmwMZZ/qrr75OeTxyTHFxqaqpqRPGPR6X1+ls++mvdNm3RELY9HSZuLSZXTJ5prlcMqmu+8d/VFVVVdb8laq6ujqlYnF1aNsbav7cBjVp4kQ1Z/ZsdWD/fqX+3KY6Dh1RgJpQU6NmTJumZkydqhrmzlWJcPgMR/n0eyIcVvE0a374sIr09wurfuBAxgE+ZjnLJ0IhFQ+FVHR4WO2+4w51+Je/VJH+fnXtN76RucaFHo8aX1OjBltb1QdNTaphzhw1ccIENX3yZPXenj0qHgyqowcPqrMrKlS1y6XqxoxRF3zmM2rvv70trHq6pNuJw2I0FwmJ0VxPh5R4i4TFTT4asf6OZFzg1T8uE9a9u0NKuoXFrO66lVed+R0cP16pgF8d+v1v1PzZs9Sk2ho1Z0yeOvAv/yQsfTQsjP9He5Q6eVSdv2C+lIMb6M6Y0aVd5ZOJmErGwioZD6tYcFgl4xGVOk0BfN1112WvX6l1/ZRShw4dUvPnz1eTJk1Sc+bMUQcOHFBKKdXW1qZmzpyppk2bpqZOnaouv/xydeLEif/0uff/pYX/gHHXZPuny+lLdXW16uzs/P/3MP6vFpVKSd4zGthsaBarLeuNzLq0SZ256y30xRehFZdm9v3rtsDY9grq4/fQpszEdtmVqHAQkglUMIiWm4cK+NHyCkjl5pHSdKLRKB6PBwBd11FKEYvFGBgYoKqqikAgQFNTEwsXLqSjo4OOjg6WL19Od3c3w8PDTJ8+nc7OTkZGRpgwYQK5ubn4/X52797NkiVLcDgcRCIR4vE4DoeDt99+m9bWVqZMmcLy5cvp6uqiqqoKh8PB1q1bmTdvHu+++y4XX3we/f378HpLcLsLcTp9BIPdNDdvZPHitYyOdjAy0kZNzSKamzeyfPkT7NixitbWLUyZsoLPfvYxQqFempo20Ni4FocjB7e7gK6uvbz44hXU11/O8uWPs2PHahYt+g4FBePRNI329iZ++9urufbafaRSUUZH26mqmkcsNsJTT03PHOdy5WK3u8+8qImw5LzaHJI/iwYo+dvfJmZxDWugYKLs858Z3KUXIyG58coUZs/hlfZySuCDx+C8TcIEpl2+unfDmOmo2CBaywbMeXfTUVSPzeYkjDDESYTRvRNh1cuAEJLzXooYoS1EcrRDgAthyz9GmN8uhPktsdpJAQGrnU6gHWhA2OUSJEd8kfXaCKwFJsRDBBNBRuOj5LnyiCQiDMeGeejdh1i7eC3jC8ajazoaGimV4pt/+CavHn6Vl658ifnV83HZXBwbOUZXoIuqvCrub7qfNY1rGJs/lraRNjY2b+SuxrswTZPy3HIC8QC5zlxy7Dk4bA5MZWLTbMRSMRQKp82JXbMTTAZx2VzYHTkom4ujmsYjwINIbnm/NR824AAw1/p8zNpeCIwABdb5lwMn/2JOyoHjQLc1J4qsGiIX+Mia/1XWMUsRdUQ38F3E3K8PMbzbCNwB1CeD+EInxDzOmS8MuLMAbDmgksJyK8PK89Yg4ZdtsT4xlJuyRgzrPFXShhGBg5tg5iZRjQw0g7sCBptgYDc0PC3v7lJwFEquPBrEBsDuAnueMPtGUpjpvHFgpuRvX5V1jyBjSsXke62MLOtuxCHUDXljZV16X00j6wCghIFPm85piBFkqAd8FdK3Ky9rgJcIWPuednwqBl27IKcU3IWSs67pEO4DVz707oeS6XK/2tySzx8dhpwiYcXjARg8ABXzpa13boc5N4O3Qrp4+2aYcytEB7LmdolRMQw89jvoegeWPCP3ee9eGUf+WMn5tzmJmD6OHhthw4Ym1qxpZNy4AoLBOKFQkvx8Fx9+2EtJiYfa2gJ0XaOlpZOamnwmTCggGEwwOhqnrMxLLJZidDSOz+fg44/7KSrK4eGH9/D005dx6pSfzs4A8+ZV4XLZ+da3trFp0xK8XidHjw6xcWMza9Y04vE4GBmJ8dBD77JmTSP/9m+n+Pq10+gO9fN8y+/5x3lfoD80zOpXHmRZ/QK+tfAKNKD51AEWjJ1Oia+Qj7qPUOwpYCA8wtTyOvGZCPl54b3tfOeir5MwUiRSSYbDAZ7f93uunfdFqgtKMUy59kkjiV23o2kaH3YdZkblWXzUfYQiTx65Lg9FFlM/FPZz3Zb1/OKr6ylwgd57nTDcuSuh/Edy7VVcvrPRveCoEVbdXgEqimhhdIjuA/d00D2QGoST08F3OYy5F/Q8MAZA82bZfEcFOCaAabVhBkHPFaZdUzD0CJRuAj2HtAtGOOWmze+nY3SUhqoq7LrOns5O5lZVMRKNct5Pf8o7X/86pRaz3vDccyytq+Px5ctZvWMHdy9eTF1hIUnTxFQKu65zdGiInlCIhqoqcux2drW3U+zx8FhLC48vX07KNGnp6qImL48Sr5ebdu5kTWMjnYEANfn5jC8oIGWawvCXlFDS3o6+YYPkek+YIFStzSbM4u7dkkt+ww1C465YISz8HXfAvfdKDvzgICxYIMekUrBnj+S9l5VJzvPQkDDg06bJ/vn5QiHHYnIfeTyyn2mxv319QjV/+KHkpHs8cNZZ0vdTT8lxN90kNPUrr0iSuFLS//HjQjnffTeMGyf9pds3DKG443Fh2XVd/jYMMbdLj+v4cTnHzZvFWW7TJnmlF7cbmpvF2G5oiOh5S/AHbNhsGg6HTIHTKSn6NpuIBHp6REiwd6+kxe/eLYc/9JB0AzIEn09OLz28VavgF7+QU9+8WbrWdTGuS1+Op56S46PRrDGe0ylT3tEhly8/10BT4l+R+c3UkLz2jl6orZB8dlNZrnY9UFMuOe0DfgiE4KyxmZ9WkinZX9ckHz5tdpcyrPkMQVG+7BMMS778aEjaGVsJ+1uhpBCqy8DjxkgkMJQiFYnI05VS+A8fpmjqVHS7HTOVYv+6dZTMmsXYSy9l/7p1tL/2Guf/6Ed4ystpfeYZzv6HfyCntBSH14tKpUjFYnz40EPUX3MNOaWljPz5zzTdfDONjzxCyZw5pMJhPnz4YSZ/4xt4KysJdXRw8PnnmXL99Xirqoj29eHIy8PucqHrGjZNQ/v5o2I8d++T4PFBJATJOGz7NSy7Esqq4BePw5f+AVw5kIhBRxsUjJH89i/fIGZy8ShEI2JuZ7NJzvv2X8OK6yAUkL+XfgmCfhg/GX75hDD5JRWSV+90icHdL5+Ar9wIv/wRxiVfJllYSP+RZkZ7DpNfUU/V9CUkIgEGjrVQMrGBZDSEIycX179jTPfpApqmdSmlqv/Wtk+l8v8Dl6xj/IviGB+NyLq/5ST/HxnY/WVb/mH05V/AtupO9GWXo8IhNLcHs+mPmFt+ggr40avHQn4BymYnGo2STCbZtm0bIyMjJBIJUqkUuq6Tm5uLYRgZt/jm5mYmTJjAsmXLsNlsVFdXU1NTw7Zt28jNzWXy5Mm88847JBIJcnNzufTSS4lEImzdupVkMkkwGKStrY2FCxdmJPgAVVVV6LqOYRgsXLgQt9tNY2MjhgF5edW8++5DpFJRHA4PTqeX2trzCAS6qK1dxJQpf8+ePY/Q2rqFrq4WGhvXctVVW7nkkicsN/lNtLZuIRDoIJWKsGPHavLyarjhhgNccskTAHzuc89RWDgBXbehaTby8qr54hdfwO0uYHS0Ha+3lK6uFnJyCrnhhgMsXvwvOJ2+vwbtcjXA7hHQ8OYNEGwXUy0zBfs3ieHU3g0CHoYP/Zcc5gFLouuFwU8E/HirxNDqvYdEpqtM8B+BN74pMt6SmShXPmbBJJJLnyNSVE+BzUk/8pioI9JrD+KQnjZcy0dAYgECRuOIZDtkvUcRkOlEpPQFCGjPQUzT7kHAqRsB/3sREGtDZN1LEZD5qnWMArqD3dzz9j30BHso85Xx0LsPsaV1C+t3rcdQBgkjgalMULB52WZeWfEKNXk17OncQ0qluL/pfkq8JdzfdD9bWrewoWkDKZWiP9zPxos3Uumr5Kzis+gL9tE23IbL5sJpcxJLxWhqb+L4yHFaulroCfYQN+JEU1E+6v0IDQ0jFUNHjPtuQZ5fDAR0uxHX+LkISI8jwNqHBEW8SEAkYl3CHASIO5GUAw0B4dMQp/gmBITfZ81Lo3Xck8BVSEDlJBIYuQNYYV3DXuBW693UHRDpEsm8LQfsPkgMy/fPiAlQtntkW2IUnIXgyIfDj4gLfOsGcI2B1vsF+Ee6RWJvd4s7vbtMwOa4lWJyp9nBUw2xfjDC4mgfPCZA3u6FVFCCAroDCuokYKBpkF9nGc7ZLHd5h4BrgGCXvGua3B9On3w2ExZo1+V8UJa53fGszF4ZcozutOT3OWJCp5RsSwSlH81G9qkUAd++aogNyn0W7hFTPIdXgHT5XAHwuj0L2l350N0MI0dlrGOmyT0f7pZ7ct9GiI/K6/AWuVcr5lnGTHYJvEX64KwrxNHeiFt9NUg1gFA3vH0TBE6STCk2bWpm0aIaXC47NpvGwECYtrZh7HadxYtrKShw09sboqWlk4aGKioqfBiGwut1cOLECJ2dAUxTZZzmGxtrKS7O4YknLsFmE5f6khIvq1bt4MQJP08+eSnhcAKlFL29IW69dQGdnQFKSrw89NC7GaO8JUsmoOngcbj4zkXfIMfhZEp5HcvqF/APDZczxltAsa+QiyfN49k9v6U7MMCMyrMYCI9QmJPL/W/9hMGQn77QMH8/axmd/gE+7jmGw2anNK+Q2dWTKfLkkTINugOD3P/m86QsU7KRyCjTyidi122U+Yr5131biSYTfNB1mJPDPbgdbp5ZsRbDNNHQofRhGH8Qyh6H5Ckxo0v1CGi3l0CyS2TzJBDrTCcYQ2IiB9B7gwD6cR9D+VNgrxbgnuwBFYa+VVY7PXKHazZxjx+8R96dE0Uen9MARh/0rhaHekwMFB2jo5R4vazesYP20VGmlZayavt2IqkUH91wA5Fkkuu2biWSTLL32mtZs3gx/liMJ5Yvx2O3M2q5zeuaRso0yXW5KLXaO+73s7Cmhif37ePBiy8GTWMkFqPc6yXH4cBps7GopoZNzc0sqq2lY3SUo0NDOHSdqrw8vvNv/yZgffNm0XMHAiKJDwQE5B49Kmhz82Yxn9u8GY4cye4/YYKA9mhU1t9wg7i8d3QIwlRKPi9cmJW/m6agy74+AeChkLwiEXk98IDsM3++6MdLSgShrl0rqPiVVyRw8NJL4tB27Ji4vsViojF/5hk5LhQS4H3ddeIsH43CgQPyPjgoY/N45HzvuUfc40wTamqkDY9H2lm/XtbffrvsY7eLRXxeHsyfj2lquN0amiZ4vr9fTt3pzAL4trasl53DcaZ632aTZu+5R6YnEpFpPHFCpiJ96iAxEdMU2f3WrWJmZ7fLKydHjh8clFMsLZW4x+Cg/L+kmaY8Z8biWQM6mw2qy7Pu/U67APm0HD5lQmGeAPtESoA+FrgPhgXoOx1yUsfaZX0iCWXFWdDucMi6dDtOB8ydImZ5SavqiWFKHKG/n/ceeACUwl1czP516wh3d4NSnLt2Lb6xY7G5XEz55jep/exnKZ4+ndZnnsmY1Gm6Tqij46/c5pPBIMXTp7P8d7+jZM4cjGgUdJ05a9aQU1yMpusc/tnPaH/tNSI9PYQ7O/n4iSeIDw2RisXY+/37UJqGuvTvxXguERfQnIiJi/y+d8SALhET6fvoCPz8UQHkA31iOPfVbwtQ1zRZ/+rP5d3hEqC+7x35DrtccPU/Q0UtTJoqIP2am6CoVK5fKin967qAeYCvrEJz52CzORkzYS5jz/0ilVMvQqGh6zbGTDgXTbfjzithsG0f6r8gmf90+evlU+D+P3E5HYw3vw2xqHWjpVCjftThT7Ig3WYTpn3KTPTFF8uP3L/Tlhr1Q8CP+fZOCIfRvF6w29GXfR7bt+9GrxmHGh3B3PE70DTcbjfNzc3U1NTgdDrRNA1d10kkEhQWFuJ0Olm+fDlXXXUVixcvJi8vL+MqHwgECIVCtLa20tTURDweZ/78+ei6nmHgR0dHaW1tZdeuXdTW1lJUVERubi6f+9zn8Hg8pFIpYlY0vauri5ycHDweD4FAALfbQVPTBlpbt2RKvb399j3U1i6ivHwmW7deTzjcw5Ilm/jKV7ZTW9tIQcFYKipm8/rrt5NIBLn00ie5444RamsbCQS6OXz4VQvER9m+fRWmmSKRCBEK9WKaKZQyyM8fS3X1fLq6Wiz3+n683hK2b19FKhWhsHA8hpEkHg+TSv0N4K1SmTJstKyHcJfknS9+EOpXwNw7BWi0rJeH9f/qYnOArxzeuhH8R0F3ZXNyk8GsE/Xe+yHuR1MmhsND3JkLNicaAq49CHPeBtyAgOpNCMvrQ5hjH3ATAgZHgGIs81eyJcpCiMN8uvBHP3Cb1X4pkiu/0NrXAGoRJ/vNCNNcApiYbGzeyJbWLWxs3ohSirWL17JiygrWNK5BRydpJmkbaeObW7/JQGSAxtpGOgIdlHhLGAgPsKZxDQPhAe5qvIuV01ayedlmXDaXuMKbKRw2BwpFVX4VM8pmkDSTBBNB7njjDmaUzaDEW8L0sul0BbvoCfWwascq5lbO5dToKd7t3k/QOr8JiArhW8ARBJyHgBYkX7/FOk9lzYtCwL4LeRjyIgx5BBhCAiGLESDvRXLiu4H11hwGrH1DSACgCgkWRIGzrHmMIs7yDwHVSuHQ7DBmvuSlJwMCmg98FyInLVf0mLDoSoGrGD68HVIhOPeH4jI/ZS3EB4V5BxizQIJCsUEomiu57EYU9t0orLqZErDvLhFmvvQ88E0AUlZet1MYf02XCVH8taO8EZc+4gEBOvnjrf1NAd05pVaOvKWw0jTLYd6UY6PDVv67JtuDnbI/Kgv2E8FsXrtpWiW9UnLc6Elpy1MKlY3y9+gpCVY4fVAyA/r2CdB+8wYIdEBOscxJyQwB3/GABB/m3Cp58WOXyn3uKgRXAZy9Uio86FZ+/ts3S/CtoE76yR8viilvhSh2KuZJBQqrPactxaZNS1i0qIZ77nmb48f9+HwuSkq8rF4tQLu83EdJiYcFC6oxDJNUymTVqu0cPTrMtGmltLePYrfrlJR4ufnmnRiGSUFBDiMjUeJxg/POqyU/38WiRTVs3Libzs4AkyY9zsBAmOrqPB566F2qq/Ow2zXWrFnMihVTWLOmkerqPGy6TjSZ4IG3fkIsmcRtd/Ldpd+ktrCClGnwYddhhsKjTK2o47k9v0MBU8vr+Nn+bew8/C7PtfyOqeV11BaWU5FXzIzKSbT2tmGYJjOr6tn4p3+lJzBIf2iYqRV1DIX8+KMBcl1eDvWfQClFRf4YbvvMV3n5ozeZVFJLjsOFrmkUewtEvogGxqBVDq4dku2Z/HLsJZLX7mmU725q2AoqaWCvBN0rAD3nAgH3KiIgPnlE2HTPIhj6gZSX0/PAs1iYec0h5eWKbpV3FJQ9BfnXCEOfc758Z80Ybi3BvOoqHnr3Xba0trKhqYlgIsGrhw/THQiQY7dT6vVy4bhxdAeDlHq9VPh8jMbjtHR1UZCTg6kUiVSKU6Oj3LBtG9FUisFIhC2trazftQuAR5YtQ9c0ekMhvE4nE4uLKczJYU9nJ401NWxasoTd7e1c9qtf8WBzM0nT5P6mJhaWlwvAtdsFuA0MCILs7ZV1S5YIUw5QVCSU7wLxLeHIEbjxRknattmyefEPPCDI1O0WNBmNCuUcjQqbnS7Vdv/9sr/DIcj1pptkv9WrZZ8bbpDggK4LUq2okGv37ruCSBsbZYyVlTKmoSE5F5CAw+ho1p79/vvl84wZsr/XK/20tQnNnc7nTyQkx/vkSUHg1dUSJOjtFWv4Rx7J2rXn54OmodBob5fmysok3d4wYHhYpsbnk9jDzTfLFKRSMjVr1woodziyUxcKSczj1luhq0um9ZlnRDzg88G55wqwv+kmGVpVVfaU29th/345tcFBGYPXK7YEpmn9h6XbpNEJ1eIsu21HbQABAABJREFUb9PlfJ122Q4wsRZKi4Rxt9vA5QC3E/wBAeBp9/h8nxU8VdLGwIgw9fk+YeCPtcvJpXPmXQ7p0zSh3fIEypcArmnTUYZBbHCQs7/+dTS7nUP/+q+0v/Yarc88A5rG+w8+SOHkySjTxFdTQ8P3v4/ucDD7O9/h/Kee4ty778budnPw+efPcJs/5x//EUduLrrdjruggFQ4zAc/+AHx4WGMeJz3HniAcFcXM2+5JRMMOPj885Seey7uMWOwu1yMmTkTIxpFKyqDiVOyQHv7b4QRn3+hsOl2Jyy4GIpK4IprhTE/exbUTpLzjYYFeKdd5ne+KP83Lf+ylJorKJKc+cAIxCJwrBX6u4Wh//mjMNgrc+9wwK+elIvsH4ZfPoEej6M7nLh8hThycun+5C2SET/xsB9N10mE/RiJKOVnn4f2Kdv+31o+lcr/jeX/dan8GfL3RRfITRjwy+fGC1GBUbT8wowpXUY+b7edYWD3l23ZLvk7jO2voNoOYbv2JjSvD6Vp8p+MMuXd5QK7A1O3YQCJRIJgMEhzczOLFy/G4/Gwc+dOli1bRiQSYdeuXSxevBifz4fNZiMcDhOLxQiHw1RVVdHd3U1tbS1KKZLJJH19fVRXV2OaJrqu09HRQVVVVYbdLywsZGhoiD179nDxxRfjcrkwLQZF1yVOlUgkcDh0Rkfb2LVr/V/J4M8//15+9KNzmDJlBZde+jSpVDQjo29svAvTNPD5ynE4PJhmiq6uveTl1RAIdFBdPY/t26WtW2/tIxDoIBTqJS+viubmH7BkySYcDg/JZMQ6PpnZf8qUFRl5fWPjXXi9ZeTkFGO3W5L3eEAe5JNhAdDz1sgD+f6NcPFT8lDvzJf/FCP9UFT/X5fLJ0JSE/7wFgkALPgeOL0CjpQpTN++jSLF95QJ6NBtUqILAZdRBHyCsONbEOb2OQQgmgiozwN+i4DvKqSE2w8RYGoiYNNhtedHgL0DYZ1tCEDNs/osRkDq7QhTXHLaemc8TJu/jfW71nP34ruZUDgBQxkopbBpNiLJCIYy+LD3Qy755SWsmLKCzcs2Y9ft3LzzZh646AHy3HkopbBrdkykXnTSTLK/ez8zy2cC4La7M5L7wfAgJb4STGViKpO737qbdRetQ9d04kacjtEO6ovrSZkpbO48ApqOwzq/IYQhvxz4PsK8g0RXU9Z7yHpVWvPRgpjZ9SFGdncjQYCENY/plAUd4fhWI4GUfiTloAEJjjxC1uDOjgQ/XGRl8yuA5yJd5MaHBLj6xglL3nQFVF0ODc9A6CREO6G4wZLPp+SKGWExtNM0q8auFS9OhqQ+ubtE9lGaAP3ksAD3koUiS9c0kf0aYYj2WrL7tVJ2zp4nku90TfZ4wGLBrYBAIiQqEpSM20jI9jN0mopM7XfST5bW06MyLXlr+jcuIGy+zZWV5Ntcst2IZ2uyo1nA3hQwnZau2z0S4EATxl06kZrqKgWpuJjPgVUyTrfK2J2Clg3QsBYKJkhwAN2aS1OM9lrWw9w7oGu3gHZftShxztuYlfqbSWHkU3HobQFfDeSPJ5R00tkZ5PXX29i7t4vHH7+E3bvbKSnxUlTkxut1omngctkZGAhTUuIlGEzw8cd91NUVMmaMB5tN54YbtnHeebX83d+dzehonLw8F5FIgnA4mZHijx2bTzSa4qabdvLEE8tpaemipMTLwECYhQtrsNl0wuEEfX0hystz8RXqbHjzeaZW1LH0rAUoFI/82y/4+tzLcTsc+FxeQvEwpmmSMFIMR0aZXnkW8VSC1t426kvHkeNwoaGRMJJ80ttGibeQEl8BD/7xX3m7bT8PX34LM6vq0TWNpGGQMJI88m+/4ObzVzISCfBcy+/4x3lfoKagjHZ/Lz/bt5Wbz19JjsNFPJWg0KWhR5tOA+kLhW3X88GMgK1Y7sboXnDUCpuuLIl2/+1QfAvYraBSpAl6roaKFyBnPmjObAqHaWlsQtsg9/PSR7IDcuaBliN9pAakbcc4Af9Dj0Dpg0TUGCIpg5bOzox8/f2eHmZXVNAdDLKxuZk1jY2UWuur8/LY0NTEmsZG6goLOTw0hNfp5J6332ZLaysrpkzhqUsvpbmjg4aqKhy6jk3XOTI0xMbmZh5eupThaJR2S56vAJfNRiiR4M433+TORYsYV1BA3DAoTCaxNTdnS6vdeKNos1euhCefFJBlswno7e0VhLl2rbDot9wiYHbZMkGQ0aiw8+PGCXrt7haQfPSolJi7807Z1t8v+588KQZ3Tz11phT/iSfENM6SojNvnhxTWSljMQz5XFwsaHXDBrjrLkG65eVSyLy3V/5OpcSgrrhYQH4wKONft07QcyIhiLipCebOlXWGISz9bbeJWV9Dg9SqLyzMGuKBHJtIEHAV881vOdmyRWIZkYgo6zdulMcypxO+9S1pZtGi7BR6PNKdzydDC4Xk72Awq9zPy5PYwvr12VOsqhKp/YQJ0l76EjU3i7Ahna1QVgaTJknfP/2xgS0Zl7JwLmdWCp/jsqL2Bpzolhrvup4F8SASd6dDXqdvU0oYc5tNAgBHTgmj7nKKJP500K5rws6nZfPpxZLpJ5VJzD+CzeUiGQrhyJXf8/cfeIAp111HpL8fd1ER3spKhg4cIKe8HHdhIe8/+CBTrrsOV1ERI3/+M8XTp6PZbHz40EPMvPVWNF1H03WMWIzo4CDRvj7GzJiBMk0GP/4YX00NvU1NlC9ciKesDGWa6DYbZiqFUopQVxeH//VfmXnrreTk5YpqIegXZn37b4Txzi8SU7lYROTveQXCwm//tZRzK60UwB6NSIk3Dbng4RB4fcK4R0JC9BWVyAU0rJdS8OKzcPnV8C/XCbhfuVr66+8Gu0OY+33vwNzzMP7hVpRp0N36x4xcfsz4OQyeeC/zXjVtCTaHi0+Xv718KpX/X7ZkHeOvRCsuQdP1LAPf9Ef02glnOMlrdjuay/VXoP3MtlaA3YG+7HLs/7QGnE7MjlNoqRSa0wWhkDDxwQCapqG1H5ebHWhubs4w47FYjNbWVuLxOLt27aK1tZVAIIBpmoRCIZxOJ5FIhLy8POx2O+Xl5QwNDWVqu1dWVpJIJIhEIiSTScrLy9m+fTuxWIxAICA/cqEQF154IQ6Hg3g8zsjICNu2bcPv92dA/PDwKPn547nssqex211ccskTXHXVVhob1+J2FzBlygoaG9eQSASIx0fZs+cRamoWYbe7KS6ehNPpwzQNurr24vWWZkC7ptkzknq73UUo1IvXW0pT0/1UVTUQDHazdet1hMP9JJMRlDIzfS9e/C90de2ltXULTU33E4v5MU5nze1uyZENdcGcW4T9c3hFCpv+X0zTBEwXTvqvg3aQfeetzbL2rnwYOCCBAocHcmuktnT+eEAJOzh8RIAVAvhciBw+l6zceg0ChdKAu83adyXZXPb1CPi2Mj5JIKC9xVpvR0C901p/3GqjGHGQ70YA6Hrr+AjQjDDu4wvG8/RlTzOhcAInhk+wu313JqfdZXfhc/pYWLOQI6uP8MQlT5Bjz0Gh+OHyH+Jz+kgZKeyanZRKoaHRPtrO3q69nFt5Lm67m3AijGEaNLU30TbcRomvhJQpsjtd03lgyQOZfFmXzcWk4kko6x9kHdybrXM9ADyOBDQiZFnxf7L+HkRy3ePWfJVZc9uFSNrLrDlO73c9ooRoQaTyDyKy+nHWnO215vIB6+80cV2DBAfWpq+jUjgSI1KXXbfDe9+Gwtlw+XGY+7QADm81FM6Aof0QaoP9qwWIo+QsjTgMNEHgqDD2NrcA2eBReO8miPcLGPfUSNtmShj6D24XJt7uk23nfEck9OlggO7IftcdXpG3mwmp154/3nrIs8k+zlwBzqPHrVQSJaDXTAk4SjvNJwIWc54UNlwpCWLllIocPs3Gh7os2X0860gPZHLbQcC7q0COsznkftJ16QNkrP3vSbAtpxgiA9D/oRynkPkO9YoTfG6V9PHWKgicsNQFCUkBOG+j3KfnXAOViySwULFApPlvrbKUATYrGGGHqkbIH0vC0AgGRd3zpS+dzaZNS3A69QwTHomkME3Fbbe9QTSaorjYQzSaYs2at6iqyqO83JeR2G/evIwrrzyH7u4g99zzNj09IpHv7Axk5PCplInH42DjxotRijMYd02DG2/cRk6OnerqfILBODo637noGyyfvIiD/ScYDPmZWlFHX2iIaDJuMfEJSnOLGOMrYEp5HSnT4JF/+wWlviIAvv/6s3SO9vNJbxuFObkMhEdw2BxcO+8LPPL5W6kvHcdAaIRwIsYnvccYigiDH4pH+Om+PzCz6iycNjug+Nm+rUytqGMgNML3X3+WofAommYD92yLOV8gjPvggwKm7WPkOvetFVm8vVKAdf/tYHTL/lqu/MpFmiQXfuxecFRB342QPC7HJ4+JC73RB7mXyz2V7JBgQbRFtvdeL4y9vUx+IZK9kLOAhGnj2PAQq7Zvpzo/H4/DgakUjbW1jMbjbGxu5tXDh+kMBHDabMwoK2NTc3OGnTeUYmNzM6+3tXHHwoWsmDKFOxctwqHrzK6oYCgaJZpKoYBHLId5t91Ojt1OdW4ue7u60IHBcBhd03jikkso8/k4PDjIqu3b0Ww2AcTNzQJEH3tMQPumTaLVTsvMT6eF16+Xzw8+KMjx2DHZZ/VqkZmPGydSe6UEjQ4MwHnnyXqnUxBpKCSfn3tOgN/mzdLv3XcLS5+utT5jhsjV77lHxhMOSyDA7RbwvmGD5Lp3dQnwTrP5VVVSML2lRY654QY5LidHzsPjEVlyICBAff582LdPUHMqJeMZHpZ5WLRI+u/rk/rwoZC0tWcPOBy4nbB2jWLFCok1bNggAgCl5NRDIWlm6dIzp7CkJBuHAJka05RTe/BB+TuVkvjDBReIGGHuXDnVK67IZgns3i37zZsnw0pnK/T0SBubNlnl7nVNnN/TUvhEUuTyxyx93YRq+f081i7r07nqeT4B+DZdmPQjlswezcpzt+DMxFph5jXEnb67X951Tdzr2zqysnm3S8Yx5Id4At3pwFVYSHRggI+feIJofz8Or5dpq1ZhplIU1tej22zsX7cOd1ER0f5+NJuNs7/+dSK9vWi6nnWS7+1l9p13CoM/NIQRj2Nzu3EXFVFQX8/7Dz6IEY9TMmMGntLSTM34YGcnSimCltQ+0tNDzJLbR4eGSMXiKA3JXfcPSe32kgrLWwa54Nt+JaB9ZCBbt900RTo/YKVZOJzw66dF7n78kKx3ugTED/SIY72mCch3e4TJz/EKaL/0KggHZb+RAQkafPl6uO9Z2U/TUEBJ3VzyK+opmTiPVCKaeS+dOO9v4o1Pl//a8ilw/x+6CBh3C6i22c+Uwzvs/6WbRqVSqLgAR83lkh+EcAhj+yugFFpZheTPJ+KocBB1+BNUSB5ctdIKNCOF3W5n2bJlTJs2jcWLF+N2u5kyZQpOp5PGxkamTJlCTU0NwWCQd955B6UU1dXVBAIBDMMgHo+zZ88eamtr8Xq92Gzy4zQyMoKu6zgcDg4fPsy7775LTU0NmqaRl5fHm2++yejoKLqunxE4UEoRj8dxuez4/cdpb9/NyMhxtm9fRV5eNR7PGJQyOf/8e/F6S0mlErhc+Vx88YPU1Czi7bfvwe8/STIZYefOmygrm0FeXjW1tY188slv2LFjNQUFteTlVbF163Xk5VXjdhfQ2LiGurqlNDdvtID5BjRNx+8/yfbtq8jPr6WgYCxVVfP4yle2s2zZZorza3BiiimdkRDgYbdA9HsPy7uvSvJtzQR4y4V1f+tGS877f7jk18GSZ6HwLGHuqxplnWaTdv+4GjDFHKu8QQzCLJDqRIB7nvVKy61Fsi7gsMf6vJpsrnoN8AnZnHjNamsUAZZjEbYZ6z0XkcgnEaC7AGGKvww8gcjCSxFpuIZOykwJS24kGVs4loU1C9E0jb5QH+FkmFAiRHNHMz6nj8HIINFUFMM0uGHbDZwaPcVQdIjjI8cZCA9gKIPxheNZWLOQ/d376RjtwOP00NLVQkNVA1X5VYQSIWKpGOFkmOaO5kz/wXiQ3lAvhmmQMlPYdTugEUPSBRZbc1FBtqybDwHlbkQWH7TmqAEB4n1IioALYd2HkB/0HMQfYAPClm9A8t7dCKBfjQQBDGv+Sqy+xlnzfxxJc2iz2roF6NQ0kt6xULIIot1Qf4uAP80mDwwqBUN7ITYMY+ZJqkX9zRDtgeH3IXzcKv1WCo48sOcK2Ld7IT4M59wJ3hr5Ph24Ry647gRPreTBo+T4aA94x4NpSeCx8slTsTPl8Ib1QJcpnxjPytbTAD7ULfvkjxdAjQZRv8Wc51k5xHFZly5HlAgIK+TMg9IZUlpNkc1ttzmkH8jm1UcHof8Di1FKQvee00ztUtCzTwIC4R757MiB8nOhZ082gFAxTwB9714JTnzmkdPy9XUpQ9e0Npuf371bGPf6K0Upk/GqOApvXAeBk6JGSEZIprQM0O7tDZGTYycSEYZ8y5ZW1q/fRSAQp6Ghip6eIDfeuJ3e3iA33zwft9uOruscPTrEN7+5lYGBCDk5DjZubGbLllY2bmxG0zRmz64gL8/FrFkV+P0xuruD+P0xnE5bpp9Nm5pJJAzWr7/QYuRfIxxOEo0m6QsM8UlvG1PK6/C53CyrX8DMyrPoD43wdtt+frrvD4CGhsaH3UfoDQzy97OW8VzL7wjFI7zdtp/+0DBTyusYiQaZWl7HaCxIkSePWVX1DIRGeLL5JQZCI9SNqeH5lt+zcOx0xngL+M5F3+DiSfP4yd5XCSdifOeib7CsfgEvvLc9I8UXT4RuSyp/SoB70WpInbRy3U9C6T3yHVMJMaIruhWS/ZC/EnQf9N0uwN5WAvZykcen5fYYp5V3u19YeGNEmPbUgOS12yskv95eAal+6ddRDXlXElM+OgIhbluwAI/dTonXi9fp5PjICLlOJ3cuXMjHN9zAwpoaDEvNtmnJErZedRVPLF+OrmncvXgxe7u6qMzNZfOyZVT4fKRMk55gkLbhYey6jg48vnw5V02dyp7OTqKpFB6nkxKvl1U7duBxOukLh7lu61b6QiHy3W5uXbCAVColILahQUBuZ6cw3h6PIMSNG0WinpMjjPmKFZJYretCD/f2SjJ1WpKeLh/ndAqY7+kRGnjxYmHP08Z3AwNyD7W1wTe/KZ+fekqY+jTa3LJFgHW6vtmGDQL8vF7pOy8vm+teUyPAe9486Tsclv3TSHrLFhlLWtMei0mf3/2uAPzBQQHvSsG3vy3b0nL/09G2leZIRYUg55tuwnniMBMnKp56SmG3w5o1cOWVZ6bO+3wSH3nkkaxVgM0mpzM8LNPwrW9JbELTpEtNE0l8MikV9RobRTywaJEMy26XWEJJiYD1U6fkFE/PVlAKigrNbHTAZhOAPXWiMOHpMnEg95JuE8O4jl7LWc+ZzYcHAeF5vixYV0rY9Vgim/OeSAk4ryqVNhNWilOuF7r6RB6vITnuc6ZArhdbSIiItMz98M9+BkrhKiwkPjyM3e0+o0xcyaxZKNPE7vVSeM452HNycPh8lMyaRaSvj1BHB/vXrcOIxUApVNr4EJh09dUAGPE4yVCI9x98UIIBvb1gmpmc+dZnn6V42jTKFy0it6Ice2gE7difBXhPmibfs4EeeOEx6LWUwkv/TsD0xKmw4XlYucqao2HILYDfPC2mcl/8OvgHoXqCZXpsE+a9qATqzoGTR2CoX9h9l0sM7b52swD8eFTKyVWNlz5DAXj155i6RiIyStTfh8NTQNW0i9FtdjyF5ThcXjyFFTi8hZ+a0v1fLJ9K5f/G8v+6VP5vLf+RHP7f2/8Mt/miEkglMba9jGr9ENut94r8vvlt9IWfQSsag9l5Cq2qFk0pUjY7w34/u3btorGxMSOFV0phs9mIx+PoetZ1fseOHdTW1jJ58mQSiQQulwun00ncChxEIpGM+3xubi42mw3DMHA6nYRCIVKpFB6PJ8Owl5SU4Ha70TQNpRThcJhUKkVeXh7JZBKnU2Xyy8PhAZ57roG6uqVccskTdHa2ZNbX1jaiaTpKGWzdev0Zcvrjx9+gpmYxLpcPr7cEkL503UZ7exNbtvwdZ5/9JS699EfWNpNkMsIbb9zOokV3kJ8/lq1br6O1dQtf+cp2yi3ptdPpxaHpaP42tL0boOEukfs6PAI6UlEBJMmIgOhzbxd2Lbcagt3y/n8ikzcSMHxYzO4q5gkTaiatlyEsIAiI0WxiiJWWzs9bC0WT/6qvBAKsQZzMSxGWeBVZ6fXTwG4EOBYiYHKT9XIjLPRYBNDqZNngtHQ8DXCx1iXJMvs+ID8e4tjIMe5vup+1jWupza8FIJqKMhofJdeZS54rD1OZKKW4eefNrG5YTXVeNeMeHcdLV77EotpFJIwEvcFe1jet567Gu+gKdFGZW0l3sJtzK88laSRx2py47C4iyQi3v3E7D178IP3hfh7Y/QBrGtcwxjOGD3s/pCqvih80/4BNSzbh85VzVNPItc6/xTrXYgQsbyYrgV+DSOCtNEI81nz2AeuAuxBw/hGiZHAgwZFOxPAvhQREgkhwI2H1V23tUwPUWX+fLo9/yuojXymK48M4h/ZA8TzJAx9sEZCukuIg7yyQKxTtg0i77JcYgaQfDv4Aul6F5QfE3C4VAf8ByW3XXZZEflRAPUqk8n++H86+Q1h4mwdSFrtsREUuP/NBcJXK9zQVk+9gqCvrKK/ZhFnPG8sZbvJpl3jdJg8zRtw6rlqO062ceTMhwYO0JNNIZJ3qE0GrVrsmbYyegrya7GczJe3qdnGUL5khjHq4B8rnibzef9T63CC5564CuffSrvA5pVKfPl0twuERNU2kz7r31kD+RAH7b1wnLHvVItmWcZlvhMCp7P3ZfI+kw5y9MlPLPZD0smuXyOKHhiI0NFSRSMgD9u23v8F3vrOI6uo8DEOxZ08nV1zxIi+9dCXV1Xls2tTMpk1LAHjllYNMmFDIwoU1RCJJbr/9De68cxHjxhVw5Ig4x99550LOOquYaDTF/v3dLFxYw6lTo6xfv4vNm5fR3x9mw4Ym7rxzIUqB1+ukapyHD7sPU5iTy8/2b+P2C645Q77eHxrm7NJx1kXScDmc+COj5Lp99IeGKczJ41D/SUp9RfzYOqbEV8hnn1nFZ+rO5V+WfpP7Xn+Wt9v288jnb2VmZT2GMrHrNrr8/Tzb8lv+Yd7nqcgdQ29wSHLhy+uw6TYeeOsnfKPhciYWFaKluiD8usjhyx6RX6XoHqnprhcKM44GkXfBPU1y27FJTXfNJXepSkD/nVB8J9hrxHROzxfmXoUtB/l8+S6nesFRJ0y75hFju7RsHhPaxoo7fflzhFNOjo6McL8lfe8MBKjOz8drt+NzOvE5nRz3+1m/axdrGhupzc/HqetEDYORaJRCtxu33Y5hPS8mDIMch4OkYdDc0UGp18tgJML86mrsuk5zRwdTSkqw6To+p5NvbdvGLz7+mIOrVrHunXdoqKriynPOke/YG2/w7JIluI8fR9uwQRKrBwYEIWqaSNk7OgTUu90CqNPu76dOybZ58+RzWkb/wx/K886+fZIbb7MJao1GpY1IJCtHT2vIf/ELcVqrqZFgQdolvrkZZs6Ur9fp2vG3386CasOQMTU1iRz+oYdEh15XB4cOCSs/c6YcX1GRtWk/eFBQ9ZYt0ndVleTB33GHUNi7d0sh9dPt3+++W/Tp0agEOSoqpN/duwk/9yv8AZ1wWFab5l87v+/ZI0z4Aw8IcB8clDjCvHkwMiLTvHevKPJHRqCgQMB5Wu1fWJhNJw8EZDo8njP7efxxiUvcfXfWuH/K2QZ6NCYAOs8CzYYpDHo6EKGUgO+0w7zL+t1KpsQp3m7Lus3XVUs9+I5emFBlHY+0ddKS24O0b6rs8Xo6DQph38dXSfvtPRhjK4hHwqAUyVAI95gxGPE4qVAIV3Fxxmk+NjyM0+fD7vUSOHGCg88/zznf/Cbeykpig4M4vF7sXi9777kn4zpfeM45RPv7M/vm1tYSOHkyw6ZHenuJDg1RMmMG2GykIhGSwSCO3FzsbjeazYYdE63tz1BdJ5J4d47cIx1t0N8D58yG/EJh0UdHZLvHJ7XaC0ukTvvPH5X8+LpzJLf9y9fLfKTd5R1OGOiVbZ9dIW348mTe0+3k5lupK36J+uRb6RtD/RhllZank6Lv0C6Kx88BFLrdiW5z0HdoF5VTL/pUJv+fLJ9K5T9d/kM5/N9c/sptPiV5NxZzr9ls4HJjW/5FicIBes14NNMkFY2QTKUyUvimpiYMw2BkZITt27czMjKCy+XC4XBgGAaxWIzly5czY8YMbDYbw8PDBIPC3AvIdtLU1MThw4cJhUKZ49566y3i8Tgej4eCggLeeuutjHze5ZIfhXg8zvbt20kmk/h8PlKpFA6HA01zkExG2Lr1epLJCNdeu5fFi+/GZnNRUTEblyuPiorZKGVa44iycOEdTJu2kmXLNuPzlTNlyt/jcuWSTIZpb9+N33+SbduuZ2joCOXlM7nyypdYsmQTiUSYoaEjbN++CoBLLnkCuz2HZDLC4sVrmTJlBTU1CwmH+9i58yaGho6iKUNAe9oQTqWy0lt7jjy4vX0THPyFPNjnjJEc2KqF/2egHQSQhDoFXJgpeUX6rfJeZpbtt7nks8ObNav7d0zwnAjz7kYAZTfCLK9BAOFtCKCfh5ifFSDMcIO17w0IoC9FAH0AcUe/DmGE91jrhLcW9ng/AlaPWf0byqAr0MWtC27F4/AQTUXRdT3jNK9pGsdHjnPd1us4OXqS1Q2r2di8EbfdzcBtA8yrnse7He9imAYl3hLOqz2PnmAPc6vm0hvqZXHtYtx2N/nufBw2AXRuu5tbF9yKQ3fgdXh5eOnDjC0YS54rjxllM+gJ9rD+wvUoFOFkJAPaR4HzkECFF3iHLNu+CAlmgIDom6xzNKzz3QI8iqQpLLLmuRMB+guR55NhJJBiQzwAkoizvNea5/VIGkIZEgRYgcjkY4hfwQAIuHaXwPs3CXguXQiRUyKJN8LCuEf7BGiXLBRw7y6D3LPg3Cdg+ccid4/2CRB3V0hbqZCkgYTaJIfdkQeHfiBmdJ4aOQZNvv92H0R6hM3XXWKGl3aNNxKWfN1i0jWs1I7TljRoT0vgjYSV955rse4K/CcE6Nuc8u4/Ln2nS8al3eOVKduMhIB2M5ll220uSxrvhKrFcs868+Qew5Sx5Y0TKXtsREov2lwSWNDtlmQ/LkGH8zbKOeWUCKjP3HsbJLhgmhLcG7c0uy1dEaJ7j1UpolJUNHPvkHSY8zaJiqZnDw4tmWHEZ84sJx43uOmmnfT3R3jyyUsZP76AVMpkz55OamryeOmlK5k3r5oNG5poaKiiuzvITTft5AtfmExlZS7XXSfM+8MPL6WoKIdUysww8D09IU6c8LN3bxdz51aSSBiMH1/AM89chsfjyLDvPT0h7Hade+55m3AgxVSLKb/m3EvRNY0X3tueka/PqZqMx+FmMDLKw//2AtFEjPycPJw2B4U5+RwZOMXMyrP4ccvvMsy7Q7fx8OW3cPsF16ABt11wDS9/bRPTKiZlFDop08DtcPJ2236eb/k9CpVxtf+kt43ewBC3fuZqqvIKIHlC2HbPIinFpnlBc4t83l4tID3SDCoOngXy/TQjlg8ElrpjVGTwOQ3C2Kc65Y7Vc8SITnPJZ80hQF3zWt8llwQHkl0SHOhbJaC+8iUoXgPKwFAmXYEAty5YQGcgQInHw4Zdu8h3u8l1OlHA+IICnrz0UnxOJ3ZdJ2Ga2DUNr9PJvu5uYoZB3DA45ffjj8UwTBO7rrOotpYCt5sKn48btm3j6NAQC2pqyLP+Dw4lEmxasoQVU6aQ73KxackSFtXUcNPOnXQHgzRUVTEcDKJ1dwvoHjdOQHtav93RIaB19WoxlWtuzjqh1dZmGGd6e8XN/fHH5ZhVqwShpinjEycEpB89Kmz2qVOCYk+cEE34ihWCWru6sjRxJCKAOy8va5jX3y/33IwZgnqDQRnT8eMy7ry8bBJ5NCoge86c7PGnTsm2lStlfGlr9nnzskZ5jzwi9PYTT8j4Z82SeUmrAY4dk/MrKRF6e8kSCRToGj5fVkmvlOSkpx3ho1GRuT/wgHQzOiqgvaREmkub8o8ZI2B9zBhh4tNq/rThXCol4gfI5rY/8QRs3y7BAKcTfvxjmarXX5d2MBHQ7suxXOoQUA1WQDUl55rjgkm1WQO5QEgAt9sJDrusz/MJ6D+dqY/GhZVPGTC+0kphMrMyfNOUbbEEHOuQYybWyBg6+2BkFFOZGLEY9pwc3EVF6FYw4ZOnniLS3c3ARx9hxOM4c3PRXS6UaRIbHKS3uZnowAC6zYYzVwK6mqYx5frrOf9HP6Jk9mw0XSc2PMzZX/860b4+OXZgQKT169ej2WwU1tcz8MEHGWVC69NPEx8eJtTRQbS/n8jQMKpuCmd4tDhdUDcFZi8SifxQvwSlR4ekRNyJQ2JcV1AkwaWr/xnmng9v/lZKyjndYLOLVD7gl79dbgH3b7wioHxk0GqnXph3XZf/L4tKZN/eLvj5Y5j5hZhGCsMyVi4ePxuH24vD7WPg6B4xpZu8mIzZ66fLf2v5FLj/L17SUniVSv31xr9wm1eaJlIYuwPbZVegdBskExg7fiuSG01H+YcwdvwW0+2hs6uLBQsWZEqznS5ZTwN50zQpKCjA6XTS3d3NyMhIpu66y+XCMAxSqRSGYdDY2MiVV15JXl4eW7duJRgMcuGFF+J0OkmlUiQSCZYvX05RURFKqUyQQNM0LrzwQgIBySd94403SCQSKJXMuMo3NW3A6y2lsHCCOARbYF0pE8NIYhhxEokwhYUTuPTSpwiH+9m27QZCoR58vjKam39AWdkM7HYXNTWL2LPnEWKxUcaOPQ+Hw4Om2diz5xErx72H9vYm3O4CEokwBQXjOP/8ezGMBE1N99PauoXm5o0YSqEa7oZ/OAJLnraYuPCZsvl0Tvq8NSLHnXe3AIT/E9AOsn/lImHy/vRtkdH6j0lNd92eBe/DhyS3XZmn9X23AI7/YIkgID4t9X4ckWz7EGC6BjGhW0O2pNsWBNC7EFAbJFvqrRsBpHkIAN2DAMz5iKFbg3WMXXdw3tjzOKv4LCp8FeQ4cjBV1mk+EA+woWkDW1q3cH/T/YwtGMudi+5E13SO+4/T0tnC3Mq5+Jw+AvEAX5n2FWaWz2Q4OsyC6gW0j7bT1N5EPBUnaSZJGkl0TWdC4QScNic2zcZgZJDrt17P0aGj+Jw+5lfPJ2EkcOgOXJpORClWIUx6AFEkRIGDCDBfhwD6H1lz2YeA+ImIjL0ReA0x94sD7yJgvMpq7yar7WLkuSnHmvOI9bkcSWt4CHgPAfbjEUPB8Yjp3xZgvaYR91TBwYfEfC7aLaXhWjdYpd7ul1JvkXYB3wPNwsQrQ9j192+S7boDQickz9w3Ac59XL7b798iQYFYj3y/Zm6C6i9I3feBJgE4OeWSKlK6CHx1kBiSAICREBBuc4l8PX8CAsCPS1tmUphrM5mt5W4kBNDaHAKonXlZ0J0/PpsLDlKvXdPJmNbZHNKfmRSTxlCXVYpOz9aEV4ZI9EEY75494C4Q8Kw5JBDQ8674VGia3HNv3WhJ8VPCyqPknk/FoHKB5SNQJV4TX9wK875rKQI0Yee9VXI/fnErXPSEzGvJdGnHTEhbBZOkprvDYwX8SjGVjmlKbWW3247H42DRoho2bdqNYZgcO+Zn1aodlJR46egIMG9eNTabxpo1jSxbVpcp5+Zw6Gza1JyR10sVEY09ezr5zncWsWLFFObNq8btttPQUEVLSxc9PQLATpzwMzAQZs2axsx+aRD/4Ye9OG0OSn1F/Gz/NobCo9x2wTXMrKznyeaX6BodAE3DbXdy03lfwWGz448GiKcSxJIxOv19xFNJbr/gGh6+/BbKfMV82H2EKeV1uOxONrz5vJSASsZZ98ZzxI0kA2E/6954jlgywWvXPc5dF30DHY14MskDb/2Eopw83A4HTpsDu26gDa23ZOyPWOx4RObd6LHy0vstJjytGwJiH4qsvv/bkDwq8vlkD3iXCHjXXMKy914PyTYw/JK7rtnl7rWXQvKkBAySp8RtXs8T9/mhjeJin+wEDBxaiuq8PB56912q8/IozMnh9gULUEDCAlHHR0b41rZthBPy0N0XDhNOJsmx2yn3+Vi1fbu4xTsclFvGaCnTpC8Uwud00hMKsaW1lZ5QiHAiwdHhYW7auZO+cBif08lzn/scHocDr9PJI3v2sKW1lY3NzSydMIGS/HxUZaUwzR0dApiVEsS4eLHkvKdl6lOnCiJsahLa1+sVgzqXKwsIOjok5/yBBwRxni4xT0vON2wQRLl+vVDG994r7OGiRVJXva0N3n9f1oG0v2iRyOdNU/pdt0406FOnirz/5MlszbXHHoP33hOQ43IJ0r3tNhmbxyNIN5US1rymRravWSMoe9Mm0Z+vWiVtgpxjuuZ8Ouc9L0/mp6yMRG0dyaRYBLz/vkxRIgHvvAPf+57ENHJz5XSeflqEAOXlEi8YGBChQ06OxD/+6Z8sMZIlJLDbxWSuv19AuseTLQDg8WQZ+AULspXvjh+XeMX8+RI3GfJrqHyfsORtHQK004pfXRNQHkvAUQtkawio9uXA8U5LyWTK/VNWLOZytRVQWmiVkHNkneSThmVAZxfAnw4EOO2yvar0zDz5umqYdQ6aruPMz8dMpRj6+GOSoRD2nBzm3HUXkYEBCiZNIjowwHv33y9A/r338JSVsfTXv6awvp7AqVMM//nP6A4HaBqe8nI85eXsX7cOZZqUzJhBbHgYjxVQKp4+nYM//WnGtV6z2TJAHtNkxre/TaS3F095Oa6iIhLxhFyQ0RExgwv6hV3/+aOybny95LPb7ALWhwcgr1BAt24Xln7LM6KkvOpGqQM/1Ccl5XILBIQP9EjbE6fIPqYSFj6vEH7zjAX0HdK3kRKm3nKnVzYbyXiYRNiPrttwegsxUlL2M6ewgoG2veh2BxmD2k+X/9by6ez9L13+Zk3305bTTem0wiIIBlCBUbA7UKEgmjIxm/6YMbxDmRmGXotFyc/PJxwOs3z58kzpt3ROe2NjI9FolNHR0QwILy0tJRgMUlZWRjQaxel0YrPZsNlsaJqGz+ejtraWQCDAggULcLlcaJrG8PAwO3fuJBwOy3kphdPpZO/evVRXV6OUIpVKUVFRgd1uZ/ny5USjUcLhOI2Na5gyZQWLF68hHO5nZKQNLRMJ1HA4PNjtLmw2N8lkhG3bbsDvP04g0JkB/EqZLF/+OHa7m+HhNmpqGrn44gfx+coZGTnO1q3XEQr1cPHFD1JXt5RQqAevt4QdO1aTSoUBDcNI0N29P8O+L1p0J9FkFAomoBw+YcYSQQE9ZlIk8iAS9aXPQWE9VJ/3f860p5f0MaeXfMsZI59tTmFDjYSw6+UNIj8OdsBFT2AWTiJkc5L4iyYTCGBMIoC8B5Fi+xCWvBFxNv8nhGUuJesyv5Ys42vnTMO7l6x9mhCwnkIAuxeR1vchj8UF1ndBrqSGiclwZJhYMpYpCZfvymdN4xpWTFnB2sVrybHnUFdYh6lMKnwVNFQ10NLVwsmRk9g0G3bdjtvu5sTICTpGOyj1lWb26Q324o/5iSQj9IZ6UShKfaWUeks5r/Y8+sJ9nBo9xT/t+Ce8Ti+GaaDbnGzSNM5Dctu9iMGcaZ2HG1EhdFnzZwBzrLm1ICURRLXQhoD+CgScR5EgyTprv35rfRwJmoQRVcMxBOzbrHnUrGOtTER+CGwH1iqFA8TNvXypSNV7Xxcp+7iVMHszeMdC6fkihS+cAe/fLEBe0wXsR9phaB+UNgoAV4aw70YMpq8Th/iSxRAfke2OfPCNlbawAPhAs5Qn1G2WrN7KPc+vE88F3ZmdHacvC9J9lRabbZN90qx7mtnWdMirlfdMmbd0YoJuMe4Wix/qyZaJyymRQEEqni0phxLw7rRUAMF22e+tVcKYGzEpZ1cyQ8o5uvLlnitvkBSUt2+S+8vhleBZ4KS0aVqBkERAUlryx1mMe0LGFumXcyidDX3vyTw4PPJ70bNP+jHiZLT/5z8M7kKUZpdS8WM82O06iYTB4sU1bNq0BE3T2LRpN4sW1ZCX56KxsZb2dj/9/WHGji2gqio3Yy7X0xNi06YlrFgxhbvvXozHI4CnrMxLd3eQJ55YjsOh4/M5GRqKMmNGGV1dUv+9stJHUVEOpaVefvSjS3C5bKxZ08jKldNY0FjFYHiE/tAw15x7KX2hYRSKn+77AzsPv0tvaIhOfx/PvPsKmqZhmCYFOXkYysTtcHHBxLls/NO/MhIJMKOqHrfDcQZr/pcmdA6bnQErd743NMRgyM/9b/2EnuAQvaEh3j35ERX5YyjMyWMkGiCSVKjSzTD+EJQ/Kb960RZh4bVcyWXXPMK2pzrFgE5zCJAf2ixAW/MJcPcsEoYeJex5ugycrUSc6ZPHLSB/zFKFjJHtyS7Zdjrrjw6OClBJDDNJ5+mMu9dLvttNTyjEDdu2cdzvpzsYZFFNDSVer8yhy4XP6cSp63gcDhbV1LBx925KfT5O+P00d3RkDOlMpVhUU8OKKVNoqKrKGN5taW3l/qYmAE74/Vy3dSsn/f4MA7928WKq8vIwk0m0zk5Bj729Ak6OH88y5Zs2CaBds0YQY3e3MN5p4Ddpkmi2U6msCV13tyDUgoIs5WyzSY781q0CnIuKpM3BQUn+TtdJGx0V4Jxm1QMBObaxUcYCQlUvWCDj9fkEQKfrva9enZXwnzwpSDYalbHMmyfncOpUljXv6JBXURF8//sSFOjoEKDv8Qjwv+UWAa6RiKgKvvQlGYdpQmcnSRycOqWxerU02dkpIH33bhleKiW4v79f/tZ1OQW3O+vBF4nIuoYGeV+1StL09+6Vy1FZKWBfKTm+tFRO5dgxKS+frtt+wQUybE2Ty3LBBZAyrOBne0/WlM60ogOJpJxHPCEMetIQUB2NS0cTa7I+I+l0pFhCQHk6tSkUgTGFAt51XQzwlMqS07G4BAV8HmH1nXZxtNetNp12lFJEurvFfK5YUgT3r1uXMZFz5OZy+Gc/o7e5GVtODiWzZmGz2PlkKERsaIjC+nriIyMkw2HMZJLWZ54RY7n+fvavX09hfT3uoiLMWExqwV93HbWf/SxTbrgBu9uN3eul/ppriA4N8cFDD+EpKyMRDKJpGrnl5TJP6TJuO34jTvEf7oHgCCxcIoy6mRKwPX6yAOzqCVLaTSm46HIp3fbCYyKjT5eUe/1lkcCnPweGhbEfHRZAHxqFJV+UoEBbq2yLhGTbZ1fAP38PnE5sdieegnIi/l6S0VESYT+peIT8irPEnC4ezQbFP13+W8unOe5/Y/mfmOP+l4uKxwW0t36INmWmAHTX32ZOVSqFikbQHA7U8KDktV/6JRgdEZf6xRdBYTEMD2E2vYVxyd+RNBVKKUzTxO12Z2qq+3w+EokEpmny1ltv8fHHHzNlyhSWLVuWYc9jsVimDvsbb7zBwoULcTgcmXViLifA/bXXXqO1tZXVq1eTTCZpamqisbGR/Px8DMMgEAjQ3NzMwoULycvLy9SBLysrwe22o5RJONyfyXH/3OeeY2joiFX6bQ0Oh4ecnEKi0RGeemo69fWXs3z5E+zceRNLlmyy3OVTdHbuweMpwe3Ox+stRdN02tub8HiKz8iVN4z4GTn0RUWTyM2tQCnTyqWXiPLHH/+ac6evRPMfEQB9/sPysN+yXtju/Dop1/b/1ZIIS85tusxcsBNya8WdPg3chw8JkE/nydavILb0Od5y5jIPAZ45CLA8hMiv70byp/sQGbZOFnQOIqA8Rbac2xjgA4Q1B2HcbWSLdBkIaC9DwHmJ1WYA+f85ioDZDcDz8TCBRIBAPECptxRAHN7RMJSRKfFmKhObZiNlpjg+cpwHmx9kTeMaOgOdlHhLKHQX4nV66Qn28MieR9h48UZcdhcJI8Gat9Zw3wX3Ydft+Jw+oqloplSc2+6muaOZmrwaxheOJ5qMomkaSSPJR30fsWjcZwjb3ZiaRh8CzhciAYmwNRcJ65w91jwkEPB9O1J/vdyahxhZKbw6bXudNR/pcFR6nsda826ztimyzv4fATMRZcNGJIAyFtDNFLnJgDB+oeNw5FGY9Uj2QUolrOBSKqvUGNwLJfMh2i+gOJPf/olVxz0pRltmHIZaxIzOUyNg1Ga1hWbJ4qPZdA0jaj1slVijT+ctGhBot0C4JW034lbptmr5O53fbppSMs5VkA2KKZUt86Y7LMVATMYS6rby4O3CXju80m8a7Mf9AtZPz7PP1HS3pPa6XQICAwfEgM7uhnB/1r+iZw/84Qqou1yY8bdWwUWW3iIZlv2DHfI70LBGxuotlxrtdo8AfWe+jM2Ii5ld6WxR4ijDKu+YEoWOuxBsbkIxjbYTQTZsaOKOOxZSWZlLKJSgtNSL3a6RSJhEIknuvPNN7rhjEcXFOdxyy+tWabcCrr9+K1u2tLJixRSefvoyEgmDQCBGSYmX5uYOOjtHufLKqVKxz6Zx5MgQDz7YzB13LGTSpCKLSFN0dgZobx9l3rwqbDadPXs6pTycU2FqJj2BAX7c8nsrR70AwzQJxSOM8RVy/5vPM6NyEhdMnIuu6ZmScVfPuYSy3CIufPIGltUv4N5l19Pp7+O5lt9xzbmXMhINUp1fis/lwWWV3UwaSUyliCVjFOTk8WH3EW599WE+U3cud130DYLxMNFkgh+3/I5r532B2oIiXOZJtGS7gHFjBMxR0AsEfKu4Nfceq5ybAf3fgeLbwT72zNz12AFwTwfdLb9sZkRM74Y2ivFc32ph9qu2ivHc0AYovgMckyCyy8qnL5B309LV6D4iKSdHR0bZ0NTE2sZGJhQWYihFU3s7V7z4IpfX1/PMZZfRNjxMrstFodvNvu5u5ldXY5gmLV1dVPp8jC8sRNM04qkUdl3npN/Pg83N3LFwIWcVFxNKJHDZbMQMgx6rxNzaxYupzc/n+q1bM2Xknr7sMgCcuk4klSIaClHd0yM57nfdJbnh77wjCHRgQIzlkknrnrdUJoaRTbyOxQSppuuSRaOCJG+/HSZOlO2JhIDvnBxBoRs2CGgfOzarF3//fQHnkYggz1BIpPC5udlybfPnSx+rVwur3tsrba1dK22dnuz9zDNyTEmJJIdHo1lAPzIC06fD5ZcLEE+lBCWXlAjwDAZFgXD77XJus2dLMOH++6Wv4mIJQmzaBE4nAXsB37zOxpYtosL/0Y9OI7R1+dviNzhwQFL/NU1iBDfeCC+/LP56ixbJ+r4+Of3qagkA7Nkj8ZBAIJvqHw5LLMLhkHU2m+S1P/aYiBZaWkTZP26cnHpJkYFmGJa3gMMC60kB7lYtdUwTjncJwC4pzOaoB8PCmqdLyTkdclKJpOS5p3Pe23uEiXc7BdynP+t6FqSf6MqWnAuEpD23k0QsRmxoCGduLolgEKUUvU1NjJk9W3LRrTJvcb8fIxKh9dlnmfLNb+KrrSUZDGL3eAh2dGTy1m1uN8GODmxOJ6H2dgomTZIycQ8/zNn/8A/4qquJDg1hczhw5uejUimMZBLd4cBMJGh/7TWGPv6Y2d/5Dna3GxsKLRYVML7jN+Lu7suD9mNQO1EA+c4XYfkKYeDrzpE57e+W9cuuhLIq+MXjws6fu1jm8KUfw2evhJJyYdCjESgcA31d8NoWOa68WkrFaYiBXdAvwP/kYTHJG+jByPGQcNoYONZCSd1c7O5clGkQCwzhLa4EpTCNJDZnzqfmdP/J8mmO+6fLXy9/IYXH/u/fRJrdjubOATTM5reFZd/5B7TCMdguu0JqOA4PoRUWo5+/FN0/gjJNgsEgqVQKv9/Pjh07MoA9bUy3ZMkSpk2bxrJly3A4HCQSCXbu3EkymaSjo4NgMMj8+fOx2+14vV5LeqlncuAdDgcLFy5k2rRp+Hw+7HY7NTU1NDeLk7Hdbs/I85ubmzEMg2g0Sl5eHjYbDA0dJRzuJyenkGuv3cvy5Y+jlEFz80YOH34Vh8OD2y2gPSenkBtuOMCiRd9B1+1ceumTgGJo6Ajbtt2Az1eO212A0+kjFOrFNA2qq+cTDg+Ql1eLptlJpeLYbG7y8moJhweoqppngXYDTbPj959g69br8PtPUVAwFjCzLHgyKA/r6bxyM5mVzf9/8n1wSH32hd+D3LGSl1tUL0ABBFQUTRbgYsnk1by76bO5KEWMzsIIcE4goH0LkmsdQwC2nazJXBIBnHsRAP9DhEn3AFcjzudORCIfsNpWCNCchwD+MJLz3mYd50CAbBnwJFIOzm13U5Fbga6Jw7yGxnG/5LUHEgFCiRA9oR5G46NEU1FyXbncuuBWOgOdlHpKGQgPUOotxevwUplbyaOffRSFYm/XXuy6nXUXrqM/3M+3d36btpE29nbtZVrpNBSKvnAfM8pm4HF4CCVCJM0kQ9EhNE2jsbaRZDKC1xp3BeKEvxdh2susebFEmjQj7Pi3kCDIAqAXUTAEEM8A3Zozn3X+ddbxfQhgN5GARrm1b9ofYNC6bqNI4GW+Nc/9iAKgA0gohU3ThSlUJnjHCcsePiVGcrpNgOrQXqu0mgVoxywQYO6pErA90CwAc8xCyxnekPeEX/LivePkwcrmEod6MyWSeGXIdzTWb2F0DYYPWFEHM8uSazrkjz2TOdc0YdzToB3rGE0XibnuyJZKszmyjvOaZjHnueL3kG5Dt0n+um6FSUaPy8OPe4yA9uigdbwln0+G5fjASTGR0zQB2r17pT1PqZyPkZD77pqPpV67ZpdcdGXKfv3vC2gPdUlqi90lUvj3HpG+AqckqBbpkz7fvllYfYdHgiV/+raMNTposfAtYMQwsWXKtfX2hhgdFdCdSBgcOzbCDTdso7c3RENDVcZhfsuWVjZsaELTYPPmZRw6tIqnnroUpRQul438fDfNzR3MnFnOlVdOJRpNsmrVdo4f99PTE8o4zqdNljVNw+22U1bmpaWlC8MwKS31Eo+nMJQp1SZsDmZWncW/7vsDTpuDkWiAJ5tfomd0UMrFnd0IwMP/9gIDoRGmVtTx031/wGFzsKx+Ad9o+Bwp0+C5lt+x8/C7/Gz/NqaW11HiK8Su2+gNDLLujefoCw6jALfDzX1vPEepr4iHLr+Ff2j4PC6bgyJPPv2hYd5u209faBiNpID2dH65CgsIVxHoXSXBqTRo77/dymNfIDL2tMJrcJ1VGm6uvPfeAInDkhuf7BXW3vBD8VrIXWHlwXdazvS98v1xVIubfLpfC7SDTkrBhqYmXj18mByHg5hh0NTeTk1eHi9deSV3L16MBiJzTyZZtWMH5T4fsVSKVTt2UOr1UpWfT8oC+52BAHHDyMjjNzY3kzJNuoNB/vm119CAs4qL2bxsGaUeD+FEgs3LlnFw1So2L1uGTdPY3d7OsZER/NEoJQ5HlnHv6pI5qanJuqrb7ZLLvXq1MNg2W9aZPRwWMD5vnqDF3buFVm5oyMralcoy1+laZ2nZu1LCdN9+O1x2mbD8eXkC6tKW7Onybg0NVikth4Bnt1tA9a23CiCHrNx97VppI01nR6NCV6ed86NRQcpr18r48/IERff0ZMvYNTRkJf2jo9kc+PXrZZ+GBlEWfPvbuM0oa9eqjNL+5ElhzNOnf/y4nKJSEnvIzZVuNU3iBh9/nJXNt7fL0OvqZMr27BHfPKVkeOnKfMXF4v+XTMrU9/XJJTlxQk6xoUEk9qGQTE93D6hkSszjYpbsO5EUdjwaF5Y9kRKn93yfSOQNUwaZ5xOwnusV8K5rWTn96TnvVmk3QN7zfSLDt+kC2NNO84mk5MQ7HBl3ek3XMaJR3n/wQew5OeSMGcO4z38eT0kJhZMnM/znP6MBOWPGEBkYoOtPf+Lwz38OgM0ykIuNjlI4eTLKMFCmSW5NDTmlpRRPn46RSmH3eDh37VpyxoxBKYXd7cbh80nZOL8f3eFAGQbDra2MmT2bmbfdht3tJtjVRSoahZd/DG1/hqu+BcWlUsv9rGnyHB4YFvZ9xxYYd1b292Xni7I+MCz/Z61cDQ2fgVNHJQX2K6skjz1lCKM+2CMgvaBIAL07R+Y66IdfPyWBAJdbgmjjJ0sgZudL4HAw2LYPT2Elms2Bpoti1lNYTjw0QtfHb5BKRPl0+b9bPmXc/8byv4FxB85wms+4cdpsaHb7394/kQDTQIVD4HSiOZyY7ScwX/xXtPqp2C79EmpUnOZZchmGU/LUt2/fTmtrK1dddRV5eXkZd/hiS4o0MjKSWQdYwNqWqdXe1NTE4sWL8Xg89PT0UFVVRSwWy4B5AL/lYJ92nXc6nZn1gUCA2tpalFJomsaOHTtYsuR8urqa8XpLCYf7qaqaB5jougPQSFn1yfv6DlBWNg1Ns2OziaHd229/j2XLHsIwEnR27uHFF6+gvv5yPve554jHAyQSQVyuPHp7P8LjKcbtLiSVirJr1/oMix+LjfDuuw+xePFafL4KNE1j+/ZVGdf6L3zuOWzKQAu2C1D/zGa5CIlRYdQGPhQgkVMqru//HYn8Xy5GwqpH7fqP27P2M2wuRmxOWhBg/hiSf+0lK/euQsA3ZHOrwwhQNRCAmJZmjyKA3MaZwDKJGK6NsfZ1WK/rkeDASiQHPJ092odI6/PiYZTF76dZdUNJzfWrf3s1J799ElOZJI0kDpsDXdOJJCN80v8JDVUN6JqOYRrcvPNmbp5/Mx6Hh2JPMXbdTjAeZO0f17Lhog0AvHLwFSYUTmBO5RxcNhemEiZf13Tsuh1TmSSMBHu79jKzfCZD0SG6wgMsGH8hUU1jFAHrkGXNdSTdwAqdMGT9bUPAubLmMq1gcFnzVGjtsweYa23vIlvuDcTg72GEUfda7dyBAHzPaW3802nrSs0k+aN/lvzyVEjAdqgNCmdJXnusR5zkdZfUZj/4IExZI+XbYha4cBbIcUYs6zyPaRnWucFZKE70zkJpJ3QCoh2n7dcjefVn3wm5EyUIkIoJmM0bl3Vzd+aR0UgaCWv7WItpNwTk+iqzrLjutNj609brNgHcuoOMVF13yMPQ6W0kAsKiF0ywvoTWg6aREHY73CvsdmxE9ssfJ0GJmB/e+4Hc25F+yTmfe4cYydncAradeQK29244zSl+sahj9m0UU7qcEglIvHl9RgnDgnvh1BviMv/eI7D4QeueVnJ/9+yB4imQDBF1jeXIsVE2bGhizZpGJkwoxDQVuq4RDidIpUzi8RQlJT6raoZGU1M7tbV51NYWEI+n2Levm5kzyzM/EQcO9DF3biWmqdi3r5vp08tIpUw++aSfhoYqVq/ewdq1i/F47ITDSatv+TwyEuOhh97NjEXZDHpDAzzX8ju+PvdzlPoKcTtcfP/1Z9l5+F0e/7s7KfMVZbZ/3HOUqvxSpleehV3XMZUinkrw5pEWqvJLKbHc5a+d/wUMw2Qo4mdmVT3DkVFC8Sg+Vw55bh+GafCF52/hgcv+mVlV9ZhKYSpFwkiSY5d7XNM0DvYd4dyqCWhmWH7JzJiA+EiT5KB75gtjXnwHRHaL63z54/LdMEbAViBu8Kk+8CyU47qvyDjCkzyRdYvXcshoZcygxeznW+Z3u+V4MwKpHrnZhx6E4rWEtHqODA0Jm56Tw76uLqaVlmK32ch1OEgphW7VXr7RcoBfMWUK955/Puf86EdsveoqavLzWb9rF7cuWMBAOMyEwkLGeDys3rGDNY2NVPh8GErhdTgIJ5N82NvLuZWVOP5/7P1pmF11ne4Pf9aw1553zfOQERBCmJSMVeBACAnB9nRLTtttdytoQBLbAAJNkhY8bQotmkEFBETbHrUjbduSgYAomkplYBCFAIGMNc+152lN/xfftfdO1HOe0895nhf/06zrqqv2mn5r2Gutve7ffX/vW1UxbZuRTIaeffvY2t1NxOdjOpdjIpOhq7OToG3jO3ZMGPctW8TQrcS4lxzaBwclOPzpp4UV7+uT8Y9+VHLYT56suM/H4/I+U1UlSHRwUDoCzmS7UymxXgdBljU1gjY9V2+CQUGhy5dLrprfL6Dd8e7vX/xC5g0MCKAu7Xc2K4Bmelro6I0bK67xHR0Cum+/XeaXnOtLsWbvvCM1+HfeKYAfZF9mZ6XjYXpa1t+6Vc5NIiEdCytXQlcXmfZzSdoRAgGpU7/tNqlt1zQ4cEBk7HPnyngmI0D+1lsFoOdy0lwsJoeQzVZOZ6m/Q1GkcsDvl1NWVSWn+de/ltMaj8s2SqdgclLaC4UE8DfW29ROnBKpfEMNnDvHc3z3wPzkLDTWSk160RQwbugC5ofGJeNdVSs/ZCVGvaNZ5O/OGXgmlRHW3nOMp6NZ8uBTmUr7M0lZz2Pyi36dw/fcQ8Oll1J/6aW89d3vsuiznyU7Pk6wqYlAbS2vfu1rnH/DDQQbGph96y3qL72U7MiIsO8bNhDp6MAuFJj+zW8INDQQbGgAYPbtt6m/+GLpHMjnUQ1DXFN0nfTgIEeefJLL7rqLwuwsR558kvM/9SnyMzPUXnABiq4z88YbhBsbiIUNlJlJcXff/QNxhU8lBDh//EZPAYcXhfimsOFTYyKdLzHkHQs9CaMNwyehvhne/JV0AOx9Gv74c/I7lk2LJH7XD2DtH0tm+zfukSz3j35SftMjUchmIBLD0TRsHMx8BquQIVTTQilf3s6nSU2eIhcfo3XxVWj6/w/eWf8vHt5j3N8bfu9QcprH5X9Z7w7gmibuzCT2zqfL+aT2zqdRYlWo6z+Fuuo6sCyUmjq01R8Fnw/HcRgaGiqb1LW3t9PX11dmwC3LwrKss+rWo9EoyWSSXbt2YVnWWbXtPp+PpqYm9u7di2VZKIpCypMz7d+/v9yurutMT0+za9cuYrEYzc3NTE9Ps3PnTuLxOKtXr8a2ob19aTkSbnj4EKnUKLt23UwicZrR0VdJpUZobf0AruuSTA6ya9fNZLNTrFrVS7GYJpudpKXlUv77f/8xq1c/XDa1m509iar6aGtbSjY7TTjcSCIxyNGjP6G/X2LA/P4YHR0r2b+/F03zMTR0iOXLb/dq7rei4qCMvSRgY9WTwvrlpuCgV7XcvFSYcV9IgMp/hnkvZVuXGHu7WPnsugJWihmJffM6MGSZtBdFJ5JiDQF9SxFzsyWIvPqzwGkEHLretM3Iw2YMcYc/gbDqKSqGaScRuXjQWz6HuKYfQoDklNfeMJXa+fVIZ0HGWzfrtT0qVy22Y+O4Drqil5n2jlgHRzcdxXRM+gf7GUoOkbNyTGQmCOgBLmy8kINDB7EcC03V+MqHv0LIF6I6UE3/YD/vTr+Li8umJZsYS42RKWb45EWfpKuzC1xQFZWhxBAHhw5KLTsqA4kBbt17Kxc3XUzEiNAcbuYDHSsoKgojiHO7x9eU3fNPIeDZRlzhG6h0bKS95TYjv7+lEoR6pANEQUC7iwD6hYgBYEkavxAB7aW6dxeJoGvy2pjxlvs64j/Q5Lr4k+8IaLZzAmADzdDQJUAw3C517MVZYdDD7XD+HaCFpfVgizjMT78sTvBaQDLdpw/J3oc7K6Ddzsl0pwChFo+1V8RdO9AkdfWhFnmxcF1ht42oV8Pu82rL88Kig+xfpKVyHZfq2UtZ74pXjKFoAqpLtfAgnxMnKvdX6d5RVGkzPSJS+9gcqXNPHPeYfu8tVzVEyZIehf4veQZBMwLkA9Vw/CcC/NNDAsyzE56kXhX230wLaC85xbcslc6JVx7yWPeAx/77xJDuD5+Fq56QDoVFfwG/ekRq53OT8LNNwtib2YoZZf89mBZlI7ihoSQnT8bp6xvgxIlZvvCFvYyPZ6irC3Hq1Cz9/YM4jsuKFR3MmVPNyZOzbN68l2XL2vH5VNLpIrqusnx5B0NDSTZu3ENzs0hg77zzp7S3x3BdeOSRNQSDOtXVwfK2e3r20dAQ5oEHDpQZfceR7rgSS/69l54p11TfuPRjXHt+F5e2nUdtqIrbP/hJov4ga87v4rzGuXz1hb9jMD7Or4aPMpNJsnzuRVzYvJD2qkbu+NCfUxOMMZ2N0xCp5VfDR8mZRWZzSYK+ALPZJI7r8i+f3M65DXM4NTPKr4aPMpacovdnf8/p2VFyZgHHdbm49VwB6BN3yLWs14mDfOAyyWhXYlD7Rclsj/13aP4mODlxkdfr5f7wzYfAJQK4A5fB3Neh6VG5PrUGyXcf3yy17dl+r8TEJ3e0osv/wMUyf2KzXEPmKKR/AuYgmgLn1NWRsyw27t7N4sZGpnI5vvDssxybnaVvYIBj09MowKNr1/LOpk18qbub6kCA9YsWsbS9ne379rHjyBG+9dJLXDFnDq3RKEFd539ceSVN4TAhz8QtY5r4NY3LWlrIWxam4xD0+fBrWrlOPur3l0G7qii4pimgvWQaZ1mCBB94oMIwL10qoL29XeToHR2i+S45rw8PV+rLczmZX8qBv/himXfxxUIR19QI5RwKCbLM5QRgt7cLGh0ZERD/yCPwJ38ilPLGjVLMXbJrX7lS7tPhYTHC6+mRz83NEmg+PS1tbN0qoH3lyopp3gMPiPw/kxGqulR0HonIcg89JPtWMqgrSfc7O6Vuf3gYfvQjOY4tW2D1ahgfRwn48flcpqaEdW9pkSoB15XN6brs2rvvemEUS6SfoJSuB7JsU5Nsrqur0qfgurIroZCA93vuETBeVVXpK2luloqEV14RIYKqVtL3vvIV+ewu6IDLFwmrXrQ8YzpfJdd9YacHwBUB1JomIPucTmHNTUvYedvxFA3Nskwpw71oiou8zyc/YoWiLFM0oSYm4D9fhNOj0FBdMbTz+VBVVWrO16xB92rY3/q7v8NfU8Ob3/42ZjotGe7f/S5mOk3DZZehahqqYUh2+8REObs9UFtLfnISM51GUVUaLrmk7FJv5nIoqorrOJiZDNmJCYZ//nMUTUP1+Wi49FKO/tM/Ubd4sbjXWxYNl11GqKkRpaZB8tkNP6z+uPxWxafgj24QAP/Dp+SZYhYFtLuOgHazKCZ188+X+T98SlzkFyyCYFii5PY+LRnwqiqd0/6AMPEv/VI6Cea9T0D7NdfLOtV18jsVqwaziBqfQdV8WIUMuj/IyBsvYGYTlIZY8zk0n3/Fe+Z0/4fDe2fvvQFsGzcRR11+JW4iXo6i+O1lSmZ0FAo4fV5UXP8vUDvnl+vj3WIBV/dh2w6qqhKLxcomdbqulw3quru7GR0dRdd1YrEYBw4cKIPxgwcP0tHRgabJy/P73vc+otEoO3fuJJPJ0N7ejq7r5fp50zRZtWpVuV1FUTAMg7a2NjKZDIVCoSyZ379/P6qqYhg+VNWgo2MFBw48QDjccJbLfChUT39/L6qqUSymOHjwITo6VqLrflRVJ5Ua5cUX7yGVGqWjYyXZ7CS7d2/E5wvR2voBhocPk0oN09x8CTt3biAWaz8jHi4NKFx00Z+xZs03se0i4XAT2ew069Z9m6qqOYCKW3+huLs/v8EzhBuQl3DXq/h2TBjuE/fs3HQFZP8vv+ui1Ko//1lp28x6oDwBs0dleuK4jD+/AWbelWVy0wIu8nHKTt1mlqBdJITkfX8KkVf/BJFkfwABk73eNBcB+hcjYHuJN+0dxCitmYoJ23YEZA4hgHUjAuRjSDTZMBJ39gTCruuIZH4cyvX2Li45S+rKLdeid38vV3ReQWdVJz7Vh+u6rOxcSXtVO5qikTEzfH7P5wnoAd7f8n4sx8JxHar8VdSH6rEci67OLqr8VfhUHwtqFzC/dj7VgWr6Bvp4d/pdTMckXUwT8AVoDDdyaPgQOTtHU6SJng/3oKoqG3dvZDA5iM918Llu2UV/u3fspfEB73wcQoD6Bu9c2QjjHkbi33TvPJve8dd558pEuLmN3nqBM9pJIR0hNyMdBiHERf4Vb7vvIp0veaRz4BSg5icEjBfjci0pmlwHhVn5kXct0MPw2h0yHpkn4y9vhOQ7YKWgZrEXBdcIvmr5//JGyJwSsG5nZH7NxZ7E2C/X+tTLwvLjQvQcASuKx67E5lSYacekEmHo80B3AbTg2S8LrlOJX1NU6ZSyC57M3xVw7royz4h4bRiejN9rF1W2rRmeq7wirL8e8GT3hgB1Ra2A7/SQyNhf2CiM+nVPC7CPtAswb7hY6tRH+qVzwxcSRv78P/USHEKy/SvuFza9/x7Z98RxaTPSIs+B5zeIS/4HH5SYuMP3yfZf6pVafNcul+EoqsLdd5fc3EUO39AQLgPq3t5+bNslGPSxbFk76XSR/v5B8nmbUMjH7bcvQ9MUTNOhoSGEpgkd1twc5YtfXM7ISIpUqiKv9/s1XBeqqwO4rsu2bd2sX7+IrVu7MU2bLVtk/ItfXE5//yC6ovOZpR9j9XnLuXHpx0S9YpkEfQZ3X3UDI4lJen/+98xkklQFYxQtE9d1ubj1HL5z6D+oDkYZS09TME1eHztG0TYJ+QL4NR8Xt53Hdw79mJpglO8c+jEL6zuYTM/yrf6nmUzPUheqJl3I8k+v7Obchk4MTedTl19HyAgQ9PkZT85gWhmU6V6ovVXAdLYffG2gBCSz3c3CzNcFmCuGzMcRSX22nzJ9qJS0Na4w6OMbxXCulPNee6tnZrdUngK5Q9J27rC4zit6RVZvDslyrU+Drw3HyVGwrDL4Tpsm9/X1sePIEe7v7+eipiY6q6tJF4scHh6mMRyms7qamGHw5Lp1+DWNrd3drF+0iIdWryZdLDKaTpMqFmmNxYj6/RyfnS1HvPk0jbF0mi8+/zwjqRSpYpHjMzN84sIL+cY115AsFMqgPV0sMlks4m7dKhLzL35RtNmBQEV2ftddAsQuv1wA8k9+Iox4iSU/eVIAbwnoDw4KyN6wQRzVVFUk8Ioi6LIEhlVVQPP27ZVOA8cR4NzQIPP6+wVAl2Tr8bgXLWYJpdzRUZG8t7QISN+6VdBtZ6ew8O3tcNNNZ3c2aJoco6JU4uRUtWKA57pCkpQk/cmkdEqoqkTUXXWVUN/z50NLC8XlV3DspMbGjQqZjPRLTExI2X6xKK91IyPSXDgsIP7qq+Gv/kqaNAyRwI+PV2rfT56U+vd335UOgFtvleUiEdml+fOlH+PWW6UPIpWqSOSbm+UUf/7zcrq+/nXvcDlj8HnqTtcVmXYp2q2UuZ7KCEAv1b8n0pX8ORAgr6tnx8QVijCbkM4W1ZPR65q07fdk8YNj0N7kdcxWatxdxyHc2orryQvmXncdH9i6FaOqigs/9zkC9fVc+8wzXHbXXQTq60FRMLNZjjzxBPWXXkrDpZdy5MknBdx/73vULV5MoK6O/NQUh++9l+SpU1i5HP6qKlKnT/PS3/wN+elpGi69lK6HHiI/NcXrjz5K/aWXcukXv4geDJIZG2P27bdxbRs9EBSn+GNvCHseDIvpXMcCOa7dP5Da9fhMRdLuOOIYH60Sk7od35YXr/9+k8S5qapI4MMRYexjNbLeDx6XjoBzLhTjuTX/Xc77n38BGtvk/B87Is7yqlYxAQRCNS1MnXiFxOhRJo8dAsdi/J1+rEIWpeR/897w//XwHnB/bwBVRYlV4Rz4BUqsutLF+lvLqF0fRll0CfgDlfr4VesErM9MYe/9D8ikRP6Tz+E4DtFolM7OTgBs26aqqoprr72WmpoaqqqqyOfz5Yz2RCJRdn7v6OjgxRdfJJVKoarqWUz9BRdcgGVZDA4OlmvZDcNg9erVVFdXE4/HefHFF5kzZw7RaBS/38+KFStYtGgRq1atoljMEY+fYOfOz2JZObq7t5LJTJ7lMp/NTtHVtQVF0fD7q1iz5ptceOEnmJk5Tjx+knR6tBzd5jhF9u/vZdmyW3Ecm3w+TlvbEiKRJjTNoKNjJf3999PZuRLDiJBKjTIzcwzHsXEcE1Cprp5DZ2c3jlNkcLAfBQelmBSZ7ftvF6asZYm8hGs+YRRxoXWFyGQLCQEEZrbClJdY8jPZ+JJs+MoHpLZWUeQlvpg6e1so8tkXkvmZEWH7fR6IGT0IydO4tskxBAC+i5iaPY0YmpV0G3d70wYQZnkKAe5XU4l52wF8FQHdCvAG0gmwAmHzS8C2iMjsmxCTupKs3IfUfVchDLIMCgE9IIoS1+X+Vffzsfd9jOOzx5nKTjGSGuGmnTcxnhon4oswv2Y+31zzTQpWAQcHBYX+wX5Mx8RyLV4ZfYXjM8epC9Uxlhnjpp03cTp+mtn8LEvaltBR1UHYCBM1ojSGG5lbPVdq2W0TQzWIGBHCvjDfXPNN5lbPRXddDMSxfT1i5KcjkvX13rnoQTouerxz0Isw5wXvXK5EWHMfoma4BwHcDgK4R5AOktJ6ca+dFBUfgl7vu7rZ29YQwrr3IPXzO/Di4BqvEGbczsJLt0DmhIBtPQT5cXhls0jZz9kkcXEv3SLj590qAF7xgRYRZn2yT5j1/ITEyb11P1R7plzBZjGNe2WzSO7tPNRfXtlG+oQA7MM3CyuvKGfUlg/J0Zfq1HNTniKlcHYygxRWezX2ZiXHvRSvZkRkOkg5ihGtgHnV79W9FyrMfOmlxbG8fPhCZZqiwapvw00jInN/+W8rOeyty+X4Soy7qsv5bFkm+/vCRmHLr/qWqAFwZBt6UFj34z+RfdD88IG7xKjOFxFgnx7xlAFtlZi4Dz8inQRQ7hDQFJe5c6t4/PFrCQZ1tm3rZno6y8MPr+attzby4INXYxga2azFzTfvYnIyy+LFjRw6NER1dZCFC+s4dmyGdFpk9QcODHHs2DS27TAxkaG9PUZzc4SdOz/Bo4+uBWBsLMWmTXsYHU0xd241TzyxjnnzqvH7ddrbozz11HVMTWXp6IhhW9Be3cSXrv4staEYX//l93FxifrDTKVny2z8VDbOaHKK3p//PVOZOFedu5TPLP0Y8VyKxc0LGUtPUxOMct8Lf8dQYpx4Xn6rblj6B8zmUty49GNoilZ2q//eS8+Qt03CRpDNV/wJs7kUg4kJNFXlsf0/ZDQ5hd+nk7fAbeyV6zv3ssjV9U7PQ2FJBXTbYwLUg0uk9twcFZbctSjHDU59TS4mNVhxi3czYkqn6ND0EFiDAur1BgHoej1MbxcZva8NZr4hrL2iQ+gKmP46Ngaz+Tx3d3WV89QfXr2atzdu5FvXXktQ1zk4NITjujSFw/QNDJTZclVRsByH+dXVPLZ2LZqqMpJKcc+LLzKSElWL47qMpFL85OhRevv7cVyXHq9joKevD1VRaAiH2bRnDwXbljr63btJFgoEdJ06nw+lpUUY7okJAbq5nBRR33uvgG/XFfC6dasA5Wy24so+MCDzS+B/6VIB2SUwnkjI51SqEmJeYvZV9Xfr0nt7BaT8vqz0Ujb87Kyg1cFBAdudnVILf9llgmhL01xXws1LHQoldv/kSWnHsmTZYFDo6/FxQcbFoiDpEpCvq5P/iiLn6NixSvD6LbdQdA0Gh1Ruv11213VFtn7xxQKsBwYEtH/iExWA3t4O554r4yU3+tFRAfmhkMjqH3tM+iBKsXCHDwuoz2bl8B1H2i8l3jU2yrioGgWwh0Lg2A7KmXGIuPJjXzKe09SKm55PF/BeFZHptgf0qiJS5254NeuaWmHWHUeYdr8Bl14gMvlcQcznSvPyRWHs57XJeUxlBNB7xnWK1wGbm5ggPTBAdnSUw1/+MnY+T6i5Gde2SQ8OijldocDLf/M3lGLb8lNT4Dgs2rCBuevW8f6770Y1DFRNKzPqJaYex+Gt736XgWef5c1vfxuAhssuq4D+734XLRDAMU1yo6ME6uo4/OUv49qWyNWj1RLhVswLm6775PfrmvUec/7DilO8ogi4Pv2uAPEPXydA/V8eFTbdtqCuSb4Hf0CM6X767xIHp/skbq62ERpbK4YJrguDx8UY718eFWf7VBz+4x/AMkFRaVi4lKqW82hYuJTs7BiJ0aNMnXhJrGP+k8Z0jmNjW0Uc5/eQiv8Fh/eA+3sDOGdGu71Q0UydObguRKvEjM7wg8+Ptu7jKF5eJYYfpWMuTv8vwLZwI1FUVSWVSpUj30rRbqqq4roukUgETdPOymgfGBjwDI78HD16lP3795eXKTHquq6TSCQIh8Ps2bOHRCJxxm66Zel9MpnEcRx8Ph+1tbVcd911+Hw+CoUs/f29dHSspFBIUV09j87OLmKxDq677jtUVc2jtfVyBgb62LPnL/H5QiSTg+zZs4lwuIFEYoC2tiUsXvynnkQe1qx5BFX1MTx8CNPMMjx8GFDJ5Wbo6OhmzZpHME1hxDOZcS8SbiOp1CgjIy/hOBZ47tidnV3yIhdqkpfuVx6Ql20tIONa0JPi+uR/sF6ksSgC2l/YKMz4zNvw3I3yvwTeFVVAAQr0balEy0XaxH3aXyUyWl9I5Ly+sGzjpV5h+5MnJK6q4WLPVMspA+9eRKZ9BQKuX0MAZANieFYCivchDG8bArRLQHUbIuvejMizO5AH1FYq8XAawhyrCLAFAZ0HEMDZBGXpOYCCQsEucGDoAAE9QKqYore/l+pANT19Pfzk6E9ojjZjuRau6zKdnUbXdAzVYPPezSxuXEzeyjOVneLipouJ+WOgQFAP8sXlXyToC5I1s2zas4nR1ChFu0jeyjORmcByLI7PHCddTGM5FjO5GZHtqzrxXBxLUTCBuYrCYwjjrSO56t9GAPlWRGFQKgu4CzH1O3TGOXcQ4F76Hs4E3L3AKm+9Gm/d9YhK4czzethbvlTyMOVNj5W+G9fFP/5zAb7l7PYeyWY3k/DmfR4A74XIXPk/sEPq3lUdXr9H6tztnDDsgQbIerXrneslt70wLcvZ+bPbM+PyjClNe/M+mTawAyYPyLVcNR9qzxfGuwSCIu0yzR87myl33QqD7phSI1/q5AKv3p0KyLcLsp7m8wC5BYE6L1LOlvUTxyvt5mY8UyBXOtCKSalJf3GzGNRdcX8laz03Ix0BJcbdsYWJ/+nNwrw3LxGPCysvHWtWXtj45Glp56M/knWMGFTPkzKW+Dvwyzsg6rEiriOgv/EyGH9V9r/0gnzVt3BRy87ujgOdnVV0d3cyOZnhnnteZHpanlulWLhAQCcSMWhsDLNx424KBYtYzE99fQjHcenunsOCBbVEIgYXX9zE/ff3o2kqHR1VbNy4m5Mn4wwPp1i5soOGhjDpdJEDBwbJ5y1s2+Hw4WFOnozT1dVJR0cVqg6D8XEm07Pc//N/4KfvHuKdydP4dYOIP8QNS/+A1ect58LmBXznDEm9XzdoqWrgktZzMXQfFzYv4B9e3sXeowf4zqH/oDZUheu6dFY3cX7jXFqideiaxo0eu/+ZZf+Nt8dPirmSEeC7h/7DY+b/g71HD/DUoR9TE4zxwC/+FdMNSB26r1mM5azjXilHUWrQjXNAbxO39/FNXu76SrCnRNpuvgtuDmo3CcAfu0nmh1bC9H2e5N0zszOHIPMcWJMyX60V0zpciY+rvVVAe/aAsPXN30BTNGoCAVqjUZ667jqCPh9BXac1GsVxXeL5PE3hMD5VpTkaZWVnJ/F8nkHvt1VTVVLFIpqqYrtuOertoYMHJZHCsuju7GTkttt44tprURWFLV4nwbbubgxN44EDB9hx5AiJQoHt+/ax3KvhHs9kcHw+XEURNvvyywUcG4agwYYG+NWv5HqtrhZ0uHJlBZg/8IAA9RKIfvRRWe/OOytgvBQJV1VVAfdbt8o20mlBoo8/LttNJgUM/nb7HR0yP58XJFtVJSj3iitk3zIZcYQLBOT+KnUsnDwpNutvvw1XXlnJgx8akki4zZsFhIfD0sGwYoWsc2anAci0YFA+lxB5MinqgNtuQ/MptLe7PPCAzCql6ZXEAoODMm3TJlk9GJQ+A9OUfoWVK+WQrrhCLrNstuIFeNFFAr5LywWD0q8xMSGVBnPmyLhlCdh/6CE5nJdflkoAVYXaaldEUkVL6tlBgPSxAQHjakl5goBrn17xXjoxJMsWrUoN9xkML4m0rNPeJGy6oVdi5kpmdtNxqXX36dKGJ4/n2IB0AOSLuJaJncuRn5qibvFisuPjDP/852THxsgMD5dj4rRAAN3v5/133w1A8sQJGi69FEXXCbe2cvk995CfmeHwPfeQPHWKmvPOo+uhh7jgxhvxRSKgqpx/ww10XnMNF950E4qqYmWz5WmLNmxAUVUmf/1rGi67DD0Y5PwbbsAsmrjz3yeA/KVfwu5/Feb9B4+DVYSGFqiqgf9+M/zNt8XAbmYS/vUJYdura4UtL62fmJb5//gNYe4dF4Ihkd1ftlLOre1IZ4HrwtS4LDszLkx8qZ1cTuT6qz+O4nWyGMEorYtX4fOHCdU0M+cDf0jLBR/ktzQX/x8Hx7EppmcY/s1zFNMz74F33gPu7w3wP3WYdy0Lt5DHLZRYraTUuBdyUMhh73xasrLTKZwX96J0zEVdtQ7bi4dyXbfMppdA9MDAANPT0xSLRSzL4rnnniMcDtPR0VHOcbdtm0gkwubNm7nuuuskvzIaZdWqVWVDus7OTjKZDEePHqWvr6+c3w7Q0tLCSy+9REuLmL65rks6ncZxHFzXJRqtYdWq++noWMkvf/k3ZeZ7aOgAs7MnGBjYRzo9xqJF13PNNQ+hKCqhUANr136LWKyTzs5uVNXH2rWPomkC1i0rRzjcQHv7csLhJpqaLmbv3s2YZga/P0IicZq9ezczO3uCzs5uqqrmctVVvaRSIzQ2LsZ1Haan32Vo6CCWVZCXaUWpSFwP9wjTNvuuxxBGIHUaXrhFXuLNjHzOjMjLfjFRcaF/qbdSm1tIwMhBAS0rvwKZUU9Wexxwvcxo5CEdbhUAr6jC2M1dDakR+OBDYpCnalBM83W7yHrgrxAwDhUGXEfAnw48DDwLPOktYyMAfiHwlPc5j9S+TyHMcR8C/L+MAHkX6RQIeNuwkJ+BLm/bDvAQAkIBclaO6dw0ixsXM52dpspfxZ0r7iSej7OlawtPX/80o+lRNuzcwLGZY4SMEIeGDnE6cZolbUswNIOR1Aj3vHgPiqKQtbJs2r2JiBGhI9ZBQ6iBxnAjKztWMpwaZjQ9ysY9G8mYGTRFI+aPUR+qR1d1wkaYz+/5PO9Mv0NtqBZV93NaUfgslbr9rHcMivd/DnCZ9/8J4Byks6OTSmeHhhjXbTljWvUZnzuQzoAIAtifRDoFWr3PC4D2M5YPeudzgffdPYmUJRix98kXcMHdArYXbYHClFwLi7ZWpqlGZbxu6RlAf3sFcL/1gMwzE7DkcWHkS8B8+lBl/QvuEoZeMc7ehq9aPtdcLNd24oQHpK1KNrvqEyY6XgLVZoWVN6JygaSHK4BcM+Q+KKlZzgT5Jad4I1qRmpf+zmT7jaikMbje+rhyL5bSIQ5tl+1E2ityeU2vSOl/+76ds0pSHApxucd/tlHM6NJDcm+2rqxkvycH5FhK20oNyrPh+Q0w+450/IWb4Gefr0TLea8Ap08nuOWW3Zw4MVuubw8Gfdx++3IGBxM4jss3v7mGT3ziQnRdOl/POaeOBx5YJY+KsIFp2vj9In3t7x/k2LFpIhGDb35zDQC9vfvZseMI993Xx4oVHaxc2cHmzVJDv3hxI5s27WFgIMGFFzYyOJjg5Mk4GzbsJO9Frx04/Rs+dfl1PPDR26gP1/DVF/4Ov27QWd3EtlWfwa/7zpLU58wig7NjDMUn+NXw22fN/+yy/4brukxl4qQLOWzX4dej7xLPJqkORtl61Q20xRq4qPUcwj6R9N+49GNlZr4E7DVV5VOXX4ei6F4u+1clrm26V5QW9vgZwNwW1/fUDmHIsYVRLznDOwnwzZF1S22AgPLWp8U1fmyD/J9z2Bu/SeTyvgXy1GjsFdA+vgkCi+X6cy1sXHyahk9VSRYKbNq9m4FkklSxyIadO8mYJlWBACGfj9FUipu8aUGfTzCS6xLQdXyqSs40y6D8/lWrOD4zw6Y9ezgxO8tUNovldfy3RqM8uW4dc6uriedybOvuZucnPkFTOMzDq1dz/QUXgPesK2oahEK4kQjMzAgCLLmg6boA51Kw+OysSNTvvlsA+LZtApaPHBHEapoCJA4eFLZ+zhxhsB99VJazbfjyl8WRrVgUwB0ICKr9/OeFNS+5xpey4wMBYbY//3nRm3uGY1xyiUzfsEHekZqapIj8nXcqReSDgwK6jx0TavtLXxL0e2bnQ2+vdFrU1Eg7Jen+Aw9IGz/8oRx/iWHfvFlq6Jua4GtfA03DTBfo6VHYsUPw/JlNr1olp7DU7MSEAPObbpK+gwcflN05dkxOwy23yO5v3y7LapqMf+MbAuRvuklOWyRSiX3LZOT/yIgA/nfflT6YyUk5PbbrYe3BMQHRiiJgPRYRgF0w4figsOQlCb3pqVHmt1Wc4UsMumPLd2maEAsL0x70Sy08SGeA36iw8BcskMg4kHaiYVm3vVkuwsExUFW0YJBQUxMvb99OqKmJroceov6ii8hOTHDZHXcQaW9HD4WYev11FFXFF4lQde65vLx9O+mBASZffZX04CDZ0VEGnn2Wo//wDyiaRsNllxGdOxdfKISq60TnzmXJvfeiBQKkh4exCgWinZ0sufdewq2t5GZmqL/4YhzLIjUwgKrrTL35lkSxrf1jqTW/9hNw8mhFHv+PXxeGPB2Hn/yjgPKZCZmfjAvAnx4TSfzlV0jNeim3fc+/Cvg3AiLBT8xKG4kZqYM/Mz9+1w+kA6u0H7FqMctLStmca5mYhSyubeK6DiNv/IxgVQNWMcfw68//pwC469hMHDtEYvQoE8cO4b4H3N8D7u8NnkldXaNkudc3oGi6gPbpCexnfiiGdYU8bjKB0jkfxR9AicRQOudBJn1GvfuLKD4ftqoxG4+TyWTOYtN37txJOBwmnU5TKBTI5/O0e73uqqrS0dFBLpdj7969zM7Ooqpq2VQunU6jKAojIyNYlkUmkyEWi3H99deX69rj8XiZ3V+yZAmpVIqBgQESiQQvvvgiiUSCbDZLsWjh84VIp8f4yEe+SiJxmt27NxION5BMDhIK1ZNMDpJOjzEwsB/LKqCqGsnkIHv3foFE4hSOY5bXi0SacV2H0dFXy8tkMuO0tS2hr+++s+rnU6kRHEdq+W3bpL19GYFAFarqw++P0da2hHx+FhwTJTshWc3nrRfgrOoQbRcWT1FFLvuBO72aWlVks6WXfaOqHNvGFfcLiHj+s8IChZvFqCo/JQZVrSvlpb4k0bVyEiVVTHpxXGkx84q0QbRV1o2/A7aJ4jpU20UeRsChg8iwb0XqrF0EoBcQsL0CqUXf4M3PIHXZClKbHUdY924k2mwx4mr+AgLkP4+wyRZSr/15r70U4qjuAo8Cu71ruwS6xzPjNIYbqfJXcW7duTSGG1lYu5Cuzi6279vOjiM76O3vJZFPUB+qp6evh1XzV+HTfPT297LjyA5SxRTb921nSdsSRlIjfGHvFziVOMWro6+ysmMlKztX0rOvhx1HdnBf333CxltZbt51M8dnj+O4DkvaltDb3ytu9q5LD1L/7/EomEj0W+n4DiIdGh6HDIiqYQh4BHGKT3nncQjxGmhA1A6PIL4BnkUbLlJqkEXM54ap1M3XIwB9LqJYcJH4uc8gpoFJoJh8EzIDEF0AS56UzPXIQpG3R+bLtMh82Vh4noxrAQHavw24F20VgKEF5BpzCpXlQp2V9qJe+1bKa/NxmeeLyXyjVkBsbsoD0UMVEK2qZ48bUVGnRNu9Wna8bHfTk9aXAPiwtPX71gO5HxSt8hdpO2O+Igx/abt2Qe7FKx+ET79VSYcoSeNTg7IvpfvcqBKn+PPWy/0bafdMgmoqnXi/+oZI7kHue19E7uFXHxY1zocfEUa/ZWmlE+CVh6SjLdIqHW96qOwHYNkuw8MSBzc0lKShIcTgYJJs1uKBBw7Q3h5D11XyeYvp6RzhsEE6XeSmm3YyPp7BshwCAZ3BwSQbNuzkxIlZFi9uJBLxc/p0gs9/fg/pdJHHH7+WmZk7eeKJa3Fd6O3tLwP5VKpYroHXdZWlS9vp7d3PFVd0oikad3zoz1kx92Laq5u4tO08/v6lZ/jjS1djOzavDL3NWHKa6Uyc1qoGPrfi47wy9CYP/eKfaK1qYCobpyoQ4VfDR6kJxfjcio/TVtXIUHyCb/U/zVQmjq5qXNi8gMZoLQHdoGhbbP/pdxhJTvLayFGyZp76cBWXtJ5Le1UjX7r6s1QHInz1he9RHYyiq4hDfN0WiWuru0vuoun7KiDciQu4j66Hum2ALuB75gGRuGvNInevu/uMNlSR3QeXSWZ7aof81xvPHnezMPY5kdiXpjtpucesAXz2OKcSCW7etYuxdJolbW1s37ePRD5flrM3hMPYZ0jc7/OmnYrH2bBzJ4NJMey74/nn6RsY4BvXXEPI5ytL5AeTyXKUXLpYZCSVYsPOnRyfncXQddpjMdpjMW7etYuJbLZsZhfz+8lZFo5to4yMiOvZxITQwidPCkocHJS/EpitqRG79EcfFUB78mQl4+y114Rmnj9fmHbHEYn85s2y7NiYUMvvvitAPByW9cbG4Lnn5L+iCLB/5BFhxk1TAHIJCTuOsPWJhIyX0HIprq23V8bPRMwNDWejacepdA7cdZfsa6mE50xVgM8n+vQlS87eXk+PPAMiEejpQTO0cl/GbwsLOjrOtgz47UqCUnVAaReXLJHTcOed0hcyNibgu2Tcv2OHHGpDg4D1hobK+G8fYmnctUExLTGlW7K44jlypkFce7OA7JIcuyRxN21IZyvRcbYt56nE3hdMud9KTvSJtDD0haI41Q+MyjaKlkTA5YvSaeA3YGhMpi/sLJeJan4/599wA6rfT+MHPoDq91N/8cWohsHUr39NYXaWusWLsQsFXMdB8/tpeP/7yY6Pl/PbGy67jCsff5z3b90q7Pmrr5I8dQozk8HO57GyWXJTUxhVVQRqagjW14PrMv3669JRVlODXSjw6le/SqC2luzYGLULF5TVr3z0k1KjXttwtjw+lxVgXTKUm3ve2fN3/UDA/5/9pahnr/XA9zXrRSqvKF68m7f83h/KuXWsClC/Zj28ul+Y+D/7SwH8u38A0WpcXccsZJh4px8znwFFITl+HBQVRdUI1bQyefyl/20ArqgajZ7svnHh0v+0zP7/xuG9OLjfM/xXiYP7Xw1uoSAu80deQ1n8ftSrr0PRdWHYZ2dw+n+O2vVhkeUk4zj7XhC2PlaNqSg8s3Mnx48f5zOf+QzhcJidO3dy5MgRFi1axJo1a1C9B2QikSjHvVVXV/PMM8+Ul1u7dm05Sm7RokVcc801JBIJDhw4QFdXVznmrTScuY3SusuXL+fAgQNnbTuXyxGNBigWU2iacVak25o1jzAy8jKdnStxHAdwGRo6SCzWRiIxyPe/v45Fi9azbt0T7Nx5Uzm+7cor76VYTHHgwANnTXMck+rqeczOniSZHKSzswvXdbHtIrruR1FUHMdCVXWKxTSFQgK/P4ZtZqmycyh6EEINImn/5R3wgTuEWbSy8lK+5G4BGtF2SA1BtFPkwrbIW8tZ0j+9WV7gP/2WGFqVYqNWPSkmdS/1CnhIDwmwF9W+TL/8Tqg5V0D/8xvOjpwC7EgbOX+MPPAScBECuosIg96IANHDiDGdgTDwLgL0ZxAW+RDC/LYg9drbkfr4JgTYjiEAVfU+L/PWfxmRzWvedg4iLHNnIclnn/ksO47sYP2i9Tyx7glwwXZtVEUlZ+WIGTFOxE+wfd927lp5Fy2RFl4dfZWOqg46Y53oqs6x2WPc13cfD69+mMnsJIZmcM+L95TbvW3ZbTx48EGeXPckpxKn6NnXw9burcypmsOGnRvKy917pZyvnJVjfvV8VH+EtKpLLixS09+KdHSo3rH4qDDxdyF57XMQIP2Gd9yvUIl98yFgfAfCoJfUDQ4CwL+GMPPzEVC+A1FBlLwFSi72We/P703TgGDiTaKvfxkW3yugLzsocXAdfyQbyY2JtH3RFomMS5+Q8Uvul8ZdwBf13uA8dwLXhcn9wpxrQVlO8cm8/KSY16VPCFu/aAtkhyDUDoEWsJIQmuP5NgxV4uDSQ3I/qH4BzmeO40rteMk4zsx6te1+Oab0kIBlVRf1SWk9BdnXYlrULqV83PLP5xm/o4pSiaiLtnu9VznJTY92QNUCuecO98g9F2kVlULpfFjZSq07Dowelg41My2MfKhZ7vXUaUmXKMSlE8+IVJ4Tl98JsXmiIDh8n3QcKKqw85kxkc27DmTHyAYWkMjKy1A47Cu/M+/fP8AnP/nv/NM//Te6ujpJp4u88cYEy5ZJB4ZlOdi2g+tCMOhjdDRFOl0kGjVobIygKNDXN8CpU3H+5E8Wc/p0gvvuq0TOvfPONL29/Wzb1k19fYhXXx1l6dJ2AgExr0uni0xMZIjEfNiRNE8d/DE3LP0D2mIN5K0iM9kk3zn0Y/7iA+uIBULUhatxXJe8WeDBX/wzn17yB7RV1WM7DrO5JBF/mCNjx7n9Jw+y+zPf5MFf/BMXtixg+ZyLaIzUUrDNcs38py6/jtdGjvLa8Dvce/UGMmaeTDFHQ7iGom2iKirbf/od9h49wOrzlvO1tTegmKcEeOsN3h2DmMtNbxcQrrWAGpM72smBk4SpLwnIjq6H5iflyegkBeSr1d594pPrwBqUjoDaLwozb40KSK/bKjL94XXQtlM6A6Z7oPFh6fQau5lkzde55dl+lrS1cfWCBdQEAkxmMtSFQtzx/PPcv2oVIZ8Px3UZTCTY3tfHlu5uFlRXc+Mzz7DjyBHWL1rEY2vXMpRKMZRI0B6L0dPXx5auLoaSSZa2t7Nx9252HDnCWxs3cs+LL5bXe2LdOsbS6bOmPXXddbw7Pc2o15FQ7zgow8MCns85R+jaUpTa+vUCojdtEoa9uVnQ5MBAJSJu2TKhfyMRuYBLBmbptACRH/9YIuaefFIA4c03V5jv3l5BteGw/CWTwmaXqGZdFyr6K18RJDx3bqXAe2xM1n/4YaGXt28XIN7aKvuiKNJJMDwsRd89PTJ/4UJZ3zQrEnjHEdp7dFTQs2lKG5mMTGtqqmxv2zbZD0WB48dJtl/A/sM+LrhAmgsEpDmfj3KO++CgnFaQ5np6pJl58yrz29tF6HDPPXLq33qr8vnMr2HLFjmE48cr6w0NnX2I8+fLV7R9O3znKYdwwEEpeIDab5wd5Zb/remdLTL+5nFhy6NhqXs39Mqz9t0BmJgRN/oz2/PpkMlVwLquCVAvLd9QI0D92IAA+wsXQiSEaVuYmQxmKoUvEmH23XepOfdc9GAQK5vltQce4LxPfhJfLIadz/PWd7/LJbfdhh4Moug6dqFAMZnEiMUoJpPooRCFmRlZ7tZbxTXe70dRVVKnT5OfmiLU1FSOktMCAQI1NViFAq/97d9y3l/8BbiuZMo3NqIUC/g0RZjzl34Jyz4M6zcIAJ8cPTsebvcPhJGvb5bflskxmXb1x6Ue/ZwLYXrcY+TfJ7XuIG0df0tM6p7dIW0YhnSK+HzSaaCq8P3HYdUfyjSfIXnw8Sns8y9m+PWfkhw/Tudl1xGubcN1bMxCmsljh6mffzm+QBjNCKL+b4Jwx7FxHRtF1f631/l/+/C/ioN7D7j/nuE94E6ZcXf2vYB69Uchm8HpewG16yO4yTjO97+DsugStHUfx82kUQJB8PlwHQfHLJJDpVAo4Pf7UVWVdDrNvn37yjXq4XAYOBtsX3vttWUg39XVRVVVFbOzs/T399Pd3U0sFmPXrl2/0wEwOzuL3+8/K/O9ZFKXSCTK2fGlbRuG4cWsvsPBgw+xalUvJT7TMCJlCY/jmAwPHyYabSOVGqatbQl79myiu3srsVgnicRp+vp66O7eSijUwOjoq8RibfT13Ud3919TXT0X17XJZqcIButIJgfR9QChUD2mmWV8/De0tgrk0vUAs7Mn6evrYcWKOwmHm8DOEQvWoChaBXiftx4+/E2Rux7dIW7T3feJ9DXSBplxASauC1XzRIZbypw+3CNsW25SjLGWbhWw8/xnK22//zZ45UH4yGMivS9Nv+pxYW+SJ2Tdy+8SAKEouEaMMSPMawiYzlHJBJ+PgPfDwKVIvfYIYmKXQAA7CLvcUP4WBMTGEVDfhYDXIgJoS2B2FpGEBxCw6VJxUs8BTYUMJ+LH2b5vO9u6tzG/Zj7HZo7R09fD3V13s6BmAafjp2mKNGFoBqqiki6m0VWdw8OH6Yh1MLdmLplihng+TnWgmqgRxcXlZPwk2/dtZ0v3FoYSQ3RWdTKveh4uLkPJIZ4/8Tzn1J5DW6yt3CnQGmklbITJmlkp2Qg3kFTUMgjMIh0T25H68lKXVB5xkLe84wt6y5WYeAdhx8e9c3XSa+MupBMkjdS3O4hqYcJb7hjCyj/itV2SX3k/32W3+iyA61KdHSZYnIFQhzDkehicoreTk1KfPrBDWPPLHxNzutL4kic9WXhAaqynX4aaSzy5dgnEO5A5LZL5RVuEWXcdOLzhjHaeEKCuh0TSrkcq4Ns2he0G75ofEKWIonpg3S9/pV4ppyj3SSnjXdEqHQxQ+VwC/5F2LwudM8C/7+z1nKKX++5dyXbeS4QYlBKWQlyk7iP7xfQuUC1eEeWOuS8KsDfTArJf6pX7NNopHQmH75NxPVRxr/dF5JxmJ+TzsR/D6AFh3hXk/Lq2qGvix2Q/NEM6OfIzZPQ2jp1IMjKSYtmydnRdZWIiTUNDGMeBXM7kjjue5447VjBvXg2u65LNmnKaHZdwWJhT25aM99nZLMGgnKdo1MC2XTRNIZ0u4vNp2LZDMOhDVcE0XaamMtTXhzh9OklPzz62betm7txqHMdlcjJDQ0uAr734d2WQXR+uxgW+8vxTvHj8ZZ7+i16qgzFwXWZyScJGkJAvgKLAUHyCpw79mBuXfoyJ9AxNkTqCPh914WoyxTyT6Vm+99IzfGbpx2ivauSV4bepCUaZzaXoqGrEchxaqxpwXAfbcfBpGqaXujKWmuY7Xtvn1tXJqXbz4vbuawdzRJzkVe9OdfPyDEUVyXtwpVfD3ivgW2+R60bxy53npGHiLqj7omdk57WV7RPm3p4FrUrWsUa9DoK/Aq1RSktyLwtTbw2QoZOkqTOSStHb38/W7m4W1Mh36QIn4nF69u1jS1cXc6urcYCpTIaIYTCeyXBfXx/burvprKpiIpOhIRzmpp07yyD80bVr0RWFgWSS7fv28fDq1eX1tnZ3s7CmhkShUN7+tu5u5lRVsW9ggIZwmHgqxSrTRBkYEMAaDMK+fVBfL+z70qWCJku67KYmoZUbGgQsZ7Ni3Hb//YJY+/sFQTY2CtN+993i+D4yIu2tXCmIMxAQoFxq54orKlnqDz0k04aGZPulIPNgUD7fcovkuH/84wJsdF2eJ5mMjKuqrN/YKM+CZFKk+TU1FQNgn0/AeTYrSPfhh2V/lywRy/eWFum8uOMO2fdLLpHte+WIZWWCppEhjGmLX4Vpyi64rlQMrFwpqz/3nJD3Dz9cqXF3XUnIW7RIhAmtrbJrJ08K4H74YREwlKLqFy4Uxf7p05JM9zd/I/0bqipfTzhMOZo+n5c+E58PohEHn2KjHBsQZn1o7Ow893dO/+70hZ1iIOflrJ8Fzg157nB88GwQ3lAD58yR5X+7I8Cny/KdLZUMvIFRWd+yMF2H5KlTvPXd73L+DTcQaW8nPTRUHp/61a+Y/NWvWHLvvbz8la/wvr/4CyLt7VLW6Lo4hQKu6/LaAw9w/g03EGptJT85iZXLgaLw1ne+U856P/TXf835n/oUb33veww8+yxXPvZYGcSXthXp6CDU3Ex2YoKGSy9F0zXUfA4lHa9kq5eA+btvQKQKMimJfHNskdFX10GdXCOYpkyrbZBp//D1SgfAJz8vX5aqwvSE1LHPe593XSOmc7NTAubX/rGsryieoiUhgF5RsA0DxyyWfwLH3+6j6X1dACRG35Ec9ws/gubz897wPx/ey3F/b/hPD2X5/LrrUQyjIofvewG1rbNcD++qKkogiDMyhGvbcq/+Vo+YruuEQiFWr15NVVUVoVAI13UxTbPs9t7d3Y2qqtTU1LBu3TpqamoAyuPhcBhVVenu7j5redu26e/vJ5/Pk0wmWbZsGYlEAtd1qa6uprOzk2g0ypo1a6iuriYUCmEYBq7r0t/fS1vbElKpUfbu3exJ4/tQVY1EYoDh4cO0tS3BMMK0tS3F5wuxdu1jBIN1DA8foqZmPmvWPEIyOYyuB71lwqxZ8yg1NfOYnT3Gzp0bKBYzqKpOKFSPYYTZs+fzZLOTNDYuLhvUmWa+LKcvxdD5fBEPGOgisS1JbQvJirT2ivslqq3/HomFCzUI8xZrF9Aw+47I3kt58L4wxOaLMVZqUAD/kq0Vs6xALSz9awFYJan90m3yI+AUBaxd9bgw8P6YMIOJU9TZRZYhAN2HSOVHkEz1WxGmPYqwxSuQ34GTCDiMIvXXOQQkbvQ+13jLFhHzuTEErJ9CDOwiVCTkChVQH0Wk3y4udcE6vvzBL9MR66BoF+npq0jZHdehJdqC5VgcHj6MgkLIF2LTnk2s+/46tvdtx3ZsIkaE1mgrQT1IspjkL/f8JQ2hBp5Y9wRzYnNYULOA+lA9rof4TMdk/+B+2mPtdMY6eWztY5xbey5hI0zeyuPX/YSNMI6iMKIobEY6NBqpGPhtp9KJkaRSbuBDgHiQCr5UEdDeDPwlojZ4EvEOKDHnh5Boub/15uve/Ee8cz2BdBDYiCLCQEB7+QdCUbBDrSJjt7PC/Do2ZZ7eF5V89ZIM3i6cUQu/1YtF0yA7AC9vklg4XLlGrYwY1rlWpc79SI+AdtQzpPZbK6ZxrumBcEX+p0dA93umRY6A3NyE/HdMmHmr4jhvFyhnwGt+MbYDub4drwvIKVZUJyXDufRQxXTOF/Yy4b1Oh5L5o2p4HWe2B+Ztuc+CDVJiYmWljcbLhI33RaTWPTMCLculEwFHnqGvPFSpdVdUAeqtK2U81CRS/F/e4ZUa2ALKs+Nw7sfluZAagOH9co5dV5Q0bd0w/jIkTkuevJnFth2GhpI0N0e4+eZdnDgxS2NjhJMn42zatBvXhZ6ej9DSEsW2HdLpInfc8Tzj4xl0XUXXVU6dkhr506cTNDZGGB/P8Oqroxw/LjXz+bxFKlXk9Ok4pilMvWW5FIsWgYBOsWjT07OPn/zkKIGATqFg09c3QGNjmEzKYvMVf8qlre9jKDGB5dhYjsWnPnAd//YXvWWTuaJtMpyYQFe1Mq7xaTqXtJ3L37/0DNXBKOPpaQK+AKdnxlBQyg7yTx36MQ4ujZFa/uHlXTRGammM1tEYqSFTzDEwO8b2n36HobiYTiqKQltVA3+96jO0xOq9C8WU7y5wsWS2B5cK4+264iZvjcDY5+Xaq9sqMW5aCzQ/LqBd8brKnLTcU04KgssFtAffD/lXZX6oS/67WRj/vIB23xxh7LVGcDLStl4HuYPgm4Oqhgj5fGVTue379jGQSHB0ehrLcejxYuJ6+voAuO3ZZzn3kUe44/nnqQsGuffKK5lbXc3G3buJ5/MUbZstXjzcXStX8i+vv86mPXuYV13Nk+vW4fMMaB9du5YFNTXc8dxzAJxbV8fjnot91jRZ2tbGAwcO0O73C2hvbBRkmc8LKJ47V3TemzcLc67rUmRdAus33SQocmhIwO7IiMjfL75YwH0wKPFyw8OCZJubZZ6iiON7e7uA8slJ+QzCaH/xi4JAm5pk+c2bpe3Dhyvg5s47hcEfHpb9Be+i81X28913K7FxU1PSZiAgFPXNNwvNbUonGMuXS6fE/fcL0r7nHmnjq1+t5LiFQl5tuCodD3/917LM2BiqVWBgwOXmm6X5bFb6L1paZJerq+HTnxYPPp9PppVS6M4/H379a6itpWx0HwpJJUImA/v3i11AXZ2cHk2Tr+WeewS3qSqe8kaYfMeRr8uy5P/x4zA57qJYtoBm05T/DTXyH37/9JKz/MCo7PTAqIDzwTGZBwL6S+uX1lP43XUGRmVHF3RAwBAQHzBkfUUBTa7Zktv7W9/9LoqinDXevGIFF950EygKl3zxiyiaxuEvf5n0wAB2Ps/Mm2+Sm5wUY7uxMbIjI7z+6KOomlaOfVO9EpFFN91EfmaGRZ/9LJ3XXEPdRRdx5NvfPmtbdRddRHZsjJpzzsHKZkmcHiCbzuLWt8CfbvJAcxwKeYjVwvM/EqCuquL2/o0viWnczCT80yMyfd55Ml7IS8Tb5VdIzfvkKPzTN2BqTFj3BRfI+Su9z+s+Ae0lCT6KgHnT9NRoBRxdyDvLzDL65ouY+Qy1cy/BzGcYffNFQjVtkuP+X4Q1///X8B7j/nuG9xj3swfXNHFnJj05/EdQqutEVlOSoiFvSa4pdUOm7mN6eob+/n5WrFhBXV0dp0+fJhwOk8lkaGtrK+ewq6qKaZoYhoFt29i2jaZp5ek+n+RtZzIZQqEQqqqSTCY5ceIEw8PDrF27trxOIpEos/pVVVXE4/GzGPhUKoVhGKiqiq4rJBLH0TSDF1+8pyxvX7fuCUBlYGAf4XADBw48QHf3Fqqr57Nr1+dYseIOfL4QgUANPl8I13VwHLMsdTeMMK7r4jg2u3d/jiNHdvCJT+ykqqqDffu2s2LFnQwO7mdwcD9XXnkvjz12AYsWreeqq3rJZqfo7++lu3sbdTXz0YpJlLI0dlBexFuWCtiwiwJI9NDZjPlVj1fk8elhOPg3cNmtwrwf6hFpfdV8yE4K+IrNEZBeTMq4USWy2xdvha4e+XpLNfSKKgBBUQFX2jCz4AuSCzeTN6KcRlzjtyAu6Z9FIsv+CGGIS5L5DqAWuB0xrZtAgP4yBCyWmOQ0whzfjgD3FQgAzSDgcwgxpbsPYamDCOCPAw2FJH2n93Fh44Xoqo6hGYymR8sM/Lyaeewf2M9FTRcR8oXImBleH3+d5kgzPX09ZZbeciw0RcPBwXZssmaWTDFDU6TpLCn849c+jqqoqF7tnuu6aIqG5Vrl/yoqLi6qouIYETYoylmy9tNUGPd5pfuPs0G6Q6Ve3ef9KUjNekm1MOmdu2aEzzaAm5BOgZ3e+R9EShPOPIclGX0Bkck73nYHgHmuS8TKCsAGqXc/8hU4/6+EPdajssb0S1B7uVwnrsdSlZzecxOgG7Ks63hy+AapYbe9jiEzAb4q6QwogXsUMbbTwp7c3pIj0/xyVkq9HKUTdiZLXpK9R9o80G/L/2KqwtCXpO2RNrnef7sNuyAdA6pf1vOFvOza0rejyP14Jtvuep1dVgHGX4L6xbIvvqinVFDkXnWKci40Q44lM1qJaixl0ONKJ5vryD2vqjDcB8lBWPgHcu/6InIcoQYBga6no8hOyH2aHhC2XdFkf1qWQWaUtG8O+YLLxo272bHjCDt3foKlS9vYuHEPK1eKiVxvbz9btnSVAf7+/YPs3z/I449fi6oqbNiwkx07jrB+/SKefHIdGzbs5Pbblwtj3hDmgQcOcPfdXQwPJ/nAB1oZG0vT09PHnXeuoLk5Qizm58SJWYaGkrS3V9HTs4/bb1/OuefWsmnTHr7x2CqOTB2jJhjlH17exWeWfoyWqgZc10VVFGzH8QC7QtbM49fEVC2eSxL1hzE0HzmrQEA3mErP8lj/01zSdi6Xtr6PqWycxc0LMXQfX3n+KXa91ce153ex5aobAHBcl688/1RZFv+lqz9LziyQLmSJ+EPE/AYGSRQnAapneqhWe5L3JGhNXoePCm5RmPf8GxBaIk8xNyfzcofA1yK17iiQf02i5VDEQV6v9e52r8Ns7BZI/bPI7JseFZl++WlhQfag1M775pOxdJJF8ywW3LRtHjp4kAeuvprxTIbt+/axtbubzlgMTVUZTqWo8vvJFItUB4PEczkWP/44P1q/nkuamwnqune+Te54/nnuXLmS5nAYn6ahKgqO62LaNn5dx3YcZnI5GsJh+gcHubChgTcmJ1na1sZgMslUPM6H6+tRZmcFYR4+LMC6s1OKq8+UtN99t9C+w8OCCiORinT+b/4GbrtNtN+KIgC6WMSTd0i7V1whaLXE0AeDch+XzN7SaXm3KWnJt2wRlDs+LuBaOwN0lDLFpbZD2srnBaCXaoVdVzoXdL2iX+/rE6b+ox8VSttx5Dg0TdbZsKGiTX/4YWljakqO//77Zdl0Gn70I7Fuf/hh0laAm7/gZ/lyuP56ESiA9BmU+jZWrJBpRa+fUdPE66++Xj6XTlXpEEplM5OTFbsA25ZS+2i0cpglR3ldp5wYVizKNhcuhM98BrZucVi8yBHXccuuMOam5XkG+CrnVVHkMVo0Zfpvy+hLjHvRPFtmHw1X3Ol/n/Teb8j94bhiUAcVCbgCZrFIenCQI08+yaKbbiLS1kZ6aOiscUVVsU0TRVU5fM89DDz7LJ3XXMPijRsx02ne/vu/Z/HGjQRqanjpK18pz1/y5S+TOn2at7773TLr7to2qq7jmKaoJs7YVsm93ikWKczOYkSj/Opv/5al27agzU6Jo/vHb4RASAyjdZ/3ZejyOzE5Bnufhj/ZKKZxhZzEvp08KuD8fZcKS26bAtRL7PvlV8An/1Jk9PEpMabD+0ITM1Lzfu0nBPx3LqjI8ldfj93agePYjL75cxKjR6lqOY/WCz/CyBsvkBg9SnXr+bQu/giu46BoPjTtjLKH94azhvek8v/J4T3g/ruDa5pg27hmAef5XagrroSaenGwTCVw+l9E7foISnUtBcdh97PP0tbWxoIFC4hGo1iWxfDwcBm8l+TrXV1d1NTUYNs2Q0NDxGKxsyTyXV1dpFIpmpub8fl82LZNKpUqA/JYLEY2myUQCJDP58uu88Vikb1793L06FGuv/56Ojs7GRwcpKmpCcMwUBSXYjGOoqik02Oe5H0Luh4mEmnCtgvs3r2xDOg/+MEv8+ij57No0XrWrHkEcLFtk1xuhkRigPb2paiqj3j8NP39vaxZ802SyUH27dvO2rWPntWW1L5bhEL17N27me7uLSSTIzQ3X4KuB8hmp6iJNKHG363UnvtCEvEWqMb116CMHcKNdqBEO6WO9aVeWLpFal/DzZ4jfKQCss6U2pcMsrITnnz+YWHqDt8ntbElqW6pztYuwpj3oq8gIGDfXV69fQg32MDzvhCXaQYbObu++iQiZa9FAHcPAsInEYB4AfAWYjDXimS5P4i4yvcgNe6/BPZ77Z3ypm9BAGcDlZz3nZwNQBcUMhyfFWn8Q6sfYiozxWBykKVtS8vsuF/3c3L2JD19Pdy54k4UFJqjzSTyCVoiLQwkBhhMDnJZy2WMZ8a5r+8+tnZvJewLUxes43TiND19UtM+t2ou+wb2cVnLZUxmJ0VK37WFoeQQ7bF2Qr4QYSOMgsJIaoSOuvMY80fKsvZ5SGdEqcb8daQjQ/GO/xKEWS8dXz1iQrcUAdkZ5JX9DqQWPuydn9PeuWr3zt0jiHP/7d65K/0/83ub8PahdK5bgIDrEIu/Lmz4oi0QbIEfNcGVO6Xu/EiPsOzhucKsZwcr08+/E4KtIm1PvSsxcXVLAUdq47OD0NANmVNePftWWcaol+2oPi9jXZVrc/Y1qLtczO5KOe2a3wPabfK5FBuk4KUqxKWTylvOjbSj6AE5a/HjwmAH66XEBEUk7qVp1QsqJSeRtjM6A9orstWz9qG90mFRUquced9kRqD+Ii+1QYfkSc+zYktl/dKxxOYKaDdTwrSnhiv17bofZo95aRJLZb9GD8j9f7hH7udwq5yz/KxEzi3ZAtXzIX4S0oNkmq7CNB0GBpJs376PRx9dw6FDwzQ0hInF/Nxzz4tlUH7bbct48MGD3HvvlViWw7x51di2y6lTcXp6+tiypZuFC2s4dmyWoaFEuQOgtP4jj6xB11VuvnlXedq9915Ja2sUVVWwbZebbqp0Ajz++LWcPp2gbU4Y3e/y5vgJFtZ3oCkaISNApphjOpvgu4f+g09dfh0NkRqOTpyiIVLrSeNrqY9Uo6CSKqTLIH5gdox/fGUXf/WRTzOWnOKpQz/mM0s/RnO0julsgvpwNXmryGR6lulsgsZILd/xlmmJ1TMYH+d7Lz3Dpy6/jvc1NKKaRz3J+13gmy/Xj5OG/G8EjE/fJ8Z1vgVU3D0QJt7XJjXqeoMAdGM+aLXC0E9/FRoflNi46R4xrjOHwdcBWoM41tdtBd886SRQvO7R3GGv3VEIdZM0dQ4MDbG8o6MMqAF0VSVvWcQMA9N1mcxkSBcKLKit5bM7d/Lw6tVMZrNs92T0Q8kk3XPmcGJ2lvv6+rhrxQrme07omWKR34yP0xKNcp9X+14fCnHbc8+xpauLxnCYzXv3sqWri/k1NZyYneX+/n7uX7WKGk3Db9soJ04IWL79dpGUNzRUItbOLLR+/HFh1ktsenu7mMmlUiIf7+kRgN/YKFFypcLrLVuk8LqvT0D6PK97tJRrFo3C0aMCjM+U0K9YIcXaZ7ZRyAtajcbALML0jNDcQ0OwfJmAwWQKQkFBtLYNx0/ItrpWegZrCNAqPUMcByYmBZQPD8OKZVIGpCiSlT08CnPnCDA7cEh07XPmwMAAVlsnrt+Po+nYtkvffo2GRo158yqMeDoNlmnTUG/Tt1+jpVWjowN0zcbnk2kXLQbDsCkWNYqmxm23SVl/LGrT0mKTTGr85nW4otvCdRV++UuNxiaNYFBO28iIVBk89KBNJGKjqhqptIbjQH2NjXrsNG4kCNURUUE4DqRzKNUx3GJRAHXpfLiglIA4SkXe7oFu1/Leb7xnrQICxFUFcgXZTvlHQJHzpp5JQEDZEFBRsfI5Jn71K/w1NRRmZ/HX1WFEoxixGNO/+Q2BhgZic+fi2DaupmHncsy+/Ta1F12EpihM/epXhJqaCDc34/p82JaFmUhgVFWh6ToTr71G9TnnoOg6umHwq+3buei221BDIaZffZXs8DBtq1aheZ1JruviFou4pokeCMhbi6FBIYOWiENdE7Zjop08Bp0LsBUHzVXRC0Uw/FjBIDY22Baa6aDn8xIfp6rw/W/Bx2/EUlzsgNfLY1ug+XBdG0XRUFFwClk0V0EfPAnjI3DBZVjV1dgTg2g1zeg7noKDP4NlH8b8889LWZGmYykaumXiV1WKuQSTxw7Tcv6VWGaeyWOHaFi4FH+k9r9Mzfp/dnhPKv/e8H88KJ68x9n7E9zXX8Hp+xmK60Ahj9P/YiUDXlFQVJVVq1bR0dHBiy++yOzsLLqu097ezoEDBwiHw/T19XHkyBH6+vqwLIvdu3cTDodJJpOejL2/PL+xsfGsPHifz1eWxNu2jWma7NmzB13XicfjPPPMMziO8zuO9pFIBEVR2LlzJ5aVZ+/ezXz963NJJodYt+4JdD1EsZhm167PoSga3d1bWbRoPV1dd2MYUe/zFoaHDxOPn6JYTJFIDBAON7B790YSidMkk4O0tS1hdvYkuh5kzZpHyOVm6eq6u7x+NNpKMjnEW2/9iA9+8MtEox1UV8/D5wuxZ8/nyednscxMJdbpcI9IbXMTYGZQvEgoJTUoRlPD+z3p+xA88/GKtDZ5UgC7ma04VV9+lzCBcHYEVcmx+qVe+RHLjsPPvyDRWmOHpDPAzp+dL13aL9WgQTPQOTsbvB8B3TUIT9RDJSt8KZXIsipv/Kve/NQZy96H5JBv867D0vQeb51JBNyv98bvO2O+hV2WxicLSbb3bWfd99dxaPgQw6lhNu3ZxMn4SYaSQ2VX+TnVc7h1761c8NgFjGXG2N63nYZwAwD39d3HjiM72L5vO3WhOk7MnmAoOcQjax6hM9bJLbtvKS9bcqrv6espu9RXBapIFpIkCgl6+3v54Rv/wjzX5V4qpQOfQYB2BpHObwDeRdz1+a3j0xFgfggpSfgColpY4i1XYt97gI8j4PtehD2/k0o+fOn/eu88H/a+mzPPtd91CTjm2Rnuqv93I9/evE82emS7MOml6aU8dmwB5IEGkcfnRoVRDjSAnZH1StFxsffJeoomyx3eAMl35GzVLJb1FQTgar4zHOSHhf0GyjJ214ViCteIlpdT0kM4rvdSV3KGj7RL6UkxJZ/LLvQl+f2krH+m67yq/559GPLqyG3pWPvt+6b+Qhn/6c3iG5EaPONerz/j/31yL2fHpBwmOSBgPdgg0XCJk1IaUxpPnhZmv3Rvv9Rbqat/5YHKNlwH0iLhtwsZNm3aQ21tgIcfXo3fr9PREWNyMkNLS4StW7tZv34RW7Z0MTWVZdu2blpaIsydW82+fQO8++40oZCPJ55Yx8KFNdx667P09Z3msstaCAb18vpbt3YTCOj4fCpbtnSxfv0i7rprJdXVAfr7Bzl5Mk6xaHP33TJv27ZuFAVGR1P4fTqG5uPchjlMZxL0/vzvGYqPoyoK3/Vy1b/30jOkC1nm17fznUM/9qTxM0yl49z3wnfJmQXeGDvOcGKCObUt3Hrln5Ip5njKy35/6tCPsV2Hb/U/zWhyClURKf3tP3mQifQM21Z9hvH0DJZjlyX233vpGbmmSxFu5iiYA1LDbo9JJFvZWb4HMME8LvPNYzLfHAS9Xtzlg0s8UzqjEi3npM5wkL9Plp3eLvXu9fdWQL7iA2tAouD0BgH4oZVgnkAjx7L2dk7OznLTzp0Mp1IcHh5mMJkkYhgci8e5aedOZvN5RtJpMqZ5VuZ6SUa/tL0d13W5z3Oe/1p/P6PpNK7rcttzz1EXCpXn9fT1kSwUyp/jZzjYF22bnr4+/vn119m8dy9KsSiO8mdmpzc0CMs9PCzUbskS/a67BCAvWSKF1/X1sl4qJax6qY377hNq+Eyr854eAdatraIh7++XYu0vfUkQp8QdCMJta5P9aGsToHNmG7YN//ZtSWAxC/D0t6GuGhbMhyuvgKHjMr0q5hnbvQXJGZjTCV0rZJ5yJmnmgcdTR8FQ4Nxz4MLz4AffgtkJMPMwchLOWSjt/OvjsOhc2V7AgPY2NENBVUwcM46VGebDH7JYvKhAJFwkFCgQMIo0NRZprJ1h6p3n6F42w/vOKxIKmqjODONvPseKy2eoqbFQi8PEIjmaGov83XeLnHdOgfY2E6w0NTUWV3YVyc0OY+VmuaIrx3nnFJk3p0DAbzM7Y/PwgwVikRxWehhNNamOFamtKYJr4c5rxa0O4YwN4c5OYe/5d9yAjuvYuOk4zsAJmb7zh7jJGa/6ycF1HdxCAdcycW1b/hIzstzsFLi2LJPP45oWbiSIWyyU5QVufAo3kwKziJtJi6u5ZZa359omumHQuGwZwc5Oai68kEIigb+hAVtRqFq0iGBbG46mEc9m2bl7N2nTpOH97ydXLGIpCvUf+ABGQwOOojAzM8PQ6Cg5XWfX3r3MJhLUXXIJyWKRkclJHEXh0i99Cdsw2L1nD/qCBbStXg2GgWXbxJNJBoeHUQIB1GhUOjkMjdnZd3nmuU1MGzlydoZnnr2FXGcbpqFh6xp2wE8+FqYY9GO7FrOzx3lm981M54YxoxEK2Tim4lL4oz+jGAyQU00KhSTT0+/wzO6bmZ09zsBAH8Viipn4cdlWfoTCOe/DvOj9FGprmE6eZNcrPeSUAoU/3YDZ820Kf3YLjmthazoJzWBE00kYAfK6gRuupeaStVj+MDlfAF9dO1P/CWf594azh/d0Cu8N/1uDa1m4ioLa9WGpfe36iBhy+AOoKz4o07qvwsVFcx10XS+Db4Brr70WTdPo7u4mkUjQ1SVmFd3d3QwPD5eXW7NmDYqisMLTdJVq2c9sa82aNfz85z+nu7sbTdPKnQAf/OAHy59VVWXt2rVUVVWVDe0ArrzySo4cOcJFF11IV9dWAKLRFlzXJRis4ec/38aRIzsAuPrqB1i37gkGBw8QCjVw7bWPk81OUVXVQSIxSDTaRlvbUvbs2VheZ82aR6itXcCLL97D8uW38/Ofb+Po0Z9w/fVPs27dk5hmlsHBfqLRVn796+/R2dnF0NABqqrayWQmWLHiDpLJIWpiHfiWbJEe5KVbwTFxW5aivLBRXr4B9yOPSiTbyH4454/EsXrBRwWca0YlCkr1idnc8nvh9PMwdhj3I4+hLNki7RhVKEvlXLB0mzCHpU4DEMO6l74q65emLb8XOj6Iq/qwVZWFgO26jCoKjyAsuwt8D/ggkgnubYFtrotfUXgJeNR1CSGy7y2eSVsUAZIgQLIdYZo5Y/oXETl8F9L7+CSguy5bvTa2AWgBtnTLVqv8VWzpkrWXti9l4+6N7PC+s0fXPMr6RevZ1r0Nv+Zn62+tM5Qc4n117+POFXcCcNfKu9AUja/1f+0sx/h/fv2fMR2Tb6/7drmNknndlu4tJPIJqvxVANy54k4eOvgQf37JDRRVjbCicA+V/PknvGMojd+LqAnu9sa3IvL3EmPe81vLXol0lrjAFo9RsAHTdXlIUfgaonjQERO8qdJ3oSgiMT7jXG9xXXy4GGZSmHaQ/4oGH3hUSivK07fK9JID/CLvW7/gLmHH0aBuidS5D3h7vOQJ+M02uOwBYeZLy6sB+a8ZFUAP4moPMn7J/RUpe8TrnI60g6J5RIqKoxryuWqBEOP+Fkk98LeA5Ur5uOpDqfLM8Iop3GgMRTUq7LvrCLgHAfKKdgaot8v74EbapbQ9Kv+x85X7ELz75kph2c+8xz7yiOcnIaoZd+kWlNQQLNmCi4ty5rKrnoD92yrjV/3W+AcfFlYd5Fngr5bOhaXe/b50K0p2svw8CTR/iDvv+Ci//vU47e0xXnttjEsuacbn08hkTObNq+bRR9cwO5tnyZI24vE8AwNJFiyo5vLL28oS+/XrF/Hww6vZuHEpPT37WL68A4gwb141jzyyhsOHhwGXjo4qGhvDPPzwaiIRg76+Af7wD3fw0Y+exxNPrGN4OMltty1jaChJZ2cVy5a1MzGWpbE1QLqQLYNmgG2rPsNnln4MgE8vuY6wEURTNT6z9GOMp2e4sHkB973wd+Xl/+wD1/LUoR+zbdVnmM0lGU/NcKO3/meW/TfeGDt+Rts38qnLrwOgKVJLPJekMVKL4zrcsPQPALhx6cewXB++Ou9ZHVwK4xsFZIM4u9d530XdFvFmKAF5EOAdXCIMed02AeyuDajCpIPI789swxySZd2i/OV/DYHLBLiXAD6IfB4Xprfj838IK/KpctQbwG3LlrF93z6eXLeuXOMO8OiaNZiOw/pFi4gaBlu83+pSLfs5tbVs7e4uT6sOBFAVha3d3QwmEuXlt3Z3E/P7Wb9oEVu7u6kOBMqfNUXhTu83flt3N5auo0ejaHfK/e9u24ZSLAoL3tws7Pljj0mh9fPPi+R961a48koYGpLlHQdefx13i/ddbNki+u4TJ+QzCOh//vlK0XYpx2yHd86efLKS2/6lL1WmP/64bA/Ehj2fFndun19kxqv+UHKy9/wrrL4e2ueJ0/bEiEiL1/6xJPAkZmFoQky/VBUySXF086TGzDtP6oYVoKoWPv4ZGB2E2kZZhzOmj5yWbQSCkEniJqZxz1mEmZ4iEGvAsYso3u9hLjGJLxjGtXXMXIr6+e/HzKfwBSOoqsLYccnJBmhbvIpQTavoQqwCmFnGT7xEw8KlWPkUumNh5tLo/iCabqD5fOA6ZGdHCASiXNkdJJ+cQPe1odW2SacnDoqrwMwUdv8vUK9ai9o+B2fwFEr7HEglcA2/lGMuvxKn72dCBgHaddfjJmZxk3GUWJXEEseqQPfh7HuhvJx65dXyLI5Vg6qiuA6K4ccZOoXS2IISrcK1Leznd6Guvg7FcXFGhlCaWlF8PlzLwhofJd/UCpqGEQxS9/73UzRNnv/Zz1i1apUkvrgumqbR0dHB/v5+1qxZg2EY5HI5/H4/Pi8hYP+BAyxfvrz8Tgqwdu1a0uk00WiUXbt2sWLFCiKRCG1tbSSSSVCUs0yc29razir5rKoK0tfXw9GjP+Hiiz9FdfVc1qx5BF2XlKRiMUsgUM3IyEs0N1+CzxckmRzm+PHnuPjiT1FVPQc3VkXRyqAaOporHdzFYor+/t7ye+xVV/WiaQb79m0vT1u79lGKAQ0Dl337ttPRsZJUaoT+/l66urZQQzXx+EmM6vlM6H6GgKXe+8RxVWO7orDVdQkHozR1XozdeTFFKlG47w3/+8N7UvnfM7wnlf/dwS0UcGenwWeghMOgqiJrSiVQqmuFFVJFmuoict+ZeLz8EIrFYiiK4uWX22fVuM/OzpaXq6mpwXGc8nKWZeH3+4mf0VZ1dTWl69a27bJj/erVq8lms2ctB5y1bigUYu/evaxcuZLq6iiuW0QrOUWjEI8fZ9++7axceReRSCt+fxTbLgIKqqqXXeJLuesij5d1uru3UVMzH9e1icdPkkgMEYu109fXQ1fXX5FOT9DevhTbLpLPJwmF6tA0A8vKo2kGrmujqj4cx0ZVdVTXlopoRUNxbVxVR40fQzm0HXfpNtI156AqKkErj6KomCj43JIETIHE8fKyVM0/a9ytXiCKCdfGVUUapbquAJJiEsVztC4BCDfaCcF6lBc3e+3NwwVmCykI1WEoGpZdRNEMFEXloKJwkesQQkEHLNdGU1RsFHTXJWNm8fkCWIU0I/HTjOQmWTHng6BqXpCSi2d1SL+i0OG6zEOurTxwSFGY47rMRyyhVNdhMjVKY6wNm0rcHHYRxyqgKioKCpZr4VN9HJs9Vq51X1AzH8spoio6iqLiug6266CreuWzopMsJonn49QEqokaEY57zvLburdRH6pn897N5fZc18Hy2rAcC5+qYzoWBatA0Cc/VY7r4FN9oBvYiiZu8IrCNtdlAeL6vl1RuAtodV1iiMC2dHwgJQaDikK769LjretBTREIekZapqLhw0VBwcRFRX5Q84qC37uXxBpLGGiHSrye4doErZxsXfEcylVdTNFUXV6WrIxsVI94Dwy85b1aa8WTw2UmINxYiXi7cJtEx6WOQXZYnObNuIB8n1cvrCiQOi7LX3CXSO5dF17djHvhlyB6rndklQN3XLAdF9uGd9+dYfv2fWzd2s0559SSzRTJZouEQgahsEGhYBEM6vg05EW3dPLOaK98SN75KSk5ccG2HTRdxXFcxsYy1NcHURQFn09FsQsoXvRb5b5R5AwnTp5xfy4QUKfoOI6JrWhYZh7TdfFpPoKZwf/pvfy743JvKl7snuu62LhoKCi4FF2YzSSoj9SgJU+gvNRLceUDFFwXTQ9g2gF0XcG2HFRPkqqqDmbRxmf4ME0XXVdxHanzPH48wfbtfdx110paWyNlJ3lVVVBVBceRM+c4Dqoi14SigG2Z6D4fx47F2b59H9u2dbFgQS3Hjs16493Mn18NuBQtl1krS9Svlp3gP7vsv9Fe1SgV3Y6NaVuSf+zzc2xmhtZohIjhZyg+XpbCj6dnaIrWoWth0oUi82urUBUVy7HxqRpD8Qm+fejfz2jbxXHd8jK6qmE6DgWzQKaYJeoPe50FNj5FfBcU87gw4rVbPdm8CxTEBV6NgD3uSefvEnM6JSbeBLrfA+06jA9LFvXCOVK7Wq5xN+Q6GZuG2iqwXPDrXikJZ8TPbQNlrmekdhqm7ydX/y3ejXuy9+5uhhIJOquqaPHXMpiZ4asH9rGtu5v5NTXSweW6aIqCays4ql2uZb99yUrObaglb9oYPsVTrYCmqJiOg66qFE0Hv08tnz/NA5DSpkianfI8eRrpto3PtkV+bhgoZxZNlyLZjh1D6enB3boVpbkZ15DfbtdzW7NzObLT04Tr6tC85BpsW9a1LMhmUe64A/euu6C+HuXVV3Hb26XNbdtgwQJcS56ZnDyJsn27TJ8/vyJl1zWUmfGKq/fspIDqf3m0UiP80T8Tk7D4NLz5qtQV/8ktcOwIRKulPnntH4u79z99s7Len2yEbFrcwYt5+LfvwuqPSy3yvz4hUV8gWd3BkHw2/KCo2JpKZnaUUG0rCi62ZVJITRGsbgFFITszSiBWh6ppZGfHPNDuQ9HEq8C2imi6gaLqjL35Ii2LPohZyDLxTn+5Xrn5fVcwfrSPpvd1o2q6V+9dZOLofprOW4mi+VAUBccqkktOEaxqwMxnmDrxEu3nfwhn149QOuaidMz1yis/DNW1kE4JMx6JoigKrldaoHh29fauH6Eu7cI58AsB9gd+cXY73R+BYAh3bAR1zgLc2Smcvp9J+zX1KI4w9HgRv+Sy0kmw8kMQjuA89wzqig9h1tYzG4+TTCbL5ZwlEqm6uhpVVctAesWKFUSjUQzDYHp6uuzpVFtbSyaTKZdv/nbaEUAqlaJYLGIYBpFIRLw6VJVUKsWJEyeoqamho6MD13XPSlK67rrVFIspQEHXg+VkoxUr7qSmZj6JxAB9fT2sWvUAudw0yeQQbW1SkpZKjdHf38tVV30Nw4h43lHjkmAEZ6QkbSMYrGVs7LXy+2t395by+2xNzQL5jbJNfvrTu2hpuZQFC64mEmlh584NfORj/8CU7qcaUe91Iiq/dUg54wo4ywvpXN4D779veK/G/T85vAfcf3dwC3nsZ36Ie+Q1tNvvlZf1bFZc5ld+CMJR8PlQVJUiUmOue+Y1tm0Tj8fJZDLU1NRw4sQJOjo6SKfTxGIxkslk2bBuenqadDpdHk+lUmVH+WKxyFtvvUVNTQ2xWOysWDmATCZDJBIpA/5isUgkEqFQKFAsFgkEApimSSgUQlEU0ukRzwhPY3z8N7S1XY6mBXFdC0VRPRBnUyxm0DQ/2ewkfs/Mau/ezR64b8YwoiSTQ5hmFlA4ePBBrrrqaziOjW0XCIcbGBjYTyzWQVVVB4OD/YTDDWQyk8yZ08309Lv09/eycuVdRKNtpNNjRJoWc0xRGeXs6LRau4hjF5jQ/MS8DgcTYVdLYNVE2FifXUS1C6Q0Py9rBu+3i+TsAobmJ6UZZBCm9k6khrpUR27aRfx2kaBnmJVzTHKanyNAl13A0fzkHJvT0+/Q09fDI2seYTo3zcnZkyxuXIxhhPEZEXTX4cTU2+X68dZoKwCvjr5KQ7iBycwkKztXsmn3Jpa3L+f6C64n6AviuA6qomI7NrovhK1qqI7FXz17G9uu3EYkWEvaLvKTN39IZ6SFJW1LsByLuV+fy9CtQxwePszFTRfTGIigW2kxQNNDYNTA9CEIdVIMNFFwFfy5AYyjD8GibRBoFpA5fQiC7RCZBy/fAufdCuFOiopBwQV/cQLjZ1dT/NBzFPyN+N0iDP0HhdZr8RsxDNfyXvLyoIUABew0RS1KwbHxqxrG1H5o+pBInXNTEGykWD2PgqLid10M16ao6OQVBQ3wuQ5GIQFGtFK77doUcSmoPnTHxNIM/C4YriNmg6U6b9Un0vGSi7pdgPQwxaq5FBQNv2tjJE55eeIlczXXcys3RX6dGRFH85IpYaBaJO5WVlzKGy4BXwCG+yHSITLsSJsAUlxZTg9JrbeiC+B3TTHGUXxS54mNRJd5pmolo7ZggzffkX1zbDkuK0dBiXLjhuf4539+nfXrF/HUU9dx4kScnh4B6nPnVvPZzz5TZoSfeuo6/H6NQsHG79cxTYvjx2eZM0fix7JZk7vu+il33rmShoYQ6XSRhoYwxaKNqsKhQ8MsXSpyYUWhXL/97LN/ytKlbdi2SyCgk8tZvPTSMEsub6GmWiefT7Hn3Zd5ZeQ4f/WRTwMutpknrGu8MnqCL/zkYT644AN8bsXHifjlhbwEUDcs+0PmVNWBU2QylyUSrCKTS9AYDJOyLB7ct4O7P/RJVNfk1dGT1EXqCfgMcmaRllj9WcZqW666gZ6ffpe9Rw9w7fld3LvqBnyuCWRRpu6AujukXnrsFmGCw1eD3iYRZHqdAMhQFzhZD4D+LcWaB8lbMTQVfMoohpaE6fuhsRfUsHyP1ghM/c3ZbeKCeZyiVUXBacZvWBicpGhFKbgt+PUUxsxtpOseY9/gOB9obSWka1iuI2kSioqDwul4nMFknCWtrcTzBaoCQTbt2cOja9ey+dlnWdHRxsfPfx8RI4DlWOiqTsF2yJomb0xMsNx7QXZcF12FrFnkx2+/w0fmzac6EODQ8DCtkQjn1NVhuy7pYpG8adIYDqIoKgXbIQIYx46hPPQQfPNB8Cvg+KDoCOM7OQJXLpentOKC4oCrCfAeGBUL79dfl7gvqJiPAdREYHwIgjEB7IODIhMHYYSXLRN59113ge5CVQhqGuELX4Svfx0KGZyqEFPxIL9+Q2XJcltq24sOZk4nFNDY12+xZLlNyNCxihqZjJim33GHGLv398PFl1kk0jbVUZ1IUOPUKRgYtli6Qtbb+DmNz31O1OVnZn4HAnIoIyOVuPShISHSzz1XjNOi/gwUs5jZbDkD24hGUTQNu1gkNzFBIR6n9pxzcJJJ/M3NkM8z8cYbBFpbiXZ0UEynKczMcOTJJzn/058mPz2Nv6aGt//+71lyzz0CAk0TxbLIZzIEamtRHQfXM65zNA1XVTm1cydz163DyeXw6Tq5ZJJCOk0xEaf50kulg/DYG/Ct7XDJMmHb0wmoaRDm/JrrJaJrZrLCpFfXSk18KCIA/7WD8LmtcM5iMQrb7XUCGH4B7Ls95v74mwL2P/pJ+OsN8OAPpN29P5T87kxSOhDKxmAWVjHL5LHDNCxYgm4EGX3rF9TPvxwjVIWZT2HmUoSqm7HNQiWSS1HIzo7iC0TwBaPlum/HtrAKWaZOvETDwiXofnGsK22jfv7l6P5QGcQXs4nytjUjiKob4DoUswmcQo4QftB0nBf34h55DfUTN6JUVePsfxF1zcdQXBdneAClfQ6K4+DmcyiBEK6q4A4PoDS1CDGRTuEc3CfMuVef7gyeRIlEUWrqsZ/ZcXb7+15AXfFBiMZQfH6R1x95TdKRrrwa+7Fe1E/ciNUxj9ODg7S1tTE8PMwPf/jDcrllCXwnEgm+//3vs2jRItauXYuiKGeB62uvvZaZmZmyEbOqqmUgr+t62US5q6sLn8+HaZr09/ezatWqs965R0dH6ejowDRNfvrTn7Jy5UpisSCJxEmPDNpCMjnE97+/jkWL1rN27aM8++xm2tqWsHjxn5LLzZDPxzlw4G/p7t6GrgfQNANV1Rkf/w3RaAt9ffdx9dUPonj1/j5fCFXV2bnzJt56699Yv/5HdHSswLIKvPnmD6mpmU802lqOQY7FOpmdPUE6PcqcOd3E46cINyziuKrRgygjq5Gyvf1IOaMC3MLZnjpVvw90/Bcf3qtx/y84uJYlLHkhXzHw+D8ZNF0c5Rdd4j3UVZSaOtQrr8YdOIk7PgKJOPauH4HrYhgGiUSCgYEBUqlU+SEWi8VYtGgRhmHQ3t6OruvMzs6yd+9eXNclnU4TDofZs2cPs7OzzMzMkEgkOH36NJlMhurqalpbW0kkEuTzeXbu3FmudTcMg3g8zu7du8vtAIyPj/Pkk0+yd+9eNE1jZmaGdDqBaSb52c+24POFaG39AENDh5idPY7jWBQKSa/OJwOAbReIx0/h84Xw+UJcd91T1NQswDBigILjmBw8+BDRaAtr1z6Koqj87GdbsKwcmcwUbW1LqKrqxHEsYrEOMplJrydUo7Z2IevWPUEk0sKbbz5NX18PqlWgyXVZidQt3+P9L2gGPzOijGsG/UiU1yBwM1IjnQYOIkzsX2gGbxtRZjSDy4BDmsG5RpS/1Azqqcire5E68i/iRYdpBm8bEU76Y2T0AK4R5TbN4HXN4IgR5UbNwHVsRlIj9F7Vi0/zUeWvYkXHCsYz43x+182cGP8NnBG/1tvfS8gXImpEaY+188CBB2iPteNTfdy/6n4+9r6PYTom70y/w4adG0gX0+SsHEcnXmfDj/6EE1Nvc8NlN7B572YcK89k/CTt4SZaoi3csvsWxtJjPH3902iKxsqOlYymR8mbGTCTkBuS+umXN0otdXYAQ4Hoq5sw9JCwuKF2MUibPiRSbj0E2CLFVnWYPoyRPUn05Q0YdhY+/ByGk5Xx/AhG05VEFTCSb8NkH2RPwytfECbZtUALYEz+gmjuNAYuBJvFlK1URx3rxLDyRK08hteZajgmMbtIOD8r04woZdm2a4NrYzg2UbtAUNWJOg6GlZWaas2oGPwkTnig3QAcrw57EiNxkqjrYCROerXbwxVDNUWV/c6Oy/KBOkkvMLNeFJopnQMv3irzJl6F9Bj8+zo4vL1Snw3SOfHzL8h+jB6S/yBGOCDHMvRLSAzK8WUmKjXl/X/txZr1QTHrZSmr0nGh6liWQm/vKt56ayMPP7wa13Xp6dnHjh1H2L59H5lMkdtvX16umfb7dQxDJxr1Yxgatg3DwymyWZPxcbnXly9vp7d3P5GIQVNTGNt2CAQ0gkGdzs4qNm7czalTcRwHtmyR+u3lyzs4fnyWgweHOHZsho0bd9PcHMEX0JjJ5xjMZjk09A6fWvJRVEVBVzQSZpFjiVmqQjV8cMEHuHHpx2iI1JA3CwR9fubUtLBt1Y34fT7SlkUeHxnLRldUUqbJX7/wj5iofL77jzFR+euf/iM3/+h+njr0Y2pCVXzn0I9xXIdPXX4dq89bzqeXXMdIYrI8/qklH6XowkQ+haKHoPlRiSVzstD8LYj9CRSPg3lKMsRnHhBTNLco9dW+c6DpIQz7JWLGm4QDCQx1UuTawSVgj3q13CdBb4Wmb0rN9dQ9UueNC+YIhjZFNPVpDE6CEpLx5C0YPgOaH0FT/bRGo2zas4e3p2dIFUwcVI5OzzCSSvGVffu49l9+wMY9e6kOBDE0jSfWrWM2l+Mvly5lTlUNY+kcPz91GttVKdoOE5kMqqJweWsredPEcV0U4HO79jCWzvHhefPJWBab9+7l4qYmOqurSRWLbNy9m+lcjrpQiOF0FtNxGUomsXI5lO3b4dJL4egJ+ORNcPR4xc77nAtgKgc/3QcpCyay8Kmb4e3jEhk2Pi4GaI4jIP74cYkgGx+HoXGYLUA8I67ll18O8bjcOx/5iKDhHTvga18Ts8OkBa4ODz4o9/2mzaTHHG67zeCC83QU009yxkcx7Sed1DBNWLFUJ6T7OfaOxoYNYqi+ZImUc7uu+Ljpik51yE84IPdNRwcsmKtTSPlJzGr09IiPW6kUfevWCkmtaWJYVioRr6+X3bYs8XAbnzJQ/X7sfJ6Xv/IV7FyO6ddfJzs2hhYIEO3ooP7ii9EiEfSmJoq5HAfuu4+fb9zIkSeewLEs9ECASEcHS+65ByMaJdTaSmF2lgtuvJGTP/kJE6++iquqjB85QiGZ5OC995IYG2Ps1Vf51+5uDv2P/0Fuaoq6iy6SjhxFoei66FVVvPV3f0fteeeiTI3BP35dQPrntgrYTiehtgn8AXH5bmiR59juHwiTvveH8lw1LVFPrP1jWbemAf75EWHT//wL0NgK4YiA9tJ6F1wqDt7BsDDymi7TX/ol5HMC2kvLAoqqM3nsMInRo0weP4xtF0mMHmXqxEuAi5lLofuDjBz5GY5jgaZjFjKMvPECuj+Iqvkw8ylGjvyMYi6JVcjiC0ZoW3wVulEC6Fp5G1MnXkLVZR0znzlr26puYOYSjLzxAoqqEqhpgZo6lGhV+V1SbZ+Ds+8FlLYOeX/c/SOUxhb5vOffwSziDJ+GZBy1Yx5kM7ijwyhV1WhrPobidbq4jo3a1imlA66D2vVhab9tDs7+F1E656FEq1AMv8xfdR3axrtQV/8BBILlfVFyWWKxGHv27CEWi3H99dfT3t5elrvv27ePtrY2Fi1aRFdXF2+88QZDQ0N0dXWVY4pBSKTSe2wikcAwDDRNUi9CoRCdnZ309/cTCATo6+ujra2NVCrF3r17yz5OpfUVRWHt2rWe0tQuxwb39fXQ1raERYvWs3LlXSiKzqpV99PRsZLdu2/BsrJkMhMcObKDRGIAy8rys59JuUd7+zKSyWGOHv0JquojlRph797NzMwcw3UdVq68k/PO+yjNzZcQj5/i2Wc/T3v7Mjo7V5a3v2/fdo8AGyUcbmDXrlsIhRpwFLX8bjnhvVPehCTZBBFS6VGEfd+KGOu+N/znhveA+/+Fg2tZuLks7vSEsOTTE//H4L2c637depSA55LqOuDYuIOnUFs7JOv99VdQB0/hui59fX1lw7nSQygej+O6Li+++CLJZJKZmRk6Ojqkfsi2aWtr48CBA2VjulAodNb/EtgvGd2VHqYiTfWxb98+jhw5QjqdJplMsnPnzvID+Mx6+UIhW37wJRID7NmziXC4gWRyEHB57rnbaGhYVH6gZTLjtLZezsyMZLPPzp5gYKCPePwEppklFutk1ar7SaVGcByTYjHN6tUPkkgM8vjji9mzZ5NXKqCSTA4SDjcwPHyonPUej5/GMKIMDR2gq2sLVm6GcD4OrksvFYDtIuZjDyC9mElv+g4kRizhTS+ZmA0iD85NSK3400jttMbZhmTtSM9owPtceuBuQIzP7geu9tr9Z6BfM2iNtXHnT+9kKDFE1BBZc29/bxmoO67Dlq4t5frxTDHDcGq4DOZ7+noo2kVCvhCpYopUMVVeP1FIlE3cSsvOqZ7Dlu4t9A/20xBqoKuzq2wY19PXw8rOlWiqxLb19vfyb+/swvVVeeZp93kmaQ/IuJnwnNFbxQXdKYoTeqBB6q/tLMKOKWKwFmiotHGkBwKNZxu1BRqkzbd6zzZly49Ku4dv9joNBgFH5lsprza7VcBoKRfczgvYdUxA8Vh25H47c55mCIPuuuKKbhekjZJBm2acbZbmmIB6tuka/Na4Ku0kTggzbsTErbxkbKZqwr6/uNlzMl8i81qWQrgFPv2W1FjnZ8QvwSlKxvoVvXKcDRdLm4mTMHZYtleY9eLkArLd/i8JWE8NVMzU6i+UToSf3iR55VYOtCCq4jA5meGee15kYkJyxUtmaCVzs8nJDI8+uoZzzqnDMM52sA0ENFau7MRxXKqq/EQiBn/6pxdx//2rSKeLpFJFbNvBtl1MU/LOd+w4wt/+7QEMQ2PhQqn/Nk2b3t5+GhvDDA0luf325YyMpLCxOTp5mupghM+t+Dg1wSiz2QRDiUkG4+O0xOqZW9PCl67+LDXBCLPZJDWhGDPZJLZr8+uRd0nk0tz3wt8xmpyiKVrLV3/2PWpDMbZddSNBn5+QL4Du1XWvPm85Nyz9AxK5FHd86M+xHJv26ibu/NCfUx+u4Qe/2kt9uJptqz5Dc7SW14aPUheuxjUHwJqQGms1LGB9fCPojaAEZHpwpRieWcMeID8OuVcF7Pvmi6O571xofAjCq2H6IQheAXozILJ9pp+A2jtB75CnUGilsPjpnwhLrzeDGoPaTWCdhuwBbKdA2OfjyXXrmFtdjeHFjXXEYtQFgzx09dXs/pM/4dG1a/FpGu/OzDCZyZC3LKazWa6YM4eGcJjl7e1oqooLnJidLYN30xEgr6kq31izhpDPR2M4zEgyydevuYbpXI4vPPssjuvy0OrVNHvJJV/55S+xHIehZJKQYUgd9tVXV4D09u0CtNvbhb52HKGZb75Z6OczzdV6e+WCnJ4W1Fyqu77vPgnPLpmpZbPipp7NCpXd3FxBytu2CZqeO1co7pkZqaPeuhVfMcP997uoqni4JRIVQP6DH8guWVbFf623F1atkqYNQyK9AgExXT9xQuLTjx+H556T9LV4XA514UIxOX/ySel/GB2l3BHwta9VAP3UlAgEFEX+ahtErXfkyScZePZZjnz72/hraspZ2Ie9KC0zlZIyPdfl/BtuoPOaa8q52vmZGdKDgxz+8pex8nnCra00XHYZ0blzmbtuHfUXXwyaRt1FF/HW974n23nySeouuoi569Zx2V/9Ff6qKgozMwIIgWIqheb3s+izn8UIhqSGvZRjvXCRgO0FF3jRZEUYHZJntq4LQL/8CgHe/gDU1svBNrbCwguljYM/Ewm860qOdiZ99nq1DQLwDT/82V+KCqo0PxiqfL7megCysyM0LFxCVct5NCxciqb75fOCywGFUE0LUydeEXB97BCK6zJ57JAHwl9B9wcroPz4S6i6jlUQJaFjWRLjpWo0LFxabldBYfLYYdKTp6iff3l52wpUgPyxw1Iek0/jug5KdS3atX8kEvGuD6MsOE/eH4+8JmDd++z0/QwlFMbZ9wK4Dm4ijhIKYe/6N9xiHnd2Gnvvf0BiFmfwFFgmbjYDrot27R+BT0ddtQ6lcx723v/AnZ6UkqdcFufFvVKWYBhoq/8ANB03GDrLOLmjo6PsuVQC65qmsXr1aqqqqpg/fz7Nzc3U1NRw7bXXUlNTg6IoZ72f9vX14ff7sSyL6elp9u7dS2dnJ6tWrSKfz9PV1cWCBQvKPk79/f0AHDhwoAzod+7cSTweR9P8dHVtYdGi9XR3b8XnC7Fu3ePU1Cwgm53G5wuWa9X37asA+7a2peXxdHqMXbtuJhZr5/rrn0bTfOV1+vt7PXKpk3XrnsTnC5WBen9/L67rsmLFnd72t6EoKm1tSzlw4AFef/2fef75O1CRiN+3gG7v3bH0fmp575MbESC/0HvnfG/4zw3vSeV/z/D/dqm8WyjgphJlOZKy6BIB3P7/874t17K8bFKphmV2GiUSA8OPOzst0vnuj2BW1zE7O1uWwe/Zs6csJbryyit57LHHWLRoEcuWLePgwYOsW7cO27Z/pyYokUhQVVVFIpEgFotRU1NDPB5H13Usy2Lfvn2sXLmSgYEBFi1aRDKZpN8zDDlzm+vWrUNVVRzHIR6P4/OpmOYouu4/K8d9zZpH8fmCWFYOUNi9+5byvN+OdVu27DYOHnyQ1asfRlV1dD3Irl03c9VVXyObnSKVkoi3QiGB319NsZgmGKzBdV327NnI8uW3c+DAA2dkyD+J6zqoqk6hkAJfECdQzYCilLO9OxFJ/AkElF+GMPG9CACvB16lEov2KPxORJuOsPJLkAepgpjDla6ODfxuRNjj3nonkQfwXwELzRw4Fo4r0UYKCqcSp8oxaHOq5niy1AJ+zc++gX2cmD3BsvZl9Pb3lo3bLmm+RHLNXYex9Bi9/b08vPphAGH1+3vZ2r2VBTULMG2Tf3/73+nu7KYp0sRJr878i8u/yERmgqXtSxlIDKCrOrW+MG3hOhRV/92a6swgjO2F6cNisKZ4gPXljf8Pe/8dJVd5Zvvjn3MqdlV1Uqtb3eokFAgSApEkJLXABCGL4DA2csDj8TgITLAJJhgxgK+RAGGMTHDAYZywPQgcsNRCCGyh0MqBIItWRJ1z5XiqzvP94zldLY1nvvfedb+/dX9zL2etWqfqhPecrup6693v3s/eCriblsDsH6rEOzukRmuj0WYzlkGw2YkuW6ETAIEmKKTV/TzTN3bshc+OGbE1LdFrmT5IHgNPJfgnUMwVBwXX8c6TosmcaCkDBeUn76uYouecEmU2WcFvaYNeZzSLvLRBgfhojXrxmuK0b4yl5hTbq4HSep0wiB6FHSvgyh+eGi0492EdTJZPhugRPWbOMjV1c8A1sWO6fTSazBOE7s1jTuezv6kTDfXzYcONY21f/iz85VY1VSup0cmCk68brCURifKlr+/+T6XwIMXn/x60A+RyeXK5AkeOhHn0Uc0VnzixlFDISzptYVk2fX2JYo75pEkVLF26hvvvX0BXV5TGxnI6O6O8/36E+fObCAY9pFIWK1Zs4ZvfbGHSlDLElS8apC06Yy73XfEFDvQdOyWTfFygnIMDx5kQqqK+vJpcwSp+Niefe/dln+cvh3dy9Vkt9J4UY9ZQUUPethlORgh6Syjx+E7ZXxUsx2Nq6ZLLyZ/f19POg+t+wIYbV2JKFvK9TuTY/QrCOy6Bye9pScNoxrhnKvR9RQ3QSm+A2h+CZCC9C/znKBMvxkneBqIM/sADULNCa7ytY851loFRAq7KsfpvADsKZrnmmPunk7LLiObc9MTjrGxrY9mCBZxWUUEsm+Xt/n4uqq/HbRhs6+piYmkpK5woskkVFZiGwfFIhM5olPPr6opt3Dd/Pj3xOC1NTdgiDCSTlPl87O/rY2JpKVMrK4nlcnhdLm5ubWV+YyOXNDfz6JYt3DNvHhNLS+kZzTm3LGaGQpgOqKSvTxHwsmWKYkczuQ8ePDXS7OGHx8Ku6+sVcN9446mZ5cuWaZa5y6Vgf9QwbTQSzeVSVn68Awo7OnTC4KmndBKgpAQmTCBhB7Adn4ljx3Q+4J57VKr+1a+qJD4Q0PmAFSt0DuC00xTM33MPfOtbCtxN89SI8YcfVlFBba1+dL29agBfV6eTA3ffPXbsD36gPmylpWr+nsvpUKKszBlSWCnsoQ7+9uMfM2PpUlJ9fYw/55xTsrAvuO8+TI8H0+sFEcS2yWcy7P/Odzjrn/+ZVH8/b958M00f/jAXLltGLh6nkE5z4Mc/ZsZXvkKoqQk7nyfV21vMyy6prsb0eEh0dRWvHWpsZNe3vsUZX/gCZc3NALhdJsZAjwLuqz6p8vhpZ2v/OBpVNrr/w0sUoOctBYeWBSP9Wgvv9mimdmRkLBO7agIcfkeN58ZVj2VyCyqXP+1M7WcxtL3SCpXUd72vhnZuF7ZhUrAtrTNHyOcyuLwljveHgdg2iI2VTRbjuLyBcnKpiMrbi6+jJ+0v09pwp43eA39l/JSL8ATKncB2G8PlJpeKMHR0N7VnXYI5Gl8Hf9e2YQuEh5FoBLO+CTFMlcDX1EI6qXXpiz4KqYTK2xdcoWC9vBKjohLyBQrrfq8lm7fce8oY17z4Euztm3At/jiFdX/QEs6KKi3XPEka77r6Hyi0/n7s9eKPI4UC9utrKVzzCcLhcHH8GQwGee2112hoaOCss87C6/Vi2zreyefzZLPZorJz1MNJy6iMU9opLy8nkUiwcePGU8akgHqQFAokk8lT/JkUqLtOOeeaaz7sJOJZTl28i0LBKprReb0hIpHjRZ+m8vLTME0Dw1AvJpfLe8p495prfuj4NB1zfJqWUVamJRe9vXtpbJxXbK+l5X5EbEpLJ+J2+zEMk3i8Vz10rCRbtjzKlVd/H3fJOI45Y9b70XSc21FFZyOafjM6rvwJakb8wfL3ywc17v+Ty3954O4w7sV89QVXYoyvxnD9r4UISD6PWDmIhpF4HLOhCUyXRjoUCuByYZguEJu8YZLJ5chkMpSVlf2HBnGjwLy0tJRQKITX6yUcDhdlQqZpkneMYvL5fLFm3rIsbNsmn88TDAaxLIsNGzYUa4RGrznacc6fP7/YfjKZxOPx4PHYdHa20dg4j2j0RLHTqqiYTD6fobt7B3V155NKDZ7UoTURDh+lrW3lKWYdZWVNpFL9+HzleL0hstkYpunB4ykhHD5WrAcKBMbzxhvLWLz4ace8rvMU84/KymnYtoVhuBHJk/eVIk7tUQ6tYx9AwbkLrQjOMebgPlrrbjtrCwXmPagsfhkqVcqgmeGZk47HabsGNRLpYiz3exnqCg/K8AMEAFc2STynW4KeIIPJQYLeICWeEgwMtnZuZWLpRGqCNezv28/FDRePWohhGAa5Qg6AaCZKma+saNo2Woc6utiOyVskE+He1+/l7vl3UxOo4e4Nd/PEwicIeAJs6dhCY3kjTWVNDCQHqCutI2SCETsMmX6onqeNGU7ttBVThtxTrtnee26DC55VdnzUBM1fp+eE9ypL7/KP1WVLTg2l/NXKlmQGlIU3TP1kDC/kYwqeU51jgD/QpG2abnVNPwVEG/rcthTIjoLvUYO0f78PU9sp5MbAuenTg0X02EJ2TGI/2k70mEaIecv03NH9o0shM3aNyDFte6Lz/tm2ZojvfFQZ9eAEJ1/dgA1Lx4D1lT+E3u0w4UIF3ycD7tBEvbfRhIQzlmicoavEmSBYrmDdHQB/pfoESGEs6/yie5Xd94RI5+DQsWQxQ3zatErcbhOv97/f1+Vyed57b5iamgBf//r6U3LFa2sVRPb3J0/JMf/Rj3SwNTSUxO93Ewr5cLkM0uk8fr8bEWHp0pNyyH/6YcQsMJSIFEG03+Oj1Bf4O0DucbnxmG5SVoZENkXIF6DE46MnOshPdvyRf579EcYH1ZjTNExW/vUXp9Su5/IWfz2yiz1d7/EvV32Fb7/24+L+f7zwGn61ey33Xv5PDCWj/GLXn7nj0hvwujyUetWy0Oi7UZnviS9pHTumytyHl8O4u8bq2633FXjXrILCoGOGdh+4ajS3PHAx4NYc84H7oWb5WK27WND/VQX+9Ws0a/zkjPNiHvo9KsWXDNF8KSlLZesvHjjAkhkzePjSSynz+RhIJnls61bub2mhqqSEuzZsKB7z/LXXUrBtvtrayl1z51Lm8/HQxo3F/c867HrethlMJolns4wPBvnGhg385LrrODQ8TF8iQX1ZGX63+5RzH770UsYHArhNk5vWruU3V16J68YblYLeuVPdyj0eRa+9vQrCV61SLfny5YqMJ01SsJfPK6L1erV+/fHHtTjcsrStujqYNg1iMZ0UWLkS7rtPgfy8eQreRRR13367IuX33oNx4/SYFStI/eQFDh9z4fMZp8wd/OhH+l1wuWD1arj+er0dy9Kf9GRSifvBQY1JT6X02NF5icmT9fhR/7cTJ/TPG406H41lX7ZMwX2hAO++C2efrRMFTtk5+TyUlWQopONYiQT+qiqwbVw+H/GODgXZX/kKvnHj2Pv448xYupRgvTqW7/zWt4rA/sIHHmD3I48w48YbSfX2UjVzJruXLy/un/3wwwzu30/ltGlYqRSe0lJcziTA0FtvseWOO6i/7DJmP/RQ0Z8y1dvLwZ/9jLkPPej0kqJlPqZb89uzaZW7u9zwm+/D1tfg4svhhlvVnM7nh+7jajg3akoXGYKBXpXCV47XCw32qdFd09QxUL/4U+qSXhIcmxS4+tMK9H/1PWX/v/YtGFeD7fOT9bkZPLKDurM+RN5yat2nzsZKJ/CXVVOwMsUa99Ec80IujcvjwzBdJEd6KSkfj+lyA0bx9egS7TtMaqSbmtPnInYBT0m5/qwYBoacbN8JqXAfJZW1xV+WXDqKzxNCOt/HCIbUaK7lCgiGkL5uzMZJer6VQ/p6MSc2IC4XhohuG+jDqG+CaEQJokUfhWRcwX4R4FdgVFTp8QffhYpKzKbTkMjwmBldxTiIRZyJgStVXl/II8cOYZ97IRkrTyaTwe/3F8svR4mjk03mTvZjymQyxfHlyccUCgUMwyh6NMXjcdra2opGzKNRyE1NTZx55pnFFIA33niDRYsWYRhG0QyvpaUFv9+kUIjh9Y55O23YcDdXXPEY6fQw8XgPjY3zsW2Lv/3tJU477QpKSipIpyMEg9UYhnnKmLSkZBz9/e/Q1DTfmXAwCYffJxbroKmpBctK0de3n4kTL8LjCZDNRgEDjydAMtmP1xsq3ofXGyLnCWCbLpZyKllko/HA81FjuhUoqD+DDxj3/2z5ALj/Ty7/1YE7nMSMI+B2/y+DdlCDOgoF7K4TGKVl2Fv/6hh+aO2QAER0NnXU5CMYDJJKpWhsbAQUsHV0dBAIBKiqqiq6aHZ3d3PJJZcUpfUnzzzmnBzOUWAfj8dpaGjAdORs+Xy+CPL7+/uLhiAAsVis2P7VV18NQGtrKx/+8BUUCkmSySHi8W4aGi7GNF3kckk2bLibOXO+Rio1TFNTC7lcAo8nUHSy147YTTYbw+stZXj4UNGQTjsyg2RyAL+/ohgVN2PGEi699GGOHdtAc/OljtvnbDyeALYjiS4ULDKZMIHAeAouL3FPANswiKPmHfuBiSiIPopKkB5DQbyJAu4BlEl3ox1ljbNtDmNG2YKy6zmgD3gEjRnrBc6Bonu5jcawlToPQdn72cCn8zn8hQzHwsd4dMuj3DPvHupK60jmkmTyGTqiHcyun000E2V8cDxWwWJ3z27OmXAOAU8Aj+khk8+wo3sHjWWNnFZ5GgCHhg+xsm0l98y7h4Yy7bN6E708uuVR7p13L4IQ9AYZ5x/H6r+t5orJV1BfWk+ukMPn8lGQAm7DTTwXZ4KvBCMzAN4KZdYDzWo4Z2cBQ8G2pwyi78Jfr4JJN8BFP1B2vW+DnjNjGayd7uz7obLquYi26SrRd8WKgRVXF3RPOeQTCspTnXDwcWXZ0z1jbZ673JkwCChwLuRU8p7ohrJmlaOLQC6hNauGi7HhkPMJju4zXc4HKye5vDsy+mxMs8VNnzNIsx0rdBQI5zO6v2A54B3NL/cEHcl+GpJ9GieWjSpIzyXUMM4ThGCtXsMTUkCW7HNA9zIoczIAxFbJexFwT9T7LmS1nR3LdQKgtBE23aOSegM1rBNbWdv+vSrJHy0XQPS/3koQy5eyeWsP48cHGBpKMWdOA5ZVoKqq5L8L3mOxLDffvJa77pqLy2WyfPlm7r13PnV1IVIpi9raILFYjp6eOCtXtrFs2QKqqwOEQl4SiRwDA8kisz5hQpC9e3tZsKCZ99+PFF3Rp5xeQVe0n/7EMGfXTile2+f2Ft3OvzTnYzSW15AtWPjcXrL5HO/2HaU6UEnTuFpEhJSV4Y3DO3m75zBfufjjBLx+hpNRfr7rz6dMBrhNF32xYapCFQwlwjpZcPHHqStV5snAYPnrP+XsuinMmngGP9/1Z7696B/xmQU1kLO6wNMwxohbndB9LZQu0Xgxww+pNzVL3DMV+m922PclMOFpbWP4MQXerlrI9yn7PvwE1DyurLqdgoG7YcIq6L/9VMO6vq9C/AVtr/Z5wEWq4CFXsDkRjbJiyxaWLVjAuJISXIZxCpj/4bXX0hGNssJxTQ+43YwPBOiIRumKxU5h3B9YsIBJFRUcHh7m8bY27m9pIeDxEPJ6GUgmmVRRwdI1a3ilvZ2Xrr+eS5qbOR6JsHzzZu6dP5+aYJC3+vpY0NzMsXCY6cEg3uPHFY3W1CjiBXj7bWhvVwl9Y+MYGhZRNnzU7Xz7dt1/2mmKZF0upcJfeEER9qpV8Pvfww036LnbtysT39Cgx4fDyrpnMrB/vwJ60yy2EQ3nWXqj6+/I/HHj4K67FGhXVysbHoupnL6sTOfjbr9djz3tNGXXA4Gx2vRkUuclVqzQNnp6tGT/+uvH/vw5c/RWtm7V23WGAiSTOiHwne/AD5618EiC3Sex67MffphkTw/pgQHGn3suhtvNwJ49bPn616m/7DIuuO8+XCUl5NNprHgcT2kpnmAQKRQwTJNEdzcun2+McV+6lGBDA3Y2y/A77+AfNw5PWRmFbJYDP/oRM77yFVL9/QQmTsTt8+EbNw7DNNn1rW9RNXMmUz72UVzhQYzw4JgR3dWfHnN8P9klfslSrX1v/Z2C7/G1Y0B71D3+N885cvga7dN+9TRc9QnwB+CVX40de8Ot2s8f/Rv8/Cm49wll3DF0W/M0OP4ehWkz6D64kWhvO9Mu/edT3ODHn3YB3mAl+VyKxOD7pCN9VE+bg9sbAMPESkcZOrq76BYPBmLnMVweJG/R376FmjPm43J7sPMW0f4jeEsqKCmvLrrR23nLqXdPMnx8T5F9F5GxeDbbwMhbmt1eVINerwlF2YxOcuSykEkjqRRm02lQyOuYM1iGpBMYE5uU0Hc5v32iBoOGbet89fpXMC9uUUBu5bC3bznFxA5Ef03zeTXCK69QMD88hFUxjj+3ttLe3s71119PU1OTuuTbNuvWraO+vp4pU6ZQWlpKoVDANE06OzuL5NOrr77KgQMH+OxnP0ttba0qnFyqdOnu7qahoaFIOvkcBWw4HMbtdrNx40bmzp1blNjfcsstbNq0ifr6eiZPnuxcM4fb7ULEIpkcJJtN0Nm5mSlTrmJk5CjBYDXbtj3JggX343YHyOdTbN68gpaWbxKLdVNW1ugkH6l6o7OzjUCgqnhORcVkEok+/P4Kurt3EgrV0dm5hcrKKZSXN7B5swL+eLyX6uoZ+P3lRUZ+wYJl+MafSc7lpRNVgd4LTEPjZU+mB04ezYzWvX+wnLp8ANz/J5f/E4D7/y8WyWYRu4Bh26d0vOalV2ndu8tFofX3mHMvwxpfTT6fp7u7uyhxz2azeDyeIovudruxLIs33niDK664AtOpXXvttdc4ePAgN910EyUlJXR1dVFeXl4E8SLC66+/zsUXX0xpqQIOr9fLn//8Z5qbmzn77LOLsqXReygvL8ftdhMIBLAsC59PwVChkCWfz5BIDNDW9hjz5t1DV9d2Kiom0dQ0H9P0MDTUjtcbZGTkSLFjbGm5n46OLZx99qd59dWvc/HFd1Be3kx39w5CoTpKS2vJ5ZLk8+liVFxZWQMiNl1d21m9+pOcccZHuPrq79PVtZ2ysgY8ngB+fyU9PbuomXwluDzk0E6vAgXoX2NM/n4nypyPMu0ZIIh2iBYKvG9Hgfb1aGd5j/MoASqBMArWP4JK4w0oThS8DbQDi1DpvTMNxHGgNpuAXPwUh/gplVOoLa1la8dWaoI1DCQHmNc4j0w+w90b7uauuXdRE6zhztfuLOajn+wub2CwdM1SXjzwIjfMvIEfXPMDbLHZ0rGFT67+JC9d/xINZQ2s2LKCZQuWUVVSxZ2v3aky+oopHI0cZfnm5axatIqB5ABTy+sJZLoxDqyAs+5SaXoho2Z14y923lFRkJruBneZxpkljzuy+n9Rd/lMv9bC21kY2QUV5yroNowx6bmdVbCZ6oIDj2geeWiqjljFVsn9/rsdJr9WQb/p1Vrv0EQFzyeD6OhxCNUpy5+LK7B3jRYz2Ap8Te+pbD2MuckX3eO7oGySw77nTjW4Mwxl38smKegfnTgYjW6zcyqbD9Y6LvBAekDbcAfUbT7Rpe7xu78Dlzyhme5WEjbfCxfdrfXt1bMcYzy07VS/TnJ4S533zQ19O2CkXeXye55Smbzk1cyutFFl9Rtv13zy0kb469dgweMkqSISy2GaBsGgh0ymgGFAIOAmGPzPS4NyuTzDw2kABgaS9PTEmTu3UdWuA0kqKvz4/W62bu3k4osbSKUsfv/7g2zb1sVzz11NNptnZCTDa68dZefObp588ipOnIjy9NM7eOKJhbjdJrlcAU8JHIocZcr4RrwuN5Zd4MhgB7Pqz8AWYTgZIeQL4HN7iaRjlPqCvNt3lHElZZT6A2SsXBHcDyRGqAmNY1ygjEODJzi9utk5L048k+QXu9fw5TkfY3yoEqtg4TZdeF0esnmL7775a/7xgmuor6gBwLLzHOw7RkVJKadVVhFwZTAMv/5P9N14Ehh/Fvpv1XgxzxTtWUaBd+1zYB1xGPIHFPD33TR27viHtWa9706tWTfcYxMCrnFg+PQzLvQ4bSwDVzUM3K5Rae7JkO8gSRPtIyl6EwnmNTaSyee5e8MGnli4kMGUxps9sGAB1YEA+/r6uLihQed+DINsPs+e3l6qSko4rbISv9tNQQS3oZGHtm0Ty+XI5fNUB4O4ndxhWwQbGEwmsfJ5GisqSFsWPrcb0zBIWxYFEWdSxWKyx4PZ369u8L29+pgzR/XlN90ETzwxxrbfdRdUVuqxtj2GkkdRcTQK5eX6j/rvUbPPp30KKHA5ckRZ+vp61b8vW6YIfPS86mq4+26SP/wlR4+Z9PaOeeC5XFou//Of69zA00/r5UeBe2mpzitMmqQAPBQac4a/7z4F4YYBO3boZQYHoaVFy+tHz+/vH2Po77pr7BjT1DmMrVvh/ffh859OEnt3N/5x4zj4859z9o03EqyvZ8eDD1J93nmMP+88Dv7sZwquBwepPOMM3H4/2UiEfCbDgR/9iOlf+hKZ4WGqZs5ERHD5fEUQL7aN6XYz+NZbVE2frvL6J5/krC9+kVRfX1FeP/vhh7EtCzufx0ok8JSqw7qVSBCoLMfz4o8UXL/2sgLriy+HJV+B4QGIR7R2HdE35pcnAfXPfx2G+k9izGv0mFhETevG18BQrzrGn8y4nyyjH1ejWfCFgsbB+Uu0jZIg2AUKbg+5tErT66Z/yOlvTSUxDLMogR8/+SI8Pv39Mpzyme53NhConEigsp58NomnJISVTjjMvEEupUzrkJPnbrrcuL0BCvkc/e9tpuq0C/AGK8hnk+SSEfyl4zEMk773NjF+8oW4fQF6/7aRhrMu09K1ggOaJ0zE8HqRXBb79VbMK68ei2pz2Hh7/Z801q20zPm+xJwouSsgENAot5bLkXgMY0Kd5rMP9GI2nUZhzUvF2DhJxDHKyp2YuCuQWAR79S8wr/8nZeWTCaxg6d/FwY0SSLZtFx3e582bRywWIxQKEQwG/079efXVV5PL5UgkErS1tdHS0oJt23i9XgKBAKlUitLSUkSEjo4OJkyYQDqdPuW6V111Fel0mmg0WvR2KhSyRKPHHFf5b+LxBLHtPH5/BabpOYUouvbaH7FmzY3/YWmn2+0nlRqmpKSCrq4dBIM1+P0VBIM1WFaqSF4lk4NUVk4mGKw+pUz0yiufwDRduN1+urt3Eg4fY/LkKwhWTCbv8iCGQdIZlfidtQE405kkUQ+lEtRg+Uw+AO//fvnAVf6D5f+bxeXSqXa3Z8wVdP5l4PcjYiPpFOaij1IYX00kEqG7u5v6+no8Hk8RbI9OFNm2TcKJu1m8eDEA6XQaEWHx4sV87Wtfw+v18tprrzFhwgRKS0uxbZtsNgtAQ0MD27dvL5rSASxYsICZM2cW3ezD4TDr1q2jvLy8KJUHnJlOIRw+SmvrzaRSQ/h8oaIBx/Tpn6SsrIE1a24kHD5KVdU0Sksn0tTUQkXFJObOvZtYrIvTTruCQiHHwoVPYJpu1q27hWCwmkSil0wmSjBYQ0XFFK699nnKy5uJxTppbb2ZsrIGliz5PVdd9V1M001z8wISiT683iAiNg0NF+MxDFIi5IEQsBsF4t9HAfSzKKt+EyprH12SqDx+EGXVnwBaULa+xDm/ATWwG3ba/j0qWwqhDPxDqLx+vvN4EK2pH3DangwEXF5K3CU0ljUymBxkTv0c6suU+V7QtICGsgbOnXAut627jZ54D7PrZ/PY1seIZWNFM7nxgfE8ue1JZtfPxmN6sAoWzy1+jtbPtvLs4mcREfJ2ngVNC3jnpneY0zCHrlgX35j7DUrcJfjdfu6dfy81gRpsbLpj3bx29DVchou6UB0Blwcj1aWgPTPomMN1KfBODyjoBYfFdYM7qO+yK6C16cFJTp2uqWB+7+16rjs45lKfOKou8knHlMg/HqrnQ/tT+kuVOK77TY8y9qEpCpJHwX6oQcHsKMvtcaZeypoBU4G1y+NEu+Hgc1MBMkC8a8y0LhdT+fsoSE50a626FBxW36MTAlJwBv+Gc31DQX5Zk1Pr77RlF9QwLtkLPW3KnEeOOJnRbti7Ss3mQhOhZYUCdgOdpDjv6xDvgfEz9V5Mr54TPQbbv+2w5w4wjx5XKf5ZNyhrXzcXYh3QtwvqW6C0Sd+XC+/V+zHdcP6d4PJiGgWGh9Pcfvt6jh2LkM/b3HrrOo4ejZBMZsnl8v9hV5bLFbj77g243SZPPNHG4cMjFAo2/f1JIpEMu3b1YNtw8cUNDA2lEIErrphcBOW9vQkeeWQTn/jEWTzzzGICAQ9PP72DF154h9tvX49pGuzf30cw4GVCqIpjw1343F5C3hLOrDmNt3oOUbALpK0sT735AlbBIm1lefSNf6WypJRIJs74QAUel5tZ9afzi11/ZmbdVN7uOUTGynLuxNMJekswDYNSX4Bf7F7D+vZt/GTHH/G5PBgYxDJJMvkc7YPvs/bgFoZSEXpjQzyy4SfYtk1NaBy/3L0WtykYdhT6b4LoC1D1TQXeVQ8AHgXgrmoYrYMHdZ3HDe4pCu6tLq1tr1rmnHuv1qmLAbWrwDtZQXv8RZXW41IgbwYUtI9uNwN6vdQWJ25uOQVMHm9r49rf/paBZJL9fX08dsUVAEyuqOBH115LY1kZ39iwgcMjIxwLh7lx7VqORyIURJhVW8uT27fTm0gUVUfxXI54NsvRcJi7N2wgaVls6ejgqHPOsUiEG9esIW1ZNFdUkM3n2dXTQ9KyOB6JcNurrzKQTBLy+Ujl8/RmMkhl5Zg0vroabrlFHdx+8ANFxMuXq0b9ySd1/2h9+tGjSl/X1uq5Dz2k61AInnlGzwWnhnpAWfV8XkGM1wszZ0J3tyLjzk69h1GHuVAInnsOUwpMnizU1cGXv6x4Px5XQL1kiRrF+XyKCfv69Bb6+vTSv/+9mth5vbrtlVfgsce02/D5FMA/+aTOHbhcp54/darOWcyfr3MTLS0qGBg1uKuvV3Z++y4vldOnE5g4kdkPPUSgvh6xbeZ8+9uc9tGPkhkaovuvf+XAj39Mzfnnkw2H2b18OS6/H39lJdXnncd7v/gF484+G8PlwvR61aju4YdJdHYyuHcvuUQC/7hxDO7bh+l2c8bnP8/Bn/2MqnPOoenDH2bG0qUM7t1brJ/HMHB5vbgDAQK1tbhHzeDiEbj6UwrIP/lliIbhjT8p4EbU7T0WUVb9a9+CxUu0ry0fp7Fuh95RSX1kGKwsVDnlVqEKaJqmjHttg5rRVU3Q6LmyShgZAI9PQf0rv9LrasGzThyIjZVOMH7yhcV4Lysdp/ud18mlopimm/GTL8Tl9mI6j4KVAaBu+ocIVU8in00SqKjFND1F93krE8cbrGTo2C6ive1Y6Th2IU/3OxvIZ1OUVNaRzyYxALc/RKCylkx8GEGom/4h3P4QGAax/qPk81kkMqzu8bX1kE5SaP0DAK7LF4Ppwt62GaNxks4aGQZy9D0kFlXVqGFi72wb2+/1qerT48VsOk2Vn36/yu5Nc8z4rm2jyvO3/EVN79o2YjadhvtryxTU5/MYgSAmUFlZSXNzM8FgkKampmLmetJR0Vx88cW43W4mTJhAMpnE5/Ph9XppbW0llUqxePFiCoUCuVyuaDgXj8cpLS0l6BhbhsNhwuEwIkJdXR2WZVFeXk5zczMVFRV8+MMfxjAMKioqKC8vp6uryyG87JPM4r5DKFRbJH3cbh8LFjzAjBlLaGm5n2RykJaW+5k58wYWLVpFeXkTixatAoR8PkMoVIPL5aesrIFkcgDLSrFmzVLi8R7q62ezY8fTNDUtoLR0omOKt6xoSldSMo5Uapiuru00NFzMWWf9A+HwcWwpcBz4ijNeLGUMpB9GiaR+YAKq8CxHPZOy/+Gv9AfLf7Z8ANw/WP6HF8PtxigJqClMPI7r2k9qvIdtI/19alKXSlCwbaLRKMFgkO7ubkpKSjBNk/nz52s7hkEikWBkZKQoaY/H42zcuBERIRaLFWMxLr/8ctxud3HmcePGjSQSCaZPn87ixYuL0vtwOExFRQUAbW1tTJgwAbfbTWNjI1u3bsXtdpNMJlm7dq3jbF8gFuti7ty7iMW6CAari06dbrf/lMgLMAiHjzmdWi9+fzllZQ2UltYRj/cWnTfb218hmRykqWk+oVAdhmEWIznAJhrtpL39FbZsWUFTUwvp9LDjKP8+jY3znb+9k3XrbqOAQY9hFDu6mWinl0Q7uTTQDbyCdo4F1JSuF/1SP4h2lAFnWy0qnT8GbENl9UdQ8L8AaEb55yAK1p9y2lzpXONkhv4EcLvbi2GalHhKmF0/mx3dOzgeOY7bcJO0kkSzUQzDYG7DXFa2rWTh5IU8uOBBGsoaGLp7iJ9c9xOay5tZtWgVAU+A/kQ/3fFubll3C7NqZ5HOpzk8cpibW2/mWOQYQW8Qv8tfnBQIeUOE02Fchouvr/86h4YPMat2Fju/vJOCFOiMdWJjQqAe2p+GyvMBA2oWaAxb4pgC1EyfAln/eJW4775FQbnp1WNGX6e64Yw7HdCe0i/E+Llw8AkF86FmBb1WCk77pzHDO1dA4+WGd2h7YqtsfudSiB12QLl3zJTOthTUmi4dGYcmqtR9VNpeyCnIjhzVY70h3WeYCtoBRz+ohnHjztIJAW+ZrkN1eqw4xxiG/sd4S/XeCznnvj26P1CtcvaSamXXS6q1Zj16DD70lB4b74ShdxS4b7gRrLTWpk+8GHzlKo0fXbxlCsyTvWpyN2qAV8iqy3zN+QrgPSUK+qPH1Uk+egxCtTpxYOegchqYHizbxfLlmx2n9zZcLoO77ppLZ2eUzs4Y7703fAqAz+XyJBJZXC6T++7T/uiJJxbS0tLIzp3dTJgQYurUKubMqScez9LbmyAQ8GAY8MgjmwCwbaGmJsidd86lvz/BTTet5fjxCE88sfCk2DkXjY1lWPk8Po+HmXVTSeUyrPzLLxCEmXVTOdB3lOpQJfdd8c/43T5+sWsNG4/uJpyOc+7E00lZGXpigyw+cz73XfHPWIU8dWXjSVtZVrz+M5I5VQz43F7uuezz/PGfn+Tuyz6PAQwlI/yg7SUGE2HOnXg6i86Yy9m1U/jpjj+y8ehuTMPA63LzhYuuI1swELNcAbtnstaqj4L1whDYcX3kOzXKrdADklKTOcMNhWF9nt4BnkkqcXc3qEw+f0wd6O2U1sGPTgiYQUi1aR18cfsy7ZHEgvRWdZev+iYuw82qRYt475ZbqC8tZV5jI6WOkdzxSIStHR0kcjm+MW8eV02Zwsq2Nl48cIDvtLVhGgYBj4efXHcdUyvVGFREiGWzeEyToNfL/MZGnmhrY3wgwPLNmwF4dMsWXjxwgM5YjKORCLesW1dk5DujUe6aO5euWIyCbfPUtm1UeTxq/lperm7xo2HmK1Yo0B4YgOeeg0OHdO3x6GMU5N96qwL43l49r7cXjh9XSjwYVBrbshSI797tlMGh39/KSpXNDw/DggVaE9/aqoj52DG45RZsTCzLKM4drFyp+D4UUgf400+n6PA+aoq/cqVepqVFm7n5ZgXaL70E//IvqvS3bWXkn31W1yL6FnzjGwrcRXTfZz6jf15Hh15j1L3+0UcV/M86D7IjI+xZsYJ8JkOyq4vBvXtJdHSw8+GHCdTWsvgPf+CiBx4AUMA9cybpoSFG/vY3mq++mguWLcPl9XJi3TqVx/87h3rDMEj19uIfN47dy5djulyc941v4PL5mP3ww6T6+thyxx1q4gZ4QyEK2Sy7v/1tEp2diC0a9TZ1BlTVKrD2l8D6l9QgLjKicvdkXCXfv3lOJfU19ZDPaQ28PwgTJiqoD5VDeFgBfMGCl34Cezbra8OZpc1loGGyGuFNdYzwRuPg1q/WfjqXUVBfKOApCeFy+zAcv6F8Nkms/yhWOoHp9uBye3F5S7ALFmLb2AVLAXguVQTdBSuLy+vH5fYT6z+qjvAouD/zihsJVjVgpRPE+o8ydGwX5XWn4ykJ0fPuG0g+h9i2005agX86DiJMW/B53N4gRiCEufA6BeWxmAJ2oPCXdZCIYy7+KOa5F2IEghhuD65b78Ooq0cS2o656DoF2yNDEBlRJt0f0Ek5ywIrp87ytg2V4zFCZZjXfAKjrAJz0Ucxzp2NufhjYNtILqvqTLcbu+sEtgG5XO4U9/fGxsZTyiRLS0vZuHEj6XSahoYGEokEIsLcuXOLkW+9vb34fD7mzZvHZz7zGRobG4vRx52dnUycOLFIaCWTyaJC1LZturq6ME0Tr9dLLpfD7XZTX19PV1cXImYRjC9e/Gwxuri19RYikeNUVEwqEkU+XzkVFZO45pofkkoNOulIAyQSfWzYcDf5fJZcLkFb2xNMmHAubrePxsb57Nz5LDNmfIrFi5/BshJO28eorJzEtdf+iEBgPPF4dzEdae3am0gm+6mpmUnGzrPcMHgFJZTyzng0ylj60aPO9nnO9gf4IBLuf3b5ALh/sPwPLWJZSCajv8Rut+ZuAlg5Cm+swyh1qqBdblymSXNzM2VlZUyYMIFXX321CKxHGfLRnMv169eTy+WoqKhg4cKFmKbJtm3baGxspLS0FMMwWL9+PZZlEY/HaWpqorS0tCi57+npKbL6tm0jIixcuJB0Os3GjRtpbGxk8eLFKomMxWhvb3fi49yUlTWwbduTlJU1YJperr32R7jdAYf1f47PfraVRYtWFUH+0aOvEY/3EAzWFIG51xvEMEwWLLif669/qcjU5/NpIpH36e7eid9fSTI5SFlZI9df/xILFiwjl0uyefNyDhx4ka1bVwKC2+0nkeijoWEuNkIf6u7ei8qIvofKjt5G2fd5KIiuBHags5hl6Jf6+2g9vAutb3+MsZi4atSRvoYxJh80A/4RFLg/4Zz7nHO9NCrPTzrnXgiYpod0Ps3O7p3Mrp9NbagWj8tDf7KfhzY+RF+ij09O/yT/suBfaCxrpLmimWw+y0h6hGw+i2maeEwPKStFVaCKFVtW8Er7K7gMFyUeZfMvabqE77R9B9MwiefiHBk5wt7evXhMDxNCE1i1fRXzG+cT8oYo8ZRQE6zBZbgYSA5gYGuEW9XsMbCcOKYRbZUz1QE+fmSM/XYH4fyn9FixVC7f8aK2UT0PQpMVNIb3A4bWvV/4A5WzD22H+FHwVembWciClQDfeMiNKMj3V+s+TymcdS8EHYM5cGLcRnSdz2rtuOFymHbTee51mGuPI2k3FUib3jHJfiGjdeij0nlvmU4CIMqAm17dZ1u63/TqvebiOglgGE4GvMtht71qFJcePDUWbsdyPTYXg10rFYAnuuCCbyjA9lUoSx8+TNGVfsNSZePPuF7PaX9RlQ/JPjWqGz9zLPItn9L72P0dmDhf78UdUIY/PeyoJQSXIaxatYhw+B6ee+5qfD4XP/nJHs47r46qqsApAD6dtnjvvWG+9KU/c/jwCKedVkGhYBMIeJg2rYqWliZEhKGhJNlsgcHBFA89tJGenjimaTB7dj22LRw6NMzdd2+gri5EXV0pl1zSRHd3DL/fzfPPX8vkyZVkswVqa0vxut1krByPbPgpw8kot7Z8Crfp4q2ew4wPKpB8q+cQuYLFfVf8M0999C5qQuP4b6/9mKFUlKnjGznQdxSAoLeEWfVn0FBew92XfR4RYX93O3m7gAA/3v4HwqkYGPDrPa3Mqj+dEo8PE4O7L/s8PreXL8/5GE9+5E5GkjFM06SubDyxTAbMUgXdgRYYuAfeP1/BuqtCTekkrfXu8Rc15g23Ans7DkOPQ+nHITAbUpvB6tDvj6eBr931FJPmvo7hbWD/uyPqQu8az9e+MptJZ39lbPuEZ8FzGljHyCaOcevyENOmtzDzohv40he+RH8yyYMbN3I0HGZLRwdHRkaYWVNDRzTK2TU1pCyLaZWV1IVCrFq0iBtmzuTxK6+kL5Fg6Zo1HA2HiWazLF2zhkw+z4RgkN5Egoc2blTgvnAhQ6kUDyxYgNs0ub+lhSUzZjCnoYHlmzfz4oEDPLltGyUeDw1lZTy5bRv1ZWUYwHcXLcLr8ajmO5VSavqnP1Vd+apVqj0frWevqVFAYVnKll5yiQLuV15RRn7OHKXA58wZY+hHHeXvvlt/fy++WGvajx9X6jybVUp85kwtMF+6VOPjSkoUIc+eTSEvWJbWoa9Zo2B64sQirice11u3bfXNW7JE5fDbtum2k9PpWlq0AuDoUWhr027ANFXJn89r7fp3vqNzCW7HZiIS0Vvs6ND2vvtdNdn/3vf0zy8P5jj4s58xYc4c3CUllIwfz/hZszB9PqrPO4/UwACFTIZdjzxCoquLWXfdRe28eWQGB4tAPNXbC4ZB45VX4vJ6uejBB7l2zRrOv+8+cvE47kDg1Ci4H/8Yl8/HwJ495FMpKs86iw+/9BKm2016eJg9jz1GenCQqpkzSfX1YdsFZLAXjhyA4X4F6UO9mt0+/fwxQN36O0gnx57nMgrqf/00JKPqEJ/NqKJpynQF/6kEfOZmOH8+rPmNnj/UB7/7IcQd0D7SD8cOqXz+a9+CG27RNvZtg9POxHXsIN6Scty+EsQW8rk0JeU1NJ3/EQLjJmJlkvQfasPKxLALFoYBnpKyYi26lYrS8+5fsG2LQi6DyxfgzCuWUjf9Q2RTUfK5FL1/20g2EaakvJqm869T2bzpwkonqZt+GYZL1Y9iF7DSKQKVEzHdHgyXG7fHDxEnvi0ZVzPj0jIKr6+BRByjvhGJRSCXQyIj6vw+Mgi2KFk0MoRhmhimC3v7ZoxgyJHHT0TSDlAHdeS3LAprXoLwEFKwNCbOAeiuxR9Tw7t0CiwLu/OETgg0nebMZRt4vd4i2z4K2jdt2kQ8HscwDA4cOEAsFiuSSaDnbdy4kWg0Sm1tLW63m6qqKsrLy2ltbSWfz1NVVUVjYyOZTIaSkhJcLhcejwfLslizZg2xWIzGxsbimNnr9ZLP51m/fj0TJkzANF2UlzdzzTXfJxbrYO3am0gk+qivn83mzcsRxwPGtnMkEr0OMXSUaLSzmP3udpcwf/49uN1+3G4fixc/Qzo9Qjh8nHPO+UcWL34aEZt1624jHu912l5BPN4HGPT27sXt9tPU1MKOHU877T5KLhfHtNIsE+ElVNl5C0r6lKMlmktQded2Z9xZixrUjcrkc844NMcHy//b8gFw/2D57y5iWZoJ3/p7JJPSafhYRDvGeMzpcKNIeAR70+sYtsqEstlsMdMyGo0SiURYu3Yt4XCYxsbGYk5lMpmkq6sLt9tdzMg855xzcLlceL1eLr/88mKHdtZZZ5HNZsnlcng8Hurr61m/fn3RoK5QKODxeIjFYhw9ehSfz4eI0NnZWcxzb2lp+TvG3bYt1qy5kaNH12NZSdLpIWprZ+F2l5BI9NHYOJ/bbjtCbe0sWltvIRbrJJdLMDJyhEjkfSoqptLUNL/I1GezUaLRDoLBatavvx2vN0gwWE1z86WUlzfj9Qa59trn+exnW1m48AkikeNFGf0553wOl52nQYQngVko+51xHnNRJv0WFNTvAs5F693Ho7OZNrAPrVf3ormaw2inOQ6Vz09DQf0R4EaU2X8cNb8LoQ7yt6OgvZOx2dLZwOcA2y7QGe2kJljDzu6dmGikW3+inycXPsnE0okEPAEmVUzCsi3iuTi3r7+dpJUkkolQsAtFx3i34ea+effxzk3v4HF5yOVzWLbFx878GM8ufpaAJ6BgvryR2fWz2dWzi0QuwaoPr+ITZ30Cl+EiX8izpWML/cl+zq09l7ygUW21V2m+eseLCsarZoMrpCx5dQuM7EFd4FMq3x4/H3ApuJ78BbjoR2NfhpH9Wh/vKXNq1xMwvEvbDNY7me1Lnbx2UYO3+BE91hVQQOOrUZM8d7nDnh9TKXjtBY7Te3aMPY++P+Y8PyqxR5QdHwXh4DD0Drj3BJWhRrStbEyPKZ+kYN/OOeZ3cT3G9Jwkox81r3MM8MRWNUL5FAXPc+5XRvxDq/S4YD0sfB7GnQ71C5RpT/TBX27RSYVkr7ax81E4+oqy8y4fXPkj+Of39JxREG8l9Lj2FzU+zvSoWV39fGh7SOPl0kOa8x57H3raMMlTUuLGsmy2bOmgoyPKQw99iN7eOLfeuo76+jKSSYvlyzeTyxXo7IwWGXnbVtf4gYEk+bxNLJalra2Tigo/oZCX731vO/PnNxIMegkEPCxaNIV4PMfKlW3Mnl1PT0+cu+/ewGc/O5OLLppIW1sn778fIRbLsn17F729cXr6Yvxkxx9Z376NoVSESDpelMMPJsO4TJPKklIefeNf6YsNMWviGUVWfDARpsTj5/TqZqLpGF2RAfZ1t5MtWCSyKfweH9WhcTyy4ScMJsKcXTeFn+z4I8lchjsuvYHzJp5JV3SAbMEi6C2hYBfoT4wwo3YKfYlh0laWd/uOEvJ5NZO970Zd16xUZ3lJOVnu1QraS2YrM17zhLLvA9/QnmaCTjzSdyf4zwXXeJXJ5/v45OV9bHnzVZqbG/U7hhvsKJ/8h6vY8tLFuh0g9qJODhhe7vvWagzTxaG3f887r57Ntx9dzqNbtvBKeztdsRgX1dczkEzicbmY39REmc/H0XCYI+EwS9esYTCV4gfXXEPI62WFw5w/umULkUyGFw8c4O4NG8AwivtWtrUR8HhoaWqiOhCgrbOTyZWVPH/ttZS43Ty3eDGtn/0sqxYtwhahKxbjlfZ2Ht2yhT4nCz5v22oOV1KiSPjIEdi7V4u6a5x65lRKmXSPR1HuKFKeO1f16Pfeq+c//LDas99zjyJoj0fp79mzlcZuaxtj2WfP1iLz/n6dMFi5UicBenr0mj/+MXz60/j3tuH1CpMnqzncrbcq7u/q0iZ6erQs/tgxLad/9lnd1tCgf8J9941Fxbe1qdN8d7fOL2Sz6pU3MKBzDF1dqtqfMEHnJ0RUBNDUpIIAR4XOI49o29XVYJgGF9x/P40LF5IZGSnS/4muLsafdx7Vs2aNMejPP6/gvqbm7zLZpVAgPTjI4FtvUchmi6Cr+rzzSHR1kYvFmLF0qUrjv/pV7Hye6nPPxfR4yEYiHPjRj7CSSQLV1VSfdx7tv/wltfPmUXXOOeRGRjBaf6eSd69PWfPycU5GezV87mtw+3L41E1QXgXf/R186kbtW1t/p0B+7e+0r45HYPVP1JHeVwJeP7z8M233M19VubzXp+z+ay9rH/rqSzDUo/L5086EY+9BdETr5b0+7MYp5FJRut95HSsTI5eMYGWSBKvqVYVzbBfxwfdVBu8NILaNlY7Sd3ATdiGvNe2VE3F7A7i8JeSSEVLhXgzThTdQjpVOMn7yBeSzSQr5LIHKOtzeEsQwCY6rU4FAMkLfwU0gEBxXR1ntNAYPb8dKxzUZcvMbRam6ITKW1759s5ZeNp0GHg9GeaXmsPvUd8Pw+jDq6imsfwWJDGNeeTWSTKgkPhlX9j0adjLdI+DxYM69VCX2bqf0IRbB7nwfCQ9RaP29JgJ4PBihEIV1f0RyuaIaNBwOc84559DY2Mio39Xll19OIpHA5XIxY8YMGhoaipnvuVyu+Hzz5s3k83k6OzsRETZv3kx9fT0iwvDwMJ2dnfj9ftLpNOFwuFgnv3DhQmKxGPl8vijHBzVYvvzyyx0Qn2XdulvJZCJF4qetbSWTJy+kpeV+DMOktfVWwDxJNTqW575gwQMEg7WEQnVEIsdZu/YmYrFOPJ4SQqFa1q69ieHhQ4jY1NfPLra9YMEySkuVrCora+D11+8hGj3BwoVPFNv1+yuwszGmOOPLHlS5aaBS+Wmow3wP6pnkQ9WiJ4P294AvOesPwPt/vnxgTvcfLB+Y0526SCZDYc3qoskHXp/OfgZDSDKBUVmFEQxp3VLjJPLnXsTwyAhtbW3MmzePsrIyDMP4u1z10Tx2wzDw+/2nGNmFw2Ha2tpYuHBhsYbdMAyGh4dPaTeRSHDixAk6Ozu59tprGXGu29LSUmTlN2/ezNy5c/H7/cUao1QqSjbb65h83E9l5WTC4WOEQnXEYp20ta3kqqu+Syo1VDQCicW6CYVq6ezcSmfnVi699GGy2Rjbt3+Xa6/9EYVCjkSij82bl7Nw4ZO43X7Wr7/dMa5rIpOJYFkZYrEO6utnY5rq3qpy/y2sXv1Jrr/+JcrLGymUVLGvrJ5qYJLzOfSgwPkelE1fDWwFvoPWE61EO8YTKNCeh4Lue4C7UTm8x9m2A6hzHglUAj+IgvI7UAAfQDvcpHNcD8roj2638zl8uRg7unZQHazmyW1PFvPXbbGJ5+KU+9Rk6fb1t3PPvHvY1b2LKyZfQU2wBtMwOTJ8hMfaHuOBBQ9wWsVpZAoZdnTtoC5Ux4TQBILeIGkrTW+8l95EL3Pq5xDJRBhXMg5bbHZ076ChrIHqYDX7evcxu9TG09kAAQAASURBVH42kUwE27ZpDo3DP7ITKs6B7DC89x2Y9YQytyJqOucJAYYC8UJGJe3+iQqsR83nEMgn1SneMNSNvpAay3D3VcH++7RtA+hYPeZI7x2nYN1wgVkC2X4F7oapDH/kqMrU/VWO5N0xhoudcOrcReXIJ8fGjeb7is2oS+6YG3yxEF6f27a+zCUc9t5wAL+zjJrZFbIwcnAsHz7r1MvnU9C9FcZPB18lpAYUwKeHVQJfMl4nEbY+AC3LtfY+PQK5qN6/y6v3WshCNqwy+t0r1cju5GXT3f/OkK5Zs+CxtVb//ddg0iIF7e0v6uTBgkdJMp5YIk80miUU8vDOOwPMndvItm2dTJ9eTUmJDn4GBpJMnlxJNJrF5TLweFx4PCabN3dQV1fKd77TxjPPLCaft9m5s5umpnIaG8s4ejRczHCfMqWSeFxd5oNBLw89tJFLLmniH/7hLKLRLGVlXtxuExHo7IzS359k/iX1WEaORDZFdaiSFa//jLUHt7DojLl884p/xmW6eKvnEJUlpYTTcaaMb9C8dQwEIWNlqQiU4TJMrEKeTD7L9zb9ln+66Drqy6v5b6/9mI1Hd/PkR+5kZt1UcnmLzcf2ceXpc3i79/ApWfEN5TUkrAwuw8A0TN7tO8qM2imUegp4Bk4ylat9Xj+TvltOcnyvcyZ1bMdM8CtQMh8C88fi20atgkeN5qxOjY4r/RiTps7mjy//lllnV8LwI47r/EQmTbuYP770K2adezogJOOD1E2aT9eJv1GW+gbEXyTddJxDMT9dsRgNZWXFnPaaYJDb16/nnnnzmBAMnhIF98NrrsE0DN6PRFixZQv/smABzRUV9MTjlPl8lHq9ZPJ5dnR301RezoRgkIIIyVyOkUyGJ7dtY9WiRUXzu2UtLTSVl9OfTDIhGCSdzyMiBDweSkTwRqMY0ag6sv3xj7Bp06lubDDm2lZeru/lHXcoOJ84cSzcPJ12TMtiimizWdWSd3SM0dyjTnANDae6vs2bp8i7r29sn9N+urSaSNxFMGiQTOo8wbZtKggYGjo1Xv7552HLFp2HGDdOlf4dHQrwAwGdk+jqUhB+/PjYLYwq9W1bWfdQSPcvXw7f/KbGyY2+vuceNaabMgXOPx+qylIkuzqLsW+p/n4CEybgrahg3xNPMPtb3yLZ3c2B559n+pe+hL+6GmybQjZLPpMpRr8Zbjd7li9n1h13kB4ZIeMw5i6/n72PP87UT32K0qYm7R5Nk0I2y/C771LpRHFJoaAA/vnnOeuLXyRQU4N7NKfbLuCKDGGMq0EKeYzj76lhnMerrHrrv8E1n1YJ/Es/hU98UQG5ndd69LW/HXOR/9X34PSZMGuuSuhdbu3Hw4NqUDfqWr/oenU8B/2fcbkVrLf+Tk3yihJ6oWAadP/tL6c4yQ8d30P9zCs1VtZ2SqqkQCrch6ckhGl6OPTmzyivO4OJMxeSS0YcA7rZeHwhAFKRPjwlpbi9JfT+baPu85cS6XmP0vGTcHn9IFI0AYz0HSJQXlesl8+lYwwf38vEGVdghE+KZRs3HmM0paiuXjuPbAZKyzDyeSSTwQjqb5rK4UvUbNAwdFID/Q0srHkJc+6l2NveRA7sx/zMlzDKKxyDu8sxKsdrjHEmDR4v9l/XY9RNxJhyBkZpOeSyiMsNsTC5sko6urqK9eujcW+mabJu3TrmzZtXjHnzeDyMjIywZcsWFi1aRCKRYOvWrSxYsICysjKi0WhxDFrumE2OyuFHa+NzuRxer7foPj9aOgoU05QA1q9f74xpTdzuPF5vCdFohxPr9gBlZc4EKEI4fIxkcoCysnonf/2blJdPIpHoxecrcxQFpcTj3Rw9+hrd3Tu5+upnTzGyu/TShwEoFHKEQrUAuN0+8vkMr776dQ4cePEkuX4OMLDtPF5vkJy3FAyDrDOurEDVmztQ0klQ0H5SAZ12jyhof5EPMt7hA3O6D5b/1cXlOsXkg1xW3Tm3vYlRVg6lZcioEciMWYAUTTna2tpwu93EYjFaWlqYMWMG8+fPx7IsKisrKS0tJZ/Ps27dumIUnIiwZcuWIhvf2tpKLpfDtm18Ph9NTU14vV5M0yQejzNz5kwWLVqEZVnF627ZsoVgMMjmzZs5cOAAyWSSfD7PmjVriEQilJT4TmHcLStJZeUU3G4fbW0raW9/RWemnbqftrbvEAhUk0j0MXPmDVx11Xfx+ytIp0dYuPBJDMOFaXoIhepYvPhZBgbewTTdJxnX3YplJfF4/A4Lfwf5fAYQOjq2FGX0DQ1ziEY7KfVXcr4Ijag8Poh2dPeioD0IfAqtDyplrDY9xZgMvg0F6neg0vc4yq7fgsrlR+vhU6ijfANac3QHOgs6hHawBvC+c6zHWceAB9xeXO4A85vmM5gc5JX2V4hmoypVTwzgNtwEPAFKvaXcN/8+Qt4QN5xzA2krzdI1SzkWPkbIF+KV9lfwu/1kChki6QjzGucxuXJyMcvdZbioK63j3Anncvv62wl4A3TGOrll3S1UB6vpifcQ8ASYXT+bnd07yeQz1JfVI6YXqTxfQXbpVK07d/m1rr2QVgDiDqh0XWwFm9UtUDrZyUdP62BJ8gq6DVG22lup7Hnfa5DqUTf6858CbHjrfmj8BFz4jObAuwMUgfTJISiFtF4z1KCM9ik17i41igM1aStkdcA1mm1fyI3VtYO26XNq2MV5LbYy+bblRMcFxyTwufjYd9tbqoyQtwxKJmhdPDiMv+g1Sxtg+G8Ua9595RCoUUYdQyX2l35X36tUP5RUgeHRmnVB379sFAITtK0Fj2u7A3udaLkQXPED/fv7dikLX9bkfCZx2P6Isu4lNeoqf8YSBf7pEQSDnp44Dz20UYHy/EbcboOJE0u5557X6eqK4fW6aGqqQESwbaGzM8add64nn7eZN6+RUMjDXXfNpVCwiUYztLQ0MXFiKS6XyVNPbefFFw+wYsUWRkbSpFIWU6eOo7GxlOeeu5rPfe4cenv1+r29CUSgry9BU1MFDQ1l5PM2w6koP2h7ie7oIHdcegOLzpjLly/+GIlcGrfpKprE1YTGUeYLEk7F+O6bvybg8RPyBbAKFtm8xdu9h4mmk/zjhddQFSjHwOCuD32O733sG5xZM4lwKoZhGFw+7UJcpsnZtVMIp+N8/sJr6E+MkC1YGMCTG3+N1+WhJjSO7/z1l7hNj2ayT+mB2h87n2ObMuuln9D/BzulteySATupwDt4lcrmS+aDEQTvNLAGNPN9lKEvux4KfWBHoNCrMvr4iwrutWHdPvB1KPRz9PgA4yoDrFjxOBd+5F0W/NN43njzbUIeD5c0N+Nzu4s16aMM+sq2Nko8nqK8/YEFCzCAoyMjBDwenl28GL/bTSKXO8Wc7vb16zm/ro6m8nL29fUhIlQHg0wqL+eSpibi2WxRJt8Zi3EiGuXbmzaRyqtfgmEYpPN5rGwWo6dnzJHtk59UTXplpdLbbW160dJSRa69vUpNjxaSm6YC7ptuUgBeUuJMLKpxGOGwFpDX1SkyfvppZfF7erSWvrFRt3u9Wqze0qIIe7TQ3DTJiwvbNopCgE99Sln1khKdN1i2TEH7smV6O3PmKKDP5XS+YPx4La3P55U5v+givcVRdn1wUA3o4nFV6999t85TVFfr9u98R4V6K1fq62BQ72HOHK21TyXl72rSD/z4x5guF2ffeCOmy0Wwvp6Zt9zC4N697P/OdzA9HrwVFQTr6qicPp29jz9OqreXWd/4BobLdYqMPtHZyXn33EOooQFsG8M0sZJJ9j72GJXTpoEIuXgcV0kJ/qoqzvriF/EEApg+H4Vsll3f+hamaWJUTYDhfozfPKeRbCMD6ure+m9jjHo6CVPOcvrvsP7hHq8y8qEycJkK8C9Y4PTneT3OykF4SNsdZejXr9bzO485zLxPa+p3bVImfsoMZe2jI2CaVE+dTXndGVRPnUM+l6Z6ymzyuTRWKkoq3IuVjtHz7l9w+0qw0gncvhKaL/w4E8++QomR43uI9R/FdCaIC1bWMatzU8hnifa2a827YeALlGPbeQq5DBiQHOnByiaoqJ+ON1BOoHIi6WgfhmlSe+YCsqkIVFQpk15ZBeER7K4TmPXNGF4/xGPKrjsxbVhZJJnQSYFgKZJJY7hcSC6LDA/q2jA1wz2VxFz0UVy33IvZPKVYRy9xR22WUFbecLsxF38Uo/E0ZGRI2fcNa6CQxwiW4jKgqakJv99PRUUFEyZMYMOGDeTz+aLys+D4S4gIZWVlxZjhRCLB4sWLKSsrwzRNysrKCIVCRe+lvNNv2LZdzHYPhUJFX6dR/yXbtos19qP176NjWr8/6GSoDxKLdbF48TOUlzdRKGSLDLppuqmtnVUci4ZCE1m37laef/58+vr24/EEyOUSbNr0CI2N81m48AkMw8WCBWo+N3/+fU4y0kQ8niDxeC8iNobhRkSYN+8eZsxYwsKFTxCLdbB+/Z3Ydh6Xy0c2qyq9Y4yVVu5kjEjaita+u/n7xQssQ0H7f1T3/oGMfmz5ALh/sPx3F8PjwRhXrSYfiz6qjHs8juvKayGkdX7yzn79cUrGMZJJFixYwIwZM2hpacGyLLxeLxUVFVx66aV0dHTwxhtvFI2CRsH1qHS+UCjQ0tLClClTijIhgHXr1hVrj8LhMKZp0tjYSHd3N6lUCrfbzbx585gxYwYLFixARGhpaWHmzJk0NzfjcrmKEn2tca93atzr8XhChMNH6exso6VF69UTiV42bXqEs876BIsXP0Nl5STKyhppbb2ZdHoYjydAY+N8vN4g+XyGzs42YrFuQGhsnAtQNK4brQMajZNraJiLiE0yOUBDw9yijN40PTQ1LUBcbvodc7rDKFA2galoBxdH5fBNKIMO8Am0nmgOysDXoJ1mM+pCX4p2hpegsvn56GTAE+gs5wrnHDdwK9rp7kCB/QTGaulPoFKnVfkcHeEj3LjmRhrLGnnnpneoC9VR4imhvryelJVi6ZqlxHIxakO1CEIilyDgCXDX3LuKcXBv3/Q2lSWVhNNh0laa7V2aFuB3+/EYHkzTZH/ffgzDYPnly3Ebbp5oe4JX2l9hMDnIvMZ5pK00d6y/g+pgNSXuEuK5ONl8FrJDKlUvZLSOPdUBbz+orLmvSmus7Twg+jrxPgy2aTY7olL4vXc6hnSusRpzbyVc2w6Vs7T94Z1qInfOI5Duh5036bUw1AxvZC+kTkD8sG634gpoXV4dKY86wI+CcnHq9UbrzjmJZc9nnBp1GatrjxzVNc7kgmGqEd3Jsvtc3DGqK1WmfdRtPnpcjyufpO0XchSN6+y81q7XztHt3Vsgclxl7fm01q6/cYte2xPQyRAEypv1nMhhNaHzBFS+/8ZXla3PRtUxfnSiwEDZ+rqLte2/fl3v0ROEK76vUn3TMdFb+BNtzxPAtoWVK9t48cUDrFypAKlQEFas2MIrr7RTWuojn7fZvPkEx45FCIW8PPvsTh555HLyeZuBgSRVVQFqa0Pcfvt6AgEvx49HuPnmVo4di/DYY1ewZMkM/uVfFlBS4qG83Ec2WyCdzrNrVzfptMWkSRV8//tX09hYhttt0tMTx+dz0dUVI5Oz+OWuNcyqPx2vy03Q6+eBhV+mrnQ8Zb4gBbuA1+Xm/IYzGUqGAehPjHB+/RmkrAwF26Zg2zzx119QWVJKicfD+GAF8WySZC6NYZicO/EMBhNhfrz9D4gIHpeH/d3tRXCukwKVxLNJEtkUaw9uYTAZ5qc7/sjZdVNgFM7aUa1Zl6RjPFeioHvUkM5do6Zymf2Q3g3uiQruA/P1GDsJnokw8qRGwxl+bcMI6vPoL6BkzpjrfL5HP/joTx0w/yj5QoETHQNMn+pn9/b1PP3MC3zhH79IMhLhaDh8Sk16hd/PkhkzWNbSgsswmFRRwdMf/jDVgQCGYRDweilxu7lj/Xr8bjc98TgPbdxITzyOaRjMrq+nJx5n6Zo1zKiuZjCdZumaNXTGYnzszDOZWFrKc4sXs+Yzn2FOQwMrtmxhdn09vfE4t69fX2wnZ1nw1FNar97YqEh3yhQF152d6ha/dKmC83nzFMB7vWOF5IGAsur33KPgvKNjzGk+FFL029GhEvxkUp3mm5th1iynb3CWVAree0+vlUqpdr2+HoJBxBbi8VMN70+c0OZG4+eff15vP59X9vz885W4D4VUJDB3rp5z001azp/LjTnKj0bDRaNjqv7RsvxPfEJv2e1Wv7xPjM4F2fonlpdDNu9l+qiEfelSsuEwM268EVdJCaGGBmzLYnDPHvLJJIP79nHWl78MgBQKDO7fDyKc+/Wvk+rrw+334/L7/05GbxgGqZ4edn7rWyQ6OnB5vcrSezykBwdJdHSQ6ulh5MABTLebeEcHks+DCGd96UvK9OatMVD9xp+U7TZNlcRffLky6iVBBeWxCAz2KEteUQWmoQy8CFRP1D++JKjfgbW/VVZ+2kyV3X/qRvj6t1WO7/Uq0P3V92DQqam/6BK9lmmMucwX8rh9IWpOn4fL41fA7VZZvJWO4/aVMHhkB9HedoaO7SFQqUalnpJSet59g1wqyoQzF9B0/nXYdp7eA3/FdHsQsZ12gjopMOUixDAJVNbj8QWxbYtUuI9ARS0eXwjJ58ilovS8+zpuXxArncT0+HC5PaoMWPsyDA8isYgqNdf/SU3iKsdpzXl3B2Z9k8a/WRZ25/uAqPmxYYDXiyTjkElj5C2oqHIk8wkHjI/V0Ru1EwE56VqvQC6HUVGJ2TwZQmWYF18C8RiF9X/CyFuaZpPP09XVRTqd5vLLL8fj8RTHj6PM+PDwMK2trcRisaIR8ui+QqFAd3d3kXBKJpO4XC5yuRw9PT1YlsW6deuIRCKYplkknDZv3oyInEJAjUrzFyxY4NyHm2CwmvLyBrq7d2FZKQzDJB7vKRJRLpcX285j23k8ngALFz7B1752jLq682htvbXoHL99+1N4vSEsK015eTPXXfcTKitPIxo9wZo1S8nnU4wbNw2AeLybDRvupqtrOx/+8NN4PAGi0U4aGuYSj/fQ2vpVEole8naeFYyVVo53xpgmKqEfHcOOAvEUShgV0Fi4n3Bq3Tt8IKP/98v/McDdMIxGwzCeNQzjqGEYWcMwhgzDWG8YxjX/u+/tv/oi+bzOTK5ZDakERmn5mKlILIJYFsZZZ2vcxtaNiNtNMBhk0aJFBAIB+vr6CDpys2AwyLhx47jqqqsoFAokk0kWLVrELbfcwqJFi4p1PaWlpZSWllJWVsbrr79elCxls9lifuaaNWsYGRmhpqaGaFRdzKuqqrjmmmuIx+Pk83kqKyu55ppriEQip5jVieSJx3tZuPBJgsEJqErgCV588R+Ixbpoamphy5YVNDTMdd4FA5fLR2lpHUePvlY0AjEMg2i0g3XrbiUYrCYe78bl8tLRsZVwWOuMxyI5vgeYXHfdjznnnM+RSPSzceODxGId5HIJJ57uFnK5OJgeHkU7v5XoF7UKdZTfjrLhpvPoQSPc+lBJkg8F7xWo9D1McWiOAXwWBd43oi7zj6GznMucY7pQU7xuFMgHnOuEnfZq0Cz3bMHC5/Iyv3E+3fFuUnkF6oeGNeqqM9bJiwdexG24sR0gKghBb5Dh1DALmhZgYlIdqMYqWNSF6miqaKKlqYVELsEtrbdwJHyEXd27mFM/B5/Lh1Ww8Lv9PHf1c7xz0zs0lTWxpWMLbtPNnXPvZDg1THWwGr/bT6nbi+Hyj7m6p/vBFYTzVkKweYx1HzV2M90QmqRxbukBBdumW8G4y0+xZl1E5e92QZn3QB1Unqtxcdlhx3zuLnWiF1sZ5fFzVYJfPU8z4b2VCrBz6pRL2SRllL1lCrpHwXlJjVNvHhuT7vvKTmXbRx3lCznnb3Gk864S3Z5zWAdf2diXepShL2TVud4w9J9jtN1RAG+Yag4X74SNd6g5XKBaGXfTBcGJcNn39Pi/3KbO8j1tCtgLWWXgJ853au9DcMl3VAIfnKDn9O5QoD76PqVHFKxf/oyC8+423R97X83trIQ+HKM70zT45jdbWLJkBvff3+J8Tw2WLVvASy9dTzqdZ8eObmbPrqe2VqWfTz+9GNM0iEQyVFb6GRpK4XabPP74lfh8Lrq7Y7zySjsrVmympMTDT35yHU1N5Xg8JpZlUyjY3H77embOrKG/P8lXv9rK++9HsCybXK7ArFm1LF26hsbGMvweL3dcegOzJp7BD9peoisyQCQdI28X8Ljc9MaG+EHbS5xXfyYz66aRsXKcV38GV5/VwmAizMq//oKhRITPXXA1QW8JVcFKhhLqGD+UjOAyDAp2geFUlNsWfBqAFa//jOqQlpL81Kmv/+mOP1HqC1EVKOeP//wk4wLlfGXOx5nbfI4q4Au9kDuucWxmGZR9UhUmxai2lUBeHeI9EyFwhX5mZgCsPmXZDRcMP+Ecv0K/L9ZxBfWGD8Z9U+vca3+iGe2GowypvBtOOwg1q2hqmoppmtzwhbth4C7OK/8ozc2NtP/tb/jdbi5pamIgmVSJulvd5idXVpIXYUtHB33xOC7TxLJtjjuTu88sXkzI6+Wp7duLDL3X5eLTM2YUXeWTlsUKh11f2daG2zQ55rjJN5SXIyJ8c/78U855avt2vC4X+0ZGkCeegI99TIH60qUKvAcGlFJ+7DGtO+/uVlQcCul61M49m1X9+aiTW0mJIt+dOxUhj1q933GHHjM0pGAxFFKEvXevtuHx6L5RN/vx49VNTgSPnaW8XJg9W9nxu+5SYO1y6TxDTY2C8rY2XT/4oO43TT3+kUf0eW2t3srwsF5u1B1+xQoF8uXlOv9w1VXK6D/+uLLrw8PKxodCOklw4sSYl1hpKeDyUNrYyOyHH6bEqS8P1dczuG8f8e5uDLebqpkz8ZSXM/vhhwnV14NhMPz228qYGwamx0P1BRdgWxbxri5Mr7dYzz79S19CbJsDP/5xkdVHhNp583B5PBz82c/wjxvHgR//GH9VlQL/mTMZfucd0kNDytQjcPw9laiPRsHlMmoeh+HEt9VofbrHo6ZzU8/Wzy+dgheeU1M7AQZ6NOe9v1uB+ce/AOPGq/v8icP6xlRUqTN9NKwxcFd9QqX0GAroq2uhYMPrf4CpMzDyOuErdoH+9zaDYRZj2zwlIbwl5Uw8+3KaL/w41VPngAjZZJjBIzsc5/k4LreHYFU9VjrBhDNaEBEysQEMw8QwTWpOn4vLG8BKReh+ZwNWNoGnpJxARS2pSB9WNgmGyfDxPQTG1eP2BQlWaX23y+MH08C1+OPgL8Gsb8LetQ3zyqsxPJr9LYmYAux1f4BEXGvQa+rUq0DsYpqC2TgJfD5l4cVG8nkn8q0UiUcxF16nMnjDhFwOs74JSSYcB3uh8OqfkOEhNcirHAc+H0bzFApeP9FotGgGFwwG8fl8jIyMsH79+mLUcDQaJZFIFMF13imd6erqKoL1xkaVr3d3dxMMBotEVU1NzSn18C6X6xTCyTCMU16bpsm1115LRUUFr732GrYNpummvLyZpqYW3O4S3O6SU8yWXS5v0Uk+EtFx6Pr1txfN5kZr1xcufIJcLu5EFd9CzjG2jcW6aG9/xRnnWvT27sXjCTJv3t1UVEwqGt+VlTUwffr1JBJ9zJ17F4lEH26E+0WKY8rTUOLoOLAUJaLSjAHxw8AW4BAK3v993XsCsBhzpV/OB/Fx/0cAd8MwLkKjqm9BScd1wEHgMmCNYRjf+t93d/8HLIUC9taNWt/ucsPJpiJtG3Xm0+VCDANz4bW4TK3XSSaTvPbaa0V3+Gg0SldXF/X19UW3+NE6nlFnztH8d8NhEk6W3E+ePJlgMEhzczOhUIimpia2b99OLpejvr6eXC6HZVkkk0mGh4fp6+sjl8sV69xHJfMqVVI5UTLZ73Rux7nyysc544yPUF7e4EiC7uWccz6HxxPAspK0tt5CPN7Dl7+8k/nz7yWfz1AoWEVGfdu2J6mvn0NHx9aT8txjeDxBrrnmB5imm46OzQwPH8GyUvh8pc4MaTd+fznxeA8f/vD38HgCULC4HwXU96FS+ALKoNeg4NqLjgFG3ef7UGM6C5W0VwIRZ22hTPmDaBTcqNncCvQL8zxaS+8Czgca0Zi4M53zbWe9EyeHM5+jN3KUhzY+xPzG+cxrnMfyzct58cCLPLX9KVyGi5amFvrv6ifgCdCX6OOhjQ/RG++lxFPCzJqZxHNxklYS0zBxmS6OhY8VJfQBT4C5DXNZsWUFZ9ecTWeskx3dOwh4AxweOcwtrbcQ9AaZWDaRcyecyz0b7qEuVMfFDRczkBygK9qFYbrBHVIwXXmuAtlCCvbdo/nrLsepPH4Y9nxNWfBCGjCg9DQF2/vvAXepMsrxI7DvG84x6PmpTgfg++CMOxSsF1IaQTfemfTxOIZzYimbn+7RmDnDrSB11OG9/LR/5/BuKpguZMeOG2XJTW/RwAkA/zjnmNzY8YWMstzeUm1rlElHHFCOAvtEn4L90ZE0UDS6Az1+5wqona1AfOPtWtee7NPa9LzDtp9/B+x+Quve9zzlgP55MO0TkIko2PcEVGkQPqIAv262kxXfp9fxBBxW/6gy9cFanTxJdMMFd+kEQjY6ZmBnGFRXB3j44Uuprg46b4nB5MkVXHJJM01NZcyb10g0mlET/FyBfN6mtNRLVVWASCRDKmVx663rGB5OMTKSZs6cet555yZWrVqE222SSOT4+tdfJZUalToKc+c2kEhYrFixhRdfPMBTT23H4zEJhdTI7rvfvYqamiBWVgh4/JR4fMyqP52f7/ozFSWlPPXmC9hi43G5uaDhTIIeH6bzWaZyGfJi8/Ndf2bj0d0EfX7qysbTFR2gOzLAUCrC+vZt/HzXn/G4PLgcuf1Tb77AUDLC2XUa+wbwpTkfU2n+nI/hcbnojg3yg7aX6IsNUV9Rw4TQOAQbrF7w1ELfTWAdchQfprq916+Bqn+B/DAkX9PMdne1msnlB5VdH3lSM95rnnAY9fu01xherkCegk4O9H1F2x+9puECO+yw+gOMr67iissvZf1rb0LNKo7nvs+JE52UNzQo297UxKzaWpauWcOJaBSfy0U8l2MoleLcCRMIer30JhLc0trKxNJSAm43/ckk6XyeZxcv5r1bbuFH11yjEx4iPLJpE/MbG5kQDHJ/Sws3zJzJd6+6Cr/bTWc0yivt7azYvBkDCHq99CWTp7D+BnDBpElYJSWKTE82h6upUaC9apUWldfXa6ZaT4+CNdC69nBYndy6uhRJp9MK2mfPVlRt20pVezxKaY+6viWTiqRbWnQiIJ1WRn/JEpXqDw2pm5xtU8jkSSYNSkqUSS8rU8I+m1WQfuLE2HxBMKgq+4EBvcX6enV/LxTGyvBnzdLbGXWHf+opvX2fD844Qxn4VasU7N96q96q36+l+/39ep2hoTEhQsBnFXPXk93dDO7bR2pggDdvuolUTw+Jzk52L19OIZ1GREh0dLD7kUfwjxuHKxgk47jAx0+cwM7n8QQCYNsEGxq46MEHKZs0CcM0mfGVryirf+ONGB4PJdXVGG43s7/1LUKNjZx/3314ysooZDLsXr4c/7hxpHp7kUKBQr6AjKtRY7nP3qLAfJTtjoVVIv/Cc5BJaX8aKlOG/IVndf9pZyhbL/YYax8d1pr27uPa1guOBN90jR0zMgC5rErjK6udiWOnvzYMZeCnTMf8tx/hyll4A+VMPPsKAIaOjmavJ7CySXre/QueklI8JWVY2SQul5fqqXNoOv86PCUhJ/M9Rkl5NX3vbQLA7QvSc+AvmgXv8mK63Awe2em0myq6DQYq67DSKUyXi7qzryA4rp6+g5soWFkMEQzDBeFhBeVWDnG5MBddBykny93KYTZMQpIJpP1d7M1vYARD+p3I51Uan3XKRwwTw+uDQJDCq69ojNyVV4Pfryx7MoHd26V1914vgmikXN5S6X1Ds7L2+bzK8QNBjLNngQjxeJxFixbh9/sBihnu7e3txGIx6uvriwlHo4QTgGmaNDQ04Ha7sW2bRCKB2+2moaGBXC7Hq6++SiqVwu/3s3jxYm699VauvvpqTNOkqqqKa6+9llAodMrriooKRkZG6OzsxLZtJ3nJIJdLkEj0YVkpTNOFbVsnKTtXIGIXzes2b15OJhM9xchuNIvdNN1kszHa2lYWVaCJRC91dedz003vcPXVzwEmZWWNvPHGfc5kwXy2bHm0eC2P5+RJg0ZMl4/JhsHzwGS01NNwxrCvoMA756xHx6DjnfXJTPrJLPtRlLX/z2T0/7ct/+WBu2EYfuBl1Cz734ApIvIxEVmAqoGHgQcNw1j4v/E2/8stks8j2axKxVwuzIXXYjROwt64HrGymC1XqAvo/MvAX6JypvAwhssFG9Zi5LK0tbUV8ytB3TGDwSCtra1Eo1Hq6+vZunUrmUyGAwcOkM1mi/nvra2thMNhFi9eXOwcR+vhR0H5zJkzueaaawiFQrjdbjweD4lEosisNzU14XK5yGQyzJ07lxkzZtDU1EQ0GsWyMhiGC683SGPjfLZuXYnXG2TRolWUl0/CNF1UVk4mGj3hRG70c/HFdxIK1REM1lBRMYn+/rexrBQtLfcXnTUzmQirV3+yCOIHBw8QCtUQDh9j3bpbioAeIJ9PnTRD6qO2dhaRyPusXXsTdjZKjQirUDfO46hMfTbKpM9hrE7ofNQ07nwUuLtQoB5GZUi3o6C/hrGot9nAGjTuzYsy75ud8wU1szvinGc5611OG37AV8jRFe3krrl30ZfoQxDub7mfJTOW8PiVj1OQAr2JXiwHlE6pnMIPr/lh0azO6/IymBrk9vW3c3jkMAW7QHe8m/mN8/G5fZiGySenf5JVi1ZR6a9kcuVkWppacBtunt35LHdcfAdu0004HabUV8qqD2se/M7unYS8IRorGjFwzLQAMLSGO93tMO6Njpu6V2XzZ96lIN4d0nOyg5Dqgmm3ao67FdPjLvieAs3w2wqMgw1aFz+8W8F0zQIHxN+pl7WzCuwzAwrU/dVqatf9ir62LYh3FW9RM3qCKlEfrVkfZcpHjxMZc4A3jDHVgOlI+UfZ9KJcPqfXMT0Ow2/ruZGjYxJ5w3Dq4eNjCgSxnbp6E654Ds78tALy9hfVD2DHcs1kBwX0oYlO7fmQ1rGn+pQZTw9Cybixtg0TKibr5/H6TWrEFzkCyR7dVzdXa+EvvAf2Pa0TLqEGjaILNUKoHm7sgYXPYwCBgIeammDRiC6dtkil8uTzNsmkxW23rSOZtAiHM/T0xLnpprUcORKmra2TZNKipyfO/PmNVFcHGT8+wPBwmvHjAwwMJFm6dA09PXFuvXU2vb1xbr99PX19CT75yemUl/u4//4FLFkyg8cfv5JCQYjFsmSzeQIBD8mkRUnQRU90kK7oAIvPnM+yK78EGNza8im6owqiL5t6ET6Pj45wHyv/+gtG0jEM4O7LPk/rl5+hxOPnqTdf4PTqJioDZZxXfwYfnXEp9ziRcCD43B5m1Z/Or/e0Mrf5HD5/0bVYhTwDiRH+0alxFxH+decrrG/fxk92/JFsPscjr/8UwYWUzIHhx8bYdcPUevT0TpW3exo1Gm5yO/jPV5CODa5xyqaXzFe23fRD7Y80Cz61jRsfKtBwRRVd3cMsuu5Gps5bDcMrufGrd9Bw1lfo6upm0bWfZ+q8UZbexQ+f/gZPPHorM8+7hI997rt895ln+OnRo3/nDr9iyxY8LldRAt+fTDIhFCrWpffE46SdulK/201nLMaDGzfSEY3Sn0ziNk3ya9dy6axZVAYCDBw9yrOLFzOcTnPhP/wDX7niCjIPPMAnKyvxu91UB4M82NrK6ttu4/orruCqlhYuPOccxodCDEajSHm5ItljxxRM53LqwDZqUDeaqbZypYKREyfUIW7CBJg6VY+xrFMZ93RajwVl8wMBLSK//fYxJ/lEQgH9aH8wql2/5BJl3cNhXGUBkkkhldJ5g4ceGmPcX3xRQXcopG7x1dUqmZ87V2X0N988RvwPDo6dKzJmbDc0pJfatk3/hFhM5fg9PfqnrFih1+rr0+M7OvSar72mf67XlSvWuB/8+c+pOucc/FVVXPr971N9/vmk+vro/utfOfizn2GYJqbXS82FF5KNRDCAdH9/cb+VSOAtK9NJgK4uTI+HeEcHe5YvJzBxojL2DQ0ku7vJjIwg+Tz5ZJJ9Tzyh/yvjxo1d7+c/p2rmTAqZDLlwGKOsUrPcd23S7PXRCLh1/zZW2y6iLLmVg9jI2P7p58HVn9bv1tWfVtb+tDMVoJ9c1/7Gn7Ts8LO3wNf/G0w7WyPOps6A1/8IJQH9MA6/q6DeV6KTCR//AlISROwCyZFurEyc2rMuoWLiWQTG1WOYLgKVExk6uotcMuzI5wO4fUEHdCcYP/kCrHS8WM9uFyysTLK43TAMMF1MPPtyTr/0iwTH1SF2nlRYJ14DVXXYeQvExjQ9TDijBdPlJp9LYdiCRCOYcz8EHq8j8HKB26Osu+nC7jiGUVaOef0/ae16oaClmo5Bsb3lr1rnn7fUGBlwLf4ohEoxfCUK9A1TpfBNp2mtfGQEw+3F8HgxfH7weDHPOR+zaTLEY9gb16sTPfr7W1payrp16wiHw/T29pJMJmlsbOT666+nrKyMdevWUVtbSzQaZWRkRGNtPR5yuRyJREJ/DlMpwuFw0YzO4/GwaNEiysvLT5HLt7a2EolEnEsr4QXQ0dFRrKVPJBKEQiHWrl1LNptCpEA83sPGjQ8Rj/dgWSny+TTz599XHIeeXIu+YMEy/P6K4r7S0nrKy5tIJPrIZKL4fOXMm3dPkTnfuPEhkskBAoHxpFJDWFaSREKZ+mSyH8PwsGDBAyddyy5OGkRTA1jOeHIpWtI5+jwJvIT6NAlj9ez3owrS+zkVkJ8M7pejwP8/ktH/X7mMyjf+qz6Az6D/B2Gg4j/Y/zVn/+b/0Tbr6+vl/+bFtiwp9HWLtfqXcuuXvijNzc0CyK6V35bcw3eK9fIL8t6e3TJ39myZNnWqXDjzbNl32xfFWv1LKUTCknr/mNy0dKlMnjxZzjzzTFmwYIH09vZKOp2W9vZ26erqkvb2dhkYGJC+vj6JxWKyevVqicVikkwmZfXq1fLwww9Le3u79Pb2yurVq6Wvr08ymYx8+ctflvr6egFk5cqV0t3dLbFYTPbu3SsXXXSR1NXVycSJE2Xt2rUSi8Wkvb1dZs6cKTNnzpRzzjlHpk6dKi6XSzo7j0tv7355+eUbJBrtklRqRFKpEYnFeiSVCsvQ0GFJpyOyevUSefhhpL19jcRiPRKNdsng4HvF4xOJAYlGuyWdjkg6HZFYrEeuvvoMaWiYKIDs2LGl2M5ttyGnn14lU6dOlvPPP0+++91F8vDDyOrVS+QPf/g3mTnzLJk0qVLOOGOKPP/8c5KwbQmLSFxEhp1Hj4hERSQmIgPOvi4ReU9ERkQkIiJhEek/6XXMWR8Rkb0i8sXbbpNG5zN9Zt8+GXHa3HTokIyfO1eapk2TpgsvlNZ335Woc81frVsnMy+4QCbNnCkz58yRP+3aLm/1viVr2tfIYGJQBhID0hPrkUg6IvFMXAYSA9J6qLW4rSvaJTe8fIPs790viUxCRlIjsmT1EuFh5IaXb5C+eF/xuDOuPkPqGuoEkE3bNkl3rFv2dO+Rj/zjR6SxqVEAeXPbm9J6qFXe6n1LumPd8qP1P5IL51woU6ZOkennTpdrnrpGCrmYyNBukc1LRIb2iOQSItmoSKpHJNklkgnr88yISLJHJBsTSQ+KdLfq68yQSC4ukh3RfZkRkfSASLpfbrt5qTQ797Lvry+IJDtFoofktqWfkebagG5/83ciW2/QfZmwc47+7+5b/4xIPieSGhax0iJWRmT4sG4rWCJ5S59nEyLD7brfSjvbs7q2Mnp+NiEy/J5INu4cl5Xbbr1Fmpub9Fq7dxXPu+2Wm4vf531b14vkkiJ5S9KJuHz0Ix+RadOmyTnnzJQrL79MDu96TdtODYocXSMy8LZIvFvkz0tE4j0iA2+JJPtF+nbrtr7d+j7Fe0TSIyJrbxDZ8z2R4YN6b/HusWMH9sttX/2SNDuf877Xfq3XyETktq+e9N7u2CKSiei+nh2y8EPzZeZZ0+Tc0yqlZe5sadu6Xd56q1fWrGmXkZGU9PTE5IYbXpb9+3Xbnj3dsnt3txw8OCiRSFq+8IU/yPe+t10OHhyUzs6ItLYekkgkLV1dUWltPST79vXKkiWrZf/+Xrnuun8UqND/w03bpb8/Lnv2dMvnPvdlaWpqcrZvk5GRlEQiaenvj0tXV1R27+6Wiy66WQD59e9+Kx0jvRJNx2UoEZZoOiGxdEKi6YR0jPTKRU99To4NdcmxoS65+5VVcs4Tn5K7X1kliUxK2gfel7tfWSUHeo8WH3e/skre639fktm0fO5L/yS19fr+fX7VN+Rg/3GJZ5Ly1Zu/KrX12v+82bZZNh3dK4cHOqQ/NiwTG+ulsr5azpwxXaaedbpM/nyLJNODIla/SPotka4bRHJdIvmISOaQSGqnSNcSkfR+fZ2PiaR367Zcl3POEt2W63GOiei29/wimcPO9vdErLBIrldf5+Mi6T16vDUoElujbeWjeu5BdJ2PSSKTkf29vbJk9Wp5u69PuqJRWdPeLgOJhMQyGbnh5ZeFhx+WJatXSySdLh4bTadld3e3LFm9Wvb39sqa9nbh4YdlTXu77HOO+envfy+7Dx6UxqYmeaOtTSLptMQyGfnTq6/Kvvfek6amJtm8Y4fEMhnpj8dln9PO6DXufPBBueyqqyQfi4kMD4v09IgcPiwyOCiyZo3Izp26jkRE3npLZMkSkbff1tdr1oh0dors2aPPBwdFEgk97oYbRDo75bYvflGaG53vwl/+InLwoMgNN8htl14qzQ0Nun3TJpH+fpGuLpF4XNauWiXnVVTIuaefLjOamuTnP/iBxEdysmaN3uKaNSJ+v97KyIiuIxG9jUOHxm79rbd0DXrM4KCu/f6xP2nNGhGX6zYJBLRP+dWv9smSJSK7d4tccsnY9n/7t33F43fsEPnWt9bJuedeIGecMVNmzpwj339ml4y8955svvNOGXnvPYm9/77kEomxbQcPStfGjZIcGJCR9nbp2rhRstGoJAcGZOs998jIwYPSvWmTJPv7JRuNSnp4WJJ9fZIaGJBbbrpJasvKBJB//ad/kmw8LtH+frnmqqtk6uTJMuPMM+XyD31I3t21S5J9fbL1nnukfcsWufSii2Ryc7NMP/NMWf+nP0l6cEDsVFIkFhHp7xYJD4t0HBX58eP6PBEXSad02w+Xixw/JJJMiLy1XSQeEUklRcJDIgd2i2TSIqmErjuPyW2fuV6aG5zfhk0bRTqPSXrXJvnotdfKtKlT5JzTp8qVLfPk8Fv7RDqPiby1XZY/+ICcPmWyGIYhf/jNryWfiEoqOiAde9dKNhUTK5uSvJWVvJWVVHRATuz5syTDfZJLxyUTH5FUdECsXEZy6bhY2ZSkov3SsXet5NJxyecyEu07KlY2Lalov3zh09dJs9Pn7dy2RTr3rZNYeFCuu/YamTp1isyceba0zJklf3t3v+RScUnHh+Xzn/9HmTZ1qsycebZceO502b5lixR6uyTffuCUtbX6l2OvuzqkMDQgdjolhUxG7FRSCrGoWC+/IIXuDn30dUv+0N+kEItKYbBfCtGw3Hrj2G/GntfXi7X6l5I8ekg+cvXV+v7NPFuu+NCH5OCzT0qhV8//pxtukJkzZsi506fLhbNmyYbW1lPGqENDQ5JIJKS9vV3S6bSkUqni2HRwcFCGhoYklUpJPB6XVColvb298vLLLxfHsclkUqLRqMRiMYnFYnL11VdLg/Od3bRpk6xevVqWLVsmF110kUydOlXOOussmTlzpmzbtk0ikUhx3JtOp+XBBx8UwzDk299+WGKxnuK4dPXqJRIOn5BDh1qLY9BUKiyHD78qkcgJSaXCkk5HnPFsWDKZuLz88g3S3b1HYrFuSSaHimPdr351qVRX69jlj398Wnp798sLL3xCFi26VKZOnSJnnTVNZs6cINu2/VmGhg5LIjEoCxbMl8bGiTJjxunS3FwhK558QgZEZIkomDp40vMlzth0WER6nTHpoIgkRWTpbbdJ0+i4ZN8+ERGJptNy2Uc/KqFp0+T0c86Ry6+8Ug4fPjyGU2xbHnroIZk2bZqcffbZ8qEPfej/QxT0v38BuuQ/w73/2Y7/Kg/guw4wf/0/2T/d2W8Dtf8jbf5fD9wzGbFW/1JyD98pf/nW/dJx5Ig0NzfL3rY27Vz7uuVDc2bLT596UgqxiPzbL34uF0w5TQp93VIYGpCv33yzfPWrX5VkMint7e1y7733yssvvyyZTEYSiUSxQ8xkMpJKpSSdTksmkyk++vr6ZPXq1ZJIJIod5SiwX7dunRw+fFgaGxvll7/8pbz88ssyMDAgLS0t8sADD0h3d7fceeedcv7550t3d7e8/PLLkkqlJJVKSTQalc9//vOycOFCSSbDsnr1Etm+/XvS3b1bVq9eIr29+ySTiUomE3MeCent3S+rVy+RZHJQ4vF+6e7eI+3taySRGJShoUPS1/e2ZDIx6e3dJ6tXL5G+vrdkw4Z1cuTIQWlqapK2tjdkaOiQ9Pa+JWefPUF+8IOnJJ2Oym9+8ys5//xZ0t6+Rnp69ktlZYW0tb0uqdSI7Ny5Vrxej7RFo7JGRPaLyBrRTu6QKPgOiwLqsIi8JSKHRYogOywK2ke3RUSk1TnukIj8/s035c+dnVLT3Cy/3bdPlojIbhGZd9ll8rl//VdZIyI/X71azrvwQhkQkV0jI1I5bpzsfPddiYjInzZtktOnnyWHhg7JQGJA1rSvkbf63pL+RL9EM1HpifXIwcGDMpwclv29+2XJ6iWyp3uP7O7eLQcHD0osE5PBxKAMJgdlTfsa6Yp2yf7e/XLDyzdIV7RL/vTqn2Tfe/ukqalJ/tr2Vzk4eFBaD7XKy60vy+6Du6WhqUEWf2ex7O3ZK4eGDkk0E5UL518oF918kezv2y/3fe8+aTyrUQrZiIL2FxDpalWgnh1RIJiNKDjf9gVd52K6r7tVZHifAvvoYd2W6tdjkj0i6X6R9KC82fqCdB5+S5qbGhSEZ4ZEcjF587krpfNppLlxouz72UKR976nbQ3t1n2Hdktzc6Ps27lVxEqeCszzDmBPDY+9trJjwD41rGA+l1QgPAryrayC5dRwsY0331gvne8fk+bmZgXuVkZk+JC8+ZcN0nniuLN9Z7HNdDIua1/5o9hDei/PfO8puXTBfAXrx1r1PUsNOZMbYX2dieo62S+y91kF6pmwSP9+BdrxHpG+Pfo8NajnJvtFkgMi2Zi8uWGtdL6zSd+rHZtEkoMiI4fkzXUvS+fetdJcE5R9W19zrjkicrRVwoe3iIwcFkkNye//7QU5e8bZcujQkAwMJGTNmnbZu3cMqHd2RuTw4SEZHEzIoUO6jsczMjCgr0eB/quvHpaRkZTEYhlpbT0kfv8jcsMNL0tr6wbZs+egNDY2yR/+8Bfp6opKd3dMHnvs17J+/R5pamqSrVt3SGvrIXn//bDEYhnp74/L66/vkXPOuUAuuOAi+d2LL8qh/hOy6eheGUlGJZFJycHe48XXJ0Z6pC82JNF0QkaSUdl0dK8cGeiUZDYlQ4mw9EQHZeux/RLPJOXYUJe8sKdVvrnmGYlnkvLpFbfJ67s3S219nax+7U+y6eheOT7UJb/647/JoaOHpb6xXj6/6htyqP+EJDMpiaTi0tTUJBvbNksym5a/9R6TTUf3imXFxbYGRWKtItbQSWB8vwLqURBt9SvwHgXWmYNjAD22RiQ/oqB9FNDHWvV1PqIAPr1/rN181AHtAw5of1sknzh1YiC9RyQfkVRmRGKZTBFUxzIZecsBzm/19UlPLFYE9eFUSo4MD8v74bBE0mlZsnp1EdQPJBKyZPVqGUwmT9k+lExKU1OT/G7DhlNA/r7eXmloapI//vWvsr+3V1oPHZLuWEyGTjq/tL5efvfb34o9Csr37RPp7tbnO3aItLYqwh0ZUXA9MCASDo+B+4MHx9DskiUi+/fr6+99T2T3bnnzssuk89VXpbmxUfZt3aoTA11d8ubvfy+db78tzU1Nsu+11xS0d3WJHY1Kpdcrbzlo+/ju3eLz+aT/RJ/s32+fconR+YOREV23tuqtHzyo8wlHjuj2/n49JhbT9eHDY3MQ+/eLPPbYm/Laa53S2NgsCxfuKwL9X/7yTdm9W7e/8cY+icf19tvbR6Sycpzs3PmuxGIiv/rVJqmrmyEnjmYkPTIi0fffl/TIiGTjcdl6zz3ywvTpsvWeeySXSEg2FpPoiROS7OuTyNGjkuzrk/bf/EY233mnZGMxGXnvPQX4/f0y9O67svnOO2XNr34lh/bvl9qyMml74w0Zee89ef1rX5OXf/MbGfrb36Rr40Z5/IEHZFZDgwy9+66896tfydUzZsgD990nPVu2yNa//lXqJ06UdDQqdnhIpKdDgXosrMA8nRLpPK4APRkXeXunyF9e0eMcYC4/XC5y4ohIIqYAvtMB953HRDJpeXP9q9J56JA0NzUqcH9ru6S7O2Ttz54X+/nHREaG5JmVj8mlCxaIRIZFhgdkx/23ytF9u+XS+fPlD7/+peRzGTmx588yeHxvETxnUzHJpeMS7Tsqb6/5jpzY82cHmKclEx8pPs9bWenYu1YGj+2RZLhPTuz5s6SiA5K3tM0//e7HcujdvdJQVyNtm16XZLhXhnvfl58//bBkklHJ59Ly5OPL5ZJLFkg2FZNo3zF58be/kOGudrEySfnj71+S5qYmybcfEDsRV3CeiEu+/YDkHrlHwXvnCd2eTEhhaGAM1Hd3SH77JrFW/1LsZKJIEBW6OxTQR8OyccNrcuLwIWluapI9W7dIfscWif/2X2XN6tWSj0akMNgvTz/xuFxy/iw9J5mUka5OZwIgIns2b5LKigpJOwB8lDQaBeLpdFq6u7ulu7u7CORjsZgcOnRIEomEpFIpOXTokGzfvr14TCqVklgsJi+//LJ0d3fLD37wA/nhD38ojY2NsmXLFunt7ZUXXnhBfv3rX0sqlZKXX35Z7rrrLpk3b57E43F55JFH5OWXX5b+/n654IIL5LLLLpNHH10hsViPxGI9Mjh4UGKxHhkaOiK9vfvk5ZdvkFisWzKZmKRSI3LoUKv09r4l7e1rpLf3LclkYkVgn8lEZXDwoHR375bu7n0yNHRINmxYKwcP7pbq6qC0tf1FVq9eIsuWId/85gJJpXS8vHgxMn16tYTD78vq1Utk3ryL5IUXfiKxWI8MDPxNonZB1ojIDlGg3uOMX5c448+4M9ZcIiL7nHFtTETefPNN6ezs1HGJA9zT6bT8ce1aidq2ZEXkmWeekUsvvbSIU1atWiUf//jHJZvNiohIb2/v/yLy+f+v5f8NuP+Xl8oDIWc9/J/sH3LWBqom/mBxllPk8CcvLhfmApXCX3rjrTQ0NUGhQGHLGxjlFQxaBfYc+Bs3XHQe9oa1fPJjH6MrkeLoUJgUJj/7xS+48447aG1tpaysjC9+8YtceeWVxfr1kx01RyPahof14xvNx1y8eDFut/sU47pEIsGHPvQhSktLsW2bqVOnsnjxYuLxOG+99RbnnHMOpaWlPPTQQ3R3d3PgwAEuv/zyYtxcIpGgra2Nz33uc7hcPhYtWsXMmTeQSPTR3v4KW7Y8SizWTTh8jGw2Ri4Xw+MJcO21P0LExu324fOVEgzWsG7dLVhWkmi0A5UKPVqsJ5o79wIKhaNO3dFjWFaSdNrFiRMprrvuElpbb+aaay6nq6ubVKqSysrJGIZBMpnFNL3k836qxlfzpN9PNWo+dy76jxxCjeXyqPTIRJ3lq1Bp+160hn3I2RZHjR9q0br2auDiSy7B1dCgkndUPv/owABv7d7NY5/7HA1A1Sc+QUdnJ28dOULk6FFKqqrwzZjBFqB+wQJ6O7vYs3cPt667lZpgDSXuErwuLyZm0YguW8jSE+/hlfZXKPWV0lzejNtwIt5MF3t69nB+3fmEvCG6Yl3MbZjLYGqQF5MvUl1XjSB4XV7KfGW0NLVwxWVXMO20aRgY3D7ndp7e8TQV/greOfYO+/fuZ1fVLlZsXsEdX7yD9FCa944c0yz1S9eoKVwhDZnhsVpzbJi1UmvVY4fVCd5fq3J6w6216oNtKkt0+VWybRfAMLjkimtpqHEki6VnwNBOKGS55EurafiHVpWtn3k31C7S2vmDK7nkiuv4f9j77zg36nvfH3/OjEZ9pe191xWMWdwAr+uSUIxxSyAJ5hBIThLAcDA5oRMwCScn2ICNAwQ4JJQkp6QBIQRsg2lx8LIuNIMxxmVdtnf1Ls3n98dbq7VPv/d+7+N3b27m8dBD0sxoZqSVZuf1ebX6UsRzT1buo13iZ4e8J71dpPKjk6bnb/lQOqVE8q7bRQIfbBdfu7NUvOwqByjO+dx51Ff6kYCwmMjgfY2cc87nqK+tzZ8AyPvfNZxamqWLz0crqgErw9ymBo4d74RIB5RPk0q5xJC8f5T0uYeOiRQ+0gmTLxaZvGaTpPi6hfI+Yr1SG/fmatmGlRMbgFKcc9ap1FcW533OWejbBY5izmluot6vwFkstoNUWPZXM5fixhkSbKfbCI30oyEJ77t3SwDdxImljBvnxzA0PB47Ho+dUChJVZUnL1tUKAXxeIbrrtuMZSmqqrxcd91mDh4cZubMap5//lLWr1/EzJlzcLvLUQp6eqRCr6jIzqpVXyKXKyKbVcRimUL13LFjQWw2je997yYeeeQR7HYHWStHX3SYElcRG/74T8QzSWr85Zxa0ciGP/4TqUwGj91FzsoRScWYVj2ZGn85sXSS/sgID/3pl5R7iklkUjzR9jwza6dw0+euQCnFD666hVMmTpKO4c/aOK1yPH5XEeOmnUJNXS2RVJwdxz6mLzpMV2iAB976BQqFTRc5Zrm3mGk1k9HJouWCYNaBSkuVW+kt4mV3Nec963eLJB5LOtqLVoLul8e1z4vPve86yByXKkBzosyLt8o2jTLI9JwQXKeBikP/DeKXz3QgkUMaGDVQ/ndgVAMGFm6OBAKs2rSJg8PDRNNpuiMRFjQ04DAMiux2/mHpUup9PhRQ7nbz6eAguqYVKuLWtLQUwuychsHDixezf/VqHl68mHQuhwKe+fDDggS/3O3mvtZWLKUocjhY19pKmdvNTVu38su9e7l9/nzOs9mwp9N88cIL0UZ7zlyusSq20Y60Y8fg298WH/ro/9rSUjF9+/0ikff5ZN0NG0Rbvngx9PVxzv33U59PNmfPHjGg+3ycM2cO9Xb7CXYZTfz0loXmchE891xYs4ZwOExZaSk2TLq6NG65RSTqc+ZIMP3hw2N2+5YWUd+3t8uhlZVJWN3opo8ckbfh8Yic/o47ROV//fXnMGlSPZomfe2bNom1/ktfOgfTrGd4WD4KEFv2rl3tZDJlOBxNRCLw8ssthMMdHO/8CM2wib/83nuJdnVx1l13sezllzlrzRoiXV3s/ru/w+ZykQwE2Pv44ySGhxm3fDlnr1mDsqxCyFwmGmX/z35Gx6uv4v/wQ8ZNmoRZVATZLPt/9jMa5s5l+YoVuMvLKTntNMqOH6erv5/9P/sZ1fPn86ejR7n6W9+ifNYsZs+eTVVZGdvefANt1NMeCco5PhQQ839pOZw6Xd7kxKnQ/HkY6hVvummHfR9AcCh/Ltfg1efH/OsDPZxz9H3qnQZYCj79ACachlODpelBtImnQWiEufVVHDt6BH7zEwgHaT7vAiZOnCSS/datkM1RMXkO/popZFIxMvEgumGi20zcpXWc+rlvUTftAjTDJJtKYDjcZFNxYiM9KCtHTdO5+GtPK6yfSUgVW+0ZF7D0kiuoKvdj5TIEu/Zhd/uJ9e7j0q9di5VN0vPJW8xfsJDjx44D4PSVs/jchTg9RfR+uo05c+bQ3dNDzu3B6u6QTnYUel0jxnW3orecL7+dbIbclhfEAx8OoQ58gopG0KedKY1Ghk1smrqOtXM7+txz0OwOzmlpoaG+vvAl005rwr30EpauWIEWFTn8nKbTOT40gr5oOYSDFO34I1plDcSiBN58BRBQNFolPFpJHIlE2LJlC16vl9LSUhoaGgr+9aqqKhKJBNlsloaGBiZNmkQ0GsXj8bB582YikQj19fXEYjG++c1v8vWvfx1N0zBNk+LiYpYvX85FF11ENpvlggsu4Pzzz+fQoUNEo1EuvfRSFi1axPXXX8+iRYuoqanBZjOx2/3E44Ns23YP8fggXm8Fra33UVfXjFKK4eFDdHa2UVt7Nqbpwu2uIBzuJBA4kk+KTxAMHmPbtnsAKCubRDabpLFR0dg4DperFE2z0dKyhrPP/gbf+95LaJrGsmU/5Zprfkw06sTp9LNgwZ0oZWGaLgCOHn2LvmNv06gUJUgg3cdIq9GT+evUCGOZTN2I5dMBnHPOOdSP/v3yk9Pp5ItLl+LTNOzA3LlzOXbsWGH5hg0buP/++7HnT2DV1dX8vzL9OQD3fIQKE/+D5SfOn/C/+Vj+r5lUNosaHiD38rOo4YF/C97dXvTPXQhuj1xsp5Ko9gNY29+ks7OTmqpKjN4u9AWfR3M4aayp4diz/8LhA/spKStj/YYN/PCHP2T58uW0t7djmibbt28vnBBH699M02TZsmWUlJQA4g1yuVxEIhE6OjqIxWJs27aNWCxWSKYfTZBvbW0lHA5z7NgxqqqquOiii3A4HNjtdhoaGgiFQrz11lsopTjvvPP46KOPCIVCuFwuLCtLPD7Ili3X4/PVc+mlz7Nw4V0cPfoW4XAXpunGbvfi8VSiaTYikd5CPUYsNlCod6ura0bTDBYuvJMZM77BsmU/xTDsjBt3DkrlOH78T7S23kdv7yDV1VU4HB4uuOABTNNFQ0MdnZ1daJrGz3/+BJdddgWnnDKFRYtW8NOnfsL3TZNBBFj3I8nx/YjffBcCzKNIdVsH0stegQD0GHBdfv2bkAC6FiS0zonUcigk5G4hcFVnJ1U1NXhtNqmF0zRKGxs52tHByCmnkBge5rO2NmYAu196iUgkwqOvPcqz+55lIDZAPBvn2k3XciR4BIB7374XS1nMb5jPx9d9TCKbYPUrq4llYoRTYa7bfB1V3iosZdHW2UZLYwtXTr8Sr+ll3XnrAAH+qVwKv92PQhHLxDg0fIjhxDCBZICHFj/E7u7dvLj7RWpralk5fSV3t9xNJBWhcVwjPZ2d4KqGsjniMbc5weaR9PeSaZAchPdukIA5Tz1MvVWC48rmiPc93ime9PdukAo33SavSQfk03NVj/nAy+fA8PtyYVa5UC6oAdx1YPrhzB/B+CskqM70AwY4q8S77SgWwB3tllR1zZAbKg/mj4oXPZfOJ3HnA+YMh6TR63a5iBxNmB+tirMXybqGLe9zz4rP3Mrkg+7Ei0gqnO9416WSLZfmkZ89xxdXLJNAOsMuHvZ8Oi3kffixbvG7v7tekutt+Ria0BEJmMvE5PXvb5T1dEO28/ZtchzuijF/PbqAfcMugXSVs+SCVEP25aqQvnmV4+t//U0aJkzme/c+yFM/fZru7jAzZlRhmjqWpXj//V48Hjs2m573v3tpbx/h1ltfI5dTOBwGEyaUcMEF4zFNndpaL489toSGBh+6rrFgQSNFRfL60lIXmgYzZ8pFwcGDw1x33WZqa4tQShGNpgsBdR0dIdauXc/48dM444yZ5HIWqXiOWXVT8NhdXHnWUoaiQda+8QzDsRBn1EyiLzpMT2iQT/raSWRSrHvzZ3QF+9E1jeF4qNDBHkvFC4F0GSvLhj/+E/XFlficXqKpOJPK6xmMBtjwx3/itMrxAPidXlomzuKM6kk8na9+y1kWF1/2ZWbOmMHNN9xIaCSIhQ2le8DWIPVtZh2M/Fi87JoDqn4qwNuKguYGcwJUPwm6F7QicC8UMB55VsLoVA5UEjSnAP/Ebsh2gnt+fhBgDRJcl3/NyEbx0WeHJYVeL5LfTuR5UCmyKse61tZC4nsomWRhYyNfmz6d2iJZ19A0bLpOVyjEqk2bqPX50IGJJSX8w9KlVLjdXLd5MznLImtZmLpO+8gIQ/E4e/r6yFoWt82fXwDzI4kEdy1cWAgMfHzJEsYXF/P4kiWcUlpKXVERtYcOccWVV6IcDkmVH+05AzGJn3mmfLfXrRPDuFLiRR/1rWcyYiwfrX+7/PKTy9VP7FrTdUmEA0G/SsmAgFISiqdp4PWiAb99+GG+9NFHjFuyhIXLl/OPp56Ky+eivl4VNudwyEsnTxY/eiolhzNxouTbWZYc5pw5kggfjYo/fTTYPhqV++98Bw4eHKueDwZh1ix5nsnA2rXSTPfMM4JvIxF44YVTiEaHuemmNkIh+P3vXyIWi9DTdRhQkg4/axaJwUHifX3sffxx4r29JPr66Hj1VTKRCJ/m0+GTw8PkkklSwSC5VIqz1qzBXV2Nq6qKs9es4XP/8A80rVoFgKbr5LJZZt56K/XnnUfk+HHev/9+UqEQb6bTfPmrX+XM736XhM1GJpulxDQLAyMTJk2iq69PEtxPnSbp8WhgaJL0/s8/liC6VBL+5ccSOFc3QVLo3V5Y+zSUVsHhT8T7fsUNsOBCmHjamLd9y2/k79x9XM6VLjcsvhROPwsiAR55aStfXLZMKuPe+L145g0bDA/CoX0Yzz2N3e1H1w0Mmx2Xv5p4oJdcJo0G6DaTnk/eIpMIYdhdZFMxMknpcu/d90dAQ9M00rEgnpI6XP4K6WZPhun55E1Mlxeb00vF5NloukH11HOwe0qw2d3UnH4ujz7+D5y3YCbZVBzdMHGXVDN05H1cxdX8+NFHWXLRYoxEHK2qVr5gloXV04XmcoOvWFqJtudDj1vfQq9rRL/0r9F8xQLmYxFUMokKB8E00ZdcjFZSKizk8JAE3KHQbDawO9DsdlAWVts21L49PHLffXxh+XI00yyEK9/5ve9xyswzufT+H/HsjasxDZ2WlhZisVihkritrY26ujqi0SibNm0qeNuz2WwhRFkphZb3x9fX17Njxw727dvHzp07mT59Oo2NjSilCr71cDhMR0cHhmHg9XrRNA2Hw8H999/PxIkTaW1tpb6+npdffpmhoSEuvvhiAGKxGJlM4qTgOaWkuWjSpAtJpyNEo714PBW88soNZLNxXK4S6uqaCz70VCpUeH1b23qUsgiHu6iqmkE8PiSfoUa+B/7RQjVcKHSc3/72TzQ1OQmFOigtnYzN5uTOO9fQ1DSVtWtfIhlxMj6bpEIpbgAOIMFyq/LXpUUIWB9EApDd/Pf96o888ghf/OIXC59ff38/f/jDH5gzZw5z5szht7/97X9zS//3T38OwP2t/P1ZmqbN+neWX3fCY9+/sxxN027WNK1r9DYaMPFnPeVyYyfJ7W8WajYKy7b+gdw/rMfa+gdAA4cTbdIU9JYL5KLDsGGsWIlWXAZKoXI5VOdR0m1/oqOjg7POOos333yThx9+mCuvvJLBwUHmz59fOCE2NTWxePFigsEgmzdvJhAIkE6nGRkZIRQKEYlEqKysLHSz22w2dF1H0zTq6yX1fcaMGYRCIZLJJLFYDF3XUUoRDAaxLIu9e/cWTrgDAwP85je/4bLLLmPcuAYsK1U4eUnt2xyKi8dTUjIRn6+OzZuvIxA4QkdHK9lskra2DTQ0LMAwHDQ2LmTatCtoafkeNpuTSKQbv3984SS3ZctqUqkwhuHgK195loUL15BIBLCsDNu2fZ94fIjOzjZyOcnQzGZzbNjwY3784++ye/cWtm7dwjVXrUIfGmQBApUGkIqEWoR1n49ITEwEmI8Gzg0jAN0F3A7UAJOQQDsdCfwYRsLuhpGwuXok+COfT86PkJNqUX47i/1+fvb88/z4zjtZetZZPPzaa5x2+lQum3YZmy7fxILGBXSFunjpwEus3b6WSCrCTXNvwm7YGYgNUOIqwWVz8Vr7a3SFu3DanCxoWMCDbQ9i023MqZtDKpeitaOVeCbO3oG9ABiawX2t93E4cBilFA7DwUBsAKfNSYW7AkM3OGfcOSw7ZRl2w85Pl/2U8cXjKXIUkcqmGE6GUVo+fd1RDoO7pVN95gMSQmfzQN9rAtATvXDgESg5UxhtzQaV5whD3/eaBNWpHHjHgVmc73qPCNgNfSLLy2dzUgc7QDYubH1qGFIjUgOn6cKSq9xYQJ5uFxBeOUP+4umwgO1cWpLfDXs+5T0PzvV8gFwmJusXEuHzwD50ZKzOTXcIW2848tsy8ynzGbk3Pfn1TEiFWbfxMQ63H+O+e3+QZ/dNYc49NZIEb2Wk8q52PlyyCWZ/VwYfksOgsmBzSG1c2z1yDBf8BP6mX8L/3NXSyz5a9TYaspcK5AGJJey6UjJ4MfiRhNf17pAAu9dX8U+PfI/OAx9y76X13POD77NgQQOaptHeHuC66zZTVeWlqMhOe3uAVas2cfRogLo6P+vXLyKZzLJ69RYOHRrmK19pIpdTdHWF2b27G13XcDgMDEMjlcoRDCbp64swPJygszOM12svdMavW9eKpml4vXbWrJGAOp8vxObNL3HDDbdy441bMQwdh9NGTz7J3dCNkxLh542bzrTqyTy960VKXEU8s+sP7Dj2EU7TjsNmZ0btqTy753UqvaWUuv0snjKPa+ZeQs7KcdPnriCZTZPNZfHa3cyokcT6M2omMRgN8PevPYWlLL7Z/EUM3eAbs1cwb9x0VvzgampvOIcV666luKSYVVddjYZC052Q65fb8H0CuHO9EM9HVuo+Ydg1Q8B13yrperflAX3Z7WOgXC8SwH8So94pX8/qn4CtWs5Go8x92d3C0useGThQOWHpE++AZseu5QrM+R0LFlDt9XI0GOS6zZs5HgyigJxS5CyL6qIibpk3j55wmJxSRNNpTMMgnk6zsKGBYqeTjnCY1a+8QoXHQ0coxPyGBmy6TiCZ5J5t2xiMx1nY2EhNHggPxuOsfuUVeiMRdnV3U+vz0TcywgvPP89Xv/513u7tFQDe1ycU9rFjwrjnwQkPPwyXXjpGZ9ts8j90YECWnxhG19kp3/1c7uSuNcuSaPZDhySKva8PZs+W9Z54QrYdDpO9/nruffJJXvjHf+T4Z5/x5jnn8LU//Ym+7gHWrdMKQXRHj8pmOjrk0DVtrAqurU0Ow+mU+9Ewuvnz5dBHU+I7O+XwHnpI3gLItvv6hJFPp+VjqKwUJt5mE4b+scf8nH/+84RCd3LZZWdx4YWvMXHi6USiDuJ9fUQ7Oxm3dCmVZ52F4XJx9po1hV728cuX4ywr4+y775bgulmzSAwMsPfxx0Ep4r29jHz6KbF8Cr27uhp3TQ2pfFCY6fVic7nQbDZsLheVZ5/NQ08/TXt7O7defjmpQKAwOPrxo4+SicfJxGLk0mnQddRXroKZ82CgVwB6KiWs+SjwTsbHHttsEjr3q8clMd40wVciYD6bga9eL8B7tAN+qdQ5ctFX5BhcHqishdJy1v1uM4cPH+a+b10hoXaXXw+eIjn3V9bAV1djXXoV6XgQZeUw7E7iwT6cvnJy6YRUtyVjuEpr0XUTTdOw2V14SmvJphK4SmoKAN3mcJFJRsllU/nu992FZHqAwcPvko6H0AyTTCJE3/63ue/++2k/cpQfPfokhs1E03U0zaDm9M+zaduH/O53v+cnjz9W6Fu3ervQbCZaVQ25V/8AoSBK0zGWXIJxw3cxln5JUufHTQKbTYKR2/6EZrej+YolCX40ET6bBYcD/fylYCly29+EUACVE6WKvviLPHCwiyPxJGuvvRqVyaC3nI9++VXc/8ADHDp0iF/ffjN3/uEV0skkPp+P+vp6SktLKSoqYvHixcycOZOioiIaGxtpa2vD7XajaRqRSIRt27YVQum2bt2KYRi0tLTQ1NTEokWLyGQyBAIBNm3aRDgs1ayjbL1lWaTTaV577TV+8IMfkEwm+cMf/sCKFSvo6+vj/vvv51e/+hVNTU3kcjnS6RSmaWfJkse5/PJNtLSsQSlFONyF11uDw+Gnrq6ZHTs25oH9OlyuEnTdpKVlDU1NK7Hbi04IVF6Dphk0NMwnFuvn7bfvLVy6GIYDUNhsThYsuIMnnvgNx4518PTTLxMOd5PNJnj00R9y//3NfOtbIcrLB7nssr/mzc3XY2STrFGKCxmrcetAgupWM0YwnYA6/tNp3bp18v2/7z65rMpmyWazJBIJdu3axW9/+1tuuukmPvroo//mFv/vnv6vB+5KqbeAtxHc8ZKmaSs0TfNrmjZR07QHga8jwdgwFjH9r7fxI6VU/ejN6/X+e6v9eU0nyOH1lgvAZvybZfrlV2Es/ZKMAhsGxucuRCuvoHH8BHp7e8nEY6hUAisSorO/n3Ff/QbjL1qBrussXbqUt99+m+nTpzN+/Hg++eQTioqKKCkpwe/3c8EFFxRY8wMHDhCNRjEMg6qqqkIava7rOBwOysrKcLlchZOjYRhomsZHH32Ez+dj4sSJRCKRgv9j+/btHDt2jEsuuYSZM2dSXFyMx+Ph2Wef5bLLLmPq1FPo7t7FvHm3FE5euVwGy7JobFyAzeakoWEBbW0b8Hgq6O7exaJFG2hoWMjISDu5XIalSx+nuHgcgUA727Z9n0CgHVC0tq6jrq6ZaLSPRGIE03Tj89UxbtwEenq6+fhjGShwucrp6uph4sTJvPfeDrq6jnHxxd+iuHgcM2c2UVtXx3t7PiIDtAEzkRRGN/IlziBg+z0EvD+GjFy2MFb7ZiCMfAciUUrmtxVHTppxBJi7gNqGBvp7e8lks4wAtypFV0cHZzQ2YgFnnHsuL/7pT/zp/ff5m40b6enpZc7Z59Lgb+DaTdfS4Gvg4+s+5vGlj1Pnq8PUTd7reQ+P3cNQfAiv3cu7V79Lva+e67dcz4KGBWxYtAG36aYz3MkNr9xAhaeCznAn5e5yIukIoVSI19tfZ13rOtK5NN959TvMrZ+Lx/Rg022EU2HCqTAlVSX09vYSSUbIWqIcaT/WzoxTmtDix+Dd64Uxr5gPnjpIDcHua0UKf+Fu6XmPd8GMtfL9H2wTplshr/lip9xb+bISwyGsuuEUkFE8XZh53T5WG5cekZtuCNtvuIVh1zRAgwMPAXl2PCX/zNHzTHuhDk4ToG0vyqfBkx9dUcJ+W5l873uenU+H5V43x7rZya9/YhVcOjrGroeO5FdRkI7w4KNP88KLf+CVzZtwezz57dmhbgHYPdIr3/+edKnHeqHyTCg5VbZluKRvve0ekdWfs14S5d+4DqI98h4G3pd9jla9mS4B+x8/OVbF564c67Mva5K0+YoZwujXLpDKuXSEv67fzZ/e3s7w8DCmqePx2DnnnEZ6eyNYlsLjMbn11nm4XCb9/VFuumkrlqVYt+48fD4HmqbhdpvU1BQxY0YV77/fi66LnP7dd7uJxzN0doaJx9M888yHKAW33z6flSubWLOmBZtNw+MxKS938dOfLue993YSCPSyaFEzr7yymvfff5e/vWE1q79/a75L/UXOqJ6UB+BfoqqoFJthcPeiq6n2lXPbuV/nV1euJZFJ8/evPUVveJC/mrWYZ3a9SCyT5G/mf4U6fyV+ZxGf9LXTGxoikUli0w1K3UVcM+cSFk+ZV6iei6YS6Brc/+bP2dNzAJ/Tw83Lv8niKfO4duGXufE736G19R1S2SRkh8BWJWnwZXeA50Kpa7NVQP9qyLTnzzy5sYq30a725MdglAszb2uUujcrJinzrgUC+t0tckbKHIH+bwv4tzVA5cPy2r7VMlBgq5D9ZLqE1QdcepRTS308uXw5p5aVomsaa7dv56UDB6j0eklls+zs6qIjFCJrWWzcsYOZ1dUcDYW4cetWDg0P47bbueyMM0hks4XU+Y07dtBcVzeahcMv9uxhQUMDdsPAUornPv2UnFI888EHBQl9hdtNVyjEHzdvZvyUKUw57TSmV1XJ7+ehh2DGDEG8N98sv794XLTlbreA64oKAejt7WM9bOXlQmvPmCHI17IE5K1ZI7rzxx6T/8HxuID9jRulo82eH5ScORMefBCCQfbU1tLT3c05//zPcPQos59+mvqSEj5p/6ywuQULBHS/9JLsLhqVNPl58+Tw5s0TMG8YAthvuUXAuGWNjSU8+KAo/Pfvh0cfle0ND0NJCfRKaQp2u8jx7XbBVqGQSO2Hh+GFF87lmWf+xGuvvc8vfrGRrq4eZp99Ks6SEkqmTOGDBx4QwJxIFGrgbE4nZ3/ve8R6e3nv3ntx19Sg6Tru6mpm3XILms3GgX/6J0qmTEG326mYNYv9P/sZViqFs6wMpRShgwfJJhKo/EDn8wcOsPn113nxt7+lce5cDKeT0uJidKX4eNMmNF0nMTDA0SNHaKyrRzMdkExKWvxor/qE0wRML7scnB742x/AFaule/3NP4wB+SK/1MIVFQt4H+yVZHjDJh3wlbXyPdryG+mHH+iB9n08uP4BXvj973nl+d/injwVfvtTyOQl+DZTBm/e3YaCfO1blHigF3dxNbrNztCR9wj1HmD46PsU103FsDsKqfOxkR5Ml5fiutPRdBvuklqGj36Iu6QG3bCTTSWpOf3znPK5b+IurcPKpIgHetB1m4ihXH5+vfUjXnzpZZ7ZcBsOUyMVC5KOB4mN9PDc737P2rX38cKvf0aJ3y3nd78fvXECysqh2e0Yi78g3/fgsKTAZ9JYXcfRLOmkt95+A61hPPqi5Vg9neAvRvMUgd2O5vEWauHIpEUZevww2Ew0NKzuTjY+9hgvfnaYzZu34D31NFnflAGA3ObfQTzKhXfdQyQW46NP95PJyLVgLpcjm1eiDg8Ps3XrVhobG1m0aBHxeBzDMAp1xbt37wbgwgsvBKC4uJgVK1ZgmiZ2u51oNEpjY2NB1u12u4nFYmzdupVIJMKePXt49dVXef7559mxYwfpdJr333+fvr4+mpubmTp1Kps2beKJJ57g9ttv4pVXVuPz1WGzucnl0ng8FXR2tmG3ezAM86SmI8NwoOsGfv84Lrroxxw48DKRSA/Ll/8Un6+RaHQATdOx2z3MnXsTlpXj7bd/SCh0HMvK4XD4+NnPXuSXv3ySf/zHjUSjhykqqiWZDJJM7mX+/Ns544yVrFv3jxw9epzm5ntw6wanaBq1wJ1IevwcxlLif5y/VlWcXAH3700PPvggL7zwAq+88gputxuA0tJSvF4vV155JQDjx49nwYIFvPvuu//F1v48pv/rgXt+uhR4ByEPX0Lqq9sRK8UjwOgwzMj/Pw7u/8RJs9nQyiqFNS+vQDNsJy8rrUCrqUfFY6ik9FZrdjuaYaOyspIzZ87kX377LAC/2/oa9fX1nLrw85RPPoVzzz2XJ554grq6Oj799FMOHTrEpEmTME0Tn09ED9u2bUPTNBYuXFio2ejq6sJms7FkyZK85ztGX18flmVhs9koKioil8thWRapVIr29nZaW1sZP348M2fO5Lvf/S6ZTIZQKERtbS2TJk1ieHiYV199lRdffJEZM2ZQWVmJ3e7C7x+H01nC8uU/pbh4Ejabk0RihHQ6BsDUqV9m0aINFBdPoKbmTEzTfZK/PRQ6hmXlCt72UcmRSJYWE4sN4HKVYrM56e7ejdercdZZs/F4bmLFiqfYvv0zGhoasdv7aWhoZGgoxPbtL5LJxNm3732OHTlC7amnshs4G5G37wTCiCQ+i1xGn4GA8A5EjnQk//glxENUgQDzODLSWZl/vgDxyruQH8qaykqmnHkmz/7Lv9AAnP+731FbX481eTJtwLHeXlbnt338hz/kc+edx+mTxuMwHNw+/3YqPZV47V5ufPVGjgaP0hnuZFrlNHojvdyz7R56Ij1UeavY0LaBBQ0L8Ng9ePPebofNwYKGBfx414+ZUzeHofgQfoefUlcpv7/s9/x02U/JWllumnsTnaFORhIjpHIpPHYPPoeP2upaJpw+gWd+8Qy6pvPay69x2oTTmDJ5Iuy7T6rXEj1ATsCl4RFZfLxH5O66KUz7R2sg2S8y+uHdEDsq0vjR+jTNlHq3Exn1dEhk7JBn4A1I9okcPjWQ959XCbsfOSSDCCoHjX8lUvVcSoA55IG5MQZadVOA+ihTjsrvWxureVM5AfCjHvhRGfyJPex5Tzlp8WnLtpB9+MblpfkaP3rsaX79m1/z+kvPUVzkkvo5wym++9evFfVAYkA877EeAeixHjmmnnfkOHetE1n8ew8KqIj2CoD31sr+XFX5eRukt96TZ19nfTsP/I+Lbz4dzjNfOahrAc0gGIrQ479AqumKGnix9meUlpXj8fjJ5QR8ffWr05g5s5re3iher52hoTiJRBan08batecBsH//EF6vnUQik8dWaTweO83NdeRyir6+KDNmVOH1mpxzzjjq6/3cdtt8bDaNyZNLeeaZFTQ0+Egmc1L55jJ5550Ovva1b9Hauo933vmYtra9nHrqDNZveIRfbXiSF7+5kdvO/Tp2w+SuC75Fra+cjkAfH3YfoDc8xPq3/pFAPEyZp5iB6AhfP3sZA9EAtf4Krp5zMYeHOnHbnXQG+7n39acp9xQTSITxu3ygwUA0iMM0GY6FCl54n9ODpRTfmL2CPd0H6Rrsx4uD757/TfojI/z6N7+hbHw1hm5Hqbh41LOdYJ4KtjqRr49sHAPp2W6wElB2Z54pvwOwgVkDA7dD9jiQhuEH5AxV9Sj4Lod0u3jfUVI1Nyqpz/XJ/gZuhMgvZZkVB5USuX52UNh8K4RLC+A3AnhNDdMwWNPSwvOXXkpfNFpgzzvD4UJVXCiVYl0eoK9vayOYTJJTivd6enjowgsLkvg7vvMdTp88mZ7ubt594AE2/NVfcc+2bVx1zTWs+9KX6O/p4f316/E+8QR3tbRQ4nJR7/Ox9pFHWPm1r2HkB8diuZzUvA0PCyifMEG+v7fdJix5JCKIeeNGQcejCHgU5VZUCMCfP1/AeSYjHe0NDQL0lZJ1ZsyQAYDvfEf2k80KcN+wAWpqaLjqKnoHB9n/4ouwdi2Hu7poV4qJE6dQXS0y+Wuvlfvnn5dD6umRMYTOTgHrliXCgY4OAfF+v6ynlIgHtmwRsB6Pw733yus6OuR5MCgtdCBvwekUXLlhg7zV5maRz/f29pLNytu4664fsuSiz9PotfP+/feTGB6mbNo0MpFIoSJu31NPYWUyoFRBJh/v7SUTixHv6+PDjRtJDg0x6447SAaD7H38ccpnzWLmLbdg83iIdnaSDoUoGj8em9MJlsX3rr6aZ597js0vvojf4yExPIzN5cLKZLhk+XLeKy3FME1eWLeO/pERzpk/D6Ih8JdA42QB5aWVUk/21zeJfN7tkXm/fByG+qRjffY5sDjPok8+A5xuqJ8ooL+oWIB4IpbPP1BwYC8k4rD1eX606U1+/cLvef3xjRRjCYs/YYow+P/0iID7bBoO7YNYWAC3buIuriYe7COTCFM99RzGnX0JtWech8pm6N23DZvDVVjPdHhBWaRjQdwldVRPPUdq2gBXcSXZdIJ0LAjKwrA7aZi5FMvKEBvpZuOGB/jnf3yGl1/4DROmLSSTiOIuriaTiLH5zXe4554f8Pvf/JwJkyaRSUZRmiYVbB1H0dBQmkZu60tS7xYKonm8qHAIzeMVeXwoKJ3r0YjUwlVUQWCE3KbnIDCM1XUclU6KZN1uB4cTfdEXwO5AJeI8/Lvf85tf/4ZXvn0NxSqLymVRuRxZ086hvR8V+uJ379rFwMAAE8aNA0SKvXnzZqLRaAF8NzQ00NbWhmmaNDY2omkay5cv54orrmDJkiVks1k6OjoIBAJyaZBOk8lkUErR0NDA1KlTOXEaBf2PPvooL7/8Ms8++yx+v5/m5mYikQgzZszg6NGjHDx4kEceeYQvfOEL3HnnHaxefQnz5t1CONyNx1NJNNrLjh0bKSqqIZWKMDJyhHC4iyVLHsfnawBgePggmzatIhrtw+9vwOerR9dNLCuD211COh3l7bfvRddtKJWjunombnc52WyCdeu+z/PP/4GXXnqefft+ittdTmvrOuz2YpSqpKRkIitWPMPbb39KVVUVtbXjMQw7rvx162TE425DVKArEYXoMeAapKv9PwLvP/rRj/j1r3/N66+/TnFx8UnLLr/8cl599VUARkZG2L17N9OnT/8PtvRnNv1HqXX/t92QS9xFwH3I9+SHwNn5ZT3IZfHc/862/l9PlVdKkuVz3R3q6gvOVXXV1cowDFVZWakmTZqklFJq/969au6cZnXKpEnqrFmz1J633pC0z75udWDfJ2r+/Pnq9NNPV01NTerJJ59U3d3d6rnnnivUt40myI8myh88eFB1dXWdVP124MAB1dPTow4cOFBI7vz617+uamtrlWEYyu/3q/Hjx6t4PK7ef/99dcYZZ6jx48erM888U7377rtqcHBQPffcc2rnzp3qrLPOUuvWrSuk2SeT0Xwyp1S7JRJBlUxGVHf3++q551aq7u73VDweUOFwr+rr+yifGL9HHTiwqVDDEY+PFFLn+/r2qng8oGKxYXXVVd9UNTWVStc1VVFRriZOnKCGhg6qjz56V82efZaaMKFRnXHGKeq993bkkz4D6he/eEY1NZ2upk1rUk1Np6un//mfT0rn/EhJQvyIkqq3LqVUn5LUzkF1cuXGgJIU+R4ldRw9SqlXlVKP5B9fuWqVctXVKcMwVEVlpWqcNEk9opR68rPP1Flz56oJp5yims46S7358cfqUH57K6++Wk2aMkVNmDRJXXbllapjsF/t6ZM6uA97Pywkwh8LHFObDmwq1MNd8bsr1CM7H1H7B/cXEuff635PrXxupeoJ96iP+j5SK59bqd7rfk/1hHvUQHRAfe2bX1M1tTX546tQEyZOUMFEUH39m19XVTVVyjAMVV5RrhonNKqPez9Wrx56Vb3/8ftqdvNsNWnyJDV91nS19EdLVTwRUNbIHkmUj/UoFdyvVKxbHr+TT0BPDCrVtUnq4j57RFLog/ulwq1QFdctj0er4bpfVau+daWqq5NjrKwoVZPG1SiVCqpVV31D1dXWKMPQVWVlhZo0aUK+Sm5IrbriIlVXijIMTZZNHDdW65aOSUr8aLL86PPRqrdMMl/Nlk+WL6ybHquEG02jz2XUqmuuVnV1tSf/bjNJtepbf63q8n97mT9RqUxSdR49rAA1ceIENWP6dDXjjNNU89mzJDV+5KAkwY8clHT4SI9Uuj2I3MeHxpb37B6ri0sElBrYk6+Ke1+eJwKybPMVatXXLlF1tflzS1mxmjS+QakjW9SqL81XdfnfeGVFmZo0cYJSqag69tkeNfusmeqMU8ep6Wc0qfM/36J2tO1UoVBCvfdet1q58jnV0xNW3d1htX//oOrqChUq33p6xuaFQkk1OBgt1MWNjMTVnj1SA/fhh71qy5aDqrs7rL7xjatUdXWt0jRdlZaWq/HjJ6hNmw6oL3/5SuVylcr3sLxCeb1V6sMPe1Q4nCwk2EciSXXWWfPU9+55XB3ol1q3AwPH1FA0oH75/hZ1dLhb3fbSw+qTnsPq7fYP1N6eQ+rt9g9ULBVXn+XXH619G4mFVCgRVdFkXB0d6lL7etvV0eFu9c2rvqVq83/j8opyNWHiBPV2+weqYt5k5S3zK8MwVElZqZowcaKKJePqo0/3qukzpqvycTXKWe1XCy74nHrvkz0qN1rfVkiPH1QqeUBS3xMfjiW8Dz8idXHZoFKZPqWyAal167rihGT5oKTKJw+PpdPHd40tKyTWfyTrhTednDaf7pVk+fCrcl9InX9f9pWfYqmUiiSTaigWU+91d6tv/P73ajAaLSTM94TD6qO+PrXyuefU+z09qiccVoF4XHWFQqonHFb7BwdVTzisDg8NqT29vaozGCy89sS0+Y/zCfP90agaiEZV4F8l1QcTCdUVCqn+kRFlndh3NtqJ9sgj8vjTTyVRfjTSfc8emR+JSBL9aER7NCrr5evhVl12maqrqVGGrqvK8nI1acIEpTZtUqsMQ9W5XPnfTpmaNHGixMSvXKl+dd996oxx49T0U05RZ5x+uvrlT36i4gNhNTgoqfKjqe/BoNxG523ZIqnvJ6bKjz7v6Rl7PjIi63Z1KXXsmFIXXbRK1dTUKV03VEVFpZowYZLq71fqG99YpWpr5VxTVFSpvN5J6tNPJZH+yiuvVvX1U1R9/ST1hS9cqTqPdKntN9+sfnn66Wr7zTdLYvwJ1W+JkRGVGB5W8aEhNbJ/v9p+880qMTKigu3t6p3bb1ef/fM/q2B7u0pHo4Uk+u0336xSoZD6xuWXq+rycvl/Ul6u6oqL1cdvvKEAVev3q+nTpqkzpkxRM6dOVYnhYZWOxdTxAwfUBeedpyZNmqSmnnaaevXFF1UmElbWiVVvb72kVF+X1MCNDEotXEe7zDvymaTMh4Ny+2iXJNHnq9xUOChp9E89oNQbL6pVl1+m6op98vcsLVGTJkxQnZ98LOfk8lI1Y+ppasaUU1Tz2WdLWv1P1qofnjlZ1RX7lN1uV2Uet6qrq1U93Z0nVL/1qEwyprLppNS+JWMqk0qoWKBPhfqOFKrjpA4uIbdkTGXTCZVJJ1Umk1LZdFIlIyPq6qu+pWprxq4DJ4xvVEcPH1SAGt9Yr6ZPO0NNnz5dnX3WLBXqO6KymaSy2WyqrrZaTTvjdDV92hlqxvTparCrayxRPl/pZgVGCmnz2YOfShXcYL8kyf/ulyoXCUvC/O9+KeuHQ1ILN9ivcrGYyoWC6pqvf+3k/3cTJqijT/5YPr+GBjW9qkJNH9eommfPVrm+bhXe856aP3eOajrtNDWj6XQ1f+5c9doP7lbJfL3b4OCg2rlzpzp48GCh5ejEa9fRmuLu7m4Vj8dVX19f4Tp1aGhIJZNJFQ6H1eDgoAqFQioej6srr7xSlZaWFo5x/Pjx6ic/+YkC1Lhx49S4cePU6aefrmbPnn1SFV1vb68Kh8PqiiuuUBs23F+45pSk+IgKh3tVLDakIpF+FYn0q3C4p5AgP3p9OTR0UHV17VYHDmzK18MdPOnatrv7PXXxxfNVaamcUyoqytWECePV4cP7FaCqqryqqWmKmjbtDHXWWbPy185davr001VDg1+dfvqp6txzP6/27Nnzb7BEJH8dekX+GvTT/LXsides31y16l9dl0xSnZ2d+WuSiWrGjBlqxowZqrm5ubDdoaEhtWLFCtXU1KSamprU448//j8Ld/6PnPhPUuU1NRqi9Gc6aZo2CQncHgZqlVL/lTKD+vp61dXV9b/92P5PnlQqSe7l51D79qA1zcRYcSmaw3nC8hTksihdRwNym54vrKt/7kIyvmICgQCtra0sXLiQcDjMr3/9a5qamgrJ8KPLW1pa8Pv9bNq0iX379hX877qu093djcfjIRaLUVdXh6ZpvPbaayxZsoR0Ok00Gi1I7ltaWnC73fT29lJTU4NSimg0it1uZ2RkBI/HQyKRoL6+Hk3LMjx8gLa29SxceCfhcDd+fwOhUCfPPfcVLr30eRobF6AUbN16E7W1Z3P66ZdisznIZlMolcNmc9HdvYuGhvkoZZFOR3njjTtYsOB2QqFOAoH2vOR+PS0td1FcPIlIpIuRkXaqq2cBimi0j507H2LRog3YbE46O9vw+Rpw+xtJO/3s0jQqkWTOfsR//iNEKmNDmHcdYeIjgD8/3wUkEOlJMSKxDyKyehMZ7SzKLwucsM4ok38H8ABjQXgN+Rv5dYxUlL/dfB33n38/0UyUWDqGjk5frI8FDQsA0DWdjJUhnolz91t3s+78dbhNN60drXzlua/w4bUfcs+2e3h237OsbFrJw4sfZuKPJ/LlqV/mJ8t+Qk7liGVi3P767dw2/zbcphuv3ctAbIB1reu4c+GdeEwPHtNDb7SX9W3ruWvhXTT6G/nV3l/xhckXUe8pQ9NtIsMeeU9k7TYv4hXXxthpKyX3ubQwv7HjkOgSiXw2CdkY2IshEwRHhaybjYLulCFDzSYMenJEWOVcEobfhZKZIvEebAN3vUjyPePAO0GOQbfnFewWwqjnhNqKdklwXS4FI/slrA1kfayx8LtMTGT1VjbPnOv594aESoaPg7dOtmN68t54WUV0avlgOsMpM6xMfh/5Y7JSIsvfvQ6a75IwOTTZbqQDauaIhz7WI0x+JgbOfPheYhDavi8M/CWb5P3sXgezb4eenbKtmrn5zz8NqZDI5NNRyCYkvE4pSAyDwy+p895x4G8sHGc0pZPKaHznO68yb149X//6DLJZi+HhOH6/E6fThqZRSJ6vr/dRWenhgw96aW6uA8BuN0ilsrzwwn4mTChh/vwGslmLnTu7qKrysGNHF+PHFzN3bj2JRIbvfvdNfvnLvaxc2cTf/d3nOP30f2DTpsupr/exbl0rd93VwrhxPq69djO3r5nDb4+/wLb299j4hZuZVjOZdDaD1+6iKzSA07STyKR5ZteLXDXnYhr8lfzda0+y9cAOFk+Zx/ULLiWVzdBQXEUsnRCWCsVDf/ol35i9ghK3j88GjlHpLS1sYyA6QpW3lHJvCYPREZ7Z9Qeuzs+fVXcaXaEBntn1ItfMuYQafznR5AhVbgPNComPXfcBGfGlZ7okfI4sxHeC2QD2iZA+LKx52RowKiD5gaTID6+TeeYE6Lta2PWilVD1OOiu/Nkqmz8LZeU7puXzGtDHrCQqJ3L64bWScJ8dFLm9IWqRRCbDweFh1rW2ctfChUwsKZELGk0jmpZ/8T6Hg5waq87RdZ2cZXFweJj1bW3cPn8+k0tLaevs5MyaGjK5HMOJRGGbE4qLSeZyHA8GGYjFaK6rI53LMRSPs661lTUtLUwsLianFG6lsAWDaF6vmLuPHROJ++23S8pbTQ18/DFMny6yeRBK2uGA7m5480246CJh1WMxoamLisbk9l6vMLJ5rzWBgMzr74f77hNZ/ahX/l/+RShywxAz+9q1RB/7BX/a7aKiQkj/u+8WGfvgoBxOOCwsfDoth2WasptoVNLjb7pJguyiUXEBfPe74l2/+WbZdZ6oJB6Hu+4S14BSsq1MRvaRD73HMGTZ6HLThFw6A8NH2Pfkk5xx7bV46urIpdMYDgfRzk72PfkkTddcg7IsEsPDVJ55JsqyCpJ3lcsxvHcv7poaHCUlfHD//TRdey3x3l6c5eXohsG+p55i6lVXgVLYXC7sfj+pQABPTQ3ZeByVy7HnoYeY+q1v4aqoAE1j+OOPcVZU4KqowDR0zOd+KtL32efA5X8jqfJbfgMXrZTzp90J/lLxtS/+Cjic4PGNJf8f/gS8fnjtdyKtLymXD+LIfnhiLcycK7J5w4BsDtr3CSsfCYok3zTlvD3cB5vz+62oBk0jZ7OhrBzZTJLo0HGKa6aABvFAH6bLi+nyk03FMGx2NMOk95M3KZtwJnZPCShFLpPAsLtBiUQdQMun4McDvdgcLrKpBJ6yetLxIIOHd1Nz+ufJpuIMtu+mYvIcTIfkpVi5DKnIIC5/Pulb00FZaOho6TSYpvwLyjPwOBxyfalABYextr+JPv/zUORHM+3kNj2H1jAerWECKhZFr2+UL+gocReLgkdC3lS+hUHt34vqOo6x9BJUNCI5TYYhMnyPF2vHn8QuWlyGikXQ3B6yms5w/rp0/vz5lJWVkclkyGazDA0N0dDQgFKKbDbLp59+SldXFxdddBFdXV14PB527NhBS0sLxcXFpFIp0uk0drsdh8PByy+/XLi+XbZsGbouZ6Z/vb1ly5YRDAbZvn078+bNIxaL0djYCIBlJdiy5Tr27XuWyy/fhN/fSDjcRUPD/MK2dN0kEDhEONyNz1dPa+s6Fi68i3C4C5+vnqKiGoLB4/h8DWzd+h327XuWpqaVfO5zP8Dp9GOabjKZGK+/fjtz595MSckEUqkwuVyabDbJ9u33smDBdykqquO1126mrq6ZSZMupKioHofj39qMR3OVehC/+90IC38Ikc7fDUzhvx9S9//KpGlat1Kq/t9b9ucilf/Pplvz90/+d0D7X6b8ZNj+lQfe9q+WG3LSzWRQ6RT6/M8X1rV8xYAEcIzKi+rq6pg2bRoXXnghXq8XpVRBKrR9+3aAQmhdS0sLNpsNwzAKVRoej4dXXnmFcDjMeeedRyaTIRaL4ff7Cz75UChU8Mm/+eabHDx4kLKyMrxeL+PGjaOsrIyGhoa8fClHW9v6Qjq8VGZ0M27cOdx0Uxc1NWeyZcsNhMMdLF78I0477WLC4U62bFmNUllsNie6btLQMJ90Oko0KpLH+vp5bN++tnAyG93HO+9swLKyeDxVNDYuRNdtOBxFFBXVMm/ezUQifXR2tlFX10xRUTWWyuJAvB8PIvL4LuBeBEynEGDeisjjNSR1fgiRJyWB3YyB9wSSzNiN+NzHIx75G5EE+iAyurUK8cjfg0jwdyGhdy7EM9+BpNhrhp0NizYU/vnUFtVS5ChiWuU0Do0c4ppN19AeaKets42+aB/fbv42lrLojfYyq2YWL6x8Ab/Dz5qWNVwx7QoeWvwQTpuT5y99ng2LNnAkeITVW1ajlGLteWvpCnfhd/oJp8J0hbu4bf5t1BbVUumppMhRRJG9SHzzbRvIqRxfOf0rVHtK0VJDImFXWSifL17zwTYB3eFDMLQjD97tMPSefLc1TcB1yQx479uAJX744XfBUQko2ebIR/mKuf68HN0Sr7uVlXUr5sq6QzvFR++qgYqF4Bmfl4KbkE3lH+cr33T7WLp8LiXy98pZ+QA7cyxlviCHN8cC3kYHHkLtMtig6eBrHAPto376XGrMV+/w5QcPTpDcp8PyPH+xRbQLzrpF7kf3U9Qgx9X3rnjWg4clXd9TLetkEwLkm+8S0F67QI7hcxvBUwtTrxAg/8fvyLqaAaYX/nijBNc5iiW8LpsAT6Vsu2YeeCvl/fbthkwUu83CNHUefXQJX/3qNMLhFN/+9ivEYhl27+7m6NEgkUi6UBdXW1uE222ycGEjoVCS3t4Iq1ZtorMzzGWXncH06VUcOjTMzp1dzJ/fwLhxxVxxxXQaG33s3NmF02njiSeW8dlnq3n44cUUFztZubKJ5ua6Qrr8unXbCYVS3H77fPxeF1c3X8Lzf72eM6onsbf3MMFElHgmRX90hBKXj2d2vVjwwFsorp5zMYunzOObzStoO/YRz+x6EfJVRZFUDKUUM2pP4eldLxJNxfPBdmPbaKqeSH90BLthYyAaKCTTTyyvJ53LMBQLcPPnr6TE7UPXNNymG3KDMHSPhNNZQZGo26oFtGeOiozerBPQrrIn+NzXgu7+t8nyJ9bGld0tCfS6R8C7XkTh0kNzAubY91/lIBeCbM/YPkZT5/WxgeN0LseGtjYWNDRQ6fEQTae5fssWjgSDuE2TaDpNTil8Dgfe/M1tmiigLxrl1nnz8DkcWErR0tjIQDTK3oEBJpSU8JPlyylzu7l+yxZ6IxEGYjHqfT7cNhvD8Thu0+SxJUvoDIU4EgjQ2tGBlk6jxePSmXb99QK8HnpIpO4TJwrInj9f7pUShBwIyPr33CNAu6xMJPWhkMjm43F5rpTc33DDmNm8pES21dsrJvTOTiguFll9fb2sG43KQMCCBRihYRoaFMPD8PTTsso774yNIfh8At5vvlnANIhiv79fxgLWr5fDCYdF4X///WOPR6Xyra1ymXDvvfL8298eC8632cQa3tYmhzWapbl7t8jybTZwlJYybfVq7CUlDOzZw/HNm7HSaeJ9fXT/8Y/se+opbC4XJaedRjRfDZdLpYj39fHe2rU4S0uJ9/Zic7k4++67sTkcuKurMd1u9o2m0A8OottsRDs70XQdT20t0e7ukyT68b4+EoODvHfvvThLS0kODpKJRDBcLtTSvxrzs9ud4jGf3CSed8MGgz2Qy8KFX4LgsPjaMykB8sP9kgjvdMtrgkPiy7YsmNQEP3hCtmsYkEzI/5GSCgH5JRUC2g99And8HcqrJZkeBb99Mj9gC5lUlIGDbXhK6kDTyaaTOH0V6LpJJhFm4GAbmWQMNI3aM87D7i7GyqZRVg6bw4OmFLlMEl23odvsoOkoK4e7tA7D5sRdUgPKIpOIUj7xLNlHSh7ruo1MKkbPJ2/I9Z/DQ8++t1DKIpOM0LPvLYlosdvRcjlULIqWzYLLhaYbMgiTy46FJu/cLsnwgL74C2iTpgjArqqRYLp0ityrL0E2i+b2QDYryfLRMJrdgT79TPQlF6NCAaxtWyEWlcC7RgH/qv0zVDgMSqG5vahYFCubLbQeRaNR0uk04XCYN954g6qqKoLBYCFk7rTTTitkNZ2YJD96PRuNRhkZGcEwjH9zfWsYBul0uhBaF41GmTFjBkuXLgXgnXfeKTQv1Z2Qw2EYdlpaxL9eV9dMKNRBZeU0RkYOF5LfQeqJPZ6KQpJ8a+u6gsRd103i8SHsdu9JIXU+X0MhONlmc3HRRY/gcPgIhTp5443byWbjhEId+evZ+zEMkwsuWE9DwwK2bbuHYPAI2ey/hVh2pAFpCvBU/t4FnAY8zV9A+//M9GfBuGuadjoiKwifMG/UUnEvYuOdqZSK/Xe29xfGXSaVzcrIv804yQNfWJ5KojIZ+SeTTqEV+VE2k4yuF9j0+fPnU1RURCaTwePxFEYSFy5ciMvl4vXXX6elpQWv10s2m8UwDEzTJBgMEg6HaWhoKKR3tre309vby5IlS0gmk/T39zNu3DiGh4eJxWJUV1eTSqVwOBwAhdFOwzDI5XL09fVRm++wtqwM8XgH27evpaXlLmw2qX+LRHqJRnupq5tDKHScnTsfYunSx4lGe3n77XuZO/cmdN1Ga+s6WlrWUFw8AcvKEosNYLd70XUbhiHBV5pmIxg8yvbtP2Tx4oeJxQYJhzupr5+DYTgYHj5EW9sDLFy4hqKiaiKRHtraHmTRog0oTwVJ3cYI8BoCwh9HvOqj023A3yLVGhOB04EtSJBdCEmfTyLAvAsJBzGREdDdSEK9QgYHXEjgXRzYC8zLr2fPbz+FgP2u/PFcBNSkIoRTYSLpCEX2IvwOP6lcipHECMFkkKH4ENMqp2HTbXjtXjJWht3du5lWOQ2P3YNCYWgGlrI4GjzKfa33cdfCu5hUMol4Ji7VNLk0H/d/zOza2ZiGiVKKjlAH3ZFuFjQskC5YTSeRTZDNZXGZLmy6fFcdGpgotOgR+PQ+mHo7uGrFi42SlPdMEPY/KH3vnvHC/A7vAlc9FE2U51YORt4X73tiQHzvlQvGWMJkL9iKIPAxlJwhjP5oN7mmCVu/53aYepsw7iVnSmCd71S5KNdN8Z+PgnOgkDhvZU5m4Ed937mMgO5cGlJBUQk4ivJJ1qn8exyl1fMgSVljYDx/oSeMuyO//ok/7lz+/QGBwxDthOo5EkKXTQj77akRhnzwI6lre38jzFkjHvaaOXmWKa926N0lYN9ZBoMfQ+1cOb5MTN53/3tQPl0eW1kY2APVZ4sSIHgI3v+R+OJNjwxejAYDZuLEKeHw0Qhr127n9tvn8847nbzzTic33zyXRx/dzWOPLSWTyREKJfF47ITDKSorPQBkMhYdHUH8ficVFR75c2Ut7HaDbNZiYCCGz+cgHk/jcNjweu1omkYqlSWXUxQV2clkZPCgvT3Ihg3vsGHDIlwuE8PQyOUUw4EoOU+Mp3e9yNfPXkYgEeG0yvFc8JO/4bEv3VFgy7/ZvIIqbxk5ZeGxO8kpRTqXIZfL4XW4ODbSyy/efZlvzv4C9cWV5CwLXdfZ23uIck9xgVnvj45QVVRGva+Czjy7ftWci2koriSeTuEyHaRzGSKpGD6HF79DofVdM8aOl/8dGKWQ7c8PaN0ztqzmaVAaZA6IJ73sLmHlnTMhN5Rn3O+SHneRfeRVKfZ8uGMaMCB96D9h7G8fU4UMrxfgbz/lJOCeyGQIJpP0RCIF9vydzk7e6ezk4cWLGYjFOLWsDJdpnvS1HmXqu8Jh6n2+AnNenU+QDyaTlLhcBBIJpv/kJ3xhyhRumTu3kDS/s6uL2bW10nACpLJZ0rkcxZaFV9clqv3ZZ2HlSvjpT+W3m8sJSC8uFvAFYjR//HFYvXps/aeeEj/8+vVCW48fL6h2/Xph7t95ByZNksGAzk4ZCEgmxUd/++1jtPfAgDD4s2fLa++4g+ikGSTSBna7iAHWrRO8P2WKWOVH/ec2mxD7o/i/q0t26fcLoT8aWJePquHGG+Vt7NolDPzAgFTIBQLw2mswd66MNTQ0iLBg4ULZ/s6dkjBfWQkffQTnt8T4YO3fUzZtGtXz5+OuriZ87Bj7n3mGpmuuId7fj7u6mqKGBizLYvc999Dx6qsse/ll9j7+OB2vvkrjRRdx9t13Y2WzBD79lB3f/S4X/uY3OMvKyCYSfPzww5x5550oy0JTiuG9e/FPmYJhmuSSSbLpNA6fD81m470f/pBjmzbJNtesQbPZMG2GDFSPjjoM98PW5+HL3wKnS5Li0SAeFZZ8uF/Y+MWXQvunwoyXVIzNq64Xb3soIPVuX7lKBgJMU/ah6cLQD/TB1JlQUiYjIUc/g9IKYdwXXwrFpeBwkrOydB/YTqj3AOPOvgTT5WXw8G7KJ87G4S0hm4ySy2awuyVDJZeKY3O4sHJZ+va/Tfmks8XvPsrSO73YHG56P91G+cTZmE4PmmFKorzGGOOeTpBJRHCX1JBLJ4kMHaO49jTigV46PniZyS1fIx0LYnO4cLpKIDgifnafX2rfFp4nvnZfsahMohFh3C/8AsRjWK1vSnd7Sakw6SPDqGgYva5RkuOjUaydb6NfsBTNUjIvk0GFg+j141CJOOroIfTTZ4BuYHUeRSvySbhfJiPbn/95KPJh6QbDkSjbW1tZunQp8Xicbdu2sW/fPlavXs22bds4cOAAl156KfX19RiGgZX/PoRCoZMUpB0dHf+Ghc/lchiGUVAHdXR08OyzzxZynk5Ujm7dupWWlhZ8Ph+BQIC2tjaWLVtEPD6A0+knmQzhdJaQSAyxbds9BeZ8+fInGRk5TDTaV2DcW1ruIhTqoqioBo+nCofDJ9dSHdtxu8uJx4dobFxIR0crRUW17NixMV9b7CYeH6a9fSsTJ56P11vDli2rWbDgdoqLJ5JOR09i7VeseBqHo4i/TP/r0/8LjPsqoF/TtFZN036radqLCMZYi4D2Rf9d0P6XaWzSbDY0h+PfgHaVzYpUXtPHJLslZXIizAdojY5atrW1YbPZ8Hg8KCWJ7/v27aO1tRXTNFm+fDlFRUVYlsWbb75JNBpFKUUoFMLtdrNp0yYCgQAjIyM0NDSwePHiQujHqBy+rKys0JMJIhey2+14vV4ikQhbtmxBKYXX6+WVV14hGo3S3z9EcfFkli9/kpKSyfm+doNYrD/fgbkaXbdxwQUPoGk2HA4/F1zwAH5/Y2EUc/v2taTTUUKh42zb9n2i0T5M01vovQwEDlNcPI7ly5/EZnMSDnfi8VSwZctqgsEjRKO97Nv3LOFwJ5qm09p6H/X18wCFbmXJ5d/Pl5HUeBA23cjf34ykczYjtW+fAecgILwCYdSrkUC6GQi73iF/IRYgcqUJCJhvR+RMXqTX3URY/msR4F+JSPFHj6dSviH0R/s5GjiK23SjUAQSARKZBA/ueJCZ1TMZTg7zna3foT3YznB8mOa65kJNXCaXIWtl0TWdB9seZEHDAhw2BwpFV7iLG165AU3TqPZWc+PWGwtg3mW6Csz+qk2raA+0Y9ftDMYH+fYr3yaajmIpC01l0XIxSHRLGJ3pE+CJLsnyNi+YpTBrA3gmjH65oXyeyN2tfLWbboeKBZKknuyV2rdoOwy2Cki2FwsjXLlAKs9yqTwzrcly3Q5TboL9G6SWLhMSGb7K5QF+Jg9I82Fzo+nyowy4pkm422g1Wy6/vkKYdVfFWGf7aFq8Is++H8v/xZH7UD6NXuWEmS8w+amxVHrIs/82WTfaKfvo2yXM+lur5Xm8X1jy2gUii29/STrda+cK+M6lZH9vrpY0eptbWPjauSKVDx2R4+3bLYF3iUF46wb5zD3V8jh8RPZz5s3CxGdieSm/yPrTmpes0qmocLNx4yIGBmJceOFE1qxpoazMxRNPLEMpxQcf9FJW5sY0dQxDy990TFNn3LhiEokM1167iWPHguze3U02a5HLWRw+PEJvb4SqKpFhxuNZenujZDIWlqWwLIXNppNM5qip8fL448KY3HDDFo4dC5JO56ioctOfD5wLJCKcUT0Jj93Ji9/cyNTK8dT4yvmb+V+hzF3M6wd3cnDwOLF0kuFoAFMzcJoyCPMv729h64EdDMWD9IaHWPfmz+gLDzGrdgo1vgquX3ApNb5yZtVNod5fSVZZDERH2Nb+Hs/sepFUNsP+gaN0hwa4782fk8ik2Nt3GNBODpzT/aA5BFjHXjuh6u1uma/ZwagV+XumC3q+AgN3gzlOkuDNSUAOsr0it1c5yIUleC7TLZaSE0PqrBA4zziBsV8v7LxRLfVx/wq0A7hME4/dzvq2tkIA3aKJE7ljwQJylsWGtjZylkU0lSKdT4YGyFmWpMN7PIVu+LXbt2PqOlnLosrjIZhIkMxm2XvddTy1YgVTystpaWykrbOT5rq6Qre7rklQnq7rOOx2+f9z550Cwu+6S1BuR4eA81hM0HBHh6DjW26RJLe775b1775bfr8PPSTpblVVIgVuaJDnDz0EixYJKu7sFCb9uusEcd98MzQ2Uuh0SySkE379+kIAnqHSOJ3y2+7qkkT5jRvlMykqEtAeDMqmb7hBNt/VJburrxcsOTgoyvvvf18eezzwD/8gav8FC2RcorJSwLzXC1dcIQC/uVlA/7Rp0vn+7W9Lxl5NjWy3uRl0Q2PmrbdSPmsWex9/nGhnJ8nBwUIwXfnMmdhcLnLpNMqyaLr2Whovugh7URFnfve7LHv5Zc787neJ9fay58EHKZs+nXn3308ukWD3PfeQGhnhrDVrRF6fzTK4Zw/OCrHivPvDH4rUPJHg3R/+kFh3NzNvvZXGiy6i6dprMZxO4r29su+hPgHTKAHti74kzLumyfny2EFh0UHC6q78WyirgDnnSjDd1udFar/1Ofn/kkzI4wlTBMAf2S9qjGxGtjOpCU5pgpf+GQb7JIBtUpOA9j07hem3O0E30AyTislz8NdMwV1SU6hxy6biwqoDptNDPNCHlU2j20wyqThKKamDS0TzjPlbEl5nmGi6IaDdVYSevw40HZ7CtnPZNJlEpNAFb9hdFNdMIR7oxXR5aTxzBTa7G9PlJZtKoClQ4bDUwnl9aI0TpebN7UWFg3KtabOLNdPuAG8R+vxzwVuUH8zTC6n0aJrI6x0OtPpxEI2Qe2OTfHamiebxoRJxSZ5vmonV0wW5LFrdOFQkLHL5fJ+71bYNNB09Gqa42M+SJUtIJBI4HA7mz59PU1MTDoeDxYsX87d/+7fU1NTw6quvEgwG0XWdRCJRSJL3+/1omkZdXR2xWIx58+YRCoUKoN2yrIJXub6+nssuu4zGxsaCQvWdd94BYO7cuYRCoYI69cCBA4BGKhWhu/tdnM5ibDYXDoef+fNvL6TId3fvBqC+fi4lJZNZtuwnlJRMpqRkEh0drbzxxh1YVhZNM/D56tm580f4fPVomkFdXTO7dv2YCy54ALvdk2fmPTQ2ntio9Bh+/3hAYbd7Tkqwt9n+FQHwl+l/y/TnwrhfCFwPnIlgihRwAHgOeEwplfgf2d5fGPf/eFLZLGp4AGv7mxgrLkUND4rkqbpWOk0dDizTTiKTJZVKYZomAwMD1NbW0t3djc/no62tjUWLFmHm2YdYLIbT6SQUChGLxfIedI0tW7awd+9empqamDt3Ljt37mTFihUMDw/T1tZW8CAFAgH8fn9hVHJ0fi6XY8uWLSeNlo56jJYvX0ImE0Ypi2i0v8Cyj/ayt7dvpbt7N0uXPkZX15iPvaOjFY+ngh07NtLSsgaXq5S+vo/weCqIxQZpbFzIpk2rOHDgpYJPXtMMOjpaqa09m1deuaEwOrlkyWN0d++msXEBsdggyWQQv3+cdHJWnsEhm52HgEcRebyFgPIsArKLET97HOl5vw94OP94HXAX8mO4Mf84y5iXPcSYH97GGHjfkL+5kR/Rc0glw0MIIz+UX+YBSIUZiPZT4iwhkAxQ7CzGptsYjg8zkhxhvH88N792M7/c+0tWNq3kyeVPcjx4HJfposRZwq7uXTT6GplQMqHghb/jjTu4ff7tuEwXgWSgsI3mumYWNiykN9rLnPo5mLpJW2cb5e5ySpwlVHmryOQyGLqBrunE0jFKHR5MQEPlPz1dmO5cDPatg9PvlMT3wB4B6yojafLuBul2H/Wku+vBO1GAu24TT/com8goo37bGKNePl/q50Zfu28dNN0lMvvAB2Nd8bpdjinaLT70URZ5tN5NKbl4t3Jj80fvNZ2T2PQTp3REQK6m5RPv9TxjXyevMRwyLzEgfvLiicLwjLJJozVyoyqAXFLA91m3CKt+4FmYshIWPSX1b5E8G48a65rv3SEMuqZBpFsGHmwukbnH+6QD3soKI2+l5bX97wsj7x8/9jgxCHULIRMXH318ACpmSpq/WUSMMtqPBunsDNPcXJcH5vKZRKNpensj9PZGmTOnDofDRk9PBJ/PgdNp48iRAA89tJMNGxYB8Nxzn/Lhh71s3HghNptOLJYhl7PYu3eA+fMbSKWydHWF6e2N0txch9NpI5u1sNl0otE0SsHtt7/OTTfN5Z13Opk0qYSGBj91DR4sM0M0FcfrcOOxu4ilE4XnqUwKn0tYioyVxWWzc3ykD4/DSZHDwyd97VR7y/C7i3jwj//Ened/k/ve/DlbD+xg2dSF3H3BVVioPKDUyOay9ESG+NmuP3DVnC8yEA1QVVTKYDTA5PIG4ukkO45/zCe97Vx+5kVUuJ3icdfsKM2OpuKAA7IdAqIrHxA5vObM+9QZY8/TRwR8V/5IGHfNDSqeZ87vBFttnrl3glECiV3ik7c1Sqq87hcZvRWW56Msvq1ezlijEvt/Z0pns3w2PMza7dtZ09JClUdS9Pf09TGzupqheJyOUIg59fW4bTYsJZ/R4UCAzlCowLjf3dLCxJISYuk0GcuSjmtdx2WzkbUsdnd3c0ZlJW7TxK7rtAcCrG1t5fb586ktKsJls1GUyWB85zuCeseNkzj1aFRi00cZ9ZtvhqEhAdkdHYKKRz3utbVjhvP+fulbe+ABQb5WPtPCMOQ3mkiMMfWbNgmyXrdOWPeqKqGwFy4UbXsoBLW1xDQP7UcNOjvHGPFkUsLv29vl5XfeKYeyfLkc7uOPy9s4coTC6yxLGuyGhsaS5kHGC+rqZL1jx+Dii+VQQQQBt90mQP3mm8Uv39go4xgNDcLom1oKsikGP/xQ5OkjI5RNn857997L6Vddhae+nnhvL/uefJKpV11F0bhxYFlohkGks5NPn3ySplWrpCIuf/7SdJ14fz99bW0M793L7O9/n2hnJ/t//nNm3nQTWv7zfGnRIi56/vmTmPvmv/s7cuk0ViqF4XDwwfr1zLnrTozjB8Y8542T5Q0mEuDzC2C0mWODtkP98Oqz0s9ud4hk3uuH55+Br1wt85Ql69mdoGuSSi8HD7EIuL3Cyu97H6bOguIyWZ7LQSwE6RSMDEJpJZbDgVVcJnJ0TSMdDzF4eBe10xaRjgUZOvIu5RNnY3O40XSDTCJSmGe6vGiaTjwg3e+6IX75USbeMF307f+T+NidRWQSYTLJKJ7SWhQaffv+SOn4WTg8fpG8a5rUvdnsaHmQauUyooZLZyCVlEGI0feaTo2x3xd+ARKxMZ97SRmEAnl2/nwoKZWqOE0rvFeFBpH852F3iPozGpZqudHX+YtP8sKj6WN++gXnohWXktv8O7KLVrDp9Tc4cOAAK1eupLGxESuvbsrlcnR3d1NVVYXNZiOXy2G320/Kc/L7/YUmpEAgQCQSoaFBEoI0TSOXy4liR9MK202n0wW1qD0/CNjZ2YnP56O4uJhsNksymcTtdpDNRkgmQ3i91eRyyUJlm1IWmmaQTkdQykLXTQzDJB4fxu0uJxQ6TlvbBhYt2pBXheroukEulyIU6sRu9+N2lwIQCnUQDnfmr4kddHS04naX5a9776K4eDJgEYn0U1RUhVIWhuHANE8eYD3pfM2YivMv0vj/evqzZ9yVUq8ppS5WSjUqpZxKKb9SqlkpteF/FLT/Zfovplyu4EEincZq24ZWWSMVH9u2FhJn4vEYIyMj2Gw26uvr6enp4bnnniMcDrNs2TKAArvudrtJJpMUFRVRXV1NLBYjk8mwaNEipk2bxuLFi/H7/SxevJhcLsfOnTtpaGgodGK2tbWRTqdPmm9ZFvv37y/4ihwOBy0tLQWPEeRIpcLouklRUQ1VVTPo6Xm30Mve0LAgz7brFBXVkctl8sC8hZKSyaxY8QzFxROw273U1JzJu+8+QU3NmQAsXvwQK1e+gM9Xz6ZN1xIIHKG6eiagWLr0cb761S0sXvwwhmEveOkzmThOZwmm6aKkZCIYNh4CbkJAeyB/fxC4DmHBdyGykiIkvO4JhI3fgNTBdSEnyAX5eY0IkO9FQLoNYe6/jXjg1yESeSu/Tga4GNiI+N9vQAC7BwH1hm4Sz8ZZ/cpqYpkYu7t30xHqwGP3sHHHRvqifTy25DH2r97PxkUbUUpR4anAY/dw49YbqfBU4DJdRNIRMrkMbtPNzfNupjvSTTwb58e7fkxO5Xh0yaP8VdNf0R/rp8JTweotqzkeOs6M6hkMxAbw2D2EU2EG44Pomk4qmyKSjmADNJUT1nvwHYgeFdY33gUdz4p8PhMUCXz8OLx3g3jU490SYqc7oHiGVLkpSxh6w81JDLamCeAunycA3VEun+D+DeKR1x3C1u/fIMC1rFmOwXCKvD3aI2y5pstYgJ4H5+mIsN3BdgG4hl2W6fY8sNfyoXY5CqF2uaQAKkdR3qseBXQB74khYeD1vBRd5QQY+8aNMRkFCX0euI/W0mk28aonBuV+6hXw+Ydlv55qqG6GVEAk8q+vEml71Wxhyv90q4B2Q/ySFE+UQDrLGuuWT47I4ETFTPjwx/K4Zi44S2RAQLOJwsBTK89PqOPLKXC5TJqb69i9u5uOjlBhmd1u0NDgZ+HCRjIZi2g0TUmJE8tSmKaO12vngQcuwGbT+eCDXhYubOChhxaTSuWIRNJoGvj9TlpaGrEshctl4vM5aG6uIxhMcvRogOuu28yRIwE++KCX3t4Izc11rF/fxqJFE5kzp47OzhBOt8FQNEhXaABbvmbJpht0hQYYigax2Uw+7jlIKpumPzxMPJ1iJBHCZToJJiKcWtHIQGwEl83O3YuuIpPL8o3ZK1g8ZR43fe4KOkMD/P1rT3FspJdoOoGhG/xs1x/ynvc/MK1mMjVF5UypGEcgESnUxd30uSsIJiJEU4p4zonSbGh9V8Phaui/SeTu1Y+C5oL4bmToLz/pdgHV9tOg+inxrQ+vA6P4BOb8PmHoMx0C5hO7wNUs3vls55inXuXkzKXI97pXQv93IDsgORD/wWS32TitrIynV6zg1NJS3KZJidPJwsZGPHY7HaEQFR4Pq7ds4VAgwPaODiylmFBczPyGBiaVlPCTZcto8PnIWhYu08RtmvjsdkxdJ5xK8e1XXmFaZSWD8TjXbd5MezBIZzh8Us2cpmnkTBN1003Ccvf0iB7c45HktlEGfmhI0G9Hh1Daq1cLKn7tNdi+XVh5kLC5efMExCeToj8fVQ189pn8dr73PaGvFy6U9V57TfYdieQpbF0GAO65B2IxspZeIOpXrxZMn83KzeEQUr+3V8D4wYMC2k1TlrtcwqSvXi3rDAxIA92xY+IMaG+Xt1VRIYdz6aUij7/xRvkomptlYMA0ZSzCZhtj9Ts7hdnHypIMBHBXVbH/F7/AXVWF4XAwbfVqhj76CJXJoJsmFbNmkRweJpb3uEe7urA5nUz9xjeI9/WRHBkhGxdDWSYeZ99Pfyq1cLfeipXNsv/nP2fK17+ObreTicfRdJ0lv/89ptdL06pVNF50EWdcey2aYZAcGuLDjRtJDA8LW2/YUBNOE8/5E2sFeAdHYKhH2PF4TO5jEfkblZbDhV+R2jeXR1hymwlX5r3poZF87V89FJdIkN2xQ2PMu9sr67k80Px52PQrSMblFg4I2A8MyUBCYBBVXEYmEaJ77+ukogFMZxE1p38elCKbilM99XOYTg+6YaJrOkNH3iXUe4ChI+9KL7tu5PvbxZKGAldJDUPt76HpOuUTzyKTiJBNC0tvuoro3vuGVM41nYvd7SM20kM6EZH+9WyGTDxI997XScdHz8sCsK1tWyEaySsFjJPYb9Kpk33uuo7mKcJY+iW0PGi3ujogOCJ1cJaFpixh5XUd6+03UOmUdL17fQLKfX40TUcFhiEUQMWiMtBSXIqx9EsSKKgU+uIvoudyBWZ9NBROKUU6nebVV1/F6/VimibZbLYQQFdUVMS8efMIh8OcSIZ6PB7q6uoYGRmhs7OTdDpdYNyBQk88QGtrKzabrVArNwrag8Eg3d3duFxS4We3+/D56giHO3j11e8Qjw9x/PjbjIwcJpUKYc/X7IbDXXR2tuFyFaPrBtFoH+effx+x2ABdXTtQKgtoGIaDkpIJ2O0uEolhNE3DNF14PFV0d+8il0vR2NhCPD7MvHm3EAp1EYl0EwwexeXyEQi0s2nTKkZGDpJKxf5dn3saUYRexX9e//aX6b83/VkA979M/99NozJ4dcIJ5aTJMAqhdcpmE++RrqOiEfR5nwPdIJdKEQ5HqKqqIpFIkM1mqaqq4tJLL6Wurg6ASCTCyMgIoVCIzZs3k8lkME2TSCSSP3FId+bSpUuJxWL09vZiGAaGYbBo0SIaGhrYtm0bwWCQpUuXks1mT5ofCoXw+/34/X6WL1+OaZr4/X4uuugijh8/TiyWxOOpQqkcqVQITdOorJxWkMG3ta3HNN1YloXf34Bh2LHbPYyMHGLLlr8hnY7kT1jXEosNcN559xKJ9LJp0ypisQEaGxeeFAxit3uxrBzx+BD19fOIxwfZtGkVkUgPdXXNtLVtwOutxrKyZDIxVDrGBqWoRVhuDwLKH0Lk8JWIpL0KiCKJ80kEqG8AnkdS4HcDX0NA/WgAxERgPvBB/rWPICeCh4FLEcbehoTZefOv6cvv24OE22WApJVj3fZ1PLvvWR5se5DpVdNx2Bzoms5LB16iM9xJR7iDe9++F4/dQ1Zl+aD3A/oifcyrn8dgbJAKTwVOm5OucBfXbb4OQzNY0LiAddvXMa9+HpaySGaTOE0n5zSeg9/hZ0HDAh7a8RCGZtBc14zbdDMQHeBI4AhZK4vdZqfcXS4HfiIgT3RBJiwBcZf0QPNT4mW3eaTnvepcYdsrFwrw3XevLMvGJdAOJVJ6OGEw4Jiw5xO+Ds1PgneSgJqzHwfDC3Y/TPhrOPsJGE2RtzKQ6BcA6hsnADmblKC64BHZvt0nzLh/Ut7rnpPb6GSlxwK9NE1Avc0p66bykne7b6wnvnSqeOJH+901Y+w26mcfBfQqJzL2XFLm9ewAZ7GA8eLJ0qNueiA+CNE+kbRn4mC64KxbZb+6LjL6cx+R4+rdLTL7TFwGEVROVAFWVubHeuX9VDfL48QQOEok/M7KjL3vXEru2+4BwDQUXq+dbNZi4cJG3G4BekePBtm5s0vcCpbittteZ2Aght0uPnXLAptNQ9c1hocTzJhRRX9/DE3TcLtNHA6DSCRNKiV/b8uSC62yMje7d3eTSGRwu03Wr7+AmhovM2ZU8dBDO1m0aCJ3391Cfb2PdDpHS0sjCsVQPEiJq4j73vw5ncF+Pulrp9Tlw+twUmR3M7NuCh7TSa2/AktZzKg9lcFogCfanmc4FmJG7alomkbGyuE0HdQXV/G9C6/BabNjN2zMrDuVf3l/C/GUgJY7z/8mL1/1EHed/y3shommaThsdobyYXXD8RAu08HM2lOp8pWSy5O6qvJhqNsC1Y9A5ki+2/0oOKcjupx/Nel2SXrXnOJXzwWFMS9aKfeaKcFymS6wVUD/DZDtEzA/Cu7JwMB38uNFmoD/mifAMUVk+f/JZLfZKHI4cJrmSfemrjOnro6NO3bw7L59rNu+nbNrazkSDHL1yy9zNBAQN4llkbHGBoJGEgnag0Gu27yZvmiU5ro6wuk0950gq2+uq2NlUxN3LFhAsVMYpnAqJTTyk09KGF0sBn/7t1BeLl73iRPHGPY5c0Sn/tJLglqvuALOPFPoZ12XsvQrrhDQftNNsq1du0Sn3tAgbGt9vejR29okqO7AAaHMa2qEyUwkhLV/9lkwDOxWkjlz1Em7nThRVrv3XmHIZ84UrF9RIYcRi8nuvV7Z3TnnCBCfPVvI/+5uUfwXFcn2brxRwLzLNabSX79eFP533CHLPJ6xCvuNGwXUR6OglIaztBTD4WDqt76Fns+psbJZPLW1JIaGCt3sFbNmse/JJ+n+4x8xHA7sPh/JkREJonO5SAwPM7RnDzaHg7PuvJPkyAg2hwM0jZm33IJuGAzv3UsukeC9e+8ll0xiuFy4a2uZ84Mf4K6uRuVyOEtLmf397+OuqiKXTpMMBgV4L7sc/maNfFcjAZgwdSyYLhLKA/AD8ndyuoSZ14AlK+U1loBihnrz6fEZOPypbGPClLF+9189LgMDRz8TVn3CFDnPB0dEOh8cEdl8NCShd1CQsA8ffR+lciJvVxYufwXZVJzeT7eRSUZQukbF5Gb8NVOomNycB+oKZWXp3fcWmUQEzTAoqZtKTdN5ZFMxho68j+nyYnN4sHuKsdlduEvrRGKfCBMP9OIursaw2UHTsDlcZBJRwv3tDB15FyuXBqWw2raNgXLTzGeh6OiLv4ix+g7weOUac9pZ6EsuFrKor0fCkLM5rM5j0t5g2tHrx0E2I6F0wRGZN7cFTdexOo5ANAxeH7ktL6BGBoVkMu2QSUt/fDotn2k2Te7VP0A8ivJ4icfjbN26lUAgQDqdZsuWLUQiEebOnYtpmui6TjQaZdu2bcRiMSzLYseOHfh8vsJ1ajAYZOvWrYTDYaLRKJWVldhstrzlKk4gEGDr1q0MDw+jlKK5uZlQKMQrr7yCx+MpyORDoRAej4dXX301D/zlGnH79rUcOPAS4XAXdXWzcTh82GxyPhoNTB6zZh6loWE+mUyccLjrJMtmOh1l06ZrUcoilQqzadMqstk4Tqe/sF46HSl4332+Bux2D4Zhx2Zz0db2YD6wbj2ZTJR0OkwylyXKGEBPI77lZ/P3qf/0rP6X6b+a/gLc/zIVplEZfO7lZ1HDA/8ueNdsNrSySowVKwWwh4MowyZBIzv+BNEIhsdLY0MDsViMbdu2EYlEcDgcNDQ0kEiIAGK03i0cDnPgwAFaW1sBcDgcZDKZgrcdIBwO4/F46OrqKkiTdu7cWUjwjEQiZLNZTNMsJNW3trbS0NBAOBymo6OjkAYajUYpLi7G5bKj6wa6bmNkpJ1otP/fpGxmMvHCaGIweBTTdGO3e2hoWEAqFSES6WXRoo14PJXY7V5isf78ibQbpSwWL36YadOuoKVlDaCIRHrYtu0eQqHjhEKdhQGCiRMvZMmSR8nlknR2tsnnbLpxaRo9jKXFe5CAur/O/y2iCGM+yqCbCOB2I6C+E/G4X4cw9W6EtW9HWPZpCDDXEYA/hEjxi5AU0CSSWh9Fgux2Iyfc0ZC79w07Tyz7KUO3DfHEsicIJALcs+0e+qJ9PH/p88ypn8Pa7WtprmumM9TJrq5dNNc143P4uGL6Fcypm8NAbICclaPeX8+t826lK9yFpSzuWngXl55+KZqmEUqFiKQiZKwMPoePL0/9Mg8tfoi+aB83bb2JeCbOhNIJLGxcWPCOAShywpCf/ZgEz1UsAFedAPF0SMBj7Ajsvk5C6+q+ACMf5MPPXMKiY4lsvmQaRA6L1N7K5KveZoCnQcBn+LB43mXHkkI/KqvPxvKMeFz2PfK+eL415KIl2i3p8NEuqXYrbESJ73zU6w55gJ3OA+484FBKQH0uLfPsvrFt2H2yD3vRGKD/1+6oUT99pHNsX95aAdK6TR63rsnL5hPQ3Spg23Tnwfot8jibEPl9JgHd7wjYR4e3vi3M/Cg4z8TELx86NuaXj/XK9sdfKI8zcQHttXPlwiodgcE9MjBhesRPb5hYlkIpCIVSRKNpPB4BehUVbmbMqOLdd3vI5SxuumkuPT0Rjh8PsWrVJg4dGqa01E1/f4x77tlGf3+MBQtEzpjJWAQCSRKJTF5AJH73aDTN8HCcigoPLpdJPJ7l9tvfoKsrjMdj59FHl1Bf76OhwUc2a6EUxGIZrCzMqpuCx+5iZt2p/OO7L1PsKmIkEcZpOjke6OXD7gN0hgZY98bPCCTC6JrOL959ma0HdvCLd19GRxOpNxof9RykPzyMoen0hocKDPqN53yVMk8xnSEZGEhk0uztO0xnsJ+/f+0pktk0ld5S/um9zVR6S9E1kWtGkyGKzCQ6qXxC/AJQyRN86OvzX5QM/+Gk24V9N6vFk179JNinyPZ0j4D3kY1jvnbXnDy4XwOJ3Sd4291jyfP/BWj/z6acZRFIJrmrpYWVTU2saWnBabOxdvt2nt23j95olCPBIO/29JC1LFLZLJZSlLvdrMuvM+qb9zscrMlv5+78dn6ybBmnlJbizau+nEpJqnxvr8jTAWbNEvn6aC3b6tVy73AIpf3xxwLEr79eZPI7d8Lzzwulfe21Y/71qiqhsru7BRVbllDaTqcA9dWr5fmkScLmr1olr33gAWH7TRPXHd/B5VSsWSO7qK+Xl1kWrF0r4LyvTwB7Ngs7dsjzG24QsH7bbXDJJXIYuZyMDcydK4edSAhz/uyzAsqjUREYXHGFjEHU1sogwY9/LOuOihDuvltYeK8X+gYNYj09fPzYY+iGQbSjg2hnJ+6aGspnzGDfk0/S8eqr7P/Zz0ApmlatYuEjj2Bzu0kFg5TPnImzrAybx4Pp9VLa1MTQRx+RS6WomDEDK5tFNwxsbjfx/n6cZWXs//nPqZg1C92UgS3dMIh2d7P7Bz8g1t1NJh4n3tvLu3//96SGh/GUFqP98jFJjS+pgH9+BBomCdD+1eMF5ptEDOomjAHsUABMB1TUQDYt60aCss6vHheW3leSB+rDJyfPb31e5PVbfgOnzxJwv/W5MZ+8hqyfk2u1mqmf55TPfZOapnPJpuLERnrEC26YZFPxAmtOLofN4aXy1PmYziLAIh7oRilFzemfx+72o6wcPZ+8RSYZQdfNfHK8icplsLJprGya4tqpeEpr0XUbNoeLeLAPw+5E0wx6Pnmr4HOvmDQbw+ZAaRp6y/nol1+FseRiyRyIRaV+Lh4VJj4UFCZ82ZchHCT36h/QqsQCoQxd/PE+P9gdUvOmFFr9OKzWt9C8PiGPXvm9MO6mHc000RetEJY9nRJ2v+1P6HNbIBYlt+k5iEbR57ZgeYrI5XInZTElk8lCyryu6wXCyOfz0djYSCQSwTAMFixYgMcjVodsNltIhm9tbaWurg673U4oFKK7uxun04lpmrS3txOLxXA4HJSWlhKNRhk3bhx+v5/GxkZ0XaexsRGHw8EFF1yAzWYrBCBfeOGPCsrO7u53yWTibNlyPcHgUTyeSurqmonFBpk371ZsNjcAXm8NjY0t7Nr140JOUzIZ5MCBl9B1E9N00dCwgHfe2VCwhO7b9yypVJhwuIt5827BNF3E48Ns23YPgcARFi3aQFPTSi644AEsK0dWMzioGyex63ak9m0Tcg1ry88PI+rRvzDw/2PTn4XH/f/r6f9Vj7tKpQS0F7rbV6I5/uOwiVGgj6conyyfBp8fzWaSBl4+oZd92bJlhdTNxYsXE4vFCp4g0zRxuVzYbDYsy2LLli3U19czderUk/w+brebHTt2sHDhQjweD6+//joXXHBBIaVzVL7U3d1dYNs3bdpU6MIc7YMX+VOWUOgI27evZd68W3E6i/F4KuV9qRygEYsNMTJyEI+nkuLicWiaTiIRxOOpyK+nCASO5JPh76K4eAIdHdvx+RpOSo+PRiXwrqOjleee+wpTp365kFTvcPix230Eg+35Y7mF8vKpJHIplKuM6zSNl4CPgRLEm14FBde2AWxHgPZGYA0SOJdlbFQuBOxDmPYaBOh787djiET+ToS1n0cBMpJEBgss5MR6HGHlRz3wtkyC9uFDdIY7mVM3B9MwOTh8kIHYAHPq52DTbRwLHsNpc9I+0k6Fp4KNOzby8OKHGYwPsnb72kIXezwTZ13rOu5aeBce00OVtwqAQ8OH6I32Mr9hPslskj19ezi79mzcNjexjDCkWStLLB2j2FnMru5d1HhrmFgyEa9hYMSOoO1bJ6nxhgvsJQJM3/82nPmQsPEdz8L4K+Csx8Tnng7KerpDLoxU3h8/+nh4J/ibIDkkcvumu2SAIBOA/RtlX65qeU06kN+nDd6/QULqvOPzknRD9mFl8v3xDgGmmi4APXwcvDVjCfKWRUEWPwrkMzEB5yqX96bnve/piIB1NAH6urj9T0qUB1mmVL4v/gBUzhhLuTc9Mr97O5SfIeDs7dtg1ncElLsqBKy33gUL1+WD/5QMZICEznkboGsb9LwD5z0mAwG9O8XjnonDoRfED3/uw3lPv03eW+8OKJsmCgmzaMySoLJ5BYLYB6JpBwcOjrB+fRu33z6fU08tI5XKEQgkKC93k0hkSCSylJe7MQyNd97p5OKLf8sXvjCFxx9fyurVW3jppQO88MJKFi5sJJu12L27m+nTq3C5THRdY2AgWuiEB/HOe712/uZvNvPLX+5l06bLaWjw0dkZZs6cepRSJJNZHA6Dzs4wgVCcxmkmT+98kW/MXkGFt4TPBo4xrXoyOZUjnIzhtjt55O1fs3l/K4unzON7i66mNzLE0ztf5Oq5l1DvryCWThJNxXHbnRwe6mRG7an8/WtPFTrfv3/hNSjgh689xV+fvZyRRJim6kns62vnlpd+xG+/dj9PtD1fWP/O87+J03RgailsKnKCx/xOkaujYOBmCawzasFW+j8Ppq3ECUnydwu4V/kBqPQRGL5X5v83WPb/zpTOZjkwPIzTZqPc7SaZzbKnr4/aoiLWtbby2JIlBJNJKj0edE0jnEph6jou0+RoMMja7du5u6WFCcXFZHI5bIZBTilsus47HR2cVl6OTde544032LBoEVWAfvDgWAJ8fT2MjIwlyb/7rqSzeb2CXkeT4Lu7JUn+wgsF4SaTYkCPRsU0rpSse9NNsryoSNj19evHutsDAUHQCxeenGr/5JOCxDMZ0rqD4YQEc3q98Dd/I2z3ggUnbyoeF/Z8NKyupEQA/oIF8OUvC5jv65O3t2GD1MLZbMKkj6bNG4a8ZZtN3kYoNGbV37dvzBufy4l7oKIC7MR4/++/X/CYn/bXf81n//iPzLrlFmweD/G+Pulyv/ZaHMXFAJheL7lkknQ0is3pJBONYhZJVsQH99/P6VddhbOsjA/Wr6dp1Srpd3/gAZquuQbD7cZRXIzKZklHIth9PgyHg3d/8IOT0uSH9+7FWVaGWVREUWUF2lCfsO4v/bOA5x8+NfZ49jnw1dUCojUNnntaWPKzW+QNP/8MXHCJJMwf3gdf+Bp8+oEE18UiIoEvrZDXHvkM/GXgLxE/uMcr4N/KyfPnn4GLLhVQn89Bybm9pJNhBg/vomLyHJG/GzbxltvdaBrERnowXV7s7mJxSOW958nwgHSuazq9+96ibMJZ2Bxuwn2HsLuLMV1Fhe2abj/paIChI+9SMbmZTCIq4XW6jVw2STaVwF1STToeZvjoB9SecT4g10u6pkvye2BYAuScLqzuDjRfMSocxPr1M3LtufiLYBjkXv2DMOj+ElQygeZ0oVAiezcM6YAf7W/PZNBMUxj5yho000Tlcqi+HvTaepSug65LQJ6yRHLf3YHm8YLThebxks5kOd7be1IavNvtpq+vj4aGBrLZLPv376e4uJi6ujq5/jiB4HrzzTc577zzTmo2Ak66jq2srCy0LI2my2cyGXRdx8iHXY5ex9bU1BCPxwtNTKapY7eLzdPjqcrvP0Uul+bNN7/L3r2/zCfL/xRNMwkEDtPaui7fatRPa+t9tLTchdtdyeuv38aiRRuw2ZxYVgbQ6el5l6qq6QXPfCYT5/XXb2PJksfIZhOkUiEcDj99fXv41a+WFlLsATTNIJtNkLQ5ud5RxLPASqTyrQixYx5CGPc1SIDyjUj1Vy1yDfsX7/vY9J953P8C3P+d6f9Z4H5C8JzecgFaecW/XwM3WhNnGJDLjQV8LP6CdGWGQ6jGiQyHQmzfvr1QabF161aam5spLS0lFovx9NNPc8kll+D3+9m+fXshVA7Asiy6urrweDwUFRVht9sLlXDd3d0sWrQIu91eqJe78MILicfjhMPhghxfKUU0GsU0TTKZTGGZ1MMl6OnZSUXF6TgcfrLZBG++eRfnn7+u8D7t9iICgXZaW9cVKtt03SSTifPWW3cX1v300+cKQXYAsdggTmcx3d278fkacLlKef31W1i4cA2m6cLtLiebTfL667cxf/6tFBdPZNOma9i371mmTbuCZcueIKsZZEwXHZpGJyJ770b86qORZHl3MyZj4H0YaEFAdwA5WXYiLLkTAerH88/twDv51w0iLH38hL/zHuSEemKVXAgZLb0deCwZYigvd49n5JV7+vZQW1TLOP84bLqNrMpiaAapXIrVW1bz7L5n+Wz1ZxwJHGFa5TRcpgu7Yac/2k8wGcTv9FPhqcCm2cipHK0drQXAf9fCu2jwNZDKpXDZXBwJHOFHO3/Eo0seJWfl2NW9i/qiesaXjAegSAd9sE3YcsMl4Hg0RG7gT+A9BUpmSsq7s1rYZA1h/KykeNpHGW7dkffi5odLdBtkI9D1B+l8L58vbHwmCGaxbCveCWVzKATjxY7DgYfg7Eel273inHxA3eiUD5MbDZJLhwVA+yfKMg25AAwdB19D3g9PPidvFOjXjoH/0W2eCM5H2XiNsSA6K3MyWFe5seT2XErY9d33wew7ZDveWtlGNg6ucsbq5rL5bdllgEA35PWj/fInDiRk4rD9Djj7VnBX5e0CCWHiixoloC4Vluq46rNlUMDKjL1u9m0Q7SFc9nmuv/4VmpvrWLx4EnV1RYWguD17+pg7t55kMstdd73JunXn43aLfzMWy+DxmHR2hnG5bFRUCFPS1tbJzJnVDA7G6ewMMWdOHYahMzwcp6zMTTye4Y473uD22xdQXu7ippte47HHlrB7dzcVFR42btzBmjUt1NR4sdl0vv3tV3jkHxbxwJ9+VgDM31t0NVkrh8NmpyvYz9O7XuRbc75ImdvPhj/+E1fPuZhaf0XhW6FrOpayiKeTPPz2r7jyrKU0llQzEg+TzKTpjw4zrXoydptJPJ3EUhapbIp4Jl2oghuIjnBa5XgC8bDU0s1eTiAeZmbtqRjEcWvDJ9e+lf+deNEZtVSY/+uA2koDKQrJ9P/V/P+FKZ3Nkszl0AFLKa7ZtImXDhzghZUrmd/QgC0fUjdaBzepuJh4NksomaTK6y2E0k2vqsJlmhiaRjqXw24YZC2LoXicYqeTjlCIx3bv5pnzzkO/5pqTQTMIqEomBcXG40Iz33uvUNZKiT/90CFBvaP1bnv2CJN+331jNXC7d8OPfiRsfSol6Lq2dgzY33YbTJ4s27rvPqG8J04UfXpHB7FzlnCoXS8sqqyUXWezsspjj0lw/TvvCJDeuFHWmzxZ+trtdvmXf8cd8MMfCiCPxeT08cADsm5fnwD+0Rw9TRtrt7vjDjmc0dy20e735mYB9nXVGZLdRwScr1pFvK8Pd20trnKxPOmmORbWmcuh2WxEu7rY/8wzzLz1VmwOhwTbVVTgrqripUWLWPjQQ5TPmEG0uxvT7cb0+Xhp0SLqzj2XOX//90S7ugr7M5xO7D4fmmHw4QMPMP3GG7E5HCggNTKCo7QUu8MOiRjaaIhnIi5MeWAQNv8aln0VKqrGqtyScWHdtz43Vgl3eB984UrIWZI6n83k690qRcKdTgnL/qVvyofodMlAj90u5/pYWALsbHb54z33FKxcJcx0eTmxkR5sDheGzYnN4SaXTZMMD2G6PPlquLMKy6xshr7P3qbqtBZy6TiD7QLEY8NdxAM9VJ46DwCb6aJn31uEeg/gr5lC7RnnEw/0kY4H8FaMRzdMBg68Q80Z52JlMyil6P9sO+WTzs4PGOhkUjEyiQhef03eo358rA5u3udQsSh6XSNWdwd6XSPYTNTwoPjWC5Vwo7Vx/oLc3Wr7E/qiZWj5CNr/H3t/HidXXef748/PWWqv6n1fsrGHQERJSNIBFZIICV4dlTsu1zvegcAACgiCJlxhZkxHgwg6oAiM43jH0QmO40gWYgSj6TRJkEUwaiCdpfe99vVs3z/eVdWJOvO73u/M7/e7M3wej35016lzPqe6uvv0eX1eG77ye5hO4fbvQ1t7rdyTpiXJ3gMJqPOXwwDTqTMq6dzO+cykUtV7RdM0cRyHVCpVvUeNlheH9uzZw7p16wAoFov4fD4ymQyRiKjmMpkM/f391So4mPPK//jHP2blypWkUina2tqqwB6oBuCFw2Fqamp45plnOHLkCEuWLGH9+jXMzLx+RtXbypV3E422YRghstlxfL4ophlGKcWOHRs5cmQ7t9zy69+pjFNKK9cVb6GnZxOp1DAtLRejaRrp9Bj9/dvo6dksmUt4eGWFXyX4bufOm1i58lOEw82Mjb1ETU0X+/dv4cp3fYXBUCO9ms69zPW0ZxCPewXQ349UGFe+7kQA/ptDxn/4cLo3x7/NOEMG/6+Adi+fw0sn8fI58SxVwuqKRbxMGtU5H0+pM+ox8vk869atQ9M0duzYgWVZXH/99XR2dlZlSZlMhlKpxMzMDLt376alpYVoNFrtdf/Zz37G+eefz9VXX11l5w8cOEBXVxeGYWCaZtVX77putRM+EokQDodpaWlhdHS0/JxJNNrOj398N/H4cQwjwJo12/A8l4mJVzHNEJ7nkE6PluXvQ2QyY+zceROZzDjLlt1KOj3Knj2309W1ijVrHsCyCjhOCdvOsXv3rYTDTaRSQ5RKaY4c2U46PYLPF8FxLAwjwIoVn6S//4tYVpbVqzezZMmHufrqR/A8F8fwc4dSNCCAuhsB7eVbXPl5IeJVG7gMYeRXAceBWxAJUhBZ2bylvN3P3Epntjz3IgTsG8yx+AEErI8ifvp4+VxHkPuHXiScrjHUSMkp8dLYS0xmJ7mw+UJ6+3rRNZ10Kc1EZgLHdfBpPp689kkm7pygPdrOis4VBIwAs/lZinaRxlAjU7kpclaOG3fcyInECQxlsKp7FTO5Gd4x7x10xjrRlEaqmCJv55nITrCsYxmDyUFu2X0LTeEmQr4QpxKn6BvsA2Xg1S0VP/kLN0NxEpZ+HnKj0P3H0HSZAPpKGFthUqTyuVPw4m2QOSbedtemqi93HVDlr1/+lMjrg+1weKOAdbNW/PTBVgmim3mhnApvyX5vfQTQoHZp2S9/WoJ7hTX3RYVlDzaLx70C2ite3Jp5c6/FKQjAVTrULJjzvVMG5HhzNXK+qCwGeM5cIB1eWXbvlT3wmvjtneLca8qMiBzeF5V59t0uxxmhsqy9vF9uYs6HX0msr3j69YCAebcE+VmR1r/jy3K8EZTXVZiBthWyGOCWPfBNF8PP7pbXYhdk7vYeSA9D22UEDI8HHljDqlVdHDs2y8BAnNtu28PUVJZVq7opFh0iER8PP/wuPA9uuWUXAwNxNE2Ry1l0dsbI5Ww2btzBsWOzLFnSTChkVqX2t9++h0LBJpu1uOmmnUxMZLjjjsvw+XRCIZPHHltPKGSwfHknDz74PNu3H2HLlv34fDqGofHAA2vwmXo1TO5jy65FVxqGbmC7Dk8e+gF7jj7PNw79M0HTz71rridg+hlPzpDIpdCUYrgsdZ/OJriwbRHffOFpHNfhw3+3iaBpcl7zfBzPwXYd8laBeD5NQ6iWvy7P/deHfsDS9nMoWEVaY438z7U30Bpp4Pzm+STyKUquhqfFTqt92wRanYTS6TGRuv9bAGrN9/sl8P/S9v/DUbJtZvJ5RtNp0qUSpq6zefVq3n3uuXTGYuiahu15DKdS3LliBUHDYCCR4Nbdu8lYFn2Dg+Qsi2UdHYRMk+lsluPxODfv2sXxeBzLdclaFrfu3o2h63xp3TocXcfbtGlOA65pYvpOp0W2ftNNc9rz6WkB4koJ+IpG5+rdRkeFmd+69UyT+Be+IMh5bEyOaW2VxPpK+tsDD8j1oatLFg3CYdm/HITnlJzqlA88IAy4ZYk63zAEtCslbHhdnawDhEKyD8ipxsZk7WB6WjLvDEO2VSTyl14qGHNyUtYoNE3mXbVK1iHyeVH+5/Oy5rBihYgSwmGwPZNIVxfL/+IviHR20vSWt4i3fWqKn3/uc2SHh5l65RXsbBanWMTKZslNTNC4dCl4nkjiL7kEMxJBNwx6HnqIUEsL07/4BZqu8+ojj1CYnqbnoYc4/2Mfw7WsOZ98GbTPvPoqufFx3nL33RRnZ5l6+WVyY2PC0oIsGAwNyIKkPygA2iqJbP7dH4HGZpgcg299GabGRO5ekbX/+J+Ekf/wLQLS6+rlGpdJQ+fCuQC7Pd+DNe8VYFrIg+2Uu/jGYeCIsO3fflTmNwz4rzcCniSvK61au+a6FiOv7cUu5gjEGk+rhsvjujYjr+3FKmYJ1rbiOhZTAy+QmhjAymeo7TiftvOvQDf86GYA13Vov/CdnHPF/6B98TtxSgVC9e2E6jqYfL0fp5Sn9YIrKOWSjP1qH3YxR7CuDbuQkUo53ahK6W0rL3L57gXiR1/xdrxcDq1bAnlVWyfu2AjgoWrrUP7AnCe+/6eolnYwTFQkhorVol11DaTTOHv+GdIpFAqlG3iZNN7RX0KpNFf9NnRS0un37YF0EmX48FJJWThIJVGhCG4ui2madHR0UCgUsCwLpRT79+/n6NGjZDIZdF1HKcXRo0dRSpFOp6v1xg0NDfh8PjRNO8POCTAzM1O1a3Z2dlYXByqp9Dt27CCRSFAoFAiHw+RyOUzT5JprruGDH/wga9aswfNcDh58iObmC8/IY1JKJ5U6xb5995HLTaNpOkppVeun319DT89nqjbQwcE+bLvAgQPb6O6+nEikjXnzLsfvj6CUwcGDD3H06A8xzSCua1EqpRka6sdxLHK5aRKJE1x99SOEQg3s3SvgPZkcYsWKO5kee4mznBJPem4VtJeQW5hNCFC/FwHqu4BPI/eu/7K2983x2+NNxv33jP+sjPv/zvCKRbxiWRbv86H8QbAtkTGFwuIvKhVwfAFc18WyLCYmJmhvb8cwDHbu3FmteNuwYQNKqSprXunO3LdvH93d3Zx33nkopaormQMDA3R2dlZXMWtqaqqrlBUpfDKZpL+/n6uuugqfz3fG/D09PQSDQfbu3cv69WvYuVNq22666VUCgTpGRg4Ri3USi3WRSJyorjhKwmZTtbItm52ks/MyhocPEg43EwjUEYm0lOs4NHbv/gRtbW9h0aK1RCLtWFaWPXtu59prn6BYTANQKqXx+2vKx6jq145TZHj4EE0dy1ChRmylOIRc5JqRVcty7BpT5W0eEhjXiUjhP4lI3j+AAPcs8I/Az5He9zxyETUQBn4cAf4GsghwAvgCImdaiPS3ewjL/nlgtjxvazFLppQiWUwSMSO8NvkaS1uXMpWbojvWzUB8gPHMOF2xLoZSQyzrWEbACEjHOorJ7CS1gVriBel+rw/Wk7fz1AZq8ek+LNcino9TF6jDb/jJlDJ4eGx+djOfe+fniPhEIjeVmcLUTQJGgJAZouSU0DWdIA4+pYMqJ29NvyAy9UCLgOaZQxJGp4cg0Fz5DRfQOvx9YdIbLhNv+iv3wNKy19dKgVkD+TGIzBP2/PmPwNrDIouvzJsbEh98RVJ/yZdADyNaCX0urd5z5qTslYo5p3QaQ+7NsU0eZeZfyfdgF8re89MYbadQ9qebc2x6VTJfZtJLaZHmO0U5Xvf/1jnLo9LvXkpK0J6VlRT4+nMFmFtp6bzPDMGhLbDsM8Kg77t97uvJlyQNXvdLpR7A5CvCpGumqBfirwuIby0rFDLjcHgLXHr3nKrghW3yuGaRsPOlFKVAF9mi4qabdnLXXSuYns6xZEkzwaBJqeTwyivjvO1t7RiGrFGnUkV++ctJzjqrjra2GK7rUSrZPPXUr3j++WEefHAtExNZtmzZz913r+TAgSHWrVvE8eNxFi9uoq4uiG27HDw4TGdnjO5uuQYZhsbAQJze3j7uuWcVixbVMTWVpakpjOVa+ILCmvs0AxePvFXkjalBGsO1PHnoB9xw2XtpizWeIX2/b+1GHM/lc3ufrG77s5Xvx3Yd6oIxtv3kb/ns2hvIlQpMZxN884Wnq+z6WzrOZTQ1VZXaB00fEV8Iv2EylJjkrw/9gOuXv4eGUA2RQAgNG0O5KNx/O4b9/0cjWyzym5kZHjp4kC9cdRURnw+frgvgLpX41N69fG39ejKlEslikRq/n1fGx7nm7/+e6xYvZttVV2HqOqlikajPR8TnY+OOHWw/coTrFi/m6xs2cONpjx+5+mpqLAufUvJ3WjF+W5ag0s99TsB1RQ4/OQk1NQLeu7ulk21kRGjsaFRQbrEogXSV5z1P4t5Pl+L/wz/InHV1AtqnpsSwXqG3lZKPm28m+/m/4uhkHRMToqi3bQHtjY3yci6/XALue3uFPR8ellMMD4tiv7FxrmWur0/WGaam5Nu64w5ZDIhEJGG+IhQ45xz5lkZH5162UnMV9VKfKMefcw4E9BxWNkt+aorC1BQNF11EKZXiR3/8x6z4/OdpXLoUp1DglS99iXP/+38nNm9e9Wdu5/PVGjJN19FMk8P338/5f/InHP27v6NhyRJaV66UoLliEWUYeLYtTD7gllcoSuk0/poaXty6tVoZ5wGvPvwwy/7nvahCDuV54lvf85RUvTW1zVW3ffsROPicgPSP3iZVb7u+KwA7kxJAHoqUWfYmCZ2L1UNzu/jeI+XFU6sokvxKxZxtyULM9/9G5r/snfDhW2XhwDDBc3E0jWxqglBtK7nEOIMvPU2sZRFtF7wdu5Rj6thh2i+8ktFfPltlz5vPWYFu+LFLeax8GjMYYerYYZHEB2PlxEoXxyriulb5uWWYoVrsQobM1EkKyUnaLnwnViFDZvoU/lAtobp2PCA3O4rhD+EL15KbHSFS2y6MeLk62JsYQ7W0owxDWPjOeSIss0q4P96FturtEKutqiw8qyS+ddeVjvZAUCTzM1OiTrAtUX/2vFP2K9+TeukkRGNynAfe6CBa1wK8UkFeSziC8jws3WD2tGq3CvETj8dJpVLEYrHqc6lUiq6uLoaGhujo6EDTtGolcUVlWvGvV+59K9bRd73rXWQyGfr6+li9ejXJZJLvfOc7LFmyhGuuuYZMJkM0Gq3WxIXDYTRNdJalUhLPc8nlpujr28qqVfdQW7uAnTtvqjLq69Y9jGkGcRwLXfeJtcBzUEpnaKiff/iH9/CBD3yPtrZLqkx6JjNOf/+2cs1xA+Pjr1BT08n+/b2sXfslQFEqpfD7Y4yP/4KurhUMDh4gFuvENENYVq6sTt1EQ8PZmKb46kuIEjSAkD9m+W92EglAjjLXcPTmmBtvSuX/wPEmcP+Xh1csipy+fx/ayrej6htxdnxvTsZUU4sVqyNRlhatXbsWEK9PJbhjaGiImpoaYrEYtm1TKpUIlNN5HUcYu0rV2/DwMM3NzdUkz0qdhm3b2LZNMpk842JqmmbVJ/TjH/+YVatWkUwmeeqpp/jABz5AZ2dneeHgHKQpUMMwAmSzE5hmmMnJ1+jouJRdu27hyJHtfPCDO6ip6SSZHCYW66z2YJpmGMvK8uyzm1i37iFc16ZQiBMI1GEYfmZm3qC//wusXr2Z2tqFZd+8V/YBFRgZOUwk0k5Dw9nlC6pBInGCZPIUHR3LcDSTk4EatijFXciKZBPChhfLn0EwzSwC5iv8bZnDxUAk84ny8cHyPi4C7m9HvOoZBJDfgwD1PMK0R5CFgJvL+3vAfAR2jgHzihkGZo7y0MGH+MJVXyBSDlZzPbday1ZyShTsAjWBGhKFBHkrz5a+Ldy98m7aom28PPYyHbEORlIjXD7vco7HjzOcGqYr1kXYDNMcacbxHHSlkyllqqA/6o9Wz6UrnYnMBAEzgKY0gkYQpRRR3UBZKZSVBDNWlsvnoDgt1W3n3wlmPfgb5E2zc/DqvXBRr7DJKEmOD7TAdJ+w9Lkhkbsv3SZM8VT/HPg3wiK7NyMQPwK1i+W8lSR6rfwvy86WGe7GsjR+BCKdAmBTJ8tfV+Tu5UUHECl8bN6ZQXVKK4NzQ4C0LunJVU2q55Wl952/9bhdWH3dlBq32rKOFUU1WV73CUAupgRwh9slTX+sLGcP1EtgXOtyqYP71kWw6N2w4n745gXS9f6Or8jrfvFBWLZZwuyCjfLLlJ+URQIzAqN90LhEvjdfVBYRfvOdOf/72CHx1OenoPNyAfovbCPT8wQ/PTBOc3OYefNqMU0B6FNTWdraohSLNocOjdDVFaOpKcztt+9h06YeFi2qo1BwOHRomLa2CC0t8rsbCpn09w/R3BymtjZAfX0Qn0/nxIk4Q0MpOjtjDA+nqpVwdXVBLMshFDLJZi0MQ+H3G2iawrZdJiezdM4PM5ycPEO23hCq4bWxN2ivaRa5utJw8ChYRR766bf52LJ30xZrxPM8RlPTArQvey+dNc04rkMinyLiD6Mpjdlc8ne964afTClX7Yp3PJc3pgZZ2n4Of3naQsB9azcS9gf/1Wv+/20jVSxyw9NPs6qri56uLsYyGZZ3dhLUdX42OEhDKMS5DQ1kSiXSpdIZ4Hxz2ddesG0Oj4zQFomwsK6OU6kUDxw4wANr1hD2+ThZ9sHftWIF07kc72pvR+XzArabmwUNL18+R1lX0OvDD88B7DvvFNCdz8vjz3xGgH4uN4eg582TpLiVK8VsXlkA6OwUIF/RqS9cCNdf/7vd7ps3w4IFlPCRc3zk84rRUWHCt22TS0JI7q/PsMd/8pPCrt95J8zMCGteCaUrleTbqrjlSiXZx+8XJn77dgmme/RRWU84eFAWBa68Ul5WMilChGhUUuxDIZjfZaG5BfJTU2SGhgg0NFCYmaHhoovA88hPTVU73PE8Qs3NaH4/Tj5Pfnqao9/6FkvvvBMjEAClKCYS2Pk8ut9PoK4OO5/n1a98hYtuuw0jGMTO57ELBZx8ntz4OA0XXVSV46tyZo6dy2FnMvjr6/EcB3/Aj7KtcuR+WurgTJ9cgx1bguPwYPsT8N7/LnJs2yovtroweEzC7PK58nMlCIQlgf7sCwEFxbzI61OzwuTv+R68/0/nrt0A//B1uO5G+Z+VmBU2//3X40QilHIJrHyGUF0rTqmI69rS2650PNcRcsDKV8G5LxjDLuYwAmE81yEXHztDau95Hk4ph+4L4bkOybGj+EJ1ZYB/iMaFl+IL1WAV0kwPvEDb4ncAlOcJ4wvFpM9dN7HySfy+KMxO4x7cj3bVNUL8uA7uyBCqvUs89yOnUJEY3tAJqGtAtXVKhVz/PrR1/0VC7CrgPBpDocSrXlOLl0zgPvW36DfdhQqGhBhB4em63BdZFh6esPaajjczhZdJoXV04xXylMLRqg9d07TqfajrumXp+Vxu04YNGwBIJBJngPnvfOc7fOhDH6K1tRWY87eLRUuAvGmaZ8x19dVXs3v37mr+U2VRwLZt9u7dy5o1awBQysM0Fen0KJaVo7Z2AUoplDJwnDzDw4eoqekmFuti584bq/ef4nXfSk/Ppqq0vaNjGYYRIJ0eBbzfkdIDVan9nXdOkEoNk8mMlY8L4Xl2eUHAxXFK7NlzBx0dy1i0aC3RaCd+v/xPzSIhdduQYDoXsW9uQ8igc5lrL3pzzI03pfJvjn/DcVqdR/8+uRAeeUUSPUMRvFQSytKiI0eOnFGbkUwmq6C9traWeDxOsVjEMAxGR0fRdR2/308+n2fHjh3Mzs7S3CxMaC6Xw7ZtxsbGyGaz+Hw+UqkULS0tGIZBV1dXNV3+ueeeA2DdunWEw2G6u7u57rrriMViPPPMM5x//vmYpp9sdoo9e24jmTzJ7OwxstkJurpWoZTB2rVf4pZbfs28eaurCZt9fb10dq7A81wymVE8z2XZsk9g2yJN8/kijI6+gOMU8fujHD36Qw4cEJbWcUpks1PE4ycZHf05XV0raWg4C3DJZqew7Tw1NV10d/fgug74o2xRiu3MJcqPIex3ma+tsuaNCPg+jFwUK5J3D/Gk1yGrnMcQyXweCZnrQlLnFyKBczFgEKmJM8r7lxD2vb38cRvC0A8DFi7b+rexrGMZE5kJ+gb7qvVtt+y6haHUEGFfmJyd49bdt5KzcgTNIHeuuJPxzDipQorGUCNf7P8iq7tX43ouYTPMyq6VdNd00xxppmAXODB4gBPxE2RKwtYqpUgVU7w+8zobd2xkID5AfaieiC+Ch8dAfICNOzaicFH5UXjtPmHHlS6S7SO9Ekh39CsiafccAeD5CTj7VpHMT/UJSG1cDoUJaF0rQN0IS8BcflzS6Cu978FWAc+ZAQGkzSvlhi5zHF74MwH8rg2p10WGX5iQP6fMiFSfZYbldeSny5VnnjDnyRNlybuSxHnXguTAnHec8g1d8oSA8AqD7hTLr2d4bv4zHo/OSfJj86SKrlIBV5HOJ44DmswXqJP3oxCXyrZwi/jhmy4Wdt3OwbXfl373cCu8dwcs/6wsgPhj0HG5SN/9deWFBr0cqldeYOjokddjBEUNMH4Izv2vcOXXRCXQfIl0vEfK/8de2AZHt+ObPsgll7SyaFEdPp/G5GSWQsGmtjaI53lYlsvFF7cwNpZB0xR33rmCUMjkxIkEt9yyi+bmMNGon0DAoKbGj6YpLrmkjdnZPJGIj6mpXDWtfuXKLubNq+Hii1tIJgs0NYUxTY2JiTSeB+GwieN4VTl+Pm/z2c/uw3Zc/vaFp1nacQ4+3eDspm7+7sVdLOu+kOZIPa7nMZyc5C/LcvjPXPkx2mKiqxlPzTCZmeXTV36MtqjkfxQdi/pQLQ/85Fvs/s0Bwv5QVYp//WXvJV3MYbs2D/zkW7znb+7kgZ98i3ypQGu0AVM3uP6y97Du3BXccNl78RkV/uM/zgiUpfFrFy1iLJOpdrmnSiU6olGmslnccijU5372M8YzGXSleGLDBs6qq+NEWTbfFA4T9ftRSrGwtpavrl/PdC7HgcFB5tfW8viGDUzncixrahKq+ZZbhIqenBSAHQgIOg2F5vrRkkkB6ZU+tKamucdbtwoTX+lL6+0VdNzYKLVvDzwgCPq++wQJn65Td925uPZKcfr27TJ3LgeZdLl9QV7KsmVy+O23w6lTIn+/6y7B/I8+CvX1Ml1dHVx8sQDtiQnxu8/MyJ9sICCBdsGgrDc0NcFjj8GuXfJST5wQ9X97u9TNfeELlP9OBPDPzsp6A4Bnl3BLJcxolIYlSyjMzBBoaGDm1VdBKfRAgJGf/ITC1BSarvPi5z9PbnQUZRgc/da3pJvdMJh6+WWyY2P46+sJtbbiFItMvfwymmly0Sc+QX5mhqmXXkIzDIINDeQmJwnU1zPz6qvVbvjUyZMAaIZBenCQ3MQEpXRaAHtyFr77mDDjhil96/EpAe4DRwSgf+hmAealonjZ81kJllu0WP4ph8Iiiw+XlU2LFgvAV0q62YMhqG2AxDT88U1y7NBxOdYfgP9+h7zpPr+w+OveJ9s9DyufwfAHGf3lc7iujS9UI3J1pbBLOSZ+sx/DF6LjorX4gjFy8RHe2P8t7GIWUARrmjEDUTTDJDs7ilVIUcwmsAop8skJatvPI9TQwfTAXAe8Ugorn6blvB5AYZfyBGJN6IYPq5CWCrp8CiufBc/F7d+H6pAGD29mEmfnP0q9m2Pj7P4+KhzBy6RQC88Rv7tS4POjuuZDsYCXTEj1sOmDTHouQd4w0eYtwrjjs/IeO47I5vHAKuHNzuCODaM0HaXJ4reqrUPrXoA7OgRWCQ1obW0lm82yZ88eEomE7KcUSil6enpYvHgxq1evRimhSPr7++nu7iYcDjNv3jw+9KEP0d3dXa0xjsfjOI6DUopwOFy1ea5du5YlS5awevVqDMNgw4YN1SyncDjMzp07SafT1RA8CWBWJBLH2bfvs2V5+ikGB/uIx4+xa9ctZcVoJ45TpKtrFbrux/Mc+vu/SFfXKgzDj88Xpaamm927by0n0Lfg80VZufLuspT+Xiwrx+BgHz09m/jgB3dgGH5qajrp6FhGoZAgHj/O0FA/rivg3TCCXHPNo1x00X8DNCylSHsuJeR+dRvibT+E3ItWHm9D7lXfHH/YeBO4vzn+t4dn23ilElrPO1GLl6KtvkpUrBcvQ1v/PlRTC1r3QnSlWL16NUuWLKn2sa9cuRLDMGhpaSGVSuF5HnV1dYCsSLa2tlY97qlUiiNHjtDf30+xWETTNCzLqvZbZjIZCoUC3d3dGIbB7OwsXV1ddHd3s3//fjo6OsjlcuzevZtUKoVlWXR3d1drOTKZDOl0olxvcRemGaaj41IymXHAxfNc8vlK3cVJrr76EWKxLtate5gLLvgAmcw4+/bdRyYzTkPD2aTTo+zd+ynAK0voD2Hbea677vtcffVfAa78E/VFMM0gkUgbQ0P92HYB0MpBdodIJE5RKmXYu/cudM9lk+dxHbDK86q1cBOIZ2gA2Fj+3IeA+FbmvOwHkQTPEHKxtBBf+jLk//8A8DzC3ruIdz2HrIQ2IYz7xeXjNOCu8rZlyMW2Bwii88SGJ/joxR8l5o/REm7h4PBBAkaAL7/ry1L15jls2b+F7Ue2M5waJm/nmcpOsbxjOZ2xTubVzOORqx9hMDlYlc73D/WTtbKciJ/g8MhhlnUsI2gGqQnUkCll0JVO2BfmrPqz+OKaLxL1RTE0yWOI+qLUB+r52jVfk5uoX28TkP7rbfKd6wG44DPQfR0sfUCA9c9vEQBeGBMpfX5YHv/8VgHcTatESp85LosAmiH7Dm6XFPmmleV5bp2bx3NFUv+rrbLfkV55pyuv51dbhYmPdAoDHe0UwBxsFABb8Zbnp+WzUuCvPRPo48kP/rfBuEfZz54RZr0yv/vb5yv76ZV+2hwjc3MaAQHzxaQoADxX2PFKPGJ+Shj+S+6Alx+FztXCqOenITpfAubcIigDLvhvEGqCYkK8nYljIqHXfXI3H38D9m4Udt4IQNtl8n45RamW81zo2SKvy3Vg+SZh9JuWAqpav6briunpLMGgQbHo8NJLY8zM5Fm1qouJiQwzMzlaWiJ0ddXw4INrqKsLUCjYzM7mKRRs+voGGRtLc+ml7YyNpRkYmCUQMAiFTD75yT1ksxY1NQEaGkI8//wQp04l6Oio4dSpBBs37mB0NM2yZR188Yv96LriwQfXoCuNT1/5MTacv1qyD5XGHVd8mMZwLR01TViuXfW6/83hH2K7Dr0//gYAhq4zlBjniz/5FrqmMZycYNtzf8tIcpI7rvgwr46+gQbMr2/jf665nsZQDX7DJJlP86l3fJQffOxB7n7HR2mJNjC/vp2A6WdBfQf3rdvI/Pp2zN+TY/J/+/AZBuc1NNAZjbK8s7Pa5Z4sFhlKpWgKh/n47t14nseWd76T8UyGouOQtSzytl2tjHvw+eepDQTYuGMHr8/MADCcSrGkuZnRdJqcZbG6u5taTUOdDsZXrRKwnhZbFLourPh11wkwP90Lb5pzgHvTJkHWlec3bxaKu6tLgLpScwsAW7YI+q4c198vyPmrXxVQV5njnnugUKBAgOlpRUuLMOnr1p05VSwG550nIoFDhyQjb+FCWTMwyr8iFbDe2irbKqnxjiOnLpXg4x8XaX04PNfzPjoq+37xi/Jt3HijBNu1tIjYAMDyfGiBAEYwiOb303DRRWeAd18sxtX/9E80XHQRR554gsFnnuHIE0+gGwZLP/lJNF3n51u2EKivJzcxIcozTSPU0kLj0qUUk0nQNMItLTQsWUIpncYplWh+61sJtbfT/Na3EmhspPltb6MwM0N2ZISZV1+lYckSgo2NOIUCnm2J7H3R+SJRz6Tm/Om6LnVwJ44KCLdtOPWGyN9jdUjWiCaPn3pSmPUKU/+dr4r03rFFIh+theYOYeenJ+DvviLVcemE+OcLOfG/J+PQOV88867kloTq2pg+/iLJsaNMHTskne3lbBRfqIa2JVehNB3XLjH6y2cxAlLXphviMLYK2XLXe5ZArFHY+1oJ5TX8ElJn5ZK0nLe62gGPUpjBCIXUNCAMt7D4IaYHfk6ovgPDHyZc3w6aIR3ti86FUukM/zpKnRZUN09Yd8epKg3U+UuEYa9UD9sWXjKBd+QVvLICwivm8XJZkcyPj+DNToPrgdLwsmlUS7tkNLnlUOXhUwLwO+bhpVMSRlgsVmuFk8lktUo4Ho9TU1PDhg0bqK2tpVgsks1mWbNmDeeff34VXEtrkQD6cDiMaZqk0+nqHLZtMzw8TC6XY+3atcRisarHPR6P01WuUl6xYgWZTIaFCxdimiaZTAbHcXj++YdZufJufL4wphkiHG6p+t37+nrJZMYxzRBdXavYt++zWFaONWu2lR/fV810WrHiTpLJIWw7j88XpaHhXNavf4xYrINnn93EU0+9H9MMUVPTxY4dG0mnxxgZOYxlZTHNAJFIKzt33kSxmKrWJqdSQwRjnRw3g1yvNH7jeZjMVcFVQpHvZc7r/qZE/g8fbwL3N8f//nAc3L078E4dR7tiLaquHhUMoV/9HlQlxdp1UEMnqautZf369SQSCfbt24emaczOzqJpGq2trVVveuVCBhAIBDAMg+7ubj784Q+zfv16YrEYpmlWt+dyObq7u4nFYiQSiTPAvOd5rFy5kkWLFtHX11cF/4VCAcdxWLduHUuWLCGTyWBZDrFYF7ncNKFQI4YRpLu7B6UMNE0nlRqphtIlk6fKwBwMw08s1kV39+UcPvwI4OHzhbnssjtIp8fZufMmwuEmkskhurtXYdsFZmbeYM+e28lmJ4hEWkinRwiHmxkZOYxtFygU4oTDzaTTI2iawTvf2Yuj6QwrxScBS6nqCuVWZAVz62mPG5E+zM+Xt/WWt21DGPdGBLxvAtYirP0Yc6F1g8CFSE3HcsQ7vwpZJLidMwH7GoSdz9klUqUUx2aPcWj4EK2RVs5uOJvLOi/jk3s+ycnESS5uvRi/7ufhdQ8zcecEPd09hIwQzeFmDo0cYiA+wG17buNU6hTNkWbqAnUkCglWdq2k1l9Ld203KzpX8NLYS9QF6/DrflrCLfh0ka/pSseyLeqD9RTsAgeHD2K7No3hRnRNJ2vbeIs3C0hffK9I5F1bpO9L7heAeGTLHABvWA5aQD7/+sHTAHc5wK3C1B/plX26r4ML7wXU787jlsQHX1kkWLwZ0OD8u+eOU5oA39pF5eq5csAcyNeRjjmQjRLm+XTgXelvP2M/hH2Hsm/dklR6Vb77NvxzjxNlht0tzc0b6RBcHukURj09KL725z4ucxkBeR2lZDlR3pPFgSsehMQA7L1R9g83QfIY/OT2uaT63KQsPpgh8NdIJRyuyPBzE3B0uwDz1JCAfzRh3sNt8tp/dnfZRqCLz/2qx7D0GlxXmPWJiSzhsI9gUBj1W2/dTVNTmPFxUWrMm1dLT0832WyJW2/dddr+BuGwj5mZPCtWdNLeHsU0dSYmxKN+0007GR1Nc+utywDxyU9MZLn44hZGRtL4fDq9vX388IdHGR/P8OEPL+GRR67GdT00A4ZTE3xu75OMpacZSk4ynYkTNgOMp2b4ix89ged5Z7Dgvxwf4MK2RQwnJ6sd7Xdc8WFs1+XJgwLwnzz0AwKGj01X/Q9CvgCO6zKWmubzz32TeD5NLBAlnkvxtf7vMZtPYepGFaSbukHYF/wPCdorw2cYRPx+wqZZ7WCv8furQH5ZRwfjmQx3//jHdMZi+HSd0XSag8PDbOrpqXa2Hx4ZqXa6W47Dyq4uJrJZ7tu3j8lslnSpxL7RUbzTwfeBA3DsmJi+b7pJdOXDw/BXfyUIdv58oabnzRPDeGOjBMotWiRft7dLzHswKEj3ttukNN3vnwP5d90lfW2PPy5z/9EfCX1+7Jig564uOUdbG/zqV+jRELmcvJyZGTnFpz8917Xu9wsI/9SnhGFvbBSi/uRJeRkg4N4w5CX194s1OBKR02/cKIz8smWyEKCUyOIffFDOVbHgV4QAW7fKvKOjIiAo5BHG+777yA4NoRkGDRddVGXgZ159FadYRPf7WbxxI93veheLN25EmabUxU1MMPKTn/Drb36Tpre8BSuXw85mKczM4BSLZIaHwXVRhoFmGPjr6njli18kUz5X6tQpXty6lcZLLqH5kksItbbStHQps0eOkJ+eJjc+jpUviKf9ravnOtpTCWHMdRN+9I8CsGenzux1dx3IJGXxcfc/SEVcYlZ64JNxeTw7Kcd99zGYHBVwrukimV/7PlkY+NE/StCdpsvxO78zl31ildCPHUFpOk1nLRdQvehSDF8I8LCLOTzHBtclFx/HKkgw3fTAzwk3dIBSKE1DM0xCde3MnnwZzfARqmsll5hAM0x8oVpaz78CTTPQdJP2JVfhC0rfu6aZ4q2Pj+O6ljD4HrSefzm17ecJw+26kJjBSyZQ0Rrw+8VuuXgp2poNkEnjPv9TqYYzDLxkXHKUTBPlD4BEz+H2PSdgf/+zaB3dcnznPPmly6TL4XMpVHObqEILeZSuS/97NoM3O41yPYhEUeGYyOw9r0o6+f3+KrPe0dFxRqd7pbpt9+7dAASDwaoUPpVKVcF3qVRizZo11eyl374fDYVC9PX1kUgkqtXIp58jFovx/PPPE4vFiMVieJ5Hf38/lmVz9dVfoa5uIbZdwueLUFvbXQ2hW7Xq00QibWVV6DhHj/6QZ5/dhM8XJRptZ82aBzHNELad59Chr9DW9hY0zSCbncIt17hqmo+rr/4KN974CqFQI/v3b6kuCoRCjfT1bSUcbuLAgc9X+98Nw1/uf9+GrZtsURrbgS1KUUICkLuQ+80BROX5BHOJ82+OP2y86XH/PeNNj/vvH5W6OC+ZkAul6QOlpMvdOK2TMxrDqqnHct1qMmckEsEsB8GUSqVqVcaqVauoq6s7Y1sl2GP37t1cddVVZ9S8aZrG7t27q1Ua3/nOd6oeodHRUWZnZ1m8eDHZbJb9+/ezatUqIpFINbmzEgYSjfoZHj5ANNrOgQOfp6dnUzlgI1v2As2F0g0OHiCZHOK8895NsZiu9r1rmkEicarsS19OoRDnsccu4txz383VVz+CYQRwnBLDwwd56qn3c+6572bDhscl8XXkBZqbl2BZGfz+GkqlLOFwk3jKnAKEm0kqjTTCpA8iwPpe5AJ4EgHtmxDZ+iUI4N5y2ra28sdLwDzkYukgsnoDuJW5ao6HEUl+N8KyG8CNnFndYSNyeQMYK2YgPczA7AArOlcwmBpka99WNvVswnEdxjJjXNZ5GX7dj4eH7docHD5IZ6yTweQgTeEmvnLoKyzrWMbaRWtpi7QxlZ2qdrF3x7oJmkFaIi1nHLuwdiElt1StyDI1k3Qpja50TN3E0AxSxRTpUpqzYx2SBeAWYOaweNGji8qBcOXKnswJAd0X3guRhTDRB42XCtNe6X/Pj0gKfHFK9l28CSKLhE12iuJjzwzI/hfeC+EF0gVvRMspTK6w9OUQmGpInBacq3+rWSjsdn5avNy1C+dC2SoeycI0BBp+K8yuMspeeKWfeUy545fUKYh2CJj3vNPO1fhbdXPMhd9VQPX4CyKPVxqMHoTmpcK2Z0bK4Bs578gBaDivbCkIyfNmRFj18cMCujPDInvPT4ncffUXxAKgNMhOlBPlS1RBe7BZrAc1C+d882uelCyA9DCpxnfgeVAqORw+PEJbW4Szz27gZz87RVNTmKmpLFdcMe+04LiVLFhQRzpdpFRyaGwMo+uKVKrIq69O0NYW5Ytf7OeBB9YQCplMTmZJJgvU1ARoagqjFAwMzPKFL0hv/Fln1WOaGseOxRkaSp7R526aGpOzKZ745XeqnvL/9rb1/K+f7+Sza29gJhPnwKlXOTY1xF3v+CiOK8nw05kEpq4zlJykLhglWciwtP1c8nYRz/N46Kff5k+WvZvaQIQv7vtf1fq4V0aOsqixC59uEDT9fG7vX1d74e9bt5Gw7z+Wl/1/d5Rsm6Lj4DcMHNfljdlZfLrOffv2VQPmHlu/no/v3s2Kzk7+6PzzCft8uK7LUCrF58qd7k2hEKauc/OuXdXj7r/iCp47cYIbzz8fw3UFzT71lPjSH35YqOiJCQHvgYDQ0pUO92BQet49TxLnK8Fy8+cLyq2vlxT6ivH8gQfk+Joa+PnPYelSQdyaJueIxaRKrqNDGP+GBmH0HYcUMW7YqKpTPfqoMOurVws437JFXlJlVLrdu7oErFdy8TZtkqnj8bnKuOFh2LBB5r3/fiGbu7vP9Mzffz/s3TvXG79pk3yblX1OHM0y/PW5Hvdl99+Pa1nkp6b49Te+UQ2KM0Ih7EIB3TTRTJP00BC5sTEJskunMUIhjEAApRSubVOcncUIiVfbCIfJjYzw67/5G5beeSeaYTDz2ms0XnwxL/zlXzL4zDNc8dhjNF58MZ5tM/PaawSbm8lPTtJw0UU42SyhhnqU58L/+spcd/t/+4QA68kxCVL77mNn9rqDyBL8AZgZF5B/evf7uz8C0RpJiz99W20jTI/Brn+QBYNojfjbP/IJYeHPWgyLLpCQvOs24moajs9ElaXxnudhFdK/FTq3DN0MMv7rn54RTGcX0hIo54HrWGi6iVVIM3XsEK3nX1H1xcvXhd8NsgtEq+G8eK4A9bKUHM/FsS10D7xdP8A78grah65HtXagDKPcrmDhPPPPeEdeESD+9nXSXQ9zfeuxGlRdI158Rjzy666V81XOg4ez8/t4r72IWvJW9KvfA65b7m8ve9xLRTzXxX22HHxnmFAo4OUyaN0LcFBYrlvtUq/cv1buGw3DIBAI4DgOpmlW24sqdtCKZ/2KK66oElGV0Lq+vr7q/ejY2BixWKxaB1fpal+1ahW1tbVnBNlt2LABy7LIZrOn9bgn8fkk58fvF8uFyNYVicSpckjcZ0ilRmhru4RcbpIDBx7gqqu+gGmGyOWmGRj4EZ2dl9Hfv63c8z5ZPa6mZj5DQwfKx06xf/8WVq/ejGEEqzlOicRJkslBYrEuUqkhOjqWoWkmjmYwYAbp1XQ2ex5BpahDQPtv32++Cdz/5fFmON0fON4E7v/y8CwLb3aq3PV+Jaq2AffUACpWI9Ua5ZAPKxKjVCpVjxsfH6e9vR1N03Acp9pNWbkwVVh327aZmpqivb2dX/7ylyxatIjZ2VnC4TDZbJaOjg6SySQHDx5k3bp17N69m9WrV1NXV0c8Hq/2xtfW1krAjG1z9OhRFi9e/FvBIlejlINlFbDtPFNTv6K9/a3s3v3x00LpujhwYFs5jC5EqZThxz++h5Ur7yKVGqGmpptIpAVQjIwcpqamC8MIEgzWoWkmyeRQFdSD/FPTdT+2XUTXTTzPJZudxO+XNPCxsZeIxTro7/8i6/7L33BMM+hViofLPuAE4leviJUrfvYCUqVRjkDD4EwffAlJ9awtH+MgEvpTzC0GLCjva5eP85B0+crz88vbjyJpoBfZJdz8DD7NQFMaN++6me1HtnPd4ut44tonOB4/zkhqhEvaLmE0Pcq2/m18etWnGU2PsqxjGYdHDp/x3KaeTTSFm7hjzx3cueJO6gJ1hH1hxtJj1WMjvgh5O89QcoiOWAdb+7ayefVmumJdHI8fZ1v/Njav3kxDsIFP/uiTfPvaxzCKswL+PFtYZitTDpCLCiPuueAIO4AZkZvomUPQeJk8N9UHfe+HrvfBpV+bA7XTB6F2iXS945Qr45T0uPsbJJXbK1ejTfVDqKOcMn8JVcm+ERO/en4amt8yFxwX7RQGvtK/XgmX00xInRB5uy8mAW5mWM5bSZyvpOI7pTPT4St1dp5XlmgW585FeXHBKQqwP70H3imKJ921RObur5Mbz9w0hMSHzdhBaLxI2PjKYoBdgJ99Ct72KciOzgXPVULvXGeOiR89KJ75cJvI5ysAvxJG17Zcfna5cfDVgi8sNgDPI+eGOHaqyJYt+7nzzhVMTWW5/PJ5HD8uQH3Tph4WLqzjz/5sJz09XXzoQxfheR6aJje2Bw4M0doaZv78OjwPnn9+iJMnE6xY0cnYWIblyztwXRgfT7NtmwB6n08nn7d47bVJVq7s4vDhES68UJLsn39+iCVLmvH5dExTx/QrRjMTfPOFp7njig+X+4ZlRSZv5ckU83TWNDOenuHJctJ7R00zrudWQ+k+9Y6PMptLVZPgW2ONaEpRcizGktOkihkubj8Xx3WI51PkikUaIjUAPPCTb3HDZe/9DyuL/z8ZJdum5DgcLwfM3bt6NQvr6kgVi4ym02zr7+fTq1YxnsmwurtbKjKVQlMKx3XPOK4xFCJZLBJ2XTrHx0Uyf/fdQjNHIqIX7+gQw3fluQMHhF3v6BDqefNmKTbfsGEuWO6BB4ShHxycC5kLBkVb3tAg3vlMRkznNTUC2NvbRd+uabI9mZT9lCIbbeXYca06VXu7YHo4E2B/9atw881zjx97TNYibrttbtvXvy5y98rjRx6R9YV77xUw7pQbzI4dm3vpDQ2yJvHAAwL8JydlnWFiQt6WR75sYSTLPe433ki0qws7n+fnW7bQ9Ja30PiWt0gA3V13yfqi52EEAhTicXzRKDOvvUbdBRdQnJ3lyOOPc8ndd1NMJCTQ7n/8DyJdXSilOHz//WfOd+edAuwdh2I8TrC5GadYZObVV88IyNMMA9PQUa4jizCpuLDn6z8IDafF5INUte36rjzn88tHOjkXNOcPwvT43D5NrUgQ6ijs/C686wNQ0yCLMt/68u8uAuAJ426ctgDwl0/gGDp2MEAxm8AMhDH8YcZ+tY/GhW+tyudr2s6l7YK3A6AZYlOyizlcp4RVyBKqba2CXNd1SI6/Tk3rOThWgczUSSJN85l8vZ/GhW/FLuarQXa6LwieSy4xjhmMYuXTBGuasUv5amid8hQqMVslfjxNQzkOnmHKz7RUFOZf1/ESs7JQkUlLh/uKK/ByWamR86BSpeiODkoqvWnKfzjbxt3zz3Mhdgf2oa3ZgDJ9eFYJb3wErb1LJPbZDFrXPLxsRt5LBZbPTzqTBSAajVatlj6fj1gsRj6fr4bWua7L8PBwNYQunU7T399PT08P4bD0qLuuyxtvvMGFF16IV87VcF0Xz/NIJBKYpkk4HK6y8BXf/OkkUyQSIZVKUVtbi6Y5zMwc5eDBh7jqqi/g98fOaDN6xzv+EsvKcPz4s9TVLaSra2X1uWXLbqWmpptCIUkk0ozneQwN9bN9+x9x440v87OffY7OzhVccMEHMAw/xWKan/zkf3L11V8mnR4lHG4hlRrkwIEHqvfESunlkDqdTGYC2y4QDjejherJKZ14GbSbCCF0CCF/moBfAJfzZnf7vzTeBO5/4HgTuP/LwysWcZ7eXl0Z1a/9gEjoRwZRzW1glXDDURxNY2Zmhv7+ftauXUs2m+XAgQP09PRQV1dHsVikVCpVEzYtyyKdTnPw4EHWrFmDaZrVi1gljbNQKPD8889XL4x+v796Edy7dy9vf/vb8fl8WJbF3r17WbVqFaFQiLGxMdra2qqSpBUrVhAM+jBNG89zq9VsmqaTTo/S17eVq69+lN27b6GraxVdXavo79/GypX3UJHGSwL9L4nFOti/fwsrVtxJNjtFR8cy9uy5gzVrHkDXfVhWnsnJ14hGO0inR8rhcza53AyWlSOdHqGrS1hL13Wqq6Z2oJZ+3WQJAtSnkS712vLjUUS6/hlEhnQcWcX8SvnndBJh3Ss1bwoYQQLoKoDeQy6oBcTfXs9cL7xCmPpl5eMPApciCfVBoAbAyoPrYLs2J5MnhXFfvYn5NfPZuGMjd664k5g/xn377quC+kevfhSfIdIyheKGHTdUn7v/ivu54KsXcN3i6/j6hq8znhk/49ivb/g6N+64kTtX3MmDzz9Y3f7Va756xsJBZZ6hT7xBB1nUrx+Q/nYjCnYGEq9CU4+AeDsFgTbAAU+Td0VpAub1CGSPl5n3TRA9SwBnYUoS1ZUJniUgPtghqfV2Bn71edk/Nwp1S4V9LkxBaRbC82URwUpBqHMO4Gu+sgoAuQFMnRLZulJlEK2ddnOo5lh7xRyjHmkvg259Lq0+Nk+kldU/4NO/UHJOtziXMO9Y5Vq58j52OSAvMyyv5/BWWL5ZQPW+26WeLbagHKinygsJnnwkjgvYbrsMrBzsv0eAfKhZ0uiblsppzNBc2J6dg/2fgbd8HF78Elz5qCxiJAd+z7nvIRk4n76+IZqawszM5Fi1Sm7Qs9kSo6MZIhGT9vYoluViGFo1Zb69PcL8+ZKxYVkujuOSShVpaZGFkFLJQSk4fHiErq4ahoaSDAzEufzyeWzd2sfdd6+kvT1KKGTy+uszTE5m6enpRilIp2XBUtMU4bAPIwDgYrsur46+TnOkgelsnMVti3ht9A2WdpzLyyNH2bTzr+hd/3He0nEuCsWWHwtj/oOPPXhGavynr/wTPv/sN6sJ9Re3n8NYGeT/6fL/QtD047guEX+IoOnHb/jeBO2/Z5zOxPvK9W83PP10lU1/9Oqrifh8vD47y5b9+9m8ejXNoRC6puHTdQxNwy3fPwUKBczTe9J6ekRr/qlPycfptPSf/7kg59FR+NGPpBbuoYcE/T76qITcrVolc4yNzQXdgTDujiPoN5+XY9va5Lyf+Qx87WsiSc5kBCnfcQcsWkQeP0UC2LbCMORSUiwKts9mBWDfe6/g/oGBOfK/pUVOOz09t8+iRQLKt2yRxwsWyEvSNPjEJ0Spf8458jIcR17isWPwznfKt93fDxdcIIICxxGGPhyw0Ny8eNMNA89xULouUnbT5LVHH60C7l9/4xss3riRSFcXmaEhAed/8ieE2tt5sbeXwWeeYf3TT/Pao4+eweArXSczOIjm8/3ufDfcQG5iglBLC7mJCQL19RRmZ2m46CKMQADXcQS4T4yIfH3RYrn2FoviVw9HIJuBmnp5wzwXjv8GHvlz+OyjcwD7snfCH31MgGK5xo3ZKQH17/vTOQWF0iR9PjEjjPr6D0J8GjoXlIPokP0qCwD/9SZcTeEGAoDH6C+fI1TXTri+E0030X1+cnEB1b5QDa4tQH36+As0nbUcTTNw7EIZhPtxSkV00y/ecNemkJokWNuO0jRcu4RrW2iGiWOX0A3hTCuLBLoRQDf9eMD4r/YRrG0l3NDJ9MDP6bjgnZCYPaOyDZ9PFJuUiaHJMbTO+fI2ZtOnMeILwbGlNi5WI/3sHfNQnit1xIGQyEM8F5TC2fl9VEcXqmu+JNL3vBOCYbyJUbSu+fKvMJuR99MnjQElTa+GpZ1e71a5J7Usi2effZYrr7wSoxz+kMvlMAwDXdcxDAOlVLXv3TAMTNPEcRyGh4erBFR3dzc7duyo1hqfnkxfW1vL4OAg4XCYQCBQXQSIx+PU1gbZsWMjXV2rOP/8951W4baJWGweyeQpUqlhurpWYtsF9u79FCtX3kVNzXxsWwIlDCNAPH6STGa0qhT1lRuBKhL7gwcfYs2aBzCMAJpmUiql0HU/+fwshuFHKb1MYt2NaQYJBGrRNINcboZQqIGSv4Y+TaMJUYJ2IhbOTcj95UPljyhvetz/pfFmqvx/wuHZtlS32fb/553/kKHrwrSXw+kwDDB9shJaViw5iBz+4MGDdHV1YRgG6XSao0eP0tfXB1Dta8/lciilqoEgHR0dZLNZduzYQbFYrIZ22LZNNput+oAq0vcdO3aQTCa56qqrqsmfSimuvPJKTNPENE3mzZvH5OQkNTU1XH311WSz2TJwD6HrPmZnB0inxzCMIHV1Z7Nhw+MYhp916x5myZIPV71CmcwYmmawb9995PMzdHWtrPp/nn/+QTo6ljMycpiOjmWk06Ps2nUz2ewEzc1LSKWGaG5eQrGYqq5KRqOtNDcvoVTKkMmMoZRGJjPG7t23ork2KzwPP8KY15Y/6hC2fBK4E/GhK+TC+CWERc8iwP4y5sTUpy/POYhMfow5mVJDeU6LavQYAwhTrxCf/C0IwA8j3nnHtRjPjKNpGmfVncVj6x9jYa3EBG9evZmp7BQ1/hruXnk31y2+jntX30vACDCZmSRn5UiX0mc8VxuorX5taubvHGs5Fp9e9WmmslN8pucz1e260n/vPI3BWtSRXmhYJnLr6X5hyBtXCgDOj0moHA54SqrilA7pN+DF2yF7EsIL4dJHRUbvCCNAsEXeIdeCl++B2osllC7YJqnzl3xJOuCbLxcgPdUHTh5qzpfnNVOk9eV/pFX/eQWge47Ix53iHIivsO+Vn6Yy5PnEgLwOX2QuxA7kc6TsDXdK5fCi8vFOQY5R5XNmJgRw64E5Jj95guq/h8O9olrIjMBb75S+dSME73xE9tcM8ajvuw0Sb5TP5Ypfv2mp+OOhHC43Kudsu0y+j75N4onXTEms99UIWK87VxLq9aAsdPz8i9C+Sth6pcHADyE7hmlodHbGePDB51m6tBXX9SgUbF58cQzTVNTWBikUbKanc5w8meDQoRGWLetg4cJ6HMelv38IxxF//Gc/u4+TJ5McODDI+HiaRKLAsmUdBIMGy5Z18Md/vJj29gjbtl3F5GQWTVPkchaxmJ9Vq7rKb7vCNDWUUiSTRVxkYatoW/xi9HUaw3VMZGa4sO0sTKXTHKnnL370BC2Rev7+I73VxyPJST79zj9h/fk9RP0h/nT5e6qp8UfGj7Pn6PP89aEfUBuM4nouf10Ot/vrQ/9MXTBG2BdEod4E7f/K8BkGUb8fny4LW5U0+oq/PeL3Y7tuNaxuy/79mLqO7bqMZTJYjsNAPE7f4CC2puFVTN2dnUIpj47CihUC2letkrj1hx8Wpt3zBLm+731CQxuGUNk+Hzz5JHz0o0JHf+Qj4mW3bWHRb7tN0O7x4wLKL75YgHs0KtR3sSjIGARZj4+DUrglh+PHFYcOyVRKSap7fb201z38sFjux8eFNb//frHf33OPrBkMD0tF3OCgrB3MmydrDIHAXKB+JiPHRaMiv9+/X17qsmXiHLAsWdNYulREAjB3rPIsnHwep1jEymR46fOfx0qniXR1EWppYfHGjbSuXMmvv/ENCaZ7/HE82+bI448z+Mwz/Pqb30Q3zar/3YxEql9feOONuLaNUywS6e4m2NzM4htuOHO+J57AX1dX/fzrb36ThosuQvf5KGUyeK5esZtsAAEAAElEQVQrQWnJGYjUSIK80uTnFamBE69L0nwhJwC7WID558DSyyQlfv0H4RN/Dh+8WQD39sdhZkLeoF3fhRf7YOiYrHaUytf6fE72/fCt0NgK5yyRrnLdkCq5Yl6A/n/7hPjFdUMS05VO+4VXUUhNYwZjuK7N2JF9BGua8QXFL+3YJaaPv1ANsTP8QeyitOM4paIA/cQ4ViGF0g0Mf5jRX/6YYiYOgBEIYxWyTL7ej1XIglKkJgbQjQCuazN65DnsYpbW8y8n0jSfqWOHSYz+Gs+xRJm55lpUOIoKl21SyQTOzn+EXAbV3o03O4Wz4ykJ+gsEUK3teIkZnF3l1PlUUoiiVAJn9z8JYTRyCi8+jTt0Cq9UkuylxUtxD+6vNh+h6xJQl5XcE+UPyN9eYgZ3dKjclS5kkeu61NXVsX79+uo9aTqdZtmyZXieRzweZ+fOndVqYrdsDbVtG8uymJycRNd1SqUSzzzzzBmqUcdxWL9+PaFQqByWnGbNmjWEw2E8z6OtrY1YLEYoFMK2bTzPIxqNopTO6tWbWLRoLaVSmv7+bRw5sp39+3ulbSc1TDjcxO7dH8fzXK68shfTDJetEy57936KZHIQvz9S3u+WcjhdDJ8vgs8XJpudpLNzBen0KDt33kQicQLDCOE44qn/yU/uA+Bd7/oysVgHPl+EPXvuIJkcJBJpYXj4IJoS0udBhF3vZS5/KYLkJOnMqUTfHH/YeBO4/wccFS+68/R28aT/G4J3ZRiohmb0a69DNTahdANlit9W6QZeIo5evvitWbOGrq4udu3aRSwW4wMf+ACrV6/G87xq4Mf+/fvxPA+/3/87wXKlUqn6dSUtfvHixfT09OC67hmhIad3vCulmJiYoFQqkc1msW2bzs5ObNvGMAw6OzvRNJ1k8hS7d99KONxEJjMGQCIh6ZiFQpJcborh4YN0dCznpptepbNz+WnpnVsBWL16c7lCYzOaplNT08WiRWurF9T+/m1omk5Hx3J03UcuN8XevZ+iVEqjaSaBQA2ZzAT79t1HMjmIaYZYseIu0H0MluXxGiJxb2KuA/NiBFSvRIC2hTDnzQgY70EA+jRzF8c2BPQHgR8h4N4uP84hrL0PAeYhJKDuPsRfP4lceLcwd9HQkXT30fQoqVKqCsbHM+N0xbro6e4haATpinUJqK9byCf3fJKMJcnwr068yvza+Ty+4XEaQ428Mv4Kj179KAEjQOdDnbwy/grnNJzD4xseZ0HtAsbSY4xnxlnZtZJFdYt4fMPjLKxbSN7O0xnrrJ7jlfFX+ORln2QiF8dbfK/0r0cWivx95mDZa+5J+nugVWrdMgPy7iqgOCuy+HC5ikbpws6/fCdY6TLL3i8A+JIHxdNt5eQ5f4Mw+4VpyBybS6zPDQr4di25UWnqEZBa8eiV0lRT4jWfsNL+mDwXm1/2pld87GVp/OlJ8P5aYcQpy+DTQ/K10udYeJgD654noN8pSvq70su1c8i5auZTVR+8/WHx3Fcq2VqXi8f8uVvl+1ZK2PCBH84l4o/2Q2pQjr/kDgHc078Un73nwo9vkgWApbfK5x/fJADeysBIn7wWIyAyfM2Eyx+AjlXQf5+w+Nd+D9qWY9kOvb19bN9+BF1XnDqVrIbSBQImY2MZbrllN9msRSBg0NQU5tZbd1dBfFNTGICtW2WOrVv7aGwMMTSUIpu1uPXW3eRyNqGQVL0NDaW4++4f094eJRw2GR1NVwF/X98gx4/HCYVMxsbS3HffPnRTUbRLJAsZLmo7m8ZwLW/pOBdD07E9t5om/80XnqYhXINPN1jacQ7ffOFpHM/lM1f9D/JWkbZYA/euuZ6umhZaIw0C4pe/h0Q+jaa0OWC//D0YmkHEH6ImGHkTtP8Bo5JG/+S113JuYyOBMhNfAfP/c/VqAoaBoWkMzM5iuS5b+/poCIWYTadRw8MSoz48LGB72zZ4//sFyN94o3yORObAtW3L47KcnXxeZPQDA7J/ezscPSq0d6EgL3LFirlOtzvuEOD20ktybD4v1Pjy5XPzXXIJGAaOGWBsTIj5W24R3H/smCj0Mxl5yfv3C6AuFARkHzggyn6/X176l74knvfnn5cKuUOHxOve2yvgfHRU9s/l5JjKuYaGRAgwb558K9PTMrfrziXbex7kZ2aY/dWv0AxDqttmZ5l84QU8xyHU1lYF8N3vehfnf+xjFOPxM8G56xLp7OStn/40nuuiB4Msu/9+Qm1t6D4fStNEvTc6Sm5iQgD8aUF3lfmK8TiLb7wRK53GymQwAgGcQoFCPIHXfTbUN8FZF0oK/NS4pMJ3LhRAbfphZnIuNO6DfyZf+wLSy/53XxGZ+5r3guETGf1Hb4MH/17mPPEbkeEXcvDDb4lnPj4Nf/uQhNahyqqvvKTah2KQTICm4/h8lHIJRl7bi1VI0br47YDH1LFDBGtbsQpZeS6fwvCFaFx4aTkZfjkojVBdG1Y+g+tajP7yOQx/ECufQaGYOq3+zbFlQbkC/KePv4Cm6ZJO7/MzdexQdUEAwPCHq4F5SvehWtshm8bZuwPPslCGiZdK4B39JW7/T1G6horWoF3zPlSsFhWJoUw/hKOo7oW4LzyP1r0A5fPhpZOo7gXC2Le046XTaJ3d4qvf/QPIptHWrEf74J+iX/NHKNMnAXXxGUmlLxbk79AwUR3zcIFkMsmuXbtIJpPVa0MsFmPt2rX4fD4aGhqqcvmuri4OHDhAJBIhl8vx4x//mEwmU5XADw3JYsBll13GoUOH6OjoqDL1SikmJyerlcVKKcbHx6vnrHzteR7Dw8NldSnEYvOIRjvw+2tOq3CT+8/OzuVlEmkZmcw4e/d+qlrtlsmM09GxjL6+XsLhJp5//kGOHNlOMjlEqZRiZuZ1duy4kWi0nQsu+ED1HjaZHCSZPMWePbeTTo+ybNmtACQSJ6vkVGVez3OZSQ1Xc5Q2IYz7JsTbvhkhmUDuKdMIMfXm+MPGm8D9P+JwHNz9z1aTN3Gcf9PplWGg/H5U+abQs21ZDd39T6hIBM11CJgiEarUavT19dHd3U1dXR2WZVVTO1etWlX1EDU0NBCNRlm9ejWLFy/G5/Od0ZtpmiZXXHEFoVCI4eFhVqxYUX1ucHAQyxLgkc/naWlpqUqbRkZGcF0XwzAoFos4joPrOr/DlnueW91mWRmSyaEzViV1PXgaUN/E0FA/oVATGzY8TizWTTx+klRqhGi047T97sXnC2MYAXTdpK9va/WiWlnNzGTGOHJkO6nUELadI5udxMVjCAHUceQP9QDSoe5HViuXIGnyKUTC7iEgXEcuiAYSbFcRSleYdBAwvhRJjc8iYP1i4A5kYUAhIXjbEGa+BwH6T5SfywIeLqPpUe7bdx9j6TFq/DWMpcf47L7Pcjx+HE1p3LjzRloebOGmnTdhuzZbrtxCe7Qdv+Hnss7LSOQTeHjcvud2rvn7a7hl9y3UBepYu2gt7dF2MqUMOSvHx3d/nM5YJyu7VqIpjXQxjeu52K7NS2MvcSp5iv6hfkpOieZwM186+CXSVhE3PB9PN0X6/vOPS6K8UxBg3bBcZO2VujgrJaCy4m+f7pdtTkGY30u+JIx5YRYaVwnr7LkwfVgAe6UyDU/AeiWFvpI0r3Rh3qd/LpL6ire8wpij5G4WytvLEnpVTh04PYjHo5wm31QG9j4BuorfrYxLnpDPnivz6z5hviPtZQa7/EuhlfUXFR+FUxIQnp+EZ28Wr3rrMtl2uFdS4A/3yrzLNwuYtnPw3C3yujJD8h5phoD8YJMsKBQTcuwL22SBoNzJzuFe+V6DTbJ/ahDalsn7bwTn9jvUKyBeD2Dqik2berjuusWYpl4F8Q8++DxNTWF6e/dXAXlTU5gHH3ye7duP0NsrAP3BB58nHDbZvHk11123mE2bVjM9nWP58s4qmO/t3Y9tuySTRbZt668e7zhe9XEF8P/2ds/zmM4kGEpM4HouOSvPWGqabCnPL0Zf5/rl7+GRP7qHT1/5MbKlAk8c/CeWtp/LbZd/kF+OD1CyS6QLOZL5NIbScDyHjtpmbl75fmzXoaumGcux6apt4bNrb6C7rpWgz0/IF3gTtP8fjN9m4U8H84vq6xmIx6sd74lCgc2rVzOVzVIfjVYZd6+zU0LnNm0SRrYSpT44KIj5lltgyRKhn/v6BEHfeKOw9CtXii/+hz+U4wIB+f8dCAiq/vCH5fMDDwiwn5kR1j0UmotoHxoSsHjffbLNsgiYLitXejz44Fz1e1PT3OfaWgHfhw4J0b9ggfjbm5oEZC9YIP73xkYB+cGgKPnPPReeeEIEApOTcy+7qYnqubZskcWBU6fk8jM4KM/398+11mnKpTA1RaC+np9v2UIxkahWtxXi8eolKdTWxts2b6YYj2OEQlWg7qutRWkaVi5HfmaGlx94ALdQkJybXI7UyZO82NuLncsR6eig6S1vwXNdwh0dvG3zZoxAgIaLLiLY3EzT0qUEGhooZYVJLkxPo/v9BBvqhaTQDbk2AzQ0S9e6zwcTI2UQP1987JZVZtCLEI4Ks/7Cz0T6Xt8MUyPlareC1MuBgPfaBjn+nCUC0CvH7fqudLtPjIq82/RJav3UiHTFA1PHDpdB82GU5+G5Do0LLyXSNP8Mhh08/JFaOpasEem8VaqC98oc08dfJFQnqq3Tk+p1ww9KnbZtGXaxQLi+g1x8nMaFb60uCCTH32Dsl89i+sN0LFmD8jwoFue63NNJnB1PoWI1aB/472hrNuAlZnH2/DM4Fp5tCQm14ynIpFDnLUZbdy1eMi79763tqO4FkiSvKVQ0Jsx9Jo3q6MLd/yzK9KFitTi7vo+XmJGO+OY2SKfKCfRJVCQGqQSe552R8F4qlYjH4wwPD6Prejn8Tfbbt28fXV1dXH311Wcct3//fsLhMLW1tXR0dDAyMoKmaVW5fTweZ2RkBM/zaG5uZvfu3czMzGCaJpFIhN27d2MYBrFYrNrl3t7eTjqdJpNJ4TilcgK8RyzWyfr1j1Fbu4DBwQMoZdDTs+kM8qiSBt/fv42FC9ewevW9KGVU71E7O5dTLCbP2N8w/NXnOzrmCKv+/m3U1s47g+3v69tandfzPLrPvppXlYaLBCL3IKHHf44oOz2o1huP8iZw/z8Zb3rcf8/4v93jXmHcJUDuqioz/u92vt/2vW/4ACUgU2a79+/fT09PD+l0usrAX3nllWjlFfCKF6hUKuHz+aqhdqZpomla1ceuaRqJRIJkMllN5Ozo6KBQKPDkk09y/fXXEw6HsSyr6jVyHAdd18/YJt55l0TijXJa5r1EIm3lpMwT7N+/hXXrHkbTTHbvvoUjR7azePF1XHPNV9F1H57nMjjYd0ZSvFIaO3f+GZ2dKzjvvPegaSa6bpLPxwmFGpFwOoNE4ji67mPfvvuq81b89Ndc8yi7dt3CihV3killaZv/diylMJG+9dNzxCssvIaw5oeRSrdKHFkGkbO3lI+r+NY95oB8ZQ6XuYtnCQH/Znn7NOJ9N5kLxNMA7BKunWfjjo1Vb/njGx7/nccnEyfp7etl8+rNzK+Zz0R2gpyVo7evl009m5hXM4+SU2IsM0ZvXy/3rr6XhXULKTklTM3Ew8PxHI7Hj6MrnQf6H+Cvrv4rHNfh0MghVnWtYjA5yFBqiOUdywkYATw8XM8loGn4ssfLHvcvCOB0SmWpO/KOZI5LUvwF94jXvRJQ5+SkGq7iD68kwkOZgU+XQ+5qRGLuFMDOSt+758pxZyTWL4LcsLDxRtkHrpfD2X47Jb4SHBfpFPYbT8C97pMfQikl0vZqgrw352mPdApQTp2cC7nLT4rU3SkI+C/X6UmEsFWep7w4UErL3JoujHygTqTuR7dLovuK+yVELnVKgPbyTVBzVnk+W7rYK/te+agsBuy94cxtjiUe9eX3ipw+eRwObRHwH+0S9r2y/5rHhZEPtZ52zntlscLOkrX8WASqKconTybZurWPe+9dzbx5tZw8mWDLlv3ce+9qFi6sY2AgzpYt+9m0aTXDw0m6u2tYsKCO8fE0NTUBLMslGDQwTY3jx+eOXbCglnS6xOiohNR9+tM9RKMmuZz9O/O1tkYYHU3T29vHk397DfF8kog/zJHxAVoi9Uxl4yxpO5vhxARdda2MJ6d54tA/8bFL342HR8gXoClch+XYmLrBbC5BwAwIW1jKE/GHUMC2n3yLjy17Nx2xJsYzMzx58Adcf9l7WfBmEN2/y/h9HviQaTKcStGl6wRvumkuse3xx8U8nssJKn7hBZHLFwqy+Ob3C9KtqTkzOf7P/1wY+dFR0ZRHo3KM6wo4NE153u+XbRU1nWkKon72WTGqL1sG3/0unHUWrFxJCR8zGR+jo4qHHpoLidN1WRdQau7lJBIiBAgEhB2vrZ0LsVdKnisU5FtaulQeV+q2KzJ80xSA/rnPiQ9+3ry5NcdiUZrrenrgj/9Ytgf0HJ5V5Oef+9ycL/2++ygkkwTr6yUTRdPwyoq6KnNeTpTXfD7Jhsnl0EyTwuwsZiSCKqv/cF000xTg7Thn+Og92wZNwykUMEIh0kND/OYb3+CtmzfjOQ6ldJpAbS2m34fKZ0XCHquF+AzEJ+f87p4nEnmlZJ9AUBh13ZDnTg+ki9UJY+8Plq/ftvwwUFIdF4oIY4+SqrjKcZGYLAREakDX4B+egGs/BP4gjs+klEtUk959oRpysyMEa1pRuk4pl2Tq2KFqCvzYkedoPf9yNN3EtS0mjvbResHbq2nyTWctxxeMYRdz6L5ANcHdc73qvyqFh13KY/iCeErDyiWx8mlCdW0oTccuZHFdG1+ohlIuic8MoWwb0inw+XH37TntvvH9ADg7vod35BX0W+6RH91p+2hXrBVwfto+ledP/7qyL66LqqnD2fHU3Hmufi+4Ls6efz7jntXZ8RTOtdedEQxXW1tb/vVxGRkZoaUc+mCaJjMzMwQCAWzbJpVKEY1Gq8dVbJoAuq7jOE61Ni6bzRIKhar3psVikcnJSTo7OxkdHa22Jw0ODrJ9+3bOPfdc1q9fz+7du7nsskupq4vgeS67dt1cvYfcsOHrgMJxihw9+kPOOedaMplx+vp6Wb16E8nkMDU13dTWLgCgVEoxPv4L2tsvxTD8lEoZ0unRsl/+Xmpr5wGQTo/i88XI5abKc91LXd1CisXUb+2/gMpvhG34SWk6rlJkkHvQPPAUcp/6KGK7XIbUE3ci8vl/aZTKHz7+cyXQvxlO9weO/9uBOwh4x3HA0P9dQTtQTZp3Einc9vmiOFY2OWXj4BDwBaoAzKd8pBIpgpEgnuahazqO5+CWXCYnJmnramN0cJR/fOofOf/883nX+ndhuZak0ZccSqUSgXAAHR0cMAyDeDxerdWwPVtyvHSNYq4oHiHXplQo4Q/5z5inJhLEwMFTOjouHloZmJbDtZSBa+fJ5uOEQ3W4GIyOvsC8rhXgOaSz0xhmCJ8ZRMPD9hQluyR+vVKGYLgZXdMoFLOMTrxGe8tF6JpCNyOUSml0TSrMXGXieQ66UuA5pLIzEKhjKFjPmGtxpVOipOk4jkVA6WR0k6zuo9Yp4bcLFJSOrmn43TLb67kUdKkqCZcfu0qhynJopQzwHFzNQPMcbM/D0U1Mx0Ip+Xno5QTwuBHgNt3HA4i0qReRO51byqK7Fkkrz13PbqL37Z/Hr8IUvRyvTLzCpS2XkbLi1AXr0FwTTYex5AQtNY3cvvfjvKX5baybfw3tNW2MJsdpr22m6OVIZNM0+VvRdY1MMUvAZ4Kn4XkKmyL5UhHTVHzquTu5ffntnFd3IZ6jcF2PolvAUUXyTpY6XxOaa+KzxwjO7oH6ZViFKUoNq1CajmklIPFLrIbLMDUd00ljuS6WHsV00pD8JaX6FSjNwHNtDAV2WaXuoeGzk7h2ASvQjKk0NFws18VUDi4algemZuCniOW4WFoAz85jGD4cT0NX4KBjKjCdfLlzPSuSSo+5sDhZYwJPnwuIq6S+nwHWPaqdAAr57Fll/7wrIXiOWwboNmDJturSjQmlgoB6XQevBBhyQ5k6KSz38nspxRZhoeF4EFA2oMlj1yVQnMLx11PyFD7NI4gD+RlKRpSSGZa/J88jQAlfdoxSqJWC8qErMHHwOXkwApRKeUrFLHq4EcfT8I3txxdpF5Dv2WDlKE3/mkJbj8gNxzJEDY2Q4RGKBlC2hafr2J5CxwXHxdUNNNch72qMTBZoaQmTz9vEggqvUCRraxQKFh2Nfvl+CiV8kRCO46J7Dhoenm6g46EAy7LJlMAMBzFcG1O5aJ5HqgRD41kWdcfweQ7KZ2C5OiXHRGmQKM5SFw0xlpxmLJFgcfN5ZOwkH/nOPXz7g1+g1l9PvmQR8GkULAel20QCBnm7iG0pMnmbSNAgGvJhu24V3H9u75PV8Lr/zNVv/54jWyzym5kZtvX3s3n1as6qq8PQNH4zM8N4PM6aUklS5e+5R3znNTUCsg4dgre8RRCu50HfAaGc29rkb21sbC5+vakJfAZEovK3l85ANgf1dXDoMCy9WOhu0yfPA2jlAMvxCWhqkP0//Rn4/NaqDN9TGrmsy4khk875Jk7Jxm/YBIKKfEEjGHDRNMhlPXRTx2dIlaRVdJma0WhtdrFdDcd2CYbAsTxsT8fvc4XZVQrH8nA8Hcd2Cfg9HGVwctAgFoNY2Maz5XwuOpYFOg6WowgH5FwuHnY53T1QX4+nFMq2yY6NoQeD+BsaUJ6H6zjoPh+ObaNpGjO/+AUNS5bg6TrF6WkJk/M83GKRQGMjOA6ObaOXA/68sgLRsyw0XQCGpuvY+TzKdYn/5jcEGhoId3cDSCCb46AbBh52OUVbk4YIx0bpOq7roDRd7kvyGZxiDt0fwvBHYHIUOxPHWXQOKA3d8eDEUZz5i9CVIV8vOhfw0NJp3EhEFk5dB728oOtQZvhdB93T4PhvcM46T16f0nCdEpoRwHNtPDOIrRnSOlPKU0hNYzR0oimFbpdwrAKuPwzZOIY/jK0boBloVhFH1zE1AwfQHAtPN3GVwnBsLDxMxyafmsKs78DnuUIqOA4F1yZk+mV+u4gXiGLpBhpgOI7kGJVrUf3ZAvL/yUNTHm46gxaN4Fo2WsCHW7LRxgfROzpwlYFjeSgrjxeMgAu6ssF1cHJFtJoaXNstsxAKTZP59JAfzSjbCkwfJONyf9rajW7q6LqHU7BwckVULIbreGi63Ed4mif3kcDoxCitHa0oFBoamWSGRCpBa0crpUIJz/ZQhkIZiqAviOM4aKYQUspTpLNpouEonvLw8NCVjl2y5V63sw0XVzyNGuhlksB2bAzdwPGcM55TyP1lwPCBa+HZOWwrTTDcgq4UJ071EY52EY22kk5P0Fi/EM2zcFFyT6uZuHaeU8OHCIY7qI02EfSHQZl45XsFz7VwPIWmSfCuphT5YpaxideY17UCXXnki1ksO08s3EilKcayRcmq+2LMFBMYMbHElTyPBkDHQ0NV7qzFsQcU8CgqjajSfi8oLwG/QSyam4Hz+M8D3t8Mp/tPOH5bzv7/dtglm2KmiF36PX5518WJNOC2zSc+kODpjTvIFWxOZU9x856bSZVSHIsfY+OOjbyReINIbYSTmZP0DfUxEB9g446NDOWHaOlsIWtl6ZzXya133sra9WsZSAzQN9RHwS6g+3Qm7Alu2HEDA8kBXMPFxiZYE6RzXieu6aJMxYnUCTbu3IjjczieOs6Nu29kzBqrnk8zNWqjYXw46MqTlPXCBJqdkpv0zHG0n9+CslIYmiIWiGC8dDtm/hTzulagMgOowxuJkiHoi2BkTqAVpzE1CPvDhOxZYoVjGPlBtMMbCdpTLJq3iqA/hF/X0O00QV8Ef3EM7YWb0LPHMTQdzXPQ3CI1kWZqzAAX2DnWlFLo2XEChQSR7BiGU6LGytJi5QjN/gZj7w1EkscIuA6aW0JLDKDtvYFg/A0ieKjkcdTeG9CTx1FOCS03hUocQ+29Aa2YRCUGMEf24599HX3vDWiJY5i5CTQ7j+YUqC+l2GznqbPzXFhK87fFFPV2Hl8phZGbIKKF+fI7v0ZYqyE+XSLgRelpv4IXnp/AZ9VwaiDDxht2MnAsyRsvlzhxLMVDV36F983/CHVGEycGknz2jp9z/FgKzzbIjgXp6xvi2LE4t938HIMncujKQENj7FSJT93ax+Sgx7a3f4mzIovBVRw/Hmfjxh0MHc9BPkRLoAOnqNHXN8gbI0HybR+hEJzPCfM8/nzvXzOYmKBo1JCvv4yXRo+RsW3yeoysijCTz2CZtZw0zmUmn2Y4McHLo29wKjnDS6NvMJSc4c9/9AQJL8CposZf/OhJUqUCJ5LT3L/3GyQsj1PJOL3PfotUqUjG85NXATKlInnPIGU5zOTT5ByXF0d+w6nENLYZAN0Fnwm5A2CfFP+jfQLGbwDnJOgexNpAs0E5QEE+h+tAc8E+DvkD8nn8erDeAEpgHZPHpdfLUgsH7GMwcSO4KbAGYPwWcJPC6OmeHDuxEewBMHSomwdrHycfO4eZkkOiWCJnWRQxKaKTKJa4efczzOj1vJHKsXHXM7yeyJJVAVLBDnJGlGTJ4ejMDDfs2MFvkjnydokZW1GwHUoulDDJKz/57Cy/yXr8dMbi9USWP925m9+ElpKJLSKPSVYFyPga+E3oQm7YsYPXZ2ZobfTTFFZEQgZq4BjqllvQbBvTc9AHBtBv3IhxYgD94POEC2nm1+tkptM0hiBwcoDIXbfRFIbu3DjGjRsJnDxO5MWDmMffwO+W8GXTGKUiBi5aJo16/Si+P7uRuslBIsoikEthvPE62sYbqBk7yeIFMYKDxzFuvAG75PHGcR/7+zQKBY2o0YByTfwqwgX1Szh4wEdqrJFdH3sS02okndKJTwXIZUxeOhRk7FQE1w7g92rweTG8bAO6HcOzfSTzKcZSUyTyKa6/TDzuN1z2Xny6+W9yzX9znDlMXac9GuWra9dydiiE6XlVKf2KBQuE6X7yCTjnLIhGpLP7H74Gi88VAJ2Kg1WEy1fDuWcLsA8HoasT/voJOPssCaz83hPiZx74NUTCInf63hOwaoXMY+jS7338VyKV/l9fETa3rga+/QgUMnDnJ8FvQnIWXAc1PU5o5AiLzy4QC5aoDxcJTh9Hi08RNvJoOBCfJvDcU/hzUyjlohJT+KwUnc1FtJEB/OQJBRxUfAbtmacI5KZQxTze4HFUfBrtR9/Hb1iEijOw6ynM1CTz2os4RYtgbpLAc0+hJacxNYdgfhLjuR8QDtgo5eHiMZOIs2PXLvK6JHtblgWmSbi7m7xhMDg0hO15KNMknkgwPDqKpxT1S5fiahpDQ0P4GhrQwmFUMIi/sVGC+TQN+/QarlSKHbt2kSoUKHkeO3fvJp5IUHBdUpZF49vehq+jg0wuh9J1EskkO3fvxnFL1QycePw4rueCbuB6Do5bwrYLWG4Jy28ylD6KEwhQ1FwKLU1YC89iaPggti3g2F50Dp6u4+gKa+HZxBMneHrHRmacGTK5aeLxAZ7eeSMziQEcHDzPnduWPom16GxmZo9hOwXiiQF27PozZmcHcPwRipqBpRS3KcUxX5BiYxc3aBrHlMIxfDjBGJO6gRNtpOQLMmD4mNA0BnwB+gwfbyjF9ZrGgOHD1TQmleIN3WCj4eOYL4ivsZvndYO4bpLVTZI+P3cGo8R1k4IvSDFYQ0I3uVlpHFUaBd0gr+l4hg9sl1LGYeb1GU7tH2TmeJJTL8eZOZ7k6T/bw8wbcQafH6VQ04ml+Zk5nubpm3ZTdPwkTiR5euMOZk5kyOc1MlmdUt4mM5nDLrrYRYeZkzJfydaxXB27YGMVwYk1ypwlTz4sxcypHE/f8VNmB+JkJ7PMDsTZdfMuitkinuHhai7NHc2gQGkKT/MI1gZp6WxhIj+BL+QjGAsyYU9weOIwFhae7vHGzBvsH9zP8eRxXp59mYyd4Y3ZN9i4YyPH4sfIk6etq43XZ19n446NnEyfpOgUsVyLE4kT3LjrRo7Fj9E32MepzCn6h/tJFpOkSikm85O4noVf1wnqipjuYTh5tMIUC7uWURdrI2T6aW5YgJ49jjZ9AL0MwFXmOMaLt7CwsYPWxkUE7RlUYRqVGUA7fCMqM4A+cxDTzaPbKYzMANrhjYTsaRZ2r0B30mgzBwn5w9T4Q2jT/eVjN+LPDxH0BfEpm9ZgjHrHotbO01lMErAL+BLHMTwXw3PxFZMYro1h54kkBqi38ugV68lvjRIC2iv5SsX/r13t//97vAnc/xOMfxV0/28cY5dsZn4zw9N/+jQzv5mhmD1zLsfTmD2eoJSz6Nvax9EfHsUzPfyGn1Vdq0gVU2zt28oPj/6QoeQQtmczlByiOdxMb18v249sZ8v+LXh4vDT2UhXM5+08w6lhLm65mJn8DJlShuHU8Nw8rk2qlMLQDI4lZGFgMDlI1B/lzhV3oiudbQe2sf3Idnr7emkMNbK1bytKKQw8VO4kHL4JlT0uSeL5cZGD/WorNCxD5cdg+iBKM+DcO1C/fgDlOVXvsjrSi8IVebWTRR2+ETIDqGCLHH/6fk4edXgjZIdQegDlFk+bZwvKK6d8WxkUDgoPPXEcNXYIQk0ozxVJcfoU6rmPo7s2SvdJ0vaLD5fXMlXVe6wObRF28tCWqi9YKQWhprl9SkkJFQs2oU73LPtrYPwQKA1ViHNe/Bh+u4heTBHIjtJhF6Uf3mjg6ECOG27YQTpdIhQymZjIkkoVWbKkGV3pfPGBg1x+eTftbRFWrepmwfx6lGuiKQ3X9diyRTzIvVv68BGgt1e8yBV/8ZYt+8lkSngeZ+7rhrlx404KBbvqa962rZ9AwCCVKvHii2P09HSzYFENjqlh6wGms3HuuOLDNIVrKdolio7NOU3zcFyXTKnAtp/8LTmriOt5jGdmiPjDBEwfF3ecS8D00RCqqaZ3Z4q5arBYppjjyYNnbr+wbRFTmTh/8aMnGE9NA7DtJ3/LTC5JwAzwq4njLO04l/n19eiUwCtArh/MNjBaARdmeiG9HWa2ADbYbwg4t94QMO6cBMMPygYVAqP5tGN6QfnOnMOzZF9jHjQ/CFoIVBDq75DzWUfBHpF909thZhslF7K2R8YLUPI8Ij4fM7kct+3Zw+szM6SKRTSl+MJVV+HTdYaSSX549Ci9fX3kbIebd+3CA9KlEtv6+8vp3H2Uas4m4vOjlKJ/aIgT8Ti25ifrb2LL/v00hcP09vXJ/n19pC2XoutxLJ5kOJ1hy3557qGDBwkphXJsyGZRQ0Niqs3nUWNj0pO9fbswoZdcghodxX/rTXRkxzCLefStkqyl2bbss307amsvNDaitmxBKwcJYVmoUkkkF+VELbVlC6pYRFXCwsrbtEIeNTgI27djeT4GhxTNzVKLZdsKXIPkeB233KJoaoLBQYXraOi6Yny8Yk1WLFkCoyMKz1V4nkLXFbkc3HKLYuCYhl+LMJvOEVGNdEU7uW/dxjf72v8dh88waPT50MbGePH++8kODmIXi6hSiYBtg2mIB/nbj4hdpuJNnp0UYP3P3xIZtOfBwK9gdkIYwWxSjrGtM/3M7d0ih9/1XVhwrjw/OQrJuGyL1p65P8jXz2wXiXxiVmrIZqfwfD68+mbckSGIT+Hs/j4qGoNYDZTtY27fc9VcHAVSV2aVJLsmHEH5fCjXFX9y13yRgGs6KhzF7XtOqrdcF7dvLl/HV0zS0eqAYaCtegcqLFWTXiqJtnyVMKE7vodj2ySTKVasWIFpmti2TbFYrNbGRqPRql84mUwSiUTo7OysJnaD9G7v3LmTVCqFrus888wzVdud3++vJn+nUimOHj3K/v370XWdFStWkEqlCIVC1dabihL19CBdpVwOHNhGV9eqciWWwrYLZLPTpNPSBpNMnkLTDFpallCyMszMvM7gYB+e55SrYm8nHj/G0FA/lpXD81w0zcAwAuXa2QcIhxvp69taTgvfgm0XsazcGdvke4qi6z727xf/sRas5Q0UG5XiFPA5wKcUmlL8ENgK5JWiTymywE1KcUopokiorV8pLgR6lRKgpBQjSPXr6dsySrEcCCtFtlxX+mUApXhd09moG4wpxR1Ido6hFHmlOAbMlByUrvCFfbRc3EL/A/2Em8L09fZxZPsR+nr76LxMSEY7Z7N/y36ObD9CMVmsfr2/tw/dpxOoCzByaAQrZzFyaITMWAYzYBJuCrPrlt0kTqYpOn6evnEXs8cSGAGD1FCKnTftxCo67D/tnKHGEP0P9NO6opUTpRPcsPMGTqZPMp2bJmtlsV0b25V094JT4C9/9pcMpgZRmmIwOUhTuImbdt7EqeQpxjJjNIWb6O3rpSncRLKYZFu/3Idu7dtKopDA9dzqtt6+XhzPwfEcWiIt3LXiLkZSIzSFmtiyfwtva38bUX+U0fQop+LHCOZOSnVifhReu08+B5pQP78VX3FctAGejdIDEGhGvXQ72DlUoBGaVqGOfllEOoGmchbPlup9KjUXoKwkykpK7k/5/lTDQTMiUHMRauogyghB44rqPS6/3obybNRUH5pTQMfDlx4G3URlhsstOSVU8rhsU3q5lSGGcoqiCPg94N0HfNVzGXIdvuq5+P/fX8b/Q4w3pfK/Z/xHkMpXRgV079+yn9WbV9NwXgOG71+/sfvtY2rn1/L0DU9zZPsRFl+3mCvuvwLXcqtzFTNFBvcP0r2qm/iJOImxBNZSi8HUIMs6lhEwApxMnGQ4NczS1qUki0lq/DVkS1myVpbevl7uWXUPZ9efTcEucHjkMO9/6v28etOrtIRbeGP2Dbb1b+PulXdzVv1Z9A/1V+eJ+qLE/DF+dupnNIWbqAvUkbfzbNm/hU09m2gON3P7ntvZtHoTw8lh2qJtLKpbRER56C/cKBed7uvgvE/C638laeJOUW68Zl+EQIOEiy3eBP4m8Senj8lF7YJ7IHqOAOTD5bmu2AGhLsgNSU/3kV5YvFke/3SDnOvSR2H6EIQ64MhWuODTEppmZ8FXB6W4nCs3JUnbh7dKX3aoBX56p4D1zsvntscWiozaCIC/TkB3tGsu7fwML7I35yl++5fF/5weErl1xT9sBsW3bWWk7mvqF3LOUlq83aFWSA2SMTr40z/7Cdu3H2Fi4k6GhlJs29bP3XevpLMzRjBokM1auK7H+HiGbdv62bSph+HhFJ2dMRYsqAM8slkLz/MIhUwGB1MMDSXp7IzR29vHpk09dHfHsCyXsbEMvb3iXx4cTLJhw3fYseODdHXVlH3GPYRCJnV1AXw+g0yuQNyZ5W9f+iHXL38PdaEYD/zkW/zJpdfSGK4laPoZSU3xjUP/zJ9cei2vjB7ll2MDfPrKj8mNq1KMJad58tA/cf3y99JW04jt2KSLWWqDMYp2iYd++m1uv/xDJPJpnjz0Az71jo8Sz6UwdeOM7u1NV/0PxlLTNEfq8Bs+HNfF1FyCBig3K4y3FoHCaxC6jDNTDJDPuT4wmsCeKH+egdBK8Ioie/dssMcEeDfcA8ZCsE8JeG+4F/QGmLwDGjaB0S0LRfY0eHlZLJj4OARXQWiVgPbGv2KmFCRgGNiuS6JQoC4YJJ7Pc9Fjj/Huc8/l/iuuoD4YxPU8ksUiNX4/r4yP0xGLMZJK0RIOc3ZDA67nkbMsPrV3L59csYKFtbV4QP/QEC3hMN21tfh0nZLjMJZOM5xK0RmL0dvXx6aeHhbW1WG7Ljft3Mmqri5WdXWxrb+fR6+6iobBQQHdX/uaBHP19kq8dWVs2yYy5Pnz4YYb5vzE27aJiTcchhMnoLUVPv95vHvvlYTwjg4x5xaLMu+2bZLYNTgo59i0SdK6QHq0KucJhYRNveMOSl//Bqm8yaFDqhrYtXmzTFep9X7kEfET2zb8tk3adcUmPT4uL/O+++aef/JJjxMnYMsWxebNcN55Ipp4c/z7DSub5dBnP8vgM89wxVe/St0FF5CfnOTX3/gGq/7yz1HHjgigDkVEJr/ru/ChW+DvHxVQfenl8O6PSOhYOgFnLRbG/IWfwW1/AV1nyd+lWb5FTSfEwmL4AAXTo7DgPLnpzabEU73ru/CuD0BTOxz7JSw8T/b/u7+Cg8/BpZfjffR2nJ3/iLbiCtznf3qmD9hxUHUNUqXV9xza6ivxkglUTS1eMoH7nb9GLXkr+vr3QamIpxvSxd3/E7SeKyEaFdm45+GNj6CaWiVszR+Q5O/4LF4qgYrV4vY9i7by7RCNoUxf1avs3foZZi2bvr4+1q1bRzabpa+vj5UrVxKLxVBKsXv3blasWFH1Fe/fv5+VK1eilKK2tpadO3dy5MgRFi9ezPr164nHpbqsv7//jDl7enowTZNAIICmaezevZuVK1dSV1fH7Ows9fX1zMzM/M5x1167Dte1cV2bkZHDxGJdpNMjdHf3kE6PMDDwI0ZGDnPNNY9WW2pmZweqCd49PZs4deqnDA0dYM2aL5LNTtLfv42enk2kUsNEIq1Eo+34fBHi8eNVT7FhBDCMINnsxGme4vkkEscxjFAZ1Pey5n3fYaPS2I4keD8O9CHBYAGkSjaOBNl+Efgh8D0kPCyLSJG/hKizDwHtQD/iQ84xZ5NbgGTojJU/lpfnHwE+i7CjO5jr7t6MhOR+HNict2h+Y4bUUIqO5R1ohsbw88NE26P09fax6p5V1J1VR2Y0w+zALOGmMM8/+DzrHl5HdjJLajhF5/JOlKHYfetuln9iOdmpLKHGEAe/dJANX9/Ajht3nHGv+tULvsri6xZzzVevYdfNuziy/Qgf3PFBYp2x6jkjbRGMoEE8Eefl0ss0hZuYyk5xacel4FHN4Ll75d20Rlr5x1//IweGDvDY+seqeTuVY5Z1LCNRSFAXqCNRSNAQasB27eo2XdMxNZN0KV29Fw7oAW7adVP1PrUz1knIDFGwC3TFuijYBe7aexdfvqqXhvSvoXmVLMTbOQm69bfAD9qg5/tQt3Qufyf+CmTekDDdow9J1o8RkeNe3QSXfAWyx+U+9cJ7IbxAcm+cAuRH5T538SbwN8JLn4QLPiNtO5kTUBjHC3UKeF+8CYLtkD0BR78Cyx7HUybKteaacNJDEppbf75YA0+3/qVOyj2oGZRrW2V4Lp6dR6WH8aKdKOO3nv8PPN70uP+B4z8ScC9mijz9p3Og+9onr8Uf/dfXrX7nmL++lsTxBPu37GfVPasY7Btk6MBQdS67ZOMUHOyizcjhEZpWNdE/2U9TuIkHn3+Qzas3s6AcXvH6zOtVEH52w9m4rlv1VA8mB9nSt4V7e+6lJdqCX/ejK52P7/443/zFN7lu8XV8fcPX0ZXOGzNvMJYZY1nHMkJGiIH4AFv6tlQvfBu+s4HrFl/HY+sfo2AXiPqjDCeHefbEs1y3+DoafCFU5hjqSC/e4s0oPQiBRrAL8Mqn4Py7ITwfDt8AIz+Enu9JhZcyJGncSkqVWHnFGSsjx13ysFSAVY9ZCZ6C7Cn4Va+A/fBCqQfTgwLUNVPC0DwP4r8QQB+aN1ebVQnqevvDkJsUlvXg5yThe/5aCLfD6AFZZHjxQQn5MoLw7WVwzd9B66Uw/gJ09FCtBfMc+V5KKSgmIdwq2yq1Y4k3JMX70ruh9mz5PospAe6+GrCylFSY3wxqbNmyn8ceW09//xBNTWGmprL09HRjGArb9igWbT75yR/x7W+/xoc/vIStW6/EMDSCQYMTJ+KMjmZYvrxDWnN8OrquKJUcTFMv92EXyGRKNDeHy+GCMDAwyxe+0M+9965m/vxaXNdjcjJLIlHgi198nk2bVtPWFeBo4jh1wSjxfJqummb+y9/cyfrze7jz7R/Bb/h4eeQod/7wS7x90dv4s5XvJ+IPEc+lePLQD7h++XuYyMxy6/e/wFff92nOaZqHphSmbpLMpylYJerDMSYzcZoidYTMALbrkMiniAUiTKZn+eYLT3PHFR+WG1s8/LrJ55/7Jn9y6bUsrKvFUB54WXDToEX5f9j78/C4qjvdF//smlSDVJJsS5atyQND8IAJgydJkAHjGJt0Jx2Upp3upjthSAwdhmASmwDndGyCDYEQQ4DQQwa6cxCQBGQb40AbLMsjnggY2ZYHlUoqjTXPVfv7++NbKtlJ9+l7f8/pc+89YT1PPbv2rr3XLqlKS+td7/t9XyzlaBVYToG5JApAfDVYp4DFo/+wk3vB3gD2acrWJ/eBvVH3cz6Ibwf7xeC8tOBG71BgL2ll2SUDqcPgugryQbBNguxpyA4ocCdPLOckkc2TF8FqGNitVkYSCZK5HE6bjQqnE6dN69ZjmQwPvP023/vMZyh1OLAaBuECG2+KEM1kKC8pwWW3k83nsVksDMbjeOx2HDYbgViMdTt3sqalBY/NhtNmw2W347BaiWUy3Ld9O49eey3DiQR90ShN9fXkRSjLZLB1dGgY9YUXqiV2LKb1xJWVmolstSrqtVjUwfuRR+C731WAXVWl6HjMzd809XzDUMfvT35S5cljcVsuF7z3ngZgDw8rszl5sl6Ty8GePeOA32KBs2dJNF5CIm1h1SqjCLo3bVJPsrVroaFBY7WqqiAa1a7sdj3mcunbHBoqVDJYtYR69Wo9/667zgXy+lY/bv91LZ/NEj19mt899xxXPfAApmmSCYcJdHYyY8VybNEgxpZfwvK/gKqac5zf/PBGG1z/53D8fTj5gQJ6RJnxLb+EL98G0bA+X3ojVEwADM3rLp9QMMg01In8lX9UsD5xMoRGwOXRvPDBvoKR2Z+rgdn/eA6u/3NkUo1GboVDGN7yIkAnb2LueRfr9V9A4jEMTylmz2nMtp9iXDwH67IvkN/6KyxL/wQSMcxdO7AsWaFebNEwRlm5mpZub8fS9Ck1bctlCwZ6Tq2v7/NhqW3A9PcU+7Vccx2GtwLJpCCdJusp4/UC8F61ahWjo6PF3Ov6+noSiQSpVIp4PE5DQwPt7e3ngXTQGK+Ojg6ampooLS3F4XDw+uuvF/vcsWMHH3zwATfddBPl5eVF4O/z+fD5fCxfvpyjR48ya9Ystm/fTm1tLTNnzqSsrKxgJAah0El27lzHokX3Eo8PMXnypSSTo3R0rGfx4tUF4F2GaWaxWGyI5Onp2UVb25e45JI/47rrHscwrFgsNrZuvYP333+R2bNbWbjwHvbs+QFLlz5JKhXB652KiEk+n8EwDN544y5qa+czY8YSvN56wKSnZxdudxXx+ABu9yTKqmZxxlHKesNgDQq8z6LAPYBKjdegUa8J1NG7FgXci9Fl4gRwP3Af0AjsLpzjQ83EQmjsbANqOOZA4768aNpNEk20mQp8A3gRXUR4ttDHjEiavp1ni4C8ZW0LFdMrwIBob5TuN7uZcOEEai6rIdofJdYfo3Z+LalwCvdENxFfhJ3rdrJ49WJ8u3z4dvlYtmkZ/n1+yuvLqZhRQbA7SMf6DlrWtuCucrPtrm00r22mcnoluZTOUcunlVNRX0HEH+HU9lP49/lZ+sRSDK9BOKMxcB67p2h0e/vm24umuw9f8zAAsUyM4cQwLQ0tdAe7i4a7MytnFvcfaHmAem89yVwSgMOBw1xVexUuq4uTwZNs7NzIhiUbcNvd/OzIz9jn38ed8+/kB3t+wPMrnieTz+AP+zENk5rSGirsLlwGGImzkPCfQw49oIAaFMgffQAu/Z6C9Hwagodg4pU6Fxjeo0C/UPdOwgcT5+t88L074ZL79Dpntc4Z8lk4dA+cebFAPD0D+78xPsedeBWM7IeqJiWwqq+BaX9ZSK4ZM9jlHCNeB4S7ITkKEy7W2FsZ85WyqLnuWDPzEDqpgN81CSouGDcM/j+8fVzj/kfcrA4rLWtbmN06m5YHWrCV/Ocyyj+4xmFj4icmcsNPbqB0Sin+ff4/6EtE8O/z46nyMLBngAW1CxiKD3HvonvxR/zF6K5ALMCb3W8SiAXImTmGE8M4rOoI64/6ea3rNZx2J4FogI4erW1/atlTrJy7krUta4llYsQysaIc6Y6td3AqdAqX3cW9i+6lN9zLVbVX0X5TO08ve5qRxAhuu5u8qTKkpTOX0h/tpz/ah2F1w/xnMTyNGtM11KmDxsV360ojomx588s6QO67VbO5LVZwTYHEWT0WOa6/hKt+rGB89hqo/bwy71LwYi+bqQOes1rZdk+jsuoWu65+HroPkv1QOVf7wKJs+TU/gL/5CK59Thn18mkK1K/eMJ5rHT4DtS362tUbIOrXXO/rfwFTFigwL2ssGokgAvEBHZR33AX/fAn89rZxUA/j0VvvPQEY467qe76nsWCeyeQtThoavPzkJzdgtRq0tDQwMpKgvt5LJpPn5EmtPe/vj/Hoo9fS2jqbjRuXMDKS5K67tnH2bJjS0hKqqjysWrWV/v4o6XSeVCrHyEiSdDqPYQgDAzEefHAHp04FAUFEmDlzAi+8cAMNDeXkciY2m0FlpZPHHttdjPAq9ZRQXTqBnx3YTHXpBCa4y1l68SLuuvovGImH+e9v/oTq0gk8/vl7+NrCP2Vy6QRc9pKiBP6Fvb9mTs1Mll68iHlTL0JEGIiO8r3tL5DIpgnERnDY1Cl2w9s/xRca4EjfcZLZNHkzz0BslO9c+7eMJMJs+LefMhQLYlgszJkykxf2/ppE1kQMm4LqzGn9PZPX2vPAnQros76ibF2z1hOQHwbnPLBNViCe3Kcy+exZvV6yKql3XQGpg3o8cDvk+vQeA9/Uz9K9UBcAJKnfBfuFYK/VuvrsWRwWcNntmCL4IhHu3LoVj8PB1LIySh0ODvT1kc7lGIzHGYjFuGP+fAKxGLe2t9MdDOItKVHDxbExAkhms+zz++kJhzk5OorTZsNts+GPRLh30SJ6w2GqPB4G4nG+sWULZ0IhSh0O1n/2s6RyORrLy5laVsYt7e30hMMkQeO3Bgc1b+rkSUW3f//3CprcbkW/IgrKL7hAWfO6Oj1+4oTmUo1J4vftU/ZdRJFxMqkLAdmsWmk7HLBwoYL2xkaN5DIMjfC6/Xa4/nqV6o9FQf393xeeGjz9NLS365qB3Q7PPadd2O1qQL5rl74Fn0+7ikb1baxapesOdruuBfz4x/rWX31VAXxrqzp32z8ubf8vb1a7nbLp01nw3/87VpeL1PAwHzz3HA3XXYfN4cAIDsF1f6YfxlA//PyHuvVWwso7oGoK9HSrQ7jVqt+tqhr4/F+q9Hzs+sioOpPbbODxKiD/2Q81cgxUOr/5X3Vc9lYqaB9j+Pe/C5t/qY7mS78EwWGMXBajYgKWhulQOQnrsi8g4RAAliXL1WHd6cLsOa2y+IvnKPNutWJd/mcYdrtK6McivLb9Rg3l+ns1TmssestiPT9my27H8Jar3H4s8qvp0+q4bgCJOOaObVhz2WIMrMfjwev1snv3brxebzEVZmwfOC8K1mq1IiKUlpZyzTXX0NPTw/bt2xGRYp8lJSXFaNm6urqi/L2zs5MZM2bQ0tJCLpfD7/djs9lYtmwZl1xyCe+++24xDkwkSzjsK4L22toFlJSUnReV5XCUEgp1s3nz7QSDp+jp2YXXW8eNN77MkiUbiccH2Lp1FZFID0uWbOSmm9q5/vqncbkm0NT0bUBwOsvJZGJs2bIK08xhtTppalqNz7cL08xw9uw7jIycoKZmHhUVDZSX17Nnzw9IBs9wAfAcCpxBAbaF8Trh9agsfiYK1n1orOxJ4HYUhC8CetGPpxmNhF0BrEbjvOoKfRY877GizLsdGEFjvs4Cm4BjwJMoqL8ok8MG1C6oZffju1X2vm4nuVSOs++cLRI/k+dNxu62M/GiiTQ0N5COpPFUeTAsRlEu37mhkxlLZug81GWjoakBb4OXbfdsw1PtYcVPVlAxowKb08an/tunKG8oJ3Q6xNY7tlJeV05FYwVYIJ/J49vlY/F9i0mFUpiYDMQHuGvbXZwYPUEim8BusbO2ZS2ts1u5v+l+Kp2V1HnrqHBWMLV0KnnJF0s+x2TvY/s94R7Ohs9y17a7GIgPMLd6Lqu2rKI71E1vpJf5tfPpj/ZzW/ttNNU3sXHJRoYTw6xpWUNHTwd90T5KS0px29y4bC6CiSGVmVucUDkPjm1UpWeiV+eRyQBY3XDZBv0CHFilc76KSwss+gBUzIPUAJROU5l8x5dg5IDOL+atU6bd7i1I121KAl1yn4L22Q/ofOXKTbDsqMbcZsLKthtWnS9PXa6gPTmsWwpfFMOic1PJK9M+4WIF9aFuTfvJxCCX/r0EH0PTcVyTdHvOfOKPuX0M3P8Pb0XQ/cINTLp4ElbH/3y1KpfJkc/kmXDhhPOusTlslHhLcE10sfzHy8/rK5/JkxhOUF5fTnwoTv2V9bhsLuq8dTy++3Euq7mMs+Gz3L75durK6+i6o4t6bz27fbvxODwcH1GTjqllU3n5xpep8lThi2gN/F7/XtL5NJuu30RjeSPvD7wPwILaBTy++/Hi4JjIJXhq71NcPuVyXDYX9eX1rNq6ikQugcWwEMvEuHPrnSRyCXwRH6F0BMnHYagTwdRVR2cVHLhDwftlG3QgTPh0JXGslueD9YXoLjknp3sDZEO60hn5SEH9/OdUdhQ/Dfu/DrHC4BQ8AhOvADM9DvyTfbrieawAzpxVOrgNHVWGvfNBjcLq61SQblg0smsMXMd8KmOP+uDd1ZrPbXOpXP7f7tIafG+9MuZ9exSkeaboCuv8NcrmL1ijK6Exvw7YCwrHr94IkdMa85UIKMu/X/8p5C1ukskcJ0+OsHNnD5lMngULavH7o4hQrD1fv76D0lIHzzxzPW63/Zx87I4iQ3/vvYtwuewEAjFWrdpKPJ5l795eurtD9PfHeO21LgKBWCHKDwKBGLmcyZkzIW6/fTOnToVwuWw8/fT1tLffxHe/24KJWaxJ/4e9v8YwDL675Gu4Hc4iOP+Hvb9m7pQLmFI2CX9kiMP+Lr62QI2+vrbwC9itNr675GsAxDNJ/nn/68Xr5tTMxIDzjlW4yviHvb+hxOZgcukE0tkM/7j3N2zr2s0/73+dVDbNosZLuaXQN9lTMHAH2Gv0OxW4FfIBcM1XibtrPpS1qvTdcEO+D4YfUvAueRhYVZDND4JrAWABwwM1zymz7loAo4+P172bEe0z36dg3laliwPZM79X3/4IDksKEbNYnz6/tpa+aJRvbNnCQDzO3OpqVm3dSjybpT8WY1pFRbGOfX1HB6YILrudQCzGQzt20B+NYjEMqjweeiMRqjweVm3dyqlQiHk1NTy+ezd1hYn5WD894TCngkHu276deDZLJp8v1r6v7+jAZpoqa58/fzxA+pFHdL+vD77+dQX0HR0K0sNhBeD5vD7v79dM7ePHFS3X1Chb39OjuvZ4XMF/IKCLAmfO6Hn19WpGNsbWl5Wdj6KdTkXZ3/kONrveZtWq8cusVr3FrbdCd7eC9U98Qt9SoVye9eshEoF77tG34HDo1jD0dtdeCxddpOx9T4/+eIWS3o/bf2Gz2u3YPR4kn+eD55+n6tJLccRDGNEQUlkFb76iIHp0UEF0aBhiEa1jH+qHP/sbjfXK56DMqyta3gp1vx67vnKSAnKLRR9b/8d4BngqAbM+qez97rfgF0+p2uP0R3D9l1WO/7kb9T24PFA+QWvcQ6Pk21+G0AiSSmJMnopR5sVwODVqzWbHUj8NJlZhXfElJBIh//jDmottWLA0fwZj5sWYnTu0hr3jbQy3R2veZ1ykgFzM8dc7d4BpjtfOd7ytCwdl5fqLzKQxd2o9vAT6qCgvZ+nSpRiGcV6Wtmma5+0DTJo0iRUrVlBeXo5pmkXwns1m8fl8NDU1ISKUl5ezYsUKHA4HXq+XT33qU1it1iKIb2lpwev1UlFRgcPhYNmyZUQiETZv3kwsFqO2tpaOjo5CfBd4vXXs3v04Xm8dYJLNJmlu/g6zZ7fS3LwG08wVa87H8rM7OtZTX78Iu93Fzp3rinXqdrub8vI6tmxZRTabYMKEmRiGjZKSMtLpCAsX3k002s/mzbfjdlexYsXz2GxuPJ7JlJR4sdvdmGaeSMTPsmWbcJfXk0QNvewoOz6IyuO/jTLfa9FJfwLFUvNR2fsGFNg/AnwJBee3At3AxsK1T6BA//bCNX2F53EUuJuMLxD0FB4PAQNABCCTJ5/KYXPaaFkzTgylwil+9ZVfUTqllOsev474QJz2W9sJnQqBQDaWxWKzkE1kWbx6cfG6sqll2Jw2gqeCtN/WTrA7yOQ5k9l21zZi/TEyUR0MPTWq1Buvkd9JJpohn8pTeUElyzYtI9IbIZvMYorJIx2P8NIHL7GhcwOhVIjeaC85M8ezy59lRsUMBOHrm79OIpdgxoQZJLIJvtP8HVpnt7KmeQ0Ww1IE+gvqFhRB/CMdjxDNRIueTgtqF3DdzOuKte4bOpV5b25optReSrWnmt5IL5M8k5haNhW7xc4EdxUSPwPvPwSpYbhsowLqqiadR8ZO6rzywB0K4ifOV3WoYdX99x9Sgqhqsc73xoipysvU5+nQagXhZkbBfbIPBjuUuJr/LNjcKq0f2acq0QOrlPQqu0jvUTpT56+ltQq2y6cp4z8GzksLsa5WpzLtsd4CwNd6eGK9BbKr0AyLzmUrLtDtH4lM/j9tIvLx4/cetbW18sfYsumsBI4EpK21TQJHApJNZ/8vXZdJZCTSF5Fwb1gGPxyURDAhwXBQWttahYeRY0PHis9b21olmAzKieETsr93v/RF+v7gtXAyLEOxIWnvape9vXulta1VDgcOy2hiVEYTozIQG5BIKiJ9kT45NnRMQsmQrHxlpfxwzw/lgP/AH9zvw8EP5YD/gPxwzw+lta1VBmOD4hv+SKR3i0jMJ5KJiCSHRHa2iryIbtMhkUSfSNcmEf8WkdHDenzkoEi8V6S3/Zxj74nE+/QRPi4yekRfTwf/sM/RI/o8OXj+a6EPRUaP6nvJxERSQZHkqMjrrSKPodu+PbpNjorEB0QGDut+Ykhk5Nj556ZCun3vhyKBA/p84JBIYlQk2qevJ0ZFUhGRZFAkHdN+u7eIBA6KpKN6PDFyfr/DH4oMHpV0Ii6jowk5dmxI2tu7ZO/eXmltbZPDh/slFErK8ePDcvhwv7S2tsnRowEZGIiKzxeSLVuOF889ejQgsViqeN7hwwFpb+8SeFhaW9tkzx6ftLa2yeBgTNrbu+Tw4X5pb++SQ4f6i/caO7+9vUuOHAkUj0ciKYmnk/LRwGm577UnpWvgjCTSSQknYxJJxaVr4Ezx+EBkRE4N98p9rz0pvzz4RnF/IDIisVRCRuNh6Rntl8HoqHzQ3y33vfakHB88K/F0UuLp5Hl9vdt9ULoGz0oinZSd3QfPu9dHA2dkKBqUeCohkWRMsplRkd5WkWPoNvXh+c+TR0VycZFcSCQX1u1/dH52SCQX1UfyiEhkS+G6wn5vq24zvSKpY+f3kx0SyQ7qPc49NxuURDolfZGIHPD75djQkLS2tQkPPyytbW3y4eBg8flQLCaxVEqOBALS2tYmRwIBiaZSEkomz7tmNJGQ9q4uGYrF/sO+wqmUHC70M/h7540mEnLA7y/eIxIKiXn4sEh7e3Erhw+LHDsm0toqArrds0e3H34o0tcnEgzqdnDwD88NBv/9/b17//D4li0ivb0iw8O6HwqJxGL6vLdXZHRUwiHzvMtGR/X03z82MKCXvPee/hhDQyKRiL7Nc4+NvfXWVt0/t59I5L/gH8PH7d9tuUxGRj/6SOJnTos8u07kVJduv7pUt5HQ+dvbbxA5skf34zER3yk9HhwW8XWL9PvOvz4WFfnJo/p6T7ceO3NcJDgikkro9iePaj+xiMiZEyKJuEhfj57X5xNJxkXefk3McFCyr7woub0dkk8mxEzEJV84lu/3S354UPL9vZJt+5nk/T2Sj4T19bafST7QJ2YqJfnhQTGTCcn3+wvH/ZLr+kDygT7JRyOS2/Ou5E58dM7rfWKmU+ednx8ZktyedyU/NCD5eLx4z1QsJsPDw9Lf3y/Dw8MSCASkra1N+vr6JJVKSX9/v7S1tUkgEJBIJCKvvPKKJBIJicVicvz4cYlEIpJKpSSVSkkymZREIiGpVKrYj9/vl0gkIslkUpLJpHR1dYnP55Pjx49LMpmUoaGh4uttbW3y8MMPS1tbmwwODkogEJCuri6JxUalra1VHn4YaWtrFb9/n7zyykoJhXpkcPBDCYV8cvz4FunvPyxtba0SCByWrq52CQSOSDjcK11d7ee8dlSSydB5/cXjQxKPj0gk0ifR6IAkEqMyPHxCvvc9pxw/vkVSqYjEYkOFfo7I8eNbxO8/IHv3bpKurnYJ53MSEpEhEWkXkcMicrywHyo8wiKyRUSOiMiAiARFpE9EDohIq4gcLZzXKjoZbi28HiqcO3b82O+dMyQiIyJy6Jz93+8jkshI4HBAfnXzryQRTEhiVB+RvohEB6KSiqQkGUzK8S3HZd+P90l0ICrJUFJigzFJRVIy9NGQ+A/4ZeijIUnH0jL00ZCEfCF5ZeUr8jAPS1trmwx+OCiBowEJ94YlNhiTrvYuCRwNSDKUlMDh8bltIpiQoWNDEumLyPEtx+VhHpZXVr4i0VRUDgcOS2tbq7zX9570R/olnArLQHRAbv7VzeIL+eTY0DH54Z4fyspXVkowGZQtx7dIKBmS4fiw+MI+ueU3t0gwEZRgMiiDsUE53K/9HQ0cLc53jwSOSCwdk3AyLIf6DxWPtXe1y+H+wxJM6Pz5cP9hiaVjEkwEJZQMSS4d+r055ajOU8eOD+/9w3llok/P+/25aO8bIpmoPg8d+73rjuk8N+4XGT4gsmulSDoskhr+9++THNT5766V2mc2JZLLiuSzIiMfifR26DaX0fltLqtzy3RUj2diup+JiZj5/6IR+/9bDeiV/wCjflzj/u+0/5Nq3P/vtP9/6uFzmRy5ZI5cOsdv7/8tUz45hbkr52I6TU7FTrFu5zp+cN0PGE4MF2uAeiO91JfXU1Nao5Li+ACPdDxSrAcay7NM59Os2rKqWFv07PJnsRpW0vk0B/oOUFNaw+O7H2fjko04bU6y+Sz3vHkP82vn01TfxIbODdzfdD8dPR3s8u3i4WseJmfmmF45nWw2QYWRU+f4rifgik26UjlmJueu1xVHuxcQsHnBTOlq4KF7wPcKtLyqUiEzqyuRZqGeMTWoDHxq8HyDutLpyr5PnA8Nfw6pgEqVZq/R8/IpOHw/XPIdKG0s5PieLWRor4FoL5Q1qGSofx9MXVj4FAo19vE+ZcPnr4HyGRA5pVKkzofG6+SvfRYSA2AvU9beYtc693i/PmrmQzqkq6W/vR2ueVxXRPc9osZ15dMhlyCWKyUvFhKJLDabhTvu2MpLL31Aa+tsnntuBclkFpfLRjKp6QNr1rzF+vWfxe22Y7FoXqrNZiGZzLJq1fi1Tz+9jFWrtrJmTQu9vWEaGsqZNq2CXM7k9ts3c++9i3j88d3F8zdtWsYdd2zl6aevZ9WqLcXjzz67HMOR5/2BE1S6yvA6S5ng9mIxLGRyWUxM7BYbVkPzg00R8mYeU0we3/ELNh/rYNMX72dy6QRe2Ptr/vrKFXidbirdyhYlM2lOjvQwd8qFWDAwEc1ZzWf5XaCbmrKJVLq8pLJJvC5lkW0WK7F0giff/Re+csX1XDRpErbc6YJ53FqwVsHgXWokZ58GmCp7z4dUCo+hDH3RbG4CDN5TOH+mGtyByumtlYXQ+SzgKDwvjPWGVevZR9bpfe0zlHHP+gr17YXzEp3E7E0k8lZcNhsCnA6FWL9zJw+0tDDJ7eaubdt4oKWFxvJy4tlssRbebrFwKhikPxZjSlkZ63buZG1LC9MrKkjn8zitVk6FQqz7vb7WtrTQUDCjMgvv91QwyIbOTh4oXC9AJp/Hahh4s1ksO3dqjXtlJUycOM5Snjo1biLX26u52VOmgNcLXV1aD9/crHLlvr5xc7mZM+Gjj87fH6PF6+rGM7enTFEa3DBU515Xp4y9zaaPeBxMk7inikTGzr59Ws8+YQIcPqyl8I88ojXrF1wwrua3WNSQ7r77lMSvqYH9+yma261Zo8dqamDLFrjsMmXqy8v1x//YoO5/T8tns+TTaaxWC8ZQP5bQMFJZpTXun2tVCTzoBzocgOAw1M9UCbzLDb5u+OGD8Pc/Uff3C2bDzFnKqi+/ST/I3x2ESz4JlRO11j2fB/8ZmHGJ9ismnDmhzP2kKXosGde6+W2FmvrgEHLRpUg2q+cnEkWTOPGdQXxnirXs55rWGWVeyKpxqFHiLNaj4ynFMAzEYsHI58FiQTIZrXNfdDV4yjDsDn0vCJJOq4leSQlGiQsZGcTs3KE19t4KiEUxS8vIYuDz+Yq17bW1tVgsFiwWC5lMhlQqhdPpJBAIMDo6SmNjI9FolIaGBkzTpLe3F4/HQ1lZGSKCw+Ggp6en2F9lZSWlpaVYLBZCoRA7d+78AyO8iRMnEgwGiyZ2FRUVhfp2K4ZhEgyeKJjGrcFmc5PLJQiHeykvryMc7sXrrUckh93upqysjmi0j7KyqWzefDvHjr3CjTe+TENDM1q/niUW6y/0txaPpwaRPA5HKblcCr9/H+XljdhsJXg81WSzCbZvv48FC/6ORGKE2tr5JBJDlJbWEAr1YHFVEvDWsc4wuBeVrTczbnGaRk3nqlEmvgnIAi50xM+jLPwe1MjuccbN6HIoi9+Nyu2fRJn0R4AHgGnAvcDDhf6Mwrkb0Lr6aUAulubfvvo69U311DfV07mhk8WrF+Ot0/+PYgrpcBpPjYdcIke0P0rnhk6tVZ/kZtvd21h8/2ImXjiRfDpP795evHVePNUett217bx6+bE690X3LsJZ6SSXyqmx3cI6rA6rqkRHEjjLndhcNjKxDA6Pg6wjq+7xCDaLjVgmxn3b72N102oavA2cCZ/hkY5HWL14NVPLplLqKCWdS7PXv5f68nr8ET/VnmoayhvY59/HZM9kyp3lVHuq2dO7hyp3FQ0VDTitTtL5NN9681vcMf8OGisasVvstH3QxvKLllPqKOVnR37G7t7d/GjZj9jn38eC2gWUGOBMnv1DQ7j0iD5P9I7POcfM5vIpZbhj3eNz0bKZaoZs2FS5Z+bGzejGrkN0bmtxFGrTbVrvnjh7/n1mr9X6esOqHkglVYVvVGF8MrPKpJfVgWUMT4gy8Pk0OMr0G6OOwH80Nez/WfvYnO7/ZvtjBe7nuck/0PKfSuvPPb95TTPljeUEu4PYKm0MuAeoL1dTjrzkKbGW4LA6GIwPcvU/X80LN7xAc0MzQ/EhnDYn0UyUCmcFhwOHWVy/mFVbVnH3wruxWWxs7NzIo9c+SqmjFKthJS95LIaFr2/++nkgfQz4D8QHqPZUYxgGiWyC1dtX8+2mb9NY0ViM9bCYOSaUODH23a5y9xk3wxU/Kpi2WSFyAo59X03qvBepHGj0PaiYq4Pk2IA1ZjBndWqt+7FHdUBN9MLur8DS/TqQGVatL7K5dYDsekLl+Da3ZvdmI/D+g/peVhxX85DQSR3szLzWt+dSCrYxVHq0/xE1ovPUwMB7MHWx1sUnBhXgW2w6GIa6C8B7LXinK8i3ewo10xkdWMUsDNA5BfOGReX3hlUH1lwSAvug+nIAkkY5J7oj+P1RWloaOHUqxLp1O1m7toWaGg8Wi4W9e3uZP7+WAwf6mDy5lIYGL8FgiooKJzabxl+lUnn6+6MFB/kWLrigklQqh9NpI5HIsm+fn4aGcurrvXR3BwkEYkXH+QceaGHGDD3f4bBy+vT4e5g+vYKcmWMoPcxAbJTq0gkM/t72p/tf566r/wKXw0kqm+aJd17kb+Z/nsllEwkmwlSVTiCTz9IXHuKXh7Zx9zUryZl5HFY7R/tPcFFVA4ZhIZ5O4HG4MAyDjwbPcMerj7L04kU8eN0tWAwLvtAA//B7ZndLL17EI9ffgoU8Rq5XF4Xs08EQwK6mdJJXMG6dDLkeGNkI1RvAKAHDiU7JCiZ21goF+BaPxryJAJmC2zz6OeYGCrXwZyDbV3CvL9R25wbAWl4wuatXEG+rImm5kBOhDDMqKjgdDOK026nyeLQ8NZsllEpR4XRS5nCQzOWK+y6bjds3b2ZRXR1/+olPYDEMSh0OYpkM8UyGKo8Hi2HQH41S7fEA+jZHEgmi6TQXTpzIuf+ZcqbJaDKJ224nkk5T5XYDUGGaWMYM59asUXR7990KrF0udXibPl2BdCYzLmvv7YUdO2DJEgX9IgqKkknVoyeTKndPJFT6/r3v6etjEvj9+xUxj9XPW61a157JwNGjcOmlEA6TmVzHSMpDJGIwebJi/M5O+Nu/hXffHb/12PGCsT2rV+tawK5dWpKfy6mZ3ZgR3bPPqmL/ySe1vH9sLeFjZ/n/Pe1ck7pZt95K2ZQabFaLxomGR+HDg3C6C770NZXKuzxQXgkBvwLqpTdC9VStgf/y7eoev+1luOnr+h093QUNMyESUpn88j/XWvdX/lH7dJRopFzlJH0MBQqA/y9gYpXWw4+52H/l7xCbHcw8Eo9h7timAH3uFViuu0Fl8mJCNKqAvunTUDEBQwTJZpHBfiwN05GRIQXciz+FMbEakPFjLZ/FqJiIIArSY9Hi8aIz/ezLsK74UtFJfmyBIP/MBlh5K2b9NEQEn89HMBhkxowZlJWVYZrmeY7xy5YtI5lMMjo6yuTJk4nH40VZeyqVwjRNXC4XNpuNbDbL9u3bWbx4MeXl5fh8PrxeL5WVleTzeSwWC+3t7XR1dXHjjTfS0NCgixIiWCwWotEobrebcDiMzWYSDB6hqmoWNpsLu92JaZoYhkE8PoTTWY5p5ti+/T6amu7HZnORTkeprJxecKLfS3l5A15vPcFgN3v2PMG11z6Kw1FKJhPj7bcfYOnSHyCSp7d3Lx7PZCoq9H9Mb+9eSkun4PN14PPtYsWK5wmFzhRBfzjswzFhJvdP+sR5rvJn0Hr1MYf3e9E69vmosZyJms3dB9wDzKBojYq98IgAR4FLgVIU4GdRJ3kTXRDIFZ6/jy4W9KFyeg9ab28CtkyO+EcjWB1Wdjy0o0gQLX92OWIKoTMhOjd00ry2mYrGCmL9Mbrf7FZPpbUtPDPrGW5qv4ny+nLCvrCa1oVSeKo9xb/LbDKLzWnDt8vHr77yK77wiy/Q0NxAT0cPoTMhPvGnnyAWiBELxPDWeYn0Roru8otXL6ZsTlnR+HhB3QJMMTkbOstgfJCmhiZua7+tSCS9cMMLnA6dZt3Oddy76F6G4kM0NzRzJnSG9R3ri8cW1C7AZXeRzWfJmln2+fdRX15PXVld0bQumolS46kpGjSPuddbCtJwt92NiGAzk5SGDqrLe3p43BAu8CZct089lAyLAuKRveCcoqWbDq8SNAZg9RRSk/bCxIUFwB1WEG91FIxsM1oqevj+glHzdL1WCstAktHzyOl1gx1QtXB8vhHzF4zpHBRBuVCYX1u05LNiemG1uuA8PwburU79MMeMn/9I28fmdB+3/7Cdm9f+f6cefoxpH6sb6ljfoZnMGzqxT7TTE+khZyrb+sHgB+TMHP2xfjwOD0dvP8qC2gV09HSQyCU4MnCEWc/M4q5td3Hl1CuJZ+Lct/g+Nu3Tuvanr38ai2FRU49gNx09HZwOnWbDkg3n1Qj1hHvoifTw4I4HORM6w97evVgNK08ufZL6co3UGE4MY2BQ7nBhpIYVZDe0qgNnNqosuJnTyLOqQoSGmApmKy6Fo9+Fkmq44kkonaGA/sAqXc1M9Y/XwU+cD4t+oaua+26FSJe6wVtduqrpe0WdPiWv7Ld76vh7cVYpgI73K2C2uyE5okDcv1OjMxweuPJbWvdjLYGqeVoDnxiCihnar79DwXf5dHWkd9dobf3gQR3YzawOurF++Ldv6spsrE+Z9mxC7zl4UI+nQ7DlK1p37yglnzfw+SJMmuQmkcgxbVoFzzxzPdOmlePx2LHbLSxYoKB90aI6Ghq8mCZUVjrZt8+PzxfGNAWHw0pvb4R7713E1KmlJJM59uzp5dSpUUKhFNXVHlwuG2Bw4YUTWby4npkzK3n66WX09IQ5eXKUdDrP17++mYYGL5s2LcPlspFO58imoc47mStqP4HDauOiqgZ+uv91Kl1lWqM+ZSYj8TBH/F2U2BysufZvqS6dgAF4StzEM0k2vP1TrBYL9336r3DaHJQ63GTzOebUzMRtd+K2lzDJU4HTXoLT5iia2d2y8AuMJiKkc5linf2Y2d2mL97Pms/+LRZMDMkpK26vhdwZNaUzw+eAc0Nd47N9EH0RUkcAqwL7XKCQBDABkvvBNhGtk19VAP45rX0f+69pKVWAnu0F5yxl5gNfV/bd4tFae1t1oTb+KsgFMXFT5XaTNU16o1FcNhupArPusFp5+/RpDgcCnAqFONDXh8fhYCSZJJrJsHHJEm6cNQuLYZA3Tb6+eTOCAv6Onh7SuRxVHg/xbJZAPE4im8Vps1FaUkIqn6ejp4dIOk3ONBlOJCixWumLRjk5OkpPJMLXt2zBzOfVGO5b31LAXVICTU3KlldUKEU9horPnlV2/dQpzVX7/OeVFe/oUFButyttHQxqPxaLFpj/8pdKkXs8Ctz374dZs/R5PK7MfTyu19lssGiR1sR3d5O1uenrM3jwQS2P7+hQP7udO7WUPpHQ22QycNVVCtpfeknf/pIl8J3v6NtyOjnP3K6kBH7yEz2+fr1es26dEqIft//6ZmYy/O655+h54w0+fP55cukMmVRaAXAuq67xn7tRndWjIY13E1HTuaVfArdH/yz/+m5l38Oj8Nk/GVfG1E5T5unNV8bN5pwu+Mqd2t/Pf6h18sFhXTQqcSpj/8ZLev31fz5e677nLchnMX1nwO5Q4D37MixLVkA8Sn7Lq+qEWObFuuJLGBOqIBLS4/EoRs1UrVUfq13fs1MXk0WQWBTp+h3mzrf0585kwGIdP3fnW1hqG7Dc9FWs138RMSxYmj+riwZL/wSjtAzLTV/FrG8kGAzS3t5OTU0NDQ0N7Nixoxjp1tTUVKxJT6VS2O12amtryWazxGIxPB4PW7duJZfL4fV6icVitLe3E41Gqa2tpbOzEwCPx0MkEiGfz7Nx40Z8Ph8tLS3ceOONeL1e2tvbCQaD9PT0MDo6itvtxjAMIpEIdruLurpF2O1u+vr2Mzp6mkRiCAC73cX27aux2ZwsXfoE4XAP2WyCiRMvIBjsZuvWVXi9dbhcEwChs3MD77//Im++eQ8gvPnmPUyZ8knC4R62bFmFx1N9Hmj3eKqJxfqZMWMJLS1rAYqmeDt3rqO2dj5ueylrRGhFWXADrU+fh4Ls1WgmewvqLN+Dxr3ZgLtRQJ9EgXwOuAP4CAXdVxa2SRR/+QrPY8Bo4ZgduAw4jcbCUbifpXAPHDYqLqikdGopzWuai7XqGGBmTTo3dPLBSx8Q8UUInw2z46Ed1DfVs2TjEpwVTma3zqZuQR1hXxhPlYetd2wll8xhWAxi/TFEhMRQgt7dvTS0NHBXz13UL67H1+nDW+9l1o2zyEQzdG4Yz473VHno3NhJfVM9Do8DMYWykjLm184nmAwSiAZ4bPdj1HnryOQzPLH0CQbuHeDZ5c8iCP6IvwjQ59fOx2JYKLGV0FTfxFN7n2JB7QKsFisdPR30RHq4Y+sd6uEU9jGYGMRpcxKIBXhox0P0hHuKJsuBWIBoOorT5mTNW2sAsFlsOG0eTTM6/iOtS8eiSUaL/kVrzvfdCrFTCtrfWaFEUjakBI2tVFWg+26BfFwjiPfdqnPX4GH4VQ0M7VESKTmgH+CkRaoKVbMBvUcuqjXuZiGGNp/SRKN9t+s1Mf943TpGocb9VIG1t+qx8mmQjur5VoeekxxVVamYSlrlkucb1X3ciu1j4P5H3MYY89e/+jojH40UwXtJWcn/Jaa9p6PnvAFYRGhe04zdZqfOW8eqravoi/Zx1dSr6Iv28dCOhxARArEAe/17mV87H5fNxfza+bTObuW7Ld/FZXPhcXi4oPICnlr2FGcjZ7m1/Vb6on3Mr53P+o71THJPYt3OdXjsHmrLaotGIPNr5+OP+Nlw7QZqy2pZVLdImX6bg7Phs9yx9Q7i2Th7/XvJApJPKjN+5SYd1JJ9cPRBSJyB0YOaffnJjWo6d+BOioNkLgabZ0HSr4PauWB9zHkzG9L4uPMM7KLKqBad6ms1ViPWDUMdyszPf17BtMWu7HYuqROxXBLevgNcVQX2PQEHHlOA7e9Qln3SXDX/CJ+Gt1cVIt4E3lqFyv0LCwe1zQU3+6QOpvvWQ/drujBgcxYy2yM68Lqqxg3uvnpSXeqDJ7CmAtTXexkcjGOxQCqVw++PsHNnD/m8kEhkGR5Octllk7FaLZSU2HC5bORywqJFdVRXe7DZLNhsBosX1zNhgpNAIFZk6WtqyigtdVBX52XSJDepVBYQslmTVCpPMJjiS19qY/36DsLhFK+8coxMJk8uZzJxootgMKmA3wImwgR3OR6Hi7XXfpWaskk8sORrXH9JM54SJ5M8lRzpO44/PMjR/hP0RYbZ8La6wF869UIGY0EwDA75PyKRTeKw2SmxOTQGyTRJZtOMxkMIYLPa+O51tzAYGyWaihNNx4tmd7cs/AIlNgfzpl5EXvLI2OqzfYYC9ZFHwLVI/8jMZOGvzVAA714Mte0qZc/1QD5ccJXP6T9P15WayW44oPpR/Q7l+2H4QV0QSHTovrVKDetSv4P8gN4v69PrXFeDpVJl9sn9ZEoWcSoU5HAggMUwaGloYDSZ5L3+flK5HHkR/vLSS1lcX48/EmFudTWBaJTu0VFsFgteh6MYJedxOHj02mspsVpx2+3MmzyZkWQSm8VCmcNBjceD226nwukklcuxt7eXK6dOxVtSwmA8TqnDQanDwYbOTqo8Hh4pGNQF0mnk8ss1Cm7SJAXPN92k1usOB/zDPyjyvfxyeOopRcp+v4L7khJlzKdMUfq6q0vd4JxO2L1bQdQDDyiDvmCBRr2dPQvz5im9PeYSV14w23K7lRY/c0ZReVUV+WyOJ57Q2zmdSsQ/+aQy64ODGud24oQy6k6nigZWrtRzpk5VOX0up2sNq1apGr+6WpX7FouuR9x777gnXsn/vLLp4/a/qFkcDmbfeisNn/scs2+5RYFLaSlGcFid4f9iFUyo1u/IzNn6wUQjaj4XDSljHgpqOVQupy7xsXDB1G4IXn5BwfyXvqoAfPlNysSLqf0f3qOgfsYlKsPf/K9weRPc9A11p59UA39+u8bI9XSD1YoxpRbDYsGYWI11xY0YNlvRHM7seEuX9+IxvYfVhlE/TUF6KgUWi7Lqc6/AsuxPFcj3nFan+NabsSy5Qd+fYWBYrViuuwHrqvuxLP0TxGbHKK/QhYDgMNjt6lRvtWL6zmCUV4BQNKBLp9N0dHTQ1dVFJBJBRKisrGTZsmVUVFSQzWZ56623sFgslJSUUFtby+7du/nggw/YuXMnIlLsa8w1fsmSJYTD4fOc6ufOnUtNTQ0VFRXU19efZ4DndruLxniGYeD1ehkaGiQS6WHr1jvweKpwOFQq395+K8nkCNde+30sFhvJ5AjBYDednRswzRydnRuKZnWZTAyLxcby5c9y770DLF36JCLQ3PwdZs68rgjG4/FBYrEB/P791NcvZsKEC2loaMHjqSYS8etcq2CKt2jRtwBwe6cyyTB4EpWmW1Cp+jAKpK2oe/xpFIQ7UeZ9Hwq6F6NM+V2F7XzUkM5WeLjR6LhO1K3eg8bMfa/wN1FSuMeY0d2Gwj0S6EJAHpXDI1A5s5IVz6+gYnoFFrsFm8vG0ieXMnflXOoW1BUJoT1P7MFaYgUDbnjhBqxOK40tjZR4S6hvqifaHyUTy1BSUYLFaqGisYLaBbVkohlGjo+w+fbNlNaUEvVHsbvseCZ7uOGFG5h4kRJU3gYvy3+8nDk3zWG0exQjZ5DIJbhj6x0ksonxtKJIL06rEwMDX8TH7ZtvJ56JM7VsKo/vfpw6bx0Oq4NYJgbAn13yZ8USzj29e7h8yuX4wj7e7H6TofgQTQ1N1JbVYjEsBGIBXut6DV/ERyKX4PHdj1PrrWVy6WRSuRTrP7ueofiQRtMZFsQ1FT75uDLu+27RbXWLytCrmtRpfmwuOut+sFcUvg2mzncvuVfnDMceK8xNN+pcdfkx7ScZ0DmpxQHT/gqufLrAfJvqIG91KZN/YJUuElhdWkpafbWqUb3ToPqTujXQeaSjVL8k+YzOOcXUY/mMKkKtJeoyX1anZFNyuADiP1aE/3vtY+D+R9zymfy40+a6neTT+f/p+WPsfD6bZ9eGXbR9qY1Ib4QVz69gwoUTyCVzVM6oJM94HMaGzg0YhsGGzg282f0mpY5SplVMo7mhmYP9B0nmkgjCs8ufpbGike5gN7e238rJ4EkA1u9cz2tdrxGIBVg5dyVPLn2S0eQoa1vWYjWsxDIxGrwNPLn0STL5DFPLprL6t6vpjfRiiokgpLIpntj9BE31TThtTi6dfCmj8QGMYhTGPv0BUwGVHCX8mk2ZKkRr5JJw5Y8AKbhoJpRNL5k8zpLPul8HxSue1Fr2ksk62F3+BCz/CK56Flw1gE2lS1XN8MEjmoWZ6IUJV0DoiF4ztsoY79P69MhZiPYU4tkeVzC9f6MCbFuBbY8PKLi2unTFs/s12P99HQSvuEeZ+TFZUjwA2bjew2LX+vnPv1qI/wAu/DNwT4aaBXq/KYv0PUmhhr/iQvIl1fj9UebNm8zISBKHw0JtrZd58yYjQlEKb7frAlAkkubEiRHee68P0xSsVgv5vA7KhgETJ7qpqSll8mQP+/b5MQwDp9NGPJ4hlzOJRjOk03kcDgvvvddHaamD3t67+clPVjBlSimvvtpKf3+Mw4cDpFJ5Jk8uw+qAnJknm88RTkXJ5nPkxcRiMcibed7vP0k6m2UoHmSCS/PYZ9fMZDA2yu4zRxhJhLn+kmY+UT2NR377j1xY1chwPMz3tr9Ab2iQUDJSkHMZ+CND9EeGeOS3/0gym2bGxDpGkxHKSjzUVUzmgSVfpdZbhT88yJG+41gMCyY2RAQkqaB74lrw3qiu8oPf0uOWMt0m9oGrUH9uq1E5vBmloD9T4G2t1Hi3/Kg6yxsevWbksUJOe7+C/jEn+mw/eL8E9joY+IYuClg8hderyYgdp83O1LIyjXgLhYqg2xShxGolL0IgFuOymhpKHQ4G4vEiKI9kMjhtNnojkSJjvs/vZ5LbjbekBG9JCbFMhrwI3cEgt2/ezKlQCKfNRrXHQyiVIp3LcSoYxBTBMAyeXLqUYDLJk0uXMnDvvUx1uzFMU5Hs7bcr8x0KaaTb0JCCiURCt4sWwcaNWtd+000KxJNJtXy/+mq1fHe5tAa+qUnp64YGBeF33aUy/N5eZTjXrdO/lZMn9bXBQQXu996rtfCFgnQnGTZtEm66Sd/i6Cg88YRiod5ePT0Q0Bp1v18x3KZN+jYCAd03jHEhwcaNui4wptxfsEBL+59+WuvkP5bJ/+9pYpqUTJjA3FWrKKmsJPjRR1rvvflf4cfr1OHdYlEH+PAoZDPKsm/5JdQWJKKFcg+iIX39gjla/76treAg/7Ky7H99twJxDDj5oS4IfH2tsuo2q7LxMy/RviJBrXEHXRRIpxTA5/OQiJPf9hskOKLKABEsS27A8hdfw3r9F8Fux/CUIdkM5ru/xaifhuXa5VCIicPlxrr8i8rGb/0VhqdMGfz66RglJUgmraUCFiskExoJl4hhiHnOAsHbYLMjwRHyW17F8JQi4RAWpOj0XlJSch4LvmXLloJU3ca2bdswTZPly5djGAY2mw2r1VqMfWtubiYej/+Ba7zdbicSidDV1UVHRwciwvLly4nH47z++uvkcrliHy0tLbhcLpYtW6afdWEhoKqqsugKv3v343g8VUUH+TGX+FDoNDt2PER9fRPLlm3CYrHR3LyG2bNbaWlZS2npZEKh02zefDuRiA8RIZkcobJyJmVltcVza2sXEIn0MnnyPOLxAbLZONlsHMOw0NDQgmEYVFRMZ8WK5/F667BaHaSzCRIoyA6gjHgZ8BjjjvGTUMk8KKC+A6hCGXQTBepNKCj/MsrYD6AO8z2oVL4KWFXofwMK8APAbai7/EZUqv8dlI0fq6HvBCIOK4ZhEOwO0n5rO+lwmmB3kJ6OHix2C5976nMkQ8mi6/ySjUuI+CJs++Y2Rk+OInkhE88AcMmfXUJ9Uz3xgTjbv7WddCRdKJG2UOItIT4Yp/vNbqJ9UeoX15OJZTCzJrl0jp5dPQRPB8nEMmRiGQyLQUNzA6bVZP1Onbv2RnpJ5pJFubvVsOKya2LR49c9jsvuwmP3cN+i+3Db9W/ZFJPvvfs9BmIDeBwecpLjsprLuHvb3dR569j3tX3Ue+sZig+RzqXp9HVS763n5RtfVgf6neMO9JF0hPu236efVVbTkSLpqJJMVuc4KZToUaD9/kPjZJPFoSRQ2UX6YQ91qiTeXQfHHld16GUb4Zp2nduK6PiSjaoC1FkNmZCy6iN7C2rUIb1HokdJq56XdK6cLTDndV+AkonK7kd9qlwVVDLvnKRzz6hPt+i86TxX+RKv/ly2ko/j3/6T9jFw/yNu5+W1f7cFi81COp4mHVHp/LntXHY+1B1i+TPLufHlGylvLMfusmPmTPoP9iOmYM1Ziyz4Ay0PYLPYWNuyln1f20cimyjGv00unYwv7KPEWoLNYtPVxXPyMHNmjtWLV/PyjS9T563jG1u+wVBCVyunV0wnnA5z3/b7OBs+S6mjFI/DQ2+kl9e6XqM/1l+MoPNH/fxg6Q9oqm/ioR0PMZIcocI9GZm9Vg3mxjLa3XVaJ+SuU4bdXVuoF4qrDCjZryuZH6xX4G2gwP6qH2sNUHJQpUh7v6rRGoKuhsZO6mC373aN0jDTyrDPXjOeEX/wHqi4bBwgi6kA+4p7dVCbsmA8ts3MakzbWI57cgSqLoX+vfph1TbDbf3wqR8q626xFuTvcV0E6HxQo90Mi0r9vTNgavP4QkEiMM6+L1gLF9+o/UZ7ld3Pp3E4LDQ11TMwEOfBB3dw5kyYPXt61VcgkSWXM/F4HNx11zZOnQpht1vwektYvLge0xRyOZPh4TjZrEk2a9LZ6SMQiFFe7izkum8hlcoRj2eL8XD79vk5ezbMVVdNZXAwzp49vaQLi00tLQ04nTaamhpwuWzk8yZg0h8Z5neBbpLZNI+89U8EIsOYpsmHA6e4rPZiqssm8Mnai/E63VSXTuD7b/0T1aUTePEr66guncD3tr/AUCzInCkziacTDMZG+asrlys7XDCd89idzKm5gJ/ub2fOlJkMx4I88c6LVJdOUGZehFQuS8bMUWKzM7tmJr8LdAOm+rFgUSBta1DmPRuA6vUqWTcjgIB7QUFKfyvk+hXQ50fAjOvrWCH5nrLwtskK9jPd4G6G6o26MOBaoMZ20Zc0Is61QNn8kY0K8A2nfidir0FuECs5Kp1O+qJRNi5ZwrTycqo8HjwOB72RCJ0+H6lcDm9JCW67HZvFQlNDA4PxuNbD22zYLBbqysupdDrZ39fHgtparBYLeRGODgyohY1h4C0p4VuLFuEr5LgPxuPEs1lWbd1KTamu1t/a3s5QIkFTfb2OSSJIPq8y33Mz1MrLFQVPnKjgOxZT5PtXf6UIV0SZ9cWLFZi3tMCf/qkC7l27FIzfdpsa1o2B/yeegGnT9NyBAWXck0ll65ua9NyxCLm6OmX516wBi0FPjxLxVVV6mtWqL9fVjZ9eUwOTJ+s2ENC1hlOn9HxQZf8YcB8a0tsnEsrCJxIqNDh58uM4uP8dLZdOY2YyBD/8kDe+9CUObtjAxDlzwGpFVq6CDT9TcC0C4SAM9SkLbrcrc+506fGekwrYXW5wFLwTvJXQeiss/Iyy7cmkAvFAr8a+eSs1Zm7axcpemwVZ/BUt2udrP9f7Dgeg7QVl8C1q+FSMXouEIFyQwicTGDW1mL1nkdFh8u1tEI1oLnvnDgxHCRLwY770z5hvvg75/Hg/8SjksuTb25DQKDgc5Le+ioRGwGbHsugazYrPZrEsumZcHu9wIJGQSuz3dmBpmIGJQTQaZcmSJVitVioqKmhoaCiy4Dt37sQ0TZYsWUJpaSkjIyO0t7cTDoc5evQo4XCYFStWEIlEeOGFF4hEIqxYsYLKysqiBN/r9XLjjTcWM9vPjZnbvn07FRUVrFixgoqKCnK5HFu3biUWi5HP52lubsbhcLJ48Wrmzl3J0qVPAhauu+4HzJt3c4E5NwmHfXR1vVZk2zdv/joeT3Uhys3F6OjJIvjv7NxAOh2mpMTLkSM/o6eng8rKmSxb9jSpVJD6+iZisX527HiIWCyA3a62b8HgyWKEHEB//0HCYR8um4tSEXIowD6A1p9vAm5GDeUaCtssCuBfQk3o5gOngB8BN6HGckMo8K9BAXofCtofB15DY+aeBv4cNbu7t3BOKfAMmhXvBo6jsXE1wHsOG4LQsb6DD176gEw0Q8QXUen7qq1EeiO4J7kpqytjyWNLAIrn7n58N4bVwGKzMNo9SmwgBgIRf4TPrPsMdredkRMjtN+q0XA182q4o+sOGloaMHMmdo8di8PCtru24anyFO8bH4zTu6eXfEZNCFcvXl2McvOFfVR5qli1Vcs0M/kMTquT4cQwt7XfRjKb5MKJF1LlqWIwPshgbFCz2WP9nAmd4bb2285Ti1Z5qvBH/XgcHkaSIyyqW0SVp4qWxhacVmdx3rymeQ2/G/wd9y2+j7YP21jXsY6cmcNptWLkIlqCeclqJY0mLThf2Wl1KxMeP6OkUPCgStmT/vNjja0uNWE+cKeSUY4CcHZWKUufTyponzi/sFjgOofRX1CIoVusStX3H1Km3uLQ0ktHWYHUQNl0i0XnFg6vsuwWi05byqfDhEsKIL2w6Pdx/Nt/2j7+rfwRt3Nr2ifMnEAqlFJwfsu4dH6s5TPKsjdc3YC7yg0GTLl8ChNmTsDqsGJ1WKlbUEc2kYU0zKiYwfMrnmd6xXQMDGZUzKDaU004HS7WpD/S8QgLahdgs9gwxSSUChXzMB9oeYA9vXvY5dvFwrqF9EZ6uXfRvfjCPvJmnr5oH267m/WfWY/H7iGWiRGIBbh8yuW82vpqcaB86YOX+P6u72MxLOfdN5JNao36pMXnD2bO6nE5UcKvAPrcQbFmiUrdU0O6gumcpINbwgfVi8evTQXUwOODdToQFvvYqOzopIXgmabyoq4n4eK7FSwPdWhfGFDaAM5KZdatLljynOavY2jd+3tPKAu/b70OcJPmqsQ9eAL6dulk0WKD954ssPNOXQTofk3d560OSAV1ISEb12Pdr+mCgRTYd2+j3ttq13tXzYOB93BYsgA88cQerr66gcmTPTQ3N1Ba6sA0hUgkjctlY/36z9LbG8blspNK5RgeTuBw2CgrczBpkodUKsfdd2+jqspDT0+YqioPlZVONm1ahttt5/nnD7B69WLq670sWlTHk0/uwTAMensjVFV5uOOOrZw9GyYazXDy5CinTwe5886tpFI5TITB2GiBRQ+yo/sAL+z9NQJcMKkeXzDAo2//M8lsmkp3OS67g5uvugGX3cEEdzlTvZO4+5qVjCbCLG68lAmeCqpLJ/AvB9+g0l0B+kmQFxObxcq3P/s3LL14Eb94b0sx111EMAwYjgWJpGKkshm+/9Y/Uekqw2IYCsYHvlEA4ABWcF6OWged2wyV0sde0xp1TLA3KkOe6y/ks18FlnKtY0/u1bx2o0zZecdMyJ6FiasLufDf1UUCgMmbFOAPP6R181NfBXcLeWwEUymmlpWx5q23iGezJLJZUrlcMcd9IB7nrm3bODk6SjSTwQJMKStj3uTJ3Ll1K93BIHnTZH9fHwvr6nBYreRMk5FEgiumTMFls7FqyxaS2SwVTicLamuxWywsqK3lsc5Orm5ooLasDI/DwdUNDWzYtYu8CG67HbvFQgKQ8vLzM9RBWXWAgwe1Nt3hUPp6zx5lH8vLYXhYDeVyOQVVTzyhMvgpU3QhoK9P0fbQkCLv3l49t7oaHn1U69kPHtR7NTUpCz+2eJBKwcSJZAwn69YZvPSSgvSFC5UxTybHa9PXr9c5jtWqoP2hh1QEMGeOvo1cbpyZdzg0dr6xUV3nx64fHVUW/uMa9//als9miZ45w76HH8Y9eTLNTzzBnNtuw15SgvT1YLz4tILY0UGt+Q6PQFkF/MvTMNivBnUYyqrXTodoGM6eKEjms/Cvz0A8Cn/5dwrmrVb9Lo2x8G+8BNM/AWeOw4Qq/eIUgHLxnFRSmf397+pWAMPQHPbZl2Gpa8TsGJfIk0pieEo1b73rd0gsimXu5ViWfl7Hr7JyLDf+NdZlX0CsNqzXfxHLTV/Vfs5l0lMpBfThEOSySDyGpbZRywKcLqzXfwESMfKbX1GJ/Y1/jWXJCiQ8iiUepaamhmQyyZYtWxgZGSnIwceZ80QigWEYWCwW9u3bR319PTabjVmzZlFeXl6UtM+cOROPx0NPTw+maRKJRFi0aBGRSISGhgbcbjdvvvkm2Wy2yLI3NTURi8UIh8OICDt37iwuGACUlZVhsViorJzJ8uXPkEgM0d5+C/H4IJ/73BOF/Vvxeuu48caXaWl5AL9/L8eOvUJ//0FETByOUkpKKmhpWcvs2a00Nd2P01mJxWKnt3c3bvckenp2YrHYcDorALMos+/s3AAYiOTp6HiE2tr5RKN9tLffisdThc1WQt4wMA2DMCpRn4Iy4z3AU6hk/nDhNTvKrq8EvnvO+Sm03r0Klb5HUTZ+NWoyZ0dd4l9FAfowKoG/DAX0l6ELAN9AJfllKHvfVHj9KsCwGix7ehk3td+Eo8xB7YJa9j61l/qmejxVHnLJHG988w3ig3FsLluRXFqycQmh0yH8+/zUzq8tJh5567z8dvVvCfeEifXH1HPpkQ4Mq4GZNxk9McqWb2whdCpELpmjdn4tux/fTe38WgzDwFPtYfK8yWy7exu5UI6ZlTN55vpnKLGW0NLYgrfES1N9E/6on/5YP32xPh7rfIym+iameqeSyCbY7dtNpbOS2vJarptxHQvqFrBu57qi6nTJjCV8u+nbWA0ri+sX47K58JZ4sVls2Cw2MrkMglDjqeG/feq/kTNzXFB5ATMqZ7B05tKiotRptSvDfVR9DrjqGbC4dE46VqaZHlLVp9Wt5sdVzdD1FPRvGwf7s9fo2HFsQ2Huadca9oRP56COSvA0KmgfY94NC0xqVkbfsKm6FLSPnpeUxc+GwVuvAD3aW0haQrfRXgX0dg+kI1rXHj6twN7qHAfpYwD+Y9D+H7aPXeX/nfbH6CqfjqWJ9kbPc/s8Nw4ul8mRHEkSH4jT8UjBgXNKGQ6vg5JSPSeTyJAOp3GUOsg5cpwMnmRj50Y2LtmIx+HBgoWcmSs6azaWN1JiKyGWjnHhxAtJ5VIEU0EqnZXYrXYS2QThdJjaslpOBU8V4+Qayhu4c+udbFiyAQsWPA4Px0eOs6FzA6sXr+aiiRdhYHAqpHF0Y27z3cFuNnRu4NtN30ZEuKzqIixIwQ1+g8rdyy5WhnwsbqPsAoiO7T+gA6KZBgyInVHzj1nf1lXHqmZdCc1GwF6ukqN8CjJBXb38YJ0OdsI5zvIbC87yCTh8H1z8dwqmJy2ExDC4JujiwZgDfKxfgfr876ic/d37lH23u3UgTAUhfEpBfDYGjnJduczGdcB3lMPQYSitV4MQMQtyJENl9WPt3fvgyvsU6FdfDskh2LsOrvmBnpsIEHddTCRuMjAQ57HHOnn00Wtxu+0A7NnTy5QpZTzySAdr1jQzY0YlgUCMRCKLx2OnutpDIpGlpMRWkM4bGIaB3a4Rc/v393HZZTW43Xbi8SxHjgS46qqpOJ028nkpJHD5mDjRzdBQnJkzK4lEMjz11F7uvnshDQ3lOD0WUmaKWDpBaYmb40NnmVw6kanlk8iZynbnzDxWw0LGzCEiPPHOi/z1VTfgtjtw2p3Fax1WO1kzx7GB01wwqR6bxUo6l8brLMMAUrkMT7zzIjdfdQOVbi8b/+1n3LLwCzRU1pDOZfne9hf466tW8NP97Wzr2s3Sixfx6PU3YyQ6wTlXGXQzUXB/98HIBpj4Hcj6wV4D9os0Ci7bq9L2kfVQ/SQa2RLR6y1laB3bLjWZyw0X4t0KLTdciJUTPc+MweD9CuazPvCvgLKboWYTkCNjlhDJ5tnb62dOdTU2i4X7f/tb7lm4kAsnTiwC8DFm3eNwcCYU4ns7d7J68WJ2+Xzs8/vZdP31ZPN59vn91Hu9TCkrw2axkM3nyYvw6rFjzKisZF5NDZF0mvKSErwOB5FMBrMgxX9izx42LFmCq3Cvs6EQZ8NhltbUYBuT041lqeVySkMfPaqObyUlWkj+6KPKgjc2Kgr2euHIES0knzFDQbzNNi6vh3EH+jffhIsv1iL1SETp8WRSFwHSaa2vH4uFq6/Xe3zta2Qe/xEfjVaxbp3B2rVqcN/RoRJ3n09B9wMPqDigpAS+8Y1x5/gnn9S1hUmTVI2/Zo2+zb4+ZdfH4uEeeEDfTj7/cRzcf3XLxuPsffBBet54g4bPfY75Dz2ExW4nMzSAe+u/jDu5/8UqOHsSGi9Q0D52/Lo/A0+pMuFlFQqy3R5IxPX4yKDK3SsmKehefhNMnKyg/vRHMGEyTKqG4Igy9S6P9pWM6fdwyy/HXeq3/FLN6aqmImPxbSJIPgfRCGbH2xrJ5vYg/X4MbzkSCWN4K9RdvuWzUFqmtfkYSCSE4S0vXmdUTIR8DrP3LIa3HDxlmNt+g3XZFzH7ejCqp2htvdVavPe5jvLW678ImQzmYD+Gx0t2UhXRaJTu7m78fj9XX301TqcTwzBIpVJFl/iSkhJsNhvBYJBYLEZdXV3RBd5isZDL5fD7/ZSXl1NRUUEwGKSzs5MlS5Zgt9vp6emhra2NSy65hOXLl5NMJhkaGqKqqoqhoSEaGhqKkXAtLS1UVlZimib5fJpY7CxWawmjoyfxeKqIx4doaGiivf02PvjgJWbPbmXFiuewWOwEg6cIh3vwemvp6HiE5ubvUFk5EwDTzJHPZ7Bade5kGEaRQRfJ8+ab99LQcDUNDU10dj7GkiUbsds9KjMPnsJmc/7Be8iWlHPCMOgHFqCM+KXA51GH+Q4UfH8f+DZwASqPt6Jgex0K0Hehde8/BjKo3D2EsuoLURa/DGXSNxSuqUMZ9WPAQyiTvwUF8mHGAbwjkyM6lly0poWKmRUgkIlliPZFixFxvXt6qZhWQUNzA/GhOJ5JHgB6dvXgqfKw96m9LNm4BLvbTnwojs1hw+q0Yiux4ev0MfWqqdhKbET7oux4cHxOe83D14ABznIndredbCLL9vu2s/Duhfh2+Sj/RDnZeVl6wj0srl9MKpfivu33cffCu7lw4oXsPLuTOdVz8JZ4OR08zaOdj7K2eS3TK6eTyWewW+1YsJCXPPFMnNW/Xc39TfczrWIaeclzOnia7+/6fjEW+bKay86LSh4zdN7QuYEfXPcDhhJD/HDPD3li6RMYhoHbYsGWi2EgqgA9tqEQJ9yoADk9rPO8D7+vYN7mVvbcsMHh1ZpkZAhaUFHwzEj0qiJ04gI9Fj+r9e+z1yj4z8e1rHP2d5TMqmqG4U6VxTsmaCnpB9+Dq56G9+7S8lCrRxcDQB3kS6coqZSJQlm9EkOxPpXJuyZBxUwlmf6jVijt+WNymv/YVf7j9p82q8NKSXkJi1cvLprN2UrG/5BsDht2j53Ox8YdOA2roSN/oYkINqcN02aSlSzrO9Yzv3Y+ppicGDnBLt+uorNmQ3kDk0snE0qFKC0p5VToFKu2riKYChJMqZOsy+bCggUDA6fNSVN9Exs7N5LKpVhUt4j+aD/f3PZNcmauyKZv6NxAzsxx++bbqXJX8fyK52ksb+TubXezp3cPz1z/DNMrpnPRhOkYsVMaY+GaCnMfVsONXPR8Bj4bBc8MWPCCZlVmo/DeN3VlcsxF/sPv68ok6GD6/kOAqXKlA6sUtHuma9yc1a3gLDUI89bpeQdWKZCfOF/rj6oX6+DkqdGVyv49KnG3ueHAxnH23F5ayFkfVAM6M6/X1LboKmb49DnAHNj3qO5PXaxMevgUbL9FzwMF5zvuUsl8zXxdIHBN0gE36lPZvtWuTL5nCobVhtttx++PsGhRHYFAjNtv30xPT5i5c6t55JEOXnuti76+KPm8UFNTisdjx+12cOLEKN/85jZ6eyM4HFayWZOOjh66u9VNfvHiejweO52dWgc4ZUope/f6SaVyDA7GOXMmxGWX1fD447upq/NSU1NKZaWTH/1oGTNnVpLPm1it+p0c+25+svYT1HgnEs+keL//BH2RIX4X6KY/OlI0o5s39UKGYqMFBr6EvsgQw7EQOTOHw2KjunQCT7zzIiJCia2EbD6LACVWO/OmXsgLe39Nic3BfZ/+K2rLq8mbJuFklFsWfJGp3iq+89m/YdMX7+fWhV9EsCPOy9QkLrAKrVV3g20aTLgfskPKhFunFv4IG8B9tUraJ6zWlXYEhh8d+wsErArW7Y0a92ZGFchLRuX4ZhiyJ9SszigpGNk5td/pH0HNU5DthsAqHARx22xcPmUKyZxOKJrr6/GWlJAzTSyGQZXHg9Vi4Vvbt3M6FKInHOa1ri4CsRgr585l07Jl+MJh7ti6lSqPB5fdTn8sxu2bN9MXi+G221l56aW0NDRgt1joHh2lPxolDzhtNmKZDIFYjHWf+Qwiwp1bt3K6UAc/b/JkxGpFYjE4flwR8enTyqqXlqoUfv9+Pdbfr4i4t1cN5s6ltX0+1aV3dqqsfqxuXWTcgb6pSfvr66NoET/mNF9ervc+eVIj4kpKtJ+1ayGdoqpKQfj06fopNTfrW+jt1Xr2GTPg/ff1z3TtWgXta9Yo2Tpt2vnMeiqlpnV1dSoEePppPadgvv1x+y9o+WyWbDxOPpvF4nAw57bbaPjc55hz221YSkowbDas7lLy130JrroaWX6TfngzLga7A758m2a1f/l2cJeCw6URbiUuBe+JOGTT8MvnoHyiusOXT4CL5qoR3XBAwX9lFVRNhl9sgv++SuvXB/v0tUxW4+X+8u8gk9J+//x2OPURxCLKYAVHybe/rB4Qdoc6yFdMRAJ9WGobCvXq08bZ+J1vYVhtGOWVal53DiuPzQ65Amgvr8ConAQWQ1l5TCz1hfioSIj85lcgNKoM/Bjr3/wZJJfFHOzHUttAPhEjFAyyY8cO6uvrufbaaykpKUFE8Pv9xSz2HTt2EI1GsVgsRTf5LVu2EIvFMAr/5wzDoLGxEbfbTTabpaOjg9raWqLR6HmS+aamJnp6ekgkEkyePBmr1UpdXR3RaJTy8nJWrFiB1+tleHgYn8+H1QrRaD9lZVNpaGjG6ZyA19sAGEUWfdGib9HTs4t8PoPXW09d3UI6Oh4pmNM9gohJNpskn8+Qy6VIJEYACIXOsG3bXSQSQ1itJTQ3r6Wv70CB4f8x8fgg7e23EAqdobJyJqWlNUyZcjn79/+YKVMuB4Vy9DNeg54AXkYZ8kEUzD+Ost8NqCP8KlQW70LB9hNobfuPCq9/s9DPIFCPMvNulGV/gnETOgda116OZr+vZNy9vhwF7QIkz/VVWr+TaG+UkRMj2N32oqt854ZOZn1pFlMun0IsEMM9ya1zTaCxpZG9T+2lblEdYgrZRBaHx8Fba94i0qtGhnUL60gFU+TTecqmlrH4fp3TNq9pxlnhxFvvxWq3Eh+MY7FZWHj3QvY8sYcZS2ZQs7CG3kgv8ybPYyA+gCkmi+oWqVcTBnXeOta+vZZULsWUsilFJv508DR7eveQzqXJmTk6fZ0MJYZ4+vqnaShvwBQTm2HDbXcX57GT3JOIZqLnlYd6HB6mlk3l+RXP47a7eaTjEe6Yfwdnwme4tf1WDMlh5BJg84wz3R+sVzNbw6pg+sPvF+rPfUokHVilwPzyH6h8/sCdarAsOb3GNVmVpgdWqdw9NTjer6NcQXvPS7qduEAHxQlXqeo0l1Ay69K/B4tTGX1LSaFMqDD/LG9UeXxJRSHL3a7zU+809Wsqrf2fD8Bi6uLAx07zxfYx4/7vtD9Gxh2UVc9n8mCCzWn7A2f5bDJLKpRCTCETzVBSXoKzwondpStr6ViadDiNWWYylB0ino3jtrmZXDq5uJL4zTe+yYvvv0j7Te3UldexcZcy8gCvHnuVGZUzWFS/iKH4EIlsgt5IL3XeOtZ3rGf14tVMLVMQYzWs7O/bT7WnmmkV0zAw2OvfS2N5I76Ij+v/5XpaZ7fy/IrnGYwPEkwFGYoPUe+tp6G8gVKLYNt/u5rDNb+stTvpIZWFp4bhw0eUgfdM1/qfZEAHykvuRw3CPGoyd2CVMu6eabqKmBpUR3l3Ixy6B868qNKkq57TfsbYeAQO3q0D3fAuGNqliwdmTgfCYlb7Bmj5vg6wjtKCgVzBZM5i15VUs1DYmktpXFtpLcR8CtBzSXh3NVxxd0EyiUrsr9bfOcfbNJ/9s0/D9ltVen9xKyx6uGAy0qsLBZGzCuQXrAVXFZn+I3SlLqOnJ8KCBbXY7VZWrdrCiy++z8qVc9m0aRm5nEkwmCKZzLJhwzgjb7NZ6O+PEo1mqK0tQwSOHh1g4UJdXDQMSKfz2O1WLBaDVCpLOJymokKj5OrqvPT2Rpgxo5JZs56htXU2L7xwA6dPh3C5bCSTOdat28k//mw5Z4P9/PP+1/nWp/6SUDLKP5+T3Z7JZciZedK5DKUlHmLpOB6Hi5F4mBf2/pqbr7qBiZ5yjg/18MnaiwE40necCybV43G4VOoOJLJpKJinjSQiVHkqACixObAYBpl8DsMw6A8P8UIhz73GOwm7kcRlHfsnZGhNe7Zb2fSJa8DWCBJX8G0pVzm9RGHk+wU2vh+cl2rpheFUcI5VzeksrnMy4M+qzH7iWgX0ZlKvyQ+BxVvoN17IiS98LzDBKCGWLyOcThPNZChzOPA4HPSEw6zbuZPvNDfjj0So9Xp59+xZdvl8/GjZMvb7/dR5vWzs7GTjEq1TbPvwwyL7vqunh2qPh0qnk0keD9ZCXNxAPE6V2006n6fU4aCjp4cFtbX0RCI80tFRZPF3+Xy8cMMNRNJpJuTzuLJatoFdwQQ2m7Ln2axOIN5/X0F3f7+i3m98A158cZzWttsVqH//++oKt2cPfOlLCszHqO2hIUXct946Tok/9phq1NevVy370JCi8IkT4b33oKmJiOlh5y4rU6eO57NPnaoK+xUrtJvnn9fvfDSq6w2ZDOzbp+X306bpusO6dRoNV1urjLrNpj+q1apm+Bs2aN8XX6x9fNz+17Rz89pn33orZdOmYVgsmJkMloK0wcxksNqsGKamRBiZNPScUDf5sflV9wcF4D1Fa9aTCWXMSwqmofmsSt4rJimzXj4RvBX6+s9/OM7Yr7xD2XfDUCl9aEQz46unjLP01/2ZMu7TP6F9VVYh5RPI/3YLRm09xsyLMUp13CURB4ejGLOMYUAkpBnsTZ/GqJyIxGMYTheSSkI2o6x8eYVGvS26BknEsTRMVyDv78HwVmBUTEBiEc2M7/qdyuJrG5BUEqPUC9k0YneoAgDICrx+Tlb7ihUr6O3tJRwOc8kll2C1WolGo2QyGRwOB2VlZcU69LFrli5dSjweLzLl4XCYUChEQ0MDNpuNHTt2nNd/PB4nlUrhdDpxu90kEgmy2SydnZ1ce+21OBwOYrEYO3bsoKGhgXnzZpPJRIhG++js3EBz8xrsdjceTzWGYSOXSxay2huJRHwEg6e45JIvEI3209m5gZaWBygtrcFisZHNJvjtb++nqek7lJfX0dPTUWTPa2vnY7MpPM5k4litDrZs+QZdXa9x++1Hcbkqi7nuhU+Nzs4NLP3ii6QtNvai4H0IzVTvAL4C7EcBdB/jTPm57LofZc17OJ9934VmvA+j4H0duhhQhcrqHwAuROvmrSjDXvAgx2ScHbwPeCaZJXF8hI71HTSvacbMaQzcDS/cQPBUkI71HbQ80ELF9ApyyRz+fX6mfHIK8UFVerasacFdrUA+4ouw54k9XPvotZg5k3wmTzaZJeqPUjOvhnQkTUl5CfaCCtCwGOSzefLpPNvv287iby0m4tccd0+1B8NiEAqE8F7s5eToSQbiAyyuXwyoOZyBwTe3fZOm+iaa6puKCs8LJlxAR08HVZ4qHt/9OGua1zDBNYFvbf8Wzy1/juOjxxmKD/3BPPZg/0Euq7mMkcQIvoiPBXULcFld5MkrCWbYOBU6xdSyqezp3UOVp4rLJl2Ew2ItRL0mNGd91v1KLklOCZ8xBemVm+DAHQq6p61UL6Zkn9arW0pUCeqoUMCdj+t5wUOanJTs13lqLl5g3AuK07IZOqcc2atxcvZyKJmgLL1zsrrL21wa/1Y6RSXwmWhBDl8ozZN8wejYCuMjj5JCY+bM57LrZl5Be5Gdv6AQK/d/dvuYcf+4/V9qNoeNktISSrz/fhyc3WXHUeYgFoix46EdRPuimHkFHrlMDskLhsUg0BkgmUwyvWI6U8qmcCZ0hm9s+Qb+qJ+NSzYWo9vW71RGvj/az8H+g3x59pdpbmgmmU0y2TMZj91Dtaf6PId6p83JfdvvU3dPbz0Vzgr6Yn2s2rqKuvI6pldO57Kayzi26hhPLn2SofgQyWySSmclTQ1NrOtYRzgdVluwS1ZD7ecVgFvshYHw2zoAzX8eSmcChq5OnlvHY7Epqx4/C1c+oyB9LNItn1CZ0ZhrZ0OrSpYs1nNiNmzKvPtfO6du/gFl/q1OBe+5pIL2y+/WAW/wcCE7N6d57dFeBerZKLz1Dc12B5g0S0G7qwrevlMHwE//EDxTofJCBe0185VV33GXGtxdvVHjQeZ/R0H7/DUK/r3TFLQbhtYlXfsseKeDzUWmQkF7dbWHvXv9ZLMmmzYt4+ab57Fp0zJ8vgh79/qprHRRU1PG+vWfAeCee7YRi2Wori7l4osnIgJOp425c6uJx7P098fI54X+/ii33dbO6dNBPB47yWSOffv8zJ9fi9ttZ8GCWioqnLS2zubb324mlzPx+cJUVDjZsGEXV1/dgCD88/7X2dF9AKvFgt1q4ytXXE8wGeXv3/wJA9FRSh1ukoW682Q2g8vuZKBgQDeSCJPKpPhk7cWkchkMDC6qaiSUjHHI30XONIlnUvxgxy8YToRx2Uuo9VZht9oosdo57P+IZDaNzWIln8/zwjl57ulcBpvVqZFwki14CuR/zyjOrvXp1gmawW6r0pp192f0ddcCyA8CApKG5D6QRCHP3YTh76mLfNavhnRZn9a5D35T5fhYdOHHNgVsdTD5R7pvWAELmbwx9i+VCU6nGtAZBk/s3k1TfT1Om41LJ0/msc5OlsyYwdqWFsKpFE0NDazv6GB+bS190Sh3bdtGU309G5cswWGxcPmUKdR5vXgcDu7YsoXuYJBELseDO3bQE4lwsL+fU6EQl9XUYDEMnDYbTfX1bNq3jy/Pns3TBbdnu8WCYbcjDoey3KnUeB27z1cYtOxqKJfNqq17T4/S3MeOKWi3WhUFb9qkeWz79ml03KlTirAvv1wl9ZdfrueOhamvXavX9fWpXr2hQZ3pp05VZL1oEeRyWA1h/vzz89lDIZg/X0H72rWqcLZY1PNu1SoF7s3N4+r7qipNsmts1B9n1SpdT7DbVdU/5su3YYPuf9z+1zUzkyHe388lN99MIhAgVyihsHtUuhs9fZr06AjGUD/Gid8psLU7oG6GMuU//6Gy4rXTte5dBEKj6j4P+oFFQ/pBT5oC/+M5ZcvDI+pID+dnsucKi1RnT2j/r/0cZs5Sln7LLzUmLhZRh3q7XbfbXoZDnViWrNCItx3bkHAQLAaG241hd2AG/OoAb3dAWTmWa66DUq/Gw6WS5Lf+Su9dMQFLwwwkXDCX2/0OlvppSGi04DRfqsZzuSyUOLEs/hSWG/8aw1uufThKkNAI+Td+A8ERdasPBcFiYfHixcV6c8MwqK2t5aKLLirIw4OMjo4Wa9mDwSA2m+28GniHw4HNZqO+vp5du3ZRW1tLb28vFRUVeDye81zjVZqeJR6Pk81m2bx5M7lcDrvdTl1dHbFYjJ6eHkpKSli8eDEzZswgm02TTofPi3fzeKrIZOL09LyLxWKlsfFqKiunUVZWS2/vbsBg4sSLuOGGFygvb8A0c2zdeifJ5AjLlz9DRcU0REy83lp2734cr7eOVCqEiBId0Wgfvb17aGlZy403vkwulyjkvFcRi/VTUTGNzs4NdHW9BqZJiQh1KLNehwLpy4EPgWqUAd/AOFO+BHWBP4PWpAvKxl+NMupLUJA+jBrYrUON6XrRRYAXUBM6JyqHz6FxcmcL9w4U9vtR8G83TTzVHpY8toRoXxR7qZ2lTy5F8kLljEo+96PPUTGtgtCpEFvv2IqnyoNhM4pKT2uJFZvLhq3ERueGTmrn1xILxPjt6t+SS+SI+CJUz60eV9qZgplTJ/lMNENiMIGYQt2iOjoe6cA9yU3H+g7sbjuxgRjxgTiC0B/rZ271XE6OnuTW9lsZTAwSiAVYvXg1S2cuJRALFPPWBWFB7QKe2vsUVzdczWTPZCqdlbxwwwv6XU0GmTd5XjHffdO+TZQ6SmluaMbj8DDRPZHLp1xOLp9DEESEdC5NOBNmWsU0nFYndd46Ht/9OHkBiZ1Wo+P0sIJxq1PVnUMdSgyNKUgN+3jt+2Xf19JJEcACI/sVkGdCED8No+9B401w+VMQ9xXmqXZl411TdD7smQbRU+OGdZ4GVZPu/4bOG6zuApOPms4VQbtdyzjPbdHeAvlUMK0zDAXsZv4P2XXDUKb+Y6f5YvuYcf932h8r4w7wd3/3d7z22mucPXuWQ4cOMWfWHOKROH/1t3/FsY+O4SxxwhB8auBTXN16NTf85AZarm0hFU9hmhq/9uFHH9Kxs4PSC0opsZXw0I6HeOmDl2id3cqTS5/EbrHjsrs4OXqSElsJ3aPd561W9kZ6qSmtYWrZVGKZGIlsQmuAWtYwtXQqgViA2rJaRpIjVHmqyOQVVIVSISa5J+GL+NiwawMbl2wkZ+Y4OnCUBXULsBk2zobP0hftY0lDE7Z8VAc65xQFxAdWKTi/pl2d3sfq3D0zdEDKhnVQPPhNqPwk1FynzvP5lK5sXvItZdydVSojmnA5xHvA+wkdnHIxBWhHvwuXrh9fbLS59cmBO7TGvXQmpEbBWqr57PvWw1XfVhn8jrtUsp4cgvIZgAFn34RpS7XmHfRefbtg4iyweyFyShcBCmw5mYgOjK5qcFaAu0oHXkQHyvAZrc93VerganOrrD7q04i4dJCMxUskq/L1qioPjz++u1jLnk7nCQaTRYa8ocGL02mnosJJJpNnZCSBz6dM/Rgj39hYwalTo5SWllBV5SGTyXPxxZu47rqZPP/8Cjo6es65TwszZlRgGJBM5nA4rCSTWVwuO0NDcSZOdGOzWbA4THzhAYZiQSaXTuCFvb/mqwv+lMHYKHe8+ihLL17Ed6/7Gkf8x5k5qZ5ShwvDMEhm04Va9xXUlU/GHx4sXjvJU86HA6eZ4PISSkWZN/UisvkcHwS6ubh6GqOJCIOxUapKK5ng8vLYjp9zy4IvMLG0nKFYkH/Y+xtuWfgFasursZEsmPzZ9buAA+Uo8pAbAklpTbu7uQDM96pxXX5wnJU3PGpQBwryxVQA756vz/NBjYLLDSnwT+yCvi/B1JfBXgtGqV5vhpXVN6xF5j+WLydnnUK8IFff0NnJ2pYWGrxe4tks0UwGb0kJBlBWyGzPmSahZJJ4LofDauWhHTt46YMPWDl3Lk9ff31xnNnT28uc6mpypsnvBgeZWVnJJc88w8q5c/n+Zz+LtZDvHs1kCKfTyvbb7fREImzYtYuNS5bgtNnwZLM4TFOB+b59qiGfMEHp6R/8QAG9YWhc21jeei6n+Wvl5cqwW63jtPbjj8PIiOrYW1r0+Pr12t/kycrMjxWrj9Hkpqnb8nJl6auri7R65vIFJFwTSSaNopu8iBL1VVWqqL//fmXLXS4F9RUVStqPjGjU29694/Xsa9aoKv/dd5Wpd7mUce/p0bp5j0ePfdz+17RcOk309Gk++MlPmH3LLVhdLlyTJmH3eIr17ov/28NYTn2ogPvNVxRoV02Bnz6hQPrrazVv3VZYaTn5O61ln/4JiAahfuY4A3+oE46/rzXy+bzK3kvLFch/eAhOd8HyP1eZfCSo94yG4MI5MBSA0LAy+1t+CUtvhIoJAEgmDeUTkGgE6e6CCZMwysq1ln3xp8BThgz0YWmYroZ0GGBVv4j8lleRDw5juemr40x782fA7sBwucFqI7/11xhTphbZfPP9wxiXzAGbTb2pek5jtv0U62336sJBoc7dsvBqzD3vwg2tJDOZIgOeyWSKMvdly5adJ5evra0llUoVa93H5rCRSIRdu3YV2XLDMIq179lstti33++nrq6ON954g89+9rNks1m6u7vp7+/nc5/7HCJSZPsvvvhiHA4H+Xweq1W9QUTyxOND5HJpKiunE432k0qNsnv347S0rCES6aOm5jLsdjeGYSGTiRGPD9LRsZ7m5jW4XBMZGDhCbe0CrFY7sViAHTsePK9G3jDsiGRpb7+Nrq7X+Na3Bsjns0Xm/cYbX6ahoQnDsBIMniYS8TH5wmUEDAsPosC8FXWQH0ZZ9PmoJD6KsuLlqMGcoFL4KlQWP7b2Z0EN6ixoRXS28PpRtFZ+PQrqZxb6AZXXdxX6ay7s59G6+KpMjsRHI3Ss28ni+xdTOaOy+BnFB+I4SvUzc5Q6eP2W14t16cufXU4umSParzXwLWu1Nj7UHcLqsPLu996ldn4tM6+bSemUUkSEYHewWC8/8aKJAIwcHyke89Z5iQfihHvDlNeXUzmzEjGFtDWNWMYx0V1v3MU/H/nn4tzVaXNit9g5FTyFP+qnqV49ZKyGlTx5zgTPKHteuwCrxcqdW+/k/qb7qfPWMRAfoMxRhsfuoSfSw7qd61jTvIZpFdM4HTrNIx2PnDf/rSmtobyknJzk2NWzi6/86iv47jhGafgQlM8aL5VL9Oi8s2KOkjnuOv0UJackECiIj3WPq0ZLp+k1rikaFeecqGWas9eq6jQb0tcnLlCn+FT/eMSxYSgTLxTmxaOa3z6pqVCnXiD9xlj1bLzgJp/SqOLSWn3fhlX7HlOQiqlgP9z9h+z6xzXu5zcR+fjxe4/a2lr5Y23vvPOO+Hw+aWxslP379kvgSEBe/LMX5RebfiGZVEay6ays+/Y6mVU1SwJHA5JL5yQVS0m4NyxDx4bkp8/9VGbPmi2hZEjau9rFF/LJof5D0trWKof7D4sv7JPjw8fl/f735fjwcYmkIjIUH5KVr6yUH+75oRwbOiY9oR5Z+cpK+XDwQwklQ3Ji+ITs7d0r7V3tcuvXb5Xa+loB5M2ON6Uv0ienBk9J3VV10jCjQebMnSM1l9bIA20PyAH/AWlta5Wfb/m5zPnkHJlxyQy54KIL5MG/f1Cy6aiYqaBIalgkExHp3SIyvFdkZ6tIaki3L6LbdFgk7hcJHROJ94mkgiLDB/S10SMi4eN6bfi4yOgRufNvbpDGhnoB5NA/LRPJRCTp3yN/0jxVLpzRIJfOvlCuvWa+nPjXZXq9/w3Z1/GWLF54lVw652KZd+kceWvLqyKJYZHNK0Xe+6HIyDGRWEDkSafI660i8UGRaJ9IMigSOKDHBg6LdLeLDB7R18bOe71V5DG0r1RE7vzGrdLYUKfv761fFq9d8umrZe60cpk3+2JpblokBzu2iUR6RVIhOb7/TVl05aVy4dRSufKyWfK7N34siVhcotGUDA/H5cABv9x8868kGEzKwEBMhobi0t7eJfv29crx48Ny6FC/tLa2yeHDATl+fFj27u0t7p84MSyRiPbT1xeRz3/+L6WhoUE/4zc7JBJJSTiclMWLPyVTpsyUysppcsUVC+Sdd3ZLKJSUw4cDcvHF10tdnV7z61//mxw50i9bt3VJOBmTSDIm9732pFy68cvynfYfSTQVl+FYUMLJmMTTSYmm4hJKRGUwOirfaf+RHBs4Lb88+Ia8231QIqm4nB3tk9/1n5R3uw9KOBmT0XhYvvTXfy71hffYsadTYqmExFIJ+dRnPi2XzJ4l1dNr5cqF8+XCu66Td7sPyvtnu+S665fKzAtmysxPXChXf/oa+fDYUTFzMZHskEjquEg2KJI8LNLbKpI8pMcyPYVjK0UyfpFcSCSyReQjp56Xi+jrkXaR7KDu50Jy56qvSmNj4TPe+2u9R6Rdlnx2ocydPU3mzZsrzYuvkIP7d4pkekUyfbLk2k/L3LmzZd6lc6R58ZWyd+8uCSWTMhCNyrGhIfnhnj2y8pVXJJJKyQG/X1rb2uQ9v19iqZSEk0npi0SkLxKR0URCgomERFIpiaRSEkomJZpKSV8kIluOH5fBWEzCqZQc6e+X9q4uGYrFJJJKycpXXpG+SEQO9/cXn48mEnJieFhCyaREUinpj0TkcF+fjCYSMhyPixmNivT1iXz0kcjIiMjwsEgkIjI6KvL++yLt7SKDg7q/ZYvIkSMivb3jx8fObW0VqagQCYV0f2RE7vzLv5RGt1t/h089pX3/8IeypKZG5l5wgcybPVuaFyyQg7/4hV5/4IA01tXJRWVlMu/ii2XehRfKL5uaJBFMSl+fKQcO6GmHD+tbDod1H/St9fWNP7ZsERka0rcTDI6f19qqrx85InL77XdKQ0OjAPLLXx6SlSv1tU9/eonMmTNX5s2bJ83NzXLw4MHi+J5KpWTVqlVywQUXyJw5c2TlypX/j/yf+f9Cy2Uyko5GZec998iLs2bJznvukeToqOQymeLrwa4uyUYiYkZCIs+uE/nqUt0GR0R6ukWO7BHpOanHivvdIuGgPo9FREaHRH7yqMjp4yLhURHfaZFkQiQWFYlG5M6/aJXG2qn6PXyjXSQeFYkEZcmnPy1zL5wp82ZdIs2LF8vBd94WicdEnl0nW5deLlc0TJW5l3xCFlx1lRzat1fy/b2SbfuZ5P09YiYTkm37mWS+t1pyXR+IGY+JmUxIPhEXMxGXXNcHku/vlXwqJfmAX7JtPxMzHtNrHr5H92NRyb7yotxx223SWBgL9z+2TvIBv+SOH5N8PC75RFz+4cc/FkBeeeZHko+EJd/vF/8Lm+S6T31KLmhskNkXXyQ7tm+XTColyWRShoeHpbe3V9ra2uThhx+Wrq4uicVi0tXVVTweiUQkEAgUX0smk/LKK6/Inj17xO/3S1tbm/T398vx48fltttuK/4/eeyxx4p9RiIR6e/vl/Xr1wsgL730kvT390tbW5s8+OCDMnPmTDEMQ/7pn/5JYrGYpFJRiUT6ZGjomEQifZJKRWVoqEuSyaC0tbXKww8jbW2tEgyekaGhY5JKRSSZDEk8Piy/+tXN4vcfkHh8WJLJoPT3H5VUKiqplPZ7221/K/X1Uwv/v34kgcARSaWi0t9/WNraWuXZZzcJIP/wD49JV1e79PcfkS9+8Vq54IIZMmfOLFm4cIG83fFv0meackBEWkXkqIiERKRdRPaKyM0iEhGRoIgMiEi48IgUHgcL1x0SkYCIREVkSES2iMjf3nmn1DfqWLPr0CFZKTpZbhWRURF5/h//UQD511/9SkKF/lpvvlkq5s6Vi+bNk09eeaX85vUt0tbaJg/zsHS1d0ngSECGjw9LbCgmXe1d4n/PL9FAVBKjCek/1C9trW0SOBqQVDQlyVCyeG1ba5skg0lJxVKSiqQk0heRv/3y30qVu0oA2dux9/xzQ0l5btNzAsiX+XLxWDqWlsRoQrb8ZotYLBb5myv+RmKpmPRF+uTY0DHpi/TJaGJUVr6yUvoifRJOhiWaikowESzObXvDvcVzB6ID0t7VLvt698mW41sknAzLYGxQTo6clL5In3zla1+RusK8a8mGJeL8nlPau9qLc2XXl1wCyD/96z9Je1e7BKIBuXLRleKp8shFsy+ST8z5hDz66DoxRw/r3HP4gM5Le9tFkkM6Lw19JJKO6LxyZ6vI6GHdT4dEdq0U+eiHIok+ncfuWll4PSyya6Xc+ZWrpbHwHTy07Uciw/t0TpscEgkfl398/kcCyK9+9lixbzPml4f+ZpZcOLNB5sz6hHyqZaFINi2SjookRkRyGZFcVh8jH4n0dujxbEokE9dtYkQkHSscT+vzkY9EMjERM/9fPMr/v7cBvfIfYNT/x0Hy/xsff8zAfaw1NjbKnnf3SFd7l3zP+T1pa22TVCQlIiK7O3dLQ0OD5NI5ERFJxVLSf1gH2k83fVoe+W+PSCwVk6HYkGw5vkX6In0SSUVkNDEqb5x4Q/oifTIcHxZfyCdvnHhDQsmQBBNBec//nqx8ZaX4I34ZTYzKaGJUgomgjCZGpb2rXX4X+J1s3r5ZjnQdkfqGenlx24vS2tYqu7p3ydd/8HV5/aPXJZQMyaOPPypXLb5KWttahYeRisYKefrnT8tQbEj+5B//RConVsr+A++eM7gd0YGst10kOaiD3OiR8QExHREZfm98sMxEzgf2ySE9Nx0U6W2Xd157VnyvrJDG+qlyaO+/iaRDkjz5qmz+1x+I6dsskg7LjzY8INdcdYHIrpVipkJSO3WKbP/1P4qkgtL1/j6pr6+TxGC3SNQ/DswHzwHmqZAOcMngODB/vVWkb49uhz/UY93tCuhfb1UwP3BY3nn0WvEd2yeNDfVy6J3fiITPisQHJNjbJXJwk8jIMXn1f/xcLp1eITJwSCQdlU9f0yL/9OMnRCI+aXt6rVx5xSclHkvJ4cP9snLlK+L3RyQUSkoolJSjRwPS3t4lg4MxOX58WILBpLS2tonT+T1pb++SUCgpW7Yclx//eJ8MDEQlEknJ6GhCtmw5LkeO9MuWLdvlgw9OSF1dg7z77u7i6y+9dEDee88vo6MJefHF/yGzZ8+VSCQlN9/8K7nzzh/L5s37xe2ukl/+crsMDESltzcs8XRCIsmYhJNR2dl9UIaiozIYHZWByIicGu6VcDIm4WRMgomIxFIJ6QsPScepQxIpAPSReEhG4xF5t/ugdA2clUQ6JfF0UrZu3yYfnuiSiuqJ8vaudySaiks0FZeth9+V4wNnJZqKyy9++S9SPW2qjMbDcvfLG+Xpn/9EvvWbJ+SXB9+QjY8/Ji0tzWImjxSA+mEF5b2tCsojW3Q/FxXJ9Ikk3hNJvjd+bqRdJHlEJBfW54m9hWMK8t9562XxnXlfGhsb5ND+twvn7JNgz0vaZ25UXm37J7n00jnFa4KDH4jkRkVSJ+TVtp/LpXNnS+wcgD0Yi0kwkZBwMilbjh+XM8GgBAsg/b0CkD/U3y/hVEpu/tWvJJZKyVAsJieGh2W0AORHEwkZiEYllEzKbd/4htTV6wLX252dEi2A/E82NcknZs2SWXPnyuwrrpBtO3dKbzhcXCw4EgjID555RgB59V/+Rc5DxO3tIu+9p2h3eFjE5xO5+WZFtGPgPRhURDyGkiMRvfb4cd22toocOiTvvPyy+DZvlsbqajn0y18WwXnw2DE9t69PXv3Zz+TSadNE9u0TOX5cGuvr5dA77+i9BgZEhoYkGsrJsWPng+9QSOTkSQXn7e0K4sd+jN5eEb9f5NgxfXsnToy/rffeExlbq7j22nfkzTd9Ul/fKK++ekgOHNDX//RPg3LkiEg6LfLqq6/KpZdeWhzX77rrLrnjjjvENE0REenv7//f+F/l/33tzjvvlMYCIDl06FDx+LXXXitzZs2SS+fMkaZFi+SNF16Q4PHjkk2lZPPmzfLJT35S5s2bJ7NnzZIXnntOAW9PtwL0Myf0kYgXgXQR0Hcf020yoQD+2XUK2H/7awXvyYRINCwSjYj0+0SCw/LOG1vF9+HvpLGhQQ517tR+IyEJdn0gEgmJBHrl1X/9F7n0ogtEEnEZPXpQJnhc8rs3N4sER+Td7W/K7FmXSO74h5IPBcWMhMVMpSTf7y8C9GzbzyQfCY0/7z2rgD4WLW7zhWuybT+TfKBP+/P3yI43tsqZd9+WxoZ6OfjuO5IfHhQzmRAzlZLufbtl4UUXyMIrLpdXX3pJr4lG5Oa/+kt5cM0ayQ8GZM+770rt1KniO3OmCMRjsZhEIhEZGhqSSCQiqQKoHxoakr1790o0GpVIJCLxePy8c6LRqLzyyivy8MMPS1tbm4RC/z/2/jxKqvLc+8Y/u+au6rnpge6uZnIGBFGZukGNAnE6xyRKBjyJOTGIQQ3OEUjURFBBxDgnGmMGM+AYRBCHRKVtBlFARcZm6LF6rHmu2tf7x1Vdre/JeX7PWb9nrfc5J9lr9dpVe66uXfe+v/d3uALy4osvypNPPin19fXS3Nwszz//vHR1dUkkEpGPPvpIpk2bJpMnT5Zf//rX+UGDv/3tb/LYY4/JqFGj5Ec/+pEkEglJJELS2fmhHDiwQSKRXkkkwhKLDUoyGckDbJ/vYwkGO+TFFxfkwX0iEZZ4PCChUKe8+OIC6e7eI5FIj8TjAUkkIhIKdclLLz0tv/zlV6ShoV7ee2+jHDiwQaLRfkkkwrJ//x6ZPn2qTJt2tqxb9weJxwNy8OBG+cMffiXd3Z9IKNQlzz//e/GOapBDomB9UES6REH3EPgeAtT+3OsuEVkgIjtzrw/KMBgPicie3Ot2EXnp3Xflb+3tUj9qlLyxa1ce/A+KyJ6jR2XqjBkybfp0Wfvyy7JARDpE5KjfLztz5/jrRx9JUVmZ+DsC0revTxLBhBzceDAP0Dt2dEj/wX6JB+ISD8Ql0B6Q3s96JRFScB7zxyTSqwDf94lPIr0RiQfikgjq+nu+fI+sv3u9eGu9sr15u/g+9inw/8Qn+z/dL9OmTpOpZ0+VH533I/Ht8em5d3dL+752OWvKWTL3vLmy8icrJZQI5Qmf3d2780D9Y9/HsuHABumL9ElPpEf6In0SiAekN9IrGw5skA87P5T+aL/0Rnpl48GNMhAdyK/7xPeJDMYG5aVNL8neQ3uloaFB3mh+Q7pD3eKP+WV/337Z/sl2OePsM+T0M0+XZY8tk75In4QTYakaXyV8HZn//HwJxAMSjnQPA/DAPpGYT/ufqbD2UYf6rF8gngZFoh3ax+3fqftHO0Qix0Q6N2p/Njko725+Qdr/coWMaqiXXTve04GAaJdIx0Y5uv9DmTH1DJl+1uny8nOPKVHVsVEeWv0z+crF50ryyMsigX3S/f79Itl0DoyHFIAnIwrchwB5Jq3AfmC/ztMJuf77Vw63wx/uFMlmvgDan8kNDL388sv5ZVOnTpVJkyZpOzx+vACyZ8+e/3MPh/+Pp/8VcP/H0Bz8c/ovTel4GjEF324fxd5irnjhii+kzD/2+GNcdtllWB1WMqkMZsqkeWUzLetaeH/b+8z/+nxaA60s3rSYEe4RWC1WktkkLe0tVHuqMcXkBxt/gGEYVHmqWLhhIe2hdoqcRaz40gpEhOs3Xc/x4HGi6SiLXltEfXE9o0tHc8a0M3CUayjQs3ueZf2B9fgzflZeu5Iza89k8cbFeMd76enoydeEry6qxpq04k/4uXrC1TgcDmorq7U8W9s6nQ/Vu0wHtfybtUBl8DsXqwco0aMBdjaPSnbydTOXqQe9YqrKfSqmMbvsr9QnNqjcKFfKzVU+lovqt2GUnwHRY0wv28YxXxQm38/AwCB9/QNccFYVxNo4qaGU0pJiNv1tm3rLP1iloXHbV6rnPNwOoXaVQqVjcPbt8JUNGjDnKodpP9YEz5Pna9m30nHqT7cVgM3J7G/fR32ZVX1HtgL19mfTlFZUwYlfAQyCwRBGUT2UjqO3t4+dH+3iyq9eABh87d9vo729gwMHD7NyZTNTp9bR3R1m8eKNxGJpvN4Smpoa2Lmzi0Qig91u4bHHLuL48SVMm1ZHc3MbdXVFfP3rE0inTQ4eHGDRotcYObKQmpoipk9vpKSkCr8/TldXhFAoyaJFr3HCCbV0d0ew2y0cPtxNZ2eII0f8PPjgPH7wg8v5zW+OEYul+M1v9lBQYKe41E40laA90MM9b/6KqsJy3A4XLpsDu9VGR7AXgO5QPyvfeoaOYC+ZbJqJI08km7N9GBh86jtMeUExPZEBBKEj0EPRuCq83nqKXR4E2N15gHQ2w4yTzqA3OkhfxE9bTydVRRVYDAt3XXwtC772De6adw2XnDabadOncbztOMbAipz/vEPvq4qlMPoTTYQXlWZiRlXqZhRB+c2Q7tIUePsYQMA9CwYf1lJv6Q6oWsns2V+ivsau+ycPQMEMcJxAae1FkD4GvkUE/ccwMHWfgqmUFsXBtwgsboL+IxjZLgSh0uNhUnU1O7u6yIjKCCfX1JDIZBC9AupLSrhlxgw6QyFMEdbOm0drIMDiTZuIptO0tLdzxO/HZrFgMQz6olEuvewy3vzb36hvaGB1SwutgQBWw+DhX/2KB15+mXe2buW2W27hhkWLCKdSrN22jUavl77OTv74m98wccoUMqapEvUnn9RguJkz1ZPe1qYhdD09WoO9u1tT46dP10autVXj2kHly6NHq8R9qPRbdzez586lvrFRve/PPZf3sJfW1Wmt91CIYCiE4XRqUF0spscaOld3NyxejCMWoKRE8qXmh+zx4bD61b1eVQD6fLB+vcrpu7s1zL6rS0/f0aH2+poaveSPPoIVK2YzenQ92Sw88YTuV1QEd9xRSnu7eueDwWA+bTsajfKrX/2KFStW5JfVDB3wH3S6/PLLaW5uZtSoUV9Ij//Db37Duy++yGNz57Lw61/nlgcfpLChAavDwZVXXsmzzz7L7t27+csrr7D4+ut5+46lJAuKkG//ECpz/9PfPqRS9yGP+kXfUP/5xd+EZFy95ydOhLIKmDkHvvkD9a0f2Qf+XvjLbyHoZ/Y551A/apQeMyu6byxCqdul4XPuQoIBP4bNDmLS2u2jYmQt4xtnQ0EBs2ZMp62tnV2+XoiGyW7+C+IfgJJSLA1jNCl+725IJpFQ8HOBc2PBMDCqazVUTkyMsgqs8/4V3G6MmjqwWGkM9+E9/Qwwhey29yCdUml8OsX3f3gjD//yKZxuNwBGTR2G3cHzL7zIwovmYrg9TD37bEZWV/PW3/6Gx+Nh06ZNmKZJLBbjnXfeIZbLFQgGg7z33nv5sLpUKkU2mwWUgBryrM+ZM4fx48fT1NSExaJd3MmTJ2MYBlarlYsvvpjS0lJEhJtvvpkVK1bg8XiwWq1kMhm2bt3KKaecwne/+13q6uqYMmUKfr+fbDZLJNKNx1PJpk3XEQgcwWKxEYn0UFBQwUUXPU5p6Rh6ej6mvn4GIibJZBC/v5UNGxYSDvuYPv1GPJ5KTDPLxo2LCQRasdkKyGbf4PTTz8U0s2zbtpbiYi9Wq4PBwUNcccUc7rrrRux2O9lsCsOw0dDQxGWXfYVwuJ1wuJvp02fQ3dmFM53Gh0rbg2iZNwFmoBL4TG5ZroYJK1AfehCVys9H67obufdrUO/6qNmzeaK+Xqt9oGJoB9Brmiy8+mp++sgj2J1OXka97G7AXVrKODShPhYMYgXi/TEGWwfJpDI0zGqg5QFNko/2RsnEMmxYuIHgsSA2h41sIktbcxsA/lY/m67bRHF9MaWjSwl3hdmwcAMDhwZIRVLcsu4WvnTtlzAzJqGOEKWjS7n4yYspbijm+9/7Pl8p/gpW08qU708h2B5k3VfX0bK6hVt/fCu333w7VSOrsNqsiEi+QtHK5pUkMgmsFittwTaqPFVs79yOBQtOm5O2oFZIqvRU0h3p1nJwFjuNDY20h9rz64a2/VPkTyTcCQTBaXXyYfeHHA8e5/DAYW6+7mbWPrQWl9PF6JLR9Mf7CafCjCsbR2NDI0ublpLMJnHZ3XDmo+pHj7RqvxQTUoNamthVqR70U28e7p9mEuD/WCsRJXy5akZA8DNNhzezsPN6Zp85mvrG21Xi/unP9PgIZsl4rl5wIY/cdwtOl0tDixN9UDmd1Wsf575vl+GongbuOmqmXqfHcxSrFL6wNheiDNic2hc1UMl8vF/nhsHl37iS5vfeYdSoUf/Bw37s2DGeeuoppg89u3PT9u3b2b17N7t37+auu+5iwoQJnH766f+V5v+/7fRP4P4/dMqkMiQjSTKpzP9y2d/bb/DQIPGBOAVlBYTaQzQ0NTDi5BFYHVZWrlzJ4cOHuffeewHIpvXB2bS0ieyCLJdcfAkjRo2gPdjOzTNupsxVRtbM0h/rZ1L1JAodhfnSbpFUhPvev491e9fRFmwjlolx21u34Yv4mFE/g85QJy6bi9kNs+kKd5GRDKaYHPUfBeDWmbfy0vyXqC+u55oN19AV7mJq3VTuWHEHF11yEbWFtTx58ZPaWb17BbMnzeby2Zdz3R3XcSB9FBkC3xOWK8DeuVi9O/ZicJR9rgzGCqicqR6eT+7UBs1aoHUr+7dqOTZrgYbPpfzqi2+Yr4mbwb3aEA6VmEsHYe8Kfv7sW/zrtEKwFzOiIMTIchvrXt8D1gI++GAHBw7s59jRVuhsVn/7qQvg3IfU31N/jg40pOPg8GjoXG0jxAfBXQPFXm04z38cCioUoHdvU5CPBcpP1gbU5hou22F1gMXOt7+7EO/JZ/Dju37K7+67FpIh2jvaGVlTgy3SDvF+jEwUb3UZ7e1trF07j6uumkxdXRH3338BdruF/v4opinMmtXA6NGlpFKakupwWDFNqK720NkZxmq14PE48HqLmT27ge7uCD5fhOuv3wRAaamL3t4okUiSxkYvBQV2fv/7uzn55HHcd9/PCAQuYuXKZiwWg7q6IpYubcLtdrBkyTSOHAng6w0TTcYYjAW58ZwFVHhKyJnJCSejjCgoxWax4LDamFx3Es99uJEKTylZM8snvsP0R4J86mulrKCIwXiICTXjMMXEZXcwceQJxFIJUtk0DqudkypHsfpvv8UXHuCx5auYefpZPLpqLY8+9QSfdB/CF+pnxVu/4ri/m2gqzmOPPsa082aSLb8DiuZr0Fx8u4JxiYHvek16Jwu2ak2Dt42AjF9B+FBmb6xFA+eqVoOlTD3wRnHuY+ZSW12naxidbxGkW/n21T/FO+0dfnz3Y/zu2ce0fFzxNyDdy7dvC+MdO5Uf3/0EzzzzC474/SzZvJmBeJxpdXW5HAv1tI8sKgJgMBbDZbUytqyMKSNHYjcMMAw6QyFmNzTgstmYUV9PtcdDJJXig64uouk0vw0GSXg8GMCVEyey+v33SZsmwVyZues2beJ4Tw8Oq5W6oiIeu+gi/m3iRH5y443cu2YNRW43hsWCRKOwaJGC8ZYWBdCdnVrCzeOBE09UAF9VpeszGUW4TU0KtH0+/R1kMuprP3BAw+USCd3eNBXkf+tbWsM9HObb3/0u3jPO4Mc/+xm/e+ABTZXv6ACLhW9fcw0Tf/hDvveVr9C3bh2OW39IUaHa71etUlCeySjWb2xUG75pDgffO51fDJyzWhXcZ7PqX89mNSvv4Yf1o2Yy8Oab+pELC3Xc4tlnv82pp3r58Y9/zO9+9zsAWltbKS8vZ+XKlZx11lnMmjWLt99++//E4+a/7TR79mzq69VGGOvqYvtPfkL46FFKiov57KmnaHv9dfZv2gQiSK4komEYBAIBAAKDgxTZ7XS/8QY7772PjIkGLr2+TpPgX/iVAvl/+Tf9khtOgBHVGlD3tX+HE06DPz2pAXYIFJVosN3mF3X/oZC6gV7IpPR3bXeot32wj2/fdS/eUaP48U9/xu9+qiGoJ9bVMtDdRcsbm8AU1m/cRDgS4VhbBzicmhbvKcSwWBHA0nQ+xvjJ4CnUOu3bmzHqR4GZxew4rin4DofWYPfr4KX4ujTULlc6jnQKkgmk9QBm818x3B4eXLOGxtmzOfPkE5GBfiQcBKDf1006laLqrfUaWGcYjB4zhng8ztatW9m7dy/JZJItW7awd+9etmzZQjabZcuWLfmybps2bcqH0Q0ODhKJRLBYLGzZsgWbzcYll1xCeXk5DoeDOXPmcOqpp+a/cxEhk8mwePFizjjjDLxeL6Zp4nK58ucMh8Nkct93JpMhHA4TDIapr5/G1q1r2Lt3HVu2rEDLu0V4882bCYU6OH78XYqKajnttCtIpcKkUhGam1eyd+86IpFuLBYbmzcvIRzuoq5uKu+/vwqLxcqFFz7G+PHfQCTLpEnfxm4vIJtNcvvtV1Fe3suYMUVks0k++ugp/P7DJJMhXnttEYWFNUQi3Tz22BPMPncaNpuNEai3/CgKxAtQwN6P+s2LUCDvQ0PrZgEjATvwKArMj6Ap8AYKEkYDt+fe29Awu/eBPz34IE2NjZx15pkAfAd96ixCA+zu+tGPOGPcOK786lf54+//SLgjjKfKQ+f2TrKJLBc+eiETF0ykflo9wY4gM26eQbAjiNVppbC2UD3rpuRLxTWvbEayQvPK5nzpOMNikIqkEBGsLiueGs18ySQyPPTzh5h21jSuXHmlVkwCGhobWPTxIiKzImSTWSwbLZhpE8NqYBgGy2YtY8HEBayZs4a0qWGQ0+qm0RvtpdJTyeJNizkWOEaBrYDVc1ZzUvlJzB41m2JHcX5AdHXLatYfWE9ftI8qTxUdoQ7WH1hPT7QHQRiIDzCpehK+iI8PX/yQaTOmEauMYbfacdvdlDhLMMXEYljoeKmDfz3nX1n47YUcPdqGxNo0D8lVqSXfMLSfOX6pAmq3V+dnPapk0sdL1f8uJpRNgU/u0iC58rNg8AMNmJu0QkF94Wjtr56yRI9jWHnwkWdoPO9fOPPMqQrCnZVQNonQu4vo6e3lL595mXbORUybPoM/P/dr9bRnk0owWRx6DYFWHUAws/qsLfx82JyF2bPPo74uVxYuk8yH05nZDFdffTWPPPIITqfzP23Hf/WrX/G9733vP13/P236J3D/HzhlUhkG9g/w6vdeZWD/AJlU5u8u+3tTNldnMxVLsee3e6ibVoe9wI7VYeWBBx7gpZdeYtOmTbhzI+hkIdobxea2sX7Ler5+6dexipX64noe3v4wHocHl81F62ArhmEQy8T44es/5Gunfo2awhoemvcQCyYuYFr9NDqCHfmkzq+e+lXqi+v5wcYfcNkpl1FbVMvCDQvpi/UxsWoiA/EB/Ak/TQ1NX0idP7L+CMWxYu6+526cNieJTIIFNy3g2h9dy8HWg2z9cCsr717Jux9sQdxebdyibdoAnnwj7FutDaLlc4mcp92uo4xDyfL712jyvGEF71e01mUmpiOem06HWAdM/YU2gEWnKDM+5SEtyWEvYeXmag4HKrh37a91XbyLv7z8Is/8+a+cMftyfv7Yr2g62YKNlJZ0KztBGXO7RxvFVBg8VWB35xpC9FpCRzU51MxoAN3ffqghdolBBfaxbg3+SIUh2j2c2FkzDQ2my/Db3/2e9k/f556fLOX2n7+iAwCmPvCom6nXkAwiNjfhcIqCAhvhcJI77ngbi8UgnTbxeBwMDMQIhVIcPDjA9ddvIpMxicfTZLMmDQ2lzJypnaVEIo3TaeNb35pIY2MDq1a9z403TseRq2owYUIVdXXFNDV5ueee93jwwSf57LPDPPDAvZx/fitPPnkxdruFZDJDR0eI8nIXHo8Dp9OKx+2g3FOar71ut9joCPSyu+sgRU4P9eXVxFIJigsKuWzCudz2pe/kfgXC+JpxjCgsYXzNOPzxMBNqxhFOakmYRDrFPW/+isF4CJvVxsG+4/nE+t988Cq/fOZp9uzfy81Lb2flnT9lct3J+UT5Zz94lVX3r6K1tZXld96NaRsD1Y/laqlP1e9hYAUUTNX67rFtKEg3QAwF2YbkwutSCviNAg2ms9Xotpkjup+tinwCon2MgnvDzW+f/jHt28/lnrtu4PalP9PAOsMOBTP47TNraT/yAfcsv5I77nyaFc3vs/7AATx2O3arFbvVSkt7O+FUikgqRW80SlVhIalslsF4HLvFggn0RCJMrqnhslNOwWIYmCLs8vkwRZheX09XOMx5o0ZRnQPuo0pLeeyii7BbLDQ1NLD2ttt494YbePi++3ji6acREWLpNGvXrmXajBkkKivBMLCYJkZHhwLr2lpFwgUFioK/9jX9OqNRXd7bqylvS5Yowv3mN3X9z36mhdW3bYNDhzQV/vhxZeonTlSkvHu3LvvZz0CE3z71FO333cc9CxZw+333aXJcfT3vvfIKH7/7Lh+tWcOIc87hO7W1cP/9WCyC1Sp8+imcfroC7vvv18s6fFjLwg+NPVgsw/Xcly8Ht1uz8NxuDctfuFAB/o03Ksh3ueDCC4fLzN95J/zoR79l//527rnnHm6//XZ9LmQyHD9+nNNOO42dO3fy8MMP8/Wvf52enp7/I8+d/y7T55n1/CQCViuVZ5zBZ7/6FQCPtrZyY1sbv9mzh2eeeAKLw4GZyfDcb37DV7/6VUaNGsV5c+bw1KOPMvbCC7Wuu8OhIXRfX6S12y+/OhdMmobQICAK2kdUa6m3QD/s/QhcBQrsE3EF5t+8FqZ/SQPs4nFwOMHmyJUNMPRnfcIEfnvRTNq/Op175jZy+y+ehWSckubXeGH2eO64517OnDGDNzZu5LRTT8WWSSOD/WAYyroP9EI6jVFWjuWcuRipJGbLu1imz8IwRWu0e4qQUBASCa3t3qy13S3e0fr7m3mugn6nC5wujHEnY5l1Pp/s3s1LGzey7Ic3YLa8q+ttNrDbMaxWsFgwJp6p7H4kpADRYuST351OZ/51U1MThmEwc+ZMxo0bR0tLSx7At7e3U1dXh9PpxDAMLrnkEgxDAVgymSQcDmOz2YhEIiQSiTxDf/DgQfbt28ctt9xCdXU1oZDWAB9Ktm9oaMiDd8MwaGhooKSkCBHJ12yfNWsZhmFhy5YV+ZR5t3sEzc0rsVrtOJ0leDxVNDXdwfjx86mvn5YH8S0tqxg7dg7nn38ffn8rmzYtRiSLYdhwOIrweCrZt+8Qe/cKixZdTn39NEKhdkaMOAWbzYnFYqOhYTZ2ewHvv9/F88+/yFO/e54ew+AHQA8wEQgwzLBHge1owNwVaNL7ROAQsDA3N9HQunaUjXfnll+LAnYDBf8NwIhPP+XVF1/khuXLCeaWO9HQunW5a7j9vvt4vbWVJ9atY9lPllF5RhWuUhd1U+vo2N5BsC3I+fedj8Vuobi+mK1rtlJcV4yIYPfYKR9XTjqWZubtM/nmhm9y0WMXYVgM5j00j8X7FjP3wbnY3XYtX2y3gkDCnyAVSbH3s72se24dN1x1A1sf2IqjUCsibbhmA51tnax5bA0XWy+mbmod6Xiaz57/DMM0GFM6hscuegyPw0MoGSKSimC32plWP401W9fkiaZ4Js4nPZ+QNtNkzAyhVIjmtmaO+o+yas4qXrjiBeqL61m4YSH1xfW8cMULzPTOJGtm6Qh14LQ5KQuVsf6V9Xznhu8wrW4apph0R7pZsnkJfbE+nnrmKabdN431767n9Kmn8y+XfQ1jSCm6b40qPWMdUHampr5XNoFnFFTN1qC4VD+csVaJpf5tWubtxOs00G7ndeDK9Rn2LFNQb3GpgtTMQKyTT/e18uJLL7P8Rzdq6bhUUAE+Bpkxi8hkssTFw/b3NvPn5adw449+xp59RyDSoYy6ZIdfRzr1vZkeZt8tDkiGcqnyuVDAWI9uH+7gwQcfpLGxkTNzA0N/b2pvb+fdd9/lyiuv/C89B/5bT/+Zhv4f+e+/u8c9EU58IZwjEUr83WV/b0on0+Lb45NKd6W8te4tScfTIiKyZs0amTJligwODn5h+1QspQEf6zdKbXWt/PmKP8tgYFDmPz9ffr7t53m/0PaO7dIT7vkPy3d178qHfnSFuvIhIJFERBa8uEC4C9nXty/vV5///Hz5rPczoRR5+JWHJRAPSFeoSxa8uEBu+slNMumMSbK/bb90hbpkw4ENsu/YPrE77LLx4Ebxx/0SSURkziVz5P61P1WP0Of9QsmABnfEetTrHjw47A/q3KhBHlvm6zaDe3Jeoa5c2Eenbrdlvoj/E5F4r/qLt/1VfUeDe0SSQVm9/Go5c8pk8fccUw9QKjx83P6dIolBkeSgnHLySfLWq3/WULpwp0gipEFzgwdFon36vme3Bs6FOvR9MiQSHxQ58rouCx5Tj3vwuHriX50vEmrPe+ZH1Y+UXdubdZ9wp8imq0RigyKxPpHBg+JyuaS/o1V6dvxBigo9kg71isQHxYwHpaqqSl59davMn/+87NzZmf9bsOBF6egI5v3uPT1h6e2NSEdHUBYseFF27eqWrq6QHDrUL8FgXLq6QtLZGRS/PyaBQFz8/ph8/HG3bNhwQLzeBnnllb/JJ59ooN2xY/78cXbv7han0yX/+q/PyJ49GnDX3h4Qr7dB1q17SzZsOCDBaFRC8Yj0R/zij4UknIhKu79bfKH+vL+9J+d3/6z7iDQf2SXhRFRCub+DPW3yXutHMhgNSigRlRd2vyXBeESaj+ySP370uhzp75CGhgZ54Y31cuv6h2R/zzHpCw9KOBGVSCImwXhEXC6XtHW1y4HeY3Lr+ofklp/cIZOnnCHHuzskmoxLNhPKBcztUV972i8S/1gk3aOvM4Miodc1QC4zKJLOvc8ERdL9w9t3zNd5JpDbLyCSCes9uPM9DbbruEr98ul+kVS7SOh1/Y59+zUILx+C1yGSCYnL5ZL3PtsrB3Me9Y5gUK56+WXpDAbzYXED0agE43HpjUSkMxSSfX19+RC6nZ2d4o/HZVd3t/rfc6Fy+/v6xB+LyWAsJgf7+6W+oUH+sHmzHOzvl75IRF4/dEgGYzEJxOPyi6eekgvmzpUPOztl3po1MvHMM6U3FJLtHR1SNX68vPjHP4o55G0fMoLv3q1G8CHT+M6d6mPv69P3P/+5msGHAup27hRZsEBk2zZdP7QdiOzbJ6M8Htn1+usagNfRofsMeemDQXFZrdIPeoxQKO+t73r/fSksLJRkZ690dZl5z3ooJHLggPra9+8ftuH//Ofqaw8EhsPpIhHdp79fLfP79ul2GzcOf9za2lHS3LzrP4TYBYPaRrtcLunv75e+vj6xWCySyWTy7fdZZ50lb7755v/xZ9D/jVMmlZJUNCqD+/fLlptuEv+BA5JJpSSTSom3tlaeufJK6f/0U4n19krHe+/JoRdekGQ4LE8/+aR8ee5cSUWj0vvppzK5vl42/O53kopGZWtLi9TU1EjXsWP50DpJp0Tac/719lb1rYf8Oh/sE+lqE/H3i3y8XaT9iK7LedXz+7W1agjdkE8+EpJRdXWya9niL4bc+fv1dTig33N72/AxohGRowcl8fgKKS0tlX0Pr5Zsx/EvBMxle31ixuPDfvdQIP/ajIQlGwnlQ+vSLz6ngXWhgL7OBdllwyHJhoIyqqFBPvzr25IN+uWxtWulpqpKRjU0yKgGrzidTqksL5fH1q6VbH+vuAsKpOvYMcnGY5Lt7pSzJk6QTRtelVgsJrFYTEKhUD50rr+//ws+91gsJtFo9Ashdj6fTxKJRD7Erru7O3+cRCIhfX19eY97OByWn//851JTUyMNDQ3S0NCg11dZKWvXrs1fw4EDB2T69Ony2GOPSXd3txw4sE8ikT6JxwMSj/ulv/+ghEJd0t29O+dJ75P+/kMSCnVJLDaYD6fr7z8o7e3bpb//oPh8e3Je+D0533uX9PcflEikV+LxgDQ0eKWl5a9y4MAGue++ZVJdXSUNDd78NY4YUSEPPnivJBIhCYW6ZO3a22XcuDFy8OBnEjSzskBEfi4i+0QD5npFvrCsLfc+IOp93yfqY3eJhtgFREPphvztu3PLXaIe+IZRo+TPu3bJBhFZ9fjjUlVTIw2jRol31ChxOp1SUlkpSx9/XBaI+uQHRb3wHSJy4sknS8uWFvHt9n3B1x4bjEkimJAXF7yY75/27euTaH9UYoMxeXHBi9K5szOfo+Tb45NQVyj/OhHWjKUDGw5I/ch6WTVnlXTu7JS1962VqooqqfRUSk15jTidTikvKZdLbZfK0nOXSlVllTR4G6TB2yBut1tKi0vllltv+YLH/VD/IQnEA+ovT4RlMDYoGw9ulL5onxzsPzjsY+/+REKJUD6vKZQIyUBs4Av9Vn/cL4F4QKrqquR3m38n85+fL8vuWyZV1VXirnTLyPqR4nQ6xVnsFC4e9rUPxgYlEA/IBx0fiNPplL7D72qfMtEnko6oF/3zmUypiMjA7i/mN22Zn/Olb/iP4cuB/dp3TYVF4n0yqr5Kdr37Z5HgQXn84VVSU10poxq8Mqq+SpxOh1RWlMjjDz8gkhyUwkKPtL7/q3wW1OX/MkeeevLxYT97OjH8Oudn12C6mM6HgutyQXWjRo2SXTtaRAb2yycfbZfp06dLKteunnPOOV/wuA9NP/3pT+WKK674P/eg+L9k4p8e93+syeqwMmvZLMbPH5/3pv+9ZX9vWnz9Ys686EwGk4N867pvccqEU+jo6ODmm28mEAhw3nnnMXnyZKZNm5aX1b+26DWe/c2zzKyYyb7n99GzvYdls5Yxd9zcvF9ozdY12K32PMPui/hYf2A99zbfq9I7BLvFzm7fbsKpMCkzxSMXPsKCiQsocZawbNYy5o+fz9KmpZS6SqnyVOX98X2xPk46cBJvrn+T9RvXU1ZWxm7fbio9lfx4248pcBcQPhDmmg3X8GHrh+zbvY/GM2ci9hKYfD+MaFL5u5kGW5GOKloLdITRsKl0fsR09bef9ZjKjPaugBE5yXIqiLKaxTD1Sa3rbmb0eJ/dm5c0Pbj2Qf740uu8ue5BSg/ept55yYLFSbdMgANrQTI89eRjeDwevnTWOJUY2QqUSX/vNmW8JaP7FY+CLz2SY8Uz4D8Iby0CT64sXP+nyqa7ylVWf+5Dysx/uFYZeItVlQLv3ETAH6DrxJsh0gZvL+aVv2ygotRDebGLqtMvYsqUM/j9n56H+AAvPvcUdbX1GEY5N988A58vwqhRpaxduy3Plvf2RkmnsxQU2BERioudPPLIhYwZU0phoYPKSg8isHu3j/7+GPF4hoULN9DeHqK6uoimpgYAKioK8HpLcDozDA6qJ33GjHoWL36Q0tIy/vKX46xYsYXKSg8DA3GyWcHni1BZ6SGdzJLIpMiaJl3BPla+9QxOm5MCu4uuUB/JTAqXzYHVYiGQCDGh5gTS2QyBmDJANcXlnD7yRILxMIl0ktnjpvBJ9yEm157MRac2YbVYEKCysJSbz70SWwqC/YOYImTF5Ds/u4GSslKOx/soLSim9LM4b736Oi+tf5nC4kKSmTTxdAaRpNZad89Uds4+Sr/fzDGVt9tHah33WIuWiHNNBDMMZJV9Nwogsh7SbWDGVGIvmdxfGgZ+Btl+Ao5b6eoegPg2yPbxypuDVFSUU15eRSBip6s7AgVNYLh55ZWXqKgoYfKYsRQ6HKSzWQodDh768pcpsNuJp9NEUilueP11Dg0OkjFNCmzappgiTKyqYu22bVgNgwKbjdtmzqSmsBADKHO5EGAgFiOWTmMAA/E4HoeDgXicmV4vWdOkNxrlq9/8Js3vvYczlaLY5+NQaytnTpjAeWecweChQyy6/nqe/Pd/H/an33KLUtPZrErg33hD56ap9PTy5TBvnkrlp07VEnJ2O6xeDf39WpvNZtO6a/Pnq3++vFxZ+LIyAokEXZs26fm6u3nl1VepqKig/IoriN59N4E9e/Le+j++8QZnTJxIyl1CV5fBnXeqYj8SUWL/2DFl210ulb3PmqWMezqtrHw6rcr8W2/V2u4+n7LpjY36t3KlyukDAf24ANddF+DSS7tYvlwv+ZVXXtHrKy9nxIgRnH/++WzevBmAo0ePcvTo0S/IiP+nTtl0mvDRo8R8Pvb+8pe0vf46n/7iF5ipFGYqRToSobulhX3PPIO1oABPbS31551HtKODkw8e5J1336W/v5+9hw7hz2Qo++QTYj09TDrhBOpqa9nz2WdY7XY9WSYDr/1Jpe6vv5BjknLKl1BAa68H/TDmVJXGZ7MqqXe6VAJ/wnj1v1us0NcNf3hMpegWi5aO2/wCAdOg6w+/BJcbyip55dbFVJSWUj7YDRXVdE+bA9kMbH6enzXv5kvnnMNJ87+FRCNYmr6kpdgaz4NCtbsYZRVYRtZrHXe7HUtdA2ZnG4RDWms9FMAy91JwezDffE2l9OmU1nkXwXDkZKxmBvOtjSz63nfpajvO0QP7OXrwENMmnc6Tq+5jYX0FpFNc/uW5PPmLX0AkzPZnn6Lr2DGaZsyks7MTwzDo7u4mEAiwYcMGMpkMFosFv99PW1sbwWCQjRs3kslkiEaj7N27l2AwSCAQoLOzk7q6Oux2O5lMBodD83CcTicWiwW73Y5hGCxYsIDDhw/z0UcfsX37ds4880weeeQRrr32WjKZTP44oVAIp9NJKBTC4ynCZnNhmmna2t4nkQjg8+2mrGwsJSVeNm5cTCYTx+EoJJtNkkpFeP31JTgchZSXn0BhYTVlZeM499yf0tm5g2w2icNRjMtVRiIRIJtNAwbbtz9Kff0MbrjhFo4fP8Knn27nk0+2MnXq2axatYxRoz4lmQzxl79s4tFHn+eWW06nqChFItjOahEagTtRKbygddqHlg0A96MsvA1l128DXkLrvcdyv5d6tJb7arSM3MdAWe54/cAk4Mprr+VAdzevHDvGL44d46zp03nkl7/ke9deyyPpNPsOH2YbKtM/sGMHfb29jPaOyUviXaUuMvEMry16jcCxAHNWz2H8/PE03t6Is9RJIpjAYrPw5Ye+TPkJ5Vr/fc0cQp0hEsEEB9YfINQZAgFPlYfqSdUkQ0la32ylZVUL1yy8hi2/2ULroVY+fONDxhWP44E7H2DN+jUsf3k5Rz47wkdvf8T2Dds5u+psblx4I8vvWp7vs3aEOnA73BwePMzijYsJp8IkMgkm10zGZXURy8TyPvaqoiqO+I+wcMNCjviPkDXVHvjQvIe4atJVrJmzhng6jtWw4rQ6+cMnf6DR28iV37uSjw9/jPlDk1lrZ3HW1LNYsXYF86+az+0zbufxvz1OS3sLx4LH+OHaH1JdVcWI+onKjpumKkExINap/cydi7UvG+8YtnmmA59j6Kcpqz5k55ywXEscY9H9di7OlWlzgquKaxddS/e+tzj23AyO7d7A9LMn88snHuPa730L+rbxzflf5fWdA7D7VgZ729mx6zNOnzhe2f6iBj3WELtudQ2Xdkv6c3dajmXPJLS/DLntT2DL1g84duwYJ554IqNHj2bbtm0sXLiQJ554It+uiwi//vWv/6Fk8sA/Gfe/9/ffnXEXUeY8EUrkk9//s2X//0yJsI6Sbvv5Ngn3hMW3R0dSQ10hTeOM+6Uz2CkLXlwgH/s+lnAiLHt8e/KjmRsObJA9vj1yqP9QvgRHZ1AT5YdKbPjCPgklQtIT7pHPej+TxssapaK6QqxWqzhLnEIZ8pVffkUA8Y72ysTTJ8pJp50kZ551pmw4sEFK7yuVe359j5w++XSpPaFWvOO88tN7fyrZZEBZ9VRI0+CTAS0JN/ixSLxnmAUf3CMSPKQJnDGfbh9q1eWxnuGycENp812vy8LvfUfqaqvFajWkqhgZV1co7a17BZCxY0bJpNPGyqSJp8nUs89URj94SO5afquceMI4OWHsKLn0y7Olbf8HOXa9V1lz30fKog+979mj71+dr8nvQ4z6ULp8xCfStV0Z+XBX7q9TJBmWhd+9UupGVonVapGqqkoZN3aMHPt0m5x9xkSZMKpETq815PyZk2XX9vdEEkGRIxtl//uvyPQzTpETx42VM6dMlh3bd0pXV0i6ukISDMYlEkmI3x+Tvr6IbNx4UDo7Q9LfHxW/PyYdHUHp7AzJvn190tUVksHBmOzb1yednSEZGIhKf39UgsGEPPHEDjl0qF++851/l5qaWjEMi4wYUSljxoyVPXv2y0knnS6nnTZexo+fKLNmnSvvvrs1f8zvfvd7UlBQLlarVSorq2TkyAYJRJVtDyei0hf2y2e+I/JZ9xG5Y8MjEoiFZTAalPdaP5LDPe0STcYlFI/I8cEuOdjTJj2hAbl1/UNyoOe4HB/sksFoUCKJmPhC/fJZ9xH51neulJG1tWK1WqVixAgZM3asbNm1Tc44c4qcNn68TJg4UUpOGinPvPpHCcbD8vGBTwWQ0WNGy2kTTpNTxp8mk6ecIZl0UCRxaJhxzwSHWfNUlzLjidZcEnwgN/cr8x7fmWPIuz7HsodEUh2y8LsXSl2dXl9V1QgZN260HDv8kZw95USZMH6cnD7xZDn/S02ya8dmkVSHHDvwtpx91hSZMOE0Of308XL+eTNl147NEk4kpCMYHGbNu7ulMxSSBS++KB3BoBzz+2XDgQPiC4dld26bDzs78wnyQ+x7XyQiB/v7pTMUks5QKM+6d4dC0tDQIM3bt0tvJCJ/+uADeWvXLumJRKQvEpFljz0mVSNHyoG+PunNlY0LxuPij8Vk5qxZ8off/17MPXvyCe5y8ODwfM+e4fmGDcP11YZKwG3cqGnwGzYopR0I6F+ufNzCf/s3qct9x1WlpTJu9Gg5tmOHnD1pkkwYPVpOHz9ezj/nHNn13nsi4bC07t4tkydMkIl1dTJh1Cj5lwsvlAN7D0goZOaZ8gULRD77TGT7dj3t9u3Kjg9d6tD7IRHBzp3DTPzn2fT+fpGvfW2hFBTUidVqlREjqmT06HHy6qvH5IwzzpZRoybISSedLuedd/4X0tJbW1vl3HPPlQkTJsjpp58uL7zwwv+RZ8H/7VMqEpEtN90k+3/3O+n/9NM8456ORiWdSOQZ94G9e6Xr0CE53toqyVBIttx0k9w8ZozU1tRIbGBAdr30knjcbvlwyxYZ2LtXdmzcKEVOp3z817/+fcZ9sE+Z8afuV3Y8MKAJ8h9vH06VP3ZIt4tGdP1gv5aTi2ki/cKL50pdTbVYLRapGlGh7fXHu+XsKWdo8n1djZxfN0J2/fm3ytyH/HL1N78uJ48eJeNGNciVX/uKDDb/VcxEQsxYNJf4Htdked9QSnynvk8ktGRbX49kA35NiP9csny+TFw4JNnONkm/+Jx8/6rvDP9Oqqpk3NixX0yg7+6Uc2bNkhd/82vJbHtP0i8+J92trXLBuefKCWNGy2mnnipvb3hVUomEhEIhicfj+QT5bdu2yYsvvijxeFyef/75L5SJG1re19cniURC+vv784z7EAMfCoVkwYIFUl4+9GyolDFjxkg8HpdQKJRn9puamuS3v/1t/tx33nmn1NXVicPhkPLychk5cqRs29aSKwe3X6LRAQmFunOseXe+HNyBAxvE59OE+c7OndLZ+aGEQp0SDg+lyIckkQhJf/8hicUGJRTqkoMHN8qVV35NqnP9mqqqShk92ivPPz9furt3S3//IQkGO2TWrEZ57LFlsmPHExIMdojNZpO6upFy4ol1Mnp0mUyYcJoc6euV+aId2fkiMiCaIj+0bIgJ3y8i3bnXQyx7V+6vU4bT6P0iEhGRby9cKBV12tZUVlXJmHHjpDu33p/br+qcc+SBl18Wv4j4olE5a+ZMOWX8eDl50iQZMXOm/Pntt79Qgci32ycHNhz4Qom3oVT5/kPKxIe6QvLighfzjHrnzk4JdYUkEUxIqDskiVBCIr0R+fqXvy4jq0aK1WqVEmeJjPaOlmQkKYmQlpI7sOGAjDZGy62Nt0oilMj3Vbt36XEnMUnu+P4d4vf5ZXfnbpn//Hzpi/bJ/r79suHABjnuPy6DsUHZ37dfOoIdEkwEv8CmB+IBmf/8fHHd45KD/QelL9KX79+GEiHZ1b1Lxl4wVqpGVml7XTlC6kfXf6Ev/LHvY2ma3SR/WPcH8cf9crj7sFSMq5DTxp8mJ48/WU4860Rp2fpWrqJQ4HN91k+ULQ/sU/Xo+wuGk+UH9+TKxO0TiXXnE+R1f/9wFaXAPln4L2Olrpz8PThu9Mjh8seRYyKhQ3JO41ny8opGPW4qJP2dB+XSiy+U8aedIuNPO0UeW3HtcKp8nl3PlX1LJ5VdH3r9/0qWl9iAMu6fe159fvp7jPtbb70lXq9Xstn/eWXj+F8w7oau/+f0+am+vl46Ojr+v76M/+unTCpDfCBOuCvMtrXbmLN6DlaHFQrgcOgwK5pXcEfTHYwpHaM3m2GwcMNC1u1dx/zx8/nlJb9ERMhKlmOBY6xqWcWDcx+kP9bPyuaV3DbzNk4oPwGbxUYoGcIUk3AqTImzhAJbAa3+Vla1rOKheQ/RF+tjxZYVPDTvIXqiPdzbfC9Lm5bitruJpWOsbF7J0qaljC0bSyKTYITDjZEOAQLpENiL9LV/j6bH77gGOtfDhR9rUN3Adg3r8IxBx5BtQFa3a1uno5dTfwGRoxDv0hHReJf64qc8BMk+Hf0cv1QZ+WwU4j2Q6NZR0JQfsgn1J+34Ppx6O5g2DfioyXmfoz7YvgLOvAVcpcqk73sOfDtg9mqI9cKOlTDtJ1AySgNCMgld/sF9cPZtUHqChtT1fgSe2uHl7ho9vmEog++uUj+9mHruvj1QOSmXqp8hahZzuNVPV1eY6dPrsdksRCIpli59mxUrvkRBgZ1t2zqYPLkGt9tOJJLi4497mD69HsOAnp4otbVFZDImFosGulgsBpFIiltvfZObbppOdXUhDocVESgoGFaIRKMphpqtJUs2s3z5LEaPLiWTMYnF0vnzON0G0XSc/kiA/lgg51OPsvXYx0yuO4XffPAqP5z9Tdx2F4lMigO9xxhfMw5BCMUjzP/dj3jxO6soc5eQSKcAvYc/6zlKdWE5fVE/p9eeBCIkMinWvvscV555Ed6yGhLpJDaLBavFRjqbJiuCy+ZgMBak3F2CASQyKY4OHOPs+tEYmQGwVQ7/uNLH1etecRvYxkHmOAys1NR5ww3WUui5DgpmQ/G39J6M7wB7A9hHA6Z+dz03QcUSsFZB4qOcdz6g58r4wFqurLwZAWsut8GMqufeMAilnSQyGQYTCd5obWVHZyfLZs3i3WPH+PqECZrUbBgYwPWbNnFWbS3fmDABu9XK1vZ2JlZXU2Czsa2jg8k1NbjtdiKpFJ/29vK7lSt56/XX6e/tpbyiAo/Hw/pNm/j2ggVEolH64nFO8npZ/rOfcXbO4+ax20lks/jCYS44/3weXbqU+VOnqmm8owPq6uDee+GOOzStralJve2lpUpNFxaqEXztWk1+MwwNsDOMnH8YZTZNU+eGoRS5aSpzetNNcNttcPLJGgvf1aXHWbpUz19To+n2bW2wciXRp57j0BEb996ru9XW6ik++gimTdNU+fXr4aWX9FIjEfWvezwqHLjjDvW7l5YqW3/vvSoKMAwYN07t+y+9BFu3aup8JqOE/7p1Khh4+mkVF/yjT0OM+2e/+hVn3HIL1oICsvE435wzhw98Pnr6+ykvLaXQ7Wb9H/7Ad5csIRaJqELE42HFj3+MZcsWTr3qKv70/PM88eKLWCwWsqkU3z3/fJrKyjh7+TKsFksuO8SiTLoI/P5hZdHHnQabn4d5V0BVLRz+VBl2d6Gy7YFBXX/h13V9KgmDfbpu/e+Uwb/hbiirhI1/gi/PhwI3JBPg79Plm1+Ay7+nPnuLVZMNRaC/B6kcifj7MZv/qqx72Qiyr72IUefFGHcyRlGxRp2kkkhPF5b6UUgmg/n2JiznX6hsvAESCWMUFiHhkF4jYLa8g6XpfHC7Md/aiGXOJRiA+dkeKB+hoXdb3sYy81xVGQz9xgDCQcxtW8he+BXS2SxWq5VQKMSWLVuYOXMmRUVF2Gw2/H4/kUiE4uJiQqEQXq+XTCaDz+fLBwxGo1Hsdju9vb3U1dXlk+n37t3L+PHjmTdvnp4yHGbbtm3MmTMHm81Ge3s7I0eOJBqNEgqFqK+vzyfXOxwOwuEwbredQOAwkYiP4uI6mpvvZdasZZSWjiEQOMqWLSu48MJH2bTpOvbuXcf48fO59NKnSCbDRCI9RCLd1NVNw2ZzEggcY8uWe5g58zY8nmp6evbg8VQRjfZSXz+NeNzPk0+ezskn/wuXXPJLBgcP09KyiqampZSWjiaVipBKRfB4qjAMAxFISoaYq4w+i5UOlCl3ob71GBo2tzr3ewiibLsAe4AmtFczAFQAceCT3DGGnry5b4sY6o/vBqaRT2ChDWXjpwFpYAfgBTqBamAc4IokCXeEaX2jlc4dncxbO4/NN25mzuo52Fw2suks3R92465ws3XNVmbePhMEHB4Hdo+dt+94m7lr5hLpiRBqD1E3rY6EP0EikCDaG6WhqQFMSCfS+Hb7KKotItTxue2CCYrritm8ZDN71+1l/PzxXPjohWy+cTMXPX4REV8Ex0gHpt3EaljJmlmOBY/RGeqkrriOB1oe4P4L7qfQUUgkFeH2t27n9sbbaShp4FjgGB2hDupL6ln9/mruO/8+rBYrhY5Crn3tWp775Dnmj5/P3efeTbWnmkWvLWL9gfW8NP8lZnpn6vkki8WwkDEzOCwOTEyOBo7SHmxnat1Uyh1uLJFW9bmfehsUVEMmrgFz+WW1qv40E4BF1XsD28HdAM4R8NGSXDWkAkj7wV6m/bp4t/rX3fUapnzaj9Q3Hzmi/djxy3Ufqx1sJXrO3beqajXZr/lQk+8DZ432PS12vcMkm0uWN9TPbnVoMHKgVb3sBSO45vZVvLZpMz6fj4qKCoqKijh8+PAX2vBzzz2XJUuWcNlll+WXfetb3+LEE0/k7rvv/i88Df57TIZhdIpI/d9d90/g/h+nfwL3//0pGUry6vdf5cD6A8x/aT7emV5SjhTff+37eYC+6oJVLPvrMp64+AkODhxkVcsqljYtpcpTxZLNS3jy4idZ9Noi1u1dx77F+7jznTu/AO4B+qJ9RNNRVjavZNmsZYwpHUPGzGAxLJhi0tLewuXPX86ua3b9h/0/P1jw5MVP0h5qZ0JpAxbDUKnRwA5w1ULhGH0CmWmVHsU7hxuxU2/WBi4b0/fjl+u6oUaxoE4bzA+vV8Df9BJUNenxLQ49nu8NPdeZP9fUz0irypv2rYHxd+g2I6Zr2IizGnwfQkElfLgGpi1TEP/yJVr6rcg7DOotOYmmxabXY1hVOh/vg3QC7C545iQtD3fuQ3DweTjlm/DX67TM3MnzYcZd2rC6a/RBEO3SMnRT7wDPyByIsUPoOOxYSWjWr9nS3EFtbRH33fc+t902k5qaQny+CIYB3d0RmpoaOH48QHt7iGnT6nA4bKTTWex2C729UUpLXQQCCTwelTOaprZFPl+E2toiCgpsmKZgsRhEo8NBUuFwipISJwUFdp577mO++tVTKSiw0dMTpajIiWma3Hzzmzzx1DyC6RAdwV7KCor47c7XuHraZdSWVLKr8wBdwV4mjjyRZz94lVvO/TcGYyH6on4m1IzDYbXzcfdBxtecgMXQQDpBcNtdpLJpPvW1clJlAwPRIM9+8Cr/Pu1f+ahjH7s7D7J8ztUYQDKj11xgd2IYEE0l8oMD4WSUaDKBwyKMrajGkDhk/ZocD5oqXzAVPHPBVqsBcrYKDaUrOBuyQbCW6XdixsAMgbVSAYOgwXZDQBwTsIAZhN4fQcWtYD9Bw+2MnFsq0w/WCiCtx7Z4wLASM0s4NOhnZXMzt8+cydiyMgSwWywcCQRYsWVLfrlhGFgMg6xpYrVYyJgmsXSa3T4fM71e4pkMt735JjdOn86Y0lLimQzhVIpqj4eOUIh7tmzhtpkzqS0q4qPubi5//nleuOIKmhoaiKbT+X2H1l/yxz/y5je+wfkjR2J0d2vwXH+/AurCwuHaabGYas6rqvQe37oVqqs1qn3HDmhoUDn87t0a1z4Expct03U+n0a1W61aNu6FFxRlJ5MK5J97TlHyTTfBgw/C44/n0XOoO8L3f+jJA+lVq+DgQa1KNzQWsH27SuO7uvRU9fUqg7/jDr3MwkINt6+s1JA6gKNH9VSrh3ri6EfbtQsmT4ZgUFX+FRUqmf9HnLLpNGYqpYFxgJlOI6aJxW5HMhm2/+QntL3+Og1f/jLTfvYzMtEosd5e9j3zDOMXLsRZXk42HsdZVsaOu+7Kb3vWsmUAWGw2suk0kslgdxdgy6YxhsD3xd+EypEqVx/oVSA9BL7Png3fXqKl3zb+Sbctr9IAu3QKuo7DmJP1vd2hX2wqqXL6b1wDzz02fJxvLdb7MpOBPz7+HwcIqusA0YFOqw0JB5HWA0hnO9aLvoqIiWGamJ1tGMUlSDiEUVOLYbNjdrRhVNdgWG1IViXwlpnnQlk5RiajJeI8hZq4n0ohvd0YpeXIkYMY3tEK5meei1FRidl2FKNqJIbFAjYbMjgIFRUYponEY5g2B2mHg2AwiM1m+wLYvuSSS3jjjTc466yzKC8vz6f6b9myhblz5wLk07zffPNNpk+fTnl5OSJaIi4SidDS0sKsWbMoLS0lm83S2dmJx+OhpKSERCKBy+XCarUSjUZxuVx0dnZSUlKCzWYjlUoRDodpaKhhw4bvM2PGzflk+fHj53NJjoDQaxDAQnv7+xQX11NS0kAk0s3gYCseTyVbt65h1qylBIMd/PGPlzB+/HzmzXsIi8VOZ+d2PJ5Ktm9/mDlz9IdtsxXosyPaRyIRxOXSwLtUKkI6HcflKqWzczslJaNwVpzEdTYHD6Phch1AHXAvcAcwAihGw+ZWoSnxJ6KAPZZ7f2tuv8lAX27fB1FAvhJYBoxBU+uzKLiv/dy6cUAKBe4pNKzOgaZgW1MZwvsH2LJiCzNvm0lRbRHOYidiCqlIimQwibPEiaPIkQf3FSdXUH16NYbVwGq3YrFZEFPIJrNgQOeOToq9xdgL7HgqPWRTWawOK23vt+Gp8hDtjeKp9LD94e15YsmwGgTbgjSvaGbWslmUjSvDzJqko2nELkSdUYLJICXOEpxWJ1s7tjK1bio7OndwLHCM6fXTWdWyKt8P7Yn0EEqF8BZ7cVgdLNywkEZvI43exv/Q17298Xaa25oZVzaO+uJ6BfrF9axsXskdTXfQGerEW+KlprAGC9q3DSVDlLhK2NG5g/O903DtWqKhdDXzciHJBvQ1w9YrYcYftN8pGUgMKLiOten2qYAOKvo2w8h52meVjKa4WyzaTzUs8MG1cOw5JaPOfhw++IGSU+dsUPIqP0BQA+0vQs1crbZU2aiVl4pOhIgPSsbq78FM67FB+6fpKDiKIJtSgO/43Mhy8CgU1ak9dKhv8g86/RO4/xenf0Tgnkll8o2ezfH3/e//2X4D+wcItgcpri+meWUz5//8fNqNdlZsWcGyWcuo8dSQlSyxVAynzUk4FaauuI4fbvohZ4w8g2+M/wa+qC/PmPdGe1nZvJLls5ZTUaB1sJ02Zx7cDwFwm8WWHwgYavSmjJySZ9+Xz1rO2LKxHPYfZuWWldwy4xZGlYzi+tev54l5D1KWGcDYt0pHCa0F2pDsvlUbJXcDkB1utIYY9SGG/ZwNw6B+/HLwNKCJ3gktv3H6Si3ZJqKJ9XvvGR4NtRYAkmtw34fmy8H7NTjrcT2GmdIkd6t7mDXPpsE9Ild73T2cHv/+j6FpZS5hPlciLJuC3t1Qc7a+txYoEHfnGvnOFhg5XRn+VAgKqnLlw4ycz0g0if7YG9C7C857OJf6mYVYP7T9ldQJXycUt7F48UbWrdvL/Pnjueuuc6is9LB9ewdVVR5GjSrJM+YDAzFKS134/QnC4SQ1NUXs2eNj+vR6rFZNo7fZLFgsBkeP+mlvD1FXV8wDD7SwevUcCgrsGAa0tg5y//0t3H77TE46qYJEIpMnR7dv76S+vpgxY8p49tndnHJaOdMbazEM2N11kKWvPcLKi69n4sgTsOQeCnu6DnLz+gf587/d9x8Afn1ptUqTUHlSIpPC43ABBqaYZMwse32ttAd6mNYwgWKXB38sTLm7GJvVRneon19tf4V/n/avNJRWY4pgmoI/HqQsx7p77ILFDOd+TQK9d0HNGmXAs10wsDZX6s2lHne7Vz3webBe/blEVgFJ6nfeuwyqVv6/9hsNqcOQ6VE/vRmD3luh4kawjVX/vGHVwQBsYIaImGV879WNrNu7l43f+haTa2oIJpPUFhbyfns7FW43ZS4XiXSa6qIiLEAgkaDC7daa7UBahP5oFHcumV5E8NjtZESIp9O4bDbimQxd4TCFDgdlLhdOm41YLvV76dtvc8+XvkTGNPm0t5cTysqoKSqiOxLB63LhDocxhpDq7t1Ka7vdUFamCfOxmAJ0r1ffl5Wpj/266+CHP1Q6u7x8+P+4bRtcfrkCdK9XmfuZM/Ur6uvTlO+2NqXMrVa4/nql091uRdeg5/z0U+Izv8ShVgsrVhgsW6ZjCW63etlXrlSiftw4JevvvFOryq1ZM8yYP/mkniIa1bGH++7TMnJ9fbrMMDSdfujYuYp03HuvLjvllH884D4E2DOxGLseeIAzbrkFAeKfA+VFo0cTOX6cT3/xCyZccw1FY8ZgplJfAPNn//jHWOx20rHY8L7XXEPBiBHE+/rY98wzTL7pJmwFBdhtVozcQB3plAL2VBJef14ZcJdb/eob/wQXfytXEm5Aa7KXViiw7+/RMnIXfxMqqrWTPQTYv3yFgnsDZdiHlo2o1vux/bCuLy7T/bJZ6DyqdeL7fUhFNRIKfIH1NhxOxMxiiCAYSFcbRmWNniOV0iR7BPONV7HMPBdpPwZlFRglpWCzY7jcmJ3HMQqLFcwbBhgWJJ3CfONV5JMPMcZPxnrpfCSVgHAYiYSw1DUgNjtGNqPJ9cUlpD3FhJNJBgcHqaqqwmKx8NZbb9HY2IjNZsNmsxGNRmlpaeHCCy9k06ZN7N27l5tvvplQKMS2bdu44IILME2T3t5eGhoaEBEsFsvnQDX4/X6am5tpamqipKQkX/LtzTffpLGxEbfbTXd3N3V1dSQSCQoLCzGHlAGkyWSiWK0OLBZ7DpzXUVIyivb2FoqKagmHu6ivn47FYkNE99PzQ1vb+zz//OWcfPK/cOGFj7J5843MmbMau92NYdgQSRON9uNylWC1OohG+0inYzQ3r6CpaSl2uweHw0MyGcTjqSYY7CAUaqOuThV5pqOIIzYXVYbBEuBmtA77OmABWurNAJLA88AJwOko+14EvIoy5GfnPu1y4BoUjPeh7Pvvc9usQIH+aKAXeAMdBKjLrbsNGIuy8Ktz53ZGkmxa9Bp1U+sYN28cRbVFZBIZbAU2Bg4O0HJ/C013NOGp9vDmrW9ywf0X4Ch0IKbgP+on0h3J9zGbljYR6gjhqfJQOqoUw2LQsb2DYm8xofYQxfXF2N12XGUuNi3ehLfRi7fRm1eGOgodSFYwrAbZtPZ7k8EkRrnBQb/2KW+beRsnVpzIUf9RVresZvWc1RTYC+iP9uOyubBarBQ5ikhkEmzv3I632MvYsrEcHDhIfXE9g4lB3mh9g13du1g7by2Gof2GmzbfxM0zbqa+pB5TTLa2b6XSU8lAbICJVROJpCOMLBzJ4o2LWXXBKgzDIJQMUemuxGmx4DbjGPFuVYl+Xg1qdYOzQsF4KqDrMLVqUqJHlZ3WAiWfBnboPrF2nTsrc0z88lw5OZ9WS7IWKnM/sANGTIMPFg/3hyfepTeKvVgZd4sLIoeh/ExwjMiRYKb2KSMdUFiXY96taF9FPreuXtcl+iEVgdKxCtz/gcH7P4H7f3H6RwPuQ+B7y4otzFo2i4pTKv7L4D0Tz7Bh4Qb2rtvLpKsmMefJOWQkQywd49Y3b+W2xttoKG5ga8dWzq49mwJ7AaFkiK5wF2u3rWX1nNW47W5a2ls44j/C+WPPx1vsJZ6Os71z+xcA+e2Nt1PtqabQUfgFNv0Xl/yCgegA1YXVZCRDX7SPVCaVbyDT2TQOq4PjweNUOgqo/ezHw6OEB9aq5EcyEPgUCsdpTXeLTRnwimkKmMOtWvbtrMdV7i7ZHLCO5aTwy1ROHz06LI2PdcC7l+TA/5MKirNRlR9NXp0rllqgo6PpoNZ/z8TBUa4Nm28HFHoh2gk104dVAYZde+liQvcOqJyYCzcrHGbc7YUqR7IV5OTvMZUpWWx6jPiggv5UUBtqR5F+Ht92ZdpLxuYY+G6I9kDtdN032kvMWc/hwwFWrNjC7bc3UltbiMfjIJsV+vqieDx2ursj9PZGmTy5hmAwSXGxk3g8TUWFG6vVIJs1OXrUT1dXhGnT6nA6bUSjKTIZkx/96G2mTq2jsdHLqlUtLFs2i/b2IJdf/jwff7yIsrKCPCO/fXsHdXVF1NYWIQLZrElJqYPOSA/PfvAqN56zAIfVTiqb5nB/GxNHnqgdu5xiw2JYMIC0mSWRSXJkoINJtSeTMbNDsVIAWHMPkqyYBOIhSguKAfDHFIxbDINUJoXd5uBnbzzF5gNbmXfyDH50/nfZ62ulqrCc3sggp1SNRkQY4bZjSR/MAfT7tayboIjMd41K4Ysuy0nZK4GcfNuMQOJTrdFuhpSVlyTEP9BlhkMZ9d7lUPUzwJpj403I9kG6XRn9dBsMroWaxzXwLtsD6R5wNwEmqSzs98dZsaWZpy69lMMDA3RHIsz0eklkMnzc08MMrxcRwWoYZHKJp++3tzO5pob+WIy2YDC//dK332bF+edT5HCQMU22dXRQX1SUB/3bOzsZVVJCfXExqWyWArudTK7jnMhkKHI4MEUHvd5va2NOTQ22gweVyr7tNqWo43EF54HAsAze49FOhGEo6i0v1/fZrP6GhrYNBpVd37MHzj4bPvhAAXo2O8zOu1zg9yvCXr5cafAhWfSRI8NIeuxYIhkX8bQNR4447e2FESPgmmtUIj9E3g/t2t09zLgPqe/HjlUcNXasSumHJPPLluk4RCAwPPZgsWhZuSHg/8tf6jb/KOA9m04TOnKEvb/8Jaf++7/Tv2sXNTNngmEQ6eig7MQTMaxWbG43hs2GZDJYHA6sdvt/lNM7nWTTaQb376ds3DhsbjdJvx97UREf3X8/J3/723hGjmTgk0+oPnMK1kxqmHG/6BsKfO+6FiZPh3/5NpSW56xHhgL7o/uhvBL8/Ro6ZxiwcwtU12ot93hMy8Tt3goVVQrMB3th7CnKxAcGIZ2Bymod6LVYIZ2EaETl9xaLLmvdi5wwkeyG55EDn2K54jtYGsbky9QNse1G2Qgws4h/IM+WU1xKds1dGmZ3zlwMT6FuX1OrihO7I6cUSGM2f04KD5ib/4JlxrkY5RXKysdjkEjo7yeT1kGEGecgsSjSMJa0aRIMBr8ArC0WC8lkErvdTkdHB8FgkNNOOw2r1UpbWxv19fW89tpreL1evF5vXv7ucDjygL29vZ2qqirsdjuxWIynn36aq6++Os+sFxYWAuBwOCgsLCSZTJJOp/F4PPka7i0tLVx66ZcJBI6wZcsKZs68jaKiWlKpCIWF1WSzKTo7P6C6ehKpVAiHowjDMEilYmQycYLBNurqppFI+MlkkpSWjiadjhIOd/H++/d9AZgbhhWrVVV0sdgAicQg0WgfDQ1NpFIRDMOKw1GISIZkMsLbb/+IxsbbsJWOwXQW4UAfrtiaCQABAABJREFUIQlUKt8DVKFM+j0oqK5BpfIHgLVoYF0hw5L6W1HgfSS335Ak3o0C/wRa970HBedT0XrxW1CpfV9unyXATShL70xlMGJpBbAZk2wqi2+3j7qz64j74zw99Wm+8vuvUD+9nuDxIJ5qD6lwCmeJE99uH+4KN9sf3q7Af+447B47vZ/2UlxXzJYVW5hx8wyifVHcI9zseGQHFz9+saouYmmSoSTv/OQdvI1eTv3aqUR8kTyIB7AV2MjEM5hlJs1tzVR6KumL9jHTO5NFry3ivFHn8fUJX8cUE4fVwTH/MQrsBVS4K0hn06SyKT7p/YQZ3hlYDSuRVIRgMkiRo4hiZzHJbJLtHdupK6qjtqiWAnsBiUxCjxU4xuqW1Tx64aNkzAzbO7dTX1zPu8ff5Rvjv0F7qD3P3I8qHkmJzYnR1wzuOth7r6pBEwNQNUvJmIHtSirFuqBsskrTs3Hwf6L7xNqHGfiUX8sbT7wLXjsNztmo+6SDyubHOpR0Gr8MCseqSnTvSi2RXFALtkK9M8TQ9isd1n6kKcNsugj0fAgF5aoUtX7uYRQ4ov3UgkooHq3HAC1ZbHP+QzPv/yvg/o/5H/kHmDKpDMlI8j/Ua/97y4dqt+9dt5ctK7aoDOm/cA7Qhm/eQ/NYvH8xcx+bS2ugNV+P8rlPnmPFlhWkzTRNDU3YrXZCyRAGBqtaVvHcJ8+xZPMSYukYk2smc/7Y86nx1HDEf4Qlm5cwqXoSAA0lDTx64aOICMv/uhyrYf1C2nwqk6K6sJqjgaNcs+EaAokADps2EvFMnJveuIm2YBsnlJ1AVVEtMn6pynz2rdKGLO6DXbdpo+eu05HHgloF7QPbIXxYl52xBqLH4MMl6lO3ebQxHErxJKvztnXayFVMHU7w7GuB9ICe8+SbdDBgaEr0quQo0aMS+tBxlbMXVEKkHUZM1IY51qujkxaLjk52b4PqM3U0NRVR4N31voJ0u1tHNAsqtCFNh3VwIpuGv16v62M90HKnHncoDb+uSRtgi1UbWkeRAvm3FqlPye7GTKfo6Ynw5JMXc+KJ5RQXO4lEUsTjaaqrCykqclJY6KCxsQGbzYLNZlBU5KC8vICtW9s5dGiAeDxDYaGTqioPfn+CZDLDrl0+LBYLjzxyId/5ziS83mJWr74Aj8fG7Nmj6Oy8kcpKN+l0lmzWZMmS16ms9NDdHUEEPB47Ho8D02Ly9PZXmDByHP2RAJ90H8JpczCp9mQMDJKZNLF0gng6SVZMIukEg7EghmHh9JEnkcqkCcRDZMwsgXiIntAAWTE57u/mnjefJpFOkzX1d1TuLiGZSbHyrWfojwaxYHDV2Zcy7+QZXD39K+z1tVJWUMRvPniVkyobcObuy2Q6oaC9/MYc2E7r/SMpqHoIShbkPO1l+lAzrMqUW4pyNd1tqI8tqVJ710TI9qvf3XBA9YO6reHQ41jcyry7zoCe2xTw1zyixzBcYBRrbXhJQKaPLE5GlZTy1CWXkM5m6Y5EqPR4uH7TJlw2G1Pr6oikUmzr6CCUStETiZAVYabXS6HDgbe4mBn19fRGo5gi3DB1KgU2m/rmYzGaGhpoKC3FYbFw65tvUunx4Mwx8GnT5ODAAItee432YBCrxUIik6EnGiWZyTCtrg7DNFVffvPNOi8sVLZ78WKltgsKNE3eMGBgQAF2NKoseSKhifKmqZpyEbjnHkXPTU3D9eCTSTWlNzUpm19To8e6+WYFIUePQnOzypWLihSRt7fDkSM4tr5DQYGQTsOWLXrqVEpl8C+8oCB94UIl8E8+WdPix41TwF1YqOtjMf0IIvqR7r1XgXl7u6574AGdb9um86Ea8MuW6UBBKKRjGf8Ik5lK5VPj9z3zDDUzZ+IoKqKgqorKSZPAMNjz0EOkYzHMZBLDZsunwVvtdorGjOHsO+8kMTjIjrvvJtHXR9mJJ/LR6tVkEgkyiQQDn3zC5FtuwWK1snPFClzl5RgIRjymoP2D99RrXlQK9z0LX79GQXsmDYf3Kvg+ul/ZcbsTxp6qX+5Lz8KURpW6i8Brf9QU+mlfghMnKMivHwt/+gX0+cBTDKVlCvBbP8uBdxuUlKtM43P13jHA0vQlrItuUcY7GlEW3DQVxNsdOW++gbltC4Z3NDicGHY7xqSpWOb9C0ZRCWLL1XAPh5HBfgybDaOwGLPlHeTAp+p/t1r1/3rJ5RgVI8CwaEJ9Jo1EwxiuAiQUwnrBJVBShqVhLJZUEosBzc3N7N27l+bmZkzTJJlMEovFaG9vp76+npNPPpnXX3+dgYEB6uvrMQyDefPm5eu719fXY7PZyGQytLW14ff7qaqqArTec0FBAddddx0Oh4N4PE51dXU+cX5wcDDP0r/33nsEg0EMw6ClpYW9e/ciksnXbG9pWUUiEcDlKiOViiJi4vXOBIT33ruHSMSHYVjxeEYQDLbh8VSyaZOmzttsLgYGDmIYVrZuXYPX24jN5qSwsBqbzZUbbGghFOrA4fCwdesaiovrMQwrsVg/Pt8uRExMM4vFYqW+fgZbtqzAZSugW4Rm4Djww9y8DAXaHSj7vgoIoVL3VSjo7gGaUT/7jShLbgJdaIJ8PwrMjwA/yL135pYN+ePDqMR+DZpK7wIeQ5n9Hah8PhPPMHh4kI0/2Ei0N0rVxCo2Lt5IJpbh6h1XU1xfzMYfbMSwKoB75853CHeF8c70Eu2LMmf1HLxNXgZbB7EV2GiY1cD7q95n77q9bF2zlbqpdcT6Y1xw/wUMtg6yYeEGYn0xiuqKmLd2HhMXTMRR6MBR6GD6jdMJd4fZvGQzmXiGaG8UK1amjJxCsbOYKSOn4LA4tBLS6QtoC7bxg40/4Ij/CNVF1XgcHnqiPaTNNB6Hh5nemaSyKUSE7nA3R/1HKXIUYYqJaZpMqp5Ed6Qbp83JkcARrtt0HaaYrGxeyYz6GcQzcfrj/UyqnkRXuIu5Y+dSYC/A4/DQ6G2kK9yFy7BgZJPap9x773BafGWjetF3Ls5VMepShtxiU7YcAyqnq7y9Yqouy8aVlZ/wY3CNhK/0QKXew0SOKillLcjVhHfo+7hPyaeik5TxTwf1XJlcXlS8Wwklq10rIJlp7adWnznMuGeS6m/PJLUyUsEInZspCB5RxajVAeHO4dru/5y+MP0TuP8PnIYY9Fe/9yoD+wfyID0fJtcRJj4Qzy//3y0V9786h5kxifZF8R/xkzEytAfbcdvdrJ23lgUTF7C0aSkOq4NkNklLewsABfaC/Ppls5ZR5CiiP9ZP62ArGcngsrmYUT+DnmgPSzYv4XjgOIFEAI/dw8rzV3LEf4T2YDtPXvwkVZ4qPuz+kEQ2gcvmYv2B9fRGe4llYizcsJDucDdT66bSHmqnNdCKL9SFYStUgD71SWj4hrLuQ2A71plrqLo/1xi2a5hc7LgC78pGBe2GZRicj1+m/vVTbx4G69YCOPsXGkpXNgWSQTjzUSgak5NDhrQRtXng1FtyAXCmBs0dWKce95FTlT2PdkHLTxTUd7UoIBk5HZIB7aS5q6HnA5W/R7v02mpnKph/50b1F3Vvh3Cb+uNTQdj5gJaHc1cpu968VAcA3CN0/rcfatm4aKdej9UO0S4cve8zYUIlR4/6aW5uI5sVXC4bH3/cQzZrkkxmOHx4kGPH/OzY0Ynb7aC11c+iRa9RU1NIT08Uq9WgqsrDySePoLrawwcfdFFbW0hBgY1EIpPzKZrY7VYqKtwcOjTADTe8Tjyu965pCjffPAOvt5impgbcbjutrX4WL95INgXL51zNv4w/h4ayGk6qHM0n3YeIpuJEU3HCySgCWC0WbBYLdouVrlAfLqsdQciYWUoLirEYFkZ4SqkqKsdmsVJbUslVZ1+KPx4gY5oMxoKICC67k9u+9B36on4EYYSnlGtnXk5dcSUj3KX442FuPGcBwXiUQDxEgcOFw+5Bap4AxwkoTzLkCLRDtle97QY62BLbAWTUf44VyKofXeIQ3w6SA/TWKnBNUmCOoYMB2UFIH4VYs4J8owCq7lEgbyaUbY/v0GNn2qHnOlIUcdgfoLmtjWQ2i8UwaGxooNzlYu28eVgNg8FYDI/dzvT6ejx2O1bDoCMY1H0yGewWCyZweHCQnkiEEysqSGQyZEyTCrebwwMDNLe1kTFNHpw3j9ElJVR5PFgNg2gqhS8S4ZYZM6gpKsJiGGzv7CSWTrOjs5OOUAix25EpU1Qm39iogKWqCmbPVga9rU0N4omEythtNkXB99+vNHR/vwL+RYsUsE+dqsF1Q2F1IgrOzz5b9e3btimQnzFDwXtZmbLwU6eqWT2RgI8/1mtxu2HadI4e1VVTp+oiw1BQPnu2Xkpjo6rxW1uViW9tVcBdUqIgHlRGf/SoLl+6FBYs0DGFoZJwK1cqk3/77Xo5Tz+t86oqFQ0cPqwDBv/jJ8Ng/Pe/T8OXv8xpV1+No6QEu8eDmUrRt2sX8YEBTvzWt4j39rLj7rsJHztGNj2cn2G120EkD/73PvUUhmFw6lVXEThwAHd1NRWnn47V4WDvU0/pAMGzz2KxO6C4VD3nN9yt8vhUAmJRBcUDPVrWrahUgXtRKRR4lBlv/UwB+pcu1fnhz8Dh0mNV1ugNM6TocLrgK1flGPd+eO5RCAdg3HgdODr8KSTiKrv//cMK8A0D4lEdKMikyW56OSfBMIb/b24PYqis3DLnEvWov7MZCQxivfAyiEXJbnxJ730McDoxPEVkN72MBAawzLlEBwW8oxHTRCwWyJpaLi6bwagbhYSCOmiAYNTUIpm0MvxmFg3+tNDU1MTEiROZN28eVqsVi8VCOBzG4/Hw2muvEQ6HmT59OkVFRWQyGTZu3Eg0GqWoqIimpiZOO+00gsEgmzZtwuPxEA6HsVgsOBwOqqureeONN7BYLHmgHo1GKSwsJBwOU11dTTQaRUSYPn06NpsNu93O3LlzWbx4MYZhY968h1i8eB9z5z6Iy1WWk7lbCYU62bBhIZGIj7q6qbS0rMJqdWAYVhoamnA6i/F6G3n//VW4XCVs2/YgFouVOXNW4/U28s47d5JKRQgG29i06To8nipsNhdWqwOvt5GWltWIZAmFOqiqmkgqFSYW6wOE0067nBkzbiVrwArDoBL1nK/LzQfQILkmYB/qWS9DPejLgLm59ZXAdSh4X52bN6Kg/k4UtHfmljnRJ9CIoZ8dyti7UUbfl9t+IeqpPxuwJ7Ikg0laVrWwd91emlc2k4qk8DZ6sTqtFNYU0rJ6eF0ylGTvur20rGoBgZFTRmJ323EWO2loasBMm6TCqXwZuVnLZgFQN7UOZ7ETe4GdhtkNhDpDSFawuW3E+mOkY2n8R/xYbBYi3REOrD+AYTUoGVUCBnSFu7jnvXvUDifaz+gKd7G6ZTWN3kZcNhcemwebxUbrYCsAbcE2Fm5YSFe4C1NMuiPdTKyayKHBQyzeuJiMZPA4PMxqmJUvCdfobSSdTXPbzNu44rQr6Ap3cec7d9IT7aHR20h9cT1HA0e585071TPf0EhvPIBYHAqkpzwEoxdoHxNRsqhzPSQHFIAbNu3flZ+lMvqPbtLBPclA2SRd5qpSMiobV3a9r1mPPWIaDHwArgoY9S1tQzJRlcLvWKT9U5GcL96mzLuYGn4nZi7qwapEQ+CIAnirS68z0qEq0EiHblMyTrfLpqCwVgkmq1PBvPG5NuqfU376J3D/Hzj9Zwx6Np0l3BXOj2JmU7rc5rBRcUoFlz59KSNOHqHJ8P/Fc5hpE3uBndqzapGEMGXkFGLpGAYGj174KCeUnUDaTLO9YzsTqybSE+3RGuzRPn7+5Z9TUVBBZ7iTtmAblZ5KFm9cTCwT44rTrsjX1VzZvJJSVyneYi8um4sVzSu45I+X0BPt4aPuj6hwV+T3e+GKF5hWP42VW1aybu86VrWsYs7YOUyrn0Z7sJ1yzwjE6obQQW2IEj6VrTfMVxmQ7w0dTRxizodqYLpGakN35qNa//2TO3VfawFM/KkG3DnKNMjurEe1sUqHNSBkx/ch2auNaqxNzxs7riOliCaEFp2oEiUzrYF0py7QQDmLQxu5XY8qyLa5tEZ7tAe6timjblj1CVo7E1xlOg8ehTcXKogfOQMinep9t3vgtG+Dpw6+9Kgy7O8s0e0mXwcx3/B+NVNh+0oYOU2D8axOiPpwbP4mHmeG7u4IEydWcfDgAIsWvUZ1dSGJRIZAIEFTUwNjx5Yxc6YXm82gpyfCmjVzqKkppKmpgZ6eKAsXbuDQoQHC4RQTJ1bhdjtoawuyZMlm4vEMhmEQDCaJxzP09ESZOrWOrq4wS5ZsBsBqtbBkyWYOHRrAMMDptHHjjWop8IX6+ekbT3Hc3w0GnDDCi8Uw6I8GeKLlBfojfgrsLjoCvdz79q85YYSXZDaNaZrYrNa8ND5jmqSzGa1skIhgs1iZOPIk+iJ+frn1JZLZNBYMbBYrZ9SdAkCh001lYRkWi4VR5SM5o+5kHFY7BXY7BXYXkk1iMYMY6YPgWwiZbgXfPTfnHob14J4NZg5ouybmGHlReXysRdPl7WN1O/sYtEk3dF51D5DJhd5V6jFs1QrQyYKlWCX3lhwT727M3UNOKGgklYnRFgxR6fFw4+bNJHJ+UI/Dwc6uLlLZLNWFhVgMA18kgilChdtNQ2kpU+vq+KCri1AqRTqbZUZ9PWPLyxGg0OEglkqRMU3Glpczta6O7Z2ddASD2K1WunOs/ciiIuqKi+mPxciaJv2xGJOqq+mNRplRX4+3pASLaWJ0dcFPfgLHjyu9vGSJomFQ1nzqVEWv2awCD4tlmMIuK1MG/dZbFSlfdZXGs4vosa67TsG/w6HAvqpKUbgITJqkOvV0WudTp6pUP5FQBO7xkDJttLUZVFbqoWIxPVRlpUrj77kHvvY1BeGdncNgvqpKP0YioS6A9etVNl9RAaNGDXvf77hjmF3v71e3ACjIv+YaBewTJ+pHSKo4ilRKJfep1Bdf/3efsuk0iODxejlr2TLi/f1YHA4yySQDH3+Mu6YGu8dDYV0d+555RoH5L3+J+f/68IbNxlnLl3Puk08y5Uc/wup0khgcpKCqCsNqZec993Ds1Vc59Xvf49wnn2TqnXfq/ZBOQSQEDSeoxD0wqIF0g32a+n7CePW6nzBhOEk+ElIWPTSovvbggALs3z+s4XVWm3aEo2HwD+g5Xng6lzjfC7u3qSQ/kx5m8Q1g05+V+d/4J8hmMV7+DYaZxdzyNrJ3tw7oRsNkN/8FGexX0J9OgX8Qw+5AImGVsQcDICbmlrcx6rwQDpLd8HyePZe9uzHffwfD4cQocGO2H4NQEFJJJBGDdEoHCkIBBfV2O4Ytx+4P/b8tVkzRvr7b7Wbu3LlEo1E2bNhANBqloaEBp9OJ1+slGo1isVjYvHkz4XCYuro6mpubCYfDlJWVYbPZ8qz91q1b8Xq9RCIR2trasNlszJs3D9M08+F00WgUgIaGBhwOB4Zh4HQ68yF4qVSKeDzOe++9l79el6scu92Nw1FIOh3DZnNit7vxehvZtm0tY8fOYdasZQAkk2GCweO8886deL2NzJmzGpvNxUUXPQYYWK1OWlpWsXfvOpLJIM3NK9m7dx3RaC+ZTJyOjm1MmPBNLrzwUaLRfurrp2G1OohEfLz33j2ICDabi9LSBoxsmmUi9AFLgfmoD/1NFJgfA1pR0F2EMuJjgHJU1j7kh1+JAvAwyrqv+tzymcDX0Fssk5vnok/JoBJ5W267VSjI9+SWJa3gKHJw6dOXcrv/di59+lIKawrxNnp55853CBwdruXetLQJV6mLiQsmMu+heaQT6dy9YuDwOPJhdgg4Ch1c/MTF2ApsBI4FSAQTpCIpXOUuJn5rIvXT63l9yetkYpl8GF7VxCpaVrfQ0NTADUduwOqwEjweJBlNsqplFVPrpuKL+PJgPJKKcP8F99PkbeLw4GHimTjBRJBJ1ZPwODx0hDpYf2A99zbfi2EYTKubRiQdGT5W2EdLewtpM004Feae9+6h0duIw+pgZNFIHDZHvp+7qmUVgpA206zYsiK/zMDAY/fk+o4LtVLR2U8o4M5ENAW+6QVVie5cDJmwAu9UQEmnE6/TSke7btVvzFWhKk8zrcDbXauA/qMlun3ZRFWIxo7Dxz9REst7uQ4UGJZh9aazQs+fTeZqwqPseaBVj+0oVJCuHkC1X5afCkX1kAzrfqD9ykiXzs10Dvj/E6L+vemf/5X/gdN/yqBnyY92tqxqGa7vgYJ3Z5Hzfwu0/71zWGwWMrEMm67bhMVpyY8edoW7sFqsHPYfZvHGxVR6KnFYHdzbfG8ejAsqfS90FDKtfhprtq7RdVtWYrPauKPpDuaPn88tM25hZ9dOoukoFsPCQ/Me4qpJV1HtqaaxoZG+aB9vtL5BR7CDpoYmCqwFLJ+1nPnj57N81nIaShpwWV3UF9cTiA1gGFZlt6tmK8Nuc8G0pxWcD+xQKdD4pTkmfSkg2mh+uETniR7d1zVS2XlXjUqMdi5WzzsooLe5viidl/TnBgQe0NFNm0cB/I5rIHwoNxI5Bs5Zo2Xa3lyoIPzctVDXqNL2SLs2ip4alb2bWZUfZZPKlhs2+HCtsuQfrIKTLtcQEN8Hyry/dQ0EDg572A+s0+3LTlRgX9uo70fN0UEEqwuKGqCzWQcN/v0ANpeHxsYGHA4rtbVFrFkzh+7uMAUFKlfv7o4QDqcYHIzhctlz5eAMPv64h0zGxOst5vbbZ1JY6MiXlKus9LByZTPr1u3FajUQEcrLXbhcNmbNamDBgomUlrp49NELKS52MnJkIbfeOpPiYifhsHbCa2uLsNrh6e2vsPnAVp794FWiyRgWw4LL5qSqsJybz72SImcBpphUeEo4s/4U4qkELpuDZDaNPxYilk6QlSw9oQH29R4lnc1QUlBMX9SPKSYDsSDXz/oGTpuDdn8PuzoPkMykSGXTdAR6+OkbT9Ee8GG1WHDaHKSyaSrcpfRF/NgsGQwzBGkflN8M6Q4F0tUPKjse36FMuBnIBccV6L2T8YGlEFyT9cE55MCXrAJ6Mzgsi8/6lZGPva9ye3sD2KqgZwmqny1U6X2sJZcyXwD994C7EYe9glmjGih2OrlpxgxMEXyRCC6bjUnV1XnvuSnCEb+ftmCQbR0dxNJp7BYLTQ0NuHIhc8lsFl8kQiiZJJRManid1YoB7OzqotrjobqoiKxp0jo4SHdYA/seaGlhWl0dNouF1sHBPGhvD4W4ftMmBeM+H9xyizLsRUXw6KPqOx+itm+8cRi9+v2Knpcs0X2dTmXU6+p0/3BYteutyqQwdarS2dmsSuXr6xWwX3+90t9ut8ryo1HYuVO3GzFCI98LCrDaDWbNEoqLdSzhoYeGyfyODiXufT49ZW0tXHbZMLs+NN6wdq2C/ClT4IYb4Ngxvcwf/EAB/uOP68edMkVD7y0WWLFCmfhVq3TbadP0o6ZSsH8/fO97KhgYer1//39v8D7kT9/+k58Q7ejA6nJRNWUKsa4udt5zD67ycmI+H47iYiwOB+OvuYZzHn+cs5cvx8ilw6djMdKxGOFjx9h5zz0U5CTWO+6+O78/hsH4XJhd8ahRjJg0iYGPP9aLGALqgUHAgLdeVrBuc8BJp8PUc6G/W0F3camy6v3dEA4qY253KKh3OHMg3wW9XfC7h5W9LykFZwFcfrUG2405Ba5dpsf78y90AKBshG5z0Tc0df7ib4KYyFe/q4n6TV/CmHgmht2uAXMNY5FoVOXtdjsUqz/d8I4GpwtjZB1YLFhmnocxfrLK572jMbduwdIwBuvNd2G96CtIKkn29b9geAqRaBgMi74OBZEDn2I2vw2mJtjrczSK+c5miOjvPGuxYpomb7zxBsFgELvdzoUXXkhhYSGBQID33nuPU089Fa/Xm0t4V6A9adIkLrnkkrxPPZVKMW/ePBYvXpwv/Wa32/Nhc59n46PRKF6vl1QqxcDAAK+99hputxu/38/GjRtxOBzY7XZCoRDTp08HQMQkFGqnvb0Fv7+VTZsWEwgcw+8/wqmnfo2LL36CoqJaTDPD5s034XB48vL6bdvW4nAUkc0maWtrJhhswzAszJx5GxMnLsDjqeHCCx/jm9/cQH39NILB9pzE/jqCwTbS6QgWiw27vSBXNm4GkYgvx/T3kDUsjDEMmlDg/SjqU58HzOKLsvcQmgzvy/350TC6Dbn9BAXcFoYHAZYzDBjKctukUObdCWxDPfIdqAx/NQrc70QHDax2K84SJ/4jfjZcs0FZb7uFllUtHFh/gGB7ELvbzsW/uJhib7EC8icvxmq30v1hN9H+KAjYC9Ta8t497xHuDmNmTTAgHU8T649RWFWI3W3HTJtsvmkzmUSGeQ/Ow+6x49vtI9ITwVHoYM7qOep/DybJxDOEu8IcfvEwy2YtY964efgiPm6ecTO+iI9CRyFuu5vuSLcSS5sWE0vH8Dg8JNIJzhl1Dh03dvDQvIfY1rENm8VGibOE22bextxxc/P7LXptEV3hLqbWTVUwbhgUOYqwGlaWNi3N91X7on3YLLb8sqWzlmKKidOCloIbsmWaKQXO/k/BMxYqm1S6fspNSvb0b8uB8jooPkmB+ogZCsJ3LNKspZQfokfgwx+q9bNiqvZT02FVmu69N8fk92of0DNab4J4t/aFswlt72Lt2j+RrBJE8X6dO0sVpIupfdPgEQXnFocy/ZFOHQEyDLVkRjpzIXb/hKf/2fTP/8z/wOk/Y9CtLqv60PctZt5D87C5/vcD6P5/nUOywvur36dhdgNiyBcavYyZYWWzMt9rtq7BbrXnvenLZy3HbrHz4Dyt3x6IB/Lrls1axgedH1DtqebJi5+kN9rLGTVnkDEzdEe6AXj4wodpC7ZxzYZrqC+uZ8fVO6grrmPhhoUc9h9mTOkYnrz4Sdx2N62DrXSGO1nZvJJy9whEcl7++q9oIMeORQq87UUqee94RUcop/5CZUUWu5aIG/L8VDVB/WXaWMW7FazHOnOAfLU2cjYPiEWPN3qBypswYMpafT95tTZ48W7dZ0h+jwHRXmVAP7gPWtdr+TfDUCDful5Z8IJKZcfP+3lO+SgK4KM+leCf97Cy9lOXqZ+9cKQy8XYPnHWLbpcMKqt+6gJl30H97Sd+TevDO4pyCflZHYQoqIKeD4iZRcRiGVKpLD5flCVLNtPTo0F0NptBV1eY++9vxuWyUVVViIiwbVsHhmEwcWI1vb3KdowbV05ZmQvTFGpqCkmnsyxd2sT8+eMpyD2k02kT09RU9p07u3C77fn673a7haIiByNGuAEoKXFSVOTAarFw9bTLuPjUJm4599+o8JTicRSQyqbZ13uUQDyCy+7ip288RW/Yz4WnNFJRWIbVYqU/EuCpbS+rBN7moKqonEkjTyQrJhbD4Iy6k7EYBhNqTtA67WaWquIyyguKufftXzMQCeKyO/j2WRfTEx4klkpgionb7sJEGIwFcdpcKmu318HgGk1+t9XpA2tgRc6v3g399+f85xZlyTH0u8j2Q+JDBfWQe9AZ0P8zyBzLgfEY2Go0iC6+HTK9YCnVxHnJqGze4lJfe8+tOnBQtUIHEww7xwJB7nznHaw5ydqd77yDxTDoi8X4sLubRCZDbzTKyMJCfJEIjQ0NFOWYKwCLYTDC7abQ4eB4IEBPJILH4aAtGOT9nAS/saGBsWVlOCwWBuJxJlVX0xeLIcATF1+M1WIhlEwyqbqakUVFCOCLRFg7bx7Y7Uh9PTzwAOLxKOLdsUPR7ZYt6mG/6aZhmrumRgHRjTcqeo5E4NAhBfI9PSqlv+02TZMvLoZvfxueekqP096uXnenU4/Z3T2sdX/gAZgwQWu6RSJKf19zDaZh5ehRgzvv1M3WrtVLW7RIxwCuuELB9ZDcPRTS1/feC3PnKrDv79fL6+pSMH/vvUrwP/fc8MeIx/Xyvv99HUMY8rnffruKCtxuBebp9PD5gsFhgL9ixTAjj2lCJjtcZ/u/wWSmUnz6i1/kWXTJZIj39g773Z99loqJExn4+GMy0SjumhrcI0cy8OmnmMlkvlQcIl9g49Ph8Bf2t1gsuEeOpPSkkwgdP07frl2UjR+vF+F0KeD+26vKwC+4Dqafr4NHqSTEIupnR7SkW28X1I1Rlh0g6FcWvd+n+5VUQPkIuGKhAnW7Q/fpPAqjT8oB/AnK5n/lKn02PP+0DgZU1cKV12vwnX8AnC6kpxujpAzrxV9FAoOY72zGOGU8RlExZsdx/c6tVvWhGwaG06XoTMCoqIRoWPfxjsFy4b+CYWBYrZjtxyEaxjJ9FjhdWBrGahhdJIwxsg7roluwXvgVJJNBAoNIOITZ8m7eRw+AzUY8HufSSy+loqICh8NBV1cXAIWFhdTX1xOJRNiwYQNFRUWccsop+TZGRHj99dcJBALY7XZEhPfee49YLIZhGGQyGTZt2kQ6nSYUCrF37162b99OQ0MDoMC+uLiYCy64AIvFQktLC3V1dYTD4fz5ioqKyGYzpFJhWlpW4fFU5tnx5uaVVFVNAGBg4CAbNizEMCzMm7cWEWHWrGWMHz+fOXNWEwgcYePGxXg8lYRC7XlWfe7cBwmF2ti0aTHFxfVYrU4aGmblJfbhcCdg0Nb2PplMgoaGJk4/fQFOZzEzZtxKYWE1DoudIyIICswFBcw/A6LAdLSLcBRlwAtRqfsYNKxuDOpNvw71xmdRbmc08AiaJj8UUJfOvS7IbdcCjETL0E3NndvJMFu/Akg7bEhWaF7ZnJfDS1qYs2YONxy5gZFTRrJx8UaCx4KYGZN0PI2/1c/GxRvxVHkoqi4im8rS9n4bkZ4IdVPraFnVQjKYJNobJdQeompiFQOHBvLe9qnXTwWBaE+UVCRF1cQqIt0RDMPIJ9Y7S5zY3XYamhooG1dGpbuSuqK6L3jd64vqMTBoamii2FlMo7cxrxD94eYfcth/mG0d2+iN9nJ48DDXbbqOQkch3mIvdUV1eWJp/YH1efXnslnLaGlvIZVNccOmGxjhHsGjFz5KW7ANf0Ltdh2hDm6ecTNumxurYcVl82h1oiFlqMUJ7tHqX0dU/TlihpI2H90IpZO0zzawA9Ih3W7UlcO20H0PqFze4tS+56FHoeHrcPZjSkglBrTveuHHWj5ux0JVqabDahttW6fK1HRI7aPpkPZZC+vUu15Un1OL5lQ2eUDfoay6s1Ql8Zmk9m8dxTmJvOWfwP1/Mf3zP/M/dPrPGPRYX4x37nyHWF9Mfbz/SYjdf/UcVpeVOavncMplp2AVK/XF9azZuob64npslmHWfPms5dgsNkaVjOLpS59mbNlY2gJtAKxsXslbR97CW+zl8Ysep6G4gRneGez27eYPn/yBsWVj8Tg8dEe682z+0H5D7H2Vp+oLbH57qJ0j/iMUO4tZ0byCza2buW3mbTitNox4l0rd493aSAyNYkpWRzJ731PZuoiOWsZ9UDpZwfree7Qkm01H+tl7j4L8ypnaqE5eDZFjOuJpmCqhP/tJ9b/3t2ha5tlPqG9932qV5k++XxPuP7lTRyLt7pwKYBlc+oKy5UNs9/ePw/mP6WDCyOnqYf/r9cqci6mMfLQLMOGCJ6FkVI6YNbThTMfU215Yr42s1aHbZeIQOATv3aodQbtbR0edpXruTBzivaTKJnP4iMrZnU4rDoeV2bMb6O2N5kvArV27jeuum0o8nuHgwQEWLtxATU0hRUUOPB47I0a4icczbNvWgd1uzbPuyWSG2toifvGLSxBRYN7fH2Pbtg6SySyNjV7sdgt+f5xMxsRqtVBWVoAIFBTYKCiwKdAXk/rSapZe8O8YhsF9b/+ajkAv4WSU8TXjKLA7iCZjvNO6k0KnC4vFAqLe9priCm4979t4HAVEknE+62klmU3nye2MaRJNJbj37WdIpFOEk1EMDIpcbt5p3YkvMkAineK3O1+jqlAl4rFUgrvf0Jq/VYXl7Ow4iBjAwL0QXqdJ7+lW9aFXLAWskO6Fmof0QWzGc4ExOWehrW7Yy25GlDlHoGCGHtM2Qln8jA96btRt7fUqlzdTYIiCd9/16msvv04HChKfQsE0UqbBii1bWLd3Lyubmwklk6zbu5dYOk1HSCX0SzZvxuNwUFNYSFMuXT6cSrHk9dcJJZOYIiSzWRKZDDO9XmqLi7EZBpUeDzPq68maJtFUiu2dnRwLBvnJO+8wEI/T6PViQdn8VDZLicuFx+Fgt89HxjQ5vbqaYCKBkU5jrFwJ69djWK0KpCdNUvZ8iLIeOVKXR6MK7H/yEwXihYUK6Ht7VaPucumy2lplzjMZpaXDYUW1Xq8ec8cOPebkyYqGv/MdeOIJ3dfn04j3jo7/h70/j7fqrO++8fea9rz3OYfDGTgTBMhgCEKigQDnJFVDkCRaO4Sa2lpbG8AQNSZmEFITbQAFMRpNzODQ26fetkRtGxkkQ6XhcJgyQBKSMMOZ5z2Pa7h+f3z32Qeq9n5+r9fz3M/dNuv1grX3Wte61trDWfv6XJ/P9/OBL34R19MqdeibNsmtZAIsb9gglzUBsh94QA6deNzSIpdwPnu+dKnUuFdXw7ZtIi5IJORlbNkikvrDh4WBf+opcaKPREQy/+lPi5Bg82Y5R1XVhef2+xGwnivA8bOy/j8QvLu2jZ3N4tp25TGaxpyVK6W2/dOfxikUsHM53vNXf0Xbhz/MnFWrsNNpQtOmkR8bQwNyAwMEamsZee01Mt3dHHzwQTK9vcy/+245ZuVKrEiEtg9/mCtWrcIIBHAdB1wXO52mMDJCYMoU4m++IVFvz/5fYiy34jaJeRvqE8l7YlxAu12UenbDhD/6KzGbCwSFjUcJ250YFebcKUld+k+fgFRcXOcVAvKj1VIvPzIg8oqLLhMwn0pI/vuvflYu9UgI0P/VVmHAozHc7T9HJcbBtNAXXQe6gcqk0BqaUHmZSNXCEZSmSS2GZQEKlU5WZPYqk4JSCTU2grv952iRiEwq6IbUxZeKFZBPNgM+vzjRGyZYPtSZU+jLP4Z+xZWo8VFUfBQ0DcuyGBsbq0jk6+vr2blzJ5lMhssvv5xsNsvSpUuprq7G5/Ph8/nYsWMHyWSSBQsWsGfPHjKZDJlMhpaWFpJJ8R5JJpMcO3aMzs5Ompub+dM//VNuukkcx7PZbAXQv/DCCyQSCZYuXVoxu5swyisUhFX0+2MsXnwv2ewI7e3ruPXWbdx442P4fFFKpQz79z9SNpsLousGrlsgFmvluuu+gmkGSCZ7WLTobrLZkXKMG8yadQOm6SOZ7OHYsWfp6tos33O3xPj4KVpb22lrE/De0DCPfH6MUilDNjuKbefIZodIpwcoKpdeTUNDQLQf+AZiNmci5nMgIP0gUoO+urwGAeD9wLWICz1M1qn3I+B/JeIiryEM+0ngswiT34Aw+2FEMq8D3yof+wPEhV4zNdrXtotSc20HmqmRH8vz/D3PozzFskeWEWmKYAUtTL9ZAfm50Rye65EbzdEwr4HsUJaZS2fSsa6DkbdGpO69ow0raJEZlLr1zo2d1M6uJT2YZvzUOIbPwB+RdvJFh9xojl137iJxJkEpU6JxcSN37rqTolu8QDXq4aFQnEueu6DmfEPnBp499ix9qT6ubr6a3lQvf3LFn7B56WYKjvgtpUtpBjODXDXtKn6x4hd8qf1LTAlOYUb1DBa1LMLUTb6z/Dv4DT937LyDm396M9/Y9w2UkpLTsdwYOTtHX7qPEgoVbIL3PSrJR+WEFbySGNEFyp9cbmDScHmka7LO/eXPivR9oix0/mYxWn7jQRl7XvmIgP9Da0RVOuV9wuj7as5TiW4COyH9X7dNSjwDjfCe+wTQgwD1qotk7UmZA4Yl483zAb0h940LGHrdeLe2/X+xvBsH91uW/6pxcMVMkV9++pcc3XqUOSvm8JEffITE6cT/Mgbu/27GezFVJN2fxmw2WbVrVSWm7fEbH8dn+Ci5JSzD4mz8LD2pHha2LMTSLYnY0H2cip+iMdJIf6afjZ0b+VL7l7io+qJKXMZEZFzRKfLMW8+wr3cfj934GGcSZ9jYuVEy4yONDGQG2LBnA2vb1/Jv5/6NvT17+f5Hvs/xseOV6LlGfwjt4MrzMtqfEMb98vsFrMdfkxuTEZAX5xZg7GWoea8w4ulTgCbRcO+5F0b3Sib7gqflpqM8kSU5WXhr42SGu5ORbfk+6V+zBKQnDsPUxWIOUsl1/x7ETwgYb1oCA/vEWV43J68LBfkx8FeJuYedEZB9/Gcw/UNSw546J9Ea/hoxsQvVy830nX+QvMxIs8x2TlsoEwEvrhEGvnmJOM3XzZdTWSHIjUCgmkxe49Of+TVLlrRy7bXT2bixk29+8wbGxnL09KRYuLAF09RwXcXoaI6TJ8epqwtTUxMgEvExMJBmaCjLNde0YJo6Q0MZamtDFAoO99zzPPfcs5je3hQtLTFmzqyhs7ObuXPrMQydcNhieDhLLmfT15fmve9tIBbz47qSt372rMTLfWBpG72JIb5/4J/51NUf4XD/MS6a0sScxtmVCDiAZD7FlFC1eEApRalc43585BxTglU0V9Wh6Tp5u8i3/u0n/Nn7bpTadU3jg99bzeN/dD+X1E1H1zQswyKZTxP1h9nw4g8rcXB/s/SvcTyXofQYzdX1xHMp/vKnD/GTT/wNDf5xtLH10PAYDK2BzLPQ9AsIdYhUXo8gTvO2AG3NJ98bZwTMKciwrGxeF7hCDOa8PBQOQ/BqiYgLvl9q13N7heE3WwFb+vFyAvzNabLfrAVnhLzvWhIlSBaLVPmFGbvn+ef57vLloGkc6O3livp6wj4ftuviNwxszxPn90wGgKjfT00gQLxQoGDbdKdSLGxuxirL5LO2jafkczsyNERdOExNIEBdKMTZZJJvdHWxeelSfIaBoWnkbJtUqUSsfD1RzyOSywloHxqazFc3Tdi3D97/fnk8NiYS9lJJ7Nv//u/Fve3f57Fv3iyDoYEBQcrr1glg17TJwUSpJCD/9GlB31/6ktS233mnoOoZM6TePhik1NDCWDYAaIRCQsaDzAVEIjIfUFsrTPirr0qtu+sKyx6JCG7K5+H++0UIMHNm+a9eSbuhIREGxGICynt6RPW/caNcysyZco41aybj55YskbfE8+RlOw5Ewm7FHYET52B4HOpq4JIZYP7fK5/6bcvnPvc5nn32Wc6dO8drr73G/PlyL7nhhhsYHJT0iGg0yqOPPsqVV17J2NgYH/rQhyrH53I5Tp8+zUBPD9WxGJppVvLX33f//RTGxyX67dOfJjZjBk42i/I84sePE2ltxRcOYwSD6IaB57pomoadzZI4dowpV1zByw8/zHs+9Sne/ru/q+S3v+/++zECATRdxy0W0css7uEtW5i7Zg1GMIhbKFRc5ef+1V9StW+HgObLrxK5enwMnv2x1Jlf80ExmrOL8qH94kdiXpdKSC36jR8X1rx6qjDl+awYzE1EwR1/Az76ZxCbImqq//mY9Pv5rwqgz+eE7e87A1MbIRgRw7pdP5MJAl8AZZgSB3f0MPqtn0arqsbbu1uM6CwfqlQQRj4aA8uHFgieFxNXi3f4kEjku3YLe57PCUg/L17O6z6D98z/wFh1tzjOhyOobAatqRWScbx9/4be8SEpHXBKqFQKvUVAVEnTSWcy7N69m6NHjzJnzhyuu+46Hn/8cebMmcNHPvIR4vE4qVSK5uZmgIrJXKlUwufzUSwWKznuTU1NZDKZSrRcKpWiqqqK6upqPM/Dtm2GhoZoamrCNE1s28ZxHEZGRmhtbUXTNBKJBHv27KGjo4NYLAY4OE4GywoCGpqml+PhNtDRsY5YrA3bzpLJDJLJDBKLtdDZuYHFi+8DoLZ2Np7n0tu7n2i0mVColqGh14nFmtmzZz3t7V8ilepj2rSrACgWk1hWhOHhN8qO9Rrj4yfJZAZobl6AaQbYvv0zLFz4eXK5UZpm3cBJTadf01hSBnQZBERvBr6GsOx7EWD+bYQdv6X8t3ZP+d9UJMJtLQK6TyBy+0Yk8z2AWKjayATAWWARUke/EJkw6EJk8gVEhp8rX8MPssVKiabyFJqu0d3ZTd3ldRiWwfP3Ps81d19D7ezaShun6GCFLZycQyFZIFQbQjfltzszlCFQHcCwpEZ9z/o9tH+pnVRfiqrWKqqmV9Hd2U24Lsy+LfvoWNdBqC7Erjt3sfyx5excs5OjW48y9xNzWf7d5bhBl2QxSdgXZtW2yTHst5Z9i4AZYPX21Tx77Fl+seIXLG5djIYmJsh2jk1dm9i8dDM+w4ehGeSdPEErSLaU5b4X7uML13yBS2ov4aVzL0nZphkgZ+fY0LmBtR1rCZkh4oU4W/ZtYV3HOnqSPbRWtXJR9UW8dO4l5tbPpSZYQ0TXIXNKJPMTccOhVjGGe/ULsi0yU9SfmTNSq675BDg7ORl/BpuEBNB0GXP6p4JVLcC/MCzAvDAsLLybl3Glr7qc/94m7c2ISOyPboDL1wo5hRLpvW+q9K3UZE674Zf9mlZW8rgyNo00Tda1a+U0DGX/t46CA96Ng/vvuPw2Jn2iLn3C8EO5imRPkmPPHvudMXC/y4n+t/YfkBom0zNZ1y5y9/uW3EfJLWFoBgpFtpSlJ9VTMaA7mzhLV08XJxMnmVUzC7/przDmGzs3AtCb6uVrH/oaw7lhVm5bSU+qh49d9jE2Ld3Ewb6DtMXaeOrmp5hZPRNTMxlMD/LY8sdoq2rjYN9B1nWsw/VcpkWnsa5jHQEzQLxYQM1ZN+kEjy6S+MhMeH2d5K6/fIe8MDsjTp1TFyKM9aDc+ApDkzOQjUulH+WJXCg/UGbpBy6cpQzUCWgP1En/uW6wYjDlarmBhtpElnTVI3JuKwTJswLOm9tF4j70GqS6pU69v0vW/3qHzFgmTso1NC+B/WVVQGSaMPtDh8TEzs6IU3zzEpkQSPeI/H3ggNw8P/AdmLFM6uKnzpW4uN13St9WGHQLXzDEAw+08/GPzyEQMFmypJVMpkRPT4q6ujBr1uygpydJIGDQ2Bhh8eJWvv/9V4hEfASDFtGon6amCF1dPTiORzjs4667duF5ivXrP0hvb4r6+hD9/TKDu2RJK7GYn8OHBzl5cpxQyEdfX5qFC5uJxfw4jsfoaBbX9Zg5cwrt7W14ymMkG+fu3/szmqvq+f05v8e8pksoOiXeHDiJ67mYukHACpAt5elJDHO47xg6GiErwNxps2mITcFVHof7jjGWSXDFtFn83aFfkinmsAyL7/7hfcxrugS/YWHpJp7ymBKqwjAM7vnAJ3nsD+9j7Yf+CkPXsQyT2nA1G1/4EQXb5plPbcJvxbCNWajGpwVw138LZrwm9eteRlziJ0C7ZspzZYOXlVp1KQ4DZxxCC+R7nDsgfYUWS8168Gqpl7dPivxeC4q8XtmgNKmFx5Aa91AHjD8KZh0eJkPZLA/u3s1wNkvQNNlyww2cSyZZtW0bC5ubGc3luGPHDhzPQwH7e3sZzeWYXVvLUDZL2OdjLJ9naihEcyzGvIYG7nn+eXK2fYGcvioQoCUWY8u+feQcB13XCVsWjy5fTsA0+dILLwDgMwzOxOMopQhbFpquC8oFAebz5onRHAhoTyYFpdbVCeB23cls9u7uSdt1wxAdu2EIqp7Qk/f0iEPcqVNSiH72rNSyZzIC1u+9VwzwdF2Q8YYNMljp6xPWvyBlDMmkHBIKyRzCgw9OziUMDopx3bFjMhewapXMCwwOSh376KjUsc+aJZfW2ytgeyLiLRCQ5xddBNddJ5ezZInMQbiueOndf7+A9uZm6f/0aQH0+TyEAi56oYh2/CyqUISZLQLa26ZNGo+fL5//j6T0E/tcFxyXP/7DP6Szs5Pp06df0Gzr1q28/vrrHH71Ve76/J186i8+BZ5HbW0thw8fln+vvsrKv/5rPrxsGVYqxfDLL+OVSmQHBuj79a8ppdMVKfyx//E/JLfbNIm/8w6h+nrC9fX4qqvRLQvPdVGexysbNpAfGSHT20splWLOypUUxscrTvRzVq3CDIXI9PUx/PLL4j7/0ENkenqYvWIF+ZERXnn4YVAK3e9nzsqV5MbHUX/8aYlyAyjkhD1fsQq2/E+RrCsFPWdk0PoHnxJW6cV/gUvmSnzbxXNhagMTkWwYuoDxRR+CG/9EHOhHB+X7OVG/PrtcFx+tkraz5kBNnUgnauvh46tFip5KgKahL/49yWNvbhOzuZbpUv+eSQEaWvN0tHAUfD7cXc9WatRRCjU0BDW1GDf/Mcq00MIR9Bs+gr7iU2ixarzuM+jNbRirvwjRWCVyTotVo1kW3r5/EyO7PS+ihcOoZAItEhEFQHwcQ9MIh8PcdNNN3H333SxbtoxAIMDcuXO54YYbUEphWRbhcJi+vj6Aigx+YGCARCKBpmm88MILxGIxLMu6IFqura0N0zSJx+Ns374dEAn+zp07KxJ7x3FobGysZL+HQiFuvPFGQqEQjuOQzaaxrBDJZDc7dqwBFIbhr7jFO04evz9GNNpEW1s76XQ/x449SyYzQDQ6jbGxE2zfvppIZBqWFcSyQrS1dRAK1bN06RYsK0Jb2xJ8viiqbN6naRptbe04Th5NM5gyZRbTp1/LwMCrJBJnWLp0E4FANY2N8ym5JXo1jamA0jQ8hP3uRYD1ELAKkbxPR+Tvf4QAdA+Rs/cipnRbmTSjW4LI7XMIaz4xShwDrgL+DGH45yG57acRF/lTwBqEqe9HmH/lQmYwQ/xUnG0rt1HKlIg2RXnh3hdID6RpWdRCVUsVylMoT9HT1UN2MEspVaLvYB+B6gC5sRzFVBHP8QjXhVGuopgssneTlGqGG8JMv3Y6VdOrUEoxvWM6Bx49wNGtR9m7aS+arrHo7kUU4gXa1wn7f/3XryfVnSI3kGM0N8podvSCmvOIL1KJhjv9udPMb5zPmh1rODF+grAvTE+qhwXNC+hP93P7jtvJO3mGskOs2raKwcxgpabd8Rxm1cyiPlxPopCYVIvuEePlkewIjy1/jJAZ4mziLH7Dj47OwuaFFN0ixVIG5eYEtPc9KyrPqYuF8dYM2fa2KDYITpNsdyMs95SR/TI+8NeWiaURGQsGm+DYtyfVo4EGKIzKZEBhBPSglIG+fIdEJUfLs8duVkB737NSSumVZAxrhoVYMnzlLPfY5KS38oRgmihT9UXkuVuScahX9uxJ9/JuFNzvXt4F7v8Fl98VBzdRl37TEzeRG8mxY80Opl01jc+d/pzUvP+WGLjf5kT/u/qvLAWYWTOTh657iM7uTu55/h5ydo41O9YAXGhA17mBqaGpbNizAVvZ6JrOvYvvrYB+QzNojDRi6MYFDvETOfBXN12NoRtk7Syrt6+mN9XLFfVXMJofxdANttywhZnVM7n3+XsZzAzSGGnE0i1CvhD46+Dqx1HRWZA9J8Zw2XPw3vXnAXrk5vjGg3JjzA+ILB5PZPHXbZN2wSYIT5cblO6DzClpW7dksh7JqhJGu3ahuNR3b5X69sxpyYmvXQDhNpElaT4xo+t6UAB7sBbix0UOXzcPQnXCvNfNkwi4Dz0uAH3aIgHX0Vape1ceFOIye9m0BHbfJXXtV31BZPgAzR0iXaqbB/92j6gLwo1w/ZPSV6YPzj4nxxk+0Ax8KsPs6X4GB7M8+OBulixppaEhzMKFLYyN5di06XpmzKjh9OmJqDiPr39djOtWrdpGPu8wbVqMBQua6erqYWAgzWc/K9LBfN7hqqumMX16DfPnN3L8+Bi3376DTMbmmmtaiEb9pNPiWK9pGqlUkc9+difZrM2hQ/3lCDkXDY1L6qYTz6dZ/8IPOBcfIFPME7ICzGmcRbqYpeiUCFsBApafpthULqlrI1uUMpKS4+B5ikxZWt8Qm8KN5Xr5qD+MqRtc0TiLI/3HQdNwlccbAyfpS47wev9x/KaPKxpnkypmKDo247kko5kE85ouJmBZaGi8NXSavF0uLlZuOerNkrUeKtehI98H9DKAtwR8exkYXCWGdCojkncUhK4Rpn7wzvI+R+Tz5kxh783yjzyAcwpy+8vn9QAbGp8EaxYuGhs7OytS+YFMhnPJJBvK21yl2NDZyYLmZvrTadbs2MG8hgbqw2E0YElbG4PpNLqm4Xoe+3p7Gc5m+eyCBQTKWe6vDw0RME08pQhZFs+dOsXmvXsxgJpAgLGyo/zXly6lJ5nkUH8/17S0EPP76erpwXActAkkC2JO981vTjrH19VJ4fiaNZM573V1gnYXLhRUvHChSOjvuEPaTADyFStkXyol7SZM75YsEYCq6zB7tsjmg0F44w1ByCBtBgawsejvlxr3wTLuOl8qr5Rc8r33woc/LMD+u9+Vy5zIa9+4Udpls1Ln/uCDMh8wNCSq/+5uiZE/dUqA/Ze/PAncR0ZkbqK5Ga65ZrLP9esnTfJMA7RiCVoaZa3rAt6LJfnuOe6kfN52freU/nyZfb4IyTTXvn8BLU1NF/4+eB7VkaiAe9cjOTqKVrLl2DLgx5Vz/uDJp/jUn/0Z2cFBAlOmcPChhwg1NND+yCNY0WhFHj//7rvJ9vZOGtEND6MAt1iklEzy6saNuIUC8+++m8LoKA3XXINbLBKsq6PuyisJNTez4MtfxgwEUK7LW08/TWDKlErk27Ef/5jo9OmYwSC1c+dyeMsWlOMQbm6mdv6VAqxNC0b6pVbdtGTSI5cVIJ9JwvTZ4ipvl4Q5//hqWPAB+VJ45dd84k15j3wB6aeQh/pmyXtPxWF8TMD4DX8kn1N8BE6/PSmfGBmAH397MgYODapqpM8y8Ma00Jf9Ptrl74VMGu+lF6AsKFGlIppuoF/TgXegUwC4AmPZzZBM4G77GcRHxT0+n5N6dsuSyYC+brm2xDjuzn8qA/+ETHJ0fEgmDRZ9QJKi2mZCtErM8XIZ8DxSqRTbt28nlUrJW+DzcdNNN5HP59m2bRuO4xAIBCrgPZFIVIzmkskkhUKBo0eP0tXVheu6LF++nFtvvZX29nY8zyMSiWCaJosXL8Y0TdLpNMeOHSOZTJJIJNi9ezfpdBqlFHV1dQwODmIYBsVisRxJF8V1bfbsWU9z8wLi8dMVt/jrr/86Pl8E1y0yMPAq4+OnaGyczy23/IyWloUUi8mKe3w63Yfj5CoGd7t2fZ58fhSfL0x3915ct4BlhXjppYcBKJUyFAoJSqUU2ewonufQ2rq4PAEQJhJpRNMMLE3jKqVokU8dhQDnFoRVfwQB4XUI+N6PMOcPl9v7EKl7M7ADyWDXEbO6Cbn9q8AwkEdM5zxEOn8Ycap/BAHpGgL8n0WY+MXAxUDB0gnWBEn1pVh09yI0Q6Nrs5jTZQYzzPvzeWQGMmxbuY3xk+PUz60n2ZNE0zXC9WH6D/UTrgvji/ro3d9L8lwSwy+lmtd//XralrSx685dxE/FsXM221dtJ3F20q1+6ealZAYz7NuyDztvUzOzhhsfvxF/zM++R/ahBTR6U71UBaroTfVy1zV30Z3sRilFqpSqRBOfbzCXKCRY0LyAj8/5OBFfhHsX34vP8NGX6rugpn1t+1rydp6qQBWe8qgOVFf8nL646IskCgna29pRKEK+ENe0XMPJ8ZOcTJzkzl13Uh+uJ2r50FHCqrf/Qko3C0PlSXhPXOXnb540SfYcGVeMHRTmvTgsJnQTjvNGSIB+7QIZ5x5cKePRmrkyNrXjckyuVyKOc70yPoy/Kmk3V30TOn5RBvZrhJAyowLYiykB7YEpUsqJEgY93TvJrgfrysBeF+Zd02R7tOVdufx/sLwL3P8LLr8rDg6oSN33rN9D84Jm0v1pdt25q1Lz/pud/aYT/e+Mmyu57LpzF1sat9D7615s12Zvz17uX3I/8UKcuxfdzeHBw/gNf+WGtbZjLaO5UdZ2rMV2bTKlDE3RJh667iGaIk0UnAKzp8wm6otewOLXBGqI+WPknTwDmQGUUixqWURPqofR/CgP7n6Q0/HTeMoj7+T5yge+glKK1dtXcyp+CtvJoMVfhcwZNOUJI16pcbdh7ldE+qNcqfnpe1ZuTm9vEvMPkOd1HTKD+eqdcsPJnhO5Us08CE2Tm8+CJ8TYQ9NlZlEzJ93qaxcK6x6ol9gOzxYQrzw4sF6c3g9uEPB1aJNI2HODMPxqBUTz0hchdbYsuy9CKQ35ETmXv0rkUf175fmSh88zADFklhRNjOzQZL9uiiTeyQvbXn8V3NYtEwiaIf0PvoyLn76+FFu2LGXGjGoMQ8eydFpaorz11ghKKVpbq1m0qIXx8TyaBjNn1vD44zfS0hLF8zxefrmfBQuaaWmp4uKLawmFLM6ciZed6U2SySKbNnWxYEEzAwNpVq/eTi7n0NQUI5MpMTycJRSy2LDhQ/T2ppg7t5583mF0NI+nFLqm4Tcs3tdyGeO5JAHLT84u8Mi//YSgFUDXdLJ2oVL/HvGFiAXl2jIl+ZsIWAFAoaGRLmQI+QIELB+5Up5H/u0nXNE4G9dzeWvoNJfUtTElFOOKxtkMpsbYcF4NfNQfJuwPsPw97RTsEhtf/BFzGtqI6b1og7eLGzya1KDjnmc6Z5Tr1/UyA+qKU7wehSlflO/T2GYxoHMHpUZe84k7vWZC4TXpV9PLM90KtFB5AiAsxnSayLnJdUmdfX4/AVKs6+hgxZw5rG1vpzoQYCSbZW17O9tuvRVT1/nWsmV8fM4coj4f31m+nKjfT8Tnw/E8dGAklyPs8+EpRXvZhO7S2lpcz+NgXx/TolGpl+ztpSEc5sznP893ly/nTCLBof5+poZCmLpOwXEIWhbTIhG6enooOA4Lm5sZsW1UR4cUeb/6qqDXQhkAnjwpiHYit725edKFPpUS8N7RIQCotxeee04Yds8Tevupp4Stb2gQcH7HHUJVZ7OCsB1HJPXptPwLh+W4fF72PfIIrmYyOAh33y2nVUok7BMRbqYph11yiZTW53Jymnz+wqi34WHZNiEESKUmQfhEhvuEad1EPfyEIV1Njcwr+HyTfT7wgLQtVxyA3we9g7K2HXA9eey6Aip1DWIRed49ACNxWXvn/WZ46sJ9lvlb2kyC+0/+xV/QOvMi/uYrD/F/3fdlmSjIF0Wq7ym6/mU78Xicj1z3Aaa+970VOfvRp59m6rx5oBT+mhoWfPnLWOEwumVRd+WVnPiHf6D+fe/DLRYZeeUV8qOjkt0+MsLL69cTamgg1NBAbmCAbH8/B7/yFX5+zTUc/OpXsaLRSr38+Uz8/LvvJtvXxxuPPcbUK69k/he/SDGRINvby9jrR0Tefn60m1KTLvOphDDiZ94R1vxffiz7xwalBn58RMD8RM77BGgf6RfAns/CTx+HmloxJshn4bmfy2c0PiLH/OOT5az2avjwLVA9Rfrc+pQ40gM4DiqTRhVFqjER+2Z8aLlMNDgO+Hx4/b1oVVPQl39M8th1XVBgNIY6dxKv81/RQmG8PS/Kd8PnB89Db7sILAtv356KK73eNhNl26hkAmP5H0B1FSTiEimXSqBdNge99SJczyOZTLJo0SIymQyFQgHHcSiVSuzZs4djx46RSqUIh8NUVVXR0NBAV1cXp06dIhAI0NbWRiwW48orr2T58uUopejr66OqqoqqKmFe4/E44+Pj6LrOjh07iMVi3HLLLTQ3N7Nnz54K6Ldtm1KpRGtrawXQA2iaoq/vAO3ta5kz5+OYZqASAef3x0gkzpSN5+rx+6MYho/p06/FMPyEww3ccMM3mTv3E7S0LGTPng2Ew/WkUr0sWnQ3qVQfmqYTDtexY8cakslumpsXoOsW6XQ/u3c/SDY7hM8XYvv21RSLKdLpfrZtW0kicQalXDx0lKaRRFjzAiKF38CkUdwShBX3EOn7HfKrwigCyif8KVsQ0H8GyX03EfA+D5HZB4EvIgx8LzAXqXe/AwH+FvAEAtrnl/s6AQQ8D8NvEGuJsW/LPjIDGZZuWsotP7uFWEuMdH+6Mrbc/8h+DMugbUkbVsgSx/jGiID6E+eBejSsgIUVsujc2MmxZ4+R6kth+AwW37sYw2/gi/i4+ambpU25bj7VkyJxOsGO23eQOJ1g2SPLCIQDtMZaUSgWNi9kNDdKa1UrjueQLCb5Rtc3uLbtWlpjrXxy3id55IZHqA5UEzADuMol5o8xLTqNz//q87TEWvjZLT/jgY4HmBKcQmd3J0eGjhC0gsR8MWqCNUyLTOOpm5+iJdZC2ApLvJ9uEvPFaI21sqh1EYPpQb5+/ddlfK6ZKM+F0HQhjvCkXBOEnKm/VtjvXA/MWy8y91fvlPGlERUTuku/IO7xE3HE8zdD4zIB6FduEhJK88nYNtQ6GYH89hZh3HW/uNS/di8UR4Xxrxgrx2T86BZFmp88JWNaKyxu8m6pHA/XN6nmAhlrTpjYaQhj/99YJv+/Wt59Z/4LLr8zDu7f7Z91w6wKKP9dUnkj8O/6Cpi/s//zt1c3VTPDmsHTNz3NzJqZ5OwcW/ZtoTnWjO3aTK+azpM3P0nIDFEXqqM32YtpmLw+9DoRX4TGSCNRX5T+TD8rt63k+NhxLqq5iCdvfpKLp1xM1B8V+ZxucSZ+BoBPvPcTXDf9OgJGgCWtS/hG1zdIFBLknTwBM1DJydzctZmgL4YKtcgNJ3NajOHaVkhGpVeSep7MaZEH1VwFH+sVKdFV3xJXTjNUlhi7IkW68hEBRbmectzGkERlZM6IzN7wS20RSmSS4RlSD19Kyg0ycjEEpsL4IbnJahpc9034y7clx10z4ep7YcYNUvMerIMXVk/mrB/aJNdiheRfeNoko57pEyn84AGpdQ9OlVp3f43I45NnRAafH5Gb5eBBYfhRkDgj/dgZ6Osq53JGoekaDFNj/vxGhoay3H77Dk6dipPN2gSDFgsXNqMUFAo2uq4RiwlC0DSNQsHhc5/7FUNDWebOrSeRKGBZeoU5b2yMMDSURSloaAjzxBM38clPzmPWLAH906aFy2yhoqEhXO7fR0dHG9XVAQYH05w6NY6OjleWWy2/bAkNkVoefv77jGTifPzKZYxmEhwdPEnICvCl6/+SlpoGbNchkU8xlB6nJzGEqRuEfUG0ModRHapCQyLqApafO9r/hJJrk8inuaJxNol8hk2//h8MpccYyoyx+9TLBCwfUX+Yt4ZOE7IC6JrGUGacfWePEPMZaGObYMoXyt8nhC13JmbR88KaFw4Lwz6xnbKxnNkq7HvjE1D1SXkeXCDSeKcX3ES5vt0UqfzQ7WCflnMoF0pnZGJAMyD/ctnZvhFC7fgMk5nV1Xzl934PTymClkV7Wxuzamporapi5bZtAAxms2iaRncyycpt2zgdjzOay3E6kWBJ2bCuP5Nh5bZtnE0mSZVKrNm5k7pwmJ5kEtvzuLqpiRPj46zato3uVAq/adIYibB6+3ZOxeN4StEQidCXTlMXDnPHzp30pFI0RCICptesEWo5KlJfDEMKvxcsEK342BiMj4vU/ctfFsANk9r05mYxnWtpgc98RmrUQUCLpk3S5Bs3lm+MhvQxQaWbpiBh15Va95/+FDZvxjIVLS2KLVuka8MQEP7UU1JiP+EtBJNzCt/7nswpzJwJX/2qrAsFeOstAf2f+ISA/IkJgLVrRRCwbp28jB07JHbO8+Qc4TAcPy4vq6FBzt3YKMKDCmH+7wG334KAD7J5KDkCqOungM8SCf0Vs2F224WDLw3ZNyGztx1ZJ9PyQj1PQHyZ3f/xj/6OnsNv8PCDX+G+Hz0B0bCcPxoGz+UHu7bxyY/9Ef5YDCMYvMB87uy2bbz69a9j+HyMHD5Mpre3AqqvvO8+Mj09Ffa9MDJCpLmZYz/+MXVXXonu84FS1L73vYSbmiqZ7e+7/340TSPT10eosZHauXMJ1tez4MEHMYPBSYf6H/4QMxDA8Pk4+vTTTLn4YrTEOGz/qXyYs+bI2h8UCXxyTIBxy0x44Z8nJe7jI5LDvuMfpE794rliWKfr4iY/63JwHXnvlv6hDIRNn7D3f/55eb9nXyGS+4sulYmCcyfk+H94Qp5/6KNyHQDp5GQEmyb3My1Whfv8NkjGhW03LbSGabi7/kUmHHRDGPbu0zKeXnO/1KkHQwLEdR1QqGJBTOlsG33ZR6QefvcuVHIcNTyI99MfiPze9EEkinH9zahcTvpXCt0wmDZtGlVVVbS2thKLxejv78fzPBYvXszq1atpamqip6cHz/Pw+XwsX76cO+64g0AgQHd3N/F4nGXLlpFKpS5g4pVSGIZRiZELh8O0tbXR1dVFW1sbhUKhEiF30003YZomkUgE13UrkwbZbBZNM5k27Sqqq6ejlMtLLz1cyWaXW4KP1tYl5HKjOE6OHTtup1TKkEicYfv21eTz49x00xPouo+bb36a6urpxGKt7Nu3hVisBcsKsW/fFo4e3UpX12bmzPkTTNNPJjPIsWPP0tm5kUIhwdGjWymV0nR2buDYsWdJJnuwrCC6YaGAKqSWPQjcgMS4jSKy+QnWPYAw488hcW51CCj/AiJ172bSDV5HwP8iJv/c80iN/CDC0gfLj58F+pCJgyFEXh8q9/td5CfHzttEpkW4ftP1pPvT6JZO25I2Ojd0cuq5Uyy+d7HUnH9nOZqh0b23m8TZBK1LWkn3p1n0xUX4Y36soCVGczp07+0GoGNdR2USoHd/L7qhs/vLu4mfjtPd2Y2dtStj1JaFLSR7kiy6exHJ3qT4X9g2PakeBtIDHOg7wMLmhUyLTMNn+KjyV/H167/Oxy77GD2pHlZtW8V4fpyYL4anPCK+COmiKDbuuuYuAmaA66ZfR1uVlO3NrJlJU7SJVdtWcTJ+kgO9B+hL95Gzc9y5606Gc8MV5eip+Clsz+Yz2z9TmUC4Y8cdmJqOhieKzpfXyCcyf5N8KC/fIWNWEID92r3CotcukHr1XLccF54uyUl9zwpRZYYkwz3YBEfWyfjCsIQ8eu0eyJ6RWOMJxt0rSUTcRLwxlI2V22W8q5AxomsLiz4hjZ9wk5+Ih/PcMpgvSHvPEQJJKTm395t45N1FlneB+3/B5XfFwf37/dGW6H8I8CeW6hnVfOQHH2HK7CkVWfxv69/0mUy5eArLH1tOqidFfiCP3/DjKpdpkWliLmeGUChydg5Ls8g5Obbs30JLVQtj2bFKLc9YbgxXudSF6tiydAsxf4wz8TOs2raKM4kz2K7Nqfgp1uxcQ2OkEYC93Xs5FT/Fl3d/mSWtS9i8dDPNsWZqAjUc7DvI/UvuZ8WcFWxeuhnHzaNN1OfkeqUuZ+H3wd8ARkQkRLlembVEibwodVxmAnPnxKkzd6Y8a9kjb1R+UJw5Z3xikqV/e5NI31Hgr5eZSDslbZUr7LfyhL1XnuRwhmeUmdJRkcrnR2QWs3q2GMk1d0jN+/vuFvn69Bvg6vtkJjR1TgB98gwM7Bd2vGkxBKoF7L+4BtLnBNwPHhDQb4VEJm8GZNY2WC99KDWZEW8EoPH9AvidAuRHcUslDEO7IL89lSrQ0BBB1zVKJZdXXhmguzvJK68McPZsks7ObgYHMyxY0MzmzV1EIn5qagJ0dfUwNJRh0aIWBgcztLe34boe+/f30tubZGQki217+HwGwaCF5yliMT9KweBgpmzWpVAKLrpIatzRxPQMoOjajObiXNVyGfWRKcyYMo2IP8DsqW2ciw/wt899n4HkCEeHThG0AtRHp3BJXRvvDJ/BUx6WYWIZFq/3H6c7PkjeLpIrFQhYfsZzKfpTIxi6TmO0lqtaLuPvDv2SKxpnseWjd1XY9dlTWxnNJfnqc09TH5nC1j9/GA0FjY+B7xJkCAW4/TD6oLDnmi4gO7gQ3GHJWEcTabvKw/CXZD8KvAJgCXseapfMdpUXR3kvA9ZsaPgumE1U4lasRhhcI32ErhHQrtwyyP8MBiWq/H7qw2EGMxlyto3teRW3+WSxyPo9e6gOBCoS+g2dnVQFAqzfswen7DI/Ibnf2NlJolBg69GjbNm3j6ubmznY14cCNnV1sfXoUdbv2UNdOMzX9u5l69GjbOrqqjjUL2xpYcu+fZXzmI6DNgGqh4eFsr79dmHFJ+jrujph0quqJmnqTZsEKZ8PyOvrqVjAT+jYlRJwMiGdv+8+QcJKTdLfmzbJZEFNjayfeEIk9KEQ7vA4GzZobN066Xv3/vfL5e3bJ/MGK1eKUt8wxJyup0fi4s6cEaA9MiL+eIsXC6H/2GPSTyQip5o5UyLmL7pIAP5EhNxEHxPl+wsWSK39ROmg44CuefI+tDZOAm6vvA0gFhagbVlwqkdY3oAPIiF5ni+KtN1xpeOADy6ZDgE/VEXlvXvndLkmvnxivw/6huQ8sQh/8clP8utDBxiLx+X8U2JkBkfY+k+/4K/uvAMCfsxAgNjMmSz4yleItrUx7brrWPDgg+g+H3VXXnkBqNbgwhi4974Xw+dj/he/yNSrriLT04NbKoFS5EdHK5ntCjj0t3+LBniOw9gbb5Dt6+PgV76Ck89z+UQd/MqVjLz6KpphMGflSnTThF3PwKz3yOtLjgv7PdoPsy8XA7lsWszmbv0MXNUu2e1ts+H2B+CmP4XqWlj4AfmbzGfl/c+kBGAHQvIhPvt/CWM/8z0wNiSS+PEhMbq7/Cq5hmg17PhHmRBIjUPdNHG4LxbwunZLnXnXbjFzdF28zn8Vp/hUEuwS7vafQyaF1jIdlUqhKYVWVYPW0IT7/HawbbTqWmHc+3tRpRJkMxdMCGiaJuc69iYqmUBvbsW4436Mm/5IwL3nohwbrbkVsmncHb/A0zRM06zUlycSCRobG3EchylTpuDz+di1axf19fXkcrmKpN7zvApIT6VSKKUq7PlE5JtWvqaWlhZKpRLPP/88bW1tLF++HK1cWw8Qj8dJJpNs376dZDKJYRgsW7aMz33uc+XoOI9sdpgdO+5AKY8PfnA9mcwgPl+EePw04+OnuOKKW2lr62Dv3s0cO/YsmmYQCtWxdOkWTDNYjoO7nVIpja5bWFawDMo3oJR7QXRcNjvEtm0ricVaWb36dW688TEikWnMnfsJfL4o7e1rueWWnxGLtdDdvReFYgRh1E8i4LoVaAN+hUjjvwvcWn7cipjLDZSPGUIY+s1AO/A24goPsA6R2w+W2/aX2/YgQP92hGn/GTIx0I9I6QcQ5t9EmHssHcNnoGkabsml6eomzIBJz74e2te1M+XiKdTMrOGmJ29CuYq+A32E68MkuwVYx1pi5EZz+CI+ciM57KxNdiRLaGqI3v29VM+spq29jVRviuYFzaT6UuIwv6GT0NQQz9/7PNUXVXPzUzdj+A2aFzYTqAnQvLAZzZBkg4XNC+lN9Vby2gcyA6RLaYJmkLAvTMQXYUb1DO5dfC9BM8jJ+ElWblvJ6fhpToyfYCQ3wrToNE6On+RU/BQrt61kODtMe1v7BQlIU0NT2di5kUQhUfF08pt+Gbt2bSZdTLOkdQlo4vO0qGURSjkyPo3MgPd9R0ovSwlhqi/9wmR9+9ENAqyPPSLxbnVLZAwXqIfD90iZ6B/0w9VPyqS98mS8W9deHssOy3reBgHtbn6ScdeMScXoFQ8I627GRGE6dWG5TkMJWZXpL2e2Wxe6yWum+DT5olRibCssfZmZ/20K4HcX4F3g/l92+V1xcBfsj/j/Q4BfqWW/7ZeU0iXGT4xX6tqB39q/FbTwhX20tbcxZdYUHOWQKWWwPZucnSPsCxPPxzF1E4WiKdJUYd5fPPMi55LnWLNjDWFfmLPJs9zz/D1omkZtqJagFZSaob2b0HW9cpPbsm8L6WKaeQ3zqA/Xs2XpFkZzo0R8EQbSA2RKGRY2L6Q+XM9D1z1EwAwwmkugrvoWfPS0MOov3yGzkeOHAE9uZKEWSLwpN51LvyA3QTwB6rULxLVz8Dm5ISpHbkC5bnGXr10oJnPzN0u7g6vFgdMICWjPnJQJgJfvkDUaHLpdJgc8R5htMyS56rHpMivpyqAHzYBpVwugj7TKzbD6Yrm2cKMw9VUzBbArJWDdXyOZnNdtgeh0kS7VzYOX7pUbqhEQdt3JS39NS4RlP/Q1AffpnkmWfvAA2DkM3fuN/PbGxgi6Do4jMvh58xqoqwszb14DAwNprr66mcHBDDfcMJPNm5fS3Z1kzZqd1NWFGRjI8Md/fHmlrn316u00NkYIBCxyOZuDB/twHI9MpsTtt+8glSrS05Pk5MlxXNfDtj3OnImzatU2Tp0av6BESinFvKZLuLL5Mt4ZPoPjeUwJVRO0/Pz9KzvYfeplRrJx5jddit/0kSpkCFoB5jVdgoZWkd3Pb7qU+mgNEV+QoM+PqRvUhqq4onE2uVKB8VySD168gC9c9wn8po8rmy9lODPO1a2XE7QC1IWreV/LZfzklR00RmNoKgfOQLkW3ZXPcGyTOMvbwyJpN6eJrN0ehCl3yeNcp0S31T8s5jFeCgpHQCv/2OW6wO4WIF6/QWrbVVFYdeWWpfIBOceUu0Qal+sSRl8z5BrSW3GdUYLm5ISepxSaplUk9FV+P+s6OkgUCqxtbxdZfUcHyUKBBzo6QClifj9fmthXltyvmDOHdeV206uqMDSNexcvrmy3dL1yjvuWLKEmIOqRgGFUtq/r6ECZJmqCel64cBJ4nx9SvmXLJGqdaPvAAwJGz9eOm+aFOvbRUbF7z+eF4n7oIVlrmjD452epWZa4z508KYh52jQwTXwxPw+sU2zbBt/5joDl4WH5s5w7d/Jy16+Xfa4rdeznzx0EAnIJSsnldHXJaWpqZHsmI3MUn/mMHKvrcsyzz0q/liXnvvVWAfL5vGzTNIiEFNrpXkhlYFarAO9Mjguo9KqIAO1oGEo2HD8n6wmGHAWFIiQzk+Dc84Rp9zy4bKYU0nselEok3jxGfzYtfZw4xz//y79QW1vLlClTBPD7LP5x2y+Zd8mlXHbpZdK/66JcmRxwSyXcfJ6DX/kKqTNnUFBh4+fcdhtKKeasXMmMm2/mffffj26a5MbHsUIhQnV1TJ0/n1Iigee65IaGJjPbM5kKI28GAtTOncuxv/976q68EjuXI9LSwoKHHsIMBNh3//0c3rKFSEsLmt+PuvHj8L4OYalH+iXy7aL3CBseCEIoAiePCvDWEHZeKWHnq6oFiP/9o5K77vOLXN4fEAn82JAw9Mv+uJx7rklt+9FXpX0gJAZ3f7Ja2PgbPw6fWSdGdT/+tjDvnjtZZ97xoTLbraPf8BGMNfehT5+J1/VvArYzafT3XoXW2IS74xeo+JjMFS5YLGZ2YyOoXBa9dbpEvR3ch9Z2EVq0Cs3ygaajL/4A+i1/IYz+jn+S61ZeOV6u/N1yHFQqKSZ5gOM45PN5WlpaCIVC+Hw+bNtm27ZtpNNpmpubsW27Yjq3Z88eCoVChRGfyGVftmwZd911VyXyLZfLUSqVyGazALS2tmJZVsUcE8A0TZqbm9m/f3+FldfKkwnFYpFSqYRSLp2dG2huXkAmM8gLL9xLLNaC57mkUr2Ew3Xs3HkHicRprr/+69xyy8/IZgfZtetOstkhwuH6Sn18JjPI9u2rcZwct9zyMzo61gEa1dUXcfPNT2JZIfbsWc/Ro1sree87dqwhlermppsex+eLUFMzk7a2djo7NxAO1+F6Lt9AgHMYYcFPIRFu7UideTcC1heU99chbPpWREq/FAHu5xDgPYxMAPQgcvtHzuv/T8r9rC8fv7G8z2Eyv30TAtw3IOBdeR7Jc0l23rETO2vTf6hf8tWvqCfaGCXWEmP76u3ET8bpPdBLuC5MdjhL84JmPNcj3Z+mdXErvogPf7Uf5SnCU8PkRnO0Lm7Fsz3cokusOcbOO3YSa4lxy89uoWNtB7nRHEvuW0IpU6K7s5vEmQR9B/qwszY71+wkcTpBqSTJRwubJ32Y1u9ZD0CqlMLUTM4mznL7jtsxdIOGSMPvBON14boL9jmeU/FvqpSItq8l6o+yYs4K1nWsw/M8/ug9f8TmpZtpiDRw7fRrWbVtFS2xFm65/BYKroPKnRUiyS3I2DTQWK4RnyXjTU2H9z8GNx+H939HCJ3CkChGC6Nw8R2QOzsplbfTUtseaoG2Wy8cnyaPihI01DaZuKTpZcXo92W7r1aY9vhhKo7xui7j1fy4sOwoYd+dojy2sxBrE+IqXd7viwrQn2Dm311+5/IucP9vvvxHAP/8WvZisvhb69r/vbu8U3IYPzHOjjU7yKazOMrB0AwGM4M8uPtBhrJDhHwh7th5B6fipwiYAZRS5J08f3DZH1TAOMD6PetZ0LyAwcwgq7evJufk+MWKX/Dd5d+l5JY4NX6K9tZ2iXeLNDKWH+POXXcylB1iYfNCTsdP8+XdX6Y/3Y+hG9z13F1c/vjl7O/dT2O4Hq04CuOvCpt96Rfg7W+IuYadEfYy1zvp/q5bMsOpmQL0x14WcH7zMZmNfHmNuGwawfIxa8pZ7JHJ/MujGwRYvb1J2rz9jcmZUCMI7/miSJo0Q2Yl7Zy4xSfPyqAnMyC16omTAsaDdZDpkRr2xEl4fmW5blmXLPbnVwq4b1wAxXg51k2TuqPnV8oNcv4dwtL/6xoB/coTB/nmJWJ6t3CdyPMzPWX3+jXCyFshXAKsX7+HrVuPsmlTF4lEAcPQOXkywZo1O5k7t57R0Tx33rmLsbE88+c38tnP7qSlJUZra4xQyKocv2XLPhYubCYQmKxr37r1KF/72l7q6sL09opb/erV2+nvT7NgQTPp9Pku9jsZGMjQ05Ni69ajDAxkQMFoNsH3un7GaDYBCoKWjzllQ7ne5DCapnH/Bz/Fz/9iM3OnXUy2lOeNgRPk7SIPP/99MqUCfclhHn7++2RLBVzlYegGjvJ4c+AkPYkhcnYeQz/vVqoUYV8Qx3MpOiUurZ/BdbPfz8PPf5+h9DgfmH0193/wUwggGSiz6yNS057bL87ys3qFNVdOWR7viGu8NVNy2wPzwGgCvUo+Mz0GVpMcjyPu8FZr2aPhbWHclSN9agFh2L08hJaA72LAkn0T0vv6b8JFb+OzajF1ndFcjgd372Ykl8PQNGZWV/PETTdhaBqtsRj14TBN0Sjfu+kmZlVXUx8OM6O6mpxtEzJNZtXU8PTNNzOzpgZD1/nu8uXMqqmhPhymJ5XiH958k5ZYjKduvpmmSATX87iouponb76ZWTU1vDY4yLlEgsFMhqmhEA9ddx11oRDKttFmzBD9dzA4Cbyrqi4E5aGQUNSzZon7W2+vUNtTp4pl+4wZZYv10KQJ3YQFvGVJ342NIsXv75dJgNZWob9bW2HvXojHpd+775a+XRcfNjNnikx+9WpR4J8uqxmjUXjySXjnHZG279sn+xcvnpTAnz5d9i7zpHx/9Wq5jKEhIfctS0r7BwaEae/rE3AficAvfiFzCz6fXM4dd0j0/MiIVAf09oKrNFRrowBm2xFQ7veJq3m+KM8LJbi4DeproHdIJPU9g1ATE6ZeMcnKn+yW9uksWBarPv85WuZdQW9fH8tuXM7syy8nGQ3wsc/8NXOvWci8P/4o333ie2z7539GU6r8N+Hxg+8/zaf/+q9lIJjM4BSLOPk8I6++Sn5sDCMQ4Kp77iFUX49n20RaW1n41a8SbmqimErhr6nhynvvpTA+zsGHHsLNZrGzWcbfeovcwABvPvEEeB51V17JdY8/zpyVKwnU1jL1yit547HHyPT1YQQCvH/dOlqXLiXT00O2t5eDDz2Ek8+z6Gtf4z2f/rSA//G4xLCZ1oU56/ERWLESRoekvv2iSyt55/zBp+RL8D8fE2AdHxEJ/URt+sT2We+RY0IRMcCzbTj5pmS3r/++sO92SbZlkjD9EpHbz54jcXCz58gEgD8ApiVRbsmExLFpOkzEuiXG0ZfePAm2t/0M0km05la8rt1QLKLV1qGZlvxt2aWKUZ2+7Ga0totwd/0LamwYVSxAzRT0lulSD9/cCumktLdtyJUZ+nQSvXWGmOQB6XSa8fFxUqkUg4ODAMRiMdra2ti/fz8zZ87E7/fT0dHB3LlzWbZsGdFolLvuuotp06axY8cObNsml8uxa9cu4vE4PT09+Hw+stksu3fvJpPJMHfuXHw+H5lMpgzIJc/ddV2WLVtGW1tb5fjJW7pC0wwWL76XWbNuqBjNdXZuABTNzQsqMvc9e9bj80Voa2uvgO+urk3YdpaOjrUXHL9nzwba2tqpqppBb+9+PM/B8xxct1hh36Umfn2lb6U8enq6KJUyaJpeyZU3NI3NCHh+GAHcdeXnmxFDuh6kRv1lJHddA55GzOi+BExBpO0TYHwDkEAmAPIIY9+OgPoh+WtlLbACuA9xkNcRhn5Fef0Owty7CO8wUWPeubGT+ivqSfenef6Lz5MZzJDsTsq+MkO+b8s+mhc2Y4UsdEsn2hSlu7Ob+Kk4uz4v3kyartF2bRue7dHT1QM6dG7srPTTtqSNmtk1tC5upXpGNc/f8zzhujB71u8hXBeutN2zfg+BcADbtYkX4hVX+XUd64j4IoStMK5yK2B8Y+dGHOVU2k2A8Qc6HiDmjzGSHbmgj/29+9nbs5ev/t5XmV0zm8Wti5leNZ2jw0d56uanqA3WctdzdzGYGSTii6BreiVhaUPnBvymn5BpiVJ0wkyuMCKE0KHbBYxbMcicFZ8kX40QQLluSJ+UcW79tRCdNUk65XrFK6n+WulPQ9Sigfry+LdRAL6blXHpa18UxaimyzhjtEuILDMotfClxHnGdFGonycqUaUElJvliUd/rJzf3l92li8KYXV+zvsFdVjvLucv7wL3d5ffuZxfs+6v8v+GrP63uctPgP3GRY2cLZ2tZLdP1Jdv7NxIspCs3Iw85TGcHaYx0ohbjoi45fJbiPlifKn9SyybtYzBzCB3L7qb/lQ/HW0dOMrhQO8B6sP1DGQG8Jt+NE2r3FA3dW264Aa7qWsTJbdUuYnOb5yPrikBzLULxHFTt2S20lcjs4pKyb63t4jk3QgKCBrpFHBdM1fAeX5QblzdW6XuJ1AHxx4VQK775I18z33nudRrsi6MyPmmtstNVTmSo1kzT26cXkFM6SbM6XSfrIN1k9tf2TKZvX7oa7INT+rmD22aPHb6UgjUyHY7fd6+jVA1Y7K/Q1+TGqNjW6WNpgnbH26GxoXS/thWkVE5OYziEOvWdbBixRzuu28JNTUBPE+xYYOA8UzGZuPGTrZuPcqGDZ0kEoXK43Raat/vvXcxK1bMYd26DgIBi66uHiIRq7L9gQc68Pl0Fi5sYcuWfZVJgqVLZxKN+li4sLmyfcOGPSxY0MyKFXNYsKCZkuPy96/sYH7zJQQtP2hUZOs1wSjDmXFGMnGKrk3eEaAez6e5svlSpoSq+MsFH8VnmAxnxnlfy2UELf8FUXLzmi7Fb5jUhMT8KGD6qA1XE/ELaP/aiz9iOB3Hb1gETB+fuvojhH0BIr4gJdfB8RwY+y5MuVcAsx6RHHZ3uFyLflyk7qUT4JwrM+LnYMod0sZLC9jP7wf7jJjaWY0wuFqk7rm94A5JHJw7BMN3Sp9oMlEw/Hlh6r20uMsPrgTnrHzP3TGZUFAFCq5bkcFv7OwU1h0wdR2faWLqOoamMZjJ8JlyTbqhiUoh6vdzNpHgr3/5S84kErx07hxnEwkShUJF/t4UjfLrc+cYzmbRNQ2fIVLK/rTURiuluLyujr50mlggwBd27eKqp57i8OAgns8nBlq5nOSp9fYK8DZNKfB+8knRmyeTQmd/+tMCvN/7XqGqMxlxaMtkBFTU18vfrOeJJP70abFt37dP/h7yeWETJoD+oUNy3JIlQoG3tgoyXrhQ2t1zD+54osKsb9wIV1whtewrVwpQP3lSWPjubmHZQeYhZs4UAB4MirR+cBC++EXZtnix+OF94QtSCTAwAH/8x1Ljfvvt8hKXLJH5B9ueFB+cL0RYvx6SKR3P70dVRS6sc1cIOJ94XrKl1v38qDi/JRebygr73nte+3AQ/BZPPv44vc+/hJNIMdTXz8mdLzL9kos5+Ot/441n/oUjBw/xwnPPMT9UI+dIZgDo2r+fv/zzT8LJbpygj/R5NeuGz4cZDJIfG+OVr32NQjkOMNPby8GvfAU3n8ctFNA0jdzgIH2//nWFUZ9wiq+dO5f86CgHH3yQUGMjoaYmNF3n7R/+kL5f/xrD7xdzu9deo5hMijnej35UMceru+oqIi0tjB45ws7f/30GX31VIrwuukyM4w69JLXrAOPDZTD/uADo5Dj87PtiQHfRpdJu1hypaf+HJ4S1/8O/FKn7+9qhVBQgXyrI5MiEGZ1entE58w7EauQ8E1KKdFL6mHW5SOyVAruEKuTFRC4Ylpr3PS9OxrQZhuSxl+XzXtdutJmXoC/5AESiqMQ47o5fQCaNSiWlTee/oil1wTEU5b3HMIXln3VpRaZPsXBhW9dFM02U69LV1VWRvNfX1zM2NsaOHTtoa2tj6dKlBINBlFIEg0FuvPFGstks27ZtI16Oh2xpaUHTNAzDoK2trcLSa5rG/v37aW1txefzoWka6XSa3bt3k81mcRynYlqn6zrpdJpFixZVIuIALEvKs6LRJqLR5rJB3QqWLLkPANP009Eh2zo61uG6NpqmV8C3tNOIxVoJhxsr2zs61mHbeXp69tLScg2aZpDPJ0inB0il+rjppicwjADt7V9izpwVtLevxbbztLYu5u23fwEoIpFGampmYQBRpZgBfJ1JWfsSJMN9FKlHb0Hy1s8gbPwJxEAuKqMHHGAL8CkEcDcDfw68hgD/oXKfPoS1nwF8BehEwLuGMPJPlvfPQZj7VYCy9Mlx5NoOdFO/wGepeUFzZV9uNEfHOmlz7qVzOHmHzg2dF4Dtzo2dlDIl4ifj9B3qo2FeA7o5eY72te1kR7N4roema2SHsyy5bwnZkazsK6/nrJjDkvuW4CqXA30HSBaSzKiewWM3PsbMmpmciZ/h9h234ynvAqA+lhtjds1snrz5SZoiTSxsXsjMmpkMZ4e5atpVzK6ZzRM3PcHM6pnMb5zPx+d8nMZII6liis/u/CzdqW6ubLwSgLueu4ufvPETHtn/CCB+QF9q/1IF+J+Onybr2Kg5a6HxhnIZZvWkLP7oRhlH5ronyaP8wHlk0h3CpI/sFXb9hoOyPnQ7tHxMatwnmHerWoipt74mfdtpIaBqF5Tv+ccF0AcaJ8+X7xMJ/vmSd6WoJNhUzRLZvHKhmJbfmKqZwui7JblvGX6oniUqgXeX372o8sDo3X+T/5qbm9V/hsUu2qqQLii7aP+/e45UQTlF54LHSilVSBfUMyueUQ/xkHpmxTOqkJJrGTwyqPpO9altx7apIwNH1InRE+rI4BH1iZ9/Qg2kBlQin1BD6SHVn+pX6WJaJfIJlSqk1Mt9L6sVz6xQL/e9rJL5pBrPjatUIaUODxxWK55ZoQ4PHFb9qX614pkV6kDvAbXt2DY1khlR8VxcDaWH1JHBI2rFMyvUK/2vqPHcuHpt4DW14pkV6sjgEfVa/2uqP9WvUoWUSuQTqmf8hPLGDyu171NKFcaUKo4rVUwpVYwrVUwotfcTSo2+rNT4EaWSx5XKjyjVu02p0UPyvDCq1Dvflnb5YdmXH1GqlFKqEJ/cNnZEqWyvtC9llBp/47y2aaVy/Uple+Q6sv1y7kJCrmXosFK/XKHU8GGlskPy/NS287a/rlQxrVRuXKnhI7ItN65Uul+pwZfLbY4oVUgqVcwole5TKtV73r7y8ef3l+6fPC5+UtbbP6FUbkyu45crlMqNKLX9EyqTTKlUqqASibxKp2WdShXUkSODasWKZ1R/f6ry+MiRQdXfn1IrVjyjXn99UKXTBZVOF1RfX0q99daw6u9PqWSyoF5/fVDt2HFcJRJ5lUjkVSZTLK8LF/SVShVUKlW4YPvrrw9e0D6Vy6lkPqPGs0l1brxfpfIZ1Xn6NbX1tefUaDah0oWsiudSKpXPqJFMXA2mRlX3eL86PtStusf7VbqQVSPpuBpJj6uh1Ji659lvqaHUmHpr8LT60rbvqOH0uBpJx9Vwelxli3k1nk2ql069qo4NnVXJfEYdHTilRjJxlcxnKu16xgcq/WYLSeU5KaWcpFJ2XClnXCl7TKneFUq9jawLbymV2y+PJ9b2qFKpbUrlXytvPyDPncSFx060d8Yv3G6PTj4vvC3/fsf+ZG5MnRgdVYcHBtSKZ55Rrw8OqlShoOK5XGXbawMDKp7LqXgup0azWTWezapX+/rUtmPH1Egmo06MjqrvHjig3h4ZUd2JhPrEz3+u4vm8GkqnVX8qpeK5nErk8ypVKKjbf/lL6T+fV8dHR1VfKqVeK5/n8MCAGspk1OGBAbXt2DHVn0qp3mRSuYmEUgMDSq1YIVXpK1YoFY8rtW2bUocPK7Vjh1K9vUolEkqNjso6kVCqr0/2jY8r1d+v1K9+pVQyKft+9Ss5ZnxcqePHlerpUerIEelzZESpkyeVSqWk/xUrZJ1Kyf4DB2Tb668rFY+rbMpW8binTpyQ04yPS7NAQJrt3y/r/n45RV+fUpmMPD6/674+pd55R17axMt45RWlPvWpycs+v99USvocGpq8zIlzTPQ7NKSUZztKjcaVSmaUeuuUUoWiUrYt62xO1qmMUkdPXrjvrVOyfWJbOitt0lmlSqXysQWlegZlu21P/nvrlFK9g5PH9gzKtmRa1rYtx+w+pIrJlNpz113qH668UvXu3q2KqZTKjY6qvffeq35y+eVqz113qWIyqfbcdZf6yeWXq97du9X4O++oPXfdpcbfflv1vvSSyo2MqGIqpQrJpMoODanE6dOV9nvuuksV4nGVHRpSo2++ecHxo6+/rnp371b58XGVHRqSPt95R/Xu3q2yw8MqOzysEqdOqVIqqbye00oN9irVfUqpJ9Yr1XNaqWxaqVRCnn96mVL93ZOPn1ivVP85aZ/L/Pbt+eyF27NpWb/wz5PnOf2OUkf2y3niY3INqcRk208vU95gr3IzKeWmksodGVJuKqG8QkG5g33KfubHyh3sV16xoNx87sJthbxy0ynl5bLKfubHqvTQXcp+5sfKy6TLbfrkuIHyMf09yk0llXPsqHIH+5RbPr6yP5W8oH83n1NeIa8KhbxKpVIqlUqpfD6v0um0GhkZUX19fWpkZETlcjn1ta99TT3zzDMqm82qkZER9fOf/1zt379fjYyMqHQ6rfL5vMpkMurYsWNqYGBApVIpdezYMZXJZFShUKjsGxwcVMeOHVMPPfSQeuaZZ1Q6nVa9vb3q5z//uUqlUiqXy1XaJZNJ9cwzz6iBgQGVzcbVsWPbVDY7pgqFtMpmR1Rf38vqn/7pUyqdHlSpVL8aGXlbFQoplc2OqOPHd6hksk/l83FVKKRVoZBSx4/vUL29B9Xo6PHy9pQ6ceJXKpnsUyMjb6tkslflcuPq5z//hOrre1llMsPq+PEdKpHoUdnsqMrnE+r48R0qn0+o0dETKpXqV8lkrxoZeVtlPE8dVkqtUEodVkodV0pVl9cJpVRKKdWvlBpSSo0rpU4opQLl9m+V9x857/h0uf0rSqltSqnhcl9JpdTL5XZHyn0Nl9u8Ue4nVe7/gFLq7XLbgFJqPFNQhVRB5cZzavTEqMon8mrwyKB6ZsUzauDwgCpmiiofz6tCuqBG3hlR+7+9X/38Ez9XPft71LFtx9TgkUF1bNsxNfDagHpmxTNq8MigOvTEIXVs2zGVG8+pZG9S/dOn/kml+lMqN55Tx7YdU6m+lBo4LO0HjgyoQqag8om8rON5VUjJuVL9KZXJZdTrg6+r46PHK2PW/lS/6k/1q2/v/7a67V9uU+mCjFmzxWxljHpi9IQay42pVCGljo0cU32pPtWX6lMrnlmhXht4TWUKGdWf6q+McV8beE293PeyemfkHZUsJNVAakD1p/rVjuM71HhuXPWl+tSn/ulTqj/Vr8Zz4+r46HE1nBlWqUJKeaW0UsXk5Nh0/LBSe1bI2s7I2HPPCqV+gqyL8Qufj+wvb09Mbk+8/e+OSZTHq0fkebZXHife/s22+RFpmx9Rqu9XSjklpcbeUaq3U9aurZRjyxh07Jjsd0pKlbLlx+V9ubFym3dkXGoXlPLc/4cRzX+eBehVvwOjamrCqebdpbK0tLSo3t7/s2ssJtjuPev30LGug9rLaitRb/+fXMMDHUy9dCoKhVtw8XweWS/Lmh1reO7Ucxz864PUh+vJ2Tnuef4evnDNF2iKNgFwz/P38L2bvkdfuk/a9h1k89LNRHyRCiOfLCSpClQxJTiFn7zxEw72HeRby75FyAqRtbO8OvAqC5oXoGs6hmbgeA4Fp0DICqFpGifGTvD1rq/zQMcDNEYaqTEtzNG9MoPo2XD4XnjPveK4CSI/T74OtdfI48P3wKWfl/16QMzkdL/Ij5SH0LnDko3pFMrtPwdWjbQ9ukGY9lwP/NvNcN0OqJkPdlIcPvPl2mIzLDIlNPk3Ue+uacKsu0WZlQSZzRw6JGy4pktbkHYTdfpuSaRQMGlCgpK2hk9q2gdfgamXC6s/8jpMWyAlAcoRk7pjW2HOp+CD3ynXYeuU8lmO9WgEAiY1NQEOHOijtTVGbW2Iw4cHWbBAZO+u64lTc6bEm28Oc801wooMD2eoqgrg95u4rsIwNPbt62Hu3HrCYbnekZEs+bxNd3eKxYtbMU2dQsEhkSiQz9usX9/JAw90cNFF1RSLLr5yuUc+72BZOv6QRtbOky3lmVJmxS3DxFUe+VKBb730P7nzuk+QzKUZzo4zr+kS9DJTrKGRLeU5MdrN5Q0zMXWDHW93suyyxaQKGXyGRcgKMJ5LEvKH0IDNv/4xf/H+m4kGQkwJVZG3i5wY6eaKabPLfi1KTPIyCUZzCa5uuRi/7pRrLXVETGiK6/vYeqi9D4xpUHgVrBawe8VwzrpImPahNZDeCtEVYjqnhYVpH1sPtWsvbH9+n+ZMcLrlef23qEj2xzbJceb08v5NZKf+gFLZetxTCkvXyTkOlq5z+44dbD16lBVz5vDYjTdKFrBhVPwAALKlUiUOTilFvsxgBcpMfbpUwtQ0LMPA1HUcz6PgOKx98UXWf+hDRH0+MqUSv3j7bV7u7+fR5csr/XtKUXJdpiiFrhTamTNCI69bJzXmxaLozP1+0Ypv2CDy+fp6OHJEKGlNE0q67DSO44i7/IIFkxp1pYTB7+yE2lp49FGxfndd0Zxv3Sra9ieflP6KRXjmGZg5k/yi3+P42QAbNmqsXQvTp8sha9eKOKClRdatraLiL5VEnV9dLUb5E11///viDP/II2JyB1LHPmE/MPHS164Vtn3+fFH6ZzLw5psio1dKmPsjR8Qgz7JESPDhpS5aviCv12eK1N1nCQPePSDsumWKlD5QvpccPyfsel2NmNGVHDl2YskXhbFvbZS+bGeyz2JJzO1sR/pvbSwfq0l9vd93wfmdGdNId3eTGxoi1NDA0aefZs7Klfirq3l10ybmrFpFpKmJdG8vbz39NO9/4AFefvhhun/1K9o+/GEWfvWrZPr6yA0MUDt3Lpppopsm6e5u3nr6aebcdhv+mhoOf/Ob1M6dy4ybb+bQ3/5t5fj3P/AAummiGQbKdSmMj2NnMoSnTSM/MsLRp55i0YN/g/HTx8UU7va/gZmXle/ZZRPI4X5h1v9kNaQT8vimW2Fqw2RN6GAP/OoZiXM7+ZbUxP/Z5ySbfdcz0r5umvRlWsKkH3oJrr4W/nSN1Lv7A8LQ7/gH+JNVwrzv+AfUn39e6u6Vh3IdSckwy4oJz8Xr7UZrnAbZDCqTQW9pA03D6z6Dt/XvMFZ/EWwbr/NFcZWPxCrvh2aYKOWhaZLAoBwb94nNaNNnY9z8x6jxMQgE0IIh8SmwLDSlULqOZtt4/T14bTMZTyTYs2cPy5YtI5fLkUwmicVidHZ20t7eTiqVoqqqiurqakqlEiDy+q6ursoxe/bsYdGiRWSzWZqamkgmk+zbt69yfDgcJpvN0tzczM6dO+no6CAWi7F9+3ZaW1tpbW2lq6ur0kdNTQ2PP/44t956K9Om1WOalM3uDHp69hIK1RGNTsOyQmzbtpLW1iVMn34dnZ0bWLLkfqLRZgAsK4hSHradY3DwME1NVwMKXTfRNKNiVmcYFrpuUSqlyWZHSKV6aG5eQKGQIBSaSm/v/sqxmcwgphnEMCwCgWqK/hidmkYdMIKw4rb8omCXf10iwHGk9nwdwqA3Iay5CWQQpr4ZqWkvIkz7nPK+qnIfLyGS++nlX64DiAneRcBnEaa/Fqlvb0QM7AZLDovG8hSTRXxRH+/88zv07uvlhi03YAZMlFLs+sIuFnx2ATUza0BBT1cPVa1VJHuSxFpjVE+vRnnis6KUEuO2fb1Em6J0buhk8b2L6dnbQ8/eHq576Doev/xx1ry9hpcefonmBc1cfsvlAAweHqwc07Gug3BDmLd+9hazPj4LMyz3sZXbVrKkdQlLWpewqWsT9y6+l6ZoEzG/uMgrpcja2cotz9AMelI9lbYtsRYatzSyYs4Knrz5SYYyQ5wcP0lduI6R7AgLmhdwsO8gC5sXEi/EifgiACSLSaK+KP/8zj/zUvdLPPrhR7FdG0M3CJpBYoaB7qREFq8cGcvplvzzHBnnZU4LQz5nncQaZ06Xx6BrRQIfapGa+PRJeGuj5LEXR6XNFQ/IPq8kY0/dlBJMz5X7lJ0RWf3bm8ptZ4qaU7dEgRp7j4xTM71lMzr/pOrdc+UaM70ii58Yz06w9BM17sGpEG2VMar+vxfX/J+yaJrWp5Rq+a373gXuv7n8ZwDuxUyRX376lxzdepQ5K+bwke9/BH/0f7+8xM7buCVXnEIN7QIgH700ysn4SXqSPbTEWtjctZmvX/91HM/hzeE3mVUzC4Xi+dPPc+30a9nYuZH7Ft/HzJqZlRvzUHaImD+GoRvo6BzoO8C0yDSmRacR8UVwPIeuni7mNcxjLD/Ghs4NrOtYR12ojjt33cna9rVcVHMRt/3yNrYe3cq2W7fREmthii9Ei5aTeqH33Auje+VmFWqVG9L7yiB17AAEmgBPIjP0oBhxFPolR3MCpF/2RQHcr35hsr+RvbDgSTi4SuT27T8TCf3IXnHvTJ8Uw7v5Xy8bhwwLcEeJWZhScqNTLoy+AY1XQyEBoXqpN4dyzFxebqahBrlp29lyFJwqg/1CGbDrYixXN19ujgc3wMK1IlUyrMn+lAeFcekveQoObJBIuvyIZMtffR8Z/yz27Btm3rxGUqkikYhFoeBQUxPk7NkEzc1RAgGToaEssZifXK5EdXUQn8/Atl2KRZfDhwe5+uomTFPnjjt28rnPLWRsLMeSJW0MDKSpqwuh6xpKwfh4jqlTw4C8LatWbWPr1qOsWDGHJ5+8iXPnkmzY0Mnate3MnFkjL8Xn0R0fIuT3UxOM4XgujueK2RyKX584yIK2K+hNDnNJXRtB0w+ahu05WLqJoel4KI70HaMxMpX6aA2apuF4Lm8OnqIhUkvAsoj6w5i6wYeeWM2Wj95FQ2QKf3fol9z/wU/hKo83B08xNVRNc7XIsB3PATSqfBqGykh+ux4TczmrSYDzBJh3hsCLg14NZr28+PwhcYC3T8PYBqh9AKxZYnJn1st3FRNwQJUo27zKZAzlyRvNKLczmHRvLX9HlAvuOCW9kbGCiwZEfD5cpdjf28ui1lY8z+NcMsmGzk7WtrczvaoKyzBIFYski0Vi5YDwbKlEzrbZ0NnJvYsXMy0aJerzkS4WK4D+bDxOfybDwuZm4oUCmWKR+kiEkCXfyeFsllg5H14BnieTQXnbJux5RHI5tHRajOMcR6TqZado0mmRyufzAqYPHhSzOtuezGHTddGfp9PwxhuTKNcwRCo/MRkwa5YcN7EcOjTpRP/AA/I4lRLtumGAppF0QqxcpbN1q8S4Pf641LSPjMi8gWWJyj+ZlEtOJiXFzjQFgG/cKKeePl2k9UuWyL/hYbjmGrl0z5Pa9wmQ/9RTknrX2yuKfZ9PpPSxGBw+DDfeKNfyzW/K+aujrqQbeGUXfdcTM7mT3ZPg/OLpYmAXCZVv/M4kqA/4BOx3DwiIV0gW+/nAfsK07mQ3xJOw4L3yXo6npB7+fOm9mvzKAtjFAsOvvELt3Lm8vH59BVAveOghPNvGzmbxV1ejlKIwNkagtpbcwABv//CHzL/7bsxgUMB2Os3bP/oRc267rSKNx/Nw8nniJ09Sc/HF2JkMwYYGsj09MkGwahXBqVMBKoA/09PD2z/8Ie9ft46DX/kKg11d/MELz6N7LtqZd8QtvgyYWXaL1K37g+X7sS6vyy7BmWNSjz6lTrYZBji2/PvZD8SMbmqDfE8dR5z5A2VgrusSJ7fzH8uAvlG2G5Yc/8oe6DkDf/xXgIYyTFR8FJVOobfOqHyFVTYDxSKq54xI2l96Af36G6X2fc+L6O0fhGgMzShL8JWH0jTUG0dQZ49LJJxlCSB3bJkQsCyU64jLfPUU8S7QdDG1y2bQojEB7+GItEsksWum8MsdOzh69Chr1qxh9+7dLFq0iH379nH06FHmzJnDjTfeiOu6lEolgsEguq6zbdu2C46ZaLt8+XJ0XWf79u2Vbddccw379+9n+fLlmKYAxYnMdsdxMAzjN/rwPI9du3Zx4403UihkKJUG6OzcQHv7WmpqZuF5DrpuoJRXnrzQ2LZtFUePbmXOnBX83u99Bb+/CtMM0NPTRWPjfLLZYfbu/Rrt7WupqmpD03SU8ojHz5LJ9NPcvBDDMOnu3ks4XMe+fVvo6FhLLDadUinD8PAbtLRcg64blEpZhoZep7l5AV6gmpOaxgak7nw2Upu+HrgXAdBVSO76c4hJ3WPlXwDnvD87EKD99XI/M5kE+/cCl5b39yCS+ziQLPddX+7rIBIfl0ec5QeA67NFxt4Zo2tTF4vvXSy57X1pItMiDLw6QKw5xrmXzlEzq4ZYS0xA9doOIk2RyvjSsz12fnYnzQuambVsFtGmKMpTZIezFBIFcqM5pl01Dd3Q0QyNnZ/dydLNS+WnoD9dOXe4IcyL9794QT/pgTSh6SGSpSQ+w4elWygURadIwS1QckrUhesouSUcz6E/3c8j+x9h09JNhK0wuqbT2d1JbaiWkewIi1sXs3r7ah7oeKASCded7KY31cvC5oVYhsXxseN8+8C3K31kShnue+E+vnDNF2iJtTCYGWRmzUxOjJ0g6o/SEmkgoGlo2TMCzP/92PXoegHnRkhk9HYCSlmIzS6DfLtcwqlJuWZA7m04ORmDUgb+ChmP+qrL4wJNSkprF0jf3nm/nyNdUt8erAOrSkpQiym5F2mmjEFVeRyrGdKXV5S4uAmwXjVT+lRKQLwvKu00TUqC/hsu/xFwf7fG/T/p8r/Kav/fsUwY0W1buY3xE+O4hUkzuz0P78EoGlxWe1klBmPCaO7eF2Q2sjnWTGOkkY/P+Tjf6PoGW49uZSAzQHeqm87uTs4lz3Fy/CSWbuHTfdzz/D3Ma5jHtOg0QlaIk2MnWb19NXXhOoJWkN5UL3cvupueZM8FdfSu5/LETU8wes8o106/lm/t/xaZYkJAe/dWAeqNS6WmZ6KOJ9ctNUKBOjGY003JZc+dk+eBOqnxmcjJfGujsOfn9zdnndy05qwT0B5qERAfKv8tvr2pbDIyKLVFbk5udHZaZjA9V2rOzTBMu0ZAtRUW47ndd0qtueEXcw9/lfSpHBh+TcC8ZsjNsJCU7Pd/XQPhJmkfqheH+eygHGv4pRbK8+TGGWqQG21sBlz/hNxIDZ+4zb/yTXy6zZIlktENoOs6U6eGKJVcmpqiZDIlHMfDMISVr6+XiLiTJ8fYt6+XQMBk3rwGDh3qx3E8vvCFa3j00QMsXtzK2bMJvvzl3fT0pMhmbfbv76W2VgCDkJ8aX/pSe6UGXtM0NmyYrKV3XYXjeHhKEfL7KdglDvcfByBkBXh0jzg6L39PO/WRKcxvuoSQFaDk2oxlE3ieh6Hp9CSH+NvnnqY2XI3fMuE80D4lGGMoM0bEH2Ljiz9iIDXKlo/exdzG2Qxlxvn8tbcymB6r1NOP5hI4nsuR/uOMZZJkiln53atEvw1AYK6w5IiqARSoLIx/A1QavJx8psH3g5ctx7s9Ju7x9kkwyz/CKKldd0bLYN0DLGSIppUnd06JM719Cgb/Wmrk0csmdnkwqrE9naFsls/v2sXJeJzhbJb3TZuGBuRsm1k1NTx1883MnjIFyzBwPI+AaVbUBSHLqpjUbb7+eoazWVKFAgBBSzKHTV2npaqK+nCYNTt3krNtWqqqiPh8mLqOBnQnk4QtC08pXM/jbDkvfiiXI6LraIODk+BG08S9LRyW4vCzZ2W7YcBf/IWYyYVCQj1bljjHv/qq5KhVVUnx+LlzgowdR/p67jkB76WS9HfHHTIRcM01Uoj+rW8JZe73y3nvuEMAfzqNpTmsXatYsUKY8mxWAPSVV8qpHUfq1KdMEbB+6pTUsgcC0tWTT0qynOcJm37DDZI+N3euXPJEaf75me6GIS+xvl4i7M+ckej64WGJjfvEJ+RahoZg/34ZoynXm8iHE/Y7nYWWxgsz2aNhAYyZ3GTsm8+SDibq45MZfiPPvVTuV9fEuf7Ky8sTUEVxrJ/ZXHadVzIBcOKcTB4USwL0dZ3A1KmMvfEGc/5dJFtueBjD7+flhx/Gzecx/X5Gjxwh3NQk5nRjY4y+/jrBqVOJTp/O5bfdRn5srPIdRdNwSiXq589HtywyfX04+TyhxsaKg3y2v5+X168n198PSvH2D3/IpX/xF5U4uA9v/Uf08WG0f3wS2i4W1rtqCiz/E6ipFdCuacK8jwxKPNv/fAwe/bK4y6OBXYSffk9Atz8It94uhncKOU4pKOaEff/p4zA2DLUN8MnPC/Av5EUBcuotOdeC34M/+isB88V82dHdh946A5WM4277GSoxDj4fKpNCm3kJ+APoS29GMyyJcVt0HURjkE7hbntGgL/roCnQr5iHftMfCYvveTIJApN57p6S2Dg0cGyU56JFY+hNLfJ3Z5fEbd7z0GpqwDBob29nzpw5+Hw+2tvbyWazlW1LlizhjTfeYNeuXYTDYRKJBD09PZX9E6Z1c+bMoaOjo/KbdP62XC5HR0cHevladV3H5/MRDoeJRCJEIpEL2k/sv/nmmzFNk1DIT2fnhoopnefZxOOn8DyXZLKb3t79aJrBjTc+xq23bmPJkvsplbKk0/1s376acLge0wywd+/XzjO2g1/96k4cp0B1dRsNDfPYtetObDtHc/PC8wzvJC7O748QiTTR09OF4xTx+SJEIg3iUI+qOMRvQFj2CZO5TchU7mnEWG7CsC5X/tcNdJWPAaljn+jH40KXeAcB7XXAGsSQrqrcz0rgLFIzbwIpZALgjwHbpVLPvv+R/Vghi5pZNeimzj/92T/R9Y0u5vzJHNqWSJzbsWePsWfDHgyfQXYsSyldQtM0ln9nOe/5o/fQ+TWpb/ccD1/Ex4FvH6gA+R1rdpDsTvLhb3+YodeHsEIW2eEs12+6nlhrjEBV4Df6iTZG8fAYyg5x+47bOZ04LZM7no2lW9SH6ym5JUzdJOKLMJob5a5Fd2HpFp3dnWRKGZqjzYxkRwSY6xZP3vQkLbEW9vfuB6A/3c+8hnl4ysNTHjOqZ/DIskcIW2FGs5KE9L2bvsesKbMIW2FmVM/AUx5Rf5SsncV1C2g4k4bH58e95XrK2ewboDQuNe3FuIwZ3YIQRl5RQLqbFUO5l9dAtltUnxqQOQcHbgMnLW0mfJx0H4SaJ7PidUvuW25O/J7CTcLYH/i0MPUTUXD6hKrHlmQiz5b72URMnGYI8w4yvjR8sj15Wsah7y6/dXmXcf8ty38Gxh0EOLtFF9Nv/s7Yt/83l99g/X/wERKnExdI513dZSw/xlB2SDIvx09SH65nevV0AkaAnJ0TZ3kUXT1dLGxeyJqda7h70d2MZEeoC9fx6IFH2bx0M6ZuUnJLvD70Olc3XU28EGfB9xfw93/w97S3tZOzcxwePMzVTVfjN/18ZvtnuGfJPcyomkHOzmFoBpZhYeomB3s6+WBtk4D3Kx6A8EXyojKn5Sb1xoNyY2xbMcma/67ncx+Sm5W/Hl69syxPmlGetRwRkI/37/p4CrLnfsu5npAbqxGBUkZAvK8K7DyEagWAdz0o8vVLV8DSpwANcsPgr5YbdSkrpnJOTo4PNUxK3ieOyQ7KBIQvRmVGVdPlBj94aNKB3vBPGo0cWA9X31sG/1EyRYtjx8fYtKmLb37zBsbG8qxfv4d160S+ns/bBIMWrqswTWHOvTLzNjaWpa4ugucpRkdzhEIWgYCJZens3dvDZZdNJRg08fmEGdE0yOXscu6uVWHiPU9k9mfOJHj44QvPHamycJXD4f7j1ASj/Pjl7fz1wo/heGKC+HeHfsmnF36M4cw4l9XPYCyX5IcH/oVPXf0RZtRM46HnnmLXsX0su3QRD92wkp7kMD848M988v03Ec+nuaJxFm8OnuKOX3ydZZcu4m+W/jWGbtCTGMJnmHyv62eV47/0ob/kzcFT1ASjxPNp5jTOIqAXCY3dcZ7c/UkxnxvbALXrwJpBRUKvPJHHT8S6uXEw62Bw1eTxjU/JZ5nbL67z7ijYfeIcj5I+nDMSBTf6IEy5G8a3nHf8k2KKqIcAg5Sts6e7h/pwmOpAgLpwmL3d3bRWVRE0TcI+H4PpNANlttwyjAtYm3PJJOv37GFdRwczqqsr23XgdDxObzrN4tZWQEDUmUSCi6qr6U6lWL9nT4XJN3UdVykhJTWNzu5u/nDrVj566aX8ww03oA0PCyLesEHo6ZkzBWRXjLrSwqgXi4Jk29oEaCsluvS6OnksOYYwPi7IN5USMJ/NClC/6CLYs0dA+cc+Jsh3aEgocKUkp62hQfTnM2bAkiVkVJjBMYu6uvLtJSPk/MMPyyVNXKbjyKXV1wvA7ugQZv7RRwVkh0Jy+ZYlgD0YnFRiT8S76WV8NzQk/axeLQb3W7ZMsvFPPCETBJ4n55k6tcy4F4q/yaAXS2WwrgmoTmcFqAfLyq4T3SJzn6D9ewYFhBuGAPhwsAzY9cnjYxHpt3tAJgZsW8D7xJLMwFunYMFcyYmPRXBropRyWXS/H03XRfVSKJAfGsIMBrFiMXqee47aefMojIxUctuV5zHy6qvUvOc95EdGePuHPxSJ/ZQpvPq1rzHntttEft/YWNl21T33UEgkeOdHPxK2PhRi5JVX2Hf//SzatIn6971PDBM9kcp6xSKBcAjt5JvQfBGEo/JeGIZ8GOXJAUl+0CdVDaWCsOofvkVYddeTbWhyrGHKOjEmGe+JMYlU+8WPYP+/wpIb4E9vl8ldNDj9Dsy4WB67jmwPhuT9tXwoNFRiDC1aJRFvRw+jzZmP8eHfB8svr0nT0JQn7Hh8FK/zXyU6LpnA++kP0G/9NNq0lvJrMUQqr2mglLDGpQLeCzvQr+mAWLVEwzkOXn8PWmOTTJb4fGJm130GEnG0ljYxqVv2+7iWj5JtV5jwcDiMUqpiEDc4OFgxm9u5cyctLS1cdtllFItFAoEApmniOA4+n68ipff5fCil0HWdZDLJ6dOn6evr48YbbwTAtm1efPFFPvCBD+D3i8ntxLG6ruN5HsVikXA4jK67lEopisUUfn8VhhGgt7eLtrYluG4J0wxSKmUoFpP4/VX4fFGUcuTjLmUwTT+m6SeROMOePRvo6FhHdfVFOE4BXTfJZseIRhtRysV1i5hmiETiFHv3bmbp0s2VPxFdN9F1E9e1MQyL7dtXc/ToVj53f5pz/ggbEaY8jIDp9Yhp3EzEIG4r4vj+FAK81wNvIkB8S/nYGQgIfwCYhTDuGxF5/UxEAr/mvL6e/Hd9fwsIlH8LzgJ9wNUlB1VWZC771jIAiski/io/Q68P0bywGeUoeg/0EmuNkepJEZ0WJTItgi/qQ7kKz/boPdBLZFqkosjp2tTF4vsWgwJf2EegJsBbP3uLmdfPJNIQKc9VC1vfd7CP+ivqsUIWnu3Jn0vJrby3qlqxcudKth7dyoo5K3j6I09zOn6ajZ0b+eYN30TXdJLFJFX+KqK+KAWnwKH+Q8ytn0vEH2E0O0rADJCxM1T5qwiaQfJOnogvgqtcTM0kWUwCYOkWg9lB1u9Zz9r2tUyvmo5CcTp+mkf2P8LmpZsJmAHGc+NMDU9l5baVfO+GzUzxV8kb6+ZEAZrrFhJo/uaytLysmtQ0IV+c/GTpZuRSMah7e9OFytCF35c3INcHw7slFk4rl4mNHoK6a8TobuhFaFwmJaHnj281XZj37GmYfqvkunPeYCBxalICXz1LxqulDFRdJGNOzZBrd21Id0uM3JRLxX1eK5cb/Tdb3pXK//+5/GcB7v9fL7+zxv28yYRMMcPenr0sabqaoGGQKOXIlXI0RepRymEwN8bUQDXDhSR1wVoCujCCtlvC1Uy6evZyZf0cAr4onmcTMCw8zWAkM0DAJxL6iBmgYGfxWRF05VBwbQzdh0/XSDslQlYQzbOJl3K8MfQ6S5qvRjP8WLqOpko4SsMujGMEpuJgijOtsnELI1hWBKwoJddD08BDkzp6ZeO6Nkr3YxomrudgaRoWDhSHBTSXa4ns3CClqe1ogFEYwZ240SF1wzoKa6QTK9yEHZlNqVzDZekeppNGM8NyE60IZM7TkU7Im11XGPhgncyqmpHy7KYnNfk4oMoRHpjgZKRNKQO774H33QXVM+UUWnmg7hVkthZk4uD4v8D0D0CkDjxIpVz2HBqlflqYyy6ZSrZgEwpYeCiMsozKU6pcwwm6plHIO/j9BpouNcojg1nyaYfa2hD33vs83318ObqlY7sulqHj2YoDB/tY3N4qpKorfXsodDTc8rkm4kNdT2HoWuVdslwXy3EoeDZDmQQNkWoCuslIIUM2n2GomCYWnUJruIZ8NkVn71u01jTy/sbZKNfllZEzXFI3nahmMlJIkS/kCAZC1AWiYFo4pQKHR85waf0MIpjCHJZKuKYBrlvedxExzcTWQFcKAxgqZfEHLGrMQez8ELb1e7iegaFl0b1uXK8K3d+AbRuYJuIDoDnohotbHMfwT8F1DAzTxXNdXBXAMj3c4ojscy18Wh8+vyGO8mOPUKr5FiXbj26a2I4fy3RwXLOCu0xTYduiaLAMG1crkcgbBAyDWNDA9TwcpfBcj4BP6lRdpXCUwq/rKGB3dzf14TB14TD3PP88H5w+nT+bOxdrgpEr/2crD1PTZULGtjF0HVPTyTg2dz33HAuamvjIxRfTGIlIvbyCnGOj6zp+w8B1PVwUAcPAc128YhE8TyYOfD7IZNB8PlRZsq45DspxRKJr2yjLQrcsjGQSVyk8ywKfD62sBFCui14sojQNPRDA6OzEfe978UIhccEuldBcV/rJ5VC5HF5dHXq5xEfzPJTjoAIBFDqua+A5ioDfo+QZ+AxFIe9RcC2CQYgPO1ghk1ePWFx9NUSCNk7BxTQ8lG4wPuLhj5jkctDSYOOhMzSs0TDVRTfLfhjKo2gbuLZLMKRTcjQMTaHjMThiMHWKh2HpeI6H5dPAc3E8A8twUZp8fhWgPfFBabqAQMcDqzw5XP48tHwRFfRN/iBoerkkZ6KNuvDx+WtPoaVz6FHxMVGaknOYOigNjDIg9IBMDhUNomyHUjyOr7qm0lUpPo4eCqHQcHM5AlUxRo4epW7uezFMA0/TcPJ5dE0TptUw0AwTO5UkfuIkVbNnY/p8GH4fdi6PLxIB5VHK5TDKDuQYxoTjCErTKKbSJE6eEJZe0wXwFrK4PgtX11DKRdcMVHmyzCg6UMzjRiMYxRL0ncOdeTHoJrqn8HDBcTHK5UqujrznhtSVGiUb8xc/xvmDP8f1W+jpNF4shu5peE5RGH5AR8P6xx/ifPRW3IDIYXWl4Xk2hulH6+nBabuIomWhKTCUwtNF2eOhoStP+o5G8dAwR4dxAwF8wRDGL3+G8eHfR3keeC62YWIHAri6gaUUtlJYgFssYNg2TqwKA4Vr21iahm2YGJ6Ha+gYClwNDDRcu4SZiONV1WBgQNEhV8gSDkqOunIVmqWJurYkzuDKU+imjmu75Et5CtkCuVKO1pZW3JKL6TNRjhKw5nrolk7JLaEcRSlfwh/yY5om2VSWcDSMhvSZK+YIWAE0U6NvsI+2tjbGxsbo6uqivb2daDSI7eXIFVNEww0oDTSlKDkFAr5I+ffHoZgbwwpU4TeDOJ6DQmHpJqn4OXQrgD9ch6mZeAjrqmsaGjqecsWfpxyha6Hzxht/z9y5f0rJc3FRmLqFhqJQyuL3hSsJH/nsCP5wHRHDQFcOtm6hlIMPoyxRlvuvi8ZLusV7gSleAQ+DAd1iKjDmlUhrBrM9G1PTUJqBoxRW+Xvs6BajZpAHge+4JZRXYkQzqFMulmaglI2HgY5LUQ9QMnyE3RKGV0LTdDTPlrGINkkylXI2Tt7BDPpInE2QGUjTtqSF7GiecF0YO1di8PAQTQua8UouTr5EYEoI5XqYQYvsUJpCqsjUS6aW7wkydirfDitqbqfoohkahqmXb0vlduV9ivJtTwNNc1BuEcPwgXLpz46QKSSYVXspjltgT99B6sJNXF47G025GGiUlML1SoRMP+OlHPe8uJbNH1pPlRVEoWOiyHolLHQ0w8/RsRNMi07jnufvYUnzAj4y6wamRpspobjtl7dxbdu13HLZxwjqOroRJGFn8Ws6NVYQR/lxXA3XVWi6jkkOPBtHr5K/DUPGQ67jEEjuxRdpgNFOSoGLKVRfi6HyWH3/iC/RCXMeoKRVU9Kq0XUN21FYlla2e1GYhoauQ9DIw2tfIH/FozjKh4bC8zwsU2E7Grqm0HQDHRvX1QmG/Bga5y2KykAQT4gu3T85lnUdmayceD7xO+E6Ek1qWP/twPu7Uvl3l//Hl1LJoVByqbp4Ch/5/keYeulUDJ/xG7nwPsPHta2LCLp5jOwANZqiJTwFI3Ec84XVNLtZAoMHaPWFCGS60fo60RIn8b34GQJOlg9WNzNlzz0E091EPBuzvwsreYbmfV9mSmGEKiuMmTpLZPhVrORpzBdWE8n0EHBzGH2dVOUGsDwHa+Agdf4YH6xuIrD7Tnx2Bs1zKeEn4+qMekG6kwle7TtG0bEpKoOHO3dyJlMgUSwylk9TdD1e6ztOX2IEB4tzqRSvD56i6LoC/tEp4CPnm0ZRj5KbspiCv5V8bTsFxyZjl3CDjTgKHNfl7PgAX33uabqTIySrF5ALX8yZxDBfee5pSk4OU6XQTAulMjC4BuwTkx+Al5For8GVUuus5SGggdcNY58H53R5EG4hYB1hW4dWyz77TdnuD8ENj0OgGvQ8uGdhaKX0Y+rluLAUGDbM+Tj4cyKx1mz8sRBXLZnG9FlVnE7G+fyLv+JsMs5oLouHkh9PFDnXZs2OHaSLRRxDAFfBcRjOZqmuC3DRJdWEYhaPfu/D6D6NM8k4t/9qByfj45h+nWvaW9A0YWlX7djG2VQCU9coKpeRXJai66ABjueVY9ZEJq/ZNuaJE+i33UYoW2CGESJ06iz6nk7qB8eY+eZJrpkyg/dE64lmCzSsfYg/vHgRV9fPQj95CmPlKq4ON1J1rhfjtttoGBjjokA1DQNjGLetRD9xAv++Ayyom0WVrTCLRYzTZzDHxvGdOYd/1WdYEGmi6lwv+m234TtzFiudQb99DY22RtQxKalLGSt8iHeOmdx2m8bJ0xESufeQs5vJ5QyGhzVOntS47Tadk6d9FEsB9uxv5viJAJ++zUciGeDUmQi33WZy4qTF4Fgz2VwA1zPJu21kis3k7Qay0Uc5dqqGXDHKiZMBVq7UOXHSQimd06d1brtN58QJneFhg3xep2j78Jwglh0gZmoYrotPQRCNyLkBjEIJI5WVbbaLcaIbs2jzobY25kydSn0wyI8/+lH+8r3z8GkaWqGEdvwceqGEbjv4Sg7GCXkesSwCuoHluFS5ih/cfDOr5s2jJRTGQEPPF9FPnCPiKoK6gZEv4svkCNgu3niCUipVkdF7nodbLDL89tukh4cZOXyYTF8fnmWRGhriwFe/SnpsjJHXX6eUzVKKRHDCYVIjIwwfPozrOGS6uxl59VXSo6Mc2LCBVG8v9pIlpFIphg8fJt3Tw4GHHyY9NkYhmSSVTlP6/7H33lF2VGfa76/CyaezOqmDhEQWyYRW6BZ4DEIGY39OyONhksdGYKSxSQIjMQbPoMZIyMg2OAg845m5/sYf4DDQSJYFjIxarQgWYCEUuiV1zifHCvv+8Z4+R7L9rfvdu+5dd91raq1edapq7111Qlft533e93nKyji4fj35TAalaTi6TqJgN+amkwS8DuGAjZmKEHCTmNPDhH+2mer8AEE3QfNrT1FrD7D8z7JUB9P4yBFODeHvfxd/fJim1DvUlOVp8Qyg//tmzHyK2cYQ5k82o0+MoCsH3c7jjw0RfnEzxtgAfj2P105hunma6iz8HhfTzeLLTKNNjqD/+7fxRIZRyTiurqF0RSoyTC4ZwXXypKaHBRhqGsprkk/HGHp3B/l0DKVc3KCPfCYu+zKyz86lUcophhWVpgk7DaX+qSgKF1UewNEVro7cKzxSKywyDDKWq7m4ZQHSkWH0RAx/ICCBOhSGBr5MEq+VwxcOE6qtxfB4aPjQlejKxdn6C7R8Ho9hYGRSqO3/iWZbEJnC+M126ubPxV9RgenxQDqFJxgA28LtP4knn0P3eFE7XkGz8hCdLviWT+MrL6P+kkvQIlM4XS9AdArb78fCIRLppatrJbl8gkikj5e7VjKVHcKpqMAFnECAqVl+Tg/sxnGy2Di8sm01U4lTZJwUluYSifbRP7SXfD5OIjVCRrfI/cVKLJ9JKjPFlDvNy10rmU6cImnFmJo6Ti4XxwWyK/4Gy+dh26/uJhI9Kd+rYeCgyM07l2mPl2FNJ67rxArZC1lNZ5emkdANYuUVHNUNbtd1TtTW01NeybTpIf2pz5MMBMmGQmTKKkgHQ8QMk5ymkdY09hoGeV3HDYZwyiuY0DSUpqN7feRND5qu45gmWU2nV9e5XdPp1TRcr498bT0pzWDy6BSv3N6F1/FiJS2mjk7RtbKL6Iko+WieV1a+QrQ3ymDPIPl4Hh0dr+Nl3z/so6G8AStuYZom0RNRulZ2EemNMNA9IP0zeVL9KSJvRzCVia50tLSGnbSZPjbNQPcA1ojFtju3ET8Vp3V2KyqnqC6r5oZrb8Cje9B0DxkUpr8KG8VEaoqkncXrDWMrl0Q+Sc/gXkasFHduW00sn6AvdoqVr9zJiehJwlVzGLFSrOxayYnICZL5JCu7VnJs6jiJfAIFxPMJRpKjJPJJHGB4+E0cdHKuzZ7BvSTyCWzlEsknORk9xa7+XWSdHN5gDbqbQ0/2omXH8dhpfJkxtGQv2v7b0eJH0awYphXjz5wcNfH30Q/chWlFaXYy+HNTNE/s4sLEMTz7b0dL9qE5ebxWTPoevAszH6UuH+d7Vgpv/Cj+fV+kOXEMv3LQXQvTdfFaccz0MMHcFJVWEk9uCiMzipY4jja5XwA8oCkHLdaHz+cSrPbjCRjMOr+KeR9uxJM7TUWjF9OnE6zQOefPWvGFTAKVJuWzFB6/ji9ooOtQ3lhG7QWz0HHQnCy6stCcHFq0F62wT4v1Ypo2pqmjSYgP3UpIu3wc06fj8emY6dOYmo2Zj+PJjKPn4+jDPTTZKS7MjmHG+wjkYtzQ1Ma5lU14rSTeWC/GqyvxOxnC6VH0HSupzoyz6SOPUZ2ZxJOZxONa6MO7CSdH8eeieFFcXnMuDd4g/37L97lzwa00738MX/wkZZrOTz/xI+664q+p9YUp0w2CGjT4yqnJTuAM7ieTgxO9Me5atY1kMk/eDZBTZfT2Rrh9ZRcnTkSIxfLcvnIb70cvI+W9gGTjl3g/ejm3397F+ycyTFXdRvryZ4lrc5lKhXBcSGdsurv7OXkyWtRkdZVIayTzAdIXPkE0AfF4jqPHprl95VaOnUiwq3uQo8djWLbixMk0kaglwFKd8Zd3IGuLqGnWlkzTrFXYtiSSl7Uk4yprwfEBWSdz0n5GI+WDBfgAuH+w/F9YMhmLeDzPb35zmuMnptF8BobXIJ+3SSZz5PN2sa3X9OLXdIz0KPQ8gp4aQdMMSdW+6j60xCAE69B0A83wwqxLin7hWj6Gtm+9vN7fKfXegVp5ffR5tH3rJYq7b/1Z+zmwAS0Xg8CsUptZl6KlhtD2dULjYjTlkkcjbdv8brSXMl+I0eQUVYGyYs3yJY3z+fGBl/GbXsp8Id4b6+P82laqguUoFNOZGBfXz2ckPsljO55jIDpG3nWZTCeIG1U4mpf+VILHdjzHZCpGyOMnlc/wzdf+BUe5/PjAy2w/uod/3vefADjK5bm9v2T70T14ddCcYRi7C80Zgep7RQ1cWkrUeuopSL4kddF6QITJpjol9XlqPWiq4NE9It2m1heOdULwakm9tkdAJSFULWNMPV7qrxxha/UQaMLqYA1JinZmH7arGE4kiGSzRZ/voUSCkNfLSDJJPJcjZVm4StHW1ITPNDE0jYFYjGg2S5Xfz76hIU5GoxgejYFUnOFksjjWSDJJbzTKyq4ueqNRBuJxnj98mP5YjL5olH2Dg1T5/YUJT56xVArLdcnYNnsHB/G7LsbgYNH8WvN6JT/48svR6upg8WK0qSn0RALNdWH1arT+frRsVoqM29vR4nG0gvG11tkprGzBlFvr7ISLL0Y7fRpt1SoYGUHz+6GmptQnFiu9Xr9eCpe/9z3JBshkyecNfD6NDRvgpZdEkCwc1vB4IBrVqK2VNOn775djmqaxeDFs3KjR3g5er3aGL7fGrFlw4IDG6dPQ3a2RyWjknCZS2Wr6+2Wy09mp8fzzsrYsSbu+7z4YHNSoqIC774ZkUkMpg6oKheERphIQEbOyENqMV7fjyOuCf7eGhoE8WHRFIfVWO9sj3DTO6oOr0OJJcF30vDz0dU1qqbVcXtTFp6KQywuDYhhyDbk8rs+L7vejXJd8IkFmcrLo950eGaFi/nwOb9kCjsORf/5n8eHesoVZl11Gdnqa/Y8+Snp0lOzEBP6aGjTg8LPPFv2+Z9orpTi8Zcsf7PeEw6RHRrCSyaI3+OQ776DpOu89+yyjPT34y8vQchnJhw9XoPmDsP1FOPAG+tafomWS8vrXL6K5DrqVlZrhX/8Myqsk5fjcS2TSOT0hyuWZNNrWn5b8wqNTgFbat/0FYZQ8Xsk4cG1wbLS+98HKoU2Pw4E30Lb+FFVZjZVNMPy71zF9AexcCsfO4S+fhZ1LM/y711B2HtMXYta8q9F0A3QdTSmsTIL4WC8TJ/ajHAvXtUhHRsF1pK4ZsLJxnFyKiRP7iI0cZaJ3P6Ax/LvXce08VibO0Luv4tp5lHLJJaMM/+7V4ljKtQlVzkYLlYHXi7P9PyERxx3qF4GzeAxNuah8tlC//QIkYuiLrkXzeiVDIhFHaz1HAqGJOFrrvKLKurP9P0XBLxbF2faLwphRNOVi3PTfzuhzDlooLNmfuSzu3l1oLXNxQyFsN4emQTw+yOLF96FpBj09Gwv1yetJJIaIxU6jlEss1k8oVE8mE0XXpSa6puY8vN4yNE2jrKyJlpYleL3lhMMNeL1hIpFTDAz0EAzWFOusd+1aTzBYQzI5gtcbKgYNYrFTtLWtJh4fLO7LODlszWBY03is8BQJahpxYA1wOeK5rWlasZ55vaaxCPBrGrs1jeOaRgyNuKZxp6YxIU8i7tY0FiMZVQpwNY16ZL6eAHKahshxSvuBwvhPIXXQmqZRkXfIDMRYfP9izIBJLp47y987G80WfbvrLqkjMZKgf3c/ukdn0T2L0Axhze2cza5O0dnp7uwmOCvIrvW7CPlChOvC1F9ez7a/38bUsSm8QS+aodGzoYdQbYiejT20XttK+exylCOCZ07OwYMHa9Qil83hKsVAfIA7X7mToFd0V45NHWPV1lUoFAubFzIYH+Sloy8Ry8V4vPtxnj/8POt3rcdRLp3dnUXtnXguTntLOyGvCJvpmo6rZhw8XBxcblj+FHlXSsTaW9uZSE2wausq6kJ1zArO4vL6y7ln+z2cjp0mbHrR0gPgpNAOrpIa5fRAqRZaM8EMo+GiZYZg1mLIjKIdXIWGCzULS7o/hzvRcMCKF7V4tMwwxv7bMZMn0NL90P882pGNoOlobl6+4cwoJHvRdNE60Qw/+GvR0oNQd63Q4G5e2NOKc8DwiEq/m8MwNbTkIGQmBVQ7ObCzaMpFc/Pyf+cJoeUT4FposV5wsvJMUA4kh0SLKDkE3jKZZ2q6vE4OyS/StYrjzCiZazEJUuANoymnlDUEMHuJXFOgVuaOwVr00YOENV30Gw5sKM5VKcxV9f2dVPnC6KkhsFJor6+S/skBCNai5RMYVgrNSst784Thz76NFqiVzywfR4scQ9uxEpIjkqnp5tD2rcequhzbduns3EVbWxPDwwlWruzCslwef1x0fh5/vJtYLMvzzx9m/fpu0hmHwaEE69fv4vnnD/PUU3sJBExsRyeVsvD7Tfr7Y6xatY3a2hC1tWH6+iLccUcXx45NkUzmSaUt0naYWCxHIpFnw4aeoqbQrFlBNmzowXEUI8MJmhpC8p3k8gXmHNFNGZ6QUildkxnCwGhpDuAxZXumvKqlQdahAAyMlRJMP1iAD1Ll/+jyp54qn8/b5PNir+X9PYu5fN7m/fenWL9+F/fdt5iJiRTXXjsHn88o7l+3bikXXlhT6ptPSup4IQ1GmUG0aK+omrethXCj1G4f2Ah/9l1RkbRSUoPt5GB0H6psDlqgBsbfEjGL/Z2w8GEob4XYSblZh5sE9LetRQXr0MbfEhG29Dg0dUg+cLIfQo1YjkNU85PMpQl6/eRtqyg0NlOX/OUln6XMF2Q6HefHB17mwY/8LW5BJbwuXM3silqUUjy247lin7U3/B2GpqOUIu/abHj9X4vH1vzZXzORjHBo+CgtlQ3Uhav50b5f8sWFn6Slsh6lFIOFOurOm/4Gc+wOAeZz3xWwTIEBH38Qah4AY5YokfuvAM0rf8XjD4oVmHVCbL7qNhdSph8vHLugcKxTxvJcICDfGT7DFqxF6qkBxtcU2s2F0duh+n7i2iXctXUbT9xwA1OZDBt27+YHH/sYGdtm/9AQjeEwTeXlTGcyADSXS91TMp9HAQ/s2MFXFi5kIpWio7WV7v5+Lq+vZzKT4fHubp65+WZWnWk5dtNNrNq2jWduvpl9g4PUhkJ8Z98+Ni5bht806RkYKJ7To+sEHAd/Xx/ajO9WZ6f4aU1MlKzBhoZEgKy5mUJOukziJyakIPmcc0Td65vflPrpYFBAfTIp9c9lZSLf/etfi2L5009L4fLAgKiIfetbUkc949UVDEphcTYLa9aQ/v6PiSUNhoc1xsdF0NyyZKjWVjlVJiPDfehDclnDw6V2M6XZ+/aJqHpDg7yFt98u1UsvXCjjZLMQiYiKeWenXM7s2TLexo3y5/WKNtt550lNtc90CIeUKEMnUmLV5TEFTPt9MKNG7jhFJXXg7LYzFl8zNdQzufln1lT/sUUpiKekztp2pAzhzLXrYhsaif5+Dm/ZUqxZ/s1ddzH3llu4+uGHQSnsXA7dMIrWXQtWriTc0kJ6dJTRnh6m3n2XK7/2NfKJhCiQT02R+T3rMcPvx8lkzrIku+gLXyA7NUXNZZehGQbZ6Wk0TcNfVSVWQSMjeIMBQnW1aJk0xCIFW68/h3AF/I8fwsc+jwqXi7DZrSshFRcgfvOfQ7hcxMV8fvksshmpWx7sg3MulAlm3/tSA338sCiLV9VK/4/eCg3NMD4iQYLPfrGQeujA8CmYd7EIonl8OB6ToXd3EBs5SkXjBcxe8BFhvoFMbBx/2SzQNMaP7qb+wg50w0ShkYkM4y+vLX5XmmGiXEfcQN7fxaz512D6Qowcfr0A+HUmTuyn9tyFePxlRIfeo6LxfEbe20l8rJcLPnI7mm6gHAsrm8IwPRj+MJrjokWmRRG9uRWUEtAeCOHu/Y0omxfAubtzO+ro79BXfKGgnq5wB06hNcyGVFLqtjuuh2AQ99cvo3d8BHW6TxTVd24v1X7f9CmZKybiYoG2/BNn96+qlnIIK4+lOViag8cTJBI5QXf343R0rCUUqmP79rtZunQtgcAsXn/9YW666TvYdpZsNorXGyKRGGHv3qdYtmwjpulH03Si0dN0d6+no+Mh4vEhysubKStrJBo9RSo1QXl5c9FurKpKtFk0zeCVV77MkSM/49ZbX6S1tR2lVLH+efVDCfCG2QtcggDmd4CrgXzh3y2B2ICdROqe1yF1z3cDX0Nswq4s9P0pUuvchtQwz0Zqmm1EYbyGkjjZKCX7sYbCLGA1UhfdX9hXlrGIHZuiZ2MPyzYuwxv2EumN0P14N0sfXkpwVpAda3awbOMyPEGPPF+TeV772mu0r2mncl4liaEEkZMRwg1hdn9zN0vXLSU+FKe8qZxgbZDtd2//A7uwcEOYyMkIvjIf3rCX1FiK7sfFVqyssYyR345Q0VxBbDBG5VWVTJvTPLLzEZ4//DxHVh0B4JGdj5xlG7a2Yy3DiWEWNy/Gdm32De1jTsUczqk6h7yTx3IsHOVQ5i0jY2fYP7Sf1opW5lXO4+jUUUaSI7Q1tREwA2hoZOwMkWyEKn8VLi4vHH6B9tZ2Hu9+nAeWPABAyBvigopmNCdbcMKplfrjmjZRA69dInngyT448oQoj/sbYfoAVF4ioD7yjjjnHO6EBQ9DaK6U1GWGRSD3TC2eq78LB/8ertwMuYmz1cytCBzZJFo/vloZw0lD2QViBebkBTi7VmHe1lwQKkNKROKnBdTH+kQct9iuSRTLCwCcXEz6+coLNmMF4bOZVPwz++mFVGvXKrzWSuVAThaSo1DWJPfUXEy0gTxlEghIjYInKA5CoXphi3VD5rWpYQHv131LXHf2Pw7XPAihRnmPO24XMumi2+D670mAQTdlzrpvPbQ9JO8x1ivjLFwHoQZ4/e9L/W74vlyXlSZul5HNS/q6x2MwOprk1Vf7WL58PpWVYsvb2lrBnDkV7NrVT2trBf39MXp7I1x77Rwef7ybb33rRnRdY3g4wYYNPaxd28HgYJxbbvkPVqxYwJYtt9Dd3U99fZjW1gq8XgNd15iYSFFdHQCgry9S6LuUYNCkstJPIGBiauD36AVwjmh3gKS7Q8kmdMZitHegNAdwXBFBzeXPni94TPnT/7R45g9q3P9PLn9KwP33QfqZwPwPADiSJnP77S8XrbieeeYmysv95PM2X/xiaf9zz32csjKf3KQzU5AeK4Dqh8T6IT0G/3YZzP8E3PBDePUOaLoWzvuU3Ci9ZeCrEvuycIvUXw/tEku0GR9z14aR/VB7mWwnh8EbKqhUahIsGN0vYmpV50G0D5ID0NRB2rFJOhrpgse3WfCfzlg5nvrNT/jra26hNlSFxzB5bMdzXNF0Plc1X3yWONkVTedjaAaD0XHGklNc0jAfn+Hht8NHqQ1V0VRRx+nICD8+8DJfaPs41cEKNu383/jyks/iuC6zK2oLNW4SadfRsJWL7Tp4NZeQ1o9mDQkwd+Ng1MnDLd8H009Dw3eQeqEUjD8ANfeI77dmgBYCHEmlTzwPZbdBw/fAHgazSY7ZE+BGRX082CHH3KQw7GazKI1rfgkauCkYfxgaNoN1CrQgSVqxXBenkArrN01ORaP0x2K0NTURy2apD4vwlKsUpqaRcRz2DQ7SGA7TPTDA7oEBnr7pJoIeD8enp3myp4eNy5Zh6jp+06QvEqGzu5t1S5dyblUVOcfBo+vF4MAM0H+yp4dvXn89hq4T9nqxXRdPJkN4zx7x5D54UBDpn/+5AOsXXpB9//RPglZ9PgGeiYR4Zl1zjYBLn48zisClbyYjIL6zUxBxT4+InbW2ikpYPC7tdV2Aej4v5xgfh2gUnnwSHngA9u4l9pd30dOjcemlEgfo6xMA/c1vltTB9+6Fiy8uvR4ehltukdPU1QnAVkpOsX+/eHh7PALma2tFnOzhh0UvzXEE/EciJUuy1avh3nvF7SydFgZ+YACeeAL+9V8cDNeRjroOqYyIiZ2pQgeiHO4pqJ71DUJTvQBsjwnjUwLyy8Nn91GFQWb6nNs6c0Ae4IZReuDP2I3NAP8CeLdcm32PPHKW5/Zb3/wmV61bh3Icpn/3OyovvBDT70czDNJjY/irq0mNjPDes89y0Re/SLi5WVgfXefNzk4+9MADYm8F6B4PrmXxqz//cz5SYOKVUijHwUok8FVXSwAhn8cTDBatwq64914Mnw+P14PuOmIPdqbv9me/JGJk1bWFyU3hOfzv3znbm3vGa3tiRKy/lhcA+cRICeBX14oi+Y2fLimRm4aM++/fhnMXwPyLJWjw0RXS38oJ6K+owZndQj4TZ+LEPmrPXYg3UF4MwOTTUSZO7GfWvGuQulCdiV7Z9viCKGD0yG+oPXchpifAyJGdzJp3DenIEOnIMA0XXoudz6CbHvKpKKY3gJ3P4A1VAGD6wljpGFY2SaCiDiubws6l8ATCBZDfhtcMwOAAWlk57p430G+4Gc3jRblOwXKspmA5pqEiU6Jj4A/iDp1GC5dDKCyp2tv/swjM9etuxPneBrRLr8L42GdEnM3K4+7oQm//M/EpR+Fs+wXq6O8wvvowZDOo3qNQPQutrEIA/Y0fx8Ulo+WKXt4zVmDLl28mFusnnZ6kqakNvaCwLPZhDradJ5udJp9PARo9PU+wdOk6YrEB/uM/bmHBghUsWnQve/d+i1tu2UJX10qOHn2JW299kebmhWiaQSzWT3e3CJ0Fg7MYGfltEdgvX76ZVGqM7u7H+ehn/gOl6eQQz+0rgHHgm4iQ2DhiE7YQ8Z/IIT7ee4EqxBe8AziNgPq1CHDPFNqbCOAfQsD/QKH9CKJifqYgWr7Q9jzENqwdMOM5um5/mZb2FlraW9j71N4iSHcsqVtHg+hJEb9d8sASwg1h3v/l+1TOraS1oxXN0MjH8yilyMVz+Cv9eMNerIzFr+/9Ne/+5F0WrFjAdY9eh2u5BOuD+MI+lFJET0YJzhJwPyO2e92j15GL59j7rb3c9PRNpFIpvPVeLNdi/9B+rmy8EhCl8JA3VAT0Kxas4LmPP0dvpJfHux9nbcda5lXN42T0JOt3rS/6gQPcvf1u7lt8H1PpKTpaO0jmkziuw9de+xobl21kIj0h4mVL1xI0g2TtLLOCs7h7+93Fcz1909Os3raa7310M9W+MrRknzDtNQsF6BY9vddCehiSx6HhRnG3SZ4UcbOaNumTGYNZC2UOkRoUW1l/XWF+darQdmHBezsLyha3nf+ZcO9VmwWsWkmxK0sMCdmCLn1zUblGT4iiXdgM8HYycp58UmqcHUvEdGc8wmcAefy0iPHqxhnPlLyomJ8piGZnS4GCs/zDfSKMpmki5BY5LkRSQ5sc+6+vwp99u/BcSsPEIZmHKiXtveWy1g2Z657eIfPO65+BeD8kBqFpiVzX8G657sQA/OIWEQu+/hl4bVVJPPiGH0jQ4s2n4CNPyzw3FwF/FRlVRjSWJx7PUV8fIpu18flMBgZirF/fXRTn/cpXtnHPPYuZN6+SeDyPaWr4fCa6ruG6ipGRJI88spPnnz/Mbbddyve+dzPDw0kqKnxUVPiIxYSwCYU8ZLMOHo9ONmvzzjtjLF7cjK5rBdFhnb6+CI89tou1azu48PxqvI4tGXVngvOWBpkDuK6w7ImUPO9VIRffcUT0NG/J8/3kEIxPF+xE58rz7E9s+aDG/YPljy4zIP2LX3yZ99+fKoL4mZSa9et3kcs5Z/UxDHjggSWsWLGAdeuWEgx6CqDfYN26pUWLLt+MPZ2dFWuzQvo7+x+Xm6edho+/KBFGzZD1eZ+WdPjUiDDuhRQjkgOQT8gNNTMJaBKxfPVO8FcJC2944OAGubHmE0hU1pYgQbBWXu9fLzfLoR6JDANhXwg0jdPTo/zjr58lko6z9oa/YyIZYTodA+Bvr/k4i+dcxo/2SRr7vx18hUsa5pOzLFzlMitcQX24msdf+xf6Y2NUByvwGCJyNytUyZeXfJZZoSpOTA7wpUWfotwfptwvom+u65LKZ5hIRkhZWWHsTC+2clBmiwBqZxgmvy6K4+keiY7XPyW17aOr5L3WrQdrXI5pBSYUHWoeEsXwmjWAAUa19EvvBpUBexwC18hDc/KfBFjpFYAroF2lRLncmZRzYgjrbtagoRiIx1m1bRvDiQQZy6I/FqM2FGL1tm2EvF6S+TzHpqZY2dXFiUikyJSPpVJ8bsECnrn5ZvymieU4+E2TtqYm1uzYge266MDcykqe/fjHaS0vx1FKhMqQIEFzeTlJy+LJnh7uWbQIn2mSzOfJOQ5eXSfg86Gam2H1atTs2fCJT8Addwgq/eQnhX3XdaGuczlZh8Nw+eXi1TUDVo8fF9CdyQhIHx2Fv//7kjT34sWCkDVNJL39fqislDFWrhSkrZSg7LIyQctPP03+ti+g69K9EN/A5xN7sPFxSVk/eVIcyqam4K67JDFgxQoZ8sQJ6O+HN9+UmIJhQFOTnMLvF6Z9akqA++zZkiSwerWA84kJiTV4vRIoaGyU8e6+W+Ib/f0S79BAHqaZnHwWFWEB0fGkrI+dlrWhi41X3hKG3DTkz7KhtroE2rP5Qh1bXtj0mZSBspBE2o+fhlzhfHlLPhRXlVLtc4Vz2SJao5lm0SLskjvuwPB6ueaRR1COw9Q77+CfNQtcl/2PPkpyYABPOIybz/NeId09OzFBemSEg489hpVOc+WDD4KmMXX4MKmhIfY/+iiZiQk+8uyzOJlMcRzd68UIBEicPs3+b3yD3NQUKEV6dJTLv/pVAN58/HFcNJRdUPhefqsA8o99HoZOCZueSQuA//fvyO9nps1HbxUV8clRSYPf9j+KKfAoV0D7TJo8mrD45VUypoYw7b3vCbC/+Erpd+ANiE3B+DD85Bkoq5Rtx8ETrGD2JR9B102Uknu+cmwmTuwnNnKUyb4DeIMVTPSWth0nj+vkJf39xD4cJ1c8Fq6dQ+25C8klp/D4Q3j8YTyBMiZPvonHH8IwfeiGFyeXxhMoJ1TdhGPnmew7gOkLFM87cWI/GAZ6Uyvu7v9Ca2qBZALnlZ9BMoFWUFx3ul5ATU1AVTXYFs62n0vKezIun4nHi95xvYD2pTeAPyCvl92CikxKen06iX7jx0UR3TDA9KDf+HH0FV+AZAJ353a0lrnorefgdr+GOnxIgnKv78BrBNE0naVL17FgwQqWLn0Y0wywf/93CYXqGBraj6ZpZDJT2HYOTTNIJkfYufMRdN0kmRwppr83NbWxYMEKOjrWkk5PsnTpOjTNYOnStVxwwSeoqGjBMISdPzNt3uMJ0draUdy3Y8caqqrmcdNNTwMafYgSeC0Ctr+JAOoYAtprC8dPAQcQRfIGRGm8We78RXuxTkq2YH8PJBEP73YEuHcU5gsViPf3CkSh3ECCAhWFa1iCWJRlDOh4qIP5N86nZ0MP7/7kXbbfvR0A02ey/f7tkgZfsJvt2dBDLp7j4s9eTHlzebGm3VvmZfTQKPlEnpG3RlCOwvAY3PDEDaw6sorlm5cTqA4QrA3iDXrpuqNLbGwf28V7L7xHx0MdLFixgPYH2/FX+klPplm6bimG18Ab9HI6cprV21bTUtFCwAzwu/HfcX7N+TSVNbFu6TpWLFjBuqXrcJVbTJPf2LMREL2f9pZ2ntr7FNFslGg2yvOHn2fTnk0saVlCX6SPu7ffzVhqjLamNmK5GOt3rZfU+l2dVPgr6I/1E/aGeajjIVYsWMHDSx9m/9B+nj/8PF/99Rr53zUCYt311t3CHPtrxS7syEZh3me1C3ue7BXQ7K8Vmy/NgKorSmJ2wSbwVcNEN8RPCAMfbCmMmxTgnR6Gi74G13XB1c+U7G9bV0igwCyH7KScz04JwJ6xqU0MCOj1lpcmmGcKkDmWzGEMHyRHBNxrCNjOTMs8UjnCdMdPneHigJwj3CSgvayAfZJD0s/JiSVuIVWe5GBBMLNQ2J0akXnn66shflLY9PhJ2LFSCKdZl8LIPiGK3lgjgQNvWcFONy/g/Oo1YOdk/lnWJH2jx6VvYkCA/wUrCvNfU9x6LlghWaS6D6rOF6Y9MSCg3U7Da6twHZfh4QQnTkxz6lSMr351O/39MQYG4sU5ezZr86EPNRZfB4MmAwNxVq7sorc3gusqKip8PPjgErq6Ps93v3sTqZTFY4+9wfh4GtdVjI2luPvu7Rw/Po3juPT0DDA2luKaa2aTSOQ5enSKlSu7OHFimv7+WDFt3jR0KW+b1yysuaHLsz9vybO7d6BkAeo4su0xBNRn83BqWID8vOaSnehZIncfLPABcP+TXv4YSP+fAvDC4vEYzJ5dxqOPXkddXRBN00gmJTp34YU1PPfcx7nggll4Z+zpNF3szNoekhvTNQ9KRHJfJzQuFFsJgIr5khrvKZNI5wzQf3OTtDMD0NQuVmh2tlhPJMfb5AF0ww8ATSKisZPycAnMgom35Rxta+UayppBg+lMnA3/9a+MxieZTEfZfnQPz+37JQAX1c3lzcEjHB49QWtVA/Vl1Xxx4SdZfsFibl/0KfymF69RsCpD47kCqP/nff9JfVkN3+95kaHoOH6PWMwEPX4un30+jWU1vH58P5vf+O+A2NRMJCN8v+dFJpIRDDTS+Sw5K4meOQjYkrqeeF7S3M1Zkt6uKVkH2sAZFcbdfznYowK0rT55z+YcmPUNYevtUdA80s+sBWtA1mOrJCgQaJNz6UH5HM3aM2reOwsR6SFh3/HhKJf1u3bx/OHDdHZ3o2kabU1NbNqzh+cPHyaWyxHL5djQ01NsMysYZNOePbS3tDCWSrFq61ZORqNkbJtHdu6kvaWFjcuWETBNTkQirOzq4vjUFBnbxnFdRpJJotksjlJ0dnfz695enrjhBkxdZ/W2baQsi32Dg8TzeTTbPrsePRaTYvANG4Su1jRBvCBg/s47BSkrBY88UgLcIyNiCbZqlQD0kREx1x4dFYPs/n7xAj91SujqO+8soWopJpcJ/smTMm57Ozz1FHlbx3WlHn33bmHbH3lELmlkRLo+/rjMJx5/vDQUyFuorZUs/dpaAeSnT8vbsCypAPD7hX0fGxPQPzYmYLyzU4IBc+fKefx++Wg2bCidY+FC8QzPpJGHrscjntozNmEej6S8FWvWkDr0gVF54LquRNVdV/rlCgm5/SPSd2aMmWN1VWfXwc/UvIGMP+MLXlGYBJwahryFchwCdXW0PfIIht+P6zgkBwaKde6Z8XGsVKpYk276/ZjBIAtWrqT1ox+l5rLLOLxli9Snj4+z/xvfID0yQu2HPsSRH/+42O/M2vYj//zP4LpYicRZdfPKdam9+moO/+hHAALgXaf0G6ueBX/5FbH/aj0XTrwnlmCZlIDq3vck3f221cKcO44A8/feOhv067oA8pltQ4dAWPy/fQH5zLf+FL73TxCZEC/xjxXaz7uwBPp//TNJudc0cB3SkVEcO8vw714nn47h2Dlqz22jovECas9diKYb1J67ULbnX4Nh+jBMX/H4ma89/jDeYAWBykaUUowc3onHX0bTpcvwBivRTS/Z+CSmN4BybdKRIQzTy6x512DnMmedF8dBodCXXi8p7T07UYcP4e56DZSLisfRF18nfuSOg7tLQLW75zfoTa3gD4jCu8cjKfCJOJgmxi2fRTMM3O7Xi+Npmgax6UIgYBw0Hb1lbhGouz07QSHXsuAKKWO4/kai8dP093dTWXkOH/vYD0gkhrHtDDff/Ax+fyVlZU1omo5lJdm2bRW2nT3LE7ypaWER8Hs8QW65ZQvV1fNpbe2gsvIclHIxzSA33fRdTDOA61pomsnSpWsL/dYVLMJydHQ8xIIFK2hvXwNoxGIDOGd4fG9CQPM6BFBXIEz7JkqgfBYC6DvP2OcgTPuKQl8dSYFvA4aBryKgfxph1Q3Ekuw8hGmfJ08VppCggY14oqwHBnSdUH2IstlldKwV8Lx03VIGegaI9EX48CMfZmjfEEvXLj0LWJt+k+7O7mJNOwrKm8vZs2kP5c3lpCZS2FmbzFSGnY/sJDWW4r0X32P73dtxcg7v/uRdhg4MsXzzcuZ/dD5V86u4ZcstVJ9XjSfoobWjlXBjGCfvkE6m6ezpLNasZ+wMn/jpJ/jSy19iKD5Ea3krT9/0NAOxAdJWugjkNy7byMnoyWJK/RM3PEGVv4pKf2URfAPF+vcNPRtYNm8ZFb4K1i5dy4oFK7h/8f0cGDrAwqaF6JrOuVXnsuWWLcytnEtjuJEVC1bwQPsDuJqJ8teLevsF94iF15t3C1j/0EYBtGaoBOT9tZLWXqhrx/QLALWSAuz33wn+BsgOg8oLc1/TJunzb94t97WycwXQH1wFiV7pf+G94qqjbHjvcRn/t/cKK+1aApYzkwKmNWTfzJKPC6j2hKV/clCAtmtBLi4gue7ywjzOKIHzfEKCBHZWAL3hF+CMLvfhcJNYjBk+mR/O+IiXNQvP4VryC21YKPPKo8/LPFXXZT1DPOUTAuxnNJX2d0r2wWtfhoHfwOJHJdXfDEjWwMxc9cAG6dvYJun41z8j16d7oKwFrt0gKfmxE/DrL8lnkOgXm9/C+Z18hg0beqitDRVr2js7u2lra2LFigXcf/9i3nprhL/+68v54Q9vwXXFkWamJv3xx7txHJdDh0Y577waWloquPPOVxgeTtDW1kRn5y5sWxXH3rChh2g0y6xZQR5/vFse679X475wYVMRLygNVDgoAfvjhaB+baU8t2ee7wOjhd+BgvNaZa1x9vPf0OG8OWc4nHywnLUopT74+72/pqYm9aew5HKWevvtUbVixQvqnXdGVS5nF/fH49ni9sy+RCKrcjmreDydzhf7v/32qMrlrD9ykqRSmYhS2bhS2ahSiWGlXrlNqdE3lRo5qNTUkcLxmBzPRGQ9/rZSL69Qavwd6Zuekn5vflup1NgfHt/2t0qNHiydp7dLqe81KDV9TLZP/krOmZ5QKpdUiWxKrXlps7ps4+fUmpc2q+lUTK15abN6f+yUimUSKpFNqd19h9R4YlolsimVyqbVZCKiYpmkGk9Mq3/Y+j01nphWsUxSTaWi6ujYKbXmpc3q2PhpNZmMqp+8uVU91PXdYt/xxLQai0+pvslBNZaYVuOJaRXPplQ0nTjrOqLpuIqmEyqSmlSuHVUqvlWpzFtKDa5QKnNIqXiXUpm3lbLjsp09IseOcPbrwRVKZd9XKj+slB1RyppWamqLUlZEqcxvZRxr4vfav6dU5k2l8oNK2Un5yxwqnduOKzV4m1KZg0rZEZWLvqbeHh1VK154Qb0zOqri2axKZrPFfcPxuBqOx9XBoSG14oUX1KHRUdV19Kh6e3RURTMZteKFFxSPPlpsO/N6Op1WI/H4WcffGx9X0+m0WvHCC+rg0FDxPLf97GfF/TNt9w4MqCMTEyoRjSr30CGlVqxQ7jvvKDU8rNSKFUq9+aZSIyNKRaNKTU8rdeSI7AdZv/de6XUkotTExNnHJyaUisXO3rd37x/2nen3zjtynjPbR6Mqt/VVFY26auvWPzw80/Xtt5VKJmX9+9tdXX/80iIRpW67Tanx8T/+1t5+W956V5dShw4pNTYmH83Bg6XLjUaViseVSidt5ebySh0+odTOA7LO5ZWajCiVzSkVT8q+REr2JVJKWZbsiyXP7mdZpXa/P+bMsd8fK5U5u8/M2IV+Viajpt9/X+269141+c47Kj0+rnbde6/6ycUXq1333qsy09MqVdg3ffSoip8+rVJjYyqfTKr0+LjKJZNq+v33VbS396x+uXi8OO70kSPKSqdL2++/r3KJhEqNj6vJ3/1O7br3XhU5elRlpqbU9NGjKpdIFPc7ybhSsYhSw/1KvfpLpZ59Qqnh00rFo0q9vVfWybjsj0wp1d+r1A/WKzU9Kfv7e0vH0kmlMimlUkmlxgal7+igUqeOy9g/WK9UIiZtB/qUemeftE0llEom5BqSidI5BvqUymaUncso28opK5dSp998Wb3T9aQ6/ebLys5nVT6TUJnEpMql4yqbmFa2lVN2PqvsfFbFx06qXDqu7HxG2fmssnIZlUlMqnwmoayc7MskptTpN19WE31vqlRkVPW/9YrKZxLFsfvfekWlIqNq4uRbKpuYVlZh/0x/O59Vdjal3GxWuZm0crNZ5YwOKeuFf1PO8IBy0mnljBS2RwaVk82UtkeHlZvLKicRV046pdxUUlkv/Juy976hnKF+aROPltoPDygnHlP20cMq/+i9sm98VM45Mnj2mOmUcpMJ5UyOq2w6qo4e7VKDg/vUCy+sUENDBwt/b6qjR7tUMjmh0ulplUpNqhdeWKEefRQ1OXlMjYwcUi+8sEKNjBxSuVxSpVKTKptNqImJo+rYsa0qGh0o7IupbDahRkbeLrbPZuMqHh9WmUxUJZPj6tixrcXtTCaqotEBFY8Pq2w2LsdyKfW266oVSql3lFIxpVRCKTWulNqqlIoopd5WSq1QSh1SSnUppYYLr2f6DBX2jyulokqpeGEdKYzhL6yHlFIjZxxPFranC3/HlFJvKqV+WxjvkFKqL5FVP7vtZyo2GFOZWEbFh+MqNhRTQ28OqYkjEyobz6rR342q9HRapSZTKpvIqlwypzKxjBo6OKReWPGCGn5zWGWiGfXCihfUozyqXljxghraL/3P3JeaTKlMJKOyyaw6/qvjKj4cV6Nvj6oXVrygRg6NqKNdR9XIoREVHYjKvrdHVHIsqSJjEXVo5JBa8cIKdWjkkBqOD6uuo13q0MghFc1EVTQTVV1Hu9T+wf3q+ORxFc/G1XB8WEUzUbXihRWKR1ErXlihopmo+u3wb9Wvjv9KRTNRFc/GVTQTLY79zug7KpqJqq3HtqpIOqLGk+Oq62iXenf0XZXIJVQ8G1fvjryruo52qYnkRLH/cHxYJVNjSk39VqldK5SaPqTUYJdSP/XLOhdVKjWs1O7blJo8qFR6WKl8XNoV229VKhdTKjtZ6rtrhVKZcaWyEWkTPSL7foKsc5GztzPjhfF+K6+n3y6Nb1tKWVn5y6eUsvNKOZa8ziWVmnpfqVxhvmfnZZ1LyvH0lBybel/22YV+jiWvZ9pNva/UYE9hfEvGsfPy2rEKx7tl7VhK5dNybOp9mStm42fPL6ePKzV2qLSdGJb55dhvZd/YIZnLjh4stHm3ME5hHjq8r7D/ben7+3PhsUNKxQelTWZa1k8ifdMTZ42RjsfVoUMjqqvrqDp0aKQ4d08mc2p6Oq22bj2mIpF08dihQyMqkciqgweHim3Hx5Nq//5BNTwcVytWvKDgUbVixQvqvffG1f79g+r48cnivP7NN4fV8HBcdXUdVe+8M6oikbQaHIydNV4qlVMTE0n1q18dV3bOUiqVlud1LCnrZPoPn+95S+YPliWv8/mz5xIz+y1LKauEQ/6UFmBQ/U8w6gc17n9k+VOrcc/lHHw+s8SSn3Esn3cwDJ0TJ6Z57LGz696Tydwf1LX7fEapZt5wJWoY7ZOoaUOb1LybBS9PKyWMvCck6Z+vrxZGvqxFIqYg0cgZoTqrIAaSHofaKyQFP9gg0c7EkERlQ7NhqLtQC1+oizI8EO2FA0/ANV/DqrqAnIL+yGih/vwTzKlqJJXPMJmKgoJ/OfASX1r0SaoD5RwZP8UlDfMxDRPbsXn8tX/hiqbzuWL2Bfz4wMv8zdW30FrVQNaW+rrNb/x3/uqqj9FUWVf0dQawXYffjfYyK1hJa1UD0+kYNcEKBgqCdF9c+EkaymvIWXkq/D68uotmnZCadM0LqhARRkk9ujUIwWuFXZ/qLAjQjRcE59aBZ47UrI8/KPXvZjNSuYgw9pilvjUPS3vliNq8HoL0PgguBmypg1cJSO+CzG6o/x5pJ4hNwXNd18kW1gDjqRT1oRBGYdt2XUxdL/rOZm2b4WSSxwv16/MqK7nzlVd4sL2deVVVOK7LqViM9bt28WB7Ow3hMCGPh2NTU1T6/dSGQmiIB3jY6y3Wwq9dupTBWIwrGxupBUy74HBgmiVxLqUk7X3tWhGPy2aFXd+wQYrBZ82SnPGHH4Z586R9b69Q0evWSTG4UkKRz4jOzQjg1dVJ3wcflL6ZjLDwhiHtOztl3JYW8mmbfHkNiYSG3y8E/cwpgkGoqZHLHh+XIWIxycAHIfjb2qTdiROlYefNkyzyfF7ah0Klt7ZunZThZzKwZg185SulOvfJSWHulZKqgWRS3krQ52DgCst9Zo25R2pOOXZaouS1VRI9H5+GqgphfX9fZCaXF4Z+5plz5pgz4jQzqfMgjH1ZSFj5mXOcP+esencLxb5Hvl6scW/7xjdIDQ2JCN0ddxBuljRJZdvkIhGsTAZ/VRWHvvUtrlq7VryilcK1bbKTkxzesoWLv/hF/LW12Ok03vJyTL8fO5uVmvbKSql7t21cy8Lw+VCOg+s46KYpavCAnU4z8OqrNC/tIKAsUXtffitUVMk9LxAUpj2Tlte6pGYTmxaG/ZrrIDIpqeznXCjZCWPD8Kvn4abPiXDdYJ+I3L3+Eqy4vZDd5IMTh2Hu+VCwMePVX4g4nemRz1Y3IJcRJsPnx3Es8Pmxc2l004Nr5zG8AflsXJd8JoadyxCsasDOZ9GAsWM9RTG7xos/jJWVuvT3X/1BcZ+mG3K/UqKBMXbkDarnXoE3UE46OorpCxVr4evOX4zpDZKOjGD6AhimH9e1sDJJUZSPTuPuek3S3atqUPEoqu/Y2aJyl16FcfOn5P6oxFJOAxGyK6+UfpEpMM2z+3zsM6hErKhFoYXLcLb+An3xtVIfr+mofA7NH8AdHkRrmI3m8eD2n0QLleGkYlhNDWzdtqpY337zzd9jaGg/dXWXYhhePB4RdVKq5B+dTI6RzU6TSk3Q2Hglx4+/wsUX34qmGfLerTSvvvogS5bcTyhUz8jIW8Xa91tu2cL09Am83hA7dz5CS0s7LS3tZwndDQ7upaHhCjyeIPFsHG9FM46m4UXYcwPoRtj1KqAeyALewvNfnbE2gN2I6NwEcC2SHj+MqMNvLLQtQ5j6BMLkm4ho3YyKwz4k/f4c4HbgJeDnwHV5Gy1t4douQ/uGCNWF8Ff6sdIW3Z3dLF23lKr5VZx+43RRfG7JA0uoOb+GfDJPNprFX+XHG/IS6YtIn7VLMUMmwZogsf6Y7Ht4KeUt5WxbvY0l9y+hYm4FruWybfW2Ym37ovsWkZ5I07yomXd/8i7V51VT3lyOFtZwZjlEs1HKfGW8O/Yui1sWY2gGY8kxGsINnIicKNa1DyeGuaLhCsq8ZfRF+1i/az3rlq5jftV8Vm9dTef1ncUa9nVL1xEwA0SyES6ouYDx5DhBb5CQN4RH85B1suSdPGt2rGHNkjU0ljVyKnqKTXs2sXbpWuaUz2H3wG5umtuBvn+lMNxzb5P0dU0vqbkDpPpFZf7qZ+SbyU2DrwYm94C/XuZmhzthwUOQHoHqK6S0UDMKded+qY0/vB4ufhDKzofECWHWF6yD0Bw519R+CLZCoEHE6fSAsPGGX+aBM/XlycFS3fn0EWHQKwrPXTcn5zW8BVY8L3Xx+aToHiklLLa3jFJO9Rn7Yn0Qnl2aBzpW6ZxlzZLO7mQl89O1ZP4T7xemu6GtIGRnUPQ100xJ+c9My7zUGy5du+4pXcLMnDfcIqWeDW3yHtAl3T5YK+nzM3Xty7YU5mW6XPO+TslSDTeJ5lPheuJ2GWNjKSoq/AD4fAbptMWaNTtYs2YJ8+ZV4bqKlSu7ivPyH/zgYxiGTi5nE41myWQs1q/vZvPm5UxMpFm/fhcPP7y0KGg3d24Fc+dWYtsKXdfQdY183iWXs0il8tTVFXSLXMXERIpMxqa/P0ZjY5gLzqsh6DckXV7XRU3+zEUB2RwMjcP8FpkTzMwBfB75DmdK6s6cG+j6B+J0Zx77ALj/4fKnBNz/Z8vvi9QFAiaRSLaoIl9W5jurzcMPL+Xcc6s5fny6JGw3R8PrRCB6QlKL3twk6erBOrnhRXsLKpwPCOA+9oKIiJQ1i6DHjHp820Oy37Wlrv2q+2Ss2e2SPn9gg7RJDkHdlQLsZxTrZ0RMyuZAehRCjaRdmM5lKA+U4yoXQ9OxXYfxZASvYfL9nhfPUoIfS0zxbwdf4UsLP0nA48VrevGZXn43coKh2DhtrZdQX1ZNzraKqvRPf/pB6sPVPLfvl6z5s78mkonz3N6SsN1VTReSsrLomkbA48dxJVCRsy00DSq8GqaWLyjFp0XVvforIigXbIfR1ZLaXn4bONPgRqT2PPMm+C8GzBJgT+8WsN3wA3kQulH5kicfg+p7RH0+sx88LWDUSL/6pwGrsL9RvNsz+6F+E2CQV0Hen04wEIvRXF7OYDzOwqYmItksyVyOunAYr2EQzWbJWBYD8ThtTU0ETLGJsQqCdrbrsn9oiNaKCuZWVqJrGr2RCBt27+Y7H/2oiIYBhq6TzOc5NDrKNbNnE8lmSeXznFNVxWgyyYnpaS6pq6PC52M0maTM52O2Lp6xFITGRElWRKz46ldFpn35cikMT6cFHE1PQ329gPloVJBvPC77lBKEGwpJmvzYGCxaJIXi2axM/MNhAfE7dohS3OOPC/J+6qmS4lwoBNksSV8NtpJgmVKS4u4pYKv/+A/4+MdFK6+xUUTpFiwo6LUZoq13ww1y6UoJWJ+aErCfzZb09QKFzOmZ+AVIeX5bW+mtO468/TVr5K+xUdqPjMAF5zmEfA6accZD88zPM2+frf6aTEM4iASXXPB65AIA9r8LV10sae7lYUmhs12phTf0P3xYz3i3/n7QwGvKBMCycXSInz5dBOrB+no0w8DJZFCuy6FvfYuL/u7vMPx+vGVl5JNJPKEQmqZJar1loek6diaDGQziZDIMvPoqk4cOcf5tt5GLRAg2NBQBfbi1FTudxkom8YTDGIEAuelpnExGFOgL15CdnsZfU4PHNND//dti4fbldXDeJSVhv7FhqT1ffis0NguIz6TBHwB/EH7yNJxzgdSoV9bI9pvdcNfDcO4l8sUnY+D1QzIKrxTE6mobJTU0FoXJYQH+uiG13gMnYO4FMkE8eQTOvQTXyuEGQ2jKxXVsRo+8waz5V2NlkngC4eJa1z0kJk5S3nAeumGKDRSglEs6MkqoupGhd18tqsZnoiOY/nBR9M7jL8PKxgtid1dh50SkTrku3mA5Cg2rIIZXe+5CPD7RAdEcB7X1l6IWf+vfoLeeg7IsEZJbdktB7f019OX/DdLJAsD/CITCuNtfkjT6VBK9ZS7KttG8XtRMIKD9z+TLCJdBIobbs1PS4CulhEsl4+D1yW9q68/RWuaKBVzPTjmHxwuWhV1ZRiR2klhsgObmhRiGH6UclHKxrDQeT7CQKp8u/L+7aJpOPp8kEKjCMPxEIn0kEkM0NFxBLhcnFKojn08wNvYuVVXzCQZrGBraT1NTG6bp55VXvkxTUxstLe14vSHeeOMxFi26h4qKVoaG9lNffzmZzBSJxDCN5y4npun4kTT53YhA3ZnLIeAaBGhngCgC6H1IWvxx4HEkXX4+Uhf/CFLX3o6kzW8GxoAngSeAMALax5HAgIbUuAcoqddvBkJ5m8zRKWL9MZramsjGsoTrw6jCPUArlOMoV7F11Vaa2pqYf+N8/NV+wVO6hifgwcpYDO0fIjgrSHoyzZxr55BP5jEDcs8Y3DtIqD7EQPcAQ/uH+Nj3P4ZyFFbaYscDO2hf044ZNIsBgyUPLKH6vGq6bu/iqoeu4h/6/oG2pjZunH8jjeFGegZ6WNSyCB2xcxtKDPFa32vMq5rHouZFAJyKnGI4OUxbUxvRbJScnWNu5VwUimQ+yUtHX2Ju5VyWtCwh7+TJO3kOjR5idtlsOrs7eajjIeZXzefLr3y5eO6msia+/MqX+dmRn/HirS/S0dpB2kpT4w3iTZ+SNPirni4F6LFlnR0Bs0y+CLMc3lwNF9wL4Xli/aabUu8+Iy638LmCuF2ngPJgM/z2PrisU4Co7pWgAJrYzylNSJaJXeCthtwk1HYIsD/6FFyxQcTuor0CqJMjMhf0VcpYsT6pCTf8BUKmALANf0Fc7gxROitVUKe3S+BfN6XefUap3skVatrLJD3eG4ZAXSE93y0FBhKFdHxPGF67S4D23BtFINkMyJj71ktNevk5cm2j+2W+CQWr4sK4ukfmqX2vwG37S85GdlaE+aKF95gYKMxd18n+9CiEmoSgyscgWC+BApD/Is0kZZnECuJ05eU+QiEPK1d28dJLR3nxxVvp6BCB19OnY8V5+Pz5VViWy549A1x6aR3JpMWvf93LBRfUcNll9USjWSor/ZSVebEseVb39UUYHU3S3FzOxo09bNy4DK/XIJOx8PlMPB6DiYkUsViWsbEUCxc24febZDI2FWEPXs8Z84U/eK67Z4Nw2xHRW79Pnmk+r6TZFwmBOYWyxj8tgboPxOk+WP5PL79f/15Z6WfTpj00N5djmvKz8XrNs+raHcc9u2Y+nZQb4ex2ERDpfUkAtScI+VSpjv3ABqn5ueBzAsSTw1B7uTDzVz8gN04Qxc62teCvlnr2BX8rdVJN10rb2svkBrq/U86VHBTmPTkkN4pQPSgXz+g+KoMVZO08kXScjJ3HZ3gIenzUh6WW/elPP8hD1/8dIa+f//7Wr4r171XBCqKZJBte/1cuqJvLTRd1MBgbZzA6AcCXCnXwlzTMZyw5zd9cfUuhHt7DFU3n89/f+hWXNMwHDXyGB4/hIZlLF73jfaaHgMePpntQ9ogAZs0UgD39HQHrmNDwXSj7jIBpowr0KokWe5rAzQj4DiwWS7eKvxY2Pr0fKdCsAL0M6p4ogP39MPxZ8W53E3IubNlv1oE1AqFlULcR7DEYW0XesVm/axe1oRCD8Ti1oRCrCjXmZT4fuqYxnckwKxikubycy+vruWf7dvqiUSylhIFLpbhn+3ZORaPUh0K4SpHK59mwezc/efddvvKrX+HRdU7H43zp5ZcZS6W4tK6ueJ6hRAKAcp+PKxoaCHu97B4Y4ENbtnDvr38tN/veXqlNT6cFcPb0SL365s3wmc+IqnxvrxSHj40J2+440sfvF7r661+XNvm8IGGfT1BtX5/Ure/cKQ+csjIB6fm8FK2vWSOU+YYN8JOfwD/8gwD7QvTYwGZwUJHPF0W8RXPNgE9/Wi7n5Ek5tmiRrNeskZjBJz8pw2Szsu04UF0tsYJQSGrY33xTggEnT8rbtm0JDGzcCB0dpf7d3TLGPffIWwsEJGCwYQMEA4h3u+OKYNyx02A5AgRtR6Lk58+RB7JREK8zdEhm4NAREbEzCtHyi+cLkG9thOpy6B2Eg4dFoEYpib4315f8XxMp+VB0XRRodV3Oeey0RO09opweam6m7dFHi+y6pmkYgQCHvvUtBnbswAgE8NfUoFxXvNp1nXwiQXJggKl33gHADAaZ+O1vyU5PE5o9m4u++EW8FRXUXnklht/PxV/6EuGWlmLb9//1X8lMTKDr+ln17+mREdIjIyT7+0kPDzP25puom/9cQHtVLfzbt2FqTN7fjGDc9hdkOzotyvOxiEwAP/9laPswTAxLn8/8nYzTMh+yabAtCJUL0P/ViyWxOisvrHt5hbSdHBN1+WQM5l0EyTjYeZi/QITxclmUncfKpVFKEahqZOLEfkxvoLi2MklMXwBfSOrTleuQT0VJTQ+BUgSrGlGazqxzrkLXTUDhC9cwcWIf8bFerEwCTdOwMkkSE6dw8hlC1U14/GV4gxUFNs1hsvcgwarZUvuuXEbe24lbqG/Xb/0btPIKnK4XIZ3E+Nhn0DxetKoaqVc3TVQsijr6O9zu1yGbLdW6t8wF20bz+lDRaVQsKjZyldXCspvm2bXztoXz8vNgW2g+H+gG+vL/JnXtXl8BvP8GLRSGikqU6xAON9DauhTQcF2bZHIU287i84n4llIuuVwC0/Tj9YbweALYdoatW1cRjfYRjw9QV3cpicQw09MniMVOs2PHGsrLmwmH6zAMLxUVzWzbtppIpI9lyzYyNLSfsrLZlJXNZtmyjei6pwjufb4yEolh6uouRQHBwrPdAS4tbA8jdm9jhX0HELZ8CqlPP4CIx7kIaD+z3r0BeBr4c4R1fwlh5v3APQhYHy+0PYFYv3UjgnZJhHX/IcLSG3kH028KaI9mCVQGREX+dJStq7aSi+dwbRdN11i2cRkXfeYi+UwdhekzcW0X13ExAyaNVzbir/DTcEUDAInhBK/c8YpYxdWHKWss44q/vYKbnr6J6MkoXXd0kZ5M87Hvf4zyOeUEqgPFuvmeDT3gQsfaDkLlITYu28hnLvoMAGkrzRUNV2BqonWTs3P0TveytHUpi5sXM5YaI2tnGU2Ncst/3MLqbauZzkwzEB/Adm2ydpa3Rt5icfNiFjYt5NjUMe7aehdjqTEurbuUwfgg9y2+j5HECADfvem7fOaiz3AycpKck+Ppm57m3TvfZWHTQsZT45i6iY4rteWXPw7p01Kjnjoptd9uDtCk7l0PSA37eatFKT7ZVxAgOAhXboKPHRGrN+UIaO9/Xhh25UD11RB5qwAqdWHw998uqvSRN4WVr7xcQPushRIkPPqU1MZrRqne3LFErG5G50g5wqIbwiZj+KHy3NL876y6eEPAs6adsb8gMjfzGlfAu7dM7q8z53KyEjhwLRlH98r15BPyXLt2Y0lPKT0qn9lMnXpiQIILr6+WzFBPWLJAoycgcVoAe+ykqMH/7XuFQMAqEZczC+/rwDfh6AuSLfpn34GKOYUsNL0gDKjJ/NhKQ/QY7PiSCOC5FsqF0dEEvb3TeDw6pqmxbl0HL754K83N5axc2cXp01EaGsL88Ie3MH9+JSdPiif75Zc3MDWV4ZFHdtLe3sLixS2sWbODHTv6iMdFp8p1FZbl8NRTe6mtDdHZ2c3ixc0Fdj1NKORlZCTBHXd0kUpZVFT4WbiwiUDAQ19flHvu2Y7p0VFnCtfm8qXadZBg//H+QoYdEqAvC0lAXi8w7q2NUFctrPwH4nR/sHwA3D9Y/ujy+yJ1Bw8O097egt9v4rouyWSOfN7G6zUpK/P9cWX58lq5ib56h0RAP/Fz+PBmOYHpFwXNGcG6UIOkEO24Q9LgM1NyM9QN6Pm63Aw9oYKfZgaGeySS2rhEPNp7HpE+wXq45mtyrrorITsta6Xg1S+Dk8NTdxm6pjFZEIWbTEZQQFWwHDSN2eWzCirx/8xAdJx7rruN5Rcs5kuLPgXAj/b9kksa5zORjPDYjueoCpQxlpzC1A2aKup4eNmXUCjqwzWU+YPYrsNAdIwrZ1/EQ9d/AY8h0f/RxDTffO1fAPj7pX/ORCqCoRvYroNyrYIV3OXgTIE5W4CzFgCrF0bvlM/R0yDiciojx8xmMBqEMa/4axGjs6dErCa4RNh7PSip8OjgTID/SvGKr39G+nvmQGafgHZ7HAILJQCghyUDINCON7efh5cupcrvp721lYlUipeOHuXx7m7qw2GGEwlOTE9zOhbjy1u3MpZK0dbUxPpduwDQNY2GUIjv3nQTf3HppQzG46zs6mIkmeSJG25gxYIFfK29XUToCgJ4j3d3k8znaW9pwW+aLG1txdB1MpaFrmlMpNNc2djIz1es4MH2dkGqg4OSzu66QjVfeqkg4pUrBa22tUkb0xRluNOnBXivWycIenQU7rtP1sGgMO533SVU9a23CoCvrRWg39sLr74q7bZsEQG7sjJ49lkJAHznO5KDXggmOK6Oz6cxMiJi96Oj8jPNZmWIsTG53OPH5XInJuRy16+Xyw2F5G2l03L6wUFh2Y8fl+1LL5U5QDAoQvlTUwLIw+E/1NsLh0sfwcmTkmDwwAOFgILjSmRgYLSk7J7LC3OeLaRfzqS5u0pU48NBWHiZAPlYUtqHg/LA9pglAD+jHIsm+yxbHuKaJpH33gEB/pomD/ahsZLADRouYKdSONksVirFm52dxE+fRrkuV69bx02/+AVmIICdThdVh/OJBN6yMgy/n+oFC5h46y0S/f1UnXce6dFRZl1+OeHmZmHgs1nMQIDM5CSpoSEO/tM/YafTfOi++8hOT4OmoRkGbd/4Bp/dv5/aq64iMzGBv6aGI//yLyQGh1CzGlDnLjhbCV4hwnJf+Qbctkomt76AWLf918vymbounHxf1OKnx0UI7dwFck8EcGyIRwTEf/aLJbG6dFL6KCUM/kyAYHpc0u8nhsEwC7Z6HlRFFWdm3lU0nk/tuQux81kaL/4w3lAlgYo6hn/3Oqa/DE3TcOx8IX2+sRh10gDHyuC6NsO/ew1N06k9t43WKz8hVm+5FIGKOs5tvw1/uWw7Vg7XzksAQNOpv3ApwaomRt7biZVNEahqxHVsCIbRm+ecJSSHbYmIXD4nDPrAKfSmVow77z9bOX7p9SjbFju4yBQqFsV94V8lhV7TxDJOKfTln0C79Cr0pTegsln0ZR9HK69ERUS1HoBUAveNV9EuuhTjpk+CpuNu+yVaNIaue1HKwTC8gELTjKIFXColgd1gcFYBrK8mFusnFhs4S01e1w16ejYQCtURjw+xePF9xOOD2HYOpVx27SoJ2pmmn2uvfRivN4xt5/F4AsTjA4RCtWzffg+WlaalZQmG4UVTitPAXYilW7jwXW8Afo2A9DDCnI8iTPoI4vneiQD3tYgw3Vp5cpBGAL6DAPgRhJ2vRnzdmxCW3QIuRwIF1xTGjxXGlBAPuIaOnbEZ2j+Ev8qPchVO1sET8NC8uJnkaJJX7nyFSJ8oxydHk+x8ZCeJ4QSaoaEcYeLzCbkf+av9eILy2e99ai+Hnz9MciSJZmhsv3s7U8en0HSN3Rt209LeglEoE0xPptFNnaXrRARv8f2LGdgzQNX8KlRGUeYtw2t46Z3uZSQxQtgrn2R/rJ99Q/toa2qjoayB/lg/j+x8hOHEMEtalhTV5qcz0yxtXYrt2uwf2k99qJ6AR4IUFb4KNi3bRH2ongp/BS3lLWzas4krGq7gZPQkd74iz/yGcAOrtq6iP95PyBti39A+0laag8MH5TcYbBGgmB6Ei+6XVHV/vZTamWHIjoEdgyMboOw8qLsW/LME0FddXlKBz41DbkrU4VtXwMVfg+m34Jy/EUu4iW5JmTf8cNF9Z/jGHwRPubTJRWSedtXT0PBRaasc+dZNf0msLjFQEqgrAmubYsGGpgnzXhSiixfU6PWSeny4SbarL5JUe00vKMxr8nqmdCc5XAL3hlfGQkkf1xGwf2BDSZxOOSVx5caFJVG6fevl139gQ0GsrkBEJQqp9jvvFlDf0CbjBGolUHDdt+CCW4XhNwOFNHsDAjXyvf3mfskcMDzw26eFvCpkGbhKUVbmo62tif37h+jri9LQUEZHRyudnSIoNzAQZ3hYwHVvb5SBgTjt7S34fAaDg3FeeukoGzb0YFkO3/nOR7nuujl8/es76e2NsH//EI6j+P73P8b8+VVs3rycW2+9mNFRsY87U8H+8ce7qa0N4feb2LZLMGjy1FPL5SM/U2iuLFR6zjuuPLub6+V7iSdLQrY5q2Rj6vdK6R1Ixp3jlDL3Plg+AO4fLH98OZNNP++8aq64ooH29ha+/vWdnDgR4Te/OX2GhZx9lrL8j370cebMqZSUIdMvjPvBjTC7Q5j3HSvlxlbWIkC+cr7cuAyvtJ1hzQO1cPBJ2Wf45CbnqxTmvKFNUpXiJ+UGPKP4iZIIa1OH3DR7HpG1m5c2b6wBTxhXufz4wMtsP7qHHx94mbSVZSIZYTA6hqaVVOJ/tO+X+E0v/7DsSzRX1KFrOl9a+EkWz7ms2H/GHs52HdKF9Hev4WEiNU3GyvH4a/9CVaCMoM/HSHySf/z1swzECt7vjfOZTEV56jc/4fzaOQxGx/jma/9C3tVQwaWg+SDfC85IAWw7UpOeeF7Y8alvFlTf18+grMKDypBadXsSsXS7E6xjBcV4ENA+AvmTBd/2WgHluJA5UADtkxBcWtivpB5+8hEItuMNXc28ykrSlsUdXV00l5fz4q238vDSpThKsaGnh9pQiMe7u3n+8GGe2ruXzy1YwNM33QRKYWgap2MxegYGcFyXMp+Pl44epbO7m7DXy5ZbbhG7t3yeB5YsYcWCBaxbupSGcJjPXHSRZLopheO61IVCjCQSPLJzJyOJBEtbW5lXVQUej9jBrVsnb7mzU4B0IADXXisg/K//Wl6HQnD//SLH7vPBnDnStqVF/NSamwUIPfmktK+vl3Guu04M2Nvbhcr+xCcESa9cKSn2ti1F44YhD5+yMike37QJr27R0KDw+UqX4PdLF9sW1tzrhaefluOzZ8vlfvvb0tbjkUsIBARk+3zSPhwW9nxsTNj0mhrBaE88UcgOdOWyAwG57O9/HxoapH97uzDtjgPnn1/4qczk55/XCkuuEDA+OCYq8jOWbUZB/TWREgAOAthdJe1nauInIwLGbUf2nT9HmHPXFR/XspCM4bhyvLlezhFPyvjntcIl55ZsYjTITEzw5je/SWZ8nJpLLxWLt+FhDq5fjxkMYvqF6fjtk0+SOH26uG0GgyjXpe7qqylrbsYMh6m96ip0r1T56obB9HvvkZmcpOq88zj87LOiPj8xwf5vfIOqCy7AtW2cXI7s1BRuPk92aopAYyNlc+Zw9cMPM+fmm8Gx0U4chuWfLQF105SU9qpasWabGBG2oe3D8Od3Ckv+358Ry7Z4RNLd8zlh0g1T/mKREkMfCMFffVXGtCzY/qIw8jM2dIs+Iun1ZRXQPA/+xw/lnIZoP9i5NOPHeqTO3fDgDZQTrKwHwM5nhImvno2VSYBSmL4QoZrZaLqOch2UK7UYwaomJk7sIzZylNH338AbrCRUI4rq+VQUK5vC9Iewsqni+dA0TF+QTGQEw+NFNz3Mmnc1humhsukiPKYPd0cXKjp9lqWbO9Qvlmy5LCoeQwuVCRgPBCX1HYWx/L+hVVZL/8OHJKW+qfUs9l5FJnEHT0MqiXHzp9CqquU3LHUARRafXFaU58+wpFORKYybP4WqqiIWO80rr9xJJNJLOj2JZaXJZiNF+zcAXdfxestYvPh+4vEhWlvb+fznu+joWIdpBvB6Qyxdug6/v5Ly8mb27NlEeXkzXm85tp1lyZIHiiryrmtTVtaE69qYZgBNM2huXsiePZtobl6MUi7J5AhKOTiaXmTMHy89AViLsOphBFCnEAb8eQTUm5Rs3IaRFPg6+bdjvLA/WFifRBh1HWHdvUh6/d2UGPy/RwB9A0W1FixgynGJDcQI1YUY2jcEOmQiGeyszWV/eRnesJcbv3Uj5c2SvbD/6f1FRly5il/fJz7tmqFh+sWKdaBngOipKMs2LmPBigU0L2ymZ2MPLe0teENelKtYtnEZLe0t7HxkJ9FTUYI1QZKjSSrPqRTv9vEUZU1lKEehBTX6on2s3raa2lAtI8kR8k4eV7kMxAeoDdWyettqxpJjBDwB7lt8H+OpcXRNZ8stW5hXOY+O1g76on2s2raK2lAtlf5Kwt4wGStDfbgeXddZs2MNJ6MnGYgP8Pzh54nn4gzEBrhv8X14dA+b9mwqKttHs1FqQ7UMJ4ZZ2rwQzbXQQnMkpT3YCkeeFDBqF9KvUaIoH39fwDSOpMhHDkl7MyS16kMvCfD31UBoHlzzjNjB1SwUpv7gKlGkN3xSv35kk5zT8EPVpWJDpywZ7627hdUPtcovJTEgvxJd7rM4+ZK9G5TS1l1LALydkf1moODHnoPpoyVF+hlV9kKQTLzfE9Iu2itrlJxH00TxPVBbsonzlhWeV30FgO8p2bNd86CA6OQQXH2/HLv+GfhUlxBPGJI+P5MF+uUxmXvOAP8DG2DOMli4Vmzi8gk5R3K4ZBE3UyLw2l0l//j9nXKu675VqNHPg3LwmIp02mb16m3U1obo748BMD6eYu3aDlasWMDChc08+WQP7e0teL0GHR2tdHS0cNddW2luLufFF2/l4YeXYhji6d7Z2c1LLx1lcDDOokXNhMNeslmb6ekMHo9BMOjhqaf2/oGC/dq1SzFNjVOnouRyDrNmhYryNcWgfHODPOvPzMqb1yzfw4n+MxxmTAH5lnOGDax7loNMsXTug+UD4P7/p2UGQOfz9v9x4/+FZYZN9/s9hELesywgZs0KFnwinbO84B1H0dcX5fbbX+b9YxHyU6fhvM/AR74LqDMimevlJvXD2cKe55OABhf9lbDvy56DqvPg+u9D01Jh3+OnBawnR2Xd0CZtm6+FO4bhuk0wsrfg2+6cffM0fKUbMS6+kb18adEnC0z6Jwl4fIS8AXymB13Teej6v+PpTz/IykWfJmvnOTR8jLxtoZSiOlhBfVkNty/8VNEezmOYmIbJVDrGP/76WYZjE1w++3x+tO8/i+C+KlB+VkDgkob5ZwUAUrk0Y8lp/n7pn2PohgBzZYuXu2e+fH7oUPM18WbXK0SErmwF1KwVdtwekTp4lPTVw2ANFcD9U5zlk6qVQ3CRCNiNrgLrhESXg4tAr5RaeusUjN4lbYw6CLQXxtFw3BSdBWDe2d1Ne2srAdMkY1k8tXw551dX84OPfYytf/EXbFy2jNFkktXbttEbieAodVaKfdq2efHWW1nb0YFZqH/K2DYPvvoquwcGePS665hTUYGh68Wa9lOxGKu2biWRzzOvqoqnb7qJeVVVJPJ5Vm/dSj6fFxu4xYvl/VZUyLq6WnLNGxuF6u7rkxT5OXMkJ911Swz6wIB4pG3cKA+bZ56Bv/oreOcdoa8tS9ThOjqkTXm5BAief17Abn9/SXBtxvMtmZSUet3g1ClhuP/qr2DWLIVS8NvfymknJgTIb94sgN3jkW5+v5w2GpW+x4/LqWYy+k+cEFxYViZMu2UJSH/ssRKY7+2V9gVnOk6elH2f/zx897vw05/Cl74EjipwHoYuD+UZ//ZzW2DR5VKrHiuAal0TkO7zyvstD0kEwnGl9j1vS7p8a6PUtFm27LMcOe4qech7PTKWU3htGLI+0S/7ysMFMTsH5bpFS7Yj//zPNCxZQs2ll5IeGyvYsblMvf02pt/PVQ89RDYaRTMM8WH3+cgnk7iOI6Jhui7CYUqhbJt8MknNpZcSamjADAa58sEHaWhvL55PMwzSIyPk43G85eXFdai+ntTwMAcfewxd10SkraJGwHVVLfz0h8KEOw5UVMOFl0vEJRgWhn1qTNjxQ3shERWWfYZ5OneBTH4M8w+92f/927KeHpP9v/hXqZWvmw1/+fcy5k9/APGo1M5v/amI1AFTJ98kWDUb3fSglCKfiaMZ5lkAu3L2hXgCYVLTQ2golOviWHkcO1+8PAXMmncNc67+FI0Xf1j2uU5BjC6AnUuBUkz2HSh6vuu6gWH6CFTW49oWhunF4w+TS8VAKVwN9Js+iVZRBWVlkuJummjlFcXUdX3OPNmun43zq/+ERAw1MiTBOzT0JdcV2Xc8HvTWeSX2vvt1tGBI0uvdQvqmpgs43/pztPIK9Fv/Bnx+9I6PnG1J1/2a2MuhzrB3exy/v4J4fADLSjM0tOo0G9QAAQAASURBVI9gsBrbzrJ162qmpo5RWTmXhoYrSCZHaWy8kqqqc0gkhsjnU1RWziMUqj3LLk4pmx071jA4uJePfvQ7VFS0Ypp+otFTxWCBUi667mX58s1cdtlfkk5PsnPnI6TTE5iczZh7kXT1eQgrPoyw7MOF7RUIYHeQFPcEkko/jgDxPoRVTyHe70mgFWHW7y700RHw/xJSD+9FGP1vI0A/Xfi9+IB6Q6dpYROp8VQRvPur/ITrw8T6Y+z8+k7Sk2kG9w4S6Y2w/KnlYhn38FI0Q2P55uVcetuleAIeYv0xtq3eRqg2RKw/huk3ue7R69BMSbNv6Whhunca13bxlnnZ+9Rejr50FNNv4jou0yemiZyMYAYkdd8TkCCOr8FX9FXftGcTC5sWYjkWewf3srB5YRFQ98f6SdvpIlveF+ljZddK+qJ9aGhnjVEfrmcsNcbd2+/m2NQxlFK0NbWxYfcGOlo7eH/V+zSVNbGwaSETqQlGk6NsXLaxaCNX6a9kIjVBe0s7QcODlu4XJtzJQKBeALhmCJv+7iOy1nSYtUTA9P5C5t5MartSUsve8aL4uO+/A1J9MLmvkE6vlVLnj2wS8F7c3ihjmWWFdHdNgPsF9wq7r2kFL/XJUu15tFfmZtUXFIC0BuVzBVjPAPrEYEGbRpc/wweB6pKN28ycRjMEyCcHS/7sZ6bQ614Bzk6+YMPmE3u5M6/LTssYwQaxdQs2yLlDDVKnHjslqe/hJqlL/6+vSMr/TBYo8vzg2o0y32xbK9mmZhgaF0nGqG4IIdX7kgjPaUg26VX3y/acG2WeGjsl9/n0mLD30RM4NnR2Sjnqpk17aGtr4sCBITIZi3nzqvjGNz6Mz2fw9NM38fnPX0Jv7zSnTkUZGUkW5+7t7a2EQh6Ugn37hrj//sW8886dLFzYxORkmpMnhXlPpSxWrdpKb2+EjRuX0dX1eZ555mZCIQ9bttzC/PlV2LaL32/iOC6jo0kcp8CK+71S3mZZJaZ8JhtP10vWb4OjEqy3bJkXROPCyDuutJ/J8puxhv1gAT4Qp/ujy/8Xxel+X0xuRvn9/64lk7FIpSz27RukpaWCgYEYra0VzJtXxR13dNHW1sSNN86nqamML3/5FX7yk3dFaf7pdsrcYQHP13xNhDp+cy+0fU3EPH5zryhq5pNyAzb9ckNXStjxq9fIzS4bEUG6q+4Hf6Uw77loqcbowAaJapbPBQqptdFeiVzOCIq4Wbl5uw6WY5ExQ+iaLqrSSpF3LI5NnGZWqIof7fslX1r4SRrLa3l7+CiVgTL+7eArfHHhJxlPTlMXrqY2XInH8JAr1Mgbuk46n+PV4/t4Z/g4D13/BbJ2nmQuTZkviN/jYyg2wY/2/ZKViz5NdagCU9fJ2habf/MTvnb9F8jZebyGhzIv6NYJ8VGveQCM2QXwXAUY4IxJWrublAeQPQlGJaLU4ykI2j0MdeuFUbcnhFVHK7yuA2xI7wVPvdTSe+aDp7mgMr9Wtke/KGA9WADsdU8UWHudjK1xPJph/a5drO3ooC4Uwm+amAUhueFEgg09PaxbupRzKiv50ssv8/zhw6xYsIDv3XwzSilWbdtW3LfllltwC4D+sV272Lx8OQBew8BrGPJMtiy++qtfcd/ixUU/+M9cdBGjySQbenp4qKOD2mCQX77/Ph+fO5cWx0H7fVX3tWvFxHzlSgHYXV1w5ZWFlK2EAPyf/xzeeEPo7tWrBT2Pj0v/Bx+Ec86Rf4zJSZF6j0aF6vb7RbY9kZB0+pmidcc5WxxvYoJ47Tx2detcfrkA6g0b5NJaWuTZZhjSfUa0DkQ7LxAQMr+8HN5+W2IO4+OS8j41JSnyyaQkCcRikoI/oyo/MCDtNm2St75ihWT19/SU+lVUSNJARQWUBx28plsSiGtukIfy7yvCz9SylReScC2r8L4L4nMacGJAAL+myUNZ10rCNB6P9Kko9Hdc6BsUxj3gkwd+KCCg1Sp8pihsxyExOEh6ZISayy7D8PkASPb3c/jZZ7nygQfIRSIcfvZZLvriFymbMwc3n2fqnXcINjRg+P0lYbmVKwk2NJAcHOTIP/8zC1au/IPj4ZYWkgMDHN6yhbZHHmHit78l2NBAenSUmssuI59IYAYCwia6Lv5wCP3k+9B8Dnh88L99R8D3eZfAtv8hbHhtg9SlZ9KSDj90UgTk0skSmC+vEub9vEsglxVAPjEi4PsvVgk7PyOAd+4CYeab58tnPKNcP9AL3/66pNR/4i/lx1VWgRMuQ7kuKJd0dBRPoAxPoBwNxdC7rxbV45suXUZqegjTF2Cy700aL/4wdi7NRO9+Zs27Bl+4qmS56zo4+Syua50lRheskrIIK5soidb5QhLc0DQcKyfp64b84J1cCtMbQiukuOtNrahsBue5zeifug29eQ5K0yAeLR2PRXD37sJY/glUNiNq8EP9aMEQKpNGa2xG83jBtnGHTqNVVKJi0dK6vBKtskrY+MOH0BZcgXHLZwUjaJLmoaJTRXE71X8S59zziNjj7Nq1no6OdZSVNWAYXlKpSUzTj2WlCIXqUMrFcfJ4vWVMTR1j795vcdNN38V1HYaHD1BffxneQvq1ZaXJ5WL4fBX4fOXkcvHCh6vYseMB2tvXEIsN8h//cQuf/3wXFRXN7NrVydKl66isnMsrr9xFU1MbF198KyrcQLagKH9myaiOpKz3AJ8GPgN8f+YrRITknDPa340A8ReBDoRhPwUsQkD6A4jw3W6kfr0XAftXIMB95vwngceQIMI8wEjmyIwk8Vf5RVW+NsSeTXtYum4psYEY/3HLf5yl+N7a0Yqma+TiOV598FXaH2yn8pxKlKPo7+7nhc++wAWfuICbnrkJ3dTJJ/NMHJ6geVEz/d39hOpCpMZTNC1sQjd1BvcMUj67nF2du1h832JSEylalrSge3SUrRjYM8Dsj8zmRPQEnbs6Wbd0HfOq5rG7fzcNoQbmVs1FQ2P3wG6uabqGfYP7qAvVcX7N+WSsDLZr8+74uyxqXkR/rJ/O7k4eXvowrRWtrOxayUtHX+KXn/sli5oXoReA6KnIKfrj/TSXN9PZ3cl9i+9jIjVBR2sHuqbjKAdDM3CVi4ZGSHMwJntK3uwL1kndee0SAegzgnNtW+TLzI7Dr9vgY0eFXc+OSKq7EZS50ptfle3G5eCrlVT4YBPEj8GRJ+CSh8HfCJkhAe9XbS4JbyrgnbVw2WNgBkW0zgwJaE4OCusdO1USpjNkXoaV+kOlebOQbTkD0N1Cqr3rCJkTni3beuHX5VpnK9aXNcsvXS/Mh/OJQpq9EmE9bUb0zJUxnZwA+FxMrs3OQDYKVfPFsShQK5mjTR1Sh254C+n/GowdlFJPT7BQz2/JdVvpM+ap6yS1f/y3EgA4+KQAfSi9T02TQEDjopL6/Ke3kqn7MMdOxOjs7Obhh5fS2lrB3Lnf5sYb5/OP//hhtm/vZcWKi1EK1qzZwVe+spCpqTRLlrQwOpqkri4kpzF1urv7qa0N0tpaia5r7Ns3SHNzOYODcWprQ2zatOcsx6i+vgidnd2sW7eUefMqOX58iuHhJNdeO4djx6Z46qm9bNiwjMa6AJpTEKCbudnMCNQ1N8h8wHX/0FEGJIDv8woDPzN3SKRkX9D/J6Us/ychTqdpWqumaU9rmnZU07SMpmlZTdNOapr2r5qmXf7/9vX9P738vphcLuf8H3f6Xx7b5vjxaVat2kpLSwXnnlvFtdfO4YILZuHx6GzcuIz29hYeeWQnJ09G2bhxWanO3e89g/n+ptzQbvhBIdKow/Xfk3V6FCYOyU0yF5UbauNiSbEPNpTS6v1VclN9fbXc5HXj7Hqk5LCkHSlHbtpX3SupWbkIvLZaxs1GsDzlgIauaQzHJ1n/6o+YSEY4d1YLP9r3S3b2HmQsOY2LyxVNFxQF6n6075dUBsokhd7wMhAZZcPr/0rWzjMQHefI+EmWX7CYdTd8EbcQFHt27y+YTMfY/v4eAh4vX7/xdmZX1DKZjPLYjh8RTcd56PovoGsaU+kY61/9EUrZMPUkBK4t1JcHhT0fWyMp8KaksZL9baF2Nw1ODDS/vEc9DHWPgTMqoFylId0DOALa3TiM/r0oxmtlok4f7ICpzQLUNR+goOZBCC0Ha1SCACD9rH5cfMytrGTz8uV09/ez9rXX0DWNvOMQy+V4au9e2lta8BoGCljX0cFtl17K5uXLsVyXgGmyrqODFQsW8GB7O2nLwtR1nti9m2sL7L3fNNk/NMTJSATbdQl5PKzt6KDa7+cHH/sYf3vFFXh0ncl0mk3LllEfChH2erntssuoCQYFSOTz8qCYM0dyzjdulM9s3TpBrgsXFoAgwsaHw/CXfwk//KHkjz/3nOzbvFko6sbGEgivrxdvtnBYisl1XdhTXRfwnkoJyu7tlUDBqVOFCH4IQ3NZuFCah0KldHnXlXgAyDAej2TbezwC0gMB2R8ISDr93LkSd2hpEeI/HJbLm6lnnxl7aEguv6pK3npXlyQQ5HKyf2xMatxdVy777rsLFReadnaEXC9sT0UFrIMw4jOR85n697wldemJlFzQea3FemgB74UHc1lIQHsocIYAni2gfUbN3ucVgK8VauENiWwopQjMmkXNZZcx9c47JAsB1xmxOCuVKr7OTkyQGhzk4GOP4a+pEdG66mr8tbXUL1xIenwcTdfJTk9Td/XV6B4P/upqjvzLv9D/q19xeMsWlOMQbmnh6ocfRmkaNZddRnp0FH91NW9985uYgQCmz4eVTpOLRslEIqhzLhCgrWvwuTvg4qsEtM8I0+lGSZguHhXROI9HUuN/P10+lxUlc02TtPdP/KX8GG76XEkA79+/I+tgkGLuolIy7jXXivJ8RY3Uu/tE+MnKJhg+/DqmL1BIh5dshsaLruO8675A48UfJpeKEqxuQjd9BKtmF+rckzRceC2egKSbKjuPlY6RjoxgeH3ouof4WC+TfW8SrGqUlHENPMEKZl/yEXTdxMoliyJ3uiF2dCgXKxMnl4qiObYA6lAYZ9svwLbQP3UbWkWVWL4phRYMC9u+/SURklt2CzMWe+7wIFoojLv3DbSGJnBd1NQE7tBp9KY5UFGF3ixrLRRGxaOg6aIuv+AK9MXX4Q6cRtN0sG1UKoFWUY3x8RUQLkMNDaACPsLhRm65ZQvV1fNJJkfp6roD206jaRo7d36dWKwf286yY8ca8vkEZWWNLFp0D7HYANu2rSIcFjG1rq6VWFaadHqC6eledN2D69rouoeRkbdIJEZpampj165OmpquYcGCFTQ3LyzWv+/atZ58PsX113+TlpZ2RkbeQkcxAtyBAO1xhC0/BqxE2PMXEVu35Bn7hwtzgDCS6r4OeAdYiID2VuAvC8faEZG6GxGleIALEIA/AexF7OZshNW/v3BeG8Br4C3zYngM5iydw77v7OPw84fZtX4XTW1Nwq6vXUqgKkB5azmp8RTKURgeg+OvHCfWHyPaJ0J2jVc28pW+r7B88/IiKDd9Jk0Lm9B0rcTs14fIRrJoaLRe28qezXs4/Pxh9mzaQ9PCJlzLRdkKNChrLsOyLOZWzGXLLVuoDdZyZ9edXFZ/GZqusbJrJcenj3NFwxUEjADN5c2Mp8Y5FT3FV7d/lfHUOIuaF6GUYl7VPDYv30xrRSupfIp1S9fx4q0v0ljWyKqtq4jn4tiuTWtlK21NbQwnhrm29VoqfBVcN+c6AJL5JKu3rqY30ouhGeiajoWGqlkooH1GTK7mGqkVX7BOQPslD8u94OAqSXG/cb+w09kRAfwHVxeYdS9csRFmtcM7X5cAQPKEHCs/H9p+CME5oJkQng9XPy2Cd5lhePNuWZ+3GjKjEjRI98vcw/AVrN4QsThvuczP7JzM2bzhs5lyX/nZoP3MxUqJrlFySGzmXEvU33VT+hm+QhmmT/rHTkrgwFsu4Dx2svAsQs6dT8pnlR4XoB1qkHMHaiXQoJQEE97cVAgq5KXtyF5Rx399Ncy6tKDVtFKIo+GewjUZZ2ebmgEB/skh6FgvczYrJecf2gWR4zDrMmHzFz4Mn9oKs5fgODB7dhlbttxCS0s56bTFT3/6Gb797eU0NIT5wheuQNclBX7x4mY2bdrDkiUtnDoV5etflxr1vXsHSSbzLFrUzHnn1RRBe11diOHhBB0drbS0lLN583Juu+1SHn54aTGlfgZf2LaiqUkIPNdVbNjQw+LFzSWtFMelUM8or8+cP5iGPLPmNQtAjyUL5Z2FjL2ZlHrXlSw7n1f+PliKy/8vGHdN0xYCO5DyrCHgTSRQfAUiXmoDf6GUeuF/Zbz/rzPuDz+8lAsumPUHvuz/V5c/5tdeVuYrHo/Hc9x++8tn+UaOjiaprPRTU+nBmzwqoHrhw3IDdJ1CJG7mZuzKje66TXLTO7BBaozCzXJDy4wX+heY8x1fKvlf3vADuQGnRqBhoURg33pK6pBip0qMe3JIhOsqz8NC52RskucKrPpYcprVP3+iaP82nY4XWfUf7fslty/8FPXlNUylooR9QY5NnKY2XM3s8ll0vvrPXNI4n5sv6iCRTeE1PaTz2WK7qkA5h4aP8ruRXh66/gtFL/eGcA2jyanieQW466x/9UdsP7qHZ299kGtmN4j8ljMKUxug5qGC6iilbc85kiJvVBTAti7p8jPic26ywMQDaOBEhLXXfKAKoEvlxW6u5gEwW8HuLYy/FjzzpE3R7/0BSO8mb5zP+9kPFdn2kMdT9FbPOg6O6+IqxVgyyUgyycLmZjy6jqFpZB2HA0NDXNHQQNDjIWvbvPjee+wZHOTbH/0oGcsqeh0n8nnKvV7eHhvj6tmzCZgmjlKkLYs1O3Zw76JFzKuqQtM0kvk8Gcui0u9n39AQyxsbMeOFVLh4XHLHoeAwUEDISglIUkraBIPCRO7fL6bnfr8w6jOUd1+fUN11dYJuXVfGDwQE+VZUiBdbY6MUpYMgc00T+vvIEUHJmQwZbzm27iWZlPcaDgsxPzYmw2ezpf/BNWtKJfgtLVKTruuwb59cZk2N1LU/9JD0nXldXy8A/FvfkmDAmQkHp0+L0N1998GFF8Ltt8NLL8n+6Wlh3S+/1MFwCynteUtAtq5JBF3XSxHxcPCMG0YafneiZOXiOIW0+DP6K+Q+cGoE5heCyq4LibR81jMWcY5T+uxRImDTPwItDeD1YDsO+VQSTdcxfT7cQmZDemSEw1u2cOXXvkZueprDW7Zw9bp1TL37Lv7qajzl5Ti5HId/+EMu+ru/I1BbC8BbTzzBlQ8+SHZ6mvcKLLuvqopDmzbxofvvx/D5yEWj+CorJXDgOGi6TmZ8HDsjgYUjP/oRC26/nfTYGLMuvgifxyioDmaE+fYHYXJE7Ns+eivUzpY09wNvQPuN8Bd3yftORGH9V2HBlcKqT4/D6y/DZ74gnuyaLnXsZ4rRzYxzzbXwN/eIV/xMTbxpwvREgX3vE3A/qx7H0Bl6d0eRWZ+94COko6OEaprJn2nPFihHORaOnUc3POimFysTZ+LEPmbNuwaPP4Smmzj5DIbHV2TvrUySQEUtuuEhHRnC9Aujj6ahKVVk8e1cBk8gXDhfW1HJ3sllCIfrcLb94mxLOE2X4AZIQMPrRb1/GNXfh3HLZ8WLfcl1EAqjRobQm1rlc3MdVDoF2Szunp2SPl9Zg2bbqGwazR8EjynfresKW9/YDOlkgZGvwO35DfoNN6N5faBpWLhMR47T3d3JzTc/w9atJU/36677Bn19v2b+/Bvx+6t4770XaW5eTDI5QlPTQsAlGj1NKjVOVdV8vve9i1i16gjT072EQrWkUhOUlzfT07OR66//JrpuoGk6qdQ4phnA768EXOLxIXbv/iYdHWsJheoA2L79bhYvvo9Qw4fYbXioRUD0NUAEUXuf2dcu/2GMIWnzzyMp848iNel7EcA+gAjW3YfYxWUQW7cHECAeQATwOilZxzlAHtgPtBTOmULq5VOcbQfXvLAZzdTYfs92ru+8Hk/Ig6ZpRWs4J+eADkP7hihvKccT8BCoCjC4b5C6S+rQTV1Y+AfE2i07nWXPpj10rO0g3BjGtVxMn0kmksFKWXQ/3k3Hug6qzqkiMZTAV+HDDJhsW71N7OFCJsFZQWzDpi/dR8AIoGkalf5KPLqH1dtW87MjP+PnK35Oe2s7Sil6BnqYFZzFk3ue5PnDz9P1+a4ic762Yy3zq+aTzCcJeALomo6rXFZtXcU9i+6htaIVhUJHZ9/QPlrKW6gJ1nBo9FBxjAeWPMDugd3sHtjND2/5IYZmENR1dBRask9A+4K1wqQHW8XuzUmLt7q/ESa7YWK3sO+qUFZ3cJUA/uu2QtUVAi7331Fi6i+8F97/FlzzPZmXTR+EyiuEUc+Ol7zguz8LTZ+QuvgDq0qe8m3PCdCfqTc3PDJ3y0yWvNvzibOZ8t8H7coVcmfGLniGkTd8ApTPHMu1BcTnEyURunxCwHwuXvJ+z8fluOEreLm78nmkJwTMhxpKosj/9dXS3PMjT5dKNnNRYeUr5sDOe+H4z0QgefYSCQJ4wlLPfuAJmQeXz5X3E+sVbaa2hyQbdec9YnecmZDrNIPgKRMv+H3ryVz3HNEkjIwkGBlJFm3Y+vqibNiwmyeeuIFgQZQxn3cYG0vR1FTGXXdtLc7Pn3xyGePjKUZHk8Xs2ba2JqLRLLNmBclmbWKxHBUVPgKBUtZuf3+8iC/8fpNw2MvYWIqxsSSNjWU0NIQIBjyEApIdWWTZ5zdLOdzvZ+jpmgTqZ7LtfN6z2xw7XbKEmzNbjv8JWcL9KTDuWxDQvgU4Ryn135RSnwbORTKyTGCLpmn+/xev8f/R5fet2f7vAu0y9u+pxfvOTsH3+0vH167toKdngIsv/h53372dnKXk5nPD9+VG+/rfSwQSYLhbbqQgbLpmnF2Xbvql9ufARrF8C9QKaP3wZolAXv+MCHhUnS+M/Our5Pi1TwK63Lyv/54cKz8HQo2QHseiJD73XKHWfPkFi/niQql1b6mo44qmC/hRoc1ocorR+CTf73mRSDrO5bPPLwjVaTx0w99xw3mLODzaS9gXJGD6eHbvL5hIRpg/q4VIJs4nFlzHQzf8HTk7z8b/+jeqAmWMJqfOOq+hG3gMo2gnd96sFlGC1zxgNEH994V5954P1jgkXxJGHk0YdOXA6N0FoF4Dermw9Ga9MPES/hT1+cwBJKXeFMs3ZwKq7wWzQQCm2SJM/9RGwJFAgDUsqvaec6Hir8n7r2NDgRlvLi+nLhymZ2CAE9PTOK5L0OMh7PUylkpxeX09k+k0acsikc+zautWGsJhXKVY2dXFaDLJ3MpKHmxvJ+84GLqOR9cZSybpnZ7GYxh0tLYSz2ZJ5POMJJO4SrG4uZmRZJL+WIzu/n7CXi9p2+bu7dv5UEMDulKChgMBYdJBwIvXKyA9lRKUPAPuw2F5iDiOFIcHAoJe9+8veak1NgpKPn5cEPHEhID9/n6hq4eHJed8RuTO65XU+VRKQPuSJTJRchwcTJTSGBuToY4dk9OdOCGgfWb/8LCoyT/5JFx2maS6Ow4cOCD76+tLwnJPPinxgZdekkvwemV/Mimg/aWXRH0eJG3+pZckbd5xhIV/8UVRnH/kEXmrykWs3XxeAee9A/LQnfFj7R2AcCEFIJkWcF4RhkWXiSCNhjyg/T7ZbzvS/0S/XMT85lLtW96Wc1iWROKBYs2gZRfq6HVh+gs1bwolDKptEz99mgP/+I+kh4cxAwHaHnkETyiEEQzyofvuw/D7CdbXc+THP8bJZkmPjBRr461kEiuZFJY+meS9Akt/eMsWdNPkQw88QDYSIRuJ4CkrY+K3vyU1NIRumqSGhnj3mWfQDYPsxIT0e/ZZai67DE8wKD7rpkfU3GMRAZu1s+Gvvwr1zfL+bvqcgO0VKyUF/sTvJE1+/XPwsb+Q397rL8OK22Ui2/uegFXTFEb+hIincfPnSuryM8v0hKToTwyLH3wgBPMvBq9PzuW6NF78YS68/g5mX7oMQBh0pZg4sV9q0XsPCNAuiMzZuXTB3i1RSINP4dg5NF3H8PqLNe1WJkGopgk7nyE1PUSgogFdN1GOBa5NanqIYGUDk31vFtonmTXvKqxMkmBVI3YuQ6C8FqULA66v+Fu0xiZUMgH5HJrXK/7rO7dDMol22ZUYN38alUqhjrwt9eser3i4Z7Oo6BTOKz8D20KlEqjDh1CxKESncLb9HKw87tBpVGQKdEMY/aqaotWc3tQqQnjNc6QGvutFVGQaV1l0d3dy9OhLZDIRli5dVxSRC4cbaGlp5403HkMpl8suuw2fr4xQqI6hoX0kEiPs2fNkwfatgQULVuDxhGlqWkgqNUFTUxvx+CDNzYtJpcbYvv1uUqkxKivPIRxuQNN0dN1LVdU5fPSj3y14xGt4veXcdNMzVFbOxaObXAmUA1cideUNwIeA7wDNlLKcyxEQvgIB3pWI9/s1CFO/EQH55YUxNiDp8+OIUJ2OMPUzte0JhOVfjQD1QOGvBkmlfwswz7CDG9w3SGwgxk1P34ThMejf1c/U8SlyiRxOziE5mmTbKqlhjw/ECdWFMPwG5c3lvPrAqyRHkzS1NbFr/S5Cs0Ic+P4BljywhPLmcjxBD/l0nkwkQ6g2RM+TIlYXqg2RT+Z547E3SI2nSE+luf6b1xOsCxKqDaGhkZhM0Lmrk5A3RMbKsH9oP7ZrF23ZFjUvIpFLsGrrKmaXzabSX8m6jnV0fb6L9tZ2BuODvHT0JQbjg/RF+7h/x/2krBSuctE1nY3LNmLqJgeHD+K4DpOZSS6vv5yhxBDxXJzaUC2d3Z08f/h5ntr7FJ9b8DmeufkZPJqHrJ0FN4+WHpLU9bYfiJhc5aWQGRQg+tY9IixnBqH1c8LCKyX164Yfrn4GrusS8brMiKjLX7m5ZA2Xm5Y+GKI2X3l5wW89LTXcb35FBOo6XhRm3wiUFOmv2AiJ46V7+gyrPqMIX9Ysc8Hpo/87e38eHld1pfvjn1OzVJplTdZkW54leQI82xDAOIzpkEQJcQKEwUAMHcJggiGBbmwDJswmJIwJgUBsCGmQDWY0tiw8jxhbtuVJUmmWap6r1u+PVZKgb6eH2/f+7vd23/M89VTVOfvss+tU1d773etd76tgPKfqX460i2gEPbsqxb7K1PfJhM4vBxTlMXTwGqDFm+2qnD8AmO3KuCQZTdVhSwF20QWAD2/QCLgtQ0F5LKjtGRCtm7FM/zEZZSn2Z1ADTIF2pb1f9hdljCai0LVb57y5YzUtNHuUzsUSoSHx5r2/0e/l3NUqdFc6V+er9mwF8TtWwfA5JJJgNhuUlGQyeXIRu3a1E4slqajI4vbbZwLQ2RkgHI6Tnm6lqioXs9nE449fwKJFtSlBOROrVjVSUOCkrc3L5MlF9PWFKChIH4zWL1++CZfLh9lsStk/G1RV5fDcc5cwcmQOJSUZZGTYyMiwUljopLIym7Q0K3arCWNAY2sgyn68TecPoyuUjZdIKmtugKXX2qHj21eV6BPJIYG78uKhdLv/twH/kxF3wzAswHiU8ZSLLt52AodE5H8dR/vf15Z8IEUspVBEuv/ZcTM6dqQB00Rkz79V5/+NEff/VZuqxCdS9m6Wr+2PRBLY7ZZ/cVFAc+Cj9PeHCYVirFihOTjjxuRgS/qgYxtklOuK5u7HddXRmaJ7J2MKwAdygbr3QtGZqWPxVB5SamXUmqmrn75WVaYvmaEd98c3waHXtFNd8JyCilCXdtomi66opnwyY4aZE54+Xtj2V6466xIy7U7y0rOIxGN8enQ7w7MLmDx8HAlJsN91lOriKh78+GU2NH3OwnGzuHfBdUTiUUSEQDREhj2dpCR5dOOrXDvj79jV+iV7245w74LrAEikouyFGXmDx+4+7ycp5fl+8tKzNPBrthBP5W85LUnMiU6luPeu1Oh6rE192s1FEN6tNm6JHoi1qqAcphTSMsCQVP76cDAXQNfPNYJupCulDUMXBQyrDuoSV5X5WLvavxl2Bj1FMaP5X4HUdxIgaiqmNyx0BQK0er1MLy3FbBhsa2tjZE4OuWlp2MxmrCYTR3p7ebixkaWzZ1OWlUXxo4+yqLaWRy+4gFMeD92BAHMqKognEtgtFpIpzYGeYJAch4OdLhdTiotxWq0I0NjSQpHTSWlWFibDwBMOU+B0IsDnLS0c7+/n78aPp8Bsxur1an+fnp6iZluG8s1NJkW0A9vevQrYvV6NnGdmKt88kYBf/ELD3i6Xgu/2dvjgAwX1zzyjYnbTp8MFF2hu+4kTGs6++25F0FOmDEXm43HYuZPgvAuIxEzceKMxmG9+//1Dl7/vPgXWb76pmnk2m9Lat23T6rq7lTiQm6v7hg/X1HsRja6Hw7qeMH26EgdOntT3ZWVDkffWVo3YjxqltyeR0JT+6dNh0SKwWRJkOBJ6D80mXSEfAOfRuILygbzzlD89kIrCpzFoXdbcAiOH6/tYHPo8UJAztBI/kPtmTX0/J10wslTr8/p14B+wlANAwGwmFg4T7OoCw8B/+jSOvDzCfX0UTJtGwOXi4HPPafS7u5vCadOIB4NIIkH/0aPk19Swc/lyJl57LY6BiPtDDzHtrrs0L/6556i+4QbCvb3k19aSCKm6+t5HH2Xcj35E2O2mYOpUQl1ddDQ20n/oENPuvptQVxfWzEysTidGMoG5vxtj/RuqKp/mhKwcBdlvvqj77HbNf7encviOfvF1ejykRA8sQ3nt37te94WC6uMuot7sNodG2dOc+tqTouAPROF/uARONilt3gCOHyExahzRWODrkfNUjnks6KG7eTslE84mHgunymi++kBEXkF2MZgsSDw6GJEPe3tIzy1GkglCnq7B3PiB6H2wz4UjaxgmswVJJkjGY4M58QWjp2NLzwFJYiRBTp/AqBiJgYH0dpFs3Ihp9jkY+YUk3l2DHNyL6YprMbJzNPd87rlgtWE40pBwCOwODLNZleAP7sWoPUPV4P0+jIxMEuvfRg7sUmr8zPkkt24ajNobpeWYaqdpykjAD84MDMMgefoEybV/wBhXg1zyd/S6T2C1puFw5Gp/iYlIxIvTWYDP58Jmy8BqTSeRiCGSoKNjL+npwwgGeygomIjFkobV6kBEiMVC2GwZ9Pcfp6FhBXPnLiMjo4T29l0UFtZiMpmxWNLweE7j9bYMRuQXLHgEi8WRUrUPpY6V4yys5ojJzCrgbnTidifwMEpH/BKltCf1n0UUBfc6ZddHMFU2iSrQr0Kp88OAPSj4X8lQ5H03GqFPZa+qBlfqdScK/ANAHzAmFCN6pG8wx9yR6yAejH8t5zx3VC6ZJZnU31DPwTUHqV1Uy0XPXKR1mwzW3bSOA68doLqumrPvP5tkNEn2iGxEBM9Jj0bWl80ld3Qu/cf6ySzJJJlI4nP5aFzVyOyls2nZ0kLLlhYuee4S+pr78Lf7KZ1RiiXNQigQgkzVOYgkIpx2n+aRzx/hiYVP0B3sZsXmFf9DJNxiWDjuPs6KzStYNncZrd5WppdO5+b3bmZO+Rzmls+l3d/OjNIZOCwOblx3Iw+d9xCGYWA1WbGarVhMFhLJBKGUuvqdH97JIwseGbzmQL3nVszGkQxjhDtT1m5TIOYBa7YC64FxPubR6LhhgZ6t4DsC+TNVQK56GThHQvfmlDVcrwL//BlD/uoxj6rGO4qUAn9wJUxYCj1bUlH832kQpqcRsiaAJUvndtuvh+pfQta4VK57m9LlU7oRg/nvmWV6LdM/m2dKUqnjyZiem1Gm0XZBAbpdFxsH/dkloc+D4N/QRQF/66C9GoZpKMpvtkM8oPT3AQ2ltAKIh4c82EFZoelF2u6v5rynFSiN/vzf6nVjAVXyt2ZoHekFqet3gDVNUz63rdTFgJyxEPPrHNc5HJIR1XVy5A6lASRjhOIWjpyIsHJlA489dgHd3UEefLCBu+6azZgx+UQicbZta6OkJIMxY/IH89LvvnsuI0fmYLWaSCSEEyfctLV5mTevglAoPqifO3BuQ0MLW7a08LvfXTKoPm82G/h80cFofEaGjRMn3IO6WqNG5WA2wCHKQvtafrrdpov1ZUW6iC9J/d7Mpv+RvWez6pjvcEC25uSTFJ13/DfKc/9fEnE3DCPdMIwbDMN4DwXq+1AL0D+nnvcBbsMw3jMMY7FhGOn/SnX/K7fIf6Bsz79d5L/vNkC3H1CI/6o6/Vf92v+lLS3NSlaWneJi7TBeeOFSxo3NxeY7qqC9eLp2VlkVMO9h7dR8LZoDZLJqx/bxEu0AC6boKmbABV17tdMMtKu1W7BDO0Xfae0oP16ilnADKp4zlmnH6zsFWx/QDsJs0w7WfRTiIawkKcsp4u7zfkJf0EskFsWEQW/QTVHWMMYUVBKIhugNeBhXOAKb2crVZ13KwnGz+Mn0SwHBYbFhNVtwebs1z9bqYFrZeHoC/Vw0YS53fuNKLIaJdm/PoB1cl7+PWZWTuG7mt/FFgpzu7yAUjRCORekLeghEQwMORGBYEHPukPVb74NgGabPSbfmo5vSNac97ayU7VtMgTgxzWe3lmik3DBD3h0K2i2FYEpRxuOtqbx3Q3PizcPVN77zVqXGSwglq8RU4b7rzpQoXgG2rltwWq24fD4mFxURTyaxmEzMraigOOXjfuO6dRx3u2n3+1lz8CCrGhuxmc3UX3EFT194IUkRntq2jdKsLBDBYbEQiEbZ2tqKyTDIsNn4+YYN1BYW0hUIcH19Pcf6+qgtLCTTbsdhsZBuseC02fBHo0TjcWaWlXHl5Mlk2e1YRDC6ujQHPRodAuvxuKqxDYD2gVGrtlYB+fLlDHh+A3rerFmKdmtqFJTfd9+QBRyoiN0VV2iufCSiXPYBbntBgV7L6VRQKgKzZxNLmNi61eDuuxW033WXsvJ7ehS433uvitfPmKHU9RMnhnzXrVatesCLvahIwfdAqthAyv3kyXpuIqEAfSDFf80a/Thz5yqQv/lmbfbnn6vd/FVX6S1LTwcjFlehuERCheIG/NiTKQEaQX9D5hQl/HjrEGj3+hVwlyp1dzCaXpyvDR1QjR1Qnz2aym8vLRyygct06mCelQGIRvZNKnxnEnAMG0basGHkTphAxO0mf9KkQeX4gqlTOfTyyxROm4a/tVVt43p7yR03DovDwYx//EcyysqwOXWCUHvzzVicTpwlJZx1//04i4sZNnkyAZeLPb/+NYgw+Wc/08WBqVMHo+3Dpk1j2rJl2lcOpGSA5l9veFMF43KHKTh/7RnNaa+aAP3dCtINA/70GwXmVdUK2jNzNMfd3av3NpnU8hd8R+n2X7WDs1ggI1sXAw7vG5r0ZuXAN+u+7vFeOlLV5195ErKywWwatHDrOb6DRDyCJGLEQl5szhxKa8/HZLVhmMyk55USj4Rx5pXq1xkKYLGn4friEyQe/ZqtXHrecBKxCJ6Oo6TnFNN7Yg/pucMxTGYMwyA9t4RELEywvx3DZMbicNLTvBNPexOxkJ9o0EPbgY9IJmOYykdgJBKQiA8pujduBEkO5aKXVZLcshGjYhRGdq4qxbta9bcloj7vc8/VsudfrCJ2Gzcgnn5M51885PkeCmJaeBkkk6pmXz5S7eI8/SQ3faTpCbEYRkkpprqr9fqGmdzckcTjId57bwk+nwtI4nQWkkioHZzNlolIkmQyhkiS8vLZ5ORUMnz4WXR3f0kyGQMMRJJ0dOzB7T6J1ZrOggWP4nQWYrWmU1w8ZTDq7vWeGvRtb2hYOWgBFwh0YrM58fnaUosGbYNg+3Y0l9ADTE/tuwfNKYyjUfMYSoffiua7twJeFMhnpB7lKPBvQ6mOc1Pl3kEBvRuYjUZLrKm6d6bqFlSV3oUuIDwKmBJJNq/cPJhj7ixwDr7f9tQ2KuZWqBWcwaCC/IJHFuA55aF+cT3uE27Of/h8quuqmXvPXLLKskgvTMcwGRiGQcODDRxcc5CGlQ0kQgmchU4saRas6Vb8HX6a3mmicVUjoxaMYt6984gFY/jb/TgLnLy35D3czW5s2TZC8RCReASryUplTiXvNL2DJ+Jh1ZZVzCmfg9Pm5PvV3+eX837J5y2fE46HB4/ZLXbmV84H4J5593BB1QW0+9spcBaw5L0lHHcf55EFj5DtyCbLnoXVbKU32Es8GScUD3Hnh3fSHexm9YWrSbem0+ZtY9X5qyjJKGFy0WR+9sFdRMzpSGYVUjgXIt2qJB/uTFG/WzSHPR6A7kYVmcuuhvLvKWg/vUZBOAIF8xQwhlpTue9LNL8dINQJgRMKegcV5VfBiB/CtEdVnT6ZUGC/504IntJ52ISlcPRZHSssdsgZlYpU9ygwtaTy3+MR9XKXgSUfhsZpSQwpwPtbFewnIhrMGRBvNCzaNrNN5z6JqOoeJSLaz4Z6tI6BGKMtU2n7iM5FY8GhKLrJlsrDb4WPbhgSwzMMwKTBqF2P6nP2CGWBDnyegSCKNWMItCcTEGjTRYFtK1VZPtilq1oWR6q9EW2HPRfatymdPh6CjT8nIbZB+zar1URRkZNHH11AVpadEyfcLFmiNnHt7X5isSSPPKK2cA6HBZPJ4PjxfhoaTlNensW8eRX4fFGsVhNpaerFPnlyEZ2dARYsGMW996rdWzIpdHcHSCbVdu6++zbicilT9qu6WomE2vwakahavBrGkAOMgWrc2G2pOUGqJxDAbv16PnuaHXKz1JUmHFXKfDSmc43/Zwmnm4j8qw+UKfVrFKwn0AXUBNpn70c1Sg6g/XDyK8f7UVZVzr91jf/sA9iE/gR+B1i/st8EPJA6tv7fW19paan8d9x8vrDU1a0VuF/q6taK1xv+H8pEIjHx+cISicT+7f0Rn0jfEZFAl0hzvUjXPn0f6hPpPaz7XNtE1i0S8baKeE7qvp7DIrueFOk9JBJ2i4T6tXz7Trnl+h9JZWWFALLnyQUiv0bk3TqRYI9I2C0vPfwzAeTtZXO0jo6dsv3R82X2mZNk0vgRMrlmnHz8l5fFH/bLpubdst91VDY17xZvyC+BSEh84YD0+PvlYHuz3PnOE3KwvVkC4aD4wgHxhvzS5euTvoBHmjpPyp3vPCEd3h451HlC7q5/Wjp9feIJ+eU7V/5AhpeXCiBXPnGHTHrk+3J3/dNSUVEho8eMkYk11VI5dpQ89fxvJBAJypftx+W6394jU86cJqOqqqR4dLns3rNFJO4Vibr0EfeIhI+KhPbp+/ARkbhbX3vXi8S6dV9on4i3XiS4TZ8HysT6ReJ9IuGjcsuS66Syslzv4ed/1HKhvVJZ5pSxY0bJ5EkTZHLtSHnjtd+KhPaLeOv1nIoSPWf7ByK9T0ow7BV/OCz9oZAc6emR3W1t4vJ6xRsOS93ateJYvlzqm5oGj3f7/eILh2V/R4fUrV0ru9raZGdbmxzq7pb+YFD6QyHxh8NyxbXXSmGp3r8/bdggnT6fHOrulrySEikdOVJqJk2S2kmT5IU//EE8oZB0u91y0SWXyMiqKhlfXS3nnHuu7P7iC4m73SL19SLbtonU1Ym4XCL79unrlhaRPXtEFi0SaW0VcbtF+vtFjh4V6e0V8flEurr0/L17RTo69NnlElm0SG45+2ypLCvT+7Fp02C9lSUlMraqSiZXV8vk8ePljeeeE+nsFOnvlwWzZknthAkyubpa5lZXS+PmbeJyJaWzU8Tr1Sa43UOvvV6R7m5tUl+fNm/1apGrr9ZjXq8257e/1Ut0d4scOaLNvuGGW6S8vFIAufDCPbJnj36UkpJKGTVqrOTkTJaxYyfL0qVvyN69ejuOHNH6HnvsJQFk/vy3JRGJi/T0i0SjIrGYSCQiEo6IhMOp54jIl80ivoCW8/r1WCSq7z1+fY7Fhvb5AiKBkNzy0yVSWVmZ+k1t13paOqSyslLGjh0rk2snyeTaWnnj108OnlNZWSljx4yRybW1MnnSJPnTH/8ofYcPy5alSyXsdkuot1c8p05JxOORcOoR8Xol6vdL66ZNsnbmTGnduFHC/f0S8fsl0NUlwZ4eiXg84jl1So78+c8S6OwUd3Oz3HTttVJWXCyAbHj+eTn8xz9KzxdfSHFWloweMUIm1dZKzYQJ8vgttwxes+/UKbl86lQZVVkp1RMnyqIf/ECkv0fkxBGR367Q54/+qq89fSKnm0Wef1ikr1ukp1Nk31aRoF8k4Bdxndayzz8s4nWLdLRq+d+uEDndLLdc8T2pzHDo/WvcIhIOifh9UllRIWNHj5bJ48bI5IkT5I1XXhEJ+qXn1AmZXFsjkydOlMllxTImK13MJpN0dbgk6OmUU7velaC7Q6Ihn3Qf3yWndr0rsUhQokHvV453SiwSkpCvV6Ihn8SiYTm1613ZX/9rCfl65dSud+XA+ifE29ks8WhYliz5qVSk+sLtW7dIoL9DTu16VyoqymXsmDFSWz1BamsmyuoH79L6IiFZ++oLMmXKZKmtniATxo+T5599RhIdbRJb+4okvG5JtKdet7dJ/OhhSYZDkujqkITHrcc9/ZJoO61lXC0Sbzooia4OiS5fKvEjX0oyHJJkKCjxpoOyZOY0qSwYJoDs/rxREuGwJHxeqSwrk7ElxTK5eqJMHj9O/vSb1RJvOijJ/j5Z99ZamVY1UmonjJcZ08+SnVu3SEfHPunuPiRr19bJ/fcjb721SMJhr/j93dLTc0S83jbxeFqlu/uQeL1t4vN1SDjslY6OffLWW4vE42mTUMgtHk+rvPXWInG5dktPzxG54YZrpKJC+5mGhg/E5+uUtWvr5N57kYULR0tV1UgZO7ZSLr/8IgmF3OL3d8mGDb+TM86YJKNHV8mUKbWye/c2CSRi4kom5ZCIuESkV0QOiUidiDwpIjtTr/eISL2I7BURn4jsSr3vEhG/iOxLldsrIutFpF9ErrvlFilM/Y+f2rNHdolIm4h0h8Py/SVLJHP0aJlQUyPfWbRI6lN1XH3LLZKeOueDPXvEE4lJx74OWVu3Vjr2dUjYH5b2ve2ytm6teF1eCfYHxd/ll6b6Jmnf1y7u027xuryytm6t3M/9srZurQT7gtJ1qEvC3rAEugPSVN8kHfs75Kc3/lTKSvQefvjGh9K2s02a6pvk1I5TsujiRVI1skomjJ0gl190ubhb3NJ6oFUuXnixjB41WiqzK2UUo+SpC58Sb9grrZ5WafW0yqHuQ+LyumT9kfXi8rqkP9gvfcE+6fR1Sn+wX/pD/bLLtUvave3SH+yXXW27pG5tnexp3zNYvsPXId3+bqlbWyfmmWYpLC3U73lbg7R6WuX9o+/Lie4TcvX1V8uoqlFSNb5KRswfIV3+LukL9snM+TNlxLgRUlNbI7Nmz5KNjRvlgGuXRHp2iQQ79eE/KdK2XiTcLbK5TuQNh0hrvUioU5/dh0QibpGAS18HWkWifpFIn0jUKxLpF2mtl1u+aZbK4nTtazY8JdK7W6S1XsLt22TJ5aNl9KgKqRlXKYu+e5FI1Kfnba4TeQ15adlMnZOteUUkHhGJ+HU+F/GLxGMi8ahIsFffB3tFWhv0eCL+9clnMiESC+u8cuB8X5tI72G5ZclPh+aF2xsHj4eDflly7Q9l9IgyqZkwRhb98IrUMZ9UVlboODN5kkyurZE3Xv29zjfXLUrNP7WcBLtF+o6JtO/SuajPpWU69+p89QmHzmuD3fq+c59I2CvSsXPofXO93HLTdVJZkZp3bflA6zm+XsI9J2TJT+pkdGWJ1EycIIu+d9ngOeETm2XJjy+W0SMrpGZ8lVzx/e/L/v3tcuRIj3R3B6S+vkl27WoTl8sr9fVNg3P37m6/HD3aIy6XV3bubJO6urWyb1+HHDnSI9u2tcqiRW+Jy+UVtzskfX1B2bWrTUaPvlBKUv+TLVu2iccTlqNHe6S9vV+uvvp6qawcKdnZ5WIyTZb6+iY5frxVJk6sldzcETJuXLVUVY0Ws9ksPZ2dOl4fPKbP4cjQuH/w2NCcIJqaE4Qjun/jDpGDx+SWJUuksjx1n956V6SlQyQQlLDfL0tu+qmMHj1aampqZNGiRYM/jXXr1snUqVNl8uTJUl1dLb///e//bcDz//ENaJW/hXn/1gE9jxtR3ZIkym56HLgIyP0b5fOAS1Crzq7Ued3ADf/adf6zD1S8tDkF0FuBvwJvoQu7EeAVIOvfW99/V+AeicRk374OqatbKz/84bVDk+o9ewaPu1xeOXSoWx577DfaGb/99uD+P/95g0ybdqZMnjxZxo8fLw+vfECka68Ca9c27cQCXdrJhb0igW7tANt3Du0PdGtn2bFbywe7tWzvYZFQn3z23l+k5fBOqawolz1bPxMJdGoH6GuXE00HZdaZk2XmmVPk7d8/JtJ7SJLvfE9Ks5EPHzhbJNAlTbs2SXlRjni+fFeauhR8H+o8Iaf62uVw50nZ1LxbPCEF9QdSoN4XDkggEpQef7/0B73iCfnlzneekEmPfF+O97TKne88Ia/tWj8I9l/+y2vyZsN7UlFRIX/9eJ3cXf+0eEJ+Ka+okI2Nm8Qb8os/HJR/eP930uXrk25fv0w8c5Jc9vMfS4+/X55/5SU584xpkoy6REJ7RVrrREI7UwDepwA+uE33R1tFom0i0XYF+rF+kWiLSOsiBfNxn0isTyTWlQLo++WzD1+TlpMHpLKyQvY0PC0S3C7SukgqK0pkz46PB4G8xL26KBBtkc8+/KO0nPhCKivLZc+OTSKxTvGHw7K3vV3q1q6VPe3tcqSnR77s6hKX1yv7OjqkvqlJ9qb2d/v9sv7IEXF5veLyeuXJrVtl/ZEjg+fvbW+X+qYm6Q4E5KFXX5V3tm+X9IIC+aChQfalgH5JWZl80NAg9U1Nsi9Vvsvvl/a+PvmH556TFrdb9nV0yE2//KXMmTdP4oGAJLu7Fag7HIpuDx8W2blTpKdHkexzzykq7ulRsL5//xBYr6tT0F9fr2X8fi3T1yefvfWWtHz721JZUiJ7PvhAUe/27VJZXi57Nm/W+lwuRdkul4jXK/0nTyra7uyUv7zyitTW1IrLlZT29sH1AHG5RNraRA4d0tddXQrI6+tFdu3SNQavV5vT2qrn7NunoH7gnKNHRf7pnz6TvXtbpLy8Uj79dI+sX68fJT29UjZt2jP48R0O/Zhffqkfed++E3LmmbPkjDNmyiuvvC3xaFyS0ZgOroeOKyiPxhSIB4L6vqVDB+JIVCQQ+h8H6K+Cdo9/sMxnf/iTtBw+IpWVlbJn+w6tNxyWyooKHbAHFgYG6vcF9P7uSJWNxiTq80nrxo3ib2uTQGentDY0SKCrS9zNzRLo7JRAZ6dsWbpUAh0dEvF4JNTbOwTWvV4JezzS8+WX0rpxo4T6+iQaCEjPwYOyZelS2fD223Ls4EEpKyqSrZ99JsGeHgl2dUlFWZlsXr9e+pqaZPNtt0mgo0P6Dh+WzbfdJjf8+MeyaMECafnsMwl0dcnJQ19KMuhXsH3jpQrMfR6R/l4F6M8/LHLyyBAw97kVgLccHwL6/T0i+7aJHG8aqmf/Nvnsww3ScnC/3pOtjQrq92/T+7dlsy4GHNguEgrotTrbRIKBwYWER757kVyycKHEYxGJhnwSDfkkHg1LPBZRYB70SjwWkXg0JKd3r5Pu47sGwfUAaI/HIoOgPhrySdDTKZ6OZgl6uuTUrndlQ/3bcvzoYamsrJSd27eJp6NZvnj/aakoL5Wd27elru2XQH+HBPo75OTOdyQ3J0d27dopQU+nNLz7gtjtdul79QWJb90kie5OSYbDkgwFJeHzSsLrkUQwKAlPvyQDfkkGA5Lo7pTY2lckev9tElv7iiT9Pkmk9ifCIUmGQpL0eiThdcsnr70ipw59KZVlZbJj1QOSaDstCXe/VBYMk+03/Gjo/J4uSbS3StfLz0peTo7s+9MfJLb2Ffls3TqZOGG8rF1bJ1u3PiltbTtl7do68Xpd0t6+V956a5F4vW0SDnslGOyTI0fWS1vbbgmHfRIOe8XrdYnLtUva2nbLkSPrJRjsk0CgR44cWS+hUL+8995fZceOdVJQkC4bNrwm4bBX2tp2ysUXj5FrrrlCfL5O6e8/JSdPHpWOjn2ydm2dzJ59hjz44K0SDnvllVeek8mTJ0pf2CetomC9VRRwe0RB9GFRcL7tK891IuIWkaOiIPxw6px2UaC/SEROiwL4b3z2mbzb0iKllZWyac8e6RddHLjx1lvlkptvlpPJpPSLyOb2dmkRBfx/+ewz+aClRSoqK+WNPXtkvYgE/WEJuUMS9oal51iPeNu9g+8HQHzrtlZpqm+Sri+7xOvyDoH9/R3Sc6RH3C3uwX0DZT+s/1COHT4mFeUVsq1hm3Qf7paQOyRX/93VcvX3rpbD7x6WQHdATh49KUffPyq9Lb3y1zf/KiFvSNr3tss1U6+RWWfOEk/II52+TtnZtlPq1tbJzrad4g65pcvfJd2Bbqlvqpe97XulzdsmdWvrZG/7XjnSc0S6A91ypOeIOJY7pG5tnXzZ9aV82fWlOJY75EjPEdnfsV9ee+c12de0TwpLC+VPG/4krZ5W6Q30ynU/vU4WXbtIWtwt4vK6ZPeR3eLyuqTd2y5rdq6RPe17pG5tnTz64qMysWai+PztIp4jCrwDrSJbFon07RWJeEX69ilY79uroHpgf8SjwH3LIn3u26dg/yvlPnvzIWn54gOprCiVPVs/1v1rc+TWn14tN990vSTD/SJvFUv7nld1ISDiEYl45MTnL8usGWfIzDMnydsr5ihI7z2s4DzYq0A8GtDnYK8C+YH3ycT/OElNJkQSMX3EwiK9R0RiYfns00+k5ch+ndNsfHsQ/N/6s7+Xm2+6QZI9h0SifmlvbdE2xCI67uzcnlo08Op1BxYDBkF3av7atU/nme/W6bFdT+rrwaDUP5vnht1ff+/aLp+9/pC0HNmn/fPGt7W+sFduvfFKufnHl0iybavIukXSfmyPHvOellu/NV5uvvFaSQb7RLr2SvtrdRLwBcXjCYvL5ZWWFresX39EvvyyS7q6/FJXt1YOHOgQvz8sbndIfL6wtLd75dlnt8v69UfE7Q5JfX2TPPvsdmlt9cihQ93icnll/fojAlfLJZf8VioqKuSTTxpTiwN+ufrqG+QnP1ks/f1B2bevQ/74xwbZu7dd6urWyv79HeLzhaW/PyQPPLBSZsz4hiRjsa8BcfEHddwf2Pdl89CcIBDS118B+p9t+FBamo/r97NtuwYDevrl1ltukZsX3yDJL46K+ALS3tamP4lkUnJzc2Xfvn0iInLixAmx2+3i9Xr/U3jo//T2rwH3f4sq/5tUJP27QKmI/FxSC63/UmER6RPt+3+Gpjl9D2hP1fO/bRORJmAWStkvBb6F2pKORIVTN4qI92+dbxjGbYZhtA48/F/Ne/1vto0YkcOLL17KNdcsoqGhgcrKysFjsVgCl8vHHXes4fe/f5Gzzprxtf033LCYRYuW0NCwjS2bPuXXjz/Jl0dbVHxjz1Oajx5xKy0eVOxj/iNKPUrGNW8o4lalUVsmFEyGAVNQz3Hwnmb+WBtlw4uV5rRtudLtgaQljetuvImnn3gEu82iNiHOEnrH3Ex3yML5d7wNFgdja6aSk1/E+/s9lGUXcf/CxZRmFZCXnsUfdrzL7e88RiKZYHzhCJy2NMYXjsBsmAjHo/QGPKz86CUi8eigiFyGPZ3rZv4dsyon8equ9UwpHcvZ889m4ZnzEYTCzDxuP+dHRONRzfEzWzjQfpRgLMytZy9CRNh2eA8tTSf4wwOrsZqtfO8736WltZXmo/u/QpVfpRR54urHbspK2bZZIdEFXXeoxZshYDihaDWDmTDxVhWhS5sOliLmz62hzPKAUuvtk1U5vmi13uvIQS1npANJSJ8NiS7mz8ilrKwolZsUhngHcUmwsqGBNQcP8uTWrZRkZDA8M5MMm43K7GzmV1ZSnpVFQXo6vaEQM0pL6QoEuHXDBuaUlzOnooJWr5fbZ82i1eul0OmkPxTi2m9/m1dPnSIYi2E2DGxmM3PKy/FGIvgjESYXFVHgdDK5qIifb9hAZyTCT+rqCMRipFksXL5gASdPnoR4HMNu1xz0/fvV0PyBB1R1LRpVqntdndKQ+/s1KXzECOWXD/DJH31UueqhkFJufT7o7GT+jBmUnXeeKsGZTKoql6JSEwpp/U6n0u4dDohEyPniC1Wes1rxeL1gmOjqMti1S5nOP/+5NmVAHC6Z1NcD9Pj2di134gTccot+tStWKJ09FFJ6vdOp2nlW63ygjL4+bcrMmTBunB6zpATGp0yB73xHc90//BBWrEjys59dxyOPPI3dbsduS2JKJjAkqbloo8u1gbG4UthCEaUkFucrxc0XGLJ6yc4AS+o5HNUcd2ea0uBsFohEmV81jrLycv0ggZBS6g1DBeycaUqPa27ROrIzhnLoB0TxkkkMs5ncCROIRyKY7XYKJk2CZJKDv/sdoe5uDLOZYSl9gUSqjNluJ9jZyfb77yfY3o41PR1Hfj69+/eTiERwFhcz7a67OOe88yjIyMBks2GyWgn39rLroYeQZFLrSInbxQIBDj73HEfWr+ePf/4zDz7yCIXTphHq7qa4qFj/Vxf9YMiu7bXVqhjv88AVN0F+ofZx6RmaQx2LqOXbwd1azu5Qqr3TqXZyD/0eRk1g/phRlG1+V/+TSVEafWlK5CAYUPG5qomqZn/sS817F1ELuOIyXjxwjGt/vAgiYdq/3Mjhj39HoK+NaNCjdPdYGEkmCfa3UzxhPum5pYQ8XcTCXtq/3Eg04EaSSWxp2ZROWoBhsmBNz8GZV0os5MPb2cyE4TbKKysBIeTtwpqWweg5i8AwEfJ2EQ26af/yUwyTiXgkgKe9CZEEHnc/3ce203HyS/Jyc0j75rcwJtRqPn8yofnm4RBYLBgmQ3+HiYQ+Z2Zhmv0NTFdcq0J1ZrXbS27cAP19SDRMYsM/QcDPOZd/l/KKCoiEkeYmko0bNT/T7sCoGqeK81aresB7PZwoLCM/J5ua8xdimncec2dMp6W1jezsy2lr205m5nAWLnwCqzWdhoaVlJZOR0To7T3CunU3kpFRjN2eQTTqo7f3CBs23IphmLHbM8jIKOa9924hHg9TVjYTwzBz9tnzOXnyD0SjQfbt+z0iSRyOUjZt6mD58hWIJEhLy6GgIBeLJY0xY65h374vuemmu4hGA3zzm3M5efI4J0+cogNVi+9AVUsSqJ1bGZqL3p16PwJ4BqW4FzBEbT8J/AwVpnsETaJaCXw6fz5GWRlJlN54CugKBHjtxRf5xYoVfGEYnASeLi6mC5gPnDt/PjPLykgAL6JCdWHDwH3SzbvXvUvcH8eaZsVzykPUH8Xn8rHg0QVklWdRMbeCtLw0bJk20vLTOPv+s8kqyyIe0XM2r/g6xX7O7DmUDddUUV+rj42/2ojrkIu3Pn6L5cuXUzylmPdvfR9H0EHRpCI+uf0TZo6dCUnIHZXLNY9dQ1tnGybDRJo1DafNyZzyOTy+9XFEBJffxZL1SyhwFtDqbcUT9rDm4BpcPhdOm5OeYA8Ztgz++v2/8sTCJyjOKKYko4TvTPgO0XiUiuwKLjjvAtLy07Cb7aTb0vFH/MTCMd744xt866ffoivQhckwMap8FN6IlwxbBudPPJ82bxu3z7qdlq4WMCDdlokkgmrBFuqAYbNUWZ4kpJWo8NwAvT3YqpT37derfVv+dM1fP7QK8s4cKndwJfMvXUzZ2FkpoVAfVN9LYM5nvPjHN1lx310YiRCcv5niyhrYvhh8R0lGPVx394s8/eTj2O12yJmo87bsUSoiZ8tSSnk8rP/bAZs2X4tS+yHVtyWGaPOGaciPXRIpl6I48ycNp6wyJUqXXgRpwwiYcnnxpZdZ8cD9GLmjwWynuKhQ55fhHv1lx4IqQGeYlVofD6QEkVdpKubOR3T+arbptU9+oNT26qs1lx2g+CylvTet0Xlu6Vzdf/7vVBi5dB6Ee5h/9jcoM6c+m68FTBYCwSAvvvYXVqx6EmP3Y1A8neKMBGy8lUBPKy9+0sqKB/4RAwFfK3kXPYHHF+fo0V5uvXUDvb0h5s6toLg4AxF44YVLKSvLJpEQotEE4XCcXbvaueyy8QwfnsnixfWUlWVxxRW1dHb6aW7uw2IxMXduBYsWXcrKlX+HCCQSSYYNS8fj8fHWW3/ivvv+kWg0wciROVx66RmD1nCnT3tobu7nhhvqeemll/n7v7+JWPwrwnIVJToniMWG9o0qGxKoTSZVK8dhUzFbh435555DWXFJKoVR0+kC0Sgv/v73rLj2RoweN5xup7iwaBCbGIaB2+0GwOv1kp+fr7+5/6LbvwXcfwxMEZG/iAz8k/59m4jEReQtYDJw5f9sA/89m2EYc1C6fg3wQ1TsNA+4FB1/XjQM48V/pa2PiUjZwCMjI+N/Z3P/P7kN5Ldff/27HD/uZt68eZSVfV0XIZGAhx9uYN26X1NY+D3sKW/FRAJWrWrE7Y7w5z/vUh9orweb1UJebjaM+Y4CdHOaWl44i9WqjaSC92CXKm8mIpCWr7lL6UXaUYa6VTxkWK3mMRVP144WAyZerflDhonHHn+COTWlnDF1iuYhbVsBn97KsFFnUFJcwprnH4b+o+z4fBNNx05w/NRpAtEQJ/vaeeDDF3B5u/n52Ys4p+pMrGYL3f5+nm18k25/P/KVnPYppWN5evMbDM8u4KbZ36XX76EkcxhFmXkphfkZPL/1bdo8XcQScZIi2C02eoIe3GEfP7n6J1x7yQ/52U9vobnlBGlWOzlxO0XFRXzZdRyzYcJsNlNRXs7ptjAUPQMjj+izJfV9JIPQsxzS54CRpnnvadPVNq7jxhSwPg2df6+56dZyzYlHwLCBtRLylmouGHEIbYV4C2Bw5Y1PUTtlLtfe9I90d6fW56xj9HyJpQZOB1iKsRoJlqV82B9fuJDm/n6WrF+PPxrVZoqwra2N0x4Px/r6aPV6SbdauWPWLLLsdkSEqSUlPLVtG2VZWVTm5BCOxUiK8MxFF1GelYVhGJgNgytqashLS+OXP/sZF8yezd/fdBO+/n5+PnMmjzQ2YjGZKHI6CcbjXHfPPcy/4AKCIshAYngopDLq06erXPuAb3skosi2qEhz3xMJBUirV6v3+nPPKfDOzNRzXC4F46DqbXl5enzECHj+eTCZuPLWW6k9/3yuXbKE7mhUUXJvL8yaxZWPPEJ5bS2/XLmS3/32FVpb1b5t924F1na75rmff75esqAAvvENPX3OHAXpbW2an56ermsNw4apUN2tt+q6gGEoUG9t1fpAywWDmu9+1VVXMmVKLb/4xbX8wz90M2oUTJgA1dWPMXPmHHJzz+DYsQEh11QeWjQ2lJ9vtehAm+lUsD4gLmO16nurBYblwql2PRaJalkDCEc0Z81ug6kTdeBOJsHpGALmVgtX3nErtWdM49o7b6N730H9EGYTiHDltddS+51LuPb66+nq6CDU3Y3/9GmC7e1sv/9+Qj09DJsyhXBPD2abjcpLLiHc38+uhx7Ce/IkiXCYcG8vBVOnYrLZSCsoIL24mNxx4+j74gswDKI+H/FgkEQoRNTjIR4K4cjLY8I114BhsPiWW1h40028M2IEfuCs++5j3KOPMqyoiKdefplZ8+Zx6dVXs2nLFgyfG/KLYNxkBeSjq2HDm6o039c9lPMe9CtI93n1ecULMGpCKkc7Cc5sPf/0Mb1njjTYu1VBOqiQnUXzBa+8+mpqz5rBtTfcSLfXD6PGQ8AH0TAkEzS+V09/u4tLZp6FEY9TMvEcxpz9E81hD/tSyu6ax5iWXYTJbKXn+A4s9jS6j23H29mM2WIDkgT62oj43WBALOim7cCHWNMyqJh2GSXV31BhQwG7MxeTyYrFrkKRN/79UqZOm86tv3iAwzs+ID23hBFnXc4br7/O9+p+wLxv/5SfLHuel19+CXtGSjfA6ybZchL6exWIe9zKugv4SGz4J6SvRxd08oZhlJSplVsyCTY70vQFyYaPIRJJ5ch/NqRvkZaOMWbCIFDHMLjmD28w+dwFXLv4Brp7ejFKSqnq7aDX4+Hzg4cgO5d31tXj8/no70tw0UXPYLNlkEzGCAZ7mTfvl1RX/wCLxYHf30Fz8wf4fC6czkIMw8zWrY9z8OAaGhpW4nQWsGXLQ5SVzQIgEOgkGvVjMtmYN+8ebLZ0pk69FhGhqekgOTmZPProk5xzzkWce+5C3n//XWy2DI4fb6K4uJC0tExsNicORzYjR46ipaWNx1HQ7dSRlxgqDtcM7EDz1MtRQH8nmgcfTI39tcCDqEXcKjR33Ynmx9ehwN8E3AtUAoHmZnLy8li8ciV3n3km182bR9HHH5OF2sc1oIsBBnA10AukxZI0rNRc9M0rNwOwecVm/O1+iqcUE+gMsOHWDXhOeTDbtf/+4LYP+M3E3/DeLe+RMyKHRDTB7KWzqa6rZsEjC4gFYgQ6A0T9URUz7/Iz645ZdIe6yc3JZdWvV/GNS77Bwwcf5tnbnsVsM9P0ThOWNAvuk27W3bSOZ559hksuvAQjYXDCfYL7Nt7H3PK5rL5wtWo1WNK5Y9YddAe6mV46nRxHDnXVdcypmEO7r53lm5aTlCQzy1T1+5b3buGk5ySrL1xNRU4Fpzyn2Na6jVxHLklJkufIozizmKPHjpKelc7m1zZz1UVX8e2F32ZN/Rp+tfFXHHcfx2ay8fJ9L/PtGd9mzeo1vPTySxgkMUx2BehNj0P5d1XpfecSBckYMP15tXzLn6G2cQM56sUXgKMYznxaAwLTHhtSlMeUEgqOq0Bwxkiam4+Q50yycuUDnDn3m8y76Eo+/sPPBut77ImnmDNrBmeMzYbAScifrSDcc1yF4EDzz63OVE54QueAoR7NKR+wfnMf0+d/nvNumLVj+arv+0CdGcNpPt5CXk4WK1cs58yzpjNvzkw+/ugDFcSz5wBw5eKbqZ08jWsX/5Turm6wOBXMn7VU557zH4HSOSl9pU64pglKZuqc9JNbwO+CiAemL1ONpfmPgPe0aiol4yo45z2l4D/UrfNXDLDnwSc307yvgbzcXFY++jRn3neEebe8zsc7T0DpfJrXL9djD63izLnnMe9H/8gHm3ZiNhsMH57Jo48uICPDit8fpbMzgM1m4uRJN1u2nCaREOLxJLfeuoHCQidOpxW73cKcOeU88kgjAO3tfgoKnNx883ucOOHm2WcvZsSIHOLxJKtWNXL6tIfOzlZyc3N57LFVfPObZ7Nw4bls3vwp996rLlIzZpSlQPx7tLd3sXDhhSQSgthtQzntieRQrvuYSh3Hv6ogb7XonCCRHMppT6a+awEqSmg+eoS83DxWvvFHzlzyE+ZddyUff/qJ/gwMgz//+c9cfvnlVFZWMnfuXP7whz9gs9n4r7r9q8BdRF5Lhez/p7dU1P+1/0wd/9pmGEYO8Da6OHy5iLwuIp2izK564Jvo+HONYRjf+N/Vjv/bt2g08TWhiUgk8c+OxzGZoKammR/+8CIef/xqTCb1Zxiwg1uw4DZaWt6mpmYMY2umsPIXN1LcvFoF5WxZqrAZaNcOLaNYO2LDrCJ0aQXqYRkPq/elYQyJg0FKmTMlGuI5mVKiN4P7GF/sauCtt9/h3rtu0040ZzSc+zSc8zh4mvmnO2t56Z+2MvWCK3ny2ZeYO2s6ZosVfyQ4GCW3miykW+38csF1JJJJXt21nmll4ynMyAMgEA3z/Na3mTJ8HH8/7wckJYnTlkaeMwsRIZ5MEo1rxHDy8DG8uO2fsJqtHO0+DcBL2/6JETeewwv1r7Pp8waKC4u49aZbeODDF+jw9RGJxxg9rIJgLJxaLABJdEFoG0gQOpdA7ISK0JnSoehxtYUjoWrxzgs0Ku9bo5H3WAsUrgAEgtuApIL84DYF/rYqva9JjwrSWYrZtPF99u/dze4dDQzLy+aqnyyGeLdeN+lPqcob2pkaVpJYGJWby3OXXIJhGKxsaGB6aSmdgQCLvyIk1+bzMSkVJc+w2egJBsl1OOgKBOjw+ZheWsrKhgbsZjOtPh/ReJxYIoEAvkiEXIcDTzjMug8/ZOvOnXzS2EhhQQHnX345FpOJRxYsID3l9f37p57C6O/ne3//9zgNA2PFCpVmb2lR5PuDHygibm+HLVuGQtonTmg0PR5XdThQQbmGBkW9hqGDSU8PPPywgvuvCt6ZFFRuevNN9v/61+z+/e8Ztns3V113ndZ57Bi0tfHKr39Ny5w5LL/xRu7/h18wb56Kw82apWryHR0aFa+rU5zs9cL3v69C9TfcoMrwM2cqtgiHh9Yfioth0yb9aAPae+Xl2kxQYkAyCXfdtYmpU/fz+ee7sViGMXfuVRw/DhbLFzz99Ft897v30tqqVvUipER4RC9kTgnODETcfQEdkO02jaLHYtqw5hZdKR9ToYN1dgYU5urA3Nqp55gMPWfg3sWTulIgsOnFV9n/+TZ2797NsJJirlr+K/0QZhObPvqY/bt3s3vnToYVFXLNjTdy6KWXcOTnE+zsZMLVVxPu6aH8ggtILypi5/LlJMJh0vLyKJg6laZXXiEWCFA4bRqVF12EYTYT8/uJ+nxYMjLIq6kZjLyb09MxWa1YBxZyRcisrOS9tWvZ9PbbbP/8c4qGD+e7CxaQCIcx7HZOt7QwbswYPm9o4MFly/jBlVfS0daqkfNoShxp+jkaaTebVSF+xyZ9zsxRAL/udQXohgHNB1UZPhZVS7e+VFT9xGGN0N//LKQ7ofWERtytNja9/Sb7t2xid/3bDOs8xVVXXaXn/9MrWr/JzIu/fpgrRxZhycgEu4N4NEQ04AbA4sik5/gurGkZylSIhRGgYPQM4pEwJRPPYdw3rsVksdJxqIH03BLszmwMw0Tv8d142pvoPrYdZ36p9hfo78gwWzBZ1Mt948ZP2Lt3D3v2HWBU9QyWPfIKiGBY01j+wAOseeNVjh4+yLq/ruGqq66mp6tT+3ubHaNoOMnGzxR8N3ysRpcNn6i1m98LHjeJ+rUQ8GEUlpBY/xeIx9T/fd55YLdrNP7Cv0PicRLr31YhurnnYmTlIMEAn65+nH2fN7Lz80aGOdO56keLMCxW8r5zBX9+8nGWLVvGWdOn8+EHHzBx/DjC4R5On26gv7+ZDz+8k2jUT07OCEwmE6FQH6WlM7j55iayssqpr1+M39/O+ec/zBVX1HPhhc8gIsydew8TJ34Pv7+DjRvvw+dzEYsFSE8vIC0tj/b2XSQSUWKxGC0tLsaMGckbb6zkkUdWcP31t9HZ2UlR0WQMw0I0GsDtPoXNloXF4sBsMg3auN2HRsXTUfG5FhSYD4gTZaDg3IGK0pHatwwF6fem9vnRSdcTKJA3oQrFxwFfPE7LqVPcMHEi7+/cybKnnuK173+fUGcnMXSRwJn6dYwAzo7G9R4sm0vtoloWPrFwUIjOmmEl4onQuKpRQf2KzeoukBAWPrGQJYeXcOHqCxnwszMMg4VPLMSWYcPX7mPT8k3qAS8wbNwwgj1BPJ0eTrecpqq8ij8/+GceffhRVu9ZTY+7h7q/1OEscNKwsoEP3R9y5PARZvfMJhqLsmLzCtYcXEO7v53TntM0nG4g15FLjiOH8qxy0q3pZNmzWH3hahBY1biK6aXT6fB3sLh+MS6fi+ml03mw4UEwwOVz0eJpGRSoS0qSUCLE4vrFtLpb6WrrYlt0G69ueJVVj63i5mtu5v2975NuSSdJkhdffpEvjn7Bsl8t41f33Iv4j6sg3bA5MPURVWc/uFKj6aH2wWj4oE/7tCfgksNw1u8gvVSF5LbfqFZlkR6tK9KtYml9O3S+5vkSJEk8YXCqI8jErCPs/PQNnnpsFd9/YB+dGZfxhVHHW/UbufeeX+jiQKRbrdf8rRDqSwnFofNCw5wKIqTeD9jDDfgZ2DLB15Zi+w08BiaGohH8wqlDVm9mG/hdxOMxTrW0MbFmMjs/fJ2n7l/C9xf9mM6uLjDZ2PTRBvZvfJPd2zYzbNgwrvrJNfov2HQntG1RyzlrOgQ61FvdkgaBTvjoRp3TFk+H7St17pozWi2PrU61dSudq3NUa4Z+ZsMYso4jqdZ6TWuIe1s5dbqFiaNK2Ln5Q576xRV8/8rr6cw9n/i0O/XYiAJ2fr6Jp/7x77n6J1dx8OBJbr11A52dAfLz0+nqCtDc3Ec8nqSoKIPCQic33rgOl8vH9OmldHUFOHXKw333bWTevHKeffZiAM4+u5Jnn93xNXG5ZFLweCJ8+GEzK1c24POFOH36NBMmTGTduo3k5HybH/1oETZbiN/+9mLsdjN33TWbCy7wsnjxtZjNFmxWM8bRU9C4T8VmbZZUZD2mCzeg1nA1o9XqLZlUEJ9IfB3QD7DvHDbiDhunTp9iYm0NO/fu5amnn+L7V1xBZ2cn8Xic5cuX85e//IVTp07x8ccf8+Mf/5iegXncf8Htv4Ku/sXo+HFcRLb984MichwY2H/+/z8b9n/T9q95tcdicXp7Q6xbt4WnnnqZ2277BVVVeRiGkTpXPeQzM3fw0EMPcezYcbZv3cU9K1fz5Za/Ku2IpIL2rct1MAm0w4eL1d+ydJ76ak77+dB+T7NefEBJ3mQeoiNtX6mR3y9ehLRhbH5jJSdb2hgz+zuMmHIeW3fsYvEtd/DsU4+Ar4XJsxfy/muPsmdFNa8+/StcHV1UT6wm35nDL877CeePmcHL298hGItgGAYG8POzFzGldByrPv0DJ/vaERFqSqr4/Y53cVjteEM+MuxpOKx2IokY+11HMBkmHGYr54+dwfUzL8cAqvLKMBkmrp/xbVZf9UuKMvI43HOK62+6gV3bdnLVWZdgy06jv6cXi2HGbraS6XDS0tJCZbFJI93mIsi7S23dLEUgUaW+W1ODm3UEWEoh/x7IrNPy1nIIf6HWb45a6LhNAX36dFWi7/g5GoF3gikbJE7FcLWGs9os3HrDDDY3bFFPeEupUvMtRXqOhCC4HbNhStl06+/giYULWVhVxa8bG5lTXk6GzUam3c7s8nKy7Xb2dnSQFKE4I4Ml771HIBaj3e9nwahR3DtvHibDYHZ5OV2BALvb2zGANKuVHS4XOQ4Hjvx8mvv72dXZyd9dfTW9TU2kW62kW62YDIMHHnqIP7zxBuvWraOqsBAxmeDxx+H4cZg2TaXTOzsV5TocipaLipQO73TqI5nUELbVquHuyZM1lN3crCB+xgwFmh0dOtDoH0RB/5IlVNhsMGMG1sxMbn3sMTZv26YIe+7cIcP1+fO56swz2bTpU/bu7R0UvU9L06aePKmXOnVKmf3hsAL3Rx/VMqdPa5O6urTJn3+uH+fwYVWTv/VWjeKnpQ39v5cv149+yy0VPPMMOJ1WvN5b6ejYTGsr7Ny5GTjJZZeN4aabRnD69Fauu/5GfvPcc2rZ5g+mLFniumJut6nqqyQHsZnS481KhUuKKs+Ho0Me7TarDtgFOUqzF3S1XUTr9AUgmaRizlkQiWK1Wrn1vnvZvGWL1pFIUjFiBBiGHrvhRrY0NjLtrrvIHDGCgqlTsWVnkz9pEpa0NCxOJ2f+8pdYHA5i4TCVF13EGffcgyM/H39bG70HDmDLzMRst+NvbSXQ2srO5ctx5OVhdjhIhDWlx7BYBuX6DcNgTE0NZocDswjfMJk44HJhttsZMWoUJpOJCa2tBNramDp1KqNGjuCLHds00n3isD7/6RkF4I40pb4/8Lw+JxOwYS2MHDcUic/MUUAeCgwB/AHv9j89o4sBJjMUl0J2HiQTVIwbD8NKsBYUcetjz7B55y79ze7dChvW4vd5WbPvMNf840qwOxCT+rFb7GnEI4FBhflYyE8s5KHzSCOxkAdrWhZpOYXEo0Hav9xILBygcOwsYmEfbQc+Ihp0UzzxbLJLxlEwOpVGFfYS6HMxgKoMswWL3Ul+hn7vFrPBDy6cTsOWLSSTCT5b/wYdXd3MnjmdZCLGiNwkZWVl7N67F/w+pK8Hw2JRtffaMzDN+QYCQ8rypRUkGz5OgfpP1Ou9fASYLZgqqyAjC8OehpGVo37uPg9Gabn+jn1e3ReLUnnOeSTbW7GZLfzstp/TsGu3Wsm5+zn3u3Vs/OQTdnz6CY8+8yyujg483vdxOgvxetuYNet2rNZ0olEfwWAPNpuT9vZdJJMJnM4Cysvn0Nj4CHZ7FiUl0wiFeojFgmRnV2Cx2GlsXMXBg2tobFxFPB5iw4ZbAYOuri+wWtOprNQFgR/96MdkZpbgcv2O8vISvvzyME1NT9PZ2YmIgcViJ5mM09LSSkV5GRkiOFHw/njqGylGQfSQD4KC993AaXSCaENpi+XA86lzWlHg7UHV5ptRW7exaI7k6IoKTCYTVy1aRCeQNnUqlSNHcuzAAfamyg8A9zhgRBO4drjIrcrl4hSw8Ls0ZTGjMAN7tn0wkj7vl/MUoJsMLA4LJotOY+PhOO272jEsBpY0C5IU/B1+ymaV4e/wE+oNEegNUDqjlMoRlZhMJr7/ne9TOqOUUcNGkSM5bP1oKxVzKjAMg/0l+/n85OfcMuoWjv3lGLG+GMvmLaOuuo4ZpTNo8Q4B7mAsSJo1jWgiSiwRI56MYzJMLJu7jAuqLuDxrY8zp3wOGbYMrpx8pfqvm6wUOYuYUTaDRz9/lDUH1+CNeDEbZm6fdTvJrCQmk4ntedtZuXklNZNrGD1qNE9OexKnzcnR3qM0nG4gkUyw8DsL2fRZA/2N9w1F0EGDHdXLNJo+oBx/aJXe+GRcWZCgQD0ZG6LHxzxfocqvUHsyR5FGxXMnQTxAReB1TCYTi5a+AdYcptaMYuTIkRywXMnmTZ9w8uRJxlSfwYgfbmZrs4nFP1vGs6+9B3njNOI+oAjvaVZQb5i0XTlVOkeUpAZybFkaJY94hyLvA2OO56TWEw+nGAXoIkP2KCpS/5NFP7oSskcxdf63GDlyFAcOHACEijxVmLdGurj1Z7ewuaFBafhnLQXXFv3MiagC7l2P6r30ndY56I5VULlAbY2TUbVxC3Zp26zpyhLYeKtG6YfP1v3bU/PXiAfyq2FcHRVTv6lt/Lvz4JMlTD1zJiMryziwYyMVx5/QYwtrQZJMDb9DZdlwli9fy5w55TidNkwmEy6Xj8JCJ9u2tWEyGeTkOHjnnSZWrWpkwYJRzJhRxooVm3nnnSZKS7OJROJ0danX+1NPXTjo775ly2mCwRjZ2XYWLKjinnvmMW6cjmkff5yBy+Xjm9+ch8mUx8GDX5BMCsFgjGAwyJYt73P55VcQCsUQA6SqHGZOUvo7MLjSYjLpAn48ru40aXbdd1aNzg++SrEHvW8ePxWFxXovLv8uGDD1jDP0t3bgAHv37sXlcjF/vjo2nHXWWZSVlbFnzx7+q27/FYB7Rer5b+awo+MLKH3+/23/wjYAvl944VLGjRv2Ndu3WCyJxxNh1arX6e1tZ/78aYwfP5qtW7eyePFinn32WbxeN/X1/8QPfvADDh/uZfnKL5lQO5PPCu+DGffoH3DHKl2llLhS2ZvW6GpkVCmZZAzXjq5pjYL0qHeok5SkdpLfrlfLDcMMNddBqIeb7n+J9qN7OPnZc5w8+gUzp5/Jc795ipu+OxeKp9PumKJ1NL/D86+9g9OZztnfOJsOby/7XEewmi3ccc6PsZjM7GlrotPXh9Pm4JUd9UwpHUua1Y7ZZOLSifP55QXXYzJM5DlzCUYjROMx0q0OxhZU8sinr9Du68VhsVOcmU9CEryw/a+0ejrJsaQz0llEp7+P3LRMfvPS76idVEu61cHMidOYNHkyL//hZTAM/ukvf6WopJiq6osg1gzhXWCt0FXppB8SvRolj7mUFi8xvafmQih+gcHoetp09XJHoPgJjdQHt2rOe+FyNHoeBIkQCCZwd+2H+CnouIXX/3qMqVNSGgOhnUBcB21JgskJ6dNJiuCLRjnS28vi+nq6g0FKMzN5ZMEC5pSX86uNGznpdtNw+jRHU9F3q8nEQ1u2sObgQR5saGBGaSllWVkUOZ3cvmEDSRHa/X4KnE56QyH6QiFqCwv57OhRTOEwJZmZTC8t5ZN33mHa1Klk2GwsWb+ef3jwQTb89a/0f+97mNLTafF6MQYYG16vItuVKxXN+nwaUo5E1LKts1N555mZCtC2btVzbKmo56xZmvM+adJQ5H358iHj8+XLob2dwLRpuONx3X/iBK/v3MnU2loIBHB7PLj6+jSX/oc/5K/t7eTl5eP15lFQoBbxhqEW8QNp9u3tmsMOsHOngvSiIn2+4w6lwg+42B09CosXK5i/7TYYM0bXJ0A/8tNPw/DhAdxuNzt26OJAbe3rVFdPpawMJk68iY8+amfu3JO8++5Jpk+fyX33P8cNi29SqvsADd5i1mi516/g3EgxMBKJIYu4eEL3lxWp3ZvVMmTl4k3ph9isGrlXhVQdyLMzCISCuPv6dFA3mXj9jTeYOm4CONMIBAK4+3pTtP0kr7/9F6ZMngyGge/UKbb/wz8QDwbp3b+fZDyO2W7Hd/o03bt3Y0tFzSWRwGSxYHY4yK+tpfeLL0hEoxRMmkSws5O2Tz+l6dVXSRs2DJPZjGE2p6jewp5HHqGzqYljn31GIhTCsFr5IjeXKdOmEWxv5/jq1cyfOZOeqVMx2+0cP3aMEydPMeHcb6rV0aiJ6td+YV0KZCf1//X+Wr0nZrMC+IlnDEXiP3hLKfBZuUMA32zV/QNAHtHc+FNHCbj7cZ88Dn4PYPD6yy8wdeJ4vdZN98DFP+TPb/2FyZMmMX7hZXrvE0J6Xikmi51kPErxhLMHafMD9mzdx7aTjEUwMAap8vFIALPFRizkx9vZTPex7RiGidLaBVjTlLJhS89W27domHjEj2GYcPd24w9HcX3xEbFwgPc27WFSzUTMFitT5n2Ljo5Ojhw7jslsxWcdzvETJxk/fjzk5CowbzsNXjemCy6FjCzVssjNx3xpnQL0hd9SUD/vPMjIxCgfobZv/T0QjyM+zxC4b9yIMWosmC0k92xHDu7F9+F63F4fhjODxHt/4Y1XX2XKhPFI0xdgt9PR0akMhnQnDyxfzjfmz6eu7iEcjlxKSqZht2eRnj6MQKCbvr5mTCYr5eWz8Pk6aG/fTU3NFVx44WoAfD4XGzfeh9/fkRprg8ybdy9XXFHPRRc9QyIRY948jXHPm3cPIOTl5XD22XP58MOPsVgcWCwTOXWqlYkTa1i48G5qasZx992XYbNl8Pbb7zB8eDHlI8o5bhg0A1cAT6E56w0oZd6CAvWfotH4WUAhQ+A8hAJ6QaPrhanyy1H13wLUl70PzYP3DxvG5PPO490NGxgJlJ04wYkTJ3hpwgRK0IWCgXVFAzCZTTgLnZz67BQigq/dR19zHyaLiWQyiWE2yK3K5ZLnLiGrNAtJCvFwnJbGFmJBBWyh3hBFk4uwplsHbeKyyrKY+L2JNK5qJBqMEuoJ4W31Mix/GOfMP4d31ryDt9XLoT2HcPW76K/vR0R48pknefeTd3n3rXdZeP9CquuqseXbKMkoYfWFq0mSZEbpEOBu9bYSjAe5cd2NnPKcYnf7bk66TzIqdxRlmWU8feHTfGfCdzjef5x4Ik5/qJ/j/ccJxUMkJTm4IJCbpnT5EdkjuHDyhZz9jbM5J34O98y7h7ZTbbSeamX65Om0dLXwRfMXgwsH777zLvn5eeTOuh8q6mDiXXB6Ley9EzJGaTS9epkeq16mX2R3AwRPwhcP6JzBZIXqe7SMNXuo/IQ7FBQHW3Te1b8PTBaGzbib884oZMMn28CayYlTrdrfxV7jpsrf0L7r95zc8y4nP3+emTNm8txvnuamn96sQZpEREHyAM09oel1iChAT8b112Z16jHDnLJsM9Quzt2sbbKlItpmq1q8aSXgOcEwZ5Lzzj2XDe+tA89xTpxu1/aNHUOgvwN3PEOj+xmlvP7GGqZOmaRz0cwKOHe1Rs4xhgD3tpVQMj1lO3wPOEs0h92Spp/F3aw0eZN5KErvbyOVQwTT79Zz7Tm6cLHgOYYVFnPeN85mQ+MhOOsuTnT4OHHaxYQJExg24VzOm1zIhgMBMEycqFrKqdZ2nn76x1xxRQ3NzX2cOuVmzpxyuroCFBQ4WbJkPcFgnDff/B733juP8vIsbDYTTzyxkL/+9fskEklisSROp41bb90wSJFvbfXwox+9zd69HVitJn7xi7lUVGSRm5tPQUENb775DqtWNTJhghmRfmpqJgKQTArbtm2gurqG7Owyli37GJMBhjkFLRMJ/a3FEnDSNcTgG/ieIDWXSOW6Wy1QVa5MPYDOPnCmMaywgPPmzGPD62tA4ESqP5kwYQLl5eW0t7dz6NAhAI4dO0ZzczPjxo3jv+z2t1Tr/tYD7eOvAF4A1gOf/I3Hx//Ruv9nHmj+vKB0+Ox/4bgVHYsEWPrvqfO/q6r8v7RVVlbK9u07Bm0lBmwkPJ6wzJ8/X95++20REYnH45Kbmyv19e+lLOXulPT0fPlww4cifUfVRqNrnyqKftUiLuwR6dg1pDgf8arSfNf+IdsNn0vLhT2y+Cc/ktL8dDGbzVJYWCBVo0aK7HlWy4U9Ij6XnD1rmtrBde0Vifjl/mV3yJiqkTK6aqRcevE35fShHeILB6Th+B7p8PbIid428YT80u3vF3fQJ92+fvGHg+IJ+aUv4BlUmj/SeVpO9bkGreO6fH1yvKdVOr290untlYPtzXKit02uufZaGV46XMxms+QNy5fSijLZvn+31EyqlYnV1TKsskQWXvRN+XD7JtnUvFv6Ah7Zs3+fnDn9LCkbUSHVk2pl567NIuHDavH2FUV4ibYOqczHvUOK8rF+LT+gPD+gRh9tSZVpTVnCuWXx9VdLaap9hYUFUlU1UpqP7JMpUyZJbc1YqakeJ5ddeqGcOLJNFelDe2XxolFSOrxQzGaTFBbmSdXIEvGEgnK4u1vqm5pkW2ur1Dc1yeHubukLBqVu7Vrh/vulbu1a2dbSIvVNTdITCIg3HB5UlveEw+KPROTqt9+W1du2SV8wKO5QSK6+9lrJLyoSs9ksOfn5MmLUKPnLli0yasIEGTNhglSOHSvfvPhi+WT3btnV1ib/8M47AsiIkSMlp7JSJtbWyrQzz5SIx6MK8osWqVR7e7vKr/f1Dcm0r16tr/v79XH4sJZtbVW59T171ArO5dLXdXUiO3fK4tmzpbSoSMyGIYWZmVI1YoQ0790rU2prpXbcOKmZOFEuu/BCObFjh0hfn5zcvl3OmjpVaiZOlEkjR8p5c+fK5407pbs7KXV12hSXS5XhW1u1KS6XfM0q7v33v+5c53KpyH1Pj5br6hp0npOrr14sw4eXitlsloKCQhk1qkq2b2+WUaOmyIQJtTJ+fI1cdNFlsm/fCamrE9m+fcg5r75eZPbss+XVV9+WZCyuqq/hiEgoPKQeP2APF4sNqcyn1F8HreEG9keiX1eaT9W3+LrrpLRU21hYUChVo0ZJ8/4v9B7W1EhNdbVcdvElcuLoUZFYTJqbmmTKpElSO3acHrvkUjmy/4C4m5tly9KlcviPfxR3c7P429sl3N8v7uZmad24UXoOHBDPyZMS6uuT1o0bpa+pSQJdXUMWcn19g8dDvb0S8Xol4vPJoksvlZKiIjGbTFKQlycVhYXy52uukZpx46SqoECqJ06USy66SI6kVOhfmzhR/nzNNTJ35kyZOGGC1E6cKH968UVJnm5WNfkBK7f+HpFTx/T1qWOqKj9gF3f6mEjAJ9KSsokbUJ/v79H3p5tFQkGRluOy+LvfltLhqf9xQYFUjRwhzZ83yJRxY6V2/DipGV4kl51/rpxY/xcR1ymtNxySWWdMlZeuvFzr8vRLPBwYVIaPBL2DivBBT5dEQ77B197O4xKLhCTo6ZKwr09ikUBKQX5IST4ei0gsFpGgp0tO714n117zk8G+pmBYvlRVjZIjh7+USTUTZcyIEhlXVSmXXHKxHNq/Q07vXifRkE9e/eMfpKa6Wu32qqvljy+9qOrxAzZwradStm4pdflQcPB4vOmgJP3+1D63JEOhryvMez2SCAYk6fdJvOmgXP/jHw39BocNk6qiQjm6dYtMmTRJairKpbowXy49c6ocP/iF2sp5PXLtD38g44aXSNWIEbLoih9I77EjEg77JRz2SXv7Xlm7tk7a2/dKT88RaW3dllKWd0kg0CNud4scObJeAoFuCYe98tZbiwbt40IhtwQCPRIO+6Wj44A0NdXLNddcKcNT33FBwTAZMaIspWBfL/PmzZby8mypqZkgzz//69R198nnn78vZ501VaqqRkpVVb40Nn4o7mRCjojautWLyH7RfMI9ogrxrtTjSRF5P/X6kKja8L7UOQPP3SLiFVUpflJEvr14saSl7mFOYaEYVVVSLyK7m5tl1jnnSHZNjYydNEnufvNNIVXHdxYvlqLUOY7CQhk1apS8tegtcbe4JdgXlJ6jqhDffah70A6ufW+7BHoC4uv0fU1lvudoj3hdXuk+1C2eVo+EvWFZW7dWljuWS1N9k1x79bUyvHi4mAyTFBQUSEVJhbTvaZfVF62WWWfMkgljJ0htda08dfdT0rG/Q44ePCqAjBwxUibVTJJJtZPkzGlnSufxTvGEPOIOucUb9kqnv3NQ1b07oLZu3I/Ura2TrS1bpb6pXlxel+xs2ymL3lokfcE+2du+d9AWrr6pXg53HZY9rj1y9bVXD84ZCgoLpHJkpSx6a5Gs27ZOZs+bLeMmjpOJNRPl+T8+L+6QW7Z/sV2mnjFVssuzhSKkuLZYdmzbpDZvEbdIuF/EfVhV4tve1+eIR23aol5VkO/Zpurwh58U6d2TUpVvEwm6tHzUp+r03qOy+LqfSOnwEh3/C/KkqrJEJNQtzV/ukXPmzZCaieNlUvU4efO15/TczXUioe5BS7izpxTI22++oXZw8ZQqfDQwZO0Wj6Vs4ppU9X3QIs73lWMpC7hYJGUD16R1RP2y+Jqrhv7HhTqWSO9haT5yWM6ZO11qxo3S9q15Q/dvWStTJtVKbW2N1NRUy2WXXiIn9nysVsXN60U8p3TOGvHpvPXdOlWYj/jV6ej4ep2XBrqG5qmDivJekc49XznHK3L8fVl87VVD865heTp3DfVJ874tcs7MSVIzfrRMGpEtb774a62nY5fe3/lz9f6OHymv/vFPsnevOj9t29Yq69cfEa9XVd3r65vE4VgudXVrBxXlu7v9sn79EXG5vOL1hqWvLyhHj/ZIV5d/cD7vdofE5fLKhRd+XwoLSwbnDCNHjpKuLr+sW7dNCgqqZfTo8VJTUyuvvvr6oPvUnj3tMn36TPnNb34nhw51S2eHV5LhiM4FvmzWeUMspvOBTTt1TuBNKcx7/fo+ZfU6MJdYfN11Q+PawHf5ZbM07zsg55x9ttRU18ikSZPkzTffHMQpf/rTn6SmRvfX1NTIa6+99r8MA/2f2vhXVOUN+Q+ksBuGUYAqt09iiKzyr6wJiPnfKPOf3lJtOoEuDq8FrhERf+qYDXgMWIIuLI8Xpc7/q1tZWZm0trb+72v0/wXbddddz3vvvUdnZwf5+flkZGSyb99BDAOi0SSGAZdeupCbb/57vv/97wLw0UcfsXTpUiKRGJFIlB/96CqW3b4Ym03zj0kmwWzR1VTXVs1jyh6pq5ySgM2/UJpS9khoa4RhNUqTivmVQh/ohOEzlVIV9cPmu7S8vw0KpihFKRGBjbfBodd0dXPBc3pdSUDHNsgoB38LwbJzAYNEMoE75CXN6kCluIQj3acocOZRnJVPb8BNus2B05ZGX9BDKBbhDzvq+fnZi7BbbHzRfoya4ipMJhNJEZ747DVumvM90q0OEpJkv+sIhRn5lOUUss/VRE5aFmbDTElWPgAmw0Q8mcAwDPqDHnLSsgBwWsFMHENCmoduyoDwAbCNgJPTYPibSqNP+qHrLsi/A2JtYC0B61iNpGNOCbgYqfx00fKWUo3UkwRMmkdvHQ6Wkfo9GYbmwXfdCfl3amQ/dlTz6FPtiDrm0hsWHBYrpzweHmxoYNncucSTSTr8fsqzsmjz+ZhZVobZZMIfjXLPxx/z+MKFxJNJtrW1UZKRQUlmJmkWC4ZhcMrjYcXmzSybN4/C9HRu3bCBZXPnMio3l+vefZfbZ82iOxCgwOnkqW3bWLVgwSBVvzMQYGRODtFEgqQIaRYL6ZEIpuuvh/nz4e/+bijSvm+f0uArKpS6nkzC9u0aom5tVQE7q1XV5y+7TAXqTCZVhfvgAy17zz2qIgcazYehHO9wWEXsVq2Cu+/WEHoopNcvKUn9D8z4Y3awWjl+XIv4fJpWX1g4JJ4eDCorf9UqVX+vqNDLpKXpcZNJLzcQnX/iCRWqW7VKo+yJBLjdWmfqshiGXguUZNDcrISDYFBJCcuWDQnf1UxIYIQjXxeYa27VVfGB//TxVo2u26xKeY/GNa8tkdTo/EBUPhzRMqbUarxBSqU4rg0zmXT13WrVD5n9FZHQZCqv0R9Umn12BrR2khgxnIjfB8kkoZ4eDr30EhOvv56M8nIkkVA9vP5+EuEwB597TnPg+/rIKC+no7GRwjPP5NDLLzPl9tsx22wkYjEOrF7NlNtuwzCZSMZi+F0ujvzxj0xduhTDZCLq9WJJSyPS38/B556jevFi7Lm57H30Uabcfjsmi4VkLMbexx5j+rK7sax9Di7/CUTC8OVujaiv+5MKz50xR1XePX1Kh/d5VAke0chNT4dS5auqU7+xlJK/3ZFK1UixHrxuzXm3WCEeUxr93q3w03thTI2yHfweyMjWYyPHwcRpkDuMhMmg7YuP8LQ3Mebsn9B1pBFPexPZJeMorV0A6AJ/PBrAbLFjWGxIPAoYGBYrJBMYJjMMTCySCdq//JT03OGk55bSc3wHBaNnYHVkEg16Bt+bTBbMNgeGyYzrwEek5RSTVTxGv+5EDLPFhmGxYo4L4vdq1PzgXozqKZgv+S7i7kO8HkxllWA2I34fhiMNCYeGnlMR+WTbKYzsXIycPMTdS3Lzx5jmngfZORo9j8VUOX5AgNFkgN+n5eadD1YbRno64vch/X2YCosQRzpGqu5EZSXxRIj165dw8OAaamsXcfHFz+LztRGNqjZIY+PDXHDBYwQCXWzZ8hBz595DdnY5gUAnTmcxHs9pGhpWMG/eMiwWJxaLg1jMj92ejWGYCYf72LjxPpqa3uF733uTsrKZHDjwGlVVC9m48VccPLiGK66oJzu7jM2bVzJ79lLAICOjCFNmCXHDRCL1t+sHstGJ0ZzUYxVwF+qtGwR2AlNSf78EEE6d4wZyUYq8C/gVKlpXh6rRb0OV6h8BHkap8F8A04GfM2RVVAI0AtXAsGicRG+IQFeAhpUNzLtnHmn5aXxw2wfMXjqb/LH5RLwRTFYTZquZ1q2tFNYWYjKbsGXa6D3SS+PDjYNlo/7oYNfx4Z0fMvvO2WQUZ2C2m0nGk7y35D0OrjnIFfVXkF2WzeaVm5m3bB6WdAvRQBRfm4+KuRUkYgmSsSQbbt1A+fnlpF2WxorNK1g6eynDM4fjj/oZlj4MA4Pm/mZWNa7i3nn3UpFdMfi/6Qh0EIgGqMiu4Ob3bmbNwTXUVdfxzIXP4LA4ON5/nBZvCzNKZ2C32AnFQljNVoKx4GD9P3v/Z9wz7x7KssoIRAM4rA7Mhhl/1M+dH97JIwseodCRicnfjBFyIWnDMQ6u1Ai6cwTEfbD3Lhj3c8gYqYry5nRwFOo8oOdz2Hw5lF4G42+Dw4/B9OdIfQhl9Zls2vcko0qt3/sLmHAnpJeD/4RS8CfcBZljUn17Uunl+5fBpOVgL0gJ3KUE5TLKUhoxKgaJu1nz2W3ZqePDIRHTCL27WSPzacM0yi0phsCAQJ2IRuATEa1DUnM+sy2lSp/Q8qTa5T0FmaVgsuvnkaRGwZMxpbJHPdqO7v1QMAksDv3siWhKWE80ih71qFjfsb9C2yZlg2KCj2/SKP24OljwAniPa8T+rKUqvBwP6WPbCjjrLs3Pl7h+nkSKQdlzADJKU2WWQtZIvFE71y9+jzVrDlJXV81zz13CyZNuVq5sYNmyubS2eikvz6aqKhevN4LHE6GwMH0wrdViMRGPJ9m6tZXS0kwKCpykpVkJhWJkZNgIh+M4HBaOH+8frNPptJKfn47VatLhOpbgppvWD7bhhRcu5cQJNytWbOYPL12Kw0hqdD0rQ8fplg6lvkei+v7IKc1jL8hVsbrYV+YLx1s1731gAnS6Xd97/Eqrt9t0X0UJpDuG5hL/BTfDMNpEpOxfPPYfBO4vA1ehFmvPAkcB398qLyKf/cea+j+3GYbxI+BllA3QjYqkxoAzUXu4JLBERH7776nvvztwH1CYX7FiM/fcM4/x4/Ox2Sxf27906WyKizMwmQzy89Ow2Sz/wrlzGT/Cis0UVQAuKRrxZ7fB1J+lOk6LdpaGVW1Geg6oiqfnlFpxnPeMgnZ3MziHw46HUp1fsXaW2SNUCEREc4zSCwEBVyNkVqpwieeYdn5n3K7KnmnDCObV0urpodPfy+ThYwHoD3rITcsCA9whH+FYjN/veIdb5/+QdJsDEwbLP3qRmpIqpgwfx+93vMu1M75FXno2j3z6CtfO+JaeD/QE3Px+x7tcM/1bpNvs5KZlIcDBjmNUF48evNfhWIQj3aeoLq7CFwkQicVwWG0Mz0zHTBIkoMrwpkzNRSemgygmSPSDOQdip6Hvccj7ezDlqV0cJogdVzu5/HtUST52DGIdmhs/sN9IB0s+SkxJKLAPf6m58JhBImDY9VzDCZZCEMEfcXPjht2sPO887vzwQ9YcPEhddTVPLFxIbzBIRU4OJ91uVmzezNLZsylOUZXtZjP94TA5DgfucJhkMsnwrCySIjScPs13167lsnHjuP/ss5n4m99QV13N7y65hFAshs1sxmY203D6NMf7+5lZVsaqxkbunTePUTk5tPp8+KPRwWvlmEyk+/0YaWnawXd2KjKuqNDfSzSqHPU774SRIyEQUDD0y18qgrXZFESazbo/EBhCyxkZ+j4zU0F5f78CeatV692xQxcHurth3jzlsnd0qBJdCh0HR9fi8Ro4HAYWi7LzrVZ99PZqtRUVCqgTCQXSA2n4HR2avr9qlTYhGoU33lA1+l/9StcqLr9cf2MOh1LjXS5N0TebNRtg+HCoqlKWumFo5kBrq15j2DC95rDcBCav718G0x4/ZKRphQPDiIEOwNHY0IBttypwBPCHINs5VIeQmmSlgKqIUu2tllQepihF324Dq3noWqKANZFMEI+oNkW4r4+Y3481IwNHfj7xUIj9TzzBpFtvxWy3E/f78TQ3k1dTQzIWU2E6rxdLSoSu7+BBcsaOxZKeTsDlUlB+/fWkFRZiWCwYJhMSjw++DnV20rF1K86yMgqmTsUwmYgFAsR8PqxOJ62ffMLwuXNwZjoxfB4F4APK75FQqgMIQWa2TgoRzVm32hSIp6Ur2B8QqvP0w0dvw3evVbDf2wl9XVqnyaQ59GWjFNRHwppP78zW57++At++So8lk9DTCe+vgYuvIFE0nGjIS/exbZRMPAcEEomoAmezlQGR0Hg0iMlsxWSxEQt66G7eTsHo6cRCfqxpmVjs6ZhMZsQwEQu6MUyWry0CDK85D9cXH+PtbGbMvCsx2xwE+ztIyyrQxY6UkrAkE0gihtmWrszKJBjRKPg8JBs3aj57di7J0ycwnBkkP/9MafHpGUhHG0bxcP0x2x2AIO1tmEorwWJRmvxXFgBMZ1+g99nTP1RPbj5GLDYE/GUgJUQQA+jvI9nwMaa55yJeD4Yzk2h+FoFAFw5HDm1t2ykpmUYw2M3mzSuYO3cZXm8rr79+CUuWHGLjxvu+ArLL2bx5BfPm3YPH08Lrr1+SAv2/JR4PEQ67cThysFjSiEQ8+P2d2O2ZOBy5tLVtIyNjOPn5o0kkIoRC/TidBZw+vYW33/4R3/72q1RUzFV1+swSjhkmnkQjGQMKNsnUcwewARiDTphWAHejCvGdQBEK3L0oTT6cOi8DjZqsQBXmR6bqjKB58KSutwqNrJjRCaMHzZUPfaXOdH8EX6uP5g+aadvexrx75vGbib+huq6ai35zkYLuWBKTzUTUqxZxjasamXfPPDwtHl6/5HWq66q59PlLiQaiRDwRbJk2Dv/1MKc3neaS312i2WEixENxIp4ImcMzWffTdRx47QDVddXMvG0m25/ezkW/uQhJCMGeIOnD0omH4yQyE9zw/g2DwPsfzv4HSrNKSUqS3mAvNrONTHsmIsLx/uO0+9spyypjZcNKls1dRro1nf5wP49+/ij3zruX4oxirGYr3YFuchw57HTtZErxFBwWB73BXgqdhcSSMaKJKElJYjJMZNmyCMVD7HDtYFLRJNKt6VhNVpIkyTCSmMLd4CiAcDd8MF1z289creC05S3o3gJn/QYMG8T9agN3aJXS4oOtqkAfbAVnhQJ7e4Faxg0sAqSXQ7hTwWrrX6FrE0z/rQranV4DZ9dD7rSv1HuvUvUTIV08SCvXnPZQT0rUbVRqHJAUJd5Qq7QBkJ49SvvGeDgF5ks1hTLqSx1LAf4BkG+2qtJ7RpnOLQ0zJMJDgHtgwcBs13EHGQL1iai+dh/V1Mqzliqg/vRnSp1PRnVe1bFN55zuY0PlMsp0/mlxqGXc8Jmw63FVmbemq8r8u9+Fqstg1v1Ks//oBgX3366HwmnanmCH1jl9mQawPrwemt+BS9+E0rlEfW6ClkISCcFsVs2VxYvrvwbkAcxmg1Aozu7d7cyeXT5oD9fR4WPFigZ+8Ys5uFw+5s5VPYdAIEpWlo1EQq3gbrxxHWvWHGTRolqefPKbiAjbtrVRUpLBmDH5g8D+nnvmMWJENj/96XqmTy/lx4tqycmwYERjuoh/0jUE0sdW6twgFh8C3wMAvaUDRpXq2B4IaZDg2GnodcPEKl0EMNB0vK6+VH0jNHXvv+j2rwH3/+hyxSVoPz5TRB4XZT199rce/+mW/zs3EXkVBem/R8eF84AL0cXe14BZ/17Q/v+2v60w/9X9q1Y14vVGcLvDX1Og//q5DUSSqVyVqFdF53ynYMotYHNqp+tqVOuPRCi1wlimudz+Vph6i3bo1kzNjd/x0FDOe9QLY7+b6vBSE6sB0B7s0v3ZIxTkOouhdH7KS346hHpIosJnU0rHDUZtTYZBp6+Pfa6jZNqdOKxWJg8fQ0/AzT9+8Dytni5+fvYiFo6bRbrNwdVnXYrdrMJoG5t38ocd9WTY07BZrPQGPWxs3kl3oJ9wLKrq8d4eJpeMxWIy0e7t4aGPX8ZhsTGldJzmzadnMywjG4fVTjxpIIZZLd567oNEtwL4YCPE24fU5kPbFZQXrVbQLiEINijgtpRAXioSj0mBt2My9D6i6vOxFl0YCDYqMO9YokA+baqqyZPUBRViYB2p1+tYDPFT2Ky5LJ0zmwOdnYOWcHfNmQNAZU4OsUSCFZs3s+bgQR7fuhWnzYbdYqE/HCYQi3Hze+8RjMcZnpWFPxql3e9nakkJf6mr455588iy26m/4gqeufBCLIZBdyDAz95/H28kwuzycq6cPJlsu507Zs3CYbFw3O3mWF8fFdnZ5Njt9ASDbG9rSy3oBHVwyM9XtNrSAj/7mR57+mkYNUqPL1um4H5AxO6nP1U1+GRSkfHu3aoqn5mpKvS7dim6Tib1eft2RcFOJ0ydqsbqc+bodcrLNXG9o0Pz5UeMIBY3SE83BjXu0tM1cn7LLVpFeflQhHzAnz0jQ1+PHq3AfSBlPxqFH/9YP94TT6hTXTKp9vWgAH3WLF0QCIc1L761Vc9tbtb8+PZ2JR0cO6ZNttsVQ5Pp1AEyKyM1wUpN97MztIFJGcpXBx2MozEtb7UAhq4CmE0qaJdIKOgfAPNGKkqvf0Qth/6ViSf0OnabAvtwVJVqozHw+kkmEgQ6Ogj39eHIyyOzogJLWhqhri5IJhnzox9httmQeBz30aOkFRWBCOGeHsI9PexfvZpIfz+9Bw7gyFcWTKi7m4PPPUfbp58S7OzElHIs8Le1seOBB4gHAvhbWvjit7+l7LzzKJw2jUQoRCy1sHPgmWcIpZTtbbl5CiBtdhhdo9GfZDK1zzGkmeBzK9i0OTQCvO51VYDPzlUQHg6pcF3VhKH7nJMP5VXw59+pmN2I8XrOK0+m+tyIKtF7+uHcS4eO9XWDp1dz5Pu6IB7DmpbF8NoFmCw24rGQ+rhHVQgqHg2STMRIxmOD4p3dzdvxtDfR07wTR1YBJpMZk9lKMqGfz5qWjdXhpGD0jK+I1RkUTzh7UJG+/eCnOLKGAZBMJlN1KKTsOrp1UNjOEFE1+bxhmBd+C7JywDBhKq0k+flnSPNhsFgxrFaMipFfSaFMaqQ8lasu7l5wZqh6fPUUTHO+AY40DLNZ6zm4l+TmjzHicQXtzgxdRPB7kWgYScQwRBCvO2Ut9wlGupNE0IthmLDZMgiFeikpmYbNlsmWLasoL5+DxWKnomIutbWLsNuzmTfvHmprF1FZOQ+z2UZ5+Ry2bFlFael0qqvrWLDgEdzu47S1bScWC/Deezfjdh/HZssgP38caWkK2p3OQuz2DNzuE7S17cBmy8Dv76CkZBrXXbeDrKwy6usXA5DA4EHgFoYE4eIoYA+iSvADkfcVaAS9HQXoA8JADoZ82nenjhuoyNALwKhUPYtRpfqSVJlZqb9yOzo5S6K58aDLxcfQBX/3cTcb79tI+ZxyFjyyAEeOQ8XoUsC8v7mflsYWEqEE1nQrWx/fOqgyXzq9lOq6auYumwsGgznyZpuZyVdO5qJnLiLQEyAR1Qh6sDvIxvs20n+in/MfPn9QyT67IpsLV1+I56SHdTeuIxaI0dLYAoDZbGbZXM1FXzZ3GcUZxRzvP87i+sX4Y34Odh/EZJhISIJ2fztFziJWNqxkzcE1rGxYSa4jlzxHHi9c+gIV2RXYzDbMhplQPMTN791MSUYJDouDcDxMfno+x/qO8dP1P6Uz0EmWPYtgLEizu5kl7y2hOEMFTG5cdyPH3ccxMIiLkfJwvwESQbhgO0z8RWp+ZIWK7yuIx6zfQswL4Q7NYTenQ8FcBdkFsxVg2/O0nkHf9zYFwYah5UcsUlV6wwJnPqOgfdgMBcsWp1rSBVvB36x2dJGUyndGqYLyrErNV4949ZdksWtUP6Ps68ryydTK8oBoXTSgQH1AjC5rhF7TnqXgPeRO5dCnQJ3fpYA+EUkB/MjQuAOp+Wc0tV+G8tMDXdqec59W0B7oVNA+YOm26/Gh+ajFoSr08TC0f67A/LxnVbPp4yU6H732OJz9uB4DOOcJmLAISmZoWy0OvXbzO5pXn4ypM9IN7Spw59pKIq2QUChOd3eQUCiO2WywdOls6uqqueeeeXR1BTCZDI4f72f79jamTy/F74+ybVsrVquJkSNz+cY3Knn00c+ZMaMUk8lQN8w0i8oLROKYTAa/+90lHD16M6tXX0hbm48lS96joMBJe7ufaDRBerqVp5++kLQ0Hd8feWQBc+aUc8vP3ieBodFxm1WZeYV5Q2JzA4ymEcN1bhBPKclnOnUOMADaTYaec0a1jv/JpM47RpUNideZ/i3S93/d7T8acfcD74vId//3Nen//PbfIeIejcaJRhPYbObBaPlXjw1Eze+9d96gWN1X999115xUxB3y8tIHxey+du49cxmXtgdbVqF2xk1/hhEX6GvP8a9HwbNHKRjf9ZjS2xMx7SQLp2mjLGlKLRqgJhkmpUQlY0pZ2nwXnHknpBdA1x7t6OJhtfY44+caoTdMSn+SGCHDTiyZIJFM8EVHM8PScxiWkUM4FsZmsRGMhsmwp2MyDL7sPEFuWib9IR9nlI0nEA1jMgysZivesA+7xY7DolGxSCzCU5vf4JZ5P8DAwGG1sfKjl1h3qIGF42Zx74LrAGH5hy8ypXQsC8bOpNvfr9H5Gd8iPz0bESHDKqRbbQrEJaRRcNtIBe/xrpRvuxuSbuj7NeTfq+A66QMS0PWLFM29FRzTFPj3roLCVRq9T/pVZC74uUbXxdDzMEOiU1XkTRlKqR9YHDDsej1rJWAilDATkzQMwyCaSBCKxznQ2cmZw4ezva2NsqwsVjY08NgFF9AbCrFi82ZWX3gh29vaKHA66Q4EmFdZydHeXlY1NrJ09mzG5ufTcPo0RRkZmFMWc/fMm0ex00mL14vFZGJlQwNLZ89meGYmu9vbKc/OpjgjAwNwh8PkpqWRFCEvmcTS3AwPPghLlyqqzchQ37TaWqXNd3YqjxwUhHZ1abh5yxb40Y8UjOfmKt+8oECBuc2m52Vnq8/aAA89mdQIewoc0tioIXOHQ6PxaWmKmnfsgClTCGYVcazZYMUKg2XLlC6/eLFi/Tlzhujx6elDTXA69fImkza1qEjXDDweXU9wOlV1ftWqoWh8IKAgfNB5La4BdBFtciQCa9eqAN7jj2tgfft2bfrE8QlMhmhe1ICifGIgIp6iwA94rvqDX4/IgwJss1kH3YFzzSmBuwGKvNmkK+ljlF6KiAL0lo4hSv7Aef4gfHEsRbOrIBqJEO7tJREKcfD556m+/nrSS0rY8Y//yIRrriFr5Ehifj/xYBDHsGGQTGJYLEgySSIUouWjj+jZu5exixZx+A9/oPbmm0mEQmSUlQ3iv0hvL5aMDOLhMBarFUt6Oj379hFob6di4UIkkaD3wAHSSkpwlpTgP3mScF8fBWecgdlkwiQJjFg0xSow6fObL8L534acPPVlrxitNPmBqHxfF3z4NixaosBdRAF4XgEk4hqR9/R+vewVP1WgvncrPPyK+rZ/uRtONMEPboTXVitYP2s+/HCJUuYXLSERDpLMyCQWDmCyWOk60oi3s5mKaZfizBtOoM+F1ZGBxZ5OyNNFel4psX8WocdkwmQyEY+ESCZjqSh8Bta0bCVOJGIYholYJEBP8w6Kxs8DEUxW+yDjIuTpJC2nGMNkRpJJQu52zFYHjvQcZbRYrRoBT8RJulowykdgxBMISfB5STZ8ovR3p5PkhncwzT4HI7+QxLtrhij2C7+lP371DSPZchLD6QTDpFH0eedj5OYhfb2I142RlZ2q91xwZpL8sB7TgovVjgyQThfx8lIAenuP0Ni4itmzl5KfP5Zo1I/P56KxcRVz595NRoZOXpPJOHZ7FtGon0jEg82WiWGYsNuzSKbASH39DcyadTvbtj1Fael0qqouIDOzDLf7BJs3L2fWrNsJBLqpqJjD+vU3881vPoXJZCYWCyKSxG7P4t13r+PgwTXcfnsnhrOAY4bBSDRC3opG1h8ElqIR7ztQGnsItXorQyPjHWjEfBnwGbAFuA0VopuS+o849Y7iQiP329EI/DBS2lSpOgtT5ZpR0L4CuB2o8kf49Np3ObjmINV11Sx8YiHJRFKp8Bk2kgkF22F3mM9//fkglb5jbwdlM8ow281427w4sh2Y7WbatrVRWFtIzB/Dnm2nY28HWcOzyB6RjWEy8Ll8RP1RbBk2Modn6tpiOEHrtlZKZ5QOUukHovCObAfJtCSJvAQmw4TNbMNisnDTupt47cBr1FXX8cKlL3DCfYIVm1ewbO4yRuSMwMAgloxhNVkxDAN/1E9noJNfN/6ah89/mHRrOj3BHib9dhJvfu/Nr0XoXT4XR/uOckHVBRQ7i/FFfdzx4R1fi/h/cPyDwePZZgNj+2IF2RV1SnU3TBAPDC329e9WazhzWkpw7hQcfPDrEfdkHI6uhjOe1gh0PAj9exXQx/1KuZ9whwL59DKwF8LuWzUinzFSAXC0H2w5ep1dt0DuVI3+Z6TYhgOYK+Id8nH3tymoN9kGGS6aCpRaaIj6NVJuTtHbDfPXo+Vfpd9/lY5vsmg5kSEqPWh9tky9RtSnrNBEWF8PUOUR2LQU5q/S68ZDQymdaQXQtVuBd9ij9y1juNaBQLgfGn+lHu6lc5U5WjJDFzo+uVnryKzQ9saCOlc98w69D5nlkDUylSbqGozC+9LGc+RIL6tWNbJ06WzGjs3HMCCRELq7A/T3hykvz2LPng5qawsxm004ndbBqHpampVkUgiH42Rn22lr8+J02klPtxAKxfH7owSDsUGafFVVLtde++5g9P2ZZy7Sr88wCIfjpKdbUsOzEIkkOH3azbjReWSkmTEGFutN5lTqBKl0QsvQDyAW/zq7DpRhl5H+9QV8r18X7x123Wcy/kvT5OF/bcT9KENioP9v+790GwDX1177LocP9xKNxr92/G8pzA/sf/75Sxk7No+sLBs5OY6vKdAPnvv8xYxL34/Nf1y9LK0ZMP4KpTV5TigdqmmN2mwUT1elzVCPUoRiQfhkiXZetgx9GGY97m7WlVlbhoL/j27UVc1pP9f9lnRIK4L2rUpROu8ZcJZq527N0FVmw4wgROJR3CEfYwsq6At58EeC5KfnYKQ6FREhzeqgMCOPV3auS3m6G4gInb4+ln/4AsFoBLvZSou7kwc+eJ6eoIcfTF1It7+fVZ/+AZenm1vn/5CLJ8zlzm9cickwcId8XDv971g4bhZWs2UwOv/KjnpMhoHNYsVhtaVAegt0LdUcdHMxmHKU6t55s0bA412p6PlppcZ33arAO226RtYdk5QWZ6RB4Up9jh2D8F5AIH0WxHuBWIo+dxp6foWuyJ/Q61gK9WHOBVMuGA4wbJhNdk563Gw6dYpWr5fbP/iA4ZmZuMNhvrt2LS6fj+cuuYQMm40Wj4fbZ81CgPKsLB79/HPKsrIwgFWNjbzT1ESH309ShMlFRTitVlY2NLDm4EFWbN5MfyhEVW4uFdnZ3DVnDj3BIDazmVllZVRkZWE1mdjpchGMxegPhejw+TT69+CDsGaNItIBWta0aRqiPn1aw8uJhIaiB6Ly0aiWOXlSwfrA/gEf90RC0fLNNysq9vnUky0SGYrwb92qgL6oSFG3x6ODls2m1nAZGSRjSVpaDO64Q8F5MqmWb9/8poLyVaugslLXGnbs0CY4HFpNKAQPPaTPDodGzTs79SOuWgU//7muE8TjeulwWD9WJKIfIRzWY0uWaOr+lVdqpN5shr4+JQdkZSYxRSIYR05pXvmAOjwGRGKaqxaJKpiOxTWaHoro/nBUwfqpdv2d2b5yrtmUitqk8hNBV9LD0ZQyvehq/QA9LhpTyl00RdU/qzoF6JUq6MjN5dDLL1N45pk48vMxWa1MveMOoh4PABaHA1tWFoH2drr37CERiSCJBH2HD1PxzW9yxj33EPF4qLnhBo26m0zsXLFCvdkB3+nThLq7ScvPJ9Tby84VK8gZP57Kiy4iEY2y99FHyR03DmdhIYlwmKZXXyW9qAjDZIJEXGnyJrOC7VNHVefjO9co3d1kUmu3UFBB+4DNm9miQBzAka5lS8pTqRsWBfzlVXCyCfIKtaxhwMVXqLe7YUBGJsw6D350y5Bi/cxztQwoeLfYwJmlEWyLlWQ8yrCqs6iYdhlp2YXEIkEcWQXEwkEMs4X0nGJC/S6saVmUpiL0ghALqSXcAGi32NLoPrYdScQQSRLydAHQfWwbablDAFYSMSSZwHXwExyZw5Bkgoi/n2C/i7ScYmzp2RiCgvZ0JxKNkHj/nzAKiiEaQUIBSIrmt5ePUKs8w6QR8caNujiw8FuYl9z1/2PvzePsqus87/fZ7n5r37eEBIiQBMKSqiwVVCCEADq2ShRt7RmXQJPYsgZJaGN3mwAJCAq4gDJOP9pPT6RtxZDIptEUlQ2QLWJIKkvt+627L2d7/viee29C68z4PDNPz3R7X6963brnnvM7d6n6nd/n+/l8Px/UVf8BNB03nQbHxsVFaWySVoTqGrTrPooSCoPritt8OILT+ytvXOnDVdrPEsl8XsTiavtZpfdyeoyb48g1tbitp+deFEUlkRikUEgCCsnkCL/+9Ve962YEx7EYHDyA4zisXv0YgUA1K1dup729m+npPmw7h64H6Ot7rgTaQeHqq78hxdNCiuefv5NMZgKA7u67mT9/DZpmkDPThLz/tq2IC/y9CLO+DZHOb0K42Ekk6/04Aq63AU8jYP+TSG77NMLOjwG3IAvDlHfMR4BHEMY9gSwYRxFm/RRwo3e+Ae/8DwJhTaV7Y7ew5pu6cV0XI2jgi4hiLz2exhfxkZnMlFh2f4WfyrZKdq3bRex4jIrWCvwVfjRDK0W6BWoC6AGdjuUdaAENRVWInYgxfWwaVVPZ8+U9zJyYoZAssGvdLsL1YXKxHCs2rRC2f+MKMpMZ/JV+/PV+Xh15lVPxU9z0zE2cmDnB9pXbWTN/DXctvwvHdUo574OJQTJmhqPTR7l5180cnzlOqpBCUzQe6H2AW5fcik/z0TvQS9bK8tT1T9HV1sXWnq08feRpBhODLGtfxkfO+whf/fVXORU/RXWgmk0rNvHJhZ/k4VUP0xxt5iPnfYQTsRNYroWr6LinO8crmqx3CjPy/65HBLRPHYTUSQG0akCY8be3g79O2HU9BBdsheQxyX3Pj0P1hcKaA1y4RUC7v172N+PQcBmEOqQdsjAjTP3L6yF1HC76muTKv7lZ1hW25wpv5b0WSlvAanZS7lVV9kmckPPZeYl9M8LCnCt4veumrCOLEvvstOcw7zszL17VZJuiyPmK1xwjJK8HRdh6BXmu2JqpGrL/xbcJE/7izbLWbOoU0smISGHgxXUCsIteTKMH5TX5KgScz75KtgfrZd9Ev6xXg/VSFHlxnYDzpk54+QFou8wrQCCvvcjsp4dxXZdt23p5+ukjjI6msG2XZLKA67pUVgaYnMzg9+usWNHB9HSWV18doVCwsW2HO+54nr6+aRGnhgxs26WhIcLYWBJVVYnHczQ0hPH7dZYvb2f79l5M0+H225eyZs18tm9fyalTcdau3cnJkzOEQjqKArmc5TH9UFUVIBQ2pKype61tRdBeTFEpAvF8QdYCxaSZginyeL/HTMRTZYWdz5D9wUu2+bcN2v97tz/23X8PeJ+iKL+3CvCn2/8Ztz8khT/95vPpRKP+M0D56bdkssBNNz3DO+9M/17gHw04+JoWSK/PzDH5+cV6mayS/VJ5nLdGIt70kFQ3Gy6GYK1UHo/skMkxOSSVUQWpZtZfCKOHZLJPDoisKD0iF6HezTJ2oBLqFspxM8dgzxeld8hMSb/SzDEAJlIxvtX7FFPpOBe2nEvEHwZF+tOf2P/PADiuw3hqmn0nX2c8NY3jOgQNPyHDzyVt72E8NY2iKiXw/eSBn9JSWc/3D/2MZ4/s4wev7CLkC3D3lZ/Br/v42p4fEDQCtFTW4bouh0f7WNA0l6f+Yhu3vveTTKXjbH3hSVzXlsqs3i4suTksFx69TgB5cLkw4KEVEP2kAHVzAGpulz728FXQsB1h0CclA16JyJjGXJHMj94in6Pe4PkPpERWn9whRYOpLfK7NSn72ZPC0rs2OElMR8Gv6SxtayOg6yxvb2d7by9VgQAfOe88FjU1YTsOuqLQ1drKVCaD7TjUh8OlfS3HYdOKFTx1/fW0VVSwdudOxr1YuU3d3ey84QYeXb2ahkiE/nic/YODnFVVxbL2dmLZLI7r4gJ3Pf88S9ra6PDY97DPh2oYuJs2iW78kUcENOfzgnQbG6XffOlSQaqNjYJk9+8XZBzx5Fn79gki1nW5CNXVyUWjqUkk783N8tzChdJEvnmzyOG7uiSTze+X58NhyWlLJuU8CP5qa3P5+tchEnFxHBEBtLbCokUCytMeWbJwoRD4p06Jyn9kROoGIyOyvbNTjlUUeOwxkcbncvKSdV3est9ffmuHDknHwK23CrOeSsk4x49Lj/zYGLS1uCgDowKgiwaTRSMZVREQXTStK15UCya0NZUfn9ValtMnUl61HbkgpzJluaKmyphtjTJG34CMX5TdtzXJBd1xKbKlcicFgEW3307bFVcIi2pZWLkcleecg5lK8fKWLTiWRbixkbpFi8jPzGAXCtRdcIH0rKsqDZdcQrCxsRQVt+i221ANg1wsRu3ChRjhMK5lkZue5pK770b3+5l8/XUAMbYLBsnFYuA41C1axOEnnsB1HMx8HjdSKV92fKoMzNMp+SJ0AxrbRPZ+9gL5/fyL5G/VscVoziqIlL5oTKcqUgBIJaD1LOltd2yRxtc1iUkdHkP/D9+EXEaeQ4FP3AzV9QJWNV2e03WsfJrxd3oBBV+wknBtC2ZOtln5DKHaFsxskuHDv8AfrcPMJhh683kKmRkUVWPy+KFSbFyouhnNCNCy4AoUVaOQiROqasI287TMv5yq1vNL1wrXdVE0nbo5l4CqYVsFrHwa3R9k+K0XMfNpXFUFnx83nQLXQfHM6Eosouugtp9Vin0jlUS9/i9QV1yB6zqQSUn+u6rJYzOPvevHEJsCFDmmUMA1C7j5HG6hgHrlNbjpFOrK684YV7ngYhRNx52ehGQCcHFtm8HB/Sxf/iXmz1/DihX3kM3G8PnCXHfdE9x22zCrVn0dXQ8Q8STOhUKSdHqM1tZOQNj6nTvX0th4AcnkILt3r8M0MxhGiFRqhHC4nl271mFZGT73uYOeDP5GZmZOoSgq6fQYAEuX3oauB7xr9AhLltxGJjOFT9HIui77EYA+gTDoa4B7EMZ8DiKNfwC4DAH3QaRH/ccIA38zMI5kv7vAEMKYjyLs/ALv95sQkB4H0gj4P71YsBUxq9uJGNphOyQGEyy5bQlG0CA7mWXXzbuYemeKQqqAoghL3r6svSSfd12XvVv3cnjHYXq29pAYTDB9dFqk7SoYIQPN0MQwERdFU7DzNkbQINwQpufenlIRIDeT4/COw+x7cB+BqgAVHRWsengVtmVTPbcaX9SH4ip0tnaWIuC2vbSNoB7kO9d9h3NrzmUyPVmKdets7URTNCK+CHctv4umcBNhX5igEWTbym3oqs763etpCDcQ1IN0d3QT1II8vOphjv/VcS5uvphbfn4LAFsv30rICGG5FkE9yGPXPMZkZpLegV4q/BUsaVtCPBvHdS2UYLP0nOshuU6X/9OELX95vfTAa34xlDv8VWj/CFz6CPhqpCc91CYKx9/e6+W4e+C8thOyo/CbDbKPr1pY9kATtH1IJPEHbwI7Lex9MQNeUcoZ8q5TjoBLDcq6TtHK8vmoBy3sgqz3UAR8V3hqrPhJAfxwGtgfFJDdcKEoN11kvGJefLFIoPpO+zg8lVj8hIyfT8h84rplkP2LdV7/fLNsO7JDQPS8jwkh5Nriw3Rkh0jbq+ZIW2akTdo+AarOFm+mpi4hqY7sgNSArFf33CLjNnWWc+Ev2y6vaWSfKEZVH6y4X9bKLcsJqHk2bVrBU09dT1tbBTfeuJPh4SQAPp/GokVNjI2lSSYLhEIGjY1hYrEcoPDII6tpaakgm7VYt24X77wzRSZjEo36cV2XpqYIp07N0Nc3zQ03LODRR1ejKDAxkebRR1cTifjw+TSWL29n27aXsG2XY8dmuOWWZwmHfZimQ21tqOxaXrCkEF/sBVRVuc4f65cCdHGNYBhS5O8fkX74/hH5uwgHZZ+2pnLRHsoKv3/Htz8KuLuu+ygy1/5CUZRViqL8+y57/B968/k0Nm1awZo187nnnhX4/fp/95hCwSKRyDM1leXmm59heDhJZ2frHwT+aIZM/oe2ySRYzMJ85UHpM3ddMfxI9svkmB6CzIRURhffJYYdlz9adgiNvSMVz+yUgPLnb5QJ8gNPSREgNSiy++SAnM9MidndoW3lPiRFLWVrOq5bAtffP/QzAIKGj4yZ5wev7OLPL7kGQ9P5zdARGiO1/PDPt9AQqeFvn3uC4cQkA/Fx3n/2YhoiNfzdc9+lIVLNgx+8jc8t+RCKovCZrv/AqnlLueP9n2YoPsHfPfcEI4lJbrnsE+iqxhsjR3GBC1rOxXEdQoY41xuazqLWc5nKZAS8W4OeWdxy74PVoeF+eTy5GcyT0PQtYdKNdph+UBh5rUFAtj0iDLp1CrL7xB3etUENSpa7mxOQ7sQRBn4ZtO4EvREavwNn/U6KA/aI12s/DIpBwdFIFCxcIG/baIrCDQsW8Ojq1RRsmwevuoqJTIa/3LWLY7EYh4aH6WptxfAc5ov7TmeztFdU8N5Zs0rg/+v79+MCrRUVXNzczK3PPstAIkFTNMqlLS30DgxwdGqKkM/HoeFhcpbF/StXkrUsvrB7N6lCgYxpks3lUEIhQbK5nDSPm6b8/s478Jd/WQ5DtyxBuF1dstBIJIT2XrpUNOzFi0Us5knFDUHWpinPRSLC6l92mdDkPp8g454e2ScQkLx3n08o7xMnsIfG2LpVobMTxscV9u+XuoLjlDEJCBsfDAoL/sADZQHBOeeI+r9Ye6irEwBeJP7TaREUhELylo4ehVtuEVC+YIEw7S0tou53nHLf++23y1u3HAV3ThvUV532j+3KwkjToK5aJG3FKrmiyGNdFbAPsq3oFhs5Taxl6HJh7hsos/PZvPTGFUwxpRkUMFLqsS+YIqNzHDnOdnBdl9z0NEYkQnZykunDh8VNXlXJTkygaBp1ixYBYOfzksuuaeA4ZEZHeeW++0o964f+9m9J9fejKAr5WIyXv/pV7GyWqTfflGN1nfpFi1A0jYnXX6fqnHPITU3x2oMPgqIQrK1FCwRov+oq5t94I7gurz30MLbrAI4A873PwtXXi+Rd1eD4Efmy8lkB9FOjcOl75Us88TsB3+mUgPF0Slzmf/iY5Lr7/BAIlpl3TRMZ/X/9jvSzT4+Le/zMNPzjtyERK/e9T4x4FwM/OA4Txw5Iz/rxQ1IMcSmB8cnjh1Bcl8m+Q4SqW1A1HVXVqZtzKWY2haqq1M1ZXOplVxQVx7EEeOdSaEZActIdk5Hf7hEWXNVQUFBVDVyYOvEbAey+EKGqJiaPv0J85AhmNuUZFiUFfGu6gGfDENd3D1ADOL17cI+8hZuYQe04C4Jh+cx0w8t/PwWpBG4iLv3sPb+AXFby2Q1DgL0HyBV/UIoBhg83lURd+l75n5+Zwt79z9L/npLFvqJqRKOtpFKjXHvtt6mqOotwuIFCIc309FGeffYWMpkxQCGVGmXPns0kkyOlvnefL0JFRSvXXPMtDCNIIjHEkSNP09OzFdPM0NraxYED36Cj4zLC4WbC4QaSyWGOHHmaRGKAePwUe/Zs9v7dNPbs2czMzAna2pZw8OAjWFYORQ/QoSh0Ij3pZ3v33wbmcpotAOIEvxxh0t9BFondCNgugu4Cws63IYx5K2I2pyMgvbhfB9Ib/+5iwZeQokAX4nBv+TQq2yvZ/7X9BKoD7N0igLx3Wy+5mRyBygC923oBuOab11A1pwrXcVm2YRnz18xn+V3LOf78cXof6KV9WTt2ziYzlcHKWWTGM5gpE1/Ix651u7AyFoGqAN2burlh5w1c89g1VLRVsO5361j18CriA3F2r9+NHtBJjaYI14Xls3UUDNXg4VUP87t1v+Nb134L0zF5qf8lTsycIOQL0RJp4dHVj+LTfIymRlEVlY6KDl4ZeYVjU8dIFVJEfdFS7/tkZpKIL8JIaoREIQHALc/ewnBymPWd6xlNjfLm+JtkzAw37ryRtJnGdV0CeoAlbUuwHIuJ9AQNkQZMV8VFFfD8s3NlXsmOCtOdHZH1T/8OePtBAe+ZAVh0nxjZHbxJfIYis2G8R0BjMdN9wT1gVEHHx4W1P2+D9JoHm0Qaryiy1iqC88NbBeR3rJExXFeO6Vgjr+H0HnZbWkPQAgK6VU8KbYQhNSKsuhEWF3jHFBBddIcvjhNpKbvVx48LENf8snYs5cTnPbm8LfvKN1oG/obX7KFosp4sguyDWyE/I+B63hoB1plRYcmT/fL4vE9Kv7riKcoqZ0NLNx5lDsP7hGXv3ChjNHWV18NFwN65UYoNRljWzU2dcl7HAn+ljA/40sc5e5afyy6bRUNDmMsu6+Chh/ajKAqqqqDrKn1904yMJGlsjFBZGSCdNnnppX76++PcccdzOI7L179+NbNnVxGN+qivD6NpCqAQDBo0NIRZv343/f0Jpqay1NWFmJnJcfx4jM2b93hs/EpPUr+Xzs5WRkaS3Hnn8+RylhiKqlq5qF+whDUvAvWJGAyOynOaKr+7rvSt11eLi7ztyDX/9PVErgDvnIRM7t89eP+jetwBFEWpQlqdFiD+JiOUzUlPv7mu6879//oC/zVu/1563PN5G79f/4Os+un7nu4m/9JLA7z00gBf+cp7sSznDDn9GTczI1Ig1wFUmYhCDfLYTEmvUDG27dI7xFQuOgsq2mWSzsXAXy1FgBfXlfdd+hX4/vkyYV7xLUTWnYHx16BpsUx8hcSZLp3exIeqgWqQVYMMzIzx3QM/4XNL/oz2ykZcJM4oY+aYziT43oGf8OlLryWWTXJR6zz+9rknePbIPq49r5u/uuwGArqPN0eOcfvTX+N9cy/lnpWfI2fmebTnv/KFFR8nbARwcJnOxEnmMkxnEyxomstbo31c2HIOecvkoV/9kE9dci2tVQ1oXjScpqqEdQvFzcmFRvEL8DaHIdglUvXRmyD5Q4iugbq/8RzngeSPwZgjDLziE+O5wHsE2LsFcHLiRJ89IEC/6DY/tQ1qN4AxD8w+OVdgETgJ0BoF4Cd3SL9702OkLR9HpmKMpFIsa28nZ1nc+fzz3Ll8OWdVVWE7Dl/YvZvO1laumjuXhlCIwUSCLT093N3dzUgyydK2NkzHIZ7L0RAOYzoOPk0TFt11ufXZZ1nf2clLAwOcU1PDoqYmEvk8zdEotuNIz6DnKJ4sFIj6fPzsyBE+fN55+HSdqOOgHj2Ksn073H+/gPNgUMD3l78sCHjnzrLT+113iVGdoggCfuMNWLJEPtfxcaG0XVfi5C68UIC+YXjsryISedeV7cW8NtuGL30J/uZvBEHn8/I63nyT7IJLeWeyhkBA8WRm0ls+a5aw7rmc9KjbthxWHHJ8XOoEIDL4ykoB6Z63GpmMEPvF7dXV8jJvvhl++EMRIDz6qEeEe0WConL9+HGJldu4UZT+DbU2mmsBSrnVQFXP7FXL5cU5vihfs53yvsU+t6Iqp2DKBduyy5V4TfUKIXm5iBejYyKhMx1o8wXZb2hMmHm/DzufJzkyTLCxkfzMDL5olKk33yTU1ERmfJyGiy/GtW2sXI7XHnyQeX/xF0Ta2sRg7Te/oefWW7n6n/6JVH8/gZoactPT1C5cKGZ13mN/TQ356WlCTU28/eSTLLrtNvRAAFdRmHr9dWrmz8exLN74+te54ItfRA+FcB2H6bfeovrcc/BnkyjF3nXDB5Mj8Mw/inQ9OQO7/itcvUbWeVV1ngEBMn+lEwK2f/6UuMn7/OV+/0IeBo7D7HNl0fijJ8Q53rZh6IScz3XP7HW/9uPw12tFMv/J9aAo2JpKoeQS34XuC5JLTBCoqAcQZ3nAsQpY+QxWPo0RjDDZ9zJN512Gqhm4iuJFxIGqGwy/+SLBqiYi9bMxAhKzNnz4F4SqWwjXtpV64K1cilB1C67jkpkZJVTdVGLpJ44doGXhSjTb+RcO8kpVrUjlHQd3fAS1fTZubEok802twvoYhsjmi/FvS98HgYCM038CpbJKnOhHBlEqq3DjM6itHWJM5/PjJuNQWw+xKelzX3GFKCRyWWHjW2eBrmHjkC3E0fUglpVFUTR03U8qNVJykJ8/fw3XXfc4/f09hMP1BALVWFYeXfeXHOIrKtpIJAZL95WV7VRVneVdg1PoegDHsRgaOkhlZQe6HiQSERDf1/fcGbFw8+evYfXqR9E0P4qiktV9TGo+6oEe4KPAB4HHgX7vp0uupBgIY74DAdlfAaoQpn0rAsLbkD/Rg4g8/koEvNuI2d2d3s/Z3vP9CMMeRFj6CBInF0N66oeAy9N5zJSJHtBxHZfB/YNEmiJEmiIUUgWsnEWkSdpnhg4MEWmJgIP0qCOxbyu3rwQgH88Tbgxj5aySu7yqqzzY9CDz18zn2m9fi6qrxI7HSAwmqGirKMXQJUeSRJujVM+tZvrYdGm7/yw/iiE964eGDrGoaZE33dm8Of4ml7ZciuVYRH1RbNcmb+dRUTkwdICGcAOTmUkubr6YgB4gY2a48/k7+ea13+To1FEe2v8Q9195P2FfmB++8UPmVM9hafvSkuN8PBcnoAfQVI2oL8rxmeMMxAdoq2gjZISoDlRzaPgQK2d1o6WPSxRc53fEqK7U8/5tAejzN4kJXeq4sOWFaRh9DmK/gQvvK6ugHAvMGQHtRtTr3fbWclMHxMAuOsdj9lVZWxRmZM2mBijFm716O1QtgKaV0uNeSHpmcabI1RP9AuLzMyIvL/a6F93jo+3iW1Rz3mn96UkBucVoYF/Ui3Wz5ZxFdt3Oy4+/wptT7XJfvKII0677vWKAKu/PsWTdOnJA2PJwUzkVCUVk7SefE0n8ZdtlezYmTHpTpxQhEifh0P3ClhshIZyMsLR4uk65p33xXeIejzffK6rXStovAD8fkyJKoBYUlcLIG0yFuxgeSbNtWy93391NY2MYXVdRFIWZmayw3gpomoptu7z0Uj+dna3E4zkqKwMEAjqW5ZDPW7gu3Hnn89x11zIaG6Oel5XNvHmPctVVc3n00dXceuuzfPOb1zI8nOS55/o4eHCIxx67Bsdx6e+PEwjoHDs2zcKFjTTUB/HbFkrxmu3T4djAmfFvR0/JcwHvO8oVylFxtlOW1ft0uZbZTtknx7K9dJvov2lHefhv97j/seZ07cBeQBoM/9u3/19y3P9X3P49APf/kVvRwE5R4MYbn+GHP3yTNWvmlwD7nDnVGIZWMq47w+zOLsD074QBj7RJVbPh4jOMNgg1iFyoa6NMkKohRnX+apmwzIxUJrs2ycT1q9tEWh+sk+Pe97Dsf2gbvP8RmUBHD4rhR8UsudBoQUoXm0ICMqOY6XFORRbgM3SqghXYjo1fN+ifGePvD+3kS1f8J776/Hd59sg+Vs1byt1X/CcCuo/+mTG+d+An3Pn+TzOVifPkgZ/y2a4PMZ6apjFSw3QmzsLmc3BxURWV4ZkJRlKTLGiaK1I9VHRNI1PIoqsahmYwFB9nOhPn3PpZJZO6z3f9GWfX1qKYx7zYto2ghOVi6KTKIH38Fqi9y0NeeOB7I+izpM9dbwFcJMPdASUkPfNT26DhPjGgwxUpfPp5CL9Pjhm9WZ5HBTWExMLZ4Ka9bRUkLI2xVJqqQICDXiZ7z8AAB4eGePCqq/BpGgpwPBbj/t5eNnV3EzQMYrkcU5kMXa2tOK4rC0VVFYbcNMmYZin/XVUUegcGOKuqiuZolL7pacbSaZa3t2M6DpqXBOACvQMDNIbDnFNbS962mclmOcsw0PbuFXpZ1wWIL14smvFjx0Tavny5yOGPHy/np23cKOg1GBR2PJsVenrZMnm+2ONeDFjftEnA+Jw5gpThzOfa2+WYYmScroOuk3aCFBwdwxCgHY8LIM/nyyy7ppXN5UBeTj4v6XWmKWx5Nits+29+Iy8xl4PXXiu/1WzW8+NCRAfbt8vvY2Nl376mJsHar74K111XBveVERslmxPAfXqGqqqWL5zF3GsUkWyfGBaJfDGX3WcIkx5PCcvunHYhLma1FoF50Xju3FkydjHztaFGzOs8pXyJxW9txNIUHFycQoHpt96i6pxzUDQNPRwmNTREZnSU+kWLcEyTQiolRnZe/roWDBKsrcW1bSZff51gUxOR1lZc28YxTVRdF4ZeUXAtUZgoioKdy6H6/WRGRzn8ne9w3mc/S9Drr596800C9fWCwzvaUdMJCIUFONc0Snb45DjUNsCpdyRbPRQRp/nEDOz+r3DNxyA2KbL22ARMjMLFy+X5REwy4DVNeuP/6Xuw6qPy2buI+/w1H4eGFhgfhl3/CKuuFzk+rjDyH7tRigiOg5NL41TWyHOKip1PY1smiqowcewgdXMWY/jDqIYA8sb3rPBc5guAwuTxQ9TNWUxmZhhfsIpwbUtJmJGZHhaTOr+wlkWn52LbI66DXciiaGKgpOo+XK8o5zgWiqqjOq64uVuWOL7bFlhmGWgXC0aOjaJLi4EzNIDS0IRiGLiZNPa3H0C9/i9OA+izcHHBm6dc20JBwRnqF0DvODgv/RLtmg9j7/ox7uHXUG/47BnHY+il92lh42Ljug6FQhpN03Ecm2RyhFRqhLa2LlTVYGbm1GlZ7SFMM01Pz70ls7lQqI6DBx/h2mu/hes6KIpaui/2sHd1/ZXX495NPH6ylNleXT0Xy8qSz8cxjAjj42/S3r6MVGqUYM3Z9CkqA4pSYrnzyEKuB5GxP4iA8lmImVwMAewGAsYVBHArCBM/goB9DdgPtCDAfiMiu7cRlv0db/wJwJtB6T9t32ZvzHCmgJK3MTMmY2+M0bq4FS2gYWUtNJ+GnbdJjaTYu3UvS29fSnoiTfWcahzbobK90vsuXGJ9MXq39bLq4VWkx9L0PtDLlfdfiS/io7+nn8qOSqpmV2FmTXLTOYyIwS//+pc0X9TM3KvmEm2N0t/TT+viVnat21Uyqbvm768hXogTz8ep8FXg4nLbc7exYdkGzq45m4n0BHWhOk7FT7G1ZyubujcRNIIl4N0YaSRv5TkwdICOyg5mV83GdV0+v/PzXNZxGR96z4dIFpI0hhsZiA8wkBigvaK9lPGuqRr7B/ezuHUxruuiqzqqonJq5hRberZw+9LbOa+qnejMawKUjUpIn4JMP9R2yfrKKXhgvBqmDknvupkQYK6FIH0SfnufgPvsECSPCtOeGxXZe9HELlAvYxRd5+dvlONLj++GzAhUL/Jk+4CTAV89OHlxci/GshVvxXx1X0RUk4p3bXEdMNMCvh1b9ok0lzPeHYdShvu7I99AtqcGxX3eMb3+82i5Yl00WS2C+mLMWzHKzXVhz63QvVXWm8Vc9XCLjF+Ii2o0WC9MfddGeX8zfRJtfGibbKucK1F4B7Z6cW+zyxHGxXN2bZTPKzcD2XEPvM9I9jsOibyf4eEUmzfvKUXAfec715LJeEw3AsRvvXUJLS1RolEffX0xBgcTtLVVsHVrD3ff3U1DQ5hbb32WDRuWcejQEDfcsBDXFVl8LmcSCBhksxYdHRXk8zaOI/FzhqFJx6aucurUDPX1EUIhnWSyQDyeZ+7sSozj/Wdes0+PdC2C9dJ37t0X0WSuUF4PBHxSzB8ah7M9k9qCJd93wC9rDsf9N2tU9z/TnO5+RP30EvBhYCES3fn7fub8v33Bf7r9699ON7Dr65th+/aVJWl9R0cl8+bVEQ77znCbP8Pszi7IBBdskEmzqfNMo42DW4UZf++DYvKh+aTaGKyHnFedTA+Xe919EXGbD9bJJH7ld2TboW0ydrL/zB56My2g3bVgeD/CyqcgPYrZtISR1CSJXJqvPv9dJlIxACZTMb6w4uPoqsad7/80P/lPD7Lh/Z8moPtJF7K0VzbwlVVrCRp+JlIx9vS9zPcO/ISLWufRXtXEBS3nMhgfl+i4mTF8hk51MMpbo31MpGa498UnyZl5FEUtmdtpisqFLeeiKgohw89/XPwBqsMVuNgC2pM75F5vFDA++VV5L2pIpOxag7i/Tz0kfe96M7hZMZLDEdCee01Ye8Unve41t0shABecrPS4V94AWi1gi/RerZSe9tH1wrorrgB/NQpOAkNxyVgW63fvpj4cZiSVYuWcOdx/5ZUMJ5Pc9Mwz9CcSJaBdHw4T8fn4xoEDtEajqIqC6TjYjsPBoSEiPh/14TAhw6A5EilJ3pe0tdFeUQFA1O9nYUMDR6en2T84yKl4nM/v3MnJmRmWd3TQEpUM3XguR304LO7hF18s8vSKCmHJ77xT2PS5c8WAbv16aSgvgvZQCL72NUG6k5NCV8+aJcx7KiVuboOD8vy2bcLab9kix7muIPBksiyb7/B682ZmBEG//HLpf8z1rrSuW26PHxuTdnvHEcCeEPWkeG4p0irf0CB1hxtvFHa9qUkwXH093HSTjLFwofSx27YcNzUl+zz2mBQHEgmR3S9fXo6YC4fFN29sTEB7LueJZQbHBHD7dDi7Qy7AmirA2XXld8cVyXzBgrNavHaDlBjWFZ1gKyNlw5qiYV2+IMZ0AZ9nPLdAzgECzovyuTltXgas6TH1rjD3pomrQHpoiOm33qLuwgsxolHMbBY7nyfc1ES9J5WfOnwYO5dDCwQY7e0tg3bHwTFNqubNI1hbS2pggFwshuoTRt9MpzFTKTG2y+VIDQ3xmwcewM7nCVRX03DppRiRCKrPV4qVy01MEG5pIRuL4ZoFAe1nzROJvKIIkFcVOPcCqG+GyhqJgotPw+FXBbSfNc+LkZsPi98rX0hiGtrnSN+748jf9tzzBJzXNgpoP/RreWzbcn/o17Ld74eBPlj5YRl3egL+4THUTBoFyMRGMDMz5NMz+EJRVNUgMdbH5PFD2Law283zL0dVNQrpGRRVRdN9NL3nMnzBKFVt5xOuacYxTYbfepFCeoZARR2qqmPm0yWZPK5NenoIM5sAz50dkM8FFzOXZOjN57HyGVzLxCpkcE0TEjPYL+yUvv9IVOTvwwNgWSiKiqIbuPks9u6fiOlcJo39zD+BZUrPe9ssyV1vbBFTO1WV/Pb+E+ISn8uihKO48RkwfKjL34+rKMLwL7wEddYclFAEpbEF+9mfivN8IYeDTb4Qp1BIkkqNeEUHm9HR16itPYfKyjZ27VrHzMwJEokBDh/ewd69WwmH6+npuZfDh3ewb9+DtLZ2kslMenFwJ+jv7yEWO87OnWuZmnoH13Vobe30ZPPd8i9VOZuVK7eTTo+jqiqZzAR79mwmm52kqeki72NVsTzQXg+sQ1juOQh470RA+w7EMO4UcAAB67d6+3o8Jym5QjACpbH6kYVgUUrv1QUZBULARcBsBLTr3vFbEcO7ELIIVQsWyWMxnrnpGQAiTRExneuL4VgOqq6i+TTig/ESaG/tbKWirYJQbYhd63ZhZsySC/2yDcvQfOI037a0jdRYSsB4VytVc6oA0AyN2IkY2eksq7+xmgs+dQGBmgCO7dDa2QoKrPr6Kj6x6xOsfnQ1Dg6O1xvtIsB5x+EdbOvdBkBTpAnLsdjeu53l7cupD9cT9oXZ8PwGwr4wlmOV2Pf+eD+pQoq0mWbjio1cf/71jKZG2bxnMwPxAYJGkM7WToJGkIZwA+t2ryNn5biw8UJM28Sv+ZnOTJMxM9SH61nevpxvHPgGuh7CrVsqrO/kS9KLHmoXY7n0KYlpM6rE9b1+uUjo39wsknpVF9Be7E2vWyKmcoVpeVyUwfvrRV4faBAQP/qc5LYHGiDQDI3vl3Hrlsga5OV1kDkJWkQeawFhmVVdCgl2XgCtYwqYDdQI6TLT5xnPaQLC8wlPat8sMnpf1CvkKp4pnXFm/7xTEECYGpJ9FVV+NEMk9Y4pzL1jl4GjY8q69PJvyOv85S3y2houEoB+YIvnqzQqoN7MiPnx6fL6A1tlTTr7qtNaNbd710q/uMy/vF1i6syMMPzFCLrksCQgRdugeamshUONUuwY7kVTFSoq/KUIuHvuWYGmqYyMJLnllmcZHk6ydGkbo6MpfD4N23YZHU3R3d1RktY/8EAviUSO5cvbCYd9fPKTF5DJmIyNpairC9HSUkFTU4Q5c6pYv343pinAfWAgwU03PUN/f4KZmRw+n87wcJJMxmRkJMmJEzEcwC1ds1sFiCfTcq0O+MotcUUD20RKFHvFiNmip04x6m1gFFobPJn8qbLiD0Qy/+9UOv/HMu7jiNfIe1zXzf8ve1X/yrc/Me6QSuVLMRBr1szniSc+gKLwe6X17973u9/9ANGgA9PHoLJDJiyn4EmwNPjlF6RimRyA+kUyOR3YAu/9mky6B7eKhKj6HInf0PyAKtXQkX3Cvv/mG1IR1QMybnoUTj4rjPv7H5ZJt1jdvOR2uRgE6yBxEjM1RqppKW+N9pVj3lrfQ8bM49cNNFVjaGacJw78M5/t+hC1oQp8uo+cmWcqHWc6K2Z2tuOgKuJsnSnk8OkG237xX7ig5RyuPKeLkM/Pb4aOUBWI8sNXd3NByzlcc143qqLw+vA73PrTB3nf3Ev58lWfJ2vmCeg+LC+errNtLj7nJMrUFqjdJPJ3a0hAuuLzItraRQKvN3oIy5TnnJSAfHNMetZBctm1KkrqA8UvgLxYuxu/U+Lj9GbA8KrdpkjklSjY415EXBTMY6TsKm569tWSFL7Zi2+zXZe1O3ey4/BhPrlwId+69lpylsVMLkdVIEDBtlE9wHrn88+zYdky5lRXY7kuE+k0ecviVDzOyZkZPvSe96AqCmHDYDydJmtZdFRWMppKUR8KMZnJkCwUiPh8tESjjCSTNEejJcZ9rs+HUoyDu+suoaktS+zV77lHes4tS1jwkydFLn/33YKcX31V9Or33iuseShUdpY/eFCAfCYjAN7nk/tiJJzjyHPlfxAZU1VlkeFR6Cm9ir7jCm1tZRP6qqpyOh3I7uPjsr3oKO/zSe3ghReE5F+6VE5/+rbOTjl2cLAsfa+rE3+8e+6Rtn3Lkpf5xhtSuxgellrE3XfL86dOQV2NTUuDXZZXFWXaxWi3giXAfk6rtzDy9ixK6R1PDaKqHuviSd+M4t8YHgPvgf+CWe6NK168iyx7Nl8+VzGj13EwzQLjr7xCsL6e337ve1y8YQOoqkfYuCKR//SnCdbWYuXzBGpqcEwTx7bJTU3xu//8n1l0++1iQOcKc+9YFtmJCY78/d+XnnMsC8eyiP32t1TOnYuiabz2ta+x6LbbQFUxk0mMUIjY0aPULliA7vejWCbayd+JKV1ypsygV9eVGfVd/yhO75VeW5CqCEj/5++L9L3ICPkDMpcWcvDP/wU+9BeyTVNFQqjrwszHJsqMfC4j0XNXXw/1TfK3f+J3MHc+9B2GaBVOJIodrUBRdTKxYXR/ECufJVTdjF3I4dgFdH8YRTNKMXB1cy7BF6zEzKfl8Vxh5R3LRDP8FLJJMbWrbkJR1ZJ0Plzb5rH4l6DpAVTdwLYKqJqBZvjAdRl68wUvju6DhGpaUG0bUimcPc+eyXwnEqjts3BNE+fF3aiXr5Ke9NgU+Pw4v34BpbUdZe48lKinUnId3OlJnN49Eh1nGCJ/NwsQjqBYligRvEgpV1Ekjk9VIZ0Uyf2y9+EO9kNVNWr7bAqKheM6xGJ9pTi46uq5fO1rzXzxi6fI5aY5fvxFqqvn0N6+lHR6gmCwGk3zY9t5BgcPUFnZQXX1HBzHwjSzjIy8QmtrJ0NDB/nRjz7KvHkf5L3v/QoAgUAVmcw48fggFRWt9PTcS3f3Rqqr55Qi4ObPX8O1136bwcH9RKMtRBoWkFM11lGWwH8byXV/BAHsWxCjuFuA+5CFXgQB1yAgvwi0c1Aa65PAo0jf5AHgYsqy+o0I03Mc6X3f5D1OAW8iLP124DupPM/e9AxtS9u44JMXYBUsfvuj3zK4b5BrHruG+Kk4elDHzJj0bu9l5faVGCEDK2/x3G3P8eYP3+QTuz5BRWsFe7fspfvubpIjSZoWNWEEDdITaXIzOQ58/QCrH12NoiqYaRPXdTGz0v9elNQbIQMra5FPitxeURSsvAWVcGTqCNt6t7Fh2QbOrT2Xz/3sc9yz4h7mVM8pmeClCimGk8Ol/Yq3h/Y/xH1X3IemaoSMEMlCkpyZoy5ch6Zo9PT3UBuqpTpQTc7K0R/vp6utC8d1ODVzinNrz+XUzCkGEgN0tnYS0AMcjx1ne+/2UrRcpe5DsbMoUwcg0AiRcyA3IuB66qDkrb+8DoafgQ+e8uTZrqzBAnWQ7veYdU9OP/4rYe8VHWJvQO1iWUNkT2PgT2faz9sgx9k5MbQzojD4Exj/tUj3FV0YZcf2ItgiIg3PTsr6rGqu179lCdNcSInpWz5Rltf7KspA28qX/lfPZNxb5feiCd3pTLtjwvjrYoRclKkXkmXyKHbMk713yZh77xLVp79KGPfUkKxbC3EwKmDqsMQPx/tkHdt1jyg+cQWY92yUPHbHkojjcLOA8aP/BMMvwVXfE8b95QfKa9rslKc43eIx+MNQv5CEU8NLvUMsWNCArqtEIj4cx2Xdul10drZy1VVzaWqK0N8/w8BAgq6uNvx+jUQiTzJZoKLCj6JIbntfX4xt23p5+OFVuC4kEnkqKvy8/voora0VNDdHxIjfi4s2TZts1uTNN8dZtKiJYNDgxht3sm3blbz11jgXXtjI+HiaCxc04LXMi8rOMMotcD4d+gbl+l5TIfPqiSHvOcP7u7DKUbCmJUTB0VNnyu0VRUB7cdu5s//NSef/Z0rlk8Au13U/9j/rxf3vePsTcP/DWe7/w/uSlT6h1EhZulSUvVecBSO9MkG+5+MS3fazj8KnfiPO8Ed2iDldw8USv3Hw3rI0yReRibOQ9gD7cLkXqJCUSdEXlQn3xZtlrHlr4MpvS4XXywLNaqFSj/tnuz5Ee1UjA54U/nNdH2IsNc3tT3+NBz94Gwubz0ZXNfJWAZ8mvVHZQo6jk/3Uh2sYT01xQcu56KqK5TjkrQIKCiGfH9t1vYhKl5xV4NG9/8j67o8RMPzEswmCRrC0X87M862XfsQXL/sEEcNBU1y5gLk5sKcl8i3YJfntagDQBMhb4yJjNwfEtM4tQPYVMJrFJT60DFylnM+ee0PGwQI75rHzqvS9By8GawTMEa/HPe4d8yYEFnjnm6CgNjOVcxhOJnlo/362r1yJX9PwaRqm47B/cJBFTU1MZDIMxOO0VVQwmEjQ1drKTC5H0DCwHIegYTCSTLLV630PGwbVgQCO6zKSSjGYSNDpmdoVvEJJLJsla5oMJBK0VVQw7EnrFSBrWbwxNkZnaytVpony+c/D00/Dm28K8DZNuZAUAfxdd4lWfGhI3NuuukpY9v5+oaSfflqQbXV1WepuGAKKisj3rbdEo150pW9rkyKB68q2qakyIz86Kmz89u0kQo3s7VHp7vbwWEGGLraQx2ICtnM5EQrceacMk8mI3H3bNpHT798vwBsE3A8Oysvv6vKU6P3S715TI/WJ1la83jYB8rNny+P9+yW6/gc/EOZ9fBzO6rDRVQ98FyVvPkN+FEVY9oqIXDyhnL1asMoO8o4NqWwZjBflbkWAXux39xlnHu84Mobmgf6jp7xzVQn49xnguFiWiZXPM/XGGwRqaojMnk1qYIAj/+W/sOi223Btm5m+PuoWLcK1LAqJBL6KChRd5zf33cc5n/gE0fb2M4zu9FBI2HmfgLiSPD4QID04yOHHH+e8z3yGqTfeYNZ11+GaZkkiH+3oQFFVXNtGM3RUs4DyD4+JnD0REyb95FFonS19D4WcgGoUOP5baJ0jjDiufAYn3xGW3fDL821zvXYLQxamqiaO8yhy3MQIPPN/S998XWO5oGKZAtprGj0Qn4eT72Cfu4BMfIRAtB5F93kRbi5jv9tL3dzF+EKVpKeGCFU3MfzWi8RHjjDr0j8jVN1celzVch7NCy4H1yETG8UIRtF9QUZ+u6fUN4+iCnB2XXKJScK1reRTsZLU3h+pBtfFsU2y8QmClfWYuTS6ZqCjlf5JlGiF5K83NMt78PmkOIZbBuSVVfJPlEqcsU1RFOydT5Vz3T+wBndqAvx+lEBQWPeIyGidgVMoFRUijW9oxn5hZ+k49eoPeWP/ClZ/EEux2blz7Rn97AMDvTQ1LSKfjxMONxKPD9DTs4Xu7o0YRgjTzNDTs5UVKzZRVXUWjmNjWVl0PYCiaJimtN2Mjr5GJNJIJNKCzxfGtk127fpLli69g3R6nHC4nnR6gubmi0kkBti370FWrLiHeLyfcLieffse5H3XfotgsIYsAq5bkJ70HwHXI/3mIKZzJiJrH0ZM6hyEdb8TYeBbEEB/HAHnDyERcgOIdN6PyO/rEKl9PSLRLPbVfwUpApzl7bcQqCtY2FNZ0mNpeu7tYdmGZdLPDvijfp65+RmuuO8KzLSJL+JD82kMHRyiclYlFa0VpMfSRJqFpX/zh28yf818Vj64UmLykoVSlvv00WnOv/58kiNJUiMpWrta0YM6U0em6L2/l2UbllE7r5Z8PI/iFQ6fv/N5lty6hPD8MGt3ri3lqD9+3ePelKehuArHYsd4eP/DfGP1NxhKDvFc33McHDrI16/+OvsH97OgYQG6qvPW+Ft0tnaiqzI/Zs0sPs3HQHyA/kQZrPfP9FMZqKQ6UF2S1wf0ADO5GSYzkyzvWI5pm5yKn0JxFWoCETqULMrhLXDe7Z6UPSsA+7wNEGzxsspN6VGv7ZLi/NRBYeXDZ3nFVFvmEtc5Led9kzDtr95Slsv/6rpyXvxEj8jncxNQv0Ik9m9vk/OG2kRqr4ekmGB4knfXObPfvQjIS3L4Fq8X3VNoFfvaS5nvbbLOmz4ijvKqIa+71IfjyDrRHxXQ7trCchePM8ICplODXv66KXPpcK8YIJspL8sdj923y68l9o6w6Ys3QPW5ss9QL9TNL8vwM2PynnwRccNP9pdN54J1MHIQWpbKeEO9ogJoWVJuJU0Nyrr4A0/Jfo5FYeQtpkKLAYl003UFy3JRVYVjx6a4775eNm1aQTCoE4vlePDBfTz88CrGxtLce29PKfsdIJs1yeVsqqsDOI5LJmPiOOIvdPvtz/Poo6s5eHCIiy9uPuP4lpYoFRU+QOHYsWmGh5MsXtzC5GSWr3711zzxnWsJuDZK8fp+rP9M0H06OC9K4l2EfQ8HIe319plm2Un+dAl90O95CuXK20KBf3Ny+f+ZUvnfAjX/31/Sn27/J9zmzq3iiSc+8N8E7fAvc9/BJZXXKSgRkQSd7ip/YItMiE1dAqhHDgpA/+xxyV/v2iSmc60rpAJqhOGSO2UC1IMCvPd/VUC4LyrxcLmpsruoEYFffEEm6s6NZzp+FlIw/hqmapCzCnz3wE949sg+vnfgJ9iuw/e8x9898BMWNM3lwQ/eRkOkhq0vPMlwYgLjtLz26WyCs+vaGUtNURuu4r4X/zOpfNaTvAfw6wbpQo57X3iS4fgkM9kEhqqxvvtjTKcTvDlylJpQFQHDh+O6zGTi6KrG7e/7FI7rkLNsXPMUjN0sknW9XSLcsq8Iw66GRQbv5kXqbo7I825B2PRQN+izvdi328DNeD3tjmS3Fx1QdemdAgeCS4TBVwJegWAUCn2gGHIMgDUKeiM+tUDYZzCaSrHl8stxgelslpxl0TswQFs0SsTnY1ZlJd0dHcyuqqKztZUDQ0NkTBOADS+8gKoobO3p4bm+PsKGQUM4TEDXCXq/X9jYyK3PPsupeBzbcVi3axdprw/+wsbG0j5f2L2bvlgMx3VZ3NKCrqoykW/aBE89JWj3C18oRbFx8KAg09tuE615dzd86lNw4oRoxauqhKYuHrtundzPzMhFOZUSpOv3i948lxOAvmyZyOOlhC37VFWJDj2dFuC+dSsEAhiqzaxZUjiVKrjUEU6eFNCeyUhEm66Lt14wKC+1sRG++U15PD0tLz0QkL72wUF5vrNTxiia3hXN7JqbpRe+OObs2fJ7LCZA/8gRacnv6RFlfzF6lVxBnNzDQQHMqiIgvqMZGqqlMn58sGwuU5TBHz0Fpi2S+aKDvKbKGNGwjFF8XGTd4yn53e/1w+VNb0JqhybPga9/FGwH27FJDopkP9TYyJEf/AA7lyNUX8+8T3+a7NQUv/Fy1jPDw2Wn+DfeIDM8zEV33YWqaRz8m78hMzqKoqqomobi9bSnhoY4uHkziVOnUHQdXJfM6ChDv/wlbz/5JO1XXSXjbtkiZnZTUyiqip3PM/HqqyT6B4TB/diNEtXWcbaA9tnnCls+OSxf0v/1DQHcc+fLF5KKCyP/D4+Jg7zrCkM+5zz5PjIpmBqDY4c9Ax9betcnRuR8n/yCSPBR4MTb4lqfSsKc86GmTvY/eQSqalGAYLWoGMxsnJHf7sHKZwhWN2Nmk7iOTSE7g23mqD+7i8rmeYSqm8nERqibcwmVzfNoOu8yiYt76xfo/iBmNo2i6bTMvxxV1VF1H4qikI2Py9iV9UDZud7KZ3CsAo5tomgG4VpRcGi6gW4E5T1lM8K6z0xLfnoqUY5pq60TV/nDr+H0vCgpU4qCs39vOd/dtnELBbRrPox2x1fQrvsoAG4mBWbBk8pHcGNT2Lv+GaWxGaWiCrXjLNxAAHXZ+wW0r7gSRTdwen+FumSF+B+4LitWbCrFwamqQUdHN8nkMHv2bCYe7y/J5Ht7txMON6Drftrbl/PSS9uwrBymmWZk5FUsK8f09FGef/5OwKW9fRk1NecwNvY6MzMnUVWVFSs2EghUUVHRxr59D1JR0YauBwkEavjAB75LZWUHzc0Xk8lMSaFANehzXdYhxnJnAT7gQwjgXgucRBzgQ0ADAsKTSFZ7EAHo7ciiMYsA+Me96SGISO4PeOMsBc4FGr19L0Yi5b6ESPC9sjPtCPOeBPSAXopo693WSz6Rx7Ec+l/qZ+X2lWQns0wfmyYzlWHo4BCtna1UzaoiMZhgz+Y9xE/FWbl9pWTBb+zGF/GRGk2xZ/OeUpTchX9xIUbQoGZuDa2drQwdGGLm+AzpsTTty9slN14Bzacx+tooruNy+ZbLSY2mUBWVu7vvZs38Ndyz4h5c12U0NYppm1iuxXBymL/q/CtShRQAHznvIzy6+lF0Vefi5ovZ9ItNADRGGvnC7i+QyCewHIugEURTNdqr2lnatpTpzDQ+1cec6jlEfBEODR8qMez14XrG0+MsbFhIMp9kIjNBc6SZqD9KQ7AK5e1tIoHXK8T1/chD3uOwtA4W4gJO65cLKTB10JO8D8gaoBCD3KQ3747D2w9IRnuwSYD34m/J/vXdMPuTcN4dIuMOtYlbfahVLmann1cPyb1d8AgH5DUoqrDiRSl8vE+M2KBM0KgaxE9526Ly16b6PA+jvGxruFC2uc5pEvu8/KVqPnnsugLMizJ6f4WMXZLWD8tYqiFS9syYkEhpb3shKdFthaSMVZTAv/KQXO/svLDuKLKflREgnh6W55P9XsTcenlO9UH9BeVxGxbBvOvL4x705PYf/LHI9DPjAnhbZB0Wj+dRVYW+vhhr1+7k+PEYkYi/FPFcXx9mairD9u1XEo36aGoSmfyjjx6UGq7lYJoOmzf/klSqgOoVqcJhg2jUz8MPr+LVV0doaBDH+UBAst0fffQgqirFgkQiT0tLlGXL2gmFDCor/dx//5WeVYpaLtQXpfMdzV67gCagvRj9ZjuyvSIs13+/Txj64vU/m5f1wbmzBbRrmlwzQwHZ9m8QtP/3bn/su30EeK+iKAv+V7yYP93+97gVGfTPfOZnnDw5Q9lB4vfvm0pJ10Q0KizR7343xWc/t5PfHU1SWP6gyIuKURhdm2RSLvakh5tkwt1zC6T6hY2/4lviyvnizSIXClTK/Qs3egx7p0xs4UaEZaoQSf3eu6UosOwrMPGGZGhe8S2Z9J5fK+cJN2Gmxzg82sdnOv8D3/zIl/jyVZ9HAb581ef55ke+xNolHyag+7ik7T3UhSvZeOVnqAlVoqtqKb99MhUjaAS4qHUe/9fLz3BhyzkoiiK9krieHC7Ane//NCGfj6ARwHYcQr4ADRXVnF3XzqnYCFtfeJKMmacyKGY3w/EJtv/y7/FrCoo5BA0PSh87BXmvgYUicbfGvLi3GQHvoW557Jowuk6c4d209LI3bpPvcHwjpXK0k4SxOwT8K0GR2BfBfGFAxjTmCluffdWT1HktC+YJGL0JA5O2igo2vPCC58ZvcmBoiM7WVho95/cTMzOs3bmTUzMzuEBnaytN0Wgp+u3Q0BAbV6zg4Oc+R8Y0WbtzJ32xGLbjcMuzzzKWTtPZ2sr23l5UReGOpUsJGwbL2ttRVZU7n3+ekVSKztZWtvX2kvBc5gHPXXtItOTbtklouWEIGi7muM+dKwg4kRBg39QkxzQ2SlbaihVCb+/YIag4nT6zkfzAAejrk175UEhQ99q1EjcXCsl4t9wiKLyxUUB+OAyahmmrNDQoZDKSx55KCZj2+0UuPzws9wcPyrbGRspRs+kykX/0qLylSy+VfcbGpJU+HJY2/XBY3OlNU95qc7OMOTkpiXjJpLy8Awfk+tfcLMWA2bNlbeM6rlxgo2EB6H0DAqYjQXkxqsoZGexHT5WdYqdm5F5RBHifnvfeNyBjaGqZabdsYdU1VSrwpiVxMAryezwlF+6z20FVcAomb3/ve2Ik5/MJWJ+Y4DcPPECwvp5IWxsX3X47iqZx5O//nvqLLkL1+aiaN4/s+Li0uYyNMfTLX5IZHcXOZnn1/vsx02n0YJDcxAQNl15KqF5603MTE1Sfdx7djzzCJV/6EppnUDf0y19y5Ac/oOGSS8Tp3LKofs97yExMyGvXdDj+trdAqRZAPj0hOezPPiV97FU1ArBPviNmdYYPXtsPP98h7zlaBT94RCLiKmsgWgltc2DH4zLun/1HOSZSATMTcOwtWeydvUDOryowM+WBfUu2V9dJu0E2jm3mMLMp6uZcgpVPU9l8LkYwwvBbLxKubkUzgui+IC0LV4KiYgQiWPksLQuuQNWM0yLlXiFU24Jri5mf7g/hui52IUeoqglN92FbeVzXpWX+5cLe17Rg5TOMvv1rMb1zXRRFRdVlXlIcB+elPQLCNWEqnf17Baj37gGXci/6qv8gMndNR115LUr7WV6OuwqGgZvNiBFd/wnc2KTEvoWj4jvgONIH3yZSVzc2LT3wjgO19WjXfgSqanAtE3XldaBq2K5NPN5PJNLEddd9B10PEIsdB8Dni7Bs2V1EIs10dHTziU/s8nrYT7Jnz2ba27u5+upvoKoGPl+Ejo5u8vkkqdQol1++Bdd1+fnPbyGfT1BX9x7i8X5su0Ak0kI43EBPz1YOH95BT89WAEKhOiwrR39/D5nMJB0d3VRXzwU9wBZFKcW0xRFArSK96LcDRY1hP/Cad6WoQIB4FpHCmwijPoqw7xkE6Ee8x/Xe8Yr33FFEej8OrED66puArwJ9SNGgHsgUJL5t9WOruWHnDSy/ezmR5gi+iI+2pW0YIYPEUIJwQ5jEQIJwfZjd63czc3yGeH+8lMduhAyufuRqoi1RVE0lPZ6WnvjxNIoubKyZNTEzJsMvDxOuDxPvj9O+rJ325e1MH5sm1hdj+OVh2pcJkJ/83STNFzWjoTG7cjbfvOabzKmag+mYqIrKQHyAnv4eFrcs5tzac0t98Krnzp638kR8ER5a9RCGavBA7wN0tnYymhrlpmdu4njsOIl8gn0D+8jbeRrCDWiqRsGWubKrtYvp7DT1oXoUFN43631E/VFCRoj7e+5nODlMY6SRvYMHcRdtl1x2X6XMCRd/Heq6pY89c1LAu5mQzPVXbxFzulCbsOSuC7+5U0C2lQE9Covul4z29AAcXCsAf/o1ef7Sx6RfHlVk8v07hJ13HVi0Xfrj39wsefF6VHLiT7+pGhhBAdclAD0kzLa/yst0V6TdEk5buxRkPeir8FqzPJZd8YoBkZZyy9bpWe++qEfwtMm8mE+8K5ou70XFuQLIW5Z7MXHIe/JVSl+7opUJpssfleNGDsna0wjBzAn5LJuXSAsnzpk57ge2impA1ST1qFgg0IIy7rw10PXX0u7Z2i2E1cwJ0AKYFgwPJ9m8eQ8nTogcfseOw2zd2kN9fZhduz7BE09ch6LAokVNvP32JIlEgZmZPH/2Z+fx0EOrOH58hptueobR0RRf+EIngYBOLmeRShXo74+zdu1OxsfTdHW1UlUVYHQ0Vcp2/8Y3VjM2lmLt2p04jotp2oyMpIjH80QiPiIRH7bj4jqOMO25gjDqs1oEiBdMuYafDuY11Yt5dcsF/+K6IVcQkF/wivfaaQRi0SD33xlohz8SuLuu+wPgASTH/UZFUTr+e8f86fa/360ItgvFiKZ33UxT3OGXL29n27aXfn9OO/wLU7ps1iSbtRgYiPP000ck412plMmncg4s+zuJ9nAdYd6P7IBD94nbe3FCSw0CjvS/X3K7Vx2tFOa+OJHO+5hMbCAT355bpGq5aL1MgL/eAJEmGTc9XGb7zSQcug/j1PPMa5hNe1UjF7SIzOn14XcYiI1xbv0sGiLVvDL4NulCDttxGI1PkSlksR2H2kg1q8/rZl7DbB745d+TNfNsuvKzfGD+ZYR9Ev+WtwqkC1lsx+ahX/0Qv+7Hr/t4Z+IUjuNgaAZRX4h//M2zXNhyDrgu0+kZdFWnOlzBn19yDZar4gYWQTFbVDG8/nZdmPDJzZ70PSQSd7NPot8UH9TcClNfFyCPLf3w9hjUrJdjM70yVtPXhF13kgLGMz0iyw9eWt5ujUmxwM3C2Dph7pUg1NyO6SoMJhLcvnQphqoSNgy6OzqwPNM5VVV5oLe3ZE5nOw4vDw8zkkxy865dLG9v56KmJs6qrKQhHGZrTw87Dh9ma08PlutymWc49x8XLeJb116LpihUBQJkPYA/kkzS2drKQ/v387H583l09WqaIxEMVRWnZ13HbWkRRLp9u7But94qJnVnny1ouLe3HHa+ZUvZaf7kSdk3nRZHt3gc3vte+PrXBcTfe68g3vp6YdCfflrGLzLwDz0khYMHH5RxdF1o7IEBocnzeVRNLUW8gVzrczkh/R1HwHNNjbzc4j6KIsp915VTa5rI4Lu7RUxg21JfWLhQigGbN8uxfX3wxS/K6Yv1iFmzhLk3DKlV1NeLsGB0VK6F+Tzksl474bmzhO0uZqwPjMrJfUbZcMbvk22xeDneZcmFAsSz+bJJjabK82e3l93ljw14cnm93L9YGfF8AdSybL4i7PXWm4CCqmtcdPvt5GIx3nzsMVRNIzcxQe3CheC6pAYG+M2DD5KbmuLijRuZdc01pAYGUFSVYEMDB7/yFUKNjXR//evUX3IJgbo6Lv3rv0bz+3Edh9oLL6Tt8ssxs1kUVcWIRtH8fhouugjN72fyN78h1NzM6n/+Zy7dtAnHskj29/PKffeRi8VouvgiGB8RoB6tEtAZn4KrPiK96KomMW9zz5es9dOBfSEPf7lJ+t81A577JzGai08Js/6P3xaX+cs/IGD+qe/KMaomRYFolUjjx4e98XLyZRe3T47CDx/FxcXMptH9YYl5O/4KRjCCqhkoqk6ougUzl8bMJRj57R4K6Rlcx8IXriJc4/VdKAr1Z3eWs9wRfwErl2Lozecxs3G0QBjXdVB1A90fwcwmGD78C4xgFICJvoMEq5qw8hk5JpcgGx8Hx8IZPIV6xTUo7bM91n0KdeV1ZaCOC7oP7ZoPQyaF/fOfglVA8QVQqqrFUO7nP4X4DPh8pSx2DB/uzBT2sz8Vo7rBUygVlSjnXwCFAm4qgRKOynbLxM2kITYl/4uGgZuYAVwSiQGSyWF27ryRXC6GrvuZmTlJLHacmpq56HqAgYFeKira8PkiJcCdTo95ufcm/f09zMwMEI220tGxHMMIYRghrr76YQB+8YtNVFS0oWkSNZdOj7NixUaP5d+EoijE46fYvXu9x+gHsD3wp1l5Nrkua5A+83co968vAyoRVtxEwHQT0v+eAJbIp8udCGBXkX74TkROv9a770RM7roQ0B5H+tqf9s6TQwC8D3E5DiBgfgqo01TMtMnudbupaKugZk4N8ZNxhg4OYWUtUiMpmi9uJlAToGNFB5WzK1m5fSV6WKdjeYeA/S8tR9EVUiMpdq/fTSFVINoSZd+D+4i2RHFMh0KygKIp6AGd1q5WDnzjAK1drTiWQ++2XsL1UhhoWNjAdN80A70DtHa24qvwYbs2J+MnuXnXzRyLHePg0EHSZpqQEeLCxguZzE6Wstg379nMWHpM1lOOyTtT77B+93rG0mM8uvpRPrnwk4ymRnn6yNNs7dlKMp+kq7WLkBFCUzUsx+L1sdcxVANVUdEVcZC3HItEIcFkZhJVUfnG6m8wmZnEcR2aox24RkTWDIWEJ3m3pc986GkB1diyDipmrWfHYfpVL0rNgou2C3CfeUOO0cP/MqO9aoGYz030gK9aAGcx833+JhlLD4o8fuhpkeqnT0qhwMmXF5Cux7TCaZnsrd56R5cf1xWmvpCUv0JFk8dGWNj1fELGKbHsyF9ockAeV8wqj4siPfS63zMv9tq9qubKuVIj3ppyEi5/BM75iKg74ycEkBd9VVxHeuOv/LbXix+DpktF7ZkZFxUowAs3yftCEUVB12kKUNVTGaTHJVquCPCjHbD0b6SQYKZEkv/CTdICqhnYjsv4eJpt266kqSlMd3cHn/zkQjZuXIFhqCxa1MTRo9Ml8L10aTuGIdnuo6NJVFVly5a9PP30EcbH08ydW0MuZ/Hyy8NUVwdoaopyxx1LGR5OomkqTU0ROjqq6O7uIB7Pkc/bBIMGTz99BMNQGRlJ8dWv/hrHcXG81xYO6hIHV2TUXeDlw8IcFCNdVVXWFEUwXxmR7yKekm3nz5V1wxnjuP/uTOj+0O2PAu6KotjAXUAt8E3ghKIo9h/4+f2o8E+3f9Xb73WAf9fzfX0zbN68h+XL29m+fSV+v/4HxrLZsmVvSZ6TThdYu3YnbW0VPPXU9dxzzwr8Aa9HKT0kk2/8BAz1nCljDzdJT/viL8lEp2gQaRemvqlLJrjLH4X33CATdGZc3EfN9Gmundugclb58YGtZXOTzruliumrhK57MGavJOwLMBQf5++ee4KB2BgLms6mPlLtxYu5XNhyLql8hkwhS0NFNVF/mNeH3yFnClPkui7ruz+GX/dhOzapfJZUPkveLODXfYSMAKqqcsf7PoWuasxkE5zXeBYoCve+8CQD8XHueN+nuPLcLqbScVRVxXZs3h47ga7qOE4BRfEuFNaA5Lab/aCEhEUPXibyeMUvcnhzCPR6GFsvF6HGh8QxHkdYc70dfGeDPqfcB5/plbEV3cttv1B66YvFArWCUvScGiy70asRMGajKQatFRU8uG8fo+k0taEQx6anS0y5AmxbuZLu9nZeHRlBV1WWd3QQ1HU2LFtG1Ocj6vPhAqqicE93N2vmz2fjihX4NY3lHR3c+fzz2I5D3rJKMvuBRIIdhw+zrbeXq+bM4dHVq9FUlYNDQwwkErhA3rLYMzoKZ5+Nu2KFAPPBQWHfJyfFkv3oUUG4ra0CBn/7W3Gad11BuEuXipz+llvKcuRHHxVE/J3vCJs+e7YA+zfeEKq7rw9uuAEeeURA/COPCFJ++WXRrzc2Cr29fj2Ka6Oq0qLb1yeAuciI9/YKiK+tFcZ8eFiI/L4+8cULBgVk27a8tWPH5GWOjYlav+gUv3y5MPlbt5YN8H0+KQ6sXy/nMAwB8lNTcMcd8rZOnSqz9i54PeeuXEzPnysu70X5vGkJoMYVcL14oeznUgbhfp+cqG9Atld6C8y4x6qf1VKupts2HO0vy+qBUuRhkWE5NQL5AhoqeiSC5vPRcOmlZCYmqL/4YjpWr0YLhYi0tnLeZz5DZmKC9OCgSNpra9GCQVTDoP6ii3j7P/9nGi6+GCubpZBMlvrTJ19/nczICHokgh4IkDx1ilfuvRe7UMBMpchOTlI1bx5aIIBdKJCbmUHVNKJtbZz/+c+j+/2orotSdHZ/7p+EEa+ul9+r6+UzMYyyG3wuKwx70Rn+7PnSp66qEvG2+DKY854z3eLf7SbvOpLh/tw/CUgv7rvrvwpL/+7t6SShmhZwHSaOHSQ+cgQzm6KQiTP+Ti+h6lZCNS2l5yaPH0LVdAqZuADsfArXcbByKVoXXokvWAGug2ObTPSVxzMzMyUZvqIoJYZ+4tgBHCtP/dmdROpnl+TzE8cOovuCWFYepbkVxe8XOfyRt3DjMyiGIQx4OimseDAICsLMt7bLn83UOPauH0M2jdI2Czcxg6LpKB1zcDMZAe+6gbr0vcK0hyI4Pb9A0Q0IR1A7zkKpqfWc5J8WSX1iBrIZ3EIetW0WaiZHW1sXPT33cuTI06TTEyXgHIk0s2vXOgqFJG1tS9D1AK7rsGLFPdxww07a25dhWVmeffZWwuF6otEGYrFj7Nq1HsexsKwcBU963dra6THrDnv3buHb374AXQ+xevVjxOMDuK5zWkFgHMvKsGvXzRQKSRTdTz3SX16PgPUTSI/5KeDLCPg2EOB9HwLERxETOhcB6x68YCNwFQLMdyAy+o8jhnd+RDrfiJjWvYEw9rcAYe8cIUQq3w90A5rt0Lu9l/bl7ejeeqP3gV4aFjaQHEky3TeNqqtEmiK4totjOowfHidQFSA9kaayvZKac2pwTZeerSK3z8fzZ4yp6jKXJAYSPHPTMySHkqx+dDWarqFoCsvuWiZu9V2tmCmT1EiKSFOEZ256htixGLZlc2/Pvew4vIOtPVupC9Vxb8+9NEYaGUuPsXnPZkaSI4R9YW5fejtDiSEs1yJZSLKtdxs7Du+gP95Pf6Kfm3fdTFtFG09d/xSbVmyiMdLIYHKQtTvX8s7UO4BI6tftXsep+ClqQjUcnT7KzbtuBiBlpkr7XtB4Aaqicm7NbJlusyOQOiYxcBO9Aq5XvwmXPCwEQKARzrsLmq6C3Jiw7q4pLPDMYQHXtV0QmiVKRqNSetWLwFzVpRhQ2ynSejsrUvr33C4gPjss+fGhNuh+ChbcA/5aWPDXoHpuCo7tsd5xSs7wlXOEZTbTMPaKqC5xPdM5Q6Tndt7LVLeFTX+3k7yqn+Yi761jqubKuHZe1o+W19+eGvYkbAiQrjpLjrdS0m4J0L1FzOKsnEjt0yNSyHBseT0vrhP2v/g6Z44JmaTqsg59ebt3AXSkZWDFfbJv7Kisg5sXw2eOyLr3+bUyppmW92eEpBjQslyi9eLHMfLjtLRE2bDhBQYGEmQyJt/61rWcfXY1+bxFPJ5n27Zenn76CKGQQaFgc/DgEA0NYUZGUpimzcaN3fz4x2tYtKiJkZEUgYBOc3OEdet2MzKSZHw8TUtLFNt2OHEixsREGteFxsYId975HNmsxRtv3ITfr3uO9TLXjoykiER8uApnMuoK8rthyDpgaKx8XXdsKeoX1xKRkOxTGRGQ3t5UHsdxZA3yp9sfLZVX/oiff3/6hf8Nb+9m198Ntt/Npp/+/LZtvaXIt9938/k0Nm1aUYqlOHBgqCTb6e7ukN54zZvgejfLZJYeEcON1CBc+S0B5y/cJEx89TxInJCJNzXg9QStE6MSK3tm3Jtry6RbBOVd97xLanSPVFkjLTLeJbfBxGtSKbXSOLbJD17ZxX9c/AFaqxpQFIXH9/0ThmZ4FW+b2nAVtZFqdFUnnktxbv0sXNfl/l98HxSFgOFnJpvAdh0iviCKopDKp1FQMG2LWCZB3jaZySYJGgF+O3ackcQkC5rn8r0DP0FRFIKGn/pINUEjwPZf/j3VwShjqSl8ehBXMYT1Lka9aXXyePJ+qPgEBBdDdj/YUwLGrQmoucMD94qw5q7lgZ6AyN/dtMjj7RkIdoLe5PXErwB7Avm3tSCzV1h4JyUsvgtYMemnV0OgiKHevR5LvmXvXizXZVtvLzsOH+benh4c1yXq89EcjbK0rQ3bdXEch9pQiHNqaqgKBslaFhPpNJbjMLu6msevu46IruN4Y3e2ttIfj7POi50rmtWtmT+fv16xgtaKCizX5cDgII3hMI2RiLjK53J0NzVBIiHO8mvXCkC//nqhl2+/XZCyYQhQnJwsU9u9vYJk//zPBTH/1V8Jws1kZF9VFWDf2+u5pbviIjdrlozx6qtlEJr3WICuLkHGti1jPv00qmuTSLhMT0uNYM4cT1E+V8B3PC4sus8n4PyuuwRUK4q8nKVLReGvaWWQ/vWvy0uyLAH53d1SK9i4EXbulLqDrgvwv/9+GXtyUsa77DLpHjAMj5XvdiCXR7FskaQl02UmXVXL0S0+ndK0n0jJ55EviFSumNXuulJxj3rSQ8ctZ7z7jPLn5SK/tzXK+JZddpfPmxIJUywUqCq2pmCm0wC0XXEF1fPmMfHaa+iBAIrrMnX4MMGGBhouuohATQ2NXV0YFRWl/vX2q67i0k2bQFHITk3hr6zEtW0KiQSBujoyo6PgOCiahhEKcd5nPoPu96P5/aWWjGBdHZrfjx4IkDh5konXXydQI7JQV1Vxi4D72hvkDZaA9D8KY26acK23TzBcBujX3iBqg3hMPsOaevjgp2Tb6o+V9zGMM4/RdDGpu+bj4mR/+nOq9i+3V9ag4J7Rsx6qbj5N+n4IXOcMRh2X04C39E0GKhooZCXKzbZMNN1H/Vw5JlTVVAL+E30HwXVLz9Wf3UU+OYXuC2EEIqU++vqzu7AKWXSf9zdjmqirPoj2l3eits/GtSzcQh6iFRINNzQgPeyrP4Qyf5HHmCfLoPz8C1AqqnCGBlAvuFjGSEt/u7PvVygVlRAMol77EfmeVBU3lZQ4PwWU1nacnl9Idvzxd3B+8SxoOnq4At01WLFiE9df/xQVFRL/5vNFqKxs5+qrvw7A4OB+gsFqFEVF10NUVraza9c6XNfh8su3kE5PoGl+EolBLr98K7oeIJ8XBldVdebMWcmKFfegKDrd3XKucLie4eFDzMycxLLyrFr1MAsXfpK2ti4SiWFWrnwQny+CpercoiicjwBoC2HWO4EhhBXfhrDiLsLKX4UA8lsRlvwtpCc9gwDwZuBhxFV+OwLqiyy9gkS/veyNWTyXi5ja9SLGdQ1IAeHXPo2V21fSvrydX3/11xTSBVY/shpfxEd6LE24Psyztz5LIVHAylkYIYNIc4Td63Zjpk3iA3ESAwkKmQLdm7q5YecNhBvDXPuta1lwwwIUTcHO2fgiPvY/tJ/DOw6TGEwImz+awspY1J5TKyA/oBNpjjDrslmkRlMcefoIPff2oDoqm1ZsYs38NWxcsZHJzCSbVmzCcZ0SMB9JjdAf7+fBfQ/SVtGGX/MT9UXZsGwDa+avoautiy17t5TAf3dHN7MqZ6EoSmn7tt5tOK5zRpHAdu3SOeL5OFv3bi3tO5ObwXEdVNdCsdLCjgfqy3nrL68T13cXT+7eDxXnSj96/XL5tsyEgNv6JdL3numH+mUQe02Ik4pzxRU+Mldk73ZW9vNVC3jPjkJ+Qh6XZPNbpRde84BvZK7I4l1HJOmOKQC6yLzHT3gy+QpovERy1+2cgPDUcBmcF2XxkVYB0xWzpQ+8YrYAwcqzZJ0IMl7RmM7Ol8dwbRlXM+T3fEIAvZUtx7llRkW9aWUERJdk7SMyBxdVo6lB2faLdXLe9Ii8z3lrBKibKdlWjD0uJORxsF6Av6KWVaHpEVknv3izGNrNHJMs+JblcGALdjbO9u29XHZZB+3tFQSDBtms6eWsqzQ2hrn77mWcOnUL9fVhYrEsjY3hkvTdth3mzKmmu7uDQECnvj6Erqs0NUXZsGEZgYDOBRc0sn17L7bt0tQUpbo6wL59A6RSBbZtW0kwKNL6Ikl3ww0LGRsTOb2uq1i2ixvwCaMe8EnRv63Rc8odkWu3aXnXclt8c4oKPNMqt9qlsvIdntPxL/Pf/53f/lipvPrH/PyvetF/uv2P3X4fu/5usP1uNv3dzwcCv59tl33LpnTnnFNDR0dl6bhg0BDAb+XKE9zBrSKb/+xxqL9IJu/icwe2SNX3wBaJdWvqPK0naIuw50d2yLbmLqkc+6JSTb3yO55ZSUGqtld+W+LfXpTqNNF2eOVr4krv2nBgK6qV4Y73fxpNVfnq899lJDHB+u6PMZKY4G+fe4JxL9v9taEjjCQm+OZLP2IyPYOmqixonstkKsZ9L/7nUu+65TpMZxIMxMcZjI+z9UXpXXddl+HEBEHDzwUt5zKRmmb5rAu48/2fRlEU0oUc39j7f+O6Ll9Y8XFi2SQLmuaiYKFYU8J4N9wvwHz8FrCHRfJu9Yt0XW8QoI4CRhtMPyCydmvcYzsVGLvdy2I3ZF81Ik7y2YNiNpfplYKA3iHy+uwhAfXGLG+/QzJmaIkA+dF1YB5DVxU2rVjBJxcu5OFVqzBUla9ddRX/8cIL+fqqVbiIXDZdKDCQSHDHc8+RtSwKto3tuuJCr+uEfT72Dw6SsyxURaEmFEJVFB5etYpPLlxIyDC4Y+lSpjIZVnR04Nc0Hrn6amZXVUkxwHXpbG2lo6qKsVSKdbt2kTFNNNNEicfLdPO99wpibWsTCXtra5nO3rxZmPRwWFj4o0fLYP/ccwUcvfqqoGGfT5DthRcKzT08LCZ0yaQ0ky9bJuj69MzRfF7OUZTiP/UUtmowPKzw5S9LHSCdllMePy41gXRaVP7HjslwmiZy96NHZeiPflTk7UVJfFGhf+KEsPHF54rFgPZ2Ydn7+mTb5KT0uqfTsv+xY8LOnzoltQq/4YozrOYVJyojArK9PyvO7iiDeNcVYG8Ysr+hl/rQS3FwlRExsssXykZ3Ab/sUzSlyxekuBHwe5nxxfMpEgVXlM3VVYOh49g22fFx3nzsMbKTk+jhMA0XXYRr2+RmZqhbuBA9FMJMpymkUnRcfTWB6mpcx6HuggvIzcxIPns+T0V7OygKE6++ip3LYUSj1F9yCSgKruPw2+9+l2B9vUTNqSpGRUVJ6hmoqSn10Vefcw7ZiQneePRR3EIepbYR/vwLIoF3nDOBdHUdBIJQ1wyf/iIEQ8Kgf/wmAeq2JSZ2Ox73HNT90itf0wCfWCeS+IlRMb4rPR6BbLqcAd/QUn4uk5Jx55wnzvKf/iIoCrZlogfCpZ51RdXOlL4rKoY/Iox6qPJfSONR1DP63Md+txdFM/CFq2j1euLr5i4+bX8wwlW0LLgCX7CCYFUTqu5j5PAe0lMDNJy7DF+oklB1i0xjyYTI2UHk7emULNJ1HVJJ7GefRmlqEfl6JuOZI1WiVFTiHOgRxl4XdYMSiYiz/PQE+Hy4ibhnavcLlEgFxGPYO5+C2BTu9KT8U/j8qAsvRl31H3BVDXdoAPWK1WJkt/MpVMehquosZs1aga77WbLkVtLpcX7+8y9iWTl8vgiNjRfy85/fwszMSSKRejTNz5VX3o+m+bDtAq2tXaiqTkVFO+PjbxKPn2LPni+TSo1iGCEqKtoIBmsZHNxPdfVZHvBfT1vbUubP/xijo78B4JprHkPTgjQ1LUJRFPL5BBouDwNvI2DbQUzq1nv3TyFg/WXvX3sW4jq/HQHg6xGmfsB7nEYk8uOIPD5AWT4/4T33DuIY34+w+FchJnQjlDPgR5HCwUmfji/qI9oS5eqvX43ruOz+wm7ip+J0LO/gwDcOsOTWJai6ysirI8QH4qRGUiWg3dHdwYlfnOCFDS9QNauKitYKBnoHiB2P8eytz4rpnAqKpnDNY9fwyZ9/ko4VHai6iqIrGGGDYsLS1DtT7Fy7k9jxGG1L2/ir43/FqodXofpV6kJ1/M37/oZZFbPo7uhmID7Aj377Izau2Ph7gXnOyhE2wpxbey4Pr3oYXdFL4H/Tik1kzSyqopI1s2zsljHuWn4XmqKV9rtnxT3oil4C/5X+ytJzdy2/i6pAFXkrj+nK9Zbz7xZ399ouMYwr5rKbMyJdz3jA1RQlB9lReOPL4iA/sV8Y+EC9zG2hVshPQ+q4sOipY4ArJEltp7jT2xnpfa9fJuq9+Rs9dn6jyOkLMRnb9dSdRXm8onvKPtVjySMC5vMJj3hQZf6DM3vRi8erPmHfHUuk8Y4l5nJ2QchQzqCrAAEAAElEQVSi4n7JARnXV1EeQzXkcfyE91y0fM6ujTB71WnZ6p77Q/Fxelz2vfwxUYo2dwnYP319qhqiEjUiAsaLfex6UKLgWpaLqXLrZVJ8eN/DokBt7iqD+INb5fUe2ibFjcUb8BXG2L59JR/60HsYGEhw4407GR1Nk0wWWLduF7mcxdy5tRiGyr59A2SzJh0dVSxfLkA9GDRIpQo4jks2a3HHHc+RShVwXZfm5ijHj8eYns7y6KOr0XUV23a45ZZnaW6OEAjoTE9nqa8PUVcX8hS5vYCw7Q0NYQ4eHMK2HQHe8ZRc1w0dhsbl76ajWa7dp0vgNU1YdtM6c3uFV7B9t/ruT7c/seL/lm+/j11/twP8u9n0/97z7775fDrRqJ9AwGDevN9znKKdxopvlAlo/NVyZmbJtG6jTOSLN0gWu2qcxp5vErOS4u+5mFQiiy6fyX54/vOQOA644gj6q9vg7R8Kyx6sh6VfgVADoELn3WhWFkVR+N6Bn3rO8j9FVdXTHv8Ex3WoDkZL275/6GcYmsHSWRfw/UM/Y0HzXCZSMbb98r8wkphkPDXt7V92q9dUlbPr2umPjfJ3zz1BQ6SG+mgtsWyCv33uCSZSMT5+0Som0zM89Ksf0hCpwacZmI6C62Yg95oA7altkNwh98ZsmNoqj61x6Tu3hsrbzAFh1kdvKgN9e1QeW/0CvsfWibTeHJCYN3tYHOxxwWgSUG+elP2MJsCB0bVgjwion9qG4xQ4q6qKx665BoB1u3Yxlc3yyOrVjKXTrN+1i2ShQH04zJzqah5atQrHdXltdJT+eJy1O3dydGqKgK7TFImwfvduTsRiTGYyEhWn60xmMkR8PiYzGRY1NZE2TYZTKQxN43gsxvpdu7AdB01R8KkqdaEQl3V0EDEMVJ8Pt7JS6OY1a4SytqwzgbxliXHdjh1yD7JQL24bGBCkW0TCkYgg25tvFl16Z6eMd/75wuD39MjxRZZ/YKAM4IvnME1YvBjHdkun2bpV2PPi73V1Z95XVpZf9rZtsm8gIBFyp29XFJHD79ghtYmuLsE2uVx5++nj1dfLx/Du7Z2dEIsruMU4FtsuO+MVTHnsOF5WuMeuG4ZUxh237C5flLablidJVGWfue2ei7y33+mFAU0T9OA6Mk48JVX7Oa2w4GyJlNFUJLHI4e0nn2Tol7/ECIfBtjHTaV7esgU7myUXi4Hrkh0fJ9XfT2Z4mINf+YoY0eXz6H4/gZoapt54g9TAAC9/9asEamrIjI4SrK0l7bnKZ8fHOecTnwDXJXnqFAe/8hWyExNogQCpgQEObt5MbnKSRbfdhqJpvP3kk/T//OeMv/6GZIFPjML//U2YHBPA/KkvCth2Xe/z8j5Py5Rot0BItqWT4AvAmrXyOf7z96GqTood//AYfOPL8Pw/e4tORWLjdENAezYN//BNuXdsOXcg5H3mp8kObYt8cgJfIEqo2LPuOhihKloWXIlmBEhPD2PmU1j5LK5jYeXSGMFKWheuxBeqlH72fJbm89/HOe/9TzSddxkArieZd2wT32n7O5YlTDYKhWycTGwE17FpOu8ysjOjuLYpL62QAdctOcajqJCMe27yKRRVA00Xd/dkAqf/BJh5kcfPTIHhQ1v1QRTDhzNwAiwTN5UUkzufXwoOrR2eW/wV4Ni4ifgZ0nk3lRAwv+vHkE5BJoV2zZ+VetzdI29hKy6OYxGLnWDPns2oqk4iMUhrayep1Cg7d64llRqhtbWTeLzfM6f7MpnMJLncDKaZZvfudcRifSQSA4TD9fT03Ou50G/DdR3AxecL0dKyGNe12bt3izfeKXbvXkdDw0LS6TF27lzLzEwfiqKhqgap1Ch2IcO467IZAdsKYlK3w7tfjjjNdyFSdsXbL3DafsX+9aC3fYN3rwMHKbP093r7b0OAeqd3TDPSO9+NmN4tRxj9buDTBYuZ4zM8e8uzzJyawQgZXL7lchKDCVzXZeX2lai6yu71u0t96O3LxVCu6ChfPaea5XcuB0Rm33hhI5HmCKseWgXAz//q58SOxejv6afxgkZmjs8wdHAIX8jH9LFpdn5+J/FTUhAoMvLxU3GeveVZ+VvGJZFP8Fzfc6zfvR6A9sp22ivamVUxi29f+22CWrAEwDet2IRP82G5Fp/72edo+VoLk5lJ6kP1fPOab3JW1VmEfWH6Z/p5Y+wN5lTP4fHrHufcmnMxNIOOig4eXf0ow8lhXNwS+H/mnWcIG2Eev+5x5lTNAWAwMch0ekL+H6JnC5N+Ru/5RjGS635KJOwH1wpDrqjSx16/XBzkqxZAdgxeuUVY98icMns/9LSw6CBg/eX15edqu8BKw+Q+CDTBpY/I9p6PSvGgtqssky+aHTsFz0ne60X3Vwno1gyPfXckyg1FWOjKs2QM1/X64BVZl6QGITstjLqCB8qj3mO1zNgrCNFThD1F4zq7ID/JATm26hxPrdkmQDzSJmvThotFDdCwSFowRw8I0NYCZRDfdY88dm0B6YpyZjsnSCFg+CUxrzvnz+DXd4ry9MpvearRe8pr4uykt+adlNfVJmRaMllg27be0to+kchx661LCAR0Eok8X/jCbpqaIgSDBqOjKdav30UyKYA9ENDJ5y3CYYNvfGM1oZDBG2+M4bouS5a0EQoZ9PfHWbduF47j8tBDq5g9u4pczuLv/u7XnDoVJ5UqcMMNC3jkkdW4rktXVxvj42nq68PYpiMFf58h64J8QVrrihGxmlqWwLc3yffSPwLTiTOl8QpSwG9vkqK945Zb7/6d3/4E3P8N3/4Qu14E239YAv/ffv4Pn+9dx9kFqbJGWsTsQw/JtmCDTHqOCZFmuNSrajoFYcUvf0QkS8khqVoW89tXPi6T699fAAe3QLBWJtCikV16lJL75+INMvk1LRbzuh9cLAUDpwDRWdihBmKZOJ/t+hCr5i3lc10fQlO0dz1WiWWTpW2fX/JnqIpCY7SGzy35UAnAF0H6gqa5/2J/QzPIFHKl/b7rRc99d/9PSsWAlsr6M8YxHYt4dgZFb5JcdYDajRBdA7X3iOy99m55HOwSwJ5+Dmo3nLbt3ncB/SLw3wrOjPw+/aCAcPTy804Spu4TUF8sBEzdJ4x9cbzwSqi9C03VOTEzw7pdu3Bcly2XX85API7lumzv7eXWJUvwaxo9/f2ciMVwXRdFUVjY0MBgIsEdS5dS4UmOh5NJnuvrI2QYNIbDOK5L1rI4Houhqypdra1oisJIMknf9DS2lwG/tK2N4WSSv/r5z8lYFgrwiYULqQuHUSwLJRoVDfq3vy2GdIYBd98tQH7jRgGJRWB/991edmilZLuvWSPI93QkXDSjKyLllSvl+GBQHtfXi8a9iIaLKNvnk/HuuUfQ9qFDGBTYuNFlzRpJrauooPT75GT5fuNGGfL0+kN1tbzUcFj2K74dXS8/vueechzqgQPSHVDcLx6XtzsxUR739PNcdRXcdruKbSuUFlpFAJ71FkSqKjL5YpXcNCll1xu6LFqK4N2nizQ+VxAw3jcgF2LVA++pTBnAFyv1qioX+SKrr2nSA1csAtg2iqoyf+1auh96CDuX4+Df/A3ZyUlqFy7k8OOP44tGsbNZ3n7ySQI1NRx+4gn6f/5z3n7yScxUikBNDW9///tnPvf971N7wQW4rsvhxx8v7R9pbcVMp0ug/LdPPAGn7XP48cfRQyH0UIj5a9cKu9/ULO/fHxD2+/kfy3ucHoejb5V799Nx+UwVFfI5L5fdFYf46Ql53h8Q5jwxI5L3T30RHvwHuOEvwSwIyE8n4ad/D1Pj5cz4mWkxsjv7fDGoK5oPHHtLlCAu6IEow4d/gZlN4LoO6elhj8FSGfvdXnR/AFU10Hx+7EIexzGx8xlcwLFMcB30QAirkGX8nV6sQtbLanZRdB+KogIujm3hWAWy8XFhxVUVM5shUFGPVZCiQPOCK/CFqylk4oy904vtmuIYP38RiqaVQLybSuDOCCuuVNZAZSVqawcYPtSl75MChmXiDA8AoLbPln729tklkztSSTAMiYarrAZVO5Olr6lFnTUH56U9pag5dAN3egqn/wRqawfaTXeArmFZ+TNc3ltbu5g79yp6e7eVAPicOStpbe1k794tpf0CgcoSSC+C8XR6gu7ujaV4OUVRcV0Xx7EBl0IhzbJlG5g796rSOU0zdcY4mmagaQa9vduwNYOtp7nKawjwXoMAbg1h4QcRtvw40oc+Cdzh7XcPAtT7gGPeMV/2jlmGAP9Wb7w1iBlStXfM77xxTyFS+82UgXsKcHM2e7fs5fCOw6RGUsT747yw4QUqWitwHRcjZJR61/c9uO8MQ7mio3z7snYqZ1eiqIoAfVUlMZBg9/rdpMfStHa20nNvD6G6EPl4nr1b9hKuD5NP5Evj9GztobWzlflr5tPa1Vo6p2u4nIidYPOezSxvX872ldtRFZU5VXNY2r6Uk/GT3PTMTRyZOsKc6jl8+9pv0xRuImNmCGiBEpivC9eRKqQYTAzS09+D5Vi0V7VTH6onkU/QN93Hr079iqyVRVM1prPT1IXqOBE7wa9P/Zrx9DjPn3ielJliPD1OwSmQKqQIGSFqIw24jg2JIx47flzk6Yu/KesiKyPS9SIIzwxJv7aiwOxPiUu8r0oA/kXbIdQhz7+8rtyvPn+jrNsOb5UxchMC+lW/APf65XKuqUNyTOsHpcdd92TixVuxR70IuFWtzKCrfvEwUtSyzL0odY/3yfmL60vHEol80yUiu585IfNbqEEex0/ImBWzZNpzbBnXdeW4xsVeNJwhYF3VpA/eTJ3JfLuOMOanM+fBehg5IPv/Yp0w+ZVz5LUO94ok3sycRlxt8tQB/XLsCzcJ+dTUKarS5KAQUhUdohoNt0rEXOUciUpWFAp5k8nJDBUVfjZsWFZa2zc1RdB1lS98YTcAW7ZczvBwkvr6MAMDcbZuvYJIxIfjuOi6ytBQgrVrd9LXFyOVKrB4cQsTExluuukZMhmLgYEES5e2oSgKU1NZ0mmR43d2tjI4mCCdNlm/fjf9/XEOHRomGNTo7u5g9uxKdEOVFrrTI9+KbHkxEjbgF6f5ooLv7A6JdQv6yxL7XEFk88VEGtVbT/zJoA6lKA/6ow8U56xaZF7+vTfXdfv/X76uf9VbW1ubOzg4+K/9Mv6n3AoFi3zexu/X/2gg/seep1AQN3qfT5dJNTsluaG+SjHc8Fd5WewJmdysPITqEECQFgmSLwyhejHu+NlHYe4HYeV3ZSJVNQHnB7bA4rvEadOIiCzq4FZh76vmlid5KyvFgvSIgPtIm+zXtRGzYg5ZV0VXVSzHwVB1JpOT1EZrsR0b23Hw6Qa2Y2M6thT/dD8uLlZxQaoojCQn+e7+n/C5JR+itaKBgm3iAoaqoas6pmORtwpMpGJ8/9DP+GzXh2iO1jKanOK7B37C55f8Ga2VDfTPjPLkgZ/y+SV/RltlA3krTaXfh2Ieh6ntIpdXPfbTmhSzOCcOWpMYzE1tg4bt0n+OCuZxAd6194AxR1znp7ZA7SbQ6kV2X7tJIt+whV2f2gIND0uvuzkg0vviGFqdd8w9YJwFboaEFeXzO59heXs7y9vb2dbby93d3bR4UXDj6TRbe3q4felSJtJp5lRXkzFNzq2tJVUoENR1XGD/4CBt0SiN0SiGqpIxTe564QU2LFtGW0UF45kMlX4/EZ+PX586RX04zIP79rFpxQpmVVYykkqRNU1mV1WhqWpJ8hh1HJSjR1G2bxcA7fcLgB4bE5QcjwuDHo1KaPnBg9Kn3toqILGYOdrXJ2D9nnukCHDsWPnxWWfJd+K6olEfGBCDu7ExAe933SVuc8Gg7KdpYnhXUwM+HxlCmBYYhlIiXXW9HDdfJLlzORkim5V+dxCJu+sKOPf5ym3iqir7HTggXQHhsLTnDwyUGfhsVsZTFEpmrX6/nLeYpHPiBJw3z8Zn5qTiPafNk/670ptm6AI6bUcy3M/p8DwAvBdimvKiUhmRwp3ep1Y0BUqmJRKuYMk5zm73/BS8vnpVkfFVVcYzvAu91x9fUFwmXnmF2oULeXnLFvp//nM6rr6ahevW4ViW9KOHQuSmpsiOjRFqbOTwE09w/mc/S6C+Hl84THJggMzoaOm5+TfeSLCuDtXnIz00xOHHH2f+jTcSaWvDTKfJjo/z9pNPMv/znyfc0kJ6ZITDjz/OghtvJNLeTnp8nEB1NYqioBk66uQIyjP/CKuuh6pakUq886Yw5/Fpka1rWrnXs5CHp74Hqz4qsvnkjGx79in4yGcFwGuafFnH3xa5fWwC2ufKl/fyXujvk+x4x4YTR8RB/j2LBJwWCsLC+wNgFrCraxl66wXiI0eobJ5Hy8KVmNk4E8cOUn92F0awQpho18G2Cui+kPwNKCo4NpmZUYxgBF+wgqE3y+O0LryS9PRIKbMdYOx3PTTO60YxfCiuK2oEoJCKMXXiFRrfswJNl7+ToTefJz5yhKqW82idfwWK40rbwswUzt4X0a75sLi9hyM4+36F2n05bjIhknkUKTepCoqq4ZoFnBd2oS5/H0pVLfbPduAefg1l/iK0az8irvWtHeKbsPMplCK4790jTHwogvPsT6WAUFktZnjF8664AruqklwhQTo9Tk/PVrq776a6+mzAZWbmOHv3bmXFik2Ew41omo94vJ+enq2sWLERXQ9hmhnv8SaqquZgWVny+SShUG3JpNSysgwNHaSiop1UaoSGhgX4/RXEYsfp6dnKqlUPk8lMsHfvFlasuIeqKpmbZmaOE6g6i4wvQlxRiCI96hrS674fAdytwM0IW74GkdTrwAzSj34QYc/XI/FxD56277eRXnaQXvhOuaqTA2IIwC/u+xXgfO/3xxHpfEc6T+JYjJ6tPax+dDW71+/m8I7DzF8zn+u+cx0uLrG+GL3belmxaQXVc6txXZeZvhn2bt3Lik0rCDeFcW0XX4UP13JJjUiGe3Gc937lvdgFm8RgguaLm0mPp0u/J4eTpbGr5lTh2i6KphDrk9e08smVrN29lh2Hd7Bm/hq+fe232T+4n8WtiwloAW565iZ++OYPWTN/DU984AmOTh1lW+82NizbwDk156AqKrZrl+73DezjwsYL0VUdQzPQVR3btZlMTxLQA2iqRtgIM5mepCZUAwo4jkMsF6MuVEfvQC/HY8e5Ys4VNEeaURWVsOKgZkdFzh5ogPBsYapt05OQ58CMi9lc7DUB2VZSwLlRAbHXIdgs5nWv3iKGdMEmGPgnmHhJMtwdS9ZUZqJcmJ15DYIt8PZ2iYHTPYmzlRSjt1CrAPfizbHLPe5Fh3jXltfoOrI9NeKBd+8CpSgCyiNNwmgrikjqfRXyvuyCl/Pu3QrJcj95ISlsvevNWa4j51M071xDAto1v7R2ZkYF+CdOyVqza5MA/+fXCpCftwZWfgeev1EIo2JL57w1InnXA8LQ48Avb4HGS+GcD3t98hMQqJLe9uIxS78ia9WhHmHil35FiiwVZ8l2M1mKosvGY8xYtWi6QjBoYFkO09NZ6upC9PT0c/LkDEuXtjE2lmbJkjYMQyWZLHDnnc9z553LGBxM0N5eQVNTlJMnZ5iYSDN3bjX19WFuvnkXO3YcZs2a+Tz22Gocx2VgIMG2bb1s2LCMtrYKTyofZt268r5PPHEdJ0/G2bJlLxs2LGPhgnoMTUHJFQS0dzTLtf+dUwLk66sFnDuuXOeLve8dzbKm6BsQIH+s/8z9s3kpBnQ0l7Pbi4Z1qvJvLhZOUZQh13Xbfu9zfyxwVxRlGVIwvQzxLPlDN9d13T/cIP2/8e3fEnD//+NW7KXfsmUvmzat4D3vqcVHHmJHyhVFPQAv/CVcukGyO0NNYkR3YIuw4+EWz7xuWPqFOjeKBCraBpVz5eKDI5Ore6ahHnYejvwIRvbBknvAzMrEa2Vk4ksNSeXytInXXPkkM2aBVD5DyBfAp+lYjkPA8PPG8DssaDobx3V4a7SPxkgtAcOgOliBCySyCapDVdiuw0w2QdQfxqcZ2K6DAgzHJxlPT7OgaS4APs1AUSBdyPHi0YP8dvQ4d7z/04BLwbLImTlqwpU4nlv9I3v/kdvf93F8qo1ijYiZnDFLetQz+yAwH5SIXLziO6ByjXw2LmBPwuTfCJMeXgl6G4zeDg1fEbCP9y/pFsR0DsDNIQJJS54vIjc3L88pUelxd+KgVkkBwZkh5TRwLBYjoOts3rOHp48c4anrr2d5Rwe6opAxTXK2TVDXCejy+R4cGmJZezuJfJ7RVIptvb18aflyIj4fWctiy969bFi2jENDQ3z4/PPxaRoT6TTpfJ6za2uxXJeX+vv56I9+xFPXX09HZSX98ThdbW34NY1jU1OMptMs7+ggmsuhrF0rzd/Llwt437RJWPE775TH4bCwjkXkqusCrEMhQcP5vKDeykoB9h0d4hBXjDTZtw8WLJD9DcNjm42ytNxjFUX2nBbn+q4ueazrpN0Qli2f9/790l4fDHopaEoZq6qqxMxfeil8+MNSb3Ac6YePRiXvPZMpv4VCQYB6U5O8RcuSWkJlpXy10WjZZ6+nR2oLIyPiWF8E9oUCtDTYqMdOSgW9MiIyeb+vfKEtZqkqXi97Mb/d75OL7ByPxUikZIz8aRfzYjRMwJA4uIoIVEXLYybTMo7fEGO64rj9I9DWBKaJGfSRehfwXnDjjYTb2nBtmSdUXZdsdccpeQ/Ypolr28SOHqX6nHPQg0EUTcO1bRRFwfGy2FWfD9eysC0LK5slUFUlrvNe4Q6QHvF8nqk33iDU3Eywvh7VMLCzWfyhAOoPHhEzusWXwZ//lYBux/b6NxXpOzdNAd9FEG+ZkElCuFI+i+kpKGTFeG56XFzjMykB34oi8tKpMWH0P/IZkcRPjUFsUsZUVWHY22VOIpuR3vpgCFuBQi7FRJ8AdQHgz5eB/IIr5DOxLBzbRPP5Pdyu4jhO+XNQNcxMnIljB2ScUGVJUVD8LhzHlmx218Yu5GUsRSMzPUwhEyNU3YqVTxOsbMDMp5nsOyTFA18I1bQhmcBNJcQgDlBQsHf/uATC1ZUfEJf53j2o3ZdDOCqAe9n7cAdO4g6cRLvuetz4NM7eF0v7oOnyeYYjolAwfBI7dxq4d1NJ8PtR/EGwLexd5fPa13wAyzVxHItcboZIpIlEYpCXXrqfK6+8H8MIoWl+Ly1EB1xP/o53r5BOj+L3VzI29gaNjRdgGALoX3xxI1dcsRWfL1xKNFFVjVjsBPv3P8RVVz2Iqqq4LgwNHaC5+RJ03U8sdpze3u2sXLkdJdJIUlGJIzJ1F2HEt3mzfh6RsfchUve7gHMBG5Fl/iXwQ2An0hM/6N1vRZj4WsTEboN3SZ6DGNAt8M533DvXPUAdYpC3EWjxzl+RyDP8Uj/159cTqAwQ74+zd4sAcj2oY+ZMQjUhjJABCgwdGKL5kmZwQDWkbSY9lsYf9aOHdMy0sLKp0ZQA8ntWUNEu7L2dF5M613Ux06Y4zhsqhVSBt3/8NoP7Bln10Cpy8Rx6QMdMmYQ6QvQl++iP99PV1oVf8xPPxfnSi1/izuV30hBq4JZnb+Gu5Xcxt3ouPf091IfrmUhP/D/s/Xe8XGd97Y+/d5s+c3rTKWou2LJkuaB6jh13bIsEbrBvEu4luYBlggxuWMaSLzbEkmwZY8fYxA1CciEJhoQmy8gNYR0dFddYCBfpqJze50yf2fX3x2fPjAT53vvjhtwUsl+v8zozuzx7T3v2s561PmtxwdwLSJfSZMwMNcEa4oE4rueSMTOMZcd4cO+D3H/Z/QCE9TADqQE29W7i9lW3c2rDqZTsEvuG99GZ6GR+nUzGuJ6L67lM5CZIBBPEAjGiCqieI3nt+VGoW+oD9ThoUYlk+8UWAeSJ0+SDSr8nZnZnrBfAPvuP0LgCjn0bkm/A2ffKuAxN+nE7K+OI/CC8fZ/kvGthkcjnjkHDimp74VZfqt4gINox/XuiPylezl+3iz549mvPrawoLFEEWCv+uT3km2tmZByoBf2JY7Mqnfc8AdyxNhkzGrHqeMYx5TyJuSe3VwbynifPXdufSAjIuMrKw+RbMmmwb7NI2aNtkpSUGRLQv3+LAPx4F+y8GVbf478GVUo3rSIYQWHaVUOUA/s2CRufmCfj1Jdvk7FwqFH6ayMqkxO7bhdz5dpTyZk677yXZGwsy/Ll7ezbN0xTU5QHHtjDhg3dtLXFeOWVEebMiXPvvbtZv34Vra0x/v7v32b37kFuuWUFU1N5Ojtr2LRpFxs2dNPVVYOiwMBAurJu7twaFEVh7dptFYD+2GNXY1kOkYjBkSOzlfH+3Lk1J+337f/1IXQVGaAo8tuUVBr3ZCCfyopZ7YkAfWEn7D8gyTUnjjN+BfjPE7CeL1b3KYP5/yDL/w64/1qvUlGUi4GfApchqR9JxHvkn/ob/Gdc838u/4zl/5TT/ps/3z/hVO85VefMl24QyVLPfRBtFsMN1zwhy32rAHs9LB3ixY9Ix9txocTCoYi86MVPS6edPuZHZxwVSZJrwxl/BBd9VTpZIyzZ76E6OUfykEjqy/L55RuxlCozqyjCuh+aPI6mqJzTfnoFtNeHE4xnp4kHo2g+k1gfrcPDq7Dw2VKOkdQk/zjyHrbr0BSvpT6c4MGffRtN1fxsd4tkPs3rQ+/w38+/WmpCHRtVVaiJJLAdh60v/RXD6Uk+vPhiDMVFcbOIjrUNCq+KjD2yyjeQ2wduHhLXgHW8Wr+uNYpkvrAbPAtQofXLIq8vg3YcUPwJEM+WbYoHTkr+o/pRcWNijqcoMHEzHD1TWHcf4CvAgtpaWqNRNnZ3c+BTn2JVZyembWO7LmPZLAfGx9FVlYxpcsuOHSxpacH1PGKBALFAgNWdnTywZw9N0Shbd+9mdWcn0UCAjy5Zwlgmww3btxMLBJhfX48L7Bsa4ty2No589rP0zJ3LSCbD2S0tuK6L7bosqK9nRUcHjuvi6Drexo3wB38gSLdsyx6JwMMPi0587VoxjFNVGBiAT35SatRDIUHShiHs+OuvixldY2OV+h4dlWLwWEz2KwN105T/x49Le/39cq5QSEC7X/9upov0H5FLOHoUliwRkL13r0+8mvK4v1+A9yOPiNn9TTfJ/qoqjHokIr54s7PyUR09KlHxHR3w2msiEADZL5uVyy2X4B89Km3On19Nyjt8WEB9oSA43Otqg/qEAHHDqErjS6bcjMt1bCDbyvvEo3LDPnRcbsLlWrayfM7QYWhMbu7lc5zYpmH80+1OJuW4eBRV04i2t9N07rnEOjs57/OfJ1BbK6aIIyNMvv46mePHeeVLX8IuFsHzmHzjDZ5Zs4bZd9+l8ayz0Mqg3fOwCwXyExM4xSJaKITnODiWhZ3P4+TzTL7+OtmhIfbfdRfp48dxHQfPcXj1nnvovflm8qOjqLqOoiiowSBo+smu8qoikW+WKW/ydx4X+XogALX18K2HYXxYgGQ4Jox6IS8fXmOrMPCnnCVfkFgCsmk4fghwob4RPvwn8n7NzgjAT9RJbX0xLwA+HJW2p0alX/VZKCNSU4ly8345k11VySdHsM08WiDsT4CoeK6LqmooqiZSbttEVXXal1zmg3aXfHIYM5fC81xGf7ETVfNZNQ+0YAQUDQWINLRXouD0YJhCapJAKMGcsy7FCEbRFB0lEJRottZ2nBd/gqLreLpWkdGrPZfIZELfzorZHMWCPO7bibLgNNSeS/EcG6WmDu2q/4JSW++rOqr3SqW+CSVec0K7l+IOHsP52lbc534MnounKKjd1e2KZqCqOjt23MTXvnYmudw4u3bdw4ED3+a5525BUVSKxSS53BS2XWRwsK8C3FXVYGTkFY4d+xkAnZ2r0PUQ2ew4uh7iAx94CMOIUCpl2L59HanUMUwzSzo9yJw552PbBbLZMSwrx8zMYXbsuKkSDXfgwLfZseMmQGEEYVxG/TvBMv/xbYh8vReJcHsIAd7H/HUl4KvAdqTG/RSkLn0u8CXEaV5BQHsMOB2ZBu7w1w0Cp/rtzkeM7b6KgHYQSb4a0ki0J3hp40uYOZPa+bWseWIN0dYoelgn3hJHC2oM9g1i5SyaFzdTmCrg2i6KKsz4zi/sJDMqWdUv3P4C7/74XeoW1rHmiTXULagjNZBi+59uJz+Z9z00QA/r5CZzuI58FgsuWcBl919GMV0k1hLDylkE4gGUksLC2oV01nSybvs6jiSPEA/Gue/S+whpIcJ6mKc++BSn1p8KwOrO1XQmOunp6kFFJRaIUROsEcCNTHZFA1E6E53cd+l96KrO66OvM5AaYDA9WHGoPzp7lH3D+1jWvozWeCuO61C0i/QN9lG0iySCCUK6iF4VXHCLktdet1hi2Q7cJeZzigqFYTjjVslX930sePdBYd71qDDxkU545dPQdAGc97Ds89qN4iKf6fdr349L/XvDMmn7tc9C3bkw76PV7Pa3tworr0eroN2clg/cLvnRbkVf1RbyzYX9EiwtKOO1ct15WRrvOVUnekWpxruVmXMzK8fH2oSxDyRkfbleXjPkPGUJvlOSbSAgXQvKNzl9HEb3ytjIc6XU8kcfEpB+2eMCtBUF4nOFEAo3y5g1Myiva+kNUrP+4jph/MMNUNMpY9MXrpdrrlkAlzwqEwmpYzLBcPFXBfgbEYnJ8xMlxOF+HKwsjqewdWsfTU1R9u0bZtmydh54YE8lzSkY1Fm+vJ17791dSYZKp0tcdtkCNmzoYWoqz/LlHZXx+ubNvaiqwvR0nqamCHfffSENDRH27RtG15WTSm0DAY1QyKBYtIlEdB577Gra2+NMTeUr+91++2pRxZc9blxXzOVsnyU4pUvK5kxbxgS2I+vOOkVq2aEK2lVV3OjLY4ATI+bKhrYnjid+i6Lifi3GXVGUPmAF0gff43nezL/Qdf2rLv9eGXfTtCkWHXI5kcasX79a2O/Av6zw4UTG/c47e6oxcGb6ZEnQpY9JPub5n5OOys77s44bhCHXwwLKX/2ygHwjIuYcdgn0oDjL150mcvljO2DiDbjwAenQSylx6/RskeiHaqXTTR2XGqbUEWhcLDOtRg15FLKlAjmzQDQQRlNVxjMzdNW1MpKa5Juv/JgbL/hDNEUjaAR4a+Q9zp5zGqqiYLvCtCeCMQxNBumO61RmfDWf/XA8F9M2eXfyOGe2LKhkvquKyj+OvEtTrJ7acJz7f/rXfGL57+G6HjOFFOe0n05Yc1DclIB1NS5/OH4dcMmXzfsTJON/KvXn8Wuh9TFkWOZKPJwaBiVKBaxbR2H6HqmZN3z2DVdYfRAzPKMF9HnIyTS50ZWl9A0bRSpvj5BlHrav5VYUheOpVIUxnxOPkzVNksUiD+zZw/pVqyrfl619fWzo7mYonaY1FmNOPE4iGCRVKjGaybC1r4+NPT0MplL0J5NcMHcuW3p7uX3VKk5paMD0M907EwkW1NWR8tn7sWyWjkSCzb293NHdzULDIB4MCi09OAjnnCMGcqOjAqCTSQHe3/qW5Kb19opV++/+Ljz5JLz7rrDvq1YJDe26VUa9rEcPBoXqjvrywHL0maZJ7NxzzwlT/9WvynZVFcT89NOkRzJcd1OMp5+WGvOvfU12URQ5dGBALs/zBNfZtnjklff/i7+oMvOqKk70ZVV+LidK/c99TtT/qiovt1CQtu66q9rO44/L5fb2ill+JCLnamsDDYd4xPUBp3ky6/3LcrZT58r28j6qAsdGfnX7iYz7L0voXe/kNk/p8mWRv3Tu8iy842A7LpmhQfKjozQsXoyZyRCqr+fVe+4RszhVRTUMUBRcy0ILhXBNk8L0NFowSKiuTt53TcMpFpk+cIC6972P0uysyOTXriXW0cHE669Td9pp2Pk8Vj5PpLkZz/NIvfceoaamk+X2a9cSrKvDMHQMxWeXgn5V2dQYvPADuPY6eZ7LCMBOTsE7b8KicwW0H3sPOhYIM+6cUMNQlo5apl8f4bP2kZj8ZlXdZ/VdyKYEqIfCwuJ7wFA/LFwk23MZnPoGXNvEsU00PYCqBwTcqjKZMfb2y7ScthJF0/Fch0JqikhdK+DhmEVUXcoX5L8iE6Kug2OV0IwgjlXCw8W1LQKRBPnkGEY4jhFOnCTJLzP0nv8aHTOPFoqhuK7MJyanJY6t+2KUukbZVwHFV1J4qoriUZHSqz2XQDiC+9yPBVwnavFUBcV2cEcGqpJ6XSYhvXxOfhyZDF4ug9o1H1wXr1AAs4TbW2XovbFhSE6jnrEEAkFKngjFZ2ePVWTrZdl8T8+dxGKtOI5JPj9VkdJHo83s2HGzL6tfWJG8r1q1nni8jdHRN2hrOweAUilNMJggmx0nHm9H14O+b4Bse+mlO7n44nsIBKIoinxus7NHK+cPN5/FdX6Ne1naPsHJEvatSH2631PRh7i/P4y4y0cQEO/rsrgFYdm7EDl93t/vfqR+8lOcLLs3ELYni5jVDSBO9BsR6X5HpoTruKSOp8iMZGg9u5VSpkS0WfrWob1DNC9uJlQTwrVdCskC0aYonuuRm8zx1Puf4tSrT+Xqv7gau2hTTBWJNEZQFAUrb6GH9aoE/miS7EiW9uXtFJNFjKhBYarArk276N7QTc3cmmqf5EF+Oo/eobN221p+9O6P+Idr/4Hurm5s12b/8H6WtCwhHojTn+xnc+9mNvZspDXaStgI+92aW/kfUAM4nkPOyhHSQxTtIgoC5B3XQVd1RjIjtMXbyJk5AlqAyfwkLdEWBlIDbO3bysMfeBjXE+l81FditATj6JQn4w147QaRuff8AzSukn5icrdI18Ntso/iyTgs+RY0vB9wIXccihNSH2/nYGq3ZL4fuEsc6ruuhfMfgdI0HLwHTr8Zol0SDxfpFDY+0inrtIgAdysrtfXhNsiOCxsdbkS4Q59FN6InMOEIuVNm0hX1BGa+XYie2X4ZHzaf499b9aqzfHlJHRUgr4WqTL1qVJnZ8gSGlROpvZ0XMqhxsbRnxHx2fHNVMq+ocp6RvZJYlOgUkurYczImvejPRTlq5WVMamXlv1MU36ZAQnyfcP0x6jEpCwBp1zFh4k1oPd8vcSjJWHi2n1xgLv0DJSIRg+bmKIqicPRolf0eHk7T3BxF11U2b+7l9ttX09YWIx4PoKoKluViGCqHDycr4/VwWKehIcKnPvVMhTV/4ok1DA2lCIUMGhsjqKpCoWAzMZHh+PE0y5a1V2rqt269rHJrikQMElEdpVASdV5NTO7pmZwfBetV33vTFuA+5MvfgwFR5pUNcT2qkbHhoEwGlEvoDB/T/JYy7r8ucM8D73ied+5v6uL+LS7/HoH7ieB5/fpV7N49yO7dgzz11AeJx4P/T87/K7X0dgGShzEzw5itKwkoEHjnWzD8sgBuRcNUDIpaFE1RsT0PHRfFc7AUHcMt4mkhHM9DVxQsT0FTFFQcPDRcENmgr7gyzBSB3Z/HXH0vpqKj6QFcRcfxFAzPwnIsVCMq6irPI+i6OMU8qhEgWGbgXRdHERZeBUpWEdUIEvA8GQDbNgXFY6SYJZmZ4vzmhRV3bc/zUFwXzwd5RbNIIBhGcxxsTUXzmSq5eqVynG2VUHQD3a8ZdRQFVVMpeSEsW0XVIKAXwE5iKXOwbQVN89C8USyvzS+PtVFUA9uWfs3xVcGa5mHbLprq4mGIEsx1UVUXRdX9+mYPTcljaEVQg1hWEMfT0RQbVXNwLEcG4LaLqutYloqhW+QtFd2wCekKKAq242I5Dnnbpi0m7/NwJsv7v/F1vvV7H+KieXPJWxbfOXiQebV1rOxoZ7pQZE4sRsG2ifqd8bszM4zlclzQ2YnneYxmc2RKJSKBAGnLZDyb5Xe6ulBQUBQwXRfbcQhpOmO5HFFDJxYIoCkqim3h7tqFu3KlTDCYprBlr7wCZ5+NGwqhFotoGzbgbN6Mq6qorgvxOK5tC2B3HFTPQzt6FGd0FHfFClRVBV3HLZVQ9+1DO+ccHEXBVVWIxfDKEmLbrrC5SqmEFw6DbaPu24e9+kI816GY9zC9AIGogmlZRKOKr9pTsF0HxdPRNRXLsVFQKZoO8aiCi4djaRRNh0hYQdMUbMdB1zRGRz1SsyodnS6urXPH7Tqb77MJRy00Pxd9akKlsdnFcTzyWQPX1vnHf5SqgnxebAA0xSHklVAKBalFL9eVKao/6+1WC/EVVcZhZRd9RfVn3l35gap+HbeiVvfxSwYwfYo/Fpbt5egzz9/Pc2UQV5YzltUNto1rGDiOjZXL8+b9X+aMj3+c6Jw52MUiiqai6hpaKIyVzTL7zjs0nL0EUPAcBy0YwDFNtEAA13Ewk7MEamtQdQPHLKFomnzWmuYb3XtMvPEGdaedhh4OoehSWqIAeB6FqWm0gJ9o4Liyj6KgeAqKY0sf4jry3tm21J93LoBgGA4fhAXvk33K7yf4A0tTQKXrCQDX9GpbR96GjvlgBKBsu6vpUCqIQVvZjC4zC/Fa/zN0ZJ0P/G2/TxTZu+zvua4YyPn9rKIoeJ5bkWVL36tUYh9lu6xzT3heltJ7notrFVH1AApKRTLrea6AUH/i04PKdcgchYKmOmiqBZ4ifwrVulhscFRfUusgNmv+hIZrSUmQZ8sxis/UKP6kJB4oLngaKL4w3PWkCVUB1QVPxcvkUaIxGeBbLsTCeJkiSiAAqosXCGE6Hpan4Xn+PUrRxJ8iN0YgEEE14iiI0srQAzgepJPv8dq+B/nABx5k27breffdH/GRa3/InK4ev3RTxS4lmRh/i9aO1eiqiut5OK6L7pdnaZ5JOtkPQCY/w5zOHlz/c9Cwccw0BOqwUVA1DVfXCci7Rh54E3g/ArY9/90rD399rrNMUFcc523/edF/F4P+8yP+9hhiTLcPmIfUzxf99eVzlIARf7sCaK6LMlNg9NUhuro7UFQF13ZQVA3XtlE0+Yw9WyasVcPwW0Ku2BP23fMU7KKFHtJEgWE55KeLRBpCqLqG63h4roMW0Cvtg4drO6i6Jgpu/zvrWg75qSKhugBa2JDrUHVcWyHlpvj5xM9Z1boKTdOwFIu9Q3s5q+4sgkYQQzfQ0MCFIkU0T2PGnKEl3AIu7Bnfw/vb3o/hGhQpElADqJ6KoipYtkWePIZiECJEiRIBAniKh4tLQAnguTIJ4bkenuahouLoDpZnEfC/36ZnE1AUtKl9mHXnomlBLNdCUwOono3llND0CAY2galXMOuWUPQUVN0fJ9k5DD2EiyalgIqC5vtHOJ6Lrmg4ftmHgUN4+jXMphWYVlbGe8ETZPLmNOgJv//3v1mK5v82/d+vV75fKP5nWjaT8+8bnv8b1cMCaJ2iPPY8vx1/wlLxf9uqdoKyUK+eW9Gr68py+XJ/W46pswsC3lW92q+W+1LP7z/tvPSldh5CDcLqu7bvBeD72gy/DI1LqtJ5z4bZI1JL335B9VodE4ozQmK5Noz2QdNSAfqe+AJ4ehAPTVRgZpHpGYuW5iCKZqC4NqatkJzJ0tScQMGRcZzqoWFTtFT2vzLK6hUtqL6niqfqUl6Bi4dKvuASDSGv2bPxFAOzaDI5bdLUEEALGNglk117xmlrr8VzLE4/Jc7klEk0AtFYCCMQQUllJe7Vsqt16WV5/P/XxP/cOfI5BgNQPKGePehP7B/6Jam8rv3W1rj/uq80ixiE/ufyb2wplapy9a1b+7jssgX/ZE77v9TyTzrR62HMmlOZblrNcN4iT4D0GZ+gcOlTZI068mqIdzI2uweHOJxMsnbbNtKWw+F0nt6BQVKOzjvTSa7btp1DyRS9AwP0J5O4PmjPmCYj2SypkomLQsGoIXfRYxzKe+wanaHo6bioTORyHErluO4nL5EqlTicTLL32DGMw4eJzMwSdD0Uz0PNZlFHRzFyeXRALRYJ79lP4OgxlN19KOk0Sj5POFdgbriG81tOQSmV5M91Ufv7UdauRenvRwUigRBafz9Kby96/xHU69aiHjmC4biohw6h9vaiFosEVB3DdqT9T69DT2comRqzaY2RUZVUSmU6GaHktXP4sMq6dQqplIrNHFxXxXVVHDeAZSkUCgrpjMKNNyrYtsLhwwq7dumkMwFSKYV331O4bq3G4X4D01To71e47jqVw0dilJwGSlaMw0cC/roAs6kQu/pivHdI5xPXBTl0SGVqSsF2DGojCjWGRkhRCaoqMcelbmCMObqB6oFyeJD2SIThG2/k4tY21PeOE7NdPn72Ui5ubSOSK9JhBNAOHSeqqihFE+W945weiXFhZyeq46Clc7QbAc6YydIVCDI/UcPFnVJDr7kuquMQVFRiqoZu27THY9SFQhgeqK6Lq6rYK1aQHR5m3xe/SGZ6mkIuh9PdjROLMXXwIKaqYj38ME40yuThw9jRKOnhYfb92Z+RHRkBw8DRNOxTTqF0/vnkZ2cpWRYOUMhmsVeswK6pIZ1OM/H222QHBph87TWyg4Ps+9KXyAwP4ykKXjgsIEfTcFauRFUcCmPDpN97jUhNCUvJcDj1Lh4uqgrDmTE2v/QkJjmGs8Ns/unjjOdHiUY9hlLjfOm5JxjLj/Le7DuMZsbJmXnueeFJhmbHqG8yibWN8uXdj5NmmEcfK5JlhM0vPcFgaoSCnaehxZJz/PQJMuowtQ1Fei60CYRsXLVIoWRTsh0KOliJiLiUT47Lf88RlreQg4kR6P8F4MHEKPz1n8PokNRtl/Ky/a//HCZH5CZbyImU27bkGMsCXYGQ7p9jBP72UfmfTkoueSopgyvHlj/PhYkR3GPv4DgWjlPCiIY55/b1GLEoatAgkIiDamMWZwCPQCJOwzlLmDi0G9XQ0cIhPM9BNTQ8z2HsnZ1o8QCqruF5Nq5XYuydnVhmFs+xGD7wPFYpQ/P55xGIR1F8phbXpZRLMnzgebSogRrU0QIGeiyKVcrglPKQnMIdOo6XnMLL5/BMC69QwJt7Gp6iSa54QyuePznoDhzFM0t4s9M427+Ppxt4s0mcZ/5eMsxVDQ8PL5fFW3AGXqGIOzSAl56tnMd57sd4mZTI2h0bzwhSjo3zFH/SxAftRdPEtm1mZ2c5fnyAZDLJtmeeYXZ2Ftd1GRwclHXbnmFmJkmpVMJxnIovx/DwMK7v9usBjuMwOzvL9u3bMU3JCbZtB0UP4aHiKVIfn5ydZdsz25memcF1XUzLIpvN4rous7Mpcrkcjl1Acw6hjK1FsQ+B4qDY/SjuFIp1GGVsLbhHQHVQrPdkPzcj2yauB/swiuKgeBkUN43iHEIp9AE2CkUUryT/870o1lGZrNBcFKffP+cRlEQU3H6U2c9AaByl0IcSHgejgGI4lByNgqORLlnsHhwkY7kcSc6ya2CAULSVgbzHddue4Wgqg6aLJLdgWeix+Vxy5WO4SphLr3yS6z71Ni0dPRxJpli77Rnem56mqERp6eghb7tYLhyameX67T/hyOwsJdvBJkC0/kzi9e8j0bKc/mSSddu3ky6VcNBxjTqypsVnnnmGY9PT9Nk2/f4tOgIsRWrOj1AF8w6Sw/5ZBGCrwDRwFIl4ux6RwIcR8L0WqY9vQ2TxdQgL34NI6QvAGwh4V4BxxCCpxT9uLdCvquhxg64eAe3ZgQFe+eLd5IYHBbRYJqrqgWeB5+BaJSbfeAM7nwfXpjgzTWZoCEXxMMI6xZkZsgMDTL35OpjTvPKlu8kMDuAUc5ip5Ent24U8r/7ZF8kND+HZNlYmQ/roUV750t1gzzBz8C3sTBavWMLJ53BLNjVKDcsTy8mP5imlSnhpj9Utq8m8liGshfGyHsn3kjyz9hnM4ybWpEVoPAQ22Hmb1XNWkzuaY9vabRSPFVFshcHdg5hpk+JYkThxzAGTZ9c9i5bXcPIOTsYhoASYPTrLQO8Ayf4k267bRro/ja3aHEoeYu22tRyaHWDWzNI70EfOtsnXL+dTP7mZ95JH2T20H9O1OZQa5Lpnb+Rw8ih5VyXXuJqcEmLP6D9iuTZHZo+xa/g1iq5H2szy6e3ryJo5UmaWd6bf47pta0mZGfqT/Vy3bS2HUkPkGlfyzswRPvHsTbyTGsF0fJmzFoBAAw4KXuYQ7L8OckdFTr9/LWSO+L4fRZjeI51Itl/2y/bD5C4x3ZvshdwRYeOz/fDqp8UAOdsv7aTfBScH+JPF5ixkDovLvpWRx5O90tb+tXKclfHPc8QH/o4oNMuTCamjMknguSLH91wB1uljYtSnhwXkg18f71UTjlCg/UJfTepXD6tBqD8D2lZJG05JJhO0gJSKurb4O7WtEtCePi4TlIqGYuZQXRPdyxEOqrS3qBhjvWjpw2heiZBWYk4ij67a6JpCQHfRMv0oL60jpGS5YFUTemkCNdWP+sJ1qGYKJX0U5fm1qKkjRPU8ykgvyuxhlOfXosweIhTS6GhyCKkFdDtNePdnuOzcEvM7w5w1Z4bg5B7aGx3q9BlAp1hy8OJRAdUnOsub1snlbplcVf7e2QrJtGyDk4/zF8/f1+1swynLMsp+OP/BQPv/afl1X+1exLPkP5d/Y4umw+13rOTaaxexYWM3nZ2J/79y2P+lF8uTqK/DMzMcS6W4bts23pvNMZorkvcChA2DVZ2dRA2Di+bOJaBpbNq1i6ZolFSpxNa+Pp4+eJDNvb00RiJs7u2l6DjCxGYy3LVzJ4qicMQH/oeTSZpicVpjMT71jAx8ogE5z60rV2KoKvf39dEVDqO2tUFtLUo5e3t8XDTEIyPS+b76KnR3o8ybJ1Lq8XG46SaU8XF0x0E5cgReeUVqlz1PJNg/+hHKpk0wNASlEooflq2UI8Q2bxambXRUTNLWrYNjx6qFzZs2gWFgqwFcV6m8j+GwgusqjIzALbdIP/XeewrXXy9K8IkJKam+8UZp+p57ZIw+OKjQ3CyJZJlMNZ58yxbpV0+8LIn+kv0vuADuvx9mZxUWLYLNmxV/P4XGRjA0D80soWTE2lzxECnz9CxKubNtb0bBQ3U9WTeZhMExIb5UBaLhynrFcSodujIwKu3ByfsMjBLVddRyfVM2D5bjR4UrUCihlGursnmwbFzfbCw/Ps7wT39KfmwMPRQiMzDA5OuvU7doEVo0SnpwkP1f/CK1p55akVY3n38+WiiEUypJrfToKHgeBx59lMLEBCgKTqHAK5s2iTP5+Di1p57KwSefPCle7OATT1CYnCR97Bie42AXChSnpnBtm1BbK4VTO9j80jcJagZL5pzGUGoC07H4+j6JDMyW8pX4wKf2/QAPeMrf9vV9P6A2HOepfT8AYGf/qzy17wfoml7ZRyIIHeoiCZa2n8a3XttO3iygKgpBzeDcjvcxk58VdlEvYXslvvbaUxDMMFEa5e7nn+RochQrXgP1DVJbXXaPLxYhNS1S79lp2P53YsT2wveFzdUN2PFdWffM38lgKhAUd3MUiT77268JOD/6DkSi1Ta2/50wxI0tUv89OSo14DOTMqja/nd4HQvwxdUomkYgHiXYUEs+OQaqghFJEK5rpzA7imOVUDWD5tNX47k2Zm6W0V/sxC7lURSV1Oi7WIWcsOyazuTh/aRG32Xy8H4UVSNSN4ep/lfAdSTXvJBi+MDzgMdU/yv+vvv8Gu0xPNvECCUwjDBu70so0Zi4nsfi1SzyTBoCAdSVF8r7MjuDs+NHKC1z/JzwNOqKC4S9Ts3ivftzqd12HTFBCIfFOK73RXE598/j9r4ktd27XvRVCoiD/DN/j5ecBtvG2fFDvOkJXCCXy1EsFtm1axfRaJTe3l4OHjzIrl27UBSFzs5Ostks/f39pNNpAoEAruuSz+cB6OjoIJ1OMzAwgOM46LrOnj17WLFihZzastB1HVVVSaVSbNu2Ddd16e3t5d133yWbzVYY+pdffhnXddm1axehUAjbyqNYQ1D/OVASwoYqUdDrK5GVyvRmFJwTYi1TJ2zb5E9YGOBmZZ/QYhR7AJxZQBXPEL1Z0jSw/ba+DOHVoARR8FD8tpXpzRA6E8UaRNHimA4cSs7yqWeeYSqfZ1l7OwBD6TRN0Sij2SyDqRS3rlzJYCpFzjQ5nExy444djOdyOK7L4WSS3cNjBKOteMDm3l6ePniQrX19qIrCQCrF66Oj2K5LPBjkR+++y6Zdu5guFDiWkkntY6kMEcMgpOvcsnIliqJUTEBDus7miy9mKJWiyXHYhHSTJYRpvwUYRuTrNyFM+1ZgJcJpjyGmcu0Iw/4jRObuAF9Got2iCJDP+Mc3AoeA6xCgvhhYhwD1Q/65gv55nkYk9qpj45omnuNU+s/82BiFyUle3bSJ7OCgKFsmJ3n1nnuoO/VUijMz7P/iF3FKJSJNTXiuK31rTc2v9MW/ePJJrGyWQDx+Uv9sZTKVx3jeSbGPB594gtpTT6UwOclr995LYWICPSiqOFVXmemfITueFYWA5dK8uJnsaBbgpLi6UE0II2xgF21KqRJmxiQznKnE0AE0L26ueO/YBZv0UJqOlR14rkcpVfJNIt1KlF05rm7Xpl3Yis1QeohbV97KYGoQVVFpijZx046bKNgFNl28iaH0EIubFwOwdfdWVneuJqSH0FWdgl1k79BelrQsQVVUInqEs1vOZjw3juu5rOxYSaqUIlVKsbVvK08ffJpUKcWW3i08ffBpNu3aRNEpsal3szzfvZWSXy6YLWUpuA6KZ6Ec3CSS+4ObwZqVx4UhAeSvrhOTPGw4cb/as8QEr3ElqCGZOC7X7CtU9317q7TpFkWaryCGfMM/qu4XapI2B56W55rh59hvFbY9OyQS/OyI3KNic6qxdEaUSo18YUbWVfYfEqY6OyTsumuJzN4p+a73vgTc9dtySicflzoiv8oT21NUiYcr1/RrAZg9hPLiOkgdQxndB+EmlMwgqDpKKQnBGpThPiilUTwHJd4FFz2Mkp9CKUyJ71SsDY49h2Kmql5T+zfLRHS4uRKFp+zfLKKk3ChMvoliROB3HkTJjhANg/rq/dC4GCU/Dn13Ydpw4807KFounqZVctm9rjZ5blkVAO75dezeqXPxAgZkcrINTj7OF1nlXJVCVzuDUyXyBYff5uXXlcovB14G/ofneX/zL3ZV/8rLv0epvOXYJLNZ0rkCNdEwtTGpv/5/dW7LsTE0/VfOmS6V+PQzz3DvJZeQtSye6+9n//AwX7niCgBGMxnu7+vj/ssuI6TrTOXz5C2LoXSac9vaGPmlmufOmhoaIxHCuk7f4CAf+e53eeP667lr506ePniQaxct4ok1a1i7bVvl+WNXXy2z/LkciaCUDcRcl9ixYwKob70V5s0TEN7UJEZiK1aIdLemRkCK48CnP81JBckzM2JWBoKcEwl4801oaZGC4YULxSFsaEj+lyPEOjulIx4drdZAb9ki5/Xrr7PBBt59T2HrVvjKV2B62mPTJoUNGySRbHi4Wqf80Y/Co49K+XY2K2lmngdvvSU10ppfJlaOGLMseTmxmID+zZvFbH3+/Gqi2YmxYZGIrN+ypXr5ubRDe/aYRIRZdjUurLxoqowMLUtiPE6sTS5HfizslGMHRquPS6bUQqkKFefZE+uiy7mfmZzM3uoanqYK8Dd0cR/3XcdtXSUzcFxqjq+7jvz4OA1LllBKJskODlYyvBetXUt+bIyfffrTfPjllylMTvLOX/4l523YIP4FloVnWST7+6l/3/vIj4xQnJmh6dxz2X/33Qz/9Kd0P/ggTeedJ2ZmJZFYF6emKjFhkbY2pt58k8ZzziFz/LjEia1dS6CznaJniyTWdcibBQZmx1nSdipjmWm+vu8H3HbRx0jm0zy17wd8YvmHmJNoYiQ9wdf3/ZBPLv8Q49kZGqM1NEbreG/yOKc2dhEOhChaJR782bf5k/f/Lh21TViOQ8k2fWOkMEOpcb65/8fcdOFHCRtBPNdlppCmPlKD4zoENINNL3ydZ97u5YrTV3LXZZ8kWirJ5zLYL3Fm9U0yA3T0HWifL1+2731dnM2zaXFKr2uE7d8Rc7aGFmHRozFpJzkNeNKWpkm9t1kUkH/VH0jdd32TGLMlp8VZPRgWID81jtPUSqmQxi7lMMIxpvpfrUSKuY7F+Du9NJ++uhIxlk8Oo4fi6MEoowdfIj3eT9e5HyRa305uZphIfTtWIY2q6biOXXFIV1UDxy5JHba/FGZHOP7aj+k694MY4ThT/a/QesYFVbM2X/qtuqDYlhha6gHwXNyBo7jf/SvUa/4Ypaa2UpPtpVMo0ThKfYMMcvxzeaND4qReLEAgKNJlXYf0LF5qFiVRI8ee8N/tfQl19UUQi4Oi4j73Y5T2TpSFp0MojPPn96Ccfhb2mmvYvn07K1asQNM0UqkUiUSC3t5euru7iUajjI6OUlNTg67rWJZFb28vV199NbZtUyqVCAaDmKZZ2R4MBgkEfOduy2JsbIw5c+agqirDw8NMT09z5plnAjA2NkY8HiedTtPe3o7jT7ZJX2VRkwig2v0C3o1OAdfh5aCET4i53ODHXr7nR2M+JLGW05v8CMu5/jupIikaOhT2gNEG01ug/lbxBAkvl+9jWWqPDYX9YHSdEInp+4NYR0BrImsW+MSzr1dSNbr9VA3L89gzOMjZLS2EDQPLcbA9j5Cu89lnn2VlRwfXnHkmQV3H8zyypsnnX3yR+y69lIlcjnt372ZjTw+diQR7h4ZY3NxM1rKoCQZ5c2yMlliM3oEBdg8OcsuKFUzl83TW1LBp1y7u7O5mfl0dtucxmctRsCwG02k6EgkiDQ0UDIOFCID+MtUa9l7gI8D3EHO5NoRZ3wrcgYD7TsSB3kFAfwExuSvXyM9F6uNXcHKd+91UY+BuAWYQk7sjiDv9Vy0L4+hRtGCQcFMTVjaLncsRbmkhPz7O2O7dJN9+m/M2bJDnfX20rl7NgUceYeAnP2HN9u04hUKlv491dUnixMQEdaefjpXNYsQEPNmFQnXf668nWFvL6/fdx6LrryfS2opTKFCYmpJ++vrrCdXV8dq991biJpfd/UUcR+PZG55l+WeXk5vM0bmqE0VVsIs2meEMsdYYmdEMex/cy2VbLwMFAvEA0+9N03dfH6vWr6L+lHq2rd3G6ttXE2uLEYgHsAs2w/uHibXFqF9Yj10SAJ8dzdK+rB09pDP19hS5yRyJjgS9m3vp2dBD5NQIR9NHGUwPsrx9OSFdYuqWtS9jdedqtvZtZUP3BhbULcB2bQp2gdHMKGPZMToSHWzu3cwDlz3AdGGakcwIqzpXoaAwkZugJlSDoRlkS1lUVWU0M8rWvq08dMVDTOQmKnX9DeEGxrJjbO3byp09d7KwbiGpUop0Kc2c+BxiKihlJ/tFGyDYLNFz5z8qoL1cQ3/ew2KC9/YDkgMf6RKmPNIl9eqhRql5f/M2iaArTQoIX7RBavM9W36/iibO+cVRqDsHCqNioBfpEPC+aIMA/FArROZIhr3r+EDbl6inj1fj4pyS/AUS5Z5ZnmeHJQGJsqxfEbO6wpTU8tcskPuda54QPxcSYB/vEB+nmXeh+WzZLzvku+zrwson5vl1/vmTY+nOuwVe+4oY3Sn+vvu3wPs/D9EWcbivpDZpMhmxf4v4ShkRqeEvTJ4csWxlpT5//wl1/cO90HS2mOS9stVfP1/2NaJS03/8RczT/5i8qWFZLoWcyZy2GK7r8a1v/5w//KOzmJ7MkUqXqK0J0dIaw7FdTNvl1VdGWLWyA00XJZauqTi2i+XB4GCaP/uzl1m2rJ3LL1/InDkxQiHjX52U/JdeftNxcB8CngKeB55FJk7df2pfz/Ne/rUa/zey/HsE7iAA2nQsAprx/xS0H50Z4am93+eTKz7M/Po5J507Vyphui6O67JveJi2WIy2eBxdVTE0jRu2b+fmFSvoqqlhtlikNhQi4AdSe77Rm+26TOfz1IRChHSdI8kkm3t72djdTdgwaIxEKNo2tz3/PLetXs2cWIyRTIbNvb1s6O4mYhjkLIstvb2sX7WK0xoaiBaLqL5JGNdeC089VUWxGzYI6HYcKfZNpQSMDw5WUW04LNbcg4OClMuZ3aedJmB1715x9zr1VHlumtKZlwO3jxwRdn39enEEA3Eub2qChx8m/ehfs6tXpalJ5hRuuQW+/W251Mcek8saGxMG/aGHZN5gaEgu5ctfrnqhWZb8lZVEN91UPWU5Usw0Ze6gs1NeVjIJDzwgYL6tTQD81JTMYbzyir9Oc3lfV5FAxAfh5biwcl1SyZR1IDfCcuarpkr0VywiLuIVN3ZfXVA2MgkY8qeV63wRYF+WX81v94v41ZPzPVW1YmBiujb777rrhMHW3SiahpXLoWraSbnf5995J6/ecw/L7rqL/V/8Ik3nnEPz+9/PwSee4IyPf5xwYyNGPE52cLBqWNbZiVMqYabTOMUiB594gnPXr5eaZ01DD4UkhszzKE5PY8RiGJEI+77wBYZ/+lOu+OEPsOriTGaTfPOVH/OJ5R+iLd7AaGaa77yxg89d9DEctwpiHNfBdGyCegDbtTFUHV3VyJkFArqBadtEAkEGkuN8Y7+A+tZEI57nUbJNMWIMRogaISZzSb62+7ssbT+NpXNOZzqfojlWx9f3/ZBPLP89JrJJWmMNtMTrmc6niAcj1Nguxncehyv/q7Du330S/vtnRe5jlgS81zcL0C7k4XtPwZt74U83ihO6WYTBIwK6t39HgHlDs3z+0xMwOyUxZ4Fg1eW77MBumeKSXp4EuOoPoLYeJxRm+MDzNC44j6kjrxGpm0Okrr2SCa6qMmtl5tNMH32N1vf1+J+PgetPYgCMvf0yjQvfTyBSQ256CCMUxSrmiNRKpJHrWBTTkxJTVswxdURiyqxCBiMcwwjXoACuY0lbC87HCCfwbAstlRKmva1djM/KcWbFAkoojPPs96uxY2s+gmdZJ8Weoet4U5O4e3aiXvF7kMv6RmmXyO+nWIBQWBj9XFZUEA2NkM3g9b+LNzyIduWH8Gz7hHbn4hXzYJaw6psolUpks1my2WwFPJumiWEY/PSnP+Wiiy7Csizi8TiZTIb+/n6WLl1KqVTCNE0CgQDBYJDp6Wmy2SxdXV1YllUB9a7r8uKLL3LZZZdhGAamafLCCy+wevVqamtrGRgYoLm5GVVV0XWdXC5XAf8BvShy+DK41ptg5gEfQM/z7zSGH5V5GqD75p0qIv5GUjJCS8GZECa+YaMcO3Zd1diz5VFwkuAVJMnDs/0IzBgUD8jxii4TBm4Giq9D6GxMV+edWRhMpWlPJBj2AfLm3l4euuIKpvJ5BlIplrW3o6sqClCwbVzPYzKfr9yXWmMxfvDOOyyoq2NlZ6fIIX0VgqYoFGyb/f499NSGBrKmWbnnjaTTrOjooG9wkKZolPm1tdiuS6pUoiYYRPNvAK8MD7N87lysYBCNkw3m9vv/Q4jUPYgM7NZSBd+3AF9BQLgJLEQAfC9iZDfprysgtetHqAL6JqoxcCOIjD7jf3oRIJTP4+ZyYvh4+DChhgbpa/1J11BjI7HOTvKjo5V++cTny+6+m/13383AT37CvDVreP8XviD9L5AfHeXtr3+dpZ/7HHowWHX1dMW3xcxmsbJZIs3NFJJJQrW1lTGIUyhgRKNkh4bkeq6/nlh7B9P9aY7vPM7g7kGufPRKirNFSukS8ba4uNWP5zCzJokOiaFDgUAsgGM6pI6lMKIG8TnxSgzdwisWEq4NM7RviGhzlNxEjq7VXaDAQO8A0aYoex7YQ8+dPeghnVBtqGK453keZsCkd0hi6B7Y8wAbujfQHG0mVUpx1867Khn0T6x5gpJdwvVcbtxxI7euvJUH9jzA0wef5u11b9M/08+c+Bzu3X0v61etpy3exhujb9BZ00lEj0j0XCCK67kVYF8bqsXDQ1VUApqY7+mKjofHoelDxINxCnaB99V2EXByIpE3auTPM8FTBagf3ARn/U8Id8h61Xd6n9wtYN2oFSn821+WKDrPhtlfCBNfNmLIHYdfbPYj6drEIA9H3PEblonRXqRDSi4m94pDfsfv+lnzijD6TskHz+0nZMEvqJrolXPgoVobX463K8fTlSXvsQ7fsR5pSzMkqi6YkH1Vwz9Gkceu5Xt3KMLCFyaFJa9ZINdlpqU8IFADk2/KNdb4kxXPr4X+H8EHvwdtK+Dtb8PYfgHasTm/lEX/BOSnINIogP7487LvxY/4Xh5Zadux5P0rTEHfXdXjL35ESgBSRwTMX/RVTM/gncM5Nm3axec+t5La2hBNTVF27x7gggvm8t5702zd2seGDd00N0e56aYd3HFHNy0tUWIxmVw/ejTJ4GCa5cs7CId1bNsll7MYHc2wdWtfNXL6X9h0+197+U3WuINMReeRfvwvgReRiLhf/nvp/+pq/3P5v14MTScaCP8/A+0gwP2pvd8XSe7e72M61knbVVWlaNtMFQqc3dLCeC5H2DAwNA1NUbj/ssvQVZX9w8PkLIsbnn2W46kUWdPk+mee4UgySd/gIKc+8gg379iBB4R0vTLQKdg2n3rmGSbzef7i6quJ6DpLHnuMoXSaJ9asYSidZrZYZMsJ0sOibVNSVbwNGwQJ33mngIdflrNrmjDgd90llPPChYJu162TzKzBQQHaW7bIcaOjAsg/9SlB0PPmSTvXXy/A/4YbBHg6joD2p58W5B2JCIpevlwQ87JlGG6Jjg6PBx6QZrdulUv9n/8TpqeliYULBcRHIgLaly0Tc/PNm2Xs/pnPyCXK5yBxYU8/DQ8+WPUY0zQRDvT3yzmamuQSypdWjjJvaZHJgzVrRAHQ0qqiRoN4mibypuY6AdEJH7zXxAS8HzoOliMntGwxJ5nfLtuPjYgJSabsaG9WY8BMSwC4h8SJ4EktUzlmzLJlwqBoyovoaJVzaCroKhgiy1103XV0feADLFq7Fs/zSA8MYBcKaKEQi9aulW3XXYeq6yy7+26Ks7Oc+clP0rp6NfmxMc74kz+hODWFlc+LfPOJJyryzezgIK/ecw9OsUh+bIyBn0hEFZ5HfmyMfV/4ArmREZxCgQOPPEJhYgLP81i0di3dDz6IVldDrpQnWUhz6+/8N1rjDaiqylQuyXUr/wu26zCdT+F6HkXLxHRs3ps8jq6oTGZn2fLiX2K5DgE9QNEyeWfiKCXbIhIIsrP/Vb75yo/RFRVFUQjpgYqBmuO59B37R/7k/R9k5dwlfOu17ZzW1EVAM1jafhp/9co26sIJgoaYXw2lJkjmMzB0VCTsz35HZu8/cI3I1ydG4G8eFbm84RvJBALCsC9dATX18vv6zuMQrxEW/fLfFzY+lZTndQ0w/3QB/4WcAPn/9TCkZ8WNfWZCZPPbv1OV0QO4Dm1n/A6BaD1NpyyvRIqFa1uxS3lGDr6EVcxINnhtK1Ypz+gvdmIV0iiKQiE1gaKoNMw/V2Twnkekro3J/lc4/ur3GTn4EraZQ1EUInVtOLbJ1JGqLD5aP4dApBarkJYa+KKcZ7J/P+DhWSW8rDiUK7qBl02jRGM4z34fbAvPsVFX/Y7EinVfLK+pVDxpP292Bi+XwTv4JpSKuL0v4h18Ey89C7aFu+dnYJlSt25ZuHt2+rIaG2/wGOrqi8RozjAkhzwax9nxQ2Hu6xrRAMMw6Ovr42//9m95/vnnCQQCxGIxdF3niiuuQNd1kskkpmkSDAZZsmQJANlslp07d5LNZivPo9Eotm2TyWTYuXMnmUyGYDDIxRdfjOd5bN++vTJBsGvXLkzTpLOzk1wuh2mauK7LzMwMmYzAOtdVJOKyzIjPPCBge3ozeCUYWwvWIQidDhOfA2dKBrFeTtIwxtaC3iDvrS+fZ9oXizdsENDesFGk9LnnxMxOCYEzAlN3gTMuMZw4wr7jgD0K4WVQPEBAtTm1robVXV1s6e2lKRqtSN1TpRIDqRRN0Sg3PPssA6kUmqoS0DQypnnSfSldKvGRM89kTjzODdu3k7MsHNdlKp8nY5rMFAqs7OhgTjwOQCwQ4M4LLsB2HM5ra0MBOhIJJnM5/zevc8/LL1fk+J959lk6EgmOqyo3IeD6PsQh/gYEWIeQwd06qkZzG5HB3gZgCsl4fx5h6T3/71zEfb4diXu7F3GtB/gaEgP3FvAoUgPfjUwKjCBxdIplkR8cFCn65CSJefMqfe3BJ58kWFfH29/4BoqiVNa//Y1vSJRgWxvv/8IXACp9+tLPfQ4rn6cwOYlTKJCfnOT0j30MVdOY/Md/xC4UwHVRNI1X77kHHIdALAaKgh4Mkjl+nP133UV+ZAQ9EsEpldBCIc7fuBE9GMS1HdKDaRZcvoArHroCPaCjBwSsK6pCeiDNzi/sBMCIGuTGc+y4cQfJ/iSF6QKJroTE2B1JYkQMaufVYudsfnLTT2g5u4VER4Kuni4818MqWHT1dLHv4X0ii79nF9HmKHpIx0ybzByeYXD3IJqmsbx9eQWEb+7dDEB7vJ0N3Ru4dtG1bOzZSMku4XgOQT3I+lXrmcxNVrbXBGtY3r6ce3ffy9MHn2Zr31ZSxRSNkUY27dpEU7SJoC4g9HjqONdtu46Z4gz7hvcBsH94P0eSR7hh+w2kzTSu5xIPxqkN1bJp1yayZvak8SGeDZN98INWkb4vewLCnQLiX/2MZMNP7hLjt+KEL3PfIkAdpLa8bqk8dgrCpr9zfzXiTtHk96oG4IzbZALANaE4LpNwjSth7h/K8Va6fFEnyNWHIVjrA9hiNWKuElMn5YUUJn2pO3Kvs3LClsc7fbd7U9rVggKStaAA4ok3pIZeC8pxqSMyKWBmpOlYuzD28XYqhpyFSQHQhUloWylsvOcKS77sDgHtsQ6JT25fLQlNMR//Xfo4LPoTAfKKCuF6WR9pgtqFwtTbRZkQCDfIa8sMQjEpEwWVSOUN8npcW9j61mWQGcAslti6dTcXXNDFqafW+873cMEFc/E8j4UL6/jiF3+H+fPruO225/nRj95ldDRDLBbAcYREbmuLs3x5O6+8Mkw6XaJQsIlGDbq6anj88TW0tsYoFn+7pfK/FnBXFOV3ge8gKqok8Doinf+n/nb9Rq/0P5d/k4uh6XxyxYe54vSVXLfiwwQ046Ttrusy4teij+dyrOrsRFcUJnM5MqZJxDDY7A92yoOYTbt2kS6VKrXty9rbuXbRIu679FKOzc7yhZ07KwzCpl27Kse4nkdTNMrLf/InzKupQVUUlnd0UBsKsaG7m2sXLeLOnh4Cmoam65KT9eijoj13XWHar71WqObJSUG/8Tj86EdCYZ8IuDdvFqQ8OVk9bvny6vZNm+C99ySj68QJgjLDfOK5QAB+MCjPL78cy9NPqCsXQP7YY75MPQe33Sal8eUosI4OmRfI5+HAASnTX7ZMwHc67cdE18op77tP2PreXgHsX/iCOInff79c3saNst/991fr5o8dk+fl9brqojgOiutAKIBn2gLEa2Iimfc4OWOzUJILrYkJuC6bjwyOCRA/cX8/oxtdkziQiRlh6VWlmvddPr6c+z00Jv/x5DpKJnrBJN7cyrK77ybe1SXJA5EIejCIncsR6+xk2V13EfPd68txYIWJCSItLURaWnj7m98k0tJCqKEBDzjTnwhoWLKkOrB84gkaliyh6wMfQDOMX6mPtHK5ykDTSqfJj43RdO65JN/4R+rDCRa3ncpsIcumF77OSGqS05rmcnhqkNH0JF/b/V1G05O8PXGUyWySs+echu25fH3fDzirbSGj6Snuef4pABqitWx58S8pWiYP/O4t3HzhRxlOT/KPI++J+7T/m1EVhXl1c+iobaElXs/NF36UZCHDX/R9j6VzTufmCz9KIhShaJlsefEvqQvHGctOY84/tZpHHgoLIA+GqzXp6aQw7//rYTGfa2oVRr6lXT7LD1wjOeJ1TfDc3wt7bhYFlM/OwN98zXc916pt7viuAPn57xNX9HIm+lV/IL8bDxTfXd0IRjFC0ZMAfLlGPVLb+kvr9vmD9DAjB19CUVVaz7jA/0FpNJ2yXHLMF75fzMR8Zl7TAzQueH8l49zzwPMl9anRd5k68gqxprk0nbIMUNBCUZSOueA4ePkcansX7p6fVerPFUWFeA3ammtQ6htlMBUM/sp+ansXyqKlEAxV88U75uLuerGaWZ5JQzSGdvXvS1xZJIa25iOicMimcbZ9TyYLchmU9k7IpHC2fRc1OY2mqvT09LBo0SKuuOIKZmdn2bZt2wng2aWrqwuA559/nlQqheu69PX1cfDgQfr6+rBtm/b2dvbs2YNt25Vt2WyWVCrFCy+8UAHsfX19LFiwgCuuuAJVlcmlXC6HZVk8++yzRKNRstksnufhegqevlCAMu4JYPtOKLxSBfFowpobC4VZR6kC9ZkHQI0IQI9fK/Xy+T6Jtmy8G7Qm6ZcjKwSsY1fr5ae3yndt4vNg+ANgvQWUCBhzYOJWNC+Npihs6O5mMper3G9qgkGWd3TwwJ49lfuZ63kUbZtEMMgd/n63r15NXShEUNeJGAZfvfJKPOAzzz5L1rJwPY/DMzMMpNPcuGMHR5JJPKAtFmNebS0RQ+67EcOgJRpl39AQjuty36WXEtZ1VEXhR+++y+beXmKuywbgFwjTvRlh1B9AwHv5+Waqte1PUM1vb0PY+fuRevXrEQC+DNiC1LrfiRjPAXza3285Uvv+M4SlzyFs/DJAMU0OPvEEwz/9KcWZGQI1NSy76y4++OyznH/nnQRqazn3858HReHcz3+eeWvWcOYnPiFGiKUSxelp7EKh0qfr4TCFqamK8qn5nHMINzdTmp2lcckSqYu/+24yAwPUnXEGbz74IFoohOc4WJnMSf23a1m8umkTVjrN9IEDGPEEg3tGaF/eTqJdJNPTh6Z5/rbnSbQnMCIGuzbt4uDTB+nb2ofnePRukVr09FAaK2fx7LpnsXIW6aE0eNDV3cWuzbtoX9YuIP+mHaSOpbAKFjtu3EHqaIrL7r+MRdcuoufOHqyihed4lNIl+rb2EW2KUsqVcHHZ0CMg/PbVt8tv13MZSg/x2NWP0RBu4JbnbmEkM4Ku6pzWcBqru1azoG4BX7vqa5Vc+I09Gytt1IZqmcpPsaF7g3z1VR3btdm0axNPH3yaB/Y8wPL25ewf3s+ZTWeyuXczy9qXMZoZZe22teTtPLPFWW5deStvThzE06IQbgcjLkC0qRvm/gE0rBQw7Jbg7fulLj0/JDF1xUloWC5M9KKNMPe/CRjPHZU+QVFAj0ubS7dC42qJryuOSb/gOqDFYPlTEJ0rdfQeSH6kIyw2PuNtZoSdDjeKjF01BFgrkjhAdrgK6ss5aKbPTpfVhcFElZVXFLlWRfnVevhwo5xL4eTa+kDcVygawqarQSp1U+Wa9H1lp4oTVNPxLmHa/Rp1XtkKwRqZEHhxnUx0XPSQtDl7BF74lMTRje6T15qYC0YYms+Fn94kUv7cMAy8JO9B3Wlw+dflPGOvSXvLNsC8KyA7RCAU5P77L+NDH3ofx46lWLduO67rUSrZ7No1wOBgmvb2OIoC69ev5nvfu4azz27lvfemuf76bWSzJqOjWdate5bFi5sZH89x440/IZ+3sG2X8fEsgYAkQBUKJ5OEv03Lr8u434l8xT4LtHie937P8y76//r7zV/ufy7/1hZD05lfP4e7rljLvF+SyYPcoMsGc1v7+vwYEY+mSISIYaApCnf80mDnzp4eakMhrl20iI0+0H7s6quJBQIVoL6lt5eCbbN+1arKfnnL4vpt2yhYFvNqayk5DvuGhijZNgvq6njs6quZV1tL1jRxikWU3buFIbcs+T80BI88IsXes7PCrOfz8L3vCU39y+A+GhXE29YmEwCGcfL2BQtk+9y5IsXv7JTidE2TdY89JucaH5dJAkURyru1FTWgn9SUrov63jSrwoAtW6QGvVQ6WSzQ2CiA/bLLRL1fVyfy9x/+UGT1sZjs19RUPW7rVmn7hhvk0u6+Wzz3TpyHiEQk8zsUgmDAQ1M9MG0U0zrJfK7CrpcdQ7vaJIfTdeG94xIRduK2kgnp3MnrVF8GHwxUXUcdV/YNGNV949GTJwhst/rYB/+KqpIZGGD/F7+IHg5Tmp3ltXvvJTs4KGC9VCI/Po7nugTr6oh1dZ1kjnTwySdRgNLsLKHaWhavW4eiaVXG/vrr0UMhlt19N2gaRjzOGR//OF0f+ABnXX89RjxeeRxIJGg891wUTSPe0oqGguM6FSO6p/b9gGwpT104ztf3/dA3oPshteE433zlx4B0wJ9c/iFWzl1SOS5nFvjL/T+qtLF0zmkoKIxlpqkLx9ny4l8SMkLMFNJ86bknaYzWAjAwM05AM/iGf65vvvJjQnqARChWMbf761ef4azWhehGED52owDudFLY9URtFUwveN/JxnKmKWC8kJexRXO77F/Z5zsQCAkoL6977u9Fen+13+YHrpFMc12HUxZJjfx/v1HAqCoDKauYFma9lCU3PYIeCKMHozSdsqwCsFE1jFCsCshPWY6qakwdea0C7lVNx7VNRg+8gG6EaV98KYFILcX0FKnR97DNAopuEIzV0b74MgKRRGXgduK5jGBMauEVUFEhNSsMe7EoctIy8F59kQy5AgH5UC1bmHYjALpR3a/nEjzDQFvzkco27coP42m6ZJovWio55bEY3tgIXjaD+zdP4e74oRhHuk4V4JcnARaejtu3E+/gmzjpFMnZJKlUiiuvvBJFUSrmdOl0mlQqxY4dO5iensbzPNrb2+nt7UVRlArY7+npAURh1d3dzeTkJN3d3SxatIiOjg527dpVAfgLFiygp6eHRCJBLpfj2WefZXZ2ls7Ozsp59+zZQ3t7u0jnNQVF8WD8BuifC9aQD9DnS+15GcSrcQHTlMA8Augng3x0AfUtj4A9AUYrouRpFfm7olTBen7vycfm+yDzbZkIsH3zTa8gz7M/wvICmI7DnHiclZ2dLKyr44k1awjpOulikY09PZX7lKYoRAMB4oEAC/370oK6OuLBIIaikLcsPvXMM4xmMixrb2ezP5F94uT25t5ePM/j2Owse4eG6E8muf6ZZ8jbNjWhEE3RKPuGh5nK5/nCzp2MZbN875pr2NDTQ4eqEgXOR4D0HQijficS97bBf74RaJZ3iMPAx4FjSKTbo4iUfgsC8rcCl/lttCF18ApV47kt/vO8f17THx/cAVwO9AUCnOkrkepOP530sWPs/+IXsfN5pt96S/rtmRn233UXpZkZzlm/nsnXX8ezLAqTk2QHB1F1GXuUQbYRieAUi0y+8YaUiQAHH3+c/OgoBV8h9Ysnn6R11SqW3nYbuZERJl9/HSMWO6n/nn7rLZl4/eY3aViyBNfTiHfUouoqru1SSpVOMqEzsybdG7oFZG+U30XPxh4WXbuI9uXtFRDfu6WX9mXtDOwewMya9GzsYeHlC09qq5QuyePNwoNd+ciVJDoTqIqKh0ewJsiq9avITeYIGAHGMmMMpYZ49MpHOa3+NN4ce5O8lacj0UHRLnL7C7ezrH0Z0UAU0zH502f+lIJVwHRMdFUnZ+bImBk64h08seYJTqk7hVggxoqOFSyoW0DJLlVY8/Wr1nPtomu5s+dOwkaYzppOwnqY9avWc/nCyysGdpt3baYp2kRdqI6VHSuFGbczUnv+yp8Kq37eV0Wy/uo6qUdfej90f08k7a9+Rv7rYYlQi833GfkbpDYdfIf4IyKl16NSQ182tiuOgVuAcIvsU3aTt7Ow/1PSVvaw1L97+HnyQZGmqwEB8o4pzLPnCXtdBvVleXzNAjGO81wB5BW5vHWCKz0nH+t5wnKX2fcTt7m2/PJSR4XpV/D/Kyew3hsrbvOkj8HOmyB9VGryl91R3ce1Bci3LpNa9OfXwuxhmSjwTekIN0pWvVOU7bkRYfMzgzCnG+asgBf/FJLvyfsx0ieM/MSb8tpj7RDrIPDyZ4jHAsTjQVpaotxyy0oGB1OsW/csTU1RBgZSOI6HpinMm1fLihUdpNMltm7t4+mnD5JKlSrpWNmsxZYtvTz3XD+xWIBw2KCuLszAQIq1a7dx6NAMpmnz27j8uuZ0WeBNz/O6/+Uu6V9/+fda4/7PWf53BnP/nCVbKtHv16Tf6RvtTOXz1IZC7BseZk4sxtzaWplcVBTGcjlqg0FUX05oOQ4BTWMil6M5GuXY7KzUrvf0MJJOs7S1tXKunGkyUyxSFwpRtG3u2bWLW1euZDKXY0FdHXnLYmF9PWPZLO2GUTWne+wxkbeX690ff1zk7T/6kYD21asFOBw6VKWyo1EB9fv2QXOzFJl3d1el8P4goqJB37hREPXNNwt6Hh8XEP/L9fHZLEQiZJU4qbRCOi2ed4lEdW6h7HN3++3Cml95pVxKuTx/aAi6umROwHXlL5cT37xVq6Tv7+8X1r3cVrmeXVEE5C9ZIuZ2J7YbicjzaBTmdTrojilMejQssvaygVw5osOvNSeTEwBeMuHnh6GlAU7prH5JyjEhIDez8v4BXYB4uZbp0ICw7831wuqXTHmfXfdXje+62nAMjfSxY6iBANmBAUL19UTmzOGNrVsZfP55uh98kMazz/Zzwj1UXZfsb0VBDQTIDQ9LTeMnP4keiRCsr2fy9dfZ8/nPc/l3vkOovh6nUEAN+mZhEjotOdf+a/E8j+kDB2hcvBi7VOLNL0vOeKyjg8LUFGpLE5ZrMZmd5al9P+C6FR+mNhznnYljNMfq+fq+H1QM6FrjDYSMACXTYk5tEwWryFQuxdf3/YD1F32MGd/A7pPLP0RTrA5d07Edmy0v/iU73t3DD/7HA/xF3/fY8e4erjh9JRsu/TgHRg9zWlMXyUKGb+z7Idet+DDjmRkGZkc5r+PMyvlDRpAG0yZqmdA054Sa9haoqUUKOIMim9/+d8LKJ+qkVj0QAjzIpISlnxqr7tPYIrNP2VR1XSAoxwSCUMzDyHFYcIZ8BxQk77xODOscFYZ//iKp0Xepa19E65kX+u7k4JhF9GAIUHDsEqDgOTZaIOhnt4ewimkmD+/3gbyOh8uhn32TmrbTaT5tJdmpAWrnvK/qzF6uo1QgnxwnlGhE0w08PwqtkBonGG/EdSxc2yQUqsHd9j28d3+Oes0fo3bNl7rlTBpMEyWeEJO51CxeerZqKtdziTjyF/LC1M9dIJL51KzUx+OhaLpPGnl4lon7wnbUVb8DNbUikW+fi6frKJ6LNzsj7XZfLGC+vlHW7XoR56r/wjM/2UF7ezsLFy4kHo+TTCbp7e3lqquuYvv27Rw8eJBFixZx4YUXAsLA19XVUSqVKJVKRKNRyav3a7Ity6qY06mqSjKZZNeuXfT09FBbW4tpmpRKJXbu3Flpe82aNaRSqcp+dXV1JJNJGuuDaO4keHm/Pv120OYIg25PSM07ijz28r4h3edBbxdGPnQWoMPE7SK51zvBGQO1VsC+61daqzHf7G6LgHW9E5xR0NrAHoTpe+Tc+V6IXg5o4OUwS2O8U1zKYKpa214u5QL4wTvvMK+2ltW+6udIMomqKJX92uJxIrpOzrKIBgJcf4Kx6t0XXojlujRFIrw+Olppf2NPD+3xOJ/evp1bV66sMPrXLlrE42vWcP22bf/kesu/N/1tMMhu4FakLn01lVT7iot8DRBHDOm+QLXO/VEk6q0ROI4w8xsRU7peRC7fhOTDd/jbb0cAPYhMczkiy3f9vwGgplSizTQpTE5y4NFHK/4j7/vjP8aIxU5ad/7Gjby6aRPL7rqLyTfeOMloNFhfz+w779C4dCmTr79e2XbGxz/O1BtvMPnGGxVPk7Ouv55YRweu67L/rrsY6+ur9O2KH52YHRri4OOPc9b116OFw9j5AsVchOx4gY6VHdh5m8xohr6tffTc2YNru2THsnSukntcbipHtDEqXzFdJdmfZNemXZVa9ceWPMZ//cF/pX15O6qmMnt0ll2bdtG9oZtoc5QdN+2ge0M3A70DDLw8wIV3X0i8LY5VsFA08Y5RVAUn7vDp7Z9mWfsyLl94OXWhOub9+Tx+/4zf52tXfw3FnyS2XItXR15laetSQnoIBYUbnr2B+y+7n4ncBPf33c99l95HxIhguzYj6RFUVWUgNcCy9mXoqo7pmHzn4He4bMFldCQ6+Oyzn2XzJZuJBWJkzSxhPcxAeoBNuzaxoXsDQ+khumq6OLOuC63gT3wduKtqRrfsMQHRledPyD771568LndMQPWJxy6+G545Ux6f/4jUqOeO+mZ1G8XQzimAHjr5HCce975b4J2vwIpv+mO4krDeZWA+2y9sePM5fl8hKi8895fq2D2/Rt2fjC2rABVF1FSlE2rcy+2ftHgCjPWgb1j3toDq2oUwe1Tc4D1PXPNH94uZXLQNJl6H768RsH7Rw3JdpVmR+QcSAtT14K/WqL90g8jeM0Mi688MVtu59HHIHBcTvb4vVI9bebcoFF77Clz6mJ/57sLzazFbLmC642OMjGQqtexDQ2nWrPlbrr12EY8+eiXJZJF83qatLYZp2iiKwthYlq1b+3jooSsYH8+xZUsvDz10BZOTecJhnXzeYvPmXjZs6CYSMTjttEe49tpFPPXUB4nHg/xHXH5j5nSKoowDL3ie99Hf1MX9W1x+24D7/8lg7p+z5EolLNfFcl32Dw/TkUjQFI2y/vnnufeSS9BUVWKpdL0yYNn2h39IRyLBUDrN8o4OgppG1pQ5+pCuM5HL0RKNiumUbfMPb7/NZQsW0BSLkfP3e3NsjKv+5m+4dtEiHrnySgZSKaKBAB3xOJbrUmuaKOvWCQi/9lrpDG+7TdDwvHlVlFxmyVevlk4465s/FQqSuXbrrSKXX7ZMpO6HDgk7f999Qm339sJ/+2/wrW+JU32xKMh3clJM7x56SI695hp5w267DW67jfTcs7jueq0yl/DEE1Lr/uKLQuSvXCmX8NZb0qyqitrex6AoiggJ9u0TQH7aafKShocFvJf3Nwy5pH375KWWvfaGh0X5v2+fzDdMTVXr3594AoIBl6Duoriu3HtOzNF03KqpXBlsN9XBKV1Sw152kFdVAeWO722pqQLiZ9LC0NfEqu2Vl2xemHRFkbY6WyEUkG2mDckUNNbJ99oymXjtNRqXLsUplcRV2K8PTf7iF0R8t+JIS4u4C69dS7C2FrtYJJBIYKbTBOLxSiTc9FtvEWlrI9zYKN+9dJpAIoFqGBQmJ8Wx2POwCwUCiQQzP/85taedhue66LEYpelprHyeSEsLmmGIDDgUkLgTD2zXRlM1VEX1B1gOChDUA5Rsk0wpTywYIVvKUROKMZFJ0ppowHId3h4/wqmNXUQCIQBGU9NM5KY5p/10hmYneOqX3OmvW/FhWuL1OK7LOxNHObNlIR4emqJStE0e/Nm3ueOS/4HtOvx8rJ+2eCNzjQiGogigTKfk+z5yDOadLg7ydY0C1BVFZCDf/yZ8+I9FTu+6kEtL3Jvnyc1eU+HQz6FjoXyHCnlh5IsFGD4KCxdJ/Nt//ZQA+5kJYecVFY6+Dacs8g37Skwe3secsy49AYgvwwjFySdHMcIxJg/vp3HB+9GDETzHRg+GsUsFstODJFoWoGqGiA59czlxh9dxrMIJ7vLLsApZjHAcVdVRNF0Gw44pLva2haob2KU8qmbIBEGphJEv+M7vtVVTuZpaMdwzTQiG8MaGUSLRijxeWbQU7coP4zz7fWHea+pxB4+iNLfJcdFYZcjnKQru9u/jHXhNjrv69/FOcJt3+36GeslVkk8eCIJZkokls4QSieIABcsm45vTdXR0oGkaruuiqiqzs7Ps2rWL1atXE4vFCAQCZLNZAgH53WUyGWKxWKX+fWxsjFgsRjQa5bnnnqO7uxvDMAiFQhiGgeu6bNu2jc7OTjo7O+nr66sA+mw2SygUYnh4mJqaGlKpFJ3t9YSDAK4vPw2IcdXEbdB8LzjTPqDfIIy7m5R6+MgqsI6DPgecGalfL+yHlj/3zTL9wbRnSRycMQf0+SKfxZBJAMWfdMKvlfU8GL8ZmjdLTXxhH1mjm09tf5FNF1/M+hde4OmDB/no4sU8cuWVFUXGsWSSllgM13eP/7OXX664ygd8KftYJkNLLFaZnN7Y08P82loc1yVnWWRKJVpjMSzXxVBVdFWlP5lkKC2meFv8yfH5tbX0z84ylEpVgH7ZpLUxEsHSNKYDASwkvq0OYc+LiAS+DdiDmMuVAX0aMZKrBbIIMD8GDCFSdx34DPBt4KOI7H4AyQ4eBZ7z234AAfsPUDWpOwJcA8QsC8OysHI5ChMTleSN/NgYdWecQSmZrKR0RNvb8RwH13Gk/52YYKyvj+kDBzjvjjvwXLfSb796zz0VwL943Tpc20YPhTDicbRgkMzgIMWJCcLNzeTHxir3gzOvu45QQwNaMIjr17hnBgd596/+inM/vxFFD+KYDoVkAT2ko2pqBUgbYYPZYz4Av6MbI2pg5S367u/j0vsuxYgYqLpKKSMRb4FYADNj8uLGF7n4nosr282MSSldItoaxS7YYnLngVW0iLXGJFJuJEMgGiA4L0jGylQc3zd2byRiRGiOScScrugUnAL7hvZxdsvZTBWm2NK7hfWr1rN7cDeXL7ycu3bexerO1RUX+o09G+lKdLF7cPdJpncL6hbwyR9/kjt77qQl2sLfHfw79g/v55GrHkFXdI4kjzCYHmRZ+zJmi7MseWwJ37vme1w8dzUhEAWNnYc3bxcTuWADlKaEIT/zdpGyGzXCkB/cBIvuFKZ93yekfr3pAol5W7QRgk3iTH/m50Uqb+clOi5QJ9FwwQb/W4xEzh38pePKzvLRLoifJoBc1UX+rgX9PsIWCXvZ3T11RCTu2REB9PVnVF3nA3Fh3CuAPuAPylQqwDyQ8IH9ia71gWqeu9SASBvxDt+kz5N2nYLI3k8E0uFGAeHLNkh83Aufku1nfBQufEBUBGUGv+wgXzPff22e5M5HW+Vaym7y8U5p5/z18n7s31x1np94XbbHu3w5/RjEOsg6cYbTCQ4fnqGpKcr0dJ7VqzsZGclSUxNE11WOHUvy5S/v5fHH17Bv3xCrV3fiOB6qquC6HkeOJAmHDTo7E7iuh+t6rF27jaefPsi11y7i8cfXcP3127jzzp5/E5HX/1LLbxK4fwdY7Hnemb+pi/u3uPy2Afe8WeTuHY9XmLi7rlhLNBD+Z7dr2jbvTk/TGIlw2/PPs6y9nSsWLqQlFqsw6X2Dg3TE4yyoq6PgS9uXt7eT9B3m9w8PM7emhvZEgvFcjnggUGEwyoOSr1x+OaqiVKLj7ujuZn5tLWu3beN/+gOZvO/I2+XHyTUARjaLMjJSZcS7ugRM7tkDZ54pwHtqqhr5Njkp6BVk/ZIl8Lu/KzL5UEiY9t5eQb8f/KAEpycSQlPncifT5Rs2CKJ2HGHxt24Vu/e9e2HePHIXXMmhfrUSwdbUBK+9JhjfMOQyx8erjPj69QLoBweFGW9oEOCu64INolG5tMWLq2VZqirrJyZk/e/+rhjQfeUrIjrQNMFf+/bJWxMKiew+FJI5hzktDkq5viqVFad4VZXXdHRYQPUJDDgBo+oeb9qyDU/M6wx/oiidhVgYUKQdzeeBjgwLy66qsk8wAIYmNx7TOpntD+jgeli2hZXNoodC2IUCb37lK5z+sY8R6+xEURQmX3+dhsWLmT5wgD2f/zwr772XpnPOwS4WefOBBzj9v/93onPmgKIw/dZbhBoaMOJxMaM7MWIoHhewHouhBoPkfPfhMz/5SaJz5lCamSHY0IBbKsn20VHe+cY3WPrFu8jZJaays0zlZ0WOrunYjsPPxw5TH04wU0izuO0UDowepi4c569ffYZPLv8QHbXNOJ6HAnzpuScrv92Nl34cTdV4Y/hd6sJx/ub1n3DzhTLPuvPwq6yYu5jacBzVd8JVFAXXcxlIjvGt17Zz0wV/RCwYxvXEIdj1XFzPw7QtalQd42++Bh/4CBhBqUdX8JmEggw2Bg8LG24EIBoXOXupCEP9sr4MvlUV/vYv4JLfExf6v3tMpPALz5S69qv/UCLgXFf2PfxzmDNP2gpHhJHXVBwgnxolXNOKomqM/PxFwn49ux6MYuZmmDry2kmxb57n4Zh5VD2AohngOeSTY+IOH4qjqBqeY5OfHTsZpPts8sS7u2lddJGoF22TYnqKSG2L1Np75VR5KCRHCMYb0VRdJPOOjTebFAa9Yy6eWRSWfEUPSn0j7sDRk8F9PIGiG9WZODy86Uncvp2yPRLFGxuWthQF99kfoK7+HZSaOpxt30NdeeHJEwFrPoKXSlZZe0WFfBb35RewL76KnOMQiURwHAdN0yqvt5zLfmJEm2EY2LbNyMgIHT5jWSwWCYVCKIrCT37yE3p6enjiiSe45ppraG9vZ3h4mK6uLhRFqRzb6iumdF+h5Louzz77bIWFv/LKKxkfG2L+3BYUryCGcUpU6tCzP4KFx6ug3DhVwPf0/dB8P6hR6UesYz5bvl6YeiUsNfD6HMAGe0pYOjRQ/b4HBcx++W5bQ1LbPn0/NG+Vdj1T1isqBbeGktKCoigcnZ1li+8mP5HLVUDzKXV19A4OcnhmhmvOPBPH83D9sVfGNKkJBokFAhybnSWs6zRGo2iKgut5jGWz/NnLL7OsvZ1rzjyTsK5Xok0TgQCm66L76St7h4boSCRojcXQfXBfXj8nHmeu75auh0Ly20EA9GYEvBtIeRuIeV0KYd5BHOE3IqA9BdxFlYV/CDGj23zC4/v9vxASD9cBLEAY/OeAN4Cv+ufJWha1R47w9je+wdJbbsGIxfBcl1IySbC2FkXTKExPE4jHsdJptn/4w7RfdBHLvvjFijLqjI9/nHBzM4FYjNzYGG8/9RRLbrzxZMDf0cHEK69U+/tzz2Xy9dfJj4/TdcUVKIrC/i9+8SSgH6ipIT8yIoz+ddcRbGgAJURmJF9hxo2IQaguhB7USR5Nogd1dn5hJwefPsjijy7mqkevIjuapf+5fkbfGOXSey9FD+lYeYvnb3ueFbesoG5+HaVMCafkEK4PowU0nvnTZ2hf1k7n6k5h9Df2YEQNwg3hCtOuqDJZYBkWFhZT+SlqQ7UEtACKonAkeYTh9HAl8u3Wlbcyr2Yen/nJZ3j64NN8dPFHeeDyBwhoAYp2kXQpzRd2fuEkF3rLtVi3fV1l3deu+hqGauDhMZmblLg41UBRFPJWntdHX6cp2sRkbpJl7cu44dkbePSqR0loOgEnf4KrfAym9kL9+VUTN6cAyQPQtEImxzxHwHjyLahbItJwPSxS9+KEMOo48vtVVGHpz7hV6uLDc+AX9/oO8746U/c9dWZegYbzhR13TWG4XRMCDT7onlNlxstO72bWB+YlP1c9KPvWzPe3+YDcc6EwLdsDcX/Mk5HnWqAaIRdrxzdqkevwHDG2CyZOZuf1kBxn5USm3rhYXN8D/q/TiMlz8I+vFcY92iKva2wfxOdBzTyZhABIHoFARK7Bc6Td2SPQdbFMOAz3CsOvR3wjO9+sTjXkfVI0yI0KG+872ZttF5EvKRw/nmJoKM3y5e3ousoNNzzL5z63ipaWKNmsST5vc+qpdTiOx9Gjs2zatIv161fR2ipkjaoqRCIGpZKNpqmUSg4HDoyzbJm0VyhYRKMBolGftPkPuPwmgftpwGvAJs/z7v0NXd+/ueW3DbifyLhft+LD/2St+v/Nki2V+MSPf8zqzk5+/4wzGMtmGctm6UgkuL+vj/suvZREMIjjeeB5lcFILBAga5qkSiVihkHRtslZVkVa2JFIoKkq67Zv5+mDB3l73TqAk7Lcn1yzhpLjMFsskrdtNv+SbH6BphHUNFi79mRJvKKII9umTYJeBwaqEXBlGXwqJdlob70l4N1n/zHNamh6f79Q5MuWScbapz4Fn/1s1bK9LMn3vJNl+g8/DOPjmNE6Ss0duK6CqgorDtXYtvnzq6C6HD1fZsjLzPny5XI5t9wi4D4SkWOCfrn5iVFx2ayA8tlZeTmRiKz7+c/lJei6PN+wQdqqq3UJOkWpbe9s9WvYfZl7LOzHshSqrDkIc35kSPYPntDheq4/QLZFXh8JigTftKrs+vh0NW6uo1UuPCEMN/2Dsl+TMO0cGYKFnViWRfrYUd79679m6S234DkOs4cO0XTOOSi6TnZwUAaKt96KFgjgmKYA9o99jKk33iDW2UmkrY3C+DiNS5bgKQqqpvHa5s2cs349nuMwfeAA4dZWQnV1lRxgLRwmmEigqGKi8uYDD7D4hhvQDAM1EMC1LHKjowTmdTGZSzKUmqAuHCdZyNASa2A8O82i1oXkSnnqIomyMpvNL3yjkqn+p6s+guXYRIwgAT1AziwQC0YAhWggRMk2+flYP/XhBPFQhLpwgmQhTdGyeGrf9yuRb22xRlprGvjSc0+ytP00Lj11OdO5VGUiwdB0LMcmU8rREE4QnRiF1Ax0LhSWvaZOatIzKWGCIzEYOgJdp8h3QFWqjHt2FvI52PE9AeZlGX1do0jidQOOvA1/9edw99fkOYrPjrryI/jBX8GHPiYmd56Lq4o6wcND1X1mw3PJz44TrmlCUTVAwXNtFFXHcx0UVcM28+iBMFYxy+ThfTQuOA+7VCBc24JdyjPV/4rEyWk6iqrhWCXG39lF48LzMcI14DoC7EMxtECYYnoSIxzHKmSJ1M/xSydcXMcG20LHnwWLJ1AcB3foOEosgTd0HGrrULsWgAJeNosSClXy2sllfIn7JSi19TjbvlsF4lf8Hl56FnfPz4SVT9Ti/vxNlAWnoYTDeIU8BAIo5TKG8m8N8HJZlFAET9dgegq7ppZkNseuXbtYtWoV8Xi8EvNWKpWIx+MVsN3S0lKRwXueRzqdrmSwF4tFyV6vkQFlPp/HsiwymQydnSIdtiyLF198kUsuuQTDL5EpTxIoilJh+Lu7u0kkxPwrFAQFF6U8QLeOgjVwAqC+T6TuXskH1MD0fWJGZw3C8BqpV299SrLerQmJd3NToNYIs17Ye8K6OKBK5JveBDMPQ/3NUlPvzIJWJ6AClZwdoD+ZZDSbZZX/Gl3Po29wkD/6h3/gWx/+MN3+hMWewUGWtbej+pMgR2ZmGPNNWwH2Dg3RHI2yoK4O22fWFUXBdl1U/7/pONz2/PN8btUq5tXU0J9MViasdw8MMK+2lu6uLlzPYyKXI+ZPdr88MMBjV19NUNfpNwzuQSTsLQho34ew7S1AAr8LR6TsOpLdXgbp/wCsRNj05Qhzb8k7hoKA85z/+D5kcsCfJgHEFE9F2PfjwCW5HK/6MZnlEibXcRh87jkalizh7W98gzP+5E/EXO6ccyhMTGDEYujhcCUCrusDH+C8z3+eYjJJtL2d3NDQr2S428UiTj5fUVq9/Zd/WY2I0zTwvMpEwFnXX0+4tRUFKnL84swMDUvOwbElw/3g0wf5o+1/ROvSVkqpEsGaIGNvjhFtjqJqKr1bernioSvITeQqbHsgFqgC9ptXMLh7kLqFdSQ6ExhhmQAY3jdMTWcNNXNrsEs2L9z+Am3ntLHw8oXE2+OYOVOY/YiB53oomkLezqNFNCzHIllMUheqI6yHuf6Z6/ns8s9W3OavXXQtj139GAOpATb3buahKx5iMj/J1t1buf+y+4kYETzPYzw3TiKYIBFMgAf9s/1s2rWJjT0bmV87n6OzR9m0axN3dN/BcHqYzppO5tfOx/XcyvHxYJx4IF5ZV6NrKOlD4uretEq+DHZW2Pb80Mn56uE5fp9lw2s3QfMF0PFhqUUv58BH5kl9+ttbBZwnToPMEQGboSZxke/9CHT+PpzzgEwOqAEojPhAV4G37xMGPj8I0fngalCYgfrTBUDj/xhSRyAQE3DumCdI3T1fvm5VWXanJEBbC50QLXfCREDqyMlMfTl6Ti2z7sGTGXdFl3O5JpRS4ii/f4sw49E2ORe+gsgpitlc87nVMZYRkfZyY8K4L9sgLP3PbpF6+MQ8MZpTNb9uXoXUABghYeJnj8Cr98MF91fZe8eU9zN1FF65D5bfCeEmsgggN02H/fuH6exMsHPncfbvH+aBBy4nFNJRVSlnsyyHvXuH+MhHvsvv//4ZPPDA5ei6SiikYdse+bxFLmfS1BTF8zxuvnkHN9ywjDlz4tTWhgiHTzbD/o+0/CaB+8eA85D0kH3AT/jf57j/9a99tf8Glt824A6/uQz4E2vlPQ+mCwXSpRJz4nE+++yz/NlFF5G1LPKWVcmanS0WKVgWm3p7uX3VKk5vaMD2PPK+m25NMMhQJsOLR46woK6OVZ2dqIrCoelpvrJ3L4/4Drx5y+Kt8XHe395OWNO4/pln+Ozy5SfV+T165ZWUHIcmRcHwPJSjR6sB6Fu2CPMeDktG2ty5QnOXNeLl2vQtW4TiPv10AehlSf2JGe8vvyy098MPiw17KCQsfaEgkwIbNghFnk5XA9nvvFOo7YkJzOYO3jkeYtMmhTvukDi2co26bft+Vv78wObNcMcdEg9XKknW+uLFArRramT+wPOqwoKmJomMLwNyXZc2LUsuvTwh0Nkpf+PjYq4PcqkAp5/iEBs+JkZwZ51SrWGviclNrsyKBwMS+VbOWZ/NCMgPBoQlL8vmT8x9P6GO+J+U0WdycpyqyHZV8SdVXGHuHWFpLbPEvrvuovn88+m4+GIUXUczDBRdx3NdChMTEgukKLz99a9zxic+AZ6HHg4TqKlBUVWm33qLcFMT7/zVX7H0llvQw2E53nFwLQsAM5PB8zzGenvpuuIKtEikwrovWruWSGur1ED7zGlZch+c20nOKqKrGr8YP8KSOacJc2mX+POX/5Y/ef8HqYskeGfiGItbT8HQdCazM0QCYX56+BVeG3qHL1x+HUOpCb6x74c+E9/C6OwUzTX1jKamCBsGdZEairZJUDMo2RbPvbeHn4/284fnfoDZQoYzmucxlU8R9BMhRtKTnNLYiaZoeHg8+LNv8yfv/yBzYw0Ey5I/2/LL8xS/1r1JWPhEnbxOTRPpeyEPiRrZ3/ME1E+OwfKL5DM+8rYA91hC4uL8fHZmZ6Tm/Ypr5PnAYahtFOCZqJOYuHQSFpyBEwxUmO6y1L3lfT04ZkGy2OvnoODhOjaF1CSRuhYcs4TrWliFLMdf/T41baczZ9HFKJqG6zg+aeIy9s7LNMw/Dz0YwS7lfUM6FaeURzOCOFYJDxfXNrFLBUKJJuxSHruUI1InChDNAW96wmfKL8ZLpyqZ68qcTsimK3XtSm0DnueK27zn4Q4dh5lJlAWnQbwGxZMZNw9QDANn2/cEyC8+D+2qD4sJVzYjrH3PJRCJ4Y0O+RnyabmGK34XcrnKPm5tA6bjMDw8TFNTU4X91nWdmZkZgsFghYl3XRdFUXj++ee59NJLK9L32dlZ9uzZQ3d3N/F4vCK11zQN27axbZtcLndSTnyZwQ8EApimyfPPP8+qVauoq6vDtm1c12V8fJz29nZCAQ+swyjTm3xJfFQA9dg6H1DP9eXubVKTXny9CtZbHhFju4Y7JbvdHgatGexjPrhfL2y9m5bot+kH/YmAKKBCfnc1A94aAqPdr4PfAFozaSfOroERzm4R1n0sm2VrX19Fnp73J51vX7WKUxsaKDkOrwwPc05rKyHfoDVdKnH7Cy9w/2WXyW/wBPVYSzRKWNc54k8OLG9v53gqxYN79/LnH/gAn/YnsK9dtIiHP/CBCpMfNQwmcjkypRLz6+uxXQFPiq7jBoMcQ2TyBWAQkbzPIqDdF+ZW3ItVf78yONeBAMLYv4nUtQ8irvMD/t9yZGB4HGHgL0Dc5b+MgPmI395xoLlUInH8OFowSCCRkD5yzhwira0UJycZ6+sj+fbbnLdhA45pSr/c3IwRjWIXCqJw+sQnmHz9daYPHOD8O+/EKRbRwmH233VXdUJg6VLwJ0MmX3uNutNPpzg7yy+efJJF112HFomgh0JYuRyhhgbxbVBVrFyO2Xffpf6ss9CCIdIjeYozRfY8sIcPPvlBpg9N07e1j1XrV1F/an3F7Nt1pJRs+59up3N1J53dnWRHs7Qvayc1kGLvg3vp2dhDpDHC8P5hEu0Jerf0svJzKwnVhgjXh3FMh0AsgF20GXl1hI6VHXi2x9C+IRKdCaJNUdkesCvg+kQw3Rhp5I3RNyqM+8aejUT0CNFAlJAeomgXuWnHTVzQdQEfet+H0BSNkB6qAPdYIMbh6cOMZEcq0ve6UB3rnq0y8LesuIWZwgxLW5cC4OGx/vn13LziZjoTnQT1IHuH9nL53FUodlak39ljJ4PmUHM18q3iIu9/E21ftu468MYtcOzb1br3ch38vI/C+//CrzvLSR380q2+gEYXQGsmhdF/e6sY4CnAwHdhej+c+5Aw+6EWX+GknMCMd/i13I7UgZ8I7D1/sOKawnKbWWGqsyN+bboP+IO1Aszxqu3WLKiC+HCjMPepY748PvCr4yG7KMB+pE+y3QuTYjr30g1w4VegOC1O8j33ygSBlZdot5bzBZCP7oF/uKoqsf/mmfL4kq8JEM+Nyl/r8mr2PK6w7+lBWPjBquT/5fXw/tsgPleeqwHM9ATTViMTEzk2b+7l1ltXMjmZ49xz23Bdj6mpPJs39/Lgg5czOVlg8+ZdbNjQQySiE40aTE7mK7XsQ0NpzjmnjclJaeuOO7pxHJetW/u4++4LaW9PkEj8x6xvh/89cP91XeW/iYB2BViBqKW+juS5/1N//7n8O1l+ExnwZeb+7h2Pc3RmBNfzmPRdbY/OzvKVK65gqlDgrp070RSFom1z844dRAMBmqPRilGPC5iOQ840SQSDWK7L0WSS7q4ulra20jswQNG2aYnFeOSqq7Bdl77BQWYKBZa2trJu+3b6Z2e5/7LLmMzlKpE7d/b0ENJ1EsEghuuKq3xnpzDt5Sz2TZskN+0rXxF2vZyt/vTTwrSX99u6VbaXA9TDYTGpW7dO0PTq1UKDb9okoPIznxFde2enSOsXLhT5/O23w+7dYuM+f74Annwec2ya0VGFRx4RfB+LCRg/fBg+/WmpV3ecqiv8l78sn0EwKOC+LAJwXTjlFAHct94qcwuqKuD9hhuExMxmBZxbljwus/jhsOzf3y8TBdGolP8/+CCEIkh+e9nZvWSKSZ3jSEOxsKzDE8C9oEPAemtDlTmfTMr+Zaf4tC/1clx5XDSlpr2s7QdoqpW2yvs5DhVpq65ByRKZvj9AXbR2LZ2XXw5AfmxMHIdzOXDdihNxcXqapnPOIdLURLipiYOPP05xagotGKRhyRLe+au/4n1//Mfo4TCOX4PpWpaA8IMH0SMRwo2NdF52GW898gie4xBta+OMT3wCLRLBc13MdJrC5CSv33svdaefTqiuzs9nLxLUAyxuOxXbsUkVMwQ0g/923lV885UfoyqKbx6XJm8VGc1MoSgKl5y2nNsu+hie5/GNfT9kZ/+rjGdncD0Xw9CwHZuQYRAyQgwkx/jKzm9RtE1QYM0ZPXz+kv9BTSjK4tZT+MrPvs3rQ2/TEK2lIVrL2b4j/Vd+9i0ms0nOalvIU/t+gK0grPrfPCqsu+MI2O5YILL52gaYHof/9ediUodXnVQZOCyDj4VnwrLfgalx6D8I804TWX0hX3Wj1wzJeL/iIyKL1w05x3N/L67yxQKkpiFRh1PIYOZT5GaGwXVQNIOW07tR9QBGOE6kfo44xR/cCUCkro18cqwC2iN1bSc5z3uulB/kZ8ew/Oz36aOvoeoGgUiCfHIUMzeLqhs4VgktEEIPxrBLJSL17aiaTiAcJ1LbSj45ipVPCQD3Hdzd3pcqtexq+1wBUX0/Q+mcJ8oFEGA+PYGz/R9Q2jtRl5yHEgxJbbpZkgz2fBYUVcD+4vNQr/yQfOcNAy+Twnv357i7d4KioLZ3yXscCMp5SiXcvp2Vczq+gVw8HmdiYgJFUSpS+Ww2i2VZPPPMM6TTaUDY8UsvvRRN0xgcHCSbzZLL5Sou9OUc9u3bt5NMJisAvpzxvmPHDhRFQdd1RkdHK271K1asqEwaFAoFRkdHiUajmKUMeHkB7eXoN61GJnGa75dB+fg6AfLWKLizEh1XzmdHF6bd6JKB99R9YA+BEof6W8Eao1LHPr1VjnXGYOx6kdlHuoXNV4IQOhumvywyfWsIlAAh1WF5eztZyyJjmpUUlfv7+miNxQjqOqs7OxnP5TgyO8u67dtZ3NzMeC7HDdu3ky6ViBgGt65cScQwCBsGiWCQ5/r72dLby2yxiON5jGazNPtu8XNraviLq69GV1W+cvnlfHTxYjb29BAxDMZzOW57/nkypklDJEJ7TQ2DqRTrtm9nNJslpKoEEAl8CwKgy6C9DnGNH0Tk7RYCuo/4jxV5N1H87S4yEGz12yghde9NSBb8qH98u999b/H3GwM+5f+fAFJ+3blTLPLqPfcQqq9HCwTIj4xw4NFHaTznHM65/XasfJ5SMknd6adTmJqSOvVwmPM3biTU2Mj0gQMs/dznyI6MMPOLX4Dnsch3q4+0tPDKl75EbngYRVWJtLRg5fP84oT0kEAsxuv33cfY7t1kBwfZf/fdpI8fR49EqF+0iOm33iI7NEggplM7r5YrH7kSx3IqTvB7H9wrRnGWw8DuATLDGbSARveGbhZevpDsaJZoU5Rnb3gWVVe57P7LSHQk0MM6Xd1d1M6v5dL7LyVUF8Iu2gztHUI1ZJhemCnQvryd1FCKQrJA1+ou4q1xNL/G1/aqEW1berdUstcVFJZ3LGdB3QIevfJRFtYtpCXWQtgIs3doL//w9j+wftV6rjnzGsayY9y440aOpY5xeOYwI5kRXM9lJDvCmr9dw807biakh7Bci4eueIiPLv5ohYHv7upmJDPCTTtuYjQzyrL2ZWzt24rhTwhf0LlSWG4zJcDVSIikPT8IDcvAqIO6c0FPyH8zJd8wJw9aBIpT8vtdep+A9kUboTQpzHvXtQLEM/2w/zph1BffBfljsP96cZE3k+DkqucrjMAbtwkbf/5X5VzhOSc4wZsCUhPz5J6k+Gx0rENAuxYU0zrPN7PLDEnefM0C2TfeId1KYq6sV8pja0WY+JqF8rRmgTDvMd9pPjFXzuOUpH7cdeTx7JGqOrF1uYD2WKdMFvT/SK5RC8C5N0N+QurgAeas8vs3oL0brh+B33lIJhJOv1bq1lVD3u/cqEwIvLROHOqtjID21uVw5kel3YnXZf/zbpHJCdeUiQfPxgy0kkqV2Ly5l6efPsgDD+xh2TL59ScSwcr6dNpk82Zxj9+8eRd1dSGi0UBl++bNvTQ2Rkinq21t2dLL3Lm13H77amprQ+j6CePC37Ll12Xcv0nlG/B/XjzP+x//F9f0r778NjLuv4nll2vl77zseq47wSH3L66+mj995pmTHHOfP3KE1Z2dFXYh6jMUD+3dy8NXXonjeUzmcuRNk6FMhvPnzOF4KsUDe/awobub5miUm3bs4HMrV1IbClEfDvPtAwfYPzzMI1ddheXL5WtDIWaLRZqjUSZzOeaHQqj9/SjDw3g9PShHjgjILse4ZTKiF1cUCTHftEkY9zIYv/NOYeSPHBEwX7ZzX7NGJO9PPSUoOJUSuvoHPxAW/s/+TAC+oghIP3ZM0PHq1dVa1htvpHDPl5lV6wGFSKS6qa9PALymCZA+dkyA9MMPVx3k9++H884Td/hMRozpysx8+eUNDcFzz8Ef/IGcvlxi39Ehiv98XkQI2ayA9slJKdePx0Uk0NrooGYyAtZ9iSF4ApwHx6ryefCtin2ZfEeLgHQQUF6W0pu+TH54HBa0i2Sr3DdlclI/X27MjwE7WU6PMPfHRoS5r4lhWRaFbJpQfT2FiQkOPPooTeecQ+O551KcnKTh/8fen4dZUd7r3vinao3dq+em54lRhoZuQJkbjAOiaLITk2CUaDQqmqg7DlETNA4RUCFGjBrjRNSoUXDEBsQRmaSZQRG6oYGeVk+ru9c8r/r+/nhWr477nL33e97fOfu81967rmtdtarqqadqjVX3c9/f+540iajfT9qwYSTCYfqPHFFmcokEiVhMget4HCORINLfn6q/NKelIcC+5cuZfNtthL1ezDYb9txc0HUCnZ0Eu7oonDoVSSSIuN3YkskJ/o4O0vLziQcCmMtKaHN3MywjB8Mw8CfN55p6Wyhw5FGSpRifYDTM6q2v89MzF1KWXYjT05uSsltNFto9PfT4+ynMyEvNB93g8x3ZPLblVX565kJKsobxdVczRRl5dPv7KcrIoyK3mDZ3Fy/seo/7LrieDk8vPf5+JhaPIpaIE4yGyLQ7GAj6qMrIxSIauDrho3eU3D0ahrzCJOteqAB3TydMmKpk9NGIAtrZeYp1D/rBkSxx6OuBT96DH12rJPMnvlbs+7CSobaxKGz4O1x0mWLa09IUyDeZ4fWnSVz1zwS8vdizlJO7yWxVbLUGwYEuzDZHki0PqIg2SBryGKqWPVmmMyh3jEX8SSO7MzGZ7ZiSZn+xsJ9YyEd6TjGJWATdYk19PzWTRZVSB73ouhmT1ZY8dhomsx2LJR3cfaq2vLxKSdjjccjIVM7wUTV6JgE/enkl6CaM1pPgdqNNrEUzDIyOVrSsbKU+6OtVbH3eMLTM5GtKxFPyezIzlWN9RiYYBkZ7K1pmpmL6MzIhN1+dd9LBMma1EYvH6ejowOFwpJjz3NxcRAS/35+SzQ8azCUSCUKhEHa7nXA4nMpdz0xKcwbvKwKBAIZhkJGRgWEYdHR0UFhYiK7rdHd3U1paSjgcxmaz4ff72b59e8qoDpSs3pGWQJMIxLuSjvH3gGU0CkqKAti+tUPsusTBCCi2TksHTBA/OSSdN+WT4ix67oT8OxXjTgIMv6pzlyjEOhS7rtnACCbb/hpMRYrRTzHv9xDUx5IQ8EejKbZ89YIF9ASDrNi2jbuSbPv1H3yQKu+6f8sW5lRUUFdRkZLZh+Nx7vz4Y+6cPTvF1hc5HNiSBnbxZD37rvZ2aoqKUtfeNLOZN48c4ccTJvCLjRuZU1GRuq7eM3cubR4Pl/z97yl3+aDdzgFgCuAClqOi2TqAShSg11CGchUocD9MvZP4UdL3xxhyhe9GAfaZKGDfDQygQHlBsu1fUEy8jW/Xxz8F7I/FONvv/5aR3PQHHviWDH76gw9iRKP0ffUV9oICMisr0XUdT0sLEZdrKCEE6N23T3mSZGVhz8sDw2Dv8uXkT5pE8ezZpBcVsW/FCsZccQWOkhL6vvqK9LIyHMn3VIADjzzCyffe4+w//5n04mJVR3/11YT7+7EXn4GjKJf6G+qpOqeKcd8blzKR87Z52bZM1b5nlihgrVlUHbrEhUQ0ARqE3eEU015UU6Sk9lk2osEoaTlpiCHEo3H0pNHrp0s/5bwV52FJU7Xl8XAcS7oFzaThPuUmfXQ6Tf1NrNy5kqVzl9Luaac8q5zK7EoAdE3HpJmIJqJEEhHu/PhOfj3713T6OplcPJl0SzpL6pd8i0X/464/snrBatIt6XT6Oyl2FNPiaWHF9hUpkzp/1M+dH9/Jkxc9yY0bbkzt/+DZD5Jtzybdkk4wFiTTZCIj1KbY7gm/Vcz2/lsVAM8Ymaxl9yvDurG3QdZY8J2AY39IMufJkilLlvqNu3bBrp/D+VsVWy8C+27+Bzb+WRUZlz8dii+AtBIVNzf1cYj0K4l9zkQFqA/eDZMfAVvxkCQ+bRj/U9Z9MM89ER1ybve1KYbbmjXU1mQbYssl6RyRynYfLCpBObSbbOqX5O+CnBFqfcQL/Y1QWDvUvy1HOcQ3LIcz71AMe+lsxawDbL1TmclZ0hSI1y2KGT/zNnCUqvev9yCUzFAGfr42aPkIcsdAwWT1+j67ecj47pw/KcO6fY8pWb45DcIDQ8uZleD8UpUB7F5BdO6T9AXTUs7w99wzl0TC4LHHvuTppxdy+rSbFSuGHOOXL9/Gr389i56eAPPmVXHy5MC3GPepU0tS7P3SpXMZPToXvz9KPG6QlWX7T+soD/8bpfL/Vab/6sD9/2003L+sla/IKaGpv5/l27axdO5cSjIy6PL7afN4mFFejlnT6A4EuG/LFtY3NvLWj3/MnMpKvmxro6aoCJvJRENHBxVZWRRnZmI1mTBpGr/YsIHXvvoqBf4n/PnPyok+Ozt1k1SamUkwFqPQ4UiZ85RlZZFmNhOIRpnkcGAKhxVFHYnAgQOKXY9GlaV6YaFCxm1tqs590BUOFBj/5htl7f4vY+N6e4cc3JqalLv8ICLu7lZM+4kTQwZ1o0crJPwvTPICWgbHT5lTqvzSUgWcB0H13Xer9aOSg7ah0JC8fdgwtW1l8lqXkQG/+AW89hps3AiTJw+NJ2RkqDL/wRL7F15QYH+Q5D58WL10TVMCgexsRbRmOhLoobACzoPgW4DjLdDnhgmjhmTzsbgykksYqu7dbgObZagm3mpRj4ShWHNdU2Z3g/L7f4yb+5cDAomEAusjyoYu7JoG8QSJSJRoPIpus6En5e3oOmIoN3zX4cPkjBtHpL8/JbW05+cz0NRE7rhxqibdYgFNY/+jjzLmssvIKC8nEYshiQTh/n4ySktB14kHgxx87DHGX3MNaYWFGNEoob4+5Yx8/fUEu7uxDxtGRkUFAaeTb55/nsnLHuT3n7zI0vN/jtPTy0t7PuDqad8lz5FNs6uNMwqq0DUNq9lKwkhwpKuZSSVjOORs+pbxnN1iQ0fjkLORiSWjiSXifNLUwCHncX5z3jWEYxEGQj5ebHiPq866mIGQL1XzPqVsbMrFHuDgv+hbQ0MQMi127K8/A+d8V4FHi1XdfETD8O7L8E9Xgj1NvffhMLz9ogLkoIB2WroylrPZFZDPTMrn3X2qH7dLmdZZrCou7sN1an9NU21saYrR1zRoPgYjx4Kri0RuPmK1YcSjGInY/6RuPUxaTiG6blY15IlESupnJOLKTd5Qlbe6yUKg3zkU8YamJPFWu9pnsK49LRNrejZGLEoiEcVsTUPThiIAE9EgmsmCJOLoZgtmzEgihoamAHh2DuTkoYXDKq7NbEZiMfXdjUSG6mAsVnAPID5vCtAjhpLDi6Hq1g1D3RsmEpBIID2daCVJ5sbnUdL4OecgPq9i+ndtxfTdRUg0Aj4v4vcSqxxJIBDAbrfjdDpTwNpqtaYAutVqTTHxAJs2bWL27Nl4vV5KSkoIBoPs2LGDiy66KAXQMzIyyMzMTLnPA8STAwTFxcUEAgF8Pl/KxX7Dhg189dVXqWi4wXsTu1XA8KBpaaCJummXuKpFNxVDvDUJ6O8Fy8jBI6n3ILQH0s8C0cD7mtqeMrB7VLULfwPpc9QfihGE8EFIOwu0NJBwUoJfARJTzLu5DEioWDjnj4gWv8+xcC0rd+zg0fPPJ9tmU2OVyTr3S9eu5Xtjx/LnhQuJJhKYkikqIkJChP5QCE84TG8wyMzy8lT9++AkIph0nUgiwUAoRI7djlnXCcZi3P7RR9w1ezaj8/JYUl/P6gUL6A0GsZpM3P8vrqs7WlspzcxkVF4eHTYbXpRL/AkUuO4DJqEYdwF2JddXooY5/rEGHhQA96Cy3gcB/G5gKsrk7ktUXXs6ypG+BBUvJygGf9C8zoGCMLZwGKJRErEYGAYWhwNfW1uq5CijooJ4IIAYBgNNTQybNCn1/+z/h3bpJSVIIpFK/eg7fJjcsWNB1wn19qbc6tNLSkiEQsQCASyZmVgcDvytraru/Y47MKelpQxM9z/6aAr0pxUWYsR10HRiwRjdh7vJKM5g+4rt1C2tw9vu5e+X/J3L6y8nuzybbSu2qTp3V4DMokw0XSM0EMKea8dkMWHEDdyn3ex6fBcXPXkRmkkjFohhTjPjafGkauNNVhOJaILuw91klmayfcV2Zt81m8zSTKL+KNYiKwmLGhTQ0IgmonjCHoozijHEIGbEiCaiLP10KcvOXUbciPN1z9fUVdYBYNJMeKNevBEv2bZsDnYdpCyrjJE5I/FFfXgjXoocRYTjYdZ+s5bdHbtZfeHqlGndxis2UppZyortK7h37r2pOvjBGLlcsxnznn8Rx/bhVLjoKwW8E0E12Bb3gfsrKKiD3u3fBtdjb4OMUUMsvCbqt+1qgPwz1f6JQHKbrhhjkiy1afCbllD+FP5m5Vg//m71hc4akzSnHNSlMwS8EyFSBnIayvDN35Fkx/+BZIj6ksx32rcl7oaRNN6L/gtH+VblAq9pSUpUVO76P9bKWxxqnW5Rcv+ObUMy+bI6Bawblqt8944dSp6fWa5y2QfXde1W7vImm7p2hHrVeYih6tyn/UaBdzT1WjsblAQ+q0qpJCQBrq+gdBZ8fEPKjI7SOWrb57+Co6/B+MUEv/MiHk8UjydCcbGDUEhdX7OybGzd2kJ1dQF5eWmqoiFusGtXO8XFGRQXZ5CZaaW93UdWlo30dEvSOiqBxWLCbNa45ZZNvPTSIRYtqub55y8hK8vOf9bpf6dU/r+n/+TTv5S7xxLxf3+nf5jKsgp4YMENDM8rxW6xMCYvj6cvuojh2dkkDIPyzEymlpSwp6ODuAjlmZksravjrR//mPKsLG6or6c0MxNd0xgIh5lTWUlVTg49fj831NdzcmCAVfPnp6TvOXY7i6qrmVFezopt21h75Agrd+7EbjYzLD2dHr8fs65TV1lJeWYmn506RaffT1TTkK4u6OlRN72TJilTultuUX+iuq705cuWwY9+BHv3qnWapkB7ZaUC8k8/rfabMUOB9lBoSC7f2Tkkq7fbFVsYjyu6e/16Bd5jMYWiV64camsykUCno0PJ27u61KGbm9XpATzxhJKzG4Yi/W+6SY01pKWpsYjbblPjBPv3KyzwzDNw7BjMnatOa9myoc/s8cdh8WIlIoChEuWMDBU1t2uXOkZ6uprv3AnRmIbYbYoJD0UU0NZQtednVn/blK6tS4F0k0mtt1mUDP5Eq3oPo6pWHMNQ60IRyHIo4J6VoYD8oLQ+Gksy+KLk9PEElBWq9b6AukBrOrR0YrJYMDscIIK/tZXe/fuJBwL429pwHT7MsNpaLOnpBHt66Pj8c7558UViwSDDamrQzWZchw7hbWkh5vcz9e67SS8poffAAYLd3ZhstpQDsa+lBUQYe9VV6Far2maxkF5YyLT77iO9pISCqVOxZGaiaRqh7m66du4k3jfAdTO+j4bGS3s+YHPjl7y05wNMmk5t6RnYTBZ0TedQRyPReIxJJWMw6yYmFo/ilb0bmFgyil7/AA999Dwd3h7GFFSx7OMX6fb1c87oadx29mISRoJ0q51efz9nlo/DYU1jStlYsu3pFGbk8fuPnqfN3c1BZxORePRbfbv8bo72nMKsmzA0iJ33PfjkXfVl7O9VknkRBbDTHGoQ5cQ36nvwg6sVi+51Q69TMeQ5+Wre0wEDLgXg8woVA1w+UpndhYMKkF52g6rHsFhVbnyvUwH6eAxKyhU7n1+EyVCGZrpuIhpwEwv7khL4UnSzjfT8MuKRIIH+jiRoV0Z1wYEudJMZEDRNRzeZEU0jPbcE3aTqtiWh4t0QQUNIxCKYbWnEQj71O0Ewma2IkSDQ71Q3YkDvid0AmG3pCsBrGvh9JDa9i+bIUNL/gX6MbqcaGDEMMCsTPOl3KZmLpqv7Pp8HragE4nEkGiax8V31Poko0zmPm8SGt9X7rIFeORLNbFay+Jw89DnngC0NvXIEWkER+oJ/UuepaWg5ueiVI9ATcex2OyaTifLycjRNo7u7m2g0SjAYJD09PeUq397eTjweTxnLVVZWYrFY8Hq9lJeX4/F42LRpU4qBD4fDiAhtbW0MDAyktg0ODJSVldHe3o7b7Wb+/PlUV1czd+5cdF1P1caLJNASTui+QZnSDbrCu5aBBFR9e/FzSrouMYidgK4lIEGwFELXjRBvhszvK4Det2JIDt9zV9KQLqBAu+6AtBkQ2q/y3RMuJY/X0tXNfvSEAvPxHmWMV/oOUbtitP95xgxCsRhxwyAcj7O9tZXyzEwO33gjT190EXaTibTk+7izrY1QPI5J0yh0ODhj2DBqi4q4ZdMmTrvdGElpfCAapT8YxB+NYhgGw9LT8YTDtHk8mHWd9Y2NdPn9CPDCd7+LWdfJsFgoy8zknrlzeWfRIqaWlBCKxZhbWcnovDxMJhMlQD5K4j4V+BNKzp6N0jG4gLNQ2eyJ5HItikk3J5dvQoHyk6j89gRKBn8bQzXutuQxBqcESmJfCjyTXPdLIBSL4W9pYfeDDxLs6kJEiAYCOMrKmP7AA6SXlOA9fZoDf/gDaBqFZ56pykwSCRLhMEfXrKFgyhR0qxXNZFJmo0nZfVphIfFYDHN6OkfXrFGy+OeeQ9N1Qi4XXz39NKHeXsQwOPL88+RPmkSot5e9y5aRO2ECutXKmffcw7CpU/nq6acJdHQQC8eoX1JPsDdIxewKtq/YTvNHzVjSLVTWVXK3+24q6yoxO8xUnVOFyWoisygTI2EQ7AuSPiwdI24QC8YwWU34u/ycu/xc0EhFwAFkV2Wz8OmFWNIthD1hTFYTZTPK2Lnq29J8R6EDLHDac5odrTs47T7NzZtuxmF14Iv6ON5/nF9u/CXdgW5unn4zXf4u7vrkLsqzytE1nZs23oQv6sMVdHH/lvvpDfZSV1lHQXoBCUlg1s3kpuUSN+Ls69zH3Iq5PHnRk1h0C89e/CzHbjpGbVEtVdlVPHfJcwxLH0aHr4NWTysFjgJu23wbEdGQ6nuGZO6WHKh7S7m8+47Dvl9BsFWB9vRyQFfzA3dBqEsx50eTbIRuVQAz1K3mBbPUbz/uh0O/VeBfYoqdD/dB/3717Yv7FQvvP6nA9fg7VJuMkckBwYQCs0ZUPY94AVFtB2vcDUMBa2uGktW7mxUgN2IKDJvsCmBHvMkbKtQ9SSKqWPCoN2kgYVKg3YipuvZBNWEiomro/e1JczxNAW5dV4MHGeWK8c4oV/02LFcM+Z6VUDVfsem+dsXIB7qg6gKY+6h6XfGQOrddD0HAqc531gOQXqSu5Z5mBdpLZigHeu8pxeKjQUnS5X/GvQq0Z5TBJzeo85y3Mim7vwsjHODWWzfz0UfNNDcPcOutm+npCSTLocrJy0sjHI6zdWsL7e1e5sypZPfuDg4f7iaREEpLM3A4LLS0uFmypJ7Tp9309gZIJIQVK85j8eJJ3HvvXEym/7rw9b/uK//v6X86xRJxXtj1Lpsbv+SFXe8STcT+H+93qt/Jgx89R7unJ7U+YRjscTrVzWAgwC82bqQnEGBGWRmuYBBvNErCMJhZXs6qnTuZU1GBzWzGYbUSjMW4ob6eFrebwowM7pg1C6fPR4bVynOXXMLwnBy+6e3luUsuwaLrrF6wgMWTJvHrWbPY2dZG3DDoD4fp8vuJxON82d7OtNJSZldU0O/zoaWlQU4OWnq6YtcHC8YffljZq3/0kXJ9e+stqK1VTPn27TBtmir2PnVK0dy6rnTpwaBi6NeuVYZ0dXVw9KiS2Ltcqs+dOxV6bm9X6y0W5Tz33HOKdX/ySfD7sZgMysuFZ55RNeuDuP/ssxWANgwFyk+fVoKAtWtVrFswqGrgLRYlda+rU9c5v1+B7nBYMfe3366Ive3blQ/fX/6i2PrU5xlTgoElS6C4WA0CmExqsKC2FrZt14cGOEwmdcCmFrWzSR8C8yIwqly1jcUV4AZlIpeVoaTxmQ7VT2unAuft3ckRaBnKex9TqUzwsjMUCz8I+nVdMfCD53CiVW3PdEBbV8oU7sjzzyuzIZOJjNJShk2eTNjjQQyDgsmTuej99znzt78lraAAzWSi7+uvsefnE+7tRTOZ8Le30//NNxSeeSaZFRXoFguNr7xC64cfcnTNGjSzGd1k4sizzypzM10nlnQv3rdiBfFgkLT8fCSRIHfCBC54800kEKQgZsJiMnPdjO+zYOwsrpv5fdIsNnRNo9PXx8Of/pVhjlzsZivReAxDDGxmC0tmXMqCsbMoyszjtrMX4/K70TUtyah7Mek6aRYbcSPBik/WUJiRxzmjp/HMzrfo9LrId+RiNZmZXHYGr+3byJiCSvzREDazletn/IBZVTW4gm5y0zJ5+NO/0u7uIVZYCj/8uWIUNr4BI8aCZ0DJ5Pu64XSjqmG32pV7biKuQHnFKAUWQwFVE5+ZowB5JDxUL69psP5v6rsRDau+wkHVfzQMZSNUlJxhKPZ+5ARwdWG0HlfGcLEw9qwCdN2CI6+UrOIx9B7fRSzoQdfNmG1pBN2qllkzW0jPLUGMBF3ffJF0f0+k6lHEiKfc53WTBRGD4EAnJls6Nkcu6XmqZk/XTYS9PSDJ2nl3F7Gwl8Kxc9B1E2IkiIU8YCQwtn2qaty//EIZ03ndaI4MVa8OQ3J4RxbYbGgWxVLrlSPV99pkArMFfeY8Bfx1xXxrWdmKUQ8F0WxpYCSQRBwGXCQ2vgMZmWCxIH6fYtnNZkQ3QcBH4sP3kWgEi65jMZsxDCNVs15aWorP52PLli14PJ4UU15ergiAzz//PGVY19bWRnFxMTU1NXi9XpqbmwkGg1RWVpKVlYWu65SXl+P1emlsbOTLL7/8VpxcZWUlOTk5WCwWLrnkkpRE3+fzsXnzZsBQtee+taqGXcLfBt9dSxRYNydLkPpWqLaGd+h530q1jCi5vOOCoT41k1pveJNSVg3SZ0GiU8XOJbrBXKTc6c0Fqp5egqA5IL0Ok6ZTnpXFY19+icNqpcXj4bbNm6ktKqI0K4sMq5VbN2/mxMAAoXicmzdtojgjA7vZTIvHw/bWViLxOGkWC3UVFaRbLCQMg+b+frr8fgqT+e/tXi+7OzooysigKicHh8XCe5ddRnlWFrd9+CGJpIw+Ly0NEaHD62VuZSUWXWd/Zycn+vtVWgvKaM6BAtxmFNjuQIHwm1Gmc27UGJwdWIYC7bNRYLwduAMlnXeiWHg36obyaRRrHyHFbzIC5TKvo8C9oLLhjeRyMBrlm+eeS/2fxvx+Yn5/isk0YjEaX36Z/EmTQATvqVPsvv9+gp2daBYLZ95zD1ULF6KZTMSDQSSR4Eiyv29eeAF7dja9+/ZRff31VF54IdU33IBuMmFxOBh/7bVklJej6TrV119P8ezZHF2zRgH4np7UccK9vSnQr2sGFXMqUvXlC1Yv4JYTt5BekI6/y08sGCPgCpCen07N4hpCAyFVqy4wcHIAT4uHj3/9MWIIYghV86owpyl1Y9AVZMt9W/C0eECg/0Q/7bvasTqshPpCJCIJ5q+aT/Wias5/9Hz8XX423rQRA4OHtz9MoaOQFdtXsPbIWjwRD96Ily5/F3fMuoMObwdVOVWs3LmStUfWsmrnKgwxWH7uckyaiZU7VrK+cT1tnjYMMfBH/bS4W9jdsZsufxcNHQ1ML5tOeXY54XiYSDyiBjA1E32hPky6MjS98+M78Uf9zCibwWNfPsb0suk09Z+iTRzIjBdUZjoGDJsJMY8C5K1rlaO8bZiaY6h561q1vfgCZSCHocBxqFMZ0IW7lRld/34FrmuSrESoW8XODTrM771F7XvmE5BeqnLcLdnqeME26N2ZVFbFlAmcpg+x0omwqns3Ymp9RrmSrfs7FMjWtGSduHeoNn4QpA86FQ660Vscqj/3yeT9klWZ2Q0OAphsqoY+a/gQ6Ae1ryRUnnrjWjU3EsohfvxiVbeeUar2/0dwn1muBgACTthyqwLzU28bcofPKAOrQ703WSOU9L5zjyoZ8LUp87tgF3x2i3o9WZVQNg/2P6EYd5MNLJnK4M6chsli5t575/KTn1TjcFiZM6eCVat2Eg7H2bmzjeZmNzfdtImCAgetrR4SCYMf/WgCNTVF3Hrrh/h8UQCcTh/z5lVSXp5FRoaVnTvbsFhM/OUvFzN8eA76YLTwf8Hp3wTumqb94H/HQTRNu/R/Rz//Pf2fnywmM9fN/AELxs7i+pk/wJo0Fvn3pn8N8Jt0nbLMTMKxGHazmXOqqhSjruuYNI1un4+ReXnomsYzF1/M5RMn0tzfT6vbnTLsSbNY6Pb7eezLL5lcXMxptzt1szO1pITm/n6W1NfTGwzy9MKF9AQCVGZnYzOZqEpmuN+0aRMFDgeZNiWzLsjORkIh5dB2+rRCvUuXKr34Pfcog7rduxVqnTdP0djl5Uo33tCg6G+bTdHcDQ1KHl9SouTy9fVKIt/SAvffP5T/npOjKOxEAvr6FBIfzKn2++HOOxXwz8ggERNWrdJYtmwoHj4UGqpJ3717yBOvrk6x6WefrQD+nDlK7Z9IDJnZiaiXcuutaoxixAjVR2Gh2sfnU8y+369wgs+nyP/169V4wuzZSip/552KsZ810xgyorOYof0fzOYSCcWAWyyKBQfFmpt0tRyOqgi37IxkNnvyD3jQ7G5kuWrjCwwNAjS1DEXIDQL8pKSSppahfLtBhr4gl0RlMYlQCHSdqXffTUZ5OWIY9H31FUY8jj0vD197O73796sMdquV/Q8/TDwQoKCmBkdpKQVTpmBOSyO9sJCCyZMxDINEJIIYBlOXLmX4JZcw4dprMVksKbYm6HSy/5FHMKenk15YyJm//S0mux1vSwt7HnqIcH8/acOGYc/LwzYsn3Z3D3aLld/Nv44ceyYrP3uZuGHQ4+/nqrMuJt1qo9vXzx+/eJVgNEzcMCjNKcAQIWEYWJIA3Ga2UpJdwOTSsZg0E/1BD2bdlDK6C0RDbG78ki5fH+3ubp7Z+RaTS8fy63Ouwh3y8ecd62h3d1OWXUBRZj6TS88gy+7gZ2ddQre/HzESSuqu63DFTTDtbPj8g6Q5XTaMGK/y3D39CryfblTfBZ9H5bS7+2HUePC5FXi32eGCHyn2PhxS5nShIHz4lurL7x1i6+1pSkofTN7MGwkY6EXGTCQWDijDON2EyZpGcKADXTeRP2IqruY9yRr3kALvA13Egh46j3yGiFA8fp5KBDj6BbGQFyMeJeTpQddNkMyFFxHsmcOIBtx0fPUJkogRDXpwHvkMs82BIHQe+Qx7VgEWeyYmi5Wgu5tYJEAs5Mcw4uizv4NWPRl97nmIpqta94Af07kXQTxO4sP3FRtvt4HVpszp6t9S77lnQIFwzwDk5iH9LmVCN9Cn1msaWnmV2mfD2+D3gcWKPv+7agBABBnoQ9NN6iEG4nGrYwPxjjYG3G42btyYYso1TWPnzp0cOXKE7du3o2ka5eXliAhms5np06cn2XChoqICi8VCW1sbWVlZXHfddWRmZrJx40YMwyAWi9Ha2kpWVhY//vGPqaurI5FI4PF4KCwsJBqN0tfXR319PW63GxHBMIzU8Vtau5DC1TDiKKTPVXFs+b9Ngu/HIW2OAtHW0SAR5faeuUjFvA3uV/hH0HPVd8dcrOTug+20tCRIvw/iLRDcqUzpYt1DfYNi4vsfSw4gtCt2PtZEIuZk9a5d3D1nDukWC8Nzclh5/vnYzGZ2tbfT6fMxvayMVTt3omsad8yaRZffj0nXqcrOZnZFBZ5wmIRhsLimhlA8zq1J4F+S9Aywm82UZ2czvawMbySiDFgHBphTUcGK7du5efp0Wjye1IC1SdOYXVGBLxrl1s2bKXA46PT7cYfDeBMJdFSEWy0KtJuBOQwB8nQUuG9AAe/bUfXqoGTwFSiWPoEC82NQsvudqBr4fBTmeAQ1CBBOrjuNMqVrS/ZlBuYDw5JGopUXXsiEa6/FkpGBPS8Pf0cHux94gLDLxZlLl1JcV4dmNmNOS6PwrLMI9vSgiZCIROg7cgR7Tg6I4Dp0KAXSJ1x7LYlYjO233aaM7O69l2BnJ762NtA0MpODUd7WVkxpaaQXFVG9ZEkKwA+C9fyaGiovvJCJN9yANcNGxZwKtj+6Xb0naRYkIXhaPWy5bwuB7gDWdCsbbtxAxBshFoix6ZZNiAjlM8uxOCyc+/C5WNIt+Lv8RLwRjJgBKJb9/JXn43P6EEPYuXInhZMK8Tl9bLl/Cz6nD6vDyiXPXYI1w4rFYWHhUwuxYmX1gtWMyRvD0rqlLKpeRLYtmyJHEVNKppBly2JqyVTSTGmp7Y+c9wiBWIBQPERCEqyav4q3fvwW5VnlLKlfQjAepM3bRoGjgDZPG4WOQnZ37EbTNDKsGcSMGN2BbhxWB+3edsLxMDtad7Bq/io0NAbCAyydu5QLRl2A0+/EZrYh/pPKMC7UBZgUeB5/1xATb82Ds55W8vjxv4VLmlS9enq5cp3ffSP4TymmfMoqFeFmTofcWjh4F6CrZX+zAvdpRXD0MRg2S0noxYDIgGLqLblKbu+oVIz+YMyZyaKAayKiBvZMVgWkE9HkF9c2tC5vbJKtPpk0sdPUNk1PytyTZVAaqk5dEgrwDzL2nlPqnBNRZfI2yLQb8eRAQNKkbtDoaNpdit2ecY8aLEgrUDJ4UOZyUb8C6Y1rVYQboo4f6ILTH6kBhJyRkF6Mqh8zkvt0Kll85y4VATcI2odfoNj84umq309vUu3OWQ1jfgi7lilmXreCJQNDTFRUZNHVFeD++7ckgft8Gho6KChwsGrVDubMqSAry8bcuZVoGvT2BjEMYdmyc7FaTfT0BJg5s5wrrpiEN6k+mTGjjL6+IPG4QSAQxe0OE43+rymC/7NM/x7j/ramaV9qmrbgf7VjTU0Xa5rWAKz7f3d6/z39R08Wk5kReaX4Pmxk/rR5WM0WDh48mNoeiUS4+eabGTNmDJMmTeKnP/1par8zgrl0P7uT9Xf/hXPnfodDhw6RMAw6/X46/X7u37KF740bh9Pn44b6egKxGKVJx9udbW1E4vGUgZzNbCYYj/OnhgYyrFaGpaczp6ICbyRCq8dDgcPBTZs20eb10un3s/bIEZZv20Y0kWBqSQnD0tPZ1tqKDikJ/Z8aGihM3sCY43G05csVVb1ihWLM29tVtnpGhno89ZQqBD95UqHfzk6FdgsKFHoeBOPTp6sMtkRCoeupUxWtPdj/8uXqzQsGVWZ7SwscP66Wm5sVrd3bq/pJtrUGB1i10sDlUjL4wUMahgLr06crAj95n4LJpNj0EycUkJ89WynwH39cAXmbTb2khx9WQL2nR5XojxmjCH+7XeHsQWa/qEjV0b/1lhqvWLJEAfhZsxTAT08TtGhM1ZcbiSGH+UHmOztD1as70oaAdyyulv+RWU+aCSlqxwpnVCmwbjUPudS3dw8BchgC+INu9iPL1eBBdgYUKkM/NA0DIRYKoZtMRAYG2PPQQ2AYyn348GGMaBRHUZFa/vprtCTAR9PoPXyYUG8vvQcOkIhEiHg8xPx+gp2d7Hv4YXwtLcSDQc763e/IqFQ1atPuu4/hl1xCqLeXsT/7WUpu73c6SUQihHt76fj8c+WeHIkQC4UwEOwWC6FYhIc+foGBkI+b6y7DpOkUZuTxyt4NhGNRuvx9Sr4ecLPs4xdod3djN1vpD3lZ+dnLtLl7ONDRSCKRoMPTw1ddJwjHonzTfZLK3GJ+e/7PyXfkcPH4OiYWK5f4QWm+rmnfdqZHCERDPPzpXwnFovSHvBRm5GFGV0xvd8cQU77o+qSEL6nAsCbVD1YbjJmk2GG3Cw7uUjL7GecoAO5zq7p1e5rKfM/KgWnz1LrLf6E+a4t1iK0nuZyZk7whssLIcQDEI4EUo65pYM8soPObLWi6roA54MgrS4H3WMhP0VhV19n5zRbikSBpuSXEQn5MFivpeWWIGEg8SlpuCUYiRiIRw3VyD57ORhLxKK7mPaTnlqKZLGi6Tv6Iqei6ieBAF4lYVEnudTPpucUYRhwys9HPvgDSHer3YjKjl1Vi9HSCz4tWVpFi44mElQt9o/pOao5M9PnfVXXquq4Y+2S0m1YxHMwWJZvPysE0/xJlepeuDBuNthY0kxmtrAqjs53BokutYjgSj4HFilFexbZt2zhy5AhffvklZWVlmEwm5s6dy+WXX87ChQtTcvj29nYMwyA/Pz9lXLdx40ai0Sjl5eVYLBYcDgc7d+5k5syZaJqGYRgUFRVhsVioqqoiJycHTdMoKysjFosRjUa/NUgwCNwXLFjAHXfcofLfEy6InkJIKPbbXKYAeNFTyvXddb+S0UsMzCVKOq+nJyX190OiT2Wzx09B9y0QO67q3Yc9CBjKWT7vDmVIZy5QNfPps5W03rVMmdZpFih+Hso2KhCvmUBzYMXL4wsWUJKRQaffjyFCXyjEzcnB4k6/n/kjR7Jq/ny6/H7+1NDA5GQ+uKZp9AWDhGMx3OEwApRlZnL7rFn0BALs7+ykeWCAX27cSKfPx66k987yc8+l3eslahipmLnyrCzqKitxh8M0DwywpL6eTp+P22bOJMtmo66ykhy7nSKzmW5UDXom8DjK3V1Hydtzk49iVP36Taj69Mkol3gvCtgvV+8cN6EA+R7UQEA6CsALKvM9DRUZ14YaGJiDYvvNqEi5MsASj5NRXs70Bx4gc/hwLBkZSsre3U3H558rabumkV5YiNlux5qVRfn55zOstpaQywUi5I4Zw97ly0GE7FGjMKWlMe13v8NeUIAkEpSdc06q5t2el6f+h6NReg8cQBIJrOnpbPrBD9jz+9+TXlJCWkEBE5Lgf+INN6CZTEy66Sasubmgaex6fBfTb57OwMkB6m+ox9fpw5JmoXF9Y+r5wj8vxJZpw+f0UT6rHH+Xnw03biAWimGxWTASBv0n+vF3+7E6rMRDcQaaB/jkrk/ILMvEZDNx0VMXYc2wsuvxXRxZe4SdK3eqmDkgEUkQC8Sov6GesCdMb6CXmzfdzLD0Yaw8fyUHuw5i0k10+jq5f8v9OH1OYkaMiqwKnrvkOTJtmaSZ05T/hhhkWDOoq6xLMfYrtq1getl0egO9zCibQU+ghwJHATdtvIlT7lMAqX7nVMxhr3MvP1r3IwAe3fkoNX+pod3TTmlmKXMr55JjTUMPtiuJergLjJC6pmedoaLdMkYqQL33JmVMlzUGrLkqj91/CtJL1L4mu2rn/gqCp1QkXNgFY25WYN21S+XEZyQ9L6rvgYofJyXsfUqeb85Q16zenRBogahbsf/WDKUYyyhV2xORIbbdmqW+2RGvYuVBgWx/uwLdiZi6IXM3q/8HI6YAsDGoXNWScveyf2Dsk2DdmqkM8Qbd6P3taiDA365Y/UREAfXsUXDuU6pfz0lwHVLrdbM6bqBTMeFjF6nc9UFQXjgVFu9RcnnnTnVOSX8XQi61r25WDvL7HlNA3ZwGjjI1SPAvAfzHSxQTXzxdyfX97RDqQ3QVBd3R4WXevEoyMqxkZlqZPbuC/Pw0Vq2az5w5Fdx//xYCgRitrV7uv38LLlcQXdfYu9eJw2ElHI4TCsV56KGtdHcHiEQSnDjRz+nTHn71q804nT6i0QT/JScR+VcfwK+AftTAaitKMXUO4PhX2juAc1GpH23J/fqBf/63jvP/tUdZWZn8V5+++OILaWtrk6qqKjlw4EBq/a233io333yzGIYhIiKdnZ0iItLf3y95eXmy+8BeicZjsnXrVqmurpZILCbuUEgWrVsn9mXLpNvnk2O9vbK3o0Mae3vFFw5Lp9crbW63LH77bTnQ2Sn1jY0ykNzniV27ZG9Hhyxat072dnTIQDAo1914o6QXFAgg81eulF6/X3700ksyYdIkmThpkkyqqZGqkSPFZDLJm7t3S0N7u3zvhRfkO+edJxUjRkhWRYV8tmmTyMGDIosXizidIn19at7eLuLziRw6JLJokcjAgJqDmu/apeY9PSJ+v0hvr0h9vUhbm8iBAyKLFsktl10mVZWVAsiBd94RcTrFdeKE1ObkSC1IbW6ujBkxQkwmk/Tt3i2ye7csv+oqOWP4cNE0Td599VWRq68WnzchR4+KPPWUyMaN6lS83qFTO3BgaP3gaezerdZ5vSL9/Wre0yNy/LiIxyPidovccMMtUlZWJYBs3XpA+vtFjh93yaRJtVJdXSsTJtTKqFFjxGQySUtLnxw7JjJ9+tWSlTVGqqtrZNq02fLlji9FjpwQ2bJH5OhJkVhMPSJREV9A5JtmkXBEJBoTcQ2IbN2r2ocjQ9ujyfauARGvP7X/Lb/4hVRVqfM7sHuPSDgsrlMtUjt2vNROmiS1NTUyZvRo9f51dYuEw3L15VfIpIkTpbamRs4680z5ZNMmiQWD0n/0qLhPnpT2LVvEdfiwBF0u8bS0SKivT9q3bJH+xkbxtLRI2O2WUF+feE6fllB/v4TdbmnfulVchw/Ltttvl/6jRyXocqX6ueaHP5TKigoBZPeOHdK+fbu0Hjsmk6qrU4/ynBwxmUzy1fr14m5uTh3zvZdeEl3T5NGHHpJgOCj9AY/cuX611Ky6TO5cv1p84YD4woFvresPeMTlH5CTrnZ5bd9G+W39k+INB2Rr8375ynlctjbvl6+dzeLyD0ivb0Bu/OUvpDL5Hfx0+xb5bf2TsuvYAZk4aaJMqpkk46rHS25pgZhMJjnRdkqaultk5pxZUllVKaPHnyFjq8fLT2+/Xu5cv1oOO4/LnetXi9/TLxLwixzaJXLymJqHgiL9vSKnmkT+slzE7xVpbVbPW5tFutrV/NAukYG+oW0DLrllyfVSVV6uPucvd4oE/OI61Sy1kyZKbfUEqZ00ScaMGikmXZe+Q3tFBlxiPLNM7r/rThkzYrhMLC2Ss+fNk1g0LNGQTyJBr7Tu3yCBgS7pPblPWvdvkHgsIrFIUMK+folFAhKLhiXo6ZaWfR+odqf2i6erWeLRkMQiIYkEvRIY6JKWfR/IL5Zcm/od7961QwIDXXLw09ekpmaS1NRMkkkTq2VEZamYTCbp7uyQaMgn06ZNk5qaGqmpmSTVEyYIIAf37JFEMCBGMCAJn1eMcEgSnR0SW/eKJNpbJN54RBI9XZLockoiEpaE1y2JjlaJN30jCa9HEr3dav9QUIxwWIyAX4yAX27+xS+kqlJ9B/c37JJEMCA9jUfVb2TcWKmdNFHGjFT/M66ODjFCIdm19QuZceaZMrlmkowbM0YeWfaQhMNh8Xq90tvbK16vV4LBoPT19Uk4HJZgMChNTU3S1dUlfr9f/H6/NDY2SldXl/h8PmlsbJSBgQHxeDzy9ttvS1dXV6o/r9crP//5z6Ug+V/95ZdfSkdHh6xZs0aqq6ulpqZGJk2aJKOTv+Xjx49LOByWbdu2ycyZM2XixIkyYcIE2bTxHRHvRpFoh0j4qEisXyR0SKR9kZp760WOopZjLpHYgEh8QCTuVusGt8X7RcLHRaJtIlGnSNwjt9z0c6mqSv5XN7wnEusVibtlw/rXZcqUWqmdkCvV40rkpRceV8eOtkt3+2FZcMF5Mnr0CKmeMEa++KxevOFw6jp1MHkN44EHZNG6ddLr90uXzyetbrfUNzbK6YEB6Q8GZX9Hh2xsahJPKCTuUEgGkuvqGxul1++XJpdLFl1zzbeuda1ut+zt6JDvLF0qE2trZWJNjYyfMEFWP/OMHO3tlXaPR35z330yYtQo0TRNnn7lFTmcPJ/eQED8kYi4RaRJRNpEZK+ILBKRgyLiFJF6ETkgIouTywMi0iMiXhFpT65vF5FDyf32isi8W26R9OT/9esHDki9iPSLyJsbNsi4KVNkRG2tjKuulkdeekk8yX2GX321VI4ZIxNramTa7NmyY9s26T96VHbcdZcEursl4vWq/+djx6R9yxbpO3pUIn6/RDweCbvd4j55UgI9PRLo7pZtt98urq+/lqDLJcf+9jdxHTki7Vu2SKi/X6J+v9z0i18M/Y537pRAT4+4m5vl7ddfl5rqapk4dqyMyM+Xpx9+WDynT0u4v1+u+ulPZVRhoUwcO1bOnDJFNtfXy5dLl8prEybItttvl7DHK8H+oARcAXl78duy64ld0nu0V8LesDRtbJLOg52ybtE66djbIZ52j3idXvF1+2TdonXyAA9IY32jdB3qkqaNTRJyh+QX1w/9X3/+3ufSvrtdXE0uefXpV2VE7giZNGGSTBg3QR65/RHxOr0S8oQk5A5JaCAkD5z3gOiaLiseXiGL1i0SHkAWrVsk3/R8I/ud+8UdcsvR3qPyVMNTsrFpo7hDbjnuOi6HOg9JfWO9HOg8IIvWLZK9HXvFG/Z+a93BroPS5GqS6268LnV+T773pDzV8JQc7T0qr771qlSMrZAJkybI+Anj5c/P/VkWv71YnF6nnDnrTHEUOGRs9ViZVDNJfv3gr6W9/4QY/QdFti0S6T8g4tqrnkc8IoF2kbBLpL1e5A27mvcfUttdDSKeJrW8Y7FIwCkSdIqE+0Q8x0SOPSG3/Ghs6v/wwK5P1f6u/bLhvTdlyuQaqa2ZJNUTxslLj98uEu4XCfWK0faB3H/ndTJmRKlMrB4n35laLBILiET8In2NIrGwSDwi4usQCfap9cE+tS4aUI94VCTiE+k7pp73HRNp3662BftEIl6RYJ/ccvNNQ/81e/eIxGMiEZ9seOcNmTJlstTW1kh1dbW8tObF5H4+mX7WVKmtqUluU9eTQ3t3ivQdFdn3hMiGxSJhj0jPQZEPFok4G0Sa60XCbnXcsFvE2y6y6Wo1D7tFAj1q7nOqR9gj0n9cbvnlEqmqTF6Pd21V7Zo3yoa/PS5Tqkep92/cKHnpqYfVsZ7MkYaP18mM6Wep68mIYll+311y6FCXLFq0Tg4e7JT2dk/qeX19oxw61CVeb1gWLVon8IAcPdqber5o0TpxOr3S1uaWvXs7Uvvt3dshY8culNJS9dn+6U/vSUNDu9TXN8q6de/JlClTpLa2Vr13L72Uwiq7d++W2bNnS01NjdTW1sqnn376vwse/YdMQLv8a9j8X9uQaqBSQJ5CGYMaSTAeA04Be4HPkvNTyfWJZDsf8CQw7N87xv/XHv8N3NUUjceksqpSdu/dIyIifr9fMjMzpbO3W6Lx2Lfa7tmzR8aMGfOtdZmZmbJv3z7xhsPi9HpTj0GA3uRyyaHkTUWP3y97Ozpk8dtvS6/fL+5QSA50dsqx3l6pb2yUhvb2FKDf9PHH8tH+/ZJeUCBvfPyx+CMR6fL5ZL/TqW6currk7gcekAUXXSTecFiOu1xy+ZVXyt333COL1q0Trr9eiktKJNLSItLVpQD8okVqvnGjQrf19SINDSLd3d8G+IMPv18hYadTgfbubtXmqafki/fek7ajR6WqokIOPPmkyOHDCkEPHsfplFW33SaXlJWl+mvYsEGaDx+Ws6dPl3dffVUinX1y6JAhixcrAN7frw7hdCoQ3tAwNF4w2O3u3WrbIGg/cULNfT71kgYGRI4dE3nnnS/k6NE2KS+vkvffPyC9vWq/QaDv9YrcfvsqKSu7JPVyX3vtfXG5YuLxiPztbx9IZWWVGL7At8H4kRNq7hoQaetSYNw1oMB5IKTaDYL7WGyo7eByEsR/sWmztB3+WqoqK+XAnj1q2+AgwZETIoGgrHrkEblk4UK1fzgiAz296hiRqOzfvVtyc3Ml5Hanbur6jx6Vbbffrm72enok2NMjEa9XvK2tEg0EJNTfL57Tp6X/2DEF1I8dk4jPJ9tuvz11sxb1+1P9bH7vPfnqiy+kvKhIdm3ZIhGfT/qS+w7eRF5RWChzRo+WqN8vEa9XYsGg9LS1yfiiIjlnyhR59Pe/F6/fI1ub98s3XSflzvWr5ZuuZunx9Ys/HJRj3aeT605Kt7dPGpPLRzqbpdvbJ4FISPoDHmnpd0p/wCvecEB6ff1y0tUuGz/aJFsP7JKswlx599MNcqSzWU71dUggEpJe/4B0e/vkweUPyXkL5qcGCmbXzZEf3nNdaiDgpKtdGrtPy9bm/XKs+7QEwgGRcOjbwDwUFHG2KWB+qlEtd7aJfPKeyPOPingGVNuAL9m2VeTT9SIBv3yxaYO07d+tPucd20SCARGfW/XVpsD+qqV3yyXnnSPi7hMJBmT1TdfLDy65RCKnT4h88p60Hzks0ZBPQr4+iQS90ntqv7Ts+0BCPpfEIiGJRcMSiwQlFglJ2Ncn0ZBPwr5+6T19QKLhgMSToL/twCaJhnwSj4Yk7OuXwECnbHrv73L6VLNUVVbKnt27VF/RsMSjIYnHIuLpOinLf/87WXjhAgl6eqRl3wcSdHdLNOQTT9dJeePvr0t1dbUC3F6PxNa9ItFld4kR8EvC1SOG35ec+yURCooRCkrC55X48aOScA8ogN/RptqEgpIIh8Xw+xXQ72iTzz/+WFobG6WqrFT2bf5QgfuAP9k2JEbALysfuF8uvugiMfw+iTcdldpJE+W9t94Sw++XnoYdUpCfLwf37JGuri5pbGyUQCAgoVBI3G63dHR0yLp168TpdEpjY2MKtPv9fnG5XClgHwwGJRwOi9/vl6amJgmFQqmBgAcffFBuu+02KSgokJ07d8q6detk2bJl0tTUJOFwWEKhkKxYsULOOecc8Xq94nQ6JS8vT9auXSs+n082b94s5eXlEvD1iMR6RMJNCpR760WCu7+9HPpKJO5XoDzqFIl7RUKH1bZYr9oW94qEDoq0LxaJOuWLzzZI28m9UlXukAO7N4vEXGJEOiQ32yqHdq8TiTrl1PE9YrNZxduxViTWI9dc/VO5/55fiISbZPfOj6SsrEhcXm/qOjUIxo/29orT6xVvOCz7OjqkyeWSg52dsvjtt8Xp9YonHBZ3KCTtHo9c/e67qXX9waBsbGqSQ11d8tr69bJ53z51rfvkE3F6vfLBsWOSnZMjH+3YIYvfflsOHzsmNptN9p46Je0ej3zyxReyoaFBJk6fLi+/8Ya4QyHp8fulvrFRDnd1yfFYTPpFgfGNImIXBcK/EZGG5PMnRAH0A8nlfaLAeIuIuEWkW0ROJ/d/5YsvZHNbm5RXVcl7Bw5Ij4h8YBiSlZsrnx06JD0i8tmpU2Kz2dT1X0R4/315PxaTgyJS98EHUllZKdtuv10aX39dAl1d4m5ulkBnp7Rv3arAutcr/Y2NKUAe6uuTUF+fRPx+cX31lbRv2SIRj0fczc3SvnWrBDo7JehyScTjkU83b5bmb76RyooK2fX55+L6+mvZetttkpOVJXt37ZJtt98uq0ePFqvJJD0tLbLt9tvl1O7dEvZ4xPX11/LiT38qOdnZEuzvV+fV0yP9J3sUgHaHJDgQlI59HbJu0TrpOtQlYW84BdDXLVonPUd7xNflk7A3LMH+oLiOuyQ0EBJ/t1+C/UHxtHvk9+f/XvZt3icVZRXy8ZsfS2N9o/h7/JKbkyvbP9wunnaPfP7S52Kz2aSnrUcNDhzqlO62bpk6eapceP6F8vBDD4vT65SjvUfF6XWKK+CSgeBACoQf6DwgTq9TFq1bJIe6DsnGpo3S5m6TY73HZJ9znzi9TvGGvfLM7mdkY9NG6Q/2iy/sk6M9R+W5t5+TDXs2iKPAIR9t/0j6g/3ywbEPJCcnR9Z+ulYWv71Yvjz8pdhsNmnraRNv2Ct1c+vkxddflP5gv7hDbqlvrJdwsEcB72NPiLiPigS7Rfq/Eon6REI9Iu0fioQHRCL9IlGvyJdXi7xGEtwPqPmxJxTgb68X6T+YBPLt8sUn9dJ2slGqKkrlwJr5Iq4GMdyNkpuTJYf+eoFI/yE5dfgzsdls4u1tFdmxWFYvv11+cMl8ifh6RCIe6Ww7qcB3sE/N47EUiB567lXgPOJPtu1XwD4aSIJx/xCIj4XV+lhYvvjsM2k7fUqqqirlwJb3RGJhMeJRyc3NlUNb3xeJ+OTUiSZ1fv29yXOIpQYL1v39bzJxwjgFtvuOKiA+CLw/WCSy2q5Ae2hAge6ewyInNyqQHupX59l3TO3jbVf7dB9U/Yc98sWmt6Xt8OdSVVkuB3Z8JPLBIjG6DkhuTrYc+vwtEZ9TTn3xojq/kztE+puktvoMef/eOSLdB6Wvea8MG1YgCxb8Uez2ZVJf3yguV0CeeGKXLF78tuza1SaLF78tHk9Yenr8Ul/fKE6n91tA3+cLS19f4FtgvqfHL++8s0n27j0qFRWV8tlnO6W+vlEOHnSq9+7QIREROZX8j/F6vWIYhpSVlcnHH38sIiKNjY1SUVEhwWDw/19Y9B82/VvA/d81pxMRl4jcDJSjyp8GDUSrUIak30nOBw1It6FKospF5BYRcf17x/jv6f/epLKaw/+De/yg2Zw75MPp6SWWiHOsqZGsnGz+6cYrmHLmVOrq6vj0008BGDNmDH19fezcuROA9evX4/P5OH36NDrQGwxy6+bNOJP1fg9v30623U6b10uBw8FtmzdTmpnJkxddRLrFQsww6PB6KUhPTxn/lGdlgQiver1MHD2a/LQ0egMBDFFxOY/s2MHaI0dYsW0b77z+Ov6JE2nq68NhtbL+nXf4yc9+xuMLFnB0xQrKS0rYetVVytlt0JRuxQplPGc2K6e2vj4l+x41Stmy9/aqIu+0NJXL5vOpZZdLrXvqKbjiCuadey7l+fnKzr2gQB2jv18VmT/3HKSn8+KLL3LtbbepYx08yPTaWkZWVCjZsa4TTs+lrU1j+XIlgb/7bnUqGRmqy/x8ZWSfna0k7HfcoWTzDocylbvxRlWTHoup/Xt6lEL/vvugqmoexcXlaJo67T17lGp/166hLPgPPniR5cuvJT1dKZ8vuOB77NplprkZZs2aidPZQUQ3IWOS0vZ/KVnPy1I7ZjpUrfpgLX80NhSdEokO1cEnlIkc2RnMO/ccyseeMdTOEOVWX5inZPImnRfX/JVrL/yuktPH4uToZnWM5jY8A24ANJOJ6uuvx5KeztG//lXVq9tsIMLAsWMYsRi2vDwkHqfv8GES4TDBrq5UTSMiVC9ZwvBLLuHM3/4WESG9tJSpd97J3Lo6cjUNzWTCc/w4RiyG2W6na+dOwi4XJquV3XY7v3rwQfxtbex+4AF8LS3ceuedPLhqFeUTJqBbLJg0E1PKxlKRU8R9F1wPovHktjeIG3Eqcor43fzrGObIIRQL052see8LenBY02hzd/N1VzOhWISHP11DOBbBFfTwzM63GFk7HrKshGIR+oNeTLqJP+9YR5u7m6Pdp3CHfKxZ8yL/dNmldHh6+f1HzxNLxKnMLVau8sWjKMjIJSctk4rsQsqyC7CgKaO4zW+pevSNb6ia9qxslb/uHYDeTnj/FWVS96NrlSHdBT9Sde7hIDgylVxeDOaVF1B+xjhAVG27qwtee1rJ4QdcUD6SF996l2uvuQZamyEeY9W7G3jk/nuxfvw2TK2j+IyxgwPMAGSXnEHB6BlY7JmIEScacBMc6FKGcySjtewOsgtHEwv56PjqY+KRIMUTzlbO8oaBYcRwndzL2eecR2lxIYlYWNWai3Kad379GdGgh7TsAv665q9cc83PsNgzKB5/NvFIAM1kJj23hDVr1vDTy36AaDqCoM/+DvqPf4aYTBCLktj0LsSiiNkMA30k6t+CgA+9YgSargPK+R2rVUne4zHEpKOXVUJ2NvMmTaDkcEPSRMminOeTZowkze7WvP53fv7jHylH+4wMNE1nwOVCQgGCOcOw2mzkDBuGx+PB4XCwceNGPB4PNpuNzMxM5s+fT1ZWFpWVlZjNZioqKnA6ncTj6noxaGg3MDBAR0cHmZmZJBIJTCYTDoeDW2+9lbq6OmzJFIbZs2dz4403Ul5eTjQaZePGjaxZs4Zrr70WTdPYtGkTHo8nFT03b948cnKy2VT/N+i+TdWVA9inQrxfyebFgPR5KrINQLcrmTyGksPbp6rnRAFNRcGlTYeEk3lnvEx5CaBngeGC7l9Cwommm3G3/hn0dLy+CPl5GdgcpdB9M2vXvc2NN/4STLlMmxintKSEXdu3UZ6VxZ8aGphVrsw4s202NMAVCFCVk0Ohw4HT56OuogJ7Mg4uGIuhaxq3TJ+OIYIvEqE7EKC2qIgOr5eL589n2vjx5NrtVGZlkW6xKJf4eJzTXV1MLyvD4/GQlZtLm9+P1WRixowZaLm5WHWdpr4+Wtxudnd0ML2sDLvZTHYiwY1AE0rafhhlKFeCyl5fDVyFktF3A/OS28Ko/PYgEEdJ4GcCl86bx+zycnSUId1ulOGcSdM47XZzM+DyesnJz8dis/E0sPF732O22cwKYPvMmTidTsZecw0VF1ww5PTe10fBlCmquEPTCHZ2Ys/LY++yZYR6e4kFAkgiQWZlJcOmTEE3m7FmZ1MwZQpoGsGuLnY/+CBTKiuxJdNjdLM5VbduRKO4BwaoXrKE7FmzyM/PR49E6Nq5E0swiKZphF0uTu/ahRgGwa4uvnr6aSL9/aTl2PE5fdQvqcfb6sWWZWP+Y/NJL0jHSBjU3VvHFRuv4OK/XExWWRaWdAvxcJygK4g9x65Kw3RlRGeymvjVS7+isqpSOcQPc1A5pxLdoqNpGr6gD03XyBiTQV5uHt17u8kozcCSZuHWO25l6W+XMqxgGLpZpzfYy7KtypwtZsQw62bSzencNfsu0sxp6JrO+sb1LN+2nNkVs3GFXNy35T5Mmon9nftp6mviu2O/S01RDeF4GA2NSCLC3Hlzeb31dbJsWZh0EzvbdlLoKETTNJ7Z/gzTy6Zzuvs0ukMnoSeIJT2ObCYbLZ4WltQvoTyrHKvZDpMfhWF1qgZd08FRAf7T0LcbCmYmpfK3KOf3KY/D2fUwLVnzXn2vMqk7ulIZzh1ZoWrTQ13Ms71CeU5IucPnTgZzFqQVoxlh3M0fQbANr6eX/EwdW6Ibhs1i1dOv8ciKh7AaHtA0ikvK1P+nNenmHvWqevVEdKhG3d+p5po2VM8e9ZEyoTPZVCQbmnp98TAYMebNm0t5Rbnq35KWMqPTNHAH4pCI4nX3k5+bjc1iSp4D4HeCNZMXX3qVa6+5WsnUd96vZOrWDCW9n3FP0um9XDm9o4GvFYZNUrnvzp1qeed9SjZvccCZv1blAIb6X5w3ZwblbS8kU0f0lAGepuu442mw9U68719LfoaObdgYcBSj6SbcluGwdxUBw47NauauX5/NW2/9mIqKLHbtaufyyyfy1FMX0d8fYtWq+Zw+7ebmmzdRUZFNWpqZjg4vTz55EenpFvXWWEw8/fRF1Ndfzj331OHxhDn//HMYM2YEiYTBww9vp6DAQVubF9Bwu9X9ntfrJT8/H5vNRl9fH729vZx//vkAnHHGGeTk5LBp0yb+M0z/j13lRcQjIo+LyNkoH5JpwCXAYuDi5HKOiHxHRFaLiOf/xAn/9/S/b/q3ot8GzeZCsQjvfPUZ0USMcDRCR1s7nWYfCx+6lpV/XMVll11Gd3c32dnZvPXWW/z2t7/lzDPP5KOPPmLChAmIphFKJFi+bVsqumbxpEmsXrAAbzjMjLIyegMBlp97LoYIt2zaxPH+fiy6zozycqKJBCu2b2ftkSOs2rmTaCLBP8+Ywf7OTgDGDhvG9tZWzJrGPXPnsqi6movtdnr7+9mbzI33u93EYjFGV1biCga5f8sWSisrafne9+CMM4ZM6ZYuVUg2ElEF5cXFCgE3NqoYt+XLVXF5S4ta39Wllh9+WL1pbW0KxEciqgDdZlNF4zNmwNdfK2t2EXbu2cOAzcYlixapwYHaWlUTn0goIC+CritX+HvuUXj00UfVIY4fV/Xmfr/yxDt1SuWyD8bHD5bnDxrUdXUNeeelpyuzuc5ONZYQiahTrKtT2yZNUjXyL7ywE7d7gDPPvIRgULnP9/Wp+vbRo+HPf36Cs89eiEk3o4mqtSMrQ9WwN7cpYzmrZSjebdD93Ui2JQm0BuvgszLU8sl2ta+I2k9LAv0TrarvMZVgs7KzoYEB9wCXfPe7qs+ki/xv7lnKqAvP5dLLLuPtNS9jtlhwVFRgLyjgrPvuY8Q//ROJaBRzejrDJk9W4EiEsNuNPT+foMtF4bRp/HDHDqb//vdouk56cTHT7r8fESHU06PM7jQV4VUwZQqarpM7fjyapmHPz+d7H31Efk0Nm155BW8wyCWXXIJutVIwZQrPLF2Kruv80z/9E0YsRiwcImjEUsDZ6emlLLuQu8+9WrnzihBNxBARCjJyUzXvRRn5aJqG1WTmjIJKXt5Tz+bGL/FHgryyp14Z1ZnMnFk+jsKMPMYVVtEXGOCO7/yU/PRsziioZNkrTxDyB/nJDxfx8p4PmFx2Brqm8cGzb/L+3c9w3c9+TsOh/TT2tpCTloVJ07G8/gz0u5Sz/LR5cPHl6rMSgY1vKsC98Q0F6jevU+ZzaQ7weyArN5n9rkHzEQXMh49TxnR+n6p13/wWjK5WMXBjJrFzzz4GBga45JJLIDsP74uP0d3Tw/ubPmTGYy8w49zzWLt2LfFIkJ6mncQjQXSTBWt6dtLIR6fv1D7sWcOIhQOpNhpCIhElEQ1QPG4elvRsQFPO8roJiy0Db3czvScaSMQjaLqJeDSE8+tPiYUDpOUU03uige3bt+Hxh7j4oouIR1Wtpj2rAAROnTzOtu07uPraJWgiSHcn5OSrWDZQdekVwzF2foEmBsaXW9EqR6Jl5aR+HxINK7d4swWtvBIJBSEWxXC2qffMbMF0/iWg62hpDvXf4fWk4uF2tXcx4HZz8czp6LPORvw+1jz/PPcvX87wyVMZV1vL8gcfoLSkhLKyMgKBALNmzcJsNuPxePj444/RdR1d1wkEAkSjUQKBAEVFRZjNZqLRKKFQiPLy8hS49/l8mEwmNE1DRLDZbCxcuBBd11O18fF4nLa2NnRdx2w243a7+f73v4/ZbObyyy+nrKyMSCSCpmns27ePpqbjtBx9JQm2O6HrBuX0njYtGdnWqwyf0IAoxPuS0VA9KIhpJJe7VfuipyBrsapr969X7vKaWe2XdwdavJs3X32KS284SNXIidSdvYCX//ocVt1Ln+m3xGIJiovLVd182gyGV5VzurWFFdu3M72sjFA8ji8SwRuJqFhShwM9GQFXlpnJ5ZMmEY7HOdHfz62bN9MdCDA6P58Mq5V0i4U8u500i4XZFRWpTHeTptHu9bK9tRWLycTjzz/PLVdfzcof/5iF55/Pyqefpiw3l5s3beKk283sigpihsG4/HxG5OYyu6KCvU4noXgcu65zDspsLp2hDHdBAXFQhnW+5PIPgDtR9e23oQB7Gqpe/UZUDvygHLMHNRiApvHXN9/k15deytaqKq6uq2P1yy/TYrWyBFXXnoYaCBj/xBPMXbiQ7DFjMNlsKWB9dM0aEMHf3k48ECB/0iSOvvRSamDVlpOTAudBpxMBTHY7iGDOyMDicFAwZQpH//pXbLm5iGEgQPWNN/LdTZt44803uWzxYmrPP59/fvdd/njXXeiGwQVvvEF6URE/P+886q68kj91d/Pmq69y9IUXhlzlzVqq5tzT5sHqsBLoDrD51s14WjzkVOaQVZbFhhs30NfUR9QfpWN3B7FAjPBAGHeLm46GDuy5dsKeMJquYcuyKV+KhIG/y088FGfNn9ew6CeLqJ5WzTkXnMOKm1cwYs4IskqyeHf9u4RcIeaMnUN7QzsJPcHybcuZXjYdp8/JPuc+Tg6cRNM0qrKrONF/gm5/N+8seofVC1YD0OHtYH3jelZsX6Hq4neuxBvxEjfiLP10KQYGhY5CCtMLWTl/JQB/2PkHaotqGZU3ipdefYmDTxzk0R89ypXfu5JrHrgGV8TFP3/4zyQkwYO/e5Dvn/19mp9tJt4XJ4GOmDMg3Kmy2/saFIBNK1TLu5dAyJmMflulaq7zZ6icdv9JSK+E9LJknFyuMrGr/Ak0Pp50n1+l6t/LLgFrHlo8wJuvvcKlT1qpmnUjdQsW8/L1IazNq/Hmfpfunj7ef+8dZpy3iBkzZ/HmG6+qaxTybdBuzUz+LWsq29yapQC5oIB61nCV7T4Y3p6IJmvjBw3rdLXsbk56weSC34lmy+LN11/j0p8uoWrcFOrOOZ+X1zyP1SQMRsmTPZy20yf5YusX/PTyRarOvHEt7HtcHd+IKjO+snnKNK90DnTvUbXqJqsC6QW1agDgzDuS5x5StfRGXLnFu5vUsYqnQ9SjaubHLkKb+TvefOFxLv3JlVTduIW6Z8y8/JfH1flF/fz1yeX87oUtVN7wOWdMOosV9/yKWWeWMWdOJW1tXgoKHNx88yZaW73MmlVOerqF5cu3sXbtEZYv30ZXV4CTJwcAobDQgabByZMD3HTTJsrKsiguzqSgwIHfH6Wz04fbHeHjj5t57LEvmTGjnFdeeY1LL72Uqqoq6urqePnll7FarQwbNoySkhLWrl0LwJ49e2hsbOT06dP8Z5j+PVf5n//P1otIWJR6aqOI/F1ENiWXw/9nTvO/p/8T078V/TboLp9msXHppHOxmiyMHD4CXddZ9JOfcP3MHzDtzGmMGDGCr776CoBzzjmHL774gn379vHYY4/hdDoZPXYsezo6ePyCC+i8/XZmV1QwEAphMZkocDgw6XqKQQCYVV7Oiu3biSYS3Prhh9jNZp5euJD6yy9n1fz5dCbd5cuysjCSTNula9dy86ZNjMjJ4cHvfIeP1q3j+4sW8fZPfkJZVhZ3fvLJ4Fgoy5NGdZ5w8qsqoqLdVq1SdHUsptDsjBnwyCMK6Q4Gqa9eDQsWDDH0K1fC/PkqAD0eV2g4EFBIORBQaDccVoMBc+ZAVRW4XLz48stcdcUVmO32ocD0U6fgV79S4N0wMBLCww+rcYGuLjVO0NqqsP+g2VxNjTKfGzSrGxhQBvknT8KVVw4B8sJC5SafkaHA/Lx56lRMJpXn3tSkXrrVqvo7cOBFFi26ipYWMz09ym/vvvuUd9/rr7/Ke++t5dlnn0M0kGgcjreqi4xJVyC8rUu92ZEolBcrcG5VmdmEIuoiJqi4OIuKwEHXoLxItdP1ZA68QKcL+tzJgQABr58XX3iRq65YjDk/R623WeFEK48sX0Fz8wnW/v3v3LXsQQU02tvZff/9Kr/d6WTg6FEwDDRdx/XVV/ja2rDl5JBeVEThlCnEAgGMWAxJJJQL/O9/jz/pCjjIApnS0zGnpSXPWyfY28uehx4iHgwS6Oyk7+uvea+hgZ9ecQUSiXDk2WdJVFTw5okTrFq+nN4DBwDQ7HYsJnMKOFtMZswmE05PLys+WUMgFsZismA3Kzf9wfi2vuAAgWgIDUiz2Fl6/s/58p//SkFGLvecfy3nj5lBh7eXNncPvkiAcDzGmIIq+gNejvacUkkRX/dxxeLFNPW1cve5V3PRuDnctfJ+du5voGHvHubMmc3NP7ueoow8Vny6hjZ3N7HhY+Djd1Qc25W/gmFFCoybLXDRZcpwbuFlMPNcuOxG9RlbbTB6gvpMYzHlFF8+EgZ61Q2Mu0+x8LpJmdKNrlaxcOEgL655kaumTsAsBmTnEq86g3g8TigSo+GzT3lzxf3c8es72frhWjydjbhO7gEEIx7FSMTRTGZKJ56Hbraimy2k55WRiIZAwGLPIC2nlJ6mncSCHsSI03X0C4x4FM1kYtx5SyideD5mqwPdbMFkMjNs5FnoZgvZpWMpGD2DV179O1dd9TMsVisaKkteM1sQI86rr/2dixcuJDvDhmgaenkVJOIYbS2Iux9jy2a0iuHo8y9R0rf5F6ONq1b3hvG4MpILBJJs+2nwDGBs2ayM7ApLEK9nyAgQwejqQBOBvHy0qtGI18uLL73ElYuvwJKbh9GwHa28ikdXrWT5r27m9N7dfLVvL/fedz9HDh8GICsri0AgQFpaGhkZGVx44YVYLBYSiQQZGRnfUjZkZGTg8/no7+/H6/WyceNG+vv7KS4uRtM0PB4P7e3tDAwMUF9fj2EYmM3mlJu8w+Fg06ZNvPHGG1x55ZUkEgliMXX9Wbt2LS+//DIzZszgqaeeom7OLExZC4Yi3PzrlYmcpqK4iJ5U8WyxE8oR3pQDGIqNB8Wma1aINqv4OM0MJJT53PCvIP8+QFN57nouca2UZY+u4Z03HqPl67/w6eZ3ufLqm3AFRkK4UfWpmZQJnmYBzYKOztK6On5SXU2axUK6RaWxhOJxvJEIN27YQElGBmnJ9SZN4/Fdu1jf2Einz4eIpIzqNE1DA3Z3dBA3jBR47wsGqS0qotvn49Wnn+btt99mz5EjvPj229z9y19yqqODORUVWE0mTJqGzWTiWF8fJwcG2NnWxlmlpaSZzYQNg++hAHYvamjjBMrEaDsq3u1mlGHdEhRgn4Vi4KuAHSgDo26U0ZwdBcI1YEpyfjoe595ly/jrO+/wTUsLmz79lF9deSWNLhfrUcZ2CWDPq68SW7uWl597DqvNhslmS7nLT7zhBhKRCOmFhRz84x8JdHamtlUvWaIUC93dCkw//zwAgaS6KdDWhq+tjYr585l2331kVlZisloJ9vSQlp9PxOdj6U038fLq1TQ3NvLh+vXc+sgjNPzlL9jz8jjy/PMsDAT4249/zN9ffZWl99/PmJ/9LHVsNJ2LnryIm4/fTNW8KixpFgI9AZo/asbb7gXA0+ahcX0jO1fuJOwOkz4sne0Pb8eebcfb5sVR4GDzrZuxOqyY7Wai/qgyABdh67KtDLQN8NhTj/HGa2/Q9HUTG97ZwG/+9Bs6TnbQ3dvNEy88wfJ7lrN9xXbSh6UjYeGeufdwwagLWLlzpXKC97YRiAW4adNNqeW6SmXMGYwFmVs5l69u/Ip75t6DK+jiN3N+Q0lGCVaTlccXPM4p9ylu3Xwrbd42sqxZaJrGTyf9lL5QH7dsuIWHH36Yv73xN5pONPHKO6+wdtlaHvrwIaaXTeeeP97D9Ienc+DAAX504Y+44odXkJCkIih/hnKItxcoI7pQtwLiUx9TUW2VP4Ezn1Jmcn0NCtQH2xTg9x5XTvKJkNqm6art8MUweZUCo18vg2Ab8XiUZaue4p231tHS/A2ffrieK9cMw1X1IHFfq7qeBH00bP+cN197idvuvJdDB/YpMzqLQwFfa1YSzKNAsm76h6i4hAL4g8uDYF1E7ZNRqgzrTMlBa2tmktFWAwBxczbLVqzgnZdW03L8Gz7d/CFXXrMElzeSHChQ/bz04p+55MLzGVZQqNj1sYtUdrqnGT65UTH+MZ9i4svmQMEUMNuTxq6o11I4WWWzpxeodb2HVZtznoBgjzKxG3sZ2PPVe3juU8QdFSx7/DneeflJWhoP8uknH3PlL3+LayAAgU4eWfU4Dz94L63NTRz54h3ueegPHDneTm9vgBkzynjssS9TIB00enoCLF1ax6JF1dxzz1yKix18//vjaGvzsmRJPeFwnBUrtrN27REefng7NpuJYFCRFxkZVvLz0/jTny7i3nvnEo/HeeSRFfztb29w/Hgzn376KVdeeSUulxJ5v//++6xZs4YpU6bwxBNPUFdXh9ls5j/D9O8x7i9omva+pmmF/yFn89/Tf+j0b0W/DbrL56RlUpI1jFgizrBhwzj33HOZrQ1neF4p7a1tnDp1ivHjxwPQmWTBAR566CHOPfdcxp9xBrPKy9E0jeaBAW7csIFALEZDezstHg9mXces6zT399Pj97O4poanFy7EHQ4zq7yckwMD7OnoYG5VFekWC06fj/WNjTy8fTt6ktV568c/ZvWFF6JrGm6Ph3fffps53/sedZWV/GHnTs6dMAGz2Ux3VxdL6+pYVF1NoKeHqtJSJXk3DOUe73DAjh0Kqdps8LvfweHDCsTv3DmUqbZ6NSxerAB7ebnKVtu1a4h9LyhQ82BQadRjMXWD3duLv6ODte++y8/PPVdF0QUCCtwPsvmRCPzlL1iMCKtXC4sXKzn8qlUqbW7uXLj8cmVG39+vgHZrq+oqFFJjENOmqUMmEup0y8vhttvUqfzzP4PXq16y2awY/VGj1MtPS4P77vPz3ntrWbjw59TWDgH6OXPg9dffZPnyB6mp+Ri7vQizDlprp5LDh6PKYT47A0ZXqru3jHSV024YEI2ri1t2hhrkMIyhTHavX12k0mwQicHxFshOStEqi+HM6hTz7o9EWPvOO/z8mmvUOlB9DHgUOBQ4/7xz8fl8HD50KJXlGwsEMKelMWzyZBLRKEYiQcHkyWRVVqKbzegWS4o9PvCHPxDs7FQZv1dfTainB81sZvzVV2NxOEiEw/haWth9//1IPE7E5VLHSLrOW0pLWff225wVCIAItb/6FUdOnqTT6WRKbS2zrriC9zZsYOXKlSx/8CFuO3sxk0vH8vyudwlEQ+SmZ/HTMxfS51cO8l2+PgLRMM/sfIsppeOoLR1LmsVGQUYeAAc7GmlPusq3eboBmFg8GpvZQoY1HYtuwm62UpCZyxkFlSzf+DzvvPU2V/3sKiaVjFFAK+znvKl19Ae9rPh0DQuvuJRTp07x5MevqYG9hveInlWn2PbeLvjbE9DVAbGkQmJYMRSUqs910RJAlOt8OAgnjijJPKJc1dMzFEA3m1U8nCTbAuTkwehq/C4Xa+s38vMHlEs077xE3ncuJCMjg58uvhxy8hk+91xmTzuLk71xsksUmAYNTTcrNYVhEI8EQQzMNge5ZRNIyymm88jnRPwDiBGncOwczPYMdJOZonFz0U0WErEonUc+Jxb2KRk2oFtsWB25yr1dhIhh4q233+Xqn11F19GtGEZM5bgHvRiGwV//uoYrr/gxFqsD3EkZvM+LXlYBJjP67O+A1YZmtSmneItNOep73UrWnsx6JxxGc2QoZr5iuNrHbldyeotFZbOjoRWWkPjwfXAPoNVMIZiVy7q33uKaH/xAZcaXV+Hq7ubd9R9wxS9uRsvKZtSo0cycOYNde/ag6zperxeHw5Fyjvd6vdTX1+P1qtcUDAbZsmULfr8fgJ07d+JwOPD5fJx//vlkZWWlmPbt27fjcDjYvn07R44cIRKJYBgGuq5TWVlJQ0MDhw8f5v333+dnP/sZAB9//DHxeJyamhreffdd1q1bx+OPP057u5PqSXXKSb7wcRh5Usnfu25SQNw+SYFxUwmkzVJSWS0NJDL0CO0ecqMnBliSDvT5YBmuvpvhgyBBDh4+hbOzk3kzisFey7Tp0ykvK+FAwzryi8dhNpvp6upQN+2Gl9OnGhle7GF0bm4yISJGOB7n5MAAnT4fDquVO2bNwmG1EorHldu738+j55/PO4sWMbm4mE6/n4Rh4LBa6QuFCMXjzCgvpzWZ8y6gQHsgwG0vv0xHRwffmTcPs66TXlXFsOJi0np7uaq2NiVRDycSZNtstCfL0W7etIlgPI7oOjYU2+5AMeV1wEhUtFs2MAoF3NcDK4EfoSTyN6EY+rZk2zrUTWQcJZN3qneWnQcP4nE6eW3ePFqBMdOmESsvx3vgAG8B9wIfvPkmjz74IJ9+/DEVRWqQxWSxkDVyJDN+/3syR4zAkpmJbrUy/ppraHzlFTIqKjjrnnsIdnXhb2+nYMqUISCfSKRKonSrlWE1NaBpeE+fZs9DD2HE40T7+9FMJt5/+GG6enrIPngQiccx6uspLS4mcfbZSLJEanDw4LxzzsEfCLB/1y7G/exnBLu6SERitO1sw+qw0tfUR/0N9WSWZnLdnusomVqCv9NPydQSFr2ziDl3z8GeYyctL42FTy8EoGxGGV8+9iVl08vwOX3KaT4YQwzBbDdz4RMX0uRsorOrk7PPPpu2L9uYMmkKZaVlHO88TsOXDXS7urno6ou4Y+cdfPH1F/zh8T/wtz/+jdLMUlYvWE1FVgVzK+fyh51/YO2Rtfyp4U/UVdZhiJHKWj/Rf4Jh6cOoyq5iXtU8xuSNodXTyq2bb6XV20qbp421R9bS7m3npPsk7rAbk26i3dtOaaAUZ4eTVzyv0Oxu5rvnfJeKigoudFzIBaMu4JWWV5heNp1Wbys/vPqHnD59mqaWr9HCPepbVzAHwr3QsR6CrcrpfZBmNicHxqN9KuYt7FIsfDwARx9V+wfbhoB/sEWx72a7+v2PuArCXRzcvwens5N56WvBd5xpE0spz01woOFj8mw+MtJt/PTKqyARZHhJFnNmz2TP7gbIHpEcGNTU79ydjIbT1SA6mkkBdFCg3HNKtTNZFDhPRNR1y+9UjLyRUC7w1iwF/CMDoGkcPHgAZ0c7875zrkqmmT6D8vJSDuxJ5jKIIIbBX99Yz7XX/UIdw5wG5z6pzs3foVj0gFM53Q8y8Wa7aiuGimvzdSSPbVUgHQFHkQL93tOKkc8ohWA3hPvUeUfcHNyxCafTybxzLoDOBqaNzqO8IIMD+xpwtR3j3Y93cUXB5+BpZuSY0cw8q4aGbR9TUpKBxWLi2Wcv5uqra7nnnrlEowlycuyUlGTy3HOXkEgYgIbPF2Xlyp2sXXuEhoaObwF7vz/KrbduprdXOc739YUoKsogLc3Mli1f0tXVyUsvuTl2rI/a2imUl5dzIEmM1NbW8uGHH3LgwAFeffVVnE4n1dXV/GeY/j3g3gl8F/hK07Qf/gecz39P/4HTIDi/f8EShueVYjENjUbdcMMNjKgaTkd7BwsvWkhZVQWn+p089eeneXL1n5g6eQrf//73efbZZykrKwPgvvvuY9y4cYwePZqWlhZefPFFAHRdJ81iYXReHqvmz8fp81GQnk6bx8Ppf6i/K0tGw9364YdkWK0srqkhy2ZjRlkZkXic7a2tlGdmcvjGG3l64UKFDa1WppaU4AoG8UYi7P/4Y2pqarh49mwCsRiPnn8+cyoqKJo2jceefJIRublcV1SEs7OTsy+4YEgHHg4rerq2VtHTp04pFJyRoeTvtbXqj3jJErX8l79AMgYMv1/pzO12Jbfv7VXzwkKVq7ZjhwLkw4bx5t13UztmDONMJsXa/+EPCtQ/9xxcdZVC3BMmYJgsiGhEowo833+/UpyHw0P56+3tpOrUn3pKgfSWFkX467o6jVOnVPdVVQr4r1ihPt9bblHzri4F+gfB/CefvMno0bW8/PI4XC517F27ID19LW+9dS8vvfQJ995bicsFwRCq5jwvayjiLRpLAvUYIIpFt1kVkz44ao32bdBtsSiJfcJQDHpWEtAPyiT+gYV/84P3qK2tYdyE8arf463EbBZO5KerdobB7j176OntZdSoUVTfeCOXbNpEWkEBafn5xEMhDqxaRbCri3B/P4lIBCMex3XkSArcn/nb32JKSyMRiXD0pZdIKyxEDIOjL71EIhxG03UsmZlMf+ABNJOJ3AkTGPn972MfNozCs87i3U2bmDRhAt976CFMNhvmzEz+6Uc/orWpiScnTODL11/ne/Pn889XXcWd9/4Gm9nKS3s+YGrZWGwmC2aTifKcItxhbwo0+yNBNjd+iSvoJhANEYyGCURD9AXcnFFQRV/QzZiCSgocOaRb7UMSW10nEA3S6e3jaLdi27NbY4wcNwZHcS6HnE10eV209Dnp6+2lNGsY95x/LV9+vJXCokJumb+YBWNncd2M76Pb0lQ++0AvXPBD8Par2vR4TLEK8Rh8uE4x8J4BcHWq9qOrlRQeVF57LKraxqKq9l3XIDsfBvqg5ThM/w5vfvI5tTU1jHNY1fdl0RJIc3D5j37Ih5s/AiNBv9vLnoOHqJlUQ9mk+UoiD8TC3qSs3YvJ7kDTdDQNBeIxKBw7h75T+1T+uaYRC/kI9HeimxUropss5I84k1jIj4iBGELvid0qK95sQTNZ+PurLzNuVAWjhpeQN3wysZCf9JxiYiEfn332KbFohNoqBybNhLFDxbZpmVlIIoEM9IGuY2zZjAz0IZGwymOPRtDSM5SEvmE7elmVinbLykG/+FL0iap2Vwb6MVqTrI7Vpj6DgA995lwVJ2cYvPHWW9TW1jL+rLOUPL9mKnl5eTjS0/lsYz0SCuLq6qRh9x7GJ29mKisrycvLo7KyEovFgtlsprKykmAwiK7rZGVlMX/+fAKBACJCXV0ddrud4uJiA4UjFAABAABJREFU4vE4hmFgMikW/OKLLyYrK4sFCxZQW1tLWloaIkJraysej4f58+djt9upqalh5MiR2Gw2FixYgMVioampiU2bNuFwOPj73/9OZqaD82Ymb6ITvdBzKyScSjrftxK0DIh3Qng/xFuh51cqGg4Bza4Aur0W9ByIdylWXkIQbx96DopxN5dSMbyWzs5ujrYUgu7gRNMRmk98w9jxk8EynB//6J/4y7MvgmZiz74mOjr7mXPuYmKGQSQe52BXl5Kdl5dTnp1N3DDoCwbJsFopSMaartq5kwyrlbrKSjp9Ppr71cCV3Wwmz27Hbjajg7pWOhz0h0IkAIfVyrk1NfT29HD02DEsJhNFkQjO1lasRUV82dbGsPR0KnNyyLHZGJaeztlVVVRkZfHY/Pk4vV6shsEuFPhOS86XACcBFxAAbkCZGr2DqnlPTy4/BuShmHYdxboHUIDehAL7FmB+RQWuzk4uPXqUduDwiRMMNDdTP3YsdcBXa9fywL338sknn1BZWfmt+xKTxYLF4cBksSBJBVqwu5uxV16pBs3cbvxtbRx/7TU0XWf6Aw/gKC/HiMU46557qJg/n6MvvqjKotLSSC8upvCss4gFAuQmvUXm/uIXeEQwn3ceRjzO7vXrOXH8OGeMHk3ngQN0RSJMf+AB0ktK2Lp5M729vYybPJljL79MekkJzn3dFNUWYbKa8Hf5U0y7o8CBGIox9zl9VNZVkndGHtZMK/ZcO6GBkIoZTzNTd08doxaMItAT4PyV55NdlY2maxhxA03XOKPmDLq6u2g62UTlnEpOtZ3i5KmTjKoaxaWXXUrriVaO7D3C17u/5gff/wG/+c1v+OltP2VH6w56Aj3cuvlWTntO89RFT7F40mJWzV9Fi6eF7a3bsegWHj3/UUozSwnFQ9y08SaO9x0nbsQpcBTwm9m/oSq7irrKOo7ffJzpZdNZuWMldpMdq8lKXWUdl06/lN7uXi4ddiltnjZ2HNxBc3MzZ089mwJ7AfdMuYcFoxawYvsKtn24jez8bIaXn4HYC5UcfvcNKpu97i0YNkNlrOs26N+vot80XUXChXpUtFvMrSLczlytvigFddD4JyWRP7JC/d7DLgWqT70C6WVUjKyhs6ubo/brwOzgxObf0tw2wFiph4LZXP7DhXz44k0QctLvi7J7z15qJp+pAG8irMC5EUtGxEXUI5Jk2LOq1LF0K2SUqHZRv8pVt2Z9O+pNEsnnHep/LBYENCoqKunsdnG0pQ+AE43f0HzyNGPHjU8d+7PPPiMejzN/+kglYbckSwutmaqm/cCfVNRbRglcuhHOeVKdS8d2BcSLpysJvfuEqn+PBRQDv/thaF4PgR4ltdc0de4mOxx7HdIKqKgcTmd3L0e3vwVphZz4uoFmp4exY0aRO+48HFaNz+rXwp6VuIIWGg4cZfzkWZw8OcD27a3E4wZPPHER6elmnE4fN9+8ia4uP7quMXx4Dn19AbKzbfzxjxdw7NhNzJlTwciRuTz33CVUVWVz772fsX59I+3tXqxWE3a7iVdfPUxubhqTJp1Bd3cXZ5yRYOXKHXzzTRPNzc2MHTsW+DaR+Pzzz+NwODj33HP5TzH9a651SVlcDvA6Q27yfwOy/619/jM8/ttVfmgKRELfiqXyR/5tV8ZoPCaBSCjlOu8Ph1PxOAc6O1NxOcddLvGEw+IKBMQdCsnGpiY53NUlG5uaZG9HR8oF96uuLhkIBuVob6+0ud1y3OWSH155paTl5YnJZJKCwkKpGjFCFr/9tuzt6JDpM2bIn599VgaSfbYMDCgn+V//WqbMmaPi4MrL5dMNG4bs2A8dUlbqx44pa/WWFmXZ7vWK7N2r2uzdqxzoQW07cEDNB/s4cEDZt7e3y5JFi6SsVMVEFebny6jy8pRr/azhw2XNtGkqo20wt83rlYeWLpWyoiKxWq2Sn5cnpaVl8sknPVJfr5q2tw/FwA06yvf2KnP7f3wZbrd6DLrBHz+utv/jqf7gB0skO7tMTCaT2GyFMmzYKNm3T7WZNm2WPPzwGnnqKZGjR5UT/Z49IiaTWcrKymXiRBUXN3JkrezY1i1GOCISjgw5zMdiIuHwkIP8P7rNJ13fJRpTzwcj5L5pHnKhD4RkyXXXSVmZOr/CgkIZNXKUaheNyayZM2XNskeH+guFJdA/ILNnzZLqCdVSO3GizJ45Sz796COJh8MSDQQk0NMjnpMnJex2SyTpFNy+fbsEuruVS3B3t4TdbrU82M7rlYjfL+GBAQn29krY6xXX11+L5/Rpifh8cu3VV0tJUZGYNE0K8vNl1MiRyrG+q0tmnHWWPLN6tey46y7pP3ZMAt3d33ZD7u+XiyZOlEceeVi+6TyZdIX3SCAcTDnHN3aflkAkJCdd7dLj65ceX79sbd4v3pBfXP4BcSWd4U+62pMO80Hp9vXLkc5m2dq8XxZdeblk5uckfyMFMmLkCPGEfOLyD8hZ06fJn599Ru5cv1q+dp6Qln6nOF1dUjtlsow8Y7SMnTBOKmvGyPufbRRvyC+dXpdsP3lAfOHAULzbX5aLtJ4Q8ftEDjWI3H65SCig3OPDQTUPBkT6XSKHG0S8brUc8Kt2fp8suXLx0O+koEBGjRyp2nW1y6zp02XNn59S/YeCIj6PyECfuP70e/nuhQukevx4qR4/Tp780xMSi0VSkXDxaFha9n0gh+v/IGFfvwQ9PdK6f4NEgt6UY3zQ0yPR5HLI1yeermaJBL2pR9jXJ7FISK6/7trU97CgYJiMHDlComG/xGMRmTF9mjzx6P3Sun/DtyLmgp5u+clli+RX1/9EnU8krNze/b6UG3zCPaAc5h+4XUXC9XRJoqM15fye8Ayo6LhwWIxQSLnLe90Se/cNSXjdypXePSDXX7bof3j/DK9HEsGAzJo+XV7889NihENihMOS8Hok3nRUPvpgvUydPFlqJoyX8eWl8ocVyyQcDktnZ6esW7dOOjo6UlFugw7xg/FuTU1N4vf7U27w4XA49TwQCKSWXS5Xqr8rr7zyH97DAhkxYoR4vV4Jh8Myc+ZMefzxx2XdunXS2dkpLpdLAoGA3HXXXZKfny9VVVVy0UUXyamTx8QIHVRRb956kWCDmoePKtf4wdi3YMNQ/Jt3o4qFG3Sij/WKxH3KTT7YoPb11suSn39fykrz1Xs4zCajRlaIRJ3y+ot3ysTq8VIzaaxMrB4lrz17peondFC6DnxP5p83U0aPHi4TxlXK5o82iicc+lZCSn8wmHKKHwgGxR0KpRJV9nZ0iDPpQt8fDKbc6Afd5gdd5Z1er1x97bWSX1QkuskkecOGSUllpXjDYXnhpZdk7IQJklNVJaPHjZMXX3pJ6hsbZb/TKTWXXy7FpaVitVolNy9PSktL5djp09Lu8YjT65WmaFQaRNU5ekQ5xLtEpE+U0/xxEdktKhquT0Q6ko+jyblThuLi3CJy2ZIlUjz4GRcWyvBRo8QnIk+//rqMmThRqmtqZMLEifLYa69Jr4gERMRsNkt5ebnU1tamHi6X61v3EvFoNJUAEujulo6tW6X/2DEVGdfVJRGvVwLd3fLl0qUS6OmRqN8vYbdbon5/KimkY+tW+fmVV6Z+JwX5+VKWmytht1tefuEFmTB2rEyqrpaR+fny3KpVKrJz/36ZVFYm48eOlZpJk2Tm9Omy6f33JeL1qnPp6ZGwL5iKfOs80CmuJte3IuB2PbFL1i1aJwFXQLxO77ceTRubJNAbkLA/LCF3SMK+sFxz5TVSVpp8D4cVSGVJpfh7/fLsH5+VcaPGycQJE2X8GePlhadekN6jveJ1esV13CX+Hr+EfWFZfNliWbZsmSxat0ga2hu+FQvX4++RLl+XeMNecXqd0uZuk+Ou49Lr75UmV5P0+Huk3dMunb5OGQgOiNPrFF/YJ73+XqlvrJdDXYfkmmuvkZLSEjGZTGLPtsvwEcPFE/LI0y8+LTmVOTJ+4ngZP2G8PPaXx8Tpdcq+0/ukZkqNTKieINWTqmXed+bJjt075HjvcUlEvcpN3n9apGOjcouP+kVCvckIt91q7v5GxcC11yfb+EQibuU6/+XVKk4u4FTbQ72y5LprpKy0REwmTQqzkFFlGSKRfnn95eeTv+VqmTh+tLz25J0qfi7iFtdXb8h3z9SlekSWVE8YL08/uVokFlFu7rFkDFxf41DsW7DvW07xKcf5WDi5X2SozaALfdQvEgvLkp//bOi+prBQRo0aJRKPyeuvrJGJ48dIzaSJMrF6grz2t1dU/8ljX/6Tn8h9d/5SLUf8Ij2HlCN8oFfFwXXuTUa31SvH+NCASNCljn3qQxHXN2rdB4tE/oDaJ+IVCfaK9DeJdKv+llz5QykrTv4XFgxT1+Oeg/L6r2fKxHGjpGbccJlYPV5ee/kF5VIf8cnH69+QqbUTpGbSRBk/7gx59PdLZWAgJPX1jdLQ0C6LFq1LRcANrquvb5SjR3vk4MFO6esLiNcb/pazfH19o+zd2yFOp1fa2z1SX98oP/zhTyUtLXnPX1Aow4ePkL17O2TmzF/J6NHjZMKEiVJdPVFee+211P/HAw88IGPGjJHRo0fLd7/7XWltbf1fB0D/Fyf+DVd5Tf6hbu1fmzRN+xHwDGqwtQO4TkQ++j8zlPB/fyovL5f29vb/26fx/4lp0MDuhV3vcv3MH/wPzPy/1va6mT9gRF4poXiCX27YwCPnnYc/FuPTkycZmTTLCcZi3Pnxx9w2cyZFDgdf9fRQV1lJJB5nIBwmx25HgC6fj+Xbt3PX7NmckZ/PLzZsYHpZGReMGkWu3Y7T68VAse9lmZmccrtZtm0bS+vqKMnMRAcaOjqYUV7OTRs3svbIERK/+hX6DTco1ru+XunJ29uVI9zDDyvGfORIuO461WbRIsWy33gjPP20YuUfeUSx7R99pGjwp58eMmELBpXj/J13Ktv348fhgguUS1xvr5LXR6PqjTt5UtXLL12qzqGiAm/FBLpdZnJylM9dbq7qtqVFEf5z5ijCTdfhF7+A116DjRuVgVwspk6nvHzoJdxxB/zpT0qNP3gaNpvqz25X/eTkqP0qKyEvDw4eVFUChqFOtbt76DRHjQKLnsB2+rSqQZ8wSjHlGko239alXOaTBnDommLPY/FkvTvgCUBGmqqNB1XDHo0N7Tu4PmEMzc0mxcabTOq5rqmagMHtyRpSvH5iaUrWlgiH6fvqK9KLiwn29JA7bhzmtDTiwSDuxkbyqqsx2e0kwmGiPh+JaJSg00l+TQ2arrNvxQrGX3stacOGoVutJEIhBIiHQsQ8HsL9/RRMnar26+ri6Jo1jP/5z+k7fBhHaalyRhbBiEYxpaWh6TqSSBC1mugPesiwOTjS1UxxRj5d/j5ufudRnrr0booy8nih4T2um/F9SrMLcHp6eaHhPa6f8QPKcgppc3fz8p4PuHXeFWTY0ogbBu6Qlwybg2+6mslPz6E4K59vuk9yRkEVGhpGUvrtsKbR4enBbrESjkV5oeE9rp72XfId2Ty25VW2NO/lse/dzqSS0UTjMTRNI9Nsw97VoYzn9mxVBnWLb1alDxrqc24/CeWj1LLFpkbxjYSqbbelqfW2NMW4a7piNjRNLYvAuy/DD36m1pktQ+vbmiFnGGRmq34TcTASJByZiBggBolYBJPdQSzoJh72k55bhmEkiIWU+6zr5B4KRk8nFvLjyCtLmQxqmnJHB4iFfLhO7qFkwneUx1AiitmajhhxEvEopqTfQNfRrRSNm4vJrIyHAn0dmG12TGY7Zls6hhFHN1kgkUBzD2Ds2IJ+3kIl4TebEY8b8brRy6uUy/xAP+LzoFcMB0AScTQ0JBxCs6chZjNaPI4k4hifbESffbYy/ItH1Y/TZgcx1LaLvo9mCEZHC1pGFuTmoWk6IBhtp9GyshWTr5vUTxLYsOlDysrK/n/s/Xm8XXV9748/17jnfeZxn3MyEQIJmRgyBxUIEUHb2oq1eq0TYE2UOUy2YCVBEgOoUBW0enu19VKrXkSSiCiS5GRgCoQAIfOZ57PnYY2/P97r7ANtbXu/j+/vfu/tdT0e57H3Xnutz1prn7XXXq/36/V+vZgzZw7hcBiAXC5HLpcjlUqh63rVMA5E1r5q1SpqamrIZDLs2bOHVatWEY/HURQFVZ0W8+Xzefbu3csVV1yB53n09/dTU1NDbW0tP//5zzly5Ah/9md/Vu2P1zSNYrFIPB7H8zxCho06/Dlo+QbgQumAOMgbc5CLSiAJRQHFh+JBiK4Gvxws2wF2n6yj1UP5FZHaKzoMb4T6W8AZg/B8kdgrJljHYOJr0LyVqju0EgWnHwrPiFt9dCV4RfJWhZzXSN6yqA2HOdjfT1cySX00Wu11HykUSIRC/PSNN9jX18fDV1xB3rKIGqKw2dvTw/ymJnRV5bZf/YqbV66kORbjpl/+krvWrGFGbS1F2yZmmlQch3S5TF04zJlMhocPHuTrV1yB6/uMFgqENA1NVXltZIRVnZ1Vxr82HEbXNI4pCl8NhXgMYcs9pNf9PmAT0A4cApYgTDtAHjGgSwA68N8R1n0I6ERY+2XBeyBsfB64DbgFkeQXgS3AXcA5gMm/PdnFItlTp3jjb/+W+ddcQ7yjgxe+/GXmffzjxNraGD9yhLp581B1HUXTKAwO8vpjj3H+bbeBomDnchjxOPg+L23dyoJrr6U4NMRvP/c5ut77XhZu2IDnuiQ6OvAcp6rAccplFEXBcxwObd/OuZ/6FKH6el76ylc49xOfoDwxQf3CJfTuG+YfrvoHFn9iMVd84wrcikv6dJqDDx9k9abVuJZLz54e5n9oPtneLN1bu1lzxxoijRGckoNdssn15+hc3SniEE0RH0XfxypY/GrTr1h16yqMqEGkPoIW0nBKDv0H+2ld0oqiKlSyFWItMblWhHyOZY/Rm+mls6aT3kwvy1LLSJfTRPQIY6Ux7ttzHw9c/gCqoqKgENJDlB3x+7n16Vu5ZdUtxI04MTNGppIhbsQpO2UaY42oisrenr3Mb5qPrurc9qvbuGnFTbTEWzA1k4P9Bzm/7XyGC8Pct+c+blt1G2c3nM2J9Am27N7CXWvuoivZSo1movi2uMhHuyDWJQzxVC97eURk8T2PQ2w2NK+R77dThMlD0HAReBU4dBtc9E1h549sFsO6+CxhxccPQLQTtAi4RSj2SV+9FgHfkrEO3Qbn3iru7I3LA4f4mKyf74N4ShhuRZX3pqCSW542rAPInBZpPb70mhsxgou4MPJTXhxvH1eTaywKwuBPHIVIvbjRO/9s+6o27fTuFKG/Gxrng1kjY7sVkd6HaoU5d0owdEDY+No5gXEnooobOiDsfGkUDmyG5XdCrg9+epX0zV9wE7z4ALz7IVEHvLBNWPkP/ARSwf/BysPu2+DibSK7P7gFlt0J+T7ydWsYGneorQ2zYcMOHn/8CFdfvYBvf/tKzpzJsGXLHu64Yw2u67F1azff+taVjI4WOHZsgqamGKOjBZqaonz96wfZvv1ywmEdRVH43Od+wQ9/eJirr17Ao49exeBgnrvvfrY6/mOPXUUyGf53rij/Z02KovT7vt/xr773HwHuwSDNwGOIdN4Hvg3c4vt+8f+tHf3fZfo9cH/nZLsOlmtjasbvBO0ARavMPbu+za6j+1g/byV3r78WQzUYL5UYKRQYyOVY1dmJgtzITMXBDefzElWjaZRclwN9fXQkk/Rls3TW1NCfzXJsYoLL58whlUiQsyyGcjkGg/XeDu7vXLuWvkyGq/7hH3jyIx+ho6aGLbt3c9fatbTG45xJpxkrFlmfSqFkMijZrID1/n7Rhd9+u6DgKaDe1ydN5MuXCyi0bUG6uZw0jQ8MwKpV8gGoqgD0+++HTZtEIr93Lzz2mMzfulWaymfMEMS8ebNo3DdulOLAJz4B27eDqlIyErx1XKWvTyGVEkX9tm3Tn3UkIkC6pSX4TfEFy+bzArgvvBAyGZHPl8tiXBePy+5O7cbs2dPg37Lk0PRAla4ocoi33y5RdF1dovZXFPkYSiXwHJf2uor0uXe1icxdVcR0zjQgHPR25UvS7+667wDWhEwImwLYcwV5XbHEwK42UXWLxxG5JIYukvo5nVIAmNpu2JR1eofkdSC/tzWFfF8vRx59VG640mkaFy3C9zzGX32VunPOoTwxQWlkhIZFi6qGMqqu49k2Vj5PuL4ePA8/+JDz/f2Ug+UVTWPslVdoOO88tCBmzpuKybIstGgUz7IYf/VVKRoMDRFpbSXW1oZn2xCP0psZ4TsHfsafX3gViXCUukiSQwNvcV7rHO575nvV79JfrvsMhwbeoi6SIBmOkQjF2Pabv+NjF7yPjtoW8H0sz8H3fR787Q/5xEXvpy6a5M2R0yxun0vZsXnotz/kYxe8j5ZEPYZm8MrAWyxpP5svP/0ddh3dx5XnruH2Sz+J67liamfbfOfAT/nERe+no7YFzXWJ5XNgVcQ9/n1/CvVN4gz/1I9g/Yek131yVP5mnSMn08k3oHOOgHfDlB73U29CfbO4y3fODgB+AOLN8HS/oOcGNy6euNOb4XcUBVxdwyplUFUDzQzhWlPgPcPo8QM0zr4IM1qD7zlkho5hRmqJ1bdXvzSeazP0xnM0zrkII5Jk8LVniNS2UtcxH9exKWfHiNW34TkO5dwIkZpWUFXSA2+SbJ6D79poZjSQ4pdQdQNQxAkeUF0P9xc/ERl7TZ0A8UgUX9MhPY63+xm0Kz6IXy6ixBNyrhUL4h7f/VsxrdN0fEVBcRyY6mu3LJREDf74KN7+51Avex+KGcK3KiiaIeOFI/j4kMvh7XlG+upjCSl45bJ4e36NuuZS3LoGypZFLpcjn89XgXpPTw/RaJRCoUBH4FOya9cuLrnkEjzPY2RkhI6ODvr6+ojFYhSLRdra2tB1Hdu2GRoaor29HU3TqFQqqKpanVcul4lGo/i+T19fH11dXViWRT6fp7u7m7Vr11JbW4vjONhWgZqEieL0wPhmAdpqLejN4OVh5DZo3gbuiAD0yHJgCpR/AZxR0Bth4gFofigwlIsADnhF8ArgF2B8CzRsAq1dZPf2CYiuAXtYHvGCnnkHUGDkVmi+H4taio5KTzZLbyYz/ZuUz7M5KCDHDIOmmNzQq4qC63mcnJzk/u5u7lq7lqZolBt27WJT8FsSN01a4nGOj4/TVVuLqigYqoqqKFiui6YolB2JOIzoOr3ZLD2ZDMtTKSbLZYq2TWcyKQ73lkVNKMShoSFSySSR+npKhsEMpBdSQWTyC+VTIyJHShEB3tsQSfwUsD8b6WU/ifS5O0AJOIxEC+mI+/y9wXuvBfNvQsD9ekR27yPg/XcBeLtQ4MBf/RU9O3cy86qrJN3DcXAqFdJvvVXtYS9PTBCureXgl75Ez86d/NFzz72jgJqYMYNTP/sZ44cPc/7tt/PSV77CkptvRo9GUVQVt1Jh/NVXiTQ3E0ulyPf2SrHg2mvxHQc9EsGsqeGJdetIvec9XHjXF+k7OELbBR3s2LiDK799JZkzGfZs2cOaO9ZQM7MGVVfxbI/ieJFYU4ze7l4mT04y+9LZhOvD6CEdz/HQTA3P8SiMFIi1xFA1FddyUQ0VK2+hh3U0XcOpOKi6KjUkRUFRFcaPjZMfzJPsTJLtzZJalkJJKji+g48wc8OFYZKhJBE9wsYdG1mWWsbHF3+cglXgtl/dxi2rbmEwN8iilkU4nsNrI6+xpmsNxyeO8/DBh3lgvYD8kcKIAPhoIzfsuoFNqzaxt3cvc+rm0FnTSX+2n1Wdcu5293bzwcc/yI8/9GOWdyxnw1MbePzI4zz5kSdZP2MtulsAOyOSb6cswPrIZjj3ZumvblrNVH83IG7yRx8Q4zkjLn3ualiKdL4CL98I9RfCjD+V7/boXgHtkWaR3ktVZHq88oiA3kIPHHtYjO3yx8WRfsX3oJIDIwqo027wbiUA6krgNm9ILFxyhvw++QTXB38aqE8VpadaBNOnId4ixQMF+W3LnhGA7lZEzq6GxACvkhZwHwoi4TwXsj2QSEH6GDy/TSTx1aKlCkPPiwEdyO/n2GFoXyUFysxxOLBFjO2Ss+Dpz0g//Lyr4dJH4JkNAuLzA9C0RD5nz5b9Gj0k8wqD8te6XPbbjEu83NQ4F9yElZ9kPL6aRMLk5Mk0mzfv5s4719DenmDjxmkg/61vXVn9npumSjZrkc1WaGmJ4Xk+hqFRqTgcONBPR0eSpqYYN964i9tuW828efVYlofjeBw82E9XVw2zZ9cRi/17pcD/s6Z/C7j/ez3u1cn3/RHf9/8A+BSQRdqgcoqiuL/jz/l/Z/d/P/1/PRmaTsyM/JugfWq5f252Z+o6CdOkORZjcUsLG556iuMTEzREozieR1s8zuLWVvb39XF8cpINTz1FUyxGXzZLYzTK1r17WdPVxUfOOw9NUai4LjWmWWXtXxocxPM8Um/r4VuWSnH1ggUs7+hgS+Aiv3XvXkKaxuy6OjHLc12UkRGxSz9xQnLQxsYEHV99Ndxyi9DPs2YJMJ9i0SsVaRCPRgXUT2WoXXutNJQnErJuMikGdg88IB/O1q0CzjcHZlu9vUKDp9OCoq++WpzmKhUYGsJ2FPr6FJYtk3rCV74iwNs0ZROOI5iotxf27BHQ7ThSU2htFTO6xkYB7QcOyGM8/s7dsG0B4CdOiPfeFCg/c2a6lX/ZMqlbFIuyrY0bxbne86ChHpSKJX3sU8y6JYAU0xCTOcuBZCzoaQ8qDNn8dESc68mOxyLTQL0++c7ed02ddp8fT0sBYKqnvifoY7JsYelNXbanC5t75NFH6f/Nb4QVD/J9K5kMjUuWoEejxLu6aL7gAhRVxXNdxl97jcLAAFYuR7i2FqdUYvSVV/ADx2sjFiMcsC9upULTkiVVYzvPcagEffN2qUSht5cX7r2XcH09xaEhQnV1lEZGAOnjdD2X7xz4Gc+eeIFEOEoiFOPQwFu0xhsI6Qa3vPu/cOW5a/j08j9EU7VqHFzZtshVClx/8UfQVI1XBt5iMDfGA8/+AN/3+fzaPyVsmIR0k0Vtc5koZglrBpsu+XOa4/WE9RCvDR5n40/u59DAW3xm+R+yft5KbnrXRxnKjnHfM9+jbFsM58fZdXQf33/+54CPefJNAX71TcK0N7XKjc1UjFsoSElIj0s03H//tvSxzz5XAHeiRpb58XcFyNc2wNzzBIT3npJ+bSMk2fAnj073wLsu4MuY+Zz0wQeMO56LEYqjhyLgI8DZ9zHCCVrPvRgzkgA8SpkRYnUpIjVNFCYG8BxLMtdVjbb578EIJ1CA9oWXkmydy+CRZ1FQiNW343keim4QqWmllBnCdx3q2s9FNUKouonvOUGPvIFjFRl8/Tf4joVVTGNZJdR1V4Gq4fX3SH77zv8h/ezJWrR1V+FrKko0JhnsCiixBEpdI9p7/0DOq/4eyKRxn34S37ZQDBN/Ygw/PY4/1duu6cLSa7qA9mgsUP/4YBjVODisCopuTsfRHezG8300TSOfz1fd3tPpNF1dXRQKhXfkuy9btgwAx3Ho7OxEVVU6OzsJhUJ0dHRQKBTo6elBVVVSqRTlchnXdRkeHqZQKJBKpSiVSlVm3nVd2traJN7QNAmFQpw4cYJMJkM6nWbHjh3ougE4AtrzTwho1+ok7k0xofl+UCOgz5Be9uEbwDkjPfAT2+XRmRDQrkZBCYGXDsztRsW0bnwL5B6XnnkvLevELgd7UMzv7BOyvG/LttQ4NG8BJYrpvoWquPRmMlUTuKF8nt5MhieOHiVqGDQERYqSbcvnraq0JRJsWrWKkKahKgoXd3URN03ObmigMRpFBWrDYYZzOQ709UnOu2VVY93SlUp1rJ5g2xt27KBo20QNAy1QPdz73HMM5HKc19zM5t27afI8upCbvyTQjLDrw8AdTBOLUcR8LovILG9GGHYfiXNbgrjRX48w6hcCBxD2/V4gjoDy84EQ8A3gjxHAfwL4bTB26W33EK5tYxcKOEGVeMokbuktt2Dn85TGxsD3qZ07l4P33INTKOCWSoy+/DILrrmGrve+F80w/kWkXOe6dSy55RZUXWfppk2Ux8YYffll7HyeyuQkdfPmydieR2VigqU330ysvZ14Z2dVmbPma19jwXXXoegaHSs6MGIGV37rShRFYc+WPRx5/Ah77tuDqqmMHx2vGs4VRgp0rOjg3A+ey+SpSVRVxfd9dl6/k0q2glN+562yqkl+e2mixM4v7MTKW6i6KuD/1CS+J/+h2pm1dKzsINYUo2VxC09vehrXcrFci4pbwfEcVEVFV3V0VWfbum2s7lzNxqc2AvDg+gdpj7ezums1pmby2shrdCW70BSNuBnngfUP4Houe3r2ULSLhPUw6XKax488ztburaybvY7lHcvpzfSysHkhnu/heA4rO1bysw//jOUdy3m+/3m2r9vOwE0DXDzjYsGwpQE4fLc4yUdaBLT3PwGVcellBxjtFsDulsBIwOLNAmSzx2HiZfndIQDF538dGtfC2EE5O5tWSTa8agjIf2EjZN8CJyeA1g3mqYas69vCyDetoRrvlj0jANoPHOCNmABZfAHTWjhg2Zk2rrPy4sbuu+L2PhULlz4hLHrNzIDx96bd3s24sOuhpBQd3IqY2IUbZJtOWdb3bEh2yfgHtkjfeq4XypMCpn+9QQoARlwKC3pMQLsbHIMWhgs3BUZ5ljDk866G5V8UYP/uh6BmjrDqIPFwv/mCPG9fJcWJ4rD0wP96g3x2sXa47FvwF8OyfnkCs7aDRMLkrbfG6e3N8PDDV3DWWfWEwzp33bWWq69ewJ13rmFsrEhPT4bPfvYXnDiRxvN8jh+f4PTpDH/xF09x8uQkBw7009QUo68vSzRq8KUvvZu2tjig0NOTqWbBz5xZi2Fo/N80/YeB+9umF5AIT+U/8Pf76T/hZLsORav8jtx3+NfN7izH4VQ6zUuDgxiaxo0rVjBcKNCbyXBoaIioYRAzDBa3tDCQy3HLypXUhcOs7upiVl0d37zySjzfx1BVYqZJulTC8jwKts3nd+xgYXMzPjAaxOgsaW0lrOvc8653vSPbfdu6dVUjvNKUq/lUrNuWLYJy77tPqOxHHhE2fcECAeNTqDYcFtT84IMCUJYvFyTd2SmIOBoVJDwyIkj3c58T9KtpAs4/8Qn49rdlrNWr4ZvflOVmzxZ2X9OEEr/7bjQVzj9ffPOmAHs+Lyr7XA5efFEAfSol8njTlPt005TduPFGAdoHDgj4DoflkKci67/4RQHzExOyXHOz1CkqFTGxu+UWESGsXy9O9qYpRna//KXkwCcSIrUnHhXGe8pArlSZNp4bnRQWHEWOzQgM6qby201dli1VpiPgVEVA/9Qys1LvlMPPnyNjdbVBc72w7wT7USjJD7rnw5lBVFVlwbXXsubBB4m2tHDw7rspDgygKArFoSFGX3oJXBe7WOTlrVvB92latKgqmz/4pS9RHh+nbu5cxg8fxnddIo2NHP3BD2hYuJDyxASjL72EZ1nVm7tcoNQJ19WhRSKc+8lPUkmnabrgAhIzZ4rjsa7j+z6GonHN8j/ix3++lUQoxmtDJ6iPJBkpTFCyKxiazhfXfYZUTRPgky5l+NSyD9CabKQxVkfMjDBemOTspi5MzRAn+kKGb+z+EREjLJJL1+bRfT+h4toM5cbZ+pv/Sn9mhLlNXayft5LWRCNtySbuvOxTgMJ3Dvysaoh3Xuuc6SKc42HU1MOB38APvhE48AP44jQ/Zz784h8EdM+ZL9Fwc84Vk7oTrwvQLpfk9SXvF0D+w4fFwK6QgVnzQNPlVyMchdnnQCEncvDJMXGmd2yob5R5f/+IMP2ajl3JM/Dar0FRUd9WXFT1EKgarlUhWteOEa1B1XSi9e0oikqlkBbneAXsUpb+w09TyacBqJ+5BADfc1FVDd+1cW0ZR9EMipMD4DmB8Z1KtK4V17EYPX6QzOBRXMfCLhXQzTCKruN1P4vS0g66gbpiLfgevm1JQci2hGV3bPyJcdwn/xF/ckxYdsNESc3Az2XRLrkiAPK9qJ0zxbSua/Z0USCXDYoDNu4v/klM8BADO2/fb0Uin6zBT49Px9Gtfz9qIE/v6uoiHA6zcuVKMpkMruvS0dHBvn37OHLkCN3d3TQ0NKBpGhMTE2QyGQqFghQ2ggg4Xder4N91XUzTpFQq0dLSgmEYZLNZnnvuOSzLwvd9hoaGAGlV6OvrIxqNcv311zNjxgxyuRwrV64kElZQSgeg4Q5o/zH4RRjeICy5mwZ3TLLdnRNyrYksEyAeWwcNfykS92gACIrdIqFXkwK87V7AkbETV0PDbaDWyDp6G0TfJSBdb4f6myQ/vrhfmH6vKGPZI2iKz7JUiu379lULxWu6uhi86SYagyK143m8ODjIiYkJ8paFpqrMqKnh+MQEnu+zpquL4xMTVBwH1/fxgaZYjK7aWpalUnT39jKcy7GysxNdVdEUBVPTUIC1M2aQDIVY3dnJQC5HMXCvHwpUaVu7u9FVlTvXrkVR1SpYjsonRhYB5VsRpv0mBFB/FGhFwPfXEVn8lIu8BjyMsOsucBApAoSDZY4DNyDZ7kUk830IYfZ7EXf6DcAxRLJv2za5U6c48Fd/Re7UKUZffJFwfT3LvvQl9FiM0uioRHKOjqJoWjUt5Mijj7LnxhspDg+z7J578IH5AYhfcN11jB06RGlsTBJBLAtFUXj9u9+lbu7c6THHx2lauhTFMKg95xycchm3WMQtl8n39clvw9KlxFMpKpkMvutQyVTEL7HictVjV3HTwE2sf2g9vu/TvbWbo08cxYgaRBujuLYLPjQvbOapDU+ROZMhtSyFaqjkBnJMHJ/AKTlVh/rJk5PoIZ2OlR34vk9huEDL4pZq1rtTdug/0I9bcdEjOmbM5N33vZtThVNMlidRUZksT1IXrsPHp+yWiZtxHtz/IMtSyxgtjrJxx0b6spIg4XgOi1sWEzEinEyf5MvPfZmyU8b2bBa3LGYgN0BTrInacC1P/dlTPPb+x0glUoS0EMtSy6gJ1+B6Lvv79tOT6WFN5xp0VWdlx0omShPc+vStZCtZVHxhuc/dBPGZcvbNv0sM6iLtkuOeOwZ1CyX6TVEFvKdfEwCamA1NK+R5eSRgmx2Itso6ueMyRuE0jO6X69/izVAeAjsfmMmFhNUv9kPhVGCSl4KujwiodStBjNsU6H0bkzsVZ+cF9ziKJqZw+f6AhX+bEZ3vyuvSWOAyH7DjqjotoQ/VBoy7LfPz/cLsTxUm8gPB+paAdkUVZnzmejAiAqRzfSJnz/dC9qSw4LmewD0+cMXf/2UB3+njAviTMwKwPkuk/74L/buloGBlJCu+dZm41T99rRQH2leJxP6Cm2Xb2VPiSp/rlc+ifRXUzMRzbB54YD8nTkziOB7ZbIUvfGEHTU1RvvWtK4lGDWprw/T1ZXniiaNs3rybbLZCU1OM++6TKLgtW/bQ2Bjl618/wJo1Xdi2S11dmHjcxHE8Zs2q47bbVvHgg/vwfR/T/D1w/52Toii3INfnBYgy6v3Ae37H338S+77fT2+fKo5FvlLixb43OD0x+K+C97ez85brEtZ1lqVSHOzvx1BVVnV20pvNsrC5mbxlMZjPo6kqKzs66EgmaYnFsFwX1/PIVipUAklgwjQp2jaf/cUvqjckuqoykMtx97PPMpTPoyoK/bkc8//mb9i4YwddySTfef/7q1Fyy1Mp4qaJaxj4U0z3nXcKwL7tNjkIXRe0G48LoF+8WJBwT48AzzNnBD37vgDK3l6Rxk/R0k1N7ywKFIuChr/+dVl/dFSWu/deQb9TEmHPkwLAE0/g+z6Dg8KG67qA9MFBcZcfGJDIt8FBiXerVGS3lQDfnjwpZHUkIrs+Bf4tS1T63/qWCAmmIuSXL5ee9ylhgetKj/vatbLbhYJEzKdS8PzzUiiYStGrbjjIWMc0BIyrKjTVCcBWkIWP98gPg880g27ZsrPHe6Q3HoJe96C4UihJRNzpAVm2JnBUVVWY2yWS+bfOyGMsErD8NnS0oGk68c5Omi64ADUU4txPfQotFBIGfGSEcEMDoy+/jKrrLPrCFyiNjXHwr/8at1ymODRE/29+Q2l4GD0apW7ePF76ylfI9/VxwV13MesP/5B4KkXT0qVY+Tz53l5e+spXaFy0CD0crjoalycnq670hYEBRl98kXxPD2OvvoqbzZGqba6C9oZIDYlwlMXtZ+N6Hm8Mn6RglRjLT+K4Lgtaz6IhVstXnvkevelhJooZ5jbNIF3K883uH6OrOvFQmE2X/DlRI4ztinT+/NQ8VEUhpBksSZ3ND158ipBu8peXf4bWRAO73tyL5Tp4vscnLnp/FaznKkVuv/QThHQT19Al7u28C+HPNkAxL4y4oopj/BRQT09IVFxdE1ywVpznO2YHPe5hWbalA2rqYO5CYefNMGQnJTLODySSthWoODxh+GvqBayPD8uyzz8n8nzfxy4VaFvwnmlJIlCcHMQqpPEdG1UXoG2XMgy89mt8V3Jho3VtGOEkiqLiVApE61PiGq+qmDG54bVKOfoPP41jiQy+MDGIokC0ro1Segi7kpcYuHIe3YzSdNZyatrmoemmFAh88PrOSN+5ruNPjMkNVCgiUXChsCg540lhywsFlK7ZKDGR1bg7fgaug5JI4v56BxgmalsKr68H37bk+2QYKLEE3p5fS3TcnmfwjxzC278bFBVF01BXvQfiSRQUca6fOQe/VJSvJlTz1m3bplAokEwmyWQylEol1q5dy4IFC1i3bl2VBY/FYhiGgW3b7NixQ0BXLkc8HicUCrFq1SoMw8D3fZ577jkKhQLxeJw9e/aQSqXI5XL09vbS3t6OaZpVNj6TyfDkk08yOTlJS0sLBw4cQFE0MNoEPEcvFsY8shrGvwpazT9jy3OQ/DC0PAJai8jp/RIU98iRGq0iobdPQvmw9L+jyznX/BAYZ4GakOKAMyLu9MW9gCJ97UoSoitkrLF7wR2E6GpUxcRQ1Wrc6P2XXSbJDoqC7XkYqrCoKzs6GC1Kd+FgPs8Nu3axuKWFiGHQlkiwLJC6u57H8YkJrn3ySc6k06TL5WrySk/wui4cJl0uU3ZdPM/j3ueeY01nJ2u7ughrGptWrSJumnx4wQK+uHYtrufRl8kw5HkMIGC7gHgctCPy9RuRy/NWRDJ/HOhGwPjXEKB/EpFbDgIPyKfHDUgufAfQhjDtI8DFwbpRRHLfiTDxyxGH+seRTPdewLUsXvv2t6u57GZNDS9/9aviCwHokQjNF15IJZ1GC4X4o+eeI9zYyILrriP1nvcQbWsT6fz4OHgeF9x+O/H2dvJ9fRz9u7/D9zzK4+NYuRwLrr0WRdPeycwD+D6lkREB82NjKJpG7dy5lCcmOHj33WRPn0YPhymnLRRVeuJVU2Xi+AS7bthFcbSI7/msvWstH/rxh3BKDr3dvSiKgh7R0QyNrou7iLfFWfLJJeghnWRnkpbFLVSyFbq3dgtzv2UPsaYYiz62CM3UmDw1iaIoxBpjOCWHXTfuIt4aRw/r2AUb13ZRa1R6s70U7WIVtHt4qKgc6DvAqclT3H/Z/Vw+53Lu23Mfjx95nMH8IGcyZ7hh1w0MF4ZpibewefdmlqWWMZgb5KXBlwjpIdZ0rcF2bRJmgpUdK6k4FYYLw1ScClE9yun06WpW/BT439uzF8d3iBpRblp5E6ZmYvs+LH1AroHPfw7yJ4Rdbr4Ywm2wdCtURgRkNywT0Pz22LfCGQHNvgtmrTDlo92AClpC1j33ZmH1G5eL43v6NXGvj7QLAw/Q+ccC3o9sDlzp7wv6zceElXZtAdBT8W+eLez3VETc1ORZskzNbCkI1MwWNrr+XJmfnCnPQ8mAVLCkp51gGM0M+t09AefJGeJIP+Vmn5wxvb5myHHrMYi1Crv+7I3Ss35tH3RcDIUhSF0M0WaINErrgVOGtpXiIh9pCpztfQHj6ZPwm+uhNC7LKIps/6JNMPNyAfBHHxeWH1X65l/cLr32+X5oXy3KAEUUl5bjUyj5fOMbV/CRj5zHoUNDeJ7PPfe8m0OHhjAMlWLRYePGHXR0JPnxjz/EXXetoa0tTmdnkoceWs9HP7qwyspv27aOM2eEXfc8n1On0lx77ZMcOzZOa2uCBx9cj6b9T8HY/xTTf+iIFUWZqSjKb4H7kWvyVuAi3/d/4fv+b3/X3/8/d/z30//6yXYdzkwOct8zf0tdJMFQbgzLtX/n8pbjoABFx2Hjjh00xWL0ZuWitbari3goRNSQXlAfKDkOtz79NDnLwlBV4qZcNPuyWbp7e6m4LhHD4ImjR9na3c3ls2cTMQxipsnqzk4e3L8fU9NImCZXL1jAptWr8YC3xse59sknWdLaSsV1OTY+zlA+P810z5kDa9bIo++LHrynRwD6DTdIM/myZQLCp5j6n/xELnLZrFDRN98sYHzZMmko/9a3pBjwne8ERmq6LDs4KCi8pUXev/deQcZBfzVf/CL85Cd4vkIiIcMdPChgfHhYiPpYTLDugw/K+8PDIm0/dkzqCcuXC8huaZFlp2oC4bDI3D/7WTh6VAB6uSy1g2JR5vf3T9crFAX27RMBwcqV8l5Tk4gKbr01wElaUBnOFWSnLFvk7gpw9gxh431E0p6IBSeSLTvk+zKvb0jY+Yol4D1XCIznVBlzShbfNzxdLFEV2dbbJfOuJwZ5piF/eblBLvT3k+/pQdV1cj09eI5D8wUXUJ6cJNzQwPjhw6imiRGLMdTdTXFoiKbzz+eKn/6UaGsrL2zeDKrK+bfdRrS1FUBiinwft1JBj0bRIhEWX3999cbRd5yqpPPIo4+C5/Hm974nZkpBxrCrQn96hNeGTrCgdQ6tNQ1EjTCj+UkA5rfOYTQ/SW9mhMHcGH/9y8eYKGa57ZJP0JpooDFWS8wM05po4OZ3f4yoYVATSaIqKq7nUqwUiJkR3nvuaiJGiMZ4HZfNXc4t7/k4Q9kxvvzL7zCYHaU12UjUCKGpKu01Tdz6no/TEK3hT/7rrXzlme+TCEUlvzw7Kf3p+MJ664aw6D98RGTvU0D98j+WHnfDEHBumDA6ICx7PAnD/SJ3v+hieV/T5X0QwJ6dFNY9EpO+dt+H5hScs1gY+7POg6//E3zsC6AoRGqa8D0Xq5Cm//CvsEsZog0pQrEaFN0ARUEPRbBLeVrmrUFRNTynAijYJYmOCyebqE3NRzejqKom5lSujVMp0Dj7ApxyHkU3iNW343seg0eeRQ/FsEsFwskmFFVDUVV0M0r7wnWouhmAYg+lNSX57LueQGlpF+ZbnO+kJ90w8D0Xv1hA6ZqJuuh8fFVBUVXUlRcLMK+tQ7vygyhBv7/S0gaA+4t/EiVCbS3aFR+E2jq0Kz6I+pFPo152JeRzwsLX1aNoGn6lhPvMDpR556F2zBTg77rVvPU9e/YQjUbZs2cPhmHgOA66rnPFFVdgGAaZTIaVK1dWzeNisRjr1q0jl8vR2dlJOp3m2WefRVVVenp6qj3z+/fvB+CKK65gwYIFVQl+f38/k5OTTExM4HkeiUSClStXks1mKZfLdHR0YLsKvj5bADsKaK1Q81+g9ZuAJoA79RS0PCw57c6omNLhASaUXpQedTUO9pDI7ce3SN/7+BYxnFPUoO9dEbA+vFEYfSUMelPwuiSAfuizkh8fWSZSei+H65XZ19fH7Lo6vnXlldSEQpycnOS6J5/EVFXOZDJ87qmn6MlmWdXZScw02bZ3LzeuWEFI19nX24vreaiKQls8Lt/lUIhbVq4kYhgUbZuNO3YwnM/THI9TFw5Xe9lv2LmTkuOw+ZJLSIRCnE6nOT4xwYyaGuojEUxNY2ZtLUdGR+msqaFNVRlhOr5tI3AaAdebg9/ul4L3ZyGA/CagDDQggP4JxGhORQD5jYgcPo8A+88hcvo/Q+T4ReBOBKCXgjHuBK5GMt3rbBuvWOTcT32qypRXJidFIl8okO/t5fAjj9C4dCm1Z5/N6IsvVo0SY6kUS2+5hUhjI4WBAfI9PcQ7OvCB57/8ZRoWLWJpIJOPtbcTaWoi3tmJFg5XpfgLrrsOp1RCUZR3gHnNMFA1jdcfe6w6z87liDVF8D2/yp7nB/McefwIuzfvxnd9amfX0rWmCz2sE2uOsWPjDjI9GYyYwTl/eA6e7WHlLJyKgx7SCdeESbQnWHXbKhZcvYC1d61F0RUyZzLs2LiDeKsUrJ+89klygzlW3LgCI2qgmipG1MCzPQZ2D7A8tZy2RBtNsSY8PEZyIxzoP8Cy1DIiRoSoESWVSPHQ+od4Y8MbrOlaw7bubVX5u+M73LnmTi6fczmD+UGaYk1s3LGRU+lTuJ6L4zmUnBKO5xAzY9yw6waOp4/Tk+nh8SOPs33fdppiTfRkemiKNXHDzhtojDZyVt1ZuJ6Lh4qv6hBugfO3izGcUSO+Eb4Nh++B2iUQaZN4ON+HprXTsW/FXigNwks3yLUr2i457+PPg+JBw0oZr3aJsNwvbBTQX+wL8PYU24DcwMy/A2Z+FM5/SK4BkbYAvMbFaM4NWBHXCvLaTwhDrWiS3T7FnHuWAO3MKSk2m0mRrIM89325tqimAF03kMA7AduNAiOHZdtvj5FTtUCm7wrjrhoS5zbFgq++V+YN7ofJY9J/nloNIy+J3H//l2V/zv2oMOzhegHfv/qs7He+V4D5wS3BXbgKo68I8I+2Sk/8vKuF5XcKYlbXvlqKG6m1Iq3vvlv+j6UxLFvl1VeHKZeFNFixooNo1OD110dZvbqTctlly5bdVVZ9zZouZsyopacny623Pg3AI4+8j9mz61izpgtFUdi8WZbPZCrV51u3dpPJlAGFbLaCZf3f1Zn975rTKYpyDfBVxFD0BPDnvu93/y/Yt//Ppt+b0/3r0z83n7vj0k8SD0X/1d53y3F4c3yckKbxV88+yxNHj/LjD32I1V1d6IrC6XSaM28z08lXKsyqrydbLpMIhRgpFEiGQmiKwvMDAzTFYmzft69qPtdVU8Os2lpOpNNs2b2bTatW0Z5IULRtdh4/ziWzZtGRTDKQy/Hl555jWSrFRxcurLL4s0MhVNsWEHjggFDLzc2CSotFQbN33z3tKH/PPUIzz54tNPhXvyrg3HEEDU850c+ZI2OePi098B0dAvTvvFPQ8E03CTt/9tnSnH7hhaJD7+6WZWfNkqo/Id46abBli8LNNwtJv3btOz3umprEgO7tu/n1r0sdYcsWuOMOOaSXXxaAH41K7cB14fBhOZQAh1KpyO7OmCGHOWWIP2uW1BUiEallbN4sux8yPBbMc1DwBTBrqpjQTTHi0yeCsOsVS0D81DwtkM+D/F5k89NGdLom4D0elXF9IFuQ3vWKNd0Lryqy7VP9Iqmfqrxm8hCP4DoutlXhhXvvrboBhxsaKI+P07BoEVoohFMs4rsu6ePHaVy4EFQVp1isugmXRkYI1dejGgbFwcHqep7j4JZKKLouecPA2CuvEG1upjgyQtOSJVWmyHfd6rhTzsV6NIql+hwaPMZZjZ0UrTINsVoGs2N8N3B4n1HXxqGBoyxqP1uKBL6HgoLt2jzw2x/y5xe9n7ZkI5ZjEzVDeL6P5/tMFjPURWvQFTUoiFUwVWlT0BTZpy/98lGePfECD3zgJpak5qEqKo7nkinlqIkk0FUN23XQVBUVBePEGxjtM6QPXdVgZAB2/He44sNw7DWRsn/8Bhgbkp73P/m0gG/XFXO6ZK28TtQKO18qCECva5LlP/hJKQpMLV/XKIDftmBiRIzupl6X8sLSl4q49Y14visy9WP7idS3U5uajxJIjfFFxu0rKngOrlXB82zJXa9rBR8810E1QlJAVBR8R3oZFc3ALmUYO/ECbQsuAXxcq4wWkhvKUnqASF0Ku5hB1cQcrzg5hB6KYcbrUKbMDh0Pr+ckanMbvqrgDw+htncExnFZ/GxGwLxhiqFcuYwSjUrhCgU8F2+gD6WjS45rynFe03C/di/aZ24Qw7vS23rbAVDwek6iNLdBqYjX/ayY2Gl61aXeG+jD65rFRDrN3r17WbduXfWrq2la1R3etm1M08RxHMrlctXxfcqYrq6uThy5HYfXX3+dvr4+li1bxv79+3nXu95FOBymUCjQ3d3NunXrME0Ty7LQNCmSTK3r+z7Dw8NVaT2ArnloZOS+W43LTb47InJ3RQsAtyeAXY3JH65I2o0OMGaIqVzpIBhdAsa1OlkHBXyLKoehaOBOQOGXsnzrwyLDzz0Os94Qln2q/12rl7EAy4Xxik9YNxkrFmmOxeju7eXk5CQfXbSIfcHzy2bPJpVI4ASxPmXHIVup0JZIYAVpKiXbpjebZXkqRbpcJmaaRHSdTKWC7bqUHId7d+/mjjVrGMzlaI7F6KqpETf7mhpa4nEUeAcrHzEMooYhkn1dJxYK4SNs+geBHyNs+Rakz70LAfODCDteQXrg70cA9wDS4x4LPsUeBPTfiRQA0sCM4FM9gLDwe4C9wD2IpF5HAH0E0AsFXv3rv6Zh4UJaV62qFkjxfYojI+R7egg3NGAkEoTr6uQa/eCDnPupTxFtb8e3bbRQiLGXXyZUX8/r3/0u86+5hrGXX2bkhRdY/uUvk+/p4chjj7HgmmuId3Ux8uKL1M2di10sYsTjTB47RuPChShIr73veejhMCgKhYEBuf4vXCjKGV/Hyjsc/flRajpr6FrdRc/eHpKdSWq6asj2Zsn0ZOhY3oHv+aTPpCmMFOha00V+ME+4Poxny7Wpkq1gJkyMmIGqqfiej2u5ZHoyVQZ+wdULeNeX3sWpZ06x8KMLwYfieBG7aLNn8x5W3bYKFKiZX0PJKXGg/wCdyU5aE62cTp9m+77t3Ln2Ts6qOwuAYxPHuG/PfXxx7RfpTHYK2x5rIWflSIaC4q/vsq93H2fSZ/iDc/6AuBlHQSFTyZC38jTHmslVchweOcyy1DIO9h9kecdywlqYslNmw44NXNx1MR9d+FFszyZdTtMRbyFcPI1yZHMgl58DxR54YyssuV+AraJDZRRCTeIeP2VEN9otzvAvbBC2vHG1rDf/Dgg3CggON4vZnSrmpZz6O5h8Gc7/mrz2HRjbD6EWSJwFTha0+DvUWqAHru7tAfMelzP57aZxZiIwn1OnneQVJQD6gcS9ZhZVqXr2jIyninkpdn56HR+5Zley0+O+3ZHe92Tb+X5h2vv3CHMerhMH+QOb4YJb5HW0KTDTs2DsCLScLwWHgf3QtEhM9wa6hWmfcan0qT/zOWHYE52g6vLewS2w/C8h2Rm41mcg2iJFA98DOycGf3YByhMioW9ajOUZlJUaXNfHcTxeeGGAJUtaiUblWl4s2oRCGqOjRZLJEIlECMty2bevl9On06xY0cHWrd3ccYcY2rmux+BgjsHBPGvWdHHmTIbNm3dz++2rmTWrFs/zKZUcampCxOMh/jNN/4/N6RRFeRL4FgLavwUs/s8O2n8//e7pn5vPRc3w7zSss1yXzbt3s+vECTatWsWPP/QhOpJJrnvySU5OTtIcj7MsleJAfz9F2yYeCtGTyXB4ZISeTIbjExPoqkrUMN7RO7hl926Wd3TQGI3i+v60+Vx3NxHDIF+pMLO2lqZoFIDWeJxvXnklf3zuuVy/cyeu71MKbhDp6YENGwQBDw4KXV1bK+g1lRKw/dGPwkMPQXu7WKv7vlDPDz4oB6ooAtqnZPFTuvUtW/6lZD6Xg4svlp5434clSwQF5/OwYoVQ4rYNioLrqmzbprB6tfjcrVkjNYK3m8uFw7JbDz0Eb7whPnimKSz7N78poHuKtU+npSaRz0tf+8UXy7pTRnSDgwLkJydFHHD//cLYFwriUu84AvJvvVX259xz/Hf+1oGAdteTnvVjPUE821Tfsimvj/UI265qArDL1jRoV5VpSf2UQ32pIvL3kBFI2ax/Ka2f0zEtmS9VRDKvKHgVcXRfcM01lCcmaFi0iHJgROQ7DnahwMQbb6CaJg0LF/LC5s3kzpwB32fexz+OZprSm97ZWZXYv3DvvcLeB0UHVZfzX9U0Ghctkri5uXPxPQ/fdfEch9L4OE6phBGPo+o6k0eP4jkOGiqL289mvJDhm90/Zig7TsQw+fiFVzJezKAocHbTDEpWuZrf+ergMcaLWRa3zyVimHieh6oqeL6P63noqkptRJxo83aZglUiVy5QcW0ODx6jPzOCosBnVvwh2z9wE83xev76l4/Rlx4OouSiOJ5Df3qEzb/6Lj2TQxTssjDluYwAdM+F9Bgc2i/gff5SuPIjwgg89SPpV/d9YdZPHIGZZ4vc3bbh+GsQi0NDsyyXHoN1H5SIONeReLOzFsjyiVopFMyaJy70Y8Mi0Y/EBcSPDaL4PopuoptR2ha8h9r2c8FzcKwiCr5EnnkedjHN4JFnUXUDI5wgWteGY5WlL1438F2bwsSALPf6b3Aq4pkxduIFGmadD3gC2s0Q+B5Drz9LONkszvGagefZDLz2a/RQBE03sYsZ+g8/jedY0qvelgJNQwmFUVracJ/+BXi+GNG1tOPnsuIkP9ALpoFfyONbFXyrjPuLf0JpboHJCdynfjrdWuP76Nd/ESWewC8Vwbbxek+D48j557moHTNQwmHpsU91TjPwk+O4O36KEgDweDzOlVdeiaqqWJaFqqpowTmeyWQYHBxkcnKyKouvVCrs2LGDlpYWamtr5XzL5/E8j3POOYcrrriCmpoa1q9fTzKZxDAMuru7WbFiBaYp5+3Q0BC5XO4d6+q6TkdHR9VtXlEUNNVDcYdh5AbwsuD0wNhfgTsgoN3LgzMEWqOYz3k5GPq8yOKViLjG4wvrbswQ8D98AziDAs7dsaD3NbhBt07Iss3bAE1k97PeEhO71m9C8iOyjDMU3MQek3FQKTsOcdPkhp07WdLayp8tXMjenh6WtLaypqsLNXCDHyuIZDdumtRFIliOw/MDA8RMk1QyycqODhzPozkWI2Ga2J6H5brURiKEdZ0njh7lvj17WNXZSXsigR/0yM+srWUkn+dgf38VtDcEsXS26+J4HklVxUVAewfwKhLt1gf8EjGiUxGmfDEwFrweRqTtWxDTulHgGuBMsM5qBJA3IaDdADLBGO3AnyM3kR2IbHMIketbwF7T5OxPfYrRl1/Gs21Gnn+efG+vKGqam6k791z0aBQ9EmH0sDCTi6+/Hi0cpjg4yAubN5Pv66Nh8WJe/+536dm5k9cfe4zOyy5j/mc+g+95HAlY8yOPPYbvujQtXYpdLDLU3c2h7dtpWrxYvE9eflnOu1BI/ADGxoi2ttKwaBHjhw9THBrCtV2MqMHCjyykc3Un+eE8bee3EW2M4rt+lWl/asNT5AZzFEYKJDuTKJpCrCWGETUwYya+7zN5ahItpKFqKpVshfxgHs/xCNWEWHPnGmHgv7iWeGucc/7wHCZPTIrxXcEm25vl6BNHCSVD1J5Ty4n0iapkvTfbS0gLsX3fdp44+gR9mT5sT9qEInqE1Z2r6cv20ZPpCQq34ipfskt4voflWCxpXcKHz/swmUqGbCWLj09NqIbmWDMKCm+MvUEqmSKiR+is6WTDUxs4MXkCD4+71t7Fh+Z/iJJTYrw0TsyM4TpFAe09j8PRBwX4qibMuxFKIxIRN8VAF3tg4kUonoHyWBDnFoYLH4GuP5Ue93NvhlI/KIZEoeWOwYvXy7qjewXcL31Q2GI7K4Z4tYvBSMo1QTUFzJdHBBxrkek+czUUuLoHmlCnLLJ+LSRgPZCHYwbO75nT8k1xLQH7vgd4b+uDHwgAuTrdx+4505JILQCeniN9454jLL6iTrPw8Da5egn0iPSch2vl9dPXyrpGTLb5643S1964UPbnmQ0iiZ/34WmlwGXfkkKALQpF8n3iNJ/shExvANqbZHkzLux6990ynlMS0N66HMwazAN/Kde4ssP4eInly1OMjBS49tonOX06TT5v0dub5a/+6llGR4tkMmUOHOhj7douPvaxRYyMFHjiiaPcd98eVBWSSZOzz26gq6uG7u5eZs2q5dFHr2L27Dp6erL8xV88xehokf/bpn9PKv8+pLj6Xt/3P/efMfrt99N/fPrn5nOhINP4X5tMTeOutWs52N9PeyLBqs5OtuzZw+NHjtCfy+F6HuOlUtWUrikWY+vevSxuaaE5FmNlRwcTpRI5yyKq61WTuTvXrOHvDx/mhl27UBWFh9av540NG3ho/XrwfdqTSTpratiwYwcnJyfZ09PDW+PjACxLpchUKvRkMiieJxTzFJ29bJk0ekejwsD39Ah7/s1vilb82mtFCu/7wqZnMqIzHxmZdny77Tb40Y8EvD/yCMycKY9PPikS+NZW+MM/lO3u3i0A9IEHBAkrigB9w4DTpzFH+9m2zWf1alHTF4tCUD/0kOS1P/KIKO2D+z8URQC7psnjgQPT/eoTEzLv+edl+d5eGW9gQJ7fcoscNsgu6rrsEsh6y5dLx8DgINTUyLrP/EbBV1Vhz08PyCMEPf9DAsQtW0B32RKQjg9ndU6D+VhEnsci4h5fDtj0ZFzYcyVg5TtbqebA18TFMT4Zl+04wY98xYKO1rflu6uo0TDR9nYizc00X3ihAPGlS9FjMexSCVXXaVy0iMkjR1CAC//yL4k2N6NFo9KX7vvY+Tyjr7yCmUxy9Ac/oPnCCwk3NYn8OhZDNQxxkS8UcC2LpqVL0WIxFE32QdE0Ik1NaKEQ+b4+Xrj3XmrnzsWtVKgMDaMqChEjxJLU2YwWJijbFn//0k7OaZ6J5/vV913fmzavy09w2dnLKdsWW575W1zPYyAzxquDx6g4NtlyTlh4I0Q8FBUneSPEea1n8f3nf47turQmGrmg4xzqozVc1DmfiGGSCMV4ffgknudRF01yfsc5TJayGJqO3ZKC2nrpNf9vXxem/C/uEsBeGxjGaQZ8+DpY/h6Rv2cnZP6pN+V/VFMrr3/0bTlPPE9k7y2pgPFQ4H/8AMpF+V8rikTP/f3fCIg3DKiUp43pUrMgn8EuZhh47Vf4QWZ7cXIIzQjhVEq4dgVFVTFCcdrmvwdF1SmlB7HLOWGtPQfHKuH7PuFkI3YpL9L4Sh6A9gWXYITjEjMXxM2BT+v8d6EoKoWJfslsV41gvRJ6KMrYieeJ1rWjaro4taoa3mAf/vgYGAbaez8gpnVDA1AqoHbOlB715jbI5fAnxkQWb5j4R1+DSgVvzzMCvnNZ3Kd+AplJ/EIeHEfy2g0DNdUlwNxxxIl+x8/wLQvtij9EWXwhmCGUjpnSK3/5B1Bq69FUFV3XcV2X/v5+bNumv7+fdDqNoijs3r2bWCxGNptl5cqVJBIJTNPksssuA8RYLpPJ8Oyzz1IsFgmFQjiOw9NPP02hUKBSqdDb28sVV1xBXV1dFfTH4/Gqu3w0Gq2u99RTT1EsFmlvb6dSqQAe2P1BDFxcetebt4M9EvzaeHJt8YvCsgM0bwZ7QMC2EpZzq7hHZPB40wZ2U3J5CCTyG0Qabw8Kc2+9KbL7KYm8fUoM8SLLQG+V65g9gh1ezkAuxw27djGQy7Fx2TIGcjk+v2NHtYc9GkjepwD6SKGAE/S/T5bLtMfjRHQdy3WpuC53PPMMedvG9jx8ECBeKtESjzN488089v73oysKYV2yjvf09HBqcpKQrtMUi3HDrl00BAXu7t5e+rJZPN/H8Ty6ERf4FkQCfx0CqJ9HjOiGgEZgApFZ6sBa4BPAQ4g5XRSRYs5EYuH+GMl/LyJFgG6gJvjLBPP3I1J6h+ArjjDu7YZBorOTZffcgxYOs+/22zny6KMSr+n77zCmazzvPEpjY7y8fTtupYIWCnHuJz+JFg6jqGrVmG7+pz9dTQ5xSqV3yPAVTaPQ38+Rb3+bznXruPCuuwAoDg9LgXbzZooDA/i+T/7MGSkOTCWEDA5imOC5Irv2HI+J4xP4nk9prMTO63dixk2SHUk6V3fSva2baGOUbG+W9Mk0Oz6/AytnYZdsQskQ7Re1M/D8AJ7roYU0Jk5MkBvKEW+NUzuzlvc/9n6iTVF8z8fKWVXju9xAjhkXz+DGvhuJNkapWNJv/uhVj3JW3VlcPONiAB5a/xA/ufonpJIp9vbs5cTkCb783Jf543P/mFWdq4gaUeJmnLHSGMtTyxkpjHDtk9fSm+0lrIfpyfRw97N3M1YU4Ji1snx+x+c5kznDRe0Xcd+e+3B9l827N/PLE78kakQxNZMZNTOIGBEGcgPc/ezdDOWGMPUo/oK7oOtqYdgLZ6TPPTZDjOcaloGVFil9tENAthYXRl3RhemdeF7AbONKkdBHOwS021lh4HsehyNbINQoxQFVk/eNpPTFo8h7bhEUE6xx6Ru3MhJTl+wUgD7Vj+5a0nOuBWy5W5HnVk6AtZWV/UnOmO4RDzdSNZgDKQjUzBLGXUFAb+bUtNGdogoz/g6pfH/A0CO98pFmGe/gFpG353ql13yq5zzXI/Of3yoFggObp19bGdnf82+UgsDQAbBL4krvlEUBUByWbaUupgoNa2cIOH9moxyn70kf/Ykn5H+R6xHQ/+wNYOex1jyEDwwM5Lj77merjvA337ySvr4sNTVhtmwRA7rNm3eTSIRYvLiFY8cmuPbaJ0mlkpw5cz3f/Ob7UBQF2/aoVFzCYZ3Gxih/8Re/IJ+38H2qsvn77tuD6/7byvH/bNO/B9x/CJzn+/4v/1fszO+n//2n/2g0nKnrnNPQwDevvJK6cBgFuCMw7lnd1VU1lBsuFFjd2YmmKGxbt47xUom8ZeH5PscnJhjM5XB8n95MhoevuIKz6uq4esECvvP+96MCY8Uidz/7LCOFghgAAZsDFn7Lnj0SKdfdTbZS4fLZs2mNxbh4xgwUXRdp+vbt8jglTc1mRV8+ldXuugLAt20T5Koo8LGPCaK99VbRkM+eDY8+Ko9nnSXLPf+8rDs2JvbwnZ0y/pQzfXOzsP09PbLN664T+tv3obkZszZKLOqzdavUFAYHRU0fi4mJXCgkIDseF/xz8qSsPlUPWL4c9u+XecePT88bHJQ++Uxm2piutlZqEGNjQoratjDz+bysW6lIj/vQkGxzxgxoblHxPEXAc9U9nmmg3VwnrPnsDgHVsYi8X7amQbqiwMmg92wK0NfE5a9UkWXODMg4U7L6siWFgpo4zE4JSFeQDPj+YRnD8yGTR1NUEh0dIm10XexCgZe3bROQVlcHvo+iqjQsWcLoK69Q6O9n4s03wfdRdZ18by+lsTFq585l/NVXWXLLLXRccglaKITvOJTHx8n39THx+uuUJyZQVFVygctlnEKB3JkzHLz7bgoDA6i6TrS5WW4mA4v/3OAABasMwGVzl7O4/Wxxc2+T3va//uVjjBcylB2r2gffVtPIkvaziRghfvDiU5zfcQ4h3aQt2cDZTV0cGTpBTSSJj88rA29RsEoUrBLjBQFht1/6SQxNp+JYnJ4YZOtv/iuL2s8mbIR5begEC9vOwgO+vvsfuGTuMha2zeXw4HH60yPYnidy90P7pYd97nkSCVcuwuOPSr97PiNu8ZkJmLNA+tSnGPPMpMjk1/2RAPueE/I/tS1h5m1LJPahCJx8XYzoJkeFgQ9HxdAum4Y/+YwUEMIR/GQdo8cPVJ3cjVBMctp90EMRFBQGjzyL73vSuqAoROpSGOEkejiGqhnoRhhV09F0k0hNM+OnXkYPJ/Aci/7XfoVTKaKZEXzPQ9UNBo88i13OUUwPoYciqKqO5zmMnXwRIxLHVxRaz72YaF0K33XFxb2/BzXVJZUvx8GfGMfr60Ht6EKpqQNFRXvfB1FME7+QQ4nFcXf8FDKTqB/6cwiFUdf/AeqSi1DqGtDWXQWJJEpMLgC+VQEzJCx6LCFf+HgCbf0HpBLnOiJJTyRF2eD7osLv7wHPJZ1O09fXRyqVIpFIVI3iPM9j/fr11NXV0dbWRjgcJpfL8eSTT1ZBuqqqGIbBunXriMVikphgGKxfv558Pk8oFKK9vR3HcdixYwf5fJ6Ojg5M00TX9eq2p/rpOzs7yWazqKpKKBQCNJG8OyNgn4aRWwAlMIlTxel97G7pO4+ulJvx8mtgdMpyTi+UXhAWXe8Qdi52OTTcCc6YPCqmmNtFVosEP7oGcGHiqwLkx7dIb7wSEZm9mxbGfeg6MFK4vsHW7m5+eeIEyVCIs+rr6aypYcull6IoCvt6e6mLRGhLJFjT1UVY19EVBU1RUBWF1nicOfX16KpKxDCImyZb163D93329/UxGBQFGqJRLMdhX28vuUoFJ5Db37hrF82xGBHDoDkWoy4cZsull1J2HG7YuZOmWIzBfJ5spQK+z2JgXI6QKGJa1IY4yA8CdyPy91Ykez2DlEe+Fvy+H0Rk8lH5hOlGmPmFiEP9INOu8ScRk7sB4DwE1PcgkXEE455l2xR7ezl4zz24pRIrv/IVFlx3nSibPI/y2BhD3d2Ux8ZQVJXy2Bj9v/kNxcFB3HKZ8vg4bqnE83/914Tr67ng9tsJNzQwcuiQ1FbyUohbuHEj8Y4OSqOjFEdGuOCOO9AjEcZeeYXC4CDNF1yAHovRtHQpR//bf8P3PBoWLqyalb7x/e+LXF7TGHh+ALto49keLYtbUA2V3Zt3k1qWIjeQY9cNu+hc3cm6besop8vMuHgGiVSCy+6/rBrpZuUtdt2wi+aFzWR7suzYsINEe4JQIsTkiUmevPZJ0j1pzJiJqqkkUglW3b6KD/34Q7QuaWX8rXF2Xr8Tp+Rghk1iZowTEyc40H8Ax3Oq7PqqzlUM5gZZ3LKYkB7ixhU3MpIfobu3m6ZYEwkzQW2oFlVRaYo1cXHXxYwURlAUhb5sH7888Uv6sn1YrkVEj3DfpfcRNaJoqsa3r/w2AN++8tsc//xx4macjU9t5HT6NAoKI4URtl62lXMa5mAUz6Bocfzl3wU9LnFw4VbpUUcRRj3cJMDz5VsCUB2Fg5+VeDg9Lpnt4wek333eTWJq53syzrm3w7uegmWPQWIuXPhNAdrlEVn/xetFhu+WYOIlKJ6GV/9K+ubDTTD+klwflIA5n3KKL40JY64owpbnB+S9KRDv2YFqJwDaU8aqmVOyjGdN3xxPmdMlu2Q8RZOe98xJiY1LzhBjueQMWTdzQsB2bQD8p/rO25aLadzRxyXXPbUGPvkGvOsBKXIsv0t629/1gEjs4ylRGAwdEMf4eGBwhyfbqyoHTsAzfyFMve9LAaBtZQDaB8UM7wM/Eal863IpHAQO9LZVwXE8hoby3HzzSiIRg1LJYfv2fXR0yPh33rkmiIVbS6Fgkc1abN3aXQXzExNlKhUXgGLR4frrd1IsOoyMFFi2LMXQUJ69e3u44w4Z57bbVqNp0/JPy3LI5/9z973/m8Dd9/3/4vt+5n/Vzvx++s81mbpOSNOwPA9NVYkbBtsuuwzf99na3V2VuPtAd29v1fk9ZpqMBWz8cKFA0bb5k3/8R9LlMiXX5cWBAY6Nj5O1LHoyGR4/coRt3d14gO15bF+3jo8uXMhda9cyVixy2+rV1IXDdCaT+IATyJirjHtfnzR2T0wICp47V/rRQdzZTp0SkD5lsX7ttUJXb9xI1aBucFC06KtWyXJTFu333ivL6row9QcPythz54pe/aGH5L2bb5blFAVUFcuMUSgq3HEHXH65DL9wofS4X3uttNlns/IXjYqUvqNDXOQzGcG5a9YIOG9pkc16ngDwqYz3UEik8XV107L4z35WWHjPm+4gSKfhT/4EFi2S7Q0Pw7nzPFTFh7O64LyzxD3ecoQpj4Tk+RQoT8YFYLueGMwl48Kgq2oQ96a+zaIeCIcE6L+duc8XA1maMc2sa8GYnj9tfud5wjbWSN+a73kUBwbEYM73WXrzzbjlMi/cey+l0VHKk5PgeTSffz7RtjYxjatUqtm+5fFxVE0j1t6OHomgx+N4ts3oyy/jlstooRChujre/N730MNhfNcVAK/r6NEo8z/9aaItLYF02SPa1kYlnUaPRKg/fylj+TR9mREMTUdVFK5d/kHWz1tJxAhxfsc5jBYmxVgucJMfzac5NPAW/elRbrvkE1w1fy2WY1OyLeJmlAWtc3hl4C3G8xnOaz2rqop5dN9PGMyO8srAW/Slhen//vM/59kTLzCSn3hH5ju+z0eXvo+wZuD5Hova5jJWSmMpCPN9zzeha65UeBxXQPUffUL+jzt/PO34rqoCxk8dFfBeUydgvqZeMt6TdRIfd/otmR+OiAxfVeW1GRLzumXvltg415VxIrEgOk6AeNv8dzP3XZ9ED8fxfQ/PdUCTyD1F02g9V5ingdeewSqkqwUbPI/iZD9WKYfvuSKPV3Xa5r8Hu5THdST+TQ/FAHAdiTBrmHUBeihOtD6FEU6gh6OMn3yRaH0K3YwGEn0dM1aLhiY97C3tYiqnG2AYAs7jcZG2B7J2r78HP5uWiLdQGHXVu0HTUWfMQdF06YMJ+uZ9R6LofN/HffpJic5TFGHnw2Hpr/dckd5nJnF3/g/88VGk5zL4rpkh1M5ZuIow7lO561PTVE47QH9/P6qqEo/H6e7u5siRI2SzWdLpNDt37sQ0zWrfuu/7uK5LuVymvb0dz/PYtWsXuVyOVCpFd3c38+fPx3Eccrkc2WyWWCzGQBDVuHDhQtra2ti5cyeWZSEZ7tsko10JQf2NAtaHPiv56vawAG69Q4D98EYw2oURxxe2PrwQ7OMw/DkB3HqHuMRHV4PWDMUD0PINkcGjiVGW70icnFoPrd+Cs4aFwS89Lwy83Qu5x7EqAxRsmwfXr+f45z9P3DTZ39eH63kUbRtVUVjV2clkqYShquQsi4P9/QLCXZfu3l7yloUbsOEj+XzVqA5gYXMz27q7uXHFClzP40B/PwubmxktFtnw1FN4vs+WSy5hRm0tLfE4jucRN03ufOYZBnI5cbIvFFjd1UVbPI6mqlUm3UAM5+5CALUDzEaAfBRxhj8I1CIg//rg3FiBuMOngVzwOhbMa0Gk9F9HTOz6EPCfDN5fixjarSTofgIUy+LIo48KGB8epun884l3dJAfGGD05ZdpWLSIq37xC6KtrRy85x6ira1c8dOf0rBoEcWhIQHXw8P0Pv00h7ZvR49GUVSVxoULyff3c/jhh+WUDxQekaYm6ubNI9/fz8EvfYlIczORhgbyfX1VE7ylt91GcWiI8cOHaVi0iCt++tMgx10nNyTZ7Pjw9K1PUxguYEQM1tyxhjmXz6n2pu9/cD9m3KRjRQdW3mLn9TspjhUxogaDLw2i6iorblyBqqns3bqXztWdGBGDeEuc/Q/tp3N1J4m2BFbeore7F6fi0HB2A11rulA0hf0P7pdCwWAO27XJVrIkQgkubL+Q7t5uTk6epOgU2dOzh/ZEO6qqcmryFLPrZjOnYQ4rOlYwlB8SCb24gqCg8GcL/4xUIsV1T15HR7KD5z/zPEvblqIpUkCvOBVKdok9PXs4kznDtU9ey5nMGfb37WcwN8iNK24kpIv0uyPRwWsjr2Hioxx9AEJ1KPkT0qvuudJr3rwm6AU/JnFuxR6Yu1GYczstLHp5EAon4aUbxZAu2g7x2WI898IGAeOJ2ZLH7lUkF96rgDUp7HqxL2DjN8uY4SZxk+9/QuLiAFreHYDlkyJdn3KKb14qj37gi1E7R94zE0GUmyHXGisnINwLJPE1swTYq6YUAqzctEw+2zNtWvd2Qzr8oN9ce1vRoE8kKr4r+7HuUQHnl30bPvkmXPKw9NF33y1tBaou277sm/L6158XVj3ZKQB/5CXZJz0s+//rzwtrD7IvF9wszLpdCDLfPzQtkS8MQPsaGD0kjPuyO6sO9K5dYXy8SEdHku3b91EsOvT2ZqpmdKGQRixm8OijV9HcHGV4OE8yGWLTplXVjPdCwWJgIMfnPvcUg4M5Vq7soK8vw+rVXfzpny7gwQf38yd/8o/092d55JH30doaZ0rZYFkOb745zqc//XPefHP8Py14/3fN6f5vnH5vTvdvT7brYLsOhqb/m8z7lEHd5reZx0UNg4rjMJDPc9+ePXxx7Vrm1Nfjeh6aIr26JccRiX08ztyGBhzPY7RYpOw49GQyLAtMe1zPozEaZcOOHTxw+eWMl0ps3buXrevWETMM1CCKR1UUFOBMJsPm3bt5aP16GlUVPZtFyWSEBQuHBbU+8IDkp025sLW0CKh+u0nd/Pny/JFHBCj29QnCXb5c0PBbb0kz+h13wHPPwd69YmS3f78g62xWWHcQCv3MGemBf+ghke1v3Ur+G99j936DhQuFPNM0YcTfbkT3pS8JAz71FS6XBajn81JnuPFG6WPP5wWgb98uqn7XldqCacrYo6MC5KcM6mIxYeE9T2oKhlGtJ+B5IpVvbnTRymUB111t0z3sris7my8Ka14TF+CdjFdVYxL35chyijJtMud6ku0O8nzKZMt2BCD2BduqWMKwTz2GTWHiw6aAeMcNpPZgWxYH7r6bpqVLaVy6lKN/93csuflm9Ij0wSuKwuihQ4QbG4m3t4Oqku/t5fXHHuPcT32KxIwZVfdiFIV8by9HHn20anbXtHQpo6+8QuPixfiui5XNYiaTqKYpIB4Yf/VVaubNE6Zdlb44z7JwYmFe7j9KXSTB373wC65Z/kekaptxPLeatAAwUUjzN90/rppC/pcLryRbzrOwbS6u55KrFEiEYpiaQdm1MDUDFYWiXeYbu3/ExjUfxvU9jo/1UhdJ8ncvPMkX132avvQI48UMzfF6xgqTnN00g3ylSMyMEA9F6U0P8d0D/4NPL/8DOmtbMHwfY2ICkjUCyH1fWPZIFHpPiGQ+USOg/L1XS5/6qTenDenqmgTQr/+QzG9slcx3EMa9rhGMkMTGlYoyLog8PlErN02PPwaX/YHEyHWehRuLYZWyjB4/QNNZyzHCCXzPDXrbHRRVx7WKKJpBdvg4ZqSGSI20QfiuHTDprgBqFBTfwxcRPb6iYuUn0XQTPRStmt1NjY/vU0wPYUQSGOEEdinL6ImDNM6+CDMm+6v5wTnsuVIsDG7oFMPA6zkl8W37fou65lKIRPGHB1BqavF2PyPzausgPSnO8vFkFXT7vo+342eoq96Nf+YEfu9ptCv/GK/3NEpNLX4mjZrqwldUvF/+HCXVhbJwiRyZ78HUZ2TbOJrGZL5AJpMhmUySzWZJpVLV67iu60xMTJDL5ejo6BAWrq+Pzs5OCoUCeiDVHhkZoaOjA4De3l4SiQSGYRAOh8lkMhSLxer6AD09PTQ1NREOh+nt7aW5uZlCocD+/ftZt24dqqrieR6RMGjkUdwRsPsgsly+HX4FCHrT7WOgxMA6CeH5wozjC0tvzABnQFj53OOQ+AS0bJf3lRAM3QT1nxXjutIBYfftvsDY7iwB/ONboGGTONorEdm2GoWhDeQb/oahgk1N0FNeGw4T0XVKjsMLAwMsbmkhZkrKwN7eXlpiMWbW1tKbzbJlzx62r1vHWKnEV7u72bpuXfW7/8rQEM2xGHPq6ig5DiOFAlv27OGWlSs5u6GBom1jahplx+G1kRGWp1LYnkcm6Gv3fJ+D/f2c39bGUD7Plj17uHPNGmY3NGAZBiXgduBW4LfAHEQmP4AA97sQGfskAsK3IZJ5J1jnRqR3PY64yU893gpsQhj3AlIYsJmOn6sNxrGC+cNAvW3TnE7Lsfu+mIN+8pNokQh2Nssb3/8+C667Di0Uws5mq54lWig0bTp37bVokYioqRSF0ZdfJtrSQnF4mPyZM2J619KCXSigmSZoGl6lgu84pE+coHHxYtxSiZ5duxg/fJgLv/hFRg8dom7uXJxSiVBDQ1VVNfL6JPu27WPVplX07u2ld28vVz16FVbeQtVV8sN5cv05utZ04Tkeffv7iLXGwAMzZpLoSDD2xhj7vrqPNXeuoW5OHZ7t4Tke5XSZSF0ELaQxfmyc7vu7ufyBy0Gh+t15+tanWb1pNZGGCKqhopkafsTH8izOZM+wbe82vnLpV4gaUYygANvd2835beczmBukP9fP8tRyNFXjpl03sfnSzYS0EJZr8erwq6zsWInt2fzotR+xr28f37zym2QrWYbzwwwXhlnRsQIFhbyV5/ZnbueHh3/I1Quu5qYVNzFWHKMj2cG27m1sW7cNUzMp2SVct0xXrFG6og5eJwZzTRfD6/eJUV2kHSZfgt9eJU7vF/6NMNWKDi9uhPMfFJf4KWO6ow/Ckm1yX1EcABR4435YcBdEWhG/ikkw64LHWumhb1guoNvNyxfNKYrbumIIAM+ckV7uSGNwr1IITOP84PcbkY1roem+dLcybWinaEGMnB/MH4SamVVfEjJnBEDjS1+5GfTbWznQQ8K660HRwC0LkI6nREpv5aUQMPmWAOt4R2Akd6fkuf/0KmHj131bjh9f8ty1sByTU5EMdhTInhY2/aJN0L8Xhg5Kv7tTFlY+3gGJLikC4En//NHHg/EfFVf8wjC0r5DPzcpheSZlYgwO5snnLeJxk9bWOBs2PMWmTas566w6MpkKw8MF7rtvD3fcsYaZM2uoVFxMU0PXVSzLZXKyhGnqhMMapqkz1VijaQqO4/H5z+9g06bVtLTEcF2fZDJEPG6Sz1f49Kd/zuOPH+Hqqxfwne+8n0Ti/0zTun/LnO73wP1fmX4P3H/3ZLsOpyYG+M7+n/KZFX/ErPr23wne85UKn/75z3n8yBGuXrCAe971LpqiUW7YtYv7L7uMqGEQMQzCgcFXoVIha1lkK5WquVzFdbn16afZtHo1EV1nslxm+7593LV2LbNqa/Hedv5e++STrO7sZHVnJ1u7u7lzzRoGcjkWt7YSMwz29PTwsZ/+lNPXX0/CcVCPHhWAvWmTSNl/9CMxo9u/XyjmD3xAwPTwsLjIb9smAL+7W4zqZs8Wpn7/fqHDp4LRu7tFY37ppUJnj44KHa4oMv/BB8X9baop/QtfgKVLp7fd24v14Y9R1mIMDCg88wy8973Q0CAkZzotw4ZCQuLfe68A8oEBYcWjUQHX+bwA8FBIxAHLlgl739EhXQCZjNQlyuXpDgGQXViyRMbRdREc9PaKxN73pYAwq8tFPXYaxtMwf44A9CogV+W4LFvAu2kIwO9sFTYdxJAuZIq0/WSfZLJPgW5dEzBftoRJ72qTH8yp96Zc5w1dtvd2J3vPC1xaFfA8XNcj29uDahgcfuQRmpYupfPyywEkvisaxXddypOT+K5LqLaWF+69l56dO+l673tZds894kofMOfP//Vf0/+b37DmwQdpOv98VF3H9zzy/f3CFC1diu84uI6DZpqUx8Yw4nG0cLj6fPLYMZqWLMHTVEqezbbf/B2L2udyxTmr0VQVy7VRUHh9+CTzmmZi6ga6qmK7bvX9sG7ieB6vDrxFS7yBhngNuqqD7zNRyhI1I+D7jBXSAPzgxae48V0fxdQMLNcmZoTxgtLAy/1HWdw+l7Jt8fCe/87GNR8maoaZKGbIlYtMlLIsaT+bcKWM0XMCOucIuK6UBbDPnCcMwo++CR/5nIB605RKUCgssvlQGH7yPXhxj/TGn7VAvjt9J2B2AN7zGWHhPQ/sipwPkYgUg6biEq2KFAsStTAxghuNMtD7MpHaVmrazgaglBklWtci90WVPKPHBUwbkTiKqsuNow/+FCsSFHDwfZxKCc+zAtf5NlA1FN+TfnnHwgjHUHQTPCdwkI/gVErE6lP0H36a7PAJ5q79OJoZlpYLRYPJcQHiq94N8YSMqRvgubhP/QT/6GuoH/pz1M6ZoKp4vWdQm5qnHfxBCgZWBe9XT6GuehfEEmIWaIYgnkDxPHxNl8JDIQ/lMt6+ZwX819TKGI4t/5OYuI77xQJKOIKl6fQGQNz3fRRFIZ/PY9s22WyWjo4OVFWt9sC3tbVRLBbRdZ1wOEx/fz/JZJJkMkk6nWb//v1cdtll1b75p59+mnXr1lEsFtm7dy+XXXYZpmmiKAqWZVWBv6Io9PT0MDk5SUdHB/v375cYOq2CrgXSU8UHZxy0WgHdzoBI272CZLr7DozcCc33CrD2Haac38GRHvjISnDOBGD8TmHe7ZPC6jd/BdBFOu+OSXa80w+FXWJA17JdGPvxLdBwFxizKLkmb02mGchmWdzaWq1PHhoaYkVHB+Ug5vSmFSuYWVuL5brETZOibWNoGrqqUnIcKoGx3UihQNwU47Kbn36ab115JV4gmW8KZPAlx2Hr3r3cf9llxE0TVVHIWxaHhoa4qL19yi8fQ1XRA5bf9TwOj4xwYVcXN4ZC1Wxfg+otPkPAlxGG/HIk0u0vgtergQcRZ3kHeA3pkx9FouCakAi5HyIO8t9C+ucPIDL8WYhEfgviPj8bKRJoQMq28dNpFFVFMwycchm7UCDa3MyLW7ZQd+65dK1fjxoK4VkWWjiMZ1mopklpZIThAwdoXb0aM5Fg/NVXCTc1Eamvx6lUCDc04BQKpN96SwqsIIDd93n1a19j0Re+gB6JVJNBGhYsQNH16rXdKRSwCwW5dh89SrS5mVBDO5Ons4RrwkTqI7iWixbW8CwPPaTjWi6e45EbzNG9tZvVt6/GjJvYRZvubd2s27YOgDd+8gZ1s+voXNWJXbQZOjREoj1BbiAnjL4Cr/3oNRZ+ZCGu5TLwwgAti1rwHI+R10aYcfEMPNfDsz2GDg3RcnELeStPxIhUZeo14RrCehjHczBUg909u2mINvD1A19n27pt6KqO5Vrc9qvbuHXVrcyqm0XFqXCw/yCdyU66arqqBYOiXcT3fTb9ahM3rriRtkQbCgq3Pn0r29ZtAyBhJsjbeaJGFNdzOdh/kPOazyNqRKnRVNTyCLgFcYs/fLew4F1Xw8J7pPf8pRvhgofluzt+ACIdwqR7rjDnWkic4Yu9kHq/AGU9Ju8XTkoBwPfh0K1w7i1Q7Jc++MRcyJ0QNr9hOdKkoUphYOwA1C0S+TeaSN/z/dJb7tmBbD4UzJtB1e19ilxInxSTtvpz/9lyAVj3nADYdwgQfsf4zvTy1es9YnZnRqWAQOABgz8N5o047L4d3vihSOIv/Rthw80aAeq5M5LdvuxOcZO3iwLyL9okbvKjhyRCbublEKqT/fYdGDwg/fSlEWhfJZ9P/x6R2z//FVj+RRkv2iLKhAObJWoOsDyTN087DA7mWLYshef5mKaG5/lUKi6qqmAYKtde+2QVXD/yyPv4+78/zNy59bS3J+nry9DRkWTLlj3cdtsq5s5twHE8bNvFMOTzMQwV3wfLkjFNUyMWM6uM++bNu/niF9cyb14jpinrWJaDZUmBwDT/dczyv9P0e+D+Pzn9HrjLZLsOlmOjKEqVXf/nkXB3r7+WmBn5V9d/O+N+++rVzKqtpeQ4/OPrr3Owv5+/ufJKkqHpali+UuFokLHekUzSl82yLJWiN5tlOJ9nVWdnNWLng+eeC8CtTz/NjStWcE5DA8cDY567n322WizYvm4diqKQsyxqQiEKlkXRcZit68Q/97lp+vo73xEd+hRzPjkpiHbWLLn4Oo6g4amctLPOEvRrmoKMbVsQbSQi4L1QkMy2LVum++dB0LRpyti33SZFg64uaVJ/G2tvOQpv9sbYvFnhtttkczBtRvfqqwLSQSLlZ88WY3qQe3PfFzC/ZYvUB1xXdj+XE5b+7ST/VF1i61bZ1SmT05ERMakrFKReMTIiy65YAbGoh26VUTVVgLQTmI31DApAj7ytynmsB0YmRFIfj8rOTPWig/TIN9W9k60PmfKZqYrM87zp+VNgfophh6BXjICmDkAe4DgOVi4nfZHj44QbGoRtURRGX3mFurPPRlEUYciDZd1KhSPf/jbnXXcd4aYm3HIZPS6FCd8R6ZWq6/iKgqqq+J5HOZ0mlEziuy7jhw8TbWsjVFtL+uhRGpcsAUWhnE4TqauTRINA7uxFQtie+y+Ycy+IMQOwXBsVlcNDx2mO19OWbKQvPcz3n/85n1z2AeJmmLARJqyb+EC6lCURiqGrGq7vseVXf8uS1NksaZ/H95//OZ9a/gd01bbgVSPTfCZLWcJ6CEPT0RSViVKW+mgNvu+jqRIrp6YniBkh+WwrZWHXAU68DvXN4jyvaTAxJoZzniv/j9PHYOZZApJVRYD3T/8r/NGfi8ze98Eqg24GNzpTyg1dKkejA/CLH8H7/lRY/B98A/5sA5x+C2/Oubgq2OUC46depPWci8UlnrefDl61P91zLJxKkbGTL9Byzlo03cBHwSqkGTv5PE1nLUdVdVynjFMpYUTijJ14gdZzLxaWvSqxH6yC9mhdm5wbnls970qZUYxIDB0N5Ve7UDpnop63pFookI/dE4O5TBolWYu3fzfqFX+AggKuI+eaYUAmjZ/LCLB3XTk2TQNFlTFsW8CiYQRmdTZ+NgMTYyhz5qEkagAff3wUP59DSdbg7fk16ppLwDBx4kkqlkUul6O7u5s1a9ZQU1NTBedqYF5XKBQwDANN0xgcHKS1tVXctzWNYrFIJBKhr6+P5uZmVFXl17/+NZdccknVLf6Xv/wlqVSKGTNm/AtWv1wuU6lUSCQSKIrC4OAg7e3t6LqOpthoSg7FHZA+9IY7hV1XY3IDrYTAK8LIrdBwk5jXKeZ0/JsxE/xy8HqGvPbysoxfEca+uEfk9KjiXK/WSDFgShIfWYYAej0A8r8M4uL+hryj8dlf7OLr730vbsBydyaTdCSTjBSLJEyTn735JjNra+lKJgkHfeiqojAYtIapisJLg4Okkkn6s1npea+rozebJaLrNEaj9GQy9GazrO7qYrRQIKRp6JrGK0NDXNjeTljXyVUqhHQdQ1UZKRSoDYfRVZWNO3Zw44oVtCcSxMNhLMNARaTwU2VPFWHY/eB58W2/5RmkJ/0mhJmfei+OMOZRRDLf8rbvXW+wzs0IuF+B5Ls/juS3PxRsDyBaLOLb9vT1s70dzTSr6qXcmTOUR0eJtrZWpfFaOIxbqTDx2mvUBoqm0ZdflsjPyUkalyxB8X1c20bVdQoDA7z+ne+w4Jpr0KJRYeaDybNt1EBa9tJ99zHv4x8nHhTbs6dPUx4drfa2v7hlCxd+8Ys4loZruQwdGiJ1UQrf91F1FVVX8V3xkMgP57FyFmbcJNGe4Bd/8Qs6VnZwzh+eg6IqmHETK2/x9K1Ps+KmFdTOrMWtuBKL+Mow7Re2o4d10qfT7L53N+u2r6M0XiLblyW1PIUe1pk8NUm2J0vqXSlOFE6wefdmNq3aRHuinZgRY3fPbjqTnfRme+ms6WRm7Uyu+fk1rO5czerO1Wzt3sqmVZvY37ef9XPW0xxvxvM8tABEOp7DeHGc2nAt6XKaiBHB9VwqboX6SD0hLYTjOxTtIkWrSG24lkwlQ0usBcd3pEiKz3BhmLk1Haj5UyhaWFjx/KnpKDg9Gri8e0zHtjVKf3rTGvmd8J1pFl0LC4gdPyB97vFZ8trOgJGAvp/B2D5YfJ+4ykdTMLJHjOPKIwLerQyEGoL7h6A4qEWkN700JhJ5pxzkuudlfDMpQN6IiXR9KuLNygoznzklju5aWFh0LSTM+8QbAsJr5whbXZqAlgvkmKac9Kvsemh6TCMWnKTBclNM+bI7BDw/e4P0sZfHxYju4m3T+3vsJzC4D979gMjhjz4OCz4B735w+kbvtzfBmi1SeKhGy9VOO8mDHFOuF9qWyefjlgN3/XzQUqCBVSBvh/j8zbv5xjeuqAJrTVPwPB9dVxkbK9DUFMd1fUZHC5TLDuGwTm1tmEhEp78/RyxmcOTIKOec00htbbgaAbdp0yrmzKnDdX0MQ8PzPDZu3MGtt67i7LMbiETEX8CyHCoVl1BIfwdonwL0d921lnPOafjfHrz/Hrj/T06/B+5TzHo/39kvmdJN8TpqIyLvnmLcr1nxR3TVtf6b7vKW41B2HNQAPGcqFRLBjUpDNIoZmI5ZjkPFdclbFnHTxHZdirbN4ZERLmpvr958bFu3juFCgfv27GHTqlXs7+tjZm0tq7u6sFyXiK5zOp2mJ8iID+k6x8bHub+7m9tWreLshgb6cjmaVJX6vj6UzZsFYM+aJaDadeH226cB9b59ojffskWAtu8LEu7oELDd3y/0dDYr9LWmyTi+H/Rkm0KRNzYKWJ/SsLe2ittbLCbRcyMjskyxCJEIeSfMZ28Is2wZfOhDUg8oFAR419RMg/GpeoCqCqguFoUdX7ZMMI/jCLPe3Cy7U6lMg3hdF+Z+716RyP/pn0776cWmfis8Ae/9/dJX394ukvv774f2FgHryttZ8ikgbdnvzFu3bGHeSxV5XhOXuzvPE4b+7fPfPnm+sOshUyLhbEdk9FPMve1MFwymZPTBGK7r4lYqVYCuRyI4lsXk0aM0LVoEioJTKnHoq1/l3E9+kuLwMNGWFuJdXSJz1zR83+flrVtZuHEjlYkJjjz6KAuuu45IYyOqYaBoGqOvvELtWWehh0LTxQBVRQ2HJetdVavSfN/zhNVZuBDfdXFDBv35cb5z4Gd8evkfMFZIM69pBiEjJMy6ZuLhYwcsfK5SIBmOs/XX/5Xz2uawcsYiWhINOK6D63tV9YuKguN7GKpGX3oEQ9PozYxQF0kwWcqxNDUPVVHoTY/w3QM/4zPL/4hUTRMlu4KPz4O//SGfuOgDhA2DRCiGpmqEPJ8QwMgg7PpHeN+HYXJM2O98RhziHVsi20JhSE8Ey/2pgPwff/ed+e5B20AVrFsVAfRXXyM3UXZFzhFtyp3XFym9bQmg9XxcQ463//DTROtT1LTMFUmpZgT98pIT/nZ23Xds6Rn3fVy7hGaEca0yx3b/HTWtc2lfeCme66IoKq5dQlGkpWP4zd00zrkQu5QPQHuZaH17wLxo2IV0tSCgagbFyQHsYoa6xtlyruaykqVelcBPSHZ7THrd1c6Zso+ei9fXg5JIotQ1iMxeVWF8DD+ffSfwrmuAyQm8PQGjn0iCZaHE4tMM/ep3o9Q24P7in1AvfR/YFv7Jt6CuAbVzJhUfHFfAgud5jIyMkEql0DStmttu2zZ79uxh1apVNDQ0BNcGD9u2GRkZqbL1QBXETzHqv/rVr1i1ahWxWEyKwIaB7/sUCgVs2yaXy9Ea5HZPZbdPvZ9IJDC0Cqo7BKigN4CvyA2lF5g8oQYO8CdATQgb707KI37AkG8VNl2JAJr0yKsJKB8OpPeOSGXt40FxYJPI5It7xJxu4uvQ8rAsVzoARpv0xqs1WJ7GeNllpFBgW3c3X7n0UiKGgeW6HApAtaFpKIi/SsV12fT009y6ahUDuRyLAil9rlLhjmee4fPLlvHA/v08etVV7OnpYUZNDV21tRQC1vz2Z56prruiowNVUXA9DyP4Le3u7WVZKoWmKBRsm4iuizN9UKhLGwalUIhmRNJ+P9KfbiEA3J66B0DY+KB7V/7nwd9NSL/7nGD+MSQzuA7pe28IvrE/BPYhTL2BgPk+BMT7CFNvAbFikUIgeT/3E5/ASCZxS6WqBL44NES4vp7yxIQ8ptPUzZuHomlowfn04pYtzPvYx6SF6fzzKQwOVrPXtXCY4vAwQ3v3VmXw+f5+Xn/sMeZfcw3h+npeuv9+FlxzDZ7rcuzv/56lt9+OgoD6wtCQgPdFi1A0DVXTKWddzLhJJVfh13f9mku3XIoRNbALNk9veppVm1aRaE2ACgPPD9C6pBU9rKOoCnbBRtEVtIBBnDw1SaJN7q+GDg3RsaIDu2Tzq02/YvWtq8n0ZfiHq/6BDW9sYOLEBLHmGIWRQjUn3rEcqIPugW7mN80nokfwg6YfRVFIl9NMlibZvn87j171KD2ZHlpiLUyWJylYBTqSHYT0UDUWTlflujoF2kt2iZ5sT1VePwXkJ8uTlOwSW7u38o0rvkHZKZOpZKgJ1eDjc+OuG7lzzZ3MqJnBdb+4ju9f+TARxRewWxkXx3gjJgD+yGZYcKeAdacoPeiexTusuMYPQLQLYl1yBpVHxU3eSEqGu5OHyVeh4UJh9HEEeE8egoaLBEyP7IW6BQFTnxB3dAXQovLne9OMeM1sAelVttyA7Kl3MvFTpm5ThIHvy3y3Mi2DRxF2OpESCbzvTi+bPSNgfQrcV1n7YJtaSD4HpywA+Z9L1guDEgv33CZoXw1z/zj4AueEfdcjsq9TTL8WkX53NTDT84Nv9uB++PmfwPt/DIkOMb5bflegHNClwADTv8V2UdoIQrWSbx9pwPLDFCtQKjkMDOQYGsrT2ZmktzfLsmUpIhGdkycn2bq1m23b1lXz3bu7e0mlEvT351ixogPX9TlwoI9ly1Js3Lijys4//PAVbNy4g02bVtHenuAf//F19u7t/Xcl8f8nSuj/H+e4/376v3eyXYfv7P8Zu47u4/vP/5x8pYjl2hiazoy6Vu649JMM5cbpmRzGdn+3AYSp6yQDV/moYVATMOwJ06yCdtme3DiamkbOsvjCzp2Ml0osbG7mQH8/judx44oVZCsV7gti5bZ2d/Mn8+fTkUyy8amncDyPgmUxs7aW89vaGAsc6ocLBR4/coTBfJ6T6TR3P/ssUUVBaW2VRvHGRtGD33CDoN9ly6THfXBQ9OlTWeyDg4J2775bUGxvr0jkBwbgr/5K0PCJEzLO6KgAk4MHBXF//vMCMDdvFsCu69Nj5XJCdR8/LuueOYM5Ocy2bT5r1sBLL03jm/vvn34+1W9+ww1SN2hoEMf3ZcvghRekTqCq08ZzGzYIQI/HBfy/9ppscskSAe0nT4q5fTQqu//SS1J3mBpjzRqpL3zta9BQ70G5gnK8JzCEc0XanisIUA+b74x5K1UEcEdC0+BcYbryYBqQjMmyx3oCeTQyrmHIcpVAeh8JybpToN80YO4MAfdTY2TyeLaDouvUzZsHQHl8HM00aV6ypOr+DtC4ZAlHHnuMUF1dNeMXRRHQDSy99Vb0UIgjjz5Kz86daJEInutSHhvDcxwazzsPPRKhFPS8q6aJXSyKQZii8PK2bWRPn8bO5fBdl8aFCwEYf/11FE2jIVbDje/6KOMFMZTTVI1D/UcZyU5QtMukixlczyNdyhExwpiqzu2XfIIrzllNX2aEglViODdBrlLAdh1e7j9KX2aEVwbeojc9TEuinua4/P3dC7+gJd6A5dp4vs9IfoJnT7zAcH6c/swIW3/zXxnNT3Je2xyG8+OU7Ar3PfM9BrNjuJom/7Rd/xgY0P13iNfAL/9JzOTGhiSqzQpuMKaW2/Vj+f/90SfEMd62BOiPD8N/+5rkvVfKks1+9bXCtIOA2FBYTvbTb8k54bpSGLDtgCWRnu328y6hNjUfxyoy+PqzWIW0sNG+h1VIM/DaM3iOhV3MMPj6b7BLGelBN6OSd64bdJ3/B7QtuETuvzQd33PRjAiKKjfqbfPfjR6KE042MX7qZaL17fiuLXFyjoVdLtIw6wJUzcD3PSI1zRjROhRD2ga87mfxjxySWDeQ49UFdCit7ZLbPj4iue3xOCQS+JNjuL/4J0hPCGiPxfH2/DoY59covo+35xl53f2sfGaOjfvkjyGfQ0l14u1+RmT7666CUgHv2V0oXbNQWttxn/yxqEZ8n0qlgqIotLa2omnCaGiaRjQaxTRNZsyYQTKZrAL0vr6+amzb+Pg4Tz31lCQ2hMP09fVh2zamabJy5Ury+TyGYWAYBpZl0dvbSzgcJpFI0BxEL1YqFWzbpre3l0wmUwX+FQt8vV2AeLEbnFMB0xUHVGHa7WNiRqfGJNLNLwgj7gxNM+buMJT2i0zeOinLRleAX5Jcd98S0J57HMYflHM9ejHonVB/k+THvyMuLgleHpNJYoZOXzbLlksuIWaajAdM+6rOTgxVpWTbFG2bzz31FIO5HMtSKbbs2cP8piaG8nmue/JJJkolHr7iCrpqanho/XoO9vdzYnKShmiUQiCDD+k6N65YwUP797M8UCx4vs9osUi2UiFbqbCwuRkFODYxwaGhIUqOw3iphO15eL5Pk6rSj7i/L0Pk8RuRHnQbcYd3EaD9ecQV3gseNyDy9weQ/nYleK8DAe2TCBv/eaSf/c+Ah4Ew8I+IS/1FiKP9FDNfQQo1Rx57jP7f/KYKzovDw+Lk/rd/S9MFFxBtbaXpggs4+oMfUDd3rnhMDA3xwubNuJbF4uuvx0gmaTr/fBRVfUe0W763l3xPD41Ll7LklltESRTEg775ve9h5/P07NzJG9/7HokZMzj/9ttxSyXGXn0V1TRJdHZSd845vPSVr1AcHJQ254JFJVvBiBisf2A9qq5SGC2gR3Su/JsrSaaSeK7Hrht2kUglMOMmhdGCpC7EDPSQTv/BfpyyQ92sOgZfGsT3fOKtcXZ8fgf4cMnmS8j0ZUgtS7HwowuJtcboWt1F7cxaUstTlNIltJBGKBkCC5a0LqHklLA9m5AWYjA/yMH+g9RF6phZN5OH1j8EwMzamaiqSl2kjll1s7A9mxt23kDeyqOg4PkeeSvP/r791IZraUm00BxrZsOODZSdMgW7wIYdGyjaRSJGhM2XbEZXdQZzg9z97N0M5gaJGlFuXnkzfdk+HN9h06pNoIbwS8Mw2g1GTdA77gpon4px02IipX9hY1B8NeXPSktcXHymANDKmLDnybPFbX6sW0Bx8xph0r1KAFgN6Yv3HQHlzWuEnX7xBomiww+enwrOZkVM22rmyG/M2w3iVFXAtKIE8nlTXNh9V15XsrK+NmVcVxbA7lagdvZ077vnCIvt2cKOuxXJjG+9SMD+283qFOQYzIQst/xOAe0X3iL9604Fxl4TBn7m5UFsXTD5ngD2wiD86rPCmvuu7INry/qKIvvRvhquGxTzulgbXHjbdA9/JS1yed8TsP7MBomPM6JBtFwBfvVZzOybKIpCJlNh69Zumppi9PZmaWqKsXHjDk6eTFdB/PCw5LsfPz7B4sUttLbGWb48RW9vhg0bnqKpKUY6Xa660N9111rS6TJPPHGUrVu7SafLrFs3m7vuWoth/NtQ1jQ17rprLVdfvYAvfnEtodD/3mz7vzf9nnH/V6bfM+7vZNw/uez9NMXqqYnE/6fl8gAl2yZdLuP5PjnLIhkKkTRN4gGIL9k25UCCbLsuoSmzo3yeRCiEEUh1tUBi2pvNVhn1sK7Tn8sRDwoBLwwMsKS1lbCus7+vj0UtLcRNkz09PSzv6OCGnTtZ2dHBJ+bPJ+o4KKWSAMMNG95pQGfb0ve+f/804/7II+9c7uGHhdK+4QaZ98Yb73SPu+ceAeXbt0uD+OrV06Z1c+bAZz4zvR68c91HHiGr1zEyptHUJJvRdSHzo1F5ffCg7GJDwzSxXypJbWD7dvHY27JFxAOtrfCzn0mPe12d5Lw3NwsQnz1bDnHDBnGd/+hHZXfyeREf3HqrAP7OThEhFArQ0uiinzwjjHp9UsBzJi9g3XbEPX528AM3VYmu2PLDp6n/UhZfsURGDwE7r1N1xHv75PMvWXZDlwJBZ6vsR2B459g2TrkszvJDQ7zxt3/LgmuvJdraSr6vjzf+9m+Zf801RJqaKI+NURwaItbWRiyVEsZ1ihEOYgbzfX0cefRRln/5y2RPnZLxrrmmytRrkcg0SxTMDzc2Mvbyy4y+/DIX3Hkn5dHRKosUam+jgIuPT9Eu0xCtAUXBciwcz+X4WC+pZBPNif8fe38ebkdZ5vvDn5rWvOche87EIIQAopkTBxBRQFu7Mae77cFWCTQBQRBoEo7YrQkSQNEGZVDbtts+LTi1hFnsaHZmhgQIZB72PK95qul5/7hrrZWop/t3ftd5r/c9p6nr2lmrqp7nqVortaqe731/v9+7mbLrVKn0YTPEcGqCf3r5KW5535+j6zqO5+D7PtlygVgowrHpIea29FByyrTFm/CVT6qYIWSGiJiSzf/6r3/IXy76CBO5Gc7rmM/dL/5D9Td93fKraE00MZlLsuPka7wxepT1F3+KuOtKWbeZCZj7juD/VhcQWi4JKB8dhPnnSPb9+AFxoM+mBMBf9RnRZSsgn4H9L8M7LhTH+Zkp+f+LNwSTlYpEIgXRhFwLxw5IPfmnfwSX/zFeZw92IV01p3OKWU6+9DMaOs+m/axlmKEYI2+8SHr0IGe+96+YOLSd9OhBGjrPpnvhByjn00KRn7+YULwRu5DGKWaxogmcYp5oQxuea2OYIXzXwQjHqgZamq5TziVxy3lijR1gmDjBubTOW0QoVo+m6eg+Uq4tm5aM+6pLoKFJxsllT7u8/S3PofbvRVtwIcaVV+Ft/nFt/cMfxx8eOCXjfgk0NUNqRjT0K96P1tiM99RPqn30935QJr/1jWiadtp4+ns/iPetTfi3/C3TmQy7d+/msssuE4aCUjz33HMsXbqUTCZDQ0MD9fX1OI5Ip0IhYVm5rothGAwMDJBKpejr68OyrGp2PZvNBiXd4LnnnmP58uU0NTWRSqXI5XL09fWhlKpm5pcuXUo8Hmd8fJy+vj5s22Z6apQ5XWW06Q3QfCuEzpTrzp0CPQq4UHoTou8KMuqu6OD9pJRzm/WQ6NWnvlLLumthwBOqvHIh+zOh0Fu9At5nPRjQRF0o7IZIoEvK/jRwo19GzarNoOgZHJ7JELMsWmIxTF2n7LqkAqM4U9fxlOJHb7zBH5x9trDKfB9T1xnJZsnZNl2BYelr4+MsCxgMvlJM5PO0x+OcTKW4e9s21q1cyeyGBoquSzzQwiulyDsOpq4zUyzSHo+ze3iYlX19uL7PzqEhZsXjdNfXY1oWRjhcdXS/HQHacxHg7gL7EGD+a2Ab8ChS8i0QDFCmlkHfhBjXVfTyJSSLPoXUeb+XmkN9MejTg2Teu4M233YcjFQKIxRCtyzcfB4FJA8coPkd75CcpaZVPUmUUpRmZsidPEnjmWeiGQbJQ4eItbVV76/x7m5e+vKXaVm4kI7lyzFjMfZ9/ess+uIXcQoFnFyOSHOzXO/Aq/fcwztvv71qMhppbsYtFilOTVWz7fmREQ7+4Ae8+87/jsLCd33cksxdxl8bp3txdzUi4ZZdlKfIj+dJdEqwuqJh79/Yz/Lbl9M0twnd1LFzNr7nC7gfy2PnbdBg+z3bWblezOuUqwJTTYVu6QxuG6Supw4rYhFpjKDqFelyGl3TiVkxTM2susXvHNrJhR0XMlmYZMPWDaxbuY6YFaPgFNjYv5Hbl9/OrMQsYpY8gyfyE9SH6wkbYSYKEzSEGyjYBcJmmEQ4wa6hXRyZOcIfnvOHANz6wq3ctvw2olaUZClJU6SJklviK1u/wvqV65nfNB/btwnrOlEUmqaEOeMVEbCMZIEjs4K5wpRk3kGyzXoI0CTDbsYCOnyDZNIjs0S/ji8a+Ipc7pXPSwbfiMlxCoMC/PUIKEfapvZD04WyrpkQahZAe2q2u2I8V9cjgYFTJyPpY6dT6q14LVuf6PmfZ9FPpc7Xz5WxTu2nm0KJr+sRYF4xwvPKcmivAKO7IdEnWXyvXDPQA6HYO1mRDITq4YXPSpa+ooWvAPCp1wSkV7Tw0Vahzi9eLwZ6hXHpb8bEEO/l+2tmdiPbYNmXRA7w8v0y/sc3U2i/GNsFx/FJpUo0NUVYu/b0rPn0dJG77tpS3falL72X9nYpJZpMljj//If56EfP5sEHP0wkYuK6fjAd1JiYyJPN2nR0JIjFLCYm8nR0JP7TDPrvo9D///Pydsb97eV/ebEMk7nN3dz1wTXMbuqqgvbKvs8u/TiXnb2Mq5d+nNCpEb7fWmzXJe84GJrGWC7HXVu2MJrNnrb/yMwMO4eGsHQdXdfZHtSobYnFSFgWg5kM1z39NCfTaSxdp6+hgYs6OyULkErxxS1bmCoU2D08TEciga8U1z71FB0JeViu2byZ3oYGoobBpksvZUVfHzuHhiRjrmmiZ7/jDgHM69cLQu3okJT1smWSxn70UdGyr1tXa2eawmFfv162NTTUxrnzTnGGm5yUPh/8oID2xx+Hu+8WQHJqv4YGQdhBXztSj49OPC5kgOuuk+y4rstpXX+9lGuLRoXafv31AqgHB+UQuVyNKLBpk2Tkr7pKMvRr10rfiQnJzjc2Coa+916JLVxzjRAHNE32b9wopIQNG2o4umRrqHk9kj0/MSJZ7oaEZNvDlpSJM3TJwJcdobyXbQHktgMnRwElbvOVOu+2IwA8FGjGlBKAXyzDoZNyjExOxrVM6Ts4Jln5yaQEC4Ja3Xg+fqBZNyyLt773PQaefZb9jz4KSlXX33zsMYxQiFhnJ83nnkuoqYmJV16pZt2V75MfHGTP3/0d4eZmFt91F8r3a+OdkqkP1dWx/7HHTtv+1ve+R8fy5Zz7mc9gWFZt/6OP4gUPoul8msHUOK7vkSykmcgm0dC4oOss2hIC2t8YO0rJsXlz/Bh5u0hTvJ4vvO/PMQLn7bAh+vZ/2P0LNDQWdp6Jruk8uuOnDKcncXyX5lgjUSvC66OHmSlkOK9zPt/d9XMu7DqLsGlx6/v/ghevfZgvfvBq2uuaGU1P8e3tP+bCrrO5+b2fJOR6Es1v7RBN+/EDQvc+9hYU80KbHz4Os88QsPijR8RJPhSSeuwf/5QA/Mkx+OdvSmb+wmWiYfc8MVGzbdk3MSr14Y/uh1BExnNs6Jotx/ngH8mYSlXruE8e2UWsqZOGzrNpm78IIyhH1DZ/MQ2dZ2MYFm1nLJH9ZyzB932mju2Rvkd3V8cyw1Emj+wmUt+KU8ozcWh7tZa7nU8x/PoLOKUsoHDLecxwlJH9v8IJQH969CBuOS+13qeHQCm0UBitpR3jyk+IF0A6KddqOCLfT/CnL3+fgOpVHxAPhZUXB+uXgGWh982FplaMK69Ca24RKmxjC8aVn0BrbkPpBvrKS6pjaPUNYIXFL0HT0VfV9hGJoC24EAyDnTt3VvXoAwMDpNNpLr74YuLxOH19feRyuWpddcMwKJfL1Xt4Pp+nu7ub888/H8uycByHp59+Gtu2CYfDmKZJKBTiAx/4APm8ZBxDoVCVXj84OEihUKiWiguFQtTX1/P0008DMLuvE80ZhOZbRLPunISx6yVjridkwhtbGWjdMzB2g2jTQ2cJaMcHsxs6/h4wpKa7nwV3VCbsKKi/KtC/z4WOh0AL9LTuRKB996H0CjT8KUQulKCBKkFhGziH8ZRGR10drfE4ju9zMpkkGTjMbx8c5Mj0NIam8UfnnMOrY2NkbRtfKXK2zZd/8xsMXeeV0VF8pVjc3U05kI5pQY13z/eJh0L84uBB7t2+HVPXiVsWx5JJ1mzezImAoRCzLDoTCUxdZ2lPD4enp7nhmWe4YNYsOoOqLr5p4iK6cw/Rmp8ld1wshPK+FDGO+2PgIWSieCEC2EcRgK8hhnSfR0D5dQhl3kNA/N0I0B8B1lAD7W2IQV3bKW0KQHlmhpc3bqzWXEcp2i+6CCMWwwyHxYfE9yklkxTGxoi2tRGbNYtX77+f4vQ0reefT6S1lUVf/GIVkL9r/XpmX365UOrDYd61bh2+74PvE0ok8Mplpt94A90wuOiOOwDYe999eMUinm2jGQaJ7m7a3/1uNMOgbvZs3rV+PYM7Rihnymi6hhk1MSMmiVkJnrr2KdIn0wCUU2WsmEWiM0E5XUb5Suq1D2VYdssyyZJr4Ls+mqERiofIDGWYOTpDw+wGGnoaWPaFZVgxCztjkxvN4RZdhncPM3N4hvaF7VhRi1A8RHGmCMBkYZKbnruJIzNHcHyHgfQAU4UplvUuIxFK8PUdX+fx/Y+zsX8jDZEGRrIjbPrAJuY1zUPXdHYO7WQgPcCRmSNYuoWu6XzlN19hPD9OS6yFifwE2wa28a6ud/EXF/wFhmYQs2J840PfIGbFKLpF7t9xPwW3wEB6gMf3P85gZpBjqWNsH9wuJeGmdwio1A2huafekKspVC8A+6W1ArZzx6U0XHFUADuemKYZAQsLHxoXCjjFDWjyeyU7bcSh/T0CtCPtMl7LYsna50+I9l0PSybeiEgQoFoO7ZQMO0qy6o3zBdjbmVPqsmsCsqOtEuSrsAdOzZaH6oIa6XWnj1vZXtcTSMZ+q59uyDHRYeZwLfOu6cE5uND9Hoi1QmlGjOSe/4zUXteolW4rjMn6+x6Aa0bgkm8LYB/dIZ+rYwm88g3JtpthCRgc/QXkBiEzKFp83ZK/cIO0e/nrMPuDMma8QxzzL34IPr4ZOhaj3DInT2a4/vpnKBREw75uXS3bHYtZdHXVVTPgt9++goaGSOAmX6KpKcprr11bbQtw8mSaa655isOHZ4jHQ8yf34yuaygFTU1RTPM/h7KhkEldXfj/CND+ny1vZ9x/z/J2xv0/Xn6fad3/bMmVy/z65MmqsVxbPM5kPs+q2bOpD4fJlMtsPXmSC2bNYqZYZDibZXlvLxqIuU40SrJY5PyHH+bHn/gEvQ0NbNq2jXsvvZRY4BR/1RNP8EfnnMNXL7mEkGEQMk1++NprvDQywlc/8AFOptNM5vOc0dxMezzODc88wzdWrqTlhhsELM+eLSnotraaGd2uXVIzrb0d9u0TTfu99wpXPZEQsfjLL8v+3l4B9aZZo/POzAja9QPnUV0XNHz33QLYYzHpm8/XBOymWeWm5/wYubJFKvW7SXyoVaR75BEB2qeSAK6/vlZZbsMGkeZ3dclh1qw5LalPNCBKKCWnevXVv3ss25aMe1+f/I2Oylc0b7aHdexEzVzurNlCh7edWpk404B8UTTpVpBFP3xSQHdDotYuHJLtk0lYtOD0i+jESO0Y83ok415xqQ8FQaOjgzC/BxyvapDnGBq+66KbZrWM24JrrpGM++DgaRn40vQ0VjyOWy4TSiSY3r+fpne8AzMapTQ9jZPNUk4mabnwQnRdr2bfK/rLWEcHZiSC+1u6zHhnJ/Genqq+oXIe511zDaGuTlxTZ9/IIZqidfzLK89Wnd8tw8APMm5OIFHRNXk46ZpOwSkRDTLnb4wdpTXWSHdDG57yMTS96tJdsEscnR7kjNY+JnPJqqHdVD5FT0M7nu8TMk3qwnFc36uWj4tYYdLFLNtP7GNx33m0J5oJKYV15C0B5sWcmMmVSwI+TUui+KYlmfZwtOYOH4kJsK+UeBs8Ct/4Iiy9GP70OpmEHD8IzbOE/VLISYa+rVu08cqXIEFjK8zqkgvy+AFobsfr6MYupJg8spu2MxZjReoDkCrsHOX7NeaEpqE8V9Y1XajzpXzNlM4wq9usaAIzFGP0zS3VDH3XeZdUs/eVdZRiZP+vfqdN14KLGdn/K9pnX0QIC2JxNN/HHxlCm9Up5xgKSQ33iqt9JVXn+6JxjyegpVUkF7qOKpfwX3wW/ZIPCZVf0yCdlOz78vdDU3MVoIsDu3iFKwjquvsiQwjq3BOY6XmajkdNV26aJuFwuEpVV0oRDodPc5yPRqMYhhHUWYexsbGqLr5S5i0cDpPP54kHhhlDQ0N0dHRUwf2LL77IxRdfjGVZFAoFfN/H930aGxuxbRvDEH8CU3cx9Ryan0bpDWil18BsFRDvpcFsl+/Oz8v3546C2Sn3hYl1Qek3H7yU0Nwri7JF146JwE3Edd6aBdP3Qfu9EgzQgnuMn4aJv4H2eySDX3Gh1xIU/Ciuryg4DpGKSz4wmc/TGhjRVTLfC9vbq+Xf7vnAB/CUwnbdWmbe92Wb55G3bRojEXYND9Pb0MBgOs2FHR3omkbIMNg5NMSf/exn/PPHP87Snh4ihoGH+A8oQA+yyYamUXQcPKUgGuUm0yQQA2AggB1gBmiXbwsDAeg7kQz5HCSb/hIC7A2EDg/wGnAQuAwxqPNPGdtBQPv+oF8Aj9iLZPU7gbp8nlf/7u84+y/+gnhnJ9Ovv06krY262bNxCwWcbBarYryiaSQPHqT9ootEt759O4nZs4m1t/PW977HhbfcUs2iA7iFAqH6eqZfe41YZyeJnh4yx49z8Ac/4F3r1onRqOcx9frrNJ51FrphMP3667RecAGFiYmqTl6v/F4BO+eTnyxVM+ctZ7aQHc5y9PmjNJ/ZXM2qr1y3koa+BvITeeLtcdG3FxxeuPUFLr33UgqTBbZu2Cp6+K467LyNGTFxcg7hhjBje8fouLADFJQzZUJ1oapxXc/SHoyIgVsQMD/r/bPYPrydhe0LMXSDeCjOZG6SWEiy6HFLWDCfe+ZzbLxkI1ErCkqy621x+V0opdg1vIuWWAv377if9SvX4/ouPfU9YkqnPDQ0JvOTtMRaKLkl1r24jq9c/BXqw/U4nsPJ9Em667oJm2F2Du1kac9SCk4Bz/fQ/DJd5ND2b5SybYm5cm/OHpE67S2LIT8g2vPcYQHd8dlQKe0WaZXM9mvr4PyN4iYPMLlNXOFLkwL021ZQ1cBHWqRPai80L5Kr07cDkzU7GGuDaMHtNITaahl2LXB40A0BsYkuyI3Iqx4O7rE+1Xrsp2bOqxn6YF+1ZFyQyZfSJrX79Wn9QrWa774jgQHdCPT6B8WEbtFtAZ0feOEaOPE8fHI3xNqF1v7kVTD/o/DB7wTu7xsDR/lOcaSvjAuyvzAuwLwiLxjZJt93pFFc58d2Sd94Zy3IMroLEr0C9Ov6oGEumZLJ1q0DtLXFmZzMc9FFnSQSocCgTsN1VVXeLz9njVzOJh63qkZ069evYv78Jo4enaGtLc4rr4xWx5s/vykA7BEmJgr/RxnO/a8sb2fc317+08XxXAp26T/Uq1faHZ8Z4W+ff5Sh9MR/Om7IMLiosxNT1+mpr+f+HTvoqa/H0nXJxts2S7q7yTkOg4Gb7prNm8naNnnHYe3TT1NwXX66ejWrZs8mZBh8fulSRrNZ1mzeTHd9PT/+xCe4N6j7O5jJcM3mzazo6+Prl13GeC7HZD7Pku5uEqEQM4UC377iCuKJBP66dQLCUykB5pOTgkr37IHly4VDXl8vTu8bN8IPfwg33yw8dc+Dd79b9o+MCCI+ckTuRtPTAtqVklT29u1St23ePKnnPjwsnHZdF+Rs25Kh/9GPRGOvaRi4KKVOS+Lffrtkxxsba0l9w6gl6ivxgEcflTLxc+fK+3nzqozvapL/zjvFKT6TEcl9ZX+FUHD77UKp7+mBOXPkKxgakrl/Q4N8bYaBgOe2JgHfIN/L4JgA7YFRAfJ18Zp5HUjb5vrT22nB9ramWjk5I6DVn3oMTav1GxyrtTlrtvQZGK3tA7xyGbdYJNHTw+K77iLe2YluGNTPmcPiu+4i0dtLfmyM/Y88ArpOpLGRmf37aT3/fMxwGOX7mNEoB//pn4jOmgVK4ZZKJHp7WfylL1HX10fbRReR6O3FjMVI9PWx+G//trrdiMVQgTGU7zjEOjtZ/KUvEWpsJPn6G5i6wXkd8/nBS09xXud8ZgoZ3hg7gq8Uni8Uwul8hnQxx0h6kr97/jGGUuMcGD/OUHqCN8ePcVZbH22JJjRdJ1fOg6ZRdMps/OX3SBWzXNB1Frlyge/veZLnDu7gH3b/gvM65jMr0UxHfQtRK8L+saOYusEX3vfnWIZJqpghEY7x4Xes4LGdP2MwPY6jaZIV/5eHJHCl6/CLf5LXTBJOHpYLpFSUbPnUGPzrw5JRV0rapmZED7/oPXDVZ2F6Av7lW2JwZ1liUPf8T6Sme2OzZNX/5SHZH45IJr6yPiP3HytST/fCDxCKNuDZRUBhF1IMv/Y8vudgF1LkZ0YCersR+EYqNMMinGiie+EHsCJ1+J6LW84Tb+4iFGtEN0/P0ING67xFwfpiMa9zy6e3UYruhZeiGaZQ950iWrwO0in84QH0rh6wLPzxkWowoUqZ98Xs0XvqJ/j/8hj+9n8XwK2UMECUQr/4MvkMxQKar8AKoQ6+gcplxH0+H2QrPR9/4DiqXJJScZqGKuRRdknep6bxnnuyaliWTCbZvHkzjuOg63q1LNsLL7xQrW7gB9dxLBZjeHiYZDJZLefW19fHyMgIvu/T1dWFZVlomkY4HMZ1XYaGhkgkEiil2Lx5M9lslsWLFwOSsa9k2RsaGvB9nxdffJFUKoXrumi6QvNGwT6KppkQWyET6vHrJbOOJtnv0ssEBgUwcRN4o1IWrgLajRYB64XtMlFGCzLmx8SEzjkhFPjp+6D583KM4q7ABM8FLS6l5PyslIOLLgY0bF8jXbbJ2japcpmi6zKVz6NpGq3xOL5SZMplJvJ5lvb00BCJMCse5+ZlyxjP5bj1hRcoOA5ThQIl10UBu4eH8QP6+9pnnqEtHmc4k+E9s2eTCIXwleLGZ5+lu76e3Z/9LD319dz47LM4vo/n+xi6jq5p6JrGrqEhDk9PVzXucc9jBRKu8JEs+LUIdX0WAs7LwesUoknvC7btRoC2hrjIZxBn+KXAHyE6+JOIIV0pWL8xaL8YmXBWLAVXIsEAD1CmybvWryfe1cXM/v00nX22uLoHWvRKIM6IxcSn5F3vwilICKD30ktpe+c7KYyNccGNN4JSvHrffRQnJjAiESn15vu0XXgh0dZWlOdRnpnh7L/8SzRNw8nlePX++2m98ELMSAQ7l6Pp3HPRTJNYRwdNZ5/N3vvvxy0U8MplvFKJUJ1JZijD/sf3kxvNkTyWZMtdW+hd0Uvvil76N/az//H99G/sx3d9Zo7MkD6ZZvOazWRHsyz9/FKMkIEZNVl2q2TfjZBBoiMRBN/AjJj0LO3Billkx7JsuWsLubEckYYI9d31DO0cInkkyTPXP0NdVx2mZrKsZxlhM8wro68wkBqgI9GBpVvk7BzlgGb9jQ99g7gVx/GERt8eb6foFrnhmRsYzAyyoncF9++4n8f3P85wdph5TfOwDItMOcOOwR04nkNLrIWbn7sZX/lsunQTMSvG4enD/PXTf42hGzi+Q/9AP4u7F1NwCqx7cR2aptEZbxXQPvC46NrdnPxmS6MC0qdfEtp7rBPaloPVBMXxmpP85E65ai/cJP1euRHcbNC2HmJd0LZUMtilMQH2k7slq968SMbRLTHF8x2hgJ//FRmrOBFk58OS7dbDNUM2hRjSGWF51Qzpb2eEWp85EdDtdTlW43wB374d3I9LAtwb5tVAOwR6c2Q8Iyz7XVvaWnEB1JohmvhyRu5bezYJLX1P8B1oplDbP31QAPZwv4Dpj/xYzOWUD3vuFVBuxYWhkD4B/36jsAw0TYIFnUslWPDvN8rn6Voh34lTENDesVgCCWYU0kfg32+CtgvEfb7tfAlKpI6i6xo9PfXcf/8Ourvrq6Bd1zWOHEmyZs1mjh9PoesaAwNprrvuqcrPmw0btvL44/vZsGErtu0RjVqYps5FF3XyzW/uoru7no6OBD099UQi1mntS6Xgu/wvsLwN3N9eqmD8S889wvGZkd8B76eCejGt+xnPHdzBd3b+DNtz/tPxpwoFio5D2DRZ0dvLvdu34/h+1XXX0HUawmEWd3czks1yy7JlWIH275ZlyxhKp1nZ18fxwFjO1HVGczke37+fu/v7WdHXR8yyyJTLbNq+vbpd0zQGMxna4nFueu459GAilSmX+evnn8efN09c1zo6BJ2+970C3Ds64NprJUNeqYV2552webOktMNhqcdmGJKlHx6GW24RZGsYYsl+4oQ40nueuLpFozJRdxxxgRsaqrnBjY7C174GfxS4gebzeMrAMDTicTm1Rx+FM88UXP/GG4L/584V/N/RIet9fQLiKwzzUilIshkC6EFA/KOPCiC/4Qahyzc3y0cdGZG/TZvE6D4el1MDoddffrn0iUYlXoGGmNCdOVso8CAHOxVoVwC7EdxqKgyEkFUD6hXQHwnB/F4ZuAreDTGjO2u27Df03+2nkAAB/M4+IxTCCIXwHdHXa4aB7zhiLpfJyMTQsnjHX/4l+D6l6WlaLrgA3TSrkzSUomXhQgrj4zJmOCz058DAq6K5NIL/Y+X7OPk8bqlEuKkJ37aZfPllPNuujvfKPfeQPn6MoeQ4CsVnl3yM5bPPJ2qFWNh5BgW7JADe9+lsaKUl3kBzrIGLet7B9/c8ybzWHr676+fMb+1lJp/hrYnjuJ5LQ7Se10YOYRkmf/auy/nnl58GBS3xRr7wvj/ninNWsmbpH2IaJmXP4dXhgyilaIk38sbYUcayM7wxdpS6cByFwlOKP3vX5fxgz2Yxe3v6R4Ex3b9KFn3PbySTPjMhYPpfHpIsvG7AM0Hbp/5VgPye34hhnQb8xY3yO3r6X2X78z+R7Hpl/ekfyYX8P9v//E8Cjb1cAJJQFpM5NB23lA9Kw4XQdYtYU4cYufkevueAUjjFDMOvPY9dzIKuY0XqiNRL9lYphe86mOE43QsvJRSrB00jFG8MgH59QJ+PYUXq6FpwMU4xC5qG7zlCB481EG3ukjPMptFmdaEMQ3TvvXMl6z88gJqZFt2/IVkV48qrMK6/A33lJSjbxnvm5+C6aCHJ8PijQxAKoYp5CIXRV38KvbsPlU1DLB4EBEDvm4sWCuMPD4JdRguYEZpuoMUS6Jd9BDIpPM+jv7+f/fv309/fT6lUIh6P09/fT3e3lLmqmM9VwHR7ezuZTAbHcXjqqaeYnp6mq6uLdDrNM888g+/7pFIpnnvuOfL5PO3t7Wzbto1yucz+/fvZvn07LS0t5HI5tmzZAtSCB+l0msWLF7Nz504pN6cjZnBmG4x/XoCz0QbRFeAMC/Aev14y73pc3N7b7wetHrxpMZTTY4G53PXiCI8mWfPIBTKG2SpgHF/07dZsAe2RhdKusFMm0A1/JrT79gcgfhn4OWxlEbPkrzkSIWKaxEIhDk1Ps2bzZgYzAlW//JvfAFB2XV4ZHcXSNOrCYW5ZtoyYZZEIhZguFim5Lqv6+kiEQsxrauIDc+bwzV27WN7bS9a2GQ2o5Ct7exnOZGiPx4lZFhsvvpii67JzaKhKoT80Pc3C9nbqwmEipokZGBFehejOI4g53fPB+xICzscQo7k8cBOSJXeACxCqvB60OYIA9e3BeCsRavwsJNvehTjKg2TujwFflG+Z4wiF3gcMz6MwOsorX/2qlHaLx/GKRV768pcpjI6SGxgAwCuV8B2nGlANNzRgxmJouk7TOefw+kMPAXDBTTdhJQQEG+EwhfFxJvfupTgxwe4vfYloezvR1lZ2/+3fUpyaYuF115EfGmLylVcI1dVhxmKUJierpUAvuv12jHCYfQ88QHFyEnzoXtLNgtUL6F7cXQXq2zdtBwUr161kweoFrLpzFcO7h4m3xem/u78K9HVT5+nrnsYpOEQaIjgFh6evexo7a1OYLLDli1tIn0wzuH2Q9Mk0udFcdXzlK/rv7pcxg+Nu++o2fHxOpk/y+ec+zwWzLqCvsQ/bt0mVUhScAi+NvETOzlFwCuiajqmb7BzaybHkMZRSLO5ezMb+jSgU61etZ/WC1azoW0HRLVJyS9SF6ljSvYQ9I3vwfI+vXPwVxnPjXP/M9QymB6kL1/GFZV8gakaJh+JcMOsCbnjmBkayI9yw+IYgIGHARV+HK96Cdz0gYBukNFtpApoWChDPHILd14pJnREJzOrWyv7SpBjXFUfhzOtlffca6eN7UJqCwkl47YtQHIHWRVK7/aW1Mk5l/8s3Cm3eCLL2uWMSrFMSQAUEFGtGjabuB3NjIyRAdeZgYDw3v1bCDVXLwLulwGHeFk17JfNuZ+W9HqK2aGJYN/OmZN6VJ9R55cmxrLgEHZasF3O6JXdKcMErgRWF/Bj8ai1E2yQD3r0CGubK0Bc/KKZz2+8SV/zcoADx/Ki41OdGYWS7ZN0v+rx8Pk0TKn1uSMb81fUB0Dcke9+xWNpvuQmK00FgIIbvKzZu7Ofxx/dz9939uK7P2Jjcs8JhkxUrern33u2USi4DA2kWL+5mZCRLf/8Ad9xRM6IzTZ2mpii7dw8zOppl2bIehocz1Qz9jh2D1fa3374Cw9D4r7K8TZX/Pct/Nar8f2Q2VwH139n5Mz679OPMburgZHKsWg5uTnPX/yOqfHddHaNBLXY9MD+yDAPH9xnNZumsq0MDjiWT3Lt9O/deeikR02T74CC99fXMbWpiOJvlxWPHmNfUxLLeXibzeZqiUSxdx9A0HN+n4Di8Nj7Oou5uLF3H8Txueu45Pr90KX0NDeweHqYzkaB/cJCPz51LTyiEduKEUNjXrRPTuK1bxS2+AhwNQ8B7sSjZ+AsvFCSslGQJjxyRjHylrJxti24+FhP6e1Aftso5nzVLUuJXXw2/+AX8+McC7nO5am334vwFHDmmMzCgsXhx7fCWJUMeP16jwc+dWwPpIJr3oSHJkisljFzDEHC+caNk8GfNEpD+9a+LS/x118lYhiFt7rxTSAOvvAKrVsnxKh+xt1cCCL09PrGIj1Ys18zodF2eXb9vsV2hyysluvRTaU2eD8eHYW53DeT/vj5m8BBF+58fJ1icgOZLYCRWKfE28eqrxFpbSfT21ij0a9YQbmxk79e+xrvWr0cDvKCusBGNguehh0LkRkYwLEs0lIYBSuG74l6vguCAVyrxyj33cNFtt4Gu4+ZyhJub0XRdsja2La+xMJv2/hufevdHqIvEaIrJJCZZSJMI6rmXPBtLl9rqU/kkTbEG5NNrlN0yITNEqpghXyqRiERoiTfi+j5vjB7hzLY+IlYYHQ1P+Zi6ga/84Hft8cbYEZqj9XTUt/Dm+HEWdMwnV86TKxVJRKLUheO8MXaUWYkWmmN1NOgW1syEAPEr/gTi9fD4I+IEb1nww4cEVC96D/zZ58Q1/pkfSdtEvWjer/gTaJ0VBFoUzEwKGK9sHx+GZ5+orU+OnbK/AyZHa+ttHXiGge/aaLpZpcdqmobv2pQyk0QbO9ECLZzypcQbKDRNZ/j1F06huH8AUCjPxfMEsON7eE4Z33cCKv4SzFCU0Te30HbGEgwrgmFaOOVC1fTunA9eD8rHKWWr9d913UIPMtua66FKBbRIVEq86Tpq4Dha7xyZ8jk2amxUMvOmVa3nrhkGqlSUfqYpjAe7DPGE1JevSAHssmRYbBvCYdT4qFDzQ2GpAa9p4hVg22iJOrzNP8Zf8X5mNJP+/n5WrVpFLBZjdHSU+vp6TFN+o1u2bGH//v0sWLCA9773vUQiEQzD4Omnn65uv/zyy6vra9euPa3PZZddRqFQIBaL8dxzz7Fq1SoaGhrYvHnz721/+eWX47ouhUKBYiHNnL4WtPG1EH0P1H0MKQEXA0xQeVBFmVTrMaG063XSxs+JSZ01B4ovSzk5vUky9M4QxJbLzcKdlDEqNd79jAQHKlTZSoassB2sbnGa13RAp+jC4VSBDVu3csfKlcxrbEQBNz37LO/s7OSy+fOZFejUdU1j59AQrbEYTZEI8VCIdLlMRzxerdP+ntmzOZ5MMpjJVA1YHd/H0nUOBaVNb1u+nPnNzQykUtV2yVKJbLlMezzOvvHxqizt3V1dhA0DTykMTROPglAIE9Gnb0Q06TZCX383Ure9DanR3kZNTKBRs+Qrn/J+FAHsS6ll8gvB9lFgSXCMfDBOHQL8fwl8AmjM53npFKq8nc0SqqvDdxycQgEzGkW3LIqTk7z52GPVe2txYoKDP/gBF95yS1WqVJye5uA//qNQ5nW9SnHXDINSMomTyVCanibR18dTV15J34c+xOIvfYnJV14h0tKCVVdHqL4eO5sl0twMSjG1dy/R9nZ81+Wt732PRV/8EgoL5Sv0kE7qaIqtG7ayat0qEt0JNF0LggYGyaNJ0gNp6nvq6d/Yz+UPXc7Ta59m/+P7WbB6AR/++w/zzA3PsP/x/ax9ay1b7tpS3bf05qXs/NpOPvzQh3lm7TOsunMV9b31pE+kyQxnqO+up//uflbcvoLIGRG2jwlVvikq5nCpUoqmSBPJUpKoGWW6OM1IdoQVvStwfAdd0ym7Uk0iWUzi+A6tsVZeGX2Fxd2LiZpRSm6JZClJY6Sxur5reBe9Db0MZ4Y5PHOYT5z7CQD2ju1lUdcikqUk2XKWHUM7mNM4h5V9K8nZOdrCcUKFk+Iev2AdxOfJ1aIZAkDLU/I7e/0uycr3rYbFj8Dua2T9irdO37foIdiztra+8EtSl/2lG07p/7AEASrr7/770/e/+0G5ZyoHwrNqEwhfArxCb+8W0OzkhSYe4POacZ46nXqeOfG7fXxbAHE5U6vNDgLMK/0qfet6JGhQ6Vtp45WD8wrWNU0Ad9dyAeEnnoex3fD+rwf16I9JbfYl6yA7BD+7UkD/xQ/KOZdman3eeYMEChI9sHujBAga5sux8iMwsAVmXyq6es0Ito8HlP6EfN70MYo0knKbSKfLNDSIz8zevWN0d9dX67F3ddWRy9m0tcWxbZebb36en/zkLX7609UsX96LaeocO5bkK1/Zyi23LGNyMs+7393F2FiOjRv7ue225ezcOcScOY0sWdKD63o0N8f+r9CvV5a367j/Ly7/1YD7qeD8t8H47wP1IcPC9pxAi/sfa0ps1yVj2+waGuKCoF6t6/vsHh6mr6GB1liMV0ZHWdLdTdQ0GQocdjXgnu3buWXZMpoiEYquy4atW/naBz+IrtUQ27oXX2TjJZcQMU2mCgWaolFMTWPX8DCLA/CuEGrsRD5PQyQiDve+z/xQCNN1BbVWhN2PPlqrsxaAaObNOx31zp4tyLWuTnjj5bIgZ8uS7QMDgpojEcmwO46kwBMJodlrWmC6VhSkrJQg4q98RVB2JELOjzE2adDSUnOTr2TDK/GBVEoOoWnyvtJ2YkKSmYmEDL1zp7D6r7++9jG/9S35mJWYgu9T1R2Vy7W+jiNS/iVL5H0kIpjAcSAW9YlH/Rp+9jw4NiwZd10HyxBjuor7eyRUuSgEjFcW5Z/uHl+5JSkl2fpTb1GZnOjhIyGqNd5DlvxVHOrDIXAcHAJQrWkCfFy39n0HH3bq1VfZeuONdL///Sxcu5ax7dtpX7SI/Y8+yjmf/jSJnp6qI/2FX/gCZiRSzdrrloXyPNHRWxZesYgCzFiM7MmT1AXmW+V0mkhjI5W65b4TTAiiEQazU7QkGmRSr+uEDAtD0/GVj4bGUHKCycIM53edVZ0raIChG7i+VwXocSuCh6Jol3iw/0fcsOqPiVhhDE3H9T1SxQx14QSmYVByyuQC9/kjU4Nc2HU2Q+kJ/nHPk1WNve05/P3Wf2XtytViQBQKE6vgl8r/l+tCJiW69WhMaOxVUN1JgJbl4spnpXRcRW/uuQJMQfYrH37yD/DeDwfGdwehuVXG8fxgoqRqGu3g+F4kIrR3FG65iO+7WNF6AfMVQzZdJjjK9wW8GwLyy/kkbilPrKlTGALB+WqajtI0vFIeMxw7DeC3n7WMw7/+Po1d59C18JKafNGxGT+wla7zLkEpn9H9/07L3IsIxZvQK6efmkZl0mgdXfIjC0cEUCtfgj7lEsQT4hK/7d/FSK6+MQD8LliWaPRNS3Tww4No3b2131/lM6DwB08IRb+lVajyjl2t6U40hhobQe+bh0rP4OVy+D2zqxp2gvtl5b1t22SzWbZv387KlSuJx+OEQiGZ7CeTbN26lRUrVtDY2Egmk2Hr1q1cdtll5PP5ajCgsbGxOmbl1XEc8vn8f9h+8+bNzJ3Tw0UXno2mSkEJOJ+qG7wWA/eolG/77Trr1jzwiwLkjQ5wBwOwviIYwwf3BEzfAy3rxZhOFWUCjw5aRKj43jg441I6DkuO4RelDF3LbeRUD5956lc8vn8/qxcs4EvvfS+O79NbX0/BccjZNrPicRRSY72nro54KERboH3POw4Rw0AP9O2O55Epl8k7DkMBKE+VSsQDJ/8n3nyT3cPDPHT55fQPDNAWj/PNXbvYdOmlaEAiFOJEMslA0DdqmhxJJtnY388dK1dyRlMTw+Ews5AsuomYy7UjWvQMUrZtEKHBV1wBtiNa916kfNznkYy6AewJ3n8VqQ3fhWTg3WD87YiD/CBCtZ8XHCuBBABi5TKk05STSQoTE7S9851yvw7MRjWQoOvLL9N/44186Cc/IVRfj5PJYMZi6JbF9OuvE+vuJloJqgIz+/fTct55QsoqlzHCYUpTU1iJBEYkwvS+fbRecAFaEKBSvuiVlVLohoFTKJA8cICWBQuws1nCDQ0UJyaIzOrh6bXPsuK2FVgJi2hTNFBpyG+mUqvdiss9TnkKzdBQvkIzNVJHUmzdKEDfjJk4BYf+jf1c9sBlVd37qnWrSA+laehtoGF2ELA1NNyCixk1Ub6cp1uULHDRLjIWHiNqRWmKNLFreBc99T0MZYboaehhdv1sdgztYEn3EizDwlcifbnthdv42/f/LTErhqEZjGXHiIYka150ilUwbhkWjueQKqVoi7fh+R4hI0TRLbJ7eDc99T20RFu45YVbuGPlHQxnhnl317sZy42xsX8jty2/jQVNfURevv50UD65Q5zdrToxrcOH4hi8tQnOuxMS80UDv3+DZOlLk/L+vDshMQ+yR2X93Nsh0in0e68QBAfWS5vcsVqd+IrL/P4NcM4XJNPftjzIXDfVAHEFmJfTEG2Re8KpOnXdqk2aNE0ArBEShkBxQl4rIN/3BOgaodocp3Ljrky+fjsZoU59E+xzCpA6fLrG3S1CcVIA+qLbIN4lDv3RNvjlNbWa7xc/KFnzJXcKJT999PQ+k3sla54fqYH5D3xbWAB7NomxnVcW2nyiR+q7FycluLD7bgH62UHyDYs4POhz9939rF+/kljMork5xo4dg1x11RN89KNn8+ijV1IoONx66wvcdtty+voaGBvL09Eh5eMsy6i6zn/ykwv51rcuRylYs2bzaU70pZJHV1eCRCJEPH4qe+H//OVt4P6/uPxXA+4QGM79HjD+H4H6/6dLwbYpuC6+7zOay7Gxv58vLFtGYyRCWzxOrlzm9YkJuurqqtl2gNFcjq66OhKWRda2mc6neUdrHSXPoOCAZRgUHIfxXI6v7dx52sSl7LpVV19T1ym6Lg0hDd8vYxpRTE/DTKXQ6uqw83nsfJ5QPE6ork6s2dvbpZTb/v1itT4yAs8/L3z1ri544AHsb30LWylCY2OE8nnhl+/aBQsXYre04AQlgCK2TSibFX75+LgA9nnzBOhWqPggqLtYxE4kKGk6+azJrTeb3Hqr+OTdcEMNeD/yiADoU+MEyaSc8rx5EncYHZWM+qZNAsRPnPhdszpNE/yl6zJWe7vEIDIZeV9ZbrhBvPkqhne33QbvvMBDL5WrZnBEwrWHWCX9f2wIO5rArmskFDMInTgpdHhdE5f4si1Gdb4Px4Zq5nMVsF/Zr04B6eGa5hENCQRU9AGmKVl518PBJzcwQGF6Wmqn+z6aZaEcB8+22Xv//Zzz6U+LuVxnJ+GmJpxsltcfeoiBZ59lzpVX8u7//t/xikWsRB1GJdigwPNcfNellEwSa21FNwwKk5OYsRhGOIweGGsppfAch9LMDKG6OjTDYGrfPlrOO0/KHoVMfCWmXCXXpmAXaY43Ygd0a0PXmcgmmcwnOa9jPqZu8MbYERZ2nonn+9ieQ9iwGEpP8M8vP81N7/0kMSuMr1QA1oXyPpVL851dP+PW9/8F04U0P9izmZve86fEQhE0NDb88ruc1zmfC7vO5vt7nuRTiz5S/b///p4n+eySjzG3rg3LtYOgU0HAeiQWBKJcKjXEKeQglpAvSjclWOK5csHqGljh4P/ulElPxTW+WBAtfCVz/6drhX5/+R9Dagp650M0LuegPLxwBLuQwinmiDV1gGYISNY0tCDLXZgZwYrEsaL1qACYA6Dr1fJtbWcsIRRrON3oLtoglPpS5rSMeyk5RqKxE0/5jB7cSsvcd2FF4uhmSOjzVgTlu+iajuZ6ArSVwhs6idY3RwzLB46jxevQWgJTqOkJKRW38hJUJoX/P75bLQmndB2FQkMmk5rywXEk855JSSm45e+DunrJpMfiksmvgG/bRpkmWrmMPzmG1jtHAhkoUOBqOuVyueoCHwqF8H0fz/MwDAPXdTErhmuahuu6VSB/6aWXEg2F0JSPpyBbKBCJRLAsqU9vEOjxlOLk8BCt7bMwDAPP85iYmKCnp4fKHORUUF9xrS8UCsQiPvXGPqG1exMwfTe03CZgXG8Ad1gAvRaG4p7ABd6QrLtzGJwRiC4Jsuc++AWYuBPaN4IWBZWRCbrZJmfrHDm9jzslVHpfNNX4haCtB8qh6DdwaEaA8e0rVtA/MMC2wUG+85GPcGh6mk3bt3PHypUMB7KtSiB6MJ2mu76eu/v7Wb9qFS3RKDc//zzrVq5kbmMjWwNQfv+OHXz9ssuYyOe5u7+f25Yvp6uujrpQiJLrsvaZZ1jR28uK3l42bd/O+lWriJomyVKJ+3fsYP2qVQym01z5P/4Hqxcs4NErr6Tf1Fni2fhGiFEzxEbEXX4ccXpfhwDvApKRvw2hv78OLHdtUp7NG0aI+WaIaND2euBxYDXwzWCsDaf03Qe0Irr5HkRT3xOM/518HrNQYObNN2k6+2zQ9WppON91Kc/MYCYSVbPQcFMThbExMY47/3zsTAYnmyXe1SUg3PfRQyG8chk7k5F7r2nilUrsvf9+Lrz5Zsx4HLdYZO9993HOpz8tpqXDw9XSb5qu45XL4PskDx6k5fzzRSYFPLnmWV7/4essWL2AKx+5ktSJFNvv286l916KGTXJDGZID6TpWSIGcspX5CfyOHmH7fdu54pHrsAtuJRSJSKNEcyoie9IabmxvWN0vbuLcH0IXQffU6SHs0QaIpRSJRKzEhghXapleuAWRaplh2z6h/vpru/m7v67+cKyL9AeaaQt0kD/yB6W9K5E0zTydh5D+cQMi4hhUVJwKHmce7bfw/pV65ndMJsTqRNs7N/I1z74NSbyE4xkR+ip72Fj/0a+ftnXmchPcHf/3axbuY6hzBBt8TYm85PMa5rHud86l9ULVvPQhx/CMizWbF7D4/sfZ/WC1fzjRx4lXDghOvfz7oT4HHkG+DZM7wkAfEIe7JV64whLCt+ptTFj4OkyV7BMIBdQ3oPosm6JY/3gTyG5TzTxGrXtZp0A9eldYn4Xny1fppnAtl1s2yEUsgiFTRnSztSy5pVstxGqgWvfDgC/zmkAXKma2dupBnQVgzrlnwL6w2CEsPMZbC1BKKQT0uzTDe3cArxwdQ2MX/qoHOeFNbVt73tAMudmFMeM4TgFrFAdlhlo60d3Q9fS0/tc/KCca2HsdDBvxeDFtTgX3YJTPxdrbAdWtFUCE51LhF029jJOdBZWcRyr491k7ChXX/Msjz++n82b/4Te3gYGB9MsWdJNMlmiWHSYPbsR31ecOJFi7tzGIME0RG9vPXUJjUQCfN+iUHTo6YpQKuuMjZfJ5Vw2bhQzutmzG5iYyNPUFCUWM4nF3gbu/6WX/4rA/T9a/meg/v/pkiuXcb0ydSF48cQIf/Cjn/DT1atZ1NVGySkQMqPYns7RmXFW9XUGmUWfVEnx2sQk7+nrREiwPpoqo5QHej2+crB9A9f3SVji7un4OrrmoyGZ9i0nR2iPN3BGUx1RPYPmp/H1BnwvgfnXn6P47W+T9zxSpRLtgWutUSxi2TYUCtgtLRiWhV8u44XDYvozNobf3k7R90mWSjRFo8QAU9exg+yAD/hKoWsaOdumPhTCVQpLKVxAD2qDV4yEvHwey7LwLYuM45Aul6mzwqROWMyeZROP63i+xtiUTkezg68ZZIoWlglxs0TJMTAsHa/sEUkYeGWPiRmDWMQjmjBITng0zgqRKYZ44gk4+2xYucQmrIK+IR2v5KFFQujKI2S4aEoxPB0hFoOGcAnD1HB8Ax0PTSl0U8dxDewyhKI6IV2M6ezeXkq+Wa3MdvQobNqkce+9injYw4rIZ/E9ME2pS+uho2lgGgpsBxuLEA7RCNiejuPpeErHshSOK7pXN8DpQZIEXQNdV/gll1BEw0UnZKkq8165Hppp1B62GuArlAZusYjniF+Dpmn4xRJWY4NM5Kam6Vj07moGEk4nAeD5aIZeIwr4ki3XsnlUhR1Q0WDrRvWh7iifE8lRvrPr53x2ycdojNZxcPIk7Ykmvrvr3/jUoo8wp7mTl4cO0BSt4wcvPcVnl3yMWXUtDKcn+P6eJ/n0kj+gp6Gdv3v+MS7sPosPnLmEqXyK7+95ks8s+RgTuRlmJZoZz81w/U/v4ed/db+UeOs+qwrSP7vkYzTF6smVC3x7+4+r7Jp1H/g0G3/5vRrb5tLPEldIZOfn/wgf+wtxj9cDwO56whipuPD6HuQyUgIuEpPtwmWX9+UyDB2FeefWNIQgevif/aOUjwuFBKRboSDTH4wbvKrfWkfX8V1HvmddD7IZei04oBuSdVegTINCcpRYohWtcl/TNMmA+75sq7AGdAPlCWNDmxxFe/bHqKs+g6fraGbg+K8boCrmYEbtEtM1lC4u9gC68VuZGpDPiJJz1XVUUC8dw8QupNANCzMcBU1Hm5jAL+TQ+ubKAYLShVXWSmXcihzB96QCgOsGUhO5myrPqUoMUODaNhgGOhqGLuenNF0CBYHzseN6EpSCwEBDR08lJehw6ZVolhinaQHTSfM9cdMfHkBraITGFvkdBGwI5XsMDI/QPmsWUctEoZHL54lHI3iBnMrTPEyjhOZNwdRdkH0c6lbDrG+COw7OIFg9olFv+RvRuE/cLFl0LSpUeXfylDa3yXVodoA3JnXbW9ZJNt7qrfWZuV+07ADeiLRr/7r8r1bWW+4gp53J1oER3t3Vhev73PrCC9y8bBm99fVc/8wz1Uz8zUuX8rWdO3nkyiu5ZvNmblm2jPt37DgtU3/ut77F6gULeOCyyzB1vdr/rbVruWvLlmrbBy67jKl8nll1dYxms4RN87T9lWNU1h/88Ie5/plnWLdqFWc0NXEoeYCvbt0gQK1xPv9sWFxqhjjs2rR5NpNGiBVmiG2uTbtn06QbtPs+OnA0dZSNWzewbtV65jfOx8YjpFuUfI89RogLgLhnM6kbhH2HOnR0NJRhMQW0ew42HiYGZU1D8x0SWKhsHt0wUEpVKfHnXn01keZmXrnnniq4Lk1NEe/uZvLll4k0N/PW97/PgquvpjA+TvuiReQGBqSyx9VXY0SjeJVKH1dfTaStjYFnnqH1ne/kre99j3M+/WmmXn2VyVdfZdF//+9M7dt32piRNgmsFUZGZNuaNdT19lLOeUy8McnsVb1oukZmJIcVZMF1yyAUM+WZ4PlouoavEFZQySUzlKHlrFZyY1lK6TINfQ2EgrJXvutj5xzsgk39rBCaV0aF6lDqVL6V/LyrbG1fXLrld+ziOgW0QF5F+jjarq+gFq/Db5grlSJ8H8vJYRTGYM8m1JL15OOdOG4ZSzeIhOoo2znCVgxD03A9BwfwvTK276EZIW5+4XaWd7+bPznnj4hacTzlYWkaSjMo2DkMI0JIA103UIFniI4Pmonm+sEEKWDOGCG5VxkW1fI2FpIV9w0gLPI55UHhuLBpwgk4fgJOnpSsRdgQBp4RCuqem9LH80Bpct9zvCCKmBcauaOEcuh54EsbpcBzPEZmbBrb6mQ+aGh4nsIwxBHdsuT11O1y2gpD1/B82SbzktPbea6YtGn46IaO74PnKyKWIkSRgopTKHjs2jVEX18DZ8xN4CsNz9cxTBknZNr4pUmsUALMCA46vqajeyUs38UP1UtlCaUoOTaHp06ysPNMACyvhGeEkRmyBl4BQ7dwFWhBWefKPEXmr/JMGU5NMJ6b5vyuszB1A1DV/QW7SLZcIBGOUReK4KMR1n00HHzfolhySMT1wNxUB81gfDxFe1sDpukDPr4yTpnjF9AmbkW13yvXup9BGbOC68hA04LrCAfPMxibyBCNxKirT7ztKv/28vZSWSzDJB6K/r8C7QAx06MhDIbKc+nsBp7846t43+xu6rXj9OQ/T6N+gllxk/f01KErFw0XXZVpChV5b18nup9Fcw6hja0Bd1Tm+H4Go7iNiF4mYelozmG0Qj+WdwxzfA2GexxTg0tmt/OOljhRU4kjsX0cHR/d8il98wEOp1LsGh4mFgpxeGaGqzdv5ki5TKmhgUJHB9smJki5LgcKBa5+6imOpFJ4HR0cSadZ+8wz5B1HXHuzWZyg5E/GtsmUy4zlclJ/17LwANvzOJLJyDjJJGnbZuvgIEeSSa7+1a84lM+jNI3xfJ6v/OY3NOlwbneOxMtb0Y4cxtR9uhvymFPjhNwiLXUO9aMHMK+9moSXITJ4mMSNn8E4eojwzCg9TXlawgWiA4fo/uJniJ08QEd9nk9/IsMlK4rEitOY4yMk3DSRQorEjZ8hVpwmUkphHD6EvvY6epoLNE/IMbRsFquQxjxyCOOaq3GyZaaLEYaSUabzIfJ+mEJ3LweOmVx9tcaRIxq2rTE4qLFhA/i+xrZdJqm0xsGDGlev0ThyVEPpBtu2SXvX08i7ISYmdfJuiIIfYjpjcuCwwbbtGqm0Rqkk7eRBqpHLaWzbplEsaXi+Rs4JUXBMQhYYto2WzqGVbPR8Ec3z0ZTQ+zUlmmNN07BiMcL1DYQTdYTr6oi1tmKGwzTOnUvH4kWngXYAzffRPK8K2vGVHMfz0WwX7cgAhCw0XUcr2WiZXFCmLcCoSEDsO7t+LkaPu34u9dmjdXx317/x3MEdfH/Pk/hKVV3nK+0UquoQ/71d/4ZSik8t+gjLZp9P3i5W9313189pjNbxnV0/57yO+Vx29jLqwjE+u/RjLJt9frXdd3b9nIgZojXeyGeXfIzLzl7GZ5d+HEPX+UywfvXSjxMql+EH35BSbRd/VL4I1xHd+Q8fhFxSoieeK9v+6ZtC/47EoFwUfYVdEh17ZZz5C8R9/gffgLEhMbwD+JO/RsB9KTAcKsCRN6W8nG7I5C6bRnPKaJmUgGnXgWIBg6Ac3uQY2uE30BwbzXXQ/vURtGIeXSHrnk883oyey0gbpQRolkrouTQU82hjQ2g/+AbaxEgQbNPQmtvhT9eiWSFM3UC3bbQfPoQ2OYKGhmGX0Yp5tGIev1TECww8dcNC06WMm11IM/z6C9iFFKBkWynH8Bu/lJJ0ToHhN3+FXUxjRRLopoXvSaUJv7UVemejNLCLaWlXzskYxQzDb/ySciGFMnRsO8/wgV9jlzISqEiNiMmg8immJ3FKGQozI2jlMlapiAWYGsJOUQotNY2/+ceQnEINHMfKpTF1HT2ThGd+iuH5+P0vonX3QjaDP3AM3ZcghK4UpFN4z/wMLZ5ApVNoykdPJ6tjaoU8c7q7iKLwn/4ZWmqGulgUvVjAyqbxn/4Zhu2jtBhKb4CWOwS0t9yO0sIwvUGy39MbBdBPf1X06dnHYXoDymwTAH5am02Blj0r77OPyz6ztTbezP2y3U/LX6Wdnzl9ffpuQhTprq/j8889B8BDl1/OrHicV0ZHWbdyJasXLGDdqlVMFQrcuWoVjuexbuVKJvN57gj237lqFfXhMKsXLGD9qlUApEol1q1axeoFC2gIh6tj3b5iBU+8+SZf6e9HAzoTCZoiEf5mxQo51sqV2J5X7bt+1SpilsVDl1/O7Pp6fOXy1a0beHz/42zYugHbLfBnXokuu8AKp8B8r8wKp4BZznFRcZpvPHUt8VKKvJ2h6BbYGPTduHUDRbfAroFtHJ0+xNonP8OFxWmmpg+w5snPkJ8+xGsnt3IieQSUh+k5xIrTHJo+wHVPXs3J1FFCns0rQztJOWmMeAwjEsGwLN587DEGnn2WNx97DCeXY+DZZ3nre9/DL5fZ/+ijeOUyLQsX8tb3v8/As8+y/7HHaDn/fJTnsT/ou/+xxwjV1Z22blgWHcuX89b3vlcds2P5chZccw3o+u+MaVgWhmXVtj36KMr3iTWHmPPeXnRVRksfpX6WRaxBJ9YSJVJvYeguOh6GqaMbGobuY+ROEIoo2s6sR/PL1M8K03Z2E+Gwh5Y+iuaVxYu1waS+qw7NCEMogeY7aH4Z3clW43MagFdGszPoykbPHEPzymjJw1ijuzCVh4ZCq+uF7vegvXQvRm4YPXmYsKZjmAGN+11fQMsOEjfCNBUnSDg5jPRR4ltuxMwcRytnsF78a6K5IRJOgWZNo9GweOzD3+TTs1eS2HIjRvoYISeP9sIa9NRREpOvEvGKGG4RzXPRfRcjfQytMCHB3XQOjh6Drf3g6KAMKNqy79BhWHMNHBkAEnBiVJxx0xnAgHED/vpG6d/bK+bAu3bBsQFY89eSJdi2E44eB9uDTB7yBUhnZZyjx4E6ODIIaz8nbcqu6AuLJfFw8F16Wyx0z+W6657myJEkpZJXdUQ/ciSJUlAsuoyP50mnbQ4enGbr1gGOHE1y9dWbyWRsjh5NyrYjtder12zm6LEkqYxDKm2TSpfZtm2QfAlyXrwag121ajZtbTE8TI4cy0i/oykMS2Mgl+RL2zZzvFjC1kKUfcW+kcPkfR0nVE/GLnFiZpS/e/4xpgtpzp01n8HkOK8OH8QxIgylp/i75x9jMD2BMmIMZFL87S//gcHUBHm7RLKYJW+XmMwlydtFlFKM5aZpiTfylRe+w1BqnFy5yN89/xh5u8hUIc23t/+YyVwyCAjY6CqN7o1i6DaJaAHNOYQxsQbTP4pBmu62AqbhoDnH0MbWYKgMunsMfXyNVBBpvhlNj6HpMcBAc0+iF/sxvKPoxa0C7t0JDP84PR0mTQ0Ohm7/v8In/ycubwP3t5f/7y6+je6n0ZzDMHETmjfOxXO6CRseoeRXIfs4oeRXMTUXTTPE+XfsBlAOmh5Bw/utidJG0COgR8FsRxtfi+YcEw1i5AI0LSwGRs4wKBtNlQhpHppzVByFIwsBoXuWrTCDgSvvqY70G/v7xelW11naIwGv6r6tW/GUYiSb5RcHD3J3fz+tsRj3btsmtWs1jUSgRTQr+nok8hoyDDZs3Vp1vU+XSrTF42zs768et+R53Ld9O7ctWkT0+HG0tWuFs97dDbmcAMhZs2DPHrRSEW3DBuHPp9PV99rGjdDairZnD4RCsv6LX6ANDaI5Don8BAYeWiwmGn1NQ0vEYcUKtEwGLZ0Wjv3NNwsAqhyjsm/TJvjFL7CjdYyMaNx1F4yMaHgYuJgMD2vccotQ9S1LAuJvvimXw5IlkE5rbNokQ27YoOG6sHSpfMQTJzSSSY2mJti1S+PoUYl4f/3rFdsADcuSEnaZjOj3QfqLPl8jm4WTJzVhtJVtqRdvmVAfUOnKjkwMfB9CpgAUJWBcPzaEVnbAEEZEpR6zhOID+r/tyn+qYQhoV0g2sz4u/U4tSRcyhdrfkKhlV5HTMNH47OI/qALjRDhGspitguXPLv0YZccmYoaqgPrqpR/H0HQ+tegj1XVT05nT1MmsRDOJcKy677NLPkaqmOXqpR8nYob54qVXE9cs+hJtzEo0nzamqYm8oLe+jfXv+XN669txPY+oFeKOS/6Kvvp2rCe+IxT2Z34EbR3yOXRddO17d4rRnK8kc1J1h/9X+bDppOjciwVxlq/sU37Nff65J2rZeeVDKCIa+n99WL7/nnmQzQi41zSob5JsSV2j9DMscU5HyXlUnO5/9IjQ8K/6jIzzLw9BahqtXEQ7dkCCAYWcBCGOvCn965tFfx6NwQevkrJ0SklwoKLJd2z44YNoqRmYe7Z8ftdGKxaCknhFlGWimaGADi6ZaE35TB7ZRXr0IJNHduOUcjilLE4pT6ypC90wT9m/S1zgdakxLxp8mb1rgK5bZCdPSDulqv2mj70sQSLdINbUxdTRPVITPRxn5I0XcUpZIvWtTB7ZTaxhFmTT+Fuek7rwA8fl/wtQ6RT6sveiMmlxrs+kwffwt76I2r8Xf2QA/bI/QF94EYTDaPE6vGd+JmX/fA+/P2i349fo3X2ize//FWr/XhnLCVzzlY9x8YdRmZQExRL1+Nt/jb50FZquk3cNikYLbugM3I7HsENn42khVMt6cCdRLeugbjWq5U6U3lh7r4Xwf08bX4sEgYDbgkDAeqHEt6wX07GW9dJWbwC9vtpO6Q2/1W8dlu5ydnMj37r8chpCYYygDNvshgZmNzTw8BVXEDNNlnR3M7+pCQ2IWxbLe3s5s6mJx668kjnxehrCYR6+4gpGs1kAWmMxYqbJw1dcQdQ0aY3FeOCyy+hMJNg9PCyA3DSJWhbjuRwj2SwPfvjDxIL1mGny0Ic/zPymJnK2HRi4lgCv6hr+Nyv/hpdGXsL1HFA+J9InuO7p6ziZPolCYekWX1j2BcJGmHQ5zUsjL/E3K/6G1QtWc+eqO0mX0izpWcJIdoT39L2HkBFiQwXY92+kNdbK3f13M5obxVUu6XKaTds3VYMGaLCsdxlj2TE0w0XXXDRTZ8GaNfR96EMsuPpqrERC3l9zDemjR1lwzTUoz8POZqvtzrvmmqr/yIKrr5b2a9ZIm2D9vGuuQTNNou3tnHvKtlhHB3U9PeimgRGJnDambplopnH6NlWqPhvwbCjOoHlluT/YGTTPhuyg3B+9MqSOovmOgPDcEBiSSUc30ZQn1OnilFCilQu+E2TTVWC4aKHpFoTqJCtZlioF5Ibknpcbkv5eCbIDEO+AX14LyUOif17wKbjkIQg1QKgBLXMcXrwOnKLU6O5YIs+4wjiEG9F2bRQK9a6Nojk/+Djarg2i8zbCaMUpDL+MYcXg6C/EyMzOSJ/dG6FruZynnZZz0nTRTVtxNCcoc9PeDhdcIGa/x47BF74g9+baxEDus/feC4sXywN/eFi2/+IXImcEuP9+Ae8bN0q/jRvhvPPgvvtq+r9XXhFq3uc/L068IEyuz39edIa7dolkMZkU4H/ddWgnThAz4Z57PsBDD+0mGjWZM6eRRx65krlzmyRrrml0dSWIxSzq68PMmhWvuqmn02XuvruftjbZVnl9/PH9bNzYj65rpNNlLEunoyPBtdc+xZEjSXI5m+uue5rjx5O8/PIopZJb7bdp0zY85fGdXT9ny9GXGM/O4KPIlvMs7DwDgIlc8rTSr98NAv1ThRRN0Tomc8lqsuC7u36O7TmM5aar6wCNsQYmc8kqGAc4r2M+/7D7F6clGZ47uINcucD3Tks0+IR00JC5kqaKMq8/JdCp+SkwW2U6VAmm+pnae2dUZAdja0S2pMdEuhS5QNhUkQvQxm8ClUfTIuCOok9cj+4eoVp+7//y5W2q/O9Z3qbK/29c/JxQEKe+InVv4x+UcjqagbKPoE1vQLWsRzP7JAU6dq2U+YmtCKiJD8g4VWrinYFpUAmcARi+UiZQHY+CczzQP94B5mwxFdLrAh3kEOSfh/o/xvZ8DiR9vr5zN1+/7DKhqvs+TmCaN7uhgYhpknccNvb380CgL9wYaBGjpkkxqDvf09DASCbDsp4eXKXYMzzM+bNmkQiFKDgOe8fG6KqrY2N/P1/74AeZLhTEBbinh7BhkLdt4qEQtif00RPJJO2JBM2eR/Taa+VhtHlzzdp9aEgeZIYBMzPywNm4ER54QKLGGzeKO/68eeJ2PzIitd+GhgQZ33eflLSr/O4nJsRkzzCkzfz5sr3imO/78mC9+245BsDICPbYNPnll3LttVpVd//AA9JtcrLmTD9nTiBt1kV3XyiI3v5Uo72+vkAG7clruSzP0vZ2Ob3ly6Xf9LTo8gXUi+5/zhz5WjZtko/d2SkY+vXX4T0rPSIhJeC9opkPmXB0CHpmSZm5Gr9dJhilwCH/jD7ZfmTgd93yVfBPyRZw3tcp2vtKOr2i3W9I1H4HxTLYTm2b7eL4LvnkDHpjPenX3qDxrLPQ4jF0NHxNggmqWCR94BBNF5yPb+qYPpRmkoTahHKcfGUvde2ziM6axav33MOCm25Ei0bAMILr2sPSDPInB3jz0Uc59+qriXd1kR8bQ49GMFubsXST3LHjvPWd71QN+XIjIxh1CazWFkKahnXodTGXe/HfpP56OCzgdOgYNLVBQ5PQE7NpKW2Wz8n1U9cg32s2Jdp0XYepcXj2cfjwf4OmFgF5p5ra2QGQjidknA03wlf/kaqpnecGOncXMumaQ2M0Lhl9TZN+sYSA9DMWyF96WkrIzUzACz+DK/5YPkM2JXXjn/4RfGi1uNlPjUMkKmMcPyCGeW2dMDEs7S7/b9AyCz53lWjxP/rn0NAs14Vdrv6+vEQdvufg2gWcYp5Yc5fQVSva+vmLhEZqhjAjCflMgFPOV7X3um7h+zZOMYcVTYj2/tRr1vdwSlmsWCNOMcPkkV10nvs+XLvI5JFdtM5bhBUWLwLfdchOHifRNgczFBMAH0rgPf0zMbqbfzZYIfwXn8a44g9RyWn8/l+hr7xYgiOOLf9n5ZL8sOMJ0dlvC6jygP/mPtTwIMblH0elZgT098wO3PBLkM/h9/8K48N/iD98Er29E6Vr+L96Dv2SD4lEwTDEIT+fx+9/Eeej/43DlsWgprEYcSjfDrzLt2mgjIFJEZefamH+QEGCMsNamKQWQvdtzqaMjomLy4QWJqOFGPdt3oeNoQJXa+XhaQa/0SwuUBCmTASLEi6mAhcfR48QVhDCDvwSDJSjc3LLMN2Lu/Fdn5GXRmi7aBbETAw0XNdDj5hYvoaTLDH65gSzlnYRsSyeu+5pPvzND+M5HoZl4JlQLNgYHlhRC88E04P8dIHILKkJb+k65bLD+LZhmvoaiPfW4xvCCC5PFLCaI2KIGDYwPchN5gl3xpjIj5IqTTNVmOLCjgtJl9PMiouLtoYAkYoeefOfbKavoY+B9ABLepYQNaKkyiliVgxd03F9l5ARwvM9xvPjtMfbGUgPiBFaoIVet2odQ2lZb421ogemm2O5MTZt38Sdq+6kM9GJoRvEDQsrfxytMARty/F8A99VaKoMhoVySmhWGOVraKaFcvKgdHnvK3RTw5jeBk0LcWnE9xS6aaDyo2jRFqHY6j4qP4EWa0dpgQ7eMjAKx2D/l+GiB6A0gZcbxm9cgu6nMEJhMOvxfD1Q4kj5UNAgc1KctL2y1LdOH4NEF+RGBEi3v1MAfHEGms+WNpXfbNURVhdwmxsWJ3HlS11wK16T02QGoL5PrlE7I4FRIyrH9cqifc4NSX+3CKO7xJisOClmY5mTAqgXr5OyZc9/RkD2xzeLdjo3JHplIyzly/IjAtqXrIO6PgkCLFkv792i3ON+cxtq0W1oZgxi7bKtMCmBAD0sBmovfw1W3QPheqqaddesTQgqGrfPfQ6WLYM//VOZBOzZA+efX6thOzEBX/4y3HyzzE/cwC9l714x6xkakjlOpezNvHk1E+CJCWhshN27JUPf1ydgfcMGmTAMDQnwv/9+mRed4uDrPfwIWS1SpcZXzNTuvfdSJibybNzYz7p1KxkaytDTU09nZx2jo1k2buzngQcuY3KywOBgmu7ueoaHpU2lz5w5jVU/j982XDv33G+xevUCbr55KVNTBfr6GhgYSLN8eS9WBIazE0zkZmhPNPPdXT+vSuJagoozrfHGqlzu6qUfp6OuBdf3uPvFf+DC7rN4V8+5fHfXz/mLRVeSLGRY0DGft8aPcUHXWdV7wYZffpen3urnsrOX8d8v/SxoGqPpSZH1Lf04jZEE9235J259/1+QLGSq23sa2okaDpqfEX8QzQIscA4FJqDrBHwDlPYKGPcz4leiAiNRswvGroPcT6DrxxBdClpI5vfOoOAIZwBmvg4dD8LYNTX5VOd3gooi/+cvb2vc/xeXt4H7/8bFt8XMR1NI6R77t36ESwSIj90As+4XgK2FRMuY+wV0/RRiK4PBXKmna7ZKdiS2AtwRAeZ6HMaurv2AOx4G5Yhe0TkuFMiW28A6i1xpks888wq3LV+OoeuM53J01tWxYetW1q1aRV99PVnb5tYXXuDx/fv55MKFPHzFFRRdl1RgeKeAcKDHM3Sd46kUG7Zu5f5LL2WqWKyaCM2Kx7nllHEevPxyBtJpOdbKlcQtq1oSqCEcpug4NEWj7Dl5kg+Uy+gbN8JDDwnN+JVXag+ZdesEteq6PHzq6gStNjcLoK8Y6m3ZAn/yJ/L19feLQ92qVRK9XrFCxq3YyFdA/rFjgpCLRUHEX/1qrT59MJnIqThjk0Y1blApH1cB4F4gdx4bqz0j58+XIdNpIQ24rjxPzztPDm+aEvDesAFuuUUCACtXypiV5zDUnvmTk+Kkf+21EoT/6U/lIykV1K6PeOJ0YDuQzIh53qlgWiFUuvr4b4HyYDlVVuj54lpfn6i1rYzb1CABgZoEsUKz+D1l7zzIFaEujqd8nEKBl77yFQaefZa+D32IhWvXEm1rkwyt77Pny19m+N//nY9t2UJhdLRWuq65meSbb9Jy/vk4mQx2oQBBbeNIW5u0feQR0Wm2tPDyV79aPcbvaDnXrKEwNsavr7tOSiPddReTr75K8znvIGIXJPMciwsYrmsU4JucgnnnyETTtMC1ZX88MBIMRQTAHj8AfWdALi1l5C7/Y2jvCjTdSEZJqdO/7MIp41S0475bA+N6sK1chIEjUN8sDvSGJWNk0hJYiNcJZb++SS6uSh1ePdBDOmXpP/cdAvArhnifvF7YAXWN0iYwl8O04MgbMDEG51woYP+f/x4+9AkB9ZMj8OyP4Y8+HbAGFJ5l4pTz2PkUkfo29IpuXg904pqG55SrUoyxt35D6/x3Y0XqcO0iZkgmr55dxLDCeE4Z3bRwywUmj+4WUB6JCwXfd9HNUDVoMPz6C2TGj9J30UeINXVRTI0Qa+7Gc2x8z8EwQ2iGha6Qe0A2HRjkXQxxKc/pPfdvqP17xSjvwx/HHx5A752DSqfwt2/B+PDH8J76iZSz650j/Ze/TwI2Qck5lZoWA71Vl8j/STaNlqiXcnUzUxIYWP6+2iNj+xZx1G9swXvycdT+vZQ+/0XG6htoROqMrwAGENfzJsTV/EJqZc1uBT4HTAMXAWHEFC2MlCLTEDdzP9hWQAzWTHnKAFLTvB5xP98F9CGO6hpCVfQQKa5mu+glDydvU06XsRIWE69P0Lusl83XbKZ3RS+9K3rZvmk7y29fDgpCiRCJjgS+J1pXt+ziOz5WzKqWEkOH5NEk/Rv7WbV+FbHWGGP7xui4UNguVsxCN3Q2X7uZ3pW9nPffzpP7o6lTzpQpTBfo39DPsluWEWoPobVprH1mLbcsu4X7d9zPit4VrOhdwabtm7ht+W2c1XIWx5LH2Ni/kYcuf4g9w3tY2L6QnJOjIdxAIpTgeOo4g+lBuuu7Gc4MV43QKiZlVz1xFT/+xI9Z0bcCx3M4njzOZGGSpT1LufHZG7l56c3Mb55PwSkQMSMMZgbZsHUD/3jFQ0RmdkHTBVAcF0fxc++Ayd/A5DZxH9etoI60JfMJtwB7b4dzbhPn8dyxANAWpW53yxIBkU5SWHqv3gwnfgjv3QyxnlpJssIQ/PrK3y019s775J5RHIPSGMx6PxCUwdIMKE2LqVjjfALb+tOBdP0cud9Utw2LE7dm1AD8qY7hniPreigA8yNB+wDAOwUB/yDn4OSDdS24knWZbyUPw0v3wns2SQBgeLsEFWZfAvFueb97o2ThKyD/5ftrpmbZAehYJG7qsfbauaaO1NzMh7dB05nQuUwM18opiDQFD9+wbHNLYm4Gkt3XY5ApBuevxOH2tttkTmMYkkWvRODb2mTfvfcSOJVRrfaTzQpTcGxMgHhQEQBdF0BfLgeMrHqZcJyaBVi5Etasqbn8PvigTEJ6eiRQUCjAxo2odesoz5lPGZOTJ9Ns2rSNe+75AJGIiWHo7NgxyB/+4eN89KNnc/PNS/na13by6KNXYtsepqkTChn4vmJ4OEM+79DVVUc0ajI2lqehIYxh6FiW/B0/nmJgIM2SJT2Ypsb11z/DrbeuYGgoTVdXHWec0czx4yk2bdrGQ49exmtjh1jQMZ+vvvgPVf+ZP3/3FfzTS09x3fKriIdjxKwIru9iGRa5coFEKErZc3hz/BgLO87EUx5vjB2ls66VrvpW8o5Q40/1vLn333/A1Us/TtQKEw9F2T92lPmtvSTC0aDyjRKdvKbhBvIo23VpiRpoypU7aXE3WLOlYke1hoUm83w/L7+F6Y3CeDLapFJH+73ye3WnQBVq+0/1HqkEAPR6ycpPb5SkXvhswQ//Fyxva9zfXv5/u6ii3Pz9HIzfKIYk0xskWz6+VrSG7RsBJT9ws1My7V0/BasLxj4r4LuwHYYvh5n7BLQ7xwXge5MyZvMtAX3xzoC+PCiOw9MbatpGfEJmnPWrVjKnsZG7+/t5R2trlcK+cetWfKVojESqmsJbV6yg7HnsHh4mWSpx/TPPMJrN0j8wwMl0Gs/3q/1zjsPdAfV90/btGLpeHefmZctQStWO1d9PWzzOSDbLXVu2MJLN0haP4/o+nU1N5OfMQT30kNR6A+GK33+/PHTuvVceVI4jEeXXX5fo89e+JtHqEyfgrrvgIx8RA5c1a+Th9IlPyANy4UI4fFhK4U1OSub++HF5OPb0QEeHgPvPfQ727avVjRsZgUKBkOnR2KiIx+HhhwWIR6PCTLv1VmlqWbLtF7+Q2MKxYxLQnpmR5+n27fCOd8hHu+kmob63tQn4/uY3a3Xoc0HytvIxDh2SbfG4BAceeECOsXJlzczecQIMXbLhxAg01EEiJvo6hQC3TA7CYshCsQyHTkqm3Pcl016hxoN814mo9PntcSvA3HFrfcq2uOAbuox9OBjPMGScbB5D0zFPoWae+5nPYMXjTO3di24Y6KEQC9asofv970cD9j/6aFVn6WSz/Pq663jpK1+hnE5TmphANwxef+ghCiMjFEZHqzpN3/M459OfrlJP0XVazj//NN1my/nnn0YnbTn/fFSphGaFBCD/8CEB4rouwL2+Cf75m0IPLxVqoPrYAQHlkyMChusaBSg/FVDnU1NCdU/PSHb8+EFITQtYT8/UHOnzOaFr//BBqQd/7EDQ/oAcs2JUN/9caG4Tp3rTlKy/adQy8s3tQSkeJVT4XFaiQCjJILd1CSC//I8FtF/xJzJGOAITI3DysBzvhw+KBn/uO+CMc8X5fmpMXO9b2uVYz/4Ydv4KBo/Kvn/6BlqxgGGGiDV1oOkGTimL55RxiplA455GNyw810YpRbSpk8kju3HtArnJE9iFNCNv/BLfdyikxvB9FzSdyaO7SY8eZOrYHrygDrOmm4y8/kucYgZ0g7YzltB30UeJNrTj2gUi9e2Ahq4b2PkUTikv36OSagv+9i1Ca+//FZoVEj/n5e9DW3Ah+qpLxGCuvkGM+jIpobYD+sqL0eafXeu/fYvgkIfvRWXTNVr91heF4RAPonS+qtLm/e1b0Bqba2NsfRHsMvrKS9AWXIgZjZFQimngAgRUxxC3cg1YKf+j3IjUE18M3I8A/HHgGqSGeAkB/P3I5KcOmASyyLTyEHADNSCfAW5CAPs84ASS6T8WjHkE+HXIFFLJSJYtd20hP56nd0UvuqWzav0q5n9wPts3bWf/4/vJjebQTZ2ZIzM4BQev5JEbzeE7IoFwSy6b12xm+vA0dtbGilksu2UZ6cE0pUyJ9oXtZEeyPHfTc8wcmUEpxdLPL+WcPzyH9Mk0T137FNOHpsUwbTDD/sf3s+P+HcRaY5i6ybqV65guTLNu5To+OP+DVdr6pu2b8JTH/Kb5PHzFw9iuzfLe5Yznx7lry12MZEcA2LB1A23xNu7uv7v6WqHFL+lewkfP/ijt8Xa2DWxDQ+P+nffT29BL2Ahz24rbiIVirNm8hq6vdTGeH6/S6n8ztAvVskTKWL21ScDzm3dDx6UCrie3QX4A/DLkT0hd7uIYtCyWsl7KFrAeaau9Tu+C/DF49VYojcKF9wogb1kioH3gcXltWSLbrQYJFvStlmPqplDF39ok4/lCYyc7KK+RVsm4u0UB2roFZgTwoS4I8RhhyThrGiQ6pV/6qFytXklAtFcW+rvyBbRrCMgPJYL2x+WZYoSkr1eS9Up/EenVAgcv3QsXfV7OZ7gf6rrhjI9B6qh8f43z4QMPy7l1LhHQfvBxobbvuUfalWZqoN0L6Md7Nkm7PZuknnfXCmEDlFMQbpIgQH5M7reeLWD/VzcIgC9OSaRrZEQe9qOjwhzcsEEAczhco8lv3CjR/cWL5Vl86JA8+Cv0+LvukolGR4fMX3I5AdyHDsn6xIRMPI4cEV17W5tsW7JE7jvr1gloX7dOxlu+XLL0zc2SXXjkETjjDKk64nhs2LCVxYu7AThxIsU112ymq6uOH//4E6xbt4qpqQLr1q1iYiLP2FgOy9IZGsqgaVAue2zatB3LMrjmmqc455yHuOmm59A0mJoq4HmKOXMa6empZ+3apxkYyPDtb1/BGWc0sXJlHx0dCUZHc9VzyGdcZiWa2T92lM8s+YPTJHGfWfIx2utaUEpxz6++T9mVQFDECjOUnuDuF/+B1ngToDA0nQu6zmJWXTMFt3wavf47u35OyDC545K/ojXeSCIcYzQzRVuima//+oecTI7x8tABio4ESHzlM5qZ4vXRIzRUSv66AyJNNdtACwu4HrsGnGOSUEPJPN8ZqfqR4Kckm+6NCPNWFYPqHisEjJsdMPPNmmQWwH4LtBh0PAKhM/6vAe3/6aKCmpVv/9X+uru71dvL/6bFyylVfEmpodXyOv0NpTKblSruC7a9rFThVaXsYaXsEXkd+qRSxVeVcjPS5i3k1ZkI+uxTyk2dvs+dUcoZl+1uVilnSo4z/eApx39NxnQzKlMqqWSxqEYyGZUuldSro6Nq9RNPqH1jYypdKqmnDx1SI5mMShWLavPBg+rhPXvUZC6nVj/xhOJLX1Krn3hC7RwcVKufeELNFArqpeFhtfqJJ9RIJqP2jY2p1U88ofaOjqpMqaQypZKaKRZVtlRSE7mc2jU0JPvHxtRUPn/amKliUaVLJVXM55U/MqLUyIhSmYy8ZrNK7dun1OrVsr53r7zft0/aVNrNzMh2UOqtt2rvV69WKpVSanLyd7ePjSk1OKjUSy/97vh798qxX3pJqU9+UqnhYaVmZlQu66l0WqmhIRluZESp55+X9WRSqUOHlHrtNaU2b5ZDrl6tVCQi66mUtP/kJ2XYl1+ujTM0VPvYzz6rVDot7Sv9n366tq3ysXM5OebMjLx+6lNKOSVXqf1HlNqyR15zBaWKJaWyeVlP55SaSiplO7/bbnCs1i6TU6pUlnbF0u+2tx2lyrZSjlP7q4yfL8j7wTEZZ/8RpUolpTI55Y5PqfzEhMqPj6tSMqnsXE4Vp6fV9IEDys7nVTmbVaV0WqWOHVOlVErNHDigtt58s0oePKjyExNq6803q5kDB9TQli2qODOjtt58s/rhueeqrTffXF2fOXBADf3mN6owMaHK2awqp9MqPzGh7Hy+Ot7MgQOqOD2tyum0Kmcyqjg9rex8XjnZjPKzKaUe3qDUZy6T10JOqcxvbUvPKDVwRN4fO6BUOnn6/lxWqcGj8j6fU+r4IXl//JBS0xPB9qxS+3bWxhk4IuuVMY6+dfprISfjppNKzUwqlZxSqliQ8XMZWX94g5xrOqnUQHD8waNKjQ3J9mJBqV/9Qqnv3S+f4ehbSr22W85lZKD2eU79LNl0bX3fztq4Jw+ffsx9O6Xva7uUa5eU45SVaxdVeuyockp5dfLlJ9Vrm+9T6bGjqpAeVydfflLlk2PKLuVUIT2h7GJWFbPT1XYnX35S5WdG1MmXn1SuXVSFlPQppMaUXcwq1ymrzPhRlU+OqPTYUeU65WB7SeWTY0HbcWUXs8GxgnZ2UfnFovKKBeWNDivniR8ob3RYeVOTyi/klV8qKb+QV97UpPJSSeVn0sovlZQ3OhS0HVJePq+8bKbWf2xE+aWibCsVlTcWbB8ZVN7woPKGB2Q9k67tGxs+/RxGBpWXTim/VFR+Ia9ynqcmlFKHlFITSqmcUmpEKbVXKbU52DajlHpQKbVaKfWmUuo1pVRGKXVAKfVS8JpRSiWDts8GY6SC9Zmg7zeC9quD128E71PBsaaD112nvE6nS+qJ1U+oL/El9cTqJ1QxVVSHnz2sMiMZVcqU1Ni+MfXE6idUfjKvnlj9hBraNaSy41k1/NKwemL1E2r4pWGVHcuqiTcnqmNkx7JqbK/0G907qgrJgsqMZH7nOIVkQRWTxdO2T7w5oXKTOfXE6ifU2GtjKplNqk/+5JPqwV0PqmQxqbKlrEoVU+rV0VfV6idWq9fGXlPJQlIdmDygkoWkGs2MqlQxpVY/sVrxJdTqJ1arZDGp9o7uVZsPbj7ttdJ/MjepJnITavPBzWrf6D41kZtQyWJSTeQm1Oujr6tsKavSxXS1z0hmRO0b26dWP7Fa7RvdpzL5ceXnR5SaekmprauVmtmrVGFMKTut1Mxrsj19QPb9EHlNvanUzD6l7IxSU3uUKk4oVZyUfVO7Tm9bTkn76ZeVmn5VtiVfk77lGaUyR6RNOaWUk1OqnFaqcj5Dm5VyS0pNH1BqqF9ePUcpN/izC0o5JaXKOdlXzgbrmVO25ZQqTEt/O3/6WOWMvLq2jFfOnd7mt9vb+eAvJ+09R8bIDMnf+F6lnlyt1MgupY5uVio3Ju+fXK3UxD5p89QnlSrMyPqTq2VbdkSpsZdkfXyvUqWMUsUZ+TyVdhP7ZHspLWOPv1o71syh2rHHXlLq5W8oNf2WtEvNnD7nePNNmSAkk0odPlybb7z2mkwA3nrrd+cpb775u+9/X7vKhKGyPjkpc5hMRiYQO3fWJiKV446MKPXqq9U5j5fJqvHxrNq7d1S99dakeuutSbV69RMKvqRWr35CpVJFlcuVVTJZVIcOTanGxq+qzZsPqn37xtTmzQfV5GReZTIlNTNTUKlUUe3dO6pWr35CvfbamEqlimrfvlH1yU/+RM3MFH5n3EympCYmcmpiIqcymZLat29MvfXWpHrmuYMqXcypdDGr8qWCygTvj08NqclsUuVLBZUu5tRULqkOjp9Qd2z+e5Uu5tStv3hAnX/vf1O3/uIBNZyeUHds/nuVLeVV/7FX1f945Vk1nplW+0ePqlt/8YA6MH5CjWWm1MmZkWD8nNp+fK/KBWNvO7ZXTWRmVL5cUPlyQWVL+eB9UTlOWubiQ5+UuX7prWAe/0mZq2c2K1XcW8MDlXl88TWl7CFpf9q8PnXK/H2fYIRq+2Glhj6llJuWdl72fyt0+f/1Agyp/wlGfZsq/3uWt6ny/xsXL1fTlxd3Q+t6MWAJzQ8ibybgBxqYr0P7PYALpTcgtlzo9NMboOV2MOdK+Z78C2CdKdn402g2N0mm3psItt8hRheRC4V6gwXOUXCGKIQuxvbB9X1eHh1lSXd3lZL2+eee468XLaIpEqE9Hidn29z5q1/x9csuYyCTqVLqh9JpehsaGM1maY3FmNPYSNQ08ZXCC/RLU/k8LbFYVe++qKsLH7ACcynb8xjL59mwdSvrV61iXmMjCojbNnomU6OF5fPyunu3cNL7+iRyfWphd9OU9vG4ZM8r2vdK8fX160UEHo1Ku4rQ/M47Jcs+Pi7R7Mcfh7feqr1fvRoefVSi3u95D3zsY5DNkuk8C03XOXRIhrntNsmgHzkih77jDjmVChPuxAmRI1c06l1dElCPx+Xwhw7BPffIOGeeKVl5x4GpKQnQd3dL0P2d75QA+t13S036uXMlEayUfIT6ehm3pckj7JfFLK6vM6j3ChwdFPO4tibRsmuaaNsrenXLlKzxiZFau9ldkp33A/q779d080G5N5QSV3Wo6dwTMaHUG3ptvEUL4MQITlcrhZlpcoODRFpaKE1PV2sF54aGeOu73+XCm29GeR6po0dpe+c7Ua6LHgrhOw4ohR7Uy1a+X6XSn3fNNcS7u/EdBz0UQrku6DpT+/bROH8+RiSC5zikDhyg+bzzQCnyo6NYiQSh+nqmX3uNWFcX9R2zMApZyXQ//SPJSldM6SbHRJd++R9LVvufv1mjmv/Z5yQrX9GtNzTV2AaGCf/0jVrb/3at0Ogr2vZTKeun1nBPTgk1PTklGfaWWXD4dWhogfpGGdsKiblcU5tQ5ydGJBuum7Xz+9zfQmOrGOJd/scylhNkAH78XTGwC0eFZZCagcyMjPf0v9Yo8dPBZ/vkWmEiVM73L24MjBpMybgH34/X0Y3ve2hBubhCchQzHGXq2Mt0nXcJI2+8SHr0IA2dZ9O98FKU76F8H92yAi281JB3ilmsaB1WpA6lpGSPUmKSpYJyd4XkKFY0QSjawMgbL9J57vsY2f+r6vjtZy3j8K+/T0Pn2XSddwmapouKaWYalUmJAR1AKom/Q+rK09AoQgbHxv/l0+gr3idU+aDWvP7eD+I9+jX0T/wlet88affCZvTl74V4AjU6LOPqhjATSkXU0YOo8XGMyz4Cykflc3jffxD9o3+C3jtHJLG2jONd9lEOxuJs0DTuAIaRDHgHQpFvQ7Lr64Jt48BcJFs+GbTvRuqTP0CtVvkdQd+bgfXAfOAoQre/i1pN8i/JE4l5CG3eB0aR+uPrkMx8R9GhcHiGrRu2surOVVgxi+JMkUhjhFAihBmRe49u6aSOpUgPpuld3stT1z7F/sf3s2D1Aq54+ArckstzNz3HittX0Di38bT9Vz56JUopMgMZOc76VWSGM9T31NM4p5HU8RRbN2xlxe0rSHQlCMVDKF+hGRqO55DVsqBBIpTAUx67hnbRFm+jr6GPqBnl0NQhRnIjVfr7A5c9wER+go39G7lz1Z3Mis8iXU7TGGkkVUrRFGkibIYZzg7TEG5gLDvG/Jb52J5NspgkXUoznh9nSfcSkqUkbfE2dgzuYGH7QgzdoD5cj6c8HM8hYgq1N24YGCih2k7vhobzpWa3X0Yy2DHIHZFMeaUO+GQ/RLtrNHkjCl5BKPCnUuITZ0D2MBy4T7LvZkDjntwOkVkw1S/HXPRtyTRPbofCSej5uGS7jbjQ2St6cgLJTmVbokey3JWyjL4n42QHJOMcbYWGeZIlr59DtaZ3XY+UMDPDMqZyZcxQvWTQT6Xd54Yky69bQjM+tbapW4B/v1Eo8r+6vlaj+5KHpO0vrz291vd358GZfwSXfFuYDkZI7pWn1vf+wCMwugPaLgQzKsfTLZEIyAUNv1p7Sl3xR+CFa2rry74E4UaRMQ3tgUJXTVvX2yuZcsMQ3fnEhGjdSyVh+VXMbU6dp7S2yrzn1PeneO9U23V0yHrlWHPnCrW+sVGy+yMjMlGIxWrU+QMHZPLS1gaTk6iVKxkr6CQSksXN5WxGRrJs2rSd9etXMTiYpqMjwVlntXDsWJKNG/t58MEPk0qVaGyMsHv3MH19DTQ3R3nttXFWrOhFKdi+fZBFi7pZu/ZpVqzo5aqrzmV0tDbuvHmNKAUTE3lyOYd7793GvfdeSiIRwlEOGSfNYHqCBR3zeXPsKMPpCRb3nUdboomNv/wef7Xoo3Q3tjGenWHHydfoa+ygPdHM9/c8yeff+0k0NBSKI1MDnNnah1Ut86zI2yVePLybN8eOcdvFf8lkLkkiLL+Te//9B3x2ycforG+lFDDETi09293QRlgvY/nTYLaIRLb0GkQXyTy/uANiy6CwDUaugsRHxZsKX+66fkZYGu54bc5vzReTulMlsO6YyGO1WOAVURCKfcttEHqHsFb+L1je1rj/Ly5vA/f/TYtvg32gpi83ugLjCCWUmemNolWx5siP81RTupZ18qN1R0XTrjShzkDwI/2C7K9ou8Y+B9nvw9y3Tq/12/EwEBLAXtHON99CXjuLjGOQKZer9du3Dw7SmUiwY2iIOY2NrOjrY9vAAH0NDfQ1NCZAqmkAAQAASURBVGBoGulyGV3TqAuFKLou6VKJeCjESDbLWC7HRZ2d+EqRs2266uoouy67hofpqa+nJRrllhdeqAL0zzz5JL84eJAff+ITLO/tJWRITXoF1DsO+qFD4u5+zz2i85qYENr8ffeJO+rERA2QDw/DhRcKSN+0Sf6iUXko6npQzzTgne/fL3T6aFRufI4jD7NcrvbwO9XsruIyd+yYAP9Ai5Z/9Ie4mKdJxir4/tR4Qi4nTP6VKyWeUNGwNzVVJWWsXy/DXnllbRxdF8B++LCcbmOj4OXR0VpMYfPm07337r5bAgazZkFdzCMRC2iEIDT3hoSA6lNB928vtiv090q73g4xnzN0odpbFsTCNRBvmTVte0XDnogF+nartq8y3vxecFwc5eMU8pixGF6phPI80keO0HL++WAY+OUyRiSC8jw0w0DTNDLDwyQ6OnALBXEJj8VQkldAMwyU68qrUrjFInvvu49z/uqvKE5O0nj22ZiRCKVkklB9Pb5t4xQKxNrbmXjlFWJtbex/7DHO+dSnKM3MMOtd78JQHtrxA2JMF68Tc7JnnwgAbkS+W9f+LYO5jtr1duwAPHYPXH0bnHGeXG+To7W2LbMgm4REo1yrEyO/O46mCb29kINEvZzDz/5R6shX6sNrQeRmagwam2Wi6HuBkVFZgPjT/1oLBlTA9p9/Tibfji2U+elxcZDvnS8XoGHJhNkINPJH3xR3+1BIjPjsci2A0doh34VhSim8Pb+BpRfjfeomAMq5JIYZwvddnGKWWFMnmm7UjOrOWIJbyhGpbxOQr+kUk8MYoRiGGcYMR/F9n2JqHDMcwS0XgzFMUD5uuYDnlnDLReItPYELPbi26OHbzliCEYow9uavaTtjCaFoPUopdF9BPocWiaJQaIaJt/nHp2nbvWd+hr78fajBE6jBE7Vtqy6BWAL/uX8TXXpdA97TP6321d/7QbxvbZJxPrK6pndf/j4xucukZH3lxahMGq2zB/LZqu5dDZ4g/87FXB0KV4H0zcDXgIcR9u1aaiD7UYTmvi5ocy1wCwLsHwfe4ndB+bnB+4cRKr0OjCHA/E5gTnAHcYI/Kxi3Msa3gES+DD4oT5GfzGMXbLJDWfpW9KEZcgNQvqIwUyDeFkd5Cs3USB1NVcF+0/wmPNsLZA+ie04dS1VBetP8JnzXpzBVINocBQ2Sx5LUddZhRk10Q0f5kpE59f1zn3+O993zPgbVILMSs9DR2TW8i776PnoaehjPj9MQbmDv2F5aY61M5Cdoi7eRLCZZ3rtcanTrFr7y8ZXP9sHt/OlP/5R/+cN/YVnvMnLlHK9PvM6y3mXYno3ne5i6yUsjL7GwfSF5J8+s+Cx0TSfn5Ljthdu499J7mSxMsmHrBv5mxd/QHm9n//he3tOzhJAZQa/oyHPH4a17BGgbocDsSgmQn94Dkc4a4H73Q1AchfEXITEPWpdCaQqcFIQaIRxQv31HaOJoMLUDGhcEINiQSb9ywU5CqEle/bIECPQQ2Dm5J3hOTW+ePibAvPmcmr490RMcgxr4rusJ9PnBA0GpIOKMzGO04L1vi768QrP3bDk/pwChuFyhyqcK2iumdVZMaOluURzid98NS+6EhrmyLT8KuzbUjOZGd8h51s+p6d7f+zUxtdt9t7TLDUPrQjk3OwNWnXzu/Kj06Vgin23XhuBY84TOX1mvnxN8Lldo9ZHZ8twsl+WhHY9LBH98XJITc+bUJhCf+pRo0H2/ZmhXKskcqKlJsgCjozIxSATeNb4v7TIZ2VYxsrv1VvmLxSQjMDgoE4eurhrAf+QR0eMFBr/+vPk885sR3vnOTsbGsoyP56vgu1x2GRrKEI+H6OysC3I+Ct+HYtFh3boX+fKX349h6ESjFocPT3PffTtYt24lv/71SebPb6K7u55IxOSee/q5/vrFzJ7diGXpFAoOqVSp6jZfMa77znc+gmYofN1jNDPJd3f9W9WYrqOuhfHsDGt/+lW+9Ud/w1lts8mVC8RDUYAq+PZ8j2QxQ8lxaIwmSBWzfGfXz/nMkj8gaoUpOjbf3fVzbnv/XzBVSPO9Xf/GpxZ9hFl1zVz87WurZnVT+RQA397+46rOfv0HPk3c0jDcY2jOoHhT+XkB5HqDXK8Tn5e5vTPE/4e9/46Sq7rWveHfrhw6t7rVWUIRZRmhLIExEphgjJN8bDnhgLGFbYIBE2wcQIBkMtgGB5yNJeAYISSEiEoooYhQbIXOqbpyrtrz/WPu6hL3fve+937j3PeMa589Ro1dtcPaq9Je65nPM5+Js1nBt6PGAvn7FOQbbovs+/9B0GU7FTuULbV8LgJgLy+a1dX/8r/M6f5Vl/8C7v9BSz7y3xjGPW2Z03k097zAwg9/SF8b3g+C7mE/VdM5w6c57H13aC68VdtRwf+9FuNeDX03/TeM+50aFBBTo32eiYATUvuJuT7C0UCAnliMxrIy7tuyhZvnzqU/Huf8hgZ6YzHaIxFmNTYSSqUocblwWJF0lwWMkrnc0Otvr1vH9+fOZVx1NZl8fgjQh9NpSpxO0vk81T4fsXSag319zGlqoi0SYfnmzdy5YAHnVFaSyuXY3dXF9Lo66kQwNm9W5zaHQ6nlwsBTGLRAQbfDoQOa261gOxiEESN0MGxr09wutxu+9S0tgTJ8uEa0zza6GzYM3ntPo9ymqTS336/gvuAEV1urk45rr4U1a0gePE5ueCOnThlDBnSNjRpDKJjbjxkDmzbp+Hj2mFwA9d/85gd9Yq6/XuMELS06r3E6NV5wzz1F1/h8Xt/affcVz7n55mL6/5Il8OMfwzkj8njyKXWJH9Wo85x4UsF73lQgDgrUC+C7AMyzWT3O8g7S37OpjLopeu7xNhjTfNYBZz0Nx+D9Vpg4WsvBtfcU3ekjMUilyVeWkctlh5jy8269lXQoRKKnZ4h5z8bjZKNRnCUlOPx+ZVdNE7EceQ27nf69e/ENH467vJx9Dz3E9Jtv1uNESA4M4PB68dbUYGYyZGIxHF4vuVgMd3U1ZjqNAA6vl5133z1kYHf+nXfi8Lixi4mRzUAygVRUYfzlSc3jLjDrf35MS8F9604YOV7z17NZGOzVfHCbDWIRBf6Igt3yKstRGWVgbXYFwP/4I3ziy8qcm3nNcX/5b+rgHgpAXzfMvghOHlbm/fwL9APP5/T4gqu83fItaD2k7LqYGiAwTW377MDBsOHa34JzfKGE3Osvaom3iedpgCKdhv5O3RcNQU0j3HdD0e0egVW/hsWf0HYCvbDuWczPfYs0ORwuL6lIH+6SYdicbmWwRchlEjhcPgzDwDTzmp+OQeDUu9RNuADD5iAR7MLpLSWbjOJw+zBsNouFn4XLV0EmERp6bbM5sbs8iJnHZnfS9d7reCvqKKkZgd3pIdx9jPK6sUDRCM/tLofgQNE9vnIYDBnKLULCwQ+w65gmVFZhmCZYv7OCtSDpDCTVCb5gcmdueBHb/IswKqs/GBC48tP/3WvgA9tsF15ConoYrTb7EMPdATShDLiB5pvfi4Lsc4DNKBgvA86gjHsTCsQfoci43wUMQ3PYvw+MQPPb1wAHUNO7oLV2o7nzJSjD3m5d804U2LtjaYIng0TaIzTOaiQVSuGp9ODwOjCzJmZW3ebrptfh9DnJxDK8cdcbXHzvxXpMziTWHWPzvZtZcMcCylvKCZ4KEuuO0Wjl10a7o0TaIzTPayaXzLHx1o3M+/48nH4nnkoPNoeNjnc6aJ7XjIgQ743jr/Vj5kxy/hxbOrbQVN7E8s3LuXnuzVR6Kklmk7RH2pndOBuPw0Mil6An2sO9W+7lkUsfGQLXBfa9K9rFnKY52G124pk4+3r2cX7D+ThtTuw2O9FMFKfNidfhxcTkeOA4K7at4PYFt9MZ6aSupI6t7Vu5dPSlnAyeHGLfq9wlOGOt2JLdSOV0jGxEWXAzBYlOMBxwZCVMf0CZ8tQArJ8KjVfBlB+DswLS/ZqPXjjGzGoevN1bBOGeYQpu990C428Eb73+cvfcBJPuAl8zmElV6KX7wFGm96dkr+bAe4YXzekMuzUuWGZodpeC7HRYS6eJFB3hEQXedospj7afxcKfUzTiFNMynSuzPOfMojmdYVj3O8uFvqTRyom3qdIgl1QGPBkAX81QKTkSfZAKQfV4fe89O8FfDxVjrdx8R5GN/+Q6ZddBAwGZmPYF03qfBUWBTXPvnX7wD9drAWy6Feb9RHP9kwNqWGc4oGcHDJsKRgmcOFl0gu/q0lquDofOXWpr9V4bCun8pOAMX16uwdJly+D559WJdu7cYika0InCQw+p/4/Ho3OYSsswL5nUbW631pCdOFFZg4YGDRgUHOy/8Y2hSUT80V9wqC1FebmbEycGqanxEwgkmDevmVzOxOm0sXVrO42NpZxzTiWnToW4997N3HbbPIYPL8Hlsg+x7m1tYa688m9DzvHZrInX66CuroRYLEN3d5Tu7hizZzfi8Tg4dizAqFGVtLYGWbFiG7fdNp+xY6s4eTJIfbOXn2/9/RBgvmPRV7EZOpfZ33WMDzWOJ5FJEc8k8bt9lLhUKZEzTQ50HaO2pAqv00W1r4LemLLy73W38p2F/0Y2n6XKV47NMLhn4wed5e97/RmumXUVjWU1xLOpDzDu35jzCRrLa7GTwJ1+R8G4c6T6TAVWKHHnaIITdVC6FOqeVLBu86n3FUD0eQXq3rmQO2PN4X9oGdvl9HsUS/OU74FsDzibigSgvVZBvM3HP8PyX8D9f3P5L+D+H7TkY5bj430qe7HXWy6QJzVC5p0FOPXPaNj5oAO8BcbzvVYZiVuLICqwwoq+tavkpuE5je5J2nKejKnRha3CkurMspxcc5Z5RZ5I1s031q7l5rlzeWzHDmY1NnLJ6NHUW5Hb/nicGr+fRDYLQIlLazGfCoVYbjnG15eW4nM4+MvBg8xvacHvdJLM5VixdSsrFy/G43CwvaODOU1N5KVYKs7ndJIzzSGG3WO3cyIYZPmWLUOu9DU2Gw3d3VqD/dZbYetWfTz5pA5yyaQOej09xVIot96qA9G+fcq+u1x63MGDMHOmRpOfekoRbsHF7W9/U936/fcr+He59Pzzz1eDmLo6bWPnTkXNo0bBqVNkuvo51rKI4XU23G4hHjewiF8qKjTQXWDMfT4l+efN07G1QOIXKtadXcUlm9Wx2mbTWIHPV4wdgI7piYSO76ZZdKIvBNDPdrgfVpnHefK0OsGXlxSl8B5XsZTbqCYF4XmLwSiA+1K/diQSK8rdC+cXJPBnl4g7m8Uv7IciS++31A12mwL/aBzcLjKYQ4D5irVrMWw2XKWlBA4epHLiRFKDg6T6+hg2bRqGw0E2Hid45Ai+4cNJdHdTPWWKMuz5vMrmTRPJ5wkcPIivvh5/YyP5ZBIxTfY9+CDTb76Z1OAg7//610y69lrsHg+u0lLsHk9Rnv/97+PwenEYgu30MRg57qyJI2ry5nLrhDGbgdNHoXmMfhZON5x8HxpG6pdVVq5/2lhYHdpfflbLsDndakLncCrYdrphoBtefUEBdaHkWD6vLHZJhbLmz/8OLv20AvHBPn0UAgR2uzLuLz8Ll35GJfQdJ9X9PhrRoEvBrd5uGdklE8V+R0PF8m8tY1RFsGG1lq2rqdf+FI41DIgEi8eXV2tAYeJ5ug29Rt5hp/O91xk2aqYFuLU8m6ukkkwsyMDJXdSMnoXD7aP7/beoGTOLbDJGJhmmbPgYDJsdm90+9NMEkHwWESEVGcBf1UDnwY1nSe0XAQbxwS685TVD7vM1Y2bh9JQNOc/HA5207VlD2fDRNE9cRH7tauToe9iv+z6G14ckExg+v5ZlGwwoEF+4CKOiErPtNEZpKZRXIu2nMcrKP1gyzuHCcCugkFwWw2ZTgG8YEBy02rpYgyCRoJ678GIkEsGoaygy7gsXYZRVkHI6CdntYBh4UeDdhDLrYdSgLgdsRyXxNair/OM6upA7a223zktar2tR1j6DSuTbgXuAJ1En+RpUbt8ErAQeAPxWexmUnTcBbyRN2+Yz+Gv8vPPgOyy8cyEVoyqUHM6ZdGzvoHZKLclAkmhXlKY5TYgpJINJvJVe7C4767+7nobzG5jwyQm4Sl3K4FtSdzGVyU8FU+x4dAeLHliE3aUBZIfbwbpl61i8cjGx3hguvwtPpYfOHZ2UtZTh9Dhxt7hJ5VIsW7+MVYdWsXTKUn55xS+JZWLkzTw/eP0H3DLvFmr9tcQyMYKpICPLR3LTqzfxl4N/4fCyw7QOttJY2kh3rJt5zfMATdPojnZT5i6j1FVKXvLYDTt5yeMwHGRMldTu6tpFpaeSB7c/yI8v/DH1JfUkc8mhc88prcHevwVq5qnkO5dUlvxs5rvnVaieo+B80h2Q6IFhs/W/aNhhYCuUTQBHqYJu93AF3ZJTB/h8AhLtamiXaFcwPmyWgs41I2HBcyqtT3RB5XT9r9t9ep9797vK6JvyQVk8YlWpyBcBt+TPcoAXlZU7SyxZb1b7WpC9lzap8/3ZYNzuKZ5nd1uyeMNqxxqX8mltpyALDp9UsG5z6L7uXVA7zZowCfTvh4Z5H5TBL35a9+WzGnQo/JoLZnQ9O6H2PAX+u1dqaTenTwF5LqXSeW+1NQ4k9JzjL0DnJrjoMS1D9+6DWobOW63fqb0GvvHNYtmYhgade/zgB5ofl8sVSQNQsN3RoY8CwO/t1UnAvffqnKeuTu//e/boZGD+fFUNFnL1CrK+Ql6dw6HXCQSK7dx+u17fmpDInXciY8YQThs4nTZOngxy770fLPM2a1YjbreDRCJDSYmLWCxDLmeSSuVIJHLce+9mbr55Lv39cWbNauTGGzcMSd5NU0inc7jdDpLJLO++201NjZ8HH1RWvqWlHLvdwDSF3t44tbV+bDaD7ds7mPqhYUQJW0z51dSXVdMTGaQ3FmBy3WjcDienB7v5/a6X+P6Hv4hhGEOO8dfMuoqBeIgZjefSHu7jtzv+wVdmfoxh/gr8Li+ZfJb3eloZXlJNpa+UlW/+ka/NvpoqXxlepxubYWN/l7raO2yWss/Mkc3nwYBsNkFdiQujdxnUroC+Wz+ofu25ziLXeoulm7Pd4Bqp37ej0ao41aGpsmaqSNgZ1hwq1z2knGXwwWL7tY9YgaWyfwq5/H8B9//N5b+A+3/QYsZ1EMt1quwluVMjbQWALVnApjd+gMQ74Jmq0e7ENpXSZNutWu1Loe4XWv5tiKl/GPIhsFdCcgc4W7T0RGKzRvxy/Von0igBspDcrfnuQNys5EQwREckwnn19XRHo/TG48xpasJh1XU/GQzywLZt3L5gAedUVABw7dq1rDl6lBeWLGF+S8uQWYTDZiNrmnxn/XpumjOH0VVVJLNZ3A4HDpuNWCaD226nPRJh5bZtrFy8GJ/TSTSdxut08u1161hz9Chnvvc9BlMpakWo2rlzKN9qqJaaiNLYpqmAe9IkBduFqLyIot/e3mJplebmYtS6tFQB+o4dinRbrBzvZFLlZbW1+l1s2wbnnVeU3hdKwpWUwJYtxOZdwttb7EPy9MI4PE/ncxiGgvSCeWxBoWaa2l2HQ2MOZWX6ur9fm/Z6FavZbHpMIfju82la/vDhliJ6oFit7vHH9ZpOp47Hdru2N7I5j820GsvmVLpeYNKPt2ktd49bJ10nO1US73QUAWohXx10wpbKqGN5wUX+bDb+eBv0DWo+/Kgmvd7ZgYKCrL5QNs40yYuQiUZIBgK8/+tfM/Puu8mn02RjMTxVVcrCWnXwstEo7ooKDIcDyedJBYNko1FSAwNUT52KzeUi2deH0+8nl0qRDYdJhULUfOhDQ9s7336bposvJhOJkEsmKWluxmazkUsmERGcfj+Sz+v50Si+mmE4nE6MgW4IBtTB3aAoF3e6ldVuGaOs+mAfjDpXt+fz+vnl8/D8M3DVUv1cQ4MwrNZinUIK/F/+mwLtiioFfnbLY+DkYWg6R9te96zWWEe01FzlMM1xLymHV5+38u/rtTxbgSn3l+i9xeXSH8ZgvyVr/6w62I+eZOWgWpL3qpoiq2WzKav//h51vv/Cd1TGv/7vxVrvNrsGHUxTAwQjxn6QIVvzF8zPfoN0OobNZqf32LYPAOz4YBcOtxe7w4Pd7cPMphHJ43D5FORaTHY+l6H3yGaGjT4fh0sBfqEMnM3hOotxn43LVz4UZBFTS+4ZNmWkCpL8wrnJcB9ObyluTxkMDoDTpaBdTAy7pnhILovhcOnnZBiYbacwV/0eY/xk7Jdbdd7fefsDrLnkcxiGDbPjDMbwBkjGtZZ7Y4tK8THA6cRsO4VRU6fA3unUAMHOrdgvu1r/k1aZrJjLxSabnVqU/a5DJe0hFISvsB55tMTbMOu5HTiFMuWzUdbc4gXZDjRQZO+Xo+x5PeCxzrcB30bLyhUc6udb17oTzbNPAO5MDncgic1pY8MNG2ic1cjEz0zE4XUQPBlk2wPbmH/7fCrPqSSb0KBL38E+muc1D4H6sqYyyprLCJ8J4/Q58Q3TwF+8L467zE0mniGXyBFuDxNsDTLighFs+/k2Fj2wCFeJC8Om4D6fyRPtjg6VgfNUesjGs4T7wgxfOJy2SNsQg15g02+ddytb27eytX0rj330MfrifXgdXmr8NdgMG32xPqp8VdgNO1vbtzKldgp98T66Y93MbpyNiakMu5iWEi3JHa/fwfKLl+N1eLHb7Jhiksln6I310lLRQiKTIJQO0TrYSnNZM+eU1VGS7sY4tFyd3f0jdNJeYL7dw/Xe078VtnxamfbZv4VYq+awn/eIMu52H3iqQWxgmHqv3XsTTF1uMeJJCB6E6pkKmFNdyqoH90H1+Sq5r5ln3aMtSb1hs+4J7qIs3jsMykf/N+y3EyKni/LwDyyGSuALrvH5jPanMIakIzB4FLxVxTz4kgaLcJBirXgoAvqzJfmS10fohMrUZ/5AXeHfvknLt1WM1Xtn5Iy6wl+wUllxm0OvtWulbisECkADHjaHlqXLxPS+tusBmHW7vuemC3S7mOq+7yrT/ib6NCDRtQ28tVrb3Ver4L7nACQbFJDX1OhA7vEUpe4FkxqPR+cgs2cXFXA7dih5UF+v+XfBYHFuJKLR+kBA5Xlz52oFnQLDfuIEfPKTOsGIx4veQQcOwNGjcMklKheMRPRRVoaUlfHFb23kllvm4fc72bChlS9+cRqmKZrx1R8nkcjS3h6hubmMzs4o8+Y1A7pvypRfcdVV43nyyctwOu2kUjnyeZPu7tgH8tnD4TQul53rr18/JIt/4onLuPXWjTz00KXYbKpquvXWjTz06GK6ov1DIN1hsxOIh2gP91HpLeWPu1/mrsVf556Nv2HD0Xf4xzUPAh+UtN9+8TW4HU76YkESmRQ+p5thJZV0hQf4zY5/58vnX0mpx0eVr5x0LkNfNIjX5abU7SMvQiAe4pmda/j67KvpjQ0yZlgzD7/9F66ZdRUOw8GY6ioMSercXOJnqV/PsdQqBiS2nJXn/pR1twYwde6fPQPl/6YKXckq4ZbcrWy8JNV5/r9j3KshtR/8F/xTyOX/6cvBGYYx0jAM+V98XPCf3d9/ncWJzv4ykNwK1begtdzzmveS79M/Ya5Pwbx3pjLkkgFHrYJ733w45zjU/RLIQ+YMlH4K6h7XP7MktaSco0ajdNj0zzz4oK5t5Sq76b0enHWACX234DTSjKqsZH5LCyUuF/2JBNOGD6c3HieSTpPM5Sh1u7l57lw6IxES2Sx2w+COBQt47jOfYVpdHccDAa5du5bT4TDRTAaXzcbKxYupLy3lxOAg39uwgfZIhEg6zQ3W8w5Lft8VjXLt2rUMJJMYwK3z5vHCkiXkrUBaic+HNDUpO97UpIPKiBEaMU6nlX1vaNCIcnu76sW7uhQ4lJQool2zRhFvgZr2+xUQhcOacF5wdXM4FGH/6EfKym/bVnSUOzvHvhCpXrAAlyPP7NnCffepsuzBB4tj7M6demp9PUybBrt3K8h2Wiq7rVs11334cL3sN7+p4Ly0VJvfvl2Pj8U+qNgX0QD5zp1F07sbb/wg83799XpedbWS6JLNKWtumtDRo7J1UxRcFxh1w6Ygvr1HO2gzrLJwZ9GcNkPz2l0ObTiTLZYZE1QyX1ulQN0wVJ5fVqKBAMGKKFheA63tYLNh5nMEjxyhpLGR2T/9KTa7nWRfH7G2NhI9PaRCIWwOBzaXC3dFBalQiHw6jZnN4iotxV9fj2fYMAIHDmBmMrjLy7WOe1UVaQu0xzo6OPjkkyQHBmi57DJSAwPE2trwDhumwYN0msGjR7G73YhpYth1onjkD3/ANEUnZYP9Wv7tT49CbxeMPBciIZXJF8q9OV2aw26zJprZtFWr3YBPXaPHp5IKjmNRlbeXWFGbSz6lJnA2i8Hv6YC//UKDA26P5pwf2gMer8rQbTZl4cdOUSb/kk/pMWJq7v3oiVquLRJSZUA2q8EApwvGTIINz+t7GOiBv/5Cr1FtBazCIQXjqYS2MXoifPrr2rbHqwC+rlF/M6kkrP6NBhbGTtH2RXRbaBA+9nlsyQQuTxkOTwk1Y2ZTXj+emtEzEQy85bW4/FU4rPxDw2bDZneSCHYNgfZEsJN8Jkn1OedpLrthEOltHSoDh5i4fBU0TlmMy1dOJhEmPthJJhGi5/239T1Z95RsMv6Bc/1VjWSTMdKJoAZCclnMjjMQjSgDHxzEsDswz7QioUEF2nUNOL57J7ZLP44YNvB4sV/2CWyf+5qy5oYNYlHy617AKC3D8HgxyiowhjdidrWrMVIqCaZgax6JYbMhdgcSi0JpGbaLL9Muh4PkX34OCQ3iEKFJhJ8DfhFOovJ2P0VzOdGRBT9wIwrsBWXga1H2/BQK2EHLx/WgpeVqUWDuQ1n3GHC9dfxKlHG/A7gEBe2rUJm8HWX/jUyejbdsJHwmzOKVi2me38yGGzYQPhMm1h0bKgOXTWRJR9K4S900zmokHUnTubOTpjlNlDWXYbPbiHZFycaztG9rJ3wmzFs/eotod5SS4SXYXXZaFrYw+tLRbLlvC42zGkn0J1h77VqCp4Lk03nsTjsVIyo4s+kM8X6Vykc6I6z98loyfRlGVYzi6SufpsRVgsvuYn7zfB7e/jCXjLqEhy55CI/Dw/CS4SSyCZatW0Y0E6XKV8W29m2cDp9mfst8YtkY3bFuavw1LFu/jLyZJ5bRbfFsHFNM7vnIPXgcHhw2xxCgz5t5RlSMIJQK4Xa4KXWVMqtxFp3RTjx2p4L2zjWQ7Cyy6GKFUCQHqX6Vsi94To3pJK8GdBNu1mPtPmXpUwOQOA27v6PAevoKHfff/R6kAwrMM0GIn4IDP4JkF9Qu0B+Gr0lLzSXa9Jo7r4XIcUsKbihA9w7TNSiATQ7oWvL63LArMA+fGgp4kYkUGfp0pCizLzDerlKoO1+DASIK2gtMeD6tEvuCIZyr9KzrdlBk/XMK2o+ugl336zUL5dsKDH5pC3zkCQXkXdst9ZEbzrtJ2y6w7YbBkG9I5LT2x1+vJeB2/xzqZul7c/os7wG7vj+nXwMPhk2PTQ8qYN94LcS7tGb8qHN0PpFK6STA7dZJQXt7cT7icimJsGuXDvqBgILxhgY9d/hwJSTOO0+f19frOY2NWp/2y18uyvbmzoUvfUmv43BoPdrWVn2+YAF87nP6+tQpVRtOnAg33QSmyY03zmHlym0MH17C1Vefy/HjAb75zbWcOhXC53PR2Rll2rTh1NT4mT27kVgsQ09PjGHDfJw69V2eeuoKnE47DoeB2+3A4bDR3FzGihWL6OyMkM8LNpuBx+PgyScvZ+3az3HXXQvZubOT66+fRVtbmC1b2sjlTB54YDGmYfKbHf/O9S88wH2vP8NAPMS2MweYXDeaP+5+mQ1H3+FA1zG+NvtqLh0/l1K3j2p/BbdffA1PfvI2br3oSzjtDuKZFE+/8wJ2m43OSD/JbJoqXxnTG8cRSkVJZTP89NVfE4iHqfaX0x7qxWbYKHF5+NueV5jeOA6n3cH0xvG47A6+MvNjeJ1uBuK9qrLtXaag3Tkahj+huemS0zJxPdfq3LzhOQXciXcslcpJ6Fmm5Fr5Z9XELtcDhh/yAfDO1rl8ah84x4B3jp437CfgHAWpg0rcGW7+2Zd/CuCOjrV/+J88dlnHRYF3/zM6+C+52Fz6J3KN0fx21zggpzko+QGrBnuvvu69Xg0pfAsAu/4BJam1H8UyuOi5DpzDte2e6yB7Whn56CoF6r55qMmLW43uAiv1dbZDZTXZLq0Z750LwKlQkG+uXcvJYJD5zc10x2Lc/dZb9MRieJ1OErkcD77zDk1lZXgdDt7p6CAvwoKWFiLpNA9v38785ma8DofK30UocbmwGwZ98TjfnzsXr8OBx+HggpYWuqJR5re08G+TJvHw9u2sOnSI+7ZsoT+hMrMFLS2YIpS73djzeYyVK1X25bZuRE6n5qzfeKMi4mHDFCE/8YQe5/FY8m1DpV/PPacIeMcOHQRPndIk83hcj0unFaRHo5qA/otf6MA4bZoWUnc6FbgPDCi67urS58eO4YoE8LpN7rxTc8rvuqvIls+fr03v2aNdqa+Hd9/VSzqdOo4W4gkdHRpf6OvT7u3YoQx9aamC+nvuGcIdnDqlz+fMKfrq1dfD97+vYL22Vpl/r9eS6hsKhigvsRjUsMrZQUG006ES9tZ2bWxMSzGvMJMtqhcEKwpwljrpTDdk8wruj5+BdBbGtii7brfp85oKNaqDormd3a5BA9PEyJt4a2vp37OHfCaDAEf/+Ec8VVUkenrIp1L0792LmcmQCoVweL1DLPy+n/8cM5+npLGRyvHjh14jQioQoGryZAybjWR/v5rNDQyo8tPjoeZDH8Lh95NPpxERaqZNUxn33r1ETp8GYMq3v02ip4dcOouccy6EA0WAjSjLPWaSmsO53Ap+B3qUjU8lIBFXEB7XnG1q6xXkI8qEJ2K63eVV8H3Oucqk2+wKkD/1VZ1YnTikYP3OR5UVP3VEgwInjyh4HzVB89ErLbbc5dE+7tuuYD4Zt5zME7B+FZy3QA3qHA6tKT96goLsv/5C+1tapm243ArGPV7wWmkPLjf87ZfqqJ/PahuLP6Ht9HerwzwGfPabGqDwlWDabGSSYRKDHbi8pTROXYzLV4FhGNjsTiSfJT7YBZLHMGyICJ7SYZi5DNl0HG9FveUkX0ImHsYwbIxd+CVqRs/E7lA2UMycBdbDVh68l/4TO6kaOZ1sKmrViw/hq6yj5byPUTN6Jg6XHzHz+CrrcHsrMcw85ubXMfwlxdrqW15HohEMfyk4XQq0XR593w6HFUDJkt+wBqO+CaOiGkMESsqwzb1I0yRyOczOdrAZ2JpGYHa2QS6LIEhoEMmkIRrCfGsDRCMYLr3XGf5SjJGjkWiEnGGjwzC4GbAbBp0ocDaBfUALms8esbbdg+aip1EgPgoF6j6Urb8Ordc+GwigQYBeFPRvoVgHfrl1zjw0j70RdaJfggJ5QevAe112Fq9cTGlDKU6fc6hm+5blCq6nLJ1Cy8KWofrtwVNBOrZ34PQ5qZ9RT2IgoXnweZPm+c1suW/LEOCe+/25lDeVk0/nCZ4Kko1nKakr4YqnrmDK0ik4/U7m3jKXihEVYIP2d9rJJrIsO7yM+vPqWbdsHWVNZXxx2xfJV+UJp8PW2HeKezbdw6cmfIpfXvFLGkob8Dv99MR6yJt5OqOdzGqcRU+0h+0d21nQsoCRFSMREer8dcxqnEV/vJ+b596Mz+mjJ9pD62ArLruLMncZgWSA616+jtZgK1vattAabEUQYpkYB3sPkpc85e5yXHYXC1oWkBaQSXcU5er9W9VobvcyyMe1Jns+oeC89gLwtSg4rJ6tgF7y4PBDegAcJeoAP225ys4zg/r/HTYXDq9UMO+q1Pz2D63UYAAoo+4bqa7yDr+yyG2rINWrTD0WyC0fZRnPiTLe3mG6Nuz63EABdaEOe+ikAlosubvdkvEWQPIQ7W7J2hFty+nXl65Sfe0qswLFJpSN0GuVNn1wXJp9h8rgZ9+lbu6fWKuu8ol+fdgcCqAKee7ZGGy7W2vMA2RCGgAIn1SwHToOw2dqnzIRmPBF+Mjj2vd8Vt9foY572jo3dELPjZzWc3evVBDv9EPpKCvK5tBJwalTGtmfNq1IRNx4owLpvj6YMkXnHfffr/d3j8cKhGR00Hc6iymB3d3Klkej+tixoyjVO3ZMPX5aW4ts//XXKxNfUDa2t+vkw5rQmDY7TqeNlSsXY5qC02mjoaGUBx9cTG9vDLvdYN68Zvx+F5FIGpvNYGAgwc9+tolEImel1ufYtq2dEyeCZDJ58nmhvT3Crbe+RkNDKSJCLJbh5MkQy5ato7m5nHPOqWDhwhGMGlVJR0eEmho/y5atp709QiZpDoHyb8z5BH6Xl/e6W7Hb7Hzd2j68pBqv08XtF1+D3+WjJzLAfa8/Q21JFQL89NVf0x8LMrl+NL/d8SKjhzXTHwuy4s0/ML1hPNMaxtEbG+RL519BfzyI1+lmUt1o3utppTPUz/cv+hKLxs4GIJVN43V6qCmppNpXzqzmsRiB5WfVWs9D742QPQ7kNA22sM83X+fm2ZNAVrcN1XH/jqplHQXC2dDvPbAcOi9X8I8Jgw+AJHS/f6Gqbv8FROT/ElJ5wzDWAZcBvxaRa//fjv8vqfz/oSVvmVBISqXtjlrNQ7dXQeQvloNko5Xjfof+qTuvtIzqfgynz9MonXcORJ7VqJtvjrL1kgdbibrHB+47y8Xep1Kb5C6rLJxOwmNZ+Nrajaw6dIglkybx9JVXfkAGv6ClhXgmQ08sxvCSEkpcLmKZDLds3MjKxYut6l9CTyxGTyxGU1nZUO57Q2mpKvS6u2kuK6M9EmFeczOpXE5LwjU2YjcMvrN+PbfNn09zWRnxbJYSl2uobNyHGxrwZLMYBZfTH/5QwXU6XSw3k80WE8BNUwegGTMUHGYyOmjFYoqm43H42c90YPrMZ/T8Qi67w6ER5nvuKZq0pFLaNmg0vCDZnzlTo+Bz5pDwVJHLQzxuDAFpm00vecst8N3vapd37dISbj09OrbOnq2XvP56Pa6jQ7ft2KGXeewx9ZdxuYpdOXCg2NXt2xWw33efprgVlocfhl/+siivHzUyj5HXB1aO7JD8PW/J45uGaw66161sfDqjTLlx1jHNdbq9sL/EW8yF97hh9yGVyI+2JoCZrD7KLfmfoOy8zcpvz+fBbiObStO3by+eqioO//73TLr2WtyVlQQPH6Z66lQCBw58cF9FBXtWrGDCV7869J4P/+53+tow8FZXk0skPmA6hwh7HniASd/4BiXNzcTa2zn0618z6RvfwN/URC6RIBuL4Swpwe52Y1ruvXaXi0xwEL9NMKpqVAYf7Fd5uQFgaK57Ib/d5VKQ3TRKme4Nq2HJtRCPFvPQnS4Fx6iUm3hM88ENGzz7S2XLo+EPlpGzW/mdCLQegYYWBdOGzfpM7QrMTx1REP+3X2oOfLBfFQDppDLjHq9K8zFU7l6Q5tvssOrpoqlcIlbMvQ/06cSwtFyvEQzA8fc0CNE8WvPjvT4NXqSTlvO89blYefB5u414sGuo/FvNmFk4fRVkLZDtq6gDw6D70JsMGz0Th0vfWzYZJZeO4/SWqAx+9CzsLi89h98eksTnUvGiQ31FHflsGrvLQz6TwuHWds7OZW+YfLG+f5tBNhEZcrL3uMuQTApUxI44HPrduNzI0fcxRo0ZynsnmxnKZzcqh5F/aRVG80iMqTMgHCzmuldUYYgg+bxlCujUNp0upK8bW/NIzPbT2JpHaiWEfA5xODBsdiSbQXp7sDU0Iw47abudY3YHyw2DR4A+lAlfAXhRp3cbHzSSO47mo9+BAvGpKJjfAnwauArNY1+GmtG9AMzVT4ftwHSUUbdThFSOs65VYPhPAiWZHL4jATbfu5lLHrqExECCbSu3sXjlYpw+J4bNIHQ6xOZ7NjP3+ypfLxleog7xgQSeCg+pYIpsMkvFiApCp0M4fU6yiSyRDi33tmX5FhY/uJhkIEmkI0Lj7EYwIdqjhnUfOGYgyZb7tjDv1nm0b22nc2cni36ziFQuRdbM4rK7uHHDjdw09yZGV44GYFv7NhpLG2mPtFNXUseYqjF0x7ppHWxl2vBpGIZBb6xX5fFNs/HavbQGW7l3y73ctfAu6krqcNgcZPNZ8pInnokTTAWp9FRS468hkU1gN+wIQjafxW6z43f66Yv3EU1HGVk5kgqHS8vApfrAU6PS8nibAmd3jUrhK89Dg/FRNYsL7lNpfMl4lc2nuhXMGw4IvKPg/NB9MOFWDQgU2k/2aB57NgKeWutLtqT0gR0K5v3nQP8mqFmgYNnm0nYL5nSFPPazXeBdpQwB8AJb7SqxSrtlLDCfs3JwRYGviDLoZSOKiiWEIV6t4IRfKAVnd1vpONYgUOhPoR+g+edD6qdCymIKcnHYsRxm3Kzu8eWj4cyrMPFLetzAAQXb6SD8caqWi1v0K0uKLx9MyYt1wI57VDof74aaaQrOO7fAS58ulpqTnPY12QfuBlW5hcPKnB88qAa8fX1FdZ/LVRz8bTbYskVZdZtNB/2CS21Xl76+806V2O3bp/Mbp1PnP4W+BoOqJly1CpYu1UlCZye8/rqmHc6ZU3xvDgd0dCBlZSTdJbz5Tjfz57dgtxsfMJ8bNaoSu91GJpMnk8mzb18PM2c2EAymePXVVubMaWLFim3ceus8amv9fP/7G3niicsYHExy8mSQKVNqsdtt+P0uwuEkBw70UVvrp6LCQ1WVl1QqR1mZm3Q6x7JlH5TQ+8tspPNZYpkEHocanbodLjL5rJZ2szlI5zN0RwZoLK8dks1fMWEBN3/4C/REApR6fJR7SjCslI6D3cdpD/UyZ8QUakuqSOcyvNfTyrm1IwGIpxNU+soBcNrtxNJJHtn0V74w43KGl1XjdbjpCPUSiPczp96p4L3gawVghiFzCjxT1IPKVq6K2lyrMuqZVlXN2sohcwI8k/UO23cX1N6r/ynDY5nd3QvVdynLLin93yKamvtPVBbun14q/z9bDMNoBC61Xv72P7Mv/7KLmVGHeTNqSV+cGm1zjlDQndwOZZ8D3wXqDDn8l2Afrux76VL9k9rKFLQ7m6D323q+Z6pG3nLteh3Jq9FF7QpwNFtGeO0aJPCer3/8nmWQPYNLBnnk0sUcXraMRy69FBHhdksGP92Swb/b3U1TWRmxTIbjgQAAv7jiCvb19LDu2DFKXC5WbNtGjd/P8i1bWHXoECu2bSOUShFOpajx+2mPRKjx+7nu5ZcxRagrKWHZunW0hcM8eMklQ7nzPbEY165dS288zpTaWrZ3dFiS6w6llJubFcEGgwpCRRRYp9M6sLW3K6jesUOBoc+n0exbbtF2qqo0GfxTn9KotMejCelOp7Z3zz06eG7bpueXlmrkOx5XqX5Bsu92Q1MTmcEYJ1rh2982cLuV4e7r0y6WlOh4Wlmphy9cqEHv7m4F5suWFYUDHg9ceKGOyRdeqED/ySd1+86delxZmXbVSvdmzhwdd9es0YyAESN0PWuWvuVQyDLAB4xMVuunZ62Tk2kF6na7Au1MFirL1IwunVFm/PgZPQ50e3uPMvMuRxGMFwzs3E6YMxXGjbAYdZuC+ULZuXBMvyubvQhA7Xaw27F53NTMmIHD76fmQx/i8O9+h8PrpWbGDOzu/35fNh6n7ZVXOPrHP1I6YgQOn48JX/0qTp+PspEjKTh859NpsskkNrsdh9/PhK9+FbvXq7Xee3vpfPNNDv361xiGQbK/n0NPPQWAzaHA0+ZUsOwbNgzj5b9Cb6eC78ZzivXN00kF7Y3nKGMeDSsD7y+BN1/SUmippJ5XVqnHmqZVntDKYXd7tHZ6LgOf+Ip+RiGL2Xe6ihPPVAKefQqaRiqoLmzP57Uf2YwCaVAA7nDCuKn6owoHVfIeDkJNQ1Ep4PYUJSCf/pq2WWDzTx1R8F1Vo6//9Ji+Z7dHc+fHTlFgbjHRpCxVhZVLTtsJ7ddAD8axg/gq6xg4+S7h7qP0n9iJIYLN5sBXUUci1EM2FcVbWU82GcVmd2Kz28ln4vgq6sgmY0T7T5NNxbDZHQwbdT42mx0znyOfSw0x7D2HN2F3eTEMGzaHk6733iAdC+KrrOfci6+lYcpiq3+a2jHQuotw91EGWnfpZ5nJYhTuBbks5pY39bcwaSr4NMXGKCnFKK/EGDEGienv2n7lZzCmna9VDKIRjJZzlKHPZjE72jAMY8h8QoIBDLcbW/M5iGHTtQhEwpi93RjYEDOP4XRhDK8nv+FFCAbIYRQZdxS0z9V3QgrNRw+jwHwAld/1o/noHmvtQkF7C+oY/wQK8B9Bwfd0VGIfA+ag7LvDGr6SwLUoo59EgwLLrNcNQG0mz9YVW2m5oAWb00bFyAqu+NUVxPvjrFu2jkwsg2+Yj+b5zSQHk/iG+cilcrRvU3a8c0cn2XiWSHuEbCKLv9ZPSV0JDo+DprlNODwO5t06D6fXSWl9KY2zGunc0UmsN4bT66RxViORjghH1xwlG8uy7efbaJ7fjMvvYtJnJ7F45WIMMXDanUQzUXZ27uT+i+/Hbti5du21nBg8wZTaKbRH2hnmG8bD2x/GZtioL6ln4YiFxLNxopkovfFepg2fhmmaZMwMfqefi0ZcRHNZMw6bg+0d2+mMdOJxeKj2VdMX7yOZTWKKSTgdJi95SpwleBwe9nTv4cTgCXwuH6XuUlyGocDbTCuzXmDcD69UwO2qgpqFyoSn+uHg3Spxr5gMhx/Um72zVI3nAjtU6l4+UUF75xpI9Sj77iyDY4+pqZ2zBLx1KvHu36nXD+yCymkaODAMBfC7l1nu6y4F0NF2XRdyzm0uNV9z+hkq05aJ6jFlI9TJ3u7S44Ui456JFgFjWYtuC51UgJ+J6TUlr0HKWIdK4/MZfYRadb+BxZC36vqtG6x5UFzbCB3XbckB8A1X0N66Rp3nGxdAaaOy6Ilelb3Xz1EH+FwSrnoBLnpc34dpqkN+5zZ9fzaHusnPuEXfd/0cde+P96ih3VUvaM585JQ61kfPKBNfIBlA3/e8eUXDm+XLdd6Sz6s8ftkyrQU7d64axw0fDhdcoFF9p5OhPL0VK5SpnzVLJw3JpLZ3/fU66aitVbf5w4dVnRizCKTPf17rzMZiysQvWzY0NzL27GGwP8qsWY20tg6SyeRpbw9z881zKS11k0zmOHYswPe+9woej4Pzz29gx45Okskcn/nMRFas2MaqVYd4+OHtlJa6ePLJywFoaChlzpymIZY+Hs9QUeGlqamMgYEEyWSW7ds7cLt1LHE67TzyyKUsXTqFu+5aiMfjII/wXk8rkVScZDaFx+nmZxt/w0d+eR37u47REerlYPcJ6kqrcdjs3HLRl3jxqw9x56Kv4bQ7aamsw+v08MAbf6A7MsDB7uNMqR/LpePn0hnuI55JkjdNxtW04HGoKXOJRyvaBBNhYmkd7ybXj+b3u17CbXeSM/P8Zsc/+N6Lj5KkSYm2xDua+mrzqemcd65K3gfuhnw/kAPnON3nbFFPKkejzvH7blXn+KrrId8NfTdA7pTmyQ9/UkF79qR6XZkx9b7C1GsE7kX1Vv+8yz89424Yxp2oeu6QiEz+Xznnvxj3/8DlA7Xcb1NWXdKWmVwzOOpU8p4LDBnHgegft/pWqxREIfosHywjN+xOODWxyMg7mqwScSuh9oEi2549A4M/t/JptoBzFBnPhzk6qDnn81tayOXznAmHGV1VRTafZzCZJJRK8fN33uH2BQvojEQYVVlJQ2kpp0NFU7uzl309PZzf0IDTZiOZyxHLZKjx+9na1sanV69m3ze/yYnBQWr8fvrjcWY3NuKw2RDgupdfHqrpPqepCV82i1cETp/WwWf6dB3oCm6rvb1q3x4MavS6vFwHqHxewbzfr0j6zTfh058ugqZ4XOnr6dZnXdCsp1JFw5cHH9QodnNz8ZwXXoB33lFUvWULsVkf4WvXe5k/XwF3V5eq3QoGcoVyqpmMjrEF47itW7U7zz1XrL/e1KRj8cqVRZHAbbdpvKKhQc9NJLTbDQ3FUnMdHdrFESPUCM/rVeBeMJ8t8eYxwtGiuU2ZX+XtBXO5vPlBZ3j4oMnciAY1oyscc5YbPA67vnbYi9vcLmWB82aR4TcMncwJRff6fB6cDvLZLJGOjiF3eJvbDfk8A/v3Uz1tmrrDHziAp7aWksZGDCAVCuGtrlaDulCIfCpForeX2hkzyKfTZCIRXGVlQzXdbU4nqcFB8pkMdrcbT0UF2O1D5cikAIANg1hnJ4d/+1smffObeIcNw+F2YR/swwgNKNOOqLP687+DRZ9Q13aHUz/sgsO8mVcwe/KI5ofbDAXN/jL9HBIxBffxmLZVWq5tFJzco2HY8Bx87lv6Iyo4thuokzyG5qA//zsF+KXl1m80qqA+Gv4gw//nx+HdLVqubuxkPb+Qg+9wKkteMKjz+rV/yTi89g8F9C63Muvd7TBmgp6bTkHHKWX4C7+LSKgo4zTNYvm48iryjSMwcxnyuQx2h8sylAt/gCm3OV3k0nGyyRj+qgaNS2QS2BwuZUWsoICBkAh24ymrwWZ3IBgkg514y+sQMek5vInqc2aQCHbi8lXg9JYqs362c/3oWTi9KtO02ewYJpqGEA1jbntLGXNrcl14LdEIxvAGDJdLv2sEs/0MRu1wDLcH8nk11AsHMbe9je2yqzFME0klMTw+ZfFTSXWML7QZCWOUVUBpKQYGZmcbRlm5bi8pRTraMEaPI11ZxTHDxnLD4A40J92HurqHUJbdg8rfHwBuBcahALvU2r8LmIIy9BnUdf4WNEd+LyqNz6DAv8Dm26x27WiAwA10Az8CLgCuRnPv6jM5bIEkYgqxnhjbVmxj4Z0Lh4zkmuc3s23FNubdOo/q8dVkohnS4TTOEicOtwO70068P46n0qPP++L/Hdu+4PYFOP3Kwm9buY2L778Yp9eJYTeI9xYN7HzVPmwOG7lUjs6dnZS3lFNxTgXhgTD+ej+RTARTTHxOH9vat/GFf/8Cf/3kX5nfMh8RoT/ej9/lpz/eT2e0kzlNc3DYHOTMnNZhzyjoiWai1PnrENRVemfnThpLGylxleB3+Qmnw5Q4S3A73BgY7OraxbS6aXgdXrZ3bB8qA2c37PicPrxGHvvuZercXsjpHtgOmz+pRnSznob4GQXJB+9WCfvIpTDjCWV07d4iW+4ZbpVuq7HUTin93+67xWLeWyyGOq3ScE+1kgmS0287F4F9t+mxiXaIn4amq5X1D5+yzOlqVDIPCpQjZxSkF9ziCznqrrJiHfeykWftb9SAQYEtL6xTAQX0JQ0Q69ZzCrXezYyC/rON7CpGK4hPDkDlWIj3QmkzQ2Z1b90Eh/9SdJGPtH3QDR5UObDpFjj/FgXv7gpl7v11DJWnA92Xzyqw99frw2bXf0o6aMnlg9r/irF6b8zEimy/uxzyHpWtr1ihcrlx4/Se2dqqA3rB7fbWW1Vad+mlOqHI5RSUT52qkwSbrVgXtqFB77eFlMCmJrjhBo3sP/ec5rEnEjppWL5c79PZrLL6drvOr374Q83xsxzp5Y47yI0aQ9pwkEzmcLnsZLN5QqEU1dU+HA4bvb0xXC47TqedW27ZyHe/O5v+/jgLFrSQSGQxDCgpcZHPq4O81+sknc4TDCaprPQQDKaIRtOMGVPNN77xEitXLiKdzlNR4SEUSpFIZFm+fAt33rmQujo/JSUuTpwI0tjsw3TmiKUTlLh9+JweOiyH+Dsu/ioHe04MGdV9fc7VVHrLhtzh+2KDDPNV0FiuJd1ODLQztqaFcDLGH3a9xG0f+QqmmLzX00qNr5KWqjrSuQzv955kXM0IvU+Lid1mI5KKkzNNhvnLsdvspLIZWgNtzGoei80MF6dVfbdA9Y0K0nu+/kGXeWzWI2/daXMqk/fOhdJPqoo2sQW6Pw/1fwbfXA0IeOcogVf7oI7pZlQN6QyHema5x1tM/P+9y7+0q7xhGMeBMcBNIvLw/8o5/wXc/wMXMwbdX9M/a+NajawVSj0UJGWJbSqhyfcpY+6dpeXicgPKqmOAzQKsiS2a516Q4KT2nFVWLgV939P8dt8Cq63ZkA/C6anqYDn8MRCTSL6Sre3tzG5sJC/Czs5OWsrLGebzccOGDdyxcCEd4TBX/u1vLJk0iScuu4ycaWI3DN7t7mZ2UxM7OjpoKC1l+ZYtPHLppXgdDvIi2A0Dp81Gayg0VBoOtKTcqWCQe7ds4c4FCxhVWUlnNEqJy8VgIoHX6aTW7yeezVJrmth7elTe/thjRRf5+notfwIqMyvUXbfZis7xwaCi33POsSTJcR0Ib7lFa64VFisnGqdTnzscGnF+8UVYtEjlZ6DtlpZazEAZJJNkdu3nSN2FuH0OTpzQbhTAdUHGfued2oVC0DtVmD/tU3HAsmXF+usXXABXX63jqN9vKY5zevkbb9Tg+fDhWjVm1qyiCWwqZeFgZ9FcPxrVQEJdbZ6GyjRGOqPsuM1QFvxs2XuBQc/kFIQbBpzs0LrvBTniyQ4Y2aDHiSjbXpDTCx9cJ9NW3fgmBepD+y1m5ayycVmEvnd3F+Xw3/gGid5evDU1eIYNY88DDzDhK1/BaZnOZWMxvLW1Wo/dAuiFWu5imh/YZis4AebzQ0708e5uEt3dVE6YQGpwkCPPPMP0m27CWVJCYRzIxWLkslkcXi92pxOH24XNMCCb1vzlgnQ9m1FgHOgtusKXV+pn5CvRLyWbVlDrcqnBXWjggxLzdEoB44bn4JPXqJz9xCGVqI+ZpNs/9VW9jtOlP4iTh5XBP3kYhtVpjnpBLu9waHsYxQCBYVPzOJ+VV+/2FMu8Xf5vapDXcVL7lUpqIGCobrI1sS242xdc9JtH6zUiQc2nHzOJITd6MfU922zahpkn7/GQiYcYOLmbunMvwOZwkksnyOdS5NJJfJX1GDY7Zi6LiEkqMoDT6x+SyDu9ZZj5rN5O81kcLk1nSYa68FY0gAXmHW4/iVAXbl85vsoGMAziga4hqXztuLmc2Pxnxi78Eg63l3wuS++RzTROuAhiUcxNr2E0NmOMHo9RWobZfgZbTa0GL2w2JJPG3PgytjkXaB13C1CImEO/M0SQrMXeA5LLYr7+CraLL9P89Uwa8/ABpKsT20WXqjkdYL6+vvjaNIfk9JLNEhfh62XlrELzy3+DMuOFZR8wE5XKT0Vl8E+jDHsj8HPgMTT/fZd1TA54Dzgflb+7dAQhAGxAGf1uNL89iQYDbkFrvZ8ERqNAfyfK4o+NpIh1xxg8MYi/xk8ikKB5fjNmVl3jV396NRM+NYErfnUFuWSOVCilzvEG5DNqKmdz2cin8mBA164u6s+rJxVKkQ6ncVe48df4yaVzRDoiAMS6Y5Q1lrHlvi1c8tAlKqPvjFA3XccHp8+pBnU1flLpFElvkhJXCel8mh0dO2gua8br9OJ3+emOdvPw9odZuXglPqePdD6NgUEoFaLCU4HT5lQALzlEtDKAYSl8btxwI9+a+S364/1cMOICjgWOsWLbCh665CFsho1IOkKtvxaHzUEsE8Ntd5POpwmnw5S7y/E6vPjsdpy5GIbdC4YoQJS8SuF9jeAfqSz8sFkK3nNxdZzPJxVou4frj8EQBcfJbq3/XjldAbHdCbFTcOxxmPG4stWYgE2N6vIJdaefeLsC/mSPsvveegXektW8eFMsh/cyhqTuBZm63aOgdfA4VI0Fd5n2yTTVMM9d8cH67aXNCsRNC2QXyr4VQHrBwO5sh/qzS8IVlFy5VNHZ3rAVneVn3aHX2Xyb5SJvyefzaUgFFZDv/jlcsELfRz6jIH7ncph9pxrZhU8qG98wX99v5zYNWnjKdZ1L6jm+Gi3jZ/dYfTZ0+5Y7YMG9eu3u7VA1TxWCtbUqyStE+fv7de4SChWJiJoa6/57UiX0t9+u5914o4LwESOUWS+4w0+aVKx8c/JkkRUolMotLGeX0L3jDp0THTumE4+77x6q45791dMMpGzccMMG7rxzAXV1pdhsEAqlqKnR8mzZbJ5kMsc//nGETZvaePzxy/B6HcRiGcLhNOXlbvbt62H4cD+jRlVaID5PMpll2DAfhmFgGHD6dIiWlnISiSzhcJr6+hKWLVvHX/5ykCVLJvHUU1ciInznO+t54leX0hXr5fe7XuIrMz/GyKp6sAB13jRx2u30xYLsOHOQxvJaJtePYePR7cwZMZkKXzl2w0bOzFs13aupL6vmZxt/w/TGccxomsgfdr3E9y74HB6Hm0w+y8Nv/4XvXfA5gskov9vxIl+Z+TFGVNaTs6qWFI75ysyPUVc2jBKnYJOUzrvtFap6zfVa5d1i0HcbVN+k7LrhOyu99Q59bfOqB9bZKa9mDCSpbXlng+FWAtBwa/58oWS0c5x6VfxfDtrhX1gqbxjGhShozwB/+k/uzr/o4tJSEKVLrD+c1zKgQ6NkPcs0r91WrmDcM03NLAyHyuHzvQrGs8fUoM4726oHX6IP72xl33NtQF7//P5LINurbUkWHMNh5EGo/qHK5W16wyyYwYVSKWY1NjK8pAS/y8WKRYvostzfl0yaxA8XLsTndOK22/E4ncxrbsYAZjY0sHzLFtYcPUqJy0XONBlMJslZbNWKrVuZ1dhIdzTKnu5u0vk8XqeTNUeP0h6JcDIU4kdvqRneyMpK/C4XxwcHuWHDBoIiSFmZRqbb2xXl1tQUDVh8PkWw0ahGlyMRlcOLKHIeM0YHz0BAqegnn9QByjQVAEUiCuiz2SKAL2y76ipF4dddpy7zJ07odQs1UT0eXHNnMGacjcZGoalJD+3t1Vx1j6dYSjWV0mB6IqHjcUGh73bDI49o9+64Q9PuCznyuVyxnGsupyq30lIdnx9/HL74RT02FtO31tcH3/62jr3RqG4rKYGqShRclPqVFc+bRUO6dEYZeFMUtJsmnGjT7aOb9AJ5S9Y3sl4l9bGEgvsC2C/sz5sqxQfNlW8arkECQYFcwV0disECpwObw07NjBk4S0qY8NWvYnO7qRg/niN/+APZWIzON98kNTiIx/peDbsdM5Mh8N57OHw+zQ12OEj09Q2B9sCBAyT7+zGzWeLt7ez8yU+ItbUhItjd7qG670eeeYbqKVMAiJw+zc677yZmpWe4y8tJBwK8u3w5kstBXxfGySMKeP/0qJZFK6RrVNVonfPKas31dnuUse7rgmd/pXnlNrvmrTeeo22s+ZOuyys1F/0TX9HP+6+/UJO5GQsVtBdk7ycPQ3+XguaySjXKm7EAmkcpm5+MW2y/6OtTR5SV/8uTGjBwe3Sbv8Tqo1fz74fV6fNzJihj3t91FguVhb8+qe+j8RwNHESCmsNvd6h8PzKo5xZ8C3o74Y+P6nuCYu69CP2tO/FW1JFNx+k8uBHTzOHylivjnkmRSYTofv9NcukEnrJhDLTuxlfZgGHlzRdKumkOvDEE1MXM0fXe6zjcXnLpBBWNE3B4SokPdiH5PL6qBsZf9DUaJi/C6S7h3EXX4XD7dM7vcFF9zgx9z243tkWXYzSPxHxrAxIaVLn6xrVIMICkNepmNDYjsYhK3wMDmO2nMAybBocSyswpA59DbDYMpwvbZR9Xpt7MY/Z0YbSco9scDsyeTpXcL75CQezGtZBMYNQ1YrafxnA6cfl83CnCEuAu9G/VDexBwfZs1GAuATwH/BAd8OejkvflqHDyBpR170eBeDMqr/db7WSBauALqFldDWpk103RrC6JsvlnUGn9NKsdw27gH+6n/kP1uMvdNM1tshTFNprnNXPdweu4+P6LCbWG6NzZSTahzvEISE5Y/531BE8GEVOw2fUcm9OGq8TFzid34vK7yCaymFmT0vpSYt0x/DV+tty3haNrjmJz2rC77DTObiTeF2fjLRtVol/tw7Ab2MvteBwe0rk0wWSQWY2z8Dq15JvDcOB3+blxzo10R7u5du21dEe7CaVCxLNxrl9/PclcktZQK1vbtpLKpYhn4/TEegB45KOP0FzWzMKWhYgIT+x8glvn3UqJS2Xx92+5n7ZwG5F0hDtevwOn3YnP6aO+pB5TTGw2GzbJYzhKrBz0Ab0f2D3q9l46Wu81ldMVcGcjkA3rf8zhgehJBfAFUGo4FXwPmw2YlsdNH/hHadk4MZVpT/ZYMviEmtl9aKXmtTtKwNugQN/MKoC3uSxw7tZHJqJAN2oRPHZvsUxb7RQF17mUsuFmRll9m/MsM7vGIjAHyzTOVDYd0WNtdooO9ZaE3lWmfQqf0gBFPqPHljYXGfxdKxRoO9waPPjIEyphf+2bKsXv3qFBhFgnLFiufc+lNHUg3qVO9Dvu1bZc5dC4kCHVY8McDUp4KjUA4fCAv1bfe99evZdEzsDry/ScC1Zo+2ZW68g77OoEP2KEzmeiUU3Pq6jAcnNT6V0ioQq/ZFLnLU8/rXl0paVKQPj9uq+8XOdCc+fqROCWW3Ri0NCgOXorVxbl9CNGaB79tGk6AZk/X/ebpkrxGxspuO3KnXeSxYbNZrBq1SE6O6Pk8yYOh42aGj+mKRw/HuBb31rHwECCpUunDsnhAbq6otx991t0dUWZPLmW7u4YbW1htm/vwO93Ul3tpacnRjSaJp83h+q2d3freadOhVi5cjFLlkzirrsW8s477TgcNp745UdxOm14nW6mN47jz++uI2fmSWZTtAV7ONB9nPZQH7/YupqLxsxkfO1IgokIHx5zPh6nh/te+x3xTJJMLsu4mhH0xwcR4Ouzr2buiKn8dsc/mFw/msF4hAPdx3HY7HxhxuUkMyl+t+NFNhx9h9/vegkD6Az3ce9rv2UgFuILMy7HaXfgcRgY2ZOqqJW4mk4bdp2L91yrgHz4g2CvQzVMphJsvo9omqyjDowSCPzcMrFbAWbIqhrVruvkDlXW9t6ggN4xArwXQOBh/c39E4D2/7fln5pxNwzjD8CXgOdE5DP/k+NuQqvKAFBeXt4YCoX+z3fwX2UxM8qGY1fwjWlJW8qBvErZbH41sLCVQvQfkNykTvQ910Jsjea3++aDmdRyEL45el7fLVD1Xc2P8S1gqEY8Ysnmz4raGW5LEpcmkffRGoricTio9HgIplKUuFx0RaOs2LaNOxcs4JzKSq21nc/TE41y75YtQ7L5prIyRldWksrlCKZSpHI52sJhGsvKuG/LFu5cuJAR5eUAJLNZcqbJD998k+UXX4zLbsdtt5MzTSKZDIf7+5nX3Ewmn2d7RwefXr2aT02YwO8/+lHs2SzGli1Fc7iC+UrSyqstaMt7ezUq/cgjxdpphfrsBRM6j0eBuc9nsYFmkSafObPoXg+Wm7ooi2maKlubM0cR+iOPkCmp4uhpF8OHKyBNJvWUZFLz0mfN+qAizTT1udOp42skovEFu91SsZfpMQWZ/MqV2o1IRIPyhWvccos+fD4d671e7dJf/qJmsI89Vixh/8xv8ziyZzHuBnCiXc3mCrXVCzL3dAbeO6ES+XEjLIMgC2wX5NAFY7tMTtl0m02Ndkp8xbrtoxotUItuc9q1AQMF/06nXiudIe/3ko5G1O3d6yUVDOLweHC43QgwsH8/vpoajv7pT3zottvUUT6bxWa3I4ZBOhDAYdVtzyeTJHp6hsC4zelkYN8+Yh0dDJ89G19dHbGODg499dSQCZ5ht2N3Oslns7S/+ioD+/Yx6ZvfxFNVxcD+/VRNOBeP14ORiCnINs0iS57NwmCvStJtZ7HaNptO3nJZBdNdZ5QVH+xTV/lnf6WO7wXpumnJ1MurdOJqs1ustal11F9ZrWy83a7guOuMStRtNgXsBdl+1TAF19EQOFwK+AuslNutwRVgqDyTCAz0wiur4Ip/Uzbd6Soa6132WTWiO3FIZfuR0Acl+KmEus8HejXI8Omvabu7N6t5XcUwWPcs5me/Sd7tIpdNYtgc9B3bRqS3lbELvzRkJGd3ucln0rS+8yyj5/6bAmuwWPpd1IyZjdNXjmQz5PMZbHZls1ORAbwVtWSTEWXuqxr1Lea1Vnih9rvN5rRM7GJ4y2vI54ptGIaBAwcSj2KUlCHRMHLyOFRWY2tsRkKDyrh7vKqUAAyfH0kmkMEBrdMejyGxCLamEWC3F5n5eRcW5fA+H+arL2Gbf5G253Lrb8lXAhHL1G7eh5H200j7aWwfvRpsdgybAdksyZJS4sBOw2AesA0F1g+iBnRvA1uBX6G56Wcz8regIHsrWtLtbrSk2zqKJnRO67wu1KHeD3zDOm4p8JB1jFNHLNJoDXgH6nD/m2QWV84kcDxArDs2ZB5n99gxsyb5TB5XqYtoRxRniZO+g334qn288+A7QyZyYy4fg8vvIh1J46/1D/U/eDpISW0JmVgGf63mmmJA+7Z2ShtKVVLfXEakXU3rUsEUJ18/yfiPjcewG7hKXGScGU4GT7J8y3JuX3A73dFuptdNx+/0E8/GuWXjLdwy7xa6ol0cHzzOJaMvob6knm3t26j2VTOyfCQ3vXoT3539XUaWj6Qz0kmJu2QI+CeyCZx2J3kzj8Pm4HT4NPdtuY/bF9xO3syzYtsKfnzhj0lkEzhsDlZuW8mKxSvwO/04DAc2yeJJtmEk2pVhP3QfTLoTSkYV2XFBGepc3JKy36KA21NjpepEitsTHZob7xupprh2jzJxBSZbTC0Nlx0EZ6UC/mQ7DJsDYlgu8nnY9wOYvtIC7H7Lh6PVkrJ3ad66q8xivC15vLusCOpdJQqSDUdR8l5QaBUY/0JOvN2l4Dsbt5zkrfGmIIX3DlNpfDqiCoJ8trh2l1ljelZl7vEuBfCz71QJ/8ZrFZCPXwIzbtJAgrPwGxPYcifMv0f7m+hT2bvDw1AN+UJfe3ZB7fRiCbhErwJ+p4+hevddWzVA0DBXTevqZuuxb34HFv4CcnmNyIdCWhknmSwqAjs64Mor1UTusccYMoxLpfT4ZFIH95Uri7XeC7Xd9+xRlmDBgv/eBffWW1X+F4vpBKSjoziXKpjZFRSHVh13s6ycqOmgvz8+BNZPnw7S0xNnzpwmDAP+8peDjBpVSVNTGR0dEebMacLhsLFlSxuf/OQqPvWpCTzxxGWAQSaTxzBg585OmpvL8Pmc1NT4MQzo64tTUeElGEwydarWf3/66SvJ5cwhY7xRoypxeITOcD8ep5NKbxl2w8bBnhOMrx1JKBGh0ldOMBlh2+n9XDp+Lr3RwSFmfnhpFX2xII3ltWoiaZr4XB46Qr1U+cqx22yYIjjtDiKpGLFUkkAyzOS60bjtTjrD/Tyzaw03XrgUj8PFvq5j3LzmIR686iZqS6r4w66X+OmlX8SR3KIq2OTOYq32YT8uprXWPa2/uWy7EmmOWv1t5boVB9jKrP97Rv83Q3ddA3q+B7U/U8Buxq3/fZcSeDi06sQ/CXD/nzHuQ3mO/2wPdPyNo7fIy/53zm1sbJT/Wv4Dl3xaJBcSyQZFsr0iyd0iHUtFMh26PRe19vfqtmyPSPKgSC4ikhvU8zKdek5yr3xn2TUyoskngOx96wcikbUiuaCsX7taZkytkimTx8jsWefLvlcvETmMSMcS6W3bLJcuXiBjxoySSRPHyrqNG2Tt0aOyt7tblqxeLfu6uyWUTEpvNCqng0E5MTAgXZGIHO7vl85IRNYdOyb8+MeyZPVq2d7eLmuPHpX9PT2y9PnnpSsSka5IRNpDIVl37JgsueYaqW1sFECe3bhRlqxeLbs7O+WxP/9ZJkydKiPHjZMPnX++/PXVV2XJ6tWyv6dHfvCjH0lpfb0YhiF3PfmkdEUikguHRUIhkb17RZYsEdm/XyQW023hsMjx4yJ9fSLBoMi6dSIg0tsrsm+fHr97t8jgoMiePSJr1+r5a9fKd77+dRnR3Kyf39tvi3R2irzyiqx/4QWZMX26TJk4UWZPmyb7Nm3Sc5Yska9cdZWMHTlSpoLMmzlT3nrjHVm7Vk/t6BA5ckS7EQiItLdrd/r7tTuDgyJdXbqtr09fr1sn8v77+lY6OrSrS5Zo1z/72e9IS8sIAeTFF/cWui3PPrtepk6dIRMnTpEZM2bLE0/sk/37tQ8jR35FxoyZIpMnT5PKyvPl299+TRLRnMhAUCQc03U6IxKxnqfSIvGESCYjks3qI57U7dmsSCZr7bf2pdLFNjJZ+c6yZTJihPZx785dui+TkfUvrZUZHzpPpkyaJLOnTpd9O3dpG6m0yOGTIqm0vP7qq2Kz2eTnDzwggSNHpHPTJkmHw5KJxSTe1ycdmzZJcnBQMvG4dG7aJMlAQOK9vbL11ltl8PBhSQYCMnj4sGy+6SYZeO89ycRi0vHWWzJw4IB0vPWWDB45Itd88pPSYn3H77z+uqSjUUkODsq//+Uvct6HPiSTJ02SWTNnypaXX5Z4b6+kQiG5YMECGdHSIlOnTJHJ554r9991l0gkKBIcEDl1TOTXD+jzeEwkmRBJxEVCAZFYpPg8GNDn8VjxdTIhkoyLJGLWvqh857pvyojqSv38Xtsg0tYqsn+7rP/j72RGS4NMOXe8zJ4ySfb9+lGRwQGRUEDMeEzuvvMOGTt6tEyeOFE+vHChyGmrX7GoSG+HthOLiAz2i4SDes1goNj3tlaRX907dD257mO6jsf0+IM7RQJ9IqGAfOeb1xb/J9u26ft4b5esX71KZnzoQzJl8mSZfU6z7HvqYf18fnWvzJo2VaZNnSLTJk6USSNbBJCtb7ws6UREspmkZNMJSUUHJRHuk3BPqyTCvRLuaZVsOiHZTOqs13HJZlISD3ZLpLdVctm0JMK90rZH28plkrJs2belpcX6jje/rseEeuUPj/9YPjR9qkwcP0bOP2+6vLt7p2SSUclmUrJ189ty/nnTZeqUyTJ+/Di556c/knwqKWYqJfnuTsmu/qPkw0HJR8JiRsJiplJixmOSj4Qln4jr61RK98eiku/vldyx9yUfCkq+v7d4XHBQckcPyfXXfEVG1AwTQHb/6RnJRyNiplKy7h//LjMmT5IpEybIrGlTZdd1X9Rr9/XI9vUvy7w5c2TqlMkybcpkWf+nP0i/acoS0QH6uIj0i8haEdlpvQ6LyKCIREUkKCK7RWSJtX7Uev6+iHSd9YiISF8yKR/9+MelYexYGTd1qsxbtEi2Hz8uURF5o7dX6i69VM4ZM0ZGT5okD7z9tnSJyBEROdrbKxdfeqmMGjNGxk+aJBvWb5RIV0SOrj0qHTs6ZPWS1RLpikj33m593hmRngM9cmzdMUmGk5KKpCTSHZEdT+yQ55c+L32H+yQVTUmsLyZH1x6V7v3dMnBsQAbaB+RjV35Mzmk5R8afM14+cuFH5OC7ByXSGZGT752UxRcvltGjRsu5Y8+VV158RY6uPSo9+3vkJz/8iYweMVoMDPnrb/8q4WRYlqxeIvwYWbJ6ibSF2mR3525ZsnqJ7O7cLY9uf1SWrF4ioWRI3u18V9YeXSv98X6JpCJypP+IdEW6pCvSJWuPrpXBxKD0xnplf89+WXdsnfQGe+XyKy+XUaNHyaQpk+TDH/mwPP3q0+K5xyNX/eYquWjRRXLOqHNkwsQJ8vLGlyWSikg4FZbPfeFzUlZfJuMmjpPZc2bKzqcXiQzsENm8RORZj0j4uEg6LJLoEolbj81LRAZ2ixx9QiR8TCTZL9K5TiTeIZKJiCT79HW/1U4mIslAq3z8yktl7JjRMnXKRFn0kQ/L8UN7RQYPSO+aq+TSj8yTMaPPkUkTz5W3n3tA20oPyle++HmZMq5Bpk0eJ+efWyWvvbJGJJfRRyYuko6JZNPW84iuc1ndn03pIx0VCRwpHpuOiQSO6r5cViSXleRgp3z8Y1fI2DFjZOrUKbLo4ovl+PsHRLIp6e3qlEsvuUTGjBktkyZNkrfffEPPSwS0rUxcXt+wVmw2mzz885UiqbBIKiTy0hKRnyPy8lKRVEQk0S/Sulakb7+uU2GRSIdI4LCuu98V6XlXZPCYSLxfZPC4SHJQzx08Lskzu+Tji+bI2DGjZOqUSbJo/nQ5vv1FkZeWSO97r8uliz4sY+pLZNL4UfL2+ue1D9EuuXDBHBk53C/TJo2XaZPGyUPLlxfnJ3v36sC+e7fIE0/o82BQ5NgxnSQEgyIDAzrX6e3V16GQTiJCIZ1E7NwpsnatJPftk49ffrmMHTVKpo4fL4tmzZLjTz8t0t8vvSdPyqULF8qY5maZNH68vP3AAzpJOXxYzMFBufu662RsaalMPvdc+fC8eSKPPiqydKnkgyFZsmS17NvXLa+8clyCwYSEQkkJBhNy9Gi/DA4mZHAwIdFoStatOyZ793bJunXHZHAwIZFISo4fH5Curojs398jn/rUX+Siiy6VkSNHyaRJU+TDH/6IvPvuQTlypF/272+VD3/4YiktrZPx4yfICy+sl66uiHR2hqWqaoxMnDhFxo2bJOXleq9/ZfNrcrT3tGxq3SOD8YjE00kZjIflzGCXHO09I7evfVx6IwGJpuJyZrBLDnW3ypnBLomm4tIXHZTb1z4uh7pbpTcSkHgqIQOxoJwa6JAzfV1yxZVXyugxY2TylMly4UUflnVbX5Pb1z4u7588KosWL5LRo0fLuRPOlS89cKP0RQcllIjK25vflonTp8jI8aNl/Phxcv893xPpWCKS3Kdz8+QBkUyXte1dneNn2kVSx4rHZPvPwgJhSUY75OMfu1TGnlMqU6eMk0UXTZfj770kkotIb+f7cunF58mY0S0yaeJYefvVX1lt75ed27fKvHnzZOrUqTJt2jR5/fXX/49Amv8vFqBD/kf49n+04//2B2oEK0A7YPvfOfe/gPt/4JJPiCT3F//IuYj+UTOnFYxH1un2DwD5iK6TB6zzduu+wKMiHUvk7Y1/lPY3kRFNPtm76zWRTJcMdm+XqqoKeW/rnSIdS2TTm6/IpImjh24W13z5s3L3D28TyUVl57ZXpaGxQQLRqAzE4/JuV5ecGBiQwURCOsLhITC+r7tb1h49Kn2xmERSKVn6/POyv7tbjg8MSCSVkq5IRDrCYemLxWTt0aPSaZ2z6Kc/lV2HD0tzS4v84803ZWdHhzy7c6dUVlXJpQ89JDs6OuRPa9ZIWXPzUDDg2VdeEb77XamdNEn+umqV9MfjEgmFxAyFdEDzeIrge+lSRbuDgzqg9feLRKO6fXBQB0XQ9cCADnChkD5vb5e3P/pRad+9W0Y0N8vexx8XGRyUwbY2qaqslPc2bRI5cEA23X+/TDr3XB1EPR55cf58yXZ3iyxdKi/9/e8yorlF+vtN6e0VefddjSEUutPZqePi2rUiBw5oE8GgdvHoUQXxoZBId7eujxzRY3fs0GNfeOFtefnldvH5Rsjf/75XentFjh0blIqKKtm27T3p6xO5//5NMnr0JFm7Vq97+nRQQiHtx9/+tkfKyytlwytZMQsgPJtVcB2NW0A8pdszWQXjBfAejSuAj8aLxx86oetkSuT9VpFMVt5+/Q1pP3FCRjQ0yt6t20QyWRk8066f4d59ItmsbHrzTZk0aZKC9lRKJJWS0MCAzDz/fLny8ivk5/fdLx1vvSWBQ4dk8003SeDwYUlHo5KORiV88qSkwmGJ9/Xp81BIYp2d0vHWW5IOh6Vj0yaJ9/RIKhSSTDyuwDwQkHQ4LMlAQNb84Q+y67nnZERLi+zYskXS0ah0nTwpFWVlsuXFFyUVDsvrr7wiEydMkEwsJplYTOZMny5/evJJycTj0rFpk2TCITELgLarTUFyAfAWwHwBBA/26/ZISMH56eMWWA4oeI7HrCBAQKSrTd5eu0baD+6XEU1NCop//YAM7t0hVX6vvPfJ+SK/fkA2vbpBJk2YoIA5FJBH7rtXPnHlFZLevVkkEpLuA3tE2k8WgwOxiPY1mdD+nN2/M8eLwYXX12jfIiGRAzv0vYSDuj8R00DBrx+Qt1c/K+3Hj8mIlmbZ+/c/irSflMHODqmqqJD3fvRdkfaTsmnDKzJp4gSReFRkoFfk4O6hoMXqP/9JJk+aJNlMSoFzOiGpaEAyyaiEe04pmLcAe7jnpCTCfZKKDko6EZFMMmodd1KPyaYl3HNKsqmE5DIpyabi8vrG9fL+nq3SUFspm197SXKZlJw+slcqK8rl3Z1bJZtJyhsbX5EJ544fChJMHHeOrPrLMxLuaZW+nk6pqRkmB/ftFTOVVBC+fZPkoxHJd3cokO7ukNzRQ5Lv7rDAfYdkn/+L5COhIoBPpRTExxSUm8mkthEJyZtrXpQze3bJiJYWeXfzJskn4hJo13vNwd27xEwl5e3XXpNJ554rZiwquVhMGuvrZcOL/5B8f68c3r9Pmpqb5flEQnaIAvB+EQlZ62OiILwA1PeKyIAoqN8hIutEpMc6NigK1gugf7+IdCeT8qeXX5agaUqfiDzw+OMy+cILZb+IfOyaa2TZ3XdLRERe2blTGhob5VQmI18Rkc9fc43ccvfdslZE/rpzp9Q3Nkq4LyzJYFKOrj0q93jukf7D/bJ6yWr5MT+W/sP9cnTtUQm1hyTcEZbO3Z2yeslq6d7bLZGuiKSiKek50CNH1x6VWF9MYr0x6d7fLQdeOCDP//V5ifZEpWtvl3zt/K/JgjkLJDGYkC994Uvy9cu+LgPHBmT9n9dLlbdKTm09JUfXHpVNr2+SJ696UubOmCur/rpKYqmY7O3eK0tWL5H9PfslmAjK4f7D8sSOJ+SV469IOBWWwcSgRFIRWXdsnezo2CFrj66Vfd37hsB9JBWRUDIksVRMwqmwdEW6JBAPyMm+k/Kn1X+SYCIog4lB+faPvi1zF8yVrkiXLP3iUrntztskmAjK2jfWyvD64XI6cFo6wh3yzLPPyPYz22XJ6iXy3AvPyojmepGOtSKD+0Q61omkggrEw8dF0oMKzI8+IbJ1qUiiR4/bvEQksE8kExVJBxXMDx6w1ro92bFVXv7D3WIG9opsXSqPP/gzufCC+SLhE3LN56+Su++6TSQTkZ2bXpHGxgbJRLpEwsck2H1CAejWpbLnhVuksrJS8plUEbxbwLsI5hO6zlvb81kF6dFOBfX5bBHkp6MKvnMZScYi8vKLz4uZUpD/+MM/lwsXzhfJZeSar3xZ7r7rDpFsSnZu26L96zmo52fiEhq0xpMrrpCHV96v/U0GRaJdCsqTQQXrLy0R6dun5w0c1j707FZgH+nQ8+J9CtYL56//ytC+ZKhPXv7HKjFbXxbp3S+Pr/yZXDilVuTdR+Waz39S7r79+yJ7npCdG1dJY0ODZAbbFLgvnC///syDGgiI94uEgjpPefRRkcOHRdra9HVPj85t1q1ToB4M6vrECZ0wDA7q5MAiEmT37uIko69Pkt3d8vLjj4v5+c+LdHXJ4/ffLxfOmSOydKlcc/XVcvcPfiDS1SU7X31V+3fqlMjhw/LIT38qn1i8WNLHjol0dEj3Jz+pbXd1SS4ckZ07O+TYsQEJBpPS1RWRV145Lp2dEQkGFbSvW3dMDh7skWg0NQS2ly59Xnbv7pSurohEIilZsmS1wJ1y991Py969XbJkyWq57bZ7Ze7cBbJkyWr52Mc+KzfffLs8+uh2+cMfXhavt0p2726XdeuOCfxYDh/ulyVLVss11yyXCRMnSjyVkP5oUHoiA3L72sfliAXij/Sekk2te+TZPa9IbyQgpwY6JJyMSX8sKH3RQdlycq8c6m6Vv7y7Tm5Z84icHOiQeCoxFAQ4cOaIfObu66Q3EpD+aFDu+/kDMn32DPnLu+vkk//2GZn3b5fKoe5WeeXNjTK8vk7e6zghZwa7ZMrUKfL351bJQCwoh0/tl5pqtxx6SQkzyQ4o8ZaLKHgPPGHN9btEckHFAokdQ8BbskGR5G5JnviUvPzvj4k58IhIxxJ5/MHvy4ULJovkQnLNlz4ld//w+yKp47LznTelsXG4ZHoeErP989LY2CAbN24UEZGjR49Kc3OzJBKJ/2hU8//J8j8D7v/MOe5ftda/FxHzP7Un/6qLmdH8MsOlhnEBS//sbIbU+yqL8c2zpC5ztUREz7VWPntCZTRVN0O2TyXuZUuh9hEuuHARTTPWgr1aZfH5HlqPbqe6uppJs2+B2kdYOHcsbe197On8KthrWfXci1z3zW+AJJk5axb19Q1sfOMN+hMJ6ktK8LlcXPfyy/TEYsxqbCSSTuNzOpnV2MjOzk5Oh0I89tGPck5lJcN8PlK5HHabjVIrt33a8OE4DIOOSITffve7jB4xAoBhPh/NZWWUJxJUV1XxzNe/TnNZGVcsWkQ+GGSx18udCxdywbx5LFm4kNGVlfTE4+xpa6OkrU1l8rNna675/PlaB+2mm1R/PjCgkrAbbtBcsSefVLnXk0/C2rVq5uJ2q8Q9FoPvfQ8CAS74zW9oMgwYHFRXV4eD1tZWqquqmDR5MrS0sPAjH6HtxAn2vPsuPPccV/3iFzgcDnjqKeacfz6d3V24bCmcTqG7WxX4112n6fgimmM+a5bK3P1+9YOJRlUt2NWl6xJLWd3QoG8xENBtH/nIBYwb14TXq140Hg8cOtRKdXU1EydOIhyGiy9eSFdXGx7PHhwOqKioYNky2LABXK4wNpt+XKQyxfJuhdx2UMmjmVepO6j8PW+qhN7l0Iffq0ZzZSUqkzcMldybJhfMn0/TiBGas9cTAITWY8f1NzhuHORNFs5fQFtbG3teWq9u9nY713/3u9x1+x1UV1eB3Ub11KkkAwHOu+UWdYs3TXLJJM6SEmwOBw63m3hnJ/l0GpvTSeWECRh2O5Xjx5McGGDXT39KrK2NVCBAsr+f/r17wTC49BOfYNTEiaRDIRI9PeQSCfa++ipVlZXMWLCARHc3rldfpa2tjZ3btmktd6+X9OAgZi5H5fjxZJMplT6Hrbx0m13zt0srVDa9YbWWfVv3rErZSys0L3ygR/PQR08ArLxzMYtydH8pF8yfR1NToxrGhQPw+WW09g5QXTucSZdcDp/+OgvPHUNb2xn27HgHEglWPv4k999zD65R58Lpo9SNHKXtuVx6TbvDcokXzWv3+or12msaioZz582DT39d5dpjp+ixbo/2MRJSh/rFn+CCSy6lyWOHWFRTBcoraT15kuqyUiYFO8HpYuH8+bS1d7DnrTc0PWDUeP2dtJ/it7//A1/9ypfJJiOYuSwgpOMhsqk4vuoG8tkkXe+9TiYewlM2TEu7eXzk0gl6Dm8CAV9lPYlgN9lEGF9lHWLmyabjmGaeBfPnM3byDBwuHw63j86DG+keiFBdXc2YljoQYeGFH6a9vY2DR46TTcZwuH0MBgbwVdYTTyRxuVxUVVQiwQDmWxu0JrvTibnlDeTQPswtb2D4/Jhb3hiqGGCbvQDp7rRSGwwkk7YMKuxIcID8uhfAzGM4nFx4yaU0TZgEoOZ0MHSvOffMMSQwwIIF82nr7GT3q68QONVKfyDA4osvRgYHGFc7jIrSUtrWvUwl8BTqDJ9AHeD9qNR9BSprvw8VVjahhnTTUeO5HWgEP4bmuk9DjevE46H68ssRwyAHvDlnDoHTp/ECb6xaxQ3XXUcMGDZzJqmGBja8/Tb3AP9YtYqp113HcGDRzJk01tXz1htvkcvkhnLa3eVuFty+gElLJmne++wmsrEsmWiGbSu2cXTNUSKdEZw+J2bOJNIRwV/jZ/3164n1aKm3qsYqzH+YxHvjRDujLLhwAafPnGb9d9bz/AvPc9v9t1EyvITE+gSepIff3fE7Gmc3MmvWLL74qy9id9mJdkXJZrP4nX6euvIpRleMJmfmsBt2Pjvps8xrnseJwAm+s/47xDIx5jXPI5AIMG34NDwOD7fNv43msmZMMUlkEwhCJpdhT/ce0vk00XyU6mnVGIaBzbDx2Us/S0dbB7FMjBeef4H3R7xPW7iNeXPmUVtXy/7t+ylxlXD1x69m9LDRPHLpI0ydcR6d3f3kyj6k+eW1C1WuLjnNMd9zk0rhR35eneTtHjWTa1sFDp+Wctt9vR7ra9Ayb74RkIvhOfMLLv/01zHsHhh/E3Nmncfp06fAO5xVL77GdZ+cDJHjzJwxlYa6Wt5++XeQj1Nx4g5InIHpKwk7J+s4IeYH06j0l62PQppPOmL1HascXLXmsJt5iHZqvrzdM5Sv7vF4uPzKqzDi3eAqZc6c2Zxu64B8hlWrV3PdN74Ghp2Zs2bRUDect998Q6X4hp3rr7+eu+74AdVVlQyVjitI7F3l+trhh8YLVO5fKP4upkrp62ZBoge6tmnOfKLPSpHzqHQ+OQAbr8WT7uTyj16CUT8HEt3MmTuf02E3jP0Uq15Yw3WfvwzGXM3M1HM01Nfy9mvr1Kle8uCrVZl/OqQeMytXalla0HFj5Uqdp3i9OleJRlXefvKk+vYUytRWVuoxa9ZorrrTqYO8z4fH5+PyzZsxZs+Gri7mvPYap8+cgVmzWPXKK1x3ySWwbx8zzz+fhro63t67F+65h5W/+AX3X389rp/8BIC6p5/WCUlJCRgGg4NJSkpc9PTEME1h5swGSktdgMHAQIKGhhI8HgfRqJrRicDcuVrDPRxOIQJPPHEZa9d+ieuvX8p9921l1apD7N/voL29jZtvnsvGjS/x9a9/g0suGc3LLydIJj3ceuuvmT+/mcOHl1FX5+euuxZy4sRrfH7pF4lnU0TTcQwMpjWM5bc7/kGFt5Tf7niRyXWjWTRuNgPxEO3hPnoiAxzuPYXDZmdy3Rj+/O465o6YyjWzPkap24+J0BsbZFLdaEK5BJ/6+NUMxEM89PafOe/8GQx293Pp+LmsX7OWe39wN6FkhHlz5tLU2Mip/UfwOj30xYKc6m7H6/SQy4DLXU5V48e0ilS2TXPdc53W3H+Upq4aXr1Te2fD4IPFfHbDBoYfT+VFXH7xOIyKa6DuV8yZdwmn2wah51pWPb+O6740HWx+Zk6vpmF4GW/vaybg+Cn9/QMsWrQIgHHjxlFRUcH69ev/5zjl/8LlnxK4G4YxEfWsEeCZ/+Tu/AsvWcie0rqNvvlQawF3e43+YbOtCtSdDVD2Gc1HP/sPLAn9U3umaf333m8ruDec6k4vabQW5GjGTv44gUCAbZvXAbBm3Xai0SinT3cQOHoj2axJXbVllpE9RcuIEXS0t2MAHocDr9PJ/OZmHt6+ncWjRjHc7yeRy3H9+vXU+P20hcP0xeMYQM40EcBpsxHNZLhl40YGkkl8Tifn1dfjsRdKN0E8kyGUTjNy9GgCg4NsfPttbtiwgT+tXk08FuOLLS2cU1GBz+nkicsuA8Bjt3NxQwNGW1ux8Hl3t5q1TJ+uuVo7d2qSd0cH3Huv5gQvW6aD3Y4dWidt9Gh9fd11ipxnzVInVZdLE8HLyhQVRyKM/cUvCAwMsO23v4UzZ1izdi3RXI7TfX1q8tLdrYNrJMKjP/85ly9ejMdlwzAUdK9cqc7wzc3abGEpjMdnzmhMYfhwHXMLjvH5vMYUTFNN60pKNJ1+2DDNY3/vPT3mvPPGEggE+M1vtlFRAYcPryGZjNLdfXroWrW1P+D++0fzuc99khUrnsdpMzDauqE/qPnnebNYXz0S099YeYl2xukolms73gbprE6ARjfrMYVa8HXVuo4lNO/dMNSMzjAY+6GpBAYH2bZrJyCsWfuS/gZTcbDZeO6557HZbFz1Uf2eEcHmcFA5XsFeJholn06DCIPvv0+srY3d995L+bhxODweBt9/n2QgAIaBw+ejpKWF8++6C19DA96aGnx1dVSOH8/ge+9h5nL4hg/HVVaGx8pnn37RRYQiEXbu24fd5eKgYRCLx+no6cHu82HY7az44x+ZMXcuX/7Wt+gcGIBsBmPdswrQNzwHYyZDTT1UVKvB2w33whe+q/nesbDmrxeOm32RTgL7u/XfkM/pw+nS4y2Xcba8AuEAY5saCYQjbBs7G1xu1tx3N9F4gtNn2ojkcvT29fHiPXcy+yOLmP2Vb/H3Xz0JJdbkNNivbf/tFwrio2HLsX61GuGlEmqsFwponzxe/d6TcTjxvh6bz6kTfnmF5tzbbGpul0lr8CEcZKwtSyAWZ9snvg1lFaxZt16/43BUwf/fnwYzT7vdw9tbNvP5z38Om82B3eUmEeyxTOTiGCJDBnQ2hxPDZsNXWQ8CAyd3DRnZdR96A09ZDU5PqToQ24uGVobNppDB7sDu8tIw6SOMHX8ug4NBdu97j673Xuffn19FLJ6ko6MXp7eE+2+/lntXPsqoMeOZMHEyP/7h7dQPr0UiYWxzL0RiUf1dLrwYY9J0bAsuRhJxa53QGu/vvI1RVq456A4nRMMK1sMhzWlvbIZYlPzLzyuoDwchmdB8+VyWMS3NBIKDbLd7kXiUNX9/lmg0ypmBQYadcw71dXX8/dlnsTW2sOvgIY6dOEHqyBGSInwTzXbsQmu8Cmpx9BCas/6kdd9diRrKdaEGczVAG1o+bhZqPvdtaz0F+A6axVv66KNc9fGPkwkEyGaz1NbV4QMeBkIjRzLY1kbc2ndpXR0tgGRytDSPoL2jHTOrINvld2Fz2qgcXcmVT1+Jq9QFNvDX+fEP93PZE5dx3cHrqD+vnmwii81mo2VhCzse28GhVYfYumIrJXUluMvdzLt1HnaPnREXjmBD2wY+MvMjjPvqOLK5LJW+Ssy8yRW/vIKZl82k/hP1YELoTAinzwkG+Gv9uJwuEtkE77S/Q2uolRs23IDf5SdrZsmbeRpKGz5gTje9bjqBZIAfvfUj7IadrJnl2rXX0hfvI5qJsqNzhxrcObx0RjuZUjuF1sFWtrRt4YnHn+Cij15EV28X2WyWl7peoj3STlu4jaaWJk6cPkF3rJtkNonX7mUgMcCPHvgRl3/0Uuy5fgXgsZP6jQzuUdD7oYfUNE5Ma3LvgEk/hAvXgqdWc9qHzVXDuYHtlkmdZe4243FIDSq4Lz2HR3/xBz5+2cUEes6QzWapm3Cp1oDPhhnZXEdb0K2O9TXz+cH3ljJ6yjw++aXv8fzqVdhsNqvEbURBaT6lNdTzaS19BlYJuKyF563/q2kNeCVWRZjCeWLlt+fSUD4SXGU8+tBKPv6xKwmEYmSzOerq67T98ElGjhxJW8gAVxnPvfAPbDYHV111lRU4cxb74PBoHzNRzT8fczVsu1tN7Qru87PugHP/TXPd62ZrPnrYMvozs3peSQPM+L7m8Me61RW/YT6PPvIgH5/mIdBxlKxpUNfQqO2cf4v2sScACx8Aw8YPbr+dKefP47PfuIWTx0/oIO9yaT56T4++ttvVb+emm3Tgf+wxBdCGoetC9ZySEp0UPPmkTizeeQeOHtV9d96p5WZWrODR117j4yUlBGbOJGua1CUSWo3nuusYWVVF26lTRKZOpXdggBd/+ENmb9nC7Kuu4u8vvAB79iCnT5POKVDv6opyzz2b9GN12MjnTXp7Y5SUuBgxooK6upIhU7ne3hhLl07liScuo7GxjLa2EDt3djJ7dhNut5277lrIkiWT8Pv3cMEFi2lt7cA0czQ3N9DQUModdyxgwYKpXH11PfF4llOnguRyJg5HlN273+GLX15KfyzIL7c9x0A8xKJxs/nG7E9Q7vFz+8VfxWl34Ha4+P2ul6j0ltIbG6TSW8p9rz9DX3SQH1x8DcNKKhhRUY/H6SKTzzK8pJr7X3+G2pIqFo2bTTAZ4daPfJnfPfUbZl00n4GBAPlcnhFNLUyuH0tPJEDMnWff0fcQEb57z20s/+k9jB89lpnTZvPTn93D8Kl/Quz1ajyd77Fqt3epD5Xhs+Y/SQXw1Xdo7nvtSi0NXcAL3tnqGN9zHY8+9igfv3wGgbZVZLNp6kYsUE+sbBsjR7bQ9t4DDKuIU19fz6pVqwDYtWsXR48e5fTp4hzxn2X5pwTuwNes9ZsicvI/tSf/youIGsJ556vjo61EwXrfDZBrVzfJ6CoILNfjCu7z1bcpSx9YrsZ0hkPBfu2DkO1U4J7t0GPyATCjlJdX8NxfV3D7D25gxuzLeHXj60ycMAaH0w21K7Q/gXut6z0KQDid5kdvvcWZcJitbW0saG7micsuo6G0FLvNxsqtW1l16BAPvvMOsxsbaSorozUUYtn69fREowwkErjsdh5YtAivwwFoEMAwDLZ3dGBar6u8XuqGDePPf/0rt952G6u++10e/+tfOddiTzedOUMmn+f69esRIJXL0Z1KIQsXKgouuJ9Onqx09XXXKaAXUaT83ns6ED7wgCLjCy7Q/YahyPm223Tw++pX4Ve/UvOVBQsUSR84AED5z3/Oc088we3//u/M+PKXebW7m4njxuEYHFTkPG8eAH9evZpVa9bw9H33kUmaXH+9QVubdu/qq9Wz7Ngx+OY3Fev39enpc+eqP0wsps7wTqc+dzh0nHa7FbBHoxp0TyZVEDB2rLL4Bw+W84c/PMdzz93O+PEzWLfuVc49dyI2m4NIRGMWX/nK/Tz9dCtf//oqnnjiVrL5DNJSD5PHwJgWcKkhFx5X0Wk+ZZnSgGWca8A5jWokl9PSTLT3FME/FJ3po+qiXTCtKy8t47nf/p7b77yLGXPn8urGjUycOBGH101PYIB7lt/Lo9ffrAECAMPAzOUw7HaSgQCx9nZsdjt2rxdPdTWHfv1rqqdMIdnfz86f/ARvTQ0ljY2YuRy5eJxYezuBAweQfB4zl+Pd5cvBMPAMG0bgwAFsDjVEyqVS2JxOhtXV8Ydf/II777qLC6++mgORCBPOPZe2NWvIp1L87qmn2PXaa+zeto15s2Zx1Sc/iXHqCHzmG/Cz38DS64umhmbecmQfB7mMbh8zGX78SzVqG+xTYzeXR53Y//YLNZtzupSZPvGeguKyCq3H7vJQnk/x3B9/z+13382M88/n1YTBxAnn4kinyL3we3K5HMnx09nx1hv8/c9/5MafP8r++29XN/fm0fqZjp5gqQLKFaSPm2LVa7drUOHV5xVgZzPqUg/qVP/3pzRoUzGsqAzI5/Q9VVRD40gI9lM+dSbP/elP3H7XXcyYcT6vvv6a9rFQr/4jH4PgAL9/4jGuvOxyhtXUYJo5ut57wwLtSXyVdaTjIerOvYCyurHYnR5sNvsQW9Yw+WLKG84lcOpdvBU60TfzWUwzj2Gz4XD7tR683am10xEMw0bP4U14HcKzf/szP/rxvXx0yXWs/fe/M3HCBNxeH/0ndvLYL5/h+9/8LCdPHOPAvj386O6fcOjIUYyy8iFALiJQVoH9yk9jVFZpWbZYFMPnw9z8+hATTzYDorXeddvr2BpbMCZN1/MXXQmGgUTC4PYgSTUTKvd6+Pt3v8WdKx9k1meXsnHbO0w891wc5eUYho1//+Pv+f2zf+e8uXN57KmnWDB7NvaSEuoMgyfQv+QTqOGcC+hD67pPR8u9pa39H7X2rQBGAguBCtSg7myGPoY60z61fDmnT5zg7vvuQ9CSccdRdv8BtDSc29puAINoEKEkk0fyJobdINYbY7B1EJvDhsPjIBPN0LG9g2BrkHXfWkekLUIulWPDjRvwDfNhc9rIxDMqgcwLV/zyCm7uvZnLnriM0KkQm362idL6UnzDfNz/wP20nmzl4acepmJkBQh4KjwkAgnEFOxuO6HTIUJnQoRPh9XYTyAdTpPNZVm5bSXnN5zPvZvvZVbjLLqj3ezp3sPp8Gm+v/H7NJQ2UF9az/zm+UTSEZZvWc6qQ6tYvmU5kXSENUfX0BHpwOv0MrdpLoPJQZK5JPNb5hPLxuiOdfPy717mjXff4Fu3fQuv04vNsHHs+mPMb5lPR6QDt92NiFDlqcLn9GFi8uoLr7Lr1Z089cQKjAKLfuheHfc9tRDYqSAZG6QHIBdT9t1bC75m6N8C1bNhxBcg1Q+V04rHBXZbRnV1UD2L5T+6gRPHj3Df9z/OEPu850bLSb7ecliPa634YfO5/9ebad39Iqt+NI1bf/ADMumkgli7U38FNpey6vmMZShnse5OvzX/QUFwtF3Xdq+eZ9gUFBuGHhvrBMNg+X33c6Kth/uWLy/Oo2wudYgvaVD3d4eHnu5O7rn3Xh595KEiwy6mMuadW/T+bNjUPM6wKYBvmG+Z+1lqgPKRetz2e7S2vKsU6udoEAND2XbDgPIRCuxLGqG0ieUP/JwTpzu577Zrte48Gkggl4REv/bD4YNkgD9dU8WRbWs48M5rLBx2his/+1k4dUoZ9draoist6NzmO9/RKP877+gEYuvW4pynvb1osHvttXD8OEyZok7z+by6z9fVsXzUKE4MG8Z9f/yjmtaJKGlx//3qMH/kCCQS5BYu1DFl/nx27NzJ33/2M2787nfZHwxitLUx2BvFMAwefng7N944B5fLzubNbZw5E+bkySCmqcqLaDRDebmbBx9czKhRVdhsBuFwinQ6T21tCcOH+9mxo4N0OkdLSznjxh2ire0Ut912N+edV49pCq2tQU6cGKSlpRyv18kf/3iA3t44U6bUcsMNG3jmmd9zySWXUVlVze93vcSGo+/w53fX4XG4qS8fhtfpYeWbf6Ar3A+oS3wwGWVy3WjCqRg3f/gL1JZWkc5luO+1Z2gP97G38ygDsRAep5MvnX8FfbFBvA4342pG8OOf/oTNe7az8oEVeJwua7pikM5l6IsPEoiHcDuceF1u3n3hLe7+yU841nqCl95+ldvvuov3D7yBYcZ0Xh9YYc27H9bv2TFMQXvvDQrMnaOh9hENlg3N0e/TO21gBct//gInTrRy34qnYNRhwAG2CjW39s5WAs//UTC8vPjCn/ndb3/Dhz70IR599FEWLFigStF/tuV/pKH/v/WBKuV60VvT5///aeO/ctz/A5Z82sptL+SuWyZzHUuHDOMk21c0psj2W8YUVn57LqZGFgVziyEDi4juy0VkREu97N2wWHPgc2Erd/6MSDYoqegpqagol+ObrxJJ7hefzyfdp16xrhuU82bMkHueeUZ2dHTI2qNHZYdlOHegp0fWHj2qOeaplBzp75euSETi6bQMJhKyZPVq8dxzjxwbGJD+WEzWHTs2ZE4XTCSGnkdSKWloapLFK1YM5crv6+6WQDwuS59/Xk7190tFRYXsee896QyHJZRMyv7ublmwcKH89q9/lVwk8kGTua4ufRTy15cuFYlENG+9kNx94IDmfPX3q4FLV5fmkXV16f69e/U8K2dsRG2t7H3lFb3OsWNFN7n+fkm9+KJUlJfL8TVrhvrw7C9+IWNGjpQz+/eLhMOSiGSkq8u0PGM03723Vy/56KOarna2r15Hh3br7EudnbLW2ampbKGQPpqaRsjrr++VYFDfane3HrNnj0hPT0rKyyvkN785Lu++O+QnI5GItjF27HjZ8c6OorFcPFE0nSsYzRXy2rNZkXTaykVPax57waQum1VDu0MndNvZOe+ZjIxoaZG9b27S1++3ah68dW4qGpOKigo5/v5hWfuPF6W2pkZGNDXJiJYW8Xt9UllRKd/54hc1Z90yl9t8000yeOSIhE+flsHDhyXU2iqbb7pJ/jJxomy+6SYJtbZKMhCQxMCAJPr7JRUKSejkSYn39krg0CFJBYMSPnNG89+DQRnR0iLb33pLkoODEj5zZsgELxUKSd/hw1JRXi4716+XeG+vJPr6JB2Nqineli3idrulv/V4Ma+9YOx26pjmhfd06LqrTXPKBwcso7qY7jt1VHPI41aOeyys+egHdmi+e0+Hfn6b3tQ2Cm3GoiLtJyXV16Of30urRQZ6paSkRFo3vzHU5qev/rj8+v57RbraRcKDItGw5poX+lQw0uvpEImGiv1ta9Uc90CfHn9gp+bAR0LF9xkcGMrZH9HSInu3bNK2Cm3HIiKDA5I68p5U/D/s/Xe0HOWZ9gv/qqpz987aOUjakpBQRkJ5SzIYER2xwQGPjcdYZkZgwIAYJGzwGAkjkcOAwZ7xeBzlDEIEAcYgNkpkBEpbYefcu3Oo8Hx/3NW7xbzznbPWWTPnPe8MtVav7q7wVOiuep7rvq77ukMBdeTlv8g5pZLKiY2qyc1N6plH7ldWNq1Ovv6kenfHfSrW3yH56fms6nrrWWWZWclfz6ZUrL9D5TMJlY4NqpOvP6nSsUHJjc+mVD6bUrl0fPyVHhMDOyuXUflMQjXV16jXXnmhaGSXzyjLlLz56GCXKi8rVR+8f0D1dh1XPp9PmbmMsvIZZZo59dlPf1L96OGHlPnbn6n8bd9R5m9/ppxMRgzpshnJXR8eVE4mLcZzPZ3jue/28KDMK+TD9/cqJ5ctrvf7X7g58BnJcd/1suTAx2PSfjql7PiYSnd3qvLycnWofdf/kldvHX5fTZ8xQ/1m587xPPa3VTFXfYdSqkdJ/vqY+/kypdRbSqmk+36ZUqpbiXld0l2v153/jrvtdVu3qqkLF6r3o1H1gbu+LxRSF/f1qX53m4WLFqlHdu5UO5RSoVBIvd/Xp+JKqUTOVAvmL1Db/7D9Q+Z0/W/3q/RoWiUHk+O57r+99Ldq8P1Btfv+3arv7b5xs7rMWEYd3nFY9bzRo9KjaZUeTavhw8Nq7yN7Vaw7pm678TZ1xtwz1P5t+1XP/h6VjqZVMBBUj33yMdX3Vp86tP2Qmj9rvnry90+qeG9cDPCSWbVyxUr1s4d/pkb7R8cN5l7veV0NJAbUB0MfqK6xLnXZ7y9T9+++/0NmdaPp0fH89rf731bdsW61/dB29XafGNLFMjE1nBpW3bFuFc/GVW+8V/1g8w/UrHmz1B0771DPHX1ORdNRFQqF1JETR9RgclC90/eOWnjmQvWH7X9Qg8lBdWT4iPrnn/2zap3Sqo4debdoNlfIc8+NuvMG3Zz1t4vmdOl+Ma7LRpXKjSmVHhDzunxS1u/ertTw60olOyVfPtWrtv7gRrVwwTwVHTgh+fLZMRUKeFTfKz+QNl+9TC1aOF/t3P5r+R47KOu9drlSB+9X06efpvbvbneN5dy89g+Zz2WLxnO2WXyZOclzHzkk311TuWKOvLy2brlTLVywQEWP7RtvLxQKqb6THePtLlp0ptr57DNq+5//qGpqqtXEiRPVxJZmFQ6HVUVFudrwd5cq1btHctoH3hQjukLeesGMLtErrycvFUO6vv3Fecd2KDXwlrwnepVK9sk5ZseUysbV1u+vVwsXzFfRrg+USo/KNQyFVN+eX8r31KBaNPc0tfOJX8v2r98vefTD7yt1F8rv96nhT39axjAFz57CACEel47/8GEZKGzfLuZzl15a9PiJRoueP5deKrnxhbFRb6/aesYZauHpp6toZ+e4kV0oEFB9774rg44dO9SiefPUzj/+Ual4XEX8ftXxwgvjZnefP+MM9fg//qNyYjGVjCbHzeh6e+Pq4MEhNTKSUtGoGNKduiwaTas33+xTl1/+RxWPF5Zlxj+PjqbV5Zf/UV133ffUGWcsUJ2d/aq3N64++GBIBYMh1d5+QA0Pp1Q8nlUTJkxVV131oOrtjatYLKv27+9WjY0tatWqjap/MKYODZ5QNz5xnxpMjKpDA/L51Nz1WCapXu54Q73be1TFXUO6gfiIOjbcrQbiI+rXbzyjbnziPvVO7xG169ibajAxqo4Nd6vBxKiKpuPq5ttuUbVTm9VjL21TB/o61Msdb6hgMKj+7l//Ub3fd0ylcmm1YOFC9dsn/qCe3PeC8vl8KpXLqFgmqV7peENdfPGn1WMPXKVUeq+M8QseV/leeZkDggfSryvVfbk7po+KWd2H8t1H1dbN16iFZ0xV0b6Xx/2uQqGg6us+olT2iFJWUi1aOEvt/PPtrleWu62dU0opNWPGDPX888//J4Ob/3cm/ofluH8CqEFUcX/433so/5OnvETPgsvkqzUgUbaaO11W/RaRzHibJPKmTIS/cCDdLqXcvNMkB14LuuUl9oiUxolLW2jgn+9G8jT6oo2SG6/S/OD7/8DZqxcwdebHYWQTl3zuEzz6yP0w4Tb27X+Tvr4+/uZTn6LU72dBfT2VwSBLmprojMWoCYfZ19ODUorqUIigx0POthlOp9nY1sbvLrmEtGWx7umnmVNTw0AqxbXPPkvGshhMpbhx506S+Ty6rnP5vHkEPB7m1tay9Zln8BkGD194IQ/fdRcLli/n7kOHpLwPMLG8nKxlkbMsNKVEBn/99UJbRyIiDbvvPnjmGXjkEZH67t0rcviqKmHV582TnPe+Polk33qrRKyrq+GOOyTyXIhgG4ZQ3729EInQNzAgketrr+UHTzzB2atWMfXnP4dt29h29dXc8sMf8vyf/0xLczMkEjjohEIamgbt7Rq2Lcq3W28VkcCKFbLLbdskWD48DNddJznvHo/sOhSSlLUtW+RwNE0C8uvWyd/G65KlUg++D59PStRv3PgDZs06m09/eip1dSZtbUd59FHZ9pJL9jIwMEhdXatwKnlTpO4FibxpSQ33bB5iyaLkvcDAlIRlmyOdwsIG/VIiztAl9721qZgrb9myXBfJfF9Xt8jos3l+cOutnL1qNVPxcdH55zPQ28uJ48c58cbbfP6sj3PLzTez9aGHQNOoWbSIUEMDZ9xwgzDulZVEWloI1day4B/+gU9s386iW2/FEwgAkB0dZfTAAZTjSFk3v59ISwuOaeIJSq3vfT/4AY5l4di21H4PBjn+/vs4lkV6YID13/gGH1u1inltbWh+P4PDw1ipFGYyyUuHDlEzYQJV9fUifW9qFeZ66iz4y5MiIy8pd8uq9cuyQBCiI1JGraQMgmGpgZ7LSD30nz8kcvrJp0veuF/OhURsvLZ7XzIrf47KGn5w9z2cvXo1U+cvhJ7jfOnzn+OZva9D42RGD7/P3ldeZu7SZSJtNzySL5/PiRKgpEzYfl0TZvj4ITlefwBio7DmYmHVjx6AignCuv/yYXkvlD+bMhNOHBZWyuMdL+fUF08IixUM8YNHfsTZC+Yz9bRpcu9YJi++/CqWUqz5/BfQHIfqqUuYtvKrhCrqSI32YGZi1M1cjUJD0zRsM4fHHwRNZ7hjH6HKRqnXDmiajq4baLohrLttYmaTePxBet57HjObQtMNol3v4QtX4AlEeOPFbeSSYwTLqtly78OcddZZTJncQknITzDgY+ezT5Ea7WOov5f9b7zJrFmz0dvOFmn8ynMAhVIOmm3j9HS6zLrC2bldSrWtPhcipWjBkMw7eQx99bloFZVyDXJZnPaX0Jomym9pWaAUmu5BufdY3+Agmm6g6R5+cPvtnLViOdMWLERf/jF6djw5nlf/k50vEgqFWP3xjxNB6q/XuD3FCJKrHgQ6EDfaQYo117Puu9sDkUVqtfe7d/o/IUz9Q/fcw09/9Sv+uHMn6fJybnfX/9wllzD10UcZBP553z56enr45OrVzAHOvuQSPv/ooxwDfvL2m/QP9LOybSWNSxp57e7XOLDtAK9segXHcvCEPLRtkFz3lRtXEigPMOW8KXhDXpqXN4OS0m6R+gj+Ej9W1iI1mCJUHWLOl+bw0GMP8bOf/Iyf3/9zTv/46fgiPnSPzqfO/xR7rb0k+5MMBAYYGB1g+ZnLGXhnQPoUl8j0lfrw6T7C3jA37rwRhaIv2cetL93KcGaYrWu2cu6Uc9nSvoVtB7axpV0Uaq0VreM58RFfhFUTV43L4o+OHmV39278hh8NjQfve5Bf/vqXTLt2GmtmrmF503LJaz9vOT9+/Mf4DB/DR4fp7ell4bKFvNH3Brue3sXt37+d7/74u9Q1NaHsNLxxLapigTDpmldk2/uvAjsF6R6oWSXLjID0/8qE7KDcj94SYeaVLbL5UAN4y6F6Ofc88Ci/+vlP2Pm7Byk33xfGXnO45JJLefTpGISa2ed8lZ7ePlbPCmHaDkd3XCe13M+4l72dZQwO9NE6ZarI3gt11e08ZEZdab4OkXph1seOyXND4T4raqBscrGkne4ryu01uOfee/nVr3/Nzmeeory6QRhwZXPJ5z/How/fC5F69u1/g56eXla3LeOiiz4h/UnHYU4c6+Dzn7uY723cwKa7H4bX75bSb3vvgPoljOffF6ZCukHz2VDWChWnSQm61IAw6x6/vKcH4S/XSDk6O8c999zNr/6wnZ1/+iXllZVy7D27uOQTH+fRP78FGux77uf0DEZZvWIJ1l+uZ6BsFZz9IJQ08/uGf6G2ppaqH/9Y2PK2NpGvr1ol3j3Hj8tYp6JCxjXNzfL5vvtkLLRypaQBLlgg3x97TAYTrs/PPVu28KuhIXZOn055ael4ibdLLr6YR//lX2B4mH1Az8AAq3/xC+jo4Euf+QzP7NkDuRyjM2eyd2iIuYsWQSpFJmOydu12MhmLwcEUR4+O4jgKj0fn+PExdu3qxLIcSkp8eDw6d93VztVXLyaZzNPXlySVypNM5hkaEmXe1KmHePLJ3/Ob3/yZkpLS8Vrvn/jEZ/jZz/6Za655hl27XsPrTfG9733VrVqq6O5+m3zeZM8eP8lknspgKbesuQK/x8eP9/xpvLb6solzuWLJZxjLJKiJVPKz/duxbRtd0xhJxeiJDRLw+vnEzFXceNZXiWeTzGs4bVx6P5SM8uiDD/PUn57kj0/+mXNmLx+X3Lcum83vf/4bhtNj7PjLTg4fP8qyFcuZ3DARfzDAzud34tENvDmNPXv3MWvOIhi9S0q8eSdLOTjNJ+N7qwv6rxRFTd0DwpinXwWVBb1CysVpIbknfvcSO597nnL7ofE02ksuPo9Hf/Rj8NSxb99eevpGWH3OF2FkM30d2wR3kOPxxx8nHA5z9tln/0cA5f/s6f8fov8/9QU8iTweH/5/2sZHjPt/wlRg3MfLv7mlIAql36y4UtlDMn/kfqUybxbXMUeUyvdJFM4ac0tJXCbRuPh2tfaKr6nGhhplGJqqqalUU6ZMUsqKqyu+/hk1fUqJmtLapL7y5c+q6IHPKJV9X6nM66q/62215qwz1NQpzWrmzBnqqWeeUft7esZLtcWzWXV4eFgNJpPqyCkO85f/8Y8fKvd2ZHhYjWUy6tLf/lZx223q4NCQMPbd3WogkVCX/f73avlnPqNq6uqUbhiqurpatUyerN7q61Nf+/rX1aQpU1SktlZd9LnPqf0dHeqhPXtUdyym1t9yi2pobFQ+n09VVlaqxoYGNfCXvyi1Y4dyRkeL0ejC50KJt8HBInVdcJs/cUKWHTwoVPTBg2LpPjSk1NiYWnv55aqxvl4ZhqFqqqvVlMmTlerpUVd8/vNq+pQpasqECeorEyeq6AcfjJdN8Xg8qqmxUc2bNUvNmzFDzZ0zV/31r0MfMrhPJEQAsH+/UpdfLodbCKgPDcnhFSrUdXcXS8YdOSJM+tiYnNoXv7hW1dc3KsMwVHV1jZo8eYoaGFDqK1+5QjU1TVfNzVPUpZd+RR05ElXbtyu1e3dKnX76cjVjxixVUTFPzZu3XP35zy8oK2cJ+33gqFIv7Ssy4gX2vVAqrsCgn8qyF5zgc/miu3y+yL6v/frfqsbGxuI1bG5RKpFSV1z+dTX9tNPUlMmT1Ve+8EUV3f2mbJM3pfSc63D/tb/5G3X3li1q9ODBcZY91d8//rlQ1i0bj6sRt/Tb6AcfiJv84KDKRqMq1denelzH+FwiMV4ybuSDD9TffvWrqraiYvz4WidPVqmBAfWlT3xCnTZtmmqdPFl9+YtfVMf37VPdL7+sRvv61IIzzlCzZs5Uc2bPVh9btUrtffVV5RQc2pNxYbSTcXkV2PfRIaVOHi06ysej4j5f+H6qK/3zfxK2vOuYWvu5z6jGhgY5vpKImlISVOrxO9UVX79cTZ82TU1pblJfufgzKtrXK07wI4Nq+IF/VJ88/zw1a+bpatbpM9TD99wtTPrbu5Xq6hBX+NEhcbQv7D8ZF6Z9ZFDmv7O3qAAY6JZ1+ruFtX/xCWHgM2mlUkm19m+/XjzG6mo1pXWyUiePqitWLlLTp01VU1pb1VcuvURFj3colS062X9p0Vz1vWuvlhJ4nR3KSolLfCYxonLpuDjF5zPj5d3ymYTLkueUmcuo9Jg7Py3zxRF+UJm5tDjRuwz9337tK6qhvs49vglqypRWdfL1J9XF5y5RUyY1qSmtrerLX/6SGuzrUmYuozKJEfW7n/2Tmj1jipozZ7aaMX2auuW6bygrm5YSbpm0stNpZR09pOx+tzRc90llHTqgnHSqWC6uv0c5uaxycjnlpJLCjvf3yvdsRhj32JhyMmn1zW98o/isqapSU1pblT08qL7x1a/Ks6a2Rl128WfVSMcRt+zcmLp140Y1bdJENXXyJPXJiy5Sh48fU285jtquxDW+8F5g0seUMO+PKGHSY+57wn2PKmHbe1WRkd/vrvdBV5cCVFNrq5o5b54qnzdPTVy8WO1XSn2qv18tXbNGTZw6VZ02c6b66YsvjpeRO9Tfr85yl02eOVPteOIZdeSZIyo9mlbZWFYd3nFYde/rVoe2H1KZsYxKDCTU4PuDKtYdU8nB5LiL/OEdh2WbuJSCy4wJ+54cTKrkUFK9/LOXFaAmtUxSs2fMVrOmz1JzT5ur4r1xdeCVA+rjH/u4mtwyWU1tmaqe+sNTKhvPqsxYRn1vw/dUXU2d8ugeVVlRqRoaGtS7x95Vb/e9Pc6237/7fnXZ7y9TY5kxFc/G1dv9b48z7D2xHvVW/1tqx+Edqjfeqz4Y+kD1xntVPBtX0UxURdPRcbb+2TeeVYCK1EZU47RGNWPWDHXmojNVX7xPfXDsA7XqrFWqdUqrmn76dHXHz+5Qb/e9reLZuPJ4PKqhsUHNnjNbzZkzS82bWqGGDz9fZNgzQ8L0Fpzkc2NKZUdPYeDfETY9F1MqOyzs+8jbUg4uNyrfs1HVdXi/AlRr8wQ1b2qFmjd3tlp85gKlurer/oN/UWs+fpaaOmWymjljqnrxmT8qlYupVO+bavkZrWrW9Ilq3tzZavmZp6sX/vwTYcfzqSKDXigNN/7uMui5uMvM54pMfC754fVtcaTvOnFMjm/yJCklOXeuWrxokVKWqfq7O9Wac85RU6dOVTNPP129+OxTwvAXSs25bX3tK18UV/lc8pTSb+9ImbdjzxTd5kcOCvOeSwgjnhpwGflR+ZzolXUyUWHb+15XKhNVXUcPyDHWlah5c2bKNZx3mlK9e1X/wdfUmrNXqamtLWrmjNPUi7+4Q6nh91Vy1xa1cO7pavZpE9Xcmaeps5fOU2/9dltRcrd9u5Sk6e4uqgZjMWHPCzVl4/GiknBwUJafKtPr7VXq8GHV9eSTcnyTJql5M2eqeXPmqMWzZyt16aWq//BhtWbJEjW1oUHNnDFDvfjEE1J+7vLL1fCJE+qT55+vZs2YoWZNmaIeXrBA2u3uVvH+URUI3K4GBhKqtzeuRkZSamAgocbGMmpwMKkGB5Pq8OFhNTSUVNFoWvX0xMfd5fv64h9i5ffv/0Du40mT1ezZc9Ts2XNVVdU0BbepV145oGpr56oJE5pUa+tp6mc/+6MaGkqqHTsOq+7umPrc5y5VN920QT3zzBE1lkq6ZeBiLqt+RN34xH3q8OBJlcym1csdb6i2B76uXu54Q8UzSTWSGlNJ14V+ID6ibt7+oPqg77hKZtMqnk2pVC6jvrvjn9Sie7+ifrfraQWolkkT1Zy5c9ScuXPUgjMXqKFEVL3XcVAtaluqWqdMUZOmtarpf3+OOjbcrV7ueEM99uufqtopTWr6zBlq0tTJ6s47b1cqe1AYdXPAHcN3u+Wgh11mfa9bDs6tHJXeIxWmXMVt1zH3nm2dpObNnaXmzZ2uFs+v/F/H8jNa1IvPPKaUOapU5i1123dmqWlTJ6qpU6eoT37yk6qzs/O/DOL8V0/8XzDumiz/aDp1ampqUt3d3f+7D+P//MnJCzPev04Y85JLZP7gjVB1I3gmiuOkFgB7FJwxyV1RGYmaVW0Utt0oF3fK0Yeg7j5pI70Lej8PkU9JhA5HonjJJ6Dhd8LUO1nJOYv/GjJ7oe4hsIbAU0Pc9PPN7dvZduAAl86axWOf+AQnxsaoLymhP5lk0yuvsN7N6wbY0t7O+uXLmVZZiaZpZC2LvT09rGhuJmNZGJqG1zDQgIFUiqOjo9SEwwymUixpbMQB/IbBrs5OPv/b3/K500/nkYsuwlaKtGmyfudObli+nNpwmLf6+zmnpgbv4KAY0O3dK7ladXXw5pvQ0iK57Jomy1paoLMTTpyQRPNEAsrKhKWPx4vfUylxfTtxQqjwDRtg0iRhEo8cEcO6wjlnMhLNtixJXPf5hDa/807YsoVksJpvXOkdZ9b7+6GpSbzvbr5Zmj15UtLPamqEiNM0OYRYrJja9vbbsstsFm68UV6trULkplKyjqYJM5/JyHsuJ+3FYnKK774r5rOjoxLEz+UgGoXJE20MZaOZluSnT22RhhMp8Psk1/3wSRgZg5lTxIROAdmcMO5lEbkWCmHpvQbEUyID8BjCvgMc7YKSENRUSU5jLCnt67qw9KYFnX3QUi9tHOuB1iZMy2TP975H5zPP0HL++cxZt46nPvlJWs4/nxlf+xoH//VfWXzbbey97TZ6/vIX2u69lwnz52PnckQPHaJ63jwUkOzu5oOf/ISZa9eiLAtPMEioro74iRMc+td/Zf7116NpGkopDL+f7OgowZoaNEDZkjdtplK8dc89nP63f4u/ooI37ryTWWvXUtbSjK5pMNwnOemTZwgjHR0WJr2qVlzYMylh5i/6kjiw64b8SI4t16jzqGzr9cGRd8VU7rnfw4VfFHb8Nz+CL3xLGPmnfi157xNqhR1/6tfiDq8hjDjItfV4IR4Tg4Se46IGME05llAY0ikIl8g+zbwcZy4LT/9GjPWScTnmz38DAqHin80y4fhBqKiGiOu0qGlFRUE+WzyOgpO9xyNtpxLw/hvC8F+2Dn7xMPZl68jlkgwf28eE1kX4wuVoQM+7OwlVNBCubGL42H5qZ6zE8PpQjoNjW+i6QXqsYGiXJVzVAAqUpmGmxxg6upfqqYvxhcrJJUcxvH4Mb4B0tI9gaTWWmZF1pizG4w/R9/5Lsv9QmdyLo710vvEkp6/+BloijoqNoTe2gK6LsdyBt9Bmzce44GLwenBOHkcLhiAYRAuXoMw8zs7t6Cs+hlYxARUdxnn1JfQLPgPxMfl8zoVoXh/KsWEshkrF0RtbUB4vWj6Hchy53paJ88oL6Ms/hlZV4+YHa6ixEVLBMFeUlnEDRUZ9P1ALNAN73fcJSN77eqAByCBsfAwoQ3LVA0iO+nvAAvfZHgKG3PaOI3nztwJPAL8D2pA8+JuQ3PghhMm/Gcmd14BAKodjOihboekaVtYin8xj5SwqJldgmzaO6WD4XONSQyOfzKMcxeC7gzQubkT36HS1d9G4uBHN0DBTJkopvEEvVtbCF/aRHEziCXhIDaZI9iVpXNIoZnSdYwTKA4RrwmjIvW7nbR467SHWHVqH6TfZO7SXpU1LSZtpNrywgdvPvp2QN4SGxnXPXsfmj28m4ouQt/P4DB+7Oncxp2YOA6kB7t19L1vWbKHEV0LezuPRPeiaTjQb5d2Bd1lQL1ezN9FLf7KfptImNu/azIa2DbSUtXAseowt7Vv4hxX/QG+ilxUtK+gc66Qr3sWSxiWUeYN4rLh4tRs+0P2So66UsOu6R5hiKw1v3Qin3wBGBPyVcm86bvUaTQdsyEUhUO0+v21pRy94mVgwvBfK54InKLnZ0beEoU93S758fkzc2D0BGGqHUBOUzhJTOTsvOd0FY3krJ4y7r0SOQzmuIgAZlyglueD+cjGQc0x5V8o9XnXKZ/cPpVzTOp+bb+6Y7vEr2ZcRcPelhJ2PNMhYZ+wo7NkESzZAyUTofQ1KGmDfVli1RXLPNTfHHk32oRtyPLpPnN8LxzT0NlTPE9O6fVtg8c1u7jzyfeH1kBkSx/qxo+CLQLDaNcmLQz4m+fMrfyiMvlEDg8PCojuOjCnyeems6+tlnlLyDLcs6dyVgl27RDH4wANipgPw29/K2Ofuu2XwsXmzjGd6e8XANxiEoSEYGxOjnNdek3z4gQGR923YIAONwmChokIGFLEYTJwIhoGlNHbuHmT+fPEZiUR8rlGcjmU5jI6mCYV8xOM5amvDaJqGYWh0dETZurWdLVvWjNsPeDzy23q9Oq+91k1TUynNzaX096eoqwvT2RnD5/PQ0TFKY2Mpd93VzgMPnI/jKPbs6aGlpYzJk8uxlI2p5eQeR3F46CQza1sJeP0kc2mGklF+uu9Jvrn0s/g9XvweH2OZJD/Z8ycuX/RJ3uo9RNvk+WTMPP+670muW30ZAa+faDpGzrQYSA4zt2EahmuqmDKz3PfXX3Dd6suIpuP81N1GQ8Pv8WI5Nu/1d1ARLCGaSbCoaRp+5ziaFgBPDaAL627UgKZETettBrNL1LZmN/R8QlS4dY+JYtaJgVHr+mB1uev3QGgp4BFm3jwB1iB4qsXAesL3wahzTRqDLrv/f/akaVqPUqrpP1z2EXD/X6ePgPt/0uTk5SZTjgB0JwF6icjm9TB4mgSk21H3ZuwUswk7CifmCgD3NopRRdUGAfpWpwvqN8hN720RKQ7aKW2dAvyNajHDq7wBvJPkITKyicyEH3NkLM2mV17hlpUrmVxeXhBK05NI8FxHB3t7erjv/PNZt2PHOMD/8Sc/yfFolK54nCWNjQQ9Hiz3Hmrv6qKptJRJ5eXkLIs9PT1Uh8MMpVI0lZaytb2drWvWABDx+cjZNnu6u2kuLaWptJS8bRP0enGUIuw4eDs60Hp6BNlalgChkycFzFdUiGyspkY06MuXSyenlHRG4bCcTDwu5nVLl8p3wxBXuEKnGXFd1YeGpLMbHBTp2alo+rrrRIb/xhvjwYG8N8TB/nJ8Po1bbxVF/913iyz+0ktFxeY4gq/SaWlm/XpRv2WzAsANQ8D43r3SvOPIezAo6v877/xw/7pnj/Tvra1yGbq7RfkfdA3CNU3ae/ttMcML+W08mjNuHkc2LwB+cqOsbOgiky9MBUCv67KNIdLoDwH9f7++zyvzc6aA8+Y6Ma9LZaSMnIYEAUbjsn5LPUTjUBbBRhHv7eHAY48x61vfwl9eLoD5yisx/H4CFQIOrWyW6MGDhGpqSA8OUn3GGSJdNk0Mvx9l23Q+9xw1S5YQKCvDNs3xsnKGx4NmGLx1zz3M/853pDzc4CAT5s1DWRb5RAJfaSm614uyLBzTRA8ESHZ24i0poaS6Ck0hRm6Nk+VHUwq6OkRiPjoErTNk3ugQVLqmiMcOQlmVmM8FQwKcTxyG5qkC/I++Bz/eClfcKIDbMl1Q/55I2hNjMv/fHhBH+0WrxBzPcWQ/z/4WLvyCBBBKK6GmQZycx0Zl+1xG9jk6KAGDdFK+R4dgsE8c71OJosR/eEDK0lXWFLcxPGK8hybr4V6HimqYUFc06jt+CJomialdxwExuKuqlf+Q42B7PPQceIFY3yHK6qfTOGeNa0yYR9MN120+hC9UhmObDBx8hQlTFkl5OH8QwxPA4w/h2Cb9H7zsLkuSz4xRVjcN3ePDyqZwHJPhjv3Unb4K3fCSGu2h840nKa2dQs1pyzjy158y8czP4g2WMHR0D9VTF2NmkpSU1eN0Hhcwnk6it7QKkO7pRCsrR6uoklJvI4OoeBytpFSM6JZ/DNV1AtV1AuMTl2Bv/y3q0Ht4vnMrKpUEnx/NKwZ6mlLybtuobAZM023jLKiolOWmAHgtHEHZFprhwd7xR+wVZ3Gopo6gppFGHOMfQgB4FDGcG0Pk86cDlwF3IyDdQcB+DWJ+k0VKwzUjoPsYcBfwQ8CDlJdzEJDvc7cZQoICeXdeP/AsEjD4J+AkcFoqh5Wx6N3XS928OrxhL5quoRyF5tHIx/NiXteXJNkvgFuqBIiBXHIwSaA0gMfvEbM6R5FP5ilpKMHO2XTv6SZSH6GkvgRfxIedtzF8BvmUGATmU3l8IR+eoAfHcujd30vd/DoMv4HhMzA1k2OJY3TFu1jcuJi8nWcgOcCd7Xeyfvl6AJpLm7GVjaEZeA0vHt2DoxwGU4MEjADlwXJyVo6x7Bg14RoUit3du5lbO5eAJ4ChG1zz9DX84KwfkDSTPNfxHHt79nL/+ffz9zv+nm0HtnHprEt56IKHMHSD0fQoVaEqTNvEVjZ1gRI0O+v+AjqM7IFQC4QnFUGycgSIj+yD6hUCpEf2QcVcAaUKGNkNE5bK5+RxOHQPzN8qy0GAeMU8kdi/fwecvh6CtRB9W8D+B3fDgntl+eH74Yy7BRR7wlLqzXADBIZP9uHk5ZiSvRBpKjq8gwBjwydA2y4AfBf0F7bVXaM7lJyfmXIBO0WQn0+IiZ1mFLdVtqxrZ6XcmpWFF/5eSrxNOk/M5JQF6WHwl7lBiiz075HjDNWANyLX20zLMRh+6f9Avqf6of27Ir2ffil8/GHo2yPb+isgVC3XwsoIqM/HIeSSCmhyfBSCJiE40vG/guzCYCCREOBcUiLzdF3GKJomuXMrVkhkfmBAxjNer4yJhoYEfA8OSqrg4KAwAzU1MvgIBKSNXA5uuUWcc1tbJdhq27Jv2w3ueDzQ24sqLcUpKSWreTBNRT5vMzCQ4Pbbd7FxYxt1dSX4/QZKKQYGUpSW+kml8pSXB4lGMzz3XAdLl0pZuHvuOZeRkQxbtrzK1q1riER82LbC49HI5208HgHJjuNgWYp163awYkUzq1dPZOvWdn74w49jGDqRiA/N65A2M6TyGcL+EBFvgNd7DlIXqWIgOULnWD/LJs6lrqSKrJUnlknQFRscB9bNZTVUhct5q/cwUyc0Y2gGeStHeagUHY1kPst9L/+Cryy8kAnhcgCeP7KHZRPn8vjuP/KVhRdi6AY/2fMnrlj6GRpKq+mJDfGTPX/iG0s+w7TKCnR7QMb7Zh8E5gsQ10sh+zZ4qlzybAKM3gO1D0mlp6qNUirOPCRmdoXxfQGYJ7YJuK99QCpMjWyWdbQQqLSM89HBU/nfArTD/zVw/++Y4/7R9P+FyclD/hCkXwEsucGG75RlvimALg7zA+uKrLun2v2eFtAeXHJKiThxzC66Tm6W0hJGpdzI422lJUqXcHNd9JA8HKxhyalxt7fRqQoGuW31aiaEQmQsC9txyFkWHaOjtDU3s3XNGoIeDxtWruTSWbPYuHIljlJ0xeNUh8Ps6enhaDTK2u3bOTY6yoqWFppKS9EAv8fDkqYm7n7tNarDYTbv2sXixkZ6Ewne6OvjWDTKuh07qAmHqSspwVGK1/v6ODk2xu7ubjTLQuvqkijx0aPw938vkeXTThPQvm+fdFLNzZL7ZZrSyXV3S732w4cFtIdCxTbWrpUSLK+/Lgz966/L91dflQ7O55MOb/lyac9xBAFv2SKR68WL4RJXNeHzUV0tIoCNG6Xv3LBBQPuGDdLndnXJLvv6pMpLY6OA9rfekkNVSgD3smVSua61VZZ1dso227ZJ355MSmxi3jzpsy1L5s+bJ58tS4D+unXS5tKlbrqxDSpvFvPYdV3y1wvl3MBlH9xXaUTW8Xlc0OUeYDgo87N5ONopQDzhMu95U7b992XnCvvJ5iW/viwiufE+L9RWgd8neenNzSy+9VYiTU1ohsEZ119PsKoKTzBIoquLoTfeQPd4qFm4kPTgIBXTppE4eZKsW289fuIE+zdtomH1agJlZQy9+SbpgQEMnw87k+Ht++8HYN4112CEQhg+HxPmziXd3z8O2vPxOI4p5zF68CDp3l6yw8P4SkqEjdE0mDLLPc8OAbRTZwtAbmqFE0fEZbm6Xs791z+SZbERGRQN9cMv/0mAP0pY9JZpsOnHApCPHpD66ZouoPi538u7bbmO9o/DF650jRF8ArTPv0RyMVtnynddkz/V2IisU1JerDn/y4eFDR8dlPOYMhN+8ZDkw/eekP96VY2cU1mFHNOJQ7Lc65NXIaw3+XS5TxxHSsz96p8kx14p+PkDwsRXVMkg9uj7EizQDRpmf5yJZ36W6qlLUI6NUgorL3Xcg2XVeANhlHIwPD7qZ50lNdd94kLvOBY97+7EzKYIVtRjZhKEKxsoq51G/wcvk0tG0T1ezExSyshlU/S8uxNvMELLgk9SPXUxhsdPWf10QhX1DB3dQ6zvEENH9xKqaEBpCAueSqDV1Atz3tOJ3jgRyitRuZzcKpXV6M2TcHa5zvLtL6G1niZ58YaBft6n8Xx7o6T1+gPg9QqAN/M43SdhbBSVzaAFgrLs0HuoZBxiY1JOLpUAnw+n8zgkE2LCs+YiKK+kGqhEmO7FCFheB6QQAJ1B6rIPICXhHKTOuwEUqlMec7epRmq6O4ir/GJ3u2vcdYbd9YeQYEAIYdwLbvIVwNfc/ehAQ95irGOMZ699ltp5tXiCwohbOQs7b+PkHXwRH8pR7Nq8i4ZFDcROxtixbgf5uID0UFWInet3CgCP+PCGvAQrgyhboRxFuDZMsi+JpmuMnRgjM5rBylnkE3l0r06kLoLm0Yh1xnj6qqeJ1EVQjqL7tW6srIWjOXTFu6gOV3PV01cxnBmmL9k3ntPeUtaC3+Mn4AngNbwMpgZJ5pMMp4eZEJpAWbCMZD7Jtc9eS8pMkcgnWLt9LbWRWhzlcOVTV3Jy7CQPXPAAAU+AjtEO2prb2LpmKz7Dx0MXPMT2L23nuyu/i0f3YDs2YV+YwdQgXsNLlb9ESsC9ca2bG24KuDaCwrw7lgDUoV2Q6hK23LEgPyIAXvfD0F7p46vbBADbWcgOQNViAeFDu2RcMmEpeEsh3AwL7nZz5A1h2rMjMs8Tlnryc28XFn6oXY7LVyrgVjMgl5A/iuGToGFmVNhvwyesfD4hLLTukz+O4ZPtUbIcZJljuuXkXO8MX4l8BgHtseMuaNf/3baGtOcrlTJwmi4l2KZ9zq0Rb8lzKlxXdJZ/6VrJt/eGBMgrW3LYX7oWMoPyHFcO9LRD7ASE62HRegHtS74rv0ch/91Mi4N99LCcR3pQmPdCPfixDjkXb4mcRzYp+eo33SSs9sqVAqqHhuQZrJTkufv9RbDe0yP97C23wBe/KJH7efPEff7oUQHp6bS8L1kiysICaD92TMZCJ08Ka9/fD/fcI/tub5d9KSXjpI4OKWuTFJWH5jjoysE0HTIZk0DAoKWlnBtuWEZdXQkDAwmGhlIoBRUVAZSCUMjHnj3dVFQE+cpX5vLQQ3tZsaKZQMBDT0+c73xnGYGAh3g8x2uvdXHsWJQ9e3qwbWecmR8by7Bhw0rOPXcKmzfvYvHiRgYGUlx77bPj6w2nxnik/XeMJMdAg8pQKf3JEWbVTaG5vI7yYIlYKegGleFyaiIV/PKNZ5hRM4kJkQoM3WB23RSODncxlkng9/r5x+ce50S0DzT4ysILCXr9GLpOOp9h2cS5RPwhrlt9GfWlE/iJm1f/491/Qik1/v0ne/5EztFQnmoZtwfmSAm44VvB7oPAbAHhwcVgjULNPQKya38ExgR5Io870G+WknDeSVD7MEw+AnWPCk4Y2Vxcx1MjgF8v/W8F2v/vpo+A+0fTf81UYNALYNzqhMqrwB4QmbtRITL41HMSmfPUgacZgqtgZKtb7zH44RJxTrJY87HqHwBD5nlqT7nh3W0nfyAlJpyUy+QvEOl81XoouRRHGdz0/PO8ePw4IGXbAEYyGebV1jKQShHyejFtm8nl5Tx60UVMKS9HKcWKlhaGUilqXEC+7cABIn4/x6NRrnzqKTqiUWzHIZrJsGHlSoZSKW5ua+PcKVPY0t4+DuS3HTjAYCpFfzLJOrdefFc8zuyaGqKOg1q9Whjx0lJ4+WVBwkpJdHnpUgGTN9wgnc6ePdIxBYMCtJubi85ufr90bGefLR1aW5u0u2iRAP2aGkHCfr98Hh2VbUtL4bLL4B/+QYIFgcB4p5rPKq69VuP006UvbWsT07jHHxc1fj4vfe6qVbK8vh7275cm2trk8/Hj0k9msxJsN01Z1tQk2x08KH17oVqMrstyv1+C7wMD4sN38qQA/WXLZN10Wph32wQtl5dzOdopC+uqBDyXhgXdm2ZRmmhawpYXdoaCTK4oi/f7BHwXAgAeoyinP20iLJ0r736vAEmP8WFAb+hianfkJORNbMvCTKXIjozgWBaG14ttmugeD5qukx0ZIVBZyf7bbyfZ1UX1GWdgptN88M//jK+kBDOZ5IN//mcpGTc4yN7vf59AVRXecBhN10n39zNh/nwyw8OMHTlCureXRGcnynEI19cTqKpCc2vCv3XXXdi5HNVz52KEQkyYP18MrpQS9toyxfStdYYYy+Uywrr7AwKElRLpudcHX7zSNaGbIQPBQh14j1cY8Sf+DeJRuf4nDhVLrqFEur7vZdnG8AqYe+LfhIFHEwC+/Zfyv464gZZgSP5EkVJobi3Wcp8yC174M0ybI4D8tDmy/vN/lNJwY8Oyb69PWPMR15zxNz8SgO71yf8DZN+aJvsNRuR4PF4xuSsEC6bNEUM+wyuD/OZWHH+AfHqM3vdewBsswesPu01paLpBqLIRzfCiGV503RhX/QTLqjG8gQ8B7eFj+yirPw1vMCJAPpciWF7H8LF92FaOUEUdkepJDB/bdwowrycV7cWxTGH6laJ66mLK6qdTPXUJdj4j5J2uozdNBDOPSsTRahukfFs+jxroc9MeHJSZFzn7rPlS6720HK1yAjgOms8dNFkmSteEJA0EQYHWOBGtogotXCK/QaQEz3duRZ84BWf3K+OBALJZMaZ75QVIJdEMD3ld51pN49dIvfbLEQZ9FXA/MBcB4zbQjYBzEJbcBuII0x7mw6XhDIS5/yLCyl/vbj8Bqf9+K1L7PYKUgUsirHvBDK8dSAC+vM2rW15l6XVLMbwG3bu78YV9OKaDYzmkR9KMHBnB8Bmcd9956IZOpD7C0u8sJdGfYPva7cROxlh81WKUoxg5MkJ6OA0adL7aSaI/QeXUSlraWjB8BvHu+Hj7vrCPvtf7cEwHb9BLsj9Jy6oWvEEvvrCPcG2YbDSL4RgsaVzCUGqIG5bdQMgTYkXLCo5cdYTHP/k4XsM7nj9paAaGZhDwBKgKVknt9lwCRzlct/Q6Ap4AYV+Yu9fczaSySYR9Yc6edDZBT5ATYyfGa7yX+EuI+CKk8il0TWfVxFVMLp+MR/cQ8AToS/Shu/JwTZloBzaJqRyOyKzRIFgnABMNcqMC5j1hmWdn4L0fQOq4sPMTFgnIjx8RKbwnDNXLoeWLUt+9Yp4Y3ukeAayj+0XqPWEZGCEBpdXLwVMiQD3TB+hyDNXLBawr25Xl6wJ+nbwL6EugbiGUTpI/n+EVsB07UZS0474KLDoIQ60ZAuq9YQHpypHvBfAeqadYD96Uz3Z23DROwH5p8T3dD4NvQPwkvPB3Aqb794vs/+wHoPI0CFRA76sQ75JtVt8tDH0+AS99RyTyITfVoPw0WPNjKG2W88+NCavvDYo0ft8WYfaT3fL9xXUC6ksaXRWgBb27QXfg3nvkGfraawKYBwZEHTgyImOXpUvlcyYj0f5AwH3GB6WTv/FGaXPTJhlglJXJuKi6WoD+8ePSXm9v0Rl361aYO1fWSSRk0FBdLdvZtszbskUIjt5ecdft7wcgk7F4661+kkkTx1EMDqYYGEgSCHhJpUyuvvppTNMhGPRQWupj8eJG9u3rIZ02eeCBC/ibv5nL3r09zJ9fh2FoXH310wAsXdpEMOiloSFCe3sX2ayFYej4/R5CIQ8NDSVs3CgAfsuWdrZtO4BtK2xHjZeDG83ESOWzhLwBZtRMwu/xURup5I4X/oXusQE8uoGuafzrvu18ZeGFeHSDN3sO0T02OC5vH0iOkMylealjP9FMnIgvQH3pBLpjg4ym4lSGywn5AhweOonf4+O9/g6+euZFnDd9GVcs/Qwe3eCbSz7LQxffxM0f/zoKL+AVsK2XyZi+7nEp+aaXQ9X3hMQLLZd7q38dWCdlrI92ynh/gxjWWf3yPDDKhXyDD2MCDMEamvofA9rhI6n8fzh9JJX/T5icFDgZcYL3VIs8JrgUMruL8peqDaCF3WibCfaYAHo8Up9dZcA7EVReXoO3Qu0WuUnxSJ7LyO3SjlENg9cJWLeHinJ6LSK5cJof0q8JyPc2k3ZKydsOluOwp6eHptJSqsNh1u/cyZ3nnEOp34/jDmQylsWNO3eyfsUKqoJBvvPcc2xsa6OupAQdGMtmqY1ESObz/OGDD3itu5v7zj+f5nvv5XeXXMKKlhYMN6R6LBol5PVSEQiwp6eHJU1NrNuxgycOHfrQuj7TxHfsmLDuS5YI+Dx5Ujqbxka4/36JHislHV0sJhL6gjzM75ffQdOkZuqWLcVkcZDO03VdRSlpe9MmaVPXi5I1XZeOcHhYUPaWLfDgg+Q9IQ4e8xEMaaTTis2bNW6+WZjzREKa9buqu0xGDr9Q7/3OO+UwTFP6Y8cpAu7+/mIKWne3GMgODMBdd8l24bC0F4nAFVcUpfkPPeQquLtk+/XrYeYMm6DXKbLjHqNYQ73wrpCdJ9MCxi1bOnOfRw7ecSDv5si31AsoL8jiW+oF6CfTEAkV1z/WLZL5gG+cqC1KPZEc+p5BzJZazEQCM5XCG4lgZbPY6TQHHn+cWWvXEm5oYO9tt9H5zDNM+sQnWPS976FsYWslZ1Mn2dNDqKZGQJXjoHu9EliJx/GVlqJ5PIy89RaVs2aRTyQwEwk++Jd/YcFNN5EdHeX9xx9n5je/iXIcglVVWOk0/qoqNGDo7bdpWHQmWiblXjM3nzvlAnR/UAaZwwMQH5Va6pm05Iv73JQDy4SRQXj+TyJ1z2eFlTdzktvuKGHCx4YF6Gs6/PoRYdQrq4WpnzwdZi6AcERqpR89IN8jZXJBEzEBiL6ABBTeeFXWuewq2X/hPvC6TE4hl11zf5jEmADudFKWvf+GgPwdv5Yc/MpqUQQE3Xsnl5VjSSUh5AYPfvUInPd5kdBbpgQkmqdih0L0vPc88YEOWhZ8knBlo5ujHsPMJAhVNMixKNuVzIfdHHRtXGJ+qkTeFyyl592d47L7mtOWoWwLb9DllXUDMxVlqGMf1VOXYHgDZONDeIMRho7uZULrQnzBMjQ3SFDwPtAcBw0d8jmRt+dz8nzw+dB8AfmfWxb2U39Aa2pBP32upDxoGirnpkMlEzjtL6G3fVxUCCk3JUfTRDZfSC0wPKh8TvLjl6+Gsgpxq29sQek6qvskWkkphMJoXh95w8Mhr5ceTWM+wpQnkLz1CFK3fQ/QgoDqCoSR2I3kuncjNd5HESC+2F0vi0jta4ETwCZgA9CKyOHHEPZ9hbtP5bbZCPQAS5DAQDJvMWEkQ2ooRbwrTuPiRjwBD4neBL6ID3+pn+RAkvCEMApFaiCFL+JD0zX63+pn9MgoU86bQkmjyOIzoxnMtMmuzbtYdsMyAuUBgpVB7LyN7tEx/AajR0dJ9iVpXt6MlbHYuX4nS7+zlKppVVg5i549PZS1lOEJeDBTJrvv382aR9dwNHqU7ng3TaVNbG3fytY1Wwl4Agynh0mbaTbv2szNbTdTE67hzb43aSxt5I5dd7B++XqmVE7h5NhJuuPdLKhfgKMc+pP9bGnfwsa2jbRWtJLIJ7Adm3cH32VR4yKCRpCOaAdb2rdw5zl3EvKGsBwLj+5hd/du5tfNB6DSH8GXOo4WqIN0Fxy6FxY+6Mri90iOebrXBe5ByA6Dr1yAs+YVIKwZAtA1DQITJB/+nVtg7mZXRu+A7SqtzISw7lbGzft2f+DoW1B1prQ1vEdAffokHNgMy34ubWia/MOULeA40iD7P1XiXshPL6yvFMQ7obSl+N1MFeXveVeCn4/LsRfy3fNxWcexijL7wvzRI1A5DfzuPNM9t1SvSOBHDkDVLLlehUDAro3Q5qoXdVfyX9j/q7fIMo/rKWCb8q5p4pK/f6sw+t6QW5M+IBdN0+U80SQYEJggtd91rxzTyHtQv8xNA3BT9Qr+O7fcImMO2xZCIp2WQcKWLTI4aG8XD5/JkwWoRyLyTBkbEzKhMM5JJuEPf5CAwMaN8OKLRb+fujoZNBiGtJnNStrfsmXj/SjxuLxfe+34oML8p0c5OmgRCnkZHk5z7727PyRb//a3n+aqqxbT0lLG2FiWTMZk06Zd3H33GnRdp78/QV9fksWLG/H5DNat28HixY2sWNHMli3tbNiwklDIQzSa5e67X2PDhja6u+O0tJTS2lqBZSkMQyOTsdi/v5dVq1pwcOhLDfLjPX/ie+d+k85oPz/d9ySXL/okkyrque25x3j20GucN30ZG8/5W7y6B0s52G4uemWwlNFMnPJgCb964xk2nPO3MkRRUu+jPz7CT/c9wTWrvkTA48drGLzTe4TWqibCviC98SEGk6PMazhNwlCOg6Eb9MTkmDZ8/CuU6T1ohVRVb6sA68weyVX3ThE5vDkgOevKgcx+YddVVlJdjXLBAicXw8S9ggky+0R2DwLyNSX4ojCwMsolt/2/0fSRVP6j6X/DpAtY9jaDNQKhlSJjC7XB6ANiIlfIYVEZuXlVymXnT4r0zeySpqweyL4BdXfJutaAMO1aECqvl3b0kIB2PfBhOb2nRqJ2/d8Cb70r01c4Ck7GYuNMd3c8TiybZXFjIwCHR0ZYu307J2IxHKVY3NjIlldfxaPrXL9sGUGvl4Fkkj09PYR9Pg6PjHDts8+yoqWFrWvW4DcM3vzWt1hQX0/eshjNZPi7p57CcpzxUnKNpaUEDYP7zjuPY9/+Ngvq67lqxw6ORaN4LAstFBKK2TSlQ+vrE5lYMFjs7F57TTqladME1R49KhJ42y5GrjdtkmWBgDi+pdPSoX3727K+UhKBXrVKOkaPR1j8gQHpzHI5KTe3aZPI5Ts78X37Sma0pKirU9TXa2zZIqtrmuwqFJLdxONy+IW89k2b5Ce9+upisLu/X3YZiUgA/eWXJfDd1ianWlIC994ry197TS6DpsHDD8P27fDd78p6fr/099u2yfpKaShdE1Dt0QV8nCqTB1fCqEPETZQ3dJG/FxhWTYPuATGwy7n5drm8fO/sE6AfDrrl44RJpyTsgngl5ecKkgHbEeZf02BKMwCZkRGSXV3oHg/BqioO/du/UX3GGRg+H5phsPj73+ezL73Ewo0bSfb0sPf73yfd18fw22+T7uujdOJEsiMjjL7/PrrPJ0D9vfewMxn23347djZL+YwZ5GMx/BUVhGprhblPpXj/8cfpfOYZ3n/8cUpaWsgMD/POQw+R7u1l6O23mTB3rhy73wXFtiVsdi4r59Pxvlyn2gZhtxXw1K8ECJt5+Nn9wrAHw/DldcXtAkGRlJt5uf6V1QL6TxySjvwrVwtDrmnwpb+TXPenfiXXr7Qcln1cgHMyJnL4P/9M9qNpkM3AzDPggi/IsQdcsJ1OCagvmCuBgPvhfgGgxw8KCC+vgpkLhUX//BUioTfzsp7hkWM385LDH4oI2I+OwLkXy7qOAyePCmNvGGixUaqnLqFlwSfxBiOkRnvAsfEGSwmV15GO9mJmYqSjAwRKq/GFSlGORd+Bv6CsPI5tgoL62R9HNyQoUz11yThj7g2U4AtXYGYS9L73AmZ6DG+ghMY5a/CFytA9XsKVjZiZJPGBDqxcBjMnUnrHyos5nFJo6GjKcUv0aW56QOEe0dDcoI2+4mNoU6aDbuCc7JAgRS4L+TxO+0uoQ++B14vmlljUDI/8d/J51NgoTk8XODaaz4e+dBVO+1+lLFxZucjoNU1y7MMlYJooy8KbTTNVOSxXCgMB1bcjfzcL2IeUhWtA2PJOhA1fBNQj5nKlSF57m7td1t0ujIDyLsSMbjOS355BWPil7vLjbptnIqB/ORIwUEClz4M37CXRk6B2Xq3ktitF9FiU5EASNLDSFtu/tZ3YiRjRY1EAvEEvLatamPs3c0Xabis0QyNUHSJcE6Z5RTPp4TRW1iIzmsEb9OIJedA0jfKJ5bS0tZAeTeMNe7nw4Qspn1SOYztkRjM0LWsiVB0iUhch0Zdg9ebVZKwMm3dtpjpczdb2rXxn2XcIeAKYtklNuIat7VvZdmAbd7XfhUfzsLx5OQ2RBla1rOLe3feiodGb6KWtpY2gN0jEFyHii7CieQU9iR46oh1c++y1aJpGXaSOdTvW0THWQU+ih+8s+w4hbwjTNseB+4qWFQylhkjlU2QdByJTRIbuLYOF98t9ao6J1N0Iw4QlruR6WAD4/qtknJHphX1XQuqkGMz5KmBot/x3528RgJntl/+1JyLsuqYJwx6sEan86BvS9oQl8NZ6AcnVy0WOfug+keMXTOJix4Xx1nQXiOtF2Xo+Ic8wb7jIzBemSF1xe8csmtnFjsn6RkByxzVN2o91COBGk+Pxhov59N4w1J7hSuJtkc/rHogfh713CnCvXyrrvXKz5OZ7grDidjGb+8s1kOgWxYGdleDF/KshPQC97QLU+16TdhVQ0gxnSdoVL14t+zRTbm67JaXklCP7DJRDsh+evxIywwLa7ZxblvO4gOPDh6Wt22+XgcCePTJg6O4uAuqBARnvFExya2rk88aN8m6asu3x4wLEv/AFePBBUQqed54MCDo6ZAwUkNQd4nHx7Kmvl7HQ2rVyLLouA43CoOKWW9A8HurrI5SVBejvT9LW1jxuQOc4igcfvIDW1opxc7rGxlJuumkFwaAXj0djaCjNvHm1jIxkSKdNtm5d8yEGffPmV6iuDnP33a+xbdsBtm5tZ+7cWhoaSonH86xbt4OOjihjY1nmz6+jo2OMb1/1LE1ltXx3zRVoaPz89R3j5eBMxxpnw7+59LNkrTxv9BykPz7MHS/8CxXBEkYzcWbXTWEsk+A7qy+jNz7EHc//MxlT0qECXi/zGqYRzSTY9PxPODHax5QJct6bnv8JFcESzmicTm9MtsvaJgrFYHKUxc0zifg8aGaXjMu1IJjHZUzvqXFZdQu0EhmL918J1glJiTWPC7gvgHajHOp/LqmvA+tc2f2A+FVZHYAHEr8To2vNi4RQ/+dMHwH3j6b/oskGq1fAd2AOmEegf62w5DVbi8Zz/WslDyYwR/JiCoBeDwvIN09KG8HFSDDAA/kOxK01Lcy915VkaT6Rw9fcDSWXScQPdUpOzB2SOwc4StEdj3P9smUMpVIsbmykPBDg3ClTSOTzbGlvZ9uBA9yxaxfxXI41ra1sWbOG/mSSu197jYxlEfR4aGtpIej1MpxOc9bEiTREIoS8XpL5PLe//DLDqZQMtAIBHr3oIhpKStj8yivjbdtKMeDWfneUYtPZZ9Mdj+N4PKgCEC/Iwwry+GPHxqWrLF5cNHIJhyV/q1DLvWDLvnGjdIoFyVk8XsxfHxiQji0Wgy9/WSjr/fsFNU+aJG3quuz/nntEOt/bK8hbN0gmZZONG0UYkM1KOllHh/SlQ0MCygvM+3vvScD8uuskAN7XBz/4gQTM02nZ3cGDcqrJpAD1ZFJEA0ePipqtr0/a2rNH9jlpkhxSR4ccx6WXStD+2AkdhVas457Li0y+4B4fSwkYVMgBnuwrusmbltRxV4gb/cJZIpU/fFLeF86Caa4s3jAE3Bck8dUVcn2PdgqoL7SFEmO8nAtYHQdvOEzVnDmMvPsuyZ4ezrjpJiYsWCCSdsvCSqd58667SPf1ke7ro7+9HSMYFHAfCKDcmuwV06ejeWRQX33GGRz6t3+j5y9/wQgE0A2DRGcn6f5+zHSaCQsXEqyp4cxbbuFjjz7Kgn/4BwCyw8P0/OUvHHj8ccqnTUPTdWFARwfh2AcCwL54pQBdf0Bk8zgSoOg44Mrjp4treyZVlKOXVcr5BtyIuHIERBecjdNJGaxOnS0DwmxG/t8/u1/M5wJB+Ozlcv06j0rO/K9/JMdQUi7A/vk/yjUvrRBzuNioBBpAmHbDcEG8Bh0fwFCf5Nz7/PJqnSmyfMeG8gqR3D/xcwGlgRC0ni7mesMDxRz6Qu681ytmdGhyblNnyv/pxGH0dApfsJRwVRMeX4hAaTXpaL+A9bF+QuV16LqXQOkErFyadLQPTdOpm7kaTdPJxgdRKDQUhi+Icmy8oTIa56xB1z3k0zFQiqGOvcT6DmFmkh8C5mYmQWq0h1BFnVtLXqT38YEOdI8PM5uQa53PCgNvmijbRHMc1KirsgFUPg+2jVYxASwT++k/iJmdctDCEQhH0JefhXHlDWjBECqbBp8PlUmLV4CmoeIxtEhEHOtHhqCkFH3NJ1xTKK+sn0yg8nJNtXAENA0zFOaoptOuaXiVYhC4FwHduxFwrrmfLYQRr0VYeK/8QzkCfAsB4DbCpi8FShBWfQnwDuIU70Gk9/P+XZs1iGt9xN1fidv+bkAzNJqXN6PrOj17e7BzNo1LGkkNpHBMh3hPnHO2nEOkIULjkkaSg0lSQymsjIVjOtimTeeuTmInY1hpi743+mhua6ZlZQtlzWWEa8N0vdZFPp4nn8xj52WgGqoKoRzF6NFRdvzdDmInY2iaRrwzzrPXPEs+madufh1aRGMsO8ZDFzxERaCCrWu2Uh+pJ2tl8Xv8OMph65qtXDrrUrau2Up/qp+rn74a0zH58pwv89AFD6FrOvPr5nN09Civdr7KybGTHB09ypdmf4lVLasIeAKsaF5BMp/kh6/+kCcOPUFXrIvlzcupj9Rz9dNX0xXvwlGOqDzQmFQxiapQFWPpIclxH9oFgSoBetkRqcOeHyvOG90vwNwIS013wyeS+NNvFEm7ckSaXch7x/2x/LXyvHFyMsM/QZZZGch0iyndG9fKPhbcI/+a/esgeQIWPAATv+TKwXskl70AyJUEvkS2nhUwXqiZbmXdXHc3/9wIioFdZljeC+7ukfpT2lNyfJoOmTEXkJ8ihbfc4GfBe8TJuxJ+V4Kf6Bb3eCsNL6wTln/lnXKd+vYKkC+bDGeuh3SfgO+XrpNjr5wGoToB2uFalyW3wEzCX6+XfftK4WP3CuteCADET0qQwUrL9QvViaz+zPUi24+fgP69oHwSWV+xQjr6gkR+3TohDgpus5dcItH8W2+VFL/aWgHuIyNynnffLe833ihKwWBQQP2+ffKcLy0VoqHgy1NSIvOz7rVbtkwYhLGxYpS/wMTv2QPNzajmZvAYZDIWV121g6amUr70pTkA9PYmWbt2Ox0dUYaH05SVBbBtxd69PRiGxjXXPINtK5YubULTNG6//WV6exOEwz4aG0u4777zOHhwHT/60UUA3HffeVx22Ry2bl3DyEiGv//7HfT2Jli2rIne3gR1dRGCQS89PXGWLm8gZWYYTo2RNrNct/qycaBu2jalgTDfXXMFTWW1GJrB3IZp47Xef7b/KWbXTQFgXsNp+Dw+BhKjXL3yiwC803uYEn+YC09v45evP838xtMI+QIEPD6CXj83nvVVNE3DUYof7/kT8xqmSd+TjDK9ZhLnTl+G5Wgob5OMy1Va0lQT28QBXqVlvK8y4hKffALMfrk/Cy70A1fJelpAxv8j90HlTWJq7Z0i2MF0JfMll0DdPwnQzx+Xe+F/yPSRVP4/mD6Syv8nTE5e5O6aK3sfvrXoDFn3I0BJaYiCjD6wAOxB1ym+yXWN3Cj57+ahD5eSq/y2mFYMXH2K2+SDrmP8Zqi62ZXo5NyoX4c7/xZ5kARmk3aqORKNs3nXLja0tTG1shJHKWzHIWNZOEqRyOcp8/vREBd4y3F4tauLr/zxj+y94gomhEKkTZObnn+e9StW0FxayvFolIFUihXNzeRsGVz1JRJs2rWLm9vamFJRwfGxMTa98grfXbmSptJS+lMpUvk8GnBnezu3tLUxMxTCyGZd2bZPOpV33hFEm8mIFvzGG4t6cijauIfDQmV7vUWjlwIDn0qJq+v69ZJMHgjI4PzUknGBgAD6e+8tll8JBETrvnmzGMwEgyS1EtI5g2hU2HC/X/q92lppqqxM+tJChbnhYVHzF1RuwaAcftLFbXfeKaXkamsF9C9eLP3t9dfDGWfAuefKdoYhbQQCRaY+lyua5BcI7v17Hc4+y0E70ikseHWFazKXE6BdyFePJwWMKyWMu8/rNuICsWM9In33eYv/77wpIL21sThQO9r57yTyrqQ9kZFycbpWLBUX8GHlTRLdXaT7+qiaM4d8KkWwqgplWSilGH7vPapOPx3HstB0HU8wKKZm6TTv3H8/c6+9Fk8wKADbdZE3Ewm8kQhGIMDwm28Sqq8fbx9A94j00bGsopzeMBh++22qZs8mH49j53IEKirQ/X58HgMtMSbs8olDwoz73LxD2xZAX1ohsvee4zBxmizTdGGxC/J3lJuWYMl19XjF3C2bEQm61yeA/Pk/Snk2nx9eewFq6gWI7/i1lIQrLYffPi5S9vnL5Zp6/cXfTuEOfnFlqrrLsmsCILMZAeLdHXKssaiw9hUT4Nnfy749XvlNcxlpJxFzgwRljNP1R9+DRzbB/KXwtWuLgbQThwX0+/xyLKkYdvkE8tk4wx37pOSbx4dyJfCDh16ldkYbuuHFyqWxrSxWLkuwrBrQ0DxeNKVIR3vwBErwBkows/HxUnC67sXwh4o5tLpB/3svEu05wLTVXyefGsPjDzJ87HVh6IOlmJk4uu7B4w9h5dL4vCGUY6M5CoWDhiaO8uESVCohue+FagKajjLzqIMH0E6fhWZ4xIDOMtHKq8C2cLpPotU3QiqJs+tFt8RbtUjtn30CrbFZWPtAEM3jlcCEpqNGBkVqv/xjaFU1qGQcLVxCwufjFV1nLmJQl0FAeQMwEWEfNEQ+/12ENfe56xW+BxHAbiLAO+u20YSA9OuAjcBkxKCuF5HIF+Txc93bvg8JFMQRIJ8DQnmLzMERXtn0Cufecy6pwRSv/vBV2ja2UTG5AuVIypWVsfCGJJc8PZzGTJrsumMXbRvb8Aa9BMoDojw2JI3DztugYOeNIoMvn1SObuiYKZMXNr7A2befLZJ7t7TcB7//gO7XujnvnvN49jvP0ri4kXlfnUc+lSdrZukP9I+XXwt6ghyNHmVr+9ZxCbvXzbu2lc1gapCXjr/EhaddSCKfoMxfhqMcvLqX0ewoEW+ErJWlLFCGQqGjs6dnD/WRelorWumMd9IV6xqX5N95zp1YjsV7g+8xpWIKjaWNJPNJ+hJ99CX7OG/iCjy5IZG/j+yFivnyy2ru/fzORjjjHgGSI3vFbd5f6ZZxaxZ5fdUSAet2UoC9PHBcybfXlYXrAkSjb0HVImG5lS2gfdpVEG6RQMG4DN/93791Iyx6VNi98XzzPOPl3QbfhZo5RQd4w1eUzxveouO87hEgWzpJnoXJHgHSBa3+eP672/c4plvuralYcg73mmiauy+3jwfIxcQfwFsCR/8EZZOgpEUAfcNSdzyWlX3oXmHYgxNc+b5TfHZaGTmel9fDwutAaXKcyoKB/VA9Xxj8fAxGDkLdomL+u5mBvZukfFz5VOh5BSbMAaMEYmmJsm/ZIlH2nh4hIi65RAYQhedMTw8895woCRsbhR0o1Jtdv17k77//vZSkeeQRGbeEQvIcTqfFAO/U8dHAQLEE7sSJEgjweIRBKKgX9+0TZsAwQNcxfQGyHjGeS6fzhMM+MhmT0dEszz3XwbRpldTXl3DHHbvYsKGNqqog11+/kxUrmsfl8OvXL+fVV7t49dUuHnvsE+TzNr29CTZvlm16exPMm1dHOOzFMDR6ehI8+2wHe/f2cPfd5+I4it7ehCutb2PStFJydlZc5X1BIr4gthK5OkD32AA/3vMnvrnks9SViodNxsxx719/weWLP0XQ48Pv8RPy+UV5ZObQNQ2fR8wzR9NjhP0h/B4f3WMD/HTfk1yx5DOUB0s4NHSS2XVT8Ht8JPMZAh4fWTPHfS//kr9ZeBETK+vw6Xk8A2tPGZc/LIx54X18/kNSovnUqlEfKg33qPznQBS4Zvcp626U1NjsGy6hZwhbH24TgP/fZPpIKv/R9P/+pPvAKHXzz8pcU7jLXMO4rPSp3maXMW8SV0gtBKFlYjAXXCEMemgFhFaLRMbulRt19G5p91STCs37HzDrLt/iaZIakd5Jss/sQUyljxvEbd61i4xp0t4l0vygx8NwOs2tL73EUDqNoet0RKN866mnaCotZe8VV5C2LK586in6k0kWNzay6ZVXsJWiL5lkTk0NiXyekUwGy3HoSSTGGfbcKWZ3E8vL6YzF6BgdZWJZGSV+P08cOkTA6yWvaaj+fmHOT5yQTqmuDq68UqLR110nHd3cucKgG4bQ29deKyBc16XTGhwURLt7twD6piaJWA8OFo1fCtHt3l5BzYVc9oLbWywmgYP+fpHTh0Lg8WDoDratKC2VoPbYmAS+y8qk77z6atmdzyevdFrI/ELKfOGwJ04UL72tW4vl4ObNkzhDLifxgxUrRFVXKP9aWyvLr7lGmPjdu6VvdhxJi9M0WL1KoeUtAehlEZHIKyU7LQkL+I4n5bNPZMhkchQ8hOjoAtOGptoisO/oku18XmHPQQB7Lg/TWgS0j0+aXF+/V7azbXGu93nBdlCOPc6W58bGCFRWkuzuZujtt9EMg+p589C8XnJjY7x+xx3ET55E2TaeQIC53/42AJnBQcxEQiTPgK+kBE8wiO7xUL1gAem+PjG427SJzNAQ2WgUx7LQPR4CFRUox8HO5aiYNk2k9bkckaYmjGAQ3TBQmiZSeccWRhxN2HUzLwx7eZWbX+4Xc7b4GPziYclrnzZH1lOOnHvHAQHKxw+K9BxEAl/IMwyGhFlXSnLbp8wUNn3Hr4W9j4/KsXzhW7Dk7KKUA1UMJOQybuAAAd+2VQTwoYjUdweR9hteMcNrniLBh69cLUGAQiAmEJL9+QOSm9/xvrxbpmz//UfgosuKg950Uo7ZH5A2rDyES0GD4Y59VE1egK4bWLk0KAfd8FA5aT5mNkXvey+ge7z4QuWEKhvQdFFPaG7uYai8Aa9fagUXZO9DR/di+AqDdod0tA8zPUbdzI9RVj8dw+MjVF7H8LHXXbO6PWiAN1Q27lTvOJbEmGJj2E//ARJxF7RHBLQ3tqA0DRUdwek6KTJ3rw99zhmSJ59KiUt8WQVqbAT7mT+j1TZI7fZ4DHXoPTGdUwplGOhrPoHWPAnnpWfFOT6VlOcToJWUobVMxtn9ilx/M4+9/bcYSM31EEV5/DyE8c4hRnHrkMHMFnnis99dfg9SFi6F5LG/iQD8YeAMhLVPICC9cOdGECm8QuTx9W4bMST/fRA4ikjyXwc8eZtXNr3CgW0HyCfzJHoTLLt+Gd6Ql3wqj5kxx3PTlSMBrEh9hPLJ5Vz0yEWUTywnUBGgd38vju2gGzq6R2fg7QGUozjv3vOoaK2QsnC7u/GGvZx/3/n4SnykhlPkE3lyYzlOv/h0LnjoAgyfwUWPXMTpnzudHVftINmfRAtoBL1BFjcuZk/PHo6NHaM73s3ixsX0J/u58qkrOTZ2jEQ+wbod64j4Ilw6+1JK/aVUBipxlEOpv5S+ZB+3v3w7YV+Y8mC5gHZNQHtNuIa+ZB+apjG5fDIrWlawtX0r1y29Dp/h473B92gqbaIuUoejHGK5GAOpARpKGuhPD6MK8vdAtfjSZHrhzRvll5i/RZ49+ajknQeqBYQGagS0B6qFIU8dL5YgQxOneeWmxwztEuM6FFTMcRl1lyle8ACUTJNxRMBl43OjEH1Tcr4X3u/mhBvFVBvNcKXxSkC7UiJ7N7wfls8n+4Slt3Myr2yK244mbLudlxxz5TBerz52XI7T8EPpxKJU3s7LPhzTBe1et667T7ZL9UL7rcJ0n/Z5qF8i7HnDMmH6zYSUeMsMCwgP1cizfewY7FxbZM4H35D1Flwn+608zXXpH4WGFcK4axqMvC85/nZOmHtvREzpVt8tn5UNjSvlt0gcg0hYOvuHHpLxTFub5KIXStAcOyagurIS/uZvxJ22p0ei+L29Mv4Ih+XZf+65Mmg4flwGAsePy0AAhFHv7hYmPxYrGtV1d8u+9uyR/Tz0kLS/Z4+QIuEwxOMox2FgJEc8niOVyqPrGpbl4PMZ3H77y+Pg/K672lm1qoX6+gglJX5+9KOLuOyyOfT3J3niiUNs2dLOuee2ct9955HJmPj9HrZubeeJJw7R25tg+fJmwmEv7e3iMn/06CgrVjSzdesaAgEPsVjuFGn9LryGxkgqRndsEK8hQfh3+o6Qs/LYyhln1/uTI/TGh/nH5x5nNB3nmlVfoqmshrJgCZoGQ8koWTOH3/AykBjlB889Tl9imK7YIEPJKB5dp8Qf5LvnfpPakiqCXj+VwVLu/esvsB2bkNc/fhssaJxO2B8gZ5lkTIU61WDOHnPd4IOnGEtvADvmMup3FNNag4vd5d8FCoE2A8xe8aYye6SssxaUfPbAPBi4Tuq9h1aA5ud/yvQRcP9o+i+cvCJzd9LgnSpRNnsYsq8DtjjJV94g0TQnLhIaDKh7EEr/BskpS8iNm9gmzvHhNQLYrRExtat7TNpW1n/gNpmRXHh7SI4BJUx8aBk+zWSjW+bthmXL2NPTw4L6ehQwkEqNy+i7YjG8hkF3PM4Ny5YR8nqpCYfpjsV44tAhtrS3c25rK/eddx5eXaetpQWfYdCfTHLrSy/Rm0iwvLmZS2fNYkNbG37DwFYKr65jK0VdSQm14TDXPvssEZ+P7uuuoy4SwTZNtC1bpKNqbi4C7CeeEITa0CD0dXm5fC4A+0cekc7HMGS9dLrYKYF0cIODAspBOt+GBolQRyIyr6ysKIsHkaMFAoKev/xlQcYdHTi2YnBQ4403imnww8PSV27eLP3k5s2SitbbK4e4fHnR805KqMjh9fYWA+SGIbvr6Phw/vudd8rngYFiqfpVq2TduXPFwC6dFrN8OTfA0ISJ9fsEoCfc9IGaiiKAT6QEjOu6SNuVI9tMda+7pgk4L0jddTcP/li3GNeVhAW4Z/PCqBdETAXqP5cvgvyOLmlP1wVcn3EGmZER3n34YVLd3Rh+v5R86+xk6PXXUZaF4ffT396ONxJBMwyU4+CNREApPvjJTySXWNcx/H7GDh3CMU1h6Q2DqrlzOfTzn1Nz5pmE6uoIVleLgZ1SkifvRjs0r1fWqalBOQ7Z0VHsfF6c5b1eye8GYcYnny7O67msAPZ8TsqrDfWJ0dy+l0Uub1kyUB0dEll5oURbU6uw2oYBU04XsH/kPQHWtqSy8NnLBajbthjE/d1GKRH38wdk+eiABADGRqXWeyEH3RcQJv/o+zLvNz9y2XBbAHc67f4vDGHrL7tKcvALrH1izAXpB+R88lkorwSPe96FwI+G1I+fUCOGfAXp/siAnMtwH5w8Iv8BBbUzVorT/1g/jmPSe+BFzGwCX7iC4WP7CJbXYeXSbm67KZJExyYd7T3lv+xBKYdgWQ0tCz7FhNYzRchg5bHyWQKl1ZiZFJoGjXPWkIkNkc8kPuQir5QCx8bMJFzwv0cM8MZLvP0VrbYB/AHJNfd6xWTO60NvaEKlU+Ia79g43Z1ogYDUZY9FUbExtMZmSCWwt/8OrbQM48obMC68GJVKYd9/u/CKyQT6stWohEjnNa8Xlctg79yO1jLZlc87OLt3Sa14TUMhju5xBHwHgDr3+70IY+5FSsMBzEHA9dUUHeX73fl9CNj3um3UAZ9DZPQKyXHf5e5vibttliJea0Zy5cMI6/6yz6Bt40pmXTqLcG2Y0qZS9jywh9CEELpHJ5/Ij+epW1kLK2uRj+cxUyZPf/tpzLT83o1LGkkNpdhx1Q7yiTyNixvxhrzsXL8TM2XiDXlpXtGMchRd7V2MnRwjUhvBG/SiGRqp4RQAyf4kuXgOf6mfCx64AH+pn0BJgLSV5qqnr6I6XE13vJuVLSu5fP7lNJQ0cPaks+mJ9+AzfNx5zp0EPAFyVo54Lo7pmO5fUMPv8XPd0uvoinWxp3sPfYk+1u1YR024hopABasmrgJgMDWIoRk8dMFDTCybyP7e/cyrncfEsolomsZwepgyfxlLm5byw1d/SNjwoR3YDJ3bpI66BnywRfLbM/3CsqdPMs5Ej74upd685W4ZtyE4/XqRo9sZt/RbDqqXyXp7rxRwn+0DMyYAtnMbfLBVtsESkFmopa55JXhQtdT97gN0AagFWfy4m7vmloDLuQDdlOdELi7tlbWK47w3LABZ2bJuotslOLxFKXw+KaC8tIVxF/t4Z7EEXbJHWHdNk/aSfbKtlZN1922Rmuv7tkjAwQiKqsDKCJD2lUjbZkqA+thRaSvZXdwuFxN3eF8plLdKSTjl5hDv/eEpue0ONCyX/HdPUCT0IJJ8wy9MfnrITSGICOOeTAlwvuqqYq3XSEReN90kkX6PRwYNu3fL+/z5QlQ0NAjI7+iQZ3BBMbhpU3GwMXu2DBoKisKKChnP3Hyz5NAtWSLbLF4sA4/jx4VtaGwUUuTkSTh6FK23lwkVfrxenUBAgqjt7V10dsZYvLiRLVvaUQq2bl3Dl788h2DQ63YNOpoGK1e2cPLktTz88AU0NpYyNJTimmue5dixKFu3ruEPf7iUxsZS1q7dzvHjY8yZU0NXV5wJE0Js2dJOKCQMfG1tmHvuOZcdO77Mww9fgINiOD1GRbBk3D1+6oRm7njhX8iaOb6x5NOcN30Zs+umfKhMm99VeXl0HY9u0B0bZDg5hq7r4y71P9nzJ8qDJfx035OARsAbIJPPMpqOkbXyxHNJrmr7ApZj82bPIfrjI4R9Qc4/fQXlwVJimQRK82J7JglY99TLuN7sFjWst1XG655GcKKitK25r1gBSuVhwj8KwaayUkraPC4A3zdDVLnWsCyzhoVdr3sYtAjjir7/IdNHUvn/YPpIKv+fODkZuSHTuySiZo+BMyY3XmA+ODFh5K1BMayw+gXsexth5C6ouRP0iGzvbZabP/1X6P08RD4lsvv+b0lZuSkn3JysE8Lge2olt35kizD+3mnidq+HyFgODiFMpcjbNhoQ8noZy2YpdUu7dcXjLGlsJOjxEM/nCXo8KGA0naY6HMZ0HEzbJuzzjcvfb1m5ksnl5XQnEjzX0cHenh4euvBCF0NqHI9GCXi9pE2Tzbt2jbvTG5qGzzBI5fPYSlFjGHjicTTHEaTa1yedjuMI0+440ql5vdLRnTghlPSGDYKGC46ru3ZJfbbhYQHvhiGAKpcTpHzjjWLUouvi6lrYLpmUSHVtrUjke3tle00T8PPuu8SXnsPAoEF5uSjWmpsl37wgZdf1onTdcQSUd3YWT6OnR8xiC0329UnfXFDqh8NC9KfTH1bK3XyzbHuqAq4gsS+YhofDEArYeLDHB9wc64bG2mJ5N9v5sJu8z/Ph/65tA5qsk8kJa18wn7NseP0AVJXDxAYxvkukhE3v6nel9R43ty4vRnanznOnfDbL3ltvpfOZZ2g5/3wW33YbmaEhkl1dBCorOfTznzP/hhswvF7QdVJ9fbz/2GPMXLuWkqYmlG1jZbO8c//9nHHTTSKbtyx0nw/lOOPfrVyO6MGDVM2ejabrDL/zDlWzZgGg6Tq6z0eiq4v3H3uMBevXkxsb48Bjj7Fi0+1ow30CvltnCCNUSAGwbfn/dXwgud8LVgggP3YQmiYJkNV0MXr74E2oboApM+SamnkB07ohEvyScqnffuEXpazbtsfgwi9I/nxsRNj+f7tfggI/eFyY+ou/LsGD99+Qcm5fXicBgs/9rQQUOt4X5n/yDHj2t3DRF2V+pFwufscBCQZESgXgX/hFCSyUVUnOemJMTPJGh2R/F35RatVn0wLWg6Gi+Z2Zl8BBPCr7sPISEDhxGHvabDB0et59ngmtC8cZ8PKG02mYcw7KFtY7MzZAoKQKNI2Bg68I2JdfCMfOY/hCKMcSgYHXi5VNY/hD5FNjDB/bx4TWRfjC5eMyWjMTZ+TY69TN/JiQ8ppOPj32YZm9L4ChdGHUd72Aft6n5ffVdDSvV35qTUOzLclXN/M47X9Fv+AzaI4j7HxpGSoeE3Y+k8Z5+flxObxWUoZKxMDvR/X3ojVNhFhUJPTnfQrSKVQ8jt7UAkpJ/fjmSSLJd2yIRUlX13LI8LAFYdCHKLq6+xHwriOMeARhzkcRA7vrELf5/YizfMhd1wJGEJC+Ccltn4CUfDuOAHwDAecGkiPf6LbtippRwGvAl4HuVA6PA8pRWDnJWzf8htD/OvTs6aG0pZSypjJSgynCNaKeGO0YBQ1237ObNVvXAJDoSxCpjZBP5gnXhnFMB92ro2yF7tVJDaYIlAUwfAZm2iQXy+Ev8+MNeV1cq8arBdh5G4/fQ96X55tPfZNtB7Zx6axLefwTj+O4EltbiSQ/Y2W49tlr2di2kaA3SHmgnIAngK1sDM0gZ+fY072HltIWAt4A5YFy9vbs5fO//Ty/u+R3LKhfQG+il3t338vWNVvxG35ydo4NL2xg09mbCPvCJPNJbnr+Jq5fdj0lvhJqI7UcGTnC7KpWfOmTYgR3xr0UndvzMLxbmPXsIIQa4cAdcPoNAtoDNYyXR8tHJf8dB1KdAtirV8Dwa2Jc13SxAMrCmNfJiFmdmYSxt2DCcmGb37pR2o9Mg+QROHS/HJM3ImDc8BYl9AUZe8GlnVP+IAXpewGA615Xpu6XcYqyXRZfk7biJ4ul307dRtmMl4iDojFcQTavaRJMCNdJG3s2wZJbBFBbGWHh922BxRuEYfeG5TisjMjcG5ZJ+5kh8Je78v+8m0bgqpV6X4Vwg+w7XCuBD18pDL0twD5UC0NvQUMb4+XfShoFvL+8HlZtBScEvX0yTlm2rCiPT6fhrbek89+8WQD85MlyboX8us5Okd7dfbeMe5JJAeQlJcLSb9okY5+amg85w/OjH0kfZVnF66yUDCzCYenDPB5pz7LkeLxeGBrCmlBD1hsgkcgTi+WIRLwcODDklnYTpZff7yGZzNPXl6CkxE9FRYB9+3qZP7+OUMhLLmdh24q33urnwgt/yWWXzeGf/ukilFK0t3dx8uQYF198On6/jD3a27toaChh6tRKjh4dZfPmXWzcuJLq6hA33riThx45H2VYbP3Lz5hdP4VlE+dSGghzweNXc860Jdx8zt8Kk36q1H3pZxlIjDCjZhJj6cR4zfdkLkVFsJSusQF+/voOrlt9GQGPDwV4dJ2MmWMgMcrPX9/Btau+TMgXGJfdf3nB+ZQGwmTNPD/e8ye+seTTDCaj1EQqaSotJWRk0Qpje80Qv6uCJN6oEQXtv68A5Z0k97x5XOZVXu9Wo1oiClo9Ik9uZQpOGNkkteDt4WJqrW9G8T78P3z6SCr/0fS/b9KDgEfk8Jm9UtpBL3ddInsl993ulbJv6AKyA/PEnKLyO9KG1SfRNk+LdAreOoh8Tm58NLl567cJq24PSaTPUwfYMHKvK7sPS/t2H/SvxSLE0WiUq3bswHakLFw8l8PnMuJBl1m/9tlnMR2HiE8eaCPpNJWhEEnT5JpnnmEglSKWzbLl1VdZ0dzMhFCIhGtMt3riRB664AKybi1oWynubG+nKhRia3s7K5qbqQ6H8ek6WcsinssxlsuJRNay0AqW6qcazvX3C+gG6cBuukk6n6YmiTL390u+V6Gm6cqVkidWqI96/Li4yYN0hBMnyvavv15EvrYtsvuODsZt4ufNE5ScSknHt3w5Xt2hulqh69IP9/UVQfrIiOSpd3SIAq6rS+IJy5ZJkz6fHLJS0md6PNDaKmDfsuS94EvT0yOKuokThVUvKSk6zvf1iQjhjjvku2EUlXQaoOECTFSx9rrHEGbctIRhL9R4hyJr7qjxXDfKIlBZWmToLVvaWDirWCJO12S9gkld9wDjHF0uL8t83iKQd/eh6Tqz1q6l5fzzmfWtb6EZBoEJE8YZ8hlf+xqZoSH2/eAHpHt7yQwPc/rf/i2R+noc2+aNO+8kOzrKtC9/GTubxXJNCJVlkR0dJdnVxd7vf5/s6CgT5s4lF41i5/NUTJtGPpEATWP47bdJdneTGRwU0zu/n/TgILWFCMvokEjJU0mRnh89IE7qhiGM9+Tpkus9OiTguqxCzvvIe8J6D/bA4rMEzP/iYRjokXa8PhkknTZXQO7UWSJdz6ZFGh8bhdpGAe2GARd9GRatknU//w0xkxvqhcUfE/d5Qxfw7g/KsimzYNk5kid/yTeFVc+bkp9uW8Kgjw3Lb3zJNyV/vqkVElEB3iBqguiQBAye/Z3LrnnkvArlzbJpOHlY2HmlXGm9CccP4UybjZlLYuUy1M/8GN5ACfUzP8bEMy+mYfbZOFaeTGwAXdcJVzWQS44AUDu9DU03QDcwcymGjgqXrBseNMMANDx+CRqMHH99vM67BqSj/WLInUlQN+sslG1h5tKuWV1q3MTOcSx633sBBwfKyjEuvBjNV/ALkACfSiXQLFNM6EJhtIoqjPM/DYDKpKXeeyKO3tgihnIlZSKHP32OrJPPoqIjkIijt0xGy+eE1W+ZjOb1SR342nqc7k5QCq1pIiqVRI0MSd57PIaDRj9wAwLM6xCp/LUIyC5D8LGGAG0/ArIfRPLg30AY8gAikU8gue5VCJB/DgkEBBEgX1g3iUjxHWCK9GLsdrd3nxa0ucfg0XXGjo+xfe12HNMhPZzm2WufFem7R6d5eTMldSXEumKMHh0l1hmj89VOyiaWUdZUxtmbz0Y5ihc2vEBFawW+Eh+R2ghWxuLZ654ldjJG9+5uRo+M4gv56Nnbg5k2SQ2mGO0YRffqaLom7H7aItmXHDe+27FuBwYGG9s2sv1L23n4wofRNR1DN6TcqZkhY2WI+CJsOWcLLWUtTAhNwHZskvkk1z1zHcl8EtM2mVc7j6A3OM7eN5c2886V77CiZQWGZnDv7ntZ1rQMRzkMpgdxlMPVi6+mL9nH2u1r6U/2s7hxMT989YeUBco4MnKEyRWTsRWo0ERY+IAw63vXQuoY5KJQsQAirVC9Ej64C3qeENDuqxBW/VTQno9CZkCc6QPVsPdbEGyAli+IpP6Na+WH0zQB7PEOAe+VZwpLn+kTlv/AHTLW+OAumHu7gFeFgGVPUMCB7i2WgiuA3VMZeeVAoqsI3vMJYcA1TQKgRlDadSw5Jl9EcuENn2s01+W6ujuyfcE9Hj5c811RlN8Hq2HZbSKvTw9IDvq+LdDxRLFMHEpUAe23QfVcCQxkhiQ3/cWrBPzrPpHkP/8tYeXrlgjor5wux6cZcs4NK+R6eIKSxz52WNzkw3Vy/LmYgHkjAB5NwPaDD4pyzzRlnDIwILnlBZleX58A9fZ2GW9cdZV06Fu2yCBiYKCY2qeUsAWPPSYDBMMoOtTedFNxvJJOw5EjMhg5eRLefLOYUmia8r1Q//1b30Kl0zi6jm0rHEdx++0vMzCQYsWKZvr7k6xbt4Pe3iS27RCP58ZB+549PcyZUwNAOi3S+EDAQ1tbCwcPruORRy4in7fYtauTefPq+NSnZtDVFWft2u2cPBljzpwaurvjWJbD5s272LbtAJs2vcLYWJbFixs5dmQMDx6uW30Z8xum80j77xhJxbj309fzndWXkTPzvHBkLwf6jzKpop7vnftNhpNRelxpfcDr5bTqFmKZBEFvAF3TmVhRzy1rvgFAxswxkhojlc8S8Pj56b4nmV0/hZFUjDd7DuHRDa5d9WUi/hATQuWMpMe4/mNfoa5kAvMbpzOcihL0etDGx/b9Mvb2NEPlehh5WP7zlTeIiuXUClBWvzzFvZNEnWtFhezL7BH/K2VLmq0WkDaDq+Sz2S1GdyOb3Cf2f//pI8b9P5g+Ytz/kyc7KZJ3bMi+C8FFko+S3gWeKrdcXJvI2vWwRNkze1zDugE3UrcevKdBejcEF4qUbXz4BBKpO3wKu36atB+YJ2B9ZItrdtcFPZ8gPinBK529zK6pwaPrvDMwwKKGBjy6zlVPP82NK1bQHYvREY1yycyZ9CYSbGlvZ0NbG93xOHWRCK92dfFqVxf/dOGFGJpGZyxGVzzO4sZGumIxBlIpljU349E0bKXwaBp5x8Gj61husGB/by/z6+rGnehvefFFbj/7bGo9HoxYDK1g5LJhgyDaQhL4wIDQ2QVDFtcNldZW6ZBsW6LK1dWCjG+5RTrGYLBIS+/eLci4rk5o7uPHi4Z0hfqohSh0KiWBgeuuE8QdCpEizJEOfdzzZcoU2a2uS5+7dGmRSY9ERI2WyQixP2GCHN5bb4l8vlD9pbRUdpVMynYrV0q/CiIq6O8X0A7FPrkQrK+vl/3HYjI+qKu20TJZ14iu0TW+wVUqeASc67qw6aey8Lomy6DIyOtakTlvqRcw7vcJaFcUwXxBVt/aKPnxnX1S+s20itvqOnhlXcs0UUqN56hrmoZj29jZLJqm4QmHcUyTzmefJVRfT/UZZ6Ach9zICB5XzmCm04Rqa8dN7Ww3+GMEg2RHR3n6M5+h7d57CdXVke7vp2rOHIxAADuXY+SddwhUVZEdGaF64UKsVAornSZQU4Oha+iOI3J50839z2WKJm2jQ/DUL4WJLqsU5ry0QoB1uETWsU3XnCkmgDoRFQBdYLJHB6GyRsDxlFmM11aPR4UJHx2EHb+RfdQ0CLPt8cix5LPSdiIm/+t8XvZrGEVWvOBkLxdXGPp0El74s4B/f0DuhXyuWKfe45F1shnZPhiWQEV5pZzPsYNimFdSJsqA8y6R+u0jA6IOmDwDUDAyiB0poa/7bWqmr8DweLFyGRzHwuML0v/By9TPOgtQp9RwF8msclMGdI+Xnnd2MqH1TDRdx8wkCVXUgWZg51IYvhAakIr24g2WYGWTeAIRfKEyHCuP7vGRS0aLjHykQtbxh+l77wVi/UeYefbaorujPyA11y0LlU2jBYIolNwPbv36ApuLbUsQQTfE3G689rwAduf5HehLV0K4BOeFHRgXXSw3qCF5vE7XCbRwCVRUwtgozqt/kRrwwRBqoBdtYitER8gGwxwpLaNb02gCtgJ3Iqz5e8Aq4DCS334zAu7DFA3kdASE3wTciDDwx9z1b0Ec6HXErG4+wsT3IMGBOMXAwFsIy28gEvwbEXO8FBBJ5hj460nCNWGqTqsi2Z8kn8wTqYuQ7E/SvqWdlbesxBPwjJvQoUHP3h5Km0vxhryEq8OSA69B9FiU9jvbabu5jZMvn6Tr1S6Wfmcpu+/ZzerbVpOL5wiUBYgej1IzpwYzaY6z7vlkHk3XhIFX8O6v32XG5TOwlEVXrIuuuDi9a2ikzNS4+RzAjTtv5MELHsR2bKLZKOWBcvJ2noHkAHe238n65es5reo0rnjyCrYd2MaOL+9gft18YrnYhwzsvIYXRznjAYJvPllk+29bfRu2YzOxfCIpM0XEG8Grcvhzw1KebajdlbUPQXUbJI6KbH7WLWJE52Tk+r11o7jJp7uFiU/3uO99UNMmdd+tpIDVQD3s/3uYfp2A5nS3SOwNv4DtAvDXvAIOsoMQmcy4/lY5Ynhn54osu+Fj3M29ME/3SjBBMyQHf+B1CFZC6WSZXzCpO9VobtzMzidsouEX8J8ZFsa6bHKRwS8oEUACC5pRDAzYeeh5Wa5h2SQ3Xx4pEZfqg5oF8p7qEyCuGdJGbgz8FW6+fF5UBeFaOcbYCSm/F6ornmOyGyKNsP8uYdILU8Fp/sRz4iJ/1n3yvPSGpJ10v/u7ZGS8Ul8visBXXxXDW5DOu75eAP23vw0PPCCy9nPPlXGKpsmywrzGxuJgo5B/V5DwFZ5p1dXy+aab4Mwz4eKLZUBiWTLmueceGWOFw8IWjI3B4CDOihV86VvPs379cnbv7mbSpHLa2lrYtauTz3/+t3zqU9N59NGL8Hh0cjmbPXu6qakJc9ppVRw/PsYdd+xi/frlNDSUuOOVPFVVIUzTJp+38fkMRkez3H77yyxe3Mi5506hoiJAX1+SSMRLMmlyxx27+O53V9LYWIqmaeTzFv6IhumYHBw8zpQJzfgMD0Gvn56xIR7f80cuX/RJqiMVRHxBsmYWy3V+/+m+J7nxrK8yko7xz3v+zNcXfYqJFXXkbBNHyfhjIDHKT/c9Kcsq63GUg6MUsUyCeDbFaCZOTaSSn+z5E1cs/Qx1JRPojQ+Nt9dYXkPEa6P3/72A7tKvirncyGaXVZ8C5jG32tQCIe0KY3PvJFHE2r1CuNVsFeIv9gtJhw3MdRW6JQLcrRMfNrbztoB/upvW8n/+9BHj/tH0v29y8nKjDl4rkpbAHHGXdJLgbXDN6Rrku5MsgnaPK4EbN6/YAigIzJbcdfMw9K9zc9d1wAGtHILnSHQPR2rH62EpOVGIyAWXQMmleDVFU2kp659/HoB5tbWMZDIAbD77bLpjMRY3NnLelCkYmkZzaSlbzjmH3kSC6lCILe3trGlt5ZaVKzE0bdyErtBOa0UFjSUlfGv7djrGxhhMpTgajXLlU09xLBpFA0YyGZY0NjKYSrF2+3b6k0muWryY/mSSgbExGRQ3Nxc7Fa9XUGo6XUwQLxirLF4sHVuhTurwsGyzbp38Dlu2SGdVYAkHB4sseiwm8/r7RXLmOGLlnsvJPtvbZbtNm2QdnwxYHDRqa0W9Vl9fLAWXSIgcPp8vsulHjoiJ3L59chgFpdqSJdK8ZRUNZaurBYivXClgvb1dxvuNjUWZveNIkHxwUFLvW1oEu/X2FoPxgDCfhfzyI66JHBrkTAHljiPg2+cOco51yzLbzXMvi4gEPpuXbYeiAsC9HvmeM2W5x5W/KyUmdbohy5vqBIx29Re39XkADdu2ySeTmMkkmcFBrFQKM5lEMwx0rxcznSbZ1cW+f/xHJsyfz4R587AzGexcjkR3N7rHgxEMohkGdi5HNhoVkK1pvHnXXSQ6O/GXl/OpZ5+leuFC0oODBCorpfRcZyf7b7+dQGUl2WiU6oULx2/Z93/8Y5RtoymFlkoIO53NyDlGSkWCbltQVg7nXyqO7P6AGLPVNMg6v/1xkc1WjrDuyZgA+6d+JUC5pEwY7uiQlGYb7pcScIO90oauS876uZ+XdWxbgLttCYjs6pB1SkrltyspkzrzQ33yOwz1inTfH3ABuVcCBi/8WVQCY6Oyv9EhkbdHh13jvZxI4DVN3q28/GkLoL20Qs4tmxEDvooq+ZMX6tP/8mFpOx5FS6epm/kxbDNDz7vP4zgmuu4BTaN2ehvKsek78BIefxBfsEQCN1ae/g9eFhM7NBpmfxxfpNItK9cICsxMjFxqDDMbp+e95/EGBawHy+vxBktRSqEbHpRSjBx/nfhAB4bHB45NPjWGmYlTP+tspp91BRo6eH1oobCAdhR4DDGoQ0EyAR4PWjgiVQy7TkJsDAwDVfAPKASe0MTAzueXOu1729F8PowLPoPK57Gf+TNqZBCVz6HV1IPfL4A/ERcju10vSOpG40RIJnB2vYidz7FV05iHMOF3IpL19xGDORBm/Wwkf71anv78ADiJGMyBSOK7EXf5LcC2U76PAiuReu+TEHO6MMKye9z5NQjLnz2lLQvJlTcMnfoF9ZQ2laIZGiX1JVROrcRf6ic1mOLQE4eId8fxRXxkRjI4tkPfG33UzqslXB0mUhfBztukh9M4loO/xM+hJw6x645dtJ7bynn3nUdZSxnn3nMugfIAmdEM4bowLW0t+MI+osejJPoSaIZGekjY/tGOURSKOV+ag0IxkBqgK95FdbiaK5+6kpOxkwB0jHbg0T0EvUG+s+w746A9bQqrPpwZpi/Zx7YD29jSvgVHOWybS7ZHAAEAAElEQVRcuZFLZ13KiuYV9CX6xtso85cR8obIWBmG0kNkrAw6+vj6t6y8hcbSRiZXTOb42HGueeYajkWPkXFsVLBB+vKa1eIaP2GF/HC5Qag9S0C7pmDsHfmF520SAO6vFobcP0Heq5dLabnkCWHq/RPkGTT/TjGgCzVJKblCxQllSUm5t24EOy2fwy2Mg3Y3PQUNAbOlE4vO77qb954Zc83ndAHgiR7Zvm4RlE9x1zOLOfG+EteULiFMe8HxXvdDLiEAufJ0yY9XuMdqujXkC6yiO3y3sq4bvQGRZghUCgOu6QLeK6ZDY5ssTw0IK//iOkh0ikO8N+IGBDQB7cEqUQz07xVFQf1SAevBWnmvWyyMf9tmua5Db0k+faGU3bTPCaDXPK5RIJICUDEXjhwtln/r64M1a4RUKIDmW28VRnzrVlH9bd0qHfytt4psT9eFsf/c50Ryn0gI+bB2rQwyCtU9/P5iWbj2dhm33HMPfPaz4opruSqHkpKiXHDtWhlbDQ6imppI5TW2bTvAvffu5rLL5rJkSSO7dnXS0lLKO+9cycMPX4DXq5NM5hkelprtw8NpAO64Q9jyLVvaGRvLousaqZTJ1Vc/jWk6lJT4CYW81NdHePDBC2hra+bWW19iYCBFOOwlm7WIRLw8+uhFTJ5cjm0rhoaktLDXY+DzeKmJVHLvX3/BQGKUVD5Lf3JkvKY7QNbK4/cG8Ht8/HTfk7zUsR9d0/AbXuY3nsZYNk7KzDKWSWA7zjjD/lLHfiL+gFQ+UYp3eg+TNfOMZuJUBksZTI7ytTM/QcDjGze6e6ljP8PpMfrjI2QtG1X3IJR8ziXeNhdZdZUV0O6phsEN8t+ue9RV05puTnw/1GySe7z/KtegeoWr0L1dfjdN+7CxXWgF+Kb9twHt/3fTR8D9o+m/eMoL6A6ucCUuXgHRTkxuuPG67UHJYcnsk0idXi7rnupEWTCr0yPgmVTMf1c5YddVCsq+CFa3+z0ry4JLYNI7UPUPoAWh7jFsPOOu8l5dpy+Z5HsvvcSJWIx3BwclT8fjobGkBFspuuJx1j//PA0lJVQEg9yyciX1kQgtZWUMpFLs6elheXMzA6kUt770Eidd9n3bgQNsfuUVqkKh8f11x+OcjMW49aWX6IrH6XbX29LezqTycra0txOzbRkUm6bQ1OGwgPQ5cwShVlcLWKivFwB+3XXSOXV2itzsjjuKdUwHBuRzLiedWGen5IW5knfqZQBNU1Ox0HrBwn1wUKLZoZAsc43y8ppvPEYwMFAk/aur5VBPnhSFWyol/W11tfTBS5ZILCCZlMPRdTmlPXukjy0E1Lu7iwKDZcuKle10XfLpQQ49HJZTu/pqmRcOSz9/773u38/v+7CJXGefANBcXhzeC27khQ6/YDRnuPMVRZl7oaRcS70w6CXhopS+kD/X0SUgXwMiIQhIbjrTWmDRbKkJ706OaWIEAngCAXxlwngZoRCp7m5xeM9kSA8OjpvGabrO6OHDAFTPncvIO+9gZ7NSJs628VdUYOfzeEMhFtx0E95IhHR/P6Pvv49jmtQsXIinpIQJ8+dj+P1Un3EGR379a2oWLgTXXR5g7jXXSO58Pi81tdNJMY47dlDAbeNkAae2LUy7bbmeC3n4zWPyfulaqKyWdX7zIwG0Pr+A5zUXu/LFlFybKbMEiD/9G5Gkx0YETB95TwD+c7+TXHRXIk48BiiYNEMUAInYeFYCk6eLC71hFGut53PC4B/7QAzqvvR3sGi1APqCPF8p2W9Jucj5CxL/4X5JERgblfkl5dLW5BkirZ86E379KPR3S3vxqJzDjl/D5BnoXgGmQ0f3us7ue/EEpAzbwKFdKKWond6G4QmglIOZk4Ff1eQFePyhcSUGIEoMMw+aji9YSqiyETOTGneYRzn0vvc8jpVH2aa0pRQNsz/OjI9/C93jJR2V2vFefxgzm6D/g79K47Eo9jN/duX+yH5NE81wgx2WhYqOYD/1e7RIBEokyKB5PDg9XYyX3HNsnN5ulJlHq6hEv+DTqPiYsOu6jr50pbjG53KuHN/E6TyO3tiCceUN6CvPAZ9fytJFSjEu+hw+r4+tSjGMMOU6worPQ+TtHQigXoow5msRI7plCHO+1L1+7yOMeQDJlT+IsPUeoBxhzuNIPvtaxIU+BFzlfi5HALsD3IY43fvdl9dxSA2myKfyKFvKv6WGUlg5i6alTVz57pU0LxdjuV137kI5iia3znP/W/1EO6Lj8veePT0EK4LcMHgDFz16EaXNpRheA93Q8YV9+Ev9NC9vhv8fe38eJtdV3vvin7X3rrm6epB6UE+yBg9YHsQgyZZaJgGE8QAXkqDAISEJYNkgE4zxEEsONsHdCjICA3ZibEjIQAKWc0Js2cIYg0CttiUPyIOwJUttqee55nEP6/7x7qqS4Nz7e+795Tz33hNvPXqqau+11t7VVbXX+r7f7/t9AafkUJgr0Lmmk0VnL0K7mkA8wKU3XUqoIUR6JM3o0CgKRWOokb7ePhKhBBt6xPHdMiwubr+YheICpjLpTfRycPwgRbtINBDlpktvImpF2dC7gcf/2+Pcc/k98jNrWsb9V92PoQyWNCzh4vaLueXJW8hWsrjaJWJFUIgyQ6NZ1rSMB65+gJ5EDyYmjufQv7+fh448xGhmFNd1IX9SmG63JOZzhRGRr1el7rkTvslcu3ygqVeENU+cC++4T0D62gcFsIbboW0DtdJtyhB5PZ6v1kMelYbUi3I/Wb1TZPO5YZHqZ14X0K4MAfSeI4BVe/79vgoSE2eaz/2muVw5I/eXYEJAs7LqY5gBX/JeDRJU5P2bwboc3rPl/pYb92vAj1ErFVcF/oYE5ciNCsOfOiF13CuZuoRfGQLgf/XNunS+s09A99RzMlakRa7j5zeI9B1dZ+sbeyWg8LPrwS7A3MtyPR3r/GCCD9ytqFyT9iSIkJ/yZf6qLof/5jclMt/ZKfnsU1OyQLjsMlksxOPiMluVyD/ySF0VWJ3s+/vl+Fe/eqbEviqHz+fFcG7JElkzVRn5kRH/81dCdnz848IK7NolEf/WVtTAAOEAvPrqVu699wpGR9Ns3bqX1tYY4XCAYtFh69a9ZLMVZmbynDixQChksXFjL5al2LZtI5s3r+LWWzfQ3BwmGDQZG8vQ3/+umtHd8eNJtmzZw+hopibDDwZNOjriLF3aRHt7HIDjx1McPDhGPm/z+c8/geuKh0XVQf57zz5Krlzggo4VXH7upfzZ2vf7RpKiekkVM3xq3Qd5+E92Mp9P87dDD7O681wu7jyH2VySvx16mLl8CgV86pIPsusDNxIOhDmVnOSvn/p7zmldSnM0wVu7ziURjtIWb2GhmKFoV/jyT75DW7yFXR+4kQs6VpAszBIxSihn2v8+F6Q8c8NmeXRTArKNZmgbkO/11HXgnJA7u9ku/lYzt4jMPrJWAHot7XWt7C8M1rFBy01QOIAkQP3X2N4E7m9u/5O3oEheon1QOQGYcNbLYHZIbcezXhLTualrJToXvhCmrwddAEJgLZV21lLAE8M5rwDTnwMMn6V3IHqZRO0A7FlfIj/n5289K+NZywTca02QHNs39rF51SoCpsnOoaFaybbFPsi2tcb2PNLlcu34wOAgbbEYZzU18YNXXmFodJREKER3IoHjeWe0W9fVxeZVq7h1wwYMYFufnG9dd/cZpejW+u1u37iRkGmybeNGeqNRP5fV3zxPkGpTk4ChZFImIcsSXfh994kxyzvfCa+9JtKzJUvEGb7qrppMCpBfskQQNNTpbqWk/8UXiyS+sVEmukRC2lWd6P2AQcW16O9XPPSQzKuplMjfd+2S5tX5+atfFWl7tQJMuSyxiNbWuqy+qUnemm3L26wGwE+dgk9/WvqcPCnz8ciIxBEqFWH3i0V5Xq0Kc8cdAtzvvhtZR4xMCtM9OgXNCZGtG0pAdSYnIP3khAB7kDaNcQHuhik131+X/FsMBecsFRCfiMtr05fav36qDuZHJv0PTUu/YtnPafdERu8De2UYFCYmOPSlL1GYnsYMh1FKUZiaYvznP+fIgw/S+ta3svitb+XZL3+Z7KlTLL7gAkrz8xz6q78i3NKCGYlQnJnh+R07KExMsHDkCLnRUeZffhm3WMQMh6XcXDJZY/PdchmtNT2bNvHWW2+t5cEXpqYww2HKqRTzL72EFQigFmYEzFVd4RdmBGSvXCVAHC3s+vS4vNd3vV9c4v/5mzDjM9+bPlRn5X9wv3zo4JeCQybvpkVS5u2SdwkofvwHcr7Hf1DPLwf5vs9OyDkCAQkEzE5ImTmA898KV31UFsQ/+TfpWyzIdVdBeXJWFpKP/JOoBP7gU3JNy86r93n8BxBvlMdIrH4dP/k3aRcMykK4Gmx4YjcU83JszWUi7S/kcBe3orU+w9kdDbPHD9ac5Kde+yWGJXXcK/kUhmESjDZRTM9ilzK4lRJ4jkjfTUmx8DwPtCbavISzN36czgvejfY8MtMnpEyb1lihGKDJL4xTKaRFsJRYTCE1DYZJIByn/byNoDU6m8W8/ANSxi2fFQO5KWENFeq0/PX3y+fu6VoOi+rqASuALpfBccRozgqIcR2gGptR7V14k+OSI3/V70G8QSokpFOoWBx3779LUCXe4EvzPfT8DO5j/0agVCRGHYR7iPHcpMwATCLy+bMQoP0uhEH/OMKcP4MA/XVIjrvjH/8ydWM7V2YmstTZ+AHE8O4hpPRbAbgFmPbPH/bbb0W+TtmJLMFYkNxkDu1p7ILNEzc8gVNyiLfHsYviDL9p5yYAHt8qpdraLmwjM5apucjH2mKMHRwjOZzkseseI3k8ifY0nuvVHOOVpVCGwnM8gvEgeKC1nDMYC1JcKBKMB2nsbaRnfQ+mMmkINnAqfYo79t1BX08f915xL2FL7jmmMik7ZZKlJGu71tLR0EE8GGd583LaY+08Pfo03QlRbc7kZyg7ZYZGhxhODvPC5AtM56f57NrP4mmPgi3Bp+ZwM9FAFIWiaBfJVXJoNBWvwkx+hm1929i8ajPrutcRNEAVRsDNS5m2cKvkpIdahVVXCkpTkt9+ZAe1UnCVpA9gU8JWo8HOwK9uEgO13DA8+xm/TFxGct6zr8sxJwvPfRYaLxSwOX9IggdmRBzqAwkB0cVJGbcqS8/6aZTKlP2uH6g1zHp5N8+R0mogILyS9aXnJwRIK8N3orfFiT43Rq0ufGSxD9YNGS83LuPEu+VYvEt+BUoJQK460RuWlF5TSuTpfQPSb+IZ+ZZrT6733ffBtZOw5FJIvQ4/+yy0Xih9inNy7W/7vFxffhKeuctPFQgJ2O95l+S7d/XJ9RmW3Oedkry/7IgEKyafljz3Z74s/SNx2L5N8s/vvrsevbdtAfA7d8rkfcMNwp4Hg3Jfvucemfjb2gSA9/XVneMnJ2Wsj31M9odC9QVANluvytPeLhH/aFTWQErVS8LlcnDTTcJArF4Nzc3o228nXdLcccc+Tp3KMDKS5qGHjrBr19O0tsbo79/PQw8dIZ0uMzaWobU1xvXX72V4OEWx6AAe999/FV1dDX61U0V3d4Jbbvkpk5NZLrywrcbK9/fvZ/16KS93xx37eOONlGTwFW1/LbWf1tYYO3YMsu7STsYz07w4fpRPrftgDajHQ1GCZoDt7/kELdFGinaRsdQMf/WTBynbDt1NbTSEYmeAfU/rmqP89559FA9Nd2M7qzvPIVcu1PLb5/Ipdv78HxhPz7Io2sR3D/6I5kjDGa71qzvPJWQFeXv32WfmtwdXCsm2+EuyhtcFWevrgpBu9gy07QKz0/89eWeqbGObfNLO8KtNfQTm7xUDamuJuNQ7c75Hlh+Q+y+wvQnc39z+529GGOxJkcdM3yxl3JQCLP/HO16vv+5l/ef3UJuc3JT80O1TMLWFWj13ZQrYn7lJJDbKj1pHL5E8mMobkt8evkDYfaVh+kZwTuFi0Zto5L4rryRgGDVQvW3jRuYKBbb19XFgZISS49AYCnHL+vU1cD04MsKx+Xnef+65tfz0tlgM1/PY5peYu33jRiKBAPddeSVaa2558kmWNzfzwNVXEzbN+vn6+rA9jweuvpqzmpp4emyM3kSCaCgkk1S1xvr0tICWUkn05lVH1JkZmXhOnBDtuG3LJBWJUHP+DofraLlaay2ZlEnsHe+QCWx4WGT4SomkrCqpP3xYEPQXvyiTZy4Hx48TnB3n9ts1e/YIIF+yBBYWRPUWCMjj449LPEEpGWZ0VIbM5+vYTSl5S0NDwrKDzMEbNsjrRx4RJf/pvjVVwH/ppRIgX7TozKowVQ8bTyNO7lWWPOTf2D2vzpRXTeUqtl82LiAy+YofvQ0GJF+9Gq2v+OxHleFVwPiMX5/dgvZFEhwAWcgpJcdjEZHXL++uvXnP8zjywAOM/PjHlGZnKUxOcuiOO4i2t9P39a9zwbXXAvDrBx9k5Mc/5tW/+zvQuv76e9+Tqkl/93eM/PjHHHnwQULNzfXHBx4gsmhRrdxccXaWSHMzxdlZeT03h2GatWuojl+t/T79wgvoZecJy/7e34dcRoziGlvEQf5f/kaY6BVvkdJtgSC0dcnzD18jEvKqTP0H99fbJmel7aYPiXz+H78hwB/gj64XYHjlR8TV/cqPCBD+g0+KBP6N14RVb14Es1P11+EIoCX3vKVNVBXVvpGYOOJXQfljPxCQXQXcwaCf435anys/Iu/3yo9I29P3B4MSDFCqvv99H5aFaTAEf/w5+RuVi1Tz1wPhBroufA+BcAOF5IQA+c7zMKwA0eZOXKeCYQaINnVQSE1hlzJEmzuwglGfKZ/BDEXlC+f/Np1KAe05GFaAiVeewi7nOXvjxzEME8O0sItpCslJok0d4jZvKP98S0B7uJViPS+9IYE3OQ5KSd55UwuqbQl6YQ5vZFhy0CfHUJaFiidQlu8FUP0ZGCYUcniTY74ZJKjOXvT8LO6eh6GYR7V14D72b+j5WWHwDROjdxmEIxiX/g46nYJ0CuW6UC6j8zmMTe/HblmEhxjOXUedTZ/xf34bEBBtI47zHwXWIqD8GWANkovuIUZyRcRB/kZ/n+v3jyE12x8AHkfy35uAzQjoH0BA/CQSAPisfOP4uv9T793Yi2EZKFPhuR4NHQ2875vvIxANSOqCYUgqi4bcTI6utV0M7RwiGA+S6E6w9/q9OEWHcHOY3r5eGpc2csW9VxBfEseKWmQnsuy7Yx/5mTx44JZdpg5PAWCGTCrZCk/e/CT5mTw9l/ZghSX9JzeVw9UunvYImkEu672MRCiB4zkMjgwCULALJEtJmsPNpEtpQmaIhmADtmuTrWS5sO1CRtIjGMogFowxX5zn0u5L6Up00dfbx0x+hpWLVjKVm+Lw1GEAQlaIklMiW8kSCURIhBJYhoWhDNpibaxsXskDVz9A2AxjWTH0onUCyqsl4RatlbzzaLcA7mgX9D0MF9wuoLI0I0B//qAA7+zrwpSXZqWvnYZf++MdGQA75Y+90y8Jl/bLzU3Wy8WZYWHXX90lkvnSNLx8hw/eEVCe6BUgWsnKB19lu1O+HiSYEJAe75RvqFuRfVUzu2rN9dSwgOGWcwWMV9UBnu0rgN6QsZt8ubwZEhM6Myzn0VpAezAuYysl0vSqHN4IyN8ltgT23SBjuRUp0YYWwJ1YCm+/UVjxyWeE5S/N+dcZEWO7jrWSn/7UVgH7Z/++1HlPn5QxU8fltREQMF+YkucdayUgseRSeV+ZY7AkJkZyDQ2yRrFtuPFGAdlVVeFPfiLHHUd8eKo5cFu3ChP/0Y/WS+Pefbfsu+8+kbnfdVcduLe3y/PPfEby9C65RO5N1Yh/e7sw8tPT8Nd/LSRFMCj7Fy/m8OFpv376ftau7WLz5lXcfvtGn1HvY/PmVTQ2hli3rptdu56ugfBAwGTZshY++9m9PPzwr2v3yKrZ3M6dQ5imwW239dXGBGr12vv791MoOEQiAQoFm1tuWc/sbJ5t2/p435XLmc0nWbG4h67GNr743mtY2rSEkl1mNDmNYZjs2vfPNITiTOcW+Pg7riIcCOB4Hq9MneDj77iKy8+9lGsu+RCGMvikD/6vueRDFO0K09l5Dk8cIxoM86dr3s+lSy86o1xc3i7xqXUfJFnM1vp+6pIP8fLk6+TKBUyFAO4q8PZywqbnf+LL5vvr8naQylLuDJRekDRZFTxNZbvdz2ePitP81HViYNf+dVnjT39WMEF0gzxWXpfg13+B7U1zuv/B9qY53X/i5uXlP0qY9JZbJFo+f7cvdY8CFkx9WqTsVrdE6qwuP+89DUajtJvaIj/6hs1+BK8LnHEZXymwp08rMdcAaCi96JtgzIlU368fmQ2+h2Pz8+wcGuLeK67g0Pg4rbEYzeEwbbEYs/k8a77zHX7w+7/Puq4uDMPA0xoFdOzaxQfOPZe/euc76UokcLVmJp/nsu99j++8//1s6O0lYBgcX1hgYHCQW9avp7OhgYhlcSqT4e4DB7h70yaiAVnQ5X3mylCKaCAgeUiOQ8BxUENDdXl8pSIucP398npoSNj0JUvEFf7ii2UCbGuTRbXr+kZdJZnkw+G6o1s0Ko/VciuplIw5P18v/RYIyBjlMuzeDc89J9Fv320u39DGiVNBRkfr5VH9NTuWJfjY9RW0rivxhnXr6hXpFhagpYWaV16lInN3uVz32hsdlbJvIKlp3d0y5x48KM+XL68LBkZG5E9z++2S8x6PupjoOsgGec8ayUsPBesmcwFLJPUre332wK3nrVfs3zalK1cE1AcDvpmdJ6z96NRvm9GFApILX64II+8b2NlLO8iNjnLkgQd4x/btPNfff0ZZuHIqhRkKUU4mOfLAA5z/yU8S6+6mMDnJkQce4IJrryXW1SVl3B58kFVbtlCYmqqZ0MWWLCHa2flb5eYO3Xln7fWav/xLCtPTZ4yvXZfn7rqL8Z//nD/Y/0sMu4yqlj8Dkb5f/mEBzYvahH2vlOHh78L7/kBk7bNTAoqrJda+eYcA3I9+Wtjxx3/w28c+8EfCcqcXhCFfcb58WWxbFsanXj+zbFwwJDL+6uu2TlEHVCp1t+BIFE4eg+Vv8Y3u/PM2NMr7eN9maO+Ef7hHnOw/vV3aWgExpGtsqn9BMykZb+wN6DpLzPZ09fulJPe/Z4UEHB7/AVz5h7htnXjaxXOknJv/JUQpA8+1mXr1lyxa9naCsSbsYobZ4wdZvPztmFYYz3OYPX6Q1hVrCUQa8FxH5OmmBKDcch5lBlCGwWs/vZ+l7/gQgUiD9Fm5lkBIpJbF9BThRBuGGfCNEF2UYeJUCljBKKYGncuiojG0XcH72RMY775C2HfHBtdFz0zK8XwOlWiUknDvuVLaGIYY0uWzUCrhPb0Po+/dqOYW3Ed3o48cRq1ajfHO9+I+8DWMD/8JRu8yv8ycizZNVKUiGcWBAOh6OTOSC+TjcSYSTXwZAeTvRZzliwgjnpC/Pi8gOe9TCCu+HmHJDyPg3UM4mSLwsj+WhQD8EpIbn/fbxfwxq8yGQiT5dwN/A0z4bS0k1/2yok3h9QXSo2kSXQkGdwxy+T2Xk5/JMzgwyPpb1tPQ2cDkC5MkusWMznM8PMejsbeRPVv2cOShI3x0z0dZ8rYlaE/XTO36buujeXkzj17zaK1NY3cj+wf2s2nXJopzRQZ3yDlGD4zSvKKZxp5GuZbuBJmxDJ3v6SRbyQIQC8TwtMfB8YNc0n0JhjKwXRtDGUznp2mPtUv6NgYHRg/Q2dBJR7wDU5mErTBFp8ih8UP0JHoYzYzSEe+gs6GTeDDOpx79FLs27cI0TDztka1kSYQSNAQbyJazNIQaKLui+AkYATTyGFIKS9uowikB2au2izmcdgRUjzwEvZth7QPCRGOAWxR2/i1fACshALva7sI7RRpfmhbwvmq7sPcv3ADn3ypmdSDg/fR+a78tQYKRh+CqV888duk/CUOeGxfDOHF88O8Bhqj77IJI56umdYYfLE6fFMM48PcHZX3i2T6QR8B+1bTOs8U0LpiQ88W7BLijRP4eiPnn9Pwycl0yXvJY3XyunBSn+Py4GNYllsqYgZgfcAhAcV5K4OXGpU92FJ67GzZ+xc+9941n7LyMG+uQ9xCIQmEOoq3192D7awsrIqz7wX4pQRdfAqUFGLoDLt0FJSXrjNFRYb8rFQHPX/lKvZxtoSDR+ptugre8RaL41Yj/xIQsJJJJAe2zs/X0Qa2FzOjslEXHtdcKwH/pJVEdHjwo66PubimFu3YtXH65tK+WwE0k4MUXKa25hD/Z+hS3376R5cubsW2PYtFm27anuOuud+E4Hr/+9SwbN/Zy4kSKgYH9bNvWR1tbjHg8SC5XYXo6z44dg3zta+9lfr5If/9+brutj7POasSyDBxH+156NhMTWXbuHOK22/qIxwO0t8epVFzxVC27xONBjIBmPDPDdG6eCzpWYCqDlyZf98u7FWiJNuKhMZVBvlIkVy4QD0UJmQHG07PMFVLSzzD46s//iev7/hClFNFAmK/87Ht85K2XYxkWs/kFLu48BwPFaHqG7x78EX+29v20xlqIBsO+8aSiUCnhaU0yn2VJ4yLCAYOAcxxVLfFWGITiL2W9bnYAjnhYBXqFJdc2uAucUSJamX6uekDSXZUFUzdA5B2Q+DBibP0M2Mch9m4Z98QSKQ+95Dv+2v//+9v/mTndm8D9f7C9Cdz/kzavApXXJPLW/i1wRgVsT38OWj4vP97iIfkBV3/EugwzN4u8/jcd5av1HRfdDoFlYno3v1PagvygnVNgVxn5ALL00oAlrLwfCMi4zewfGamB9ZLjcNf+/Wzr6+OspiYMpchXKsSDQdLlMtlKhYZgkMZQiPFslrZYDMswGE4mGRgcZFtfH9FAgKLjsKK5GU9rxk+r5f6tK66QfMZcrrbv7k2bCFsWtusymcsxkc1ySXc3lmEQLZcxq6x3oSATz5o1gmqrk9wXviCT1vr1daRsGAI0TpyQiW/bNpn03vY2mdDGxmTSC4Ukmr1qlSDixkaZ/ObmZAIsFgWJl0rStjp+oVALHmRiHewfNGhtFYn8PffI5VRLqra2wosvSgzAsuTSMhmZd6vm9VBP7/v85+uX29oqc3tfnxzP54W17+qqz/eplMzBlYqMu2iRgPgqGWgql7Dloiq2AOreJQLQT4yKaVzVXX5sWmqxJzPQ1FAH56eD9VeOC3Pf3S7tq49LOwWYV2yR3M8mYc2q+vPWZpHXp3MCSsb860hlsZtiYBhiBGcY5MbGOPLAA6y69lqiHR2SKuG6YhJTqWBGIpIX79doNywLO5/HDIdBawzLwnMcDNP086FtDMuqAf1VW7bQ0NND1g8WrLr2WrTnYcXjhBsbQSlmX3yRxRdeWOuz/st/hTEzISD88g9Dy2K48aO/DcIv/7AA1+NH4GPXw/fvFUZ7zWX1+upXfVSA/j9+47ePve/DwlIbphjMPftL2PBe+Mi10n7lKin79i/31fv+8Z/DP32z/vrjnxMZ/8PflVruoXD9+CXvgj/6rAQKXn1RSsSteIv8VpQhbP6Pd0u/cJSaht9zhXlvbPEjUXY9MPBvfweX/4HUfD/+CjQ0SxDgX/4Gnh+Ez/wl7nkX4ToVPNfGtIIow8QuZpk9cYjFy9dQSI5TSE7QdeF7GH/5p6Qnj9K45Fy6LtxEfmEcKxTBKRcln72QxjADUgZOgVMqYoajKK1xKgXMYBSnnMdzKgTCErgspmeJNrWDIS70hhWkmJ4lEIlhGAEMK4ChLFRqAW//UxjrfxficZRpidQ9npB89mBY6rFH4yjPEcUE1OQvOp8Dx0anU3j/+l3UqtWYV/8BulL2I3JibKcLefFAaEigUHgTY6iOJVKGzvPk83dsdKmICkfRpQK247DQ1kFYKRzgEJJfXt2qn9ZxxDHelLs9Q4hp3SLgRag50n8LYdkPIgz7MgS4TyDsefX4s8BF/vgLQIt8IyhSDwYkgRTQmivz3Ccf5dIvXMrTu57myENH2PrqVvbdsY8jDx1h1eZVNTf4Z772DFd/+2qUqeQr5nikT6UZHBjkyvuupOAbXJ3e9/J7LqcwW2B//36uvO9KHt/6+P/hOWKtMR7f+jiXfuFS8rN5Yq0xGlY1kPNyZMoZGoINGMogZIYoOkWmclPM5GdY3bEaU5mErJAfUM4TsSIYSpQCASNAwSlwcOwgbbE2ZvIzLI4u5mvPfI0733knnQ2dnEqfojXaiqlMxjJjTOYmWdu1logVwdMep9KnGEmPsK57HZayeHrsadZ0rqE5EMB84QZ461eFSZ96UqTrF++Q11VX+VgvzA1B02oINEjee2FMSsYVJ6TdBbdD7Kw6sK3WIi/OSApNICFgQGYfkdMfGZB+8eWQPQFH+uFtX4PyvDy/4HZoOEcAeLABwov87m7dqE57pymzsn4+vOtL7CuyFnHLZ+4HAd6Jpb8NxM2Q9CunhGU3Q3VHdyNQ74eWgIFhQWFGwLSfroBdgOhiPyf9JWG/lX+tblnub3MvQed6eV6clfMYluSwd6wV6fzUIWhYKrXZC9Pytw/EBKBnR323+QnovESuzc7BsX8T87t3fbNu8FdRMp9WfWVeflnWNakU/PSn4vgeCgkp8Xu/Bw8/LBH86qIiGhXAvmuXlH3r7ZVFR6Egx5qbhSFYvbpOTvimw9x8szjVz87WFxa2LRL63l5hEQoFaG1FWxaeMsg5Rq0WeyRiceDAKG1tMZqawrS0RKhUXKLRgJiKehrLUni+UNS2XT796cd56KEjfOxjF3LvvVf4p3SxbY/GxhBHj84TiwVrzvKbNi2ns7MBz9O4rkcyWaKpKUwgYGCaBtp0SZXTxEMxcuU8TZEEJbvMPb/8F/50zftpjib4+i++z1+8+8/k43dtAr4Z6nh6hq7GNgyleHHiGJ//j138zop3cNu7/4ywFcT2XFzPJVvO0xCKYZkmr0weZ/mibsJWEMuwKNgljs+NsHJxr+TRB4KkCmkWxZrIV0rM5VIsbWoiEgCllazhjYS/Nh8VP6vIOlmb2yMw/5XfWL+f9Pd9HdzZ09qHZP3uTtVd6M1FMHOjXy1qXEpOv+kq/+b25vb/71bxpTHfF1mL1Q4o+aEqSxh4q1V+lPYwTH+6LoP30r/hKO+JW3zHA8Kc66L8WFtulLFKL4gpnYqLI33xEBLRzvvu8xm5iczdAXhYSrOuq4vZfJ6i47C8qYl7Lr+cRdEoQ6OjDCeT3PTkk2QrFaKBACcWFpjO5fC0ZjiZpOQ4VFz3jFz1tliM5U1N2K7LiWSSO/btY0NPD195z3sAGPEN6ar7XK2ZKxQImCaxQIBLurvr5LBloU+eFCnX7Kyw7lu3CrCenhYJWCIhBi/BoCR4b9kCx44J697ZCfffX68Bn8nUEfHWrSKNX7dO2POqDbtlCeV9/Dh87nMikX/+eaGyMxmRmAUCIkebmsKqFFi3TrNrl0jU0+m6XH1gQMjSjg55C8eOyRCmKVL2tWvllDfcIJdgmvV+1Vz5DRvkbV1zjbS98MK60d3118scaxjyfPFiiVVs3SqPrgsL84js9nRHd8f166xPCfttOwKkLVNqtY9Mynus5saPTP62KV31sadD+rmevIGqLN80pU1rs+zTyBhjp11Hc0LA+ugoh+68k8wbb2CGw6y9805iS5agfED/wle+glsq4dkinzQC9Twup1TCzufxbJvSwgJupUJ+YoJn/vIvyY+Ps/Dyy+TGxoj39LD2jjuI9/TguS6x7m7W3nEHxelptNZEWloAOHTHHfxiyxae7+8n3t3N2//iL+T7+MTuuqzcDAhIvuqjAt5qOei76/nlSgmQr7YLBgXMt7RKHvPpsnPThD+8TiT2kZgw3Vf8oRz/0J8KEL/yI/DGUVnY1qTpm0WCX31dPW+xCO/9PWHDjdPab/o9uR+4Drz+srjZz00L0z4zIQZs/22rsPiOXa9Bb1cEtM9OSo361IKvPFAyZiAo76G5VUz05mcE/H96u+Ttey5OucDMsSHsUh5lGMwNP0e0uRPDCtDUfT6dF7wblEHrynUsfceH/NeKQCQuoL25A6UUwWgjZkjAuWtXMINh7EKK8ZefxHMdtGtTyadQhkEpM4NhBogt6vK/SzazJ55DGSaxlk4C4QRmOIZSBkp7YAUwr/4DVMsiCASlRvvS5aiWRQLaK2X5+2ZTeJMTNRd5b3wEnVqAYBCdTmF09Qq73vcu+fsXC+iFOcmZHz2JikSlrF4uizc+gtHZLWZ083N4Y6f8XFoTojF0MQ/xBoLxBhIIs/0cUjs9ihjTVTcTWIkA7s8hIP7C09pdjID2tUi++laEYZ/2+wYR5n4AAfE3I/L4EBIAyCPs/bUyE9Hhj1FA5PSLTIO+bX3kZ/P0betj1eZVhBpDtecbbt1AuClMYa7Axm0bMYIGKEieSLL3+r3E2mJc/cDVmCGTUGOIYEOQ9besZ9XmVfRt65MskOVNvPPOd+JUnDPOsXH7RlZtXsXG7RuJL4ljRszatXSt6+LpXU+jPc1UdooTCycImkHiwTiGYRAPxokH46zrWoenPcYyYwyODOJ4DtFAFEMZ5O08RbtIxa2wUFjg0u5L6Un00Nfbx0JxgVs33EpTuImh0SF6Ej3EAjECZoDJ3CStsVau33s9w6lhPO0xkh6hLdbGs+PPYhoml3RfwrMTz5KqFNAXDfjANgEd74XVd0Pq1xDtFKY92iOMebhDPoWZA3599z6RhDeslHbx5fI9Kk5JjjqGb46WhV/dDPlRAc7aFUAZXiJMe3y5vI4vE8Z+7EdQHPfP3SsgOt4J4cU+K2hKXrdb8U3gbMntrkrjq7XYPVtk57lxAf3KqDvB4+epe7bUTfdseV1l352SyN5Pl9+7FemX6JUvf2bUZ9EtyYE/fQtE4cktArbb18jfwSnB+CDkJuXv1LlBJPeFKXGYnz8i0vmqxB0NrRdLiTjPFeO7woycL9YhoD/eCV0b6ikEv7hJXv/O1/2xp+WzULZM+NXKN1Vn2qYmyZEbG5NJfPVqWaO8850SnT/NOK624OjvF/Dd0SFtYjEB7ZdcIvu3bpU1zOHDcr/q75e1VNXfp1gUduDii2XsREKA/4EDqOFhlPZ8taD2QblBT0+CpqYwhYLDZz7zODMzefJ5m/37T3HqVIpPfvJRTpyYF5uBgFmT1N9883pM08B1PZ59doL5+QJKKXp6EjVn+bPPbsF1PQxDMTKS5uDBcfJ5m+uv38upU2lc18NzoWRX+OrP/5FIIEzFEbXmxZ1n852DPxKTuiUrmMrMcdeT32E2n6Ls2tz15HdYFG1kKjPHX/3kQRbHmtj1gRv51CUfwjJM5gsppjJz7Hjq78mU8rwydQJTGSyOtlB2KrXg3Ym5ES5acg4hK0jRLqG1piXaBCjy5QJ//+wj2F4JpR1wRmDuiwLAMQSEW60wfYP4VJmLhcBzJ6XqlDMqKbXZh2S9Xmu/VUg7FThNht8vbarPo+vfdJV/c3tz+8/ZghINa9gsrLn2YPoLInuvlohY2CU/zprD/BQkPibMfPt9sOyYPDpzEo3DAmsxoCFyqYD24iGfYY/IWEazXxe+BHg+uA8K0M89QsULczyVZuvevbTFYkQsC1trEsEghUqFdV1dLInH+frll+NpzWf37qU1FmMylyNv21zY1sZENsszY2Nn5MYbSvHJRx/F9jx2+IB+59AQjucxk8/Tv3//Gfv+4qc/pSkcJmgYFByHz+7dW5PN4zioamL3jh0CxqvIdsOGeomUkyfrk1I1wbuaE3bddYJiTVPyttatq096AwPSb+fOer9qEfTqviqKHhgQUF8F/XNzMDmJTQDPU2zbJn4zjY0SBN+8WR6DQUkdO93ALhAQT5n3vvfMUweD0m/bNhl++3YJhp/+tkzzf/wW/vZv5U92+niGAaGIwjPMM/PcLbP+3FAQDkE6K6XhggEflNt14F1td85SCAfF1C4UlLz4SKieD28a8vqcpfI8HISzl8obtn0t/+ljhgLo03LcX/37vyeYSOCUShy6806yvvPt6i98AQDPcchPTHDojjvInDyJUypRyWRwS6Wau7w6LV+9muf+6ne/i3ZdZl98ETufpzg7i5PLoYHFq1fT0N2Nnc8ze/gwq7Zsofd97+Mtn/iE8M2WhT49j/uqj8r34OOfE7O5bPrMY82LYbG/uOvollzvYEjywbMZ3+DPEib8j/4cWpcIS3/bn8I/3iNyCUNJTfQ//pzkrZeKUhruD68VaX5DkwD91g7JPY8nfIm9L5huXgSLOvyFe1FA9x/9uXxBHvoOtHYKU29Z9aDD4z+Q6wJxs68a8SVn5RyOfWbb9IJQr6YpzvOuI23f+wfyfkMROOdCMdQrlZgbfpb05FHm33geUCxZ9S4SHWdjF6Qs28QrT1EppAlEEkQa23AqRTGiMwJYoQgTr/yMSiGFUy6gXRsNGKaFMgysYJTFy9egDBNlBQSURxqJNLWL2V0hxfjLP8WpFGg751K05+JVa647lZpRHcEgemEO9/F/B8eW0nCVCu7j/46enwFAxeIQb8DoWYpWSlQf3UuFPQ+GRP5uBTDe90FUYzO4Lt6BfZIzHwhidPXijY+IW31DI6q9E/eJRyQY0tiI0b0UXSnj/vgRuYZQWH7gplnLQ79E7uhMUWe+TyCAvei3+TrQg9RzjyN57wZwL/AxBMzfjDDo6/2Z6hBQRkB+FGHdFcK6t/v7GhDjugDwTSS3PoSA+KDn0byiuWYwd8V9VxBKhGhe3szVD1xNyzlSGq63r5em5U38+IYf45QcBgcGefn7L/PEDU+gPU12IosVsQjEAiw6ZxFXf/tqmpc3E4wHKWfKeK6HYRk0r5BxDcugaVkTV9x7BenRNJmRDGhoXtFMz3rJc9+4fSOO7ZwJpJPDHBg5wMnUSY4vHGc0M0rACNAQamBt11oOjh9kLD1GwAjUAHzBKdAcacbTHs9PPs9IeoS+3j7OaTmHV2Ze4VTqlKRy+Oz8uu517Hp6Fw8deYj+/f0opVjXvY6Z/AwXtl3I6/Ovc2j8EOt71hMMxIXFNaNQnhOJenkW2tZLxRm3IID3oruknrqVgNa1Yjh3eBu1pawyBXy7ZRlr/jkxptM2xFfUgT3496NAvR57+qjkyNu+2dvMLyHSJQx/9ricywzLdSjkHhNskDGqOeyBmAB0hZ8Pv1Rk8Qp57lYEoFfrtivDd5o3IHGW7I+0idzeDNVl99r1Qb9Zl9JnTsljvEMePQecouSc77tBwLIy4OhDcGiH3OOyI+IKH2kV9r6SkbVUfkKk7PkJWHyByOIzJ+Gn10nwwYrJvp9t9QMJcQHo2VGYGJJzp16Hpz4j5+1Y65/TPHNsbdUNa3bskPnxdDJhcrIe1X/hBVm/fO5zdeO4QODMRQbUS+BWQfx119XHGRiACy6om9l1dwsTX5XcV/2DqixBtVTd6CjKdTl+fIEbbniC2dkCWsPoaIampjADA/v9/PdB0ukSra2xWg57PB7ixIkkX/jCEyxf3swDD1zN2We3cOpUsuZMPzqa8Vl1zfHjC1x33WN0dydYtqwZz9NMTGS5+OJ2IhGLW2/dQFtbDNM0QHn88/OPc8Nl/41kIcPOn/8Dc/kU7zlnHZ9c90HioSjvPefSmgnd3x38DwA+/o6rMA2jVu5tJpfkrV3n0t3YxitTx0mX8rU+//jcY1zQsQJXa8IBi0ggzFw+Rb5S5PyOlZxKTvLixDEKdpm7nvwOp5KT5CtFWmJN/Oma9xMwfPBsj0LLF2TdrUxZkwfOgfZvyF18ZhtYnWAugchlopSNboCuPZIeG1kn+CD3iIylQtD2NWj4mJ//3uRji1v9u7XNf5XtTan8/2B7Uyr/n7h5FWRJZMrkiZ+fpoun5bqskHwVe1TkLvaYPM4PSJ5MNfJmNEu/+X5fPr9ScmisVlj4pjD5RsyXx+XF6M5sl0heNefGniAX/B1+cWq0JpMvOg79vkx+KpfjovZ2wpbFQqFAWzyOqzW26xIwxa255Di8MDlJeyzG0qYmAqaJAsqOw7n33cehT32KguPUctkBIpbFaCYjcvyNGxlLp1na2MiypiYcrRkcGWE0neYPL7gAx/Mo5PP0Tk2hqknbixfL5LRtG5x1lrDrDz0kE9jf/I2YuvT3w623wooVZx6/805h4C1L2PSqhH7lSpkYq+dYvryuZd+5s65b7+mR/9ddVx/zvvsoBBIcPxVgdFSxfr1g00pFQLifqsrwcP2yOjvrpeRB5snTT10uyyVqLeOUyxIQHxiQNmedJfNt9ZKrl9fdLcKCkydlLXD77RKnCAahMe5KXWoNVF3eqwsvEIf3qiTeMCBgAspfmCGg21Rgu9KuKrFvjNe/4xoBGLnCmRL7gCX7GuPSplSW4IApi0y7UsH267gHGxqkfNvcHD/ZvJn3/vCHhFta0L6vAkqdkat+4datRFpbqZah82wbIxgkPz5ek8VX89xj3d14tl03IgMwDPJVaf6WLYSamrDicXAcXMdBuy6BeBwLjTr+iuSe5zIiWc+mpDycUnDydVjSLWx5pSy11ZsXi6HdilX1v6Nr164V05LP4Af3w3s+KKC3uVXk647jp2TkZLyqDL91CTXn5lJRmG7Xwf9DwsQpyYnXfi56oqn+ORqm/9n7n9Pwq5KjnsuIK/wVfyjju44cS7TAolZRFyj/i+LYkivfsxwCoRr7TDQm7VxHAgstbZJL39wKDY14E6dwl5+D61SwglHsUtbPY1+DFYww9dova/L4zgs34TkVAeHKQBkGEy//lPTU6/S+7QPEFnWhPTGVM6wAdimPU84Tbe4AZWIX09jFHNHmDtxKGcMSCa9dymJYQQLhOK5dxq0UmRt+jo63XIYyLExPS6DG8+T74XnoUgnlS01Fzt6JsgJou4z35GMYm66CQh7vwD6MTVdLWbjRk6jGJojG0ZNjGF29aMtCaQ1KyfHOXr+SlisBnnwO1dRCrSyjYQi7j5LPPxSCSoVyUwvHDIO7lWIntexiNHUZ/Jj/OIC4v69AyrjtQMq/zSPl3Lb5bXsQQL4IkdZ7SN330dPG+QvqAYAJBLhvRyT5J/zX36o4eK/NE2uL8sTnnqjJ1q9+4Gpc22XqV1N0X9KN9jTKUmhH4zleDagPDgyycftGmpY1kR3PEmwIYkUsCjMFGroaqOQroCEQC4jxXcXDLthMvzRN55pOrLBFfjpPpCUiuemWQepkivSptJSNU6DDGgeHidwEPznxE341+Sv+6nf/ioJdoDXaiuM5NYl8xa0QMAOS++7ZpIopWmOtyG1IcWDkAIuji5nJz7ChdwNoMA1xpffwMDBIlVJ0xDsYTg3Tv7+f2zfeTm9jL2W3jKEM5gpznFg4QVeiix2DO/jW5V+j1TRQVkwM50b/O8w9DW+7R0Bp8gUxkjPC9XWEV/F/owF/zrfleWkGnDzEzxLAO3dQjO0K47D4Uqjm0Z9/m5SNc/LiUI8n7amaxBWlPJxXgblDAvjjKyQokBsTeXj1nna6hB0EqNTa+fsNU9jq4pww44ll8t5yYwLaPVuAvRnyAw+nSePNkBzLjfuyeiXjVHKSb58eFol8YUZA8tGH4NzN8J77BXyv2y79ntxSP/auewVwV1n56v7fuUf+rk9tre97998IKK+N+21h6IfugLd/QQIMp5/30jtl7ETvmWP/7nfg+HB9Uu/uPnNdce+9MunfcYekAlaj9NV1zBI/sB70lU6uW1/rvPqq9Du9faUibPwNN9T3f/vb8vc7fY30wANnvNb33ouOxchUFN///ss8/fQY3/jG+9Bac/DgOK2tMXbteprbb9/IsmXNTE1lKRRs+vsH+fa3r+baa/dwyy3rsSyDiYksGzb0oDVks2VefnmGd7yjE8fxSKfL3HHHPh566Ah79nyUnp5G+vv3c889lzMzk2dgYJBt2/oYG8vQ1ZXgrBUJAkGFpz2+/OR3eOLo01x+7qV88b3XUKiUqDgVQoEQs7kk33v2UT51yYdojjRw98//kWvWfYj2xCIUMJmZ4zsHf8Qn132QlmiC12ZO0hZv4bsHf8Sn1n2QcCBEc6QB0zBxPLc2jVuGyUx2nkgwzH2DD3Fe+1lsWHoRrfEWPDSGMrAMj4ByUfawrOHb7hHWvbpuNzvqaycjLux7dSu94Evjw/7cPiyEnNkMblIeVQgyPxRyL7LG/91HpKqEcboO6//b25s57v8XtzeB+3/yVst198Gz2SbSmEW3yY9PBZClkysGdC1fkEhb1Yiu5UZY+Bp0fFtKSVT3t90jfae3Sp346AY/5/2e0/LjfeA/frX06fgORQeOJfOSm+6D6Kv/9V/ZvGoV9191FVDHdSeSSb7+zDPcvWkTQdMkYBiYSpGpVMiUy7THYkD1pmZQcV1MpSg5DvFgkJOpFKOZDBt6esQYVilcLXV+LcNgOJWif/9+tvf1say5GcfzsHzX8bhti9S7mhyezUpE2TTrqHf7dkG9UDejU6oO0G+9VSa7qgN0NFpPBHccH8gq6ed5IiVb7Mvtqovpat8qCveRdtqJsmWLlISbnhYZ+86dcNttEkfo7T3TPG5uTuZQ15W5ublZTlFNy68Ov22bAPGDB4VhF/MWUbytWSNreZ+Io1wWz7xly+TPs3KlHLvxRvjKX3u0NjnyNwwEJLeuahBnKLGdr5rQGUpA/OgUrOypA7b/s63iCAhX1G3yPQ9mksK+V8G99gMG1TYApQqO55KdnKiB53h3d61utzIMAe1+6S/DNGtGdud/8pNEWlsxw2FpYwjIQ2s816W8sECktbU2ltYat1xGGQZmIEApnSbc2MihL33pDJM67UvxvXIZIxhEmSaWacDMBOrxH/g56u3+QjUNsYS/eHIE2Ab8D6aQkWOGf8y06n8Hw6jnnGot7HWTSPWlXrILdhmCYUjNw69fEJn8x7aK4V1qTkquWYF6BOjEEQHKiztE3v7Yv0o+e/WcpiUgcWG2bk4XCktt+eq1ZBYEsM9O1gMJv2lkd9VHJIDxw2/L/pZWAf/VAMN7f1/AfEOTPK68AM80KZez2MUs0eYluJUSr+//RxLtK1iy6ndxynlmjx+ideU6gtFGMWTTmmJqAivcgBWMSJ561QneLmMGJQdVOzZae0y/tp/FK9ZgGBauU2Ju+HlaV67FDESYevUXtK5ci2EEMIPCFhaT44Tii0Eppl/bT9f575ZAS0NCjO+UQnsuenxEmPeGRvlTVsF4Jg3NLX5Ayf88q+Wyqn/PapAM8MZOodqWoILBMwJRWomEufrdrYIgrQyolKQMXTCETs2Ta17MNcEgGxCmeyd1cG4jtda/AOxCnN83A/chcvaHgFeBO047diPiDH860O9EDO5af2OcbyMM/+n9H0BqvT8EDOfKuAdG6dnQQ2o4xf7+/WzcvpHmlc14FQ8VUCSPJxkcGKRvWx/NK5rxbA9lSEk3t+JKvjvgllwCDQG0o3ErLmbQBCX7zZAEjieenaDzHZ0YlsHI4AiJ7gSJ7gR2waaSrRBqDGFYcq8ppUtSii4o7vDpcpqGYEPNVd4yLDztYSqTolP081gLvDLzCmu71hIwArjaxVAGjucQMAJU3AoHxw+ypnMNYSuMq90a4J/MTTIwOMBtfbcxmZ1kdcfqGmNfDQhoLQt8gKJdpOgUWRJpJKjMOpOtDD/Y6tW/Y6U5kcTbaQHcbkkk6Ib/vZt/BoLt0LCCWoE/ryxtnKywxtoTVv10s7vq99ir+EEAV5R8Xhnmn4Xmi+S8RvS3wXfjMnF/r75u6DmNwR8+c78R/A0wbwlrXpyDtrf6ueKdkitefaydZ7mMF2w407CuGhBwyqAdyWXPT4gb/Lrb6znwaHlP6WExjVt3u4wJ8n4zJ0/bv0zY9UoOnv1rWHOrtK0azlX7VjJyrvyU1Hk//byNy+Rv4JZlf7VfZFmtjCTVtK/fWFfgebK+GR0VYH/6OiYSqRvuptMSoa+uhU432bn9dlkUVI1Fq22qefLxuCxaqpH+5cvrayb/dTZXYXiqTG+vGMmVy4741joekYiFUopy2cG2PWKxAIYhahMhF5J0dSVIpUosXhzFMBQzMzkikQCRSIBAwKBS8QgEDLLZMplMhc7OOJ/5zON8//sv89prW/niFwXQb968irvvfg/hsEUsblHwioQDISbTs3zn4I+45pIPsSjWiOt5xIJhZrILFOwy0WCY9ngLjie/X097VNHeXb8B+j1/PYqGslvBNCwsw2QsPc13nhGAP5NboD3ewuJYI5Ypef3akzErrs2x2VOc374cjaYpBEbVTHrZqzD3FWj5LASXy+8S17eRUXXgbsTl9+4VBbgrjeibbHDmhYybHxC2vQrmVUjIu0A7BM/xx/hfY3sTuP9f3N4E7v/Jm5eDyU/6gPtj0LJLot7GvADu4hSElvi5woawnAEgeSMsukEkNOZbwYkIwNKzoBYj7L2SSHXAhoUbJZ9+2aswdxcE1kLgcgh1idROByBkkXPm+eTe53joyBE2r1rFvVdcwfV797J940bOampi/6lTLInHWdHSwtbHH+fzazawtGERB6dOsSQRYXlzMyfTacYzGd66ZAmT2Sw7h4ZqBnUF22YslWddx1K0YWNaGldrnpuYYHVHPdoYCwbZ/8YYbeEES5sTGNrk4NQp3tbVRsB1WTQygvr61+Fb3xKggRYUfOyY5HO1tgoQGhqq53nl80Jtm5YsUmxbJrmJCXGDu/9+uVnOzEJDXAzoTp6USbLmIuczlIODMu7EhNReMwzf+S0ArkvBC3JiWNEQ9+jqdJmcMslkYMVyF8c1+cJNJt/8hotpuOQLJp42GRmRuXLbNpkrs1kxsFu/vh7w/tjH4MEHXSzTxXWF/SiXXYpFk5tuNrnlFgkKXH+9GNpVmfxqbKOhAX70I/iTP3KJGyVcNJ5pgOfJgjFfxIuGMAwTDAPPsUUW7gcyjEAA0/GEOe/pENl72f4NZt7yF5ka1/OE0fY02lAylutimCZmvgSNcVzXlTamhfZcjHwRz1Ac3DFQA8/v2L6dF77yFVbfdBNWKEQplSLa0oJhKCqFIguvv077xRdjoKXCgQ/qKwvzqHAUw68DrwwDQymU9vCUkriB52GaJsp10KaF67o4pRLpo6/RdtGFeMrk2bvu4i2f+AShpiZe2LmT86+5hualvahSUb4zoTBkkiIHz2XqbHhTC4wcF+Db2nEmQE7OQu9KkdX/JiBe3CFS+e7lwqBoLXnn6fl6u+r44ajPsPtBJqcC+ZyAZIBcCt3QJOd59TCsexdoT9QCza3ChP/TN+pGdn/055Cclfzrs8+Hiu+cv+df4Pf+THLrf/0CjJxA//4nBNhGoqiGJglSaC3XbNvoN44Jw59JoZad46sFSvD4D3H/7PPkk1NEGhah7QpGMEQhM0cgEicQiuPaJaxQBI1CuzZ2Kc/c8LO0rliDXcoTaWzDsAJUCmkf4AsI9zyb2eN1g7tiaoquVe/GKWbJzp+ikJ6m9ex1vP6L77H0Hb9HNLEYr1LBCsfBc8inpzDDcQrJcVo6zhP2PBjCVfIbN5WS79lj/x1j47slrz+dQhfyUqfdD8po18V7ai/G5e+X73+pIKZyhsJ74lF49/twAyEM/7tqGgbG/Cze0M8xNr4br2kRruMIY681hutgeZ5fpk3J4l4pFoJBJpWi16mQcSvsNYM8bQW5D1kGFpwKCdcG7TBlBkkFIiwFbKdC3q3QYZjYnsuQGaTTCjKK5LDfAFzqVLjCrZAwg2gryCGEjZ9yKmx0bRQuZTNMESi4FeJmkIwVJIew+Q8WbVSqRHYyS6ghRLgpzPihcRK9CRraGzBDZs01/sKPXcj7vvsBKhqMko3naAolh0RTiLzPknet6wIPsjNZjIYw4a4EFpCaztHQEkEHTUoTWQKLowRMRbnsEg2alNJlihVXxnojxf679tO3vY/48mZ0LAAVyOcLhIIwnj9JSDXQHGzn4NQv6WnqoDXWyuGJI/R1/i6Op1koT9Ea6cB2PUzTxXMlkCcfvQLDwXY0aXuGaCBKWDUyV54ilc8xUx6lLd7MXD5NX9e7cFyPZyZ/QVdTK6OZUZbEl3D2orMpO2UOjh/kymXvRNlZHEfhqgTaMzADmkDylxBdghNeiWsrTMuGhedwE+swA36wo2xj6nmsiC9Xz58SQ7lV23FCy3AdA1MVsYKmX5d9Ao5+HefCr+HqGGZyP1aiC4cYrlqEGQpiqTwsPAuL1oH25Lp0HDOosJTPkjd0yxpEezUwXlEmFc8haAQIavcMxr2ipYZ90AgSrJZuM0NU7DwVK4ypTFzPIWhYBH+Dca8oi4pbkWO5MTGRi7RSSfRSccoEzRBB7UA5LQGBQBTwpPRbuEnYyHJGmHTD/48j4KmYFAO7KpgqzIvTfCAKsTY/MGf6AQ3kuVOS+3C1PGW1lrudl/ux9mD/rXDZ3RBq8JUMhogvT5yQRcAtt9RJB8eRCPzq1bImmZuTyH4oJG7vDQ0CwA8cEIfaSESi+ffcI+VrlaJWvqYaIC8WZaFx112Sx1ctBdfWBt/4hkjpN20SNeGpU7IOqrreZrPos8/Gszz5W3kO49NlAqEw4bDF3FyBQsFmYEAc48MBj2KuQCgawQrJPBwIKN54I8X0RJJ39i3BME2SaYd8waa7I4SHQmsD17E58PQU51/YRThsMTQ0yoYNPZw6lWZgYJDt2zfS25ugUirR0mhQQZEre+ApouEQytQcnjjK4lgzLdEEd//8H/nTNe+nu6mdslNBa01IhXAdCAZNXO3h2B65Sp7GUALTMHhx6lUWNTTS1djKdHaBydQ8F3ecx4tTr3HT41/jd1a8gz9+x1X803OPcfumT+F6LrlynnAgTKFSZFG4Bc+R2JAyPYKGS8B9AzW/E7vtPmzPIkCWwNwXKbfeja0DmIaB67kEvBlCgWaqpol24Tns0BoCyiXgjYvUPnoJaIVdOYltdMuxuS/Aos9D4QAUD0DHg2Am/m+ClP/3bW8C9/+L25vA/T958ypQmgfXBB2SG+7LrwgYrN5oT54UE7TubgGYd98NsaiwoZ6GYT9ietttopkuFGSimJoSmnf7dlix3Hcv9Rf3J07A6Jg4qlejq9u3o1esQDsORTOGp82aetrF5paf/ZgvbnwXcTOCwsA0BAym04pEQmNFKoRDBgdGRnlHew/hoIlry7xlO5pQwEB71RKkiu5uzeKeIoenp9jQuRStDcpuBRuHxnCIbMokElGMjGj6+xXbtmuWLwOlPAKGJlhV65Z8tjgR9/PnXPnblsqSp12duDxPQObYtIDMcFD+ftNTMtmFo3UA6jl1C/Yqw+zXGSaTh4aojFcti1bdKg5YJi6KbF4RDYt0V3CsZurVX9J+7nopPwUUFiYEqEQbcW1NLq8oFgza2z2UoQGFY2tyeYvDh+Gyy1zccprZ4wfpeMvv4NpFZo8fZNHydXz/hy38cr/JA992ARfH0VgBk4DlUamI+Us4pLEdi1BIo7REyb1yhbkXX6TpvPMoLyyc4d7ulcsYoRC58XFKMzMsuugirGBQgLwlMkzlaXSlgopE0L57sPY8lGFgFwoYSlGcm5NybO3tHPHLs8V7egBqbPmqLVswIxFCDQ2YoRBOuYyTzRBpasL1mXXTNAXEWBJ8UY6DVjLJmal5VHIWvew8FBqdTsnr5W8B08QulbACFkqDyqbRkSiuFcDQGuXaqH//B/SH/kTysH35uBr+Nbp7ufgBmBYKyIyOEYxFiSxehHr9lXoZtiv+UEzXqs7v1TJuxQI8+d9/21F+0++JjP6RfxJGulpLvdovHBN2eu8P60C/eq7TQXY+I3XRH//hmQGBjPTVV34Eog3oaAzlabzxU6hEE6p5UZ31t8tw6rjUffdZXp1OojNpjK5eX3XiivS+VBSm2TDRto335B6MDb+D8g3nhOXzWeKaC3pEvi8gC1fPRZsWoCRdw3X9gJqusZj4rDOmifI8bLuE61YIhxNoZVAuJAlGG+WGYpoo/59tFzEMea1NhVImKpUUZ/iN75bPCHBKWaxIA8p2fFAdQaNRGGj/+4Uy8ADb81BKYds2lmVhVO8pUH+vnocqFtCRaG2BXFWGqFwWyy6jsxl0RxeuaZHKZEhnMiQSCYaGhti0aROBQABVLqEch6Tjkk6nSSQSZDIZurq6CFgW5UqFcrlMLBbDMAyEQdU4bpFSMUk40oxlRvAMkXOHUCSTb5DJjNLVtQ4rIDL/VGqYdHqErq51lEopHKdEU9MyNC7KCOB5HunUCQb399O3cTvNLWeD56G1i9YeyeQwQ0Nf4fLL76FQmGX//n42btxOU9MKcmaAEBBwK2jt4loxHNOEfAXH9ggmQngKAijJvsxXMGNBSgoOKsXbtWYG6FeK7VqzNFeBiIXhaTzLxFIixx9Vim6tGfMfB/z2UaUoas1ZSuFpjQlMK0Wj1oRsF9c0sJRCK8BWDL8GA/1w++2ajt48yo7x/POKdeukJJVpaTIZxeSEYm4O1q/XuK6iUhGDrkxG0dYGoJmfV8Ri8rnH4xrXhdlZRbGoGRmRMcMRjesoDEPhuvI9cYw8FmEsU+G5Cq0cTMPCT+CRn4JymHz6FO0XtUt6gPKkratRpsIp2jxxw0/OcNrfeLukGuB6Etx30hhekYXxME9//Rku//p7/fQTJVjb1ShD4Tkehin3cq0hP50nlAgRjBkyqXsyRyVPZsiO5+h85xJsRHngaAcTA0MZ/u/ZrLnuL21cyorm5bjawVQWtmfjac10fppEKEEiGMdQcp8/kTrBaHqU7kQ3A4MDbN+4nRVNyyVVQTuYmJxInaB/f79/bAWudggYFq8nT9+/HEtpggoxnNRaCIuXtsNFA6IacMoCyHMn4NW74e3fqqczebYAe89Xz6DraQWrtvvmfRVRDuSG/eDItrpngFOqj2UG5MNUBuTegKNfE7NBJyZus6el3DE3JxL3qnfPzp31ijnLl8OTT4pJ3cBAff+aNfDZz57Zp5o719Ulkr8qSXIaWcLUlPz/TSb/hRfg6qvlmm68UYIBD3wb5p9Gd6xBlZNop4xOLMN1KigjQKlYZnS8yHnnNkP6BOpgP9pXIzi2jekrFZW2UZ6kcWhDyCY1cQAWX4QuzaOyo+iOdbgqTKlYJhoLAR75gsY0PDCDmEoTyA9j5EYpd7yThbQmkynT3h6j4toEgyZl2yESDHBqYYZEOEJTuFF+14aiUhHTO5DSc4cPT9HZ2cDAwCC33LKezs4GojELw4JkLkNExUmnS7S1xXA8T0QOti2l4FyNg42JhTI0pYpNyAwyPZ2nrS2KMhThkMY0XWxtSQ35yeOc3dpLJBCkaFf4+i++z5+u+QCRQIDmqCi6DFxQAcpOhVenh7lgydkYShFQDqHZmyi33s2pdIrvPCNy/u5ECFMXcI1FBCgRCMQlVfZ/ke1NV/k3t/9nNwcpuHtsFK7ZArNzQrFWy4vlcnLDbWsTdvcb35Co64EhyYdy3LpL2Y4dfn5pVvpNTcnNfHRUTMIcLYy9RhjCiy+Wa9ixo+ZEqioVyjMZMlmTbFYxMaHIpBX5jMW1qy9BFaOceN1kyzWKbFYBisZGiMUUISOEV7Hoqizj0FCA4eOKa681eOOEgaVMshnFsWOK665TdHRAe7siqiL0dS7jxHEZc3osRGMgiluRiPX0NPT3i+R8oF9RqShKRYXlVFCvnxLQbhiSH53JycRq+GA6EJTJMVsQwG6aAtqr7uXVbVGr1KQ+3S09GpXEzuOj0tfTcOyUfC6hABwfkb91qSL7i2UffBhgiCQsHhdmWbs2djmP9hw63rIRp1Jk/OUnsYtpoi2dGKYFrsP0q0/SECvT3lZCe2WpKY3GsjRNjTYb1i1g4KAMk2hzJ9qtMHv8oJh7DR/kz/7U4dv3O1hGEeWkSJ14EuUkUXiEgg6WTlJKjxMKVkA7TBz5GXYpgzINFr/1rVjRKGYoxFs+8QnCixZRmJzkV1/9Km6pRENPD62rV1PJZslOTFBMpciNjXLwjjvITk7gKKjkc8z4Rm9Vhh6tqWQyHHngAcItLRx58EHGf/5zClNTwkhWKnXTuAceINzcTCWfx3NdQtEIscWLMC2LQCAgn/kPv41pl1GuKyzwD+5HLcxgeS7KB7bqX+6D1AKqpRWaFqH++ZuomQkCeBj//C1UcgZmx1G5NKYCI5eWpfGHr0EBanYS9Y/fQC1Mw9kXorJpzH/9G8yFGYx8hsaebqKLF4My0MvPqwPpvT8E0xSgvOYyeN+H0ZGYMPDv+7BIoE93jc9lhK298iMC0E/rx69/BaWCjFk1flt23hnt9FUfRZuGgP/HT2sXb5Rggd9XPf6DGivs7v3vYojW0ACOgzd2Cp2cw5scR/eulKCLI/nxOpNGxeK4e/9dQLwZQJdKeOm0xDXyOchmMC7ZWJP8a0An53H37EYn59ClItgV3CceEYl5ah53z8PoVFJ+e5Uyen4W98f/IfnbdgXDkfxuknPo0ZOwMIe752GsQpFwpFGur1IiFG1CVWwJxNiO3243VqGI4WkYH8X0FAYGOpPBuPSd6HRKAhqpeSwrDMl53L3/HeyKD9qVgHjHlmtIzdduE67rUqlUSKfTnBoZQWtNMpnk0T17SKVSOJ7HQsXm1OgolUqF+fl59uzZQzKZxI3GsJsX4/QuZz5fIFsokMlm6enpIR6P8573vAfLsnAch7IyKAdDWJYlYD0QoKuri/HxcZKpFFpr9u3bh+M4VCpFyuUUyeQJJsafJRpdjKEsKpUMOGUq2Uk8zyWR6KK7+1KKxXk8t4LrFkmnR4jFWtm7dyuOU6CxsYdU6jgjp/aTnD9GPjvK4P5+jhx5iMH9/eA5pFIn2LPnGtLpU4RCCS699CZMM8R+v93+/f04ToGoXcC0CySTJ8iUMxw3TbYoxalYkGBzhNdNg1nDIK2gbCiIB3EMxbxSXAwElKJfKR5CwLsdDzJomQwHLYYMRdE/3goMnPZYbb8I6FQKF5hSiqxSRIGtSjEcMJk1DTKG4phS5Epw90647DLo7FSEVIxnn1WsWQOnTim2bFGcOK5oiCtiMYmpv/GG4vrrq54liuPHZZo1DEVrK4Dippvg+HHF4KCiUJD5bu1aOHhQ8cawYnZWwMLICFx3nWLyVAzLsBg+YbJli8GpN4KgDdJpRTqtmJhUZPIWnZcuBSA3kQNMnKJTK5MXiAbZtGsTylQc2HmAIw8dIT2SJjWc4tEtjzF/bIFyIYIXXkJDV4IrvnkFmZEse7bsoZKtkDyeZM81e6hkKjgFh/lj8+zZ8hiZkQzh5jDa02jPJHkiyaPXPEbyRBYrFKD90naOp04wm5/lePI41zx6Da/NHyVVTuNqj+PJ42x9fCutsVbCVphUOU22kidVTnNgdIiT6ZN8cd8XmcxO4gElVzwBdh7YSWuslYHBgZqRX8kt8/qCnKPgFOjf3187VvEqHBgdouRWzthvKU1QO6jcG5IOUDglhn9v+4bk/R/aAkWfkDLDsPorwoTPDklJPSMAxWlJETBMkd4fGZC0giP94Bbh2U+LauFIv79/wPcxUlCakBJ+pQk4dC0URiUA0LAC3v5NOWfQqpvL3XqrkAaNjb/tWLtrl+TJNTXJ/qqh3a5dwoqn0wLUT+9TNdPdsUMed+4Ukieblf+33iqM/YoV8v9LXxIG/uabJRBQNbybm4Pt28DSEFuCmnoWIotRiV6UnSHwi89iZk8Qj1mcd04jyimiDvbD0YdQ2RFU+gSBn1+LkTmBoR1UYVpSMHJjqPFBlFuGjnWgDFR2FCJtqKmDmJSIxyyM9BsYT15D3DlJNGATsWyCRgkjJ21tRzE5meX48QUcxwPXxCmDcixODmcYeblCekozuH8ENJw4kWJoaJSTJ1Ns2bKH6ek8F17YVjPT27lziFSqxOREjlzaoTEkKVuLF0d5440Uf379jynkXEJGiFy2wtatjzN2ssDsTIGTb2TILDicPJnmi1/cx8hIhgODo6QyDkXXwPE8bNfm7NZetNb8avwYlmHyx2+/inAgQDgQZiw9w1/95EFOJmfJV4q8MnWClYt7aw74J1NJCq3fpOxZfOcZMdD7zsEfYesYI1mLwxMneSNTwvas/1vw5P+L25vA/c3tf/5WqQhIPOssuUFHo6Jrfv11MQ2ZnhYg39QkUqlqGbSODlkpKCVMe/VmXygIyG9rk+jqrl0SQQ0ERBZeqciN+stflptwQ4Oct9q/UqGyaAnRqGJ2VoK9U1NgmQYrGlvJZY1aPCAalbeQTkucoFAQg57+fmEfBgbUGQ7n4XB9Hvnrv5ZL2rpVMTys6O6WS+3shGxWsXWrYnJSZN5VZ/Zt20Qd1pTQmGM+yB6dkgkvGIBYBLJ5P3fXFDY8m5f9Af/GtbIXLlgprLpG2LrqsdOdzTVnAnnDEPM1hZxzPiXPAxYs7/YDI54EUpAUJIUEEQxTWJOqgqcKtmePH0K7Np5vJLZ4+dtRhunnwYJTypFfGPeZP0Uw0oDWHrOvP0O0uQszGKV1xVoal5xL64o1KKUJhVxMy8Iu5chMn2D2+EG052CXMgQjDURbumr53e3n9mGXcpSSSbKnTuHk82RPncIwTYxAgCMPPMCiCy8ErcmOjDB7+DDBhgYiixYRbGg4A3BX0mmKs7MsvuAC0JrSwgJ2Lgeeh10o8JZPfILSwgKrrrmGvq9/nWhHB7MvvICyrJpj+/mf/CROqYQZCmGnkjA7hXIFpKmMD/Te/QFx2v6nb0id9GXnClh1XQG2VRD9xMPSvup4vveHAvRXrpJ88+XnQ0ursFlzUzJW1QOhCpYf+4EwI6e7pkdiqOFXwfPwTANtBWpgXF/1UbQVgLZOvD/+c3RHN7YBeuX56I5utGlCWyf6j/8cFrfL/kgM3boEffYF6LZO9B/9ucjq3zgqx646bexgSNq1LkF//HO4LYvJJafQgWD9GvyAgI5Ea6Xj9JUfAaVQsTiq5yx0IQe5rA/i4wLQ25ZANi3O6b7Mxli6HO/gIPrIYbz9T6E8F6yAgPknHoFgENXULEZzv/wpulJGeR7e4FPSZ/BnwmJn0pjvukJM0/b7x4b2iTFbuYTOZTHfdYXkqT+5B7JpVLwBnc1g9C5DxRpQvcvwDuyTHHLPQwWCPhOpa+N4Q/vq12paqFgD7uP/Xa6roxNCYdSSLnmMxlFWAKwAxqW/I0G+XBZvYlTQmOdJgKOxGQNIp9OMj48TDodpaGggFouRy+UYHBzkyJEj7N+/H8MwiMVitLe3Uy6XGRoa4siRIwwODuL5vznHcUhnMkSjURKJBKOjo750NMDevXvJZDIABAIBgsEgpmkSj8cplUp0dXURj8cJhUK85z3vwTRNyuUClUqWQCBCZ+c7KBTm8DwbywrjOEWSyWGUMjAME9ct88tffpl0egStPZYuvYxEoofe3ss4cGAnoNm/f4BYrJWhobupVPL09W1j1arNbNy4Ha29GkAfHBwgFlvMokXnYJrBWru+vm2USikMw8DzbAYHB7BibTVQvVMpPKRGfDvgKcUYMKQU2t+nEEf6bUjO/HaEhW9Fcu7PR+rMfwFxxd922uNm/xGggpSk+zJinmcgefcDStGIOMfEgKApGVd/+IdyG/E8xWWXye1gakqmxe5u5Zexkrls6VKJoY+MnGG2jdZCeobDcryhQabv3l5h5m+5ReLlnZ0SBJiYqMfd+/uFfa/isIEB8SlJ+ArXu+6CiQmFq0zy03n23bEPgOxEln1f3Ed6JE1+Jo8VsjCDJpt2bmLV5lV0r+tmf/9+jj5ylNxUjmA8SCVT4cef+zGe47G/fz9HHjpCOVNmcGCw9rycKTO0c4gjDx1hf/9+X90BylDkpnJc+bdXkuhNEF8SxzGkRN7i2OIaYN45tJN0OQ3AaHqUL1z6BWbzs7TH25nOT3PDEzcwkZ3gwrYL2TG4g4eOPMRkbpI3Um9w3WPXMZwc5ltXfIuzGs9iW982Nq/azF9s+AtMZdIaa2VDzwaem3iudmxb3zYCRoC+3j4sw+K2vtvYvGoz2zduFyNRZQioHn8EChO+z4SG2FJouwxK08K2v/RFce+fPwjhVgHVhRFx8y/6AX/twJq/hateE5PA+ecErM8fFKa9d7M8VhZ8MD8gY1XB/q93SDm9/EkxCDQsMDSc1QEPPgDnnCPrl8aEPO/qqoP622+HaES+XN3dZ+6PxSS3feXyM/tUS9JUH2+/Xb6kjY0yzuc/L8DdtmWtU6nI65tvlgXefffByhXwthVQ/gWUZyA/LiXvfnodpF4XJUPHWtShAfBsAeFTB8Wg79zNsGSd5PMffQgOShtSJyRAkuiFrr561YNgXNoXZyDSinpqq3gexNvh5E9Q2TFQpgQGSmno2kgltgytLDo7G7j00m7m54u4rsfzz0/iuh6trTEuvrid8fEsra0xJiZy7Nx5gAsuqAP1HTsGiUQCtVJ1t966gcbGMPm8zfR0ni1b9jA2lsE0DUIhi89//hImJ7Nce+0eJiayrF3bxcDAflpbY8SiAdraYoTDFhs29HDPPc9w8cXtJJqCGEpRcWxcz5Oys77h3Y6n/p7F8SYaQjFy5QJ/d/A/eOLo03zv2UfJlQus6lhBJBAiaFqs7jqHf3j2UVzPxXZtPrHuf+Oqt/Rx0+/8MUoZdCQWcWHn2Xzv0KNU/Pnnv8L2plT+f7C9KZX/T94KBQHpAwMCwFesECnTXXdJ9PTyy+UG7Loyi994I3z/+3WX0UjEN8TKwSOPyAph/XoZ+3Rn0O98R/K/d+4UoH7ggPx/4AG5hlRK8qbCYQpmjLJjcd11qtb9/vtFArh4sebkScWOHZJCVVXZ33KLXLpScinFoqSUV5X94bCYrsViMg80NMgl/uhHovjq66tK6AW8/+IXMl5PjyyI1q2TAPTTT8PvXOYR1iVU1SxNIwA9FKynD1RBezAgkviqi3Y6J+2qMvlsXsqY2Y7I7aumaZ4WMF7L5Q75+0UKXq3VzPAYdLfLear7c0WIR3BNheeUcZ0KphVEWUG06+CUssyeeJbWleswA2FKmTkija21doYVrIH8uhlXHLuYwwrFanm7Sy54NwqN53myKDEM7EKauRPP0vGWy2r9NVDKzBJpbMMu5Zl/4/n6cRBZbKmMVorsqVO89vd/z9ovflH8UXyHPLdYRDsOh7/+dd7yiU9ghsPYmQyvfu97rNqyBc9xsCIRoh0dZE6dEln9hReiAgFK8/MEYjGsUMj3VPIop9MEGxpYOHKEpvPOwwwEOLlnD/Mvv8w7br+dgGmgqmZmMxNSC/3yD0N7l5RHO11S7jjCjC4/T6TcxaLkfnu+MVgmLYxzICAmbk/sFtY6noCHHpC65+l5AfWmJWXOigVJnQgG63np1brrpRKk5nDfcjH5hUniTUv83OhprGiD/zlFCEYaUaZZVd37+ZAKQ2twHWzXlnrhgFMpYJgBDGViaGmrfS8GbVfwDFX3HDAttGtjhmI19SV2BV0pYUUawHNx0ZjKhEoJnc9DLF4ra6BCYdxHd6OPvoLx4T/B6BWzJG9sBNXWAcU83uDPRFYejaOnxjF6zqp+WfBG3sBobZdc7Z8+jnHJRvToSdSKc9ELc6hYHO/pX2BsfA/EGyCbFsl97zJ0aqE+dlVan07Kvr53ixQ7n8PoOUvSLpILkvPd9y5x689l5O8w+DOM9b8jJe5sGwIBCRqMj4h7e6IZ5dh4v34RtWq1AHGlxNCtUhaFRUDMwPTYKYzOHty9/46x6f0iJy6X5bP2g2iZik2+VOLpp59m48aNpNNpUqkU5513Xg14a63Zu3cv69evp7m5mWQyyeDgIBs3bqSpqan2e6v4UnelFDHfwFPMnMrs27ePd73rXViWhW3bTE9P09XVVQNNnueRTCbJ5XIsWbJEbDcMfNn7GIlEF4ODO+jr205z8zL/FuDhOGVMM0C5nMV1ywSDcbLZCYaGdtLXdxuJRC+gUcrEcUpYVphk8g1yuQm6utZSKqWIxdpYWDju99lGc/MKKpUs5XKWhYXXiUYXUyjM0dW1FtMMMjo6RDy+hGjLCuxgnGeVYh3iTD+AAOwlSFm5TuCvESO8DqRu/BRihmci6b9JpKxdB2K6ZyCO9q6/v/rcQkRstwKfBw74/+8HrgNuR5zvbSQAsL4Io6+f6fdVVRZv2CC3k3RaYuUjI3Ufr+XL4VOfOlPZnEpJjD2VgkWLZMz+fpkfOzpkvmxvr/uNzM3JnHm6l2rVj2z7dpnOy2VZEgwOypT94AMayy0CYJgGj299nK61XZz/4fNBw9SLUzVHfTR4rkd6JE0gGiC6KIpru3i2R246R8vyFir5Cj+7/Wdc/vXL8RyP8YPjLHnbEkCCAkM7h9h4+0bSI2niHXEWnbsIz/FIn0wzuENMBRPnJTieOn6GrH3bxm30JnoJGkFsbTObn6XslFnatJTBkUHObz2fiBUhaAYZTY8ykhlhQ+8GDowc4A92/wEfOPcD3HvFvXz+ic9z96a7AZjITqBQTOYmWdu1FsuwsAwL1y/j6GmPN5Jv8LVnvsa9V9yL4zm+T8BlEnhU/h1TmX65vFvhvJsEVFtxYd7HH4G+h2HRGjHga90Az10vrvtLPyZR+blnpBxeYRSiPRBaBC/cCKtu99nzRukbbhNGP9wKpVmIdvuu/bfC7CDMHoC37oLwYkifOs1wb8WZDv2GBYW0GJMFLHBSUMmL0Z3jr11UCSKN/jrFFgO/aJdUfbEC4j9iWZJWFYn65qmerH2qa5tQsG7OW8xL1RhXi6rLzcj9upKGaAdaGaj8BJz8CUwdEnf+6rnDi2D2JWjoEmPBzg3y3qywlBQMNkrOf2lBUkWXXCr9pg5BvAeallHLs3zqM/Dq930H/3uhlJK+h3bAmlug+RxID5MP9HL8VJmxsQzr1nWRTJbIZsucdVYTb7yRYufOIW67rY/ly5u45po9bNjQw+///lsAmJ0tsGPHILffvpHly5spFGxM0yAQMMjlKmQy5Zoh3p49H6W7O+Hn2PcRiQRIJkvMzuZZsaKZctllbCzD2962hNnZAv39+7nllvWsWNFMqWJjRt2as/0n1v1vtMaaCFpBvvyTB9l34jn2XvMtgmaAklNhvpDm7w7+B3+29v0sjjXXHO5ncgssjjbR3dQmqViSHEjZqTCTS/L3hx6pueIroDHSQKBqhPu/wPamVP7N7f/ZzbbPrN3peRIF/cpXZNXwxS9KPvrgoNTf/MpX6tHVcFjA+Kc+BTMz8K53CerdskXA+PbtsGePAHyl4Otfrxfz3rQJ/vIv5RqiUUHI4TAAulimUFA1Iv4v/xIsS7FoEZim4qtflWEyGVlQfOELwkzYtpx6fr7uB/fNbwoDcd11MnyVxZ+ZgVdeEbO1Sy6RsT77Wek3NiaXt26dLGCuvlpYjXJZFkNPP4NfC7xXZOzHR+rO6NVc9mxeHNJDwXob15U8+GBAJO7VfgrpG4tIm9dHBLSHg7C0U/5GpTK8fkomOc+DE376QXd7rYRZbQuKGzF42KU8lXxKgLXWeHaJQCRB1wXvIRBuoJSZI9rSiV3KM3NsSOpRex6eU6GSTzHxyk+xQjHsYp5wohXDCtDYeS4d523ELmakDnXZN71xHWaPHyTS1IFdyjP16i9BKQzTItrShetUmBt+tnZ88tf7sEt50B7P9ffjlkokent5+223ieTb85h94QXyY2MsvPoqKMXFn/schakpgokEgUSCtXfcQbynh1hnJ7nRUXJjYwSiUcItLTzX309hYoJoWxuBWEyuxbIwgkHcUonn+vsJNTWR/PWvUYbB/Msvs/qmm0RSbpjoxmZAC9B+9pfyiIar/hv0f1dqjre0ipv72RdA1Rd2bkJY9H/+poDu2XGRmOvTxnr8ByJFf/aX8OOHhK13HQHsmZS4rytkzJZW+OinxcitcRE0NotpXCZFIBIjl5rAMwzMcIy5E89hBSM45SJae5RzUmPcLqaZeOUp7FIGzzSxPQcjEKSSTzH+8pN4ro0yLMrFDKO/foqSXcD1bMaOPEXZKVDMzuE6ZaxwFKdcoJxPYRfTfspFhkJ2lnRylFI5w+irP6dSzuJqD13089FzWbxf/lT+PhqMy/83jM1/iko0inTdcVANCQkAZNI1WbkyTVT3Uqk7PnpSzAO7pZQZgOpeKuz58nOEyW5sQudzmFd8CNXcgrKE+VbtnVKDPNaAedXvS359uSQs/ODP6iz8olaMzh68kWExfMtnUT1nCdMfCqOaWtCZNProK3XW3rbPAO2qaRGgcZ/cg+o5CxUIQiGH+8R/oJPzYFnoaqkqQLUtQZeKmFf+HiochmwWb98TkMv66TBFErEYxWKRpUuXEovF6O3tZeXKlRSLRZ544gkWFhawbZvu7m4ymQxaaxobG3nnO99JNBoll8vhOA6e52FZFsFgkGAwSCqVYs+ePczPz6OU4vLLLyeXy7Fnzx601sTjcUZHR2t9Hcchl8sRi8V48skna6D8wIG7aW+/mFisnU2bdklOI6C1Sz4/QyYzjuMUmZl5GccRWfXQ0E6fPd+B1i5jY8+QTp/iiSc+RyYzQi43wb/+69Xs3Xs9xWKSfH6W5ublXHXVt2lsXEo2O47WHpVKno6O1TQ1LaOnZz2WFaFQWKC7+1KaWs/nVDDODUqxWmsCiFv9LoQFDwBr/dcbEAbcQrKU2hBwXUYAdhlYhrDxMQT4v4Gw7aPAL5GSddf5t+EBJADwMeAeBNzfDyz3221FAgPalnmmtVWCzJddJqm969fL9GBZvuejI3HyRx6pq8iqarDbb5djLS3w7LMC3i1L5sebbhLWPBwW8nR6uq5kW75cznvnnTK3ZbMyzv33C2gvlaRfIiHK59tv15japrhQRHvirr/p7k28xQcgwYYg7Re388QNT5B6I4XneuSn8zQva8YpOjx23WNkxjIEogGalzUz+vQoylC875734RQdnrjhCRLdCWHlCxVi7TEuv+dyGnsbabuwjURPQu4fhoEVtujZ0MPQ3UM4nkP//n7+YPcfMJYZ41tXfKtW6/548jjX7rmWgl2gLd6Gpz1Wd6xm+8+2M5oZpegUWd68nJ7GHq7dcy3diW4e/vDDbN+4necmnmNt11rS5TTRQJSeRA9LGpZwcfvFfP6JzzOaGcXTHkWnyGRukpJTYrYwy6Xdl2L4Hg+TOZ8ld/NSc/7QtZA9IfsWrRX2287K63fcB1e8JGD8uc8K0FYByUHv/qAw8oeug/ASceRftEbAuxWHd9wrZfasuLDIzW8Tt/9oLwSaJQAQXw5r75f+84eElbfiAoZj7b7LfrfcpHNjAnZzwi4Ta4aQKecLJoSlLs5CflTIh1iLtFOGBA+alsuX0J4C05VqLsGAyBhNQ86hHKiMQxBZ/1Q9eyxT2tmzEAvLOMGEnG/oDnCKqMxJed61ATZ+BUJNUiEg0irX0LZaAhBdff6YEXk/Q3fIONE2eH4XLL5Q2PSfXS99AxFx+H/q0+Lof9ndAtrfcRNMHpJ+h3YIc//sTgmIHxzAtQW0t7bG2Lp1L/m8zeRkDqUUO3cO8cgjR5mczKKU4v77r+Lqq88mkQgRiVj09ib40pfeyeLFUTKZMrbt8elPP8YbbyRJJEJ0djZw//1X8eMff4z163tqDP3oaIZCwWHXrqfp7k7Q3Z1gYiLLyZMpwmGL0dE0jzxylJ07h0TIZmly5QLfe/bRWi35gBnAUibXrPsQD//JTubzaXY89fdorelpbOcvN32K3qYlxAJhLlyykkXRRs5p7WWhmGYyM8fOn/0DrhYiKRII8a8v/Jgnjj7Ndw/+iFy5QCQQ/l8KtP//2t4E7m9u//O3QOBMLbhlyQ0zHv/t/KSBAdn/wAOi1ZuclP9f+EI9D74aBLj5ZlkVdHeLxfjwsKxKqquMri5pf/KkoO3jx2Uha1m4gXAt5enOO0XFPzws4Pv0YdrbBe/PzgrI1loWNaOj0u7mmwVst7ZKDCKfr8sC//qvJVdQ8vtkEbN2rexft04uL5ms/2m2bxcCbNcuWH2xRpUqdUZ8NgljU34pM0NAeMDPQ6/Y9TJnFUfAd3VftZ9hCMAfHpM2DTEZV+PL7g2Rx1dl844rzyu2LOxPTgigL5UF0IdDaKXRnodTzmOFIpJPXkxTzqeoFDK10l/RpnYADCtAtLmTueHnAI3n2swNPyuS+hPPEm3prJkUibt7iNnjB8lMn8AuymTk2mUWL3878dazcMp52s/tQ2vN5JGfYxfTWMEoi5evId56Vm3sueFncctlFl14IcWZGQ596UuU5udxikWeu+suwi0tFKamaDr7bIpzc/xq1y6i7e2YoRBuqcTsr35FbmSk3nZyknBLC69+73s1GT1AbmSEQ3feSW5kBKAms3/1e99j0UUXoSyLNV/8IuWFBQ7dcQeVfF7A94lX67nfV30Uhl+DRW1SZuyfvgkzk7Kqnp2Ef75XZPRdy86Ut8cb5dFx4Mo/rI8VjsGff0nKqQVDdbZ97w9Fgp9akDHnZ6Tvv/6NHAf53E9j1yeO/AxlGHS85TKcSlHKm/mBEjMQYvb4oVp6hNIeZjBUO17dD/q01wdxnbL/GT1PtKkD0wqChrnhZ7FCkdPGPEi0uYN461m1fXPDz2MYlkj7LUtAblePSOT37IZ8DqN3WQ00Uy7hDT4lDvKJRrynf4FKNIq8P53C3fvvIqfPpHAf+zcJbgDq/Isw+t6FSjSK9LypRZh1y0LnsuiFOdwn/gPyWdSSTrwn/sMPrvnO/6Mnpf+q1RjvvlLy42sS/hRGz1monrPw9j0hufhjp1CJRlEKbPhduT6nItcXi6PTKXQmBekUqqsHb2gfaK/2PnUmJZ9l9X2kUwLWbVtk9akFdC5TDySYJoQjoD3O6unhggsuIJPJsGfPHmzbJp1Oc+TIEYaGhiiXy5x//vkkEolabvvw8DCTk5PYts3evXtJp9MopQgGgzU5fU9PD8FgUEoIaV2T31cqFTKZDLFY7Iy+XV1d5PN51q9fj+s6lEpJNm3aSbE4zxNP3EA+P0083koyOcyePddi23lCoTilUppodDH79w8QCER573u/xtatr3L55fcwMfEcsVgrg4MDtVz1rq41vkx+G5FIM7ad57HHrsNxiqTTJ9m374vkclO0tCxHKYNMZpTHHruOZPIEkUgTjlOkpF36lWItIos/BnwGKTd3MQLSQ8DdCHC/A2HaZ4EcMEkdYLcBw0ipuZNImbt+6iXqqlL6tf4YNyNS+Wf88SIIYB9DgH5Vah8whRGfnZW57YMfrBcccV2Zd5qbhUVvb5cp98EHZaqOxYRpP+sskb0HgzKvVat5dXXBV78qrL3ryldv+XKJpfvenNx8s3jEvvSSjNfWJmMXi1JVBGQO7eqC7rYK6eE5Yq0x9m7dS3YiSzAWpDBb4IkbnmD+2Dxo6FrbRXokTfpUmn1f3EdqOEV6JM3RR44SagjhuR5jz4zRfnE7VthiZHCE7GSWrrVdDA4MkhnLYOdspl+cBiB9Ks1Pb/4pmdEMlVyFSr7Cvjv20bOhh013b8IyLLb1beMD536A7sZunp94ntUdq3G1y1hmjEeOPsJYZoyp3BRb9mxhIjvB2q617BzaSaqUwtFOTWI/MDhAX28fSxuXsrpjNRt6NnDHvjs4lT6Fq11ueOIGpvPTrO1aS//+fpRSTGQnuGPfHUxkJ1jfs54PnvdBXp9/nRueuIE1XWv8dLOAlL1r3QCvfVUY945NAp7DHeK4/9xWMa0rjNbz1J2sX2ovC6/ulP3FcWlXBfdaCytv50RG/qub/Q9uvYB1tyQBg9ywMMnJw5JHHztLcuZf/As49S8Q7xCDO+2J434VyFckhaYO5scFHFeyAuC1L+tSCHNdnPGNdE9CcV7q3CsxfxNzPf/RDAogdyvyPz0s16o9OZ5YSq1UnlupS90r6frzZ3eKtD3YAMmjsO8GKEzLvkpGxpo8KK+rgPtgP6CFpVcmHBqQ/c/vgmirSOmr7cwgvOteKMxIYEBZ0u/czfJYmIW12winXmLdui527Xq6Jntft64Lw1Bs29bHww9/mNWrOzh2bJ6hoVEikQDHjs3z6U8/zshIhp/8ZJgbbniCVKpEOl3ioYeOMD6eJZMpc+zYPNdd9xhLljSgFNxyy3o2b17FunXdDAzs56GHjjAwMIjralav7mDDhl6uu+4xursTPPzwh7n11g2yZIgEWRRr4rZ3/xn3/t6tXHvJ70tVEe2xpHExi6NNzBdSXNR5NvlKkZJTJm+XcD0XR3tUHJuv/eKfSRVzXNR5Dt85+CM+8tbLmczM8lc/eZDR1Aw3/e7HufzcS/mztR+gIRQjWDWF/S+yvQnc39z+52+eJ4z33/4tnH12fcWgdT13vZqXtH27AOyZGWnzm3nsllVHurfcwhkJc/39cp5vf1tqeH7mM7KAPp3td11wXQKW5pZbNAcO1NPiT8+7C4cF0GstIL21VRjxyUl4+OE6U752rSxmbrhBgHt7ez3lavt2eatVIF8VAVSZi898Bi66SOIRDzwgl661D+ADiMmcaZyZl658OXxDTAB5FWg3xKAlcSb4bojV+0E9ADA6Bc0JfzzEiC4YOPM8linPqwC/OmY4BCt78ZQWRk8ZRJuXMDf8fA2cWcEIc8PPypsxTDRgF9PMHBsi2tzlS9gVhhlg8fI1kr++cp04WpeFlbdLAh5bV66l923vJxCJC2vr2ZhWGCscJxCJM/XaL3HKBSJNHQIYFYTizQTCcVpXrquPbVl0rF/Pq3/3dzWwbWezZwBrwzTrxx98EO26ZxjOnQHCTbOWt75qyxZp67ep9q0dv/ZazGCQ4vw82vNqgN5UoH78sID3xR3CrgeDEGuQhcDpwNw9LQ/9id2yEPpNE7grPyJfrNZO+PjnYHG7vG5uhe/fJ3J80xIJ4eUfhvPfVmfn9/5Q5IVVMP+D+/GUgac00aaOMz5fwwwQTohxnWkFWbx8Da5dpnXl2trfG2WgDKt2vLYfdcZr0wrVPyPTQhkix25duRanXDxjTGVYWKHYmZ+r1uipcXS5jNH3btSKc+t54INPSQBo47tFSh4KiXw9GKoz4IM/OyNnHbtyRo465bIw6olmcZ7OZ8VsLp8T88BoHO/Az+sgePk5GBvfLfEwpSAQRMUTEAgKQ28Y9fz4p3+B0bUUUKdd889Q0ZjI5HuXoZoWobSuX9PTv5Ba6sPH8Aaf8s/3HrQyau/T6Oo9Mx/e/zvUzrv/KYyuXmm78T3yG50ah3QS1xZjulwuV8tr7+rqYtWqVWzYsIFwOIxlWTXgPTQ0xPLly+nu7q7tGxwcBEQaHwqF2LRpEz09Pezbt49cLgdAX18fq1atIhQK0d3dzdNPP13ra5omlmXR3d1Nc3MzwWCEYDBOIBCrge6hoZ1o7dZeDw7uIBZrJRxuolCYY+PG7RiGRbE4z759d1AozNLRsZp8fvaMnHZQXH31t2luXkks1lYbr1xOMzi4o3YugHI5fRqDP4BSBuVymunRIW7zHN4LZJEa8w8hpeLSwDgCzqOnHRsAFvz2/f6+XQjAHzit/1Ik/93yH2eB24D3/sZYi/1xPP98rdRZ/24AQ4Rqb3ubzDOBgID4G26QEtdaC2iPRiUgfe21kt2WycgUHA7LNL5kiYjjrr1W4uFVCXx1+nVdEcKNjMChQ9QqdN17r8xzfX2SZrZ1qwjptBZfsOPHJbb+xhua7Fiaoa8M4TkePRt6sEKWBHt2SG760M4hypkyyzctp3tddy1nff/AfrrWdvHhhz+MU3DYu3Uv8Y44aHjsuseItcbITeZYvmk5G27dwPCTwwwODNLb10sgGqjlwQ/tHKKUKlFKlWqvA9EAruvS29jLvVfcS9SKsr5nPXOFObbs2VJj0Nd1rzsj/33T8k3cuuFWGsONGMqo5apv37i9VsseYOfQzprJXKqUOqP/9o3b0VrX2uwc2omnPbKVbG3fwP4Byhp0aVLy1BdvEAY92CxS8vgKmetPN5VbtM7PU98ORljmnEADvOUW2b9o3WnmdAPyYV74JZF2HxkQJr84IdL73HHJka+2NUPQvFqk84e2CJi/aABmfiFGeCiZw8wwNK0Qt/uFowLS4911MK+1SOUNH4i7JT9nXIv0HqR9y7lyzvSwyO8B0NI+/YYA7mDizKBAtbyd9nzwPyvtq4A52AjrttXB88SQHH92pwDuQzv8yjxhMfaLLYHxIVh7Wh+QmveB6Gn7bwfM+us1t8JrPxAJfccakd27Rcmt3/SAvP9yBgIxgj1riEYstm/fyObNq9i+fSOBgEml4rJ8eTPr1/eQTpfZuXOI1tZY7XkV5G/atJxbb91AU1OYpqYwmzev4pJLus9o19+/n6mpPAcOjHLnne8kHDZr+fDbt2/ENA2i0QA7dgzWwPyGDb10dTVQLDqYpkHZqZAqZjmv7Sw6G1sp2mVGklP8avwoZdfmoiXn8Laut/C3Qw8zn0+TCEaZzM5z15PfYS6f4oIlK/juwR/heS6fXPdBOhtb+a6fC/8Pzz6KpQz+ctOn6G5sJxr8r8W2A1Ki483/Z/7v6urSb27/CVu5rHU2q3WhoPXLL2udyWg9O6v1nj1av/ii1tPTcjyV0jqfl8eJCa0/9jGtk0lpMzmp9ebN4t29ebPWR49qvbAgbZNJ+f+rX8mx55+Xc1T3z8zIOV58UY4fPiz7T5zQ2YVKbYjpaelWHebFF+USw2Gtjx2TSz79EhYW5LIPH9b61Vd/+1gyKZf3+ONySYcPy7GXXpJ+uZycL5ORtzcxIc8PH5a3nstpXci52rNtrbN5reeSWpcrWmdyWv/6hNa2rXWlIseOHJf9FVv2V/dl89KnXJH+pfKZx2y7vr9U1rpUkn3V17b922NmcnJsLqmdSkkX0tN65IXHtF0u6kJ6Rp96/lFdSM/o9NQJXUhN61IuqQvpGV3MzutTzz+qX9rzVX3q+Ue1UynpciGj7XJRO3ZJV4pZXSlmtVMp/Va7SiGr7XLhN/YXtVMpnrGvmJ3ThfSMtstFnZ4alvErJb9tScbK5/XCa6/p/TfeqBeOHtX5mZnaczuf15Vcrn78tde07bcf27dPL7z6qt5/4406efSoLmcyOj8zo4vz83rupZf02L590tdvs/Daa9ouFHQll9OlZFLP//rXenxwUJczGZ0+ebLWzs3ntC7ktc7n5H9yTl6nk1qXilqPnND6/n55LBbqr0eHtS7m5X9qXutSQfoX8nLs/n6t3zim9cKs1oWcvP7k5fKYTWudzch4hbzWp16vj5mc03pipNbemRnXo7/aq+1K6bTPd1pXivKZFLPz2q6UtF2Rz7D297bLupCe1umpk9q2y9qxy9rx29nlYu2/UztW1KXsgs4np3S5kNHpqWF/rJIu5RZ0uZDWlVJeV0o5nU9OyZiVkrZLee2U8tqdHNfOsV9rr1jUXqmo3ckxbe/+R+1OTWivVNReqSTHigXt5jLaK5W0OzV+WpvTXmfS9ecTo9rNpKXf3Ex93Mlx7RUL2jl6RLuZ1G+cr6TduVntTo3L81xGu4W89vI57ZZKMtbp7cslaVfbNy7jTk1or1DQbj7vH69fr1soaPvfvl9r45XluPP6a9orFqR9Jq3d8ZHamG4hXx9jYlTGLRS0m81o+9++ryt33qjt3f+o88kFvXv3bp3L5fTu3bv11NSUnpub08ViUReLRX3s2DGdyWT05ORk7XipVNLlcllPTU3V9hUKhdr/YrGod+/ere+88069e/duXSgUdCaT0TMzMzqTyehcLnfGeOVyWR8/frx2zlIpowuFBZ3JTOjJycN69+7NemLieV0qZWqvp6YO63I5p0uljM5kJmp9du/erO+8E71792ZdLKZ0sZjUudyMLhQWdKmU1YVCUs/OvqYLhaQuFBZq42UyE3pqqjr2i3pu7nWdyUzo8fHnavvK5ZzOZCb0Qm5aT3iuntJaT2itn9Nab9ZaH/ZfT2qtM/7zw/6xl7TW01rrBa31i6fty5/W5rDWOue3OeaPkfJfT5/W77DWes9p7Q9rrV/zj+E/ZnIyzywsyNy2sHDmvDUzI3PWb85nv/61zH/VOSuVOvN4KlWf3158sT797tmj9cGDsn9ioj4FP/ec1mNjWn/jG2eOf/qYcxNlPfXSlC7nynr8+XF9dM9RXUwX9dSLU3r35t164vkJnZnI6FKmpEu5Um3/2KExnZvJ6WKqqHdv3q3v5E69e/NuPfPrmdrz3ExOl7IlnZnI6H/72L/pqRflPMXUb4+fmcjo3Zt366mXpnR2Oqvn5uf0q7Ov6s27N2vu5Iznm3dv1qliSmdKGf2ryV/pzbs365emXtLZUlZPZaf0vQfv1Udnj+pjc8f0dG5a7zm6R784+aLOlDJ6IjOhnxt/Tm/evVm/OPWiHkuPndH/8WOP64XCgn5x6sXa/oXCgh5Lj9X6vTT1kq6UFrTev1nr7yOP5ZTWlYzWCy9rXclqXU5rvfCiHJt/XutSUuvygtZje7See17rwpQ8ltPStzhzZvv8hPzPvK71wmGtU6+eeb7izJlty6nfuJ4F2eeUtK7ktC7Ma+1UtHZsrctZreePam2X5LVra10paJ2dqLdxylrPv6b12KA8Vgpntj/9mGtrXcn/9r5yTp6Xs37f08//mlxXOat1KaV1KaN1Man1/KtaZ8a1nnxe6/y01jMvav3oZq1nXpL9j31MrjM7IW0KC1rnZ7Q+sUfr6RdljL1/qvXkc1oXZuUapl/ReuGYHCvn5L1nJ7QeflzrmcNy/ulfyXmmD8v+YlKX81n90ouTes+eo3p6OqdnZnI6lSrqXK6kjx2b1QsLBT0xkdHPPTeu9+w5Wnu+efNu/dJLUzqbLelUqqgPH57QMzM5nUwWdTZb0mNj6Vq7F1+c0hMTGb158259+PCUfv31OT0xkdFzc3mdTpd0Niv/f/Wrydq46XRJ33vvQf2xj/2bzpcL+sjkCX3bnm/pmeyCzpbyOlvK65GFCf3yxOu1/bO5pD4yeUK/MTem8+WCvm3Pt/RFd/+hvvmRe/Tw3Jg+NnNK50sFnSsVdL5c0K9Nn9Q3P3KPnsku6KP+86PTJ3WxUvpPAiz/79qAMf1/gFHfNKf7H2xvmtP9J2yVCrz2Wt2BZuVKcb9Jp0UKXyoJjW0YEpJ/+mkJvUciorUDyXm/4AJh2W+9VUzrlBLNnuPAc8+JC308LmF8peqO8ydO1B14Vq4U6ruaG24YFM0YZccU0wslp7/oIjltJCKMweioSP0iERm2Olxbm0j/7r5bTj08LMduv13y121b9nuesBkTE3Xjueuvl769vdKvWoK+o0Py3x96SOTzlukRC7mo/529/46Sqz6zv9HPOVWncld3S+ocFAlCgdzKiCRkCZHGtmwPtscRGAvbgA3YgA0eI2HAGDAwNhhsPLbHNtkgRMYYJKEWCEQQoNSSOufK8VSd5/7xVFeJ+/7ue9e71sz73js/zlq9qurUSRW6vt/97P3sva9b2e6GyTCzjQkleeV9ttV8xWNV+tAn5GTFot5xmaVs1tLOBqXHaG/84YZ1Hzt2oWJUZ7n1wHZRM9wNh773XiA2sJua5tk0HL0Mp2hj+UIgDunIAP7aZgq5FE5B+/JHS2Z1punG5fFimG7633uR2OBe2k84l+DkFvJpzW+vm7UAy1dF//svMmXGSRimyci+7dTNWoA4Di63B8cplLf1BMIUsmmKhTyeYE0lU/6DV5g84wSsQA1Dr3dSd/zx5ZeXHR/HEwrhFAplCW90924mzZ2Ly+Mh3t2NFQjgCYfJx+P4amoo5PNEPvqIyXPm4PL5GN6xg0BDA6HWVorZLKbbjVMoaK+7x0NmeLgsxf/wt7/luMsvxx3S99qy3DDcr1Fmqz8Hk+qVETdK/z+IPjZNePR3cP6X9b5hKCvu8+tn3bsfZs7RF5WMwo3fhW9cqUZ0IiqDn8hJn1yv7HxVte6bjOl9wyh9MUTN7Tb9BecL/0rRY5WM51T2bbosCrk0LstL/66XaZ5zOv27Xi5/D9RMEN3G40OcInY2xWjXG9TN6sBl+TFdbor5DG5fCHGKpCMDuL3aMx+obcLOJhjZt52mY04FqOw/82RM18c/d5+nCqe7q2IWt/QMqJ2E4ThIwcZ54WmNcqsK63tq53G2bcZceY5+5qkkFGztGRf9n5BUEiMQ1Cg8p4jz3FOYC5ci8RjOnx9Qpnr5Wcq8p1MYLVMxpNR/HgojPQeQnoO41nwWEadkrJTFqApTfG4j5kkLMGonIxh6faeuwPAq4yWmiVEsqlnfi5swF5+KJGIYDU0YlqdkpuiCgo3T34vR2IxhebRfPhrBaG3H2fYa5pmr9ZjFokbL2XmMUBU4gvPeDqS3G9eq8/V45d75Wg7GkwTDYWpqasqThHw+j9frJZlMsn//fgYGBjjttNMwTROPx1PuS/d4PBSLRQqFAqZpYlkWY2NjJJNJwuHwx0zsnnrqKXbt2sWcOXM4++yzSafT+Hw++vr6qK6upqamhmg0ymuvvcY556ykUMgyMPAWLS0dAJimG8cpAoJIEcNw09fXSWPjccRi3aTTo7S3LyUa7eK11zawbNl11NRMJ59P4HJ5icd7SST6aGtbguPYFIt5LCtAPp8kl4vj9YbxesOIFOnu3sIzz1zKN77Ridvtx3EKZDIRAoHJ+v54QqxzuVkK/PPEzytqOGdQMZmb+OlNlu7vBNpQVn1i+07gxMO2daNS+Gjp9tbSX6C0vY2mrU785HuAzajMfiHKyl8LTIvDa69VhlOvt+L2/v3vq8Bt4UL9F5kwY52IuA4E9Genq0vvHz4WzpqlQ4TjVHrk83ndft06Hc8+/FD73ScM7m64QV9fJqMqAJ9Ph+uJsbC+XggHi7iMIvlkHqfgUMgVCNWHkIn2E8ehkCkwuHOQtsVtlTHLAAOD6MGo5rtfu4xAXYDnLnuOZddq1vuEDN5X7SMbzeIJeUgMJEgNpWhd2IppmTi2Q9Eu4rJcuDwuinYR8Qh5I4/t2Gzv286JTScynB4u56hPq5nGcHIYn9tH0k7SGGzEMAzSdporX7iSW1fciuWyWLdpHQ/teoi1c9Zy75p7yRfy+C0/jjiMpEbwuX24TBdVniqKUiSVTyEIlmnhcXtwG2629GzhQOQAF8y+AJ/bh120Cbm9eNMHMHathzk/1L5yb53GuzmOGs65dXxGiur0HpoOT89Whn3B/RDfo1L5OdfqvtGdMGWh7jO6HeoW6be5mNV+7sR+7Z+fc41K7a1ajYezE8r0J/dXcuDdQTWyM336jRWBeLfK4E3XhLtpae6RUAbddCsbHmpRdn7CzK6qFUyvvg47VZLC/y+ec2xl1yfWTfxjCSpxd3lUtu/k9PUUbchFIdWvzHrHD6FvC0w7C7y1+pwV1FtvDYzshMhe7YHfcbv2qrv90L8FnvoMzDxXWXM7XTnmgmt1m2xEZfMd11Su2zcZRt7RnvkXLlJm/6i1sPznkBknWQxzyZVvs2hRKxdeOA8R2Latl5aWKvx+i0zGpq8vwdKl7RQKDuPjaerrQxQKDtu29dLaGmbatBq2beuloSHE+vWvcc01S5k6tVr9Euwi2WwBy3Lh8bgYGUkRi2WorvZTW+uns7OXtrYw06bVMjSUZMqUAJmMzTvvDHHyyc2YpoEnCP/2/G84ofVojm85mgc6n+BrC86jtbqef3v+N5zYejSnzTqZVD5DyBsgV8gR9lXhMkx29u+mITSZpvAU3unfw5F17YDBaCpCS3U9LsOkKA4/feF+ntv9OiuPWsT1Z11E0Ovnf9ryf2ZO9wlw/18snwD3/4IlmYSvf70yWt93X2nwMHSEB20In5gV7Nuns4VrrlFgns/rzGJihjB9um7vcqlefcMGlc+Pjlb2a28vOYrmKrOGiXOvW6dxIFOnQmcnqVNWEU+aZfd3Ee21W7JEDzllip7qO9+Bk06Cz35WJzuGoRL3CdP7e+6pvKzt2+H441WCOAHkfT4F4iMj6iA/e7bu9+//rsd56CE1r/vVr3TSY9taKPC6i3jSCTVTcUrAHBSkw8dB+oT7u2nqASacVB1H5e3tTR93mPd69A9KcvYSoC+7yR+2nWnq8waUqwYH+ijOasGx8xSL6hKfiY1g+UOYLjduyw+mST4dw84kCNQ0gukq1xyKhTzZ+BiBSU1lkGe6LexsCpfbg9sbUADlCHY2gWG6sNNRvKEpJTm1CzsTwzQt3N5AGaBPmnYsHn81di6JnUkSqG3EKRYZ+ug1mueeQW4soo7xX/0q6aEhfJMnE2xuViO5TAYRofellxh+801O/tGPeOOnP2X2V77Chw8+SN/f/865L7yAaVkYIoy++y7+hgaCzc0U0mkiu3czee5cxt59F9/kyWTHxpg8fz75eBxPVRVvrl9P3fHHM+WEE8iOjDB5/ny8Xg/G/g+geapGdVmlz2RsCMaHVbYO4PaoW65p6q0IPPIAnHkB1DdBNlM2GMMf1O+GYUA6CaGaSnGs60N1Oa+qhr/eq3L5ukaIjEBkFNpm6gTK8qiJneNQ9PuxcykMDFyWl3R0CH91HYbpItr3IZ5ALZY/xFjXDhrnnFZSHhb18y6ZozlOkdjAbjKRARqPWV4ysksSmNRccqEHcRz9bA0DO5skOXKQbGyYpjmn0vfei8QGdlPddBQt88782OPWOWdiFAqaw75rJ8a8E3Gd/U8KWDNpyGbV/K12skrQ+7oxGprVVX7rPzDPWI1hmohlQSyCxLTnXEAzzoMhjHweKdhaHOg+gFEVRrpL4HzVBfo+Pfc3Pf8EqC8WMCZNARFkbARn6yvqGl9dC5Exfbz4NAiFMFzuMuinKgyGgfPsE5XjLTwFZ9urmMvPUvBtutT52DSRXLYE8JdD7RSNKzIMyOcRj1c/V8uD4fPj9PdgNLZUXPpNExJxnM0vaQtB7WSyhSIulwsRwbZtXnjhBRYuXEhVVRUDAwOEQiFqa2u16m8YFEpF1v/37dra2jAMg+7uboLBID6fj0AgUAb4E270S5YsIRQKYVkWGzduZNeuXRx77LGsWrWKYrFINBolHPbS37+N9valhzm+X0tNzVSSyQH273+egYG3+dSn7gSEVGqkDMKrqpoQKWKaFtlslHw+gddbjWm6ME0L207z8svXccYZ67GsIKnUMNlslFRqmJaWDvr736SqqhnLCmDbGeLxHlpaFuB2e0kkBggG63DcPuJuH8OlHPUpKMi+Gvg+CsyzKDhPoGZy7wCT0D74VlTufjUwrfTZuICh0rYpoAZ1nH8eWIr2sHcAPtS8rg84DpXmh1GTurrSsdJAOgPJPTouXXutDqfFog4X27frsDh1qgL4urpSDWuizqtfJ8bHVTp/1FE6Vk14H+bzul99vX6l3nij4u2yfr0ms4yM6P2rr1awXgoaKJ9DRK/HNEvXMLmIx8iTGkoRrA8S640R747TsqCFbCRLLpGjdkYt+WQeO2kTbAxSyBRIDaXYduc2Vv5ipRYaPSa5mEqn3X43qaEUnpAmmgy9M0RLR4uOH28PMuXoKbj9bqyAxdieMbbevJXFVy1m8lGTiXRFcIVdDPgHykA96A7SEGrAdmyyhSxXvnAlVy65kv54P/XBetqr29net5326nam1kylWCwSyUZI2kl6Yj0saFmAy3SRttOMZ8ZpCDXgc/lI2SlCnhAHIgdYv3k91y69lum100nmkwStINliFhOTSDZCrpCjMdSI1+3FhYO/mMawo9rPnu5RafwJd2hP+oe3as+5O6CGcsWMmsq9cTHMvU7vj2yuuMOHZsLg8yq7//AWLQYEZ0KqS8F4x28ol6mcPGyaDwt+qxJ5O6bXUMyAHQWrBqyQbi+iANkTLn34RTVuC089LCotTBncD+0A/ySVnOcTKjs3XArKDVepn720GOixpahAf2LSIQKxg5UigePoe5BP6nGLWe1vN90KsLfdCI0dCtgDjZDo1l70jmv0/NmIOsU3L9ZrHtimx29eBKkBzWnHAUyV0hcyKoX316kkv2UJvHBxBZifeAXs+AUsukHfy+qZ2hKwfYPK9f318MplZI67hqhrBo4jDA4mueWWrfzgB0vKMW2XXvoMDz20iw8/XMf117/yf7i/du0c7rlnFZbl4qKLNpbX3XffGkTg0KEovb3xsqP8NdcspampioGBJBs2vFZ+7PW6MAwYGEjS1RVh3rx6kkmb6mov1ZMtUvkMXreHGw8D2Nee+TWGEuNMDlYzlBjnwTee4vunfoloJsH9nU/wlZPPoS5US9DjZywVpdofIluw2TN8kLpQLQ90/o1vLDif1poGuqODZSf6qbXNBDw+/qctn7jKf7L83794PB/P3nS7dSS/+GItryeT8N3vKmAvFLQ5fMkSpbEN4+O96Rs26A9vIKB/TU1anvd4KNu/b9ig7m+OA52damY30Wguosd1u7Wp79hjcTDo768431pWhRVPpfQyDxxQk/pFi3QyYtvqiHt4JHx3dyWtboLNuPVWvaTubmUnJtrzGxsrl2SalePceque65JLlOVPJpVoJeRXk7hMToF4JqfmcqAzsliyAto1nBelHAzNfZ/IYj8cjAf9JRf6PMRL3E++oMc2TMqxcxMO9lbJbjhfKJ1bNNMdKNgZdZM3TQKTm/H4w5imm1RkAHEKWN5g2dRMijb5dIzUeB+m6SIwqaniNu4Uyv3SLo+fYiFP/3svYWcTWL4q3B4//ppmTJebTHQQOxPH8oZwWV5S433k0zF8NQ0UchkM04XlDRGoaSQdGaRoZ2mcfQqZ0VEy4+Mc9eUvY3o81Bx1FNlIBKdYJHHoEDt+9jOy4+O0nXUWcy6+GEyT2V//OlZ1NR3XX8/5r7yCaVkke3vZ/m//hm/yZNIDA+A4vHXzzWz+7nfJx+NMnj+f7NiYOs7feCPFTIZ8IsGciy6icfFisiMj+CZNYufPf66u9jWT4ZH71Rk+l1EgOz6sEXEHduvnOtQH/3mPbnNor7Lt048qOdAbGoNTXkoz4D/dowWsXAZ+f7seM1yj25om7NwGLz5e6jO0YPps/RJHRmHve3rf68PIZHB7Aphui6KdVQNBw6SYz1LTfDSB2iYsb5CmOaeBCHYupf3tQNHO0f/+SxSyScINs2iaczqmy8LyhQjUNpJPRUlHBrCzCQY++Hv5OzLhhdBwtBoP1s2s9LmL49B0zKkcufyrNM89Q1+xaWp/+7wTMVedD4UiTl+3xsLVqpEc4RpwuTTj3M4raF+4TE3tBvvVtb2qGqOhGae3WzPvDUMN3l54SvfpPqAxbDWTkL4eBbuWBR5Ppb982ZkKwINV5aJaudd86z+ULfd4K1nzholk0hgNzdo/n81guFyYZ52Da93VmCvPQzJpzCWngc+vSQSRUYrPPKGRb14/rlXnY9ROwSgWcLoPIJExnIFejQ+0PGDnK8Z7qUTJSC+pBYPD+t4N22agt5dIJEJ3dzeJRIJFixZRVVWFx+OhoaEBr9dbjm0rFAq89NJLiAinn346Xq8Xy7KYOnWqGkkWi4TDYV5//XVs28a27XKkXG1tLWvWrCEcDpdUTwZLly7lC1/4Ap/61KfI5/Nl9t2yAlRXT8MwXEyefASrVt1NVVUTjmMTiRxg9uxP86lP3YFtp9i0aR0eT5B0epjx8b1EIvvZuPFicrk46fQIr7xyPanUEI5T5OmnLyGZHKSj49ulQkUajydEZ+edhMOtZLMxwuFWAoEpBIN1xOM9BIN1PPfcZeTzSQKByaoEOPQqQRRMp4Bvl/4T16OAuogC8UHUmG4AWIz2uC9D+9qXoEC9t7S+AOwDhlF2fR0Kxr+IAv2lwFsoe19X2j+AAvyq0roUCtrfBaySFcyEserEMJnP67Dr9epQ/PTT8M1vVlj0bFaZ9m99SxnycFjXGYaOk4OD+nPT1qb3161T5/jRUS0A/OQnOj5On6718yOO0GJ2LAavvqpjajyu4rpDh/TcqZSQG00SOxgj0hWhkC0Qbg6XneTtlE1yIInpMtVHodqLYRpYAYvEQIJTbzgVO22z6dJNRPZHyKfyWAEL02XiDXuxAhbeKi9NJzTR/2Y/LstFw/wGRj8a1X76ouANe9n95G623rIVKQqJvgSeBk+5f339a+sZy46xpWcLAG8NvMV3FnyH3lgvS9qW4DbdXPrMpdQF6+iOdWsspulicmAy02um0xZu47LnLiNtpwl5QvjdfizTIlfMkcwnyRVzBKwAp7SfQmOokQPRA1z5wpUk8gn8bj+GYZT3c5va3+szwHjrMnj2BAW1Lq/2q7s82lc+ZRFkBtUxvphSYG8YcOId4C+5vNeeALt/qWZ0vkZo/3zF7O7Dn+u32RWA2VeWFIw5BfuZATjzVd0u0w+7blTQ7vJroSC6E9J9pbmKrax1Mas96aCAGkNB++HPObb2r4en6fmsIMr457QX3LEPG/scLWgapv4VcwrGQY/tCVZy1Z28stvhqSUZTJ+Og4ahff6n3QVz/kX73AsZfX73Q8qMF9LKlNcdpwWHv38X6k+A2RdqwaHu2FJmvQWDb2iPvcunqoEdt2lPvmFpr/sFG+GMe/RaTr1D++SrZ8Lm67SgcOa9EGzW191xDUWXFjsSiXy5J/1nP9tCR0cLHk+lF7262svtt6/kww/X0dgY5Ec/WsbGjV/g7rtXlfgZgx/+sNK37nbrb/qGDZupqwuWHeU3bNiM1+sqm9P19sYZGEhy0UUb6eqK0tAQZPHiNoaGUlx//Ss4jhZbIuk47/Tv4esLziuZyJ2Dy3Thszx43Z6y43wqn+H+zic+luPuiEPaznHjCw8wmowwc0pbub/9/s4nGEqMMTlQzZWnfZkpwVpc5v9+MPZ/v1f8yfJ/z+LxwNFHa7b6RIn+1lt1luDzKRicyKTJZJQx//Sn4a67FFgcbkJ37bWKgLdurZT6P/hAZwx33aVxcD/6kR5LRB14xsbUEce2lWkPBHTm0tEBQ0OIXSgb2k/UACakfodPcAxDGfmGBp3oeL3KnE/4342NKdDu7dXoN9PU027apC+1t7cSrSMC//Zvup/brZOYX/9aJzaHG9hFoxCPG+om3T2g4KBYVLO61ga9KLvkDO8yVS6fyel9T8mkwxGY1Q4nzinlvachHNT7BnqhVUEF6RPZpiIK5oN+NayrDum2BnqO6S167P09avplugnUNFLM57DTGttVyGfwhafQ//7L2LkULrePKTNOBMPEzqr7fDo6CKJy98TIQexMAtN0KWjPpzFdbpqOOQ23x1+qQyiDnI4O4fb6sbzB0uNB3F4/LreH2pbZ+KvrSUf6ylX2wKQWLF8I020xtK2T7NgY/ro6AAzTpO7447GTSbKjo8z+6ldx+/24PB6CTU0Ypkl42rRypFsxk8EAQm1tNCxYQG58nLoTT8Rwuznh6qtpW7GCYj6Py+ul7oQTsMJhZn/96/jr6/FNmkSwtRX/lCnUnXgiu//4R47453/GyeVUJj9hOJdJKdibfjQ8/6iC90z64/FuoWp9fMwJ8LmLS/pYLyRiMNKvFR+PV4H5RBzczm26blK9bhOPwreu0/i3CSYfB7x+iI/ref/zHhgZRPx+DFM/u6E9W7EzMYp2DsexGfjgFcQpgOnCKdqIU8DAwM7G9bswYRq4f7uy2k6BXDJSioxL4nJ7CNQ0YppW5TuSSTJlxom43B5MlwUiWMEaWuatwBOoVuALDO/dhp1NlJyBDYyaWlxnf1qB9jOPlUBqSl3Ux0chn8XpPgCJOOTzmGf/E8bket23tR3D7VYA7XZjtrQpSz3h4L77/Ypp3JZXMEwT1+oLoGYyTs8hxHEgEFKmPRBEigX9B3eKSDpdcZRfsQaJjuG88hxG2zTMtullxQEGmiNfAudk0hrXVnLGNyZNUTd8cQ4rOlhILoPTe0jB/LN/w2hoLkfTOVteUZXA1n+UIuMsJJHAmDoTIxjSdo6V52rBY+kZSDZDU30dW7duJRAI4PV6CYfD5PN5CoUCPp8Pj8fD2NgYzz77LAArVqzAsixcLhcej6cc65ZKpUgmkyQSCdra2ggGg3i9XorFIt3d3YyNjWHbNn19fcTjcfL5PDU1NbS2ttLd3U0qlaKlpYVMJkM+X6C6up18PsHY2F6eeeZSEol+ens7qa+fRzo9Snf3ZkzTzZln3ozL5cGygrS0dBCP97F795Nls7ndu58kHu/D5fKwePFVeDxVTJ58FJYVwO32Y1kBFi78HolEP8FgHaFQAy6XB8OwaGlZwOuv30ZLSweJxAC9vdswTYvm5pPJJvpZJkIjcA+at/4RcAIaBxcAWlBWPYQC+RNRB/nrUeC9GAX6QSqO9KHSvreVbrtRx/p9wMmUhcVlYjGAFgqKKPsupWNXuXQ4feQRLSKvW6etYeGwDr9+vwLvFSt0uM1mta3L59Mxb8kSjX1LpbT2nU7ruFhdXU5YLcfI3XabKtYuuwyef15N7L7xDS1Ov/qqPg6FlKHfulWHtwmTVw2PMUjHbBIDCdqXtuMJeSjammHeuqiVzTdtpmWBjkWGYZCL5cgn8thpm8bjGnn52pcBOH396bh9bgqZAhsv2lgG8YVsATttYwUt2pe0kxpRFr51USvRA1E2XrSRQrrAZx/5LMt+tAzDbdC2uA2X6Sqby12z7BqOmnwU8xvmY5kWreFWbnv9NtrCbbgMF163lyVtS/hl5y/paOnA4/Kwd3wv6zatI5lPUhes4/KFlzOUHOKijReRLqTJFrJs79tOra+WaCZK0BPkn+f9MwC3v347ly+8nIAVoOAUGE2PIgi1/trS528oWD3hDjh/QEFosksB5Og2BeJtn1Xm/fhbwNcMdcv0eVdQjeW2X6yge8oiBfqGoTJyzySY/iU46VfKZLtDysgnu9Sh3lenoNzfqN+47KAeA0cLBIUM1ByngHfkdQW3hqmg2hNSMB0/pLeesJ4j2VeJifOGldWOlkC+Wdo3M663UqyY0E2w8C6PAmcRBerFnLLWhgmhZiru84b+k4RaKTvRe6tLZIcDm69R9/jmxXDBJpWwh6epJN50qfS9aZH+jqcH1VTPMCG2H168RA3mkiXCw+1XI7pQE0hBgXnTAnWjL2T0tb14sRYsFt8A0b0quTcMvbaamXhKCT3hsLfs+n7ddcsmZt309ye47741eL0uQLjxxlfp7o4zfXotra3VXH75cxSLDqmUzaxZtdx77xr8fjcHDoyTzxe5555V1Nb6uPbapVx44TzuuGMlAHfcsZILL5xHR0dLGcTfdNNmJgTbE0WEVCqPAJbLTX9smJFkhGvO/Bp1wUlE0nHS+RwmBt9YeD4rj1pEyBso3/9qxzmEvAEMDB44DMx7XG6+vkC3+fqC83n90Lvc/o8/EbR8eFwWxQny6n+j5ROp/P9i+UQq/9+wpFJaWu/vVxr71lt1xN+6tQK4QWcPbW0qh1+8WH88J5rDf/pTRcobNqgb/fTpWqpva1M0vX+/ou0FC3S2USho4/hVV+m2XV26/vrryfzgBva6jmb9eoPrrtOJxrvv6in379dJSmtrRakfCCigHh7Ww0ciOrlpb9dLNk3Ntd2+XesGE9LAH/5Qj9Xergz8/v06CbrlFp2k1NbqJGZ4WEF+R0cpV9flEPQUMOyCMt/hUg+640AyXWHNq0qaQ9OosOqhUvtBWZt+2A9bMl3pZ5/oc6fU+18sKsOesysS+3gSasIV2X1bI8SSFBtqyWcm+tE7ME2LYiFLIZfBE6xm7z8eZOpJF2D5qyo96/4w6fE+3F4/o107yv3ujmOX+tc7sDNJLH8Il+UnG1f5/ci+7UyZcTJubwDTdGHnUozs6ywBPB+OU2B0/xtl1rdo58rS+4neassbRooO8UOHyA4PM3nePFw+H1IsUshk2Hnbbcz+6ldx+f0UMxl2/eY36gbv9eKyLAyXi52/+AWzv/Y1gi0tOLatsvi6Ovx1dbg8HqRYJDMyQnpwUOPkDj/WN79JemiIQGMj3kmTcFk6qfAkIwreP/VZqJ6kUndQEG+U2PTRIc1hP/sLyrpPqlOJ+/CAgvPVn1dgbnkgl9Vj5DIQDOkkIhVXyfxEJ+yEoqVYqEjve7pg2pF6jD/eBdtexrnptzjVkzBMAzubIjlykEx0kKZjTiUdHcRXNQXTbZFPx0s96B1YgWr633uB+NB+2k84h0Btk+aiu9zYuTTDe7YSG9jN1JP+CX91HcXCx1st3B4/mdhw+XOvm7UAl+Vj8MN/lL8fbm+QdGyAmsYjMQ0XjI+V5d4Si+L8+QFc667WeLWSfN48q9TTns0oIDcMjEIByWaUTd/8MubS05FEXOXkbjdObzdGYxOGS1UnUrAxTBdSKOC8sBFzyakaRedyUXzuSYyWNoyZR5VZbnz+j50TDKRgIx+8i/QewnX2p5FcRmlPjwfD60fsvB7v6Uc/Jr03fH4Kv1yP65Lva5UxldLXvPhUCFbhvPCUgvO2aRVZfrBKt6U0sRdV5IiBFjC8Xu2bdwTpO4TZ3EbRbVGEcpZ6LBYjHA4Tj8dpbW3FNE2effZZFixYQE1NDcVisSyrDwQCGIZBPq8sVz6fJxgMks/nefHFF1m8eHE5+i2dTtPU1KQxV/39tLW14TgOvb29ZWm9bdts27aNlStXYhh5CgWVPJumi2LRxnEK2HaK8fF9BIN1pFIjhMNt/4fe9aGhd2lpWYCI9qZPSN7D4Rbi8T7C4VY2b97A4sVXU1s7vfSbVCCdHsPnqyGbjVAoZKmpmUY+n8Tl8pDJjJPNxkilhvTY/klkTZM3UMBd4gXL/eceVCYPFem7D81j/xOaw/4rVFybRAH+zcAYytxfBTSjLPua0va/Rll4KZ0rAtSikXA2lbi5WUB/EiZldGy5+GIdgz79aR27brlFx6kZM0pYzdShWkS/PpGIjm1+v6rCFi2Cf/5nHV6jUQX+69ersK69vdJxdeiQ7n94f/sVV8AvfqGF79FRHVfjcS0ABIPah9/WJsya7mAU9Htkp21My8RluTDdZklBLRgug7G9YyT7k7R0tOCyXBTyBQqZAqbb5MWrX2TJlUuI9cb485o/M2ftHNbctwY7ZZOL5/CGvWBAPpnHV+tDHOH5K57nvT+9x5y1c1h9z2pcPheR/RHivXEaz2jkte7XmBKYwmh6lJm1M8k7eaZWT2Vz92bqgnXU+mrJFrLc+NqNXLX4Kpqrmgl5QhSlyJbuLRyMHmRh60Ju33Y7t664FY/LQ8bO8N7we5zQdAKHYoe47fXbuGbpNUwJTOHqF6/mljNvIegJkrbTXPPSNaw/Yz0GGq9V7a2m4BQ4GDvIFG+IFm8QIzMA2QF1fc9HIR+Bj27THnY7qTJ2q4oyb2fHlCGf3AGNZ5Vk9t0KxuuXKsgc3Qb+Fl1XOx+sMBSS0Ps3CE6FKYsVmEffhSkdYLhLc5X98OHNMPtqld67LJ13JHsVLJsWxA8oSPdPUTBb+sUCp9Sz4VIgPOEMX8zrfcfW/R1b2ffMKEyarUqDieMXcyXQPqU0z8lX9hFRgH+4cZCT15717Ru0v90pwpu3wFn3a2Ggc72uT/ZV8txNl57/jVtUSh9qgpe/DfufhHMeUbBvp+HVK+GkK/VaRnbq9W3fACd+T+Xz1TPgwWNUOr/ivkqP+wUbldFP9cOO20mf8huKYpJO22SzBT74YISTT27G63VTKOhcz7aLWJaLAwei/OIXr3PPPau56KKNLFnSxtKlbQwMJFmwoAXLcpXbYg4dirJ+/Wauu24Z06bV4DiC4wjDwynCYS+BgMXwcIp02mbDBt1u5sxaikXhwIEo69e/xgO/W0N/cuhj0veA5St9mlKKhdPbocQ427vfp62mkXlNszAMg0g6TpUvyFBijAc6/8bXF5xPjT9ErmBT46/CMl2k8lk8bouh+Bi/6Xycbyw8n+mTWv7HOct/IpX/ZPl/dsnndXT2+3WWMFFev+QSbXhrbVX6+fbbtQzv9+s28bhSA11d+lwwqPudcoqC/om4uJ4enUUcntvW1aUU+t13a/PeRCRdXR1cey3FQBVTpxrcfbcC6uFhZSC+8x1tsV+6tKLUv/VWlbm3tsKxx1YYB3/JD6O5WcH35Zfr4V2uCoN+0006SZo+XesLZ51Via6/7Tbd/sorFTO3tuoxMhnwewWjq7cUhxJSkD6Rzx4OKsAO+pX9njCo29et60CVBsUSGE+mS94Cph5LgH09eswJ8J63Nat9wqwuHNJiQN0kZfFzeZXdT0TJIYzs6yQ2sBs7k1Tw3LVDwZc3xBHLv0pgUguj+yuZ3QYQqG3CZflonnsmlj+M2xdkdP+bmsu9/0184ToM041hmgrw979ZYs6DuCwPmC7GunYQqG3GdHtx+wLYmaTmuTtFMrFh3L4ApssqM/oj+7ZTzGWxUylCTU3UHnUU+WSSYi7HyFtvkRkdZcpxx2nfe20t6aEhBrduxeX14gmHiR04gMvn48RrrsFfV0dqYKCc6Z4dGcFOJlXebFmkBwfxTZlSPpbL7y/31HsnTWLXffep4MHjwfR6oa4JPncJhGsVdDsluZ/lUbbdzkNDC3zxO9ofPf0oNZgrOtqbftanVRJdM0n3GR0ARJn5ro90f49PgfzwAPzhTo2fE9FzHdqr98O1JZZ9AD7zdVh4OlI9CUwTp6ByxOqmI2maczpAOYrPziYo5NIEapsV4AJNx5zKUad9HX91PQO7/k4hn0EwsLwBGmcvZ+pJ/0RwUjMiwsjebdjZFL7wFOyM+hn4wnWM7n+T+NB+VWO43AQmtVDIpgjUNuMJVFPbcgwiDlLII4kY5opzMKqqMafOxPznb4DXh7nyPJWbrzq/8no9HpyegxAZo/jM42DnkXisEsVW3wSJGMWnH8UomQgWNz2G5LKQSGgueiKm+emvvYTh8eD092B+6nzMuccru59JadFEBHG7weNB7DySjINTxDh6DuaZZ+v/aTKhzHqyBOuyGQViy87A/Odv4FrzGe2p93hwXfw9CAQxLC+EqjCXnKbZ8j4/rnPWYh57Enj9CuYtD4ZlAQbGRFHUttUsLzKu50wktJQjgtE6FbEsYslk2VwukUjQ0NBAMBikoaGBZ599llgsVgLSBs888wyO42BZFpZl0dvbSz6fJ5dTgB0IBMrxb21tbcTjcVpaWvD5fLS1tSEivPDCC7S2tiIiOI5DQ0MD6XSaYDDI1q1bOf3003EcB8NwYVl+3G4vhUKWF174PpnMGMFgA62tC0ilRmhp6cCy/NTXzyOfT5BOjwBCW9sSCoUM6fRoKVYuUIp+u4lgsJ54vJdFi75PdbXOkXK5OM88821sO0V//xt4PCFqaqYi4uDxhEinx8rrWlo6SNkpDhgGnaghnIFK2+Nolvq/ogz5W/qfWWbUJ6Lj1qKGcwfQ/PZBtH89iTLwt6Lg249K5DcBd5X2fwstAFhAA8qyTzDuIbTfHaDJo+OVaWoh+qyztO1rYiy66aZK7Tyf1zFsbExBe22t+sAmEipw++IXdai99FKtx/f0VFrDDh7UWnk6reNoa6sC+gnh3KRJ6gtjWapi8/uViR8Y0HGvrg56egzsgka4FbJqHBrvidOztYd8Mk8ukSM5mMQpOEyeOZm2xW30v9mPnbFJDaZ48aoXSQ4qmJ+IiJuzdg5Lr1mKYRgkBhK8cv0rJAYSWH4LO2VrXnxfgjNvPrO8bTFfRIpCvDdOsC7IwOYB2qrbuGv7XRzXeBx+y09fvA/TMFnQsoCR1AiZQobuWDcP7XqI27fdTpWnilwxx5buLbSF2/jsMZ/llq230NHSwVBqiG9t+hZDqSGOazyOgBVgJDXC9xZ9j/5EP5Zpsf709QjCuk3r6E/0c2nHpQwkBjTnPTkEqOqgOdTMZF81hh1T0O6r08z1YhpC07QfXRzAUZCeGdSirh3TbU66C9o+rSC7mFFjuSkLIL5Xc9xrjtUe+LrFKpWP74Udl0HLueBv1si37BDUzFMpfnyPHjc7BPWnaM67aSoIT/aW2PKcrgtPUwBcVcIo4hzGoJdKX9UzNP6tmFfwn0+oGsAwFIiHWqD+eGXnDQMyMT2+Nwy+SXqsYrZUBDhQYuX195FiTgsDxZwC+om89e03QfVUlbQ7hUqm+/abFHx3ri9FwXkgNagAPNmr13PyVXDuYyXAPaCvqWmRHjsf19d7eK570wKV5U/EyImjt7MvhJZlKpW3gtDYgZMYxnEEj8eF3+/m+OMb8fncZLMFbHsCuDt8+9vP4HIZ3HrrCkSEa65Zyuc/P4epU2tYurQdy3Jx8GCMiy/eyMGDURobq/je9xbh87k5eDDK5s3dHDoU46c/fVUl8EB9fZCZM2u5555V9PbGicVyFIsOU6dW88AD5yCmw4NvPMVxLUfit7x43R5sp8BwKoJpmBQcp2R6CnaxwI7ej6gPTUKAkWQEn+UlmU3RHK7jx2d9k0mBMHe++md8bg+5Qp4D4/3c8vffMxgfZTA5pvL5bU+QLx7eMvE/f/mEcf9fLJ8w7v/FSyqlDvODg5rJ7vN9vAz/k59UNHe2rdutX69M+bZtOsuordVG8+OOqzD1LS1KZ3d0VPR6ySQ89pjaxN91l253OHU+dSqkUuTdATK+Gi66yODJJ3WXRYsqBjm5nB4yk6mY1u/cqUZ1ExMbkco6txv+8z9VCvjrX+sE5mc/qxjU1dRo3aBY1OcmzPanT9fHDQ1q/pNK6flnTS8S8hcxikU1ptvXo0x6XW3pdaaVbS+xaLhMGByD+loF3z2Dyo77vHpSd8nAJV+oyOVFSjJptF/+g/0wuQaOnKrS+75hdbKfWOJJZfotN47LIJeOYmcSBCe1kBrvo/utp0qZ6xWWfYJBDdQ2McH22plYmWG3fDq1FKeA4fYghXyZhXUKNqZbXcztbFJN7gwTkArLW3KfF6eAUZJW59Mxxg7soHH2KcqQOkXEdiikM0T37GHKscdSyOXY+fOfc9SXvoRVVYWvtpZCLqeO8XPnggiZ0VF23XsvJ1x9NblIRF3hv/993F6vGtLt3cvkOXMw3G7Sg4OkBwY0D97tJtXfz6777mPORRfh8vnwhMMgQnp4GCkWqWpvp5DJ4A0GcDlFyCQhWFI2pJNg5+Dpv6iBXGMr7H1fAffRxykotLzKmIujExDThP0fwNQjSyaFJSdhlxtSJVD45B9Ucv+dn2i2+6a/KPCf3AB//nd97uRTtJDgFCmGqhDDIJ+OlhIBOrACNRgipCN95NIxQlOm4vaFcOwcTtHG7QmUXOE7mTJDxbyeQI165UX6cfuqsHxVFPJpTJdFfGgfmcgATXPPACmSjgxi+UK4vQGcgo3L4yUdGcQXrqNoZytmhyVXK1NMyGfVZO1wptmyIBqpGK/5A8hgv2agGybS140RCCCpJGZLO05/L2ZruxYqug/gPPZHzAsuxGydikTHMWomVczu0kmMplZl0xEtfqWTmo++6FTw+TCCVSUZpqOu7vFoyZDuVAjXYLhcYJgUNz5cZtZdaz6D03NQ5e4TLvP5PM6LT5fAuPUxdQDBKmSgV1+T263GdBh6vgnTyUQCiUcxwtWl/c5A4qpKML/wdYxwjb5HS8+AYIiC2yJRcnh3u91EIpEy4C4Wi+Tzeaqqqnj66adpaWmhra2NrVu3snjx4rIT/NatWznrrLNUxpzL4fF48Hq9FAoF+vv7aWxsxO3WIo9t26TTaTZv3szixYsJhUJ4PJ6PMfeGIYikSCT62br1FhYvvoqeni309Gxh9ep/x+Xylth1G5EilhVgfHw/yeQALS0duN0BHCdfYultPJ4QqdQIHk8Qt9tPLHaIzZs3sHTpNVhWsOQW75DJRAmF6hFxyOeTvPji1SxefCWJRD+trQsRKdLb20nd9NPZavmpQyXtV6MAfRqwDfgMcC7wPeAoIA9sB5qAI1CWHRS0P4QC+RtKz5cEtASBHOoyn0X71hfpLyqF0nmagXa0ADAALEDBfhcQzIA/qrXwhgYdv5JJrYPfcouOU9OmKTgHvd23T4fO3l5VomWzqkpbtKgi0CoWFXz392txe906HY4nVGXXXqtDrn6Out/QkF7DoUMV8VwwqL3xr78OCxYIAU+B9x58i5krZ4LAK9e/wqLvLaJ6WjXxvjjekJdgXRDDZfDMd55hwXcWUNVSxfNXPE9LRwszV84k1BDCKTi4/W5VlTiCYer2Tcc3MXPlTKpaqkj0J8gn8nhCHqqaq3RbESJdEUINIVxeF9loFn+zn6KrCECukOON/jc4rvE4fG4fW3u20hBsoNpXTV2wji3dWziu8TjGM+N0x7rpaOkgmo1SH6znUOwQHpeHG1+9kY6WDs6aeRa1vloCVoCuSBcbNm/gjpV3MJIeYf1r67lq8VVs6dnClp4t3LP6nrIr/cYvbKStuo31r63nh0t/yBE1Uwk4WQzTDWPbKyZzdUshsU8N5o65Rhl0d1DBuVOE1EF1hp99NfgbABPsOPgaSmR0SVZeiKtbvFUNkZ3w+j/DOQfBEJWrj70FtcdC+mDF3M7fDIUJrQnqVF+0FSS7vMpch6dWXOUNKo7v47sr+ewTDLrLq89ZpX715ABUT6tI3h27IoN37NJ+LbpPPqEseS5aynTvq7D+BqUiARXGfcE1UD0LCinNUfdWw+CbUH9c5fWM7IRAgxYCtm+Ajms1lx5Hx+Z8El67Gk68XM8ljoJ9x9b3dbATqqZqVrsUKHOp6eGSCZ9ZkuEPacHg5KtJh+aQzhTp7OylqSlEU1MVADt3DnLccY3EYjmqqjw89dRu2tqqWbq0nXy+iMfjKqWEFPF63bhcBslknsHBJI2NIUIhD4lEHr9fiwCFgsMPfvASHR0tLFnSxi23bOWHP1zC9Om1DAwkSaXyNDaGyiZ511yzlJbWEOK1GUlGePCNp/jmggtoCE9mLBUl5A2wZ+QQdcFJ+CyLGn8YA3AZJr2xYe4vuc+3VTfgiINhGOzs282MKa1Ue0PYToF4Nkkim2Y8E2du40xueul3fHPhBUyb1PwJ4/7J8snyX7oUizqKf/GLioJbWirGdVdfrWh1goEfHFQwvmSJjuYXXqjoed06mDdPR/1LLtHSfF9fxVEumYQ9e5QOnzC5GxvTWcThjeaGAdddR7EoOI7K9h57TFnziy9W9iCTgbff1rmv36+THZ9PJybbt6vE77vf1UlIY6MyD93d8JnP6ATIMJTB/81vdDI0ZYoyFl1dOjGZNk1d5W1b5fLTpyvjcP31+lJCIT2vYReUBc/mFUBXh5RhtwvKrCdSaMW4qBfbOFlBm9+r/e1eT2lmV4Q9h/Q4LlOP4ZRAu4iy7aGA9sPPatfPrHcIWuo/bmJXHVJ3epeJiYEnUEOgtonUeB+WP1SWRtuZBFNmnKhsqduD5a+i//2XyGdiAOU+ZjuTVCCfTWi/dCFPoSSnLuTTuH1BTJeF6bIITGopS7wN08XYgR3Eh/Zjmm5AyMSGyaeiiFOgkEvhr21CRCjkdeprut24/X5qjjqKN9evJzM8zFFf/jKBhgbcgQBv3XwziFB//PEqhS4WSQ8N0f3ss9jJJLvuu4/J8+aRHRtj+09+QmZsjNqjjsLtUxmYy+tl8rx5jL37LqmBAdLDw9Qdfzy+SZNw+/289bOfkRkZIdSmhZDtN9ygzPvYkDq8e3wVt/BQWPvMZ81RAznHgbYZ2vv+5B+UbR8dhD/drUZ1+95Xpn3G7FLVKQMP36+xbx6vSvBrJsMXvw2/+AscMRemNMKqtfDac8rU//M6BfRnfwEQrVwhSNGmkE3TOHu5FkgKefrffwm3L0S4YRbDe7YihbxKsdECjJ1JEh/aj8vtwRusBcMgNT6A2xvENN3Y2bi61LstalqPURZfHDJRBehubwCjFPfX//7LuL3+UpJAouKRgGCYLmWTc7mKAdzml9XgrVhU47Xd7yOxKIbHi9HQTPG5J9XxvSqM07kZo6kVXG6MxmY1fBsbwWhsxvWNyzDCNRQ3PaZgvveQsvOpBEZji5q8PfM4JBIYHi/Oa2ryJukkeLxIMo7k1fDRcLkOM6h7RUG76UIMcK26APMLX1eZfyqF2ToVLAsZG6G48RFIJzFa2xV8B0NgeT7GqBsNzRrVVzKjkHRK3fzdbgyXu7yfs/nl0vvzEmZLO+Y/fxOzfYYy94tP0x8ew8CFyt6feeYZotEolmURDAZ55plnSKfTjI+PE41GWbVqFfPmzcPr9bJo0SJSqVS5z729vR2Px4NpmoyPj5NOp8nn8zzzzDPU19frb4Btk0rptSaTSdra2sr7gEqhPR51/zZNh1wuxtatt7B795OkUsMcd9xXOPvsX+NyWUSjB+nt3Ybb7cXjUZWE1xsmGKznmWcuJRLZR0/PVuLxXiwrAEAo1ITb7cM03QSD9bS3n8LWrbfi81XzzDPfpljMEQxOIZeL09OzFZfLy8KFV5RBe6GQ5dlnLyMYbMADLBBhBHWRb0Wd5LehcW+PAXcAM1GzuDdRRr0KBd0DKCi/GtiI9siXrLoQ4BqUQTeAragEfgK0U9r3OBTcG1TM62yU9e8FphT0Z6S2tlJ0rqqq+KwEAipaq6rSv8ZGHVr7+1VllsvpuLR4cckvc0jXWZaOaz/9qbLsd90Fn/+8CuQeekgL1CJanP7mN/V23z4F7b29uk1fn+77r/+qhQKvF5IjKWZ/ejahxhBVLVWsunsVvlofLstFdUs1vlof3Vu6iRyI0HFpB1t+tgWX5WLFrSuY/enZBKYEsDM2fW/0UcgUcIoOPVt7KOQKrPrlKtqWtRHpiiCOEKoPUdVcxas/fZXogSiG28CxHcKtYQrZAi7LRWBKAMflUHSKHIgeoLOvk4WtCxGEbz/zbXWRr2mn1l/L6z2vc0LTCYQ8IXxuH/XBei595lLShTQjqRGm10xnkm8St664lSVtS7j+lesZTA4iCBs2b+DJ3U/iMlx4XB6WtC3h9m23s2LGCq5bdh1el5c7Vt7Bh+s+ZNnUZfTF+/jeou8xkBhQLxiXX/8CrfDhbXoroqC9+yHI9Gpf+3vXQ/KAjjkf/VxN5QJNCsozA5DcB+lDytoXEoCj8vjkAX2+bjGctV1B+vaLIXkQJp+s/e0f3qZFAV8jiK1g37B0/2JJ3u4Nl9zjS217ExF10QN66wlD/bEqiU/2VvrdDXTdRB98qFFZ+Fxcj1fIKIieiE0NNevz3poKSPfXq0TeU2LnHVsd4Q2XHtcKwOl3qameFPTWTsHLl0KVeivw6pV627RQgbrbB81LINWnRYJcXJl2w1Cm/Y1b9DiZEe19Tw6UQHurFh5i+1UaH+vS98JbredwbL1WKwTLbyMfmsW+/VHWrdtEfX2QqipviXm3WLiwFZ/PXU5quPDC+Sxe3KYRbSXQLgK9vXEuumgj+/dHePvtQRoaQoio4Z3LZWKWUoaCQQ+/+tXZfPWrx9HSUsUpp7QzMJCkuzvG/v3jTJ1aTTjsJRTysGRJG7feuhWnaOB3e8vmc4PJMQbio/xq6yOMlIzmhpJjZO08N75wPwPxUQTKBnW/7fwbRXGwSwz68S1HE/Lob3Y0k8Bv+YjnkhxdPw3L5eaGlRf/jwTt/9+WTxj3/8XyCeP+X7ykUjpa9/crYx6Pq8QdKih3714F4yMjqlPft69Ssu/pgTVrPh4Ie+GFin4P743/8Y8VoD/yiB4jnVZK/OSTVfOXy8HUqeSLJh91B1i/3uAHP1DgvGWLXlJtrV4G6KVMCAEcRy+zpkb7+mIxnfRkMjrhee89ndSMjFTk8ratl3D11QrQ+/v1sg4cUGniVVdpwWDCGOj557UwcPfdEPCW4uAsSw9UHVLwPRJR1n1qs4Jwu6DAuypYmelBpdfdZSrLbhr6J5SOUUN56negD2a26nOFEjs/ERGXL+hMbYLB9yi76zhFcrl4hQEFNQ4zDM1tBwyX9bF4r0x0kKa5Z3yMcfcEakiP9+INTcG0vKTH++nZ+TRtx51NcHJpkBRBgGIuVT4mApn4cJndnzLjxHJ/vcbRKQhWA7sgnmAN26/7McddcQUurxfHtnH5fLx5440c9eUvA+CfMoXM6Cgf/va3HHPRRVS1tVWk74OD6irf3a0S+fFxQu3teKury9/jw6Pg6k48kcShQ3z4298y++tfBxHcfj+Bhgbe+Ld/4+DGjZz/zCYC0UFoma6Z7GPDEBvTTPYJegpKPerVKnPfuQ1u/g9l0T94S53nTz9X89gnWPSVn4UDH6mBXTCkkvm2mQriHUefq56s0nuvH8YGld1f/Xntn0/G1XjNKeK4XArGsylVMRx9CiIO2cQonmA1+177I0efecn/4b1Oj/dh+asoZBP4a5pLr6dYUUCIQ7GQ/xhDXzfzZFyeQKmffQF2JsGhNx+npnk2zfPOANHowGIhy2jXDpqOORWXYWmhIplEknFln00T0iko2Araw9Vq6HbmaoySq76kUxg+v35fe7tLPeii75HPj+F2U9z4CLL7fczP/oseN5vRfHfTVLn9+CjGjCMxqqpLkW9/x3XOZ5Gx0cq1TKCkeBRnyyuYK9aoSVw6Bfl8RREQCkM0gqRTyvwDEhnX3veqMBzej7/1H5grzsbAQDxeDKeI2DYy1I/Z3I7gYGDq/3GhoFFzE+/BijXa127ntU+/lHEvA33KvtfU8uSmZ2htbWX27Nl4PJ6ydH6CQR8eHiYcDvPaa6+xdOlSLMsqR7298MILnHnmmWWneJfLheM45dsJYD4+Pl5m6idPnlzOe29pacHtdmPbNm63GxEpMekpEokBvN4qAoEp2Ha6zIBPGMt5PEEt9vS/SWPj8ViWD8cpYppuRBzS6TFsO13qb28rR7tNxDa53V79zjs2pummWLRxu70YhkkyOUQwWE8sdpDXXlvP4sVXYxhQWzsDMCl6Q+wzTHpRsN6DgvMY0Iiy5J0owB5GmflbUUd5A2VQXChbfiOave5He+Hzhz1voWC/QIWpt0p/bioO9oez8NMAMwlxrZuWMc1EJFsmU7ZCoGS9oSItdylFskvDW26+WcH7RGSbz1fxZ/F6dcy7+mod1yZawG69VYsCW7fqcc44Q8/7wx8quI9GddwdHtYa+1lnqQCvudHBZWfo295HuD2M5bPw1/px+V1Eu6K8duNrLPr+Inw1PoJ1QeyMrTFvRcHO2GBQfpwaSeGr8WGYBs9+51mWXLUEt9+N26/xk4ZpYAUtxveNs+0X21h5+0qeufQZVt6xkvRImi23bGHFrStwah1yhRxFKVJ0ivzgpR9w+cLL2dKzhZm1M8vs9w+W/ID6YD1XPH8F1yy7ht5YL2v+vIa1c9Zyz6p78Lq9HIgeoD5Qz3ef+y4P7XqIC+ddyK/O/hW5Qo5INkLGznDL1lvK/e2mof83RafIodgheuO9LGhdgNtwc/lzl3P7ytsJuwzMTAksvv/TSs96oEUZdDuhDPib34KDf4JpF8LJvyqNsY4CXykqm+6bAtlhqJmroHvnVXDU5crIR95RFh9UIt/9kObAn/zv8Ma3Ko9Pult7xkFBu2lBPv1/ZNCL2RIIb6FMu0/0sWPoNU2Y7x2+SMlBPtZVMpxzlc6RqJjTxQ9WzgMVpWHsoPaiu30Ksq0AZZY+1qXX07yE8oQqNQiHXoSaGRoTFzuo73N6SN3l8yXfAE+o5HjfC6khaF6o/f52Sl3tk31w8HmNhjv+2xoBt+Lej0fDnfkrfS2GWemrX3AN+OtI5r384/Ux6uqCTJrkIxj0lN+OnTsHaWmpIhCwqKsL4nIZ5PNFcrkiV175ApdfvpDm5ip27hykqyvCpz89m1DIg2072HaRQkEIBNzs3x/hllu2cscdKxGBgYFEiW1fyowZtWzZ0s28efW43SbBoIdi0SlPw03TwPIJByMDPPjGU/zwjK9y00u/K0fCXXnal3Gbbm566bfldT9a8Q2yhTzJXJqQN0DQ46c3qn3yX19wPn7LQ8bO80Cpb76lup5cIV/Oga/xV/2PBO6f5Lj/X1w+Ae7/xUsmU9HVJZM6ul9+uZbXSz2gdHVV5OwzZmj5fWIkb2pSxv3WWyuub4eHw05kuHd1KQKekMb/4hc6I/jZz7QA0N4OhkGSEF+/yFVW6j/wgILvYlEnH52dGu02NlbxupuQ+PX2wsKFul0qVZHKW5ZK3f1+ncwcOKB1h5tv1mO//74ex+NR5mHi3Pffr9tOZNxOGAQFfEXcdg7j8Bz2iZ51l6vy3hadkmt8qixjZ3+PRrYVSrp/z2E/ahNytEyuAsah4krkdul+LrNyrokSbqHE7HstilIkVTKaK+QyBGrVXd7lDYA4FPNZXJZXmcWiXc59Nt0WUixWLsXlxk5HFciXzM0mIl0MU2ViKrEOYZpW6ZhmafwVBnb9HX9NI6G6abi9QaRoY7o9H8uQL9o53N4AhVQGw+3WQkCxiOF2U0ilKKTT+OrqyIyOkjx0CN+kSVjhMMVcjl333lsG8eI4FNLpspFdoLm5zM4Xkkm8kybh5PO4SuYHIzt2VI6VzZal84GmJrKjo4QaGzHHBtWcbsJgLhjW99xxNHe9doqCdn8Ahvu1r/1wgF4zCbr3a+/7gY+UqU/GYOYx+vkd+EgZ94ZW7Xc/uAdaplU+V7dHe9tnzIYTlyiQn/g+DPVRnDwFW4qM7N3G5Okn4PGHSUcHsfwhLF+YdKT/Y8UTl9uH2xsAA1Jj/Vi+AKNdO2g4ehkut0Uhlym3P4zs336YsWEOl9uLyxvAKeQQp4jb4yc13o+/up5CPs3o/jdpnH0KoMUgb7Aa0zGQfBY8Po1D6z2EUV2DUTO51L/t4HQfwGxoQnz+siGd4Q8ghoHzzBOYi07R997jVZ8Br0//F5LxMvDXLPQATt8hjXurnaS57/GYyulLlTrDbeF0dynL/fo/FJTXTNaihWEgsYhK6g8z0puQyUsqWclbb2hWgO8US1nrJfO8eAwiYxonl0wcBsjPVpf5UkFCshko2Bi1k/W7VGoxkei4FhDOXI3hCM7wgG6Ty2pW/JrPYBsV1lu/CsqK27ZNdXV1uf+9q6uLmTNn4vP56OvrIxQK0dvby/z588uGdUNDQ1RVVbF58+YyyPf7/WQyGX79619z1FFHsWbNmnLe++uvv87KlStJpVJliX42myUQ8GCaBtFoF1u23MKZZ96M4xQYHn6f9vYlFAp5kskBNm/ewIoVt2GaLnK5GB5PFYZhMDDwNtXV7bjdfs1edwqAQTo9gtcbJp9P4fEESST6SaWGaW1dhOMU6OvrJBRqoqqqEcNw8/zzV9Dauoi5cz+PaVr09r5Off1cqGriNcOkA4iW/u5EwbkPBdHzUFZ8K3AQ7YcfpJLjfi0qj08D1aXbd0rbTUjkt6NsfAMK+p3Sdu+jhQJ3ad3W0rH6UPadOAz0a4+5ZVUM5NJpLU5nszruLVlSkbBfc416vv7jHzoeWpaC8ssv14Kz4+j+tbW6b1NTRVG2dKn+xBw4ADfeqCB9ZETHzwnvWNDnDx9j+/qgqUmoDhUpJDI4RUdd4JM2m2/azLLrlino9rmx/BbFfJEXrnyBxVcuJlgfxBPyENkfYfNNm1n6w6VYQQs7bbN5w2aWXrOUQ/84RM+WHtbcu4ZCvkCyP8nmmzaz+KrFVDWr5HjgrQEe/szDfPfQd5Gi4PK6iPfGCR0VoivSRU+8h46WDvLFPMl8khpfDS7TVZawr52zlhuW38AJ953AI599hCXtSxhNjTI5MBmX6cLAIGWnqLKqyBQydPZ1ckLTCQDEcjGqvdW8O/QuUwJTsFwWffE+FrYuxG26MTHZ3LOZOXVz8Lg8WC6LjJ3BMAzqvSFcUlBG3U7qN8FOKlh3cmpS56lVIDn6OtQt1EE4eRCy/TB5QQUwOjnAhLFO8DXB6GYY2QLzfqLHQ0oyblHneBHtfU93a3b8nGt1O5e2/GAYal7nmazscmZU+7xrZpQY86hu6y2Zz02w36ZFOXlDioddn005w72YK0nlpVQQmADxHt1HiiUTOkou9KLvTdEuOdYXKznyRVWaYafLZnCccuvHJ0+vXKYmdMlejX7DKL3P9ZU+finq8Qc7NeIt2KSHeOUy7X8PNsPwW1DVrvFvsb3wxq16LiuoQD8fh60/VkA/+0I4/W4yjo89e6Ns2LCZO+5YyfBwit7eOB0dLXi9Os8rFh22beulubmK3t44LS1hXn31EFu29HDDDctpbq7iwIEoN920mWuvXYrfb1FT48Pnc+M4wubN3XzmMw/z9tsXA3Djja/S0dHCWWfNpKWlCsOAbLZAZ2cfTU0hGhpCGIaB221impBIZZnc4MMRB4/ppjc+zP3bnuCbCy+gJVwHBhwcV2A/kcM+AdQ1p72eG567rwzsf3DGV/nZYeD/Ryu+QU90iAffeIqvnHwO0yZ9kuP+yfLJ8l+/OI7aqV90kQLrjg4dyQOBSrPcHXeo6dwEE/+rX8EXvlChrn/9a82uaWuDX/5Sy/09PRP5MfrDfeSROmMIBOD739eZxi9/qbMRj6ecJe8Z7uW6a4VNm/SwIjoB+e53Vcp38slaX5jwyOvsrPTlnXSSsgf79lXk8xOGcpMm6bH6+xWId3Toy73qKq0lWKVW5MO7BBynYmQ3MKCTpnXr0HExl4fWRpWrg7LrmVxZMo7LrID2idx10H1MQ9lxj7vUM1ZQefzE0jOozHvPoBYFcnm9mERK93GZ+t6bpjL6+7pLsXEWZFUaHahtwuX2lTLTh3B5/CWgPaA9p3YOxMEp2BRyaQy3B0RwnCIDH7xCIZtECnnsTFIN7PZvp5BLqoEWII5Wcv21LVjeEI5j07/rZexMAgwTEaFpzunUNB9NPhXFzsQxTBeFbLIsq+7f9TKOU6BoFyjm84jjkOzrY8dNN1FIp3H7/SS6u0n19+OvqyPQ0MCHDz5IMZslPTBA39//jtvnUyO7HTvIjI5y1L/8C766Oky3G9Ojr+n9X/+a9MAA4x98QGpgQOPmTjyR0NSpuAMB0sPD9P3976QHBxUI9fQosJqIg9v0F2XADdTpPRlTl3ePRz/LYkHl7bPm6rYTEXIeL8w6Rm+nHw2JqLLr48MKyKtqwBdQ07m/3gutMxScd++rGBN+4V/hiDnwl1/DYK+aq2VSEB3F6PwHLpdFw9HLsHwhzXKvbcLtCYBhECwZEAYmteAJ1JYLOSIQnNRMIZdm8vQTME0XhVwGl8eL4bIo5JJMmXESljeEyxvA8oVwefzY6RiDH76KU7RJjWtRwHR7KgaEom0RnkCVngc0F30CtAerkFhU5fDiqNFbSzvO0ABExsqsdXHTYxCLqsnclr8rGE/ESqZtMWXmayZhTp2JEa4Bj4fic39TR/pkHEMEiccwgiE9VnRcv9s9BzFbpuK8/g+VzseiWizo7dbv9ES83GsqWTfmHKcZ7YYJBbuSt55Oar+7YUJVGHPRqVokaGnHmHmU9ua3T8cI1+D61HkgQvGZJ5SR7+8pMfXVSC5HcdPjyNgI4ji6/cpzAQNnZBCzpR3C1ZoVv+wMxDDJ5XI4jkOxWCSVSlEoFAgEAlRVVZV7z1999dWyJL6vr4+Wlha8Xi/HHHNMWQYPlBn0xYsXEwwGy9v7/X4uueQSli1bhmEYtLS08Prrr7Nr1y5yuVzZff65554rSeihWMwRj/excOEVuFwehoffJxxuwzAsXC6rZDL3PbzeKhKJAV555XqSySEsK0BLSwehUAOBwGTy+SSZTAQRB8MwMU03oVADuVyCZHKQ1taF+lmJw9Spp1BTMw3LCuByuTn77F8xZ87nyGTGKRZztLR06Lb5FK0iXI6awh0B3I6C9mG033wMdZFvBT6LGtPVo1L276FRbgW0rz2FMu6NKOhPlp5bWlrvR6PhtqEGdB1U8t/N0vkm+twN1AajulqHxkOHNJf90CEdUru6dMypq9Of+4k41MFBHc8mhlTL0kJ0S4uy5sGgjpvr1umwHQ7Dl7+syrOtWxWUd3frsdxu3ebYY2HHjopXZDCo60ZHdRowfboWvp1Mjnwyj9vnJtQUwh1ws/iqxQTqAoQaQri9bjLjGUzLZOEVC0kOJrEC2qscbguz4rYVJAYS+Kp9bL11K21L2nB73cz53ByW/GAJhsvAZbnYfNNmdj20i623bCUbzWIFLKrbqvnsI58lNZjihStfoJgrUju9FkcceuI91AXr2N63ndH0KD9+5ccMpYawTKscFXfdsuuo8dXwyGcfoTXcysUbLyZlp9jas5WuSBfJfJLvPvtd9kX20dnXSVt1G1WeKpzSuOeIw+K2xbRXt9MT66Ex1MglT1/CnrE9xPNxFrctViWbYzOUGip7baQLWQRDGWyrSoGrt1ZB+FinmsWNdSq4rj1OTeTS3SrD9tVptFu6R4F9GbTXq9ld4wo45mqVv6cOwMhWBbxODsbfgtyYAtbQdOi4T28du5Tz/pq627/9PaCozLq/rtTXLVDIao65y6vRbRNkYqKnAuInnOMdW4H84RnuLq8C8wlJfdEuser7S87zHijkNE7OcIHbq9FsVlDXObYy5VIsTY7MkpS+Gk67U1n54Z3KuhumMvFur7rFe6p1W8PU/dPDytjbaQXpdccqaDdMyMUUhL9xizL89Sfo6355nfa5n3GPMvgvfFNv80kF+UetVUCf6MHOF9iwYTNPPrkbl8ugvj7Iscc2cNVVL5BK5SkWHbZu7aGpKURvb5wpUwLcdNNmzjprBr/4xVk0NoZwuQyGhpLcdtsKWlrChEIeLr/8Obq6Imze3E1LS5hHHvks1dVewmEvN998JkuWtHH99a+QSOQpFLT/fNGiVkZG0iQSOQIBC9M0cByoqwsyGB9lw4u/pS8+QlPVFK4982vU+Ku48cUH6IuO0Fpdz9Wn/wst1Q2AlKX193c+QdFx+EYp/u0bCy/A43JXHi84H5fpKm//4BtP8b8j+fwJcP9k+e9fJsLRJ4LKV6xQ9ryrSxvEDx1SdnzJEu1R379fkfP27Uprr1un6+Jxtay1bQWuJ5ygwLylRUHmnj0aD5dOq7ZvYEALBEuWqMS+q0uBe2yEWU1JWlqESy7R3UQUaN90kx66vl4Pc+mlOqHx+3ViMTamE41wqT0qFNKX5jjKNliWrvvBD7TXr61NX3J/v152IqHE/w03lArESZUNrl2r55+ImrcLIF4P9A2p5B0UiFcFS0x6iQVPpD+euw56f0IPWSzqiV2mgvIJcN/eBPWTtHfeMCrO9R4L9nYrkz8RKef1VJ4HME3MXAHDcGlsUnSwZD6nLF2gtrkMtAd2/R3TbeEJhMFxcIoFTLeHydNPoFCSvgcntTDt5Auom3kyTqGg+d2GQToyiDMxCJsuLF+YxqNPoZBN4BRsYoN7tKfdzuIL12Fnklr59QYJ1DZRyGXKvfZSsHEHAhimSXZsjKO/8hXcfj/FXI7ao48mPTKiklWvl9lf+xouj4e6E09k1RNP4AmHycfjTJ43DysYVPa9UCB+8CCjb7+N2+fjxB/+EFcgwOR58/BPnkyyt5ft11+vAF2EuuOPZ+mdd1I7e3bZxV5MEzn7C9pbfuE6HdwjY2pONyHdDtVo/3vXRzA2pJOS1Z9XE7lVayuTnExK2fTpR+n2zz6i4P75R6GqGp57BFZcoDPo/btUnh+PwH/cqRFzkZFKMSCb0VaDWXMxF56OaXlxWV7sbIrhvduUBQakoP+HjbNPIdwwi3w6Rt97L+KUJld2LoUvXIcnUIOIg8vjp5jPatuAr4rRrjdLzvA2xUIecfSznzLjJEzTIlDTqEUawF9dj+Oow3RgUrN+NyYmbvm8Ms2t0zDC1Zjt03H6uhE7D7EITl+3AtRSNjtuS2PTtr2mbPfqfwLA2faa9sQnE2VkIWMjCsxTSQX5r/+jZHBnYLaWAPpEH71lYdQ3IjgVR/upMxGXiVFVRXHjI3p9n/sq5tmfBpcbc81nVCYvDhKLYi5artFziThGsEqLERhQU6M96S43RlU1RmMzks9phrxhaO/7wlP0tbVMVQf8Z/8GCK7VF2BMrsMwTcTOa59/OoVR36T383nNlA9VYYiD1+vFcRz6+vqwbZv+/n6AsqGcx+PhzDPPZNu2bRiGQTAYLINxy7JIJBK8+uqrpZ8Kldibpslzzz1HKpWivr6eTZs2USgUCIfDiAjZbJalS5cyZ84cvF5vGci3tLQgUiASOUBv7zaam0+mtnYGzz13OcFgHYlEH7adwjBMmppOIJ0ew3FsvN4qdu9+kmRygFish76+7YBJOj1WdpU3DAOPJ8hzz11ONNpFVVUT4XAr6fSovm8ui7GxvTz77Hew7UzJ2ClJNhvF56ulv/9NCoUsHk8IwwqwwTDoQBnv/cClqGTeLK1rQnvge1Fp+x0owG9FpfPp0nbXo0y8C/gZytQPow7yeWBKabteFJg76M90HVocyJbOuQQF+A5gF1UdVizqGDfhJH944fi22/Rrf+21akLX0aFDdzqtDPmEl2k0quNYJlOxj6mpUXO5eFzHyEWLKsz7RFzqu+8qUF+4UK9j2zYtdpumsvL9/SVxlwgvXPUCnqAHx3ZwbIfAlABVTVUMvj1IpCvCM5c+g52y6evso6qpiqqmqnJWeyaSwRP00L6sHZfXxaq7V9G2tI1Xrn+F5GCSmmk15FN5nILDyjtWsu7DdZz1i7PwVStrF+uJ0b6kHbffzapfrsJT5SFyIEJ2KMuy9mWEvWGObTiWO7bdwZK2JXhcHkzDJGgFuWvVXTSGGglYAU6Zekp5G6/by/yG+dy57U5Mw+R7i75Hb7yXukAd619T5/jB5GC53x1AEJa2LyXkCfH8/ue5fdvtZcl8yBMi5AlxKHoIRxyCVpCA24cx0Zee3K9gOTNwWNZ6L3inaL+7YcLs72uGu78RAm3q/p7u03z2sU6V2genlvrf26DqSHCyepy6heo+/9blCu5dPqAIw69CokvJAtOC0e1Qe4IWEk68W7+pLq+6xBfzCnIn3N0P72WXokrlDUO/3Mn+0nN9+lxmVNdBRf4+URCY6F33VOk5kJIUv8R6F/NlVR/h9koP/ASDbyd1nX8KxLuhfys0nqT96G4fzP4SeGooy/iH3iz1wK/T20SPKggaOxSAv3KZZrwHGyuu8YZbCyZ2Ao67tKQMEHjz5xXnek9I2fgV9+lrSfXjcrm56qrFPPLIZxkYSHLZZc8xPJzixhtPx+022bq1h/r6IH19CTo6WhgdTXPddctoawszNpZm69Yestkiixe3MTyc4lvf2sTQUIpFi1rp7Y1z8skt9PXFWbKknXQ6TzBoEQp5yjntwaDFwYMxvvWtTXR3x1m8uI2GhhDd3TE6O3sZGEiQyuYYTo5z+fILmRQIky/a9EaHufXv/8GLezsZTo3jdrkZS8W48YX76Y0Nc/nyCzl79lKuOu3LGIaBz/LwwzO+Slt1Axk7x+RgNdet+DoBjxcR4cdnfZOXLvk1V532L3jcFv/bLWpY8Mnf4X8tLS3yyfJfuKRSIu+8I7Jxo8jIiEgiITIwILJ2rYjPp+ujUZE9e0S2b9fHH34o0tmp24DIhReKDA5KZvduOW/1ajli6lSZP2eOnLl0qey9/36ReFzW/+AHcuSsWWIYhjxuWbpvNCqydq0MgaxsbJRZ06fLnCOOkGc2viSbNokcPCgyNCQSiYiMjuptPK67bdqkl7d2ra578029jPFxfRl794r09+ul9vWJ9PSIfPrTGTn11PNk5swj5Jhj5ktHx5myatVe2blT5Mc/Xi+zZh0phmHIAw88Lh99pMe7+26Ra6+tPPcf//G4JKIFkdGISCYrks2KfNglks2J2Lb+ZbP6fC4vks/r8/mJ53K6zrZ13WhEJJ7UY+3aJ5lEQs5btVqOOOIImT93rpy5/FTZu+sDEduW9Zd9T46cdYS+h3/5a+V8eVu+8qUvyxFTp8n8uXNl8cKF8vrWzZJNjIudy4idz0ohn5V8OiHdbz0t6diwZBPjkkvFJJeOS8/bz0g+k5B8JiG5dLy0fUbsXFoyiTHJZxJil/aPjPTJOWvOliNmzZJ58+bKGaefJh99uEvy6YRcdem/yBFH6Gf86CMPSSoyKId2PCWpyKB8+ctfkrlzjpFj58+Xk048UZ7d9FTpWobEzmZk9P335bUrrpDU8LCkhofLj8c++kjyqZRkxscldvCgjO/eLb2vvCK5WEyysZhEDxyQbCwm6ZERycZikkskJDYyImefdZbMnDpVZk6ZIssXLpR3t22T3ldflRuuuUaOmDlTDMOQmy64QKL790suHpd8Mimj778vva+8Ik88+KCYpim/uOUWcZIJkVRSJJkQiUdEerpEBnt1XXRMZHxU/97tFEmnRDJpkXRSbyOjIr+5WWR8ROTgXpFfrxfp3i+ZgV4579jZcsT0aTJ/7hw589TlsvfVl0R+vV7Wf++yyv/JT34g0t+t5/rNzbJ8QYdMmzpVjj1mthzb2ii3rb9R7FxKCvmMxAb3lz/P7reellRkUAp2Tj/3bEoyiTFJRQYkn0lKPpOQ2GCX2NmUfq6ZpNi5jGRLn/XQwY9k1Yrl5c946YLj5L23tkk+k5Ar131Jjpil799f/vQ7KdjZ8uecHB+Q6679ocyaOUPmHDNbTj3lFCn2dYv96J+kGI+KE49JMR6TYn+POKmkFEeHpRiNSHFkSIrplBQH+8R++D+k2NcjxWxGnGymsk86VboflcKeDyQ9OirnrvqUHNHWKvPnHCNnnHaa7H59ixQzabnxxz+SI4/Q/5NH/+NBKQ70lo7bLR0nnSTHzjlGjp07R+bMni2AvP3Ky1LY9qrYj/9FnGxWnGRCCns+1GvOpKWYzUoxHtXrjMfEyWaksHuXFHsP6W08KsW+Hins3qWvK5uV9PiYnLtmjRwxc6bMnzdXzjj9dNnduU2K8ZjceO015c/40d//ToqxSPlv6wO/lo4jZspx8+fL0UceIT/7yQ36/g32SSGblXg8LvF4XDKZjIyOjko0GpV4PC4DAwOye/duSSaTkk6nJZ1OS7a0fSqVkng8LtlsVkZHR6Wzs1P2798vZ5xxhsyaNUvmzp0ry5Ytk+eff16Gh4fl9NNPl6amJjEMQx566KGPHXvz5s2ycOFCmTt3rsybN0+efvpvsmfPJolGe2Rk5EOJx/uls/NuefjhtZLJRKW//y159NELJZ0el2RyWHbv3iiDg+/K6OheyWbjkslEJJtNSDo9Lul0RNLpiPT1vSWjo3skEhmQs89eKc3NYZk3b66cdtoyefvtzfLooxfK5z53rkyb1iyzZrXIggUnyfPPP1w6xri8885j8pnP/JPMmDFdZs2aIX/4659lp+PIRyIyJCIfisidIrJJRN4WkbUislNENorIOyKSFJGR0rZfKW37oYgMioivtH1URN7IZGT1eefJjCOOkNnz50vTmWfKlr17JSoiF37lKzLziCNkzvz5cvLixfLy9u3SXzrnHQ88IMfMnSsul0s23H67xHMi776r49rOnTqm7dypQ/PEGNbfr+NaPC7y3ns6HEciOj729em+sZiOizt2iAwOigwPizz2WEZOO+08aW4+QubMmS/Llp0p99+/V0ZGRP7pn74iM2boWLhgwWJ5+eXtsnevjqFXXPFDmTnzKJkzZ77Mm3ei/OQnz0o06kgqUZBYb0xivTGJ98cl3h+XPZv2SHI4KdlYVkY+GpHOuzt13VBSMtGMjHw0Itvu3CZ7Nu2RgZ0Dsnvjbhl4e0AevfBRGe4alrNXni1tdW0ytWaqnH7q6fLejvckPZ6Wz537OWmqapK5x8yVhQsWyvOPPi83+m6U5FBSvvON78iRU4+UeXPmyfy58+W3D/5WIumIjKfHJZFNSDwblx19O2Ttw2vlncF3pC/eJxt3b5SdAzvL6yLpiLzZ96Y+HnhHEtmERDIR2TO6R94beE+GkkMyFB2S1WtWy4yZM6RlVos0zm+Unbt2Sn+8Xy74/AUyY+YMOXrO0XLSgpPkpVdfkpHkiGzas0l6Y70ynh6X1996XVwel3zn0ktEXlsr8if0NjMksuVCkY/uFIl+KJKLivRuEkn1iYy/I9K7USQzIpId1+3G3hbJxXT9aKfeju8UeW2tZHq3yHnnnC1HzJop8+ccIWee1CB7tz8u8tGd8pW1Z8oRM9tl/sxqWdwxX7a//Eh5v3+58DPS3Fgnx86qkWPnHinfv/zbIrmkSD4lMvaRSO9mvS3kdf3YRyL5ZOlxQh/nkiJ29uPP2TmRol1av0cyiaicd+45OqeZN1fOPH257P3oA5GCLV/58hd1/fx5snjRAtn+wsN67IItkh6Te+76pRx99NEyd+4cmT9vrmSG94mMfSiS6BdJDYmkhkX2bxQZfkdkfI/I0E6Rpy8UifeKZMZFsjG9th13ijzzFX2cjYtkIiL7N4ncVSOZDx6T885ZXXr/jtbr27lF5MCz8pUL18oRM6fK/HlzZPHCDtn++C9Eht8TySXk/FWnybHTa+TYOUfKsfPniWEY8rvf/UVGR1Oydu3DAjfIxo27ZefOQVm79mHp7OyVTZv2SCyWkVgsI/F4Vp59dq8MDydl48bd0tnZK2vXPizvvDMoe/eOSk9PVPr74xKJZOSNNw7IwoVnyIwZs+SYY+aKac6UVat+KUNDCTn33M9JKNQkc+bMk9mzj5ff/W6jbNy4W6LRjLz11vvS0bFEjjlmroTDzbLu0m/LhwNdcuWTd8iugf0ynBiX7vF+GU6MSzSdkGQ2LbFMUq588g6Zf+vn5Mon75B4JinxbEp2HvpIZi2YK1NnTJOZRx8hp51+mmza+pJc+eQdcsHnPyOzZs2SY+bOkeNOPkG+eNsVsnv4oOQLtuzZs0fOPPNMmT9/vhxzzDHyl7/85b8b1fy3L0Cv/H/AqP+Pg+T/X/z7BLj/Fy+JhM4G3nlHkWp/v84C+vt1FrBzp4L1w2cU8bgi45ERfa6/X+SddyTz3nvy9H/+pzhPPSWyc6fcdfHFsnzRIpF33pHOM86Q/U88IcsXLZLHr71WZxeJhMg778hXp02T6y++WCQale2vvCLNzS1y6FBOPvpIJxHj45XT9PVVJjLPPlu53I0bRX71K308NFTZ78IL9VSRiMirr2bkJz95WmIxR0ZHRS6++C4xjOVy4YUiL73UKW+8sV86OpbL73//uCQSOplau1bkz3/ulJ0798tJJy2XU055XPLZgjgTQHwCqGezCsB37VNwPnE/kdL7E+tGIx9//vB1iZRkegfk6d//UZxcXiSVkbtu/bksP7lDJJGSzi1bZP8HH8ryU06Rxx95RAsAqYxI3pa/PfaY2ImkSCojf3vicZk6tV3sXFqyiXFJx4YkNrhf7GxKUpEBiQ12STo2LN1vPa1APZsqA750dEjyGQX4h4P5gp2TXDoukZE+eeKxhyWfz0o6OiQ/uepiWbZkkeTScfnHi5vk/bc7ZeGJc+Uvf3pQYoNdMnLgLclnUzI6PCi2nZN8Jimdr2+W2tpaySQiel25jMQPHZLR996T9OioRA8ckN5XXpHRd98tg/XXrrhCxj/8UGIHD8rou+/KlquuktTwsORiMcknk5ItAflYV5eMHTwoj/7nf0rP3/8ufzn+eLnxu9+VU5YulVwiIf/YtEkeuugiWXzyyfLQn/6k+6dSkksk5LUrrpCuLVvk2KOPllUrVsgvfnxdCWzvE3lnm0jPfgXtybgC+VhEwXlsXIF6KinSvV/3ObBHAfuLTyj4/s3N5fuZsRF5+s9/0qJAOil3/eI2Wb5kicjYsHT+6bey/713ZfmSxfL4H36v+0ZGRVIJWb5smTz+lz/r8S85RwqJqL5/+aykY0PlIslI1w45tOMpLb5kU5KODUtscH95m3R0SHLpeKmwk1IAn0tJbLBLcum4JONReeKxh+XQjo2SigzKTTdcJUsXLRA7l5Z/vLhJPnh3h5xyyjJ5+KG/SCGf1f2zKfn5zRvk/PPOlWRsTOxcRvoPdCno7OtWMLx7lxQHehWkl0BwMRaRwp4PFDDHY1LofE0Kez4oP1feLh5T8D3QK8VoRBJ/ul+eevhhKZS2+eWtt8ryZcvESadk26uvyt53dsopc2bLo797QAsEvYekODqsQHx0WIoDvfLX3z4gc48+ugzqJ4oHhd27xEkmpJhOif34X7RoMPGXSeu1ZjNSTMTFSaekmIiXj+2kklKMRyX53tvy1MMPSaG3Wwq7d8kvf/5zWb54sRRjEXl900bZ8+KzsnzRQnnkqsulGIvoMTNpOXbePHn8L3+W4kCfDD14r9RNmSLvv75V37tMRpLJpOzevVv6+vokHo9LOp2WkZER2b17t/T29srDDz8sAwMDks1my8A9Ho/L6OioJJNJyWazZdD/6KOPysjIiAwMDMjXvvY1WbRokaTTaXn44Ydl165dsmzZMnnooYckk8mU92tubpannnpKksmkPPvss9La2iqRyKD09e2Q3bs3SjI5LJlMRAYH35NMJiYPP7xWtm//laTTEUmlRiWVGpPR0f2STkckmRyR0dE9MjDwbmnfEclmk5JKjUo83id//vPn5Y9/vEsymZjE4/1y003XybJlSyQS6ZY//OHXkkiMSjYbl7/+9UFpa2spb3fddT+QL37xC5JMDstLL/1WptTVSefoqERFpF9ELhSRHSKSKD3uEZFnS7f9h22zs7RNRBTEj4jIHhF5TxTcD2Yy8oenn5YPHEd6ReSqu+6SE5cvlwtF5Ld/+5uM27ZEReSvTz0lbVOnSkJExkXk33fulH988IF87ktfkp/dfruMikgyqcNhNKrD68Tjd9+t1NTHxipF7L4+kW9+U7edAPDDw7rNs8/q+lhMZHg4I7/5zdPS2enI2rUiV199lyxcuFw2bhT5wx/+JsPDtmzaJPLLXz4lweDU8nj6H/+xSf72t7TEYiJbtuyUcDgsAwNJ6dsbk2w8K5lIRkb3jMrAuwOSGkuVQfyjFz4qAzsHJBPLyOjeURl4R4F6ciQp2URWHr3wUent7JVHL3xU+t7sk9HuUbnv+vuk981eiffF5ecbfi5LFy2VTDQjP1j+Azm07ZAkh5Pyp3v/JO3t7ZKJZCQbz8r+Hful941eGd0zKnve3SNVVVXy3oH35KORj2Q8PS7xbFxGU6Nyd+fdcuGjF8oHwx9IZ2+nrH14rXADsvbhtRLNRMuP94zuKYP6twfelqHkkETSERmMDMofHv6D9MX6ZDw9LjffdrMsXbZUdvTtkCVXLZFth7ZJPBuXvz72V2lubZaNuzfKcHJY4tm4vNf/nnQs6pBVF6ySb627WJxUv0j0Q73NDIvk4yK5cZHYXgXp+YRIdqwEzreL9G3S53NRkfSQAvfMiAL/0c5yISDz8ufl6SceFierx7rrtp/K8mWLRNJD8rdH/ix2vFsk1SNPPXi9TJ3aVi4Y/MsXPy+333CRyO67RaIfiRRyCnITfRVgnk8qCE+PieTiIvl05XHvVpGx3QqyJ/6Kdhl0Sy4hYmclk4zL04/9RZxsQiSfkrtuv1WWL1siUrDlb48/JnY6JlLIy1NPPCZTp7brvgVbnnj0YVm8aIFED7wpYmdluLdLCn2dIk+tFRl6W8H7U2tF+jsVvKeG9DZ2UIH70xcqkN+/UWTwTQXriX69/9RakeGdIuN7JHOoU56+fpk4sR6RwbflrusvluXLFovkEvK3h/5D7N1/ExnaKU/95scyta1JgX9qWI/xc0SeWitvbPm7TA57Jbr/DYlFM/L22wOydu3DMjJSAfFr1z4ssVhG3nlnQDZu3C3Dw0nZsaNf9u4dLW/n890oe/aMyvh4WsbH0zI0lJDx8bR0d4/KHXf8Xp566iMZGUnJj3/8MznppEUyNpaSP/3pYYlEkhKNZuT3v/+rBIN10t8fl3g8K6tXr5GLL75O3nlnQIaGInLMnDnywJ9/L3/asUl+tOnfZTQZkVROwfpr+9+SPUOHJJXLyO7hg/LDjXfJSGK8DNw/6t0nV975E/nBU7+U8VRMfn77bdI2d6acfPsXZcO9t8t4Mipdo73yTz/6pli1AbnyyTskmU3L4sWL5Te/+Y2IiAwPD0t7e7v09vb+d6Ka//bl/wy4fyKV/2T5718mzLb8/kp/+mWXaeP44sWqD6+rq8jpN2xQ2VAwqM1vJ5yg2vS6OnyTJ7O6pgZjwQIIBFi4aBEHDx2Cnh46Nmxghtut+r5jjlHtXjoNjY08NDLCJVdcAaOjnHzkkTQ1NrFx46v8+Meq1N+6VS8hENBTG4Ze5qJFehkjI2qgc+GF+lJ6e3WfYlH7/pqaVDp4770+vvGN1Rw8aPCtb8GyZQupqzvIrbfC5MkdDA3NoFiE++5T9f/06WqOv2pVB9Onz6C7W93qXWapx33PIe1rL2Wg0zMIY9GShN3S+DaPWyPgJtzfLUvv9w5BOKQHqy7d+jz46qew+nOfwdjfA47DwoULOTg0CLk8HR0dzGhr13M6JRFmJgu5POeechpuASw3CzpOpq+vn1w6idvrx/JXl3vKDdMkMKmZkX2d+GsaKeTS9O96mUIujb+mkZH92ykWckyefgKGYZKJDVPIpQEwTRdmMcuK05ZhGgaGy83ixUs50NWF6bZYcsrpzJp1BIV8lvjAHgKTmqlpPhoDCPk92OkoAx/8ncjoMADZxCiWPwRFh0Iuh1VVpddXX68mcePjeMJh/FOmMPurXyU9NISvtpbdf/wjR335y5huNyPvvINdiq4q5nKk+voI1dZyzrnnUn/SSSy96y6Wn302Bw4coJBKcdIJJ3D6d76Dy7JwbJu3br4ZO5VCikVO+MEP+OHPf86PbriBuvo6jA/fUqf4yChMO0pl69W1+rjrA3BbKn33+qGQ1/735x45TNaehmOOB38QPvN1OGEJAD7TZPVpyzU3wBEWHjmTgx/ugniUjtXnMuOII1QOn06pBN/rr5gQDvaoHP9b12G43PjD9RiA5a+mcfYpFPNpqpuPonneCkTUs8DOJAnUNGKaKnW3s0kM01Rfgvdfxs4lKeZzBGqbMDAopiOcveYcmuecRjGf4tQVa+ju66f//Zc4+eQTaamvBf32kRrvw86lSEcHuf3Ou7nxpzfgMjV6rqGpEXPV+RjVk9Q9PVil8XaxKBIZx3C7Mbx+zLZpSC6LM9iPOec4lZ0bBiQT5b52DENl7/EYhmXhn3kkqz+1shy7teCkEzl46BASj3LiSA8zpk3FqJmkv28er5raeTzqOF+woSrM7/7yF76y8ISyBN8wDJWkh6v1eh3BXHkOxKMUn34UiYyVJPBFJJ8vryeVgEAQGR9T+bzpwj/jSFafuhzD58NsaadjWhsHu7vBdHFSapyZR8/W13LUMeokn8uqAZ5pEEumcLZvJTPnODweD7V1dRhNLWAYZLNZgsEgXq8Xl8uFaZofk6/v3r0by7LKk4ihoSHcbjeBQAARIZ/Pk0ql8Pl8rFy5siyh93q97Nu3D9M0Wbp0KR988AGFQoFCoUB3dzfRaJSxsTFGR0dZvnw5zz33HHPnzqWmpppnn32eZHKAYLCO5567HNvOUFXVhEiRpUuvZd68LxCLHWTTpm8Rj3cTCjUQi3XT19eJz1dLTU07TU0n6PuPg2m6MU2L1at/zsqVZ2EYLtxuH4sXL+PQoUMUi3nOO+9cstkRcrk4HR0nMjAwRC6XIp9P8uijj/ONb3wVEWHRovM5ZflyNj32GJtRg7jLgSHUJf4t1EhuCdrzvhOVr29AHd+zwBZUHt+J9ri3oVFuPp+P01av5qBh4AXOXriQwYMH2QCcf+65dLvdXARMXriQgb4+dhcKfBv4/LHHcszs2YyaJmOoufdEq9bAgLZoDQyoKV1vr7Z/jY19vMNKpGKums/runhcw1kWLdLnt2yBnh4fZ5+9mpERg4cegh07FtLbe5C6OnjqqXPp73czbx689NJCMpk+ursLrFsHZ5yxitNP9yMCc+bMo1gUuruHCTcEiXRF2HTpJjxBD7XTatVbIZXHdJssvHwhW2/dSqJPe9jjPXGCdUGeWfcM0a4oK25dQWokxYpbVlDVXIXH7eFLl3+JmvYarKDFjNAMunu6wYAfP/FjPH4Pz1z6DIsXL6a/v5+/ffNvjO0Zo66pjpr2GoINQRKxBCJCsVik1leLaZgk80m+//z3uWD2Bdy16i6aQk1EMhHuWHkH/Vf0c/8592MaJvetuY+h7w3RFGrC5/axpG0JP9/6c/xuPy7ThdfnZeFpC0vfTfBM9dB1oIuB5ABbAlv4xfZf4IjDnOPnMDw4TEdTB5ZpkcwnWX/jes674DyOO+Y47XXPjUByP4bbB6ZP+92zoyrtzkdKEXAelcFnh7VnffslmvMutmaWu/ww5xrIjsEJd8DZH+Jb/CtWn3IExhuXgDvIwmOnc3DvO5Ad5NxVy3HH3wXTx8KzvkJf3wCFuTfBlCUwuk0d5VvPVwk+qEze5VMpffV0lY0X8yqhn3CGF1Ty3nCibi9FNWuTYqm3Pq896qYHDBc+n5fV55yP4eTB5dE5TbdK7s89ZQ5ulwvyCRYu6KCvr5+C6QcDbr3tdq7/4ZVUt84Bw6RuymRc2RE46fsq77dCcOavwTcJmtTPglArvHqVyt8bOzS/3V9X6oE3dFzdcbtK3js3QKAe37u3sbrqNYxCElJ9LFy4iINd+yC6n3P9G3FXNUKyl4ULF9PXP0jBzqoE/9Q74OJ+OOsBHnjwD3zxi1+iet99WKbN9Ok13H//ObjdBldfvZiNG7/APfesxjQN+voS1NcH2b69j/b2MFOmBIjFMtxxx0q6ur5DKORh27ZeMpkCPT1xLrnkaSKRAqtXn019fYh16zZx9NHHMTzcR09PnJNPPo1CATZv7qa19RhyuQhuN8TjOd5/f4SqKqGuLkgmmyaTy/CPwfc4rvkovn/ql3BEODg+wI0v3M/kYA2DyTEKToGWcD3Xnfl1xtNxfvrC/fTHRhjOxfnq2i/xwzO/huVys2BBB8Tz3H7e9/j0+ReQyKvz/BWfu4hiPMu/nLgGwzB45513WL16NQB1dXUce+yx/PWvf/2/jlX+/2T5BLh/svz3Lvm8Rr3lcgqiv/MdRbh33KHObi4X3HuvNsT96EewcaPmoR0eh+Xz6YwhFtPZwrx52nyeTnPnY49x3jnnqPvbbbdpv7vXq0WBq66CwUHGkknsfJ7GH/1IZywuF20tbfzud93lXr8pU3T3UloR4bBOar77XZ2w1NSoSd3Bg4qLBwbUrC4SUWDvclV89+LxSt/gtdfeyQUXnIfPV6lP9PTA0UdXnHXz+cpkasYMOP740ns3YU6Xt7Wv3TDVBf7EOXqh5kTful0a6Cw4cqqCeMuCGS0a++Zyac/63m7Ncp/IZZ/eAqbJnffczXmnnKa97ADdAwryC0XYe6hifGe59VoM+OVdd/Ops1bg8flxHAcDwROcVM77NgyD5nkrqG4+mmJ+Igc8SHXzUdTNWoDbE8QwTfp3aU63x1+FU8hTKJmfeQJhnEIeOx3ld399mvM//RnsTJz+91/CdFsEapuYPPW4UtxcomRCZ/PjGzZw6qcv5Qtf/hoP/fXPBGoaGN3/JobLJNTcjCccZuz997FTKQL19dQefTRj778PhoFVVUWgqQnD7eaka6/FX1fHWz/7GbVHHAFAZmQEl8eDr66O7T/5CfGDBylkMtQffzz//pvfcPaKFZiWhTsUwl8yWTQ9HuZ/5ztkRkbYsWEDjz/1FJbfzzlnnw0YyDEnwA2/UmM5A81uN0wFgjNma9TZ/l3qKP+nexTQf/pr2uP+qc+CP6TO8x6PmtDFIpr1Ho8okHzoPkC4809/4bzPfQFqJ+vEIp/TzzoYUgf6gg173wc7zw/u+jXzPrWGz/3kFvYfOIhhmhRyaaRo4xQL+MJ1GKZbI+AiAxTtLP7qOtJR7Tsf7XoTyx/CdFkYpptAbTN2JlUC8S9SyKcJ1DaQT0UZ+OAVfOF67r7n15y7Zg1TZpxc2qcRcYqMd7+L2+vHziRIZwsMDQ+z8elnOeX0T7HklNP56yOPKbh95jEF7T5fKe/cwgiFSmB4VAGr14vZ2o5ks2peZ3nU5G3RqeD1YbjduC75vsai9R7CnHs8huWBZBLnlef45V13ce455+C89hJG61R9/0S0sJKaKADEMeqbkFiUnt0f8Y/XNvOl712FufYrGE0t2j9vujDCNRgNzTj93ZpF77bUtG7rK5DLlfLps0gyoX3v7lIMoteLEazSDPl4FKrCamr33JPc9dCjnLtG4+bMlefpOSZNwQiEtJhgALbNb770OX78kxuYse5yjl62nBu/+22aGhu1SAQEAgFqamrw+/309vYSiUTweDy43W7OPvts/vVf/xWPx0MymSSfz9PW1oZpmqUijoPb7aZQKPDcc8+VI+ACgQCjo6N8+tOfRkSIx+Ps37+fYrGIaZo0NDSQSCQIh8M0Njbyt7/9jUWLFtHZ2cmePXt5551XaWnp4PXXb6OlpYNEop9nn/0uhUKGmpqpJeDtZ+rU07CsECIFqqoaCQYbeO65y7DtNG63j97ebYyN7cW204CQTo8Siewnn49TKGT59a8f4Jxz1hAMTsGyAkQiB0gmh7j33t9z1lmna0iHJ8iBA/upqTFxuSxSqSFap7aT6OnhFLQ3fSawGHV/70Dd4A8AEeAk1IjuGuBQaV0HakR3MtoXD2out7m07bHAlcAv77yTs887jxwa/TbRN3//nXdy1urVTHO7+RVaDLgMLRRYgDurw4XjVEzqGhr067t4sY5hE8mWQ0P6kx8O6+Nt2xTcO47uMzysySh79+pQPDCgfe8dHerV4vPdyZo159HWpmPq4KD6vhx55J186lOrmTrVzRVXaB1//361pfnd735HW9sMXK5pCCbb7tjGwssX4va7ycVzPHfFc9rzXnCoaq7izJvP5MDLB8hGs7QvaSc1kmL3k7vZcssW3H437Uvb8YQ9pIZTPHfZc+STeRIDCbo3d/PQqw+xZvUaerb04BQcLL/F7id3c9c9d3Fc/XHs27hPze78Fvc+eC/zT5zPspXL+OU9v6S9uR3DMNjasxWAX6z8BSKa5X4wdpClbUuxXAqqk/kke8b2cNHGixhIDpDIJ/jxKz9mSdsSbl1xKyYmXZEuLt10KUFPkIAVYGvPVp7/z+c5c/WZLGlfwsYvbORHy36E23TzH/f+B0vPWMrlL1xOyk7xwdsfMPjhIF+/5Ovkijn1CEn3Qe2xCtgnHNXdQXjrMnV/T/cCooC3bpnmrs/+nt7aCbBjgAO+BqhfCrlRzXyXgu47+3tguLjz1us479i0Osgbpp4zN8qdd97J6pWn4/aFtZc+dZA77/4V808+nTXf+AU733qz1NdeAumZMXV0l2Kpn33CkT2rQN2xKyZzVhAmItsmzOmMkhlf7EDJZC4MAnfedQ/nnb1Sry3UVOpjD3PnXf/O6lWfwu0yIdrFBx9+yJvv7GLJksWc1LGAX95zL4TatIc+UKfvRf82dcR3BfT6tm+omMxNXaFRbb5aBfQvXKQA/rS74KsfKvAGWH67Pg40QtMC7rz5es771KmVY+24DZo6uPPeB1m9coUWGpoWau778FtkBt7nz//5B76+9lPkl9zG3gMpLrpoI11dEV5/vRcRaG0Ns27dJg4ciLJsWTutrWEWLWplbCxTmtP6ENHYOLfbZMGCFhKJXLl/ff3616irC3Lbba/z0EO7+OEP17Nq1Rp6e+OkUjbr1j1DXV2QRx99kKVLz+Dyy18A4PHHf8fGjU8wc+ZUjj5qMLkKyAABAABJREFUJq0LZ/Mhg4ylY5imiWkY/HHHJp7b/Tq/2/4kcxtnkivYFMWhIA4PvvEUx7Ucicfl5oi6dsYzMQbjo/zb87/hlttu41Nnr+K45qMYS0ep9lXht7w89adHWLVqFY3hyVguNyeeeCJ//OMfAejq6mLr1q0cPHiQ/6nLJ8D9k+W/d8nnFYh7vRXnNRG1Zf/ud3Xk3rJFR//p05VdHxtTtDw6qqZy2azOJm68sWRCEoJTTmHD7bezb2CAm37yEzW7m0DhIvDEExU3ebUk1sdeL/j9uKTImjUOF16oNYT2dr0FnWhcdpma5Vx6qQLtzk69dJ9PJzVLl+rlBoO6zcTlf/nLOrm5/XY44YQNTJmyj+uvvwmPB+65R6NzZs5UxgKUAXEcfZkDA4qxJ03SdeL1KE1SFVR23UBBueNUmPigv6JoKBZ13d5DCrRdLnWT399TyXrvHtB98gXo6mXDzTezb9/+/xd7/xktV3lm+6O/FSvXzjkoAUIISURlgRsQGHDCBif6uNttG9MGG2SSEdimDRJCElmYaOOADcgyxiAkhAgySFuJIIIAgeLOeVdOK90PT1Vt6HPuvePe0Wec8e/DGmOP2lW11lur4vvOZ85nTm795+/LfbYjxnWmIQZ4bY2gFxn7gB98Jo/dfg/r1v2VBx96EEXV8VwHu5AVczfdxClky47yqqoRqGzCzmfEST6fwfBH8FwHK5umcdrpmMFKMd1SdXQziOc69O19Bc/zuOv+33PgwAGW3XIzqmoQqGqSIoXnYVs5XLuAqhrE+/ZhZVP86qYb2PLXNfzx0Ye49ppryKbiNB67CM91sdJpCrEYdSeeiKrrDL/9Nvl4nKqpU3lzxQr0YJBQYyOe65KLxVB1nan/8i9ooRCqrpPq6iLT309meJhp//ZvhFtaMEIhVtx2G/v37+fmm27Ccxw8xyE/Nkaqqws3n0cPBDDCYSrPP5+Vd93F7StWYGcyDL/3nhiTBYtGdPEx+POvBUQHQ3DgfQFnLZPESX7PDsl59wXgX38K9c1SYLGsYkSOC4lROPtrEBuGbAbO+CLLV9zG/gMHuPWXP5foOLcY8+cVje08TwzxolX88T+W8uG77/DO1ldZOH8+X/rqV8tFEc/zKKRj8p47Fn3vb0H3BYS91HSC1S1Y2TSJgQNY2Qye66KbASpbphUVGLuI9+1j5NCboGqYwSgNxy7itlW3s//Afm655VcY/hCFdBwrl8JzHHzhalTdR7C6BdUfwbZtMpk0W//xEn/6w6NcdfXVvPXHR8XBPZMC0yfg2PQJWG+fjFJRJa7xrovnOih+v5jXFfKorRPkS22a5eMwDHGL3/g3vNgIRCtY8fJW9h88yK2/+pWA4uNmjv/GuQ5eMoG3dw9uxxYUVUVtncDvVq7g/PlzqZ0wEbV9EiQTeGMjki+fSYNpisFd9xGwLcmLX3Qm+P14mo4SjqA0teDu3Cpu8V2HxUG/ugbtrC+IgZ3n4b72Eis2b+HA/v0su/T78jtgCsOO5+KNDqGEwpL7noyzesebLP/VzRz+4H3effNNfn7PGva+vQfiMXk6RbD9/PPPEwqFiEQkJmtsbIznnnsOy5LPwujoKIZh4LouIyMjPP/88+X89ng8TmtrK54nsXC33HILR44c4dprr2X9+vVEo1G+//3vo2kab7zxBtlslra2NnRd58knn+TBBx/k7LPP5i9/+Qvz588jGBQFxqJFNzBlytl0dKwsAvg+1q+/hLGxA4yO7uf447+BaYawrAya5qeysp3W1nkkk310d++gvX1hGehrmkki0V10kfe49NJz2bfvA37+86vp7NzK6OgBWlrm8NxzHfz1r09z9923kc/HRaqoaiSTvcTjXYyOHkBVVFzP42NgO+LuXgzUIoa4x/sRt/jLEUf42QhIL93WB+xGzOqU4vU64Mfy60Dz8uUc2r+f+K23kkYAfx/w48ceY9fatVz90EP8CPi4+Fh3Io7zEYq+W0XRViIhPxWuKx/9Un38+uulMH3ggFzP5wW0z5olirJoVNj3kiHdypUyf82eLYVtz4NjjlnOwMB+vvvdW8uiupkz4cknH+Ovf13LFVc8xBVXyBxqmjJXFgovsWrVf/DYY09SUaHguXDuPeeiGirPXfocmaEMZ68+G90vIF7365hhkxkXz8AMm2y4fAPR1igXrbuIxasWY2dsUn0pCskCRshg3tXzMMMmofoQj736GG/+401+9ctf0XxKMz07e7CzNuZlJs+88AxPbHyCnxz8CU0nNtG9s5t/v+TfeXvX27y4/kVWr1zNO4feYcmmJcxpmYOhGuzo3gHAsjOW0ZPoIWNnuGzDZaQtSVXoT/WXjejiuThr965lZcdKTM3E9myWb13O7JbZ9CZ7uWT9JTz32+cY7B7k5mU3s61zG20VbUysnMif//RnnvrrUyy/czmnt59OLpvjJz/+CcvvWo7t2Xh4qKqBV7eg+OlBXOTfuloM6mrnyWXdfHmjhneIO3v1qZAbgmCrgHV/QzFKzitGvAWg/wXAlbi43BDLl9/C/rFqbr36q3D8jaAHITvAY6v/lbXrnuKhNbfLfDT9Bpbd8TsO7D/IO2+9zve+fwnnfvErpIY7xYDOLYjpWnSCfEA1k7LhW6pHTOvKhnU9xQ+wKv+XboNPXBezuuUrVrD/wEFuXfYrKRKoJmgmj/3uEdb+5S88tPJnZSd527Y5dPgIr766lefX/50HH/kt6595ChrnSDRcz1aJbtMDokiIH4ZTfwYXrIcz1kj0XHSimNuVQHiyC1Jd0PFLyA5CZlgA+I5bwM6yfNU97E/XcutPvymxcheshzPv47En/87aTa/z0K/vgb6dkgWf7IJAHevuvoJjamxmtAfJOQbLlm1l7dq9LF++lVNOaSYUMlm+XG7r7Ixz8GCMN9/so7MzwS9+sYUjR+LEYjkCAZ1ZsxpYsmQT3d0JmpsjrFlzLuvXf4uf/3wRuq7wm998kRtvhPr6PJdf/jPmzGlh9eoOFixoY8uWZ3jhhWdoaPgmS5bMxTQ1Hnjgfr72tYv4+OPDvPHWXvp2f8QV7edzfOMU3urZx2g6wZWnfbvsEt+XGOajoSP0J4Z5t+9jfnbmdzn32AV0xweJZ1PMaj6G3+1+ls5Ne+jr6uFXt9yCosCs5qkMpEb4xvU/5Mm1a7nt7tsJ+QIYms7vf/97du7cyQknnMCSJUs488wzy2aq/x23z4D7Z9v/3s00x6ns++4Tq/WS9fq118rKYdYsQcm2LddLuWqhkKwQ4nEB5LNny0pg2zZWDw/z1Ntvs3HiRIL9/aLpW79eHkNR4F/+RdD1gQPUhMPofj/9xx5bdpfv7OvhlJPaeOABD8OAN9+UOoGiyMMuWCDge+LE8Vi4WEyAt66PR+r09Y27wefzcvull8Lq1avxvKe4886NXHllkP37BfxnMuMx7NXV8nRDIXjhBSkYwLhUUckXBGTjycoNJMKrq18k8D6jKNPVi5k/mtwW/YQDfMESaX33ANRVibRe06B7gNVr7uWpvz/Nxo0bCJ4xF46eIO+T3xyPkPMVJ1PHBQWefOIJ/uOBNWxav56qiJ/MWC+abqJqBr3vvYSVjQMKqqoBityWS2DnMwSrmuV2BRRNJ1TdjKrp4oztutgFYcEUVadm0kncefe9/O3pv7P2jw8R9PvQzAAVTVNBVfFch0TfR3ieh+4LMuGUCwhWNTG0fyfxvn3MaAuQzmTY+sI6FM3AtR2yQ0O8s2YN6e5uRt55B39NDZrPh2aaTP3Od8iNjvL6smWS615ZyejevYRbW/Fsm5F338VfU0Omv5/6E09E1TSG336bW2+6iT89+CBrH3qISFUVVkrUDP6qKgINDRSSSV5ftgw9EOCjgQH6+vqYdfzxHHviifzj44+5+ZZl3PDTK+Q1NkxY/FVZSR/aJ7FuNfUig//nH8OK30H7URLzNtgrDHlsVNzkh4vWzdX1Egk3+VioqmX1n/7CU89tYONvHyb49KMQrSoWzvZKgWDrJhnL54dkjLaFZ0oUoT/Ij/79hxw6dIgcQRRVR9UN/NE6nEIGRdVoOu6fMIOVqLpB73svU0jHCFTU0X7SFwnWNGPlElKAKWaYt8w4i4mnXkDjcZ/DysTofe8lbr/9dv729N95+LYlGIqD53n4o7UMH9iNavgIVbdSSIvSpqa6inA4zDcv+ioKCpOmTGH+/Pm84Y+i//SXqO2TUXQdFEXAc9sk1Jknyeclnys6tKuS417fBOmkyNBNE9Kp8Si4cLQc5+a+9hK3r17N09t3seGJx/FteV6+o7oh7xeA56G2TZRot0VnST68qvH77a/z3QVzpRjgIex564Qys41tFSPswuIo3z5JMtV1A8ZGcDb8DTwP7YxzRfJe3yRAfGwE58X1KJEoXiHPne/s4+ntu1j/4H2EauvEBX9spNj6oEBNPe4bu8D0MRoI87dnnuUblQFIJ5nc2syc46fT8eZbEImA57J582Zs2+aMM87A7/ejFmVIoVCI9vZ2tm3bVmbJHUfe26qqKubOnUsymSwD8+OOOw5VVVm9ejVPPPEEf/jDH7Asi3379pXj3hRFYerUqSQSCQDi8Tjd3d088cQTbNmyhUcffZS+vj5OPnkBqmpQUTGBSKSV889/gOnTv8mOHXeyb98zJBLdtLSciqqa6LofRdEoFJK4rsNxx11EOj1AS8scHKdANjtadLs3aGmZQ1dXB6tWreb99z2effZpKipqCAbrSaX6+OMfH2HZsuWsX/8UDQ31vPrqLaRSA0yYMAnXbSYabaW1Vdq12iZMYAJwIsJ29yHS9zTiCl+H5KpfhTjCnwMsQkD2AiTzvRaR0HuIY/ztCMBftXo19z/1FHds3Mi1wSDNSDHgySef5OB//AdPbd5MrqGB0xAWPgdcixQQXIrG3cgcs3+/zC/5vES2/fjHIoJbuVJy1GfMkFr58LBMzYGAfEU8T2rq8+cL6/7AAyJ08/nko3P//at54gmZ84aGguUQmccff5KVK/+Dp57ajGU18MwzEhO3fz/84Q//4PLLv8t99z1LY+NUQiERBDl5p8yEd6zuQNVUFE0hWBtE0RTSQ2nGDo7huR4ts1vYunwr7QvaMcMmyf4kowdGBeCHTALVATzX454H7uHZ55/l6XVPYyom2dEsrfNa2dixkQf/9iAbnt1AfV09mqlhRkzaFrQR747T1dHFzONn0tTcxNLfLmVe6zzyTp7h7DCzGmYBcO2L19IabSWWi7F271pu3XorYTNMa7SVofQQc1rm0BJt4eIZF7N04VIANEVj6cKlnD3lbFZ2rGTtQ2vZvH4zd//xbt4dfZfZLbNpDDfyl7V/Yfktyzn+quMJVgX55oxv8vp7r3Pg0AG+dv7XmDtjLo/8+hF+//vH+NfvXSpAdfRNyPYLYM/1w8SLofIEcZhP7hepvOKJfL5mtrjLq3oxZtYPhaQAaH8dfOmIFHvfvJLVj2ziqWc2svHZvxI87REItIJr8eSay/mPh3ey+bYZNDS3gJ2F8BRaZl6Aqjhgp7jgC2cRjVawrzshDvD5mIButVhEjn0ivq1isoD56ESoP1EuKabchFtFmh6dKOcbnSgZ6hWTWH377Tz113VsfOYpgj5DAL3n8OSTT/Aft65m8/p1NESK4D9QT3tbK9/62hfRFI9aX4bzPn8OOw5k5LVwbWiaB9E2kcy/dLk8fuVREGmDly8XtQCqvD6fu0vy1pvmwM5lcOAZAd+BGilANM1j9arbeOqPa9j4pzsJTjkDKqdA/Uk8uXYd/3HLrWx+/C4a3v2FONAnO2Ws7BC/2enwvUsuo1C/ANf1WLPmXDZs+DZ33XUOuq7S2hrhvvvktoUL26mrC7JwYTt9fUmeeWZfmTW/9NLn6OtLMXt2Cz09SVKpAiMjWU46qYkJEyqxbZeVK1fzt7/9jT/8YR2OozM2lmPVqsWk029y882/Ys2ax3nggW/Q3BxhZCTLn/70W84992uMjGToOuJy/nnns/XVreztP8Cs5qNpjNYQ9gX4xdk/oDoQ5bE3NjC9YQqP7Hya3vgQ/YlhVr3yB46pa6cmWIGqKATfSbBv+9v8ed2T3LP9Sbrjg+B5XL3qF7z4x6c5Z+l3CFaEsYsJNxMnTuSvf/0re/bs4e9//zvxeJzp06f/v0Ml/4/fPgPun23/ezezuLj96COJdevvl1XDwYNSxvc8AZInnCCauWxWKO5LLxWU+9RTIqkvgf6BAe7YvJnH77mHzX/+M5WrVgkF4PfLKuKyy2SM0mqiGMR+0Vln8cDvfgdr17L76qvp6e1lxqx/4uBBpcymNzTIQuaXvxTgvmqVDFtVJaC9lFl76JCc4ifT7a67ThY7q1ZBoXAHmzY9ztNPb+bBByt55hk5xVNPlcvS1tU1vmjav1/EBomEvEQDgwpeRVhy2hVV5O25gjDiJQl83hJ23XEFZH90RG5rqJYIuYIll8dNgcmt8qC2Da7LHc+u4/FtW9j8/PNURiKQKzL1BUvGKrH7B7qKrK7N2nt+zY0rlvPiC5toa2kuZ6X3vLsZK5cmUNmIlU3huhaZWD/g0nDsIpE+17QQbTxa6g+eRIm5joXnOvR/8A+sXAKFouz9vRe599cPsXbtOv72xKPU1jdIfnsugarpqKqKlUtihiqx8xl63t0Mup/9+/dTd9RsKpun0Z0OMzQ8yuzF30RRVRRFJdjQQP0pp/DBo4/iq67GiEQwo1GG334bVdfJDg6W+9pzY2NUH388AG+uWIG/uH/dSScBoPl8/HHLFp7auJFXOjponjqVTH8/7z3wAE4uJ/uYJoVUSsbUNE6tr+eDf/yDfzzwAO91dPC1C77CLy75LsuWXi9g3OeX78KhD0Umb/oglRC5vFWAIx+Dpkus2yvrYfJxAuyPPh7io7J4GB0UcH7wQ+648w4e/8taNq9/hsoJk+DoGbD5KemLj1TCyCB8vFd65bNp7AlTGfhwr5xLPstTzzxLQ0MjrZOnU0jHBKBqOoVMXGTbqko21g8eNExdiKabKKpGsLoFxfMY2r+LQGUjnueRT43R8+6L6H7xGLCyKf688XWe/Ms61j/9F0j1MHxwN65TQNUMmo8/AzyXsa738EdrsXJJ0qO9XPS1r/DXPz2MbWUZHR1j9+7dzJwyGa+QLzPZij+IhycAd/06vJEhKRa1TMDLCtONpuFufRlv7x7I5yUjfd7peGlhm7Rzv4p2+c+4e383Tzz1FJv+8iTRd19HaWmTvPfOgxAfw4uNSnyeoqJ94UKp6iUTvPLii9iOwzk/uxFio3iOLTFymbRE1G3ZBMmkRLf5/Kjtk0VIks+jKAru1nE5vmdbKE2tKP4Aii8gcXDtk3B3vMad993PE+uf44Xnn6d6xgm4u7ejtE2UtgHTFIY/k5Y+etui0jQIhUJs0QK427YwPDLGrnffY1p8CFJJPEVl8WLxLtiyZQumaUrvbLF3ffr06Zx77rkYhlG+r7Ozk3g8TiQSIZVKsXfvXrZu3Yqmadx333089thjXHTRRezdu5f29nZ+8pOf0NTUxIYNG+Szkc+XY+G2bt3Kjh07yvnxS5YsIRgMccYZZxCPHymz65nMMKqqcu65a/j6158iGm0HFDzPBpRyVKCiqOi6j/b2BSQSXWzceDmWlSabHWNs7AA9PTt56qk3WL/+ZR5//Nek0/vwPI+6umPZtWuIW2+9myefvJ/33rsNz/P4/OfvprJyAhdc8GXWrLmb7u7tHDp0iK1btnD2l7/MkPy8sRAB56ciYH0OIlkv5bmfBLQgcvdDxf1XAcPAjYjcXkEi42J33MHmxx/n2s2byVRW0lQc+9a1a3nyxht58cUX8be3M684zjUIWF9ZnGee/cR0PGECnHaaTAOmKa1b994r0vl4XOagSKRYOzwkoD2Xk2RWx5H9fvxjmb6HhwX853Jw0013cPfdj3P//ZuJxSqZPVvq6IsXr+W++27kiSdepKmpnfnzBbQvXAiHD7/Kvff+D/74x78zffosTHM8dnXDZRuwMzYXrbuIs247S77PjofruBSSBcygSaovRT6RZ/LiySz42QIB8o5HRWsFLbNb6N7Rje7XCTWEuOe+e1j39Dqe/vPTTD5pMsneJFt+sYXHHnmMm351E0/c9wTtbSK5797RjZ2z2fveXiL1EUJ1IR7910d55613uObL13DRcRfRn+xHUzSCZpCoL8qrR16VeLdQXVne7nke3Ylu6kP17OzZSd7J8+D5D9Je0c7rva+TyCeYXDWZpnAT0z6eRvWBajZu2khCSTCrYRa2a/O3dX/jimuvYM3ja/j5F39OU7gJ13P5/ILP81HXRzz6yqO8/9H7/OjHP+Jf/+Wf+d09P5M4OH+99GhPvFji2F6/HLK9AuSNaFGS7oIelkg3PQSpwzC0TQB7oEH2cTJgJwGXO55J8/jjf2LzCy9SWVkFigmKwtq/PsuNfxzkxWcepf3MFfIFGHsDrATd+7bCG1dCfpAd27cyMjzIUSd+TvrYNX+xfx1ht8PNcjtesXBQZCuSXQKiSwSG7oPKIrDPJ+S+iknccfvtPP7nP7B54zNURgIim68/kbV//Ts3/setvLjuIdonToHqqRLtpsC3v/kNnn/pNUj1knV0trz6GrOOP07Ox0oJ8H7lJ/JaLVwmOe0KUjg4/XbJaHfzMPiGsOpn/hpyY3DyVfClpySr3S1A83zu2Bzj8T/9kc3fGaPy4wclv95zWPv0Rm781QpefOYJ2mt0yYk3ApITrwXYn2vm9bc/5Fs/vB7L83HgwBiXX76R5mZRQnV0dHHw4Bi7d/eyYEE7IHL4AwdGOeGERtatu4g5c1rp6Ulw1VXz6O9PcfbZk1mwoJ3e3iS//OUWensldvXXv76Xp5/+C7/5zToikQomTaoml7PZtOnv3HvvbTz22NPYdgRNU8vHNje389Zb2+jqShCJKGx5eQv1E1uoCVVyy+bf0BUbIF3IoaLg4bHk9IvRVJXvz7mAs6fO45GdT3N80xRG0nFWvvJ7Vt9+O0888TjLHrmT2poa/vnk8/jdrmf585OP8866V/nXFT/livO/Q8gMlOMRBwYGcIvSoU2bNvH+++/z7W9/m/+um+KVvhyfbeWttbXV6/4kwvps+/9/KxQEmV5yiSDdr39dQswjxYzOVEpC00v/myaMjgoFvWsX3H+/rCBWroRVq+geG6Nt+nQmt7cTCYchl8NXWcnOLVu4ZeFCHnjnHYZ0nUg0it/v563bb6duyhQG9u3jfzzyCIc++ggzGuW21fdx8sln8uabsni55x4B3YoirEM4LO3yhw8Liz5njixmjhwRtmHOHAHxN94orHyJJe/v7+bYY9toa5tclpjato+1a3fyz/98C4ODDxCLDREMRsjn/TzzzFvMmlXHVVfdwubNDzA6OkQ4HJFz37mT+opKYdjbGsfl7p4nD3a4F4bG4NTp4//XVUmfezYv+5ey3UHY+mSa7tgIbUcdxeTJk+U19Dx8qOy89xFu2fQ0D/zhdwwNDRGJRPAbJm/t2EFdxsaYOZXGhgZqamoAmUM3PPNXfG6CbKyfuqPnoJtBnEIOzfDhWHk004dTyKPq0u/sFLLoPjEkcgoZFM0gMXSQSE27yOSB99/Ywqx5n2fypEmEI2HsXAoVm+ce/zW/e/Z1Hnr4kfL5GRq88tyTNLRP5fyvXEQinigaZQX4yb9+mS99498w/CFwVYbeeIPKqVPR/X5QFFzbppBIYBbfJ9U0sTMZxvbtI1hfT6a/n5qZM3ELBaxslmB9Pa5loRoGh/fv55hZs5g0cSIBTZPedkXhiaVL+f2uXTz6+OOMJhJEIhFMXefBCy5g/o9+RG50lOrjj8dzXX74k59w0qyZLKnyxGzu5odhqFdAdTImvesbnoRzLoL6JgGI+RwEgiKXH+4Xo7qv/ZtcV5XiexyjeyxG27TjmTxxIpGwfGZ8gYB8T1au4oFHHmZoeISIqeOPVPBWxzaCkQinn3wCeUVD9Qeoqatl5epVHDOhAd0XwM5nCVZJFm7f3leomXQyZjAKSmlKVsiM9mIEwhjBCqxMDN0XRlEUMmN9dO3ZQNsJ5xGqbqHzyGEmH30skyZOIBKtwM4lCUYq2d7RwbLly3no4UcYHh4hEg7hDwR4ddPTNLa08vGbr3DF9cvoG0lh+EJc+oPv8+/nfR4lWiHgu6UdL5cVEJ+Iw+gwypSpEKlAcaWNAddB8fnxYqO4r70kmerxMTm+bSKebeNuXk/vxKOZcPJsJk9oJxKtANfB5/Ox7YarufXN93nw0UcZGh6W74nPx+tPraN+5iwU1+Pb3/w6Rx91NP9x6624nYfEjG7ry6gLz8BLJmB0GPW4WQLW+3tRW9rwPE9ErrohxYZoBSRiuDteQz3rfBTTB3i4XYdRIlG601kmHHU0k9va5LdG0/D5fGz/+1PcctUSHtqyjaGRESKhEP6AnzdeeZn61jZe+MuTLL3zbmzPw7Jsvvftb7Hk3/5VihZtkzjY3U1zc3M5g92yrLLsMJPJYNs2lZWV2LZNb28v9fX1+P1+OX9FIZVKEQ6H6erq4uijj2bCBClARKPRshT+T3/6Ew8//DDDw8OEw/IbtWfPHgzDYPny5WzcuBHP85g8eTLLli3j2GMn09e3g1CoDr+/CsvKsHXrchYtuoHKyomkUgPl2+bPv46qqklF2b6O61qoqlFm4AcH36W5+WR6e9/AsmqZPn02EydOIBKR81AUi40bH2fChDk0NDRQWRnB81w0TefPf76HDz98iJNOWsI119zKW2+9g6qq/GLZMqZ/45usBK5D8tnziJy9CslTPwAsA65HeuBzSO97CwLu5yKAO4gY1O0EGru7OaWtjcbJk6mJRFABxedj+c6dfNkwqGpspL74e6wBv3npJXbV1DD0u9+x8sYb8cbGMA2DcCjMHXc8SzR6IiecINNBKCTzVj4varD2dql9DwyILN514e23hWHPZiXf/ZZbpJitaXLbnj3Q0tLNrFlt1NZOprY2gmGAz+dj48adNDYa1Nc3UlUl5+i6sG7dS3R21vDDHx5NLpegoaGpOE/Cfff9kdmzjyf+fi/poTTtC9pRNIWxg2N0rOrgrNvOwgiK34NjObiOi+6Xz+bYgTHSg2kaT2gEwAwLabB3x15OPvtkJk2cVJ6Ts71ZLh65mJuVm6mvq8csmFS0VlBIF/jLg3/hw0c+5MG+B+kZ6iHTn8GKW1z3s+v4/i+/j+VZDKYHSVtpbt16K0sXLqUp0kRfso/lW5dzw6IbmFAxAc/zsF2bnT07qQvVcfv221m6cCndiW6aI81MrJzIwbGD3PTsTay/dD0TJ00sn59maGzasomWqhZq6mqoqqlCV3RcXH7xyC+Y1j6NrkQXc1rn4NN8XP/z61GzNvd8Yww618Lp6yV7PdMljHq6E/bdCSfeLiA02yvXT1gp/et6BbhZYbtzQyKZT3dCtgtq5tDdO0zblGlMnjSRSMgHioLPH2Lna5swwo00VpvU1LfJ8ZluXtrwJDX1bZx15ukMDAyi+SsJVE1g+eK3+afrOyHQJOA41S2MuWvL/+FWuV0zwLEkN33wLQHKlUWQ7zlIJVaVVYhr0d03SNuESUye0EwkEgXNxGea7PzHJoxoA40N9dRUFOUcmslLm1+gpqqS3OBH/PC6W9n9xlsoisLXvvJFfnXFt+H1VXDaKpHvJzoh2CBfFiMsgH5wDzTPFfC9dSksuFkKCUYQ4kdEKt96mhQWMv10b7yJtu+uZ/KkCUSIQ7gZn66y81fHYVzwFI21ldTUVEvvv+fy0qM3UNN+PARqWfpvZ9CjHM3vf/MgCTvCD374PGvX7uXrX5/OTTedTjJZYGgozaxZDQwOphkYSDN3biu6ruI4HrourROW5WLbLoahYRgKuZzDj360oTzWjTfOYubMY2hpmUA6DfX1ISKREFu2bKWqKkR9fQM+XwTT1DBNjcmTr+Tvf+9k8eIg8fhTpNMpOjvH+OfvfI1bbvsVHwwe4qjaNjRFk5dOM8RwGIWMlSNo+HE8l/7EMIamc3/HOp7d+RIfLnuW9okTqCiabJimj5df20JNpJL6hgZ5nQDX83jxxRdprG/gkUceYcWKFWiaRnNzM/feey/HF4mX/6duiqL0eJ7X+r+87zPg/j9vnwH3/6KtUIAPPxRqubVV9OQ33ihOcIEApNOyevA8AekzZ0pJP5+Xvl1Vlft7e2VfRYE77hCEDbKCOHJEZPQ33CDjvvUWtLUJ+p47VxiwgQFpwvP7hSpYtozUI4/juCqFgvSoL1ggfytXSq9fT48sZBoahLzPiOk577wzfpolsYDryv3XXCN/kyfD978vnQDHHCP3f7Ju8dBDsr/rCmtx111w990ynuvKS3H6Qge/Uvg0ID+qXcAZFFl2S0D9lDawbOlRb2sUpjyeEpm9ZY8z7wrymnoIw14qBKjKp4G+40AqO35f6Scily9L81088pkYQ/t3Ujv5VMxghTBzigKug1PI4boWQ/t30XTc57DzGYYO7KLuqNmoqlG+r3byqZjhSqxMnKH9cr/hl8WL61ioug8rm2Bo/07qjpqDqum4jl2+bvgjuI6w97oZxHNsHKeAppnS96eJ/C87MIydyRBqbhaA4XkMv/02gfp6MoODVB17LJphoGganusy/M47+Csr+eB3v2P6D36AFgyiBwIoFAmFDz+k5vjjKSQSWMkkuZERambMIB+Po6gqZiTCyLvvEmxqItPXxz9+9CMmfuELnPLznwNgp9N4lkWwtgbFKsDhfcKgK4iMPVo17h5/6mnwL0ugv1vY8c9/HRpaxGBON+SDk06IpF5VhZ1f9xv49mWUexVtCwyfLIYUZTw6wfDBUB8897g4yUcqpDf+ucdxz7kQp64eRVHJxPo/Ad4bcYsSaUXV5f05IO+l7guSSwwRqGhA0Y3i+7pT3ldfGBTIjPWj+0JkYr2YgQqCVc0AKKoKnofnuTiFLKpmggJ972/5xPFSBNB9Qex8hlBlM6rt4PaI5Nzd/o8yOFbbJ4scvbcbpVHc7D1PqvKKL1BkdEqvj43nuniD/ajNrXjxMQHMsxfg7ngV7Zwv4+k6iqLKGPEY7taXUM/5ksjsO/6Buvh8MbyzbTGgc2xRTRTN45SWNpQpU1EiFXj5rPw+hsJgWfLdwcN96XnUM88VUzxFwUslUIIhPMDd9Czq7PkQipR9EBRPCiZeb6f08kcr8ZJxvAP78Hq6UBedKeZ0PUfGiwfzTgd/oFzcUBqb5TfX58fz+Sg4Lo7jlF3jX3jhBRYuXEgikSAajZbZ9nw+TzAYxHEckskkO3bsYPHixZimieu6uK6Lpmllxr4E6nVdLztoFwoFfD4frusyODhIe3s7hUKBfD5fZvT7+vqIRAIoymgRrC8lkehldPRjpkw5m2CwDk0zKRRSuK6DbeewrAyJRBfRaCsdHatYvFjmDJHRiwIHFEZGPiad7qetbQHgFX87DBzHQtMMXNemp2c3jY0nYJphCoUU+/Y9w6RJZxIM1mBZGSwri1E9hdcUhTqgGggjAFxBWHUVkcufioD1KqT3vaa4jwI8hrjMtyEA/6ri9ThQWTyuvXi/grjQNxV/mov5H6jF/y8D/gSsR9h9fwIu/YF0rQ0Py5R5xx3y//LlMn1OmiQ//UNDUkOfNEkM6AYHRZFWKHZf9ffLPHnnnTK1rlghx9fUwE9/KvPZ0JDss2KF1OhVVdRk110n+0ycKF87w5Dx02k5D5kzPTb/+99YvGoxZsTEczy6OroYOzhG67xWUn0pWue0ogU0PFtYeDzY8KMNLL59MdnhLFtv3cr8a+cTaY6gaiKx7tnVQ7QtSkW7uPClB9KEGkLYOVv82nQV3a9TSBX48O8fUjmhkrb5UlCzs7Y8+QqwFRtd1fn35/6dv37wV9ZdtI6F7QvZ2rmVC/9yIV+a+iV+9blfUR+qR1d1XM+lo6uDr679Kl+a+iV+Oven3LHjDu477z4u23AZa/eu5evTv86ac9ewZNMS7j//fhL5BP2pfu7ccSerFq/Cr/vZ0b2DmQ0zCRpBLNdCQWFXzy7aom10Jbr4p/b5BLKdKB+sglN+LWZ0ngN7fgbTrhEWXg8LAzy8A9KHoWauSOmDrbB3OUy/HjI9cl0LgjUGH9wO02+QfnezSj5hri098x+shOOuh+FtEJoIdQvFyM1OC4uf7ZV9jv+5yOpzA7Kfqok0PjssUvhkF2RHhQ03w1BICWMOYlJnRij37pcmYbdQZOgRht6MiNQeTwBwPjFeACiNhSdGdake6a3HAysDPjG1w87A5h8I692yQAzoPneXMO27lsOp10J0MiQOw+4Vct0rntPulTDnBpG5Q7GI0S+97vvWwtSvi0N9ZkCY+s2XjN9+8k/ltYi0i0S+cTbk4/KcEkfE4b/+ZLJKlI/3x1m5churVi0mGDSKnhsKuZyN48hv9ttvD9DUFOHWW7eydOlCamuDZDIWmYzNqlVyrL9Y8BocTBON+njuuY/46lensX17N3V1IYaG0ixc2I7juHR1JVm+/DWuumpe+fYjR+IsW/YaN9ywiAkTKsjnHQYGUoQiGvVNQVzPoyc2yKO7n+H7c75CY6SGt/s+5vjGKXjFF83z3DKg740P8bvdz3LjWd8j71i813+AxnANPsMgb1m0VNTRFR/kNzuf5ntzvsKEqkb8RtHh+b/h9v8JuH8mlf9s+9+3FQpir37hhaIRv+8+obcDgfFG7wMHRHv3n0F7MCh/6bSU+XV9vKG8t1fc4zo7BWGvXSuPoyiCvru6RIbf0SE6vlKhwLZl/3/6p3JLuGnKQuPzn5cFyVVXycPMmjV+mOuOe3mdeqo8/CWXCPg+eFD+7+0d73V3HGnNL3UFqKosWL7+dblUVXla4bA8xTvvlMe48kqpQ5x6alEqr2oCxOuqxDDOdgSwO67I1wM+Ae2aKr3oJUd5ENBdOvFSFFzeKsrpi8Z1hgH7i07zAZ+M8dERsBwB/bZTrHAXnYx8ZtkYz3Mdhg/sJljdIqBdVXAdq2gA5qLqRjEa7GRQVIYPvk68bx/DB15H8wUx/BGaZyyWY1GwcylqJ5+Cqhooqiz288lhrGwCwx+m/ph56GYA3QyU+9iH9u9EURXsfEak3IqCbWUY/KgDAMfKFfvuEwQa6tACAQFnlsXQW2/hr60l099P5dFHkxsZYffNN5Ps6gJFoe7EE8mNjtLzyivsffhh/FVVZAcHeWPFCnKjo9TOnIln2/hragg1N1N30kmohkGgrg49GGRk715qZsxA8/momTmT9s9/nhOvvpp0Tw+7fvlLAALVVSiDPUVp/HFg5cWcrqpOQPh53xTQfv635D3Y9BcB8vERkbs7tsjo7YIAxMMfyftj+mDKNGHk/3iPRMwd+Vj2jY3CwQ/l8k/FXvnRwWIk3ZDI9atq4cLvoYaj4gyv6YSqW9B0v0T+vfcyjpXFtS3ARdUMgjWtGIEImm6IVF7VwHXK75WVTeN5Lp6HfGZClVS1HEewuoXMWB9WLonnuuX2iaH9u8qFF3Glz+B5LnYhS6CiHk33YQQi8rnWdTF/8wfwjuwfZ84LeQHM4bCw2HlpYcD04cVGcDY8hVcqEAKYJkpDE142A5GKYsxclTDyhoECYhCXiIFhCABWVNyOf4iEPp0Sdl1RxPy4v0fi3XQDdfEXUNom4Y0Oy/tmmLivvii/SZkUzqa/QzIhwDwZx1n/F5H/W5b04cfHUGfPx93xGmiaSOFtC+f5v0NiDLVtkvS8F3v+lGkz5DEjUTxdQ22ZUG4NcLf/Q4oc27agtExAMUwUn79YOfR47rnnSCQSeJ6HaZrMmzePRCJBMBjEMERqb5omsViMRCJRdpgvmcuVAL/runR1dTE2NkZnZye2bRMMBssRc6Wt9DiNjdJW8UlTIUVRaGlpIRwOsnXrcvbuXctrry2nrW0+bW0L2LLllzhOnljsEJs2XUk6PUgwWEsoVEdDwywMI8S5596DrvsZGHiHeLyTDRsuI59P4LoW1dWTaWubXywkeLiuTXf3TjTNByj09OwmHG7GNMPYdo6+vjdpbZ1PMFiLbefw+aKYZgjFsTgJAdUNQAgB7AnEeO5Q8bZdQAYB1mmgA2HiM0jP+wKEfT8NMZYrse+XIz3y3QizbjEup/eKY132ibFWAV9HpPlxYMSQmnk4DM3N4hcbjYp0/v77pUjtODJdNjSI2gykTWzhQvmYqqocX/KASaVk3rvqKplWDUP+1zS5XpqSL7tMOuUAliyRqTmfF2/a/fsF8NfXj/vKeC6ce++5YkYXz7Phsg1EmiMcd9FxpPpShOpCdO/sZmz/GOsvWU+iK4GiKZxz1zmYIbNsSJfql+jDVH+KjZdvJFQXItmTRNVUSTqoDWJnbTZfvZnMUAbdr2PnbPre7OPYLx9LpDnC+kvWEz8Sp39PP0pQ4VDyEJc+dykHxw6yavEq1l20jrZoGx1dHcxvm8/A1QM8/IWHaYm0kLNzZVf55kgz6y5ax9JFSxnNjnLXOXdhqAZ3nH0HF8+4mBsW3cCunl386d0/kS6kMVSDkBliydwl9Cf72dG9g/lt8wmbYWzXRkXl9d7XmdUwi5ZoCwvbF+I6eZTQRDjlPgHOb10D2QFh3PcuBzUgkWzDO8RobsI/w8drxBFe9UHdAvhgNfhqZX9/XTES7nYItQsLP7JbxlT0cUf6bA+0XSRgf9clkB8S0G6nIXoMzHlE2H8nK+BfKZIH4RYI1ApTHW4V0K75iqBdivdlAzunIAC+VGiNH5LjSqjZjAh4VzQZwykIWNeKknncosu+K4y+GRaQnzgibvWuI+70qi7ge+LZAsT3rYVC/BPu73dK0cEICLh/406omCiXzQuEodd8sOWn0udvVsDpd4w7zPftgCMvyTx9xhoxpptzg4D2pjkC2gN10j9vZ+R837gd6k6AzABOLk1PT4K77/48Q0MZLrlkPQcOjOG6Hv39aa65ZnMxKaKN5uYw1103H79fJxQyqaz0s3z5a8ye3UJvb5JLL32Orq44qqpgGBqf+9xEVFWhtTXKPffs5KSTSkoYl7vu2s5pp7UzcWIFCxe243kefX1JHnnki0yYUCHeNH6NKUdVYgfT/OqFh+lPjBDy+fnOKeczkBrFw2N64xTe6z/ASCpOOp8mYPhxXIexTJzmijpuOOt79MSH+GDgICe1HEtTRS21oUoChomDx292Ps2mfdv5zc6ny/3t/zdunzHu/4vtM8b9v2grFGDfPgHYJUv2EpgsueO88QZMny5l+cFBWRmU7G+vvFKQLshsHw7L8f39sGmTsOt33y2rDcMYZxIdR7R/9fVCKSxYILd3dAgiBzLRBj4+oLJ8ucLSpR5Tpigkk9LnV1FRJDHTsnDZvVvqCiX54I4dsuD45jfl/wsvhK99TdgMTZOn+dprskAqsRltbXLaVVXyVPfvl6fU1yf7XH+9jD00JKfrOOA3HUzDQ/Eo9rjnxXiuq1+AvL9kjoUUOwyj+Pp+oh6XK8j+k1tl5TUwIhFyR7VLT/sn5fXxlIxhFRl6kBMpjadpwsqPJnDrKnE8cZcubSUWLRsfIljVhOfa9H/wKrVTTkU3A/S9v0XY90K2zNTrviCqZuC5No5dQNNNyYb+8DUaj10kRmOaISy+lUf3hyhkYuXccEXTcW0LzxPQN/hRB/G+fRx9+ndRUMqSfd0XwM4WcPJ5rGQSIxTCzufxV1VJr/bgIP3bthGeMIFgXR17H36Y6Zdcgub3Y0ajqIYhYL+yEiMaxcnn+eA3v+GEn/4UPRAoS+9H3nmHQGMj/ooK3ly1iumXXEK4rQ3PslAMA7dQIN3bS6ChAX/Aj3JgL7ROlvfG8MFwH7zwFHz7R/IhTMT+Z2n8ty+ThYaqCVv+/Fr4+iWAIoA+EJT7Hv/1OGO/+KsSHTfUA5Omivnd/cvg5IUynpWXx1v3GzjrAmhshUIex++nkEsyfGA3jdNOAyDe9xFmsAojECorKqT9UFhVpeiE5eQzaIaPTGyAYE1L0b7aw3VsnEL2Uyx9ybSwxMaXFmTDB3cXVRlVFFJjn7queB6KC4wNj8vkdQPFtoVhDkfxug5BdS1KY4u0GZg+kckn46JYCEcky71jizi6RyuFqW6bAK6L292J0tgkoHzry6gL/kkKI6ZPxguFBTw5Dl5fN0owVGT9z4RAEHfzs6inn40SqcDtPPgJVcCZItmvrMbtPoL7l9+jTD0e7byvSkFh7x60y67DGx0W87p0CrV1Ap6ilB8PTUPJ5/EcWxh43RB2vtQOoBs4L6xHO+eLoKh4VgF383p5DmGhQZViRpjb3YkSiUBVLbv37KGnp4fFixeTyWR47bXXWLhwIVVVVdi2TU9PD+FwmHA4TH9/P1VVVZJvXVWF67pYlsXg4CAtLS2oqkoqlSKXy7F9+/byOKWe+YGBAZqbm9F1nVgsRjwep6WlhVwuRz6fp6ampsjWOxQKCfL5OKYZQdNMNm68nH37nuGKK46Qy41hWWkqKiaiqjrd3dtpaJiJrvvJZIbx+6vQdZPnnvsRra3zOPbYr6DrATTNxHHyOE6BzZuvYf78a4hG24jFDtHRsZIFC35WBO1ZEomeIshXcV2bbHaUYLAWANsXJacoZQd5BQHTPoQBLyBAO4AA85eAycDJiJP8qUjueycCtjVgR/F2F4mNG0R62I8gbvQnIqx7X/GYPJBC2Hk/0IuA+EYgmALVka+gosiUGQqNu8uPjHya9W5ulvkukRBwvnIlLF0qU2ppWj7mGBln507pjS+x7GvWCNAvzZu2De+/L0kqti37NzfL4zaL2IY9e+CUU2T60VQX0mn69/QTagiBB2bIJNISwc7bbLxsI/Ounkd6ME2oLiSS+oXtWBkLFND9OumBNL6oDzNikuxOcuCFA/Ts6uG8+86TopLlCgPfGuXIP45QNaWKitYKXlv+GvOumke0LcqmKzexd+1epn99OotXL8aNugzbw1T6K4nlYtSH6gEYTA9S6a9kV88umsJNNIQbCBkhUGB713YOjh3kzMln0hQu6SOg4BTY1bOL9op2JlZOZCA1QMbKsGzrMh44/wE6452s6ljFqsWrMDUTBYUjsSP0pnqZ0zKHsdwYAT3ASHaE5VuXc+38azmhbipq6gDK3uUw7Tr5DdVDwpLnhwQ85wYl031kFwTb5bb0YXj/Vph2LQSaYexNCE6A8CSR0QMM7YCqmSJdzw1DoBFSB2DvrZL5HpoooL1zLbR/HU6+S2T6uRGoOkFi5oIt4CnCdodbBeDyn/BHIfkJlrzIoKvG+O2pXjkWt5jhLsoZCgkBzaoBVnqcofccGSPVI4UC1RxfJ3q2GOT5Kscfv6TCwgM7D/07pU89OySGc6ffIc9p5zJh20PNxSKALcz9thulF961YORDaJkv97mWzNmeK/s7heJjV8lr6rnjr8VLl8EHfxImft5N8NhJ8IMj4DoUtEo+/DiBz6dx8OAYM2bUo2kqoZDJj370HLNnt3DaaRO49datXH/9QurrQyxZsokbb1xEY2MYXVcxTRXblrnadV0yGZu33+7n1FNb8Ps1Xnutk+nT64hEfAwOpolETAIBg0zGYmAgRV9fijlzWsjnHYaHMyxfvpVrr51Pc3OESJXGrzY/zKZ921nz1etoCFfzSJEhb4rWcsvmR/jOKeczlk1yYstU+uLDBAyD6pC8B67noaCUVVq266CpktihKSo98UEe2fk03539JWpDlVQGIhjaf0/3+M8Y98+2/zObaUr2WWur6L9L9PT+/QKiHUfK+aGQrABWrJDjgkEBMs88M56RduWVUrbPZOS+b31LGtPT6XEzu85Oig12Mm51tTSje54cN2uWMPe6juWorFqlsGAB+P0KijJuaO+6Aq6rqsYXGaVc961bZTGyYIG4yre1iXz+3nvHWfMDB+T+5cvHDex0XcYpEf+lfvrSPrfeCkcdJae7f7+wFJoKStHNnXAQqqICwofGhDXPFQRs5wsidc8XxEyudLtTZMlbGwRwf3xE2PfJYsxCe9M4mw+yb3e/XGrF/jGQ11vTxufYxhpUy0FVdVzHQlE17HyG/g9eBQ+CVU04hSyKolIz6STpUddNWmYsRv2EgZmdz4iUXVWxcmkGP+rAyqVRVFWM7vIZsvFBrGycvve3oBZl4WawgkBFPZnYAIVMjL73X5HeeSNA47TTqWyehu4LSW54KcpMUcWAbmiId++7j9zYGHogwK6bbiLd3Y2iqkw47zzqTzqJDx59lJ5XXimD9pF33iHd20vV1KkY0Sj+6mpCTU3MuvJKNL8fp1AARaGQTOKvqSHb34+VydD5/PPsfeghAXWqSqqzk90331yW4/e/+SbelOmQjMMTDwj7Ha2CC78vr/lj98KvLoPO/fIZrq4TkO3YArwLOaisljx3n1/er+F+MbDz+eHiy+CKm+EbPxQTu8pqcZ1/8iFxp1/xO7j4cllYHPlYigSLLxgfS9PByjO0f6e8H7k0fe9vIVjVQrC6meEDrxOsahaFhG7gFLJk44OyQFEUNNNPJtZPoKIOzy4IG6xqaLqJ7g9TO/kUzCJLj6rRt3dLUY6fxgxWMHxwt6g0Du6W1obidTufxsrESY/2iFQ8ES/HtzE2LNnoDc0oNbWos04VyXwyIYZwmRReIS9sd6QCpRgf5+17T/LZAaW+EW9kCOe5vwpbr6jj5nXJhETLFSX3pU3RNNT2ybg7twqrvfUlcbZfeAZKtAIURVzvq2vRzv9aUT+s4Wx4CiVaUYyCOwtPVVHP+TLaZdcJ698+SfLYm1qgKNUH5MfGtnCH+qUYEakA04ez8WlIxMXxXtXQzv0KqCpu1yFIp9DOu0BAu6JKe8DIMG7XYdTmVjnGc2lra+Oss87CNE0SiQSLFy8mGo1SKBTYtGkToVCIVCpFPp+npaWFgwcPkkgkiMViPPfcc2QyGVpbW8v98MFgkEwmw759+zAMA8dx6OzsJJPJUF9fz8aNG4nFYoTDYdraRJpcypIvFAqk0wkKhQTp9ABbtvySTGYETTP5whceZsmSHjTNxOeLEg438fzzP2F09GOam08lnR6gu3sHphlC00RSev7593PccReJ70JmkEIhSTY7hqoanHXWbei6H03TSacHmTfvKpLJXkKhOuLxLurrZ1AopBgZ+YjnnrsUy0pRKKRI5GIcQnrSK5Gf1o+RfPUcssjaA5gIuNaAbyAgfAwB4D4EtNch5nIKkgM/hgD2SsYB/crifkmElV9Y3D9U/Cy6xcfMIJFwIYSIPHxYpt0jR8aTWLdulemz1BJ22mlS6/6k0mzNmvEk1U9OywcPynxXcp7v6hJw3tkp8+bcuTLH3XDDOINfcqqPRmU+jMfl9jlzpHiQzXq4eQsjaNA2v42KtgoqJlQwemCUsYNjOHmHhUsX4q/0E22Nsv327URboyiagud65ON58MBX4UP367iWy+iBUdoWtrF41WKJKjwSH2fge5NM/8Z02he0E++Os++Zfey8ZydmxOS8+87jW+u/xaIbF2FGTEyfScbKsGTTEsKmxCsCNIQbsF2bWQ2zGEgPoKs6nfFOtnVu49TmU/nOrO9Q6atEVVRURXwjXu99nfpQPZ3xThzPIWSGmFI9hfvOvQ9d1fHpPpbMXUJfso8rnr+CvJOnvbKdWQ2zuHLTlaStNKZm0p3o5qp5V9Gf6kfxbJHJ1y0Q9lvVJYM9NwDhyeNmcyXzOk28Xsj2Qf1pAvKNsETGaT5I7RcwntwPtafKnJAdELk9Cqh+eax9d8nYsx+ACwYEtGshkdhXzRC5/Lu/lGNK0W1OXv7ihz79W2pGBLRrhkS5eV4xui0ioD07KsfpAXnMQlKYciMkYBhl/FgnL9edghjfOYUiaHfHs+DNqIB91RDgX2LlY4cEtDfNkdekYrLI3M2wgPYS+25GBOD3dogE/oTLId0Hr14LdTPl+b14qTyW54KvQlj+/l1SYHj5MsmpLyRFOh8/JL31U78uUXFmBL64Tsa0UlBIMHFiBc3NEebObUVRFK65ZjOHD8dYuXIx3/zmdPx+nQUL2li9uoN4PMczz+wjGNTx+3VUVSGRKNDR0UWhYKPrKqGQwfz5beze3cOhQzFmzWrk3XcHi7FyYwQCBrquYhgqAwNp6upCXHbZRkZGsnR3J1i7di8rV3YQi+XAVfnenK9wztR5zGg8ioHUKP9yyhcIFBNYTmo9lrV7NnNiy1RURaWpopbqUBW26+J6HjmrgOu5uMXPRAmU66qGh8dAapSfnfldPM/jzn/8iYJj8X/j9hnj/r/YPmPc/wu3VAq+9z24+mph1OvqpDQ/a5b8iJYa5pYuFW26aQrIb28XJF1XJznvJVq7VM4vuem0twsoLzH4NTXyY29ZMlY2KyuQdFoobtcFXSfj+oinNFxXKbfSDw5KLu1RR40b9jQ0iJxQ12VIXXAm27fLwuWrX5Wnec01IgPcsUP69xYulNMYGJAxurokse6226QuYRhFf7nDAt6XLpWeQigm4xVcpk/OSSRcJCSvFZ7I3Tv7hDG3HYmCK9jyf3e/RL8dN0UAetGMrsyeD43J9cmt8Pp7cOxkGTuZlv1LjLsufew4DhzqhUkt43LiEqPvejiKi+e5KIpKerSHQjZOsLIZTTfRTB+ZsX4CFfUoqg6eK2Z1viB4rrCC5f7lOVjZJEde/xsVTVNpPv4s7EKGoY930HDsIulhtwsoivoplhZg4MPXCFQ2Eq6bKLd5Lqi6yJrtAp7nkUsME6pqwinYeLZN5wsvEG5upmbmTOxMBrtQwMlm2fvQQ0z/4Q8JNkqPmqppuLaNquu4RcZc2ExX/rdtnEKBd+66i5k/+UmZeZeDVYb37KH6uONQDTFTsnM53HyexMGDVE6bRqa/n+opk1HGhuH9NwWMn/8tkarblvx1HYDKWslx//olkE6KtH3SsfKeHPxA9h8bFtd41y2y50D3AWHzDR8cfB/ajpIVfnxMgHyJeVj7MHzufMmTL+Tlsc77JtQ24uLhKB6KqpEZ66PzzWeJNkyhZcZZuI6NlUtj59NiWud5FLJx7HyOYHUzeC6uY6PqJlZGstmDVY04hTyua2H4o1L4UVQU3RAQXuq9B6xMjKEDu6k7ag5msIJCJsbQ/l00H38mmbEBglUNqJ6KYluSub7vPQHAbROlxjQ2itvxirDbkQjExsR1vqkVxbbxVAX3xQ2o808Hw0TxB/A0TRj4LZvw9u5BmX4C2hcvwhsbKZrLnYlSVfPpHvWSsV2REfe6j6C2tIOm4xXyeP29KK3t8ruVjAu7v/BMMAycNSvkMc77quzvOhCP4SViRaM8S/rez/0yiu1IlF2xsOl5nvxQpYuKgfmfw+s6DFU10uueiBVVCDqK68pzN4voS1Xx0qkyo+9u/4coDiprONDZSVtbG4qiUCgUyuy4z+fjww8/pLKysny/53lkMhmCwSBdXV3EYjGmTZtWlsyn0+ly7BuIKsdxROJYipL78MMPOe6443Ach82bNzN37twyu2+aJp6Xx7Zz5HJjFAopIpFmdD3A2Nihcn+661rYdp5Uqh/TDBGJtGBZGXTdh6KoFAoS02gYIRRFI5+PUSgk8fmk97VQSOP3V9HTs5OKinaCwRo2b76WxYtXYRjB4lTWD8Do6H5CoToymRHa2uZRMMNsU3VmADrS3+4iIN0C3kVAuI04ylcyzsSXpO46Iq3vRXLXh5FYuOuB5uLttwJLkb74dxHAbiNSeh0pDAwjrH4IYfxLYD6Xgjf+IcK3XbtkOv3Sl6TffHhYCtBdXQKgdV18X5YsEXBdsoZZuVJAeCAwPo37fALu33tPxtZ1mXIVRR6nqUmKA1OmjD/G7NkyxkcfyXx4/fUyR155pbD9U4/xcBNJBt4ZINISIdGVoGV2C5qpYedtNFNaqey8TaI7UWbjRz4aoeO2DhZev5BkX5LGWY3SsuK46KaO5tNQdIVkT5IDzxcZ+F+fh5W2yMfz+Cp8FNIFgjVBUPgUax87FMM3xce27m0cX388uqpz3YvXcc38a6gN1vLTF37K9QuvZ1LlpHJP+382pGsMN9IYbiRY/DwNZ4S9DxpBCk6B0ewo9aF6DsUOsXLbSlYVfRl6k70oKNzWcRvXzr+WbV3b2Na1jUe++AgHxw6yfOtyrl94PcdXH4VmJ1GyvQLC3/2lMOATL5aed1xxjd96ISxcN25eVzdfZN17rhXWvcS077p0nEGf/TAkP5Z+9ZPugPwoZDpFhq/6IX0I9i4bZ+1VXcCxHhBpfuogTPgWKD4B1L6o9KA7OQHPqV7pOVeLBEH8oLDcgdqi83wRwDt52V9hXD5STJCQfvcS+/6J3vaSCd4nWf5CEkb3QaAaKqaM7xNqEkA9+KZI1t+4HebcKOdgZyE/BlYWXl8pUnfPhr7dUDejaE4Xgt5t4K8RCf2Wn36aPQ81CpA/+SoZu9TjPu8m+N1x433wigqFNAy/LZF0L18OZ95HKqfTP5QjFDKJx/NEIiZPP/0hr77aySOPfJFDh2IsW/Ya1103n8mTq/A8GB7OEA6b9PYmWbmyg7vuOofBwTTLl0v/e3d3gsbGMA0NIbJZm+rqAIoChYKD63pce+2LLFkyl+bmCMGgwSWXrC8b2q1Zcy6XX76R665bQHNzmEjEh2K45O0CuqbTGx9iMDVKfbi63JveFK1FAXoTw/xm59P8YM4FNFfUUXAsPDxGUwkG06PMbD4aFYWRTIycZdNSWcfh0V4aozUC6D3wG77PGPfPts+2//LNNGW2r6wU5v2ee8YzZwxjvJxfXy8LyiVL5P+GBqG8t2+X/Q8eFFq7u5tyflt7u6DpN98U1F1TI+X+Sy+VFUI2Kyi5v19cdg4dKkfOuQ6EQgpDQwK6k0k5vKVFdrvsMlmcVFTI4R0d4wr+7dslvW7BAllslPrbV66UBVFrqzxMqS+ws1P+5s2Tl2RgQB4vk5GFzSOPCGj3PGFDfvlLOHaqJ6C91IeeL1aTfWYxb10RAF2w5DLoE7n7vFkip/eQEwgHZF/HkQi5UixcCbTbzjiwL8XPFfvYKdgwqfkT0jJPWHyQMRUVK5ei593NGIEwFU1TsfNpYbrfexndF0DRTTkcUHUD1y7Qt/cVGUIzaJx2OlY2TbC6haNP/y7Nx5+FoqoYvhBNx5+JqmooKJhB6bcOVrcUHeqFuWicdhrRxqNFYu/Y9H+wVc7f83BtCzufEcZXUUh2djL89ttM+PznqZg6ldeXLSM7MoIeCJDp76fz+efJ9PXh5PM42SzJri52/+pXpLq7yScSZROp0ffew06ncS0LzTQ56Wc/Qw8EyMVipHt7hcXv6RGzurExPNfFymTI9Pfz1u2346+vRzUMKia0izT+ucfhpAXwrR8VQXtBAHkqAcfMFAO6o6aL5GNsSMB4KiEmdC2ToKIapkwvvkeuMOWGAROPlV72x+6R/ZIxYdarRN7Ln38tRYAzvggv/FWM6TY8Md7vjgeqil3I0vveSxiBMO0nfZG6o+bgefL+abpJsLJR+tTz6aLZXFP5fRblhYKVS5X740su34qioOomrl3AysToeXczhUwcr1ioUTVRaZjBKHY+gxmooGXm2aLYqGku93OjG2jnfRXt0qtRohXFnvAYXiqBt3cPXiImYHznVpTWCSiqiufYKJqOOneRuLyXTOw8DyVSgXr2F1FmnIy66CwxzCsx7omYPGYR3BOPCegPhSU/PRFDaWwRuXtsRBzj6xrAcURpUWL3t76EEgoXs9/PFLl78fPlJWIy3nN/hWQS9YxzUBwx4MPK43YdxhsZBs9D8fnw0mmU9snCvE8/QcB6cQy3p1My4Z/7qxSCTJ+47qsahMKoE6YIo98+CXfbFjzXoa2trWxOZ5ommqYxOjpKMplkxowZRCIR1q9fz9jYGI4jTvudnZ1EIhFmzpyJoiik02ni8ThjY2Nl0O55HiMjI2zYsIFkMklfXx+e59Ha2kp3dzeqqjJ37tzysZs2bSoWDhQ8T97rqqrJgIJtZ/H5osVs9jzd3TvIZIaJRJoYHd2PbecwjACpVD+u65BOD7F58zUUCkk8z0ZRVMbGDqGqBqYZJRisxfNcGhpmkUz2oigaZ555K6YZxnVtPM8jFGogEmmmpWUOfn8Vzc2nirI2n2KB56EihnPJ4t8uBEzPQ3rdB5GcdgWRtF9Z3M8t/nUiPeo+pLf9GQSs+4qXa5He9TAC2qHYKoyA9QEEqAeB7UgBoNQF6tegpVUAeVsbvPuu5LBPnQqnny5T6fz5Im8vdbbdeWe5xkN/vzDtpWn1hz+U+evdd2X8hgaxqkkk5KcnFpNpfGAAvvENmSsbG8cLB4cOyX2ieBtn8leulKK1Zmq0zG4h2ZMkVBdi4+UbiR2OoZkaia4EnVs7UVSFqklVbF2xlUKyQNXkKs5adZZksM9vwwgZDLwzgKqp6AEdK2NRSBRQNIVpX5vGufeei6IpqLrK6IFRPNfDzth0dXQRPxxnyy+2kOxNggt6QMfQDFqjrdzw8g0ALD9jOUEjiF/3c+38awnoEk9lqiZzWudw+/bbWbt3Lcu3Lqc+WE/UFy0z9ddtvo6wGcbQDGzXZkf3DtKFNFkrS2OokfvPv5+gESRrZZlSNYWja45mzblrGM4Mc/bks7lh0Q24nsvyrcvLufG254ns+oOV0P+CgOj2r8OJq0QOP7Qd6hbBBUWGXQtK3/pQh4DeE24TCbzniKT9pLvg/A/h1Afkk5brh55nwEpCplt64/MjYKcgUxwz2AZ6UNh8FJHYV58KE74No28IcC6x40YI/LXCwpd6zvPFPvaKSQKcI60yjlsYB/wlVrwkky+z5UUSUvNJIUDzFb9sPcV+92JrYSEp99XPEkCOJ/ubESk46AFoOU2y2tsXC9j2LPmW+ioh3Ahn3S9APjsMdbPkPLZcKaZ1dScIKE/1jbPnp/6sGB1ni9zeXw1n3Ffscf+5jHvBejjzPnleiirnHp0o53zaKkgcxhzaRkNDuBzF1t+f4sILj+OGGxZh2y7Llr3G2rV76etL0dmZ4NJLnyObtdE0hTvv3MFpp7UTCpnU14c47bR2Vq3qoLY2yMqVHRiGRjhsUig45PMO11//Ep4Hy5adQX9/ing8h+fBjTcuYv36b7FmzbmYpsZDD32ByZOrCIVMLr98A47rcutLj2I7Nr/Z+TRVgcinetNVRUFTVUxN54SWYxhMj9ITH+TWlx5lJBWnOhxlZvPR5KwCqUIWv+HHZ+g4rsNjb2xgKBVjT89H9CaGy8z8/23bZ4z7/2L7jHH/L95SKWGGfvQj0eJ95SuCXCsqPl3Ov/ZaYdenTJGVRGfneBbNtdfKXyAgq4JSJtvY2Hhj+n9m52+/XcbfulVWESXG/557KKx5kLQX5NJLlU85ypcYhbGx8X7z7dthxgx5GhUVgoFNU/ZJp4WVKCYa4ThCxHV2ymKndIpVVYInu7rGn2pbm7wsg4PjooPubvjCFyCfdTBVV0D7WBxOPE5YcBBm3GeCzxBWXVPH+9w1DVIZuV9ViznwiozT2iAmdF6Ruf9k73siBaYhf6kMvLcfjj9KxunsEzl9viAg37IhX8CJBkiP9qD7AkXjMolzy4z2ovv8aLof17WxskmClY3itI1HPh37FHtuBiuwckmsbJJART1WLl1m7UvsrDjOz0Ez/OQS0kNPUTZcSMcYOfQGDccuEnY3G5ce+KpGaVWzshhmiP6du8tO8dP+7d8Yfustht56ixmXXYavqoqRd96h7sQTcSyLQjJJ6siRsvmcquvY2Sx77riDad/9Lr6qKvbccQcnXH01us9HLhbDX10NgJVM4ljWOIv/gx/gr6vjjeXL6Xz+eU7/9a+pmjYNfyiAeuB9AdVFl288D/72e/jKd4qSdUUAdzAsAB4PBnrhxb9JDFwgJH3uG574NFvvC8jixrKEja+pF7Y+m5Y++fO+CR+9Kyz/xZcLO1FymB8dFIO82DDOMTPo2fsS8b59RTXEmbiOjWb4pCCRSxb9Ck7GDFR8wvU9RGash1x8kKbjzwDPw85nSI10Em2YAkD/B69KpFy4CjuXIjV0mFximMbjThNJuOeRGetF94UwAlE815ZCUJGV91wH1VNEAeF5wnb3dOL+6WFhsc+9AGfj38p940rbRJQJU8QNfuEZeKkkSku7MMeODYk47rZXUOf/E1RVi4N8OiUtCeGIfFlDYelx7jw43pf+hQslL77I0Kunn43z65VyDud/Tdj/kgv9wjNE2l9RKcy4bUsSAwiYdoWFxrLwNF1i9hxHetPnLBTWvL4JxZD2Ai+dlNx6XYNkonx+AM6Gp1DnLMTd/o9x9cB5X8W+81eo3/g3lIamTygAzoBQBNcwcBS1zJZbloVhGPj9fnK5HOFwmGQySaFQKEdX9ff3l/vUC4VC+TqAbduk02k6OjrKzvSPP/4406dPZ+7cufj9fsbGxqivr0dVVUzTLP6OOliWhaZp6LpLoZAsPi+PzZuvZe7cJdTUTKVQSJLPxzEMMY8LhWpxXRfHyWMYIdLpQXF9N/xomomq6rz88o2ceeYydD1AJjOCaYbKvfMAPl8FY2MHSCZ7aWw8AUXR0DQDVTWJxQ6ybdttLF68Ck3zlSX4ji9CRlF4HZiJSNhLDHsNworfgLjFKwhQBwH2uxBTuwAijb+9uG8AcZ8PIgZzGgLiPYRNH2C8v11HDOyWAFORnnoHKSRUAXoKfvg9acvasEEKz/G41M9DIVF+3XqrsN+hkLSMmaZ85EvzV+ly585xxr1U3D54UHrU/X6ZE30+qTOGwzJ2Z+f4XFiavhctknr6J+e+tjaPSW0WfR2HaZnTgh7QpUd90wH63urj3LvPxbEcNFOjkC6AB8m+JOGGMKn+FKn+FNH2KIbfIFQXQjEU3IKLlbF4+caXOXP5mRhBg0KqwIvXvcj8a+aT6E4QqgtRMbGC53/8PPOunkdmOEP9jHpUTRVne9cjb+TZ2rWVGfUziPgi5O08Hh4ZK0N1oBrLsXA8B13VCegBDsQOsPy15SxdtJSmcBP9yX6JcGuZg6ZqHBo7xG0dt3H9wutpj7ZjuzZ2sae8L9nHyo6V3LDoBtqj7RwcO0hfqo85rXMIaAFcXLJWFsdziOfjVPgqqDF8mCPbxVRu3z0C2LWgMMF2UuTrbl762wOtIpe3U2DFwKgUEO0h+2hB+aQ6aZmT3lkKM5fLWkILySfYcyE/KNJ5Iyqg1HNgZCf4myE8UT7sQx2SJZ8fgMixxei3Ys+57hepuaJItNon+9h1n5xPISEgX1GKLT658eOLJpLiMK8D6v+CrS9K40usvqKNO9IXkp9g8Iv98KWe9P7XoXlekVXfCeE2iXmLtApLP7ZPDOxOvVbO94HGT7Pn0y6GM+8vVmNd6YEf2gNNc+U5DO6BplPFGDAzKGZ+yS5onCP970ZRL6MH5Fv/8o8pnHAt6cDRXHrpc2XW+6GHvoCmKcVUIo9CwcEwNLZt6+TCC//Cl740lQceOB9dV3FdD9f1ir3rvmIKc4HKSj/BoE4mYxOP56ipCaKqCqlUgeuue5Grr57PxIkVbN/ezcKF7Rw8GKO7O05ra5RVqzpYuXIxoZBBMpknENZQTRefbpC3LZL5NDnL4pGdf+P7c75CbbiK4fQYj+x4mu+d+hXaqhtwPIdsIU/BLlAVrMDxXGzXxlB1NEXF8Vw0VSOeS7F/uIuqQJQ/vL6eX5z9A8JF9eV/t+2zOLj/H7fPgPt/8ZZOyyqhr29cL1dCr8ccI9lpn8x4r6sbXx3cfvs4oN+2DR58UFYMlZVSum9rk1K+qn56hREMjmfdLF0q16uqhEpfsIDC175JPlrHoUMKpinG9fPmifQ9HBas39Ii0W6uK33nJVP7QKCcKldecMyfL4uT0sM1NcmC5fbbpRgwebKA+q1bx2WKpVi4K68cf/pr1ggr8qc/OOiqKwC7aCBFviBsenGdj+sJY/6fwbmhQzoroLsktc8XhJ0vHf9xp9xeERYA39o4LpEHeTxV/Z/l8yBMvKrgaAqFbAxVNdB8QbxP9BuVJPCqquPYOex8FiMQLke+Wdk0hWyMisajUXUTO5dGM3wCRhyrmPmeKTKyFoomEVKKLj0GJdm9AmTGeshnRKZvBqP/KUfeD4qK4oGTL7Drppvo7+jg7CeewF9dLYvufB4jFCLV1cUHv/2tgPFAAIDc6ChmJEIhmUT3+1GLEmDVNMFxUA0DO5tFLUZXea5LfnQUPRzGzmax4nFyo6PUnXii7KfrqD4fAIauoeQyAshVbRyg29b/LIl//H4450Koa4Lf3ykM/JTjBNw/97i4yM/5J8ri20JejOYu/J700G9aJ/+bPvkglkx4XBdScXiuKI+vbxYm//BHcNR0HE2lkI0zfOB1Go9dhKLqeJ6DWlQ42FaO1PARIrUTpad9rK8cG2eGKtDNEFYuMR4LWMhg51IEKkXJUcp/LxnZoekonotjWwx8+Bq1U04pxgdKAaj0GaqdfCqGP4SmGAKs83nw+VBMP+6RA6itE0R54LkCjEeGwTQ/JYFXz/saJMZEAr/oTHkfdAPF55PCQLEQpiiK9MX/Z1l9Lgu2jVJZDY6N230EpaJKTOleeAZ10VlyXyGPs+nv4+D5CxdKy0UyLjFyZ52HYoqvgOc4kEpIvnwJ5Ecr8I4cxOs6LMfGxgRsn3WexM9l0vKeGeY42vL5i9/VPEo4IqqBYguR+8IzaOd+FS+bxt36Curs+XKemkahUGAsnWHr1q0sXLiwDNp7enpobZWeyp6eHhoaGsjn84RCIWKxGNu2bWPhwoVUVFRgWVZZWq8oCs8//zx79+5l+vTpnHvuueWxstkspmliGAaxWAzDMAgGg1iW9SnTOrDI5+MUCklMM8KHHz5NZ+erfPGLjzAy8hEdHStZuPB6QqEG+vv30No6F1CwrHRR7p/BNGURbBjBciSg41gYRgDbztPTs5NwuIlotBXDCJBM9hAM1hcNnGx6enZRUTEBXfehaT58vmiZ1Xd1H/s1H3cqCncwHsm2CzGfiyEgPFy8Ly3fPAKIuVwYkb7PA7YhrvRHIzL73cAJCHgHkcJXI0B9EAHy6eIxVnHcIHAQMbBrQdj6uwpIFQGZ30rRbFdfLXXyrVs/3fqVyQh4tywRbr39thSojzpK5sJVq+SvlOaaycg0X1kpU3dpmm9vl+m51Gpm21KHr68fN2MdGxMgP3++TNnV4Ty5rmHSQ2mirdFyfrsZNrEyFv17+ok0R0j2Jmmd24qqS+E6NZjCX+EXMN+bZOutW1m4dCHJ3iQNMxvQTA2n4Ahgv3o+R149Qte2Lub+dC477tjB+Q+cT7wzjhE0MMMmyb7kp6LnbN0mUUiAfFO5dvO13HbWbQxnh1m1bRW3nXUbQSOIrur8ZONPWH6mMPLDmWFqg7V0dHUwo34GKStFha+CPf17+Orar7LuonUsaF9A6ddQV3SShSRPffAU27u3c/fn72Y0O1o2xasKVOHTfOTsHH2pvrKsvs4XQUsfQvmkhB1X3MnH9kCwWdzip10lBmvVJwkz7ublk1kYE+f3vcsk4s3fAG9eKcx9aftgpZjRaUEB9XuLpnbRqSKHL+XG40G2vyifvxrCx0CuTxh5O/8JKXuYonzrf5bIR9rGmfQSS677xmPkqqcVHeTzRZa9KIdXdWG+I60CihXkGDNSlM4XPhEvVxrbLI6Vg9jBYvTbz4Rt33KlSNuzQ6ICyA5By0Lo2QrPXghTviTy9t4O6YlXfZDulex3Oyv/v3GnsOalHHjNL/nw6V7Jg1d06ZHPjcHbv4bP3SGvt2pIIUFRwMqQcKJs6+ilsTHMihXbuPHGRUyeXIVlOXR2xgkEDOrqQigKdHbG6OxMUF8f4phjajh8OMby5WJa19eXZObMBsJhE1VVsG0XRYGdO3tobAyXDecaG8P096cIhUxaWiKkUgUsy2Xp0pdYseJMzGLbSqHg8M47AyxY1Ep/ZpCB1CgN4RoGUiMc3zgFXdPB8xjLJgn7gqx46VE27dvOKz96EMd1SeUzhH1BgoafrrEBWqrq5d3xPHJ2gZAZoGt0gN/sFrl9wDDJWQXaKhsJmD7+O26fSeU/2/7PboYhq4UpU6QUPzgozHuoWFG8+mpBrTfeKDrzWEzK87ffPp6rdvHFkttmGLJKuPxyAfbBoACR4WEZb/duWRlEo+POb8uXj8fQ3XUXXHwxBTVANqvQ2iqLjHvvhQsuENn8Rx8Jw97VJcIAzxPQXlcnD3vwoNxXGrq2VhYhn3w4n08WJVddJQ976JD48rW2wlNPyWmoqpx+8ZS47jpZ4DzwAJLN7HoCwk1dLsOB8fg2x5XedLd46XkwuUUYc10TQG7oEuuWTIPfJ6DdsmWCPLodGmuEtY+Gi2y9Op4P73myX8mwznXldf7oiOxni7TAyqZQdYNCOkbf+1uw8xlQFBIDB7CyyWLedhbdF8DKpmmcdjq6GSRY00Jl01Sy8UHyqTFU3cCx8ih4KJqBlUuUmXmtmNnd/8GreEUHec0MYGXi9L73Ev5oPVWtx2EGo6CoqLpBJjaIqhvYhSyeI8comsb0Sy7h7CeewMlm2XXTTWT6+jBC4sSd6e+n9oQTyI2M8PrNN+M5DmYkgpVMipt8OIznumg+X5n1TXR2Mrp3r7CilkWmr4931qwhOziIv7qaD373O4KNjaiGgR4I4No2r998M+meHvnsJ2LwpzViKufzw5/vExm8YUKkUq6PDYtpXDHbm29fBgvOhtoGYeq/9m9wwjwYHoA/3g2DffL+Lb5AwOjYkAB7z5N9SmOWTOwMH5x9oeznOnLMpKkCBvM5VNWg+fgzUTSDQjYhBnSe+BsMfbyDUJW0L/TtfQV/tA4zWEmophXDHxGZfDZVjgW0sukiG98nknjXRcFDK6YOWJkY6dFeaXGobGT4wOvo/iCKquGP1mFlMzROOx0zGEXRJKKtbDyXlEW1UlGJ231EcsrTadmnugYlHEE958sos2bLpapCOIrSPhkvEZeiRjYt7PlI8bUA+W4ASusEkdWbpkTGmT6Uymq8sZGiyVylAGDDQDvnyxAM4Wx6Fs80URediXb5z4qg3YZYDHfryyitEwBE1l/Io2ga7msv4e17Dy+ZRG2bKOc46xQxtVNUvGQcpW0SoEjhIBSGSFQuPU+M95IJFNMnoN11cbuOiKzf55dzwEUJhVHP/TKoqkj7x0bQTR+6rtPe3k4ymSQUCqFpGi0tLfT09GDbNq2treXItlIfeikyTlXVMgDXdR3DMJg/fz7Tp09n0aJFGIZBRUUFGzZs+EQPu1c+BsA0Tdrb28tZ8OCRSg0wOnoATTOZOfNiFi36OZ7nsWPHnbS1LUDX/RhGgIaGWaTTA1hWWt4zRSMcbgC8IvhPYds5enp2FdlyEaqHQo34fBF03UehkOLVV29BVXXi8U42brycUKgOXfdjmmFMM4yq6ui6XyIKVYMeReEuZEGVR4B1CbTXIAy8irDwKuL6DnAb40Z0evFyCJHNjwFzi/tdhkTKBZEIuRzjGfD7Eaf5JQh4t5CiQD2wGvgnpDgwNDTu8QpSqO7pEYXYvHniy3LllcVaXko6zrq7Zf6aO1fmKtuW2xYuFHY9nxfQX0phuewyAeWBgBS5GxrkJ2vHDjk2FJL7Pwngq6pkDlYUaGjwCIRUtt++nVBdiI5VHcxdMhfN1EgPplF1lZY5LSR7k4Qbwzx36XOMfDRCIVUgWBskO5JF9+sk+5LMu3oeRsigbV4bZtik9/VeUgMpWue1kuxLMus7s/jib75I9dHVnHPXOcQ6Y0SaI4TqQyiaIjnvdSF6dvdQSBRwcelN9nLlpisZTA+y4swVGKrBqm2rmNcqfXAD6QFShRQ/nv1j4vk4CgpBI8hgepAFbQvKbSOu5zK/bT7rLlpHa7SVbZ3bOBI7wrbObeTsHKlCioXtC1m1eBWGZpCxM+zq2UXaSnPZhss4GDuIX/ezcttKlsxdgq7qOG4eJTxJDONUU5hiJztuOJfrL5rQRaF+oQBMXImJK4xKX3ymT47XpOBNzzMC1sMThF0/cSUEmkRSrwYFtBthwJP8d3+dmN9l++V63QIB63hgVhdl7Z+QsqMKux07IAA8OkFAe7i1+Bw8MWzTDMo9d9GJAqDNiIB1zZDL7LBclqT2qk/Yeg8Zz18rAN0IjffFQ9GgzhxvCSxFv+1eIcz3vrUifW+aDf4qYfo3XwLhdnF7X/ygFAvqT6JcDIgfFPZc1SDdL07zmh9iH0shINUJZnC85z32kZxXdlAM7hJHircfkLFjBwEFzSvQ2holEjF55JEv0t5egW276LpKe3sltbVBlix5nsOHY/j9BgsWtDM4mMbzYPnyraxdu5fVqzuYM6eFcNjEtl0cxy3vM3duK93dCZ55Zh933rmDUMhkwoQKDhwY5dChMcJhE79fY9WqxaiqimW5jIxkCQYNmprCDAwlGUiNMr1xCn7DoDoQ5daXHqUvPoSmalQFIoDH9+Z8mfOnLcSv+wiZfmpClfg0aZ9rrapHU5SykWPIDOB6LrXRSk5uPZbf736WqkCUpmgteilW+v+y7TPg/tn2v38zTUGkR47IzH7CCfDtb4ut7aFD4v62Zo2sCFKpcZB9ww2CcktZMyDgsbdXQH2Jbe/vl7EMQwD/ypUyzg03SEHg6quFrXddaaz70Y/QAjp9fR7bt4tc79JLxxn1lSsFsM+ZI1JCTZOFysiI1BGWLZP9vv51YdeHh2WfpUvHb9P18Zb+cFjA/YIFwlIsWCBP5aOPBMwPD8vTr6mRBU4uBx/sU7HR8IpGcKQywnSX2HNVFXCuquN98JYj+5U2xxWAHQqIFD5fgMM9RRBeAugIgC9lvSuKONSDzEH5ghjedfaB7QrILzY+KppezuzWDJPGaaeh+8OomsG0s35IsLoFK58mUFGPGaomVN0ESFyclRGgL0AvKrnvukFmrBc8B8MXxh+tw7ZyeI6Fpps0TF2I53n0f/AqVi6BlUsRqJTs53wqJpntmbi4Ulc1lKPqPM8rm3kFm5rwV1eTGRigv6NDXOHzeYbefJNgYyNtZ59NdmCAWVdcgZPPs2f16vI+ViqFlcngWhaubaMoCpG2NqqmTuXNFStAUdj78MN0Pv88H/z2tzjZLHUnnoi/uppCKiU99cPD1MyYwQe//a28DxuflJ7y2LAA5qNnyP+RSmHCj54hvecV1SJjL+QFcOcywqQrisjlc1npUz9mhrjPB0JQ2yRS+Op6OHnR+D5HTReHecuSwkEwDMEQTD62LNdmbFhYd59fCiB5AUJmMFqM+nNRVJ2aSSczfPB1HDtPoLIRp9gPn0+NiTmgohCsakTT/SiqRqi6GTufxh+txfM8rGyS3vdexnNtmo77HEaggmBVM04hTbhuAo3TThPFBdJTH6puQkEhG+srxut4eKmkZKoXWWYlUoHS0Iyz6RnxC1AUiI1KxnrRaV3RijJzRUGZdTJq2yRh2ZPjYymmD2wb56WNAKgzTyo61CfF1K1o2Ogl4wK0EzFx/LdtMAyRt3/uLPEZqKhC8QdwOw9JgaGmBvX8r6HOPEky3be+Ir9Zior2hQvRrrwRJRIVFl8Xs0Uvkwbbkj79GSdAJoXb1y2/iaqG8/wzAGhnnAs+nxjj5XN46ZTk0yfjKJ6Lp6iQSkrfe2wULxEvOuG/jOK5vPrqq0ybNo3W1lY6OzuJxWL09PRQX19POp1m/fr1xONxFEXBMIyyHL6laB0ej8fZsGED8aJleE1NDV/4whfKjvLbtm2jra0NTdOKUW8KwWCwbFpXMsPr7+8vX/f5orS1zS9mxENl5QRAXOKPP/5bjI4ewLKyZDKDbNnyS1KpflRVR9NMQMU0IwSDdYCCoqg0N59KPH6EDRsuw3UdamuPIRispbt7B57ncsYZy/A8lx077qKtbUHRtb4RilnvnuegKCrd3TtQnAIneB6HgEsQpjuFgPYQImlPIKC95JMxXLx+B8KaDyH97iUQ347I63+MsPfLi2MFgFkISD+CgP16JN99WfFn/8eIo3wVsAb4FvI16OmRua2tTeankh/Lrl3ykz5hgkyrhjGezx6JyLTc0SEAe2hIpuNvfUu+VqOj4jMbCgmQL7WAhcPw+uvjQrgZM8a9aG1Rg/PGG8LeB4NSCO/rE5UawDl3nUNmJMPilYtRdZVNSzZhhkxcx0VRFdoXthNuDNN+Wju71uzCCBq4tjjIjx0eo/GERtKDaay0xfofrmd0/yj1M+pJD6SZefFMmk9txrEcXMvFtUWBEW2JCnsPaIZG+6J2fBU+KRT0JXE9l5UdK8s95clCkr5UH6sWr+KfZ/4zpmZyJHYEv+5nSvUUNEXjcOwwYTNMbbAWRVHoT/Vzy6u3lKfohe0LuWvHXcxqmEVdqO5TrvG9yV7CZhjXc+mOd9MQaqAn0cNV866iO96N67msOHMFuqqzZNMSVNXEs5Li/O658mGyksKE77oE/E3Q+hUxrbNSkDkiBnTpQ5R7xesXQO0iuU0z4St94hKvBsR07q1rId0tv73+GgHx76+Q8ermQ25oHOzXLxRDurG3AK/c2iYge1SAuoIw4NlRkb8rGlROkceOHxrPXHeKZEL8oIxROVk+UNGJckzFZGHgI61FLx5L3Nq1IhurF5tM4oeLEXMmZba9FBmXTwhInrNUZO6fu0uA9QXrYc4vRGUQrBOAfcrVEG6AVD9s/qGMa4SleFBIitw9WCfFkMY5MPyeAPl0nxQCdi6X+9O9wuan+yEfl+JAxUTYdavst2u5MO7pXvj4r6iaTltblNraIK7rkclYZDIWyWSBbds6cRyXW245g1WrOqirC2EYKnPntmIYCkuXLuTii2ewZs25KIrI4Hft6uHIkTi/+MUWjhyJMziYZs6cFt5551Juu+0sOjvjXHnlJmbNaqCuLoTrelx33YsEgwa6rtDfn+KXv9xCZ2ecvr4U4ZCP+nA1K156lJxVYDSbYNO+7TxSzF1f9cofcFyXtooGblz8PVzPxXZd3u/fj6Zq2K5DLJssfjs8VEXB8Vze6f2YwcQoZxw9m+vP/C6aqv23Nqb7/7Z9JpX/X2yfSeX/i7dCQbR5RZk6CxeOo+RYbLw3fcaM8Tz3aFRK+HV1MrvfeadY0Jay3Et98TfeOF7WL7nRt7bK9ZLFbTwuqFjXhR746ldJ7dnPpTe3sGKFrJdfeEEOv+EGOaS5WRYjiYQsNu68U0B3aSudxifN1nV93JDOdQWUf7J//rrrRDJfamktxdEfffR45vv118s6fOVKeODXLpW+HEpnn0jZS/nqli1Auq1RGPYSQLcsiIbGnefbm+R+RSm6iafg/QMwZ8a40Zymjke9lfYJBwTAJVLjcvtwsMjIO3CwB9oacVXI22lZIBdd5INVTcV+9fEec7fUtwvlHuXMWA/5bIJQVbPI56fMxghEsLIJrFy63MPuORaKZuA5FrnEIIGKRgrZBCOH3qTpuM/JaSsKTiFXluSboQoMf5h8Kjae+x2sxMnlSff1ke3vp2bmTGEni/3Rmt9PLhYjUFODk88z+v771Bx/fNk5+62VK5n5k5+Qj8XKfeuZgQH8dXWEW1qw02npa8/n2fvgg0y/5BKCTU1l+f20730PPA89EMCsqMBzXQy/Hz0+hDI6JD3lJTf36rpxJ0TXFdf3r3xHQPbza+H8b0IoCmsfgnMugsYWAeUwbtCTiEF8RKT2mZQA/7ILr8i08Us7AJ37pTd+w5NlN3k+fhcqa3Eamshnkwwf3E3dUbMxfGEUVf2ElP1UDH+k+K3wyMb6yGfihGsnoPuCWNnSZ6GJcrKA6S8XCCS3PYgZiJCJDRCoqENRdfmOFHutPcfCsQtoukk2PoQ/WotTyGD4I6iKBvmcRDOZPnAdvEwGxe/Hi8ck/7xtgvSq53IC1qMVZQm6OMWfITFvrRNQXA8vlxH2uvSsCnlIpcShviSpz+XwMikB/ICXTo7L1ENhFLXIBHgubtdhlMYWYf4NQ4B0OIo3Nlx+fIIhFN3Ac2zczc+hLvicPE4gJGA7l5Ve9lwGLAulqkaKBJ8w2vM8b9xJv+gQr9hW8dgA6AaeXUDRdNzOQ7h/+xPqBRejtk+SokZFJV5lDTYClm3bxnEcBgcHCQQCVFZWApTZdkVRsCyLvr4+gsEgO3fuZPHixQB88MEHVFdXl+X1nZ2dhMNhqqurP8Gkg6ZpuK6LVmROCoVCeWy1WGzTNI94/CCvvbaMs8++Q7wHPLfoCl9Bf/8egsEaKiom0tu7m1CojnR6iLa2+aiqievKmI5jlXvVPc/GcfKoqo6qmth2lp6eXUSjrQSDtfT376GlZQ667mNkZD+pVC+trXPQNB9jYwfp6FjFWWfdhmmGKZhh+lSN/QiIrkTk7CbChvcjYFxBZO3p4j5jCDhfhsS2KUjPeqlv3UBAe2lp6iGmczOK9xlI3ztIP3uhOEYnAtjvLR5vAb6sdOJ8sq9dUWSqLYVhGEaxK0qXOTGRkKnVcWROfPddOPVUmS527JB2sFJffEODHFNVJaK3uXNlLozF5DafTwrkfX3SgnbrrfCzn8n/niegPxYTd/q5J+XxGza6X8dzPDZctoG5P51L9ZRqrIyF7teJd8bZulyk8FWTq4gdjhHvjNMyu4VcPIcv4kNRFXpf72Xs4BiTz5pMuEHaxKyMRSFdwF/pp2dnD+GmMFWTqkh0J9D9Ov4qP7mxXPnSylokuhI0ntZImjSaouHTfdiuzeu9rzO/bT55J8/O7p3Ma51HV6Kr7PQeNsLUh+uLBSePyzdezuyW2SxoW8DKjpVcv/B6JlRM4Ej8CKs7VnPbWbfheA55O099qJ6MleGazddw7fxrmVA5Acux2Nmzk7ZoG5OqJpEqpHiz701mNMygNViFmvhIstqrZoGVkN7zsbfhH+eJUd2Mm+C548R0LrVfGHKjSmLi9i6H6TcIQNWD0hfvqy+25qnSq+6vhdAEytJ6s1L6xbMD8MFtIqPPdEtPO0h+uxGVT6abl+KBfMHljU8cEQZbUYoMu1O8rVnY8kJSJPMloP1JMzLPkWKDU/i0a7yCgPDRfVA9tcjw9wibXxpD0eR4RZO/UsaDnRmX3lsZePUaOPUaKQzEDwn4DrcKoJ5zg1x/9kL4zjvCxvftFHO63DDsXiXy+NK5Dr8LDaeIQ/ycGyHaLoB/13KJfquYPN57Hz8Mu5ZJEUEPinnd4Jskqk8nl7NxHI++vmQ5U93n0/nww2FWr97ODTcsor09iqoq5PMOluWQTBZobpZ5OpUqkEjkqa8XxevwcIZ4PEdlpZ+GhjCpVIFAQEfTVFKpAn19KcDjjjt2sHLlYmzbpaJCCiJbt0of/de+No377z8fDIc9vfuoCkSIZZOc0DKVodQYITNQftuCpp+slWc4FWMkE2Nm8zHoqornQc7O49d9eHioikreLpDMp4n4QiTzaVzXpSIQIewL/rcH7Z9J5T/b/s9uuZzM5rffDv/6r1LanzVLSvJVVbJaOOkkucxm4eabpeRfVyey+JUrxy3Z+/oEGQ8Py3jNzbKy+KQbveNIIeDAAVkRZDJCqX/0kbD977yD1tLAqlUew8Pi4l5iw9vaRNEfCsmppFIC2pcskUXOlVcK65BKCTBPJD4dTz84KCICGJfAlxx5+/qkD/6SS0R8UIqjX7RIHnvtWli9Ws5hzRqoqPBQDF0M5CxrnBVXVQHyhaLcy3XH89cVRYB2a7Hvv5Tfns0LWz531ni1IZuXVZjrCUjP5ossfnE5WBGWMSuKEvuS03wkBJ19eLpalsrbhRz+aB2KqqKbQfzROvrff1Vk7bqJqhkibfZcMmO9Im9vnlZ2lFc0XXKvNZNgtTB3eB6OXZAoOM0gUNFIJtaPoqo0TjsNpdjDbBeyRVY4hxEIo5sh8PhUDriTy4Lrovv91MyYQSGRQDVN8iMjvLFiBcmuLnwVFZK57rrUzJhBZmCA15ctwykUOOm669BDIbRAgGn/9m9owSB1J51EuEUWHXY+jx4IEG5pYfZNN+GvqUHVND7+85+pO/FEgnV1BOrq2Pvgg+SGhzFCIexsFsKV4gi/aZ0w4dFKef0dBz5+T5jvr3xHvkPPr4Xdr8Lz6+R9O/tCCATHA5d9/iIbnxPQHq2CQx9CuEIY+j/fJ5J8EBRgmAJ226ZAbETy4Cur5c5jZkJVDagaI4feIFjdguGPoqgqdj6LqmrUTDqJ4QO7QVGwckl633sJ3R8h2nAUhXQMPA9V1YVdLzpza2YAuyDvBSiEalrwheQ5h6qbUYqSSNexhdWHMgj2PA9/tBZF1TCClcJ4ex6kJZsd28LtOizO671dUFUtUnPLEmBcUYEyYbJI2lsn4qVS49nsLQLa3d4ueU08D7fzEF5sVHraI1GUtom427aghMJSAKhvwhsdwln/FzkmnSr27YPnOngjQ1I4aJ8E6aT0uY8Oy76Au/Xlout9HLIZnOf/Dp6Hdsa5ePGY5MUnYuIMbxVwNj5V7GU35PkWGWrJg/+bxPxV16Cde4GY6RXyoowJRyjHSeoSY6i2TUS74sZydJ7aNlGAPjAyMsL69etJpVIoikJ7ezu1tbUYhlF2mC+5ymuaRltbG36/n3POOafsQj9r1iza2tpwXRfP82hpaSGVSuF5HolEgo0bN5ZN7jZs2CC99WNjbN68GZDigKqq5HI5PM8hHu9i3ryrUFUDwwiiaSajowdIJvtpaZmDzxfFMIJEo21s33470WhrMQYugVP03tA0g0xmBNvO0tm5lWSyn0xmhLGxA2zatISGhlmEQvWYZohQqJ6NGy8jFjuEzxcmFKpjw4bLiMUOkkh009Iym0xmiPXrL8HJjtDgebQhgLwK6W9PIcz5AgRUv1b82mWQzPcqYAICskMI4z6AMOpWcb8fAx8hjH0S6YM3i+MfRFj7Q0hvvFr6WiOFgGTxvh0IVunrkykxGJS5bccOUYJVVkoh2jBkbnMcmTY1bXyqCIUEqF922XhsXCAgxejmZhmzrk6+1qX89hLwL9UgJ06Uaf/uu2W+DQal1hUs/oS9/76Y0wXCOrmxHE7OQdEVzr33XKomV1FIFcjH89g5m2Rvkr1r97J1+VY8xyPeGS+7z9sZG8/12LRkE40nNDLzn2fir/Lj4WFnbcywWQbtoYaQgHxFIdwQxl8lt1tZqwzejaBB+6J21CJj3Jvq5ZL1l3A4dpjZLbM5HDvM7p7dzG+bj6EZNIWbOK39NFZ3rKYuVMfh2GEuWX8JR+JHWLl4JWdPOftTzL2qqPQkelh2hmgmlr60lIyVYWvnVnqTvcxumU1XoovOeCc7e3Yyu2U2AUPkw2EzTFu0jXcH3kXxXGG6q2ZINvu7v5TLuvkSCXfSXSJxP32DsOc1cwS0m1UC1nuekZ70QIMc997NIrV3cgJoa+dJPrxiCnvub4BCXCTpRqR4/HKRxxvh8fz2bL8Y2AWaBAxDsW9bFfBaylEvJIqZ7WEB2r5KYdRL+erxQ8XjNNnPzslYijLO2MO4Y339LHGhVxSRziuqPH6puJ3sKs6FTtFYz5XzSPXBS5fJ9YXLBTh7juwfqB+X0u9cJgz5F9dJL3vfbmieX4y364eTfioMvpWSQkDLQrk86wE5n5Jh3mkrpahgpeCVK0ROXzkZznpQnOh9VcLcN81HU1x8Pp14PE9fX4q6uhBXXrmJVEok9AsWtNHTk6CzM8EPfrCevr4Unge/+MUWPv54BFUFv18vR7/99KebCIdNWlqihEIinZffSpVczubNN/vQdYWBgTRLlszFMFTefXeAI0dibN3aSWtrlKee+jpr1pwrffKeQn24mj+8/hz14WqyVp7u+CCGpmNoOslsRjyCFIX2qkZOaJkqxv/5LOlCloDhp+DYjGbi5O0CHl4ZtOcti+pQJcl8hoL9iVaH/wu3z4D7Z9v//k3TYOZMWQUkk7IyCIVk9rascnwX11zzab06yH533QXf+Y7M8EeOCBAvrQ6uuELk77NnC2ru7x/PcuvulrGXLRNUvHKlnEM4jOWomKZCT49IAvv7ZfFi2+NSPsOQRcltt4kpT3291Ap6emRRUoqy6e4WYL5qlexTXy9P2TBkcdTWBuvWyWKnq0uU+42NUrMoRePcdpvI7FetknN5600XJZeHA10CmqPhcXm7po6z75oqQH0sXoyMQ27vGRiXBLQ2FkE9RWlasbocDcn/nifgPOAbB/G5vNyXSElPfb4gOfBd/VAVhfYmFNslWN2MlUtTSMdQNQPXtuj/4FXsfIbqiSdg5zOkR3skusvzSI/24Y/Ulm8PVTdR2TwNANe20MwAhXSMzFgf4KIbftQi497/wav4o3XoZlDM0VwXK5dm6OMdRXl8E1Y2BYBdyNA8/QwmnHKBmOTpBoph4ORyvHnbbWI+57pkBwdpmDOHcFsbnuMwtGcPnuOgAJrPN97zvmwZdiaDv7KSUFMTgZoa8DxG3nsPJ5/HjETQg8Eys/LOvfdiZTKcdP31TPryl7GKxnRTv/MdPvjtb/EcB11XUf72OzFX+/ZlMF/YSvJZePJBkcuPDgrzWlkN/+MKuP3P4gKvqpAcEyAHoBf7AQ1T9p10rMjlJ02VaDnPgwv+VUDj2DAM9cjYf7xHeurbpoA/KLLuP9wNAz3lAk7T9DOoajkOFIX0aB+ua5ULKA3HLsJzLKxsktrJp4j6QjfwR+vo2/sKrlvMcc+l6Xv/FaxcAt3wF1UnHvnUGD3vbsbKxkmP9mBlE7h2gWx8CM+1y2oN3fCjqhqq4UNVVfBcrHwGxUOAr1XA7emU/HTDRKlvAtsWYL3p7xAfw+3rFTDrOKCpqG0TUKprUdsno6iK+CA0NJWlM+qEKdKzXpTLK9NmoJ37FVBVMb+zCrgdW/D27oF8rnwepTg6fD55DzwPt+MfEtkWrRQJvuehnvMliZxrnYAXj4nEHXBe3ogSrSh+lyMCqk0f2llfkH73cHS8EBAbA0CddxpKtFJaB7IZcD0U08SDcg++NzIk6ifXEXd6AM8bl+GPiXtZOp3+f7H359Fy1OedB/yptfe++74ISWAMQmwGCUlX4IAFZoljJzZxxkkmTmIgCMdgsxiJCXiMJFuyDHEgtvEyTmaSOApJHCyEhcCW0dWVrgQYAzIWaL373vtW6/vHU90tOXnPe+acycx5E0pH596urvpVdXXf/tX3eb4LR48eJZvNYpomnueRz+epVERCk0gkWL16NbHAo8TzPGKxGOVyGcuycF0Xz/NIpVLs2rWLhYUFXNetAfkqVb4Kzvv7+9E0DcMwuO6662rZ8ADxeBxVNejrW0NLy3swjAi2XWT37nuIxdoIheJks6Ps3fsw6fQJcrnxmuZdUTR0PYzn2ezZ8wCqqgda9RD9/QMYRpRwuIHBwc309KygUJhhcvJVPM8hHG6iv/9qNM0kHu9kePhrHDmyg337ZNtlyz5OY+Nibrnlm0T1CApCkS8gMW+XIDr2aif85WBdlLr+fBihu7+M9Pu6kJi3WeC1YP8/R0zo8gi4t5BO/QqgN/g6jwZjzwXHGw/WZ5D890sQkk3Vp+XTn5Z5633vk/p3OfB2dF0CUyuZA9va5Gvj5Zdlm3POkfmpq0u2a2oStli1Nl4qyZw3PV3Xr/t+UBv2hDKfTMp0/lu/JQXv6lw7MyOgfnxcwfYUzJjJxCsTWFkL13bBh1BSuqm+59M/0M/6X67npq/fhOd69K/tZ/hrwxzZcYR9m/ZRTpfpWdFDYbrAztt24tkemZEME69M4FQc8KBnRQ+N/Y04JYeR/SPkJnM8t/45Yu0xEp2JWsc93h4ncypDdi5LppJhy+AWnjn6DFP5KRRFIayH6Yp3ccezd/D2/NvYns2H3/thnrjxCQAieoR7V93LWHaMmBGjN9HLt275FhOfneDxGx5HV/SzYuY2XbuJsewYbdE2Hjv4GL+97Le5etHV9CR6WNW7ioXSAnEzjqZoTOQmGM2O0h5rx/Z9uPKboCekyz31PBx9TIDuFU8K+CvPQ9tV4ib/6t1iMDc/LB33gafhov8mb0i0Dy5/DLSIdO61MCh+QLEfgcN/ArljEGoB34ZQG3zopOyDJqC3PBNExPUK9X76JdGlVynzriVA2rOFAq8F3fNQo1Deq/FtbjDHmXHprAdsrFqEnGoE0W6LAb8O6H0/oL+bcj5WTvZRFAHipTn5S/HsOoj3bAHmnSugOCUdd7sI4/uFGRBuhBUPinv8yofkuvQMiPN7rKuuV2+7GOJd0l23CzB1CKy8vM4X7hAav2pAohteul8e+54c95XH5Fyq7Li9d8vzgOEXUVWFRMJkxYoeZmcLbNp0LZ7n89prU/zO71zE1Vf309YWZfv2dYyPZ8nnK6xZ00d3dwLbFj17oWATiehs3boOz/O57749eJ5PuSx/kPm8xT337Ka7O8GiRY2sXi3733PPbtraYoyOZmltjbJ58yADA/2MjGT59Kefw/W9WvTb9w7/kLBusqxzKW9OHWcun6YpnpDgAt+naJcp21ZNxx41wxSsEo/99H8RMcLoqoapGfxi+gRl22IqP4/ve5TtSo3B+Z91eZcq/28s71Ll/w8vliW0d9uuGT3V4uBee01m+M5O+Md/lE75F74gz0WjAlDyeenAb90q7e/q/u3t8vONN6RN3toqLfEVK+D66+UOQ9Nkm2y2nhXveRT0BjxUTpyoO8EvXSpd8/FxYdtv3lx3hM8FsptotH4zks2e/TKWLxcd/NiYgPQqM7maaatpZ4+/bRt86UvSuaiSDcJh6cg/8t9cLlBPCVhua5KM9lJFgHsiJjnqpYoA6f4ueV1VKrumwmxagPiZzvLVfcampYtfjZHzz+D8W07dqd7QZbxTE3BunxzbMKi62nv4Ys4UOIK7dgXNCNWp7Mt+reYyPn/yZ9IlV3XRErsOvu9Ryc0SaRRKPQCaTnF+HD0UxqmUiDZ14loVXMdCD0VRVY1iegojEseMNjD++h6iTd1Em3oCOvdKzGiyVkBoXXolRigmUSm2K93uaBTVNLGyWcxkEtUwKIyP89Z3v8v7NmzA97z6c6aJVy6jGgaoKuWFBcKNjTjlMumjR2m95BK5hLaNahiUMxn0UAg9HMYpl3lt+3bO//3fJ9LWRuroUZrOPx89HBbdsu+h4aPYllDdEw3iKO958Pqw0NfPXSaUaNcVUJ1dEFr9Cz+AWz8lNzCaJjFvT38HPvARAe6RmIDUUh5iDbKNVZEbAasMkbhQ6EtF+VAnmuSDnc9I5zgaExDa1ILlVpg7frgWt4fv4bkO07/cV3tPfc85i86uh6IU0xOYkQZizT0UFiZqKQJA8N6IY7zryOdGMyKBWZiP73mogROt0Ovr0YCqaqCZIfBBRUOpOrrH4ngHfoq69jqUxpbAYNHDe/M1cWS/9kb8Yl6o6kGeO76Pb1l4P/4R6nUfFJd22xY39nAEb3xEQHRA7faG9goNvaFJiia5LN7Bfag3flgcyM+ioC8RoFGpBDeLZ9A8Laumo/cBUnN1h3nPFwM7M3RWXJufy6J0dKGEwnLeno9S3c5zxZHe9/CnJoTqn2xE0XXJjj9+FH98VM49kZT4PJD32hSmjj85jtq/BEtRcF0X13V58cUXue666wDpgmcyGfL5PH19fbUi1cTEBN3d3aiqimVZVCoVQqEQU1NT/O3f/i3Lli3jmmuuIR6PBw7EVnAJLGKxGJlMhlwuR2dnJ5VKhUQiUfOnsG0b01RIpY7X6OmGESWVOsGhQ09w441fw7ZLOE6Jublf0te3GscpUy6nCYebKJfTGEYEw4jiOGX27LmP1avvo6lpCZ4nee7p9Gl0XTr4sVgbw8Nf48Ybn8DzHCYmDtPZeSm6HmZ0dIiGhn6ampbI955TqT2vRlspqTrrFYU1SJd9Col5G0Wo7yEESCcRYN5CHYQr1GnvFmJwdz+iZe8CGpAuvBL8HA7GnkRo+NUCQdX4zkU69olge90CxRKAXi6f3UmvVARAV6fIKoGnXK7T6PN5Af4zM2dHySWTsv8rr8icV0s2VM8G5WdMvbXHp08LZb6azNLZKQVyVfHwc3lCiRCeK1Fu1ei2qpN8diwr1PiVPZRTZZyyQ7Q1yp779rBu2zr0sI5ruzz/2ed542/eYP1b61k4vkCsPUZhpnDWfpmRTG19rC1GuDmMGTOpZCqEkiEUXeH5zz7P+7e/n0q0wkxhhpgRoz3WTiEwQXxt6jVu+tub+MTyT7D9+u2E9BAlu1SjuUeMCE3hJiJ6BMd38HyPB/Y8wBd+7QtEjSiDI4OcSp/iqt6r2Dq0lQ0DG4gaUeKmSHYmchM8dvAxtq0T6rXneyRDSTzfQ1M0Km6FJiOMYmflPdBi4JXrBpsK0vW285B6XcA71Onis0PQeiUoIcAJnOhfh2hP4BS/su46r0XATgUU+5I8H+0Rh/llD0KoA1KvSqffKYnO/o0/g87rof/jdVq7W6nHv5UWhNYeSgbnFZyzdwZ1XjWlSKCGZF+3IoUAzw7o7me8nir9vUbH7xagnD0t3W1VE1BvJgUUlxag433gO9Lx1kIw9LB01s+/Fd73WXjlq2JE51pSVFA0KRJU0kKTL6fgry+G834Lrtku3fa3/kZA+2WfhlCDjHn8GenSd6+ByQNiPLfoOumsl1OyXWlWoubWflnOybXAKWOlJ5mPr8LzfJLJECdPphgfz7F6dR8AQ0Oj9PYmCIcNGhvDGIaKpqlksxVyOYtkMkSxKPFvuq5y4MAYV1zRzchIhr6+JKOjWbZuHeL++1ezf/8ohw6N8+STNzE5mSeRMJmeFof57m5xmAfp4N9xx7OsWdPH739yOdOlWf7q8A958LpP4ngub04dpzmSZKGU5bKe81EQ3XrZsXh75hQXd78Hy7E4OnuaCzuWYLsOqqJKl17V8IHXJ9/mve2LsVyb7Xv/Fw9ffxuxUJ1+/x9xeTcO7n9zeRe4/zsspZLcCVTBey4nM7/vS8v7kUdkO8cRKr0baLZNMwAdloyRSAjf78tfFnFdFQUvXSr7FgMqlKrW70omJ2W7Sy+VO4tEgrwXxfUUKhUZ9he/kDia9esFTJtmff3AgBxyyxYx3+nultM4evTsVLt8Hl59tZ5xW43EqYJ4VZXx771Xbl4uukhw8P33CxW/K2j2TU3B4n6XuF5BGZ0St3hNq4NqOwDvjguvHIGWRgH2rlvXrRPwE3MFOcjY1BlZ7JE6RR7+7SJANX6uCvirXffguJ6mYJUzKLqB554d1dV27oozuuIOrlVBMyOATzE1jRGJBrrnbumkB7FfdimPEUlgRJK4leIZ+e0rzooEizZ24toV9FAUz7VRVI1iagqrlCbeugjNCGGX8hRT4xRTE3RfdB24Pla+QOqXvyTa1saRb32rplOPdnZSDFzgY93dWLmcZLIHd7CeZWHncoQaG1E0jdL8vGS3z89Tmp2l6YILKM3O8tZ3v8uy224j1NjIq1u3csEf/iHzr79OrLub1ksuAUUhPzlJrL0d1TDwbJtQNIIyNQa7/0G062aoDrTLRQHjN3xUNOo7noLf/CRUyqJPV1S5ualmtqPUf1oVGD0Gja2inb/hYwI2qx33atRcMS+fp6aWs3PkP/IHoOu4poljleT9UxSsYpq544fPeI8NQKlp0avzSSU3S7SpR6LYPBdFVfE9H9cqomgG2eljmJEGjEiC2WPDtfdYM0LB61KwS5la1KDoEgO04bs1EO8U88SbeiSObXxEMs7DkbO17lUUoSh4z/8Q9YMfRtHkM+6Nj6J0dKIYwljwxkZQOjqhWJTc9VXXCN29d5F0rauRbjd+RILsNF20+Kn5Wk57TYJQKaPEE7i7/hntuhulIBCcG5YFpinHBdxn/xGlfwnKe5fVQD2GIa7xgc8CqibvUT4bgPnrZBvblmOvfr9Q5HUTinmURINct+DLpzbXZ9P1uLlqMcAMyfuoKFQ8j0KhQCgUCjTmGhMTE3R2dqJpGpqmkUqlGBoaYt26dZimiWVZte58teNumiajo6P09clN5ZldEsdxKJfLxGKxmsa9us627drYhmEAFXbuvI2+vjX09a3h4MHHWLduG4YRRVHUAKhniEZbUFWdfH4a2y6Sy43T3z9QKwYpigZBsVFRVEZHD9DRcTGmGQ/WKTz77J309Kxg0aJrGBzczLp12ymVFjCMKPF4R7CdjuuWKJVShMONqKpOzi5iJroZURQ6EUDehgDwqvlcB6Jp9xBAPY103ovAw4jDfJUCaVHXqn8NocVvBjYgRnRtwZirgmNUl/uC/+1IgSAbrE+U4Pjb9Ri3cFgM57q65L/nSfG5OldNTQlRrTrfaZqA84EB+VM6eFDWt7fLnDcwIFPvfffJPosX16dvx5F5rZpCefiwHAdkevZ9+ch//vPw5JPyQFccVF1l7MAY3Vd0kxnJcPCxg1y35Tr0sE45XRa6+6Fxkn1JjIhBLNDs2kVbQHegw91z3x5u/Asx5HJtF1VXcW0X3/Wxihbx9ji+6+PjU5guEEqG8D2fFx54QWLoYpJ8YIUtKm6FqBHF8RxOZ06zbWgbW9dtJVbN3IaaLv2eq+5h/+h+ljYtpSfZQ9yIEzNjZCoZkqEkvu8znZ+WfPaelRiawd0/upsruq/gYxd+jJAeQlO0muZ9IjvBoqZFeL6HqZnkrXxtrKJVZGmyAyV3HH6xBS54AOJL6gXDat46SvDTFXCefh2arwRFvsdwCuBk69r28pzkvL/1FdGvR7rkU2qnpduODjgwdxD2/Sb0fAje9zUxvjv6Nbj0ywK4PUuOm5+STnc1Y70a8/ZvRrqNiFEbCDjXzHqB38qenfmuBeZzZ0a7VQF9eb6ula+kAyr7eP04niPHN2JynlUav6JJocP3JX893iugP3tKaPIrNoARlY76oS2iR8+N1TXuw5sl4z3WDTOviut8cRaMiID0qcOSE+85MDUs59ewVM7hhTsE2PesqUfJKQp5O8Idd73IPfdcxdKlzczNFWhri1Es2nieFFJNU0dV4fDhCS69tJNo1Khlt7e3xyiXHTKZCp2dMU6dSrNly342bBhgyZIm/viPf8jzzx/n0KE/pq0thqYpnDiRqsXIdXTEePXVSVau7AmmFYVIRMOyPDRNxVNtsnaO5mgDE5lZvj38A37/iptJlXJc1LkUgNl8im8P/4B73/97pIo5omaIpmgSVVEpWmUiRgjbdchW8iRCMTRVQ1flntb1XCqORSIcI6Sb/Ede3tW4v7v8v18iEZnFIxG5K3j44To//YEHRGjX1SVo9+RJ4fMFN9tks8IpD0unielpob5v2SJd9m3bZL1tC6Ku5t6cPCk3tuPj0g6fmZGCQakEvkexKMD6zJuTbdsEt565HjiLUp/J1A3kqgz8Kvu/mmLX1iZjtLUJWJ+YkBuijRvlpfb2yviTkyLfn5oSZm00KpcgHEY6guf1A4rkrnte0Ak3BJDrGrxvmYBtkMmm6givqQK4G+Kgq0K1H52Sxyj1yLdcQUB5NeNdVSR+riJaWo6PSjEgZIo7/fFR8Dx8BWaOH8K1K8weG0YPRZg9dojM5FFmjx0ServnoShaoGsuAgqx5i6MUJxoc4/onoGWxZejqDrhZBtzxw+jKAqaGTprPD0UQVV1oo2ic/eCfQW0TxJpaCPW1MPM20M45TxOpUhD9/kSY6ZqzPz855Tn52m79FK0aJTL77+faGcnbZdfjhaJ0HbppcT7+rDSaUKNjeQnJpj92c/wLAtV1zESCWZ/9jOyp0/XOua/+M53CDc3Y+fzvPXd79bc5BVd54JPfhIjHuecm2+m6YILeGXLFopTU8Ta2/Ech9LsLFo4LO/p7n8Q7frCrNzJ/q+vwdSYvD+LzxfgrekS+5bPwjP/MyjKpOH0OzA7IfT2uSkB9f/zzyGbgp7Fsu/hl+QY5aCotTBTj5qrlOV9XpiF739DuvrX/rrs//1vgKLieTYTb76AXcqiaSatS95XkyQAeI5ViwN0rRKqbqKHE0KBL6ZxrTK+5+N7DjPvHJT3pus9RJu6mD02TGbyKHYpL8c58mPsclbo8Wb0rNg/u5jBd20m3vwxnmdjlwpUrIAKo6oo/YuDDndZAG88IbnsqopiCEjWbvxwUN+QbozS0ye6b9+Xx739oGr42bSA9mJROueqhnrDb6B+4ja0Wz4qSMQTR3vfc1GSDajrfh0/n0OJJ1F0XUC0oqKueT/e9KR02A3j7O/FoKOg3fJRcZhHwU/Ny/6+D9k07nP/LO+7G4D4wEXfz6aFFTD4orjCD+0N/BEclFBYdPYLAU0+vSDXRNXwM2nUVe8HwxSZgBl08G0LD3GF37t3L4WC5KA/99xzxONxdF2nWBSNYj6fr2naK5UKe/bsIZVKMTY2hud5GIZE+3R2dp6liQdIp9M899xzmKZZc6w/010+FovxgQ98AFVVGR0dRVF0brjhcZYv/wShUJJrr92M73uMjg6RSp1kfPwQ4XCjFHKcMvF4J42Ni+jvX4tl5cnnJ7GsAl4gvRgZ2c/8/HH6+lYFVHoH2xZzxxtvfIJlyz5OLNbOTTd9nVAoTiLRRTTaErjJ+yIVKc5jmjEmJ1/FccqEEt0MKwp9SMdbl29ZYkh02xeBU8CrSCdeC9YPIVT3bcH2UwiQfxXoBh5HsMrjSBc/jID1cxBavRns81owzmPBMc1gvymEvu9aMrfdc498dA8eFGr6kiUyJcdiokcfHpb5LxIR+dfWrcIYi0Rk+7ffFruYri7ZJx6XgvfsrIz72c/KHFapyFi5HDWPzdlZmdJXrZL177wj5+O6Mm1//esACophoOoqiqrQs7KHiZcnaFjUwI1P3Iiqq5TTZZyiw3N31Wnt8Y44ZzahUidTqLqKGTe5+es3kx3NCh1+IsezdzxLdjQLPkRbosy/Pc/O23eSOZ1h4dgCuckcZszk2k3XArDrrl04ZQcVFbsaI6bAWHaMVb2rmMpNMTgyiO3aVNwKhmrw2as+y0xhhk8s/wRr+9fy5wf/nI54B1EjSkOoAd/3SYaSTOYnaY+1Mzw+jO3ZfO3Gr/Fflv8XFEVhpjDDidQJbtt5G5P5Sc5tORfXc0mVUiINM6IYqkHMiNEWa8PzXQHtIzskM714GmYH5eebX5Tz1mMCzl/+tDwOd8LL62UbRRVd+ut/Fuw7JBT68oyMWRwTvfr8cH0MJyca+MZLYeCf4KKHBDi/tV008QCVBWEAqCGhm0da6+7vZkJAdih5RqRbIPZoWCRFh8xJ2dZzhWruu7K9a9fd6d1KnW6vqPKBz40KeA8Hx1M0oeHnx+vRcYoi4D2UDArDihQMirNy7OpnqmuVnLfvCmivOr6HGuDlrwjI1kLQs1YKAIe3Qc/VAtrNOHRcKXT6hkUSZVeeh7ZLhJHw4/Windcj0l0vzcH77oVzrpeue9eqoPiSQTPD3HffamIxk7m5ArGYybFjC9x9925mZ4vE4yGmpvKsX/8cy5e3Mz1dYP36XZRKDh0dUlyKx02xBSg5xOMm9967imjUwHV9vvnNmzl9+m5aW6MMD4+Rz1u0t8dYs6aPr3xlCFVVaGuLMTw8zuRkjvXrd3HsWIqhoVGOHZvH1Axaoo04nkvYMPmvV95SA+0h3cDQdKbzC/z+FTejqSoxM0TYCDFXSON4Loam4/oe6VKWiBGuG9D58OiebzOansYHXO8M9tp/wuVd4P7u8n9nsay6mdJjj9Xz2RVF2tVvvilIV1HqdxiGIS7wIDy69euFX7d69dlZbNu2iWDurrvkjmF8XNraQS4wa9fW3XUC21vPV8lk6uB78+bAwyoqNyDxuADraq3g8suFFnjZZXIqqgpPPgm7dolmD+TUq7Fws7MC4r/2NYms7+iQm59oVLoU1Vi4WEwM7C67TC5RLic3VUoVXLx9uk6PH5kUUG3b9Qg4z4OwKeD72IiAa9uV/ap576cmBLAvCYp3li3rLFu2H5mU5xvisr5sye9jU3LcqsGd7dTi6BQf2pauwKkUaTt3BU6lTNeF7+e8az5Zc3u3At1yVatul7OMv7EH3/ewixlKmRlUTcOMNcn1Q6Fr2bUBY0KnZ/k63nPNH9J27kp8FFRdcpejLb2YEaHUuVaZaGMnimYwf/JVok1icBZt6cGpFJl480WsYpr2yy5FD4dBVQkH7tivbNlCYWICPRxm9tVXKU5M8PoTT1CcmEAPhQg3N/Pyo49SmJjAymYJt7RQnp9H0TQ00+TKhx8m2tlJuLWVC/7oj+j/4Ae57N578T0PPRpFj0SYfeMN8H0u+cxnKE5NoYVClObmyI+O4lYquL6Pf9PH4cqrpQP+q0D7wsvg5t+RIk0oIvFxh18Sivuu7wsA3xWs2/V92efwS7KdqolL/JVXi/FcJCYf3MXvlVi46naJhrOP29IBz/093rkXAn6tgGKXcniew9yJVzAicZE9BAaCVSPA2eOHUOBfA/I3X8AuFySb/cRhVFVHUTVal15JQ9f5AYg/VNvHKmYk1z2I/auO7TqVWjEn2txNU8d78K0yfj4nLINQRLLQJ8fwU/P4+PWbPt8XkK0oYninqiiqJr9nUkK39zwB+ckGvOFBlM5uoduPnJDPaEeXGMNVafiDP5EuOKCEw+IyX+32u554O+imaO9VMZlQDBM/tSAUHQDbwl+Yw935NBQLKO1dci6qJtF2/Yvxhn4qcgozJOd24Kfijo+PesNvoK1/APX6D0lhIJcJdP1pCIUk3s4wUQLndrWnX77YojHRv+/8B/zUPOCjArFYjP7+fg4ePIiiKKxatYpkMomiKLUufCKRqOW6G4bBVVddha7rNRO6Z599lnQ6jaIoDA0NceTIEYaGhgBqhnaVSoVsNkt7ezsLCwv86Ec/wnEcNE1DURR2795NPB6n2mYrFueIRtvQNBPDiNLbexWJRCc9PSuYmDgc+CGoWFaOXbvWY1k5CoVp9u59mGJR9KyFwgy9vatobFwUONsrwfSUx3EqqKpGoTCDZeXxfY+Rkf14noPjlCkUZlBVDc9zWFg4Ri43RXf3lfi+h45Q2ocQmnoUMZY7hmjaH0OA+CXB7zbSUV8OHAcGEaO5JgT0r0JA9yDSff9zYC1yw6YEYzrB/2Qwjhc834ro5o8j+e1FAEMMTxctkhr48uXyVXD8ONx+u+jaGxpkbhoelmlyagq++U0pMtu21M+r8+X4eD11ZXpafn/5ZZliSyXpqq9eLfPd0FA99m14WOrp8bgUqKvKt/XrpShQLPooiodne/iuj6IqxLvijA+P4zs+ZsIk1hFDC2n0remjOFfEcz081yNzOsOu9bsA6L2ql3K6jFtxQQUtpNG7qpd4V5x129YRagihhTRUVeXQE4foW9OHHtLpuLiDwnSBzEiGF+5/gfx0vpYj75cEbJ9Mn2T/yH5W9qzkdy/+XaYL07TF2lj/3Hom85MMjw/TleiiO9HNnbvu5HTmNF+78Wv4+JxMn+Tu3XczW5wFYGXvShrDjazoWcHw2DB5K89IZoR7dt9D3IzTk+xh+7rtdCW6KLtlhseHKdklXN9lMj9J1IiSt/LctvM2LA/8ZRvFPb5lhRjFhduEwt6yQkD3odsEnLesEAr7L74koPzIZgGNb20NHm+BUKusb1khY7auFPO6cFt9fWkSXrlbxmwfgNhi+QRf/rgY4mlR2V5RJdddM6XTroj0TL6bg+/T5DnQflnduC1zsm5W51ZkjHhXkPt+QgBy5/uCDvpEoJ/X5Bg1cD4ux1F06YyrZv04yXPkL8Z3wakE0XCedNGj7VII2Hs3FKel8z7zqtDtV2wINO4bJMLt6m2ic8+crN8IXvsXsm7v3ZB6O2AQnIaJIXkdkVb5XlNUKQKUZoQBsec20dQ3vwdiPcGxPiZ6+/QxXKvC2FiWWMygpSVKJlNh69Yhduw4wpYtgygKbNq0jx07jpDP22zZMsiKFT34vs/x4wKwT5xI8Wd/tpfpaQH+X/nKAYpFm/37RyiVHE6cSHHHHc/S0RHH83zuvns3a9b0sW3bOkxTY/v2A7S1xWq58Js3D9LaGmVyMo/luIxnZ3hj8hgl2+KvDu+kPd5MSDc5vTDFQjFDR7yFTDlPSDdpjjUQ0k1URcHzPFRVRQFa4k3oqsSFTmXnQFF44Z1hvnf4h+QrRf6zM8XfBe7vLv/+i2XBL38Jn/pUPcbt6adl5h4cFAr9ypWCiKvAXdcFiLe1CUj90pfqCNv34TvfEbecq6+WO4IqElZV+dnbK3cHd90ldydzc9LeXr8eOjvRdLlReeABAd/f+lZd92cYcuNSlchXXXarnYjqfHP4sLDv5+ZEml+piMb9wAGJzTFNuVkaGBACwNtvyzizs3K6a9fK+CAdhw0b5CZo+XK5JMrI5L8yhJONYwKqZ1MCun1ffs6mBMhXfx+ZFDp9dQwteIGjU/V1ilIfd/TMMZH1zcmzt29KQiKGemIcMxTHjDWgGRHJ11b1wDdGfmqaiR6KMPHmj7ErBVTVoHXJ+0BRscsF9FCEYmparnkoimKY2OVcrVNbWBjH8xzMaAOKouBUiniODZ5DYWECz7HQqzon36Nz2a8RDbrudjGDXcrVQB5A7vRpCqOjzP7sZ7U89SNPPYWdzxNubq5lsB/51rcINzfz1ve+J4+fegozkah17Mtzcxx65BGKExMs/OIXFCcnSZ5zDiu+8AX0WIzSzAxvPPkkpdlZWi+6iNLcHD/bvp1oRwcA5dlZws3NvPqlLwlIaesS4zlN/xWgHRede3MbvHNE3qvq85GoUOtzabjpt2Xdzb8D4Zj8ftPH5cPW3gW//xno7JV9FPXs49z8O//6sWHAzR/Hv/JqfKDt3BVngOvh+jVVoJiaRNNNWpcIAG87dyW+79N27sp/BcjnThwm3raItnNFDOv7PqFYIz3L16Go2q/sUz9OtLEzGHsFmh6qHSeAwaIz37tb9NpWBXfPsyi956A0NlEzZHBdoTmrGn4hj58SoOyn5gRcJ5KoPf14E2P4VgUllkD9wM2iEVeUmkGcYhhgmFIoMEy0dTfL8M/vlEJbVWsejdb0pUo86Aa6Hv78DO5zPxB6eiJZ+370hvbWsuCVUAilZxH+vBjrKf2LUdfdLJScwBle6TtHDO/OpAtKhl7NMM/PpsVp/8BPxUhv7LRE0AUu9Yqqga7LWAf3QbmM4vtUKhUuuOACbrjhBvL5PMViEVVVcV2XqakpHMehoaGB/v5+yuUynufR1NTESy+9RDabJZ/Pc+TIEfbt24emaaxevZply5axbt060uk0e/fupa+vr1YgMAyDfD5Pb28vuVyOXbt2kcvluOqqq2rAPZebZGHhGJ7nBCC7jOOU8TyXiYmXaW9fTqEww9jYQVRV56qr7qFSyTI4uIUjR3aQzY6RyYywsHAM3/fwfQfwcZwizz33aWy7wMTEy1hWnsbGfqLRViYnX6Gj4xIMI4rve7z00hdJpU4wPj5MLNZGPj+JpgmDwvV9IohefQjRnq9A6PBlhDofQSjyXwcWkI55dV0HoltXkfz30wjobg/WW4gZXWv9E808Aso7gjFGg3FBuvNPAp1AD6D6As7vvls65/G4gO1EQgrUoZBMv3NzMuUOD0um+u23C9BWFCk+f+MbIhG75hqZC0Ge13WZdk1Ttlu9um5YNzAgnX1Nk2O3tsqUNTYm03PVW1a6+wqerzF+aBzP9VB1lfxknlh7jLHhMdyyi+/5pE6muOh3LqL/6n7MuImiKuQmcvQN9OF7Pk7ZIdYRk22Pp9j7Z3txKy75yTwzR2aItkRRNAWrYHHDV2/ggo9eQLQtSrgxTP/V/Qw/MUzfmj4SXQkS3Ql+9Jkf4dnS5WuNttby1k9nTrOmfw3bD2xnx5EdPH7gcVb1riJiROhKdHHf6vuI6BHyVh7P91jcuJi/vOkv6Yx3oqBgqAZt0TZcz2Wgf4CoEWXb0DZW9KxgpjDDwbGDhPUwpmpy3/P3cUnHJfQke1CCf57voas6O47swHVLKOFOWPEN0aEv2yg69CueFG350cfE+b08JaA60iPPXbMTlj0knfHLH4eb35KflQUZA+CKJ4IxN0hW+7INolmvAv23toKVDj598rfF7AExsnvlT6UzH26Gwqg859mQPh6YywW09urie3X9uqJKN1oLBRnuQTe9akxXzXpvOEcAfG5UQHhykeS6NyyRe5nsaVh4Syj2Zy1+APTHpFuPLwC6MHFGlvoW6YbHe6UQkB+DKz4nbvPRNgH6hUloXS76+D23yXnkx2T/w1tl3PxYfZsX7xQdux6VIkDXSqHWVzv5+Qmh5FcZCYe3QqQNc3aI/r4Eb745g66rJBIm99+/mltvXcZDD61F1xU2bFjLrbcuo6EhxIYNA1x//VJyOYutW4fOAtxbtgySTpfPAt+ZTIUtW+rPZ7MVduw4wtatQ0SjBoahsmHDWmZnC2zYMMCtty5jw4a1zM0VpUCgeMzkFrik+zxaYw28r/e9/NXhH+J6LhEzRCIUY76Y4tLu84OMdp9sOUfZtvnqT/+XzJOKgopCtpyn7FjMFlK4nsv2D32WT674dRKhGKb+K8y1/2TLuxr3f2N5V+P+f3jJ5+GnP62Lv1esEPS7sCC88TPDXoeGxDF+/fq6yVxPj9xFPPqo5LYvXixgvOoqd845cpcwOSn/V66s8/vCYSkcVEv/LS0wO0tm4CYOHlRYtapOBKjq7e67Tyh/551XZ+sXi/Dzn9fz1u+/X25QTFOo842N0sno65NDxWKyvqFB9tV1OZ2qsZ1pyg1LoVA36HEc6UA88QTEIy6aXRHw3t8lXXWo69Itu57lXl1Gp2BpXz3nvb9LDOaOj9Z/L5Qk272W864HTkKu7FfVuRs65IvSeS9b9e2r51G28CplvES0pqPzPZfpXw7S8d4BQAB8XZQGvudSzs7WMtqdckEyvX0/MJxLoKo6rlNG08NooWgtx10BMcELTMq0cAw8h2JKjOqq+ni7lOP0y/9MQ9f5dC+7lokjP6bt3JWkj7yDEYvzy7/6K977X/8rv/yrv2L5+vWiM29qIvXWW0Q7OkT7ftttxPv6yI+OcuSpp7jgk5+kPD9Py8UXoxoGhx5+mJEf/Yj+D36wNtaKhx/GtSy0cPis51c8/DCHvvCF2uPL7rsPLRTi5Ucfpeuqq1hyy80S45PPgBkOosIU6c76wLE3oXeJ5K7nUnDuRYH9M3UDn6ongRrYN1tleS4chtkpiZr76B9Jx94NPtBaIDrFh1NHJZLOdeV5zwXDxDVNKoU0ZiQhIE9RsIqZQJO+EruUwyplSHaci6JqqEGFXFFVObVgEj5zHzOSlK63quK5DlNvvUTL4vdhRmW961TQzRh2Kcvs8UO0nbsSI5JEqXYngs+RosgxNNfH3fVPYjZ34cUCtH0fxfNE897VI59FFAHcQd66goL3i5/jT04Ifd518EtFlHAEXw9YLb4vUoJQSLrzKDWzumoOvJ/PofT0i35bUfBGT6PE4yiNzWIw53lQyKPEEviVMt7e3XUtu6qhaJpo8Ofn8PNZlGSj0PR7FuGXi/jHj6IseQ9KokEy2FElZz4cwQ8YA/78TM3ATmlqleJBqYgSjeM7NuQy4kRvGNLJb+uUAoSmyfm2dwgLAEDVWMjlME2TUCjED3/4Q9atW4eqqlQqFaLRKNlslqGhIT7wgQ9gGAbFYhHTNFFVtfY/n88TDofRdR3btkX+omns3LmTI0eOsHz5cm6++WZc12VsbIxkMkk8HmdiYoJYLEZLSwsgDvexmE6hMEM43MjExMv09l6Fomg1XbqiqIBPPj9DuZxiePjPaxp43/cpFKZJJLoYGdlPNNpKONxYM64TXbyGZRXQtBCOUyKfnyafn6Svb3VwDjOYZpyjR39IQ0MfPT1XMjHxCn19a6hq510jTEbRyCgKceANhM7ejXTdkwjIrurUlyKAfhgxmYsggH0GMbJLI4A8j3TwP4/Q6WfOGCOKaNjfg3TbZxBa/FeCbaPBMV8DVmfhtk8JuF6zRkDyhg0i4QrsNwAB8mNjAuw//3n4m7+BnTulDj42JvNbJFLPa7/00rpevr9f5kRVldrfqVP1ubKzU+bE06frpq+RiDjNz86KRU2xKMXyZNKHYpHxQ+M09DfQuKiR0/tOE2uLcWD7AW54/AbyU3n2f2k/Nzx+A4WZQs20TtVVrJzFixtf5NpHr8WIGhTni5x88SQX/fZFQXqEz+jQKLGOGPGOOKGGEKkTKXLj9TFQYP6deQpTBfpW9+FaLm7UpeAVyFQyJMwEP/jlDzgwdoC/vPkvAShaReJmnLJTxsNDReXwxGEu7byUsB7m4NhBruq9Ctdz8RCduoLCSHqERwcf5f7V99Od6CaiR3B9l4XSAulymj8f/nO2rduGruroqo7t2hiageM5tTHKTpkWM4LmO2IWVxqH1tXyHVaeDrLUgdRr0HSpgHDFh/lD0HCxxLeBdN3nDkHjxQIqvQoURmSMttXSufYdhBfiBSZ2r0HLldKNLoxInvulX5b9Z4egcAparhJwf8VfgNEsOu5KWpzWG5YE89mZGvWwUPCrWnS3IsC7qo2vOsFX9fKNS6UQcOZjp/IrmvlToiH33bqJnarJXFml26s67PlUXV9+eKu4xzcshuf/SOjvPWsCTftD0rVXgv1Lc2cb2l37hLjKX/lAUEBw/vU21/2lFCr0KGSOBbr4B2B8ECb2w7qn5DzTx4PX0kchci7HTmSZmMhx6aWdqKqCaWrMzxcplWw6OhIYhsS5aZr8YTuO5L5PTeXp7U2yefMgGzYM0Noa5bOffZ4NG9YyNpbh8su7mJ4usGXLIA89tJbW1ih337279nxXV5wlS5qC73MF2/YwTQ3b9tB1BTSPidwM3zv8Q+6++r8QMyPCCkPh55Nvs7zrPFRFoWCVg1g4lXB17gkMU7/yk7/mE++7iZn8Ai3RBvqbOlkoZmkOdPDVaLn/6Mu75nT/m8u7wP3/8FIsiqBt2za5Y4jFBL2eOCH0+J4eCTCvuuZUqeDForTE77tPSvaWVX9+//56IWDNGjnO/v3C9ZubkzK/59XFddVsmqEh6OujuHQ5lg2Oo5BKSWdgdFRqBSMjMsTFF8uw1ZxZ3xeZ/PPPC0h/6CG5oanG1C9fLi8rkZDu+pe/DF/9qnThzzT6qTL4NU0ohy+8IC+vGlU/NgaLel0Sbk6o7IoiILrqEN8Qr19b14OT47C4J6CEBeu9QL9ejYyrrqtYAtyrzvEg+x0bkU5+UzJY79cN8VSlfmcHtfE8fFyngl0uMH/yFTrfe7Xo8oPOn6IoAbb0xeDMiACeAG8jJODRc2vO85oeltg2VUdRFTzbxnXFqVwJIuHK2RmiTd14rkM5O0OkQYzqXLvM/Kmf0XXRdTiVguyjqAGIVLBzeRbeeFOM6KamiHZ1EevqwrVtjMAB3i4UagZ0ch/h41pWzWAu3tsr+t4A0C+77TbRrXd1Ee3qYvbVV2m68EIqCwsceeopLrr9dmK9vfXtb7+dWGcniq6THx0l2duDlpqtG8WpKpx6G5ZeCI4VuLvHxezMc+UmY3ZSaO03fRxaO4PoAmrXnDO/zxUE8AcxYXge7PgWrPswtHXJDUulFID8iOjqX/hn0dKHwriGQWFhgnCyFVUTzbKvKDVAXn1v/TP0Zoqq4XsenmvjuTaGGQ3ee0kd8PHQzQjF1BTRxk48z5XtQlHG33iBzORRGrsvoOO9a/FcC80I8/be/8G5az6B5zk1Izs9FJdigYdQ5H1PCoShkDiqV62xA8M+b/QUSiwBTc1B/FkRJRoVjblVAcsSI7tyKQDvBopj113lYwnZJhaT114u4/1kN+qNv4HiI3T34Nr7U+MoTS1iypdoELDc0S0FA8/Drzr8g3ynxeIB8FelcKJpYmSnBRT+wR+j3vAbUMzj7d+Luu5mFILrb4bwTh+X1xyOSOFHUaQg4LnyfjgO3p6dqFddDS2tKK57VpFC8YLr09CIm2ziX559ltWrV9PS0lJ7TZZl8eMf/5jrrruuZlDn+36N2u44DpVKBdM0MQwDJzDV03X9LFO6VCrF4OAgN9xwA4VCgWw2S09PT/B9KGOqgZFeoVDAcRwaGxOk0++wb99m1qz5PI2Ni7HtAvn8FENDWxkYeJBotA1FUZmcfJVU6jh9fWvI56dIJvvIZkfp7V2JpoUZGdlHItHF4OAWBgY2kM2OkUz2kM2O09DQRyzWycTEYWKxNgqFWZLJHgYHt7B69f00Ny8lnT7N4OBmBgY2EIu1Mzn5KslkL9G2C3hHM9mKuMGfh3TPXeA2xGTuLmAHcCvSDV8PfA4xmVuDZLG3AdsRTfsssCkYbz9wPWJiVx3jLxA6/lMIjLKB24Ox1kDtXDoAswBTxwVALyzIHPazn4kfy9hY3URV10WltmmTzGOBhyKDgzLdNjQIaE+lpHMOMifGYlLfUhTp1vcHaowzgXlbG9x5pxDnqsWAKoivesuqqo+m+pQmUpQzZQrTBfoH+nFtl91376ZnRQ/LP7GcUqqEbuqEG8MS7waMHxon3hUn3iHzo2ZqTLw8Qe+qXjzHo5wuE22J1szpSgslIk0RNFNjdGiU9uXtWFkLM2FixAx81wcF0qfSDH15iBv++gbemX+HyfwkK3pWYGgGpcAbYTI3WTOZ8/CYyk2xaXAT29dtZ740z0Rugqt6r8JQDfJWHh+f16ZeoyfRQ2eik1PpU8wWZrmi+wo83yNTydAQaqBgFTA0A13VeX36dS7pvETmICtPR6wDH5+h0SG6491c2HIupgqKk5cudmVWouFSP5fM9eR7AtDqiXbdyQcmdGrw/XlSQPflj4muvTQuUW5vbYNLt0nX2SmJyZxXBjsjBnWKDjODsm1xRIB674eFim80CPBcOCyU+Ybl8t3sVqRDXl3cKsjurtPdK1lZH2oQinvmBCR6Anf5oGufH6+7xFcd6BM9UkTInDzDCG9xYIAXOaMg0BMUCCqBuR0CrlNvC2C/epsYyZXmRJeeOSWd+LZLpeiQ6JNCQ2FSCgV20Kmvgv1En1wvI0btxszOn7HNRhjbB+MvwbpvBdt4UszY90BgbNcpWn4jWpvfs1aEO9fvYtWqXn7v9+TzMDQ0ym/+5g5+67cu4Mknb2JqKk9PTwLH8RgdzTI2lmXNmr6gcaRQLjs187pwWGdurkg6XaapKUx7uzDEbNvFNHU8z2f//hE++tF/4EMfOp9HHrkmSAdxiEQMmprChMO6mN91h/nve77FpT3v4QPnrWShkCUaCtEUSaKpGl/5yV/z2ff/LhXHYraQ5q8P7+Tz1/4BqqpStiW3fS6f5n8cfobfu+Jm/ufLz/Lf1v0x07kFuhvaiJph/rMs75rTvbv8v11sW2boFStEOFelx0ciAqi/8pW6a87QkLSi5+bkjuGeewTQe15dBG5ZAtaXLpWfhiFf5NdcI532lSvrWTQgdxqnT4urTns7RKP4nk+ppDA/Lzcgvb3SeahK66vDvvqq1BeChhq6Dr/3e0IZ7OoSrHD4sJAEVFW6GLmcPLdmjTz/qzHyp0/LJTh+HP7sz2S7Sy+VuoPjSFdDNxT8eFRu3vNFORlVFdDuA5m8GNGpinTZQTrmpYo8pypiNpcvSsc8k5cXEAlJB/7lI/Kzyvtf0ivb6qL9rWZ443lwYkzG1tR6EcAXwFbVN0caO7ErBYrpKXzPxSpWc7kzFBYm0AzRGlTdwIvpKeximok3X0QPRXAqJfSwdMisYgbPdbErBaG9lwv4nhhrRRo6KSxM4Ps+eijGxJEf43kOmhGm84KrsUtZZt4ekstRKTD+xgvYxQxmIk7bZZcR6+6m7bLLiPf28vKjj1KencXzPF7etInJwUGccpni9DSu4+B7HlooJAZ2oRCZU6ewczmiXV2sCPTt8UWLiHR2Cj380ktxKhViPT1c8dBDFCYnyY+PE+3q4n2f/zyx7m7K6XRtnapIF5jF5wtgty0B8NX4t1BY8txnJ+s3JlUt+q7vS2cdBAT+zZMCwuenpUvvOrJPLCFd97/+czGgu/bX4dnvS8HH90U3nc/IZyMUEdCui05aKZWINnejoNTfz8AozrUrKL4vxRWrDPhiQuc6knOuik7ZV9Wa6Zzn2ehmTEyhApNB1y5JN1xRa1T51qVXUs7OSiScqnPumk8E5od1+rx0WuVmSDEM6V4nkqLbrhqypebxKyWhvrd3CbLIpPFGT4FdkZ+OLRT4cERAeyweJC7IDa66aKnko5shsCsBvX4eTBP1hl8HS/Tp3tQ4immimCZq/2Ixgks0gKZLTvvsNNi2ZKzbtmjxzZBEuzm2XDdHYu38+TnQNDHVa2xGXfchMAyUaBztg78hZnqVsnwZgRyvpU1M8QwTRdfxxkelUOc44HsovYvw81lIL+Du+icpNJRLkJrHGz0lunfdoFQQmns+n8eyrJqxXLFYZMWKFRQKBcbGxkilUuzcuZNsNovjiGnb3r17yefzNeCdz+fZuXMn8/PzVCoVKpUKyWSSG264AcMwyGazxGIxxsfHyeVy7Ny5E6A2tm3b6LqO7zvs27eZI0d2sH//l/B9F8vKMTS0lSNHdjA4uIVKJUu5nKanZwVLl17P0NBWYrE2stlRYrE2du1aTzp9gv7+NTX6/ODgZqLRVgYHtxCNtrJv3yY0zaCnZwUHDmwnFmurbTs0tBVQGBzcXNu3XE4H22zGUzS2IqA6IMbiIx3vB5EO+gYEcG9EOu07EJC+AjCQTvv2YH0GAe3V8dYhkXDVMTYE2zxE3dTOCNZfH+xT3VcDHAP6+uvsst/6LfFfUVUpJF9yiUy5pZL4wvq+zE933ilF6EsvFTBeLAoZrlCQ7U+fljlMUWRqHx6Wab6jQ6b4qtdLb698XL/1LZGmrVxZT3jt7xet/Pr1cOKEQqVgYxdtGvsb6V/Tj6IpaIbGjU/cSN9AH2MHx7ALNnvu20MlVyE/mWf3PbvpuKSDRHeCUEMIM2aimRp9q/pQdVX08TGT5z79HPNvz+NWXMyYya47d5E+maZvTR/5yTx7H95Lca4IQHGuiKIqJLoTrL5/dS2CbaB/ANdz5XvMiJI0kyxtXsraRWtxfIewHiZqRHnm6DPk7Txj2TE6450MjQ5xLHWMz+z+DNOFaS5qv4jR7ChT+Sm2H9hOT7KHmBFjIjfBw3sfZrowTcyMcf8L9zOVn2J5+3J0RWcqP8UXX/oiRadI2SlzScclJEIJ8lZewPfCawJO/eBT2LgcjISsmx2Un+XZM0zoDsqnKHme0OyNBES6oekSAe0tK0TDfuh2Gc/JC8DVYmJQl30bmpaLeV3bgNDwQYoAeAKKmy4Xl3lFD4CyKTFsbjCHVY3p3IDplD4ugNdMSGfdrUh3Ww0JIJ9+RdY1LhFX9irtPnmO6OdL8//aCC8/ERzrDP07Xr0p4VaESp88R0D12/8AL94lhYPinBQIulcL+LbzclxVE1CdPiHXJt4LH/iGFAp+fBd8s1s6+J4VOOGb0vVf95RIACYPCMi3izAxKEULIwof+DqEW2DvZ0VjjxL8oR9EU2y+8Y2b+e3fXka57OD7MDDQz8c/voxt29Zx6lSaP/uzvRw7liKft+jvb+DKK7vZv3+UfN7Ctj1CIZ2rruolGjXQdZVSyeErXzlANmtRKFjMzhZkblFheHiMnp4kH/rQ+TzwwBoaG8MUChbj4zkKBZu7796N43jk8zYv7R3lj1d+mFWLLqZglYiGQpTsCl8MjOU+eskHWChmMDSD7w7/Cxd1LaXi2oylZijaJcK6yaLmLm5f+Vs0hGM8eN0foqkanckWFBQKlRK2e8a9/X/S5V3g/u7y77+YppTVr79eqOxnOuAsWlR3zXn5ZbmD6O6WEn4VRT/xhNwxhMMy+8di9UyaUkmcb+64QxD26tUCNoeG5K5ifl5u2BctkvZCczPEYvjIjcOxY7LZn/xJXWs3Oiq6vcOHpXG/eLEc5uBBuWGpmu3cdltdk37HHXLj8uijcorViJyODunM79olYD8alS57e7vUMqrm+Kpad6A/dQrm5qmL7pNxiIbquerZgqyLBLRqfAHXpl7PWn9nRMBHLCJd9upPyxHKe1uT/FSQzrztSFa77UA2X+/cViwB9WFT7kQ9L2C/SyWjqm+Ot53D3InD6KFIDczroQh2KR/o3F/ELqZRdaO2rq59fkXo8z54rs3cicP4rlMzPJs7cRgFFbucY+LIj9FDERRVY/Z4YIgWuNqrml4Dd65j1YHe8UMAQWSZW3MQv+Khh4h2deHZNlc89BCLbrmF0uws+ZERipOTHHrkEbInT+KUSpgNDcR7etBjMVRNE9dvINzYKF19x2Hu9dfRQyHwfV5+9FF+euedHPnGN+Qd8jxmf/YzzESCSEuLMBO0oNv7908JHd4IiWb9TIf3qqt8NebtTC16KAwn3oJMSrYrlyA1W3eMn52QbkpqFq7/LfnZ0iH7qoq8l/GkFA9mJ2WdbsDJX4JdQS0VUHwf17WYP/kK4WQbiqpJnrsmTuyKbqCZEVyrjKobuHYFu5gW53/XFodzVSfa1M3c8ZeDaDOPUkY67ka0ET0kBRsjHKfzgqtRVZ1Ycw+6GZGijxnGV1S6l13Lois+Ivr2gDZfZUaQz9UM2fx8VlzWB38s+pdKRXLZY3G8wRdRYnGhusfiovdOzeGNnwbTFBA+chIyKdwf/YtowsdOQ3oeP5upjasELuhUykJxb++qGcz5tg2KIsWDSqmmkVc0DX9hDgo5obMHeeaKGQLPFz17LC7fV46DPz8nVHbTkNeraaCJf4SfSQdFNw+/kId0Slzk81npWvf2o5imFC00HeWSKwTgxxIo/UvwDg6ixOIosQRKRzfu7mfAsYnE4ixbtoze3l4qlUrNWG5wcJDGxkYGBweJxWIMDg7WDOfK5TKVSqX22Pd9LMs6a5tKpYKu66iqWnOc7+np4cCBA2eN5/t+7ffBwcEg+11lYGADy5bdytq1D6EoGqaZYPXq+1m27FYGBjYQDjcQDjeh6xESiR7Wrt1IoTBLT89KDhzYzpEjO9i3bxO+77J2bXWsDRSLcwwMyM+1ax8SXw49Utv/7OOqZ+y7kXC4MdhmI5rnstH3uRUB0ypCX48jtPh24Fzgm4iJXR/UtjWQbryGgPpbEZD++TO26Qu2W4R065cEYy4JpthWpON+LqJp33jGvgkgacq8NDEhgS6zs1JU3r9fZF6xmMxdExOSpZ7LybxULTin0zKNj42J72ssJvPV+Lj4zOZywlRraxPd+tSUTNdVvfzx4zK35XJS5I5EhGh3//0ybYfDUuAeGwPF0DGiBvnpPDtv30nqRIrCTAHP8QglQsQ6YuQmcqzbvg4zZpIdz9K7qpfCdIHJVyZJnUgxsn8E13ZxLZfUiRQTr0ygGiof/NoHxZjO1DAiBqvuXUVmNIPv+gxtHeLoM0cxogae4wnry/GwchaqrqKhETNjHFsQ8D2SGQGg5JSYKcxwKnWKz/zoMxybP0ZrtJUTf3qCzlgnK3tX8qX9X6I91s54dpz7Vt1Hd6KbxnAjA/0DTOYmef7480zmJvHx6U50c3X/1Xxl6Cuky2l2HNnB1qGtaKqGoRlM5afYdO0mfN9nw4sbUBSFjngHjaEoyltbxURONQIquAlmo+Stv7w+MIrT6u7zR7ZIfjt+AOyHIHcCfFs+xe97QoB4eQqmng/c4QOjNz0q3fnKjADZttVQOC0AvzQF590FpWkpFqg6nH+PdPzNxL8Gz/FeAdlmog7iffdsB3gvANbxHsl8NxPy4T/TjV4J7oesvBQMGpdKV13Vha4O9WNVAb3cHcg4qiEUdTMhru5Xb4NyRrTsuTEB95E2iXNzStLBNxukM65HobwgFH3fhyvvEzr8lQ+ILh9g8mAQN6cLiL/uL6UzP/uzQP9+TKLgMidl/LVfkvNWdclxb19DtgDHj6dIp8tMTua4/fadnDiR4oknbiQaNZiZKfDAA6vp60sSj4fwfRgeHufCC9sAOHhwjErFxbY93n57nsHBEZYsaeQb37iZnp4E4bBOLmexfv1znDiRZvXqPhYvbuSpp27hvPOa0TSFzs44a9b0Mz6eZdOma/F9McX7rY88TYvZTHu8iXgoSlMkyXeG/4XdRw/wneEf0NfYQUu0EV3V+OOrPsyaRRcT1k16m9ppjTXy5tQxxtIzdDe2UbYttrz4XUbT07w2fpS8VcTzPUp2hbJdoWiV/9OC+Hep8v/G8i5V/t9hyQdg0HXlriGTEdS7erV82VqW3LAWixIoe8UVsq4KXl97TQD92JiU61MpuZtYtEhaBM88A6+/LsWA4WFBxk1NomlXVTmuaQb6YIWsF+NTt2t87nOC53fsEKP6Rx6RDvyhQ1JDmJ6WG5cHH5T1n/sc/+Y+F154Nv3vc5+TlzkwIA22iYmz6fL5vLzUzZvrlPs77qiP+bf/y0Wr6sNr9Hevfj2qSxVMn0lnr7olK4jDvKHXNdH4Z9PeswWhyFdXVbPix6cFsFc77L+qc/d8XNUPOqzSXbUCQ7hIQzt2uYBTKRBt6mTizR+TmTxKQ9f5tL9nVY0qXc99X4mq6kEmONjlAq5VQA8natpo3Ywy+Yuf1MbpWf4BrFKurp2OJoUSH+ipuy58P06lKDrppVdiRhvJnjjFW9/9Lpd+7nPo0aiAZziLyq6HwxjxOFYuh53PYySTRJqba9rtmZ//nNYLLwwygW3UgApcTqfRIxH0SARFVf8VnT7S2UksMF9UgEo6TaylGfXELwKavFZzHSc1B794FU4eFQM61w2o7X7wNyRdbU68BclmAfDJJllnB933wy8JwP/dP5V1paKY00Vi8n7OTMALP4BbPxV4HNjShS8XId4gnY9wFDfQhFbPuyqrr/48U8PeuvRKzFgTTjmPqhlUcnPo4Rizxw7RuuRKjHAsAPwevuug6KZo2WvvYYMkDpRy8ntVHuD7/2o7+ez7KI4LhTze3t1nZay7z/2zZKrHqrISBSUUki58RjTk7nP/hLrqGrwDPxXn9VAYb+/u2rrqeOpVV+MdfOmMca+DhiYpjFXp6KVi7Ry09Q+c9bufTqEkEpKdXs2FX7QkyH7/cS1/3X/rDfzRU2i3fFRi5hbmUBJJyVpPNsi21ez1/sUojlOn8ieSkMuJuV2ysZ4pH4vj7X5G9stmJCIvnpBiTSZdy3/3R08Fx/5YLRfctm1yuRxDQ0OsXbuWxsZG0uk0mUyGZDLJ4OAga9asCQzkYPfu3axdu5ampiYqlQqFQuGsbaampujs7MQ0zVr826+Od/PNN5PJZBgcHGTt2rU0NDTg+xZCOq+eVxFV1WumcaJ3d87QvWvBx8NFVXVSqePs27eJtWs30tS0VAp4wXOe5wQ/bXzfJ5sd48CBr3LDDV8FfDQthOtauK6NYUSCcb2an4Pvu/hGjGOqzpiisAoB7fsRAB1BQDUIkP8MYkr38eDvR0dA+/eATyDGdR41BTEe9e69itDrVyBd9Z5gXAcB7SHqBYNq3Nww0A8ssQQH3HZbfY752tekaL19uzDFfvpTAfJPPSVz0/S0gPcHHqhqz6VgPTZWn+c2bJDHl18u9eL16+vjf/ObYm5XnS9/VV8/Nga33HL2vLlhg8+554KXzWMVLMoLZcJNYeyizdC2IdZtW4cRMfDxSZ1IMfTlIQY2DBDvivOjT/+IVZ9bRWG2QKw9RmGmQP+aflxLPEHK6TLR1igo4JQcjJhRu7iKoeCUHMqpMk7ZQQ/rhJvCjA+Pk+xNkpvI0f7+dqYKUxxbOEZ7rJ1FjYtQFZXhsWF6k72MZce45e9uYefv7KQv2cdodpSVPSuJ6BFOpE8Q1sMU7SJj2TEu77qcidwEW4e2snHtRiJ6hLgZr617cOBBOmIdRPQI04VpOmIdIj1RdY4tHGPz4GbuX30/AF2JLiZzk3REGugJxeR7WTOl81yeEeCOJ/pzowHC7fJJ8S3pYPuuaNVf3wAXfzHQvxvyCfUqYKXAbJIxPFco8kaDPE69Bi0rZRwFKE5IVFysV9aV50APBfT3mIztBV31/JiA8GqRAV9Are/Jc8lz5HF+TEA2qhSiq3Fv/9Y2aqj6dS8A+kyTO6gXwKszmJUNouUsuQ4oQn+v5q1H24Jr4QvLwEe6/Z0rgmGC8XxXxjj69/CejwVfVAUpENgFOPAFuHqrvPZKFmIdwfHUuq6/PA9Df1bXv697KvgLD87dLZF3EhTL8l0YCukMDtYp7E89dQulkk00Wo17szEMDdNUkbRkD11XcRyPubkiTU1hQiGhwuu6wsGD45x7bjMNDWFuv30nO3Yc4dZbl/H44zcwOZmjq0tAvWTFa3iefIeXyw7hsM7Jk2k2bdrHU9+5CYsKIc1A13RG09N8Z/gH/PHKD9PX2InjOdieQ0gz5T7Kk3tyTVHwfL/m4fDfn/8Wu48e4IbzV3HPNZ8gZoTFJNXz0FSVVDFD2XE4p7nrP6Tm/V2N+//m8i5w/3dYSiXh3FVn+2hUgPfMjABxTRNHuM2b6243fX3S/u7sFNT8i19gXXopVqmEGYthvvoqXHUVlmVh6Tqm42B+/vNYmzdjmSZmNAq2jeX7mAcOYHZ318YrvOdSSnmXpFlGNTT27jfo6jc5b5GF5lpYikm5DMWURTqv0RB3aeowKZUghEXFN7n7fpPPfx4W91oYio2Bw/isyfIrI9x8M3zrSQtTtVE8l4lZg1zKZXTGpH+pSWenAPumJumEVMH9tm3w+DaLloSFq2m4vo+mauiFEoRMHNOofdHhi+mHh4+Ggn56Euecblx8NEC3XRidwlncg1s1fwlAu5YtoCfjNUM655xuXAVURcXzPYnnQPbRVBX9xDhOPIzb0gSqIo6grkM5M0UoGscIJdACUGZXCmihqJyfqoPnUUiPo4ei6CEBb55r18zriqlJRl79IQ2d59F10XXitxbchPt4wWkrqIqG5zpCIVbqBQzPdyksTBFr7kRBqNkoKr7n4DoVND2EoobIpmychQnCTc2U8xaRZAhd85g98g6J8y5ADUVRnQJvbN/CBX/4hxit3WDGcF2fzOuHSHS1Eu5ehFX2cfIpQs3tteda37uUSjpNbmqehotXoOsyWfr4WNk8qlsg1NCAZav4+QWo5DBjUaItLdK5PXZEuuauK9T3eDIA80HRqWpA51jSEe87D6KxwMfBFcAdTch2pQL843fFkC4cDQznPOmme54AeTMc6D9U2V8JCj2eLwWESkW6wpEYnu9hlTIoaKiqQSk3S7ihDVwPzTQppCbQ1BCuWyHW2s3Emz+mbekKzGgDE2++SDjRTqypDyOawK4IKHdtC8VXcZ0ybqWM65aJtXQHwEvHsywBU4qLpkdwSkUKqVHKuRnazluJ77moqoFuhFEsG3JZyGdQuvsFQdRAP8hNlzBFxLQtFhQ5LPxyWbrbuYzQxYO/KxQFf+wUJMQsTmlohMZmlMAE0Pe8oLkTzJ8++OkFvKGf1PXo+16sRbS5z/7jGYWF3wRNle58tThwzfXBh9lFaWrBr1RQVFUKBb9aSFj361Aunl0I6F+Mu/Ppf73tNdfj/uXWswoQ6jXXoyQaJAbuzON7LjS1kM9micTiciOlKJQsi5Cuo59ZNPT9mt+B4/sUS0WSsXjAgPAC3ayPq4CHwsjICKlUive+970Ui0UGBwdZvXo1TU1NOI6D6vuEQyaKD56iYAe+CRIR5FAoTAIK6fQpurouD/LXXXbvvocVK+6iqWkJjiO0W8OI4fsuY2MHSSR6MIxIzdiuo+NiQqFkkOnuAArj48Mkk300Ni5i1671XHXVPTQ09DM+foiGhn4ikWaef/6zDAxsJJHoRFUNbLvIj3/8ENddtxnNiPKSHuG4brIWcXdfIR8JJoExBGSPA5cH67NIJzwWPJ5DouAMBHgriCN9EjGcKwTjXB48bwT/TeoAfw5oRgB7FsmOr4H8AuSzMt1WdeV9fWcXix95ROahyUnxd6m6xmuagPjGRgHmv1q4/uY3hTbf0SFMtU2bZIo/99yzgX4oJN3+6n5PPinjPfGEdOmr67/xDR8jZKMoNpmpDNFoFKtoQQQMDH5y709Yfd9qsmNZ/u6Wv2PZrcu45albKJfLuLpLOBRmYt8E0dYoufkcnas70TUdV3FRUfHwoAJKWEFxFHJzOaLRKG7OxSk5RLojeIbH1MEpOpZ34JkekUgE13VxdRfHKRJSFSwPfj7zOlf3XoXnO7iKzp3P3c1f3vg4jlOk6Lq8OfMGa3quRNfCKLhM5GdojTRS9nw+vfuz/M0bf8MfXPIHfOvmv0D1Hcbzs1z8rRV8+PwP8+2bn0Dxbcbzs6StMiPZEVb2rGT9c+t55ugz/MutT3PtojU4voLjVojqJqoaEYA5OyQmdGZDAMzz8Nr9cOlW6cJrkdrfKDMvgdkM0W7Rr88OivY9eZ4AaicHrz0A7/sL+WTODkKoDeJLIP+2ZLZf/jhU5sTkLtIFVgZ+9jnRxldmhHJ/2XYwW+R87ALoYQGyiibfz4omz6l6QEPXg+/t4PukCpBVXapQdkHAecPi4K8I6VTHe8Qh3soLIK6OpRqy3veEWh/vRlzqy9KVD0x28WzwbCzbxyoW0eKteIqJ7zl4qBhaXTloTO/DTHZiJc7DshU0xcZzHVwlRNjwMctjYCax1AYsy0Gz5nFD7Wiqh23ZaGYYVVVwXQXT8DFzx7Ay41htq8WIt5xHC0XwPBXXc9GxsVQT13cZHpqgr6eBSEynuTWMqQuQXzXQg+8qFAs2RkglGtXx8fFcKOQdHn5oL1u3fwDTlHvHcsnFtnxwFe67bw9P/OUH0QwB0aoKmqJiOQ6GqouvkSsFh7m5PK2tcbTgbdJQcWxQDBfbt4noKiGtWkZUURSXbMWhZJVpi8dFKghU7AohIyJ3sr6H7SkYGlguZEoZGiMNmBqAio+L6ymoioflarw6cZxLe84nZkb+LdTx/9fLu8D9f3N5F7j/Oyz5PNbQEOWLL0YLhTBCIZiexmpuRkulsNvb0QAjm8V88EGszZuxk0lcwJibk+dVlRPz8zw6NMTGgQHOa2xEUxSOplKMZLOs7Okhms9z3LZ59OBBNq5dS38yieW6RAxDNLOKglIqETJCaCeOoQRtcL+rGzfZiHr8GOrYCH7ABFAsC98wUBwHP6BBK3Nz+G1twq6yDeJ6BeXUKdiyBX/DBuxzzkVVFbR8BmV6GsbH8Xt7UTZvxt+4ERYvwVNUnJKNjUHEcFA0Ddd2QdfRCxncaJT5Uol9QeepMcgeT6fT7Nu3j4GBAbLZLA0NDei6jmM7NDY11p5fu3YtTY2NNU/3M/dramqqvS2q7eBpaq2TXzWckm6SzwsvvMC6deswTRPLssjlchQKBTo7O9E1jZAh1V08X27aVQXXrjD19n66L3w/iq+g5AqBXr9a9QYUgog4HUXTBeRXq6blCsroNP6ZHX9ACbr+fn+XdMuD6Du/ygJwPTHe0jRspyxRcZ6HbZVw/Ch/+McmGzf6nHMO7N+vcOmlPomE0DcnJhS2boWNG32WnONiZeZRE+3YtsKhQ9Df77N4sU8up5DJKDQ0yIt49VVYucInEnHxXJ+Tp3U2bVJqN8bV9MPHH/eZnUWe2+CzqLtEJG5guDZKxRLWg6rUUwNAmA+GXBscV6QQ1aVcgdFpWNJTzxR0Pflf3a46lIIwJkan4Nx+kT9ULDE7PJNF4SO+B4u7BfQqMqaLj+e6YnJm26jhMIWJCYpTU7RffrmcaqmEapqomoZrl6mUUsTb+nAqFQqj4/ziW99m2W23EevtQVU1ciMjNUaCFjAV9HAIRdPJj41x5JvfrLn724UCdi6HkUhgxGL4rlszX1NVDdVzRedeKoqrvG6gVEqCqQ0DZW4aMvP4i98rxQtFZAIKPr6q1W8MXRdlflqy7W/+OH5LZ71wUs2FDPLbxfDCgJkJlF3fx7/p49DeHVx3v86OCUwDpbv+onTrDRMlnsBPzwv4XvNrUqhRFIlxm5xA/cBN4vSeFoZAreO+9jqUaBx397+cxTDAMGpsgrM77gm83f+CuvY6eS6RhHgCxQyLDKA6ZmMz3ukTqP2L8R0H8rm6u70uBTbFR84RXwoloTD+1Dh0dNfYF+QygcP9ddDYBK6LDaRyeXRdJxYOY2gqKpArlrA8j+ZkEsWqQC6Ln8+i9vRTcj00VUHXNCzPxfHymGYcx6kwPj5MPN5NU9M5WFYOx6kQj3eSSp1gcHAzq1ffT1PT0rNM8eRtEc+ESiXLzMybxOOdNaM504wTi7UHhSMVxymhaSF53YqG69qSMaxo2HapVqTMZsfJZkfp6V0JoUZymo6DuMoHBGR0pGeWQ8B5CQHaJnJLO4O4x29GNOpdSBe9hABxPdjGDB4HpFtshIcwiRQBimeM0X/G664A0azo1b/0Jfm++/GP4YYbRPpVBfLnnAP79sFHPwof+pAA67/9W2GfffrTAs6r7vI9PdKN37hRauG33AKf+ITsUyzKn8qRI1IAyGSk9q6qIgPbtEkYbIlEPRru5Ek5t40bpQAQiricLr7J5sHNPLbuMeZKc2wa3MTGgY0sii2iMl8h3B6mPFMm1B5C0zRyVg5NETp5SA1huRaaplGwC4S1MCWnRFgPU3EqNXO47kQ3mwc3s2H1Bpa2LKU4UWQqIsZyD656kPZ4O/fsuYeH1j7E4sbFhFXQ3DKKlcI3m0ANoeTegbe+LBnq8aXgWyiuja+a+MVTqMVx/GgvypHN+Ms2okT7pdGvaBTtAlEzjpI/gVIcx29bg48vhWnPRSlP4xtJfCMRGEW6+KiUnQqxyoSMefnjKJUZoae3rgkM284JPvRu0M0O/j5du+60XjVkw5ftPDfoUMepdXn9gPOhaGcYyPUEQFgPotNGBeRXv/uypwUUe2X5Xp3/GbSvEnp4lcKuKBKLVnVRb1gSnJ8UjJl7HTpXQm5EjNx+7S8gPwrDmyTbvPoams4NCs+qnIsWDs5X/5Vj3A+xboi01IE/CqTekfi1FRuDsRywC1hKjPmsTJ6RiE6hYDM9nSeRCFEqOWzatI8HHxxgyZJGNE3h5Mk0oZBOPG4yMZFj69YhNm4c4L2R16HtYn45AqOjWXp7kmzeIo7uXV1xXNcnEtE5cGCM3p4YS5a2UCq5HD48zqWXdmKaGpqmcOJEiq9+9SBPfP2DzJbmmMrPs6xjKWHdwHId3pg6xnvbzmGhmOWvXv4h91zzCSJGCM/3mcjO8t3hf+EPrvx12uJNRI0wru9RdiwKlSIxM4KiKES0MI7roRkKmqJScWzenDpGR7yZ6fwC720/J2D+KJi6SOWqne94KIamaqioOK5LLKSi+xkULwt6N75fEWCumICO4tt14oNfwVdjKL545fioKKVhfKMfxViMb59AsUfB6Ae9AxQTfAsfFZcIvhL6T9dxf1fj/u7yf2WxTJNfXnwxnxoc5JelEvOuS6W7G8c0Sbe0cOePfsQ72SzlxkaKX/oS89Eov8xk+NRzz/FOOEzZdclaFmOFAjuOHGHT4CAF16Xs+4zlclzS0cFcqUQmGmWsVJJt9u3DB2zP43gqxaeefZajCwukNQ3Fc1BGR6V9MDWFks2guRZqNAwrVqDMzaEUizA6inLHHWI2dfIkym23QaGAksuh3PYp4hPvyE1rIAhUNm/G9G00XLlx3LIF2tpQAkG7smkTiu+hHn+H0F23EZt4B82uoJ44hvEnn0I/fRwlHscNhdg/NERfX1/Nbdm2bTRNo6+vj6GhIXp6eshkMsRiMZIN4tCazWZZtWoV8XicimUxPz9PLpdj3759Nd1oLpejUqng+z5l32NkbAwr2Hbnzp3k8/mau/OqVavQAz23oigcPHiQ9vZ2VCDk+qjvnEYpW0JZBhTLQXMVepZdi1JxUI6PQjImZmKZPJQtlGwexfUwQjF0zUS1XLR8WcaxbJSRKUjE5Pe3g/Ghlk+vjEyKiV6gv1dCZpDp7UPJQlFVyYVH8kBNI4LrajzzjADn8XGFri4IhxUqFYVoVCEer9I4FWxXx2hs5/RphbvuEp3myIiC56lMTiocPw66Lvu0t8P6uxSOn9DwMNi0SWHHDrk5VVWJ99uxAzIZha1bFck6Din4RlRc76v+A05Aw6t2fE+M1YsWuYIAeM8Xk8GyBRVbwL7tip+B6wYtAF0MCt8+LdfHDxzfVQV6O2TskUnpSgfXk5HJulnd4m6RS2TlOG4mi5XNYhcKlObm8BwHp1hEM02azjsPO58ne/o0C2+9JVp/z2PhjV/g5Tx820PxVX7xrW8z8qMfceSpp8Dzccpljjz1VG1duKmJ8vw8hx75AvnRUYqTk/XtfZ/SzAxvPPkklVQKoObsf+jhR8iNjQmw9H2UXBpOvIViW1AuoeQzKJoGLe3wnosDIOeLPj2bCopw0yjHfoHiuiiqIqD98Evw7Pclpq9UQDl+RH7OT6P83V+CY8uNteOgBGaByq7vC/j0PJRyESWzgOI6KLOiW6WhEe3GjwTZ6pYYxUVjaDf8BkpzqxQBshn80VOoVw2A7+ONnIBkI2r/YpSmVrSbflP8C3QddeA66ZSv/QB+1Zwz2Sh58w2NaDf9pkTDWRWh4uuBaV6igeodk5/NoF51tejlLQuloQkUVfwbDAMllsB97p8gNQ9WBW/0pDjV+4ipnq6Ldl8N9qmUaxny3uCL8jfpeRieR1tzM02JBCFNRfM8/NFTJOwKLckkqu/VvQJicdzn/plwKY9pmPI9o2pEzAbS6ZPs3n03XV2X09KylExmhD177sO2i4CPYURZtepe8vkpPM9mdHSIdPoUO3feRiZzmmJxnvn5YxhGlN7elWcZzUWjrbhuhZGRQebn30FVTTKZ0+zceTup1Ek0zcQLWACGEREmEWAYUTo6LsFVNI6rGvciXfRu4G4EgJcRUG0CxxG6+yRwAAHsrQjg3hH8nA+ebwc+G4zRALwOnKAO2E3EoG4SaPyVMRykAz8KvAJohsf99/v8/OdCpnnpJQHY0ah0uPv7hRTX2+vzoQ8JgLZtn/374b77fObmpHi5ZIn4wMRiAtK7uqCvz+fWWyX8ZWZGvlo+9zn48IfF66XKLjt9Wn5/4gnRxpdKPooCIyM+ExOyvr8fXM9F0StsHtzMjiM7yNpZNg1u4pmjzzCaHcXTPbwWD0VTUNtVBscGOZESKvpodpT54jzvpN7h9l23cyJ1gnwlj+M5aKrGSGaEe/fci+d7rOxdWTvG5qHNVNwKoa4QmwY3sePIDrYc2IKiKjx//HnCehgND83OCejQYyiv3o1SOAnlSRjZgXJkE4pbQpkdkqK/qqNqEWi6BOWtbbLNW1vBs1AUFdXJE3fSKL6HUpyE1pUonoVanpV1qgGRThQ9joqPVjiJduh29Nw7xHQT5chmGdPOwJHN0jGvasJR6pFpni2PFfUMPfgY4AcGcZaAWbcihnCeQ819XlEEtCv8ipZck641auBWX5X1aRDvgvykUPT1JHRcE8xdJ4OOtytmbdXc8sKkgP09t8l+Whg6rpTzHt4ktHTfkd+rOeedV8r5OCUxf0sdDSLVTso46WNyTsOb4fgzUJiS7rtryXXQI3Ieh4JzyI9CJQPpY1iTP6fsmPi+dKBt28MwVLq7E3R2xnnssQOsWdNHOKxTLjtksxaLFjXS1BQmk6mwdesQO3YcYdOmQUrtV1PRmujvb2TFih42BxnpmzcPoqpqjW6+fHk7kWiIUslleHiMSy7pYHq6wJ137uL06SyJRIiBgT4UzWemsMB72voxNA3H93hz6hjNkSSKovCdQz/goq6lzOXT/Gz8KAowm0+x9/jLfO/wD8lXiszkF6TbfUbTVlUUVE1hujjHF5//FqPpad6cOkZ7vImwYdIcSRLWTebzaYp2CddzyZRz2K5DQyTJtp/8NZPZOVB8tu79HprioriTYB0Dv4KiGOBMoUzdheI74IxCcQicEZj5DIp9EpQwKBEUNwN6O4o9Ajgo85tAb5PnnUmYuh2cSRQ3heYcx1C8/2+w4z/s8m7H/d9Y3u24/59fspUKn/rhD9lx5Ai3LlvGI9dcg6ooxE2TZChE2XF4eWKCxY2NtMZizBWLPLx3b237L1xzDYlQiLhpMjgyQk8yyXg2yzWLFuEB78zPs3VoiPtXr+bc5mZu27mTh9aupSMWY6FcPmusR665hvNiMbR33hFA/eCDsCjoLJ08KYB+zRpx2Hn4YdHPnz5dz9E5dEjubC68EG69Ff/b30Y5frweyF7lBp7JFay2KP4tQXtVDFjNybn8cipNTVQsi3w+z9DQEDfccANALXJJURQmJydJJpMYhoFhGJimiW3b7NmzhzVr1gT6UD8wBPPZvXs3K1eurEU8DQ0NsXr1amKxGLZts3fvXo4cOcKyZct4//vfTyKRwHEcJiYm6OjowDBEg+44Dr7jkpycF+B30bnSvR2dOlsXnylI9zdk1uPnHBeMgMKcC/T1x0agtxPGpsR0ryEuY5yakPHbmuA9i87W2ZsBWMEXoPlvZdhXo+9MHQed3S9odHWJo/9554lTsmmKlcJ994kX4tKl9YZpNbqoSus0jHos0vbtZ3ebbr1VtKHHjhF07sXU0HFE9RE0ppmYEDD/xBMQj7poqo9SqsD4TD0dAF9eK8jr6uuEcCiIOFPl9eqaDH5qQq5ZWyOgyPM+0pHXVHn91et2br9cc9MQE8MzO+66DidG69fNMGBsCrutEUeF4tQUb333u1zwh39ItLMTzTAoLSwQbmmReDhVJTc2Rnl6mpbly7FyOcxkEiuXwy2VpLv+qU8Ram1FDTrR86+/Tri1lWh7O6986Uu1rPsrNm5k/o03aAnYOYe/8AVO7dzJNd/4Bk3vfS+aYXD4i19k5Ec/4tee+iadyy4Ug7dcWmQCu5+GG39btP92RTwD+s6Vm08jJDekf/d1uOGj4hZfLsGPdsDvflqMAatxe22d9YJGLgPP/DWcu0zi+nb/A9x6uzjy7/q+HC+XlueqcgQfGD2Ge/5ynEoZ0xT5iK8qEgunqiiejy/taoCzo/Z8D19R5Z7bp96hX/sBlMbmGl0dRC6C76L4Cqpm1On+Z+xDk1D9q2OSOns8H7+um29oxM+k8f7uOyjL34d6/a8LywEk/SDwJPGnJlA6A7W170E+Jx33tR+QGMJCTiL6TOmE+ZYFlTIYJv7sFGrfYjFoxEdRNdzn/rnOJLjpN+X1ZdLYTQlyuXEsq0g83oGuhymVFiiX0xQKMzQ1LcV1K0G8Wy+GEUXTTF544X6OHNnBsmW3csstT8k5+FAqLWBZOQYHN7N27UNEo23s2XMv1133JVRVwzRjPPvsnbz11j9yxx2vB7nvKcLhRnQ9TCp1imx2JIiZC1E2ogyqGsuRrvoEAsoV4MtILNt7gJcQQN5IXfteQfTpM4iZ3Q8QUP91BPQ7SBb7FfLNwBTiOP948NgADlGPktuIaOsbENC+HGgpVKhkXVx0wkkDx5Ean235kjbpKaKmCWRbug6e42CVfCIJDcdV8G0b1dBFwuGBrvmUcg6hiIKv6Gi6fCXpmpjRbdqs8NBDPksW+ziOgqb5uJ5SO4Zh+Ni2gqH7ODYBPdcl5y6gaR4+PvftuY9t67YxW5xlNDNKT7KHrwx9hW3rthHWwwyNDtER66Ah3EBbrI39I/tZ3beaO569gx1HdvCJ5Z/gyZueZDI/WYtXM3WThJlAVVROZ06zad8mHlr7EEualmC5FidTJ/ny0JfZMLCB9lg7cTPOyfRJliQ6iZdGJY/8gvthbj/M7ocrnoCX74JlGwUQWmkwGiVy7chmWLYBP7oI5ZW7hDqOL5T03Dsy1oUPQuJcyJ+QDPaWlUFsWQnmhyHaJ5384T8UQ7n+W2HltyF3XEzmLn9cctateWi+SoB1w5JfyUpfLJ/GahRaoldo5tVs9Mal8mH61ai06uLZde15ojfQz8/Vc9jP3E81ztahV3PY3TKEGqUwUJwWJ/VDm+t552fmn+thGHspMIJLCiBvXS4meGYDzL4mHXQjCt99T10Tvue2MzTi34TsiBQv4j1B9vpGaDpPmAeKJoWL4U1w3ZNQmsOaP8Uvcxew6cuHuf/+1ezfP8qNN55LqWQzOppl5coewmGdUsnh0KFx+vqS9PU14Hk+ruvjut4ZHfe19PcnKRYdstkKnZ0xRkaybNq076xc9Pe8pwXXFYbj9HSBWMwgkQgxOZnn+eePc+jQOI89dgOGoVIsWySbDIpWmblCmu8d/iGfXPEh5gppLus5n7HMDCHNYCwzQ1MkwV+//Cx/tPLDzOQXaI010BJt5CfHDvPrF15NxbXx8TFUHU0Vj4Hp3AKHRt6kp6GdCzuXcmTqOBd1Lq11tBeKGcq2xXR+gfZ4E98Z/hf+aOWHeWXsF7w2/jb3/drv85N3hvjYxatRikMCuBe2Q8tDArxVE9QkTN0BzZ+T53I7IHErdD5FzeHDK4AaCX5PAyqocZj6U4hcBrHrQe+CqfXQ9XVQE/xHW96lyv9vLu8C9//zS6FS4Vg6zeZ9+3hgzRq64nG84LM3lc+zdWiIDQMDOJ7HVD7P5V1dTORyZ61XgMl8npU9PYR0nYJlETWlK3PHs8/yN2+8wa3LlvHNW24BQFcUHM/DB0qOw/179vDZVavoisdpdV2MKliugmeAAweEv9fYWA+qLQeRJVV01x1QYu++W4B6tfXqeYLsPvpRePrpukZ/xQrR7TuO3BENDoppXhX9nXuutD+Gh0Xv73k4nofd0MDo6CixWIyWlhYWFhZqYLupqYmvfvWrnH/++axbty7I1bSIxWJUKhVc18U0zZq5VJUib1kWlUrlLJBeLQqcuW1DQwPZbJZ9+/axbt06SqVSzTCqsbFRMJDtSvf73H4B31UAaTkwFpjbqaqA6YDWTn+X3DGeGJPs+WqWvBVsMzpVp3+fCdQrFiRjNY2+7GPLzyrAv3KZ/D6fhguXyvkE2mYXjaKl1cII1qwRGvuWLWIYuH+//K/qLbdvl0CCqnngOefIfpdddrYB0ze+ITTS++6TLlQmI12jQ4fk7Y9ExMfAsqS7NTUl9FRdh5Yml94uX67dkp6A7hcUOKqu755fNyTMFSAeqVPjoSY7wPProDwSqj8OmUG8n1Lfz3PB8WTb6uV8ZwTmUnLdGuK198PxXDxV4eUvfpGW5cvpXL2aaEcHbqWCGgpRGB3lrf/xP8TwLxzGKZVIvf02LRddJF3jwGBS0TQ0w8BzHEpzczUqvBYOY8RilBcWKE5O1sD6mXT5UFMTr375y6z4whdwCgW0SITi5CRHnnqK1V/876jz0wLWP/pH8vl4eZ8Y+/2XO+F/fg0+9ikR+D7393DDx6CxGV4ZFF+B3/tT2ebwS/DFb8t1igRmjZk0PPu3AuKb2wWM64aYAn59E9z5EPQtlWJBOCZVINuSNIDd/yBgvrUTV1PxfLdmuhht6hYPBt+nuDCBboZxrBLhRCuOVcKpFIk2d4PnUspME23uwfcc8MSDAlWAve972OW8GAMueR9mrBkFH6dSwvNsVNVA03Q8q4JqhkE3mHhjD5nJozR2X0D3hdfilvPkFkZp6r4AUgtCsV/1fgiHxX3fcYI8+XSd6h+N4j3/Q+nkxxLB32pJPuTJBgH4iiJeDUEQuBIKjN0qpbPXeS7ucz9Ave4mieSrFhoGrqsb7SVilLwilUqGWKyTTKaepV7NYfc8l6GhrVx11ecoFmfp718DKCwsnCCfn6C3dyWKojM2doDu7ivR9QieZ+G6Fr7vMTX1GgsL79DXt4ahoa2sXbuRaLSNyclXaWjoI5MZpadnJSBUelU1cF2LcjmNbZeItb6XE7pJDAHmheq8BywgmexrgZOIVr0X6Yw/iGjfe89YPwFcggD5LcE2rQj9/iqEOp9GOu8tweMSkKKuky8iNPww8A5wfrbCjz71Q/rW9NE30EcoESLcFKacEvM3VVN57tPPsfre1XiuR+M5jfiujxbW8GwPVVfxXI/SQgkzZqKHdYlZ83ycioPv+ky9NkX3ld3suW8PV3x6FcmlbWg4vLXjdRp6G+hb1YePT2G6gBEzcMoOsdYYxfki4c4wGS8TfKX53L/nfu5bfR/NkWbenHmTgf4BLNfizl13sqZvDWv61rB1aCufW/U5msJNFJ0im/dt5sGBB1natJS3599m69BWHr/hcWYKM4xlx1jZs5KQHqJklwjpIRQUZgozNIYbSZVT5Co5OuIdTOWniBpREmaCN2beYFXfKikIdC6n6fX76uB5+SMCjqP9ApxjfQJwy7PSbX75rvq2VzwRdLQb6hTyw3fWn1/xlGjHw22yf7RXQP8Fn5PHbQNi+mZnZQy3FBjQiX6Y0adhySepmcqdSWsPJB/iZq7V5DuyzXjd+E0zpItezT5vXApOFZD3BnrxAPDaBenOV7vxlazs79oCujXz7LEalgpwd4pyPnZJ5FiaKbT2KoC+4l4ozkjsWm5MqPI9a+V4xWkB3ys2wPig5J9f+yT8eL3Q7ZveI8c8tBlWboDkEtB0KSC8uF469+dcL4D/xTvhivsE+IebQIuClSHvRPmj2/fUjNkeeeQa2tpiDA+P0dYWY/v2A2zYMMDYWJa2thhNTWGKRZvNmwfZsGEtsZhOKKSj6yqu62GaGqOjWbZuHeKBB1Zz3nktVCrSVf/oR/+Bp5/+GH19DYyOZujpSbJlyyBf/er1zM+X2LRpH/ffv5qOjhhvvDHDwEA/ExM5es6JMptP8fWhp2vmbQ9e90m0IAtdU1VCuslsPsWB06/z5uRxHrzuk6iKStEuc3TmFO3xZr49/IMaqO+IN9MUlc75ve//PdKlXPD8b9AWb2Iun+bbwz/gUys/QsgwiIdiHJk6zuee+SrvX3oFf7L6ozieS0eihajuoGPJZ2x6vQDznp1g9ML8Zmj/KrgzYE/U17VsBGMx+Jb8n9kA7ZtBjckXaXE/GH1gLAIc8G1hTADoLUKf/w+2vEuVf3f5f76oqkp7NMrjN9zA0qYmCoHhUd6ymMrn+dyqVYxls8RNk+5EgqlcjqXNzTx1yy0samggaZokQiFW9PQwPD7OqXQaH/jUD3/IiXSabevWceuyZWxcu5aSbXP7zp1kKhVGslnuePZZ5opFnrzpJnoTCTFWq4au79wp7dTZWcmzWbNG+H7ptCA1TZMbcs8Ti/hqzk08Li3Wri5xuH/pJeEg9vWJQHDlSuFL33KLIMGq5nV6WhzzzzlHigVLlwqCXL9euvKeB4aB/uCDaI5DMpnkwIEDZDIZ8vl8LV4J4Pzzz2ft2rWYpkk+n2fv3r1kMhlmZ2cxTRPDMMjn8xw9epTBwUF832dqaopoNMrAwADLli2r7a/rOs3Nzdx00000Njbi+36NXm/bdi2iad++fczNzVGxLLK2hX/eInmD+7ugOSkdylGhumPZQrnWNQGJvZ0CwB1XnndcoXSXgu5w2BSwXzXNMXTptKtB59gnAJR+0GrS5f+5/dL11zTpWq9YLqDdtqUrCUxOy2U+eFA67b5fjzJ64gn4/d+Xt8P3hVTx+c/LW/Pkk/KxeOcd8VY0DPnY3HqruC2XywL+x8bqsUr33CMdp7Y2+ZgcPiwAvlSSyKX+fikI/HCngu958pptVwC858l1cT2hw58Yk+uYKwilHkWuVyYfXIegO39sRE6uWvCoPlZVuba2A+8E9Pl8CV4+Io+rS1+ngPaQKSBeU3ENjfzkBHM/+xmX3nsvrZddxhtPPkl+bAzVMMDzKE5Pc8lnPoMWClGenwdFoem883j50Ucpzc6iRaOk3nqL4sQEh77wBUqzsxSnp2m77DI00yTS1oZmmsS6u4l2dfHyo4/+K7q8oii897/+VwBKc3O8smkT0c5Orti4UeoOqVn4yB/ItfiHb0vX+6N/LDeGN31crslzfw+vHYTsgoDvVdfBJ+6S63nz74gDf7JBwObf/aVE7BlGPUZPQbru3/8G9J8LX/qedN+f/g7897tg9Jh8blUNXvhnKQQ89/eyn6riOhZOpYAeijH+xgtU8kLVjzV1oRlhok1dqGYYTTfQQxGsQprJX+wl0tiF77m4VgVU8BSf8TdfxCpJ7Fs18tCplLBLWcbfeAHXKWOX8mhGiIm3fsrRwb9i8pcvoSgK3Rddx6IrPkLr0itx7BKu4mFEG8UUbvBF0dgXcuDYuDufhmxaCo6GIUZ42TRUKkKHH9qLYpqih1+YEwM/TcMbOy2yhHwOb+9uyOcQ4ODKusGfiKu9Lx4D6pr3S5Z9ah50E+2Wj6I0NUsufSyOq6vkchPs3fswmcxpstkxjh59hmx2jJ6eK8lmxzHNOAMDG4hEmkgme9i16y5su0hz8xK6ui7n+efvw3GK9PZeRbmcIpU6zrPP3kEmc5rJyVfp7r6ilv9ejY7T9TD9/WvIZEaJxdoZHx8GVHzfI50+ze7d92CacSkcqBpRBEgH3tTEERA/j8S5OQhYb6NOa98SPB5DNPFjwKpg/y3AM9Q17KuBgwhdvoJ01YuIEd1hBLSHEIq8DkSpd+gNDQY2DLD0+qXkJ/PYBZvx4XHsgs1z658jM5KhZ0UPg1sGMaIGiqbguR4L7yzUss7diku8I46iKaROpDj90mnSJ9P86NM/Etf15e2U02Vu/NqNtCxOMj10nMyJOZZ9dBl9q/twLAen6JA6kUJRFJyiw87bd2IXbFzNZSI3wd2772YyN8mKnhVsHtxM3srTGm2l7JSxXIsHVj/Ax5d9nJgZY03fGr42/DXaYm1s3ieU9y2DW/B8j+5EN49c8whRI8pEboJLOi7B9mxcz2UsO8ZtO2+rOb0Pjw+zUFrgy0NfJlvJEjfjNIYbiRgRLum8hLt23UVvshddj4iOvf9WuOghiPZAbLGACKMBcsckCs0tStd92YOy7QX3wvwh6UQ7eajMyzu8bEN9LN+XTvtb2wW8BzR43touOeqqLt3K/HHZP9xOzand92DugDxv5eT7PD8ubuqaKc9nTgUsHK1u9KaFpRPvBPRxn7Oj0jzvV+LYbJj5GWRPBZR6WwC35woYz0/IT9UQsJw8B9ovC/T2vtDaC9MCujU9iF4bkgx0PQIf+KZsG+0Uh/VIq3TzrZwA7ENb6lT5/msFwOthWPctaDpfXmvTedJ5bzhP3Oz1iPy/ehv0rIGhhyFzQkD8oc0S3/bieikQAGYoxMaNa7n11mVs3LiW5uYIkYjGypW9bN9+gGeeOcrYWJYrr+xhdrZAW1uMzZur9Pd9NDaGef31aQxDo1RyMAyNrVuHeOaZo0xO5nEcj9On03R1xfnQh85n5coeNm3aR1tbjC0BjT6Xs9i0aR87dhxh69YhNE3lsss6OXFC8tkdC+KhKH9w5a9zw/mr+NRVHyGsmzz+079FVRQiRoiJ7CxfH3qaS7vP555rPsFYZoYv//h7xMwwl/Scz7eHf1CLaGuMJPj28A/IV4rsPnqAglU64/l/wVD12uOp/Dxl2+JLL/4P2uPNbP/QZ/nUVR+hNdZId7KNqdwc84U8vu8AGrQ/DovfguhamN8mIH7mAdC7IToAxhLo/EYdkONJIaf9UXBnobgP/ApE14jGHQeKB8GZCjr4if+QoP3/1/IucH93+b+yuJ7HfXv28E9vvUXFcWiLxYjoOh2xGD3JJNsPHKA3maQnkeCcxkZ6Gxo4nclw286djGSzdCYSFB2Hu557jrZYjJFMhnS5XNOyRw2Dp265ha5YjPv27GHHkSPkLItN+/bVtinaNjOFAiFNw/R9aYH29gpoTqWkO+77ArpnZiSg/Z13hDM9Owsf/7iA66EhQWaDg2LBu22bjBONClp75BFpqW7cKAjv3ntlW1WVdutdd8l++/fXg+TPDHRXVZwvfxlHVc8CzD09PSxbtoyBgQGKxSK33HILTU1NKIpyVt5ye3s7uVyOnTt3kkwm+djHPsbatWtRFIXOzk4mJiZoamrilltuobGxkXw+j6KI8/Njjz3Grl270DSNtWvXsmzZMkKhUO33gYEBCgXpJ5WtCpbj4Ft2HVxrmoDA5qT8nogJ6LRsAdIhU7ZrTtY11qNTAlZBAGauIKD1+KiA1DPp9p4n671Af+f58jhk1gFqvigA9dQEWA4KEI3I23TRRUJXv+02ecueflqo66dPi1phclK65Q88IIdYv15qL1/+Mlx7rRAjFi+Wt3hwUDrt+byMpetCxti2Teo/d98tdZrly0UZMTUl4+i6FAnePKLiouFr6tl6cz0wQhudqq8zdDkh15VraRgCzi1bXutsSqQGhl4fq/r4V8dKxER+0N8lBYBSRa5fQ7z+vGXjFUoUpqYINTWhGQZvffe7NTDtB0730Y4O0u+8Q3FyktefeILS7CyKYZwFulsuvpi3vve92rq2yy6j9bLLeP2JJ8iPjDD7s59RGB8/C6y3XHwx/R/8IMtuvx3f9/nlX/0VeB5vffe7nNq5k/L8PPNvvCGfu6Y2ePrb9Tz73f8gF7lcFE23bkqs3p9shKZW6ZjPz8DfPAHz09JN/90/lc9ToFlnYUZA/PP/KM8TmNGt+4gc5/vfkH0/+kfBuG3wP/8cMgvwW38If/oF+MR6PFXSETTdJNrYyezxwwHQLmCXs4y/+QKeZ+NaZeximum3h1BUFadSINLYiV3OMvHmi3ieTTE1hV3OEWnsZPbYMKqq0XbuShq6zifa1FUD8XMnXiHa1IVrV2g7dwUNXefTecHVWMU0E2++iBFJYEYb0ENRjGgj0WSrnOONH0H9nT9C7V0kkXmrrsHP5+S6ODbegZ+iJBvF3C7Q16Nqkgff0Y2751lwHNQ+oeX6hXx9DMsSnfzQXtQVayR+0HPFl6KhSbr72TRYZXHbT81DIoG7+1/A92qAenBwMz09K/jYx54mmezluec+TTLZSyLRS3PzucRibQwObqGnZwW53AQ7d95GLjfBihV3kctN8uyzd2DbBbLZUY4c2cGBA9vp6VmJYcRq+e/V3HZNM1EUjd7elRQKM8RibTz33Hry+UkxpOtZQaEwza5dd6K6FkXfZwgYQWLf3kYM6ZYjWvMKYhw3i3TRbw0eNyGd9k8HP4MeKhuApxG9/G3AsWCsMQTsTyA6eg/oRLTzJxBAf1fwuxaM6fjQ0N9AvCtOz0oB6LG2GINbBjmy4wiDmwdZsm4JazeuJdGdQEGhkqkwtHVInt8ySDldxvd8NENjaOvQWfsPbR3CjJuYMZP5d+YZHRql+4puGnoayIxm2HnbTrKjUmxqv6gdK2exb9M+juw4wr5N+/Dw2Dq0tZZZvm7JOv7b2v9GX7KPvmQfIT1E0SpyXst5TBWmeHjvw6zpW8O2ddtQUNi4diM7f2cnT970JLqikzATtMfaURWVNf1rmC5Mc/fuuzmdOc1kfrIG8nNWjhU9K1goLfDV679KZ7yT3mQvc8U57tx1J1O5Ke656h76E13EK1MoWkS651oY8ifh0KegNClu6lWwfWSzdNy1mGxbnhG6ux6F0gS88bAYukUXSdfebIW5YclAX7ZBOuxngno9BrlT9Rx2LSQA/pW7oXAKjARc+Q0B3lpIIs6Si8AMKOaeLYZzVV17JSvd9qq+3YwHYF7kNZIbHnTp4z11IK9oZ/yu1kG9756tnVcUKSJ4TqCxd+T7UwsJQI60BWD5tNDf8yNQTsELt4vePdkH4VZ46T44vQfsoBix8iGhwK/cCOFmiLbLeYSSYMYEuBtRAer8iu5ZD4vJ3dEdUgBYtE668qU5KQCcfh5mXgUrS1trmMcfv4H+/iSpVAnH8fE8n40b1/L00x+jtzfJpz/9HL29SUxTrQH9hx5aSzis09ubZP3/h70/D4/iPLOG8VPV+6JuCaEFbexgzOaVVTJewAQbZ48mCTMeTxbbGZwE2zGOwRk7bwy2wQuJ7YxDNk/WibEnGVuA8RZihFjMjmUQIAFSL5K61Wt1VXXXcn9/3NXdIsn7++Z3fZnr+95M+rr6qq7leaq6qno5zzn3Oat3QFF0OJ22S9rdffd2AMCkSVXYsmU5bDYR69a1IhbLYd26VrS3z0Qw6MJDD7WWBg+8Xgc8Hgc2bmQwf+j9CDwOF+oqxmDNks9jKJuAQaZlSOeGZhj40X4G2i+9/zoAwCbY8MANtyNXUJGU0/ji/I9j+fSF+NL8jyOlZPGlBZ+A3+XF8ukL4Xd58aXi+gWfgE0Q8aUFPD+rfvIloP+KhmloDNRA1QtQ9Dx+tP938DhsHMkp2JkxF4Msfa/dzJL46rWA4ANMBSAFMGWU0gPg4PvOSACCh6X2Q/dwe62PJfaOekAbAAP9/6GPonv0357lZ2NjI/3t8Zd95DWNIpkMhdJpOhQOU/u2bXQsGqWkLFNHTw8dCIWoo6eHYpJEQ5JEKUWhVa++St/dv59Ox2KUVVU6HYvRd/fvp1WvvkoxSaJIJsP9DA7S2XicErJMWVWlSCZDq159lULpNB0fHKT2bdvo+OAgJa31x6JRGhgaIjMWI2pvJwJ4OjxMlM0SpVJEsRjRqVOXrk+leHrgwKXT4vrR/d1xB/eVTBKdOUP0wQfl9sXt9+8v77e9nej4cW6TTpOazVJPTw9Fo1Hatm0bRaNRisfjJEkSxeNxikajJMsyqapKqqqWthscHKRMJkPbtm2jRx99lLZt20aKopAsy3T27FnKZDI0ODhIPT09JEkSSZJE0WiUXn31VcpkMpTJZEiWZYpGo6VtVFUlRVFK64r9ybkcmWqeqFAgKmhE2h89szmi7nNEaYkoniRKZ3m+8EfrMxKRmudncfvuc0S73+d2xe2yOZ4fGOQ2xbYDg/xa0/60ffc5Mgsa5SSdIhGiSORPL+kfX5ZUimhoiCiTITp2jJedOEGUTvMzleJLVbxkAwNEHR3l5dHopf19+CG/PnOm3N+xY0R51eDzN/pcZHNEOYXPRfE9Ft938RzlC5e8v9J8NvenfWnan/ZVvD75QvnaSHK5bU4m6j5H2kiSEqdO0d61a0lNpylx+jTtue8+Svb0UEGSKJ/N0p777qP4iRO057776JeXX0577ruP8uk07bnvPkoUt5OkUttET0+pXXH72PHjtOe++0hJJHib06cpc+ECKSMjpKbTVMjlKJ/JkJJIlPqRh4dJSSSoMBInenED0ReX8zRykejCGSI5RxTp52Vf/RTRUJhIlni+7/SlbXJZnr79O6LzZ/h1JlXe5vh+ov5enu/v5fliWylLlJMu7U+RS9vrcpaU7AhlhvpI0/Ikp4fp4uHXSVNzdPHw63Si46k/P5+XScmOXLIsl4jQxcOvk5KNk5wepoKSJS2vkJaXSR/Vt5weJk3NkV5QSNfypBdU0gvqJX3pBZU0a7mey5IR7ift1V+SkUmTqapkyjnSz54mI5MiU1FIP3OK9AOdZMSGeH1OIkNVyBgMk37mFJlyjkxFJiOdIv3Mh2RKEhlyjvuMhslUVTLiMe5fUciQc2QW96UopT61bT+jwmNrSe/pJjMnkb7/PVKzCYpGj9G2be00OHic8nmJFCVF27a106OPgrZta6dY7DRlMhFS1QxFo0cpFjt1yfpcLnbJvCQNW/2dIFXNUjx+liRpmFQ1Q5I0TIqSomj0BEnSEKlq9s+2H72PeF6idiI6QETtxH8k2onoQ+sZI6Ks9UwQUYqIkkQ0bL0e3SZCRM8T0dCfWfeh1SY+avmpP7NN8XWxfTStUnYoS9mhLMkJmaLHotTT0UPRY1Ha1r6NBk8MkppVKR1O09k3zlJrGGsAAQAASURBVFImkqF0KE3hQ2Ha1r6NoseilIlk6OwbZ0lNqzR4fPBP2itphWKnYtTT0UOhAyFebm33KB6lbe3baPjDYcpEMpQJZyh6tNw2o2ToaPQotW9rpxODJ2goO0RJOUnHB49T+7Z2Oj54nCRVoqSSpPZt7YRHQe3b2ikhJygpJymjZkrbHgofooScoJSSonAmTCO5kUvaDEvD1L6tnY5Fj1EkE6G0kr6k/fHB49TR00F4FNTR00HHosdoIH6KaO8qIuki0Z52ovgBnv4SPJUjRIlj/Dp5gkjLEeVTRIUsUT5JpEk8P7pN6sPyayXG/csRonyaSE0SpU/z9I/b5ZN/tO8h3nc+TTRymii0n0gvWK87eVrIEeUlIl0j0vNE8ghRqIvXGRqvGzlNlM/wOj3P2xoa9yUniDS1vGx0G00tvy5IPF/IXbp/vcB954aJXm8n2uIm6t1BpKaI1AxR3w5e9no7kTxM1NtBlI0QDR7iZcPHub2a4nXFbfMZPtZ81jrmPG9baiMRqWluEzlgLT/B2+cl7i8TJtq+ikiOUTbSS+3t2+jAgRC1t28j4FE6ezZOJ09GKZNRKZVSSsvb27dRLCbR2bNxSiRkymZVGhnJXbI+kZApkZD/pF08nqOLF5M0NJSlbFalZFIhScpTNJqlo0cjNDSUpVRKoaGhLEWjGZIklY4fH6RVq14lSZUplk1SWs7S+ZEwDWcTNJxN0Hu9R+j00IXS9IHXttCHg730y8M76IHXtlAil6Y9vUfog8g5eq/3CH0QPUeJXJoyikSJXJoGM3FKyRmKZZO0p/dIad1ILkW5vEwpOUO5vEw9Vt+nhs7TUGaEHup4joYyIySpvK5QSBNpSSI9Q6QniDI7iJRjvEw+QKSeIdJT1nprqhwjCrUTKUd5Xj1DpCeJQquIRp7n19oQvw6t4teZDiI9/RdEKf/fegAI0f8Go/6txv3PPP5W4/7f88jk84hks5cYxW1duRKypiGdzyPocsHrcOBCKoVQJvMnde6hTAb1fj8aKipQ5fFABNeuD+dyyBUKeGrfPjy5dCkCLo7BIAAOK4+8YBjI6zoCLhdC2SxqTBPVANOgGzYwO85W40yhut2sg45E2G2sWMsuSWXzueJ040amaC1DKAwNAVacHPbuZZZ+0iSmayORS03sWlpYNi9JfJIeeAB44AHoEydiRJZhdzjg8/nQ39+Pbdu2Yfr06bjllluQSqXg9/shSRL279+PpUuXQhAEuFwuFCxTu87OTixevBg+n68kkXe73UgkEvD5fNi3bx/a2tqQTqeRTCZLbvXFqLlf//rX+NznPodgMIi9e/di2bJlcDgc0DQN77zzDm675RbYdAPoHwSmNJdr0pvruc76zMWyudxoYzSng1nx0TXrRSM7Qbg0qqxYPz+6n6IpW3HZ+AY+9y4nm7L9sfGay4lQVEBF0AYiZtc3bixnDedyzLQXl40fz5dt/nwrEtwi90WRhRher3XIaZbHHzvGdghNTcyyr13LYoOiF+HYsbx8tAdhezvwq5+zOR1UrgOHw16OSCnWnhNYRVD0AhCtFaPr/93O8rbFqLeg3zpIqVwXP7qvYvRcsQ7e5eR1xSg5tQBNK2D4xHFUTp3KcYX5PBwVFUh88AGq586FIIqQQiEoQ0Pw1tWh+4c/xMy77oKnpgaGokCw23Hs6acx/R//EQIAT00N7F4vCEBuYIC3v/NOyIOD8I4bB7vbDVdVFWJHjmDfN7+JhZs2oebKKwEiqMkk3JWViB8/jjEzZ8Lu8YCIYCgyXHKG3d1v+Sw7yNtsrO4QBDabS8ZY3k7EbHkmwQz5jn9nmXzlWK5f/93PgE/8IxvW2WzAcJS3WbUa+OULzMRfex3w+dXAr14Abv40G9JNmw3Eo8B26xjG1gE/+y7w/nsw13wHxpQZfKyawtnzLg9fCiWD2LmDqJkyH6Joh2lqpXmnJwAIQEHOIHbuAGqmzIemZC22PMDK07wM0eEEmSZMQ4Pd5SvdPoVcEk5vJQQBkJNReCrHQVOz3Nfka+HwBDlSEYCgGzA7XoHQMgnC7CshmCYb1NU3ch69FRmHyjFWDJwLNBSFUNfA9ey6DvPt7RAXXMcGeADMgQsQApWgi72ggQuwLf8YyG6HYBLMyACE+nFsKGiaMEP9HFNXVQ2Mjr/r+gPEpbfCcDmgFrj+2en0wzQNaFoOkjRYqkevqGiErqt4992HccMN34HbHUAqdQF79mxAW9vDqKqahETiXMmMrqpqEgyjAFG0Q9NysNlcyOVi8PlqOQFDENHf34mKinHo6noKK1Y8h3S632q/HlVVk8GS+fPYs2cDPvLJX+OcKJbq1TcCeBDMhAsos+D3ApgMrknPgJlzB5gd3wg2lpsEdos/AaAVXBe/weqvAZztboxavgXM4m8A8DC4Hn6N1ddEa7uAosF9dgT+ej/XrrtsMPIGnBVOkEYo5Ap4+5tvY9EDi1A1sQrb/3k7mhY24fLPXA67i7+XRLsIs8CmcaZmwuawwSgYgAjYXXYUpAJAgOgQsfOeneh+uRsz22dixQsrsHP1Tix+cDH8DX44PA4MdA2gaUETTMNEPp2Hp8GDlJ6Cw+bA++H30Zfsw+dnf75kMtc+sx3Pr3geB8MH0RRo4gi31nVoqGhAJBuBy+7CI7sf+ZNt5zXOg120oz/dj42dG7G+bT0mV02GbuoQBRGKpsDr8EIztUv29cKKF7B652q8cMsLWL1jNa5vXow7Z38KNnsAyJ1nE7liHfrMdYBvPDOMRcd002ID9QzgbgDMPNen6xLQvYGZdOdY4Mgaq/0EZsbtXp7GOoHOTwONHwXm/5gZ9u6N3M43AcicYWO7mQ8Dvibg4N3ANS+woVfJHV4r17CLLus3wrDi2hrL24k2q0bdadXDW78xxS+TdB+gxIAxM3i9kS9PnRXW/x7L8NI0WUrv9DPjX9y/4GBn+GLkXD7F+y6kWTEgiMx4VzQzY55PMfP/zj+PMpvbyrXuuSiz5/Mf5gi35Fmuj5+/nmvp3/wCt5mxCrjp+5YyTy8z/4MHgIoW7v/tu1g2P34ZUNGCgpLD6fN5DIQVNDcHMDCQweLFLSgUDBiGCbfbjoEBNpj7xjcWoqrKjbo6P3TdxP79IVxxRT2Gh3PYuLETDz/chpaWIM6fTyEczpRq2B9+uA1jx3qxZs0urFvXivHjgxgczCEYdMHjseOee3Zi7drFmDy5CrpugohTbIgAAwaGlZhlDjcG//Y+R78JEGCQge++92vs6TuCX/79BlR5gwARRnIpeJxunIsP4PK6Scjmc1C1An504Hf4p3m3odpbiaSSxY8P/A5fmv9xDEkJ3PMfT2L59IV44IbbkZDTaAjUIJKJl/bnsjuhGTqe3v1zzBo3GVc0TEdSyWB6zQRUe2wQTAkwhoCRx4HqhwBtCPAuAkyJbyr1JOCeA5hpZuTVE4B2Dqj4JJvQAQCpfM8YQ8DIU0Dtk4DoBUgAjDivd037q5XK/82c7v/Px9+A+3/PI5fPI5XPl8zoHm5rw4TKSpwZ5Qg/rboaX3r9dbzW04O+r30Na3btKoH8+xYswDP79+OHt90Gt82GgmFAAIP31Tt3YnFzMz41Y0ap/2KOe07TkC0UEHTxj9eaXbvw0+XL4bEc5Gn+/JKbM1wuBtff+Q6wcCEbzbndLJVXVUZnRYcxv59BeTHfeXiYwf/58wz2n3ySUd7ICJvXEfEP2/Awh9USXbquqwv45Ce5Rv7b30Z+/HjoVgSRaZrI5/NwWe8hn8/D7XZDVVX09fWhqqoKzc3NEAQByWQSfr8fiqLg/PnzpXW5XA5OpxM2mw07duwomdOtWLECiqJcYli3YsUK7Ny5E7fccgt27NiB5ubmErBftGgRBEFAsKICHheb/EAAA+ZEhsHg1BaWYA8MlsFlQePa7WJsmVrgZcUMcyVfni8+ROHPg9Q/tywtMXCvDDAANQmwiSACVE2AYdrY8FtjJXUsxpfhwgW+xDU1bGcQjQKBAHDoEN8Cus6+gePGcZyR3c516zU13MfixQz0r7qKbw2vl3F4MAgcPsw19V4vY8He3vIAwczLDdjI5Cg9u60Moh12HtgI+i2nX4PfS/E9AZfmuqclbjf6HAsCn/uJjbzjUZ5+SEvsAQAAICCT4339kcGdrunI9l+EMjyMsXPnAqKI2NGjqJw8GXa/H/lkEu7qar53RRHq8DDsPh/sHg+UeBy5UAjBKVNg9/s53z2fRyGTgTMQAIh4IMDPxyGIIrRsFnafD7nBQdicTrirqqArCk5873uYs2YNg3XDAAQBcjQKeXgY9ddczTnu/O+G30NB5drz5Z8GasZZb9NabpLlBWDneaLytmPrud5TtFu57TpQ7Hc4yjXrxbx2XWfJfdVYwB8EPF6W1oNYUh8fsgYGVsGoHwcQIXzyLYyddDXifYeRjV3AlMWrYHd5AEGEqRcgiDaOmRMAXZVhGhocvkr+s0vEQFsQQaYOo5CHzemGINqQl5LQ8zk4PH4G/pPnweEJoCCnEe97HzVT5sHm8EDNxOCtrIdpclmKUVAQ7zuExstvAlIjbDQnZS2DuiUQApV/khdv7Pwtm9JVMsg2u3ZDXHQ9aOACUFVdzpBfuASUkyBUVbMsPjgGyKSsbPgWkN0BQdd4gKAiAMpyfjsJIsc5b38VQvMECOMnQfO50D/4PmprZ0PTJLhcQQwNnUAicQ6zZn0WNpsDkjQMtzuIdLofudwwAoFGZDJhNDUtQBGBiKIdxZz2QiGLQkG2ZPMhNDbOh6omoWkyMpkQgsFmBIMTsGPHP6OxcR4mT14Or7cGshxDINAEIhO6noeqpuD1VkNzV2KPIKAGXOc+FixT18Hu8t8E8CpY+t4KFvLmrelJAHOsT6MP7CRvpVGXatmtQiLYrT5zYGB/DbiW3UTJj7n02gSD/W8DCEp5hPf0o25uHQqZAlwBF0zTxPDJYbQsbgGZhLyUx/DJYTQvaEZBKaCQKcBZ4QQI0BQNmqIhM5BB0/wmCHYBu+7dhRu+cwOcfk45MQoG7B7+Tkr1pbBnwx60PdwGh88BT5UHol3EQNcA6ubU8Xvx2LH9ru3ofrkbs1fNxrIXlwEOQCpIiGQjGJQG0RhoxOOdj2N923p47B5c99J1eO+O9zDWNxbxXBw1vhrc1XHXJYZ1D7c9jOZAM6SChJPDJ3Ftw7UwYUKECLtoh2ZqcNqckDW55FpPIESz0VL7CZUTEM6G0VjRiL5kHzZ3bcbPVv4rRF3iMyuIgL2C69th43ssew5QI5YrvNsC108yMJdDQNWVvJ2WBtx1VgSbCiQOAWOuBkbe58GAU5vZfb4InG0ewBhlTOcIWoBGBkQ39ylfBBxVgGecNfidYWA8Osc9c5El9CB2dHcGeD0ZLG0vGdqNMqITLbO7QoZBerqPM9qliGU8VwNUTuLvyeIBG3lAGgSCE8rvwchbgwYXyiDbXQ384b5Lc9wFG5A6Dxx8DLh+C6AMl7PefeOsAQnD8g5xcp9vfbkM1Je+yOc0egCovYp3XgL661m6/9uV1kDAD3kgQLTx+7S7AcGGQsFAXhdgs4lIp/NIp/MIBl2Q5QIkqQCv14maGh8PisoaTJOQzRYQCDihKBo8HifSaRWVlW74/U6Ew1m8804fJk2qwrXXsit9OJzBrl29mD69GnPm1MFmE+Bw2GC3i5BlDbpuorLShXPnUti4cQ/WrWuFz+dAXaMH33n7h7j9mlvxs0PbcUXjNFzRMB0vvf86vjD/Y6j2BnHaMp+LWeD+Rwd+hy/M/xjGeivhc3oQSg1hOJfAFQ3TYZAJmyDiyXdfwmV1E7Bw/BzU+Kuw6d1/wz2tfwev042j4R5MGduMZ//wy5IZ3reWfQkQBChaHk6bHSejHEmXUDJY3DIJIsnA8JpLHeO1i8DIBpbK2ycC+gVAiwKeeSyLNzOAmQVstdb/FZGfepil8gKAkU1lIzvR9VcL2oH/QeZ0giA4BUH4miAInYIgJARBUAVBCAmCsFMQhL/7f/v4/qc/HDYbfA4HpowZgy3Ll2NCZSVMImzq6sLL3d3Y1NUFkwjrWlvx0enTAQDr2trQPnMm1rW1IS7LeLitDQ5RxOmREXzx9ddxLpmEw2bD+rY23Dx5MrKFQqm/DXv2QBRFDEoSHtm9G5FsFqIg4OXubiSzWQgbNgCf/jSEZJJ/NN5/n5nv+noG3fv2MXve2clAfcIE/kNfKDAwz+WAf/u3srHdt77FBnUbNrCT/OAgFzf7fEzzdnbyH35J4jr3QoER49mz5aLrixeZmm1sBPJ52O122Gw2OJ1OJJNJ5HI52Gw2VFRUlAzpWlpaUF9fj46ODiSTSQSDQTgcDpimiaqqKtTX10OSJHi9XjgcDoiieIk5HQA4HI5Lltntdlx//fUQBAFtbW2YPHlyqY6+q6sLVVVVGBoaZnbXyvzGxSi7yk9pYRM5p2Uu53YyWCy6ml+MMoDyuBhAZnNlEP/BOWbYRYH/DJwb4PZTxzOgPdtfZqib6niqFpjddzk5No0IpUz0tAQhX4DTwbs+f54tC86d48sCsGHctGnMhhsGg2wiFk2oKt8W8+YBFRV86Xw+ButVVSyYkGX2GyxaJtTX8/PwYR6HWbOG9xOJ8Db/+q/cztSZ7YRplqPxLI8DBPx8MBnrvNlEPodEllmYrfy+HZaKwSQe/CjKA6a08ICAAAvQ6nxegv5RXgHE84Y1XzS4A0AGO8BXTp8OJR6Hriiomj6da9ojEWT7+6ErCshKfHDX1CDZ2wtBFOGpqUHlZZfh+JYtMBQF0sAARk6cgKEoJeM6QRQRO3YMuqJAV1Vm44ngb2yEMxBA7OhRKIkE5nztaxBtNsQOH4Y8NARBFCEPD6Nq2jSIggAhNsj16rEocO4DNlSbNIOBc0HlWndV5gvldDIgzyvMrPefA276WNmALp0AfvE9ID7IFy2bBhSZwfrf3c056mdO8J/HabMYuNvtPC9LVtwc8SDAqntg1tZDk9OQk2HUTJkPm92Nhlk3YcriVTBNDZEP3oWpFyDa7DAKKgpKGroqw+7ywOENQiATcjKKgpJGLhEpgXbRzjc0AXB6A3AHahDvPYR0tAex3oMACPE+rqePnTsI0yjg4qHfIvrhboh2J0SbHaLNgXEzb+D/SIFKCHZHyaDO3PcHwOGE2GblxbfeBDPcXzalE1DObO/aDWHSNIiNLZe0FxvHAx4vqP88IEugbBpCXQPIZuOBFtOEMK4JGFMDsWUiM/GGDtJ13u/k6TA73wVMQktLK3K5Ieze/Qiy2SiamxdhxoxPwjAK6O/fC02TsGvXvaioaEBz8yKk0wNIJvuQTPZh5857+FwRQdNk5PNca+3z1cDh8KKxcR7C4QPQNMWavxbp9AAAE8uWbUZz82Ls3v0vyGT64fPVIZ/PwDQNCIIAr7caps2FHJhdfxoMpC8A+CKAi2AgvhnMql8JZscNcFTbIICZAI6A6+D/GZzPboBBu2E9h6zfUA3AXmv+LDgGLgOupZcAnAbwJWv/MoBZ4Cg5wSaipbUF0qCERG8CokOEO+hG4/xG6AUd/Xv7kRvOof6KeggOAU6/E94aL5wVTmgFDf56P3w1PtTNrcObD7wJXdGxbNMyOH1OJPuS6LizA6ZuopApoJAtINASwPX/63oEmgNwVbgw0DUAJakg2BKE0++Ew+uA6BCx4oUV+FzH57Bo7SI44YQIEV6HF5u6NuHT2z4Nn8OH51c8j4H0AFRNxfG7j6PKXYWu/i4omgK7YMe6tnU4GD6Ien89tq7cirHesbhn5z3s6eKvx5pda6CbOuyinU3xTB1dA12wi3bcu+BeZPIZrH1rLQDg+RXPw213Q9VV5Ao5DGbZYf6Z5c8AMBl0J48xEB/eA8DG4F2XmDl213AtutTHTvM1ixlgVM7hWu0ja4DBN3n9gS9xzXvlFdxv9Txm1ccu5H1ZKhPABI7cB2y/HDhyL+8v3sXMvmhnUK9EAE8d17TrShmU51MM2MlgFtzUOCLN4SsP5mZDVlxbnsG4kefad13labq3zMT7m9g5vmhiFxjPsXLp85bLd9H0bgLPGwWeFtsXs9gPbODBgGKOe7afo9zSfYDDzdnr7z3AgH7ho2xo994DzOBn+9nULnma66Lnr2cgft1mbv/O6jJzX8gCuWHguk2Ar54d6mesYrZesAa+swPA23czc08GnB4PKircICJEIlk88shuRCJZ1Nb6EQplkUyquOuuDly8mIbX68DQkITe3gQcDhvq6vxYu/YtXH7593Hs2CAkqQBBAD7/+dlYsKAJLpcN588n8Z3vvIdPfWoGFixoKrH4d9+9HefPp+BwiHjwwbehaYRQKI37718Ir9cBRdGQl018af7HkVSy+OL8j2Ph+Dl46f3XsatnH35y4D/hcbgwe9wU/PjA71DlCWBISuD2a25FTErCaXfw58BmwxhvELmCgkQuBYNMPHDjP2Lp1PkIp4ehGwa+edM/wWGz42i4B/X+6kvr3ud/HABwPNyDkVwKG9/+CWr9YxBwe3Fl43QQRDaNq15n1bQ/CMDOINtzHaANWyaJFYC9lmvYtT5uY6vibPfBuwGt37pBBcA5BRh5lgcCRjbwL99fMWj/v3v81TDugiA0AdgF4HKwsep+8MB0M4ArAOwkok//V/r6G+P+l3sUdB0Fw4DTZoNBVJKshy3DOZsgIJrLYeOePVjf1oYhScLCpiboRNAMo8Q4e+x2DEoSgm43fE7nJZnwL956KwQANlGEVCiU5PXr29owPhjEnR0dl2x79/bteGn5crj7+iCEQqDmZgjhMLvGF/PCGhvZhawYBZdKlXXR115bBkeaVg74/uQnyzFwLhejw5oaBvyZDFOwxZywmhoG7UNDnBX/8stsWy7LTMmuX4/C9OnQdB2qqsLtdkMQBITDYVRWVsLn8yEcDqO2thYOhwM2mw3Hjx9HKBTCjTfeiJGRETQ0NJRi4oaGhlBRUYHOzk60trbC4XDA6/VCFEXo1j6K8wCwfft2nDx5EnPnzsWKFSv4WlpRci6XC3a7HS6bHWIxgz0yDExsuDSqzDCB82GL9RXLywoag3orz9u6URhknusv55YL1vbF8zxaHl+U3gf9DGg/7AXGVjHTX9xPXwhorAM0DQVvBZSCDXfeWZaqP/oom8kR8dhLPs8y+UyGx1yefZaN5txuFkO0tHDFg6IwA1/0Ixw7lm+TEyeAOXNYQl9RwYd95Ai3a2lhrCzLPN7T2wssW2ox7gAPVBQj8dzOsjLBpEsj4gwD6AvzOcoXWGFQW205AMtltUJBK0fribZyJF++wNJ50cZgs6CXs+IBlEc4wjAmjINpGMhcuHBJhrsciaDnF7/A1evWgUyT89hrauAZO5YZc8tornr2bOSiUdh9PkgXL6J69myMnDyJznvvReMNN2D2PffAPWYMRLsdZBiIHz+OyssuQz6RQPfWrZhxxx1wBAIw8vlSf4VcDp7qagAAmSYcogDh5yxLx4IbgU/+E+eEB6oYtFsxZIhbaRC+IAN3Qwe8fmbJz58GxtQA1fVsOnfjbczUEwGv/hS47fOAm5lxnD3JDPs7/8nGdE430NsNTJkFwBow6u1mKb4/AEPLIxI6huqJV8HpH8MRb6ko3IFaAICmSgCEEjPu8AQBMiAnB+Hw+OHwVgJFht3hgpzi5XaHF9FTu1EzZR7HvjldAEQMfrgbdZe1QrQ5mBUuKLDZ+Q9O9MPdGHf59aWPpyDamdUXnaCCyseu5MrZ7lVjWAWrayBVAbSCJZu3ct9LGfE3QQhWccZ7OllahkAVt3l7O8QVH4cgsCM7AJbjR0MQGlsgCAJnyxesQScyrdx3gFIj0O0iDK8LAwNd8Plq4HZXQdfzSKcvorFxHgTBhjfe+BoaG+eV4txaW9fB7x+HN974KpqbF+Pyyz8DIhOFQhYuVxBOpw+AiFSqD3v2bMDChfdb/crYs4ej5iorJwAAduxYbbHuN6OiorEkke/sfBytrevgrZ2Fr4s23ANgAhh4fwXAL8EGdFvBAH4DgGfALvMDAObxHQMHyhFuAphRfwDAN8CyemnUfBgsr4+BJfU14D87sNqeAzvZV1nTIgtvz+UhmEBBKsA0TLzzzXewbPMyAEA+nYfD70CsO4bG+Y2WAbiOt9a+hQX3LkDV5Croio58Og9nhRPSkAQQ0LWpC63rWpGNZJE4m8Dc2+ey5P7Bt7HgvgXw1/lhc9oQORRB/RX1sDlZWu/0O2HqJjRZw9sPsjw/OD4Ip9eJglBASk0hko1gU9emklT95e6X0fG5DjQHm7Fhzwbcv/B+jMgjWNi0EIIgcEwiAN3US5L3U6tPlUzsPjXjUxiShjCUG8Ki5kUAgK6BLjRWNKIl2IKBzADqfHUwyIBhGiWm3mP3QNEVHAgfwIJxV2GMjT83GDkIVM3lsy46LPZPZIbY5mAm3O4ts+6XP8QSd0NhszkjBwz8B7vBX/MCXylTZwDuHsdS/GJefGAaG+EVJfa+iTwIoFkycwAYeBVo/Dgz+YI16K3lmCXnL0sG0NkBXlaUsfsbGUAXsgyS033lqb8BkKIM+F2VzHCXvjzKL5HqLfdpFHgqgH9fRh+DqQMpS9Y+bx2by+1ewxnq76weleP+giVnb+JIt9QZZsyvfZB37KtnE7rofqDmSsDhsRh/lNn3orSeiAcuDm4Erl3LUXDOirISwdSByD5gx+eBW37BzvMim9xlMnl8+cuvl6Lhtm5dCU0zsXr1jkuWFd3lZVkrnZI1a3bhhz+8DWfPjmBwUCrJ5Nevb8PAQBq9vUksXtyMZ5/djxdeuOVPMtsNw4QoiohEsnj88U688MItSCYVKIqGCVMCgEiwWeqkgdQwfmzJ3sf6quC2OxHNxOF2OKFoBfzYin1rDtYilB7GjyxJfKWnAj2xi6j1V+Hf3u/AN2+8AwaZ+GCwF3X+agxJI6jyVCCpZNEUrIXf5YXb+i0hAIZp4IPB3tI2VzVehnBmGEGnHbWuBASt32LT3YB2gYG4dxHHIarHAM+1gJEELswB/B8F6n/A64a/we0qPsMnc/gBoPobgK2OWfzqdQzki1Fxf6WPv3qpvCAIHvCg9WUAHgWwkYi0Ueu9AKYR0bH/Sn9/A+5/mUdB19EzMoL+dBrzm5pgFwQcCIexoInvRSJCLJdDfUVFKdO9YBhwiCLisoykqqLS7UaNz4e7RoHvH912G3qTSTze2VnKhD8SjWKc3486vx9+pxOypnEkj9OJvlQKG6yBgQa/Hw6bDf5CAbZiIXMxP90wGFg3NnJWWGsr66iL2uaGBkZeIyOspa6sLGuox41jlNbQwEDd4SjrotevZ6C+Zg1w//2MEltbeerzlevof/ADZuIXLoR+++0YkWWk02kEAoES4K6srMTx48cxZcoUOJ38JZrP5+Hzlb/ETNOEzWaDpml46623sGDBAvh8Prz11lslKfytt94KAEin05eAebfbDZvNhnQ6jT179mD58uWQZRmZTAYVFRXIZrNoaWmBYRhwORywFZnygJ9BYamu3CoOL+hlMAgwmG6uZ3A6uibe6WCgmte4HXCpzN4wwTI8s8xAj67RLgJSWODWJgKxFJCRQFNaoOoiDNOGvj4WRDz4IF8ygAH34sVWMxvv/sAB4PLL+fLEYgzGg0EG7Rs2lC9jUSZfX8/jPIrCrHxtrUXEWod74QKLKebP52i4TAYYW2XAYac/lf2bo76Ti4x8cb3Dxu/L4yoz5X0hBuhFEN4yrpzdLuBSoF+sfTepPGgyNML9+b18Ehx2WEHhKGiFP8lwHz5yBFXTpyOfTJYAtppKYczll8PmdEJNJKBlszj1059i5pe/DF9z8yV57za3m//32WzQZRkwTWiyDHd1NQQAsaNHS+B+3iOPQE0m4ayowEh3N6ouu4zz4mUZx555Bgse+ReIhTy/T6ebmfRXfgx85NMMsAf6mH0v3i99HwKNkwCXuyypv+ljXKs+firL3JMxIBkHJs/k85NXgd/9m1X/7mZWf2QYmHgZO9h/5stALssM//LPAIFKINQH1IyDeeoYjIU3QLA5oKlZxHvfR/1lbRBsDsjJCBwePzQlh4KcRHDcNADA4Kn3UD3xSuh5Bb4xjaPq4TmvXc8rcPqCOLfnF5jadjtsLi/I4J870e5EQU5bdfHzoCkSHG4/HN4gAGssTC9AzcThraoHBBE2g0BShu8Hrw8CEeewmwaQzYAyaZaxOxwQTBOUkzivvmpsWe7uDwAVAQh2O0jKgvrOgMIDsH3kYzxIJHDdu9g8EdB1ZtdbJkDQdW4fCEKoGguKD/Egia7B3Lsb4rKV0ByAbuSRzUZKNeZ+P1ePq2oaXm81RNEBIh2h0AEkEucwadJNqKhoRCp1ATabA273GGQyA9i//1ksXfoknE4/DxgQlfLYfb4adHTche7ulzFzZjuuv/7bcLmCAAjZbNSqp/8WKisnwjBUpNMX4XJVwh1oQMHmwkVBwGYwu+4Gs+NOsJD6fjD7vQqc654C57Q3gxn6OjBgTwAYAwbcSTAAVwH8DsA+cERcDlzrLoDZeNn6qqgAs/QpsFRfAzPyLQCmSXkke5PIhDJonNeIdH8ageYAMgMZdG3qwqK1i1A9rRqp8yxxX/TgIoAAp8+JiqYKjJwZQdeT1nZTq/H6l19Hz2s9+Mwrn0FLK0vtc8M5+Gp9yGfzMPIGdEXHng17sPibi+Gr9eHN+97E8i3LkYvlkA1n0bSgCWQSwgfDaFncAlfAhUw+g3/e/s+Y1zgPyyYtw7iKcRhID6A/3Y/FLYuxb2Af+pJ9uGnSTWisaMSF1AU8ufdJbF62GV6HF7FcDEk1iaf2PYUty7cgJsfgtPHvZG+iFw0VDXhi7xNYu2gt6nx1ODl8Eq0trTDIAAgYyg2h1leLi6mLCGfDpXr64kDBVXWzUeOphEA6BBIAQwKUQavefL2V6T5oAWoRSB4B/rCSHeLn/wjQJAbnpzYxmPfUsRS+WB8Pka/+wTvLGe/Xfp8Bsc1jycntgJZi8O6oYPd6GIA9eGl+u+hgabq/iRnvIpguAvhixnpFM/+2Fp3kixnvo2vljYLlZm9J6Yt17sVad9FhyeItoOxvKK+TwhzzZur83goSH4OuAt4afs/pvnL+ut0LuILA4PtA5RTgwi5g2meYQR8NwoOTylnv4+Zzu1QvcOAxZtSDE/l8//7rZTC/8FHAOxZ45x5g3kPlGny7l7PlpYFSX7mCDWfPJvH4451Yt64VEyZUIhbLwedzluTzXq8DsqwhEsli06YuPPRQKyZMCOLMmQSmTavG3r39mDevEQcPhvHpT2/DRz86Hc8/vwKJhIJz5xKYPbsWFRUuDA/nUFHhhN/vgmGYcDhEqKqONWt2Yd68RnzmM5fD73di34F+LFjcAIMYNI/zj0VD5VgMZRM40P8BmivrMKdhGmyCCJNMbHz7J5g1bjIWjp+Dal8lHnvrRyW5+1cWfRpyQUVCyWDK2GbYRRue2/PvWN3aDptgg04Gvvfer/HADbdjV88+HAmdxkM3/RMef+enuHP+J9FQWYO8XigB/cZgDb795lasXrgC4/PfGiWTfxGQu9ghPvF0Ocd95AkG4VqIo94ck/j+M7OAEbFk8Ws5w13Zy3J70tkvQXCwn8Nf8eN/glT+ITBo30pE3x4N2gGAiOT/Kmj/2+Mv9ygYBvrTadT4fFi9YwcuptO4tqEB5xIJ3NnRgYvpNM4kEuhLJpE3DGiGgbSqggDU+f0YHwyixuuFAODFW2/F6dWrsWX5cgDApMpKfPv660FEyOTzmFNXh2f274fbbsedHR1oeOYZHI5GcT6Vgsduxw9WrkS93w9V15HTNIwYBmjhQgbYixYx0EkkgLlzuch5/nxGXC4XcN11DK6dTmDMGKZdq6tZCz13LiNAj4dRnGkC993HDPHGjUzvbtjAyG/xYgb8ra18gmSZUeO0aZwJb7MBzz0H3H47DIcDe/fuRV1dHfx+P5YuXYpslmNRwuFwiYEnIrhcLui6jp07d0LX9VIUXDabRWNjI7q6ukry+M997nO45ZZbYLPZIAhCKW6uKKUv9mm327Fy5Uo4HA6k02l4vV5kMhnU1tYin8/DNE12uHS7LJM5XBppBgC6yYCwoDG4BDH7Llogqj8KjKR4vcX0w25jtn10fBnBWj9qmL8o7fZ5GGgG/RbbTyzFL+hAXTUwpQWCKGAkzox6SwuwZQsz6z4fs9/XXstjLHfeyVPDABYs4F0ODrKVwZQpDMY3bOBL+vTTLJ8XBOBLX+LtimKD73yHAXxvL8fJZbN8i8ydy2M3584xU59MC8xSOu2c5V6U/fdasYRE1mBGgQdGRIHPQU0Vg+yCxu+3wsfnY2CQz2e+wH3abAyamuqA0FC5jr1gGSdpOjP2NZW8rqCx1N4s71sQRVzxjW+geRmzc5oso/aqq2B3u9G9dSv633gDp156CTVXXAE1HsfBRx+FoapQR0YQ/v3vocbjABF8TU244r77+NIpCkvvZRk2NzOrTr8fhqoifvw4qufMwYrf/hYz77oLot0OQ1Vx5MknMXbOHIh2O9REAqLDgem33w41mQJJKWbKh8J83BOns1GcKDLr++vvs9ydiJlxp4vrromAyTM48m3iZWWTJYeLwX5eYRO6bApY+jHOHjcNzomffyOD/6mzGezbHZzr/vvXecRmykwgUAWxdpwla+fMdU9lPbS8jMgHb8Pu8kBTJHjHNMBb1Yjoh7uhqRwDV4x0Y/bMQLz3fXirGiDaXfBWN8Hh9uOypXfD7vLC1AsYOt1ZGmwRRTvGTroGouiAt7Ieos3B/9n1AiIfvAOjoMAdGAs5GQXIZJDu80PwVQBaAcYb/wkkRyDYnTC7/gAkRyy1Rp5N59wewOGEYOgwdv4W5q9/DLPr9xAcDpDIUYY0cAHi4htAhsFAnwhi80Rm6cMXITY0AaYJY9drVhRcmo9FUXg+nYI4vxUUDUEUuIa4s3MjurtfRjo9AEkaRDh8EJqWQyi0H4VCBrpeQGPjPMye/XkIAg8WBoPjUVHRZNXBD+LGGzdAEATs2LEayeQFEBFMU4fPVwdBcKCt7WF87nMdWLHieTidFcjnJTidAVRUNGLZsqfh99cimexDKLQfwWALfL5a6Fq+lNE+DxzT1gWWwe8DA/JnAPwDGEgrYNBeC65fr7a2GbZeq+A/ZjJYOj8I4NPgAYERAI+ApfACWDI/CK6NPw82pfOhHCnXCqsG3gQyoQx8NT7svGcnRLsIh8eBrk1d6HmtB9KgBDIJmXAGLde1oGJcBSoaKvDeY+8h1ZdCbiiH5sXNcPqdgAiseGEF7j55N8ZdNQ6arEFXdLz3nfeQvpjG8Mlh6IoOu8eOhfcvRDaSRT6bR89rPRBsQklyv/OrO5G6kEL9FfUQHfz9b4MNDyx6AHsH9kLRFaiaiklVk9AcbMbe/r1Y0LQAn5jxCTz23mM4nzqP/nQ/5jXOQyQbwZ0ddyKn5VDprsTzK56H3+nH+OB4NFU0obGiEa0trWisaMQN42/AcG4YHocHrS2tuJC6gLs67sKF9AWcS5xDf7of4WwYNb4abO7ajMXNixF0BdHa0ooKpx+C1Afh4F1cVy44GISHXwNsXkAgwDmGv18FkeXvLe0M6k2Da8fVQd7+w8e5DcAgXI2xiR0AXLUFuPUUcPUWlp47/IDczzJ8U2OQLfVa/yP6gfh+/i0oxbKFGRyXpO95BrWmzscwOmPd5uT+Cllr8AAMxJ0B/v0wCqwiMPIMyI08zxfj5WwuPqb0BW4bnGCx80K5Fr4YGQcA8jDwh/uZjYfIYEwKAVffx0DcXcmgvWI8M+QzVjFoFwRru/uB3CCrCEbHy6XOsVndzT8CKifzPh0+rpWfsYoZe1clED1YjoXzjOUaek8Ng/ZRfYmigLo6Hx59dAnq6nzYvz+ETKaA4eEcHnlkN2IxGaIoIJ3Ol7Law+EMBEFAVRW7VDQ1BXDPPRwdd+LE3XjhhVvg9TrQ0FCBpqYATp4cxsWLafzLv+xGPC7DNE0MDeWQzRbgdtvx3HMr8KlPzcC6de9AkgpobWtCNBvH5t//DNNqWlBTUQWAc93HV9VjWs14xKUkcgUFRIQ1S1bhiobp+NeuV6Bq+VIM3Jet+LdxwbGYVT8Z5+IDiEspfPbK5RjJpbHp9/+GlJLFvUtWwS7a0FxZhy8v+AQ+GOzFrp59iEpxhFJDePydn6LKU4EhaQSypuJL8z+OGv9YUPX6skyeBMAzn0F79mUG5iNPWLL3jVaeewtKhUGij0G79BqgDQKBVZwHDxGgAqBHACPFpSL/Qx//xzPuAv9CR8CDzFOJ6Nz/0z7/xrj/ZR4FXUemUMCBUAg1Ph9iuRzmNzVh9Y4dlxjOxWUZTcEgQuk0mgMBDGQymNfYCLfdjvPJJAYyGTQFAtjY2Yn1lqGdYdXVaqaJg+EwmgIB1Pp8qBjFsD+/YgUOhsOo8fnw9L59WNfWhomVlYhms/CYJpqdTgiaxi5kV1zBB22aZZ1zNsuAOxDgH40jR9iBLBJhHfWmTQzY4/EyFbt2LdOvlZWM0EZblff2lh3qJ04E9uxhnfXEiUzBShJbka9fj/zUqSjoDLCy2WzJ7X3MmDHQNA2qqsLv95dk7m63G+l0Gk6n8xKTuSVLlsA0TQSDQTYQMgyEQiEEAgFUVVWV5O8VFRVIJpMl9r2qqgojIyOl/Y5m47lWVMNIPI4JtfUQ+qNcg54vWPLsJgacRb+as/0MHl3OMkNeYoQtMF5k4l3OMuM+mp0HyjLxpjpm6GNJBpxFljlf4OVpiQcMLGd5ahkH3eFCTrFh9Ndd0UvQNC91e3/xRcZeZ8+WAwIAxnUXLpTd4uvrGbC73TwGs3kzWyM4nTzeE4txHbwglCsqslng5Ekewzn8vokbr9MhFLSyKZ9uAIk0g2lxlKncaIm821k2/iuWFRTvXcMsm9aRtaxYpjCa2RdFHiTRLXWCTWRA77DaahrgdEDXdZAll+/52c9wxX33we7xQLDbIYVC6P7BDzDrrrvgbWjAwUceQfj3v0frd7+L2quugqlpMDQNx556CtPvuAMVLS0AEcgwcHTTJkxdtQqBCRNgqCoK2Syb0akqjj39NGZ84QvwNzeDdB0Hv/1t1Fx5JWqvuYad6L/8ZciWk31lSzOEX73AYP3yqwCfn286UeD89tQIA2wLPAMCS+OD1ez+LgjsNeHxls0jR4aAXa+wFN5mBy6cAabOAmIRYIdlUFcRZLb+019koC+lWXrvcLLBXd9pYEwdUFUN0zRhejzQ5DQE0YbhM11IR3sQHDcdDbNugiDaoKkSpPhFuLxBeCrHgUwDot0JU9egpIeZHSeCoXF9e/F32zQ02GxOaHmW3BdN6jRFKpvVTZkHTcnBHRjL5980YHd5YOga1Ewcvsp6CMkkm8otYqM5GrgA28pPg7QCkM2wCV3rjUCgCoKh801uOU+Z/echVARBmRSEQJBBvc/PRnp6gQeC8qqlcsgDqsI18K03lV3nV3yCrxGZLJtPxlmW33ojtMoKSLlhaFoOnZ0bccstL2DHjtVYuPAbkOU4mpsXQRBEmKaOXG4YLlcAdrsbmqbAbnfBZnMCEJFMnkc2O4CmpgUgMkFkQhTtMAwNpqnB4fBBEARomox33lmHm27aUHKxD4X2o6KiEVVVk0AWuJHlODyeMdBcAewVbZgLwAWu0asFS9jngqXqDjDolsBy96JMXgQz6wpYPj/fmlfBLPxFq59WMAs/DGbUK602G1B2og8BpVr7GJidf9Ba51E06LkCdq3ZdYlbvCAIkGISnF4n8uk8XEEXyCS8ed+bl7LujRUYOcuse+u6VmRCGQSbg/BUe/D2g29j6ZNLYeomhj8YhrfGCzkmI9gUxJ6Ne9C6rhXB8UEM7B1AoCmAzo2dWLR2EQb2DmBg7wCWPLoEgSauhVc0BSk1BQDwO/2QChKyhSzOjpxFja8GT+97Gg8uehAEgs/pQ4O/AYPSIM4meH0sF0NrCw+MixbrKAoizifPY0PnBqxdtBbjKlhqdTR6FPOb5iOpJDHnxTn41IxP4fGbHoesyWioaECukIPP6YOqq0ipKSiagkkVNfAfXVNmw+e9CGT7GIx7m1nOPmMt4KlnEzlDYVBs5q16dI2BavI44Gtm+bwSZud56ABsLOGWenlA4IrNzAYLIvD+V3ggoHYJ18LP+AbgnwaoUQb29gDv6xJDugtl6fsfm8mZGgNsAWUDOSlUZsdHM/cQyi71gfF8PGQy+HYF/oxcfpREP3OB+4S1j/AePg51BGhsLffz3lqLSZ/C58vUGfgf3AjMexionGi5wxf4k2N3sxHdaJn9sh/yoIKautSx3uHjqamXWfv563igoFgP76oC3i33JV33Ev6wZwBjx3pRXe2Bz+eE3S7innt2lqTyW7YwkRSJZDE4KKGpKYCNG1kSX1/vw1e/+kZp2xdeWIEDB8KYP78JDoeI1at34Otfn4/hYZbaV1W5oaoa+vszmD+/sbSve+9dUPrP0jzRh6f2voQrGqfhqqYZ+MmB/8Qd196GGn8VfE4PpLwMmyjCYXPALjKR8dhbP8b2U5342Mwl+OZNd6Bg6HCKduhkYjATx48O/A7/eM1KVLi9qPIGcCx8Bve/9gyun3wN7l2yCn0jIcxtYDVYf2IQLx16Hetu+gI2vvOTEnv/0E3/BM3QkdfzaAr42bAYRQWJpSLRznN9eu0WwIhZRnXr2ZhO9PNUIABOQOvlrHZHE4P76vWAYzJAMqAcZKDvtBh6OC8t4/grefy1M+5XgUF7hIjOCYIwWxCERwRB+IEgCE8IgnCrIAh/De/z/7iH026H125HUyCAp/ftQ1MgALfNhmduvhmrZs8uGc7Nb2rC5r17MbeuDjU+H+bW1eHeXbvQl0phIJNBrc+HUCaD+xcuxEA6DSLC/lAIFzMZ3LNzJ2p9PngdDngcDgzlcphUWYnnV6xASlUxv7ERT+/bh5e7u7F5714IAOr9fjR5vRAuXmRpen09/2Ffs4aRGNuFMkB/5BFe5vEwxer1co36s8/ym9y/n9GZxwO89hoDc7+fXdBCIeD555nmtdnKrmZbtvA+5s9n0K9pTOd6PAz8a2th07SSA7wkSejp6UFnZycMw4DdbofX60UqlSqx76qqQhRFVFRUYMWKFbjnnntwyy23IBAIwOfzYWBgoLR9S0sLAoEAAMBmsyGRSCCVSiGTyaC7uxudnZ0gopIZXWdnJ3w+X0lCv337dkiShPFNzQzaY0lmid1OrjHXdDZNy1t/2ic1MaDWdWbIi4ywbpSZ+CnN3N4ilQFwX05H2YStoDO4HRhk4DkmcCnLXOFjAFwVYEDvYCZbyBd4kEcDBgbYL/DiRR5XOX+eAfW6dQza16/neYDHaxYs4PGUNWt4bGbyZL58Y8cy0H/sMb50oRDwxBN8Oe+5h0F/dTUvv/tu3q+qMutfjJlbvIggGAYfs8PBgxp2G1BfzSfBtPwAiPj+mdpSViYUNPYW8LjK50sUywMmsM6jYVhPq769qGIo+gnYRL5eaYn3d9a6bhAAwwTpOnRZxqmf/ATVs2dDicdx8NvfhjQwALvbjXmPPAJfUxPMQgHX/su/4KNvvomxc+dCy+VgahrsHg+m/+M/wuHzITcwgIOPPAJ5cBBzvvY1eGtqYOo6BJsNdq8XhzZsgBKLoXr2bHRv3cr7VhRctXYtJqxcCXloCINdXZCHhlA9ezbkoSE+L5/+IjPcsQj/aTNNoCjnHg6zjP38aSCV4GlFJUfCCaJl9OcsnyeAJe8Tp/P2v3qBHdQBBu3vv8egXhSBT9zB1+bX32fZvSyxQd4vX+B9OBwcRzfQC9ILcLh8cLj9qJkyH8Fx01EzZT6XI8gpFHIpVDbMgKeyAUZBYcWgXoBgd8A3pgEQecBMtDsAQYQg2qDnZRRyKQiiCKd/DES7A+5ADXRVgreyHpoiITPUi9i5g3AHxkLPy1CzcZimhvDJt6HnZbgDYzmirWgq12UZzbUt5f04nCApC3HhEj5PmRQ7zY/EQHkFlFch1DdCqKpm47lsBoKvApROgqQsBBuDcfO9t4FsGoI/AHPfH3hfne+U9+VwgFIjMDpe4Ui4TNra5l2Igh1Opw/B4HjceuuLsNk8uOWWF1BZOR4VFY3o6LgT+XwG6XQ/du/+F2SzUYiiEzabE6HQfoyM9AIwUVnZjJaWNhARbDYnTFPHrl33WaCdmc8dO1Yjm41g3ryvwm73wDQNGIaG+vorUFU1EUQ8OFAoSCgUJGzffjdEXcWVRIiBGfImsMS9DcyoO8BAeiwYVLcCKACIAlgNBtseMNg/YLVtAf85iwNYCAb8MgA/gO9b0xoAi8EDAeet5yRwXFwUwGvWtB+AZJiACSzbvAyXffwySBEJHXd2YOTsCLzVXuSGctj9yG5kI1mIdhE9r/XAVeFCcHwQid4EUhdSkKISul/uRufGTnjHerFnwx7kM3k0zmuENCjh7bVvI9AUgKfKg6b5TdizcU9pexDQsrgFnRs70f1yN7o2dWHSsklY/OBiuKvcHDkHrptds2sNGp5pQDgbxppda5DNZzG/cT5iuRjuX3g/KlwVcIgOPLL7EZxPn0djRSOaAk14et/TaAo0IVfIQRRE9CX7sHrHakgFCY2BRlzXch2Gc8Nw2VzwOryo9dVi9Y7VkHUZr3zmFWxethkjygjOJc6hL9mHw9HD6Ev24Z6d90DWZHgdXngdfo5gW9IBXPM8A8HANKD2OmaeL3+QAbndz4B05AhPIQCxLja1AwG1bewgb+r8fa1LQPwgoGcZ2HdvYJCuRFg2L10Arn4emLCKl9VeB3jHM+t/8hFAjVsDBDrL4E2dwXtFM+87OBmou5bl43qegTwRH0vRQK5oTkcGA3SnBXoFW9mPJmB5yKTP8z6KAD0wgdnsIjufPs/vW7RZjvG28rN+PsfL1VzBsnlN5oGHm77PgF6TuL1oAw5tBhoWAxWNKEXs5QYZYKf7+D3PW8egfd46HgAwdSAXAboeAeRBfg9GntsJArPxy37IAwSNrexW7woCMBnMT28H5j8Mp8uG5uYgnnlmP7LZArxeBw4eDOP++xeivX0m1q9vw+CghBMnhjBtWjVaW1uwcWMnXn65Gxs27IHDYcMzz9yMU6dWY8uW5UilVNTU+LB69Q5cvJjGk08uRWWlG01NATz99D7Isg6322FtsxMXL6axcGETBgclTJ48BsPDORg68MX5H8ei8XMQk5K4/ZpbMSKnkcvLpTr/oWwCj731I4RSQ8gVVNy7ZBWWT1+Ir7V9FrmCiqScQU5ToRkafnTgd9jVsw8JJQNVK+A7b/4Itf4xePqj9+FL8z8OzdAx1leF//XmDxFOx+B3e/DQTf8Ep92Bb9xwO979yot4eNmX4LI7cT4Rwlivn+8frRcYvBPQzrBbvD7ETvB1L7BDvGMiS+i1MGCmGLjr/SypJ4VBureVQXvRkI4UNrKz13DdfOEcEP0iUDj9P459/2tg3L8M9n85COD3ANbiUusMADgK4ONE1P9f6fNvjPtf7iHl8/jiKCO5b19/PfK6jklVVTBME0O5HBoqKiAVChjK5fB4ZyfWLlqE/aEQJlRWYnFLCwqGgcFsFhs6O7GutRWTq6qgmSa6BgZQ6/NhfGUlREHAgVAILYEAqi3Jt9/phACgN5nExs5OPHPzzRhRFGzYswe/XLYM9s7OcqbX5MnAjBnAqlUMtk2TXeU//emy4dzAQJlxLzLn1dXA8eOMxpJJRmfjx7N1+bx5wM03c818Xx+z72vX8r76+7mPzZvLNuaqytMTJ6C3tWEkm0U6nUZjY2PpfBbN40zTRCQSQW1tLTRNg8vlgiiKEAQBiqJA0zR0dnaira0NwWAQhmEgHA6jrq4OuVwOLpcLbrcb4XAYPp8PuVwOjY2N2LVrVymvvVAo4N1338VNN90Em80Gm82GnTt3Yty4cbj88svh93ggGBY7bhs1NlbMb68dUzaLI7BDuhU1BqAcXea0A5oxqt7dYn1tNkDOA+EhBuVjAmU9enF/RVYZKJuzjY6Qs+rnDcGGtGTDV75SZtbvu4+rI664grt1OhmcP/AA18A3N/OYTYX138TpZNHFtddaKnSRQX0gwIMALlfZZ7C9Hfj+9/k2GD0fDvNtNH8+EKgw4RBNFh0UdB7ICI2u67dcekWxnE9ffH/FR7HGfbQyYXQMX5FZF6x694LGBy/J7OB/7Uw2/Wuq532Pvm4mQdM1BtCqCi2Xw8nnn0f/G2+g5SMfwZX33w/BZoMSj0ONx+Gtry9Fxwk2G2LHjqFy6lRm6G02DB8+jM6vfx2t3/0uqi67zCqJJM56v/12xI8eRezoUcxevRqk6/A1NbGkPpfDhz/6EWbedRd848aVVRoAHDaBHcrJZEZLK1j3iMAmcYEqIJPkeve3/gNY9kme/sPXGWynElynXmTR8yqzwnYH8NrPy6Z3q+5hef3500DLVJbP73oF+NQX+P4LnwcmTAcungEaJ1plNm7g1y/C+OxdMMBZ6zaLRS/GwJGhQ04NwR0YC9FmBwQRciIKd6CatzU0KOkYHB4fy+or6yHY7FymYhrQ1Sxive+X6tk9gVoec9ELsNmdVls/7E4P1MwwPJUNgCDA1PPIZ+PwVDZAJKHMcLcthVBZBZIkCD5fqZ6dMmmITeNBigzjxacgTJ8FccnNl37ZawWuc3e4QLksoGl/hsX/DCidKBvgBSs5Ns7nh9Hxyp9Gzy2+AVpVAGSNRgmCHaZZgGFoIDJQKOSgqgkEgxPw5pv34eTJX+Jzn+tAMNiMvXs34aabnoDbHbQYdoIgiDCMPETRDlG0I5/PQJKGkcsNorl5MQwjD1VNw+ergabJeOutB7BgAbvVA8CuXWvQ2voQKisnoqPjTnR3v4zVq3vgqJ6KOwUBL4MN6X4EBttpMJCWwQA9BGbVHWDQ/irKEXF5vmuRQplN/yaAKWDneAkM7nUw8P8AQJGLi43qf57V/z5wXNwhAEsUDZmzI/DV+JBP57H7kd2lnPVbXrgFO1bvKM3f+uKtGOgaKDHmC+9fiFwsh8Z5jdh5z060rm+Fw+OAu8oN0S4y6P+Xcn8rt66EIAooSIUSiz94bBBNC5qQ7k+jc2Mn2ta3oXJSJQRBgM1hg83J3+sFvYDTI6exYc+GUo26y+ZCvb8esiYjnU8j6ArixNAJ9Iz0YPnk5WisaEQ4G4ZUkOB3+tFQ0VAyqRsdE/fMzc8gLsexsXMjHm57GG67G0k1iVguhvlN80FEuGfnPbh/4f14et/TuH/h/fjege9hYdNCrJq9Cm7RBpd8HoLNw0y6EgbGLrBqziV2m6++lsGkGuG4OJvbMprbDFzxhAWCrfZaGnAEmH131/IAAGAlVPQzi9j9mCW3/wxg87NUWHDyXUAiM/1DbwO+KcC4m6w8dgcz+0WTOAIb0NmczJ5rOSBxqpzLXmTRi3nuzgqUGhaZeSPP/ZV+dxTex+i692IdPQGsDynOFH+rdSB5hs3prr4fGDOd1wmwzPMIiO4DvPUMvBuv4/Oai7A53bx1gH8c8O5Xywz7DVuAnm2cw+6sAPZ8kwcARpvULX2RwXv6Ag8EXLeZze2MPJc6ZAfY4M5VCYCgIIiCRnA6bTBNE5KkwW5nI7h83kAuV0BlpbsExAHAZuPfJFXVceBAGC0tQUyYUIm+viQ2buzEunVtmDAhiDvv7LjE2E4UBYTDWbz5Zi+OHo3ie99bcUl83MKF7D9QKBhwueyAw0A6n8FYX2XJlO6L8z+G+oqxAICEnMa/dr1ySR17jb8KmqHDLtoQSg0jLqcwq34yXHYn8noB2XwOY7xB5PUC3j5zAMcjZ/HQTf8Eu2iHQQaOhntKDPzDy75kmeIJ0K2Y0oSSwRhvEKIgwGPTYRPAcvbcm8yOj10P2KoB2ABlPzvJ68NsQKf1A4nngfrvgTPeDWD4m1zb7hjPpnYjG7kW3t7ArL0eA7yLgcG7ynX0437ErvR/RY+/anM6QRC+CVaFaeDfqxcAfA9c+jXPmp8G/p276o/r3//c42/A/S/3KOg6To+MlMzhqj0eSIUCGioq8JXt2/HLkyexavZsvHDLLbizowOv9fTglc98Bouam6HqOh546y2sXbwY4UwGZxMJ3Dx5Msa43XDabOhPpzGQyWB+YyOSqoqUZWYn6zo27tmDh1pb0RIIwCaKiEoSqj0e3LNzJ17u7sbAV76CRsOAUHQd83hYL71lC2uoixL3UIhR1po1TKl6PIz2UimmVxcuZCr34EFm1uvqypStLDMC3LKFi52LCG7rVi6oXryYn4ODDO4ff5z32dKCvMuFi6EQfD4f9u3bh9bWVmQyGfj9flRXV5fc3XVdRzgcLjHrg4ODaLLM/06ePFlymS86z+u6jmg0WnKYX7x4MaqquE5KFEUQ0SXu8cUYumw2W8qJN00TpmnC63IxcC+awRV/qIsmaZObrZtAK8u6C1rZVK3oBicAyMrMxhfni67qBd2aauU+NZ1B+eQmlMboikC+6E6vG8DhbqC6EhjfAHI6kVVsyOUYmD/wAI+/tLUxWE+lWDhhmszGV1aWDf7XrWNWfc0aFlrE41wVsW4dj8EQcR+hEOPkxx/nyz5pEo/PbNjATP7EiazKVhRODnz+ORNeqBCK5QUAA2dJZgUCUC43AC4F5A4bICkM5PMFIDzM/gGCUH7vl08ulQuwYaCT79XiqAOZ1hSXlidYx2IYBjID/ejeuhUz77oL/qYmGPk8Rk6cgLehAf5x46ArCg4/8QQb1CUS8NTU4MMf/xgzvvAFeGpqAABHnnyyNJ88dQo1V1+N7MWLJek9GQZSZ8/C39IC0jT4mpqg5XI49tRTuOqb38Shxx5D/xtvYOWOHTBUFad+8hNccf/9sHs8sDsdEIYjEIrGcEGrNmGgtwygHS6g90NmzpNxy0G+FkglgXiEt3NbRjd5FfD4LLWDCqgKZ5CPDAOJIa6Fd7qAn3+PWfnJlwNv/7bsMC8IZYA/pg6oroXhsIMMHYbGzvAQbSjkUoj3vY9xl1/PxnVyGvG+Q6i7rA02uxNEBL0gQ7Txd4maicHu8kDPK1btO18/ORlF/5HXEaibjLETr2bnegBk6BBEkZ3cAUAQoMlpaEoWDo+fWfmqBmbVdVYaCABL6UWRDeoMAwIEmJF+CLXjAJsNgs0GknM8uOEv/1GiD09wXfuSmyEEKlnW37GtBMTFJTdz/FvRqb507xHjA0GwjOouQqgIQBhTA8qkgEAQBkwkUueQyYRRX38F8vk0nM6KEks+MNCFQKAFwWAzcrlB+P0NCIX2Ydy4q2C3u1EoZPHWW2uxYMF9qKqaaH01j1imduVsd9PUoSgJOBxe5PMZ+Hy1KBSyGBo6iaqqyQAI3//+5Zg5sx0rV/4AqdRFdHZuxEc++hNkHV5EBAGbwNL1CeC4tmcBPAlmyIvA/CCYUR8LBuNVKBvRJcEgPwRgJdjM7kUwkE9Z6zYD2ASuZZcAPAyury8WL8TAgwV+MGQyAJCUx9AfLqJubl1p8DefYZd4h9eBzEAGezbsQetDrXD4HfDV+NBxZ0cJjK94YUUJpFc0VsBQDYQOhBBoDqBqUlU5t319GzLhDOqvqOd9WMDd7rFDgIBcLAclqUCOyWhpbYHdY4dRMGBz2mC3BmwLegF5Iw+X3cU/J0YBBEImn4FUkFDrq4UoiJAKEpw2Jxw2B+K5OHxOX+l+9Dv96E32wm1345Hdj1ziMl90qG8KNmHjno1Y17oO44PjsXdgL5oCTYhkI5hbPxcixFKfeT2PgE2A89g3gCs2sau8pwH48AlLGj+OQTpElvuqI4AzyIZyh78KTL0H8LWgZAJHJnD0Pl7urgWOfgOYtxUlZ3q7t5z8oUQY4BsyIEeAqiss0B8EkieAqtnsVG/3MZtekrPbrMg46/9IIcvMtijy95sgMmvt9HOmenGQuAT0XRbQl1hqDpSN6orgPt3H7PmYGZYcXRhlUNdYnpdCzGyPBtQ3/4T3UwTm89cD7jFc/37TC5ZZnskxcSXH+ee5rr24fXAS8OYX+bWPzTYhupixP7iBTeocXmbU31nN7H3jYsulfi0PEriCzBKHO6HUtOFMn2yB7VZMnToG6XS+lNUeDLrg9zvx3nsXMXduHYaGcti0qQvr1rWittaHNWt2Yf36NkyeXIlQKIt/+ZfdJaD+/e/fglAoi82b9+LJJ5fC73dCljWcODGEBQuarO8lDQ888BaefHIpRFGA02mD02lDJpPHgw++jef/9SMYVuIY4wtg07v/VgLoa2+4nQl3AYhJSbz0/uv44vyPY4w3AJ/Tg0d3/QD3LlmFc/GBUt76rPrJsFuDwJqhwbD+AxAIDht/XrsHezG9doIlfSe4rN8mg0xk8znkNQ2D0ghm1U/m8hW7AKd5AUIxr91Wz58JUwJsNTzIBR2AnZcJbmuZwYNSAIN5fRhwNLJc3nMtvzF9EBh5jEG8Y8IoUP8w4JqOv7Z4uL924P4Q+HcLAH5NRJ//o/UtAHrARq+3E9HP/0wf9wG4rzgfDAYbU6nUf9sx/097KJqGXKGAlKrC63Qik88j6GLWdc2uXVjX2opJVVXoSyYRGlXPPpp5b21pgVQo4MG338b9CxeisaIC70cipfr1h1pbEc5ksLil5RIH+q0rV8ImCNBNE4Ig4Hwqhcc7O/HL5cthP3uWjejmzWNArusWGykxqHS5uIAZKGd5jUZ9CxdymwMHGNkND7OR3fnz5Xr3vXuBqVOZ1i0OEtjt3N7lYq31E0/wPt98k7dtaEC+pQW603kJI+71erF//36sXLkSsixD0zTs2bMHCxcuRC6XQ0NDA7LZLPbu3YtFixbB7/cDAFwu159EuW3fvh3d3d34/Oc/j/r6+tI6h8OBRCKBrq4uLFq0CNXV1bh48SLq6uq4HlKSSnXvdWPHQhhda+10MOB2WIwnwEDxYrTMmBcd5pU/YpAtYy1kc+wOX2TWS7FoJsvuRYFBvsMBeF1lZ/lLmHy9HH3mdABOB0ybDbvespVS/kSRL/GFC3ypHnqIKxkUhRnxxYsvrXt/9FF2mT916lJW/cUX+bYoPnzWfxcenefbxzD4NAiW+l0QeLnXZcB27gIbz9VU8jkbrSQAeJCiqEAwCTj8ATBtIrcpMiKCxVqMjo7TDW5X0IBEplzzP9qDwDAY/I8G98WYPpOgqSre3/AYqmfPRsvy5SAAx556CjO++EX4GhuhDg/DVV2N3NAQvNXVEB0OmJoGs1CAYA0OFDIZbF+5Ei0f+Qhmr17NYJ6oVLc+9sorceonP8HML38Z/haOBtNVlSPmxozhOLhCAXIkgpqrrkLsyBHIQ0NovP56CIIAl88L8dwHzKx7fcysC9Z7SwxzLvukGXw/aVadqZYHwheBSZYhXUEF0kkgPcLA3OFkKX0+b9W6f4nlFqLNyn93l2SJ6DsFjLNKGMLngaZJbITncnMUWqASeU0uubyLogN2lweEIus9Am9VA3KJMNwVYwFBwHDPXtRdxnW6RGSBdxNychjeqjrLQBJQUlF4KutgFPIwTR0Olw+CaLPKVWWOiCNYNyQz+d4x4yzpLmAUFNicXogQgORIycVdcDhAus7bOZy8v7wKSFmudW+7CULlGOvzKAIgZrOJ2JzOyjgnTYP5VgfExTfw9obOngFkMvj3eNml/pKouZuAymoI1h9+KqjQRBP9kf1oaWmFrqtQ1RS83rFWfTqXdRAZVlzm+2hqWgiAYBgabNbARyp1AYFAkzUvwDA0hMMHEAg0IRgcD03LlaLiiExomgy3u+qSbXRdwa5da9DWtg5VVVNhmswBFJz+P4mD0wF8FcC9YJBe5B0PgFnzYQDX4VJW/jiAcSjXwB8EsAhc7/6A9fRa/dvB9ev3Wl8TgtVHNUoVpbC+NWACMBUN+TMj6NrchRXPrSgB9bb1bQi2BCHYBZBOyMVy0PIaqsZXIXU+hb2b9mLZ5mVweBwQLFaxyKQ7/A4MnxxG0/wmNpcjvl+TfUlUTqxEsjfJkXEPtcJX58OuNbvQuq4V0qCEujl1cPgc0HIa3nrgLSxeuxjVl1WXwPvoRxHInxk5g01dm/BQ60MIZ8JY1LwI/el+bOxk8F3jq8G9u+7F2kVr0RxoxkBmANOqp6Ev2YeNnRvxzM3PYDg3jCf2PoEXbnkB74ffx+za2bCJNvidfkQyEdT56/jnSVdK7D4ArNm1Br+8bSvsMK26dQdw6J5yrfvV37M+V6bl9l4E1XMYhOtyeb4IumGyI3wR3Ip2lJzl1RjgrmJQc/hrbFanRBnkSxc4Ym7Gg0CFVQ9eSAP+CZfWmkvhsgO8w1ceCCi6vhcBfXHAvVhRWsha7LlQlsrTqPWjf3dAzGQHJ/JrU+N+DZWj5IITGEQrcWDsLN724EYG1IEWznDf/xhQPw+YcDOb0WUuMggXHRzV5h/HRnLz1rGU3u7hQ1biHClXPP7MRWbzr13LH7jgeCB6AHj908Btr3DZgM3JEvrRLvP+Rut3QUY678add79xCSuez+sYGMhg06YurF27CNOnV0NVdcTjCh55pAzMH310CS6//PslkF4oGIhGs4hGJcyf3wSPx4ZcTofLZYMsa0in8wgEXHC7bTh/PlVypX/vvYv47GdnQtcJ2WwetbU+2O3sMu/wEDJaFpWeCqi6hi1/+CXumPdRNAZqYJIJRcvD63TDMA2oegHn4gOYPW4qQqkhJOQ0ZtZPviTCrd5fXQLeNkGEZurwOFzI6xo+GOxFja8KY7wBPLX75/jS/I9jXGAsIpl4ien3Olxw2p2QCyr8Li98dgPekdWjHOW3gvlUDYCNjenMNCAGAfUEm9YJBJDG974pA6KXpfNUYHm8ehLwLryUYa//gQXUDUBw/dWBduCvv8Y9O+r1D/54pSWP327NLv1zHRDRM0TUVHwWAc/fHn+Zh2aaWLNrF8Z4PPA5HAi6XCAiVDid2LpyJaZUVeH+XbugmyYWt7Rgc1cXFjc3w+d0YtXs2WgOBHBnRwcGJQnzGhvxxN69cNhsaBs/HgGXC4ubm/Hd/fvR1tICmyDgodZWtM+cifVtbcjrOjTTxEAmg9U7dmCsx4Mty5dDJGIN9Lx5zJYXi53Pn2dgLgiWARPYOO6BBxhtfe977Gi2wBIpmia7l1VVMTNPVLYe37QJWLaM7cRjMUZ8w8Pc77hx3GbTJo6X6+0FPvc5Bv4eD2yiCLvdjkAggH379iEQCMDj8WD58uUwTRM+nw8+nw9Lly6F2+1GS0sLHA4H9u3bh+7ubuzfvx+iKMJlnWsiQjKZhCiKEEURbW1tmDlzJpqbm0FEcLvdsNvZrGj//v3o7u5GV1cXiAiNjY3QNA2FQgH79+/H+PHjUVlZye+/WGNe0BgMOu0c6Xb2YjkLbVIjs+wXIixhB3h50YwNKNJ97FBvY2dqnLUqWwyT++wLMSj3exkJFyPign4GpgSu1baJDEaDfsDp4BJCyym+WJWg63yJN23iS/X44zymMjDA1RN795br3tetYwa+vZ23Wb++vFwUGaxLEt8+QlHZrvK4TD7PFRe6bh2yweM3fX3AO78XYDaPA2qruFSgL8QbFAcx8ta5MonfFxFw7WwG7Rmp7BCfkfhcFF3os7lypBtQdo3PF5jJF0UgneN1xRi/oJ8HRYqO/9kcRJut5ChfyGYB08TYK66APDQEPZfjkXdFQUVjI5ThYRx67DGYug5HRQUgCBAdDnhra/GpvXsx79vfhnvsWMROnIAUCuGahx9Gy4oVOPurX6HmyishOp0AEUyD5XfeujqceuklGIoCf2MjvPX1OPTYY6iaMQPjV6xgid7p05xuUFXDcvhCAeg9xfed3c7mc82TuAZ90Dq3ps4M/JQZzKLrGsvi3R4G/796gevU/ZUcC/eJO/ge+81WQJUZeOZVBuxEzLgbGufFT76cQb/XB7i9QGU1yGZjR/gxjXC4AwzaLWZDtDngqWoACQIcHj+GejoBAPUzrgMRQUnHIIo2izm3wVvdAICQS0SgqRm4K8Yi8sG7ME0dTm8QWj6HXCIMmAZsTk9JrSEnB0GGBt+YcTD1AqLdv4emZpHPpUCmzpnqe3dDXNAGQRRh9p8HMmnAkpYzqLDB3L+H6873vMM16LoGSo1wLbsF2gWiMqNnt8N26ycBuwOUjMPY8R+8vSBC8PIgA0yTXeQlCbalKwFfBQQyeaCATCCfhwABTU0LkUqdRyRyCE6nH7qu8jlSkjAMFZIUxRtvrEFj43wrFm4/iLgmNhTaj8rKiWDAXoAgiLDZHGhpaYXD4Yco2uF0+kug3en0QdNy2LlzNXy+GmQyIetzbcfKlVtRVTUV+XwakjQIIhN2Q8NGayDnn8G15k4wM24HcA+41vwAuC59GAzMBWt9L1geOAssHZwPrnlvAoN/01o+wWpfGNXHJgDjrf5zYGO8nLXeAA8gdAKwGSY6N3bi5C9PIjeUw95Ne9G8uBk2pw2CXUDqfAodd3VAV3RUTayCnmdX+FteuAVyTEbHXR0YOTMC0zCRG84h0ZuA3WVHS2sLTJ3vZ9MwMdA1AMEmQLSJ6NrUxTXuj3dCTamlevfmRawmkiLsZN+0sAl7NuyBrujQlD8VRKqGilwhh01dm/Baz2sIZ8KY1zgPDtGBcf5x2LR0EyLZCDJqBi93v4xNXZvgsDmwqWsTpIKE8cHx2LpyKwKuAALOAJ5f8Tw8dg+uqL8CQ7khrNm1BudT55HTctgX2seqMjLx2HuPIZqNwuPw4P6F9yOSi7NxYuo4H9hVW7jm/PIHGRAWDeFcYxis1y7iq3doNbPmY69l8C31Mih1BBmwqMMsI4dQVlgZEnDwbkDqA658Fshd4Fp2eYDN6AbfBHxN3H8hxUCZTAbq7rEMqv2NLJt3BvjY8hkG1k5/2XVeEMuJLUaBGfSig7zoQInGFQSrjtiaNwvMlgMM2sngdYKNgTpEZv1NnY/JM5bbFd3jfTxAAmcQaHuSWfCuRywzvQkM8CN7gdorAG8dA2xPNTBykr+DIXCfyggrAgAG7T0vM5vub+Dv5YpmYPJH2aG+cgqfk/nrGbRf+yAb0tndzMo7vHDaCevWtaK9fSbWrWuDw2GDw2HDpk1dePnlbmza1AXDIJgmEAi4sHbtIrS3z8TDD7ehstKN9vaZePDBxVAUHblcAdOmVeOqq8YhHpeRSuVhGEwgRSJZPPLIbkSjWdjtNgwP5/D008tQV+fDZz87Ex6PA9EoM/b9/WlkMnkcPBiG026HqhXw2Fs/RlLO4P7r/x5VngqLLBBwJnYRmqGjYOj47nu/Ro2/CiciZ3Es0oOmYC1cdidm1U/Gzw5tR5WnAoNWVvvj7/wU0ewIPA43Qqnhklt8LMcO9bt69uFHB37HA8tSArdfcyuGpSSqvZUYybE8PyYlYbd7/8hR3gS0c1a9e591v/bygJR3IQNz0hh8i37AXs/AHQKDcbEC8LYBsHF/Fe2WoZ3TAvgVf5Wg/f/u8dcA3Pv+N6//3Dbj/puP5W+PP/OwAXhy6VLkDQPnEgms2bULcVmGbpqIShIyhQKeXLYMEyorEcvl8MRNN2FxczMe2b0b/ZkMwtksXu7uxqauLiybNAnrWluhmyYupFJ47L338KkZM/C9FStwIZ3GV7Zvx1iPB1tXrsRYjweHo1EYpgm33Y7tZ8/i+NAQPA4HYLeDZBm4914G1mPH8o+Uy8XLRkaAri7+A+r3s134wACz61Z7lnULvG11NbcVhEsRX1MTDxA4nUzjbt7MKM7p5B/MigoG8wsXcp+aBjz1FMjphGEY6OrqQnNzM+x2O/x+f0nOXoxsK7q99/f3I5VKYdmyZZg5cyaWLl0KIkI+n4ckSXC5XGhoaICqqjAMA8FgECtXrmRmC1wzr1su9itWrMDs2bPR1tYGWZY5s92SzRfXERFMIlDLuLIk+8xFBuZOOwPCCxHLMM3Gz6Z6BolFaXY2V2Z+Cxr/ichrZcA+pbnseG4TyyBTFBngg3j7tMT7PddvRdMJZTBrEyEYJkSwSZzPxyz7nXfyGM3mzWxrsGULH+KSJWUAP2ECM+otLXxpfvADHrupr+ftW1rYdR7gZYbBt4yqsoDjwgWukJg9GyV/Obebqyk2bwY+9nERv9/vZpay31IlAPxjJwjlbHuyBidKbDzxtjaRwXbAx+evd4DPidNhAXvz0g+i31s+T34PMzAZiZcHK1gFoRb4ulT4YHM44PD5oMTjOPnCC1DicTTffDNqrrwSSixWWgYinPrpTzH99tthd7vZcE4QrNhgA4kPPgBME6LNhtorr4S3vh4jJ05ATSRw1bp1GH/LLZAGBpANhUCmCdFux6mf/vQSQC8PD2Pu178OEOHQY49BicdRNXUqCskEhGSMZesOJ8vae7vZqO5X3+f3/Yk72DXe7WFmJZfheuxgJbvO//J5ln5nkpeaz028jIG9zQ58/HZm5f/9RT7HEy/jTHjTAHxBZuJ7P+R+5Ryz+EoOQjqB+hnXIVA3BQU5jfDJt5nRldOIfPAONDkN0gtcn15ZDz0vI9L9LoyCAm9VvVXLzg7oIIKcHCrFyBlGAeloD2LnDgBkQlOysLs8UNKD/EfOZrNY+npLEk4Q7U5UT7wK8d5DsDs9MPQCO28vW8k1/qYJsWUif5eJtrJhnJSFuPQWlr23LQUClRAcDsBfAcHtBZkmBF3n2vbkCMzQRQgm17kKPj/MzndB3cc49q2Q56x30+APFgChbhyM3W/y+SSyRsFEwOcHWTGPe/ZsQG3tbORyQ3jrrQdQKGTh9VbD4fBh795NaGych0xmADt2rIbfz+du+/a74ffXQ9cVqGoKosimdLqeB5EJn28sTFNHItGLXbvWQJbjEAQ7/P4GLF26CbI8gsbGeRAEO2w2p5UXz270giAinR5A+MLv4QNhE4CXwbXpCljK7gIbyG0BMAfMireB5X8quP58LviPSQWAb4El9XmwXH4hOPLNBeas9lp9N4Jl9FvAIH8xmI1fwHcnngDL6lWrf91pw/Ity7H61Gr46n1Y8fwKzPrcLDaeO59Cuj+N7pe7SwB65+qdUJMqNFnDng17SoZypNMlsXKp8ymIDhEjZ0aw/e7t8Nf7kRnIgExC60OtmNk+E20Pt8EVcGFm+0wsfnCx9RVHgAA4vA7MvX0uVm5dCdNhQjZlqHm19JVV0AvIFXIwyMBDrQ/hlc+8gqZAE+7ZeQ+yhSwiUgSP7n4UC5sWYlzFOAx9Ywg/vO2HsIt2bF25FRXOCii6gqgURSafgcfpQUpNQTd1pPNpbOrahJe7X8aGPRswecxkNFY0orO/E06bE/ctuA8BVwC6qWNEHkG1t5qBqaeRpfKiA7j2RcA/mQGq3ctPU2Ownu3lN1E9jx3iBYFBt7sWSLzPgMXm4XmYgJYplzB1b2A2v3sjt+veWJ6vng/cfJAHAQ7eBRg5wFNr/cg4+Q4Q7Xx86QsMwk1L3i46mbUOTLAYd2t0VxBHRclFeFtTYxBPhmU2ZzHqIC4LcPovjZArmsf5LR8S0cb7EEQ2x7M5GUgffoZBtanxNk4/g+2elxl8kwkcfgrY8fesFCikgYtvcf36uAVsaJfuBd6+m9UNEIBwZ9mk7toH+Ti0HL/XZT/kmLhUL/D2V0Ytmw64gzxgoSsAETwuAdOmVmHr1pWYPr0aXq8DbrcdW7YsL5nM7d8fwuBgFna7iGnTqrF160q0tATh8zmwZcty1Nb6cPLkEIJBN4hQAumDgxJEkeN2BwclfOMbCxEMuiAIwKJFXIb4wANvYWgoB0EAfD4nFi9uxubNXbDbRdTV+VDQdbz0/uu4onEanDY7NNPAs3/4JUwiiIKIWv8YPP7OTzEip7Fu6RfQFKzDZbXjsXD8HHicHiRyKThsdjxww+1Iq1IJxO/q2YcfH/gdTDJLhnU/O7Qds+onw+/yliLkbNY+fnZoO2r9YwAB+MXhHbiq6TLU+sdANwXOYx/7KCB3snu8FgZqN7MhnegHvEtYIg+yTOnCFrA/z58JU+aBLO2stbyX7zHHVGba7S2WvB58X5vS/zhzuhII+D/1CTZqtag3XPm/2eYn1vr/+K/02djYSH97/OUeeU2jhCzT6ViMOnp66EAoRGficToRjVJHTw+lFIWODw5S+7ZtdCwapbSqUvu2bYRHH6X2bdsoIcvU0dNDsVyOhlMpWrpiBU2eMoUmTJ9O0+fNo992dtKpWIwmXH89obaWKsePpyuvuooee+klOhAKUfu2bfTuyZPUduONNHHSJJpy2WW0e/t2ojNniEZGiBIJojfeIDp+nKijgygWI0ql+BmJEK1aRXTiBNHQENHwMG8TChEdO0a0YwdvMzRElEiQEonQx269laZOmkRzZs6kpTfcQGc7Ooja2+mO226j2TNm0NzZs+mamTPp7SVLeJ+SRBvuuYemNTaSIAj021/9ihRFoXg8TplMhtLpNMViMcpkMhSPxykajVJPTw9JkkSyLNOZM2coFAqVlimKQoqiUDabpXA4TK+++iplMhnK5XKUyWTo5MmTtHz5cho3bhxdfvnldOONN9Lx48cpHo/T3//939OsWbNozpw5dNVVV9H27dspGo3SmTNn6B/+4R9o0qRJNH78eLr22mup8733yNQ0ooJG1H2OaPf7PJVkoozEy7M5XpbNEcWTPNWs7dMSUT7P28aTRPkCUU4h5ewF+thtt9HUyVNozrTL+BwePEykqnTHqr+n2dOm09w5c+iaq6+mt//jd0SKSpSTed2sWXx+r76a3t61i0jNE6l5yis6AUSnThG1txMBPE2liCSJKJnk17EYX9JEgp9DQ3ypIxG+7IcO8XNwUKElSz5GDQ1TaebMObRo0VLas+csHTlCNGHCHTR16myaOHEuCcI19J//+TZlMtzfjh18K7388jskiiI9tflpMgsaH2fxXBYKRDmZX6t5Pkeaxs+cUl72x+d2YJC3UfOkZLN8DidNpjmzZtHSm26isydOEnWfozs+83c0e+ZMmjt9Bl1z5VV8nnIyUaFAS9quownjx9Pc6Xyfbn7iCUr19tLpn/+c9q1bRwVJonw2S6Hdu+nfr7yS9tx3H+UzGcoNDVHi9GlKX7hA+XSacoODtG/dOlLTaVISCUpfuEBKIkFqOk2hzk5KDw/TbStX0pTJk2nG5Ml0w3XXUffhw1SQJLp91SqaOWMGzZo+nS6rr6eOV16hfCZDaiZDaipFa//5n2liUxPNvPxyWnLddWQm40SRfqJknOjEAaLzPUTH9xPFh4gScaKhEFFO4udgiGigj+jFDUT9vbzdF5fzfCbF81KWKBkn5f336GM3L6Wp45v5HN54I509cZxIkemOz7bzOZw1i64Z30Rv/+IlomyGKBGjeVdeQXNnzaS5c2bTzBkzCAAden8/KdkRivUdJiU7QhcPv04nOp6ii4dfJyUbJ03NlZaf3LGF1GyCtHzukmkuOUh5OUPpwfOkaXmSMim67dZbaMrkSTR71ky66cYb6ci+d6kgZ+j2fyh/jq++6ip6Y8frpBVU0vIy7e18j+bNu5bmzplN06dPoyc2PEamqpIRDZG27WdkhPvJyKTJVBXStv2MCo/eR9q2n5GpyGTKOdLPniYjkyJTzpERDZMRHyZTVXi9qnJfqSRlf/1T+uhHltPUKVNozqxZdNOS6+hMdzcZ6ST942c/y+dv9iy6evIkevO1/yRTypKRTlLXpg20aP58mjN7Ns2dM4d27nyd0ukQpdMhUtUMZTIRikQOUzh8mF59dRVlMhGS5QQpSopisdO0f/936be/vYOy2SFKpS6SLCdJVdOkqlmSpBjF42dIkmKkqhmKxS7SypW30JQpk2jGjCm0ZMkiOnp0L4XDh2jbtnaKRo/Tzp0dJIoirVt3F8lykhQlRcPD5+nTn/4ETZo0gSZObKYtzz1Mx02T2onoIBGdIaLjRNRBRMNElCWiGBHtIKIIESWsdQNEFCaiIWtZlogOE1E7ER0joouKQgs+9jGaNHUqXT5nDl2/dCntP3uWIkR0ioiSRPTDd94hQRTpG88+Sx1W+6d+/GOaMWsWiTYbffvZZymX12jw+CC9uupVykQyJCdkOrPjDKUGUpSJZEhJKfTqqldp8Pgg9XT00KN4lLa1byM1o9Lg8UHa1r6NIocjJCdlkmISbWvfRo/iUXp11auUGkrRiptWUHNNM1028TK68fobqftoN6lZleSETKqk0s7/3EmiKNLjjz5Oakal8KEwfeKyT9DkCZNp1oxZNHfWXPr+r75P7dva6Xj0OOW1PBERpdU0rXp1Ff3rwX+lpJyklJKi9m3thEdBp2KnqH1bOx0KH6Kj0aPUvq2dIpkIhTNhOhQ+xH0NHqdzQ+dowU0LaPKUyTRr9iy64cYb6MgHRyijZiilpGjHmR20ddtWEkWRvvzQl+lA6AC1b2unr33jazTlsik08bKJNHP2TPrlz39MpCaJ5AhRboBo7yqixDGigkRUyPDrPe1E8UNEPc8ThTqI1DiRPEiUPEmkpojyaSJ5iCgXJkqdIspFSBn6gD628iM0dcpkmjN7Ji296QY6e6iD+0qeINJy9M7vtpIoCvTshgeINGt/1nF8uHsreTwe+vrXvkqka0T5LNHIaZ5mw0TyCFFeunSqF/g50sPLdO2P1mk8LeSI9AIp6WH62G0raerUqTRnzmz+PfnwBJGmlvb5zm9fIlEU6dmnNlv7l+gf//6z1DCunubOmU1zZ11G37j3a0RKgkhJ8v6GjxPlhogGDxG93k40eNg67ghvM3zcWn6Il6lp3n7kFNHh7xJtX0UU/5CUzS762NIFNHXKJJoztYGWXlFPZ7te4bb5DB/fY0tIFEDPfukKXqbniYaP0wvf/gpdNm0KzbpsMs2ZECSl/yCvI6J8XqN0WqVIJEOrVr1KR49G6fnnD1B7+zYaHpbo9OkYdXT00MGDA5TNqhSLSdTR0UPHj0cpm1Upk1Hp1KkYPfXUH6i5eR5NnjyFZs2aTUuW3Eg/+tFbdPx4lEKhNHV09NB//Ad/z6xfv4ESCZmGhrK0fPlKmjVrNs2aNYdmzpxNgiDQz/79l9Qd7aUHXttCp4bO03A2QZ19Rymr5iiWTdJgJk6dfUfpfDxEcSlJPUMX6IHXttDpoQs0nE2UXudUmeS8Ulr/Qf8ZWnnbSpo8ZQrNnDWTrrthCZ3s7qasmqPhbIKGswnq2LmdBFGg5o9fTe/1HqGMmqMjJ4/RvEULaMqMaTR12lRas+arpKshIvU0kS4RKSeIMjuI9DSRFicqRHi5niXSU0R6huhMPVGmg0g5RhRqJ1KOE6lniOT3Scn208c+eitNnVr8fLTR2Z6TREae+1JP0Tu7XuZ779lnS7jjzJkztHTpUpozZzZdfvll9O+/+sVfHtz8Nz4AhOh/h3v/dyv+T3oCeM8C5g/8mXUOsBqNAHzzv9Lf34D7X/6Ry+cpKct0NBplgD44SGficToQCtGpWOwSoJ5SFDoUDlP7tm10OBIhKZ8vAfu+4WF67he/oM+8/DIdi0Zp87PP0ux58+hwOExnQyHq6OmhE4ODtOu996iyqoo+85vfEB59lCbccAN9c/16OhQO09LHH6fGhgbKv/8+g/JwmFHb2bNEAwNE8ThROs0o6/Bhou9+l1Hb8eOM9g4cYER39iy3y2aJMhmiaJSUvj7a/sorZB49StTeTs9985u0ZN48ooEBSp46xQgxnaYjb79NVZWVZITDRJkMHXj2Wep97TVaUlNDv/3xjymvqpTJZEhRFJJlmWKxGKXTaVIUhXp6eigUCpUAeRG8K4pCqqqSLMsUj8dJlmXatm0b7d+/n8LhcAnYj4yM0Lp16+g73/kOxeNxevrpp2nRokUUjUbppZdeKvW5d+9eqqqqIlmWSZIkeuWVVyidTlMqlaJf//rXNL6lhYGjopZBZEbiZ05mEPlhLwP6U30MSAsWAM1IDEKLgFTTSsBeyWZp+2uvkZkvECkqPffEk7SktZUoJ1Ny3xEGqKpKR/Z2UVVVFRmyQtR9jpKDQ6XjONLJx25kJSI1T6amU3s7A/CjRy+97MVLffx4afyFIhGiO+5g0J5I8GUbGGDgPzTEwP2RR7bT/v0mtbcTPfjgc7Ro0RJqbydyuZLU0cFtfve7I1RZWUX9/QadOsX73LYtRVdddS2t+Mit9MzmzWWQXrDOgZovn6cimFdVXldcls+Xz+2HvZdum1NIiY3Q9l//hkw1T5RT6LktW2hJ23VEGYmS4Qi3GRikI/sP8Hn64CxRNkdLFi2m3/7q10QZifScTImeHgrt3k3KyAjlJYlGTp+mPffdR4lTpyi0ezclTp0iLZejfCZTAueh3bsp/uGHlBscLIH2RLHd6dOkplI0cuECvfqLX1Dy3DlS02l68lvfoiuamije3U2DFy9SPpslZWSE9v/hD1RVVUXS0BDlJYmeevxx+thtt9HgBx/QvnXrKHK+j+jCWQbcmRSRIjM4T8aJIgNEUoaB+GCI10sZBvejwfoPnyRKjnBbKUt04iDRxXOkxIZp+7bfkHnxLNGLG+i5//UvtOSaK4n6eyl5obe0zyO736GqyiAZOYno4jlun5OIZIl+8+OtNHPmTJLTQ9R/ZDvl5QzpWp70gkoFRSItr5BeUEjLy6RrKukFlbS8QgUlS/1HtpOcHroEvBdUibcpqDR04RT9x7ZfUkGRSE4P03e3PEvXXddGeTlDQ5F+UrIjpOUV6nrvbQoG/JQdiZCWV2jOnNm07d9/QQUlS8NDUaqpqaEPjhwm/cwpMpMJMrIZMrIZMnMSGdEQ6T3dDKoVmfSzp8jM5chUFAbpikJGCbTzMkPOkSHnSPrDW/TaQ/eToShkDIZpyxf+gZYsXEhGOknx9/eV+jy0aydVVVVR4fQHpKeS1NjQQG9u306GnKNT+7uoqamJBgZOkiwnKJ0O0auvrqJo9BidObODwuFDJEnDFI+foWj0OL366qoSwJflBMXjZ0mShklVM6X1mUyYZDlJspygRCJCW7d+m7LZYZKkIXr66ceprW0x/fa3d9DBg/9KQ0MDdPXVV9Hy5TfQpk0bSJJidObMDlq37hv0+c+3UyYTpQ8+OEhjx46lC7FhGiYG5wli8D5MDNCLIP4IEYWISgA/Y20bIqI7iEF9hIi+S0SriGhQUWjb9u0UMk06RUTfee45WrxkCR21+tiTStHUa68lrFxJVzz7LO239vObY8do5YcfUvs//AN959lnKZ5Vqaejh5IXkpQOpenVVa9S5EiE0qE0bWvfRoPHByk7mKXwoTCFD4d52YlBykQydGbHGQbgWZXyUp7UbBnMZyIZunDwAq27fh2lQ2mSEzJ9665vUeuCVooei9Krq16lgdMDdNUVV9FHln6ENm3cREpKoW3t2+iffP9EAycGSEkp1Lm/k7x+L+0+s5s6ejooo2aIiEhSJToaPUodPR10LHqMdpzZQceix0og/Wj0KMVz8RKYPx07TUPZIRrKDtGF5AV64+wbFE1G6Tf/8RsazAxSQk7QQxseotqZtRRKhyijZuji4EW6+pqr6Yabb6DvPPkd6ujpoAOhA3Rm4AydjZ+lYWmYjp05RhUVFRQ7u7sMzk9/l1/nk0T5FL/+JXgqD5aBfOI4ry9I1rYZovgRXjdylJSRXtq+7YdkqiNEaoqee/ZJWnJdK1EhS5RPUSoWomuvuYpW3nIzPfvU4+UBADVOBSlGrYsW0Oc/+xn6+lfvYRA9cpoo1MlTC3jTSI8FsvM8LQJ0TeVtDO1PwDpp+dJ6JZui7a/9J5lqhkgeoee+u4WWXHcdrzc0SkXP8zGuWE7PPvUkUaiLSB6hf7z9H+jZp5/i/Ye6iNQMkRTl/Y/0MDhXMzzAEP+QKBvl+aFjfPy9HUTRg0SJM9b7loiG/gjMZwZI+e1nafsrPydTHiHq7aDnHn+IlrQtIpJjRJpMqZFhuvbKmbTy2nH07Hce4POQz9Lv1i+mRdfModT5g0Svt9PwoyD9d58mymdIlgt0/Pggtbdvo0OHwvTd7+6n9vZt9OGHw3TixCCdOROngYEUHTsWpbNn4xSL5SwQH6KOjh5KJmU6fjxKHR091N8fp23bfkeJRI6GhyX61reeoEWLWunMmTgNDmbpnXc+pDFjJtPSpR+hBx74X6V9hsMZSiZlOnUqRu++u4fGVI+h8MgQvdd7hE5GzlJn31FKKxJF0jEazibooY7nqDvaS8PZBKXlLEXSMersO0qDmTil5Cxl1Rz9+5E36KGO5+h8PESxbIIyao7iUpIGEzH61Su/od7YAA1lRujxp56k1rZWeqjjOToZOUs7jv2Brr7malqy7Ea65+H7qWfoIu3pPUK3rlxJm59+itJKlt49dYBmzrycOn77/CgAfpZIG2GQXogwYNeSDNIzHURajNdpMW5z2s2g3VquSMO0/bXfkJneTqQcpue2PMafDz1LpByi1Icfp2uvvpxW3vqRS4D7okWL6Ic/+Fci5TgNH/8otTSPo1B/318c2/x3Pf5/Afe/Bqk8AHzbmj4kCEIxIQWCINgBPA2ON80C+On/C8f2P/ZR0HVI+TwKug67yO7Gj3d24uXubmzcs6dkLPdmby/WLlpUqku3iyKmjhmDLcuXY1JlJQqGAY/djm8sXAiP2409Lhe2ffghNnZ2YtaVV2IkEkGd34/1+/ahORjEhMpKnOhnufUPVq7E0P33I3bwIO740pcwKEnoNAyMq6/He9/4Bte4R6Osnfb5WPb+9a8D2SwXRQeDwO23A62trH9+803g6ae5WNrn47bZLBc5f/3rcKfTuOXmmyGEw8D992PBtdfiQiQCDA2h8pFH2GbcNJFOJFh6lkoBkoR5X/gCJokiZ5BZdenZbBYdHR1Ip9NIJpOl8zp+/Hi4XC4sWLAA2WwW27dvR0VFBYgIIyMjGBgYgNvthiiKuOWWWzBz5kzkcjn4fD7s3LkThUIB3/zmN/F3f/d3cDqdmDNnDkKhELLZLC5cuACHw4F0Oo233noLRATTNBEOh7F48WK8+eabUBQFNy65HuFIBHo0xpJ4txOYNr5sEFesZ5/UBMyawrL3ooRdLfB2NpHl2Wf7WdYe4Jp0t8OJW25eDkHXAQFYsOQ6XBgYABwOVM6azjXhBR3ps+d5X6IINNejcswYft1Uj3RWKh9Hgesmt27l6LYJEzjxTxBYyn72/2Lvv6PkKM91b/hX1bl7oiZqkhIghFAEFEdgGwQGAQZstI3B2cbYBIMAGYRMVADJItjgAE7be9vblsABRgKBCUbDIAkhBFgISSjMTPfkmc65u+7vj7unR+wTvnXW2e933uPPtVav7q7wVHc91dV1PVe4D6ucvbtb5+3cqZL2Rx/VJnbuHJO6r1mjRQBM082KFRfR0mKwaROMH7+A7u7j3HUXPPNMBU1NGm43OBj+2G9CBLZsuYHvfW81NTVVGLlC2RyDQsJUyVj5t1ELwOFO9cCXF7I38pYOQ57UrOXcTmrRecl0MVvA7fVy0UXLMI76wWayYP58jnd1gtNBRW2N9ktNBeFI4fM11WlegVlIpTcMrFSaRG8v7nHj2LN2LXG/n2RfH4FXXyXR30/N3Ll4GxrIJhKkRkbIp1LsWbNGQ+W8XtKhEHvWrCGfSmFzu5n2la+QHBjAsNkora7m4ksvxVVRQT6V4vTmZvz9/aQGB3EmEqSGh0kODLD78cdVhm2axLu7eWjtWu769rfxlJUxZ+VK6utqVQI/6VSto57NaHp8OAiDAfWpH9kPvkKYn2XByTPgu/fDF65XSfY1N+qyZFzl8k2TweXGnYxy0eKFGC/+EU6arr/l/iEID1NRV6+edoRwIqG5AKmEJtY3TYY//AxSSX75h6f5yhe/QDYZo25qK6bdiVgW+VyGZHgAEJXCW3nSsZB61MXCMG1UTToDh6ccu8tLPpPWGu4iZNNxrFyGitpGzl2yANNmx+kpY+6s6XR2dmKYNko8TgYOdZBNRYjGErqOt7yYNB+JaUZBLB7H6XRSOa4Ks6FZ0+gNA2w2xDCgYhxGeQX55/8E4SBGYwuSzyKxiErdrfxYGn06hWRU5myYJp5pM1j23VvVNlFWwcKvXqvnoGmj8uRTkWQCRIgI2k7teIb9fgYHBjh37izIZTkpcIyKinJefPFFtm69jlisj8bGeXR0bKSlZQnl5RNIpUK43ZU4HB6am1txOLzkcim6uzvIZhMEArsJhY7hcHj59Kcfw+EY9bDfSCYzyPLlX+OFF24gGu1l4kQPnZ2dfPrTjzJz5jXcfPNt3H77TdTU1KMheBYtLYv54x+f4zOfmUc8PkBLSxMnn+zluT/+EacIS1DvegkwjErVfWjQXGNh2YtABSqJ70A96WtQCb0N+CzqkTfdbi646CL6DYMjwPwFC+g+fpwfoHXa777hBu5dvZrLq6r4LDAO9cj7Zs3i8WnTwDTxAyU2k7KmMv668q/E+mI0zmvkjQffIB1Js3/zft7Y8AZ2tx1niZPKyZVc/OTFVEys4KXbX+J3F/2OrddtJeqPYuUsunZ04a31cvGTF+PwOnjrB29x6eWXEuuLsfW6rSxYuICuQBcRf4RPrf0Ut626jfPLz6fUXYpYgn+nnyV3LWHjOxuxi53ujm5mzZyFgcGR7iPMb5yPreAXN02TOl8dC5oW4I/4qfHWML50PE9e/KSWfitpwGVz8egFj9KzooeG0gacNif+iJ+Vf13JzLqZDKQHeCb/DP6on1QuRe3UWnLDKuuOpCPccOMN3HDbDdTV1OE0ncxvnE+lu5LKcZVUe6vZ07OH4/3HEbGwDjyskvUDG6B+KUy/S2uoG6amwl/Rr953m1tLwNUsVnm6YVNv++5vQfyoprsHnoVkAHfJOL1WD+0CybJg9kkcP35c/e2D7dxw0y2svmMlVVUFOx+iAXXDu7l/7YNc+bnLOfmkkwBrzOfuqYbSpsK+DU1fB5XOg8rWM9GxwDkrr5L60frumSjFsLmoH7fbzUXLLtJcCpuTBdMbOd5ZaEvghltXsfrOO6iqrtHvOm6qBtxlCtks5ZOherr60aUg5TfMggQ/r5/bVaF+cyujZdscJdCwSL3yjhJIDGowoMMDR55Veb3dDbkU7gt/ykVLZmC8/G0oaWLB2edzvLNbw+mCH3HDTTez+u77qDr1k4VAOwCDjS/FueeGz1Fe3QRnraTmjOXYFt1NRlzE41nWrt1R9LYvXTqZ1auX0NJSzoQJ5ZSUOLn//r8xeXIlVVVeLMti1qw6KivdLF7cgs1mEghEqanxcdttr7J48afo7o6we3eAs89eRGdnJ8lkDq/XwZo1d3DnnXdRVTWOV145VtynzWbQ2Rnmnnte49e//jXLl3+eEo+P2pJKfrNnK6fUTKAvMsQjf/stg7EgsxpOZjgRxmGzY7fZKHV5OaVmAsPxMA+98msS2TQXTmvljk99hWQ2w0AsyAMvPsVQPESp18esxWfy0zefYTgeZuGChXR1dnHNGRfxu70v8OsHf8y3b7mRyspKGstr6Y8NU+Wr4OBQJ90DPYSSUSaW1pHLZWmozsO4WzUV3l6HurLNE/zrhkrn3bOg/2bIdoLh0cT4hj+qhL4Qr+l22bno/FkYntmQ7WfBWacUzr08DG/ghu/9mdXXV1JVNe5j91rvvvsuF110Lgyvpcb5LLNONfjD5t/zjzD9QwB3EXkZtYdVAjsMw3jDMIxn0IosN6K2sKtEpP//4Mf8/6tptAzc1597jg+Hh8nm83R0d3PH4sUsnz6dVa2tOAyDVa2t7A4EmFJZyeMXXkh3OMyRkRF2FIB3ZzjMdVu3ksxmqXS78Tgc/GzZMj68/noeveACfvXTn3LGJz9JJJ3m2YMHWfP97zNz2jTW3ngjG596iuu2beODri6y2SxmaSnNZWU8feWVTJwwgc5PflLrrI8mlIXDWv9r3jxFZzfeqN71XA7a2zVy/NixMURnt2uoXG+vgq3FixXxGYbWey8r47Hf/Y7PLFumgHzDBu5Ys4Ypc+ZwxbXX8sy//RvmaA0y09RtRlPsgZ07dxb97Y2NjcRiMbZt20Ymk8HlclFZWUlpaSnNzc3FMLrS0lLq6urYvn07wWCQZDKJaZq0tLSQTCZpaWnBbrfjdDppaWkhHo9z//33s3TpUpqbm5k+fTqrV69m9uzZPPzww/z2t7/FZrPR1NSE3W6nubmZaDTKw48+woXnX4B9fI2WIctbhbA4FCgPhxQI2kz1Y2dyCm7KfIUwHAreddtYYFo2d8J8s1BWz+CxH/6Izyz5hPrb3U7uWL2aKbNmcMUtN/DMHzZjxhLFZN477vk+U2adzhVf+DzP/PJfMYfD+jlkLEneNDWqwLI0R3A0L3DxYr2nGD9e/fAffaTjM+PHq3fdbtf4gw0bNHTuxBzDjo7HuOiiz9DRoVmFn//8HWzZMoVbbrmC3/zmGUzT5Ngx2L79aex2k2nTLtV7MLMQNT+aDxCJ6ffMZPX7d/VqibjuPj02lmi5uNFAIbutEFVfOO6TmzSYzmkHu6mAPJPlsXUP8pmLLtL9ZXLc8f3VTJk2jSuW/wvPPPwjTLdLa7ebJnesfYAZ887k6mu/QaSsjHQoxJxbb8VdXU3NGWdw4Z//TNXMmZrw3teH3evFWVbGgV/+kpo5c7D7fHiqq0kNDjLn1lvxNTXhHjeOkokTqZ4zBwyDSGcnu++9l+TgIIjw21de4dJLL6VmzhwS/f3c//DDnL5gAXc+8wz3LV2K3elk9+OPMxKL8av16znviitYdPbZ/P7pZzTBPRbR585DCsArxkHzFA2imzQVjn6oYP7Yhxo+1zxFX4/G/Ttd+vD6tJ2KKrA71av+ua/D3MU89vNf8pmLLtRBgmRCz8OZc7jiyuU882//iunyaJsAn/s63f4eXt/xOtd88Us4PCWkosMKeq0cpt2Jt7KeZKgXDAPD7sTpLcdb2UAy3Ec2FcPpLScTDxF4/yUsK4tRKMUDYNrs2OxOfFVNiKGA8idP/YpLL7kE02Zj+Njb3Lf+YU6beRaf/8KX+PH628mloohl8dMfPczdq1dz0imncdppp7Pmvvuor63Rc8PrI//SVgiHMAphcxKJYLRMBptdb9yjUWRkCMJBDZwbHkSyBY9hIYUeFKwb5ZVIJkV++3P88PEfcelnLsNwODHsdu58YA0nTz+dz151FU//7j8wvT6q62oZX13NHzY+BKkUe6JJDh06zN/+9hv2799MR8cGJk9eytKlGwmFjvL889eTzSZIpYJ4PJXMnHk14XA3zz9/Az5fLQ6Hh8bGsygpqcfrrcJmU4+7w+GlpeUcwuFuHA4PixatxG53s2XLGyxduoR4fJA//vFPmKbBZz5zGQAieWw2B5Zl0d3dzaxZnyAW68UwTM6cdzHvd/u51jAoQB56UDDuA8rR4LgsGlx3EL0puRkF9i3ozdiNqLfdW3gUnKCMR/3ujz/2GEs/8xk2Ajc//TQ+0+Qvl15KvtBeJep5bwZWFua1AKm8RcQfYeGtC4n1xZj86cks+9kyShtKueHwDVz4+IVYWUuD5QrX59hAjKUbl3L9ges5/+HzcZW7MO0mdTPqcLgdGHaDbCLL+Q+fz4yrZ+Aqc7HwtoX87F9/xiXLLqGsqYwHrnoAK2Nx46YbGfxgECtv4av3UTGlAl+tj/KWcpoWNPGrX/2K2qZapp8yneufv57DwcMkMgnyVp7bX7qdVC5Fc3kz5e5yTEzau9o5HjqOx+FBEAYTg9y8/WYODR8qeto379+sPvY3NrC4eTE+pw/TMOl4uoNllyyjxFnC9me3k8gmWHrhUgzDIJVLEUqFqHRXEkwG+fHjP+bGZTfy2fM+yyOPPUjtonvgnDY46wnwNoPNq+AxegR2Xwtxv4J2ycMZj0N1q4bKxY5qsNyoT91dA61PaxtDb2obta0w/BaP/eSXfObiCyDRzdMvvocZ3M2ln5qmHvL4cU3hLpnIriN23uzo4MZvfwONIiyEi9pcUDGlUE4N/X8Y9aE7S/R1PqP+9VGgPhoclxzS51Fveyyg21hZ9YiLQD7DYz/+OZ+54ByQPE8/8wymCZd+YibqWkUD8UwHOEt47PEnmDl7Nhdfvpx9u1+HgX3atrcOShsh6ofBd3V906GDCuc+of72xCAYjkJ4nA/63tK0/S+9B2feDj0d4K2BbELT6g9uht3reOzxH/OZWW7w1PD05t9hGsKll31WBxWsnIbavXIDHxw+zp7ODIvPvZgzL/oGPzx0BoybSjYnZLN5HnnkfK6+egarVrXS2FjKlCmVHDsWZMeOLhwOk3vu+QTHjgXp6OjGMAx8Pic1NT6+9a02jh4NsmhRM5s2vcnmzfsJh9N0d0eoqfHxjW/cxdlnn093d5g///mP+Hwu3nqrlEQix6WXnlIMuXM6baxb187mzfv485+f5pOfuALLEn6x6y9sP/gmsXSi6En/9VvPcd4p86ktqWTdX39Jd2gAgHg6wXAizI1LPo/b5mAkESadz1JbNo5fv/Vcwd/+Fyyk+H4oEeLhRx+hetZEbKaNk4Il2O12Fn5yCW6Hk2wux+n1U/A53Tz9q9/x17YXOGvabE6ZfDJfvOYq5px5Noxs0pJuozBTUlrmLXsUEjsL52sp1P8Ysr0aVJf1g7dVz6PcEfW457og8xHke8G7iMee+AOfueQCMJw8/bd5mK4JXHrVT8bCIQvTGWecwb//dgtU3cXRkYvo2Jvg+HE//xDT/4iK/7/xAZwPbEMHujNAF8qyn/q/0s4/pfL/+1P0P/nUw6mU9EQiEkwmpS8alSffeksGYjEZSSSkPxqVUDL5sfV3dnd/TELfdvCg7Ct44vcV5PY33HGHnDVvngSGhyVSaH8kkZC3AwH5xdNPS+WUKcLq1fKZX/5SHE6n7OvtlcNDQxJKJuVzl10mv3jiCZW5Dw6qFL6nR/XSo0boxx5TH/uoPL6tTeSDD1Tv3NOj63V3q846ElFd9YEDuszvl7Wnny4LZsyQeCCgxujly7W9aFRe+v3v5czTTpP0n/6k+4/FRPx+OWfuXPnT4sWSKkjlT5S4Dw0Nya5duyQQCMihQ4ckEokUve+pVEr6+vpky5YtEggEJBAISCQSkUgkIs8884z09vZKIpEo+uMTiYQkk0lZsWKFnHXWWdLX1yepVOpjcvs///nPMmfOHBkeHpbe3t5i27/85S9l0qRJcuSjjySXTqvPPZUe86mPvh/1uMeTOn8oqPNGX5/ogx9dJ54ck43HE7L2vvtlwfz5En9hx5hHfv9HIqm0vPTsc3Lm9BmSHhrRbUe93umMvPTcVjnzjDMk/c4HYkXjkkrkZHBQ3Q2BwJiHfVQy/+67+rqnRx+PPabvh4a023ftGls+6o7o7dUuX7VqrUydukB27YrLoUNjUvvDh0WefvolOfnkM+XYsbQcPtwrp502S44fD8rwsMg1V39JHv7BD/T7vL7nhOOTHjuGqYIkfvT1qAXhxEcmMyaTHz2GJ/jf1957nyw4a57Eg6Gx5YV+eum5NjlzzlxJRyIikZh0vbxDrQXpjPxo08My7dRTizL3ob//XVLhsMQHBiR05IjEe3vF//rrkgoGJR2JFL3tb6xcKfGBARn58EPxv/66xPv7df2+Pn0MDIj/tdfkt6edJjtWrJDv33qrzD/rLPHv2yeB11+XdDgsmVhM4v398thVV8nc2bMlOjgo3R9+KIDcceONkonF5MP335fx9fWy7/VX1eM+Mqg+81HpfDQkkoiLhIZVuh4J6uPdnSLhEfXCj0roT/S+Hz+skvp4VKXzqaSsvX2FLJjULPEP1ON+ojz/pT8+LWfOnCHpx+8TGR4oeufvv2uVXHnFFZLLpCTcd0Sy6aRk00lJRYclnYhINp2URKhPuvZulUwyWvCgJ4ty+WwmJd3vPF/0xeeyaYkH+yTcd0QS4f5im5lkVFbe8BWZP3+eRELDxf0ko8OSzaTkL5t/I3PnzJLIcJ/kMim54jPL5KePrpV4sE92/OUpaWpslPdfe0Wl8ol4waee1Ec8pnL4RFzyQ4NiJROSj0Uk7+9W//ualSqlj8ckn0xIvi+gPvm+gOQjoaLMfs33V8uCuXMlsm+PSuRjEckn4mLFY7J961Y5c+4cSYaCYkXCsrf9dTn/vPNk9syZ8oXPf14++YlzZM2a78nBg20Sjw9KKhWTZDIoW7Ysl3vvRQ4ebJPe3n3F5bFYv/j9u2Vo6JD09amkPhLpKXjhgzI4+KFEIoGCfH50eUBWrbpZ5s07SwYHu+X48cMyY8Z02bNns0QiPXLNNV+QDRvWytDQYent3Sdut10OHnxbksmQRCI9csOK78pp3/++IOo97xGVrB8vvB6Vz4+IyIcnzHtcVCb/YWHZgKhvPViYFyi87hGR761dK9ULFkh7PC6He3vl9Fmz5LJgUBCRc7/8ZbntkUdkuYi8J+qZHxCRy7/8ZVnzyCNyLJGR3n29smX5Fund1yupWOpj7xPBhBxsOyiRQETC/rAMHhiUxEhCIj0RGTwwKJGeiMQGYhLpiUhgT6DolY8PxyUcCMuhbYekd1+vfGHWF+SsM86S4Z5haf+3dqk36uU3V/5GkqGkXPOFa2TDug2SiqUkNhiTg20HJbA3IFv/vFWamprkzXfeLErel29ZLsFkUOLpuPREeiSUDBX961c/c7Xs8u+StoNtMhAbkA8HPyzK27cd2ib90X4JJoPSdrBNeiI90hPpEX/YLwcGD8gdd98hZ80/S3pHeuXl916WigkV8vqB12UkMSKX/ctlsnbDWnm3911ZvmW5vNP7jmw7tE16Ij3y+s7XZfr002Sw97hK30cl8JmI+tjDh0SGduvzicv9bWPy+eTA2PxRn3pqSCQ1IhL+UCQ1ImvvXy0L5p0h8VCf9HYelFkzT5eg/z2RwDb58jXL5ZG1t4q8cbXEBw/L3Dmz5OiB3SLxHrnnjhvGPO5F2Xt2TO6eTenrTLwgmc+IDB8qeL0zYx734Q9V0p8Y1vXSMd0mMazrJoZl7QP3y4J5Z0o8EpJef5fMmjVTgkd3i/jb5cufv0yl8dmUSDoq/vf/JvlkRCQTlz/+4d+lvqZSokfeUAl8fECl8iOHRXp267zkiMrfj24TiQ+qPD4V1nkFWbw8t1y97yOHVWKfCqm8PjkiEu+XtXffIQvmnCrx9o3S+8EOmTVzhgT7OkWyCfnyv1yqHve+PSJvPyalHrt846tfkpz/TRl867dy2rRT5Y9//LO8916ftLUdlMHBmASDSXn88V2ybdshGRlJyLZth6S7OyQHDgz+N+97elTa7navkW3bDkkolJRoNFWcPzgYl9NPv0qgSa644t/l/fePyOmnz5TLLvu1wL0yceI5ct996yUaTUkolJRwOCnvv98nCxfeKHPnnin9QxHpj4zIgf5jcvuzj8pgdEQODhwv+t2jqbjc/uyjctYj18jrR/ZKOBmTWCohB/uPS/vRd2QgOiLHhgMSLsjmR+X1f+/9SOLpRNHvvvreu2X81Aly+trPyrf/9X6ZMXOGBPp7JJZKyBeuuVpuWn2bhBNROdjfKVdd+2X5/r13y3A8JLPv/5ycNm2qvPi7s0UOoNL3XKTgXb9aJBNQn3t2RCS59wSpfFTXyw6qFz51QLcdbSOxU8S/XNY+8H1ZsGCexGNB6e3t1XNvuEvESsuXv/zlj0nljx07JldccYXMmjVTLr3kIlm+/HNyyy23/FdDnf/HJv7RPe7/1Y9/Avf//SmdzRZ96e/19Ukyk5GeSEQ+HByUYCIhw/G49EQicvUzz8i7fX0SSiZlMBaTtoMH5d0CQO+JRIptDMZisnzLlmLYHEuXSuXkyXK8sO67J4D6toMH5bGdO2XClCly3oMPyts9PeJ0u6Vj//7iAMKZZ5whL/7pTwqkRxFZMDjmV9+3779NMhsYUETX36/e97Y2nReN6mMUuPv9svHuu+WM5mYJ7tqlJuqrrx5rJxQS6e+XqVOmyJ6tWxX4Dw6KRKNyzowZ8ievV1KxWBG8h0IheeaZZ6Svr0+i0ahs2bJFQqGQBAIB2bJli/T29koqlZLDhw/Lzp07ix71UY98IBCQP/3pT8X24vG4DA4Oypo1a2TOnDnywQcfFNs5dOiQhMNhSSQSkkqlZMqUKfLXv/5VtmzZIvfee6/cfPPNMmXKFDlw4IB8dPiwZILhApBOjYXMnQgq/xOglkzB9x4urJs5AUiOPgo+743r18sZc+dKcHBwrN14UrctvJ568smyp+PN/3afmaxMnTpV9rzRITIUlHwmJ4cPazCc3z+WQfj229qdBw7o2Mrbb2sX7dmj6xUiCYrL9+3TbQsRBnLLLRvlpJPOkJdfDkp/vxQHB04Mo5s4caq88soeefTRNqmoqJWmpgnS3DxBfD6fVFZWyqrbbh/z+6fSeixHB0JGw/xO8K8Xv+N/Xp5Ka5bAKMjv7pONa9fpMTxyXNcdPcYngPupJ58ie958U/tldDCl4LF3uVzS9u1vF0F2OhqVof37xf/66wrWo1HJxONj4H7/fhnev1/S4bAkhoYkFQpJvL9fEgMDxYC50NGjkhwelh0rVsh9t98uc2bNkr7OTvG/9poM799fHCSIDwxIJh6XkydNkm0/+5kkR0akpKREDrz/vqRjMUmHw/K5yy+Xp9avUZ/6yKCC6mhYXz/10FgA3cigvh4NpUvEdX7XRwWP+5AC/OOHdftEXMF7b7dsXLtGzpg9S4Lv7hHp7dZ9vLdL5OiH2l73UZl60hTZ85enRcJBkfd2iXXkgEyqHicvPL1Zctl00aOeCPdL59vPSTzYJ9lMSjrffk4Gj74t6URE0omIxIN90vn2c5II9Y+B+VRcUrGRghc+KelERCL9RyQe7JHOt5+TdQ/cI3PnzpWezkO6bXhAsumkRPqPFnzzSTn5pMnS/tqL4j92WJxOp2QzKenau1Xea/uBfO7yy+WnD28qAurRoLl8OCTZP/1eg+iShXlDA0Vver43ILmD+zXU7pnfaqBdJCy5na/r+2hE8v4ueWjlbXLGnDky7O+SfCgkViSsgwOJuO4vFpWpkybJ7r+9JlYkrIMEfaNtB+TUxgbZtu05iUR6ZHDwgITDfkkkRopgPJWKyNDQYfH7dxcC5RTEx2KDsmXLcgmFuiUQ2FMA+O/Ili3LJRDYI6lUpLj8+9//rkyffpJ8+OHrsmXLcvm3f/uR1NRUSUtLs7S0tIjP55WSEqd897vfkKGhQzJp0nj561//ItFovySTIbnic5+Ve558Uq4WkaBlSUxEwjLmWe8WkcMnzBsRkZCox32gsGw0cC4gGlIXLCwPi8g3Nm6UmWecIYeDQQmJyB/a2qSmtlYaJkwQ74QJ4vX5xFlZKaxa9bFgvH/58pfloUcekWQ4VQyU27J8S9FnPvo+PhiXUHdIksFk0QOfDCUl8HZADrYdlNhATFLRlMSH4nKw7aDsenyXBPaoFz6wJyCh7pB8ceYX5dTmU+WDVz+QLcu3yL/98N+kqqJKmpuapaWpRXxen1SUV8htN90mh184LKHukLzw7AvS1Ngkr/7lVYmlYrKvb18xVC6YCEo4Gdb5BV/724G3ZU9gjxwYPCDhZFi2HdomewJ7ZF/vPrn6matlJDEig/FBOTx0WMKpsISTYYmkIuIP+2XOl+bItJnTpKuvS3ojvdJ6R6vgQ2oba2V803ixu+xSVlEmy69bLu41bmk72CYjiRHxh/1yfPiwXPCpRfL0vz425mX3t42B85F9GlYX7xFJ9IoMva0hdOmQSGDbGFgf9cOnR0TifhH/C4Vt+mXj+vvkjLmzJBjQ0Lq2P/1OamtrZEJTrUxobtD/i1KnrLrufHlv10tSXVUpE1qaZUJLk5SXl0lpaal86Zqr/5NXPTsG5kcBfSYxNi+bGguoy6YL62Q+vs3ovMSwbFy/Vs44Y64EhwZEEsPS9qctUltbKxMmtIx9xspKWXXH93T/0YC2n0uLxPvllJNPkj1/flSkZ5cC8P59CrqPtJ0w7x0F6EfaFKz37dEQumhAgX7vnrHwvdHwuv59IkfaZOPd35Uz5syUYF+XSHxA2n7/M6mtHicTar2Fz+eVyjKvrFo+XWToA5k+baq83LZZw+6iPXLbiu/K7bd/T3p6ItLdHZIXXjgsIyMJCQYTEgolpb8/KpFISgYGNITO7w9LOJySPXsCRV96JJKStraDsm9fr1x99TMSCESkp0cfa9asl5kz58iuXR9JT09Etmz5k1RX18j48U3i9daIx+OVyspKufnm24ohd5FIShYubJWHHnpUQvGYdI30SjgZlUgyVgTm4WSsCNQ/7D8urx/ZKx8WQPjBwvu+yJD0R4bl6JC/GGh3cOC4RFNxGYmH5aP+bukc6ZE169fKnLlz5K1D78rtzz4qP/v3X0p1TbW0tLRIS0uLeH1eqaiskFtX3iadIz3i9Xrl27+6rzg4cPMtN8mdK78x5nHPhRSgZ46LZPwaVFf0tQ8UQuneVf97ZJuC+EyPSHJPAez3iGSHZONDD8gZZ8yR4HC/iIi0tbUVzr0JMmHCCfdTq1YpCMmnRfJRfRaRCy64QH7+85//FyOd/+emfwL3fwL3/yNTOpuVSCol6VxOYqmU7AkEZNuhQxKIRKQ/GpWRREL84bD0RiISOAHEjyQSMhSPSzCZlJFEQgZjMemPxeTdvj5pO3hQVtxzj1ROmiSvf/ihHBoakoFYTD7o7ZXX9+6VDwcHJZJKyebt26WislKO9/RITyQi511+uXxv1SoZiMXkmRdflIbx4yXz/vtjzPqePWMAfnhYqdZgUJHe8uX6HAzqOiMjit527x5DgLFYEfVtuuUWmTt7towcOlRMnc/098vhJ5/UdiIR2bV1q1SWl8vI0aNK+RaY+nMWL5Y//eY3kkkkPsag79y5U7Zs2SLJZLLIjsfj8SIojxWA/igzfyJDPgrk+/r6ZGhoSGKxmNxxxx0yY8YM6e3tlcHBQdm5c6f84Q9/kL179xYHBLZt2ybl5eXy4osvSiAQkBUrVsjkyZPlwIEDkkqllGmPJzQsLp5QIPmfg+pGQWAyNQYqk6mPs/MnAskPjoikUrJpwwaZO3OWjHR26zrRuGR6B+TwvveKgHXXi3+VyspKGenrl0w8IYc/OFBsb9eLL+uygQGRbFbymZwEAgqqg8Gx4gDvvqtdPiqGaGsbG18ZGVEA/p/Z+FGRxXe/u0mmTJkrL700UiwuMDCQkb17D8vIiMiHH4q0te2SkpJKOX58RA4c0FNrNPDuS1/8kjyyZt3YMYrExlLiT2TPU4Xk/Q+OjIXWjR7H/3TcJJ3R5w+OyKaHHtLzsONtHeyIJyUzEpLD2/5aVDnseuU1qayokJH+AcnGYtJ35Gix757+j99LS3OzDB84IDtWrJDhDz6QTCwmicHBYnhcuLNT0uGwpCIRGdq/XxIDA8qov/56MdAuPjgoicFBycRimkofi0k2HpeH1q6VObNnS9/x4xLp7JTkyIj87dZb5cWHH1agH41K+6uvSnlpqXzU3i5vrFwpX/3iF+Wxhx+W+MCAvN/WJi3NzbJr1Q0ixw8pOz4yqOFwkZDOe+ohkSMHlJH/6VqR6y5RwB6PKgv/1EMif/2zyLFDH0+aP3ZIJDgkm277rsydNVNGAv5icF3m6CE5/Pf3tc1XnpVdz7fpuXb8mA4AxGPy1yd/JM2NjZJNaHBc59vPSTYVl669Wz/GoCfCA5JJxSWbTkimsHw0bT6T0m1HGflMMlpk6nUwICEbHnpQ5syZLQP9vUV2PjLSJwcO7JdsOiHZVFx2vPqSVFZWykCvX6IjPVJeViLbn2+TXDopR/fvkeamJml/9ZUCYE9KPhJS4N3rl3w4qMFzkbDkI6ExFj0ek3whQd6KxyTf45d8oFu3CwcLzH1SNt6xUubOOF0GfvUTyUfCku8NSPLv++Rgxw5l5nv90rHl91JZWSnD3V2SO/SB+A8d1P3F4/LTH/5Q5s6dI8lkWMJhfxG4p1IR6et7twjCI5EeOXiwTe69F9myZbl0d+8sMvGRSI9s2bJc/P5dsmXLclmzxi2HDm2TZDIkyWRYHnxwjUyffpIEAkclGu2Xnp69Eo8PSyoVLYbYXXPNVXLLLZ8rbnfXXXfINddcJeGwX/bs+atU19TIsYEBCckYQ75HNGAuIArAQ4XHYVFWvE00aX40UT4oIr2FdUdfh0XkgU2bZNbcubJjZKS4zSEReafwHBSRq778ZXmgkCofLLS9S0QmFpj4WCxVBNo9b/dIKjrGuPft65NUJCW97/QWgfjOx3ZKpCciB9sOin+XXw62HfwYQx/tj8qW5VtkjXuNHGw7KA8+8KDMnjFbDu86/LHE+VREk+WToaR84covyAN3PCBhf1jiw3F55slnpMpbJS/+x4vKvr8TkHgqLqFkSIKJoLxw+AUZSYxIOKUAfZd/lxweOiw9kR45MHigyKZ/OPihLN+yXB7b+VgRwPdEemQkMVIMtbt77d3SNLVJLvvVZcXt3u1TZn0wPqhM/yxk9ldmy2BsUNoOtskzrz0jVz9ztfjDfjn4wTtSW+mWDzq2jIH0dLiQDN8t8uZXNLAuOSDi36YsenJwDNwP7REJHVRGfnT+0NsiqWGRuF823X+LzJ1xkoz0HVdgH+/RdpIDuk74sHz5i1fJIw/dV0il9+u+U0GRkXflnq+eVmDcM2Og/X+UJJ/LjoXSZVPKpI8G1I2y7qNJ8yekzW/auEHmzp0jIwO9BbAfKbQ7yuqnx8LoCkC/+9hHReb/zddfkapxlRLq7xpjz49uU8Y8Pqjg/O3HFETH+pSFHz6g83v3KEM/ckhB+ijrfqRN5AeIPLdcNt1zk8ydUikj3R+KDLxXYPUHdZtH3SLPLVdFwP0rivtfe9/35fbvfFHkueWSOPaGnDF3rmzc+KQsX75F/P6wvPNObxGQ9/REJBpNybvv9snVVz8j3d0h6e2NSCSSkquvfkbgXlm+fIuEQkkJBpNy9dXPyJ49ARkYiMnhw0OyZs2DMnv2HDl6NCAvvHBYenoi0tsbKbYbCiXl6qu/WAyn27VLQ+7efvvv4vP5pL39kAyORORQf6d0jvTISDwsrx/ZKwf7OyWWSsjRIX8RwA/Hw3L7s4/KzI3/Irc/+6iMxMMSScbkg96j8vqRvTISD0soEZU7234k0VRc4umEDEaDct+6B6R+SrPsOviudI70SCQZk86RHnm/53BhX8fl01dcImsfWi/xdFKiqbhMmXqyPPzEYzIYDcrAyJDMnjNLfvvvvywA8xEF6aOMe3akMH+owKwfFkm8VQijGyqw7kGdP/o6uU823T1L5s45VUb6/65AvgDGT5w+xrjn09J3/BXJd10pknxXXtj2nDQ3N0sikfjfRDX/v5v+Z8Dd0OX/nE6cmpqaxO//B/FC/L9kiqTTfPO559i0dGmxdrjDNOmNxVjX3s6dra1UezwkczlS2SxdkQjzGhsJp1LUlZQQy2QocTrp7u5m+sknM3HSJHwlJWTyeUayWXbt2MEXLruMYCiEYbMxnMuxfu1arly2DMuyGBka4otf/CKdnZ14XC7WrF/P5xcuxOjvV1/5Pfeoyfnss+EHP9C67WVlhXrjUdi/H2bP1oA6EfXFvvGGeuA3bYK77oLubvwXX0wzMLmpidJYDBoacJkmr55yCkuPHiUcj2N3u/EZBg/U1PCpp5+GXI41t9zCT//6VwaHhyk1TdxVVdx3//34/X6mT5/OOeecg2VZRKNRmpubx37AhoFhGORyOWKxGDt27KC1tZVoNMrIyAhTpkyhpERDzfL5PKZp4vf7OeWUU5g0aRIlJSVYloXb7Wb79u1cfPHFRCIRbDYbXq+Xe++9l1Qqxbnnnsu4ceOora3F4XBQVlaGCbz8019SNWMauF3qsxbUp51MQ01lwbueVc96puBh9/erF9tmqi8+lhirYW5Z+AN+mk86icmTJlFaWgqASwxeffElll74acLpJHa7A1+JjwdW382nzv0UiWiUpZdeQjgcxm6a+HwlPHDvvXyq5SRoGY/ldnHoIxuNjepNX7sWbr0VBgdhyhTNHDz/fGho0HnV1fpx0ml4+2047TT1uH/ve+prz+X8nHlmMxMnTsbnKy2Uq3exZcurLF++lEQijGnaKSvzcdddD3DmmZ9i1SqNUPB6IZGAm276MovOnM4tl3wWWsart/3vH2mYn8up70cD6TI5GAnrMaXgSRyt6364S49fTUVxvr+zc+wYlpSAYeByuXj1mb+w9IrPEE7Esdvt+Gx2HnjgAT51wfnEY3HO+dSnSGfSmIZJdVUVGx56kNOnTdPsPLudbDxONhrFUVqKabOBYZCJRHCWlmLY7Uguh+lwgGGwd/16Zt58M+mREfY/+STTvvY1PDU12Nxuevr6mDx1KpMmTMCWTOIeNw5PSQkvPvccF156Kf3HjuGrqqKkrIx777mH00tKqDj5ZEbCYb7+zW8SGBkB4DvXXsv1X/mietyDQ4XAODSQrrIWKqu0FrvdoctHBqCyBv76Z1j+TT0/DUND7TA04C4Zh+1P4z/zPJrPnK/H0OeFcBBXTT2vPr+VpZd8hnCgC/u4GnxeLw/cvoJPnX+B7gfhC1/8EidXV3L3Yz8isP9lwr0HmXDmFXgrx4NYJEJ9ODylODxlSD5LPpfBZndimDZymSQ2uxPT7iCb0iA6u8uHlc9id3oQK082Fafz2EecNreViRNaKC+vAMDpdPDbH93Nl1esJxKOYLOZeL0eVt3+XT697DMAbH9hG9+/dy3pRBRsLr7+1a9yy7e/BdEIVsdrmK3nIl3HMKacguH1aaXneEy9/04XRi6LFejCKKsArxfp79Xa7/k8Eg5qplXHq/RMmcaEuWcxeeIESr0+sNlwGgavvPA8F1x+hf5WAV9FBfff/X0+uWQJmDbuv+f7/O7pZxDTxqlTJvPIE4/R3NLM8PAhOjo2sGjRSqqqTuG5577BwYPPsnz5H2lpWVy8JpqmSS6XBgzy+TQuVymZTLz4X9Tf/x51dTNJp8MMDkY57bR5TJw4AbfbxOHw4na7ee21Fwt++CzJZJDvfvf7zJx5Ojfc8G0CgV2UlU3lO99Zwd6972CaJt9fs5Y5n/88a4G7gAlo/fUairFMdBTe16OxSwYQQn3oAWB2YV4hRpEs0Of3M725mYmTJ+MrXAudLhev7NpF4YzFDVzzla9QN3s2626+GQ/wm1//mvtWryYcDOJ0OCj1lfD7X/2eWTNm4fQ5sSwLwzCwshbh7jCl40vpebsHX42P+GCcyimVuMvdmA6T7Tdv59wHzyUby3LkxSMEdge48IcXEu4KEwlEiDlinHHBGUxomkB5ZTmSFxx2B+1/ayeXzJEOp3GVu7juu9fhPOxk7c/XUnVKFVOnTiWeilNdUY1pN7HyFmt+sQZvo5fWllZyVo6d/p00ljZS7avmlu238OgFjyIIkXSEUmcppa5STEyyVhabaWMgNoDT7qTUWcpAfACfw8exrmOcPfNsJk6aiK/EhyDYHXbe6HiDvOSxG3YOBw9z+ecv53Of+hz33nEvqVyKGUtmIEGhzFOGy+Fk9W03svzCMyHVr370fBoyQXBWqp88fhwSXVCzCHIpCO2DcWdCJqTha54GsNIwvEtrt6cGoGYR/o/epXn6J5k8qYVSnxtSA7jKmti143nYe6uG3QFf+eZ3mD1nHjffdL2eIYMd4G0Cm5t712wglPbw6Mb1+rlG67BLXmum2xz67Cwr/E8XgufMQt13K6v+chENhzNM9ZpbFkgOf88AzRMnMXliM6VlFSB5XA47u3bv0e9m2CCf5itf/waz55zJzTfdCIbJeedfQH9/Hza7HY/bxbobr+CTSy9UP/pZK8HXoP70dAhKGiDeA28/AmdvBLtnzJMe7YY9G+DsDXrWH9oCfbvhE4/AKzfgb/46zbMvYPKERkrLKyEbx+X2suv+6TB/lfroS5v5yooHmT2xjJtXb4R4DylbBd+6Yj5v/b0To7yFSy77PMc6z2Lz5v0cOHA999zzGps37+fqq2ewadP5uN122tu7OH48xIIFTWzY0MHq1Utoaiojlcrh8zmx2SCXk2LN9jfe6MbhiLJ06RlMnDgJt9uHaRqYpp3TTlvFypWLOOmkcXR0dPPv/34/EyZM5bOf/RolJU7q60u44447CYUGueaau1nQOp4Phj+itqSSX+z6C1+f/xk8Dhceh5vzfvptHr/ie9SVjKM/NkJtSSX/+lYbK865GrfDhWkYpHMZ7KadYDJCJpuj3FuCzbQxFAvyyNZf89Ov3UttYz3iNKkrqcLtdvHiay+z/uVf8aUzlxFMRvnBnQ8QLzf4j4d/jtvhYt87+/juTTcRGOyl3OnjskuX8dD9X8IY2QS1G8D0qVfdsxhKr4T8AGR7wLtAr4SS1GA68oBN3x+dClOOA4L/8F9onvYVJk/wUVrepPeDrhI9906YvvKVrzB79mxuvvlmsGL8fNMnefDxPdjspTS0zOZHP/oxp59+Ov+3TIZhBESk6b+77J/A/b+d/gnc/2umTC5HJp/HabORzef5KBhkQnk5GAbxTIZYJsPdr73G5v37WT59Oveecw4Zy8Jnt+O224lns9T5fBiGQd6ySOfzlDqdHAkGWdfezqolS/CHwxwPhbjs1FOJZjKMLynh+m3b+O377xfbTOfzTKms5PXOTuY1No7CHsotC0c+j2GzKZpzuTSR7PTTFbQfPw49PTB/vqK20TC6desUqE+eDIGAJsqXlEB9Pdx8Mzz2mG734otwwQVw990afrd8OTzxhIaOXXutDhScc462d+utGne+YgXccgvp008nGAzS3t7OkiVLKC0tJZlM4nQ6sdvtmKZZTHsfBdOJRIIjR44wefLkYso8UBwoAchkMsX5DoeDXC5HOp3G5/ORy+UQEWKxGB0dHbS2tuLz+bDZbFiWhd1up6urC5/PR3XlOFzHezQ4raZSE+VTGQ1TaxmvKfPhGJR4x8LoRgPUHHYFS5mc3hjYbRBPjoFU0DtXKw9HA9BcDw4bxJIKaJ0ObWd0Xy6HhrbB2CBALq/ANp2FbBYpLyWWtGEYmjl45plwxRVQWqqBdbGYgvLHH9fg/0BAiwrY7brs9tu1a0S0mEB9vc6PxbTwgNerIL+7W8Pr7rwTJkyAo0fH3ufzmsW3fj2sXAmTWvKMG+rUzzuubOx7OR167EaPx+gleqwbC0GAMjbTZuoxiMb1GLmcmkzf3afHyGGDI/6Pv26u1/14XJpmb6Bt5PKFPoJsJkM2FsOw2bC5NOxo8J138NTW4h43jlwigbOsjOH33sM7fjyuigr2PvQQ07/5Tax8HrvXS6yrC/e4caRCIapnzcIAcqkUwYMHqTr9dOI9PaRGRvDW1hYB/tA77zD8/vvMWbkSm8tFLpHgvcceY87KlTpQlUyy7+GHmff91dgMA+PIfqiohtCQhscZJsQLgXXJBHi84PLoTeZH+2HyNAgNK5CfdKqeo//xE7jgcxpsNzII1fVjYH90HQzI5/RhGGCzayDduBrdprJGk+zLxkFZBZbDSdpKk03F8I1rQATymQSGzUEqMoSvqoF0LEQuHcdb2YBYOVKRQQX4holYeQzTxMpmSUUH8FTUg2Gj9+8vUzVpDrl0Ck9ZNfl8FtPmGDs9skkGP9pNzUnzME0Hhk0Teq18FpvdiZXLavicaWLHpmeSZSG5LGQyUFKqYX4lpRg2OxIvJPb7SrG2/wVz4TlIIo7RPFGvL5aFFejGqBuPYbdDOo3kc5DLYr3xGubSZRgYeirb7RAcxtq5A/PCyzBEdCCgrgHD6dSE+kwGshlkZIjchGYAotEAR4++TGXlZJqbF5LNJslk4ni9VWSzCV55ZTXnnrsOh0OTi7u738Dnq6Oq6mSCwWNEIt00Nc3HZvMwPHyQnTsf5rzzHsLp9GEYNnK5FD09e6ivn43d7gEEy8phWTmi0R527nyECy98HMvKEQjsory8hfLyCXR3v0HtlPO53rQxD7iy0AdxNDl+F9AATARSKDBPF+Y3oWF0s4AhYD3wCDAIrEMD5hqAGJBAA+tGgf4CtNZtDngTqEJL6Dxa2L670P5G4GexNKm+GE6vk3REgbTD4yDUGaJ9XTvLfrqMcFeY9nXttK5qpXJKJV07umha0EQulQOBdCSNs9SJYRr0v9dP4/xGDMOg7do29m/ez/Tl07nk55cQPBqkfV07Fz91MSOHR9j5yE7Oe+g8nD4n7/7mXQK7Ayz7ybLieq2rWnH4HDibncQyMVw2F8dDx3mo4yFWta7C6/CSt/JM+/E0+m/tpzvSzYaODaxctJKpVVM5GjyKx+Gh1leLiHDL9lv47oLv0hvtZVb9LDx2Dx3dHbSUteB2uDV4LhUknUszoWICOSuH3bQjFAZ+DJO8lSdn5bDE4u3etzmz4UzKbTace76tSfG150DCD95G2L8epq8GT51eH4Z3Q+VsfZ2NgKMcHGWaKr9/LUy7FVKDUDW/EGSXBUxI9kPssAbXpQahZApsnQaX9+u+Ur26jamDgxh2HQjIZ+C9VXDWzzTF3eFTwG7Y9Nl0aEq8zalhcyVN+noUvMf8Os906Pt8WgE+otdLgMhxKGmETETbKm3W5aarsA8bpCM6QBDrKbRnh2xcw/JiAd0mF4eXr9cQuanLYeG94KuH3t3QsAAC7Zp837gY9vwAljykwXTJITj+oq7z1oYTQH8M0mGoPLnwH2nTAQrJwSs3jO1n6c+g500NxCufrJ+9dyc0tELkKOxaB+c+QTJr4/DxDGvX7uDRRy9gcDDB2rU7ePjh8xkaSrBuXTt33dXKhAkV9PXFiMezTJxYjt1u4803uzn99Fq8XgfZrIXLNVoZQf+jRYR4XCvceL0O2tu7qKvzMWFCBU6nDZvNIBLJsHLlS9x22yICgQhNTeXs3NnNxIkVLFzYTDqbwe4RPug/yknVzdgMG26HE0uENS/9nG8uuJzG8lqS2RSmYeKyOUhk0wB4HC4S2RSP/O23fPmsi/E6XFT5KrBEeCdwkFuffZhPTDmTby/6HNl8jvFl1eSsPC67k+5QPwOxEU6vn8L6l3/F7MZTmN0wlV+/9Rxfn38ZA7ERukN9nHfyfKo8JrbkG+CeAUYpkIVcLxiFsMTMEXA0wPAmqH1IE+StBKT2gecsBfGJ1wvrrIOqu3SerQIMt17xDKcOCPyPJisDmQ9heC1UrQbXVN3m/6Lpfwbc/yFS5f85/b9v+s+p8qZpMqG8nK5IhBu2bQOg2uvlztZWlk+fzvcWL+aVY8fwh8PUFMD60WCQ4+Ew17a10R2JsLe3l2Qux7oTSsrNb2zkytNOoy8WY83rrxPPZvnRhRfSdtVV3NXaSqnLRSASAaClrIxQKoXTZsMHOEQwjh+Hb39bmfPGRk12dzoVYTU2Qm2t1gzr7NQ/up4e2LhRQbZl6U1oQ4MCfZtNQXsioQMBV12ly1avVtC+erUy9rGYIrnzz1fQvnmzsvYOh7Ztt0M8jsPh4MILL8RutxMvlG1yOPTmfHh4mK1btxbZ9K1bt5LL5Tj11FMZGRkhk8kQCoVoa2sjk8mQyWQYHh5m+/btJBIJTNMspgcD5HJaBso0TZxOJ4sWLcJut+NwODBNk3RaL/4TJkygsrISm92GTCmUI5vSpBiyu69QzszQ9yeWNjtcSE3HUDB9uEvBpqtwrH2ejyfTZ3NaAq3UpwDdtCmr7y5cfNMZaKpXkCvodqYJJR440j2W1G83dfAASKW0QMAjj8Dll2tXZLNa7s00db7NBi0tMGuWAvxDh7Sp0aqBdruKM5JJGBrS16NFBVwuLUbw7LMKzvN5TazfsEFPg5NPVjHHs8/qeh6fgZzUArXj9LhYBSCeKjDtgs4bTZoPx8bmxRJ6fExzjHnP5fUcMs0CFedScJ7O6Beb3KTLTJv2jb9fB11czrEyfUe6C4MAln4BwOZyYXM4yKfT5OJxKk8+meTAADa3uwja3VVVJHp7ycZidL3wAvufeoqSxkbcVVV46+o48OtfUzl1Kom+PgbfeQfT4aB65kz2Pvggps1GzezZJPr6mPaVr5AaGqJ+8WJm33orqeFhBt9+G9NuZ+ZNN5Ho62PP2rUAnHHnnZiGgREPw0mnQ3XdWCm20JAmw9vsMNijIBQU0E86Vb+f0zlWRs6y4PwrFMzbHFDfrOs6ndpmLKLANR5WwO72QiyqoH3SqVA+TtPrnS6YOBUiI2DaMPM5nL4KPOW1BaGOgc3p1VT5qkbEssilE7jLahSk2514xzVg5XNYuQyJYB+ZeBjDZsPu8tHz91fIJiPUnbqEXDqJd1xDcVxHv56Jze4km4xTP+0c7E4fdrdPGXyHC7vTg2lzYHd7SUWHyabiiGFCaETBs9OFUVKqP4zySgXb+TxGSRlGRRU4HBgTpoDLjdkyWa+JuRyWvxOjsVlVFwAuF4avFEpKMc9bhuFwIpk0RCM6ELFzB+bCs5X8syyMlkljAwSjfeMrwWxsAUsIBo/w+utrmDHjCzQ0nEU8PojN5qCkpI54XNOT5827kXh8gO7uDkBobl6Ey1WGiEUk0o3PV4vfv4t8PonLVUpT00JisT66u98kk4mRTA5TVzcLu91NMHikUH6uF8Ow0dGxgcbGeYTDnTz//PX4fDWEw11EowFqa2cgqRAbRWgF9qHgvAp4CwXPjSiQ3gscBa5H2Xc/MA8tAbce2AxEULB9NpoO7wFqC/MqCu/PRIF+stDvi4GfoEDfU3jUF9pfCxg2E1+tj2hvlNfueY1oT5RMPEPp+FIu+fklGKaBw+tg4e0LcfgcSF5oaW0BwFnixO6x4x7nLr5vXtRMuDNMV3sXratamb58OovvWAyA3WWneXEz2XiWnY/sZMEtC7A5bXS/2c20z07jwh9diOSFjo0d7N+8n46NHXgbvRwPHWdv714ssSh1lfLswWdZ176OCncF9SX1LJ++HIfNwYaODWzev5kNHRvISx6Pw0Mim6C9q52clWPNp9bwg44fcHrt6fRGe7lu63XU+GpwO9zEs3Guf/564tk4LruLY6FjXLf1Oo4GjxJNR7m27VqimSjdkW52BXbhsDmYXT+bPT17yBt2ZO6jMPFqBdLuOkgEFIjb3JAcgOE9UNMK9oJuYv8aSPYAloL2rs1wYJMCcLunUCLuOoh3gbdB56cGNW3eXa8J9jYXOEqVpd97M+QS+j8g2QKwtgqsvKmA28oqQ21lFaBjgKtMAX5yRIF68YJhKDsfC+hrw1Dgn09p4ryVVTBc0qDbuyq0zJzNqfvre1tBvWUV2unRfeTTev10+PR1WUuBxXcpAz51OZz1PXCW6+crGQ8vXauAf+qVsHs91M+DRL8mx7sr4bRr4J3HoWGxtuss0YGKRL+WlXvpWk2+790Jka6P7ycTh3CnfkbD0IGA6hk6SGD3wnk/A5sHy3BTU+Pl3nvPAWDSpAqefPJifD4n69a18+yzB/F6HViWUFfnY/z4Em666QU++miYhQubcbls7Nzpx+k06ewM097eRSqlSsN8Xti7t5eBgTg2m0FTUxnl5W56eqJce20bH30UxOOxM29eI+vXt1Nd7WXjxje47LJTmT+/EcuycDhtuOxOZjdMxeNw8+HAMXrCQ9hNk1XnfY260ioATMNGNB3HQhhJhNnw6r8SCA/idbi5/ZNfotpXQZWvkkwuxzuBg9SVVLHp0hV8Y8HleJ1u+mMjWGIxGAvxTuBDxnnLmDH+JATh6/MvY+GEmSck0v+Z6fVTWDhhJolMknQOxNEEqfch1wn9K8DeAvYGMMvAM19B+7hbFEznBsB0a2m45FvKuHuXwPBGiG7WknKShP4bCon0HQr+rQz/w8l0gvNUGP/z/ytB+/+36Z/A/Z/T/yNTJp9n7Y4dbN6/n7U7dpCzLEzTZO2OHcxrbKQvFuO7L7xAnc/HkxdfTJ3Px+TKSprKyri2rY3+WIwzGxqKdd83dnSwoKmJvAiPXnABV8+YweolS3DZ7bjsdh7ZuZNbFizAYZp0dHfTXF5OS3k5d/z1rzSVlZG3LOpKS6l0u3mjqwszm8WIxxVJzZuncnjQG9FwWN+PIq/NmxVgAzQ1KbVqWfoHUFsL/f2wbx9EIgrsRbQw+A03KGs/caIWEZ88Wdf53vfg9dehslLBfFubMvFOp1LALhdmLkc2m2X79u04nc6iZHzbtm2Ew2FisRj79++no6MD0zRZuHAh4XCYdDpNXV0dNpsNh8PBwoULMQyDdDpNR0cH+/fvp729HbtdGbhoNMprr71GNBrF4XAQi8V47bXXME0TwzCK4D+bzZLP5wkGg2zbtg1LRMH18R4FkCJaT7yuUEvTssYAp82mINs0tUyZww6TG8cAIijrDnDUrzJ7R2G9mkpliSMxCEb0hsU0FNDbbcpQR+PazkdaQpBJjbqv0bYRRLQ7OjsVfItAPK7du2iRsui5nHaPiIL6W29VNt3ngy99SYUXfr/OHx2jOfts7dZcTiX28+frPp54Qh0YjY3Krnd36/42boT33tP1BgbQ43Pi57csnUdh2UddY2C8rESXH9Ga9jgLDGs+rwMhlgVelx7j0T5wOnQQIJVRVYNTmXTqq7S/bKYOjIyWniv16TGNJYo1fhN9fey+7z4SfVqSznA4qJkzh3wqRToYpPLUU/E1NFAzdy6eujrOefJJzly9GtPhIBePs/+ppwi8+iqGzYa7spLKqVPZ++CDJHp7qZoxgwO/+hWGzUbVzJmkQiEqTzsNT00NjpIS3FVVVE6bhohg93iweb1M/fKXsXs85NNpUsEgkk7Dvz0Gg33KsF/+FXA4tezb756Askqt9Y5AOqnAPp9XZvn4ISgp1w6tqtMycVZel0dD4C3RNof6tLSc06Ml50RgXLWu/4ef6cBAIq7rJ+MwrlZBvNsLiJZRE4v4SA9WPltguyzAwDuugXwmSd+Bv4FlURTBCXgr6zFtdjBtGDYH3soGho68VSwFNyrCyCZCmKZNWXfDwFNeQy6doPeDV8kkQuTSCSSXQay81mfHwDeuAaevolDyLYxROx4ZGSLf9rRK40ctQaaJDA9idR3FsCyM02cjwRFVHZimspTNE/WD5HLF357VdVQHmZJxbTOXhaoaEMFcdgUYJvmtz+igSCZN/vk/QjaDFegqlqPDZgMDOjp+wMKFKwqXaAunswQRi1DoKK+//gAA48ZNobR0PE1NC8hkYmzbdj25nELblpZWxo07mbq6Wbzwws3kcglOO+1KOjo2UFs7g2i0l5GRI9hsDkzTQSIxxNKlmygra8Fud7Fs2U+ZMeNqotEeWlrOxuUqZ8KEs3E6S3C5SjENEzfQC8xAwXc/yqT3oD+5bhSA9wAbUAZ+CQqyS4GnCsvqUZB+GQq83yxs/wRaSi6FSuwTwA1AZ2H5I+gAwLcKy05CBw3uAiRvgUDHhgJY3tCBs8SJlbcYPjRM27VtZBNZ3OVusvEsbde2MXxoGAwIHQux9bqtRPwRHF4HUlA3dWzsYMvnthDtiXLJzy+hcnIlmViG19e8TnNrM84SJxf+6EJKG0rp2dND04ImDMPg+RufJ9QZYunGpVzVdhUX/uhCMmToCndR46vh5u03U+Is4ehNR3nkgkfY07MHDHj0gkcxDIO7ltzF8unLubP1TjL5DDW+Gq3x7qvh+uevZyg5xMalG7GbdjZ0bODZg88yGB+k1ldLIBLg2YPP8oOOH1BfUo/T5mRx82I2dmwkko7w7MFnsRt2qr3VzKqbxY3P38hAfID5jfOxxIL0ILz1HZWo+1r0+cAmyCcUlFbOgOhHsOd67ZVZ68HXrAB73s9h2UE441EF7bmkloYLPAs2zxgQr5ylAwKGqQB+97XafmoITl2hQNMwYHAnJPu0JF30I71gGCjAHgXaoxeSdEQ/37ipCrytrAKfaLeC/bIJY6y85BWAO0tPeN+nYNnmVFAUOqafddzJysSnhrTNkiaonaXbZgr3VDYXRDoL0n0Loj1w3k91u0ShQnPZRFj6ZGEfBXA/8XxdXjNLy7eJwCcfhZM/CzvXKFgvm6hAfvf6Yik46s+EvY9A2SRl9APtsON7cOrntR58vLcA/Esh1gWpoLLxkicvBnv39hKLZYjFMliWMDSUAIRVq1p5+ukrSSZz7NzpxzAMvF4HK1YspL8/zrFjIa6//nnq60swDKMIwsPhVNHW2NraQkmJAxFwuezU1vrYuLGDzZv3s359O/m8sHTpZFatWsLQUIING5bS1xfjW9/aSldXGLvDIGflyeSzvNtziGpfJf2xYXKWxYH+o9gKapFYOo7XoQNtVb5yvnrWpYzzlZHIptjfdwSHzUHOyhNKRjilpoXB+AhzGqdSXzqOx17/D6p95aRyGX6+60/c8pdNHBrsxGlzYGLicTipLRnHN+ZfxgVTF/L1+ZdhM01qSyoZ56vAZQdjeB3Ya2B4PUR/q/L4xJta2s/wQO1GfZ3cDbZKyA3peeqoh/7rFaDXboTS5QWgv1ZB/PA6sFfre9L8TyfTqeXm/sFAO/xTKv/fnf4plf/fn0YZ97U7drB6yRKmVleTtyxCqRQeh4NMLscfDxxgQkUF8xobOR4KMbGigu++8ALzCiy6x27neDjM+vZ2Hj7/fIYSCZXIt7ZSX1KCJcK+vj5m19cDMBCPs669nVsXLmQwHmfu+PFM/uEPuXTqVH580UUEolHW7tjBbQsXcnJpKeWJBMYoi75hg8rfq6oUWD/0kCI204Q334SFCyneUWezEAwq8PZ4VFddX19kn4rIcPx4+OMf1RsfDisK9Hi0jXxe/3xzOX0dDkNdndLCkQjpCRN4rq2N5uZmmpubicViNDY2ks/nyWQylJSU4Pf7aW5uxrIs/H4/paWlVFZWkslkSKfTuFwu+vr6ivNFhGxWpVpOp5NMJsP27dvZv38/M2bMYNmyZUWfaCKRwO128/zzz3Pw4EGuvPLKYt33VCpFQ10dRtFbXalS26P+MYbX6VDgHS/I20dl7Q67gsJREDq6jWkqEB+tYT7q8S71KVDPWzrfZhsDpqP+eIcDAv1as9zlHJN6j7bfVEfe5aak3Mall+oYSjqt3RiNatd1durYzCOPaLeMdhfA3r0KtD0eZdpHu97lUqDf16fbbdxYIGPduh4oWB8ZGfPSj3rsN2yAX/08j+PocR3UyGa1xv0JtgYyWR2sqCzXYxONj4H10edRa8DocSvxFiwJuY8fv3BMVQ3Z3AnyebsC91Rm7PiPHmsRiCfJuOwMvfMO5VOmYBak8jaHA8NmI3L8OAd++UumX3strspK9m3axOxbb8Xu8TC4dy/e+npsbjf5VEqf02kS/f3UzJ6tcuhCPoNYFom+Pg7+678y9847QYR0MIizogKjoAqJdndz4Oc/L+5r70MPMe1rX6OiqRHb738Mb70ON92nUvXtT2vtdcOAPTugdrzK6Lf9Hi64Eo58AKfNhaFeaJoCqaTK46UgDX3mV3Dp1QrUj+yHlpN0wMhmUwbfNHWbVEGC/04HVNXqPp7/A1z0L+B0Q2kFjAyQr2tAJE8i2I+3Uq8TyXAf7rLaItDOpWLkc1mc3vKCB74fT3kNps1OfKQXT3kNoHJL02bX44ZBPp3A5vQg+Sx9H+6gespZODxl5NJxBg51EOk/QsvcS/CNa8TKZUlGBvGU15BNxRk6+hY1J83H5SrDyGXVQpNKIkcOwrhqjNJyJBLCbJyA2HQgT/vNxBBLLSh2O4SDWO2vYLZ+ColGMOoblKm3LP2RxKKQSWt7gPXy85jnXqhsezRcGODwIB+8hzH5ZHA4kYFejLJysDuwSnwkM2Hi8QHa29exaNFKSkvH43CUsG3bd1iw4BbKy1tIpcI4nT7S6TAuVxmWZZHLJcnlUkQifpqbFwEQDB7hzTcf5qKLniAUOo7PV0smE8PtriAQ2E15eQtlZU1kswn9GWaiuFzl9PXto75+NvH4QMELX0kqFSSbTeGonMhOVynzKIiPUHC+EgXQg0AdFOut3w7cgsrg7YVHAvheYZtJqBz+CAr++1FgvhGtCy+FNkNojfhalIW5CZgDXICy/AFUsn9qMouZzRM6GqJ9fTtL7lpC5ZRKcqkc276zjYPPHuTKp6+kZXEL8aE4drcd02bi9DnZ+p2tvP/b97mq7SrKmspU3n5XK+XN5eTSOZylTkJHQ0T8EZoWNCGWkAwmySVz7Fizg9Y7W/FUe3jp1pdYtHIR3W900/1GN8t+toxcIqfS/YkuUvkUNzx/A4ubF7O4eTGP7HyEDUs34LHrf6ZpmBwZOcLkysnYTBvxTBy33Y1ZGGD8zrbv8MyBZ3j6yqdpbWkFIFHoQ4/dQ3+8nzJXGfv69jG7fjaDiUHW7ljLykUraShtwBKLRDZBpbuSt3reYmbdTHJWjkw+QyqbYmpFo0rluzZDy3KY96SC6sCzsOSPUL0IMGDwDYgfhaoFkOpTcL9/HUxfpSA7n4SSSSqNd9cUaqybCqTtBTuPUbDlJAPQu13l92f+uOCj74aqecqED+2C6nk6mDD/lwVg9J/4OCszJpsf9a0bhjLqyREF864yHbAcXQ8KMvqAAmyz0O4ouM9ElO2umKwnYyaiYNgwdcAg5tfBA9MFkWPKcHuqdV46ouvZPcrW716v0ndvvbYBKrMX0TM9dFjl8fNWqWzeVaH7yMa0PRH9LrvXw/zVUD6p8AsxIfSRgvnR+aEjY/76yqlj7+etgrIJxHMeDn8ULMjUy1i3rp1Vq1qprfWxd28vixe38MYbXcyaVUd/f5wNGzq4665WJk2qJBCI8uKLR9i9O8Djj19IV1cEj8dOdbWXRCLLe+/1c9ZZDdjt2j99fXHKy/U/9fbbX2LjxqV4vQ7yeWFkJEF1tY9kMsu+fX1Mn15DZaUHm9OiOzzAL3b9ueg5P71+Cvv7jjJj/En0RYf5xa4/8/X5lzHOW8aHA8c5vX4KTpuDZDaNx+Eib+XJWjkcNgfhZJRYOklzZR2mYTIcD1LuKSOdy3BosJNqXyW/2PVnbvvEFwklo/x815/5xvzLaCqvBcMgb+UR4Aev/oYV51xDTvKMc9sxs0eVKXc0Kdiu+5my78MbFZCbXgXrtsoCsC7428mBFVO23rtAz4XcEEiiIJtfpbXeHS3/kEz6idM/Pe7/i9M/gft/zZTJ5Ujn87jsdpw2G/F0mkgmQzidptTpxOtw0BUOs669nZWLFjGlspJkLkdPNMojO3fy0HnnUeZyEctkyFoWt7/0UtEPv2LBAh7euZMVCxbwo927efyii/hWW1tx+eMXXkjOstjb21tk30eXt111FS3l5Uz1enHkchjXXTfmQb/3XnjlFbjsMkV1o2D7yBFFW6tWKdCfNUsRmmkqc5fPjw0A3HmngvBYTBn5WExp1jPPVDP0kSOajrZqFZx0Enz4oW63erWy8/E46cpKgsEgdrudkZERfD4fb775Jq2trTgcDjweDzabjeHhYXbu3Ml5552HYRg4nU6Gh4fp6Ohg0aJFRe+6z+cjm83S19dHY2MjpmmSzWaJx+O0t7dzwQUXYLfbi553l8uFw+EgFAoRiUQoKyujvb29GHw3ZdIkzHxeAWJ335hfOhJTAO3vhynNeoPwUZd64WvHKcsr8nEQajPHfN0nAk2HoyDZPcH7PurjLvGOScRHZfLpEwBoNK6yeQHiSaSslBf+aqOhQUUNNTVw+LDK3OfPh1AItm+Hq69WsJ1MakCd3a7d09+vYgu/X597etQD73Bo99tsuut4XL/ee++pkMNm03keT8ESbYPrrtNlX/uqhc9IYTgdY4B5dCDD5VSQbbeNHcPGOn1vWXrMR6Xvo+uZhp6Hpk3n5fLg7xvLHBDG5mezKqV3FD64oH03OmDicoLdRtbKjwXSFQaynD4flmWx+5576HrhBVo+/Wlm3HADuUQC3/jxDL//Pu6qKlLBIDVz5mCYJmJZpEZGsDudpEIhPnjqKQ2rq64G0yT4wQe4q6sx7XYSAwPUzJkDwNC771JxyinYHA6Ot7URPHCAWStWINmsMvilJRiDvQrWv3A9RILKkLs8ejws0YP+ux/DGy/Cgk9pKJ3NoZ2bz6NeTpRhdxfCJyMhCA+r/N3hUnbZsuD4QfXHW5bK5MurNADPMJXd37cTvn0XnDS9ICE/SrqpmcGPdlE/7Rzy2RTZZBRvRb3e+GRT2BwuEkENq7M7PSTDA+p3z+fo+/B16k5dUvCvq5VCrBy9H7xWaC9JNhnHO64BrHxxQAAosjwA/R+2Uzt1sbZjKvAWEfKZFA6bUz9/KIjV/jLmok9gVNVgdR7F8JVgvfk3zAsuBVCvvM2GpNNIfw9mQwuCBaEQEo9i1DVAPIbEIpjNE08ItnMhfT0YvrHfssSiGGXlCvqXnAtlFRi5nAJ5ESQRA48Xw7JI2/J0dbXj89UQjw9SWTkFt7scy8qTTI4QjQaKwLy7uwOfr55x4yZhWTlELHK5DPF4Px0dG2htXYXXW41hmJimDbvdB+TJZOJYVp5cLoXPVw0YjIwcJRbrobFxHoZhI5EYZGTkI8rKGmlvX09r6ypKS8eDexxJ04bDMLCAncBpKJvuBaKMMe13Aq8DbwA/BCyUoa8trLcfaEW963YgU2jvOMrC9xXauQtl503G/PIt6ABADB0oSKKyfXskTXIwjrfai2EaxAbU725z2jBsBmIJpt2k+41u6mfXE++PK8BfvYSy5jLifXFKxpew7fptRRBf3lJOuCtM0/wmTIdJPpMnsDtAyfgSSseXkollSIVSuCvd+Kp9pGNpcqkcnkoP+UweZ4n67TOxDN5mL3lbnlgmhtPmZKd/J8dDx1nQtOBjfvYjwSP4I36aypqKzxs7NrJx6Ua8Dm8RxMczcaRgItnbu5fGskbWt69n5aKVnFJ1Cjkrx3Vbr2Pz/s1cPeNqfrLsJ0XgfvtLt/PguQ8ynBzGH/Ezv0nZ9mqHBzMXg2xYfevOMogeUSA9Cs6nrQTPeLD51JPuKIF9d8Dx3yrYP/NHsOdG9aPnkyqjP7ABpt+l7Hq8Ez5YD6fdqVL84N4CSC8A58EdCvYPbNKBAN8kBfqxIyqld9UW/iezCm5tLgXRZRMLP7oCODdsFEPpRMZ87vmMfi5PrTLaJfWqBgAF58WQu5IxIuNjbVq63ShQL588BuRLmwBDpf69u6B+Prxygt/9kz+EeB/s2ajhdDaXDhj0tMOzV8AlT+sgwu71CrRjfvXN++rVqoDoZ3rtFph7s8rv02FwFUbgDfPj/vqlT6q8/uBmmHY1nPtjIik737x2G7feupBNm95k8+b9LF8+nfvu+wTTpj3Btm1fYPFitZDkcvnCdRYymTy33/4St9yygIaGUtxuOx0d3TQ2lrF+fTsPP3w+AwNxHnzwDR599AIGBuKsW9fOypWLOOUUlbcfOxZi7dodrFy5iIaGUsrKXFiWcPRoEL9fBxImnFTChtd+zenjp7BowkxqS8dhiWCJYBoG97/4FK8d2cOmS1cwq+EUktkUT7Rv5sYln8fAwBILn9NDJp8lmo5T6vIRTcep9JQRTkXxOb04bQ7e7TnItLrJuOxOMvksTpudgegIHZ3v8ffeI6w+7+v4wwNFIN9QXoNpqPrKY89gShpwFogIU8+LRDtkjysgH96g3nXHJAXqhk3P8dyIgnrTq+cKBmQOglkO9tqCTz6rz//AoB3+6XH/5/R/aHLa7ZS6XDhtKoMWoDca5cjICE6bDYdpsrGjg8379/PIzp2YponX4aDM5WLdpz4FwLe3bmUwHsdtt7NqyRKWT5/O6iVLOLW6mkcvuICRZJKVixdjMwxWFfzydy1Zgttu5+8DA5w9YQKTKiqwLIufLVvGh9dfz5IJEyg3DPW4G4YC6OXLlXEfP17Rm7cgRxv1Sm/YoObknh5l330+2LVLqVpQinZ0nUBAkVpNjdKxXq8C/eFhpWgDAV3P71fGfWBANdfV1Qry330XWz5PeXk5paWlRab74MGDRCIRstks27ZtIxQKFZn4WCzG9u3bi/NGZfSjAXRtbW2ICHV1dSQSCbLZLE6nk8rKSi655JKil/1E6bxhGJSXl9PS0kJ7e3tRZl9bW0s2l0dMmwLIwaA+V5YpWHc54eQJBUBo6byzpitotwqhamUlup5hqNw+lVFGOBrX41leomCzrGRMCp7KnAD4RcF9vuDFHu2n0eC7ssLI/VE/uJwI0NqqsvbKSl3U369ddP312p2LF8O3vqWbJxJaNCCVUm/6vHnaXbW1+lxfDx0dOgbz7W8rix6Nwne/q925cOEYLkwkdCCgt1fX2bhR4w16ek3ilktvL8MxZcxHPf0wJp9PZ3QwxF5QG7iccFLzmJfdUVAgCAXQntVBjWx27DiPgnbLUjDvcmqon6DWhCPdesxcTn3294+x/4UEapvbjd3lwip43+fddx/n/PSnTP/2t/HU1uJraFDQXl2No6yM2jPOABGysRh716/H7vFg93qxezxM++pXSY+MYNjt2BwOas44g5LGRhIDA1TPnImVyTD4zjtUzZiBabcz9O67VM+dy5zvfU8/h8+HzeNRq+e4GrjmBhjph7/8Rj+3WMqKh4Mq0f78t+CHz8BV31FQ/u8/VEn7cD9Ew8o2DQR0fY9XPepNkxV05nMwmjh/0un6+vghleBHRpRdt9vhX74F31mtMvmP9oNhICdPZ+jIW3jHNWKzO3C4S3GX1dD7wWuIlcfKZ+n5+yvYXR6yySgYBnaXh56//5VsOk7VpDOw2fV3ks+kwDAwbQ6qJ5+FabNjmg684xowEPLZNHZ3CYbNgWEqK5/PZTBMG/XTzgYgn0mSTYTo+fsriJXH7vIiNrvmEra/jOzfh9XxGuTz6mF3uTFaJoFDE++tQBeSTmM4nZgtk7B6uiAaAbcbs2UShssNbjdGXYP61QHD7Qa7A7NpgoL1inFYO3coyLc7MJonItEI5HJIOoVkUljdxzRTIJcjv/1ZDMNOY+N84vFBysqaKCmpx2734HKVUl7eQl3dLLZtu56RkSM0Ns6noqJFgwDzOex2Ny5XKTt3PsL+/Ztpb1+HZeV4+eVVGIYdy8qQTkd56aXbSSaHcTp9tLV9i3C4E5erlLq6WVhWHpvNSUlJPRMmnIPd7mHRopX4fLWIw8cRw2CXYZAVwYmC6L/rmUIOBe8+1Iv+GPAvwOMUQDXwEdAFvI+myx8FbkQBeAZl0a9Egf0G1AsfQHmqIcYk+XYU2N+NAv29J1wWHF4Hsd4Y6UgaT6WH+ECc5EgSK2eRHE6ST+c1cM5m0L6+nf2b92tyfFeE1+55jXB3mGU/WcbtQ7cz4ZwJeGu81M2q48XbXySbyGLlLOpm1ZEYTODwOIr7yCaydL3RhWEYZBNZ/Dv9mA4TTIj1x3j9gdfJh/SaMpgY5DvbvkNTWRNXnnblx/zsOcmxsWMjs+pm4bK7mFU3i40dG1nYtBBB6Iv1FUPl3u59m4H4AKZhUuOrYX37+rF2Cmn1m5ZuomdFDz9Z9hNimRjXb7uenmgP8xrnEcvGxuT3266nL9annZnqh/fvUcl8sk9l8LVnw4GNysQffERZ9USnrpcagtkbFbRPX6VhdXMfLfjJbZosP+1WBf9YCtoDzyrTbvdA9ULIjCiYttLqgT+wSfe1f532rmGDslMU6GOMsd4O35iHHaPgfS9I8A3GQPtoGJ3NAa7SQmBeHsonqtw4n4LwEWXa81ltT0RPKiurCfqjbRqmDhJ4ahSoG4YC8PLJgKlAOjmk8vd06OM+dJtTwXjrWv1er96kbPv4hXCtH5rO1oGQM27T9Tw1ysSbTv2+gXZl3mvnKPi3ucFVCX1v6YBAKghn3Kr7m3+XDjCctVLfn70RIsdxD3Zw111LGB5O8OijF/Dhh9fzs58to7GxlJ6eFSxc2EQ8nuHw4WG+/e1t+P0RRkaSOBwmt9yygEce2Vlk1OfPV6/65s37icUy9PREufXWhdhsBn19MTZtWkpDQ2nhL1ZYu3YHmzfvZ8OGDgAikTTpdI5169qpqfHh90eIR3Lccs7VzG6YSnd4gO7QAPe/+BR9kSEy+Sxfn38Zmy5dQW3JONa89HOG42E+P+cCBmNBHv7bvxf/003DZJy3nFg6TjqbxTAMwsk4G1/9DYlsiklVTQiCJRa5fJ54JkVvdIjzTp7PHed+FQyKHvef7/ozg7EggdCAntbYFFhLAvoKsvdEu7LvZVcqaI9uLsjd0fM+1w19N46BdkkXlB85yPWrx91wqBf+H1T+/r8y/ZNx/+9M/2Tc/+umE5PlU/k8Ozo7qfH52PTmm9y1ZAnVXi+3bN/Ow+efz3AyydodO7irtRWPw0GF201XOMxAPE5TWRluu50Kt5s9PT3MrKvD63BgN03au7poLitjYkUFyVyO3YEA40tKOKWqimgmQ080yoaODla1tuKPRGgqL+d0rxfbkSPqcf/xjxVMJ5PKzvn9SsMGg4q0Tj5ZU8r6+pRu3bhRpfReryaUuVy6HYwlqMfjUFHxcV11PK4IERQ1JhLKvI8y7ZmM+tyjUXKmSdLnIxqNsnPnTpYuXQqoxH3r1q28//77TJ8+nQsvvJBkMllk5ePxOI2NjTz//PMsWbKEiooKOjs78fl8VFVVMTIyUmTjq6qqSKfTxRT5JUuWEIlEimXkRn31oxL7/v7+Yik6AJfdjjEKnG22Mdn1KGN7ojz+qF+B+6gSPHwCu/vBEThtioJMRNs4US5fXvLxtHOxxrzuwhiY97jG9j/K3L/5LlRVkJ08kVTWxtGjY0UBJk6Eb35Tx1A6O/VruFzKoucLtv2BAc0d3LdPA+a8Xu3O669Xr/umTbr9H/+owD8YVLzs8+kYz6iE3u3WELyZM7UAgd0OdpuF08hh5Ashc5aM2QD0x6Pf+b/Hshvo+pnsWEDdaD/EEmPHQ/h4Ov+Jx7t81DOvdgIM4+PHTiCbSWuqfAFgW7kcyaEhDvziF8xesQK7x4NhtxMLBEj29VE9c6YyspZFzO/nwC9+wWnf/CZiWXiqqjDtdkync6ziATD47rtUnnqqtmWaxLq7Ofib3xRl86mREbKxGKmhIWrPOotYdzf7n3ySuStX4i4twRzsVan773+qjPdDv9FOTCXBf0wZ8ZFBDZGzO+Cjv8Njd8MDT2lw3Wgi/KSp6lMvq9Ab0FRhxKWsfMzvPdQPL2yGTy9XRv6k0xX8b/u9SuSrxyvr79XfueVwYhUGsPLZNDanR/srn0OAvg9eI9RzgIqGaYw//dxCWFu+eApIIdXZsDlABCufpf/DHUUgrvMtEsFeHJ4STNOB3eXFsvIadle4UUuGB/FW1IHNTu/7f8VTUY9vXJOm3Vc2YAqa5J5OKeONsuuSSmC4PSqJj0bUwx8JFZj5T0LFOAwEsdkwcjkklcLwevWmvvDZJR5Tpt2yCvYIU7/XqMR+0ScwqmqR4QENrTvvIgyHE6v7OEZlFflsmlSpg3Q6jMNRwsDA+7S0tBIKHWPHjrUsWvQ9KisnkclEsdvdgEkqFSrK5p3OUhwOFZh3d3dQXt5CONzF+PFz9XsaNmw2B9lsoiiZf+yxiUyb9lmWLfspIhbZrA4oZjJxstk47e3raG1dhcPhwzFuMjsMkxqUQd+IetGTKHu+YPQ8B6oL/ZpA5fK3oz72mhOWV6BA/nQUiH8PldWfggL3XhS8P1VYrxcNuPOgQP5aFNgvB1YAUwFPLM3wwWE6NnSwaOUiqk6uonNHJ2WNZUQCEcoay2hfX0iUn1xJ8EiQ9vXtXPTERWy7fhv7N+/nhsM34PQpS+6rK/yPCWSTWRDIRDM4S524ylxkYhnS4TSOEgeD+wepmV6Dq8SFIGRiGV6+42UWr1xMuDtM8EiQ5tZmSk8rJZaNkbfypHNpaktqiyC7uayZupI67KadZC7JypdWctui26jz1WEzbHRHuumL9dFY1sgPOn7Ag+c+iM20UeIsoT/WT4W7gl2BXbSUt+Cxe/A5fQzEB1jXvo6Vi1ZSX1LPMwee4Y3uN7j3nHupcFfgsDm4ftv1bN6/meXTl/P7S5/E2H2tguZz2k5IlL8LXDUaHDf3YZWH77leAXjr0xpWZ5hjMvTYMQ2qm34XuKph7y0F9nwy5KKFXAkPWCn9De1bCVNvgdKTtI3Y0cL2q1Vyn41qWru3oRBc6h9LdR9Ng7e5FXyXNKAjJoV1DGMMnJ8oix+V1eczCsxtDt23zan/J9mEgvx8hrGScwV2f3R/oMusjLL2+SQED2m5tyUPKWtfKCOHOar6+WhMyh54Ayqm6ADArnVjSfIDe/WzO7zq908O6TZn3AbuCnCP0/astDL7nloNDqyfpyXk6ufpsXltBbSuA7tbr+99u8jULCKRc2K3m6RSOXbtCtDSUkZTUzn9/Spt93od9PbGePHFI5x88jgaGkrx+yPMn99YBO0ADodJMpknGExSW+sjkchy++0vsXLlYlpayjhyJFiQ2i9hwoRyjh8PFaX5uZxFaamTigoPTqeNTCaPaUIolKK+2cP9Lz7Fl85cxm/2bGX7wTe5YOpCvnzWxZS6vIzzlnP/i08V568672tseOVfueaMi2iqqCOVTfPo67/jy2ddwviyajK5LF6HizV//QWnj5/C7Iap/Pvb27jj3K+St/L8ve8ItSXjqC+tIhAeKCbJV3hK2PTav/O1eZdiiVBbMo5SlwNn/gjG8FqoWgmJNyD5BoxbASMPQ/1PlXUfflDT3h0tCtJH7wYkB6n3wLsIsAoAPqPSec9ZGm6nV2K9ypr/uAD+n4z7P6f/I9N/TpZ3mCbzm5rY9OabxdA6j93Oveecg9fhYO2OHTx78CAeh4PKAkBvKC1lUXMzXeEwoVSKG55/nsMjI/TFYly3dStHg0GOBoN0hsPkRbjh+ee5+D/+g4c6OsiLEE6n2VBg9de1t1Pt9bJuxw4FLIEA3HSTguhsVlGZ3z9Gw8bjusyy1KB89tnw6KNaF8w0dVlJyRhSGxlRhOfzaRuhkN74h0IF/6wo4x6J6DqBgKK9hgYFXUNDyrj7fOSTyWKgXGNjI9FotMioL126lKuuuqqYOF9aWkpZWRlvvvkmZWV6YVuwYAGRQpp+Y2Mj8XicfD7Pzp07aW5uxunUC14mkymG1u3YsYOmpiaam5uLyfSjwH60nWAwSFdXF/kC60o2p4ztKDvr71fm3DQUiHf3Kfgc9WEf6tT1y3wKwstLFESWePU4joJRh0PX93nGULTNLDDQBbCazipoL/WNDZyMhrHl8griT5sCLeOxFyzvoyH+a9dqk6tWKege/TqGMeZbT6U0W9CyVBY/frwy7h6Phs+NG6enw9GjyrB/9JEOCPh8elqcdJKuVyijzpIl+rxzp+7DZgpGJqvHY9S7L+j3BwXs2exYYN1ocNzhwjEUKeQJ2KGYLS56zGy2sUR60MC+0TZOm6KDIuGY3iyd3KIg32EfUz1YUmBQDGW3C6DdtNvx1tcz9ctfJjk8zO777iPW3Y3N6cRdVcWedevIxeMqBPD5CLz6Kh889RSlLSovjPf1sfvee0n09pJPpdizdi3VM2di2u2khofJp9N4GxqYedNNxAMBdt97L/lkEkdpKTVnnIFYFja3m2lf/SqG3Y6VTimAzudh+bXw4K/1xvK3Tyh73jBBQXlphUrZh/vh5Bnw8O81Cf6k0zVJvnmKHufycWMXsEioILe34OgBLQ0XHlY//Qubx0rE2R3aZmhYj39JWcELb4dYmGwqSiLUh2VlSQR7xwYBxGL89E9x8jlfZfzp54Jownw2HaNn/ytk0woWez94jUw8hFg5DNPEU1FPNhUnGR4gmwyTDPXirWzA4S7D7lZAZRbKv/UdeL2QWl+tbSbC1E87m5KaiWRTMewuD/lkDIlFIRHDem17QXISJ7/9LzqQaFmQySAhDaQzfCUYo2y8CJa/E4LDSCoJ2TT5rc8gwSGsrmO6jdeHhEbIb/sjhEMaWhcOIZEwcvDvum8RcLmxXXAphtOlpeXGN2GUlmNVjSMa7SUYPIbT6aOlpRUwsNlcNDcvJh7vJxzu4qWXbica7SUQ2IXT6SUe7+e11+4hFuvHNG3k81laWlqpqJhYDJZzOjVIKpEYwmZzYRgmsVg/V175NEuXbiCTiTIycpjt228mHu/H56shEvGzcOGtOBxestkE+UyC+WgptoWo9H0Qvbmah0YoCSpdP44C6/7CsnWMgfbFwGRU/n42CsRBwXcBJmOgbP7PC202FdrZDRxD2fc7gTY0zK4KLRknFsT6Yiy8dSGxvhgiwoQlE7C77dTNqqPjB2MJ7wAVkyq45BeXYDpMLvnFJazoWUFJfYkG0xWsx+HOMFuv20pySAM9XrvnNWJ9MTAg2htl5MhIMWHetJlkk8rsOX1OFqzQpPmW1hamfHoK9go7x8LHuHn7zQwlh6jyVnFo+BDXbb2OxrJGJlZMpCfaw3Vbr6M32svCpoUEIgG8Di8eh4dHdj5SZNbnNc5jID7A3t69pPNpqr3V3Lz9ZprKm5hYMZEyVxlehxd/xM+LR16kL9aH2+7mS7O+xBMXPUFTWRPv9b+H3bAXg/BWL1kNhh2Z/n24+JCCcZsP+l5UEG33wFk/1jT5TBCm3Qatf4TKuRosN5qfAQo2aharRD4bLiTNbxwD0dmYMvZvfxeSvSqVP7ChcHm3VB4/70konQwDbygo9YxXFjLmVyAbC+jZcmJIXflkBdAnJsnbnNqZo4F2hkmxhrugIN7m0rA6EfWngy4PHSkw9tlCGbgT9m1l9Jcged1eCv/hb20opMX3qUw9fET3kejXbfZsLKTGl8BpX4LGsxV4N56tgD8dUgn+7nXKuDtL9fXBzXoccklNlQ8fVVm8p1bBfONiBfkNi/Tz9u6Eczaq0sB06eevmU0qb2doKEEqlScUStHa2kJzcwWpVI7OzhButx3TNDh2LEhrazOLF7fg9TpobCzj+uufp6srwtBQgmQyx5EjIXbt8pNIZLn22jZ6eqLMm9fI2rU7yOeFRx7Zydlnt1Bfr7/ukhInmzYtpbbWR3NzGePHl9LXF+WNN7owTfB47FRUuJE83HnuVylz+/jm/Mt5/Irvcee5X6PM5cPjcCMi3P7JL7FsWivfWHA5TpudW865Grtp592eQzhsdm4++ws0lOkwYiqXwkK487yvcclpZ+N1urnmjIvoiwyz/uVfUekpZSA2gmEYH0uSNw2T1Uu/QUO52jM2vPqv2IycgvboZmXWfUtVEm+Og7onADsYZVD/JDgm6nvJo8GMeQXm3sJQZ2In5Pz62rsIkruAjJZ56/26Pv/PkuX/gad/Mu7/nemfjPt/zRRLp/n6c8/x7MGDPH3llbS2tGAvlHnrikSY19iIx24nX/DoHAsGKXW5qPR42OX301haSo3Px4oXX+TO1lZ8DgfJbJb6khKCqRSxTIYSp5OG0lKimQzv9/dTX1LCxo4ONi5dis/hwBIhns0SzWQod7l4r7+fmXV11NpsmIcPY6xbp+ht8mRlwG02Be3PPgtPP6366nhcEdm6dQrubQVAlc2OJX6bptKz1dUfPwij68IYG2+aSsfW1yva6+vT1LL16zUY75RTyNrtpLJZotEoTqeT1157jf379zN9+nQuueQSQqEQb7zxBkuXLsXhcBCPx4v13R0OB9u2bSuy9IZhFGuxW5ZFNBotMuwVFRXkcjkCgQDl5eVUVFQQjUaLdeBFhO3btzNv3jyqqqqIxWK43W5SqRTjyssxMrkxT/mo/DqdVba9uV591KA3HEcDCtBrKgve7OwYU5/Pq+z9xBrv9oIPL539b330J7dAJK5A07LG2jmxlvmodN6yEJuNo502YjHtxu9/Xxn3UZL60CEVUTz6qHaj36/y+NFAOlBXg6dggd65U7uspgZuvllPD49HcU5ZmZ5KJ0Yk9PXp/NJS/biWBWXePLZYVL34eavg2TdOeI0+Z3IfD+QbCup3H1UzmIYC+dHQObdz7Dj4PDqIMap+GC2nF47pIIe/XxP+TdsYoLTycKwHJjWSzeeIdXWx/6mnmP7Nb5IYHKTylFOwezykgkGev/xyGj/5Sebdcw+777uPmjlzqJ47l9TgIFUzZ5KJRnF4PNgKKfDBDz7AVVFBamSEkpYW+nfupOncczVsTYT3HnuMmTffjN2tNyCdW7cytG8fZ919N9lEQr32paXkUinclZU4HHYNPkvGwVemsnZb4bvkc5oun89r8vukqXDmEgXag32wfQss+7yy5AM9WkKushq2/QGWXQXllRRl8Y0TlYm22+Hw36GyVsvPDfWN1Xm3OyA0oux/LgvHD5I/ZQbxUK962gHD1JrpiZEeHB4fDncZGIZKqtNJzEK1h3DvIZKhPmpOns/hv/2aysbp1E//RLEWet/+Vxk3cVaxjjumDdO0YeWzyq5X1oNpIxMP4XB5Me0OJG8hSBHUi5UnEezFU1qN3ebU3ACHMvuSz2Fkc4jL9THfOYgy6F4fksthvdSGOf9sqCgvlnPL//pxzEv+BbOxBSvQhdk0gfwLf9FycVOmKmufiGGUlkMmrV7kbBbD40XyeT3/HE5VHyTiZH1OOrvaKS1tJBoN0Ng4H9O08/zzN7BgwQqqqk4mGg1w5MiL9Pf/nfPOexDTNMnnM4TD3ZSXN2OaDnK5JC+9tJIFC26lquokRCwMw+T5529iwYLvEokEKCtrJBrtpaWlteCNT9Pb+zZebxXx+CAtLYsIhbqLNeGTyRCmuxyHt5qoYVCCSuN3AjNR8N7DWLCcgbLibjSKqbvwOoEy702M1W+vL6zvRYH+aLidC5XSb2CM3bejAwTOQrujEvrqwufxJLNEDw0X66ZXTKwg3BUm3BWmcX4jpt1k+y3bueCRC5Cchsu5K92kgimyiSwRf4Ty5nI8VR5eXPEirataifgj/MfF/8H05dM5575zOPriUaacP4XSxlK62rvwVnl5c9ObXPDoBcQH4rSva2fRykWUNpRi99iJ98VxlbtwljlJ5pN868VvFdntJy56gl3+XdT4ahhODNPa0kogGuDloy8zuXIyC5sXIiIMxAcodZWCwLv97zK7fjZOm5OR5AihVIgfvPkDVrWu4m+df2N3YDc/WfYT0rk0uwK7aC5rxuPwEM/GWd++nrta78Lj8FDhrqAr3MXjux/nhxf+kFROU8GrnR5luuJHFWjP3lhgpVNapz1yqOBXX6VyeU99gQ2PqvfcQHsq2aPAFFOBdKqvUFrODwcegtkbFDwnetQ7b3MqIHWUKrjJJSC4D6rOKjCOUmjLXVCj5QusuTXmP4cC+96kDLfNqYDaKKjW8unCfNfH/e5O38c96yUN2l60++M+ditLsV78aMk1gWLQnWErsKlBHeSwMnBwC/S+qbJ1V8XYfUKiTwH+Jx6FxIB+nvr5BXY+pYy7t1Yl+VYO4j26/rlPKFg/41Z4e5OC+cvblLF/a6PK4Q1D7QIOnyoDYEwVYNiI531EolnC4TR1dT5SqRyRiL4WgY6ObsaPL6G21se77/Zz9tkTSKdzXH/98zz77EGefvpKFi9uwTB03TPPbGDPnh6OHg1y7rmTGTfOTT4vxZJyiYTeG0ajGcrL1dO+b18f8+c34vHYiUQyuFzKuIvAu+/3Mnm2aywkrqIOf6hf3y+4jEpPGY/87bfcfM7VeB0uRhJh4qkUNaWVHBg4xjhPGaVuLxWesiLz/pWzLqHCU8rBwU5qS8YVw+2G4kE6g70snDCTmhItDZoXi2w+iyWCx+HCEgsDgwde+jnbD77Jzpuewm0dKzDuq8ExQa9I2SOFmuorwT4Fcl36vu5xPX9zPTD8Aw2u004Bww35YbCNU5l8tlPb6/umDgyULtdyb2Yp/4jTPxn3f07/RyanzcZdS5bw9JVXFsu8HQmFmFxZSXNZGbsDAVK5HKZhsGL7dr2hzeW4fts2anw+AtEokXSazfv3s769nUqPhymVlZimyUcjIzhME9MwSOdyeOx2jgWD9ESj/HTZMhw2Gzu6ukjkcgwnk9zz2msMxOMsam7GY7djZLMYo7W9/P6xpFWXS1HY00+rLP7aa9WcfMMNCrbb29XYfN11Cjy7u9XsnMspHTtaFDyb1fnRaIGVsyt9e+21StE2NOhB2rBB0d/69UoF9/bCsWNY8Th9fX34fD58Ph9Llixh+vTpLFmyBBFhx44dRSa+q6sLp9NJPB5n+/bthMNhli1bhrMgSY5EInR3dxfD6/bs2cPixYspL8Smiwjjx4+noqKCUCjEyMgIwWCQtrY2wuEw8+bNIx5X9s/r9ZJKpXC7C1I4yxpjvU1Tj2FXr/reM9mxkmaC+rLrq8YGMHTv+pQpMPfCmGTcNHTdwICy6E6Hbj+lcC0rLxmT3puGMuwnlk8bLX12LEAuq13b0qIs+IQJ2o3XXqv+9NLSsTJvJSVaIs7h0O5buVK71+vVMZwbb9Qxl+5uFVNs3qziiZISBe72wtjDww+rRN5m0y72eMZOgc5O8PcaSHnJ2Hc3CpJ3p10//7HAWGm8UUtCPg+1VWo7GA21Ax0gmdyk80ZtBaMl80Zr3qczhXYsPXYuh+YPgA6GjLL52bwe40Ko3Gg5t8TgIDVz5mD3eBh+7z3sXi+Xbt/O3DvuAMNg+rXXUr9oEanBQdxVVQy/9x7O0lJMl4u969djOhyMO/10UiMjeOvrcVdV0Xz++SQHB3nnBz8AEWbfeiuIsGfNGmLd3TR96lPMvu02MAySQ0Naz9ztxlNVhZVRD7SBqMT733+o7Ho2o4/OwwoCnS5NmT9pus4zDA2iO2WGMi0ALz6jrPy2PyijPjKgjP2xD2HiKRp49/ufQl9A2XmnU4FsaflY7fihPj0Jhgd0u8mngWHg8JQUGPQY8ZEAmXgId1k1pulArByZuJZrs7s8GHYnVi5DReM0Gmaci8NVwsSzLqf+tHOQfA7LymMg1E//JLl0qljHPZuMEnj/pTF2/e8vI7kMhmHQd+B18tkMhmlquFxhQA7DxOEpRfI5raXuKAzqFFQe4rBDOKj113NZrK6jyMgwOFXGTjSM0dis5140gtV1DMPtwXb9HRhl5eSf/xNGWTlis2EuXYYxbYa2n88ioREkkwK7XffrcCrLbrdjON0YhokV6NbjbNhpaVlCeXkzLS2tpFIhLCvHggW3EI/3Ewod47XX7qG5uZULLngYEYuurjeIRvuIxfqIRnvp7u4gGu1jwYJbqKhoIZOJ0d3dQS6X5oILHqakpIHm5kVEo700Ny8ik4mRy6Wx2Rw0NS1g164fUlbWhGE4iUYD1NXNIpEYwun0YbdySKHE3yHgOmA8UIYC6QGUNbejnnUTZdiTaHr8OMbqufuBZ1FQHkFBeCfqWe8ERtBycB40wE5QkG4V9jWEMu9vomF3RmGZmbdoX6e+9fZ17QCEu8L46nykgikMDC58/ELC/jD+/w97fx5uR1mn+8Ofp6Y17rX2mL139pCQMAdIZEjIhAMEZNDWPkLbao/KoFEBFWgTToMtCRpA0IbWRtR+7bbbk7YnDAkBodHsbEgCAkKAhOwMex6yhzWvVeP7x7fWWol6znnPe/36+p0+h7qufdVatZ56qnZVrVp1P/f9ve89w78B2uOtcXZt2kUlW6n10bW8iyXXLWHtxrUk25P0rOlh9sgsvuvTu7aXdG+ayx+8HDNukl6QZsF7F7D34b2YMRPf9ZkZmCE3lgMflKfYsGYD1y25jg1rNhDRI3SnupkqTHHR/Iskn/0X97C6d7U4whem8HyPQzOHmMiJW/yq0Jzw5idvpugWmSxMsnX/Vjb3bWbdonXct+4+jswJq7+0fSltiTY6k53EjBi3r7qdtkQbCSvBrTtvxdAMNl26CT80cTR1E7EdDIShPeNWqXE//oK8R0l9e7X2PCosJKUx+NWfQ3EwjEyrSN21ZgnYL4S18MUhadOyXNZ56WYB/qVR2Huj9JU/LC725UloXSEspVuQWDg3L+99V6TtIL8nuWEB1ah6vrqVCllwH+YOh1J1U8BsfqTeLtIg/SW7BaA3dAtbrXQBvdVlKGrO7mZCAP/cgPQBEgUnDxpQmoKf3SjA/9QPCZi2UmDGwCnUWfkDW8HO1GvZn10vr62UMPKRRrl3/+I2kdSvvFsGQZZ/WbaxfIPUrneuEJl9x3IB+P9+s3wprJT8b4ErvweFMfj3mwlQ+GHcoVIwOVng0KEZjh7NcNNNT9DWlmBsLE8uZ7N8eReeF7Bnzwhf/OJKfvKTa+nuTnHjjdsoFh3mz2/g1lt3snJlNx/72Lk0N0exLL1mXFcuuySTcs+9555fMDqaI5GwaGtLsH79Dg4dmiWftxkczHLzzTsZHc1xznltPLbnX2u15bbnMJGf4Q8vvJqJ3AyFSpFzOhdzPD/LXzz1XUqOTSIaJSDgnI7FzJSylJxKrf79Exdchakb6JpGa6yRmGmxcd0nmZ9q5V1dZ/Cu+Wfy7f6fUHIqjGSmeHX0IJrSiJtRAiBTyhMAn1zxIa4+aw2GpoO5WNh1Z1iM57BPiHPbArj196W9Asqn74XYcvDGwS+AlhAFiZaEiZvBOSJAXmnC4DdcJwMDKiSG/i+b3gHu70z/YZNlGJzZ0sKa3l42h3nsm3btwg0CRnI5lra3c7xUIm/bbL70UpKWxXAmU4tzW9HVRWM0ynVLlnDH6tXC1s/NsW9khDW9vfQ2NpK0LPaNjuL5Ph8991zOa2/n8NxcDfwbSrFl925W9/QQCdksQ9NQhiHAfHpaNMwgD4nHjgkiW71aqNnHHxcK9vTTBWwvXSpa6Icflof0iQlZNjEh+ueLLhIkuH69ZLmD0K9BIOs9/rgUPYtzklC809N1g7wwLFw3DDo6OnAcB9d1SSaTXH311aRSKYIgYNWqVSxevJj+/n4SiUQNlPf09LB7926y2Sy+72PbNvl8nkQiwfbt25mdneWKK65AKcXg4CCzs7M8+eSTNWCu6zrt7e0nZb63tLTQ0dHB9PQ0TzzxBI7jMDIyEg70awIQq1nkIMx4W1PdaK0hIZL6qky+SjkfHRXQCnV5vOvVwWgmL2D81B5oa5ba7VIFqm6jJ05+KBufmq3LyzN58AOCU3sYOKpIp2V3o9Ew8jwup7GawvfAA3Uvwc99TkB6NCoA3DBkHAZEZj86KqeqsVFO2+rVcgnccou41cdiwuCDvL/5ZtlGa6u0/au/goZUyLBbZp0ZL4flBBUbTpkvQF4hc02XYwT1/9Hzwwx3r+5AX/MCCGWtEatuSKdrsg7huXM9OQephBz3dPIkl3lN11ly/fWsefBBms44g9zgIFMvv0zTkiUYoVW+GRo5xjs6iHd0SB779DTR5mZevOceiqOjnPaxj1EcHeXFe+4h2twsmfC+jx6JYCaTXLBhA3o0yisPPEBpakry3b//fZxCASMWE8f69nasVIryzAxepYKdy+H5PoFuSo35vl8Ii14qyGhJQ6NI5idHBbxXDecys9CzCJathMf/VmLhPvJJYYI/tl5i5RadKeC9KrGfPQ7rPiwAXtMk+316QgYCTAvW/a7I6E0LWueJBN+Ta/v4wIvEm+ajaQbx5i6seArNMDGiCZSmY8Ua8H2nBrZ1KwYoKvk5Rl9/hmhqHkppYjqHMPMAieb5KKXQdAO3UiTe0o0ZTaKbEeafcxlKN5k+/BKxpk4UCqdSIHBtCjOjOKUsge8xffglTCsUYvseQaWM9/Q2KORRhoVKNIjUvVQMDedyUC6j4gn8/udQi05HJVOodBNaz0L80WGU7+P3/1zk9MkUCoUyBdwEs9MoTUf1LJQBBMcWqbxlofUskDr+oaMEM8dR8zrCevuATOYI27d/hpmZQ1hWnHJ5jqamRfT2riGXG2PBgvfS1LRIjuPoPhKJeZhmjK6uizDNOF1dyyVvXbMYHn4BTTPp6lrB6Oi+MC5uiCeeuImGhvkopRMEfm1ZJjNId/dKstlhgsClt3cthcIkzz13F7ncKEppOAToSpFAZO5JhAF/ATGOMxA5e2P4WRVQBwiD3gO8CKxC2PVHEcY9grDqqxEgngBuQRj63w/XHwb6EWa9Hal5X4FUgfYjUnnP0rn6r8VY7urvSOxn14ouoo1RrIRFfjyPnbVp7Gmka3kXI3tGaqC9a3kXxeNF1v7XtSQ7k6x/cz1XPHQFuqVzzXevIT4vjltxyY/lSXYkGeofYvbQLKMvjVKcKrLthm3MDsxy5gfP5IpvXEFmMMPOW3bSvrSdhs6GEEhBwkzw7au/zcLGhfiBf1I2+2BmkOVdy7m37140pVFwCqzfsZ62RBsNkQZydo6x/Bh+4LOyeyWbd21medfy2kBAgyWs3KZdm1jetZyJwgS/HPslA7MDfPUXX6WzQQB8zIjxhZVf4L7++4joEYpOEcd3mChM4KARFI4K0NYMYcCbllLLX7/gYVj4caldV6FCKj4f2t8rsnqrCab3SAycPSc130Zc5PbFIZHP9360PgDgZMWsbnCrSOr3b5LXpWFp/9ItAvLbVsr+KDOUwafq0nwrKWBcKYl9MxOh2dxhAfRWUgBx4Mr71AJpp0fqUngjIlFqmhUa3SHgPL2oXmNc3S6q/lop+c1KnyLn2C0KKJ+/WvZDM6S/0nF4+kYB7tFGYeA/vA3i7dC1Fl7+Fgw8LrXoXglGd4sCQZlw4e1SBx9vk29UfkyAvpmAyx+T87DuUclwf+lBGRB46UFREgQujL4g+6xHpe7+hKlUchkdzdHWlqiZzD3wwPMsX95FU1OUaNSgXHZZvbqHnp4Ul1yygPvu6+fxxw+g64rOziQPPngFIAMAjuMTBFAuuyxd2o7vB6xfvx2Ab37z/XR1NWAYinQ6wurVPdx3Xz/pdLS27S1b+kk1RPhkmJ/+qYs/hIZiXrKZH774BO3JFtqSzVx11hqmixmeG3iR7+35V5piKcpOmYhhck7HYr6359/YeeB5jhfnMDSD4YyYOC5o6SBmRpktZmVAMAhIRKI8f/RVNKVoTqQ4r/M0PN+n6JS592ffp+RU0JRiMj/D5y/5fRQOKqiIrD16ttyhii9Ay5dDsH2H3A1bNsh7s0vuUC13QuqjYJ4m+e9ogCNsescjwrQbYTmIdaYw7f+Hx8H9j6Z3pPK/ZXpHKv//7PTrme6nNTdj+z65SoWcbdNgWTVZ+1A2y+a+PjauWcOCxkZAGOG8bWNoGi+NjbG0vR2lVE3+HjdNJgsFmmIxLF3nM088wT+9+WZNnh8EAYdnZ/l6fz8b166lLR4nZdskXnihDrqrOe6xWN1QrlQSEH/++SGznDs5iPu++4SqdRxh2js6xMhueBieeQY+8Qn5bM8eKZDu7JQa+JUr5eG/WKxTsr4v4eKJBLguLjBdKrG7v58rr7xSHHkdB8MQt+iqtHhubg7TNHEcpxbXlk6nmZubI5lMYhgGvu+zY8eOmtT+mmuuYdu2baxcuZJisci8efOIRqP4vs/IyAjt7e0YhsHw8DAdHR015n5oaIitW7dy1llncemll5KMx9H8oG6uViidHN0G9ag2xxVgqFSdcZ+YFsB/Wu/JMW8KGVklEPa36hhvGdKuWu8O9fWqZmwHjwkbnSsIyB0eJ+jtxItEKFd0du+W03DKKWInUM1rLxTk1FUTAZ9+WgB2NQFweFjGbebNE4uDDRvkfaUil8X8+SLGaGurXzqbNtUvqUhELpXJSRnvSaWgUvZpiZVRJxrCvT0IkzP3BKm0AAEAAElEQVRwzqn/HYO/nrohXzImD0blkNnQ9ZPLFqomgVWA7jhyjCxTBgiqfVtm3aNAUQPtJGJ4vocvX0J8x5FsbsDO5zFisXpMnFLMvvkm8Y4OYm1taJZFaXKS8f5+pl97jQu+/GWOv/oq0eZmyjMztJx3HrplgVJ4lQrTv/oV8c5OIuk0TqGAlU4TeB5GNCq17K6LV6nUdm/24EHali5FaRqGrqHsirDcjS2QahYA/XffEjB/0SUCzGNJmBoLY97OlOP1xY/Bsovhj24R+fz2H8NVH4W2znDwZwbe+OXJWfBXfRTaOuDgawLsn/onkda3tIf14BUYHoCFZ+BbluTmVgpMH3mpZipXncrZMPotAN9z0DSd4tw4ZiyJUypgROKS7V7NUPddNEPY/tovd+BL5F7ASQZ21Ux3+Z54lDITxBo7UErDrRRRmo5mRtB9CGanCXIZtJ6F4HlSr+46BJm5emTbqvegmlslZs4Vcz1lRQTwOzbBxDjafHEjRtNr54rZGfwXfoG27hqUaRK4rnyHTVPKHJQm5nfVdpddLfe3ULbvKJcntn+Grq7lLF58OclkB3Nzg/T1iTFdS8tp9d8auxCaaRZIJFrxPAddj5xkLlcuz/D88w+wZs1GUqluIGB4+AX+5V8+wYc//Hf09q7BdSs89dQXeO21H7FkyXW8//3fIgj8MCNeMt3//u+vYsmS67j66u9gawZHrSSblWIDsABxd08iTPhLwLkIgw7wK4RhNxHAfRzJW68y7wbCrKcQ5n2Uei787vDv0XAbGjIgsBcZAFiESOmHkIGAMmCXHCInSOWtpEW0KYpu6kwfFNO6y79xOaXpErs27arJ6VGgGRqBJyoNhWJw9yAN8xuIt8UxYyZD/UO0n9eOETMY2TMiwH/vCIl5CZ6//3n2b90vcvq7303D/Aa2r9/OxbdeTLo3zcjeETrP74QkHC4cZnPfZjas2UBnQycaGntG6nL58zvPR9d0InqETz/xaX702o+4bsl1PPaBxzg4fbAWG9ed6sYPfOJmHF3pOL7DC8MvsKxjGZOFSaJGlEMzh1jetZy9I3s5OneUD535Icbz42zp38KGNRuYl5hHg9VA0SkylB1iS/8W/ubqh4m9fKuw4h2Xi4w9NwBvbA5j4OaHcnY3vPADRE5gCbO+/6viIG82gVcIje1CWb1XrMvvjShM9Ut9fHlCwPv5D0FlUtj8ix6BfetPMMnrEVC/8u9OyFDvEha96iavGWE5FCILr2bFV4G3VxLQmz5F7jWeLfXkdqGei/7rMviqPD7w6vJ8VD3T3Xfrsns9EkbUVWQ+vheSPdB4Cjz1qZMi2QhjLxl7HlrPk+NROi5gfc8mkcKXpqDzYunXK4sJXbIHUr0itY93CKu/5x5xrE8vkn5H+2He+VIPv2czXPRnkGiHyZch2U0+diYHDk6zZUs/t9++itNOa2bXrkF6elIMDWVZsaKbaFS+xQcPTjM2lmfFiq7wEUVhGIo9e0ZYsaILpRSu69ei4r70pVW0tye45Zad3HHHKhYtasbzfAxDI5+3ueOOn3HbbasYHs7S0ZFk/vwGCgWbRMJC1xWmqWPGAmZLGZriacqOTdS02Pyz7/PEm308/Lt30JFsYaoww9L5ZxAQ1CLglJL5XClH2bF5bM+/suHSP+W18UM0xRr44YtP8KmLP0RjtIH7n/tbPrnid5jMz9KRbKElmUaheH18gPZkMxP5GVriaV4ZPcDrYwNsvOyTIqH3XUx8GiImyjkkLHrL7QLczUWh4ZwuLvHFf4fk1QLMncOgEqC3hFnvmwXoq4Qw7t5oGB+3AazTxbjx/4LpHan8O9P/q1OVeX/sAx/gjNZWoqaJBozn89z13HOM5/PomobteTVmfiSXo+A4VMIHxHI4X9HVhaXrTOTzDMzMYIRy+ZLjsGd4GNt1efjKK/nn666jJ5Wib3AQ1/dpiER4/MABNu3aRbZcRjNNgtWrhWV/8MGT9c6plMxbWsSVTNeFir3rLpG5Dw1JAbTvw4EDQs8uXSpo8MgR0WD/3u/Jw+lLL0md/IIF0s/atbI8l4MvfUkQXi4nEnnLkv5vuAEP2N3fz8UXXwzI4EWlIgDNcRxs22ZkZATf90kkEmSzWQ4cOEBfX18N2O/cuZNsNothGCdJ7ZVSXHHFFTQ1NdHb20skEiEIAorFIp2dnRiGwY4dO+jokLrc6elptm3bRkNDA9deey3r1q2jVCrhup6Yqx0dFWBeBe0BIRsc1re9fUyAtusJa16xZVk6KfLuTKHuHl+taT80WJfMW6b09/agPDQoVWfjqwDddqT9wvkCgBsSwjJPzaIGx1CBMN4rVwqjDsKa33WXzNvb64mAjY0S17Zli1wWmzcLU/7AA8K8V6srTFP6DCsOWL1aXieT9cS/WEyAfKUCg4Pw538ulxJA1AoEtJum/L9lW47HiWqFqVmZ1wz+wmOTiMmgxtvHqAXEV+PjqsZ+piHzEyPgqoz9iX1rStplw2P69rGw3EDhl228cpn8yAiVTAaUYvq11zCioRNvOCldJxIy6ZplCcDXNBZ+4ANcuHEjmmXRct55mOk0bRdcgGYY+J5HfmSE6ddfp+3880l0dmIkEjUHe5TixU2byA8NoRkGpcnJmqS+7bzzAPCKBWHY81noPRXmzZcsdl0XgH3RJQKqq9diW6dI5gnkuGz5IXx8PaAkC37fLwScB4Ew6o//LSw+W9bZ/mNxrZ+dkmvt9PMglhBjOtMSqfzffQvyGTjlLMhn0UpFibM7vO8EU7kplG6i6Saxpi5h0AMfTTcZe+O5MBouLzFvmkZxdlQUFYg7vF2cC9l5B0VAcXZcpO4ENRf6WPN8nFJe7gUEku/e0IpTzlGYGUG3ImhWtSY2IMjOoeZ1EtgVglIR4glUPCksey6HtvLdBIUCKE0M6cZH5Hj6HkGxgIpE0XoWiATfDyTG7Yl/EhO6Qg7t4rUoTcMfPALZjAw2KJHu+xNjcg01NaNddhXkc2KM5ziQmUMbHubKKx9m6dI/IpHoEOmymWDhwvfR2LgQUCGozvLMM19GKUgm28MItwhB4PH007dRKEySTHYQiaTDKLc2PK/CyMheurpWcPPNR8PIuUmU0rjyyr/k3HM/ztq1d2KacXK50RrL3tOziiVLrmPt2jvllqdbbFaKrQj4PgbchbDnMYQxn0DYch9hxvsRV/gbEQY9jhjVfRaJhtPC5QYC0L8Yzi9HDOgI+0kC0wizH0ek87ETtmEA7bZH3+Y+Djx+oCZ9D7yAwA/o3yLGdHbOZtemXTUpvGd7BH6Ab/vYeZvtn9nO9NvTzDt3HtnhLFbcQmmK7hXdTL0xhRE16FohoD3VkyLaGGXNhjUsuW4Jq+9YTbQpimZorLtvHZqpMfriKL1rejHjMvC8uW9zTdoe0SPEjBgrulYwVZiiq6ELP/BZv309h+cOc9+6++qmcUDCSnBJ7yU1YB4Q0D/Uz8DsADc9cRPzG+aTslLMb5hPV0MX3alubt15K+d3ns8nzvsEDZEGJguTPH7gcTb3bSZmxnB8h4gRqUXSHS/NESy7D1pXC+uePyxS9rbVYCREqp0/ClO7Q/Bbhum9Io+PzRNmvTwlMvrimMTIaRGRxL95X10mP9UvsW9mSlzjL3hITna8F869G9DFUf7dT8K8d0OiF85/ULaZHw6l7nYIzEOjOaXVWfggEBY+CARke2UB8KkFtQFCuYm0nQzaf10Gr5nUYuXcsnxWlctX3eJLM7JP1Sk3VHd2N2OyP8s3wO9uh0u/LQMAxSlZt3Ol1Lj/7CYB7bmhkDF/QNavDgYEvsTLmQlpBzLPD0v74oS8L04IaLeSAtoPbIV9XxPDvbalYETwfZ8tW/rZunU/Dz74AkopLrlkAQsWNLJ27QL27RvhyJFZABYsaGTNml727RtlfDzHnj3DDA5mWL26Rw5x3mbv3hFMU+MLX7iYsbEclqWzenUPExMFSiWHY8fm6OsbJBLRufXWi7nvvn5aW+Ns2dJPPG6SSokU3HF8HMcDX6Ml0Yjjubw5eYSxzHFufffHueKMlZzbcSrj+WlObe3l2OwYf/HUdxnOTPLK6EEGZ8cxlE5LvJH56Tb+/PLrsXSDczoW15zpH3vhXynYpdB87t9ojDUwnp/meH6uZlI3kZ+hMdbA3+z7KSsXnMet7/44Q5mJUHo/B5pFgCegvWZQdynEQtvOoAhaHIwu8MYAB5whMJrkzjW9OVzvXtDT4GdOiI/bDIHNO9M7jPtvnd5h3P/jp3ylwnAux1MDA+wdGeGRq66i6IjpRc626W5owPF9XN9n78gIC9JpTmlsxA0CNKWYyOdJh87zyzo6sHSdkuPwZ888w+2rV3NKYyO/OCF6bsPatQxnMvSm05ze0IB16BBq0yahTltbhUb97ndF17xlixQ29/TUHcluuklQ3HXXib56elr+kbvuEsS2erUgNk0T5Ld3r6zf3V1n6DdurLuZ3X67BIV/9KMyEHAitfuRj+C+8QZOR4eMlPo+nucxPj7O/PnzKZfLVCqVWpybbdtEIhFs2yYajaJpGsPDw8TjcQqFAs3NzSeZzY2NjZFIJGrmdkD4MCyZ7wBvvvkmixYtAqhFzRWLRXpDBcPQ0BCn9PZiHB4RQNmcEoBdi4cLHxpQwqw3p0I3+aT80E7O1tn2si3Gaqf1CgA/Oirt0sm64VrFlv4jVj0izfXk/AxP1Fn2ZDxk9zUBZoNjwrhbEQ4f1Zk3r/5scuON9VP66KNyOqtl+kEgp616iQwPi/BicrIeJ3fKKbL5clmEFJ2dYlVw++3iKN/fD8uWCaufSsGrr8JVV8n2HnsMopaHoXzUoUEB0W1NcNoC2RHFyay4achxPToqbS9aUn/d1gSnLxC1QfV99Xg0JATMV5cvnF8H9ica1h08JnXw4WBHdV9cx5brr1QiCAJeeeABzvjEJ0guXEh+cJADP/why774RYx4HKVpJ7HnsdZWUAo7m8VKiXyzGidXNa+rmrGhFOXZWaKhyqY8O4uTz3P8l79k6uWXWX733ey9+24xv3vXu3jz+99nyQ03kOqaj348NJp7/3XQ3iWy9lhC/s+qb4BtA4HI5J/4BwH1s1PQ1FafN6SlVv3q34eWefDDbwqQv/h98InPSd18MS/zmUlZZ/uP4crfg9YO+Nuw/ee/Uv/sqo/idXThuw6aYcgzcWgAWJwbx4wmMWMpXLuIYcXxPZty9jjxps4aM66bEcloj8QIUBRnRrHLGVLzFgtrHprSlbNTxJrmC9OtFCrw8dyQfV90AUa0Ad+poJuRGquvaSaWGa8bz9kV/J9tR1v1bjGIS4iwOyjkRDZPgD90TGTsmpKa+TD+j0JepCVBIBL36SmIxqUPpcCpEGgGynOFTXcc8SZIJOWLFL5WShFUKtKX6+KbGiU7i2FE8X2XkZG9tSi3SiVLIjEPN6zrDQKfSCSF77sMD79AItFOQ0Mnb775zyxefDmxWBPDw3tIpXowzTiJRBsAQ0P9NDR0kc0OkUp1kc2OkE730ti4ANsuYlkJhob6aWtbgqbpWFaSbHaEhoZOtm9fz4Vrvsxc29lsUopHgPXUI9nCW0stpu0tBLAvR1jyjwAfBP4aAfFbgY8D30ZY+AbAQaTvGmJmtxtYAqSBgwgb/2UErN8CbEBA/CwSUfe9QoXZt2cl+q07Rd/mPtZuWIuZNLFzNn339nHFQyLrrca4uWUXp+DUTOWGdg8xsneEyx+4HCNioEwlsXGbfnPdydcm6VnVg9IVgRegdEV+Mk+yTZzpg0AGDeaOztH/9X4u+9ZlHPOOcd8L93HfuvuImTFKTonbnr6Nz6/4PFOFKRY3Leapw09x+eLL6WroIqCuApgqTNEcb8bUTPJ2Hi/wCIKALz79RR4/8Dg/ufYnrOldg0JRdIrcvPNmLum9hA+f9WGylSwNVgNKKV4ee5medA9t8TbiZpyiI7Xyo7lRLl+wShQTe284Oeot8IUNN1IifVda6HatCdP+1v0hkx6TZeVJiLYImHzldjjrNogvEHY9fwiibZLVvuROkXA7swL4k4vhibNEjn/Bw3JRFY+JqV3LCrAaZYCv+gOWPRZGs0VCkzol2/erbHoekp3iGN/QE8bCVU4wpwvN6ryK1JPrMQR8BSJrj6Tkf88cEdO6/Kgw8lZKXp84EKB0qccf6ZMBgZcekAx3IymMupkQEF6ZA6cM+UGpTw98yAxCNC1y+JHd0NArDHpmQBj4i24Xhj2Skri5fVtkWeOp4ly/7lGJmasuTy+G3DEB78s3yH5mj8Leeym894ccOjTL5s19PPTQFbUxjFyuwrx5UlLkOD4TE3nuuWcXt98uLHqp5JJOR8lkypTLLvfcs4sNG9bQ05NicrJIR0eCwcEMmzb11Zj8sbE8mqZobIyyd+8IPT0p2toS/PKXY/T0pFm4sDEkbNzaNtNNEbxEnsf2/Ct/eOHVzJZyLJ1/OhXXJmKIumuulOPb/T+pxcH9wYVX87cvPsFdl9/Asdkx/mbfT/nTFb9DEAT0NnYwkpkMze0+TFOsgfv+/Yd8asWHmMjPcE7HYu595ge1vr586Z/w+vgAHQ0tzE+14foem372vdrnf3759cQNUM6h0KDuz8A8BZzBujmd3iFMe+ZvIHG1AHmlA9YJjPsGUPFfY9w3gnXaO4w77wD33zq9A9z/Y6eS43BweprNfX3cvmoV8xsaSFoWBdvGDwJu/9nPuG/dOiYLBTb39fHFlStpikYpuS5DmQyrenpQwEShQFs8zlA2y339/Xz9sstwfZ/XJyc5v7MTQ9P47I4dbN2/n+uWLBHTOk0jVqmgX3/9b6I2EOewX1+u68KEV7XPi8PoqHxe6NpEQgD87bcLJbt5s9CyU1PC2H/mM/U+774bzj67/rqj4zcHBfbuxb3oIkqxGLlcjkKhQG9vL77vMzw8TENDA9lslgULFjA9PU0+n6enR0zGCoUCkYiM0u7cuZM1a9bQ1NTE3NwcmUyGri6RcD311FMsX76cdDrNyMgIHR0dFItF+vr6WLVqVa2W3jAMMpkM2WyW7u5udF0nn8+TbmhAVxrKDys1Pb/O5mbzIbtrwMCQ1LyfmLGeStYl2dVS9dAQRh4ughDc/BaAX7EFnFft4L2wXt4yw4GCgFp2eRgRFwAVR8N2NDxPxlRWrBAGfNMmuPNOCRV4662Tc9ePHxe2vJrrbprw6U/Dj34E27bJuMymTXLa29vllJ946Wia2B7kciKTTybl8tq4UbYXj3ho1Vr1E0G0H8j/Go+cXEKga3Uwv7hHBihOXO9EoB+1ZBDkRFl81ZU/Xwwl9+F2IlbdSPBEeX7UwrFtyXEPTeE828bO5Yg2NVGemUE3TZRhMHvgAPG2NvZ/97uc9cd/jJlK4ZXLvPn977Psi18UMAYoTcPJ57EaGk6W2yeT6NEo+eHhGqgnCNDCODLNNMmFzPtrjzzCyL//O2u++U3mX3g+KjtXy00nMwdP/L0A83nzZVlVRt/cLiexmBeGvmuhgMVIFP75B/Cxz4QXo5LrslKGocOw6Cy5inIZYfOHD8P8cN03fglHDsBHPiUDAE/9kzD4P3qkJtP3/vRL2KUMU4f20LroIsxoAt910M2QTankcUp5zFiSqUN7aTt1OWa8UZhtzxFmOjQKJHwNEPgevueiaTpKE3+DwPcYf3MX7WeskjZBQHbiEMWZEbrOW4ddzIb7cQG6EcX3HaKRNMHsdJjN/h6CoaPQ3Irq6KqD6TCXPSgWwDBRYfkMhbx8DpK7nkxBSxvKc8VsrqNT3OY9F//pJ+oDAvGEqIkLeTn+hgxMKV2X/HmUyOftCo7m4wQOQeDVMtc1zWB6+m36+7/OmjVfrjnCp9MLmZ0doL9/C6tX/xm53ChNTYtpaJASAdsu4PserlvBsuK1nHfDiOF5FXzfY3LyNebPv4ByOYsV1v/LXJ2wzQ0cO/ZzmptPo6NjGV6sGcOIiCwdkb5vAjYikWwlhD3fhAD0Y0jt+n0IOx4goHwo/GwVInEvIDL4PYj8vidsayIS+mi4rTnEBG8xcBZ14D8S9tFluzRVhEHfdsO2mnz9yoevZPTFUXpWSwmOU3R4+ranWXXbKpoWNeGUHNySy9QbUzQubiTVmSLwgtp9WynFr/7+V5z1u2fhO34ty91qsBjaPUS8JU5xukjPyh6cokNhqlCrm9dMjeHnh9n6u1v5vX/9Pbou6cLVXAZmB7i3715uX3U7u4d2s3toNw9f+TCGZlB0iuTsHB2JDoayQ9yz6x6+vObLtCfa+eXYL+lOdTOcHWZF1woiRoTDs4cZzg7Tk+phJDfCxd0XY2gG2UoWUzNrMviqxN7SLQp2gT975s945KpHWL99PbdeLGZ1LVaCrkQrKnDqNerFoXqe+0XfkXtH4MD0i9C0TI5TcVRqrd/YLDnvleMieT/rdji+Wxj6Cx8W8BL4kgE/uBXevV36cDJgpoWBD7zw9zEE4MdfEAbfbJSYuKo7vNUQZrOPQeMiYcSVJix5VeIOwqTrlrzX9Houu9LlL3tMwL3S667x1fZKr/+IB/4JAwZHhdW2UqEzfYO08W2pc39mvbDdZ1wHl31H9ic/JrFuy78sIL48K7Xtl9wXut9rwphXjfV8W4zmqhL7dz8gAwAjffDTj8DiDwpgd4r1Ov+jTwnbv2aTDKKUpmHwWTj9v9T6ynyqRF/fIBdd1IVlaWiaxuHDs9x7bx9f/vIaRkay9PSkGRrKcM01/8B11y3hW996P74fkMlUSKcj6LpiaChLV1cDQQC33fZ0TQJfXefRR6/B9wMGB7Ns3ryLL35xJVNTBdas6cW2vRDIp+ntTREEMDFR4MiRWVZdMp9Nzz5WA8p/dumf8Mb4YU5r60FXOnErSsEuMZWf5W/2/bQGwDsaWpiXbD4JZG+87E8xdQPP98nbJY5Mj7Cs6wxcX66xmUKG5kQjo9kpvr/n37j+4g/TmmhkJDPFbClLT3oe8xqaGZqb4Ht7/o1PrfgQC5pasbwjKGOelIi4U6A3wsRnQyf4j0P7N8RULqgIOPez8l5FqJWXYCBFRNW5Du4kmG3/x7rI//r0jlT+nel/q8n2PO7r72d1Tw8Jy6LBsjgyO8vNO3cyls+zvKuLTKVSk80/8Pzz4jKfzbK0vZ2JQoGi66IrhR8ExE2Tld3dTOTzvDE1xaqeHpKWRQBsXLu2Zm5XCGPZbF0n2LhRENaf/ZnomDVN5l/+siy/806Rsa9fL5TpKafAd74jtuS2LYgsHpfC6PnzhZZNJutB4Q88IOhQ1wXZVfusupndeadQtIYhSK66DGD1arxiEaUUDQ0NdHV11YzhkskkuVyuxnyn02l6e3trTHlV9q6UqpnL+b5PJpMhkUiwY8cOstksV1xxRY2Fr+a653I5Vq5cSSQSwTAMLMsSL4Fcjvb2dorFIrZtE4/HxXDKcULztJBZDwL5a0jUgXQqKYw41Fnzag551cyu6oIehPJlPxCAiYL2ZmGPQQYCUok6K287IqWPWnV5X1Xq7XhUM9GV52NoAbmcsODLl8thP+UUAdiJhLDm4+Ny+qJRYdar0W/HjglgHxgQUH/dddLHpk1yqrdskdNc9Re88055r5TYJwwMSBWErsP3vidVE9UyQXRN9v+0BXJsQKTrEVMaHBqE1w/JAEiAtD19AbUc+1N762C/2k818q064lBxZHksAs1pkeNXj3vVmT5qicKh2n/FDs8JIqV2XbJHj/LLr30NIxbDK5cxYjHmjhypSdeLExOM9/dTnpkRA7rJSc78kz8RWX2ogKiu++KmTRjRKOXpaV575BFKU1MoTaM8PU3TGWdQyWTQQva2MjeHnc+TmD+feEcHF955J1f+67/SunSpPGzaFfj7v5IoNtOsy909T4zp/v4RqUUPa6p56p8k9i0SlWssEoWPf1aOSRBApRT2ZQlzns/IdTk1Ksdj8dnC6DekhY3//c9IH22d8Ac3g2HB790I9zwGf3gLEDB1aA/ZiQHcSgFNN9AMkcU7lQJOKV+Tx7cuugBNM3GKGXGJt4sEgS+GcpUCo6//jEp+Fs+pEPgemm7glPOMvPY0lfwsge8x7/SVOOUCY288h1spku48nbZTV0AAU4f2kBk7wPHDL2FEYkwd2ksQ+Ph9zxDsf6VmOKf1LpLBgpnjkJ0jsMt42/9FQLdpiuQ9MxuWrcziDw+i9SxEtbSCXZH4t2QSggDvyX+DIEB/35VyTB07lNHPEsxOA4EMThiGyO7RpMbetlGGiY6GacZkP32HQmEC284TiaRYufJLmGaCrq6LyGZHCAKXF154kN7eS2ho6GLBgktoaOhEKR3XrTA+/gqappNItGGacZQyMM04nlfh6advo1SapqNjGSMj+4jHWzCMWHhZBPi+R6Ewwf79W+nr28yiRZfT3X0xxeJxlGdzJAjYg4DqRQhA70Xq2uchoPoryCW0GWHcfaQevR9h1U9BjOX6w88SiAx+JRIVV0Sk9FnEmf5ziFS+Gzg/3M51yIDAEUSubwJ5y8APYLBvkJVfXClu8HeuxYyb9K7pxSk45MfyBH5A98pussNZ7LxNdijLz27/GQ1dDaS6UrgVl8Hdg8wdm2Owb5Dpt6c584NnYsbNk37jFYrMYIZUT4reNb2gQSVXITucJdGWYMdnd5A5lqFnVQ83vXYTXSu68D0f13e5t+9etu7fypb+LaxbtI6NazeSLQvQtnSLgZkBBjODDGYG2bp/K/f334+mNJZ3LSdhJljavhQ/kL5ObTqV1b2rGcmNsLR9KROFCbKVLJrSTpLBb+nfgqVblN0yr068yu2rb0dXOrdefCsJK8Hmvs0kzCgqPwAvfjYE7SNiTqdFQ9m7KfXt03uh6Vxh0F++TWrfY/OkjTJFHt+2WkzoOtZJ5vv0XmHilS51773XQdsqkeK/dpfMCUSe/+J6yXpXhkjl490i1feKdXY8c0QY9PQiueCqYBvCunYV3vtSAniVJuDeLQPha6XXs99roN0Mc+GVbCtzWAYICASAKyXy+kij9Gkl67XtuWHp6z0PwZ+8Ce/+hvSjR8CMwwVfEnf3Knt+/q1QGJdad9+V/gpj0p8RFxO7sz4O7/3LMJavIsZ3nzws20CTQYDMEei/S7LcL7lPTEM1U/Zx7HlRNYQu9KYe0NMjviCu61MuO9x/v0jn7723j9bWOJs27WLFii6uu24Jd9yxmnjcZHQ0x113PcfoaA7LMtB1jZtv3snYWI5bb72YaNTg3e9ewFtvreeBB9Zh2x6apti8eddJpne6rti7d4S2tgRDQxkmJwsUiw7pdIRVqwScfyo0p7v+4g+jgDPmLSBTKvDm5BEqrk3cjLKwqZM/v/x6eho7WDr/dJrjaZRSJ61raAau5zFTzJCwYpzTeWr4WOBTdmxQCtdzCYJA8tpTbYxnp/n7X+7gzHkLaU02ATA/1cat7/44k/lZyXF3joFzFMZvFGm8itWd4Od9Paxx76PG3njHYeIz4Lwd3h0J734aOIdg/AaZ68383+oi/+vTO4z7b5neYdz/Y6eibZOpVPBD07n2RIKS6/KPb7zB3pERNq5dS2MYN5apVEhHIjRYFj7w9vQ0W/r7+cbllzNdLDKUzbKiuxtT0+gfGqIjmeRru3efxOQD+CGY9X0fPwhoCgIBnhK4KaZzIyPCkHuhIdoXviAIbe1aoUzb2+u1sseOiZTzrrukVn1yEs47D2ZmTtZS15jhEJhWs99dV7LBjh+X/stlMbHr6YFTTsE2DCquS6VSqcngy+VyjX3PZDLs2rWLNWvWEI/HGR8fJ5VK1RjzlpYWBgcH6e7uRtM0giBg+/btvPnmm1x77bU14D87O1vLdI/H4zWWPpvNkkqlME2TZDJZy3pPpVI0NTWhAYamC+NeNZurMu1VmfrQ+MkZ4VqIVssVAd1V5r2aU+55kvXe0yFS+CMjAjL1sD7PceVY5osCZn/dwK3KMs9kBaBWmeyeDmwzymxG59gx+Na3BIBHIrKr1b+BAZHEd3fLfJWQlvT3S4XD1JQs8305/br+m6fatuX0Tk+LRcILL0i4QDJZL0W3bRk4iEU8DKeCOpFBP5H1Xtwtx+bEfPZfZ9Wh/lt3aFCOXbWP6tzU6+oEkOOXjNdNA33/5HWqRnkBOJUyxclJUIr84CCNp52G0nVe+cY3OOMP/5Bkdzf54WGRrl9/PXo8LoZyuo5uWbjlMq/cfz9n/OEfEmttxUwm2fcXf0HLueey8JprOP7qq/Tdeqtkwd99NwC5wUHMZBKvVKrlx8c7Ozn+yivE29vZ/93vSgQdEEvEUYdeF2Cem5Na9L/9ljDuTa3wo4elLv0z/xVOPVu+fy/tEnO57kVyUgwTjk/Ak1sl1z2Rgq2PSh9WBJyKxMwtPltk8kMDJxvVNbfVc+Gv+qgA+lxGPr/69/E6urCLGZxSrsaqty66iOLsCMXZUeaf8z48u4LvOyHjvgKnlOPYi/9CuvMM5p2+Et+1OX74JTJjB2rLAAwrzujrz5y03IwkGXnt6dqyrnPX4Xs2vuuetA0rnsYuZrCMGMoTxkzpOmg6wdw0/u7n0C69SgC8UgRv/ArV3Yvf/1xY856XrPbRIVT7fBkUCdn3YHYa/4VdaGsvJTh8ENVzCkE+i9a9gKBUxPvO/agzzkFb94HQY0HWJTMnzP8VH5RrNZTM2ya4boVsdph8fuykLPdVq27HNGNEo00YRowgcFEhG+j7LsXiDIlEG34Yi+V5lRrTrpRibOxlksn5JJPzsKwESumUyxmeeebPWLXqNrLZYZLJDhoa5mOacQYH++juXoGux3DdEuXyHGbzIiaURgG4F2HaTwFyCMhuQFiSGNQc5X2kHv0lJG99EgHtcwiTXuWV+oH5SO18ByKTvxwB5auRWLgxZCAgSj3P/XpEdr8NAfa9hQqVgVmyQ8J4lzNlku3iSzL99jT5sTxdy7swogaBL7+Xg7sH2fq7W7n2J9eS7kmza9MuVn5xJcXpIvPOmYdTdEi2J1G6wnd9hl8YJtGRoOX0FgIvwCk4tb6MmIHv+ey8ZSddy7tY/H7JfA/cAKUpSpQ4bh8nHU2zd2QvC9IL6EmLkkxTGkfmjrBl9xa+dunX0DWdhJngM9s/w33r7mOyMMnmvs08dMVDBASM5cbY0r+FjWs3EjfitCfbKbtlXhx9kfPazyMVSeEHPkWnyIZnNrD50s01M7uSWyJbztKebMcLPAxlcGTuCAuTrSRf/dIJ5nRdkDssTPrZX5Ys9l/eIgZ08YXw0ucEoLeulnz3k9rcLoDeiMNUn9SvJ08Rtt736nFt5Ulw5mTetkZk+m2roXWNDAy0rZZ1vApYLQJuM4eF5Y621Flwp1CXvZ/IgCu9zrS75RBou7Lt/GhY407d4C6gnjqSOSwmcbFWSJ1SB+jV/k+cqvL8SCNUMhL1FmuH3GDItG+QuLbOlTL4MbYHkr2QbJe+xveKfD8/DPNXCWOutHDw4EhdMp/oFKO5hh4xqytNQv+f1xn+dY+JIiA3KNnwRlQUBqGE304uxtGSZLM2mUyFVMoiCOALX3iKDRvWMjycobs7TSJh0NISxzA0PC/gxhu3sXXrfq67bgnf/vbVfP7zO1i+vItrrz0bENb99ttXEYuZNUf63buHWLKkjXxegHk6HcHzAg4fFqn+hg1rWLSoibffnmZiosDatb24voduiTGpqem4gY+uNIpOGc/3+OYv/oE/vuiDdKXbsD0HQ9MZnpvkB/se55MrPkRnqpWKKwMvFadEYzxdI3pmixlKjsNje/6FT674HTpTbQRBwGhmiuPFOc7pWIyuRIUwkpnie3v+lT9d8Tt0p+fh+z5l1yYdjWCpEmriFqlrT10bgm1NouG0KBT7xTl+5gGRxDvDMHINnHJQgP70ZpHUm6cKaK9mtnc8KnXv/5dM7zDu70z/W01uENQAdYBkt/9qYoL/ctZZ/OWVV9KbSpGyLCYLBQbCvHYQ1uPBF15gdU8PUcOgo6GB5V1d7BsZoeg4rOrpYTyf530LF9J1AmjP2zb9Q0N4vk/JddkzEhorDQ2JFfiFFwq92tIiFOn69fDjH8Ntt0kN+oIF9cyw558XJn7BAmn/jW8I+O7uFrZ+4UKRwDuO1MvfeCMcPFiTbeP78joalUyw+fPlh3X9erjmmlrWWKBp5HI5nnvuOYIgwHVdnn/+eVKpFEopdu3aVWPUK5UKiUSCvr4+Dhw4UIt26+rqYmhoiOnpaRzHYd26dVx77bWkUqlaRns+n2f//v3s2rWLcrlc6zMej9PX10cikWBubo4dO3aQSCQwTZO5uTmODg6Gv82BPGg4jricV2wB3dUYONsVQKkQhjebl4eJZFyY8bItwDyTl+OyuKeeN94QsusHjwlrXAoBfzopNd7VGviqyZofCBPf1ljfh6lZGBpHV3LIH3hAxmJGR4VFP3YMdu2SSojJSTGv6+2V+R13CMDu7pb1ursFlEejctoWL4a//msB7aWSWBYcPSqVD/m8gPfVq+uDAjfcIPM9e0Q+rynEnK46OGEaYjo3PCGDGp4vGdmnLRBQ7Qcnm8qBHJO3j4VZ7e3SRzp5sjkdStodDgcjqyaAA0P17aYS9XkQlj5k8yjdwGxoINrcTLy9nZcfeIDS8eO1uDalFG9+//sMPvkk+7/7XWItLRAEFMfH2Xv33ZSnp0+KdguCgGVf+hKt73oX+776VeLt7ax58EHOufFGqXcP+7MaGtj/3e/W+iUIiDY315YpTaM0OUmglLDiT/2TzHVDIt1mj8vg2NUfhU9vFLf5H35TAPiylRLXNjcj2eyzx0UCf/l/kc/LpTpr35CWZQ2N8Hd/KSzzKWcJ2D91iRjaBYGA9uo6hlmPp5uZFMm/ZpBo7mLq0N6Q8d5Hsm0BbYsvwve8GvudGTvA1KE9xBs7SHeeQdupK9CNCG6lRNupK2TZ4ovQDQvdiACKtsXLT1geAaVoOzVcdupyUDD2xs/x3LKw+qdcgFPK1fZLGSET53sEhbzkthumMOSWRVApg66jnXc+QaGAWrAYlWpEW7CYgACtJzSwqk5BgGpuQ7v6d1HJBtSSZRCJoPUKCFDJBvSbvoS29lKUZUkG/HM7pcyhoQH9yg+DFYVcTpbnsjWJfCTSQCrVxc6dt+C6Ja644kHS6V7i8VZ83yUIPAqFKWw7y+zsYYaG+onHm3GcPE8+eTOeVzlpX5XSicfbSKe70PUIg4O7mZ5+G03T6O5eWTOiS6V6RBWgNNLpHrZvX8/c3ADgE2noxEfRikjTv4TUl1cZ8yMIKE8ios8+BITPIkB7FdCE1KfvQ1jzNCKv94GLqRvXbQHWhZ9vAK5AnOfXhH0XkAg5F2H83wLWAg8BjlKke9IsuGQBoy+OMrBzgNnDs9h5m/xYvsaEzx6erbHpHUs7uPYn19K9opvMUKYG2nvX9FKaKfGLr/6CgAC34jLUP0SyM0kkGcHO2sy8PcPOW3ZSPF7EjJsoTWFEDNbdt46e1T0CFg7Nsn39duy8jWVaJKyExJ32rKIn3cPB6YOs376evJ2nq6GLv7r6r0hYCV4Zf4VjmWN8++pvEzNjNWO7bCWLoQySVpI7Vt/BvPg82pPt5O08t+68lY5kB3EzzsHpg9yw7QamilP85ZV/yWRhkhu23cDhucNkyhnakm0MzA5ww7YbGJgdoCfdQ9RM1s3p9t8jrHdsnoDnt+4XgD24FQ58S4DlhY+cHO/2xr31Nm9uoRaR1nw+RJohPwB7bxJ23ckLWLeaZB7vEYZ9yQbouEJk8/PWyLWsjDqQBUgtlP0CyBwVQG0m6my8nat/B3wnBOOmAPvMkfD+bwuI92xpHwTyme+ImVvgCRvffJbU0VdBtB5K8QmfDbyy1KIHgQwk+K4A9P67BDxXDeT2bobWc0Sa/8z6MNItKoz7s5+V9/lhqXvXIwK49VBplxsSp/nipByLjosgNyIDDfF5cNlfw5+8JXJ6Jy/bjc2D8T2yf0qTQYJoEw5xfJ8agz42lieVivCd71xNb2+KNWt6GR7OcO6536G/fwjP8ymVHDZsWMN11y1h48a1zMwUue++daxe3cMtt0j++vLlXQwNZSkUHNav38Hhw3OsWNHF8eMl7rrrOaamiti2x+hojs2bJf5t8+Y+fD8gHrd4++0ZCdMxYTR7nNfG3sYLjQZd3yNfKaJQLJ1/GhP5aUYzU7w+PoDreyQi0Vo03HRhjoncNG9NHiFiRhnOTHLvMz+gaJdJx1JETTNs+28owPFdEpEoSzoW8/r4ABO5GcquzffCLPnv7/k3pvKzjOdmSEbieIFGoOIE8+6Dhg+BOxQy5ocBT0B7bIWA9qrhXGw5dG0DY56A+PzjYd57UI+Na9nwP2bbfVsGBnz7v9/m/6DpHcb9t0zvMO7/sVOhUsEHsifEwcUMg6Nzc4zl86zo7iaq6+waHKQ1HmcyzHSPGAY522Ysl2OyUGBZRweZSoV58TgVzyNTqdCRSDCYybAprJ/vSCZJRSKUXZcXR0dZ2tFBzDBI2TZ6pSIa5qkpYXbmzavXaU9NiZT91x3KuroEsUGdTa+OaruurJ/Lif7acQTRvfaaIMFqUfWGDYL2cjlBh/fdJ6jxvvvg/vshFqMcibBt2zb279/P+vXree6552pxbuvWraNQKNSY8lgsVmPcs9ksnZ2dFAoF+vr6WLlyJYVCgaamJkzTxLIstm/fXuvryiuvZMeOHScx7mvXriWTyZBOp0mn07X9qEbJDQ4Okkgk6GhrE7OeIJBjoLQ6QFdhnbDvC+hWSkD2KV3Uosf2vgYtjQLWq4x6lV2OWHL8TjRg626XNr8ek5YvCsh3PXhpP1xwtgDVRAx8n0DX8XWdXF4/SShRrUf/whdk/OXRR+UURaPCsFeFESfaHjz0kOx6Nlsfy/F9MZ8rl2X85fHH4Z//Wdj5qvigWAxV6+Fl5vsQi3qYeKiqEqFquqeFQPtEpt0OBy4s89eWuzCbgdamkEF36pnvECoanJMN/2xHjlfgy/pV9QPh+coX5RhHTJxKBbdSQbcs9t59N4NPPknv+9/PuevXE7guia4u8sPD7H/0UZbceCOJzk5KU1O89sgjJ7X1ymVibW3osRiB57HvL/6i9vnyu+8WVjfcfmF0FD0arTPuN9wgjPvLL9cY9+V33cXer3yF5XfcjvUv36vHvv3BzXDodfj2JrhgDVx3gwDpqnHcRZfABz9RB/Inmsnt/InExllR6aOpTSLePFdM6045Ay4MUyF+8j247MPSj2VJLbhuyJ9hCAM/MwGnLsHTdfzAA6XhVvK1OnYr3lg3hVMaTnFOPlt8EUEQoBkWZjQZGnAR3meqtaTguTaaIeUste8gYXWDa+O5FXQjgjIsnGIGM5JAaRpupYTvuxIzFwRoXkDgOpCdEzZ9zfsg0SBRbdEY/sggKpUmyGZQqUZIJPB3Po626j3QkEZZEYLpKYhEUNE4/tgwqmcByvPwh4+h0o2oxpaT6uhpkG0ry8IfPCIGdo1N4PsolBxTIJiZRiUbhHH3KoBix4719PSspqdnNf39W7j88m9QKk2za9cmVq26PZTGG2GeexvPP/8Aq1bdztDQbpYs+SjZ7BD9/VtYtep2WlpOJ58fx3VL7Nq1iZUrv0ihMEVT0yJisWby+XH6+jaH/c7HshrI5YYZGHiKkZG9XH31tylqBo4Zw0Tq00cQhvs+4OsI6HYQV/mvA19DmHcNAfVfB+5EgHtVcF5dvgEB+d1hPyWEyS+HbcMiJbLAHcBtCPDPI4MBexC5/gLbRU2XqGQqRNLyAFzJVHjurufovaSXJb+3hB3rd7B/637O/fi5XPq1S9EMDStpiW1IaCjnlT3MhOxlfiKPYRlYKYvCRAEzEZrSrewhP5Fn5tAMibYE0WbJiq8a10XTUXIjOZKdSbav307X8i56VvcQWxSjqBcZz4/z4AsPct+6+wAYy4/RkewQ3wMCbn/6dr648ouM5kZZ3buagi0D1Tk7R1dDF0dnjxI1ozRFm5gtz9IYbSRqRCm7ZYIgIGpG+cwTn6nFyf31NX/NjdtuZOv+rXz83I/z7au/jR/49A328ZF//Ag/ufYn9KR7aDGjdCVapK688RwBia/cAWfcKuw5CJt+YnTbko0QaZPl59wJVivM/lLM5PSYyNs1Q87kL2+BpncJMI/NFzf66T1Sw16ehNaLpZ1mgpMTxr00Isz/m/fDiu9BoMKa8WEB1HZWgHf6FLlSqnL3/GjdgC4i0nDmBiR2LdYqoNx3BBRXjeeqn6UWhtsYqUe9Ve88dk7en2hwN/OmrNfQI0D5Z5+uM+Dve1iA+YoNAqZ/cZs4xi+8HBJd8Myn4c0fSdtLH5H7nBEN1QO2PHM4RZjYJ/FwgSdsfUOPgP3nboHlG8XBPtIUSuptAe0nmuSlF4NXJu/E8AKdG26oM+iPPnoNf/d3v+IXvxjk0UevYWBghrGxPKtX92LbLi+/PM6SJW3oukYsZjAxkaejo+GkPu6++920tSVYv377Sf2e2Obhh6/Etj2OHy+yeXMfGzeuZeHCNLt2DdLZmWTx4mYCw+W1ibc5va2X6UKG6WKGeclmvrfnX/njiz5Ae0MzutLZPzHAqa0irY+aFrPFDBXXJR1L8tbkUc7pWFwzsbug+0zee+pFaEqrtS07Dl2NbYDCdh2ylTzJSIJCpUhLopHhuQkxtFvxIRpjDWhKwzJMxrPTdKViJEwT3HE4fledMW//KyQeMSZAfnqT5Lebi8AZELA+7z6pjVdGqNK0RFGiIsLW/7bJt8E+IAZ4sRWgJf6PMLB7x5zuf3F6B7j/x07ZMI/5ROCeikToGxzk3HnzKDgO7YkESikmCwXmymXuf/55Nq5Zw6KmJvLhOm4QMFUokLAsJgoF7u3rY8OaNQxns1zzD//AdUuW8K33v5/xQoHNu3bxZ6tXMy+RoOg4LI5GUYcOoTZvFqZ8/nwpcq66lbW3C8I7EbV98YvQ3CyAvlSqS9sXL65ng+mhLNwLXVxD9puGhnq++6JFQvva4ejg44/DpZeKUV25DLOzVLq7mctm2bVrF1dccQXFYpFdu3axdu1aLMsiHo/XJE5A7bXv+xQKhZOA/pVXXonv+4yNjdHZ2XlSX01NTfi+5HyOjo4yb948TNOsLXNdl3w+X2vf2NiI53ls376dq9//fmLRaN0MLl+qR8LZroDqqmLOD+vXFdKuCrR1Tf58HwaGJcO86pIOJ0vDqzLuE13ST18o0vsT2yTjsu4J5m2uGWHiuE6xKMC5WBRBxW23yWnp7ITTT5flVbCtaXIJVMduqiZ2c3N1AB7aJlA1Rz96VIB/UxPMzoqlgWmKKCOdls8OH5YBgMf+2kPHk2P12/b/+Kww7ulkWP8fhGUDyA4eHha2vjrgUa1d15QMlvy64R0B5Iq1fPtahjvUc+GryhBbJPSu72GXSxixGPmREd4IpeuJri6CIGDwySdJdHbSumxZ+EOr4ZZKlCYnefP73+ecG28k0d0Nvo/v+xx/7TXali6lMDx8Eih/adMmln3pS+imiWaa+I4jsXKeh6breJ4nVZm6ThCamOWHhrASceKBg9r+Y4Krfx/VMq9ubGgL0KNSkr8dW+H910K6WT6rlIUZr5rJnX6usPHlEsTiciwyc3K8IlFh6Hf+I1xxLQy8AYf2y0CBUvW6+J3/KCx/23ypr9/+Y7w/+QKVYobpIy/RfuZadMPE91wxqLMiAozCXGXtBJM5pWn4rsP4m7+g46xLcCtFpgZEZm8l0iFC9/GcCroV1qlW455ATOyURiU/ixVrIAh8PNdGNyyUYWEXZjk+sI+eJevA9/Ce+CeC/a+glixDe/+HIJ8lyGbQunql5twwpU/Lwv/Vy9DUjNazQPbfcyQzeHQY1d2LCgKCUrHuKB8g9evRqAxuBL7kues6uE4oiY+CZaE8T5QUUHOb9xri2G6ZkZE9JBJtRCIpnnvuLvbv38r69W/WXi9Zch3vfvfdJJMd+L7Hjh3rf2P5E0/cVFt2zTXfBQK2bbuhtuzKKx/G9z1MM3bS8ve//1sUChMnDBDMxzQTHB15gfZF65hUij9HYtseQGTsqxGWfCNiPDdwwrIqKL8GkbP3IOZ1Jy6/DvgC8A2EQR8AHkSM546E7W9HJPT/hMjov4VI5+8N92UKuCxfYfqA5LWvun0VLae3SJly2aM0VyLZkcTO2VQyFRIdCdySWwP5gR8w/sp4zY1+1e1iXJcZzNB/Xz/rtqzDiIuMWjM1lKbwbI/M0Qz99/dz5cNXojSFU3AwogbZkSyZYxm6VnShGRqFiQLP/flzXPLNS5gxZrjrubu4pPcSPnTmhzA1E1OXe9QXdn6Be953D67v8vrk6yzvWg5AzIiRs3NkKhnSkTS6pqOhMVuepSnaJIoA3yVTydBgCciIGlEmChOkI2kKdoHZ8iyThUlW9ayi7Jb51cSvWNm9UiLh9Ah5O0+zFcfERxUHxZSuZTkUBuHth+GCb1HLRg8CePEzcPRHUqu+/DtyLVemRSrv5MVwLtoh/ey/R2T0iV6JkzMbhGm3Z8Up3p6T986cZL4bCYmN238PLPuasPaRNlmOJgx3FWQ3hHaGygznoZT+JIAe1nxXHeUbugUwKQVupe4uX/ssrKGv9tG4+AQRS/Cb/WcOy3rKEIm878ncSodSdV/qzPHF6b4wKg7wKzZCtBV+fiusuBMSHbKvVoP0mRuRfnODIp+XC1rUB1VQ/+aPoPkMaD1XBjGsNJih4qwwWjese99fwmg/+bZLyeZspqZKbN68izvvXMvChY18/vM7+NznVnDaac1oGriuPG8VCjbxuEl//xAXX9wtiXx5m4aGCEeOzHHvvQLATzmlEU1THDo0UwPlCxakOXp0js2b+/jSl1YyOVlg+fIu9u4dYdWqHspllw0bnuGrX30vuq6RSln4mo8bODXQ/YcXXl2Lc6u6us8UMzTH0wxnJvn+nn/jjy/6AG3JJhJWjJnCHE3xdC3jveCU0ZXCCwIKlSIJK4ZSioQVJQhgLHMcyzRoiqfRw/YAb00eZUnHIkl0yM/x2J5/4VMrPkxrMk06YqIFNkoF4Bdh8g5ouU2k79hSCqEiAsgJia/iCyKfN3vBmxVDO0wIylLbrln8dyc/D4WfnyC/3wjWmf/jdf4TTO9I5d+Z/reaqtL3ao77RD6PAlaFZnUg8vn+oSGKrsvxYpHVPT20JRLkbJuXx8cZmJ2lb3CQxmiUpGVxf38/W/fvZ3NfHyu6utj2+7/Pw1deSdw0eej551nd00PMNElYFiXHIXAc1PCwgPGxMZHKW5Zom2MxWdbXV3cc27gRzjpLAL0b1gUvXSp18aExHMeOybxclnUPHZL3sZigtXvugd/9Xcl1r8rlk0m47DJh6AcGhLJtbESbmCAej3PVVVdhWRaNjY1cddVVpFIp4vE4c3NzDA4O1kzpqnNN04hEIqxataqW226aJpFIhN7e3hrof/e73008HqdSqbBt2zbm5uaYP19Yg6NHjzI3N0c+n8f3fWKxWK19Pp9H13XWrl2L47oEZVuANCoEmOFJtgwBlGU7NJpDwKPjiRzbDevaq0BU08Ro7ZxTBVBC3em8u10+TycF7Hd3CGivthsaF8ZYU5BukAEDXT9JVl4uyyEuFGQsZnJSWPYFCyTmraNDfj9OBO2ZjHS/aFHdxK4a7dbaKu2mp2WMRtNEHr9woVwiSsk8m5U+Ghvr4zmdnfD5z8u/FyhN/sdF3cJyV2Xsh4flf0nGJb/eD8Kdykv7qspA0+oDGrYjy6vHczYT/kOBAHPblf5HQim+GY5qDwzVc+EPHhNmX5d+gyDALZdRmkayu5tzP/tZYd5sGwX0XnklrUuX4oaGc7nBQYx4nNTChSy/6y4S3d04uRz7vvpV8kNDNC5eTOC6FCcmOPOP/oji+HhNTl+enmbfV79K9uhR0DScQoHS1BR2oYCmaUy/+ipOoQBBwORLLxFpaiLe3IxqbIY/uBnV1ikPa5NjUueez4gEPpmSuLY/+DzM6xKn+Hs+Ly7wH/+srHPVR+GCtSKFf/xvQ3O6iDjU3/1pOaFVOfzOf4Sz3wWXf0TAexBAqVj//Ikfy8NpVS7v2Bw/vI+50TcZf/PngELTTTy3zOjrz+JUpISgNDcRxmQJ+A78AKWbdJ5zqRja6Satiy7ArRRQSsMpZxnd/yy+71CcHcMpZSHMNA8Cn9HXn5Ua9mSTOLuHgL7K4B8f2Edm7ACOXZBLZu2lAtrXXoYyTVSiAdU+H39sBBVPoKJR/PERgunjqPPehdbVI/vq2OD7eDsfRzUIe+c9tU38AYCgUpE4uXicIATtOI4w7pouyiOlUKYlIp3RYcjMojQ9HHxQ4jNsREmneykUpkgmO1m7dgNLllyHZTWwdu1Gliy5jtWr7yAabULXIxhGtLZ87dqNpFJdgGLNmi/XMtgLhUkcp3jSMtOMo2n6SctXr74DXY+wa9cm9u/fSn//FkxTBPHp+DwMzyGFgOgpBHxfjgD0rQjAXvFryzYjdenXhZ9t+i3LNyCu8V9CQHkcYdb9E9pvQRj3dQhzbyGgfSsygLAcTspr79/Sj+/5zB2ZY3jPMNHGKG7JpTBV4Bf3/EJ+R0yNmYEZcuM5rIRF75peUt0p1j2wjkhjBM3QSMxLsPILK8Ur5fAswy8Mgw++I14a/ff3071Snju9isfYL8fIDGUwIobI8tfvIDuYpaGrgSseuoKoGSUdSXP7qtu59uxr5daeHeKmJ25iMDPIZ5d/lvH8OBuf3cj5necTNaJYujwvRI0oR2aPMFmYxPM99ozsoegU2TOyB6UUUSPKPb+4h/H8ODEzxlB2iLueu4vJ4iQJK0FjtJHudDef2/E5AgIu7r6YnJ1j78heBmYHuHnnzXh+BeWXhSlvWS6GcpoJ7/oG5I9I/Xn2oMSeLbtPQPtZX5Jc9tK4AGz5IRQAqTTpa+RxkdprJsQ7IdIq4CbSCpUZiUwjAKtZQGngC7hftgUxYKvWlGvCOCe7QtAeAnDNEoY8Gz6fJLvrnweBbMvOCjhPL6qD9gBZZiWFqU6fEoIh7eQ+KlkB93LyT/5MKQH2WkT2zUpJXXz/XTJXmjD3T/0pzB6SbZkJMZl76UExrVv3qES2GVEZEMiPCGjvWins//xV4hCfHRR3+Cr4f+YzYkg3f7WY2vXfJfOqI//cETjtvwho1yxI9uJ7Lqaps2hRI9/5ztU1o7qHHnp/DbQfOjTLDTds4+23pwHQdcX8+Q187nM7KBQcEglJ3Dj11CYeeugKenoaGB/PEQQBp5zSyKOPXkNra4xbbnmS1tY4jz56DaecIjnxmqY4enSOyckCt932NJ/73Aqmp0vccstODh+ewy556JpOMhLnS+/5A3oaO7jtvX/I1Wet4fqLP8wrIwf5+N9tJAgCfrhvG8u6TidmRtCUouLaWIbFaGaKl0cOYHsOUcMiZkY5np/luy/8CwARwwp5Ap/mZIqy4/DKyAEqnkPcjKIpxWf/+et87Zm/wdB0HtvzL+w88DwT+Wk830fho3BFFu/NQPvDwqr7WTGmC1wB5IEN7lGR0pudYHTCxG2gt4Wsuw6q6trxP5qsX5Pfb/r/YZ3/3NM7jPtvmd5h3P9jp3ylgu15fHr7dh4/cIBf3XQTTbEYe4aH6U6lGM5m6UmlWNTUhOP7mJrG29PTfK2/n9tXraI9keDViYlaRvvGtWtpi8f55dhYzahuMJPhG88/z4NXXCFMdBDwhZ07uXXlSmKGwcJIBGNgQBj3X89XP/10KYBeuRKuvVZoV8OoPWyKDFzVEZ5pyuuf/1wKpIeHxeRO1+VzzxPKtbFR+vF9akhS16Vf24Z9+2Q/Fi6kkkgwNDZGV1cXIIA8n8/X8tvz+TzlcplisUh3tzwcOY7D5OQk3d3dEr8VsvC5XA7LsmqO8ydK39/97nfzV3/1V78hgy8UCnR1dVEqlWrs/cc+9jE6OjoAsCwLS9dRthPWYoukklzhZGO0ExndqnGdHo4XVkG749RN5yJWKJN3w/xtpy4Nj0UEVFaBarUf1zu5XTwqwKckxm9edydzdhTD1E4SUGzZIqehq6vuOVipyOtf/UpCAaq3x0pFxliqIL1QqL+vVGRsBgS8B4EA9oYGaRuL1Y3rqiz/4sVg6R6WGZzMVjieAGp+jWFXhCoGvb68WvNfNZPL5OVadMJlIJ8PjslgR3V5EMjyEyXzmi7H3K36FcRB13BdFzuXE3OpeJzAFZfZ/OgoZiJBtLERz3EIXJfhZ59l8sUXuXDjRqZfe60maz/7+uuJNjYye+AAzWefjR6P49u25L13dREPawcqmQxOPo+ZTBJrbcXJ53EKBcxEAmUYlI8fJ97RQWVmhkhzM0rXMU0DNTUmteSnnCnfyx89fLIs3vNkUC6Rluvs+LhkuV/9Mclr91xxO/e9unz+okvgD28W07rtP4bfuwnycwLKr/qoDAS8/boY01kR+asx7r8Pre0il9/+Y7w/+SJ2WWLY2k5dgRVLCfttl3l71w9Jd5xGx9nvRimdwHclj72xE6UpAur3GRUEBL5HEPhouolbKeK5ZdxKmWiqtaa+KWcniaU7sEtZpo/8krbTVmBGG6jkZ9ENCyMSqzHxxw/vo+3UFUSiafBc2YZu1BUJiaS4v1eZd8MIRTQi2w/CQQsVT0gG/LM70dddTZCZBRDp/RUflPYn9pfLoXX3ihFe4Isz/a5QRp9Mga5J7b1t41oG07OHyOVG6O1dQxB4DA09TyYzyBlnfBDLSgIatp2txbn19KykUsmH0W4XUi5nsKwElpXE9z1830EPQZ/rVjDNGLYtA4wTE7+iu3slICoRTdNRYf3w9PRB+vu3sGbNBrLZYVKpHomai7eSQaEphYWAZx9xjN+MgO3TkdrzQepRcQsQMzqHelzcRsSBPuSjKCN57wuAhWEf+xBp/aaw707qee/GCdutbiNatJkbmCU7nK1FvwVBIMalflDLW7cLNnpEZ2TPCIl5CaKNUaykRW40R/+WftZsXEPTKU24ZZeRvSOkelIkO5KM7hulfWk7hcmCmNyt6ELTNTzHIz+erxvizZVJtCUY3D1Ioi1BYarAgksWMHt4luxUls61nfiBj6Y0xnJjvD3zNm2JNqYKU6zoXsEtT97CrRffyqKmRRSdInf87A5uX3U7HQ0dWLolaSdK4fke08VpZsuz3P/8/WxcsxHHd0hYCboauvj8js/zrs53cfniy+lIdICC3YO7OWfeORiawZ3P3sk977uHuBlnujhN1IjSEk0RxUcVj4Vxbl+UfPWqadzgVgHr594dSt1tAfex+XC8XwztYh1iaFceFem7MqA0IWx5ZSqMl+uuZ7PbsyKLT50m92mUAJrAlXW9ojDyRkIk9XNHJL7NCGXFvi9tNTNcl/D3ptqXqkfA5ccEIFfN6qrRcYEHnlOX1AdBva9KDmbeglhzXUJ/YgRc7afNlw17FQHUNTn8fAHb894Fp8tgDb+4DS64NcxbHzzBeG4+TL4CbedB+bi41Ce74MX7xS0e4OA/wsIrfs2Q7lHJcz+wFT68TXLgc4OyD8qAf/9czdiuRIq3D82xaZNktHd2NqAU3HLLTjZuXMOCBY2/IYGfP7+B2257iq9/fR2apqhUPCYncyxY0EQQBORyNpomx0JM6lafFCf36KPXEAQBx45laqZ0CxakKZVcTFNj/fodte197wfXUHCLJCMxRrKTPPaCGMR1pedRssvMlfJMFWY4t/M0+S1wKjz0i7/njy/6AFHToime5pWRAzTFGvjhi0/wyRUfoqdxHnfvfJRlXaezbP4ZJ8nv/+u6T/HK6MFa+0+t+BBd6Xl85alHuf7iD9Odnsfw3CTj+WmWzT8dQ/OJ+kckw735ixIHF1+DOMQfDPPYbwfzdGHKJ2+pS+lb7xaGXukwfa/UtZunhoxKnP/h5JfAfrsuv4+cIeD/P/H0jlT+f3F6B7j/x0626zJdKjFVLDKUydCTTjOUybC8q4u5cpm5UokFTU1EdZ2i4xA1DLwg4EevvcbLY2M8eMUVoBS7Bwf5yD/+Ix884wwe+8AHODo3x2Amw4rubuZKJWKmKZJ63yei67hBgO15WLpOg22jXX+9yNR/8hMpSP77v4czz4SLLqrXYb/wgpjXGYagskxGEFk8vJFUa9rTaQE8k5OC6r75TaF0NU2WJZNifHf//VLLblnSZ/X7V7U2t22IRHCVwtN1bNtGKYVpmr8hjQfwfZ9sNksul6tluXueh+/7NUf68fFxGhoaSCQStdd9fX2/Udfe2NgobKrnoVcl0+FUKBRIJBK1z6OWhW67qKpE+0SA6QcCJGsn3Kkzv5YhQL/qDwAC2C1TAOvh4bpBnRMyxCjpr0qH+8EJDyDIi4PHTpbPe55gC6XhBYpCSadQkFNx77112XuhIMDa9wWAV6XvsZh4F46OwrJlcvqq6XXFopzyzs76v1FV/QaBnMK9e6X64tRTpd89e2SAoK2tPl6TiHpogVf/P6r/X3VA4kSvgBP+1fo1o+rLOOHYB+Hx0U4Y2CiE5Qm5IqQTdZBflcxXB15OnBS1HPcqoJ59+22aTj8dI7TkL8/MYCWTaGF0YOB5lOfmcLJZ3vzBD06qc/cdh2SPsLReqYQWiUjNdanErx56iPNuvhkjHhcmVtfJHj3Km9/7Hmd98pOkFi4k8LyaS/1Zf/qnRJqbMXUN0ylLjvuRA9B7KmTnYMd/EwDd0i4PjdOTdRf41g6wyxCJwdRYfXkkIicrdIOnLRzs0HTJgV94uhyU6YlQLdMooB8EuAdBXS4L4eCeh2cYNel7WK1O4MmF5rsORiSG77lMHOgPAXz9FFa/50pT+K4TvjYEvGu6XOMoVODXct4hwLNL6FZczkl4aQS+V0t4kG0EuHYRK9KA8oN6DfoVvwOFHH7fs2hrLg3LgEoEhTyqs0s8AzKz8vkVH4RiQUD3mvdBqolg+Cha9wK87f9MsP8V9C/eLfXzL+xCW3eNlDu4Lv7PnkC7+BJoaka5Lv4brxKMDKFd/gE5ALmsOMonLDzPrgFtpTTm5g6za9dm1q69k6amRQRBwNzcQG1ZOt1bA+KGEUXXo9h2lkolQySSxjCiOE4R284RiaQAhWU1AH54n9UYHn6B+fMvRCkdxymg6xE8r4KumwwP7+Ef//EjnHHGB7nyd/6GkhFlj1K0IYz7YupO8hlEyl79ilYnjTrA/q8IwPYRsB7CKqYQx/nq+0L4dZ9Aat1BcuMDxAgPRE6fQMzsTATMa/kKlhdIlvpEgb57+7jiwSsoHi+ya9MuVt2+imRHEqUpxn45RqItUTOh82yPkb0jzB6e5azfPQuAp297mhWfX0FhqkDPqh5816c0XWJmQOran3/gedZuXEt6QZrBvsH6sg1raTy1kdlDs/Rt7mPNhjWkF6R54sYneO+33stwMCw57N0riOpRBmYH2Ny3mQ1rNnBq86lkK9mag3w1531x02K6091s3iXt2hJt3LrzVjau3chQZohr/uEatv3+NrpT3Wzu28zGtRvpTfUyMDvAlv4tbFizgYWNCzk6d7TWb3Wqft4ab+XOZ+/ke1d9C80rCVDIvAHNF4W16iWYeUmY+Or3H18k6oEjEm+UAMXjzwuAf+NrdXd5s0Fq2lFwfB9Em+DNB2DJlyV2rm2NrAshCPZD4F6S77QypK43CEegq1nsUE91AalBt1Lhb4UX5rR3hSC9EtYUe9Si437dHf431jPkdWoBtVhYhUjsq3Xumhk+T4VSds8J+wmPiynfO5HsG8KYV6PkRvuFiV9wab1G3XelLv6CLwmA7wiPeWkaImmR3WePCOBf8V9FKeCVpPa9c4XMq/XtyzeIo3x6IXStIV+x+OT1T9SA8iOPXIXn+Zx55iPs2/cpOjqSHD48y9BQluXLuzBNDcvS8f0A35c7rQyIKXxf5gcPTrNlSz+3376K3buH2L17iEceuZL163dw551rWbSoCdf1f6OuXtMUpZLD6Giee+/t484713LKaQ1sfub7fPmyP6Xi2HiBx6HjQ3Sl2giAlngaQzdqNeifXPEhGmNJDk4Nck7HYiK6ScVzuPeZH9Tk9f913acouzambrB/XGrji3aZ54/9irWnLCMZSZzU/s8vvx5NabUBNs/3hH/xXZojCjV+/Ql17Q+H11Mcass/Dh3fluvJGQhB+p2gt0p9ul8APCi/BvGV8l3TW/7n0nffBioiw/9PDtrhHeD+vzy9A9z/46eS42C4Lrrn4bouc0HAHT//Ofe95z00ahpK19F8eRj1dZ1ypYJmWUSCAFsppnM5ovE4Lx0/zvmtrTRrGsPlMpOOwzf37OGb73sfjZrGtOfx0vHjzG9oYHNYA7+wsZEG10U7dAjGxrCXXYSjR/EicUnNsj10XWEGFTwjgusrAjRMr4w3OYPVEIF4jHIpQG+I43kKXQ/wKh66qTAnR7Fy09jtPdjZMlYqipUwRaN9ySXYH/49HCOKZ0aJqgroBmVHoZlGaL+jMEwfpWzAE/lsoMKxBD/MJPZCrK8TBB5Kafg+FAo5EokUrutSqRRJJORHsVisEItZZDJ5GhsbUcoThi/wUcoAvNoPDYQ1t2gUCiUSiRjg43kqHBAo0pxuQ3t7UCTXbY3CFIfRa0QjAryrNdZVQFqtea+E7Hi1baksTurVSLSoJcDSMuuAHk4eECiWfzP2rFbTHfYZbiPnR5mZ03njDaluaExWMDQHlEagdJyyy/SMQXOTS6BblComliWmdd/+ywq65hH4PoHSCLwANAPPcTFMYUiVZlAqesQTisAPmJgyaGtx0U2F7wRMHDdoanTRTItiAUp5m5Y2A9NwMUwD3fPDHzcdihWIRwgRejgYotVAIIWyjCpoGuhKgGN1WcWGZFTaVc3pvBPWiVrSvvp5xQ59B5QA0XxJjnfEkJGIQhknESN75Ahvfv/7nPWnf0qyu5vCxARWIk60rRUCmHjlVdqXLZXnsoqNbllynnyf8vQM0ZZmfM9DC7/XnuMw9fKrxFtaePMHP2DZ7bdhpRpCcBlQnj6OHo0x8+ZblMbHWPiBa1BKUTo+jWaawqiVy0SaGvFKFSKlLOqJfxBX+HwGFi8hqEYwOhVUsQiP/xBeeYHgs3eJo3wVGc9NS017NBZGvzmQapRjXi5K9NvCM8C1Udk5guysxMJpelirWUb942Pw/msJWjvC85GHuJRuqIE38M5Yius5BIECTa+ZyQUEaEpRmhsjku4Q13JEoqgUuOUihhVB002xiHAdNEOHQEHgUM4er60XBAEqcJh8axetiy8EZaKMSG18Swul8tXBP7ecl74VKGXi4RH4NtpcBsOM4T+3k+DA63DtH+D39qIKRYJEnOqogjY8TDBznOCc89CGh+Ff/gF+92P4vQvC6zZAdzyC8VH8nh5ZX1fomgnPPg3vW4dnCMDRlI5fyKAlUvgqAKWjBZKbji7qE993KebmiFotGBETnzLKN/Ed0A0zjByDAJfAV2imAt3DtyFwFbqlM5sbIDs3TFf7SoxohEp5Do0IphGTy0FX4HMCA+2jTA23UmZ0Yg8dHUsxtTTK8JnNHiKXGad3/lqCQFGMGlQ0H7wyCXRyuslbhsVyp4TvOWhKY1LTSfseEU1n1Pdo1y1KhoXm2liejaFb5IGsZzMvvL5+2zKlW3iGxV5gGRBzbXTPoYBHoEcxADybvbpFr2HR5drgVoi4GlrFw8nleXvnIGd/5Oza66ZFTfSuascpK6YP57Bn85zynvkEgSI3USLZFpFrlwCFz9TBHH1f38sVD12BGTPRNBdN81AqwC55ZIYKNHbHMBNyP7JLAbrh4bk6VlzheQonV2L8tVnmXzAfM65QeDjKxAt8dg3uprNhPoOZQa75h2v4+Lkf57sfeBRLM3ju6M8ZmD3MVae+n4SVxCPglidvYXXPKj54+jW0xFsp2gWSkQYMpTOaG6OjoZ2yUyFmRPAI0JRO2Sliew6/HH+ZC7su4qWRfbyrYxmWESGqRxnPj/PTt7exd2Qf37j8foLAp8mKorJvw5tfF+O5xClyL3ELYW11SYB8EEhNu9UI+GIkVxiWbHaA6RcgdwjaLxNzucCv94GSiLjdH4EFH4Xz//JkIB54oTTdk22VxgX8RueJ12jFQ9c8PF/HsuS3w3F8GXCPiuLPth0sy8TyZrD9CI6WxPMDTEPh++B6AZYJMcPF9k1sBywjwCoNilld1fSucTG2E+A4fiivDtB1ReALqaBrYFo6VHKUSaBrCl2z8cuT6LFWPM3ADFzMzADs+zos/zLE23GcIk6kGd2I4rkVzPE9MG8pjpnCLI5hOgWcZBeOFsF0cnD8VzjtK9Dx8NAxDQvTLUIlQyXWhqcMfAIiSkHg4RQmMI8+iTn+grjNFyZwzAR2rJ1c1ufl145z0epe5ibzJBIWVtLCztu8sX+S5WsWyP3ZD8D2MDyfIGKAoaEhihgjfF5xlQLXI1NwePOVcd61rINoQ4RAU1BxmRrJUio5xFJRWrpSOGUHp+SSiJsElo5bdrESJlog/XmaIuq5YFdwAg8LXQZCq+pP3yfQNV4eOUBLJEkilqA1liLwfZRp4qgA3/eZyM0wmZliWfupomZzK5RKBRobmhjNzzKZmWTpvMUo05DPy0WMQGFpOpph4jg2r0wcoi3dRsw0aY40oHs+hqVjBAMnGM8tFCCuNUBQkvp1oxX8MpRfh/jF1IcrPaTcwwk9GeR5F3cMjPmgp/7/Bxz/Cad3atzfmf7fm2xbmOqqEVs4xYIAY24O7cABrBtvpHVwkO9edhktg4MYu3ahZbOogwfRbrgBfWCA5MwMscOH0a+/nujhw3S//DLNg4Nc3tlJq+uiT07Sa5qcn0rx2KWX0lQqoe/eTZvncVlnJy2+z6Xd3cxkMjS4LsrzsBefRXbVFVSSLRwaS7KrT+PQgMb1nzY5dNTAMePM5XTePqQzOakoE6XY1EUx1szB4TgT+SSlssauPsWhAY3de02yBYNSWw/F05eRtVr4+UA3B443U9BTFL73YzKf+Ax2qoWSlmRqxqCk4lSwmJyxePuQhu3qOK6GUja+b+O6FSBAKT8E55LFrGkBxeIks7OHKRQmCQKfbPYIzz13K66bo1AYZGbmZXy/gu/bWJZHsThOY2MS182Rz49h21mGhnYzNye1+I6To1LJMjs7wPbt63GcPIlEBPApFKbQNA8oMTv7KuXKHEFvBzSnhEE/IXoNgpNjy6rRbK4n4Lsa4TY0LuDJcQVw65oAcJABgVhE1vUDAeoHj8q8GotmmjJ/Y0BA6Km9YfwZJ20jGQ9IJyu8d3WBpoYSVLKUpqYIXAflVjCokPKO8tqWv8Cw52hKFIhHHP7yoQp+KUv26FHKc3NoBGhagKZc9KBCceQYdmYWTXnEY6EUEJ+O1gpzr72Mm8+jGdDeXCT3+os440doSjk0RWfQ7Ax+pQyeR2AXJYPc9yAREUbh+LjItqcnpN/jo+KMXs6AFsjv3OQI/P0job10IKB9clTWmxwNDf/egKgRPuy5svzt12X+Dw9DbgZUAKW8bNvU5LNDr0PUwNA1Grq7WPHVr5Ds6UKPWCQ6O4i2NVOcHcWpZGm/4F04lRyjr/8MPyiDruGUMozuf4ZIcxqnnGP8redw7DxupYhmmnQsv5DyzDTzll+EGY9iF+YozIzgVLLMjL8Cukf7iotY+IFrICz7iLW1EEmnMJJxIi2N+L6DkUoStHUSXHcDQSEHC88g0A2C2RlhfEtlgnQjwR/dSvCNH8OpSwgqJflsdprAsAgiMbxdz8rrIMDb9hOC2WmIxmHx2TKEEokRtHcRtM0XE7fpSQLHJtAMgo99hiDdQpCZxR8ZEqm3aYoM/PRzCYIAHx0vEOWKbdtMz8ywbdsTzM5l0OKtDA3JQPHs3Bzbtj3B3FwWjCier/ADmJ6eZnh0DNt2yeXz+BiUibF9+w5s28ZxHGwXWs9YixZJky3abHtiO7OZLEHIAs3OztZ9MYyoDEhqJh4us7MDFIpT+E1p3IYE3tUfxP/CRsqdLQwNP4+fiIFSVCpZntj+GcrtTcz2pvnp9huZSfn4N99BuaOZSiXD9PRBfrrteqaLQ5Q7mvnptuuZdSdxDEVJVfAvvYySqjA9N8BPt9/IdOYweVViOnOEJ7avx7azuIFLvjQVsuRZlGcR0+ZRnnLwCgGaHyczUGD7jU8yOzDL0O4hfDeAwMAt+tgZDzyLzOEC2296ktmBDI2JRfR2vge/rGHPOUSMJkwjjlvxKEwUsLM20wen2XbDNmYHZilMFpl9e5YdNz1NyjkPgxT50TyVOYd0/BR6Oi9h9nCGwV2DRG0bStNkcqPkKnMknCIXlrN4boXx/BgQUJh5m/U//SSHpw9y6NjPGZw+gG4X0ews0/lxfLcEpWm++sRNDE4fpP/Yz8mXppmcfos//+knGZ45hBZ4BE6BqF1kVSVLrJIncIoMzL7NzT+9HkrTjE2/xWd/+knmT79Fb6XA8PRbfHrbpygHWaLaUVLDt3L+Hyyov74uxinvno/hTRCNFela2sQp7+lA+WW0oEyqIyZVX7ho+UOo6X7azkjw4R9cTizpohsuepBByx9E7b2eiD9I2+kpLH0WFdgoTWHFFYY/gxUcRe29HqM8QCyaYeHqFqyEhlY4jDr+AmbgEcuPsLbrQpoiaa5cfDm5O+b4mw9+j2gQoGeO8L6eVVy/7I/pjjTQGEnTEmnkb3/nb7jp/BvospJEgoBmK4GFQiOgK9mO4fskNB09exQLhe7ZJIvjNJtRLl34HtJmkvf1rKK5MkNS6ehKozvZwY3nf4rvfeC7NBpRmiszqEBJNNsFD0N8QTi+6sHEK5AdEtZ77rAwxWYjlGchPwGRdkifC3OHJO4sdR4s/ITUrfuO3PsDBU4JRl+A1lXwO2Nw/rfECO6Z9fK7kDkssu/CGOhJaf/C1yHQsG2H6ZkyFcfH8XXGJwsUSh7Fksvbh2a5/obtvHVgFttT7Oof58Dbc5S0FqYLFm8fmuUzn9lOxfYplV36+4eYyzhky0YYPOJRdqAQWUC2ZFDUWihYC8kXPaZnytiOrDcxUSCbtTlwcJrrb3iCQ4czVOyArB1lYqKAh0/OdylFWqgog+lijqPZOZzChEjZX7yfipEkH2njeKXM0blJ7n7m/8OR5BnMEeHup77LUcek1Hg6eUxeGn2boyWHTNtyjldKHMvnueff/445u0LBh1JiPlnXI2+XmcrPUfIDjmRnuHv3ExyZ/34q7/srikaSipnkiKPzlae/h5ZULHvfKRyPGrT0pJlqivGliEGyOcaFaxeApsgqxWd1jWNRA5WwyBuaDC4rRZ9SDChRCQaaYtAyeK0pxsr3LMRrjPK2oXGDpjgaNWie30CsKUaxN02/oaGSEVKtcYbjJsdNHZW0mNQ0XF0jb2js9T2KR49iT8/gjoyz7+67KQwNQRDg5fNUZmbQPJ+l6W4WpNuZF0tTGBrmxbu/QvHYIBEPIoHGwmQrZ/tJXv7KX0ChiBqb4siWh7CHRliQbObC9lPRHRcrUBiuT7Ti4QyPMv3Kq7i5HO7xad7V2MvCZAsdkTT20Agv3v0VckeHcfxTcVu+D0a31LIrDZwj8hwTlGD8JnlGi54j8vliP/g58IuUi8f50DXLOP3MpSw9fyXrrvgQh44UQOkEQcDdd9/N6aefzrnnnst73/veGp7Yt28fq1evZunSpSxbtoxnn332/0EQ87/f9A5wf2f6j5tsG956Cz75SZmfCN5tG5XJSKHx1q1omzdjeB5q0yaYNw+l66IpXr0add99kE5LPfrWrTJvbUUbGkINDKDWr4dCAdXfj37wINF8Hi0I4NxzUXv2YJTLdBcKfLK3l/e0t6OVyzhTGaZzFoWiRhAo7rtPZMzhJti8GRxHEYspFi6sGr4rSXgra0QiikJBvOTmzZNdXbVKFPSVisJ2wPcV7e0wOKThB4pDA0oGAMqKuTlpWywqfF/R0iIKfN+vJtJ5ZDJDlMuzCHA3AB9dt1BKQ9NM4vEWcrkRHKeI77vs3r2Fnp7V6LpFNjtEItHGjh3ryefHMM04Sulomk4uN8pzz91FLjfGvHnnsGvXJnzfRdNMbDtPNjvC+963CQgYGurH82zi8RZ838E0Y/T2ruZnz25kKn+YwDJF993bKTL1ng5A1d/3dgpg7+0UEF4onfwZiBw+GgJ2Rd2ADQSk23ZoUtcRLg9kO44jfbQ0CuCv1tFDbRtBbycTL72I5WdRgYuhB5jxOJF0muLkJFOvvopmWSS6urjorrswkwkqc7N4xQyW7qBHoyS7uog1NeHk87z41a/W4soSnZ3EWloIPK8WZUYQEChFy7JlmMkkheFhXrznHqLNzRTHxgh876Ssc79SRgWBMLTVyffrxmbbfyzszRM/hldeEEO1IJAHvbnj8OE/lofHgf0CzH99vcYWAfdzU3XDtIbGk9tVJfW+J0ZjpgVNrfD3jxBUSijLwLELTBzqw7Hz6BExr4k3zceMJMH3OD6wj3jTfJRmoIKglknuuTZTA9V88r3oVgy7OMfIa0/TeM7pLPzAB/A9MW87Kct8YK8cl9CcLPBdKvk5Rl9/BsIab92KoXwfZmfwpyZh0VkElvgb+H3PEOx/Bb/vGdANAdVDR8PIRgvVvQC/71mJO+t7luDA68J275L1guwcwdw03hP/JNJ7V3woqp/7/c9BpYIyhe3FNAkyc6hEEu/JfyMI73WB7eA5LplMhh07dhCNRqlUKvT397N//36ef/55LMuit7eXIAjIZrMcOHCAXbt2ATAyOopt2zQ1NdHT00MQBPziF78gk8mQyWTp6uoil8uxc+dOcrkcmm7hui67du1i//799PX1EQQBtm1jmiaJRIKRkREAdF3H83yCwMU0RTpeKEzhuCWGRl7Ax8M043R1reCpp26jUslimnEuu+zrco/JjbJw4ftIJOeBUlhWEsOI8sILD9buQ0rp9PZeEsrcA4LAx9UDKpUM/f1b2L9/K319m4lG0/T1baarazm53BhPPHETjlPEshqw9DSZwzm2r9+BU3LQTI3ADTBiBgNPDdC3uY/e1b24ZbeWHV6YKIAHfZv72L91P9mhLE7eY+bQCZ8rmD08y471O3AKDkpXNQO3vs19RNPR2vqZQXFC7/t6H2bMQgWi/EjMS9C+tJ2KUxGlBIq4GScgoOKVcX2Xw7OHcX2XTbs2sXX/Vjb3bWZ513LmJdqwPJvA9ym6RW7YdgOjuVGWdy1nc99mWuOtZCoZNofrDWYGOTp3lJueuIlDM2/Td2wXR2cPYWg69/ffzyW9l5CwEli6xeqe1TywewuOV2LTrk08fuBxUlYMpVnQthrlZFFvbpHXWgSFD69/FaVHoTCAKk+Jc/n0XlThCEz1oQIXEt3QuBRVmkA5WbTpfrSgiHIykk0+uBX2b0Z5BWGQ994E2YMoNwfRFtT+zWGbeyHaiqpMo3xH6rPnrUUpHawUMRRdqflodo6kEUVXGio/AlYDSqmwXQPKt1FeBZUZQHllMBMoL5R8Kw1sMb5FM1D5YTE3C7z66/xI2B8nLBuuxS9qAaIyyA9DaUZ+e3Kj8MxnIXtU6s9/dpM4nucGQwO2BpGRP7teDOmMWP2vMA6dK8U87ekb6jFruWPwiy+JzDvZIX3mQtPXVK9EoSkl8u8DW2HPZnGnD3y4ZAsEPo4TMDFR4DOf2U4uZ1MoONx00xO4rs+990o2+KZNu3DdgIsv7qajswHbCUgmLe6/v5/ly7s4dizD+vU7OPfceUxOFti1a5BDh2b59Ke3c/jwHNmsTQBUKr4kmLoBDQ0WQ0MZPvtZMWfTdUUqFeHhh6+ks7OBo0fnmJsr09oaRzchopscL2S45+nHKDkVmpONON3vofjp4xQv/S7HsjPc+8wPSEYStbzwx/b8G/lKkZ0Hnmc8P83Q3AT3PvMDmmINjOensQyLhkiCx/b8K+d0LmYqP8tX/v1HDM1NEjUsjhfm+Hb/T/B8j8deCPvc9wQVdL727A9x4h2YuskF3WcSjcRqpZJlpYhrivuBI0pxg1IclKuALwCdSuECcaXIIUaSS5FISFcpPMTTog0YVYqMUnVzSqXwYyZtXSmGwjKbW4G8UnQqRQLYpxQF4KZw/aW2TWlsjGhTE/u/+10Gn3yS/Y8+ShD6L0WbpK7eiETwwnSXN05oV5yYwCsU8CoV9j/6KINPPomTy9Ve73/0UfB8As9nZv9+sseO4RYK6NEo8Y4O2pYtQw/L5HTLEtImCDjwwx/S9q53SSKM65I7NozrKJj4rMTCGe0iX5/eJHJ5PyN/01sgei54o1Lv7o1xw41f5MCvtvLq9iX8ztUX86kbbwFl8q1vfYtf/epXvP7667z26kv8w48eA18MdD/84Q/zla98hVdffZWtW7fyx3/8x5RKpf8JQPnPO70jlf8t0ztS+f+HpnxeQHvVDeyxxwSdgoCx6WkpIt6yRYqOYzEpOhZEK+j5jjsIFi2SiCDbRp2Y4bVihSDnXw/kvvtu2UZjo7SbnJS21WyvoSEKl1zJWwc1HnxQNh+LiX9cqSTRXxs3ioHY4cOyi6tXh3ipnrbEjTfKprdtE0+6wUHZjGHArbfK7luWAHHPk7rn5culD8sSE/qREfGxq2KnqpedZWXxvDKGkSAIXJQy8H0BA4XCJJFICstKEQRu7XAHgV9j4Lu7Lz4p9uiKKx6iUJiksXEB27bdeNLyYvE4jY0LkfosD8cp8vTTt3HZZV+nUJhk9+6vsXbtRuLxNnbuvIU1azbQ1LQYz6tgmQl0VTWs+u9M1SLb/1kbwnaeL++PDAtAN/W6FL9aj+150s4yf3vdN1LDW5iYQGkaRjIppmZNTfW636rBoGFIykDoOaDCYvXA83ArFV65/37O+KM/ItnVVfsRK01NceCHP+Rdd9whD366zuTLL9N67rl4lQpOLkestZW9X/lKrc77wjvvxIhG8R2H0vHjvPbII1x8959juI64me/8R6m1tiJQzMNT/xQanXXA+DDkZqFnsTiYx0KPhf/213Dl7wnLO3xYsserNdvz5sPMFLzxS6n//sTnpJ/sjADz7f9N2s0el4i09lCyqRT83cPwwrN43/xv+IaJ55TJHz9GQ+tCjEgMz3WYeGsXrYsvQtMMlG7gVoocP7yPzrPfg1spMDVQfS0xZm2nrsCKpxj51dNkxg6Q7jyDrnMvI0DhlLI4pRxmLBnmnK/AiqflPAU+vucy9sZzxJvmE2/qqpuqWUmCMAfcf/7ndSO0XKaWSa4am2tZ4f6ePqmzNk152LErEkFmmDVmn0IelWzA2/4vBK+9hFqyDP2q35X69Oyc1IGHWefB2DAq3QipRpTv4+34F1TPQlTPQtn+qvfgpJt5YudOurq6OPvsszEMg9nZWQqFAj09PSilqFQq/OxnP2PVqlVks1lSqRTZbJb29naUUuTzeV544QXWrVuH53lMTU3R09OD7/uUSiXK5TKFQoHe3l4KhQKO49R8LAzDIBqNYhgGg4ODxONxnn/+edasWUMikcAwRNFTKEzhukV27drMmjVfJpGYx9NP3866dVswjBiOU+TZZ+/k0ks3A2AYMTKZIbLZQbq6lqNpBqBw3RK53Cj9/VtYu3YjsVgL4+Ov0NW1HKV0hoefp719KYXCRK1NOr0Az3MIAp+f/ewOOjv/v+z9eXwc1Z3vD7+rel/UWizJ2r2x2cLGbDa2JEgCxiwmkw3Nj2Hu3CxgE0wmrCbYBMgE22BjMIkhbCHMJJm5gyGTgPACgXFiWV4BGzBGNpJtra2t97276jx/fFstG2bu87vL3Pvc+3Ber35VV9WpU92tVnV9zveznM+sWa1YrU5U2kLfrkE8lR4mnTWJ0IlQQR9tc9vIpXIU1RaRGE6w48EdHH75MI2tjSx5bkmh7zVPXUNi9PP725a2FdavfeZagt1BOtZ10LKqBavLSjaRpX1NO1dvupqtt21l4YqF6FadSF+E2vm1YEK4L0zRzCIi2UghvmwsMUYim6A/2s/82vkFb5KR+AiVnkoUio7eDup8dVR6Krl9++281vkav2v9HQvqF6CjMxwXx/NxTfdTVz/F8q3Lefnwy7Q2tnLnJXfy+J7HeXbJs1jyNOruUDdrdopOe3rpdPk76VYsysCV7EE7vFp01d4ZQuvGFPBp80Hfvwg1Ox0AZwWM7JrIEHdW5DXXq8AxCYIH83puC4zuhdK5AvRTg2Kqpumi1S5tzFO8LXKRT/nF2O3c+6XaHDwoVPHUCExaWMgfVxaHTNyN68UzEXEbN0XihG6byAwvZIVXiEGarp+iw66WPpnYRH65b6pUr8fjzXLp/Ni5ifzzgpnbuI+ImaenK9FEuyrEFb14Brw0cyJnXM+/nneWn26OFukDT8VE5vnby08xaKueWD/nBtFvF459Nv/7mY/NCncJaL/4XtFuR07CvrUw7z4ijrO5eanos48cWc6DD+7g5ZcP09Z2A3V1xaxZs5OVK1uYMsXHsmVvsHJlC319YerqfFRWegiH04Vjxo+/664FbNiwu6C9/tnPrsLvjxVM1Pr6ItTV+ejri5xmtnbyZIje3ghNTQ2MjsbxeOyEw2kapnk+p7G+tel6PHYXDqudrJFlw47f8MaRdjZ9414me8tO02pv2PEb7rv8u6x9+8XC8fdd/h1Mpfh4qJtSVxEeu4tfdLxymob7p2+9wPbO3TJmURkv7Pk935l3HZPcJYzGQ+i6zj/sb+PeRTdhsTnIahq6/HdgBQaABxDA3YpELpr57euAVUoxSdO4F3gUGJ+GTyCEuOVIDOQ3AX/+mPuBBqR6mj6lTzMS5zgPcOSfb0cMKp9Lp0mfOIHF6cTu85GJRgWsG4bI0Ww2EoODHH7uOWZ+97uFe6EjL75I4y234Cguxup0MvL++zjLyjjy0ktc+KMfkQoEOPzcczTefDOOSZN475FHmPntb5MKBCibJayz8YjXxqVLsTidGMmkRLouW4a3rg5lGIwdOoSzspLE4CAVF8zFbu08xaAOoc1rVtGhKxNyx8FSLaA99hrUvALuJkjsgoFvcaCrmW/depQTJ05SV1fHO++8w1lnTIXMJ3k6/ipGI+XU1k8jnZ5wkp8zZw4PPfQQ3/jGN/g/tX2hcf9vbF8A9/9JbbziPh6CffbZgljHWzwuwCmTEVOoN96AL31JStjj9t9btog7WDgsBnDjzl65nDxOteoeD+SuqhLwr2ky7sCAOJI984yYzc2eTcRbza7dFi66SOS9yaRgQbdbXlI2K4A7EJDoL8nulLmBO+6Q+PaeHsnj/vnP84U824RBeleXjLdunUwCTJsmY5wa/15VNfHSVqyQdZ9Pzu90JgGDXC5FKhXE6SzFanUQDHazZ89Grr7656do23PouhWlDHp6dhEO93LOOX9BPD5Ee/taWlpW4XSWMTR0iOrqC07ZPm7iFGd4+EMmT55DOh3Gbi+is/N1zjnna2zf/sNTcpB/Qnf3m8yYcTVFRTX5CQWdTCaGy1GKNZqSLPBxfbWGOJ/3+mFG3ek6eLtNgLdpnu567vMKCD81q/3MKbJe5BFq/jhY15C4uXGX+Zwh5nf57Pfc1GqiPT0khoZwV1WR8PuZNGcOmWgUR0kJyjAYTwnIRCLYfT50q5VcfqZW0zQsLhfRnh5SwSClZ52FBlhcLsx8RdXM5Ti4YQMzv/tdPPkEgFwyycHHHmPu3XeTHv9BXLYMq8OBzecjePgwxWedRXJkBF91FTarBeJROHIQKiaLhtrIib5Xt0AkCJ4iWR/qh20vS5Z4WTnc+5/h+6tg+kzY9yc5fspZcOIoTDtbqu1XtYrLuW6RvPFkAnyl8v/x6WH4xcMyxqmgv6gY/vlZjO/eRSaZd0SfMQ+rw43/yJ+ZfE4LKEUqOoq7tBplGgx+vIPwYCclNTOpmvUlmdAY/y6ovAbSyGJkkmRTMdwlVQXdbC6dxGJzoOXjwnLpJKaZw+72idbb4cLM5TCMDMNHOyaAf+Pl6ApULIrq6kSbcTbmn/+IVluPNv0siSfTNMjlPg+qWy5HK5mEyqQhGkbFomi+YjFda7kc3F7M7X8oGLRpbo987XI5sNtRuSzGpkfQzmwUQzXdItV5q1U04ocPos2+EHXN1zHyM1e9vb34fD5KSkoIhULs3LmThQsX4vV6OXLkCL29vSxZsoR4PE4ulytENu7YsYP6+nrq6+vp6Ohg8eLFJBIJdu3axaJFiwqXVLtdKu79/f3U1taSSqWwWq1ks1kcDgd2u52enh4qKyvRdR2r1Uomk8LptKGUmZfQxLDbvTidJXz88SvU1V1CR8c6FhZMuzRisUFqa+djsdgwjAz9/fvw+erxequw2VxEowOFcbzeyYyNHWP37sdYvHgjABaLA4vFjlIGum4lGDxBJNJDfX0T45X58QlKm+Yj1BUl0hehoamBtmUTYHvJs0vIxDNYXVZJD8mZ9O/rp3hKMSVTSvJfPYVm1chEMgV39Jb7WyidXkrw0yA71+ykZVULJdMm+utWnVwqJ7p3lTcHzJpY7BZ6dvXgnuQumK1FBiJUf6WacDqMP+bniT1PsH6RuFw7LA56I70Fg7W+SB91vjoGogPMrpyNVbfitrs5ETxBb6S3YKC2YuEKaopq8Nq9pHIpFAqHxVEwUFvVsgqX1UWpSypsNt0GGixrW1YA9k9d/RR7+/dS66ul3OakrvNhAdtVVwpYBoh2wcdrYea9AuY1pEp88B6JMrN4JEP8wPIJ1/QLfwaJk3kgvxIclQJINRvEj8Ph1bLdPQWMeH5ioFj02LoFkgOSYX5gOZz9t9D5M7j4WQHQFlsepFoEpMf68wZnVvk/zsTymeL9eUM0DdCFQu6bIuDbSEvV20iJU3rxdNk2vr0wi6wE/BvpvKmZXRzR0yE5z7hL+rjJ2vjsci4F6WDeLM0Bb39fgLTNJZX+0Q8nzM/mr5KJgHHX9gPr4SubZKxsAnbdD81rxAXezEq0mqNYXoOzND9BEcv/c+dN5TKxicp+3A8n/wjF00lWfZljn4ZZvXonjz9+JaOjCdasaefHP27B4bASCCQZHU0wY0YpM2c+TWtrI3feeQmPP76HTZuuxum0ksuZZLMGLpeN48dD9PaGqa31sXatAPWGhmJuueUNXnutk1deuZ6LL65l//5+5s2r5bbbJszWOjp6mTmzHItFx+u1k8uZDA/HqZ3q5v1TXM1vvuTrlDiLUCjimSQeu8SzPLbj1yy95BvUlVRimCbJbJrOkRMFt/S+0BAv7X+dpZd8gzJPMelcBoumc2y0h/NqzqI/PMIv9/6em+Z/jQpvKSOxIC/s/T1LL/kGNb5yRmIBXHYXdqsNu8XGaHQMp92Fy1tCLD9ZpJB4xxWIbr0KiV0sQswf/cCDwGvAK8AlwIn8t+tRJMJxFGhBDCPX5x/e/Hh7gFqkOn8JUpl35PuOm1zWIeaVK4AaoDQeZ+zAAZxlZaQCAUpnziQ5MlIA1N66Ovb/3d8xafZsqhYuxF5cjDJN9HEj4Py9jpFKyf3Q7NlYnMJSyyUSWJxO3nvkEUpnzqRq4UJclZVouk7C7+fDp56aKEKsWsWB1avp2baNy55++vT7q/y9lNVpxxpYBpPuBtuZUnnX3VJdH3sCKtfn3eJ1cZhPHQRbDYytEUf5bB//adkzlJU38NO/W8WkiimsWbOGV155GTLd3PmfAvzlX7ZC9QtMnT6bdevW0drayv79+2lubmbt2rXceeed/J/avtC4f9H+9zS7XVzaX3jh86A9kxF0e9NNsnz/ffjqV6XSPjw8kZ/e1CSZ6l1dE1FqpikZ6bfeKn1/8Qux777kEimTFxcLkh4eFrS8dq1MAuzZI+MND2PLJqipUdxxh0R32WwC4HVdquw/+IGcLpmUYQxD+qxbJ27jIyMyv/Czn0n/kRHpu3u3EA3OOENcxS+9FJ54Qt7yOGivrJQxHA55aa+9NmE8P+4oDSah0HH6+/fidJaSSoXIZGL4fHVcddVGMpko27bdTiYTQ9ctmGYOw8ji8zUwe/YNgEZp6XSuueZpfL4Gcrk0dXXzefvtlZimwTXXPE1p6XRMM4ff/z4VFY0oZeJwFGO3e5kz50asVifNzSuZPftGFi9+kqKiaubO/Q5ebwWmmSWXSwu4shdhpOITWeDHTn5ea/5ZHXzOmNC+jwTF3bzII796uvYZ6j3iXF/shRMDAsxBaPTpjPxhPu2ZsH3PjzmeFz7+4+ScNIkDDz+M1enESKfF2TqX471HHsFIpcTYRSms+Wy3Qxs3kovH8U2ZQuX558vXNhot/MDpNhsWp5OKCy8kOTxMvL+ffQ8+SHJ4mEmzZ3Pwscfw1tUx7yc/ITE4yJavf52xDz6g+OyzQSncVVVYPR5UOCDZ4WfMkor6r38m0WKfHhaDtHQKfvNzcUAPj01kiVtsE4D7t5tg+jn5inwcpp8tQP/we3JMYET6mCa4PPkv+idSeZ97iUSpnUqftzkkDg0maPAWuXl2ldXIx2/mcBVXouUNayrOmMeUi75OdeOXpS/yZc6lE4BGLpNg6JOd2FxF2FxeBg6/QzYZJh4YwMilMLJpMokw/R/+ESOXIpuM5lkuOfo//CO5bBKb00vFGfMorj6bijPmiTFbOIi5Yzta/VTweNEXXobqPSF/T/KEDKsVy9XfQDvvIrA7BLzv2iGz/ukU5p6daJNrwGor7NMsFixLvpV3VU8JbT4cFMPMk91omo7lptvRFy2BWBTzzdehuATN60Nf/Bdosy+ERUsIhCO0tbURCASorKwkHA5jmia7du2ivr4eu92OrutMnz6dlpYWdF0vVMhtNhsOh4OFCxcyY8aMAsU+nU6zc+fOz1HlAaxWKz6fj/7+/kK0444dOwr7q6qqiMfjbN++nUgkwvDwKKAIhbrZseMBdN1CIPApsZifWbOuL1DaOzrWUVIylVhsEI+ngv7+vYRCJ9i69TY8ngoikV5sNheh0HECgU/RdQs7djxAONxDPD7M4cMv4/cfJJEYYcuW7zM21kkmEyOdjmC12qmsnE0gcIyennbC4Z78GDYwLbSvacdT6cHIGDSvbKaxtZHmlc0EugL88d4/ous6kd4IW2/bSnG9gPa+PX0iYwDi/jhWl5WyM8pYvHEx7gqhs/um+Lh609V4qjxEB6Oc/PNJxjrHOLHjBIGuAG8sewPdphM6EWLL8i2EToSob6onPhJnwV0LCPeFqW+qxzANopkoT+x5gjsuuQOrbuW9wfcwlcma9jUFiny5u5w17Ws4t/JchuJD/HD7DzkePI7L5qKpoanQd13HOkKpEH2RPgaiA+zv38/J8Ek8Ng8bFm2gobgBr93L7dtuZyA6QDKXZCQ+wsrmlbQ2trKyZSXBVJAKTwVr29eytftt1Nz1UN4EHz4IsW7IJQW097wslfLESYk1Sw4IwD+8VirtFpcA8YZWqZRb7ALa87R4rE5492/Flfzw6ontmi7GaR8+KGMWDDPTEo828x6ptM9dL4DX4pCK+HjcWGxAwKmm5av2uqzH+sRx3MzmQa3K549bZGyLTYA8uoB51ERE2XgFHeR/3+aR7dFemTjQLALmi2rlGnkKfR6Qird/L2TjUlWPHIcrfiEg3+ISx/SiBqnGX75JKPRGRt7bvjVSVQ93CRU+4Ye5twlt/p0fyGfgLAH/PtGuD+4VTTwIaA93C1BPDMPIIQifkNizM74GRTUYYT9TphTzwgvX4fXamT69lOeeW0JdnY9kMsvoaIL58+uoqvJy442zWbmymdHRBCtXtgBw/HiIW255g97eCIZh0tDgo7m5gTPOKOXpp69h2rQSrFadFSsW8sor11NX5+MHP9hKXZ0Pt9vGpk1X09MTpqsrwCWX1DE6KvnjXV1BkskcDzywAx2NqqJJBJNR7rv8O1QVTcLjcBao7KPxEB67ix9feRM1xRWY+cKi2+5kdvWZ6JrGI2//ioMDnXx/4beoKa5gJBbkiT/9lmAymu+jU+0r577Lv4PTJgyHupJK7rv8OwxGR4lnU5R6SggmI6z544v0hobwuryEkjGUksSG25moeq9GEh/sCG9k3Dq2CAHUryAA+1akOj+IVOYfAy5GLNf68uMoIIZQ36/JbysDfoBMDFQD84ENCHhfkx9rHQL4w3Y7k+bM4chLL+EsKyMbi3HkxRcnKPOGwdy776b8/PP58KmnSI2OYnE4CBw+THJkhAMPP0w2GsXidFJ+3nnoDgdGOs3wgQOkgkE0i4U5t99eOD6el1XZioqY+d3v0nDVVTQuW0YmGqXx5ptpuOoqJs2eTcLvx1lWxoGHH5Z7KaWI9Z7A8N2JZLGbeVO6MIxtgspHxQ8iNwzZ/Hfc3Qxj68HVBJqDNU/u49Pjw6x96D+T67uVXC5HMhFj7+5d/PN/+Q13rHNyqP960Bz84Q9/4MUXX+T888/nySefpLm5GavVyv+t7Qvg/kX7j212u9DjTwXtIAHaq1cLoN6wQTjmTqdUzUMhWW7aJD/ig4MiQL/tNilzQ0Ebz5o1UlUPhWQyQNelchsKSak8GIT77pNJgLo6QeCDg2StLtas0Zg3D/x+uOWWiaHz0noMQ0B2aakA8+5ueQl1dTB5sqS7gbw0r1di2C+6SJ4fPSpzD3/1V1KVNwyZIGhuljmM5maZGFi1Cn73OyEVJBLy0oWIYBAO9+DxCD3dbvdgtTrp799HJhPDanWyePHjWK1O0ukoW7f+IK9ldxIOn2T79h8SDHbT37+PbDaOx1OOxeJi8eLH8Xqr2LbthwQCn9LXtwefrw6ns5hEYoTt228nEPiUTCYmGk5PBVdeuYFEYpiennaCweMYRjYfUeeiv38fodBxdKVPVM/HTekUEwD8szp4q2VC+z6ud9c1ONYjwNxphyk1onfv6hXjuvFJgJ7BCYBf5BHQ/2+d02qldOZM0qEQVrcbm8/HzO98B6vHg26xkE0k0K1Wzv6bv+HIiy+Szs9EG6kUFoeDC+69F5vXSzYWkyr8+MRA/mbCSKUAmHL11VRccEHhB/TIiy9S1dTE3LvvFv27aVI6axZXvfIKZY2NWF0u3lu3jr5t2yCTRhsHzFv/WUD3OHj2Fkt1/FRAPe0cyRi/9gb5TM9onNi/fbMYqmXS8NunxNju/ifhzHMlwmva2fC7X8lxpgElZeBwwl8tF2r+Nf+PjH31X+ZjzuQmt2rmpfiqziy895KameTSCYaPdpBNxVFGDhTouk0A+Udvk02EMI0s/R++hWlkyKUTWKx2Jk27EGUaE1r2T/dhtbsY7X4Xq8NFNhmlfPqF5NJJ3KXVEon16d58372gFHZ3CdWzvoTF5iKXjJ2mO9c0Ha20HMs134CSUqHbmiYEx1CphEhuAqNo9dPQFy2RGprdjn7FNZCMFyYA9CuuxfzwPaHYO92Yu3fkNfPvgMWC5inC7DuJ5nKj2R1y7uoaCI5htG2GRAz9yuswrLaC3ryjo4NMJkNtbS0Wi4VFixZRX1/Pjh07iMVi+Hw+iouLCQQCKKVwu90FfXpZWRlFRUW0tLTQ2NiI3W6npaXlNDA/Pn46ncbj8VBaWgpw2n6l1Gka+507d1JRUYFhGLS3r81rztfidpfT3r4Gq9VBS8sqGhtbaWm5H123Uls7n927N+DxVNDevobDh19m9+4N1NbORynFzp2r8/tkvJ07V1NbO4/GxlZqay9m587VhYmAdDpCKhXC46kgm43R0bEuPwnQV/Do0HSN5vuacZY4iQ5FsbltLHl2CaXTS9m3aR9XPHoFRs5g5+qdHH75MDtX7ySXylF9YTWBTwO0LW0jE5dYzdhgjI83f8xbd7+Fyir6dveRS+ewOW14Kj34an3s3rAbX50PV6mLlvtbUIYqaN13rt6JpmlUX1CNw+eg+oJqNIuGRbdQ7Cjm0SsexapbuW3rbVR4KgimgqxqWVUA06OJUVa2rMSqW1nXsa4A6APJALt6dhX63tt0L8XOYt7qfqsA+FfvXE2Fp4Kh+BDL2padpocPpUIFoH/nJXfSF+6j1FnKSHyE+5rvY0bZGWB1n6ZDx0wKbb6hVejt46D7yDqoWiQgXQHv3gaOCrj4afBOl8p64yo5rnEVjHTAid/C2N7Tt6MmzndEdNjEjk/Em7mnQMnsvBt74nSQrGkCuu0+AdVGSujyaFL9dpTkAXEepBtpuS7biyZ047E+AfPh4xD4WAB5Li3A2Ujn0zosUr0/9bzeGulnmnIuV7lQ6pUpNHVXhdDTO18WzbkyBXxrGrgmiSa9ZAaEe2T8P98jY81bKdT4/evk2P3roHiKLKvmCe397eUyfqxXzrt/Xf59mwL80yFZuipk2fmyMBr2r8fidJFIZDl6dIylS9vo7g4CcNttW8lmTerqfCxfvoWTJ8P84hfX4vHYWLiwnhkzSrDbLaxevZOXXz7MunUdZLMmy5a9wYkTIf70p5OUl6/n1lu3AHDWWZNobm5gzRrRza9Z0042a3LbbVv51rc209sbwTQVa9e289prnfT3R3A4LDQ11ZMzFJOLJjG7+gx0Tecj/6cYSvHS/tfZ3rmb37y7JR+DCTnT4GRgkJ+8+Rx9oSFJs9A0vn3xdRzsP0o8myKRTfH3+19nbu1Z2C1WdE3jw8GjaJrG2rd/xXW/vJ21b/8KUynWvv0rbvvdozzxp9+iaxq/3PsHtnfu5pd7f49VtzISD6A0jbVMgOVFCKU9A+xF4hiXA71ACXA2Qm0fB9hrEODdmj/OgVDl64Ek8D4C5B9HJgieQeIeHwOcCCBz5Y8dAVbmx7pXvgEkAYvDQePSpaRCIZzl5Vy0ahWXPf00jbfcwuiHH2Jzu7G6XFScfz5HXnwRTdMoP//8go79yK9+JexCm+3zHjyGgdXlOn0ywDRxlJTgmzaN+T/5CUX19djcbtw1Ncx76CE0q5VJs2dz5KWXCsfE+/v56NkXMbUZMPpw3pwO0Ith8uPyTpUB1iqwTQcz/x2vXAfuJh57+C/53b+8wtY3foc7uYEy6x/weqz89Y3fBN3O1DMvp6n5KvYfGgXNznnnnce2bdt4//33+c1vfsPAwACNjY3839q+oMr/G+0Lqvx/cBvXtw8NScl51Srhjudy8uN3++0iBr/ySkHJqdTpWvbnnoMTJwS0r1wpIL+qShBxV9fE9jPOkPXeXhnP6RQE7vMRs/r49IQdl0uK9xUVsmvhQqm2P/qoFO67u2WOYN06eWmbN4tWfeNGAeIul7D4xynud90lpx4YgDlzpKq+d6+M29MjEe6PPiqU/FMnBI8enaDVT5kCdnsc00yydety6uubqK9voqNjHYsWbSCZHCUS6cfnq6O9fQ0LF66gt3cXvb27WLLk2dM07IsWPUY8PkxHxzqam1cSifTh9VYV+l9yyZ3s2fM4S5Y8R1vb0lNo8Q9RVFRDW9tSFiy4m3h8mNraeYAiGh06Tdfa17eHhsnzcTi84hB/qhY9HIci9+mZ46fq3TN5yUM2Bz4PDAXEZO6MBkilJSZuPCc+T4EvjD3ePrs9f45sJlOIMrtgxQrSoVBBx2XJ/7iNU9+VaWKkUuhWK5loVMxbnn2Wmd/9Lq7ycmxFRRipFGMffkjpOeeQDoVI+P24J08WndfSpThKSvjgZz8T3buuo0yT9x99lDk//CHpYFDOvXQp7qoqYn19uIq8uEuLpbo+nh3u9YlufVx73nCGOM4XdOvVMruTy0FfF8xoFAf68eMnVYqr/P4/Cwj/mx/C6JDsX3y9mNU5nfI/aLfng+uV3ACPS1AyaXj1l7D4mxjV9YAiHQsx2r2f8ukX4/CW0v/Bm6fo1BcJMLc7GPjoncL2yrMWcOxPL1FcfTZVMy9F060SS2aaZFORgpZdtO1F2N3FZBKh/PZ52BxeMTPLJGTbjIuxOjxoutDpBw6/g6e0llL35EKOuFZSJjr1cXpz30n06jrM/h40XzEqEkavbZDQRYv8AypNR1MKo22z0Nsb52JZcj0qHkVzulC6DuG8tr3lCqHT956Y0NW3XC458un0BEW+cS6WJd/CMAzGYnF27txJU1MTXq8Xu13c603TZMuWLRw+fJjGxka+9KUv4fF4eOONN1i4cCEWi4WdO3eyYMGCgn5d0zQikQjZbBav14uu68TjMn5LSwumabJ3716uuOIKbDYbpmkSDodP07tbrVbi8TgdHR00NzdTXOxF1zklB30l4XAfxcX1eDxVp1DabWh5Gmko1E043Fu4BrW0rKK0dEY+T/30fU1N91JWdmYhISMWG2TnztU0Nd2L11sF6DgcRaTTEaLRAWIxP7W189m6dTmHD7/MnbeNMXQgQN38OrbdsY15t82jZGoJFodFjIpNieJEh/69/Xgme4gPxam7pI4tt27h8MuHuaHtBorriwuZ5UU1Rdi9dnLpHP17+/E1+CiZUkLbzafT8OOjcbxVXoJdkjvesqqFkhkl5BI5+vf1UzW3CtNmknSJvMZlc32Orm7JV5rtFjuJbIJQKkSlp5KT4ZOs3rm6QKGfUjyFaaXTyBgZrLqVWCbGPW/dwz1N99AX7qO+uJ6pxVO5ue3mwvgPXfYQOTNHubuc9wbfK1DtVzavZEbpDAxloGs6Hh10MweJHgHtjasEyFs9YHGLjj0bzNPf7wdPg1TFS+aAykHoI6i8VAzRshHRvo/T6pNDEo927o/BM0Uq72P7hQ6v6RPn886AXFTo30Ymr5O/CHSnxEPp7gndObpck0JdAqpd5QKGQVBdXuJEuHtif1G9VK2N9MQ445rzWJ9U5T/bX+UjqAr97QL0vTVyXdTFiIt0ND9J0AXRPHV+3xqhwhc15HPF74CSsyAxJCyEbAzcedO69zdJ7JiGjL93tRxbPEPGtNih48EJbfvlm2Bwn4xdPE1+0ELdYHPKZ37qa/jSRgAiho9Bf5IHHthR0KRv3LiYkZEEdruloF8f16ErpejtDeN02vL55CHWrNnJqlUt9PaGC5r1TZuu5o47tvPzn1+NYSj27u1j7twqhofjPPLILu6/v4WpU0uIRjMFQsMHHwxRXV1Eb69o6Nesaefeexdyzrml9ISGeHHvH/ju/L+goWQyWcMgY2R54k+/5Y7LbmQsHuLFfa/xvflfYzQe5GRwkAVT5lDhLWXdO3/P3V/+GwzT4CN/FzMrp6FQjMSCvLT/db43/2uYymSSu5jReIiX9r/OTZd8nWpfOQOn0OfrS6roCflPo9PbLFZMm4NjukV068D0/C1LB3ABojP/FvBVYBMCsqOconUH3MCk/G1OHCg+5bkO7EcM7Abzx2xEQPpqJijxXiZC0nLIxIEbIB7HDARwTZpELpkkNTJSuP9w19SIw7yu8/Hzz8u9S2WlmMkpRayvjyMvvsi5eU16LpUq0N0brrqKc+++m79ZupSPDx/GabfjSiZ59oUXOO9LX0K3WvnJT37CP/7jP+Kw2ykrLWX1vHnMvOkmjvj93HXvvSRjMSJDQ3znu9/lpiVL8FSVUzSlFEviFUjugsqNE9T47HHI9oJrHpCXxyTawX0Jj//dl/ntK4f448tfo/Scv4fsCRhbzdIHDOZecCm3Lv9bAoEA559/Pps3b2bevHkMDg5SXS1mx88//zzPPvss+/fvL3iL/J/Y/mtU+UK26xePiUdtba36ov0HtmhUqRtvVKq3V6nRUaUGBmT90CHZNzCg1IEDSrW2KvX++0rFYrKvrU2p4WGlIhF5hEKyzemUvqGQLEGWwaDs37tXlqGQjB8MqmjEUIGArB48KN0PHpThn3xSTv/JJ7J9fL21VZYDA0olk/ISTt3u90+cOhSaGHfvXqXC4c+PdeiQvLVTX3Zbm2x/6620SiSCanDwoBoZOaI2b25VDz1E4Xlf397Cts2bW9Xw8MfK7/9ApdMx5fcfUps3tyq//6CKRAZO69fbu6fQf3DwoOrsbFN+/0E1OnqscNzAwLsqEhlQqVQkv++oGhw8mB/zkBodPVo4/+DgQZVMhlUunVQqm1Uqm8sv849MVqloXKmPu5RKpU/fl83vO/ypLDNZpVKpz/TJyXGZzMR4mfy+eHLieToj66m0UvGEUqm0ykSjateKFeqTX/9apYJB1bdjh/ov55+vdt55p0pHImrsyBG188471ehHH6lUOKwCn3yidt55pwocOVLo27djh0qHwyo+PKz6//xnlRwbU+lYTCVGRlQ6ElF9f/7zxJjhsEpFIiqQHzdw5Iga/egjFerqUjvvvFP9dtYstfPOO1UqGFTpaFQZ8bgye48r5e9TKh5VKhJUKpVUKhKS5/GoUsm4UrGIUqExWR/oVSo4qtQHe5UaG1aqt1upoT6lYlGlwkHp29Ol1DOrZRmPyvPvLVbq+Ufz40WVisfk8cE+pbo/meifTEz0f2a1ymVSKptOqJPvvq4+aHtMnXz3dZXLpFQiNKROvvu6SoSHVTadVJlkVGUzKZUIDxe2p5OR0/qkomMqmx8vm4qrXCapctl0YZlNJ087TzoRVr3vb1XZbFpl0wkVDw6q3ve3qmR0TKUTEZXNpFQunVJmKqXMRFwZibgyRoeVmUwoM5VSxsiQbIuElRmLqlznYWX0nVTZzf+gjME+WR/sLxxn+Ptl30CvMsJBZURCyohFlJlMKGP8HMmEMgb7lBmLqezmf1CZh+5U2c3/oMxE/pzjY/j7lTE6orLJpIpEIioSiahUKqVSqZQKh8Pq1VdfVZFIRA0ODqrNmzcrv9+v0um0SiQSKhKJqHg8rjo7O9XDDz+sXn31VZVMJlUymVSpVEpFIhE1MjKiNm/erB555BE1Ojpa2B8Oh1U4HC6MMzIyolKplEomkyqdTiu/36+OHTumUqmUSiQSamBgQMViQeX3H1KdnW0qFhtWyWRIJZMhlUgE1L/8y7dVONynIpGBwuNf/uXbKhIZUPH4qEqlIqdtD4f7VCoVUYlEQKVSEZVMhgpLuW7tU0ePblGh0EmVSkUKff/wh5tVJDKgEomgisWG89ceuR5FgkMqFUmpZDipEoGEGnx/UG1u3awiAxEVGYiokSMjKjIQUUe3HFX+g341enRU+T/wq0QwofoP9KvNrZtVfCSuXr3xVbXnyT1q5MiISkVTyv+BX21u3az69vapzrZOlQwlC/39H/hVbDim+vb3qWPbjqlUNKWSoaRKRVLKf2jiuOhQVPV396uByIBq3dyqntzzpHp/8H3VurlVHfIfUsFEUG05ukV9PPyxCiVDqnVzq+Ih1I2v3qgiqYj6ZOQT1RfuUyPxERVLx1QkFVGj8VHVH+lXW45uUUOxITUcG1ahZEgNRAbUlqNbPjf+UHRIvdv/rhqODatjo8dUMBlUoWRIHRs9pkbiIyqYCKpcOqzU6LtK9bUplRxWKh1SKjWiVDamVHzg9H2ZiFK7blTqkyeVGj2g1M5WpQIHZfv4+ugBpRJ+pUJHlEoFlUqOyPHxAaXi/bJ/1435fcNKRY4qFTg0cWy8X6l4b37sD5XKxpXKZZUyskolxpTq65BlOqbU2CdKpaNKZVNKZU7pl8t+fn8uO7E/k5hYz6aVymWk39gnSmViE+uZuDwfP18uK+vj58um5JGKKBXtV2r0iFLJoFLJgFJdbUr531Xq3SeVer1VqeiAUkMHpd/rrUoNf6BU4Jh8DoGjSg3sVyoVUio+LOvxERk3GVRq+FD+mEOyLRWS15MKyetMhWT8ri1KxYfkkQzkX0tQxYIBFQgk1PvvD6rW1s3q4EG/ikZTKhJJKb8/qt57b0C1tm5WH3wg28PhpDp2bFQdPDiotmw5qsLhpAqFkioaTakPPvAX+gaDCRUMJtShQ7Jt794+tWXLUeX3R9XISExFIikVjaYK+w8c6Fe/+MU+dezYqAqFkqq1dbOCh9QbWz9R0VRc3fPaRjVn/V+qe17bqCLJmPpz13vq6NBJFUnGVDgZU/e8tlFd/MRfqz93vaeiqbgKJ6LqxGifCidjKhAPq9FYUMVTCTUWD6tIKq4inxkzmIio+9p+rn777hbVPdqnRmMhFU8lVDQVV/F0QoWTUdU72qfG4iEVTsZUIp1SwURERVJxdTIyqgZMUw0opQaUUjcqpQ4ppfqVUq1KqYNKqTal1D6l1FGl1Ei+z5NKqY+VUkGl1C+UUgfy/Q8opaJKqbRS6gOlVCh/zJH8fj7zvDU/TiB/3vExnlRKfaKUOpFKqfjQkIr7/So5NnbafUWoq+tz2xLDw2r08GGVGB1Vn/z61yrU1aXS4bAKHD2qMvF44Z4n2NmpQkNDav03v6nGjhxR4RMn1OOPPqoubWlRSim1ceNG9fWvf12l02mllFK9J06owCefqFB3t5o9c6b67dNPq74dO1R/V5eqqKhQB/d1qGz4XaX6vq1U6mOlkoeUyvQq1XejUrmQUpE2pRJ7leprVSp5UKlcRKlPnKr3yEsKUNOneNR5c85W5503R82bd7FSRkSNjgyo6667TjU2NqrGxkb11FNPFSDFQw89pM4880x1xhlnqOuuu0719PT8j+OU/80N6FP/Dkb93w6S/3/x8QVw/w9u6bRSH3yg1NDQvw2uPwvAR0el36kIu61Nqb4+QbnjKPjYsYk+46h4fP399wVpj4wodeONKhY11MCADP1ZrD80JOB8bEwOP3Lk9D6hkLyNz77MQECWH3zw+X3jQP6zYw0PK7Vt28TbGBmR5XPPpVUqFVWpVOz0m9jIQOEmewJMf6BSqahKJkNqdPRTFYkMqJGRI/kb5rAaHHy/AOQFqB9S0eiQSiQCKpkMqs7ONvXIIyXq6NEt+RvusEomwyoSGVBHj24p3HSPg/9kMviZ9ZDKZvKgOZUWMJ0HzyqbVWo0KMB6/Hk0Lsvx/ZmsPD/SLc/TmYl+4xMBqbRSkdjpY40D9kxWJgYymdOOzSYSKj48rEY/+ug0QB745BOVCgY/B6ZPXU8GAtI3D8Ljfr8aO3y4cPw44I8PDRX6pcJhlY5GPzduYnj4tB/I+PCw2nnnnSoXDk0A8IEeAeTJhFKH9pwOpsMB6RMYkX6BEQHdoTHp89l9qaRSiZiA9pOfKnXimPQLjgrQP7RHJgdiEQHxpwB1lYhNAP/e4yqXTatMMnoaUI8Mdat4cFBlU3GVigYEhGfTefCdyD+Shee5bFrFQ/788UMqFQ2oRHhivPFzZNNJFQ/m+4X8+TGSKpuOq7D/uIyVSUn/RFSlExEBy4OngOVI6HPAPHf0Y2X09ygzFiuA91znYWX0Cog3Y1FlhILKiEaUMexXuT1/VtlXf6vMVHICiA/2yaRALKaMWETA/innzXUelv7hkDIjYQH78bhKRSJq8+bNas+ePaq/v19t3rxZ9ff3qz179hQAeSQSUdFoVA0PD6twOFwA84ODg6qzs1NFIhHl9/sL28YBvN/vV52dnWpwcFC9+uqrKhwOF0B6KpVSsVhMjY6OnjZeIpEoHHv06FGVSCRUMhlWR49uUcHgCZVIBE8D4cHgCZVMhlR//3uFa0EsNqyOHduWv74EVSoVUUePblF7925S/f0HCtep8evO4OBBFYsNKb//kDp6dIuKRPoLYP/VV29U/f3vqv7+A4VrVn//u+rVV29UkciAXNOGupX/kF+9euOrKhlKqs2tm9VDPCSgOQ+0+w/0q1BPqADS927aK4A7klKRgYhKRVIq3BeeAOaH/KqzrVM9xENqc+tmFRuJqaNbjqr+A/0qNhxTnW2dyn9IJgH69vapza2b1eDBwdPOv7l1s0oEZIIknAyr9wffVze+eqMKJUPq4+GP1ZN7nlQ3vnqjGo4Nq2AiqMbiY6o/3K9ufPVG9YH/A/Xp2KeqN9SrDvQfUK2bW9UH/g9UIBFQR0aOqL5wn9q0d5Nq3dyqRmIjaiw+plo3tyrnw07V1tmmRuIjyh/1q5GYAPPR+Khq62xTm/ZuUgcHD6q2zrYCwD84eFAZ6ZCA5N8iy3RAqXRQAPc4SA99LGA8PiAgO3Rk4phdNwpwDx2RvrtulDESfhlnfIzwJ0qlxvLbQ/LY2arU6N7Tzx/6WB6/RQB/NiUgNROfAOOZU0B0OqLU2NEJsJ0Yy4PrtFLZpCzHwXw2ld+fB/DZdH7MTtlnZCceibEJgB7tlz7j+8ZBfjoqY6XCAqwfQ5ajH5/+fOigUu//QqnuLdI3fEJA9sBeWSZGpG/4hAD+gb0TYN9/UIB8MqhUpE+prd/OTwIcku3DB6Wv/8DEJEF8WAC+/4BSXW0qHfKrUCiptmw5qk6cCKqhoagaGoqqYDChRkbi6ujRUTUyElPBYELdeOOr6uDBQRWJpNTAQET19obUjTe+qj74wK9GRmIFAB8KJVUkklIjI7ECAG9t3VwYJxhMqL6+8GkAvbV1sxoaihYmBA4elImEsXBURVJx9cnQcXXPaxtV59AJdTIwqD4a+FSdDAyoUDKqTgYG1NGhk+rPXe+pT4ZOqHte26g+GTquTgYGCscNRcZUZ35f59AJFU5E1eHBLnXPaxvV0eGTKpKKFfZ/7O9S4WTstP6jsaAaioypo0Mn1cnAgArEw+rPXe+poUhABY2calNKDanPg+nx58H8I6KU2qKUei+//V0lYD+kBIw/qQTUh/O3vYn882i+3zi4H1AyIXDqGGElEwTO/PZA/nzJWEyFurrUrhUr1OhHHxXuT8YOH1af/PrXp92fjG8bLyqM3wN1/uM/qp133qkysZjKZTIqHYmoxOio2rViReG+JR2JqD27d6spU6YopZSqra1VnZ2dp93GZ+JxlRgdVefNnq023nefGv3gA3W4o0NVT56sfr9smQp+8qHKJQaUyvqVykWVimxTKnNCqWxAqeyIgPYjyDIXyoP4D5Uy4koZEaXM9H8fvvi/pP3XgPsXVPl/o31Blf9f0JJJ4ahPnixUtHGr9enThXN+/LhQ3letEqG5yzXhNN/aKlbu778vhnQg7m6XXgovvii89HykF9//Pvz2t3LML34h7nEVFURnXszRoxp+P9TWCmN/5Uo480zRmu/dK+Zy06bJ8MePwyOPyMuZPn2CZfzppxMvc8YMYSBbrfKWxvfdf7/sG4+SO358InKut1dY/3/1V8JSDoXk/A0NcZzODOFwD9HoQMFtWfTlujieW+yYpsTBhUInaW9fTXPzfUSjgwQCx5g9+0b6+/cRDHYzffrl+Hz1mKaBUia5XBK73UsulyIaHShQWieoq156enYV6PDBYHeeEns/paUzCAY/ZefO1TQ3r8TtrsDh8OHI6mIW57BPuMe78vE3honwWpEsd49L6PG9fqG4pzPiQF9SdLrLfHE+WCWTBTTRxo/ntdusMq5FFyq+YsJZXkE2m0HlcqdFss176CGUUpjZLKnRUQ4/9xyzvvc9PHV1hRiVc5ctw5OPN9n30EP0bNvGta+/zodPPcXMb3+7oOVquOoqZi9fjqu8nFwyiW6zoTscxHt7C/Q1b329GMS4XFidTtA0Dvz0p5xoa+Mvtm/DXV4uWeTZtJjtudySpf7Pz4pT/IVN4HDl3YQzcKIT6s8QDYZCaO1Ol5goHP8EaqcJFT6dgld+CYu+IbFwwh2HcEAM7yIhGd9qlS9e9xExqiurEFO8aeeA3YGhawx89Daukiq8FVOwObxkkhE03UImHsLqEH36eHxbOhaUqLa8A/3gxzuoOfdyEsFBrA6XaNdLqhg4/M5pkXCmkUOz2DBzGUwjg8VqR7c6yCTCjHbtp/rcy1FGFiMn+zSLDWUaWJWOseV34iI/42w0j5fc4z9BO/tc9EsuQ6US6PXTwDRQugWCo5gdf0JfdC2aRWIA1YgfraoWLZdD6RrmH7egL7wMrbgU441XUYcPot/wvdMc51U0ilY5Gc3uQMVjGC9sxHrrvZiDfRMU+ubLMX0ljEUiWKxWduzYUaDFX3bZZQUae1FREV6vl48//pgZM2awY8cOOjs7uf766wv57n19fbjdbuLxOKWlpZimSUlJCUop2traqK+vZ+bMmfKvksngcDjIZDK43W4APvroI0pKSqirq0PXdcZ/95VS6LpJMPhpQXYj1wCwWOykUmHc7knougXDyBEKnaCj41FaWu7H56snHvdjtxdhs3nQdQuZTIwjR37H9OlXsGPHAwXpzdVXP4XV6sA0DSKRXiKRPurrFwLi52EYad566x6amlYQDvfyT/+0hMbGVq655mnI2Niy7E06X+vk9p7biQ5EaV/TzrXPXMsbt7xRoLYv3riYxGgCd7mbt+55i0XrF2H3iqRGGQo0Tot/G494a1nZgq/BRzaRxVHkIBPPcOR3R+jb3cc1m645zcX+uheuI3Q8xM7VO2m5vwVvtZecK8doapRJ7kkoFHbdTneom4d3Psz9LfczrWQa3aFuVu9czX3N9zGtZBpKKRK5BDo6P9z+Q14+/DJtN7Sd5ipf56tjOD5MtbearJktxMLd23QvVd4qNDS8di9dwS7Wtq9lZfNKqr3V/GDbD7hrwV1s2L2hQKn/7VdfwBLvlhz1c+8XrbqZzUe+5aPezr0fPFPlOqFM8cGIH4ePH4ELNkJ6WGjvM1eAu0Zy2nMJGSsbFQO6I+smHOVHd0PpHEiPQqIP3HVy/Kx7wZm/Jr13O1z0VJ4+bwgd3chOuL8rQx75uDvRQJ0S7eatE8q8bpP3o5TQzpV5Srxb3SmRceXgm3a6W7xuFX25b4po4sdvicPdYjJXNlPM5ZQBoWOiO5+/SnTmO27PU96ni4Y+mwBXGfn8LNHoW11iBGjzQqQbYn6oWSC6+BNvwtTFcq7y2fLe7MVyfqsTBvfA5ItOj4hb8JC8N1+D9HtrKXS9RvI7g4TiFkxT4ffHWLeuo+AEPzwcZ/JkD5qm0dHRyze+8TK/+10rc+dWYbFo2GwWlFIEAkni8Sxr1rRz333N9PdHqK8vxuWyEotleOSRXaxa1cK0aSXEYhk8HhsWi4ZpQnd3kDVr2rn/ftkfjWaw2y3oukYqlaO4xI6hGxzs76TEVUQoGaXU5SOYjFDlnYQ/Nsa5VTNwWO2YyuTv3ny+EOn2o8u/zSNvv8T2zt38/jsb+EXHK+zoOsCGr97J7OozGAiP4LY7mewtI6cMLJoFU5nomoahFAf7O7nrtcf50oyL+P7Cb1HiKuLjoW7OqphCLJ3AbXfSPdbH7Clz6NQ0/Ijj+1pEb16OGNatAqYB3wfuASoROvsY8BaieZ9Dntae32ciOncXolGPI3T5cxEzOxeQkv8GPPINZwDw5fuWAMF8n7MSCYx4nOTwMJ3/8A/MvecerE4nuWSS4CefMKmxEd3hQGWzGJkMBzdsYNb3voe3vh7TMDCSSd5/7DFmfe97FE2bhsVmw8hmSYdChbi3c5cto2jaNL793e9SVlbGT3/6UyZNmpR3dH8FgDvvvJNvfeMbRI4f5+jgIN+64QYysRiRTIZH7ryTij/8gYarrmL+Qyuw2UbBNhXISjScioOlEoyRvIP8/WCfARgSE6d9xg/r/0/bF3Fw/43tC+D+P6llMhNa2s+a08Vi4grn8YhI3OsVLXs8LgLx886T7SUlcPAgXHihINwNGyZ07eefL1r58QD1YFDGGR2d2OZwyHjFxQLmHQ7I5YhYS9m5UyuYz1VUCNhWSrD9uedOJM9pGuzaBRdcIAbTNptgHYtFtp9zjgwPool/9FEB5dXV0nc8icPvl/NYrXlpMQLi8/fWPPigOMy/8gpcfnkE08ySTAZwOkvo799HcfEUSkqm5bWoq1m4cAWlpTPQNI2ennZef/0mvv3tdrzeSpQySSRGyWQSRCI9FBfXYbW6cblK6evbi9tdTmnpdKLRQaLRfurqLhEHZ0zGReiZTBSbzUMmE2No6ANqai7CZnNhmjmUglhskO7ut+jv38e11zyNo3tEAPe4Wdy5Z4DXLaB7HKDb8rE+KPi0F8ZCMGuGAHTDFCO68Ri4MxpOA+KkMzLOtNr8Hyb/XTLMvClhTsYHiMTIOqwkAwHJG81HshXV1TH07rskBgepv/xydIejoEc3Mxl0qxXdZpMYuVM07Bf86EekAwHZVlVVAPzO8nJQiuAnn1B50UWYuRy61YoyDDSLBTOb5eTWrYwePMhF99/PyMGDlJ55JtlEAl91FVo6KRr37ZvFFK58srjBJ+MCrrf+s2jbyyrkxtZqg0wKersFeKNgbBhCo6J3z6Zl39SzIDAsUXIl5ado3MsE1Ht9+Ztcq4ynkAkQi0008yWTwOHE0DUyiXA+h30eVrubZHgYd5nESRnpOEYug83lQ9fl5s80sqQio9g9Po796SXOuuy7mGaWbDKGu7QKNEsBhFvtLtFNa5q4v+cyGLk0FqsDpUz8R/6Mu6yW0rpZn9HZl4Cp0EzRu2qmKTr24hJUOCTZ6labaM/DQQHczV8Bmx3SKbTi0oLuneLSCQ178+VopZMAxJjO7cbc/Scs13wDY8vvTtOvq3AQFQ6JZj6VlDx4i/W0fvplV5K1O8DpKsS/tbS04PP5CgBa0zRM06S/v5+6ujrC4TBWqxWPx8Opv89bt25l4cKFmKZZMLMbz3wfz2qPRCKFvHer1Upvby9er5eioqL8/7SA+Ww2yzvvvMPll1+Ozabo6dmJx1NBPD5CTc1FxOP+fJ77hC9GUVENg4Pv8U//tIQbbmjD56ujo2M9V1/9cwCy2QR//OO9LFx4N8XFUwmHTxTiKK1WFx6PXJd6ezuYPPm8gv4wk4nicBQTjQ5it3soKqohGh3A4fBht3vAtBM6FiLcG8HX4BMjuQoPmlUj1D0Bosfj37CAyinxOMiZBI8H6Xi0g8UbFxMfitO+VrTqpdNLMXMmuUwOq0My28fj4prva8Yz2YPdayfYnde3/1jOoZQiG5cLuM1j40THCXyX+BhJjdAX6WN+3XxMZZLJZXDb3Ngtdvqj/Wzv2s6+/n2s/spqHtrxED+7+meYyiSRTXDPW/ew8aqNLN8ykdP+3JLnxNMgHcFusWOYBgBeu0xmmspkKDbEscAxKjwVjMRHWFi/kBOhEwxEB07Tu59bNlWy3lVOQCsaWJwQ7YZkr5jTWZz5OLWkAGWLTdZBgPG+ZRORcPOek+25BAQ/gIp5sO+Wif0XbZLnnjOgfD5oCrCCEQNrEeRiAvQtHnDVCGDW7GBmJuLYSqZL9FqsXyLVrE6ZTND0Ca162Uxxhh8H98oQ4A6iCU+OCMAuni5jj0fNhbtO17qnQwKyx8+l22SMbBwcPtHkKyVGcemQRMFZnXkXe7tkU5s5MZWL9UPFXDne5pbjIj0QH4TyWQLMIydF+141Tz531MSkwMUrRPseOSn69v6dp8TL3Q/uSpmYsObj9cLdsH894aYXuP32bTz22JWMjCR4880uzjyzjJqaIgYGopx3XhWRSJriYgfxeIaKCg+mqThxIojfH6epqR6lKAD7r3717M/FxaVSOQ4cGGDu3Crcbhujowni8QybNu3j8ccXYxhyvUoksoTDaYqK7LjdNnp6wgwMRLnsK3X0hEXjftP8rzEUC3Bu1Qw+8ndR6iriH9/bxh2X3YjT5iCVTfPEn37Lty++DqfNQTKb5pd7f8/dX/pPEjWKht1qI5PL4rTZ0dDoD4/wwt5/4dsXX0ddyWQGI6P8Mp8DPxoPcmZ5AzaLFatuwaLrnAz4+fW7b3D7pX+F2+5Et9gJWyyENY2q/J2QArKIeVy+/MB/Af4VeA4B1APAI8DziPncScRwbj0C4jX59pNDTOniyKTASsSxfgwB6i7gKBInl7dwI4xo3j8EWrJZHNksyjTRNI1UIEA2HsfqcmGkUoX8dt/UqXJfYxjoDgcWm3yfjWxW7nPs9sK2wvZsFkwTzWZj7dq1vLFtG++88w6pVIpJkybxk5/8hAceeIATJ06wcOFCtm7dyrmzZnHDDTcwM5Hg7JMnsV5yCXdu28baRYu4buV9FDWUYrG5INudB+n3geaRT0kvBt0jHhdfgPXPtS/i4L5o/+vbeIb7974ny3zudaFZLFJJHxgQxDo8LAZzDgfMni3B5rNmiVHdxRcL0h0ZgWefFdD+rW+JO1xPj6Dh5culiu/1nr6tu1tK38PD+diwT2H3biy6+N499pjMFSQSkkx37JicbnQUli0T07hoVFzmnU4B3V1dUvzv7pa5gfG+J0+KAf7LL4vRnMsleDKT/82vqpL1fCoTVqtU+GtrBfivWCGJeA0NoJQTi8VOLpfIxy1VUlxcj1LZ01yZTTNLW9tSfL46brnlEG73JJSSnxePp5KSkgamTLkMm60Ip1NuOuvq5pNIjKJpGu3tq/nHf7yGN964BaUMMplE/niIxcRJ3mKx4/FUsn37HZimgZavfhhGmt7eXTQ13YtVswkwz2YnXN2LPAI2T3WD1/PVcV2XfvPnCGjP5AQ4ftZl3mYRYK4hx4/ntR87KaZ0hgmxhID6E/2yjMTAbkOzWHCWleEoLeXCH/0IT3U1hmFQft551C9aREbs+0EpUoEAydFRRt5/HzOXI+H3s/fBB7G4XMx76CGsTieOkhLKZs3CXVXFhT/6EUVTpmBxONBtNiouuAA0jcTQEHsfeIBYXx/ZWIz9P/0pk+bMYe5dd4GuU3rOOaRCIT586imUaYhr/PbNE67yhgFHP5A4tq3/DAf3gN2B3GhbBJg7XFA3HV5+TqrzZRWy/k9PyxetbjrEIlBcJq7zoTH41k3ST9cFlJumZMeTB+8oOfevn5SJFYsFknG0VAqbu5ja2Yuwu0tIRUboee91ksEBlJFFAXZPKZoG8cAAppFFt9hwl1ZjtXsoqZmJxeHGanfj9FUweHgH2WQEAC1/WxQP9JOOBVG5jBjP5ZsyjEL0G6ZitHs/4cFORrv3o8z8ZI2mQyQkGe0erwDphulQXIrm9aFpGioSRnV+hNn+DprXB7plon8kjAaY7Xln+va38476oPl8qHgMy9XfQFmsAuob56K3XCETDZEw2uQaVDIhfyOr7fP9nC7JfQeKi4tZsmQJkYi8/2AwSFtbG8FgEF3XKSoqYsuWLfh8vkKlXNd1crkcuVyOuro62tvbsdvtheebN28mGo1SVFSExWKho6ODuro6lFLE43EmT56M0+nEZrNht9vxer0opXA4HCxatCg/caDj89WTSIxRX78Qm81NJDJAZ+drtLevwe0uZ8+eJ9A0nYaGJm64oY3a2vl0dKznkkvkmtDb20EsNkRt7Tza29eKObe3hmuvfYaSkmlks0na2paSzSapq5uPxWLH4SgikRglEOhC122Ulk4nGOwmGOzmz3/+qXwHlCKTCxJ1fERDcwPtD7ez6axNbLltC9l4lpJpJVz7zLVE+iIETwSJDcUIfhqkbWkbY0fHyKVylM0oY8mzS9AtOq5yVyEOru2WNkInQwzsHyDcE8bmtmH32KlvqqfjsQ6sTitb/3YrJVNLWLxxMSXTSsilc/Tu6sU05BqpaRoltSU4TAd9kT4qPBXcvu127Lodp9XJ7r7ddAe7+TTwKU31TaxftJ6Phj9i9eWr6Q52s7RtKcPxYR654hGUUgVX+R+3/BilFAPRATQ0DNPgvcH32PzxZo6OHeWm12/iZPgk1UXV1Ppq2bB7A3W+OjS0gtv8mWVn8sy1z1Dnq8NQoGJdUmFP9kulOxsF7xSJiNPzN866RYCkpolbfNIvgBddqu7XHoELnpAqOkjee8k50rfxvryj/ErIhmDy5VBxCcS6BNTHugS0x7rh3R/KtcpZKVX91EjeKA5wTsrHuHGK43t/3nTUQsFZvmymgGoQszb5woihXS4tY7jKZWmkxZ1+fCLiVLd4zSIu9aedKz8RYC+aAO1mVirirkkT0XZxv0S7RY7Ltr2rpXKeGJJqfOjTfLXdBTWXyFgoqfZXnAepMRlT02SsC++SZSYime+aBtXzoXgqLHpWquy/OkfGHp+AKZ4BV/wCq0XjiScW098f5cEHd9DUVE9TUwPr13cwf34tNptOV1eA4eE4Ho+dpUvb6OkJ4/U6mD27kmPHAixfvoW5c6vo7v5bnn32WqZMKWbjxsW43TbS6Rx33LGdqiovXq8dpWDSJBeDgzGWLbuIrq4gS5e2ceJECKfTyoMP7sDvj2Gx6PT1RSgvd+MfjDPJXcytC79FXclkLqg9B5vFyvm1ZxNOxfjhpTcwlgjz0zefJ5iIsPKK71LhLaXI4cZlc3D/opvwOtwEEhGODB/HHxll3b/+PT1BP4lsiqHYGNs7d/PS/tcB+OXe3xec4+fWnE0oGWXt27+iNzREPJNiNBHi3OoZjMZD/N2bzzMQHMQHTEZA+p78b1EOAdRLEVB+I/AUAsCHEeC+Sf6ymAgon4eA9KXAMQSAa0Apkt1+JxITl0Sq73fkj69jIv5tEMmKHwIWIgA/m6+4ZxMJHKWlfPz882QjkQnX+BdfxMxmMQ1DXk82i5GvFFlsNmwez2mgvbDd7UZ3OFj7wAP89pln+OdNm3DYbJSVleH1evnrv/5rAKZOnUpTUxP79+9nZHiYP7z+Ove+9BLXvv461z3yCJdccgnxiy6kqLILy8kpoDIC2qMvw9hasFaApQr0IrD4vgDt/x3tC+D+RfuPaZnMRNzb6tUS2XZqMwxBzE88Iai4uloQ7cMPCxJev17o7fffP1GSnj49D0zqBOEWFYlb/IYNE+eJxSa2vfaagPyLLxZOej4KjooKjFiCNWsmEuVCoQnArRSFfevWTSTNff/78jZOfVuaJpX0u+6SU82bB21twuTP5YQksGePnBrk+ERiIpI+l5NjQej0mzZJit2tt9oxTcXOnWvo7HwNp7ME08wSj4/Q3HxfIZ4plQqzaNEGPJ5KrFY3ev6GQtMsjI19SlvbUkKhbmw2F1u33kY0OkBf316Ki+uxWByFsZqbV5LNJti+XWLiJJ/dQ23tPFKpMGVlZ3LNNU+haRai0QFyuSSlpWdw3ZLnKS89E4vFJo7uRR6w2yaq5RaLUObHwXg2J4B7aEz6ZbJw9KR8GOOV87OmTLjGa5r0MZUcX+Y7PXIuZ8iEzKnbbFbo9UvVW9MEvBkGBx5+mMTAgLjDf/ABRjLJvp/8hMiJE1idTiwOB86yMvY99BDuyZO54u//Xvo89BDxgQFy6TQWl4tUICAu9Om0UMxGRxl57z2MdBpXeTmT58/HNXkyVrebC1aswObzYfPIJIbN4+GTX/2Knm3bSAaDKJdbKuHjEW9KQVE+Pu+a/0dy2jNp6DosWez/5RkYHhAGS+tSsDvhxFH5nL7+bQH1kaDkwocCcjNZP0O+cFabTAiMDAqt3uGEoQHJd4+E5LPf/2fY/oqAeYsVZbeDUijTID7Wh9XpoeGC63CV1pBNxcnEQ2STYQY+egenrxwtn9euzByarjP5nBayyTCDH+8gl07gKq0mm4yhW21YHS6SoSGcvgpsTg9oGrlMnE93/oZkeBirw43NXSKVfE2j4oz5+fz2+Wh6XgqDErC+4DJUPCbV74zIDlRoDKPtFTRfMZZb7paIOMDsyEe77f6T9A8G0K+8Dsvye9EX/4W873RqwoHeakXLpqG4BMviv0ArkZg1vWE6xKOYO7ZDNAyGgWYaUFKK5dpvgtuDqeuk7Y4CSA+FQlRXV+cnzdo5fPgw7e3tKKXYuXMnH374IYZhEA6H6enpIRgMsn37duLxOLNmzWLx4sV4vV4sFgvNzc20trZSX1+fp7zrtLS0MGfOHCwWC8FgELvdjsvlIpefPMjlciSTycJ6IiETdZFIL15vFVu3/oB0OkJ9/ULuvHOQxYs3kkwGuOKKR4nF/GzZchvV1RdgsVi5+upN6LqNrVuX4/FUEIsNMn36lSxevBHQ8hOPKTRNx2p1UF/fxMjIYSwWJ5qmk82KTGc89i0cPkll5Wza29dQWzuPaHSAtralRKODVFbMBmDJ80v4qy1/xRWPXkHMH+P1m14n2B0kcCxA++p2nMXOQnTbnif2YC+yY2QNenb1EPVHcRQ5sNgsbL99Ox/+9kPa17TjLncT7gkTPhlmx4M7qG+u5+pNV6NbdBY/vhgjY2B1Wgl1hdi6fCveKi+aprH99u0Eu4KYWROnx0lTQxMj8REW1C3gZPgky7cup9JTicvm4uLai/HH/LhtbhbWL8RpcZ6W727RLPhjfqaXTOfpa55maslU4tl44edS13QW1i/kxtk34o/5ea3zNVbvXE3OzLG2fS0vH36Z9R3r0XWd5oZmqdArg+5gN7duuRWrptA6N0L5AnF+v+hpSA1JbnviJIzsFGAN4jx/4Dah0Cd6hCaOBukRyWRPj4gT/Ui7ZLBrVnBWS+X8ok1Ci88lwS2snEIk3CePIU7tdqhogmObhKburJBjzewEAB+nrBdPF4BelC88GWmpNlsc8gh1yXF2r4DtQqRcvwDvkhmfj3wjT6cvniavPRuX1+Stk8q2b2qebm+IA7xScl7dIlT4d34g1XMzMxHJtne1jDP/fqHEW51Q0wTvPiGTi7mEUNqzCUCHmoXymYZPSl802ZYcA289OIrh8l/I/lRI3qsmaRrceECc5DVd3ks6LB+ZDrmcYt26XTQ11ePx2NE0WL9+Eb29EW67bSuVlR48Hhsul40NGxYxMBClosKD3W7B47Fzxx2XMDgY5b33Bjl5Mszdd78l10xTmEE///nVVFV5OXp0jGXLBPg3NdUzY0YZfX0RXnutkzVr2jEMxWuvdeL3x1BK0dIyhbFgnLglwtGRk1QWlZEzDQxlFlhFs6vPxKpbcFhszK09i5f2v07GyGGzWDFME4fVxoeDxzCVyS/3/p5SVxEv5IH5S/tfJ5ZOcG7VDDZ9417uu/w7WDSdpfO/UVjPmjle2v86O7oOMJYIFyYMFp+9AJfNwdzasxhKhokgQDkJ9MhfCzvgB15DIt9ywKh8+kwFZuT7phF6/EYE3Pfnj1kHhPLH2ZF4uMcRkA7iUr8eyXjvRdzlTyJZ8ePH5wB3NktyZIRYby+6xYKm6zQuW0YqECjkqjcuXYpus2Fms4y8+y6REyfIhEIF8P5fa49v2MBvXnqJu0pK6P2nf8LMF9xuuOEGtm3bBkAgEGDfvn00zpqFx2LB43azo70dgJGxMfbt389555+HxVkH3q/KJzJpJRS1ylJlIddzivzli/bf2r4A7l+0/5hmtwtffBx8Oxyf3w+CjJuapLI+MAB33CGl6qIieOYZ0cCn08Jb1zSpqjc0SCTcOAf91PN4PDL2U0/BRx/J2BaLLO32Aqi3DfawapWitVWY9yUlMsS990r38SHvvVf2OZ0ypMNx+ul0XSrmGzbIfILdLstbbpEKvNstrP9USuYUwmEoKxOywPLlQg5YtkzefjYrzP/bb4eXXoJdu5wsXryRv/3b47jdFSQSY1itLmw2L0uWPEtp6Qzc7nKSyTG2b7+dUKgb0zTYsmU5wWA3DkcR9fVNWCx2NE0/rYK2c+dqotEBfL4GrrnmaYqL6xka+oAFC+4iFvOjaRp2u5dkcgy73UMmE83nuHexY8cDRKMDKGViwYrl037Rpxum6M9TGfi0BwJhqZq7HALG7bZ8Fd0KkyfJc7sVfF6pyoNU2E0l+e2pPEvD5Zio0tttp1flrZbTq/zjkwMN1WgWC7G+Pt595BGSY2OUz51Lwu/HYrdTevbZp+WuZ2MxnGVlpAIBZn7nO1jcblzl5TjLy5l10004y8txlpWRS6XQLBZ0u52xDz+UzHenk9KzzyYdDGIaBg2LF5McGWHfQw9J1mpZGUY6zcj77xPr62Pu3XfTcNVVOIt8aOmUaNBvvE1o8g6nLE0TImHJYN/+ilTRrTapoEeCAuJ/8zMB4dPOFgCfywqVtKwcFn8LIoH8OMEJwJ9OCoW+qET+l6JBuP5moYvbHHDJV6Q6P+qXbHeLhWwqwsDhd/I56zE8ZTWSBJWO4y6pIpeK4S6rxWIVloPk8IqJim5zoOlW3GW1GJkEpXWz8JTVoNAwjRyukmp0i41keJhcOoHVLhMDNpeX/g/fIpsIEQ9Idd/u9uUr/8VkEmH6P3wL0NCqa8HhRKuuRVltMllj0TF3CUBXkTDkskJhD4ygX3FtoSKurDY0nw80HfPPf4RETCr/Foto1Qd6ITSGse0PEA6irFZUNIJKp8A0JiYBOnagWSyoRBwCo5DLYb7VhpGfSDsVpFssFjRNo7m5mcbGRpqbm8lkMixcuJDGxkYsFgvt7e14PJ7CcR0dHdhsNnRdp7e3l3Q6TXFxMXV1dQQCgULl3uv1Eg6H2bp1K16vUKpzuRw2m41MJsPg4CButxtd1zFNE5vNhlIaDQ0t2GxurrjiUWw2dyG6zWp10tDQjN3u/QygXkYk0ovN5mLBgrtxOktpaGjK695H6OlpR6kcNpubQECuGfX1TdTVLSAY7GL79tsxzRz19QspLp5KQ8OldHSsR9ctNDevZMaMK+noWMfhwy8TiwyT7IMty7eQiWaou6QOR7GDjvUdHH75MB3rOpi+aDotK1tIhVM0r2ymsbWRKx69glB3iO23b2fyeZOFXq9rWBwWWla10NjaSMvKFhKjCerm1xVy4GODMXLJHGPHxnjjljeIDcbQLFph/65HdpGOpDn88mHa17bjO8NHV6iLZW3LqPPVcf2s61nTvobXOl+jxFlCqauU/f37qffVkzEy6JqOw+Lgvub7JN+9eSU+h49ydzk7e3byb8kX3TY3qVyKW7fcSp2vjleuf6WQB7+yeSWtja2sX7Se48HjLG1byonQCTQ0ih3FPLfkOUysqPOfgESvVL/NjADpiiaJPCuZA0fWCzA8vCafvb4BJs2D0b0S1zae8354jZQOd/+1LA/eC6PtciN+4DZo/5ZU9VUO0GDe83DZNrhwUz6arQvKm+H8JyTX/d3bAVPAtd0rQDyUz1rPRAW06g45l6ZNSKROrZA7SuT84+C7eBoCaiMyznj13Vs3UT33vztBhdcQsF4yXaryp04IxPqk8q7M04G6xSG09rNb4eJ74djvwFMlkxYAZ34TWh6Vcffmj4v2CLX97eX5avo8OU8uJe+l6iKpzsf98ro9lfLe+tvlNQ10CP0+MQxv3yoTC1Y3BI9hpGLs39/Pz39+NTfccC5dXQGOHw9SVGQvZK6PjibweOz4/TE0TWPu3CpsNh2/P8bx40GmTy9l+vRSzjtvMuvXdzBvXi2mqTh6dIwf/nAbqVQOl8vG8HCcSy9toKLCQzSaYe/ePlpaGujru4ONGxfjcFjo7v5bLrigmttv30Y8nqGppY5fH3ydk8FBTKXwR0Z5+K0X6A0NkciksGg6uqbTFx7m/JpzuPOyG4mlEwyER1j3r3/PWDzMWRVT0DWdm+Z/jWAyys3zv14A5uWeEpxWO5XeMta+/StOBgepKSlncn59JBrkR5d/hy03/ZxzKqey7p2/J5lNM5YI84uOV5hbczZz6mYxoGk8iAD1G4ATwK2I5v0VRPOegEIfkMg3kCo6SLzbrQgwfwXJYS9Bct1NBOj/FKHVa8ALCKU+jID0l5F4uJJTzpkGbEqRGhnBWVbGgdWrifX24q2ro2zWLJRpcuGPfoS3vp5sPE46GKT07LNJjY2RiUYLIPzfa319fay47z4yDgfrAgG+v2ULTV/+MgBr165l27ZtnHvuuVx66aXce++9XDR3LpmxMX79y19y349/zIXz57Po2mv5wa23sqDpUrCfA9UvyCSf/QyoehY0N3SfBWOrkamIL9p/T/tC4/5vtC807v+TWiYjoNvh+LzGfXx/Mnm66dymTRKUXld3ek57ff2EU9x4+VrT5Ec4mZwY85575NHXJ2D95EkZ5777JNcdoLubeNV0DKeXeFxAOeRZ3PrES7NaBcQbhswp1NTI6Ww2Gd7nk7f2/e+f/vJvu21i/YUXJjLa77tP1AErVogOPpeTuYX586VqP22abEsk5G3/7GdJEoljBRM4qU5VUlZ2ZkFPnMsl2br1tlNMoDbx0Uf/RG/vLq677gXGxo6eluHu89Vjs3kKOnilTPr791FdfSG6bmX79ju4/PLV2GyevIldGpvNBSjGxo6xe/djhXMtXrwRu7LjeP+4gOYpNQLKx83j7FZIZ6Vi7vPmBWNK/m6mkn5e18QEDAhYT2ekcs94f6S6oDFhRjfezPz1S89X5m1WQG7uMqkUI+++i3PSJGxFRThLS8mlUnzw5JPM+eEPsXk8mIZR0LFZrFaivb2FvHVHSQkHH3+cC1etQhkGYx98gLu6GkdJCe89+igzv/MdGXfSJHKJBMHOTiY1NmJxOhl5910cJSXYfL6JTPhvf5tUKETlBRdgZrNY7Xb0TEok/zaHfC7pFPQcE136pEqp8qSTUhF/81X45nelqh4NCT3bZp/IdK+bLtR7lxt6u/JjTJZqfe20vC+A6Mk5/gnMmCVU+3AQwmMw/Rx5HaYBxz6C0nKMymoGPt6Bq7Sa4qqz0K02qcAD2WSY0a4DhYx2I5PENLOMfLqP8ukXY/eUkE1GGPl0L1UzL0O32ECZJEJ+bC4vum6b0L6XVGFk01jsUn0a+OiPBfO6qpmXYWSS2JxeyV5XQq/vee91Zn1lGaTTaNY8Q8A0MLe/jr6gBdxezO1/wHL11zG2/stp+nQMA5VKQTaD2bED/Ypr0EyFMnKQy+a161PAasXs6cZ8+SX06/8zmq9EtPALvyQTJOGgVOYbpsnnks2CrguIz2Yw7U4MhBYfiUSora3FarUWtO0Apmny1ltvcdlll2G329E0jWw2i9/vp6ioiPb2dhYvXkwikSjkwXs8Ht58802am5ux2WykUimcTicej4eenh42b97M9ddfX9DBj5/XNM38tU6AuyzTRCInsVqdOJ2l9Pfvxeerw+OpYHDwferq5mO1uggGj+PxVJJKBejqepOysjPx+WoJh3uprZ1PKhUkm01RVDQZ0EilQrhcpShlEgqdJB4fpqGhiba2ZTQ0XMrMmV8nnY5gt4v+3mbz5BkyVpTKkskkGBo6RP3ky2i7eQv1TfVCY1/XQfPKZtzlbt68802a72umeGoxulXHzIn2U9Pls432R8nEM6BBx6MdksM+rUR8z3KK+Ggcq9OKzWXDyBi8dc9bXLXxKhKjCXY8uKNgSnfN09cQ6Y2IPv7+Ftzlbrbfvp2me5vwzPSwq28Xsypm4bK6cNlcnAidoCfcQ31xPb3hXubVziOUClHiLOG2rbdxf8v9OK1OAskAgWSA5oZmktkk/dF+NuzewPpF63FanXT0dlDtrebMSWfy/Te+z6tHXuWV618pVPcrPBVYNStGnma+tG1pQSP/wnUvEMvEGIgOEEsFuLT+ErREP/jfhKIzoWTu6YZynmly7Yx3Czg/936hzW+ZA82vgLtewPuse6XCnouBczLET8j2CzbKlVSzSrU6Gwab/G2xePIZ8qth5l1Cja9YKBR7ZwUUnZ3XuloEIKdGRefurRYTuuLpsm6xf8ZU7kSe7m7Ln3v8t0TlQX/e7G6cUl+43VUCeotq8zIBNUGjj/aern8fz3M3UkJhz0REp24vkt8nZQhYHzkItc0QPCqV9pZHBfgbGXmdBx6Dy58S0F7TBLVNAtC99aKNr5oP6aCM5SwHu0cq9JmITEYYaZkMySZgz09FHz/1SvDUwMAuMqVzSVCCruvE4xkMwySVylFR4SEez7Bq1Tv8/OdXk0zm2Levn+pqL7W1PpxOK+3tPdTUFPHII7u4996FTJsmrKJs1iAYTPHAA0K9b26uZ2gozsKF9ei6RjKZJZdTOJ0Wjh8P8cQToofP5Uz27u2npsZLZaUXu92CpisCRoBybzE2i+00w7h7v/KfGYuHeWHv7/mbi64lmIxyfu3ZALzf30mpq4hgMso5lVMJJaKnGNnZSOeyfOTvotpbTk1JBUPRMXaf/ICPBrtYecV3CyZ3m75xL5O9Zbyw9/d8++LrODjQyYIpc/hFxysFE7z7l/wtN2saLwOtwLPAMiisP4dU1G8BfnvKNhBK/MvAJ8AD/8YxOtAFPMxERnwSyYavQ7TuSYR6vwa4O/+8CanuO4GKdBqVSHDg4Yfp2baNqUuWcPEDD8hEeS6HZrXK70csRjaRwFlWJlp3pbC6XJ+jyP9b7d/TwX+2ZWIx9j34IOffdRfvb9hQMOyd/5OfYMtPGheamQFjDIwBGFsnhnSOs7+gyf9X2hca9y/a/55mt0vl/N8C7eP7Xa7TS9ihkFTFT+Wxl5cLL72/X8rW45X38ZJ1LCYo+7334NVXJ44xDHn+2mtCkTcM+aGdNg3D4SGdntCh22xSnBwYkOHsdjGOu+UWAdI1NbLcvXtCSr9ypRy3aZPQ4++/X4Z/6ilZ//GPZX3dOnkra9dKxX3ePAHqK1bI/ITLJaD9k09kDmNoCJ5+OoPVmiro2dvb11BRMYuOjnWAyle0DFKpEAsW3F2gu/f372P69EW0tKxEKVWoWrW3r6GhoZnS0mm43WWk0xHefPMeQMsb01nJ5ZLMm/cDotFBenraCYf7yGREB61pFlyuMpqbV+Zp+mI4ZbW7BLTXV4EjX1Ev9gpw13Wplvu8UgU386B93GG+2CtgMhybqNiP/zG6evNaa1307+Oa9nHQnsrIcSB0+XQW9h+GYz15B3rQLRbcVVWkxsaw+3ykgkGSo6Oc+Vd/BUqRjcWI9fay7yc/ITE4iGmaBZ3Y4eeeIxuPM2n2bBIDAxx4+GGcZWUkBgfJxmL0bNtGamwMI5Vi34MPkgoEKD3zTA6sXk02HsdVWcmRl17CSKVIDA5KZf+ll6g4/3xifX2MHjqEhkL7bDVc18FbLPp2TYeujwVMv/kqLPq6VN2jIemjaXJsJAhTz8lTxzUB9jMaZVZJ1+CMc8GVnwixWPLmCrPlXMmEgHZfKXR/IrR8NHGV3/LPaHv/RNXMS/GU1pIMD6HMHLl0gmwyQjYZw1VSRTYVZ+CjPxZAeHiwk7Hj7+YBlIXy6Rdjscr3QSmzoH+3ONxkk3GsDhcDh9+RhARNxzSylE+/mCkXfZ2acy9Ht9qxuYrAYi1U2m0uLw0XfFV08ok4Zt9JYRwA+rwmzF070OwOMZGz2j6jT9dF426xYLa/jVYnelqVyxa06prHi7H1d6jgGFpVDZZb7hZwbrOhL/wyFJdI4a9kElpVLWpsBKPtFYjH0KxyMdHsTsikCIWC2Gw2iouL6e/vP03bPg6eL7/8cnK5HOFwmC1btgBQX19PaWkpixcvxmq1Eg6HWbBgAbFYDF3XWbBgATabjVwuRzweJ5vN0tPTQ21tLbfccgt1dXVEIhE8Hg/bt2/HNE1M0ySRSJDL5dDzs5SapgiHe8hm4wXaeyTSh6ZZ8Hgq6evbSy6XpKRkGrGYnx07HqS+vpmGhhbc7gomTz6PgYH9OJ2lFBVNJhYbYuvW28hmx/0ydOLxYXy+egwjS0vLSmbNup5odJA///nh/E+Bl1wuSW9vB7lcknh8BE2Dqqq55EjQcn8Ljf9PI3avnYUrFmJ1WnH4HCx5bgk2j41wT5iTfzpJ+GSYLcu3YBomRtog0BVAt+nEBmN0vtZJuDeMMhWZaIbe3b3Y3TJRYhomVqeVa5+5FovDgqPYwcIVC5l942wWb1yMbtWxeWxccvclWF1WbG4bS55dgq/ehwULNUU1rPjjCnojvcQyMaq8VTQ1NNEb7qXCU8FtW28jkUsQSoV4+fDLPLzzYUqcJTy+53HmVs2lO9hNIBXgkV2PMK92HgPRAW554xYqPBUMxYcA2Lh4IydvP0l9cT3L2pYRz8YZjY+iUJwMn6S9p71QfV/ZshJTmYTTYdZ1rGN2xUy0bP56Wf9NAe1W9wSN/fAa0aLmIuCZLuZznrw5XO1XBbR7p8Hsh4Qif/AeAZfJQXA3SH+rV5znQSYEPnxQNPKaFTAmKvbjlXys4jR/ZIOAdjMnpnFmZkLnbmTzVXJTgHKsD5IBAbGaLg7xuoNCagYIkDazYlqnWQS0K/L6cqSvMmUywOKQvsmxCeM631SoPF+Wun1C/48m/UJdMiEwPuVrZoQeP/ni/My+d6LSnhiW63TZTFj0nJxv/kpxko/7BXzbXOCqhHeWCwMg2ivbjLQ4z3c8IJX64ffk/O7JcOl6qeiDHFOzEEYPk0zmOHZsjNtv387YWBKPx057ew92u5VNm67m+PEQt922lYoKD0NDcdxuAWaXXjqlUEWvri5C02B4OI5hKCZP9rBixUKuvHIGQ0NxzjtvMolEFtNU2O0WXC4rVquFdeukQt/TE2bv3n7mzaultraYsbEkd9yxnUxaUVdSyWgsxNo/vsg5lVPZctPPuftL/wmbxVagvf/DgTc4t2oGGhq6pnFO5VS8Djfn1ZyFy+bAHxvjrtce5yN/F32hYda+/SvKXD7KvD7SuUyhYn/HZTeiazr3Xf4dnvrGvZxfezY2i5W5tWfxm3e3sGDKHLwONzfN/xrXzmxmxZf/Bg0B1W2Iht2CVMtb89uRbzIrTtnWgVTg788fV5Pf3prfppBKfAahyP8CcY/vBm5DnOndSCU+BZyBTBiUAhfkv2XjzvPZXI5MJFKgxc+9+25Mw8DMZBg9dIjYwABoGrrNhqbrJPx+9j30EInBQf7ftn9PBw8C6rPxOEY2i26z0bh0KeGuLhqXLqXhqqs4d9ky9M+ya0H+hyyTwH42VD3/BWj/H2xfVNz/jfZFxf1/YctkhEeerz4RE3oug4OnV9yrq2X/5MnSp7JSlqmUIOpT+9bVTVTck0lBxj09Av5XrIDaWmKeyWi6VvC8S6eFgT88DJMmCXaMRuVlgFTIH39c+vb3TxjWR6NCey8uljmKrq6JeLiGBggExLV+vJpvmvL2+vth+3ZJtHviCfI/lDJvMTwMX/lKDMNIEIn00tGxjqamH1FaOi3v6K6IRPrZtWstzc0rsdncOJ0lpFIhcrkMJSVTMIw04XAfHk85um7DYrGh61ZCoRPs3Pkwzc334XZXFqp+drsXpUw0Tae3t4OKikacTh+madDfv4/Jk+dgs7kxDImoczh8oqu3OLGSd3gfr6KPg3Zb3khImRM3VeNV93RW6PHTa/PRfciHo+sC0n1eiYZz2kUDP+40f1betMgYz9brz08a2MWUrsgjYNUwyWYzDL/7Ls6yMo689BKNN99MYmiI8vPOIxUIAHD42WeZNHs2VQsX4iwvx0gmycbj2IuKxD06FuPDp54qzG5flJ+NMTIZLA4HI++/j7OkhFQggLehgTeWLClEx516THJ4GHtRERaXi30PPsjMb38bX20Nts3Piq784kvhq38txnGRkND/bTZxl3d7BVBGw0Kb/9b38qwFU/raHRLlNtQv0XAO50Tl3WbPg3EglZRtfd1SnXc4ZQzTFFq820vBrM5ihZEhCA1jnD2HeKD/lOi3eQWHeKXAyKaIjZwgGfJT3fglEkE/nrIaTCOHmctidbik0pv/fmXTcUY+3UvFGfOwuYoZ+PCtU6LhFpEI+nGVVhUuERqgNA1NmfR/OFGJr52zCD1nouIxNKcLlUqhud2gW8T4b9xNvuVy8BahIc71mCZEI1A2Cc0wUBYLBMYwO/4VfeGX0CZVYrz+8kSFfvFfoBIxcav3FYsp3SnRcBSXQiyK6upE9fdiWfxVzIE+9PqpZGJRTgaC1NbW0t/fj8fjYffu3YVYuGuuuaYAoE3TZMuWLdTX11NfX09HRwcLFy6kt7eXM844g2w2S3t7O83NzXg8Ht566y0WLVpUOHZ4eBi3283u3btpaWmhpKQkf4nNYLFYMAyDt956i4ULF2Kz2XC5XFgsFpTKAIpYbICurjfp79/H4sVPoOtWens78Hgq2L17Ay0tqwpRbTfc0EZxcT07d67myisfJx4fZteuR/6NPnXs3LmGBQvuIpEYo6GhGaXE4PKNN75Pbe086uubiceHaGhoxjRz9PXtoaiohpKSqQQCIvnxOurJRDOkw2kcPgf+Q358tT5KppWgTEVPew+eSg+7H9tNw6UNzPzGTNLhNDavjeEPh6m5qIaBAwNUzZXvlc1jk++DUihTFZznxyvyPe09VJ5bib3ITvhkmPY17TSvbMbmtpFNZon2R6lvqkdDI21Lc/MbNxcq3Q9d9hA1RTXomk46l+b27bczr3YeV864khpvDbduuZV7Ft5DTVENADkzx+3bb6epvomm+iY8dg8P7niwMN7zS57nRPgEq3euZmXLSvrCfSz5pyW0NrbyzLXPYCiD5VuW81rna7xy/Ss0NzRj0SxkTZnISmQTVDmLsESPCVCfuQJ8ZwmzJtY1UXFP9EHpXKmOYwB5IJsNQOQTMbHLRvOV9GIB/iPtUn33nSnXjv23woVPSkXd/yaM7YOLfg5Km6i4n3u/gH3MCSf6b4UkJu3USvd4rFtyTACvwycTCUZG1mP9ExFupjER6WZmpU+eyUH4OHhrxCle02W/bpM+p8bFjQN9I3362Omo0NONlFDWCw7vq+S5boHY4MRY48t9a2DeSjnWWSoTDPFBeX8Wu7jex3rFfC4VhH+YAzO+Cl/ZJO9bt4or/ok3Yfh9aPo7Aeme2jyjIS5/D1sROHxEkhYGBhM8+OAOXn75MK2tjfzsZ1dx8mSYDRt2s3JlC319YZYs+SdaWxt5/vklxOMT7u+6rmGaioMH/dTW+njssQ4effQKvF47FotGLieTjN3dQdaubWfFioXU1BThdksknGEolILR0TjBYIonn9zL+vVyfRoYiKJpUDfVw2O7XmJu7VnMrTmbl/a/zk3zv0ZdyWT6QkO8sPf33HTJ16kvrqQvNEyVbxJ9oWExkauaQTQdJ5XNMpSvuK99+1eFavp4pFxj1Qxi6Tg+p5eByAgv7Xudm+d/ncm+SQQSYcpcPtA0rLpOIBGm1FWMQpHKpkkoE5+3jJOaxhoEoIMA6xoEoBfJNxcDqZZ/ClyR338CMapbmO8zAkQRcD6K6NjXIcB9GKHGNyAV1L0IUB9BaPIr88fdw4Q7vUqnsYfDaBYLFpsNzWol1tPD4eefZ+Z3voOnpgbdbsdIJiUdN5kkGw6TCgSovOgi8dr572xGNkv0+HE+evbZQmRcIY3HZhMH+/8vVfov2v/79kXF/Yv2v7dlMgKyP6uxGXeev/lmKW+Pl7zvvFMq5s88I4Z0zc1Skq6rk1L1Aw8IBT6VEvf49esFpDsckuU+Y4asj08GpFIC2l97TY53ucSMOiK4fvJkmQcYT6O75RYxn3/vvYk5hJdfFpDe3y+nvP12eUsu10QRE+SlvPaaeOEpJaA9m5W5haNHpaLe1SXjNzXJZMDJk9DeLn2efFJi54QKb+D1VnHZZQ9RUjKNcLiHLVuWE4sNEosNUl/fhNXqwOudjM3mzrvIT0Upg2QyiMdTgabpRCK9vPHGLQSD3YTDPXlH+sdwOCR/2WZzA4re3g7Gxo4xefIcnM5iQOOtt+6lsnI28fgwvb0d6LqVSZPOxuOplLi5bJSsykzo2m02obqPR7hFYnKzpNTpVXebFeqEUouZd4235OnwM+rFhG5ctzCuX6+vyldOTGFPaAhQ7xmU5w67vAbDhGwOzVRMmjOnkLt++PnnmTRnDprFgs3rxebxMPfOOyk//3w+fOqpgtnch089RSoQwOb14po8mXk/+Qlf37GDC1etIj4wIDPYfj+5ZFK08i+9hLuqCldlJV/fsQN3VRXzHnqI67ZuZe5ddxHv7y+Mmc6byKQCATS7HXXtDfC3P4G/Wi5Vb4UA6IoqAdal5eIOb3dCcARmzBTTuf/yjHw2ui5GdCODUjkvKpH9p5rTWaxChx/fNvUcWf7DkxIlZ3cIuD/RKZ9rOCgTBmXlmA1nYOYyuEuqGO1+l/BgJyOf7sNdWg2aRbwD4yHcpbUFyry7tJp4YIBcOoFutREPDKLpFnSLDc1iJZuM4y6rRdOF1neq6RyAu6xaqtmaBqZBLp3ISyZ0Ks6Yx1mXfZfa2YsADaUh+vXtr4n/QS4n+nNdRysuRV/4JczdOyWzPZWU+aW32uSzy2bFET6bRcWjBa06ykRvGa/QXw4OB+bOt0Xz3v5OYak6P5LqvGmiAqNo9dPQFy0B3YI2uRqViKEX+fD5fGzduhWfz0dJSQlXX301N9xwA83NzWiaRiaTQdO0grlcY2MjRUVFLFq0CKfTyXnnnYfX6yUajdLZ2Ul7ezupVIra2lqi0Sjbt28nmUxSX1/P3r17qa+vx5KXn4yb1imlsFqthSp8Nptl27ZthXNn80ZoM2d+k0WL1mOzudF1G1OmtFBcPJVFi9ZjtbpPcZWfV2ADZTIxotEBFiy4i0ikn4aGZpYvP8KUKS3s2rWew4dfZvfuDdTXNxEKHaetbRnBYBeLFq1nxozFOBxF1NVdQjodoa9vTz52Uq5JxcW1OJ0l+SKpwlHswOax0dDUgKfKgzIVvR29+Op8OEucNK9sZtb1s1CmwlnmxO6x09DcgM1to6G5gfhQnLfueQtlKBSKbCJLLpUjPhTn8MuH2bl6J2bOxD3JzVt3v4XKqYLZXfuadjwVHiK9ESpnV5KJZhg7NsbAnwYKbvA/avoR1d7qwk9cJB1h/aL1NNU38eCOBzkRPsFT1zzF1JKp2C12DgwcwGFx8NTVT3H2pLOZUTqDam81z177LJ8s/4SNizeiUKzeuVqM7Hau4eLai2ltbOX+lvuxW+zs79/PXQvu4qtnf5WG4gYyRoZoJkp3sJtb3rgFXdPRURPV9SPr8sDQAr6zYf4LUlFP9IHFC4kT4vpuJAATrD4omycgMT08YVA3tkdo7qkhuY4rRMce75M+5U1wft68zogLWL/4aTHH03TAIvT6qTdK1XrcKb54ugBrmRU8xYiuW7Y7fHndeoN8yKHuCT36eMyd3SdUeSOT16n3yz4jIxVtIyNjjBvWOXz5ijuy/VSt/Xi8HLpQ4R0+qL1UxrTY5XxWp7jEv7dRllaH0OHjAwKw314u2vbQMXGgRwlod1XIvlwCrntFzO3GxzPSsOdhOeeXfwYWl7ye8HEB9Qk/dDwoS8BitVBc7GDFioW0tjZy//0t2O0WNmzYzcsvH2bNmp3Mm1db2KdpGgMD0YL7u65rRCJpKio8rF3bzrx5tfj9MZYubaOzc4zu7hBKKdauFb38unUdhMMpdF0jmzWJxTLcdtsWEokcw8Nx5s2rZWAgyu23b8dm0ykqcmC3Wblp/tdYMGUOL+1/ne2du3lh7+/JmTkqvKX8eNFN1BVXYiiT5/f+CwqFx+GkMR8Zl85mcdpsnF97Ng6rnZvnf53FZy9gdtUZ+GNjlLqKeOTtX5HKZtDQeGmfnMMfG2MwMsrTuzYzGB3l0MBRYpkUDquDk8FB/u7N5xlNhLFYHWQ0DQdCUX8CAcw5+baSzD8ft3mbB1yCUOO7ETp7JZLzHgMmIe7wHoT+Pg/RxY8g2fANyATAfqAif47VwJv587qQaDg/QsV3GQapQIB316whNjCAMk0OP/+8MACDQTSrFTObJfDxx6SDQawul9yfTJ4scrL/gWZmMnz07LP0bNvGR88+i5nJYHU4sBcVYXU6/90q/Rftf377Arh/0f5j238tFu6zzvMgvPLf/lbAu2kKuh4cFFTtcp3OOy8uliD1ceD+4IOS0aZpgobHeed2u1Taf/c7QcWDg5im7Lr9domAMwzB/Q6HDPXYYzJ3sGaNVNdbW+V08+dL1X316glX+IoKqZSfOCEv5cMPYeFCAezj8vtwWCrrl14qkwTNzWKeb7XKOc87T45dsEDGzWSkKuVwSIybpolLc319E7t2raO+von6+iZ27HiQUOgE6XSEeHyYXC5JT0872WwCq9VBOh0+jS5fWzuPxsZWrrjiUTKZGKFQN21tSxkbO0Zl5WxisUFSqRCZTAzTzLF48QYcDi82m5fJk88jHh8ik4kSj4/idlcAGql0mFwyLpns2exEJns0LpVz04Tuvjwwz9/gGcaEWV0mJ7R3w5zQsNttAv4NUyYCzmiQ6ruGUOFPDMhx44Z0IAB+LCR9dKmmoRQX3X8/lz39NOfecgtWp5NoXx/Bzk6sHg9Wj6dgUpeNRjny4otUnH++zCArRS6RIHryJO8+8giJwcEJ2vuLL5KNRgu0+YTfT7y/H81iwUinGTt0CHtJCVa3G4vTib+jg8PPPYfN68XiclFx/vloSqGVV0FpBfzjU2I4l0nJ8+EBeU+ppIDqTz+Cskq4sGUiPi6VlHz2g3skx/2s2fLeq2rhr38gzojjWe3bN0u/SEDAfiQg61v/WXTuwRHJhVfA6GC+6q6jMin8n+wkk4yeDrA1nWwywsBHYlqXS8fRrTbMXIZcJil0eIcHzWLF6SvHzGXIpuMo08QzqYbSmplkEyEyiTA2dzE1jV/B7vKhNK1Ah88mwhi5NFaHW5IBALtb0hX6P3yLTCKEpjQB1XVTCvpVzeFEUwh9XtfRF1+H2d8rme4WK/rVXwNfMUTDBUd4vX7qBJUeTTTul1yKikSEhHD116GkFL3lcnGvb/4K+vX/uWB6p3m8qEQMze4QUGSzoY53YypVMJiLRCLEYjG2b99OdXU1JSUlhEIhhoeHCYVChSi4eDzO9u3b0TQNm81GLBYjnU5TVVXF9ddfT0tLC06nkxkzZtDR0VEwr9M0jWuuuYa5c+fi9XrJZDL09vYSjUbp7+/HNE3mzJlTiJIbB/6maRKNDrBjx4PEYv48+8bIx0PGiUR6eeute8hm4/T07MLnq8MwMixcuILGxlY8nsn4fHXs3r2Bqqq5hMMnC9elRYvWM3v2jSxevBFN03C7K/JGdI9hsdgpKqohl0vwxhu3AOD1VtPfvw+XqxRNs2GahtDtNUiMJhh8bxAjY4AOmq4RH45Tc1ENNo8Nb5WXkqkl2PL030hvhDdueYPQ8RDpSJpMLEPHYx1ccucl6FYdZSgy8Qy6TaehuYHZN86m5f4WdKuOs9TJ1ZuuRrNoLN64mOVHlnPl41eiUNTNryMby5KJZuhY18GrX3+Vqd6pPHPtM5xRdgbJXBJ/zI9hGkxyT8Jr9/LEnid4+fDLrN4pv3O6pmPRLJxXdR7HQ8dZvnU51UXVJHIJ2nvaORk+yQM7HmA4PkzGyBQo8KtaVqGh8dTVT1HlrSKZS7KgbgFjiTE2Xb2J6SXTsVvsuG1untjzBJc2XEqRvQh1WpzbxnwlPSbV88gxGN0tFHrdCroLzr4TUEKFN1KyXWPCuO7wavCdA50/g8pmiXg7cKtkwLsqxfSu84n8j98ReC9v22VkZAIgchT23SwTABduErBqcUjV28zK/9C4pn0cqHurBQQrpG82IRMA4zp4Z7m8ZiMllHuLXY5zlEg2u6af4jqfN5xzlcs+Iyt9Q10ytrP8dCf6cfp9pEf6nP2XUL0A/nS3vCa7GFzypScm2GVnfhNqWyRv/aIVeXA/R/TvypRK+7sbxLRu/3qZDPA1yN/l7eVSna+aJ8vIcaHSuyqFRq8Modp3vSbZ70qRyyni8QzTp5fy7LPXMm1aCbmcyapVLbS2NnLvvU1YrRobNy5m6tQS4vEM69Z1FEC43W6hpMTJyEiclSubufLKGaftb2goZs+ePp54YjFDQ3fxwgvXUV1dhGGYDA/LxN+CBXWsXi0TBFdeOYMnnthDU1M9FRUevF47Y4E4Fd5SKryl3PPlv+Hamc3cfMnXCafiGKZRYACGkhHu+fLfoKHhsjl57F//gVJXEQ6bjVQ2w9+9+Ty9oSFqSyr58aKb0HWdc6tmEExG+c8XLcFps2PRde7+0n/i2pnNnFs145RouD9Q6vJh0TRsFitjiTA7ug7w4t4/UGSzY+RZyN9EquNlwDTEIb4cqar/EAHxVqTS/mWk0l6JAPU1+VvcHyBVehtSQb8SiXiLIzr5XqQyfy6w4ZR++/LHLUMq9bXAXYChFB/ngfrHzz+PMs0CTb3i/POl+JA3pUsMDUmKbr5ooXL/Y2Zwut3OucuWTVDi/z0J7BftP76Nu/9+8Zh41NbWqi/a/6QWjSrV2ioQqrVVqUhkYl86rdShQ7L90CGlYjGlDh6cWA8GlTpwQNYPHFAqElHJvXvVX9TUqDMbGtScc85RV+i6OrZrl1KtreoyUFM9HnXeueeq8xob1eP336/Utm1KDQ2poSNH1OLLL1dn1NerRp9PbXnjX097WX7/xKkPHFBqYECptjalPvhAqXhc1nt75eUfOiTDRqNKhUJKHTsm244eVWpwMKm+/OW/UDU1Z6pZs+aoyy67Qu3bd0z19SnV3HyZamiYqs455zx11lnnqdWrHy+8/dtuW62mTz9LaZqmHnvsX9Tx4wmVSARVMhlSkciA8vsPqc2bW1V//wEVDvepZDKkNm9uVQ89hNq8uVVFIgNqcPCg6uxsU7HYsBodPapSqYiKRAZUONynotEhlUyGVCoVUaHQyP+HvT+Pj6JM24bho6rXdHc6CSEL2dhlCWEnbImogMjiOpqZEcdtRnTEmVFUVGAEZ1iECIKKOuo4izqjREbFEMRlBiEEwr4YQgJZe013p5dauqvX8/vj6nTgvu/3fr/v+e77eZ73ebl+v/5VV9VV11XV6a7UcZ7HcZy0ZMkiGj58GA0enEnDhoFee20huVwXqKJiFg0eXExlZWNp9Oih9PLLv6Ng0EuKItCPf3wbDRpkorFjR9KMGdPp0KF/kiDYSRDspCgikRwiEmWiC21ESpgoEmXbwhGiSIQtPT7Wp297NMq+B9Eo6x8OU0gQ6fbbbqORI0bQ+LIymnfTTXSpqYlICdOc66+nIUOG0ITx42nC+PG0rbqazRWN0oNL76OysWNpQlkZTS0to/21teRtaSHrwYMUFkX2EgSSXS7yt7VRRJJICQQo1NtL1gMHSHa5SHa5yPPDD3RoxQryXrxIQY+HDq1YQR+NHUuHVqygkNdLh1asINupU7TklltoxLBhNCInh2668UY6f/QoyS4XTSouppLCQiorLaUROTm0/rnnKNDZSd6LF8l64AB5m5tpf20t8TxP27ZsIbJ3E337OdG7m4nsXUQ/X0D09gaigJeo+zJ7336R6OxRIlki6m5j23weIksb2+7zsJe/l8jnodCb6+n2m+clP8NxNO/GG+jSkUNEvl6aM3MGDRk8mP1Oxo2jbVs2s2Pt3TRn9iy2b+xYmjBuHL2yZTNFFZkCzg6KhkMUiyikiF6KRhSKKDJFw0GKhoMUi4YpGg1TVJEpqsgUi4QoGg5RNKL8u+3hoECtRz6jJYtuoeHDhlBZ2Tiae9ON1HyhiaJhmWZMGUeFeQOorHQMTRg/nqq3vEzhoECRkEjRcIieXHYvDRtSQqVjx9ANc66nuMNGcVGguMNK0Zq/UtzWTfGAj+J+H8VamigRCrL1vv0OKyVCIYrW/JUi61ZQtOavlAiFWL9eD8XtFoo7bCR+9B7dtngxjRw2lMaPuo7m3ngDtZw6SXGXk+ZUVtKQwYNp/OASGp+fS6+8sJISoRDFBT9NGzmcJpSOpQnjy6h07BgCQF988QWFQiFqaWmhxsZGstlsVFNTQzabjRRFoZqaGlq/fj2Jokhutzu13eFw0O7duykQCJCiKBQKhUhRFPJ4POT3+2nx4sU0bNgwKisro+uvv55ee+01cjgcVF5eTsXFxTRu3DgaN24cvfzyy9TS0kJOp5O+//57mjx5Mo0bN44KCwvppZd++x/cS05TKOQnUewhQbCT32+h1tY6slgaqaamitzu5uTvXqBg0EctLbW0fr2e3O6L1NJSS1brMbJaz9OSJYtoxIjhNG7cWKqsLKfXXltIDsdpqqiYSYMHD6bx48fR6NFDae3aJ0kUe6i1tY5qa/9Eo0YNpLKyUho/voy+/PITUgSFBLtAfoufWutayXHGQTVVNeQ44yBPq4eC3iAJdoF2L91NjjMOEntEqqmqofX69dRS20KyRyb7STsJdoGCviAFvUESe0Rytbto3sx5NHzYcCorLaObbriJ3rzrTXKedVIoEKLnVzxPw0qGUXFGMc2aOosufXWJFEmhtnNtNHfOXBpSPISKzcW07+t9ZBfsJCgCnbSdpEueSxQIBcgu2Mku2Mkm2KiqporOOs/SV5e+IrtgJ3/IT76gj5buXkr69Xqqbaklj+whi99CS3cvJawD/eijH9GiJYto6PChNGrsKJpz0xw69cMp6pF6qNHSSGPvGUuDhw2mMaVjqOL6CrILdlq6eyk99+JzNGzEMOI4jra9v41E2UUJ71kiay1RyE0UEYmCdiJ/M9vmaSQ6VEXkPUNkrSOKCEQhV3LfSSLFx47p29Z7iijoJJLtFPJZ6PaKAho5JIfGjxtD826YSZfOHSKS7ZSQbLT2qXtp5IhhNK50LN1QUc7mPFRFD14PGllkovFlpTRr5gw6drSBKCwS9V5ky1iUKNjLlmEpuV1i67EwUVQh6m1h26IKUTxKFJFZP2s92xeLUkhO/j8ZOZL9P5kziy5dOEsUCVIiGqa1v11NI0eOpHFjRtINMyex4+NRevD+pVQ29jqaMH48TZ06hb6t+4KorZbIfowtZTeRYGWv3ma2DIv966KNSLQT7V3a/75vKdiJvK1ErjMU2v0jun3xAho5rITGD8mgedeX06XP1xK111Ei5Ke1q59jn9+IQXTDjPFErjNEX1YR9Zwl8rbSd3v/QTzP0+bN1XTmjIOqqmrozBkHCYJCdrtAgqCQxyOT3x+iS5c85HJJ5PeHyG4X6PRp1v/cOSf5fEHy+0Pk84WotdVDFoufbDaBmpvd1N7uoiVLbqVhw4bTmDHjqLLyBjp06BRdvOgmr1emp59+noYOHU6jR4+ladNmkc8XJKdTpJkzK6igoJgyMwfTddeNpQ0bXyaX6KV2j5V6hF7ySD4KhkMkh4MUCEl0qO0UXerpJjkcIq8coINtp+iCo50+OllHv617k+RwiHxBgZocbfTSV38gUZFJVGSy9jpp8ZLFNGTYUBpTOpbm3HgD/e27z+liTyeJIZleWL2Kho8YTkOvG0HTZ82gLq+dWno66ZkvXqXlz/yGioaU0HVjRlHlDTfQCSKqIqKTRCQSkY+IhOTSn9y3g4isRHSCiB5M7j+b3HeGiFqJyJXcv5SIekIhWnz77TR85EgqHT+e8ubNI1y6RFVE1JRI0Iq1a2nYyJE0dtw4mn7DDeRLjoXycsqcMIHGTZhAg0tLCQAd+uILOrxyJck9PRQOBNhzTSBAEUlKPbt4fviBwoJAYVGkQytWkK+lhWKRyP/fj/OxSIQikvRfMta19p83AFb6v8Co/8tB8v+Or2vA/b+wXQnOz51j61fuE0Uil4uoro7IZmNI2O8nunyZLa9E134/hdxu2vvBB5SwWon8fnp90iSaM3Mm0dmzNCcnhz7bto0B/pMnGfL2eonsdnpo/nxa+9xzRFVVdAyggvxBdOJEmJYuJUoORbW1RHp9aioSBHaK4TAD7j09/f16e9npNjezfZcusWnt9hCtXbuXjh5NUFUV0fPPv06zZ88hQSCaMmUOzZ79GZ05w8by+frnnDu3kU6caKPZs1mfnh6JnM6ztHv30n8H0kMhP/X2Xian8wzV1FSR03mOFEW86gFblt2kKFJqu812gnbvXkqCYCefz0n/+McnFAjYKBj00qZNa6iiYgYJgp0qKyvok08+Io/nElmtx6m1tS4F3D/44G3yeDooGPTR7t0fU0lJMbW21pHDcYYURWCA3OMjsjiJFIVIDjJQ3Qfomy4TBaT+dY+PAfZoEuBH2PuQINLeL/ZQwu0lUhR6/dVXaU5lJVEkSnOuv54+q6lh44evCA6IMvl6XGyspst06t0PKSszk3zt7RT2+0l2OunwypXkvXiRQr297J+aIFwF0iOSRGFRpMMrV6aAejgQSPXxtbSQEgiQEghQwOWi3R99RP6uLgqLIm3dtIkmFReT54cfaNro0bThttvI395OFz/4IBUksB48SB9PmkT7li+nqZMn0+JbbqFtL65hILyjtR98v72ByNJOJIkMzH/7OQP3skTUYyMKSkQBH5EksPchme0LBVPLUGsT7X3yF5QIBYkEP73+/NM0Z/Ysou42mjN1En32tw+JnFY2jyyx+d/eQHNmlNNnH/6V6O0NFPf3UjDgoq6TX1IkJKbeBwMuBsrDQYoqMimSl2LhEMWiCkUVmSIhkUJiL4WDAkXDwdR6JCRSwNlOss9JluYG+vNr6ygSDlEkJNH27dvo+usrKRoNU2XFLProT29RMNDD5vP3pAIAW1+ppttvu5V8Pd3UdfJLsnW0U1wU/h0Qj7ucFHc5KSGJFJdESoSCVwN1RaG4w8b6Ou0UD8oU3f0RxZ02intcFBcCFPT5qPazzyiy6y8Ut3bRa5s20vVjR1Nk3QqaM2sW7d75GsWtXRRraeofy9ZNsaMHk8GAIO3629+otLSUnE4n1dTUkMPhIEEQqKamhtatW0c1NTUUCoXI6XRSS0sLORwOam1tpVAoRKFQiFpbW6mxsZECgQDZbDZqaWkhWZZJURRyuVxUU1OTAvWvvPIKzZgxg1paWmjGjBn07LPPUjAYTM1ttVqptbWVysrKaNeuXaQoCl24cIEGDsymAwd2U01NFTkcZ6ix8Q3avXspKYpEsuymlpZastlOkiDYyeO5RIJgp1DIT5LUQ07nueRxp6mlpZaCQR8Jgp2CQR95vXZ6552XyOE4S6LYQw8/PIkGDwbt3r2UKisr6OOPP0gFF/sCAaGQn/Lysunzzz+iYNBH58+fpKLCQmo/2k41VTVkO2Ejv8VPNVU1tA7rqKW2hRynHal9R3ccpZqqGgp6g2Q7YWP7z/TvV0TlqvWeyz20++PdZD1uZUD/2fU0acQk2r10N73y8it02+Lb6Pxn52m9fj29c+s7JLkkCgVC9LOf/IxWP7+alIBC3+//ngoKCmhP0x7yh/xU11pH3qCXXJKLaltq6YzjDAmKQM3uZvIGveSRPXTacZqqaqrojOMM2QRbqt/S3UvJJtjIG/RSbUstHe88Tp9+/il9efFLeuvYW/T76t/TtFnTyC7YadnqZYTRoM/Of0ZnnGfo1ndupRO2E7Tj6A5a8PICOnPhDE2bNY1mPzubYoqXAXLZwoCzbCcKC0RhL1HYT3R4KdFHYOBd6mYA/lAVA/TWOqJwgAF+ay2R92wSyAtE4QCFes7T3k9ep0TIRxRy0eu/f5TmzJpCFBFo+yub6M7bb6Ww8xRRoJUcXa3JeX30xd/foqjrNFGglb7c/SENHjyYAW/RxkB3PAnQY9F+MB7svQLEi8m+F1m/sMAAfB/4jypEYYlCtrO09/PdlJA9RGGRXt/+Ks25/nqiqELbt22lO++4g8JBmSgskqP9ApsvHiVfrzsVNDj1r39QVlYWxYM+IsVPJLsYeHedY0D9yyoi5wk2t/NkEti7iEI+olNvsH19fRSBqK2OyHGMyNtKIZ+D9n5eQwnPBaKTO+j1x6bSnIqZRCEfbd+ynu68eSaFLceJBCs5OltZIODkDiLRTn7rRZp2XTYtufl62rTxZaqqqiFgHVVV1dDFi27y+0MkCAqdO+eknh6Jzp51Um1tC7ndErlcEomiQl5vkE6etNODD35Gfn+IamtbqLHRSnV1ralAQGNjB61f/x4FAiEKBBTasmUbzZhRQZcueWj9+s00c+Z8amzsIFFUqKWlg+rqWik//xWaPbuS/vjHv5HF4qfL7R4SFZmaHG307J7t1ORoI0kJkkv0UpOjjV6ofZ1copeEkEQu0Usv1L5OP9gvU7fXngLoLtFL9e2nySsHSA6HqKWni57ds51OdVygv336CXX22uhiTwfNXfYjmjqznA62naLNr2yh+YsW0Irdr1BLTye1dbZTICTRs3u2U8Ftk2jkjPHUK/ioR+ilC1YLVRGRnhj4dhNRLTEQbyMG0M8QUTMRXUzucxGRl5JAO7nsoX4QbyciTyhE7+zdS6cTCfIT0fOvv045c+bQSSL63fbtdOudd9KxcJiWEtEZh4NEYoGApcnj7UT0h5oaGjVuHHUqCkUkibwXL14F4BVBuPrZRRAomux7DWj/P6/9Z8D9GlX+WvvvbVotMHo0q4s2alS/w3wfhd5qZTT28eOZu1ssxoTmgQATka9a1e8473ZD392NRTfcAO7MGSAWw4xf/xqdbW1MAz9iBBujp4e9JkxgrnPp6djV0IDH7rsP2L4d05qbMaigCJcvH8TbbzNGcTgMTJrEaO47d7JTlKT+y3C7GaU9GGR0ebWaMfjXrmWy/Lw81i8tTY8nnliEbds47NoFnDgxA93dnYjHmT/e4cOsfzzO5PaTJzMG/5Yt5SgoGAYi4O67AYMhjiNHXsXMmSvAcTwqK1ejtLQKs2c/h2g0CI3GgKyskViy5B1kZg5DJCIiHA6A53nk5pahrm45/P42AIBKpYVOZ8ZNN22CWq1HLObH3LmzodGkQRAs4Lij6OzsBiv/FoLHcwFpaZnIzCy5gh4v4Z577oXBkAGAMHnyeNjtDuTlTYEo2hkd3uJkmvP87CRdkGPUeK0asPYw2ryaZ+s6LaPUp74n6pTBnT4Sw6Kb5oLLMAEchxmTpqCzs5NR5kMKEI0zunc4ytznNWy8zAGshA1KBiGgBjOgMRgQj0SgNhgw6oEH0Pz++wDH4cT69eB4Huokbb35/fcR7OmBbLNh4ooVKLnlFpQuW4aw3w99djamPP88jEVFiPj9oFgM4oULuGX+fCRCIRxbuxbjhw5FTyiE5vffhzYjA4MXLIA+OxvFSfOwaDCIrNGjUXjjjfiTxYKVTz2FgdkDwDWfYrT3/TVMa27tAH72a/Y78TiZEd2IUsBtZ7R3rR643NTv3/DRTtaP41ifD3YAbgf0BcVYtP5VcG4H8LedmFFRgU6LFTBnMtf5+q9Z6Tlv0gW6j37f62bbjx8EqVVwX25EwNGCeCwCT9txGLIKwPEqgOcRVUQ4LhwAr9Iw08REgu0jICIHwPMqZhRHjHpIRDBk5YNXa5A3dDzufeRpIBFDPBbG9KnJv3EiBo5XQW/KhvvyMaapbzvGbOWIsG3bNmzctBHpWTkoKJ2L/EH5QLL0Wso5fvaNrMajPg2kVic9FHjwFTf169YBQKOBauGdoIAPCPjBz1sEqNTgTOngNBrodFosmnsTVLfcDgrKmD5zJroECVzpRPb9y8oGMrLAlwxFov67/nruw65jlHoi/PH993H//ffj0KFDKUq7Vqu9SudORMjIyMDgwYMhiiJyc3Ph9XphsVhQVFSECRMmJEs8yTAajbBarYjH4zCbzaioqMDXX38Nn8+HqVOnoq2tDWazGTzPY9KkSeA4DkajESUlJSn9OxHh0KFDCIfDUKvV0Gp1yMnJx5Il7yRd5I9g3rzN8Pvb8NVXTyIvbwIyMwdDqzXCZMpHMOhBbe0ySJIDgmBNem3oMXjw9eB5DdRqPQBCPC7gxz/+BSTJAY0mDQ8+uBmxWC4WLnwj+aOn1NLn6wDPq9Hb64fPJyAa/QKBQCdGjBiOzMws7N2zFzOfmQmdWQetUYsF2xegbGkZiqYXoX5T/dX13NdUQqVTIfu6bAy+fjDUejVmrZwFrUnLpMVOCfO2zIO52AyDyYCFNy/EkeojaNrVBPVpNTxBD+ZXz8fWbVsxNzEXA4cOxD2f3oPb1t8GXsNDdsv4x5f/wIM/eRARKQLv373IL8iHfFlGOBZGZUkl4ok4TthPYELeBOQacxFPxPFd+3do97XDHXRjU/0m7GraheqGaqRr01FRUgG7aMeKGSug4TU4aj2KyYMmY2TeSFTOrcSUgin4ybifYHDpYDRdaoJdtKP2T7VY+MuFmD10NqwBK9YsWgOn5MTN8MnUNwABAABJREFUw27G5gc2Y9iwYVDzatw5+k6mM8+ZjVQRdJUekDuYOZzcBUysBkqqmEkdr766lnvObNb3xHKmaQ9aAI4YLZ4S0GsIi26rAsfzAMUw44Zb0dltAQBUb9uOl19aCW1aOhD1Iz83E0iEAfdh3LZgFtQZQwFtJmbMmAmbzYaYIvXXYSdiX5GI0O/0rjVfQWFP0uMzhoFpJ5Jmemo9kDGcafjjYegHDsWim28Ap9YC8QhmzJyBzq4udn5bt+LlFx6FVkWAWo/84mFJWnwcmekG9j4eRsBtZd/XqMwo+iCmPU8vZp9X2x5GgQcBxkFM595zgpVvG3s/6zf3zX7KfsFMRuGPhqDX6bBo7mxGEx/5I8z46e/RabEBQheqN2/Ay79dAa0xg53foHzmWF84Gzj4LJ54ehXWvPQysk0aqFXAmjWVqK39KXbuXIi8PCMaGizo6vKjpCQDOh1zgC8vL0Rjow0OhwhBiKChwYLiYjNefXUBeJ7D9OmFyMrSY+bM4lT9961bT+CBB+6GJEVx6VIv/vnPKGy2bgSDMWzYsBkrV76I667LgyhG8LvfnUJBQTrOnn0M4XAM779/Gj09Mgbm6aFEI/jwZB2mFI1GXvoAcByQptEhL30Anrx+KXRqLSLxKIgIEwpGwhsSoNfoYfH14LStBWpehXH5I1D9r7/C6u9Bj9SL/S1H8PfzX2PGDbMxwJCBvxyvxQ2VlXBY7ZhUOAo7tm1Hya1T8G37cbzX+Dly8/Og5lkteOFwO17bth06rQ5GbRqKCwqwGqx2ehDAcjD6ezqY3pzAdOmDwCjyRWDO8ACjuPc5zWvBNPLVYPr2dL0eMxYtgoPjwAOYP2MG9J2dGA7g7epqrH35ZQzWavEagGH5+bgMRqN/E8zE7kkAf/njH/HAz38Ol06HKICmd95BdlkZQm43q4xjs2HiM89cRWVX63TXtOf/B7ZrwP1a++9v/1FZuD59+9dfM4c2PukW53YzEHLddQw5l5QwJJ2fz0TnRUUM2CfR846//hW3z5sHHDwIRCJ4fvNmlN1xB3783ntodzqBkyfRe/IkopEI8rOzGaBfuxbFJUPQ3t6N9nZmRmexMAl9MMiqzHV1sZJvkQiTbfdVuHj2WXaqdEWZty1bkgbnHcBTT7G+fRXu9PodWLTodvA8u5T09OfxzDNleOCBH+Ppp9thtzO9+6hRgNHIxvH5AI1GhYULX0dW1jBIkgtmc0kSpA9FJCJBqzUhkYhCll0A4imNqig6odOZMH/+VqSnFyISkWCzHYNenwWNRodAoBsHDrwISXKC51U4dGgD/va3b1FWZoRarQfHqbB9+yeYNGkq7r//F2huPoUDB9amwLvF0gAAePvtP2LevOvBcXEUF88Gz2uAYUVMs65EmL49kWBmcUoEGFEM5GUz7XqCmGmdEmEa9oDEthHYcRoN+5A5DuB57PjD27j99tsZcI/G8PzqVSibNAk/fvhBtHPRq+Z5ftUqDC8rxV0rfoVPPvoIEZ8PJ19+GWJ3N9IGDsSkZ56B94cfkF1WBslqxfmdOzFw0iRMfPrplA5dnZaGKc8/D1NxMWKKgtPV1VB8PhARVGlpoHgcOZMnQ6XXp/Tx1S+9hFuXLMHk55+HSqPBS9u2YcrMmbj3gQewf8MGhFwuaAwGWCdNgtZkwpKFC9kD3JjJzFF+0U/Y9RcMAS5fANJMwDf/YKXgBgxk4F0KsFfh0H5N/NBRwN6P2Ren7hMGvuuS6xzHtOs3/wg7/vwBbp93E1DzHgDg+a8bUDZ3AX780ma0d3UBC3/MziM7F8+/vAVl+87gpw/+HCKfi4xBo6BSaZA/5noYsgrhvnQUFItArTUgb3QlOJUGvEoNcDxikSB4lRqGAQWIR8NMx89xcF86ingkBErE4b50FCBiZnW8Ciq1Fq+/+TZuu/VWOJoOgBJxrFq9Bot+9ixW7fgckioP4Hj4vR70uNz48os9mD59BmbOno1Paj5l5by+qQV1t0O14HZwA3IAjgdd/AHU3QFOlawNnTWQ1XBXa0BeNzh9GuL7PkPi739kZeFUapDXA/J5QbLE6rmHFQAAXzIMr+3cidsWL4Zq0V0Ax2HV2nWYUF6OH9/3M3QWDUtp5DlzBmDOgtVqw8HDh/HjH/84BdTnz58Pn8+XMqvLyspCIBBIlYcrLi5GNBqFJEkwmUywWCyIxWJQqVQoLi5Ogfe6ujr4/X4IgoCmpibU19fjrbfewrBhw1BfXw+VSoUXX3wRo0aNwv333w+TyYSFCxcCAO6//37U1NRgzJgxKC0txUsvvYihQ8ey6+TVmDt3I7RaIwIBC266ib0PBj0Ih0VEIiLUan3SiM6OkpIKjBv3U3i9bSnPjGDQg0QiDq/3MoJBT9KUrguvvLIJd9xxF/MroDheeGEVJk+ejocf/hWCwUyEQr0wm7XIy8uFxzMBgmDDiROn0HqpFZ6wB0deOYJoMApLgwVBVxCL3lwElU6FytWVKK0qRcWqCqQXpEOdpkY8HGeVuuIJ6DJ0SB+UjvqX6xGRIigsL4TrBxcEmwCVTgWO51KBgBO6E7j11luhJBS4vW4EJgewoGoBlr64FO9uexf7ntgHRaUgGonizMYzCHqCWPj6QgwuGYweWw+EsJDSrJfllsET8uDJ/U+iK9CFe8begy0NW/B129dYOWslqkqrsHneZrT72rGsdhkK0gswKH0Qntj3BMpyy0AgOCUnNCoNDBoDVLwKf3r7TwiPCGPDtxvgcrkwRZiChTcuxPM/eR6/eeU3KDIXodhcjBEDRkCKSKnSdDySlT3UJlaDPK4AQQcD5byWlTArfwdIKwBUBmDsCwzIj1vD/vH1AfmW14CcCrZNZWBmdcFuVspNvAScfBI7XnsLt9/xIwj2c+jpceGLz3dj+ryfYPq8+/DJR3+6IgBgY+fE8dix8z0sWjAPal0aM3GLRwCw+z+06cnxLUyHnjGMmdj1OcgnS5am6rGHBXZ9fVp4yc6WPDO52/HKJty+ZBEEQWTnt+dLTJ85C9NnzsInn3zC5k1EAdGK51etwfBx03DXoy9i998/AK/WsHuJaAG+Wcbqs1OCGctdX83O/cCTLLAwsAz415NMs65KY8f86zdMI9/nnp8xhJWWkx1Jo7ke7Hj7z+z8YmnoCYTxxd59mD7vLkyfeB0++ctbgC4DSC/Gp76bwPM8bjMfYM71HI/iYjOKisxYvnwfuroCaG/3oasrgM7OAFwuGcFgLFUOzmIRoFJxyMkx4okn9qG7W4AkRbB8+T4Eg1FoNEwPb7evwLvv3gqzWQ9RDGPLlgZ4PP/CLbcsxrp1+xEK+bFnzx7MnXs9Fi26EePGuaDTqZGWpkZ3t4CGhj/hRz+6EQ//7AF0dnTgyTlLceOIaYgnEuj0MmO4OBECIRFn7a3gOR56tRbzrpuOcfkjIIWD8AT9yEpLx6bv/gSn2Itxg4bjvcbPMS5/OBaMmomHym+FSWdANBHH83Mfwvm9RzDjpkpcsnXC5XKhuFeP6IdN2L/uz/jHp7uhxCIwcTooARknDxzBnMrrUT69HLs/2YUcMMO5jWC12D1guvUeMMM5DgzUS2C69l1g4NoKponPBgPzfcBdD2ZAVwKgEkAHgId37EDl7bcjKAhw9fSg7osvMHf6dIycPh1vffIJCgDcnRx/I4BdFgsav/8ed953H14BIGm1KH30UeTPmpV6Bml6911wAKauWQPT4MFQX1GW7coybtfa/wHt/yoV///m1zWq/P+EFg4z6vxXXzFOus/HOOt1dYze7vMRXbzYz1E/fbpf+y6KRIJAG9asoRlTp5Lc2UmUn0/d339P5HZToqeHXl+/nsaMHEnk95Pn2DHSarVsHIeDqLeX7rrzR/T66+/R0qVEO3YwynsgQLR0KaOu19YyWrwksdOsrWWndOZM/ylfqQCQJHa6J06w7bW1RKtWbaApU2aQ1SqTz0d04UJ3koKfoKlTXydgDFVVsXHdbnbMlClz6L33PiNFkVMU0mDQSw7HOfJ4WkmS3OTxtJLDcSZFUVUUIUWlb2mpTVLjTyb17m6S5V7avXspOZ1nyeNpJau1kVpaaikU8tMLL/yKRo7Mpvb2RlIUiS5cOE5udzP5fN30yisbqbDQTOvX66m1tY4URSRJctGWLU/T8OGD6fDhD8hmO0GKEiBF9vfT3j2+lF6dBOkKvfsV1PlwhC2VMKPPN11m9PmQ0q+Db7pMG15cRzOmTiPZ6yWKRKn7chtRJEqJSIRe376dxowezcawOJm2PholCkfom31f0ZTJk+mfv/kNfTR2LB1euZKCHk9K96X4fGQ9cIA+njQpRYk/smoVyS4X2x8IUKCjgxS/n4IuF0VEkUIeD/U2NzN6mtPJ6GmBAD06Zw6VT5lCvp4eUgIBaqqvJ7mnhxS/n5688UYq1OvJeuAAdV26ROPLyqj7hx+o9ZNP6Gf33kvbqrcQiQGizlai97cS+XrZKygRKSG29HmIzh0jEv2M1t7X325hOnhLB1FQ7tfDd7cRySI7vruNNtw+n2ZMnkTy0QNE335O3Ye/J3p7AyW6LtPr27ayz1ASiSSRultbiWSJEqJAr23bSqNHj6KIIlEsEqJYNEzdp/aSu/0kyT4nBZxtFAmJJPucjE4fFCkY6KHuU3spEhQpFglRwNlGss9J7o5TJPS0Me27EqRwUKCAs52CgR56dvnPqHzaFAr4eiksB6jp5CGKRUIUiSi0Y/s2GjN6NEWjYXL1OAgArXj0XpJ9djp37HvKz8+jU8ePUdzZT3tPhBWKO6xJCvuVuvYg2ycEKKGEKB4K9h/XR3m3dFGs9QKj0tssTCMvibT+pZdoxpTJFPjwXUpIInW2tlJCEil68Qd6bf3vaczo0ZQIBSnW2kyR9SspWvNXeunFF+lHd911FU2+T8++bt062r17NymKQm63m44ePUqfffYZKYpCwWCQQqEQeTwekiQpRaFXFIVkWU7p4VtaWlK6+eeff57Ky8vpww8/TNHta2pq6MiRI7R+/XoqLCwkp9NJiqLQ7bffTm+//TbV1NTQihUrqLCwkA4c2H2FLCZAiiKQw3GWWlpqyeE4nfLXCIV8KYmOw3GGBMFONTVVZLUeS/lxCIKNPvvsQfL7LSmfjrVrV9G0aZPp8uV6ammppYsXz5CiBEgQnLRt2xYaNWok7d69lByO03T48Dc0YUI+jRs3in7yk3vohuvn0MNTHqajO46Su9lN/m4/7V66m9zNbgr5Q6RICkluiYK+IHkueUhySdRS20IBa+AqWnzfq6aqhqyNVvK0eq7Syq9bvY4mjppI7m43NR9sJgD0zKPPkGAXqPlsM2Xps+i7mu/I2m4lNa+mdVhHu5fupmAwSDffejNN/eVUOu04TbUttYR1oGZ3M1XVVBHWgapqqsgf8tNZ51launtpSvve6eu8qk+zq5l2HN1BvpCPrAEr1bXW0RnHGaqqqaLHn3ucpkybQme7z1KrpZUA0C+f/SVddF+kxTsXE9JBr33xGvlCPhIUgbxBL1VUVtCHH39IiYjE6O0hF1GgNalzlxhNXvEz6rziY5R4+1dEUifTsCd17NR7mlHnZTuR93S/Hl7pZWMGe4j8zbThqVtpxuTRJPvs1Hv+7wSAXnq4lCjsp46LJ2lQtp7ObExS8sN+Iu8Z+mDNdLpu5Ehy2ixJKryQ1LZH2DKe1LpbGxgFPiKzffEoUTTc3z9FoRf6tfGxKOsbkYniUdqw+kmaMbmUZMtp6nU52fk9/yuiiEQdly/RoEGD6MypE+x40Zai3X9T9yVNnTKJwoKHKOhhVPjtekZ/91xglHjJwSjwgU4iuYdIchKdfotR6YMeovY6ojNvs/dKgK07TzLNu7eVyN5IG9Y8RTOmTSG5vZ56/3Y7O7/friL6soo6VoEGDdDTmWOHyHHpFE0YN5p8jg6iQBc9cNdcennjZmpudl9Fl79wwUVut0RVVTV07Jg1tW/p0t0UCIRSOviTJ+108aKbnE6R9Pr1VFVVQ4KgpKjyJ0/aUhr45577LU2ZMo0uX3bS5csWAkDPP7+GLl5005kzzZSTk0c331xNZ8446fjxC1Rb20KnTtlp6tSf06jRoykQkqjDYyWP5CO36COn4CEhJJFbYu9fqH2dLvZ0kqwESQgxerxXDtCze7bT+Oof07N7tlO7x0qtrq4UrV5UZJKUIAWCEq1Z91sqnVRGxy+fp7NtTQSAZt97C7X0dNLpC+coPz+fvvhnHT3x0QYCQKvWrKYOj5XONf9A+YMG0WtnzpCHGM29iogCRCndu5X6Kew2Ypr3HmJUeTsx+vyVlPkAEQWTx9QRo9o/v2EDDZkxg+6TZerq7WWf30svseM6Okg/aBAdPHOGapNjniWi0t/9jm6+5x6qTY69lIhCkQhFZJm8Fy/SoRUrqLepiS5+8AEdWrGCIpKUetSORSLka2n5L9W6X2v//Q3XNO7XgPv/Vq1P2y7LDLX2IeDTp5kD3NKlTEButzMwLwj9Wvckaq7+/e9pyqRJ5Pv0U6Lz55lOvg/9+v1Ep0+TjufJ8+23RHY7GQwGcnz3XWqeaaNG0Zdffk12eyLlf3fuHDsdh4MtW1rYsreXndbXX7P3gsD6trayaVtb2SUsXcpOubeX6KWXqmnChCnU2emjnh52zJW+e3Y7Ec/r6OBBDwUC/Zr3ioo59NFHn5GiCGSznUg9IDNtqY3c7mYKhfzU2lp3BQD3kcNxJqlLDZAse5IA/XgKvNtsJ6i1te6qh+4NG9bR5MmTyGZrI5vtBIliT2pOm+0kKYpIOp2OWlsbUyZ0f/7zH2j48GF09uxB8vst5HY3k6IIFAuH+oG5Eu4H4lcCdY+vH8T3gfNolG3rA+xKmPVtukzVj/2appSOI5/L9e+N7ZImeDqdjjxOZ3/QoC9wIEh03XXX0T8//ZQOrVhBck/PVeZwh1asIG9zM1kPHKDepiZSAgGKyDKFvF7Wp6WFAp2dFOrtpYgskxIIUDgQoEMrVtDFDz5I6d5fevZZmjxpErU3NqbGTgH7ZABAp9NRd3MzVf/oR5STnU2DS0qouKCAjAYDZWVl0arlv2QGc6KfgW1LB9OfC3623esm6rzUD8rPHmUg/exRZk4n+Ih6Xf1adyXIgLy/l6rvuoWmDDSTb9saNp69m43z2K0pszudTkeecyf7tfaSwID8D8dJp9ORpePiVWA8GlGYUVxESZnUheUARRT5KmDfdfJLkn12BvAVKaWRl33OlP795U0baPKkieS0dFylhY9FwxSLKBQNh0in1ZDD2kmxiEJGQxrVvfcCdZ38kqKKTHfdeQf94c03KR6UKSGJDHzbLGy9T9e+fmXKpC6hKP369t0fpY6Le9yUCMoM0AdlSgRlNpa1izb/7Cc0Zfx48jrszMBOEv4d4NfpdOTu7qK4EqK4u4diAR8NHTKEvtyzh3bv3k2NjY0kCAIpikKCINDu3btJEAQSBIHcbjcFAoGr9OhOpzOlhbdardTS0pI63ul0Umtra+rY9evX06RJk6inp4eCwWAK+DscDnK73VRTU0MqlYref/99slgspNVqKRgMpgD+nXfeTtu2/T51DwkErKQoAilKgIJBL7W21tH69frk/UUgt7uZjh7dQbt3LyWX6wKtX68nj6f1Kj28zXaSgkEvSZKLVq58mMaPH0sOR2fKh6PPb6PvnqbT6ejrr1+mmpqq1Jh9wcVR111Hez7ZQ7YTNtq9dDcJNoGC3mDKsM5zyUNyr0xBX5CcZ50pYN5nULcO66imqoZkt3zVesgXopbaFrI2WmnlwytpQukEajncQoqgkLvZTQadgb7947cke2RSRIXuvP1OemvnWyT2iJSmT6N3bn2HBLtAvoCPBgwfQPgZA99uyU1VNVVkF+wp0H3GcYbqWuvorWNvkaAIFFAC5A166ZLnEp11nKXallpyy24SFZFckovqWuvIGrCSN+ilVk8r/XrNr2lE6QhqsbTQWedZqqqpIoPRQGcvnCVfyEc2wUZL7lhC1a9XU11rXWrMWRWz6G+7/kaJiNCvW/eeTmrVzySXp4kULwPpio+B+j5wL1uJjjzItPGKh2niDy8luriDaeUjAgsAeM9Q9ePjacqk8eTrOJiax2RMo7aTXzBju4hAd982j95dOZXId44oHKCP182gEXmgrgsN/96Erg+U9633AfZY5Op+EZnp2a/Ux/cB9iv6VW/eTFMmTyJf+zF2zrEomUwmarvUkpxLortvW0DvvvU6Gy8aviqQMOq66+jEN39PGsOdZuC950w/8A55+83onCfYe8XP3u9dyvbLbnac8ySRYGHvJSeR6wxVPzSepkwYSz5bK5vjFZApTU1tzedYYMDbSnffOp/efXMH1X6wnXIzdTS4eBANLswloyGNsrKy6Ne/foZOnLDRgw9+lgLakqTQ+fNM294HxO12gXy+ILlcEvX0SOR2S3TpkocCgRB5PDLZ7QL5/aEU0K+rayW7XaBnn11H48dPoubm7tR4arWeTp1qIq83SD5fkCoqbiHgVqqqqkmZ4vWNo9PpqMtmoUBIopaeTnp2z3bqEXrJLXrJLfpIVGS64GinF2pfp0BITOnemZ69k16ofZ3cSaAuh4PU7bXTD47LdLDtFMnhIK1cu4ryRhTT4eaTdLDtFAkhidKMBmo8e4L8QZHkcIjuuOtOevWNHbTr9NdkNBnp28aD1NBxhgIhie64+0f04jvv0FJiIN1F/YZ0IKZt7zOn6wPzZ4mZ2HnpapO6c0QUTh5fS0QWIvpNdTVlTZlCB30+6iUWHFCbTHSyrS0VKJh39920/t13yZecX0wkqGToUPrjV1+l+pwkoj5oHg2FKBwIkNzTQ4dXrvx34DwiSVcZ7F4J6q+1/33bNeB+Dbj/79P6nN76XN3+rQFdczPRG28wwN7c3A/c+1CvKNLWZ56hyaWl5O3oYPv8foo6HOT84AOiY8eIPB76dNYsKukb88IFeuCnP6W1Y8cSAXRs3jwqyMun3t4w+f0syf/WWww4e70sNmC395nNsfVAoN8zr48g4PUyU7o+8G6xsNOcPHkrlZVNpo4OL/n97FibLUp33eVMXeZf/vIpFRWVkM/Hxuy7vClT5tCHH35GwWAg6c7MwDkD8v1ZdGYQt5QcjjMUDjMTOkURUu7zTudZkqSeK7JgdlKUQCoz/8ADk2nSpIlktV5KPmyfIknyUVNTPdlsJ0gQHPTBB+9SQUFO0uhOoD/96S0aNmwInTr1beqhu2+uaDCZNRckBsxDSspsjpQwy4YLEjOVu9KU7qp94dT2rRs30eSxpeR1OFPZ92ivn5wXWlLA/tM/vEclxcVEkQhFJJkuHTuZmqPx+4OUlZVFTouFwoJAEUmiwytXkuf8ebIeOECec+fIeuAAy6h7PFdFrj3nz1Oot/cqEK8EAhROGsL429ro0IoVtDQvj67LzSVHRwdZDxygUG8vedvaqLO5mcKCQIGuLvrzjh2Ul55Onh9+SEXDw4JA1oMH6YH7ltKrmzcxsO3zMCO67jYG2q90kw/42Ps+t/m25n/jNC8mQXwHM6hLAv6tv/8dTR5XSt6ta9i4IZmiokDO9jaWtff10qeP3UclhQVEZ49SdNlicv5zb2q8XR99SCUlxdR18ssUGE85yofElNN7OCiQ5fS+lOt8NKKQ5fQ+Ol+3nQLOtlS23nJ6H7nbT1JI7KVoJERbXt5IEyeMp86Lp1iGPSiS19ZC1q525lIfUWjXx3+nkpJiikYUikUU+vnDD9P6F5ZTMOAiV4+DSkqK6ejB7ynu7qHo7o8o1lifNKtjID3utF2deXfaKK6EKNZ6gRnV7f4o1S/lSC8EKO5xUUISacv9P6VJg3LJ9ae3mOGd00YRUSTru6+nAgI1f/sblRQXU9zdw0C/EKCv93xBxUVFFPb7SBAEcjgcKRd5QRAoFApRMBj8D93l161bR5999hmFQiGSJCmVeRcEIQXMFUUhm81G999/P5WVlZHD4SBJksjpdNLHH39M58+fJ4/HQ7Is07vvvksDBw4kQRBIlmXKzMykL7/8kkKhEFmtVioqKqLvvqujmpoqOnp0BwUCVgoErFfdbzye1n9T3eIkBYO+JDjvSYJ8Xwqs9913HnhgMpWVjaLLl4+nju3qOkp79/6eRLGHAgErvf/+DiouLqRQyEey7Ka2tuaU6eVjj02niRPHU9AfpJqqGmp8o5EC1gC5L7op6AuS3CuTIiikBBQSHVc7yYf8oZTTvPOsMwX0+44NBdj+ByY/QGVjysjeYaeQL0SOMw7avXQ3PXT/Q7Rt8zbytHrowsELNNAwkOo+rKOgL0j33XsfrX5uNQl2gb767CvKyc+hu/9+N520nyRBEcgX8tElzyVyCA7yh/zkklzkltzU6mklu2Ana8BKze5msgt2EhUxBcbPOM5Qj9hDtoCNrAEr1bbU0tNrn6asoVl0sPkgiYpIzW6Wlb9u/nVU/Wo1eYNeaupsImOOkb7855fkDXqpR+ohl+SiceXjaPuftlMi7Gdgus+Azn00uWxk4D3sY9l279krwH1d0sTOz7Lqsp0BfNlO5DnBALxsIwr7aeuLP6fJQznydh7tn+fwUnrk5w/Szh2vECk+6nV2UUlxETXWf0dkraNP/voWjRhWTJ01i1nGPn6FCV3S2f0/NqWTkhn4K/pd6Ubf5zDfl7EPC7T15d/T5MmTyOt2JjP1zJH+kYcfpJ2vv0YUj1Lv5UYqKS6kxsPfUyQo0aWW5tScjfUHKCsrk7ynPiayNzLArfjZfsXPAgZ9gP3kjmQmvjkZeGgmcpwg6jnXb1on97DMe1ggUvy0ddXPaXIRR96/38EAftKZ/pGHH6Sd2zYS9TZTb1cTlZQUU+PBb1LAnvYuJRK66YH7fkLVmzeRzxckQVBIFPuz5adPM4d5vz9EoqhQT49IPh9zlV+6dDedOeOg2toWstkEstvZKxBQUtn45mY3CYJCTz31Ig0YMIx++KGTfL4QWSx+Wrp0N91551J64YVNVFVVQwcOXKDi4mKaO3cjNTZ206VLnSQICp0966RZs56m4uJiEhSZ/EExlUH3SD662NNJB9tOkVcOUCAkkVv0UpfXQeftl+hg2ylyiV76+NRXJISklNv8xZ5OcoleenbPdrrY00mbNr9MecOLaOxLd9Kze7anDOx+9uD99NuXf0cH207R0YunyZyTRfv+9Q0FQhI9+PBDdPMv7yF/UKRjF89SUUkJ1TQ2kotYJv0csUx5H2Duy4D3AXgQA+V9+88SA+9eIgolH3mDxEzuntu6lbImTyZ4vVRF1O8c/8gjNGPnThKJqL23lwpKSuhvjY3USkTnieiLb78lQ3Ex6eJxqk2O5SAWFCCi1LNNnxFuVJaveuS+lnH/f2b7z4A7x/Zfa1e2oqIislqt/6tP4//MJsvMlG7Lln5tu93O1levZkLwSISJzrdsYcZ1w4czNzgiWC0WFJeWYlhREdJlGSgshE6rxT9XrcKcNWsQDoXAm0wYaDRiW2YmJmzaBOTmosdiwc9WrEDHDz9Am5uL6tf+gFmz57Fy4lpAFJnZ3JYtrN66y8VKxb/wAjuljg62b/t25nsVizEZMc+zGu65uWz9yy+t+NnPijFkyDAYDOlwOIDCQh0+//yfuOuuOejqCiMvj0de3kBs3LgNZWUTwHHAr361Hl9//Ta8XjdMpnTo9Trs3/8hLl58GxUVq5CVNQxdXQdhNObgyJGtqKhYha6u72GxHMYNN/weWq0RWq0J3d31qKm5G/fc8ykGDZoMUbSjoWELKipeQFbWcPj97fj88zV47LFaDB5cBECC0ZgDvT4Ne/f+A4sW3YVwOAJZdmLw4FL89re/gt//D1RWrkZR0RTk5eUgMzMDPK8GxwHV1fdCkpqw+Jad0PkUIDebicCUCNOk9xnQhcLMoK5PB9+nZ9dpAb/INO+DCwCdBlaLFcXDhmLYsGFIN5kAIui0Ovxz3z7MuWUBwkoYvIrHwIEDsa26GhNGjUGwpR3zlz+CQMAPtUYDo8mEdS+swtTrRqLpnXdQ+uijMOTlAUSIRyI4s3Urxjz0ENQmE3RZWUAiAfepU6h/6ilUvPoqDPn5aHrnHYx58EEoXi9yJk8Gx/OIyjJUej0unT6NshtuwJDiYpgzM5GIRqHmOHy9dy9uvu02RGIx8DyPDL0et8kylv7hDxg4YQLikQhUej04nseyXz6GiUMH48mSDOBHDzOtvq2D6dnbLjAtu0rFDOl6e4C9fwcW/xTQaAGDCQABAR/bfvOP2DadHggFYfV4UTx+IoYNHYr0tDQgHIQuzYh/flWHOQsXI9zrBp+RhYFZmdj20jpMmFUB+fwJzHnkCbbPnIns/EH4/W+fwaTJk8GrdYjIfqRl5IKIkIhHoVJpwanVADiACJSIwdl8EAOHT4VGb0bQ50BaRg7isQhUai04Xo1IMABP+3GE04px3diJGDK4BOnpJsQjIRjNA1D3xS7cNG8BEpwGvEqFdD2P1958F2OvGwL35WPgB4zAL3/1DDo6OgACHn30ESx/9JdAXw1gjgOFw6AeO/jCEpBKBS4eR7zuH6CmM+BKJ7Ka7GoNEAmzHz8R4rWf9u9fcDvA87C0t2Hw+IkYlpeL9OyBQDQCLSXw3dFG3HjTXISVEHi1GtkqHlvffhsTJ04CxWMgpx0/W70WI0aOxIvTxiN24wLUfvMtmpqaUFZWhptvvhk8z+xlvvrqK5w/fx6lpaVYtGgRBEGAKIooLi4GAFgsFqSnpyMrKwtEhEgkApfLhaKiIhw7dgxz5sxBcXExsrKyUrfYTz/9FHfeeSeICLIsY8iQIaiursbo0aMhiiLefvttfP755wAARVHw0EM/w7JlP4FenwkigqL4ABC83jYYjTlobHwN8+dXQ6MxXHV/ycgogVqth8EwEADg83WgoWEzKipWQRTtiMUGYuzYchQX5yMrayAEwQaDwYy6us9w110PIxyOgOc5mEwavPJKNSZNmgKLpQHvvrsXn3/+NSSpByNGDMG2bZtRNvoGBDpFZJRkIB6Jw3bMBnORGYJVgLnQjIwhGeBVPHztPmgMGuiz9LA12mAuMcNcaEY8EofWpEVMibHtxWYIFgECJ2Da4mnIM+Yhd2guu1XZQ/hw7YdIn5COB5Y+ANnEalTfd8d9WPbQMhjzjLh86jKeWv8UOrs6oYIKW1/fiuHThiMYDYIDh80Nm7GqchWMaiOMWiMMGgPCsTB0ah3CsTAsggVbGrZg5ayVGDFgBJbVLsOupl2oKq3CujnrEIwGUWQuwrHmY7it/DZwWRxGFY6CilMhykXx8b6PkYUsPPbIY2i+1AwNr8Hd99+Nex5kOvqc4zn4+C8fQ/SJMJqMMKSl4fS/PkSO+4/MiI5jtw/wyd9vbyNgKGbGc98vAYYsBaa8xszZIn5AmwVwGuDMs8CEDcCJJ5g+fuBsWL9fh+If1WLY4HykmwcAFIMu7kHjiR/Qa2/BQw8uRbs3HaAYHl+UgcdXvQP0HoWm9DfIz89Hdp+pKMfju31fIlunMP06p0oalib1+YF2INQLDBjFaruHBVb3nVcxTTzFWT12rTnlwYdEHNbmRhSPn8PuhUYdwGug02rQ+Pkb6KUcPPTLp9De0QGA8PiyX+Dx+xYhyA/A/EW3IxDwQa3WwGhIw+/XvYibZk8GIgHmE8CrgEScLVVpTFfvPMGM9WJBpsUXuoBjG4HyVUyHrvgBfRZgyGU6+ngE1n8sR/EDn2FYST7S0zMAXg2dmkPj78aid+RyPPTUerRfbgHUBjz+2DI8/tgvgEAH0LgBuGE7AMKDjyzH2ImzseCW+2C1CqioKEF9fTfuvrsGt902Cjt3LoJKxUOt5tDR4ceGDYewcuUsHD5sweHDFjz99AyMGjUQ0WgcjY02DBpkwrBhWejuDsBiEVBczGHChOswcGAhBgzIgMslo6hoAL7++ntIkh833HAn7PZumM16vPji07j33ocRDMq4++5F8PtlmEw6DBiQjfWbN2LwqCFI0+jhCwp4r/FzrJn/C5x3XMKIgcUIRhSYdAYYtXpY/C78sfFz/Hz6HSjOzMMpazNyTQPwXuPnuH/qYvhCIooycnHHn57GrOwxePvhdSgeXAKFjyHbkAGNVosvv92H3t5eVN33E3CBCPwhEUt+eheeffJp/Pn4l/jRyDl4ccXzsHR1gwhYtnw5bnr8cWzkOKwCM5b7FsBPkPwqAvCC1XMPAngWwKtgmvZdYOZ074AZ2V1Z5fyS1YrriotROGwY5PR05AIw63T4Y2MjXuzthf+hh+BubwcA/Pzxx/H4448jCkAH4P5770XmyJHwvfQS1gAYBlbvvW/8eDQKsaMDP/zhDxj36KNIHzr035nRxaNRJCIR8FrtNaO6/4c0juNsRFT0H+67Btz/fbsG3P+LWiTCXlptvzGdIACPPMJc3ZqbgfXrgfJyYP58IDubOcQlEkB9PXDffcCHHzL3tnCY2bBv2MAAvsUCtLUBc+YAGzcCTz/NjO2mT2cI+osvgB/9iAH+nh4WMMjJYQ5wajUkMuDyZQ6bNjHj+iFDgGXL+k9r7Vpgzx7g00+B2bMBj4ddQlYW88w7d44Z4QcCQEYGO+UVK9ip5eQAZ84As2axSw6FGMBXqVg/v58Z3/3beEVbW/96UZGEf/7z52hq2oXS0irMn/8KdLoMSJIdbW1fw2Y7hsrK1YjFQuj7DTOAvgqCYEVhYTlCoV4cOLAWTU27UFa2FIsXvwXmHK8gFovA5ToHozEHsuzG4MHXo7e3FQ0NWzBr1kpYLIcxfPjNOHhwPQoLyzF8+C1ITy8EURTsXxiHaFQGUQIcx8OgHwBVgmN2+SoVM53TqK4G6Bo1oOIZqO92AEX5zPnPZGBGahzHPiApyNzpeY6Z1sXibHu3AygZBOi1bAyLkwUCAMDtY/MML2Z/fxWPqKKgce1adH/1Fea8+WY/GH/4YfSeOwdjQQFypkwBJRJIJJ3nE9EoOJUKJ37/e3TW1qLkllswdc0a9J47h+zx43Fi/XrkTZ+OkgULACJwGk0K9GeNGoVQby+a338fYx5+GIb8fHA8j95z52DIz0fQ6UT2+PGIiiJ0WVlQ8xz4D18DrisDJs4ElBCQZgDSjEBIZtehKICZOfmDU7Fr7e0B9n/KHOc5DjhxCOhoAe57AnDagG8/Y4EAXRr7W7gdDNwvXQ6IArDnA2Zi9+uXgKyc/rF0euDSD8B71cAvnkVi1ASEwyKiIRGGAYUAJUBEiIZEeNqPI2d4OTRp5hQYzxleDiKCRm8Er04C4lgErpbDyB01Gyq1FrLXhu5TX8KcNxyFZfNAiQQcFw4gLTMfmYVjEPI7EA4GYBo4GCqNDi3/fA+j5y6Do+lfSMvMhylnCDR6EyLBANyXG5EzvBw6fQa4eAwJaxc4k5kZYSYIiW++BF8xF8jIBJdIIGHrBmfOBDKzwCUSoFAQnD4NpNaAIwKiEfZb0mjAcTwAAskyOIMRFIsi8U0t+JnXg8tIAg2VGvG9u8EVFoMrHgro9OCMRoDjkbB0gEs3AwYj4g47vBkDcOjQIdx8883gOA7hcBi6pHnQ/v37UVlZiUQiAbPZDI7jYLVaYTKZYDQa4XK5UFJSAlEUkZ6ejlgsBpvNBrPZDI1Gg2g0ivr6elRWVsJgMMDhcKCwsBAqlSp1K+Y4DqIo4sCBA2hqakJpaSmWLFmC2tpaLFp0MwShHfX1m1BZuRpmcwmiURlarQmS5EAkIgPgkqD8BQiCDUVF02G1NsJsLkR9/abUfefvf1+CsrKluOWW10AUh6L4oddnQa1OA5BAIhFDMNiLaDSI+voNmDVrJTIzh0IQulFfvwkzZz4NWXZj0KDJkGUXM8xMaKFNDIRGrwGn5hCRIkjEEnCddyFtQBqObjuKxW8vRiKWgEqrQjQYxTfPfoPpv54OfZYe0VAUgkVA4fRC9uTNAUpAgVqvRlSKQp+lh+yWYcg2wHHKAXORGWqdGgfWHkDJ9SUYfcdocDwHtV4N2SVDZ9bBecaJ/In50Bg0qF1WixteuwFd8S4YtUasPbA2BcJfmf8KXLILWxq24IWKFzA4YzAA4LG9j6X6vHfre2jtbcWWhi14bvZzqO+ux2HLYby9+G00WBpQZC6CSWNCrikXcYojkUjAH/IjTZsGADBoDHDLbmSlZeHxusevmtstu+GQHFgwZA5UxCo2QGpnZnOTtwNhN9C0ARjzNKC4gezpwKkngSlvMEf0iA+IB1n/0tUM3MeD7ENU6YCwj7m4cypmfBcLMZM4DgBUAJIR7kQMOL0C6PyImd5N2Q4oPUDTJuZkbyhmx/f5JVOcAVvJxpzY+STYiMpJwzkrYCpigYe+bfEwM7IDmGFdH4BnfD5mJBdyJ03hhrE+V46l0rHggNbEHN/7zO4iIgsQJKKAr5UZyeWXA2oDkIiw/3FCB3ByGzOo05qYYR2nAiISM5+jOOsflZLzdADHNwPlLwDWg4D9MDD/Heb+TzF2LS01gOMIMGcrCwCc3ApMXwWIdiBvMqDSss8lEQUSUQixdPT0BBEMRmG1Cpg+vRBEgE6nYv8SVRwUJYbly/dh164mLF1ahq1bb4ZKxSORIPT0SFi//hCefnom3G4Z06cXobHRitxcIzyeIGbPLgERoaHBgrvu2oXbbhuFd95ZApWKgyhGEAiEkZGhg9msg8USgMmkw/nzPZg2rQA6nRqSFAFUBJH8SNNqkG3MQiwRBwcOHAd0+5z48/Ev8eC0WzE4axBe+vod7G85ggWjZuKFuQ9Bxauw/pv3rtoWS8RR/a+/4hcz7oBL9KHb78D862YAAF79/iM8P/chhGMRFqMCBwKB5zgIiowjXefwg6MtNXY4FgGflo5lHHcVCO8EM4h7DsBIAO3J9dUAhoIZz7WBGdOtATAKV4P2vhYCEAUgg92GfgAzsCMwgP4fHdPXIgDC/0m/a8D8/7x2Dbj//9iuAff/gtZX7q0PaI8ezZDvldu3b2eIuLubgXe9HujsZGB+9WrmJM/zwPHjwMSJbNx//AMYNgyYOZONtWIF8NFHzMK9r46bXs8AIccxm/ennurP5DscQHU1Ajs/QH09h5wchvdnz2bA+dVXgTfeYBl1n4+B7g0bGLi32xlYNxgYHhJF9kpPZ/GA1lY21tSp/dM7nWzM6mp2XEMDUFbG4hNHj7JMfWYmA/uHD7NScLfdBvzlLyH4/ZcgCBYUFU0HEUGSnDh0aD1mzVqJ9PQCaLVGRCIyOE4FRfGmAP2iRTvBcXwKVIuiHUZjHgKBLtTXb0RFxSqkpxdAFB0QBAsKC6dDrdZj375fYdCgSRg+/Gbo9VkgSgAARNEOnS4DWq0RAKDVpoMoDll2Q6/PhFqth06lZ6A9nmDgXKXqr/YEAgSZlYMDgEtdDGjnZAHXDe4H8iWD2N+b59grEuvfHo6wrP0AM3Omv9TNwH2GiQH44ny2XcUDARkwpSFGCYhdXWh65x1MXb0aJzZsQPdXX6HkllswZdUqKG43gj09MOTlpZZN776L0mXLoMvKwqnNmzHu0Ueh0utRd8cdqNyxA2m5udAPHIig04nm999H6SOPpI41FBTg+EsvpeYoX7sWnEqFRDQKz9mz0GdnQ+ntRfb48eC1WnCJBNQBD7gBuUA8BnRcBDKygdxB7AvkdQOCF8gaCOzffTW47nUBQ0ezMm4L7gEyBzAH+g9fYxn74WPZvkU/AXLy2RdarWHzJBJsrmGjWTm5f9tfq2PZ6G8/R/xnTwDJDDvH8eB4Hrbz3yLgaEHGoFEoGDeXgeqsQcgsGAOOA2LhEBKJKNyXjyFneDlU2jTwvApBvxOaNBN4XgOVVp8sGUigeAxRRWbgf8R0qDR6OJu/R86I6SxokFWQ/BolkmOkIxoS0XXiMwyZeieM0IMCfpZhV0Ls+gDE39wC/t5fgMsvZCXudDr2/UoQwxUaDXOPj0YBgwHU4wBfPBQAIWHpYsDbmPzORsLgDCy7R75eJBoOgJ+/GJxaA+I4FgjgOECW2DwqDcjaCX5QEeJaHeJ9v4Rk1vzbb7/FjBkzkJ2dnQLi+fn5KVCv0WjgcrmQmZmJ9PT0lIO82WxGfX09Zs6cCVmWUVJSgtra2hQYv+WWWxCPxxGNRmE0GhGLxRAOh2E0GpNu7oR4PA6VSgWe5xGJRKDREOrqHk8G6G6G0ZgPogRE0QZBsKKoaAZ4XoV4PIZ4PAKt1gCAQywWxv79T6KoaCbGjr0HarUOsuyGwZCd3K8ASOCbb1Zi/vxqyLILkuREUdEMcByPeDwKu/04CgqmwmY7hpycsVCr05LVLXjEYiHG6ojq4GvzQ7Cx7Hr9pnpUvFCBzKGZkF0y9Fl6qPVqxJQYFJ8CfaYeAUsAco+M4lnFzGGeA+wn7MifmA9wgFqvBgiwNFiQUZKBjJIMfPXkVyiYWoCx94yFJk0Df4cfxnwjBIsAySml5p61chYGjBwALskcikgRkIbApXNIUAJyVMZZ51lMK5wGnUoHu2jH/rb9OGY7hh237IBGpUGnvxNbDm9B9fxqcByHeCIOg8YADhye2v8UVsxcgWJzMZySE4XmQkgRCXbRji0NW7CqYhVGZI3AJd8lbKrfhJWzVqIgvQDp2nS0+9ux4dAGrK5cjRJzCUKxEOKJOLh4EIXGXJYdjoWSFTt0gPswUH8XUHgbMPV1to3jAamDAfrSF5j7e/3dQMWnzFE+7GYZ5aYN/WBe6QE0GUBMBrSZrNyc1M4y+NnT2bgxETj1FDvGNAxo/Dlzqi+pAmb8KRm0tbGMdZ+LfJ/7enpx0oFelQTcGpZdV+v7M+192/oAeyLOAK+poB/4C51snVMn+0eAsJ8B7IyhDHAnosyJ3jw4WXaTY0Ca4oCtnpWrC7kZ2O/LpktWINAJjL6XAW/nMSC9hJ2fLvl5CB3A8S0M3ANAaw3rN301Ow/zYHZ+J15hJd807HcGEPDtY0DLLmBUFXDTG/3XLllZ5n3aSoRMYyCHCI2NNuTkGLF16xGsWlWBgQMNWLHia6xeXYm0NDV8PgVbtx7B9u0L4HYHsWHDIaxeXQmLJYAlS/6OqqpSvPHGQmg0PGIxgs8XwsCBBgSDUZw7x4C4z6dAUWKwWgVMmTIIdruEV15pQHX1fHAch927L2DYsCzMnFkMlYpDIkHgOECt4ZDgGViXIyEosTAGGDIAAL/7+t0UKH/x5kdgD7hZdn3aEgRCIiYVjkY4FkGTsw2jc4dAr9EhGo8hHIvArDMiHI+iydmGUblDoFdrGVjnOPiCAoLRMP7Y+Dl+MeMOZKWZUf2vv+LBabcix5QFvVoHJRaGUaMHafW4zHGoBnOEN4A5xo8HKxE3HaxEXB+wf5f9daAGA/B6/OcAPAQG3BsBDAZw3f9N/2vt/73tPwPu18rBXWv/Pa2v3NuuXWwZDrPtV9Z1N5uBwkJWzPyppxgf3WplKDonhwHBJ59kSNflAk6dAn78Y5aB7+lh+6urgaVLWRBAo2GIWFFYQCAWY0GALVvYP2Cdjo2/YQPUaqC4uD9Jr9GwrPsbb7BScMuXM9BusbBL2LgRGDeOAfHHHmPxBYBl5t1u1nfrVlatzmBgCX6Nhs3x6qss4N/QAEybxkC+z8f6vvIKK0F35AirI9/ezi4lkYhDo0mD2VwEq7URHMdBrdajpWUPGhq2JGslc9BoDJBlJw4cWIvi4tmYP78a8XgYPl87urvr4fN1wOu9jEQiBo3GgJaWPaiv3wiVSgtBsMBozMG+fazm+4IFr6K4eHaq/JtWmw6VSoejR1+FyZR3xZ9WwFdfPQmt1ohEIopIRESMYgxod9rZEmBg+1IXq7feR5lPxIERJcC4EQyQAwycu31sqVUD0Rh7SLM4GdjnOXZ8homNr0RYpn2AmfVx+9iS5xm4zzAyynQsBv3AgShbvhyyw4HSZctQcsstGPuLX0Cl0aDp3XehHzDgqmX3V1+lSsKVr1uXKglXeOONyBw1CroBA6DSaKB4PBjz4IMI9vRAlzyWA1D66KOY8+abmLpmDTiVCiGfD+A45EyeDE16OvTZ2Tixfj1iwSBEux1BUoF6e1h5t/RMINCbZAyoGZBOz2Rl3oaOAvxe4K87WJZ8SmV/7fX9NQy0d7Qw4D12Mtt25igrB9c3HiWAaAT45A9sDI2Ogf6+/n2l5NIz2bJkOGM8AEjEWBkZAoeCcXNx3ZyHUTBuLsDxyBtdCXPeCESCAQR9dqh1adCkZSB/zPXQ6E3g1VoQJaA354DnNeDVGsQiISRiEfgdLeB4NXi1BoYBhYiGJFZOLqsAnrbjMA4oSD48E0IBJ/TmHKi1aTAMKERmwRgYMwaBAn5wRhPi+z4DYlHAlA7o01h5tpKhgBhA4sB+QBRYLWdZRHz/FyBvkkaj0YDT6sCVDAXiMSS6O8CZTP3bNRpwaQZQNAKKRgC1GvyMSkAUEd+7G/B7QaEgmxtgTAwVD75kKOJaHUKRCKLRKHw+H2prayFJEmbMmAFtkoUUCoXg9/uh0WhSWXFZllFcXAy9Xg8AqK+vh9FohCAIKdBeWFgInudRWVmJ0tJSVFZWQqPRQJZleL3e1O/V5/OlSs4FAgEkEgns3bsXfr8farUaHMdh/vwtqd9+INANnlfBYBiIvLwJ+Oab5wBwSaAvwu/vBsBDrU7D/PnVGD36DgiCBd3d9YhGZVgsDQgEOrF//28gik7MmPEUVCotNBoDTKZBsFgakEjEoFJpUFw8CyqVDunpBfj225UQBAuiURmJRBSCYEN3dz2IgPpN9TDmGFM12+s31YPjOUSDUexbvg++Nh8Un4KoHMW+J/YhfVA60gvS0V3fDdEhYt8T+5BblgvZJcN52gmOZ0GMoplFMAw0gOM4LNi2AKPvGA3FpyARTyC9KB2aNA2OvnoUxlwjBJuAmU/PhOSUAAJ8l33oru+G7JJhP2VHp78T9d31SFOnYWL+RDz51ZPo8HWA53j8dNxP8cbCNxCJR/D43seRY8jBW4vfgkt24bTjNDiOQ4/cg1AshNcWvoZiczE4jkN+ej6iiShUnAqvHn0Vu5p2YWP9RsQolqoFv6VhC/yKH9FEFDmGHGxfsB3DM4ejW+jGk/ufRI/cA73GyOKoUYkBSyIAcSC3ErjTAZS/x8A1EcsiBy2AbQ/LiGeXM9BuKAbc9YAmE0jLB8Y8wyjiQQtwfi0QsrMybyeWszmClv51uZ2Vj5v6BqDLBqIBYMzK/pJzfdn1kIeBaE7FMu1pA5O1z1XJ+un4NyXergDrKj1bAoxGn4gCpkHJACHHlhnDWH+OB2JhFhzQmhloBlhgQ7KxrHkiyjLj8Qh7JeLAoOks852Ww0B7yy62zC8HRt3DxnMeY+vmEkCXxdaFTkCdBlRsYPfhg8+yOvA3vcECCZnD2Od+agcw+SmWTQ952OfI8YwS/1AzW6qTDLVEhIH2ll3A8S2IR+M4ftyOiooSFBebsXXrfNjtIkQxjF27mrBhwyFkZenhdst4442FSEvTYMOGQ6l95eWFqKoqxZo1lTAYNOjzwAoGY3jssb0AgPx8U7JcXAzFxWZMnJiPtDQN8vKM2LHjFiQShGee+RqzZ5dg4sR8PPpoLdrbfQgGo6hv6IJFcOJ3X78LW8CFFncXbv3jU3BLPpyxteCh8tuwYNRM/GLGnThnv4RMgxm/nf8LDEofiLJBI2H196D6X3/FqNwh0Kq1OG1rgVvyIRKPwhJwYdN3f0KuaQB0ai3OOy6B55heIstgxl+Of4n9LUfw3tHPIYWD2N9yBH8+/iW0Kib502t0kKMKIok4rAA2gZV/WwZGif8UQDkY4H4a/fXa5WSfNvzfg3aAUejNAK7HNdB+rf2Pt2vA/Vr772labX8x8zVr+guh9+3T6ViK+5e/ZKns8nIG8GfNYhR3lYplzlesYCjYamVg/uRJBtjz8hjfPD0deOsthp6XLQMuXwYaG9kxjY1Aby9D48ma4CguBlauRDzGMH55OevW1sZwfizGQHpfvGH6dHYJq1Yx1n1f7fYNGxjrf9cupoX3+9n76mr27JOfz8bX6diYHMfiD08+yeIK2dnskvbs6Q8KOBxsv9sNAFoYjXkwm4tQUlIBm+04YjEFjz12HkuWvJPKhgOAINhQUnJ9UuduBMChvn4jjMZcaDQGlJRUIJGIwmDIwVNP2XDrre+C49QoLJyOI0e2oqlpFw4d2giA0NCwBS0texAIWBCPh6FSabBw4esAOBAlEA4HQEQoL/8VRNGO/fufhCjaEU/EmIbdbGJZb+BqUB1PsOSBSsWo7+lGRnkHGIDPyeoH8mk61ndYIQProTADkCpVP5BX8SzDPnIwCwIU5TOdvFbDgH2bBeB5UCyGWCiElr/+FYZBgzB1zRqEXC7EIhGULlsGxetF6SOPpJZDkrXYQQTF60VMUWAqKkL52rVQp6Xh1MsvQ7LbYcjLQ8uHHyJrzBikFxdj8nPPIRaJwFRUhOzx49F77hwkmw06sxmSzQb3qVPQms3QpKfD9q9/ISqKuPDOO4iJIri6jxlo/no3MLy0v4b9jx9lddv/IzCu0bD9M24Cbqli/YePAXIGAVnZTAu/7i2Wlb/0A6PXX/qBgf+hoxgwV4JMS280sTn66smreGBxck5imeREIoag34loKICgzwGVVod4REE0JECl0THNu1qLtIx8xMIhREMBKIKHnRcl4Gw+iHgkBLXeiKgiw9XagFg4iMxBoxFVRLgvHUVG3kgYBwxC0OeEOX8kCkpvAoFLzZmWkQ9epUbPxXpQPIqCcTcBHAPInDkT/PxbQUIAXCwGaj4Pfs7NjC1w9BC44iGMSQAg0fA9qOkMEg0HAEUBp09DorsD8PUiYesGX1jC5AlaHajXzfYRMbaDJLAgAK8CSQIbp/6f4IwmQEzuk0T2ewn4EI9GIIoiFEVBfX09mpqaIEkSeJ7HgQMH4Pf7wXEcxowZA47jIEkSWlpa0NDQAABQq9WIRCKorKyEXq+H2WzGkSNHUjR5r9eLQCCAhQsXpnTwkiTBaDRi7969EEURubm5qbnr6+sRDofR1NSEw4cPg+d5EDEQfvQoC9yZTPmIRoMIhwMACPPnb4bf347a2kcRjcpQq3VIJCLJ93rwvAZHj74KozEndd8RRQfmz9+KzMzBSE8vwNdfPwOt1gSzuRB5eRMQDPaCKJ68r8QhivbUPYzjVOB5NUymPNY33IMF2xcga3gWlry7BPfW3YvK31YiHo2jfmMSyG+shz5DnwL24UAYDdUNyJuQB7VOjeLZxYjKUUhOCSWzS4AEQDECJQgRKQJfhw8xhQUcfe0+xIIxBN1BJOIJLHx9IbKvy0ZGcQaObD0CcxEDh/Wb6mEYaIBoFzFo1iDo1XqUF5ajwdIAh+hAeWE5LIIFclTGE/ueQLfQjTPOM/jo/Ed4cv+TiFMcG+s3oiy3DA7RgfUH1yNBCSQowZgX8TBi8RiOWI7AKTmxed5m1P60FjsX7USCElhdsRpVpVV4bvZzyNRnQpPMKscTcVhFKzYc2oA9LXvgkl3I1JnAJRQGntVpAEUB91FAagOOPcqAdSIMBDuB448DhkKg4h+MTs9rgNzr2bHZ5WBEXx5QXEA8xAB69y6geQuj0XfvAsIelmlv3prcV81AMZ+kd59bA3gOA2XrAONQtq0PqKt1DKir9EDmcJZZBsdo8BzHsswhD1tSnAHveDhZ/z0MRIQkjVzLxogpDIQnJV4sI6+6Yhx7vwwpHmGZdF1mfyBBsrK5KcaCG9PXMJ36TTuBO2vZukqXDChYGKh3HgMCXYCzkYF4Yz7brstiQYG5b7JgQSwEfLecUfATceCGbYz+/88nWKBC8TGgDwBH1wNBFztHjQHQmNjco6qAac9BqwEmTsxHV1cAp045oNOpMXNmEfLyTKiqKk1m3DWoqCgBESDLYaxaVYHa2p9i585FIAKefnoGursDiETiOHbMBpWKh9UawJ49LRDFCF5++TB27WrCxo2H4HBIMJm06Ojw48kn96Oz0w8AWLFiBgoKTEhL0+D660tQXd0Av19B3iAj3LIXT81ZimxjBqYUjsabP3oeJp0Bo3OHIMeYhXU3L4Nb8uLJL17BK//6KwDgoqsDPMdhgCEDK296AESEl7/7E7LS0uGWfRhozIRWpcbEwuvw5+NfguM4jMsfgWg8Bm8wgGg8hufnPoTFYyrwyIw7YdIZWIBg+h3QqDSwB9z4/dfvgoigBlBEBBkMvO8Co8VXgAHzYgBuAG+A0eSfTfbZAEZl//+maQGk4xpov9b+x9s1qvx/0K5R5f+LWiTCMu06Xb/Gva9JEvDznzO0W1UFrFvHKKtDhjD+udPJUPKqVcDgwf0mdgUFLN29YQMzrisoYAD+F7/oF6VPm8bo9X08+JISRsefPp2lusePh+wM4HKn9ip5fEUFw4bt7SzTPn06O/VwmGnZ8/IYm0+W2fODXs9OM4MxvfDkkyxb7naz4ydPZv1FkZELVCoG1ktKgGPH2FKvZ7p5tRp44ol+1v+f/hSBKF7EoUNMB2o05kGt1oLnNYhGg+jpOYf09ALU129EZeUaZGYOSVLazeB5FRKJOKOZcir4fO2QJAfM5iI0NFRj3rzN0GgM4HkNfL521NdvwOzZz6W08pLkhNlcCEGwpTSsfXNEIjI0mjRwnAp79z6G8+c/QmlpFW5d8i50KgN7+Gi3Meq6Rg102IARxcnvQ4wFXbQapmPXadnfVavu/16k6PaqJO1dAoxJ3wOVCgABcWJjXzkXz7M+ei3Q2gWYTYhmpSMqiVAbjYiHQrD+618wDhqEgRMnwn3mDGSrFXkzZsCQmwtKJMCpVAARJJsNQYcD2ePHIyIIiIfDUOl0UBsMCHu90Gdn4+SmTciZNAkDJ01ilPlHH4WpqAjxcBi9586laPE5kyfDfeoU9AMGoPnPf0bpsmUIOp3IGjsWAKA3GcHFouA6LgIDcoGBeYDHCez9mAHyrIHsS0hg2fKgxJZ7/85AdgYz1oNGy6j1+z8F7v5F8ourAJ/+EZh7OyD6AVMG8M0/gNvuY5+zycyy74vvZYEAjZZ9xhoty9DH44hr1EjEY0jEIlDr0kDggEQ8RXuPhiQYBxQy7buS1MNn5TMKcSiAeCQEQ1YBKEGIRxWodYZ/o3OfD9v5b2DIKoAhqxCe9uPIHzMH8UgI7rZjyBkxHTyvRjymIBZWYBhQwEB0MiDAQ8WuM6ywewzHA2o1yNIJvmgwSKVmtH8xwOjtFXMBowmJ/V+An30jYDKDHFZwRhMoKIPLHcQ+X52esTbsFnBGExJHvgdfORcU8CPx9z+mTO7i+z4DXzkXXHrG1QZ4S+5GvPZTxObfirrv/okZM2aA53nU19dj0aJFqKuru0prHggEcPjwYcyfPx8AA+yJJOVfkiSo1WoYjcYULb6srAyLFy+GKIpob29HVlYWSkpKktR3DSRJQltbG2w2G+bPnw9ZliGKIoqKisDzPCwWSypjn0hEwfNAJCJCFO0wm4tTTBqtNh06XQZE0YZIRIJWa0J6egEAHn5/Gw4d2oCKilUwGAbC6TwDs7kIGo0BWq0JouiAJDlQWDgd8XgYkuSCLDuTgcQYrNajSE8vhEaTBq3WBFl2Q6NJg9GYA45TYd++X2PGjN/AbBwKsVNBoDuAwvJC8Boewd4gTLkm+Np8qN9Uj8pVlVAb1Ck9e/Esds8JdAVS9Pas4Vng1Tx8bT40VDdgfvV8aNI0AA/ILhlaoxYqLQNw/k4/ZJeM/An5CAth6DJ0iMgRKF4FsptR8ANdAWiMGkSDUfBmHk6DE5aABeWF5fArfsQTcQw0DMTyfcuxq2kXlpYtxVuL34IUkZBIJKBRa6BX6UEguGU3tCot1Co1o9kXTIOaV+OI9QimFkyFX/Ej35SPDn8HNhzagJWzVmJ41nCoeBViiRh4jkd3oBvrD63Hc7OeQ54pDyatCbFEDJF4BBdd53BDyWxwUntS074SSMsDzjzPwHj+zQysH/8l06EPWQpMe5sZrvU2AoYSQDeQ6d9LVwFBK8um9+niTyxnFHhdDuszeXtS8y6x7Lo+H5C7gAsbr+437rdAWiGgNjJ6PK9hv+8+Lbhk7de4R+UkSFcYeNWmM0DOa4FAWz+t3lTAAHbf/wQO/WMHOth+lZ6B/HiYjUl9tPpByaCBlv1/4Tik8luxENO3G/PYvI5GRuE3DwW++yUD4/EIcOBJoPJlNg7FAc95YNAM9Jl4MkPABMv8JyJsLM8PQMZwNv83y4C2PcD95xjQ7zkODByf1L5HgGgIOLaB6eMzRySlA1pE4mrIUS08niAyM/U4dsyG4mIzhg7NgqLEIAhhGAyalBY9GIwgO9uAUIjty8szIhRiwSuTSYv2dh82bqzHCy9UwOEQMXNmEWIxwvHjNkyYkAeDQQOViscvf7kXH310HlVVpXjtNZZ1TyQIohiB2cyCpRwHBJUw4kYZ7zV+jgen3YqBpixwAIzaNFj9PXiv8XM8Mv1O5Jmz4Q0GkG3IQIIIal6FYFTBq99/hPumLMJAYya+vdSIM7bWJKXegx6pF+Pyh0OrYsEra4AZ2/1i+h3Qa7RI1xmhU2sQTyTwg/MyhmYXQc2pYNDqcMp6EZlp6RhkHghOn45GlQrlAKzAVZT5XgC5YJR4dfJbcQkMtP9n2vZr7Vr7H2nXqPLX2v+aptWyjPi/Be2RCLuTr17NaO6vvgoMGgQMHcr+sYlif2p740YGJrq6WFo8EmHp7GefZWhYq2UgZPt2hrgnT2ZZ+qIihoinT2egPSeH8d+DQeDTTxFP8KiuZqx8s5mB9r6pS0qAykqG/dva2P/+nJx+TXsgwPqGQowq73Kxy6yuZll2rRaYMIGdttPJ+jgcKV88PPEEGy8tjY2xfDk7xepqBtqffx7geQWHDm1AS8seSJITOp0JiUQc+/b9CpLkRG5uGerrN6KpaRcEwYpIRAJAIEpArTYgGHSjru5xBALd0OnSUVhYDo3GgJtu2ggAsFqPIhZTkJU1DEuWvIMBA0YgGPQgPb0AJSUVaGh4BXl5E6BW61FScj3U6jTE42FEIiLi8QgSiRjmz69GaWkVKivXQA01o8VHYiybbnEy4H0laNeoWTZdxTMwHo6w96EwA9tKhPXttAORJO04w8So833b+KTD35Vz9VHs9Vq2rWQQMMAMLh6HKi0NHMdBpdOhaO5cZI0eDfA8DHl5MBYVIS0nh5XX4HnEFQUUj0Ol0yG7rAy9584hrigIOhzQpqfDd/Ei9AMHQp2WhsnPP4+ht90GQ34+cqdORdDtRlSWEfb5kDVqFBSfD9llZVC8XmSPH4/mP/85RcPPmTwZWpMJPAdwHie4v+1MUte1LHi1N5mB/2oX+50EfMxg7m87GQj1uvpp7WoNe0BVQmx96CjA38so9X4vy8KLfqZjN6YDi5cCGQPYfGlG4Ge/ZuBflwYIfuDjt9kcbjvwwQ4AAKfWQKXVIRYOARRHPBqGWpeGaEiCITOf9eF5aPTpMGQVIB4Ng+N5aI0DoE/Pgf2HfyKRiCGRiEH22mDIysfIyvuRM2I6wHEYOGwaTDlD0NtxEoasAvAqNXiVBgOHTUE0JEGtN0BryIQhuxDRJB0/GgrA/sN3LBvVR4WXRIDjWF4tIxPxun8Avl5wWm1/1l2tBqdWQ7XkbnBZ2Uy7bs4AyRL44iGALCZp9QFwGg34whIkjiQz9Ie+A19Ywij4lXNBvAr8DQsAcyagUjMAXzoRfOU8gOfBz7oRvFqdAuOCIGDhwoUgohS9febMmYhGozh06BAKCwshiiIcDgcCgQBsNltSIqNGe3s7EokEFi9ejOXLl2PhwoXw+/04cOAASkpKkJ+fD1EUEYlEEAgEwHEcJkyYgMWLF0Oj0SAzMxOFhYWwWCzo7e1FXh6TvvT29iIej8LnawczoNsCnldBkpw4eHA9NBoD4nEFXu9l8LwGHKdK3mdiEARbSnqj1ZowaNBkZGQMhsmUD40mDVlZw5CXNwH79z+JUMgDnc6E3Nwy9Pa2Yu/ex2Ay5UMUbTAac6HVGpGZWQKt1oS6uifg87WjvPwJNDS8Aj6hgVqvRmF5IWzHbAhYAjDlmRCRI0jEE7jh9zcgc0QmjLlGZA3LwuDKwbAds4FX8VDr1Si5vgSyS2bBLwIaqhtQWF4IuUdG7aO18F7yQmvUQp2mxle/+QoqrQpaoxaF0wshOkUcWHsAcg8D9n0Zd17DI2tEFqPQWwVoBmhgCViQY8zBE/ueQDAWxKD0QVDxKuxcuBOtT7Ti9YWvQ4yIWPXdKvA8D51KBzEiYnndcshRGedd50FEyDfl48n9TyIUC2FG0Qwcsx1DKBYCAGw4tAG7mnbh1aOvJg21wmiwNKAr0IXuQDd2Ne2CQ3KA53hc9l7G43WPwyW7MC53HMuyN29h2XNDMaBOZyZ0AysY1V3qYOtLLgJT32K/LYoCWROAYDIrPWkLoB8EZE4AWl4DsqcBSADl7zBw7zsHTN3JgLinHlCcbOxgNxCysux70waWRZ+6EzAOYVn6iI8B2kA7oHgYKJesQMjLwCrH99Pg+7LbgfYk5R8sS542EEgvYvR9juuny0ek/n5aE8ukJyIMnKt0DPQnosl99v7gQSKWpMorDICDmBt8NMg+m4JZjLaOOHDDq/0O89dXs/ONBNhyYBlgb0i65Ce9yRNx9hlojIDnAmAqZgGKeASYsw24/XOWUVc8QP50FpQ4uJJ5C0iWJEV/EzuvkBsIeRCJxODxBBEMxvDEE/uQk2OExSIgEokjFksgN9cIh0NEW5sXajWPvDwTVCoedruIF188gM5Olql3u+VkYkKNlStnwWBQ4/rrS8DzHGKxOCoqSqDVqnH4sAXt7T5UV89HVVUpnntuNrRaFVQqDj09EtravNBoeKSna8FxQG6+AX8+/iUmFl6HNI0OKo6DHA4iEo+iR/LigWlLkG3KQDwRh8XfA6fgRUAREYlHoVNpMKFgJP58/EvIkRBmDh6PR2bciXgigR6pF1lp6dj03Z9gC7iQoARckhf3T10MvUYLJRrBpu/+BIvfBVvAjdL8EdCpNGh2dUCOKMg1DcBfT+xFrxyABoRBRPgNgFwivA2WYV8GIJB89VHjVQBGA3gP10D7tfY/t10D7tfa/9zWZ0736KMMvb71FkO+jz7KaO5uN0thr1zJUOzq1eyfaHc3c3Lz+1l2cMQIlmn/zW8YqAcYmE8k+gMB+fmsf3k5E6D3BQJmzYJGTaiuJlRUMHAejTJQrdEwk7jLlxm13WZj/2uj0auBuN3O8FLfkKLI9nd3s/0eDwPmffGHLVsYZd5q7c/w5+RcbQOQlga89BK7NI5TYfHit7FihR3FxbPw1VdPQRTtKCqaCUlyQqs1YsGC7bj33joUF88CUQL19ZsBAERxBAIWtLTsgSBYEIsFsX//U9BqTVCpNCmtaZ+2PRoN4ssvH0F6+iCo1WmwWo9i/vxqhEK98HrbUFZ2L7RaI77++tmkrj2GWCwErTYdixa9iazMYVB19gC9fgau87IZYFci/YBcxTOwHQqzQAuX1K3H4/2U+m4HAI7R3q9wxEYkyjTtWg3LnvAco8xbe4Asc9JJHiw7r+JZgECtAvHMqV60WHDspZcQdDpBAHpPn4YhLw9Zo0cjJssIuVyIyjIS8Tg4tRpxRcGJDRugz86GSq9HzqRJiEoSciZOBK9SpcC90tsLisVQdNNNyJ00CbxKBcliQcjrRc6kSeA1GqjT0sBrNJj8/PMYsmQJSpctg/vUKcQUBYlgsJ8mX/cxy6Z3tjKa+69fYi7wWh1gNLP9ff2Gjma09sU/BSShP+N+JaW+T/s+pYKB9A9eY4A8IwPosTETO7ejX/+u1TI3+uMHgVCwP3gg+EGxCCiRgEpnQDwSBq/WMJA+oBDgeMTCQSRiESTiUVAiBl6lQdBnZyXaVGqkZQ1CIh5FNCRCrUtLAXlNmhkggtaYCY3OgEGlN8GQVQj7D98hkYgiFg4hLSMHkaDAQHo8BnfbMah1aXBfPoaAowVIJK6iwnMaDXN1P/RdPx0+kYBq4R3gxpQhcfBbUMCflCPw4Izp4LIGMi08xyNx9FD/cbEYSK2BatFd4H/6cwbWFQWqhXeCM2chse8zxHduRmLvbvY9NWdCtfhucJlZoHgcyB4IAgPeWq0WPp8P+/fvB8/zMJlMWLhwIWRZBgBUVFRg+PDhkCQJhYWF0Gg0MBqNqKurQywWw6hRo2C1WhEIBHDgwAEIggC1Wo2ZM2dCEASEw2FEIhEYjUao1WpEo1HU1tbC5/MhHo/D7/ejrq4ORqMRkiRBURQQEY4ePQqOA+rrN0AUbaioeAHxeBQNDVtQWFiOQKAbdXXLYTTmJDPjBvT2XkJt7TKkpxfgnns+RWXlGnR312PbtgJYLIfh93egru6JpDO9EfPmbYZKlQaTaRA0mjTodGbMnPkMRJHd26LRIHp7L6O7+zB4XoN58zZDrdYjO3sk5s+vBqdRIRaMYf9T+5E3IQ/mAjMiYgTfPPMNAMCYa4S/zY+65XUIB8JIxBMoLC9ERIrgwNoDGH3HaKQXpGPfr/YhIkWw8PWFKP1JKRpeaUDLnhZITgkqrQrxSBxFM4vga/PhwNoDzJTOIaU09YpfSdHyI2IEvjYf4pE4zEVmuI67ML1wOtyyG0/PfBrWgBUcOLT72rF833IEo0E0WBrgFJ1Yf9N6qHk1GixMDrHhpg2wi3ZMyJsAvVoPu2jHzKKZsIt2PLb3MeQac5GmTkMsEcP2BduxtGwpNs/bnBo7x5gDS8CCaYXTUFVahelF0xEIB7ClYQt2Ne2CVbAiS5sOjsBKwRXdwejtx5YxQK04mJ5dlcayuuJlQO5gZnInn2TgMXc2A+GnV7JjOZ6NxeuAkKN/rAETGeUeHDBgGnDh5X6wnl3ONO2lqxh9nVOzjDynYSCXYgyARyT2ezIVAbkTGIiPiCw7DrCxuSR1XrIBSGaxM4ay8+mjzas07L1Kw4IAiSiQlsvo931mdfEwCw5INkaPTy9CilIfD7PsfF+puT7grdKzbHmwhwFvTs0+D6WXnbs2HZB7AH8bm0ebAeRMSJ46x+7XITe7JnsDo9Fr0ph53T+fYJ93wWxAtgMNa5luXrIysN64kensR1UxUzxOzSj3piJodRpkZemxceMh7NnTArdbxuzZJVCpOJhMWkSjcTgcEnJyjHjiiX3o6PCB44AhQzKxcuUs7NhxFAMHGmCxCOjo8OPyZS8GD85AZmYaBCGCS5e8eOaZbyBJEUSjcUyYkAe7XURamgbvvLMEw4dnobc3CI1GhfR0HcrLC3HsmA2dnX6kp2uBBIen5izFxIJReKvhU/TKAQwwZCASiyLXNAAfndyHeCIBnuMxsXAUsk3mFOh2il4sGlOBNfN/gVzTAOSlZ6MoIzdJix+Ov57YyzTsjZ8jTokUGFeiEbhlHyYWXgetSo3CjBz0CL3YlKTa8xyH9xo/Tx3LxSIYSQnsJEIGWHZ9Axgd/mUAIq6mxl9Je48AkJLLa+1a++9s14D7tfY/t0UiDMWWl7PUdSLBHNpmz2bINSeHAfLiYuDtt1kWXqVimXOXi/HUf/UrttTrmand9u3sQXzjRuYM5/UypC1JTEzO86zP0qXAc88BH3yAuMMFrZaDw9GfjG9rY3r3nByWIRdFNm0gkGQQa9gpbNnCTs9g6B8yHmfT9AHxTZvYpfXJ/FevZsdPn85Ae3Ex698Xn3juOfbxFBSwOAQRc2WW5R7EYiGUl/8akuTE+PFLMWjQZFitR6FSaVBSUoFYLJzMpq+HJPWgtnYZzOYi3HPPpygsnI5DhzaisLAcouiA03kGHKdCRkYxBg++EYJgh1qtx/z5W6FWG8FxQE5OKdTqtKQbfS4slgbwvBo33bQeotgDh+MUeF4DgBAMehCOCIgNyQPGDmf09z5DunCkH5DH4v3Anr8ClGs0zKxu2ji25HnA1sM+vAAzgYLJwLLubRYWBAiFGegfVgToNGzfpS42FgdGw1ei4HkVOCJcSJrONb//PqKiiKzSUlb2jecR8nhwfudOhNxucElNfNM776D7q6+g+HxQGwyIR6PQZWaCU6nAqdVsmazvF/J6oTIYIFksDOwPGADFzQzhCIDi8eDY2rUI+3yYtnYt9AMGQLbb0fvDD9ANzAFdqS03mIDiYYwen5XDHN97kg+mff0W/phd532/Zv0yBjDg3XUJSM9g+va+vovvZTXg1RqWcd//Kev79W4Gyr0uRq//YAd7f/fP2XFpxv4xzJmIhYMIBVxAIg6VNg0cr0I8FgHFowDHQa0zgFNpEAsH4Ww+CI5XwZBZAPAqcByHzMIxUKk0MGTlw9N+EgFHC6IhEdFQALLXBlAclEgAIKjUWgg9bXBfPga1Ng3xWATRkIiBw6YgHg0jZ0Q5YuEQckaUI7NgDMCrwM9fAq54CBIH9oP8XoDjwFcks9/zl4AEPzORk0RwhcVI1H8HJBKgXhcSlg5QRAFJIigSZk7xZVPAL7idPWRHFMS/+gJcRiYzvVOr2XeT56G65fYUoAfAyslFwyBRAGIxcARwSigFtouLizF//nzwPA+VSgW1Wo3BgwdDo9EgIyMD6enpKCwshKIoMJlMKfr74cOHU87wfVr1QCCAWCyW0rubzWZkZGRAluWr+tXX10OlUqXWjxw5gsLCQuj1enAch4ULF0Kl0mLBgu3Izh6FjIwh0GpNWLLkXUyYcD9E0Y6Wlj04cmRrksKuhlZrRHHxbDQ0VKO4eBYyM4fCbC5CaWkVioqm49ChDSgsLIckObFv36/AcTxMplwAQCIRhcmUj+zs6zB48PXgOB5arRE6nRlGYy727VuOYNADr/cy/P5OaLVmJKJxBKwB3LThJnAch69+8xVEu4iimUWQnBI4jkPAEkBxBWP3yD0yYkoMnIpDy54W8Boeap0aM1bMACUIco8MihMWvrEQv+n6DcxFZtQ9XgfJKWH8feOh1jNNfEN1AwqnF6K0qhSVv62EaZAJT/c8jcVvL4bWpIXklKDWq2HMNaJwViH0aj0qSypRYi7B7OLZIBCckhN7WvZgY/1G5BhykK5Lh06tg1/xY0bRDHAch9X/XI2J+RPhDXlx1HoU0wun477x9+HVo69iT8seZOozkZWWhd5gL4waI3Yu2gmzzoztR7djdvFsmHVmVJRUgAOHNxa+AQ2vQZ4xD9tu3oalZUsxvWg6S/RKHew7zWlYRjxnNsvA95nPxUOMFp9dzkB8VGSg+8ImBqqbtwB5NwGmIYAmHdCYGRhu2tgPzuVO4NQKADGWRS99od+ATm1gZeDc9awevOJghnaKgwUKEnGWAc8YilS5OV5zhYt8mN3f4//GVC4isQw6uCTm7gP1jqQuXsVM6XgtO9bf3q8b1xhZXfj0omT5t6SLO3C1CV5fHXlbff8cR9cz6jyQ1J0bgYYX2fmaS4BBM5lGvW+eRKz/GjgVO3ZgGQPohlx2TW17GDinOHD6DWDqSnZuRdcDpQ8C03/L/jbz32EBCH8bo9ZTHNqECEOaGjt3LsK5c4+huNiMRx+tRVsbO4dwOI7p0wuxdesR7NrVBL1eg/Z2H44etWLw4Ay8/vpClJRkoLJyMKxWATk5Rixfvg8OhwSVisOWLQ0oLy+EwyGmNPQVFSUIhaKsBvqyWpSVvY1YLJHK+ufmGqHXqxGNEuoPWqFX62DSpeH5uQ9Br9GyezXP44+Nn2PcoOHwBgWcc1xCLB6DmlfDLfuwv+UI3LIXSiyCXtkPORKCHAkhFAsjnoiDQHj2xvvx+UNb8eyN9yMWj+OPV4DxCQXXpYIFDsEDp9SL/S1H8NcTe6FRafDz6XdgwaiZeGTGXUgkEgiFQ+DRr1lfjX4zuvzk+9+C0eX7gHoEwEUAP08ur4H3a+2/s13TuP8H7ZrG/b+xRSLMMC6RYABEp0uWp+oANm8GXnihnzLf1cX449XVDMwDDLDH4yxDeOwYQ8AlJazvxo3seJuNZduHD2cp8L6SdEOGsONXrULotXcQ59RQFA7Ll/dL7VesALZtY3528Tijt/edSn4+y7Rv3Ngvr+d54JNP2Km8+Wa//H7NGjady8ViByoViyM8+yzw618z8D55MrukQICNDbB+igKYzSJ6e1tx9OirmDdvM7RaE6LRIL755lnMmvUszOZixONhqNVp8Pna0dCwGZWVqyEINvh87anyTBynRjweQiKRgMNxErm5ZZD/P+z9eZicdZ3vjb/utfaqXtJLegsk7CEkbOlsDQqEEAIzOqOcQeY440JAQQWRxYCCMyRoIoIKLqCO44zLMJzRwSxEBKPdWQFBIGLI3vte+3avzx+fqupknPNcz/ldZ/zNH/leV1+13GtVV99d7+97y4+xZ89jrF79dRRFw7aF9dP1EPn8GJGIfMlWVYP+/l7C4UZ2736Unp516HoEXQ9imlEURSqhPM8mEEhIJZxlw3RGwPMZnfK4yp5Xfe3V/vVqiF06J+AchE33qXzBpFbthVPxvgcrwXWWM+ONf+f4/7ZeztEUsv397H/qKebffDORjo6abFJRVSZfe4343LmogQB6UHzNuf5+9j/9NIu/8AVh5CcnKU1OUn/uueD7FCcnxde+di1aMEiwoYF9Dz3E0K9+xYrHHqPpootQNQ3Pddn30EPSI/+tb1F/zjnY2SxGJAKqSigSRjn0lnjPcxk447yKjz0/07V+6WXwV7cKAHcdYdatstS5NTTP+NSrfnjdqFQj6TJBMjkqoPz0cypVeypMjglz/4HbZNvTzxamvl5qvMCvSEV9XNMgPz2EHggxeeRVms7oRjdDjL79G2bPfzcAheRIpaIthx4IYYYTFR86FJJS32aGE1L7Vs4zefhlZp9/Jb5r4/s+5ewEobrWGptfHZ5jowfCeK7N2B/6aDlnRa0f3q9I4lWnUv22+V9n/OXX/sVMir7v4275X7Vl6uVXg+eJlH7zs6grr4d8Dj+XkVA6XSak/NT0TMVcOomfz0mtXDaNn8uixBN4fS8JaI/XSSCeokAmJV76Ze9CaWzCclx+vm0bBw4c4P3vfz9dXV0oisK2bdtYvXp1rQpu9uzZFAoF0ul0zXu+bds2li1bRiQSqVw6LYLBIMPDwzU/u+d5jI+P09bWxrZt21i6dCmNjY2kUin6+vpYsWIF9fX1pFIpent76enpob6+Hs+TADTLslAUH8NQsKwc5XKaQCAB+Gzffmetnz2RmEN9/Vxsu0CplCQYrKtM3oGmGRw//htCoQZCoYZajdtvfvMwS5bcSSIxh1IpVauTBHjhhbtZsuTOiqw+jKrq+L5LuZxjYmI/TU3zK0n0IXBMkgeTNa/6wM4BBnYOcM3XriE3kpN6uPtXUH96vVTCpaQSTg/p9Pf2E2uP1XzvTtHhxftf5Mr1V6KHdBRVITea4/D2wzSc2UC8PU7v+l6W3buM+rn10jGtybXIylpkh7Ps2riLnvt7iHfFyfRn2LlxJyu/uxLXc7E9m31D++iMdzKQGaA93s5QZojOeCetsVaCehDbtSm7Ze554R7uXHInOwd2cvW8qzmaPMqC5gXk7ByJgASnvD76OotaF5Eup2mJtNCf7mdD3wbW9axjTnwOh5OHaxVxc+vnUnJKjORGalVzUTOK7/vEVFD23QwXfUWC4/ZvEJ97uA3UEODC5B7xrb/9aKVbvUuea1o+c00oDIjkfdYSmQDwXWHmX78PzrtXvO91iwTYuyUB72ad/NIVXVj5tzcJW68HBfj/9tOybaB9xtceP02Abs3jXsmvUBAJvFuq1KxVvOi1zveOShBt9TpSYc6rXe1uWbYNNp7AoleyU6oTBLnhmXWn34aGc4XRH+qVgLlXHxV/eWiW+N6dYq2SDV8RD7wRkX2WpmdS4PUIkoroy7XZ9yqqg6KE2EU7BMQ3LZLwOUUTZcLoXpHSx7vkJVUr406slTvvgxRdk3cOZdiwoe+P6t2+9a01fOIT27jzziXousqGDX18+9vXsXNnP01NEb72tb1s2rSy9vcZiRjcfPNmfvGLw+zb91GamyN4no9tu2iaiq6r7No1QEdHnHDYYNasMMeOpdiwoY8nn7yW227byjPP7Gfr1g+waFEr6XSZaNQg0WAynBP/+Ue630NnXQt5q8hELknICDCYHqc+FOMHr2zho93vpaOuibHsNC2xBo5Pj/IPLz/H3156PS2xBlRFZdOvfsC9V/wtnu/x1uhhZkdn0VbXhOO52K6N63kYms4jL/4DOw6/wqN/9mkWtZ1FspghHohi6oZY5QAPH1dRyekmo6rKOLBUfotY8psjxkz92yGgH6mICwG3AD9EgP13KuueGqfG/6/jlMf91PjvM6q+d5AEt7Vr5XZkRNDzl788k6o9PCxIOhgUnfnhw0KDV9F0S4ts6/szGvShIaHMqxVwJ2rRfV8q5f7u7/B8hWxWIRCQ/LtqcvzkpIDuUEiAdrks5H1/v5xy9TCjo5IqHwzCqlUC9H1f5hGeekrmEhRFPOy33CId7543o9pfvFheRjQqoL2/X9bL5eSl+r5fk6vmcqNs3ryWbHaY9vbFZDKDZDIDbN9+B+n0cXK5kVoSfGfnMhYs+ACZzABbt96GZWUApeJV78G2C+Ryo1xxxQYJ/XLLWFYOXQ/iOEWSySOk08fZtu0TWFaWrq4VxONdLF9+L5oWJBptrQD2ArncCJ5X8aLjCxN+bFjY8HkVqfyxYWHE8UXe3j8ivnQQUO/7M1VxuYIw9Yf6oVSR1Fd8qRTLlcT4ih/e8yRp3nUlnO78M4Sxh5r03i0UyA4OooXDLP7CF4h0dFCaniY/NMS+hx7CLhQINjXx2qOPUhgdxS4UwPcpjI1xzt/8Db7jYOfzvP297xFsbETRNLRAACMa5dwPfYjC6CjB+noUVeW8D3+YFY89RrilhVcefhgrl8N3XS66915Ou+46mi68kOL4uLD7k5MYkQjlQgG/oVmS4+eeLRMcZhBCYalpq8rhfR9+8LjUjY0Pz1THTY9DMT/jh1dVAfdmUN6XclHWidXJNtMT8qFsmi0BddPj8JcfhouWy/tWKsmt54nfPTkJQLh+Nk65yKy5F6OqOoqq0XJOD+DjWiXCda2oqk64oQ1FVRl+60Xsco5CcrTihc9KRZqqYYbizF5wFfgenmOjagbBWBMj+3fgeXaNzVdUveKJH0bRDFrPexeKqlHOJRl68wXsQgrPsfAVBd+2UJe9u+Yv9zUdP5uW+jbPRV16ec2XrkTjEA7jDRxHXXGFqCxymVqdnJ+ckvdAr/jbh/qF1e86HcolvF07JKyu76Wa711xHLwDb6FoGt6uHSdJ9BXEz37HHXfQ1dVFPp8nlUpxxRVXkEql2LZtW61jPZPJ0NLSQrFYxHEclixZQjQaxTAMTNPENE2KxSIdHR2kUiksyyIQCNDVJZ/7AwcOsHv3blzXpb6+nuuuu45YLFarg1u9ejV1dXV4nkc+n8eyrIpUX9LdVVVnevow2ewIiqKxf/8z9PVtoKtrOboeIJk8yNDQXmw7z7Ztt5NOi0UpmTxCa+tC9uz5Co5TJBqdTSzWzurVT5BIzGFoaC+mGSafH6u1ULS3L2bPnsdqYN6ysjz//J0oikJHxxKCwQSaZlAuZ3BtW6rYPrOUQDzAgpsWsOrxVRhhg0hLhJWPrsQIG6SOpxjaN0SwPigZliWXrp4uIs0ROpZ24JQdjIjBFQ9fQXY0y5Zbt5A6lmL60DSdyzvpXNZJ7/pe9j+zn9xIjkx/hs23bCZ1JIXneJJUv3EX+5/Zz86NksivmRpL7lwCQH+6n31D+1jcvpiQEaIp3MQjfY+wrHMZp9efjuu5ZMtZbNcmZsZ4bNVjjOfHuXru1SQCCXq6eogFYiQCCTzfw9RMlnctZyQ7wtHkUTRFozPeyb3L7yWoBdFUjfH8uEjzM4PkrBwFu8D63vUsbl+M53u8M/UON2++GddnJjBOC8O5dwtjroWhPCUAsrFbfOvNl4mPXVFh1lKRzu9bK6A91AINl4icO3dYni9PwSXfgPAcmFW5lmQOSGCdWwClArpzxwTYX/KkdMHvuxWKowLiC8PCoFeT3n33hNT3IdmnWxaGWQsI8M4OzvjKXavihy/L9TJ9pCJx905OoTdjEJx18ncSBVmvmjZvxgS8m3FovnAmEK+1WyTuF98l52TlKp7zIZG2GxFoOEv2mT4s3et2XqT15ZS8JjsvP8l3JE3eqvjwmxZCYRTae2Q/dkEmEsZelsmC3EClpm9UvO2tiwXk77gD2peDqmM5Cps27WL58k5MU6Onp4ubblrAAw/0YBgqjz9+DePjeWbNCvOtb63BMFS6u9uZmirw1a9eQzCo8/rro4yMZFEUhXXreti376MUCja33ba10qirYxganuezYEEzwaDOrFlhVFWhrS3GU09dh64rfPazK7jhhvksX97F8HCWBx/cwfh4HkXza2z4d/f+DNdz+XrvTwBojNRxYfvZ/Oi3z7P9wG7GclMMpSYYSo/jeB4ddc186NI/I2wECOoBfOC+K/8Wy7XZ9Ksf0BCK0xCNU3Ysfjf8DhPZFEEjgKqo3P3uD/LYn99Fc7SB14ffoWhbbHjxexybHsb1PQYz4/zdL57GUVVyqsoosAw4Dtxauf0tYAMBZjrbFyMVcUeQELsbkKC6EzqUTo1T4//6OAXcT40//ahGrZ/YrbZ4MWzeDF//uqDX226DRYsEzNx6qwD0008XsF6qJEifcQZcdpnsc/ly8e9edJFQ3U8+OSORf/ttodF1XULr8nncgoCU4eEZMB4OS0jd6aeLzz0YFCBvmgLEfV9C6zo75TDVgPtDhwR49/XJIQuFGel9IDDjcc9kYOVKmRgIh+Vl9PXJxEB1fkHTpKK+VNLp6bmfefOuZteujezf/wy7dm1k7tyVdHR014Lp+vpEBn/rrW/WgLmiqLzyyrcr6fEhisUklpXD911isTY6O5fhuhbJ5NGK9z1CFdy3t3ezZ89XWbLkTnQ9SLmcYXT0NeLxLhRFJZU6WkuM3rHjQXK5UVRVlzen6lUfHDvZiz4wCo4nv/eu2dBcL6D9+EgFfItMmnhE/OlndglIRxGm3XElzK4iT6ejVWT4igJHh4WFD5gC+ItlqZFrqscLB9ECAUL1krw++dprmNEo+59+mqFf/QpFVVENg6YLL+Tgj34kIM7zqD/3XN754Q9xHQcjFuPcD38YIx7H9zw820YPhTjwT/9EuKUFRdcZf/11onPm0HTxxex/+mkaFyygODHBq488AsAln/sciqpSnp7m3L/9W0qTk/iuy283fRm3bhZ+VRY/PiKvaeCwBJ79j1thVqskw1e951t/IpVw1cC5eD186u+FPVcUYdAnRsQvrxtwxvnw4r/P+OP9ymRHNCHgPBiW24lhYfNLBfjRN8AqiSLGdcD3MUJRnHIRz7MZfutFXLuIa4naopAaRTNFrTB5+BXSIwdqUvfJI68Srm/F9z2sYkak8Z7s0/NsRva/hA+0nL1CGhNKWax8CvAwApFKQr2ELvqei1Mu1PavaDqK7+O9sBmiUbTV75XXnJySgLl8DkU38fM5tOveh59O4U9P4m1/Du+Zf8DPpMEMoM6ZC4Eg6rJ3yTUCBRwbd9tPJW0+k5L3zTRRl71LguxWXCGTAcvfjY8PiXp8OCmgzi8W8FWtBpZzuRymadY87729vTX5uqZpdHV1oes609PT5PN56uvryWQybN68mVQqhe/77Nixg3Q6TTQaxTRNbFtUC7quc+utt3Lttdei66JE8X2/JpP/8Y9/TKlUIplM0t/fTzAYxDRN9uzZg2HopFKH2bbtdiKRJnK5ETTNZMGCm1i16nFsu4iuh9i9+/FaYGVn53L27Hkc33fRNAPTjHHddU+RTg+QSh3DtouVCcDbKrWUkdp2+/Y9wfz5f8W11z6JomgUCtP4vs/KlRsByOcncJwyAwO7KBSm0EyDeEec/Hgeu2Cz9eNbKYwXsHIW2+/YTn48T3hWmNjsGC0LW9h+x3ZyIzmKySLJw0lGXh0hM5Bh+6e2M31oWlj2qnd9g1S67dq4C3xY8dkVzL9hPh3dHfSu7+XAcwdID0rYX6Q1wrJ7lzH/hvms3LSS1LEUOx7cgWrK16j2eDsrulbwyvArlJwSp9WfxpPXPomhGni+R9gI1wLpyk6ZdCnNotZFzI7NJmpGyVpZDk0f4o7tdzBRmEBTNFzPZSQ3woLmBRycPsjHtn4MTdE4NH2InJWjLdbGo7sfpSPeQUgPEdJD3LPsHq6edzVZK1vzuY8WxvHL4yJTdwvCeruFyuM8tfq1qgfet8W77hahNCZS+EIFKJenKhMAETj3LnkeV+T0vi2TAUa0IsXfBKXhCjCPCaPvFkVWXwuqC0PDRYA3UwmnaDOBc9F2WVYLqyvPyN8VTRh4LSCSdzN+glS+EkSTmCusefw0arWwUAH+lYln3z1Zgp84rRJIV1lmJkQhEO0Qxj3aIcfQAtLH3r5C/OhVb31+VAC+HpJ97nlYmHU9LMtffWwGfP/mbrnmtC2TY1lZea4wBrPOl+PNXgzltJzH4nVw2tXw8sZahzu+i6H5PPHEav7mbxaSSATI522+8Y1rCQZ1Dh9OctttW2lvj1NXF8C2PTzPJxjUWbSolWPHUnziE9tYuLCFuXPr8TyftrYozc0RBgczLF3aQX9/hrVrN3Pw4BTFokMiEaRQcFi7djPvvDOF43ioqsLu3YPMmhXiG9+4FvDZuHEXzzyzn5GRHK7NjDS9+71oqsrdV/wNpzXMxnJsSnaZOy+/iTXnruDC9rOpD8c5q2kObwy/g+O5tNc1o6kqlmujqxpvDB9EVzX++uJrSZWyTOZSNf96OBBgJDPJ+l9+l2Qhw8K2s/jHl3/OWU1dNIYT3PWuvyZdyqIqCoYqdXK/HzpAi+9zEeAgVXDPAI8iIH0PIqHXkH7324EmhHmPcCqo7tT404xTwP3U+NMOq+L+aW09OYCuCqpvvXWm1z2dphb93tQkX54PHZoJpNu5U5LkJycFQX/+84J6XVeQczotmvQqgrZtCa1rb8cIakQiPtGoPDUxISH0liUAe+lS2dWDD8ohWlpkt4cOCWlvGPIdYNMmObWBAbldu1ZOf+lSmRBobpb5iPvug7o6eYlz5gi7/q//KrX1vi/Lb7hB9vvII6CqNtnsCLFYG9dd9zSf/vQwq1Z9lXi8E1U1WLXqcRYsuEkS3fUgphlhevog27ffQSp1jFWrHqVQmGTr1tsJhxvRdRPXLeP7Dp5nY9tFMpkB2tsX4/s+yeRhtmy5lWx2kFWrHkNVdbZsuZVCYYLm5gVs23Ybtl1A14OAVMYdOPAcu3ZtRNNMdNWc6WOf2z7Dtp/oRc8VBJirqoD5WEQA/OEBsIX1AwTM5wryBgcMAfGOKz52z5PfY8CU1U9vl9v+kZnOeFWDeZ0ouo4eCmFX5O51Z5+Nlcsx/5ZbWP3Tn6KoKvmhITpXruSi++7D9zxeefhhyskkl3zucyTffhuA+GmnEWpspDg+zmtf/jIAF917L8GmJnzXpeGss3CKRSZfe435N99M67JlHPjBDzj7gx9E1XUmXn0VO58n1Nxc635XNI1LHngATVVPDqirgup/fVqYeN+HVe+TvvZ4nXjbH/0RdJ0Bh9+W96xzHhx/R1itGz8ODU1SZ3bkbQHJN35MwP1Nt8l7k5wQBr6usZJaPyWs/D9/7YSe93+BWEJ82qomQPyEULjJw6+gBcLoZphgvImR/b/CLqRpPfcyErPPpumMbjQjSNuClYAKvi+sfF0rheQodjmPXcwRqmvFKRcYO9A3E3pXPxvXKoGiYpdyDL/1S+xiFt/3CTe01favoOArCuryd6EEgvjFAkokckKCvMhl1a65EkQ3ux2/UAHdZ58vafLJSZHFT0+CqlZ88lPCuC+9HIIh1K7T8fN5/ANvQ7wOtfN0SNSjvmsVfv9RvBe2SCJ9ahrCEZHjxxMooTBa5SOdzWbZsWMH2WyWaDSK67qsWLGC+fPn09PTg6qqJzHwmUymorrZxf79++nt7a31r/f19aHrOvl8npGREVxXAIbjOGzdupVkMollWaiqiqIoXHfdddx+++21/UYiEbZv345lWZWUe490epClS+8in5+gvb0bRVFZs+ab5PPjtVT4VaseqwVWnn/+jaxe/bWKNeconuegKCpz5lxOff08DEMyMpYuvYtgsI50eoBk8igLF/4N11wjgH/r1tuYmnoH0wxjGGG2bbsdANsuMDS0l/b2xcRirXi2Q9+GPiJNkVpve++GXkqpEgeeO0AgFsBzPIb2SQr/FeuvID2Yll73E7Y7MYiua0UXH9j6Aa598lpCDSF6PtcDCiTmJLj+O9ejBTV61vXw/mffT7w9ztbbtuIUHRrmNcjygEZ6IM3Su5YSbgtzNHmUTz3/KXJWjiUdS+hKdKEqKnsH93I0dRRd0TmePs5t2yRBfu/QXgp2gaAepOyUcTyHqBmlPdbOoysfJWqIFUlVVLrbu8nbeUZzozV2vSncRLqcZkPfBp7Z/wwb+jbg4xMyQrTF2qgP1pMIJLhn2T3cMP8GZgXrUPZvEOBc86RvkIq3/esFdBdHBZwqBhTHxBOvh6FpGbxrqwDx4rCkxJfGRPp94GtQfxE1SXo5BYoHRj10/iUs+pIw+5EOMGfBwW/KNW3+upmgOlWvTOY5M93taqWSLXH6jMc8fpqAcy0g7HPlb6sG1gNxOQenJCx14nRwygLOA3HZR+qoLAdJkXcr30c0UwC1Ga/0uiuyXXagUjlXqXbbt0HAcpXF3/WgJM8XxoR110x5z6oA3ylAfgguulNe5/BOyI1Cz5dmwHfrYjmHckZ874oCbSuEyTei8K7HxSoQrJfzq5sLkdlw+WNw7k3S5a7o+GgUiw6HDk1zxx3bGRvLUyw6pFIlBgcz3HXXUgYG0hSLDp/+9HZc18N1fTRN4bHH9rB4cTu+D4cPJ+nr62d4OMvatZvp6Ejw1399AY89tpvLLuuirS1GNCrQdNMm6XV/7LE9hEI6nuezfHknpZJDICDM/JNPrmbz5hvp7u7g5X3DdNa18Pmrb6Y1MYuh1ASvDx2g7NgU7RIeEDGDfPaqD1Oyy3yt98cEdZP5rfPIlvN4nkciFGf/6GEAzmqaw6Zf/QBN1VjYdlYtaO4Hr2yhPhQ/yeueKee547IPkC7m+cP4UUJGkIVtZ1G0yzy956csajubsxs70IBhBKR/lhkWPY30uFcZ9/8I6jVO9bOfGn+accrj/p+MUx73/6JR9ben08KOx+MCVHI5YeA///mTe93r6mS74WHRoj/2mDz2POlqq68X3fnXvy6BdSdue9FFAu5dV37uu08M5o2NcN995L7+DxRsQ6qfFWHJ775bfk47rZKRNgQvvghz5wrALpcF1CcS8MorIggIBgVHmqaA/1RKfO2XXirq/w0bZF5i7lzo7RXgfvrpYumPRESSryhyH4SFNwwIhQp4noXjFMlmh9m1ayOrVj1OoTBJOt1Pe3t3xcOuVlLey5RK0xw58iINDWfQ0bGk5j8XD6mGZeUZHX2dtrZLEceWQrEo0uAdOx5k//5nmD//Bq677ik2b15be3z55Q/xjW+cx403biaR6KC3dwMrVtyPYYQIherR9RCmo4ln3feFFT94XMLozptXSY/3YDIp7HgiKsBeVYQhNwzQKzVvZUsAvQIcGhAZfMCETE7Ws20B/4NjcOYcWS+drzw3KpMHQRM8H7tUwrEtCqOjvP2973Huhz9M/LTTQFGw83nxm0ej4Pv8duNGzv3IR4RdDocJzJpF7vhx6WK/+GIA9j34IE0XXkjTJZfw+6ef5twPf5hQczNGJEJhdJSxvXuJdHTQfNFF2IUC5akp9j/9NOf+7d8Sbmvj1Q0baLrwQjpXrqz55JevfxhlYkRA+7V/BY3NcGi/eNLNgDBcmZSw4aoqrHswJMsmx0Qiv/p/iN99ehy2/Yv43WdJ3RdH/gBzz5EvrXZZbAcDh+Crn5fJgA98XPZbLsGrOwXsr/kr8WvUNeKlp/Fb27EKKexiDiMUZeLQPmaf9y4cq8DEoX3Mmnsp4KPqJnogUpOv+q6NXcozeeTlmjd+5Pc7mDX3YpxyscLEg2uXKj3xIhkHGH37N8yadwl2MY9VSBJtOk1C8BS1FvynAPjI5ILv4bsOim6IHdcq4/1yC+qyy/EzaZRoTCYizAAn9sCjKLhb/g21ewXe3j6U9k7U8xbiA94Lm2e2jyfAMFHCEXltjg25jFTE9VwJdQ2iuM1mJIMABW/Xr1B7rsRKNNT616u97a7r4vs+xWKRI0eOMG/ePHbs2PFHXviqBz6RSBAOh9m+fTs9PT0kEgn6+/uJRCLs3r2bnp4e0uk0P/7xj5k/fz6XX3458XicZDJ5ktfdcRy2bdtGZ2cn5557LgCBgEoyeZi+vg2sWLGO+vq5eJ6LokB//07+9V/fx7nn/iVr1nwTy8rheS4vvngfy5ffg66Hax51rdqhPLiH1tZF5PPj9PVtqGRjhCsZGuMndbtbVr4WXPfGGz/kvPPej++7tWOsXLkJXYngZKsoDV64+wWW37OccFOYkd+OkOhIsPvx3az6yioUVRFmvmxT11mHa7tyqVOhlCxhF2x2bdrF6idWi5zedvEdH1VXyY3m6F3fK/71zjiFqQKRWRE237JZpPTLO9m1cRfL7l1G41mNOCWHob1DNPc0c8svbuGyrst4zznvIWJE8PHZN7SP+U3z0VSNiBlhZ/9OGsONTOQnaAo3MVGY4KLZFzGcHWY0N0pnvJOh7BBLOpagqzpjuTHqQnUYqvhwj6WP8eVdX2bTyk2YmommaAxkBni492HuW3Efo9lR5tbNJRqIEg/EcX0XTZF8kbCqouYOoRQGpQquMCRA3LcFmGpBYYRVXX5K0yIpr3aRK6q8iV5JZONOHowEDP4U2q+XILtgi8jp394ogF0PyyRA7ijsf1iC6jwXDjwmtXO5d8CsF3BdGIDWldS85kZk5tgn+tf1QEUC71c62GOVPA5blpUzJ/vUKyGqNT+7Z8myWKfYA6pBdLVjtMs2qiay/OKksPVaQCYWMsckPO7KJ+FXdwjoPu1qOVbyHXj1K+I910MVNt+X+6ljkOuX9cspCaNTtErVXCXHJTsgQP7Se6TTPXNcJgq6768E9qkirc8Py3rd6yBeUR04BTJWkOHREg8+uINnntlf87ZLRZzNhg19rFu3gkjEYPv2w7z3veeSyUinezAooNt1PT796V/wyU9210LsbrhhPk8+uRpdVzl2LM0jj/Rxzz3LaGsTy+Pdd7/A17++Gtf12LtXuuM7OxPousrBg1OMjOTo7m4XYK96jGTH+c7en3HflR9i/+hh6kMxfvTb57nz8psIGgGKVonHf/MjPnjpdXieJ5aQ3DTN0Xq+u/ffufvdH2Qqn2Yin+T81nmMZCb551e3su6qD1OwSuStItFAmIgZoj81yvf2/js3d7+XgGFSH47juA6aqtU88EHdJG+XODQ5wAUd5+IZAW5VFJ4DngUq5g9URB5vMhNGtx4JretCAH3o/+Xr76lxavyfjFMe91Pjv8ewbQHh1WLz6giHhYF/4AGhp598UijuQkGWPfYYPPxwLVQMXRck3dAgxvR0esao/rnPCYV+5IgA9rvvFiR9552CsqNR+OIXMRWLYNDn+HHYtUsWffWrcnqKIps/+CC85z3Q3j4jg581S0D7kiVyOp/4hLyUnTvldMfHBZwHAgLan3tO2HjHkUT5qnCgs1Puj43BZz4jEwKOI0C+vx8cx0dRFMrlNHv2PEZn53JhtvVgLX05mTyC77soikouJ9L1c855D7FYG/39fSiKgmFEKBSmcJwyuh6kuXkBQ0N7URQVw4gQi7UTCCS4+uqvcNttb7Nq1eMoisqKFetqHe3BYN0JidHV7nipmdu69TaSycM4OgLcPU8QVddsAe3RsIDzwwOQiAlor3a6m4aA8sFR2c40BLRn8+J172iRADoFkdxXmXZdF0BfDQCOhmTZWXNkOcDhARTHRTMM3v7e9+h//nkO/OAHeG4lwdz3yQ0Noeo6WjhM8yWXEG5qItrZiRGLoWoa0Y4O6s87TxLkFYX5a9fSumzZSSn1iqqSGxjgzSefpPGCC6g/5xwUVUUPhXj7H/6BpgsvRI9E0INB5t9yC63LltV880O/+hX5ySn8ptnwPz8FTa0SOnf6OZUKg2HpY7fKAtZPnGRVNQHtL/9GwDo+pCbh6r+UdZOT8M9fl9R5VRPJ+/GDwuKfuQD+/mlh4q0yjA3LsksvE8a+bpZMIOgGfnMrTimPEYxXvOwGbedfiaoZNfbdKedRVJXxd3ZhFzMUUqPgu7iOxeSRlysM/ctIZ/vFaHqQSEM7qLoEpOVTGMEorlVk5Pc7sEt5QnWtTBzaR7ihjXjrmWi6CT4zHvdaIr0HyUnczc9CNovvefi5DBgG2pWrBXSHYxIuV5kI8fM5cGz8fA4/NY265i9QGmahrvlL1PMvxBsdAt9Hu6K6fVQAuRmQbcpF8a/XNaBdfwNKokFS6qsSfVXDz2VqHnhdUWq97T09PbVudk3TCAQCDA0NEQgEWLVqFZ/85CeZPXt2jTmvgnbDMHj77be5/PLLSSQSFS94B3v37qWzs7MmtV+wYAErVqwgEAjgeR6ZTIalS5eSzWYB0DSN66+/nvnz52NZFpZlYdsWmYww7pnMYE3mvnXr7cyefRGf/OQRVq9+glTqOKOjrxMIxFi16jEymSGi0RbAJ5MZYMuWW0mn+2luPp9yOVPbZzo9SCTShG3nyOVGiESaaunxiqJi20Vsu8TChX8jYXQolde3FEXRUNUAhYkC2+/YTmGiwJpvriHaFkULCHPeu6GXxbcvJt2fpr+vn2B9kLrOOtIDaYb2DtVAu1N0yAxmaF/cTvp4mi23biEzIMoGPaTPSOMH0iiqghEycG2XnnU9zLt6Xs3fnhvJkTqSYvsdUk+no3N/z/28/7z3EzbC2J7NroFdLGhewGRxkju238HR5FEWtS6qydrrQ/Un1bY1RZoYyAzQGm3lE9s+QdbK0hhuJFVMoSjyfkSNKI9c+QhBPchUQSZcuxJdfO2ar9EcbmZR6yJaojJh987UO9yy+RaOpo7ieA6+ZwloDzRBqBXqF0H2ILz8cShNQHla2HYtKIDWzcPEHmHCK5O80omeEpl8sFX+9rpuFKZ+/8OV0LcmOPtOYez33Vph7UMVSf0QROfAOZ+uSPAnwKiD/X8voXVuWUB7oOI1tzKVJPYT/OsgrLaizPS6K5VMHB8B8q5dqXEryz/tE5lzLSTgXNFkme9WZPLWTPVbZXJQpPpNM4y+7wmgvuIJSYu/bKP4y6sS+fyIAHPfEx97aUrO38qBEZQqutF9wpwrujD1I3vleHpY5PNV6buizLD7e9dX/PRFqc179bEKux+Q3036ELx0G4bmkUgEuOeeZdxww3zuv78H09SYNSvMhg19PPPMfjZs6KOxMcz7338eIyPiPR8by1MqOXz841sZHc3x9a+vprMzzuOPr+Kmmxbwmc8sZe9eUbM88ojsZ+PGXaRSJUIhg0cfvZr+/jS33TbTHe84IsUfG8uzcGELU1NFbNtDU6GhIlPPl/Oc3zqPH/32ef764mvRVY3Xhw4wlU9z/ux5fG/vv9OWaOK7e39GfSjGd/f+O9sP7CZXLjBVSHFWUxepYpamaD13Xn4TAMlilm/uepZkIcN0IU1bvInPrfwo7XXNlOwyf/+LpxnPJfnd8DuMZaWBpOzaPPbrH9ISbUTRTfYoCvcBf4Yw7BYij1eYYdNNYB7wELADkcxX035OjVPjv3qcAu6nxp9uuO6Mr31kRCTsN98sSLVQEPTc2Sky9/5+Ae19fbLN1JTI6KsBdbmcgPs5cwT0dXaKn/2004Rpv+OOGcn9yIiAvUOHJC1ubAx2765l2rW2yq6PHxeJe/X5556TQw0NwcKFcgogoH1yUrDVl74kp710qcwXLFs20/F+zz3w7LMC/HfulJf0qU8J216tc33kETnFsTGZQHAcedmaJvLXSKSFNWu+yQUX/E+GhvbhOEXy+fFKR/sgrmvj+x67dm1i//5nsKws6XR/5cuxBEiZZpihoX14nkswmCASaeb55++gXE5XupZjFIvT7NjxIIXCBACZzCBLlnyabHa4Ug/1FJoWYMWKdSxYcBNdXT1EIrO56qqNZDJDuE55pqqtZAmAjkf/uKfd8wW0VxPlB0aFmVfVSqK8L372sgWhQOXLFcK4m4Y8b+jC3FeHqs6w+If6hd0/ows/aKJoGhfddx9rfv5zLr7/fvLDw+x78EFKySSzLriAcioFvs+siy/GLhTwXZfp/fvJDQ5STqdRK35hp1Ag2NBAuLWV+bfcQtc113DeRz6CZhi1+ri3v/c9Sad1HNxymUWf+QyzLryQN598ktzgINGODmHoo1HOrYTZ6cGA+MrT01Aqwuw5At49/+TudlWDdBK2/Ljyon34H7cIa77mRklRr2+SqjerLHL4M+ZDol5C6v7l2yKHN0zxwD/3TxJWp2qQmYaOuZJsb1uVlGZPetiLRVRNmClF09EDkv5fSA7TdMZi5lzyXiIN7djFXKXGbS/B2CyKqVE03aT13Ms556qP0Xb+leD7OOUSnmfXAuYKyRH0QAgUlYnDMhEwdfRVEm1n077gqpMYeLuUwSnnT/LQqz61oDg/k4KKj510Em9sRJLiZ81CaW3DnxqXWji7jDc8AKaJkqgHq4y77WeQnMQb6kdpng2FHO4vNwvTHhK5PNm0APNcFhQF37bxk5O4m/+1popQl16On5E0emX+ItQVV4LnEg6HWbVqFYlEonIpdBkYGKBYLLJmzRpMU74SlstlfN+no6ODvr4+wuEwvb29BAIBBgcHa75227bRNI2VK1fS2dnJ9PQ0nuexZs0a6uvrMU0TVVWJx+Ps3r2bWCyGZVls3bqVcrmMpmnEYrFK+F2AeLyD3bsfJR5vR1W1WnZGNjvM9u13kMkcR9cDNDcvYHr6ENu23U4s1gZIsFw1h6OvT0IvY7E22tu7yecniMc7URSDQCBBe/tidu9+tLZuJNJUCa37FJaVIZk8zPbtn6JQmOC8896HYYTxbb8WGte7vhff8/FsD8/xsHIWqx5fRcMZDSTmJGhZ2MLIqyMoikKiM8Gcy+bg2R5m1CQzJKB93tXz2LVpF12XdRFrixGIybWk54GKNL4jzua1mylMFtBDOunBNEbUYMW6k/3v7YvbyY/l+cXHf8HpdacTMkL0p/u5fdvtNEWa0FWdocxQTd6eLqV5Zv8zbNq1iZZoC4Zq0Bpp5b5l91EfrGd513KiZpQNV2zA930+se0ThM0wOSvHSG6EiBnhrfG3OJ4+zsHpgxxPH2c8P46qqBTtItFK04ehGjy25zGe2f8M63vX4/ouHoqAdSMuXeeKNlMJVxgWQFscAzsnl5f962HWpVA4Lqnvnl2RozcL6MYXkK+qM5VyxWHpfVd1qXir+uK1COhxkdSrQbnGv7EOZnULgL3oMZj7t5XOdbNS1+ae7FevSuSr0nbVlImC9BG5rSgLUBRh63MjFWCLAGMzXgHlVNhzub4JgDdOrn5zyzOvNzF3Rn6v6PL+jO4Tv7kREyl72/IZyfv8vxEJ/ol1cYoqEwDFcbl98TYB23rwhMdHZELgQ2+LNB5VmPazb5BbIyzp8kYc3v11OOdGUQRkjsukxIFncHNThMMGZ5zRwOOPr2LWrDCZTBnDUGtg/t57l2MYKoGAzmOP7WH58k5CIZ1QyOAzn1lKKGQwOJjh7rtfAODJJ6+lri7InDkJcjmrFjp3773LSSSClRwNtTYx8Oiju7n0UulvB1i+vIuxsTyf//wOipbNYHqcjb/6R6byaYJGkIBucuflN6GpWs2bPl1Ms+rspXz+6psxNZ0HVn6UumCUu9/9QV762LdoitZzYfvZJPNZhjMThIwAISOAisI/vvzzmjS+LhRjNDPJ37/wHcqOxfdf/jkXd5zDrEiChW1nMl1IUygXyJULtTA833Vo832GgSd8n9nAkHza/yhwzkDA+k7g00CeUzVwp8afZpwC7qfGn24EgzPF5t3dJye+p1KQTM48V02Xb24WJFsF/NWUt1RKwLumCYCfmpIf1xXj+WWXCWL+0IfkfiQiCFnT4LHHsGa1MzGh0N0tQPuuuyTsvr9ffOodHQK6Ewmx2I+PC+53HDmt+no5hakp+Pu/Fxl91Ua/aJGs09YmIP+RR+RlDA3JcQYG5O2wrJl6+VhM1rnlFjlVRdFQFBVFUfF9j8HBPUSjbeh6iK6u5dx66xvE450MDu7BdW1Wr36CBQtuwjRjdHR0n/TlWFG0GsuVSh2lUJhkyZI7UVWd4eFXSaWOkE73s3//M/T2rsf3PaLRVvbs+QotLRdgWcKUWVaOeLyTq6/+Cradx/NsHKdIa+siVM0QEG7ocqtQ+ZKkCTveVC8svFMN/Kn8nNEFSxYKs+66cGRQ1qkmzZcskd2bhvjhqzL6siXp8uWKbNLnhMR6H2wb3/MoTU9Tnp7mzSefpDAyQnFsjP7nn6c4OkphZIT93/42bqlEpLkZPRTit1/8IsGGBrRAALdY5JWHHyY3OIhmmljZLHYuR7Sjg8Vf+ALRri5KmQyXPvggf7lzJ5c++KAILytSfD0QqLH9b3/ve+D7uKUSejhM/LTTaL7kEgKRCEo6KeFwmi5d7l1nyAdo1fsFmP+PWypJ79Mw71wB8D/4KmTT8BcfkoA6q3Qy0J83H+adBz/51oxv/Rf/S7req+ttf1aA/Lz58kVzy48hkxTw/sMnBNjbZRy7RCE5glVIMfTmC1iFDOVCClU1CCWasct5Qolmui76M5rmXQqqQjDejKKbKIqCXcwy9OYLOOUCwfgsJg+/Qri+DUXVCdfPRtMDqJpG0xmLScw+m9ZzL8MpFxh+6yVcu4yqGTSefpFsV9d6kofeV1TxrC+4WELmdB2l4zSUSAylpQ13+3PyfplBlLoG1GXvwtvTJ+A8m6kw9RmUjjn42Qxq1+kogQB+Not/4C28vpdEHu/7khh/4C2pg9N1FFXF2/XryqSBBN0RCIqXHh9t9XtR6htxXZHCep7HwMAAqVSKrVu3EolESKfT+L6P53k1H3wul+OCCy7g2muvJRQKsWLFCgDWrFlDsVhk+/bt5PPi99R1nVwuRyQSYevWrViWRTKZrAXaZTIZDhw4QCaTQdM0lixZQi6XY9u2bRW23cb33RPCLh/Bda0/Csbs7d1QY81PBOm2nScQSLBs2T01hY5pRkmljlaC6Zoq6pwiqqqj6yF6eu6vrLsOz3Po63uE/fufoVzO1O739T2Cppn4vouvuCy7R0Lhlt+7XBQLQR09qGOXbIyIgV2wsQs2wUSQ9sXtlLNltt62leTRJFbOQjVUunq6MCIGsbYYKzetpGt5F9vv2M7UwSmsrEXdaXV0regiM5hh6V1LyQxm8F2feFec8TfHSXQluP5p8bevWLeixsK//b/exivI7zigB7is6zKSxSRhI0x3ezcT+Qmpg4u2ctOCm/j66q9zPHWcvv4+HM/hrMazqA/Ws7N/J0W7yJvjbzKaG2Vx+2J0RWc0O8rh6cPoqk53ezcj2REubb+UsBGmYBe4fdvtFJwCWSvL2s1rGcmN8KWrvsQN829g3Yp1BLQAru/jlyfFn+4UZgLXTv8baF4hQXRvPijgG2D+/XJN2L8BzrxdGPGJXXJtVQ1wcgKYQVLiu/4KDj4hEwFqAJpWwGk3iT8eD8wGAaq+D5EuuPCxGal6aVxYezMmcnUzKsA5fbhybfdnwLCizUjLteAJgLwiq08dkW3NaAVwVwPnYhU23pLtVUNY8arpRjPEQ++WZ/rjqwonzZDJALcokx3RDnhlk4Dt1CFh3S/bJK8vfUyAuO/DivUSUqeZMpnRvlzY9ks+I8F41Wq5A8/IOWYHBIxXq+zic+DdXxNZv10QX7sZkYT5l26X7bMDMmHw3q2YiRYKBRtVVTBNrcKo/wrfh7PPbuSpp67jzDMbKBYdCgWbjRtXsnx5J5///A6OH08xPp6nUHDo70+zdGkHnuczMpIjGjU57bQ6vvCFHbS0RHjqqetob4/x05++zac/vZ1QSGPdup4ay59Ol2hpibBr1wC+7zM6muOuu5YSCqs1D/r3X/45uXIBy7UJ6GbNi/6DV7awsO0sDM3A830c12U6nyIeEln+eDbJaxVPfHO8njNmddKfHGXDL79H3i5x35Uf4ucfeYzPXvkhVEXln1/dyqL2s/B8j/uu/BCrz12B63l88cXv0xxtoDFSR2Okjhdv/RYXt59D2fcYVBRmAfsUBRM4C2jgj73rJ7LufcDdzHS/nxqnxn/lOOVx/0/GKY/7/6VhWfJjmvIDwnhbltDVhw+LBP6BB4Qx371bwPb69YJox8dFb75unaDau+8WijscrsysG6JpHxwUhFxhR3HdmV73e+4RSl1V4fXXa8b0oq2TcqNEowpHjswcZnAQ3vc+Ae3Ll8shHEdOpepf7+wUEL5kiZxGPi+gfe9eAesVGzWaJqdSKMhPPj9znLY22eboUTlmd7fMW1xwgZzmnDk50ukj9PauZ9mye4hEWnCcIo5TYOfOTaxcuQlNM7HtIr/61ee48soNGIZ0ugcCddh2jt7e9fT0PEA83sGWLbeyf/8zLFhwE2vWfBPHKTM8/DLNzQswjBCaZtLf30c02ko0KingmmaiqgbJ5GF27drIsmX30Nh4Jo5TRtNMXNdiaGgf0ehsGhvPIoApoXJRkbsCFamiN5PkqzDTsz6vc+azUvXHj00L0x4w/9gDX+1t93xh1k/sbrccebMDhsjsLRs7ZOI7Dvu+8AX6n3+ermuu4ZIHHuCVhx+u3TZfcgkdV1yBnc9jRCIMvvQSk6+/zqWf/zxOhYF3LAu3WGT/U09x7oc/TLi1ldLkpATenXkmqmEw9cYbhFtbiXZ2Mv7qqzTOn8/Um28SbGjg7e9/n4vvu4/S9HStTz7c3o5fLhEIh1GyKQhH4Ng70HmGgGldlz53MyDe9aoHPtEAP/6GAO8lV8ANN8sXS3wB2lt/Ih73ptnwT1+d6YL/s7+W96epVdLrt/5EJgSyaQHwf/lh+T05NkRisPdXcPQA7t98kqE3f8msuRczeeRV0iMHSMw+m9nnvQtFN8F1KKZHCcSa0HSTcj7J9LHXmT3/3fi+h2MVGX9n10nbAdilPE45jxGKYhdzhOtng6pJSrzr4DkWmhkCfEZ//2sa516EEYyLbeEEj7viyB+YEo2B6+AXC2Bb0rG+7F34A8dQzjhn5rkVV0CiHsVxcLf/+0y/+zXvAU1D8Txh3eN1+JkUSqIepa4B3/dQXBe/VAQzIJ9uU5g7P5+T9HmrjPfLrahLeiASw3txK6z5S6YqHerVTvYXXnih5ndfvXo1Q0NDdHZ2smXLFvbv38+NN95IIpGo9a7XVbI+fN8/ySu/atUqNE3D9322bdvG/v37ue2229ixY8cf7T8ej9e87plMhmQySWdnJ7t27WLNmlWk00cqfvQHqK+fi+972HaBbHaYnTu/WHu+XM7UMjd6eh6gru602p+w73u1icYTMzJWr36CUilNONyI5zmUSimCwXoMI4Tve6RSR+ntXc+qVY+Tz4/R1/cIPT33V4I4daxiEYqhWj87gKqpqKaKU3TIjmTJjeRo725H1VUGdw/SdkkbruVKB7sHL9wz44t/4e4XuPbJa9m8djP7n9nP/Bvmc/lDl6MoCrHOGFbGQtFEKu978v3IztsouoJmaBSnixhhAzNqkjqWQg/pBDoDHEoe4pG+R/jsis9yWuI0ik6RdDlN1IhSdso0R5vxfA9FUU7yu3fEO9jQt4G7lt51kv99SccSTM2kr7+PWeFZjOfHWda5jJJT4u4X7ubu5XczmB7kff/6Pp59/7Ms6VjCD9/8IfuG9vHktU/i+V6tns7wykRTr4qUPXo25I/B7zdIl3uoDZK/hV9fJ4Fxi78FvipqnNxhCHdIn3v9QmGNSyNSHacGZD+FfnmshSqeeQtQBZirGtgZAeZvb5QwusKg7DPQIuDbs4RJRp1hurMD4i8PzRLWuyqhd0oCvqt979EOAcWZYyKBtzIVQB+TK0T6CBSnoHmhAGIrWwmiC1Y63Ss+ec+eAfRV9n7mky37covyMDcs0nUzKkz4zs8LwFYQFt/3xQ8/+go0L5J1rBxMvgGRNgH9l20Utt7OS4L8ux+H0Zdh1oKZ40+8Di2XyPn+6g5Y9AloOFMmN479Qpj/dz8uKf7pw5AbpNjyblJpm3S6TCxmEgrplEou4+P5mjd99uwYv/vdKPPnN3P33S/UfOx33bWEiYkCy5d3oWkKuZzwx+GwgaoqpNMl3nxznOXLuzh2LMXGjTvZuHElqgqxmIk40OTvZffuQRYubCEUMlAUGB/PM7szzEB6jO/t/Xc+tPh6ZkXqCeomPjCamWIsN8WC1jMwdYOyY5Et54kFIuTK+Ro7ny5mMXWDglUSH7sRxPIcVBTcSpd7S7SRsdwULdEGWuOzGEyNMV1I0xxt4Dt7f8bfXno9b44cpC3RzIXtZ1O0yzz26x/y1xdfS3tDG0d1k0dUlQd8n7Mr4P1/N070uj/AqUT5U+P/3vh/87ifAu7/yTgF3P8vDMuCP/xBQPj998M558jzJz53xhmCaPfulb61zk5Bu4WCgLXduwVF/9mfSTm6qgrLXg23i0bhN78RFPzFL54M0n/7W9n23/5NELhXqSMrFkHTyEea+cM7Ku3tIl9/7jlZtZryXiwKgG5rOxnUNzVJCF17u4D37m7BWLffDp/8pNjuq0FzIHMNn/kMzJsnp1rdvqVFQur27JHnHn105hjLlkEwmGHbto/T3r6YefOuJhisR9cDbN16O0uW3Eki0VUBzW1Eo82YZhTbLuD7vshLK8Bb0p4V0ukBMpkBurpW4HkOQ0P7aGu7FN/3GBraW+lenk02O8y+fU+wevVXyWaHCYebeP75T/Hmmz9k/vwbWLXq8Rqj1tu7vpZEPaerh4AennnhxbIw712zBUx7/ow8/mC/MOOtjfKdyLYryypgv7oeiOz9yKCw9mVLPPOqKiD06JA8X50cCFb+ZVoOOC62Isf0XZfS9DRuuUysowO7WERRFDzHQdE0CmNjlCYmaFywADUQqPj0FSZee41gYyOxri4mXn2VYEMDpelp6s48k9cefZTuv/s77EJBQu4iEZxymWB9PU6xiFMq4RaLFEZHabzgAlTDYN+DD9YmEBZ/4QsoVgkjHBGG+9gBOP1c+fJ49A8SNjerVZb96MkZAP7BT0ko3dafSF0cvgTWhcIQigjIf/t3cP5FIgOpAv5ZrTIR4roi9Y5E5W/tn58QNn7eecLo1zfJNqveD3WNuNEoVj4lvvNEE65joWkGiibVbROH9tI071KMUBzfc1E0o1bfVkyNEow34ZQLtYA6zQii6iZOOY+qGZQyk+iBIJNHXqXpjG6McBzPtnDtkuz7jMX4no9TYfVPDLszwglU16+EwSEBe4EA/ugw3o++I4D88qsFhGfTsp4ZQIkl5BxT03h9L6L2XIVS1wCOgzd0HCUSwy/kRR7vufiFgsjr+15CXfXnkM/JdiuuqATXVUB+NIY/cAx/4Bjaqj+Xj7am8fOt204C2/l8nr6+Pnp6eohGo6RSKYLBII7j0Nvby7XXXsvWrVtr21x++eW4rothGNi2Xds2HA7zwgsvsGbNGlKVyYFVq1ZRKBTo7e1lxYoVNWl+dVKgCuaLxWIN4N911yfRNGrXhXi8g0RiDpnMQC0IE6QVQK4bl6CqOr7vMzS0l9mzL6ZUSuI4JUKhBkZHXyce76hMBNxPNDq70gN/rNZkAT7Z7Ai7dskkZDXgzvc9PM8BFFRVq3TKq0QDnWQGMzgFh2hbFDNiYudtSqkS04eniTRF2Pu1vazctBIzKnkIvu/j+5IVMn14mj1f2cPKTSvJDGRoPLuR1NEUfY/0sfze5URnR0EBM2JSzsjnKTeWIzeSo6O7Ay2gMXVwil1f2sWKdStqXnnN1LALNl7cY+22tTyz/xlumH8DT1//NIemDjGSG6G7vZuAHuDQ1CGGc8O1xx/b8jE+2f1JHt39KM8deI5n3/8sy7uWY7kWo9lR1vet5/6e+zmt7jR6j/fSFGni0d2Pcu+ye/HxiZgRZkdns2tgF+2xdgYyAwLSVQNDM/jN8d/QGGrk3KZzCSkKmpNFsdMSKufkwZ4Wn3l0nqTLv3KbMO3hroqF5jBE2iuA3EO87hrgCJAPdYpvuxo24rlQ3X/ydQi3Q/R0keLnDsmkQWlCfPZ/eBS6vyPS8+IoJM6pXXfRTGHKq6AaZSZBPnVEmGilYquy88J0l1MQqKtI6MszoF4zqXwYRFYenS0e+ECFqVf1igc9IvtErbwWW/alAOWsgG98CaDLDsgkwb5HpJotMVeAul2A3nvhkrvl+JE2CaH79aclcC7cIj71UCP4ijx/0afksVOGSKssH90H0U6IdchEiSl/w6iaMPhVlr3KzBfGhPkPNZOPzsdyFGzbxbY94vEAw8NZPv/5mcC6hx66nFmzwqRSJQoFm02bdrFp00oiERPX9dizZ5BFi1oZH8+zYcNMEF0opFMsOkxM5AmFDFpaIhw9mmLDhj4ef3xVbf1161Ywb149R44IuP/Sl64iHDZwfRczLL9I23XwfA9dVTE0A1VRGUqN8/Ten/KR7vcQMkyKdnkmjK6Q5nt7/52Pdr+HulCML+/4Jx646iOMZKcqwXUN/OPLP+dTl92Ipmg4vsvXfvNj7rvyQzz8wnf44CVr+MErW9h+YDerzl7KvVf8DZP5NN+tAPnXhw/w1shh7nrXXxMMxXAUFVNR/j+FzVU98AFOgfZT4//eOBVOd2r86YdlnSyFL5f/+DnbFi/6sWOCZKsdq2NjgoIvukgY9ccfl+2r4PtLX5q539MjqPe552B0VOT4oZCA9ePH5fbIEdGgDw7KMT71KVzHY+NGYdOrXvS2NpHJHz4su+7uFlZ8+XJR33d3C+ju7hbb/MKF8hJUVU4pkZB5g5GRky32lTpvOjrkVDs74eyzBfBfdpnI7Z97TiYIqhMBlhVk9eonOP/8G5mePkwuNwYorFy5EVU1GB5+hc7OZTQ2zsMwIkxPH2b79jsoFCZwnCJbt36MZPIwhcIEnmdTV3c6ra2LKJcz5PNjtLQswHXLNTlrLjdCqZTCMMJceeUGUqlj7NjxIJnMICtXbqpIW+/nwIHnsKw86fTASfVRqlJhw9O5SnJ5xddetoQBPzwgTDtIPVwiOiN1L5YFbIOA9pIl+6mC/dPbZb1ISOTyB4+LnP7Mrkq3uyqgvVSRz1dAvKJr5Pr72ffQQ7jFItGODnygNDnJK+vXU04m0UMhShMTBBsamHrzTfIDA+x76CGyx49Tf+aZlCYm8D2PcEsLb3//+4RbWtCCQeavXQuKQnF8nDeffJJSZV/7HnqIcjJJsLGRaGcnjRdcwNQbb+AUCsxfu5aua65h/i23oKgqihnAnxgRYN5+uvjS/+XbUu9W11j5Q/LFw37pZXD1++DQ76GxRRj0amCdoghL77nSy97UMuNz/8Bt0NwmPvd/+ro8Xy5KcN3EKLzvI3DeRbD9X8UDX+2Jz0xLirrtYEbqiDSItL2W7e17TBzaS2bsMKomX1eK6Qk8xxJFq6IQbmhH1U0CkTraL7gazQhSzk5gFzNMHNyDgkKkoQ2nXKz54xXfR9NN7GKO1nMvRzfDBKJ1hOtaTwq7mzi0Vxh2PAmdy2bwk1MohonaeTrqTWtRV/0ZSiyBb5Xxk9PiZ1cU/NQUPj5KKIR6/Q0oiXp8z8V9YbMw5/ksakcXfmqq5on3sxmUztNQNA0/kzpJRu/1vSi3u3agzD0Ltecq8c8bBkqxeFLtm2ma1NfXc80111BfXw9AMBgkGAxSV1fHddddh6ZpLFu2jPnz57N8+XKOHDlCX18fxWKRTCbDddddR11dHS+88AJvvvkmlmWRTqdZsmQJo6OjJBIJLr/8csLhMIVCAVVVTzoHgGg0WntO11Ucp8S2bbfz4x9fR1/fBvL5UWKxNjo7lzE8/DK///3/wvd92tu7cZwytl1AVTXa2xdTLE5hmhEymUHK5Syp1DGi0dlcd91TRKOzSaWO4/se2ewQLS0LKRan0fUQu3Zt4s03f8j27XcgQH6YZPIIAwO7yOVG8H2XQCBGuZymf/DXBBNBoq1RFFXBczyMiEEgHhCv+USeK9ZfgR7UKWfKJI8k2bx2M8nDIpWPzY6x+onVGGGDxGkJfN+n7vQ61nx7DfXz6jHjJkbIwHPFN29lLfJjeVoWtlCYlM74/Fi+1v3efmk7Q/uGpNVAU9Bcjft77uemBTfx+KrHJacg0cHi9sXsHZJKuFggxsKWhUwWJ8lZOTat3MRUYYrHVz3OkU8e4aLZF3H71tsZyY0wkBmoedR936e7o5tHdz/KM/ufYSQ3gq7qPPybhynYBZZ1LiNkhGiONHP7tts5nj5OppxhWecyTqs/jbJbRsFDqVa54YnM3agXaXu4QwLkLv2GsOBqRY4emyusuu8Jsz6xE/KHJXQuOFtAuxoUiboaEhm5WSds9qwlkhTvO5I2H+6Q/vemZRA/By56vHK9N2VywPcqYXJGxXuuCKuePspMnzqSrq6oArY9WwC3akKwcr2s9rEXJyuMuiX78OyZ4LpAvGLV8kXabsZkn54j26SPVGTyvmxvhGW5a0lQXKhJQHu1Fi5zFH55KxRGBVDv2yBKgZe/KAqAauCcmRBw/8uPQfY4LLpd9mPEBNSnj8xI4I2QAPRdD0qKvBGV9yM7IMtfuh2y/TC8G45th9ZurNwUh49muPXWLQwMZAB5G1tbozz++Cq2bv0ATzyxmtmzoxiGSkNDiMHBDF/84pUAHDw4xa23bqG1NYqmKbUKucnJAuGwIYqUmMnISI5UqoTnUfO2p9NlNmzo47nnDjA4mMF1fVpbo3zta6sJhw327RtCUzR0VUUBDE1DVzUmcmn+7hdPM5gaJ2gY3PWuv6YxnKA+nOAfX97M9gO7yZcLTOSSfPCSNYzlpilYRbYf2I2Hf0Jw3c84f/Y8pvJpNv7qH0kVs9x5+U0Mpcf5SPd7SJdy3P3uD/KzDz3KPe/+4Eny/O+//HOWzrmAOy77AK6ikUJhRFFI+f7/J8+6yakauFPjTztOAfdT479mmOaMn/2BBwQB/2fPbdok0e22LYg3kxEquxoq9/rrM2AcRCb/8MNyf2RE9OdPPCHg/MILZzreJyZk+fCwIOdqvHsFiRvTY9x/v8+bbwpg7+mRRZddJnL4SETmCh5+eAa4+77UvFXB/OSkAPQjRwQ/fv7zcn9kZMaOv3Il3HuvTBBs2CDPDwzIemvXwjvviHr/2WflrQmKEpRiEdLpfrZtu51IpIlsdgjLyqLrIQwjRDQ6my1bbmVq6iCOUySXG6n5TkulVCX5fRDbzrN1622kUocwjDC53BjT04dRVQPDCHHgwHPs3v0o7e2LCQbriEZbMIww6fQABw48R1/fBnQ9yKpVjxMON5FIdKHrQWbPvohAIM7s2RehaQZeuShfhv5wRILkqp3uscjJHes+ArSr3ndVnelzrzLtqiogvRJMRr4o0nlNkxq4eLQSZIcwyNWkvxMnC3wfz3XZX0mA3//00/iVRPlqmNz+p57Cd10aL7iAt7//fYINDbX13/7e97ALBRoXLECBk/ajGgaR9nZ816152H//9NPY2Wxtv54l//Kn3niDYEMDyYMHiXZ2svihh4i2t+M7DlYyOdPhXq541E8/W+TrP3wCRgfl9RmmAPBZzSKlVxA5u1fxevq+MPOH9kvA3Bnnw5afwDfXC3vvutB/CF7tE3b+RC98ICjs+zU3QDYlkwQPfVOS7Y/8HvDxHAvPtfE9h/GDe7DLBRRNY/Z57+KcK29BD4QopkYIxmfhWkWG33oJUET27lgMv/UiViEtrHl9O4qq0Xj6RdjlPENvvoARinJmzwdpO/9KSfxXFEIJYepHfr8Dq5DB81w03WTW3Etnetw1Hb/Cpvm5DErzbPxpCYtTYsLUef1HxI/eMlv87rYF0RiK5+HreiWR/l8hnURdvAxv969R2+eAquH1vijJ8H0voXaehtJ5Gu7Wf0OJJ9Bu/Qza6r+AUBi150r8YgF11Z+jxOJQVy8p84U8fjhCNpvlqquuoq6uDt/3yeVyGIZRS423bZtt27aRSqXo7+9nqpKCuWrVKqLRKA0NDTW/eyQSwXEcjh8/Tnd3NzfeeCOmaRKPx9mzZw/xeBzHcThy5AhjY2O1+rdEIsF1112HruukUimef/55PM/j2muvRVF0TDNKT8+62gRdIFCH57moqk5HxxLOPvt6nn/+kzhOkUJhgu3b76BczpBO97Njx+fJZkfo7FxONNpCR8cSnn/+E6RSx1BVg0Agiu9DV1cPxeIUv/nN32NZOVav/jo33riZFSvup79/J7adJ5MZrF2LksmjjI29QWPjWXR1LceMmvi+T2Ygw5Zbt5A6nsJMmGgBjc7lnThlp8aaGxGDZXcvIxAPoAd1jJCBU3TIjeTwHR+n4NDf14/nePiez9SBKTav3Uz6eJpIS4RIS4TOZZ0EYgGSR5NkR7J0Lutk/g3z6Xmgh1KmRMvCFvnzc30KyQJd8S6+seYbTBQm6OvvYyQ7UguqG0gP0BJtqYUter5H1IyyomsF4/lx7th+ByPZEe5ccicBLcCKrhXctOAm1q1YR9bKkiqmWLdiHTfMv4Hujm429G1gcftihrPDrN28lqJTpC5YVwvCy5QzlJwSI7kRXh56GQUfSqNw7mdAi0K4TdLhJ3ZX6t0Kwowb4Uo4W7ly/fXBLUhYXbAJ9j8ioXPFIQHY2YPw6qfE8+7khHFHkdq4+gsRybwiAXV1CyUAz5GGAzxXGHjPhfKEJK8rSmUiwJD70dkCussZatVt6WMC2DWTGht/YnK8GRfgbMZm+tZzQ8JsawHxkddk8tEKuK+AdbcsCfbV/z1OqVLrhkjYF6+D4oTcnn0DzO4WMF8F53NWSk1bcVL61QN1lYC5BwBvJil+3yOQmCPBc4oqyoPqfl59FMJNM+u+vFGWW1mZGKj64veuh7YlcNYNoIewmpaxfv1M6ruuqxw5kmLt2s2Mj+dZtKiV22/fRn9/ht27B/nJT95i0aJW4vEgpqkxOprjuecO8MUv7iQUMujsjDM1VWDJkg4UBXbtGuDIkSTLl3cyPp6vBPBK6F0sZnL//T08++z76eiIs3btZkZGsuzePUB/f5pLL21j995+8laJgdQYD7/wXSZyScZyU7VguKARrAHvkfQEd15+E6vOXkpDpI7maAM/eGULzdEGGiJ1rDp7Kaqi8pHu95AsZvlI93tYOucCvl8Jp/ve3n8nqJs0ReqZHZ/ForazSBYzfHPXs0wXZFLjo93vYdXZS7l5yXtpiTUSNoMous6YqnIY0BXlVFL8qfHfcpwC7qfGf80wTZHHf+c7Qi9Xfe7nnAPf/a6kwfu+IORoVJYdPiyod9kyuPpquV+NfD96tMKuarK+qgqqHhsTlHvHHcK433mnIOvmZmHqq8D+jTdEjr9nD9x4I+6sVk47TWHuXAmGO3ZM6t9WrBDv+uio4KIVK+R+OCy7ffVV8aIripzeXXfJPEMmI2DeNGWbm26SuYnZs0XxPzUlLXebN8ucRBXEb9wo3vnly0VOn80KzorHLbLZIa66aiOJxGl0da2gUJhiy5ZbcZwiphll5cpHicXaUBRhvm68cTPXXvsk0ehsFiy4ifb2bjKZIZYu/Qx6RcYeCMQqdXK3k04PcOutb3L99U+jaQFMM0Y6PcDmzWuJxzt4//ufZenSzzA4uKfS66zR2bkMVTVQVb1S1VS5DYTkDTtnroDsoCnec1WBeR3Q0ihBdJXvgmiqgHDPk/q3gCmy+HROAu4URSYAPF/YeaNSC1dl648Nz1TI4cuXnzM6obmhUjlno3o+82++WVjutWtFNquqnPvhD9dS4RVVRTVN5q9dS2l6urb+eR/5CEYshhYIoOh6jS0//5ZbUHW9tq8TWXQjFqPrmms490MfYuqNN8D3a0x9/Zlnkquw+bmBAXxFIdg4C//avxI2PRQRSft5F0m928u/ERa8mId8Vlh5zYBsJZgunZT3Np2UhPjUtLD2W38i7NW1fwUfu1+k7//0Vbn92P1ynDWVY665Ud5D14X6WRJS19AsrHxFBeDrOoqq1X5CDW1MHnmZqnbVKqQZevOX0sGuakwc3keofja+52BbBQBC9bOZOLQXIxSrse1GMIoRjBCub8MuFlB1A8cq4vsevu//EbuuKCqKZmBGErSdfxVGIIJVSONaJXzbErBtWxIgV6lhQ1FQIlFhzXMZlPZOCZHLZXG3/ptYBmpJ8GkJr1v156CA77moPVeK3L7nKkCp7dvPpMGxcbf9m2QC1DUKsDdMqZpLVpl6Cw1obW2lVCrx85//nFQqRTgcxnVdent7iUQi9PX1sX//fnp7ewmHw+zatQvDMMjn85imSXt7O4ODgziOQzAoSc7xeJxgMEgikWDLli1EIhGuvfZawuEwv/zlLzn33HPp7OwknU7T1tZGMplk69atNcZ/1apVAGzduhXwsawsicRpXHfdt6mvPwOAcjmD45QZHNwDwBVXrEdRNLLZYZYuvQtFUWuhdrt2baQqp9+z57HKc5tQFIVIpBVFUWoheNW0+i1bbiWR6KSu7jRaWhYSibTQ1dWDYci1au/er9XCMXE1fM/Hylq1Wrb08TTJQ0n6e/tJH09X7C8e+Yk8dlH62u2iTTFZBAWMiCEgfDSLETaINEXYdts2MgMZciO5GpuuaiqZgQxbb9uKlbPoWNJRS55f86016CGdSFMEVZPudz2oE2oOkbfz2K7N+t71NEeaGcwM1nzr3e3dqKiYmsnh6cOM5cYAAfAb+jacxKQ/uONBjqeP88013+T0utMxNZO6YB1hI8yTq58kpIe4v+d+Vs1bxWhulLuW3kVID1F0irW6ubZYG7qqE9ACdLd3U/Y8/PqLhPl2C/DqJ6E8Lr71V26TcLro3Aq7XQmgs7OyzPfFm16akC72rhskEd5Oi2+9/xkBtcUReOPzUDgG07+V/eSPw761ckz8SgDeqMjvC/3ioVd1CDQCqkjGqz727IA8p6hy7UsfqdS2tVbC6ypMuo8A8ypAVxD5Okql0m2WyM4V9QQgPyjAPlD3x881nF1h44/IcatJ9n6F4W9bJvtf+ZSoCxZ/dgacxzohcQa0r5AwOSMMV35Dgu9QZgB/9zp5D2Jd8OvPyIRC97qZ/bg2XHrfzGPfl/dFNU7Yx/3y3G8+A+UUqhlg3bqZ1PdAQGP9+t5aDVwqVeKZZ/azfn0vl1zSxhlnNBCJGBw7luLjH99Ke3ucZ599Pw880IPv+wwMZGhtjbJ27WYOHpxmwYJmBgYylMsuCxe24Dge8+bV84UvSD7E6afXsXx510nVc9UqOs+D5tYwuXKhBq6/s/dnnN86j1VnL+X81jP+aFnICPDZKz+E5do1dvy7e3+G5Vh8buVH+f3oYdris7iw/Ww661poiTXUwPhHl7wXgK/8+p8ZTI2RKRf4zp6f1fYN0JFo5oGVH2V2fBZDqXFeGzqAoZuMAE1IxdthTiXFnxr//cYp4H5q/NcN0xRUXA2mAwEJ1Rq4d96phHAVBNlWO9c0TRDv5ZfD174mCDcUEn/7wYNCVY+Pz+jQU6mZijldFwR+7Jj0v4MY0ItFobObmuCVVzD9EoriE48LdgkERDLf0gKl0sycwE03iXx9fFyU/kuXwttvV0JjV8hcwPLlMr/wP/+n4M1CQSz3VWX+X/yFzE+8/LLsKxSaqZ2/916R2BeLss+JCTmOqmrEYu2Mj78lX0g9F8OogvV2wuFZ5PPjbN9+B/n8GLoepr29m2Ixiec5XHvtk+h6gPb2bgqFyZoH3jSjFIvTdHYuJxyeRTg8i6mpQ2zd+nEsK0sk0kxX12Vks8N0da0gGKyno2MpphnB82yef/4OLCuDoqiEw7MoFqexrCweFQBYBdlV6bvrAYqAaqjl/KCq0tNetma2UVXJNsjkBNjHo5AtVPbBDOC3bKmQUypPlivy+bIt8nkAy0bxPMJtbVz6uc8Rnj2byTffBN8n1NzMgttuI9TUhOe65AYHa1702Jw5LH7oIWJz5qAHAtj5POOvvUZ49mwueeAB8iMjZAcGcAsFXv67vyPQ0MDiBx9EDwYxIhEueeABSlNThGfPxvf9GlNv53IzTP/TT6N4Hgo+SmpK5OqBoHwIgyEB3ZdeBte8X4B2LiMgG05my31fwH0V5KtapRpOg2gc5p578vpnnC/vbyQuUvtoXCYFMikJvEtOyHt6ogpAUbBLWYbfehG7lKWu7RyazhDPs6JqOOW8yNwPv4yqqjSd0U1d+3koioqVT+GUCyRmn8Xs896FqurYxSyh+tnYpTwjv99BuL6dcGMbdikvPfClPMAfseuqbuCWC9jFDMNv/VLOq5jF0AP4o0P4ugaRKNrq96Le+BHxrWsa3m5Jfa/J2Nvn4KdTqEsvB90Ax8bb/WupfdN1yFdAfXIKpa4R7br3QTgi8vkqkO+YI2z8gbdAN1BcRwC768i62ZkOdzWfxTCMGjjv6+tDURRUVaWnp4d8Pn+SjD0UCtHT00M8Hqe+vh7XdRkcHKwl0EciETzPI5fLEY1Ga0nx1Yq3crnM4sWL5c/F9+nq6mLhwoXs27eP9vZ2stkszz//PAC7du1i//79gI+uh3Bdi/7+nSSTh7GsHKYZplicoqNjCYYRZnz8LXzfJRZrY+/er6HrwZMS4vP5cRynXGu4WLlyE7ZdIJk8zObNa7HtAitWrPsPafXr8X0X04wwMvJb0unjuK7N6OjrXHPNVwGZQEBV8D2fSEuEq79yNXeN3UXXii6yw1kiLRGMsEGwPsjQ3iHsoo0RMlh611KMkCTOb167memD0zQvaCY3kgMF8hN5lt61lPRAmvbudm7cfCPXPnmtfP4CGkvuXEJuLMeWW7fgFOR6tuXWLTxx5hM4ZYfscJa+L/UJ6asqjOZG2TO4h8+u+Cx1wTo64h01IB3Ug2SsDFPFKRa2LGQsP4bne0zkJ7hv+X0nMelViXzJKTGWH2MkO8Jt226j4BQwNIOjyaMMpAdoi7XRGe9kIj9BfaiekB7iuQPPsWnXJhQU6adXdAzNIKDpIpV/9Q5Jjm9cLInxdlqA9/714FvCwBeHYWKfAMtLvyUy+ugZIquPniGSejUgXvZz7xEgrxkzIH7/I+KZt7Oy3+r+7Yzcf3tj5R/lgLD4r9wufe+KLuBZM04G05opgXC1x8ETgPqgXLOi7TMA3afSCZ+RbRNVyT8nA3kUkdmfuC2KSOlrxx+u+OwBpZIunzkOL3xUbvPjUHcmXPUtAeeeLT503xMwPryrMpmgirKhbp4A/vhc+M094tFfsV687dlhqYRLzIXcqEjkr3xC7AGFMZHZj+yWxyufgvjpEmzXKn/vtu0zPJxl48araG+Poesq998vae8PPNBDXV2wBuolOb4TRVFq4P6RR/pYvryLUEjH83y6u9v54hd31hj8bNZi8eJ2VFVhbCzPxz62lf5+Afc//enbDA9nmZjI1yrj1q3rYXKywLp1Pei6wvhogWggzN9een2N6Q7oJne/+4NoqvpHyyzHRlM1QnqgBsg/tPh6fBQURSEejPLGyEGG0xM8tP3bDKTGaa+A8cZwgqJdZmHbmXz/5Z9jajof6f5zVp29lI90v4eiXeahXzzFaGYSz/d5eu9Pueu5r5DJJen2fR4FnkFC504lxZ8a/93GqXC6/2ScCqf7LxqWJQi1r28mdO473xEAv3GjIOdzzpHetWoi3Jw5UoK+YoVo1++9VyTxV18tnWwTE3L76U8LpX3bbQLib7gBvv1t8bb/x8ePPgrj42TazoJwlCNHhDVvb5cWui99SaTtti2AW9ME70xNyenPmTOTFv/GGzMBdp/9rOyntVX87IGA7CeZlFNUVcnhu/RSmcuwbblVFGH1Gxuly72jAxKJHJb1ayKRZgqFSTo7lyPMWJ6xsd/R1nYppVKS73xnMR/96D5CoXp83wNUhob2kkh0EQ7PYmTkt7S3L0ZVdbZt+wRLltxJY+NZTE0dJJcbob29m1IpyeHDv6CjYwm7dm3k6qu/QqEwSV/fBlatepxCYaKWbi9DIRCIY5oRyuU0phkjEEgQUIMVBtebAdiDY8KSV2XwVeBuOTOBcp4/w7qbxoxE068w6fhgu5Is75xwa+jyBclxYTojafTRcEVebmCXS+w9IRDukgceQNE03FIJO5cTRt00efnv/m4mNO6hh5C+8TKvf/nLnP3BDxJqbEQxDKx0mtFdu5h6803m33ILW66/nq5rrmHBbbcRqK/HcxycYpFgfb2knysKuf5+9j/9NBfddx/4vhw3GsWMRsFz0RwLJTUtwPvav6pViskXyKC89kJeAL3rSt/71p8IQJ/VKp3stcct8M5bIrf/0ZPS4z7vPNn3mhslad5z5YP3ai8cfhs+8HH4p68JUP/kF6DrTKmE2/Yv8D9uxY1EGHrzhVoqfPuClaAoWIUUE4f20XTGYuxiDiMUwwxLiJJVSDNxaC+z5l6MUy4SaeyoPdd0xmL0QJSR/S+dtM+Tj3EV+ekRwg1tKPjS9R6MYobitfXmXPJewvWzUVwPJZ2CugYU18MvFVBCYXxNEzY8lxUA3XMVSl09Por0tfe9JBL3dArvx99FWXAx2pq/xM+m8Q8fwB8ZRlv9nlpqPKUyfj4jvfC6gZ+clAyAUBhv8DhKPFELqlPq6nG3/hR15XV4ZgAXSCaTtVC5uro6HMehVCoRDAbRNA3XdWvp71Xv+4mgPZ/P097ejud5WJaFaZrk83l27drFypUra5fYsbEx2tvbUVUV3/dxHEcAnK7jui6lUgnTNDFNk1QqRV9fH9dfv4pkUlLla2GTcy5jauod9ux5jJUrNwIyeRgIxLDtIqYZxvNcCoUpgsE6NM1gauod9u79ai1sTlFUstlhduz4PAcOPMcNN/wbXV0rAEgmD5+UHr99+6d597v/vtZwUSqlMc0oyeRhcpkJEtaF9K7v5erHrkZRFLIjWfJjeTqWdKAaKqkjKXrX97L0rqUE64M4BYfeDb30rOshM5xh+uA0866eR7A+WEuML2fKlNNlAokAZtzEs7xaCFp+PE+kOYJTcnj7f71N/dx6Oro7sIs2Lz3wEqu/tprsUBYzZlKYLGB0GuyZ3ENzpJn6YD1NkSbWbp4Jq/vO9d/hnal32LhrI/csu4czG85k9+BuLmi5gJAeQlM1XN8FH8byY0SMCG+Ov0l3Rzcf2/Kx2n6eXP0kyVKSZClJV7yL10ZfY0HzAjRVI2JGKDtldFWn5JR4Y+wNFrcLqItrKtq+tQKcu26ABQ9JmnugEX57l4TSBZrES+3kRUbvuwKmfWfmFqUiZ3dAMQGvksauQ/awAPRqcnz9RSKB379+Zv+/vQPOfwDCc+T4r9w2c05LfjDjM6+mxsc6BDB79sxjNTATQFd9XJXRW1nZVqmA8tr4D4FzPnJ81ZDzryXKM1MZlxua2b/vCvC2C7DjDpGqn32DAHZVFyl/YVRAe7RDZO7VQLqJ30HdGSJ3j8wWsB6ok+MUxuDVr0DPl+Q9nXxLauOoWAZKKQm4q3r3M/2yzezuyjmbMmHruRTcEAcPJSsBcT20tUUJBEQdVi47GIaGqioUCjZ33/0C3/zmGlzX4/jxdC1UTvztKp7nEQoZHD2aYv36Xu69dzltbVFCIQPH8fj4x7fWwu6eeGI1pin79jyfyckChqHR0BDEdaXn3XFcFEXBCCE2NiQ4suzYBAwT27UJ6vL78nwfVVEp2iVcz0NTVXRVR1UUVEW+R0zmpgkHwoSMAH/3i6droXMPXb2WY8kR/vnVrdxx2QcIGgEsxyJshnA8l6l8iqZoPRt++T22vN3HmnNX8NkrP8RwZoLv7v13bl3yl7TOascFPEXBB4KVn1Pj1PhTjlOp8v+H4xRw/y8YJ6bMV+PTOzokWv3mm8WD/uyzAtD/I7B3XUG9vi+3mYxoyhMJiMdl/9WC9WrqfCwmlDkIE1+luquhdpOTFEIN2JE6+voUWlpk9QULZNPxcQHkjiMA/d57Tw6tTyahrk7AeakkgP4Pf4D580Wd39ExE1wHMvfQ3i6p83fdJW/B6afL94sqgPd9ObU9e2DRoiLRaJ5SKUk4PAvbLvDSSw9w5ZXiOR8Y2EUi0UU02oKiqAwNvUxr6yJ0PYSqariujaqqlMs5VFXDMCJYVhbLyhGLtZHLjREMJhga2kci0Ukk0sro6Gu0tV2Kqmrk8xN85zuX8pGP7GbHjgdPqJL7Bq7roFXSei0rXwmRShBQA9Q8h5YtoXORkABtHwSAOzITUn1jPE9k73PbZ7Z1vUpSvCvPaapsn8mdBMxrSWmWI8eo1sdV+t5tx8bOZrHzecxYDC0YpDQ1xVvf/CaNCxbQumwZ4dZWcgMDtZq2QGMjyd//nmBTE/g+eihEqKWF/ODgTB1cczN6OIxTLKIFq75MH69cxnNdyskkB37wAy68916R1XtSAZUbHmb/t77F/LVribS3M/XmG7QuWojyg6/OpMb/z0+dXOP2wU/J/l1XvO+xhLw3lS9rtWWeK5McU+PQ2CzLj/weOubNfLiqdXGr3i+1cIo683dlW5V6s0rYnefi6QYePnYpUwHp3aiagWaYDL91MvD2fR/fkxq3sRPq39rOvwJF0f4I/FvFTAXId2OGEycA+26cUo5jL/8bZ17+oZOq5NoWrBSpfWU9IxRHcz28geMo8Th+OoUST9RAuVLXCFZZfPOOA46FEo7O1MAtXCzg3HUE6Kem8XbuQL3qWgkO9H3I52QCxTBQSiW8yXHUztNqyfnkc2CY+OMjAuL3/EZYekXFT05hR2LkLItwOIxa+cxXAbXruoyPj9PW1sa2bds4cOAA73//++nq6sK2bV544QW6u7spFAp0ds5UJ4rs3GdoaIhQKEQikahNAugVG0c6nWbnzp2sXLkSw5BgqVQqha7rRCIRfN+vgXuwGBjYSVPTeeh6CF0P1EC3aUbRNJOhoX20ti5CUVTK5QyRSDOOU8b3PcbGfkdn51I2b76Fzs7ldHauIJ8fo6trOb7vY1k5xsbeIBZrJ5sdoqNjCapq4PtO5VpioCgaqdRhens3sGLFZ6mvn4fve+TzEwTVJrbd+gIHnjvAp45/ClVTKU4XsfIWOx/ZyeonVrPt9m21arfrvn0dm2+ZqXq77unrmD44za6Nkggfmx1DC2pYWUuC69piuGWXwb2DxDviRJoijLw2QrwjLunx3e3oAR0rb2GEDRRNwS26DL08ROuiVgBs1aYcFm4uYkRkcqGclUAvM4bru0zkJ0iVUiSCCZoiTRxNHqU50lwDI+teXMeGKzfIZ0R4ReKBOEW7SLKUpD5YT0APcDx1nIHMAMs6l6EqKo7nYLs2AV0+s2P5MaJmlJAeYiAzwON7Hufpa7+Olj+Csn+9AOfI6QIkk69B4yWV5HhXwO3UXgh3QqhVriuaCWjiW68C+iqAtzPw+r1wzt3Sz66oAmTtjKyXelOC6pzyzLEUoxKAB+SPCPM//36In1f5gFMB1nZl4pYK2I3X8HklXQ5QK4n3vlTCnVgh59mV5HVF1vFsAePxObJf35vx06NUJgOqyzUkRV8VgJ8dFGaeimR9dK/I3BPzAFdA+MgeCex79cszwH7pQ+JXdyzovQcufxTyI+Jx714n+00fgzPeI++JEZ0B6YpR+T+pQGFcwH45KZMHibki5c8PQ9MiUDVyTgxfUXFdH9t2OX48xeOP72XTppWVf7U+sVgAx3ExDA3P81FVBdf18H0IBDRs20PXFYpFF9/3CQZ1cjkL1/V4881xli2T65CmKTiObOc4HoahoigyKQAQDOqMj+dpa4uddBwzDI7noSsqZdeuVb6ZmoHre6iKwlB6gu/u/Rkf7X4PrbFGdE2Cb6sVcfFAFB8PQ5NU/ZJd5mu9P+ETPX9FyAjw2tABhtPjLJgtbPvN3e+lva4Z1/fQFAXP9/F8n+l8isZIHWXHIlCZNFCMAFlVY1hR2AisA+YAYU6Fz50af9pxCrj/H45TwP2/YORy8JGPzLDfTz0lqFdV4cABkbHX14vsvbFRZKuOI6DDsuR+Og2zZlHpLpL9VqvBxsYExIdCsn6gOuteBSa2gL1SCdJp/JYWXMend1+Qcy4wiUblENPT4mfPZEQ2DzOH8325XyzO7CoUmgHcpjmzXrEo4Pzhh2V/vi/7rq8XFX80Kvvv75ewuosukm0NQ36CwRyeVySXG6a3d8MJbDfs2rWRpUvvIhisx3GK9PauZ/ny+6irOw3bLpDLjVZ6lu8nHJ7F9u13/m9Z9BMZNs9zSaeP0df3CCtWrMMwwuh6iGJxkr6+R07abtWqx8jnxyvryhdt1dVQfPArgLoKWKtAA99H8Xx8VZF07mr9D4DnoRbKEA3hVbetdnZX/ORUnvMcF1XX0IuWdMbbLgyM4s5pxaus47sevgJOscjrX/4y537kI8Q6OoT493xK+Ty/e/yrXHzffeiaWquUy08n0UwDXdcEvDk2uhmgMJ1ED5gYoSCKbuB7HmOvvUZgVhPB+nrSB9+h5cILRQE6NU0gFhPPs21RzmYI1dejaDpWOo1r24QaGwTcqdJ7TTYtgXN6RUVg2/IFWFXkC51joxz5A3TOxQ9VPlDViazqNdyrTHhkkpV9VeqCPBdtehqe+wHs/y3u578uffDpaRQziB8MzVTq1aqXfPB8ARCKhur7eICdT6GHYqiqRjWADkWh1qzue/K6HKtSBW1KEJyiovgengKu5+A7DqYhAYQennSy+1U2T353iq/gKwrC6oGvKCgnHRMU38dVFNxsBs0w4Ffb8Wa34Z+3CA0fXtiMuuQyvMYmXAQ0q4oi77kiwFXBr8QkCNOkqqr45jUNrxoOCGBZsk/dwHUcVF3Dy+fRTBMCQVzXhUqvuqIoqLkshMJ4GoBXUcQoDA4O09LSgq4rFQBrAyr5fBHTNDEMrZK36FEslgmHg5V+dBdxt0lfeuUCiGWV0HUTx7HQdRNF8VAUrbZ+Pl8kFDIrdWtu5dYhny9Xjqdi23leeOFuliy5i7rWBdiKSjkzjGmEcLUApqLi6wFU38NRVHTfp+yWMY2QfFxcGwcfHfBQUTRdYI/r4KkqpueRzY0SirVhuSU0p4RbTGHbeXbt2sSq65+m5Lv4roWhmmBGUF0b18rg5rLYoyGyQ1maLm7C1V3MkElxtMjT5z3NDf92A00XNVHIFwhHwwQDQUqlEoVCgdisGL7uM9I7Qup4irPedxZqUEVTNXzLx7IsNEdj9HejtHS3oHoqBJDPgOujuAq+5uMrPuXxMmaDiWEYpMfSxJvjuLh4ZY9IxMRzi/xmcC9NkTbOazwDDV9+F+g4voOhKPioeEDRzhE0oii+T8nJU/Q8BrPjtMeasawcjZFmAqoKiobvO/i+Sm+FoU+YEVR8HN9HUzRKnsuB6SN8Zc9XeHzlJoKqQtCIoOHJ7wL5PCiKLsx5FZBWAbKChNOp1eUnLPPKwgRrodrnTbb3K33tzITbBZsq2yPb7FsLA/8L3jMkzyuagFItSC21XdFFol8aF/+95+IUcrhE0DQLvTyOHerCtTxJ79d8sPO4RFB1Bc+2UA0Tz/VRtf/4GDxPwXd9VEP+puXaLf8DVEPBc3y5xiLPVS0ZiqLI6To+aAq4skxTXXSlWGHzPXlNng3DeyDaJlJ6IyLXbC1ErdvdKcq10YwL2K72wEdaK++rImoDzZRbpeLt9xz5vfi+9MirhvTSh5tgqE/89tXLPwq2b1J0PNA9JsdL1DcGMA2VfMHCtVQSiSCOb1HI+tx/3w42fPFdRBIaPh6aomHZDuUC3P3pl7jnnuV0dsYplEsYAQiFdTzfR1NUfAT8lksuoYCBp7iovkaxbBMK6TiuR3KiTGNzQNQknouuGji+LRNVrobvKdiOC6qP5usoqg++iuVZ7Di8j9nxWSxoOQddVyhZDjknh+WVGU0nWdB8Fpqm1ubu3crv3/c9fE9B0xX2j73D2bPmofgqqqZQdiwMxcBXvNp8t6FpeKpLyS6jomEmYowoCg8iUvkbgCeRqrcYp8ap8acbp+rgTo3//4//mCgfCglYN01JZSsWReaez4smPZcT2tuu5Hqm06Jbd6vVML6UpOdy8mW/vl6e03XZ58SEABHbFhT+yU9KwB1AUxOK5+FNp7h4iU4s5nPkiGTghcNy2EOHZrBRJiOPb7lF0uBtW0D7b38rpz0wICx5NSn++HEB5lWf/Cc+Ibiork7A+5w5wtyD3F+8WI4biYg44NZbwXOFJevtnQl/qqubU/OG7t79KJFIE72969m//xl27vwivu9iWdmT/KOlUpr9+5/BsrK1IKlyOV3brpoo73lOJTzqkVo6fSTSzPj4m4TDzVx33VMYRri2XbmcOWHdR/AcGzuXwyrksbNZMseOMfHqq7iWhef7ZI4fZ++DD5IdGca1LKxsFjuXk3WPHmXvgw+SSU7iAW65zMSrr2LncuQGB5l49VVy/f2Mv/oq2f5+9n3hIbIDA9ghE9uVvnarvQkrl+Plv/97soODeJ5LcXwcfJ+miy/GDAXli/T4CMqPniRoaCxedx+6CopdRnEdlEySSGMDwVAQwymjORZGagrln75KOBoiUMyi/vAJlPFhVKtE64UXEmtpIRSP0Tr/XNTxYZQffJWwb6OroLo2ejlP2HdQ//nrKBMjBBSPkG+j/PBJfN/DKmXIp0bxE/X4mirp7b6Pbwaw7Dz51AhWMcXQ27+i3NmFFwxJINxbv6RczOC5No5VxCplGPr9S3ieg2XqDL29A6uYxikX8BVwm5pxP/Rp3E3/hBeNYZfz+PF6yjgMvfVLrEKKfHIEHx/fc8lPj+D5EkioTE/ibvk3FKtMwAijOhXGLTmFu/lf8acmAFAqYJjUFP62n6E6fmWdZ0We3n8UJTmNrpoYhWJl23EB45VJAj85hdd/FJLTkvaenALLwtv8LIpVhlTlmKkpFN/DdR2mUin6kylsM4C7+j2Uz1tEtlymiIJ75RqcQJCiZTE1NcXmzZspWxaW7TA1NUV/fz/JVJqfb9lCMpUCRWE6meT48AhT6Qw/f347qVQKAFtRcAyTouOQsyymM1l+vuPXTBVLFC2L44ODJJNJNm/eTDKZpGQGcBQPy0pjWRlyuWEsK0N7e0tFWqriOAX6+/tIpY4SjYYwTQHtyeQRtmxZi22P0t/fSzJ5mHx+gnT6KJs3r2Vq6h0sK4fn2aiqSzp9hJGRPaTTR9i69TYsK4ttF7DtLKbpMDi4k1TqCIXCBL7vVvIuXExTw3VLqME6rnzP94m1XoClaIwpKma8HSXUgB6I4hghfFXjsKqzW9XIqhqWGcFTVBxFxdFM9upBbC2AqpscUVTWKipHdJNxVSelGbiJTt7RdD5uRjkeaiDYMI9QywJWvuf7ZPQgnzKjaKEGjpkR1ioKR3QTPdSIUddCPvh72q9ox4k47Jncw7H0MUJtIT4x+Qma39VMMVzkd+7vcCIObtClGC6iN+lgguM7tPS00PVXXRwpHuG2bbeRsTI4ukNaSaPVabRe1oqt2xwrH2Pt1rW8M/0Oiq7gmz5HskdYu3Uto6FRFFPBVmz0Jp2jmaOMF8cJR3SM/GGCr93BFW0Lmd94OqabQ88dRNt3C2r+CKZbQNm3FjX7DpqTI6Zp6I6sE33tDhqdKRY2nUWTEaAjUk+w2I860YeaO4y27xb0/BHeNfsC6o0geu4o6uQuTMVHUyCsapzfOJfvr3mSRmeC6GufQssflWpFJ4f6ym0obrHCIvsCGn238g/OlW50NYB0tFeGa1VAdkBq3qiAyCrSt/IilddCoCfAnAV2SULV0kflf+/ip+Avk5IoT4U51sNyX9GEOXbLsh+zCadUplzwsb0w2ZEcxYyCFexk6p1pNq/dzNSBKeyyz9Qxh5/fvJnpQyl8DKYPpTj+m36mDib5+drtTB1MkhvNU0rbTB2YYmDXAOV0Gavg49oeUwen+PnazUwdSuKUXDzbo5wu079zgOThJJtv3szUO1OU0xZOycV3Zbtyukwx7eIMvSZqBc8RH/1LnxAAnhuESItkAmgB8fgnD8LwTgHcgbpKWr86w/rbBflJH4EXPyaJ955VUQS4cj9V+d7iOSKTNyIy4RHtkBo6twRuCdUt4mk+jlZi52AvkUYXVffw8PANi0hC4WjmELdsXcuIfZTb77gIP1Tk4PQ7rN28lsPJw0yXJwnGfL7x9EqaO3T0kEu83sAIguM5jOZGcDyHI8kjrN18M6PlAXJOlr7+PnzFw9VKHJw6yGRxnPgslfHCOIeSh1i7ZS2Hkgfp6+/jnal3yLlp8oUyuqLjWyqTEwUKOZeR4RxWHla0dXN+09lMjOcpFhymJ0pEiNISaiJeaOGWtVs4fCiJ78OhQ0l27RqQj3bZo6+vnyOHk5zfchbHj2ZYu3YzRw4nKed9+vr6UVE5fjTLx27ZyuHDSVRPI0CQgSM5xgczJHyfexDQfj+gI8D91Dg1/ruMU8D91PjTjP8sZR6EHbftmX73DRuEcR8eFrR87Jgg2byEVvHxj4snvlAQM7quC9JWFGHcs1lB01W63LYFFd91l9xKrwmWpzEV7mR4RCWbVRgelsOn06Lib2qSwzqO7HLjxpnTU1URBsyaJeuvXy/rV5PiN2yoJsPL/MHixcKs790r8wvJpID7nTvl5b3yijD5MLMP39Ux9PAJ4U8PoOuhEx7fDygnVDg9UKl1irFs2T21dYLBOubPvwHTjLFihawbCCRYseKzte0MI1xLh595fh2KolJXd1pFzl9ERasd/z/uQ/U1FE2rSdOr3ei//eIXcQoFwk1NNF9yCYXxcVTDQNE0nEIBO5+vVartf+op3HKZVx5+uNaXvv+pp2o1bSfWte1/6il8z8MuFMgODLDvCw9RnJ5m1qJFFMbGcC0LFAUjFOSM69YQjkVQ0hXv9ulno6STqId/j1JlqZMT8O8/QJkaQynkIFqHomrwy5/Cy79BKRZm0t63/QsoCornouNK0FyxIF7y1/egJCdA01GO/gEi8ZnKt60/gUhMlr/3b/E1DUXVK15uKsoCSXHH95k8/DJ6IMTEoX2kRw4wefhl6X/XdML1bUwdfRXXKaMZgdo6rmMxcWhvJY19H5oRYPitl7AKaWGvNQ27lMfKp+T3WsySnTiGXcwRrqTBj/x+B8H4LJxyAbeYxc+k0a5YDb6P+8JmyKal6q2vEtAWCKC4bgVwT0pgW9fpKIYBiXq0ldfhZ7Mo4ah0n/veTNXanl4U38fP52r7VCKynlSxvSjAvmuusGXplHSo974InoeLQjqdJhqNsmXLFnzfJ5vNsmPHDrLZLASDeJEohmFQV1fHsmXLKJfLKIqCaZq0tLTUQtp6e3vxPI++vr4/Snt3HAdN08jlcgBEIhF6e3try8vl8knb9PX1oet6jf3OZkfYseNBCgWZ5CiXMySTRxka2kt7+2IMQxjNVOoo2ewQu3ZtorNzOZpm0tKykGx2+KSJOklxlxBLTQtgGBHa2xeTyQzS0bGUbHaY7dvvIJsdQVE0IpEmMpkBTDPM9PTBWqil77vYisYhPcBaVecdVaOoKNQjCoeyopAH9lSqkQYVhSWVZXcDh4AioCkKrcCtikIR2IAwVhuABBBWFMyK/PQZYIOiYisKfYrKQVVaJJ4EDOBxRaltW1IU8kaI5rnLSVtpJouTLGxZSEusBcdzyLpZ7th+B0E9yCVtl7B3aC9HUkcI6SEMzaDklNg9uJuBzACaorFx10YWty9mNCtBcrMis/B8j90Du/8f9v48vsr6zvvHn9fZcpKTFQiQldWNgLsgJKmtiohgO9PWTFs6bWc6LhXbulRUoFU7AopVsVXr0mlnpnXaMdLOaEQt1VIJYREQsAgJhCXJOTnJSXL2fXn//nifhbSduef7u+e+Zx5z83k8zuM612e7rnOd7Xp93q/364UJU14cbmPXRmKpGK6Qiw2dG/KCcYl0gju23IHdbKehsoEpjikkk2GloE+cjyU2hC02hGGYFfBWN6sYWzKgzy0ODHMxmGwYZ6iymyL9GKETGKO7tS0yAPbJSiPvewU+2qAEMsMEJTVQXKt+6oEeDElji5zGkonqefS9olvN1IVJCzVCnKOLWx36Z+M/kbVPK1UgbZjJR9vN2dxpOAPE29DGrIAbKOjPJBWoWkuUap7zRTfZshH1bBqPiPaXtE5jdej/saH/s6PHQ7x+cwf+U34Mi4Gt1EYmKVROr2TaJ6ax66ldSErYsXEHDc0NmG1mDJPBjo07cFQ76FzfmXcGsFfYifvjdG3sYvK8yQRdQd6+8238p/15B4GgM0gmnSE8pPcWk+dNzs/RtbGLmC+GucjM2PExBnYNYC4yq63gpIVKd//tN/U1tazTKHqd6jeQihZAfXhQfdfdu8F3HN5ZqUA97gV7lVLjTWaw2KG2GfY+riDf1wtbb4HQIJRO0esVHiz4upNR4byPbdTrHRkhkQzjSwTy35ESawmxVIzjY8e58+07Oe0/TZ+/Tz/fux5l1nkVBBJ+NnZt5JXDr7C+cz0V9gq6+rs44e/lm+/eTigZ5IS3l10Du4imoghCNBXFFXTlvxMAkx2TiaVi2Mw2yorKiCQjrHxzJZX2yvz3Z33neuZOnstTu57CH/dTUmbCZDK48863mTzZweBgkJMnvZSW2igttWEYBlOnlpLJQDicZPduJ4l4Jq9av2FDJ5mMUFxsYcGCOk6e9LFy5ZtUVztwOoMqoWO3sGrVIux2Cw6HjcmTHbhcoXGCfAMDAU6f9jM4GGL+hc8TcQY4V4QXgdmcpcmfLf/9ylmq/J8oZ6ny/5dKLu+9v1+TwnOCdDNnqspbcbEmlufo9Q89BHPmqNT7M88UlN8iER27aZMi5f5+RcvFxRoa371b5d8nTVLbuCeeIFw+laPHLHlNvNmzNVq+aZNS1XMadx0dBRp7Lq2+pEQPeeCAWsf19+vp5kTq1qwp7M+apQsBvb0K7p94oiBiN3eu9t2wQSPxAwOaB79hA/z8Z2lM8TipaJh0aREWsw3ziUFSpTbSExwKYlJJTJjJmASLuQhJp0mL5vqLZDAJGCYLGUmpnVYyQ8YsmMxWMllBHksogbm7j9S5DaTLFTyIpDGbrGREfc9NJjNmkxVzPE3KSJM2q6K4SAZJpxg7cJjKWedgcTiQTIZ0NIrJamXvunVUX3IJky65hCM//jFzbr4Z+4QJHHr6aS657z6ltGcyhPv7+ejHP2burbdiLiri7c99joWPPkr1pZeSisXwHj1KSXU1kaEhSqZM4fBLLzHnq1+lbNo0Mskk7//t3+bF5S67/34sDgehvj5inmGmTqvD+PVm+Mxf51XEicXA44SySvj1ZhWF83rg+w+qQFvlJAXnN3xOlddfeRH+4jb1Oc8JwZWWqzf6jPN13mhY1dkDY2q9tuUXcN1noKYB3E4F9dffBFPqIBYFwyBdXJJN/c8Q8bmxFpdisZXgPvIeUy/4GCazhVQ8SiaTxHN8DzVzPk4qEcFzfA+TZl6BtUgXogyzFUknSacSWGwlJGPBfB54Mhrk9N5fUVFzHpPPXZh9Py2kUzFGTuyjevZ8TCZr/hiTZl5BxOuktHo6nmO7qDmvFVMgoHnjiz6ODPRBZRWmxplIMoG4nZpXvv0dtVULhzA1zkB8YwrWy8qRgA9T/TTEZNKFEotFI+vb31H7tXCQTNfvMC39MwXx0Qgkk2Q638HU/Am91pIh8+vXMbVcrSJwZeUYVRNJhUMk7SUMOJ04HA6qqqrYsmULhw8fpqmpieXLl2MYBolEIg+uDcPI55AvWrQIh8PB22+/TXNzM7n/w1AoRHl5OZ2dnSxcuBC73Y7NZiMeV3p5UVFRfs6ioiIsFguRSIRUKpXPLYecvECGjo5bOHz4FZqa2rjhhmeJREYYG+vF4ahm584naG1dTWXlTE6ffo/Jk+dSVFSO13uSrq7HaGlZjcNRzeDgB5SX19PZuZ7W1jVUVs4gHg/wm9/cx6JF9xIIDFBeXk9paQ1vvfX1/PGWLXue/v6urOvESF6zQtt+SMRs43ZbaZ4a+n1gCNgIPIbeuOYyfvtEWGcYrAJ2ZB8PAbXALSgo7wEiKPBeDdRk5ysGKoHdQCPgApqyc5sAL6rgPA24NTt2UvavoiIeptd7nPWd63mg5QGmV0zHHXZTZitjKDyE2TCzvnN93n6tdVorJ70nx9UtalhEJBnBbrEzFh2j2FLMUHiIjV0beaD5AWrLazEZJnYP7KaxopE+fx+93l6aG5rZ2LWRta1r83VXTbuKx7se57FrH2NiUTm2yAlMpiI4/Ahc/JhGsEd3g70Gims0Mh3qVaDetFrV2ZMBVXA/shEufzbbvxqOPKF9zCVZD/X1MOc+KDsXzRnJKA09J+p2xbPw/kq44odqsXZ4g463lCh4LKkH24RCTrehaS4Mva/54OUzyPOtDXOBJp8IFGjfoH+CRi6dJfvGpKMKLsvqs2NNCvRDAxoRNmeF3UxmBaO2MgWyuRQp9FjxSJrT753GMdmBvdKOY7KDZCSJ+4Cb2itqVWMglMBSbCEVTREcDBIaDFG/oB7DbBAZjVBcWaw6BQ3lWIut2EptBF1BymrLePvOt/OaBzlNhBtfupHRY6N0bexi0apFVM2qIhVNEffHsZXZVMTQbqVvRx+Oagc7n9hJ65pWKmdWYnb/DkvwmOamG6bsYkg2zcjboyJ1ky9REP7uHXDZPQX/9T/v0Hz5PRvg45uy90J+sGbJ2LZyVa3P5ckvflHrt95SqLvuR8qcyFonAoQFjo4dzwsgnjvxXJxBJ491PsY3FnyDmVUzMRkmhkPDRFIRSiwlTCyZyGn/adZ3rs9/vqsd1Tyx8wleOfwKR1Ye4cFtD/LE4icYDg8zGBpkft18ii3FOINOyovKcVgdbO/bTm1ZLY/ueJTVrasZ8A+w/OfL6fh8Bw0VDazbvo7VLauZXjk9/xtL0goZE//4j4e46aY5hMMJTTnJCG53iI0bu1i9uoVZs6r46ldf5557FuLxaN78o4/u4L77mqmpKWX//kHq68txuYIcOzbGddfNoq6ujFOnfPT1+amrK2fDhk7WrGmlv99Pb6960W/c2MV99zWzc2c/06erld2OHX00NlZwzjkTsNutf3jHeracLf/Xylmq/Nny36ckEkpvTyT0sW6dCtENDKjq++zZBVN1i6Xgm7ZmjXLN29o00t7XV6DWDwwUwuX9/YqQ9+xR7vru3QUQbzJp5N1mIy2mfBR9owavePFFjZIXFRU816dP17rRUT2l4WGNjpeXqw1cf78+Fi1S6/iHHlLCwIkThch7XZ1q43k8Bd/3+fP15T3+uG7Xr9fL4HTqZQCgbxDLR6cpOunBbLJA/RQsgRhFGRs2UxFFFgdWrBSlLJiPO7EYZoqMIopCKeyGHZu1BGsoQVHCjK13COu+HopOjmBNGtovY8NsL4GqCiz2EopMdoqwYTc7sGKh6IQH+55j2HqHMCczUGTDUlRM0QkP5nAKIwF7v/0IwROniI6MsOfBB4kMDqpau91O0y23MHXRonxE/aOXXiIZCnHOF75AZHAQz759SDpN2YwZeau1VCzGdb/4BSVTprDnoYeIj41RffHFlNTVUX3ZZZTU1jLvjjuwT5qE58ABTFbrOF92i8NBOh7n8EsvUTJxIkY2wo7fq0rroQBUToCZ5ytoz0XCZ5yvYnAzzi9E1rf8QoXJvvgNRWCVE+Dzt6vX+cBJBf7/9CyMuFV8aHKtWq7lIuy/3qxCexVVar9WMREw1HP9F88DkIwFcB1+F0tRMcloiHQqTnHlVJKxMM4Pf0Mmk8JaXEHdhddhMltIRkMEhnoZOfE+htlK1K8R3FQ8krVTC2ItqaB27jVY7WVYi0vVUm3WFYQ8p/Ec342lqISRE/vyUXlLUUkhqn/ifUqrp2G22HTxwGQpRL93bce48FKMikqlsUdCmBpnFqLnO3+nfuomkwLx6ilIwKde6lt+CX4vGWc/Eo9hlFdiXvYZ1QHIRfSTCdJv/SskExhVEzFddR3Sd5LM1g6Ix7MR+Hcx1U+D0nIkncJss2G2WCgvL2fnzp2k02laW1vz9mpGFiAEg0HGxsbw+/309fVhMpm48sor6erqwmw2s2zZMhwOB3v27KGsrIyGhgbKyspYunQp4XCY0tLSfCQ/F3UPh8Ns27aNcDiMyWQimUzi9/u54YYbCIfDDA4OImLCMEzj2Ck5Zkxd3Xx27nwim9aynkwmTXl5Pb/5zSoCgX5CocF82kos5qe9/bMEgy6WL3+RkpJq3njja4RCburq5tPZuZ6Skkl0dq7HYikax8wxm23U1c3HbLbicEzhuuueZN68FbS2riUSGcNmLeEBFLTfh0aX1gHzATdwG3AK9TNeZxi8lq1fATyJgnELmgvakd0fAO7Obm1AHxAEVgL12Uc1CujvzM4XRsE+wAvATDQCTypBhjRTHFP44Q0/ZIpjCmaTmZPekwyHhjlnwjnYLXZWLVpFRVEFLY0tGBjUlNaw8dqNjEZGWVC3AIvJwkhkhG++9U1KbaWUFpXiDrl5rfs1nEEng6FBVm5ZSUNFAzOrZtJY0cge5x5qy2p5cfmLWlfeyHWzrmN953qN3IfcfO3NbxAvmYaU1CEXPw7xEVVLt1dDbFABtGEoQHe+porrklSht7LZcNkmBfrVzeqV7nxNwXpRFZTOUsp52XlKvQ70gKdTxdyu6oDLnwGjSPczcYg44fy79Rhxrx7TnHWpyCRVWC2XP11cnVVNN50RcacgJGp1ZPOss+JruUWDeIC8OJzJprTvuE8F5GC8lRuak16wYpusc6QTOm+Wrm8yCzWX1jDhnAmUTCqhv6uf8HCYyfMm8+bKN/Gd8GErtWGymrCV2iirKWPKRVN46863SMVSJCNJBnYPUL+gnsppldgr7ZjMJibMnoC1xErr6laa2ppoXdOKpdjC8heWIxmha2NXPsJuMpuIeCJse3Ab0dEoFruF8EiY+gX17HxiJ4dfOcz2ddvJJDOkp3wMLlih7+t794LvmNLnQV97zUK9fpYSWPBtiHoK/us1CxS0d7+iCxphl0bSI24F7enoeL93wwqYxvu3g76v/pMK6P2nSAPukJt7Ft6DO+QmIxnKi8r5/tLvYzaZuaXjFnpGeyixlTC9cjrVpdX0+fsYCAzw7NJnmVU1i9bGVmZVzWLTkk2smLeCiqIKHmh5ALPJzGBokGpHNXe9fRfBRJDyLOvCbJhpbmzGFXTxWvdrrN++ngV1C1gxbwWX1lzKjMoZPHfDczSWN+IOuYmmovr97fVjMplYsmQWDoeNiRNLMJsN7HYLbneI117rZv36TpLJDKtXtzA6GuHSS2uYMaOK73//enbu7Ofee7cyeXIp69d30tzcQHNzAw8+uI2TJxW0V1c7+N73umhubsBmM9Pa2sgHHwwyZYqD5567gZqaUmbPnsCll9bgdoe49NIaSkosJJOZf/se9mw5W/6Ly1ngfrb83yu5CPtXv6pbs1kB+Sc/qRFxm01p7o88ooj6vvs0+r5pk6Li8nJFtaWlBWr9hg2KgtvaVA5+wQINa1dXF0D8HXdoiDyTgSeeIGFzEI4YPPWUerJv2qT3D1ar5rP39OiaQEOD5qCnUgruP/YxPQ0RzUXPZPQQn/2s7t97L2zdqpH5z35WX5qIptcXF+upVVXp1mIppPo7HIXL0NCgiwTJlIHMaoArmmBWA/hDan82q0Ft02IJON6nJxFPQJlDQaJhqKUa6MFtVk0XaKyB6ipomKoK7IiqtdttMK02a8OGqr4fO61K7TPrdExjjb5XooJlNNZAkY1ULMacm28eB84Pv/giEbebYH8/jvp6iidPpumWW2i8/nqabrkFa2kppXV1RIaHqTrvPOJeL8lwmNHf/57f3X77OGp8br7oyAjpaBQyGSSVoqiyEu+RIxRXa+Qm58tur64mFQ4zeugQF3zlK1jKypAbPgdzLi34nW/5RUFBMOeXnvM+/+Rf6ocgV3/D5/Sm1mwCs0UB98+fg9Eh9Ug/E/iXVmYjVaKR9dy8J47ABzuhuFTf7HS6cC7J+BmAeR8lVTWYLUWUVk9n5MT7WWC9WyPGER/OD3+DtbiUxktvpHr2AtKJKNbiUiSdxNOr8ySjQZIRP67fv0Mi4lfQP+9arMUVxPzD6sFuGFTPXpD3SP/DfWtRKVG/B1NWzdfUcrX6ly9erkJzAT+mxTdilJQCYF72Gcz3PIRpyaeQWATxjmJavByxWDDVNaqXevfv1T+9vlEp92/+C+IdQwxD+wwPQiiEUddApvPdrG1dAuk/pVF3u13PofVafS9sRRgWGwQDSDqdp6i73W5KSkpYsmQJFRUV2a+B0NXVhcPhIBAI4HA4ePPNNzGZTCxevBhzNk9leHiYJUuWYLPZiEQimEwmLBYLjY2NpNPpPKW+q6sLERlHixeR/NzJZDL//K23tgImqqpmsWzZ81itDkwmC0VF5X+U+pLJJPM6FNu3r6OubgFNTW20tKzGbq/kvPM+SXl5PSIZ3n77Tj788GW6ujYyc+ZiWlvXEImM0NKyOkuNn8rSpc9QUlJNX18nJpMFn+8Ub7xxG9HoKMuW/RCLpRi7vQITBlOATcAsFISvAa6DPLV9HfrxfgB4FQXetwOjQClKmV8JNKAR+noU1DeiEfX5wKMU6PNuNLK+8Yw6BxplD2fbQXNLrekkJ70n+ebb36Qv0Mf+wf2c9J2kpbGFGRNmEEqEOOE9wbSKaZgNM5FkhIxkSGaSrHl3DbVltRRbi4kmoxRZirjryrsYDA5ya8et1JXX8epNr6qH+vaCh3o0GaXP38cPlv4AgJVbVtLr7aWxspG6sjrWtq7lc02fw2FzcNeCO7CFT2G8/zUMi71Abz/yBExcoJZohlmj4C2vagR8z60Q7MkKwKVUXX3PrdrW8qpG2NNJBet7V2p03lICMTfs/KI+L2lQD/TwSVWJt5Rq3dEndZ64RwG9KStIl04omMwkNQpeMTMbEc9e7CwLPr+Ti8xDVrguC+7NVqXZpxPabjKDfZKCzkRQRdrynuoZzcH2n8zatPEH8+lxMhkVhfOe8NLf1U/t5bVYS6wkQgkFzOu3kwglIAPeXi9v3/k24aEwdfPriAfiWIut1M2vY2D3AP4+P9YSKyariUQowVt3vkXljEqWbFpC8YRi+rb3EXQH+f0//57Wb7dyR88dLH9hORgQHAyy8J6F+Pv9pKIpYt4YUW+U1jWtfL7j89zw7A1kUhn9H9x21xlU+WHySvU1izR3PzyorIXyaUqjL58Gi/5WAfeCNQrCTVZ4f6OC+Pc3ZgX/DLWPW/yC+r1vu1OV50tr4OofaJRdFfYKCwB71mM2LDSUNzAaGaW1sRWAcls5aUmzbvu6fAqIL+ZjIDBAIpVgXec6lv98Obudu/HH/RwbO8btW27HE/Hw9PVPE0lEmFk1kzJbGc2NzXjCHhbWL2QwOMj+wf3YLXYCiQB3bLmD+vJ6Xr3pVda0rqHIUsTT1z/NUHiIv3n9b0ikE5wOnOY7276DK+gCwO0OIyLU15eTSKQwmQwGB0PcfvsW6urKefXVm1izphXDgJqaUlpaGvF4Itx6awdud4jp0ytZtaqZ6dMrWLu2lWQyw1NP7cqD9JaWRkZHIzz++OI8oD91ys+mTddz8OAQg4NBSkqsLFrUgMsV5MEHt+FyBZk0yYHVehYanS3/jYtkVZvPPgqPuro6OVv+D5RgUKStTTXf2tpEAgGReFzE7xcJh0V8PpGODpEDB7R93z6RsTHt5/Vqv2BQ93N9Dh3S/SNHRFwufX7woM7j8eh2927dHjkiAhIciclbb4l88IFOcfCgDgsEREZGtKvdrm3Dw7rvdBb6DwwUDn/ggLa7XPrYu7cwZygk8utfizz/fKFfbo4DB/QljY3pfAMDemyvV2RoSGRkOC0pf1jk8HGRYFhkwC0y4hWJJ/SafdQrsu19bU8mRWIxkXBEJBbX/XBUn8fiIomk1uUeiYTIkRMigZC2+YPaP57Q+c6cN/eIJ/T4wbBIOCqJYFB2rFol3f/0TxLz+2Xs6FHZfvfdMnr4sBz96U9l5+rVkgiFJO73SyIclsjwsMQDAYmOjkoiHJZ4MCgjv/+9bL/7bhn5/e8lHgjI9rvvFm93t8RDIRk7ckS23323jHV3SyIclrHubhnYtk2io6MSHR2VuN8vA9u2yVhPj8T8fvGdOCGx7LFyfdOhoMjBXSLhkMjp4yLPrxM51SMSDorc/XmRgFefh0MiP35C5LYbRQ7tFomGRYJ+kUhYJBQQObRH+z2/TuSrS3QbDon09erz/hPa76XH9HksKhIJ6Tz9J3R8X6+Iq0+fnzom8vw6Sfu9EvEPy+l9r0vEPyypREyS8YgkYuFCvc8tqURMTu97XQ51fE9O73tdUomYBIZOSMQ/LMlETBLRoIS9bjm973VJxiPSt/8N8ZzYJ4loUBLRoPTtf0Mi/iFJJbWv331SEtGgRIMjEo8EJJmMSzIRk1T20bf/DTnU8T0JDJ2QdCwmmVhMMpGwZGJRSYeCkomEJe33SnLzy5IeHJBU92FJO/skHfBJavd2Sbb/o2QiIcnEYpKORSXtdmqfwQFJtv+jpJ392j8YkLTbqXUDp7XPsFvSbpekeo5Iatd7uh8M6DmEgpLqOSLpSFgyoaBkwiFJbn5ZYrGYhEIh6e7ulnA4LN3d3TIwMCDt7e3idrslFAqJ2+2W7u5uCYVC0t7eLg899JC0t7dLNBqVf/3XfxW32y2xWEwGBwfz42KxmBw7dkwikYhEIpFxbaOjo3/UNxAIyObNmyUQCEg4HJb29nbZvXunBAIu8XiOSCQyJn6/U5zOvdLe3iZu9yGJxYISCg1Ld3eH+P0D4nYflPb2NnG59kkk4pVo1Cfh8KiMjByXaNQnsZhfRkaOyeDgB/k5olGfjIwck0hkTMLhEQkEnOLxHBG/f0BisYDEYgGJRn3S3t4mDz2EtLe3yfDwR/nngUxGXCLiEhGfiAyLSL+IeEXkoIi0ici+bLtXREaydWS3vj/Y94hIR3aeoIh8JTv+zLkGRSRwRt2B7H5ARPZn6w5lx4/F/NLW3iY8hLS1t8mu/l3S0d0hBwYPSFt7m3ww+IH0+/qlrb1NDgwekAH/gLS1t8le5155etfT0tbeJoFYIN//wOAB6ejuyM/ni/okEAvIQfdBaWtvk4Pug/n2I54j447tjXrlrWNviT/mz/ePRIZFBjpERnaL+I+JjB0U2d4m4j0kEh0WGd0vEnaJJIIicZ+2vYxu4z4R35E/qPOKJALaf+dXREb26jwDHSJjB3QbH/uDMWN67FC/SGxEJNAj4tld6JuMiaSSIvGgyOhR3Y+HRCKjWp8+45FKiiTjhfpUQvvFg/o8FRcJOkVGu3U/Gc/WJ3TeyGh2P6l9k3Edm4jofPHgGX10TMwfleBQUCLeiETGIjJyfERi/phEfVEZOTYiYU9YIt6IRP1RaW9rl4d4SNrb2mX46LDEgjGJeqMy0jMiA+8PyLG3juXrImMRCbgCEgvEZPCDQWlva5fBA4MS8UakZ0uP1h84o34sIt0d3RLyhCQWionnqEd2P7NbRo6NiPuAW9rb2sV9wC2JQEBkcK+Ie59Ib4dI2CMS9Yq8sUIk6MpenyMigQGRWEDbXm8T2fe0iHu/yNgxkZhPJB7Q/m+sEBk+qG2vt2n/iEeffw89xvAB3Q+69BEdExn6IH9MX9Qnx0aOSSAWkLHImGzp2SIHBw9Kz0iPfDD4Qf6z7Qw45eldT+t3yK3fCU/Y80ef9aOeozLgHxBf1DfuuzMUHJKO7g7ZPbD7j75nnrBHgrGguAIuOeo5mp/vD+cei4yJPxgSny+af4yNRaStrV3gIWlraxefLypeb0RcroC0tbWLxxMa1+7xhGVgwC+BQEwCgZiMjUVkYMAve/c6pa2tXQ4cGJT+fp+MjITHjRsbi4jPFxWXKyBbtvT80XFHRsISCMT+E298z5az5f97AQbk38Co/+Ug+b/j4yxw/z9U4nFFtDnAHY/rIxhU0B4IiHz4oaLXjz5SFDwwUEDDH3xQAOc5MJ8b53KJPPOMyFe+ovtDQ9rm9YocPVoYd+SIxINxGRvL/NEaQg6Mf/CBguxDh0R6ekQqK3V4rv+RI+PXH8bGtN3nG1/vcumcIyO6v3v3+HaPpwDih4Z0kaCtTWTPHpGB0ykFz+/tVcCcSCoI/6hXwXMsXgD1yaSC8MPHdXsm4D4TxOf6BMMi/W59nkjqNgfMz5wnFtexwewCgj+UXzxIDY2I9+hRBc/ZbXRsTBLhsPhOnVIAnQXzY0ePSjwYzAPt6OioxINB2X733fLynDmy/e67JR4ISNzvl2QkIjtXr5ajP/2p+Hp7Jeb1iu/ECRnYtk1GDh3Kz+c/dUpenjNHdqxaJZGRERk5dEj8p04VAP7YmMTHxiQzNiLiG1UQHvQrAPeOKKDPAe9Tx0TGPIW6M9v6e0WiEQXjubq+XgXloYBIwCdycLfO8Zt/0XbXaV0oCId0XDgk4h4QGRnS4+QWAg7tkZR/TFKJqCSzoP30vtflwy2bxO/uVRAfDUosdCbAH5J4JCCeE/uyID4qfvcJiUcCOk8sPA7Ih73ufN9kPJqtc/1pcO9zSzIRk4h/SOeORSQd8CvQHhlWIJ4D2s4+Se16T5/3n9LtsDsLvJ2SicckHQlLelBBeyYakWT7P0riobsVoLudkvYM5euS7f8omVBIMpGIjs2BfFe/pAN+ycRiulDg7M8vJKRjUUkG/BIIBMTj8UggEJBYLCbRaFR6enrkkUceyYPzXH08Hhe32y3t7e3icrkkEAiI0+nM98uB+s2bN49bEBgcHBw396OPPird3d0SjUbF7/fL5s2bZXBwUCKRiITD4fwiQDA4lgfqg4MHJBgcGgego1Fvfn/z5hUSiwVkePgj2bXraTl27K086A8EXBKLBaW7uyMP9Pv7d0l3d4cMDx8Rl2ufRKM+iUZ94nTulc2bV+SB++DgB9Ld3SGDgweyYP+gBAKu7PMD4stkxgHvMRHpEQXeXhE5IiJ7RaQ7u98vIh9IAVyHRYF3mygQ7zhjLn+2bYso8B8RBefh7Fx+UaB/LHvcgIi8JSLPZPu7RKQ3Gc+D5Bzo9oQ844DAR8Mf/ZvPD7kPiS/qG9d/ODSs87kPyJaeLeIKuCQQC4gv6ssDjxWbV8iAfyAPWg65D0kwFpQDgwfEFXDl5+sb7ZHM2AEF0GGXPnwfZcF6QIH3zq8ogI4HFHxvb9NtMiQS9xfA/thBkZhXJDqkwD3sOqP/ByL+Hp0nN+/2NpHRfSIRt0jUowA/7Dpj8eBDkcAxkWRUgfToUZGBTpFEuACek7ECoI8HdT8HwOOhbH1Ax+T3c/3iZywAJM4A/mfOGTpjESCenTdQaEvGJRGJS8AVEP+AX2gj5IYAAQAASURBVAKugES8EXHuc+YBdXdHt7gPuiUWKgBt90G3xIJnAO8PBmWkZ2Q8GD84KLFQTCJeBeSP2B+R9rZ2iYxFJBZQcH9mfcwfk4HdA/mxIz0jEhoOSSyoIH7X07tk84rNEvOHRWJ+BdCBfgXPQwcUmIeHzgD0w3od4kHtGxkRGesRcX8g0rtFwXcsoNfkxBaRkSM6NujSazN8UMF6DsRvsuv8o0cV5Ee9efAfjgXEFXDJXudeWbF5hTj9TnEFXDIaHpWh4JD4oj4JxUP5z/Z+134Z8A+IJ+yRUCwkzoBT9jr35gF+OB6Wg+6DfwS6fVGfeMJ//P3b59ong4FBGYuMiSvgEnfQnf/uuAKucd+j46PHxRv2yaFDg9LR0S3DwyEJBmNy8KBb2tra5eBBtzz//PvS1tYuH300LPCQbNnSk2/ft88lTz+9S1as2CyBQEyOHPGIyxUQny86DoR/9NGwuFwBOXBgMA/mvd5Ivt/u3QOyZUuP7N/vkra2djl0yC1eb0Ti8dR/4o3v2XK2/H8v/x5w/x8hTmcYxt8DX/5fdCsWkdh/ZL6z4nT/B0siAfG4JpLbbJqjfvy4Jntv3Kh090xGqe3BYMFD7de/1rz1NWs0afzkyYKYXWmp5s2vX6/885kzdc4z1d5WrYJzzoGbb4ZNmwiVTuV4r8GGDcrInzFDVeTPtJnPCpPj86kg3ciIMvSffFKfr1+vYydPhoMHobVV0/PXrdPTaGzUl1pcrOJ0TmdBg+9MRzyzWef3eFRrb/p0KC1JY5c4Rjyh1Pi+QaW5+0MQCMG505TimEyBzQI9p8HjVWr7udMgGod+t9La7TZIJOH0oFLqJ1dlcxczSgOPxJS7n8noXMk0eAMQDCs1/3hfYe7ZjXnf23Q6TTqRYM9DD9H31ltMX76cy7/9bRDBMJvx7NtHUWUlsbExShsbSYXDOGprwTBIBIOko1EOv/giTTffTNHEiZjtds0VDodJhkJYy8rwHT/OxKYmDMPAs38/nXfdRd0nPsH8Bx8k5vNhnzAh79V+6f33s/eRR/JCdVd+92HMY8Oq4p4TjFv2OaiuVSr2Pz6tlPUrPgZf/Lpek58+raJyORr8FR/T/PR0WnPVPW7Nk6+uUdG0f3p2fL9EHE4chYmTYXaT7vf3quDdll8o/b66BvxjmtNdNRFsNgQjS4n354XlbCUVZFIJDJMFyaRIp+KYzDZigRFsjvI/EpqrnXstyVgAq70M1+/fwT/YPV6Uzmwhk05iMlkxF5WQjPjx9BYE6SJeF3Xzrs0rQJsyggQD+iVIJsBiJbPtbeTwAaWtX3UdZNKI34dRVg6l5RhWK5n+U5gaZ6qgXN9JMu3/gKntrzDKy8lsfwfzDZ8mveWXGA3TMRqmk+nahqn1WozKCUCWuZuIK6vWVqS0UJMJiUXVU93v1Vz31mtIVk4kHo+TSCSw2WzYbDY6OjpoaWkhEAhQUVFBeXk5qVSKSCRCSUkJNpuNQCDAiRMncDqdXH/99QSDQSoqKvD7/Wzfvp3FixcTi8XYvn07CxcuJBwOU1NTw5EjR2hsbKSrq4vFixdjtVrp6+ujvb2d8847j6VLl+J0OikvL6eqqgqR2DhhumXLnsfrPUFX10ZaWh7Aai3FZnMQj/spKqogkQiTTIbp7FzP8uUvMTZ2jK6ujSxatIqJE88hkQhjtRaTTEbZuvVemptX4XBMQSSDzVZKTgivoaGZhoZmbDYH27Y9SHf3a9x006vU1V2By7WPyZPnkUyGKC9vIGEtoTur+P4AcA6QAoaBd4AbUeq6G6XAP559lKC0+igqXJfTHO8DHkFp7zOzP/uZ7HyVwB6UUl8NHAJasnO8D1yIUu/DKF3/EcCeSmBORhAEm9lGKpNCRDjlP8WGzg2saV1DdUk1d759J2tb1zKpZBJ3vn0na1rXML1yOuFEmAPuA9SW17J++3pWt6ymtqwWq9nKjr4dnPKd4sr6K9nYtZHVLasZCAxQV15HQ3kDZsOMxWRBEFKZFBaThc6+ThY1LOKk7yQbOjfwD8uexb5vpeamf/I0kFYquvdDmHBx1sPcqhTz4AkVkJt4BST9UDQZ9t8Jlz6dzYcvVTX6VBQ+fBAueXy8EN3lz0C4T33Pqy6GpA+sFXqFvQeVmm/KpkoZWQu20AntY5+qNPmQE8qnZ9vRumC/5mYXT4KyBq2XtCqX5+orZ6nAXG6/YpbmY6eT+tpCroIgHRmlx+f7zsj2y+pz+0+c0TaTeDhNMpYiMBAgNBiibkEdCKSiKcx2M+lEmnfuf4cbnr0Bw2SQCCXofq2bpr9o4o1b38gLz+Uo7x23dHD4lcN8vuPzVDRUsH3ddlpWtxAYCFBeV47VYSUVTY2rr6ivoGJ6RX7sF7Z8gakXTSUeiFNUUYT7gBvHZAdltWXYK4qwWuLqpV4yRbeuHbDwIbWGc3WphsC+JzRPvWKWvubd6+DqZ1Vl3lEHYSdMna/vWSqqNPiPfgaDO2HBWiiqUHs5k1mvZ7BfUxB2r4crVoGjVq9p1EMIg4GM8OC2B2luaKa5oRl3yE19eT3rO9ezpnUNUx1TsZlVsV1EGAoPUV5Ujs1sw2a2EUlGiKVifOT5iIUNC9nRt4OLplzESHQk/12bWTmTZCZJn78vL2o3rXIaBgbRVJSh4BB9gT4+2/5ZXr3pVRY1LmJX/y5OeE9w9YyrqS2rVZFIKaVr+yDV1Q6eeGIna9a00NhYweBgiMpKOwcOuKmvL2fSpBLuvPNtNm1aMu5W8t57t/L44yoCOjzs5777buP48W5MJhuBgJkf/ehF5s+fy+9//wF3330XmUyKeDzGTTet4L77VpFKqZ/7j370Ai+++EMsFisi8Lvf7WDy5Ir/5a3s2XK2/J8s/5443f804L4DTbf7U+VmEUn+R+Y7C9z/L5VEQpPKV65UpbfPfAbcbgXwq1erUN3x44p0V61SmXbDUNB/Jsp+5hkFnlm7KwC+9jVNLn/iiUK/555T5Hz6NIkkxMqqcToNtm5VTJ9ThV+9uqAcPzCgOenFxXqqoG0Wi+6n0/Dhh6ouH4tpP79f1yTuvRfuukuV5S0WbY/HdY2hvl7Hu1yFlztjhvq+T5oEFiNNWTqoQPtM4DytVgF2cZGCeEdxNjc9reA+B9SP9cHwWAHIpzOomFD2Zk4yipDMJp2nzJEH5GREQXuRTftnMuPnzranim1kUilS8TgHvvc9Lr77bmJeLx+99BKX3n8/8bExjvz4x1x8zz2YLBYF6/E4h194gQv+6q+wlpVRVFHBqY4ORj/8kMvXrgUg7HIpoL/1Vkrr60nH44weOkTJ1Kn53HiL3Y4AIwcPMrGpiXBWFC8diXD4pZdouuUWKhvrMf7xTwDxL31Tb1o9g6omP/N8sBYpmE7EFRyWlMLJo1A5EY4dhuOH4S+/AT/9voLvCVll5NHhgtL8xCl6rcIBiMe0fslNUF4J7S8Vjv+52+D+r5D57vPEi6xZoD6fZDSMvXwSiCCSJpNO/ZE6fFVdE1PnXo0hosr0yTjx4AglVTWAQXjMib28mnQyVlgAKFYRIdHlATJZBfrhnq4/AvfWIgc+dw+lExuwFZVBLIZhK0KC2Q91JJwFzQq0JZVUd4B0VmgqEVewHQmpanxOBb5G/38MQCwW8I6R2fWe5s1brQrMA35wlGqfSASjtAzxZdXnW67BqJoI6RTpLb/UxYOL5qtv+xnA3Wq1snHjRpqamli2bBmGYZDJqNDQli1bWLx4MTabDb/fT2dnJ62trVRUVCAiZDIZLBaLrmgbBsFgkN7eXpxOJ0uWLMFsNo+bw+v10tnZmV8kcDgc2O127HY7sVgsq2Cfwes9llWCX0tpaQ0Wix2RNOGwB4vFTjQ6Ok4p3jBMZDLqBPHGG1/jww9fpqmpjRtv/FEW9D/O4sUbsWZtvdLpBIGAk1BokMbGFrzeXiyWYsbGjjN58lxMJgu/+c19NDevwu/vp6KinkDAxdSpF2Ox2MkUlRMwTPgMg3rgBAVF+FJgMuDMPr8feBkVsvsREAL8qOXbAVRdvgYVs5uAgvM4CvKD2b6lwGFgAZr/nkJz5SvQhYCvA3ed8TfREA/TP3p0nFp2KBGi1FbKQGCAd0++y8yqmSxqWKR2aUA8Fccb81LtqGZH3w6++Ksv0n1HNwYGe5x7qC+vzyvHF1mKeHDbg7xy+BXamtq4+8q7eXLXkzx01UMkM0lmVM6g19s7bpHg3q338vjixwGoLirDHO5VC7eSBji8Di5YpZZt5iJ4/2uaa+6Y9scgPJOCgV/C1OugeKqC7MPrdfzIDhWnK6nP1n1LAXtpFjCDPkdU1C4VhpJaVao/vF5z6kumwb474NKnQMwFC7a8vJEUbOJCTgXeJtW2IBnW8w8NZEXsijR3O79v05x2W9kfAXEwNLc95FQFdZMVAqfOaBs/TzyayVrMJ8ikMwx/OExZbRmd6ztZtGoRZTVlWRe6Ik6/d5qy+jLKppZhKbbg7fXSub6T1tWq+J6KpQi6gnSu7+SGZ29gy8ot44B9Oql2dG+ufLNQ/+JyTBYTgpCOphnYPcC01mnjVOcdkx1s/dZWlmxagrXEit0W1WvuOaivK5PSPPbIMNgr1fotpwJ/7fPquZ5Tla9ZAIO7C+B+/modG+hX+zeTTa//6O9h0oWaLx8ehLpm2HrreMX5TBpSURLAKCYGg4PUl9fr57+kGk/Ew9u9b7PHuYc1rWuIJCPMnjCbU75TrO/UhSxX0MXFUy9mODzM+s71fGvht5hWOY3B4CCPdz3OxsUbKbGW0DvWS21ZLQfcB5g3eR7BRJBKeyUAd759Z97BYUHdAla+uZLVraspsZQQTUXp9/czv24+vpiPdCZNdfFUJGbl3nu3cscd85k+vRKz2cSMGU9z3XWzeOGF5YyMhLHbLQSDCaZOLeW2297gtde6efXVm2hubsRsNujpGWXDhm20tqb50pc+Szic4IUXfshvf7uFN974NVdeeQX9/Zfyz/+8hjlzSpk//2JefLGdX/zCw5IlSb7//aeYMWMlDz64BIslyqxZdRQXnzWAO1v+a8v/S6ryPxJNqftTj/8QaD9b/hPLmQry/1b77t0qtX7ddX9smB6LFYzNN25UxFxSogJiObX5HMru64Nbb1VluVBII/geT6Hffffp8V59FaxWbGvvw2wSqqsVWDc2aqD+hRcUrPv9Ou38+XqKJ06o/Vt7e0GYbnhYTz23nnDnnXoaFRX6/OWX4amntC3nSjc0pGJ0waAe48yXm8moIn0yCdG4QcZmUwCdE5ZrrIEiK9iL9PqVOXTQCaeCptmNKlQXS6iw3OQJGjGHrMCaWUF3zrs8B9RLS+DEQEF8Lgfa7TYVsjOZdG57VhQvGCbtKM76pz9MfGyMK77zHcxFRXz00ks4f/tbDJMJk9XKeV/6EtGREfauW0c6FiMyNET1JZdgKSnBPnEimEyMfvghF/z1XxMfGyOTTHL4xRfpe+stIoODhPr72fvII9gnTCDidlN9ySXERkbY8/DDRAYHqTrnHPauW4fJYtE+Q0Oc/+UvE3G7EcOE/MVtGuH+y2/CN7+rADseg5/9QMF3VTW8/Cx4XFBeBVWTNLp88qgqzFfXwrwrFLSbLQr6J06GkSH4p+egrELbJk1RdfmffR+KHQVl+bfbNVpyphCeCFzWgpRXjfNct9jsuI/8DsNkwmIrOaNtNyVVtVTWXsDUOR8nGfHh/HAriYgPk9lK8YQ6EpEA4TEn1uJSYoERLLZiJp+7EIutGBEh4nWSjAZwfriVZCxMJpVg0swrCoJ09lJMZivJeIiyidOwFJUSj/oRm03B87a3dSXLasN05ccUZGfSGGYzkk4jHx0is7UDo7hEo+45pfnOdzE1zsCw2si8/a9IwEfmzX8BA8xL/wwMQ23l4nFkbAT8XtJvbIZYBJAz5nkHEnEVs2u9RiP+190IqHVbTu3dZDLlFeVTqVQehEejUVpaWkilUqRSKaqqqli+fDkWi4VkUv8aLBYLqVSKdDpNKpXCMAwuvPBCli1bhsWiYOaGG27A7XaTSqXGidM1NjZit9tJJpO8+eabJJNJ0uk0Iims1hKWL38Bi8XOkSObGR3tZsuWldhsDoqKyggEBujufo3t29eRTEbweo+zZctKEokQS5f+gM9/voPW1m8jkqGzcz11dfMJBgfp6LgFn+8kTuceKioaKCurQySDwzGFsrJa6uoWMDz8eyIRFaOrqppFff2VFBdPoqbmMiIRD2+++XVShon9hkEABdHrKQjGTUKB/IPACBppb0NBvaCWbg8CgygQLwLsqLWbI1ufyv7c53SaDaAZjbIHUGV5B7AXjdbPB55CI/8NQBFpNnZt5LXu1/Jq2fsH9xNKhEikE7zX9x51ZXWYDTNpSRNOhMmQIZqKcmvHrdSX1/P+37xPkbmIPc49fLb9s6zvXI9hGJRYS6gprWFN6xramtpY3bqakcgIa1rXMKF4AhOLJyIi47zcfTEfL3/4Mne+fSeltlJSmRhGcS1Utyho73sl693uU6Dd94rWiyiYbmzLqsAn4MC90HCT2r5FnAVhu+6noPEvoLoVHNNhwY/AWqVAvKReo+fWMp3D06kguWyWAr6S6TDlE3DkcTAELntGI+45a7ZcpD0RIC8uZ7FrRN1SVBChKyrXMZWzAJMuFpishf28n7uRVYzPCtIlQoW+ZQ26TYa1LZMq+MTn5pEMJrNG0eP+OIZh/LGnul/JkiPdI0yeNxmr3UpoMMSbX3+T8oZylj2/jMpZlfR39WOymKiaWcUNz96AuchMy+oWmtqaWPithfTt6APAZDbl61tWt9DX2Uc8EMd73MuWlVuoqK8AA7o2dtH9WjchdwhbqY0l2aivXsK0LlzULICyRgXeklEgbSrSSPt5bRo5T8UKqvBlWbZczYKCRdzex/Wal2XZYO/eoUr0tc1qFff+Y/Cr5eDcWRC2W7AWIh4InAbAZiulzFbKzAkzGQwP8p1t36E/0M/xseM0NzTz2LWPsfXEVjZ2bSQtadZ3rs/7q08onsC9W+9lZtVMnln6DMPhYUyYWN+5npc/fJm73r4LA4OG8gaKLcVcUXcF92y9hznPzeHOt+8E4LXu13hi5xMsqFtAsbWYhz/+MI1ljYgIMypn0FDRwB7nHqrsVdSV11FkKqK42MpTTy2hpqYMjydCNJrk/ff/hjVrWgGhsrKYe+7Zypw5z9HV1c/q1a188pPn0dhYgccTJpMRnnpqFx/72CyWLFmKxWLi/vvfIRqdyokTJ7nllg5E4DvfWUB9fTnf+MZrmEwWpkyp5p57FvLCC99n4sTr+Zd/OcWGDZ00NtaeBe1ny3/78j8t4v5XIvL3/7vznY24/yeUnIL8unVKbz//fI3Y/WGf7m5Fu62tSpvPhaDXrNHQ8/CwUt1Xr1Z03dWlIfBMRnnpHg+0tKgJ+5l+71OnKkquq1MkvnWrUu2feQZGR0mUVHLUM4F16wzWrFHwfscdcPnleirFxQV7+G99Sxn7kycXAHt5uQL5G27QQz78MFxyia4LNDerOP6996pz3eioXoZ77tHTvfRSvYcDXQTIvdwZM7LYOaPjqyemsRiiNzrxZIG+PrNeKfJ2m0bSE0kF5qdcGpmfPAHOadQD5Oj0FrMC9XQmqx58xppdPKELAvGkRtbrp+rqQZlD+yay43PReauVZCrJ7nUF//R5d9yBfeJEIoODRNxuSqZOzdPgIx4PodOnmbpoESVTphA4fZojf/d3NN1yC0UTJiDpNL7uboomTCA+NpYfe/maNexdt+6PaPhnUubnrVzJGzfeSOP11zP/4YcJO5163FtuoaKhAVMiCtEI2It1BcVeoqB917vwyI/gX/+xEAn/y29CMg6njxU83pd9Dkor4J9fgBv+AibXwZgHXvtpYdyX71Kwn6PNf+PhM6j5n1dQn0wo8O89ogD/shYyQBz1T89F1a3FZVhsxWRSSTKZQsTdai9DJI3JZMH54dZ8pLx27jUAuH7/DoGhXhov/SSOCbXj+kw+dyGZVCJvAad1izBbbJjMVjKZFJLJEBjupWziNI32mswkQ15Ky6aQfvNXSPfvMd30ZUyNM8j0n8Kon6ZWa4ZKUUsmDans2qjFCgGfRspbr9GFjOyH0TBMSoU3DO3TtQ3Too8rK8HvVQX6LBXfvPyziG9MwX/zJxBnH8aMczBKy/VYFgsJgdN9fTgcDsLhMI2NeqNoMpmIx+MMDQ3R0NCgixeRCMlkEqvVit1u11O1WPD5fPj9/rxve0tLC1arNa8OX1dXh8lk4s033+TKK69kYGCAWbNmkUql2L59O62trVRVVZFKpRgYGMhH3m02GxYL+P25KPnjWCzF9PfvwOc7RX39lVnK/OqsB3sDVVUzCAadJBJhwKCr6zFaW1djsTgoKZlIJpNGJMOvf313PhK/dOmzWCx2QqFBkskoVmsxqVSU7dvXsXDhPYTDHhobm/H5+ujsXMeiRauoqppJf38XkyfPxVLRiN8wCAJ1wElURX41MBv4a8h7vD8H9AIeFHzfmm3bAlxMIfpeBnSjqvGrgPOy+0+h3vCl2U9ECI3El2V/qu5BfeErUd93ASzJKCdGexgIDORpv/c3309dWR3F1mIS6QRmw0w4GSaYCFJRVEGJtYTOvk6qHdVU2auIpWI8sv0RHmh5AGfASWNFI3aLnUp7Jf6Yn7KiMkqsJWQkg8kw0dnXyRd++QX+6dP/RGtjK7FUjN3O3TSUN1DtUFr+txZ+i/ryej4aOsDV01owkgGNfB/9nnq5Wxz6AvbdoRH0kjoY2QVFkyA+BhMu099hcxEMd8GkKxT4je6Gqkv1AkVdCuIv3qiUaczwwbd0P9KXje7fo+A+k1b6vbVcfePTYQX0qYhG+03Z38BMskCnF4HAyfF0eKEQEc9T30VBqrkorwRPJpXtU6v7JivK5sqmCpisZ3i+i/Y3WQs+8QZ6zpkk8biZ0R7vOE91/2k/nes7ab6vmdKppXz06kf07+jnqoevoryunGQ0SSqawvORh9oraiGDRto3aJS+f0c/zj1Olv1wGal4CuduJ+V15QQHg9RfWY9h0nMLj4ZJhBJUTa+ir7OP9s+2c94nz2PpM0sJOoMEnAHK68s1qp/1cTckg80a12toyl4L166sov5EGD2s6vKZGAzu0etY3qj+7kWVylLIXfvd69TPPTIMe7IUeOcOpd4vfhGSkULEvXaRpl6kYzC0FyZdpNfY6oB3bifc8ihRs53dzt1UO6rxhD1Ul1TzxK4neHH5i+wa2MVltZdhNVnzC11nervPrJpJOBGmyFKEiNDr7dUUkqw3e315PTOrZpLOpImmovjjfiqKlFa+f3A/jRWNzKxSKn00GeWA+wAXTb0Iq8nKHueevEf8mtY1OA/aqJtaxYwZlfT0jLJxYxerVi3i3HMnYsoGFSKRJIYBu3c7mTatgqIiC15vlOnTqzCZlO6fSmVwuYJs3NjFmjWtVFeXcOutX+Xo0RDHji1g8eISjhz5AWNjESIRP/fcs4577vkafn+chQvP4bbbvsFLL/0zU6YU8dWv/hV3330nZ8vZ8l9d/r2I+3+5ENx/xgP4e/Sv4Cv/GfOdFaf7Tyh/SkH+T5WcqnxOYj0Q0G1OXr2jQ2TXLt263arwtmJFQcbd61X59jOV6F2ugjR8T09BXf7QId0+84z4fak/EopzuXTqnOZdrn3LlsLhnE7ts3ev9smdytiYnm7uUAcO6Ev5Q8G64WGtc7sLenkul8jgYOEl504zGUtJJhguqLnnROP6z1CYD0cLInS5vn+4n+uXU5yPxQr1yaQK3uVE6nKK8mfOnRPGy435qFdSY75xSu9htzv/iHm944XnzlCQzwnZ5dpiXq9ERkbyc3l7eiQRCuXV43MCd+Hh4XFid5GREQkPD0t4aCivPh8dG5N4Vsk+cOqUZCJhkZM9Khh3skfEP6ZCdf0nVIAuEh4vOHdojwrOhbNq9LfdWBCbu+3GgkJ9JCwSCor4vSLeURW9O7hL5MTRgsq8e6AghPfSY9rmHigcL+ATeekxScWjkoyHJRYcyyu7x0JjEva6tC4eFr+7V8JeFY47Uzwu4h+WVDKuavSJmESDo5KMR8eJ0+XU6mPBsayS/KgkosFxdTm1+kQsnFelD3sHJR2NqIq7q7+gCr/5ZVV1D4dUsC4UVBG6SFjF65z9kvYMFdTooxFJBwOSOnZU0q5+FZxzO1Vs7kxhukg4e4ys+J3bJemATzKxqGSiUT3GqEcyoZCkRzxaF/BLfHQkLwiXU38/U1U+FArJsWPH8sJyubbc1uPxyObNm8Xn84nH45Fdu3bJ5s2b86J0AwMDeaV4r9cr3d3dEggEZHBwMK9SPzIy8idV6YPBoHg8Tmlvb5Ndu57+I5G6zZtXyK5dT4vHc0RisYBEIt68Wvzg4AHp7u7Ii9aFw6N5UTq3+9AZ4nKHJB4PSTwekmjULx7PUQmFhqW9vU0eecQu3d0dEo16JRYLSTTqFZ+vX3p6tkgsFsyL1QXT6T9Sd/dIQSxu7xltg6Lic55sm1NUvC4oqhbflu0fkD+tPP+0qGp8T7ZuTJQOt1dUrC6nbB+UguL8cCwoW3q2yGhk9I8EsT4Y/EACsYAMBYdkn3OfdHR3yHBoWEKxkHhCHuno7pBD7kPSM9Ijewb2SM9IT16A7gNXQWn7TNX5nPJ2R3dHXuwrJ4znjXjzKvTeqDev4J1JBEV8R1UoLuYtiMONfqDK8YFjKiCXE5qLZAXkdqxQMbm4TyQ8oCJ2uf2YT8R/VEXoRvYVBO2OPv3HSvRnitWN7FXBu4hLxeq2t4kkwwUV97xKfFY0Lic4lwhl1ecTBRG7yGi2LqsynwgX1OdHu1U9PRHWtqDrDwTsQgV1+lyfVLJw7Ny8kVGJZdXiH7E/It0d3RL1RSXkCUnUF5VYSNXlj711TFz7XRLxqlK8c6+zIFIXiEksGJPgUFBCwyEJDgUlOBQU/4Bf2wI6RywQy6vTB1wB2bxiswRcAXEfdI8TwnPtc4nf6de+vvFK9iFPSBLhWEFwzr1XhePc+1WQbvSIisbFvAVV+NfbVJhu39MqZBfx6NjwUFZBfmR835GPVEXee0xF8KJeFb97vU3rw0MFVfvX21TELuiS+Ikt6pAweDAv4jgUGpL9rv3ijXjFFXDlhRhzn/e9zr3iCqgqvTPglH2ufTISHpG3jr0l+1z7xBv1Ss9Ij1Q+Wpl3VtjSs0X2u/bnvxdberaIL+oTb8Qr+5z7xok55kQffVGfrNi8ouAOsb83rx5/pqCc1xuVQCAmkUhCDh5U8TqPJyzBYCwvQDc2FpGhoaC4XAHx+8ePX7v2Ibn88vnS1aXzX3/9p+TJJ58Xp9Mvv/71+1JXVyft7b+VtrZ2cThK5Utf+itxu/3S3z8oc+bMkddff/3/nzves+Vs+U8t/DvidP/TqPKfMAzjCcMwXjQMY4NhGH9uGEbRf/VJ/T9ZbDYNI7e1qRJb0b/xNthsGr42mTTKe+yYRtWTSeWUL1igSnDTpmnfJ55Q/vqg+j6TSmmyuMMBzz+vfPeyMuWv//KXGjZfuVKTyidOhJoauOYazPFo/vRWr1ZROItFPd1379apn30WtmzRCLzFohF2EY2eDw/r6T/zjG6//nU9pd271Tp+YEAJBRaLzr9ihc5tMhXS9A2jcOolJUo4AM0E6O3VYxh9g/BRr0bFz52mNPnqqgK93Zz9CgsagS+yqVBdLKHe7GUOSKXVA95k0oi72QwVpfpi0hmNzhvo/DnfeJOhcx/r02OHInoeqTTMrMdssVBaX0/J1KnsXbeOuM+HYbGwf+NGTnV0cMFf/3Xeu11SqXE+7xMvvDDfNnLwILHRUUrr66m+9FJMNhshlwsMg+jICBG3m8vXrsVSXJyn0B9+8UUSfj/xsTFSsRiXr11LcXU1Ebcb0mliXq/mu8eiBc/0t9tVQKnIriJzVdXw8jMqMPfFr4N3RIXnPG7NY6+qhq+tUYp7sQMe+qFS54M+9XH/2fc18o7mmlMxUdu+sFJz5JMJwNBI/b5ObSurUNr+l76pUenrPq1UcQGz1U4y4sf54VYy6RSpeJR0Kobr9+9yeu+vGDnxPplUnMjYILaSyqw3e3nW330ryagfA4NkLEgmlcRSVELt3Guw2IoJj7kwF5WQSkTxHNsFoCJ1Fismi41pl3+a2rnXYDKZiXgHmXJ+K4ZhIuxzYUytBUcppvppZDrfxahrAL+P9JZfqs96LIqREQyTGSSDMbEaw1GqtPbRYdIdr0I4qON3/FZp7zu2AYJ56acxff6rmFqvzfu5U1aGeflnoWoChEOk3/glkohpdN9qI+Pqg2ScdEe7erg7SvH7/bz11lt5evu0adOw2+20trbmc829Xi8dHR2Ul5dTWVlJXV0du3fvJplMsnTpUkwmE++99x4NDQ15Ybq6ujp27txJXV0dwWCQd999l5qaGqxWK4FAgF/96lc4nU7sdns+Nz5Hn9++fTtmsxmHo5yWljXMmXMTXV0bOXz4FTo712M2W1i8eCMNDc1s2/YgPt9JUqkoXV3fo6GhGYuliMbGFubNW8HixY8TCPTz5pt34HBU4/f3YbWWcMMNz1Je3kB/fxfxeACf7yTbtn2HTCZFS8tqbrrpVcrL6+nouBWv9xh9fTuIRkeYOvVi0ulE3jM+noqwjgI9fgDNTb8NSKN565uAGWhkvAH1bA+ggnMPonT6wewcG1Fa/Bo0Sr82+1O/CViBRvUjwC3AaeCO7BgzGsm/BY3q9wOvAX6zjYX1CzEwePK6J1kxbwX3N9+vAlcWO4JQbC3O57kHYgECiQCj0VEW1i+ktqyWUlspT+9+mkgyQmdfJ72+XpxBZ57+fiZ1eN32dRRbimlubMYf97Oxa2OeUiwIZsNMPBVnR98OQokQNsOAUC98+B39TTUEIv0aCY8NanS0aJJG4EtnwfwX1cs70g+TFkJ0UOnuJhtc8qR6tEtK6fPBExott5ap+F33JpjxVxq9n/8ifOItmPttjdQf2Vig6SNgKQOTXen5hrWQyy4Zjfim4wXaelmDRnJz+ieldRqBt5XrmERI5zRZC77vFTO0PTigEfbiap3LMCltPBfVz43TXx6NDqfjOiYdz0bxhZbVLbT9so2aS2sIDYbIJDOICN5jXjpu6aCspowJsydgmAzi/jhdG7vU433ddoLOIIlgQunzd7xJoD+A2WbGVqosv1Q8RXg4TDqexmQ2ERoMIRlh4d0LMdvM+Pv9dL/WTef6ThqbG3FMcZCMJDEMA8NijKPVx7wxMsmMnn/CD/ueUkq7tVj92q1lGoHHOIMuvxpiY9p+9TPKULCV6nseGdK+OSr9gjX6flTMUsp9ZFjn27Meel/T622YNbofGVKq/e51ejs15XJEMvQH+ql2VLPyzZUMhgbJSIZEOoEr6OLOt+8c93nPebunMimKLcVYTBZu33I7F065EJNh4taOW4kkI/zsz3/GtxZ+C0/YwxV1V/Dojkfz34vLay/HbDKTSCcosZXQ3NCMK+gilUlxwnuCWzpu4bT/NI8vfpy2pjbWtq5lYmUZL710IyaTwfPPL2PLli+wdm0r8XiSoiIL6XSG/v4A1dUOVq7cQm+vF7vdwqlTPm677Q0GBgLY7RZE4Mknr2PFinnU1n7IL37RzrPPvsz06dU8+uhC3n33TW6++SuMjkb50Y9OMWfOJfzud5288sphzOYqPvOZNqqqHNTXT+WGG25g165df/pe9Ww5W/6blP9pwP1LwN3AzaiOzi+Bk4ZhXP9felb/LxabTenxP/oRnHfeH9PkcyWXB282K2IdHFTku2ePCtOtXAkNDfowDEXB112n/cJhTSZ3OJTLvmuXAvV0Gs49FxYtKuTIr1+v42tqoK4Oo9jOjBnC888rOz8aVYX3ZFLXBUZGdOqFCzU/fe9euOgiBdjJpE5tGLBzp57K/Pl6iEmT4PvfV/a+yaSn4nDoIsDQENx+uzL8LRYVwzcMzZ+/+Wa9HC4XPPig0u0nTQZprIGJlQrCQUF0b7/S42fUFg5yvE/BejyhdPl4Qvsc71PuvQb9FYCn09q3t1/njCUUoKcz+h6AUuITWbp8X1aNfmKljjWbSEdjKjR3Bpg2W61c8Nd/jffIEUobGpj/0EOUNjRgWCzMufnmPFg3zGbmP/QQZrudnfffn89l3/PQQyQDASIuFyarlcMvvMDvbr+dvY88gmEYNN1yC43XX8+cr34Vd1cXh198kaLycjLJJIbZjGEysefhh0lHs8JNVhtyZm55OKC56Rab0th3vQuvvKhUx6pJcMHFBaC/5ReqCh/0Kb2+pBROdSvwL6vQtt/8CqJhCPgBgZkXFITtqqeqivKyz+sCQFW1Lgh4BuHY72F0mMzUBjLpJMlokFQyiqd3zxk57TWk4lGqZ8/P56FLOoO1uIRMKoHzw99AJo3n+J58jrzZWoTn+G7MtiLcR35HMhbKgng7kkljmMxMnHkZhsmcf4gIJVU1DB7+LZl0EmtxKSazBU/vHvoOvglWK5lfv07mw/2YFn0cY9Z5ZDo171wCflXGf/OXiG8UiYQhlUTCIYjHyHRtU6C+/R3IpAu56dcuQ7xjZJynMdVPg9IyjHQGicVUPK/vJHhHkWBQFwpCQV0ACPoxJteQ6XxXjx8O5sFyDlx3dHTg9XopLS3N09crKirG5aObzWZisRiLFy/GMAwGBgawWCwsW7aMqqoqrFYrpaWlWK1WWlpamDVrFqFQiKuvvhoR4a233qKmpoY777yTadOmkclksNlshMNhWlpaaGpqorm5GZPJRCAQxmqdCsCiRatoamqjtXUNTuf72GxllJXVsnjxE1gsJVitJSxd+gMuuOAzACSTEZYt+yFWq4NAYICFC+8hEhmlsbEVkQzRqJdMJklNzWUAeSC+deu9VFZOp6FhUb6us3MDJSWT6OzcQCzmA4RFi1Yxb94KijDYJMIRFFzXAF/JPgcVlhtG/1SjKI3+NcCK5rM3o8B7AQWgHkWB9zPAdBTIC/BNVJ1+AAX5G4BpKMhPZud+Bc2lb0EXA6YAfYE+bnvjNjwRDz9c9kPOnXAuFpOFB7c9yCnfKdKZNL3eXm574zZKbCUAlBeVYzFZ8EV9ZCTDuqvXMRAYoLqkmvXb1zO/bj5tTW3c13wfBgarW1bT1tTGt1u/jcVkIZPJMNUxlfsW3UdbUxtrWtcwEhnhhO8EK99cyWTHZEqsJRSZwMjlph/JLkGU1MORJ1SgTjKw51YF95k0BHvB06UK8NO+qPT6qosU8JoskArBvm9CfBiq5sHelQriW16FS57KAt6Ygn17rQL70T3Q9IDmz89dq7/1798G4ZNQOjub0nJGMQwFzL5eSCfOoLebNB/dZFXgmEurspUqVT7XNzcundA20HPy9errTUY0/z7HiZeMtvtP6kKArbyQSx8awJwapWpGJY3NjQRdQbY9uI2gK4jJbKJzQ2ceoCdCCQwMiiqKWLRqEU1tTbSuaSUR1vz4rse7aGhuwOZQ5fT+rn58J328ufJNkuEkUW8U7wkv276zTS+D2WDL7Vsory/npldvonVNK4bFwGK34JjsIOwJ4z3ppaymjKU/WKqidJV2DLPm5mMtg9bHVDSu60HNN7eVqWq8v08XYa7+gS5WWIoVbIOC8XRK+3d9RynzlbPg2hdU6C4RBG83vPctFcAzWxXQ3/iqLqq8czuEXbpgcF4bXHEf9LSTGNpLRoQFdQt4YucTCqy3r6fEWoLVbM0vQnnCnvzn/b7m+6i0V+KNejEZJmxmG80NzQTjQZwBJ/csvIcTnhM8d89z/FnLn7H8Y8v5zPLP8MX6L9LW1ManHJ/ihk/cwKL5i7jykiv5i7v+guaGZhY1LGLlLSu5/tLrOfDgAT5+5cfZ8J0NPL/seWZVzsJhtxMMxunpGeW2296grq6cmTOrqKoqwWYzY7OZWbCgnu9/fzfNzQ0UFVkwDIP16xV0Dw2FicVSDA6GMAw455xu3n33NV57bQvnnVeP2WzC7U4DVn7+8w76+vy88soeduzYydKli2hra+LLX/4iv/3tVmw2M9FolG3btnHRRRdxtpwt/53L/5Qc97vQ4MA7qL5NMXARmi63CL0nuE5Etv0b4+9GAT8AFRUVdT6f7//oOZ8t/HEe/MyZGkHfsUMTyr/3vULe+gsvKEqeN0/BpdmsyPquuxQFr18P99+v4+6+WwH+rFmaQ79xo4rTnXMOmEwkkgbd/cX09RnMnw/9/QqqFy7U+5lEQvPdm5vh4x/X9kWL9JSTSQXqOaH7KVPUCm7mTB03MKA57B5P4WVVV+vYO+8cL4Sfw8g7dsBnPwsffKCgPdfnZ/+QxhoOQbmjkBd4vE9BdHWVDj4xAPVTCjZxsxu1z+xGzYe3WjU/PZNRMF+RvcnKZL/3JqOgTp9KF2znrBade1qt3gSaTDqPYYAByViM4X37sE+YwJG//3uabr0VRHDU1WGYTAUl+JoaSus1TUfSaUwWC8HTp1X5/eabiQwNMenCC3n/DBu3y9euxVJURLC/n8Mvvsicr34V+6RJWEtLVQhNhA8ee4xzV6xg5OBBHLW1VF96ad6WrvH665n/4INYzCZMRvbCHf8IfvgIXHylisml0wXV+IlTIeyHsirNP8/lptuKNNd9xA1vvwqf+5rerJ08qhH28kq9qS0ugWFXwe5tci0c+1At4CqqNLp+pvXc4k9DyE/6/AvJiJBOxsikNEI/cuL9vBVcrkgmjZHVJCioxkcxmaxkMoUceZPZismsImr+wR6iPje1c68hFY9gthYR8bnzOfSDH22jevZ8rMUVkEnjcx0l6nNT03S12vWFfaTiYUora1UBvmsbpmtuwLDZVGDuDFu3fE760k+TcZ4G7yjGBfMgFMxavV2DUVGl1yqtUmUZZx9GSSkSDmKqa0QsVgwEEgkkk4F0CqOkFAzUUu6Vv8c4by7mJZ9CwkEyne9ivvEmEhh4vV4sFgvbtm3j8OHDNDU1cdVVV+VV4ktLS0mlUjidTioqKqiqqsLr9VJSUoLb7WbKlCkYhoHNZiORSLB161aam5spL1c1fpPJlFeQX5T9IcgB+0wmQywWw2635xXso9EoJ06cYNasWWzbto2FCy8nEjnC5MlNFGXFvAzDjM93kh07HmPp0h+QyaRxOndTUdFIcfEEfv3ru1m0aBUTJswmHB4mmYzQ2bmeJUs2EYl42LFjI4sXb0R/GMBiKcbvP01n53oWLvwW4fAw06Z9DJ/vJNu3rzsjj74eh6Maq7Uk+5kykTKZ6bXYWWcYPIAC5TI0ir4OBdX9wHKgA7WEG8hu16M57LXZMTEUpO9Dhe2modGB3eiCQCdq/fIMGmlfDTQCXegf9ggK5p/MjhsCiuMhvvP6V/Oq7w9d9VA+enhs7BjXzbqO2rJabn/jdjYf2Yz7HjfJdJL3Xe9z4ZQLKbEqkP/6m19n1aJVTC2biskwYTfbcQacTC6djGEYWA0rkVREr6fJQjKdJC1pym3lpCTFSGQEb9TL4zsf55XDr9Dx+Q4aKhpwB/pZPKkBI9KvYNywaF77qZcVSM97CN66VIF3dYsK1iV90P00XPx4NsKe0Xpr9ve5fzN4dujYN+boPPNfyALdEyo8d/Gjum92QCYOCR/YqhQgDr0H9om6KDDhCrBNGK/ybrGPt3arnAXxrEI8KOiWbKT8TD2UTEK3wx8UFOQzWW2LvKVcdVaoLa3XwmRSgH+m5VzlLIgHFMCn45COk5BS0vE0b9z2xji1d98pXz6/vKyhjLe+/haLH1+MpdhC3B9n5OgIUy+eitlm1v+mcJJEMEFReRGZVIat927Nz7f0B0t58+uqJr/yyEq2Pbgt33bDszdgWIx8bn3LAy04JjtIhBOkIim2r1fruKqZVZjMYE2P6PfP5oCttxSU3hc9rK8t6tHXuu9JzVX3n4Q9G2D+A/o+TJ2vInRnKsTnrnU6oRH6mF8V6kuqtU2Ad74GR14ujEkndMEn4iHkqKFn9BhlRWVEUhEe3/E4jy9+nFJbKSJCOBnm0NAhFtQtyNscJtIJ9g/u57Kay8hIBm/MS6W9kmJLMSe8J1jXuY57Lr+H4/uPs/i6xfjjftY+upaB3QO8/vbrtC5oZfV3VvOpGz/Fza/czM9v+zlLHlnCq7e/yhe+9AX6S/r5yYafML1iOlazFRED1+kIWbMPHnxwG6+8cpi2tiZ+9KMbKStTdmYikSIeT5PJ3quMjISZNMmBYcCOHf0sWtTA8eNjbNzYxZe/PJ1ly65g+vQZ2GwlDA+HmDmzmtmz7+OVV16jqqqTmhoHAwNebr75ZtasuZdYLI3ZnOaee77Bvn17MQyDz3zmM3z3u9/lbDlb/qvL/3g7uH+rGIZhAL8CPgUcFJGL/yPjzorT/V8qoRB89avj0ewdd4z3Y8v5s82erWHxlSvhtdfUg23SJJ3n1lvHC9PNmVMwYxfRcSUl6sU2PEyo9lx+t9NGdbUy7zdtUlr6+vUKtIuLlTpfXq528fPm6alWVOg0g4PjbeWrqxUfezwK5DMZ6OyEL34RfvYzjb6bzTrXI48UxO5yL++BB9Tj/dJLNdLf16cZAlUVaUySUUBjmPQePSdG1+8e7+ueA9g2a0EtPp1R8D2roUCXz6QhFC14wzfW6PNkcry43ezG7I1bFth/1KsR93OmQTJFkgyBU6eIeTxMnDcPs93O8L59VJ1/PvHRUQ6/9BIXfOUrxMbGmDBnDrFs3eVr17L/0UeZOG9eXqzOMIw8SG+69VbKGhrIZAF6zOPB3dVF2bRpFE+enBeeK21oQDIZYmNjpKNRFcSbMiVvBWex27EU27GXlal1WiIGr/4dXH+T0uP/+QUF2Zm0UuFtReD3gn9UKfFWa0FAKR4D35i+iW/8XO3lgj6NupvMSov/5xdgxnkw51KomKCq6AMn4Jx5EI/q+LfbdUFgzAMzzyNttZGRNOlUArPFhmFWOqtk0riPvMekWVdgKyknFYtgslg1t8lkZvCjbUyccWne5s3IWfwZkIgE8BzfzaSZV2C1OzDMVpLRXN1lpOJRbI4Kjv3u76moOY+6eYuzL1PIpJJgGCogJxkMk5lMPIrFVoIhopH0VArKKyAcgrIKjHSKzMBpBeaVVQWQv3g5hlWpt5JMQiKBUVysgH1qHYbVqvPFYmR2bsO05JMQDqkQ3ZJPqu3c9ndUuK6sXMfbi8FiReJZ6rytiIQIoXAYh8OR92Bvbm6mr6+P/v5+li5dSjAYzIvOVVRU5Cn1UBCny7XnovQul4vKykoymQyVlZW88cYb1NXVMWvWLMrKyhARkskkbrebsrKyvIhdbr7t27ezZMkSwuEwVquJZHKQzs71eQBdUdGA39+P19vLtGlXZQG3CslVVc3kuefm0NTUxpIlmwgEBti583scPvwKK1ce/SObtyuvvIvy8gYCgX4qKhqJxXzY7ZWYTFZMJgs5UcNMJkUqFcdsthEI9GWt4RqwVs3ka7bSvADdQygQv4WCKN0zqEXb42gE3gR8jYI13CaU5t4PTEVp79/L9gddVY8BVUACKEfV5gUF/g+jivRnEKoZRGn4q5JRLKM9PN71OI9d+xipTIrfD/+elsYWjo8dZ2PXRta0rmFi8UQOuA/QUNHAuu3reGLxE4xER/he1/d4fPHjJDPJPBU4B8pLbaWc8J5gIDDAgroFZMjgDrpZ17mOVYtWMbNqZt6vek3rGhrLG4mmoty79V42Xb+JlVtW8lr3a3ju6sMRd2NE+pCJCzBy4H3OfWCbpFF0WxUkvIXt0DtQdyMkgyoo5z0I9skarU+MKV3eNkl93ueuVUV5ScL7t0N1M0xq1gh/0xoVo7NVKbUaNNKeW0jIicalUxq5TSdVDT6VBfJ/aPVWWpcVpMsKzUHWLs6VpcCbFZiarVlgbiXPn08ENbqcSWaj8WXkFpeQtEaYy+r0eLnFaIRUIk0yLpjMJnwnfWxft53Wta1UzqhE0kIykkREsJXYiAVi2CtUXLK/q5+pF08l4omwY+MOlj6zlEwqAxkw28wYFmOcXZylxEIykqRzfSfXPXkdkZFIXgCvr7OPWdfNGgfmr3roKspqyujb0YejWiPwNZfWYHOYKbJnWQQxrzIM9qxXSnw6BXs3wjXPqDBdWaMK0zk7dVEjOgrV8zStIJOl21vL9D/eUqy2eXs2KHXeWgLJKIT6C37viFLkbRUwcghKpkLJZBLD+wnXLOK2N27jte7XePWmV2lpbCGcDDMYHGRj10Y2LdmEJ+Jh3Xb9fOes3c60gssJODZUNNDv78/7sbc0thBPx0ln0vym8zfc9uXbONZ7jKsXXc0Nf3kDq1euxjPo4bIFl9GxrYPLzrmMi6+/mFP2U7T9TRvPL3uek96T1JTVUGquIODVRVy3O8TGjV2sXdvKeedNwmZTS99wOM6xY142bOjMe7y73WHKymyYTAalpTb+5m9ez4P+5567gWg0STicJBRKUFdXhoj6vd93XzP19eWa+mBAIpHG7Q4ya9ZESkpyvzpny9ny36f8PwvcAQzDuAi1mAVoFJH+/9WYs8D9/1KJRpXuvnu3Ksbb7YqYPR5FrkVFCihHR6GqSvdPnFC0+9RTinKdzoIB+9q1CubvvLOAwONxzW93uxV5m80k7GUEEnbuvFMj7itWKMv+s5+FT35Sae1erwbvzWZ1mHvsMQXYU6bo9KtWqXC9yaSUd5dLwb3VqpH2Bx5Qinwkos50jz+u/TIZjcxbrYVI+yc/qYSCaFTJA4OD4B7McO2iGKZEAspL8/c+CHDsdAFgz6zXKHgOrIMCbZu1oDpvMRds3mzWQjQ95w1/TiMMjWk0vt+tQD+ZOgPYW3U/ZykXS5CWDPFYlGQwiK2sDEtJCZJOEx0dJdTXh33CBGJjY0ycN49MMsn+jRvpe+strnruOarmzCE6PMyRH/84ryyfikSwlZfno/SO2lokkyEyOKgK82vXsvcPovJ7H3mEpltuIeJ203nXXbQ89RTVl1xCKhbDYrczeuggU6fVYeQi4RVV6tf+8jNKk7/iY/DJLyr1PRgEj1Mj7EEfTD9X36wc4L7hc+AbUar9Za0aRTeZ9A3JpSJ43Np36V9A5YTsjZhF7eZmnAdzLlELuoRSSNPFxcRDPkZOvM+kmVdgc1SSSSWIBTxYiopJxaOUVNVgGAbJeISR43uYfF4zZotVo9KGgWEY+hzAMDF4+F18riMFxXkRXIffHadCL5l0NuKukf142MtIr0b6rSUV2Y+aaO59BkilyDhPY5RXQkUlmTf/BaOuAaNhuoL0lmugxIFhMhCzBdJZmzjASKWQRBzDXqz58CUOJJUk885bmK5ZqsLSHx1UCv62t5HDBzCvvC//3Gi6GNP1fwbhYBbIfwImTMRIp8FiJSFCJqsiL6LWb7mo+cKFC5kwYcI4P/bW1lYATpw4QUNDA5WVlbz11lvU1dUxZ84cABKJBA6HAxHB5XJRV1eHYRjE43HeffddrrlGlfxzQjFDQ0M4HA527txJa2srlZWV+XNJpVKYzWn6+rbjcFQTDnsoKalmz57vc8MNz5HJJIlGx4jFfITDw9TVzcdkshIOuykqqsRisZNKaeqH232AhoZFJJMRtm69lyuvvIuBgV1UVk6nsbGFcNiDw1GtkbXwMA5HtX52khHAIJEIYbdXYjZb6ei4NR+Zr511Hb0mC+sNg/vQyHgpBT/3NShYn4AC6t1onns9SqEvA/4FeA/4AWoF97co0G8E9mT7TgbuRcH8mSDdhFLiRlCqXAkK6nNw0IiHMLLq1ye8J/Le0zOrZvI3r/9NPhL/4vIXAfJq8tMrpnP3r+9mft18mhuaVR27ZTUDgQGmlk5laulUyovKee/0e+PUrvv9/Sz/+XLamtp47obnuH3L7eOi/clMkqmOqRRbi4mn4ux27mbJtEVY4iNgq4SxvVB5cUEFPpcDf3i90tkjTgXnJdO1PjYIE+dr9HzfN+DyH2gEfmwvTFqk/YtrNQJfNQ/iowp8P3xQ6flXdWjO+5HvFSL4uaj+ke9pjnvZ+WeowGeV4s/8T8mB6Oiw5t/n1ONzJdivINw+MRtJNxe2JrMC0MDpbDS/qADsQ4MK9g0jm/9vLhwrEdDjmG3EIym8J/x0Pd7FtRuvxVpsJZPKEBoK4T/tp25+HQi63+envK6czg1ZlfcZlbz+N6/T+LFGLvj0BdgcNjLpDM49TqZcOAVbqY1ULKVzpjMYZoOgM0gymqRyeiWGYWCymIgH41jslkLEfXULjikObGU2vMe9+bqqWVVY3NswV9Totc6qqmOyZDUERG3aHFM0yh4bhdoWCJyA3euV8l5cDcMH1P5tdxbwl0/XN+Kd2+HYZqXF1zZr5D7mg33fU/X5qEdz2uc/oOrzzvdg4cOELMVsH/6ImtIanEEnC+oXYDPbGAyqNdwrh1/hyMojPLjtwXGf59oype/f0nFLvv7uK+/myV1P8uzSZ3nf9T4XT704ryBfZitj7uK5nE6c5kjHEbbu2Mr6lesJxAKkw2k2PbOJv/zLvySajPLXf/3XvPvbd6mdVMuU2ikULynm6a88zSTbVKxSjNmsQDqTAbvdkgftAIFAnJtvVmDe0fF56uvLWb++k1WrFlFfX47NZub0aT8bNnSydm0r06dXkkplSCbTuN0h+vsDLFhQT1GRGcPQBYJQKMmGDZ2sXt1CSYmVqVNL8xH+s+Vs+e9U/l8H7jYg69vBIhHZ+b8acxa4/yeXREIfNlsh1/1P0eR7exXhbtxY8GO77z4NUZeWKigXpdMSj6vf2sc+Bp/+NPh8Kkpnsymg2r1bkXdlpSLi/v7CYoDbTaR2FomkQTJpsGePptD39xfS6fv7C0MyGTh9WqPys2YVbN9yeey5tYTVqxXAHzumafh1dfC1r2n++2c+o2sHbreuI+T6Dwzo/uzZGswEdbZ7+Dtpzj8nC8hSmldOOq2IP55QUP2HANtkUlBuoEA9kcxavdnG27yVKnVU89WzPu3H+3QRICd2l0jCWACKi8ZH5+22vCVcigxiNiHpNCMHD1J53nmY7XYiLhdHfvITLr7nHqylpWSSSdKJBAe+9z0uuPlmSmtqiAwN4e7qYvTDD7l8zRowDPY+8ginOjpovP56Lrv/fsx2O7GxMWxlZSSCQdLRKIdfeom5t95K0cSJ9L35JqMffsil99/P3kce4YK/+itiXi+TLr4YA5Qq/9MzKOqfv11z0pMJjZwv+wJUT1FrMZNFI+PRiFLfi4rBNzre9u0vv5kVeMpovnvDbI3Up5IK5Hs/Uuu4EocuAKSz80oaThyFCVNhUrVG8EVIW604u9/Lg+qaOR/HMFlIxgJZ+rtS2Q0UJGbSSdIJzYXPRdRNFhuJiD9vG1egwS/IR+vPpNNbixxZOqberRuG8Qf2cleTSadxH/kddU3XYPi8CpgXXoWEQ5hq6pFwUFkLsSjS2w0TJmGUVZDpfAdTy9VQ7CCz9XWlyFdO1Px3vw+jvAIJ+JUan05BKESm67caVa+aqHZwne9iWvIpiIT0uM2fwKicQPqNzWdQ8v+cjLMPU+MMkoaJeCJBMBikq6srD5yDwSCJRAKTyZSnuOfo7SaTiUQigcViyT/PAW2bzZa3h/tDG7jS0lJCoRClpaUkEglsNlueLv/mm29y+PBhPv/5z+dt5VpbWykvdwApUqkI8XiAoqIKEokwVmsx0eholsa+Bqu1GLu9CouliEQimO8LsHXrvVkrOTuRyAh2eyV+fx+7dj3Fddc9QSjkHhfNLy+vw2p1kExGCAQGqKtbgMViRyRNOOzBZnMgksFqdZDJpEjYKxg1W5mIRsMzKIAeASaiADqNCsrdi+apn0mBbwCcqOhcMRpxD2bHO4EryRJXgFfR3PUB1K+9GLWfG8j2s6B0+nqUar8f+FgySioVI5lO4o15CSfC1JfXU2TRG+6u/i7qy+uZVDIJi8mCxWTBlKUcmwwT0WSU+35zH5fUXMJ1s67DYXXwwDsPsKZ1DZMdkxERVr65Mg9anl36LCvfXMl9zfcxs3Imp/2nGQgMML9uPn3+Pp7a9RSPXvMoI9ERNnRuYE3rGuZNmIkROpGNcs9XUbh0GCylBRG2yIBS4YsmQdyjYHy4C6qaIBlSr3UDtW3LWchZSmDLPFh6SKO7kQGNthumwmLA5c9qVP68u8DRqPnuJQ16Lr9brjT7hT8D/wmlqk+4QAFzDsRbigqCczkUn8nmspuy/9c5K7dMohBJNwxInRGlR3RBwWQqAHNric4XOK353eZcZD9L2U8noKiceCjF6e19OCY7sFfaKZlUQjKcZOjDIUomlrDziZ20rmnF3+/HUe1g5xM781HxZc8vywNzEcF70kvXY120PNBCSXUJv77710p7n+Jg671bWfrMUkxmE5lUhkwqg8liIhlJ8pv7fkPzqmYqZ1aCgKTzrkXj6fsvLMdy/O+xuH8Li19Q8Dz50oKd24I14JgKITfsWQdX3A+VM8fT6a95Tt+Pvd8r1F39TFbUTjSCXzwxa91n0/c+6ISK6VkKvU8XWSpm6XtS2kAiFWEUE6W2Uk76TrJu+zrWtK6hobyBSDJCMBFkqmMq/YF+Htn+CPc138fU0qmU2koJJ8K4gq5x1m81ZTXMrJyJxWQhmoqyx7mHmtIa/vVH/0pHRwd/9+rfMWvKLL78xS/Tcm0LrctbOXT0EGu/tJYX//lFLpl3CQFPgKm1mpry6Yc/zaGfHGLHvp0c/zDNgisaKC+3jwPr428bU3R3j9LX56e5uZEdO/r47Gfb+eQnz+P555cxOhrh7bd7+dzn5lJUZCEeT5FIpAkE4hw/PkZ1tYMnntjJmjWtzJhRSSYj3HJLRz5C/8ILy7HbzdjtZyPuZ8t/v/LvAff/aeJ0f6pMPON58L/sLP5fLTmA/tWv6jaRKNSvW6cU93XrFESuX6+J5sPDcNttGnlfuFB93CdPVg75bbcVoudr1sA112gIfM4cNUq32ZROv3y55shXVysCr67WfqEQlJYiGeH0aYO77lLRucmT4aqrVLzebNao90UXaVA/ndZtfb1G2V99VZ/fcovS3wcGCvp3zc0K0kEPtXEjfO5zSiZwu/U4Z+rlXXFFQYH+zjv1nufZZ3UdQ0QUzVstCtBPuSAWV/A8u1EP0jdYEKMzZ5X5RbJReFMB6NdP1ch7RWm2X3a+ZEqjJTOzvw/+kIrVnXJp34rSwjH6BnVBoMwBA24EVFTu4YcpqqzE192NYTJx+KWXmDhvHogQOHmS97/7XeJjY1z+7W9TVleHpNMUVVQw48/+jMvXriWTShEaHOTie+6h8frrmXvrrUqTHxvDls0ztk+YQPHkyVzyrW9hq6zkg40bqb78ci7/9rex2O1cvnYtsdFRqi64gIjLxZ6HHiIeCiPLPg/feBj5wsoCaK+emlV/t8LwIPzsGRh163V77acaZTdQAL/kpoK4nWEozf2fnoW6GRqZ/+nTWicZzZf/9auQiMPx3+s8ACe7lX4/abJG5dt/BKKe5tWzFzDt8j+ndu7VGCYV38kJziWjIZLRgKrGx4KYLba8gN3IifdJp+Lqa398d17UDmDSjMswmSx6H22xYjJZqZt3rebNm8xZ/3UTEe8gmXSS6tkLqKg5j0kzLyfidWvqgucUhkBmuwrRZXb+TlXfbTYF2eEgGAamiy7H1DiTzK7t2q/zXUjEMRqmq289kNm5HWNKLYajDKN+OhKNgGFScbnDB8h0bcMwTBiVEzDf8GmMoiIoKcW85FMYVRMRkwlTS1bYrvVajdxPqUVCQTIixONxQqEQCxcuxO/3IyI4HA6qqqooLS3l2muvJRKJUFRUhMlkIpPJ4Ha7CQQCeQAfiUR455138tT4xsZG4vE4mUyGK6+8kl27dhGPx5k4cSKhUIht27YRCoUwmfQvtLW1laamJurq6vJCeDt27MAwMqTTCYLBQbZte5Bg0EVp6WSs1hK2b1/H4cOvEAj0k0yGefPNlfh8JxGRfF/DMHHllXdjtZYgkqGkpJpodCwraqdgviBAtz4vQGe3VxAMupgy5SKi0RESiSDJZBiHYzJu9wHC4WHefvsuLJYiijCoFOE2FHTfiwLoSmAX+qcZQQH9QjTK7kaV5atRcN6MitBNRW8qiinQ5m9DwXkJ8MVsv/nA3uzctWh++92oUn1Ltq4YjdK7Mxptd4fdfGfbd5haNpXB0CBd/V0YGCxqWMT0yukcGjqEK+ji629+nXAynAcraUnz1JKnaG5o5pH3HsFsMvPDZT+ktqyWRCqBYRhsWrKJFfNWsKZ1DSXWEp5f9jz1ZfqbOLNqJvUV9dzx5h0YGDyz9BnKisqoLa3l/ub7qS6pRiQN5hLNYTdMSo3/4FsQOq5CdJKG8nOgaKIC19//LYROwuRmiA5p9DzqUqA/shPO/TpEnVBUDZ88ofXmYqheqBFuRMH5gh/p79JlzyjAG92jCwfmYt1OXwGXbgIMjehOviQrDGcUlOXzJYve03FVLjfZ9FiGWQG3yaRbq0MjySnNTSc6ks2ztimIjAd0LlsZBPqyYnSlCtZBt9ER3drK1JjDYqK8vpyd39tJMpJkYNcAhtmgYVEDYU+Y7te62b5uO3UL6gh7wrSsbuHzHZ9n6bNKjY+MROi4tQN/n5/QYIjDrxymc0Mn8UA8/zzmi1G/sD5rKZ8hnUxjsppIxXTFvH5hPdvXbQeBeCBOyB3KK8u3rm7NC+FhQLruOgXo6QTULFR2RcgFdR9TCnw6AWGn5qBXzND/lrxq/Gq9pkWV+vyCFRpJN0xaby2DVAR+c5vOmYrAb7+pi8CxMSiq0rz30gZNO7CW6MJPKoon4lEAvmMjzQ3N2Mw2rCYr3qiX3rFeUpJiZuVMXlz+IvVl9RgYmDARiAcA+O7Hv8vsqtnMqprFzv6djEZHSWY0TeGiKRfxw+//kNf/9XVe+dUrOBwOPjj+AR2vdfClL36J4fAwVzRdwfwF83n5jZcJJUM8fOBh6p6qY+fATn710K+oqqji7X85xLSGKkpLi/5N0J4rDQ3l1NeXc8cdW7j00hpOnPgGmzYtIZXKUFFhZ/r0ShKJNN3dI9x++xaGhsKEQgnmz6/jiSd28sorh1m3bjuxmObLr17dQltbE6tXt5JMpjl2bIxEIvXvnsPZcrb8tyv/lk/c/5QHytgTwA9Y/yNjzvq4/yeWf8vPPR4XOXhQ6w4dEolGdev1ihw9qkbpR49qf49Hvd5XrJAoyKdqa+WcadPkwjlz5NpPfEKOvfaaSFubzJ87Vy6aN08uOvdcaSovF0AO7tol4vVK+NVX5XOXXSaz6uvlnNJS+Yef/ELa2kSefloPdaY1vMulp713b8EafnRU6/3+/KmI3a5+616vbvfvF/F4onLVVZ+S0tJz5JxzLpRPfOJa6eg4Jh0dIpdeOl+ami6S8867SMrLmwSQ1147KMPDIt///t/JeefNFbPZLJdd9pRkkin1bD98vODH/t7egk97zoM9FhcJRwp14WjB8z0Y/pP1Uc+ofGrpDXJOfaNceO75cu3V18ixI0dEwhGZf/kVctF5F8hFs86Rptnn6DXcuUvk8HF54J5vyXnnnisXzpsnl11yiXRs3iwD27bJyKFDeT/3eCAgY0ePiq+3V3y9veP83CMjI3kv9tEjRwoe7EeOiP/UKYkMD0vc75fg6KjcuGyZzJo2TWZNmiRXLVwo23/2Mxk7ckQuv/RSmV1dLY1FRTJj4kQBZPu//qtER0flvnvukaYLLsi3P3zjjZIMBiXTn/VOP31MvdojIfVgDwW0/qtL1GvdP6Z+6wd3qTe7d0QkGlHv99PHRaJhEd+oRJ198qllN8g5kyfJhRNK5drzZ8mxA/tFXnpM5p9/jlw0Z45cNLdJmmqn6PV777cF7/bn18lHP3lWiouL5Zt/81VJJeMS8Q+r57rPLbHQWH4/GQ/L6X2v533Wx/X1D0syHpVUMi6JaFBiWQ/3ZDwqseCYjA2dluuuWiCzZ82UefPmSsuCi+Wj3x+QiH9YLm46V+bNbZKmC86Vc2dNE0D27X1fEtGg/OUXvyC1NTVy4YUXyoXz5sk9t92a91XPxNWXPefhnh4c0LbBAUlHwurxHvCrd7vfq/tup3qwB3zq7x7wSarnIwn39sinli+Xc2qmyIVzLpBrFi2U7g8PSdrtlPmXXiIXnX+eXDRnjjSdM1sA+WBXl3rGh4LyzKZNcv7s2dLUUC/z5s0Vn8+X910fHByUWCyW91t3Op15X/VIJJLfd7lc0t3dLcPDw+L1eqW9vV2cTmd+zObNm2V4eFiWLVsms2bNknnz5snVV18thw8flp6eHqmvr5dp06bJvHnzZPLkyQLInj17JBKJyPLly6WpqUmv4YXzxDAMWbWqWR56CGlvb5No1CexWCDvox4Oe8Z5ugeDbnn00cqsB7tPIhGvOJ37pKdniwQCLvF4jojfPyA+37Bcc82VMmNGg0ybViEf+9gC2br1RxIIuOTyyy+VCy+cJ3PmnCsNDfpbuHPnuxIOj8jBg7ukqWmKzJlzrpxzzmy5beXN4k+lxCPq0e4S9WxvE5F+EflACv7sblEP9z/0aHdJwYPdm932R6NS+6lPCeecI+ddeKEsuPZaWXrsmBwQkQvnz5c5F10k5150kZQ36W/hzw8elAER+WVPj0y59lo598ILpXHOHHnuZ/+Q92TfPbBbhoJDsqVni/T7+vPe7Z6wR4KxoBz1HJW9zr15L+kPBj8Qf8wvgVhAvvKrr8he514Zi4zJgH9AVmxeIbtP7pYrr7lSGmc2ytx5c+UTV39Cdh/cLR3dHfKT138iF112kcy7aJ7Uz6wXyxKLbOnZIq6AS/af3i+f+synZPqM6VI7vVZ+/vN/lEzYNd5LvfsZkYEtIvFA1qfdKTLwlnqsR4dFnFu0/kw/9rhP2we2iIT7JeraLZ9qqZVzZs+QC5vOkWsvnyLHDu0QGTsou1+4RhZcNk8ubpop558zQx575Ns678AW+bvnnpC5TXPEbDbLU+vu1TnP9FfP+bOfWZfzYI+M6jn/W37v8aC2Z73Zo85D8qlP3ijnzJ4tF85rkmuv/oQce//XIsmY7N7xniy44jK5+KKL5Pzzz5PHNmzQ8aNH5YFV35LzzjtXLpw3Vy69+BJZ87E1kvNK9/X58j7tgwcGpWdLjwRcgbwXe9RX8GF3H3RLz5Ye2f3MbgkOBSXqi0rPlh5xf+iWgCsgh355SJYvXS6zZ82WuXPmyscWfEy+v/T74tzrlHc73pXLLrpMLpx7oZx37nny3bXflagvKv4Bv3y66dNy/qzz5cJ5F8qF8y6Un7z4E+nu6Bb3Qbf6uEfH1E89769+UCQypj7tQx+oT3ssIBL26HXr7RBx7dLtyBH1co+HJOpzy6eu/7icU1sqF845V6/fC0tFvofsfuIaWXDZhXJxLXL+rHp57Nvf1GMNHRAZU4/3jw7sluLiYrl95W2ypWeLjEXGJBAL5D/jB90HpWekR3YP7M77rue83EOxkHww+ME4P/dgLCiekEd6RnrkkPtQvu07674jF19ysXQe7cx7xLv8LimvLJd1f79OhkPDsqt7l9TV18l1668TV8Alv97/67yn+3ud78nEiROlv39I4vHUf+DWMSZHjnikra1dnn56l+zd65S2tnY5cGBQBgcDEg7HxeuN5vvkfNyPHBkWrzciBw+6pa2tXfbsGZCOjm7Zs6dfenpGxOeLSk/PiFRWPiptbe0SCMT+N29yz5az5T+/8O/4uP+XA+v/3QdwMfBJwPIH9Sbgq6gzjQB/+x+d8yxw/08sfwjQ4/FCWzgs4vMpSo7HRSIR7dvRIfLBBzrmwAHdP3BAxOWS6Gc+I288/bRkNm0SaWuTHzz2mFw1d67Irl3az+cTGRiQ9k2bZO6cOSJjYyJDQ/Lwt74lX/6LvxBpa5MTNptUT5go773nkaEhXR8YGBAZHtYp9u3T9YLcekNHR+El7NunQH1sTKSnp1B/8KCOGR6Oyk9/+ob84AcZWbFCZOPGH8jcuVfJ7t3j+734YrvMmTNXPB6d/5//+YDs2fORTJv2l/Lnf/6UpBMpBd/b3hf5qFcBeCKp2xGviD+kgPxMkD7iLWy3vT9+P57Qhz8k0VGvvPHaa5LxjIkEw/KDpzbJVS2tOk8slp+z/ac/k7lNTfljb3n9dYl4fSKJpBzYu1fKy8ulf9++PPiOBwISHh6WyPCwJMJhCQ8Py8jhwwrqx8YkEQrJjlWr8kDe19srL8+ZIztWrZJEKCRxv18S4bCM9vXJv7S3S/9vfyu/uOQSufMTn5BFl18u2+++WxKhUB78/+TJJ+Wc+nrZfvfdEg8E5PTBgxIeGpLRI0fklzffLKUOhwz3nVIgfqJbxD0gEg6JRMIip7Igvi8L6r2jhed9vQVQHw7q/sFd+fbo0Q/ljX/+uWTGPCIHd8kPHt8oV7W2KtAf84i4+kS8I9L+9z+WuefMEnGdFrntRhH3gCRGPdKyaKF84VM3yje++DlJxaPjwXkiKslEVFKJmKSScQn73HlQn0rGJJmISTIWFr+7VyK+IUkm45KMRyQw1CuJaFCS8YgkEzHxeVzy7MO3yKm9r0k0OCIPfO0z8rHWVknEwhIP+yUw1CvR4Ii8/A9/J01NTfkFgS9+vk02fPfbkkrEpG//GxIZcylYD/glHfBLOhbNg/Nk+z9K4pFVkuo+rGA9GpH0oFPBvLNPUrvek2T7P0omFpW0s0+BvN8rmUhYQof2S8evfiXpSFhSPUdk0/Jr5apFi3SuUFDSAZ8kN78s//zS8zL3ggt0AWDEI7/8yd/JoiuvlNG9uyQ9cFqc3UfyYHxgYEC6u7slHA7LwMCAeDwe6e7uHlff3t4uDz30kLS3t0soFJJIJCLBYFDcbrfEYjEJh8PS3d0te/bskaGhIfmnf/oniUajEolE5Mknn5TW1laJxWIyMjIigUBAIpGI/PjHP5Y5c+bI6OioxGIxcbvd0t7eLoODg7J9+7syYUKV9PXtlfb2NnG7D0kk4hWP56hEIl6JRMYkFBqSQMApTude+dWvviKRiFdisYBEoz4ZHT0uoZBHRkZ6xOfrF79/YBxw/9nPnpGjR1+XUMgjTz65UVpbW8TtPpg91kHp7u6Qm25CGhoqJBIZk0jEKzfeuEwee+y7Mjh4UA4d+qXMmTtXNr3xhqyQAvjuEBG7iBzNPt+d3Y6JyIAUgP1BEQmKiDPbdyz7CIpIXzQqz7zxhtyUyYhXRG79wQ/k0quukg4RGRKRI9k5aG+XirlzxS8iIyJywaJF8oWXXpIjItI7PCz1DfVyoOeAHBg8kAce/qhfjniOSEd3h+wZ2CM9Iz3iCXnywNoVcMnTu56WFZtXyEfDH8lB90HxRrz5OfY698rTu56Wz7z8GXnyH56Um165ScYiY/L4U49LS2uLjEXG5Py558vTf/+0bOnZIiedJ2VS9STZ88EeCcQCct/a++QLX/yCeKNe2X94v1RXT5KRE7tE/D0Knv09IhG3SMwrEh8TiQyJhF0isdECuB87oH3HDmT3D4rExvQRHxNJhCQ6dkLe2PwPuiiwvU1+8GXkquYrRAY6/n/s/Xl4VeW994+/1p6n7CSEkDlMAkIYVJQxUVtFFNBaK1TFjlakYutUsYIWbQEriDOtRTsPtjj0VEMAsZYKRMKgDEYGCUPmZCfZ87z3ur9/fHZ2oD3P+Z7n+v5Oz/OcH/d15dora933vdZee2dnv+/38FGTxo9Sf/nFY0p5GlTv4ddU4eB81fj+T5SK96kDH76rPv39PPWVL89Tzz6+SEB471GlWndmwHcGeJ+9L53MgvEBkB4Q8N5/LNg2AOYjvUqlEioaCqpN77yt9GRcqVRCvfjjx9QVl1crlUqoSRPGq7+89YZS8ZDqbT2hCgsLVeOhg0qlkqruz39SEV+XUr1H1d5dO1SOK0f99qbfqo4DHSrQHlCvL3hdPc7j6s2Fb6pYMKbCnrDqOd6jOg50qNcXvK7a9rWp3c/vVq8veF1FfVEV6YuoUHdIwPWhThULxFSoO6S6T3arP7z8B+Vv9atYIKa+efE31TBtmDpWe0xNHD9Rbfz9RuU56lGtJ1tVQX6Bemb2M6ptX5t6b8176ljtMRX1RlXT0SZlN9nVQzykXl/wuor5I0qFuwWcv7NAqaeRx3C3Uvufl+2YTxYpYj6lot4BgN+5X6lAm4yN9qlo2wG1aUWN0tfKHC8+vVJdMeNSpd5ZoCZVjVZ/+eMvlWqqVb3tJ1XhoFzV+H2LUifrlIp6VcLXpqovHaduW/BFtWTJYnWw86Ba+OZC1epvVX2RPrWvbZ9a+OZC5Y161YLXFygeRy14fYE64jmiPu3+VHlCnnP2+6I+daDjQHYx7HjPcZX34zz1q7//SgFq+PDhqmpClRo3fpwqGFWgDnYeVL9885dqzIQxKndorhoxaoR64skn1GnvadUZ7FRXfu5KNa5qnJo4aaKaNm2aev/99/83vjomVXt7QO3b1/ZP4Nzvj2W+QsZVX19Etbb61cKFb6pDhzpVKBRX8XhKRSIJ5fGEVG3tMXXwYKeqrT2mDh3qVNFoIgvqDx3q/E8tIpxv59u/uv1HwP1/glR+GPAXoFvTtPc0Tfu9pmmbEHXeq0ip2deQ4Nrz7V/d/lf13KNR8PtFk+73i589kRBv+5Qpsv/yy8WTPnGieN8dDmwvvsicm25C27sXli9n2ujRnPb5xMs+c6bM29nJz//yF+6YO1ek9S0t/Ontt1l8552wfDnD33qLKy+dzOEDb2AwKAwGyb+75x6RsufkiI35ueegrk6mbWmRMPuODvG7L148YJ3fuFEy8tJpABv5+XOoqdFYuxamTJmG33+adesGXAGhELz22s+ZO/cOGhrk6V588STKy8cyfryBMWOgvTNTw70wX2TssYSE0kXjUh7ObpVAupbOARm72TRQc70wXx4NBnlMpaW/w4rN6WDOBVVoNpE/Tps2ldMnT8o8J9skjG5YKT//3W+546tfk9dLg+uuvRa7yQyBEBNGjUHpig9/8hOp4/7KK2gGA9Hubvb/+McEm5sxO524hw3DUVzMvpUrCbW2ctH3vif13O+8E7PLReW113LR975HqLWVPU88QailBZvVSuHevQwaN44btm7lS488QnNrK2O/8Q26P/pIasSvWMEfamu5bvRoqu66C81oZEhFBQfWraPn44+54M47QdOk6l3+4HMl7D2dkh7f0yle7Rtul/rrdX8cqOGeSoo83mCUQLkLqrLHbdvfZk7NDDS7AypHMe3SSzh95ozUewfxz/u9/PwPr3HHtxZJWbgf/wpcbn74ox8x/4brGVVSBBYrqeRZtdpHXoaeTmVS3RWpeASz1cmQ0dMx23NRuo6maXR8up3mj97BYDSjUglSiSi2nEI0g4lUIoqeSuB053Pn0nWUVn0Ok8XJDbffx5kzZ0hGg3Qe/QCTLQeTxcEvf/VrvvmNr2Xl9rFgDxaHGzQoGD4Zq2MQyuclvfUvEA5KfMK2WlQijqH68xjmfw3NnSt11n19qIBvQP4+YjSGmqsgnZbfyyrE1956BseoC5lz7Wx5a7ndTK2u5nRrq8y1+c8QDKCVVfCL9T/hm1+ej75rO5orh3UbXuWxR75PXlk5esNOCiqGUl9fT2NjIx9++CFlZWUYjUby8vLIycmhrKyMcDiM2+3GaDQyY8YMqqqqqKmpwWg04vf7effdd3G73fh8Purq6nC73UyYMIFUKsU111yDrutEIhHGjh3L0aNHs+F1AG1tbbz22mt8/etfx5yp72g0GqmoqGD37t385je/59ZbFzB48Aiuv/5V8vKG4fefZvv2H+D1NmEwmAiFugCN3buf5fOfXwko4vEAdXVLSCZDtLU1kEpFM8FyFvr6mgiFurHZ7Nxww00UF0+ivX0vl156MWfOnMlK8HfsWEVZ2RQ6Oydzzz3fw2Aw4fWeJhrtIxyOYTbbMRjcJJMJtJISViFy+CWIX/0NpDTcJUgK/CWIhD6MeNIfROTsaTIr48AZpLRbEzDIZuOrc+bwiqZhBm6cNo3O06e5JPOvIRep+T755z9n6R13EEaC7JoPHuTBOXN4CrAXFjJx4kTefvNtVu9cLXWpd65GoSh2FlNdWc2YwWMocZWQUilmVs7EbDATSoS4dfytvHjdi7x/6n1W7VgFGtk51tSv4ZoR1/Di9S/y1Zu/yqs3vIrJYOKSSy/hzJkz9ER6MBlMWFIWppVPo8ffgzIocnJzCCVCvPbH17j2lmu5p+4eiiuKueLyGv787l5Jdu/dA+moyNsjzSKV1zQJfdNMkgTfvFH86QYTuEbAlJdFGp+OiDd9z2IIncBmTDHnivFoRjtULWNa9dWcbukERzla3IMvZgFLPmHrWCwmA4OGToVoF5MmjmPspddi8H8CzmFyw11lUp4sp1zyNzSjeNzthSKjVypT/o2MBL5PpNoWt8jigy2ybXFL8JzZCYkgNrPGnBmj0XSpSjHtyjmcPtMidiCjEZ9fgurCCYXFbGLQoEHy/+T6L2K3mMBVziWTLgQNLltxGfkj8rG4LFl5+qy1s/Cd9FG3pI5kOEmgNcCxt48R6gwxYeEErnnmGjSjhp7Wad/XTtGkIvHIR5MYLUaSfUnM75sJdYYAWLB0AenSNGVTy0hGknSc6kAzaIQCISwWC13bu6hfU8/Ur07FXe6m9q5aOo51YLQaGXPDGGqW1WAwpCHuk8yCK5+DbxyRRxDp+9U/k/uppyDcKXL33OHiic8fLan+lhxo340tp4A5334W7cIFMHU508YP43RLB1z9MprRgi8UB1c54XcfwGJzMOiuQ1A6A1JRfrh4NvNvuJZRF4xEVylW7VjFlLIpdIY6WbxpMSaDibWz1mLSTCyrkbrty2uWU5ZTRiQZYW/7XpbXLM/uj6fitAZaKXQWsqRuCZFUhD3f2sOk0ZOoO17HroO7eOP9N3h317us/P1KWvwtfHHOF1n3xjrid8a5dPWl3P2du1n63lK6w91s3baVxk8aOXjgIB9++CGf+9zn/je+OprIy7MxatQgioudWZn7o4/WYLOZSCRSnDjhZfHiTfT2Rnn55bmMGTMYp9OCxWLEbjfjdlu5/PKhjB49iMsvH8qYMYOx2cxceGEBr756/Tkp9ufb+fZ/TftfIfr/W36A4cCzwA7k+0QUqTxzBngdmPO/O+d5xv1f0AKBAS16a6tQ0Z99lmXIVXu77F+wQNj39nalQiGRzR8/LvR4IKBu//KX1XfvuEPG9PUp9dlnqnnTJmW325XnC18QynzhQuVyOlV7v/Te71cP3PxlddeiR1Vt7cCU/dL3AwdECu/1qiwj3i8E6O5Wqq5OqdOn5ZQ+n/zu88kl1tVJn+PHZd+Xv3y7uuuu76r2dpnz4EGlGhqalc1mV7//veefmPgFC76mnnrqWZWMpUTe3s+y97Pv/Sx6P8sejQ1sh6MDEvr+cWcz7v3S+mRSZPifNikVT6jbb7tNfffb35bfY3GlYnHV/NkJuYfHTpx7vnBUqWRSvfryy2rS+PGq98gRYdyPHVPxYPBcaXx3t4r29Z2zL9rbm2Xk48GgigeDKtrbe04fX1OTOvrb36qeTz5ROx54QC244QZ1z7e/rfynTyvvZ5+peDCo3lq8WNksFtW0d6+K+/2q78QJFQ8E1JPLlqmK/HzlcDjUL194XiTv/XL4l1cp1XRkQLbe3jxw7CxGXTU3iUQ+HJIfX6+w9C0n5fjp4wMy+jMn1O1TL1Lf/fpXhW3v8yj13r+p5q1/UXabTXm2b5H5XnlK7d62VV11xeVK7+1WK5Y9or57+y0qGQurRCysosEe5Tm5XzV/tElFgz0q4u9SyXhExUJ9/ySRT0SCyt/ZpJKJmAp7O2U7FlbJZDwjmY/8k6T+tttuVXd/e9E57P7xI4eU3W5XHe2tKuLvEsb9ti+rYUOHqqqxF6o5c65TH9XXC7P++APCnkejIpH/8x9VOhIeYN77j4eCKnX8iNIjYaXHYtmfdEebSnu6VOpYo0r7vMLAZ2T2eiymbr/1VvWdJUtU6vinKrFyqUq+/ht1+uP9ym6zqc4Pdwrb39Gq8p1OtfKRh9X0iy9Sky8co5556sdZhrtfDv/mm2+qQCCQ3d/PuEejURWNRlUgEFB+v1/FYrEsA+/xeNSbb76pdu/erTwej4rFYur48eOqo6Mjy57Pnz9f3XXXXcrv96s///nPKhKJqKNHjyqbzaYOHz6sAoGACgQCWdl9b2+vys3NVX/72xvqzTcXqkCgTUWjXnXsWK1audKm3nxzYZZZj8WCKhLxqnBY2PVQqDvLwPt8zSoQaFeBQLt6882FqrW1QfX0HM8y621t+1Qg0K5uueVmtXjxHaqj42P1+usLVHv7fvXZZ58qm82mfv7zL6jOzoMqGvWpPXvq1OjRw1RxcZGy2azqByt/pA4qYdS7lUjiFyphzgNKqf1nHQtkfg4ppY4r9e+O262ESfcqYe/9mcebbr9djf3ud1XrWfsPNzcrm92ufu/xKI9SqlcpNeTyy9V3nnpK7VNK/aWpSeUXDFLXf+X6rNT3UOchFYgF1MHOg2rB6wtUq79VtQfa1RHPEdUeaFd1x+vUgY4DwsKHPeqzns/UwY6Dqi/Sl5UFH+o8pEKxUHaO/W37lTfiVQtuXaDuuvsuFYgF1N/q/6bKKspUSVmJstlsav2G9WrhmwvVvrZ9yulyqus3XK+e3/282te2Tz3wwHfUY99blJHJN4jUPRFQKtKuVLhFqV0LhVlPBJTq2a9Ua61SMY8w8rsWCgt/9HmlfEcGpPO7Fop0PtIuUvdYr7r91pvVd5fcpVSkS338b99XlUUOVVFRrmw2m/r1z38q8+xaqFS4Vam4V31t4Xz17NpVSrW/p1QyqlQqLox6+qyfcxj20LmMeiIkfTJsukolRGKfYduFyT82wNqnkur2225R3130FaXiIfXxnnpVWVmhKsrL5Bp/+QsZnwjLY2buV19eryaOn6A2zt+oVtpWquN1xwdk8d6oOlZ7TLU2tGb3B9oDWal8oD2gOg92qtcXvK7aP2pX/lZ/VmIf9UWzzP3rC15Xkb6Imv+F+epbC7+lej7rUbs/2K0qKipUeWm5shgt6oUfvXAOY79q2SpVOaRSWY1W9atXfqV8zT51vO64inkDIodvqhOJ/DsLBuTxTbUZKftx2bdpoUjo+6X1wXalYn6R0XcdFsl7PCDHT9ap22+eo767+A6lol718e6/q8qKClVRVqJsNqv69cvPKdW5T6l3Fqjddb9RV00Zo/QT76gVyx9Wd9/zbXWg44A66jmatZXUHqtV3qhX9UX6VN3xOtUd6la+qE/VHa9T+9v2qxZfi+oKdSlf1KeO9xxXP93zU9Ud6s6OrztepwKxgDriOaJ6wj1qX9u+rGLlbAVLP0t/qPOQiiaiKhALqHjqLHXl/4cWjydVIBBTkUhCBQKxLEMeDMbOYeHPS97Pt/9Jjf/JUvn/ip/zwP1f0Pz+AS36kSMDiHnBAgH0ra1KdXaqrDfe7z/XgO7zqVUPP6ymTZ6swq2tA2MPHFA/XLhQzb/xRkHDCxcq1dcnwP03vxEjutervvvd76lbbnksC5wPHBDQ7ffL5ezbNzC8pUVOGwjI2sHZl9l/Sf3rDx99NDDfihWr1MSJ09RNN4XVoUNy2V6vUvfe+0N1443zlcfzz3L8ESO+pp544lmViKWU3u9fTyQHwHM8ca6Evh+gn+13j8UG9iWSAu77Af+nTXI8IcdW/fCHalrVBBVubhvww/d41Q8ffUzNv+kmkeQ3nhB/fWZh4L3aOlVRUaGOHj6skpGISOS7ulT7jh0DHvbGRhXu7FT+06ez+/qOHlWt27erSHe3Cnd3K19Tkwp3dSn/mTPZY9G+PhXz+5Xv5EkB7YWFqqqkRLU3NqpwxgMfCwTUI/feq+ZdeaWK9vaqmM8ncxw7lvXaN/z976pq3DjlaTp+LiA/2CAAPOAVUH7mxMCxzlYB+mc+U6qvRwC7t0f876eOC3gPBcUL3+dRKhJWq76/VE0bN0aFGz6Qsf4+pdqb1Q+XL1PzLxkvnvmXV6lw7Z/UJeOr1MmVDyp16rhasXyZuvfuu1UqERNver/83d+t4pFAFphH/N0qGuw9V04fj6pkPKISUQHwYW97ZmyXav5ok0pEgyoRDWYXAn70xOPqsskXK19vlwp7O7OA/vHHf6Bu/tJNskAQ7FNhb4c6fapJRfweFY8E1Buv/UEVDxmi/CeOZ3zubUqPx7Jy9tTxT1W6vUW2jzVmffDpzgG5fNrvFYAfCqp0P5CPRlTqxDEZG42olU88oaZeNEkFTxwXL3xPt9LDIfXED36gbr7pJqWHQ0qPhFU6GFA5OS51x/ybVdLvU11HP1VjLxip/vSnP6lAIKCi0ajq6elRK1eu/CeZfL8s/myp/Nngvh90+/1+5fF4VCAQOAfY33///Wry5Mnqd7/7nWpra1N+v19Fo1H12GOPqZtuukn19PSo7u5uFQwGlc/nU4FAQP385z9Xkydfov78568rv78161cPBNqzfvV+z3r/9rFjtVng3dFxUMVigaxU/mwwH4sFlMdzRDU0vKSOH69TTzzxqJoy5TLV3PyJikZ9mR+veuyxR9T06eVq5Upb1jP/ne/cqb7//bvV668vUIcPv68uHDdO/ejdd9UeJSDcowR09/vWP1MC4rsy+71KqVCmX7+MfoES+Xx7Zt9BJeC8Xzr//VWr1GXTpqnWcFh1KwH9HqXUoz/8obp+/nzVopSqy+x759QpNeOmm9T4SZPUVTfcoG68+Uvq9kW3Z3213aHuLJh4fvfzqivYdQ6gaPY1q9pjtedIfrtCXcoTFil9s6856/Fd+OZCxeOouuN16vs/+L6adOkk1dnXqTwhj6qZU6Oe/MmTqi3Qpl5971VVWlaqNv5to1r45kLldDnVtgPb1BHPEbXg9QXqO9+9Sz12361KhU6LLD4RUKrv0Ll+935PeyJ0lny+VY7tWKCU71OR0/cdFGAf7xNf/K6FSvV+rFY98aiadulEFd52k1I9+9SXb75B/f4XLyoV96mmowdVeXmZSOVDp2XeXQvV1269Xj375KNK9X0iILsfoCdjWa/5gL89MOB9T4QzoD4DzlOZ7UT43HniIemf8b6v+tGP1LSpU1S464RSvcfVlxcsUL//7a+VSiVVU+N+ucYDewXsZ4D7e1u3qoqyEnV4/17VeaBTHas9pjoOdqhjtcdUyBNSUV9UdRwUefzZIL1fKu854jkHnHd/2p3dDveEs/07D3aq+792v7pk/CWq+WCz6jjQoWYOnaleffFVFemLqPp/q1cFjgL1Uf1HKtQVUp2H5FpC3SG1+4PdavTQ0erwe4dVoD0gHveTdUp17D1XKh/pEbl8U62A9HcWiHS++0BGJr9PqUCrUqFOAfyxwDnHVi2Zq6aNKVDh3lalol715flfUr//6ZNKvbNANTXUqvKyUtX403kqvOsZdclFE9XJIweUCrarFd+9Td3z7W8pf9SvQrFQNhPiQMcBFYqFlDfqVd6IVx3skIWqLKj/B/DdD9T79/UveB3xHFG+qO+fZPX/+Pv/r8D6f6bF48nzkvfz7X9sOw/czwP3/3NaPC4INhIRz/uCBYJ8z0axCxYo9emnwqD3G8sDAWHeMwB/7Te/qSZPmqS8ra2ChjNj9fnz1fChQ9WWP/xBkHggoNTBg2qc260+fPVVocIPHFBfvOGL6sUXX1E9PQLAv/71bNdzgPy+fQPe90OHBLgfOSKhdgsXymV++qlc9tGj0q+hQak77lirLr54smpo8Krnn1dqyxZ5mm1tuho6dLj64x+3nHO+/qc/ZcrX1AMPPKuC/tQ/h8ydzaI3nhCgfvZ2Fuif5X0PhASo9zPzLZ3yezii1j75pJp8ySXK23T6nLl0X1Du4Tu1A6F2GeC//S+1qqK8XB148x2VCoezQXQ7HnhA/fHii1WkpyfLmH+4bJmKBwLn+Nf7mfZwZ6fatXSp6vnkE5UIhVQiM1d/cF3M51NPPPSQGlNUpE41NGQXB3YtXap6Pv1UDR82TL3+yivZBYFEOKzad+xQobY2FenpUYlQSF1z9dXqjcW3C6BubxamvL1ZfOt/qxVgHosKGD+0R6mWU+J193sFqL+8Sh7f+zfZbm8Wlj3gU6qzVa394eNq8sQJytvaPMDGNzcpPRpRw4cNU1t++8ssk3/or++qwS6HGuqyqaGD8lRubq7KcTrVV669WkV8Xeew480fbcoy7mf2v6M8J/efBbi7VCoZV8l4VDztMQmwC3vbVfNHm1TY25FdBAh7O9WPV69UF00cr3ZtXK38nScHfPLxiBo+fJj6y5t/zM6bjIXPYepjgV41etQotWf731S6u1P86bGY0kOZcLqAb4A572xT6VhU6ZmQutTuDySMrt/33h9cFwkLyA/4VbqjTT31lVvU5IkTVW9bm+wPBlS6s00lNv5aDa+sVHUb/yiMfcCv0m3NqqqiTG17/U8qHQooPRpR9997r/r2t7+tfD5fFnAfP35cRSKRc9jyWCx2zr729vYsOI9GoyoWi6lYLJb1y7e1talYLKY6OjrUV77yFXXxxRer3/zmN2r37t1Zb7vP51NDhw5Vb731VnauSCSSDcqbPn26evrptVlveTjck9nuywbU+f2t6vjxOhUKdato1Kt8vhYVCLQrn69F9fScOAvYt6njx+tUR8cBFYl4s2x7R8fHauXKx9SIEfnq6NEPMkF2+zJM/H41dGi5eu21n2QWBMTz7nQ61OHDO7Jg/t4HH1T3PfLIOSD8oBIgvT+zvUBJSF2bGgD3XUqY9n8MqvNmjh3I9L1/7VqVP3my+sDrVe1nzXVM11XZ8OHq8i1b1AElbPuRzPj+cx5SSl0162q16rlVyhv1Kl/Up4Kx4Dle9UAscA6AaA+0K094IMxu4ZsLVXugXfmiPmHd2z5Wx3uOK2/Umw2t+9HqH6mxE8eqjfs2qvZAu6o/Wq8sFouqO16nOoOdqqG1QZVPK1ePrX1MtQfa1YVjL1Tvf/C+8ka86uP2j9UXb7pBbfjJMwK4e/YLAG+tHQidi3QOAPKoRzzwPfsFYEc6hY2Pe2Vc3Cd9+uc6+rxae/dENfmSScpbd6NSv0d53vmCsljMMqb3Y6V2LFA333SD2vDsYwOLBUefV1+7dph6du1qAcn97HiwXUB5v7/9Hzzr2VC6fsCejAlTn4wp1Xt84Pd+n3yGuV+75in5f9J+UqlUQnk6O5TFYjln3pu/dJPa8OyPsuF329/boioqKtSB/XtVzBdWUV9URX1R1fNZT5ZZj3gjKtAREJB+9J9Bur/VPwDOD3WqiDeiPEc82bH94PtHj/5ITRw7UTXta1JRX1Ttfm23spgtWV98x8EOdeO8G9UzP3pGhTwhdbzuuPK1+FSwK6gifRF11ZVXqV88/wsV8UZUzBeS+xjuGgDeXQcGGPewR7ztXQeV6j1yLrjv+VQp/+kBoJ85tvYbE9XkSVXK+9lOpeIh5Wk+Kvdv08Ls2Ju/eIPa8NKz6tDenWpwwSA1dIhTDa0sV7m5bpXjsqvbFt6aVZH0g/P+7Ad/zK96wj3qpYaX1MI3FypPyPNP4Nsb9aqOYIda+ObC7KJY/99aq781O/fBzoPqs57PsscOdR76J9AeT8ZVMBZU8eR/HZjvZ+PPBu3xeFIFgzEVjyf/y857vp1v/9XtPwLu/xM87ufb/y3t7NJwn30mxctfeQXcbnA4pLzbggVSuz0vT8p1/fznUjwdxGA+ZAjPvPgir9XXs+2RR8izWmXe556DI0d4/0tfIpVMMmvyZCgoEEP5qlXMDwR4eeVKKCzk1LJl7Ni1gyuv/AJGo1zGSy+Jr73fy752rdRpHzVKKrJNmiSXGAjAoEHwla/Aiy/KZeblyWUXFUmZuG9/+xn27XuNjRu34fHkUV0NM2ZAVxfcdtv7xGIpqqtnsXOnVKnbsEHO/b3vQWkpvP++VG7LlmFr6ZTnn0yKVz2egPIi2dffR0Nqr0fjYjg1GAZKvxmMUuNuZAUUF4Bm4JkXXuC1jRvZtmULeZVl0q+lE9wu3t/5ASldZ9bU6WAxSR33XBcfvPUXvrJkMX95bj2TCorR4wkinZ2YHQ6qFi2i7HOfQ6XT6Mkkno8/ZuJ99xFua2PvD39IKhZDpVIkw2H2/ehHRHt6GHzRRcR6elDpNErXOfKLX9C8ZQufvvIKT69Zw5+3buXve/cyZPhw9q1cSdTjoWDCBH77gx+QSqUY8umn4q/fsAGVSnHa7+fjdeuIdHZyrLGRAwcPMnb+V+D0cSntZrGB3Sn3Z9ho+OPL0N0u92bUePGy2x3yvgv0wYHdsPV1GHcxXDtfxn72Cez7gGd+9Ttee+vPbFu/jjyVgr5u8cdvfYP333+fVCrFrC9+CUZPhCGlTJg2A8+nhzn99GOcPvgR9906n29+eT6//Ms72RJvnhMNpBJhfO1H8JzYg2aQcnFRXydmm5OScVdisjgARSIaQDNZwGii8IKppOJRisdejmYw0N74Piarneeef4GNr7/JprffYvzlX8aRXwxoJKN+Nv7iGZLJJNdeN5dAV1PmfEYO7dqUvZa9Bw7R29fHiNPHSP9kDfq774CeJr35LUgm0cxW9PrtqGOfSJ12pcBgwDBrLlrFMPQP3pN+TheGaTUQDJDe9Caa0wWaxrrvL+VPez5i65uvk18wCENZJZrRiPL72K6bSCUTzJo2TbIJ4jFUKMitt93Gli1b0JIpQu+8xQc7d1JdXU04HGb79u0Eg0EqK6VUYn9Ztp07d6KUIpVKEQwGufrqq8nJycFisZBKpUhLOAW6rhMKhTh27Bj19fUopfjFL37BwYMHqaur48Ybb6SiooKtW7eSSqV49913CYVCXHbZZVJiD/D7/WzevJnu7m4OHjzIbbctxGAwk0pFiEQ8pFIxUqkYdXVLiMcDWCwuioom0dHxEUopbLbcbLk2h6MAUNhsgzCZ7JSVTaW+fi2apuH3tzB9+oM8//xLbNz4JrfeGkHTAmgaWK1upk//Htu2bSadVtx44+1UVs4kEGjB6SykoMDMtm1/Zf78N8jLq+Lv2//GmAkTqEG87DOBNcClSD11K/AwUqLNiZRr2wt0IQEyy4EFwDKkDnwUMCK+tf3PPMO7r73G37dtY0xeHkbg8sy4o++/jy+V4ouzZjEEqfO+Evioq4szus5GYO/WrRw9epSrb7iaD1s+RFc6CkVnqJPLKy/HaZGsgUdrHs36dI2aEavRytSyqaz7cB3Ty6ejK52OUAexVIzS3FJcFhfRZBSlFGOOj+GN19+g6sEqrhp7FSaDCY/uweawkWpKYTFaONFygmRzkvHjx+MwO5jzhTl86wffotnfjOZNsfODHXyxukhKsDkrpDzYkCvgix1w2c/E3250QP4kiPeAyQkxj3jejTbxuSukbnsqInXZbYUQ6+CZN9p4bVeSbZvfJm/aE1C5gPypy3E6nby/fSdE2+gZcgcNe/Yz3rZL/PNH1kDxLMifkPnnq8RznTsCbIOkZNvZ5eHScfGs60kpbWnJkW2UPPpPyaOrWB4TIcAgvvdUnGfWPcNrv/812+r+jbzCUkgEyc/Pk2v8oB4SQXp6emjYs5fxk2sAAx9s/hNf+ca3+MuffsOk8WPBZETpCk3TcBW5SCfSJEIJ/C1+OvZ3MP7W8eSU5lC9vFpKsz1aQ05JDmaHmdyhuczbMI+8YXn4z/jZvmI74a4w6USa1+a9xpJrl/Dm22+yZfMWCksLqVtSx5jqMTjsDt545Q3KppQRiAbY9/E+RpaOBAXhwjAWpwU9qfPLr/+Sg4cOUmwpxn/Gj2YySYk7o1VqqV/1E3BXQu8nUDgJYj1Siz1vBDhLBnzwVzwjZeB6P4XLHgb/abhsKc8cmcRr+5Nsq32TvPIq8DeRf+AJnE4H7xvmwxdr6bngbhr27mf88AImdL6Ap/FdTh/8O6f3/IX7vjaXb371K/z01Z+wascqNjZuZN2H65haNhWFYkbFDE56T3J33d3MrJwpvneDCaUUS2cszf7tGDQDaT3NmllrqK6oBsBqsnJ55eV86vk0W0rOYXJQ86saWgOtbJi3gTGDx2AxWga+6qUSHO09yh3v3MHR3qMkUon/jS+K//lmsZjIyRkoK5dIpDh6tJc77niHo0d7z5d6O9/+RzZNgP35dnYrLy9Xra2t/92X8T+vhUIC2jduFKT76quSBNd/bMcOmDZNgFQ4DIcOSTCd3y912+12WtvaqBg/nhEVFeS43RCJYM3Lo+FXv4JVq7gtEGDUBRfwxJ13ShLcc8+Bx0N49Wq+GYmw7/BhjAYDyx9bxaxrbqGjQ2qtL18uNdoNBvB6weWSnLwzZ6Te+iOPCMBPJgXI+3yQn5/Jn9Hh9GmpAX/nna3U1lZQXj6CUCiHwkLQNCt79jSwaBFs3HgbEyaMYtu2J7BapVT94MHw61//ijVrHsXv92IymclxuXhn40YuvnAcuF1ykpOtUFEsQDqZHKjR3twBo4ZCICT7ksmBMWldwDfIF8N4gtZTp6iYOJ4Rw4eT43KBUljtdhp27IBEittuuZVRE8fzxOOPyw2JJyCeYNTUSwkEApQUF0MihbKY+MnKlQzLz2fI5MmkolH0RAKj1YrBYkHTNPb+8IcUTp5M5ezZ2fryzVu30tXQwORly4h5PDS+8grj7rwTW0EBH/34x+R94QtMuOIKhlVWkpOTQ7S7GxUM8qu772bCPfew6HvfY9To0Tz2yCPEensxOxxoJhNXXXYZze3t2N1uXEVFfO+BB7jttlvRlC5BdJv+CHNvgYIiAeA5eRDyw8hxkiwYDQm4j0YEwLc0QX6hAHrNIPfC00HrkU+ouOYGRgyV6yOZwOpy03DnTfDlu7jtW4sYVVbCE+NKYc4tMj6ZAKtd7gHw+LLv4+vxsO5XvyYe8tFzci+FF0zBZHHQ8el2Ci+YSjIawpFfgqZBuK+d5o/ewV00kiGjp2OyOFB6ms4jH2DPK8ZVOBSz1UXb4W34O44RMRQwbc43GD58GDk5bpRKY9ST1NfvJBkNcsuXb2b06DE8/dIviHg7MNtzsDhymXX11bS3NmNxuHA4XKz64RN8vroavfUMWm4eKhiE3m60kWPQcnJRvR5UKIDmzkPf+VcMNVeh5Q0i/c7raBXD0CqGo0IBDGVDUbEI6Vefw3DTV2jXTFSOGsWIYcNwodBy3FitVnbv2onq62HhzTczauo0Hl+1Gk0plMEA3l4i72/h7n/bwr7Dn6BpGjd94QssX7GC2tpajh07xvz586msrCSdTqNnwvxMJvmCajAYSKVStLW1kZOTg8vlorOzk+LiYsLhMIFAgLKyMmKxGKlUir6+PsaNG8fw4cPldc60BQsWcNddd3HjjTdiMpm45557mDt3LpqmUVtbS2NjIwcPHsRut/OLX7wCpInHA2iaAbNZFl4OH/4jY8ZcTyIRxGp1oxS8++79zJixFKeziO7uw1RW1qDrSQwGE+l0Ak0zkkpFMZsd+HxnOH78Y6644usMHz4Mq9WA0WgiHu9hx473CQbbWbZsA6NHj+aRRx5E00DTDNTVLeG99zayfXsBFksxiUSS666/nh8+tYa4wYAXqd9uRsD3KSSAbjBSy/1h4HuZ36PAIKR8i46AdldmvxU40drKpRUVlI8YQSgnhyGA02rlnYYGDgC/uO02Ro0axZefeIJOYEZmnt+9+irP/vjHGI1GSkpLeXLdU/hcHkpzSln34TqeuvopXBYX4WSY5X9dzuqrVmMxWjAZTBg0A6FECF3pRJIRIqkIJc4SknqSYCJIjiWHXGsuTd4mWgOtlFPORWMuYvjw4dhddlJ6it5ELwf2HmDX33fx5ONPkk6liSfi3Pa123jg/gfoDnfT5e3iO4u/w/FPjlOaU8zKB29mwfyb4NgLcNFaAe4YINYNlrzMM8vU6e7ZA4XT5M2UioD3gPyeisGhZTBxJagU+D6hNVpBxahJjBg+jJwcFwBWi5mGXX/jvfd38PCy5aQSMZKhTr61+H4eWHQjfPokvzpYxaNP/gyv14vZbMblyuGdtzZy8QWDwT1UwvKUgmRYQDoapGNSW909TELVQq0SXmcwCxBNhCVgTU/I8wicgaiH1r4UFROvZMTQUnJy3GCwYLVaadi1nffe387DjywnlUqRjEf51h3f4oEHvwf+JkZNvppAOEpJSSlKKdIJxZ0X3sni3y5GpRVhT5hkNInZbibmjfHhug+pWV6DyWHCaDZiH2QnEUoQ98ex5lrpPNCJu8yNv8XPa/Neo2pBFXNfnstvvvobFtcuZmj5UAiBc4gT4vD3LX+n9s1anvntMwQ6A1gKLNzxjTu4afJNVF5eyY1fvJETx05gd9kxGo18fe7XWfTQIlobWqmcWYFV64VkECy5ch+TYci7QF5rPZVZQDfKvfafhIbVUvvdPVzqrgPUr6B1xL1UjBrPiOFD5f8xGtZ4Ow2vreC9JhMPP/IYKXsxyVSab33jKzxwz51w7HXo+BA+9zx07Obx9f+G78TfWfP7v3M07GHVjlU8WvMoI/JHEIgHCMQD/GD7D9jYuJEFVQtYc/Ualr+/nMcuf4ytTVuZNWIW5e5yukJd5NpyMRvN7GreRWlOKT/e9WMeqX6EYbnDaPI2saZ+Dcuql9EaaKUyt/KfQDtAKB7ijnfuyJ7v1etfJceaw391C4Xi3HHHO7z99jHeeGM+1dWV2O0mLP3fgc638+3/kqZpWptSqvzfPXYeuP9zOw/c/4taP+O+ahU8+ui5KfP9x9rahJ7euVMeIxFh4O+/X5BzLCaAtKcHmpslkt1shrvuGlgQ2LAB6uth3DhB33a7nCOVgj17YMIEAs4S2js0Vq6UKebPly7LlglQd8l3JJJJuYRYTNjxSAQOHICSEnjySek/dKicPrNGgMUCK1YMXM769WAyDSwCPPOMYMD+9QiTSZ6+2w0nTwrb/8ufpzEZFFo/MK8oBn9IwPkFlXCiGSpLBMTrukyoFATDcj/auqRfPCFM+ohyYdV1JQn1rZ0yPp6QNPpkSsD+iWZJoR/kBotZgH8oInOajLIIoOTGJPQ0nv37sQ0ahGvYMCJtbTS+8gpVd95JpKsLR3ExzrIy0DTCLS3ZY46yMiIdHThLS9mzYgXNW7ZQee21THn8cfmSA3g+/hhHURHOsjLCra00bthA1Z134qqsJBkOkwwGMbtceI8dwzFkCI6SEiIdHTRu2MC4O+7AVliIyWTCrOloFpukyf90FVw0Db52P3jaoe5P8OW7IOiXxPg5t0jK/MYNMHs+FJcLwPd0wtiLIL8A/F7IzYeudkmmH36hJNKTWcHRNPD1wdu/FQZ+2udh4T2ZpGYdTh6RlPu+bvRho0lbzKAgnY5jNFnQDCY0TcsC9QtqvkIi7MNktdNzcj+FF0wl3NuCxZGHPXcIqUQEz4k9FF4wFYsjl0TEj+dEA4UXTMVgNHNi5+8Y87lvkUpECHlOE/V1UlL1Odo/+SuFI6eQiodx5JegdF2+uyfiGC1WNM1ItK8dh7IKIK++Ci1/kPTz9qHX/w1D9VXgcKJZLOgtZ8DbizZiFFqOG+XtA5MJ5e1FG1KSWbiwgUFDM5qF1ZO7Bt4+QKHXb5cUepMZYlGw2SGVRN8hCwLK70N/7ecYbr0DzZ2HCvrRK0cQSySywNvtdlNfX8+sWbMwm80kEgnee+89Zs2aRTgcZmeGodd1nd27d/P5z3+eVCqFpmnYbDba2trIzc0lLy8PpYT903Udr9dLfX091dXVsnhVUkIkEsHv91NeXo7RaETXdQKBADt27KCmpob8/Hx0PYamgdd7kp07n2TGjKXk5JRisbhIpWK0te3B5SrB7S5j3bpiqqoWcMUVj5OTU4rffwa/vwW3u5ydO1dTXf0I+fkjSafjtLY24HQW8uGH66iuXkZ+/nDOnNmB01lIOOyhqGgS4XAX9fVrsuNSqSjBYEdmLhkDGgmzk5DBgBHoAFYjLHoxwqyXAU8DTwEp4BOEje/M9H0ESZ+/LzOuMLP9MFLypRt4F0mMX46A/TPAC8BawIIsFKSRP5Mowt6vRBYCDKkEqWSY72z+DvdPu5/K3Er2tO2hxFWCkncQa+rXsHTGUkYXjEZXOkbNSFqJksKgGTjee5yX9rzEM7OfwaAZiKfjNPuaWfvhWpZVL2NE/gh0pbOodhEzK2ZSXVFNR6iDqeVTsRvtJFWSnnAPDrMDu9lOT6SHtJ4mkopQVTAKix5H27cECmdC4RUQbRX2XTNBvHcgLb5gqjDs6aikzzsqwVEmAN+cATYGS+ZYBeSMhOBn0PgkVD0CzpEQPCJsfeFMSAbg44eEZR+2EC5dD9F2MOfLX9dH98Elz4CtCHxNAtIt7rMAelK2XeXCuqdjkjKfCELfMbAPgpwK+Xs1WiGdyIwdKuBdTwiwBxnzj4sArjIw2eTc0R5Jtc8dkZmnVRLuU3HiKQfvfKuWGQ/PIKckR8C420oiksA52EntXbU0bmykakEV162/jmhPFNsgG4GWAPVr6pmxdAbOIU62fW8b1710HZvv2UzN8hpcJS7QQNM0Wne34ix0EvaEyR+Zjy3XhtFspG5JXXbuK394Ja4SF8lwkrg/jsVtAQXvPfwes9bOwmw3k4wmseVaMOu9UhXAYJbHVAyMFrlX2x+AS+6T54oO2xbBsY0wZgF8/iW5X3EfOIogcBoaVsGUZeAqkfucjEAiAPU/gNKZMOpLEOmEvWtgyiPyGmkGYf1TcXh/CRzbSOKmOnoHX4Q/7qfYWUw0FUXPfNb2RHpYvXM1j9Y8SrO/mYrcCirdldy16S6W1Syj1S9p8sPyhmE32YmlYtyz+Z4s+F4/Zz1L6pZkf98wbwN2s/2fQDsMMO79Cwj/Hrj/r2j9jHtLi5/ycjerV+9k+fIaLryw4Dx4P9/+r2rngfv/ZjsP3P+LWiIhCNhgEHRr+YcP8mhUwLWuC0J+6CEB7Lt2yc9zz507R14e7NsH06fLuIYG0ZqPGgXBoOjaS0uFze/okJ+pU8FoJPHRJ/SOq0bXNTo7hXVfulQuo7hYHj0eAefPPCPrBKtXyxrCsGHQ3Q3vvgsffwwvvDCA2Roa5BRnzsi6wtSpsm6wdKmIDYYPFwx87NjAOUeNghMn5FLvvVfKz935zTR2QwJOt4sUvjAfhpYKOI8nRBLfD64BEikwZ1b3E0kB6UajgP1oXGTzLRmwbjCI5D6ZFJDeL6M0GgVcJpIDfW0WAfrxRKa8nABr0jopPY2eThPzeLAVFLDniSdo3rKFYfPmMen++0lFIlhyczFaLOxbuZKCCRMonjEDR1ERmkFKnoVaW4l0dDB44kQMViuhtjYaX36Zsd/8Js6SEgxms1yvrmfHBM+c4cgvfsHYb34TW0EBH69dy5QnnpDj6TSa0Uj3wYOUXjQJzdMBm/8koNzrgUFDICdXZPJ7P4AfvQqetgH2feho6O2CoE/k87oCT4dI5ufcAp81wtQroOmIjHn3TSkbV1Ak91HLLKDoaVkQyMmDZFzA/NbX4doFIsMvG07a6aL9079RMu5zKHSUnkbpaUwWB3oqSefRDygeezmpeIRkTNh30OhofJ/BIyZjtDjQNI10Ko7RZMVgshDubcVksWNx5GaBuK6n8JxoYPCIy7A4cjNgNIXSdQxGef8kY8FMn8mk4lHsuUMwYkSvfQPVeACt6iIMV1wDenoAQN/2LbTiMojHBJQrHf3ddwR8u/NEPq5pqN6eDOteiTKZ0ZSO8vWh1/8dw6x5aGYLevNJ9Nd/jWHB18+dMxGHWBQVDmEoq0Rva8ZQORy9+RRaUSkJq426ujrKysqYMGECdXV1VFRUUFFRQX19PTNmzKCtrY0JEyZk/WHt7e0UFRURCoXIycnBaDSSSqWIx+OYzWa6u7upqKigubkZl8tFfn4+mzZtorGxkaqqKubNm5dl8BOJBPF4HKvVSldXF0VFRRiNxuwxs9kApGhp2YXTOQSbLQ+nsxClIBzuwmx20t19mPLyaWzatJiZMx/G5SrBbHZQW7uI6dMf5MMP19HYuJGqqgXMm7eBcLgbmy2fzZuXZPdff/2reL0nCQbbqaiYCShaWurZuPEmxoy5gSuueJx0OonF4sThGEwyGeGvf13GVVetRnMV49c0cpBSb28B+xBgrfd/dGd+DgGXIVL37wAXA9cA+QhIvwF4HBgH1CJS+9XAUmQhwJAZuxiR5M9EFgDKERD/FOBA2P0uZCFhRjJKLOZDofCEPazeuZoHpz9Ib6SXmZUzaQ+2827Tu+xp28P6OesxakZi6RjeqJdoMsoQ5xDu3XovS2csxWgw8uTOJ1lWvQyH2cHol0azoGoBL899GQ2N5kAzFqOFU95TTBgygXAyTJFTbEmapqGUIpaK4bA4MGBAodCVjttoQktHBbT1fQz5VcKqmnNF/u7ZDYMvyzDdGnx8P4z6tgDsdFRKwQ2eJkC/e6fI5M25YBsCnp2w82YouwGm/Az23AVVy8BeApoFImektFzVMjmXOQ+Mdti7GE7/XgD91F8JMNc0kbdHe0Qm379tHyyS7yzgzgB5o0UApNEO/YypAlRaGGaj9Sxm3iQg1FWeeZ5pKTtnzZSTC7WCqxTSKZlLZcqlGUwkE4re433kD8+n97PeLBgvGF2AZtDoO9FH/dp6Zq2dhcVpAQPoSZ1NizdlQffs52YTaAuQV5mHyW4S2b1RIxFMYHFa8J70Uv+0zGF2mNGM8r/Md9LHjlU7qF5WTe7QXAwGwznX4C538+kbn3LhjReSCCawuq1YckxYTTEInBQwfeVzEO2GvWvh8jUC5jv3QFm1gPBwu/SbulxeI3uB9NGTcv/jPpHQp2LQsHKAmfeflIUPWz7EvGJRsLgE8KMgGZXFkmQIEn5C9iLu2LT43MWnsqmYDCY+bP2QS0svxWF2kNJTJNIJLEZLdnEykAhwxHOEmRUzSepJzAYzsVSMhrYGhuYOpcxdxknvSdbUr/knMJ5IJbLzWUwD++LpOFaT9V8C2vtbIpEiGk2xaFEtGzc2smBBFa++ej05OdZ/2TWcb+fb/9f2HwH38x738+1f0xIJOH5cjN6plPz843GfT/osWiT9pkwRdDtrllDbmibHy8qE/vb7B1DykiViMB82TOYzmQQNnzolgLSjQ8YsWSKIumAQLpcw6263gPBnnxUQbbMJuH76aWHNg0EB7Rs3ymXF43KKL31JQHs8LgKBU6fE/3733XIZFRVyuqYmERkoJfXfYzF5Whs3yqNScnkWizzN2bOhu0dDGY3CtBfmZ9j1DIh1OQSIn+kQoJ3WBahrmoDsMx0IatOl75D8gXrv8YSsMrR2Cltv0KCpFZLCTmW97v214TPyesxmYeNjCQGzGVAWbm8n2NyMZjRStWhRti573Ofj8Pr1RLu7Abh0+XIqZs2i8Wc/I9TaSjqZJHDmDPbBgymYOJGeQ4cItbRgtFho3rIFs8tFtLubPY8/TrilBc1oJB2Pw1le+CO/+AUGo5Fxd9yBpmkkw2FiPT3oySSDx46VG7v5T1nvOReMh7wCMFkEQF92ObjzRA7/7ptQMRL8fbKdXwjBgNyTra8PzHFpjcgfR08QoH9gt/jbezvhN89DZyvEo8Iw/+U3csxgFLB+zZeEpR9ZBZEQWsDL4JGXgcFAKh6m88gH6Okk4b42UskopROuQjOYsDjzcA4qAzSUnqJ0wlWY7bkYTWai/m70VIKovxuUwmxzkUpEScZDtH/yPrqewmAwCdA3WUjGgrQd3kYyGkClUyRjwQxrL3Xce099jGNQmQB6o1Gk71UXYZj5OdTJ48J+l1XKvophEPSjb98qixQGo9Rw3/HXLGhHKVQ4iFZUiopGIBFDAZozB+O1XxBWPhRAKynDsODrA3N+8B6YTGh2ByocQnPnokxmDJXDUeEwWkkZmtWKIZ1ixowZtLS0kE6nqa6uZuTIkezevZvKyspsTfZkMsnmzZuzcniTyUReXl4WZAeDQbZv3044HM6CdqfTSW6ufJGvqanJ1n9PJpP0L+z2jwsGgxQWFrJ161YMmQWmDz74ADBiMJhxu8tpaHgei8WFrqdJpSJ88MGPCIe7qKiYgcFgYt68DQwaNBqLxUU6naC6ehnhsIfq6mVUVS2gpmYZ6XSCpqZ30TSN2bOfY8KEhVRXLwfA6RxCWdlU+vqaaG7eSWnpZSxefIiamkc5eXIbO3euwuEYjFI6W7feR0nJxZhMtixr/RnClM9E6quGEAAdBu6XTxSKkTrvTZk+M4EVCPh+A2HKcxDP+1QEtG9EPPMuxEOvIcz7LYhnfhIC2qdk5lkM9GbmmQKQTvDQtodI62lW71zN28fepjfSy4yKGQCc8p6iuqKatbPWkkgniKVjNLQ2EE1GcZgdmI1mXp77MqMKRtER7ODB6Q9ma1UvnLCQ52Y/h1KKRDrB8LzhlOWUMbNyJl3hLn6w/Qc0B5rRNI3ucDfN/mY+7vxYFoFQpPQU/mgPhJrgwEPClhdOE9AdPgPRzGfxkGoB9Z56AdoTV4JjmABzowNsJVK7PXBcfOnOSqkJ79kpzHv1GwLM4z0DNeDJ2HcirXDZT+WxbiLsuwdQMOZ+qFwAYx+Wz7F0/Kza7YP/uY67hly/JUf6Wt0CzI02AfDxQNbqg8EozL2mZfpn5PPuYQMy/FC7jFdkvOAjBMibLBnrkVHm1QzoKR2Ly4JSivo19TRubKR+TX32PuePyGfuy3OJeCK8c+c7eJu86CmdmuVS671meQ1mh5m8yjz0tE7v8V5qF9XibfLS8VEH6USanU/upGxKGcH2ILWLavGd9KGndAJtAa578TrMTjMGY2ZBuTPEsbePUb+mHqPFyLj54wh1hti+YjvBjqC8lgaj5AKUzpTFjYbVUDwFwh2w/X4Ycom89p5Dslhz1U9kcSQZhve/IwoFpUst+I+eF9tEsBma3pYFFXRZ6HCVy/3SDLI44jshCx7RHmHhNQ2iHqhfgRFYVrOMa0ZegyfiYXr59Gz+xhnfGe7ZfA8pPcWSuiV0BDvkbaGnUSiiyShTy6ZyyneKxZsW0+RtoqGtgYrcCobnD8dsMDOmYAyvXP/KP4H2f8/PbjFZyLHm/EtBO4jv3W43sXx5Tbbuu9V6nm0/3/7ntPPA/Xz717REAqxW8a7fdZeE00Wj5x73+wcQ7dNPw5e/LDrzykrRpnd0iAc+FoMPPwSnU0B5P6pevVoA+8mTcM89AtRbWgR0TpkC69Zl+yUvGMvJkxqLFsllHDsmYXPhsLDenZ3y+9Gjsk7w8ssC2mtq5DJWrBBGPhQSln3KFAmvGzFCWHldl6cyc6Y8bbNZFgVeflku8bnnYOFC8dabTLL+4PFAa6tcttOJgGi7VfzrNgucaIH9jXK/WjqFAU8koalFHvv3lxdlQukMA48jK2D8BQL44wno9QkwTyShu0+2QcD+yAq4rApGZhb7cpwC9PvBvK5DMIyeShHp6MA2aBB7f/hDrHl5XPzggxjNZj595RWat2wh2t1NuL2dPU88QbS3lzFf/SoGsxnNYCDu86Gn08R9PgZfdBG2ggLsgwdzxcsvYxs0iEhXF21/+xuNr7yCSqcxWCz0HD7MJQ8/zNx33mHy978PBgO2wkJ0XSfa3c2hl14i0tGBnvE4c92XBaDf/C1h0n//koDpwmK4+Q75slr3RwHm0cjAdt0f5b2ViIlsvn+OQB/8fr30HTEOHv+pyOU3ZcZtfV2OGQwC1L0ekdLnDx5YEDBo0NeNIRLGYnWhaRqawYQjv5Sepn2YLHY8JxpIxkIkY0EhuIBkLEDU343SZZElFY9itrvoObkfs90l2VZWB478EjwnJPAuGQ2i6yl6Tu5H11Mko0H8HcfoObkfk9WBZjBiMJoprfo8wy77IiVVnwelk4pHUOhoeQUY59wErhxUW4tI1k0mYd9BwukaD6DXb0czGtEmTMZwzQ2ABrqO3tosYDwcFIAfDgmYj8dQRiOarlB9PRAMYqgcnp1TKx8KqRQqEkYrKoUcN3h7SNe+IQoGk5l07RsY9DT5+fnMmzePzs5OlFK4XC5mzZrFhAkT0DSN5uZmwuEwZWVl2aC6cDicBdgA4XCY6dOnEwqJ99TpdJKXl0cwGGTTpk04HA7mzZuHruvE43EqKysFZNTXc+zYMUKhEBaLhblz58prk0oxa9YsdF0nnU6yc+dqysqmEAy2U1d3N8FgB2VlU6ivX4OmGfB6T1Jbu4je3mPZj8ScnBKGDr2c/PwRzJu3AZerFKPRQmXlTOrq7iYS8TB37k/Jzx+O13uSrVvvIxBowWp14XQWsnnzElKpKHl5wxg0aBRz5qwnHO4mmYxwzTXPMmHCQgwGI7pSuBDG/GGE6dYQZjyQee9Nz2z/GAHiqzP71wBvI0F01cBQoBF4KTN+GQLivwfUZ8YYgOEISF8B9CDAvR/IzwTakEWD+wGT0cLaWWtxmB08N/s53lrwFqU5pSypW0IwHmRa+TTcVjcui/wtNbQ2MMQ5BLvZjtPi5LTvNIs3Lea07zQXFV/Eug/XUe4ux2Kw8NO5PwWgO9JNWqUxakZCiRBKKbrD3aybtY4hjiEoFIXOQhxmB1PLpmLQDKT0FLtbdzPElovWuApG3SOgfM8iAeB5EyDWJYArHYXeBpGsGx1gcgnjGu2UoLpox0ConJbZv2+JMO+RFpHFOyohFRUwXrVcgHIyKPJ7jAL+y26AcQ/LK+gaCVNeFuCf6MtIsMMC/nIq5LpMGUCtp8B3Ul4hx5BMOJ0u81j7AborA9yVAHUQoG8vFADubxIG2WAGo3kg9E5DAKrSZS6T/SwgKqFiBqNGIpSgbU/bABh/tAaD0YDVacWaYUt3rNpB48ZGdq7eSTKSJHdoLlc8fgWnt5+mbkkdRquRuD+eBf87V+/EOcSJ0hVz1s+h6pYqdj+7m8aNjexYtQM9qdP3WR+bv7MZ5xAnvlM+ahfV4i53s+CtBcx+bjYGkwGT1YS7wk3l5ZXsfna33O/AGahfAWUzhQGfugyGXSPMevEUYdm33SmBfs4i+Ovd8j7Ys3rg+N/ulftSvQqCrbL/+jfEYrBtEYQ7B1h5xxAZYy8UaXwyDJEueT2cxfD5l9ANJspzymXxqWImzYFm7q67m9P+09wy4RYerXmU+pZ6fn/497QEWjjjP0N9Sz3N/mZO9J0gpaewmWy8fextVu9czWDHYFbtWIWudFxWFy6rC7fVfW4QXTqRDcRbtWMV8XSc/+5msZi48MICXn31esaMGZwNrzvfzrf/Ce08cD/f/jXNYhFE+uSTAyA7kZCf/uO5uaIdX7hQYt6NRkHFTU2CfEtKJESsr08QsdMpXySWLRMz+fLlA3PNnCl0+JQp0NsrNHp/av0jj5BKa7S2woMPipS9q0vY8PZ2GdLSIiD6xAlh1FMpuQSlhKF/+215KgaDPK177hF1v8k0EHK3dq2w8iDfgRIJsd6fOSP71q+Xc7e1yTi3W8Z6PBCLKjQQhvuzM/I4vAwK8mRwZYlI5RNJKC8eAO4jysFmPXdcIjWQMu8PCdM+bqTMYTQOMPogfvZEUiT6/Sx8Ki3H+/uZjOByYNA0CiZOJNbXx5jbb8d79CipeBw9mcyy74MnTqRxwwY66+txFheTU1mJZjKRikYZPGEC6HpWLr//yScJtbaSf+GF7Hn8cRxFRVQ/+yxVixZlZc55o0YR6+vj8Pr1xPr6MNntmKxWNMgy8Y2vvIIej2MwmaCwBG5bci5Ar/ujvKBv/FyQxJxbBJjbHbI97fPifbc7oPUUnDoKN9wuKzB9Hvji1+W+nDwCDhdYrCKXv+xySZ9354kXvh+oA3h7BoB8WofhF6IHfeh6mkTERyLsI6/0QkqqPo/RbKO06vPoqSQ9TXvRdB2VTpKMhjBZ7bR/8j7JWBCjxZ4F6J4Te9CAjk+342s7wuCRl5FbMiYD4huySfGO/GJyS8ZQeMFU9HSSRNhHOhkl6u/EkV+KZtCIeDvR9SThvg7hYpVCdbRhmDJT0uPTaTSHExUJDzDyNVcLKJvzRTSjCb35JMrvRSsqFgC/e4eE1TlzBJB7e8HXR3rzW7LPas2EFxowVH8ebdxECAZQfT1oJpMk6JvMaJUjUKEQmsGI8ep5pDGQTCZJJpMUFRURDodRSmGxWLIJ706nk0AgwIgRI6iurkbTNJxOJ4lEAl3XUUpRUVFBJBLB7XajaRputxtd1wkGgxw+fJitW7cC4Ha76evrw+v1Zhn+xYsXU1ZWRmtrq4RwJZOZv3mdaDSK0Whizpz1VFXdQiTSw6xZ68jJKaWq6hZqah5DKcXOnatpbNxIff0alNLZvPkePvnkj8TjAXp7j1NXtwRdF5VSINDGsWNvs2PHKlKpGMFgO4FAK9OnP0gg0Jr1vjc2bmTHjlWk0wnc7lLq6pYQi3lJJqNEoz3U1d2Nz3cGk2YgggDoUcBkYCfQDJxAAPbNCNu+HqhD2HYD8BwirS8DFmXGTEOk9n7gAuBnSODdRQhTfycQA1qABxGQ7sqcZyXwJSSorhVZMAhq8qXbE/FkE7JX71zNlLIpdIY6WbxpMU6Lk1AiRG+kl5qhNVww6AJKXCUE40HW1K/JggpfzMfGxo2s3rmaSDJCNBmlPdjOiu0raA+2k1Zpciw5GDUjFxVfRHe4m/0d+0mlU/SEexjsGIzFaCGeilPfUk+Jq4SuqBdVtRxcw4QJ7wfgSb8A7tDJDAgfci6THmmG0AnxpBfOFEA+7mEBwUfWyD6TGwqrRUKvxyV9fsorIpNP9Il//qP7xEOfMxImvwC2YgHikTMQ7YJYJ3gPy7xWtwC+uF9Ata8p422PCzDXk8KsQ8Z2FRCZu2aUOTUDYgkyyrF0TICnpgnbbrQhi3YpYfUtObIgoCdlP1pmjnObnkywc/VOeo/3Yi+wc8XjV+AY7EDrt2YBRotxANQvq8FkN9G8s5l0PE3LrhZmPDSDcHcYs8vMjIdncGvtrcxZP4eC0QUEO4PULakj3Blm1tpZVC2oYvr3ptO+r52qL1cxZ/0cNE1j15pdWcBfWS3VKbxNXmoX1RJoCXDhjRcya+0sDIaksOPHNgpQ1zTIvUDY8avWw4W3wP5n5XjDamHXS2eK4uDK52DY7AGAH+mED5bKWKMNSqbBnidlbLB5YIHAf0rm2L9OWPlQG5TOEFtWqIsE0OQ7xd11d3PSe5K0SvPkzifZ2LiRJ3c+iYZGsauYi4ov4siSI1RXVrNm1xoKnYW0BloZ4hzC3va9DHYMpuOBDp6b/Rx90T4erXkUq+l/LTO3GC0sr1nOgqoF/699/5XtHxPnz7fz7X9KO+9x/3faeY/7f1GLRIRpX71awLbDIXT3hRcK2O4H8um09F22DH70I0G3iYSkzE+fLt5so1Ek721tAtL7A+vCYZl/6VIxjUciMH68IOif/ERQ+J49hK+cw4kTWvZSWlth3jzB9Y8/LmDc6xUbvd8PQ4bIafvt9R99JMr8ykoB44WFsj4webJcbjgsMny/X/qDWPa/+10B5iNGDFS8i8clq++FF6SfpoFRS2Mz62j9YXPJpADvf2yxhLDg/X70/j/n/oR5k1HuTb9HXQMCYQmi6w9My3jICUWkz4nmAV/9qKGZi0Lm7k+3Ly8iiY4Cwv2hdIsW4aqoEKCX+VzRDAaRuCtF1OORkLlFi7Dm5+M9coSCCRPQjEb2r17N6dpaKq+9lglLlrDp+uuzgXWpaJTD69cz/q67MLtcWS995bXXcumjj9J76BD548YR7+vLzh/t7qZk8iVoelpY9guqJD1+6+sw9zYoLBqwGCTiYDTJTyolL4DBAKnM+yzgE+l7YTF0dwjwX7BI9m/ZKGDfapPxdoeM/83zIqP/9nKR6CdislAw+2aZRzOQ1lPoGkT93dnwuZJxV5JKRCVgbuQUzI5cshkEKNo/eR9/xzFyS8ZQOmEWyYgfT1N/OJ2bdDJBPNgjgXOKzGubJuLtwGR1YDRZMVntKAURbweOvCIimXJznqa9DB5xGSarg1jAg81diKbAaDSjpdLo7c1oRaVoFisqlRR5vNMlb2CbXfb7ekVOP/0K8aVXDANApVIiga/fjmHGleDMQd/2DurYJxgXfw/N7kBva0YrLkMzm0U+23wSzeFE//DvGKo/D2aLLBhANiBPzb2Zvkwg3OzZs7MBdDU1NQQCAfr6+hg5ciQulyvrUU4mk1gsFuLxOKFQKBs6Z7fbs8C7P8QuPz+fYDCI1WrFZDKxefNmrrrqKgwGA2azmXQ6jaZpRKNRXC4Xuq7T2tpKTk4OTqeTjo423O4EO3euYvbs5+ReKD2TJp+bkcUnSadjbNu2lBkzHiI3dyiBQDPGDKu1ffsKKipmUlExMxM2t4xAoJXc3Ar8/hZcrmIMBiM7dz6ZCZ0bic93kh07VlFT8yh5ecN55507OHbsbebPf4PKymrC4W5iMR82Wx6WQRdwXNNYgzDkrUjAXC8wAQmPsyIM+EMIO+4BViHBdCOBbyOy9msQEN//cXEaAfNTM/PsQhLpRwNJoAGoQBj4byGl4m4Egois3gQQD5OM+7Kp8DnWHE77TmMxWlixfQUbGzfS9WAXbYE2cqw5FLmK0JWOhpYNpnuq/ikerXmUCncFXeEuipxFxNIxnGYn7cF2tjZtzXrkdaUTT8fxxXw09TVR6Cxk3YfrWFa9jKG5QznjP5P12XvCHqaWTWWQxSYsSKgJjqyFi9YIk64ZxLO+8yaRuzsqoHEVjH1QAuasg+HoMzBlQyYfQ88w6RmtQzKY8ck7wbNDxlsHw0f3C+sebZPwusEzBexXLQfnMAHUfftFdm90Cst/dhCd0SxA8OzAOKUkzd5gIVsGrn+bjGddT4oEvj+cLhEQqXd//388ZrRCwi/e7LwRmf8lmX+ImSojAKl4gt7jPowWE9tXbM/61q9/9fos2w6QSqRIx9MYjAbSqTS+Uz7MDjO2PBsxX4xkLEmwNUhldaV411fvoGZ5DYG2AH2f9THympG4SlwoXZFOpjFajASaA1mPu2Owg3cfeJea5TW4K9yEu8LnXM8Vj1+BLc+GhR6suS54/x6Y+qgsWqDL89zxMFz2ENiHwPb75HhOhSgS9j8rHniz89wAuqa3hWkvqwYM8trsWSWLAH9dMhBsN2uD5AgEM7kC+9bC5WvBZCeAxp21i85Jcj/pPcnqnatZVrMMp8nJEOcQwskwAE6zk7RKs7t1N5eVXsbe9r1MKppEIBEgx5KDQTPgNDuxmCzYTLZ//u5xVvvv8rOfb+fb/9R23uN+vv2f0RwOSYb/2c9ke8oUMX/3m8ZBZO6LFgn1fc89kgK3Z4+w6zNmyPG77xba2m6XWu133im/FxQMyObXrBGWfcgQSZBbu1ZAp1Jw2WWkk3qWcW9tlUvpJ+0rKgby8fbskUv97DM5rccjWKif8DeZBMC/8AJcdJEQh4GA1GQPBqX/Qw/JfKtXSwm5mTMHxANLlgwE32ma7Dt+XPJ7NBB2vN+PrpDrjyWEOYeBOu79UvdASAbmODMLHAYB9LkZmaOuZFtDtptaZH9TC3za9M/sukbmvmVen1AEerwiyTcaQSkiXV2M/cY3MNql3JnSdfREglQ0SuDUKanB3tOD0WZj7Ne/TqS7G6PdTsGECfQePkykq4uLHnyQymuvpequuzDn5Mj2okV4PvqIWF8fE+65B39TE0qpLJs/9hvfoPfQIaz5+Rx4+mlsgwcz9hvfwF5YyOCLLkI3GFCaBnO+DKeOib/9q/dCwRDxov/2eZG1+/rgDz8RoK6nJYG+pwvCQQHyLrcw97o+wNrHogLa+xl8uxPeeFUWmOIxAfY//hVUXgB/WC/nGDlWGHc9E/llFN+dI6+YnpP78XccI51KDDDkTXtIxUMko8HMl3oovGAquSVjGDziUqKZMm5lE67GbMuh45O/oQEmm4u2w++h9BTJiJ/2T/6K2Z6D0WRF11OE+zpA03DkF5FOxnEMKkMzmnEMKiMVj2AwmmSfphEP9oA3w4wXl0E0LIBa0yBvEKqrg/RP1qA62wAFRpPUcG/YKSXgdB3V14tmNp8rqzcIs26Y/zVIJUnXvSXp8yhUKIhKxCWE7sO/oxoPoAJ+SCbQW06j6QqsVlTTUXSl2LFjB42NjcTj8Wzt9h07dmRD6rZv347f76elpYWDBw8Sz3zeJBIJ6uvrs7XeE4kETqczO0cgEMDn87F9+3YikQi6rjN37lysVivd3d3Z1Pm2tjYsFvHnptNpioqKsFgsmM1mKitL2blzFY2NG4nH/WiakVCok+3bVxAOd5FIhKir+zaRSA9z5/4EpXTa2/eSlzeMnJxSnM4i5s59mQkTFmK15jJr1jqcziEMHXo5bnclubmVWCwudu58ksbGjezcuRqlUtjtBVx55Q/JyxtGS8suqquXs3jxYUpKLiGViuNwDMZmyyeViqKjspL3doTtHoZI3w0IkN+JJL/fj4Dqs9nyFCKZ7/e7n8z0aUNAeyHiiw8jrHs5sgiwFwH7diT4bhkw/6x/FwoJqrNn6rav2L6CzlCnMIfOYspyyrJMn9loxmV14bBI8FZKT6ErnWAiyOiC0WyYt4EReSNoDogk+Iz/DPduuZeT3pOc6DvBzAqpba0rnWQ6id1kz3rdPWFPVjqcVuKzP7tOtt1sRyldQLajUvzm8Z4ByXz+RQLaC6YKaG/eCEfWSep8vAfGPyaMejouTHzoFJjdIpc/vEIY+XR0QDaf9EPb27I9eAZU3gLHns1431cBaQHZ+ReBr1FAvGYQ0B7tkUcMAvwGjc0kn2cyKVIxuQ49KeA7HZOAtHScTNql1CsH2W+0ZmTvRgH5rpJM3fcmWRxIxyV0LXd4Jlg1IIFq6aR4tVNilzNZLRSMKSCnPOccqbzpH7zJJosJa44VzaShoZF/QT7OIicGswH7IDv5I/KpmFGBSit2rN6RlcRXzKigYmYF21dsx3faRyqWYst3tqCn9HPk93pK54rHr8Bd6cZgMmDNtVK9rJpba2/lupeuw1XiwmQ3YcgZLIFyV62X++dvEml7pFNY9IbVonC4+mU5rmlnSeg7pG/UI5L4qcvOlcf7m0ReP+tnYjuYulxA+5RH5P6bHMK8ny25f/8eDJqBZ655hiNLjvDMNVI9YUT+CH4272c4TA7iqTiaptEV7uK+rffxWd9nxFIxJgyZgI7OzMqZdIQ6sn9nBs0AGv+voB3++/zs59v59v+P7TxwP9/+tc1sFpY9GITf/W6gVhoI6Fm1agB4DxsmhvIJE6R/On2u1H7IEKGtly4VkN6f7taPwI1GMaGfOiXnNZvFvP6d72AyKsrLFevWCfBWCh54QCTyqZRMZ7XCpEly6mefFcBtswmQ1zRh2aNR6Xf//XKpS5bIsVWr5PRPPy2LAp2dcmkul4yJRqGxceCpOBziCtA08cFbbAjojCdE/m4xZZSGGTbYaZdvtqOHind9ZIXcw1yXMMlNLdInmRKpvK5kvzYgPSQYlrk1TcYPzpd7bDZKKTmLWRYJmlrkOgL/ILMHNJMJR1ERR375S9LRKMlQCM9HH4GmYbTZOPab39C8ZQuRjg7SsRhHfvUr8seMIR2LEff5yB8zhkhXFya7nSmPPy7Sd7udyx57DKPNhq2ggGjm+KCqKuJ+P46SEi5dvpxYby+O0lLiXi9j77gDlU4T6+0l6vGw5/HHSQSC4qEcXAy3fwdQ4k9PJWHL6+f62oePETn7qaOynZsnTPwf1os8XtflC+rcW+HeH0HuIPjKvXDvD2WfyQRf+a7I5ltOChv/x5cFsA8fI0z/5GqRzv/2Behuh2ScqN8DmpYF5EaTJbtdeMFUQp4zeE40oCHslNnupnT8VZL8nifMvcowV4OGX4xmNGWB/zmLACcaMFntGAwmElEfyahfwuvSiWzgVG7RKOy5hbR/8leS0QCayYIjtxh9519RjQdkQcJkzqa74/dhqBiWCaobjvL2om/filYxDMOseSiTSZjXcBCVTJ4lq78KLFa0/MEYKkeg78jMbzRCMDAQdoeGYfYXMC55GMPQEahgAM3pIr31L2CxYvrOMjAamTFjBhMmTMDpdHL99dfzwAMPZP3l/cB8x44dlJeXZ4G8z+fD6XRyzTXXsGTJEmbPno3NZkPTNK677jpuvfVWysrKsosCfr8fXdfp7e2ltraWIUOG4Pf72bJlSzbsLpVKYTQasVgsWfZe00zZcDmrNRej0Ux9/ZoMyH6SWMyXlbQHAm1omsaQIeM5c2YHXu8pNm1ajN/fTDTqxeEYjMlkpaPjI3y+0xgMRtzuCpzOImbPfo4lS44we/ZzpNMJjEYLTucQ4vEADscQ8vNH4nQWYjLZCARa2bRpMclkGL+/BSMazyGAezpSvi2JhNOZGAiJ8yIe9jKEQfcgbLkZkbr3+9PXAj7grwj4d2f2G5GUeiPif58J9GXGasgCgZ0B7zuZawqj0xnq5MHpD9IZ6kRXOnvb93Ki9wQj8kawYd4GNDQKnYU4zU7O+M9kfb12s51gIkgynSSWjrFqxyoKnYVZ8L22fi2TiiZRllOWZRnNRjN72vbIQoye5pKSS3hrwVssr1mOUTOydMZSFlQt4LGax7Cb7ST1JAaUAOq9iyFw9CyAvgaSPiicIZ8f45aKJH78owLACquFIQ+dOMvT3izA+8iagTn0WAbsTxUv+w0nIf8SGRPrFIZ/2EK45DmycvSkH/KqxGcf7RgIossdLp+FBnOGEQ8KwE4ERS6vaeKDV+kM2O+T4waDMMWBZgHn/X1RwhzrCQHv6URmgaBdpPL9+/wnB8C8SkufYGvWImOymrG6rBRcWMD1r17P4DGDMf47MudUIkXv0V7eufMdfE0+TDYTJqsJg8mApmn4m/20fNjC7Odms+TIEmY/NxvgHN97zBejcWMjbQ1t5wTcpRNpnIVOSVpP6VIbvsJNbkUubXva0FM6BpMBXTcJux7tFZXER88LmDY7YcyXRQ7fXyIuFRZ2fcojAx74YxulBFwyJIF1ZdUD8vg9TwIGaNslCxzOYlkgMLvEgpCKQvsuKR93lqdeQ0q+rdi+gt5oL7rS+famb/Obg78hpacY7ByML+bj6fqnmVkxE6fFiUEzEEqE6Ap1oZTK2krW1K+RhHiDhVA8lA2cO9/Ot/Ptv7+dB+7n27+2WSzCjI8ZMxC7/tlnAtqNxnOBt80mqW39ZeOUEu97ba1oy5USCnvoUDGjnzwpCPill2Tuu+8WwFVcPBDv3tYGl19OUjeyerWWBc4Gg5R9Ky0Vyfvp0xJA19MDRUXw1FMC3FeskHUApWRMf1CdySTbU6bI49KlAtZfekks+52dovJvb4f77pPHadPkqS5bJnL7Sy6Ry33mGTAZELBmtcCptoyMEQHhRoMw4yeaBWi7XXIxnzVL6TeUMO79EvlMmJyMSw0k0btdMs9nZwTgj6oUf7zBKPvhXEbfaRemvT/gDpFAR7q6hEnv7EQzmbANGsS+lSuJtLdnmfR+r3vzli1oRiNGiwXboEEY7XYKL76YeF+fvD3cbjz794OmkY5GOfLLX+IoLkbL+A1sgwbx8VNPcaauDldFBa7SUgovuYRoVxetf/0rgydNyp7HZDGj9WTS3j0d0NIkIFpPi4d92ueFKZ9zC4ybLCFyw8cIO+/3Cjvez6ijwNsrZd8qRkj6fDwqSfRmiyyMnMgEB44cB9veGgirG3exgHuz5VyfvdmG2e6ko/FvmG05lI6/iqjfg8lsp2zC1VjsbmL+bkrGXYmeTqH0NJG+TkDDMagUpadIhH0ZoO3H4sgDzZD1t5+9CDB4xKWE+9oxmq24Bg8dCK+LhUnGAng+241CCdueX0rvyf2odApNM0gN96qLRBafSpLe/Gc0pwsV8IGuY7zui6Cn0Xe+L4z67h1oFitaKomKRTGUVUr99txBGOfdDCYzyttD+p2NqGQiO79mNAorf+wTVCiYXVDQP3gP5evDUDEM/cO/S3Cd0lGRMEY9TUFBAXPmzMFgMJBKpejo6CAajaJpWjYNvr92+9lAHsgmLstHkwWfz8fWrVspKSnBZDIxb948Hn74YSorK9E0jd27d2fZ/WAwyLXXXis1oltbCYVCpFIpwmGRouq6TiIRJRhsZ9aspzEarRgMJmpqHmXChIXMnv0cLlcxt95ay8yZ3+fUqfcJBNowGi0MGTIh41v/HmazA6ezkFQqytat9+N0FuL3NxMItAMq+xw++GAl4XA3up5i69b7SaVimEx28vOHk0gECIXkvZOXN5RZs9YRDLZTVjYFUHQDBxAmvF9cY0CAdARh2l0IkFcIsJ+EMOIphE1/CvGnvwiUIP72Mwz41h2ZOcxICF4YAfV6Zo4mpJZ7LrAu07cY0A1myt3lrPtwHRXuChLpBFPKpuCyukjqkidwz+Z7CCfkvp/t6wVwWgSIWYwWllcvpzfSy7Ozn+XIkiO8dN1LGA1GFIpAIsCSuiW0BFq4tPRSTvSdYHfrbswGMzWVNdQ319MX6WN0wWhenvsyw/KGEU1G+bDlQ2Gc7UVSM92cLwnw/Z51Sz5ghP3fBc8umPA4OIZKWbfwaUgFz/LGZ5h4PSGy9/4gOv+nGbBvlzH77xMmfvB0Yd6NNrj0pwLGPbsErNuK5bqibWAdJIA5d/gAiNaQEm39YNrszPjYjRl1vFFY4EFjBOD7Tsobw10pc9gGy99oP+A3WGTBwOKWBYKccjK6MTnPP4L5QWOlz9mLyQyw6v8eaAdIJ9JZlnzHqh2k42livhihzhDpRBpHoQNXkYtwt8jcI54I6USa6Q9OzwJ0q9tK1YIqcitzyRuex5yfzCF/ZD4Wl4VIT4RkJIme1MkpzSHiiWCymyibUkZbQxu+Uz7J1MsdJqoB/2n43Atw4a2SGaB0KQ23bRFEuuXeeQ6IJcGaLwz7mAUioTe7BNxHPAL2v3FEHuO+gRC6UDt0NICjEKy5kFMpiwR5F4CzJAPgZ5PWk6ytX8vMiplYjBbSepqlM5ayq2VXVoHySfcnrJ0lffqZ9YrcCobmDaUn0sOy6mVZr7rJYOKzvs/+KS3+fDvfzrf/3nYeuJ9v//pmscg//H52vV8ur+sweLCYzAsKxCh+5swAW96fFl9eLqA+HBaUfN99Qo0PHizy+X37ZK4pU4Rx//GPB1j86mq47TbMRp3lyxW1tbB+vcJuF/Lf5ZJTt7QMBNBpmuw/u4Sb0ShrDa2t0m/tWpm6H6S//bbM0dICu3fL+sPttwtzf3YZuPXrZa3h5Emx7C9eLAsDmoaA6eaOTHp8Shhvk3GgZFv//s/ODHjYWzohpUO+Wy6yf5/bmZk0I4k0igxOjrkG6rMrJefRdQHv/eXoKopl3IgyORaNiwCgn3H/1a9wFBVhstk48qtfZcu1mZ1OpqxYgcFq5ZLvf58rNmzAZLdLsrzRKMFjBgPmHKkR3HPgAI6SEjAYMFit2VrtyXCYvsZG9GSSix9+GO+RI5idTvR0GjSNvAsvpOfAAdKJBFWLFjHixhsxWS1Swm30BGHIL6iCS6rh9VchFBAWXtNgSCkMGixBcyD9Bg0Rb/ozfxSQr2nCwoOw6G//VsC9wSDjjEap2f7b5yW9/uY7JKxuzi1gtQtrn0wOBOHNuUUqBZ3Yg6/9CKlEhPZP/sqZfW/RcWQ7ejoFKIqrPkcqHqHzyAcopXAOKkZPJ0nFwxLkZjJn0+hFVu8HpRgyejoGoxmz3Z1dBHDkF4PBiMnqzAJ6R34JPU37KBg+GYPRjK7ruItHUTzuCpkvEYbcPIxzbhIWKsOO6x/+Xeqyp9Pobc2S+t/PqM+aJ173tmaRt7c1o6EJ897XCybzAMjfVguuHAzTLkfpModh/tfQ3Lmka1+HoB+trAJ9x18B5BzjJkIok1KfTOLz+aitrcXr9dLW1pYNowMIBAJcd9115OZK/frq6upsWbezU+VNJhNKKQKBANOmTcNkMhGPx9myZUs2/E4pxdVXX82ECRPIycmhvLycVCrF5s2bcblc2XMmk0k2bdqU+XMyUlQ0iXC4m7q6b+PznSIvbzhz576M0WimpaWe3NxKBg26gEGDLsDtLqeu7m6s1hxKSi5h0KBROByDaW3djVI6n//8KsJhD2VlU3G5huD3n6G2dlEWhO/cuZpYzH9Wgv23SaWihMNdfPDBj0ilotl67uXl0zCZHKSVohUJlVMI0O5EgLZCmPBVme17kMC6j5AvDxHgLkRifw8D5dyaEcn9KoStd2TGLQGiCMi3IZJ6kcPDVxDP++DMsZ2Zc9v1dBaQFDoLSepJ7t96P5FUBJPBRCQZYemMpXzq+RSTZmL9deupvbWW5TXLsRikJnt/YNfI/JHUVNZk90dTUWwmGwc6D6CUYtXnV9EWaMNoMFKSU8Kkokk8tO0hgokgX7jwCwxxDSEQDxBLxQgmgty39T4uKZogAXR7FktYnL1IQPXFa8BeJndKpWHsUgHVelL86qd/L354gxUufQmurIPJzwn41ozCvk95RULnBl0KlkEix4+2ZTzynVBxMzjKYe+3IXwyk1yfkdRrGhhdctzTIIBZ0wSkR30C0nNHyPmtbvlsC7ZmvO0GWcA12eTY2RL5QIuAfINB5jM7Zb+myViVHpi3c7+w8VlZ/shM6F1woNTcvxNW9x81g9HA3J/N5aGeh5j7s7noaZ1ge5C+E334T/vZeu9WNKNGoDWQBfdokDcsj3k/m0fu0FzMDjPXv3o9ecPz8J7ysuXeLSilMJgM9DX1EewIYrKbyB+ZT05ZDqlIis33bMZZ6MTf7EdPA+27xcdutkHglPjd7YVy3xpWZ9jz1XLRRZfC3x+EV4fJPb5qvdwT/0nxwdsGyevuaxKw7yiUELp+Br50RiagMCE/2++Hxl8J6M8bAa5ybKk4L133Il+b9DUKHYUYNAPFOcVsmLeBAnsBBzoPcGnppTjNziyzvnrnanSlYzaYiSQjtAZaeem6l0ikE7QH21m5Y+X/UWnx59v5dr6dD6f7d9v5cLp/QUskpNbaqlXCno8ZI8lvd94pqPeNNwQJ19fLIwhNHQoJii4uln2dnQLgi4pE056bK/vvuw++/32pwZZKidnc5ZLHlhZCM2fT4TERDgs4X7ZMAuNCIfGoFxUNVKszmeQnEpFSb2vXyjSrVsEjjwiJf8klA/uWL5f1g8JC2efzwfPPyzibTYD8RRfJ5SQSMndnJ/zgBwLq6+rgmqvTGPQ0WjIloDoaHwipy3HKPoWA7E+bJG1+aKmAaotZgHm/NF7TZH9aF+CfSstjFqwzIIPvr9nefx6UpMt7A8LaX1CZJVGSkSgYDUS7u0lGIpgcDhxFRSTDYZLBILbBg4l0dtL4s58x9pvfxD5kCEarFc1ohHSadDKJSqcxu1zoqRQ9Bw+y8957ue7PfyYdixHp7MRRVETjK69wydKlxHp7OfrrX3PR976HyW5HZRLpj/z85xKMV15OMhrFbLej6zpmowFDPCrydV0XGXx+oTDj4y4RBjkcAnd+RgqfSUMOhzIgXkFfD+Tmi/w9J09A/olPZDvok5rsBk0WPH77grDpl10uXnoQefkbP4dZX4TcAgmvyyw2pM0mEhEfnhN7JJQuHpGguZGXYXHkofQ0msFI2+FtOPJLcQwqo+esALl0MkoqFsKeJ2nw8ZCX3lMfUThqKnoqSSoewZFfQjoRw2Ayk06JhJpMIJ5zUKkIOdIpUkkJxOuf22i2Eu5txZVXKs8hkYAct4TUtZ1By82HvEFo/YnSGbkrehoMBtKb3sIwtVpqsDtzUOGgAP1YFM2Vk1GQKAmtM5nQ+ss2ZAK69OZT6K//Gm3MeCk9p6fR8gahnzmJoWIY6U1vCvBf8jBn+kT2Hg6HcTgc7N69m+uuu4729nb+8Ic/UFVVxRVXXEFOTg7ptChJYrEYLpeL3t5eQqEQbrc7G0iXm5tLOp3GaDSSTCazAXYzZsygoKAAAJ/PRyAQoKKignQ6TXt7O6WlpRiNxnNqwHd2dlJWVsimTYtobNxIVdUCrr32BcLhTnbsWM306Q9mgPgUjEYLdXVLKCubwqRJX0XTjKRSMdra9uB2l+NwDObddx+guno5+fkjUCpNc/NOXn/9ZsaMuYErrngcXU/icBQSjwfo6zuB01lIbu4w3n33AcrKppwVcPcIgUAbJSWXoDkKCRqM+DWNHOAdRAJfjcjaTyIAfCkSLrcLeABJij+BeNg9iHx+CVIubgGwAQmns2b63I3I42cinvhHEHm9EwH8HQjYjyEheN/NzHtpKoE1GSGpJ/HFfOTZ8mj2N/Ps7mdZ9flVLH9/OT+b+zMCiQDtwXbW1K9hec1yhucNR6FoD7bzbtO77Gnbw0/n/pTTvtM0+5uZUTGDaCrKwc6DTCufBkB3uBu31Y3dZCeRTmA2CqDpCnXxVP1TPDf7ObrCXTxd/zRPXf0UaT1Nkc2Jdd/dwphXLpASbKEzcPx5uPjZzOdlxgeejkLSKzW7G1eLtD3WBUefhovWClD21AvYjrSCvVyAO0ok10YnpEIigzfnCmPb/YGA9ZgHrIVwdB1cul6AoJ4UOf34x8AxXKTv/eFx2TT5nAzg1jOBcjZhzc8OqFNpSaO35Ei//qA79zDZTicEiIdahaU3WDL741JyzmiTz9ZsQF6ZjLG6RVL+n2ypRIpkJIm/2U+gJUDZ1DJMNhObFm9i6nen0vBCA2VTyiSErtRFy64Wyi4rw2g3ko6maW1oxV3hJtgWpPiiYswOM807m/Gd9lFZXcnO1TuZ/uB0wp4wFTMqaKlvobK6kpb6FgrHFWKymzDZTBjjnZh1r/jLy2bCtrsGAuSuflnsBKFMeTeTQ553oAXMdgHlmcwSOuoz6oRK6NoLgyfIa2NxiRQ/4QdzzsDixvb7hGG3D4a/PyCs/aAxkE6QaN1Bb+FFdIW7eHLnkyydsZTSnFKcFid3vnNnNrTu59f/nJO+k6zasYpHax7N1mRPpBLEUjHCyTAPbXuItbPW4ol4/qnf+Xa+nW//9e18ON359n9es1gkTf7VVwW097fnnoO33hJWfdEi0a5rmlDSP/iBMJsnToiWPRKRfSUlgpCfemrAhP7Tn0oB9lOnYNcukdS73YKyhwzBmIhSVKSw2UQCv3ZtJrstk18XicCBA3JJqZSUizMYZFqH41xGfsYM6bNqleyz2+V0u3YJ+O/uFpm8rgsenjZNQHsgIJcdicil9lermzlT7NVaWpdgOYt5IGzObBYArSth5K0WmFwlgNpqlrrvWgbUGw1S2q1fCm80ZMZmpPNpYc757IycI54QObzJIHL4lICwLAtfUTwQaucPoZmMhFpb+eTll7EXFmJxuTKshYlQSwuRri6MVitjv/51Yj09JEMhNIOBcFsbPQcPYjSbMTuFrdE0jfwLL+TaN94QX3t3NwUTJmC02xn7zW9idDgw2e2M+epXxcO+YgWR9nZiHo+UgNuwgXQigdnhkNAwINbnRdkcwnb/Yb2Aba9HvOaJuPjdrTaR0f/uBWHKTx6VBPhTR4VZD/TJPRg6SrZB2PigT+q3G43Q2y2LAf1s+jU3y3HNIGz7wntgcImAdk+HsPJdYn8w28SzrhnNmKwOhoyejsnqJBWPkIyHUXqa0vFXkVt6Ib2ZALuek3sxGE0YDGbsucVEvO3EQz5MVifFYy/HbHWRikcw2wUg99drB9CMRgxGWTBIxiN0NL6PUjrJaJDBIyaTiofF9w6Y7S557UMh0DS0VCoD2vPkDdzTjd58CuXtJV37Bsrbg4qEIZXGcN2NUi6ubCgqHERz5gjz7nCiEgnSdX+WknAmEwR86B2tkE6j9DTpuj+juXMxzP8ahpqr0dx5kF8AaGjuPKkNX3OV1IzPycXtdvPhhx/idrux2+1ZNr24uJgJEyYwe/ZscnJy0DQNg8FAe3s7r776Kul0mvr6+n8KpEulUgQCATZv3oymaRQUFDBv3jwGDRoEgFIKv9/PkCFDSCQSKKUoLy/HZDJlS8l9+OGH2Zryra0d1NQsp6pqATNnPkwqFWPHDin/9uGH6ygru4z29n1ompHrrnuRceNuZsuW+0kkQuh6iqKiSYRCnRgMJqZPfxCz2Z6t++52lzN//hvU1CzH5SrB4SjEYnHhchVTUnIJDQ0vEAp1MGvWWkaOvIbdu5+lomImJpOd8vLpWCxOlMFIh6bRhCS/L0SA+yIEtDsQ6XopUmt9OeJNLwVqMn0vQQD6MgS0L0cC5yoRubsRKSG3EAHpbwNPA0My43Iy299BpPOrENA+JXO8OdDMnrY9hJNh7tl8T7YGe641lxevexEdHYvRQmeok3eb3qXF34JCcdp7mqa+Jm4df2uWSWz2N1PoLGTxpsUopZhUNImucBfRVJST3pPoSs9+JtW31NMX7aMj1MHGxo34436e3PlkthTd4e7DBJMJVL80fuz3oGe3lG2b/JKktHt2QfCEJMX3NsDWKZLyPmWDAPVPnxR5fLQd9n0H8idJ6bjB04W911MQ+Az23wvhU3KH+kPr0ATkH1knj5Z8kdYbzBA+AwkvVD0CrgsESPaXfNMTAqqNZmF9lcoA6byB+uuJjF3F3ySfe0aL7OuvwW7JAMp0QubJyuHb5BpDrQN12yHjmW8fGGdxk10F/k+0VCJFKppCpRWBlgDOQiebl2zGd9LHrLWzCHuk1Ft/CJ3/tJ/ii4ppbWjFe8JL3ZI6nIVOAi0BhowfQrA9KDXbK9xMvH0iJquJipkVAv6nlqEZNNxlbsKeMDmlOby39D0CLQGS4SS6wQ57fwwlU0Ezw2WPwBdrhUk3WGVxxFUuLLzvhDyBvBEDafJKl9e1eIow9O8vEdAe7RFw7j8lY+pXCAPffUDk8/0svsUFs17J2BgsYLSQKL4s+/7s96n7Yj6UUueUa7OYLFxYcCGvXv/qOWDcYrLgtrkpsBfw07k/pcBR8O/2O9/Ot/Ptv7edB+7n239fs1ggI5Hm6FFh2z0eYdj70+FXrxaGsj8Cvq1NqOzVGQnaxo1Sc+3JJ0VG39wsgL+5Wea32aR/v8d95kzo7ka32gmHNYqL4Wtfk6B7pQSU96vzp06V300mwWdm80ASfHm5iAK+/30B3jYbbNggIN3lgr17Ralvt8s88+fL5ba2ioigv+rYypUiJFBK+m7YkCHJDaB0HY6fkYA4gyZg2moWcN3UIgC8v5TbiWbpBwLA+2u4xxMDHvVUWp5ES6fMYcgA+17fgPRe06SGeywBZpMsAPQH5NkyXu5UGnKcKF2nccMGCiZMIOrx0Pfpp4RbWti3cqX41y0W0vE4sb4+CiZOxD5kiKTQd3RgKyhgzxNPEDh9mmQ4jGY0Es/UZ09Fo9iHDGHfqlWko1HMLheRtjYOvfQSBqORWG8vhRdfjMFiofCSSxg2bx5Vd90lDG46TayvD81oxD4oHy2dErB+zZcGwLbJLB7zA7vlS1NuPsy/E3w9Au7r/gSuXOkzskok8Rs3SEK8hnjV3fmyGODpgL5u+OkqOc9XvivnSSQQxioNvZ3Q1CiLBWaLnHfr66AUyWhAPOoRP5rJjNnqQk8lObHr9ySjQZLxMO2f/JVUPEzx2MsltG6kfNnT9RTtje9jstqzgFszGPF1HMOeOwSLI5dkPEzb4W0kY0E0NJKxIG2H38ORX4bJYmfwyMtQehqz3UXPyf2Y7S5MFidKT+M5sUe+YFqtZ3nbc6SeutEMuXloRaXo9ecmv6e3/gVSKQwVw1AmE4byfvDuIr3pzQH5++4daAYDmsOFVlRKeuvbEng3rUZC8IZm8gMAvL0y1unEUDEUXG6Mc76IngHZ06dPJxAIYLfbOX36NJs3b8ZsNjN37lzC4TDNzc14vV42bdqE2+3mW9/6FslkkpqaGsLhcFZCX15eTjwep76+Phs6l0gkCIVCqEyZQ03TqKysxGqVMlW6rpNKpQAB9WazmenTpwvwq6/H5/PjcBRmPO0leDyfZgPramqWAxqVlTNJJIKEwxISNWXKdwgG29m69T6i0R4qKmYSDnfR0PACFosLp7Mww56vpbJyJvn5I0mn45hMVrzepnPk8/X1azNgvoTrrnuJiopqtm//Ael0HK/3JGk9RQfCit8DnEJS4zdmHp1AF3AfArpHImx8GogjsvluebdTCbyKhNhZgd3AZ4gnvjfz+1TE+/4iIrW/N/PYjQD1ToTdL0cWDQzpGGt2rWFS0STsJrswie5SQokQ92y+h2Z/MyB13i8uuZjj9xxnatlUlFIMcQ5hUtEk7t96P2cCZzBqRqaWT2Xdh+vY2LgRs8FMZ6iTpr4mzAYzU8umYjaYafbLQsGUsinYTDamlE1hQdUCcq25LK9ZzjUjr2FN/Rqpfd15AOW6AHXpenAOQw2ekQmHC0DfXgHl5hxhyQumwDV7Bmq5pyIZL/stUvJtzP3ij+77SOTu+++VeuyxjoEkeaNNarwfe1bAcL8/vnG1eKitg+H07yQgz5IvLL1mEiBpzRNgHfcJgE4nwVU6wLxrpnO97/1gXKUHAHo/0LcVnJUsb8yE3w0W37pSZ6XVZyT1mlEArcUNwZZMUv1/riWjSRKBBOlEGoPJQGVNJQ0vNGSl8GaHmfJp5VhcFtwVbq5eczWBtgAxfwznECeB1kCWSS+bUobBZCDUGWL6g9Mx2834m/18sPIDxn5pLNe9eB0mqwk9pbPzyZ3EvDF2rt5J48ZG6tfUE/PFUEansN2aScC5e6iw5h0NkI6IimDf2rPk8grQIdIlwNx3IpP2f5asPhmW12byg3J/4v5MnfgfQ8ll8tr1e+ONGXtDP5g2WrCYneRac3mk+hEWVC3g4ZkPk2vLxWQw/RMA/49S4M8+dj4t/nw73/7Pa+el8v9OOy+V/xe3UAjuuENA+IIFgl51XTTlFRWiYf/H+u/BIIwcKSD9mWcE8FdUwL33CmK+5hph63Ud7rprYO6f/ASUImRyo4yWftUyyaSA7YsuOlfObrNJWJ3TKesDubkiCPjgAwH7DQ0DVepWrxbp/NChot5/8MEBCb6uix2/qUnWEdatkwC7Xbuk5NxLL8l3nf5y9m5nGuOJ0wKqx40U0N5fs70iYxMwGoQpz8q8lew70QIuBwxyy/HPmmWM2STl3NwZL7fS5ftEKCLMvc0ifbv7xNc+eqiA9FRaUu0TqYGa8fEEKbuFYEsLBrOZw+vXM/brX+fY735HwYQJFM+YgaOoiGhvLxaXi97Dh3GUlOAqLycdj9N76BC2QYOI+XwMGjcOo8WC56OP2Hn//Vz75puEW1vJHTkSg9WK0WLhox//mPyxY2Xe4mICp09nJfLO0lJ6Dx2iYOJENKORUEsLMY+H4ksvQVNAT6eA8Dm3QN4g2LsDRlwoDHp+oRybPV+OxWMCsL09MKhQSsf95vlz68DPuUVA+gsrhGG/bYmA+Lm3SoK9npaVnv6yb59lpPXvvjkwNncQ6dJK2g5vw99xjKGXfhGzPUfqt18whWQ0hCO/hPZP/kqgq4nKS67HOagsGxyG0jO12e2k4lEcecVSkgqRwQsAd9Dx6faBuu9Vn6e9caAOfNmEq7Me7/ZP/nrO/nQqSToRxWrLRcuAdtV4AMOtd6Dl5qH8PpG+Z+rdq442Kd/WfAp8XrTySqnZXnMV5Oaj6TrpurdQjQfEB3/FNaJ2iIbRd23HcPUcNKUkid5ohmQChULL2Bz6pfHahMkY53wxqypJaRqxRIJ4PJ6ttb5p0yZmzpyJ0+nEYrFQW1vL9OnTCYfDWUl9RUVFFoT3e911XScWi2E2m1FKYbVas/cnHA6TTCYJBAKUlZUBwsgajUa8Xi/19fXMmjULo9FIOp1m27ZtzJgxA6fTicmkCIfbOXVqOyNGXI3TWYimmQBd1A7JCBaL/E3quiwAGAxG3nnnzqy8fs6c9dTVLaGy8nIuvPBGEokgFksOmmbAZLITDndiNrswGIxs3XpfdtwVVzyOzZZHJOLJ1HVfht/fymuvzWPJkqP09Z2gsPQyjM5COjSNEAOhcEuA5xDAfbYkfgYCxDuA1UhZuF4EzKcQD/tSJNCuCDiIyON3nTVHeWbs2fL79UAPkijfL7f/GWCIh0nrCdJ6moa2Bsrd5bQGWil2FbOrZRe7Wnbxs3k/467au3jmmmfoi/ZhM9nIt+XT0NZAqasUHR2nxUmJqwSDZiCejtPQ2sCMihnUt9SfU6t9RP4IukJdFDoLZbEGhdlgpj3QTolbqmnoSs/+JNIJhljsGDVNguMaV4uf3TVCfv/0x5n66sMBXcC69wAUXCpg3lYs3vVkAGxFkiCvUnDg++KDr1wgHvjePcKq989vLxUQHz4jrH3VcnBWSur4gYckGM81Qs5ndmdsLJaBz37NIOA5lKkJbjBD1/6BMLp0fED+7h4mIFNjIJDO7AI9LuDf6s6kGqqMdC05MK/JJgukSpcfX9NA/fi8C+TYf9BSiRS9x3oJtAYon1Y+QNIraKlvIXdoLvkj8tGTOkopkuEkiWACa64Vi8tCOpEmnUiz7aFtzHhoBoMuGIRSCm+Tl52rd1KzrAZ/qx9vk5eK6gpCHaGsBD/uj9P9STdFE4uI++NYcixoBg1rjgWLJQnvf0e85t84Is/LnvGmT31Unns6BmbHgDXhr3cPSOqnPy6LJoHTAt6v/hkEzgzUZjc7oG0n5Azl/2Hvz+Pkquvsf/x5t9qr930LWSCQEAgICWQBBEJIAFdkQBw3JKBBBZFFghCVBA0iuKCQIC7oqIAjAwkQFmFIpyEJAQQCBNJZet+ra1/u9v3jVUu3Mv7G+cz8nKVfj0c/quve913q3urqOu9zXudQOat0vzRvCbD/WeWsHDk7h+3aZK0sjutQFaiaAt5TNVX/w2pKKj9V/73L4ynpxNesESB/+eWiH29tFeO6iQx8TY3kwYPkrQUC0vPu84nmvWD/fvDgZKf6G28UVOw4KLrB/v0CnA8eFBa9oUGw1uWXT/49EBCp/C23yLKLL5a5gnRaQHsho/2BB4T4t22ZVyicbm+vkNvl5SImKCuTU7zjDli2TE750CFh4js7ZaLAVcA9fBqcfGw+g52Sw3vOFOCSzorcvZDt3tktjzNbZZt0VsD84W0CylW15Aj/7iHImoCbX2bKMVobJF5uVt6I6FC/xMOpqmxXYOeD0mMeaGrCV1PD8ddfLzFtN93E9A9+EE84LH3vfj+jr78usnevF9e20bzeoqFd5ezZZEZG2Ll2LYH6epbccQe+6mr8dXW8cvvtpAYGsDIZjrvuOmqOO47X77qrCMwLEnkch/IjjkBRVVzbZs/GjXgqK/P92+ZkJ3dVg6OOg/pmOPxoMa07Yh48/QdIJyFcLn3sh8+F2gaJJfvEF2HRMohHhC1/7LfC3J90uhjXaTp86kqoqc+7zWdgsE8AfzYjJne+gID/rQ/J83r5PK6ZIQ7wgYoGRjp3EahsQlF1gtUtKKpG09FnctSZlxGobKJ/z7OY6ajIyXOZSSw5mo6q6SiqRrCqCTMtDHHNjBOpaDqKxjmngaLQOOc0KpqOonbmibgoKHnZa8NRp3LEqZ+h6egzAQVV9+AJVgiYzqTRVnwY9aJLhD2PRVHqm3DTKbAsFI8PpbwCe/NDKGXlKMccL3FvrYfhbH9OvusrSsm8bskZKGUVKB4vzrZnUJpbIRHHfubx0hd8XUcxPBTMFIvbnrES18zh5rK4iRgOEI/Hef7554tA/Oyzz6a7u5unn3666Czv8/kmSeoBnnjiCYCiE7zruvj9fjwej2TYZ7MkEglM0yzmsgeDQXp7e4nH4zz22GPFXvfm5mbi8ThPPCEmV6effjqxWAyPRyMWO8TYWCdHH/0PeDxBurs7cJxcPsN9NcnkIECRcbesDKCydOka5s27mLPO+h6u63LOOXdzzDEXA+Ign0gM4PGEiUQ6i7nwHk94UjSc31+F45hs27YuHzu3nubmBcydewHBYD1lZS0MDr3OQeAmRNK+D2HEf4Kw5vUI0C70setyV1iPAOzbEWC+HzGm60eY8w2I+dzC/H4X5sfWTth2A7AMcZnXkKi5gtz+Ovl0YkhV6Y51s/rx1dQH62kMN7K4bTGt5a1cPO9i7lx+J6PJURa3Lsan+/DpPlJmitWPr6Y2WEvIG0JXdW5+7mZSZor9kf2sfmw1reWtGKrxF1ntIE70iVyCzkgnX3z8i8RzcZrKmnBcB8uxuPKJK+mOdfNiz4s4roOriDN9yR1+A+AIaO99BDS/gNzhdsgMQeU8AeJGhVzNdL9EwqUOCsueGRWp/TlvSR98ITpu4v51H4y+BOFZsPBeAe1mQnrhT7hL+uPNuEi5XZtSLnunSOVdO29Ul5e3KyrUvy8vb/fmpewOhFtLwHO8U5h3T1kenPcJkHTs/D5d+d9UlM33lAB7QWIfnsDM/5mj/HuVnbGJdkUJNYTYcvkWooei4EJyMEnj8Y2Ut5YT2Rdh86rNWGlLUhYU0H3Cmve82EO8P07LyS3E++I4lkxYx/vi7H1kL9vWbyv2xSf6E0UJfqQzgqIqtC5qRTM0xjrHSI2Kw7ySHoDIu7D4FgHhnnKRzRcM5eJdkOguseu5uNzngqP8ideJOiI9Ktfu9B/Ji030wWl3iBTeTEHd8XlPAlXAuif8b4J2ELY85A3h1/34Df8UaJ+qqfpfWFOM+3vUFOP+d6hcTpBwNgu7d4u1+/CwAPSmphKlvWYNTJ8OX/qSPA8GBSm/+KIA/ba2yQz7xo2iSy84zFkWaBpRO0h7u8KCBWIeNz4u0W/ve5+cht8v30EOOwxeeUXmARYvlp8NG0QiPzAgrHwwKK30t90mP4GA4Nx0Ou+3pcjLCwZl2a5dcMwxMs7jkVNatUoY+uFhOO44aKizUW07byAnX0RIZwU0z2oTaXxLA/jyhl6mJcy4aQqjHkuIHN5x8nn2KWHhC33vkZhEv5WFSvuGElNcYNYL8vh4smReFwoAYNk2tmWiatLrvmfjRuauWoW3ooKXN2xgzqWXEmxuJnHwIG/9/OdFdhxg59q1dD3xBOds3kyiq0vY97Exao8/HkVVSQ0OMtDRwejrrzP3ssvw19by0i23UDN/Pq3LlqEHAlh5sKVoGpph4AJ2Ok16ZIRgYyOGrqFlkhL5duBt6U0PlUHXvslMe3mlGNihyHtkqFf622fNKZnLnflhYeQL29Y1yY0zs5IF7w+Axyf98YoiGe67nocrb4GW6TLG55d1XZ1QWYNT34ztmNhWVuTptoWLi2ObaLoHRTMw09E8+96AY9sMvr2N+tlLUDW9yJ4X2HozHSdQ2Vg0MnJtE0WRSRfXNsWcTveAoorxnaLgWDk0bzDP4A/gL6+VbV0XVTNQXUVeUzYLwVAe6Cu4o8M4Hc+iLjoNpboW+9EH35uR13UUF5yeQyh19SiaLr3u4TIxB0ylQNeL+e/KtJnC1J+5EsXw4AJubzdKcytKoTVEUXBzWZynH8Ne8WEOdXdTV1eHqqo8/fTTLF68mLKyMizLIpfLEQoJmx2Px+ns7KS3t5dTTjmF/fv309bWRiwWK5rTLV26lIqKCsnwzpvO1dfXF8H8li1bWLhwIS+88AJ79uxh7ty5rFixgnQ6zfPPP89JJ51EeXk5vb29lJWVUVERoKtrG8FgLS+8cDtnnfU9kskhtm//NosWXUt393a6u7dz3nn3ks3Giky611uG69ooikYksp9YrIeyshba29ezaNF1AJSVtaDrXrq7O3jggY8we/YHOO+8TeRySbLZaH4fLqaZwjRTtLevZ+nSG6msnE42G8cwAmzevIr3nXoz19fOKbLcXwG+B9yNgHQHcXivRYD3DcBhiLw9isS3GUw2pluLMO9NSOTblYg5nYI4xRcY9xuR3vbfATsR+byDyOafAg4HTswmWP3oJTyw5wHeueIdUmaK9e3ruWHJDfTEemgtb6WtrI39kf0MJgdZ3LYYgPHMOHuG9nBy68lc8dgVLGhewMXzLubFnhc5/8Hz+ecL/pn5DfOJZWPUB+tJW2kc1yFgBBjMT6bc/NzNLG5dzPlzzpc2CNUoGta9Nvga72t6H7hgm1EaNUQmvWe9sN3BGZLJnuqewJRfLSZyVSeIBP6t24UpT3WLwdxbtwswP3UzBFpF7j53DYRmCiOf7hPQXtgm0CLRconO/PIbhGVHlYmAPetlbNmRcvWj+0tsd7hVWPZcXIB4gU13TFle+L/j5m9cNgZje8FfBRUz5blmCKh33ckMu5XJP2/KM/LlJWbddUoA/9/hKJ9NZnFNFztngwKaR8N1XGzTxjEdvGVeDj1/iGBtkOrZ1Yx1jtHxnQ6W3rAUPaCTGc+QHErSdEITicGEmNotaEY1VFIjKfwVflRDRVEV7KzNY6sfY88De5h7wVzO/sHZJAeTbN+wnTO+fQaqpuIJecDJ4t3+BTj9h3KShdcRPSjS+DPugmdWT2bXvRV5jwFLJj9cR/r/U4Pw4rfg/T8EbJHbh1pKRn+hvLKi4PxfKDuXb1/w/FUwP1VTNVX/82qKcZ+q//7l8Qha9njEbO7226WRvK5OKPFCPnt3t6DkK67I93bvE9B+0kkC6DVN9OoT2fsvfEEAQmenIOR0GgOTlhaXnTtLBnInnSRzAGvWyGEcB157TRzm77wTLrxQBAAbNghoP/FEOfUXXhCAf/fdAv5XrZJ5BtMUxv7QIXlZnZ3C7M+bJwD98sultd915ZjDw9IPHwzm1YBa3nnWtOTR7xX5uqoIqNa1UhxcwfnO65EZ/PKQbHewT4B60C87zeQEpNdXy5hYQpZ5DLl2uibgPBLN98/nQbthlBh7LQ+eXIdUfz+pwcFidvqejRsxk0m6nniCNzdtQoFiPNyejRvBdRn905+Yu2oVbWefja+6elKcnKJpxLu7ef2uu6g57jjmX301nnAYF5j/1a9Sc9xx7L71VhJdXYy9+SbZSAQ1PzuiappEzGkaqmHgOC5uNiMy9spakbE/9FORrW99SBhwr09+IiNiUDfUB9UNAuZ/+X0B8NNni0Q+nYTDZstYO29SUIiGG88b17mIIV3BqG7mnMnxcV4/lFVAZBjVslBVA8MbJBXpR9E0rGyKoXc6MDNJFEXBTCfQvX763vgjtpmh4ahTyCbGQNVoOvoMpp3wEQJVzeieAIHKRqxcGtc2cW2T/jefI5eOgetO2q+q6Wi6B9d1yaXGwRUG31dWg5VN0f/mc1jZlNxvgHhMoteiEZyu/bjjo7iJmLi6dzwHrou65HRhxFum4UbHUYIhiYOLjGJvfhAlHJbr7DiobdOhogrnj1shEEQJl0vc3Nz5uPEo2ukrALAffxii4yi19ThbH8XVDXBdnO5DAGinr0BxbMrKynj66adJJBI0Nzezbds2EokEqVSKUCiEZVmMj4/z3HPP0drayrJlywiHw8yZM4f29vZJ5nTbtm3DcRyi0Wgx5g1g8+bNjI+Ps2zZskk98UuXLiWTyRAOh1m2bBmqqvL4448XI+kURaWtbSlebzmLFl2LrvuIx/vYu/cROjo2MGPGMpYuvRGARGKA5567OZ+3XjDLtInFeggG62hvF0O7ZHKQysoZKIpCV1c74XBz0aAOFOLxPp5//hZc1y0a1RlGkDPPvA2/v5quru0YRhBQWL78TnKJQda4LhcgoHwEAdQepN+9nRJb/gACuEEY+Jsp9bcXmPIbEMO6WcArSD77WkSCPx0xspuGuM5Pz2+/HWHYR5G+eTO/rBXwah5uXHojmy/aTF2wjp5YD4/sfYTbOm7j2PpjqQ3UoqkaZd4y5tXNI56N8+7ou1zz1DU0hZvQFZ3blt3GR4/6KMOpYY5vPJ5/vuCfWdy2mP54P/vG9mE5Fpqq4dW8WI5FubecsCfMdYuu48K5FxIwAgSMAKZjFp3nT2w6kV29uxhIDFATbMDVQyKHX7ARwoeDa4rLe81Jf5bTvlCAVgGk71knve+Z4VL+e/VCWV5Y71oifx/ZLjnwoekC3PfeKZ9Db20o9bmnekoTCIXtrTzjW+hDDzUL4EYRwzQ7U2LTrQxFxJ6NCTPvOjKuana+h528jL4vb2yXncyw6z7pcbdNYe8nMuuKKiD+3wHarZzF+P5xksNJUKF3Zy/jh8bp7ugm1h3L7w/KWsp44fYXiB6KkuhPSO/7+m34yn0kh5JF6Xu8N079sfWkRyUyxhMs5bb3vNiD5tVYeddKLtp8EYuvX4zm0di2Thj55GCSrVduJbI/Ii0Hp9yWd8+3IHpIgLq/RlzlNT8sXDOBXa8Q6bvrwNOXw90N8Pw1cl2CDXDGT+Q69++QiLlEj+xr561ynUHuTaHsnLD1iR55nLhuqqZqqv5X1xRwn6r/+srlBEDn/h3/XFxXtOVXXy1ObpYlRnPj49IMXlsrqHraNNGj9/eLrv3FF+V5X5+g6I0bZfl11wn7HovJfm+/HbxeTFdn/XqluLu6OpGq6zpcdZXI2FVVEuo6OgS3BgLyf/aNN4Tc93rFeb6yUsB6Z6ec8uLFsk7XxWV+/XqKsfWPPFLyzCvI5QcGZM5hyRKZu+jqErzsFuLcPLqAcMeVL0y2I+Dao5fk81390sOezZWYjZ5BWdc9IKC8IHcP+gW8vzPBTR5KbvPhICw8RkB8AbT7PPI8mijK813XZc/GjQzu2FEE4nMvuwwjFKLt7LM5+rLLUDRt0jpV16k+9lgCDQ0cc8UVKIrCnk2bBNhv2oRr27yZf/7Wffeh+3wCMKNRdJ+vuG7Ppk14KyvZs3EjiqJgZTLEDh5k9623oigKiqahewyUiTJ5x4Hlecf38y8RUP3I/eIKPzZUGgfw+APyfOuDMOc4OPtjwtwffEd63zUdcGV9YVwuK/fLtoWd/9RVfznGcWTSoLJWziPftR6obERRFEb27yo6x+O6BCobGMm7yQ/v24GqGfjL6zFTUfreeAZ/eS1mOkb/m89iZuLkkuOYmSQoSmk/uJiZJA1HnYonUIZj5eh74xkAdG+QVGQAzeNF1T2MHniZQGUThi+Ia+Vw7RxuIo568qkikQ+EcLY9g9rcJkB96ZniJO+6aOd8VCTxzW04L/yrgPdCXvu2Z1AsC3vrv+COjaCoqrDqHi9uLov9xL9AMo7SMg3XMgFQWqbhtD8jY08/G8ZHsR/7Z5Q8mLaf3oyLUgTdHR0dzJgxg8WLF7N//362bduG67pomsa2bduKYwqGc4ZhsGTJkklAfMmSJTiOUxy/fft2stlsEdQbhkFzczOVlZW8//3vp6KigmAwiKIoGIZRPJcXXngh3wuvEo0e5LnnbkJVNXp6XqSsrJXLL3+NlSvvoqysBb+/Gtd16ejYwN69j5BIDOC6DpaV4vHHr6CsrAWfr6JoaNfaupho9BCPP34FwWAt8XgvbW1LCARELbFz54846aSr0DQvXV3tjI6+i8cTRNd9mGaS5uYF5HJxHnvsC6RSI7S1LqYW+AYCqJfkH2OIu/v5QARxir8g/+jm1xWAvAcxrbsL6XNPAJcCK5Fc+CCSz96PmNq9gLjOb0fY+42IsV0gP7Ytv6/piKFdS1krLWUtrNq8ipayFh762EPctuw2RtOjXLn1St4ZfYegJ0jYG8an+yjzlvHVk79KT6yHvngfIU+IgcQANz93M33xPpa0LcFxHQaTgxxbfyymY2I7Nrv6dqEoCmFPmLA3zBHVRzCQHOCyzZeRsTIMp4a56bmb2B/Zz47eHdQGa+mN96IpoGSHxUHeSkKqVwBd5FU49FuY8zUB5EffKGy2S96U7gIB6yCGc+FZAvw174T1a0SGftQ1sn87Lex783lw3Pfkn0sB8M+5DgaeEhn+xGWpPjmGqkP59An56Q5FAzlPOG9SVyYgMnpAJhgUVV6LouYN0QpAMjvZ2M5fI89z8fyxNGHadf+/C6S/V9k5kcmbSZPHV0uOegF8h5vCeMNecKHjto6iUV3zwmbmXjCXk796Mr27emle0ExmPIOiiexdURSev+V5ooeiuI7Lczc/R7wvTsvCFrKxLKnRFK2LW6mcUVnMjJ938TwSAwn2PrKX9vXtuLZ4URDZK9fG8MO7v4fhV+W19r8oExdn3i3+ACOvyXjXhdPvEgf6pd+Wa/zUKlFCDOyQHvnMCDQvEbO70+7MKxqcPwPupkTRddwsj1PAfaqm6v9MTQH3qfqvrUJe+yWXyONfA++5nIDLpUuF2j7+eHGEW7AAKiqEgb/9dlnn8wkVvmSJIN+TTpJ/igWqu+A4d9VVwr7X14uufXAQvvxlDEPhhhvcIss9NCRzAldcIYD7O98RgN3VJaB+xw4B8a5bcou3LDnsD35QAutLl8op3XyznNZDD0lrvaKIGd1DD8lcw803y9if/EQEBiBzD6Ypp6rmVYrkDcfQVOlhL4DsN/YJ297WKEZybY1y4qFAyXRuVhvUVck6xxHQXciA9xriFJ8z88vUUoZ7Z3cpA74sJKDddeUFh/yAC53dKKrK8ddeS+tZZ+GtqmLeFVcQam7GCAZZcPPN+BsacCxLet9vvJFUfz/RQ4dwHQdFUUTunk5z1Gc/WwT2iqoWgf6cSy7hwCOP8PJ3voO3vBwrk2HOpZfK2FWryEYizL30UhRNw4zHeeu++4rMvmvno+yWf0yY75UXQueb0sM+c65I4wuAutCzfuIpAtChxJifc5H0wdc1i8P59NkSLzfQI9fknAtL+8cVVjkZlS+tw/2w783J+9r/VvGYTrhcQPee5/J/ABN60GctJBXpx7FtamctFDf5WQvzSgeb4c6dRPv3Yls5hvftyAP7negev8TFqVregf5EUFT85bVY2VTeoT6Fv7IRRdXQvUF8ZbX073kOMx2jYc5pBCqb6X/zOWH9NQ9KWbkA8bJy8PtRF78fDANt5UekRSCXlevquri9XeIkv/QM3GSixMQvPQMXVyYAEnn2LxnH3vxg0WXejY5DdFzY/UQcZc4xqEvPBI8HxTBwtj0jkwDbn4VsVszqMmmWLl1aZL/LysqKfehLly6lq6sL0zQnMeS2bRdN5yorK2lpaSEQCHDaaadRWVmJbduTxvt8PubOncvixYsxTRNVVenq6sLj8TA6OsrmzZsZGxt7Tybeda1if3l7+60EAjXEYt1YVprHHltNJNKJaSYBlyVLvsbHPvYQZWUteVf4/qIrfCjUQEXFdM47717ALbLvL7xwO62tixkfP0R//8vYdpYVK36Aqho8/vhqgsFaEol+MplxDMOPZaXYsuVyEokBmpsXEI12kcXhGkXhSSRD3c0/hhD2/AMIEHcoseQ6k6PfdKTHfXX+nRxEjOcK6xXky8Z+hGFfjEwMzAN6J+zfT6mH3syPOcHOMZgcYH37eh7Y8wDr29ezpG0JASNQXLahYwOqonIoeogvPPYFUmaKoeQQLWUt1AXrcFyHDR0bimNzdg7HcVjctpjB5CBXbr0Sx3VoCDWw+rHV7B/fj+u6WK7Fum3rJkXBFc6hJlDD7S/czuLWxfmodg/ULIT0QCmurXaRSOZ99XDij0XWPtwhbLm/QUznUj0y1slJjnq8U5zlQzMkEz7QJv3xqR4Z77rw6nUC3hUNEvtl+wX3gK8xb2LXJsddsFGWBaflL2oyH/UWE0l8wfHdygho9IRL6zyhkqS78L/IsfPMfFYY+EKPu6KKfF7RSwz738Cs/1uleTRaFrYQ74+z7PZllLWW0bakjfRYmq1XbmX03VFyiRxnbjiTizZfxMq7VmIEDFb8aAXJoSTlbeVkxjN4gh7G94+zedVmEgMJmhc003FbB6qucvLVJ5MYSIACiYEEz930HNFDUbo7usnGs+BCOpKm8fhGvrT/S5z1vbNQNRXeeRB2fUcc+v21cN5DomR4apVMYjimyOCtNNQcI9cmdlCi38ItYu6389aS87y/RnrkmxaLSd1zV8r7wDbh6csE3BcAumvDrg151/kNpXs0VVM1Vf/rawq4T9V/beVyQjU/8IA8Zv9KBEwh2iweh2uuEZBdVydse0VFyQGut1fGDA7Kl5jmZvjiF+XLwkknCdi3bXGDmzVLsuJVVZZv2ADHHYdpujQ2KixaJIB74UKZEygYyoVCgoMXLCiB+tWrBXTv3CnK+3y77SQ/vP37ZUxhP0uWCJuuqhJXPzHpLhSS8atWiSChvl7a8/v7CzysK6Zx7xwSxj0cFGZdU8VAznEEVB8xLZ/3rpe2efeQAPFZrbJufw+8mc/jdZEx+3tEWl+YJQgHoWdAHnEhk894z5lyzHRWJgtQxKQOyI6Pk4tGefnb3+aJj34Ux3Gws1mG//Qn7ExG+qhNk9E336Ry9mxCjY3YuRwvrVtHdnycyN69jLzyCvNWrybY0ICZShFqbWXB2rWEDzuM0PTpEvUGvPrd7zLyyiuc+PWvE2ptpWrOHLzV1QD4ampKoP6yy7DSaQZefhm3okpy1MdHxV0+nSr1cq6cALo1DT7wCQHpuawA+4u+ICD96o/DL++Ubf7pLvjBTfDEAxAbl3z2f/wS1DVKj7tjQyH//LHfwo+/JS7yF18h5nXTj4B1P4WPr8bVdYb3v0Td7MX5mLansHJpmuadieENovsCDL69Dd3jp3nemegeP32vPw1QBPOa7qF25oKiAZ3hD9M45zSsXIbmecvQfSEcKwuKiuEP03DkKVjZBOWNR2Blk0VZvL+igeF9O1AUGD2wm0BVc9Gcrsiat/8RJRiCqlrJbn/snyGVRKmsgUQcp+cQass0GB8r9rhTWYO27FwIhWXMC/8quexQAuIdz6HMOAI1z7AXl+kGlFfItVS1kkHd0jPB5xdpvd9PRUUFK1eupKysrOgGv3LlSmKxGH/4wx8YGBigoqKCc889F7/fz5NPPkkikQBgfHycxx57jEQigcfjIZfLMTg4iN/vZ+XKlVRUVBRj5QqyeVVVaWtrQ9M0Ojo6JjH5oVCIc889l1gsxv79+3FdZUL02w2kUiO0tCycBOaDwVq6uzs4dOh5WlsXFUF5QUq/bNlt+Yi3S4lEOlEUtZgLLzJ7l1ism2CwlsceW834+AFise4JOfEL8PkqyOWSxfz4wr5bWhYy2NXODx2Hi4DdSO96H/B5pP+8ANZb8+vaEQDeA/wov85BWPfFSF67DTQiffK1SH/7uwhQ789/BNUh0W+dCNNeAOtW/jg35McZqka5t5wbltzABXMvYM3SNWiKxnByuLjsusXX4dE8RZBdANbr29djOiambU7KsvbpPnpiPZi2WQT08Vycb2//Ng/seYB129YBoCla8RiFKLgL5l7ADUtvYCQ1wpqla/CqioDn128WQJ7pn2BQ50LtycK821kB2JXzJMdd9QjIbj9fZO2qR1zmM4PgrRKpvW2K7F0x4F/PhZeuEKO6I78ixnauCW99B+LvQnw/RF6G4+8QqXr83RKrrgXkYhYi4DSvHM/K5iPdPAL+cnEB7KonD+TzJnTxbnlEgfSYvJYCS5/oLbnFu84ENv//vXSPjubXaJjfQHIoSf/L/dhZm3BDmJO/KoA7E83gDXspby3niSufIBvNonk0mk5soqy1jGB9EE/Qw7Z129jzwB5evONF5v7DXFb8cAWu47LjBzsoaxFX/I4Nwty3r2+n7ug6EgMJtly+BTNp4jouW6/cSno0jaJpMPIGnPo9kbqrBjSeVALiiR6IdeVz2AdEdeBaokg45TaJ/lMUMaI76mIxrUuPiLzedeR6v+9qiPcIeN/7AOxYV4rQ030lKf7CG+X5VE3VVP2fqClzuveoKXO6/8QqMO7r1gn1PHu2UNl/bVwhJ237dpG8798vEviWFkG9mzZJPNyGDeIY39cnAL+tTb7k+3zCDhcc4oL5f5IFaX0oRKphOvsOGXR3KyxcKAz6vn2lxLmeHtnd9OnCtK9eXfK7+8pXxFX+xz+WdaGQgO/C+h/9SJj7NWtEHGCaQmRD3pusS17mPfeUfPTeekuAf2Efv7nfRrVy0qM+HBFWfVpT/vV5hBG3HelFLwuJHP7waXKwidsc3gaxJJRJTysKAsQnjZmWN7FTS5nx8JfHtp2i+Z0dGcc0NF665RZqjzuOmuOPxwiF8FVVYafTqB4PqYEBMay77DKCzc1g27iKguK6JHp6ePsXv+D4668vRrkVXOcBhl99FX9dHb6qKoxAgINbtlA1dy5v3Xcf77v++qJfkuu6vHr77Rx1ySWEWlpwcjnQNLIjIwy8+CIzzzsXzdBLCoJYRDLYLRNwRTpqW/KedNz8JIZaymcvmNitvBBqG2GkH7b8Vpj58mrZTpqRIZUQwzVDIsyKMXTnXCQO9UP9peeGB7uyBscxUTWd5FhfMdotWNWEi0JqrBfd48fKZQhWN2NmEiSGD5KJDtEw9/0ouCTH+tG9ATzBCsx0lOF9O6mdtRDDH86bSing2BI7lkkyemA3DUedgqoZOI5NtH8v6Ug/tYcvxLUtDH950STPyqbw+cpgbEQM45acgRsbR22ZNinaTVvxYdxMGjIZlMqqyevOPR83mUTx+bEfn7B8+Qdxkwmc9mckMi4YlsmT2LhI8ZeegRuLiYldeQVExnATsWIEndvbjdrciqVqZHK5v4hhC4fDxOPxScZz55xzDlu2bCmayp177rls3ry5+PzMM8/kueee4+yzz5YJqPz+TjrpJCorK4nFYmzbtq24f4/HQyQSob29neXLl5NMJosGdz6fD8MwcJwsjpMil4sTDNYDLqnUKJaVYtu29SxdegPl5YcxPt5FLNbFtGmnEIl00t5+K0uW3EBl5QxyucSkiLdzzrmbnp4XaWk5CcvKMDDwKk1NJ/L446uLY1asuIvHH1/N0qVrqKycSS6XJB7vKUryly69kYqKwwCFtJ2ly1/FOkXhakS6votSdNsplID6gvzH9RVMjmzrQqTz1wF5azTc/OPngd8DDwEnIYz6i/nf2ycc5zgE1G9AQLudP1ZjNsFr3dtZ0rqElJViZ+9OGkON1AXryFgZqgPV6KrOYGKQscyYxLotvYGeaA+N4UZmVs4kZaZwcYlmopR5y1AVlUQugV/3M5oZZf229dy5/E6GU8Os27aONUvXML1iOolcgrAnjO3ajCRH8OreYj99d7SbJ/c/yWePvoDQK18WsN52gTi6v7RaZPH+FgFsqlf6zM24RLOhwMtXipw91SOO8IE2iW7TA5Nj5fwNss2Oz5Ui3xR9slO868ArX5H4uMMuhmNvFcl+oBl2fwlOuFsk3ZMM48pgfL8AdW+FgHU7LfssmNYVYuHG3hJGuHxGaXnBPE01hMkvjPl3RLz9LZWNZTEzJq7t4tgOz1z/DIuuWUS8L07DsQ14wh5cx8XKWsR6Y4TqQqiGimZopEZThOpCaD6N0bdH2bZuG8vvXE5yKEn7+nYWXbuI7u3ddG/v5py7z8HKWGSjWbzl0g6w9cqtRaO6U9eeyo/n/Ji5F8zlvI0r8PpdmfTYsQ4W3CDu77G8m3zzYuh7Qa7vtDMg2CSO/8l+YcgX3gDxPqibn4+LUyEzDqNvQMNCcaXfeavsN9wGz1wuAL1qdsmIzs79/4yHm6qpmqr/mfXXzOmmgPt71BRw/0+uXE6Ydq/3vUE7SA/6pZeWkOvatQIS6+ogHJZ9jI6K27yqTkbKd98tCDoalb72ri5pXF+4ECIRAeyNjQLo8/buCdPLv3YYxUz1glkqS4aGAADdHUlEQVS9bYtJXCEK/q67hPBPJieD+tZWAfvxOBx+eMn0/qtfFXFAXZ28rERCJPOFOYZp02S5aQre6++X7e68U467bp2MO+oIG49qC8juHig5vEcTpcz1Qr1zSAD20bNEKv/n24AA8oIjveO8934LDvMgQLcwprVB1scSsr2iYOaypEdH8ZWX41gWqs+HlUqB42Amk0UX+Op582hbvhzV68XJ5dD9fhzbxs5m0bzeYn965O23CdTVkRoYoHrePBRNY+S11wg1N+OvrWXk1VepOPJIdI84je/65jc56jOfITM6OsmR3nVdUv39RYf7isOmoQz1Ces9EYSPj0ofemREetznnwyZtDi/e33iJp9JS4ybx5tnqfS8/FOVm2fmQDcE+KcS8nzLbwSYe3wlMOq64sxecJr/0jegoga7ugZH04ru8QK6F2D4y1BQyOWXCYOeYnjfTmpmnIgnUIbr2Ki6h1wqipL/kjz0TkfeZf4j+MtrxTHe40dRFFwU+t94Bn9lI+X1h8scjmaA68i+8kBeUVQxxcsmGXqng6bZp6CquuwjmcC+907Uj/wjSlmZAOwlp+PG46it03BtC0XTcccjAsgXvx9CZdLHbuWEcc+DchxXpPT5nnb3zddw+3rQVnxIJPeTln0QNx7D7dwrgH3pGbgH9qEcORfT6y+C50WLFtHd3U13dzcrVojBnabJtclms9i2TS6XK4LryspKxsbGJmWwK4pCNBot7g/A4/EQCoUmgfzly5fj8XiKknvHcejp6ZmUE29ZFrrusGXLqiKgXr78TpLJIcLhJjRN8uJd10bTfIyPdxKL9dHauph4vJf9+5+iqupwGhrmk0wO0t5+K4sXX0cw2EAi0U9FxWH09LzIo49+jssv/xOJxADbtq1j8eLrqKiYjqKoJJPDeDxBFEVD0wxU1cBxTGzbxHUtBgdfp3bGMlarKguAsxDH9/0IEL8BAeLPU3KVvxMB2uuAryOMewz45/zY44BBpPd9DcKsx4FKYAfC3Nchsngzv2wBYkx3M6UJgbuBDuBYK0fIFKXMZZsv44E9D3DB3Au4c/md+A2/5FY7Nv3xfvoT/SxsXohX99Ib66XCV0HQEyRn5/jCY18obrv21LXUBGq49qlr+cGKH9AT6yFtpqkP1RPLxijzllHmLeP5Q8/TGGqkMdxI0BNk26Ft1AZrGU4O01LWwvr29fz47DupUkExo2CEBWTbWRjdITL18HRAEwb8rQ3S7x6eKey6lRE3eSdL8cNX9cDOVRIjt+QhMbdTPTIB4CLMd6Y/7xifB/6BVjHCi7ws8nwrDa9eK8A/0Ap6KO8oPybgr5i7DpB3kle00mTAxEfNIyBxotN8MYu9FipmUMx2173/Tz3t71Vm2mT0ndG/ANpnbjgTVVdJDadov1XWVR8hfhHjB8Yl931hC5pPAwcUXcExHRzL4bEvPDYJkDumQ8X0CsYPjLNt3TaW3LCEyumVRA7ks95vXEqgJsDWK7ey+LrFVM/w4vGpImEvOMcv2wiocu8HdkiUW2pQAPjCGyDYKLnvhfGnbJBruGsDnHgtBBpKrQvPfvnP9qsIqz4F0Kdqqv5P1BRw/xtrCrj/HSqZFMb9jjtKmWq2LdFwJ58sYFNVBfjbtjDuBRZ/xgzRro+Pi1Oc44iV+3e/Kyg4EICqqlL2mq6Ti2fJBKvp61d48kmRv99xh7TE33Zb6bT8fjk1w5Afr1ew//CwzBMMD4v83XVLqXStrTIJkMuJmn8ik75xo4D1W26R7S66SLYFwXi9vXK8uUfZeA13csztu10wNCYM+BHTBFgbeXO5ifFtkP+C54gcvrUhb2Yn7utkc+IOD5MnAhxHpPDdA9L/XnC1n7gfnwdcsCyTeFcXb913H/Ovvhrd7wdVxUomBbjX1QnDno/9URBZvREOiwu866KoKkMvvyy57VVVqB4Pqq6TiUSws1mCTU3Y6TRWOo2VyRBsbsbOZFANg1R/P5rPh53JCNjPM/ZWKsUrt91G9bx5HLZyJR6fB+X+H8BZH4Unfy/A+cRTJJu9803pbXddkcRvfVB64uubwcqJC3xZJSQTMumTiJWAf2QYKqplfSEOrrsTvn+TAPOqOmHspx8poN7wyPaP/w4+vhr+6S7sCy/H9hiomkHfG08T7d9LeeNsmuedCYpKcrQH3ePH8Ifpf/O5SdFvI527aDjqFBRVR1FVHCtXZNQb552JmRovTgSY6QSGP4xm+FBUDSuTwMwkCFTIF0Wl4B7vuli5FKom8hAzk0TXDHR0uYeaJkZ0nrw5VSYtfxCKKu9DMz9BFy5DcRzcyBjOzu1oKz4kTvSFiDgQqami4o6PCphfdJps5/Hi5nI4T21GPWkpVFYLC799ckQcti2TRIaHRyew6KeeeiqO41BZWUkkEiEajf5F1FuBTRfXdQHf4+PjxTFlZWXs2bOH6dOn4/P5yGQyBINBotEo27ZtK46JRCJ0dHSwZMkSAoGAmCIqCpqmoaoqW7du5bTTTiGd7mLbtnV5lnsaoOA4kihgWWn6+l6itXUxiUQf+/c/w8yZZ+PxBPKRbhV4PEEAcrkErmtjmhlMM00s1kVz80LAIR4foqKiFdd1cF1Ip8cIBqtRFINcLkY83pdn2tfg91czMPAqzc0LUBQNyxPC1j1YSLxbNYLN9iO96k35j5N+pBe9CQHd6fxjJyWWfCZiOvd5SgB8Y377wfz+MsgkwChiWKcgUvuCRH8DAvhn5Je7Vo5UerT4MXjNU9dw7eJraStrYzA5WIxy60/00xhqJOQJoaBguzaaorF/fD/d0e4i0L5u8XU0hhp5uf9lOiOdfPSojzKQGCDoCXLzczcXwf33z/4+lm0R8siEpq7oWK7F9q7tfOIPn+ClS1+iJlCDT9XwJPej7FkHc64HfzPs/mIJeNcuERCc7oX+rXnjuBuFKffV55n3r4mhXaBVmPfUoTwgb4Y9t+aZ9umyDyMEr14v7HrbBSKbf/t7kuWeOCAu8kddKw70w9ul910LTIgP85aY2kKEm50VUKj7SiDcCE5g6VtK2yiKAPpEnxivuZZIugtRcP+JbDtANpHl0UsenQy0cw7BRvm7yIxl6Hyyk96dvSy/Yznp0TRjnWMEa4Mkh5OUtZTRvr6dJTcsIdYTo/G4RmHcbxVAXjm9EhRwbZdHLy0d57RvnIa33Ivu00mNpvAEPGSiGXwVPgKBDJrhyjXYeauw4eUzxB8gF5V7pHkmA/Uz75bJk10bROYebICBXTL5kR6G8pkQagRUGbdz/V+y7FM1VVP1f6KmgPvfWFPA/e9QBUa9EIre0yO0dyAgdPYttwgtfuSRAsATCWHZIxEB7evXSwxcb69o3H0+WVdZKeO6ukoMfF0duY6XeLvp/axbr3LDDYL9h4ZKce/XXSeK/WnTJI2uECFfWwtXXimm96OjYjCXyYh5XVubGNqrqggIvF7BM5lMaU4hEBDA7zglJr7A9g8OyktZtw5+/UsbPZcpMd5+r7DmEwF6NC+Bzyf3APK77Yjk27RgLCbO8LPaZP27h0ry95mtpTxdTZXtEqk8CDMnM/CFyuQgm8P0Guy+dT3HfOlL6H4/mUgEPRAgMzpKenCQQEMDqaEhao87TiK88oaBo6+9RqCxEc3rxRMOF5n12uOPF9CfSGCEQliZDL6qKkb+9Cd8VVWkR0aonjMH1SsydEXXcR2HzOgonnCYXDyOp6yseJz00BBljQ0YhiYgT1HktT70U5G5V+UlEQWjgsgIZNPg8QsTrygip1eUfJSRAolxSCXFDX7mXLnGtiOGc+VVku0eGZHfO9+UzPgnfw8r/gGiY+JijyvM/VAfTmwMe+aRKLqBmYoxvG9HXuZehoKLbZkMvr2NhqNOAcC2cujeIAN7nqXqsPl4/GWkxgcwfCGMYEVxBkgBkmO9dL38KGX1M6mZ/j5GDuymed4yyK/TvX5GD7xSlM27roOVS6NpBo5to3v9oCiotoubTQtb3vGc9JmXVWBv+X1J9n7OR3FVFcWyJKO9rFwc6ENlUF2D4oJrmzAeBZ8XLBNn2zNoKz4yWT5/7sfEUd6xcfe+BeXlqG3TcboPooTCoKhFab1SUQ2Ojek4RBLJIqCuqKgApIXCsqyi3H2iPF5RFGzbRtO0fM65ydatWyeBf9u2KS8vx7LEPXpwcJCWlpYi6DcMA9M0cRyH4eFhWltbcRwxiEomk3i9XjxFdZGN65q4bt7BG5eenhcJh1swDD+hUH3eRT6L45gYRpBYTMD+kiVrMIwgwWANruvkXemb0XU/mUyEF164naVL16DrfkwzSUfHd1mx4oc4jk1v7w7Ky9soK2slmRygs/NJent3smzZbcRi3bzwwu0sX34n+Co4qPvwKwophEn/GlCPAPV64CAlBn4AOBoxr3OBy5gM0lUkRm4dAsCbAI3Sx1RP/qcJYeVvQBj414BF5MF6fpsEEMgm2Tf6Nhs6NvC1JV9jesV0ADrHOvlOx3f42pKv0R/v56SWk7AdGwcHj+ZBUzTSZpqxzBjP7H+GI6qPYEHzAplgQeFA5AAe3cMtz9/CguYFfGb+ZzgwfoB129Zx49IbOaziMGLZGIOJQcLeMCkrxfptkh8fMALUBetImklcM07zmzeVpPILNkKyC9I94G/KA/CWCdL3JukDzw5Jn3r3Q1B/hvQ9/+lrcNxtIq1XNMgMCTMfbBPTuz3r8lntM4WlVwwZ42TkGDsvK53HvG+AkXd11ya0So13ilw+0V+SySuayN2NoIDyArueiwlg95bLmNghcaXPxaW/XVEmsO81YlCn6u/xD/4/XlbOKsrcl964lPJp5SQHk4QaQkT2R4pMfLgpTP/L/UQ6Ixx90dFsvWorZ3z7DMyESeeTnfS/0s/7v/l+zJRJuDnfSuSC5tPQPfrk46xZSsVhFXRt7yJYH6S8VUzufJU+vEEdXbchsk9k8Q0L5H7iwvi7sPsOWPodubZmEtrXwJL1JUl8LiHAvuDo37ddpPRleTmelYahl6FxoYyb6l+fqqn6P1dTwP1vrCng/neqXE560js6sObNx06k0cpD6K/uhpUrhbK+997J0nldx3rpFew5x4Dfi6prOKjCLieSqD4DB03o7JwJhiat3BmFL17j44tX5pg+08Jr6BzY56G712LxUgvHdTBzKgG/SirlkMm6vPGawWFtOkcdJaeyaROkMha6YeH1O6iKiouDikoup2LZDl6fg6aomLbL6JBGRZWDY+kYms7q1bDwZIvlKyxaGnVicVB1i1BAxVUsPCroio3i2iKVJG8MV/hxbdGaGgB6vpcS5CuvBTkFLA38Kig24IBbkEEC5NULSl4GTt7IqCCTLKJ2S/aPXdy3i4rrqpCzsRNpbBQ8waAwroaBncmgBwJgWViWhaLraK6LDaTyRmCa66IHg6X7b9sCAKFkVOg4ssx1sVwXK5PB4/PlX6aAcsuy0PImAorrysxL3ljAdHRMxSNJeo68TNt20VUH0wSPZuN3EuTSFmaoBttR0FQXVXGxMyaaz8DO2WjZGGagCk1xUVW5bB4rgeeR+8h94LOYnjC2A76Dr+GproDKGvjVD+HVF8ld/g3MGcdiuxSPa3hUMf9XFHx6Ds2x5PU4Dq4CrmWi6gauoqK4jnzHtG1URS2+btPKYDk5rGyGQFkNmiJfmB0rh2rk762m4TouCjJBIx4D4LqOXCtFJREdwF9Wg6posk5T5fh5KX1RvqnmZf8Fhr6ggsnfO1IpmZlCkUkNN+9EYOf9JiYw+8Uxeea8aAIxsRwXknHxDVAL6g8bt68LpalNjhcOY9s2jmmiqKokFqiqzGMVfnddzFxO3iP5c3ZsG13XRfmRn5xxbRsl3yufymQI+P1g26IQceQeFF5/wV8B18XNvy47f4xkIkEwFEIrnI+iiAu1Y+Lg4tgWhubBUeT9OnGZidyzLVs+z7SWxcyf+3FUXe5lzs6iarq0QHgDPLLlMl5//dfMm3cxHzjnHpxsCs0IoLgO8fQwAW8FimagumDaOVRNR1MNFBTMXII3332Eo+dcgIaKqymATUrV8DsmKDqqa4sqwnXoVw38rkkIDcO1sRWNAUWl3rWxFI0x18aneihzbXByqKqB6jrgOtiqzqDrUKeo6I6JqRporoWNShKFpKLS6Dq4ro2qaKSwSas+fJoHy84RstM8e6idDz5wPh+Y/QHuXH4nFd5yhhMDbN73OLv6XuIHy+/Eqxk4Ljg4jCZHqA7WoCtanpWvQ1U0co6JZefw6X7UwnsKsB0bbSJTrCiiXkDaIHRVw3bsIouvaXr+b0MBFxQcFDODouYVKIUOf9eWz8/Rl6B8bsmUznVAccCV605mFPz1+W1cwBT5uuol/0cp43NxcDPgqQcnnQfJmoxBz0/EOuCqch6um18nv1uqguMW/gzz733XRc0vn7hMs5PgCWHb+d+NILYLmqqha0pJDm+lsXIZbC2IpinouvGfKpUHkcvnkjn6dvXRML9BPh5Mh6euearIkJ+78VzGD43TsaGDFT9agZW2SA4mizL6ypmVRA9Gab+1neV3Lic1nCqC9Oojq4vg3c7aqIaKYzmM7x9n+4btLLttGZ6gB92no3k0Ad9PXjJBzr5J7vlTq8QVvnmJ9LM3LQDVB+MHYOc6kcS7yGfpzlvzEvl6GP6T9MUP7ILGk2VfU73rUzVV/2frrwH3KVf5qfrvUx4P+P1Yi5cyOmjx6M0vM9qXxVq8VJDyjTcKjZ0fa1VUk/WGSc8/me63E7g+P7bmwdV0Ip0RHv3yHxk9lOTQ9h4i+yOYtph+myZ4vAo/+X6GaYeleHvkXRwsps1KseiULD3RftY9s4nR3CCWa+LoKUxjjPctitN6WIbOAzk2/SyN7ssQCGeJmEOMp6OkzDTDiQhJM43hsRnK9PGtpzbREx0kmh3HDPTz7X+9hzGrF82b4Z57s3ziMykGeYveRB9aIM53t99Dd6yfWGYcnSiK9Q5ktoP5LgxcCuY7gAtuGuxBUA7A4KXgRsHenx+zD1Ltsi7ggmLJeDcjIF1VIP0CKGlQYzB8BZgHABvMThi8UiYBsABHviC6JjgpGePmUMx9KJaJ2nkQY9dLeA0DJRZD3b0bJZHAGB2FWAxldBRd19EUBeWFF9C6uwlXVuL1ejH8fhTLQjFNlL17UVatQj1wQKYlTBMlk0Fpb0c9eBAlk0FPpfB5vWiHDqG0t6Ps24eyahV6by+qosi4bBbSaZTt2zFjGVK2h2hM4Z13FC5dpbBvn8L27SrRuEYqozOe9JA0qhiljrff0bh0lcq+/RrjcY1LVvt5p1Ojf9TLO0M1fGG1RjShk7M1HEUnpZUT+8iVpLRyxmMaff0aY3XHkgo1ELVCJC++ntT635GZPp93O1UuvVTl3U6N9g6dd/cpmLaKX8+iDfei3P99GOpDsUyU4QG0X9+Fkk6hDPWhvPM6SiaNNjxQGrfvDYxoFK8nRLisDs1RUDIplIEetP1vw1C/tAikU6jD/Si//D7KUL9c70wKdbAP5f4foIwMEPJVoKkGajaDEh1DsSw005Jj//L7KMP9ci62jbKvGyWTQ7EdlM4eWQZg2igDEUDJTyspkLNQ9nWh2ALUlXe7ULKmAJ19XSi2A6qGohuyje2gpLMo7xySY1g2GD4Uy4FMDuXdQyimjdI6Xbbz+nAsi1wshp1OYyYSvPStb2EmEiS7u9l5882YiQSJ7m5eueUW0r29qJqGkxYjvWRPDztvvhnHskh0dbFz7VoSXV0ojkM4GCTd08Poq6+S7OpiePduUj097Fq7FjuZxEomSRw6xK61a0n39OCkUvzp29/GSaUIBQI46TSxAwfYefPN2OkUaiaFFo2iuyre8Sjq/T9EGxlGsx30nIV3dAz1/h/iGRvDQOfsZbdzXMMytM635b7d/wO8los+Oor3N5vQhgf58MqN/OPHH2f5mbehDQ/i+c0mtJFB1EScspSLcWAfWjaHGh3Ha4OuGKi2g2JbeDA49qgL0bImyv49qIl9qE6aYPxdtOF2tMQ+lOFtKIl9qDsvpSn+DlXpQTyJfSg7L0VP7KM5N46RHsAXf4fmHZdQlR1Fj7+LMdyO6mRRzBjKS19Ai79Ls51Gz0VR7CxGfB/ajkvxxPZSaUZptrNosbfRd16KmthHaGgbVbG38VtpKuJvY+xcxZk1LfzLBQ9x49IbqfJVQiYJB9/k00d+jE3n3oNf85CJDOBmExgu1HnK8SgqmcgADf4aVGRyRsmmGX+7AysVEx8FxwbXwckmsbMp+d/iOrhWjoE3/oidjqMrKlY2ieo4eFRDJmJT4/S/8UccMyfvXVeFWAp78+9xI6MysRkZkefjCdyqk3BjOZzu7vzyh3Aj0fzEgY7rb5SP9cgITtd+XNPBHU9ib/5n3PEYrqKCBa4aBK0Gp+sArqXijidKY3I5nO6DuDkLNxHHzWVwkxK96OaymIqAc8dxiEQibN68mUgkwqGuLsYi4+RyueKyru5uTDVAzrQ51NXFaMIinTV59NHNjI6NYTnkJ/RULMXDaMLi0c2bGR2NYNkFW8H/vHJsh8dXP84/rfwntl65FdVQGXx9kCU3LGHuBXNZeuNSVF2l+vBqzvnJOXgCHjxBD+23trPngT10bOhAQSk+z0azRZf5beu2YWflnHWPjjfsxfAZeENeqo+U/QWqA3jLvALaQQD1n7u6635ZdthZAtrLaiUFIHlAmPlCdFv5tJL7/K4NMhnTuAB6t4Mv36jiCU+B9qmaqql6z5oC7lP136s8Hmx0tm3YIf9UN+zARhemfYIjvczAW3S/0IPu12k5qQXXdnniyiewczbt69uLsS6BmgDt69tRNRXHduju6GbsQISubV2YhzLMr5tNKpdh/dP3MRAbYSQ1zta9L/DTHQ+jAD7DS5kvKGyECg1NNqgOtiPM9UBilIpAOcOJCD/peIjhRAQF+PmuR9m69wXu3fEw5f4wP93xcPF52krTGxvg1md+RqU/zEB8lEQ2VTxubTCA4kRhdAPotTC6HuIPwOgdgAv2KOgNMHon+BeD4gGzFxKPyFi9Rh6xwdwP6Z1g9cPAZfLcNw+sEVD9UP9DMFoBBbR6qLsFrG6whmR7NQRYkNktwB4DjOkoORXqG+DUU0V+6vPBwoUofX1w880ojgN+P0o2i2Lbss7vhwMHUIaHhQ3Sdbmnd9whRgAbNuRl6pYYD9TVSZuDqqKEw8IGdXfL8ltvhQceQFm3TsY3NEjmt6LAySeT8ZZh2wq6Lh0Yp5wiAQQnnQSOo3DNNdDXp+A4CrGYwsCAtED09IBhKFx7Lfh8CnV1cNttCgsWiD/BqlUK+/dDOq1w6SqVri5RJtxyC7ioZF0f7e0KnftVbN1HKqUUTpX16xWOPhruvFMh4DVRHQvlsd/Cqy+ijIuCRCmvgiPmiUt7ZBimzxYDuqf/ALuel/GhcpTHfitA7JffR3Fs6bV/+g/QMkOi1I6YJ9sZHpg1F578vbDs6dSkDHsB2i6Mj8Ej96OMDct9efx3pZx7Pe++PxyRdg1VgZZ6+Zt1XJRsDqY3y372S8a90tVfHK+oirRe9AwK0G9pAE2V7d49lE8zUKU1pHAMXZN9FB4L+8qasl06K/J0x8FMJNC8Xo6/7jpJN6iu5sSbbkL3+UgPDtL77LPs2bgRbFvM95JJ9mzcSNcTT4DrsmfTJnqffZbU4KD0/Lsub/3sZ/iqqtizaVPxseuJJzATCcxEgrfuu4+uJ55gz8aNmPE41fPmkR4eJjMyghmPF9drmoYyPgZbfoOiqGJoOGsuytaHQNNRJtwPZctvUXI5/HoI9fEHIFwh13/X85BJy70vjIuMMN1/BAFPOcoTD8k91g0IV6Bs/T00T5fjPnK/3I+RAdj/ptwzRUHZ9wZKfByaW6R3WvMLY1x5LOy9Ux5VH9QuRtl7J/jqhAGuOwXSAyh6APwNKL46qDtFgHqqG3x1KMMdIrc+8isoqT5QPSia9D8re9aV4tI0MajkrQ2ybM968Nag7VmH5uRQ3twgx/O1cMZhZ3BU9Wx0FMx0nNhgJ3YmgZmK0vfGM+heP2ZaYv4cx6TvjT/iK6vByqXoe+MZsC2G9+0g2r+Xkf27sK0suKKIMNNxVN0glxqn741nsHJpqqcfj5lOYGZiDL/7Ii5u0cdgeN9O/BXC/GaT4yiOMzk20Z34/BkU18VNxMXjIRbF7XwbNzYuig0zB7ksbiJeilzMZnE6npPttz2DYuVbLRwHp78Hpb5J/CBi47h738DZ9oy8P5qnoaga7thI3kDTxDVNbF1nLBIhHo/jui7t7e3s2bOH9vZ2AoEA27ZtI5PJFJfV19cTi8V47LHHiv4OAHv27GHbtm3YE8C5bTts27ZN1rW3Y9vOf/rXAs2jsXTN0iJI94Q8TDtlGtVHVHPevedRM7sGT9CD4TfwhgVga77J26iGWnzuLfdOWqd731veXwDyRcBeOiGoOhLOurfUg15YFmqBpoXw9u359/Q6eX7UxfD+O0Ez5PGoi+HE68BbKX9n5TNFMq+9h/poqqZqqqYqX1NS+feoKan837f+vKetZnYNmkcTGVvORtVUxvaNse2Wbaz8yUpi3TExn/naEhzbITGQoLy1XLa/YSnRnijlbeVFV9iTrz6Z5LD0yHVs6GDBHYtJqGle7dvLq73vcP0Zn+Hbz/yMS0/6MBX+MLc9+0s+feJ5tJTXgaKQtXIksilC3gBBw0fWNrEdhw3P/oKte19g+eyTWXPmZxmKRxhIjHJ0w0y8uofe8SF+tusRrjr1YnyGl0gqSjyTYiwdY37TEbjAt5/5GZ8+8TymV1ZgKA5ggT0ujPnoOqi7E+whAeXVN4DeBtYBMPvBvxDsiIw1u8FoAeMwGFgFVVfD2O0C/sMXQ8NPwM1Cehf45oOa74HEQWTxFiXpvAnpHTJR4JmFuNONgNUo0mPLyssYPAK629vhE58QcwAQQJbLlWL6NE0eh4fFAOCww+R5Rwccf3zJXr9g0V9bK/s9dKhkux8IiFT6ttvkJxTKR7Kl4NVX4cQTSfqqcVyFfGQ3oZBYI1xzjZgQFhIHf/xjijF9t94qu29sFJBfeF5XJ94EE40G166V033oIZkMOHQI6uslaSAUgtdfFwPCeFz8E269VbwT6utlIiGopzGSY+I4Hxkpud4v/xiUV4qjfSFSbuWF0jPf3Yk740iUgkmcosBL2yRHvnWmfFmPRwV0X7CqZKi3/GPSu+/1y3Uys+KcHy6X/gHXlXN461WorYfD50kkXuHY4Qox4OvsFY+FQiuDRwcrHyVo2/I4PC6eDF5PyZMhm5PnXk/JTHFWG+zrKnkuHDFtso9D8Rj5L7LxpPxeSDhoqcfUFGIHD/LWffcx99JL0QMBrHSa1MAAgfp69mzaxNxLLyWV913wVlVhBIOYySTZsTH2bNzIiTffTKqvT8YUtlm1Cm9lJZG33iJQXz9p3fHXXw+uS3p4mLfuu4+jL7sMT2UlZjzO63fdRe1xx9G6bBnpkRHeuu8+Fn1zLWrnm9A8XVILbDvfmuLK/fH6ZNJk64PihzA+CocdLuaIE9MQJt7Psz8G+96EfXtwP/lllExaxm99EM65EDdULoC4kGTwrU0C4D92qbQfPPZbMWyMj8P0WeA1JD7MjIoruhbIR4Mhv6MKc7hnnbii/7mpmr8ZgodJa4edFIn4q9fDUdfgeutQCtFnWkByyfesF8M1by2Mvyp933vWi2lbpg+34hgULShsuJ0hl7PJZbMY/hBmOkGgsgE7l0X3+ElGSlGKgcpGFEWl9/WniPbv5fBTPzMhbWGCseORS6UVBQU7m0LzeLFymeLY8sbZNM09HTQdK5PAsXKAwsj+XTTOOQ1AALLrkh4fJFhRj5Iz8+kpPvnbjIzgtP9RUhQqqiAyKs+XnC5GjCi4mbQAdcCNjMkHQ6ElJR7NxzCeLp4RldXg9eYNHLM4Tz+GuuhUWVdWLp8Z0XHxgTj5VCivxHniYbQzzyXr9bF5yxZaW1s55phjiskJS5YsIRaLUV5eTiAQYOvWrSxdupTy8vJJKQorVqxA13UeffRRli5dSk1NTTGxwbIsRkdHiz4TE9f9Z1ZBxq579b8E0v/ObSY+d3H/5v39+082LSkCe9ZJLGDocFGxJfbnfQrWQHAGMlme/3ybinabqqmaqnxN9bj/jTUF3P/+9V7/cCcax0S7o/zm3N9wzcg1k6JdVt61kmh3lKrDq7DSlhjKVPgwAgaHnj9EoDpAajRF66JWAMyUSZ87yi9e2cylJ30Yy7GpC1eRs0yCHj+3PHUvW95qZ/nsk7nhzM+iqxpdkQF+vutRPn3ieRxW2chIapwKfxkDsRHu3fEwl570EZrLanBwSZtZ7vjXX/OpE88jYHioDlaQtUzeGOikPlTNYGKUulAVfsNDxszRUl7HWCpKQziM5sby/d5BwIXcO6C3QOZl0OtArRQ23nXBTcDQ9VB9DWg14MRBq4X0S2A0loD86Po8+B/OTwTcDkoQFF2Y+MKEgNmTB/4zKcjjUTwil3eiwsyndTES3LBBfsJhiig5mRRQ7vMJ8NZ1Ae+RiDj8u670Ndu2IOaCeaDXC5//PPz617B5M7S0lJwBe3slTeCss6C5WdCw1ysTAYODJZRdXQ1XX03s7l+DprN/v6y69loh5X//ewHsa9fKfEFNjeDfL3+5BMp/+EP44hdLz3/8Y5mXOHBA5g7WrBEzwkxGXso118j+q6vhK1+R3484QnDn6tXw7W8LgH/qKRES/OQnoLlZ/LF+FENYUu7/fsn1/gP/KH3ykRF482Xo6oSPfwFyWTjwtpjrhcrgd/fkQXm1AAbXhX1vwE/Wwc0/hn/5ZWmfn7oKhvoE1J9zIYQqxJAvXCGTBw/9VMBcWQX07C857iuKHHPmXNA9YnqoKiVTQ4B0tmSk6DFkjNcjwC+agDc7obqilIYwFoOqcrlABaBu6GKOGA7K/gs1Ecx7PQL280kJpldnaPfuYiRgzfz57F6/nvlXXYWZSjHQ0cHo669zwo034joOI2++Sd2xxwLiGWDnctLDDsKkvvoqlYcfjqJpaH6Z5FANQ/rfCz3r+ecAruOg5dt3HNMk0d3NW/fdx3Ff/Sp6IIBjmhg+L8rIAEohZUBV4Tc/gbPPL92Dssp8esNbct/ffQNqGmDWHAFytiXXOx6FYJlMvDz0U1h+vvwNBMvhVz+YnJpQmIx57LfwD5eLuWK4Ah68F6bPhjnHi5GiqoDmQGyvMN9HXQtls/M91ka+T1sVIN/127wr+hrYMmeyq/mJ90Cq6y9dzeetnTD2asgOi9O6qkOyVwzR9JAAeleRSLVEZxHg2P4Wet/soGbG+7CyaXSvn5H9u6mdtRBPoJzchAQFT6ACK5PEcYRdlyjFdNH40RMoB1xyqUL84kKMQLkw4lCMZayZcQKa7i3up5DO0PXyoxx+yifRDB+pSD+GP4zhL8POpDBS6XxE4hkQCKJ4fSK7N3MouoH9+MMoza2oc46V3vmnNkuaQnmFJFd4xYTMeWoz6rJzUTweYdh7ulBCoaL5pNPxHOqi03C7D+J2H0Q793w5Bgr21n+ZbBppWShAzuMtpiCsWLECNe/9oKoqjuOgqipdXV34fD5SqRTTpk1jdHSUjo6Oouljsf8diVnU9RJLncvlivvx/FuRr//Xys6JgaCaB+NmAnZcUjIPXHivvNenaqqmaqr+rKZ63Kfqf1xNlKhZOQsrbU3qSWte2MzcC+aiaEqpz+2Gpeh+napZVbi2S+/OXu4+5m4ev+JxXMcl3BTmhdtfoGF+A9GDUTav2kxiKEF1oJyrTr2YulAVzWW1RFIxADJWjk+feB7LZ5/MZxaclzefK0ngf77rURxcKvxlAAwmxvjHE87Bq+v0RIf45pObGE5EOLpxJj/d8TAe3UPP+FBRHj+YGKXCH+YXux6lMlBOVaAcF5ewLwTYKPYgDF0p/e1OCtQKka0brSJj1yrk0doPKOA/WQC34gO1HFAhcJKAb/9CYd8b7gHFKwx9/Y9knGKAk5wgx58otTdlP4UfexhGbhYpvesImP7+94UpiseF7TYMQch+vywfGBBQoihCN6uqIN54XL6M+v1w7LGlcPsf/hAuvliA/Pr1gp7XrYNFi4TC7uwUZquuTiYIgAladAHyDzyAMTaIbbvFVRs2yCH/4R/grrsEeLe1yS4sS0IJLrhAsH80Ko8XXCAseS4n8wQtLXD33ZJC0NUlYL+vTwIQ1q2Tl1Y4ViIh+772WvjTn2Qf27fL/gA0HJSaOgiEJCd+5YUCulZeKDFow/3Cks6cI2zrUB/8010C8gxPUXLN038QJne4X8B/VR2s/YkwcP9wGZx0uuzTcUry9y2/lX3kMrJP14UPfxrGR0RK33QYDA/Ar38kjzPyAHJflwA9y4bObgHVUJK4dw8ImC+A9gJjXl0hwNt24GCfxBF6dGHfZ7RISkIiLRMAeSd3MjkB+RNk8gBMywP48hCKphFoaCAzNkb1McegGgbzr76azPg4r991FzXvex8n3HRTEfTUHXMMZjIp/edr15IeHMQxTXZ94xvEu7qonD2b9NgYY2++iWOaqLqOoufj8AwDIxRCUVWSPT3s+PrXSfX1yb00DFTDINTayolf/zpGWRmu65IZG8PNZgW0hyvkWo9J+wNbfitgrbxK3rO6LkA9VA6deQBv5CemxkYEzPuDMk7V4KLPCzC/5csS2zXx/ZOIQTwGVbXwj1+Wv0mPV/Z3/iXynnrkfhgblG1duyRXf2tD6YM4sU8yxZMHQPPDtIvghJ+AvwFO3SwMuacaFtwtf98FGfzeO6DtH+DEuyTL/LCLhXHPDotDOirEOyHxLmRH5BipbojsFmaysJ8961BUL3Uzjssz6g2M7N9NtH8vw/t2gOsyvG9n/vlOXNtC1Q0MX5i6IxYBYPjLaJ63DI+/jORoL67jTNhmBzgWva8/hZmOYgQqaDr6DKxsCs3wlqT1nS8RqGpm9umX4thWUZqvqjoKYHgC0vbQehhOx3NicvjoA7jjY/J3ZlmoZ38IpXU69tZ/gXgUpblV5PLRcZzntsqkjKLgvr4bZ+u/yN+BqqG2HiaMvcdbks93PIcy4wjUk0/F6T6E4hGWX13+QbTV16Eu/yCu40AyIcfDpby8nJUrVxbBOsDY2Fixr72+vp4XX3yRYDBIIpEgHA5z6qmnEggEim+H8fFxHn30UUZHR4uJC6ZpFvczNjaGaZr/gf/4/wtL8wgwLzDoqgeOXiOg/egbBdBP1VRN1VT9jTUF3Kfqv2VZOYtsIouZNkmPprGyFkvWLOGizRex8q6VGAGDczeeS9+uPgI1Ac6951wqD68EBSL7I2xetZmyljI+9tDHWHrjUlzHLfa9Z6NZtq2XSYDt67eTSmXw6h4UoCc6xI+3P8hYKoZH02kIV3Pt+z/JtMomslaOaDrG5076EMtnn8ylJ31YTI9cl4yZpS5UxW9efoLKQDmGpjO/+Qh+tfsxTp52DJ9b+CGCHj/35vvcf/nSFuY3HcFhlY1cf8Zn6I0OseHZX9AbG0ZX887vo9/N968HpRfdTYPVK+y5XguDq8FNCguvBqH8k8KSD35BjOvclMjkzbcR+Tv5HvduCCwSBr3wEaAGoXoNhC8Qxt0akUc8iGtSDpwEKCGoulYmDwwdTj5ZmsJXrYKREcnHK8jna2ryLOJ+Adq5nOTkxeOCjAsO5fX1khBw5ZVCaWezQkkbBnzvewLi16yR8+zvFwZ/9WoZ29wskwPXXltC2YEAXHABZlU9L76oFAH5ddfJfMLgoGy+b5+o+hMJ2LNHFPv33COPtbVw+OEC0g8/XEjN+npR8e/fL0KBdetKIH3ZMjnFcFhO9847ZR7iT3+S7RYuhJkz4ZvfFFb+wAEYGlGFuVVViI7Ll/N//JIALMsq9TZvfVDAcuF5LCLM+69/JADs/EtkEqUAyseGZP0vvw+xcfjIZ0R+raolcHfORfl9/k5AZDQCD90rsuyyCgGLhT74rQ9SjBkMB0ss+UQw3dYocvcCOJ/Yt+4xYFqTgPP9PSWADxAKCDv/ziGRa9dWwKF+2Yehy2NrQ2nfCvK+yBPyjm2TGhjAV1XFS7fcQqK7GyMY5M18P7oRCIhR3Te+QapfznVi//mbP/0pmmEwd9UqjEAAM5EgMzxc3F+8p0ek94OD5KJRrGwWO5sl2d/PQEcHyf5+7GwWK5slfvAgO77+dZJ9fSiqimoYOKaJ47rCtD/5+5JnwJzj5B4YHpl08XgFxPuDEAoLY97Qms+nNKChGY44RtZrmrwHOt8UcD/3eGGvx0dECl9WIZMBFZVg5mSyYHgA3nhZpPGGF2Jjoq4YGwZdEZn8UdeWQIWbT6HYc6sA6FQ3JPcL257cDzsvl8zx0AzwVMBwB1gJAedtF8D82yAzCLtWQ/IgzP82+BuFadf8El+2Zx34akUi3/UAvHU7VC/8C4CjqhqeUBXBqmYU1aB21kLKG2dTO2shKMqk5+noIIqq0/fG07z7rz+j/83nAMilpQ/eVybJ8RO3SUUGisBfcR1c2yJY1YSi6dTOWkhF01E0zn2//I25ThHMW9k0jmORGu2B8VGc57aitB6Guuxc3Exa5OqGB6KRPFgfx03EJgPvlmk47c+Ulmkaytz5qEvPxNUN3NFh7M0PyudDKIy65Iz8eollpLoWtaUN17Fxug9CMiGTAMk4WFZx30oigZVP+LBtm8cff5xMJlPsdd+2bRuaprFixQqSySSWZeHxeAjmUz+2bNlCNBolGo3+RZ+7bduTeubtPzOnsyyLbDZbBPr/Z0vzQPhIYdrDs6ck8VM1VVP1H6op4D5V/+2qIIt/9JJHGXt3DNdxefIrT1LeWk55azmPrX6MyL4ImkcjVB/iya88SbQ7iqIqWClrkjFd2+I2ol1RsvEsy+9Yzuq3VxNuDrPirhVctPkiln59KVXl5WTMLFnbLALrn+54mOFEhMH4GF7dg+M6vD10kIvuv4HB+BhfX/Y5WsrrJdlFVdFUlUp/GWvOvIT+6DA/6XiI+U2zuerUi6kNVdJYXoOCwiULBfR/buGHeLXvHbrHBwG4b8e/iHHdiw/j4kocW91tEFgsDLfZJYA7+ST4F5T61UdvRRzyLpOe9SJrfis4sfzvG8DuB1SRyXtmiSx+YJU40IMY1xnToWEjGDPAd6xMGDgxYfyHrpTJAL1ezm3gckGvliU95osXi5bctoVBV9VSPNixx5Yiv0Kh0o0uyLAdp8Ssr18vKPnAAZkMGB0VEN/YKIBl4UK4/fYSC2/lo8aamkT73tgo6Pquu9B0ldZWOeTGjQLAFaUEuNevl7mFW2+VHvWeHrjsMti7V3bR2SlzEdmsnMb+/XDTTXIarluaK1izRtT/1dWy/O675aW+/rqcVk+PTBQUugdiMTmHZNxBiUcFXI8NCri+/weQSsgX74kMqqqKJP7EU2DGkZNBveGVfufC+OkT1j/+O5Fit86QfvnIMHx8NVTXCWu78kKRTE8wq0NRpRd+4vFNU0BgZZlcgIlAPZoAQxPm3DsBnHf1i2t2AYSDGNoVtpM/nsmGdFZ+ciBnCqOvKNIvf8Q0Af6OK/3teXCgqirVxxzDWz//edEoznVd5q5aRdvZZ08ylduzaROu42CEwxz12c/SdvbZHH3ZZaAohFpa8NfVYYTDVM+bV9xfqr+fVH8/r991F+mREXKxGDtvvplAfT3nbtlCoKGBnTffTPzgQTSvdxKYV1SVshkz0Hx+iYybOGlSVVsC5n9euiFgfuK6ict0AxpaBMjXN8Mnr5R70jJTmPbf3i3qi31vyoTMsg/LpMAJS0TdkYgK4H/y9zJRgwuv5qXt89aCt05AKpr0sLddIIB6z3oB2m/dBrWL8xGVDozuEuO6yBsQmAYL7gE9UGLN37wVtJBEeqT7pc9d8Qhbb1TCCXeV2HvdL8cOzoCFmwTg6D5U3Y9meNF0A2+oiuZjzsITrMR1bMx0nJoZJ6CqOoGqJlzbombGiRx24odpnncmiqIw0vkS/ooGrGyK/j1/RPf4hYUPlGP4Q0UQb1sm6dgwuXScvtefRvf4aZp3BmYmQd8bz+C6LrUzF1DeOJtAZSPD+3ZgGH6cbRPAt+EBM4fzwr+i+Cas2/YManObAO8lp4tnhK4LCM8vc1UVbcWHcaMRFMvE6Xi2aHDH6DBubBxtxYdBN3BzWRgbxek+iOK4qI3NpUmA9j/K5NGS01Hmzsf1+dF1HV3XUVWVZcuWMTw8zNKlS5k7dy5LlizBsix6e3tpbm6mrKyMLVu2ALB161Zef/11tm3bRnNzM3PnzmXp0qVFqbymaSxZsuQvlkOp//3PWfr/s/XnLPxUTdVUTdXfWFM97u9RUz3uf9/KJrPEu+N0PtlJ785elq5Zyo/n/JjVb63muZufK/azn3fveWherdgLb+UsEv0JzKRJ+63tk3rhP/7YxylrLitmshZKC+l0p4doLq/lld69VPrD/PKlLXzupA/xUvebtFY0UB+q4ue7HhVTOd2DC+iqRtbKMZyIcO+Oh8W8rqIeRVH41pObJpnUDcYj3LvjD1y68MNUh8oxVJ1X+97h6ke+x2kzT+C60z/FaDKa74//ME1ltWiKhVdzUAZW5Q3lLoD6uySqrf5HYHVJj3r1jQLqe8+F5s3ChI+uE7ZcqxPAXX2d/O5khLU32gS0F/bbcA9YAyKbz7wB/hPyObyaLMcVWb49Lr31qQ7wzYF0BWxrh+OOEyb8jjsExBeklR0doi1vaREg3t9f6mPv6xNEHQ7n+7L3CXV93XXSHH7JJYKuL75YGsyzWZkYUFXZV3e37EvXYccOmDcvD/L8kE6D309a8WFrXuJxhWgUysuhrEwOtX69SOF7egTrNzYK837EEQLG77lHZO0tLTJm4UJpz1+wAH71K1HsF+Ylsll48EF44QWZY9i/X/Z/9dUyATBzpox94QX42Mfk0vT3Q3VZlubKRD573hBmtNCj/PHV+euu5/PdXQHg6aSArYEeAdsrLxS59L0bYM33hW1VFBjshSceFJBY2yCTI7+c0EP/iS/JhEFldd4cbxSeeEDGjw0LsKysEWbXnzcu9PplRiJngaYI8Dctkc2bprjGK0zuSc/mZBvTFHk8CJAvlKqWzOoKfe62LXL6gmndzFY5jqHLpMCsVgH9lk3OsXByOVAURl97jWBTE/76ehzTRDMMFF0n0dVVNJxLDw1RccQRGKEQruMw+tprlB9+uGSte72omgaKQqK7mz0bN3LCjTfy0i230PXEE7SdfTYnfv3rHNy8udg3v3Pt2uK6BWvXApDMg/2aY45B8/vRHBvln+7K95UfBxU1+VaH93ay/g+VZYqipXic94mCI5eR91Y8KsDfH5T++N/eU+pzr6kUUzozLqCi52EYewne90PZt2vL/U8eAs0nxnSJ/QLI53wNfDUQ+ZOw6VZK9uVrkJ54Myr7NMog9o5I6Od/B/SgfL4kD8KeW4SpD82E9EDevC5v4FV25F8FObZtkUtGSj3s/jL69zxL3ezFqJohf0MouI6FbeUmmc/VHXEyrmNjeOV9aZtZXBx0w0/fnj8WxzXPW1Y0u6toOorGo8/IT2wo5NJR7HSCIH4xhVt6JkpFJfajD+LufQPt8q+CZZZ638Nl0kHS24VSXoEbj6PUN6LoBs5rL6HOObbYp65edAlKWUV+v2dAMAyahmJZYHhwLVN68x0H55nHUJedK4z7n49XVCxFwUGi4GzbxnVdjLy3A4jcvQDqXdclmUySyWSoqKgAoLe3l/LycqqqqiTXXtcnGdCZpolt28XJgUJls1keffTRosndeeedh7cQ6TpVAJx11lkMDAygqirhcJgf/OAHHHfccbz77rt86lOfYmRkhPLycn7+858zd+5cAL70pS/xyCOPcOjQIV555RXmz5//930RUzVVU/WfWlM97lP1P6asnMV45zjP3fwcrYtbWXbbMnwVvn8zwmViL7yqqXhCHkJNIc7deC56QCdYF2TuBXNpPrFZeuMXNBPvi7P1yq3E++I4jsNPdzyM67rUhaqIpON87YzP0Biu4Y3+To5umMm9Ox7m6MaZuK5L9/ggtzx1Lz3jg3g1o8jQ/2r3Y+iqhgJ8duEHi1J6TdW4d8cf2Lr3BQYSowwnIvyp7x3qQ1WcNvMEPrPgPBzXpbGshmve/0kay2pQFIWMle/3rr6hJF9XfFD/fZHAm70C4I2ZAtbDF+Tl69OhZq3kuGdezTPoMyGzR0C33gzok/eLBiPfARwILBBG3RqW3He9Ufrq7VF5VAwwmmDoWtAdaRL3egW0X3WVgLT2dqGr580TczpFEfS6ZEnpeXm53HBFEXQ7kTFX1VLD+Xe+I+70V10l6DeZFGq7tVVo7M5OmDsXXnlFgND27QL8OjuxB0dxHIV8Oh19fbJqxgxh4GfOhBNOEEB9zTUij9+8WfrfPR4B6z090kq/e7ec2sGDIi645hqZIzh0SEzsTjpJ5iwmigduv1320doq286aJZcqEJB9NtbZKN2d+Vg8YzIj6/EUc5IZ6hdZPIgE2nWhrkkMx6rrBGR/7pqSPH5Q+q75wCcEyOdyIpGeuH9NheFe6WePjUN0VCYLyitlEuCJBwWYl0tvLX4/pLLSg66pJdDuONAzIEy748C7XaBrArYNXUzpegaERbfz6yHvQu/A4KhsO6tNADzIe2hmK5w4Vx41Vd4Tli37yZrSa583jEsPD/PSLbcQqK8n2NxMoreXsTfewLEsXMchPTzMgptuwldTQ6Knh1e/9z1Sg4Okh4eJHThAeniYsbffxs5kSA0OYiaTaH4/R37qU+RisSJ7P3fVKkb+9CdqjjuO4776VRzT5KhPf1rWXXYZhUnwVH8/vqoqdt1yC/FDh0iOjOCe9VHYt0des6oJ0Lb+E3uBdUOu00c/K+0Tw72isDj0rrROPP6ATBbYthgMTuxzd4HsKLx+szwe9o9w3B3yt5nolP5zKynSeDsF6T4B7QU23YwLI69oItlPdMq47HB+n8PCtr+1AaoXCDjfeZlI7lNdpRi4VA/YCXGpLzD6Tu6vvmxN04sMvDdUhaLp1B+5BNXwYmZi9L3xDGYmhqIZ6N4gjXNO4/BTP0PjUaeSGOlieN9OUKBvzx9xHAvdF0ZRNZqOPpMjTv0MjXNOwwVqZwnLXjPzRHBscqko/Xv+SGqsFyNUAVXVaOd8FIIyIaQufj/qxz4lcWzRPEseLgPHxnVscYj3B2BsRPrZcXG7D4LHg7roNJS581Hy47XlH4RACLe/pyi7d6Nj4LoiwU/GUVqm4Q70olRW5xl5D4qui/N9dAzHNBkfH2fLli3EYjFc1y2y3+Pj42zduhXLsor57qZpkkwmicfjk0C7YRh4vd6/cI03DAOfzzcJtMv90Yqs/p+z8VMl9cADD/Daa6/x6quv8pWvfIVPf/rTAFx22WWsWrWKd955h+uuu664HOD888+nvb2dadOm/X1Oeqqmaqr+bjUF3Kfqv1XZObtoQtexoQNP0IO/2s95955HoDpA9ZGS21o1q0pM63Il6Z3jOCQHkzzxxScYPziOJ+TBV+nj3I3nonk0zrrjLOZeOBdP0EPr4lZevONFLMvmcyd9mNf791EdKGN+0xH4dA+aqvK1Mz+Li8unTjiXk6cdQzKXnpTN7uAW+92vPOXj9IwPsuGPv6AxXMONyz5HS3kdCgqfW/ghzjlqCcc1z8ajGVQHK6jwh7nm/Z+ktaKBoMfPa/3vMhgf5ZtPbqJnfJCgoaFY+8VsrgDQU9vE/X3oKuhdCYNXABkwpgkb75rChrs5SD8v/e5yZaSn3TwIg58X6bsxS0C93iQO9A3fAzUs25v7QA1IVJxrCljPHaAYDWf2SF58dkjQsK4LatV1AdO1tdJIHgpBZaUAx0OHRPremQequ3eLDh2kCTwcFvDu90uve12dNIoHg6IrX7BAjvXlL8t23d2lBvNQSKjxK66Qx1AINmxAi49j2y4bNpSGOo4w6wcOCKk/OCgm9XfeKXhx4UIh8Ds7ZY5h0SIxpTvxRGHqV68WQn/dOnlZE/cdCMCLL5bmHNasEZa+s1NI88ZGuQTptLzEaFyFcCU8uKkUzfaBT4hbfDolYN0yRb7+4h/FRVzVBJD9010U2ERqG2HW0SV5/BMPlPrkHRcO7BWwFioTsB8qg1/9SBj1XEbcy6cfKeOiEZkEOP8SOc79P4DRQTnUG/tE1m7Zwqx79Mm97pYNQ2PCiufdp4umdKoiywsy+HcOyc3wewWwqwqUh/MRcLZMChzsk8doomRyV1VWOmb3AK7jFPPY92zahGtZZIaGpEd93TqsdJqKI48k0d/P7vXrqT7mGOZffTWecBgjFKJh0SLeuu8+Kg8/nPTwsEji89u//YtfYCYS+GtrWbB2Lb6aGpJ9fez95S/lr8q2CU+fzoK1awk2NqIArutSPW8embExjvr0p0kNDJCJxRk41Iv7j1+W2L50UlQSiZhMtuSysiyX/X/78NR08PhEiVHIfw9XiI/B6ecJgL//+yKj9wdFPj9rrrjHTzCDw80JW+46pf5zMwqZAXk+8GSpH37uDRBoFiY+cUB64KsXTJbK77lV3g9z10DDWZMz26sXlPZjJWVs7SKoWSygP7Ff3Ln/SqmqhqZ7UFVNfnQDxXUmmdbhuqQjvVi5NEPvdGCZabyBcmpnLURRDZrmLcPwhXCtHKlIL2YmxuA7HVi5NLguZjpBzfT3YabjoChY2RQ1M08gFekTEzgX3GgE54mH5W+oshq1bTpO+zM4v/kp9uN/QFFVFMODs/UR7B9vwHnyUZTps1CXngmajnbux2SiLlwuYD1vSIfHi6LrqG0zcBPxSbntRXn+nGNQwmViiBePgUek9G48KlJ9yypmrXd0dJDNZosgutCfns1m/yLffWLOe8HQ7m8pXdeprq7mvPPO+y+LifufXgVVA0A0GkVRFIaGhnjppZf4xCc+AcBHP/pRuru72bdPWttOOeUUWlrek4ybqqmaqv/lNQXcp+q/VWkebTKr7pvMquseHc2rMfbuGI9e8iijb4+WwLsN7beW+ts9QQ9WymLzqs2MvjuKETBwbWHFjvroUSy7bRl+v5emshrmNc4i6PGjKiqJXJqDY/1868lNDCfGCfsC1IYqCXkDRZf5S0/6CKZt0RCuYe3yVYS8fgxN58LjltMXHeaWp+6le3yQP/W9Q0OZAHnTtuiJDqEpGnuHD3Hm3Z/nm09uwrRN5tTP4JcvbSlOCmgq4vyu10J6J2CB/0T5Uj2RLbfGxHHeOgRjGyT6zbWEdTfa8vFtGdl+dJ3I481BAeC4wuKjQGqnPA8sAqVCgHtgkVzXwWvAaJDfB1bJhEDTQ+ANQWODoFmfbzLVvGiR2K6vXi268ALQXr9eaOzaWnm0bfkpAL3t2+H++0vsva5LM/lZZ5VQ8vr1grALFvCKMrlHXlFgzRrsUEXRnK5gGFcwsf/ud+GRR+T3ysoSwC7MO3R1ySlnMnIo15Ve+ML8wRVXyMvasEFO48YbpTNg3z6Zf9i4UYzwnnxSxAher5DoixfDSy/Jab/6uoZb2yCydZ8f/vALePMVAe2GF159UWLYCkz5+Z+TPvPHfisy5/ExAWJDfQJ4V/xDqSe9okZYeX8Q2mbJ/rs7xcDsd/fIRMBjv5OeZ9eR44TLBdzNmiuAoeBav/X3MqauCma2lHLVYXKvu67lx0jUIopS6k0vmMxVlU3uaS8LCeNuO5DOiKmdok6eEDD0kgmeYUw6pqKqzLn0UtrOPps5l1yCqyjFnvfeZ58l8vbb6H5/0azurfvuQ/f50AMBcF085eUcf/316IEAmZERep99lrfuuw+AE268kczICKrHQ6K3twT8v/pVcYyPRBjevRtcFyuT4aV160j09IjTfX09b/385wQaGgg3N0sEnabJBMT4qDDd48KakkrI76nE/xt41w25PudcKAqLcy6S+/vx1VDXLPex4GOQy5YSC1RdJO8FAD2yQ3rRUeCEH0n/uREGo1wA++hOyV1fsFH64Xd9QQC25pMe+JeukBzrglHd3BvkGIE2WT9xuaLDcRtEOh+eCQs2yedQEdyvy39+/Q2laLhuiSWvnbUQ28zgL28oGssN79tJoLIJT7AScMklx/PsfBJvqGaS67yiIPnvB3ajewOgqHiC5biOQ+Oc09A9fmHSY1HUk/O56sgkTrF/ffH7cQsu8UsnGMyFylAqq3AjI9ibH8SNjKDkzQqV/IeVGxnF3vJ73MgoSnMb2uVfRVv5EQiFUea9T+T5uo7T/sdiP7yie3AHB1B0A3X5B9BGBovM9+LFi/H5fCSTSRRFYdGiRcydOxePxzOpVz2VSk16/I+y5bquvydLP1Wl+uQnP0lraytf//rXuf/+++nu7qaxsbF4zRVFoa2tja6urr/zmU7VVE3V37umetzfo6Z63P++9ecZ7n9e2USWRy95dFKvuzfsJZvMMvr2KB0bOlh83WIqZ1ayedXm0rhN5zH6rqxfcsMSKmdWMnxgBH9bkHciXcytn1Hs8bvt2V/yL3v+leWzT+amsy5FydtYZywxsbNsm4yZLfa+e3UP4+kYYW+QeDbJ+b+4ltNmnsANZ34Wj2bguA4ZM4ft2uwb6WZO/QxufeZnfHbhB6kLVuLTPSTNDIlsipA3QLlXx7APoJi9EumGLvJ3o0lM4/RqwBBDOjdbynp3ERM5NSSg3M2IG7zenM9pXwcN98oyJyosuxKQ3ndcYdcVQ47npvNRcSkYug5q1sCBOfm++Lvl+FlV+pd1XZDvunWCYqdNg0svLQWh/+hHgnavu06k9Nu3iybdsoR9LzSRp1IC6FtbBUGHQiVgf+BAKat95kxZ7roCiAqN5dddJ2x9OEwOD3u7fNTXK7iuDI/FSir9l18uxcR/7WuSbHfuuaXT/c1vJHP9Rz+SQ2Szgru+8hWJmb/gAjGiU9U8/koJmB8YKO332mvlVA8dkufXXy+SeccBv8fEGO1GeeIhYbi9fmFDCznr4xFomS6oX9XkBcTHBeD5giKHDlfIstrm0rhCO4LXL0z+YK/sc+WFAshzWQFvZ50v286eJ3L8x34rY6rrhWV/7LcyGVBWKbJeTS/1rxfy2gt57tGEyOjrqyf3rGdzAsxVVQzsFAVsh8xbnVx447W8ufdt/D4/dbW1/OQ7tzFr9mx2/ekVrrzmGhKRcRSvwfe+cQunLzsTfB7WfP3rPPLoo2iqCorCNVdfzYdXrEABNJ+P7Pg4vqoqEj09pAYGCNTXkxocJFBfz55Nm5hzySX4amux02ly8TjhadOw0mnMeBwjFMLKZPCGw2g+H45loWiaxIft3k37VVfR/P73c+LXvy6yeNclNTjIm/fey5xLL2X0tdcI1NdTe/zxxd7399/9Exqmt6KMDeFOPxJFN0RJsbsdPr9GDOaG+uT+LP+YmM75/P+PH6Cm/E2qSum+nnOhxMz97p6Sj8EPbpKJnk9/Cew46D5xh28/H5Y8JEA71ZV3es/3JSuIfL3rIag7DV6/qZRLveAekcB3PSDxb8fdLj3s2RFh0XdeLqx7oA0y/TIZEHkdqo4vsflHXQuh6ZDsyvfQXyeZ8nrw3/3ybSuHa1siE4eSCSZgpmMTMt0r0HQD28rS+9rEHvbTwXVIRQbQvQHsXJpAVTOuY5GKDBKobARcUpF+ApUN9L3xR5rnnI4yHsFp/6MYwlXW4OayAsKd/OeXpqFoOq4pbRJu/vNL8XikJ76Qv37eBWI8l82ghMLYmx+avG58NN8zL8fBdXEVUCwr3ztfKZMBYyNyPkvPQKmoxgRJOAC6u7sJBAL4fD48Hg+ZTAafz4fX6/2LfPf36mmfqv+a+sUvfsHvfvc7vvWtb/Hxj3+cvXv3FtctWLCAb3/725x++unFZYcddhgPP/zwVI/7VE3V/7Ka6nGfqv9RNZFhf6/6C1bem3e3NTTCTWFOXXsqoaYQqqEWxy2+bjGu69KxoaPIyFtpC7/PRzKZZm7DDAbiY7zSuxfLsbn+jM/w0Xmnc+37P4njumTtHIoCHt3DwdE+wt5gsfd9JDHO6/3vUhUoR1VUAoaPOz54NatO+ggezcBybFK5DN/7118RScc5tukIPJrBTWddSltFPbqmY7kOo6koP+l4iLFUDE2xBbQbjeLgbnaCb57I1LVyQANsQBUQTsFM7hCM3AT2iDg32wPy3NwvAL3h7vxVdECrEmZdMYT5AslnH/iK/K54JBbOjojDvVqRZ/qvAyeb70F15KezUyjqu+8Wq/bt20tB6DfeKJL3jRtFL75zp+jIdV1064V4t2RSQPvixdKIXghYV1VZ//zz0gd/2GGwbZucY1cXfP7zJWl9e7ugY9fFc+UXmH6Yi8cjMvaBgVKveygEp5wiWHfxYmHgFywoSdz9fjnNa66RwxTY+IEB6QoovCxdl9O76io51Q0b5OUUBAB33FESBDzyiKTXZbNymk7WQtkygT0fH52csz7zSGFQf3uPgLt9bwjjHgiJqVxlbd4ZvAZyaZHcaxpk0nlzQSbHxD32W2HVaxsl27uqRth4yxS3+bM+Koy8qpbY9id/Ly9yuF8mDibI1PNvEnnwesTtHSaz5UG/PHp0ke3n8n3ds1pZddkq9r6wkz/t2sUHP/gBPvfVq3BzOT584T/wjW+s5U9vvMYDv/kNn/7yFaSzWXBcrrn6al5/8BFefewptjz4ez5/xRUM9vai+XzYmQy63096bAxPOEzt+97H3vvvF+De3MyCtWsJtbWhKAq+mhrC+d91r5dkb6/0DKfTjLz2GvGuLnauXUuiq4vh3bsJ1Nez5I47OPqyy1A9Hsx4HFXXefPeeyVWbtMmpp19NoHGRjJjY8W++LpjjxGX8coalN/dIwaDF30B1v4EqupEMl+4P1sfzEcp/hu975Yp9/av9cZbprwRNa2kzii8n7w+ue/lVeKLUFBnKDZEXs73sbdA8wcErKe68gz6aulHt2Kw43PSix5oAU+ZOMGfulny2snL4dsugKOukffe29+T3PbRnSUGPdMPW+bAy1dD9YnC1Kd64KirBcBnhgW8v+9OYfYV499+ve9VioqZTdL7+lPkkmOkIn3gOiggDvQFybvAehR1Yuzb6TIhExnA8IfRdC+6T8zrUpEBfGU1mGnpnTf8IVA0amctANuewHj/UQB5IIBiGCheH4rHi6LlP2MVBTc2LrL6VOLPWPgzZUw8ivP807iKMsF1/gxw3aJLvRuLChu/+UGIjApoL6tAqaiS8+n4V5TWw1ACIWzHIRKJkEgk2Lx5M//0T//ECy+8UATrPp8PkJQGr9db7GX/t3rap+q/pj71qU/x7LPP0tLSQn9/f9GHwHVdurq6aGtr+zuf4VRN1VT9vWsKuE/V/7jSPXqx171mdk0R4OseHX+1n7KWMgJVATwBj4zbdB7Vs6tR9RKQP/mrJ9O7s5dgbZBA0IeuagwmRqn0h7n1mZ/RMz7IV9//ScbSMW556l5sxyGZy5A1c8xvPgJD07jm/Z9k0bRjGEmNM6umla7IAOue/ikjqSjHNc2mubyOrJVjPB3D0HQ+8b6V/HLXZgCSuTTrn76PQ2MCgFRFYTgR4YWDfyJgeFAVQ6Tqo7dOiH3TILBUALWTkH50qwtGvi7A3E1PiINbj0Q1bcg/XwfOqEwCFMrqzk8K7AfFL73uoxug6op8XNxlkhOveAXga+XC1huz5HfFU2LD160TunpwUBq4P/IRAeGFYHTTFORr24KMn3tOGPiamlK82623CvOuadJAHgxK0zgIMt6+XfYzNCQ6dMeR4/7613LMgjndtdeCopBb/13271e47LKSqX2hHx0EjN98swD3224Tovqb3xS/PduWCPn6enl5t95aSqDz+WSOoKZG5gwKQoPXX5e5itFRWf/WW8LWp1JySg89JMC/aAMwquOe83E4+UyoqQdfYLKB3L43Rbp++nkCwELlsOU3In/Ppkug7LHfSW/zOReBbYnkvtCPquel0yeeIgx751vkdbxiVubxSv/79COl53rGUWDlYLhPgPtHLxGGfstvZN9tjSU5vKrmo9kckcMfMU32Xchdb22Qi9fWKOdS6FvPmfi8PlauWIESDoLjctJx7+Pgvk5G4zGGR0Y484wzIGtyxPQZVITDPP7447CviwpfQGLnqspIjEVwXRc9HMaxLMbefBPXdbFTKV65/XaSvb0cf8MNTDv7bOxUipFXXyXZ08PuW28l0S1Rc3Y2y/Arr+CrqUHRdfZs3CgRchP65r2VlezZtIna448n0NTE0O7dWJkMiq5PMq5zAX9tLb6KCgJNTSy4+WYUjxc3EJJ7VJig+dUP5JqODcGbL5di/s65SFoW3isyyzIlSeAXd8jje4H3iWNyGdj/tkzGFPZtmvK+ebld+jY+8SUB8YomfeqvXg/eWpHA4wh4f+v2Uj+6GSv9XrMQVJ8A7EBrKa89ME0i5VxH9jFvLXhqoGohnPMWHH+nMO1tFwjI13xiXhdokWMFWiDQJJOCegg8VX97dNaErPWR/bsJVDbiOjbJsV4Mf4iRA7vx+MWEDqRH3huqomnemZiZOH1vPIPu9WOm4+jegJjeqRoefxjHNhnuLPXOK4DuCeBqymTwbegloP7nZduTIuJwHJTqOrTzLkCpqQVc6VtvboXIWMnczjBgIpBvbpsc/xYISmxcLotrmahnnoPSehj21n/Bdhy2tbfT2dlZlMMvWbKETCZDNBolFovR39//FxnsU/VfW+Pj4/T19RWfP/zww1RXV1NXV8fxxx/Pr371KwB+//vf09LSwqxZs/5epzpVUzVV/01qSir/HjUllf+fW1bOws7ZxX74iWWmTRzbwUpb9O7spby1nMpZlcScFEGPj4yV49ZnflaMcvv6ss/xrafuZeveF/jj5+9mODnOcCJCXaiSn+74Fz638EO0VNTjuA6WY/N6/75ixNva5avojQ7j0z2U+8OYtonjuihA2soS8gToj40QSceoCVby0x0Pc8nCD+I3vPgNH9V+HdVJgN0Ho3fkGe8gOEkYugaqrwKtHoauFqO4pn+GwMlIv3qHOMzrLQLszW7wLxTm3M1K77vVJ/nwxUi4jSKJt/tAPwwGv/BncXEjeTm+IwBfLQetGrL5LPd33hFE/L3vwdiYMOELFwrKtW0BeYcOCTPu8QgwV9VSfNuOHSKvnz69hIQLkngr714+MiKUdSYj+yovl58dOwRt+3zSsG4YkMsR81SzvUNl3jzB9MGgEPzBoBy6txe2bhVm/Yc/lGWFtLl162R+oWBy39tb6gLw+aCiQrY7/3z4wAcEqIdCJbx88KCw7GvWyIRBTY28lMsum9w9UFOWgaE+lK15ubzHJ6BaVQU8P/nPcOHlwsxGRoRdj4wIUx6LlCTwNQ3w7hsCxMqrxICu0JOazcg9MLMC0iPDAsSXf0yi4saGZRLg7AvEVf539wjgi4/D4UeL67xpioQ+lZVYt4mSeZ9HnncPCEj35iPjdE2czlHkwuzrKkW8zWqT522N4PPwjx85nyqPj+9/cx2HrTyDDd+6hQsuupBdu3ax5LTTuPXGm/jKaWdDdQU/2Pood939E3p6etj4wx+xcsliUv39VM+bh6Lr7F63joObN9N29tmccOONjL72GtXz5qHqOju/8Y1ifNsJN97Iy9/+NvOvugpF09ADARJ9fWgeD56yMpG+NzaS6u8n0NBAsLmZ4d278VVXY4TD2NksmtdbHFt51FFkIxH2bNzInEsvJdTcjK6pqPvekJYGX0D6yidG/v3uHvjIZ/NvPgViUZHL/3k/cSYtgLyw7aeu+ktJ/cQxX/qGMPpjQzIp4/HAO69DWZW8hzRdJhBefRHu+AW8dPlkybtjyd96egBS3QLU0aX/vfYkUXS4lhjbvfwVOPjr/LYbJRJO88DIixNk962liLfgYXK+ipqPmgOG24XdzwzLhIFR9h/OunYcm1xijKGiJL6c/jf+yHj/XtqOP49gVTOKpqOq2qRtXNsqxr6VN86m6egzUPOmd8UxeUf54X07qJu1EE+oCkCc4lFQbAd07d8G7YBrWbijQyJ3X3omSk3tpPGF9Wg6znNbSzL5FR/GdRwUnw8cR0zxIqM4Hc+hLj0DNzqOUlaO23UAt6cLbeWHizJ7LvocY2WVbO/o4JxzzilmtofDYbq6uuju7mbFihX4fL4pdv3/j3Xo0CE+9rGPkU6nUVWV2tpavvvd7zJ//nz27t3Lpz/9aUZHRykrK+NnP/sZ8+bNA8RxfsuWLQwMDFBdXU04HC4a103VVE3V//z6a1L5KeD+HjUF3P971F8D4f/W+NG3R9m2bhtL1yyl+sjq4nZm2sRMmvTu6qVhfgOG3yA5kiRYF8T1Kdz27C+48pSPMxAf5d4dD/O5hR+irbKBrvFB7n3xD9y47HPc8tS9fPKEc/jlS1t4rvMl7vjg1RzXfCQ944Pcu+NhLln4IUaSEWbXTsNneBlLRcmaFgOJEY5umImmqOiqRtf4IL98aTNXnXoxfsPLK717ufqR73Hm4Qu58cxLyDkWId1CH/oi+BdA2YWSpz66DqqvhdR2SG+HujvBHhIJvFYJ6R0irdcapXd94ItQ9UVh1EbXQ/Wa/NgaYeftPmHYq28UkI8LqCKbNztL2xgzgTwLaHbC6HfkPDyzpZc+lRIgXpDoejyTwfeMGbLe55scoh4ITO5pb2sTxv6mm0oZ7nfdNYE91ksZ7kuWCHgvHGPWLDm+rlNoaE9qYWJxlb4+mVMo5LY3NwuT/vLLIo83DJkTCAblp79fAH4oJMD9y1+WU/b5ZGxn51/mwM+YIXMVBcDf3V3ql9+0Cd59t9T7ftttpbj7MiOJcv/3hd2eOSefzf4PeZD+/7V33+FRVekfwL9nenpIgTR6rwGkCUTXgtiwrZvd37JrQ4FdsKHiCijqElAQBUVFQEVd3RVcV6ValzUUA0g10kt6n2T6zJ078/7+ODOTBEIvCeH9PE+eyczcuTkJA+R733Pekyintgf3UVfcsvt4RJT8Pv0kHzOFAeYq4NefZWf40RPlmvQgj7w4gOoKGeKcduD5vwB9h8hjP15QGwhv+7OsAvfoLy8AHPoViI2Xje6OlACR4XId+4G82hDeuW39+12CWxQJGUb9BFhs8odXWFq79v2Xg0BiC8z89z+xYsUKfP/2uwjv2gE79/6Kp6dORVlZGXp27YaSkhLcfscdeGT8X+R7wSTXW+/cuQOj77kH/5o1C8nt22PP0qXoOXYsjHFx2PbSS+g5bhx0RiMUqxV7li5F/6efhttsxq+LF6PXuHFwlJXBFBeHiORkVO3ejfCUFESmpsJeUIBtb72FV3NzcSAvDyaTCQlxcRjftSuue+QR7DpyBFNnzoTdZoPQaPDyiy/iN1ddBaHRYMvf/478tWvhHzgQY5ctw0P33495zzwp17h36gVhLpPT1m/MlBdNCPJnHNdS3tfqGt7fPVhNX/VPWT1Pan38cfWO+aPsYO/zySr7Z+8C191eezHG45bVf1s10KlbYGaNFtDq5frysBTZoE4XLoN4blagg3xbwOeQAfvXWTKIGxOAbY/L53URge7wM+V9Z6EM4lU5tcE8sqNcJ29MBLY9Bgx8p86e79Hy64W1kpX5s+TzqSCfF87qEujDoqAzhKHk13WhsH1saFfsZiguG/Rhkag4uFkG/ogW0DYQwIMBXgS62J8NUtXA1nwNh/zg81RTBbLUQJPWVv55a2uPD50DFOqBQYob/u9WQ3PlVRBxibXr4TOuh79FHAK9WZGXl4eWLVtCo9Hgu+++w7BhwxAfH8/btTHGWBPAa9zZJScYwo/rHH8SdbeSy87Khs/jC53LfMCM1RNWIzw+HCXbSmArsUF1qdCb9NBptfhD/xvxyrqPkBydgOdueAht45Jh0hvRPi4F028YC71Gi4eG3IloUwSeue5+fHbvbHRJbAuPqoT2cn835wv0S+0KAlDpqEFsWDRaRrVAl8Q2mPPfD1FiqwIE8Mm2NfjTFTfD7LTixW8Wo2VkHObeNkluKWcpx+wfPgCEHhQ/WQZ0oa/tCF81G4gYEQjhWkDfQe7rXjZBdqD3lgD+GgA+oOVMWSUPTZ8PTJf3lQHuXbVbwunbyHMITWDJMgG6wBZz+g5ye7jSsYA3T3akDxsmG+QRZCAnklVzv19WDn2+2g7wc+bIP5xgR+05c2q7v8fEyNuEBJl4S0pkCXzyZJl4X3pJBvXx42UqBmTaHT5cfs2iItm2vbBQVoTXrwdqamSyHjsWPh9gsch15sOGyfXsffoA8+fLQv+gQbJqnp8vA3tUlOxx99xzcrgHD8r7/frJmfiA/LLBdfFz5sjb1FT5bc+eLe8bDHKIo0fLCj2RfO7uu+VQ335bXp9Yvx4goZUV8x79ZWgPTn1PbQd8/Zmc6u73y6nHn7wJ7N4ip1mXFAIfzpMnLy8BvvpQBv+7H5RT4Osivwzt0S3kVOzwSLnG+qZMOZW97vT86Nja/b2ryoCK0tou5O1TgJYtZLOt1knAwF610+Prdpf3+eV2b25PYPaAkGvgdVoZ8k0GWbUf2Auv/OdTfP6f/2DNqlUIT+8GmAxIT++LtStWYvvGTfjHWwtRXFaKnrEJ8ucQ3C/e7UF69x5IbZWE3dXV2LN0qZzavmgRdCYTBkybhojkZOijokLP7Zg7F8bYWPSeMAHhyclo0a0bNFottmZlwRQXh7D4eJDPh9xFi1DwzTf4TVQUdv/8M37+6SfcetNNWJCbi8jWrfHn8ePx5IMP4q2RI7Fk9mw8NHEiNjz/PHyKgp5jxyJlxAi8+csvGHXTTSjJyYHbEAHq1FNeZKmukpV2EPDJW/Jn06W3rLIbTQ2HdkC+D5LSZKW9odB+3DFpchmEELW7CHzzb3nhRqORQf7Qr3IbQY9HjsdZIBvIEQBtmJyuro+Rob3oKxnChQC0EcDeV2rXrOvCZKVdFyHDuKkl0PIqYM8cuYYd/jpT4VNlsN8zW/570/0JOXZXsdz+zVUiXx9shne2yA9ndUloyrtGq0dqnxuOC+3yUB/KD+Ygf9sKeF12pPYeAWNkXIOhHai//dzZEjodhNF4wsp86Pm4RIiYWPhWfw6qrgouy69/jNEEEdyBQ2igybguMONGW28Kvs5gDK1Xj4mJwQ8//AAhBG655RYkJCScUWh3u92444470KVLF6Snp2PEiBGhiu+WLVswbNgwpKeno2/fvvjhhx9Crztw4ABGjBiB9PR09OzZE59++unZ/QAZY+xyRUT8ccxHamoqscbltrlpeeZyeh7P0/LM5eS2uk/5Gq/HS6U7S2l55nIq3VVKqkcNnWvfyn1UmFNI+1buI3uFnTx2T+h5IiJF9ZLd4yRF9R53XofHResPb6cap432lR2lZ1a+QeU2M9ndTrK67PRr6WF66qt5tL88jxweJ+WWHAodU2GrpjJrFf1r21p66qt5ZHM7yO52ksVlp6e+mkd95vyenvpqHllddrK5HfTMyjcot+QQqd4aIutqItVMpFqJXFuJCjOJXDuJVBuRWhP4MBMVjiaqmk/k3iMfU4qIlEIib3Xt/cLRRK4dRO79RKqFSCmWH+49gWPNgft75euUYnlOtVp+3T2Qt6qldiyOYqLiYiKrVX7s2EG0ciVRRQVRVRXRffcRVVfL+ytXEu3cKY/PzJTH7t9f+5odO4gKCohGj5bHmM1ElZXyWEDeWq3yua1bjz9HZiZRTg5RWVnoNfYyGxUXExUW1r5k+3Y5pOJioj175Jc8cEB+KatVfvngl8vJkUOrrJTHOxy1rysslJ+vXk20axeR01l/aDt3EtlsRDU1tcNevVr+KIJfZ/NmooIjbvI7HUQuJ/kLDhEtzCLKP0TkdBDZrUTVVUReL5FXISo4RFScLz8WZhGNH0VkqSaqqSKqKifalSNfR0Qul4tuv/126ty5M/Xp3Zuuv+Y3dGBTNpG1mjZ//B4NHXAF9endm9J796bv16wmstYQ7dpMzzz5BHVtlUB94iLpijYptPaL/xA57ESlhfLcXi/Rr4eI3G4im4Mo96C89ShEFhuRxyOfX7dFPucN/B1TVXlcZXXodXNnzqL+/fqR+WhB7XkcLirOz5fnc3to0Vtv0xU9e5H/v5uJcg9S7paf5XO5B+lg9k/UMjGRdv78M5n37KHsSZOoKjeXPDYbed1uUhwOclssZN67l7InTSLz3r1U+OOP5CgvJ3dNDXlsNsqeNIk+7tGDsidNIpfZTJajR2uP37OH3BYLVf7yCy3+4x+pdUoK7frqKzIYDOSx2cheVERFP/5IPbp2pcfS0mjD5Mmk2O30zFNP0dzZs+mBoUPpxrg4yp40iVRLDdHOn4gO75W3xflEBYeJ3K6z/jfytHgV+XUWZslbj6f2sV05RC4nkbuGyFlGVLOHaO98osLVROadRNmBv+NV24kKVxKZd8jHzDvl49mZRObtREWriTwWInc1katcHlu1U953FhN5auSxH0Pe1uyRj5t3ymOPfd5jOedvW1W95LSUUd7PK8hpKSPVqzR4nMvlottuu406dexA3Tu3o2t/cxXt27eXiIg2b95MQ4cOpT59+lB6ejp9//33odfdcccdlJ6eHvoQQtCXX355zuM+lt/tJu/yD0l5fhJ5l39IfvfJ/x/0e73kd7vJ38D/Y3V5vV5yu92kqupJjzsRl8tFq1atIr/fT0REb7zxBl199dXk9/spNTWVvv32WyIi2rdvH7Vu3ZqcTicREQ0dOpQWL15MRETl5eXUpk0bKiwsPKsxMMZYcwWgkE6QURs9JDfFDw7uje9EIfx0Xue2uuuHcqdCJTtKaHnmcirZUUKKo+Ff4k5EUb20vzyfKmzV9NRX8+jjn1dTmbUqFNDLbGayuOzkUtxkczvox0PbqNRaSXvLjtKPh7aR2WEhq8tO+8vzKfvQdtpXdpQsThvllhyqDfxuJ+Wbi6nGaSOzw0LF1UXkV4qJvGUyRHvNRN5yIutKGd6tK4lcu4hUeyCEF9aGea+ZyPqNDOqFmUSu7TJwq3b52sLR8mKAUlgb3FVbnYsDgYDvLQ+8ps7jqqU2yFvLZII1m2VCXblSpt26ybVuqF69mshikcfa7fJ2/36ivDyZbNeurX3+2JC+c6f8Onv21A/z1dX175vNoa/prHaS1eqnmhoZlBcsqL3OUFgoHysslKcOXgdo6LpC8Mvb7UQ//yzvb9jgoltuuZ06duxMvXv3oeuvv562bTtAmZlEBsNm6t9/KPXs2Yfat0+nhQu/J6tVhvZHHnmXOnXqRVqtlp6b9gr57TYim4X8diuRyyGDurmCaPHLMsB76vyi7nHLEF1dKUO9wyY/X/wy0ZH98vPA8fV+sXa76I25c+nqIYPJ//YMSk1qRd++8zqR00771n1HrdPSyPn680RjRtLqN18l5/5cooVZtOPrVRQdHUX2gqPy3G5X4CKCtzbAhwK6l8jtIVK89QN9MBh4VfmYxU6Ue5AKlq0kANShQwdK79qd0jt1oUH9ryDyeun5yX+jzh07UadOnWjUrbdS/p59ofPdcvPN1KN7d0rv3Zuu6NmLPvnwQ7Lk5ZHHaiVneTk5KyrIGwg3XrebPDYbeex2cpnNZD16lDw2WyjAuy2WUOA379tHrqoqcpSWkrOighSbjRS7nZyVlbRpyhS6bdgwGnfvveSuqaE2aWm05JVXKHvSJPpu+XIyGAw04eqrybxvH61ft46uHjqU7CUlNHniRPpdv35UlZtLPoeD/PnHXJjZtTl0oeW88yoylHuVOp97a5+zB947R/YTlefXhvLKrTI4B4P0Tw8RKXYZri37iZbHBsK1WX64zTLEK9Y658ghsuwnV3EO3T5yCHXu1IH69OxM1w9oRQd+Xkmk2Gjzhu9o6IDu1KdnJ0rv0YG+/2JR4ELADiKvnd58803q1q0b9erVi/r06UMu15ld4FC9Hsr7eQXtWvkK5f28grweB6kNhNng3xNV9ZLq9dDrr88/rQBa15YtWyg+Pp48Hs+Z/zmdgtNmo9tuHEmdk1tRnx496PrrrqMDBw4Q0ckvLOzfv59+85vfUHp6OnXt2pUmTZpEPp/vvI8vaMuWLdS2bVuqqKggg8FQ77nevXvTv//9byIiioiIoKKiotBzo0aNorlz516wcTHG2KWIgzsH90tSQyG8XiWxjwxMe3L3kNvmpg3rN9DgwYOpb9++1K1bN3r55ZeJSFbcB6YOpFZoRW1j21Kf3n3OuEKiqF5yeFy0r/woHa4spMOVhaGK+TMr3yCHx0nVDisVVZXSdTfeQO06tKfuPXvQ1df8hj75/gvaX5ZH3/zvB+rTP5069+hKnTp3omdfnE5Wl52cHjf9tH0rZVx1FfXu05s6dOpIjz72MKmO7TJkK0UyaLv3EFUtkJV4b1mgel4jQ7fXLAN6KGBbZbh35sjbYKgvzCTXDtDtt91MnTu1oT7dY+n66zLowN5tRNbVlPPNkzR4UH/qm96bunXtQC/PnBqqxu//dStdf91V1Kd3F+rRJYb+tfR9GbKrq2sr6ycL1TU1tSXr4mJZHQ8G+uJiotJSouJicu3YQbePHEmdU1OpT0oKXX/llXTgxx+JVq+mzatX09A+fahPTAyld+1K33/5pSyjZ2aSIyeH/nDXXdQxOZk6d+xIH334aajYX1AQOoy2bpWBff78468DFBfLawfl5fK2bgW+okKG+Zwcos8/d9Hy5fUrTldddTXt2OGn+PhUWrjwW8rMJFq+fB+lpramnBwnZWYSffTRDnr77V/p97//M706ezZR/sFAmDsow5W1Rt4fM1Leuo4JCh63fCwYAo/sJ/ruC/l5cd7xxxMRuRy0Zc1KahsXSxWjryGDTiu/jttJtDCLenfrSv9e9JasBFtrZEB32slnt1FUZCQd2b1TXiRwyNBNVrsM6W5PbUBXvLWfe70yqNet5vl8x1XcQ8ce+7jFTuRwyXNa7USKIqvswWO8aujigdflIvOePbRh8mRylJeTx2YjVVFIVRRylJeTs7ycPFYruaqqyGO1ksdmo6IffyTFZiPz/v1kOXqUPBYLKQ4HKQ5Hvep88YYN5LZY6MXnnqPBAwdS8a+/kqO8nH5at44GtW1LbU0mGtGtG/3m6qtp7ssvk6WyktJ79KBPx4yhyl9+oal/+xtN/OtfyetwyFkVdf9cgxV378kroyfT0L+FBw4cIPIqtHnFf2hohzbUp3s3Su/Tp16ou/dPf6KUpFaU3qMHpacl0ZNj7z+m4l0jA/SG0USeOoHcvEOGd/MOWSmv3ErkLCWyHyVylgQeywlU0avJ9d1vadU/XyX/+j8S7Z1Pb8yeSldfNZz8nhpKTYqnb1ctJ8rOpH2vGqh1SiI5q/OJnCX0xefLaejQoVRTU0NEsjJ7ppVhn08lp6Wc8n5eQY7qErKUHiJVOfWsrdMNoHWNHz+eHn300TMa3+lyuVy08quvyOdykV/1nnZl+/bbb6f58+eHztGrVy9atWrVBRkjEdGf/vQneuSRR4iIqG3btvTpp58Skby4YDAYQuH8qquuCv2/fOjQIYqPj6eHH374go2LMcYuRRzcObg3G8dO0Zv32jy6csCVtDxzOfXs2pM+/+xzIiKqqqqixMREys3NPa56/9PGn866QhIM8OU2c6hiXmEz075yOYU+v6KY/v3F52Rx2cnudtILL/2drhw+lNYf3k69+/SmRR+9R+U2MxWUFFFCQgJ9veEHKreZ6aZbb6Zn/v4cldvMtK/4MPXq2Z1WLX+BSDkqp657q+U0dqVIVtitK+tU1HfUVsL3mmqDet3XeM2hAO6q2UGrvlpO/oJ7iZxb6Y15s+jq4b2IXDspvU8P+vJfzxK5tlPV7rspMTGecnf9RKTaaOiQdFo8ezCRUkjlBYepTXIyFS5dKueKHzokK+zB8vXOnTL5Bu/v2iWf//lnmaTLy+X91atlwF+5Ugb7oiJy7dhBqz74gPwWC9GePfTGjBl0de/e5N+xg1JTUujbL78kqq6mfZs2yWrxoUNEv/5KLzz5JN17/fVE8+fT4ZUrKSE+gTZvriSzWVbZV68mMpnkcH79VX4UF9dW1X/+WQ4leL9uBX7z5voV+B075PT4oOAv/EVF8hf+4MWAlSuJevToTUOH/jt0AaC8nOj//u9eevXll2unvAenLdttsureUMU9OMU5OFU+FALziI7urz+tPlhtDbzuT5m/o0fuu4doYRa1TUulT//xDyKPmzav+A8ZdFqa+9IsWYEtzpfV/ILDtOTPd1J6j+7k37FJjsVqra2w2521Ad3rJdpz+Pjp8cfy+WqPV5T6od0bCP7rthwf7j2e2udyD8oLBjYHkcNJirmaNkyeTJW//FJbPd+7lxSHg6oC9ytzc8ltsYSq7+Z9+6jm8OFQpd5dXU2Kw0Eem40K162jf/XrR9mTJpFit9MLTz1FXVu1oiM5OWQ5epQqf/mFFLudKn/5JVSp79a1K329ciX9vHEjxYSFUYJeT0nR0RQTE0NRUVF0zz331C51qFtx95w6SJ7MCacrOx2UGhtN3778AlFxPu3bvateqLv3z3+m12ZmyZkdR/YT7dpUfxp80Void5UM8MdNY68hsh5TeS9cLQO+qyIwpX4nkWKTwb7OFPstP/xThuLSIjIY9LUXAbIzqXePzvTvZf8gUj00bNgw+vrrr8/pZ0NEpHoV8nocZCk9RE5LeYMV92OdbgANcjqdFBMTQ7t27Trn8Z6O072wcMcdd9CLL75IRERms5m6du1K27ZtuyBjysrKoiFDhpDDIWeP7Nixg0aOHEl9+/al0aNH07XXXhu6iHDkyBG66667KD09nW677TbKzMykxx9//IKMizHGLlUnC+7cnI5dUkwmE26++WYIIQAAA/sPxMFfDyJ3WS4cZQ6YK80AAIfDAYPBgAhjBADU2/d96YdL8ac//QkGw6m3G/L6VDgVN7w+2RxPr9Uh3GBCbFgU2gUa15n0Riz56Qukp3RGXFQsrhlxHXYW70eRpQL9Bw5A3tE8pKd0gRACVqsVRASnwwGtXgenVoVOo4VOowV5VGiEgM6vgeJVkZzWFSifDKiHZPM45aBsLKeJBMIDDeLCR8ht4SCApMVAu91yKzjnRvkaUODDKz98FTDZZ+LmEZ0gkl4DhA5DOn+Po/lVgLcAQvhRY9MAVbPgoF4w6LWIU7MA7yHs3L0PNw/eAbh3IDEmDulC4NPt22WL9oQE2Yq9fXu5d3vHjrIxWZs2cq+0tm1lU7GoqNqucEeOAP37y05waWmySVZJCUwzZ+Lm666DOHoUmD4dQzp0wFGLBVUxMXKP7yFDgPx8dHntNcSGhWHNu+8CPXrg00WLMH7SJOCGG9D+ww9xVb8rsHLl5xg/Xu5W17cv8Pnncse6pCTZyH7XLrlD3cKFQJcucsgzZ9b2zwsPBxYtksNv1ap+b726223Pnz8ft99+O1JSEpCcnIwBA5Zh9GggPHwLDh7ch+uuO4rRo2XH+WADftWvAf1+HPDyh6DWHWVH8H+8Ljt/B7eAC3bUB2TTP61ONjmru/d3XKJsWBYZLf+sj9nve+bsOTiYl49Zc18F7nkUX37+H7z30UfoN3gI5n/8KYYPHw6dXg9YqmVTOnMFvl+zCi98vgafZo6EiIqVDeq0mtr92XVa2ahMI2QzuvYpwMCegf3dRcN/mTQa+TqNRjYmg5Bbyv1yELDYaxvcRUXIxyuq5a3QAB3Tas+v1cjHzVZoDAb0e+IJRCQnI3fx4lCDOvL54CorQ/f77oM+IgLOkhJsnj4djsJCOEtKoDqd0IWFwV5UhMqdO2HPz8fm6dMR3qoVhr/2GnqOG4fX5s3Dxx98gCdiY1H46acwREVh34cfoqS0FFFt22Lw3/+OT1atQpjJhIwhQ9CrVy8c2bYN/3n4YezZsgWPTJyIBx54AB988IFsHJeYAtz2J7kt28cLav9sVa/cyq2hvdlP4th/C4cMGYKjR4+iymJBhdON6zP/D/jqI3SJjURsTAzWrFlT++dgMMomhUlpQKfeQERnYNBiIKojENsn0KhurGxs2HNKYN/1KXLPdW0kcMuvwBXz5A4UcVcAjiPA1gmyc7yzQL4uuivQMgOI6gIMXoL5767A7bffjoRWKUhOTsGylRuAqE7Yoh2PfQfzcLSgDNAa8Ouvv2Lr1q0YNmwYBgwYgNdff/2Mfi5BWp0eQmtARFzqCTvE1zVz5kwcPHgQs2bNAgB8+eWXeO+999CvXz/Mnz9f/j05poHbZ599hi5duoS26brQgv/OJCTIf2eWLVsGANi8aRP27duHI4cOAQDmzZuH5cuXIyUlBSkpKbjnnnvQr1+/8z6eV155BZ9//jnWrFmD8HC5k0V6ejrWrl2L7du34x//+AeKi4vRs2dPAEC7du3w73//Gzt27MCXX34Ji8USeo4xxthpOFGiv5w/uOJ+6fjjH/9ID/7xQVqeuZy+W/YdtWnThlq3bk0mk4len/G6rLLvLCWvR1ZbzqRCoqhe2leeR099NY/2lec12LiOSDavK7NWkcVlJ4vLTkeqiqjUWknrD2+n3/0hk/qPuopsbgd98f1qik5sQUkpyWQymWjKnBdpd/EBeuqrefTD1vXUoWsnSmzVkkwmE/3979PqN4Vz/0rk/ElOj69baVeKA59vlWvVg9V4paDO2vStcup8vUZ2e+UUe/c++tP/3UyPPDyOSK2h7Vs3UJvWKdQ6LYlMJiN9sPCJQNW/jK7KGEovv3g/kWsHHdq2hOJjY+nhP//5+IZxBw7Ix4Id32w2+Xlwzfvo0XLuenGxvN23T7726NHaeet15rD/qW1beuTBB4l27KC24eH06csvE61cSZsBMmg0NPeFF4gyMykyPJyKg+vki4ro0YmTqEePZ0OV7j175BCC0+d//llOlw/2vdu5s7ZPXvBbCd4P3gYr8Lt2yUIwUcMVpxEjRlKfPn3p5ptHU8uW19JTT80ni0V+/epqWXGf/twr5K+uJLJZZJO5xS+feCp1sNoenM7udMip625X/Qq7y1mvGj9n5ky64oorqLq6+vg3buCc3ZIS6btPPpTnHjOS1k16kFqnpdGOaRNldXhnjrytschqt1eV1fOgYOO5YIX8dNfSBqfP110PH6zINzSdvm4jPJsj0CTPQ0qgUl65a1eoCq44HPXWr1vy8sheVETOykry2GxkOXqUnJWVVHPoENmLi+s1qfNYrXR4/34CQO3btaPOLVtSr27daOCAAaTY7TT1qaeofVoadWjThoZ16EC7fviBFLudin78kRxlZeSxWMjrdtP06dPrT6H2uGuXOARnUxzbPO4ETdROR71qcZs29OmDfyAaM5I2/+0v9arF9957L7Vr14569+5Nt9xyC23fvr3On6VHVtWdZUT7Fsg17u7qQKX9gGxUF2pAF/jcU0206T5ZYXdXyvXuik2eK+BMqrJRUVH04IMPkqqqVFFRQT169KAVK1ac9c/ldMyZMyf098TnU0n1esjnqz9zpFu3bvTdd9/Ve+zqq6+mhQsXXtCxBZ3wZ5ieTn/87V10Ta8eNG/Gi+T3emny5Mk0c+ZMIiIqKyujHj160DfffHNexzN37lzq378/mc3meo8XFxeHPl+0aBFdccUVoVkhpaWlobX2a9euPWHfAMYYu5yBp8pzcG+Ogr/IWKot5La6KfN3mfTxxx8TEdGvu36l+LB4+iv+Wq8r/YcffkgDBw48rfM7PK56nd/tnoZ/wXB7PbSv7CitP7ydym1mOlxZSGXWKnruheep34AraMfRvWR126l7Rn9q/cch9NRX82j3r7mUkppK9y/4G/WZ83sadNe19OgzT9CPh7bR4fwj1L1Hd/p65cJA8P65NpAHu7wHp8R7K2UQLxwtw737V9lULhjo96C2GZ23KnBb2+Qu67l7aMjgAeSoOUjk3kO//91t9PFHS4hUOx3av4PS0pIpd/NCIm85HTmwk+668zZK7xFLt12rocy7bqPHx48/fqF4TU1tCq6oqG1EF+wSt3WrnC8e7DRvNhNt2ybnsgdTc3Ex0fbtlNWrFw3p3ZscgVC/A6CRSUnUt1cvGt2uHV07bBjNz8oislopMjKSivfuDa2ln/TQOBo7dlq9afDBmfvBjvGBL0Nms3w8NlZedwgu3X/7bTnkn36q/dYsltrQXvcXfiL5uM1Weyt/LN3o6qu/CzXeHz2aKDPzXrnG/cj+2iBnrqgNcMFGcEEup5xOX1UuQ311pZwa73Yd0zXcHbo/99kpsmv7iX6xdjlp0eg76IqEaPK/PYPIWkP/e+JBap2STNs2bZDT9t1ueZHA6ZRB+dhgHpz+XllN9OPWk0+Vb0jw9XXPGTyfxXb8NPpgIzxH4OejeEktq6TqOuvVvQ4HeSyWUBgvXLcutHa98pdfyFFeTorDEVoDH/y85vDh0JR6R1kZbZg8mcx79oS60wen5DtKS8leVFQv7DvLy6ly924q/PFHuV7ebidVqV2qILu3u+Sf4aE98mKIyyk/Fr8s+xQU5591l/njQt3WLTTy6quob+tkGn3n7XTtNdeEgnFhYWEoPH3++eeUlJRENlsgaAe7yVduJXIUyg9nCZHXIZvQ1W1AV7hSTo/3WGW4N2+vXQtvPUBUvZPI66Q5L82gK67o3/DFo4C6obhnz5711uQ/+eSTNHXq1LP6uZyOugHU51PJFVgbf3jf7lB4PzaAEhEdOHCAIiIiyGI59y74p3LsvzN1BTvPd02Io6+fe5r8bvdxTeCefPJJmjJlynkbT0FBQW1zyUBn/UGDBhER0fPPP0+dO3eWzSVHjaL8/PzQ6xYvXkwdO3akLl260G9+8xvavXv3eRsTY4w1FxzcObg3O8f+InPsmj+vx0u3jriVxl0xrl5X+hNVSIJr1+tW1etW3PefoOKuqN5QJ3mLy0Zl1ip6ZuUb9ORzf6N+/ftRQWkROdxO2nvkABkMBnrqq3m0t+woWV12uv3OO+jvr8yip76aR+Hh4bTl1x2h4P/Y44/QM08/IoO6ag2sWa+Qt64dskHdsdu5qebAFnDWwBZyO2Ro91YHusln1nltAc156Vm6on9vqq7MI3L9TBVHPpY/Q9UWOv7uO6+nRQvn13az91aGKvkjr/8NLXnllfr7re3cWbtmvW6HeatVBnizWabl4H5o+/fXhvpgk7tA87o5L75IV/TpQ9X5+cd3mK+uJrJaqVv79vTdjBlEO3ZQj+ho2vTBB6Hy+G9vv5PmzFkU6iQfDOd115oXF8svvXp1/TBfd/u44mL5+K5dRHWbWx9bcfJ45NBGjSqmnTtl1n3uuUUUF3cFFRX5Q433FywguvXWe+mlv79cf62601675dqxvIp8Phj0j+wnspjlY8c2s/MqVHBg/+n9Yn39dZQ/8ykZ9ksLqVPbNtQyrgWl9+5N6YFu1bt27aoN2MGquM93fMU8uDb9bLtXh9bAq7KyH7xQ4A00qQs2xqtbgbfaiQpKyWu3k8dmkx3hA+vVg2vc3WYzFf34Y6ji7qysJMVup6o9e8hy9Cg5ysupas8eGfCD6+J/+YX2fvSRrMBbLOSsrKTKXbuo6McfQ1X74MWAqtxccpSWUuG6dfUer963j3x1LqRQwSF5sSVUXffKCy12W+1OAmdRdT9hqKvTTb6hanFQly5daOvWrbJKXm/btl9lpd3rIjLvllu41X3eVS4DvWWv7ES/YXSd58qIsjNp7ksvUv8uLch8JLteBf5kVdmsrCx66qmniEjOkBowYAAtW7bsjH4mp+u4ANqnD/Xt2YV2rXyFHh/3R+rcuVODAZSI6JlnnpH9Cy6wU1W2/V4vLXxlNvXv0I7UkiLyq17q3bs3vfvuu0REZLfb6YorrqBPPvnkgo+VMcbYuePgzsG9WWnoFxlVValFixahSk1FRQW1bt2a1n27LhTaT1QhOdmU+JPt766o3tB+7maHhfLMxWR2WOip6VMoqWNryisuCO3LXlxTQS1atKAVa1ZSqbWS1m5bR2lpafTdOtmcrnvPHvTWO29TmbWK8soK6Yr+femTdycHAntVoFpeHQjrBwOd5Mtld3m1JtB1fp98XrWGwjl5S2Xgrzvt3ltOc+fMoP79+pC54qg8l3U1qbaN1CLGQN+vWURkXU0V+7OodVoybfxxJZFzM5Ue/Ih87kIipZDWrvq3nOZYUyNLy8FkfOCADOjHdpgvLZUpOLgHW3l57WtWr5Yl8WBCBmhuejr1T08nc15ebaV+/nwq/t//5NcrKaFFr79OV8TFkT9QDp8O0L3t2hHl5NDhJUsoISGRbr+9IjTz/thrCVu3ytPW1MhQvnJl7XWDYwP+nj3y2wpqqOI0YMCgwOuep8jIztShQye65ZZRtGdPfqjS/8IL71NycippteEUFhZDqUlJtG3KBPKfTofxYzuT2231Kuxn1aXcq8jzHlu5b+g8xwb14BZvdZvSBQP9sVX0U/H5ZFgPBvRgYFe8tbd2Z2Cqfv0KvOpwkqO8vLZh3N69oWnrwYq6ed8+Kly3jlxVVeQOdJGvOXSIPFYrWY4ckWE9MNU+WEWvOXSIzHv3ktfpJLfFQpbDh+Ue8BZLqDrvLC+nvR99RBsmTyaX2Xzc3vB+xzEXVpyO2q3Z6k6Tr7s7QEM7A5zA2UxXLigoCD23adMmio+Plx3c61bcq36WlXbVUxvo986v32HeVU5k3lV7P7S3+w4i634q+OUb+XekJSi9Uyyl9+l9WlVZl8tF99xzD3Xv3p169OhBzz777Om/j85R3Yq7y1J+3HT5i62hCwuDBg4kv9db/2d4662Ud+BAaP/2bdu2hbaK69atG02ePLnebAHWxAX/3tW52MUYu3ycLLgL+TyrKy0tjQoLCxt7GKwBhYWFaN26NTp06ICoqCgAgNFoRE5ODr777js8/fTT8Hq98CpePPDAA3hq8lOh106ZMgVFRUWyWVQdTsWN579+B1/v24SRXa/E9JFjEWEIO+VYnIobLq8beq0emkCDqJLCInTp1AXt2rdHRGQEVL8PJqMR3//4X6xf9yOmTpkKt+KBlgTu+mMmfP0ScM+AW5CzdQuWzHwdVrsNbo8bN918A16fPQ0afzlQNQuIfwbwFgH6JNlrTugAES4b0FXNAVrOATQRAHwADIDfAmjCAWgBtQzwmwHzXCB+GgrL9Gjdrjs6dGiLqMiIwM8wDDn/6Yjvvl6Gp+e1gCpS4FWcePCeazHpqVmArwZLlq7ES3Neh1ajRUpqGt54YwF69eolu6253bLZVmkpkJwsHysult3c5swBjEZg0yagoAC47TbZ2AwAduwABgyQXeG0WsBgQOH27Wh99dXo0K4doiIjASIYAeT07IkX0tLw8WefgcxmdL/iCrw5Zw5al5cDaWlwvPgiHrDbsXXPHmiFwLTnZ6Fnnz9i9mzZkM5sBgoLgSFDAJ0OWL9eNqhLSAB+/hkYOFAOyWAAvF7ZP69NGyA/X9527SqfOxFFAfbuBbKygGnTao+324ExY2RTu8xM2ewuLw+YPRuY/6oXLaJUaPR6OaiTUTyyMd3hvUBcK6BlivwCqld2u9OdxjmOpXplE7u1y4G7HwSMJkBvaPg8qg/Yf1Q2jUtsAXRpB7g9slFcm2Qg3CSPc7rrP6Y5jR6oqk/+AI8Wy/P36gREhgMg2fxOq5XvEYcLiI4EPEroa3gFwVlWht1vvon8tWvR5sYb0e3ee7H3gw8waPp0+BQF5txcmOLisGfpUvQcOxbGuDhse+kl9Bw7FhFpabJpXWkpwlu1Qu7ixeg1bhwi0tLgrqyE1mSCp7oauYsWocdDD8EUH49tL72E7g88gKg2bbD5+efRa9w4RLZtC6HRwHbkCH555x30GjcO0e3aQlNeDKz6p2wkmNRa/mxVL+BVgAO/AG9nAX2HyMZ1Pl/tMadwsn8LX3jhBXz88ccgInTv3h1vvvkmWrduDQC4/vrrUVZWBq1Wi7CwMMycORPXXHONPKlPAfxuQGgBoQe0BvmYdS+wZzZwxRsAqUDVZiB+sGxIl79MNq8btAggL+DzAF47EJEK2I8Av8wAek0DorrK8zVxfr8P5PdBaLTQaLSNPZwQUlVQVTn82d9Dk3EdRHxLiDP9+86aPp8C2PYCv2QBvaYCUd0uib83jLHzRwhRRERpDT7Hwf14HNwvXaqiompvFbKzspExNQPx3eKhM5z8lxuvT8URczGW/PQfPDTkTrSLS4H+mA7EXp8Kr08FEcGg00Ov1YUeU/0+uL0ezPvxE9w3cBTK7Ga0ioxDcnQCSqyVWJLzBR4cfAdaRcVhV8lB9E3pAo/qxZ7yI2gRFoVqlw29kjpCr9Whwl6NxT/9B3+75m5Ea2uAyumAbRkQlQnETQLMrwKt3gLK/gq0WgCUTQTChgFRvwV8pUDVbCB+KqBNBMofA+InA9oUwG8HtLEy7PutAPyA3wZoouUv6dABahFQlSUvEujaAK5NgC4xEPinAIbO8pd2jQkQgV8kFAWoqgIsFiAmRnaN12iAgwdlSB8+XKbUrCxgyhSgXTuZZPV6ICystrO21wvk5MgkXVAgb5OSZDAlApxOGWZMJpm4775bXgBYtEiew2CQ4VWjkfcnTIBj/mIoGnkBRqerferIETmcZ56RTfA3bgQSE2U4Nxrll3v8ceCxx4CUQDYOCzt5aA9SFNkc32isPb6hQA8cf9xJqV6gtABY9S/g5j8AcS3li3X603jxSbhdsgP9lh9ll/p7HwdMJ7hopfoAlxsoKJWd5cNMsoO8n+StRtNwuNedRvjx+wGvCiheef5ObQAQ4PHWfj2DXh5jNMgLPz4fQASf1wuV/HAWFyN38WL0HDcOzpIShCUmIqpdO3jtdmj0emydMSMU7HtPmIBVo0ah3a23YuD06SCfDz63GxqjEQJAxfbtMLVsCfj9iExNReXOnVj/+ONIveYa9J44EatuvRVtbrwRg154IfQtCI0GQquF0GjgVxRoDAZo9frjL6wEL5as+qf8s6yukH+eicly14Bjw1jo9bqT/3mf7nFno26ghwbwK4C7HPBWA3vmymAe2QGwHQJys2qDOgD4PYDGyOHjHJHHA9+KZaDcHRA9+0I7KhPCaGzsYbHzzWsHcsbUXhAbvATQRzX2qBhjFxEH9zPEwf3S5bF7sGLMCuQuy0XPzJ4YtWQUjFGn/uXG61Oh+LwwaPUNhvYalw0V9mos3bICDw65A2kxraARAopPhU5o4AdBQMAPApEfu4oPoFdyJ8z87r1QJX/K9Q/A61Ph8bph0BlR47JhSc4XGDP4DiRGtoBJp4dDcYMARBu0MAoHhK8sUHGfAngLAX0bQN8O8B4BRJisuIvA91c35Cc8DxzpUfu5NhEgRVblySMrY34boImS4V05COhTAWgAVw5g6i+PVYsBxzeAazOQ/DYAIwAFgAHQGACHQ6bS2bOByZNrU2mwxLxnDzB9OvDVV8Bnn8kg7/fLIF5aKl83ZYoshScmAhUVsgReWSnDezDwd+wIHDok92ELHt+6tXzNtm1yO7mZM+V+a+3aAQ4HXKYYHCgIQ1aWwDPPyO3cTKbaoF5RIYdz9Kjc9s3plKd45hmZCWfPBt58E4iOPs1wfRINBfozcmzAvu1PQIvEE4fs01U3RNatCDckGK5Vnwzjet3x1XS//+wq7kAoiMsKu0bOLDmQV/8iAFC73ZzTDXgU+CLC4LFZITQaaPV6CJ0OfkUBNBpo6nwv9oIC5C5ahF7jxyOsVSu4KythSkiAs7QUue+8g+733Qe32YzI1q2xatQoXP3WW6EKfM+HHoKzrAwRycmITEtD2c8/IzwpCTqjEarLhdxFi9D9gQcQlpgIQ0wMdCcLVMf+Wd7zKKA3nmCWw7F/PmkNh/LTPe588CmA3wvYDwPOfFl510UCOlPgOQ7qF0L9ivv1EAmJEKfY4o5dgupV3C+dmSqMsfPnZMGd/9VnzYrWoEXG1AwAQMa0DOiMp/cWD4Z1r0+Fn/zw+f3Qa3Whyrrd48TSLSvw9b5NAICnr70XfiLYPU5EGsPhUT2ICYuGVgi4fT4kRSZAUb24b+AoAMCDg+/A7pKDiA+PQbu4FHhUBUtyvgid75nr7kfwGppJZ4DFVYVWmlwgbBCQ9A4ArQztzp8CA+4YCO1J8r7fLqvrABA/DdAmA+33yGAOAVg/AVwbgFbvyMCvFgSq808DmhjA0E5W1Nw/A2GD5TRZUgDlEBA+HIj6HQA9oOwNVOWnAoZutQk3sJ8wFi+W6XjqVHk/Kkp+fs89MlxPmCCnzkdEyAr93LlyGnTr1jJJd+0qk/WgQcDEibXnXbSodoN1QO4VryjApEnAI4/Uf27RIiA8HF6fDgUFAk88ARQVyeCu18thBGfwazRyH3eTCRg/vvYUCxcCzz4LREaee2gH5DnO6Tw6HXDLH+TnN/4OCIs8P8FMp5ch797HTz3VXqORYV2rra2wN3RMuEmG7BMdcyJabWAGRmB/eCIZ/gF5e+z5wmQ49nu9gN8PxWaDPiICuogIVO7cifg+feCuqYFityMyLQ3GuDgMfPZZQKOBo7gYe99/H32ffBLhLVui5YABOPCvf6H/M88Afj+ufustxPfpE6rSA8Cg6dNRsX07fKqKFt26wedyQbFasef990PH9J4wAbrwcHmF5oQ/c50M14C8PVFoB2QFfdU/ZcgHav+czva4cxUMFb/OBvrNASLbyhk4wWChNXDIuECETgfEt4R2VCag03Job660Bjk9fvASvgDGGDsOV9wbwBX3S5uqqPB5fNAZddAaTm+NotenIs9cAoNOhxZh0fD6VZgdVrSNk8GhxmVDpb0GZpcF6SldAAB+vx/VTgtaRMQCAHYW70dCeCwSImPh8rrhJ0KLsGhoNBqoPhWllipEmEyIC4+B2WmB1e3Ah1tX4aEhdyIhIhZajRYzvl2CvqldcGPXgYgSBdBXzw2sXw8HSsfWVtSTFsmBkxfw1cgp7dAA8APQAd5DtQE7OO09bGCgOu8HSifIiwLRfwDU0sCxk2WVU99arov35stjfDWArhUgNEDJmNoxJC8BVGPDC7tdLrnuXVFkSPf55BT3Xr1kSHn6aZmcy8pkqg5WzIPT6f1+GUY2b5ahvm1bOeW+oAAYPBioqQGsVvlcTY38esHqfNu2ABEchlgcPChCp+3UCbDZgCeflFPhO3SQVfbgUAA54z842z86Wg69yVC9ckmBRtPwlOrmxO+XU/AF5HuyoYsAgWn53jatYM3Lw5733pPrztu1g2qzwet0Qh8ZieoDB5CYng6fywWtyQRXZSV2L1iAxH79kNC/P9wVFYjv0wcagwGOoiLsefdd9H3ySegjIuDzeFC1axfCU1LgKi2FLS8PSUOHwhATA6HRyOeSkuT69zFjYEpIAISAMTZWTpM/kdPtS3C6MyLOZObEuTidabw+RU6l13CIZw1TVRU+nw9arRa65vzvGGOMnQWeKn+GOLg3T16XFz7FB61BC31Y/V+qnYobPvJDAwGP6oFOq4fPr8KgNSDCGBZaz+5QXKi016DKWYM+KV2gFRr4yA+vzwu9VgeLyw6f34f4QBDPrynFh1tW4vGrR8Og1UPxefHa/z7GfQNHISEyFgICv5QeQlJUPFJjWqLQUoalm1dg0tWjEW0yQi9UCGhkRV0YAF8FoG0lm9P5bYHRE1A+GYh/CtB3kA+pRbVT3FstANQ8oGqmDPL6tpBr3J3yvJXP1YbxVgvk+cgHwAeU/02e19AFgLZOxX0aYOwqx3Sihd1ut6yiHj4sS9rBueiTJwMbNgAjR8q18IMGyfBdUwOUl8tmdcG17xERsvJ68KAM6SUl8hzz5snQP2tW7VR6j0eGldJSAIClZSeMHa8NNYV78005HKdTzsSvO5TOnYHUVJn9//Y3eYphw2R4ZxfZ6U63Dxzn9avIeeEF5K9dW7tmXVXh83pBqgp9ZCTshYXIXbQIPceORWTr1vDa7RBaLTRaLYRWi4odOxCenIywuDi5Tl2rhT0vD7++9558TVoavE4nXOXl2BN4LCItDV6LBYaYGJDfDwKg2u2wHDyIxP79oT9fV33OJOSfbZPC03WqabzcWIudgqqqqKqqQnZ2NjIyMhAfH8/hnTHG6jhZcD+DeYyMXZpURYXH4UHV/iqsHLsSVfur4HV5Q897VAWq3wef3wcAqHLYMOPbJaiw10AEup8Hp9KH6Y1IiUlEl8R2eOn795FXXQKPqsDn92PGt+/C5fUgLiIWOo0Oqt+HD7esxJ+uuBlmpxUv/7AURISHM/4Ak94Ag1YPP/lRZq1Ema0Kqt+HtJiWmHL9A4gJi4JBFw4hTID3sJzCrhbIkK3mAfABvmKg/CkABLTMkmvgAXl85XQgfJis1gshQ7ttmQzd5AWcG2Xo1kTK6fJRmTKM+2pk6C9/DPCVyYp71UwAqqygGbrJSnswtAMyrEdF1YZ2l0tWw7OzZWjPz5el7DlzZBqOiAB+/3vZ+W3wYGDrVjknvUMHICNDfl5eLrvDHTwog3u7dvLCwJw5cr28VisvBlx1lexer6qybbzDIV8fGQkDFEyZQsjMlFX26uraSvqcOXJa/OzZwIgRsqN8VpZ87KWX5H2T6QK/Mc831SvXT6veUx97ofn9siIevABzRq8lGdorquWt/wQXlwPT8jVGI3qOHYs2N96Ifk8+CXthISq2b4fQaKCLjAQRIXfRIuSvXYvcRYvgc7uhNZngrqzElr//HbaCAiT06YOIli3hV1X8PHMm/F4vXJWV6H7//dCaTCC/X07DDw9HYr9+2PPee4DPB8uhQ7AXFcHv9UIIAY1Oh9hu3c5vt2+dXvYyONU5T/e4c1F3Gm9Da2/9igzt+cvkrd9z4cYC2QHepyrwB/7tZk2fz+dDdnY2cnNzkZ2dDZ+P/+wYY+x0cXBnzVqwy7zP7YO10Iorn7gS1kIrfErtLws+vx8l1grM/O49FFrKYdTr8PW+TViS8wX85K/XPR6Q0+qFANJTOmPplhWwe5xwKK7Qa4j8KK6pgOpX8bfr7kebFkn4YMsKpKd0BgDoNTqE6U2Y+d17KLOZcUPXK9EyMg4vff8+7B4X/ETwUzDwKDJs6xLrhO+ZAHyAtxxo9RoADVA+FdCnyUp56LjZgCYMgE42t4vKlLfwy/OVTQR8lYCuA5C0EBAmQNsCqHqp9vURI2SgDzbAAwAIOX25IYoCHDgg17InJsrQPniwXM8+Z47sBnfkiOwGp6pyH7b0dJmSf/pJBnWrVTafW7ZMVtjz8oC//lV2kZszRza5KymRTe+GDweuvFKWyCMigN27gS++AHQ6hOlUdO5EWLCAEBsrryeMHSu//Msvyyr81KmykB8RIT/PzJQz/s/X2vaLJjhV+oPX5G1jhvdgxXz/UXl7puFdI2SlPbFF7dr2Ex6rgdZoRHSHDhj84ovQhoXBWVICU1wcts6YAUdhIYRGg+4PPIA2N96IHg8+iKrduwG/H7mLFqHov/+FPiIC5PejYvt2uKqq0PWeeyB0OrTo3h268HDowsJQsWMH7Pn5sOfnI6FfP/R78kn4VRUJ/fohIjUVfp8Ptrw8/PzSS3BXVYHONYyczUWYi3XhRmuQ0+MbqqRrDLLS3iZTVuQ1F67rud/vg2I3o2jXN1DsZg7vlwitVouMjAz07NkTGRkZXG1njLEzwMGdNWs+xYfsrGyobhXRadHYNHcToltHQ6PXwG11w+3ywE9+vJvzJb7etwnv5nyBFmHRWHDX03jmugdgdlqQby6F16dCIwSKLBXYU34EOo0WN3cfjgcG3YZIYwQiDGEY2fVKjBl8B1btWY9iewUq7NWY8e0SFFrK8ehV/4fruwxGpaMGs//7ASrs1eiV3BFLt6yAH4QlOV+gV3JHVDks2Fm8H07FDY8a6N4ePxVQK+qHb/IB+pRA+C6urYwLktu5BY9zbpAVeF0y0OoNuR2cMMgt3oIXAYQGEBGBdexG+fWiMuV5tHGAvr18jV+RU+VLxshbv3L8D1xRakvXc+fK0B4eLrd2M5lkZb53bxnOy8rkNPmKCtkZrmXL2sp9RgYwerR8Pth4buZMea7hw2sfKyyUwX7GDFmZHzJEVufLyoAff0T40T2IiJCnDg4rK0ue5vnn5ePB7d66dQOWLJHL9C90tV1R5K54SgM/wrNStznZqn/K+xfaiarqp1sxP5G6De5Osyu9Vq+HxmAA+f2I79MHe5Yura2we2TVt/eECQhr2RItuneH0GrR/29/w/A33oAuPBykqkjs3x8RrVpBo9OBFAWuigrsfvNNuCoqENu5M3IXL4axRQvsee89eYGgrAybp0+HX1Hgtdmw5733kL92LX5dvBh0NjMNgs7mIkxTuXBzqor8eUR+H8oP5sBSsg/lB3NAPhU+VYEvcFs3yHNlvunQ6XSIj4/HqFGjkJCQAK329PrQMMYY4+DOmrlgl3nFrmD9zPXIXZYLa4EV5gNmrHxoJar3m6H1aTBm8B0Y2fVKPDj4Dmg1WrSKjMOs79+DQ3EjLiIahTVlqLBXo9xuRouwKMz6/n2UWCuRGtMKJp0ekcYwPHfDQ0iLaYlhbfugX2pXVNircc+AW1Bhr4ZGaGDUGUKd6ZduWYGhbfvgyd/8GVqNFk9dcw+Gtu2DSmdN6Px51SXwkkZOT4+4Sq4zT14i91MX+vqV9WBlnFS5zj1pEeAtBorvlk3m1BKg7GGAHABEnXA+TXaF1hgAbbQM7oaOQKs3AW+RvGCgCf7yHaj+B6fco4FpsAZD/dK1ySSnr3s8slu8yyXDeWmprJjn59dW18vL5QL0Rx+Vr3nzTZmop02T55syRU7712hkR7mVK+XU+8LC2qr72LGyhN6xowz/nTsjPFzUG9aUKbK7fGoqEBdXW1k/dsb/hRLc133MGHl7XsJ7sFP5wKvk7YXaCizoZFX1M6mYn4hGI7ecO4Ou9H5FgbuqCiAKTZ3vfv/9qNq1C7qwMPh9PujCwqDR61GxbRs81dVo2a8f3FVV+Pmll2DLz4ff54OztBQ+jycUxPe89x40Wi16jh0LT3U1eo0bB/j92Lt0KRL79ZPT6KOiQlX9XuPGQXOyxnSnUvcizNrlsrHjqSrpjXHh5kROVpE/j4RGi5adBiMmuSsSOw2G3+eFo6oQiqN+FZ4r802PTqeD0Wjk0M4YY2eIm9M1gJvTNQ+qosLn9YF8BKERqD5UjfUz1+OmN2/CmglrQnu9D5k3HC3iYuS0eL8PJp0Bqt+HIks5/rltLSZfey+2F+1Dp4TWiDKGo9ppQYQxAnaPAzqtDgaNHgTCa//7GPcOHIVyuxndWrZDtdOKpVtW4PGrRyNMb4TXp6LcVo1yhxm9kzrBoNOjqKYci3P+gwcG3442sa3gUb2Y9f37ob3fp48ciwhDA3t1+12AciDQKG6KrIpDK6vrVTOA+L8B2pZA+SQZwssm1GlA96bcox2qDOqigV+w/QoAT/3ngxX3Y5vTHSvYUd7tBnbsqO369sQTtZunjx0r16p//jkwdKgM9iaTDO0TJwJt2siO8snJsgQeTLeTJsmW8PHxQFVVbZd5o1Gudf/6a/m6YOivk8Lr9svT6xtvKrzdXrvNfWamrPJHRZ36dad0MZqThb6W7Oheb491XZ1fwoNd4c90S7hz4PN6odTUwFlZiYhWrQAhQl3fI1JTIYQINakL7tme2L8/Nj//PPLXrkWbG29E74kTEZaYCJ/bDSLCjldeQY8xYxCZlgZotSBVDVX2FasVrvJy7PvwQ/R94gk55Z4IGr3+5Pu4n0rdDvG/Hw/YLWexj/sF6irfxPj9PlAgiBfv/g7x7fuh8vDPsJTsQ0xyV6T2uQEAULTrm3qPaXWX0joYxhhjlxPuKn+GOLhf+lRFhavKBUeZAxtf2YjrX74ehkgDgu93S54F62eux/CpwxHZMRpeoYJAMGoNEAJQ/X5ohQZCAH4iaISAU/EAIBCAOf/9EGMG34HWsa0w49sl+NMVN2NH8T7sKNqPPw+4BZGGMLy98TP0Te2CvildsXTLCowZfAcSI2NRaa/Bkpwv8ODgO1BmN2Pi5y9jZNcr8Zehd6NVVDwKLWVY8tMXeGjInWgXlxJqjHccvwKQG4BGdpj3W+t3iE9aCEArO9ArB2sDt6GzrLKfjYYCfV2KIoO70ymbyz3xBPD663LK+8iRsiEdkayo79oF9OlTfw+2sDA59X3mzNqgH9zTPdgCfsMG4K23ZDO62NjaLeMKCuSU/JQUeT6bTQb8JrZYPVhxP3YHvUvK6XZ+v8h8Xi/8gW7yEAI+RYHf44H18GEk9OsHZ1kZynJyEJmWhoS+fWX3+KIiOIuLEd+7NzRGIxzHdKDX6PUNbu3mdTiQ89xzodA/+IUXoI+MPD/fSPAiDAj4YJ6spA+8Su7PbmrgQl7d1+j0gN8H+FS5baDhwq0zbyqCVXXFZYM+LBIVBzejZafBMETGAQAUuxnlB3NCj2k0XOlljDHWNHFwP0Mc3C99HrsHtiIbzAfNaJXeCq5KF9bPWo/hU4ZDH6FHRGIEhEaAtIDN74Td40TLyDj4yI8yaxWMej1ahEVDq9FiV/F+9EjqCAHApSrQCoFr3x6PkV2vxLMjHkRBTRnC9EZEmyJgdlhRaq+SFXeXFXqNDm9v/AzrDm3F3NsmoV9qV2wv2ocnvnoVv+k4AM+OeBA7ivcjMSIWCREtEBMmf/FXfF4YtPoTh/a6/Ha57jxsmOwkXzVbToU3dA40p8OpA/f5EEyk4eFAQoLcc7ymRnZ6Ky6WLdynTJGf9+0rH1dVWTmPiZFlcCFkNb7uHm45OcCtt8r7L7xQu8G60wk89RTwyCMy4CckAK++KreKMxjkY6mp56mcfX41tIPeJacRquqnKxjg7fn5yF28GD3HjUN4UhLclZUwxcfDWVaG3HfeQc+HHkJU27aw5ecjd9EiDJg2DVtnzDitMK56PLAdPYrcRYvQa9w4RLVvf/K928/G2VTSFQ9QVgSs/hdw8x+AVqmXTXgnv0/27CA/hEYbCujB5+o+xhhjjDVFvB0ca9ZURYXH7oGq1K7r1Bq0iGgVgei0aHjtXqyfFVjfXmiF6lCxcuxKVB+uBnwIVeH9kN3cjXo9XF4PZn3/PhyKCz2SOmJn8X4U1pQDRDDpjKH18Krfh8TIFvL1RIiPjEWLsGjsr8hDfHgMEiJb4KHBd+Kze2ejVWQcXvxmMVpGxmHubZPw4JA7ofhUdGvZDm1aJCPKFA69Vge9VocIQ9jphXYAoQZ2rs2ANkWubzd0qQ3tgFynrom6cKEdkGm0oEB2k3c4ZCAPbM2G2bNrG8z16iVD3/79wMMPyxCuqrJS7/HIcB9cIx8WJqfLBxenp6XJtfBjx8oLAIMGySZ4gwbJzdmnTpWv0WhkaDcaoShyOFbr+WsGd67N5S7WevoL6izWoV8sWr0eIELu4sXIX7sWzpISOIuLsfvNN+XnJSWyed3ixfCrKpylpeh+//3Q6HSh9fE9xoyB1+WCz1u7ttzn9cLrdEKx20NT5QdMm4bItm3Pf2gHZPU8KU1W2k93+rtPlaF9y4/y1teI690vIo1GC63OAK1WB63OUC+gB5/j0M4YY+xS1vR+42LNRkOB+kJ8jaq9VVgxZgWq9laFvpbOoINGo4G10ApduA63LLwFT5Q9gTbD28BabMW+r/Zh/cz1ABEqHTV4e+NncCluaIQGLcKi8W7Ol+iV3DHUGb5FWBQqnTVwKC4QCM+OeBBpsa1g1Omh02hRaClHpb0GBq0O1S4rerTqCL1GB7O9GqmxLRFljMCSnC9Cnev7pnRBUlQc5q77CBX2avjJD404y7+Oof3V3wZ08YA25uynwp8LrVYGa6La5nMlJbKK/uabspnctGkysUZEyOntTzwhQ7zFIm8VRQbyJUtkd3hFkfu7v/CCvCDgcgGzZsn18aWlsvP8vHny6w8aBLRvLxvejR8PHDkCxaeF0ymL89nZwL595x7eL0hzOXbeaQwG9Bo3Dm1uvBEJffqEQnzu4sWI79MnFM6FVovwVq2w5/334SgpQURaGgY++yyICLvmzYM/8AccXENvPXIEm6dPh6u8HLa8PGydMQPkPUnjuHN1pvuza3Wy0j7wKnmrvcCNChljjDF2UXBwZxfEiQL1+Ty/x+6Bz+vDhtkbkLssF9lZ2fB5ajsGa/QaRKdFo3x3OVS3CmuhFQUbC5A2JA2TSiZh5LyR0Og0CNMb0Te1Cxas/xQ6jRZajRZjBt+BK9v2CXWB/3DrKvRK6ohIYzicigt//3YJCmvK4FDcmPX9+6FgrxEi1JG+xFYFodHA5/fhl9JDGDP4dozseiUeGHw7lMDe8N8dyJFbwhHBey6VsYtRUT8Vn092eCeqrbCXlMiN03NyZBO5Dh3kMRs2yEDfqZOslL/8spxiHxUlm9fZ7bIiP368XPOemiqnyFutsvL+2WfyIsFf/yq3flu2TK6DVxT5tYcNAwwGeFWBvDz5VHBbeU8DzfDPRN0d77KyZMM71vRo9XpEtW8v93cPDw9V0nuNGwedyYTeEyagYts2+BWlXmXeUViILX//OwAg/bHHoAlMi/ArCpQ6277tee89JA0dKsN/U5p1YDDK6fH3PAq0SrvEp3VcOLxFHGOMsUsNr3FvAK9xP3ceuwcrxqwIdW4ftWQUjFHnZ51l8KJAdlY2MqZmIDwxHF8/9jUypmUgoWsCtAZtvTFc+cSVMEYbYT5kRlRKFDa8tAFDJw9FVEoUDNEGvLBuMe4ZeCsSwmMRpjfi5R+WYuLw3yPCEIZCSznezZGN4tJiWoHIj10lBxBjikJyTAK0QoObFz+MK9ul45nr7odWo8VL37+PXskdMbRtH7SMiofXp0IIAZ3QyOn4fj9eWfcR/nzFLTDq9YgyRsLmccCjKidvRtcQvwsgRQZ2zQmaVl0sLpdc067VyhBvtcrAbbfXrjmPjpblb6NRPh4TIzvPt2wpXzd/PvDaazLUezwyaZeVye3dnE4Z/Ilk9fEvfwE+/lhOo3/+efn1O3eW5w2sqbcu/BgPjdfVWzIfHX1uWaZuc7mnn5Yz+ZtgDzx2DJ/XC7+ihIK49fBh5C5ahIHPPQdnSQlyFy8+6Rr3UNf68nLsee899Bw3Dqb4eMDvhyE29sJMlQ8KNZ7Tnd5Wf2d6/GUm2MyOG9Yxxhhrarg53Rni4H7u6oXrYwL1uTruosDiUYAAdEZdva8RHIOlwILk/snQ6DRYM3EN9n21D7/77HdIG5IGjV6DPFspPtixElOufwBGnQFHzMXQa7RY/NN/0Cu5I65s2wetIuPg8XnxS+khJEXGIzY8CnvLj6JXUkcQCGaHFa2i47G7eD96JnWCn/yweRxwe70oCzSrq7BXY+mWFXhg8O3YUbQPQ9v1QZQxAr+UHkJcWDTMLiv6p3VrePu3hvhdgLJf7uceP+X4de0Xm8MhE215uezsXlgoq+J1bwcNkpX1/fvlVPchQ2S4IJJbwc2YIUN9To6cSt+mjQzkpaVyrXyLFvK5tm3lRQGvt3ZvN7td3g8Lk5X4ZcugrP4Oe1OvRVaWwLRpMtebzsMqAodDXlP49lvZ1P7tt5tkDzx2EqrHA9XpRNWvvyKhTx8IQHaZLyg4YcO5YNM7+P0Qen1oe7gLHtpDDer+ACSmyItcJwrkxzW0O8EWcpcxn6rwFnHniaqq8Pl80Gq10F0GWxAyxtiFxs3p2EWnM+gQ3y0eo5aMOq+hHZCN5zKmZqBnZk9kTMuAzqSDMcp43NfQGXSI7RiLtMFpUBwKhFYgY2oGMj/PRHK/ZDgrnPDavWgXk4y/XXsftEIDr09F2xZJaBUVh3sHjsIvJYcQHx4TCu3xYTEw6vUI0xuRGNECv5QegoBAy8gWcClu9ErqhDJbFWZ9/z5cXg/K7FVoERYFu8cZmnb/Xs6XuK7zILi9SmiavdllRa+kjjCcyXpUUmRoty2Tt9TIi619PjlNPT5eNqFLTJS3LVvKsD5okKzIu1wydKemymnyPp+ssL/2mrw/YYJ8bUGBnGpfXCwr7U5n7XNGo5yj7vXKirzVKtfIGwyyJD55MpCZCUPrVujWScWSJXLbtfMR2gF5rcDrlTP+n35aDoddWnRGI/SRkWjZty90JhOERoMtL7yA8i1b0HvCBESmpR0XyLV6PfTh4dBHRsrXR0Rc2NAOyMr5qn/KZnOr/gWYKwC7DXA7ZUg/6fH/DGwrx+oSGi1adhqMmOSuaNlpMEQjVNtJVUEej9y68BKlqiqqqqqwYsUKVFVVQb2EvxfGGLsUcHBnF4zO0HCgPh/nPd2LAlq9FkInYIoxoSinCOEtw9FmeBvYSmxYN30dbCU2gAAIAYfiwvNfv4O86hIAAvHh0fjbdfejzGbGL6WH0DOpI5Ji4uHxelFhr0aFoxotwqIw6/v3UWqrQqQxHBCiThO6L9ErqSMsbjviI2Lx4OA7ZDf6IXeGusb3Te2CT7atRa+kjgg3mM5smrwwyEp7VKa8FY2YHl0uWTV/5x2gulquQ6+qkmG8QwdZLd+6VYbvn3+WVfG2beXjmzbJafF6PTBnjlw8/vrrcq17eListgPyIsCyZbKLfGKirDoGm+AVF8uGdxqN3CJuwwY5fb5tWxh0dNod3E+3W7zBAHTrhtAFgQs6TV71Am5XwyGNnROtXh8K3xqDAT3GjEHF9u0gVYW40IH8dOl0snI+8Crgxt8BihuoqZL7u5cWHv++qHv8Lf8n/07w+6cejUYLQ2QcUvvccNrT5I9dE38ua+RJVUEuJ8hmkbeXaOD1+XzIzs5Gbm4usrOz4fNxvwDGGLuQOLizS9KZXBSw5luxZuIaRKdGwxRjAgRgiDCg9bDW+Om1n+BSPPCTHwTgngG3oMpRA5/fB6PeCJ1Gi0pnNeLCopEbqK4b9Xrk5P+CXkkd8eHWVfh63yYsyfkCHlWBVmjwzHX3Y8FdT2PskLtg0hnQL7UryqxVKLOb8cx19yM1OhGq34dCSzn6pXTDpKtHI9xggvFMp2pqwuT0+KRFgKFr43SSB2Ro379fbtGWlyenv3foAAwdKivpjz4qg3Xv3rWVd6sV2LhRlsDT04HHHgMOHZLBPTNT3ublycp5WppM04EqOqZOlSFfr5cXBoYNkxcANBpZXXzpJTl/XVVrp9GfhjPtFn9RtnQLTnv+4LWGQxo7b+o2s7sge7KfreCWcPc8BsTEA8Yw4OvlJ66o6/RAyxTZnC4xGSgv5fdPA85ki7jgmviiXd9AsZvh86n17p9xePf5AJsF/nVfAzaLvH8OGqt6r9VqkZGRgZ49eyIjI4OnyjPG2AXGwZ01az7Fh+ysbOQuy8WG2Rvg9/vhc/tgPmRG6+Gtcf2cEdCZdNBptDDqDPhk21r0TOqEYmsl/v7NYhTUlCE9pQvMLitahEVhzn8/RJjehOs7D4ZRZ6itog++AwBQZKnArO/fR6vIOCRHJ8CuuAAItIqOR5/kznB4HCiyVNTbYi5MfxahPUgT1njbvwUpily//sQTMqBrNLKCvn69nOo+aJCcQh8ZKSvu48fLRnW9e8t93IlkAE9KkscsWiTnnhcUyHMWFspF5UlJ8jxFRXJavEYjA/6wYcDBgzL4P/mkfPzNN2VDuzOYG39st/hz7T5/XvC054uqbgW+SdHpgbBwIDIKaJFQv6J+7Pp11QuUFwMfzgcqigFz6em/f3wK4LXLWxZCfh/KD+bAUrIP5QdzgGPu0xlX3Qn+jetAuTvg37gOctrXWY5NVUFV5fCtWAaqKr+o4V2n0yE+Ph6jRo1CQkICtFpu8McYYxcSB3fWrNVdDz9izgjUHKrB6gmrEZEYAXuJHYYIPUqclXjxm8UorClDekpnaISAQatD/7RuqHRUw0+Efqld8cm2tUhP6Qwigs3jgENxIS22FZ657n6U2c2osltg0utxz4BbUGY3w0d+hOtNKKgpw4xvl6DUVonosGiU2avqbTFnuNQaR/kVwGcF/A7AY5dTc9PS5BT2vn3l9m8TJsg17B07AvffDyxcKKe2B6fCv/KKrIZnZcmq/Nat8lZVZZDXaoGMDDndvnVr2ewOkNX2vn2Bw4dllT4yUk6RT0+X577ySvn6khK5N/wpyuZ1p8YbDPL0mZlyu/kmsW792GnPl9p7hZ1fOj1gNMkK/L2PA0mtj9/fPXixZ8dPcj18p57AIy8At/zx5O8fnwLY9gI5Y+Qth/eQY9fE41zXyGt10GRcB9GzLzQZ1x/3Zygr6O7Tq6L7fPBnfy8vAmR/f87V+zOl0+lgNBo5tDPG2EXAwZ01G8G93evuGV93PbwhwhCqvm+auwmpg1MhDAKLf/oPvt63CUu3rMD1XQaj2FKBtzd+hr6pXdElsS1e/GYxiq0VmHT1aFzfZTAqHTV4e+NnqLTXAABqXDYU1JSizFEFt1fBh1tXoWVkHAQAH/nxbp01737yo1dSR4zseiUeGnLnma9rPxd+BfDb5e25nEPZCzizAbcF2LtPNokLrj+3WGr3UW/VSoboAwdklf3IEeCNN+Q89LffluH811/levcBA+T09oICOfV+7Fj5ut695WMej1zPPm2anG4/cybQr5+ssk+fLgP+G28Ao0fLcc6YIav/Jwnux06NBy7iuvXTFZwmfaKQxi4/9bZ6a+D9ELzY85epQItE4KPXgbhEoGXyyd8/fgX4JQvIXyZv/U1hyknTcOyaeK1Wd8Zr5OsSOh1EfEtoR2VCJCRC1Pk/oLaCvlxW0E+1Bl6rPeYiAAdoxhhrrji4s2YhuPXbijErULW36rjwbowyQmuq343eGGmERq/Fg0PuDAVpvVYfai73Xs6XsHuccg37T1/ApDfCqDOEusNXOmtQWFMmQ35KV6SndMHSLSvQN7ULDFodtBoNdBptaM37Q4PvhEYImHRGTB85Fu3iUs5+ivyZCgbukjHy9qzDuwJUZQG6RMBjBWbOBo4eBZ55RpaqY2Jqp68/9phcp15SIkN9QYHcQ+2552SIr6mp3Q5u61YZ9MPCZGIeNkxOn7fZgMGDZagH5Pn1etn87oYbgFmz5LkLC+X5x42TAT84Pd/vP/F30sDU+Iuybv1M6fSAKYxDe3NxLs0GT6fnQfBiT+dewOp/1XajP8nfBQCAxgD0mgq0yQR6TQM0TWHKSdNx7Jr4M1kj3xCh00EYjfVCO4D6FfSN6+R75SRV9JNdBGCMMda88D7uDeB93C89x+3tvmQUjFHH/+KpKip8Hl+9Pd+9PhWKzwudRgub2wlBPrgUB1pExEInBFxeN1QSCNMboQHB4fXi9fXL8Ldr/4wqexU2HP0Fu0qPYMr1D8CpuCHgh1txoEVEHIotZpTbK5Ce3AEGnQmKT4VeADqdCbqLuW+w3y5Du22Z7EKfvATQnMXG48ELAN4CQNsPio2guOwwtJRT2RUNQUsCvrJiaC12+GKioE1Khq+kGIbEZGDjBiitEqBt0xZ+kwkQAir80Akt9A4X4FWhOCwwhEcBYeFQdIBWp4ev2gzDrlwgIwOK8EHr8sAfFgafX4Vp42ZgyJVQyoth+OZ7oEMHKFcOgsGlwBAbf8IUHqy4Z2XJQn6TqbKz5utc91h3u2Ro3/KjXD5x7+Pyos5pfa3TmLHhU2SlXWMEtPyXoTEEK+7+7O+hGXYNEBkNER7OgZwxxi4TvI87a/aO29vd2PAvOQ11o9drdYgwhMGoMyDaYIDqLILLnAu/14Gqqv34bu1EGOGF3XIEq1Y+BJ+zCFOvvQe2msPY8r+puKlzPzx33Z+hhx8xBiM8tkLk/Hcy7DVH0CoyCp0i9Ph69V+geCxwWI9i5cqHUFW1F6p6MdeQGoD4qYGt46ad/dZxGgNg6AaEZ0AxxGAvqjBm63Oo8tmxz3YUJY4yOPwe/E85iAOt9CiN0mB/zWGM+fk57HUchXlIX5SmtYASZgRpNDhYcxhjV47FgeqDcIbp4YmNRGmMDu7YSOx1F+B/RRuxv/ogxqx/CnvTU1Gl2jBm5VjU6Hw4UHMID60ej729k1FFDozZNh1V/3cH9vZJwZiv/4q9VAHlJP/CXdQt3RgDzr3Z4Jn0PDibZRZaA6CP4tDeiGor6L+DiE/k0M4YYyyEgztrFs5kb/cTUVUFqupEdnYWEhN7wOOxYOPG2cjNXQaPx4Ls7Czk5i5DdnYWiFRkZ2chNXUQbht1F7p2bYv+/a/ANddci62bf0Ru7jLs2vUTRl53I6688mbMmLEbe/bsw/rsLOzYsQyjRt2E7t17ID09HSNGjMDBgwcvwE+ljmDgTl4CGLvKPeDP5VzaaCg+QlZ2Fr7a9xW0QouE8AREGCLw2NePITEiEQXWAsSHx2Pm+plYlrsMWdlZMBpMaBnREi6vCz7yhZ6btX4WCATFpyDCEAE/yXMnRiRi5vpZodfrtXoMaz0MVo8Vs+o8XuOuwbLcZbB4bciq8/U8vpOv022SU+NZ83WuzQbPNIzzMotLkpxGb4IwNDCVnjHG2GWLp8o3gKfKX548Hge8Xhu0WhOEAITQQlXdKCrajOTk/nA4yrF+/UwMG/Y0WrTogJqaPOh0Rqxa9QyOHv0CPXtmQlFG4qWXXsWmTT/gllt+h9Gjf49Ro4Zhzpy/4L//dWLNmg/x/fcvguha/P73Y6DTGbFgwQJ89tlnWLduXWP/CM6IoirYW7UXBZYCpEWnYeb6mZg8dDI2FGzAhoINWHDTAug1ehyqPoTZG2djyvApaBvTNnR/3sh5KHeUY+b6mZiWMQ0J4Ql47OvHMHnoZHSJ74LD1YdRaC0MnXvK8CkotBYiKTIJHVt0xFHLUcxaPwvTMqYhMTwRj379KOaNnIcKZwWysrMwLWMauiZ0hYGrh6wpCTWX03OgZowxxlg9J5sqz8G9ARzcLz9erwterwOFhTmIiWmNyMgk2GwlWL9+JoYPnwKDIRLh4Qmw2YphMsXAZitDdHQq9Pow1NQcQXZ2FjIypuKrrzYiK+sZ/PDDj0hPvxL5+Xvx/fdP4JdflmH+fBM2bPgJHTt2gE5nhDYQKLdu3Yq7774bR48ebdwfwllQVAUu1YUJqydgUOog3NDxBrQwtUC5oxwdW3SEj3ywK3bUuGuQGp2KElsJnlv3HJblLsPo3qOx4KYFgAD0Gj0mrp6IpTuXIrNnJt659R1sKtiEoa2HQiM08JEPG/I34O7ld+O2rrdh0a2LAABOrxMCAjGmGKh+FUadESDA4/PAqDNyaGeMMcYYY5eMy3KNuxBithCCAh/TGns8rOlSVQVm80EUFuYgNXUQdLowaLUGrF8/E7m5y7B+/UyEhcVBo9EjKioFOl04AD/Wrn0YNTVHER3dGsuWuXHFFTfihRdm4Oaba3DkyH5ERWmg0QBDh05Gr16ZaNeuIwoKCmE0RoVCOwDMnz8ft99+e+P9AM6BQWeAQWvAGze9gd92/y1m/DgDZY4ytI5ujQmrJ8DqsSJcH46UqBQICLSMaIlXb3gVo3uPxtPDnoZWo4XL64LVY8XM62ZidO/RmDdyHgQEBqcOxtGao3hwxYMgIqRFp+G2rrdhSsYUAMDYlWOR8moKHv36Uah+FVHGKBi0Bhh0htDnjDHGGGOMNQfNMrgLIYYCeAIATydgp+TzKbBY8hERkYg1ayZCVZ0ABIYPn4KePTORkTEVgAARwe9XoaoubNw4G/v2fQWLJR9EfjzxxHV4/fVr8fzzU/HTT0nQ6yMRHh6H8vLdiIpKwdVXPw+NRg+Npv7U2JkzZ+LgwYOYNWtWo3zv50pRFRw0H8TGgo0waA2YNGQSiqxF8JEPEwdNRJm9DGNXjoVdseNQ9SGMXzUeZpcZC29ZiDYxbWD1WPHUt0+hzFGGSEMk3rz5TZQ55GsKrYUI14fjiSufgNfnRbGtGJOGTEKhRc6GeW3ka9gzYQ/mjZwnK+2MMcYYY4w1U80uuAshwgEsBVAC4MvGHQ27FGg0WqSlDcamTXMDzedmAiDExrbDTTctgMVSgOrqwyDyobDwJwCEoUMn43e/+wzR0WlYvfqvaN16GEaMmIN7770Xe/bUoEOHrigvNyMlZTBMplhERaWiqKgE7dt3DH3dV155BZ9//jnWrFmD8PDwRvv+z4XiU5BvyUdiRCImrpmI5KhkpESl4K+r/wqdRocSewmW5S6DTbGFmsnlW/JxuOYw1uevh0FrwONDHscrG1+Bn/wosZeEjiuwFsCpOvF6zuvwkQ9D0oag0lmJ1jGtofgUVDgqMH3ddFQ4K/gSHWOMMcYYa9aaXXAHMAtAZwBjAVgaeSysiVNVBW53DYTQ1quwK4oDRH6sWTMR//znrdi48WUQ+VBTcxRlZbsRH98FbdoMx9dfP49Nm5Zh48bZMBgisGrVN4iPj0dqalv0798fy5d/Bb0+DCtXfoO0tDR06tQJAPDqq6/in//8J7799lvExsY27g/hHBi0BgxOG4y5m+bKru4eS6hT/Mz1MzE4dTAye2YixhiDeSPnYc+EPchok4EiaxFaRrTE5qLNaBvTFgtuWgCdRodWEa1CU+kHpw7GzOyZGJQ6CMW2YoxfNR5p0WloE90GYbowhOnCMHnoZBi1Rnh9Xjg8Dlg9VigXdZs9xhhjjDHGLrxm1ZxOCPEbAD8A+IiI7hVCLAVwL4BniWjG6Z6Hm9NdPjweO2y2Qvz44wykpg5Cjx6/AwB8//0UjBz5GqzW/FDjOau1CBERLREVlYLw8HgQATt2/IA//GE09Po4GAxhSExsiVdeeQV9+/bFvn37cN9996GqqgrR0dF4//330bt3bxQWFqJ169bo0KEDoqKiAABGoxE5OTmN+aM4K4qqwOvz4lDNIWRlZ+HVG15FlasKWdlZmJoxFW1j2oJA0At96JgpGVPQPqY9svOzkRiRiLmb5mJqxlQkhifisa8fw9SMqWgf2x4aocEB8wGYdCZMXzcdy3KXIbNnJl6/8XWU2ktRaC1EanQqZq2fhXkj56HMUYZZ62dhasZUdIvvBoOO17gzxhhjjLFLx2XRVV4IEQlgF4AwAD2IqJqDOzsVVVXgclXBZivGxo2zkZHxLKKj02C3l8BkioXJFAufT0F+/nosX343una9DaNGLYbRGB16vc/nqdcl/nKhqAqcXie8fi9q3DWINcVCr9FDp9GFusnvKtuFlKgUGHXGeuH7rZvfAhFhwpoJoceev/p59HirBzJ7ZmLBTQvg9XsRaYiEgMCRmiPIys7C08OeRnxYPCZ/NxlPXPlEqNK/Z8KeeudffOtiRJuiG/tHxBhjjDHG2Gk7WXBvTpvIvgKgPYA7iai6sQfDLg06nQFhYfEwGKIwatRiCKHFypXjsHv3x+jZMxOjRi2BTheGmJjW6Nr1NmRkTINOZ6r3et1lWtn1+rzIs+RhzsY5eOm6l6D6VRi0Bmwq3IQBKQMw6ZtJeOLKJzBz/UwMaz0Mk4dOBgBMzZgKr88Lm2ILdYifljENsaZYZPbMxJSMKTBoDdBr9XAoDpTYSlDmKMM7t74Dl9eFHaU7Qnu6PzP8GQBAjDEm9Pm0jGnQCA0UVeGqO2OMMcYYaxaaRcVdCHEDgK8B/IuI/q/O40txGhV3IcQkAJOC92NiYlJramou2HhZ06WqCqqq9gamx09DQkJXaLWGy7qyfiJWjxXZedno1bIXdBodpv0wDVnXZSFCH4FKZyXCdGGIMEQgz5KH1za9hldHvgohBJxeJ3RCB7PLDIfXgZSoFEToI7ChYAPiwuJQ6axE/+T+0Gv10Gv02FiwET0TeyLKGAWvzwu9Vg+DxgCrYoVRZ4RH9SBcHw7Vr0IjNPip8CekRqWiY4uOiDBGNPaPiTHGGGOMsdPSrPdxF0LEAHgXQAWAh8/mHET0KhGlBT8iIyPP6xjZpUOnMyA+vhtGjVoSCu3Bx4/df/1yp9fo0T+5P8J0YQjXh2PGtTNQaisNbf8Wpg/DIfMhFFmL8PpNr6PAWoBxK8ehxFYCg9YAxa9g9sbZ0Gv1yM7PRnx4PF796VWkRafBRz5MWD0BeZY8pCelY3f5buRZ8vDw2odxuPow/PCj3FGOv6z6C8od5fCTH5XOSoxfNR43f3IzstZnwaW64PK6GvvHxBhjjDHG2DlrDlPl5wFIA/B7Iqps5LGwS5SsqCvQag2nnP5+7LGXK7/fD1Ng2YDX54VGaFDmKMOy3GUAgDdvfhMvb3wZX+37CnmP5sGgNWBY62F47afX8NbNbyExPBHPX/08tEKLNjFtkG/Jx8JbFkKr0eKvq/4aOs/zVz+PxIjE0DZxAPDOre+EutcDwKJbFyE1KhVThsup91OGT0G1W66Y0QotT5lnjDHGGGOXtEt+qrwQogZABIANDTzdDUArAEcB5AEoJaI/nOqc3Jzu8lJ/evxUxMd3O2EgP5Njmzu7x45D1Ycwc/1MTB46GUmRSYgyRGFDwQYMSRsCnUYHq8caalAXPC4lKgXRxmg88NUDWJa7DKN7j8bcG+bCpDMhTB8Gn9+Hg+aDKLQWYlibYSAiVDgq4PQ6kbVedqtPjkxGib0k1L0+MTwRNo8NQgjEmGJgcVvQwtQC1e5qOS5jVGP/uBhjjDHGGDupZj1VPkAH4OoGPloFnm8XuD+kMQbHmjafT0F2dhZyc5chOzsLPp/nvBzb3PnhD1W9Z2+cDZsig3NqdCrGrxqP/VX7oREaDG8zvN5xEfoI6DV6TM2YisyemZh05SQQEcL0YTBoDQjTh6Fji47om9QXB6oOYOzKsXB4HegY1xGLb12MxPBEqH4VHWI74K2b30K72HZ46tunYFNscHgdeHjNw3B6nfDDD5fXBZ2mOUwsYowxxhhjl7NL/jdaIoo90XNnux0cu7xotQZkZEwFgEDXeON5Oba502v09aamp0alwk9+ZGVn1ZvmHq4PD3WUf3rY09Bq5NT1bvHdsHjUYmiFVjacC/QPUFQFt9x0C4pLi+H1exEdHY3/6f6Hjjd1xP+2/w/333c/ItQIxETH4K1FbyG9TzrmjZwHP/kx6ZtJWPaPZVj2u2WYvWQ2tsZsxeJRixGGsMb5ITHGGGOMMXYeXPJT5U+G93Fnp+tMusZzh3nJ7rEjOz8bPRJ7IMYYAwDwkx86jQ4bCjYgKTIJyZHJiDXFotpdjRp3DVqYWiAuPC4U0k903jW/rMHIXiOhqApeW/oaPnvrM2zbtg0jbxiJO35/B3qO6IninGK8/PLLWP7tcsxcPxNThk+Bp9KDm397M1KjUjHqgVG468670DW+KyIM3F2eMcYYY4w1bZfDVHnGzsmZdI3nDvOSQWtA36S+qHRWYlPhJrhUF8qd5bApNvRN6ov2LdojyhgFk96E+LB4pEWnnTK0B887vMtwHKk+gglrJkCn6KDX6lFUWoSd23diW+I2pESl4NY7bkVNeQ2eWf4MluUuQ9aPWZj8yGT8+/1/Iyo8CkkRSUiJTIFeq79IPxHGGGOMMcYujEt+qjxjrHEYdAZEGCIwe+NszB0xF8W2YszeOBuTh05GWnQaVJ+KcH146NjT7ewePO/tt96OvB15SAhPwMJ/LsSEf01AXGIchrQZgpnrZ+LNm95EbKtY3Jl8J6KSo5C6OxW6HjrEdYyDRmgQHx4fanYH7YX8STDGGGOMMXZhNevgTkT3AbivkYfBWLNl0powNWMqtBotZm+cHVrbvvCWhaFmc2d73q+WfYWs7CxkmDMwcdJElA4sRZQrCiM6jMA17a5BTlEODpoPosJRgcd6PYa/vvxXvLX8LZh0JvjJj1K73FN+yvAp6BLfBWF6XufOGGOMMcYuTc06uDPGLqxgkznFp2BqoGnftIxpCNOHhfZ4P1ttottgwU0LUOOuwZOPPomPFnyEv/zzL0gJT4Fer4ff74fRYcRVfa7CpuxNKC4oxohBIxBtjIa5woytO7fCkyG7/i+6dREHd8YYY4wxdsni4M4YOyfBafDd4rthyaglMOqMZ11pB4CamhpUVFfghe0vYFDqIGj2ahAfH49e7XshrHUY5i+Zj8fHP45d63ahW4duiEqOQk5KDlZvW40NBRuwoWADil8vxl3334Wfon7ClIwp0Gt4nTtjjDHGGLt0Neuu8meLu8oz1njy8vJw9913o8ZegwpXBbq16YY5c+ZgQcECLPvfMsR/HY8YfwwioyOxYOECLMhfgGW5y5DZMxMv/OYFxBhj8LtbfocJD0/AjbfeCAGBcEP4OV1MYIwxxhhj7EI7WVd5Du4N4ODOWONTVAUenwdaoYXqV3Gk5ggKrYUYlDoIYbowuFQXatw1cHgdmLV+FqZmTEXbmLZwep2weqxoGdESQgjoNXreDo4xxhhjjDV5vB0cY+ySY9AZYNQaYfFYUGIvQfsW7dEmpg0mrpmIQ9WHsLloM2rcNYjQR2DRrYtQYCmAzWNDia0EB80H4fP7UOGowOHqw1BUpbG/HcYYY4wxxs4aB3fGWJPl9XlRbCvGc+uew5FqWXEf1noYjDoj+rTqg/k58xFrisXh6sNIjkxGpCESyVHJSG+Vji3FW9DC1AImnQken6exvxXGGGOMMcbOGgd3xliT5YMvtM3cnI1zMLzNcPxfr//DIfMhmF1mzBkxB3qNHq/nvI72Ldoj35qPx75+DJWuSvRu2RsT1kyAU3VCp+E+nIwxxhhj7NLFv80yxpqs4D7xeo0eC25aAI/Pgxp3DQalDgpNk9cIDebfOB8AUGApwBNXPoEiaxFMWlNoX/klo5Y05rfBGGOMMcbYOeGKO2OsyQpuM7fwloXIt+YjpzAHDq8DE9dMhEt1QafRwQ8/tEILnUaH1tGt8faWtzGs9TAkRyVj/8T9eC7jORh1xsb+VhhjjDHGGDtrHNwZYxeMoiqwe+zn1BzOoJPbuGVlZyExIhGz1s/CstxlKLAU4GD1QTy04iEcqD4AlVSE6cPw8KCHcdRyFGNXjoXT60T7Fu15KzjGGGOMMXZJ4+DOGLsgFFXB3qq9GLNiDPZW7T238K41YGrGVFQ4KjBl+BRk9szE4LTByMrOwrLcZZi1fhaKrEVwqk50iu8UCvcz18+E1+89j98VY4wxxhhjFx+vcWeMXRCKTwkFa0CuMw9Wz8/oPKoCxaegU4tOSIlMQbW7Gm/e9CbC9eGYmjEVAPD0sKfx7eFvsaFgAxbdughThk8BAEzJmMLT5BljjDHG2CVPEFFjj6HJSUtLo8LCwsYeBmOXtGDFPSs7C9MypqFrQtcznrJe9xxTM6aic1xnqH4VRp0RBq0BiqrArbrh9DqxvXQ7BqYORIQ+Qr7Wp8CoM8KkM12Ib48xxhhjjLHzSghRRERpDT3HU+UZYxdEsLHcklFLziq0A/Wr9lnZWVD9KqKMUaFzGXQGRJuiEWOKQWp0KiasnoAD5gPQCi1iTDEc2hljjDHGWLPAU+UZYxeMQWc4q+nxodcH1rYDwLSMaSec9u7z+87LtHzGGGOMMcaaIg7ujLHzJrge3aA9t8AeVLdqH5we3+BxpxnwGWOMMcYYuxTxVHnG2HlxPrvI12XQGepNjz/RMec6LZ8xxhhjjLGmiivujLHz4nx1kT9b5zotnzHGGGOMsaaKgztj7Lzg6eqMMcYYY4xdGLwdXAN4OzjGzo6iKvD4PCddj84YY4wxxhg73sm2g+OKO2PsvOHp6owxxhhjjJ1/3JyOMcYYY4wxxhhrwji4M8YYY4wxxhhjTRgHd8YYY4wxxhhjrAnjNe6MsWZHURUoPgUGLa+5Z4wxxhhjlz6uuDPGmhVFVbC3ai/GrBiDvVV7oahKYw+JMcYYY4yxc8IVd8ZYs6L4FGRlZ2FZ7jIAwJJRS7jqzhhjjDHGLmkc3BljzYpBa8DUjKkAgGkZ02DUGRt5RIwxxhhjjJ0bQUSNPYYmJy0tjQoLCxt7GIyxs6SoCjw+D4w6IwxarrYzxhhjjLGmTwhRRERpDT3HFXfGWLNj0HFTOsYYY4wx1nxwczrGGGOMMcYYY6wJ4+DOGGOMMcYYY4w1YRzcGWOMMcYYY4yxJoyDO2OMMcYYY4wx1oRxcGeMMcYYY4wxxpowDu6MMcYYY4wxxlgTxsGdMcYYY4wxxhhrwji4M8YYY4wxxhhjTRgHd8YYY4wxxhhjrAnj4M4YY4wxxhhjjDVhHNwZY4wxxhhjjLEmjIM7Y4wxxhhjjDHWhHFwZ4wxxhhjjDHGmjAO7owxxhhjjDHGWBPGwZ0xxhhjjDHGGGvCOLgzxhhjjDHGGGNNGAd3xhhjjDHGGGOsCePgzhhjjDHGGGOMNWEc3BljjDHGGGOMsSaMgztjjDHGGGOMMdaEcXBnjDHGGGOMMcaaMA7ujDHGGGOMMcZYE8bBnTHGGGOMMcYYa8I4uDPGGGOMMcYYY00YB3fGGGOMMcYYY6wJ4+DOGGOMMcYYY4w1YRzcGWOMMcYYY4yxJoyDO2OMMcYYY4wx1oRxcGeMMcYYY4wxxpowDu6MMcYYY4wxxlgTxsGdMcYYY4wxxhhrwji4M8YYY4wxxhhjTRgHd8YYY4wxxhhjrAnj4M4YY4wxxhhjjDVhHNwZY4wxxhhjjLEmjIM7Y4wxxhhjjDHWhHFwZ4wxxhhjjDHGmjBBRI09hiZHCOEBUNHY42AXRCQAe2MPgl1W+D3HGgO/71hj4Pcdawz8vmMX24V8zyUSkbGhJzi4s8uKEKKQiNIaexzs8sHvOdYY+H3HGgO/71hj4Pcdu9ga6z3HU+UZY4wxxhhjjLEmjIM7Y4wxxhhjjDHWhHFwZ5ebVxt7AOyyw+851hj4fccaA7/vWGPg9x272BrlPcdr3BljjDHGGGOMsSaMK+6MMcYYY4wxxlgTxsGdMcYYY4wxxhhrwji4s2ZJCKEXQlwnhJgjhNgihKgRQniFEKVCiK+EELc09hjZ5UEIMVsIQYGPaY09Hta8CSEMQohHhBDrhRBmIYRbCFEohFgjhPh9Y4+PNS9CiDZCiAVCiH1CCFfg/XZECPGBECK9scfHLk1CiK5CiIeFEEuFELuFEOrp/h8qhLheCLFaCFEZeE/uFUJkCSEiL8bY2aXrTN93QgiNEGKoEOLFwP+5VYGsUSmE+FYIMVoIIc7nGHXn82SMNSFXA/g28HkpgPUAHAB6ABgFYJQQYhGA8cSNHtgFIoQYCuAJAATgvP7jzdixhBBpAL6G/HeuEsAGyH/3WgO4KvD5p402QNasCCEGQ/4/GwWgCMA3AHwA+gK4B8AfhRB/JKLljTZIdqn6C4BHz/RFQojHIZuGEYBsAGUAMgBMAfBbIcRwIqo8nwNlzcqZvu86QP4/CwBmAFsBVAcevz7w8QchxG+JSDkfA+SKO2uu/AD+DeAqIkomoluJ6PdE1BvAHyB/uRgL4M+NOUjWfAkhwgEsBVAC4MvGHQ1r7oQQYZAhqgeA5wGkENEoIvoDEQ0DkAhgRiMOkTU/iyBD+yIA7YnodiK6C0AnyPeaDsAiIYSpEcfILk2/AHgFwGgA3QF8dKoXCCH6AZgL+fvdLUR0NRFlAugI4HsAXQEsvGAjZs3Bmb7vCMAPAG4C0JKIRgb+zx0E4DeQF8tvBfC38zVADu6sWSKiH4jobiLKbuC5TyEDFSCrAoxdCLMAdIa8QGRp5LGw5u8ZAN0ALCKiF4jIW/dJInIS0Y5GGRlrdoQQ8QD6BO5Oq/t+IyI/5MUjF4BYyF+AGTttRLSEiJ4iok+IaC9kMeZUnoGc2fY+Ea2pcy4ngDGBc/xWCNHtggyaXfLO9H1HRIeI6DoiWktEvmOe+x+AlwJ3z1vW4ODOLlfbA7etG3UUrFkSQvwGwMMAPiSi1Y07GtbcCSH0kFP8AGBOY46FXTY8Z3AsT01mF5QQwgAg2Lvok2OfJ6I81E5pvvNijYtd9s571uDgzi5XnQO3JY06CtbsBBrgvAe5tu6xxh0Nu0z0B5AAoJiIDgohegshpgsh3hFCvCSEuEUIwf/fs/OGiOyQa4gBYEbg4hEA2bAJsuIeBmANERVc/BGyy0wXAOGBz7ee4Jjg4/0u/HAYA3ABsgY3p2OXHSFEEoD7Anf/3YhDYc3TKwDaA7iTiKobezDsshCcslwohHgJwGTUb4b4NIDtQog7iCj/oo+ONVcPAVgNuRzoFiHEVsj1xf0ApEKuD53YeMNjl5H2gdsaIrKd4JiCY45l7IIJ9Dl6JHD3vGUNvgLPLitCCB2AfwCIAbAbwDuNOyLWnAghbgAwDsC/iOiLRh4Ou3zEB277QYb0tyAbMcUAGAFgf+C5VXUro4ydCyLaB+BKyG7yqQBuB3AXZDA6CGAdEVkbb4TsMhIVuHWc5Bh74Db6Ao+FMUD+P9weQDGAmefrpBzc2eVmIYDrAFQBuPt8bc/AmBAiBsC7ACog17czdrEEq+t6AP8koolEtJ+IrET0HWR4dwPoBbmrBmPnTAgxDPICeC8AfwSQBCAOcstVPYB3hRDvNt4IGWPs4hNCPAvgXsj/dzOJqOp8nZuDO7tsCCHmQ3YWrQYwgoj2N/KQWPMyD0AagIm8Tyy7yOpODT1uFlFgevyqwN3rL8qIWLMmhIgF8B/IbQbvIqJ/ElEZEVUT0UoANwJwAnhACHFNIw6VXR6C/wZGnOSYyMAtzwJhF4wQYhKAFyEbeN5JRBtO8ZIzwmvc2WVBCDEXcq1JDYAbiGj7yV/B2Bm7E4AK4K9CiL8e81xw+5kxQojrAZQSEVc+2fly+ASfN3RM8gUeC7s83AIZ2g8RUc6xTxLRYSFEDoBrIC8W/fcij49dXo4GbmOFEFEnWOfe+phjGTuvhBAPA5gLQAHwWyJae76/Bgd31uwJIWYDmAS5l/YNRHSijqOMnSsdgKtP8ny7wEfexRgMu2xsA0CQU+YTUNuEqa6EwK29gecYO1NtArcnq15aArdxF3gsjO2DnOERDmAAGr5QNCBwu+1iDYpdPoQQEwC8jtrQvuoULzkrPFWeNWuBDstPQf4CMYKItjTykFgzRUSxRCQa+gDwQeCwZwOPtWvEobJmhohKAawP3D1uKnygIV3wgtLmizUu1qwVBW67Bfp71BN4z/UP3D1y0UbFLkuBfkXBoPTHY58XQrQFMDRw9z8Xa1zs8iCEGA9gAWpD+8oL9bU4uLNmSwgxA7LDcg04tDPGmrcXArfPCCGGBB8M7KQxF0AHyHWg7zfC2Fjzswayg3cYgMVCiOD6YQghDABeg6zKewF81igjZJeblyBnHt0vhLgx+GBgW653AWgB/JuI9jbS+FgzJIR4CLKD/AUP7QAgiOhCnp+xRiGEuA3Al4G7WwHknuDQSiJ68uKMil2uhBBLITuMPktEMxp5OKyZEkJMA/B3yF4LmwGUQlY92wFwAfjdhZq+xy4/Qog/QV4I0kHuprEFMqgPgNwezg9gAhEtbLRBskuSEKI/ZBgK6gi53KcQtbM9ANn8q6TO6x4H8CpkgP8fgHIAGZC9PfYBGM7NY9mJnOn7TgjRF3LphQCwF8Bx/T6CiOi+8zFGXuPOmqu6a+oGoHZt07HyAHBwZ4xd8ohohhBiM4DHAAwGMBAyvC8F8DJXmtj5RET/EELshny/XQW51aoAUALgYwCvExEvzWBnIxry37BjpQU+gox1nySi1wLvyScADILsMp8PYBaAWSdoWsdY0Jm+72JRux1rN9Q2Im7Ifec4NgBccWeMMcYYY4wxxpo0XuPOGGOMMcYYY4w1YRzcGWOMMcYYY4yxJoyDO2OMMcYYY4wx1oRxcGeMMcYYY4wxxpowDu6MMcYYY4wxxlgTxsGdMcYYY4wxxhhrwji4M8YYY4wxxhhjTRgHd8YYY4wxxhhjrAnj4M4YY4xdooQQ1woh/EIIhxCi00mOmy6EICFErhDCeMxzEUKIAiHETiHEJfl7gRBCK4TYK4TIE0KENfZ4GGOMsfPtkvwPmjHGGGMAEf0A4C0A4QCWNhS8hRD9AUwDoAK4h4g8xxwyBUAagClE5L/AQ74giMgH+T22ATC5kYfDGGOMnXeCiBp7DIwxxhg7S0KICAA7AXQEMJmI5tR5zgjgZwA9AbxIRNOPeW0qgEMAdhHRoIs36gtDCLELQCcAHYiotLHHwxhjjJ0vXHFnjDHGLmFE5ABwHwA/gL8LIXrUefrvkKF9G4AZDbz8rwCMAN69wMO8WN4DEAZgbGMPhDHGGDufOLgzxhhjlzgiWg/gNcgQ/oEQQieEGArgCQAKgHuJyFv3NUIIA4CHAHgA/OvYcwoh2gXWxR8VQmiEEI8IIXYJIZxCiBIhxEIhRFzgWKMQ4tnAOnOXEKJYCDE/MBvg2PM+Hzjv80KIFCHEksDxLiHEL0KIMXWO7SaE+EQIUSqEcAfW4f/+JD+KjyGXBIwTQujO9OfIGGOMNVX8nxpjjDHWPEwDcDOAAZCV9t9CXqCfTkS/NHD8MACJANYTkeUU5/4HgDsA/A9yav1QAOMADBJCZABYC6APgHUADgDIAPAIgM6BMTWkDeQ0fgVAdmAsVwFYIoSIBbABwDcAigH8F0BbAFcC+JcQAkT06bEnJKIKIcSOwM9gIIBNp/i+GGOMsUsCB3fGGGOsGSAitxDiXsiw+rfAw5sAzDnBS66tc8zJtIWsYncnojwAEELEB17XL3DrglxXXhV4vj1kKL9JCDGMiDY0cN77ASwE8DARqYHXjQLwFYDpAMwAXgYwkwINeYQQjwKYBznt/7jgHrARMrhfdxrfG2OMMXZJ4KnyjDHGWDNBRFsAfFvnoXGBjusN6Re43XMap34kGNoDX6cKwNuBu70AjAmG9sDzRyCr9IAM0A3JB/B4MLQHXrcCwC4AUQDKUCe0B7wJGeg7CSHanOC8uYHb/qfxfTHGGGOXBA7ujDHGWDMhhLgOwMg6D/3fSQ5vFbitOskxgKy2f9PA4wcCt/knmIoffD7lBOf9LxG5T/K6NceEdgRC/tFTnDf4/bQ6wfOMMcbYJYeDO2OMMdYMCCGiIbuqCwALAHgBTBZCDDzBS2ICt9ZTnLqkblW8DnvgNv8Er7MFbk0neP5ErzvX8wa/nxYneJ4xxhi75HBwZ4wxxpqH1yAbvn0P2RguC4AWwNLAfu7HqgncRp/ivP5zfP5inzd4QaL6LF/PGGOMNTkc3BljjLFLnBDiFgAPQFabHwhMMZ8JYDuAHgBeaOBl5YHb+IsyyIsn+P2UNeooGGOMsfOIgztjjDF2CQvspb44cHcSEeUDQGDf9vsgp8w/KYQYfMxLtwVue1yMcV5EvQK3PzfqKBhjjLHziIM7Y4wxdmlbACAZspnbu3WfIKJdkHu6B6fM110X/t/A7ZUXZZQXz9DA7Q+NOgrGGGPsPOLgzhhjjF2ihBC/hewcXwPgoRMcNguyut4NwIt1Ht8AoALAACFE7IUb5cUjhEgE0AdAMYAtjTwcxhhj7Lzh4M4YY4xdgoQQLQEsDNx9lIiKGjou0BH+XgAKgCeEEEMCjyuQU+yNOPm2cZeSPwHQAXjnBJ3wGWOMsUuSOGaLVMYYY4xdJoQQqQAOAfiFiAY09njOhRBCANgJoBOADkRU2shDYowxxs4brrgzxhhjl6lAlX4ugCuEELc29njO0d0AegN4mUM7Y4yx5oYr7owxxthlTAgRAWAvADOAfkR0tvunNxohhBZALoAwAN2IyNXIQ2KMMcbOKw7ujDHGGGOMMcZYE8ZT5RljjDHGGGOMsSaMgztjjDHGGGOMMdaEcXBnjDHGGGOMMcaaMA7ujDHGGGOMMcZYE8bBnTHGGGOMMcYYa8I4uDPGGGOMMcYYY00YB3fGGGOMMcYYY6wJ+38IOGOMUeh0DAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "(10, 300)" ] }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "plt.figure(figsize=(15, 15), dpi=80)\n", - "\n", - "np.random.seed(20)\n", - "color = [\"red\", \"blue\", \"pink\", \"brown\", \"tomato\", \"tan\", \"salmon\", \"gray\", \"olive\", \"cyan\", \"purple\", \"green\", \"orange\", \"bisque\", \"darkorange\", \"navy\", \"seagreen\", \"gold\", \"teal\"] * 25\n", - "recorded_fov = []\n", - "for i in range(len(fov_ids_lst_health)):\n", - " fov_id = fov_ids_lst_health[i]\n", - " X = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"x_slide_mm\"].tolist()\n", - " Y = cell_boundary_health[(cell_boundary_health['fov']==fov_id)][\"y_slide_mm\"].tolist()\n", - "# import ipdb\n", - "# ipdb.set_trace()\n", - "\n", - "# plt.scatter(X, Y, s=100, label = fov_id, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.scatter(X, Y, s=40, c = color[i], marker='.', alpha = None, edgecolors= 'white')\n", - " plt.legend()\n", - " \n", - " if fov_id not in recorded_fov:\n", - "# plt.annotate(str(fov_id), (X[50], Y[50]), size=20)\n", - " plt.annotate(str(fov_id), ((max(X) - min(X))/2.0 + min(X), (max(Y) - min(Y))/2.0 + min(Y)), size=10)\n", - "# if i > 10:\n", - "# break\n", - "\n", - "plt.xticks(fontsize=20)\n", - "plt.yticks(fontsize=20)\n", - "plt.title('FOV Layout in Normal Liver',fontsize=22)\n", - "plt.xlabel('X(mm)', fontsize=20) \n", - "plt.ylabel('Y(mm)', fontsize=20) \n", - "plt.savefig(\"../../FOV_layout/normal_liver.png\", format=\"png\", bbox_inches=\"tight\")\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KxFgQPBxonWH", - "scrolled": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Benchmark Generation" + "len(data_final_result['spot_id'].unique()), len(data_final_result['fov'].unique())" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 1. spot_fov_cellId_mapping.csv" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_fov_cellId_mapping(data_result, cell_boundary_fov_11):\n", - " x_min = cell_boundary_fov_11[\"x_FOV_px\"].min()\n", - " x_max = cell_boundary_fov_11[\"x_FOV_px\"].max()\n", - " y_min = cell_boundary_fov_11[\"y_FOV_px\"].min()\n", - " y_max = cell_boundary_fov_11[\"y_FOV_px\"].max()\n", - " \n", - "# print(\"x:\", x_min, x_max)\n", - "# print(\"y:\", y_min, y_max)\n", - " # x: 12 4245\n", - " # y: 24 4236\n", - "# import ipdb\n", - "# ipdb.set_trace()\n", - " x_diff = (x_max - x_min) / 3.0\n", - " y_diff = (y_max - y_min) / 3.0\n", - " \n", - " new_col_val = cell_boundary_fov_11.shape[0]* [0]\n", - " cell_boundary_fov_11.insert(loc=0, column='spot_id', value=new_col_val)\n", - "\n", - " for i in range(cell_boundary_fov_11.shape[0]):\n", - " one_row_sample = cell_boundary_fov_11.iloc[i]\n", - " if one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 1:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 1\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 2\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 3\n", - " \n", - "\n", - " elif one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 2:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 4\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 5\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 6\n", - " \n", - "\n", - " elif one_row_sample[\"x_FOV_px\"] <= x_min + x_diff * 3:\n", - " if one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 1:\n", - " spot_id = 7\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 2:\n", - " spot_id = 8\n", - " elif one_row_sample[\"y_FOV_px\"] <= y_min + y_diff * 3:\n", - " spot_id = 9\n", - "\n", - " else:\n", - " print(\"Wrong x_FOV_px, y_FOV_px:\", one_row_sample[\"x_FOV_px\"], one_row_sample[\"y_FOV_px\"])\n", - " data_result = data_result.append({'spot_id' : spot_id, 'fov' : one_row_sample[\"fov\"], 'cell_ID' : one_row_sample[\"cell_single_id\"]}, ignore_index = True)\n", - "\n", - " return data_result\n", - "\n", - " " + "## 2. spot_gene_expression.csv" ] }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "
Unnamed: 0cell_IDx_FOV_pxy_FOV_pxx_slide_mmy_slide_mmfovcell_single_id
0c_1_100_10c_1_100_102737259.031449.7350010010
1c_1_100_1078c_1_100_107859539988.774409.258241001078
2c_1_100_1135c_1_100_1135146941998.879289.234121001135
3c_1_100_267c_1_100_267348610589.121329.61104100267
4c_1_100_732c_1_100_732317827719.084369.40548100732
...........................
566002c_1_9_981c_1_9_98124263499
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idcell_ID
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, cell_ID]\n", - "Index: []" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_final_result = pd.DataFrame(columns = [ 'fov', 'spot_id', 'cell_ID'])\n", - "data_final_result" - ] - }, - { - "cell_type": "code", - "execution_count": 21, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -4195,63 +1983,63 @@ " ...\n", " \n", " \n", - " 566002\n", - " c_1_9_981\n", - " c_1_9_981\n", - " 2426\n", - " 3499\n", - " 5.41012\n", - " 11.36612\n", + " 793313\n", + " c_2_9_945\n", + " c_2_9_945\n", + " 2710\n", + " 4230\n", + " 5.44420\n", + " 11.27840\n", " 9\n", - " 981\n", + " 945\n", " \n", " \n", - " 566003\n", - " c_1_9_982\n", - " c_1_9_982\n", - " 305\n", - " 3474\n", - " 5.15560\n", - " 11.36912\n", + " 793314\n", + " c_2_9_947\n", + " c_2_9_947\n", + " 2786\n", + " 4233\n", + " 5.45332\n", + " 11.27804\n", " 9\n", - " 982\n", + " 947\n", " \n", " \n", - " 566004\n", - " c_1_9_985\n", - " c_1_9_985\n", - " 706\n", - " 3504\n", - " 5.20372\n", - " 11.36552\n", + " 793315\n", + " c_2_9_948\n", + " c_2_9_948\n", + " 1732\n", + " 4234\n", + " 5.32684\n", + " 11.27792\n", " 9\n", - " 985\n", + " 948\n", " \n", " \n", - " 566005\n", - " c_1_9_987\n", - " c_1_9_987\n", - " 1623\n", - " 3517\n", - " 5.31376\n", - " 11.36396\n", + " 793316\n", + " c_2_9_949\n", + " c_2_9_949\n", + " 1446\n", + " 4239\n", + " 5.29252\n", + " 11.27732\n", " 9\n", - " 987\n", + " 949\n", " \n", " \n", - " 566006\n", - " c_1_9_995\n", - " c_1_9_995\n", - " 3808\n", - " 3594\n", - " 5.57596\n", - " 11.35472\n", + " 793317\n", + " c_2_9_95\n", + " c_2_9_95\n", + " 4211\n", + " 649\n", + " 5.62432\n", + " 11.70812\n", " 9\n", - " 995\n", + " 95\n", " \n", " \n", "\n", - "

332877 rows × 8 columns

\n", + "

793318 rows × 8 columns

\n", "" ], "text/plain": [ @@ -4262,11 +2050,11 @@ "3 c_1_100_267 c_1_100_267 3486 1058 9.12132 \n", "4 c_1_100_732 c_1_100_732 3178 2771 9.08436 \n", "... ... ... ... ... ... \n", - "566002 c_1_9_981 c_1_9_981 2426 3499 5.41012 \n", - "566003 c_1_9_982 c_1_9_982 305 3474 5.15560 \n", - "566004 c_1_9_985 c_1_9_985 706 3504 5.20372 \n", - "566005 c_1_9_987 c_1_9_987 1623 3517 5.31376 \n", - "566006 c_1_9_995 c_1_9_995 3808 3594 5.57596 \n", + "793313 c_2_9_945 c_2_9_945 2710 4230 5.44420 \n", + "793314 c_2_9_947 c_2_9_947 2786 4233 5.45332 \n", + "793315 c_2_9_948 c_2_9_948 1732 4234 5.32684 \n", + "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 \n", + "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 \n", "\n", " y_slide_mm fov cell_single_id \n", "0 9.73500 100 10 \n", @@ -4275,753 +2063,109 @@ "3 9.61104 100 267 \n", "4 9.40548 100 732 \n", "... ... ... ... \n", - "566002 11.36612 9 981 \n", - "566003 11.36912 9 982 \n", - "566004 11.36552 9 985 \n", - "566005 11.36396 9 987 \n", - "566006 11.35472 9 995 \n", + "793313 11.27840 9 945 \n", + "793314 11.27804 9 947 \n", + "793315 11.27792 9 948 \n", + "793316 11.27732 9 949 \n", + "793317 11.70812 9 95 \n", "\n", - "[332877 rows x 8 columns]" + "[793318 rows x 8 columns]" ] }, - "execution_count": 21, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary_health" + "cell_boundary" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "gene_expression_cell_type = pd.concat([cell_boundary.iloc[:,-2:], CosMx_cell_type.iloc[:,-2:]], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "pandas.core.frame.DataFrame" + "AnnData object with n_obs × n_vars = 793318 × 1000\n", + " obs: 'RNA_pca_cluster_default', 'RNA_pca_cluster_default.1', 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'nCount_negprobes', 'nFeature_negprobes', 'nCount_falsecode', 'nFeature_falsecode', 'fov', 'Area', 'AspectRatio', 'Width', 'Height', 'Mean.PanCK', 'Max.PanCK', 'Mean.CK8.18', 'Max.CK8.18', 'Mean.Membrane', 'Max.Membrane', 'Mean.CD45', 'Max.CD45', 'Mean.DAPI', 'Max.DAPI', 'cell_id', 'assay_type', 'Run_name', 'slide_ID_numeric', 'Run_Tissue_name', 'Panel', 'Mean.Yellow', 'Max.Yellow', 'Mean.CD298_B2M', 'Max.CD298_B2M', 'cell_ID', 'x_FOV_px', 'y_FOV_px', 'x_slide_mm', 'y_slide_mm', 'propNegative', 'complexity', 'errorCtEstimate', 'percOfDataFromError', 'qcFlagsRNACounts', 'qcFlagsCellCounts', 'qcFlagsCellPropNeg', 'qcFlagsCellComplex', 'qcFlagsCellArea', 'median_negprobes', 'negprobes_quantile_0.9', 'median_RNA', 'RNA_quantile_0.9', 'nCell', 'nCount', 'nCountPerCell', 'nFeaturePerCell', 'propNegativeCellAvg', 'complexityCellAvg', 'errorCtPerCellEstimate', 'percOfDataFromErrorPerCell', 'qcFlagsFOV', 'cellType', 'niche'\n", + " var: 'I', 'pval', 'padj'" ] }, - "execution_count": 22, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(cell_boundary_health)" + "import anndata as ad\n", + "liver_anndata = ad.read_h5ad(\"./cosmx_Liver.h5ad\")\n", + "liver_anndata" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 10, 110, 111,\n", - " 112, 113, 114, 115, 116, 117, 118, 119, 11, 120, 121, 122, 123,\n", - " 124, 125, 126, 127, 128, 129, 12, 130, 131, 132, 133, 134, 135,\n", - " 136, 137, 138, 139, 13, 140, 141, 142, 143, 144, 145, 146, 147,\n", - " 149, 14, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 15,\n", - " 160, 161, 162, 163, 164, 165, 166, 167, 169, 16, 170, 171, 172,\n", - " 173, 174, 176, 177, 178, 179, 17, 182, 184, 185, 186, 187, 188,\n", - " 189, 18, 190, 191, 192, 193, 194, 195, 197, 198, 199, 19, 1,\n", - " 200, 201, 202, 203, 204, 205, 207, 208, 209, 20, 210, 211, 212,\n", - " 214, 215, 216, 217, 219, 220, 221, 223, 224, 225, 226, 227, 228,\n", - " 229, 22, 230, 231, 234, 235, 236, 237, 238, 239, 23, 240, 241,\n", - " 242, 243, 244, 245, 246, 247, 248, 249, 24, 250, 251, 253, 254,\n", - " 255, 256, 257, 258, 259, 25, 260, 261, 262, 263, 264, 265, 266,\n", - " 269, 26, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 27,\n", - " 280, 281, 282, 284, 286, 288, 289, 28, 290, 291, 293, 294, 295,\n", - " 29, 2, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 3,\n", - " 40, 41, 44, 45, 46, 47, 48, 49, 4, 50, 51, 52, 53,\n", - " 54, 55, 56, 57, 58, 59, 5, 60, 61, 62, 64, 65, 66,\n", - " 67, 68, 69, 6, 70, 71, 72, 73, 74, 75, 76, 77, 78,\n", - " 79, 7, 80, 81, 82, 83, 85, 86, 87, 89, 8, 90, 92,\n", - " 93, 94, 95, 96, 97, 98, 99, 9, 168, 183, 196, 213, 218,\n", - " 232, 252, 267, 283, 285, 296, 43, 88, 148, 175, 180, 181, 206,\n", - " 222, 233, 268, 292, 297, 298, 299, 302, 91, 287, 304, 301, 42,\n", - " 84, 21])" + "array([[0., 0., 0., ..., 0., 0., 0.],\n", + " [1., 2., 0., ..., 0., 4., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " ...,\n", + " [0., 0., 0., ..., 0., 0., 1.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 1., 0., ..., 0., 0., 2.]])" ] }, - "execution_count": 23, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fov_ids_lst = cell_boundary_health['fov'].unique()\n", - "fov_ids_lst" + "liver_raw = liver_anndata.raw.X.toarray()\n", + "liver_raw" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "(793318, 1000)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "liver_raw.shape" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": { - "scrolled": true - }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_ids_lst: [100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", - " 117 118 119 11 120 121 122 123 124 125 126 127 128 129 12 130 131 132\n", - " 133 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 149 14\n", - " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 163 164 165 166\n", - " 167 169 16 170 171 172 173 174 176 177 178 179 17 182 184 185 186 187\n", - " 188 189 18 190 191 192 193 194 195 197 198 199 19 1 200 201 202 203\n", - " 204 205 207 208 209 20 210 211 212 214 215 216 217 219 220 221 223 224\n", - " 225 226 227 228 229 22 230 231 234 235 236 237 238 239 23 240 241 242\n", - " 243 244 245 246 247 248 249 24 250 251 253 254 255 256 257 258 259 25\n", - " 260 261 262 263 264 265 266 269 26 270 271 272 273 274 275 276 277 278\n", - " 279 27 280 281 282 284 286 288 289 28 290 291 293 294 295 29 2 30\n", - " 31 32 33 34 35 36 37 38 39 3 40 41 44 45 46 47 48 49\n", - " 4 50 51 52 53 54 55 56 57 58 59 5 60 61 62 64 65 66\n", - " 67 68 69 6 70 71 72 73 74 75 76 77 78 79 7 80 81 82\n", - " 83 85 86 87 89 8 90 92 93 94 95 96 97 98 99 9 168 183\n", - " 196 213 218 232 252 267 283 285 296 43 88 148 175 180 181 206 222 233\n", - " 268 292 297 298 299 302 91 287 304 301 42 84 21]\n", - "fov_id: 100\n", - "cell_boundary_health_fov_without_spot_id: (1239, 8)\n", - "fov_id: 101\n", - "cell_boundary_health_fov_without_spot_id: (1224, 8)\n", - "fov_id: 102\n", - "cell_boundary_health_fov_without_spot_id: (1196, 8)\n", - "fov_id: 103\n", - "cell_boundary_health_fov_without_spot_id: (1140, 8)\n", - "fov_id: 104\n", - "cell_boundary_health_fov_without_spot_id: (1271, 8)\n", - "fov_id: 105\n", - "cell_boundary_health_fov_without_spot_id: (131, 8)\n", - "fov_id: 106\n", - "cell_boundary_health_fov_without_spot_id: (259, 8)\n", - "fov_id: 107\n", - "cell_boundary_health_fov_without_spot_id: (1187, 8)\n", - "fov_id: 108\n", - "cell_boundary_health_fov_without_spot_id: (1138, 8)\n", - "fov_id: 109\n", - "cell_boundary_health_fov_without_spot_id: (1353, 8)\n", - "fov_id: 10\n", - "cell_boundary_health_fov_without_spot_id: (1388, 8)\n", - "fov_id: 110\n", - "cell_boundary_health_fov_without_spot_id: (1243, 8)\n", - "fov_id: 111\n", - "cell_boundary_health_fov_without_spot_id: (1379, 8)\n", - "fov_id: 112\n", - "cell_boundary_health_fov_without_spot_id: (1365, 8)\n", - "fov_id: 113\n", - "cell_boundary_health_fov_without_spot_id: (1152, 8)\n", - "fov_id: 114\n", - "cell_boundary_health_fov_without_spot_id: (1184, 8)\n", - "fov_id: 115\n", - "cell_boundary_health_fov_without_spot_id: (1111, 8)\n", - "fov_id: 116\n", - "cell_boundary_health_fov_without_spot_id: (622, 8)\n", - "fov_id: 117\n", - "cell_boundary_health_fov_without_spot_id: (802, 8)\n", - "fov_id: 118\n", - "cell_boundary_health_fov_without_spot_id: (1357, 8)\n", - "fov_id: 119\n", - "cell_boundary_health_fov_without_spot_id: (1289, 8)\n", - "fov_id: 11\n", - "cell_boundary_health_fov_without_spot_id: (1250, 8)\n", - "fov_id: 120\n", - "cell_boundary_health_fov_without_spot_id: (1230, 8)\n", - "fov_id: 121\n", - "cell_boundary_health_fov_without_spot_id: (1269, 8)\n", - "fov_id: 122\n", - "cell_boundary_health_fov_without_spot_id: (1162, 8)\n", - "fov_id: 123\n", - "cell_boundary_health_fov_without_spot_id: (1132, 8)\n", - "fov_id: 124\n", - "cell_boundary_health_fov_without_spot_id: (1358, 8)\n", - "fov_id: 125\n", - "cell_boundary_health_fov_without_spot_id: (1203, 8)\n", - "fov_id: 126\n", - "cell_boundary_health_fov_without_spot_id: (151, 8)\n", - "fov_id: 127\n", - "cell_boundary_health_fov_without_spot_id: (133, 8)\n", - "fov_id: 128\n", - "cell_boundary_health_fov_without_spot_id: (1058, 8)\n", - "fov_id: 129\n", - "cell_boundary_health_fov_without_spot_id: (1173, 8)\n", - "fov_id: 12\n", - "cell_boundary_health_fov_without_spot_id: (1294, 8)\n", - "fov_id: 130\n", - "cell_boundary_health_fov_without_spot_id: (1410, 8)\n", - "fov_id: 131\n", - "cell_boundary_health_fov_without_spot_id: (1293, 8)\n", - "fov_id: 132\n", - "cell_boundary_health_fov_without_spot_id: (1391, 8)\n", - "fov_id: 133\n", - "cell_boundary_health_fov_without_spot_id: (1393, 8)\n", - "fov_id: 134\n", - "cell_boundary_health_fov_without_spot_id: (1358, 8)\n", - "fov_id: 135\n", - "cell_boundary_health_fov_without_spot_id: (1347, 8)\n", - "fov_id: 136\n", - "cell_boundary_health_fov_without_spot_id: (793, 8)\n", - "fov_id: 137\n", - "cell_boundary_health_fov_without_spot_id: (288, 8)\n", - "fov_id: 138\n", - "cell_boundary_health_fov_without_spot_id: (469, 8)\n", - "fov_id: 139\n", - "cell_boundary_health_fov_without_spot_id: (1242, 8)\n", - "fov_id: 13\n", - "cell_boundary_health_fov_without_spot_id: (1027, 8)\n", - "fov_id: 140\n", - "cell_boundary_health_fov_without_spot_id: (1290, 8)\n", - "fov_id: 141\n", - "cell_boundary_health_fov_without_spot_id: (1190, 8)\n", - "fov_id: 142\n", - "cell_boundary_health_fov_without_spot_id: (1316, 8)\n", - "fov_id: 143\n", - "cell_boundary_health_fov_without_spot_id: (1137, 8)\n", - "fov_id: 144\n", - "cell_boundary_health_fov_without_spot_id: (1245, 8)\n", - "fov_id: 145\n", - "cell_boundary_health_fov_without_spot_id: (1249, 8)\n", - "fov_id: 146\n", - "cell_boundary_health_fov_without_spot_id: (1306, 8)\n", - "fov_id: 147\n", - "cell_boundary_health_fov_without_spot_id: (419, 8)\n", - "fov_id: 149\n", - "cell_boundary_health_fov_without_spot_id: (1262, 8)\n", - "fov_id: 14\n", - "cell_boundary_health_fov_without_spot_id: (1237, 8)\n", - "fov_id: 150\n", - "cell_boundary_health_fov_without_spot_id: (1370, 8)\n", - "fov_id: 151\n", - "cell_boundary_health_fov_without_spot_id: (1255, 8)\n", - "fov_id: 152\n", - "cell_boundary_health_fov_without_spot_id: (1160, 8)\n", - "fov_id: 153\n", - "cell_boundary_health_fov_without_spot_id: (1254, 8)\n", - "fov_id: 154\n", - "cell_boundary_health_fov_without_spot_id: (1305, 8)\n", - "fov_id: 155\n", - "cell_boundary_health_fov_without_spot_id: (1168, 8)\n", - "fov_id: 156\n", - "cell_boundary_health_fov_without_spot_id: (1280, 8)\n", - "fov_id: 157\n", - "cell_boundary_health_fov_without_spot_id: (1324, 8)\n", - "fov_id: 158\n", - "cell_boundary_health_fov_without_spot_id: (1343, 8)\n", - "fov_id: 159\n", - "cell_boundary_health_fov_without_spot_id: (1250, 8)\n", - "fov_id: 15\n", - "cell_boundary_health_fov_without_spot_id: (1402, 8)\n", - "fov_id: 160\n", - "cell_boundary_health_fov_without_spot_id: (1297, 8)\n", - "fov_id: 161\n", - "cell_boundary_health_fov_without_spot_id: (1299, 8)\n", - "fov_id: 162\n", - "cell_boundary_health_fov_without_spot_id: (1237, 8)\n", - "fov_id: 163\n", - "cell_boundary_health_fov_without_spot_id: (1341, 8)\n", - "fov_id: 164\n", - "cell_boundary_health_fov_without_spot_id: (1060, 8)\n", - "fov_id: 165\n", - "cell_boundary_health_fov_without_spot_id: (971, 8)\n", - "fov_id: 166\n", - "cell_boundary_health_fov_without_spot_id: (1198, 8)\n", - "fov_id: 167\n", - "cell_boundary_health_fov_without_spot_id: (1420, 8)\n", - "fov_id: 169\n", - "cell_boundary_health_fov_without_spot_id: (20, 8)\n", - "fov_id: 16\n", - "cell_boundary_health_fov_without_spot_id: (1192, 8)\n", - "fov_id: 170\n", - "cell_boundary_health_fov_without_spot_id: (1069, 8)\n", - "fov_id: 171\n", - "cell_boundary_health_fov_without_spot_id: (1309, 8)\n", - "fov_id: 172\n", - "cell_boundary_health_fov_without_spot_id: (1309, 8)\n", - "fov_id: 173\n", - "cell_boundary_health_fov_without_spot_id: (1284, 8)\n", - "fov_id: 174\n", - "cell_boundary_health_fov_without_spot_id: (1446, 8)\n", - "fov_id: 176\n", - "cell_boundary_health_fov_without_spot_id: (1295, 8)\n", - "fov_id: 177\n", - "cell_boundary_health_fov_without_spot_id: (1334, 8)\n", - "fov_id: 178\n", - "cell_boundary_health_fov_without_spot_id: (1345, 8)\n", - "fov_id: 179\n", - "cell_boundary_health_fov_without_spot_id: (1277, 8)\n", - "fov_id: 17\n", - "cell_boundary_health_fov_without_spot_id: (1044, 8)\n", - "fov_id: 182\n", - "cell_boundary_health_fov_without_spot_id: (1120, 8)\n", - "fov_id: 184\n", - "cell_boundary_health_fov_without_spot_id: (1229, 8)\n", - "fov_id: 185\n", - "cell_boundary_health_fov_without_spot_id: (1121, 8)\n", - "fov_id: 186\n", - "cell_boundary_health_fov_without_spot_id: (1175, 8)\n", - "fov_id: 187\n", - "cell_boundary_health_fov_without_spot_id: (1262, 8)\n", - "fov_id: 188\n", - "cell_boundary_health_fov_without_spot_id: (1170, 8)\n", - "fov_id: 189\n", - "cell_boundary_health_fov_without_spot_id: (769, 8)\n", - "fov_id: 18\n", - "cell_boundary_health_fov_without_spot_id: (1241, 8)\n", - "fov_id: 190\n", - "cell_boundary_health_fov_without_spot_id: (1159, 8)\n", - "fov_id: 191\n", - "cell_boundary_health_fov_without_spot_id: (1329, 8)\n", - "fov_id: 192\n", - "cell_boundary_health_fov_without_spot_id: (1220, 8)\n", - "fov_id: 193\n", - "cell_boundary_health_fov_without_spot_id: (1308, 8)\n", - "fov_id: 194\n", - "cell_boundary_health_fov_without_spot_id: (1421, 8)\n", - "fov_id: 195\n", - "cell_boundary_health_fov_without_spot_id: (1304, 8)\n", - "fov_id: 197\n", - "cell_boundary_health_fov_without_spot_id: (1389, 8)\n", - "fov_id: 198\n", - "cell_boundary_health_fov_without_spot_id: (1140, 8)\n", - "fov_id: 199\n", - "cell_boundary_health_fov_without_spot_id: (1097, 8)\n", - "fov_id: 19\n", - "cell_boundary_health_fov_without_spot_id: (1218, 8)\n", - "fov_id: 1\n", - "cell_boundary_health_fov_without_spot_id: (459, 8)\n", - "fov_id: 200\n", - "cell_boundary_health_fov_without_spot_id: (1183, 8)\n", - "fov_id: 201\n", - "cell_boundary_health_fov_without_spot_id: (1302, 8)\n", - "fov_id: 202\n", - "cell_boundary_health_fov_without_spot_id: (1349, 8)\n", - "fov_id: 203\n", - "cell_boundary_health_fov_without_spot_id: (1271, 8)\n", - "fov_id: 204\n", - "cell_boundary_health_fov_without_spot_id: (1155, 8)\n", - "fov_id: 205\n", - "cell_boundary_health_fov_without_spot_id: (1174, 8)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 207\n", - "cell_boundary_health_fov_without_spot_id: (1280, 8)\n", - "fov_id: 208\n", - "cell_boundary_health_fov_without_spot_id: (1274, 8)\n", - "fov_id: 209\n", - "cell_boundary_health_fov_without_spot_id: (977, 8)\n", - "fov_id: 20\n", - "cell_boundary_health_fov_without_spot_id: (869, 8)\n", - "fov_id: 210\n", - "cell_boundary_health_fov_without_spot_id: (1048, 8)\n", - "fov_id: 211\n", - "cell_boundary_health_fov_without_spot_id: (1123, 8)\n", - "fov_id: 212\n", - "cell_boundary_health_fov_without_spot_id: (1271, 8)\n", - "fov_id: 214\n", - "cell_boundary_health_fov_without_spot_id: (1257, 8)\n", - "fov_id: 215\n", - "cell_boundary_health_fov_without_spot_id: (1326, 8)\n", - "fov_id: 216\n", - "cell_boundary_health_fov_without_spot_id: (1294, 8)\n", - "fov_id: 217\n", - "cell_boundary_health_fov_without_spot_id: (1216, 8)\n", - "fov_id: 219\n", - "cell_boundary_health_fov_without_spot_id: (1233, 8)\n", - "fov_id: 220\n", - "cell_boundary_health_fov_without_spot_id: (1187, 8)\n", - "fov_id: 221\n", - "cell_boundary_health_fov_without_spot_id: (1273, 8)\n", - "fov_id: 223\n", - "cell_boundary_health_fov_without_spot_id: (1125, 8)\n", - "fov_id: 224\n", - "cell_boundary_health_fov_without_spot_id: (1136, 8)\n", - "fov_id: 225\n", - "cell_boundary_health_fov_without_spot_id: (1096, 8)\n", - "fov_id: 226\n", - "cell_boundary_health_fov_without_spot_id: (1172, 8)\n", - "fov_id: 227\n", - "cell_boundary_health_fov_without_spot_id: (1244, 8)\n", - "fov_id: 228\n", - "cell_boundary_health_fov_without_spot_id: (1265, 8)\n", - "fov_id: 229\n", - "cell_boundary_health_fov_without_spot_id: (968, 8)\n", - "fov_id: 22\n", - "cell_boundary_health_fov_without_spot_id: (416, 8)\n", - "fov_id: 230\n", - "cell_boundary_health_fov_without_spot_id: (998, 8)\n", - "fov_id: 231\n", - "cell_boundary_health_fov_without_spot_id: (1328, 8)\n", - "fov_id: 234\n", - "cell_boundary_health_fov_without_spot_id: (1274, 8)\n", - "fov_id: 235\n", - "cell_boundary_health_fov_without_spot_id: (1367, 8)\n", - "fov_id: 236\n", - "cell_boundary_health_fov_without_spot_id: (1251, 8)\n", - "fov_id: 237\n", - "cell_boundary_health_fov_without_spot_id: (1223, 8)\n", - "fov_id: 238\n", - "cell_boundary_health_fov_without_spot_id: (1344, 8)\n", - "fov_id: 239\n", - "cell_boundary_health_fov_without_spot_id: (1368, 8)\n", - "fov_id: 23\n", - "cell_boundary_health_fov_without_spot_id: (1248, 8)\n", - "fov_id: 240\n", - "cell_boundary_health_fov_without_spot_id: (1270, 8)\n", - "fov_id: 241\n", - "cell_boundary_health_fov_without_spot_id: (1200, 8)\n", - "fov_id: 242\n", - "cell_boundary_health_fov_without_spot_id: (1106, 8)\n", - "fov_id: 243\n", - "cell_boundary_health_fov_without_spot_id: (1121, 8)\n", - "fov_id: 244\n", - "cell_boundary_health_fov_without_spot_id: (1406, 8)\n", - "fov_id: 245\n", - "cell_boundary_health_fov_without_spot_id: (1294, 8)\n", - "fov_id: 246\n", - "cell_boundary_health_fov_without_spot_id: (897, 8)\n", - "fov_id: 247\n", - "cell_boundary_health_fov_without_spot_id: (1264, 8)\n", - "fov_id: 248\n", - "cell_boundary_health_fov_without_spot_id: (1315, 8)\n", - "fov_id: 249\n", - "cell_boundary_health_fov_without_spot_id: (831, 8)\n", - "fov_id: 24\n", - "cell_boundary_health_fov_without_spot_id: (1120, 8)\n", - "fov_id: 250\n", - "cell_boundary_health_fov_without_spot_id: (1088, 8)\n", - "fov_id: 251\n", - "cell_boundary_health_fov_without_spot_id: (1259, 8)\n", - "fov_id: 253\n", - "cell_boundary_health_fov_without_spot_id: (1328, 8)\n", - "fov_id: 254\n", - "cell_boundary_health_fov_without_spot_id: (1323, 8)\n", - "fov_id: 255\n", - "cell_boundary_health_fov_without_spot_id: (1217, 8)\n", - "fov_id: 256\n", - "cell_boundary_health_fov_without_spot_id: (1402, 8)\n", - "fov_id: 257\n", - "cell_boundary_health_fov_without_spot_id: (1176, 8)\n", - "fov_id: 258\n", - "cell_boundary_health_fov_without_spot_id: (1288, 8)\n", - "fov_id: 259\n", - "cell_boundary_health_fov_without_spot_id: (1302, 8)\n", - "fov_id: 25\n", - "cell_boundary_health_fov_without_spot_id: (1307, 8)\n", - "fov_id: 260\n", - "cell_boundary_health_fov_without_spot_id: (1045, 8)\n", - "fov_id: 261\n", - "cell_boundary_health_fov_without_spot_id: (1103, 8)\n", - "fov_id: 262\n", - "cell_boundary_health_fov_without_spot_id: (1303, 8)\n", - "fov_id: 263\n", - "cell_boundary_health_fov_without_spot_id: (1168, 8)\n", - "fov_id: 264\n", - "cell_boundary_health_fov_without_spot_id: (1290, 8)\n", - "fov_id: 265\n", - "cell_boundary_health_fov_without_spot_id: (1234, 8)\n", - "fov_id: 266\n", - "cell_boundary_health_fov_without_spot_id: (1180, 8)\n", - "fov_id: 269\n", - "cell_boundary_health_fov_without_spot_id: (96, 8)\n", - "fov_id: 26\n", - "cell_boundary_health_fov_without_spot_id: (1484, 8)\n", - "fov_id: 270\n", - "cell_boundary_health_fov_without_spot_id: (745, 8)\n", - "fov_id: 271\n", - "cell_boundary_health_fov_without_spot_id: (1205, 8)\n", - "fov_id: 272\n", - "cell_boundary_health_fov_without_spot_id: (1232, 8)\n", - "fov_id: 273\n", - "cell_boundary_health_fov_without_spot_id: (1341, 8)\n", - "fov_id: 274\n", - "cell_boundary_health_fov_without_spot_id: (1318, 8)\n", - "fov_id: 275\n", - "cell_boundary_health_fov_without_spot_id: (1179, 8)\n", - "fov_id: 276\n", - "cell_boundary_health_fov_without_spot_id: (1248, 8)\n", - "fov_id: 277\n", - "cell_boundary_health_fov_without_spot_id: (1279, 8)\n", - "fov_id: 278\n", - "cell_boundary_health_fov_without_spot_id: (1211, 8)\n", - "fov_id: 279\n", - "cell_boundary_health_fov_without_spot_id: (1284, 8)\n", - "fov_id: 27\n", - "cell_boundary_health_fov_without_spot_id: (1389, 8)\n", - "fov_id: 280\n", - "cell_boundary_health_fov_without_spot_id: (1351, 8)\n", - "fov_id: 281\n", - "cell_boundary_health_fov_without_spot_id: (1296, 8)\n", - "fov_id: 282\n", - "cell_boundary_health_fov_without_spot_id: (1169, 8)\n", - "fov_id: 284\n", - "cell_boundary_health_fov_without_spot_id: (1014, 8)\n", - "fov_id: 286\n", - "cell_boundary_health_fov_without_spot_id: (358, 8)\n", - "fov_id: 288\n", - "cell_boundary_health_fov_without_spot_id: (820, 8)\n", - "fov_id: 289\n", - "cell_boundary_health_fov_without_spot_id: (773, 8)\n", - "fov_id: 28\n", - "cell_boundary_health_fov_without_spot_id: (1309, 8)\n", - "fov_id: 290\n", - "cell_boundary_health_fov_without_spot_id: (1202, 8)\n", - "fov_id: 291\n", - "cell_boundary_health_fov_without_spot_id: (577, 8)\n", - "fov_id: 293\n", - "cell_boundary_health_fov_without_spot_id: (426, 8)\n", - "fov_id: 294\n", - "cell_boundary_health_fov_without_spot_id: (614, 8)\n", - "fov_id: 295\n", - "cell_boundary_health_fov_without_spot_id: (167, 8)\n", - "fov_id: 29\n", - "cell_boundary_health_fov_without_spot_id: (1266, 8)\n", - "fov_id: 2\n", - "cell_boundary_health_fov_without_spot_id: (1323, 8)\n", - "fov_id: 30\n", - "cell_boundary_health_fov_without_spot_id: (1318, 8)\n", - "fov_id: 31\n", - "cell_boundary_health_fov_without_spot_id: (1225, 8)\n", - "fov_id: 32\n", - "cell_boundary_health_fov_without_spot_id: (1247, 8)\n", - "fov_id: 33\n", - "cell_boundary_health_fov_without_spot_id: (1171, 8)\n", - "fov_id: 34\n", - "cell_boundary_health_fov_without_spot_id: (1249, 8)\n", - "fov_id: 35\n", - "cell_boundary_health_fov_without_spot_id: (1194, 8)\n", - "fov_id: 36\n", - "cell_boundary_health_fov_without_spot_id: (1264, 8)\n", - "fov_id: 37\n", - "cell_boundary_health_fov_without_spot_id: (1301, 8)\n", - "fov_id: 38\n", - "cell_boundary_health_fov_without_spot_id: (1044, 8)\n", - "fov_id: 39\n", - "cell_boundary_health_fov_without_spot_id: (918, 8)\n", - "fov_id: 3\n", - "cell_boundary_health_fov_without_spot_id: (1421, 8)\n", - "fov_id: 40\n", - "cell_boundary_health_fov_without_spot_id: (1376, 8)\n", - "fov_id: 41\n", - "cell_boundary_health_fov_without_spot_id: (903, 8)\n", - "fov_id: 44\n", - "cell_boundary_health_fov_without_spot_id: (938, 8)\n", - "fov_id: 45\n", - "cell_boundary_health_fov_without_spot_id: (1306, 8)\n", - "fov_id: 46\n", - "cell_boundary_health_fov_without_spot_id: (1217, 8)\n", - "fov_id: 47\n", - "cell_boundary_health_fov_without_spot_id: (1158, 8)\n", - "fov_id: 48\n", - "cell_boundary_health_fov_without_spot_id: (1272, 8)\n", - "fov_id: 49\n", - "cell_boundary_health_fov_without_spot_id: (1222, 8)\n", - "fov_id: 4\n", - "cell_boundary_health_fov_without_spot_id: (1295, 8)\n", - "fov_id: 50\n", - "cell_boundary_health_fov_without_spot_id: (1310, 8)\n", - "fov_id: 51\n", - "cell_boundary_health_fov_without_spot_id: (1367, 8)\n", - "fov_id: 52\n", - "cell_boundary_health_fov_without_spot_id: (1269, 8)\n", - "fov_id: 53\n", - "cell_boundary_health_fov_without_spot_id: (1253, 8)\n", - "fov_id: 54\n", - "cell_boundary_health_fov_without_spot_id: (1355, 8)\n", - "fov_id: 55\n", - "cell_boundary_health_fov_without_spot_id: (1237, 8)\n", - "fov_id: 56\n", - "cell_boundary_health_fov_without_spot_id: (1276, 8)\n", - "fov_id: 57\n", - "cell_boundary_health_fov_without_spot_id: (1335, 8)\n", - "fov_id: 58\n", - "cell_boundary_health_fov_without_spot_id: (1353, 8)\n", - "fov_id: 59\n", - "cell_boundary_health_fov_without_spot_id: (381, 8)\n", - "fov_id: 5\n", - "cell_boundary_health_fov_without_spot_id: (1330, 8)\n", - "fov_id: 60\n", - "cell_boundary_health_fov_without_spot_id: (592, 8)\n", - "fov_id: 61\n", - "cell_boundary_health_fov_without_spot_id: (1297, 8)\n", - "fov_id: 62\n", - "cell_boundary_health_fov_without_spot_id: (930, 8)\n", - "fov_id: 64\n", - "cell_boundary_health_fov_without_spot_id: (313, 8)\n", - "fov_id: 65\n", - "cell_boundary_health_fov_without_spot_id: (1355, 8)\n", - "fov_id: 66\n", - "cell_boundary_health_fov_without_spot_id: (1263, 8)\n", - "fov_id: 67\n", - "cell_boundary_health_fov_without_spot_id: (1353, 8)\n", - "fov_id: 68\n", - "cell_boundary_health_fov_without_spot_id: (1155, 8)\n", - "fov_id: 69\n", - "cell_boundary_health_fov_without_spot_id: (1365, 8)\n", - "fov_id: 6\n", - "cell_boundary_health_fov_without_spot_id: (1224, 8)\n", - "fov_id: 70\n", - "cell_boundary_health_fov_without_spot_id: (1320, 8)\n", - "fov_id: 71\n", - "cell_boundary_health_fov_without_spot_id: (1230, 8)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 72\n", - "cell_boundary_health_fov_without_spot_id: (1176, 8)\n", - "fov_id: 73\n", - "cell_boundary_health_fov_without_spot_id: (1167, 8)\n", - "fov_id: 74\n", - "cell_boundary_health_fov_without_spot_id: (1326, 8)\n", - "fov_id: 75\n", - "cell_boundary_health_fov_without_spot_id: (1284, 8)\n", - "fov_id: 76\n", - "cell_boundary_health_fov_without_spot_id: (1267, 8)\n", - "fov_id: 77\n", - "cell_boundary_health_fov_without_spot_id: (1332, 8)\n", - "fov_id: 78\n", - "cell_boundary_health_fov_without_spot_id: (1433, 8)\n", - "fov_id: 79\n", - "cell_boundary_health_fov_without_spot_id: (1256, 8)\n", - "fov_id: 7\n", - "cell_boundary_health_fov_without_spot_id: (1323, 8)\n", - "fov_id: 80\n", - "cell_boundary_health_fov_without_spot_id: (1099, 8)\n", - "fov_id: 81\n", - "cell_boundary_health_fov_without_spot_id: (1219, 8)\n", - "fov_id: 82\n", - "cell_boundary_health_fov_without_spot_id: (1247, 8)\n", - "fov_id: 83\n", - "cell_boundary_health_fov_without_spot_id: (1173, 8)\n", - "fov_id: 85\n", - "cell_boundary_health_fov_without_spot_id: (410, 8)\n", - "fov_id: 86\n", - "cell_boundary_health_fov_without_spot_id: (1247, 8)\n", - "fov_id: 87\n", - "cell_boundary_health_fov_without_spot_id: (1241, 8)\n", - "fov_id: 89\n", - "cell_boundary_health_fov_without_spot_id: (1333, 8)\n", - "fov_id: 8\n", - "cell_boundary_health_fov_without_spot_id: (1308, 8)\n", - "fov_id: 90\n", - "cell_boundary_health_fov_without_spot_id: (1530, 8)\n", - "fov_id: 92\n", - "cell_boundary_health_fov_without_spot_id: (1294, 8)\n", - "fov_id: 93\n", - "cell_boundary_health_fov_without_spot_id: (1282, 8)\n", - "fov_id: 94\n", - "cell_boundary_health_fov_without_spot_id: (1163, 8)\n", - "fov_id: 95\n", - "cell_boundary_health_fov_without_spot_id: (1253, 8)\n", - "fov_id: 96\n", - "cell_boundary_health_fov_without_spot_id: (1313, 8)\n", - "fov_id: 97\n", - "cell_boundary_health_fov_without_spot_id: (1245, 8)\n", - "fov_id: 98\n", - "cell_boundary_health_fov_without_spot_id: (1312, 8)\n", - "fov_id: 99\n", - "cell_boundary_health_fov_without_spot_id: (1380, 8)\n", - "fov_id: 9\n", - "cell_boundary_health_fov_without_spot_id: (1288, 8)\n", - "fov_id: 168\n", - "cell_boundary_health_fov_without_spot_id: (679, 8)\n", - "fov_id: 183\n", - "cell_boundary_health_fov_without_spot_id: (1005, 8)\n", - "fov_id: 196\n", - "cell_boundary_health_fov_without_spot_id: (1289, 8)\n", - "fov_id: 213\n", - "cell_boundary_health_fov_without_spot_id: (1147, 8)\n", - "fov_id: 218\n", - "cell_boundary_health_fov_without_spot_id: (1195, 8)\n", - "fov_id: 232\n", - "cell_boundary_health_fov_without_spot_id: (1229, 8)\n", - "fov_id: 252\n", - "cell_boundary_health_fov_without_spot_id: (1215, 8)\n", - "fov_id: 267\n", - "cell_boundary_health_fov_without_spot_id: (575, 8)\n", - "fov_id: 283\n", - "cell_boundary_health_fov_without_spot_id: (1049, 8)\n", - "fov_id: 285\n", - "cell_boundary_health_fov_without_spot_id: (592, 8)\n", - "fov_id: 296\n", - "cell_boundary_health_fov_without_spot_id: (343, 8)\n", - "fov_id: 43\n", - "cell_boundary_health_fov_without_spot_id: (352, 8)\n", - "fov_id: 88\n", - "cell_boundary_health_fov_without_spot_id: (794, 8)\n", - "fov_id: 148\n", - "cell_boundary_health_fov_without_spot_id: (51, 8)\n", - "fov_id: 175\n", - "cell_boundary_health_fov_without_spot_id: (1133, 8)\n", - "fov_id: 180\n", - "cell_boundary_health_fov_without_spot_id: (1247, 8)\n", - "fov_id: 181\n", - "cell_boundary_health_fov_without_spot_id: (1144, 8)\n", - "fov_id: 206\n", - "cell_boundary_health_fov_without_spot_id: (1160, 8)\n", - "fov_id: 222\n", - "cell_boundary_health_fov_without_spot_id: (1329, 8)\n", - "fov_id: 233\n", - "cell_boundary_health_fov_without_spot_id: (1144, 8)\n", - "fov_id: 268\n", - "cell_boundary_health_fov_without_spot_id: (208, 8)\n", - "fov_id: 292\n", - "cell_boundary_health_fov_without_spot_id: (356, 8)\n", - "fov_id: 297\n", - "cell_boundary_health_fov_without_spot_id: (190, 8)\n", - "fov_id: 298\n", - "cell_boundary_health_fov_without_spot_id: (215, 8)\n", - "fov_id: 299\n", - "cell_boundary_health_fov_without_spot_id: (94, 8)\n", - "fov_id: 302\n", - "cell_boundary_health_fov_without_spot_id: (54, 8)\n", - "fov_id: 91\n", - "cell_boundary_health_fov_without_spot_id: (1352, 8)\n", - "fov_id: 287\n", - "cell_boundary_health_fov_without_spot_id: (123, 8)\n", - "fov_id: 304\n", - "cell_boundary_health_fov_without_spot_id: (296, 8)\n", - "fov_id: 301\n", - "cell_boundary_health_fov_without_spot_id: (3, 8)\n", - "fov_id: 42\n", - "cell_boundary_health_fov_without_spot_id: (2, 8)\n", - "fov_id: 84\n", - "cell_boundary_health_fov_without_spot_id: (16, 8)\n", - "fov_id: 21\n", - "cell_boundary_health_fov_without_spot_id: (1, 8)\n" - ] - }, { "data": { "text/html": [ @@ -5043,123 +2187,342 @@ " \n", " \n", " \n", - " fov\n", - " spot_id\n", - " cell_ID\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ACKR3\n", + " ACKR4\n", + " ACP5\n", + " ACTA2\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", - " 100\n", - " 4\n", - " 10\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 1\n", - " 100\n", - " 3\n", - " 1078\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", " 2\n", - " 100\n", - " 6\n", - " 1135\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 3\n", - " 100\n", - " 7\n", - " 267\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 2.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 4\n", - " 100\n", - " 8\n", - " 732\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 332872\n", - " 84\n", - " 2\n", - " 62\n", - " \n", - " \n", - " 332873\n", - " 84\n", - " 3\n", - " 73\n", - " \n", - " \n", - " 332874\n", - " 84\n", - " 3\n", - " 74\n", + " 793313\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332875\n", - " 84\n", - " 3\n", - " 77\n", + " 793314\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332876\n", - " 21\n", - " 1\n", - " 7\n", - " \n", - " \n", - "\n", - "

332877 rows × 3 columns

\n", + " 793315\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " \n", + " \n", + " 793316\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 793317\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " \n", + " \n", + "\n", + "

793318 rows × 1000 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 4 10\n", - "1 100 3 1078\n", - "2 100 6 1135\n", - "3 100 7 267\n", - "4 100 8 732\n", - "... ... ... ...\n", - "332872 84 2 62\n", - "332873 84 3 73\n", - "332874 84 3 74\n", - "332875 84 3 77\n", - "332876 21 1 7\n", + " AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ACP5 ACTA2 ... \\\n", + "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "1 1.0 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 2.0 ... \n", + "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ... \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793315 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... \n", + "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "793317 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", "\n", - "[332877 rows x 3 columns]" + " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0 \n", + "\n", + "[793318 rows x 1000 columns]" ] }, - "execution_count": 116, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fov_ids_lst = cell_boundary_health['fov'].unique()\n", - "print(\"fov_ids_lst:\", fov_ids_lst)\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " print(\"fov_id:\", fov_id)\n", - " cell_boundary_health_fov = cell_boundary_health[(cell_boundary_health['fov']==fov_id)]\n", - " print(\"cell_boundary_health_fov_without_spot_id:\", cell_boundary_health_fov.shape)\n", - " data_final_result = get_spot_fov_cellId_mapping(data_final_result, cell_boundary_health_fov)\n", - "# print(data_final_result)\n", - "# break\n", - "\n", - "data_final_result" + "individual_cell_gene_expression = pd.DataFrame(liver_raw, columns = list(liver_anndata.var.index))\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -5184,111 +2547,354 @@ " \n", " \n", " fov\n", - " spot_id\n", + " cell_single_id\n", " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 4\n", " 10\n", + " c_1_100_10\n", + " Hep.3\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 1\n", " 100\n", - " 3\n", " 1078\n", + " c_1_100_1078\n", + " Hep.4\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", " 2\n", " 100\n", - " 6\n", " 1135\n", + " c_1_100_1135\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 3\n", " 100\n", - " 7\n", " 267\n", + " c_1_100_267\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 4\n", " 100\n", - " 8\n", " 732\n", + " c_1_100_732\n", + " Central.venous.LSECs\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 332872\n", - " 84\n", - " 2\n", - " 62\n", - " \n", - " \n", - " 332873\n", - " 84\n", - " 3\n", - " 73\n", + " 793313\n", + " 9\n", + " 945\n", + " c_2_9_945\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332874\n", - " 84\n", - " 3\n", - " 74\n", + " 793314\n", + " 9\n", + " 947\n", + " c_2_9_947\n", + " Non.inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332875\n", - " 84\n", - " 3\n", - " 77\n", + " 793315\n", + " 9\n", + " 948\n", + " c_2_9_948\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 332876\n", - " 21\n", - " 1\n", - " 7\n", + " 793316\n", + " 9\n", + " 949\n", + " c_2_9_949\n", + " tumor_1\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 793317\n", + " 9\n", + " 95\n", + " c_2_9_95\n", + " tumor_1\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", " \n", " \n", "\n", - "

332877 rows × 3 columns

\n", + "

793318 rows × 1004 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 4 10\n", - "1 100 3 1078\n", - "2 100 6 1135\n", - "3 100 7 267\n", - "4 100 8 732\n", - "... ... ... ...\n", - "332872 84 2 62\n", - "332873 84 3 73\n", - "332874 84 3 74\n", - "332875 84 3 77\n", - "332876 21 1 7\n", + " fov cell_single_id cell_ID cellType AATK \\\n", + "0 100 10 c_1_100_10 Hep.3 0.0 \n", + "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", + "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", + "3 100 267 c_1_100_267 Hep.5 0.0 \n", + "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", + "... ... ... ... ... ... \n", + "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", + "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", + "793315 9 948 c_2_9_948 tumor_1 0.0 \n", + "793316 9 949 c_2_9_949 tumor_1 0.0 \n", + "793317 9 95 c_2_9_95 tumor_1 0.0 \n", "\n", - "[332877 rows x 3 columns]" + " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", + "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", + "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "\n", + " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 1.0 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 1.0 0.0 0.0 0.0 \n", + "4 0.0 1.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... \n", + "793313 0.0 0.0 0.0 0.0 0.0 \n", + "793314 0.0 0.0 0.0 0.0 0.0 \n", + "793315 0.0 0.0 0.0 0.0 1.0 \n", + "793316 0.0 0.0 0.0 0.0 0.0 \n", + "793317 0.0 1.0 0.0 0.0 2.0 \n", + "\n", + "[793318 rows x 1004 columns]" ] }, - "execution_count": 117, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_final_result" + "individual_cell_gene_expression = pd.concat([gene_expression_cell_type, individual_cell_gene_expression], axis=1)\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -5313,121 +2919,355 @@ " \n", " \n", " fov\n", - " spot_id\n", + " cell_single_id\n", " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", - " 296927\n", - " 8\n", - " 3\n", - " 1147\n", - " \n", - " \n", - " 296928\n", - " 8\n", - " 2\n", - " 474\n", - " \n", - " \n", - " 296929\n", - " 8\n", - " 8\n", - " 482\n", - " \n", - " \n", - " 296930\n", - " 8\n", - " 2\n", - " 518\n", + " 0\n", + " 100\n", + " 10\n", + " c_1_100_10\n", + " Hep.3\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 296931\n", - " 8\n", - " 3\n", - " 880\n", + " 1\n", + " 100\n", + " 1078\n", + " c_1_100_1078\n", + " Hep.4\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", - " ...\n", - " ...\n", - " ...\n", + " 2\n", + " 100\n", + " 1135\n", + " c_1_100_1135\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 298230\n", - " 8\n", - " 4\n", - " 99\n", + " 3\n", + " 100\n", + " 267\n", + " c_1_100_267\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 298231\n", - " 8\n", + " 4\n", + " 100\n", + " 732\n", + " c_1_100_732\n", + " Central.venous.LSECs\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " \n", + " \n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " \n", + " \n", + " 566002\n", " 9\n", - " 991\n", + " 981\n", + " c_1_9_981\n", + " Hep.4\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 298232\n", - " 8\n", + " 566003\n", + " 9\n", + " 982\n", + " c_1_9_982\n", + " gamma.delta.T.cells.1\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 566004\n", " 9\n", - " 992\n", + " 985\n", + " c_1_9_985\n", + " Hep.4\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 298233\n", - " 8\n", - " 6\n", - " 994\n", + " 566005\n", + " 9\n", + " 987\n", + " c_1_9_987\n", + " NK.like.cells\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 298234\n", - " 8\n", - " 3\n", - " 998\n", + " 566006\n", + " 9\n", + " 995\n", + " c_1_9_995\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", "\n", - "

1308 rows × 3 columns

\n", + "

332877 rows × 1004 columns

\n", "" ], "text/plain": [ - " fov spot_id cell_ID\n", - "296927 8 3 1147\n", - "296928 8 2 474\n", - "296929 8 8 482\n", - "296930 8 2 518\n", - "296931 8 3 880\n", - "... .. ... ...\n", - "298230 8 4 99\n", - "298231 8 9 991\n", - "298232 8 9 992\n", - "298233 8 6 994\n", - "298234 8 3 998\n", + " fov cell_single_id cell_ID cellType AATK \\\n", + "0 100 10 c_1_100_10 Hep.3 0.0 \n", + "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", + "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", + "3 100 267 c_1_100_267 Hep.5 0.0 \n", + "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", + "... ... ... ... ... ... \n", + "566002 9 981 c_1_9_981 Hep.4 0.0 \n", + "566003 9 982 c_1_9_982 gamma.delta.T.cells.1 0.0 \n", + "566004 9 985 c_1_9_985 Hep.4 0.0 \n", + "566005 9 987 c_1_9_987 NK.like.cells 0.0 \n", + "566006 9 995 c_1_9_995 Hep.5 0.0 \n", + "\n", + " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", + "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", + "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "566002 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + "566003 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "566004 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "566005 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", + "566006 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", + "\n", + " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 1.0 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 1.0 0.0 0.0 0.0 \n", + "4 0.0 1.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... \n", + "566002 0.0 0.0 0.0 0.0 0.0 \n", + "566003 0.0 1.0 0.0 0.0 0.0 \n", + "566004 0.0 0.0 0.0 0.0 0.0 \n", + "566005 0.0 0.0 0.0 0.0 1.0 \n", + "566006 0.0 0.0 0.0 0.0 1.0 \n", "\n", - "[1308 rows x 3 columns]" + "[332877 rows x 1004 columns]" ] }, - "execution_count": 118, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_final_result_sample = data_final_result[(data_final_result['fov']==8)]\n", - "data_final_result_sample" + "sample_1_rows = individual_cell_gene_expression[\"cell_ID\"].str.startswith(\"c_1_\")\n", + "individual_cell_gene_expression = individual_cell_gene_expression.loc[sample_1_rows, :]\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [], - "source": [ - "data_final_result.to_csv('../health/new/spot_fov_cellId_mapping.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": 120, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -5452,118 +3292,356 @@ " \n", " \n", " fov\n", - " spot_id\n", " cell_ID\n", + " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ACKR3\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 4\n", " 10\n", + " Hep.3\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 1\n", " 100\n", - " 3\n", " 1078\n", + " Hep.4\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", " 2\n", " 100\n", - " 6\n", " 1135\n", + " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 3\n", " 100\n", - " 7\n", " 267\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 4\n", " 100\n", - " 8\n", " 732\n", + " Central.venous.LSECs\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 332872\n", - " 84\n", - " 2\n", - " 62\n", + " 566002\n", + " 9\n", + " 981\n", + " Hep.4\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332873\n", - " 84\n", - " 3\n", - " 73\n", + " 566003\n", + " 9\n", + " 982\n", + " gamma.delta.T.cells.1\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332874\n", - " 84\n", - " 3\n", - " 74\n", + " 566004\n", + " 9\n", + " 985\n", + " Hep.4\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 332875\n", - " 84\n", - " 3\n", - " 77\n", + " 566005\n", + " 9\n", + " 987\n", + " NK.like.cells\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 332876\n", - " 21\n", - " 1\n", - " 7\n", - " \n", - " \n", - "\n", - "

332877 rows × 3 columns

\n", - "" - ], - "text/plain": [ - " fov spot_id cell_ID\n", - "0 100 4 10\n", - "1 100 3 1078\n", - "2 100 6 1135\n", - "3 100 7 267\n", - "4 100 8 732\n", - "... ... ... ...\n", - "332872 84 2 62\n", - "332873 84 3 73\n", - "332874 84 3 74\n", - "332875 84 3 77\n", - "332876 21 1 7\n", + " 566006\n", + " 9\n", + " 995\n", + " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " \n", + " \n", + "\n", + "

332877 rows × 1003 columns

\n", + "" + ], + "text/plain": [ + " fov cell_ID cellType AATK ABL1 ABL2 ACACB ACE \\\n", + "0 100 10 Hep.3 0.0 0.0 0.0 0.0 0.0 \n", + "1 100 1078 Hep.4 1.0 2.0 0.0 2.0 0.0 \n", + "2 100 1135 Inflammatory.macrophages 0.0 0.0 0.0 0.0 0.0 \n", + "3 100 267 Hep.5 0.0 0.0 0.0 1.0 0.0 \n", + "4 100 732 Central.venous.LSECs 0.0 0.0 0.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... ... \n", + "566002 9 981 Hep.4 0.0 0.0 0.0 0.0 0.0 \n", + "566003 9 982 gamma.delta.T.cells.1 0.0 1.0 0.0 0.0 0.0 \n", + "566004 9 985 Hep.4 0.0 0.0 0.0 0.0 0.0 \n", + "566005 9 987 NK.like.cells 0.0 0.0 0.0 0.0 0.0 \n", + "566006 9 995 Hep.5 0.0 0.0 0.0 1.0 0.0 \n", "\n", - "[332877 rows x 3 columns]" + " ACKR1 ACKR3 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 \\\n", + "0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "1 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 \n", + "2 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 \n", + "4 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "566002 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "566003 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", + "566004 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "566005 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "566006 0.0 1.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 \n", + "\n", + " ZBTB16 ZFP36 \n", + "0 0.0 0.0 \n", + "1 4.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 0.0 \n", + "4 1.0 0.0 \n", + "... ... ... \n", + "566002 0.0 0.0 \n", + "566003 0.0 0.0 \n", + "566004 0.0 0.0 \n", + "566005 0.0 1.0 \n", + "566006 0.0 1.0 \n", + "\n", + "[332877 rows x 1003 columns]" ] }, - "execution_count": 120, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_final_result" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. spot_gene_expression.csv" + "del individual_cell_gene_expression['cell_ID']\n", + "individual_cell_gene_expression = individual_cell_gene_expression.rename(columns={'cell_single_id': 'cell_ID'})\n", + "individual_cell_gene_expression['cell_ID'] = individual_cell_gene_expression['cell_ID'].astype('int')\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -5587,70 +3665,40 @@ " \n", " \n", " \n", - " Unnamed: 0\n", - " cell_ID\n", - " x_FOV_px\n", - " y_FOV_px\n", - " x_slide_mm\n", - " y_slide_mm\n", " fov\n", - " cell_single_id\n", + " spot_id\n", + " cell_ID\n", " \n", " \n", " \n", " \n", " 0\n", - " c_1_100_10\n", - " c_1_100_10\n", - " 2737\n", - " 25\n", - " 9.03144\n", - " 9.73500\n", " 100\n", + " 4\n", " 10\n", " \n", " \n", " 1\n", - " c_1_100_1078\n", - " c_1_100_1078\n", - " 595\n", - " 3998\n", - " 8.77440\n", - " 9.25824\n", " 100\n", + " 3\n", " 1078\n", " \n", " \n", " 2\n", - " c_1_100_1135\n", - " c_1_100_1135\n", - " 1469\n", - " 4199\n", - " 8.87928\n", - " 9.23412\n", " 100\n", + " 6\n", " 1135\n", " \n", " \n", " 3\n", - " c_1_100_267\n", - " c_1_100_267\n", - " 3486\n", - " 1058\n", - " 9.12132\n", - " 9.61104\n", " 100\n", + " 7\n", " 267\n", " \n", " \n", " 4\n", - " c_1_100_732\n", - " c_1_100_732\n", - " 3178\n", - " 2771\n", - " 9.08436\n", - " 9.40548\n", " 100\n", + " 8\n", " 732\n", " \n", " \n", @@ -5658,114 +3706,72 @@ " ...\n", " ...\n", " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", " \n", " \n", - " 793313\n", - " c_2_9_945\n", - " c_2_9_945\n", - " 2710\n", - " 4230\n", - " 5.44420\n", - " 11.27840\n", - " 9\n", - " 945\n", + " 332871\n", + " 84\n", + " 2\n", + " 61\n", " \n", " \n", - " 793314\n", - " c_2_9_947\n", - " c_2_9_947\n", - " 2786\n", - " 4233\n", - " 5.45332\n", - " 11.27804\n", - " 9\n", - " 947\n", + " 332872\n", + " 84\n", + " 2\n", + " 62\n", " \n", " \n", - " 793315\n", - " c_2_9_948\n", - " c_2_9_948\n", - " 1732\n", - " 4234\n", - " 5.32684\n", - " 11.27792\n", - " 9\n", - " 948\n", + " 332873\n", + " 84\n", + " 3\n", + " 73\n", " \n", " \n", - " 793316\n", - " c_2_9_949\n", - " c_2_9_949\n", - " 1446\n", - " 4239\n", - " 5.29252\n", - " 11.27732\n", - " 9\n", - " 949\n", + " 332874\n", + " 84\n", + " 3\n", + " 74\n", " \n", " \n", - " 793317\n", - " c_2_9_95\n", - " c_2_9_95\n", - " 4211\n", - " 649\n", - " 5.62432\n", - " 11.70812\n", - " 9\n", - " 95\n", + " 332875\n", + " 84\n", + " 3\n", + " 77\n", " \n", " \n", "\n", - "

793318 rows × 8 columns

\n", + "

332876 rows × 3 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 cell_ID x_FOV_px y_FOV_px x_slide_mm \\\n", - "0 c_1_100_10 c_1_100_10 2737 25 9.03144 \n", - "1 c_1_100_1078 c_1_100_1078 595 3998 8.77440 \n", - "2 c_1_100_1135 c_1_100_1135 1469 4199 8.87928 \n", - "3 c_1_100_267 c_1_100_267 3486 1058 9.12132 \n", - "4 c_1_100_732 c_1_100_732 3178 2771 9.08436 \n", - "... ... ... ... ... ... \n", - "793313 c_2_9_945 c_2_9_945 2710 4230 5.44420 \n", - "793314 c_2_9_947 c_2_9_947 2786 4233 5.45332 \n", - "793315 c_2_9_948 c_2_9_948 1732 4234 5.32684 \n", - "793316 c_2_9_949 c_2_9_949 1446 4239 5.29252 \n", - "793317 c_2_9_95 c_2_9_95 4211 649 5.62432 \n", - "\n", - " y_slide_mm fov cell_single_id \n", - "0 9.73500 100 10 \n", - "1 9.25824 100 1078 \n", - "2 9.23412 100 1135 \n", - "3 9.61104 100 267 \n", - "4 9.40548 100 732 \n", - "... ... ... ... \n", - "793313 11.27840 9 945 \n", - "793314 11.27804 9 947 \n", - "793315 11.27792 9 948 \n", - "793316 11.27732 9 949 \n", - "793317 11.70812 9 95 \n", - "\n", - "[793318 rows x 8 columns]" + " fov spot_id cell_ID\n", + "0 100 4 10\n", + "1 100 3 1078\n", + "2 100 6 1135\n", + "3 100 7 267\n", + "4 100 8 732\n", + "... ... ... ...\n", + "332871 84 2 61\n", + "332872 84 2 62\n", + "332873 84 3 73\n", + "332874 84 3 74\n", + "332875 84 3 77\n", + "\n", + "[332876 rows x 3 columns]" ] }, - "execution_count": 17, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cell_boundary" + "# data_final_result = pd.read_csv('../health/new/spot_fov_cellId_mapping.csv')\n", + "data_final_result" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -5789,114 +3795,371 @@ " \n", " \n", " \n", - " Unnamed: 0\n", + " fov\n", + " spot_id\n", " cell_ID\n", " cellType\n", + " AATK\n", + " ABL1\n", + " ABL2\n", + " ACACB\n", + " ACE\n", + " ACKR1\n", + " ...\n", + " WNT7A\n", + " WNT7B\n", + " WNT9A\n", + " XBP1\n", + " XCL1\n", + " XKR4\n", + " YBX3\n", + " YES1\n", + " ZBTB16\n", + " ZFP36\n", " \n", " \n", " \n", " \n", " 0\n", - " c_1_100_10\n", - " c_1_100_10\n", + " 100\n", + " 4\n", + " 10\n", " Hep.3\n", - " \n", - " \n", - " 1\n", - " c_1_100_1078\n", - " c_1_100_1078\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " \n", + " \n", + " 1\n", + " 100\n", + " 3\n", + " 1078\n", " Hep.4\n", + " 1.0\n", + " 2.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 4.0\n", + " 0.0\n", " \n", " \n", " 2\n", - " c_1_100_1135\n", - " c_1_100_1135\n", + " 100\n", + " 6\n", + " 1135\n", " Inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 3\n", - " c_1_100_267\n", - " c_1_100_267\n", + " 100\n", + " 7\n", + " 267\n", " Hep.5\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 2.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", " 4\n", - " c_1_100_732\n", - " c_1_100_732\n", + " 100\n", + " 8\n", + " 732\n", " Central.venous.LSECs\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 793313\n", - " c_2_9_945\n", - " c_2_9_945\n", - " Inflammatory.macrophages\n", + " 332871\n", + " 84\n", + " 2\n", + " 61\n", + " CD3+.alpha.beta.T.cells\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", " \n", " \n", - " 793314\n", - " c_2_9_947\n", - " c_2_9_947\n", - " Non.inflammatory.macrophages\n", + " 332872\n", + " 84\n", + " 2\n", + " 62\n", + " CD3+.alpha.beta.T.cells\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 1.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 793315\n", - " c_2_9_948\n", - " c_2_9_948\n", - " tumor_1\n", + " 332873\n", + " 84\n", + " 3\n", + " 73\n", + " Non.inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 793316\n", - " c_2_9_949\n", - " c_2_9_949\n", - " tumor_1\n", + " 332874\n", + " 84\n", + " 3\n", + " 74\n", + " Non.inflammatory.macrophages\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 793317\n", - " c_2_9_95\n", - " c_2_9_95\n", - " tumor_1\n", + " 332875\n", + " 84\n", + " 3\n", + " 77\n", + " Portal.endothelial.cells\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " ...\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", "\n", - "

793318 rows × 3 columns

\n", + "

332876 rows × 1004 columns

\n", "" ], "text/plain": [ - " Unnamed: 0 cell_ID cellType\n", - "0 c_1_100_10 c_1_100_10 Hep.3\n", - "1 c_1_100_1078 c_1_100_1078 Hep.4\n", - "2 c_1_100_1135 c_1_100_1135 Inflammatory.macrophages\n", - "3 c_1_100_267 c_1_100_267 Hep.5\n", - "4 c_1_100_732 c_1_100_732 Central.venous.LSECs\n", - "... ... ... ...\n", - "793313 c_2_9_945 c_2_9_945 Inflammatory.macrophages\n", - "793314 c_2_9_947 c_2_9_947 Non.inflammatory.macrophages\n", - "793315 c_2_9_948 c_2_9_948 tumor_1\n", - "793316 c_2_9_949 c_2_9_949 tumor_1\n", - "793317 c_2_9_95 c_2_9_95 tumor_1\n", - "\n", - "[793318 rows x 3 columns]" + " fov spot_id cell_ID cellType AATK ABL1 ABL2 \\\n", + "0 100 4 10 Hep.3 0.0 0.0 0.0 \n", + "1 100 3 1078 Hep.4 1.0 2.0 0.0 \n", + "2 100 6 1135 Inflammatory.macrophages 0.0 0.0 0.0 \n", + "3 100 7 267 Hep.5 0.0 0.0 0.0 \n", + "4 100 8 732 Central.venous.LSECs 0.0 0.0 0.0 \n", + "... ... ... ... ... ... ... ... \n", + "332871 84 2 61 CD3+.alpha.beta.T.cells 0.0 0.0 1.0 \n", + "332872 84 2 62 CD3+.alpha.beta.T.cells 0.0 0.0 0.0 \n", + "332873 84 3 73 Non.inflammatory.macrophages 0.0 0.0 0.0 \n", + "332874 84 3 74 Non.inflammatory.macrophages 0.0 0.0 0.0 \n", + "332875 84 3 77 Portal.endothelial.cells 0.0 0.0 0.0 \n", + "\n", + " ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 \\\n", + "0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "1 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 1.0 \n", + "2 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 1.0 \n", + "4 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "332871 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "332872 0.0 1.0 0.0 ... 0.0 0.0 1.0 0.0 1.0 0.0 1.0 \n", + "332873 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "332874 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "332875 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + " YES1 ZBTB16 ZFP36 \n", + "0 0.0 0.0 0.0 \n", + "1 0.0 4.0 0.0 \n", + "2 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 \n", + "4 0.0 1.0 0.0 \n", + "... ... ... ... \n", + "332871 0.0 0.0 1.0 \n", + "332872 0.0 0.0 0.0 \n", + "332873 0.0 0.0 0.0 \n", + "332874 0.0 0.0 0.0 \n", + "332875 0.0 0.0 0.0 \n", + "\n", + "[332876 rows x 1004 columns]" ] }, - "execution_count": 18, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "CosMx_cell_type" + "individual_cell_gene_expression = pd.merge(data_final_result, individual_cell_gene_expression, on=['fov', 'cell_ID'])\n", + "individual_cell_gene_expression" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 43, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/300 [00:00\n", " \n", " fov\n", - " cell_single_id\n", - " cell_ID\n", - " cellType\n", + " spot-id=1\n", + " spot-id=2\n", + " spot-id=3\n", + " spot-id=4\n", + " spot-id=5\n", + " spot-id=6\n", + " spot-id=7\n", + " spot-id=8\n", + " spot-id=9\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 10\n", - " c_1_100_10\n", - " Hep.3\n", + " 131\n", + " 153\n", + " 161\n", + " 128\n", + " 121\n", + " 148\n", + " 127\n", + " 139\n", + " 129\n", " \n", " \n", " 1\n", - " 100\n", - " 1078\n", - " c_1_100_1078\n", - " Hep.4\n", + " 101\n", + " 142\n", + " 124\n", + " 144\n", + " 124\n", + " 129\n", + " 153\n", + " 123\n", + " 137\n", + " 147\n", " \n", " \n", " 2\n", - " 100\n", - " 1135\n", - " c_1_100_1135\n", - " Inflammatory.macrophages\n", + " 102\n", + " 121\n", + " 139\n", + " 141\n", + " 122\n", + " 132\n", + " 133\n", + " 135\n", + " 131\n", + " 141\n", " \n", " \n", " 3\n", - " 100\n", - " 267\n", - " c_1_100_267\n", - " Hep.5\n", + " 103\n", + " 114\n", + " 120\n", + " 130\n", + " 113\n", + " 116\n", + " 135\n", + " 142\n", + " 123\n", + " 147\n", " \n", " \n", " 4\n", - " 100\n", - " 732\n", - " c_1_100_732\n", - " Central.venous.LSECs\n", + " 104\n", + " 145\n", + " 133\n", + " 132\n", + " 163\n", + " 132\n", + " 126\n", + " 153\n", + " 146\n", + " 140\n", " \n", " \n", " ...\n", @@ -5966,183 +4265,148 @@ " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " 793313\n", - " 9\n", - " 945\n", - " c_2_9_945\n", - " Inflammatory.macrophages\n", + " 295\n", + " 287\n", + " 0\n", + " 0\n", + " 1\n", + " 15\n", + " 0\n", + " 1\n", + " 64\n", + " 8\n", + " 34\n", " \n", " \n", - " 793314\n", - " 9\n", - " 947\n", - " c_2_9_947\n", - " Non.inflammatory.macrophages\n", + " 296\n", + " 304\n", + " 81\n", + " 13\n", + " 2\n", + " 72\n", + " 12\n", + " 1\n", + " 52\n", + " 56\n", + " 3\n", " \n", " \n", - " 793315\n", - " 9\n", - " 948\n", - " c_2_9_948\n", - " tumor_1\n", + " 297\n", + " 301\n", + " 2\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " 793316\n", - " 9\n", - " 949\n", - " c_2_9_949\n", - " tumor_1\n", + " 298\n", + " 42\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " 0\n", " \n", " \n", - " 793317\n", - " 9\n", - " 95\n", - " c_2_9_95\n", - " tumor_1\n", + " 299\n", + " 84\n", + " 5\n", + " 3\n", + " 5\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", " \n", " \n", "\n", - "

793318 rows × 4 columns

\n", + "

300 rows × 10 columns

\n", "" ], "text/plain": [ - " fov cell_single_id cell_ID cellType\n", - "0 100 10 c_1_100_10 Hep.3\n", - "1 100 1078 c_1_100_1078 Hep.4\n", - "2 100 1135 c_1_100_1135 Inflammatory.macrophages\n", - "3 100 267 c_1_100_267 Hep.5\n", - "4 100 732 c_1_100_732 Central.venous.LSECs\n", - "... ... ... ... ...\n", - "793313 9 945 c_2_9_945 Inflammatory.macrophages\n", - "793314 9 947 c_2_9_947 Non.inflammatory.macrophages\n", - "793315 9 948 c_2_9_948 tumor_1\n", - "793316 9 949 c_2_9_949 tumor_1\n", - "793317 9 95 c_2_9_95 tumor_1\n", + " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", + "0 100 131 153 161 128 121 148 \n", + "1 101 142 124 144 124 129 153 \n", + "2 102 121 139 141 122 132 133 \n", + "3 103 114 120 130 113 116 135 \n", + "4 104 145 133 132 163 132 126 \n", + ".. ... ... ... ... ... ... ... \n", + "295 287 0 0 1 15 0 1 \n", + "296 304 81 13 2 72 12 1 \n", + "297 301 2 0 0 0 0 0 \n", + "298 42 0 0 1 0 0 0 \n", + "299 84 5 3 5 1 0 0 \n", + "\n", + " spot-id=7 spot-id=8 spot-id=9 \n", + "0 127 139 129 \n", + "1 123 137 147 \n", + "2 135 131 141 \n", + "3 142 123 147 \n", + "4 153 146 140 \n", + ".. ... ... ... \n", + "295 64 8 34 \n", + "296 52 56 3 \n", + "297 0 0 0 \n", + "298 1 0 0 \n", + "299 0 0 1 \n", "\n", - "[793318 rows x 4 columns]" + "[300 rows x 10 columns]" ] }, - "execution_count": 19, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gene_expression_cell_type = pd.concat([cell_boundary.iloc[:,-2:], CosMx_cell_type.iloc[:,-2:]], axis=1)\n", - "gene_expression_cell_type" + "names = ['fov'] + ['spot-id=' + str(i) for i in range(1, 10)]\n", + "fov_spot_cells_stats = pd.DataFrame(columns = names)\n", + "\n", + "fov_dic = {}\n", + "for i in names:\n", + " fov_dic[i] = 0\n", + "# fov_dic\n", + "\n", + "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", + "spot_id_lst = [i for i in range(1, 10)]\n", + "\n", + "for fov_id in tqdm(fov_ids_lst):\n", + " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", + " \n", + " fov_dic_sample = fov_dic\n", + " fov_dic_sample[\"fov\"] = fov_id\n", + " \n", + " for i in spot_id_lst:\n", + " spot_id_data = fov_data[(fov_data['spot_id']==i)]\n", + " spot_id_num = \"spot-id=\" + str(i)\n", + " fov_dic_sample[spot_id_num] = spot_id_data.shape[0]\n", + " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", + "\n", + "fov_spot_cells_stats" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 793318 × 1000\n", - " obs: 'RNA_pca_cluster_default', 'RNA_pca_cluster_default.1', 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'nCount_negprobes', 'nFeature_negprobes', 'nCount_falsecode', 'nFeature_falsecode', 'fov', 'Area', 'AspectRatio', 'Width', 'Height', 'Mean.PanCK', 'Max.PanCK', 'Mean.CK8.18', 'Max.CK8.18', 'Mean.Membrane', 'Max.Membrane', 'Mean.CD45', 'Max.CD45', 'Mean.DAPI', 'Max.DAPI', 'cell_id', 'assay_type', 'Run_name', 'slide_ID_numeric', 'Run_Tissue_name', 'Panel', 'Mean.Yellow', 'Max.Yellow', 'Mean.CD298_B2M', 'Max.CD298_B2M', 'cell_ID', 'x_FOV_px', 'y_FOV_px', 'x_slide_mm', 'y_slide_mm', 'propNegative', 'complexity', 'errorCtEstimate', 'percOfDataFromError', 'qcFlagsRNACounts', 'qcFlagsCellCounts', 'qcFlagsCellPropNeg', 'qcFlagsCellComplex', 'qcFlagsCellArea', 'median_negprobes', 'negprobes_quantile_0.9', 'median_RNA', 'RNA_quantile_0.9', 'nCell', 'nCount', 'nCountPerCell', 'nFeaturePerCell', 'propNegativeCellAvg', 'complexityCellAvg', 'errorCtPerCellEstimate', 'percOfDataFromErrorPerCell', 'qcFlagsFOV', 'cellType', 'niche'\n", - " var: 'I', 'pval', 'padj'" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import anndata as ad\n", - "liver_anndata = ad.read_h5ad(\"../cosmx_Liver.h5ad\")\n", - "liver_anndata" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 0., ..., 0., 0., 0.],\n", - " [1., 2., 0., ..., 0., 4., 0.],\n", - " [0., 0., 0., ..., 0., 0., 0.],\n", - " ...,\n", - " [0., 0., 0., ..., 0., 0., 1.],\n", - " [0., 0., 0., ..., 0., 0., 0.],\n", - " [0., 1., 0., ..., 0., 0., 2.]])" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "liver_raw = liver_anndata.raw.X.toarray()\n", - "liver_raw" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(793318, 1000)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "liver_raw.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 23, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -6166,1138 +4430,444 @@ " \n", " \n", " \n", - " I\n", - " pval\n", - " padj\n", + " fov\n", + " spot-id=1\n", + " spot-id=2\n", + " spot-id=3\n", + " spot-id=4\n", + " spot-id=5\n", + " spot-id=6\n", + " spot-id=7\n", + " spot-id=8\n", + " spot-id=9\n", + " ...\n", + " spot-id=72\n", + " spot-id=73\n", + " spot-id=74\n", + " spot-id=75\n", + " spot-id=76\n", + " spot-id=77\n", + " spot-id=78\n", + " spot-id=79\n", + " spot-id=80\n", + " spot-id=81\n", " \n", " \n", " \n", " \n", - " AATK\n", - " 0.009963\n", - " 0.0\n", - " 0.0\n", + " 0\n", + " 100\n", + " 17\n", + " 14\n", + " 11\n", + " 16\n", + " 20\n", + " 18\n", + " 18\n", + " 19\n", + " 17\n", + " ...\n", + " 14\n", + " 14\n", + " 18\n", + " 20\n", + " 16\n", + " 21\n", + " 16\n", + " 14\n", + " 22\n", + " 17\n", " \n", " \n", - " ABL1\n", - " 0.014579\n", - " 0.0\n", - " 0.0\n", + " 1\n", + " 101\n", + " 19\n", + " 15\n", + " 15\n", + " 12\n", + " 16\n", + " 11\n", + " 13\n", + " 17\n", + " 19\n", + " ...\n", + " 18\n", + " 14\n", + " 18\n", + " 16\n", + " 9\n", + " 19\n", + " 17\n", + " 15\n", + " 16\n", + " 14\n", " \n", " \n", - " ABL2\n", - " 0.006918\n", - " 0.0\n", - " 0.0\n", + " 2\n", + " 102\n", + " 16\n", + " 19\n", + " 15\n", + " 14\n", + " 18\n", + " 24\n", + " 19\n", + " 16\n", + " 17\n", + " ...\n", + " 16\n", + " 13\n", + " 15\n", + " 17\n", + " 17\n", + " 15\n", + " 13\n", + " 17\n", + " 15\n", + " 16\n", " \n", " \n", - " ACACB\n", - " 0.026519\n", - " 0.0\n", - " 0.0\n", + " 3\n", + " 103\n", + " 10\n", + " 12\n", + " 15\n", + " 11\n", + " 14\n", + " 13\n", + " 12\n", + " 12\n", + " 19\n", + " ...\n", + " 16\n", + " 19\n", + " 20\n", + " 19\n", + " 16\n", + " 11\n", + " 15\n", + " 15\n", + " 19\n", + " 21\n", " \n", " \n", - " ACE\n", - " 0.018274\n", - " 0.0\n", - " 0.0\n", + " 4\n", + " 104\n", + " 13\n", + " 14\n", + " 13\n", + " 14\n", + " 15\n", + " 14\n", + " 17\n", + " 17\n", + " 12\n", + " ...\n", + " 17\n", + " 12\n", + " 21\n", + " 17\n", + " 18\n", + " 22\n", + " 17\n", + " 18\n", + " 18\n", + " 19\n", " \n", " \n", " ...\n", " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", + " ...\n", " \n", " \n", - " XKR4\n", - " 0.008696\n", - " 0.0\n", - " 0.0\n", + " 295\n", + " 287\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " ...\n", + " 1\n", + " 13\n", + " 10\n", + " 6\n", + " 2\n", + " 0\n", + " 2\n", + " 9\n", + " 12\n", + " 4\n", " \n", " \n", - " YBX3\n", - " 0.172319\n", - " 0.0\n", - " 0.0\n", + " 296\n", + " 304\n", + " 6\n", + " 10\n", + " 9\n", + " 8\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " ...\n", + " 0\n", + " 1\n", + " 1\n", + " 9\n", + " 4\n", + " 8\n", + " 7\n", + " 2\n", + " 0\n", + " 1\n", " \n", " \n", - " YES1\n", - " 0.010316\n", - " 0.0\n", - " 0.0\n", + " 297\n", + " 301\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " ZBTB16\n", - " 0.094404\n", - " 0.0\n", - " 0.0\n", + " 298\n", + " 42\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " ZFP36\n", - " 0.158102\n", - " 0.0\n", - " 0.0\n", - " \n", - " \n", - "\n", - "

1000 rows × 3 columns

\n", - "" - ], - "text/plain": [ - " I pval padj\n", - "AATK 0.009963 0.0 0.0\n", - "ABL1 0.014579 0.0 0.0\n", - "ABL2 0.006918 0.0 0.0\n", - "ACACB 0.026519 0.0 0.0\n", - "ACE 0.018274 0.0 0.0\n", - "... ... ... ...\n", - "XKR4 0.008696 0.0 0.0\n", - "YBX3 0.172319 0.0 0.0\n", - "YES1 0.010316 0.0 0.0\n", - "ZBTB16 0.094404 0.0 0.0\n", - "ZFP36 0.158102 0.0 0.0\n", - "\n", - "[1000 rows x 3 columns]" - ] - }, - "execution_count": 23, + " 299\n", + " 84\n", + " 0\n", + " 2\n", + " 1\n", + " 0\n", + " 0\n", + " 1\n", + " 0\n", + " 1\n", + " 3\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " \n", + " \n", + "\n", + "

300 rows × 82 columns

\n", + "" + ], + "text/plain": [ + " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", + "0 100 17 14 11 16 20 18 \n", + "1 101 19 15 15 12 16 11 \n", + "2 102 16 19 15 14 18 24 \n", + "3 103 10 12 15 11 14 13 \n", + "4 104 13 14 13 14 15 14 \n", + ".. ... ... ... ... ... ... ... \n", + "295 287 0 0 0 0 0 0 \n", + "296 304 6 10 9 8 0 0 \n", + "297 301 1 0 0 0 0 0 \n", + "298 42 0 0 0 0 0 0 \n", + "299 84 0 2 1 0 0 1 \n", + "\n", + " spot-id=7 spot-id=8 spot-id=9 ... spot-id=72 spot-id=73 spot-id=74 \\\n", + "0 18 19 17 ... 14 14 18 \n", + "1 13 17 19 ... 18 14 18 \n", + "2 19 16 17 ... 16 13 15 \n", + "3 12 12 19 ... 16 19 20 \n", + "4 17 17 12 ... 17 12 21 \n", + ".. ... ... ... ... ... ... ... \n", + "295 0 1 0 ... 1 13 10 \n", + "296 0 1 0 ... 0 1 1 \n", + "297 0 0 0 ... 0 0 0 \n", + "298 0 0 0 ... 0 1 0 \n", + "299 0 1 3 ... 0 0 0 \n", + "\n", + " spot-id=75 spot-id=76 spot-id=77 spot-id=78 spot-id=79 spot-id=80 \\\n", + "0 20 16 21 16 14 22 \n", + "1 16 9 19 17 15 16 \n", + "2 17 17 15 13 17 15 \n", + "3 19 16 11 15 15 19 \n", + "4 17 18 22 17 18 18 \n", + ".. ... ... ... ... ... ... \n", + "295 6 2 0 2 9 12 \n", + "296 9 4 8 7 2 0 \n", + "297 0 0 0 0 0 0 \n", + "298 0 0 0 0 0 0 \n", + "299 0 0 0 0 0 0 \n", + "\n", + " spot-id=81 \n", + "0 17 \n", + "1 14 \n", + "2 16 \n", + "3 21 \n", + "4 19 \n", + ".. ... \n", + "295 4 \n", + "296 1 \n", + "297 0 \n", + "298 0 \n", + "299 0 \n", + "\n", + "[300 rows x 82 columns]" + ] + }, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "liver_anndata.var" + "# fov_spot_cells_stats.to_csv('./health/new/fov_new_spot_cell_stats.csv')" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 44, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['AATK',\n", - " 'ABL1',\n", - " 'ABL2',\n", - " 'ACACB',\n", - " 'ACE',\n", - " 'ACKR1',\n", - " 'ACKR3',\n", - " 'ACKR4',\n", - " 'ACP5',\n", - " 'ACTA2',\n", - " 'ACTG2',\n", - " 'ACVR1',\n", - " 'ACVR1B',\n", - " 'ACVR2A',\n", - " 'ACVRL1',\n", - " 'ADGRA2',\n", - " 'ADGRA3',\n", - " 'ADGRE2',\n", - " 'ADGRE5',\n", - " 'ADGRF1',\n", - " 'ADGRF3',\n", - " 'ADGRF5',\n", - " 'ADGRG1',\n", - " 'ADGRG3',\n", - " 'ADGRG5',\n", - " 'ADGRG6',\n", - " 'ADGRL1',\n", - " 'ADGRL2',\n", - " 'ADGRL4',\n", - " 'ADGRV1',\n", - " 'ADIPOQ',\n", - " 'ADIRF',\n", - " 'ADM2',\n", - " 'AGR2',\n", - " 'AHI1',\n", - " 'AHR',\n", - " 'AIF1',\n", - " 'AKT1',\n", - " 'ALCAM',\n", - " 'ALOX5AP',\n", - " 'ANGPT1',\n", - " 'ANGPT2',\n", - " 'ANGPTL1',\n", - " 'ANKRD1',\n", - " 'ANXA1',\n", - " 'ANXA2',\n", - " 'ANXA4',\n", - " 'APOA1',\n", - " 'APOC1',\n", - " 'APOD',\n", - " 'APOE',\n", - " 'APP',\n", - " 'AQP3',\n", - " 'AR',\n", - " 'AREG',\n", - " 'ARF1',\n", - " 'ARG1',\n", - " 'ARHGDIB',\n", - " 'ARID5B',\n", - " 'ATF3',\n", - " 'ATG10',\n", - " 'ATG12',\n", - " 'ATG5',\n", - " 'ATM',\n", - " 'ATP5F1B',\n", - " 'ATP5F1E',\n", - " 'ATR',\n", - " 'AXL',\n", - " 'AZGP1',\n", - " 'AZU1',\n", - " 'B2M',\n", - " 'B3GNT7',\n", - " 'BAG3',\n", - " 'BASP1',\n", - " 'BAX',\n", - " 'BBLN',\n", - " 'BCL2',\n", - " 'BCL2L1',\n", - " 'BECN1',\n", - " 'BEST1',\n", - " 'BGN',\n", - " 'BID',\n", - " 'BIRC3',\n", - " 'BIRC5',\n", - " 'BMP1',\n", - " 'BMP2',\n", - " 'BMP3',\n", - " 'BMP4',\n", - " 'BMP5',\n", - " 'BMP7',\n", - " 'BMPR1A',\n", - " 'BMPR2',\n", - " 'BRAF',\n", - " 'BRCA1',\n", - " 'BST1',\n", - " 'BST2',\n", - " 'BTF3',\n", - " 'BTG1',\n", - " 'BTK',\n", - " 'C11orf96',\n", - " 'C1QA',\n", - " 'C1QB',\n", - " 'C1QC',\n", - " 'C5AR2',\n", - " 'CACNA1C',\n", - " 'CALB1',\n", - " 'CALD1',\n", - " 'CALM1',\n", - " 'CALM2',\n", - " 'CALM3',\n", - " 'CAMP',\n", - " 'CARMN',\n", - " 'CASP3',\n", - " 'CASP8',\n", - " 'CASR',\n", - " 'CAV1',\n", - " 'CCDC80',\n", - " 'CCL11',\n", - " 'CCL13',\n", - " 'CCL15',\n", - " 'CCL17',\n", - " 'CCL18',\n", - " 'CCL19',\n", - " 'CCL2',\n", - " 'CCL20',\n", - " 'CCL21',\n", - " 'CCL22',\n", - " 'CCL26',\n", - " 'CCL28',\n", - " 'CCL3',\n", - " 'CCL4',\n", - " 'CCL5',\n", - " 'CCL8',\n", - " 'CCND1',\n", - " 'CCR1',\n", - " 'CCR10',\n", - " 'CCR2',\n", - " 'CCR5',\n", - " 'CCR7',\n", - " 'CCRL2',\n", - " 'CD14',\n", - " 'CD163',\n", - " 'CD164',\n", - " 'CD19',\n", - " 'CD1C',\n", - " 'CD2',\n", - " 'CD209',\n", - " 'CD22',\n", - " 'CD24',\n", - " 'CD27',\n", - " 'CD274',\n", - " 'CD276',\n", - " 'CD28',\n", - " 'CD300A',\n", - " 'CD33',\n", - " 'CD34',\n", - " 'CD36',\n", - " 'CD37',\n", - " 'CD38',\n", - " 'CD3D',\n", - " 'CD3E',\n", - " 'CD3G',\n", - " 'CD4',\n", - " 'CD40',\n", - " 'CD40LG',\n", - " 'CD44',\n", - " 'CD47',\n", - " 'CD48',\n", - " 'CD52',\n", - " 'CD53',\n", - " 'CD55',\n", - " 'CD58',\n", - " 'CD59',\n", - " 'CD5L',\n", - " 'CD63',\n", - " 'CD68',\n", - " 'CD69',\n", - " 'CD70',\n", - " 'CD74',\n", - " 'CD79A',\n", - " 'CD80',\n", - " 'CD81',\n", - " 'CD83',\n", - " 'CD84',\n", - " 'CD86',\n", - " 'CD8A',\n", - " 'CD8B',\n", - " 'CD9',\n", - " 'CD93',\n", - " 'CDH1',\n", - " 'CDH11',\n", - " 'CDH19',\n", - " 'CDH5',\n", - " 'CDKN1A',\n", - " 'CDKN3',\n", - " 'CEACAM1',\n", - " 'CEACAM6',\n", - " 'CELSR1',\n", - " 'CELSR2',\n", - " 'CENPF',\n", - " 'CFD',\n", - " 'CFLAR',\n", - " 'CHEK1',\n", - " 'CHEK2',\n", - " 'CHI3L1',\n", - " 'CIDEA',\n", - " 'CIITA',\n", - " 'CLCF1',\n", - " 'CLDN4',\n", - " 'CLEC10A',\n", - " 'CLEC12A',\n", - " 'CLEC14A',\n", - " 'CLEC1A',\n", - " 'CLEC2B',\n", - " 'CLEC2D',\n", - " 'CLEC4A',\n", - " 'CLEC4D',\n", - " 'CLEC4E',\n", - " 'CLEC5A',\n", - " 'CLEC7A',\n", - " 'CLOCK',\n", - " 'CLU',\n", - " 'CMKLR1',\n", - " 'CNTFR',\n", - " 'COL11A1',\n", - " 'COL12A1',\n", - " 'COL14A1',\n", - " 'COL15A1',\n", - " 'COL16A1',\n", - " 'COL17A1',\n", - " 'COL18A1',\n", - " 'COL1A1',\n", - " 'COL1A2',\n", - " 'COL21A1',\n", - " 'COL27A1',\n", - " 'COL3A1',\n", - " 'COL4A1',\n", - " 'COL4A2',\n", - " 'COL4A5',\n", - " 'COL5A1',\n", - " 'COL5A2',\n", - " 'COL5A3',\n", - " 'COL6A1',\n", - " 'COL6A2',\n", - " 'COL6A3',\n", - " 'COL8A1',\n", - " 'COL9A2',\n", - " 'COL9A3',\n", - " 'COTL1',\n", - " 'COX4I2',\n", - " 'CPA3',\n", - " 'CPB1',\n", - " 'CRIP1',\n", - " 'CRP',\n", - " 'CRYAB',\n", - " 'CSF1',\n", - " 'CSF1R',\n", - " 'CSF2',\n", - " 'CSF2RA',\n", - " 'CSF2RB',\n", - " 'CSF3',\n", - " 'CSF3R',\n", - " 'CSHL1',\n", - " 'CSK',\n", - " 'CSPG4',\n", - " 'CST7',\n", - " 'CSTB',\n", - " 'CTLA4',\n", - " 'CTNNB1',\n", - " 'CTSD',\n", - " 'CTSG',\n", - " 'CTSW',\n", - " 'CUZD1',\n", - " 'CX3CL1',\n", - " 'CX3CR1',\n", - " 'CXCL1',\n", - " 'CXCL10',\n", - " 'CXCL12',\n", - " 'CXCL13',\n", - " 'CXCL14',\n", - " 'CXCL16',\n", - " 'CXCL17',\n", - " 'CXCL5',\n", - " 'CXCL8',\n", - " 'CXCL9',\n", - " 'CXCR1',\n", - " 'CXCR2',\n", - " 'CXCR3',\n", - " 'CXCR4',\n", - " 'CXCR5',\n", - " 'CXCR6',\n", - " 'CYP1B1',\n", - " 'CYP2U1',\n", - " 'CYSTM1',\n", - " 'CYTOR',\n", - " 'DCN',\n", - " 'DDC',\n", - " 'DDIT3',\n", - " 'DDR1',\n", - " 'DDR2',\n", - " 'DDX58',\n", - " 'DHRS2',\n", - " 'DLL1',\n", - " 'DLL4',\n", - " 'DMBT1',\n", - " 'DNMT1',\n", - " 'DNMT3A',\n", - " 'DPP4',\n", - " 'DPT',\n", - " 'DST',\n", - " 'DUSP1',\n", - " 'DUSP2',\n", - " 'DUSP4',\n", - " 'DUSP5',\n", - " 'DUSP6',\n", - " 'EFNA1',\n", - " 'EFNA4',\n", - " 'EFNA5',\n", - " 'EFNB1',\n", - " 'EFNB2',\n", - " 'EGF',\n", - " 'EGFR',\n", - " 'EIF5A',\n", - " 'ELANE',\n", - " 'EMP3',\n", - " 'ENG',\n", - " 'ENO1',\n", - " 'ENTPD1',\n", - " 'EOMES',\n", - " 'EPCAM',\n", - " 'EPHA2',\n", - " 'EPHA3',\n", - " 'EPHA4',\n", - " 'EPHA7',\n", - " 'EPHB2',\n", - " 'EPHB3',\n", - " 'EPHB4',\n", - " 'EPHB6',\n", - " 'EPOR',\n", - " 'ERBB2',\n", - " 'ERBB3',\n", - " 'ESAM',\n", - " 'ESR1',\n", - " 'ETS1',\n", - " 'ETV4',\n", - " 'ETV5',\n", - " 'EZH2',\n", - " 'EZR',\n", - " 'FABP4',\n", - " 'FABP5',\n", - " 'FAM30A',\n", - " 'FAP',\n", - " 'FAS',\n", - " 'FASLG',\n", - " 'FASN',\n", - " 'FAU',\n", - " 'FCER1G',\n", - " 'FCGBP',\n", - " 'FCGR3A',\n", - " 'FCRLA',\n", - " 'FES',\n", - " 'FFAR2',\n", - " 'FFAR3',\n", - " 'FFAR4',\n", - " 'FGF1',\n", - " 'FGF12',\n", - " 'FGF13',\n", - " 'FGF18',\n", - " 'FGF2',\n", - " 'FGF7',\n", - " 'FGF9',\n", - " 'FGFR1',\n", - " 'FGFR2',\n", - " 'FGFR3',\n", - " 'FGG',\n", - " 'FGR',\n", - " 'FHIT',\n", - " 'FKBP11',\n", - " 'FKBP5',\n", - " 'FLT1',\n", - " 'FLT3LG',\n", - " 'FN1',\n", - " 'FOS',\n", - " 'FOXF1',\n", - " 'FOXP3',\n", - " 'FPR1',\n", - " 'FYB1',\n", - " 'FYN',\n", - " 'FZD1',\n", - " 'FZD3',\n", - " 'FZD4',\n", - " 'FZD5',\n", - " 'FZD6',\n", - " 'FZD7',\n", - " 'FZD8',\n", - " 'G0S2',\n", - " 'G6PD',\n", - " 'GADD45B',\n", - " 'GAS6',\n", - " 'GATA3',\n", - " 'GC',\n", - " 'GCG',\n", - " 'GDF15',\n", - " 'GLUD1',\n", - " 'GLUL',\n", - " 'GNLY',\n", - " 'GPBAR1',\n", - " 'GPER1',\n", - " 'GPNMB',\n", - " 'GPR183',\n", - " 'GPX1',\n", - " 'GPX3',\n", - " 'GSK3B',\n", - " 'GSN',\n", - " 'GSTP1',\n", - " 'GZMA',\n", - " 'GZMB',\n", - " 'GZMH',\n", - " 'GZMK',\n", - " 'H2AZ1',\n", - " 'H4C3',\n", - " 'HAVCR2',\n", - " 'HBA1',\n", - " 'HBB',\n", - " 'HCAR2',\n", - " 'HCK',\n", - " 'HCST',\n", - " 'HDAC1',\n", - " 'HDAC11',\n", - " 'HDAC3',\n", - " 'HDAC4',\n", - " 'HDAC5',\n", - " 'HEXB',\n", - " 'HEY1',\n", - " 'HGF',\n", - " 'HIF1A',\n", - " 'HILPDA',\n", - " 'HLA-A',\n", - " 'HLA-DPA1',\n", - " 'HLA-DPB1',\n", - " 'HLA-DQA1',\n", - " 'HLA-DQB1',\n", - " 'HLA-DRA',\n", - " 'HLA-DRB1',\n", - " 'HMGB2',\n", - " 'HMGCS1',\n", - " 'HMGN2',\n", - " 'HPGDS',\n", - " 'HSD17B2',\n", - " 'HSP90AA1',\n", - " 'HSP90AB1',\n", - " 'HSP90B1',\n", - " 'HSPA1A',\n", - " 'HSPB1',\n", - " 'HSPG2',\n", - " 'HTT',\n", - " 'IAPP',\n", - " 'ICA1',\n", - " 'ICAM1',\n", - " 'ICAM2',\n", - " 'ICAM3',\n", - " 'ICOS',\n", - " 'ICOSLG',\n", - " 'IDO1',\n", - " 'IER3',\n", - " 'IFI27',\n", - " 'IFI44L',\n", - " 'IFI6',\n", - " 'IFIH1',\n", - " 'IFIT1',\n", - " 'IFIT3',\n", - " 'IFITM1',\n", - " 'IFITM3',\n", - " 'IFNA1',\n", - " 'IFNAR1',\n", - " 'IFNAR2',\n", - " 'IFNG',\n", - " 'IFNGR1',\n", - " 'IFNGR2',\n", - " 'IFNL3',\n", - " 'IGF1',\n", - " 'IGF1R',\n", - " 'IGF2',\n", - " 'IGF2R',\n", - " 'IGFBP3',\n", - " 'IGFBP5',\n", - " 'IGFBP6',\n", - " 'IGFBP7',\n", - " 'IGHA1',\n", - " 'IGHD',\n", - " 'IGHG1',\n", - " 'IGHG2',\n", - " 'IGHM',\n", - " 'IGKC',\n", - " 'IKZF3',\n", - " 'IL10',\n", - " 'IL10RA',\n", - " 'IL10RB',\n", - " 'IL11',\n", - " 'IL11RA',\n", - " 'IL12A',\n", - " 'IL12B',\n", - " 'IL12RB1',\n", - " 'IL12RB2',\n", - " 'IL13RA1',\n", - " 'IL15',\n", - " 'IL15RA',\n", - " 'IL16',\n", - " 'IL17A',\n", - " 'IL17B',\n", - " 'IL17D',\n", - " 'IL17RA',\n", - " 'IL17RB',\n", - " 'IL17RE',\n", - " 'IL18',\n", - " 'IL18R1',\n", - " 'IL1A',\n", - " 'IL1B',\n", - " 'IL1R1',\n", - " 'IL1R2',\n", - " 'IL1RAP',\n", - " 'IL1RL1',\n", - " 'IL1RN',\n", - " 'IL2',\n", - " 'IL20',\n", - " 'IL20RA',\n", - " 'IL22RA1',\n", - " 'IL23A',\n", - " 'IL24',\n", - " 'IL27RA',\n", - " 'IL2RA',\n", - " 'IL2RB',\n", - " 'IL2RG',\n", - " 'IL32',\n", - " 'IL33',\n", - " 'IL34',\n", - " 'IL36G',\n", - " 'IL3RA',\n", - " 'IL4R',\n", - " 'IL6',\n", - " 'IL6R',\n", - " 'IL6ST',\n", - " 'IL7',\n", - " 'IL7R',\n", - " 'INHA',\n", - " 'INHBA',\n", - " 'INHBB',\n", - " 'INS',\n", - " 'INSIG1',\n", - " 'INSR',\n", - " 'IRF3',\n", - " 'IRF4',\n", - " 'ISG15',\n", - " 'ITGA1',\n", - " 'ITGA2',\n", - " 'ITGA3',\n", - " 'ITGA5',\n", - " 'ITGA6',\n", - " 'ITGA8',\n", - " 'ITGA9',\n", - " 'ITGAE',\n", - " 'ITGAL',\n", - " 'ITGAM',\n", - " 'ITGAV',\n", - " 'ITGAX',\n", - " 'ITGB1',\n", - " 'ITGB2',\n", - " 'ITGB4',\n", - " 'ITGB5',\n", - " 'ITGB6',\n", - " 'ITGB8',\n", - " 'ITK',\n", - " 'ITM2A',\n", - " 'ITM2B',\n", - " 'JAG1',\n", - " 'JAK1',\n", - " 'JAK2',\n", - " 'JCHAIN',\n", - " 'JUN',\n", - " 'JUNB',\n", - " 'KDR',\n", - " 'KIT',\n", - " 'KITLG',\n", - " 'KLF2',\n", - " 'KLK3',\n", - " 'KLRB1',\n", - " 'KLRF1',\n", - " 'KLRK1',\n", - " 'KRAS',\n", - " 'KRT1',\n", - " 'KRT10',\n", - " 'KRT13',\n", - " 'KRT14',\n", - " 'KRT15',\n", - " 'KRT16',\n", - " 'KRT17',\n", - " 'KRT18',\n", - " 'KRT19',\n", - " 'KRT20',\n", - " 'KRT23',\n", - " 'KRT4',\n", - " 'KRT5',\n", - " 'KRT6A',\n", - " 'KRT7',\n", - " 'KRT8',\n", - " 'KRT80',\n", - " 'KRT86',\n", - " 'LAG3',\n", - " 'LAIR1',\n", - " 'LAMA4',\n", - " 'LAMP2',\n", - " 'LAMP3',\n", - " 'LCN2',\n", - " 'LDB2',\n", - " 'LDHA',\n", - " 'LDLR',\n", - " 'LEFTY1',\n", - " 'LEP',\n", - " 'LGALS1',\n", - " 'LGALS3',\n", - " 'LGALS3BP',\n", - " 'LGALS9',\n", - " 'LGR5',\n", - " 'LIF',\n", - " 'LIFR',\n", - " 'LINC01781',\n", - " 'LINC01857',\n", - " 'LINC02446',\n", - " 'LMNA',\n", - " 'LPAR5',\n", - " 'LTB',\n", - " 'LTBR',\n", - " 'LTF',\n", - " 'LUM',\n", - " 'LY6D',\n", - " 'LY75',\n", - " 'LYN',\n", - " 'LYVE1',\n", - " 'LYZ',\n", - " 'MAF',\n", - " 'MALAT1',\n", - " 'MAML2',\n", - " 'MAP1LC3B',\n", - " 'MAP2K1',\n", - " 'MAPK13',\n", - " 'MAPK14',\n", - " 'MARCKSL1',\n", - " 'MARCO',\n", - " 'MB',\n", - " 'MECOM',\n", - " 'MEG3',\n", - " 'MERTK',\n", - " 'MET',\n", - " 'MFAP5',\n", - " 'MGP',\n", - " 'MIF',\n", - " 'MIR4435-2HG',\n", - " 'MKI67',\n", - " 'MMP1',\n", - " 'MMP12',\n", - " 'MMP14',\n", - " 'MMP19',\n", - " 'MMP2',\n", - " 'MMP7',\n", - " 'MMP9',\n", - " 'MPO',\n", - " 'MRC1',\n", - " 'MRC2',\n", - " 'MS4A1',\n", - " 'MS4A4A',\n", - " 'MS4A6A',\n", - " 'MSMB',\n", - " 'MSR1',\n", - " 'MST1R',\n", - " 'MT1X',\n", - " 'MT2A',\n", - " 'MTOR',\n", - " 'MX1',\n", - " 'MXRA8',\n", - " 'MYC',\n", - " 'MYH11',\n", - " 'MYH6',\n", - " 'MYL12A',\n", - " 'MYL4',\n", - " 'MYL7',\n", - " 'MYL9',\n", - " 'MZB1',\n", - " 'MZT2A',\n", - " 'NACA',\n", - " 'NANOG',\n", - " 'NCAM1',\n", - " 'NCR1',\n", - " 'NDRG1',\n", - " 'NDUFA4L2',\n", - " 'NEAT1',\n", - " 'NELL2',\n", - " 'NFKB1',\n", - " 'NFKBIA',\n", - " 'NGFR',\n", - " 'NKG7',\n", - " 'NLRC4',\n", - " 'NLRC5',\n", - " 'NLRP1',\n", - " 'NLRP2',\n", - " 'NLRP3',\n", - " 'NOD2',\n", - " 'NOSIP',\n", - " 'NOTCH1',\n", - " 'NOTCH2',\n", - " 'NOTCH3',\n", - " 'NPPC',\n", - " 'NPR1',\n", - " 'NPR2',\n", - " 'NPR3',\n", - " 'NR1H2',\n", - " 'NR1H3',\n", - " 'NR2F2',\n", - " 'NR3C1',\n", - " 'NRG1',\n", - " 'NRXN1',\n", - " 'NRXN3',\n", - " 'NTRK2',\n", - " 'NUPR1',\n", - " 'NUSAP1',\n", - " 'OAS1',\n", - " 'OAS2',\n", - " 'OAS3',\n", - " 'OASL',\n", - " 'OLFM4',\n", - " 'OLR1',\n", - " 'OSM',\n", - " 'OSMR',\n", - " 'P2RX5',\n", - " 'PARP1',\n", - " 'PCNA',\n", - " 'PDCD1',\n", - " 'PDCD1LG2',\n", - " 'PDGFA',\n", - " 'PDGFB',\n", - " 'PDGFC',\n", - " 'PDGFD',\n", - " 'PDGFRA',\n", - " 'PDGFRB',\n", - " 'PDS5A',\n", - " 'PECAM1',\n", - " 'PF4',\n", - " 'PFN1',\n", - " 'PGF',\n", - " 'PGK1',\n", - " 'PGR',\n", - " 'PHLDA2',\n", - " 'PIGR',\n", - " 'PLAC8',\n", - " 'PLAC9',\n", - " 'PLCG1',\n", - " 'PLD3',\n", - " 'PNOC',\n", - " 'POU5F1',\n", - " 'PPARA',\n", - " 'PPARD',\n", - " 'PPARG',\n", - " 'PPIA',\n", - " 'PRF1',\n", - " 'PROX1',\n", - " 'PRSS2',\n", - " 'PRTN3',\n", - " 'PSAP',\n", - " 'PSCA',\n", - " 'PSD3',\n", - " 'PTEN',\n", - " 'PTGDR2',\n", - " 'PTGDS',\n", - " 'PTGES',\n", - " 'PTGES2',\n", - " 'PTGES3',\n", - " 'PTGIS',\n", - " 'PTGS1',\n", - " 'PTGS2',\n", - " 'PTK2',\n", - " 'PTK6',\n", - " 'PTPRC',\n", - " 'PTPRCAP',\n", - " 'PTTG1',\n", - " 'PXDN',\n", - " 'QRFPR',\n", - " 'RAC1',\n", - " 'RAC2',\n", - " 'RACK1',\n", - " 'RAG1',\n", - " 'RAMP1',\n", - " 'RAMP2',\n", - " 'RAMP3',\n", - " 'RARA',\n", - " 'RARB',\n", - " 'RARG',\n", - " 'RARRES1',\n", - " 'RARRES2',\n", - " 'RB1',\n", - " 'RBM47',\n", - " 'RBPJ',\n", - " 'REG1A',\n", - " 'RELA',\n", - " 'RELT',\n", - " 'RGCC',\n", - " 'RGS1',\n", - " 'RGS13',\n", - " 'RGS2',\n", - " 'RGS5',\n", - " 'RNF43',\n", - " 'ROR1',\n", - " 'RORA',\n", - " 'RPL21',\n", - " 'RPL22',\n", - " 'RPL32',\n", - " 'RPL34',\n", - " 'RPL37',\n", - " 'RPS4Y1',\n", - " 'RSPO3',\n", - " 'RUNX3',\n", - " 'RXRA',\n", - " 'RXRB',\n", - " 'RYK',\n", - " 'RYR2',\n", - " 'S100A10',\n", - " 'S100A2',\n", - " 'S100A4',\n", - " 'S100A6',\n", - " 'S100A8',\n", - " 'S100A9',\n", - " 'S100B',\n", - " 'S100P',\n", - " 'SAA1',\n", - " 'SAT1',\n", - " 'SCG5',\n", - " 'SCGB3A1',\n", - " 'SEC23A',\n", - " 'SEC61G',\n", - " 'SELENOP',\n", - " 'SELL',\n", - " 'SELPLG',\n", - " 'SERPINA1',\n", - " 'SERPINA3',\n", - " 'SERPINB5',\n", - " 'SERPINH1',\n", - " 'SFN',\n", - " 'SH3BGRL3',\n", - " 'SIGIRR',\n", - " 'SLA',\n", - " 'SLC2A1',\n", - " 'SLC40A1',\n", - " 'SLCO2B1',\n", - " 'SLPI',\n", - " 'SMAD2',\n", - " 'SMAD3',\n", - " 'SMAD4',\n", - " 'SMARCB1',\n", - " 'SMO',\n", - " 'SNAI1',\n", - " 'SNAI2',\n", - " 'SOD1',\n", - " 'SOD2',\n", - " 'SORBS1',\n", - " 'SOSTDC1',\n", - " 'SOX2',\n", - " 'SOX4',\n", - " 'SOX9',\n", - " 'SPARCL1',\n", - " 'SPINK1',\n", - " 'SPOCK2',\n", - " 'SPP1',\n", - " 'SPRY2',\n", - " 'SPRY4',\n", - " 'SQLE',\n", - " 'SQSTM1',\n", - " 'SRC',\n", - " 'SREBF1',\n", - " 'SRGN',\n", - " 'SRSF2',\n", - " 'SST',\n", - " 'ST6GAL1',\n", - " 'ST6GALNAC3',\n", - " 'STAT1',\n", - " 'STAT3',\n", - " 'STAT4',\n", - " 'STAT5A',\n", - " 'STAT5B',\n", - " 'STAT6',\n", - " 'STMN1',\n", - " 'SYK',\n", - " 'TACSTD2',\n", - " 'TAGLN',\n", - " 'TAP1',\n", - " 'TAP2',\n", - " 'TBX21',\n", - " 'TCAP',\n", - " 'TCF7',\n", - " 'TCL1A',\n", - " 'TEK',\n", - " 'TFEB',\n", - " 'TGFB1',\n", - " 'TGFB2',\n", - " 'TGFB3',\n", - " 'TGFBI',\n", - " 'TGFBR1',\n", - " 'TGFBR2',\n", - " 'THBS1',\n", - " 'THBS2',\n", - " 'THSD4',\n", - " 'TIE1',\n", - " 'TIGIT',\n", - " 'TIMP1',\n", - " 'TLR1',\n", - " 'TLR2',\n", - " 'TLR3',\n", - " 'TLR4',\n", - " 'TLR5',\n", - " 'TLR7',\n", - " 'TLR8',\n", - " 'TM4SF1',\n", - " 'TNF',\n", - " 'TNFAIP6',\n", - " 'TNFRSF10A',\n", - " 'TNFRSF10B',\n", - " 'TNFRSF10D',\n", - " 'TNFRSF11A',\n", - " 'TNFRSF11B',\n", - " 'TNFRSF12A',\n", - " 'TNFRSF13B',\n", - " 'TNFRSF14',\n", - " 'TNFRSF17',\n", - " 'TNFRSF18',\n", - " 'TNFRSF19',\n", - " 'TNFRSF1A',\n", - " 'TNFRSF1B',\n", - " 'TNFRSF21',\n", - " 'TNFRSF4',\n", - " 'TNFRSF9',\n", - " 'TNFSF10',\n", - " 'TNFSF12',\n", - " 'TNFSF13B',\n", - " 'TNFSF14',\n", - " 'TNFSF15',\n", - " 'TNFSF4',\n", - " 'TNFSF8',\n", - " 'TNFSF9',\n", - " 'TNNC1',\n", - " 'TNNT2',\n", - " 'TNXB',\n", - " 'TOP2A',\n", - " 'TOX',\n", - " 'TP53',\n", - " 'TPI1',\n", - " 'TPM1',\n", - " 'TPM2',\n", - " 'TPSAB1',\n", - " 'TPT1',\n", - " 'TSC22D1',\n", - " 'TSHZ2',\n", - " 'TTN',\n", - " 'TTR',\n", - " 'TUBB',\n", - " 'TUBB4B',\n", - " 'TWIST1',\n", - " 'TWIST2',\n", - " 'TXK',\n", - " 'TYK2',\n", - " 'TYMS',\n", - " 'TYROBP',\n", - " 'UBA52',\n", - " 'UBE2C',\n", - " 'UPK3A',\n", - " 'VCAM1',\n", - " 'VCAN',\n", - " 'VEGFA',\n", - " 'VEGFB',\n", - " 'VEGFC',\n", - " 'VEGFD',\n", - " 'VHL',\n", - " 'VIM',\n", - " 'VPREB3',\n", - " 'VSIR',\n", - " 'VTN',\n", - " 'VWA1',\n", - " 'VWF',\n", - " 'WIF1',\n", - " 'WNT10B',\n", - " 'WNT11',\n", - " 'WNT3',\n", - " 'WNT5A',\n", - " 'WNT5B',\n", - " 'WNT7A',\n", - " 'WNT7B',\n", - " 'WNT9A',\n", - " 'XBP1',\n", - " 'XCL1',\n", - " 'XKR4',\n", - " 'YBX3',\n", - " 'YES1',\n", - " 'ZBTB16',\n", - " 'ZFP36']" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "list(liver_anndata.var.index)\n" + "spot_gene_expression = [\"fov\", \"spot_id\"]\n", + "genes_name_lst = (individual_cell_gene_expression.columns)[4:].tolist()\n", + "spot_gene_expression = spot_gene_expression + genes_name_lst\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def get_spot_gene_expression(fov_expression, spot_id):\n", + " genes_lst = (fov_expression.columns)[4:].tolist()\n", + " assert len(genes_lst) == 1000\n", + " \n", + " cell_id_lst = fov_expression[(fov_expression['spot_id']==spot_id)][\"cell_ID\"].tolist()\n", + " \n", + " cell_gene_expression_total = len(genes_lst)*[0]\n", + " for cell_id in cell_id_lst:\n", + " cell_gene_expression = fov_expression[(fov_expression['cell_ID'] == cell_id)]\n", + " \n", + " cell_gene_expression = cell_gene_expression.values.tolist()[0][4:]\n", + " cell_gene_expression_total = np.sum([cell_gene_expression_total, cell_gene_expression], axis=0).tolist()\n", + "\n", + " return cell_gene_expression_total\n", + " \n", + " \n" + ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/300 [00:00\n", " \n", " \n", + " fov\n", + " spot_id\n", " AATK\n", " ABL1\n", " ABL2\n", @@ -7329,8 +4901,6 @@ " ACKR1\n", " ACKR3\n", " ACKR4\n", - " ACP5\n", - " ACTA2\n", " ...\n", " WNT7A\n", " WNT7B\n", @@ -7347,123 +4917,123 @@ " \n", " \n", " 0\n", + " 100.0\n", + " 1.0\n", + " 1.0\n", + " 2.0\n", " 0.0\n", + " 5.0\n", + " 2.0\n", + " 1.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1.0\n", " ...\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 17.0\n", + " 2.0\n", " 0.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 4.0\n", + " 4.0\n", + " 1.0\n", " \n", " \n", " 1\n", + " 100.0\n", + " 2.0\n", + " 4.0\n", + " 1.0\n", " 1.0\n", + " 13.0\n", " 2.0\n", - " 0.0\n", + " 1.0\n", + " 1.0\n", " 2.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " ...\n", " 0.0\n", - " 0.0\n", - " 0.0\n", " 1.0\n", " 0.0\n", + " 38.0\n", " 0.0\n", - " 1.0\n", - " 0.0\n", - " 4.0\n", + " 2.0\n", " 0.0\n", + " 5.0\n", + " 11.0\n", + " 2.0\n", " \n", " \n", " 2\n", + " 100.0\n", + " 3.0\n", + " 1.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1.0\n", + " 5.0\n", + " 1.0\n", + " 1.0\n", + " 4.0\n", " 0.0\n", " ...\n", " 0.0\n", + " 1.0\n", " 0.0\n", + " 12.0\n", + " 1.0\n", " 0.0\n", + " 4.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 6.0\n", + " 2.0\n", " \n", " \n", " 3\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 100.0\n", + " 4.0\n", " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " 1.0\n", " 0.0\n", + " 18.0\n", + " 1.0\n", " 2.0\n", - " ...\n", " 0.0\n", " 0.0\n", + " ...\n", " 0.0\n", " 2.0\n", " 0.0\n", - " 0.0\n", + " 20.0\n", " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1.0\n", + " 4.0\n", + " 6.0\n", + " 13.0\n", + " 6.0\n", " \n", " \n", " 4\n", + " 100.0\n", + " 5.0\n", + " 2.0\n", + " 1.0\n", " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 13.0\n", + " 2.0\n", " 1.0\n", + " 2.0\n", + " 2.0\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", " 1.0\n", - " 0.0\n", + " 3.0\n", " 1.0\n", + " 37.0\n", " 0.0\n", + " 1.0\n", + " 4.0\n", + " 5.0\n", + " 22.0\n", + " 9.0\n", " \n", " \n", " ...\n", @@ -7490,9 +5060,9 @@ " ...\n", " \n", " \n", - " 793313\n", - " 0.0\n", - " 0.0\n", + " 24295\n", + " 84.0\n", + " 77.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7514,9 +5084,9 @@ " 0.0\n", " \n", " \n", - " 793314\n", - " 0.0\n", - " 0.0\n", + " 24296\n", + " 84.0\n", + " 78.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7538,7 +5108,9 @@ " 0.0\n", " \n", " \n", - " 793315\n", + " 24297\n", + " 84.0\n", + " 79.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7547,11 +5119,8 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 1.0\n", - " 0.0\n", " ...\n", " 0.0\n", - " 1.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7559,12 +5128,13 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 1.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 793316\n", - " 0.0\n", - " 0.0\n", + " 24298\n", + " 84.0\n", + " 80.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7586,9 +5156,9 @@ " 0.0\n", " \n", " \n", - " 793317\n", - " 0.0\n", - " 1.0\n", + " 24299\n", + " 84.0\n", + " 81.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -7599,65 +5169,276 @@ " 0.0\n", " ...\n", " 0.0\n", - " 1.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 1.0\n", " 0.0\n", " 0.0\n", - " 2.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", "\n", - "

793318 rows × 1000 columns

\n", + "

24300 rows × 1002 columns

\n", "" ], "text/plain": [ - " AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ACP5 ACTA2 ... \\\n", - "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "1 1.0 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 2.0 ... \n", - "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793315 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... \n", - "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "793317 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.0 \n", - "\n", - "[793318 rows x 1000 columns]" + " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", + "0 100.0 1.0 1.0 2.0 0.0 5.0 2.0 1.0 0.0 1.0 ... \n", + "1 100.0 2.0 4.0 1.0 1.0 13.0 2.0 1.0 1.0 2.0 ... \n", + "2 100.0 3.0 1.0 0.0 1.0 5.0 1.0 1.0 4.0 0.0 ... \n", + "3 100.0 4.0 1.0 1.0 0.0 18.0 1.0 2.0 0.0 0.0 ... \n", + "4 100.0 5.0 2.0 1.0 0.0 13.0 2.0 1.0 2.0 2.0 ... \n", + "... ... ... ... ... ... ... ... ... ... ... ... \n", + "24295 84.0 77.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "24296 84.0 78.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "24297 84.0 79.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "24298 84.0 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "24299 84.0 81.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", + "\n", + " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", + "0 0.0 1.0 0.0 17.0 2.0 0.0 0.0 4.0 4.0 1.0 \n", + "1 0.0 1.0 0.0 38.0 0.0 2.0 0.0 5.0 11.0 2.0 \n", + "2 0.0 1.0 0.0 12.0 1.0 0.0 4.0 0.0 6.0 2.0 \n", + "3 0.0 2.0 0.0 20.0 1.0 1.0 4.0 6.0 13.0 6.0 \n", + "4 1.0 3.0 1.0 37.0 0.0 1.0 4.0 5.0 22.0 9.0 \n", + "... ... ... ... ... ... ... ... ... ... ... \n", + "24295 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "24296 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "24297 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "24298 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "24299 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[24300 rows x 1002 columns]" ] }, - "execution_count": 25, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "individual_cell_gene_expression = pd.DataFrame(liver_raw, columns = list(liver_anndata.var.index))\n", - "individual_cell_gene_expression" + "spot_gene_expression" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "# spot_gene_expression.to_csv('./health/new/spot_gene_expression.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Ground Truth" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Hep.3': 21274,\n", + " 'Hep.4': 125997,\n", + " 'Inflammatory.macrophages': 5882,\n", + " 'Hep.5': 89334,\n", + " 'Central.venous.LSECs': 4416,\n", + " 'CD3+.alpha.beta.T.cells': 13663,\n", + " 'Non.inflammatory.macrophages': 9556,\n", + " 'Mature.B.cells': 2928,\n", + " 'Erthyroid.cells': 1044,\n", + " 'NK.like.cells': 2752,\n", + " 'Hep.6': 6183,\n", + " 'gamma.delta.T.cells.1': 3181,\n", + " 'Stellate.cells': 16482,\n", + " 'Hep.1': 17364,\n", + " 'Cholangiocytes': 4783,\n", + " 'Portal.endothelial.cells': 537,\n", + " 'Antibody.secreting.B.cells': 1413,\n", + " 'Periportal.LSECs': 6083,\n", + " 'NotDet': 4}" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_1_dic = {}\n", + "for key in individual_cell_gene_expression[\"cellType\"].tolist():\n", + " if key not in sample_1_dic:\n", + " sample_1_dic[key] = 1\n", + " else:\n", + " sample_1_dic[key] = sample_1_dic[key] + 1\n", + "\n", + "sample_1_dic\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "cell_type_lst = set(individual_cell_gene_expression['cellType'].tolist())\n", + "# print(len(cell_type_lst))\n", + "# cell_type_lst" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "# list(CosMx_cell_type.columns)\n", + "column_name_lst = ['fov', 'spot_id'] + sorted(cell_type_lst)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "332876" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_id_lst = individual_cell_gene_expression[\"cell_ID\"].tolist()\n", + "len(cell_id_lst)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "def get_spot_cell_type_dic(CosMx_cell_type, cell_type_dic):\n", + " one_spot_cell_lst = (spot_id_data['cell_ID'].unique()) # all cell ids for one specific spot\n", + "\n", + " for cell_id in one_spot_cell_lst:\n", + " one_cell_sample = CosMx_cell_type[(CosMx_cell_type['cell_ID']==cell_id)]\n", + " cell_type = one_cell_sample[\"cellType\"].values[0]\n", + " cell_type_dic[cell_type] = cell_type_dic[cell_type] + 1\n", + " \n", + " return cell_type_dic\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", + " 117 118 119 11 120 121 122 123 124 125 126 127 128 129 12 130 131 132 133\n", + " 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 149 14 150 151\n", + " 152 153 154 155 156 157 158 159 15 160 161 162 163 164 165 166 167 169 16\n", + " 170 171 172 173 174 176 177 178 179 17 182 184 185 186 187 188 189 18 190\n", + " 191 192 193 194 195 197 198 199 19 1 200 201 202 203 204 205 207 208 209\n", + " 20 210 211 212 214 215 216 217 219 220 221 223 224 225 226 227 228 229 22\n", + " 230 231 234 235 236 237 238 239 23 240 241 242 243 244 245 246 247 248\n", + " 249 24 250 251 253 254 255 256 257 258 259 25 260 261 262 263 264 265 266\n", + " 269 26 270 271 272 273 274 275 276 277 278 279 27 280 281 282 284 286 288\n", + " 289 28 290 291 293 294 295 29 2 30 31 32 33 34 35 36 37 38 39 3 40 41 44\n", + " 45 46 47 48 49 4 50 51 52 53 54 55 56 57 58 59 5 60 61 62 64 65 66 67 68\n", + " 69 6 70 71 72 73 74 75 76 77 78 79 7 80 81 82 83 85 86 87 89 8 90 92 93\n", + " 94 95 96 97 98 99 9 168 183 196 213 218 232 252 267 283 285 296 43 88 148\n", + " 175 180 181 206 222 233 268 292 297 298 299 302 91 287 304 301 42 84]\n", + "fov: (459, 1004)\n", + "spot: (0, 1004)\n" + ] + } + ], + "source": [ + "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", + "print(fov_ids_lst)\n", + "fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==1)]\n", + "print(\"fov:\", fov_data.shape)\n", + "spot_id_data = fov_data[(fov_data['spot_id']==1)]\n", + "print(\"spot:\", spot_id_data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/300 [00:00\n", " \n", " fov\n", - " cell_single_id\n", - " cell_ID\n", - " cellType\n", - " AATK\n", - " ABL1\n", - " ABL2\n", - " ACACB\n", - " ACE\n", - " ACKR1\n", + " spot_id\n", + " Antibody.secreting.B.cells\n", + " CD3+.alpha.beta.T.cells\n", + " Central.venous.LSECs\n", + " Cholangiocytes\n", + " Erthyroid.cells\n", + " Hep.1\n", + " Hep.3\n", + " Hep.4\n", " ...\n", - " WNT7A\n", - " WNT7B\n", - " WNT9A\n", - " XBP1\n", - " XCL1\n", - " XKR4\n", - " YBX3\n", - " YES1\n", - " ZBTB16\n", - " ZFP36\n", + " Hep.6\n", + " Inflammatory.macrophages\n", + " Mature.B.cells\n", + " NK.like.cells\n", + " Non.inflammatory.macrophages\n", + " NotDet\n", + " Periportal.LSECs\n", + " Portal.endothelial.cells\n", + " Stellate.cells\n", + " gamma.delta.T.cells.1\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 10\n", - " c_1_100_10\n", - " Hep.3\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1\n", + " 0\n", + " 2\n", + " 2\n", + " 1\n", + " 1\n", + " 5\n", + " 12\n", + " 52\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 5\n", + " 1\n", + " 1\n", + " 1\n", + " 7\n", + " 0\n", + " 0\n", + " 0\n", + " 4\n", + " 2\n", " \n", " \n", " 1\n", " 100\n", - " 1078\n", - " c_1_100_1078\n", - " Hep.4\n", - " 1.0\n", - " 2.0\n", - " 0.0\n", - " 2.0\n", - " 0.0\n", - " 0.0\n", + " 2\n", + " 1\n", + " 3\n", + " 2\n", + " 0\n", + " 0\n", + " 0\n", + " 6\n", + " 81\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 4.0\n", - " 0.0\n", + " 2\n", + " 4\n", + " 0\n", + " 2\n", + " 4\n", + " 0\n", + " 0\n", + " 0\n", + " 3\n", + " 2\n", " \n", " \n", " 2\n", " 100\n", - " 1135\n", - " c_1_100_1135\n", - " Inflammatory.macrophages\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 3\n", + " 0\n", + " 6\n", + " 0\n", + " 3\n", + " 1\n", + " 0\n", + " 7\n", + " 73\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 8\n", + " 0\n", + " 0\n", + " 0\n", + " 5\n", + " 0\n", " \n", " \n", " 3\n", " 100\n", - " 267\n", - " c_1_100_267\n", - " Hep.5\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", + " 4\n", + " 0\n", + " 5\n", + " 6\n", + " 0\n", + " 3\n", + " 5\n", + " 6\n", + " 50\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 2.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 2\n", + " 2\n", + " 1\n", + " 0\n", + " 3\n", + " 0\n", + " 0\n", + " 1\n", + " 3\n", + " 3\n", " \n", " \n", " 4\n", " 100\n", - " 732\n", - " c_1_100_732\n", - " Central.venous.LSECs\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 5\n", + " 0\n", + " 6\n", + " 1\n", + " 0\n", + " 0\n", + " 1\n", + " 7\n", + " 44\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", + " 1\n", + " 0\n", + " 0\n", + " 1\n", + " 6\n", + " 0\n", + " 0\n", + " 0\n", + " 4\n", + " 2\n", " \n", " \n", " ...\n", @@ -7849,32123 +5630,248 @@ " ...\n", " \n", " \n", - " 793313\n", - " 9\n", - " 945\n", - " c_2_9_945\n", - " Inflammatory.macrophages\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 2695\n", + " 84\n", + " 5\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " 793314\n", - " 9\n", - " 947\n", - " c_2_9_947\n", - " Non.inflammatory.macrophages\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 2696\n", + " 84\n", + " 6\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " 793315\n", - " 9\n", - " 948\n", - " c_2_9_948\n", - " tumor_1\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 2697\n", + " 84\n", + " 7\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " ...\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " 793316\n", - " 9\n", - " 949\n", - " c_2_9_949\n", - " tumor_1\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 2698\n", + " 84\n", + " 8\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " ...\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", - " 793317\n", + " 2699\n", + " 84\n", " 9\n", - " 95\n", - " c_2_9_95\n", - " tumor_1\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " 0\n", + " 1\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " ...\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", - " 1.0\n", - " 0.0\n", - " 0.0\n", - " 2.0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", " \n", " \n", "\n", - "

793318 rows × 1004 columns

\n", + "

2700 rows × 21 columns

\n", "" ], "text/plain": [ - " fov cell_single_id cell_ID cellType AATK \\\n", - "0 100 10 c_1_100_10 Hep.3 0.0 \n", - "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", - "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", - "3 100 267 c_1_100_267 Hep.5 0.0 \n", - "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", - "... ... ... ... ... ... \n", - "793313 9 945 c_2_9_945 Inflammatory.macrophages 0.0 \n", - "793314 9 947 c_2_9_947 Non.inflammatory.macrophages 0.0 \n", - "793315 9 948 c_2_9_948 tumor_1 0.0 \n", - "793316 9 949 c_2_9_949 tumor_1 0.0 \n", - "793317 9 95 c_2_9_95 tumor_1 0.0 \n", + " fov spot_id Antibody.secreting.B.cells CD3+.alpha.beta.T.cells \\\n", + "0 100 1 0 2 \n", + "1 100 2 1 3 \n", + "2 100 3 0 6 \n", + "3 100 4 0 5 \n", + "4 100 5 0 6 \n", + "... ... ... ... ... \n", + "2695 84 5 0 0 \n", + "2696 84 6 0 0 \n", + "2697 84 7 0 0 \n", + "2698 84 8 0 0 \n", + "2699 84 9 0 1 \n", "\n", - " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "793317 1.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", + " Central.venous.LSECs Cholangiocytes Erthyroid.cells Hep.1 Hep.3 Hep.4 \\\n", + "0 2 1 1 5 12 52 \n", + "1 2 0 0 0 6 81 \n", + "2 0 3 1 0 7 73 \n", + "3 6 0 3 5 6 50 \n", + "4 1 0 0 1 7 44 \n", + "... ... ... ... ... ... ... \n", + "2695 0 0 0 0 0 0 \n", + "2696 0 0 0 0 0 0 \n", + "2697 0 0 0 0 0 0 \n", + "2698 0 0 0 0 0 0 \n", + "2699 0 0 0 0 0 0 \n", "\n", - " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 1.0 0.0 0.0 0.0 \n", - "4 0.0 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... \n", - "793313 0.0 0.0 0.0 0.0 0.0 \n", - "793314 0.0 0.0 0.0 0.0 0.0 \n", - "793315 0.0 0.0 0.0 0.0 1.0 \n", - "793316 0.0 0.0 0.0 0.0 0.0 \n", - "793317 0.0 1.0 0.0 0.0 2.0 \n", + " ... Hep.6 Inflammatory.macrophages Mature.B.cells NK.like.cells \\\n", + "0 ... 5 1 1 1 \n", + "1 ... 2 4 0 2 \n", + "2 ... 1 1 1 2 \n", + "3 ... 2 2 1 0 \n", + "4 ... 1 0 0 1 \n", + "... ... ... ... ... ... \n", + "2695 ... 0 0 0 0 \n", + "2696 ... 0 0 0 0 \n", + "2697 ... 0 0 0 0 \n", + "2698 ... 0 0 0 0 \n", + "2699 ... 0 0 0 0 \n", "\n", - "[793318 rows x 1004 columns]" + " Non.inflammatory.macrophages NotDet Periportal.LSECs \\\n", + "0 7 0 0 \n", + "1 4 0 0 \n", + "2 8 0 0 \n", + "3 3 0 0 \n", + "4 6 0 0 \n", + "... ... ... ... \n", + "2695 0 0 0 \n", + "2696 0 0 0 \n", + "2697 0 0 0 \n", + "2698 0 0 0 \n", + "2699 0 0 0 \n", + "\n", + " Portal.endothelial.cells Stellate.cells gamma.delta.T.cells.1 \n", + "0 0 4 2 \n", + "1 0 3 2 \n", + "2 0 5 0 \n", + "3 1 3 3 \n", + "4 0 4 2 \n", + "... ... ... ... \n", + "2695 0 0 0 \n", + "2696 0 0 0 \n", + "2697 0 0 0 \n", + "2698 0 0 0 \n", + "2699 0 0 0 \n", + "\n", + "[2700 rows x 21 columns]" ] }, - "execution_count": 26, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "individual_cell_gene_expression = pd.concat([gene_expression_cell_type, individual_cell_gene_expression], axis=1)\n", - "individual_cell_gene_expression\n" + "ground_truth_table" ] }, { "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovcell_single_idcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
010010c_1_100_10Hep.30.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
11001078c_1_100_1078Hep.41.02.00.02.00.00.0...0.00.00.01.00.00.01.00.04.00.0
21001135c_1_100_1135Inflammatory.macrophages0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3100267c_1_100_267Hep.50.00.00.01.00.00.0...0.00.00.02.00.00.01.00.00.00.0
4100732c_1_100_732Central.venous.LSECs0.00.00.00.00.00.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
5660029981c_1_9_981Hep.40.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.00.0
5660039982c_1_9_982gamma.delta.T.cells.10.01.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
5660049985c_1_9_985Hep.40.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
5660059987c_1_9_987NK.like.cells0.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
5660069995c_1_9_995Hep.50.00.00.01.00.00.0...0.00.00.02.00.00.00.00.00.01.0
\n", - "

332877 rows × 1004 columns

\n", - "
" - ], - "text/plain": [ - " fov cell_single_id cell_ID cellType AATK \\\n", - "0 100 10 c_1_100_10 Hep.3 0.0 \n", - "1 100 1078 c_1_100_1078 Hep.4 1.0 \n", - "2 100 1135 c_1_100_1135 Inflammatory.macrophages 0.0 \n", - "3 100 267 c_1_100_267 Hep.5 0.0 \n", - "4 100 732 c_1_100_732 Central.venous.LSECs 0.0 \n", - "... ... ... ... ... ... \n", - "566002 9 981 c_1_9_981 Hep.4 0.0 \n", - "566003 9 982 c_1_9_982 gamma.delta.T.cells.1 0.0 \n", - "566004 9 985 c_1_9_985 Hep.4 0.0 \n", - "566005 9 987 c_1_9_987 NK.like.cells 0.0 \n", - "566006 9 995 c_1_9_995 Hep.5 0.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ACKR1 ... WNT7A WNT7B WNT9A XBP1 XCL1 \\\n", - "0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "1 2.0 0.0 2.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "566002 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 \n", - "566003 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "566004 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "566005 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 \n", - "566006 0.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 \n", - "\n", - " XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 1.0 0.0 0.0 0.0 \n", - "4 0.0 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... \n", - "566002 0.0 0.0 0.0 0.0 0.0 \n", - "566003 0.0 1.0 0.0 0.0 0.0 \n", - "566004 0.0 0.0 0.0 0.0 0.0 \n", - "566005 0.0 0.0 0.0 0.0 1.0 \n", - "566006 0.0 0.0 0.0 0.0 1.0 \n", - "\n", - "[332877 rows x 1004 columns]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sample_1_rows = individual_cell_gene_expression[\"cell_ID\"].str.startswith(\"c_1_\")\n", - "individual_cell_gene_expression = individual_cell_gene_expression.loc[sample_1_rows, :]\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovcell_IDcellTypeAATKABL1ABL2ACACBACEACKR1ACKR3...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
010010Hep.30.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
11001078Hep.41.02.00.02.00.00.00.0...0.00.00.01.00.00.01.00.04.00.0
21001135Inflammatory.macrophages0.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3100267Hep.50.00.00.01.00.00.00.0...0.00.00.02.00.00.01.00.00.00.0
4100732Central.venous.LSECs0.00.00.00.00.00.00.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
5660029981Hep.40.00.00.00.00.00.00.0...0.01.00.00.00.00.00.00.00.00.0
5660039982gamma.delta.T.cells.10.01.00.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
5660049985Hep.40.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
5660059987NK.like.cells0.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
5660069995Hep.50.00.00.01.00.00.01.0...0.00.00.02.00.00.00.00.00.01.0
\n", - "

332877 rows × 1003 columns

\n", - "
" - ], - "text/plain": [ - " fov cell_ID cellType AATK ABL1 ABL2 ACACB ACE \\\n", - "0 100 10 Hep.3 0.0 0.0 0.0 0.0 0.0 \n", - "1 100 1078 Hep.4 1.0 2.0 0.0 2.0 0.0 \n", - "2 100 1135 Inflammatory.macrophages 0.0 0.0 0.0 0.0 0.0 \n", - "3 100 267 Hep.5 0.0 0.0 0.0 1.0 0.0 \n", - "4 100 732 Central.venous.LSECs 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... \n", - "566002 9 981 Hep.4 0.0 0.0 0.0 0.0 0.0 \n", - "566003 9 982 gamma.delta.T.cells.1 0.0 1.0 0.0 0.0 0.0 \n", - "566004 9 985 Hep.4 0.0 0.0 0.0 0.0 0.0 \n", - "566005 9 987 NK.like.cells 0.0 0.0 0.0 0.0 0.0 \n", - "566006 9 995 Hep.5 0.0 0.0 0.0 1.0 0.0 \n", - "\n", - " ACKR1 ACKR3 ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 \\\n", - "0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 \n", - "2 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0 \n", - "4 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "566002 0.0 0.0 ... 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "566003 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 \n", - "566004 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "566005 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "566006 0.0 1.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 \n", - "\n", - " ZBTB16 ZFP36 \n", - "0 0.0 0.0 \n", - "1 4.0 0.0 \n", - "2 0.0 0.0 \n", - "3 0.0 0.0 \n", - "4 1.0 0.0 \n", - "... ... ... \n", - "566002 0.0 0.0 \n", - "566003 0.0 0.0 \n", - "566004 0.0 0.0 \n", - "566005 0.0 1.0 \n", - "566006 0.0 1.0 \n", - "\n", - "[332877 rows x 1003 columns]" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "del individual_cell_gene_expression['cell_ID']\n", - "individual_cell_gene_expression = individual_cell_gene_expression.rename(columns={'cell_single_id': 'cell_ID'})\n", - "individual_cell_gene_expression['cell_ID'] = individual_cell_gene_expression['cell_ID'].astype('int')\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "numpy.int64" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(individual_cell_gene_expression[\"cell_ID\"][0])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_ID
00100410
1110031078
2210061135
331007267
441008732
...............
33287233287284262
33287333287384373
33287433287484374
33287533287584377
3328763328762117
\n", - "

332877 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID\n", - "0 0 100 4 10\n", - "1 1 100 3 1078\n", - "2 2 100 6 1135\n", - "3 3 100 7 267\n", - "4 4 100 8 732\n", - "... ... ... ... ...\n", - "332872 332872 84 2 62\n", - "332873 332873 84 3 73\n", - "332874 332874 84 3 74\n", - "332875 332875 84 3 77\n", - "332876 332876 21 1 7\n", - "\n", - "[332877 rows x 4 columns]" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_final_result = pd.read_csv('../health/new/spot_fov_cellId_mapping.csv')\n", - "data_final_result" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
00100410Hep.30.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
1110031078Hep.41.02.00.02.00.0...0.00.00.01.00.00.01.00.04.00.0
2210061135Inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
331007267Hep.50.00.00.01.00.0...0.00.00.02.00.00.01.00.00.00.0
441008732Central.venous.LSECs0.00.00.00.00.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
33287233287284262CD3+.alpha.beta.T.cells0.00.00.00.01.0...0.00.01.00.01.00.01.00.00.00.0
33287333287384373Non.inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
33287433287484374Non.inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
33287533287584377Portal.endothelial.cells0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3328763328762117CD3+.alpha.beta.T.cells0.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
\n", - "

332877 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK \\\n", - "0 0 100 4 10 Hep.3 0.0 \n", - "1 1 100 3 1078 Hep.4 1.0 \n", - "2 2 100 6 1135 Inflammatory.macrophages 0.0 \n", - "3 3 100 7 267 Hep.5 0.0 \n", - "4 4 100 8 732 Central.venous.LSECs 0.0 \n", - "... ... ... ... ... ... ... \n", - "332872 332872 84 2 62 CD3+.alpha.beta.T.cells 0.0 \n", - "332873 332873 84 3 73 Non.inflammatory.macrophages 0.0 \n", - "332874 332874 84 3 74 Non.inflammatory.macrophages 0.0 \n", - "332875 332875 84 3 77 Portal.endothelial.cells 0.0 \n", - "332876 332876 21 1 7 CD3+.alpha.beta.T.cells 0.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 \\\n", - "0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "1 2.0 0.0 2.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "332872 0.0 0.0 0.0 1.0 ... 0.0 0.0 1.0 0.0 1.0 0.0 \n", - "332873 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332874 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332875 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332876 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 \n", - "1 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 1.0 0.0 0.0 0.0 \n", - "4 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... \n", - "332872 1.0 0.0 0.0 0.0 \n", - "332873 0.0 0.0 0.0 0.0 \n", - "332874 0.0 0.0 0.0 0.0 \n", - "332875 0.0 0.0 0.0 0.0 \n", - "332876 1.0 0.0 0.0 0.0 \n", - "\n", - "[332877 rows x 1005 columns]" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression = pd.merge(data_final_result, individual_cell_gene_expression, on=['fov', 'cell_ID'])\n", - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot-id=1, spot-id=2, spot-id=3, spot-id=4, spot-id=5, spot-id=6, spot-id=7, spot-id=8, spot-id=9]\n", - "Index: []" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_cells_stats = pd.DataFrame(columns = ['fov', 'spot-id=1', 'spot-id=2', 'spot-id=3','spot-id=4', 'spot-id=5', 'spot-id=6', 'spot-id=7', 'spot-id=8', 'spot-id=9'])\n", - "fov_spot_cells_stats\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'fov': 0,\n", - " 'spot-id=1': 0,\n", - " 'spot-id=2': 0,\n", - " 'spot-id=3': 0,\n", - " 'spot-id=4': 0,\n", - " 'spot-id=5': 0,\n", - " 'spot-id=6': 0,\n", - " 'spot-id=7': 0,\n", - " 'spot-id=8': 0,\n", - " 'spot-id=9': 0}" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "names = ['fov', 'spot-id=1', 'spot-id=2', 'spot-id=3','spot-id=4', 'spot-id=5', 'spot-id=6', 'spot-id=7', 'spot-id=8', 'spot-id=9']\n", - "fov_dic = {}\n", - "for i in names:\n", - " fov_dic[i] = 0\n", - "fov_dic\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "/tmp/ipykernel_15990/2595495053.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
0100131153161128122148127139130
1101142124145124129153123137147
2102122139141121132134135132140
3103114120130113116135142123147
4104145133132163132126153146141
.................................
296304811327212152594
297301200000001
29842001000100
29984535100011
30021100000000
\n", - "

301 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", - "0 100 131 153 161 128 122 148 \n", - "1 101 142 124 145 124 129 153 \n", - "2 102 122 139 141 121 132 134 \n", - "3 103 114 120 130 113 116 135 \n", - "4 104 145 133 132 163 132 126 \n", - ".. ... ... ... ... ... ... ... \n", - "296 304 81 13 2 72 12 1 \n", - "297 301 2 0 0 0 0 0 \n", - "298 42 0 0 1 0 0 0 \n", - "299 84 5 3 5 1 0 0 \n", - "300 21 1 0 0 0 0 0 \n", - "\n", - " spot-id=7 spot-id=8 spot-id=9 \n", - "0 127 139 130 \n", - "1 123 137 147 \n", - "2 135 132 140 \n", - "3 142 123 147 \n", - "4 153 146 141 \n", - ".. ... ... ... \n", - "296 52 59 4 \n", - "297 0 0 1 \n", - "298 1 0 0 \n", - "299 0 1 1 \n", - "300 0 0 0 \n", - "\n", - "[301 rows x 10 columns]" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", - " \n", - " fov_dic_sample = fov_dic\n", - " fov_dic_sample[\"fov\"] = fov_id\n", - " \n", - " for i in spot_id_lst:\n", - " spot_id_data = fov_data[(fov_data['spot_id']==i)]\n", - " spot_id_num = \"spot-id=\" + str(i)\n", - " fov_dic_sample[spot_id_num] = spot_id_data.shape[0]\n", - " fov_spot_cells_stats = fov_spot_cells_stats.append(fov_dic_sample, ignore_index = True)\n", - "\n", - "fov_spot_cells_stats" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot-id=1spot-id=2spot-id=3spot-id=4spot-id=5spot-id=6spot-id=7spot-id=8spot-id=9
0100131153161128122148127139130
1101142124145124129153123137147
2102122139141121132134135132140
3103114120130113116135142123147
4104145133132163132126153146141
.................................
296304811327212152594
297301200000001
29842001000100
29984535100011
30021100000000
\n", - "

301 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " fov spot-id=1 spot-id=2 spot-id=3 spot-id=4 spot-id=5 spot-id=6 \\\n", - "0 100 131 153 161 128 122 148 \n", - "1 101 142 124 145 124 129 153 \n", - "2 102 122 139 141 121 132 134 \n", - "3 103 114 120 130 113 116 135 \n", - "4 104 145 133 132 163 132 126 \n", - ".. ... ... ... ... ... ... ... \n", - "296 304 81 13 2 72 12 1 \n", - "297 301 2 0 0 0 0 0 \n", - "298 42 0 0 1 0 0 0 \n", - "299 84 5 3 5 1 0 0 \n", - "300 21 1 0 0 0 0 0 \n", - "\n", - " spot-id=7 spot-id=8 spot-id=9 \n", - "0 127 139 130 \n", - "1 123 137 147 \n", - "2 135 132 140 \n", - "3 142 123 147 \n", - "4 153 146 141 \n", - ".. ... ... ... \n", - "296 52 59 4 \n", - "297 0 0 1 \n", - "298 1 0 0 \n", - "299 0 1 1 \n", - "300 0 0 0 \n", - "\n", - "[301 rows x 10 columns]" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_cells_stats.to_csv('../health/new/fov_new_spot_cell_stats.csv')\n", - "fov_spot_cells_stats" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['fov',\n", - " 'spot_id',\n", - " 'AATK',\n", - " 'ABL1',\n", - " 'ABL2',\n", - " 'ACACB',\n", - " 'ACE',\n", - " 'ACKR1',\n", - " 'ACKR3',\n", - " 'ACKR4',\n", - " 'ACP5',\n", - " 'ACTA2',\n", - " 'ACTG2',\n", - " 'ACVR1',\n", - " 'ACVR1B',\n", - " 'ACVR2A',\n", - " 'ACVRL1',\n", - " 'ADGRA2',\n", - " 'ADGRA3',\n", - " 'ADGRE2',\n", - " 'ADGRE5',\n", - " 'ADGRF1',\n", - " 'ADGRF3',\n", - " 'ADGRF5',\n", - " 'ADGRG1',\n", - " 'ADGRG3',\n", - " 'ADGRG5',\n", - " 'ADGRG6',\n", - " 'ADGRL1',\n", - " 'ADGRL2',\n", - " 'ADGRL4',\n", - " 'ADGRV1',\n", - " 'ADIPOQ',\n", - " 'ADIRF',\n", - " 'ADM2',\n", - " 'AGR2',\n", - " 'AHI1',\n", - " 'AHR',\n", - " 'AIF1',\n", - " 'AKT1',\n", - " 'ALCAM',\n", - " 'ALOX5AP',\n", - " 'ANGPT1',\n", - " 'ANGPT2',\n", - " 'ANGPTL1',\n", - " 'ANKRD1',\n", - " 'ANXA1',\n", - " 'ANXA2',\n", - " 'ANXA4',\n", - " 'APOA1',\n", - " 'APOC1',\n", - " 'APOD',\n", - " 'APOE',\n", - " 'APP',\n", - " 'AQP3',\n", - " 'AR',\n", - " 'AREG',\n", - " 'ARF1',\n", - " 'ARG1',\n", - " 'ARHGDIB',\n", - " 'ARID5B',\n", - " 'ATF3',\n", - " 'ATG10',\n", - " 'ATG12',\n", - " 'ATG5',\n", - " 'ATM',\n", - " 'ATP5F1B',\n", - " 'ATP5F1E',\n", - " 'ATR',\n", - " 'AXL',\n", - " 'AZGP1',\n", - " 'AZU1',\n", - " 'B2M',\n", - " 'B3GNT7',\n", - " 'BAG3',\n", - " 'BASP1',\n", - " 'BAX',\n", - " 'BBLN',\n", - " 'BCL2',\n", - " 'BCL2L1',\n", - " 'BECN1',\n", - " 'BEST1',\n", - " 'BGN',\n", - " 'BID',\n", - " 'BIRC3',\n", - " 'BIRC5',\n", - " 'BMP1',\n", - " 'BMP2',\n", - " 'BMP3',\n", - " 'BMP4',\n", - " 'BMP5',\n", - " 'BMP7',\n", - " 'BMPR1A',\n", - " 'BMPR2',\n", - " 'BRAF',\n", - " 'BRCA1',\n", - " 'BST1',\n", - " 'BST2',\n", - " 'BTF3',\n", - " 'BTG1',\n", - " 'BTK',\n", - " 'C11orf96',\n", - " 'C1QA',\n", - " 'C1QB',\n", - " 'C1QC',\n", - " 'C5AR2',\n", - " 'CACNA1C',\n", - " 'CALB1',\n", - " 'CALD1',\n", - " 'CALM1',\n", - " 'CALM2',\n", - " 'CALM3',\n", - " 'CAMP',\n", - " 'CARMN',\n", - " 'CASP3',\n", - " 'CASP8',\n", - " 'CASR',\n", - " 'CAV1',\n", - " 'CCDC80',\n", - " 'CCL11',\n", - " 'CCL13',\n", - " 'CCL15',\n", - " 'CCL17',\n", - " 'CCL18',\n", - " 'CCL19',\n", - " 'CCL2',\n", - " 'CCL20',\n", - " 'CCL21',\n", - " 'CCL22',\n", - " 'CCL26',\n", - " 'CCL28',\n", - " 'CCL3',\n", - " 'CCL4',\n", - " 'CCL5',\n", - " 'CCL8',\n", - " 'CCND1',\n", - " 'CCR1',\n", - " 'CCR10',\n", - " 'CCR2',\n", - " 'CCR5',\n", - " 'CCR7',\n", - " 'CCRL2',\n", - " 'CD14',\n", - " 'CD163',\n", - " 'CD164',\n", - " 'CD19',\n", - " 'CD1C',\n", - " 'CD2',\n", - " 'CD209',\n", - " 'CD22',\n", - " 'CD24',\n", - " 'CD27',\n", - " 'CD274',\n", - " 'CD276',\n", - " 'CD28',\n", - " 'CD300A',\n", - " 'CD33',\n", - " 'CD34',\n", - " 'CD36',\n", - " 'CD37',\n", - " 'CD38',\n", - " 'CD3D',\n", - " 'CD3E',\n", - " 'CD3G',\n", - " 'CD4',\n", - " 'CD40',\n", - " 'CD40LG',\n", - " 'CD44',\n", - " 'CD47',\n", - " 'CD48',\n", - " 'CD52',\n", - " 'CD53',\n", - " 'CD55',\n", - " 'CD58',\n", - " 'CD59',\n", - " 'CD5L',\n", - " 'CD63',\n", - " 'CD68',\n", - " 'CD69',\n", - " 'CD70',\n", - " 'CD74',\n", - " 'CD79A',\n", - " 'CD80',\n", - " 'CD81',\n", - " 'CD83',\n", - " 'CD84',\n", - " 'CD86',\n", - " 'CD8A',\n", - " 'CD8B',\n", - " 'CD9',\n", - " 'CD93',\n", - " 'CDH1',\n", - " 'CDH11',\n", - " 'CDH19',\n", - " 'CDH5',\n", - " 'CDKN1A',\n", - " 'CDKN3',\n", - " 'CEACAM1',\n", - " 'CEACAM6',\n", - " 'CELSR1',\n", - " 'CELSR2',\n", - " 'CENPF',\n", - " 'CFD',\n", - " 'CFLAR',\n", - " 'CHEK1',\n", - " 'CHEK2',\n", - " 'CHI3L1',\n", - " 'CIDEA',\n", - " 'CIITA',\n", - " 'CLCF1',\n", - " 'CLDN4',\n", - " 'CLEC10A',\n", - " 'CLEC12A',\n", - " 'CLEC14A',\n", - " 'CLEC1A',\n", - " 'CLEC2B',\n", - " 'CLEC2D',\n", - " 'CLEC4A',\n", - " 'CLEC4D',\n", - " 'CLEC4E',\n", - " 'CLEC5A',\n", - " 'CLEC7A',\n", - " 'CLOCK',\n", - " 'CLU',\n", - " 'CMKLR1',\n", - " 'CNTFR',\n", - " 'COL11A1',\n", - " 'COL12A1',\n", - " 'COL14A1',\n", - " 'COL15A1',\n", - " 'COL16A1',\n", - " 'COL17A1',\n", - " 'COL18A1',\n", - " 'COL1A1',\n", - " 'COL1A2',\n", - " 'COL21A1',\n", - " 'COL27A1',\n", - " 'COL3A1',\n", - " 'COL4A1',\n", - " 'COL4A2',\n", - " 'COL4A5',\n", - " 'COL5A1',\n", - " 'COL5A2',\n", - " 'COL5A3',\n", - " 'COL6A1',\n", - " 'COL6A2',\n", - " 'COL6A3',\n", - " 'COL8A1',\n", - " 'COL9A2',\n", - " 'COL9A3',\n", - " 'COTL1',\n", - " 'COX4I2',\n", - " 'CPA3',\n", - " 'CPB1',\n", - " 'CRIP1',\n", - " 'CRP',\n", - " 'CRYAB',\n", - " 'CSF1',\n", - " 'CSF1R',\n", - " 'CSF2',\n", - " 'CSF2RA',\n", - " 'CSF2RB',\n", - " 'CSF3',\n", - " 'CSF3R',\n", - " 'CSHL1',\n", - " 'CSK',\n", - " 'CSPG4',\n", - " 'CST7',\n", - " 'CSTB',\n", - " 'CTLA4',\n", - " 'CTNNB1',\n", - " 'CTSD',\n", - " 'CTSG',\n", - " 'CTSW',\n", - " 'CUZD1',\n", - " 'CX3CL1',\n", - " 'CX3CR1',\n", - " 'CXCL1',\n", - " 'CXCL10',\n", - " 'CXCL12',\n", - " 'CXCL13',\n", - " 'CXCL14',\n", - " 'CXCL16',\n", - " 'CXCL17',\n", - " 'CXCL5',\n", - " 'CXCL8',\n", - " 'CXCL9',\n", - " 'CXCR1',\n", - " 'CXCR2',\n", - " 'CXCR3',\n", - " 'CXCR4',\n", - " 'CXCR5',\n", - " 'CXCR6',\n", - " 'CYP1B1',\n", - " 'CYP2U1',\n", - " 'CYSTM1',\n", - " 'CYTOR',\n", - " 'DCN',\n", - " 'DDC',\n", - " 'DDIT3',\n", - " 'DDR1',\n", - " 'DDR2',\n", - " 'DDX58',\n", - " 'DHRS2',\n", - " 'DLL1',\n", - " 'DLL4',\n", - " 'DMBT1',\n", - " 'DNMT1',\n", - " 'DNMT3A',\n", - " 'DPP4',\n", - " 'DPT',\n", - " 'DST',\n", - " 'DUSP1',\n", - " 'DUSP2',\n", - " 'DUSP4',\n", - " 'DUSP5',\n", - " 'DUSP6',\n", - " 'EFNA1',\n", - " 'EFNA4',\n", - " 'EFNA5',\n", - " 'EFNB1',\n", - " 'EFNB2',\n", - " 'EGF',\n", - " 'EGFR',\n", - " 'EIF5A',\n", - " 'ELANE',\n", - " 'EMP3',\n", - " 'ENG',\n", - " 'ENO1',\n", - " 'ENTPD1',\n", - " 'EOMES',\n", - " 'EPCAM',\n", - " 'EPHA2',\n", - " 'EPHA3',\n", - " 'EPHA4',\n", - " 'EPHA7',\n", - " 'EPHB2',\n", - " 'EPHB3',\n", - " 'EPHB4',\n", - " 'EPHB6',\n", - " 'EPOR',\n", - " 'ERBB2',\n", - " 'ERBB3',\n", - " 'ESAM',\n", - " 'ESR1',\n", - " 'ETS1',\n", - " 'ETV4',\n", - " 'ETV5',\n", - " 'EZH2',\n", - " 'EZR',\n", - " 'FABP4',\n", - " 'FABP5',\n", - " 'FAM30A',\n", - " 'FAP',\n", - " 'FAS',\n", - " 'FASLG',\n", - " 'FASN',\n", - " 'FAU',\n", - " 'FCER1G',\n", - " 'FCGBP',\n", - " 'FCGR3A',\n", - " 'FCRLA',\n", - " 'FES',\n", - " 'FFAR2',\n", - " 'FFAR3',\n", - " 'FFAR4',\n", - " 'FGF1',\n", - " 'FGF12',\n", - " 'FGF13',\n", - " 'FGF18',\n", - " 'FGF2',\n", - " 'FGF7',\n", - " 'FGF9',\n", - " 'FGFR1',\n", - " 'FGFR2',\n", - " 'FGFR3',\n", - " 'FGG',\n", - " 'FGR',\n", - " 'FHIT',\n", - " 'FKBP11',\n", - " 'FKBP5',\n", - " 'FLT1',\n", - " 'FLT3LG',\n", - " 'FN1',\n", - " 'FOS',\n", - " 'FOXF1',\n", - " 'FOXP3',\n", - " 'FPR1',\n", - " 'FYB1',\n", - " 'FYN',\n", - " 'FZD1',\n", - " 'FZD3',\n", - " 'FZD4',\n", - " 'FZD5',\n", - " 'FZD6',\n", - " 'FZD7',\n", - " 'FZD8',\n", - " 'G0S2',\n", - " 'G6PD',\n", - " 'GADD45B',\n", - " 'GAS6',\n", - " 'GATA3',\n", - " 'GC',\n", - " 'GCG',\n", - " 'GDF15',\n", - " 'GLUD1',\n", - " 'GLUL',\n", - " 'GNLY',\n", - " 'GPBAR1',\n", - " 'GPER1',\n", - " 'GPNMB',\n", - " 'GPR183',\n", - " 'GPX1',\n", - " 'GPX3',\n", - " 'GSK3B',\n", - " 'GSN',\n", - " 'GSTP1',\n", - " 'GZMA',\n", - " 'GZMB',\n", - " 'GZMH',\n", - " 'GZMK',\n", - " 'H2AZ1',\n", - " 'H4C3',\n", - " 'HAVCR2',\n", - " 'HBA1',\n", - " 'HBB',\n", - " 'HCAR2',\n", - " 'HCK',\n", - " 'HCST',\n", - " 'HDAC1',\n", - " 'HDAC11',\n", - " 'HDAC3',\n", - " 'HDAC4',\n", - " 'HDAC5',\n", - " 'HEXB',\n", - " 'HEY1',\n", - " 'HGF',\n", - " 'HIF1A',\n", - " 'HILPDA',\n", - " 'HLA-A',\n", - " 'HLA-DPA1',\n", - " 'HLA-DPB1',\n", - " 'HLA-DQA1',\n", - " 'HLA-DQB1',\n", - " 'HLA-DRA',\n", - " 'HLA-DRB1',\n", - " 'HMGB2',\n", - " 'HMGCS1',\n", - " 'HMGN2',\n", - " 'HPGDS',\n", - " 'HSD17B2',\n", - " 'HSP90AA1',\n", - " 'HSP90AB1',\n", - " 'HSP90B1',\n", - " 'HSPA1A',\n", - " 'HSPB1',\n", - " 'HSPG2',\n", - " 'HTT',\n", - " 'IAPP',\n", - " 'ICA1',\n", - " 'ICAM1',\n", - " 'ICAM2',\n", - " 'ICAM3',\n", - " 'ICOS',\n", - " 'ICOSLG',\n", - " 'IDO1',\n", - " 'IER3',\n", - " 'IFI27',\n", - " 'IFI44L',\n", - " 'IFI6',\n", - " 'IFIH1',\n", - " 'IFIT1',\n", - " 'IFIT3',\n", - " 'IFITM1',\n", - " 'IFITM3',\n", - " 'IFNA1',\n", - " 'IFNAR1',\n", - " 'IFNAR2',\n", - " 'IFNG',\n", - " 'IFNGR1',\n", - " 'IFNGR2',\n", - " 'IFNL3',\n", - " 'IGF1',\n", - " 'IGF1R',\n", - " 'IGF2',\n", - " 'IGF2R',\n", - " 'IGFBP3',\n", - " 'IGFBP5',\n", - " 'IGFBP6',\n", - " 'IGFBP7',\n", - " 'IGHA1',\n", - " 'IGHD',\n", - " 'IGHG1',\n", - " 'IGHG2',\n", - " 'IGHM',\n", - " 'IGKC',\n", - " 'IKZF3',\n", - " 'IL10',\n", - " 'IL10RA',\n", - " 'IL10RB',\n", - " 'IL11',\n", - " 'IL11RA',\n", - " 'IL12A',\n", - " 'IL12B',\n", - " 'IL12RB1',\n", - " 'IL12RB2',\n", - " 'IL13RA1',\n", - " 'IL15',\n", - " 'IL15RA',\n", - " 'IL16',\n", - " 'IL17A',\n", - " 'IL17B',\n", - " 'IL17D',\n", - " 'IL17RA',\n", - " 'IL17RB',\n", - " 'IL17RE',\n", - " 'IL18',\n", - " 'IL18R1',\n", - " 'IL1A',\n", - " 'IL1B',\n", - " 'IL1R1',\n", - " 'IL1R2',\n", - " 'IL1RAP',\n", - " 'IL1RL1',\n", - " 'IL1RN',\n", - " 'IL2',\n", - " 'IL20',\n", - " 'IL20RA',\n", - " 'IL22RA1',\n", - " 'IL23A',\n", - " 'IL24',\n", - " 'IL27RA',\n", - " 'IL2RA',\n", - " 'IL2RB',\n", - " 'IL2RG',\n", - " 'IL32',\n", - " 'IL33',\n", - " 'IL34',\n", - " 'IL36G',\n", - " 'IL3RA',\n", - " 'IL4R',\n", - " 'IL6',\n", - " 'IL6R',\n", - " 'IL6ST',\n", - " 'IL7',\n", - " 'IL7R',\n", - " 'INHA',\n", - " 'INHBA',\n", - " 'INHBB',\n", - " 'INS',\n", - " 'INSIG1',\n", - " 'INSR',\n", - " 'IRF3',\n", - " 'IRF4',\n", - " 'ISG15',\n", - " 'ITGA1',\n", - " 'ITGA2',\n", - " 'ITGA3',\n", - " 'ITGA5',\n", - " 'ITGA6',\n", - " 'ITGA8',\n", - " 'ITGA9',\n", - " 'ITGAE',\n", - " 'ITGAL',\n", - " 'ITGAM',\n", - " 'ITGAV',\n", - " 'ITGAX',\n", - " 'ITGB1',\n", - " 'ITGB2',\n", - " 'ITGB4',\n", - " 'ITGB5',\n", - " 'ITGB6',\n", - " 'ITGB8',\n", - " 'ITK',\n", - " 'ITM2A',\n", - " 'ITM2B',\n", - " 'JAG1',\n", - " 'JAK1',\n", - " 'JAK2',\n", - " 'JCHAIN',\n", - " 'JUN',\n", - " 'JUNB',\n", - " 'KDR',\n", - " 'KIT',\n", - " 'KITLG',\n", - " 'KLF2',\n", - " 'KLK3',\n", - " 'KLRB1',\n", - " 'KLRF1',\n", - " 'KLRK1',\n", - " 'KRAS',\n", - " 'KRT1',\n", - " 'KRT10',\n", - " 'KRT13',\n", - " 'KRT14',\n", - " 'KRT15',\n", - " 'KRT16',\n", - " 'KRT17',\n", - " 'KRT18',\n", - " 'KRT19',\n", - " 'KRT20',\n", - " 'KRT23',\n", - " 'KRT4',\n", - " 'KRT5',\n", - " 'KRT6A',\n", - " 'KRT7',\n", - " 'KRT8',\n", - " 'KRT80',\n", - " 'KRT86',\n", - " 'LAG3',\n", - " 'LAIR1',\n", - " 'LAMA4',\n", - " 'LAMP2',\n", - " 'LAMP3',\n", - " 'LCN2',\n", - " 'LDB2',\n", - " 'LDHA',\n", - " 'LDLR',\n", - " 'LEFTY1',\n", - " 'LEP',\n", - " 'LGALS1',\n", - " 'LGALS3',\n", - " 'LGALS3BP',\n", - " 'LGALS9',\n", - " 'LGR5',\n", - " 'LIF',\n", - " 'LIFR',\n", - " 'LINC01781',\n", - " 'LINC01857',\n", - " 'LINC02446',\n", - " 'LMNA',\n", - " 'LPAR5',\n", - " 'LTB',\n", - " 'LTBR',\n", - " 'LTF',\n", - " 'LUM',\n", - " 'LY6D',\n", - " 'LY75',\n", - " 'LYN',\n", - " 'LYVE1',\n", - " 'LYZ',\n", - " 'MAF',\n", - " 'MALAT1',\n", - " 'MAML2',\n", - " 'MAP1LC3B',\n", - " 'MAP2K1',\n", - " 'MAPK13',\n", - " 'MAPK14',\n", - " 'MARCKSL1',\n", - " 'MARCO',\n", - " 'MB',\n", - " 'MECOM',\n", - " 'MEG3',\n", - " 'MERTK',\n", - " 'MET',\n", - " 'MFAP5',\n", - " 'MGP',\n", - " 'MIF',\n", - " 'MIR4435-2HG',\n", - " 'MKI67',\n", - " 'MMP1',\n", - " 'MMP12',\n", - " 'MMP14',\n", - " 'MMP19',\n", - " 'MMP2',\n", - " 'MMP7',\n", - " 'MMP9',\n", - " 'MPO',\n", - " 'MRC1',\n", - " 'MRC2',\n", - " 'MS4A1',\n", - " 'MS4A4A',\n", - " 'MS4A6A',\n", - " 'MSMB',\n", - " 'MSR1',\n", - " 'MST1R',\n", - " 'MT1X',\n", - " 'MT2A',\n", - " 'MTOR',\n", - " 'MX1',\n", - " 'MXRA8',\n", - " 'MYC',\n", - " 'MYH11',\n", - " 'MYH6',\n", - " 'MYL12A',\n", - " 'MYL4',\n", - " 'MYL7',\n", - " 'MYL9',\n", - " 'MZB1',\n", - " 'MZT2A',\n", - " 'NACA',\n", - " 'NANOG',\n", - " 'NCAM1',\n", - " 'NCR1',\n", - " 'NDRG1',\n", - " 'NDUFA4L2',\n", - " 'NEAT1',\n", - " 'NELL2',\n", - " 'NFKB1',\n", - " 'NFKBIA',\n", - " 'NGFR',\n", - " 'NKG7',\n", - " 'NLRC4',\n", - " 'NLRC5',\n", - " 'NLRP1',\n", - " 'NLRP2',\n", - " 'NLRP3',\n", - " 'NOD2',\n", - " 'NOSIP',\n", - " 'NOTCH1',\n", - " 'NOTCH2',\n", - " 'NOTCH3',\n", - " 'NPPC',\n", - " 'NPR1',\n", - " 'NPR2',\n", - " 'NPR3',\n", - " 'NR1H2',\n", - " 'NR1H3',\n", - " 'NR2F2',\n", - " 'NR3C1',\n", - " 'NRG1',\n", - " 'NRXN1',\n", - " 'NRXN3',\n", - " 'NTRK2',\n", - " 'NUPR1',\n", - " 'NUSAP1',\n", - " 'OAS1',\n", - " 'OAS2',\n", - " 'OAS3',\n", - " 'OASL',\n", - " 'OLFM4',\n", - " 'OLR1',\n", - " 'OSM',\n", - " 'OSMR',\n", - " 'P2RX5',\n", - " 'PARP1',\n", - " 'PCNA',\n", - " 'PDCD1',\n", - " 'PDCD1LG2',\n", - " 'PDGFA',\n", - " 'PDGFB',\n", - " 'PDGFC',\n", - " 'PDGFD',\n", - " 'PDGFRA',\n", - " 'PDGFRB',\n", - " 'PDS5A',\n", - " 'PECAM1',\n", - " 'PF4',\n", - " 'PFN1',\n", - " 'PGF',\n", - " 'PGK1',\n", - " 'PGR',\n", - " 'PHLDA2',\n", - " 'PIGR',\n", - " 'PLAC8',\n", - " 'PLAC9',\n", - " 'PLCG1',\n", - " 'PLD3',\n", - " 'PNOC',\n", - " 'POU5F1',\n", - " 'PPARA',\n", - " 'PPARD',\n", - " 'PPARG',\n", - " 'PPIA',\n", - " 'PRF1',\n", - " 'PROX1',\n", - " 'PRSS2',\n", - " 'PRTN3',\n", - " 'PSAP',\n", - " 'PSCA',\n", - " 'PSD3',\n", - " 'PTEN',\n", - " 'PTGDR2',\n", - " 'PTGDS',\n", - " 'PTGES',\n", - " 'PTGES2',\n", - " 'PTGES3',\n", - " 'PTGIS',\n", - " 'PTGS1',\n", - " 'PTGS2',\n", - " 'PTK2',\n", - " 'PTK6',\n", - " 'PTPRC',\n", - " 'PTPRCAP',\n", - " 'PTTG1',\n", - " 'PXDN',\n", - " 'QRFPR',\n", - " 'RAC1',\n", - " 'RAC2',\n", - " 'RACK1',\n", - " 'RAG1',\n", - " 'RAMP1',\n", - " 'RAMP2',\n", - " 'RAMP3',\n", - " 'RARA',\n", - " 'RARB',\n", - " 'RARG',\n", - " 'RARRES1',\n", - " 'RARRES2',\n", - " 'RB1',\n", - " 'RBM47',\n", - " 'RBPJ',\n", - " 'REG1A',\n", - " 'RELA',\n", - " 'RELT',\n", - " 'RGCC',\n", - " 'RGS1',\n", - " 'RGS13',\n", - " 'RGS2',\n", - " 'RGS5',\n", - " 'RNF43',\n", - " 'ROR1',\n", - " 'RORA',\n", - " 'RPL21',\n", - " 'RPL22',\n", - " 'RPL32',\n", - " 'RPL34',\n", - " 'RPL37',\n", - " 'RPS4Y1',\n", - " 'RSPO3',\n", - " 'RUNX3',\n", - " 'RXRA',\n", - " 'RXRB',\n", - " 'RYK',\n", - " 'RYR2',\n", - " 'S100A10',\n", - " 'S100A2',\n", - " 'S100A4',\n", - " 'S100A6',\n", - " 'S100A8',\n", - " 'S100A9',\n", - " 'S100B',\n", - " 'S100P',\n", - " 'SAA1',\n", - " 'SAT1',\n", - " 'SCG5',\n", - " 'SCGB3A1',\n", - " 'SEC23A',\n", - " 'SEC61G',\n", - " 'SELENOP',\n", - " 'SELL',\n", - " 'SELPLG',\n", - " 'SERPINA1',\n", - " 'SERPINA3',\n", - " 'SERPINB5',\n", - " 'SERPINH1',\n", - " 'SFN',\n", - " 'SH3BGRL3',\n", - " 'SIGIRR',\n", - " 'SLA',\n", - " 'SLC2A1',\n", - " 'SLC40A1',\n", - " 'SLCO2B1',\n", - " 'SLPI',\n", - " 'SMAD2',\n", - " 'SMAD3',\n", - " 'SMAD4',\n", - " 'SMARCB1',\n", - " 'SMO',\n", - " 'SNAI1',\n", - " 'SNAI2',\n", - " 'SOD1',\n", - " 'SOD2',\n", - " 'SORBS1',\n", - " 'SOSTDC1',\n", - " 'SOX2',\n", - " 'SOX4',\n", - " 'SOX9',\n", - " 'SPARCL1',\n", - " 'SPINK1',\n", - " 'SPOCK2',\n", - " 'SPP1',\n", - " 'SPRY2',\n", - " 'SPRY4',\n", - " 'SQLE',\n", - " 'SQSTM1',\n", - " 'SRC',\n", - " 'SREBF1',\n", - " 'SRGN',\n", - " 'SRSF2',\n", - " 'SST',\n", - " 'ST6GAL1',\n", - " 'ST6GALNAC3',\n", - " 'STAT1',\n", - " 'STAT3',\n", - " 'STAT4',\n", - " 'STAT5A',\n", - " 'STAT5B',\n", - " 'STAT6',\n", - " 'STMN1',\n", - " 'SYK',\n", - " 'TACSTD2',\n", - " 'TAGLN',\n", - " 'TAP1',\n", - " 'TAP2',\n", - " 'TBX21',\n", - " 'TCAP',\n", - " 'TCF7',\n", - " 'TCL1A',\n", - " 'TEK',\n", - " 'TFEB',\n", - " 'TGFB1',\n", - " 'TGFB2',\n", - " 'TGFB3',\n", - " 'TGFBI',\n", - " 'TGFBR1',\n", - " 'TGFBR2',\n", - " 'THBS1',\n", - " 'THBS2',\n", - " 'THSD4',\n", - " 'TIE1',\n", - " 'TIGIT',\n", - " 'TIMP1',\n", - " 'TLR1',\n", - " 'TLR2',\n", - " 'TLR3',\n", - " 'TLR4',\n", - " 'TLR5',\n", - " 'TLR7',\n", - " 'TLR8',\n", - " 'TM4SF1',\n", - " 'TNF',\n", - " 'TNFAIP6',\n", - " 'TNFRSF10A',\n", - " 'TNFRSF10B',\n", - " 'TNFRSF10D',\n", - " 'TNFRSF11A',\n", - " 'TNFRSF11B',\n", - " 'TNFRSF12A',\n", - " 'TNFRSF13B',\n", - " 'TNFRSF14',\n", - " 'TNFRSF17',\n", - " 'TNFRSF18',\n", - " 'TNFRSF19',\n", - " 'TNFRSF1A',\n", - " 'TNFRSF1B',\n", - " 'TNFRSF21',\n", - " 'TNFRSF4',\n", - " 'TNFRSF9',\n", - " 'TNFSF10',\n", - " 'TNFSF12',\n", - " 'TNFSF13B',\n", - " 'TNFSF14',\n", - " 'TNFSF15',\n", - " 'TNFSF4',\n", - " 'TNFSF8',\n", - " 'TNFSF9',\n", - " 'TNNC1',\n", - " 'TNNT2',\n", - " 'TNXB',\n", - " 'TOP2A',\n", - " 'TOX',\n", - " 'TP53',\n", - " 'TPI1',\n", - " 'TPM1',\n", - " 'TPM2',\n", - " 'TPSAB1',\n", - " 'TPT1',\n", - " 'TSC22D1',\n", - " 'TSHZ2',\n", - " 'TTN',\n", - " 'TTR',\n", - " 'TUBB',\n", - " 'TUBB4B',\n", - " 'TWIST1',\n", - " 'TWIST2',\n", - " 'TXK',\n", - " 'TYK2',\n", - " 'TYMS',\n", - " 'TYROBP',\n", - " 'UBA52',\n", - " 'UBE2C',\n", - " 'UPK3A',\n", - " 'VCAM1',\n", - " 'VCAN',\n", - " 'VEGFA',\n", - " 'VEGFB',\n", - " 'VEGFC',\n", - " 'VEGFD',\n", - " 'VHL',\n", - " 'VIM',\n", - " 'VPREB3',\n", - " 'VSIR',\n", - " 'VTN',\n", - " 'VWA1',\n", - " 'VWF',\n", - " 'WIF1',\n", - " 'WNT10B',\n", - " 'WNT11',\n", - " 'WNT3',\n", - " 'WNT5A',\n", - " 'WNT5B',\n", - " 'WNT7A',\n", - " 'WNT7B',\n", - " 'WNT9A',\n", - " 'XBP1',\n", - " 'XCL1',\n", - " 'XKR4',\n", - " 'YBX3',\n", - " 'YES1',\n", - " ...]" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression = [\"fov\", \"spot_id\"]\n", - "genes_name_lst = (individual_cell_gene_expression.columns)[5:].tolist()\n", - "spot_gene_expression = spot_gene_expression + genes_name_lst\n", - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
\n", - "

0 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, AATK, ABL1, ABL2, ACACB, ACE, ACKR1, ACKR3, ACKR4, ACP5, ACTA2, ACTG2, ACVR1, ACVR1B, ACVR2A, ACVRL1, ADGRA2, ADGRA3, ADGRE2, ADGRE5, ADGRF1, ADGRF3, ADGRF5, ADGRG1, ADGRG3, ADGRG5, ADGRG6, ADGRL1, ADGRL2, ADGRL4, ADGRV1, ADIPOQ, ADIRF, ADM2, AGR2, AHI1, AHR, AIF1, AKT1, ALCAM, ALOX5AP, ANGPT1, ANGPT2, ANGPTL1, ANKRD1, ANXA1, ANXA2, ANXA4, APOA1, APOC1, APOD, APOE, APP, AQP3, AR, AREG, ARF1, ARG1, ARHGDIB, ARID5B, ATF3, ATG10, ATG12, ATG5, ATM, ATP5F1B, ATP5F1E, ATR, AXL, AZGP1, AZU1, B2M, B3GNT7, BAG3, BASP1, BAX, BBLN, BCL2, BCL2L1, BECN1, BEST1, BGN, BID, BIRC3, BIRC5, BMP1, BMP2, BMP3, BMP4, BMP5, BMP7, BMPR1A, BMPR2, BRAF, BRCA1, BST1, BST2, BTF3, BTG1, ...]\n", - "Index: []\n", - "\n", - "[0 rows x 1002 columns]" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression = pd.DataFrame(columns = spot_gene_expression)\n", - "spot_gene_expression\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_gene_expression(fov_expression, spot_id):\n", - " genes_lst = (fov_expression.columns)[5:].tolist()\n", - " assert len(genes_lst) == 1000\n", - " \n", - " cell_id_lst = fov_expression[(fov_expression['spot_id']==spot_id)][\"cell_ID\"].tolist()\n", - " \n", - " cell_gene_expression_total = len(genes_lst)*[0]\n", - " for cell_id in cell_id_lst:\n", - " cell_gene_expression = fov_expression[(fov_expression['cell_ID'] == cell_id)]\n", - " \n", - " cell_gene_expression = cell_gene_expression.values.tolist()[0][5:]\n", - " cell_gene_expression_total = np.sum([cell_gene_expression_total, cell_gene_expression], axis=0).tolist()\n", - "\n", - " return cell_gene_expression_total\n", - " \n", - " \n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 100\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 101\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 102\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 103\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 104\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 105\n", - "fov_id: 106\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 107\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 108\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 109\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 10\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 110\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 111\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 112\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 113\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 114\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 116\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 117\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 118\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 119\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 120\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 121\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 122\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 123\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 124\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 125\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 126\n", - "fov_id: 127\n", - "fov_id: 128\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 129\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 12\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 130\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 131\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 132\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 133\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 134\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 135\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 136\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 137\n", - "fov_id: 138\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 139\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 13\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 140\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 141\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 142\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 143\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 144\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 145\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 146\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 147\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 149\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 14\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 150\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 151\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 152\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 153\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 154\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 155\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 156\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 157\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 158\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 159\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 15\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 160\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 161\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 162\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 163\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 164\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 165\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 166\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 167\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 169\n", - "fov_id: 16\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 170\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 171\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 172\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 173\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 174\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 176\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 177\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 178\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 179\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 17\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 182\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 184\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 185\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 186\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 187\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 188\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 189\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 18\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 190\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 191\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 192\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 193\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 194\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 195\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 197\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 198\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 199\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 200\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 201\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 202\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 203\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 204\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 205\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 207\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 208\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 209\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 20\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 210\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 211\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 212\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 214\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 215\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 216\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 217\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 219\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 220\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 221\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 223\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 224\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 225\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 226\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 227\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 228\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 229\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 22\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 230\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 231\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 234\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 235\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 236\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 237\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 238\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 239\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 23\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 240\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 241\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 242\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 243\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 244\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 245\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 246\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 247\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 248\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 249\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 24\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 250\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 251\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 253\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 254\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 255\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 256\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 257\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 258\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 259\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 25\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 260\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 261\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 262\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 263\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 264\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 265\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 266\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 269\n", - "fov_id: 26\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 270\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 271\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 272\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 273\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 274\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 275\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 276\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 277\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 278\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 279\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 27\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 280\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 281\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 282\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 284\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 286\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 288\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 289\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 28\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 290\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 291\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 293\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 294\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 295\n", - "fov_id: 29\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 30\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 31\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 32\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 33\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 34\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 35\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 36\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 37\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 38\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 39\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 3\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 40\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 41\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 44\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 45\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 46\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 47\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 48\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 49\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 4\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 50\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 51\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 52\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 53\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 54\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 55\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 56\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 57\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 58\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 59\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 61\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 62\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 64\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 65\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 66\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 67\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 68\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 69\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 6\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 70\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 71\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 72\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 73\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 74\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 75\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 76\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 77\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 78\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 79\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 7\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 80\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 81\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 82\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 83\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 85\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 86\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 87\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 89\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 8\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 90\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 92\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 93\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 94\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 95\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 96\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 97\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 98\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 99\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 168\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 183\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 196\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 213\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 218\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 232\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 252\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 267\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 283\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 285\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 296\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 43\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 88\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 148\n", - "fov_id: 175\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 180\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 181\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 206\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 222\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 233\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 268\n", - "fov_id: 292\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 297\n", - "fov_id: 298\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 299\n", - "fov_id: 302\n", - "fov_id: 91\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 287\n", - "fov_id: 304\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov_id: 301\n", - "fov_id: 42\n", - "fov_id: 84\n", - "fov_id: 21\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - "/tmp/ipykernel_15990/958520924.py:15: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_gene_expression = individual_cell_gene_expression[(individual_cell_gene_expression['fov'] == fov_id)]\n", - " print(\"fov_id:\", fov_id)\n", - " \n", - " \n", - " for spot_id in spot_id_lst:\n", - " to_append = [fov_id, spot_id]\n", - " spot_gene_express = get_spot_gene_expression(fov_gene_expression, spot_id)\n", - " \n", - " to_append = to_append + spot_gene_express\n", - " a_series = pd.Series(to_append, index = spot_gene_expression.columns)\n", - " spot_gene_expression = spot_gene_expression.append(a_series, ignore_index=True)\n", - " \n", - "# print(spot_gene_express, len(spot_gene_express))\n", - "\n", - "\n", - "\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
0100.01.012.010.07.080.07.08.06.010.0...7.08.04.0160.09.06.020.033.076.026.0
1100.02.017.010.016.0117.010.010.025.012.0...8.019.05.0212.019.014.037.033.0131.058.0
2100.03.014.017.021.066.08.03.019.011.0...14.016.010.0152.012.09.024.033.0112.077.0
3100.04.013.016.016.080.04.05.017.012.0...10.015.07.0155.012.07.031.031.070.040.0
4100.05.013.012.017.063.013.05.011.013.0...3.014.05.0141.012.06.021.022.077.031.0
..................................................................
270421.05.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270521.06.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270621.07.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270721.08.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270821.09.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

2709 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", - "0 100.0 1.0 12.0 10.0 7.0 80.0 7.0 8.0 6.0 10.0 ... \n", - "1 100.0 2.0 17.0 10.0 16.0 117.0 10.0 10.0 25.0 12.0 ... \n", - "2 100.0 3.0 14.0 17.0 21.0 66.0 8.0 3.0 19.0 11.0 ... \n", - "3 100.0 4.0 13.0 16.0 16.0 80.0 4.0 5.0 17.0 12.0 ... \n", - "4 100.0 5.0 13.0 12.0 17.0 63.0 13.0 5.0 11.0 13.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "2704 21.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2705 21.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2706 21.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2707 21.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2708 21.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 7.0 8.0 4.0 160.0 9.0 6.0 20.0 33.0 76.0 26.0 \n", - "1 8.0 19.0 5.0 212.0 19.0 14.0 37.0 33.0 131.0 58.0 \n", - "2 14.0 16.0 10.0 152.0 12.0 9.0 24.0 33.0 112.0 77.0 \n", - "3 10.0 15.0 7.0 155.0 12.0 7.0 31.0 31.0 70.0 40.0 \n", - "4 3.0 14.0 5.0 141.0 12.0 6.0 21.0 22.0 77.0 31.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "2704 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2705 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2706 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2707 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2708 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - "[2709 rows x 1002 columns]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAATKABL1ABL2ACACBACEACKR1ACKR3ACKR4...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
0100.01.012.010.07.080.07.08.06.010.0...7.08.04.0160.09.06.020.033.076.026.0
1100.02.017.010.016.0117.010.010.025.012.0...8.019.05.0212.019.014.037.033.0131.058.0
2100.03.014.017.021.066.08.03.019.011.0...14.016.010.0152.012.09.024.033.0112.077.0
3100.04.013.016.016.080.04.05.017.012.0...10.015.07.0155.012.07.031.031.070.040.0
4100.05.013.012.017.063.013.05.011.013.0...3.014.05.0141.012.06.021.022.077.031.0
..................................................................
270421.05.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270521.06.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270621.07.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270721.08.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
270821.09.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", - "

2709 rows × 1002 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id AATK ABL1 ABL2 ACACB ACE ACKR1 ACKR3 ACKR4 ... \\\n", - "0 100.0 1.0 12.0 10.0 7.0 80.0 7.0 8.0 6.0 10.0 ... \n", - "1 100.0 2.0 17.0 10.0 16.0 117.0 10.0 10.0 25.0 12.0 ... \n", - "2 100.0 3.0 14.0 17.0 21.0 66.0 8.0 3.0 19.0 11.0 ... \n", - "3 100.0 4.0 13.0 16.0 16.0 80.0 4.0 5.0 17.0 12.0 ... \n", - "4 100.0 5.0 13.0 12.0 17.0 63.0 13.0 5.0 11.0 13.0 ... \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "2704 21.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2705 21.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2706 21.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2707 21.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "2708 21.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n", - "\n", - " WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 ZBTB16 ZFP36 \n", - "0 7.0 8.0 4.0 160.0 9.0 6.0 20.0 33.0 76.0 26.0 \n", - "1 8.0 19.0 5.0 212.0 19.0 14.0 37.0 33.0 131.0 58.0 \n", - "2 14.0 16.0 10.0 152.0 12.0 9.0 24.0 33.0 112.0 77.0 \n", - "3 10.0 15.0 7.0 155.0 12.0 7.0 31.0 31.0 70.0 40.0 \n", - "4 3.0 14.0 5.0 141.0 12.0 6.0 21.0 22.0 77.0 31.0 \n", - "... ... ... ... ... ... ... ... ... ... ... \n", - "2704 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2705 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2706 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2707 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "2708 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - "[2709 rows x 1002 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "spot_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "spot_gene_expression.to_csv('../health/new/spot_gene_expression.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Ground Truth" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
00100410Hep.30.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
1110031078Hep.41.02.00.02.00.0...0.00.00.01.00.00.01.00.04.00.0
2210061135Inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
331007267Hep.50.00.00.01.00.0...0.00.00.02.00.00.01.00.00.00.0
441008732Central.venous.LSECs0.00.00.00.00.0...0.00.00.00.00.00.01.00.01.00.0
..................................................................
33287233287284262CD3+.alpha.beta.T.cells0.00.00.00.01.0...0.00.01.00.01.00.01.00.00.00.0
33287333287384373Non.inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
33287433287484374Non.inflammatory.macrophages0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
33287533287584377Portal.endothelial.cells0.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
3328763328762117CD3+.alpha.beta.T.cells0.00.00.00.00.0...0.00.00.00.00.00.01.00.00.00.0
\n", - "

332877 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK \\\n", - "0 0 100 4 10 Hep.3 0.0 \n", - "1 1 100 3 1078 Hep.4 1.0 \n", - "2 2 100 6 1135 Inflammatory.macrophages 0.0 \n", - "3 3 100 7 267 Hep.5 0.0 \n", - "4 4 100 8 732 Central.venous.LSECs 0.0 \n", - "... ... ... ... ... ... ... \n", - "332872 332872 84 2 62 CD3+.alpha.beta.T.cells 0.0 \n", - "332873 332873 84 3 73 Non.inflammatory.macrophages 0.0 \n", - "332874 332874 84 3 74 Non.inflammatory.macrophages 0.0 \n", - "332875 332875 84 3 77 Portal.endothelial.cells 0.0 \n", - "332876 332876 21 1 7 CD3+.alpha.beta.T.cells 0.0 \n", - "\n", - " ABL1 ABL2 ACACB ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 \\\n", - "0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "1 2.0 0.0 2.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "3 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "332872 0.0 0.0 0.0 1.0 ... 0.0 0.0 1.0 0.0 1.0 0.0 \n", - "332873 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332874 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332875 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "332876 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " YBX3 YES1 ZBTB16 ZFP36 \n", - "0 0.0 0.0 0.0 0.0 \n", - "1 1.0 0.0 4.0 0.0 \n", - "2 0.0 0.0 0.0 0.0 \n", - "3 1.0 0.0 0.0 0.0 \n", - "4 1.0 0.0 1.0 0.0 \n", - "... ... ... ... ... \n", - "332872 1.0 0.0 0.0 0.0 \n", - "332873 0.0 0.0 0.0 0.0 \n", - "332874 0.0 0.0 0.0 0.0 \n", - "332875 0.0 0.0 0.0 0.0 \n", - "332876 1.0 0.0 0.0 0.0 \n", - "\n", - "[332877 rows x 1005 columns]" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "individual_cell_gene_expression" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{1,\n", - " 2,\n", - " 3,\n", - " 4,\n", - " 5,\n", - " 6,\n", - " 7,\n", - " 8,\n", - " 9,\n", - " 10,\n", - " 11,\n", - " 12,\n", - " 13,\n", - " 14,\n", - " 15,\n", - " 16,\n", - " 17,\n", - " 18,\n", - " 19,\n", - " 20,\n", - " 21,\n", - " 22,\n", - " 23,\n", - " 24,\n", - " 25,\n", - " 26,\n", - " 27,\n", - " 28,\n", - " 29,\n", - " 30,\n", - " 31,\n", - " 32,\n", - " 33,\n", - " 34,\n", - " 35,\n", - " 36,\n", - " 37,\n", - " 38,\n", - " 39,\n", - " 40,\n", - " 41,\n", - " 42,\n", - " 43,\n", - " 44,\n", - " 45,\n", - " 46,\n", - " 47,\n", - " 48,\n", - " 49,\n", - " 50,\n", - " 51,\n", - " 52,\n", - " 53,\n", - " 54,\n", - " 55,\n", - " 56,\n", - " 57,\n", - " 58,\n", - " 59,\n", - " 60,\n", - " 61,\n", - " 62,\n", - " 64,\n", - " 65,\n", - " 66,\n", - " 67,\n", - " 68,\n", - " 69,\n", - " 70,\n", - " 71,\n", - " 72,\n", - " 73,\n", - " 74,\n", - " 75,\n", - " 76,\n", - " 77,\n", - " 78,\n", - " 79,\n", - " 80,\n", - " 81,\n", - " 82,\n", - " 83,\n", - " 84,\n", - " 85,\n", - " 86,\n", - " 87,\n", - " 88,\n", - " 89,\n", - " 90,\n", - " 91,\n", - " 92,\n", - " 93,\n", - " 94,\n", - " 95,\n", - " 96,\n", - " 97,\n", - " 98,\n", - " 99,\n", - " 100,\n", - " 101,\n", - " 102,\n", - " 103,\n", - " 104,\n", - " 105,\n", - " 106,\n", - " 107,\n", - " 108,\n", - " 109,\n", - " 110,\n", - " 111,\n", - " 112,\n", - " 113,\n", - " 114,\n", - " 115,\n", - " 116,\n", - " 117,\n", - " 118,\n", - " 119,\n", - " 120,\n", - " 121,\n", - " 122,\n", - " 123,\n", - " 124,\n", - " 125,\n", - " 126,\n", - " 127,\n", - " 128,\n", - " 129,\n", - " 130,\n", - " 131,\n", - " 132,\n", - " 133,\n", - " 134,\n", - " 135,\n", - " 136,\n", - " 137,\n", - " 138,\n", - " 139,\n", - " 140,\n", - " 141,\n", - " 142,\n", - " 143,\n", - " 144,\n", - " 145,\n", - " 146,\n", - " 147,\n", - " 148,\n", - " 149,\n", - " 150,\n", - " 151,\n", - " 152,\n", - " 153,\n", - " 154,\n", - " 155,\n", - " 156,\n", - " 157,\n", - " 158,\n", - " 159,\n", - " 160,\n", - " 161,\n", - " 162,\n", - " 163,\n", - " 164,\n", - " 165,\n", - " 166,\n", - " 167,\n", - " 168,\n", - " 169,\n", - " 170,\n", - " 171,\n", - " 172,\n", - " 173,\n", - " 174,\n", - " 175,\n", - " 176,\n", - " 177,\n", - " 178,\n", - " 179,\n", - " 180,\n", - " 181,\n", - " 182,\n", - " 183,\n", - " 184,\n", - " 185,\n", - " 186,\n", - " 187,\n", - " 188,\n", - " 189,\n", - " 190,\n", - " 191,\n", - " 192,\n", - " 193,\n", - " 194,\n", - " 195,\n", - " 196,\n", - " 197,\n", - " 198,\n", - " 199,\n", - " 200,\n", - " 201,\n", - " 202,\n", - " 203,\n", - " 204,\n", - " 205,\n", - " 206,\n", - " 207,\n", - " 208,\n", - " 209,\n", - " 210,\n", - " 211,\n", - " 212,\n", - " 213,\n", - " 214,\n", - " 215,\n", - " 216,\n", - " 217,\n", - " 218,\n", - " 219,\n", - " 220,\n", - " 221,\n", - " 222,\n", - " 223,\n", - " 224,\n", - " 225,\n", - " 226,\n", - " 227,\n", - " 228,\n", - " 229,\n", - " 230,\n", - " 231,\n", - " 232,\n", - " 233,\n", - " 234,\n", - " 235,\n", - " 236,\n", - " 237,\n", - " 238,\n", - " 239,\n", - " 240,\n", - " 241,\n", - " 242,\n", - " 243,\n", - " 244,\n", - " 245,\n", - " 246,\n", - " 247,\n", - " 248,\n", - " 249,\n", - " 250,\n", - " 251,\n", - " 252,\n", - " 253,\n", - " 254,\n", - " 255,\n", - " 256,\n", - " 257,\n", - " 258,\n", - " 259,\n", - " 260,\n", - " 261,\n", - " 262,\n", - " 263,\n", - " 264,\n", - " 265,\n", - " 266,\n", - " 267,\n", - " 268,\n", - " 269,\n", - " 270,\n", - " 271,\n", - " 272,\n", - " 273,\n", - " 274,\n", - " 275,\n", - " 276,\n", - " 277,\n", - " 278,\n", - " 279,\n", - " 280,\n", - " 281,\n", - " 282,\n", - " 283,\n", - " 284,\n", - " 285,\n", - " 286,\n", - " 287,\n", - " 288,\n", - " 289,\n", - " 290,\n", - " 291,\n", - " 292,\n", - " 293,\n", - " 294,\n", - " 295,\n", - " 296,\n", - " 297,\n", - " 298,\n", - " 299,\n", - " 301,\n", - " 302,\n", - " 304}" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "set(individual_cell_gene_expression[\"fov\"].tolist())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'Hep.3': 21274,\n", - " 'Hep.4': 125997,\n", - " 'Inflammatory.macrophages': 5882,\n", - " 'Hep.5': 89334,\n", - " 'Central.venous.LSECs': 4416,\n", - " 'CD3+.alpha.beta.T.cells': 13664,\n", - " 'Non.inflammatory.macrophages': 9556,\n", - " 'Mature.B.cells': 2928,\n", - " 'Erthyroid.cells': 1044,\n", - " 'NK.like.cells': 2752,\n", - " 'Hep.6': 6183,\n", - " 'gamma.delta.T.cells.1': 3181,\n", - " 'Stellate.cells': 16482,\n", - " 'Hep.1': 17364,\n", - " 'Cholangiocytes': 4783,\n", - " 'Portal.endothelial.cells': 537,\n", - " 'Antibody.secreting.B.cells': 1413,\n", - " 'Periportal.LSECs': 6083,\n", - " 'NotDet': 4}" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sample_1_dic = {}\n", - "for key in individual_cell_gene_expression[\"cellType\"].tolist():\n", - " if key not in sample_1_dic:\n", - " sample_1_dic[key] = 1\n", - " else:\n", - " sample_1_dic[key] = sample_1_dic[key] + 1\n", - "\n", - "sample_1_dic\n" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0fovspot_idcell_IDcellTypeAATKABL1ABL2ACACBACE...WNT7AWNT7BWNT9AXBP1XCL1XKR4YBX3YES1ZBTB16ZFP36
296927296927831147Hep.50.00.00.00.00.0...0.00.01.00.00.00.00.00.00.00.0
29692829692882474Hep.50.00.00.00.00.0...0.00.00.01.00.00.00.00.01.00.0
29692929692988482Hep.30.00.00.00.00.0...0.00.00.00.01.00.00.00.00.01.0
29693029693082518Hep.50.00.00.00.00.0...0.00.00.01.00.00.00.00.00.00.0
29693129693183880Hep.40.00.02.00.00.0...0.00.00.03.00.00.00.00.01.00.0
..................................................................
2982302982308499Hep.50.00.00.00.00.0...0.00.00.02.00.00.00.00.01.00.0
29823129823189991Hep.50.00.00.01.00.0...0.00.00.00.01.00.02.00.01.00.0
29823229823289992NK.like.cells0.00.00.01.00.0...0.00.00.00.00.00.00.00.00.00.0
29823329823386994Hep.50.00.00.00.00.0...0.00.01.00.00.00.01.00.01.00.0
29823429823483998Hep.40.00.00.01.00.0...0.00.00.00.00.00.00.00.03.00.0
\n", - "

1308 rows × 1005 columns

\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 fov spot_id cell_ID cellType AATK ABL1 ABL2 \\\n", - "296927 296927 8 3 1147 Hep.5 0.0 0.0 0.0 \n", - "296928 296928 8 2 474 Hep.5 0.0 0.0 0.0 \n", - "296929 296929 8 8 482 Hep.3 0.0 0.0 0.0 \n", - "296930 296930 8 2 518 Hep.5 0.0 0.0 0.0 \n", - "296931 296931 8 3 880 Hep.4 0.0 0.0 2.0 \n", - "... ... ... ... ... ... ... ... ... \n", - "298230 298230 8 4 99 Hep.5 0.0 0.0 0.0 \n", - "298231 298231 8 9 991 Hep.5 0.0 0.0 0.0 \n", - "298232 298232 8 9 992 NK.like.cells 0.0 0.0 0.0 \n", - "298233 298233 8 6 994 Hep.5 0.0 0.0 0.0 \n", - "298234 298234 8 3 998 Hep.4 0.0 0.0 0.0 \n", - "\n", - " ACACB ACE ... WNT7A WNT7B WNT9A XBP1 XCL1 XKR4 YBX3 YES1 \\\n", - "296927 0.0 0.0 ... 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 \n", - "296928 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", - "296929 0.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 \n", - "296930 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 \n", - "296931 0.0 0.0 ... 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... ... ... ... ... ... ... ... \n", - "298230 0.0 0.0 ... 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 \n", - "298231 1.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 0.0 2.0 0.0 \n", - "298232 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "298233 0.0 0.0 ... 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 \n", - "298234 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", - "\n", - " ZBTB16 ZFP36 \n", - "296927 0.0 0.0 \n", - "296928 1.0 0.0 \n", - "296929 0.0 1.0 \n", - "296930 0.0 0.0 \n", - "296931 1.0 0.0 \n", - "... ... ... \n", - "298230 1.0 0.0 \n", - "298231 1.0 0.0 \n", - "298232 0.0 0.0 \n", - "298233 1.0 0.0 \n", - "298234 3.0 0.0 \n", - "\n", - "[1308 rows x 1005 columns]" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "CosMx_cell_type_sample_1_fov_1 = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==8)]\n", - "CosMx_cell_type_sample_1_fov_1" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "19\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Antibody.secreting.B.cells',\n", - " 'CD3+.alpha.beta.T.cells',\n", - " 'Central.venous.LSECs',\n", - " 'Cholangiocytes',\n", - " 'Erthyroid.cells',\n", - " 'Hep.1',\n", - " 'Hep.3',\n", - " 'Hep.4',\n", - " 'Hep.5',\n", - " 'Hep.6',\n", - " 'Inflammatory.macrophages',\n", - " 'Mature.B.cells',\n", - " 'NK.like.cells',\n", - " 'Non.inflammatory.macrophages',\n", - " 'NotDet',\n", - " 'Periportal.LSECs',\n", - " 'Portal.endothelial.cells',\n", - " 'Stellate.cells',\n", - " 'gamma.delta.T.cells.1'}" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cell_type_lst = set(individual_cell_gene_expression['cellType'].tolist())\n", - "print(len(cell_type_lst))\n", - "cell_type_lst" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Antibody.secreting.B.cells',\n", - " 'CD3+.alpha.beta.T.cells',\n", - " 'Central.venous.LSECs',\n", - " 'Cholangiocytes',\n", - " 'Erthyroid.cells',\n", - " 'Hep.1',\n", - " 'Hep.3',\n", - " 'Hep.4',\n", - " 'Hep.5',\n", - " 'Hep.6',\n", - " 'Inflammatory.macrophages',\n", - " 'Mature.B.cells',\n", - " 'NK.like.cells',\n", - " 'Non.inflammatory.macrophages',\n", - " 'NotDet',\n", - " 'Periportal.LSECs',\n", - " 'Portal.endothelial.cells',\n", - " 'Stellate.cells',\n", - " 'gamma.delta.T.cells.1']" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sorted(cell_type_lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAntibody.secreting.B.cellsCD3+.alpha.beta.T.cellsCentral.venous.LSECsCholangiocytesErthyroid.cellsHep.1Hep.3Hep.4...Hep.6Inflammatory.macrophagesMature.B.cellsNK.like.cellsNon.inflammatory.macrophagesNotDetPeriportal.LSECsPortal.endothelial.cellsStellate.cellsgamma.delta.T.cells.1
\n", - "

0 rows × 21 columns

\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, Antibody.secreting.B.cells, CD3+.alpha.beta.T.cells, Central.venous.LSECs, Cholangiocytes, Erthyroid.cells, Hep.1, Hep.3, Hep.4, Hep.5, Hep.6, Inflammatory.macrophages, Mature.B.cells, NK.like.cells, Non.inflammatory.macrophages, NotDet, Periportal.LSECs, Portal.endothelial.cells, Stellate.cells, gamma.delta.T.cells.1]\n", - "Index: []\n", - "\n", - "[0 rows x 21 columns]" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# list(CosMx_cell_type.columns)\n", - "column_name_lst = ['fov', 'spot_id'] + sorted(cell_type_lst)\n", - "ground_truth_table = pd.DataFrame(columns = column_name_lst)\n", - "ground_truth_table\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "332877" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cell_id_lst = individual_cell_gene_expression[\"cell_ID\"].tolist()\n", - "len(cell_id_lst)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "def get_spot_cell_type_dic(CosMx_cell_type, cell_type_dic):\n", - " one_spot_cell_lst = (spot_id_data['cell_ID'].unique()) # all cell ids for one specific spot\n", - "\n", - " for cell_id in one_spot_cell_lst:\n", - " one_cell_sample = CosMx_cell_type[(CosMx_cell_type['cell_ID']==cell_id)]\n", - " cell_type = one_cell_sample[\"cellType\"].values[0]\n", - " cell_type_dic[cell_type] = cell_type_dic[cell_type] + 1\n", - " \n", - " return cell_type_dic\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[100 101 102 103 104 105 106 107 108 109 10 110 111 112 113 114 115 116\n", - " 117 118 119 11 120 121 122 123 124 125 126 127 128 129 12 130 131 132\n", - " 133 134 135 136 137 138 139 13 140 141 142 143 144 145 146 147 149 14\n", - " 150 151 152 153 154 155 156 157 158 159 15 160 161 162 163 164 165 166\n", - " 167 169 16 170 171 172 173 174 176 177 178 179 17 182 184 185 186 187\n", - " 188 189 18 190 191 192 193 194 195 197 198 199 19 1 200 201 202 203\n", - " 204 205 207 208 209 20 210 211 212 214 215 216 217 219 220 221 223 224\n", - " 225 226 227 228 229 22 230 231 234 235 236 237 238 239 23 240 241 242\n", - " 243 244 245 246 247 248 249 24 250 251 253 254 255 256 257 258 259 25\n", - " 260 261 262 263 264 265 266 269 26 270 271 272 273 274 275 276 277 278\n", - " 279 27 280 281 282 284 286 288 289 28 290 291 293 294 295 29 2 30\n", - " 31 32 33 34 35 36 37 38 39 3 40 41 44 45 46 47 48 49\n", - " 4 50 51 52 53 54 55 56 57 58 59 5 60 61 62 64 65 66\n", - " 67 68 69 6 70 71 72 73 74 75 76 77 78 79 7 80 81 82\n", - " 83 85 86 87 89 8 90 92 93 94 95 96 97 98 99 9 168 183\n", - " 196 213 218 232 252 267 283 285 296 43 88 148 175 180 181 206 222 233\n", - " 268 292 297 298 299 302 91 287 304 301 42 84 21]\n", - "fov: (459, 1005)\n", - "spot: (1, 1005)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "print(fov_ids_lst)\n", - "fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==1)]\n", - "print(\"fov:\", fov_data.shape)\n", - "spot_id_data = fov_data[(fov_data['spot_id']==1)]\n", - "print(\"spot:\", spot_id_data.shape)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "100\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "101\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "102\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "103\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "104\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "105\n", - "106\n", - "107\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "108\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "109\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "110\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "111\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "112\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "113\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "114\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "116\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "117\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "118\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "119\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "120\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "121\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "122\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "123\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "124\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "125\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "126\n", - "127\n", - "128\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "129\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "130\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "131\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "132\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "133\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "134\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "135\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "136\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "137\n", - "138\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "139\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "140\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "141\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "142\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "143\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "144\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "145\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "146\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "147\n", - "149\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "14\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "150\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "152\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "153\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "154\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "155\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "156\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "157\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "158\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "159\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "15\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "160\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "161\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "162\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "163\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "164\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "165\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "166\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "167\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "169\n", - "16\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "170\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "171\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "172\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "173\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "174\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "176\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "177\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "178\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "179\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "17\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "182\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "184\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "185\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "186\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "187\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "188\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "189\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "18\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "190\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "191\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "192\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "193\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "194\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "195\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "197\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "198\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "199\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "200\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "201\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "202\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "203\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "204\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "205\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "207\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "208\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "209\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "210\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "211\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "212\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "214\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "215\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "216\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "217\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "219\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "220\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "221\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "223\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "224\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "225\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "226\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "227\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "228\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "229\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "22\n", - "230\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "231\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "234\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "235\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "236\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "237\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "238\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "239\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "23\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "240\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "241\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "242\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "243\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "244\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "245\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "246\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "247\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "248\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "249\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "24\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "250\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "251\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "253\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "254\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "255\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "256\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "257\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "258\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "259\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "25\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "260\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "261\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "262\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "263\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "264\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "265\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "266\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "269\n", - "26\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "270\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "271\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "272\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "273\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "274\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "275\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "276\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "277\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "278\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "279\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "27\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "280\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "281\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "282\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "284\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "286\n", - "288\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "289\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "28\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "290\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "291\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "293\n", - "294\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "295\n", - "29\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "30\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "31\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "32\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "33\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "34\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "35\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "36\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "37\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "38\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "39\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "40\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "41\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "44\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "45\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "46\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "47\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "48\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "49\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "50\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "51\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "52\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "53\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "54\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "55\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "56\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "57\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "58\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "59\n", - "5\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "60\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "64\n", - "65\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "66\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "67\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "68\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "6\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "70\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "71\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "72\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "73\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "74\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "75\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "76\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "77\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "78\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "79\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "80\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "81\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "82\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "83\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "85\n", - "86\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "87\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "89\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "8\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "90\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "92\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "93\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "94\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "95\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "96\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "97\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "98\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "99\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "168\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "183\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "196\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "213\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "218\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "232\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "252\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "267\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "283\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "285\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "296\n", - "43\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "88\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "148\n", - "175\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "180\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "181\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "206\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "222\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "233\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "268\n", - "292\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "297\n", - "298\n", - "299\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "302\n", - "91\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "287\n", - "304\n", - "301\n", - "42\n", - "84\n", - "21\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "/tmp/ipykernel_15990/1624771839.py:18: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n" - ] - } - ], - "source": [ - "fov_ids_lst = individual_cell_gene_expression['fov'].unique()\n", - "spot_id_lst = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "\n", - "for fov_id in fov_ids_lst:\n", - " fov_data = individual_cell_gene_expression[(individual_cell_gene_expression['fov']==fov_id)]\n", - " print(fov_id)\n", - " for spot_id in spot_id_lst:\n", - " sample_dic = {}\n", - " for i in column_name_lst:\n", - " sample_dic[i] = 0\n", - " \n", - " spot_id_data = fov_data[(fov_data['spot_id']==spot_id)]\n", - " \n", - " sample_dic = get_spot_cell_type_dic(spot_id_data, sample_dic)\n", - " \n", - " sample_dic[\"fov\"] = fov_id\n", - " sample_dic[\"spot_id\"] = spot_id\n", - " ground_truth_table = ground_truth_table.append(sample_dic, ignore_index = True)\n", - "\n", - "\n", - "\n", - "\n", - "# cell id not found in groud truth!!! xxx cells not found\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idAntibody.secreting.B.cellsCD3+.alpha.beta.T.cellsCentral.venous.LSECsCholangiocytesErthyroid.cellsHep.1Hep.3Hep.4...Hep.6Inflammatory.macrophagesMature.B.cellsNK.like.cellsNon.inflammatory.macrophagesNotDetPeriportal.LSECsPortal.endothelial.cellsStellate.cellsgamma.delta.T.cells.1
010010221151252...5111700042
11002132000681...2402400032
21003060310773...1112800050
31004056035650...2210300133
41005061001844...1001600042
..................................................................
270421500000000...0000000000
270521600000000...0000000000
270621700000000...0000000000
270721800000000...0000000000
270821900000000...0000000000
\n", - "

2709 rows × 21 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id Antibody.secreting.B.cells CD3+.alpha.beta.T.cells \\\n", - "0 100 1 0 2 \n", - "1 100 2 1 3 \n", - "2 100 3 0 6 \n", - "3 100 4 0 5 \n", - "4 100 5 0 6 \n", - "... ... ... ... ... \n", - "2704 21 5 0 0 \n", - "2705 21 6 0 0 \n", - "2706 21 7 0 0 \n", - "2707 21 8 0 0 \n", - "2708 21 9 0 0 \n", - "\n", - " Central.venous.LSECs Cholangiocytes Erthyroid.cells Hep.1 Hep.3 Hep.4 \\\n", - "0 2 1 1 5 12 52 \n", - "1 2 0 0 0 6 81 \n", - "2 0 3 1 0 7 73 \n", - "3 6 0 3 5 6 50 \n", - "4 1 0 0 1 8 44 \n", - "... ... ... ... ... ... ... \n", - "2704 0 0 0 0 0 0 \n", - "2705 0 0 0 0 0 0 \n", - "2706 0 0 0 0 0 0 \n", - "2707 0 0 0 0 0 0 \n", - "2708 0 0 0 0 0 0 \n", - "\n", - " ... Hep.6 Inflammatory.macrophages Mature.B.cells NK.like.cells \\\n", - "0 ... 5 1 1 1 \n", - "1 ... 2 4 0 2 \n", - "2 ... 1 1 1 2 \n", - "3 ... 2 2 1 0 \n", - "4 ... 1 0 0 1 \n", - "... ... ... ... ... ... \n", - "2704 ... 0 0 0 0 \n", - "2705 ... 0 0 0 0 \n", - "2706 ... 0 0 0 0 \n", - "2707 ... 0 0 0 0 \n", - "2708 ... 0 0 0 0 \n", - "\n", - " Non.inflammatory.macrophages NotDet Periportal.LSECs \\\n", - "0 7 0 0 \n", - "1 4 0 0 \n", - "2 8 0 0 \n", - "3 3 0 0 \n", - "4 6 0 0 \n", - "... ... ... ... \n", - "2704 0 0 0 \n", - "2705 0 0 0 \n", - "2706 0 0 0 \n", - "2707 0 0 0 \n", - "2708 0 0 0 \n", - "\n", - " Portal.endothelial.cells Stellate.cells gamma.delta.T.cells.1 \n", - "0 0 4 2 \n", - "1 0 3 2 \n", - "2 0 5 0 \n", - "3 1 3 3 \n", - "4 0 4 2 \n", - "... ... ... ... \n", - "2704 0 0 0 \n", - "2705 0 0 0 \n", - "2706 0 0 0 \n", - "2707 0 0 0 \n", - "2708 0 0 0 \n", - "\n", - "[2709 rows x 21 columns]" - ] - }, - "execution_count": 56, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ground_truth_table" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2709, 21)" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ground_truth_table.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "# lung13_ground_truth = pd.read_csv('../Lung13/Lung13-Flat_files_and_images/new/ground_truth.csv')\n", - "# lung13_ground_truth" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "# coumn_names = lung13_ground_truth.columns.values.tolist()[3:]\n", - "# coumn_names" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "# first_n_column = ground_truth_table.iloc[: , :2]\n", - "# first_n_column" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "ground_truth_table.to_csv('../health/new/ground_truth.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Generate spot x, y coordiates" - ] - }, - { - "cell_type": "code", - "execution_count": 212, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, x, y]\n", - "Index: []" - ] - }, - "execution_count": 212, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def get_spot_x_y_range(x_global_px, y_global_px, fov_id, fov_spot_coordinates):\n", - " x_l = x_global_px\n", - " y_l = y_global_px\n", - " \n", - " # ---------\n", - " spot_id = 1\n", - " x = x_l \n", - " y = y_l\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 2\n", - " x = x_l + 1\n", - " y = y_l \n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 3\n", - " x = x_l + 2\n", - " y = y_l \n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " # ---------\n", - " spot_id = 4\n", - " x = x_l \n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - "\n", - " spot_id = 5\n", - " x = x_l + 1\n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " spot_id = 6\n", - " x = x_l + 2\n", - " y = y_l + 1\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "\n", - " # ---------\n", - " spot_id = 7\n", - " x = x_l\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " spot_id = 8\n", - " x = x_l + 1\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " spot_id = 9\n", - " x = x_l + 2\n", - " y = y_l + 2\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - " \n", - " \n", - " \n", - " fov_spot_coordinates['x'] = fov_spot_coordinates['x'] \n", - " fov_spot_coordinates['y'] = fov_spot_coordinates['y'] \n", - " \n", - "# fov_spot_coordinates['x'] = fov_spot_coordinates['x'] * 0.18 *1e-4\n", - "# fov_spot_coordinates['y'] = fov_spot_coordinates['y'] * 0.18 *1e-4\n", - " \n", - " \n", - " return fov_spot_coordinates\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [], - "source": [ - "fov_dic = {}" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fov: 1 (4, 4)\n", - "fov: 2 (4, 7)\n", - "fov: 3 (4, 10)\n", - "fov: 4 (4, 13)\n", - "fov: 5 (4, 16)\n", - "fov: 6 (4, 19)\n", - "fov: 7 (4, 22)\n", - "fov: 8 (4, 25)\n", - "fov: 9 (4, 28)\n", - "fov: 10 (4, 31)\n", - "fov: 11 (4, 34)\n", - "fov: 12 (4, 37)\n", - "fov: 13 (4, 40)\n", - "fov: 14 (4, 43)\n", - "fov: 15 (4, 46)\n", - "fov: 16 (4, 49)\n", - "fov: 17 (4, 52)\n", - "fov: 18 (4, 55)\n", - "fov: 19 (4, 58)\n", - "fov: 20 (4, 61)\n", - "fov: 21 (4, 64)\n", - "fov: 22 (7, 4)\n", - "fov: 23 (7, 7)\n", - "fov: 24 (7, 10)\n", - "fov: 25 (7, 13)\n", - "fov: 26 (7, 16)\n", - "fov: 27 (7, 19)\n", - "fov: 28 (7, 22)\n", - "fov: 29 (7, 25)\n", - "fov: 30 (7, 28)\n", - "fov: 31 (7, 31)\n", - "fov: 32 (7, 34)\n", - "fov: 33 (7, 37)\n", - "fov: 34 (7, 40)\n", - "fov: 35 (7, 43)\n", - "fov: 36 (7, 46)\n", - "fov: 37 (7, 49)\n", - "fov: 38 (7, 52)\n", - "fov: 39 (7, 55)\n", - "fov: 40 (7, 58)\n", - "fov: 41 (7, 61)\n", - "fov: 42 (7, 64)\n", - "fov: 43 (10, 4)\n", - "fov: 44 (10, 7)\n", - "fov: 45 (10, 10)\n", - "fov: 46 (10, 13)\n", - "fov: 47 (10, 16)\n", - "fov: 48 (10, 19)\n", - "fov: 49 (10, 22)\n", - "fov: 50 (10, 25)\n", - "fov: 51 (10, 28)\n", - "fov: 52 (10, 31)\n", - "fov: 53 (10, 34)\n", - "fov: 54 (10, 37)\n", - "fov: 55 (10, 40)\n", - "fov: 56 (10, 43)\n", - "fov: 57 (10, 46)\n", - "fov: 58 (10, 49)\n", - "fov: 59 (10, 52)\n", - "fov: 60 (10, 55)\n", - "fov: 61 (10, 58)\n", - "fov: 62 (10, 61)\n", - "fov: 63 (10, 64)\n", - "fov: 64 (13, 4)\n", - "fov: 65 (13, 7)\n", - "fov: 66 (13, 10)\n", - "fov: 67 (13, 13)\n", - "fov: 68 (13, 16)\n", - "fov: 69 (13, 19)\n", - "fov: 70 (13, 22)\n", - "fov: 71 (13, 25)\n", - "fov: 72 (13, 28)\n", - "fov: 73 (13, 31)\n", - "fov: 74 (13, 34)\n", - "fov: 75 (13, 37)\n", - "fov: 76 (13, 40)\n", - "fov: 77 (13, 43)\n", - "fov: 78 (13, 46)\n", - "fov: 79 (13, 49)\n", - "fov: 80 (13, 52)\n", - "fov: 81 (13, 55)\n", - "fov: 82 (13, 58)\n", - "fov: 83 (13, 61)\n", - "fov: 84 (13, 64)\n", - "fov: 85 (16, 4)\n", - "fov: 86 (16, 7)\n", - "fov: 87 (16, 10)\n", - "fov: 88 (16, 13)\n", - "fov: 89 (16, 16)\n", - "fov: 90 (16, 19)\n", - "fov: 91 (16, 22)\n", - "fov: 92 (16, 25)\n", - "fov: 93 (16, 28)\n", - "fov: 94 (16, 31)\n", - "fov: 95 (16, 34)\n", - "fov: 96 (16, 37)\n", - "fov: 97 (16, 40)\n", - "fov: 98 (16, 43)\n", - "fov: 99 (16, 46)\n", - "fov: 100 (16, 49)\n", - "fov: 101 (16, 52)\n", - "fov: 102 (16, 55)\n", - "fov: 103 (16, 58)\n", - "fov: 104 (16, 61)\n", - "fov: 105 (16, 64)\n", - "fov: 106 (19, 4)\n", - "fov: 107 (19, 7)\n", - "fov: 108 (19, 10)\n", - "fov: 109 (19, 13)\n", - "fov: 110 (19, 16)\n", - "fov: 111 (19, 19)\n", - "fov: 112 (19, 22)\n", - "fov: 113 (19, 25)\n", - "fov: 114 (19, 28)\n", - "fov: 115 (19, 31)\n", - "fov: 116 (19, 34)\n", - "fov: 117 (19, 37)\n", - "fov: 118 (19, 40)\n", - "fov: 119 (19, 43)\n", - "fov: 120 (19, 46)\n", - "fov: 121 (19, 49)\n", - "fov: 122 (19, 52)\n", - "fov: 123 (19, 55)\n", - "fov: 124 (19, 58)\n", - "fov: 125 (19, 61)\n", - "fov: 126 (19, 64)\n", - "fov: 127 (22, 4)\n", - "fov: 128 (22, 7)\n", - "fov: 129 (22, 10)\n", - "fov: 130 (22, 13)\n", - "fov: 131 (22, 16)\n", - "fov: 132 (22, 19)\n", - "fov: 133 (22, 22)\n", - "fov: 134 (22, 25)\n", - "fov: 135 (22, 28)\n", - "fov: 136 (22, 31)\n", - "fov: 137 (22, 34)\n", - "fov: 138 (22, 37)\n", - "fov: 139 (22, 40)\n", - "fov: 140 (22, 43)\n", - "fov: 141 (22, 46)\n", - "fov: 142 (22, 49)\n", - "fov: 143 (22, 52)\n", - "fov: 144 (22, 55)\n", - "fov: 145 (22, 58)\n", - "fov: 146 (22, 61)\n", - "fov: 147 (22, 64)\n", - "fov: 148 (25, 4)\n", - "fov: 149 (25, 7)\n", - "fov: 150 (25, 10)\n", - "fov: 151 (25, 13)\n", - "fov: 152 (25, 16)\n", - "fov: 153 (25, 19)\n", - "fov: 154 (25, 22)\n", - "fov: 155 (25, 25)\n", - "fov: 156 (25, 28)\n", - "fov: 157 (25, 31)\n", - "fov: 158 (25, 34)\n", - "fov: 159 (25, 37)\n", - "fov: 160 (25, 40)\n", - "fov: 161 (25, 43)\n", - "fov: 162 (25, 46)\n", - "fov: 163 (25, 49)\n", - "fov: 164 (25, 52)\n", - "fov: 165 (25, 55)\n", - "fov: 166 (25, 58)\n", - "fov: 167 (25, 61)\n", - "fov: 168 (25, 64)\n", - "fov: 169 (28, 4)\n", - "fov: 170 (28, 7)\n", - "fov: 171 (28, 10)\n", - "fov: 172 (28, 13)\n", - "fov: 173 (28, 16)\n", - "fov: 174 (28, 19)\n", - "fov: 175 (28, 22)\n", - "fov: 176 (28, 25)\n", - "fov: 177 (28, 28)\n", - "fov: 178 (28, 31)\n", - "fov: 179 (28, 34)\n", - "fov: 180 (28, 37)\n", - "fov: 181 (28, 40)\n", - "fov: 182 (28, 43)\n", - "fov: 183 (28, 46)\n", - "fov: 184 (28, 49)\n", - "fov: 185 (28, 52)\n", - "fov: 186 (28, 55)\n", - "fov: 187 (28, 58)\n", - "fov: 188 (28, 61)\n", - "fov: 189 (28, 64)\n", - "fov: 190 (31, 7)\n", - "fov: 191 (31, 10)\n", - "fov: 192 (31, 13)\n", - "fov: 193 (31, 16)\n", - "fov: 194 (31, 19)\n", - "fov: 195 (31, 22)\n", - "fov: 196 (31, 25)\n", - "fov: 197 (31, 28)\n", - "fov: 198 (31, 31)\n", - "fov: 199 (31, 34)\n", - "fov: 200 (31, 37)\n", - "fov: 201 (31, 40)\n", - "fov: 202 (31, 43)\n", - "fov: 203 (31, 46)\n", - "fov: 204 (31, 49)\n", - "fov: 205 (31, 52)\n", - "fov: 206 (31, 55)\n", - "fov: 207 (31, 58)\n", - "fov: 208 (31, 61)\n", - "fov: 209 (31, 64)\n", - "fov: 210 (34, 7)\n", - "fov: 211 (34, 10)\n", - "fov: 212 (34, 13)\n", - "fov: 213 (34, 16)\n", - "fov: 214 (34, 19)\n", - "fov: 215 (34, 22)\n", - "fov: 216 (34, 25)\n", - "fov: 217 (34, 28)\n", - "fov: 218 (34, 31)\n", - "fov: 219 (34, 34)\n", - "fov: 220 (34, 37)\n", - "fov: 221 (34, 40)\n", - "fov: 222 (34, 43)\n", - "fov: 223 (34, 46)\n", - "fov: 224 (34, 49)\n", - "fov: 225 (34, 52)\n", - "fov: 226 (34, 55)\n", - "fov: 227 (34, 58)\n", - "fov: 228 (34, 61)\n", - "fov: 229 (34, 64)\n", - "fov: 230 (37, 7)\n", - "fov: 231 (37, 10)\n", - "fov: 232 (37, 13)\n", - "fov: 233 (37, 16)\n", - "fov: 234 (37, 19)\n", - "fov: 235 (37, 22)\n", - "fov: 236 (37, 25)\n", - "fov: 237 (37, 28)\n", - "fov: 238 (37, 31)\n", - "fov: 239 (37, 34)\n", - "fov: 240 (37, 37)\n", - "fov: 241 (37, 40)\n", - "fov: 242 (37, 43)\n", - "fov: 243 (37, 46)\n", - "fov: 244 (37, 49)\n", - "fov: 245 (37, 52)\n", - "fov: 246 (37, 55)\n", - "fov: 247 (37, 58)\n", - "fov: 248 (37, 61)\n", - "fov: 249 (37, 64)\n", - "fov: 250 (40, 7)\n", - "fov: 251 (40, 10)\n", - "fov: 252 (40, 13)\n", - "fov: 253 (40, 16)\n", - "fov: 254 (40, 19)\n", - "fov: 255 (40, 22)\n", - "fov: 256 (40, 25)\n", - "fov: 257 (40, 28)\n", - "fov: 258 (40, 31)\n", - "fov: 259 (40, 34)\n", - "fov: 260 (40, 37)\n", - "fov: 261 (40, 40)\n", - "fov: 262 (40, 43)\n", - "fov: 263 (40, 46)\n", - "fov: 264 (40, 49)\n", - "fov: 265 (40, 52)\n", - "fov: 266 (40, 55)\n", - "fov: 267 (40, 58)\n", - "fov: 268 (40, 61)\n", - "fov: 269 (40, 64)\n", - "fov: 270 (43, 7)\n", - "fov: 271 (43, 10)\n", - "fov: 272 (43, 13)\n", - "fov: 273 (43, 16)\n", - "fov: 274 (43, 19)\n", - "fov: 275 (43, 22)\n", - "fov: 276 (43, 25)\n", - "fov: 277 (43, 28)\n", - "fov: 278 (43, 31)\n", - "fov: 279 (43, 34)\n", - "fov: 280 (43, 37)\n", - "fov: 281 (43, 40)\n", - "fov: 282 (43, 43)\n", - "fov: 283 (43, 46)\n", - "fov: 284 (43, 49)\n", - "fov: 285 (43, 52)\n", - "fov: 286 (43, 55)\n", - "fov: 287 (46, 7)\n", - "fov: 288 (46, 10)\n", - "fov: 289 (46, 13)\n", - "fov: 290 (46, 16)\n", - "fov: 291 (46, 19)\n", - "fov: 292 (46, 22)\n", - "fov: 293 (46, 25)\n", - "fov: 294 (46, 28)\n", - "fov: 295 (46, 31)\n", - "fov: 296 (46, 34)\n", - "fov: 297 (46, 37)\n", - "fov: 298 (46, 40)\n", - "fov: 299 (46, 43)\n", - "fov: 300 (46, 46)\n", - "fov: 301 (46, 49)\n" - ] - } - ], - "source": [ - "fov = 1\n", - "for row in range(1, 10):\n", - " for col in range(1, 22):\n", - " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - " time += 1\n", - "\n", - "for row in range(10, 14):\n", - " for col in range(2, 22):\n", - " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - " \n", - "for row in range(14, 15):\n", - " for col in range(2, 19):\n", - " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - "\n", - "\n", - "for row in range(15, 16):\n", - " for col in range(2, 17):\n", - " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", - " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", - " fov += 1\n", - "\n", - "# fov_dic[302] = (16, 3)\n", - "# fov_dic[303] = (16, 5)\n", - " \n" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "({1: (4, 4),\n", - " 2: (4, 7),\n", - " 3: (4, 10),\n", - " 4: (4, 13),\n", - " 5: (4, 16),\n", - " 6: (4, 19),\n", - " 7: (4, 22),\n", - " 8: (4, 25),\n", - " 9: (4, 28),\n", - " 10: (4, 31),\n", - " 11: (4, 34),\n", - " 12: (4, 37),\n", - " 13: (4, 40),\n", - " 14: (4, 43),\n", - " 15: (4, 46),\n", - " 16: (4, 49),\n", - " 17: (4, 52),\n", - " 18: (4, 55),\n", - " 19: (4, 58),\n", - " 20: (4, 61),\n", - " 21: (4, 64),\n", - " 22: (7, 4),\n", - " 23: (7, 7),\n", - " 24: (7, 10),\n", - " 25: (7, 13),\n", - " 26: (7, 16),\n", - " 27: (7, 19),\n", - " 28: (7, 22),\n", - " 29: (7, 25),\n", - " 30: (7, 28),\n", - " 31: (7, 31),\n", - " 32: (7, 34),\n", - " 33: (7, 37),\n", - " 34: (7, 40),\n", - " 35: (7, 43),\n", - " 36: (7, 46),\n", - " 37: (7, 49),\n", - " 38: (7, 52),\n", - " 39: (7, 55),\n", - " 40: (7, 58),\n", - " 41: (7, 61),\n", - " 42: (7, 64),\n", - " 43: (10, 4),\n", - " 44: (10, 7),\n", - " 45: (10, 10),\n", - " 46: (10, 13),\n", - " 47: (10, 16),\n", - " 48: (10, 19),\n", - " 49: (10, 22),\n", - " 50: (10, 25),\n", - " 51: (10, 28),\n", - " 52: (10, 31),\n", - " 53: (10, 34),\n", - " 54: (10, 37),\n", - " 55: (10, 40),\n", - " 56: (10, 43),\n", - " 57: (10, 46),\n", - " 58: (10, 49),\n", - " 59: (10, 52),\n", - " 60: (10, 55),\n", - " 61: (10, 58),\n", - " 62: (10, 61),\n", - " 63: (10, 64),\n", - " 64: (13, 4),\n", - " 65: (13, 7),\n", - " 66: (13, 10),\n", - " 67: (13, 13),\n", - " 68: (13, 16),\n", - " 69: (13, 19),\n", - " 70: (13, 22),\n", - " 71: (13, 25),\n", - " 72: (13, 28),\n", - " 73: (13, 31),\n", - " 74: (13, 34),\n", - " 75: (13, 37),\n", - " 76: (13, 40),\n", - " 77: (13, 43),\n", - " 78: (13, 46),\n", - " 79: (13, 49),\n", - " 80: (13, 52),\n", - " 81: (13, 55),\n", - " 82: (13, 58),\n", - " 83: (13, 61),\n", - " 84: (13, 64),\n", - " 85: (16, 4),\n", - " 86: (16, 7),\n", - " 87: (16, 10),\n", - " 88: (16, 13),\n", - " 89: (16, 16),\n", - " 90: (16, 19),\n", - " 91: (16, 22),\n", - " 92: (16, 25),\n", - " 93: (16, 28),\n", - " 94: (16, 31),\n", - " 95: (16, 34),\n", - " 96: (16, 37),\n", - " 97: (16, 40),\n", - " 98: (16, 43),\n", - " 99: (16, 46),\n", - " 100: (16, 49),\n", - " 101: (16, 52),\n", - " 102: (16, 55),\n", - " 103: (16, 58),\n", - " 104: (16, 61),\n", - " 105: (16, 64),\n", - " 106: (19, 4),\n", - " 107: (19, 7),\n", - " 108: (19, 10),\n", - " 109: (19, 13),\n", - " 110: (19, 16),\n", - " 111: (19, 19),\n", - " 112: (19, 22),\n", - " 113: (19, 25),\n", - " 114: (19, 28),\n", - " 115: (19, 31),\n", - " 116: (19, 34),\n", - " 117: (19, 37),\n", - " 118: (19, 40),\n", - " 119: (19, 43),\n", - " 120: (19, 46),\n", - " 121: (19, 49),\n", - " 122: (19, 52),\n", - " 123: (19, 55),\n", - " 124: (19, 58),\n", - " 125: (19, 61),\n", - " 126: (19, 64),\n", - " 127: (22, 4),\n", - " 128: (22, 7),\n", - " 129: (22, 10),\n", - " 130: (22, 13),\n", - " 131: (22, 16),\n", - " 132: (22, 19),\n", - " 133: (22, 22),\n", - " 134: (22, 25),\n", - " 135: (22, 28),\n", - " 136: (22, 31),\n", - " 137: (22, 34),\n", - " 138: (22, 37),\n", - " 139: (22, 40),\n", - " 140: (22, 43),\n", - " 141: (22, 46),\n", - " 142: (22, 49),\n", - " 143: (22, 52),\n", - " 144: (22, 55),\n", - " 145: (22, 58),\n", - " 146: (22, 61),\n", - " 147: (22, 64),\n", - " 148: (25, 4),\n", - " 149: (25, 7),\n", - " 150: (25, 10),\n", - " 151: (25, 13),\n", - " 152: (25, 16),\n", - " 153: (25, 19),\n", - " 154: (25, 22),\n", - " 155: (25, 25),\n", - " 156: (25, 28),\n", - " 157: (25, 31),\n", - " 158: (25, 34),\n", - " 159: (25, 37),\n", - " 160: (25, 40),\n", - " 161: (25, 43),\n", - " 162: (25, 46),\n", - " 163: (25, 49),\n", - " 164: (25, 52),\n", - " 165: (25, 55),\n", - " 166: (25, 58),\n", - " 167: (25, 61),\n", - " 168: (25, 64),\n", - " 169: (28, 4),\n", - " 170: (28, 7),\n", - " 171: (28, 10),\n", - " 172: (28, 13),\n", - " 173: (28, 16),\n", - " 174: (28, 19),\n", - " 175: (28, 22),\n", - " 176: (28, 25),\n", - " 177: (28, 28),\n", - " 178: (28, 31),\n", - " 179: (28, 34),\n", - " 180: (28, 37),\n", - " 181: (28, 40),\n", - " 182: (28, 43),\n", - " 183: (28, 46),\n", - " 184: (28, 49),\n", - " 185: (28, 52),\n", - " 186: (28, 55),\n", - " 187: (28, 58),\n", - " 188: (28, 61),\n", - " 189: (28, 64),\n", - " 190: (31, 7),\n", - " 191: (31, 10),\n", - " 192: (31, 13),\n", - " 193: (31, 16),\n", - " 194: (31, 19),\n", - " 195: (31, 22),\n", - " 196: (31, 25),\n", - " 197: (31, 28),\n", - " 198: (31, 31),\n", - " 199: (31, 34),\n", - " 200: (31, 37),\n", - " 201: (31, 40),\n", - " 202: (31, 43),\n", - " 203: (31, 46),\n", - " 204: (31, 49),\n", - " 205: (31, 52),\n", - " 206: (31, 55),\n", - " 207: (31, 58),\n", - " 208: (31, 61),\n", - " 209: (31, 64),\n", - " 210: (34, 7),\n", - " 211: (34, 10),\n", - " 212: (34, 13),\n", - " 213: (34, 16),\n", - " 214: (34, 19),\n", - " 215: (34, 22),\n", - " 216: (34, 25),\n", - " 217: (34, 28),\n", - " 218: (34, 31),\n", - " 219: (34, 34),\n", - " 220: (34, 37),\n", - " 221: (34, 40),\n", - " 222: (34, 43),\n", - " 223: (34, 46),\n", - " 224: (34, 49),\n", - " 225: (34, 52),\n", - " 226: (34, 55),\n", - " 227: (34, 58),\n", - " 228: (34, 61),\n", - " 229: (34, 64),\n", - " 230: (37, 7),\n", - " 231: (37, 10),\n", - " 232: (37, 13),\n", - " 233: (37, 16),\n", - " 234: (37, 19),\n", - " 235: (37, 22),\n", - " 236: (37, 25),\n", - " 237: (37, 28),\n", - " 238: (37, 31),\n", - " 239: (37, 34),\n", - " 240: (37, 37),\n", - " 241: (37, 40),\n", - " 242: (37, 43),\n", - " 243: (37, 46),\n", - " 244: (37, 49),\n", - " 245: (37, 52),\n", - " 246: (37, 55),\n", - " 247: (37, 58),\n", - " 248: (37, 61),\n", - " 249: (37, 64),\n", - " 250: (40, 7),\n", - " 251: (40, 10),\n", - " 252: (40, 13),\n", - " 253: (40, 16),\n", - " 254: (40, 19),\n", - " 255: (40, 22),\n", - " 256: (40, 25),\n", - " 257: (40, 28),\n", - " 258: (40, 31),\n", - " 259: (40, 34),\n", - " 260: (40, 37),\n", - " 261: (40, 40),\n", - " 262: (40, 43),\n", - " 263: (40, 46),\n", - " 264: (40, 49),\n", - " 265: (40, 52),\n", - " 266: (40, 55),\n", - " 267: (40, 58),\n", - " 268: (40, 61),\n", - " 269: (40, 64),\n", - " 270: (43, 7),\n", - " 271: (43, 10),\n", - " 272: (43, 13),\n", - " 273: (43, 16),\n", - " 274: (43, 19),\n", - " 275: (43, 22),\n", - " 276: (43, 25),\n", - " 277: (43, 28),\n", - " 278: (43, 31),\n", - " 279: (43, 34),\n", - " 280: (43, 37),\n", - " 281: (43, 40),\n", - " 282: (43, 43),\n", - " 283: (43, 46),\n", - " 284: (43, 49),\n", - " 285: (43, 52),\n", - " 286: (43, 55),\n", - " 287: (46, 7),\n", - " 288: (46, 10),\n", - " 289: (46, 13),\n", - " 290: (46, 16),\n", - " 291: (46, 19),\n", - " 292: (46, 22),\n", - " 293: (46, 25),\n", - " 294: (46, 28),\n", - " 295: (46, 31),\n", - " 296: (46, 34),\n", - " 297: (46, 37),\n", - " 298: (46, 40),\n", - " 299: (46, 43),\n", - " 300: (46, 46),\n", - " 301: (46, 49)},\n", - " 301)" - ] - }, - "execution_count": 147, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_dic, len(fov_dic.keys())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
\n", - "
" - ], - "text/plain": [ - "Empty DataFrame\n", - "Columns: [fov, spot_id, x, y]\n", - "Index: []" - ] - }, - "execution_count": 148, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_coordinates = pd.DataFrame(columns = ['fov', 'spot_id', 'x', 'y'])\n", - "fov_spot_coordinates " - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1,\n", - " 2,\n", - " 3,\n", - " 4,\n", - " 5,\n", - " 6,\n", - " 7,\n", - " 8,\n", - " 9,\n", - " 10,\n", - " 11,\n", - " 12,\n", - " 13,\n", - " 14,\n", - " 15,\n", - " 16,\n", - " 17,\n", - " 18,\n", - " 19,\n", - " 20,\n", - " 21,\n", - " 22,\n", - " 23,\n", - " 24,\n", - " 25,\n", - " 26,\n", - " 27,\n", - " 28,\n", - " 29,\n", - " 30,\n", - " 31,\n", - " 32,\n", - " 33,\n", - " 34,\n", - " 35,\n", - " 36,\n", - " 37,\n", - " 38,\n", - " 39,\n", - " 40,\n", - " 41,\n", - " 42,\n", - " 43,\n", - " 44,\n", - " 45,\n", - " 46,\n", - " 47,\n", - " 48,\n", - " 49,\n", - " 50,\n", - " 51,\n", - " 52,\n", - " 53,\n", - " 54,\n", - " 55,\n", - " 56,\n", - " 57,\n", - " 58,\n", - " 59,\n", - " 60,\n", - " 61,\n", - " 62,\n", - " 63,\n", - " 64,\n", - " 65,\n", - " 66,\n", - " 67,\n", - " 68,\n", - " 69,\n", - " 70,\n", - " 71,\n", - " 72,\n", - " 73,\n", - " 74,\n", - " 75,\n", - " 76,\n", - " 77,\n", - " 78,\n", - " 79,\n", - " 80,\n", - " 81,\n", - " 82,\n", - " 83,\n", - " 84,\n", - " 85,\n", - " 86,\n", - " 87,\n", - " 88,\n", - " 89,\n", - " 90,\n", - " 91,\n", - " 92,\n", - " 93,\n", - " 94,\n", - " 95,\n", - " 96,\n", - " 97,\n", - " 98,\n", - " 99,\n", - " 100,\n", - " 101,\n", - " 102,\n", - " 103,\n", - " 104,\n", - " 105,\n", - " 106,\n", - " 107,\n", - " 108,\n", - " 109,\n", - " 110,\n", - " 111,\n", - " 112,\n", - " 113,\n", - " 114,\n", - " 115,\n", - " 116,\n", - " 117,\n", - " 118,\n", - " 119,\n", - " 120,\n", - " 121,\n", - " 122,\n", - " 123,\n", - " 124,\n", - " 125,\n", - " 126,\n", - " 127,\n", - " 128,\n", - " 129,\n", - " 130,\n", - " 131,\n", - " 132,\n", - " 133,\n", - " 134,\n", - " 135,\n", - " 136,\n", - " 137,\n", - " 138,\n", - " 139,\n", - " 140,\n", - " 141,\n", - " 142,\n", - " 143,\n", - " 144,\n", - " 145,\n", - " 146,\n", - " 147,\n", - " 148,\n", - " 149,\n", - " 150,\n", - " 151,\n", - " 152,\n", - " 153,\n", - " 154,\n", - " 155,\n", - " 156,\n", - " 157,\n", - " 158,\n", - " 159,\n", - " 160,\n", - " 161,\n", - " 162,\n", - " 163,\n", - " 164,\n", - " 165,\n", - " 166,\n", - " 167,\n", - " 168,\n", - " 169,\n", - " 170,\n", - " 171,\n", - " 172,\n", - " 173,\n", - " 174,\n", - " 175,\n", - " 176,\n", - " 177,\n", - " 178,\n", - " 179,\n", - " 180,\n", - " 181,\n", - " 182,\n", - " 183,\n", - " 184,\n", - " 185,\n", - " 186,\n", - " 187,\n", - " 188,\n", - " 189,\n", - " 190,\n", - " 191,\n", - " 192,\n", - " 193,\n", - " 194,\n", - " 195,\n", - " 196,\n", - " 197,\n", - " 198,\n", - " 199,\n", - " 200,\n", - " 201,\n", - " 202,\n", - " 203,\n", - " 204,\n", - " 205,\n", - " 206,\n", - " 207,\n", - " 208,\n", - " 209,\n", - " 210,\n", - " 211,\n", - " 212,\n", - " 213,\n", - " 214,\n", - " 215,\n", - " 216,\n", - " 217,\n", - " 218,\n", - " 219,\n", - " 220,\n", - " 221,\n", - " 222,\n", - " 223,\n", - " 224,\n", - " 225,\n", - " 226,\n", - " 227,\n", - " 228,\n", - " 229,\n", - " 230,\n", - " 231,\n", - " 232,\n", - " 233,\n", - " 234,\n", - " 235,\n", - " 236,\n", - " 237,\n", - " 238,\n", - " 239,\n", - " 240,\n", - " 241,\n", - " 242,\n", - " 243,\n", - " 244,\n", - " 245,\n", - " 246,\n", - " 247,\n", - " 248,\n", - " 249,\n", - " 250,\n", - " 251,\n", - " 252,\n", - " 253,\n", - " 254,\n", - " 255,\n", - " 256,\n", - " 257,\n", - " 258,\n", - " 259,\n", - " 260,\n", - " 261,\n", - " 262,\n", - " 263,\n", - " 264,\n", - " 265,\n", - " 266,\n", - " 267,\n", - " 268,\n", - " 269,\n", - " 270,\n", - " 271,\n", - " 272,\n", - " 273,\n", - " 274,\n", - " 275,\n", - " 276,\n", - " 277,\n", - " 278,\n", - " 279,\n", - " 280,\n", - " 281,\n", - " 282,\n", - " 283,\n", - " 284,\n", - " 285,\n", - " 286,\n", - " 287,\n", - " 288,\n", - " 289,\n", - " 290,\n", - " 291,\n", - " 292,\n", - " 293,\n", - " 294,\n", - " 295,\n", - " 296,\n", - " 297,\n", - " 298,\n", - " 299,\n", - " 300,\n", - " 301]" - ] - }, - "execution_count": 149, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_lst = list(fov_dic.keys())\n", - "fov_lst" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:9: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:14: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:19: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:25: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:31: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:36: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:42: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n", - "/tmp/ipykernel_15990/1137430117.py:47: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_15990/1137430117.py:52: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", - " fov_spot_coordinates = fov_spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y}, ignore_index = True)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
01144
11254
21364
31445
41555
...............
270430154750
270530164850
270630174651
270730184751
270830194851
\n", - "

2709 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id x y\n", - "0 1 1 4 4\n", - "1 1 2 5 4\n", - "2 1 3 6 4\n", - "3 1 4 4 5\n", - "4 1 5 5 5\n", - "... ... ... .. ..\n", - "2704 301 5 47 50\n", - "2705 301 6 48 50\n", - "2706 301 7 46 51\n", - "2707 301 8 47 51\n", - "2708 301 9 48 51\n", - "\n", - "[2709 rows x 4 columns]" - ] - }, - "execution_count": 150, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for fov_id in fov_lst:\n", - " x_px = fov_dic[fov_id][0]\n", - " y_px = fov_dic[fov_id][1]\n", - " fov_spot_coordinates = get_spot_x_y_range(x_px, y_px, fov_id, fov_spot_coordinates)\n", - "fov_spot_coordinates\n" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fovspot_idxy
01144
11254
21364
31445
41555
...............
270430154750
270530164850
270630174651
270730184751
270830194851
\n", - "

2709 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " fov spot_id x y\n", - "0 1 1 4 4\n", - "1 1 2 5 4\n", - "2 1 3 6 4\n", - "3 1 4 4 5\n", - "4 1 5 5 5\n", - "... ... ... .. ..\n", - "2704 301 5 47 50\n", - "2705 301 6 48 50\n", - "2706 301 7 46 51\n", - "2707 301 8 47 51\n", - "2708 301 9 48 51\n", - "\n", - "[2709 rows x 4 columns]" - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "fov_spot_coordinates" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [], - "source": [ - "fov_spot_coordinates.to_csv('../health/new/spot_location.csv')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 210, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# ground_truth_table.to_csv('./health/new/ground_truth.csv')" + ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## 4. Generate spot x, y coordiates" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def get_spot_x_y_range(x_global_px, y_global_px, fov_id, fov_spot_coordinates):\n", + " x_l = x_global_px\n", + " y_l = y_global_px\n", + " \n", + " spot_coordinates = []\n", + "\n", + " for spot_id in range(1, 10):\n", + " x = x_l + (spot_id - 1) % 3\n", + " y = y_l + (spot_id - 1) // 3\n", + " spot_coordinates.append({'fov': fov_id, 'spot_id': spot_id, 'x': x, 'y': y})\n", + "\n", + " fov_spot_coordinates = fov_spot_coordinates.append(spot_coordinates, ignore_index=True)\n", + " \n", + "# fov_spot_coordinates['x'] = fov_spot_coordinates['x'] * 0.18 *1e-4\n", + "# fov_spot_coordinates['y'] = fov_spot_coordinates['y'] * 0.18 *1e-4\n", + "\n", + " return fov_spot_coordinates\n" + ] }, { "cell_type": "code", @@ -39976,59 +5882,704 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fov: 1 (4, 4)\n", + "fov: 2 (4, 7)\n", + "fov: 3 (4, 10)\n", + "fov: 4 (4, 13)\n", + "fov: 5 (4, 16)\n", + "fov: 6 (4, 19)\n", + "fov: 7 (4, 22)\n", + "fov: 8 (4, 25)\n", + "fov: 9 (4, 28)\n", + "fov: 10 (4, 31)\n", + "fov: 11 (4, 34)\n", + "fov: 12 (4, 37)\n", + "fov: 13 (4, 40)\n", + "fov: 14 (4, 43)\n", + "fov: 15 (4, 46)\n", + "fov: 16 (4, 49)\n", + "fov: 17 (4, 52)\n", + "fov: 18 (4, 55)\n", + "fov: 19 (4, 58)\n", + "fov: 20 (4, 61)\n", + "fov: 21 (4, 64)\n", + "fov: 22 (7, 4)\n", + "fov: 23 (7, 7)\n", + "fov: 24 (7, 10)\n", + "fov: 25 (7, 13)\n", + "fov: 26 (7, 16)\n", + "fov: 27 (7, 19)\n", + "fov: 28 (7, 22)\n", + "fov: 29 (7, 25)\n", + "fov: 30 (7, 28)\n", + "fov: 31 (7, 31)\n", + "fov: 32 (7, 34)\n", + "fov: 33 (7, 37)\n", + "fov: 34 (7, 40)\n", + "fov: 35 (7, 43)\n", + "fov: 36 (7, 46)\n", + "fov: 37 (7, 49)\n", + "fov: 38 (7, 52)\n", + "fov: 39 (7, 55)\n", + "fov: 40 (7, 58)\n", + "fov: 41 (7, 61)\n", + "fov: 42 (7, 64)\n", + "fov: 43 (10, 4)\n", + "fov: 44 (10, 7)\n", + "fov: 45 (10, 10)\n", + "fov: 46 (10, 13)\n", + "fov: 47 (10, 16)\n", + "fov: 48 (10, 19)\n", + "fov: 49 (10, 22)\n", + "fov: 50 (10, 25)\n", + "fov: 51 (10, 28)\n", + "fov: 52 (10, 31)\n", + "fov: 53 (10, 34)\n", + "fov: 54 (10, 37)\n", + "fov: 55 (10, 40)\n", + "fov: 56 (10, 43)\n", + "fov: 57 (10, 46)\n", + "fov: 58 (10, 49)\n", + "fov: 59 (10, 52)\n", + "fov: 60 (10, 55)\n", + "fov: 61 (10, 58)\n", + "fov: 62 (10, 61)\n", + "fov: 63 (10, 64)\n", + "fov: 64 (13, 4)\n", + "fov: 65 (13, 7)\n", + "fov: 66 (13, 10)\n", + "fov: 67 (13, 13)\n", + "fov: 68 (13, 16)\n", + "fov: 69 (13, 19)\n", + "fov: 70 (13, 22)\n", + "fov: 71 (13, 25)\n", + "fov: 72 (13, 28)\n", + "fov: 73 (13, 31)\n", + "fov: 74 (13, 34)\n", + "fov: 75 (13, 37)\n", + "fov: 76 (13, 40)\n", + "fov: 77 (13, 43)\n", + "fov: 78 (13, 46)\n", + "fov: 79 (13, 49)\n", + "fov: 80 (13, 52)\n", + "fov: 81 (13, 55)\n", + "fov: 82 (13, 58)\n", + "fov: 83 (13, 61)\n", + "fov: 84 (13, 64)\n", + "fov: 85 (16, 4)\n", + "fov: 86 (16, 7)\n", + "fov: 87 (16, 10)\n", + "fov: 88 (16, 13)\n", + "fov: 89 (16, 16)\n", + "fov: 90 (16, 19)\n", + "fov: 91 (16, 22)\n", + "fov: 92 (16, 25)\n", + "fov: 93 (16, 28)\n", + "fov: 94 (16, 31)\n", + "fov: 95 (16, 34)\n", + "fov: 96 (16, 37)\n", + "fov: 97 (16, 40)\n", + "fov: 98 (16, 43)\n", + "fov: 99 (16, 46)\n", + "fov: 100 (16, 49)\n", + "fov: 101 (16, 52)\n", + "fov: 102 (16, 55)\n", + "fov: 103 (16, 58)\n", + "fov: 104 (16, 61)\n", + "fov: 105 (16, 64)\n", + "fov: 106 (19, 4)\n", + "fov: 107 (19, 7)\n", + "fov: 108 (19, 10)\n", + "fov: 109 (19, 13)\n", + "fov: 110 (19, 16)\n", + "fov: 111 (19, 19)\n", + "fov: 112 (19, 22)\n", + "fov: 113 (19, 25)\n", + "fov: 114 (19, 28)\n", + "fov: 115 (19, 31)\n", + "fov: 116 (19, 34)\n", + "fov: 117 (19, 37)\n", + "fov: 118 (19, 40)\n", + "fov: 119 (19, 43)\n", + "fov: 120 (19, 46)\n", + "fov: 121 (19, 49)\n", + "fov: 122 (19, 52)\n", + "fov: 123 (19, 55)\n", + "fov: 124 (19, 58)\n", + "fov: 125 (19, 61)\n", + "fov: 126 (19, 64)\n", + "fov: 127 (22, 4)\n", + "fov: 128 (22, 7)\n", + "fov: 129 (22, 10)\n", + "fov: 130 (22, 13)\n", + "fov: 131 (22, 16)\n", + "fov: 132 (22, 19)\n", + "fov: 133 (22, 22)\n", + "fov: 134 (22, 25)\n", + "fov: 135 (22, 28)\n", + "fov: 136 (22, 31)\n", + "fov: 137 (22, 34)\n", + "fov: 138 (22, 37)\n", + "fov: 139 (22, 40)\n", + "fov: 140 (22, 43)\n", + "fov: 141 (22, 46)\n", + "fov: 142 (22, 49)\n", + "fov: 143 (22, 52)\n", + "fov: 144 (22, 55)\n", + "fov: 145 (22, 58)\n", + "fov: 146 (22, 61)\n", + "fov: 147 (22, 64)\n", + "fov: 148 (25, 4)\n", + "fov: 149 (25, 7)\n", + "fov: 150 (25, 10)\n", + "fov: 151 (25, 13)\n", + "fov: 152 (25, 16)\n", + "fov: 153 (25, 19)\n", + "fov: 154 (25, 22)\n", + "fov: 155 (25, 25)\n", + "fov: 156 (25, 28)\n", + "fov: 157 (25, 31)\n", + "fov: 158 (25, 34)\n", + "fov: 159 (25, 37)\n", + "fov: 160 (25, 40)\n", + "fov: 161 (25, 43)\n", + "fov: 162 (25, 46)\n", + "fov: 163 (25, 49)\n", + "fov: 164 (25, 52)\n", + "fov: 165 (25, 55)\n", + "fov: 166 (25, 58)\n", + "fov: 167 (25, 61)\n", + "fov: 168 (25, 64)\n", + "fov: 169 (28, 4)\n", + "fov: 170 (28, 7)\n", + "fov: 171 (28, 10)\n", + "fov: 172 (28, 13)\n", + "fov: 173 (28, 16)\n", + "fov: 174 (28, 19)\n", + "fov: 175 (28, 22)\n", + "fov: 176 (28, 25)\n", + "fov: 177 (28, 28)\n", + "fov: 178 (28, 31)\n", + "fov: 179 (28, 34)\n", + "fov: 180 (28, 37)\n", + "fov: 181 (28, 40)\n", + "fov: 182 (28, 43)\n", + "fov: 183 (28, 46)\n", + "fov: 184 (28, 49)\n", + "fov: 185 (28, 52)\n", + "fov: 186 (28, 55)\n", + "fov: 187 (28, 58)\n", + "fov: 188 (28, 61)\n", + "fov: 189 (28, 64)\n", + "fov: 190 (31, 7)\n", + "fov: 191 (31, 10)\n", + "fov: 192 (31, 13)\n", + "fov: 193 (31, 16)\n", + "fov: 194 (31, 19)\n", + "fov: 195 (31, 22)\n", + "fov: 196 (31, 25)\n", + "fov: 197 (31, 28)\n", + "fov: 198 (31, 31)\n", + "fov: 199 (31, 34)\n", + "fov: 200 (31, 37)\n", + "fov: 201 (31, 40)\n", + "fov: 202 (31, 43)\n", + "fov: 203 (31, 46)\n", + "fov: 204 (31, 49)\n", + "fov: 205 (31, 52)\n", + "fov: 206 (31, 55)\n", + "fov: 207 (31, 58)\n", + "fov: 208 (31, 61)\n", + "fov: 209 (31, 64)\n", + "fov: 210 (34, 7)\n", + "fov: 211 (34, 10)\n", + "fov: 212 (34, 13)\n", + "fov: 213 (34, 16)\n", + "fov: 214 (34, 19)\n", + "fov: 215 (34, 22)\n", + "fov: 216 (34, 25)\n", + "fov: 217 (34, 28)\n", + "fov: 218 (34, 31)\n", + "fov: 219 (34, 34)\n", + "fov: 220 (34, 37)\n", + "fov: 221 (34, 40)\n", + "fov: 222 (34, 43)\n", + "fov: 223 (34, 46)\n", + "fov: 224 (34, 49)\n", + "fov: 225 (34, 52)\n", + "fov: 226 (34, 55)\n", + "fov: 227 (34, 58)\n", + "fov: 228 (34, 61)\n", + "fov: 229 (34, 64)\n", + "fov: 230 (37, 7)\n", + "fov: 231 (37, 10)\n", + "fov: 232 (37, 13)\n", + "fov: 233 (37, 16)\n", + "fov: 234 (37, 19)\n", + "fov: 235 (37, 22)\n", + "fov: 236 (37, 25)\n", + "fov: 237 (37, 28)\n", + "fov: 238 (37, 31)\n", + "fov: 239 (37, 34)\n", + "fov: 240 (37, 37)\n", + "fov: 241 (37, 40)\n", + "fov: 242 (37, 43)\n", + "fov: 243 (37, 46)\n", + "fov: 244 (37, 49)\n", + "fov: 245 (37, 52)\n", + "fov: 246 (37, 55)\n", + "fov: 247 (37, 58)\n", + "fov: 248 (37, 61)\n", + "fov: 249 (37, 64)\n", + "fov: 250 (40, 7)\n", + "fov: 251 (40, 10)\n", + "fov: 252 (40, 13)\n", + "fov: 253 (40, 16)\n", + "fov: 254 (40, 19)\n", + "fov: 255 (40, 22)\n", + "fov: 256 (40, 25)\n", + "fov: 257 (40, 28)\n", + "fov: 258 (40, 31)\n", + "fov: 259 (40, 34)\n", + "fov: 260 (40, 37)\n", + "fov: 261 (40, 40)\n", + "fov: 262 (40, 43)\n", + "fov: 263 (40, 46)\n", + "fov: 264 (40, 49)\n", + "fov: 265 (40, 52)\n", + "fov: 266 (40, 55)\n", + "fov: 267 (40, 58)\n", + "fov: 268 (40, 61)\n", + "fov: 269 (40, 64)\n", + "fov: 270 (43, 7)\n", + "fov: 271 (43, 10)\n", + "fov: 272 (43, 13)\n", + "fov: 273 (43, 16)\n", + "fov: 274 (43, 19)\n", + "fov: 275 (43, 22)\n", + "fov: 276 (43, 25)\n", + "fov: 277 (43, 28)\n", + "fov: 278 (43, 31)\n", + "fov: 279 (43, 34)\n", + "fov: 280 (43, 37)\n", + "fov: 281 (43, 40)\n", + "fov: 282 (43, 43)\n", + "fov: 283 (43, 46)\n", + "fov: 284 (43, 49)\n", + "fov: 285 (43, 52)\n", + "fov: 286 (43, 55)\n", + "fov: 287 (46, 7)\n", + "fov: 288 (46, 10)\n", + "fov: 289 (46, 13)\n", + "fov: 290 (46, 16)\n", + "fov: 291 (46, 19)\n", + "fov: 292 (46, 22)\n", + "fov: 293 (46, 25)\n", + "fov: 294 (46, 28)\n", + "fov: 295 (46, 31)\n", + "fov: 296 (46, 34)\n", + "fov: 297 (46, 37)\n", + "fov: 298 (46, 40)\n", + "fov: 299 (46, 43)\n", + "fov: 300 (46, 46)\n", + "fov: 301 (46, 49)\n" + ] + } + ], + "source": [ + "fov_dic = {}\n", + "fov = 1\n", + "for row in range(1, 10):\n", + " for col in range(1, 22):\n", + " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + "\n", + "for row in range(10, 14):\n", + " for col in range(2, 22):\n", + " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + " \n", + "for row in range(14, 15):\n", + " for col in range(2, 19):\n", + " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + "\n", + "\n", + "for row in range(15, 16):\n", + " for col in range(2, 17):\n", + " print(\"fov:\", fov, (row*3 + 1, col*3 + 1))\n", + " fov_dic[fov] = (row*3 + 1, col*3 + 1)\n", + " fov += 1\n", + "\n", + "fov_dic[302] = (145, 28)\n", + "fov_dic[304] = (145, 46)\n", + " " + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# fov_dic, len(fov_dic.keys())" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# fov_ids_lst" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idxy
010011649
110021749
210031849
310041650
410051750
...............
26958451465
26968461565
26978471366
26988481466
26998491566
\n", + "

2700 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " fov spot_id x y\n", + "0 100 1 16 49\n", + "1 100 2 17 49\n", + "2 100 3 18 49\n", + "3 100 4 16 50\n", + "4 100 5 17 50\n", + "... ... ... .. ..\n", + "2695 84 5 14 65\n", + "2696 84 6 15 65\n", + "2697 84 7 13 66\n", + "2698 84 8 14 66\n", + "2699 84 9 15 66\n", + "\n", + "[2700 rows x 4 columns]" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fov_spot_coordinates = pd.DataFrame(columns = ['fov', 'spot_id', 'x', 'y'])\n", + "fov_lst = fov_ids_lst\n", + "\n", + "for fov_id in fov_lst:\n", + " x_px = fov_dic[fov_id][0]\n", + " y_px = fov_dic[fov_id][1]\n", + " fov_spot_coordinates = get_spot_x_y_range(x_px, y_px, fov_id, fov_spot_coordinates)\n", + "fov_spot_coordinates\n" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# fov_spot_coordinates = fov_spot_coordinates[fov_spot_coordinates['fov'] != 21]" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "fov_spot_coordinates.to_csv('./health/new/spot_location.csv')" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fovspot_idxy
010011649
110021749
210031849
310041650
410051750
...............
26958451465
26968461565
26978471366
26988481466
26998491566
\n", + "

2700 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " fov spot_id x y\n", + "0 100 1 16 49\n", + "1 100 2 17 49\n", + "2 100 3 18 49\n", + "3 100 4 16 50\n", + "4 100 5 17 50\n", + "... ... ... .. ..\n", + "2695 84 5 14 65\n", + "2696 84 6 15 65\n", + "2697 84 7 13 66\n", + "2698 84 8 14 66\n", + "2699 84 9 15 66\n", + "\n", + "[2700 rows x 4 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fov_spot_coordinates" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "spot_gene_expression = spot_gene_expression.drop(columns = [\"fov\", \"spot_id\"])\n", + "ground_truth_table = ground_truth_table.drop(columns = [\"fov\", \"spot_id\"])\n", + "fov_spot_coordinates = fov_spot_coordinates.drop(columns = [\"fov\", \"spot_id\"])\n", + "\n", + "\n", + "\n", + "import anndata as ad\n", + "st_adata = ad.AnnData(X = spot_gene_expression.values, obs = ground_truth_table, var = pd.DataFrame(index = list(spot_gene_expression.columns)), dtype=int)\n", + "st_adata.obsm[\"spatial\"] = fov_spot_coordinates.values\n", + "\n", + "spot_sums = np.sum(st_adata.X, axis=1)\n", + "mask = spot_sums > 100\n", + "filtered_data = st_adata[mask]\n", + "\n", + "filtered_data.obsm['spatial'] = filtered_data.obsm['spatial'].astype(float)\n", + "filtered_data.obs = filtered_data.obs.astype(float)\n", + "\n", + "file_path = \"/home/luqiaolin/projects/Benchmarking_paper_code/pseudo_spot_generation/cosmx_liver/Health.h5ad\"\n", + "filtered_data.write_h5ad(file_path)\n", + "\n", + "\n", + "\n" + ] }, { "cell_type": "code", @@ -40101,9 +6652,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "test", + "display_name": "baseline_code", "language": "python", - "name": "test" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -40115,7 +6666,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.8.16" } }, "nbformat": 4,